

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　iOSや Android、Windows Phone
など、各社・各団体からさまざま
なOSが出そろってきたスマート
フォン市場ですが、そんな中で
Webブラウザ「Firefox」の提供元
であるMozilla Foundationによっ
てオープンソースで開発されてい
るのが「Firefox OS」（初期のコー
ドネームは「Boot to Gecko（B2G）」）
です。「Firefox」の名前が使われて
いることからも想像できるように、
Web技術を最大限に活用できるこ
とが大きな強みとして挙げられて
います。
　Firefox OSは、新しいWeb標準
を活用したオープンなモバイルプ
ラットフォームを実現することを
主な目的として開発されています。
基本的なコンセプトは、端末上で
ユーザが使用できるソフトウェア
はすべてWebアプリであり、HTML
5や JavaScriptによって開発するこ
とができるというもの。Webアプ
リと言っても、基盤OSそのものが
Webアプリの実行を前提に設計さ
れており、中間レイヤの存在を最小
限に抑えることで、極めて効率の良
い動作を実現します。
　また、通話機能や各種センサー、
カメラなどといった端末固有の機
能に対して、プラットフォーム固
有の言語や APIを使うことなくア
クセスすることが可能なことなど、
Web標準技術だけでネイティブア
プリ開発が行えるという点が極め
て大きな強みと言えます。

　Firefox OSは、大きく分けると
「Gonk」、「Gecko」、「Gaia」と呼ば
れる 3つのソフトウェアレイヤか
ら構成されます。
　Gonkは、Linuxベースのカーネ
ルと、Geckoと通信するハードウェ
ア抽象化レイヤから構成される低
レベルのオペレーティングシステ
ムレイヤです。カーネルといくつ
かのユーザスペースライブラリは、
オープンソースの Linuxや libusb、
bluezなどであり、HALのその他
のパーツは Androidプロジェクト
と共有しているとのこと。Gonkは
非常にシンプルな Linuxディスト
リビューションの一種と言えるた
め、Geckoからは他の既存のOS
と同様に扱うことができます。
　Gecko は、Firefox や Thunder
birdで使われているのと同じWeb
標準仕様の実装をベースとしたア
プリケーションランタイムです。
HTMLやCSS、XULによるレンダ
リングや JavaScriptの実行をサポー
トします。
　Gaiaは、Firefox OS端末用UIア
プリケーションで、HTML/CSS/
JavaScriptで記述された多数のUI
ツールを提供します。Firefox OS
では、ロック画面やホーム画面、
電話など、起動後に用意されてい
るアプリケーションはすべてGaia
によって描画されるとのことです。
OSとハードウェアに対するイン
ターフェース以外はHTML/CSS/
JavaScriptで実装されているため、

Firefox OS以外のOSやWebブラ
ウザ上でも実行できる点が大きな
特徴になっています。

　本稿執筆時点で Firefox OSを利
用するには、開発者向けサイトか
らソースコードを入手して自前で
ビルドする必要があります。テス
ト開発用プラットフォームに加え
て、ARMおよび x86デスクトップ
向けエミュレータ、Nexus Sなどの
一部の実機での動作がサポートさ
れています。その他に、このOS
のデスクトップ版となる「Firefox
OSデスクトップクライアント」や、
Firefoxブラウザ上で Firefox OSア
プリを動作させることが可能な
「Firefox OSシミュレータ」などに
よって、デスクトップ PC上で
Firefox OSを体験することもでき
るようになっています。
　製品化された最初の端末は 2013
年第一四半期のリリースを目指し
ているとのことで、当面は発展途
上国向けのローエンドスマート
フォンをターゲットとして展開し
ていくそうです。現実的には、シェ
ア争いという観点で言えば先行き
は不透明な部分が大きいプロジェ
クトですが、技術的なチャレンジ
としては極めて興味深い存在と言
えるでしょう。s

「Firefox OS」の
コンセプト

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

第 50回

Firefox OS

s

Firefox OS
http://www.mozilla.jp/firefoxos/
開発者向け情報サイト
https://developer.mozilla.org/ja
/docs/Mozilla/Firefox_OS

主要なアーキテクチャ

最初のリリースは
2013年 !?

mailto:sd@gihyo.co.jp
http://www.mozilla.jp/firefoxos/
https://developer.mozilla.org/ja/docs/Mozilla/Firefox_OS

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

http://sd.gihyo.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.hyper-cloud.jp/

162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

木村 明治 著
B5変形判 ・ 416ページ
定価 3,180円（本体）＋税
ISBN 978-4-7741-5026-0

三苫 健太 著
B5判 ・ 400ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-5189-2

中井 悦司 著
B5変形判 ・ 352ページ
定価 3,400円（本体）＋税
ISBN 978-4-7741-5143-4

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

高宮 安仁、鈴木 一哉 著
A5判 ・ 336ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-5465-7

青柳 隆宏 著
A5判 ・ 448ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-5464-0

河村 嘉之、川尻 剛 著
B5変形判 ・ 480ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-5438-1

㈱マピオン、山岸 靖典、
谷内 栄樹、本城 博昭、
長谷川 行雄、中村 和也、
松浦 慎平、佐藤 亜矢子 著
B5変形判 ・ 256ページ
定価 2,580円（本体）＋税
ISBN 978-4-7741-5325-4

和田 裕介 著
A5判 ・ 208ページ
定価 2,180円（本体）＋税
ISBN 978-4-7741-5407-7

サーバ構築の実際がわかる　
Apache［実践］運用／管理
鶴長 鎮一 著
定価 2,980円＋税　ISBN 978-4-7741-5036-9

Nagios統合監視
［実践］リファレンス
㈱エクストランス　佐藤 省吾、
Team-Nagios 著
定価 3,200円＋税　ISBN 978-4-7741-4582-2

もっと自在にサーバを使い倒す
業務に役立つPerl
木本 裕紀 著
定価 2,780円＋税　ISBN 978-4-7741-5025-3

Linuxエンジニア養成読本
Software Design編集部 編
定価 1,880円＋税　ISBN 978-4-7741-4601-0

プロのためのLｉｎｕｘシステム・
ネットワーク管理技術
中井 悦司 著
定価 2,880円＋税　ISBN 978-4-7741-4675-1

PCのウイルスを根こそぎ
削除する方法
本城 信輔 著
定価 1,980円＋税　ISBN 978-4-7741-4867-0

Vyatta入門
実践ルーティングから仮想化まで
近藤 邦昭、松本 直人、浅間 正和、
大久保 修一（日本Vyattaユーザー会） 著
定価 3,200円＋税　ISBN 978-4-7741-4711-6

Androidエンジニア養成読本
Software Design編集部 編
定価 1,880円＋税　ISBN 978-4-7741-4859-5

サーバ／インフラエンジニア
養成読本
Software Design編集部 編
定価 1,880円＋税　ISBN 978-4-7741-4600-3

2週間でできる！
スクリプト言語の作り方
千葉 滋 著
定価 2,580円＋税　ISBN 978-4-7741-4974-5

Webエンジニアのための
データベース技術[実践]入門
松信 嘉範 著
定価 2,580円＋税　ISBN 978-4-7741-5020-8

サーバ／インフラエンジニア
養成読本　管理／監視編
Software Design編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5037-6

サーバ／インフラエンジニア
養成読本　仮想化活用編
Software Design編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5038-3

Smartphone Design

ユーザから支持されるスマートフォンアプリ開発のために「デザイン
する力」がより一層求められている開発現場。悩めるエンジニアとデ
ザイナがともに力を発揮するためのヒントが満載です！

第1特集　どうしてデザインと開発は両立できないのか？
第2特集　スマホ開発者がUnityを理解しておくべき理由
その他　Web＋ネイティブでスピード・コスト・メンテに効くアプリ開発／
Windows Phoneアプリ開発入門／PlayStation Mobileアプリ開発／仮想化技術でス
マホ＆タブレットを業務に／既存のPCサイトをスマホ用に変換！／Webブラウザで
クロス開発できるappMobi　ほか

Software Design 編集部　編
B5判　168ページ　定価 1,659 円（本体 1,580 円 +税）
ISBN 978-4-7741-5335-3

スマートフォンアプリ開発者とデザイナのための総合情報誌

iPhoneアプリ開発塾

iPhoneアプリの作り方について書かれた本は数多くありますが、「基
本はわかっても応用がきかない」「やっぱりiOSプログラミングは難
しい」といった声が多いようです。本書は、そんな悩めるiPhoneアプ
リ開発エンジニア達に人気のポータルサイト『サルでき.jp』（旧ブロ
グ：サルにもできるiPhoneアプリの作り方）の管理人が、Xcodeの
読み方、プログラミングの基本はもちろん、サポートページの作り方
までを、“どこよりも敷居の低い”書き方で丁寧に解説しています。

カワサキタカシ　著
B5変形判　320ページ　定価 2,919 円（本体 2,780 円 +税）
ISBN 978-4-7741-5105-2

iPhone
本はわかっても応用がきかない」「やっぱり

グ：サルにもできる
読み方、プログラミングの基本はもちろん、サポートページの作り方
までを、

カワサキタカシ　著
B5
ISBN 978-4-7741-5105-2

iOS 5.1 & Xcode 4.3 対応

現場で使える
Androidプログラミングテクニック

普及が進むスマートフォンで注目されるAndroid OSですが、組込み
システムの宿命とも言うべき「リソースの制限、バッテリー駆動」と
いった、プログラミングに関わる制限事項が多数存在します。また、
「新しい情報をリアルタイムで追随しにくい」といった問題、さらに
は「従来型のC/C++の組込み開発をしてきた人や会社はJavaに不慣
れ」「Javaに慣れた人や会社は低レベルの理解が足りず参入に苦労」
といったノウハウ不足の問題に対し、本書は徹底的にチューニングの
方法を解説することでも寄与します。

石原正樹、松尾源、磯村禎孝、森靖晃、奥谷修治　著
A5判　464ページ　定価 2,919 円（本体 2,780 円 +税）
ISBN 978-4-7741-5187-8

［逆引き＋実践］

https://gihyo.jp/site/inquiry/dennou

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://sta.denso.co.jp/

　昨今、1つのデジタル機器にたくさんの機能が詰め
込まれるのはごくごく一般的になりました。製品ごとに
スペックを比較し、多機能であればあるほど価値がある
ように思えてしまうのではないでしょうか？

　その一方で、ある特定の用途で必要な機能を、それだけ分離させることで使いやすくしたデ
バイスも出現してきました。また、デバイスに関係なく、各種デバイスをまたがった形でコンテン
ツやデータを扱えるサービスも増えてきました。これらの登場は、機能そのものではなく、その機
能がどう使われるのか、その機能でどういった体験が得られるのかが重要になってきたことを物
語っています。
　家電製品やデジタルデバイスのコントロールに気軽に使える「リモコン」も、機能を分離した
ものの1つと考えられるでしょう。特定の機能または、さまざまな操作を、本体ではなく、分離した
機器で行えるようにしたものです。
　今回は、デバイスの機能として本来一緒だったものが、分かれて機能したり、スマートフォン
と連携して動作するグッズをいくつか紹介していきます。

家電のデジタル化≠多機能化
多機能化する
デジタル機器への
アンチテーゼ

Philipsのhueは、スマートフォンやタブレットのアプリ
から、カラフルな色や明るさを自在に操作できるLED
電球です。専用のWi-Fiアクセスポイントと電球が3
個ついたスターターキットがあり、あとから電球を追加
できます。1台のiOSデバイスで最大50個のhue電球
を管理可能です。そのときの雰囲気や生活スタイル、
時間にあわせて色と明るさを細かく調整できます。リモ
コンを画面付きデバイスにすることで、画面のイメージ
を現実世界に投影する楽しさと操作しやすさを両立さ
せた好例です。同様の機器として、LIFX（http://tech.
lifx.co）やBluetooth Bulb（http://www.bluetooth
bulb.com）、insteon Light Bulb（http://www.ins
teon.net/bulb.html）があります。電球や電灯のス
イッチ部分を、スマートフォンに分離した機器です。電
球をコントロールするバルブ部分を開発し、どんな電
球でもコントロールしようとするSparkという製品開
発のプロジェクトも進行中です（http://www.kick
starter.com/projects/sparkdevices/spark-upgr
ade-your-lights-with-wi-fi-
and-apps）。

電球色をコントロール

hue
http://www.meethue.com/en-US

Feb. 2013 - 1

http://tech.lifx.co
http://tech.lifx.co
http://www.bluetoothbulb.com
http://www.bluetoothbulb.com
http://www.insteon.net/bulb.html
http://www.insteon.net/bulb.html
http://www.kickstarter.com/projects/sparkdevices/spark-upgrade-your-lights-with-wi-fi-and-apps
http://www.kickstarter.com/projects/sparkdevices/spark-upgrade-your-lights-with-wi-fi-and-apps
http://www.kickstarter.com/projects/sparkdevices/spark-upgrade-your-lights-with-wi-fi-and-apps
http://www.kickstarter.com/projects/sparkdevices/spark-upgrade-your-lights-with-wi-fi-and-apps
http://www.kickstarter.com/projects/sparkdevices/spark-upgrade-your-lights-with-wi-fi-and-apps
http://www.meethue.com/en-US
http://www.andoh.org

家電のデジタル化≠多機能化

Nestはインテリジェントな機能をもった温度調節
装置で、ユーザの生活パターンを学習して温度
設定を行います。スマートフォンやインターネット
経由での設定も可能です。省エネのための工夫
もなされています。米国家庭に設置されているよ
うな冷暖房のサーモスタットを置き換える形の工
事／配線が必要なため、法令などの関係もあ
り、残念ながら現状は日本の冷暖房器具には使
えないようです。冷暖房機器のコントロール部分
と温度センサー部分が分離し、進化したデバイと温度センサー部分が分離し、進化したデバイ
スといえるでしょう。

室温コントロール

Nest
http://www.nest.com/

Zikは、iPhoneでコントロールできるラジコンヘリ
コプターで知られるParrot社の製品です。高性
能なノイズキャンセリングBluetoothヘッドフォン
であるとともに、耳当ての外殻がタッチパネルに
なっており、ジェスチャでiPhoneの音楽アプリの
コントロールが可能です。さらに専用アプリを利
用すると、ヘッドフォンなのに音像が前方から聞
こえてくる音響効果やイコライザによる調節など
ができます。iPhoneから音楽コントロール部分
のみ分離し、機能特化したヘッドフォンといえる
でしょう。

音楽コントロールヘッドフォン

Zik
http://www.parrot.com/zik/jp/

iSiriは残念ながらコンセプトのみで、どうやら実
現しそうにないデバイスですが、iPhoneの音声
認識コントロール部分のみを分離したものといえ
るでしょう。ボタン形状の本体にはマイク、スピー
カー、イヤフォンジャックを備え、iPhone本体とは
Bluetoothでつながり、腕時計のように装着でき
るウェアラブルな音声コントローラとして利用す
ることが想定されています。スマートフォンの利用
には緻密な画面とタッチパネルの存在が当然と
考えがちですが、Siriのみであれば、実は画面は
必要ありません。今あるスマートフォンで利用して
いる機能の、ある一部分のみ分離して使えたら
便利になる良い例です。

Siri専用ボタン

iSiri
http://www.ciccaresedesign.com/2012/11/08/isiri/

All Sports GPSは、スマートフォンのGPS機能
部分を分離させ、スポーツ利用に特化したデジ
タルデバイスです。GPSとはいいつつ、中身は
Android端末で、距離計測や記録により適した
形でオンライン地図を活用することができます。
専用のアプリストアAll Sports App Marketに
は位置情報系、スポーツ関連のアプリが数多く
取りそろえられています。なんでもできるスマート
フォンは便利ですが、過酷な環境でも使える丈
夫なハードウェアと、特定の状況下での使いや
すさを考慮したアプリでなければ実用にならない
シーンもあります。シーンもあります。

スポーツ専用GPSデバイス

All Sports GPS
http://www.satsportsgps.com/satski/satsportgps.html

popSLATEはE Ink搭載のiPhone 5専用ケー
スで、iPhoneに表示した画面をその背面側に
あるE Ink画面（モノクロ）に表示させておくこと
ができます。現在はコンセプトモデルの段階で、
クラウドファンディングによって開発資金を募集
中です。一度表示させてしまえば、電力消費なし
で絵を映し出しておけるE Inkの特性をうまく活
用したケースです。バッテリー消費を気にするこ
となくもう1画面手に入れたようなもので、地図や
買い物メモなどで便利に活用できそうです。

E Inkケース

popSLATE
http://www.popslate.com

StickNFind
http://www.indiegogo.com/sticknfind

Siri Eyes Freeモード
https://www.onstar.com/web/Bluetooth

CrossFeel
http://www.nelt.co.jp/products/led_sp.html

EnergyHubは家庭用のエネルギー統合監視シ
ステムです。家電製品をEnergyHub専用のコ
ンセントにつないで利用すれば、電気消費量を
統合的に管理することができる機器です。計測
用のコンセントはZigBee無線タイプのものもあ
り、このシステムのために配線を増やさなくてす
みます。Webサイトやモバイルアプリとの連携も
進んでおり、家の電力コントロールを、コンセント
の呪縛から離れてネットから監視・コントロールで
きるシステムです。

家庭用エネルギー管理システム

EnergyHub
http://www.energyhub.com/

COCOROBO RX-V100
http://www.sharp.co.jp/cocorobo/

(C)Federico Ciccarese - ciccaresedesign.com2 - Software Design

http://www.nest.com/
http://www.parrot.com/zik/jp/
http://www.ciccaresedesign.com/2012/11/08/isiri/
http://www.energyhub.com/
http://www.satsportsgps.com/satski/satsportgps.html
http://www.popslate.com

　今、皆さんの身近にある、携帯電話
やスマートフォンの機能をあらためて認
識してみてください。さまざまなアプリが
インストールされ、人それぞれ、多様な
機能を持っていると思います。タッチパ
ネルの画面をスワイプし、カテゴリアイ
コンを開き、アプリを起動するといった
手間を何度も経験していると、たびた
び、ある機能だけを抜き出して便利に
使いたくなるシチュエーションはないで
しょうか？　何かを高機能にするだけで
なく、何かの機能を分離してより便利
にする手はないでしょうか？
　目的ややり方が決まっている場合
は、ある特定のことしかできない道具
のほうが確実に扱えるでしょう。スイス
アーミーナイフのように、さまざまな機
能を持っていて便利に使えても、それ
ぞれ単機能としては専用器具にはか
ないません。経験を積んだ宮大工や家
具職人は、それぞれ細かな用途向け
の、ものすごい数の鉋（カンナ）を持っ
ているそうです。
　これからのデジタルデバイスは、なん
でもできるスイスアーミーナイフとして
の進化の一方で、職人がその技を最
大限に発揮できる、特定の専用機器
も重宝されてくるのかもしれません。
　現在一体化していて当然と思える
ものも、分離して使えることを想像する
と、新しい可能性が広がります。すでに
身のまわりには分離して使うことが一
般的なものも数多くあることに気づく
はずです。ワイヤレス受話器、ノートパ
ソコンに外付けキーボード、エアコンの
リモコン、車のワイヤレスキー……。
　今一度、まわりを見渡してみてはい
かがでしょうか？　なにか新しい発見が
あるかもしれません。s

家電のデジタル化≠多機能化

Nest
http://www.nest.com/

Zik
http://www.parrot.com/zik/jp/

iSiri
http://www.ciccaresedesign.com/2012/11/08/isiri/

All Sports GPS
http://www.satsportsgps.com/satski/satsportgps.html

popSLATE
http://www.popslate.com

StickNFindは部屋の中でよく行方不明になる
もの、たとえばリモコンや財布、薄くて本の間にま
ぎれてしまうようなものなどに貼っておくと、スマー
トフォンでありかを発見することができるコインくら
いの大きさと厚さのシールです。Bluetooth技術
を利用し、電波強度からスマートフォン上でレー
ダーのように探し出すことができます。いざとい
うときに見あたらない各種リモコンも、この
StickNFindのようなデバイスがあれば安心して
どこにでも置いておくことができますね。

スマートフォン捜索シール

StickNFind
http://www.indiegogo.com/sticknfind

iOS 6から搭載されたSiri Eyes Freeモードは、
運転中のドライバーが音声でiPhoneをコント
ロールできるしくみです。利用には車載機器プ
ラットフォーム仕様であるBluetooth MyLinkで
接続し、ハンドル横についている音声入力ボタ
ンを押してSir iを起動するそうです。車用に
iPhoneのSiriボタンを分離させて利用できるよう
にした事例です。

iPhoneを車で活用

Siri Eyes Freeモード
https://www.onstar.com/web/Bluetooth

CrossFeelはBluetoothを経由してスマートフォ
ンでコントロールできる天井に設置されたシーリン
グライトです。先に紹介したスマートフォンコントー
ロールLEDランプとの大きな違いは、スピーカー
も設置されていることです。音楽を聴く用途には
もちろん、鳥のさえずりや、小川のせせらぎといっ
た、環境音を流すといった用途にも使えます。消
灯後にもすぐに真っ暗にならず、2～3分間、淡
いブルーグリーンの光で照らしてくれる生活に即
したライティングも考えられています。住環境の光
と音をスマートフォンと連携させた例です。と音をスマートフォンと連携させた例です。

Bluetooth内蔵
スピーカー付き
シーリングライト

CrossFeel
http://www.nelt.co.jp/products/led_sp.html

EnergyHub
http://www.energyhub.com/

床を掃除してくれるお掃除ロボットCOCOROBO
の上位機種RX-V100に「家電コントローラー」
というオプションを搭載すると、赤外線通信を
使って、エアコンやテレビ、照明など赤外線リモ
コン対応の機器をコントロールできるようになる
そうです。RX-V100にはカメラも搭載されてお
り、ペットや部屋の様子をスマートフォンで確認し
たりもできます。家電とロボットとスマートフォンが
リンクした例です。

家電制御できる掃除ロボット

COCOROBO RX-V100
http://www.sharp.co.jp/cocorobo/

(C)Federico Ciccarese - ciccaresedesign.com2 - Software Design Feb. 2013 - 3

https://www.onstar.com/web/Bluetooth
http://www.indiegogo.com/sticknfind
http://www.sharp.co.jp/cocorobo/
http://www.nelt.co.jp/products/led_sp.html

4 - Software Design

小飼弾の

　本連載も、来月で終わる。本連載を引き継ぐ次の
連載が今から楽しみなのだが、それはさておき最終
回は二度にわけてお届けすることにしよう。キー
ワードとなるのは、この言葉。

 Stay hungry, stay foolish.

　Jobsが引用したことで注0今や英語の教科書にも
載るほど有名になった言葉だが、引用元の「The

Whole Earth Catalog」注1がこの言葉を掲載した
1972年と比べればもちろんのこと、Jobsの2005年
と比較してさえ、ハングリーでいるのは格段に難し
くなっている。
　そのハングリーさにおいて、コンピュータ産業ほ
どハングリーだった業界はないだろう。パソコンと
いう言葉が一般化するきっかけとなったApple][に
搭載されていたRAMは、ベースモデルで4KB、最
高で48KB。2012年のパソコンは2GB～64GBく
らいなので、それから100万倍になったことにな
る。2を底とする対数でみると、20ほど。つまり倍々
ゲームをおよそ20回ほど繰り返してきたことにな
る。
　なぜそうだったか。我々ユーザがつねにメモリに

ハングリーであり続けろ
対して飢餓状態にあったからだ。「これだけあれば
足りる」と思って買っても、翌年には足りなくなっ
ていた。進化したハードウェアに合わせたソフト
ウェアが出続けることによって。文字だけではなく
画像も扱いたい。単に画像が扱えるだけでなくそれ
を用いたユーザインターフェースがほしい。白黒で
はなくカラーがほしい。画面もずっと広くしてほし
い。そして静止画像だけではなく、動画も扱えるよ
うになってほしい……。
　これらの願いは、ほぼすべてかなえられた。い
や、かなえられてしまったというべきか。今や
KindleやKoboなどのE-Book Readerを除けば、
「カラー」というのはパソコンどころか携帯電話で
も24ビットフルカラーが当然で、解像度も最低で
XGA（1024×768ピクセル）あるのが当然となって
いる。動画も1080pフルハイビジョンを難なく扱え
る。

　こうなってくると、いよいよ人間のほうが「おな
かいっぱい」になってくる。これ以上色を増やして
も、解像度を高くしても、フレームレートを上げて
も、もはや人の目には違いがわからないところまで
きてしまったのだ。私が今これを書いている iMac

は1世代前のものであるが、搭載している資源は余
りまくっている。メモリ1つとっても、32GBとい
うのは、次ページのスクリーンショットのとおり、
その中でOSを5つくらい動かしても余裕で余って

ポストハングリー時代の到来

注0） 「Steve Jobs' 2005 Stanford Commencement Address」
 URL https://www.youtube.com/watch?v=UF8uR6Z6KLc
注1） 米国で1968年～1972年に刊行されていたカウンターカル

チャーの雑誌。

Can we still stay hungry?Can we still stay hungry?

TEXT=小飼 弾 KOGAI Dan dankogai@dan.co.jp

https://www.youtube.com/watch?v=UF8uR6Z6KLc

4 - Software Design Feb. 2013 - 5

しまう量なのだ。Windows 8が登場したにもかかわ
らず、全世界的にPCが売れなくなってきたという
のも無理はない。今あるもので十二分に間に合って
しまうのだから。
　そう考えると、Jobsのスピーチは見事な引っか
けのように思える。2005年にはまだPCにも「飢餓」
が残っていたけれど、それが数年のうちに尽きるこ
とを彼は知っていたのだから。彼のすごかったとこ
ろは、それを単に予言するにとどまらず、次にユー
ザが何に飢えるかをも予測し、それにどんぴしゃり
の答えを用意したこと。PCの重厚長大さに満腹し
たユーザたちは、iPhoneと iPadをむさぼるように
使い出した。
　そのポストPCデバイスも、しばらくはPCと同
じような倍々ゲームが続いている。シングルコアが
デュアルコア、512MBが1GB、3GがLTEに……。
しかしその「空腹」の余地は、PCよりずっと早くな
くなろうとしている。私のGalaxy S3には2GBの
RAMが入っているが、これは本連載が始まったこ
ろのネットブックより大きいのだ。4GBの後はい
よいよPCと同様に64ビットCPUが必要になる
し、ポストPC時代のIntelアーキテクチャの代表
であるARMも64ビットコアを発表してはいるけ
ど、スマートフォンやタブレットにそこまで必要
か、大いに疑問でもある。実際 iOSはAndroidの半
分程度のコアとメモリで市場で十二分に競争してい
ることを鑑みれば、人々が飢えているのはそこでは
ないことは賢明な読者のみなさんはすでにお気づき

のはずだ。
　それでは、ポストハングリー時代、我々は何を売
るべきだろうか。2つの路線があり得る。
　1つは「まだハングリーな分野」を求めること。「こ
ちら側」のクライアントはとにかく、「あちら側」の
サーバの世界は飢餓状態がいまだに続いている。本
誌の記事も「こちら側」に属するものより「あちら側」
に属するものが多いこともそれを反映していると言
える。
　そしてもう1つは、ハングリーに代わるのは何か
を模索すること。それは何か？ ペインフルだと私
は考えている。腹が満ちても、痛みは収まらない。
たとえば扱うデータが格段に大きくなったことで、
バックアップは格段に難しくなっている。かつては
全システムがフロッピーディスクに収まっていて、
それを丸ごとコピーしておしまいな時代もあったの
に。Microsoftが 一 番 鈍 い の は こ こ だ ろ う。
Windows 8になった今でさえMacの移行アシスタ
ントやTime Machineのような「鎮痛剤」を用意して
いないのだから。せっかく新OSが出ても、旧PC

からの乗り換えが面倒で買い控えている人々がどれ
ほどいるのか、Redmondの人々にはまだわからな
いのだろうか？
　いずれにせよ、エンドユーザが空腹であること
を、我々はもう期待できないということは確かだろ
う。しかし彼らの苦痛はまだまるで終わっていな
い。それがある限り、我々の商売の余地が終わるこ
とはないはずだ。｢

Can we still stay hungry?

6 - Software Design

　早いもので2013年になりました。筆者が『ソー
シャル・ウェブ入門　Google、mixi、ブログ…新し
いWeb世界の歩き方』注1という本を書いたのが
2007年で、この4月で満6年になります。あとから
振り返ると2007年というのはいろいろな意味でイ
ンターネットとITにとって大きな転機となる年で
した。まず1月にスティーブ・ジョブズが iPhoneを
発表し、これに対抗するように7月にはGoogleの
主導によりAndroid規格が発表されました。
　しかし当時この2つのプラットフォームがテクノ
ロジ界の地図を塗り替えるだけでなく、世界中の
人々のライフスタイルを一変させてしまうようにな
るとは誰も考えていませんでした。もしかするとス
ティーブ・ジョブズ本人でさえそのスピードは予測
していなかったかもしれません。iPhoneとAndroid

の爆発的な普及のせいで、当初スマートフォンとい
えばRIMのBlackBerryを代表とするビジネスマン
向けのニッチな高級機を指したことも、今ではすっ
かり忘れられているのではないでしょうか。
　iPhone/Android時代になって一気に重要性を増
したのが写真と位置情報です。位置情報の要となる
地図の重要性については高橋さんが書いています

注1） 技術評論社、ISBN978-4-7741-3081-1

が、ここではモバイル写真共有とローカル情報をめ
ぐる最近のFacebookの攻勢を見ていきましょう。
　iPhoneのカメラが進化し、それに対抗して
Android機のカメラも長足の進化を遂げると、我々
の生活における写真の位置付けが大きく変わりまし
た。何千万もの人々が24時間肌身離さずカメラを
持ち歩き、目についたものを何でも記録するように
なったのです。2011年6月に老舗写真共有サイトの
Flickrで撮影に利用されたカメラで iPhoneが首位
に立ったことがこの動きをよく表しています。

Facebookによる Instagramの
買収とその後の動向

　写真を撮ったら友だちや知り合いに見せたいと思
うのが自然です。FacebookやTwitterはそうして
撮った写真を共有する格好の場になりました。
　モバイルサービスにおける写真の重要性を劇的に
示したのがInstagramでした。元Googleのケビン・シ
ストロムらが2010年10月にiPhone向けInstagram

アプリをApp Storeにリリースします。Instagramは
1年未満で1,000万人のユーザを集め、2012年には
アップロードされた写真が10億枚を超えるという驚
異的な成長を遂げます。ここでTwitterとFacebook

がInstagramを買収しようと激しく競争しますが、
結局マーク・ザッカーバーグが独断で10億ドルとい

▶Facebook、
モバイルウォーズを仕掛ける
▶Facebookと民主主義

第34回

　本連載では、Webメディア「TechCrunch Japan」（http://jp.techcrunch.com/）の記事を翻訳している2人

が毎回、同サイトで取り上げている最新Webサービスや企業•ビジネスに関する膨大なエントリを訳出する

中で集積している、米国を中心とした動向、さらにその背景を解き明かしていきます。

Facebook、モバイルウォーズを仕掛ける
滑川 海彦

http://jp.techcrunch.com/
http://jp.techcrunch.com/

6 - Software Design Feb. 2013 - 7

▶Facebook、モバイルウォーズを仕掛ける

う途方もない額を提示したことでFacebookが勝利
し、2012年5月にInstagramはFacebookの傘下に入
りました。
　当初Facebookは「Instagramは従来どおり独立し
たサービスとして運営される」としていましたが、12
月に入ってInstagramの写真が突然Twitterに表示さ
れなくなりました。これはInstagramのトラフィッ
クがライバルに流れるのをFacebookが嫌ったため
でした。同時に、Facebook本体がInstagramのユー
ザデータを利用し、またInstagramにアップロード
された写真やユーザのプロフィールを広告に利用で
きるように、利用規約が改正されました。
　実はInstagramは買収以前にはまったく売り上げ
がなく、ビジネスモデルさえありませんでした。1ド
ルも収入のない会社に10億ドルを払ったのですから
収益化を図るのは当然と言えます。
　規約改正では、「Facebookの規約改正にはユーザ
の投票を必要する」という規約も廃止されました。
この規約改正に対する投票が行われ、投票した約67

万のユーザの88％が反対しましたが、ユーザ投票が
強制力を持つには3億人の投票が必要だったため、
改正が阻止されることはありませんでした。
　こうしたFacebookのやや強引な動きに批判の声
も上がっていますが、広告の表示頻度と質がユー
ザ体験を大きく損なわないようコントロールされ
ている限り、さほど大きな問題にならないでしょ
う（なお、ケビン・シストロムは「改正規約がユーザ
の写真を広告の一部として第三者に売るように誤
解されたようだが、そのような計画はいっさい
持っていない」としてその部分を削除すると発表し
ています）注2。　
　一方、Facebook/Instagramの攻勢に対して、
Twitterも早速独自のフィルタを導入するなど写真
共有機能の強化で防戦に務めています。Googleは
iOS向けの人気写真編集アプリを提供する
Snapseedを買収し、2012年12月にAndroid版を公

注2） 「Instagramのケビン・シストロム、『疑問に答え、間違いを正
す』ことを約束」 URL http://jp.techcrunch.com/archives/
20121218instagram-co-founder-kevin-systrom-says-it-is-
committed-to-answering-questions-and-fixing-mistakes/

開しました。筆者も利用してみましたが、スワイプ
やタップだけで輝度やホワイトバランスの調整など
高度な編集が簡単にでき、大いに気に入りました。
またGoogle+はもちろん、FacebookやTwitterにも
同時に一括投稿できるのも便利です。TechCrunch

でも絶賛されています注3。

モバイル対応機能を強化する
Facebook

　Facebookはローカル位置情報サービスにも本格
的に参入してきました。ザッカーバーグは2012年
9月のTechCrunchカンファレンスで「Facebookは
『友だちが過去6ヵ月間に訪れたことがあり、いい
ね！したニューヨークの寿司屋はどれか？』という
質問の答えを誰よりもよく知っている」と述べまし
たが、それがいよいよNearby（図1）というモバイ
ルでの新機能で具体化しました。
　Nearbyは、付近のレストラン、バー、店舗など
のローカルビジネス情報がカテゴリ別に表示され、
友だちと評価やコメントを共有できる機能です。
2012年12月中旬時点では日本版には導入されてい
ませんが、「付近の情報」タブをアップデートする形
で導入されるものと思われます。Facebookの圧倒的
なユーザ数と長い利用時間を考えると、Yelpや
Foursquareなどローカルビジネス情報や位置情報
の共有サービスには大きな脅威となりそうです。
　Facebookは長年モバイルが弱点だと評されてき
ましたが、もはやそうは言えなくなってきているの
ではないでしょうか？

注3） 「Snapseed徹底解説̶Googleが買収した iOSの人気写真編集
アプリにいよいよAndroid版が登場、iOS版は無料に」

 URL http://jp.techcrunch.com/archives/20121206google-
launches-snapseeds-powerful-photo-editing-app-for-
android-makes-its-ios-version-free/

図1　Facebookの新しいモバイル機能Nearby

第34回

http://jp.techcrunch.com/archives/20121218instagram-co-founder-kevin-systrom-says-it-is-committed-to-answering-questions-and-fixing-mistakes/
http://jp.techcrunch.com/archives/20121206google-launches-snapseeds-powerful-photo-editing-app-for-android-makes-its-ios-version-free/

8 - Software Design

　米国では大統領選挙が終わったばかりですが、そ
んな中2012年12月10日、7ページでも触れている
ようにFacebookから投票制度がなくなりました。
「えっ、そんなものあったの？」と思う方のほうが多
いかもしれませんが、Facebookでは2009年4月に
初めて全メンバーによる直接投票が行われました。
どういう場合に投票が行われるのでしょうか。
Facebookが利用規約に大きな変更を加える際には、
まずその変更案をFacebookの記事として掲載しま
す。この記事に対して7,000件以上「コメント」が付
くと「投票」を行う、と決められています。実は、結
果的に最後のFacebook投票の対象となった規約変
更の主題は「投票制度の廃止」でした。そして、総投
票数の88％が規約変更に反対でした。なぜ、投票
制度は廃止されてしまったのでしょうか。

Facebook投票のルール

　Facebookメンバーであれば誰でも1票を投じるこ
とができます。ただし1つ重要な前提があります。
有効投票数が「全メンバー数の30％」に満たないと結
果が効力を発揮しないのです。一般の選挙であれ
ば、いくら国民の意識が低くても投票率30％は維持
できそうですが、Facebookではそうはいきません。
現在Facebookのメンバー数は約10億人ですから、
投票を有効にするには3億人が参加しなければなり
ません。直感的に「無理っぽい」と誰もが思うでしょ
うが、最終的に投票したのは66万8,500人、全ユー
ザのわずか0.0668％でした。ちなみに過去2回の投
票は、2009年4月が66万5,000人、2012年6月が34

万2,000人なので、これでも今回が最高です。
　しかし、そもそもどれほどの人が投票のことを
知っていたのでしょう。Facebookに入っていても
「そんな話は聞いていない」という方が多いことで
しょう。実は筆者（高橋）も以前の投票については知
りませんでした。ただし、今回Facebookは、全メ
ンバーに投票を呼びかけるメールを送り、専用ペー

ジで投票を終えると、自分が投票したことを友だち
に知らせるための「シェア」ボタンが表示され、シェ
アした記事をニュースフィードで目立つように表示
する、などの配慮をしました。

Facebookを「民主主義」と呼ぶの
は民主主義に対する侮辱だ

（Gregory Ferenstein、2012/12/6）

　投票制度の廃止に対して、多くのブロガーたちか
ら「Facebookは民主主義を捨てた」という趣旨のコメ
ントがありました。しかし、この記事は、「そもそも
Facebookは民主主義ではない」という主張です。「誰
もザッカーバーグを選んでいないし、スパマーを裁
く陪審員もいない」というわけです。全体的には「投
票≠民主主義」で、ギリシャ時代や米国の女性参政
権などにも踏み込んだやや硬い内容ですが、投票そ
のものよりも対話が重要なので、今後Facebookが別
の形でユーザの声を聞くようになればむしろ民主的
になるかもしれないと言っています。
　今回の「投票を廃止するための投票」でもわかるよ
うに、Facebookで30％の投票率を達成することは
極めて難しいでしょう。投票の認知度、関心度の問
題もありますが、今回の投票でいえば選択肢は規約
改訂に「反対」か「賛成」の2択です。反対の人はとも
かく、「とくに反対でもなくどちらでもよい」と思う
人は、反対するのも積極的に「賛成」するのも気が引
けて「棄権」してしまうかもしれません。投票所に出
かけて目の前に投票箱が置かれているわけではあり
ませんから。結局、「もともと破綻している投票制
度がなくなったからといって、大騒ぎすることはな
いだろう」という話なのですが、米国では民主主義
の象徴とも言える「投票」を廃止する、という行為そ
のものに抵抗を感じる人が多いのかもしれません。

Instagramとのデータ統合

　ところで、投票制度の廃止と併せて、もう1つの
大きなテーマは「Instagramとのデータ統合」でした。

Facebookと民主主義
高橋 信夫

8 - Software Design Feb. 2013 - 9

▶Facebookと民主主義

これは「データ利用規約」を改訂して、系列会社と
データを自由にやりとりできるようにする、という
ものですが、具体的にはFacebookが2012年に買収
したInstagramを指しているのは明らかです。
　実は、ユーザに直接影響を与える可能性のある変
更はむしろこちらです。現在Instagramには広告があ
りませんが、近いうちに導入するという噂がありま
す。ところがInstagramのユーザ情報は割に淡白で、
それをもとにターゲット広告を打つのは難しい。そ
こで、Facebookの個人データを利用すればInstagram

でもピンポイントの広告を発信できるだろうという
わけです。ちなみにこの個人データには、年齢、性
別、住所などユーザが明確に指定したものだけでな
く、どんな記事を書いたか、誰に「いいね！」を付け
たかなども含まれます。写真の画像認識が進めば、
そこに写っている商品などから、その人の好みを分
析できるようになるかもしれません。最近Facebook

のモバイルアプリには「写真自動アップロード」機能
が付きました。アップロードされた写真はそのまま
では「非公開」なので、全部がシェアされるわけでは
ありませんが、画像認識の対象にはなり得ます。す
でに「世界最大の写真共有サイト」であるFacebook

は、Instagramとの連携によってますます写真を活用
していくことになりそうです。

ついに iOS用
Google Mapsアプリ登場

　過去二度にわたってお伝えした「Appleマップ問
題」に大きな展開がありました。2012年12月13日、
待望の iOS用Google Mapsアプリが公開されたの
です（図2）。「クリスマス前にはリリース」という噂
は本当でした。これまでにも iOS 6でGoogle Maps

を使う方法はいくつかありましたが、これは本家作
であるだけに安定しているうえに、新しい機能も加
わりすばらしい出来映えだと評判です。そしてたち
まちApp Storeの無料アプリ部門のランキングで
トップに躍り出ました。
　Appleのティム・クックCEOが「地図の不具合を
詫びた」後、App Storeには「iPhone地図App」とい
うセクションが設けられ、日本ではMapion、Yahoo!

ロコなどが紹介されていますが、Google Mapsの姿

はありません。もちろん、Google Mapsの登場でこ
のセクションがなくなったわけでもありません。

Googleマップ公開後の iOS 6移行
率は0.2％増（Chitika調べ）。Apple
マップによる移行への影響は誇張？

（Darrell Etherington、2012/12/15）

　iOSのマップがGoogleからAppleに切り替わっ
たのは iOS 6からです。iPhone 5は最初から iOS 6

が入っているので選択の余地はありませんが、それ
以前の iPhoneユーザの中にはマップを理由に「iOS

6にはアップデートしない」という人たちがいまし
た。その多くは「Google Mapsが出るまでアップ
デートは控える」とも言っていました。そういうわ
けで、ブログ界には「これで iOS 6への移行が一気
に進むだろう」という空気が漂いました。
　ところが、前述の記事によると、Google Mapsの
公開前と公開後1日半経過後の iPhoneトラフィッ
ク全体に占める iOS 6の割合は、72.77％と72.94％
で事実上変化はありませんでした。記事ではその理
由について、「ほとんどの人がとっくにアップデー
トを済ませたのだろう」と述べています。「Google

Mapsの存在がまだ知られていない可能性」も否定は
できませんが、一夜にしてランキングのトップに
なったのに、マップのためにアップデートを控える
ような人たちがこのビッグニュースに気づかないと
いうのも考えにくいですね。むしろ、マップに関係
なく「アップデートの必要性を感じない」あるいは
「アップデートって何？」という人たちがまだまだい
るのかもしれません。肝心のAppleはまだ何も動い
ていませんが、ユーザにとってはとりあえずホッと
したGoogle Mapsの登場でした。｢

図2　iOS用Google MapsアプリがApp Storeに登場

第34回

10 - Software Design10 - Software Design

Raspberry Piとは

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 28 回

秋葉原発！

　前回の記事で少しだけ紹介したRaspberry

Pi（ラズベリーパイ）ですが、本誌読者には馴
染みの良いボードだと思いますし、最近では入
手もしやすくなりました。Raspberry Piには
“Raspbian注1”というDebianベースの最適化さ
れたLinuxディストリビューションが存在し

ます。Raspbianの配布イメージをSDカード

にddして書き込み、電源を接続するだけで
Raspberry PiはLinuxマシンとして動作します
（写真1）。
　もちろんRaspbianだけでなく、Arch Linux

ARM、Fedora ARMといったディストリビュー
ションや、FreeBSD注2、RISC OSといったOS

注1） http://www.raspbian.org/

注2） http://kernelnomicon.org/?p=185

 ▼写真1　 今回実験するRaspberry
PiとLED

も動作させることができます。筆者個人的には
FreeBSDを推したいところですが、Raspbian

ほど移植が進捗しているわけではないので、本
稿ではRaspbianを前提に進めさせていただき
ます。
　Raspberry PiではLinuxが走りますので、
GPIO（General Purpose I/O；汎用入出力）を
シェルスクリプトやC、Java、Python、Rubyと
いった読者各位の使い慣れた言語でコントロー
ルできます。また、USBがボードに搭載されて
いますから、Linuxで動くUSBデバイスであれ
ば手軽に接続できます。Ethernetについても、
現在、主に流通しているType Bには搭載され
ていますので、手軽にTCP/IPネットワーク
に接続することができます。当然ですが、IPv6

を使いたいといったニーズにも対応することが
できます。

Raspberry PiでI/Oしてみよう（前編）

http://www.switch-science.com/
http://www.raspbian.org/
http://kernelnomicon.org/?p=185

10 - Software Design Feb. 2013 - 11

第 28 回

10 - Software Design

Circuit）、SPI（Serial Peripheral Interface）と
いった入出力も備えられています。

　Raspberry Piを入手したら、まずはRaspbian

をSDカードに書き込みましょう。Raspbianを
使用するには2GB以上、推奨では4GB以上の
SDカードが必要です。筆者は机の引き出しに
転がっていた2GBのmicroSDとアダプタを使
いました。
　Raspbianはhttp://www.raspberrypi.org/
downloadsからダウンロードできます。筆者は
「2012-10-28-wheezy-raspbian.zip」というバー
ジョンを使用して、この記事を書いています。
ダウンロードを終えたらhashを確認して、
unzipとddを使ってSDカードに書き込みます
（図1）。なお、WindowsでddするWin32 Disk

Imagerというソフトウェアへのリンクが
Raspberry PiのDownloadページから張られて
いましたので、Windowsユーザはこれを使って
みるのも手でしょう。
　初回起動するとRaspi-configという各種設定
をするメニューが表示されます（図2）。
　まず［expand_rootfs］で、SDカード全体を
rootfsとして使えるようにしましょう。それか
ら、［configure_keyboard］で先にキーマップも
変更しておいたほうがよさそうです。［Generic

105-key（Intl）PC］-［Japanese］-［Japanese

（OADG 109A）］の順で一般的な日本語キー
ボードのマップを選択できます。
　筆者はこのほかに、［change_locale］と
［change_timezone］で、ロケール（ja_JP.UTF-

8）とタイムゾーン（Asia/Tokyo）の設定、［ssh］
でsshdを自動起動し、［boot_behaviour］でXが

　前回入手方法として「RSコンポーネンツで購
入するのが手っ取り早い」と紹介しましたが、
日本で購入するにはもう1つ、より早く届く手
段があります。ModMyPi注3というイギリスにあ
るRaspberry Piのケースや周辺アクセサリを
売っている店があるのですが、こちらでケース
とRaspberry Piのセットが販売されています
（本稿執筆時、セットで$57.71でした）。RSコン
ポーネンツでもケースが売られており、本体の
金額と足すとこちらのほうが割安なのですが、
ModMyPiのほうが早く届くという評判です。
　またModMyPiでは、アクセサリの類が豊富
で“GPIO Accessories”というカテゴリでは本
稿で扱う予定の入出力コネクタをブレッドボー
ドに手軽に接続できる“Adafruit Pi Cobbler

Breakout Kit”の扱いがあります。GPIOを手軽
に使うには、このキットも同時に入手しておく
と良いでしょう。

　GPIOはピンの状態がHIGHなのかLOWな
のかを読み込んだり（入力）、ピンの状態を
HIGH（1）やLOW（0）にして出力したりできる
ようになっています。
　Raspberry PiのGPIOは3.3Vで、Arduinoな
どで主に使われている5Vとは異なることに注
意が必要です。また、mbedのGPIOも3.3Vな
のですが、mbedは5Vトレラントと呼ばれ

る5V入力が可能な仕様になっている一方、
Raspberry Piは5Vトレラントではありませ
ん。つまり、Raspberry Piに直接5Vを入力し

てはいけないので注意が必要です。
　Raspberry PiにはGPIOだ
けでなく、UART（Universal

Asynchronous Receiver Trans

mitter）、I2C（Inter-Integ rated

注3） https://www.modmypi.com/

Raspbianを書き込む

I/O

入手方法

 ▼図1　Raspbianの書き込み

$ openssl sha1 2012-10-28-wheezy-raspbian.zip
$ unzip 2012-10-28-wheezy-raspbian.zip
$ mount
$ sudo diskutil unmount /dev/disk1s1
$ sudo dd if=2012-10-28-wheezy-raspbian.img of=/dev/rdisk1 bs=1m
$ sudo diskutil eject /dev/rdisk1

Raspberry PiでI/Oしてみよう（前編）

http://www.raspberrypi.org/downloads
https://www.modmypi.com/
http://www.raspberrypi.org/downloads

12 - Software Design

はんだづけカフェなう
秋葉原発！

　今回使用したLEDは、筆
者の手元にあったOSDR

5113Aという赤色LEDで、
順方向電圧が2.0Vとありま
すので、（3.3－2.0）÷330≒
0.004ということで、0.004A

つまり4mAの電流が流れる
こととなります。パーツを入
手するのであれば、LEDや抵
抗は秋月電子、ジャンパワイ
ヤとブレッドボードはスイッ

チサイエンスでそろえると良いでしょう。参考
までに、部品の入手先を記載しておきます（表

1）。今回使う部品はとくにこの型番でなけれ
ばいけないということはありません。いずれも
どこのメーカーのものでもかまいません。抵抗
の値（330Ω）も、目安として270～470Ωくら
いの範囲であれば異なっても大丈夫です。とは
いえ、抵抗の値が大きくなるとLEDの光りが
暗くなりますので注意が必要です。

　では、さっそく接続したLEDをRaspberry

Piからコントロールして点滅させてみましょ
う。UNIXらしく、もっともお手軽なシェルス
クリプトでやってみます。viなどでリスト1の
ようなシェルスクリプトを記述し、chmod +xし

起動しないように設定しました。最後に
<Finish>を選択して終了です。コマンドプロ
ンプトが表示されますが、一応rebootしてお
きましょう。
　標準では、RaspbianはDHCPでIPアドレス
を取得してきてくれましたので、Xがどうにも
好きになれない筆者はsloginして作業をするこ
とにしています注4。

　さて、Raspberry Piが使えるようになった
ら、さっそくI/Oしてみましょう。まず、LED

と電流制限抵抗を図3のようにRaspberry Pi

につなぎます。「電流制限抵抗」というと小難し
く聞こえますが、要はLEDに電気が流れ込み
過ぎないようにするために追加する抵抗です。
多くの赤色LEDは1.8Vや2Vで光ります。一
方で先述のとおりRaspberry PiのGPIOは
3.3Vを出力します。直接つなぐと電気が流れ
過ぎてしまい、Raspberry PiのCPUやLEDを
痛めてしまう可能性があります。このため、
330Ω程度の抵抗をLEDとGPIOの間に挟ん
でやって、流れる電流を少なくしてやります。
Raspberry PiのGPIOで流して良い電流はせい
ぜい16mAですので、必ず電流制限抵抗を付け
ましょう。

注4） リソースの限られたRaspberry PiでX Windowを動かし
たくないという理由もあります。

 ▼図2　Raspi-con�gのメニュー

1
1

5
5

10
10

15
15

20
20

25
25

30
30

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

P1

 ▼図3　配線図

Raspberry PiにLEDをつなぐ
シェルスクリプトでLEDを点滅

12 - Software Design Feb. 2013 - 13

第 28 回

Raspberry Piで何をしよう

PythonでLEDを点滅

 ▼表1　部品と入手先の例

 ▼リスト1　gpio4.sh

#!/bin/sh
echo "4" > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio4/direction
for i in 1 2 3
do
 echo "1" > /sys/class/gpio/gpio4/value
 sleep 1
 echo "0" > /sys/class/gpio/gpio4/value
 sleep 1
done

 ▼リスト2　gpio4.py

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setup(4, GPIO.OUT)
for i in range(3):
 GPIO.output(4, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(4, GPIO.LOW)
 time.sleep(1)
GPIO.cleanup()

ておきます。
　記述を終えたら、「$ sudo ./gpio4.sh」とし
て実行します。LEDが1秒ごとに3回点滅を繰
り返すはずです。sudoしているのは、I/Oポー
トを触る場合root権限が必要だからです。
　このシェルスクリプトでは、最初に/sys/

class/gpio/exportに4を書き込むことで
GPIO4をkernelからユーザスペースにexport

しています。次に、GPIO4の入出力の方向を、
今回はLEDへの出力ですのでoutに設定して
います。GPIO4の値に1を書き込むとGPIO4

のピンがHIGH（3.3V）になり、電流制限抵抗を
介してLED、そして0VのGNDに流れ、LED

が光ります。逆に0を書き込むと、GPIO4のピ
ンはLOW（0V）となり、GND（0V）と等位です
ので電気が流れず、LEDは消灯します。

　RaspbianにはPython 2.7.3rc2が最初から
入っていました。余談ですが、筆者はエディタ
はvi、スクリプト言語はPythonを愛用してい
ます。apt-getしてRubyをインストールすれば
Rubyでも同様のことができますが、プリイン

ストールであることと、筆者がPythonのほう
が好きであることから、ここではPythonで
LEDを点滅させてみます。
　PythonでGPIOをコントロールする際には、
RPi.GPIOというモジュール注5を使うと良い

でしょう（リスト2）。これもプリインストール
されていました。
　Pythonで も 同 様 に、「$ sudo python
gpio4.py」といった具合にroot権限で実行する
必要があります。

　誌面の都合で、今回はI/OのうちOutputだ
けになってしまいました。筆者はRaspberry

Piを使って、オフィスの玄関の電気錠を
HTTPから解錠、施錠できるようにしてみた
いと思っています。USBにWebカメラを接続
したり、Wi-Fiドングルを接続したりとマイコ
ンボードでは面倒なことが手軽にできるのが
Raspberry Piの魅力ではないでしょうか。｢

注5） http://code.google.com/p/raspberry-gpio-python/

LED
5mm赤 色LED
SLP-9131C-81H
（10個入）

100円 秋月電子通商 http://akizukidenshi.com/catalog/g/gI-03557/

抵抗
カーボン抵抗
（炭素皮膜抵抗）
1/4W 330Ω

100円 秋月電子通商 http://akizukidenshi.com/catalog/g/gR-25331/

ブレッドボード 普通のブレッド
ボード 250円 スイッチサイエンス http://www.switch-science.com/products/

detail.php?product_id=313

ジャンパワイヤ ジャンパワイヤ
（オス～メス） 395円 スイッチサイエンス http://www.switch-science.com/products/

detail.php?product_id=209

Raspberry PiでI/Oしてみよう（前編）

http://code.google.com/p/raspberry-gpio-python/
http://akizukidenshi.com/catalog/g/gI-03557/
http://akizukidenshi.com/catalog/g/gR-25331/
http://www.switch-science.com/products/detail.php?product_id=313
http://www.switch-science.com/products/detail.php?product_id=209

ニートな p h a のぶらぶら日記

ギークハウスなう

14 - Software Design

KURATASと
3Dプリンタ

　今回のイベントの一番の目玉は

K
ク ラ タ ス

URATASだった（①）。KURATASと

いうのは高さ約4メートル、重さ約

4トンの人型巨大ロボットで、実際
に人が乗り込んで操縦することもで
きるし、腕でものをつかんだり花火
やBB弾を発射することもできる。

KURATASは「巨大ロボットに乗っ
て動かしてみたい」という情熱から
始まったプロジェクトで、「水道橋
重工注1」という名前のたった2人の
チームで作られている。今回の展示
はプロトタイプだが、量産化して販
売も予定されている（価格は135万

3,500ドル＝約1億1,100万円）。
巨大ロボットが量産化して販売され
るという、アニメや映画であったよ
うな世界観が実現することを目指し
ているそうだ。いろんなタイプの巨
大ロボットが普通に開発・販売され、
街のあちこちで見かけたりするよう

な時代が本当にもうすぐ来るのだ
ろうか。楽しみだ。
　あと今回展示が多かったのは3D

プリンタだ（②）。3Dプリンタとい

うのはその名のとおり立体物をプ
リントできるプリンタで、3Dの立
体のデータを入力してやればそれ
を樹脂などで立体化したものを出
力することができる。以前は3Dプ

リンタは高価だったけれどここ数
年で低価格化が進み、今では10万
～20万円も出せば安いものが買え
るようになっている。会場では3D

プリンタでの作成例としてフィ
ギュアや iPhoneケースなどの展示
が多かった。バーチャルなデータ
上にあるものが現実世界に立体化
されるのってこの世ならざるもの
がこの世に受肉されるみたいな感
じでテンションが上がりますね。
こういう技術がメジャーになって
もっとバーチャルの世界とリアル
の世界がシームレスになっていく
と楽しい。

logo by
crystaline ニートな p h a のぶらぶら日記

ギークハウスなう

34
第

回
TEXT＝pha　pha.japan@gmail.com

回
TEXT＝pha　pha.japan@gmail.com

Maker Faire Tokyo 2012
に行ってみた

個人による
ものづくりの祭典

　2012年12月1日（土）、2日（日）
にお台場の日本未来館でオライ
リー・ジャパンの主催で開催された
「Maker Faire Tokyo 2012」に遊び
に行ってきた。オライリーが発行し
ている『Make』は、電子工作や模型
やロボットなどハードウェアを工作
していろんなものを作る「個人のも
のづくり」をテーマにした雑誌だけ
ど、Maker Faireはそんなふうに工
作をしている人たちが一同に集まっ
て作品を展示するイベントだ。2011

年 ま で 東 京 で は「Make: Tokyo

Meeting」（略称MTM）という名称
で開催されていたんだけど、2012

年からは他の国でのイベントと名称
を統一するためにMaker Faireとい

う名前になったそうだ。2012年は
約240組の個人や団体が展示をし
ていてすごい熱気だった。

注1） URL http://suidobashijuko.jp/

（『Make 日本語版 Vol.1』 ISBN978-4-8731-1298-5）

②

①

③

http://suidobashijuko.jp/

14 - Software Design Feb. 2013 - 15

Maker Faire Tokyo 2012に行ってみた 34
第

回

多様な出品物

　他にもいろいろ面白かったものを
紹介。
　スライムを触ったりこねたりする
ことでいろんな音が出るという楽器
（③）。テルミンなんかもそうだけ
ど、こういう斬新なインターフェー
スを実験したい場合って楽器にする
のが手っ取り早いのかもしれないと
思った。きっちりと実用的な操作を
する必要がないので。
　ぬいぐるみで作った電気抵抗やコ
ンデンサ（④）。これはかわいいだけ
じゃなく、下に置かれているブレッ
ドボードに差し込んで本当に使える
そう。無駄にすごい。
　レゴで作成された、カフェラテに
絵を描くプリンタ（⑤）。ほぼ全部レ
ゴの公式の部品で作られているらし
い。レゴと『Make』は相性が良く
て、他にもレゴでできた作品がたく
さんあった。
　ニキシー管を使ったオーディオ
メーター（⑥）。
　SF作家の野尻抱介さんが展示し

ていた初音ミク型スリングショット
（⑦）。スリングショットによる狩猟
は基本的に免許なしでできるらしい
（地域によっては禁止の場所もあ
る）。
　LANケーブルのバリが100グラ

ム420円で売っていた（⑧）。何に
使うんだろう……。

新しい産業革命？

　最近の『Make』や個人のものづく
り界隈の盛り上がりの原因の1つ

は、『ロングテール』『フリー』などの
ベストセラーで知られるクリス・ア
ンダーソンの『MAKERS』という本だ
（⑨）。かつては何かものを作ろうと

すると大きな設備や多額の資本が必
要だった。しかし最近では3Dプリ

ンタなどの普及で安価にものづくり
の設備が整えられるようになった
し、インターネットを使って資金を
たくさんの人から集めるクラウド
ファンディングの登場によって、個
人が手軽にものづくりを始めること
ができるようになった。これは新た
な産業革命かもしれないということ
を『MAKERS』は語る。かつては高価
だったパソコンが安価になって今で
は誰でも手軽にプログラミングを始
めることができるようになったけれ

ど、そのソフトウェアで起こった変
化が今度はハードウェアの分野で起
こりつつあるのだろう。ギークハウ
スでも3Dプリンタを1台買ってみ
んなで使おうかな……。｢

⑨

④

⑤

⑥

⑦

⑧

クリス・アンダーソン著、関美和訳
『MAKERS̶21世紀の産業革命が始まる』
（NHK出版、2012年、 ISBN978-4-1408-
1576-2）

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ
『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2013 年 2 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

OpenFlow
実践入門
高宮 安仁、鈴木 一哉　著／
A5判、336ページ／
ISBN＝ 978-4-7741-5465-7

SDN の概要から OpenFlow プログラミングフレームワーク
「Trema」を利用したネットワークプログラミング、さらに本格的な
OpenFlowアプリケーションをケーススタディで解説します。
 提供元 技術評論社　 URL http://gihyo.jp

VMware vSphere
構築・運用レシピ
工藤 真臣、田中 隆行、中本 滋之、樋口 美奈子　著／
B5変型判、336ページ／
ISBN＝ 978-4-8443-3317-3

VMware vSphere を知り尽くした著者陣がさまざまなノウハウを
解説します。管理用クライアントソフト vSphere Client、仮想化基
盤の ESX/ESXi、管理用サーバの vCenter Server など幅広く紹介。
 提供元 インプレスジャパン　 URL http://www.impressjapan.jp

はじめてのOS
コードリーディング
青柳 隆宏　著／
A5判、448ページ／
ISBN＝ 978-4-7741-5464-0

本書は、Sixth Edition UNIX（UNIX V6）を題材に、OSの全体像
をくまなく解説します。カーネルのソースコードを読み解くことで、
コンピュータシステムの全体像が理解できるようになるでしょう。
 提供元 技術評論社　 URL http://gihyo.jp

Wi-Fi
SDカードリーダー
REX-WIFISD1
スマホやタブレットと本製品をWi-Fi 接続す
ることで SDカードやUSB フラッシュメモリ
のデータを読み書きできます。USB 経由でス
マホ充電用のモバイルバッテリーとしても使
用可能。iPhone なら 1台分充電できます。
 提供元 ラトックシステム
 URL http://www.ratocsystems.com

Vブロック
（ペントレー）
 ショートタイプ
PCのキーボードの奥に並べて置いて使うペントレーです。ちょっと
したメモを取るときに便利です。ラバーウッドの無垢材をVブロッ
クの形状に加工したシンプルなデザイン。長さは30cm。
 提供元 margherita　 URL http://www.margherita.jp

1 名

10名

DATAHOTEL
オリジナル
ウォールマグ
鯖（server）、雲（cloud）と印字されたDATAHOTELオリジナルウォー
ルマグ。完全密閉で持ち運び可能。電子レンジも利用でき、再加熱可
能です。鯖、雲のどちらが当たるかは当選してからのお楽しみ。
 提供元 データホテル
 URL http://datahotel.co.jp

1 名 2名

2名 2名

パスワード
マネージャー
ミルパス
パスワードや IDなどを記録するための小型情報管理端末。起動時に
必要なマスターパスワードだけを覚えていれば、本端末で最大 200
件のアカウントを管理可能。文字は専用タッチペンで入力できます。
 提供元 キングジム
 URL http://www.kingjim.co.jp

（ペントレー）
 ショートタイプ

1名

1名 10名

DATAHOTEL

ウォールマグ

1名

http://sd.gihyo.jp/
http://www.ratocsystems.com
http://www.kingjim.co.jp
http://gihyo.jp
http://www.impressjapan.jp
http://gihyo.jp
http://www.margherita.jp
http://datahotel.co.jp

第1特集

シェルスクリプティング
道場

多機能なプログラミング言語でも、いくつかの手順を踏まないとできない作業が、数個のコマ
ンドや数行のシェルスクリプトだけで簡単に実現できた、ということはありませんか？　それは、
シェルスクリプトには「OSの機能を直接使える」「簡単に書ける」など、実用性重視の特徴が
たくさんあるからです。高度なシェルスクリプトを書くには、シェルの特徴を理解し使いこなす
ことが必須です。そのために、本特集ではシェルの動作原理を探求していきます。

UNIXコマンド、fork、pipeを復習し、
高度なスクリプティングへ

1

第1章 UNIXの思想に立ち返れば見えてくる
なぜ今、シェルスクリプトの習得が必要なのか？ 018

Text●上田 隆一　UEDA Ryuichi

第2章 プロセスを使いこなし、OS性能を引き出すために
シェルの動作原理を“深く”理解する ... 026

Text●後藤 大地　GOTO Daichi

第3章 入力元／出力先を巧みに切り替える
シェルスクリプトがファイル入出力に強いわけ 038

Text●後藤 大地　GOTO Daichi

第4章 品質だって気を付けたい
シェルスクリプトのエラーハンドリングとデバッグ................... 044

Text●當仲 寛哲　TOUNAKA Nobuaki

第5章 基本だけど奥が深い
パイプのしくみを読み解く ... 054

Text●後藤 大地　GOTO Daichi

第6章 より上を目指す
シェルスクリプトの覚えておくと便利な技 062

Text●後藤 大地　GOTO Daichi

CONTENTS

18 - Software Design

シェ第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 19

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

UNIXの神話

　この原稿を執筆中にちょうど出雲大社に参詣
して思い出した話ですが、日本の神話によると、
日本を作ったのはイザナギノミコト、イザナミ
ノミコトであるとされています。日本書紀や古
事記には、この二柱の神が島を作り、神を作っ
た話「国産み、神産み」が記されているそうです。
筆者は概略を知っているだけですが、個人的に
は根が理屈っぽいので、島や神が産まれる因果
関係の理屈付けにおもしろさを感じます。
　UNIXの黎明期にも「国産み、神産み」に匹敵
するかもしれない興味深いエピソードがありま
す。『Netizens: On the History and Impact of

Usenet and the Internet』注1という本の第 9章
"On the Early History and Impact of Unix

Tools to Build the Tools for a New Millenium"

にそのときのことがまとめられています。この
一部を参考にして、UNIXで起きた「神話」をま
とめたいと思います。こちらもソフトウェアが
産まれる際の因果関係が話の肝になるようで
す注2。

注1） Michael Hauben、Ronda Hauben 著、Wiley-IEEE
Computer Society Press、1997年

注2） 本と同様の文章が、http://www.columbia.edu/~hauben/
book/で閲覧できます。

UNIXがUNIXになった日

　1969年、AT&Tベル研で Dennis Ritchie、
Ken Thompson、Rudd CanadayがUNIXファイ
ルシステムを考えていたとき、Doug McIlroyが
「パイプ」をUNIXに実装するように主張してい
ました。
　McIlroyの言う「パイプ」というものは、ある
コマンドの出力をほかのコマンドに即座に渡す
現在のUNIX系OSのパイプと同じものです。
RitchieたちはMcIlroyの説明に理解は示した
ものの、後回しにしていました。
　パイプが最初に実装されたのは 3年後の
1972年です注3。3年も後回しにしたパイプでし
たが、実装されたその日のうちに、その場にい
た誰もがその重要性にすぐ気づいたそうです。
実装されたパイプはUNIXのほかの部分や使い
方に影響を与え始め、パイプを使うと便利なよ
うに古いコマンドが書き直され、シェル上でワ
ンライナーが書かれるようになりました。

grep、sedの誕生

　そしてgrepが誕生します。edというエディ
タに文字列検索がついており、McIlroyがそれ
を使ってある作業をしていました。しかし、ed

のメモリの上限に引っかかって作業に難渋し、

注3） リリースは1973年のVersion 3 UNIXです。

ほかのプログラミング言語を十分に使いこなせるエンジニアであっても、基本に立ち返ってシェルスクリプトを
習得する意味はあります。それは、開発だけでなく日常の仕事にまでコンピュータをフル活用できるようになる
からです。本格的な学習に入っていく前に、まずはシェルスクリプト習得の意義について考えてみましょう。

UNIXの思想に立ち返れば見えてくる

なぜ今、シェルスクリプト
の習得が必要なのか？

第1章

（有）ユニバーサル・シェル・プログラミング研究所　http://www.usp-lab.com
上田 隆一 UEDA Ryuichi　Twitter ID：@uecinfo

http://www.columbia.edu/~hauben/book
http://www.usp-lab.com
http://www.columbia.edu/~hauben/book

18 - Software Design Feb. 2013 - 19

UNIXの思想に立ち返れば見えてくる
なぜ今、シェルスクリプトの習得が必要なのか？

第1章

Ritchieに「edから検索機能を取り出してコマン
ド化してほしい」という依頼を出します。コマ
ンドは一晩でできあがり、edでの検索コマン
ドg/<re>/p（gはglobal、<re>は正規表現、p
はprint）にちなんでgrepと名付けられました。
grepは毎行処理ですのでメモリをほとんど使
いませんし、いちいちedを開く手間もありま
せん。ほかの機能もedから取り出され、まと
めてsedというコマンドになりました。

「ソフトウェアツール」という
言葉の誕生

　この教訓から、「コマンドは単機能で作るべ
き」、「複雑なことをするにはコマンドをパイプ
で組み合わせるべき」、「標準入出力から字を読
み書きするべき」という考えがベル研内で生ま
れます。この考え方は「ソフトウェアツール」と
名付けられました。コマンドにもソフトウェア
ツールやUNIXツールという別名がつきます。
　このようにUNIXの使い方に明確な方針が立
つことで、ソフトウェアツールという考え方を
実現するため、多くの単機能なコマンドが作ら
れました。また、ツールを作るためのツール、
lexとyaccが誕生し、そこからawkが誕生しま
す。

シェル／シェルスクリプト
とはいったい何か
　シェルやシェルスクリプトは、この「神話」以降、
「ソフトウェアツールを使うための正統な道具」
であり続けています。「シェル」は別名「コマンド
ラインインタプリタ」と呼ばれます。シェルはユー
ザから文字でコンピュータに対する命令を受け
取り、OSが理解できる命令に変換してOSに伝
えます。CLI（Command Line Interface）を利用
している限り、我々は文字だけでコンピュータ
と対峙します。
　たとえば、我々が

$ cat file

とシェルに打ち込むと、cat（1）注4コマンドが/

bin/から探され、fi leがcatに渡されてfi leの中
身が表示されます。
　各コマンドは1つの仕事しかしません。しか
し、不思議なことに組み合わせるとさまざまな
仕事をします。たとえば、某連載の原稿から
「hoge」という文字列を検索すると、

$ grep hoge *.rst

201202.rst: [ueda@cent LOG]$ cat hoge
201204.rst:* ``<hoge>`` から ｭ
``</hoge>`` までの塊
201204.rst:* あるいは ``<hoge ... />``
 （略）

という検索結果が得られますが、この出力から
「hoge」を含むファイルのリストを作りたければ、

$ grep hoge *.rst ¦ sed 's/:..*$//' ¦ ｭ
sort ¦ uniq
201202.rst
201204.rst
201205.rst
 （略）

とパイプで4個コマンドをつなげると実現でき
ます。
　さらに多くのコマンドを組み合わせるように
なると、端末に入力するよりもエディタで書い
てファイルに保存するほうが何かと便利になり
ます。これがシェルスクリプトです。「シェル
スクリプトはコマンドをたくさん組み合わせて
仕事をさせるためのもの」ということになりま
す。

良いユーザになろう

　さて、ソフトウェアツールが当時画期的で、
UNIXの性格を決定づけたことは知っておくと
して、40年後を生きる我々は、それを習得す
べきでしょうか？　CLIを使うのは時代遅れで

注4） cat(1)の後ろの数字は、man(1)コマンドでマニュアルを見
るときの章番号です。コマンドはmanの第1章に書いてあ
るので、cat(1)とするとコマンドのcatという意味になり
ます。printfなど、コマンドにもC言語の関数にもあるも
のなどを識別するときに便利です。

20 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 21

はないでしょうか？
　筆者はもちろん「習得すべき」という立場です。
CLIは時代遅れというより、長く我々から遠ざ
かっていたと言うべきで、今は普通の人が
MacBookに bash環境を持ち歩いています。
CLIが「普通の人」にとって本当に古いものなの
か、考える良い機会です。
　「普通の人」とあえて書いたのは、UNIXの世
界では表裏一体の次の両者を、本稿では分離分
割したいからです。

・プログラマ：コンピュータにプログラムを組
み込む人

・ユーザ：コンピュータの機能だけ使いたい人

　たとえば筆者でしたら、システム開発してい
るときがプログラマ、名簿の管理や原稿書きを
しているときがユーザです。後者のときもプロ
グラミングをしますが、それはTeX原稿をい
じるなどのためで、何かをOSに組み込んでい
るわけではありません。
　でも、道具としては後者の使い方が普通では
ないでしょうか。筆者は、ソフトウェアツール
を理解し、道具としてシェルやシェルスクリプ
トを使い倒す「一般の優良UNIXユーザ」が増え
れば、世の中がスッキリすると考えています。
コンピュータが普及したのはここ十数年のこと
で、まだまだ道具のほうが人間を振り回してい
るようですので。
　本章では、本誌読者をきっかけとして普通の
人まで優良UNIXユーザにするという壮大過ぎ
る意気込みで、シェルやシェルスクリプトを使
い倒す所作について述べたいと思います。

プログラマに良い仕事を
してもらう

　プログラマの視点からは、ソフトウェアツー
ルの考え方に従うと見通しがよくて性能も良い
プログラムが作れる、ということが言えます。
　edからgrepと sedが分離された逸話が象徴
的です。ユーザのMcIlroyから見たら、分離す
る理由は次のようになります。

・edの機能の一部だけを使いたかった
・edのメモリ上限が作業の邪魔をした

　edから解放されることでgrepは、

・わざわざedを開かずに利用可能
・出力結果をバッファや中間ファイルに置く必
要がなく、ただ標準出力へ放出すれば十分

と、小型で使い勝手の良いものになりました。
McIlroyは結局、シェルでコマンドを操作する
ことと引き換えに、よく働くソフトウェアを作っ
てもらうことに成功しました。

ソフトウェアではなく
データを気にする

　一方で、よりedの機能を強化するという考
え方もあったはずです。この考え方はプログラ
ミングの統合開発環境やオフィススイートの考
え方です。なぜそちらに行かなかったかは、当
時のコンピュータには無理だったというのが第
一の理由でしょうが、一方で、そちらに行かな
かったおかげでUNIXの成功があるとも言えま
す。次の言葉が核心を突いています。

“データが全てに優先する。もし適切なデータ

構造を選んで物事を整理すれば、アルゴリズム

はほとんどの場合に自明となる。アルゴリズム

ではなく、データ構造がプログラミングの中心

である。”̶ ̶R.Pike

　我々が使っているプログラムは、データ構造
に引きずられています。便利さとデータ形式の
バランスを気にすることができれば、見せかけ
の便利さを追求して、コンピュータに振り回さ
れることはなくなるでしょう。
　CLIと対極にいる便利なオフィススイートでは、
たびたびデータ構造に無理が発生することがあ
ります。これは宿命です。とくにエクスポート機
能で表面化します。エクスポートする必要があ
るのは、各ソフトウェアでフォーマットが違うか
らですが、n種類のフォーマットを相互変換する
には最悪n2-n個の変換ソフトウェアが必要です。

20 - Software Design Feb. 2013 - 21

UNIXの思想に立ち返れば見えてくる
なぜ今、シェルスクリプトの習得が必要なのか？

第1章

　変換の必要をなくすには「統一フォーマット」
となるわけですが、我々はもう20年近く、そ
の代表的な失敗例と常に戦ってきました。

「なんでこのドキュメント、5MBもあるんだ？

メールで送れない！」

　悪ノリしてついでに書いておくと

「テキストファイルはみんなが読めないので○
○の形式で送ってください」

という IT企業の重鎮というか珍獣を量産する
遠因にもなっています。
　シェルスクリプトで扱うのは、つまらないテ
キストファイルです。しかし、多少修正すれば、
どのコマンドやソフトウェアも自分が作ったテ
キストファイルを受け入れます。PDFにも紙
にもしてくれるし、コピー&ペーストすれば「統
一フォーマット」にも変換してくれます。自分
の使うべきツールを自分で見つける必要があり
ますが、「あの機能がこのソフトウェアにない」
という理由で袋小路に追い込まれることはあり
ません。

シェルは実用一辺倒と知る

　シェルの話に戻りましょう。シェルの文法は、
筆者の主観の枠を越えて汚いのですが、なぜで
しょうか？　最近、人気のあるスクリプト言語
は、実用性と次の3点のバランスが良く、支持
を集めていると言えます。

❶安全性：プログラマにメモリを触らせない
❷ある理論の具現化：オブジェクト指向、関数
型、文法上の美しさの追求

❸マルチプラットフォーム：OSとは切り離さ
れている

　シェルでもメモリに触れないのは一緒ですが、
あとの2つが正反対です。OSべったりですし、
文法も結構へんてこです。
　一方、C言語などと比較すると、今度はメモ
リに触れないぞということになります。だいた

い、シェル変数は全部文字列です。ポインタど
ころか、文字列型しかありません。

A="This is a pen." ←文字列
B="1.2345" ←文字列
C=/usr/local/bin ←文字列

　こう考えるとシェルやシェルスクリプトは、
とても分が悪いように見えます。が、これは比
較の方法がよろしくありません。
　まず、どのシェルも「よく使うものほど短く
書ける」ようになっています。これが汚い原因
です。見かけのきれいさと合理主義は違います。
一番よくわかるのは不等号記号の使い方です。
次のように、シェルはほかの言語とはまったく
違います。

・普通の言語：>は数値の比較
・シェル：>はファイルへの出力

　たとえばbashで数字の大小比較をすると、

if [1 -lt 2] ; then ...

のようになります。-ltと less thanが一瞬で結
びつかない日本人を意味不明な世界に追い込み
ます。おまけに[の前後に空白がないと叱られ
ますし、bashだと小数も比較できません。と
どめを刺すと、これはbashで定義された記号
ですらありません。困ったものです。
　一方で、ファイルの中身をほかのファイルへ
の書き出すには、bashだと、

$ cat file > file2

で済みますが、ほかの言語だとどうでしょうか？

data = open("file","r").read()
open("file2","w").write(data)

とか、

copy("file","file2")

と書かなければなりません。
　普通の言語では、>は不等号です。また、文
法をきれいに保とうとすると、シェルの>のよ

22 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 23

うなショートカットはかえって異物になってし
まいます。
　シェルの場合は、まず人間が手でコマンドを
入力するところから話が始まっています。その
ため、頻繁に行う操作に短い記号を割り当てる
のは自然なことです。変数も文字列以外のもの
があっては困ります。記号が増えます。それは
シェルとしては失格です。

こだわらずに書き捨てるように
書く

　ソフトウェアツールの考え方に照らせば、シ
ステムの裏で働くshのスクリプトよりも、ユー
ザが自分の便利のためにちょっと書きなぐった
スクリプトのほうが、シェルスクリプトでなけ
ればならない必然性が高いということになりま
す。システム側ではソフトウェアツールを使う
必要は必ずあるわけではありませんが、ソフト
ウェアツールのユーザはたとえ拙くてもシェル
スクリプトを使う権利があります。
　ユーザにとっては、スクリプトを書く時間の
投資よりスクリプトに効果があれば、それで成
功です。書き方にこだわったり、コマンドのき
わどい機能を知っているのに使わなかったりと
いうのは、ユーザとしては、目的に体がまっす
ぐ向いていません。
　再利用については、ユーザとして書くスクリ
プトについてはあまり気にすることはないでしょ
う。自分の書いたスクリプトをノーチェックで
使いまわすことは、多くの人の場合、実際には
なかなかないことです。
　弊社の例で恐縮ですが、USP研究所ではシ
ステムごとOS間を引っ越すときに自分たちの
首を締めないよう、できるだけPOSIXに従う
一方で、自分たちでコマンド（usp Tukubaiコ
マンド）を作ってどんどん新しいことをしてい
ます。たとえば、次のようにシェルスクリプト
の用途を広げていっています。

・集計用コマンドを作成し、シェルスクリプト
で帳票を出力

・データベース用のコマンドを作り、フラット
テキストDBを構築

・HTMLのテンプレートに文字を埋め込むコマ
ンド、CGIのポストを安全にデコードするコ
マンドなどを作り、Webシステムを構築

　これは、弊社が独自仕様を打ち立てたいから
ではありません。ソフトウェアツールの方法論
が現在にも生きていることを証明することが、
弊社の使命になっているからです。
　用途を広げるためには、新しいコマンドが必
須です。そして、Cで書いたコマンドはだいたい
のUNIX環境に移植できます。コマンドは移植
するもの、シェルスクリプトは書き捨てるものです。

不自由したらまずは探そう
 なかったら自作しよう

　McIlroyはgrepを人に作ってもらってますが、
これは、ユーザとして正しい行動です。McIlroy

は自分の研究をしていてgrepが必要になりま
したが、edのコードを自分で読み、grepを自
分で作るのは時間がかかると判断したのだと想
像しています。
　実はUSP研究所でも、これはよくある光景で、
McIlroyの件を弊社の日常風景も勘案してさら
に想像すると、おそらくUNIXのコードを管理
しているRitchieがコマンドを作るほうが、後々
管理の面で良いだろうという判断が働いたかも
しれません。
　自分の仕事をさしおいて、人もさしおいて自
分でコマンドを作るという行為は、最後の選択
肢になります。ユーザは面倒な仕事から楽しい
プログラミングに逃げずに、自分の仕事に集中
すべきです。
　コマンドがないときの所作の例をひとつ。昨
年本誌12月号の連載「開眼シェルスクリプト」
で、date -f（標準入力から時刻を受け、加工
して出力）というdate(1)のオプションを紹介し
ましたが、筆者はこの記事を書いていて、
FreeBSDに同様の機能がないことに気づきま

22 - Software Design Feb. 2013 - 23

UNIXの思想に立ち返れば見えてくる
なぜ今、シェルスクリプトの習得が必要なのか？

第1章

した注5。記事はなんとかごまかす（！）ことにし
て、じゃあFreeBSDでこの処理を本当に使う
必要が生じたらどうしようという話になります。
これがないと図1のような処理が、図2のよう
に間にwhileが入ってしまいます。入力の行数
だけdateが起動して、10万レコードもあると、
結構待っていないと処理が終わりません。
　もしこれが仕事であるなら、まず真っ先に、
FreeBSDのportsコレクションにいつも使っ
ているdate(1)がないか探します（図3）。
　……ありません（あるかもしれませんが）。次
に、別の人（おそらく社長）に依頼を出します。
これでおそらく解決します。
　趣味ならば、Pythonか何かで10行くらいの
コードを書いて済ませると思います。筆者にとっ
てはそれが一番早い解決方法だからです。ちょっ
との間だけ「プログラマ」に戻り、オプションの
ないコマンドをさっと作り、次のようにパイプ
に投入します（図4）。そして、しれっと「ユーザ」
に帽子をかぶり直します。そんなにスピードは
出ませんが、date(1)を10万回呼ぶよりは速い
はずです。
　コマンドを真面目に作るとオプションの解析

注5） もちろん、逆のパターンもあることは強く明記しておきます。

に一番時間がかかるのですが、こういうときは
もう入力がわかっているので、オプションは不
要です。パイプを使うと、プログラミングの難
易度が恐ろしいほど低下します。
　もっと余力のある人なら、date(1)のコード
を改良してパッチを送ることでしょう。なんで
ないんだと騒ぎ立ててもいいかもしれません。

manを読もう

　シェルスクリプトを書いていて、コマンドの
機能が不足していると思ったら、man(1)でコマ
ンドのオプションを調べましょう。その手の不
満は、以前にも抱いた人がいる場合が多く、
manページの片隅にマニアックなオプションが
書いてあることがあります。先ほどのdate
-fもその1つです。
　この手の発見は、日頃シェルスクリプトを使っ
ていても頻繁にあります。つい先日指摘された
ことですが、ディレクトリにたくさんファイル
があると lsが遅いので、筆者はecho * ¦ tr
' ' '\n'で代用していましたが、実はls -f
を使ったほうが速いとのことです。あと、
grep -Rやuniq -fなども最近教えてもらい
ました。

すごいパフォーマンスを
おすそ分けされる

　よく使われるコマンドはとにかく速い。
GNU grepはXeon W5580（3.2GHz）で図5のよ
うなスピードが出ます。Xeonだからというこ

図1　dateの -fオプションの使用例 ▼

$ head -n 3 datefile
@1339304183
@1339305265
@1339306807
$ head -n 3 datefile ¦ date -f -
2012年 6月 10日 日曜日 13:56:23 JST
2012年 6月 10日 日曜日 14:14:25 JST
2012年 6月 10日 日曜日 14:40:07 JST

図3　portsにdateがないか探す（FreeBSDにて） ▼

 とりあえず探してみる
find ./ ¦ grep gnu ¦ grep date ¦ grep ｭ
-v gnuls
./java/classpath/files/p （略）
 ない!
 それっぽい名前で探してみる
find ./ ¦ grep gdate

図4　自作コマンドの使用例 ▼

$ head -n 3 datefile ¦ ./epoc2date ←自作コマンド
2012年 6月 10日 日曜日 13:56:23 JST
2012年 6月 10日 日曜日 14:14:25 JST
2012年 6月 10日 日曜日 14:40:07 JST

図2　-fオプションを使用しない例 ▼

$ head -n 3 datafile ¦ tr -d @ ¦ while ｭ
read u ; do date -r $u ; done
2012年 6月10日 日曜日 13時56分23秒 JST
2012年 6月10日 日曜日 14時14分25秒 JST
2012年 6月10日 日曜日 14時40分07秒 JST

24 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 25

とでもありません。CPUの周波数が高く、メ
モリがそこそこつんであれば同様に出ます。
　trも速いコマンドの1つです。HDDが追いつ
かないのでメモリの上に出力してみます（図6）。
　「これがシェルスクリプトの速さだ！」と言っ
たらそれは嘘ですが、シェルスクリプトからこ
れらのコマンドを使いたい放題です。
　速いのはアルゴリズムが良いからですが、良
い必然性は地球上でただ1つのGNU grepを託
されたプログラマと、ウン千万人いるであろうユー
ザという社会的構造を考えれば十分でしょう。
　特集の後半でも扱われますが、ここにもパイ
プが力を発揮します。CPUがたくさんあれば、
字を右から左に流すようなコマンドは全部マル
チプロセスで動きますので、コマンドが増えた
からといって計算時間が延びたりしません（図7）。
　パイプについては、先述の「書きやすい」と、
ここでお見せした「並列効果」の2大利点があり
ます。後者の「並列効果」を我々が享受できるよ
うになったのは、普通のマシンのCPUコアが
増えた最近のことです。しかし、これは必然的
でもあります。流れ作業やバケツリレーという
のは、もともと効率が良いうえ、仕事の分担が
行いやすいのです。

マシン全体を筆記用具のように
使う

　ソフトウェアツールの実践のためには、マシ
ンを文房具やデータベースそのものとして扱う
という発想が大事です。もちろん、そのうえで
GUIツールも使いこなして仕事をしましょう。
何かしらのUNIX系OSを用意して、（ちょっ
と我慢して）メインの環境として使ってみてく
ださい。Macユーザには、最初から門戸が開け
ています。まずはご自身の前にあるMacの端
末（ターミナル）を開きましょう。
　メモはテキストファイルに取り、あとから見
返すときに less(1)やgrep(1)を使うように癖を
つけましょう。メモをとるのは（これはもう個
人の趣味ですが）Vimが好ましいですが、gedit

というGUIのエディタもあるので無理しない
でこっちを使ってください。
　公式な文章を書くときも、なるべくテキスト
エディタでまとめて、あとからワープロソフト

図7　コマンドをパイプでつないだ場合の処理速度 ▼
を計測

図5　grepの処理速度を計測 ▼

$ ls -lh TESTDATA
-rw-rw-r-- 1 usp usp 4.0G 6月 15 10:57 ｭ
TESTDATA
$ wc -l TESTDATA
100000000 TESTDATA ←1億行!!!
$ head -n 3 TESTDATA
2377 高知県 -9,987,759 2001年1月5日
2910 鹿児島県 5,689,492 1992年5月6日
8458 大分県 1,099,824 2010年2月22日
$ time grep 富山県 TESTDATA > hoge

real 0m3.704s
user 0m2.665s
sys 0m1.038s
$ head -n 3 hoge
7163 富山県 1,371,974 1994年5月26日
2528 富山県 6,407,486 1992年10月1日
1320 富山県 5,784,634 2009年3月7日

図6　trの処理速度を計測 ▼

$ tr --ver
tr (GNU coreutils) 5.97
Copyright (C) 2006 Free Software ｭ
Foundation, Inc.
 （中略）
$ time tr -d ',' < TESTDATA > /dev/shm/ ｭ
hoge

real 0m8.723s
user 0m6.133s
sys 0m2.590s

 tr単発とほぼ同じ時間で終わる
$ time tr -d ',' < TESTDATA ¦ grep ｭ
富山県 > hoge

real 0m9.626s
user 0m10.046s
sys 0m5.815s
 grep単発とほぼ同じ時間で終わる
$ time grep 富山県 TESTDATA ¦ tr -d ',' ｭ
> hoge

real 0m3.719s
user 0m2.961s
sys 0m1.294s

24 - Software Design Feb. 2013 - 25

UNIXの思想に立ち返れば見えてくる
なぜ今、シェルスクリプトの習得が必要なのか？

第1章

などにペーストして体裁を整えるように癖をつ
けてみてください。これは残念ながら適性のあ
る人だけになってしまいますが、適性があれば、
すぐにこっちのほうが要領が良いと思うでしょ
う。
　ちょっと慣れてきたら、sed(1)やawk(1)でメ
モをいじってみてください。長くなればシェル
スクリプトにしてください。住所録もテキスト
を原本にして、アプリケーションや携帯電話に
はそれを加工してエクスポートしてください。
sedが手についてくると、思ったほど不自由が
ないと感じるはずです。

シェルの裏（＝OSの表）を知る

　最後に、ソフトウェアツールを使い込み、よ
り大きなデータをソフトウェアツールで捌くよ
うになったら、シェルの裏で起こっていること
をよく知る必要があります。カーネルハッカー
になる必要はありませんが、動きを知ると使い
方に幅が出ます。良いF1ドライバーは自分の

乗るマシンのことをよく知っており、コックピッ
トからマシンの状態をよく把握する能力に長け
ると言います。
　本章ではあまり強調しませんでしたが、シェ
ルというものはOSの直上にあります。「シェ
ルの裏」にはもはやOSしかなく、シェルから
大半のOSの機能を呼び出すことができます。
次章からは、よりディープなOSとシェルの世
界が待っています。

終わりに

　ここまでソフトウェアツールとシェルスクリ
プトについて、とくにユーザの視点で使う理由
を書いてきました。UNIX自体をいじるのは楽
しいのですが、やはり、プログラム以外の仕事
のために使うことが、道具としては最上の使い
方です。仕事で使おうという人が1人でも出た
なら、うれしい限りです。ﾟ

　本章の内容についてより深く知識を得たければ、
次の本がおすすめです。シェル自体の解説本につい
てはここでは触れませんが、文法の解説に終始せず、
コマンドを組み合わせるという観点が濃いものをお
勧めします。

・Brian W.Kernighan、P.J.Plauger 著、木村泉 訳
『ソフトウェア作法（Software Tools）』
共立出版、1981年

　これは、タイトルどおり「ソフトウェアツールそ
のもの」の本です。これを読めば、コマンドの成り
立ちがわかるはずです。それ以外にも、簡潔なプロ
グラムを書くための知見がぎっしり詰まっています。

・Mike Gancarz 著、芳尾桂 訳
『UNIXという考え方̶その設計思想と哲学』
オーム社、2001年

　「GancarzのUNIX哲学」の原典です。分量はそん
なに多くなく、あまり技術に詳しくなくても読み物

として読めます。

・Eric S.Raymond 著、長尾高弘 訳
『The Art of UNIX Programming』
アスキー、2007年

　UNIX教の大著です。UNIXの考え方について、
Gancarzのものより詳細に、時に攻撃的に記述して
あります。やけどしないようにおっかなびっくり読
むことをお勧めいたします。「awkは時代遅れだ」と
書いてあるのはちょっと引っかかりますが。

・當仲寛哲他 著
『ユニケージ原論』

USP研究所、2010年

　UNIX哲学を実践して企業のシステム作る取り組
みについて述べられています。プログラミングその
ものというよりも、システム開発はいかようにある
べきかが論じられています。

本で知るソフトウェアツールとUNIXの思想COLUMN

26 - Software Design

シェ第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 27

表裏一体、
シェルとカーネル
　シェルは無駄なレイヤを持つことなく、ダイ
レクトにカーネルの機能を利用します。シェル
スクリプトはほかのプログラミング言語と比べ、
OSの性能をフルに発揮させるような処理を記
述しやすく、ハードウェアリソースを使い切る
ようなプログラミングが簡単です。
　しかしながら、シェルスクリプトをうまく使
えるプログラマやユーザは、そう多くはありま
せん。これはカーネルがどのように動作するの
かを知らないためです。カーネルの動きがわか
れば、シェルスクリプトも性能を発揮できる記
述ができるようになります。
　手続き型のプログラミング言語やオブジェク
ト指向型のプログラミング言語を使ってきたプ
ログラマが、シェルスクリプトで適切ではない
記述をしてしまいがちなのにも理由があります。
シェルスクリプトでも手続き型言語やオブジェ
クト指向型言語のプログラミングを実施できな
いこともないのですが、あまり意味がありませ
ん。シェルスクリプトにはシェルスクリプトに
適したやり方があります。
　以降、シェルスクリプトにおけるある機能が、
カーネルの内部でどのように動いているのかの
説明を併用しながら、シェルスクリプトとその
機能について紹介します。カーネルとしては

FreeBSD 9-STABLEソースコードを、シェル
としてはFreeBSD 9-STABLEに付随している
/bin/shを使います。FreeBSDの/bin/shはash

と呼ばれるシェルです。POSIX.1（POSIX:2008）
で定められているシェルの機能を実装するとと
もに、若干の拡張機能が追加されています。
　ashはbashと比較して処理が高速であるため、
最近ではLinuxディストリビューションでも/

bin/shの実体としてbashではなくdashと呼ば
れる、ash由来の軽量シェルを採用するケース
があります。

#!/bin/shの意味

　シェルスクリプトではファイルの先頭に必ず
#!という文字を記述します。これは「シバン」ま
たは「シェバン」と呼ばれます。FreeBSDカー
ネルでは「シェルマジック（SHELLMAGIC）」
と呼ばれています。
　カーネルはプログラムの実行依頼を受けると、
ファイルの種類を判別して、それに適したプロ
グラムの起動を行います。ファイルの先頭が#!

になっていた場合、そのプログラムはシェルス
クリプトであると判定され、#!に続くパスのプ
ログラムを起動して処理を行います。#!/bin/
shと記述されたファイルが実行されると、/

bin/shが実行され、シェルスクリプトの内容が
実行されます。

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

シェルスクリプト上級者になるためには、OSの性能をフルに引き出せるようにならなければいけません。そのた
めに本章では、普段、当たり前に書いているシェルスクリプトのコードで、カーネルがどう動作するのかを事細
かに見ていきます。まずは、シェル実行時のシステムコール、プロセスの動きを理解しましょう。

プロセスを使いこなし、OS性能を引き出すために

シェルの動作原理を
“深く”理解する

第2章

BSDコンサルティング（株）取締役／最高技術責任者
後藤 大地　GOTO Daichi　daichi@bsdconsulting.co.jp　Twitter ID：@daichigoto、@BSDc_tweet

26 - Software Design Feb. 2013 - 27

プロセスを使いこなし、OS性能を引き出すために
シェルの動作原理を“深く”理解する

第2章

　リスト1、2のシェルスクリプトを実行して
実際にカーネルがどのように処理を行うのか調
べます。
　シェルおよびカーネル内部でどのように処理
が進んでいるかはDTraceを使って調べるのが
便利です。DTraceとはカーネルおよびユーザ
ランドで動作するソフトウェアの内部の動作を
トレースするためのしくみです。DTraceを使
うと、カーネルやソフトウェアにデバッグコー
ドを埋め込まずとも、ソフトウェア内部の動き
を追うことができます。
　利用するにはカーネルおよびソフトウェアを
DTrace対応でビルドしておく必要があります。
トレース内容はDと呼ばれるスクリプトで記述
します。プログラミング言語としてのD言語と、
DTraceで使用するスクリプトとしてのDは別
ものですので、注意してください。FreeBSD 9.0

からユーザランドDTrace機能も有効になって
いるため、シェルとカーネル双方の動きを追跡
できます。#!の動作を調べるために、リスト3

のDTraceスクリプトを用意します。
　今回はシェルスクリプトの特集であって
DTraceの特集ではないので、DTraceスクリ
プトや出力結果の説明はしません。ここでは、
記述されているシステムコールや関数の動きを
トレースできるものだ、程度に理解しておいて
もらえればと思います。DTraceはとても便利
な機能ですので、FreeBSD DTraceの特集も
いずれあるんじゃないかと思います :-)

　DTraceで動作をトレースしながらSHEBANG

.SHを実行すると、図1の結果が得られます。
CPU、ID、FUNCTION:NAME は DTrace が
出力するデフォルトの情報です。プローブと呼
ばれるもので、DTraceが追跡するものの最小
単位のようなものだと考えてください。
　それよりも右の値は、実行順序や実行内容を
知るためにDスクリプトで出力させた内容です。
プログラム名、プロセス ID、実行時のタイム
スタンプ、プローブの種類、実行した関数また
はシステムコール、引数があるものは引数、戻

リスト1　SHEBANG.SH ▼

#!/bin/sh
./SHEBANG2.SH

リスト2　SHEBANG2.SH ▼

#!/bin/sh

リスト3　SHEBANG.SH用のDTraceスクリプト ▼

syscall:freebsd:*exec*:entry /execname == "sh"/ { printf("¦ %s %d %d syscall ｭ
%s(\"%s\")", execname, pid, timestamp, probefunc, copyinstr(arg0)); }
syscall:freebsd:*exec*:return /execname == "sh"/ { printf("¦ %s %d %d syscall %s() -> ｭ
%d", execname, pid, timestamp, probefunc, arg1); }
fbt:kernel:exec_*_imgact:entry /execname == "sh"/ { printf("¦ %s %d %d fbt %s()", ｭ
execname, pid, timestamp, probefunc); }
fbt:kernel:exec_*_imgact:return /execname == "sh"/ { printf("¦ %s %d %d fbt %s() -> %d", ｭ
execname, pid, timestamp, probefunc, arg1); }
profile:::tick-1sec { exit(0); }

図1　SHEBANG.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.SHEBANG -c ./SHEBANG.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.SHEBANG' matched 15 probes
dtrace: pid 24224 has exited
CPU ID FUNCTION:NAME
 1 56932 execve:entry ¦ sh 24225 100842280387335 syscall execve("./SHEBANG2.SH")
 1 17406 exec_elf64_imgact:entry ¦ sh 24225 100842280409551 fbt exec_elf64_imgact()
 1 17407 exec_elf64_imgact:return ¦ sh 24225 100842280412912 fbt exec_elf64_imgact() -> 4294967295 ←①
 1 30006 exec_shell_imgact:entry ¦ sh 24225 100842280415938 fbt exec_shell_imgact()
 1 30007 exec_shell_imgact:return ¦ sh 24225 100842280418623 fbt exec_shell_imgact() -> 0 ←②
 1 17406 exec_elf64_imgact:entry ¦ sh 24225 100842280425732 fbt exec_elf64_imgact()
 1 17407 exec_elf64_imgact:return ¦ sh 24225 100842280495053 fbt exec_elf64_imgact() -> 0 ←③
 1 56933 execve:return ¦ sh 24225 100842280512904 syscall execve() -> 0
% タイムスタンプ プローブ種類 関数、システムコール、引数など プロセスID プログラム名

28 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 29

り値、などを表示させています。
　SHEBANG.SHから生成されたサブシェルで
execve(2)が呼ばれ、SHEBANG2.SHを実行し
ようとします。execve(2)はプログラムを実行
するためのシステムコールです。どのように動
作するかはのちほど説明します。
　execve(2)から exec_elf64_imgact()注1が実行
され、SHEBANG2.SHが通常のバイナリファ
イルであるかどうか判定されます。判定結果は
ELF64バイナリではないという結果がでてい
ます（図1-①）。戻り値が429496295になって
いますが、判定として真値が返ってきていない
という点に注目してください。順次判定が実施
されますが、ここで重要なのは exec_shell_

imgact()注2でシェルスクリプトであるかどうか
判定し、シェルスクリプトであると判定されて
いることです（図1-②）。exec_shell_imgact()の
実体は /usr/src/sys/kern/imgact_shell.cに記
述されています。ソースコードには先頭が#!

であるか判定する記述があります（リスト4）。
　図1のexec_shell_imgact()でシェルスクリプ
トであると判定されたため、次に/bin/shが実

注1） exec_elf64_imgact()はカーネル内部で実行される関数で
す。指定されたファイルがELF64形式であるかどうか判定
し、ELF64形式である場合には実行処理へ移ります。
ELF64とは64ビット版のELF実行形式です。バイナリ形式
の実行ファイルはこういう形式のものなんだ、という程度
に思っておいてたいだければと思います。ELF以外のバイ
ナリ形式があるのか、ということになるわけですが、ELF
以外の形式もあります。

注2） exec_shell_imgact()もカーネル内部で実行される関数です。
対象がシェルスクリプトであるかどうか判定し、シェルス
クリプトであればシェルスクリプトとして実行するための
手順へ移ります。

行可能なファイルであるかの判定がexec_elf64_

imgact()で実施され、成功しています（図1-③）。
/bin/shは通常のELF64の実行ファイルです。
このように#!によるスクリプトの実行というのは、
OSが提供する基本的な機能で、シェルスクリ
プトはこの機能を使って起動されています。
　次からシェルの提供する基本的な機能につい
て紹介します。

環境変数とシェル変数の
違い、型のない世界

　シェルスクリプトでは変数としてシェル変数
と環境変数が利用できます。変数は=で代入す
る形式で設定します。シェル変数や環境変数に
は型という概念はありません。変数はただのデー
タの入れ物であり、値としては通常は文字列が
指定されます。基本的にリスト5、6のように
使用します。実行すると図2のようになります。
　ここでは変数としてvおよびVを定義してい
ます。それぞれaとAという値を割り当ててい
ます。リスト5-①でvがシェル変数、リスト5-

②でVがシェル変数として定義されます。これ
ら変数は$vおよび$Vとしてアクセスできます。
　そしてリスト5-③でシェル変数Vを環境変
数へ変更しています。環境変数はプロセスを超
えて子プロセスへもコピーされるようになりま
す。VAR.SHから呼び出されたVAR2.SHで変

リスト4　imgact_shell.cのソースコード ▼

 （略）
 40 #if BYTE_ORDER == LITTLE_ENDIAN
 41 #define SHELLMAGIC 0x2123 /* #! */
 42 #else
 43 #define SHELLMAGIC 0x2321
 44 #endif
 （略）
110 /* a shell script? */
111 if (((const short *)image_
header)[0] != SHELLMAGIC)
112 return (-1);
 （略）

リスト5　VAR.SH ▼

#!/bin/sh
v=a ←①
V=A ←②

export V ←③

printf "shell $v $V\n"
{ printf "{ $v $V }\n"; }
(printf "($v $V)\n")
./VAR2.SH

リスト6　VAR2.SH ▼

#!/bin/sh
printf "shell $v $V\n"

28 - Software Design Feb. 2013 - 29

プロセスを使いこなし、OS性能を引き出すために
シェルの動作原理を“深く”理解する

第2章

数vおよびVへアクセスを試みていますが、環
境変数である変数Vは内容が引き継がれている
ことがわかります（図2-①）。
　サブシェルに関してはのちほど説明しますが、
このサブシェルにおける動作には注意が必要で
す。一見すると同じレベルにあるように見えま
すが、実際には別のプロセスで実行されていま

す注3。たとえばリスト7のシェルスクリプトを実
行し、リスト8のDTraceを適用して処理をトレー
スします。すると図3の結果が得られます。
　図3-①の fork(2)とはプロセスをコピーする

注3） ただし、このあたりの処理はシェルごとに実装が異なるため、
一概にそうとも言えません。詳しくは使っているシェルの
ソースコードを読む必要があります。

リスト7　VAR3.SH ▼

#!/bin/sh
v=a
V=A
(printf "($v $V)\n")
(printf "($v $V)\n")
(printf "($v $V)\n")

図2　VAR.SHの実行結果 ▼

% ./VAR.SH
shell a A
{ a A }
(a A)
shell A ←①
%

リスト8　VAR3.SH用のDTraceスクリプト ▼

syscall:freebsd:fork:entry /execname == "sh"/ { printf("¦ %s %d %d syscall %s()", ｭ
execname, pid, timestamp, probefunc); }
syscall:freebsd:fork:return /execname == "sh"/ { printf("¦ %s %d %d syscall %s() -> ｭ
%d", execname, pid, timestamp, probefunc, arg1); }
syscall:freebsd:exec*:entry /execname == "sh"/ { printf("¦ %s %d %d syscall ｭ
%s(\"%s\")", execname, pid, timestamp, probefunc, copyinstr(arg0)); }
syscall:freebsd:exec*:return /execname == "sh"/ { printf("¦ %s %d %d syscall %s() -> ｭ
%d", execname, pid, timestamp, probefunc, arg1); }
syscall:freebsd:wait*:entry /execname == "sh"/ { printf("¦ %s %d %d syscall %s()", ｭ
execname, pid, timestamp, probefunc); }
syscall:freebsd:wait*:return /execname == "sh"/ { printf("¦ %s %d %d syscall %s() -> ｭ
%d", execname, pid, timestamp, probefunc, arg1); }
pid$target:sh:forkshell:entry { printf("¦ %s %d %d function %s()", execname, pid, ｭ
timestamp, probefunc); }
pid$target:sh:forkshell:return { printf("¦ %s %d %d function %s() -> %d", execname, ｭ
pid, timestamp, probefunc, arg1); }
profile:::tick-1sec { exit(0); }

図3　VAR3.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.VAR -c ./VAR3.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.VAR' matched 8 probes
dtrace: pid 29661 has exited
CPU ID FUNCTION:NAME
 2 70362 expandarg:entry ¦ sh 29661 153435546948403 function expandarg()
 2 70362 expandarg:entry ¦ sh 29661 153435546955817 function expandarg()
 2 70360 forkshell:entry ¦ sh 29661 153435546964117 function forkshell()
 2 56818 fork:entry ¦ sh 29661 153435546969464 syscall fork() ←①
 2 56819 fork:return ¦ sh 29661 153435548163699 syscall fork() -> 29662 ←②
 2 70361 forkshell:return ¦ sh 29661 153435548180339 function forkshell() -> 29662
 2 70360 forkshell:entry ¦ sh 29661 153435548331013 function forkshell()
 2 56818 fork:entry ¦ sh 29661 153435548333835 syscall fork()
 2 56819 fork:return ¦ sh 29661 153435548980575 syscall fork() -> 29663
 2 70361 forkshell:return ¦ sh 29661 153435548994446 function forkshell() -> 29663
 2 70360 forkshell:entry ¦ sh 29661 153435549129318 function forkshell()
 2 56818 fork:entry ¦ sh 29661 153435549132011 syscall fork()
 2 56819 fork:return ¦ sh 29661 153435549973612 syscall fork() -> 29664
 2 70361 forkshell:return ¦ sh 29661 153435549989890 function forkshell() -> 29664
%

30 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 31

システムコールです。UNIX系OSでは fork(2)

で自分自身のプロセスをコピーすることで新し
いプロセスを生成するしくみを採用しています。
最初は意味がわからないかもしれませんが、そ
ういうものだと思っておいてください。詳細は
後で説明します。
　図3-①②で、サブシェルを fork(2)していま
す。図3-②から、生成されたプロセスの ID番
号は29662です。もとのシェルのプロセス ID

は29661ですから、別のプロセスであることが
わかります。
　こうして、いったんサブシェルをfork(2)して
からfork(2)された先のプロセス側で変数が展開
されます。fork(2)によるコピーであるため、環
境変数のみならずシェル変数も引き継がれます。

シェルによる関数

　シェルスクリプトは基本的にコマンドを羅列
するものです。シェルスクリプトではこのコマ
ンドと同等の動きをする単位として関数という
機能を提供しています。関数名() {内容;}で
定義される処理単位で、同一プロセス IDのま

まで処理が走るという違いを除いて、コマンド
と同様に動作します。
　次のスクリプトを実行します。

#!/bin/sh
date() { printf("$1 $2 $3 $4 $5\n"); }
date a b c

　すると次のように動作します。

% ./FUNC.SH 1 2 3 4 5
a b c
%

　このシェルスクリプトからは、次の2つのこ
とがわかります。

・関数はコマンドよりも優先される。システム
にはdate(1)コマンドが用意されているが、
関数として作成したdateのほうが優先して
実行されている

・関数に与えた引数は$1、$2、$3などでア
クセスできる。シェルスクリプトに与えら
れた引数を参照する$1、$2、$3などの変
数とは別ものとして扱われる

　シェルスクリプトで関数を使うかどうかに関
しては賛否両論あります。関数を作成するくら
いであればコマンドとして別のシェルスクリプ
トにしたほうが良いとする考え方もあれば、関
数としては単一ファイルにまとめたほうが良い
とする考え方、よく利用する機能を関数にまと
めたライブラリとしてのファイルを作ったほう
が良いとする考え方などがあります。

変数のスコープ

　シェルスクリプトにおける変数のスコープは
もっとも理解が難しいところです。プログラミ
ング言語としてのスコープというよりも、どの
タイミングで変数が展開されるのかというパー
ス＆展開のタイミングと、どのタイミングで
fork(2)およびexecve(2)が実行されるのかとい
う点に依存しています。
　たとえばリスト9のシェルスクリプトを実行

リスト9　SCOPE.SH ▼

#!/bin/sh
f1() { v=b; V=B; }
f2() { (v=c; V=C;) }
v=a
V=A

export V

printf "shell $v $V\n"
f1
printf "shell $v $V\n"
f2
printf "shell $v $V\n"

図4　SCOPE.SHの実行結果 ▼

% ./SCOPE.SH
shell a A
shell b B ←①
shell b B ←②
%

30 - Software Design Feb. 2013 - 31

プロセスを使いこなし、OS性能を引き出すために
シェルの動作原理を“深く”理解する

第2章

すると、図4の結果が得られます。f1関数にお
ける変数への代入は機能していますが（図4-①）、
f2関数における変数への代入は影響を与えて
いません（図4-②）。これは f2関数内部の処理
がサブシェル、つまり別のプロセスで実行され
ているためです。別プロセス側で代入しても、
もとのシェルスクリプトには影響を与えません。

fork(2)とexecve(2)

　UNIX系OSでは、ユーザから見た場合に、
リソースを使用する実体の単位はプロセスです。
シェルの視点から見れば、シェルそのものが1

つのプロセスであり、シェルを通じて実行され
るコマンドそれぞれが1つ1つのプロセスです。
　UNIX系OSでは、このプロセスがツリー構
造をとるという特徴があります。プロセスには
すべて親子の関係があります。このため、プロ
セスの相互関係は1つの大きなツリー構造にな
ります。この構造を実現するためのシステムコー
ルが fork(2)とexecve(2)です。
　システムコールとはカーネルに処理を依頼す
る特別な関数だと思ってください。ソフトウェ
アを安全に実行できるようにするため、CPU

が提供する特定の処理はユーザランドのソフト
ウェアからは直接実行できないしくみになって
います。
　かわりにカーネルにその処理をやってほしい
と依頼を出します。この依頼を出すための関数
がシステムコールです。
　fork(2)はプロセスをコピーして新しいプロセ
スを生成するためのシステムコール、execve(2)

は指定したプログラムでプロセスそのものを上
書きするためのシステムコールです。
　fork(2)はとくにUNIX系OSを特徴付ける機
能です。新しくプロセスを生成する（シェル的
に言えばコマンドを実行する）場合、まず
fork(2)システムコールを通じて自分自身をコ
ピーします（図5）。
　コピーした先のプロセスで、次にexecve(2)

システムコールを実行して、自分自身を指定さ
れたプログラムで上書きして、上書きしたプロ
グラムを実行します。たとえば、シェルでdate

コマンドが入力された場合、シェルはまず自分
自身をコピーし、次にexecve(2)を呼び出して
自分自身を/bin/dateで上書きして、上書きし
たプログラムを実行します。
　いったん fork(2)システムコールでコピーを
生成するため、fork(2)を実行した側が親プロ
セス、fork(2)でコピーされた側が子プロセス
という親子関係が生まれます。環境変数は
fork(2)およびexecve(2)の段階でも引き継がれ
るため、親プロセスで設定された環境変数は子
プロセスにも持ち込まれます。
　ps(1)コマンドを使うと図6のようにツリー
構造を確認できます。そのまま表示すると読み
にくいので、カーネルスレッドをps(1)の出力
から排除しているほか、cut(1)でツリー構造の
確認以外には関係ない部分は切り捨てて表示さ
せています。一番最初に起動されるプロセスは
init(8)と呼ばれるプログラムで、ここではプロ
セス番号1が割り当てられています。すべての
プロセスは init(8)をもっとも上の親としてツ
リー構造を構築します。
　シェルスクリプトの動作を理解するというの
は、fork(2)とexecve(2)がどのタイミングで実
行されているのかを知ることだとも言えます。

図5　 コマンド実行時のプロセスの動き ▼

/bin/sh ①fork(2) により
　プロセスをコピー

②execve(2) により
　プロセスを/bin/dateで
　上書き

29661

/bin/sh

29661

/bin/date

29662

/bin/date

32 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 33

図6　プロセスのツリー構造 ▼

% LANG=C ps -auxd -U root ¦ fgrep -v '['¦ grep -v 'X' ¦ cut -c 1-10 -c 65-
USER PID COMMAND
root 1 - /sbin/init --
root 670 ¦-- /usr/sbin/moused -p /dev/ums0 -t auto -I /var/run/moused.ums0.pid
root 163 ¦-- adjkerntz -i
root 687 ¦-- /sbin/devd
root 927 ¦-- /usr/sbin/syslogd -s
root 943 ¦-- /usr/sbin/rpcbind
root 970 ¦-- nfsuserd: master (nfsuserd)
root 971 ¦ ¦-- nfsuserd: slave (nfsuserd)
root 972 ¦ ¦-- nfsuserd: slave (nfsuserd)
root 973 ¦ ¦-- nfsuserd: slave (nfsuserd)
root 974 ¦ `-- nfsuserd: slave (nfsuserd)
root 996 ¦-- /usr/sbin/lpd
root 1020 ¦-- /usr/sbin/powerd
root 1065 ¦-- /usr/sbin/sshd
root 1068 ¦-- sendmail: accepting connections (sendmail)
root 1075 ¦-- /usr/sbin/cron -s
root 1176 ¦-- nfscbd: master (nfscbd)
root 1177 ¦ `-- nfscbd: server (nfscbd)
root 1214 ¦-- /usr/libexec/getty Pc ttyv1
root 1215 ¦-- /usr/libexec/getty Pc ttyv2
root 1216 ¦-- /usr/libexec/getty Pc ttyv3
root 1217 ¦-- /usr/libexec/getty Pc ttyv4
root 1218 ¦-- /usr/libexec/getty Pc ttyv5
root 1219 ¦-- /usr/libexec/getty Pc ttyv6
root 1220 `-- /usr/libexec/getty Pc ttyv7
%

1つコマンドを実行するだけでも最低でも1回
ずつは fork(2)とexecve(2)システムコールが実
行されます。

プロセスの一生

　シェルやシェルスクリプトでは「プロセス」ま
たは「フォアグラウンドプロセス」、「バックグ
ラウンドプロセス」という言葉が使われます。
フォアグラウンドプロセスとは実行が完了する
までシェルが待っているタイプのプロセス、バッ
ググラウンドプロセスとは起動したらシェルと
並列に処理が実行されるタイプのプロセスです。
コマンドを実行する場合、行の最後に&を指定
するとバックグラウンドプロセスとなり、それ
以外はフォアグラウンドプロセスとなります。
　カーネルにはフォアグラウンドプロセス、バッ
クグラウンドプロセスという区別はありません。
カーネルにとってみればどちらもただのプロセ

スです。フォアグラウンドプロセス、バックグ
ラウンドプロセスの区別はシェルから見た場合
に処理を変えるための違いでしかありません。
　わかりやすく考えるとすれば、プロセスとい
うのは基本的にすべてバックグラウンドプロセ
スのようなもので、フォアグラウンドプロセス
のほうが特殊なパターンだと考えるとわかりや
すいといえます。
　リスト10、11のシェルスクリプトを使って
動作の違いを追います。トレースにはリスト
12のDTraceスクリプトを使います。それぞれ
実行すると図7、8の結果が得られます。
　ash（/bin/sh）ではforkshell()という関数でシェ
ルをfork(2)する処理が行われます。この関数を
抜けたあとの動作に注目してください。フォア
グラウンドプロセスとしてコマンドを実行した
場合（つまりシェルスクリプトでよく使われる、
普通にコマンドを実行した場合です）、そのあと
wait4(2)システムコールを実行してfork(2)によっ

32 - Software Design Feb. 2013 - 33

プロセスを使いこなし、OS性能を引き出すために
シェルの動作原理を“深く”理解する

第2章

リスト11　DATE2.SH ▼

#!/bin/sh
date &

リスト10　DATE.SH ▼

#!/bin/sh
date

リスト12　DATE.SHとDATE2.SH用のDTraceスクリプト ▼

syscall:freebsd:fork:entry /execname == "sh"/ { printf("¦ %s %d %d syscall %s()", ｭ
execname, pid, timestamp, probefunc); }
syscall:freebsd:fork:return /execname == "sh"/ { printf("¦ %s %d %d syscall %s() -> ｭ
%d", execname, pid, timestamp, probefunc, arg1); }
syscall:freebsd:exec*:entry /execname == "sh"/ { printf("¦ %s %d %d syscall ｭ
%s(\"%s\")", execname, pid, timestamp, probefunc, copyinstr(arg0)); }
syscall:freebsd:exec*:return /execname == "sh"/ { printf("¦ %s %d %d syscall %s() -> ｭ
%d", execname, pid, timestamp, probefunc, arg1); }
syscall:freebsd:wait*:entry /execname == "sh"/ { printf("¦ %s %d %d syscall %s()", ｭ
execname, pid, timestamp, probefunc); }
syscall:freebsd:wait*:return /execname == "sh"/ { printf("¦ %s %d %d syscall %s() -> ｭ
%d", execname, pid, timestamp, probefunc, arg1); }
pid$target:sh:forkshell:entry { printf("¦ %s %d %d function %s()", execname, pid, ｭ
timestamp, probefunc); }
pid$target:sh:forkshell:return { printf("¦ %s %d %d function %s() -> %d", execname, ｭ
pid, timestamp, probefunc, arg1); }
profile:::tick-1sec { exit(0); }

図7　DATE.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.PROCESS -c ./DATE.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.PROCESS' matched 9 probes
dtrace: pid 24254 has exited
CPU ID FUNCTION:NAME
 0 70324 forkshell:entry ¦ sh 24254 100896816679129 function forkshell()
 0 56818 fork:entry ¦ sh 24254 100896816684234 syscall fork()
 0 56819 fork:return ¦ sh 24254 100896818064146 syscall fork() -> 24255
 0 70325 forkshell:return ¦ sh 24254 100896818082667 function forkshell() -> 24255
 0 56828 wait4:entry ¦ sh 24254 100896818108290 syscall wait4() ←①
 2 56932 execve:entry ¦ sh 24255 100896818112587 syscall execve("/bin/date")
 0 56829 wait4:return ¦ sh 24254 100896818960196 syscall wait4() -> 24255 ←②
%

図8　DATE2.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.PROCESS -c ./DATE2.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.PROCESS' matched 9 probes
dtrace: pid 24269 has exited
CPU ID FUNCTION:NAME
 1 70326 forkshell:entry ¦ sh 24269 100896936656098 function forkshell()
 1 56828 wait4:entry ¦ sh 24269 100896936660869 syscall wait4()
 1 56829 wait4:return ¦ sh 24269 100896936662976 syscall wait4() -> -1
 1 56818 fork:entry ¦ sh 24269 100896936666722 syscall fork()
 1 56819 fork:return ¦ sh 24269 100896937850854 syscall fork() -> 24270
 1 70327 forkshell:return ¦ sh 24269 100896937868664 function forkshell() -> 24270
 2 56932 execve:entry ¦ sh 24270 100896937985109 syscall execve("/bin/date") ←①
%

て生成されたプロセスの処理が終了するまで待
ち処理が入っています（図7-①②）。
　一方、バックグラウンドプロセスとして起動

したほうでは、frok(2)したあとにwait4(2)シス
テムコールは発行されていません（図8-①）。
　つまりシェルやシェルスクリプトにおけるコ

34 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 35

マンドの実行とは、fork(2)→execve(2)してい
る処理が終了するまでwait4(2)システムコール
で待つという処理、ということになります。&

を指定するとこのwait4(2)システムコールを発
行して終了するまで待つという処理を飛ばしま
す。

サブシェル

　シェルスクリプトの動作を理解するうえでもっ
とも重要になるのがサブシェルです。どのタイ
ミングでサブシェルを生成するのかという実装
はシェルごとに多少異なりますので（ashでは
サブシェルを生成するようなケースでも、サブ
シェルを生成しないでコマンドを実行するよう
なシェルもあります）、ここではash（FreeBSD

の/bin/sh）を対象として説明します。
　サブシェルとは fork(2)で生成されるシェル
のコピーを指します。シェルはコマンドを実行
したりパイプを処理するときは、いったん自分
自身のコピーを fork(2)システムコールを使っ
て生成してから処理を実行します。シェルやシェ
ルスクリプトを実行するというのは、fork(2)

してシェルをコピーする処理をするといい変え
てもよいほど、頻繁に自分をコピーします。
　どのようなタイミングで fork(2)システムコー
ルが実行されるのか調べるために、リスト13
のDTraceスクリプトを使います。
　まずはもっとも簡単な、シバンでシェルを指
定したスクリプトのみに対してトレースを実施
します。

・SUBSHELL.SH

#!/bin/sh

　図9のように fork(2)は検出されません。こ
の段階では何もコピーされません。
　グルーピングのみを記述します。

・SUBSHELL2.SH

#!/bin/sh
{ }

　この場合も図10のように何も検出されませ
ん。パース処理のみが実行され、fork(2)する
状況になっていないからです。
　1つだけコマンドを実行させます。

リスト13　システムコール実行タイミング確認用のDTraceスクリプト ▼

syscall:freebsd:fork:entry /execname == "sh"/ { printf("¦ %s %d %d syscall %s()", ｭ
execname, pid, timestamp, probefunc); }
syscall:freebsd:fork:return /execname == "sh"/ { printf("¦ %s %d %d syscall %s() -> ｭ
%d", execname, pid, timestamp, probefunc, arg1); }
syscall:freebsd:exec*:entry /execname == "sh"/ { printf("¦ %s %d %d syscall ｭ
%s(\"%s\")", execname, pid, timestamp, probefunc, copyinstr(arg0)); }
syscall:freebsd:exec*:return /execname == "sh"/ { printf("¦ %s %d %d syscall %s() -> ｭ
%d", execname, pid, timestamp, probefunc, arg1); }
pid$target:sh:forkshell:entry { printf("¦ %s %d %d function %s()", execname, pid, ｭ
timestamp, probefunc); }
pid$target:sh:forkshell:return { printf("¦ %s %d %d function %s() -> %d", execname, ｭ
pid, timestamp, probefunc, arg1); }
profile:::tick-1sec { exit(0); }

図9　SUBSHELL.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.SUBSHELL -c ./SUBSHELL.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.SUBSHELL' matched 7 probes
dtrace: pid 24288 has exited
%

34 - Software Design Feb. 2013 - 35

プロセスを使いこなし、OS性能を引き出すために
シェルの動作原理を“深く”理解する

第2章

・SUBSHELL3.SH

#!/bin/sh
date

　図11のように fork(2)およびexecve(2)システ
ムコールが実行されることを確認できます。シェ
ルスクリプトのプロセス IDは 24316です。
fork(2)システムコールを呼ぶと、子プロセス
としてプロセス IDが24317のプロセスが生成
されます（図11-①）。子プロセスで execve("/

bin/date")が実行され、date(1)コマンドが処理
されていることがわかります（図11-②）。これ
がシェルがコマンドを実行するという処理の一
連の流れです。
　次にサブシェルを明示的に生成するケースを
考えます。()の指定は明示的にサブシェルを
生成して処理を実行するというものです。()

の中に記述したコマンドは、生成された小プロ
セスにおいて評価され同様に処理が走ります。
大本のシェルの変数などに影響を与えたくない
場合などに使われます。

・SUBSHELL4.SH

#!/bin/sh
()

　実行すると図12の結果が得られます。fork(2)

システムコールが呼ばれサブシェルが生成され
ていることがわかります（図12-①）。
　そして重要なのが次のシェルスクリプトです。
パイプはサブシェルを生成して実行されます（図
13）。

・SUBSHELL5.SH

#!/bin/sh
date ¦ cat

図10　SUBSHELL2.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.SUBSHELL -c ./SUBSHELL2.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.SUBSHELL' matched 7 probes
dtrace: pid 24302 has exited
%

図11　SUBSHELL3.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.SUBSHELL -c ./SUBSHELL3.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.SUBSHELL' matched 7 probes
dtrace: pid 24316 has exited
CPU ID FUNCTION:NAME
 2 70332 forkshell:entry ¦ sh 24316 100935894212675 function forkshell()
 2 56818 fork:entry ¦ sh 24316 100935894217654 syscall fork()
 2 56819 fork:return ¦ sh 24316 100935895400357 syscall fork() -> 24317 ←①
 2 70333 forkshell:return ¦ sh 24316 100935895415925 function forkshell() -> 24317
 0 56932 execve:entry ¦ sh 24317 100935895442188 syscall execve("/bin/date") ←②
%

図12　SUBSHELL4.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.SUBSHELL -c ./SUBSHELL4.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.SUBSHELL' matched 7 probes
dtrace: pid 24331 has exited
CPU ID FUNCTION:NAME
 0 70334 forkshell:entry ¦ sh 24331 100936008157510 function forkshell()
 0 56818 fork:entry ¦ sh 24331 100936008162499 syscall fork()
 0 56819 fork:return ¦ sh 24331 100936009339843 syscall fork() -> 24332 ←①
 0 70335 forkshell:return ¦ sh 24331 100936009355860 function forkshell() -> 24332
%

36 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 37

　図13の出力からだとわかりにくいのですが、
シェルはパイプラインが記載された処理をそれ
ぞれサブシェルを生成して実行します。たとえ
ば図13の例ですと、サブシェルが fork()で2個
生成され、それぞれにおいてexecve(2)が実行
されます。生成されたプロセスは標準入力と標
準出力が接続されているので、データがコマン
ドからコマンドへ流れます。
　このあたりはとても間違いが発生しやすいと
ころですので注意してください。それまでリダ

図13　SUBSHELL5.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.SUBSHELL -c ./SUBSHELL5.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.SUBSHELL' matched 7 probes
CPU ID FUNCTION:NAME
 0 70336 forkshell:entry ¦ sh 24346 100936122130467 function forkshell()
 0 56818 fork:entry ¦ sh 24346 100936122136628 syscall fork()
 1 56819 fork:return ¦ sh 24346 100936123349756 syscall fork() -> 24347
 1 70337 forkshell:return ¦ sh 24346 100936123367890 function forkshell() -> 24347
 0 56932 execve:entry ¦ sh 24347 100936123409274 syscall execve("/bin/date")
%

イレクトで処理していたものを、パイプを挿
はさ

ん
でcat(1)コマンドで流し込むようにする、といっ
たようなコーディングは頻繁に実施されますが、
パイプラインを挿

はさ

み込んだ瞬間に、それはサブ
シェルで実行されることになります。これは
whileなどシェルが構文として用意している機
能を使っている場合に、とくに問題となる部分
です。問題の詳細については次章以降で解説し
ます。ﾟ

　FreeBSD 9.0以降はユーザランドDTraceが搭載さ
れていますので、今回の内容を追実験するには手軽
な環境といえます。まず、リスト14のようなカー
ネルオプションを指定します。これは9.1以降を使
う場合の指定です。
　ユーザランドDTraceを使いたいので、/etc/
make.confにリスト15の設定を追加しておきます。
この状態でカーネルの再構築と再インストールを実
施します。
　dtrace(1M)の実行には root権限が必要です。root
で作業するか、sudoを使うなどして処理を行います。
Makefi leに処理内容をまとめておけば良いでしょう
（リスト16）。

　ここで1つのポイントとして、DTraceが出力する
報告は時系列ではターミナルにはあがってこないと
いうことです。このため、DTraceでトレースする
段階でタイムスタンプを出力させ、このタイムスタ
ンプに合わせて出力内容を時系列にソートしてあげ
るシェルスクリプトを介して表示するようにします
（リスト17）。こうすることで、DTraceの出力がよ
り直感的に理解しやすいものになります。
　DTraceは便利な機能です。FreeBSDでシステムを
開発する場合や、アプリケーションを運用する場合
のパフォーマンス引き上げの必要がある場合など、
強力なツールとして活用できますので、活用を検討
してみてください。

追実験用の環境構築方法COLUMN

リスト14　カーネルオプションの指定 ▼

include GENERIC
ident DTRACE
options KDTRACE_HOOKS
options DDB_CTF
options KDTRACE_FRAME
makeoptions DEBUG="-g"

36 - Software Design Feb. 2013 - 37

プロセスを使いこなし、OS性能を引き出すために
シェルの動作原理を“深く”理解する

第2章

リスト17　REP.SH ▼

#!/bin/sh

tmp=/tmp/$$

cat > $tmp-src
grep -E '(dtrace)¦(ID)' $tmp-src > $tmp-head
grep '¦' $tmp-src > $tmp-data

cat $tmp-data ¦
grep -v '^$' ¦
sort -k7,7 ¦
cat > $tmp-data2

cat $tmp-head $tmp-data2
printf "\n"

rm $tmp-*

リスト15　/etc/make.confの設定 ▼

STRIP=
CFLAGS+=-fno-omit-frame-pointer
WITH_CTF=1

リスト16　Make�leに指定する処理内容 ▼

shebang:
 sudo dtrace -s ./DTRACE.SHEBANG -c ./SHEBANG.SH 2>&1 ¦ ./REP.SH

process:
 sudo dtrace -s ./DTRACE.PROCESS -c ./DATE.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.PROCESS -c ./DATE2.SH 2>&1 ¦ ./REP.SH

subshell:
 sudo dtrace -s ./DTRACE.SUBSHELL -c ./SUBSHELL.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.SUBSHELL -c ./SUBSHELL2.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.SUBSHELL -c ./SUBSHELL3.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.SUBSHELL -c ./SUBSHELL4.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.SUBSHELL -c ./SUBSHELL5.SH 2>&1 ¦ ./REP.SH

redirect:
 sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT2.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT3.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT4.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT5.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT6.SH 2>&1 ¦ ./REP.SH
 sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT7.SH 2>&1 ¦ ./REP.SH

var:
 sudo dtrace -s ./DTRACE.VAR -c ./VAR3.SH 2>&1 ¦ ./REP.SH

38 - Software Design

シェ第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 39

ファイル記述子と
入出力切り替え

　シェルが得意とする処理はプロセスの生成と
プロセスをパイプで接続して処理すること、そ
してファイルの入出力です。どちらも余計な処
理を入れず、ダイレクトにシステムコールが呼
ばれます。簡単なシェルスクリプトを通じて、
実際にどのようにシステムコールが実行されて
いるのか調べます。

標準出力のリダイレクト

　ファイルの入出力の一番最初にはopen(2)シ
ステムコールが使われます。入出力の切り替え
にはdup2(2)システムコールが使われます。リ
スト1のDTraceスクリプトを用意してシェル
の動作を追います。
　次のシェルスクリプトを実行します。open(2)

システムコールを呼ぶだけのシェルスクリプト
です。

・REDIRECT.SH

#!/bin/sh
: > /dev/null

　実行すると図1の結果が得られます。/dev/

nullを1537というフラグ指定でopen(2)し（図
1-①）、3というファイル記述子を得ています（図
1-②）。フラグはシステムコールや関数の引数

として 渡される値で、どのように動作する
のかといった内容を指定するものです。
open(2)システムコールを実行すると、ファイ
ル記述子（ファイルディスクリプタ）と呼ばれる
数字が返ってきます。ファイル記述子とは、
OSがファイルを識別するために使う番号のこ
とで、以降は、この数字を指定して read(2)/

write(2)を実行することで、このファイルへの
読み書きとなります。
　実際にこのシェルスクリプトを実行すること
で処理されるashのソースコードはリスト2の
行が該当します。open(2)のフラグとしてO_

WRONLY、O_CREAT、O_TRUNCを加算し
たものが指定されています。書き込みモードで
開き、ファイルが存在しなければ新規作成、ファ
イルが存在している場合には中身を全部消して
先頭から利用、という指定です。
　フラグに定義されている数値は表1のとおり
です。フラグを指定するときは、これらの値を
足した値で指定します。今回の場合は、1＋
512＋1024＝1537ということで、DTraceで
補足した数値に一致します。
　open(2)したあとにdup2(2)システムコールで、
標準出力を/dev/nullへ差し替えています（図
1-③）。
　ファイル記述子として0、1、2はすでに予約
済みです。0が標準入力、1が標準出力、2が標
準エラー出力です（表2）。

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

シェルは標準入出力という概念があることで、非常にシンプルな記述でファイルやデバイスとの入出力を実現し
たり、コマンド同士を連携したりできるのが特徴です。本章ではその原理を見ていきます。また、ファイル I/O
におけるキャッシュの効果についても、実際に測定しながら検証します。

入力元／出力先を巧みに切り替える

シェルスクリプトが
ファイル入出力に強いわけ

第3章

BSDコンサルティング（株）取締役／最高技術責任者
後藤 大地　GOTO Daichi　daichi@bsdconsulting.co.jp　Twitter ID：@daichigoto、@BSDc_tweet

38 - Software Design Feb. 2013 - 39

入力元／出力先を巧みに切り替える
シェルスクリプトがファイル入出力に強いわけ

第3章

リスト1　入出力切り替え確認用のDTraceスクリプト ▼

syscall:freebsd:open:entry
/execname != "sh" && copyinstr(arg0) != "/dev/null" &&
 copyinstr(arg0) != "/dev/stdout"/
{
 of=0;
}

syscall:freebsd:open:entry
/execname == "sh" &&
 (copyinstr(arg0) == "/dev/null" ¦¦
 copyinstr(arg0) == "/dev/stdout")/
{
 printf("¦ %s %d %d syscall %s(\"%s, %d\")",
 execname, pid, timestamp, probefunc, copyinstr(arg0), arg1);
 of=1;
}

syscall:freebsd:open:return
/of == 1/
{
 printf("¦ %s %d %d syscall %s() -> %d",
 execname, pid, timestamp, probefunc, arg1);
}

syscall:freebsd:dup2:entry
/execname == "sh" && arg0 < 5/
{
 printf("¦ %s %d %d syscall %s(%d, %d)",
 execname, pid, timestamp, probefunc, arg0, arg1);
}

profile:::tick-1sec { exit(0); }

図1　REDIRECT.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.REDIRECT' matched 5 probes
dtrace: pid 24378 has exited
CPU ID FUNCTION:NAME
 2 56824 open:entry ¦ sh 24378 100986542342790 syscall open("/dev/null, 1537") ←①
 2 56825 open:return ¦ sh 24378 100986542358382 syscall open() -> 3 ←②
 2 56994 dup2:entry ¦ sh 24378 100986542363164 syscall dup2(3, 1) ←③

リスト2　REDIRECT.SH実行時に処理されるashのコード ▼

open(fname, O_WRONLY¦O_CREAT¦O_TRUNC, 0666)

表1　open(2)のフラグ一覧 ▼

open(2)フラグ 値（16進数） 値（10進数） 説明
O_RDONLY 0x0000 0 読み込みのみ許可して開く
O_WRONLY 0x0001 1 書き込みのみ許可して開く
O_CREAT 0x0200 512 ファイルが存在しない場合

には新規作成
O_TRUNC 0x0400 1024 ファイルが存在する場合、

内容を全部削除して先頭か
ら書き込む

O_APPEND 0x0008 8 ファイルが存在する場合、ファ
イルの最後へ追記していく

表2　予約済みのファイル記述子 ▼

ファイル
記述子番号

意味

0 標準入力
1 標準出力
2 標準エラー出力

40 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 41

　このようにファイルに出力するという処理は、
open(2)システムコールでファイルを開き、
dup2(2)システムコールで標準入出力を開いた
ファイルへ向けるという処理です。

標準入力のリダイレクト

　次に、ファイルへの出力ではなく、ファイル
から入力する場合をトレースします。次のシェ
ルスクリプトで/dev/nullから入力を受けると
いう指定になります。

・REDIRECT2.SH

#!/bin/sh
: < /dev/null

　実行すると図2の結果が得られます。open(2)

のフラグに0が指定されています。0はO_

RDONLYです（図2-①）。ashのソースコードと
してはリスト3の行が該当します。O_RDONLY

を指定してオープン処理が行われています。
　/dev/nullを開いてファイルディスクリプタ
番号 3が返ってきています（図 2-②）ので、

dup2(3, 0)という指定で、標準入力が/dev/null

に置き換わっていることがわかります（図2-③）。
open(2)システムコールのフラグやdup2(2)シス
テムコールで指定する番号が変わっているだけ
で、ファイルへの書き込みもファイルからの読
み込みの指定も、処理の流れは同じです。

標準エラー出力のリダイレクト

　次に、出力を標準エラー出力へ向ける指定を
トレースします。

・REDIRECT3.SH

#!/bin/sh
: 2> /dev/null

　実行すると図3の結果が得られます。ファイ
ルをオープンする場合と処理の流れは同じで、
dup2(2)する対象が標準出力である1から標準
エラー出力である2に変わっているという違い
がわかります（図3-①）。
　2>という指定は1>と組み合わせて次のよう
に使われたりします。エラー出力は/dev/null

へ捨てて、エラーではない出力だけを得たいと
いった場合や、またはエラー出力だけをファイ
ルに落としたいといった場合に使われます。

図2　REDIRECT2.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT2.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.REDIRECT' matched 5 probes
dtrace: pid 24392 has exited
CPU ID FUNCTION:NAME
 0 56824 open:entry ¦ sh 24392 100986646956320 syscall open("/dev/null, 0") ←①
 0 56825 open:return ¦ sh 24392 100986646968334 syscall open() -> 3 ←②
 0 56994 dup2:entry ¦ sh 24392 100986646971440 syscall dup2(3, 0) ←③
%

図3　REDIRECT3.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT3.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.REDIRECT' matched 5 probes
dtrace: pid 24406 has exited
CPU ID FUNCTION:NAME
 1 56824 open:entry ¦ sh 24406 100986750624735 syscall open("/dev/null, 1537")
 1 56825 open:return ¦ sh 24406 100986750639260 syscall open() -> 3
 1 56994 dup2:entry ¦ sh 24406 100986750642860 syscall dup2(3, 2) ←①
%

リスト3　REDIRECT2.SH実行時に処理されるash ▼
のコード

open(fname, O_RDONLY)

40 - Software Design Feb. 2013 - 41

入力元／出力先を巧みに切り替える
シェルスクリプトがファイル入出力に強いわけ

第3章

・REDIRECT4.SH

#!/bin/sh
: 2> /dev/null 1> /dev/stdout

　実行すると図4のように2>と1>の処理が随
時実行されていることがわかります（図4-①②）。
>という表記は1>という表記の1を省略したも
のです。
　この手の書き方でよく使われるのが2>&1で
す。>&はdup2(2)システムコールを呼び出す指
定です。2>&1という指定で、dup2(1, 2)を実
行するという意味になります。次のシェルスク
リプトを実行して動きをトレースします。

・REDIRECT5.SH

#!/bin/sh
: 2>&1

　図5のようにdup2(2)システムコールが呼び出
され、標準エラー出力が標準出力へ差し代わる
ことを確認できます（図5-①）。標準エラー出力
を捨てることなく拾いたい場合に使われます。
　>&で指定する数字の順序が逆になるパター
ンもあります。1>&2で、dup2(2, 1)が実行さ
れますので、標準出力が標準エラー出力へ差し
代わります。ワーニングやエラー出力などを実
施したい場合に使われます。

・REDIRECT6.SH

#!/bin/sh
: 1>&2

　図6のような実行結果が得られます。2>&1

や1>&2は魔法の指定方法のように説明される
ことがありますが、これはdup2(2)を呼び出す
ための指定であり、内部のしくみがわかってい
れば適切に活用できる機能です。

図4　REDIRECT4.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT4.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.REDIRECT' matched 5 probes
dtrace: pid 24420 has exited
CPU ID FUNCTION:NAME
 0 56824 open:entry ¦ sh 24420 100986854326166 syscall open("/dev/null, 1537")
 0 56825 open:return ¦ sh 24420 100986854339528 syscall open() -> 3
 0 56994 dup2:entry ¦ sh 24420 100986854342888 syscall dup2(3, 2) ←①
 0 56824 open:entry ¦ sh 24420 100986854346728 syscall open("/dev/stdout, 1537")
 0 56825 open:return ¦ sh 24420 100986854357840 syscall open() -> 3
 0 56994 dup2:entry ¦ sh 24420 100986854359596 syscall dup2(3, 1) ←②
%

図5　REDIRECT5.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT5.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.REDIRECT' matched 5 probes
dtrace: pid 24434 has exited
CPU ID FUNCTION:NAME
 2 56994 dup2:entry ¦ sh 24434 100986957953029 syscall dup2(1, 2) ←①
%

図6　REDIRECT6.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT6.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.REDIRECT' matched 5 probes
dtrace: pid 24448 has exited
CPU ID FUNCTION:NAME
 0 56994 dup2:entry ¦ sh 24448 100987062414716 syscall dup2(2, 1)
%

42 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

Feb. 2013 - 43

追記モードでの標準出力の
リダイレクト

　これまでの指定は基本的にファイルに書き込
む段階でO_TRUNCが指定されていますので、
ファイルの内容は削除されます。削除せずに追
記したい場合には>>を使います。

・REDIRECT7.SH

#!/bin/sh
: >> /dev/null

　実行すると図7の結果が得られます。open(2)

のフラグとして521が指定されていることがわ
かります（図7-①）。
　このオープン処理に対応するシェルのソース
コードはリスト4のように記述されています。
O_WRONLY が 1、O_CREAT が 512、O_

APPENDが8ですので、1＋512＋8＝521で、
トレース結果の521と一致します。O_APPEND

を指定することで、ファイルの内容は削除され
ず、一番後ろに追記することになります。
　このように、シェルにおけるファイル入出力

の扱いはカーネルの提供するシステムコールに
直結しています。ほかのレイヤが間に挟まるこ
とはなく、ほぼダイレクトにカーネルの機能を
使用しています。シェルスクリプトがこのあた
りの操作を得意としているのは、こうしたダイ
レクトな実装になっているという理由があります。

キャッシュファイルとI/O

　シェルスクリプトで処理をする場合、キャッ
シュについて知っておいたほうが便利です。
キャッシュを活用したファイルを使えるように
なると、処理速度が見違えて高速になります。
　最近のOS／カーネルであれば、使われてい
ない主記憶メモリがあれば、なるべくディスク
キャッシュとして活用しようとします。少なく
ともFreeBSDやLinuxのカーネルはそのよう
に実装されています。キャッシュに載ったデー
タは、ディスクにアクセスすることなくキャッ
シュからアクセスされるようになるため、動作
速度がとても高速になります。

図7　REDIRECT7.SH実行時のトレース ▼

% sudo dtrace -s ./DTRACE.REDIRECT -c ./REDIRECT7.SH 2>&1 ¦ ./REP.SH
dtrace: script './DTRACE.REDIRECT' matched 5 probes
dtrace: pid 24462 has exited
CPU ID FUNCTION:NAME
 2 56824 open:entry ¦ sh 24462 100987167993502 syscall open("/dev/null, 521") ←①
 2 56825 open:return ¦ sh 24462 100987168009618 syscall open() -> 3
 2 56994 dup2:entry ¦ sh 24462 100987168016069 syscall dup2(3, 1)
%

リスト4　REDIRECT7.SH実行時に処理されるashのコード ▼

open(fname, O_WRONLY¦O_CREAT¦O_APPEND, 0666)

リスト5　CACHE.SH ▼

#!/bin/sh

tmp=/tmp/$$
dd if=/dev/zero of=$tmp-out bs=1024x1024x10 count=100 ←①
dd if=/dev/zero of=$tmp-out2 bs=1024x1024x10 count=2000 ←②
/usr/bin/time -lph cat $tmp-out > /dev/null ←③
/usr/bin/time -lph cat $tmp-out > /dev/null ←④
rm $tmp-*

42 - Software Design Feb. 2013 - 43

入力元／出力先を巧みに切り替える
シェルスクリプトがファイル入出力に強いわけ

第3章

　これはリスト5のようなシェルスクリプトで
確認できます。実行に使用したマシンは16GB

のメモリを搭載しています。最初のdd(1)で
1GBのファイルを作成し（リスト5-①）、2つ
目のdd(1)で20GBのファイルを作成していま
す（リスト5-②）。1つ目のdd(1)で作成したファ
イルは作成時にはキャッシュに載っていますが、
2つ目のdd(1)が実行されている間に、キャッ
シュから排除されます。
　このあとで、cat(1)を使って最初に作成した
ファイルにアクセスするという処理を2回続け
ます（リスト5-③④）。1回目はキャッシュが効
かない状態、2回目はキャッシュが効いた状態
でcat(1)が実行されることになります。
　実行すると図8の結果が得られます。これを
整理したのが表3です。最初は1.94秒かかって
いるcat(1)コマンドの処理（図8-①）が、2つ目
では0.23秒（図8-③）と、8倍から9倍の高速化
が観測されます。処理の内訳を見てみると、1

回目のcat(1)ではディスクからデータを読み込
むためのブロック入力回数が8,014回発生して
いるのに対し（図8-②）、2回目は0回になって
いることがわかります（図8-④）。つまりデー
タがキャッシュに載ったため、2度目のアクセ
スではディスクまでデータの読み込みにいって
いないということになります。1回目はディス
クアクセスが発生しているため自発的なコンテ
キストスイッチの回数が多いこともわかります。
　最近のマシンは主記憶メモリのサイズが大き
いので、このようにキャッシュを意識してプロ

グラミングを組めるようになると、何億件といっ
たテキストデータも高速に処理できるようにな
ります。データがキャッシュに載っているかど
うかは目で確認しにくいところがあります。こ
の場合、tmpfs(5)やmfs(5)といったメモリファ
イルシステムを使って明示的にメモリ上に配置
するというやり方があります。ﾟ

図8　CACHE.SHの実行結果 ▼

% ./CACHE.SH
100+0 records in
100+0 records out
1048576000 bytes transferred in 2.632610
secs (398302812 bytes/sec)
2000+0 records in
2000+0 records out
20971520000 bytes transferred in 71.960708
secs (291430151 bytes/sec)
real 1.94 ←①
user 0.00
sys 0.59
 1736 maximum resident set size
 12 average shared memory size
 2203 average unshared data size
 138 average unshared stack size
 133 page reclaims
 0 page faults
 0 swaps
 8014 block input operations ←②
 0 block output operations
 0 messages sent
 0 messages received
 0 signals received
 2698 voluntary context switches
 270 involuntary context switches
real 0.23 ←③
user 0.00
sys 0.23
 1736 maximum resident set size
 12 average shared memory size
 2040 average unshared data size
 128 average unshared stack size
 133 page reclaims
 0 page faults
 0 swaps
 0 block input operations ←④
 0 block output operations
 0 messages sent
 0 messages received
 0 signals received
 3 voluntary context switches
 30 involuntary context switches
%

表3　CACHE.SH実行時の計測結果 ▼

1回目 2回目
実行時間 1.94秒 0.23秒
システム時間 0.59秒 0.23秒
ユーザ時間 0秒 0秒
ブロック入力回数 8014回 0回
自発的コンテキストス
イッチ回数

2698回 3回

強制コンテキストスイッ
チ回数

270回 30回

44 - Software Design

シェ第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

シェルスクリプトの品質

　シェルスクリプトは他の言語によるプログラ
ムに比べて、間違い（バグ）を起こしにくいと言
われています。それは、1つ1つのコマンドが、
長年あるいは世界中の人に使われているうちに、
標準的な使い方において、バグが皆無になって
いることが大きな原因です。シェルスクリプト
は、これら、“完成された間違いのないコマンド”
を順番に起動しているだけのプログラミングで
す。シェルスクリプトにおけるバグの原因は、
コマンドの使い方の間違いとか、起動の順番の
間違いなど、初歩的な要因に限られることが多
いです。
　このようにバグが比較的少ないシェルスクリ
プトですが、万一バグによって動作が異常にな
る場合、どのような状態になるのでしょうか。
　シェルスクリプトの異常は、常に“エラー”に
よって検出されます。そしてシェルスクリプト
のエラーの起こり方は2つしかありません。そ
れはシェル（本章ではbashを扱います）自身が
報告するエラーと、各コマンドが報告するエラー

です。そしていずれの場合も、エラーと呼ばれ
るものの実体はシェルやコマンドが終了時に返
す終了値であり、この値は都度シェル変数“$?”
にセットされるというしくみになっています。
　つまり基本的にはシェル変数“$?”をウォッチ
していれば、トラブルが起こったことが直ちに
わかり、その値に応じて対処すれば良いという
非常にシンプルなしくみによって、シェルスク
リプトの品質は保たれているのです。

エラーハンドリング

終了ステータス／パイプステー
タス

　エラーハンドリングの基本は、シェルや各コ
マンドが終了時にシェル変数“$?”にセットする
値を調べることから始まります。ではどのよう
に調べたら良いかご存じでしょうか？　それは
コマンドを実行した直後にシェル変数“$?”の値
をechoコマンドを使ってシェル変数の値を表
示してみれば良いのです（図1）。
　0が出力されましたね。これは正常終了した
ls(1)が、エラー情報（この場合は正常終了情報

 ▼図1　正常終了時の$?の値

$ ls -l exist-file ← 何かコマンドを実行してみる（exist-fileが存在するとき）
-rw-rw-r-- 1 usp usp 229 12月 8 13:35 exist-file
$ echo $? ← 直後にシェル変数$?を表示する
0 ← 0が出力されます

“ソフトウェアの品質”という言葉には2つの側面があります。1つは、プログラムの間違い（バグ）がないこと、
もう1つは、動作するプログラムにトラブルが起こったときでも、安全に対処できるということです。本章
ではシェルスクリプトのエラー処理の方法とデバッグの方法について説明します。

品質だって気を付けたい

シェルスクリプトの
エラーハンドリングとデバッグ

第4章

（有）ユニバーサル・シェル・プログラミング研究所　http://www.usp-lab.com
當仲 寛哲　TOUNAKA Nobuaki　tounaka@usp-lab.com

http://www.usp-lab.com

44 - Software Design Feb. 2013 - 45

品質だって気を付けたい
シェルスクリプトのエラーハンドリングとデバッグ

第4章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

である値0）をシェルに返し、シェルがシェル
変数$?にこの値をセットしたのです。
　シェル変数$?は、コマンドを実行するたび
にその値が、直前に実行されたコマンドの終了
値で上書きされてしまいます。ですからそのコ
マンドのエラーを調べたいときは、必ずコマン
ド実行の直後に調べることが大切です。
　それでは、コマンドがエラー終了した場合は
どうなるでしょうか（図2）。
　今度はシェル変数$?は2になりました。この
ように、コマンドがエラーを起こす場合は、終
了値が0以外になります。エラーの値は1～
255になりますが、どの値になるかは、各コマ
ンドの仕様に任されています。
　このことは思わぬ誤解を生む場合があります。
たとえば、文字列を検索するgrep(1)というコ
マンドの動作です（図3）。
　文字列“Linux”の検索の場合と文字列

“Windows”の検索の場合とで違う結果がでまし
た。これはgrep(1)コマンドが指定文字列が見
つからなかったとき、終了値を1とする（つま
りエラー）ように作られているからです。この
ように、人が一般にエラーと思うこと（＝予期
せぬこと）が起こることと、各コマンドがエラー
だと思うことにずれがある場合があります。で
すからシェルプログラミングにおいては、各コ
マンドがどのような場合にエラー（終了値が0

以外）を返すのか、マニュアルなどで知ってお
く必要があります。
　ここまでの例は、コマンドが返すエラーでし
たが、シェル自身が返すエラーはどうでしょう
か（図4）？
　エラーメッセージをよく見ると、内部コマン
ドのエラーの場合も、シェル（bash）がエラーメッ
セージを出力していますね。
　それではコマンドが組み合わさった場合はど

 ▼図2　エラー時の$?の値

$ ls -l non-exist-file ← コマンドが失敗するようにしてみる
ls: non-exist-file: No such file or directory
$ echo $? ← 直後にシェル変数$?を表示する
2 ← 0でない値（2）が出力されます

 ▼図3　grep(1)コマンドでの$?値の変

$ cat OS-file ← OS の名前が記述してあるファイル
Linux
FreeBSD
Solaris
AIX
$ grep Linux OS-file > result ← Linux という文字列を検索してみる
$ echo $?
0
$ grep Windows OS-file > result ← Windows という文字列を検索してみる
$ echo $?
1

 ▼図4　シェルのエラーによる$?値の変化

$ bad_command ← 存在しないコマンドを起動してみる
-bash: bad_command: command not found ← シェル自身がエラーメッセージを出力
$ echo $?
127
$ cd bad_directory ← シェルの内部コマンドがエラー終了する場合
-bash: cd: bad_directory: No such file or directory
$ echo $?
1

46 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

うなるでしょうか。必ず正常終了する（終了値
＝0となる）true(1)と、必ずエラー終了する（終
了値＝1となる）false(1)を使って実験してみま
しょう（図5）。
　このように順次起動の場合は、最後に実行し
たコマンドの終了値がシェル変数$?にセット
されます。正確には各コマンドの実行直後にシェ
ル変数$?がセットされ、コマンドが順次実行
されるたびに値が上書きされていくので、結果
として最終コマンドの終了値がシェル変数$?

にセットされます。
　パイプラインの場合はどうでしょうか（図6）。
　これは順次起動と同じ結果で、最後に実行し
たコマンドの終了値となりますが、途中のコマ
ンドの終了値は一度もシェル変数$?にセット
されることはありません。

　bashの場合は、配列変数PIPESTATUSに
各コマンドの終了値がセットされます（図7）。
これを使えば、パイプで連結されたいずれかの
コマンドがエラーを起こした場合を知ることが
できます。
　図8のように与えられた引数をすべて足す関数
plusを定義します。このような関数を作ってお
けば、図9のように、パイプで連結されたコマン
ド群の終了値の合計を1つの終了値とできます。
　最後に、シェルスクリプトの最後に記述する
exitコマンドですが、その引数はシェルスクリ
プトが返す終了値になります（図10）。

-e オプション

　エラーのなんたるかはここまでの説明でおわ
かりいただけたと思います。それでは、シェル

 ▼図5　true(1)コマンドとfalse(1)コマンド実行後の$?値

$ true; false; true ← ; を使ってコマンドを順次起動してみる
$ echo $?
0
$ true; true; false
echo $?
1

 ▼図6　パイプライン実行時の$?値

$ true ¦ false ¦ true
$ echo $?
0
$ true ¦ true ¦ false
$ echo $?
1

 ▼図7　配列変数PIPESTATUSの値

$ true ¦ false ¦ true
$ echo ${PIPESTATUS[@]} ← 配列変数の場合、すべての要素を
0 1 0 出力するには配列変数名[@]とします

 ▼図8　コマンドラインによるplus関数の定義

$ function plus () {
> n=0
> for var in "$@"; do
> n=$((n+var))
> done
> return $n
> }
$ plus 1 2 3 ← 1＋2＋3を終了値にセットする
$ echo $?
6

 ▼図10　シェルスクリプトの中にexitが入っている場合

$ cat sample1
#!/bin/bash

date
exit 0 ← "0"が終了値になる
$./sample1
Sat Dec 8 14:49:01 JST 2012
$ echo $?
0 ← exitで指定した終了値がシェル変数$?にセットされる

 ▼図9　パイプライン結果をplus関数によって加算する

$ false ¦ true ¦ false
$ plus ${PIPESTATUS[@]} ← 各コマンドの終了値を
$ echo $? 足して1つの終了値にする
2

46 - Software Design Feb. 2013 - 47

品質だって気を付けたい
シェルスクリプトのエラーハンドリングとデバッグ

第4章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

スクリプトがエラーを起こしたとき、シェルス
クリプトの実行をその場で止めるにはどうした
ら良いでしょうか。
　bashには“-e”というオプションがあります。
シェルスクリプトの冒頭に、

#!/bin/bash -e

と記述することによって、シェル変数$?の値
が0以外（つまりエラー）になったとき、その時
点でシェルを終了します。実験として、まず“-e”
オプションを付けないで、途中でエラーが発生
するシェルスクリプトを走らせてみましょう（図
11）。
　次に“-e”オプションをつけてみます（図12）。
見事にエラーを起こしたコマンドの直後でシェ
ルスクリプトは停止します。そしてシェルスク
リプトの終了値は、エラーを起こしたコマンド
の終了値と等しくなります。
　パイプで連結されている場合は、シェル変数
$?の値はパイプライン最後のコマンドの終了
値になるので、ただ -eオプションを付けるだ

けでは、パイプラインの途中で起こったエラー
を検知できません（図13）。
　これを乗り切るために、先出のplus関数を
定義して、各コマンドラインの直後に“plus

${PIPESTATUS[@]}”の記述を挿入します（図
14）。
　パイプを使わない単独のコマンドであっても、
PIPESTATUSの値がセットされることに注
意してください。この場合は、配列の要素数が
1となり、${PIPESTATUS[0]}の値は$?の値
と同じになります。
　つまり、単独コマンドであろうが、パイプで
連結したコマンド群であろうが、直後に、“plus

${PIPESTATUS[@]}”という記述を挿入してお
けば、-eオプションによって、コマンドのエラー
時にただちに終了できます。

シグナル、トラップ

　エラーが起こったときに、ただちに終了する
のではなくて、ある処理を行ってから終了させ
たい場合があります。たとえば標準的なエラー

 ▼図11　 エラーが発生するシェルスクリプトに -e
をつけない場合

$ cat sample2
#!/bin/bash
true; echo pass1
false; echo pass2
true; echo pass3
exit 0

$./sample2
pass1
pass2
pass3

 ▼図12　エラーが発生するシェルスクリプトに -eをつけた場合

$ cat sample3
#!/bin/bash -e ← “-e”を付ける
true; echo pass1
false; echo pass2
true; echo pass3
exit 0

$./sample3
pass1 ← falseコマンドを実行した直後に終了する
$ echo $?
1 ← falseコマンドの終了値がシェルスクリプトの
 終了値になり、それがシェル変数$?にセットされる

 ▼図13　パイプラインの途中エラーは検知できない

$ cat sample4
#/bin/bash -e

true ¦ false ¦ true; echo pass1 ← falseはパイプ途中のコマンドなので
true; echo pass2 終了値がシェル変数$?にセットされない

$./sample4
pass1
pass2 ← 停止せず通り過ぎてしまう

48 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

メッセージを出したり、終了値を統一したいと
きなどです。
　このようなときには、“trap <関数名> ERR”
の記述が便利です。本来“trap”は外部からの割
り込みに対して反応する関数を宣言するもので
すが、擬似シグナル“ERR”を使って、シェル
スクリプト内で発生するエラーに対して反応す
る関数を宣言できます（図15）。
　-eを外すことにより、エラーが発生するたび
にエラーハンドラを実行させることができます
（図16）。
　この方法の良いところは記述が簡単なことで
すが、エラーハンドラに引数を渡すことができ
ないのが難点です。このときは、図17のよう
にあらかじめグローバル変数にエラー情報をセッ
トしておくというやり方があります。
　このようなやり方が可能なのは、シェルスク
リプトの変数は常にグローバル変数だからです。

22行目でセットした、シェル変数“lineno

message code”の値をエラーハンドラ“handler”
の中で使用できます。
　trapを使わず、通常の関数で定義する場合は
図18のようにします。
　このサンプルでは、関数“handler”で配列変
数“PIPESTATUS”の各要素の値を合計し、そ
れが0でなければ、引数を出力しています。9

行目のn=0の記述をコメントアウトしているの
は、もしこれを入れるとn=0という代入処理が
実行されることにより、以前のPIPESTATUS

の値が変化してしまうからです。2行目で、n

の初期値を0にしています。この関数は1回呼
ばれるとシェルスクリプト自身が終了するので、
関数が複数回呼ばれることにより、nの値が加
算されることが実質ないことを利用していると
いう意味で、技巧的過ぎるかもしれません。

 ▼図14　plus ${PIPESTATUS[@]}を追加する

$ cat sample5
#!/bin/bash -e

function plus ()
{
 n=0
 for var in "$@"; do
 n=$((n+var))
 done
 return $n
}

true ¦ false ¦ true; plus ｭ
${PIPESTATUS[@]}; echo pass1
true; plus ${PIPESTATUS[@]}; echo ｭ
pass2

$./sample5
$
$ echo $?
1

 ▼図15　エラー後処理の指定

$ cat sample6
#!/bin/bash -e ← エラーが起こったら終了させる

trap handler ERR ← 終了させる前に実行する関数を宣言する

function handler ()
{
 echo error occurred ← エラーメッセージの表示
 return 3 ← どんなエラーでも終了値を3にする
}

true; echo pass1
false; echo pass2 ← false でエラーが発生する
false; echo pass3

$./sample6
pass1
error occurred
$ echo $?
3

 ▼図16　-eを外して実行する

$./sample7 (ソース省略)
pass1
error occurred
pass2
error occurred
pass3

48 - Software Design Feb. 2013 - 49

品質だって気を付けたい
シェルスクリプトのエラーハンドリングとデバッグ

第4章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

 ▼図17　グローバル変数にエラー情報をセット

$ cat -n sample8
 1 #!/bin/bash -e
 2
 3 trap handler ERR
 4
 5 function handler ()
 6 {
 7 echo LINE:$lineno MESSAGE:$message
 8 return $code
 9 }
 10
 11 function plus ()
 12 {
 13 n=0
 14 for var in "$@"; do
 15 n=$((n+var))
 16 done
 17 return $n
 18 }
 19
 20 lineno=$LINENO; message="error1" code=1
 21 true; plus ${PIPESTATUS[@]}; echo pass1
 22 lineno=$LINENO; message="error2" code=2
 23 false; plus ${PIPESTATUS[@]}; echo pass2
 24 lineno=$LINENO; message="error3" code=3
 25 false; plus ${PIPESTATUS[@]}; echo pass3

$./sample8
pass1
LINE:22 MESSAGE:error2
$ echo $?
2

 ▼図18　通常関数での定義

$ cat -n sample9
 1 #!/bin/bash ← -e をいれない
 2 n=0 ← ここで n=0
 3 # エラーハンドラ関数
 4 # 第1引数：行番号
 5 # 第2引数：エラーメッセージ
 6 # 第3引数：終了コード
 7 function handler ()
 8 {
 9 # n=0 ← あえて n=0 としない
 10 for var in "${PIPESTATUS[@]}"; do
 11 n=$((n+var))
 12 done
 13 [$n -eq 0] && return 0
 14 echo LINE:$1 MESSAGE:$2
 15 exit $3
 16 }
 17
 18 true; handler $LINENO "error1" 1; echo pass1
 19 false; handler $LINENO "error2" 2; echo pass2
 20 true; handler $LINENO "error3" 3; echo pass3

$./sample9
pass1
LINE:19 MESSAGE:error2
$ echo $?
2

50 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

デバッグ

　シェルスクリプトの品質を向上させるために、
開発時におけるデバッグは必須です。しかし、
シェルスクリプトには一般的な統合開発環境の
ようなものはほとんど存在しません。それでは、
シェルスクリプト開発においてデバッグはどの
ように行うのでしょうか。

基本はcat

　シェルプログラミングで特徴的なのは、処理す
るデータを常にファイルの中に納めて、ファイルの
操作によって、やりたいことを実現することにあり
ます。シェルプログラミングにおいても、データを
変数に納めて、通常のコンピュータ言語のように記
述することもできますが、制約やあいまいな点が多
く、処理スピードもかなり遅いので、思い切って、

「シェルプログラミング＝ファイル操作のコマン
ドを並べる」

と割り切ることが肝心です。たとえば、奇数行
だけ演算する簡単なプログラムを、変数型の普
通プログラミング風とシェルスクリプトらしい
プログラムの2種類で記述してみます（図19）。
　それでは10万行の4列のテキストデータを
サンプルで作ってみます（図20）。
　それぞれを実行させてみます（図21）。
　実行時間が約27倍違います。プログラムの
行数も sample10は 6～17行目の実質 12行、
sample11は6～8行目の実質3行になります。
プログラムの読みやすさもsample10が奇数行
だけを取り出す仕掛けと各項目の演算の記述が
入り組んでいるのに対して、sample11は入力
ファイルから奇数行だけとっていったん作業ファ
イルに出力して作業ファイルに演算だけを施し、
結果ファイルに出力というたいへんわかりやす
い構造になっています。
　このように、シェルプログラミングは、デー
タをすべてファイルに納めて、やりたいことを
そのまま順番に記述し、それぞれの処理を入力
ファイルから出力ファイルへ施すだけで、速い、

 ▼図19　シェルスクリプトらしさの比較

$ cat sample10
 1 #!/bin/bash
 2 #
 3 # 奇数行だけ演算するプログラム（普通プログラミング風）
 4 #
 5
 6 n=0 # 行カウンタを初期化
 7 cat data ¦
 8 while read a b c d; do # 各行の項目を変数にセット
 9 n=$((n+1)) # 行カウンタのインクリメント
 10 [$((n%2)) -eq 0] && continue # 偶数行をスキップする
 11 a2=$((a+1)) # 各項目の演算と変数への代入
 12 b2=$((b*2)) # 各項目の演算と変数への代入
 13 c2=$((a+b+c)) # 各項目の演算と変数への代入
 14 d2=$((d-1)) # 各項目の演算と変数への代入
 15 echo $a2 $b2 $c2 $d2 # 変数の出力
 16 done > data2
 17 exit 0

$ cat sample11
 1 #!/bin/bash
 2 #
 3 # 奇数行だけ演算するプログラム（シェルらしいプログラム）
 4 #
 5
 6 sed -n '1̃2p' data > work # 奇数行だけ取り出す
 7 awk '{print $1+1,$2*2,$1+$2+$3,$4-1}' work > data2 # 演算する
 8 exit 0

50 - Software Design Feb. 2013 - 51

品質だって気を付けたい
シェルスクリプトのエラーハンドリングとデバッグ

第4章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

短い、わかりやすいの3つのメリットを引き出
すことができるのです。
　シェルプログラミングのデバッグがcat(1)だと
いうのは、シェルプログラミングの作法にのっとっ
てプログラムすれば、すべてデバッグは入力ファ
イルや出力ファイルの中身をcat(1)で確認するこ
とに尽きるという意味なのです。
　たとえば sample11において、作業ファイル
workをcat(1)してみると、図22のようになり、確
かに奇数行だけ取り出されていることがわかります。

tee

　シェルプログラミングにおいて、各コマンド
をパイプでつなぐことにより、

❶一連の処理を作業ファイルを発生させること
なく簡潔に記述できる

❷パイプラインで接続された各コマンドはOS
によって自動的に並列実行され、処理効率・
スピードが向上する

というメリットがあります。
　sample11とまったく同じ処理をするsample12

（図23）がさらに見やすく、スピードもアップし
ました。このようにパイプライン接続は非常に
メリットがあるのですが、デバッグという観点
からすると、作業ファイルがないので各コマン
ドの入力ファイル、出力ファイルの中身を確認
できません。このような場合、どう対処すれば
良いでしょうか。その答えは、tee(1)です。
　パイプラインの中途に、“tee <作業ファイル
名>”という記述を挟み込むことにより、パイ
プラインを遮ることなく、パイプを流れるデー
タを作業ファイルにコピーして取りおきするこ
とができます（図24）。デバッグはこのように
して取り出した作業ファイルの中身をcat(1)で
確認することによって行います。

“-xv”“+xv”

　シェルスクリプトにはデバッグにおいて、強
力な機能が備わっています。それは走行ログの

 ▼図23　sample11を改良する

$ cat sample12
 1 #!/bin/bash
 2 #
 3 # 奇数行だけ演算するプログラム（パイプを使って高速化）
 4 #
 5
 6 sed -n '1̃2p' data ¦ # 奇数行だけ取り出す
 7 awk '{print $1+1,$2*2,$1+$2+$3,$4-1}' > data2 # 演算する
 8 exit 0

$ time ./sample12
real 0m0.140s
user 0m0.142s
sys 0m0.009s

 ▼図20　10万行の4列のテキストデータを作る

$ seq 100000 ¦ tee a b c d > /dev/null
$ paste -d ' ' a b c d > data
$ cat data
1 1 1 1
2 2 2 2
3 3 3 3
...
100000 100000 100000 100000

 ▼図22　結果の確認

$ cat work ¦ head
1 1 1 1
3 3 3 3
5 5 5 5
7 7 7 7
9 9 9 9
11 11 11 11
13 13 13 13
15 15 15 15
17 17 17 17
19 19 19 19

 ▼図21　図19のシェルスクリプトの実行結果

$ time ./sample10
real 0m4.251s
user 0m3.561s
sys 0m0.674s

$ time ./sample11
real 0m0.153s
user 0m0.143s
sys 0m0.009s

52 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

出力機能です。走行ログというのは、シェルス
クリプトが実行されているとき、リアルタイム
で今どのコマンドが実行中なのかを表示する機
能です。走行ログを表示するには、

-x オプション： 現在実行しているコマンドを
表示する

-v オプション： 現在読み込んでいるシェルス
クリプトの部分を表示する

の2つのオプションを使います。
　sample12の冒頭の部分を“#!/bin/bash -x”に
書き換えて実行してみます（図25）。

　その瞬間に実行されているコマンドが“+”記号
とともにリアルタイムで順次表示されます。冒頭
を“#!/bin/bash -v”に書き換えると、図26のよう
にシェルスクリプトそのものが、実行の進行具合
に合わせてリアルタイムで順次表示されます。
　“-x”と“-v”オプションを同時に指定すること
により、それぞれの走行ログが混ざって出力さ
れますが、実行されているコマンドと実行され
ているシェルスクリプト上の位置が同時にわか
るので、デバッグするときの参考になります。
　数多い繰り返し構文などで、一時的に -xオ
プションをやめたいときは、スクリプトの中で

 ▼図24　tee(1)によって中間結果を取り出す

$ cat sample13
 1 #!/bin/bash
 2 #
 3 # 奇数行だけ演算するプログラム（パイプを使って高速化+デバッグ)
 4 #
 5
 6 sed -n '1̃2p' data ¦ # 奇数行だけ取り出す
 7 tee work ¦ # デバッグ用ファイル
 8 awk '{print $1+1,$2*2,$1+$2+$3,$4-1}' > data2 # 演算する
 9 exit 0

 ▼図26　sample12の実行表示（#!/bin/bash -vの場合）

$./sample12
#!/bin/bash -v
#
奇数行だけ演算するプログラム（パイプを使って高速化+デバッグ)
#

sed -n '1̃2p' data ¦ # 奇数行だけ取り出す
awk '{print $1+1,$2*2,$1+$2+$3,$4-1}' > data2 # 演算する
exit 0

 ▼図27　リアルタイム表示をスイッチする

#!/bin/bash -xv

set +x ← -x オプションの抑制
for((i=0; i<10000; i++)); do
 echo $i ← echo コマンドが1000回実行されるので、-x を抑制しないと
done 10000 行の走行ログが出力されてしまう。
set -x ← -x オプションの復活

 ▼図25　sample12の実行表示（#!/bin/bash -xの場合）

$./sample12
+ sed -n 1̃2p data
+ awk '{print $1+1,$2*2,$1+$2+$3,$4-1}'
+ exit 0

52 - Software Design Feb. 2013 - 53

品質だって気を付けたい
シェルスクリプトのエラーハンドリングとデバッグ

第4章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

“set +x”とします。再び-xオプションを有効に
したいときは、“set -x”とします。

exec 2>

　走行ログを目視ではなく、ファイルに保存した
い場合はどうすれば良いでしょうか。それには“exec

コマンド”を使います。もともと、execコマンドは
“exec <コマンド名>”として使用し、現在実行し
ているシェルのプロセスのテキスト空間を指定し
たコマンドで置き換えるというコマンドですが、
めったにこの機能を使用することはないでしょう。

$ exec 2> log

とすることで、現在実行しているシェルの標準
エラー出力を指定ファイルにリダイレクトしま
す。走行ログはシェルの標準エラー出力に出力

されているので、“exec 2> log”という記述を
シェルスクリプトの冒頭にすることで走行ログ
をファイルに保管できます（図28）。
　このスクリプトを実行すると、“exec 2> log”
記述以降の走行ログがファイル logに保管され
ます（図29）。
　-xvオプションを付けているので、実行コマ
ンドのログ（＋コマンド名）と読み込んだシェル
スクリプトのログが混在してログファイルに記
述されます（図30）。
　このような手法により、自動起動されたシェ
ルスクリプトやバックグラウンド起動されたシェ
ルスクリプトも、走行ログを簡単にログファイ
ルに保管することができ、途中でエラー終了し
たシェルスクリプトのエラー発生位置を特定で
きます。ﾟ

 ▼図28　走行ログをファイルに保管

$ cat sample14
#!/bin/bash -xv ← 走行ログを標準エラー出力に出す
#
奇数行だけ演算するプログラム
#

exec 2> log # 走行ログをファイルに出す
sed -n '1̃2p' data ¦ # 奇数行だけ取り出す
awk '{print $1+1,$2*2,$1+$2+$3,$4-1}' > data2 # 演算する
exit 0

 ▼図29　“exec 2> log”記述以降の走行ログが保管される

$./sample14 ← 初めの走行ログは画面（標準エラー出力）に出る
#!/bin/bash -xv
#
奇数行だけ演算するプログラム
#

exec 2> log # 走行ログをファイルに出す
+ exec ← exec実行以降は ファイル“log”へ 標準エラー出力がリダイレクトされる

 ▼図30　実行コマンドのログとシェルスクリプトのログを混在

$ cat log
sed -n '1̃2p' data ¦ # 奇数行だけ取り出す
awk '{print $1+1,$2*2,$1+$2+$3,$4-1}' > data2 # 演算する
+ sed -n 1̃2p data
+ awk '{print $1+1,$2*2,$1+$2+$3,$4-1}'
exit 0
+ exit 0

54 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

表裏一体：
パイプとカーネル

　シェルでは、コマンドとコマンドの間に「|」
を挟むことで、「|」の左側に記述したコマンド
の標準出力を、右側に記述したコマンドの標準
入力に接続できます。パイプは連続して使用す
ることができ、20個、30個といったコマンド
をパイプで接続して処理することができます。
　シェルのパイプは、pipe(2)システムコール
が生成するペアのディスクリプタを、それぞれ
のコマンドの標準出力および標準入力に対して
dup2(2)システムコールで入れ替えるという処
理です。パイプは、ダイレクトにpipe(2)シス
テムコールおよびdup2(2)システムコールを使っ
た処理に置き換わり、ほぼオペレーティングシ
ステムが提供するネイティブな機能を使ったも
のといえます。
　シェルやシェルスクリプトはマルチコア／メ
ニーコアを活用するためのもっとも簡単で、もっ
とも効率の良い方法です。オペレーティングシ
ステムはプロセスをそれぞれコアに割り当てて
動作させます。バックグラウンドプロセスとし
て並列処理させることもできますし、パイプで
接続して相互通信させた状態で並列処理させる
こともできます。
　スレッドとの違いは、メモリ空間を共有する
かどうかにあります。メモリ空間を共有した方

がよい場合にはスレッドが便利ですが、共有メ
モリを使えばプロセスでも同様の処理を実現で
きます。プロセスはマルチコア／メニーコアを
活用するためのもっとも基本的で、かつ、開発
効率のよい方法の1つです。

パイプの正体：パイプで
コマンドはどう起動されるか
　pipe(2)システムコールは2つのファイル記述
子を生成するためのシステムコールです。
pipe(2)システムコールが生成するファイル記
述子はペアになっており、片方のファイル記述
子に書き込んだデータは、もう片方のファイル
記述子を経由して取り出すことができます。こ
の操作はプロセスを超えて機能します。
　FIFOファイル（または名前付きパイプ）を使
うと、2つのプロセスの間でデータのやり取り
が可能になりますが、pipe(2)はこれをファイ
ルシステムの名前空間を使用せずに実現するも
のです。シェルは pipe(2)システムコール、
fork(2)システムコール、execve(2)システムコー
ル、dup2(2)システムコールを組み合わせて、
コマンドの出力を接続して動作させます。
　実際にどのような手順で機能しているのかは、
シェルにトレースコードを仕込んで調べること
ができます。FreeBSD ash(/bin/sh)のソースコー
ドは/usr/src/bin/sh/以下にまとまっています。
pipe(2)、fork(2)、execve(2)、dup2(2) は eval.c、

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

シェルをもっともシェル足らしめている機能のひとつがパイプライン（以下パイプと略）です。本章ではシェ
ルから呼ばれたパイプがどのように処理されているかを解説します。

基本だけど奥が深い

パイプのしくみを読み解く第5章

BSDコンサルティング（株）取締役／最高技術責任者
後藤 大地　GOTO Daichi daichi@bsdconsulting.co.jp　Twitter ID：@daichigoto、@BSDc_tweet

54 - Software Design Feb. 2013 - 55

基本だけど奥が深い
パイプのしくみを読み解く

第5章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

exec.c、jobs.cファイルで使われていますので、
関係するところにトレースコードを追加します。

図1〜3（オリジナルの拡張子に .orgに変更して
あります）のようなコードを適用します。

 ▼図1　di� -u eval.c.org eval.cの結果（先頭+が追加行）

--- /usr/src/bin/sh/eval.c.org 2012-12-11 18:24:47.000000000 +0900
+++ /usr/src/bin/sh/eval.c 2012-12-12 12:33:31.000000000 +0900
@@ -44,6 +44,7 @@
 #include <unistd.h>
 #include <sys/resource.h>
 #include <sys/wait.h> /* For WIFSIGNALED(status) */
+#include <sys/time.h>
 #include <errno.h>

 /*
@@ -541,11 +542,23 @@
 close(prevfd);
 error("Pipe call failed: %s", strerror(errno));
 }
+pid_t mypid = getpid();
+struct timeval t;
+gettimeofday(&t, NULL);
+int64_t timestamp = t.tv_sec * 1000 * 1000 + t.tv_usec;
+out1fmt("sh %d %ld pipe():evalpipe -> %d %d\n", mypid, timestamp, pip[0], pip[1]);
+flushall();
 }
 if (forkshell(jp, lp->n, n->npipe.backgnd) == 0) {
 INTON;
 if (prevfd > 0) {
 dup2(prevfd, 0);
+pid_t mypid = getpid();
+struct timeval t;
+gettimeofday(&t, NULL);
+int64_t timestamp = t.tv_sec * 1000 * 1000 + t.tv_usec;
+out1fmt("sh %d %ld dup2(%d, %d):evalpipe\n", mypid, timestamp, prevfd, 0);
+flushall();
 close(prevfd);
 }
 if (pip[1] >= 0) {
@@ -553,6 +566,12 @@
 close(pip[0]);
 if (pip[1] != 1) {
 dup2(pip[1], 1);
+pid_t mypid = getpid();
+struct timeval t;
+gettimeofday(&t, NULL);
+int64_t timestamp = t.tv_sec * 1000 * 1000 + t.tv_usec;
+out1fmt("sh %d %ld dup2(%d, %d):evalpipe\n", mypid, timestamp, pip[1], 1);
+flushall();
 close(pip[1]);
 }
 }

※ eval.cはコマンドラインに入力されたコマンドや引数などを展開した結果を評価するためのプログラムです。この部分でpipe(2)や
fork(2)などが実行されます。

56 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

 ▼図2　di� -u exec.c.org exec.cの結果（先頭+が追加行）

--- /usr/src/bin/sh/exec.c.org 2012-12-11 18:23:23.000000000 +0900
+++ /usr/src/bin/sh/exec.c 2012-12-12 11:11:01.000000000 +0900
@@ -153,6 +153,20 @@
 ssize_t n;
 char buf[256];

+// PID
+pid_t mypid;
+mypid = getpid();
+
+// TIMESTAMP
+struct timeval t;
+int64_t timestamp;
+gettimeofday(&t, NULL);
+timestamp = t.tv_sec * 1000 * 1000 + t.tv_usec;
+
+out1fmt("sh %d %ld execve(%s, **argv, **envp)\n", mypid, timestamp, cmd);
+flushall();
+
+printf("sh ");
 execve(cmd, argv, envp);
 e = errno;
 if (e == ENOEXEC) {

 ▼図3　di� -u jobs.c.org jobs.cの結果（先頭+が追加行）

--- /usr/src/bin/sh/jobs.c.org 2012-12-11 18:22:47.000000000 +0900
+++ /usr/src/bin/sh/jobs.c 2012-12-12 11:09:52.000000000 +0900
@@ -785,6 +785,18 @@
 checkzombies();
 flushall();
 pid = fork();
+// PID
+pid_t mypid;
+mypid = getpid();
+
+// TIMESTAMP
+struct timeval t;
+int64_t timestamp;
+gettimeofday(&t, NULL);
+timestamp = t.tv_sec * 1000 * 1000 + t.tv_usec;
+
+out1fmt("sh %d %ld forkshell() -> %d\n", mypid, timestamp, pid);
+flushall();
 if (pid == -1) {
 TRACE(("Fork failed, errno=%d\n", errno));
 INTON;

※exec.cでexecve(2)システムコールが実行され、コマンドラインで指定されたコマンドが実行されます。

※ jobs.cはジョブ制御に関するプログラムです。ashのソースコードはパーサ部分は複雑で追うのがたいへんですが、それ以外のコード
は比較的理解しやすい内容になっています。

56 - Software Design Feb. 2013 - 57

基本だけど奥が深い
パイプのしくみを読み解く

第5章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

　これをmakeコマンドでビルドします。

/usr/src/bin/sh
make

　「cat /dev/null | head | sort」コマン
ドを実行して、このときの pipe(2)、fork(2)、
execve(2)、dup2(2)の実行手順を確認すると図4
のようになります。ここでも実行の順序を把握
するために、タイムスタンプに対して sort(1)

で整列をかけます。
　この出力結果から、次のことがわかります。

❶シェルは入力されたコマンドにパイプがある
ことを確認すると、そのパイプの個数だけ
pipe(2)システムコールを実行してファイル
記述子のペアを生成する

❷コマンドはそれぞれfork(2)システムコール
を使ってサブシェルが生成され、処理はそ
ちらに移る

❸生成されたそれぞれのサブシェルの内部で
dup2(2)システムコールを実行し、標準入力
または標準出力、またはその双方をpipe(2)
で生成されたファイル記述子へ置き換える

❹execve(2)システムコールを実行して、指定
されたコマンドを実行する

　簡単にまとめると次のようになります。

❶pipe(2)でパイプ（ファイル記述子のペア）を
生成

❷fork(2)でサブシェルを生成
　　1．dup2(2)で標準入出力をパイプへ連結
　　2．execve(2)でコマンドを実行

　この結果、それぞれのコマンドの入出力が連
結され、一連のデータの流れとして処理される
ことになります。このあたりの処理は実装にも
よるので、ash以外では別の手順で処理してい
るかもしれませんが、大枠としてこのような仕
組みになっていると思っておいて良いと思いま
す。

パイプとファイル記述子

　「cat /dev/null | head | sort」という
コマンドを実行した場合、pipe(2)システムコー
ルは2回呼ばれます。最初のpipe(2)で3、4の
ファイル記述子のペアが生成されます。2つ目
のpipe(2)システムコールでは4、5のファイル
記述子のペアが生成されます（図5）。
　pipe(2)システムコールが生成するペアのファ
イル記述子には方向性があります。pip[0]は読
み込み専用のディスクリプタ、pip[1]は書き込

 ▼図4　「cat /dev/null | head | sort」の実行手順の表示

% ./sh -c 'cat /dev/null | head | sort' | sort -k3
sh 7691 1355284038009881 pipe():evalpipe -> 3 4
sh 7691 1355284038012322 forkshell() -> 7693
sh 7693 1355284038012524 forkshell() -> 0
sh 7691 1355284038014204 pipe():evalpipe -> 4 5
sh 7693 1355284038015686 dup2(4, 1):evalpipe
sh 7691 1355284038015686 forkshell() -> 7694
sh 7694 1355284038015873 forkshell() -> 0
sh 7693 1355284038016568 execve(/bin/cat, **argv, **envp)
sh 7691 1355284038019607 forkshell() -> 7695
sh 7694 1355284038019757 dup2(3, 0):evalpipe
sh 7695 1355284038019800 forkshell() -> 0
sh 7694 1355284038019958 dup2(5, 1):evalpipe
sh 7694 1355284038020558 execve(/usr/bin/head, **argv, **envp)
sh 7695 1355284038024122 dup2(4, 0):evalpipe
sh 7695 1355284038024802 execve(/usr/bin/sort, **argv, **envp)
%

58 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

み専用のディスクリプタです。今回のケースで
は、1つ目のdup2(2)で生成される3と4では、
3が読み込み専用で4が書き込み専用となりま
す。2つ目のdup2(2)で生成される4と5に関し
ては、4が読み込み専用で、5が書き込み専用
です。
　シェルの「|」の機能は、このファイル記述子
をdup2(2)で結びつけるという機能ということ
になります。標準入力は0で、標準出力は1で
すので、1つ目のpipe(2)システムコール実行の
後に、dup2(3,0)とdup2(4,1)と実行することで、
コマンドの出力結果が次のコマンドの入力へ流
れることになります。
　pipe(2)システムコールを実行して、ペアの
ファイル記述子を作成する処理はシェルが実行
しますが、dup2(2)システムコールを使って入
出力をパイプに割り当てる処理は、それぞれの
サブシェルが実行しています。こうすることで
データが流れる状況を整えたあとで、execve(2)

システムコールを実行してコマンドを起動して

います。コマンドはすでにデータが流れる状況
ができた後で実行されます。これがパイプ機能
です。

パイプでマルチプロセス

　パイプで接続されたコマンド（プロセス）はそ
れぞれが個別にコアに割り当てられますので、
プロセッサの性能を使い切る用途に向いていま
す。たとえば、図6のマシン（NEC Express

5800 R120d-1M）でマルチプロセスを実行しま
す。32論理コア（8コア /12スレッドの Intel

Xeon CPU E5-2690を2基搭載）のマシンです。
　処理単位としてリスト1のスクリプトを用意
します。/dev/nullに対して書き込み要求を発
生させるスクリプトです。実際にIOは発生せず、
fcntl(2)システムコール、open(2)システムコー
ル、write(2)システムコール、close(2)システム
コールが繰り返しコールされる処理になります。
　図7のようにCMD.SHを32個並列で処理さ
せます。
　top(1)コマンドでプロセスの処理状況を見る
と、次のようにそれぞれのコマンドが別々のコ
アに割り当てられて実行されていることがわか

 ▼図6　今回実行するマシン

% kenv smbios.system.product
Express5800/R120d-1M [N8100-1791Y]
% sysctl hw.model hw.ncpu
hw.model: Intel(R) Xeon(R) CPU E5-2690 0ｭ
@ 2.90GHz
hw.ncpu: 32
%

 ▼図7　CMD.SHをパイプで32個つなぐ

% ./CMD.SH | ./CMD.SH | ./CMD.SH | ./CMD.SH |
 ./CMD.SH | ./CMD.SH | ./CMD.SH | ./CMD.SH |
 ./CMD.SH | ./CMD.SH | ./CMD.SH | ./CMD.SH |
 ./CMD.SH | ./CMD.SH | ./CMD.SH | ./CMD.SH |
 ./CMD.SH | ./CMD.SH | ./CMD.SH | ./CMD.SH |
 ./CMD.SH | ./CMD.SH | ./CMD.SH | ./CMD.SH |
 ./CMD.SH | ./CMD.SH | ./CMD.SH | ./CMD.SH |
 ./CMD.SH | ./CMD.SH | ./CMD.SH | ./CMD.SH &
%

 ▼図5　「cat /dev/null | head | sort」実行時の処理
の流れ

fork()
dup2(4,1)

fork()
dup2(3,0)
dup2(5,1)

fork()
dup2(4,0)

cat /dev/null ｜ head ｜ sort

execve("cat") execve("head") execve("sort")

pipe() pipe()
4 3 5 4

 ▼リスト1　CMD.SH

#!/bin/sh
while :
do
 printf "\n" > /dev/null
done

58 - Software Design Feb. 2013 - 59

基本だけど奥が深い
パイプのしくみを読み解く

第5章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

ります（図8）。
　CMD.SHはパイプを経由してデータが流れ
ることがないので、パイプではなくバックグラ
ウンドプロセスとして起動しても同じです。バッ
クグラウンドプロセスとして起動した場合、そ
れぞれのプロセスの独立性が強くなります。パ
イプで接続して起動した場合、特定のデータに
対する処理を複数のコマンドに割り振って処理
させるといったことが容易に実現できます。
　たとえば、図9のような32列の数値データ
で構成された1億行のデータを処理するケース
を考えます。

　それぞれの列の値に1を加算した結果を得る
シェルスクリプトを用意します（リスト2）。
　このシェルスクリプトは単一のawk(1)コマ
ンドで処理を済ませています。1プロセスでの
処理です。リスト3のシェルスクリプトは処理

 ▼図8　プロセスの処理状況

last pid: 2283; load averages: 18.05, 5.54, 2.10 up 0+00:29:57 17:56:52
59 processes: 31 running, 28 sleeping
CPU: 0.6% user, 0.0% nice, 68.0% system, 0.0% interrupt, 31.4% idle
Mem: 23M Active, 12M Inact, 1000M Wired, 13M Buf, 123G Free
Swap: 4096M Total, 4096M Free

 PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
 2260 daichi 1 52 0 14504K 2132K RUN 22 0:57 80.37% sh
 2273 daichi 1 52 0 14504K 2132K CPU12 13 0:58 79.49% sh
 2257 daichi 1 52 0 14504K 2132K CPU21 21 0:55 79.39% sh
 2274 daichi 1 52 0 14504K 2132K CPU28 17 0:58 78.96% sh
 2253 daichi 1 52 0 14504K 2132K CPU2 14 0:56 78.17% sh
 2263 daichi 1 52 0 14504K 2132K CPU10 15 0:56 78.17% sh
 2262 daichi 1 52 0 14504K 2132K CPU2 2 0:57 76.95% sh
 2281 daichi 1 52 0 14504K 2132K CPU7 12 0:56 76.17% sh
 2268 daichi 1 52 0 14504K 2132K CPU13 13 0:55 75.98% sh
 2270 daichi 1 52 0 14504K 2132K CPU8 8 0:57 75.88% sh
 2280 daichi 1 52 0 14504K 2132K CPU25 28 0:58 75.78% sh
 2267 daichi 1 52 0 14504K 2132K CPU12 9 0:56 75.00% sh
 2276 daichi 1 52 0 14504K 2132K CPU11 10 0:56 74.66% sh
 2251 daichi 1 52 0 14504K 2132K CPU27 26 0:56 74.46% sh
 2279 daichi 1 52 0 14504K 2132K CPU1 1 0:56 74.46% sh
 2258 daichi 1 52 0 14504K 2132K CPU25 20 0:56 74.27% sh
 2277 daichi 1 93 0 14504K 2132K CPU29 29 0:57 73.88% sh
 2278 daichi 1 52 0 14504K 2132K CPU24 24 0:57 73.78% sh
 2272 daichi 1 52 0 14504K 2132K CPU16 22 0:55 73.78% sh
 2256 daichi 1 52 0 14504K 2132K CPU5 5 0:56 73.68% sh
 2271 daichi 1 52 0 14504K 2132K CPU26 31 0:56 72.46% sh
 2255 daichi 1 52 0 14504K 2132K CPU4 15 0:58 72.27% sh
 2261 daichi 1 52 0 14504K 2132K CPU7 6 0:55 72.17% sh
 2266 daichi 1 52 0 14504K 2132K CPU0 0 0:55 72.17% sh
 2252 daichi 1 52 0 14504K 2132K CPU0 4 0:56 72.07% sh
 2275 daichi 1 52 0 14504K 2132K CPU17 27 0:56 71.29% sh
 2254 daichi 1 52 0 14504K 2132K RUN 20 0:56 70.90% sh
 2264 daichi 1 52 0 14504K 2132K devfs 19 0:54 70.90% sh
 2269 daichi 1 52 0 14504K 2132K CPU29 18 0:55 70.07% sh
 2250 daichi 1 52 0 14504K 2132K devfs 22 0:55 68.90% sh
 2265 daichi 1 52 0 14504K 2132K CPU6 3 0:55 67.97% sh
 2259 daichi 1 52 0 14504K 2132K RUN 30 0:53 67.97% sh

 ▼図9　DATAファイルの形式

% wc -l DATA
 100000000 DATA
% head -2 DATA
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 ｭ
0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 ｭ
0 1 2 3 4 5 6 7 8 9 0 1
%

60 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

を32個のawk(1)コマンドに割り振って処理を
しています。32プロセスでの処理です。
　CMD2.SHもCMD3.SHも図10のように得ら
れる結果は同じです。
　それぞれ実行時間を計測すると、図11、図

12、表1の結果が得られます。
　単一プロセスで処理した場合と、32プロセ
スで処理した場合とで2倍以上、処理時間の差
が出ています。今回の例はメモリ上の入出力負
荷やコンテキストスイッチにかかる負荷が大き

 ▼図10　実行結果

% head -2 DATA | ./CMD2.SH
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 ｭ
10 1 2 3 4 5 6 7 8 9 10 1 2
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 ｭ
10 1 2 3 4 5 6 7 8 9 10 1 2
% head -2 DATA | ./CMD3.SH
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 ｭ
10 1 2 3 4 5 6 7 8 9 10 1 2
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 ｭ
10 1 2 3 4 5 6 7 8 9 10 1 2
%

 ▼図11　CMD2.SHの実行時間

% /usr/bin/time -p ./CMD2.SH < DATA > ｭ
/dev/null
real 1423.06
user 1421.17
sys 1.88
%

 ▼図12　CMD3.SHの実行時間

% /usr/bin/time -p ./CMD3.SH < DATA > ｭ
/dev/null
real 660.70
user 20730.18
sys 130.73
%

 ▼リスト2　CMD2.SH（単一プロセスで処理）

#!/bin/sh

awk '{ $1=$1+1; $2=$2+1; $3=$3+1; $4=$4+1;
 $5=$5+1; $6=$6+1; $7=$7+1; $8=$8+1;
 $9=$9+1; $10=$10+1; $11=$11+1; $12=$12+1;
 $13=$13+1; $14=$14+1; $15=$15+1; $16=$16+1;
 $17=$17+1; $18=$18+1; $19=$19+1; $20=$20+1;
 $21=$21+1; $22=$22+1; $23=$23+1; $24=$24+1;
 $25=$25+1; $26=$26+1; $27=$27+1; $28=$28+1;
 $29=$29+1; $30=$30+1; $31=$31+1; $32=$32+1;
 print;
}'

 ▼リスト3　CMD3.SH（32プロセスで処理）

#!/bin/sh

awk '{ $1=$1+1; print }' |
awk '{ $2=$2+1; print }' |
awk '{ $3=$3+1; print }' |
awk '{ $4=$4+1; print }' |
awk '{ $5=$5+1; print }' |
awk '{ $6=$6+1; print }' |
awk '{ $7=$7+1; print }' |
awk '{ $8=$8+1; print }' |
awk '{ $9=$9+1; print }' |
awk '{ $10=$10+1; print }' |
awk '{ $11=$11+1; print }' |
awk '{ $12=$12+1; print }' |
awk '{ $13=$13+1; print }' |
awk '{ $14=$14+1; print }' |
awk '{ $15=$15+1; print }' |
awk '{ $16=$16+1; print }' |
awk '{ $17=$17+1; print }' |
awk '{ $18=$18+1; print }' |
awk '{ $19=$19+1; print }' |
awk '{ $20=$20+1; print }' |
awk '{ $21=$21+1; print }' |
awk '{ $22=$22+1; print }' |
awk '{ $23=$23+1; print }' |
awk '{ $24=$24+1; print }' |
awk '{ $25=$25+1; print }' |
awk '{ $26=$26+1; print }' |
awk '{ $27=$27+1; print }' |
awk '{ $28=$28+1; print }' |
awk '{ $29=$29+1; print }' |
awk '{ $30=$30+1; print }' |
awk '{ $31=$31+1; print }' |
awk '{ $32=$32+1; print }'

60 - Software Design Feb. 2013 - 61

基本だけど奥が深い
パイプのしくみを読み解く

第5章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

く、あまり処理はスケールしませんが、それで
も複数のプロセスに処理を振り分けることで、
処理時間の短縮を実現できます。

CPUはどうデータを
流しているか?

　パイプの実装はOSごとに異なります。
FreeBSDのケースでは、/usr/src/sys/kern/

sys_pipe.cにパイプ処理の基本的な関数と実装
があります。pipe(2)システムコールが呼ばれ
ると、/usr/src/sys/kern/sys_pipe.cに記載さ
れているsys_pipe()→kern_pipe()がコールされ、
パイプが準備されます。
　パイプ間を流れるデータは基本的にはページ
単位（4KB）でデータがプロセスからプロセスへ
渡っていきます。最近ではその引渡しで利用す
るメモリサイズを引き上げて、データの転送速
度の高速化が実現されています。この値はサイ
ズを引き上げれば高速化するというものではな
く、カーネル内部の動きやプロセッサ、マシン
アーキテクチャなどを加味して設定する必要が
あります。大き過ぎても性能はでません。
　パイプを経由するデータは、それぞれのプロ
セスがwrite(2)システムコールおよび read(2)

システムコールを実行することで一方通行で流
れていきます。read(2)システムコール／
write(2)システムコールが排他制御も担当する
ことになります。
　FreeBSDの場合、パイプに使用できるカー
ネル用メモリの空き容量が50%未満である場合、
新規パイプに対しては16KBのメモリを確保し、
パイプのやり取りに使用します。このメモリの
サイズは使用状況に応じて64KBまでダイナミッ
クに拡張されます。パイプに使用できるカーネ

ル用メモリの空き容量が50%から25%である場
合には、新規パイプに割り当てられるメモリは
4KBになります。さらにパイプに使用できるカー
ネル用メモリの空き容量が25%を下回った場合、
既存のパイプのメモリも4KBまで縮小されます。
　FreeBSDのパイプの実装はよく調整されて
おり、最小限のメモリサイズで最大限の効果を
あげるようになっています。こうした
FreeBSDカーネルの挙動はカーネルオプショ
ンを指定したり、ソースコードに若干の変更を
加え、カーネルを再構築することでパイプの利
用するメモリサイズや、諸条件を変更すること
ができます。
　しかし、メモリサイズを引き上げてもあまり
効果は得られません。特定の用途に対して、数パー
セントといった性能の向上を実現することはで
きますが、劇的な向上は見込めません。デフォ
ルトのアルゴリズムとメモリサイズはよいバラ
ンスになるように調整されています。パイプに
おいてコマンドを実行する順序や、そもそもの
処理内容を工夫する方が効果が見込めます。
　このように、パイプで接続されたコマンドが
実際にどのように起動され、どのように処理さ
れているのかを知ることで、より効率の良いシェ
ルプログラミングが可能になります。
　動作のしくみはわかったわけですから、これ
にディスク I/Oとメモリ I/Oの速度の違いを加
味し、CPUの論理コア（スレッド）の数と I/O

の詰まり具合を考慮すれば、ほぼハードウェア
の性能を使い切るようなシェルスクリプトを書
くことができます。
　シェルスクリプトはもっとも簡単にハード

ウェア性能を使い切るための効率的なツールで
す。ﾟ

1プロセス版 32プロセス版
実時間 1423.06秒 660.70秒
ユーザ時間 1421.17秒 20730.18秒
システム時間 1.88秒 130.73秒

 ▼表1　実行時間の比較

62 - Software Design

シェ第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

パイプの目詰まり問題、
ダブルバッファ
　パイプで接続されたコマンドの入出力は、ほ
かのコマンドの入出力の影響を受けます。たと
えば32個のコマンドをパイプで接続した場合、
どこかに入出力が遅いコマンドがあったり、入
出力サイズが不規則であるようなコマンドがあ
る場合、ほかのすべてのコマンドがこのコマン
ドの挙動に引きずられます。
　ディスクやメモリの入出力速度が高速である
ようなケースでは問題にならないことが多いの
ですが、入出力が遅いようなケースではこの問
題が顕著に現れます。こうした問題に対しては
通常、ダブルバッファと呼ばれる手法を使うこ
とで処理の高速化ができます。
　図1のように、コマンドとコマンドの間に
dd(1)を2つ挟みます。1つめのdd(1)が、最初
のコマンドからの出力をバッファリングする役
割を負います。2つめのdd(1)が、2つめのコマ
ンドに対する出力バッファリングを担当します。
このようにdd(1)を挟み込むことでコマンドか
らの出力が、ある程度まとまったサイズで連続
して次のコマンドに渡ることになり、処理速度

が高速になります。
　ダブルバッファリングで気を付ける必要があ
るのは、最初のdd(1)と2つめのdd(1)で指定す
るブロックサイズが、前後のコマンドによって
変わるということです。ここでは1MBを指定
していますが、この値は前後のコマンドに合わ
せて変更する必要があります。実際に動作速度
を計測して適切な値を探します。

排他処理（ln -s）

　シェルスクリプトから排他制御を行う場合、
シンボリックリンクを使用します。排他制御し
たいシェルスクリプトや処理同士で、同じファ
イルに対して同じシンボリックリンクを作成し
ようと試みます。シンボリックリンク作成時に
排他処理が実施され、シンボリックリンクの作
成に成功したプロセスとそれ以外のプロセスと
いう区別ができます。シンボリックリンクの作
成に成功した1つのプロセス以外のプロセスを
排他します（リスト1）。

 ▼図1　ダブルバッファ

% command1 file1 | dd obs=1024x1024 | dd
obs=1024x1024 | command2 > file2

 ▼リスト1　LOCK.SH

#!/bin/sh

if ln -s $0 lock
then
 排他中の処理
 rm -f lock
fi

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

本章では、ここまでの章で扱わなかったシェルスクリプトを利用する上で便利と思われる事柄についてまとめま
した。

より上を目指す

シェルスクリプトの
覚えておくと便利な技

第6章

BSDコンサルティング（株）取締役／最高技術責任者
後藤 大地　GOTO Daichi　daichi@bsdconsulting.co.jp　Twitter ID：@daichigoto、@BSDc_tweet

62 - Software Design Feb. 2013 - 63

より上を目指す
シェルスクリプトの覚えておくと便利な技

第6章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

　シンボリックリンクではなく、ファイルを作
成したり、ディレクトリやハードリングなどを
排他処理のロックとして利用することもありま
すが、これらは推奨されません。ファイルやディ
レクトリを作成して排他制御用のロックとして
使用する場合、タイミングによっては排他制御
にならないことがあります。確実に処理を排他
的に実施できるのはシンボリックリンクの作成
です。

順番処理
（名前付きパイプ）
　コマンドの出力を1つ（標準出力）ではなく、
複数に分けて扱いたいことがあります。典型的
には標準出力と標準エラー出力に対して別々の
コマンドへ処理を回したいケースです。いった
んすべてファイルに書き出してから別々のコマ
ンドで処理させれば良いのですが、扱うデータ
が大規模サイズになってくると、ディスクI/O

に多くの時間を費やすことになります。
　このようなケースでは名前付きパイプ（FIFO

ファイル）を使うことで、ディスクに書き出す
ことなく一気に処理を進めることができます。

 ▼図2　リスト2の実行結果

% printf '3344456678999' | ./numcount | xargs
% printf '3344456678999' | ./numcount 3>&1 | xargs
33
% printf '3344456678999' | ./numcount 4>&1 | xargs
444
% printf '3344456678999' | ./numcount 5>&1 | xargs
5
% printf '3344456678999' | ./numcount 6>&1 | xargs
66
% printf '3344456678999' | ./numcount 7>&1 | xargs
7
% printf '3344456678999' | ./numcount 8>&1 | xargs
8
% printf '3344456678999' | ./numcount 9>&1 | xargs
999
%

 ▼リスト2　numcount.c

#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#define _WITH_DPRINTF
#include <stdio.h>
#include <stdarg.h>

int
main(void)
{
 char b;
 FILE *f = fdopen(0, "r");
 b = getc(f);
 while (EOF != b) {
 switch (b) {
 case '3': dprintf(3, "%c", b); break;
 case '4': dprintf(4, "%c", b); break;
 case '5': dprintf(5, "%c", b); break;
 case '6': dprintf(6, "%c", b); break;
 case '7': dprintf(7, "%c", b); break;
 case '8': dprintf(8, "%c", b); break;
 case '9': dprintf(9, "%c", b); break;
 }
 b = getc(f);
 }
}

 ▼リスト3　データファイル

7458876916398276918261825900970123641836418
8928299299081082770171289705298158340957139
9283740982740972409524099698987547643666565
7458876916398276918261825900970123641836418
8928299299081082770171289705298158340957139
9283740982740972409524099698987547643666565
7458876916398276918261825900970123641836418
8928299299081082770171289705298158340957139
9283740982740972409524099698987547643666565

 ▼リスト4　NUMCOUNT.SH

#!/bin/sh

rm -f FIFO3 FIFO4 FIFO5 FIFO6 FIFO7 FIFO8 ｭ
FIFO9
mkfifo FIFO3 FIFO4 FIFO5 FIFO6 FIFO7 FIFO8 ｭ
FIFO9

wc -m FIFO3 > CNT3 &
wc -m FIFO4 > CNT4 &
wc -m FIFO5 > CNT5 &
wc -m FIFO6 > CNT6 &
wc -m FIFO7 > CNT7 &
wc -m FIFO8 > CNT8 &
wc -m FIFO9 > CNT9 &

./numcount < NUMBERS 3> FIFO3 4> FIFO4 5> ｭ
FIFO5 6> FIFO6 \
 7> FIFO7 8> FIFO8 9> ｭ
FIFO9
cat CNT*

rm -f FIFO3 FIFO4 FIFO5 FIFO6 FIFO7 FIFO8 ｭ
FIFO9 CNT*

64 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

たとえばリスト2のような極端なコマンドを作っ
たとします。これは標準入力から送られてくる
データのうち、3から9までの数字を抜き出し
てその都度別々のファイル記述子へ出力するも
のです。たとえば3があればファイル記述子3

へ3を出力します。
　図2のようにファイル記述子ごとにデータが
出力されていることがわかります。
　リスト3のようなデータファイルがあったと
します。
　リスト4のように名前付きパイプ（FIFOファ
イル）を活用することで、コマンドの出力結果
をwc(1)コマンドに流し込んで結果を得ること
ができます（図3）。
　手続き型のプログラミング言語では if構文や
switch構文などの分岐構文を使って処理を実施
しますが、シェルスクリプトではこうした手法
でデータを処理させることができます。こちら
のアプローチのほうが処理が高速です。分岐構
文を活用するスタイルはパースの処理の関係で、
あまり性能がでません。

ヒアドキュメント

　シェルスクリプトの中で標準出力に渡すデー
タを記述する方法をヒアドキュメントと呼びま
す。リスト5のように「<<」で指定します。「<<」
の右側に指定した文字列が終了のマークになり
ます。ヒアドキュメント内部では変数展開とコ
マンド置換が有効で、チルダ展開は無効です（図
4）。
　終了のマークをダブルクォーテーションまた
はシングルクォーテーションでくくると、リス
ト6のように変数展開とコマンド置換が実施さ
れなくなります（図5）。
　シェルスクリプト内部でタブでインデントし
ている場合、リスト7のようにインデントのタ
ブもそのままデータとして出力されます。終了
の文字列は行頭に書く必要があります。シェル
スクリプトとしてはインデントが崩れ、あまり
きれいとは言えない状態になります（図6）。
　タブインデントしつつ、先頭のタブは出力さ

 ▼図3　リスト4の実行結果

% ./NUMCOUNT.SH
 21 FIFO3
 30 FIFO4
 27 FIFO5
 36 FIFO6
 42 FIFO7
 54 FIFO8
 66 FIFO9
%

 ▼図4　リスト5の実行結果

% ./HEREDOC.SH
Fri Dec 14 10:03:04 JST 2012 ~ ja_JP.UTF-8
%

 ▼図5　リスト6の実行結果

% ./HEREDOC2.SH
$(LANG=C date) ~ $LANG
% ▼リスト5　HEREDOC.SH

#!/bin/sh

cat<<EOF
$(LANG=C date) ~ $LANG
EOF

 ▼リスト6　HEREDOC2.SH

#!/bin/sh

cat<<"EOF"
$(LANG=C date) ~ $LANG
EOF

 ▼リスト7　HEREDOC3.SH

#!/bin/sh

if :
then
 cat<<EOF
 $(LANG=C date) ~ $LANG
 EOF
EOF
fi

64 - Software Design Feb. 2013 - 65

より上を目指す
シェルスクリプトの覚えておくと便利な技

第6章
シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

せないようにすることもできます。「<<-」のよ
うにヒアドキュメントを指定します（リスト8、
図7）。
　「<<-」の指定方法でも、シングルクォーテー
ションやダブルクォーテーションと組み合わせ
れば変数展開とコマンド置換を抑制させること
ができます（リスト9、図8）。
　このあたりのテクニックはあまり知られてい
ないところがあります。シェルスクリプトを読
みやすく保つ上で有益なテクニックですので、
覚えておくと良いでしょう。

/dev/null

　/dev/nullは特別なファイルです。/dev/null

はopen(2)してread(2)またはwrite(2)を実行し
ても、実際にI/Oは発生しません。ベンチマー
クなどでディスクI/Oを伴わない処理の性能を
比較した場合や、データを捨てたい場合などで
使われます。実際にI/Oが発生しないため、流
れてくるデータを破棄する処理などを高速に実
施できます。

exec 2>って何?

　シェルスクリプトのシバンの次の行に「exec

2> log」のような記述がされることがあります。
「exec > out」のような記述が使われることもあ
ります。これは、そのシェルスクリプトの標準
エラー出力または標準出力を指定したファイル
へリダイレクトするという指定です。
　リスト10のシェルスクリプトを実行すると
図9のような結果が得られます。
　おもにエラーログを取る目的や、出力をまと
めて特定のファイルに記録する場合などに使わ
れます。詳細は第4章をご覧ください。

while問題

　繰り返し処理や、データをシェルのread組
み込み関数で取得しながら処理する場合などで
while構文が活用されます。while構文そのもの

 ▼図6　リスト7の実行結果

% ./HEREDOC3.SH
 Fri Dec 14 10:03:33 JST 2012 ~ ｭ
ja_JP.UTF-8
 EOF
%

 ▼図7　リスト8の実行結果

% ./HEREDOC4.SH
Fri Dec 14 10:03:45 JST 2012 ~ ja_JP.UTF-8
%

 ▼リスト8　HEREDOC4.SH

#!/bin/sh

if :
then
 cat<<-EOF
 $(LANG=C date) ~ $LANG
 EOF
fi

 ▼図8　リスト9の実行結果

% ./HEREDOC5.SH
$(LANG=C date) ~ $LANG
%

 ▼リスト10　exectest.sh

#!/bin/sh

exec 2> log
exec 1> out

printf 'error log\n' 1>&2
printf 'success\n'
printf 'exception\n' > file1

 ▼リスト9　HEREDOC5.SH

#!/bin/sh

if :
then
 cat<<-"EOF"
 $(LANG=C date) ~ $LANG
 EOF
fi

66 - Software Design

シェルスクリプティング道場第1特集
UNIXコマンド、fork、pipeを復習し、高度なスクリプティングへ

はシェルが提供する構文であるため、シェルと
同じレベルで動作します。しかし、これがパイ
プの中に挟まると fork(2)したサブシェルで動
作するようになります。この場合、while構文
の内部で設定された変数などは、もとのシェル
に反映されなくなります。
　この動きの違いに気がつかずにデータが処理
できなくなったと混乱する方がけっこういます。
　リスト11のシェルスクリプトを実行すると
図10のような結果が得られます。
　2つめのwhileはサブシェルで実行されるた
め、もとのシェルに結果が反映されません。も
ともとリダイレクトでデータを流し込んでいた
ところをcatに変更するなどするとこの問題が
発生します。

おわりに

　本特集では、普段説明されることが少ないシェ
ル内部の動きと、実際にカーネルのどういった
機能が活用されているのかを紹介しました。シェ
ルはカーネルの機能をダイレクトに使うソフト
ウェアです。シェルやシェルスクリプトをうま
く活用することで、カーネルの性能をフルに活
用した処理を行うことができます。
　マルチコア／メニーコアの普及が進む昨今、
シェルスクリプトはコアの性能をフルに発揮さ
せる道具として強力です。内部の動きを理解し、
優れた性能を発揮するシステムを構築する用途
に向いています。
　今回取り上げた以外のテクニックも含め、シェ
ルやシェルスクリプトに関するテクニックはユ

ニバーサル・シェル・プログラミング研究所が
運営しているUECというサイト注1によくまとまっ
ています。シェルスクリプトに興味がある方は、
こちらのサイトもチェックしてみてください。
　シェルスクリプトという枠を越えて、開発主
要や設計というレベルの話になってきますが、
処理するデータをテキストデータで保持するこ
とが、さまざまな側面から有益であることを最
後に補説しております。
　処理したいデータをストリームで処理しやす
いテキストデータとして設計することで、本特
集で取り上げたようなテクニックを適用できま
す。テキストデータは可視化が容易で、開発中
に処理の流れを簡単に把握できます。問題発生
時のデバッグも容易です。
　テキストデータの設計が話題に取り上げら
れることは少ないのですが、そこが重要である
ことを認識として持っていただければと思いま
す。ﾟ

注1） https://uec.usp-lab.com/

 ▼図9　リスト10の実行結果

% ./exectest.sh
% cat log
error log
% cat out
success
% cat file1
exception
%

 ▼図10　リスト11の実行結果

% ./WHILE.SH
b
b
%

 ▼リスト11　WHILE.SH

#!/bin/sh

v=a

while :
do
 v=b
 break
done

echo $v

while :
do
 v=c
 break
done | cat

echo $v

https://uec.usp-lab.com/

67 - Software Design

第2特集

忙しいITエンジニアのための
日常に追われて自分の性能アップを

忘れていませんか？

　IT業界にいると、たくさんのメールの処理やドキュメント作成などなど、
日々の仕事に追われてしまいます。でも、忙しいからといって、技術的に成
長しているとは限りません。日常に追われて自分の成長を怠ると、仕事をこ
なす力がいつまでたっても向上しません。あなたに仕事のライバルはいませ
んか？　同じ仕事をしているのに、なぜかいつも一枚上手な存在です。何が
違うのでしょうか。本特集では、ITブレークスルーの代表でありブログや
執筆・セミナー講演活動を行っている「勉強術の達人」森川 滋之さんによる、
ストーリー仕立ての特別講座です。2013年が始まり、気持ちも新たに自
分の仕事を見直してみませんか！

第 章1
明日の朝までに
これを読んでこい！ P70

コラム 「エンジニアのための超速読法」

P78

コラム 「四色ボールペン・メモ法」

第 章2
お前はノートも
ロクに取れへんやろ？

P86

コラム 「講義の組み立て方」

第 章3
人に教えて
はじめてわかる

ITブレークスルー　森川 滋之 MORIKAWA Shigeyuki

イラスト
マツダアヤコ

68 - Software Design

はじめに
　本誌の読者には"できる技術者"が多いと思いま

す。僕も現役バリバリのUNIX技術者だったころ

（もう15年以上も前ですが）は、本誌にお世話に

なりました。

　とはいえ、中には伸び悩みを感じておられる方

もいるかもしれませんし、できない部下をどう育

てたらいいかわからないという方もいらっしゃる

でしょう。あるいは多忙の中で、新しい技術を身

につける時間を捻出したいという方もおられると

思います。

　そういう方のために、僕が実際にやってきて効

果があった勉強法をお伝えしたいと思います。一

つでも自己啓発や部下育成のヒントになることが

あれば、書いた甲斐があったと思います。

　僕は1987年にSEとして就職しました。大学時

代にパソコンを持っていたので、ある程度の初歩

的な知識がありました。おかげで集合研修の間は

なんとかついていけたのですが、現場に配属に

なったとたん大きくつまずきました。

　配属されたのは、通信系のミドルウェアを開発

している部門でした。最初の打ち合わせで僕は思

い切り焦りました。話されている言葉がまったく

わからなかったからです。たった一人外国に置き

去りにされたという感じでした。

　しかし逃げ出すわけにもいきません。忙しい中、

どうしたら効率的に勉強できるのか一所懸命考え

ました。その結果、編み出したのがこの特集でお

伝えする勉強法です。

　どんな勉強法でも、「読む・書く・話す」という

3つの要素が基本になります。この3つが効率的

であれば、勉強法としても効率的だと言えます。

と言っても、"魔法"を期待する人にはかなりオー

ソドックスに見えるでしょう。一番避けたい勉強

法かもしれません。しかし、時間はあまり要りま

プロローグ

Prologue

第2特集

忙しいITエンジニアのための

日常に追われて自分の性能アップを
忘れていませんか？

ITブレークスルー　森川 滋之
MORIKAWA Shigeyuki

68 - Software Design Feb. 2013 - 69

せん。「継続は力なり」と言いますが、継続できる

ということに重点を置いています（僕自身は、か

なりの怠け者なので）。

　勉強法をまじめに書くと、重苦しくなるので、

ストーリー仕立てにしてみました。とはいえ本質

的な部分は外していないつもりです。そこを読み

取っていただければ幸いです。

　ストーリーには二人の主人公がいます。一人は

新人の青二才蔵君。文学部出身で、昔の僕と同じ

ような悩みを抱えています。もう一人は、ベテラ

ンの出来内博氏。今でこそ技術部隊の次長ですが、

入社当時の1987年には青二君と同じ悩みを抱え

ていました。青二君が悩んでいると上司の出来内

氏が飲みに連れていく。そこで自分の昔話をする。

その話をヒントに青二君が少し成長する。そうい

う構造のストーリーが3話あります（テーマはそれ

ぞれ「読む・書く・話す」になっています）。時間

が行き来するので、わかりづらいという方もいる

かもしれないと思い、最初にお断りしておきます。

なお、二人の主人公は文系出身ですが、特に文系

ITエンジニアを意識して書いているわけではあり

ません。

　それでは、まいりましょう！

八破原 猛
（やわはら たけし）

入社当時の博の上司。課長
職。今でいうパワハラ上司
だが、人望がある。今は、博
の事業部の事業部長で常
務。

青二 才蔵
（あおに さいぞう）

ナニワ情報システムズの新
入社員。博のグループの
ネットワーク構築チームに
配属される。文学部出身で
先輩たちについていけず悩
んでいる。

出来内 博
（できない ひろし）

ナニワ情報システムズの次
長。アプリケーションイン
フラグループのリーダー。
今でこそ技術部隊のリー
ダーだが、入社当初は劣等
生だった。

司五斗 優
（しごと すぐる）

入社当時の博の育成担当。
まだ4年目だが、部内でも
最優秀と噂されている。博
に冷たい。

高飛車 徹
（たかびしゃ とおる）

才蔵の育成担当。名前の通
り"高飛車 "だと新入社員た
ちに言われている。

伊達 直人
（だて なおと）

新人時代の博が悩んでいる
と登場する謎のメンター。
濃紺のスーツに虎のマスク
を被っている。はたしてそ
の正体は？

P r o f i l e

登場人物

中野 あかね
（なかの あかね）

入社当時の博の先輩。根は
やさしいのだが、性格がど
S。今は人事部長（結婚して
高木姓に変わる）。

昔

今

昔

今

昔

今

70 - Software Design

　大阪の西中島南方に本社のあるナニワ情報シス
テムズ（仮名。以下、社名や人名はすべて同様）。
地下鉄の駅でいえば新大阪の一つ南の、出張する
にはきわめて便利のいい土地である。ところどこ
ろにディープな飲み屋が立ち並ぶ横丁があるが、
少し歩くとビルばかりだ。ビルといっても高層ビ
ルが立ち並んでいるわけではなく、築うん十年の
低層ビルが多い。
　駅から徒歩5分の11階建のビルに、ナニワ情報
システムズのプロパー400人と協力会社の200人
が詰め込まれている。昔は近所の6階建のビルに
本社があったが、そこは今コンピュータセンター
になっている。
　大阪は梅雨入りしたばかりでうっとうしい。も
ともと湿度が高いので、梅雨時にもなると体にカ
ビが生えるのではないかと思うぐらいだ。その
うっとうしさも、入社3ヵ月目の青二才蔵22歳が
感じているものに比べれば大したことはない。そ
ろそろ帰宅しようと思っていたら、育成担当の高
飛車徹につかまってしまったのだった。
「青二君。昨日のチームミーティングの話やけ
ど、キミ、ついていけたんかいな？」

「いや。あの、正直あまりよくわからなかった
んですけど、まあ、これから勉強します」

　才蔵は6月の中旬まで続いた新人研修が終わっ
て、現場に配属されたばかりだった。文学部出身
なのでついていけるか心配だった。最後のほうは
さすがに難しくなってきたが、なんとかついてい
けた。それで安心していたのだが、配属直後の
チーム会議はショックだった。みんなが何を言っ
ているのかさっぱりわからなかったのだ。ちなみ
に才蔵が配属されたのは、アプリケーション・イ
ンフラ構築グループ。その中のネットワーク構築
チームだ。なんとなく技術力が必要そうなチーム
で、文系の自分が配属された理由がまったくわか
らない。
「やっぱ、そうやったんやな。まあ、ボクはあ
んなん大学で勉強してたからなんてことはな
かったけど、文学部のキミには難しかったかも
しれんな。いや、気づかんで悪かった」

　高飛車という名字は伊達じゃない。新人研修の
最後は部門研修で、高飛車も講師を務めたのだが、
部門に配属された4人の新人が全員「あの人、名前
どおりの人やな」ということで一致したのだった。
「あの人が育成担当やったらたまらんやろな」と才
蔵は思っていたのだが、まさか本当にそうなると
は思っていなかった。
　高飛車なだけでなく、話し方がネチネチしてい
る。才蔵は半分スルーしながら聞いていた。

「ん、青二君、聞いてるんか？」
「あ。はい。もちろん」
「ほな、最後に言うたこと復唱してみ
て」
「ええと。あの。すみません。もう一
度お願いします」
「やっぱり聞いてなかったんやな」
　高飛車は眼鏡の奥の細い眼でギ
ロっと才蔵をにらんでから、
「まあ、ええわ。あのな、ボク今日・
明日と出張やねん。その間かまって
あげられへんから、本を一冊読んど
いてほしいんや。これ読んだら、昨
日の会議の話の半分ぐらいは理解で

第 章1
明日の朝までに

これを読んでこい！

第2特集 超効率的勉強法
忙しいITエンジニアのための

70 - Software Design Feb. 2013 - 71

第 章1
明日の朝までに
これを読んでこい！

きるはずや。明日の夕方戻ってきて、口頭試問
をするから、ちゃんと読んどくんやで」

　高飛車はこう言って、『TCP/IP実践プログラ
ミング入門』（仮名）という500ページもある本を、
もったいぶったポーズで才蔵に手渡し、「じゃあ
新幹線に間に合わへんから」と言い残して立ち去っ
て行った。
　それにしてもコンピュータ関係の本て、なんで
どれもこれもこんなに分厚いんやろ、と才蔵は
思った。これで入門やったら、応用って何ページ
になるんや。コンピュータ関係の本の9割以上（筆
者の実感に基づく）は「入門」だということを才蔵
はまだ気づいていなかった。本当の「応用」は現場
にしかない。
　才蔵は、仕方なく1ページ目から読み始めた。
　あっという間に夕方。つっかえつっかえ読み進
めていたが、気がついたらまだ100ページしか読
んでいない。あと400ページどうしたらええんや
……。才蔵は目の前が真っ暗になった。「しゃあ
ない。持って帰って徹夜で読もう」

　才蔵が帰り支度を始めると、グループリーダー
で次長職である出来内博が近寄ってきた。
「青二君。今朝から元気がないみたいやけど、大
丈夫か？」
「いや。大丈夫です。高飛車さんから明日の夕
方までにこの本読んどけと言われたんですけど、

ちょっと難しくてまだ2割ぐらい
しか読めてないんで、今日は帰っ
て徹夜で読みます」
「徹夜はやめとけ。それより今か
ら飲みに行こ」
「ええっ？　いや、これ読まんと
あかんので……」
「そんなん、明日1日あれば十分
お釣りがくるわ。読み方教えたげ
るから行こうや。俺もすぐに帰り
支度するから」
　才蔵は断りきれない性格だ。そ
れもあるが、「読み方」に興味が
あったのでついていくことにした

のだった。
　15分後。会社から見て地下鉄御堂筋線の反対側
にある「おかめ」という店に二人はいた。ビール大
瓶400円。焼き鳥1本90円。ポテトサラダ280円。
値段だけでどんな店か想像はつくだろう。ビール
で乾杯した後、博は切り出した。
「実はなあ、今朝の高飛車と君の会話を聞いて
たんや。それで、たぶん読み切れへんやろなあ
と思いながら、一日様子を見てたんや。やっぱ
りあかんかったな」
「え。そうやったんですか。それは人が悪い」
「いや。実は俺も昔おんなじ経験してな。あ。ち
なみに高飛車もや。あれってうちのグループの
伝統やねん」
「そうなんですか？」
　才蔵はあらためてとんでもないところに配属さ
れたと思うのだった。
「で、どうやって読むんですか？」
「結論を急いだらあかん。まあ、俺らは報告を
受けるときに結論を先に言え、なんていうけど
な、学ぶほうは結論を急いだらあかんのや」
「はあ」
「まあ、しばらく俺の昔話に付き合え」
　博は遠い眼をしてこう言った。

◆　◆　◆
　1987年にさかのぼる。出来内博はアプリケー
ション・インフラ構築グループの5代ぐらい前身

72 - Software Design

の通信技術部に配属された。当時は文系出身の男
性SEなどはほとんどいなかったが、SE不足説な
どというのがまことしやかに喧伝されていた時代
だったので、そろそろ文系も採用してみようかと
いうような雰囲気があった。文学部だけどパソコ
ンに興味のあった博は、なんとなくその時流に乗っ
てナニワ情報システムズに就職できたのだった。
　配属されたその日に、もしかしたら失敗したか
なと思った。打ち合わせで交わされている言葉が
まったく理解できなかったのだ。
　そのうえ誰も懇切丁寧に教えてくれない。育成
担当の司五斗優は、まだ4年目だったが部内でも
一番できると言われた男だった。それなのに、質
問しにいっても「そんなん、自分で調べろや」とつ
れない。「そんな恥ずかしい質問、俺が新人の頃は
とてもできへんかったわ」など
と言う。
　3年目の中野あかねは、仕
事もできて、根はやさしいよ
うなのだが、性格がどSで、
司五斗に説教された直後にか
らかうようなことを言う。
「"できない "って名前どおり
やなあ。でも、がんばりや。
そのうちなんとかなる」など
ときついのかやさしいのか
さっぱりわからないことを言
う。言った後にギャハハと笑

うのでバカにされている気持ちになる。
　課長の八破原猛は、今でいうパワハ
ラ上司で、博が困っていても助けてく
れるどころか叱りつけたりする（なお
八破原は、現在ナニワ情報システムズ
の常務で、いまだにその癖が抜けず、
もちろんパワハラ常務とあだ名されて
いる。しかし、変な人望があり、パワ
ハラで会社を追われる気配はない）。
　そして、とうとう辞めたほうがいい
んじゃないかと思う"事件"が起きた。
配属されて1週間。相変わらずさっぱ
り話が理解できなくて激しく落ち込ん

でいた博に、司五斗がこう切り出したのだ。
「もう1週間たったで。そろそろ戦力になって
くれへんと困るでぇ」
「はあ」
「何がわからんねん？ 俺には逆にその辺が理解
できないんや」
「基礎的なことがわからないというか……。言
葉がさっぱり理解できないんです」
「集合研修のとき何してたんや？」
「いや、研修のときには……」

（そんな難しい言葉はどこにも）と博が言いかけた
とき、司五斗はこう言った。
「わかった。ほな、これを明日の朝までに読ん
で来い。そしたら、かなりわかるようになるは
ずや」

第2特集 超効率的勉強法
忙しいITエンジニアのための

72 - Software Design Feb. 2013 - 73

第 章1
明日の朝までに
これを読んでこい！

　渡されたのは『VTAM 注1

の基礎知識』（仮名）という
300ページほどの本だった。
司五斗は本を渡すと「ほな今
日は帰るわ、昨日徹夜やっ
たし」と言い残して、立ち
去って行った。
　博はパラパラとのぞいて
みた。確かに自分には訳の
わからなかった言葉が書き
連ねてあった。これをマス
ターすれば、司五斗の言う
とおりわかるようになるか
もしれない。ただし、300

ページもある。もう夕方だ。明日の朝まで徹夜で
読んでも間に合うだろうか？
　そんな博の心をまるで理解しないのか、隣で聞
いていた中野あかねが「いやあ、たいへんやなあ。
きばりやあ。ギャハハ」と笑う。博は、この業界っ
てこんなに一生懸命勉強しないと一人前になれな
いのかと暗い気持ちになった。いや、司五斗も中
野もそんなに勉強しているようには見えない。忙
しくて勉強している暇もなさそうだ。やっぱり才
能なんだ。あるいは大学での基礎なんだ。
　とりあえず、明日の朝までチャレンジしてみよ
う。それでだめだったら辞表を書こう。博は追い
つめられていた。
　「お先に失礼します」と元気なく言いながら、博
は退社した。その様子を八破原がするどい目つき
でじっと見ていた。
　博は会社から徒歩15分のワンルームマンション
に住んでいた。今日は自炊する気にもなれず、帰
り道にある居酒屋「おかめ」で夕食を取ることにし
た。混み合っていたが、4人がけのテーブルが1台
空いていた。居酒屋だがもともとは大衆食堂なの
で定食もやっている。ビフカツ定食というのが安
くてボリュームもあるので、いつもそれを頼むこ
とにしている。

　待っている間に、『VTAMの基礎知識』を読み始
めた。これを明日の朝までに読めなんて、不可能
だと思えた。司五斗のことだ、きっと口頭試問も
するだろう。それに不合格だったら、やっぱり向
いてないんだろう。
　などと思いにふけっていたら、真ん前で「ここ、
相席ええかな？」というこもったような声がした。
「あ。はい」と顔を上げると、そこには虎がいた。
正しくいうと、虎のマスクをかぶったスーツ姿の
男がいたのだった。博は一瞬ギョッとしたが、す
ぐにここは大阪だということを思い出した。たぶ
ん阪神ファンなんだろう。さすがに大阪でも虎の
マスクは違和感があったが、東京の10倍ぐらいは
怪しいものへの許容度が高い大阪である。博もす
ぐに順応した。
　なんか見たことがある人だと思った。すぐに八
破原に似ていると気がついた。体格もスーツも良
く似ている。ただ、ネクタイが全然違うので別人
だろうと思った。スーツも濃紺のダークスーツで
特徴はない。それに八破原がここにいるはずがな
い。
「兄ちゃん。なんか悩んでるんとちゃうか？」
　虎男はなれなれしく話しかけてくる。まあ、大
阪ではよくあることだ。博は食事の間だけ付き合

注1） VTAM：Virtual Telecommunications Access Method。大型汎用機で使用される IBMの通信ソフトウェア。IBMが提唱したSNA
（Systems Network Architecture）を実現するために作られた。現在ではCommunications Serverと呼ばれ、TCP/IPもサポートして
いる。SNAは今のTCP/IPに該当する、当時の通信系エンジニアの基本中の基本であった。読み方は「ヴイタム」。

74 - Software Design

うことにした。
「悩んでますけど、ちょっと専門的な悩みなん
で」
「そうか。わしは伊達直人というもんや。兄ちゃ
んは？」
「僕は、出来内博と言います」
「けっさくな名前やな。いかにも仕事ができな
いちゅう感じや」

　伊達直人はそう言って、遠慮なく笑う。博は自
分の名字を気にしていたが、そこまであけすけに
言われるとかえって好感が持てた。
「当てたろか。悩みはいま読んでた、その分厚
い本やろ？」
「げっ。当りです。なんでわかったんですか？」
「がははは。いまその本読みながらため息つい
てたやないか」
「ああ。なるほど」
「おおかたあれやろ？ 明日の朝までにその本を
読んで来いとでも言われたんやろ？」
「わかりますか？」
「わからいでか。わしは悩める青少年を救うの
が仕事なんじゃ」

　ああ。それで伊達直人か。絶対偽名だと思って
いたが、人助け気取りなんだ。
　「ちょっと貸してみい」と、伊達直人は言い終わ
らないうちに『VTAMの基礎知識』を手に取った。
パラパラめくりながら「ふ
ん。コンピュータ関係の
仕事かい」とつぶやく。
「わしなら15分やな。
それで読めるわ」
「え？ それはありえな
いでしょう？　第一言
葉がわかるんですか？」
「わからんでも読めるわ
い。なあ、兄ちゃん。
本には三種類あるって
知ってるか？」
「さあ」
「兄ちゃんに、明日まで
に読んで来いと命令し

たやつはそこのところがよくわかってるようや
な。そうでないとそんな命令はできへん」

　ビフカツ定食が二つ運ばれてきた。一つは伊達
直人のものらしい。それにビールの大瓶も。伊達
直人はグラスを手に取り、目で注げと指示した。
素直に注ぐと、お前も飲めという。明日までに本
を読まないといけないというと、そんなん明日早
起きしたらできると言われる。博は断れない性格
なのだった。しかも一気に飲み干せという。
「よし、ええ飲みっぷりや。ほな、説明しよか。
三種類の本の話や。ちゃんとメモするんやで」

　博はカバンから手帳とボールペンを取りだした。
「一つは、頭から終わりまで通しで内容を追っ
かける本。小説なんかがそうや。二つ目は、必
要なときだけ参照する本。辞書なんかがそうや
な。そしてもう一つ。体系をつかむために一度
ざっと読んで、その後は何度も必要な個所を読
む本。専門書やマニュアルなんかがそうや」（図

1）
　最初の2つは知っていたが、最後のは少し意外
だった。そういう読み方もあるのか。
「その本は典型的な最後の種類の本や。だから、
言葉なんかわからんでもええ。先に体系を捉ま
える注2んや。それができれば、言葉同士が勝手
につながっていくようになる。それに重要な言
葉は何度も出てくる。そういうことも見えてく

第2特集 超効率的勉強法
忙しいITエンジニアのための

74 - Software Design Feb. 2013 - 75

第 章1
明日の朝までに
これを読んでこい！

るようになる」
　そこまで言うと伊達直人は、博の手帳とボール
ペンを奪い取り、そこに「エンジニアのための超
速読法」とタイトルを書き、フローチャートをか
いた（図2）。
「肝心なんは、ここや。『目次を見て、どこに何
が書かれているかを調べる』。兄ちゃん、ちゃ
んと目次は読んだか？」
「はあ。一通りは」
「それで何がわかったんや」
「いや、ただ目を通しただけで」
「そやろな。それがあかんのや。薄っぺらい本
やと別かもしれんが、それだけ分厚い本で目次
がない本はまずないやろ。でも、頭からお尻ま
で読まなあかんのやったら、そもそも目次なん
て要るか？」

　そんなこと考えたこともなかった。
「伊達や酔狂でついてるわけやないんやで、目
次は。一番肝心な本の構造が書いてあるんや。
だから目次を読みこめば、その本の体系がわか
る。それだけやない。場合によっては著者の思
想までわかる」
「え？　何でですか？」
「著者が何を重要と考えているかに思想が現れ
る。重要性は、書く順番である程度わかるやな
いか。最初と最後に重要なことが書いてあるの
が普通や。だから、『はじめに』と『おわりに』な
んていうのも実は重要やったりする。それとも
ちろん第1章と最終章もな。あと、繰り返し出
てくるのも重要な話や。そういう傾向も目次で

ある程度わかる」
　なるほど。虎のマスクなんか被っているのでバ
カにしていたが、だんだんタダ者じゃない気がし
てきた。
「目次を読み込んだら、重要だと思う個所を拾
い出して、あとはそこを重点的に読み込むんや。
読んだらポイントだけメモする。わからない言
葉は抜き出しとけ。あとで調べたらいい。索引
も重要やな。たくさんのページに出てくる言葉
は重要やちゅうこっちゃ。で、最終的にはA4

の用紙1枚ぐらいで本の要旨をまとめるんや」
（77ページのコラム図3）
　博は速読法の本を読んだことがある。目玉を上
下左右に速く動かす訓練をしろという本もあれば、
見開きを一瞬で脳に焼き付けて、次々とページを
めくれという本もあった。共通するのは「考えず
に見ろ」ということだった。実際試してみたが、頭
には何も残らなかった。しかし、この方法なら1

時間もあれば多くの情報が残る気がした。伊達直

通しで読む ～小説・マンガなど

都度調べる ～辞書など

ざっと読んで、部分的に何度も読む
　～専門書・マニュアルなど

本には三種類ある

1

2

3

 ▼図1　三種類の本の話のメモ

目次を見て、どこに何が
書かれているかを見極める

新しいキーワードが出て
きたが、まだ時間がある

重要事項を書き留める

読む目的を明確にする

はじめ

おわり

Yes

No

 ▼図2　エンジニアのための超速読法

注2） 誤字ではない。筆者ははじめ大阪で就職した。そのとき違和感があったのがこの言葉。大阪にはなぜか「捉える」を「捉まえる」とい
う人が多い。中には「捕らまえる」と書く人もいる。ここまでくると標準語と大阪弁のバイリンガルではあるが大阪弁ネイティブで
はない筆者には、「捉える」の意味で使っているのかちょっと自信がなくなる。

76 - Software Design

人が言うように15分でも可能かもしれない。
「どや。気が楽になったやろ」
「はい。やれそうな気がしてきました」
「初めてやから1時間ぐらいかかるやろけど、明
日早起きすれば問題ないはずや」
「はあ。そうかもしれません」
「ほな、もうちょっとビールつきあえ。なあに、
早起きせなあかんから、ほんの数本や」

　伊達直人は適当につまみを頼み始めた。繰り返
すが、博は断れない性格だった。1時間ほど説教
のようなことを聞かされたが、博は気持ちよく聞
いていた。伊達直人はおごってくれたうえ、帰り
際にポケベルの番号を書いた紙をくれた。
「また、悩みがあったら相談せい。ポケベルが
鳴ったら、一時間後にここにおるわ。おらん
かったら、その日は用事があったちゅうことで
勘弁してくれ。ほな、またな」

◆　◆　◆
「で、どうなったんですか？」
　舞台は再び現在に戻る。青二才蔵が興味津々と
いう様子で出来内博に聞く。
「うん。翌日は朝4時に起きて、伊達直人の言
うとおりにやってみたんや。そしたら、5時過
ぎには読み終わってた。出社したら予想通り司
五斗さんの口頭試問があった。これも伊達直人
の言うとおりやった。司五斗さんは細かいこと
でなく体系的な話、たとえばVTAMって何のた
めに必要なんや、みたいな質問ばかりしてきた
んや。こちらはそういうとこばっかり読んでた
し、メモもしてたんで簡単に答えられた。『よ
しっ、合格や。その調子で頑張れ！』って言わ
れたときには涙が出そうになった。そしたら、
中野さんがコーヒーを淹れてきてくれて、『ご
苦労さん。やったやん！』と言ってくれたんで、
本当に泣いてしもた。恥ずかしかったなあ」

　そう言いながら、博の眼は少しうるんでいるよ
うだった。才蔵もうるうるしかけたが、一番重要
なことを聞くことにした。
「で、その読み方は役に立ったんですか？」
「それや。まだ完璧には程遠かったけど、打ち
合わせでの話がなんとなくわかるようになって

きたんや。英語ってある日突然聞こえるように
なるというけど、それに近い感覚かな。相変わ
らず英語は苦手なんでようわからんけど。とに
かくまったくの外国語だったのが、半分ぐらい
はわかるようになった。そうなったら面白く
なってきて、いろんな本を伊達直人式超速読法
で読むようになった。1ヵ月ぐらいやったかな
あ。突然霧が晴れたようにみんなの言うことが
わかるようになったんや」
「僕にもできるでしょうか？」
「大丈夫や。これってうちのグループの伝統やっ
て言うたやろ？　高飛車もこれをやってから、
多少はわかるようになったんや」

　何が「ボクはあんなん大学で勉強してたからな
んてことはなかった」や。うそつきやん。そう思
うと、才蔵ははじめて高飛車が身近に感じられる
ようになったのだった。
　翌日。才蔵は、高飛車の口頭試問を軽くクリア
することができた。高飛車も細かいことではなく、
体系的なことや全体的なことしか聞いてこなかっ
たからだ。
「やればできるやないか。この調子やったら、来
月からは青二君に、議事録を任せられそうやな。
ボクもいい加減あきあきしてたんや」

　えっ！ 議事録？ あれをやるの？？？
　アプリケーション・インフラ構築グループでは、
どのチームもホワイトボードに書いたメモを議事
録として回覧することになっている。そのために
板書をPCにカラーで取り込めるようになってい
るホワイトボードを設置している。終了してから
書くのは時間のむだというグループリーダー出来
内次長の方針なのだ。つまり一発勝負で議事録を
書かなければいけない。
　これは荷が重い。わかっていないと書けないか
らだ。
　一難去ってまた一難。才蔵の明日はどっちだ？

第2特集 超効率的勉強法
忙しいITエンジニアのための

76 - Software Design Feb. 2013 - 77

第 章1
明日の朝までに
これを読んでこい！

エンジニアのための超速読法

　出来内博にふりかかった困難は、ほぼほぼ僕の身

に起こったことです。タイガーマスクこそ出てきま

せんでしたが。

　僕の場合は育成担当がとても忙しい人で、週に3

日ぐらいは出張していました。なので最初のうちは

適当にこれ読んどけとか、このテープ教材を聞いと

けとか、そんな指示しかしてくれませんでした。そ

んな感じだったので、僕もよほどのんびりしていた

のでしょう、1週間ぐらいダラダラと勉強していま

した。

　そうしたら、チームミーティングの内容がさっぱ

り理解できない。実は同期にもう一人、成績優秀な

女性がいたのですが彼女はなんとなくわかっている

感じ。まあ、こちらは育成担当がつきっきりで教え

てくれていたということもあったのですが。

　それで僕の育成担当は危機感を抱いたのでしょ

う。朝呼ばれて、「これから出張に行ってくる。今

日は日帰りやから夕方までにこの本を読んどけ。試

験するから、そのつもりで読めよ」と言われたので

した。

　午前中は頭から順番に読んでいたのですが、昼

までに数十ページしか読み終わらない。開き直っ

て、「伊達直人式超速読法」に似たようなことをや

りました。とても細かいところまでは理解できな

いから、体系と重要な概念だけを捉えようとした

のです。

　夕方、育成担当の口頭試問に見事合格。「1日で

本を読む方法がわかったやろ。こんな感じでまず

はたくさん読め」と言われて、その後は本当に何

百冊もこの方法で読んだら、いつの間にか「技術

のあるやつ」になっていました。

　その後、日本の経営コンサルタントの草分けと

もいえる方のセミナーに参加する機会がありまし

た。テーマは速読法。この速読法が、僕が偶然見

つけたものと考え方が同じだったので、我ながら

びっくりしました。ただ、この先生の場合は1冊

を15分で読めというもの。僕はだいたい半日ぐら

い掛けていたのでそんなことできるのかと思いま

したが、実際に15分でできてしまったのです。

　ただし、このときはビジネス書でした。ビジネ

ス書は、言いたいことが繰り返し出てくるので、割

とまとめやすいのです。エンジニア向けの本で15

分でできるのだろうか？

　もう4年前になりますが、実際に時間を計ってみ

たことがあります。タイマーを15分にセットして、

その中で読み切れるか試してみました。『実践Ruby

on Rails Webプログラミング入門』（ソーテック

社）。B5変型判（SD誌を縦に2cmぐらい縮めたも

の）で260ページある本です。ちなみにRoRに関す

る本を読むのはこれが初めてでした。

　ギリギリでしたが、ほぼ15分で読み終わりまし

た。そのときのメモを掲載します（図3）。

　15分にこだわることはありません。1時間かかっ

てもいい（逆にそれ以上掛けないようにしてくださ

い。忙しいのですから）。1冊につき1枚、こうい

うメモを残す。これを週に1回か2回やる。1年も

積み重ねれば、周囲のエンジニアとはかなりの差が

ついているはずです。

　なお、ITだけでなく顧客の業務知識や業界知識

の習得にも役立つのは言うまでもありません。

 ▼図3　筆者の作成した読書メモの例

Column

読む前に決めておく

78 - Software Design78 - Software Design

　大阪の夏は暑い。沖縄より気温の高い日も多い。
湿度が高いだけでなく、緑が少なくて舗装路が多
い。ヒートアイランドというやつだ。夜になって
も気温が下がらない。
　ということで夏バテ気味の青二才蔵だが、目覚
めが悪いのはそのせいだけではなかった。今日の
ミーティングから書記役をやれと、育成担当の高
飛車徹に言われたからだった。
「業務命令やからね」とプレッシャーをかける高飛
車の顔が夢に出てきた――気がする。
　グループリーダーである出来内博次長の方針で、
才蔵の所属するグループでは、打ち合わせの議事
録はホワイトボードの板書のコピーということに
なっている。あとでまとめなおすということは許
されていない。時間ももったいないし、書記もイ
マイチ真剣にならないというのが博の主張だ。つ
まり一発勝負。内容がわかっていないと書けない。
　出来内次長から伝授された速読法のおかげで、
打ち合わせの内容がわかるようになってきた才蔵
だったが、メモを取ったり、まとめたりするのは
ちょっと苦手だ。
　とはいえ、才蔵には秘密
兵器があった。マインド
マップである。今まで高飛
車が書記役を務めてきたの
だが、彼の板書は少し書き
過ぎじゃないかというのが
才蔵の感想であった。議事
録を読むほうも忙しい。簡
潔にまとまっているほうが
喜ばれるだろう。うまくい
けば、自分の株も上がるか
もしれない。
　不安と同じぐらいの期待
をもって、才蔵は打ち合わ
せに臨んだ。

　その夜。場所は、西中島南方の居酒屋「おかめ」。
暑いから生ビールでも飲みに行こうと博が誘った
のだった。
「何がそんなに悪かったんでしょう？」
　今朝の打ち合わせの件だ。半分不安で半分自信
のあったマインドアップでの板書を、高飛車に思
い切りけなされた。才蔵はそのことについて質問
をしているのだ。
「まあ、アイデアは良かったんやけど、使いど
ころを間違えたんやなあ」
「あとで見てわかりやすいと思ったんですけど」
「そういう気持ちやろなとは思ったんやけど、議
事録にマインドマップはあかん」
「何でですか？」
「議事録は、話の順番が大事なんや。マインド
マップで時系列が表現できないかというと工夫
の余地はあるとは思うんやが、基本的には向い
てない。あとで見る人は結論はわかるかもしれ
んが、話の経緯がわからへん。しかし、打ち合
わせでは、その経緯が大事だったりするんや」
「なるほどです。でも、高飛車さんのあの言い
方はないよなあと思ったんですけど」

　高飛車は、「おまえはノートもロクに取れへん
やろ？　そやからできるようにならへんのや」と
言ったのだった。
「確かに言い方は悪いけど、俺も実はそう思っ

第 章2
お前はノートも

ロクに取れへんやろ？

第2特集 超効率的勉強法
忙しいITエンジニアのための

78 - Software Design Feb. 2013 - 7978 - Software Design

第 章2
お前はノートも
ロクに取れへんやろ？

た。青二君はノートの取り方を知らへんのやろ
なと」
「えぇ～？　僕は大学時代、ノートがきれいと
言われてたくさんの友達からコピーさせてと言
われてたんですよ」
「うん。たぶん試験に合格するという意味では
いいノートやったんやろ。でも、大学の勉強は
身についてるかな？」

　そう言われると、返答しようがない。文学部出
身なのにIT業界に入った理由も、実は大学での勉
強が身についていないと思ったからだった。現状
打破が半分、逃げが半分。
「大学とは違って、仕事のための勉強は身に付
かないとあかん。そのためのノートの取り方ゆ
うもんがある。いや、たぶん大学でもな、残っ
て研究を続けているような人は、同じような
ノートの取り方をしているはずや」
「教えてください」
「学ぼうとする者は、結論を急いだらあかん」
「はあ」
　才蔵は軽いデジャビュを感じた。
「まあ、しばらく俺の昔話に付き合え」
　博は遠い眼をしてこう言った。

◆　◆　◆
　1987年夏。大阪の夏は暑かった。
　出来内博は4年間の大学生活を京都で過ごした。
京都の夏は日本一蒸し暑いと聞いていた。それで
も当時はエアコンなど贅沢品だったし、文学部の
校舎にもそんなものはなかった。扇風機でなんと
かしのいできたのだった。だから、暑さには自信
があった。でも、大阪に引っ越して初めての夏を
迎えて、その自信は消し飛んでしまった。何しろ
夜になっても気温が下がらないのだ。
　相変わらずエアコンなしで暮らしていたので、
博はこのところ寝不足気味だった。それがいけな
かったのかもしれない。中野あかねの逆鱗に触れ
てしまった。
　博のチームは、アセンブラでプログラム開発を
していた。新しいプロジェクトで、標準化のため
にマクロライブラリを作成することになった。「そ
んなんは新人の仕事や」という八破原課長の意味

不明な方針で、博がライブラリの作成と管理を担
当することになったのだった。
　アセンブラのマクロライブラリを作れと言われ
ても、博にはチンプンカンプンだった。例の伊達
直人式速読法で勉強しようと思ったのだが、すご
く薄っぺらい「マクロアセンブラ仕様書」というも
のしかない。見てもさっぱりわからない。別のプ
ロジェクトのライブラリのソースコードも参考に
したが、自分のプロジェクトに適用できるのかも
よくわからない。
　育成担当の司五斗優に聞きに言ったら、今回は
自分で調べろとは言わなかった。「忙しいので中
野に教えてもらえ」と言う。
　そこで中野に頭を下げると、「ええけど、高い
でぇ」と言う。「いくらでしょうか？」と聞き返す
と、「アホか？　ギャハハ」と笑われてしまった。
同期の男どもは、美人の中野にあこがれて「おま
え、中野さんの隣の席でええなあ」などというや
つが後を絶えない。それに対して博は「いつでも
替ってやる」と半ば本気で答えていた。
　会議室で中野のレクチャーが始まった。途中わ
からなくなってきたので質問すると、「ええから、
ノート取れや」と乱暴に返される。それでホワイ
トボードの板書を完璧に写したのだった。45分ぐ
らいたってから、中野が「ちゃんとノート取って
るか？　見せてみ？」とノートをのぞき込んでき
た。そして、叫んだのだった。
「なんや、このノートは！　キミ、ちゃんと聞
いてたんかっ！」
「いや、一所懸命板書を写してたんですけど」
「アホかぁ！　こんなんで後で見直してわかる
かぁ！　もう、この忙しいのにぃ。私の45分
を返せぇ！」

　そう言うと、中野は会議室を出て行ってしまっ
た。
　博は、何を怒られているのかわからず、茫然と
してしまった。3分ほど考えたがよくわからない。
そこでとりあえず謝りに行ったのだが、「何を怒
られてるか、わからんもんを許せるか」と取り合っ
てくれない。司五斗に取りなしてもらおうとした
が、「中野があないなったら、誰もどうしようも

80 - Software Design80 - Software Design

ない」と相手にしてくれない。
　時刻は16時50分。こんな気分では仕事になら
ない。今日は定時に帰ろうと博は思った。そして、
伊達直人のポケベルに連絡を入れたのだった。そ
のとき偶然だろう、八破原のポケベルが鳴ったよ
うだった。
　50分後、博は居酒屋「おかめ」で、やけに苦い
ビールを飲んでいた。今日も暑かったので美味い
はずなのだが、そうは感じられなかった。伊達直
人は来てくれるだろうか？　まあ、来なくてもい
い。飲んだくれてやる。
　立てつけの悪い横開きのドアを乱暴に開ける音
がする。そこには、濃紺の
ダークスーツに虎のマスク
のあの男がいた。伊達直人
はまっすぐに博のテーブル
に向かってくる。
「待ったか？」
「いえ、約束の1時間に
は、5分も早いです」
「うむ。こう見えても時
間厳守でな。で、何が
あったんや？」

　博は、中野あかねとの一
件について語った。
「で、その姉ちゃんが何
を怒っているのか、さっ
ぱりわからんちゅうん

やな」
「はい」
「なんぼわしでも女のヒステリーにつ
いてはお手上げやな」
　今ならセクハラと言われても仕方な
い発言だが、当時は普通の会話だった。
「そこを何とか」
「がははは。冗談や。彼女が怒った理
由はようわかる。けっして理不尽では
ない。兄ちゃんが悪い」
「どういうことでしょう？」
「うむ。兄ちゃんは高校時代、成績優
秀やったろう？」

「まあ、そこそこには」
「大学でも、試験はなんとかこなしてきた。だ
から卒業できて今こうして就職している。でも、
学問という意味ではあかんかったんやないか？」

　その言葉は博の胸に突き刺さった。元々は学者
になりたくて文学部に入ったのだった。親からは、
文学部なんてつぶしのきかない学部はやめとけと
言われたが、研究職へのあこがれは強かった。し
かし、大学に入ってすぐに勘違いしていたことに
気付いた。学者を目指す連中は全然違っていた。
自分には才能がないと思ってあきらめた。それで
結局畑違いのところにきて苦労している。

第2特集 超効率的勉強法
忙しいITエンジニアのための

80 - Software Design Feb. 2013 - 8180 - Software Design

第 章2
お前はノートも
ロクに取れへんやろ？

「学問の才能がなかったんやと思います」
「そうやないな。兄ちゃんはたぶん要領のええ
ほうなんや。でも、学者のほとんどは逆やな。
要領が悪い。才能の違いではないんや。愚直に
やれるかどうかが境目なんや」
「要領がいいのは悪いことなんでしょうか？」
「そうとは言えん。仕事でも要領よくやれたほ
うがええことはたくさんある。ただなあ、何か
を身につけようと思ったら、要領のよさより愚
直さやな」
「今日の僕は愚直さが足りなかったと」
「結論を急ぐな。愚直ってどういうことやろ
か？」
「疑問を持たずに言われたとおりに一生懸命や
る、ということでしょうか」
「まあ、そういうことやが、本来はあまりええ
意味ではないな。バカ正直で臨機応変な行動が
とれないということや。でも、学び始めはそれ
が大切なんや」
「そうでしょうか。言われたことを自分なりに
解釈してこそ、身に付くのでは」
「そこやな。たぶん"解釈"の意味がわかってな
いんやろと思う。解釈とは実践を通じてするこ
とや。知識を吸収する段階では、わからんでも
とにかく聞き、そして写し取るということが大
事なんや。『まなぶ』の語
源は『まねる』というや
ろ？」

　博には、わかるようでわ
からなかった。
「わしは、江戸時代の教
育の仕方は素晴らしかっ
たと思ってる。あれが
あったからこそ、日本は
植民地にならんですんだ
んやないかな」

　幕末のころの日本の識字
率は、世界的な水準でみた
ら驚異的だった。支配階級
である武士はもちろん、庶
民の多くも文字が読み書き

できた。寺子屋が普及していたからだ。寺子屋の
教育法も武士の教育法も初期段階では一緒で、漢
文の素読が入口だった。漢文には当時の教養が詰
まっていて、それを学ぶのは重要なことであった。
その教育法である素読とは実にユニークなもの
だった。まだ幼い子どもが意味もわからず、ひた
すら先生の言うとおりに真似をする。何度も真似
しているうちに、子どもは記憶する。その記憶が
将来の教養になる。教養は行動を通じて得るもの
だと当時の人は理解していた。体験をすることで、
意味がわからなかった言葉が自分の教養になる。
その成果が明治維新だったと伊達直人は説く。
「この素読という勉強法が愚直の見本やな。今
の人はこんな教育法では個性が伸びへんと否定
するかもしれん。でも、幕末から明治の頃の人
のほうが今の人よりよっぽど個性的やった思う
んは、わしだけやろか？」

　そんな気はする。今の政治家で歴史に残るよう
な個性的な人物がどれだけいるだろうか？　幕末
から明治にかけては、あんなに人物がいたのに。
まあ、素読と関係があるかはわからないが。
「ということは、僕も愚直に中野さんの言うこ
とをメモすれば良かったんでしょうか？」
「そうや。そういうことや。板書だけ写しても
あかんのや。その姉ちゃんの板書は、かなりラ

82 - Software Design82 - Software Design

フやったんやないか？」
「そう言われれば、そう
やったかもしれません」
「だから、兄ちゃんはほ
とんどメモを取ってな
かった。それに気づい
て叱ったんやろなあ。そ
の姉ちゃんはノートの
取り方をよう知ってる
みたいや」

　そう言えば、チームのメ
ンバーは打ち合わせ中に
ひっきりなしにメモを取っ
ていることに気がつく。
「たぶん、学者になるよ
うな人のノートは、教
授の講義をそのまま聞きとって書いてるんやろ
な。たとえば、ソシュール 注3という学者がおっ
た。有名な言語学者で20世紀の思想に大きな
影響を与えた人や。この人は本を一冊も書かな
かった」
「じゃあ、どうやって影響を与えたんですか？
お弟子さんが広めたとか？」
「まあ、弟子が広めたのは間違いないんやが、直
接の弟子でそんなに影響力のある人はおらん
かった。学生の講義録が残っていて、それを弟
子たちがまとめて出版したんや。昔の学生がい
かに熱心にノートを取っていたかわかるやろ。
録音機もビデオもなかった時代やから、ほんま
に真剣に書きとったんやろな」
「素読の時代は聞いてるだけでしたが」
「ああ。それは紙が貴重品やったからや。だか
ら一生懸命自分自身を録音機にしたっちゅうわ
けや。その人たちから見たら、紙に写すなんて
いうのは真剣味が足りんと言うかもしれんな。
ただ、その代わりおぼえるまで何度も何度も聞
くことになるけどな」
「書き写しでなく、録音機 注4じゃダメなんで

しょうか？」
「悪いとは言わんよ。ただ、その場での真剣味
は紙に写すより劣るやろし、後でテープから書
き起こす時間がむだやろ。ノートするんが、わ
しは一番効率的やと思うなあ。録音機は保険と
して考えるならええんやないかな」
「ノートの取り方にコツはあるんですか？」
「まあ、愚直にできるだけ一字一句に近い形で
書くというのが基本や。考えへんことが大事や
な。ひたすら写す。そやけど、多少の工夫はあ
る。わしの方法やけどな」

　そう言って、伊達直人はノートとボールペンを
要求した。博がカバンから取り出して渡すと、そ
こに「四色ボールペン・メモ法」というタイトルで
何やら書き始めた（図4）。
「基本的には黒を使う。それから話にはテーマ
があるやろ？　文章でいえば小見出しみたいな
もんや。それを青で書く。上手な話し手やった
ら、今からナニナニの話をするって断るやろ？
　それが青や。それから重要やと思ったことは、
赤で囲む。下線でもええわ。それから、相手の
話やのうて、自分の思いつきをメモしときたい

注3） フェルディナン・ド・ソシュール（1857年 -1913年）。スイスの言語学者。記号論を基礎付け、構造主義思想に影響を与えた。「近
代言語学の父」といわれる。

注4） ラジカセを想像する人もいるかもしれないが、1980年代の前半には録音できるポータブルカセット（ウォークマンなど）があった。

第2特集 超効率的勉強法
忙しいITエンジニアのための

82 - Software Design Feb. 2013 - 8382 - Software Design

第 章2
お前はノートも
ロクに取れへんやろ？

ときもあるやろ。それを緑で書く。まあ、これ
はわしの色の使い方やから、好みで変えてもえ
えけどな」
「僕は違いますけど、色の区別のつかない人
は？」
「下線、波線、囲み、吹き出し、とかを使えば
ええんやないかな。あとで見分けがつくことが
本質や。特に人の話と自分の考えは区別がつく
ようにしといたほうがええ。お客さんと打ち合
わせして、あとで報告書を書かなあかんなんて
ときもこのメモ法は有効やが、そこでお客さん
の言うたことと自分の考えがごっちゃになった
らトラブルの元や」
「なるほど。ほかにはありますか？」
「うん。話には順番がある。変にまとめずに順
番通りに書いていくのは、その順番というか時
系列に意味があるからなんや。ただなあ、人の
話というのは、あっちいったりこっちいったり
するんが普通や。さっき言うたことと関連する
ことを、突然思い出して言い始めたりするやろ。
そういう関連性は矢印で結んでおく。その場で
は関連があるとわかったことでも、あとで読み
なおすと、何でこの人ここでこんな話してるん
やろとなりがちや。ノートのページが飛ぶよう
やったら①とか②とかを使こうてつながりを表
したらええ」

　伊達直人はここまで言うと、「ああ、のどかわ
いた」と言って、生ビールの残りを飲み干した。そ
して、おかわりと焼き鳥を頼んだ。
「ところで、兄ちゃん。わしの話、メモしてへ
んかったけど大丈夫か？」

「はい。今日のは新しい知識というよりも考え
方やったんで、一生懸命聞くほうがええと思い
ました」
「うん。それでええ。そこは上手に使い分けぇ
よ。さ。どんどん飲んで、食え」

　そしてまたもや、小一時間説教めいた話をされ
たが、博は心地よかった。なんとなく愛情めいた
ものを感じたからだ。
　伊達直人は今回も勘定を払うと、「ほな、また
な」と去って行った。

◆　◆　◆
　舞台は現在の「おかめ」に戻る。
「なるほど。僕も愚直に皆さんの言うことをそ
のまま書いていったら良かったんですね」

　才蔵は、ずっと博の話に耳を傾けていたが、一
段落ついたのでこう言った。
「そうや。ノートの取り方も板書も基本は一緒
や。あとは、色とか矢印も使いこなせれば一番
ええ。そやから、うちの会社のホワイトボード
は紙のコピーやのうて、PCにカラーのまま取
りこめるようになってるんや」と博は答える。
「でも高かったんでしょう？」
「まあ、紙代のランニングコストを考えたらお
得かも知れんがな。事業部長の八破原常務に議
事録はこうしたいと言ったら、二つ返事でOK

してくれたよ」
「ところで、そのあと中野さんにはどう謝った
んですか？」
「それやけどな。思い出すと泣けてくるな」
　博は、ハンカチを取り出し、目頭を押さえた。
「次の日おそるおそる近寄ったんやけど口きい
てくれへんねん。それで、ほとぼりが冷めるま
で耐え忍ぼうと覚悟を決めたら、机の中に封筒
が入ってたんや。俺がそれを見つけたとたんに
中野さんはどっかに行ってしもたんや。変やな
と思ったんやけど、封筒の中身を見て理由がわ
かった。照れくさかったんやな」
「何が入ってたんです？」
「A4用紙で10枚ぐらいのノートのコピーと手
紙やった」

　手紙にはこう書いてあった。「昨日は突然怒り

黒：相手の言ったこと

青：見出し／テーマ

赤：重要事項（その場で赤で書くのは
　　難しいのであとで囲む）

緑：自分の思ったこと、アイデア
※色にこだわらなくていい／区別が本質

四色ボールペン・メモ法

1

2

3

4

 ▼図4　四色ボールペン・メモ法

84 - Software Design84 - Software Design

出してごめん。これは私が新人時代に八破原課長
からアセンブラマクロのレクチャーを受けたとき
のノートです。字は汚いけど、わかりやすいと思
います。これを読んでもわからないことがあった
ら聞いてください」
「ほんまわかりやすいノートやった。こうやっ
てノートって取るんやなという見本のような
ノートやったな。俺もすぐに手紙を書いたよ。
『本当に助かりました。ありがとうございまし
た。お礼にいっぱいおごりますので、今日の帰
りに飲みにいきましょう』って」
「それで、どうなりました？」
「うん。新人時代でお金もなかったんや。で、こ
こに連れてきた。そしたら、また怒られてん。
『あこがれの美人先輩をこんな貧乏くさい店に
連れてくるってどういうこっちゃ？　しかも

"おかめ " 注5やと？　バカにしてるんか！？』。
そう言いながら、むちゃくちゃ飲んで、最後は
からんできたけどな」
「ところで、前回も気になったんですが、中野
先輩という方はもう退職されたんですか？」
「ん？　寿退職したとか？　そんなタマか。そ
うか名字が変わったから、わからへんねんな。
人事に高木部長っておるやろ。あの人や」
「あの～」
「何？」
「その高木部長なら、さきほどから次長の後ろ
の席で飲んでおられますが
……」

　振り返ると、高木人事部長
が博をにらみつけていた。
「出来内クン、キミ偉く
なったねぇ」
「あ。いや、その」
「誰が"タマ"やねん？」
「いえ。あの……」
「今度のボーナス覚悟しと
きや」。そう言って高木は
ギャハハと笑った。

「どうやら許してもらえたみたい」と博は小声で
才蔵に言う。
「それからなあ、恥ずかしい昔話は盆と正月ぐ
らいにしときやぁ」と高木部長がとどめを刺し
た。ずっと聞き耳を立てていたらしい。
「次長にも頭の上がらない人がいるんですね」と
才蔵。
「そんな人ばっかりや。ところでな、君も最近
はかなりわかってきたようやけど、そろそろ人
に教えるということも意識せなあかんよ」
「はあ」
「協力会社の人に教えなあかんという実務的な
意味もあるが、うちのグループでは2年目に
なったら新人研修の講師をするのが伝統なんや」
「えっ。ほんまですか？」
「ああ。今年はたまたま2年目の社員がおらん
かったから高飛車にお願いしたけど、来年は君
にやってもらわんとあかん。今から準備しとか
んとなあ」

　一難去ってまた一難。次長はグループの伝統と
いうけれど、これって先輩への恨みを後輩で晴ら
すというシステムではないかと疑問を持った才蔵
であった。

注5） 大阪弁では、変な顔の女性のこ
と。

第2特集 超効率的勉強法
忙しいITエンジニアのための

84 - Software Design Feb. 2013 - 8584 - Software Design

第 章2
お前はノートも
ロクに取れへんやろ？

四色ボールペン・メモ法

　マインドマップや「東大合格生のノート」などがも

てはやされています。僕はそういうものを否定する

つもりはありません。

　マインドマップはアイデアを出したり、思考をク

リアにしたりするのにはすぐれたツールだと思いま

すし、「東大合格生のノート」も、すでに知っている

ことのまとめなおしという意味では非常にすぐれた

ものだと思います。

　ただ、議事録をマインドマップで書くというのは

違うと思うのです。打ち合わせには時間軸があり、

経緯が重要なことが多いからです。最後のまとめを

マインドマップ化するのであれば、それも一つの方

法とは思いますが、1枚のマインドマップで議事録

だとするのは無理があります。

　またノートについても、講義の最中に話を取捨選

択して、きれいにまとめながら書くというのはかな

り難しいと思うのです。講義の内容があらかじめわ

かっているとか、よほど頭がいいとか、そういうこ

とならわからなくもない。しかし、そうであれば講

義を受ける必要があるのでしょうか？

　もちろん考えを整理し、体系化するために受ける

講義や研修もあります。その際には「東大合格生の

ノート」は模範的でしょう。でも、日々新しい知識

を得るために受ける講義やレクチャーに関しては、

「東大合格生のノート」は無理があるというのが僕の

考えです。

　ところで本来議事録とノートは違うものですから

別々に議論すべきなのかもしれません。ただ、僕の

場合はたまたま似たような方法論だったので、同じ

話としてまとめました。もしそこで混乱してしまっ

た人がいたら申し訳ありません。

　ただ、似たような方法論になる理由はあります。

それは、仕事の現場において人から話を聞くことは

すべて勉強であるという考えが、僕にはあるからな

のです。

　たとえば、今回の話のように先輩が一通りの技術

的なレクチャーをしてくれることがあります。これ

は間違いなく勉強です。また、客先でヒアリングを

することがあります。これも必ず新しい知識が得ら

れるわけで、やはり勉強なのです。そして、会議も

そうなのです。会議というものも新しい知識・情報

が得られる場です。というより、そういう会議でな

いと意味がないと思っています。そういう場での

ノートや板書も他の勉強と同じように愚直に書き

とっていくべきだと思うのです。

　僕は、仕事でファシリテーターをすることがあり

ます。僕の流儀は板書をしながらファシリテーショ

ンをするというものです。終わったあと板書がうま

いねと褒めていただくことが多いのですが、何のこ

とはない。伊達直人式メモの取り方を実践している

に過ぎません（写真1）。

　少なくとも学んでいる間は、愚直に写すというの

が一番効率的です。よくセミナーをICレコーダー

で録音している人がいます（もちろん許可を取る必

要がありますが）。何度も聞きなおす時間のある人

はそれでも構わないと思います。ただ、ほとんどの

人はそんなに時間を取れないでしょう。僕も取材に

行くときは、保険として録音しますが、聞きなおす

ことはほとんどありません。基本的にメモから記事

を起こします。録音に頼ると、（僕の場合は）どうし

ても真剣味が失われるからです。

　愚直に書くという意味では、本文では触れません

でしたが、インストール記録なども一挙手一投足を

メモするのが良いでしょう。これは、僕のようなイ

ンフラ技術者には財産になりました。

　メモするときはとにかく考えないことです。何を

残そうか・どうまとめようかなどと判断している間

にも、相手はどんどん話を続けます。その分漏れま

す。考えないことが一番能率的なのです。人は考え

ていなくても、突然アイデアが出ることがありま

す。それも書き留めておけばいい。

　愚直が一番効率的なのです。

▲写真1　筆者の板書

Column

86 - Software Design86 - Software Design

　入社2年目の春。青二才蔵は、少し慢心してい
た。
　同期30人ぐらいと万博公園で花見をしたとき
に、仕事や職場の話になった。そのときに同期の
話が少し幼稚に感じられたのだった。ああ、こい
つらは伊達直人式速読法も、四色ボールペン・メ
モ法も知らへんのやなと気がついて、ずいぶん差
がついたんやないかと思った。何しろ自分はあれ
からすでに100冊の本を読み、その分の読書ノー
トを残した。仕事の記録を愚直に書きつづった大
学ノートももう4冊目が終わろうとしている。蓄
積が違うんや。
　自信を持つのはいいことだ。しかし、慢心はい
けない。仕事にムラができる。一時期は育成担当
だった高飛車に叱られることも少なくなったのだ
が、花見のあと急に叱られることが増えた。
　以前の才蔵だったら、すなおに反省していた。
自分はまだまだだという自覚があったからだ。し
かし、今は慢心しているので反省どころか反発す
ることが多かった。誤字脱字を叱られても、そん
なんある意味しかたないやないか、そのために
チェックする人がおるんや
ろ。こんな具合だった。
　グループリーダーの出来内
博と飲みにいって鬱

うっぷん

憤を晴ら
したいと思うこともあった
が、最近は忙しいらしく誘っ
てくれない。
　才蔵はグレてやると思った
こともあったが、グレる度胸
はなかった。なので不満を抱
えながら日々過ごしていた。
　ゴールデンウィークが明け
た。1週間後には新人が部門
に配属されてくる。最初に1

週間の事業部研修があり、そ

の後部門研修になる。その部門研修の講師の1コ
マを、2年目ながら才蔵は務めることになってい
た。彼の担当は、TCP/IPの基本をルーターなど
の通信機器と絡めて説明するということだった。
　今の才蔵には簡単なことだった。なので、ギリ
ギリになってから準備すればいいと思っていた。
ところが、高飛車が明後日にリハーサルをすると
突然通告してきた。
　まあ1日あれば準備できるやろ、幸い急ぎの仕
事もないし。それに昨年の夏に、出来内次長から
人に教える準備をしておけと言われた経緯もある。
それなりに用意はしていたんや、と高をくくって
いたのがいけなかった。
「何を教えたいんか、さっぱりわからん。ちゃ
んと準備せい。テキストも一から作り直しじゃ
あ！」と高飛車に言われてしまったのだった。
「どう直せばいいんですか？」と質問しても取り
合ってくれない。「自分で考えろや」と返される。
才蔵は、約1年前の配属当時に戻った気分だっ
た。

　その夜。西中島南方の居酒屋「おかめ」で、青二
才蔵と出来内博がビールで乾杯していた。久しぶ
りに博が誘ったのだった。
「高飛車さんは、僕に何か恨みでもあるんでしょ
うか？」
「はあ。何のことや？」

第 章3
人に教えて
はじめてわかる

第2特集 超効率的勉強法
忙しいITエンジニアのための

86 - Software Design Feb. 2013 - 8786 - Software Design

第 章3
人に教えて
はじめてわかる

　才蔵は、今日のリハーサル
の一件を語った。博はテキス
トを見せてごらんと言う。そ
れは分厚い、内容豊富なテキ
ストだった。才蔵の自信作で
ある。
「うーん。青二君は新人に何
が教えたいんや？」
「TCP/IPに関して僕が
知っているすべてです」
「君のコマは何時間だったっ
け？」と博は知っていなが
ら聞く。
「午後の3時間です」
「3時間でこんだけ詰め込も
うということかい？」
「そうです」
「じゃや、このテキストを読んどけというのと
ほとんど変わらんよなあ」

　才蔵は黙ってしまった。確かにそうだ。講師は
要らない気がしてきた。
「3時間って長いようやけど、せいぜい1つか2

つしか教えられへんもんやで」
「はあ」
「まあ、しばらく俺の昔話に付き合え」
　博は、きょろきょろと周りを見回し、自社の社
員がいないことを確かめてから話を始めた。

◆　◆　◆
　1988年の春。出来内博は慢心していた。伊達直
人式速読法で100冊の本を読み、仕事でした作業
の一挙手一投足を書き留めた自称出来内ノートが
もう5冊目になっていた。蓄積が違う。同期とも
はっきり差がついたと感じていた。
　そんなときだった。元育成担当の司五斗優から
こう言われたのだった。
「今年から、部門研修の講師は2年目、3年目を
中心にやってもらうことになった。八破原課長
が今日の役職会議で提案して部長がOKしたん
やそうや。キミはVTAMを新人に教えてくれ」

　博のグループの仕事が最近増えてきた。新人の
配属も増えるらしい。だったら部門研修でVTAM

を教えといたほうがいいだろうということになっ
たのだそうだ。
　横で聞いていた中野あかねが、「出来内クン、す
ごいやん。先生やて。出世したなあ。ギャハハ」
とバカにするように笑った。
　「ふふふふ。まあ、任せてください」と博は返した。
「おおっ！なんや、この自信は。さては慢心とい
うやつやな」と中野も返す。
　「ついては明後日リハーサルをやる。明日はほ
かの仕事はええから、テキストを作ってくれ」と
司五斗が宣言した。
　急なことだったが、博には本当に自信があった。
VTAMを新人に教えるぐらいなんてことはない。
俺の知っていることをすべて教えつくしてやる。
　そして、二日後。博は久しぶりに伊達直人のポ
ケベルに連絡を入れたのだった。
　夕方。居酒屋「おかめ」で、博はビールを飲みな
がら伊達直人を待っていた。ポケベルを入れてか
ら1時間後に現れる約束だった。
　きっちり1時間後。立てつけの悪い横開きのド
アを乱暴に開けながら、濃紺のダークスーツに虎
のマスクの伊達直人がやってきた。走ってきたの
か息が荒い。なんて律儀な人なんだろうと博は感
心した。
「すまん。待たせたか？」
「いや。ぴったりです。ありがとうございます」

88 - Software Design88 - Software Design

「うむ。とりあえずビールや。で、何があった？」
　博は、今日の午後の新人研修のリハーサルの件
について語った。
　自信満々でリハーサルの場に臨んだのであった
が、相手を務めてくれた司五斗も中野も全否定。
中野は「新人にそんなん言うてわかるかぁ！」だし、
司五斗に至っては「最近、ようわかってきたんか
なと思ったけど、失望したわ」である。そして、例
のごとく「何が悪かったんでしょうか？」と聞いて
も、口をそろえて「自分で考えろ！」だった。
「『新人にわかるかぁ』と言われても、僕だって
わからんけど、辛い思いをして勉強したことな
んです。それもあって、僕が知ってることは全
部伝えたいと思ったんですよ」
「まあ、気持ちはわからんでもないけどな。と
りあえずテキストを見してみいや」

　それは100ページぐらいあるテキストだった。
普及し始めたばかりの当時のワープロで作ったの
で、ほとんどが箇条書きの文字だった。ときどき
手書きの図表が入っている。
「うーん。これはすごいなあ。あれからよう勉
強したんやな。この1年の蓄積がようわかるで。
で、これを何時間で教えるんや？」
「3時間です」
「ああ。だったら講師は要らんな。このテキス

トだけ渡せばええ」
「何でです？」
「3時間でこれだけ教えるのは無理やからや。逆
になーんにも残らん。それやったら、これを
じっくり読んどけちゅうほうがよっぽどましや」

　そんなもんだろうか。博はまだ疑問に思ってい
た。
「あのなあ。3時間って、1つか2つ教えるのが
せいぜいの時間やねん。あ。知識って意味やな
いで。ポイントという意味や。このテキストか
らは、ポイントがまったく伝わってこないんや」

（ポイントかあ。そう言えば何がポイントなんや
ろう？　VTAMの初心者がまず知らないといけな
いことやろうなあ。それって何やったかな？）博
が自問自答していると、伊達直人が続けて言う。
「ポイントを1つか2つに絞れるってことは、そ
のことについてよくわかってるってことと同じ
や。つまりポイントが絞れんうちは、まだまだ
わかってないということになるな」
「なるほど。僕は知識が蓄積されれば一人前だ
と思ってましたけど、そうではなかったんです
ね」

　博は自分の慢心に気がついた。知っているだけ
で、わかっていなかったのだ。
「うむ。そういうことや。だから、名人や達人

第2特集 超効率的勉強法
忙しいITエンジニアのための

88 - Software Design Feb. 2013 - 8988 - Software Design

第 章3
人に教えて
はじめてわかる

と言われる人たちは、自分の奥義を一言で語ろ
うと腐心するんや」

　たとえば、柳生宗矩の『兵法家伝書』という書物
がある。新陰流の極意を記したものであり、最後
に「一心多事に渉り、多事一心に収まる。畢

ひっきょう

竟茲
（ここ）に在り」と書かれている。つまり兵法（剣法）
とは心の問題というのである。もちろん、これだ
けでは兵法についてはまったくわからないので、
ノウハウの部分も同書には書かれているのだが、
しかしこの結論部分を忘れると本当の意味では役
に立たない。こういう最重要ポイントがはっきり
と言えるということがわかっているということだ、
と伊達直人は説く。
「ちょっと難しい話になったけど、なんとなく
そんなもんやとわかってくれたらいい。それに
ここまでの達人になろうというのは、しょせん
無理なことやしな。でも、心がけていたら近づ
くことはできるんやないかと、わしは思ってる。
柳生宗矩も50歳を過ぎてからようやくわかっ
てきたと書いてたし」
「はあ。道は遠いですね」
「うむ。道は遠い」
「ポイントについては考えてみます。それをど
う教えたらいいでしょうか？」
「一つは、話の軸をはっきりさせることやな。そ
のVTAMっちゅうのはようわからんが、一言で
いえば何をしてるもんなんや？」
「VTAMというのはホストコンピュータ上で動
くソフトウェアなんです。端末から受け取った
データを適切なアプリケーションソフトに渡し、
アプリケーションソフトから受け取ったデータ
を適切な端末に送ります」
「ふむ。中継役ということかな？　でも、VTAM

以前にも端末やアプリケーションソフトはあっ
たんやろ。そうやったら中継役もおったんと
ちゃうかな？」
「おや。なんだか詳しいですね」
「いや。素人がヤマ感で言うただけや」
「実際そうなんです。ただ、以前は端末とアプ
リケーションは密接に結びついていて融通性が
ありませんでした。VTAMのVはVirtualつま

り仮想的という意味で、アプリケーションは
元々ソフトウェアですが、端末も仮想的なもの、
たとえばプログラムなどでもいいということに
なんです。つまり、アプリケーション同士の通
信なども可能となり、以前よりずっと融通性が
高くなって、可能性が広がったんです」
「ふむ。いま語ってくれたことがVTAMのポイ
ントとちゃうか？　もしそうやったら、兄ちゃ
んはVTAMのことが本当はわかってたんや。だ
けど、言語化できてなかった。それが、わしに
教えたことで言語化できたってことやないやろ
か？」
「ほんまにそうです。僕はいまはじめてVTAM

のことがわかった気がします。なんか感動して
ます」
「それが人にものを教える効用なんや。人に教
えようと苦心して、はじめて自分でもわかる。
ただ知識を書き連ねても、俺はこんだけのこと
を知ってるわいという自慢に過ぎへん。そこを
叱られたんとちゃうやろか？」

　本当にそうだと博は思った。先輩らは理不尽に
怒ってたわけやなかったんや。
「人間、わかってることしか伝えられへん。さっ
きまでのままやったら、新人たちからもブーイ
ングやったやろうなあ。そして、兄ちゃんはそ
の理由がわからんまま、新人たちをアホやと決
めつけてたかもしれんなあ」

　そうやとしたらゾッとする。いや、たぶんそう
なってたやろう。何しろ慢心してたんやから。
「さて、いま教えてくれたポイントを軸にすれ
ばええ。それをどうやって伝えるかや」
「そうですねえ。いまのやり取りからすると、以
前とどう変わったかという話が必要だと思いま
す」
「そうやな。出てきた背景とそれで変わったこ
と。つまり効用とかメリットとかかな」
「もちろん。VTAM自体が何か、つまりしくみ
の話も要りますね」
「うむ。あとは何やろ？」
「具体的なイメージでしょうね。たとえばVTAM

を利用するときのプログラムの例とか」

90 - Software Design90 - Software Design

「そうやな。具体的な話もないと伝わらへん。そ
ういう意味では、しくみの話をするときにも、
新人たちにわかる日常的な話になぞらえて説明
してやることも必要やろな」
「なるほど。あとは事例とかでしょうか。うち
のグループで実際にやった仕事を例として説明
する。こんなことができるんやよ、って」
「うむ。たぶん、そのぐらいでええやろ。5W1H

というが、ポイントを教えようと思ったら、そ
れにまつわるWHY、WHAT、HOW、WHERE

を説明することや。ちなみにこの場合の
WHEREはどこで使われてるか、つまり事例や
ね。残りのWHO、WHENは付随的な項目と
思ってええ。たとえばWHYを
説明するときには、WHOや
WHENの話もするやろ。でもメ
インの話ではないちゅうこっ
ちゃ」（表1）

　伊達直人は、ビールを飲み干し、
お代わりを頼んでから続けた。
「あとは、最後にまとめを入れる
ぐらいかな。これは結構重要な
ことなんや」
「どうしてです？」
「人間の記憶は時間とともに失わ
れる。振り返りがないと、翌日
にはほとんど忘れてしまう。し

かし、最後にここが一番重要やったんやでえと
もう一度言えば、そこだけは結構長い間定着す
るもんなんや。だから、ポイントを最後にもう
1回言うのが大切なんや」
「そういう意味では、演習問題なんかもあった
ほうがいいですよね？」
「おお。それを言うのを忘れてた。それも記憶
の定着という意味で重要なんや。ぜひ入れてや」
「はい」
「そう考えたら、3時間なんてあっちゅう間や
ろ」
「はい。あんなに教えられると思っていたのが
恥ずかしくなってきました」
「そうや。ええこと思いついた。まとめに入る
前に2、3分時間を取って、今日教わったこと
を一言でまとめるという演習をやってもいいか
もしれんな。それで2、3人を指名して答えさ
せる」
「それをやる理由は僕に言わせてください」
「おう。そうきたか」
「人に教えられるということがわかったという
ことだからですよね」
「よっしゃあ！合格や。ええ研修になるやろ。わ
しも陰ながら祈ってるで！」
「ありがとうございます。忘れんうちにいまの
話をメモしときます」（図5）

Why

必須

技術が出てきた背景（Before/After）
昔はどうだった？ この技術でどう変
わった？

What
技術そのものの話～理論・特徴・しく
みなど
受講者が知っていることになぞらえて
話すとよい

How
技術の使われ方、方法論
具体的なコーディング例、使い方のコ
ツなど

Where どこで使われているか？
事例など

Who

派生

Why、Where などで派生的に使う
例）VTAM は IBM が考案した

When
Why、Where などで派生的に使う
例）1987 年のアプリケーション間接
続の事例

 ▼表1　教えるときの5W1H

第2特集 超効率的勉強法
忙しいITエンジニアのための

90 - Software Design Feb. 2013 - 9190 - Software Design

第 章3
人に教えて
はじめてわかる

◆　◆　◆
　舞台は再び現在の居酒屋「おかめ」。
「そうか。僕も慢心してたんですね。それで高
飛車さんが最近厳しかったんや」と青二才蔵。
「うん。俺もそれは感じてたんや。でも、これ
ばっかりは自分で気づかんとなあ」と出来内博
が返す。

「それで、今日誘ってくれたんですね」
「それもあるけど、それよりも新人研修のほう
が気になってた。このままほっといたら青二君
がつぶれそうな気がしてな」
「本当にありがとうございます。このままやっ
たらと思うとゾッとします」
「今の話でわかったかな？」
「はい。大丈夫やと思います」
「よかったで。ほな、がんばりや。期待してる
で」
「ありがとうございます。ところで、研修はう
まく行ったんですか？」
「ん？　まあ。アンケートを見る限りでは良かっ
たんやないかな。まあ、その話はええ。今日は
青二君の講義の成功の前祝いに飲もうやないか」

講義の組み立て方

　僕自身が長い間"知識満載系"の研修をやってき

たので、この話はかなり自虐系でした。たくさんの

ものを持ち帰ってもらうことがサービスだと思って

いたのです。しかし、これはまったく逆でした。知

識を詰め込めば詰め込むほど評判が悪くなっていっ

たのです。

　なぜ、そうなるのかを聞いてみました。すると多

過ぎて何も残らないとのこと。

　それであるとき、ポイントを絞って、ほかはばっ

さり切り捨ててみたのです。そうしたら、かなりの

高評価をいただきました。人はたくさんの知識より

も、何が重要かとか、今すぐ使えることは何かとか

を知りたいものだとはっきり認識しました。

　とはいえ、たとえばSQL入門といったような、

研修自体よりもテキストのほうが価値が高いものも

あります。そういう研修については、テキストは知

識満載でいいと思います。その中で何を持ち帰って

もらうかを考えて、実際に持ち帰ってもらえるかど

うかが講師の腕前なのだと思います。

　さて、本文にも書いたように、ポイントを絞る研

修を実施するためには、まずは講師がポイントをわ

かっていないといけません。何がポイントなのかが

見えることは、そのことについてわかっていること

と同じです。その意味で、「わかろうと思ったら、

人に教える苦心をすること」、これに尽きるのでは

ないでしょうか。

　研修講師でなくてもかまいません。部下や協力会

社の社員に個別に教えるということでもいい。そう

いう機会がなければ、ブログ等に技術解説を書くと

いう手もあります。顧客に説明するのも広い意味で

教えるということになるでしょう。特に顧客に説明

する場合は、ポイントが明確に言語化されていなけ

ればまったく通じません。最高の勉強の機会だと思

います。

　ところで、本文に挙げた「教えるときの5W1H」

を検証しようと思って、本誌のバックナンバーを読

んでみました。新技術の紹介記事などでわかりやす

いなあと思ったのは、ほぼこの原則通りに書かれて

いるようです。教える立場の人は意識的か無意識な

のかはわかりませんが、こういった原則を踏まえて

いるものだとあらためて思いました。

Column

軸を決める（3時間で１つか２つ）
軸とは、最重要ポイントの言語化
（ひとことでいえば）

軸ごとに 5W１Hを考える

記憶を定着させるための演習問題を考える

まとめの言葉を考える
これも記憶定着のため
受講者にまとめをさせる演習も効果的

講義の組み立て方

1

2

3

4

 ▼図5　講義の組み立て方

92 - Software Design92 - Software Design

「この1年よう頑張ったなあ」
　高飛車徹が握手を求めてきたので、青二才蔵は
ちょっと気味悪く思いながらも握手を返した。
　居酒屋「おかめ」を借り切っての部門研修スタッ
フの打ち上げの席のことだった。
　「新人のアンケートを見て、ボクは涙が出そう
になったで」と高飛車。
　才蔵の研修の評判は上々だった。感想欄にはこ
んなことが書かれていた。
「TCP/IPの本質がわかった気がしました。こ
れを基礎にいろいろと自分で勉強していけそう
に思います。」
「2年目でこんな優秀な先輩がいるんだなあ、私
も頑張らないといけないと思いました。」
「全社の集合研修でもTCP/IPの基礎を習いま
したが、そのときはピンときませんでした。そ
れがこんなにクリアになるなんて思ってもいま
せんでした。ありがとうございました。」
「とにかく愚直にノートを取れと言われて、何
でそんなことをしないといけないのか最初は疑
問でしたが、終わってみたら今後の財産になる
ノートが取れたと思います。」

　否定的なコメントはなく、感謝や称賛ばかり
だった。
「ほんま、この1年間辛かった
で」
「えっ？　何がですか？」
「うちのグループの伝統でな、先
輩社員は1年間は新入社員に辛
くあたらんといかんことになっ
てるんや」
「な、何でですか？」
「知らんけど、そのほうが新人
が育つという出来内次長の方針
なんよ」

　出来内博は、才蔵と高飛車の会

話を横で聞きながら、（そう。25年以上続いてい
るわがグループの伝統なんや）と心の中でつぶやい
ていた。そして25年前のことを思い出していた。

◆　◆　◆
　1988年6月中旬。出来内博の所属する通信技術
部の新人研修スタッフは、居酒屋「おかめ」を借り
切って、研修の打ち上げ宴会をしていた。
　司五斗優が博に握手を求めてきた。
「ほんま、この1年よう耐えたな」
「え？　何のことです」
　中野あかねが引き取って説明する。
「去年な、キミらが配属されてくる前に、八破
原課長が私たちを集めて相談されたんよ」
「『今年から文系の新卒男子が配属されてくる。
正直、どうやって育成したらいいか、迷ってる
んや』ってな」と司五斗。

　手取り足とり教えるのがいいのか、突き放して
自力で這い上がるようにするのがいいのか、八破
原はどちらにすべきか悩んでいたのだという。
「三人で2時間ぐらい議論してん。結論は、司
五斗さんと私が鬼になって鍛える、その代わり
課長が陰でフォローする、そういう作戦やった
んよ」
「出来内は、僕のこと鬼やと思ったかもしれん
けど、ほんまは心優しい人間なんで、辛かった
わ」と司五斗。
「私もやで。親切で気立てのいいあかねさんで
有名なのに……」

エピローグ

Epilogue

第2特集 超効率的勉強法
忙しいITエンジニアのための

92 - Software Design Feb. 2013 - 9392 - Software Design

「いや、中野は楽しんどった」
「ギャハハ。多少はそうかも」
　そういうことだったのか。博は
涙が出た。涙もろいのだ。
（ん？待てよ。そしたら、あの伊達
直人というのは？？？）
　そこに八破原がやってきた。
「出来内君。研修のアンケート結
果見たで。ようやったなあ。俺
も誇らしいわ」
「あの～。伊達直人って、もしか
して」
「えっ？　何のことや？　俺は
人前で虎のマスクなんかかぶっ
たりせえへんで」
「それって、自分で正体バラしてますやん……」
と中野が突っ込む。
「うわ、しもた」
　4人は大声で笑った。博だけは泣き笑いだったが。

◆　◆　◆
　舞台は再び現在の居酒屋「おかめ」に戻る。
　博は25年前のことを思い出しながら、（あれ以
来、新人には1年間だけつらく当たるという伝統
ができたんや。中にはつらくて辞めた子もおった
けど、ほとんどが順調に育ってる。間違いではな
いはずや）と振り返っていた。
「そやけど、一人だけええかっこしいがおるな」
　まるで博の心境を見透かしたかのような発言が
聞こえてくる。高木（旧姓中野）あかね人事部長の
声だった。
「げげっ。何をしにきはったんです」とうろたえ
る博。
「出来内クンが、"伝統"をないがしろにしてた
から、一言注意しようと思ってな」

　そこに、事業部長である八破原常務もやってきた。
「なんや、高木部長？　出来内がなんか粗相を
したんか？」
「それが常務。出来内次長ときたら肝心なこと
をしてなかったんですよ」

　高木は、虎のマスクを被らずに新人にアドバイ
スしていたところを目撃したことを告げた。

「どうも高飛車クンだけを悪者にして、自分は
ええ上司を気取りたかったみたいです」
「何やと～！　あれが一番肝心なんやんけ。来
年は部長に推薦しようと思ってたけど、やめや。
きちっと虎のマスクを被ってからやぁ！」

　"伝統"について明かされたことで温かい気持ち
に包まれていた才蔵だったが、このやり取りを見
ていると、自分も将来虎のマスクを被らされる気
がしてきた。そして、そろそろこんな"伝統"は見
直したほうがいいのではと真剣に思うのだった。
ﾟ

筆者プロフィール◆森川 滋之（もりかわ しげゆき）

ITブレークスルー代表。1987年、バブル直前に文学部
卒で大手独立系 ITベンダーに採用された "文系SE"の草
分け。配属直後に "劣等生 "の烙印を押されるが、「おま
えは技術ではトップになれない。プロジェクトマネジ
メントに活路を見いだせ。ただし、マネージャとして
の迫力があるだけの技術は身につけろ」と言われて一念
発起。「技術に強いマネージャ」として、アプリケーショ
ン・インフラ構築チームのリーダーを歴任する。現在
では、最新の ITも業界事情も "なんとなく "わかるとい
う特技を活かして、IT企業のPR記事のライティングや
IT系媒体への執筆に従事する。また IT企業向けに、研
修講師やチームビルディングのファシリテーターなど
も務める。著書に『SEのための価値ある「仕事の設計」
学』（技術評論社）などがある。

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

94 - Software Design

　2012年12月11日、次世代版となるSamba 4

系列（以下Samba 4）の最初のバージョンである
Samba 4.0.0がついにリリースされました。本
稿では、新機能のインストール方法を中心に、
解説を行っていきます。

Samba 4とは

　Samba 4の特徴を一言で表すとすると、Active

DirectoryのDomain Service機能（以下ADDS）

の実装に尽きます。これまでのSamba 3系列で
もActive Directory（以下AD）への参加機能や
AD以前のディレクトリであるNTドメインの機
能は実装されていましたが、ADDSは提供でき
ておらず、長らく懸案となっていました。
　Samba 4の提供形態を理解する意味でも、
Samba 4リリースに至るまでの経緯について、
簡単に紹介します。

Samba 4開発の着手と混迷

　Samba 4の開発が着手されたのは、2003年の
ことです。当時はADへの参加機能を目玉とし
たSamba 3.0.0が無事リリースされた直後であ
り、ADDSの実装を目玉とするSamba 4も比較
的早期にリリースされるものと期待されていま
した。

　しかし、開発は長期化します。最低限のADDS

を実装したTP（Technical Preview）版がリリー
スされたのが2005年、そこからリリースを重ね
ますが、ADDSの複雑さの前に開発は行き詰ま
り感を見せていきます。一方Windows Server

は2003→2003R2→2008とリリースを続けて
いきます。また、Samba 3系列もリリースを重
ね、本来Samba 4で実装する予定だった機能を
徐々に取り込んでいきます。最終的にADDS以
外、Samba 4で実装する予定だった機能の大半
がSamba 3系列に取り込まれました。
　そんな中、Samba 4の開発に大きな影響を与
えるイベントが発生します。2007年12月、EU

からMicrosoft社に対して、独占禁止法違反の
是正命令が発せられ、技術情報の開示が義務付
けられます。開示された技術情報により、Samba

4の開発がようやく加速しました。

そしてデュアルバイナリ化へ

　2009年7月にリリースされたSamba 3.4.0で
は、Samba 4のソースコードが同梱される形で、
ソースコードの共有化が始まり、Samba 4のリ
リースに向けた期待感が高まります。
　ところで、Samba 4では従来のsmbd/nmbd/

winbinddといったレガシーバイナリ注1の機能を
sambaという単一のバイナリに統合することが

緊急
レポート

たかはしもとのぶ　TAKAHASHI Motonobu
monyo@monyo.com／TwitterID：@damemonyo／facebook.com/takahashi.motonobu

Samba 4.0.0 が
やってきた！

SambaによるActive Directoryドメインの構築

注1） 筆者の造語です。

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

94 - Software Design Feb. 2013 - 95

謳
うた

われていたものの、開発はADDSとそれに付
随する各種機能に注力して行われてきました。
さらに 2011年 6月にリリースされたSamba

4.0.0alpha16からは、「暫定」としてレガシーバ
イナリもリリースされるという「デュアルバイナ
リ」形態となります。その後、実環境での運用例
もぼちぼち見られるようになりますが、基本的
にsambaバイナリはADDSに特化させ、ファイ
ルサーバ機能などは並行してリリースされてい
るSamba 3系列を用いる形がSamba Teamとし
ての推奨となりました。
　2011年後半からSamba 4のリリース形態や時
期についての議論が断続的に行われるようにな
ります。sambaバイナリでレガシーバイナリの
機能をすべてサポートできるまでリリースすべ
きでないという意見もありましたが、ADDSを
提供するSambaの早期リリースに対する要望が
高いこともあり、ADDSに特化したsambaバイ
ナリとその他の機能をサポートするレガシーバ
イナリを同梱させ、sambaバイナリのファイル
サーバ機能としては裏で起動したsmbdに処理を
委任する注2という、デュアルバイナリ形態でリ

リースされることになりました（図1）。
　このように、Samba 4は、Samba 3系列の流
れを汲む smbd/nmbd/winbinddといったレガ
シーバイナリと、Samba 4で新たに加わった、
ADDSを提供するためのsambaバイナリが同梱
された形で提供されています。レガシーバイナ
リの機能については、以下の点を除き、Samba

3.6までとほとんど変わるところがありません。

・	security = shareおよびsecurity = serverが
廃止された

・	SMB2.1（大半の機能）やSMB3.0（基本的な機
能）が新たにサポートされた

・	CTDBによるクラスタが正式にサポートされた

　ここからはsambaバイナリ（以下samba）に焦
点を絞って紹介していきます。

Samba 4の機能

　sambaの主要な機能を表1に示します。
　一見してわかるとおり、提供する機能は
ADDSに絞られており、ファイルサーバとして
の使用は非推奨、プリンタサーバ機能は未実装
となっています。ADDSの機能に限っても、お注2） s3fsと呼ばれています。

smbd

Samba 3 系列

smbd

nmbd

winbindd

Samba 4 系列
（デュアルバイナリ化）

smbd

nmbd

winbindd
Samba 4 系列

（当初）

samba

samba

ADDSをはじめ、
Samba 3 系列の
全機能を実装予定

samba のバックエンド
で起動され、ファイル
サーバ機能を提供

Samba 3 系列で
提供していた
各種機能を提供

ADDSに特化

 ▼図1　デュアルバイナリ形態への変遷

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

96 - Software Design

もに大規模環境向けの機能は未サポートのもの
が多いですが、おいおいサポートされていく予
定のようです。個別の機能の詳細については、
ADDSに関するMicrosoft社のWebサイトや参
考文献をご参照ください :-)

Samba 4 のインストール

　それでは、Samba 4をビルド、インストール
してみましょう。レガシーバイナリを意識する
必要がなければ、ビルドは非常に簡単です。

ビルドに必要なパッケージのインストール

　sambaでは、それまで別のライブラリを用いて
いたKerberosやLDAP（Lightweight Directory

Access Protocol）が内蔵になり、パッケージの
インストールが不要となりましたが、一方で新
たにPythonが必須となっています。
　CentOS 6とSqueeze（Debian 6）で最低限必
要なパッケージを表2に示します。
　なお、レガシーバイナリでさまざまな機能を

サポートさせる場合は、これ以外にもKerberos

やLDAP関連のパッケージなどが必要となる場
合があります。

拡張属性、ACLの有効化

　Sambaが使用するファイルシステムでは、拡
張属性、ACL（Access Control List）を有効化し
ておく必要があります注4。ディストリビューショ
ンの方式に基づいて、有効化しておいてくださ
い。たとえばCentOS 6では/etc/fstabファイ
ルに対し、図2のようにaclとuser_xattrという
オプションを追記したうえで再起動する必要が
あります注5。Squeezeでも同様です。

セキュリティ設定

　システムでファイアウォールが有効になって
いる場合は、Sambaが使用するポートをブロッ
クしないように、適切に設定を行う必要があり
ます。同じくSELinuxが有効になっている場合
は、Sambaが使用する各リソースに適切な設定

Samba 4.0.0
sambaバイナリ

Samba 3.6系列、Samba
4.0.0レガシーバイナリ

（参考）Windows Server
2008 R2

Active Directory認証サーバ ◎ × ◎
ドメインの機能レベル ◎ － ◎
FSMOの操作 ○ － ◎
マルチフォレスト、マルチドメイン × － ◎
Samba DCの参加 ○ － －
Windows DCの参加 △（未サポート） － －
RODC ○ － ◎
ディレクトリ複製 ○ － ◎
SYSVOLなどのファイル複製 ×（未実装） － ◎
ADドメインへの参加 × ◎ ◎
ファイルサーバ △（ADDSに必要な範囲） ◎ ◎
アクセス許可 ○ ○ ◎
ドメインベースDFS △（ADDSに必要な範囲） × ◎
プリンタ共有 × ○ ◎
ブラウジング機能 × ◎ ○
◎ Windowsと同等のサポート
○ とくに記載がなければ、一部対応していない機能があるが、実用上ほぼ問題ないレベル
△ 一部機能が実装されている、もしくは動作するが、サポートされていないなど
× 動作しない

 ▼表1　Samba 4の機能

注4） ファイルサーバ機能としてNTVFSを使用する場合、これ
らは必ずしも必須ではありません。

注5） 再起動せずにファイルシステムのオプションを変更して
も、もちろんかまいません。

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

96 - Software Design Feb. 2013 - 97

を行う必要があります。
　具体的な設定方法は各システムのドキュメン
トを参照してください。Sambaの動作確認を行
うという観点では、これらの機構はいったん無
効化しておき、まずはSambaの正常動作を確認
したうえで、徐々に設定を行っていくことをお
勧めします。

Sambaのビルド、インストール

　必要なパッケージをインストールしたら、い
よいよSamba本体のインストールです。Samba

のソースアーカイブはsamba-4.0.0.tar.gzという
名称ですので、適宜ダウンロードしてください。
sambaを動作させるだけであれば、図3のよう
に単にconfigure、makeを行えば十分です注6。

　Samba 4ではwafというPythonベースのビル
ドシステムが用いられており、ビルド中は図4

のような表示が続きます。インストールが完了
すると、従来のSambaと同様、デフォルトでは
/usr/local/samba以下にSambaを構成するファ
イルがインストールされます。

Samba 4 の設定

　現在sambaではADのドメインコントローラ
のみがサポートされています。構築方法として
は、新規に構築するほか、今回は誌面の関係上

 ▼図4　wafによるビルド表示

注3） このほかにgccやmakeなどビルド自体を行うのに不可欠なパッケージ群も必要です。

ディストリビューション名 必要パッケージ
CentOS libattr-devel libacl-devel python-devel krb5-workstation dns-utils
Squeeze libattr1-dev libacl1-dev python-dev attr krb5-user dnsutils libpopt-dev

 ▼表2　ディストリビューションごとの必要パッケージ注3

注6） Samba 4のレガシーバイナリを使用する場合は、従来の
Samba 3系列と同様にいくつかのconfigureオプションを
意識して設定する必要があります。

※ ビルド対象の総数（3757）と、現
在何番目のモジュールをビルド
しているかが各行の先頭に表示
される

 ▼図3　sambaをインストールする

$ tar xzvf samba-4.0.0.tar.gz
$ cd samba-4.0.0
$./configure
$ make
$ su
make install

 ▼図2　ファイルシステムのオプション変更（CentOS 6）

#
/etc/fstab

（中略）
#
/dev/mapper/VolGroup-lv_root / ext4 defaults,acl,user_xattr 1 1
　
 ↑これらのオプションを追加

UUID=23bbc041-41f3-4b05-b065-46784021ce06 /boot ext4 defaults 1 2
/dev/mapper/VolGroup-lv_swap swap swap defaults 0 0

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

98 - Software Design

③連携しない
　ADに格納されるゾーン情報を用いずに、独
自にDNSサーバを構築することもできます。

　特段の要件がなければ、①の内蔵DNSを使用
すれば良いでしょう。

ドメインコントローラの初期設定

　それでは、一番簡単な内蔵DNSを用いる方式
を例にとって、SambaでADのドメインコント
ローラを構築する方法を紹介します。
　設定はsamba-tool domain provisionスクリプ
トで行います。--helpオプションを付けて実行
すると、さまざまなオプションが表示されます
が、大半は通常意識する必要はありません。主
なオプションを表3に示します。
　最低限ドメイン名のFQDNとAdministrator

の初期パスワードは設定が必要です。実行例を
図6に示します注7。ここではsamba400.samba.

localというFQDNを持つドメインを構築してい
ます。またAdministratorの初期パスワードは
P@ssw0rdにしています。
　このスクリプトにより、/usr/local/samba/etc/

smb.confが自動的に生成されます。なおすでに
smb.confが存在しているとスクリプトが動作しま
せんので注意してください。またAdministratorの

扱いませんが、Samba 3のドメインからのアッ
プグレードもサポートされています。
　Samba 4のドメインコントローラとWindows

サーバのドメインコントローラが混在する環境
は、基本的な参加機能は動作するものの、現状
では未サポートとなっています。
　ADにはDNSが必須ですので、ドメインコン
トローラを構築する際にはDNSとの連携方式を
選択する必要があります。次の3通りの方式が
あります（図5）。

①Samba 4の内蔵DNSを使用する
　Samba 4にはDNS機能が内蔵されています。
これにより、Windowsと同様、AD内に格納さ
れるゾーン情報をもとにDNSサービスを提供す
ることが可能となるほか、BINDなど別のプロ
ダクトが不要となります。もちろんセキュアな
動的更新など、Microsoft固有の機能もサポート
されています。

②BIND9のプラグインを使用する
　Samba 4 に は BIND9 の DLZ（Dynamic

Loadable Zone）機能に対応したモジュールが用
意されています。これをBIND9に組み込むこと
で、①と同じくAD内に格納されるゾーン情報
をもとにDNSサービスを提供することが可能と
なります。

Samba

①Samba 内蔵 DNS

参照

内蔵DNS

Active Directory

Samba

②BIND9_DLZ

BIND9 BINDなど

Active Directory

Samba

③連携しない

独自の
ゾーンファイルActive Directory

 ▼図5　DNSとの連携方式

注7） オプションを付けずにコマンドを実行して、対話的に設定
を行うこともできます。

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

98 - Software Design Feb. 2013 - 99

パスワードとして「damedame」のような簡単なも
のを設定するとエラーになるので、必ず複雑な
パスワード（大文字小文字数字記号のうち3種類
以上使用）を設定してください。

smb.confと/etc/resolv.confの修正

　スクリプトが生成したsmb.confの例を図7に

示します。
　基本的にこのsmb.confに変更を加える必要は
ありません。ただし、環境によってはdns forwarder

行が存在しない、もしくは不適切になっている
場合があるので、その場合は適切な値に変更し
てください。
　続いて/etc/resolv.confを、たとえば図8のよ

オプション名 意味
--server-role=[dc|member|standalone] サーバの役割。DCとしてインストールする場合はdcを指定する
--adminpass=PASSWORD Administratorのパスワード
--dns-backend=[SAMBA_INTERNAL|
BIND9_DLZ|BIND9_FLATFILE|NONE]

使用するDNSの方式。デフォルトはSAMBA_INTERNAL（Samba
内蔵のDNSサーバ）

--domain=DOMAIN ドメイン名（通常はレルム名の先頭部分）
--function-level=[2000|2003|2008|2008_R2] ドメインの機能レベル（デフォルトは2003）
--realm=REALM レルム名（ドメイン名のFQDN）
--nobody=USERNAME ゲストユーザとして使用するユーザ名（デフォルトはnobody）
--users=GROUPNAME Domain Usersグループにマッピングされるグループ名（デフォルト

はusers）
--use-ntvfs ファイルサーバ機能としてs3fsではなく、NTVFS機能を使用する
--use-rfc2307 UNIX属性を有功にする
--use-xattrs=[yes|no] NTVFS機能を使用する際に、アクセス許可情報の格納先を指定する

 ▼表3　samba-tool domain provisionスクリプトの主なオプション

 ▼図6　ドメインコントローラの初期設定

[root@centos63-2 ~]# /usr/local/samba/bin/samba-tool domain provision --domain=samba400
--realm=SAMBA400.SAMBA.LOCAL --adminpass=P@ssw0rd --server-role=dc
Looking up IPv4 addresses

（中略）
Server Role: active directory domain controller
Hostname: centos63-2
NetBIOS Domain: SAMBA400
DNS Domain: samba400.samba.local
DOMAIN SID: S-1-5-21-181991817-675121097-4058787377

 ▼図7　smb.confの生成例

Global parameters
[global]
　 workgroup = SAMBA400
　 realm = SAMBA400.SAMBA.LOCAL
　 netbios name = CENTOS63-2
　 server role = active directory domain controller
　 dns forwarder = 192.168.135.2

[netlogon]
　 path = /usr/local/samba/var/locks/sysvol/samba400.samba.local/scripts
　 read only = No

[sysvol]
　 path = /usr/local/samba/var/locks/sysvol
　 read only = No

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

100 - Software Design

うに設定して、DNSサーバとして自分を設定し
たうえで、検索対象のドメイン名を先ほど設定
したドメイン名にしてください。

Samba の起動と動作確認

　それではSambaを起動してみましょう。従来
と異なり、起動するのはsambaバイナリのみで
す。次のように単に起動してください。

/usr/local/samba/sbin/samba

　psコマンドで確認すると、図9のようにsamba

プロセスとsmbd プロセスが起動していること

を確認できるはずです。
　引き続き、DNSの正常性を確認します。図10

のようにSRVレコードをクエリして、適切な応
答が返却されることを確認します。
　さらに smbclientを使ってSYSVOL共有に
Administratorとしてアクセスできることを確認
します。図11に例を示します。

時刻同期とWindowsクライアントからのドメイン参加

　Active Directoryが適切に機能する上では、ク
ライアントとサーバの時刻が同期されている必
要があります。これは手作業で行ってもかまい
ませんが、Active Directoryの標準ではNTPを
用いた時刻同期が行われますので、可能であれ
ばSambaサーバをNTPサーバとしても動作さ
せることがお勧めです。
　CentOS 6、Squeezeともに、インターネット
に接続できる環境であれば、ntpパッケージをイ

 ▼図11　smbclientによるSYSVOL共有のアクセス確認

[root@centos63-2 ~]# /usr/local/samba/bin/smbclient //centos63-2/sysvol -Uadministrator%P@
ssw0rd -c ls
Domain=[SAMBA400] OS=[Unix] Server=[Samba 4.0.0]
　 . D 0 Sun Dec 16 16:48:18 2012
　 .. D 0 Sun Dec 16 18:15:53 2012
　 samba400.samba.local D 0 Sun Dec 16 16:46:55 2012

　 37308 blocks of size 524288. 33580 blocks available

 ▼図9　Sambaの起動確認

　[root@centos63-2 ~]# ps ax | grep samba
　2275 ? Ss 0:00 /usr/local/samba/sbin/samba

（中略）
　2290 ? Ss 0:00 /usr/local/samba/sbin/smbd --option=server role
check:inhibit=yes --foreground
　2293 ? S 0:00 /usr/local/samba/sbin/smbd --option=server role
check:inhibit=yes --foreground

 ▼図8　/etc/resolv.confの設定例

domain samba400.samba.local
nameserver 192.168.135.141

 ▼図10　DNSの正常性確認

[root@centos63-2 ~]# nslookup -type=SRV _ldap._tcp.samba400.samba.local.

 ↑ドメインのFQDN

Server: 192.168.135.141
Address: 192.168.135.141#53

_ldap._tcp.samba400.samba.local service = 0 100 389 centos63-2.samba400.samba.local.

 ↑SambaサーバのFQDN

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

100 - Software Design Feb. 2013 - 101

ンストールすることで、インターネット上の
NTPサーバと時刻同期するNTPサーバを構成
できます注8。
　ntpd 4.2.6以降では、Microsoft社独自のセ
キュアなNTP認証をサポートしています。
Squeezeはntpd 4.2.6以降が同梱されています
ので、図12のような設定を行うことで、この認
証が有効になります。
　ntp_signdディレクトリは、グループをntpd実
行ユーザの所属グループにしたうえで、パーミッ
ションを750に設定してください。
　ここまで設定できたら、Windowsクライアン
トを実際にドメインに参加させてみましょう。
Windowsクライアントからの操作はとくに
Sambaドメイン固有の事項はありません。通常
どおりに参加させます。

Samba 4ドメインの管理

　ドメインの管理については、基本的にWindows

クライアント、Sambaサーバ双方で行うことが
できますが、一部の設定については片側でしか
設定できないものが存在します。以下簡単に紹
介します。

Windowsクライアントからの管理

　RSAT注9などの管理ツールをインストールす
ることで注10、Windowsクライアントからドメイ
ンを管理することができます。
　Active Directoryユーザとコンピュータ、サ
イトとサービス、ドメインと信頼関係といった
各種管理ツールから、ユーザ、グループ、OU

の追加や管理、グループポリシーの管理など、

 ▼図12　NTP認証

 ntpsigndsocket /usr/local/samba/var/lib/ntp_signd/
 restrict default mssntp

注8） CentOS 6では明示的なサービスの起動（もしくはサーバ
を再起動）が必要です。

注9） Windows 7 SP1版は以下から入手できます : http://www.
microsoft.com/ja-jp/download/details.aspx?id=7887

注10） サーバ版のWindowsをクライアントとして参加させた場
合は、サーバに付属の管理ツールで管理ができます。管理
ツールの名称はWindows のバージョンによって多少異な
ります。なお管理ツール以外にスクリプトなどを用いて管
理することもできます。

 ▼図13　Windows 7クライアント上の管理ツールからSambaで構築したActive Directoryを参照する

http://www.microsoft.com/ja-jp/download/details.aspx?id=7887

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

102 - Software Design

単一ドメインに閉じた機能はほとんどが動作し
ます（図13）。

Sambaサーバ上からの管理

　Sambaサーバ上から管理を行う場合はSamba

4で新たに追加されたsamba-toolコマンドで行
います。samba-toolコマンドには従来のnetコ
マンドと同様に、多数のサブコマンドがあり、
サブコマンドごとに多数のオプションがありま
す。主要なサブコマンドを表4に示します。サ
ブコマンドごとのオプションについては、各サ
ブコマンドに対して--helpオプションを指定す
ることで確認できます。
　検証目的のドメイン構築だととりあえず無効
にしておきたいパスワード複雑性を含むアカウ
ントポリシーですが、（なぜか）Default Domain

Policyを変更しても反映されないので注意して
ください。図14のようにsamba-toolコマンドで
設定を変更する必要があります。

DNSサーバの管理

　ゾーンの作成やゾーン内のリソースレコード
の管理などは、Windows側の管理ツール、samba-

tool dnsコマンドいずれでも可能です。
　DNSサーバ自体の各種プロパティの設定につ
いては、今のところ設定を変更する方法はなさ
そうです。

Sambaユーザ、グループの管理

　従来のSambaでは、Samba上のユーザやグ
ループに対して必ず対応するUNIXユーザやグ
ループを作成する必要がありましたが、Samba

4のsambaバイナリでは、単にドメインコント
ローラとして使用する限り、この処理が基本的
に不要となりました。
　何らかの用途で対応するUNIXユーザを作成
したい場合は、Winbind機構の設定を行い（図

15）、/etc/nsswitch.confにwinbindというキー
ワードを追加することで（図16）、内蔵されてい
るWinbind機構により作成されたUNIXユーザ

サブコマンド 説明 Windows管理ツールからの設定可否
delegation 委任の管理 可能
dns DNSサーバのゾーン管理 可能
domain demote ドメインコントローラからの降格 不可
domain level ドメイン、フォレスト機能レベルの設定 可能
domain passwordsettings アカウントポリシーの設定 不可
drs ディレクトリ複製の管理 可能
dsacl ディレクトリのアクセス許可の管理 可能
fsmo FSMOの管理、設定
gpo グループポリシーの管理 可能※
group グループの管理 可能※
rodc RODCの管理 可能
sites サイトの管理 可能※
user ユーザの管理 可能

 ▼表4　samba-toolコマンドの主なサブコマンド

 ▼図14　アカウントポリシーの設定を変更する

samba-tool domain passwordsettings --complexity off

 ▼図15　Winbind機構の設定

ln -s /usr/local/samba/lib/libnss_winbind.so /lib/winbind.so
ln -s /usr/local/samba/lib/libnss_winbind.so.2 /lib/winbind.so.2

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

Samba 4.0.0 がやってきた！
SambaによるActive Directoryドメインの構築

102 - Software Design Feb. 2013 - 103

が表示されるようになります（図17）。
　ユーザのシェルやホームディレクトリは、各々
winbind template shellおよびwinbind template

homedirパラメータで一律設定することはでき
ますが、ユーザごとに個別に設定することはで
きません。またUIDやGIDについても標準では
変更できないようです。

Samba 4 の情報源

　Samba 4のsambaでは、これまでのパラメー
タ主体の静的な設定ではなく、samba-toolコマ
ンドによる動的な設定の比重が高くなっていま
す。さらに、Windowsの管理ツールから多くの
設定が行えるようになったため、設定内容の一
覧化が困難になってきています。
　Samba 4にはsamba-toolコマンドのマニュア
ルページも付属していますが、コマンドライン
のヘルプと同等のざっくりした説明しか記載さ
れていないことなどで十分なドキュメントとは
なり得ていないのが現実です。
　現在もっともまとまったドキュメントは次に
あるSamba WikiのSamba4 AC DC HOWTO

およびそこからリンクされている各種Webペー
ジになりますが、基本的に手順書ベースの簡単
なもので、網羅的な情報とは言えない状態です。

・Samba4 AC DC HOWTO
	 https://wiki.samba.org/index.php/Samba4/
HOWTO

　Sambaのメーリングリストを見ていると、こ
れ以外にもさまざまな設定が散見されます。ド
キュメントの充実が望まれるところです。

おわりに

　今回はSamba 4のsambaバイナリにより実現
したActive Directoryのドメインコントローラ
構築について駆け足で説明を行いました。Samba

を用いることで、低負荷な環境であれば256MB

程度のメモリのマシンでもドメインコントロー
ラ機能を提供できます。筆者はSamba自身のほ
か、Exchange ServerやSharePoint Serverの
検証のために多くのActive Directoryを仮想環
境上に構築していますが、ドメインコントロー
ラをSambaで実装することで使用するリソース
の大幅な削減が図れました。
　ドキュメントの不足を初め、まだまだ荒削り
なところもあるSamba 4ですが、2011年末頃か
ら徐々に実環境での使用が始まりつつあること
を考えると、一定の品質は確保できているとも
言えそうです。
　インストール自体は単純化されていますので、
まずはSamba 4を用いてActive Directoryをお
手軽に体験してみるのはいかがでしょうか。｢

 ▼図17　Sambaユーザに対応付けられたUNIXユーザの表示

[root@centos63-2 lib]# getent passwd
root:x:0:0:root:/root:/bin/bash

（中略）
ntp:x:38:38::/etc/ntp:/sbin/nologin
SAMBA400\Administrator:*:0:100::/home/SAMBA400/Administrator:/bin/false
SAMBA400\Guest:*:3000011:3000012::/home/SAMBA400/Guest:/bin/false
SAMBA400\krbtgt:*:3000020:100::/home/SAMBA400/krbtgt:/bin/false
SAMBA400\samba01:*:3000021:100:samba 01:/home/SAMBA400/samba01:/bin/false

 ▼図16　/etc/nsswitch.confへの修正

passwd: files winbind
shadow: files
group: files winbind

https://wiki.samba.org/index.php/Samba4/HOWTO

104 - Software Design

NEC Express5800シリー ズ、
BSDコンサルティングがサポート

——NECがBSDコンサルティングのFreeBSD認

定を取得したとのことですが、これからどのような

協業を行っていくのか教えてください。

❖
BSDコンサルティング株式会社 取締役 後藤大地

（以降、後藤）●はい。Express5800シリーズの対象
モデルでFreeBSDが動作するかどうか検証し、問
題があれば協議して対応する、そうした動作検証
サービスに取り組んでいきます。現在のところ、
Express5800/R120d-1M、Express5800/R120d-2M、
Express5800/R110e-1Eというモデルを対象に、
FreeBSDの動作検証に取り組んでいます。要望に
応じて順次検証対象のモデルを広げる予定です。
　FreeBSDが対象のハードウェアをどのように認
識しているか、ちゃんと動作しているか、負荷に耐
えられるかどうかなどを検証します。問題があれば
NEC様と協力して対応していきます。サポート情

報や不具合に対する対策方法などをBSDコンサル
ティングのサイト注1に随時掲載していく予定です。

❖
——サポートするFreeBSDのバージョンはいくつ

になりますか。最新版だけですか？

❖
後藤●FreeBSDプロジェクトがサポートしている安
定版バージョンのうち、直近の2ブランチのリリー
スバージョンについて動作検証サービスを提供する
予定です。たとえば現在ですと、9.1-RELEASE、
9.0-RELEASE、8.3-RELEASE、8.2-RELEASE、
8.1-RELEASEが対象になります。

❖
——FreeBSDだと、まだ7系を採用しているとこ

ろも多いようですが、7系はサポートしないので

しょうか。6系以前を採用しているところも少なく

ないようです。

❖

注1）	 URL https://www.bsdconsulting.co.jp/

FreeBSD正式認定の狙い
 Express5800シリーズ

NECのPCサーバ「Express5800
シリーズ」は多様な顧客ニーズに応える
ためWindows Server OSのみならず、
オープンソースOSへの対応を拡充しています。これ
まで正式にサポートの対象となっていたのはRed
Hat Enterprise Linux（RHEL）とSUSE Linux
Enterprise Server（SLES）の2つで、そのほかの
OSについては動作確認の情報のみが公開されると

いった状況でした。このたびBSDコ
ンサルティングとの協業により、これら

のOSに加えてFreeBSDが正式に認定され
ることをうけ、NECでExpress5800シリーズを担
当されている久保淳（くぼ あつし）氏とBSDコンサル
ティングの後藤大地（ごとう だいち）氏に、これまでの
経緯と両社のこれからの展開についてお話をうかがい
ました。

FreeBSD
×

Express5800

●聞き手：編集部

FreeBSD正式認定の狙いFreeBSD正式認定の狙い

https://www.bsdconsulting.co.jp/

Feb. 2013 - 105

後藤●今のところ、要望があれば別案件として対応
することになるだろうと考えています。バージョン
があまり離れすぎると、労力の割にコストが見合わ
なくなってくるので、ケース・バイ・ケースで判断
するしかないという現実があります。対応できるこ
ととできないことがあるので、そのあたりの判断も
必要になります。
　サポート対象外のバージョンの扱いに関しては、
クライアント様と直接交渉するか、NEC様とのス
キームの中で行うのかは、やはりケース・バイ・ケー
スでの判断になると思います。古いバージョンを使
い続けていると、新しいハードウェアで利用できな
い、または性能が発揮できないといった問題も出て
きますので、できればサポートサービスではなく、
アップグレードコンサルティングのほうで最新バー
ジョンへ移行することをご検討いただきたいと考え
ています。

FreeBSD認定に
至った経緯

——NECはこれまでもオープンソースのオペレー

ティングシステム（OS）に関しては、動作確認情報

を報告していたと思いますが、今回BSDコンサル

ティングから、本格的にFreeBSD認定を取得する

ことに至ったのはなぜでしょうか。

❖
NEC ITハードウェア事業本部・システム製品技術
グループ 技術マネージャ 久保淳（以降、久保）●ク
ライアント様に幅広いOSでご利用いただくため
に、過去に問い合わせいただくなどのニーズがあっ
たオープンソースのOSを選択して動作確認情報を
掲載しています。FreeBSDの動作確認情報の公開は
2007年5月から開始しています。当時はFreeBSD

4.1-RELEASEでした。2012年12月現在で、過去
のモデルを含め累計20モデルで動作確認情報を公
開しています。
　実際にExpress5800シリーズで、どのOSをお使
いになるかはクライアント様が選択できます。その
ため、OSをNECから購入いただかない場合や、そ

のOSの動作に関するお問い合わせがない場合に
は、どのクライアント様でどのOSが動作している
かをNECではすべては把握できません。
　しかしながら、今回はExpress5800シリーズの
新しいモデルの出荷をはじめたところ、FreeBSDが
動作検証情報に関する問い合わせを多くのクライア
ント様からいただき、それで「実はFreeBSDを使
われているお客様が多い」ということが改めてわ
かったという次第です。
　ハードウェアコントローラベンダーがドライバ開
発をしていないコミュニティベースのオープンソー
スOSについては、NECとして動作確認はできます
が、問題が発生した場合̶̶たとえばネットワー
クが動作しないとか̶̶にカーネルやデバイスド
ライバの開発を含めてNECをはじめハードウェア
ベンダーで対応するのは困難な場合が多い状況で
す。そういったケースではより深い技術を持ったサ
ポート企業が必要でした。
 そして今般、FreeBSDに関して、今のままでは対
応が難しくなっていくと判断し、BSDコンサルティ
ング様の認定を取得させていただきました。今回の
対象モデルに関してはBSDコンサルティング様か
ら対処方法やデバイスドライバをご提供いただきま
すが、今後は製品の出荷段階ではFreeBSDで動作
するようになっている、というスキームを構築して
いきたいと考えています。

⹅⹅写真　後藤 大地氏
BSDコンサルティング株式会社 取締役

FreeBSD
×

Express5800

 Express5800シリーズ

106 - Software Design

❖
——なるほど。そういった背景があったのですね。

具体的に、どのような問題が発生したのかお聞かせ

願えますか。

❖
久保●Express5800シリーズの最新モデルでは、ア
レイボードはLSI社の最新のMegaRAIDを採用し
ています。このアレイボードのFreeBSD向けドラ
イバはLSI社から提供されました。しかしながら、
導入にあたっては多少の操作が必要で、FreeBSDの
古いバージョンではそのままでは起動ができません
でした。そのため、起動時にカーネル内部のデバイ
スドライバを無効にするなどの操作が必要です。
　また、オンボードのネットワークは従来のIntel

チップからBroadcomのBCM571X系のチップへ変
更しました。FreeBSDのソースにはチップ名の記述
がありますが、実はコントローラを認識する程度
で、充分に動作しないということが、今回の活動の
中で判明しました。こうした状況に対応するために
もBSDコンサルティング様との協力体制が必要だ
と実感しました。現在では、いくつかのモデルで検
証作業を開始してもらっていますし、今後さらに対
象モデルを拡充し、NECのサイトに情報を掲載して
いく予定です。

❖

——検証作業はどの程度進んでいるのでしょうか。

❖
後藤●サポートするバージョンすべてについて一気
に対応方法を提示するのは時間的に難しいので、最
新版のリリースバージョンから順次結果を報告して
いく予定です。要望があるクライアント様には個別
にも対応しています。一般情報は先ほどのBSDコ
ンサルティングのサイトに掲載していきますので、
よろしくお願いします。

意外（？）と使われている
FreeBSD

——FreeBSDを使われている企業というのは、結

構多いものなのでしょうか。弊社でも内部システム

はFreeBSDベースで構築していますが。

❖
久保●そうですね、いくつかのインターネット事業
者様でFreeBSDを採用されていることは、業界的
にもよく知られていると思いますが、今回の件で、
多くの企業様が採用していることが改めてわかりま
した。

❖
後藤●最近だと、パナソニックさんがスマートビエ
ラのOSとしてFreeBSDを採用したニュースが目
新しいところでしょうか。高性能アプライアンス、
組み込み、家電、ゲーム機、エッジサーバ、ISP/ホ
スティング、社内システムなどいろんなシーンで
FreeBSDが使われているのですが、表には出てき
ませんね。

❖
——弊社の読者の方々にもFreeBSDは需要が高い

ですし、実際には多くのシーンで使われているんで

しょうね。

❖
後藤●FreeBSDを大量に導入する企業様では、あ
らかじめFreeBSDが動作するハードウェアに的を
絞ってハードを調達する傾向があります。どのハー
ドで動作するか検証する手間を省きたいからです。
FreeBSDを積極的にサポートしてくれるベンダー

⹅⹅写真　久保 淳氏
日本電気株式会社 ITハードウェア事業本部・システム製
品技術グループ 技術マネージャ

FreeBSD正式認定の狙い

Feb. 2013 - 107

作検証サービスを提供できますので、ハードウェア
ベンダーとしてもクライアントとしても利益のある
話ではないかと思います。
　対応してほしいモデルがあれば、NEC様のほうに
プッシュしていただきたいです。BSDコンサルティ
ングとしては、FreeBSD対応を謳

うた

ったハードウェア
が市場に増えることを喜ばしいことだと考えていま
すので、今後もより多くの製品の動作検証に取り組
みたいと考えています。そのためには、まずクライ
アント様からのお声がけが必要ですね。s

もありますので、そうしたベンダーのハードウェア
の組み合わせに絞ってマシンを調達するといったス
タイルです。
　これからはそうしたスタイルに加えて、NEC

Express5800シリーズも検討対象に追加できるよう
になると思います。Express5800シリーズの動作検
証対応モデルに関してはあらかじめFreeBSDの動
作検証が実施されるようになりますから、購入時の
検討対象として利用しやすくなるのではないかと思
います。要望があればより多くのモデルに対して動

　NECはデータセンターやIDC市場、企業内データセ

ンター、オフィスでの利用、現場に設置しての稼働な

ど、さまざまなビジネスシーン向けに多種多様なPC

サーバ「Express5800シリーズ」を提供しています。ス

ケーラブルHAサーバ、SIGMABLADE、ftサーバ、ア

プライアンスサーバInterSec、スタンダードラック

サーバ、ECO CENTER、スリムサーバ／水冷式スリム

サーバ、スタンダードタワー、Gモデルなど、国内向け

出荷に強い実績があります。

　BSDコンサルティングがサポートを開始したのはこ

の中のスタンダードラックとECO CENTERです。こ

れらラックサーバは、ほかの競合プロダクトと比較し

て省電力性が高いこと、40度での稼働をサポートして

いること、FreeBSDをはじめOSS動作確認を提供し

ているといった特徴があります。

　省電力は国内市場の要望として優先度の高いものに

なっています。大震災以降、国内のベンダーは省電力

のラックサーバに対して強い興味を示しています。国

内企業向けの出荷業績が強いNECでは、こうした要望

を汲み取って高い省電力性を実現したラックマウント

サーバの提供に注力しています。

　フロント側からノードの挿抜が可能になっているな

ど保守性を考慮したハードウェア設計、優れた運用管

理を実現するEXPRESSSCOPEエンジン3の搭載な

どもポイントです。BMCのソフトウェアリセットのみ

ならずハードウェアリセットに対応しているところな

ども、細かいところですが気の利いた設計になってい

ます。

Express5800シリーズポータルサイト
 URL http://www.nec.co.jp/exp/

Column　PCサーバExpress5800シリーズ

⹅⹅写真　�FreeBSD動作検証の対象となっているExpress5800/R120d-1M（左）、Express5800/R120d-2M
（中央）、Express5800/R110e-1E（右）

http://www.nec.co.jp/exp/

108 - Software Design Feb. 2013 - 109

　今回は、IPv6プロトコルとアドレス管理につ
いて取り上げます。
　多くのIPv6の教科書では、表1のようなIPv6

の特徴が挙げられています。しかし、これは
1990年代の IPv6標準化開始当初のもので、そ
の後 IPv4への機能追加により、IPv4でも普通
に利用できるようになっているものも少なくあ
りません。結果として、表1にあるような特徴
でのIPv4との違いは、「アドレス空間がとても
広い」という1点に大きな違いがあるということ
になってしまいます。
　そうは言っても、実際には両者にはプロトコ
ル互換性がなく、IPv6と IPv4を相互接続させ
るには特別な処理が必要になるなど、運用する
には押さえておかなければいけない違いがいく
つかあります。

ちょっと前までの
IPv6プロトコルの説明

　ここでは「IPv6の基本」として、そのプロトコ
ルについてIPv4との比較から考えてみます。違
いを10個に絞って説明します（表2）。

①プロトコルの互換性がない

　IPv4パケットのヘッダの宛先や送信元として
IPv6アドレスを指定することはできません。逆
に、IPv6パケットのヘッダの宛先や送信元に
IPv4アドレスを指定することもできません。
IPv4とIPv6で相互接続性を確保するためには、
各種移行／共存技術（トランスレータ、アドレス
マッピング技術、トンネル接続など）を利用しま
す。

②アドレスの長さが変わった

　図1は IPv4アドレスと IPv6アドレスのアド
レス設計の違いを示した図ですが、全長が32

ビット（IPv4）から128ビット（IPv6）に長くなっ
ています。IPv4ではホストに使えるアドレスを

今押さえておきたい
IPv6プロトコルの中身

押さえておきたいIPv6と
IPv4の10個の違い

第3回

IPv6普及・高度化推進協議会　IPv4/IPv6共存WG　アプリケーションのIPv6対応検討SWG
廣海緑里 HIROMI Ruri　渡辺露文 WATANABE Tsuyufumi　新善文 ATARASHI Yoshifumi　藤崎智宏 FUJISAKI Tomohiro

特徴 説明
アドレス空間の拡張 32ビット（約34億個）から128ビット（約340澗個）へ拡張
固定長ヘッダ、階層化アドレス構造 ヘッダを固定長とすることで，ルータなどへの処理負荷を軽減
プラグ&プレイ アドレス自動設定機構の標準装備
IPsecの標準搭載 暗号化技術を標準搭載
マルチキャストの標準搭載 マルチキャスト技術を標準搭載
移動体通信への対応 Mobile IP による固定網と移動網のシームレス化

表1　IPv6の主な特徴 ▼

108 - Software Design Feb. 2013 - 109

確保するために、1つのセグメントの収容端末
数からマスク長を決めてセグメント分割すると
いう、アドレス数をものすごく節約する運用が
行われてきました。

（例）32ビットのうち、/29でサブネット分割し
て、端末6台のアドレスを確保する

　一方、IPv6では真ん中でネットワークと端末
を区切るのが一般的で、ルータとルータの接続

用などでたとえ2台しか機材がない場合でも/64

のネットワークが利用できます。

（例）128ビットのうち/64で分割し、64ビット
分全部端末に払いだす

　このように、すべてのサブネットを/64で分
割した運用が可能になります。たとえば、ISP

から/48を割り振られた場合、16ビット分のサ
ブネット数（65,536）があり、たいていの企業で

押さえておきたいIPv6と
IPv4の10個の違い 第3回

図1　IPv4とIPv6のアドレス運用 ▼

ネットワークアドレス
29ビット

ホストアドレス
3ビット

※ネットマスク29ビット（255.255.255.248）の場合

8 8 8

IPv4（32ビット）のアドレス運用

サブネットプレフィックス
（ネットワーク アドレス部）

64ビット

インターフェース ID
（ホスト アドレス部）

64ビット

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

IPv6（128ビット）のアドレス運用

IPv4との違い どう変わったか
① プロトコルの互換性がない IPv4パケットのヘッダの宛先や送信元として IPv6アドレスを指定すること

はできない
② アドレスの長さが変わった 32ビットから128ビットになった。ネットワーク部とホスト部の長さも変

わった
③ アドレスの表現形式が変わった 10進数とピリオド（.）という表記から、16進数とコロン（:）になった
④ HTTPのリクエストなどで使う

URLの書き方が変わった
FQDNを用いる場合は同じ。IPアドレスを直接指定する場合は []で囲む。
(HTTP/HTTPS等で使うURIの規定)ソフトウェアプログラム内での参照で
は、プログラミング言語によって作法が違うので必ず確認する（" "で囲む場
合など）。ローカルアドレスではインターフェース IDも付く

⑤ 端末に複数のアドレスが付く IPv4と IPv6、IPv6のローカルアドレスとマルチキャストアドレスとグロー
バルユニキャストアドレス……のようにたくさんのアドレスを利用する

⑥ 端末へのアドレス設定方法が
変わった

LAN内でDHCPによる自動設定が一般的だったが、prefi x情報とイーサネッ
トアドレス由来の端末アドレスを組み合わせて使う機構を利用

⑦ IPアドレスを直接指定する場合、
IPv4と IPv6が共存している環境
では処理順序決めが必要

⑧ IPv6処理のために開発言語の
拡張がされている

アドレス構造が変わったため IPv4依存の処理関数などは利用できない。IPv4
と IPv6共存のための処理関数が増えている

⑨ 名前解決（DNS）に IPv6専用の
レコードがある

DNSでホスト名から IPv6アドレスを取得するには、AAAA レコードを参照
する。逆引きは変更ないが、運用がされないケースが多い

⑩ 通信の始め方が変わった IPv6では、通信開始時にPath MTU Discoveryという転送するパケットサイ
ズの調整が行われる。IPv4のように中継ノードでのパケットフラグメント
処理は行われない

IPv4との違い どう変わったか
① プロトコルの互換性がない IPv4パケットのヘッダの宛先や送信元として IPv6アドレスを指定すること

はできない
② アドレスの長さが変わった 32ビットから128ビットになった。ネットワーク部とホスト部の長さも変

わった
③ アドレスの表現形式が変わった 10進数とピリオド（.）という表記から、16進数とコロン（:）になった
④ HTTPのリクエストなどで使う

URLの書き方が変わった
FQDNを用いる場合は同じ。IPアドレスを直接指定する場合は []で囲む。
（HTTP/HTTPSなどで使うURIの規定）ソフトウェアプログラム内での参照
では、プログラミング言語によって作法が違うので必ず確認する（" "で囲む
場合など）。ローカルアドレスではインターフェース IDも付く

⑤ 端末に複数のアドレスが付く IPv4と IPv6、IPv6のローカルアドレスとマルチキャストアドレスとグロー
バルユニキャストアドレス……のようにたくさんのアドレスを利用する

⑥ 端末へのアドレス設定方法が
変わった

LAN内でDHCPによる自動設定が一般的だったが、prefi x情報とイーサネッ
トアドレス由来の端末アドレスを組み合わせて使う機構を利用する

⑦ IPアドレスを直接指定する場合、
IPv4と IPv6が共存している環境
では処理順序決めが必要

通信相手にパケットを送る場合、送信元アドレスを IPv6にするのか、IPv4に
するのか、IPv6はどのアドレスを使うかなど、処理順序の取り決めが必要

⑧ IPv6処理のために開発言語の
拡張がされている

アドレス構造が変わったため IPv4依存の処理関数などは利用できない。IPv4
と IPv6共存のための処理関数が増えている

⑨ DNSに IPv6専用のレコードがあ
る

DNS でホスト名から IPv6アドレスを取得するには、AAAA レコードを参照
する

⑩ 通信のしくみ、通信処理が変わ
った

Path MTU Discoveryというしくみで、End to Endで転送するパケットサイ
ズの調整が行われる。IPv4のブロードキャストのarpから、マルチキャスト
を使うndpが導入された

表2　IPv4のみの運用から変わる点 ▼

110 - Software Design Feb. 2013 - 111

は十分なスペースを確保できます。サブネット
マスクの算出に苦労していた管理者にとって、
IPv6は管理が楽になり、管理に使っていた時間
を別のことに振り分けられるようになります。

③アドレスの表現形式が変わった

　IPv4アドレスでは、32ビットを8ビットずつ
区切って10進数で表記し、区切り文字には「.」
（ドット）が使われていました。

（例）192.0.2.1

　IPv6アドレスでは、128ビットを16ビットず
つ区切って16進数で表記し、区切り文字には「:」
（コロン）を使います。また、IPv6ならではの表
現形式として、区切った16進数の先頭のゼロは
省略可能だったり、ゼロとコロンが連続する場
合は省略を表す「::」を使う短縮型が認められてい
ます。

（例）2001:db8::1

　図2に示したアドレスは、いずれも同じもの
を指します。柔軟性があるのは良い面がある一
方で、運用上では混乱をきたす原因ともなりま
す。そのため、表記方法を統一するための推奨
を記載したRFC文書注1があります。ログ解析な
どを前提とする場合には、省略なしで記載する
ようにしたほうがいいという意見もあるようで

注1） RFC5952　http://tools.ietf.org/rfc/rfc5952

す。

④HTTPのリクエストなどで使
うURLの書き方が変わった

　IPv6、IPv4と も に FQDN（Fully Qualifi ed

Domain Name）注2を利用する場合、IPアドレス
はDNSが処理してくれるため変更ありません。
　IPv6アドレスを直接入力する場合には、次の
ように[]で囲みます。
http://[2001:db8::1]/index.html
http://[2001:db8::1]:8080/index.html

　また、HTTP/HTTPS以外のプロトコルでは、
[]ではない囲み方（"2001:db8::1"など）をす
る場合もあるので事前に調べたほうが良いでしょ
う。
　実はこういった情報はあまりインターネット
上に出ていないようですが、それは、基本的に
はアプリケーションの通信先の指定にはFQDN

を使い、IPアドレスを直書きするのは「百害あっ
て一利なし」である、という考え方が浸透してい
ることの表れと言えそうです。実際に直書きし
てしまうと、利用に制限が出たり、途中で運用
形態を変えられなくなるなど良いことがありま
せん。
　ただし、これはDNSの利用を前提としている
場合のことであって、組込み系プログラムの一
部など、使えるリソースに制限がある場合は、
この限りではないことがあります。

注2） ホスト名などを省略せずにすべて指定したドメイン名。

図2　IPv6のアドレス表記 ▼

2001:0db8:0000:0000:0000:0000:0000:0001　　（省略なしの書き方）

2001:0db8:0:0:0:0:0:1　　（16ビットの連続する 0を短縮した形）
2001:0db8::1　　（0と :が連続する箇所を ::で省略）
2001:0DB8::1　　（英字が大文字）
2001:db8::1　　（最も短縮した形、先頭の 0を省略）

16 16 16 16 16 16 16 16

http://tools.ietf.org/rfc/rfc5952

110 - Software Design Feb. 2013 - 111

⑤端末に複数のアドレスがつく

　PCなどの端末に付与されるアドレスの見え
方も変わります。従来のIPv4アドレスに、IPv6

アドレスが追加になるだけではなく、IPv6プロ
トコル群で利用される特別な目的を持ったアド
レスも追加設定され、端末には数多くのIPv6ア
ドレスが付くようになります。
　IPv6のプロトコル群で利用されるアドレスの
代表的なところでは、リンクローカルアドレス
と呼ばれる同一のリンク上のローカルな通信で
利用されるもの、マルチキャストアドレスと呼
ばれるアドレス自動設定や非到達性確認
(Neighbor Unreachability Discovery)などに使
う特別な役割を持ったアドレス、プライバシー

保護のためにホスト部にランダムな値を利用す
るアドレスなどです（表3）。図3はWindows 7

でアドレスがたくさん付いている例です。

⑥端末へのアドレス設定方法が
変わった

　IPv4のLANに端末を接続する場合には、
DHCPによるアドレス自動設定が一般的でした。
IPv6のアドレス設定では、ホスト部とネット
ワーク部それぞれの設定プロトコルがあり、さ
らにDNSサーバやデフォルトルータなどその他
の必要な情報の伝達に使うプロトコルもありま
す。それらを組み合わせて端末の接続情報を準
備します。なお、IPv4でのホスト部とネット
ワーク部に相当する用語も変更されているので
確認しておきましょう（図4）。

押さえておきたいIPv6と
IPv4の10個の違い 第3回

図4　IPv6アドレスの構成要素の名称 ▼

nビット 64-nビット 64ビット

グローバルルーティングプレフィックス サブネット ID インターフェース ID

サブネットプレフィックス

ノードが使う IPv6アドレス ルータが使う IPv6アドレス
・ループバックアドレス（::1/128）
・全ノードマルチキャストアドレス （ff0x::1）
・要請ノードマルチキャストアドレス （ff02::1:ff00:0/104）
・インターフェース毎に１つのリンクローカルアドレス （fe80::/10）
・インターフェース毎に１つまたは複数のユニキャストアドレス
・自分が所属するグループのマルチキャストアドレス

・全ルータマルチキャストアドレス（ff0x::2）
・ サブネットルータエニーキャストアドレス
（サブネットプレフィックス以外All 0）

表3　ノード／ルータに付与される IPv6アドレスの例 ▼

図3　たくさんのアドレスがついている例（Windows 7） ▼

112 - Software Design Feb. 2013 - 113

　IPv6のアドレス自動設定には、SLAAC（ス
テートレスアドレス自動設定）と呼ばれるNDP

（近隣探索プロトコル）のRA（ルータ広告）と自
ホストで生成するインターフェースIDを組み合
わせて設定するものや、IPv6版のDHCP

（DHCPv6）を使うものなどいくつかの方法があ
ります（表4）。
　また、実際に通信を行うためには、デフォル
トルータやDNSサーバなどの情報も必要になり
ますが、そうした情報の伝達方法も運用方針や
機材の実装状況に従って技術を選択して利用す
る形になります。とくにDHCPv6クライアント
は、端末ごとに実装状況が違っており、うまく
運用できないことがあるため事前の確認が必要
です。

⑦ IPv4と IPv6が共存している
環境では処理順序決めが必要

　インターネットの標準団体IETF（The Internet

Engineering Task Force）が発行している文書で
は、IPv4とIPv6が共存している環境での処理順
序はIPv6を優先することが推奨されています。
しかし、IPv6接続が普及していない段階では、
IPv6→IPv4という処理順序だと遅延が起きるこ
とが懸念されています。そのため、実際にはIPv4

が優先される端末実装やネットワーク環境、ア
プリケーションもあります。開発言語によって、
処理の優先順を設定するもの（Javaのシステムプ
リファレンスなど）もあります。

　端末が通信相手にパケットを送る場合、送信
先と送信元アドレスを IPv6、IPv4どちらにす
るのか、IPv6はどのアドレスを使うのかなど、
処理順序の取り決めがRFC6724注3という文書に
なっていますが、実装されていない端末OSや
優先を変えたい場合のユーザインターフェース
がない実装などもあり統一されていない状況で
す。

⑧ IPv6処理のために開発言語の
拡張がされている

　IPv6では、名前解決の参照に利用されるレ
コードやアドレス処理方法が変わったため、こ
れまで使われてきたIPv4依存の処理関数などは
利用できません。IPv6対応済みの開発言語では、
IPv4と IPv6共存のための処理関数が追加され
ており、対応版を使っていくことが推奨されま
す。
　ただし、開発言語ごとにIPv6の対応方針は異
なっており、デュアルスタック用の関数が用意さ
れるケース（C言語のgetaddrinfoなど）やクラス
関数が拡張されるケース（Perl言語のNet::DNS

など）があります。それまで実行していたコード
を大幅に変更することなくデュアルスタック環境
で利用できるように、IPv4とIPv6の取り次ぎを
するようなクラス関数が定義されているものもあ
ります（Perl言語のNet::INET6Glueなど）。

注3） RFC6724　http://tools.ietf.org/rfc/rfc6724

表4　IPv4/IPv6アドレスの自動設定方法の違い ▼

IPv6 IPv4

RA DHCPv6
（stateful）

DHCPv6-lite
（stateless） DHCPv4

IPアドレス
○

プレフィックス情報を
通知

○ － ○
/32を通知

デフォルトルータの
伝達 ○ －※1 － ○

サーバアドレスの配布
（ネームサーバやSIP

サーバなど）
△※2 ○ ○ ○

※1 経路情報の配布について標準化進行中
※2 DNSサーバアドレスの配布は［RFC6106］で標準化済み

http://tools.ietf.org/rfc/rfc6724

112 - Software Design Feb. 2013 - 113

⑨DNSに IPv6専用のレコード
がある

　DNSによる名前解決で利用する IPv6専用の
リソースレコードが作られています。DNSでホ
スト名からIPv6アドレスを取得するには、IPv6

専用のAAAAレコードを参照します（図5）。
　逆引き（PTRレコード）も、IPv4とは記載方
法が異なります。アドレスを4ビットずつ16進
数で表記し、“.”（ドット）で区切ります。また、
IPv6では端末アドレスは自動生成されることが
多い上に、一時アドレスなどもあるため登録管
理が難しいといった理由から運用されていない
ケースが多く、逆引きでの解決を前提とした処
理は通信不通などの問題を起こすかもしれませ
ん。IPv4で電子メールの送信やSSLのアクセ
スで使われる逆引きを認証として使う方法が普
及していますが、IPv4での逆引き認証に代わる
別の方法を考案し、運用していくことが求めら
れそうです。

（例）2001:db8::1の逆引き表記
1.0.
0.8.b.d.0.1.0.0.2.in6.arpa

⑩通信のしくみ、通信処理が変
わった

　IPv6 では、通信時に Path MTU Discovery

というしくみにより、End to Endで転送するパ
ケットサイズの調整が行われます。IPv4のよう
に中継ノードでのパケットフラグメント処理は
行 わ れ ま せ ん。Path MTU Discoveryに は
ICMPv6が利用されます。そのため、Destination

UnreachableやPacket Too Bigといった検査に
使われるICMPv6をフィルタしてしまうと、通
信障害が発生してしまう可能性があります。そ
のため、フィルタすることは推奨されません。

◆　◆　◆
　今回は、IPv4から変わったところを10個取
り上げてみました。この他にもリンクローカル
アドレスが通信に使えるなどの相違点がありま
す。｢

連載を通じての質問やコメント、取り上げ
てほしいトピックを募集します。最終回な
どで取り上げて、追加解説したいと考えて
います。質問、コメントは編集部（sd@gihyo.
co.jp）までお送りください。

押さえておきたいIPv6と
IPv4の10個の違い 第3回

図5　AAAAによる名前解決の例 ▼

www.intcore.comの AAAAレコードを問い合わせ

IPv6アドレス 2403:2000:0:1::4が回答された

www.intcore.comの AAAAレコードを問い合わせ

IPv6アドレス 2403:2000:0:1::4が回答された

mailto:sd@gihyo.co.jp
mailto:sd@gihyo.co.jp

114 - Software Design Feb. 2013 - 115

ちゃんと理解する仮想化技術ちゃんと理解する仮想化技術

ハイパーバイザの作り方ハイパーバイザの作り方ハイパーバイザの作り方ハイパーバイザの作り方

浅田 拓也（ASADA Takuya）Twitter @syuu1228

I/O仮想化「割り込み編・その2」第5回

はじめに

　前回の記事では、割り込み仮想化の話の前提とな
るx86アーキテクチャにおける割り込みのしくみを
各コンポーネントごとに解説しました（図1）。仮想
環境でどのように割り込みを実現するのか、前回解
説した各機能ごとに見ていきます。

仮想化における内部割り込みと
外部割り込み

　VT-x環境においては、内部割り込みはCPUがす
べて処理を行うため、基本的にハイパーバイザが介
入する必要がありません。一方、外部割り込みにつ
いては、ハイパーバイザの介入が必要となります。
それぞれを見ていきましょう。

CPUへの割り込みの挿入

仮想CPUで任意の割り込みを発生させるには、
VMCSのVM-Entry Control FieldsにあるVM-

entry interruption-information fi eldにベクタ番号
と割り込みタイプを書き込みます（表1）。ただ
し、このフィールドに値をセットして外部割り込
みを発生させるだけでは、Local APICのレジス
タ値は適切に更新されず、ハイパーバイザが新し
い値を計算し、セットする必要があります。

内部割り込みの仮想化

　実機での内部割り込みは、次の手順で処理されます。

①ゲストマシン上のソフトウェアが例外を発生させ

るか、INT命令の実行によりCPUで内部割り込み

が発生

②CPUはIDT上のゲートデスクリプタを読み込み、

割り込みハンドラを実行

③割り込みハンドラが内部割り込みを処理

④IRET命令で直前のコンテキストへ復帰

▼図1　割り込みにかかわるコンポーネントと仮想化範囲

Legacy PCI
 DevicesICH（South Bridge）

I/O APIC MSI Capable
 Devices

IDTR

IDT

Local APIC

CPU

Legacy PCIMSI

ビット
ポジション 内容

7:0 ベクタ番号

10:8 割り込みタイプ :通常は0（外部割り込み）
を使用

11 スタックに例外のerror codeをpush
31 有効化ビット

▼表1　VM-entry interruption-information field

114 - Software Design Feb. 2013 - 115

I/O仮想化「割り込み編・その2」第5回

　これらはすべて、ハイパーバイザの介入が不要で
す②～④については、IDT/IDTR の仮想化にて説明し
ます。ただし、ここでもVMCSの設定により、内部
割り込みを契機としてVMExitを発生させることが
できます注1。ただし、この利用方法は一般的ではあり
ません。

外部割り込みの仮想化

　内部割り込みはソフトウェアを起因としCPU内部
で発生するため、VT-xによりハイパーバイザの介入
なしに仮想化することが可能でした。一方、外部割
り込みは、ハイパーバイザが割り込みを送り込みま
す。これは、デバイスがソフトウェア的に、ハイ
パーバイザ内に実装されているためです。

I/O APICを通して割り込む場合
　実機でのI/O APICを通して割り込む場合の外部
割り込みは、次のような手順で処理されます。

①デバイスが割り込みラインからI/O APICへ割り込

みを送信

②I/O APICが割り込みを受け取り、Redirection

Table Entryに指定されたDestination IDが示す

Local APICへ割り込みを転送

③Local APICがCPUへ割り込み

④CPUはIDT上のゲートデスクリプタをロードし、

割り込みハンドラを実行

⑤割り込みハンドラが外部割り込みを処理

⑥割り込みハンドラがLocal APICへEOIを書き込

み、割り込み処理の終了を伝達

⑦IRET命令で直前のコンテキストへ復帰

　このうち、④、⑤、⑦については内部割り込みと
同様の処理であり、ハイパーバイザの介入は必要あ
りません。①～③は次のように仮想化されます。ま
ずあらかじめ、ゲストOSが割り込みを初期化する

注1） VMCSのVM-Execution Control FieldsのException Bitmap
の各ビットが各例外のベクタ番号に対応していて、ここに１
を設定するとその例外が発生した時にVMExitが発生するよう
になります。通常の例外は基本的にVMExitする必要がありま
せんが、連載第2回（Intel VT-xの概要とメモリ仮想化）で解説
したシャドーページングを行うには、ページフォルト例外で
のVMExitが必須になります。

ときにI/O APICのRedirection Table Entryへ宛先
Local APICが設定されます。実際にデバイスが使わ
れ始め、ハイパーバイザがデバイスのエミュレー
ションを行うと、割り込みを仮想CPUへ送る必要が
出てきます。
　デバイスエミュレータからの割り込みを受け、ハ
イパーバイザはデバイスに対応するRedirection

Table Entryの値を参照し、宛先の仮想CPUを選び
ます。宛先の仮想CPUが決定されたら、ハイパーバ
イザは宛先CPUのLocal APICのIRRレジスタを更
新し、VMCSに割り込みの挿入を設定します。割り
込み挿入が設定された仮想CPUがVMEnterされる
と、以降は内部割り込みと同様に、実機とほぼ同じ
手順で割り込みの受付が行われて割り込みハンドラ
が起動されます。
　⑥のEOI書き込みに関しては、Local APICのEOI

レジスタへのアクセスを、ハイパーバイザが介入し
てエミュレーションを行う必要があります。
　まとめると、外部割り込みを仮想化するには、ハイ
パーバイザでIO APIC・Local APICのエミュレーショ
ンを行い、仮想CPUへ割り込みを挿入する必要があ
ります。

MSI/MSI-X割り込みを用いて割り込む場合
　実機では、次の手順で処理されます。

①デバイスがPCI Configuration Spaceに指定され

たDestination IDが示すLocal APICへ割り込みを

転送

②Local APICがCPUへ割り込み

③CPUはIDT上のゲートデスクリプタをロードし、

割り込みハンドラを実行

④割り込みハンドラが外部割り込みを処理

⑤割り込みハンドラがLocal APICへEOIを書き込

み、割り込み処理の終了を伝達

⑥IRET命令で直前のコンテキストへ復帰

　MSI/MSI-X割り込みを用いる場合の違いは、割
り込み先がI/O APICのRedirection Table Entryに
書いてあるのではなく、PCI Confi guration Spaceに
書いてある、という点だけです。これを仮想化する

116 - Software Design Feb. 2013 - 117

場合、ハイパーバイザで宛先の仮想CPUを選択する
ときの参照先が変わりますが、あとはI/O APICを
通じた割り込みと同じです。

IDT/IDTR と割り込みハンドラ

　IDT/IDTRや割り込みハンドラに関しては、とくに
ハイパーバイザが介入すべき処理はありません。この
ためVMExitは発生せず、すべてCPUが仮想化を行
います注2。VT-x において一部の汎用レジスタはVMX

root mode/VMX non-root modeの切り替えのときにコ
ンテキストをハイパーバイザで保存する必要がありま
した。しかし、IDTRレジスタのコンテキスト保存／
復帰については、ハイパーバイザは関与しません。
　これは、CPUによって行われるためです。ゲスト
マシン上のIDTの作成や割り込みハンドラのアドレ
スの設定は、通常のメモリアクセスと同様に行われ
ます。また、VT-x non-root mode では、実機での動
作と同様に割り込みや例外を受け付け、割り込みハ
ンドラを実行する機能が備わっています。ゲストマ
シンのIDTRは、IDTの構築後に設定されます。な
お、一般的な手法ではありませんが、VMCSの設
定注3によりIDTRへの読み書きを契機としてVMExit

を発生させることもできます注4。
　このうち、②～④でハイパーバイザの介入が不要
であることは、すでに説明しました。①ですが、ゲ
スト環境から内部を発生させ、割り込みハンドラを
起動する処理の中で、とくにハイパーバイザの介入
は必要ありません。
　ただし、ここでもVMCSの設定により、内部割り
込みを契機としてVMExitを発生できます。この場

注2） ただし、割り込みハンドラ内で IOポートアクセスなどの操作
を行えば、そこではVMExitが発生します。

注3） VMCSのVM-Execution Control FieldsのSecondary
Processor-Based VM-Execution ControlsにあるDescriptor-
table exitingにビットを立てることで、LGDT、LIDT、LLDT、
LTR、SGDT、SIDT、SLDT、STRの各命令を実行しようとした
時にVMExitするようになります。

注4） この場合、ハイパーバイザは IDのシャドーイングを行ってゲ
ストOSが意図する割り込みハンドラと異なる割り込みハンド
ラを設定できます。また、IDTRへのアクセスをイベントとし
て受け取り、デバッグ機能を実装することもできます。

合、内部割り込みをゲストOSに渡さずハイパーバ
イザで横取りして処理をしたり、デバッグ機能とし
てゲスト環境上の内部割り込みの回数をカウントし
たりといった機能を実装できます。しかしながら、
そのような使い方は一般的ではありません。
　まとめると、内部割り込みの一連の処理に関して
は、特にハイパーバイザが介入すべき処理はありま
せん。このためVMExitは発生せず、すべてCPUが
仮想化を行います。

Local APIC の仮想化

　Local APICはメモリマップドI/Oでアクセスする
ため、通常のメモリマップドI/Oの仮想化手法が使
えます。しかし、高速化のためにVT-xにはLocal

APICへのアクセスを特別扱いしてハンドルする機
能が実装されています。このことは、連載第3回（I/

O仮想化「デバイスI/O編」）で解説しました。つま
り、図1で示したように、部分的にVT-xによる仮想
化支援を受けることができます。
　しかしながら、このVT-xによる仮想化支援機能
はハイパーバイザが何もしなくても完全にCPU側で
レジスタ値の更新などを行ってくれるというもので
はありません。CPUへ外部割り込みを挿入する場合、
ゲストOSから見てつじつまが合わなくならないよ
うLocal APICのレジスタ値を同時に設定する作業
はハイパーバイザから行う必要があります。具体的
には、次の操作を行います。

①割り込み発生時点でIRRレジスタに割り込むベク

タ番号のビットをセット

②仮想CPUがVMExitするのを待つ／またはIPIなど

を用いてVMExitさせる

③IRRにセットされた最高優先度のビットをクリア、

同じビットをISRにセット

④TPRとISRの値に基いてPPRを更新

⑤VM-entry interruption-information fieldに割り込み

をセット

⑥VMEnterして割り込みを発生させる

116 - Software Design Feb. 2013 - 117

I/O仮想化「割り込み編・その2」第5回

　また、割り込みハンドラの終了を通知するために
ゲストOSがEOIレジスタへ書き込んできたときに
も、ハイパーバイザの介入が必要です。具体的には、
次の作業を行います。

①EOIへの書き込みによりVMExit

②IRRが0ならVMEnterしてゲストへ復帰。IRRに値

があればIRRにセットされた最高優先度のビット

をクリア、同じビットをISRにセット

③TPRとISRの値に基いてPPRを更新

④VM-entry interruption-information fieldに割り込み

をセット

⑤VMEnterして割り込みを発生させる

　こちらも、前回の記事で解説した実機上のLocal

APICの挙動と同じです。

I/O APIC の仮想化

　I/O APICもゲストOSからメモリマップドI/Oで
アクセスされます。ただし、Local APICと異なり高
速化用の特別なVMExitなどの仮想化支援機能はあ
りません。使われ方としては、前述のとおりゲスト
OSの初期化時に割り込み先CPUの設定をメモリ
マップドI/O経由で受け取り、仮想デバイスから割
り込みを送るときの仮想CPU選択に設定された値を
用います。

MSI/MSI-X 割り込みの仮想化

　MSI/MSI-X割り込みの場合は、PCI Confi guration

Spaceへの書き込みにより割り込み先CPUの設定を
受け取ります。書き込むデバイスやレジスタの
フォーマットは違いますが注5、使い方はほぼI/O

APICと変わりません。

注5） 参考資料
 （http://d.hatena.ne.jp/syuu1228/20120105/1325757315）

物理ハードウェアからの
割り込みへの対処

　VMX non-root modeの実行中に物理ハードウェア
から割り込みが来た場合、ハイパーバイザでこれを
受け取り割り込みハンドラを起動して処理する必要
があります。このために、ハイパーバイザはVMCS

の初期化時にVM-Execution Control FieldsのPin-

Based VM-Execution ControlsにあるExternal-

interrupt exitingにビットをセットします。これによ
り、ゲストマシンは外部割り込み発生時にVMExit

するようになります。また、M-Exit Control Fieldsに
あるVM-Exit ControlsのAcknowledge interrupt on

exitビットを1に設定した場合、外部割り込みは
VMExit時に"acknowledged"になり、割り込みベク
タ番号はVM-Exit information fieldsのVM-exit

interruption informationに保存されます。VMMはこ
のベクタ番号を参照して、割り込みハンドラを起動
し割り込みを処理します。
　一方、Acknowledge interrupt on exitビットを0に
設定した場合は割り込みは"acknowledge"されず、
RFLAGSレジスタのIFビットでマスクされている
状態になります。このままIFフラグをセットすれ
ば、IDTに設定された割り込みハンドラが起動して割
り込みを処理できます。通常のOSの上にハイパー
バイザを実装する方式では、IDTによる割り込みハン
ドルが行われているため、後者の方法を取る場合が
ほとんどです。

まとめ

　いかがでしたでしょうか。今回は Intel VT-x にお
ける割り込みの仮想化方法を中心に解説してきまし
た。次回はソフトウェア側の実装に移り、「VT-xを
用いたハイパーバイザの実装方法の基礎」を中心に解
説します。s

http://d.hatena.ne.jp/syuu1228/20120105/1325757315

はじめに

　さてWin64版のGNU Emacsを紹介する目的
で始めた本連載も後2回の予定です。今回と次
回でWin64版開発の大きな目標であったCOM

サポートについて解説していきます。

概要

　Windows上で作業していると他のアプリケー
ションとの連携ができたらと思う場面に出会う
ことがよくあります。このような場合は、他の
アプリケーションに移り、結果をコピーするか
ファイルに保存して利用することになります。
　しかし、Emacs上にワークフローを構築して
いたりすると定型的な操作が面倒になります。
EmacsはUNIX上で開発されたものなので、
UNIX上のパイプを基本としたツール類を取り
込むためのパッケージは数多く開発／公開され
ていますが、Windowsではパイプインターフェー
スのツールはあまり多くありません。Windows

上で動作するLL言語はCOM（OLE）インター
フェースを実装することでパイプインターフェー
スでは得られないアプリケーションとの連携を
実現していますが、やはり、他の言語で記述す
るのは、それらのスクリプトの出力をもう一度
パースする必要があり、隔

かっかそうよう

靴掻痒の感がありま
す。
　以前からの構想であったCOM（OLE）を実験
的に実装してみました、まだ、ほんの基本部分

しかできていませんが、今回と次回の2回で紹
介していきます。COMオブジェクトはMicro

softの営業戦略上OLE2、ActiveX、COMと複
数の名称で呼ばれますが、本稿ではCOMを使
います。

COM or .NET

　マイクロソフトのコンポーネント技術開発は
.NETフレームワークにすでに移行しています
が、COMもまだまだ現役で、何よりCでイン
ターフェースが取れるメリットが大きいです。
　Emacsから .NETオブジェクトを利用するた
めにはC++/CLIが使えるかもしれませんが、も
ともとC++/CLIは .NETからCやC++のライブ
ラリを楽に使用するための言語で、逆方向で使
うのはけっこう苦労しそうです。.NETはひと
まず保留として今回はCOMのサポートにしま
した。

組み込み方法の検討

　COMサポートのあるLL言語のほとんどはオ
ブジェクトシステムをもっていて、COMオブ
ジェクトもネイティブオブジェクトと同様の記
法で操作可能となっています。Emacsではネイ
ティブなオブジェクトシステムのサポートはな
く、EmacsLispで書かれたeieioや lunaと呼ばれ
るパッケージが存在します。eieioはEmacsの公
式配布にも含まれていますが、筆者はeieioを使
用した経験がないので、今回は使用せずネイティ
ブな関数でのサポートとします。

第6回 COM対応（その1）

EmacsEmacsEmacs
64bit

太田 博志 Hiroshi Oota ● TwitterID @h2oota　イラスト：黒崎 玄

使いやすいエディタ環境を
作りませんか！

化計画！

118 - Software Design

第6回 COM対応（その1）

　ネイティブな関数でサポートし
ていけばeieioに組み込むことも可
能でしょう。
Perlでの実装

　リスト1にPerlでのCOMオブ
ジェクトの利用例を記載します。
Perlのオブジェクトと同様に->演算子でメソッ
ド 呼 び 出 し が 可 能 に な っ て い ま す。
ActiveWorkbook、ActiveSheet、Range、Select

はExcelオブジェクトからインポートした名前
がPerlオブジェクトのメソッド呼び出しと同じ
記法で呼び出しています。プロパティはPerlの
ハッシュと同じ記法でアクセスすることも可能
です。

実装方法

　C言語レベルでCOMの処理の流れは、おお
ざっぱに次のようになります。

①COMを利用するためOleInitializeを呼び出し
初期化する

②CLSIDFromProgIDを使い、COMオブジェク
トのPROGID("Excel.Application")からCLS
IDを取得する

③CoCreateInstanceを使いCOMオブジェクト
を生成する。IDispatchインターフェースが
取得できる

④取得したIDipspatchインターフェースの
invokeを呼び出しCOMオブジェクトを操作
する

⑤OleUninitializeでCOMの利用を終了する

Emacsのインターフェース
　リスト1に戻って検討してみましょう。この
実行式の意味は、

①"Excel.Application"……Excelオブジェクト
を生成する。"Excel.Application"はCOMオ
ブジェクトを識別するPROG_IDと呼ばれる

② $Excel->ActiveWorkbook……Excel の
ActiveWorkbookプロパティを取得する。

ActiveWorkbookプロパティはWorkbookオ
ブジェクトを値として持つ

③ ->ActiveSheetの部分……①で取得したWork
bookオブジェクトのActiveSheetプロパティ
を取得している。戻り値としてWorkSheetオ
ブジェクトが得られる

④同様に②の戻り値のWorkbookオブジェクト
のActiveSheetプロパティを取得する。
ActiveSheetプロパティの値はWorkSheetオ
ブジェクトである

⑤Worksheetオブジェクトからセル範囲を指定
してRageオブジェクトを取得する。Rageオ
ブジェクトは複数のセルを持てるが、この例
ではB1のセル1つだけ

⑥最後にRangeオブジェクトのSelectメソッド
を実行してセルをセレクト状態にする

　これらのサポートのために2つの関数を作成
します（リスト2）。

・win32com-create prog-id
　PROGIDまたはCLSIDを文字列で与えて
COMオブジェクトを作成します。引数をPRO

GIDとしてCLSIDに変換を試みます、失敗し
たら文字列をCLSIDを表す文字列とします。

・win32com-invoke obj method &aux args
　objで指定されたCOMオブジェクトのmethod

を呼び出します。引数が与えられた場合は
VARIANT型に変換します。呼び出し結果は
EmacsLisp型に変換します。
　各々の処理をC言語風に書くとリスト2のよ
うな流れです（実際のAPIではありません）。
　これらはGNU Emacs（Win64版）のダイナ

 ▼リスト1　Perlの例

perlでのCOM（OLE）使用例
Excelオブジェクトを作成する
$Excel = Win32::OLE->GetActiveObject('Excel.Application')
ワークブック、ワークシート、レンジを指定し、選択状態にする。
$Excel->ActiveWorkbook->ActiveSheet->Range("B1")->Select;

118 - Software Design Feb. 2013 - 119

EmacsEmacsEmacs
64bit化計画！

ミックライブラリサポート機能を利用して実装
します。リスト3のような構造体を定義し
pDispatchをラップします。

オブジェクトの表記
　ここまででExcelを起動してメソッドを呼び
出すための準備ができました。先ほどのリスト
1は作成した関数を使いリスト4のようになりま
すが、Perlの例に比べて格段に見難いです。可
読性の向上を検討しましょう。リスト1をその
ままEmacsLisp風に記述するとリスト5のよう
に記述することになります。
　少しは見やすくなりましたが表記が逆順にな
り、Rangeの引き数が離れてしまいイヤな感じ
です。さらに、COMオブジェクトではこれらの
名前はメソッド名なので、オブジェクト固有の

処理を行います。同じ名前でも処理対象オブジェ
クトの種類により別のものなのです。EmacsLisp

には単一名前空間なので、EmacsLispで記述さ
れるアプリケーションは関数名、変数名として
モジュール名をプリフックスにした名前を付け
ることで名前の衝突を防いでいます。
　名前の衝突を避ける必要があるので、この流
儀に従いそれぞれの名前が衝突しないように無
理やりプリフィックスをつけるとリスト6のよ
うな感じでしょうか。
　見やすくならず逆にイヤさが倍増してしまい
ました。しかもこの方法ではExcelオブジェク
トを生成したときにすべての名前をインポート
して関数として定義する必要があります。この

 ▼リスト2　win32comサポート関数

/* win32com-create */
/* ProgIDから CLSID を取得 */

if (CLSIDFromProgID(progid, &clsid) != SUCCESS)
 CLSIDFromString(progid, &clsid);
/* CLSID からIDispatchインターフェースを取得(IID_IDispatchを指定) */
CoCreateInstance(&clsid, &IID_IDispatch, (void*)&pDispatch);

/* win32com-invoke */
/* GetIDsOfNamesでmethodのDispIDを得る */
pDispatch->GetIDsOfNames(method, &DispID);
/* Invoke を使って Select メソッドを実行 */
pDispatch->Invoke(obj, DispIP, args);

 ▼リスト3　win32com_object

struct win32com_object
{
 struct vectorlike_header header;
 Lisp_Object type;

 void (*finalizer)(struct Lisp_Vector *);
 IDispatch *pDispatch;
};

 ▼リスト4　EmacsLisp風記述（その1）

(setq excel (win32com-create "Excel.
Application"))
(win32com-invoke
 (win32com-invoke
 (win32com-invoke
 (win32com-invoke
 excel
 'ActiveWorkbook)
 'ActiveSheet)
 'Range "B10")
 'Selecet)

 ▼リスト5　EmacsLisp風記述（その2）

(Select
 (Range
 (ActiveSheet
 (ActiveWorkbook Excel))
 "B1"))

 ▼リスト6　EmacsLisp風記述（その3）

(Microsoft_Excel-Workbook-Range-Select
 (Microsoft_Excel-Workbook-Range
 (Microsoft_Excel-Workbook-ActiveSheet
 (Microsoft_Excel-ActiveWorkbook Excel))
 "B1"))

120 - Software Design

第6回 COM対応（その1）

方法は採用できません。
　それではPerlの記述に戻って

$Excel->ActiveWorkbook->ActiveSheet-
>Range("B1")

　この部分をEmacsLisp風に簡潔に書く方法を
考えます。
　リスト7のように記述できればだいぶすっき
り し ま す が、Excel.ActiveWorkbook.Active

Sheet.Rangeの部分を文字列で与えるのはかっ
こよくないのでシンボルとすることにします。
シンボルは評価されてしまうのでクオートして

(win32com-invoke 'Excel.ActiveWorkbook.
ActiveSheet.Range "B1")

となります。マクロを使ってクオートなしの形
式をリスト4のように展開してやる方法もあり
ますが、中間値となるCOMオブジェクトの生
存期間は短いほうが良く、C言語で記述する
COMインターフェース内で中間オブジェクトは
使用後すぐに解放する方法にします。
　全体はリスト8となります。これで大分すっ
きりしていい感じですが、excelは変数名なので
'excel.ActiveWorkbook.ActiveSheet.Range と
クオートしてしまう部分がしっくりきません。
excelの部分は外に出します。eieioはCLOS風
の総称関数をサポートしているので、このほう
がeieioとの相性も良いはずです。
　COMオブジェクトは階層が深くなり、途中で
改行したくなる場合もありますが、クオートで
はそのようなことはできません。リストにする
方法もありますがクオートが必要になり、あま
りかっこよくありません。ベクター型を使うと

どうでしょう。

(win32com-invoke
 (win32com-invoke excel
　[ActiveWorkbook ActiveSheet Range] "B1")
 'Select)　

　かなりすっきりしました。クオート方式と同
じ"."で接続する形式との混在も許して、

(win32com-invoke excel [ActiveWorkbook.
　　　　　　　　　　ActiveSheet.Range] "B1")
'Select)

とできれば長くなっても適宜改行できます。
Common Lispのようなリーダーマクロが利用で
きれば、もっとかっこいいシンタックスも可能
でしょうが、あまり贅沢も言っていられません。
これを採用します。
　win32com-invokeでは渡されたメソッドがベ
クター型ならその要素（シンボル）の表示文字列
を取得し、"."で分割し、プロパティを表すシン
ボルとして扱ってやればうまくいきそうです。

データ型変換
　COMオブジェクトへのデータの受け渡しは
VARIANT型を使用して行います。VARIANT

型とは型情報も持ち、多様な型のデータを格納
できます。この型とEmacsLispのデータを適切
に相互変換することが必要です。
　文字列型はutf-8とutf-16（UNICODE）の相
互変換も必要です。多次元のVT_ARRAYはベ
クターを要素に持つベクターに対応させました。
表1と表2に示します。

 ▼リスト7　EmacsLisp風記述（その4）

(win32com-invoke "Excel.ActiveWorkbook.ActiveSheet.Range" "B1")

 ▼リスト8　EmacsLisp風記述（その5）

(win32com-invoke
 (win32com-invoke excel 'ActiveWorkbook.ActiveSheet.Range "B1")
 'Select)

120 - Software Design Feb. 2013 - 121

EmacsEmacsEmacs
64bit化計画！

インストール、利用法

　筆者のWebページ 注1 からダウンロードして
win32com.dllを c:/Program Files/GNU/emacs

23/binにコピーしてください。
　最新情報がHPおよびreadme.txtに書かれて
いるので目を通してください。

● 関数
(win32com-create progid)
　……progidまたはclsidを文字列で与えて

COMオブジェクトを作成する
(win32com-invoke obj method &aux args)
　……objのmethodを呼び出し、結果を返す
(win32com-getproperty obj property-name)
　……property-nameで指定するobjの属性値を

取得する
(win32com-putproperty obj property-name val)
　……property-nameで指定するobjの属性値を

valに設定する
(win32com-destroy obj)
　……objを解放する

● Excelのコントロール例
(setq win32com (load-dynamic- l ibrary
"win32com.dll"))
　……win32comをロードする

注1） http://hp.vector.co.jp/authors/VA052357/

注2） (current-time)が返す1970/1/1からのマイクロ秒でのカウ
ントを3つの整数に分解しリストにしたもの。

(setq excel (win32com-create "Excel.
Application"))
　……Excelオブジェクトを作成
(win32com-putproperty excel 'Visible t)
(win32com-putproperty excel 'Visible nil)
　……表示/非表示の切り替え
(setq bk (win32com-invoke excel #[Work
books] 'Add))
　……新規ブックの作成
(setq sh (win32com-getproperty bk 'Active
Sheet))
　……シートの取得
(win32com-putproperty
 (win32com-getproperty sh #[Range] "B1")
'Value "Test")
　……値を書き込む
(win32com-invoke excel 'quit)
(win32com-destroy excel)
　……excelを終了

まとめ

　今回はGNU Emacs（Win64版）の大きな開発
動機であったCOMサポートの解説を、COMオ
ブジェクトサポートのCでの実現方法とEmacs

Lispでの表記方法に関する解説を中心に行いま
した。次回ではこれを応用した例題を紹介しよ
うと予定しています。ﾟ

EmacsLisp COMオブジェクト
win32com VT_DISPATCH
string VT_BSTR
integerp(32ビット以内) VT_I4
integerp(32ビット超) VT_R8
fl oat VT_R8
nil, t VT_BOOL
sequence VT_ARRAY
要素が整数3つのリスト注2 VT_DATE

 ▼表1　EmacsLispからCOMオブジェクト

COMオブジェクト EmacsLisp
VT_DISPATCH win32com
VT_UNKNOWN win32com
VT_UI1,VT_I2,VT_
I4 integer

VT_BSTR string
VT_ERROR integer
VT_BOOL nil, t

VT_DATE 要素が整数3つのリスト
[[fn:date]]

 ▼表2　COMオブジェクトからEmacsLisp

122 - Software Design

http://hp.vector.co.jp/authors/VA052357/

第6回 COM対応（その1）

Emacs24サポートに関して

　Emacs24がリリースされてからかなり時間が経

過し、首を長くして待っている方も国内に数名はい

らっしゃると思います。重い腰を上げてEmacs24

をダウンロードしコンパイルしてみましたが、ダイ

ナミックライブラリサポートに必要な構造が大きく

変更されていました。

Emacs24ではガベージコレクタが間接参照オブ

ジェクトを管理しないように変更されました。

間接参照オブジェクトは静的に確保されるので、

ガベージコレクタの管理させるのは無駄な事な

ので管理外としたのでしょう。

しかし、これはダイナミックローダーにとって

はとても痛い変更です。

ダイナミックモジュール中で宣言されている静

的領域はアンロードで消滅してしまいます。こ

れでは困るので、ダイナミックローダでは間接

参照オブジェクトを動的に確保しています。

Emacs23までは間接参照オブジェクトもガベー

ジコレクタの管理下にあったので、アンロード

時は特別な処理なしにまま参照が無くれば回収

してくれていました。

対応方法検討中……

とブログに書きましたが、まだ手がついていませ

ん。win32comサポートの次に行いますので、今月

号（2月号）が発売するころには完成しているといい

なぁ………。

Column

122 - Software Design Feb. 2013 - 123

124 - Software Design Feb. 2013 - 125

　前回に引き続き、サーバのMaildirに溜まっ
たメールをいじります。今回は、メーラー（ただ
しリードオンリー）を作ってみます。この中で
シェルの機能を使い、届いたメールのフィルタ
リングやCLI（Command Line Interface）での最低
限必要なインタラクティブな操作を実現します。
　この企てを考えついたのは、仕事中にいちい
ちブラウザやGUIメーラーを開くのが面倒だと
思ったからです。CUIのメーラーは便利なもの
がいろいろあるのにリードオンリーのものを作っ
てどうするんだという話ですが、筆者としては、
既存のものではこれがちょっと気になります。

束縛するインターフェースは作るな。
̶̶ガンカーズのUNIX哲学から

　メーラーに入り、エディタのような画面が開
いてプロンプトの$が消えてしまった瞬間、我々
はgrepが使えないことを覚悟させられます。メー
ルなんてせいぜいお客さんの名前で検索をかけ
て、あとは見ないで捨てますので注1、これは困り
ます。プロンプトが消えるのはエディタもそう
ですが、エディタと違ってメールリーダに熟達
しようという気が筆者に起こりません。
　ということで、怠け癖が極限に達すると人は
こんなシェルスクリプトを書くという例をお見
せしたいと思います。そういやこんな言葉もあっ

注1） 本当のような、嘘のような……。

はじめに
たなということで、以下の名言を。

「私は発明が必要の母だと考えません。私のなか
では発明は暇と直接関係していて、多分怠惰と
も関連しています。面倒を省くという点で。」
̶̶アガサ・クリスティー

　今回はMaildirのnewに届いたメールを取り込
んで、

・フィルタのルールに応じて振り分けて受信ト
レイに置き、

・Vimでメールを読み込み専用で開いて表示し、
・見たメールを未読トレイから既読トレイに移す

というツールを作ります。Maildirについては、
前号と前々号の本連載で説明していますが、要
はメールアカウントの ̃/maildir/new/という
ディレクトリに1メール1ファイルでメールが
届く方式のことです。
　今回は、メールの届くサーバにメーラーを作
り込みます。サーバはVPS上で動いています。
図1に環境を示します。

制限事項など

　このサーバではSMTPサーバが動いており、
Maildir方式で各アカウントにメールを配信して
います。今回は既読のメールを ̃/Maildir/new/

から ̃/Maildir/cur/に移すという操作をします
ので、ほかのメーラーとの併用は考えません。

簡易メーラーの仕様

第14回 簡易メーラーを作る
̶̶ メールファイル操作の応用

テキストデータならお手のもの

㈲ユニバーサル・シェル・プログラミング研究所　http://www.usp-lab.com
上田 隆一 UEDA Ryuichi　 Twitter @uecinfo

http://www.usp-lab.com

124 - Software Design Feb. 2013 - 125

　今回はこの環境に直接メーラーを作っていき
ますが、自分のノートPCなどリモートから使
うメーラーを作ることも可能です。このときは、
スクリプトで使うコマンドをsshでリモートか
ら動かせるようにします。それをやると解説す
るにはコードが長くなるので今回はやめておき
ます。
　また、最近では単なるHTML形式を越えたグ
ラフィカルなメールがありますが、そういうも
のを見るのは諦めます。たいていの場合、その
手のメールは筆者にとって重要ではありません。
　最後にお断りですが、今回はやることが多い
ので、Tukubaiのコマンドについて説明してい
ません。plus、self、loopj、gyo、delfがTukubai

のコマンドです。https://uec.usp-lab.com
で機能をお調べください。

　最初に、バックエンドで受信したメールをメー
ラーに取り込んで整理する部分を作ります。ま
ず、図2のようにディレクトリを準備します。

・DATA：前処理をしたメールを整理して置く
場所

・FILTERS：メールを振り分ける条件を書いた
スクリプトの置き場所

・TRAY：受信トレイ

　これらのディレクトリに対し、
「̃/Maildir/new/に届いたメールを
DATAに取り込んで、FILTERS

内のフィルタにマッチしたものを
TRAYに置く」という働きをするス
クリプトFETCHERを作りましょ
う。
　まず、フィルタリングの前準備
としてメールを加工するところま
でをリスト1のように記述します。
$1に ̃/Maildir/new/下のファイ
ル名を指定します。8～12行目が
エラーチェック関数、13行目が
メールがあるかどうかのチェック、
それ以降がメールを扱いやすいよ
うに変換する部分です。変換部分
では、

メールの取り込み処理を
作る

簡易メーラーを作る
̶̶ メールファイル操作の応用 第14回

$ cat /etc/redhat-release
CentOS release 6.3 (Final)
$ uname -a
Linux mail.usptomonokai.jp 2.6.32-279.5.2.el6.x86_64 #1 SMP
 Fri Aug 24 01:07:11 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux
$ bash --version
GNU bash, version 4.1.2(1)-release (x86_64-redhat-linux-gnu)
 （省略）

図1　環境 ▼ 図2　ディレクトリ構成 ▼

/home/ueda/MAILER/

FILTERS

DATA

TRAY

01 #!/bin/bash
02 # FETCHER <mailfile>
03 # written by R. Ueda (USP lab.) Nov. 20, 2012
04 dir=̃/MAILER
05 mdir=̃/Maildir
06 tmp=̃/tmp/$$
07
08 ERROR_CHECK(){
09 ["$(plus ${PIPESTATUS[@]})" -eq 0] && return
10 rm -f $tmp-*
11 exit 1
12 }
13 [-f "$mdir/new/$1"] ; ERROR_CHECK
14
15 # データのUTF8変換、整形済みヘッダ作成#############
16 nkf -wLux "$mdir/new/$1" ¦
17 tee $tmp-work ¦
18 # ヘッダを作る
19 sed -n '1,/^$/p' ¦
20 awk '{if(/^[^ ¥t]/){print ""};printf("%s",$0)}' ¦
21 #最初の空行の除去と最後に改行を付加
22 tail -n +2 ¦ awk '{print}' > $tmp-header
23 ERROR_CHECK
24 #ヘッダと本文をくっつける。
25 sed -n '/^$/,$p' $tmp-work ¦
26 cat $tmp-header - > $tmp-utf
27 ERROR_CHECK

リスト1　FETCHERの前半部分 ▼

126 - Software Design

テキストデータならお手のもの

Feb. 2013 - 127

・ヘッダ部分を加工したもの（$tmp-header）
・検索／表示のためにUTF-8変換したもの
（$tmp-utf）

を作っています。
　ヘッダの加工では、19行目のsedで取り出し、
20行目のawkでヘッダに入っている余計な改行
をとる処理をしています注2。リスト2は、To:に
複数のアドレスが指定されているヘッダの例で
すが、こうやって改行をとっておけばTo:をgrep

するだけで全部のアドレスが取得できます。22

行目のawkは最終行に改行が抜けたテキストに
改行を付ける常套手段です。
　ERROR_CHECKはコマンドやパイプライン
の終了ステータスを監視し、エラーがあったら
処理を止める関数です。13行目の「指定したファ
イルがMaildirにあるか」のチェックは、DATA

ディレクトリ内を汚さないために必須です。

フィルタを準備

　後半部分を示す前に、このメーラーで作る
「フィルタ」をお見せします。まず、「all」という
名前で次の極小スクリプトを用意しました。all

は必ずこのメーラーに準備しておきます。

　ほかにも次のようなものを用意しました。こ
れは、とあるFreeBSDのサーバから届くシス
テム管理用メールに反応するフィルタです。

注2） このコードは折り返した行の頭に空白があることを期待し
ていますが、厳密にはあるとは限りません。

 全部受理するallフィルタ
$ cat ./FILTERS/all
#!/bin/bash
true

 rootからのメールかどうか調べるフィルタ
$ cat ./FILTERS/bsd.usptomo.com
#!/bin/bash
grep -i '^from:' < /dev/stdin ¦
grep -q -F 'root@bsd.usptomo.com'

　このように、標準入力からメールを読み込ん
で、条件にマッチしたら終了ステータス0を返
すスクリプトを準備しておきます。もちろん、
ほかの言語を使ってもいいですし、もっと長い
フィルタを作ってもかまいません。
　この方法をとっておくと、たとえば優秀なス
パムフィルタがあったときに、それをラッパー
するシェルスクリプトを書けばそれを利用でき
るので、メーラーの方法に束縛されることがな
くなります。執筆にあたってスパムフィルタに
ついては何も調査していませんが、何も心配し
ていません。まさにUNIX哲学。

フィルタリング

　では、FETCHERの後半部分をリスト3に示
します。12行目まででメールのヘッダをフィル
タごとの新着トレイに置いて、万事うまくいっ
たら13行目以降で残りのファイル処理を確定し
ています。
　トレイにはヘッダのファイルを置いて「そのト
レイにメールがある」という目印代わりにしま
す。新着のメールは、たとえばフィルタallに適
合したものは ./TRAY/all/new/下に置きます。
あとのリーダーのところで出てきますが、既読
のメールは ./TRAY/all/20121125/というよう
に日付のディレクトリを作って整理します。
　取り込んだメールやヘッダのファイル名には、
整理のためにもとのメールファイル名の頭に年
月日と時分秒を付けておきます。その処理のた

 before
To: ueda@xxx.jp, r-ueda <r-ueda@yyy.com>,
 Ryuichi UEDA <ryuichiueda@zzz.com>

 after
To: ueda@xxx.jp, r-ueda <r-ueda@yyy.com>, Ryuichi UEDA <ryuichiueda@zzz.com>

リスト2　メールヘッダのTo:部分の加工例（改行をとる） ▼

126 - Software Design Feb. 2013 - 127

めに、4、5行目でファイル名のUNIX時間から
年月日、時分秒を求めています。2012年12月
号の本連載で説明したように、メールのファイ
ル名の先頭には10桁で1970年1月1日からの秒
数がついており、

のように、dateコマンドで日付と時間に
変換できます。
　同じく4、5行目の${1:0:10}は$1の
先頭から10文字という意味です。次のよ
うに、任意の変数に対して使えます。

　7～12行目の for文で、フィルタに1つ
ずつUTF8変換したメールを入力してい
きます。8行目のcontinueは、for文のそ
れ以降の文をスキップするコマンドです。
フィルタにマッチしたときだけ、9行目
以降の処理が行われ、フィルタの新着ト
レイにヘッダのファイルが置かれます。
　14～16行目はかなり変な書き方をして
いますが、これはERROR_CHECKをい
ちいち書くのを避ける小技です。コマン
ドを全部&&でつないで、どれか1つが失
敗したらそこで終わってERROR_

CHECKに処理が飛び、exit 1します。
　FETCHERができたので、̃/Maildir/

new/下のメールを指定して実行してみま
す。図3のように、各フィルタの新着ト
レイにメールがあることが確認できます。

$ date -d @1234567890
2009年 2月 14日 土曜日 08:31:30 JST

$ A=12345
 2文字目（先頭を0と数えて1文字目）から3文字抽出
$ echo ${A:1:3}
234

　では、リーダー（スクリプト名：READER）を
作っていきましょう。まずは冒頭部分をリスト
4に示します。READERにはオプションでトレ
イのパス、メールをリスト表示するときに何件
表示するかを指定します。

リーダーを作る

簡易メーラーを作る
̶̶ メールファイル操作の応用 第14回

$./FETCHER 1352657044.Vfc03I468a21M42631.hoge1
$ ls ./TRAY/*/new/*.1352657044.Vfc03I468a21M42631.hoge1
./TRAY/all/new/20121112.030404.1352657044.Vfc03I468a21M42631.hoge1
./TRAY/bsd.usptomo.com/new/20121112.030404.1352657044.Vfc03I468a21M42631.hoge1

図3　FETCHERの実行 ▼

01 # フィルタ #################################
02 cd "$dir/FILTERS" && [-e "all"] ; ERROR_CHECK
03 # ファイル名のUNIX時間から年月日、時分秒を計算
04 D=$(date +%Y%m%d -d "@"${1:0:10}) ; ERROR_CHECK
05 T=$(date +%H%M%S -d "@"${1:0:10}) ; ERROR_CHECK
06
07 for f in * ; do
08 ./$f < $tmp-utf ¦¦ continue
09 mkdir -p $dir/TRAY/$f/new
10 cat $tmp-header > $dir/TRAY/$f/new/$D.$T.$1
11 ERROR_CHECK
12 done
13 # ファイルを移して終わり ##############
14 mkdir -p "$dir/DATA/$D" &&
15 cat $tmp-utf > "$dir/DATA/$D/$D.$T.$1" &&
16 mv "$mdir/new/$1" "$mdir/cur/$1"
17 ERROR_CHECK
18
19 rm -f $tmp-*
20 exit 0

リスト3　FETCHERの後半部分 ▼

01 #!/bin/bash
02 #
03 # READER <dir> <num>
04 # written by R. Ueda (USP lab.) Nov. 20, 2012
05 tmp=̃/tmp/$$
06 dir=̃/MAILER
07
08 ERROR_CHECK(){
09 ["$(plus ${PIPESTATUS[@]})" -eq 0] && return
10 rm -f $tmp-*
11 exit 1
12 }
13 #先にメールを取得 ###############
14 echo ̃/Maildir/new/* ¦
15 tr ' ' '¥n' ¦
16 awk '!/¥*$/' ¦
17 sed 's;^..*/;;' ¦
18 xargs -r -n 1 -P 1 $dir/FETCHER
19 ERROR_CHECK

リスト4　READERのヘッダ部分 ▼

128 - Software Design

テキストデータならお手のもの

Feb. 2013 - 129

ていきますが、これを16行目のawkで除去して
います。grepを使うと検索結果の有無で終了ス
テータスが変わり、ERROR_CHECKに引っか
かるので、代わりにawkを使っています。また、
xargsは通常、入力が空でもコマンドを1回実行
してしまいますが、これを-rオプションで抑制
しています。
　Maildir/new/に何百もメールがあると、この

部分は当然時間がかかります。しか
し、こういう場合は別の端末から
FETCHERを起動しておけばよいの
で、気を利かせることはやめましょ
う。これはCUI信奉者が自分で使う
ものですので……。
　次にリスト5のように、メールの
リストを表示してメールを選択して
もらう部分を記述します。
　ここまでの部分を実行すると、図
4のような出力が出ます。
　番号と着信日時、メールのSubject

が表示され、どの番号のメールを見
るか入力を促します。
　では、リスト5のスクリプトを見
ていきましょう。まず2行目で、$1
で指定されたトレイに移動していま
す。cd " ${1:- $dir/TRAY/all/
new}"とありますが、これは「$1が
空ならば$dir/TRAY/all/new」とい
う意味になります。9行目の tailのオ
プション指定でもこの方法を使って
います。
　4～10行目はトレイのファイルの
リストを作って、リストが空ならそ
のまま処理を終えるという処理が書
いてあります。その後のコードは、
各メールの受信時刻とSubjectを抽
出し、画面に出力するための細かい
文字列処理です。次の2つの表を作っ
ています。

　14～19行目は、さっき作ったFETCHERを
使ってトレイを更新する処理です。14～17行目
でディレクトリ名を除去したファイルのリスト
を作り、18行目のxargsでFETCHERに1つず
つ処理させています。
　ここでは、新着メールがなくてもエラーが発
生しないように、細工がしてあります。まず、
新着メールがないと*がそのままパイプに通っ

01 #メールのリストを作る #######################
02 cd "${1:-$dir/TRAY/all/new}" ; ERROR_CHECK
03
04 #表示対象ファイルの抽出
05 echo * ¦
06 tr ' ' '¥n' ¦
07 grep -v '¥*' ¦
08 sort ¦
09 tail -n "${2:-10}" > $tmp-files
10 [$(gyo $tmp-files) -eq 0] && rm -f $tmp-* && exit 0
11
12 #subjectのリストを作成
13 cat $tmp-files ¦
14 xargs grep -H -i '^subject:' ¦
15 sed 's/:[Ss]ubject:/ /' > $tmp-subject
16 #1:ファイル 2:subject
17 ERROR_CHECK
18
19 #日付のリストを取得し、subjectのリストと連結
20 cat $tmp-files ¦
21 xargs grep -H -i '^date:' ¦
22 sed 's/:[Dd]ate:/ /' ¦
23 #1:ファイル 2～:date
24 self 1 2 3 4 6 ¦
25 sed 's/:[0-9][0-9]$//' ¦
26 loopj num=1 - $tmp-subject ¦
27 #1:ファイル名 2̃日時、subject
28 tac ¦
29 awk '{print NR,$0}' ¦
30 #1:リスト番号 2:ファイル名 3～:日時, subject
31 tee $tmp-list ¦
32 #リストの表示
33 delf 2
34
35 cd - > /dev/null
36 echo -n "どのメールを見ますか？（番号）: "
37 read n

リスト5　READERのインタラクション部分 ▼

$./VIEWER
1 Sun, 25 Nov 07:10 処理エラー
2 Sun, 25 Nov 06:00 【先着3名】怪しいアレが5000円！【怪しい.com】
3 Sun, 25 Nov 04:00 Logwatch for mail.usptomonokai.jp (Linux)
4 Sun, 25 Nov 03:04 bsd.usptomo.com security run output
 （略）
10 Sun, 25 Nov 01:00 【再送】本当に致命的なエラー
どのメールを見ますか？（番号）:

図4　READER のインタラクション出力 ▼

128 - Software Design Feb. 2013 - 129

・12～17行目：ファイル名とSubjectの対応表
・19～25行目：ファイル名と時刻の対応表

　26行目の loopjでこれらの対応表をくっつけ
ます。あとは新着順に並び替え、番号を付けて
$tmp-listに表示します。33行目で画面に出力
しますが、このときはファイル名をdelfで削り
ます。
　35行目のcd -は、前回のcdをする前のディ
レクトリに戻るためのコマンドで、手で端末を
操作するときにもよく使うものです。
　36、37行目では、番号を入力するようにユー
ザに促し、read nで番号を受け付けています。
端末からユーザが入力した数字（正確には任意の
文字列）が変数nに代入されます。
　最後、リスト6に残りの部分を。まず、2行目
で入力してもらった番号からファイル名を抽出
しています。ここでnに変な文字列が入ってい
ると、4行目でファイルがないので弾かれます。
あとはメールから必要なヘッダとメールの文を
取り出して、viewで開いています。
　viewは単にVimをリードオンリーで開くため
だけのコマンドです。Vimでファイルを読むの
で、筆者の場合は普段のVimの使い方でメール
が読めます。また、見ているファイルを別のディ
レクトリにそのまま保存できるなど、筆者と全
国1,000万人（？）のVimユーザには異常に便利

なメールリーダになります。
　viewを正常に閉じると10行目以降で各フィル
タの新着トレイから、読んだメールを日付別の
既読トレイに移動します。既読のトレイを開い
た場合は、とくに何も起こりません。この処理
は各フィルタのトレイ全部に対して行います。

　今回はシェルスクリプトでメールリーダを作っ
てみました。今後真面目に作り込むと便利にな
るかもしれません。
　返信機能を付けるとすると、おそらくviewで
保存したメールを処理し、返信用のメールの雛
形を作るスクリプトを作ることになります。メー
ルはmailコマンドか何かで送ればよいですし、
メールアドレスの入力が面倒ならVimの補完
ツールの利用や、メールアドレスを提示するコ
マンドを作ればなんとかなるでしょう。
　また、「何件メールがトレイにあるか」などは、
それこそ lsとwcを使えば事足ります。束縛する
インターフェースでないので、なんとかなります。
　今回は正直言いまして、かなりエクストリー
ムなプログラミングになってしまいましたので、
次回からはもうちょっとマイルドな話題として、
バイナリデータをいじって遊んでみたいと思い
ます。｢

終わりに

簡易メーラーを作る
̶̶ メールファイル操作の応用 第14回

01 #メールを表示 ###################################
02 f=$(awk -v n="$n" '$1==n{print $2}' $tmp-list)
03 m="$dir/DATA/${f:0:8}/$f"
04 [-f "$m"] &&
05 grep -E -i '^(from¦to¦cc¦date¦subject):' $m > $tmp-work &&
06 sed -n '/^$/,$p' $m >> $tmp-work &&
07 view $tmp-work
08 ERROR_CHECK
09 #既読トレイに移す（newの中だけ） #################
10 for t in $dir/TRAY/* ; do
11 [-e "$t/new/$f"] ¦¦ continue
12 mkdir -p $t/${f:0:8}
13 mv -f $t/new/$f $t/${f:0:8}/$f
14 ERROR_CHECK
15 done
16
17 rm -f $tmp-*
18 exit 0

リスト6　READERの後半部分 ▼

130 - Software Design

iPhone
A p p l i c a t i o n D e v e l o p e r s

Feb. 2013 - 131

OSアプリ開発者の知恵袋

世界を変える
iPad miniの登場

　Appleは2012年10月24日に iPad miniを発
表し、11月2日に販売を開始しました（写真1）。
iPadシリーズに追加された iPad miniは、これ
まで販売されてきた iPadの後継機ではなく、
新たな製品カテゴリとして追加された iPadです。
最大の特徴は、ディスプレイがこれまでの9.7

インチから7.9インチになり、片手でつかんで
持てるほどに小さく、薄く、軽くなったことで
す（写真2）。
　本稿では、この新たな製品カテゴリに対して、
iOSアプリ開発者は何を検討すべきかについて
考えてみます。

iPad miniについて

　iPad miniの仕様を見ると、第2世代の iPad

2とそれほど変わりません。最新の iPadや
iPhone 5と比べると、同じ最新デバイスなの
に見劣りするのは確かです。しかしこれは、デ
バイスの仕様によってユーザの利用スタイルが
変わるだけでなく、ユーザがどのようなシーン
でデバイスを使うかを想定した結論でしょう。
　iPadの9.7インチのディスプレイは見やすく
鮮やかで、ユーザ自身のみならずその周囲にい
る人と共有して利用できます。iPad miniの7.9

インチのディスプレイでは周囲の人といっしょ
に見るのは難しいでしょうが、本体は iPadに
比べて薄く、軽いので、長い時間片手で持つこ

とができ、ユーザが個人
で使うには最適なサイズ
と言えます。こういった
視点でも、従来の iPadと
は違ったアプリの方向性
が考えられるのではない
でしょうか。
　ディスプレイに関して
もう1点、iPad miniのディ
スプレイの幅は、左右の
ベゼルぎりぎりまで広げ
られています。ベゼルの

A p p l i c a t i o n D e v e l o p e r s

iPhone
A p p l i c a t i o n D e v e l o p e r s

OSア プ リ開 発 者 の 知 恵 袋

第34回

iPad mini登場！ アプリ開発で
押さえるべきポイント

嶋田 智成 SHIMADA Tomonari
 http://www.blueair.co.jp/

スマートフォンの認知度を一般に広めただけでなく、ソフトウェア開
発においても新しい波を作り出してしまった iOS。開発者たちは何を
見、どう考えているのか。毎回入れ替わりで iOS向けアプリケーショ
ン開発に関わるエンジニアに登場いただき、企画・開発のノウハウや
アプリの使いこなし術などを披露してもらいます。

▲写真1　iPad mini

写真2　片手でつかめる大きさ▶

http://www.blueair.co.jp/

130 - Software Design Feb. 2013 - 131

第34回iPad mini登場！ アプリ開発で押さえるべきポイント

幅は最も短いところで6.7mmしかなく、持っ
たときに指がディスプレイに触れてしまうこと
がしばしばあります。しかし、タッチ操作と誤
認識されないしくみが搭載されているので操作
への支障はほとんどありません（100％誤動作
しないとは言い切れませんが）。たとえば
iBooksなどの電子書籍アプリでは、ディスプ
レイの左右のエリアをタッチすることでページ
が切り替わりますが、本体を持つ指がディスプ
レイに触れていても、誤ってページをめくらな
いようになっています。

7インチタブレット

　iPadに代表されるタブレットデバイスは、こ
れまではB5ノートサイズで10インチくらいの
ディスプレイを搭載しているものが主流でした。
7インチのタブレットデバイスは iPad miniの発
売とほぼ同時期にAndroidやKindleなどが販売
され、にわかに注目が集まりました。iPad mini

の発売前に販売が開始されたAndroid OS搭載
のGoogle Nexus 7は、iPad miniのライバルと
目されている機種です。
　7インチタブレットはそのサイズから、携帯
コンテンツビューアとして普及することが予想
されています。すでに普及しているスマートフォ

ンも携帯コンテンツビューアと言えますが、ディ
スプレイのサイズが4インチほどしかなく、電
子書籍などのアプリでは1画面に表示できるコ
ンテンツのサイズがどうしても小さくなってし
まいます。7インチタブレットであれば、文庫
本の1ページを原寸で表示することが可能です。

iPad miniのアプリ

　iPad miniでは、iPad向けの27万5,000個の
アプリをそのまま利用できます。iPhone向け
アプリも互換モードで動作するので、App

Storeで公開されている約70万個のアプリを
利用可能です。またユーザがこれまで入手した
アプリを料金を追加することなく利用できます。

iPad mini用アプリ開発の
注意点－デザイナー
ディスプレイと
UI要素のサイズ

　iPad miniのディスプレイは7.9インチで、
iPadの9.7インチと比べると約80％のサイズで
す。ディスプレイは小さくなりましたが、画素
数で見ると iPad 2と同じ縦1024ピクセル、横
768ピクセルです。これまで iPad用に作成した
アプリのデザインを変更する必要はありませんが、

iPad miniiPad iPhone 5

iPhone 5のアイコンサイズは
iPad miniと同じ

図1　iPad、 iPad mini、 iPhone 5の実寸サイズでの表示比較 ▼

132 - Software Design

iPhone
A p p l i c a t i o n D e v e l o p e r s

Feb. 2013 - 133

OSアプリ開発者の知恵袋

ボタンなどは iPadの80％のサイズになるため、
ユーザが操作するエリアが小さくなります。
　図1を参照してください。Appleは画素数を
変えずに iPad miniのディスプレイを小さくす
るために、画素密度を高くしました。画素密度
とは画像を表示する画素の細かさのことで、1

インチあたりのピクセル数を ppi（pixel per

inch）という単位で表します。iPad miniを含め
iOSデバイスはそれぞれ、画面のサイズとppi

が異なります（表1）。Retinaディスプレイは、
通常のディスプレイと同じサイズでも画素密度
が2倍になります。
　iPad miniの画素密度は 163ppiで、iPhone

3GSと同じです。画素密度が同じなので、iPad

miniと iPhone 3GSでは、画素数が同じボタン
は見た目のサイズが同じになります。Retinaディ
スプレイを搭載した iPhone 4以降および第4世
代以降の iPod touchは画素密度が iPhone 3GS

のちょうど2倍ですが、同じ画素数のボタンは
iPad miniと見た目のサイズが同じです。つまり、
iPad miniでは、ユーザインターフェース（UI）
要素は iPhoneと同じサイズになります。
　図1と表1から次のことがわかります。

iPad 2とiPad Retinaディスプレイモデルでは、 •
画素密度が異なるが、ディスプレイのサイズが
同じであり、ディスプレイに表示されるボタンな
どのUI要素は同じサイズになる
iPad miniとiPhone 5では、ディスプレイの •
サイズが異なるが、iPhone 5の画素密度が
iPad miniの2倍になっており、ディスプレイ
に表示されるボタンなどのUI要素は同じサイ
ズになる（ホームのアイコンサイズは異なる）

　パソコン用のアプリは、マウスなどで画面上
のカーソルを動かしたりキーボードを使ったり
して操作します。一方、iOSなどタッチディス
プレイデバイス用のアプリは、ユーザが直接指
を使って操作します。パソコン用のアプリでは、
カーソルの大きさが同じなので、異なる形状の
ボタンを設置しても同じように操作できます。
タッチディスプレイデバイス用のアプリでは、
ユーザの手の大きさや指の形が異なるため、ボ
タンのサイズや形状が異なるとうまく操作でき
ない場合があります。
　また、iOSデバイスでも種類によって画素密
度が異なるため、デザイン上は同じサイズのボ
タンでも iPhone、iPad mini、iPadで異なるサ
イズで表示され、操作性が異なる場合があるこ
とにも気をつける必要があるでしょう。

デザインをどう作るか

　iOSアプリ開発では、必要なデザインやアー
トワークはどのように作ればよいのでしょうか。
Appleは、UIや操作などのデザインに関して
「iOSヒューマンインターフェイス ガイドライ
ン」注1を提供しています。このガイドラインでは、
iOSプラットフォームの世界観を自分のアプリ
に取り入れるためのポイントを説明しています。
　UI画面のデザインには、Photoshopなどの
ペイントソフトを使用します。ペイントソフト
はピクセル単位での編集が可能であるため、
UI画面のデザインに適しています。
　iOSアプリをデザインする場合、ペイントソ

注1） URL https://developer.apple.com/jp/devcenter/ios/
library/documentation/MobileHIG.pdf

表1　iOSデバイスのディスプレイの仕様（ディスプレイが横向きのとき） ▼

仕様 iPad mini
（Wi-Fi） iPad 2（Wi-Fi） iPad Retinaディスプレ

イモデル（Wi-Fi）
iPhone 5（Retina
ディスプレイ搭載）

ディスプレイのサイズ（対角） 7.9インチ 9.7インチ 9.7インチ 4インチ
画素数（ピクセル） 1024×768 1024×768 2048×1536 1136×640
画素密度（ppi） 163 132 264 326
ディスプレイの実サイズ（cm）注 16.0×12.0 19.7×14.8 19.7×14.8 8.9×5.0
アスペクト比 4：3 4：3 4：3 16：9
注） 計算式：2.54cm（＝1インチ）÷画素密度（ppi）×画素数（ピクセル）

https://developer.apple.com/jp/devcenter/ios/library/documentation/MobileHIG.pdf

132 - Software Design Feb. 2013 - 133

第34回iPad mini登場！ アプリ開発で押さえるべきポイント

フトのファイルをデバイスのディスプレイの解
像度に合わせて設定します（表2）。複数のデバ
イスに対応するアプリを開発する場合には、解
像度が大きいサイズ（Retinaディスプレイのサイ
ズ）をベースにデザインを作成し、最後にダウン
スケールします。ダウンスケールの際にはピク
セル不足によるエッジのボケに注意してください。
ダウンスケール後に1ピクセルの線になるよう
にするには、Retinaディスプレイのデザインで
は2ピクセルの線にしなければなりません。

ハーフピクセル問題

　App Storeから入手したアプリを使用してい
ると、ボタンの画像やアートワークがぼやけて
見えるアプリがあります。この問題の原因の1

つが画像のピクセル不足によるボケです。プロ
グラムで画像を中央に表示する場合、ディスプ
レイの幅の1/2から画像の幅の1/2を引いた値
を、画像を配置するための起点にします注2。画
像の幅が奇数のとき、幅の1/2の端数が0.5ピ
クセルになるため、起点の位置にも0.5ピクセ
ルの端数が出てしまいます。画像の解像度の最
小値は1ピクセルなので、起点の位置にハーフ
ピクセルの端数が出てしまうとぼやけた感じで
表示されてしまいます。この問題を解決するに

注2） iOSは左上を起点とします。

は、画像の幅を偶数にするか、中央に配置する
際に起点で端数が出ないようにプログラムで小
数点以下を切り捨てた数値を採用します。

ディスプレイの実サイズ

　アプリのデザインを行う際には、デザインを実
際のサイズでプリントアウトしてペーパーモック
を作成します。実際に表示されるサイズでプリン
トアウトすることで、アプリの使いやすさ（UX：
User eXperience）を検証します。iPad miniなど
のデバイスではディスプレイのサイズの単位にイ
ンチを採用しているため、実サイズのモックを作
成するときにcmに変換する必要があります。
　Appleの「iOSヒューマンインターフェイス
ガイドライン」では、タップ可能なUI要素の快
適な最小サイズを44ピクセル（Retinaディスプ
レイでは88ピクセル）と定義しています。44

ピクセルおよび88ピクセルをcmに変換すると、
表3のようになります。また、10cmを各デバ
イスでピクセルに変換した値を表4に示します。
　AppleのWebサイトでは、iOSデバイス用の
ケースを制作する際に使用する外形寸法図が公
開されており、ディスプレイなどの細かいサイ
ズを確認できます注3。
　毎年のように新しいデバイスが登場し、それ

注3） 「Designing cases for iPod, iPhone, and iPad」
 URL http://developer.apple.com/jp/resources/cases/

表2　iOSデバイスのディスプレイの解像度 ▼

仕様 iPad mini/iPad 2 iPad Retina
ディスプレイモデル

iPhone 5 / iPod touch
（第5世代）

iPhone 4S/iPod touch
（第4世代）

解像度 1024×768、72dpi 2048×1536、72dpi 1136×640、72dpi 960×640、72dpi
カラーモード RGB RGB RGB RGB
ピクセル縦横比 正方形ピクセル 正方形ピクセル 正方形ピクセル 正方形ピクセル

表3　ピクセルからcmへの変換 ▼ 注

iPad mini iPad 2 iPad Retinaディスプレイモデル iPhone 5（Retinaディスプレイ搭載）
44ピクセル 0.7cm 0.8cm 0.4cm 0.3cm
88ピクセル 1.4cm 1.7cm 0.8cm 0.7cm
注）計算式：2.54cm（＝1インチ）÷画素密度（ppi）×画素数（ピクセル）

表4　cmからピクセルへの変換 ▼ 注

iPad mini iPad 2 iPad Retinaディスプレイモデル iPhone 5（Retinaディスプレイ搭載）
10cm 642ピクセル 520ピクセル 1040ピクセル 1284ピクセル
注）計算式：画素密度（ppi）÷2.54cm（＝1インチ）×サイズ（cm）

http://developer.apple.com/jp/resources/cases/

134 - Software Design

iPhone
A p p l i c a t i o n D e v e l o p e r s

Feb. 2013 - 135

OSアプリ開発者の知恵袋

によって仕様、ディスプレイのサイズや解像度、
画素密度が多様化しています。最近では iOSデ
バイスに iPad miniや iPhone 5が追加され、画
素密度や解像度が変更されました。新しいデバ
イスが登場しても、ユーザは何も意識せずに既
存の iOSアプリをそのまま新しいデバイスで使
用できます。これは、iOSプラットフォームと
iOSデバイスを提供するのがAppleのみであり、
それによってデバイス間の互換性を高いレベル
で保つことができているからです。

iPad mini用アプリ開発の
注意点－開発者

　すでにリリースされているアプリを iPad

miniに対応させる場合、変更することはとく
にありません。iPad miniに搭載されているカ
メラやGPS、ジャイロスコープなどデバイス
に固有の機能は、最新の第4世代のものと仕様
はやや劣るものの同じです。アプリでも、iPad

の種類に関係なく、デバイスに固有の機能に同
じ方法でアクセスできます。iOSプラットフォー
ムは使用するデバイスに依存しないように設計
されており、アプリもデバイスに関係なく動作
します。iPad miniの仕様は iPad 2とほぼ同等
なので、負荷がかかる処理やメモリを多く使用
するアプリを作成する場合には注意が必要です。
　AppleのDeveloperサイトでは、デバイスの
互換性リストを公開しており、デバイスごとに

使用できる機能を確認できます注4。

プログラムで
iPad miniを識別

　アプリでデバイスごとに処理や使用するアー
トワークを制御したい場合があります。ユーザ
が使用しているデバイスの機種と世代を特定す
る方法はいくつかあります。たとえば、ディス
プレイのサイズを取得してそのサイズから使用
しているデバイスの機種を特定できます。この
方法では、ディスプレイのサイズ（解像度）から
デバイスを識別します。解像度が同じで画素密
度が異なるデバイスを識別する際には向いてい
ません。デバイスの機種と世代を特定するコー
ドをリスト1に示します。
　機種情報から対応するデバイスを特定する場
合、次のサイトが参考になります。

「The iPhone Wiki Models」 •
 URL http://theiphonewiki.com/wiki/index.

php?title=Models

新たなデバイスの登場で
アプリ開発者は得をするのか
　iOSデバイスは毎年ほぼすべての機種が更新

注4） 「Appendix B: Device Compatibility Matrix」
 U R L http: / /deve loper.apple.com/ l ibrary / ios /#

documentation/LanguagesUtil ities/Conceptual/
iTunesConnect_Guide/B_DeviceCompatibilityMatrix/
DeviceCompatibilityMatrix.html

リスト1　デバイスの機種と世代を特定する ▼

// ヘッダの読み込み
#include <sys/sysctl.h>
// （省略）
size_t size;
sysctlbyname("hw.machine", NULL, &size, NULL, 0);
char *machine = malloc(size); // メモリを確保する
sysctlbyname("hw.machine", machine, &size, NULL, 0); // 機種情報を取得する
NSString *platform = [NSString stringWithUTF8String:machine];
 // char型からNSString型に変換する
free(machine); // メモリを解放する
NSLog(@"%@", platform); // 出力する

// 出力
// iPad 2,5：iPad mini Wi-Fiモデル
// iPhone5,2：iPhone 5 au版

http://theiphonewiki.com/wiki/index.php?title=Models
http://developer.apple.com/library/ios/#documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/B_DeviceCompatibilityMatrix/DeviceCompatibilityMatrix.html

134 - Software Design Feb. 2013 - 135

第34回iPad mini登場！ アプリ開発で押さえるべきポイント

されます。更新によって iOSデバイスの出荷台
数は増え続け、現在では iOSデバイスの出荷台
数がMacの出荷台数を上回っています。デバ
イスの種類と出荷台数が増えることでアプリの
売り上げもまた増えるかというと、必ずしもそ
うとは限りません。これは iOSデバイスでアプ
リを入手するときに使用するApple ID（iTunes

アカウント）に関係します。1つのApple IDで
10台のデバイス（Macを含む）を管理できます。
つまり、1つのApple IDで入手したアプリは最
大10台のデバイスにインストール可能です。
有料アプリは一度購入すると、再度購入するこ
とはできません。ユーザの多くは、Apple ID

を1つだけ持ち、iPhone、iPad、iPod touchな
ど複数の iOSデバイスを更新します。そのため、
iOSデバイスが増えることがアプリの売り上げ
に直結するとは限らないのです。
　実はデバイス数の増加よりもApple IDのア
カウント数の増加がポイントになります。
Apple IDのアカウント数は2012年9月時点で
4億3,500万と発表されました。2012年10月
には、これまでのアプリのダウンロード数は
350億回、Appleが開発者に支払った金額は65

億ドルに達したと発表されています。2012年3

月の発表からわずか半年でダウンロード数は
100億回、開発者への支払い額は25億ドル増
えたことになります。iOSアプリの市場がまだ
まだ拡大を続けていることは事実です。

ビジネス、教育機関向けの
アプリ開発

　2012年9月から、日本でも「Volume Purchase

Program」が始まりました。これは、App Store

で販売されているアプリを一括購入（ライセンス
購入）できるプログラムです。iOSデバイスを複
数台導入した企業や教育機関などで、業務や授

業に使用するアプリを購入する際に利用できます。
通常のアプリ購入では同じApple IDで同じアプ
リを複数購入することはできません。この一括
購入プログラムを使用すれば、デバイスの台数
分同じアプリを購入できます。
　開発者にとっても、コンシューマ市場向けの
みビジネスユース市場にアプリの販売を拡大で
きるので、売り上げアップにつながります。開
発者がVolume Purchase Programに参加する
には、iTunes Connect注5でアプリを申請する際
にビジネス向けの販売を許可するだけです。教
育機関向けの一括購入プログラムではボリュー
ムディスカウントがあり、開発者が許可してい
る場合にのみ同じアプリを20個以上購入する
と50％の割引価格になります。
　また、Volume Purchase Programでは、企
業向けにカスタマイズされたアプリを非公開で
開発者から調達できる、カスタムB2Bアプリ
ケーションシステムを利用できます。ビジネス
向けアプリの導入システムが整備されたことで、
開発者はビジネス市場に参入しやすくなりまし
た。Volume Purchase Programについては次
のサイトを参照してください。ﾟ

「ビジネス向けのApp Store一括購入」 •
 URL http://www.apple.com/jp/business/
vpp/
「Apple Volume Purchase Program」 •
 URL http://www.apple.com/jp/education/
volume-purchase-program/
「iTunes Connectデベロッパガイド」 •
 U R L https://developer.apple.com/jp/
devcenter/ios/library/documentation/
iTunesConnect_Guide.pdf

注5） URL https://itunesconnect.apple.com/

嶋田 智成 ● （しまだ ともなり）　合資会社ブルーエアー（Blueair Inc.）　代表取締役

大学在学中の2005年に制作会社の合資会社ブルーエアーを立ち上げ、WebサイトやWebシステム案件を中心にスマート
フォン向けサイトやアプリの開発などにも携わる。現在は講師やiOSデバイスビジネス導入支援、技術コンサルタントとし
ても活動している。

http://www.apple.com/jp/business/vpp
http://www.apple.com/jp/education/volume-purchase-program/
https://developer.apple.com/jp/devcenter/ios/library/documentation/iTunesConnect_Guide.pdf
https://itunesconnect.apple.com/

136 - Software Design136 - Software Design Feb. 2013 - 137

はじめに

　横浜支部の嶋崎です。Nexus 7がちょうどい
い軽さ、画面の大きさ、鮮明さ、値段とこれま
でのタブレット端末よりもお得感がありますね。
以前は日本から開発用端末の購入はできません
でした。それが、簡単な手続きでGoogle Play

からも買えるようになって、便利になったもん
だと思います。
　さて、今回は前号でインストールしたRhodes

環境を使って、実際にアプリを制作する手順を
紹介していきます。

RhoStudioで
プロジェクトを作成する

　今回作成しているプロジェクトは、GitHubに
載せています注1。書き換えるたびにコミットして
いますので、どこを書き換えたかなどはすべて
確認できます。

プロジェクトの作成

　まずはRhoStudioでプロジェクトを作成しま
しょう。Eclipse経験者にはお馴染みと思います
が、［File］メニューの［New］→［Project］を選ぶ
か、Project Explorerで右クリックして、［New］
→［Project］を選んでください。
　アプリの種類をRhoConnect applicationまたは
RhoMobile applicationから選びます。
　RhoConnectは、モバイルアプリ拡張用サーバ
といったものです。基幹業務用アプリなど、規模
が大きいアプリでモバイル機器同士を連動させ
るためのバックエンドサーバを作成するためのフ
レームワークです。端末側にはRhodesを必ず使
わなくてはならないという制限はありません。
　RhoMobileは文字どおりスマートフォン用の
アプリ向けフレームワークで、今回使うのはこ
ちらです（図1）。
　プロジェクトでは、デフォルトではRhoMobile

注1） URL https://github.com/sato-c/MemoPad

G o o g l e A n d r o i d

Android
エンジニアから

の

招待状

presented by Japan Android Group

http://www.android-group.jp/
よこいど／日本Androidの会 横浜支部

嶋崎 聡　SHIMAZAKI Satoshi
 Twitter @sato_c

motosumi64@gmail.com

モバイルデバイス初のオープンソースプラットフォームとして、
エンジニアから高い関心を集めるGoogle Android。いち早くそ
のノウハウを蓄積したAndroidエンジニアたちが展開するテク
ニックや情報を参考にして、大きく開かれたAndroidの世界へ
踏みだそう！

マルチプラットフォーム
開発環境を使ってみよう（3）第34回

▼図1　RhoMobile applicationを選択する

https://github.com/sato-c/MemoPad
http://www.android-group.jp/

136 - Software Design Feb. 2013 - 137Feb. 2013 - 137

マルチプラットフォーム開発環境を使ってみよう（3） 第34回

フレームワークを中心にソースコードを作成しま
すが、［Create application from existing sources］
にチェックを入れて既存のソースコードを流用す
ることも可能です。また、［Use RhoElements］に
チェックを入れると、RhoElementsライブラリが
追加されます。RhoElementsは、ハードウェア依
存の機能を利用する際に使うライブラリです。
　今回は、MemoPadというプロジェクト名にし
ました。入力した名前はメニュー画面などの表
示にも使われます（図2）。
　［Finish］ボタンをクリックするとプロジェクト
が作成され、Project Explorerに作成したプロ
ジェクトが表示されます。プロジェクトにはフ
レームワークやベースになるソースコードがすべ
て入っているので、このまま実行してもちゃんと
した画面が表示されます。このあたりは、プロ
ジェクトを作成するとそのままでもViewが表示
されるAndroidアプリと似ています。
　アプリの内部で漢字を使う場合、デフォルトの
漢字コードを設定しておきましょう。プロジェク
ト の［Properties］で［Text fi le encoding］が MS

932（CP932）になっていたら、UTF-8を選んで
［OK］ボタンをクリックします（図3）。これで、erb

側では日本語を書いておいたのに、画面には謎の
文字列が表示されるようなことがなくなります。
　View部分にはWebViewが使われており、ファ
イルはHTMLベースで作られています。ユーザ
インターフェースはRubyのerbテンプレートエ
ンジンと jQueryMobileを使って構築します。
JavaScriptで関数を書けば、インタラクティブな

ユーザインターフェースも実現できます。

プロジェクトの実行

　他のIDEと同じようにRhoStudioでもプロジェ
クトを作成した後にすぐに実行できます。［Run］
メニューの［Run Confi gurations］を選択して実行
用の設定を行ってください。［Run Confi gurations］
画面の左側で［RhoMobile Application］を選択し、
左上の新規作成のアイコンをクリックして設定を
作 成し た 後、［Project Name］は MemoPad、
［Platform］はAndroidを選択します。［Simulator

type］は、Android端末がつながっている場合は
Deviceを選択すれば、その端末で動きます。そ
れ以外の場合には、エミュレータ（RhoSimulator、
Simulator）を選択できるため、環境に応じて変更
してください。［Run］ボタンをクリックすると、ア
プリが実行されます（図4）。

Controllerの実装

　メニューやログイン画面などが動くことを確認
できたでしょうか。確認できたら、機能を追加し
ていきましょう。次はControllerの追加です。
　Rhodesは、MVC（Model View Controller）と
いうデータ構造、表示、処理を分離した構造で
実装されています。Viewは画面表示を行いま
す。それ以外の処理はControllerが行います。
データ入出力に関係するModelについては、後
ほど説明します。
　Project ExplorerでMemoPadを展開し、appを
右クリックして［New］→［RhoMobile model］を選

▼図3　漢字コードをUTF-8に設定する▼図2　プロジェクトの内容を設定する

RhoElementsライブラリを
利用するときにチェック

通常のワークスペースに
作成するときにチェック

既存のソースコードから
作成するときにチェック

138 - Software Design138 - Software Design

Android
エンジニアから

の招待状AndroidAndroidAndroidAndroidpresented by Japan

Android Group
http://www.android-

group.jp/

Feb. 2013 - 139

択します（図5）。
　Model information画面では、データベース名
（［Model name］）とその構成（［Model attributes］）
を設定します。今回はデータベースの構成を題名
（subject）、日付（date）、内容（body）の3つにしまし
た（図6）。
　［Finish］ボタンをクリックすると、設定した
ControllerとModelが自動的に生成されます。
appフォルダには、指定した名前（今回はMemo

Pad）でフォルダが生成され、必要なファイルが
格納されます。また、testフォルダには、生成さ
れたControllerをテストするためのモジュールが
追加されます（図7）。
　これで、ModelとControllerの設定は終わり
ました。しかし、このままでは実行する手段が
ないのでテストができません。そこで、appフォ
ルダの下にある index.erbの19行目

Add link here...

を次のように書き換えます。

MemoPad

　こうすることで、app配下に作成したMemoPad

を呼び出せます。この状態でデバッグ環境から
実行してみましょう。デバッグモードで実行する

には、Project Explorerでプロジェクトを右ク
リックし、［Debug as］→［Debug Confi gurations］
を選びます。先ほど、試しに実行するときに作っ
た設定を選んで［Debug］ボタンをクリックします。
自動的にRhoSimulatorが起動してPC用のデバッ
グ環境が開きます。
　デバッグモードで実行した場合、ブレークポ
イントを使えます。Eclipseと同じように停止さ
せたい行をクリックしてブレークポイントを設
定すると、実行がいったん停止して、変数の内
容などを確認できます。

メモ帳アプリの作成

　説明が前後してしまいましたが、今回はサン
プルとして日付と題名も保存できるメモ帳を作
成します。仕様を表1に、機能連携図を図8に
示します。
　さて、仕様も決まったので実装していきましょ

▼図4　そのまま実行すると
メニューが表示される

▼図5　Controller/Modelの作成

▼図6　Modelの設定

http://theiphonewiki.com/wiki/index.php?title=Models

138 - Software Design Feb. 2013 - 139Feb. 2013 - 139

マルチプラットフォーム開発環境を使ってみよう（3） 第34回

う。……と思ったのですが、実際に自動で作っ
たプロジェクトを動かしてみると機能のほとん
どは、すでに実装されている状態でした。

プロジェクトの改造

　今のところ、まだ削除機能が実装されていま
せん。フォームで本文を入力する部分も1行入
力のままなので、このあたりも直していき
ましょう。すべての部分で細かな手直しが
必要になりますが、裏を返せばこれくらい
の変更しかしなくてもよいということです。

本文入力の領域を広げる ■
　これは、<form>の<input>（タイ
プ＝ text）を<textarea>に変更する
ことで修正します。新規入力部分
（new.erb）と編集部分（edit.erb）の2

つのerbを編集しましょう。
　まず、new.erbの27行目（リスト
1）をリスト2のように書き換えます。
　続いて、edit.erbの29行目（リスト3）をリス
ト4のように書き換えます。
　これでテキストフィールドがテキストエリア
に変更され、複数行の入力ができるようになり

ました。テキストエリアの幅は、デバイスの画
面サイズに合わせて変更されます。高さは、入
力している行数によって jQueryMobileが自動的
に広げています。

▼図7　設定完了 ▼表1　MemoPadアプリの仕様
概要
日付、題名とともに数行程度のメモを行う。
記入した内容は、アプリ内のデータベースに保存する
機能
1. メモ作成 メモを作成する。画面には、日付と題名のテキストボックスと本文記載

用のテキストエリアを配置する。保存ボタンは、画面上部と画面下部に
わかりやすい形で配置する

2. メモ
一覧表示

保存されているメモの題名を一覧表示する。題名をタップした場合は、
内容を表示する。メニュー画面も兼ねるので、新規作成ボタンを配置
する。新規作成ボタンを押すとメモ作成画面へ遷移する

3. メモ
内容表示

一覧から選択されたメモの内容を表示する。編集ボタン、削除ボタンを
配置する。ボタンが押された場合にはそれぞれの機能に遷移する

4. メモ編集 選択したメモを再編集する。保存ボタン、破棄ボタンを配置する。保
存ボタンは編集内容を上書き保存する。破棄ボタンは編集内容を保存
しないで一覧表示に戻る

5. メモ削除 選択したメモを削除する。内容表示の下に削除ボタンとキャンセルボタ
ンを配置する。キャンセルボタンが押された場合は一覧表示に戻る。削
除ボタンが押された場合は削除してから一覧表示に戻る

新規作成

内容表示

編　集

一覧表示

削　除

▼ 図8　機能連携図

▼リスト1　new.erbの27行目－変更前

<input type="text" id="memopad[body]" name="memopad[body]"
 <%= placeholder("Body") %> />

▼リスト2　new.erbの27行目－変更後

<textarea id="memopad[body]" name="memopad[body]"
 <%= placeholder("Body") %>></textarea>

▼リスト3　edit.erbの29行目－変更前

<input type="text" id="memopad[body]" name="memopad[body]"
 value="<%= @memopad.body %>" <%= placeholder("Body") %> />

▼リスト4　edit.erbの29行目－変更後

<textarea id="memopad[body]" name="memopad[body]"
 <%= placeholder("Body") %>> <%= @memopad.body %></textarea>

140 - Software Design140 - Software Design

Android
エンジニアから

の招待状AndroidAndroidAndroidAndroidpresented by Japan

Android Group
http://www.android-

group.jp/

Feb. 2013 - 141

■削除機能を追加する
　デフォルトでは編集画面からしか削除ができま
せん。それでは不便なので、削除機能も追加し
ていきます。削除用のボタンに関しては、編集画
面のツールバーにあったので、そのコードをコ
ピーして利用しましょう。edit.erbの8～10行目
のリンク（リスト5）を使います。
　内容を確認した後に削除ボタンを押せるよう
にしたいので、フッタを作ってそこに配置しま
す。show.erbの35行目（最後の</div>の前）に
リスト6のコードを追加しました。
 　これで内容を確認してから削除ができるよう
になりました（図9）。
　しかし、このままでは削除ボタンを押してす

ぐにメモが削除されてしまいます。そこで、
JavaScriptで確認ダイアログを表示して、本当
に削除するのかを確認できるようにしましょう。
別のJavaScriptのコードは別途 jsファイルに記
述してshow.erbのヘッダで読み込むか、show.

erbで追加したフッタの後（41行目以降、最後の
</div>の前）にリスト7のコードを追加します。
　また、削除ボタンからJavaScriptの関数を呼
び出すように、追加した削除ボタンのコード（リ
スト6）をリスト8のように変更します。このと
き、他の場所でも使えるように引数に遷移先の
URLと確認用メッセージを取るようにします。
これで引数を変更すれば、削除以外でも確認ダ
イアログを出せるようになります。

▼リスト5　edit.erbのリンク

<a href="<%= url_for :action => :delete, :id => @memopad.object %>"
 class="ui-btn-right" data-icon="delete" data-direction="reverse">
 Delete

▼図9　固定されたフッタに
［Delete］ボタンを配置

▼リスト6　show.erbに削除ボタンを追加

<%# 画面下にバーを固定する %>
<div data-role="footer" data-position="fixed">
 <a href="<%= url_for :action => :delete, :id => @memopad.object %>"
 class="ui-btn-left" data-icon="delete" data-direction="reverse">
 Delete

</div>

▼リスト7　show.erbに追加するJavaScriptのコード

<%# 削除の確認をする %>
<script>
function confirmDialog(url,msg) {
 result = confirm(msg);

 // 確認ダイアログでYesを選ぶとtrueが返されるので、ページを遷移させる
 if (result == true) {
 $.mobile.changePage(url, {reverse: true});
 return true;
 }
 return false;
}
</script>

▼リスト8　show.erbの削除ボタンの変更

<%# 画面下にバーを固定する %>
<div data-role="footer" data-position="fixed">
 <a href="javascript:confirmDialog(
 '<%= url_for :action => :delete, :id => @memopad.object %>',
 '削除しますか?');"
 class="ui-btn-left" data-icon="delete" data-direction="reverse">
 Delete

</div>

http://theiphonewiki.com/wiki/index.php?title=Models

140 - Software Design Feb. 2013 - 141Feb. 2013 - 141

マルチプラットフォーム開発環境を使ってみよう（3） 第34回

日付と題名の入力を省略する ■
　次に新規作成のときにデフォルト値として今日
の日付を入れ、題名が省略されたときにデフォル
トの題名を追加するようにしましょう。memo_pad_

controller.rb側で変数を設定すると、View側でそ
の値を反映できます。memo_pad_controller.rbの
new関数で@todayという変数に日付を設定します
（「@memopad = MemoPad.new」の次の行に追加）。

@today = Date.today().to_s()

　また、Dateクラスを利用するために、memo_

pad_controller.rbの3行目に次のコードを追加
してください。

require 'date'

　変数を設定しただけでは表示されないので、
new.erbにも反映します（リスト9）。HTMLの
<form>には、デフォルト値を設定するための
valueパラメータがあります。ここに@todayの
内容を表示するように書き換えます。
　次にmemo_pad_controller.rbのcreate関数を
リスト10のように変更し、内容（body）が空であ
る場合にはデータベースにメモを追加しないよ
うにします。また、題名がない場合はデフォル
トで「＜今日の日付＞のメモ」という題名を付け
るようにします。

　これで、内容がないメモは作成されず、題名
がない場合は仮の題名が付けられるようになり
ました。ベースになる部分に手を加えるだけで、
このように使えるアプリができました。ぜひ一
度試してみてください。

まとめ

　Rhodesでのアプリ開発はいかがでしたか。普
段Android SDKを使ってアプリを作っている
と、どうしても「めんどうだなー」と思う部分が
出てきますが、今回はそういうことが多少減っ
ていたように思います。
　RhodesはRubyなのでわからないという方に
は、JavaScriptを使えるPhoneGapもあります。
Javaで作るのもいいですが、スクリプト言語で
アプリを作る環境も試してみてください。
　2012年 7月号の本連載で紹介した、Play

Station Mobile DeveloperProgram が 2012 年
11月20日より正式に開始しました注2。年間のラ
イセンス利用料も7,980円と正式に発表されま
した。Androidデバイスへの対応の拡大も発表
されたので、この先もいろいろな展開を期待で
きそうです。｢

注2） URL https://psm.playstation.net/portal/ja/

▼リスト9　new.erbの変更（21行目）

<%# @todayとしてアサインされている変数を表示する %>
<input type="text" id="memopad[date]" name="memopad[date]"
 value="<%= @today %>" <%= placeholder("Date") %> />

▼リスト10　memo_pad_controller.rbのcreate関数の修正

def create
 if @params['memopad']['body'] && @params['memopad']['body'] != ''
 if @params['memopad']['subject'] == ''
 @params['memopad']['subject'] = "#{Date.today().to_s()}のメモ"
 end
 @memopad = MemoPad.create(@params['memopad'])
 end
 redirect :action => :index
end

嶋崎 聡 （しまざき さとし） よこいど／日本Androidの会 横浜支部所属

Androidでゲームを作りたいがために長年敬遠してきた Javaを覚えたまではよいのですが、使い始めたときの環境（Android
1.6）では描画とGC（と自分自身のスキル）のおかげで求める速度が出せないまま、いつのまにか当初の目的を忘れて全然違
うものばかり作っています。そろそろゲームを……。

https://psm.playstation.net/portal/ja/

大阪にもいてますねん

　まいど。レッドハットでソリューションアー
キテクト（SA）をやっています、田中と申しま
す。え？もうSAの話はお腹いっぱい？……い
やいや、ちょっと待ってください。今回は少し
趣向を変えて本社・恵比寿から飛び出しまして、
大阪から番外編として「なにわ通信」でお送りし
たいと思います。どうぞお楽しみください。
　レッドハット日本法人の本拠地は、ご存じの
とおり東京・恵比寿駅前にあります。何度かの
引越しを経験してはいますが、1999年の設立以
来ずっと、東京から国内すべての対応を行って
いました。そんな中、西日本における活動の拠
点として、2009年末に「西日本支社大阪営業所」
が開設されたのです！
　そんな大阪営業所の守備範囲ですが、基本的
に近畿以西となっています。この守備範囲に含
まれる、多くのエンドユーザ様、パートナー様
を対象に、日々営業活動に励んでいます。肝心
の場所ですが、一度の引越しを経て、現在は大
阪の堺筋本町駅前にあります。全国から「そんな
駅知らねーぞ」という声が聞こえて来そうです

ね。はい、すいません。梅田とか心斎橋といっ
たメジャーな駅ならばよかったのですが……。
「恵比寿」と「堺筋本町」では釣り合いがとれない
ので、今回は「なにわ」と銘打っております。

　大阪の顧客を訪問、あるいは大阪の支店で打
合せなどといった理由でたまに大阪へ出張する
かも？̶̶という方は多数いらっしゃると思い
ます。そのような方向けに、知っておいて損は
ない豆知識をご紹介したいと思います。

東西南北を意識せよ！

　大阪市中心部の道路は、「碁盤の目」になって
います。そのため地図もシンプルで、比較的迷
うことなく目的地へ辿りつけます。ただし、東
西南北を把握していれば……です。初心者には
これが意外と難しいのです。「御堂筋線本町駅で
降りて東」と伝えたにもかかわらず、ひたすら西
へ進んで遭難する出張者は後を絶ちません。市
内中心部の地下鉄は、ほとんどが南北か東西に
走っています。それを意識して、電車を降りて
からも「自分は今どの方角を向いているか」を反
芻しつつ移動するのがコツです。

地下街に気をつけろ！

　東京には新宿ダンジョンという恐ろしい場所
があると伝え聞きます。大阪にも、それに匹敵
するスポットがあります。そう、「梅田地下街」
です。梅田周辺は、ほぼ全域が地下で繋がって
おり、信号や天候によらず移動が可能でとても
便利です。ただ、多数の中～小規模な地下街が
無秩序に繋がっているため、初心者の目には複
雑怪奇に映ります。「B1を歩いていると思った
ら、いつの間にかB2にいた。何を（略）」という
ことがリアルに起きる恐ろしい場所です。私も
高3の時、長崎から初めて大阪にやって来たそ
の日に洗礼を受けました。地上では見えていた
目的地ですら、地下を通ると辿りつけない……

大阪まめちしき通信
レッドハット

田中 耕輔
Kosuke Tanaka

レッドハット（株）
グローバルサービス本部プラットフォームソリューション統括部
ソリューションアーキテクト

地方エンジニアあるある

第 回5

なにわ

142 - Software Design

という恐ろしい体験でした。アドバイスとして
は、やはり無理をしないことです。まずは確実
に短距離移動で経験値を積み重ねましょう。

キタ派？　ミナミ派？

　大阪では「キタ」「ミナミ」という地名を使いま
す。「キタ」といえば梅田周辺、「ミナミ」といえ
ば難波・心斎橋周辺です。多くの百貨店が建ち
並び、ちょっと洗練された雰囲気なのがキタ。
かたや、コテコテ大阪的な繁華街がミナミです。
大阪出張時の宿泊先、あなたはどうしてますか？
交通の便を考えて大阪駅前でしょうか。でも大
阪を満喫したいという方は、ぜひミナミにトラ
イしてください。「今晩の宿はミナミです」と言
うと、「こいつやるな……」的な印象を与えます
（※かなり偏見が入ってます）。同様なことが、
大阪府北部と南部にもあります。ちょっと上品
ぶった北部住民、「河内弁」に代表される粗野な
印象を持たれがちな南部住民という構図です。
大阪人との会話でネタに困ったら「お住まいは何
処ですか？　北？　南？」と振ってみてくださ
い。周囲を巻き込んで、意外と盛り上がると思
います。その場で南北戦争が勃発しても責任は
持ちませんが……。

地方エンジニア
あるある

　私は、大阪営業所の立ち上げ直後にレッドハッ
トに入社しました。以来ずっと、ただ1人の西
日本地域専任のSAとして活動を続けています。
レッドハット入社前には、某サーバベンダーの
大阪オフィスにおいて、インフラ構築にかかわ
るエンジニアとして10年ほど勤務していまし
た。そんな私から、本誌の読者の中にも少なか
らずいらっしゃるであろう「地方エンジニア」の
方々と、共感できるようなネタを挙げてみよう
と思います。

相談したい！

　これは誰もが常日頃から感じていることでは

ないかと思います。とくに地方オフィスではエ
ンジニアの数も限られ、気軽に相談できる機会
が少ない、場合によっては相談相手自体が存在
しない……ということがままあります。もちろ
ん会社ですから、ちゃんと質問すれば誰かしら
相談にのってくれるような環境は、どこかにあ
るとは思います。私の場合は、国内のSA＆コ
ンサル部隊宛のエイリアスに質問メールを投げ
ると、恵比寿にいる超絶優秀エンジニア達が何
かしら力になってくれます。でも、そうではな
いんですよね……。もっと雑談レベルで気軽に、
いろいろとテクニカルな情報交換をやりたいと
思うのは、エンジニアとしての自然な要求では
ないでしょうか。

分担？
――何それおいしいの？

　これも人が少ない部署の特色だと思います。
ある程度の規模の事業所であれば、製品カット、
あるいは顧客カット（顧客別、業種別など）で担
当を分けるのがよくあるパターンだと思います。
いろいろな顧客を担当するのは、個人的にはそ
れほど苦にはなりませんが、「全部の製品を担当
する」というのは、なかなかの覚悟が必要です。
全部の製品を片っ端からマスターすることがで
きれば一番ですが、なかなかそんなパワーは持
ち合わせていません。必然的に守備位置は「広く
浅く」という感じになってしまうのではないで
しょうか。私の方針は、ボールが飛んできたら
全速力で落下地点に駆けつけ、ボールが落ちて
くるまでに急いで最適な捕球姿勢を学ぶ……と
いう感じですね。え、行き当たりばったり？―
―いえいえ、これぞ地方エンジニアの生きる知
恵だと思います。

沖縄の案件って……

　大阪営業所の守備範囲は「基本的に近畿以西」
と書きましたが、基本から外れる例外がありま
す。そうです、沖縄です。遠隔地への出張は、
移動のしんどさもありますが、同時にそれを補
う程の楽しみがある場合も多いと思います。そ

通信レッドハット 第 回5
地方エンジニアあるある

なにわ

142 - Software Design Feb. 2013 - 143

の筆頭が「沖縄」「北海道」という響きではないで
しょうか（※個人の感想です）。そんな魅力的な
沖縄案件というのは、原則東京からの対応にな
ると聞いています……残念。この残念なルール
は前職でもありましたので、意外とスタンダー
ドなのかもしれません。というわけで、私はま
だ沖縄へ一度も行ったことがありません。旅行
したいならプライベートで行け、って話なんで
すけどね……。

つきまとう不安

　ちょっと暗い話になりますが……地方拠点と
いうものは、会社業績の影響をモロに受ける場
合があります。その最たるものが「撤退」ではな
いでしょうか。拠点自体を閉鎖するということ
もあるでしょうし、特定の部署の人員だけ引き
揚げる……なんてこともあるでしょう。人員を
本社に集約というパターンもあるでしょうし、
ドライな会社であれば速攻クビ宣告なんてこと
もあり得ます。もちろん失職するのは困ります
し、私のように「東京では働きたくないでござ
る」という人間にとっては転勤だって大問題で
す。そういう方々は、単なる一エンジニアとい
う感覚を越えて、拠点の営業的な存在意義とい
うものを、常に意識しているのではないでしょ
うか。

機材がない！

　地方オフィスに検証ラボがないというのは、
やはり皆の頭を悩ませている点ではないでしょ
うか。たとえ検証ラボがあったとしても、本社
と比較すると激しく見劣りするというのが実状
でしょう。私がいる大阪営業所には、もちろん
専用の検証ラボルームなんてものはありません。
それでも、空いている席を1つ確保（不法占拠？）
して、検証スペースとしています。検証用とし
て支給してもらったノートPC3台で、何とかや
りくりしようとするのですが、やっぱりそれだ
けでは足りませんね。あればあるだけ使ってし
まう、というのは悪い癖なのかも。

指令
「検証環境を確保せよ」

　ここまで、地方エンジニアとして気になる事
柄をいくつか挙げてみました。ほとんどのもの
は「頑張れ」または「我慢しろ」という体育会系な
解決方法が主となってしまうのですが、機材不
足の問題については技術者として何とかしたい
所です。ここで少し、いかにして検証環境を充
実させるかについて考えてみたいと思います。
　困っているという時点で、会社の経費で買っ
てもらうという選択肢は消えているでしょうか
ら、必然的に自腹で用意することが前提となり
ます。とにかく安く、効率的に入手する必要が
ありますので、必要最低限の部品を買ってきて
組み立てる、あるいは組み換えるというのが第
一候補ではないでしょうか。これを「余計な出
費」と考えるか「密かな楽しみ」ととらえるかで、
モチベーションが大きく違ってきます。私は断
然後者だったりするのですが、そうでない方は、
ぜひPCのDIYを趣味の1つとして加えてみて
はいかがでしょうか。もちろん個人所有機材の
持ち込みを禁止している会社もあるでしょうが、
そのようなポリシーがやや緩いのも、地方の醍
醐味ではないかと思います。
　最低限の機材がそろったとしても、検証を必
要とする案件や、試したい新製品などは次から
次にやってきます。PCが1台増えたからといっ
てあまり状況は改善しません。そんな我々の救
世主として現れたのが「仮想化」というテクノロ
ジではないでしょうか。今の時代、ある程度メ
モリに余裕のあるPCがあれば、Linuxをインス
トールしてあっというまに仮想化ホストのでき
あがりです。仮想マシン上に検証環境を構築す
るようにすれば、検証用の機材不足なんて、あっ
という間に解決できます！　ただし、OS自体
の動作検証や、OS上で動作するアプリケーショ
ンについての検証作業であれば……ですが。

144 - Software Design

仮想化の落とし穴と、
抜け道

　仮想化によって、検証機材の問題は一気に解
決されたかのように思えました。先月号で中井
氏が紹介していた環境なんて理想的ですね。し
かし、一筋縄では行かない問題が再び浮上しま
す。そう「仮想化環境自体の検証」が必要とされ
るようになったことです。レッドハットは以前
から、Red Hat Enterprise Virtualization（RH

EV）という仮想化環境の統合管理製品を販売し
ています。バージョンも3.1となり、機能的・
実績的にも十分こなれた製品となっています。
ほかにも、OpenStackなどもあったりして、い
ろいろな仮想化環境をいじくる必要があります。
　これは困りました。RHEVやOpenStackなど
の仮想化製品は、複数の物理マシンを仮想化ホ
ストとして統合管理するのが売りのソフトウェ
アです。検証環境では必然的にたくさんの物理
マシンが必要となり、手持ちの検証用仮想化ホ
ストだけでは手も足も出ません。やはり機材を
潤沢に用意するしか手はないのでしょうか。
　しかし、最近ではこの問題も解決されつつあ
ります！　ご存じの方も多いでしょうが、Nested

KVMという、仮想マシンの中でもKVMの機能
を使えるようになる機能です。RHEL6では残
念ながら使えないのですが、最近のFedoraであ
れば利用可能になっています。これを使うと、1

台のPCの中で、複数のハイパーバイザからな
る仮想化の統合環境を構築することが可能にな
ります。

統合仮想化環境を
持ち出そう

　私も現在は、外出時に愛用しているノートPC

（CF-J10）だけで、どこでもRHEVのデモがで
きるような環境を構築しています。ホストOS

はFedora 17で、その上の仮想マシンとして仮
想化ホスト（RHEV-H）×2、管理サーバ（RHEL

6）×1を動かすような構成です。

　折角なので、FedoraのNested KVMを使っ
て、RHEV環境あるいはコミュニティ版のoVirt

環境を構築する際の注意点を書いておきます。　
　まず、Nested KVMの機能ですが、初期状態
ではAMD製のCPUでのみ利用可能になってい
るようです。Intel製のCPUを利用する場合は、

 echo "options kvm_intel nested=1" > /
etc/modprobe.d/nested-kvm.conf

などとしたうえで、リブートするか、kvm_intel

モジュールをリロードしてください。
　また、仮想マシンを作成する際の注意点です
が、CPUの「モデル」と「トポロジー」を手動で指
定しておいてください。仮想マシンマネージャ
のProcessorの画面にて、「ホストCPUのコピー
の設定」ボタンを押すのと、トポロジー設定で
「ソケット数」と「コア数」を指定しておけば大丈
夫です（前者は仮想マシン内でCPUのvmxや
svmフラグを有効にするため、後者はRHEVマ
ネージャが正しくCPUのコア数を認識できるよ
うにするため、です）。
　いかがでしょうか？　あまり無茶な負荷をか
けるわけにはいきませんが、いろいろと遊べる
だけでなく、多くの場面で活用できる環境がで
きあがるのではと思います。

さて次回は

　今回は趣向を変えて大阪からお送りしました
が、次回からはふたたび筆を恵比寿にお返しし
ます。
　これまでの回は私も含めて、OSや仮想化、ス
トレージといったプラットフォーム製品をおも
に扱っているエンジニアが担当してきました。
次回からはいよいよ、レッドハットのもう1つ
の顔、ミドルウェア製品部門のエンジニアが登
場です。どうぞご期待ください！ﾟ

通信レッドハット 第 回5
地方エンジニアあるある

なにわ

144 - Software Design Feb. 2013 - 145

146 - Software Design

　PCやスマートフォンの普及でGUIを備えた
コンピュータ機器は身の回りにたくさんあり、
コンピュータの操作はすっかりGUIが当たり
前になっている。スマートフォンの普及でタッ
チUIが当たり前になった。Windows 8の登場
以降、ノートPCの画面に触って「あれ、動か
ない？」とやっている人を家電量販店の店先で
も見かける。
　しかしコンピュータにGUIが登場するのは
研究として1970年代、実用的に使用できるよ
うになったのは 1980年代になってからだ。
CPUが 16bitで、搭載メモリが 128KBほど、
記憶装置がフロッピーという時代なので、GUI

を実現するためのグラフィック表示システムは
高価だった。MacintoshはGUIを実現したもの
のメモリの制限からモノクロ表示だったし、
IBM-PCは8色表示だった。

　業務用のコンピュータは1台を複数人で使用
するTSS（Time Sharing System）が当たり前の
時代で、コンピュータにはターミナルという表
示だけの機器をつないで使用していた。このた
めのインターフェースがRS-232Cに代表され
るシリアルインターフェースであり、コンピュー
タの管理にもシリアルインターフェースが使用
された。管理用ポートはコンソールポートまた
は、マネージメントポートなどと呼ばれて、一
般ユーザは使用できないようになっていた。般ユーザは使用できないようになっていた。

RS-232C

　長い間コンピュータの入出力インターフェー
スとしてRS-232Cが主力だった。正確には
RS-232CだけでなくMacintoshはRS-422イン
ターフェースだったしミニコンピュータの周辺
機器は20mAカレントループだったが、電気的
仕様が異なるだけでコンピュータ的にはほぼ同
じようなものだ。なぜRS-232Cが標準的イン

　PCやスマートフォンの普及でGUIを備えた　PCやスマートフォンの普及でGUIを備えた　PCやスマートフォンの普及でGUIを備えた

GUIは特殊な
ものだった

サーバやネットワーク機器の管理にはコンソールが不可欠だ。かつてはコンソールといえばRS-232Cポー
トでのシリアル接続が標準だったが最近は様子が変わってきているようだ。

有限会社エムブイシステムズ　水越 賢治　MIZUKOSHI Kenji　　イラスト：髙野涼香

「コンソール」第8回

Feb. 2013 - 147146 - Software Design

ターフェースとして多用されたのか。それはハー
ドウェアが単純で実装しやすかったことと、コ
マンドラインでのコンピュータ機器の操作に最
も都合が良かったからだ。
　RS-232Cに代表されるシリアル通信は非同
期通信とも呼ばれる。1bitずつデータをやりと
りするためハードウェアが簡単に実現できた。
通常8bitつまり1byteずつデータをやりとりす
るため文字データの通信に便利でCUIを実現す
るにはうってつけだった。モデムのようなシリ
アル通信機器も開発され遠距離でデータ通信す
るためのインターフェースとしても使用された。
　GUIにタッチパネルの時代さらにはSiriな
ど音声認識が携帯電話でも実用的に利用される
時代になったが、コンピュータのコマンド入力
や文書作成などの文字入力はやはりキーボード
での操作が効率的で、スマートフォンと接続す
るBluetoothキーボードが多数発売されている。
ハードウェアの実現とソフトウェアの実装の両
方が容易なため、長い間シリアルインターフェー
スは主力として使用されてきた。

USB

　しかしGUIの発展やインターネットの普及
でRS-232Cなどのシリアルインターフェース
はその通信速度の遅さが問題となってきた。昔
は実用的には32kbps、現在の最高でも230kbps

という速度は文字データを送受信するだけなら
良いが、音声や画像をやりとりするには遅すぎ
る。またハードウェア的にも現代のコンピュー
タがRS-232Cを扱うのは都合が良くない。古
典的シリアルインターフェースは遅すぎて現代
のCPUが相手をするには手間がかかりすぎる
のだ。CPU側からするとごくたまに1文字ず
つデータを送ってきて、すぐに返事を要求する
ので、頻繁に邪魔されて「うっとうしい」存在と
いえる。いわゆるフローコントロールの問題だ。
　そうした状況を受けIntelとMicrosoftなどが
Windowsの時代に合わせたシリアルインター

フェースであるUSB（Universal Serial Bus）を
策定した。低速なシリアル機器から高速なスト
レージ機器、キーボードなどの入出力機器など
何でも接続でき、フローコントールなどCPU

側からコントロールするのが面倒な処理も
USBチップが処理するようにした。USBはパ
ソコンだけでなく家電や携帯電話などにも広く
使われることで低価格化して、今ではRS-

232Cより実装価格がはるかに安くなっている。
　低価格化、PC側がUSBしかないこと、そ
してストレージとしても使えることから、ルー
タやスイッチなどの通信機器の管理コンソール
としてもUSBが普及してきている。USBポー
トでPCと接続して専用の設定ツールで設定し
たり、ファームウェアを読み込ませたりできる。
ルータなども高度化によってファームウェアの
サイズも大きくなってきていて、シリアル通信
でアップロードするのは困難だ。tftpなど
LAN経由では公開ネット上にある機器のファー
ムウェアアップロードはセキュリティ上の理由
からやりたくない。こうした用途にはUSBス
トレージでのアップデートが効果的だし、設定
ファイルやログをUSBストレージに書き出し
てバックアップすることもできる。ストレージ
用にコンパクトフラッシュやSDカードを用意
している機種もあったがUSBメモリに一般化
されそうだ。

Webインターフェース

　ルータやLAN スイッチなどのネットワーク
機器では従来からLAN経由での設定と管理が
できるものが多かった。telnetで接続してコマ
ンドを実行し ftpまたは tftpによってファイル
のやりとりをするスタイルだ。こうした機器に
はもともとLANポートがあるのだからそれを
利用すればソフトウェアだけで実現できる。
　UNIXサーバではもともと独立した管理用シ
リアルポートを持っていてこれをコンソールと
して利用していたが、10年ほど前からLAN経

「コンソール」
第8回

148 - Software Design

由での管理ポートが設けられるようになってきた。
サーバ、とくに大型のサーバはサポートベンダ
による24時間保守が求められ、障害時の原因追
及と早期復旧が求められる。このためにシステ
ム本体とは別にRAS（Remote Access Service）
ポート、または管理プロセッサと呼ばれる独立
したコンピュータが積まれていて、これを経由
して本体の管理運用や障害診断ができるように
なっていた。これがLANに対応したのだ。以
前は管理プロセッサは16bitマイコンが多かっ
たが最近ではSH32やARMチップなど32bitプ
ロセッサが普通で、OSは組み込みLinuxが増
えている。LANもついているので管理プロセッ
サ自体で仕事ができそうだ。ここにWebサーバ
機能も搭載されてきている。Webブラウザでア
クセスすれば電源のON/OFFやログの取得、
障害時にはどのモジュールが壊れているのかな
どがわかる。ブレードサーバや大型サーバでは、
アイコンをクリックすれば障害のあるモジュー
ルだけを停止して運用を継続できる。
　インターネットの進展でコンピュータ機器は
ほとんど何らかの形でネットワークインター
フェースを持つようになった。ユーザ側も
Webに慣れている。そのため機器の管理設定
のためにマネージメントプロセッサがWebサー
バ機能を持つのは自然の流れだっただろう。バ機能を持つのは自然の流れだっただろう。

USBシリアルアダプタ

　USBインターフェースやWebインターフェー
スでのシステム管理が主流になってきていると
はいえ、まだ従来からのRS-232Cによるコンソー
ルがついている機器もまだある。ルータやスイッ
チはWebインターフェースとともにまだRS-

232Cもほとんどついている。設定管理作業が
終わっていない機器をインターネットに接続す
ることは危険なため、初期設定はシリアルコン
ソールから実行したい。またWebインターフェー

スではあらかじめ設定ファイルを作っておいて
シリアルから「流し込む」こともやりにくい。
　こうしたときにはUSBシリアルアダプタを
PCに接続してルータのコンソールに接続する
必要が出てくる。USBシリアルアダプタは各
種販売されていてWindowsには対応している
ので、あとはターミナルソフトを用意すれば作
業はできる。多くはTeraTermが使われている
ようだ。ネットワークエンジニアにはまだ必要
なツールだ。やはりこういった作業もUNIXで
行いたい、あるいは普段使いはMacBookだと
いう人もいるだろう。いくつかのベンダーの製
品はLinux対応やMac OS対応をうたっている
が、製品は限られる。
　実はUSBシリアル通信のICチップを作って
いるベンダーは2社ほどしかなく回路の設計も
バリエーションをつけられる構造にもなってい
ないので、対応がうたわれていないアダプタで
もそのOS用のドライバさえあれば動作する。
広く利用されているFTDi社のチップのドライ
バはFreeBSDやLinuxには標準搭載されてい
るので、図1のようにUSBシリアルアダプタを
接続すればデバイスが生成される。図1は
FreeBSD 8.3にFTDiチップ搭載のUSBアダ
プタを差し込んだときのコンソールメッセージで、
USBデバイスとしてuftdi0が、シリアルデバイ
スとして ttyU0とcuaU0が生成された。あとは
tipで対象機器のコンソールに接続すればよい。
　FTDiでは各種OS用にドライバを配布して
いるので、標準で提供されていないOSのドラ
イバも入手して試してみよう注1。筆者は2つほ
どのメーカーのUSBシリアルアダプタを

 ▼図1　FTDi-USB-Serial

注1） URL FTDi Driver http://www.ftdichip.com/FTDrivers.htm

http://www.ftdichip.com/FTDrivers.htm

Feb. 2013 - 149148 - Software Design

MacBookに接続して使用しているが、OS標準
のcuコマンドで問題なく使用できている。期
待どおり動かなくてもUSBシリアルアダプタ
のメーカーには責任はないので問い合わせしな
いように。

Webの自動化

　最新のブロードバンドルータやストレージ機
器、あるいはFireWall製品などは管理インター
フェースとしてWebしか備えていない製品も
多くなってきた。Webインターフェースしか
装備していないのはコストダウンのため以外に
も、セキュリティ機器のように設定にはユーザ
に対して各種情報を提示して、そのうえでの設
定が必要な機器もあり、こうした処理には
Web UIが適しているという事情があるだろう。
　人間が操作するという点では、現在ではWeb

ブラウザまたはそれに類するGUIツールを使用
するのが一番だろう。文字だけでなく画像やヘ
ルプへのリンクなどを同時に表示できユーザビ
リティが向上する。すでに多くの人がWeb UIで
の操作に慣れているし、設定のためのクライア
ントツールもPC以外にスマートフォンやタブレッ
ト端末など現代的な機器も使用できる。コマン
ドラインでのコンピュータ機器の操作がすでに
一般的でなくなっているので、システム機器の
管理にもコマンドラインでの操作だけでなく
Web UIでの操作が求められるのも自然の流れ
だろう。
　人間が操作するにはWeb UIは誠に便利だ。
エンジニアだけでなく一般のコンピュータユー
ザでもWeb UIには慣れているので多くの人が
操作できる。その一方で、コンピュータにとっ
てはWeb UIはなかなかに厄介だ。HTMLと
Formを解釈し、その規定に沿った形でデータ
を入出力、その後リターンされた結果を解析す
る作業が待っている。サーバ側は簡単になるが、

クライアント側はその分だけ面倒になる。Web

ブラウザが使えるPCならまだ良いが、それ以
外の機器ではHTMLを求められるレベルで解釈
し実行するソフトウェアを用意する必要がある。し実行するソフトウェアを用意する必要がある。

Machinize

　さまざまなPerlライブラリを開発、公開して
いるJesse Vincentの作品の1つ「Machinize注2」。
PerlからWebにアクセスするモジュールで
HTMLでのデータ取得だけでなくForm入力に
も対応しているので、データの送出にも対応で
きる。SSLやPROXY経由での通信にも対応。
Webでの管理機構しか対応しない機器について
もログを取得したり定期的に変更する設定をコ
マンドラインから実行できて便利に使える。ス
クリプト化してcronに登録したりNagiosのコ
マンド化をすれば監視業務にも使える。
　perldocに豊富なサンプルが付いているし、
さまざまな使い方のアイデアがWebで紹介さ
れているので参考にしていただきたい。筆者は
ブロードバンドルータのログを定期的にクリア
する用途に使用している。
　同様の機能を持ったモジュールがRubyや
PHPにも同じ名前であるので、好きな言語で管
理機構が作れるだろう。しかしPerl以外のモ
ジュールは作者が異なり、機能も少し異なる。
　また、本来の目的はテスト用だが、Webで
の入出力をスクリプト化するSelenium注3とい
うツールもある。
　なお、Machinizeを使用するとWebからの情
報取得を自動化して実行できるいわゆる「クロー
ラ」を簡単に実現できるが、クローラはWebサー
バ負荷が高く嫌われ者なので、使用には注意す
ること。自分の管理対象機器やWebサイトで
使用する分には楽しく使おう。ﾟ

「コンソール」
第8回

注2） Machinize（http://search.cpan.org/~jesse/WWW-Mechanize-1.72/）
注3） Selenium（http://seleniumhq.org）

http://search.cpan.org/~jesse/WWW-Mechanize-1.72/
http://seleniumhq.org

150 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

　カーネルとユーザ空間の普通のアプリケーショ
ンとは、互いの詳細な動きを知ることなく動作
しています。しかし、カーネルとユーザ空間で
協調して、より良いパフォーマンス／より良い
安定性を目指すためのカーネル機能の開発も提
案されています。今回はその中からvmpressure

_fd（VM_pressure cgroup）と VFS Hot Data

Trackingを紹介します。

VM_pressure
　ユーザ空間のアプリケーションは（プロセス間
通信を除けば）あたかも自分だけが動いている
かのように、システムのメモリを1人で独占し
て好き勝手に使います。もちろん、これはシス
テムの物理的なメモリ空間が見えているわけで
はなく、仮想的なメモリ空間です。
　アプリケーションがメモリの新しい領域（ペー
ジ）に読み書きする都度、カーネルは実際のメモ
リとのマッピングを行います。メモリを多く消
費するプログラムがいれば、いつかは物理メモ
リが尽きてしまいます。
　メモリが尽きそうになると、実行中のプロセ
スを強制終了させてメモリを空ける「OOM

killer」という動作が実行されます。しかし考え
てみると、いきなりどれかのプロセスが終了さ
れるというのはかなり困ったものです。空きメ

モリが少なくなりつつあることがわかっていれば、
もっと「マイルド」な処置をアプリケーション側
でとることができるのではないでしょうか?　こ
れが「VM_pressure」が開発された動機です。
　それではカーネルのメモリ管理の大雑把な動
きを見ながら、VM_pressureがどういうものか
を見ていきましょう。freeの出力を見るとわか
りますが、システムが「使っている」メモリには
大きく分けて3種類のものがあります。
　1つはいわゆる「アプリケーションが使用して
いるメモリ」と「カーネルが動的に確保している
メモリ」です。
　残りの2つはカーネルが特別な用途に利用し
ているメモリである「バッファ」と「キャッシュ」
です。「バッファ」はディスクブロックのバッファ
用に一時的に確保されるものです。この部分は
ディスクと同期する（必要であればディスクに書
く）ことで破棄できます。「キャッシュ」はディス
クから読み込んで変更されていないファイルデー
タを一時的に保存しているものです。このキャッ
シュの中に必要なデータがあれば、（メモリより
遅い）ディスクを読みに行く必要がなくなるので、
パフォーマンスが改善されます。このキャッシュ
の部分はディスクに書いてあるものと内容が変
わっていないので、メモリが不足してくればす
ぐ破棄しても問題ありません。

VM_pressureと
VFS Hot Data Tracking
Text：青田 直大　AOTA Naohiro

第11回第11回

150 - Software Design Feb. 2013 - 151

VM_pressureとVFS Hot Data Tracking 第11回第11回

メモリの回収
　カーネルはメモリが不足してくると、まずは
前節で挙げたバッファやキャッシュを解放したり、
あるいはアプリケーションが使っているメモリ
をディスクにswap outすることで必要なメモリ
を確保しようとします。この処理はmm/vmscan.

cの try_to_free_pages()からはじまります。こ
の関数はscan_control構造体を初期化し、実際
の処理を行うdo_try_to_free_pages()を呼び出
します。scan_control構造体はメモリ回収のコー
ドのためのパラメータや、そのコードでどれだ
けのメモリが解放されたかを管理するためのデー
タ構造です。いろいろな値が設定されますが、
ここではnr_to_reclaim（回収するページの数）を
SWAP_CLUSTER_MAX（＝32）に、priority

（回収優先度）をDEF_PRIORITY（＝12）に初期
化していることを覚えておきましょう。priority

の数値は0～12の値をとり、小さくなるほど優
先度は「上がり」より多くの労力をかけてページ
の回収を行います。do_try_to_free_pages()は、
priorityの値を1つずつ下げながら、nr_to_

reclaim個のページの回収に成功するか、
priorityが 0になるまでページ回収を行う
shrink_zones()と shrink_slab()を呼んでいきま
す。今回はVM_pressureの動きを見るのが目的
なので、shrink_slab()の中は追いかけないこと
にします。
　shrink_zones()を追っていくと最終的にLRU

（Least Recently Used）リストを操作する部分で
あるshrink_lruvec()にたどり着きます。よく使

 われているページをswap outなどで回収しても、
またすぐ使うことになってディスクから読み出
すことになってしまい、効率はかえって悪くなっ
てしまいます。そこでLRUリストという、最後
に使われてからの時間順に並べられたリストを
使って回収するべきリストを探しています。
Linuxでは、次の5つのLRUリストを使用して
います。

・ 匿名ページの非アクティブリスト
・ 匿名ページのアクティブリスト
・ ファイルページの非アクティブリスト
・ ファイルページのアクティブリスト
・ 回収不可能リスト

　ファイルページはディスク上のファイルと関
連付けられているページであり、匿名ページは
そうでないページでswap outできるものです。
アクティブなリストと非アクティブなリストの2

つを管理して、よく使用されるページをアクティ
ブリストに、そうでないページを非アクティブ
に置こうとします。こうしておいて、普段は非
アクティブな（あまりアクセスされていない）リ
ストだけをスキャンして、アクティブなリスト
を無視することで、スキャンの処理を簡
素化しています。後述しますが、アクティブな
リストはある一定の条件を満たしたときにだけ
スキャンされています。　shrink_lruvec()では、
文字通り回収ができない「回収不能リスト」以外
の4つのリストを順にスキャンし、ページを回
収しようとします。このときにスキャンするペー
ジの数が先ほどのpriorityの値で決定されます。
具体的には「（各々のLRUリスト中のページ数）

swapできる 参照されている referencedフラグ 挙動
× ○ ○ アクティブ
× ○ × 複数から参照されていればアクティブ
× × ○ ディスクに書かないなら回収
× × × 回収
 ○ ○ － アクティブ
 ○ × － 回収

 ▼表1　処理のルール

152 - Software Design

Linuxカーネル観光ガイド

/（2のpriority乗）」のページをスキャンします。
　では、個々のリストがスキャンされる条件と
その動きを見てみましょう。
　まずは、非アクティブリストです。まず、リ
ストを最後尾からスキャン数のページだけ（ある
いはリストが空になるまで）スキャンして、一時
的なリストにページを移動します。このリスト
を基本的に表1のルールにしたがって、アクティ
ブへ移動、あるいは回収していきます。このルー
ルを適用する前に、referencedフラグを取得し
同時に落とします。このフラグは、今参照され
ていているもの（厳密には、さらにswapできな
いもの）には 再 び 立 てられ ます。表 1の
referencedフラグはどう解釈したら良いのでしょ
うか。
　referencedフラグは「swapできない」ときにし
か使われていないので、そちらに注目して表を
見てみます。referencedフラグは、前回のスキャ
ンで参照されていたかどうかを表しています。
つまり、前回と今回の両方のスキャンで2回と
も参照されていたときにだけ、アクティブに移
動する。2回とも参照されていなかったときに
だけ、ディスクI/Oを行ってでもページを回収
するというようなコードになっています。
　たとえば、1時間に1回だけ多くのページにア
クセスされるようなコードを書いたとき、その
1回だけで多くの（実際にはそんなにアクティブ
でもない）ページがアクティブとなりページ回収
効率が下がってしまいます。これを防止するた
めにreferencedフラグを使っているというわけ
です。このほかにも本当にswapできるかどうか
を確認したりと細かい調整は多いのですがその
部分の説明は割愛します。

　次は匿名ページのアクティブリストのスキャ
ンです。このリストのスキャンは、

（非アクティブリストのページ数）×ratio＜
　　　　　　　（アクティブリストのページ数）

のときにだけ行われます。ratioは非アクティブ
リストのページ数とアクティブリストのページ
数との許容比率となっていて、

ratio＝√10×（システムのメモリサイズ（GB単位））

で計算されます。これは表2のようになります。
　また、ファイルページのアクティブリストは
単純にアクティブなファイルページが非アクティ
ブなファイルページよりも多くなったときにリ
ストのスキャンを行います。
　アクティブなリストのスキャンでは、参照さ
れている実行可能なファイルページをアクティ
ブなままにしておくという一部例外を除いて、
単純に指定された数のページをリストの末尾か
ら取り除き、非アクティブなリストへと移して
いきます。

vmpressureのフック
　vmpressureでは「priorityの値を12から0ま
で1つずつ下げながらループ」する部分の冒頭と、
「priorityで決められる数のページをLRUリス
トからスキャン」し終わった部分との2ヵ所にコー
ドを追加してメモリが逼迫していることを検出
します。
　1つ目の「priorityの値を下げながらのループ」
の部分では、priorityがvmpressure_level_oom_

prio（＝4）以下になっているときに通知を出しま
す。priorityの値がここまで下がっていて、ま
だメモリの回収が十分にできていない、という
ことは相当メモリが圧迫されていて、OOM

killerがもう間もなく実行されるかもしれない、
ということです。もう1つの「LRUリストをスキャ
ン」したあとの部分では、そこでスキャンしたペー
ジの数がvmpressure_win（＝512）を超えたとき

総メモリ量 ratio

10MB 1
100MB 1
1GB 3
10GB 10
100GB 31

 ▼表2　総メモリ量とratioの関係

152 - Software Design Feb. 2013 - 153

VM_pressureとVFS Hot Data Tracking 第11回第11回

に通知を行います。
　今のvmpressureは2種類の通知を行うような
コードを提案しています。1つめはもともとか
ら提案されていたもので、スキャンしたページ
中の回収されなかったページの割合が、

・ 99％以上ならOOM
・ 60％以上ならMEDIUM
・ それ以外ならLOW

という、3段階に分けられた通知を行います。ユー
ザランドのアプリケーションは、mempressure

cgroupのmempressure.levelを開き、イベント
通知に使われるファイルデスクリプタを作成す
る eventfd() を 使 い、cgroup.event_control に
“<eventfdのファイルデスクリプタ><mempres

sure.levelのファイルデスクリプタ> <レベル>”
を書いてイベント通知を登録します。レベルと
いうのは先に挙げた“oom”、“medium”、“low”
のどれかです。アプリケーションはread()また
はpoll()などを使ってイベントの到着を待ちます。
イベントが来れば、アプリケーションはそれぞ
れのレベルに合わせてメモリを解放するコード
を実行できます。

chunkの概念
　もう1つ新しく提案されている通知方法があ
ります。上の通知方法ではイベント通知登録を
行ったすべてのアプリケーションに通知を行い
ます。アプリケーション側はどの程度メモリが
逼迫しているのかということしかわからないので、
場合によっては、1MBのメモリを空けるために
アプリケーションに数十MBのメモリを空けさ
せているかもしれません。そこで“chunk”という
概念を導入します。
　chunkはアプリケーションが解放できるメモ
リ量の1つの単位です。アプリケーションは
mempressure.leveの 代 わ り に mempressure.

shrinkerのファイルデスクリプタを、“レベル”
の代わりに“chunkのサイズ”を cgroup.event_

controlに書いてイベント通知を登録します。そ
して、mempressure.shrinkerに“<eventfdのファ
イルデスクリプタ> <chunkの数>”を書きます。
カーネルは、これであるeventfdに通知したとき
にどの程度のメモリサイズを1単位として、ど
の程度の個数解放できるかを知ることができま
した。カーネルはこれを見ながら必要な分だけ
の通知を行います。
　アプリケーションがeventfdをread()すると、
通知が来るまでブロックし、解放したいchunk

の数がread()の結果として返ってきます。アプ
リケーションはこの数のchunkを解放します。
しかし、ときにはうまく解放できないこともあ
るでしょう。そのときにはあらためて、“<eventfd>

<解放できなかったchunk数>”をmempressure.

shrinkerに書いておくとカーネルが認識してい
るchunkの数を増やしてくれます。
　具体的な例を見てみましょう。アプリケーショ
ンA、B、Cがそれぞれ200MB×1、100MB×3、
50MB×10とchunkのサイズと数を登録してい
るとします。ここで100MBの回収をすると、B

に1つ解放するように通知します。さらに
400MBの回収をすると、Aに1つ、Bに2つの
解放を通知します。ここでBが1つのchunkの
解放に失敗して、1つmempressure.shrinkerに
書いていたとします。さらに、200MBの解放を
行うとBに1つ、Cに2つの解放を通知します。
　このようにvmpressureはシステム全体の空
きメモリの減少をアプリケーションに伝えて、
より柔軟にそうした状況に対応する／してもら
うことができるようになります。しかし、
shrinkerのほうは新しく提案されたばかりです
し、もともとはvmpressurefdという新しいシス
テムコール作るといった提案で、cgroupを
使ったインターフェースになったのも最近のこ
とです。
　まだまだ議論は尽きなさそうですが見ていて
おもしろい機能ではないでしょうか。

154 - Software Design

Linuxカーネル観光ガイド

VFS Hot Data
Tracking

　BtrfsではZFSのように複数のデバイスにま
たがるファイルシステムを作ることができます。
ZFSはSSDをキャッシュとして利用する機能
を備えています。SSDはHDDに比べて I/Oパ
フォーマンスが優れてはいるものの、容量はま
だ大きくはなく値段も高いので、すべてをSSD

に移してしまうことは難しいものです。ここで、
よくアクセスされるデータをSSDに置くように
すれば、容量の問題を解決しながら、ファイル
システムの全体的なパフォーマンスを改善でき
るようになります。Linuxでもこれと同じ機能
を実装しようと、VFSのレベルでどのデータが
よくアクセスされているのかを計測するための
システムを導入しようとのpatchが提案されて
います。
　VFS Hot data trackingは、readpages()やダ
イレクトI/Oを行う関数などにフックを導入し、
読み書きごとに、それぞれの回数、最後に読み
書きされた時刻、「平均読み書き間隔」の6つの
値をhot_update_freqs()関数の中で記録してい
ます。これらの値は iノードごと（ファイルごと）
にも記録されますが、さらにファイルを1MBず
つに区切った領域ごとにも記録しています。こ
れで具体的に1つのファイルのどの部分がよく
アクセスされているのかも知ることができます。
　ここで本当の平均読み書き間隔を計算するこ
とはできないので、現在の「平均読み書き間隔」
をavg、今回の読み書きから前回の読み書きの
間隔をdelta（単位：ナノ秒）として、

newavg =
1
16 (15avg + delta)

として、ちょっと変わった加重平均のように計
算されています。

温度の計算
　さて、これらのデータをもとにして hot_

update_delay（＝デフォルトで300秒）ごとに、
古いデータの削除と「温度」の測定を行います。
古いデータというのは、最後に読み書きのいず
れかをしてから、hot_kick_delay（＝デフォルト
で300秒）経過したデータになります。「温度」と
いうのは、上に挙げた6つの値から計算される
データのアクセス度合いの基準で大きくなれば
なるほど、「熱い」ほどよくアクセスされるデー
タだということになります。これは一見複雑な
計算をしているように見えるのですが、実のと
ころ、

temp =
1
8 （NRR + NRW + 2LTR + 2LTW +

 AVR + AVW)
NRR = 読み出し回数 << 20
NRW = 書き込み回数 << 20
LTR = （0xFFFFFFFF －

最後の読み出しからの時間（ナノ秒単位）
>> 30）

LTW = （0xFFFFFFFF － 最後の書き込みから
の時間（ナノ秒単位） >> 30）

AVR = （（u64）－1 － 平均読み出し時間
（ナノ秒単位）） >> 40

AVW = （（u64）－1 － 平均書き込み時間
（ナノ秒単位）） >> 40

で計算されています。ただし、LTR、LTWが
負になる場合は0にし、AVR、AVWが0xFFFF

FFFFより大きくなる場合は0xFFFFFFFFと
します。結局NRRなどの値はすべて、読み書き
回数が多いほど／最後の読み書きからの時間が
短いほど／平均読み書き時間が小さいほどに大
きくなる値になっている、というわけです。
　この温度計算と同時に、温度によってソート
されたリストされたリストも生成し、メンテナ
ンスしています。このリストはメモリが逼迫し
ているときにメモリを解放するために使われます。
計測データ／温度データは読み書きが激しくなっ
てくると、けっこうなメモリを消費するものです。
メモリが足りなくなると温度が低いものから順
番にデータを削除してメモリを空けるようになっ

154 - Software Design Feb. 2013 - 155

VM_pressureとVFS Hot Data Tracking 第11回第11回

ています。

計測／温度データの活用法
　さて、ではこれらのデータをどうやってユー
ザランドから使用するのでしょうか。一般的に
は ioctl()を使ったインターフェースを使います（リ
スト1）。
　このように情報を知りたいファイルを開いて、
ioctl(FS_IOC_GET_HEAT_INFO)を使います。
liveを1にしていると、ioctl呼び出しで、温度
を再計算させて、その値をとります。これが0

であれば、上で説明したように定期的に計算し
ている温度をそのままもらいます。
　ほかにもdebugfsから情報をとることができ
ます。図1のようにhot_spots_inodeからは温度
が高いものから低いものへとソートされた情報、
rt_stats_inodeからは inodeごとの情報、range_

dataからはファイルの範囲ごとの情報がとれる
ようになっています。
　これらの情報をもとにして、よくアクセスさ
れるファイルの配置に最適化をかけることがで
きるようになるわけですね。

まとめ
　今回はまだまだ提案段階ながらも、カーネル
とユーザランドで協調してのパフォーマンスの
改善につながりそうな2つの機能について紹介

しました。執筆時点で、すでにリリースされた
Linux 3.7には以前に紹介したTCP fast openの
サーバサイドの実装が入っています。これで
TCPのレイテンシが改善されるわけですが、ユー
ザランド側でも対応するコードが必要です。今
年はそういった対応が進んで新しい機能を楽し
めると良いですね。｢

#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <fcntl.h>

typedef u_int64_t __u64;
typedef u_int32_t __u32;
typedef u_int8_t __u8;

struct hot_heat_info {
 __u64 avg_delta_reads;
 __u64 avg_delta_writes;
 __u64 last_read_time;
 __u64 last_write_time;
 __u32 num_reads;
 __u32 num_writes;
 __u32 temp;
 __u8 live;
};

#define FS_IOC_GET_HEAT_INFO _IOR('f', 17, ¥
 struct hot_heat_info)

int main()
{
 struct hot_heat_info h;
 int fd = open("target", O_RDONLY);
 h.live = 1;
 ioctl(fd, FS_IOC_GET_HEAT_INFO, &h);
 return 0;

…

 ▼リスト1　実際の利用法

$ cat /sys/kernel/debug/hot_track/loop0/hot_spots_inode
inode #5248773, reads 0, writes 244,
avg read time 18446744073709, avg write time 822, temp 111
inode #878523, reads 0, writes 1,
avg read time 18446744073709, avg write time 5278036898, temp 109
inode #878524, reads 0, writes 1,
avg read time 18446744073709, avg write time 5278036898, temp 109
$ cat /sys/kernel/debug/hot_track/sdb/rt_stats_inode
inode #279, reads 0, writes 2, avg read time 18446744073709551615,
avg write time 4923343766042451, temp 109
$ cat /sys/kernel/debug/hot_track/sdb/range_data
inode #279, range start 0 (range len 1048576) reads 0, writes 2,
avg read time 18446744073709551615, avg write time 1058147040842596150, temp 64

 ▼図1　debugfs情報

156 - Software Design

Ubuntu Monthly Report

第34回 Ubuntu Monthly Report

リモートデスクトップの
活用

Ubuntu Japanese Team　あわしろいくや　AWASHIRO Ikuya　ikuya@fruitsbasket.info

　今回はUbuntuで使えるリモートデスクトップサービスを、Android

がクライアントになるものを中心に5つ紹介します。

　最近リモートデスクトップが2つの理由で注目さ
れているように思います。ここでのリモートデスク
トップは、仮想／実機を問わずデスクトップの画面
をほかの端末に転送するサーバないしプロトコル（ま
とめてサービス）とします。
　まず第一がデスクトップの仮想化、すなわちVDI

（Virtual Desktop Infrastructure）の普及によるもの
です。今どきはDaaS（Desktop as a Service）でしょ
うか。ここで、リモートとクライアントでどのよう
な手段で通信するのかはとても重要です。Microsoft

が最近のWindows （Server）の新バージョンで着実
にリモートデスクトップサービスの機能を強化して
いることからも、それがうかがえます。
　もう1つはAndroidやiOSを搭載したタブレット端
末の普及で、これに的を絞ったサービスもいろいろ
出てきていておもしろくなってきています。確かに
現状すべての仕事をAndroidやiOSで完結するのは
難しいので、携帯性と実務上の兼ね合いで重要です。
　これら2つは同じサービスを使用することもあれ
ば違うサービスを使用することもあり、ここではそ
の分類で紹介することにします。

　今回検証したのは、VirtualBoxのゲストOSとして

リモートデスクトップの
重要性

Ubuntuのバージョンと
動作環境

インストールしたUbuntu 12.04 LTSです。12.10にし
なかったのは、3Dアクセラレーションの強制によって
パフォーマンスの低下が見られるからです。Virtual

Boxでは3Dアクセラレーションを有効にできますが、
今回はしていません。もし実験環境で3Dアクセラ
レーションを有効にしている場合は、無効にしてくだ
さい。VirtualBoxにもリモートデスクトップサーバ機
能がありますが、もちろん今回は使用しません。

　VNCサーバはいろいろとありますが、今回は
Ubuntuにデフォルトで入っているVinoを使用しま
す。Unity Dashに“vino”と入力すると「デスクトップ
の共有」が出てきますので、これを起動してくださ
い。「他のユーザが自分のデスクトップを表示でき
る」と「他のユーザがデスクトップを操作できる」に
チェックを入れると設定完了です。この手軽さがい
いです。VNCクライアントはたくさんありますし、今
回Androidでは“Jump Desktop Free”注1を使用しま
した。無料版はアカウントが1つしか作れませんが、
とりあえず使ってみる分にはこれでいいでしょう。
“Automatic Setup”と“Manual Setup”が選択できま
すが、今回は後者を使用します。“Connection Type”
を“VNC”にするのを忘れないでください（図1）。
　VNCはこのように手軽ですが、Vinoの場合ログイ

注1） https://play.google.com/store/apps/details?id=com.p5sys.
android.jump.free&hl=ja

VNC（Virtual
Network Computing）

https://play.google.com/store/apps/details?id=com.p5sys.android.jump.free&hl=ja

156 - Software Design Feb. 2013 - 157

リモートデスクトップの活用 第 34 回

ンしている必要があることと、重いプロトコルなので
せいぜい室内利用が関の山であることなど、欠点も目
立ちます。今表示している画面をそのままタブレット
端末で見たいという場合にはこれでいいでしょうし、
それ以外の場合は別のVNCサーバを探してみるとい
いかもしれません。あと、相対的にセキュリティが弱
いことにも注意です。今回は試していませんが、
“Jump”はSSHのトンネリングにも対応しているよう
なので、これを使ってみるのもいいかもしれません。

　UbuntuでもRDPは使えます。xrdpというパッ

RDP

ケージをインストールするのですが、リポジトリに
あるものはキーボードの扱いに問題があるので、こ
れを修正したものをPPAで配布していますので、イ
ンストールします。方法は次のとおりです。

$ sudo add-apt-repository ppa:ikuya- ｭ
fruitsbasket/xrdp
$ sudo apt-get update
$ sudo apt-get install xrdp

　インストールが終わったら自動的に起動しますの
で、今見ている画面をとばすことはできないので注2

ログアウトしてください。あとはIPアドレスを控え
ておき、RDPクライアントを起動します。Androidで
はやはり“Jump Desktop Free”を使用します（図2）。

注2） WindowsのRDPでも同じですが。

図1　 Jumpでデスクトップを表示（VNC）。右上のディスプレイのアイコンは
Vinoを使用時に表示される

図2　 Jumpでデスクトップを表示（RDP）。転送量を削減するためか、Unity
Dashが真っ黒くなっているのが印象的

158 - Software Design

Ubuntu Monthly Report

“Connection Type”を“RDP”にすることと、“Auto

Login”の設定を忘れずに行ってください。“Domain”
は空欄のままでいいです。あと“Keyboard”も
“Japanese”にします。
　VNCでも同じですが、日本語入力もできます。残
念ながらAndroidのIMEは使用できず、IBusを使用
することになりますので、画面右上のキーボードア
イコンからAnthyなりMozcなりを起動してください。
　リモート専用でローカルでログインしない、とい
う場合にはこれを使用するといいかもしれません。

　TeamViewerはWindows、Mac、Linuxに対応した
リモートデスクトップサービスで、もちろんUbuntu

用のパッケージもあります。興味深いのはWineで
動作していることです。
　Linux版をダウンロード注3し、インストールしま
す。インストールは、ダブルクリックするとUbuntu

ソフトウェアセンターが起動するので、これの指示
に従って行います。今回はAndroid注4用のクライア
ントを使用するので、それもダウンロード注5します。

注3） http://www.teamviewer.com/ja/download/linux.aspx

注4） ちなみにNexus 7です。
注5） https://play.google.com/store/apps/details?id=com.

teamviewer.teamviewer.market.mobile

TeamViewer

　まずはUbuntuで［TeamViewer7］を起動し、ライセ
ンスの表示などを経て（読み終わったあと×ボタンで
消せばいいです）設定画面が表示されるので、まずは
“Computers & Contacts”でアカウントを作成し、ロ
グインします。Androidでも「コンピュータ」で作成し
たアカウントでログインし、「マイコンピュータ」で「オ
ンライン」になっていることを確認し、「リモートコン
トール（パスワードを使用）」を選択します。そして
Ubuntuに表示されているパスワード（数字4桁のよう
です）を入力すればログインできます（図3）。画質が
悪い場合は「セッション設定」（右下の歯車アイコン）を
タップし、「画質」を「画質の最適化」にしてください。
　現在表示している画面が転送されるのでとても便
利ですが、設定がやや煩雑なのと商用ライセンスが
高額（通常価格55,300円）なのがネックです。

　Splashtop（企業名）は以前DeviceVMという社名
で、Splash OSというすぐに起動するLinuxベースの
OSを販売していました。しかし、現在はSplashtop

という社名に変更し、メインの事業をこのリモートデ
スクトップサービスの販売に変更しているようです。
　Splashtop（製品名）は無印（1相当）と2があり、
Ubuntu用は2しかありませんが、Google Playでは無
印と2があります。間違わずに後者をインストール

Splashtop

図3　TeamViewerで日本語入力を行っているところ。日本語は直接入らないの
で英語キーボードを使用している

http://www.teamviewer.com/ja/download/linux.aspx
https://play.google.com/store/apps/details?id=com.teamviewer.teamviewer.market.mobile

158 - Software Design Feb. 2013 - 159

リモートデスクトップの活用 第 34 回

してください注6。ライセンス体系なども大幅に変更さ
れているのでお気を付けください。また、サーバは
Splash Streamerという名前です。
　さらに注意点として、Splash Streamer バージョン
2.0.0.11はVirtualBox上のゲストOSで動作させると
画面が著しく乱れてまったく使用できなくなるため、
ここでだけVMware Player 5.0.1を使用しています。
　まずはSplash Streamerをダウンロード注7します。
2012年12月上旬現在、12.04用しかないのも12.10に
しなかった理由の1つです。TeamViwerとは異なり
ネイティブのバイナリーなので、ファイルサイズは
とても小さいです。ダウンロードの際には、メール
アドレスが必要です。これをインストールし、Unity

Dashで“splashtop”を検索し、起動しておいてくだ
さい。まだアカウントがないのでログインできませ
んし、Ubuntu用のSplashtop 2はリリースされていま
せん注8。
　アカウントの登録はSplashtop 2（クライアント）で
行いますので、Google Playでインストール注9し、起
動してください。ここでアカウントを作成し、
Splashtop Streamerでログインしてください。

注6） 前者は有料ですが2のクライアントとしては使用できません。
注7） http://www.splashtop.com/streamer/linux#download

注8） 開発中ではあるようです。
注9） https://play.google.com/store/apps/details?id=com.

splashtop.remote.pad.v2

Splashtop 2に戻るとログインしたUbuntuが出てく
ると思いますので、これをクリックしてログインし
てください（図4）。
　なお、WANからログインする場合は月額0.99ドル
ないし年額9.99ドル支払う必要があるうえ、もちろ
ん商用版もありますが、TeamViewerとは違って大規
模ユーザ向けなのかもしれません。なぜなら、1ユー
ザあたりの価格が明示されていないからです。
　まだまだ新しいからか、VirtualBoxのゲストOSで
は正しく動作しないとかUbuntu用のクライアントが
ないとか問題もありますが、ネイティブで動作して
設定も簡単なので、こなれていくと魅力的になるの
ではないでしょうか。

　Androidや iOSで動作するクライアントはありま
せんが、Ubuntu的にイチオシなのがどうやらX2go

のようです。2012年10月29日からコペンハーゲン
（デンマーク）で行われたUbuntu Developer Summit

で関係者による会合が行わなわれたそうです注10。
Ubuntu 12.10からは lightdm（ログイン画面）に「リ

注10） http://blog.x2go.org/index.php/2012/11/07/co-operation-
between-canonical-x2go-edubuntu-and-fleten-net-in-
denmark/

X2go

図4　 Splash 2を使用しているところ。Unity Dashの後ろに透けて見えるのが
Splashtop Streamerのログインダイアログ。操作も一番タッチパネルっぽ
かった

http://www.splashtop.com/streamer/linux#download
https://play.google.com/store/apps/details?id=com.splashtop.remote.pad.v2
http://blog.x2go.org/index.php/2012/11/07/co-operation-between-canonical-x2go-edubuntu-and-fleten-net-in-denmark

160 - Software Design

Ubuntu Monthly Report

モートログイン」が追加され、Universal Client

Configration Service注11で登録したデスクトップに
ログインできる機能がつきましたが、現状プロトコ
ルはRDPのみの対応です。将来的にはここから
X2goにログインする機能を実装するなど、興味深い
ことが話されていたとのことです。
　X2goのパッケージはデフォルトのリポジトリには
ないので、PPAを追加してからインストールします。
まずはサーバのインストールから行います。

$ sudo add-apt-repository ppa:x2go/stable
$ sudo apt-get update
$ sudo apt-get install x2goserver

　クライアントは次のようにインストールします。
もちろん別マシン（もちろん仮想マシンでも可）が必
要です。今回はUbuntu 12.10にインストールしてい
ます。

$ sudo apt-add-repository ppa:x2go/stable
$ sudo apt-get update
$ sudo apt-get install x2goclient

　あとはUnity Dashで“x2goclient”を検索して起動
してください。
　左上の新規アイコンをクリックして注12“Session

注11） https://uccs.landscape.canonical.com/

注12） 手元の環境ではなぜかツールチップが表示されませんでした。

Preferences”を起動して“Session Name”“Host”
“Login”“Sesion type”などを設定します。接続時の
クオリティは“Connection”タブで設定します。
“Settings”はキーボードを設定するところがあるの
で、日本語キーボードを使用している場合は
“Keyboard layout”を“jp”に、“Keyboard model”を
“jp106”にします。“OK”をクリックすると設定が保
存されて前の画面に戻り、右上に先ほど作成した
Session nameと設定の要約が表示されますので、こ
れの任意の場所をクリックします。するとパスワー
ドが表示されるのでログイン時のパスワードを入力
し、ログインしてください（図5）。
　ただし、問題が2つあります。1つはキーボードが
おかしいことで、これは［システム設定］-［キーボー
ドレイアウト］に［日本語］を追加し、これを有効にす
ると解決します注13。もう1つがやっかいで、今のと
ころ有効な解決方法が見つけられていないのです
が、IBusが起動しません。x2goserver-run-extensions
によると/usr/lib/x2go/extensions/に/etc/X11/

Xsession.d/80im-switchのシンボリックリンクを数
字3桁＋アンダースコア（001_80im-switchなど）の
ルールに従って作成すればログイン時に起動するは
ずですが、起動しないか、起動してもGUIがいっさ
い表示されませんでした。ひょっとしたらもっとい
い方法があるのかもしれませんが、X2goは割に大き
くて難しいことをしているので、ベストの方法を見
つけることができませんでした。今回はやむを得ず
IBusを使用すると仮定して .bashrcに、

export XMODIFIERS=@im=ibus
export GTK_IM_MODULE=ibus

を追記し、ログイン後に“ibus-daemon -xd”を手動で
実行することにしました。
　というわけで現状やや扱いにくいですが、ログイ
ンにSSHを使うのでセキュアなこと、なんといって
もオープンソースであること、そしてUbuntuに統合
されて使いやすくなることに期待しましょう。｢

注13） ただ、どうしても解決しないこともありましたが、法則性は
見つけられませんでした……。初回ログイン時は設定した
キーマップを無視するバグでもあるんでしょうか。

図5　 X2goを使用しているところ。キーボードと日本語
入力に問題がなければいいのだが……

https://uccs.landscape.canonical.com/

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Feb. 2013 - 161

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％割引になります。デジタル版はPCのほかに iPad／ iPhoneにも
対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN&ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

 第1特集

もし、OpenFlowでやれと
言われたら？
SDN、仮想化でネットワークはどうなる

 第2特集
サーバの運用支援に
グラフィカルなリソース監視ツールを！
Muninが手放せない理由
 一般記事
・SkeedSilverBulletとは？ 1,280円

2012年11月号

家でも
外出先でも

Webで

購入 ！

 第1特集
サーバ管理自動化の恩恵とリスクを見直しませんか？
Chef入門
 第2特集
lprコマンドが動く裏側のしくみがわかる！
Linuxプリント環境の教科書

 一般記事
・SSH力をつけよう！
・JSX入門［前編］

1,280円

2012年10月号

2012年9月号
 第1特集
理解の壁を乗り越えるFinal Answer！
C言語のポインタは必要ですか？
 第2特集

セキュリティ向上をあきらめない管理者になる！
SELinuxを無効にしない理由
 一般記事
・機械学習ライブラリ『Mahout』入門［後編］

1,280円

 第1特集
いざというときに備える
システムバックアップ
 第2特集
IT業界のキーパーソンに聞く
2013年に来そうな「技術」・
「ビジョン」はこれだ！
 特別付録
法輪寺電電宮情報安全護符シール

1,380円

2013年1月号
 第1特集
判断をあおぐ／経緯を説明する／手順の理解を得る
文章を書くためのアタマの整理術
なぜエンジニアは
文章が下手なのか？
 第2特集
高速・高機能HTTPサーバ
Nginx構築・設定マニュアル
 一般記事
・エブリデープログラマの発想と実践

1,280円

2012年12月号

 第1特集
いま読んでおくべき本はどれだ？
エンジニアのパワーアップ読書
 第2特集

いま改めてお勧めするOSは
これだ！
FreeBSD、Debian、Ubuntu、CentOS、Gentoo

 一般記事
・機械学習ライブラリ『Mahout』入門［前編］

1,280円

2012年8月号

http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

162 - Software Design

変換研究所）、「はじめてのconcrete5でアドオン開
発！」（concrete5関西ユーザーグループ）など38件
が行われました。jusも jus研究会大阪大会を行いま
した。

■展示企画／ステージ企画／ジュンク堂

　展示企画には、ぷらっとホーム、お名前 .comレ
ンタルサーバー、フォーディー・ジャパン、灘校パ
ソコン研究部、ホビーロボット研究会など49組織
が出展しました。出展団体は、企業、学校、NPO、
コミュニティ、個人などバラエティに富んでおり、
それらが組織の規模に関係なく1組織あたり机1個
で展示を行いました。また、展示会場の片隅にはス
テージを設け、「地域活性化にITを」（和田和子）、
「KDDIウェブ公式キャラ、雲野コア誕生までとプ
ロモーション効果分析」（阿部正幸）など23件のセッ
ションを実施しました。加えてジュンク堂書店
KOF店では参加団体による推薦書籍の紹介や著者
サイン会も行いました。

■ウォーキングツアー／懇親会

　KOFでは実行委員の引率で場内を見学する
ウォーキングツアーを実施しています。今年は金曜
日2回、土曜日3回の計5回実施し、各回10名前後
の参加がありました。そしてKOFの目玉の1つと
言えるのが懇親会で、今年も139人が参加しまし
た。会場が食べ放題の店ですので争わなくても安心
してたくさん食べられるだけでなく、ビアスポン
サー（たけおかラボ、キイレジャパン、うえだうえ
おうぇあ）によるベルギービールや、大関の協賛に

　今回は、毎年秋の恒例行事となっている「関西
オープンソース2012＋関西コミュニティ大決戦」
（KOF2012）と、その中で行った jus研究会の模様を
報告します。

 ■関西オープンソース2012

 ＋関西コミュニティ大決戦

 【日時】2012年11月9日（金）13:00～18:00

 2012年11月10日（土）10:00～18:00

 【会場】大阪南港ATC ITM棟 9階、10階

　KOFは関西からオープンソースやITコミュニ
ティ活動を発信する場として行われているもので、
今年で11回目になります。jusは初年度から共催団
体の1つとして参加しています。今年も多くの団体
の協力を得て盛大な行事となり、2日間合計で約
1500人が会場を訪れました。以下、実施されたプ
ログラムの一部を紹介します。詳しくはKOFの
Webサイト（http://2012.k-of.jp/）を参照してくだ
さい。

■基調講演とユーザ企画

　実行委員会で講師を招待して実施する基調講演
は、「スマホ、ビッグデータ」（岡村久道）、「もしも
普通のエンジニアが起業したら?!」（藤川真一）など4

件を行いました。一方、参加団体が自主的に企画し
セミナーなどを実施するのがユーザ企画です。「2つ
のAndroid端末でリモートコントロール！」（データ

KOF2012

大阪秋の陣　̶KOF2012̶

日本UNIXユーザ会　http://www.jus.or.jp/
法林浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

NO.16
February 2013

http://www.jus.or.jp/
http://2012.k-of.jp/

Feb. 2013 - 163162 - Software Design

よる日本酒も好評でした。

■終わりに

　同じイベントを10年以上もやっていると、参加
団体や客層、さらに運営体制や利用するツールも変
わっていきます。今回のKOFでもDrupalでのWeb

サイト構築やPeaTiXを用いた懇親会受付などを試
みました。これからも時代の流れに対応し、このイ
ベントを長く続けるべく、試行錯誤を繰り返してい
きたいと思います。来年のKOFは2013年11月8

日（金）、9日（土）、場所は同じく大阪南港ATCにて
開催の予定です。

 ■Appleと過ごした四半世紀

 【講師】魚井宏高

 （大阪電気通信大学／ワンボタンの声）

 【司会】法林浩之（日本UNIXユーザ会）

 【日時】2012年11月10日（土）14:00～14:50

 【会場】大阪南港ATC ITM棟 9階セミナールーム3

　KOF2012の中で jus研究会を行いました。講師
の魚井さんは、大学においてはデジタルゲーム学科
の先生であり、また25年以上に渡ってMacおよび
アップル製品を使い続けている生粋のアップルユー
ザでもあります。今回はそのアップルとの付き合い
を中心に講演していただきました。参加者は27人
でした。

■アップル製品を布教する日々

　魚井さんがアップルと出会ったのは学生時代。ま
だMac登場以前で、Apple IIなどを触っていました。
そこへ1984年にMacintoshが発売され、近くの研
究室に置いてあったものを使っていたのですが、ど
うしても自分で欲しくなり、1986年にMacPlus漢字
Talkを購入しました。以来、周囲にMacの良さを
教えるとともに、ユーザグループを作って活動を
行ってきました。主な活動履歴としては、MacPress

での執筆、Kinki UserGroup Conferenceの開催、ス
ティーブ・ジョブズさん来阪（1992年）、雑誌連載
「魚井センセが教えたる！」、MacFan EXPO、
iWeek、Apple User Groups Summer Tourなどがあ
ります。

■デジタルゲーム業界に優秀な人材を

　その一方で、2003年に開設されたデジタルゲーム
学科の組織作りにも奔走しました。学生の教育用
PCとしてMacBookを持たせたり、設立当初（つま
り10年前）から学科の建物全体を無線LAN対応に
するなど、先進的な取り組みを行ってきました。ま
た、カリキュラムは6つの科目群から2つを選んで
学ぶユニット選択方式が採用されています。これは
ゲームを作るにはハードウェアやプログラミングだ
けでなく、画面やインターフェースデザインの技
術、チームによる製作手法、さらにはゲームのシス
テムや世界観、キャラクタの創作能力など幅広い知
識が必要であり、それに対応した人材を育成するこ
とを狙ったものです。

■Macユーザとしての活動が大きな財産に

　最後に最近の取り組みとして、アップル関連の
ニュースを解説するポッドキャスト番組「ワンボタ
ンの声」の紹介がありました。2007年の開始以来、
これまでに750回以上もの配信を行っており、魚井
さんもレギュラー出演しています。

◇　◇　◇
　まとめとして、最初はアップルやMacに惚れ込
んで使うようになったのが、やがてMacユーザと
して生きていく中でさまざまな人と出会い、それが
財産になっていったこと、とくに大阪という地域で
はそれが重要だったという回顧がありました。そし
て、「みなさんもぜひユーザグループに参加してく
ださい」というコメントで講演を締めくくりました。
最後は時間が足りなくなってしまい、一部を割愛せ
ざるを得なかったのが残念ですが、中身の濃い講演
でした。｢

jus研究会大阪大会

大阪秋の陣　̶KOF2012̶ February
2013

164 - Software Design

　我々、Hack For Japanではこれまでの復興支援に
かかわる活動から、東北地方で頑張るさまざまな
ITエンジニアたちと出会い、その人たちが活動す
るコミュニティともつながっています。今回はその
中から、2009年から活動をはじめた、福島県でひと
きわ元気のあるITエンジニアのためのスキルアッ
プ応援コミュニティ「エフスタ !!注1」をご紹介しま
す。地方都市での勉強会やイベント運営のヒント、
原発問題を抱える福島の現状について、福島の未来
を願う彼らの活動と共にお伝えしたいと思います。

「エフスタ!!」との出会い

　「エフスタ !!」との出会いはまだ震災の傷跡もなま
なましかった2011年7月、Hack For Japanメンバー
で仙台在住の小泉勝志郎（@koi_zoom1）さんによる
塩釜市浦戸諸島の視察注2で仙台に訪れた際、前日
に開催されていたデブサミ東北注3に参加したとき
のことでした。
　セッションの1つにあったITコミュニティによ
るライトニングトーク（LT）大会で、東北を拠点に
活動するコミュニティが行うLTの中でも一番元気
があり、それでいて原発事故の影響を受けている福
島の現状を切実に訴えるその姿勢、LTの随所に伝
わってくる「福島が本当に好きだ」という気持ち、そ
して猪苗代湖ズの「I love you & I need youふくし
ま」をメンバー全員で合唱するインパクトは今でも
強く印象に残っています。

注1） URL http://efsta.com/
注2） URL http://blog.hack4.jp/2011/07/hack-for-japan_13.html
注3） URL http://codezine.jp/devsumi/2011/tohoku

　ちょうどその頃のHack For Japanは、福島県下
でのITコミュニティとのつながりが会津地方の方
たちを中心としたものとなっていました。福島県は
広く、大きく分けて「会津」「中通り」「浜通り」と3つ
の地方があります。それぞれの地方で気候も大きく
違いますし、歴史的に見るともともと異なる土地と
いうことも影響しているのか、同県内のITエンジ
ニアたちの交流自体も進んでいないように感じてい
ました。Hack For Japanとしては会津以外の地方で
活動的なコミュニティの方たちともつながりを持つ
ことで、福島県内の3つの地方で効果的に連携をと
り、ITによる復興支援活動が拡げられればと考えて
いたのです。
　そこで、このLTが終わった直後に、活動拠点を
中通り地方の郡山とするエフスタ !!さんにお声がけ
させていただき、それがきっかけで今でも交流が続
いています。

「エフスタ!!」とは

　エフスタ !!誕生の経緯や由来について、代表をつ
とめる大久保仁注4さんに伺いました。もともとIT

が好きな大久保さんは、“楽しみを持つ人はそうで
ない人に比べて20倍も幸せを感じる”という説を知
り、ITを楽しんで仕事ができるよう自身が勤めてい
る会社を変えたい、夢と希望を持った技術者を育て
たい、そのために教育に力を注ぎたいと考えたそう
です。しかし、会社のしくみを中から変えるには時
間がかかってしまうという思いから、その活動に加

注4） URL http://el.jibun.atmarkit.co.jp/jin/

Hack For Japan
エンジニアだからこそできる復興への一歩

福島のITエンジニアと復興を支援する「エフスタ!!」の活動第14回
“東日本大震災に対し、自分たちの開発スキルを役立てたい”という
エンジニアの声をもとに発足された 「Hack For Japan」 。本コミュ
ニティによるアイデアソンやハッカソンといった活動で集められた
IT業界の有志たちによる知恵の数々を紹介します。

●Hack For Japanスタッフ
　鎌田 篤慎 KAMATA Shigenori
　 Twitter @4niruddha

http://efsta.com/
http://blog.hack4.jp/2011/07/hack-for-japan_13.html
http://codezine.jp/devsumi/2011/tohoku
http://el.jibun.atmarkit.co.jp/jin/

Feb. 2013 - 165

福島のITエンジニアと復興を支援する
「エフスタ!!」の活動第14回

えてさらに視野を広げ、「福島のITが変われば、お
もしろくなれば、夢と希望を持った技術者が増え
る、そして世界を変える技術者がやがて誕生する」
という発想から、そうした理念を実現するための
きっかけ作りの場としてエフスタ !!を立ち上げるに
至ったとのことです（図1）。
　また、エフスタ !!の語源は「福島のスタイルを変
える」から「エフスタイル」に略され、語呂の良さか
ら今の「エフスタ !!」に落ち着いたそうです。これが
今ではエフスタ君といったキャラクターまで誕生し
愛されています（図2）。

地方のITコミュニティが
抱える課題

　地方のITコミュニティが勉強会や
イベントを行う際に、必ずと言って
いいほど直面する課題があります。
それは「集客」です。これは平日の夜
や週末ごとに勉強会やイベントが開
催され、参加したいものが重なって
両方に参加したいのに参加できない、
といった悩みを抱える都内に在住す
るエンジニアの方たちにはイメージ
が沸かないかもしれません。
　地方都市ではITエンジニアの数も
非常に少なく、興味を持つテーマも
人を集客するという観点から見ると

限られてしまい、勉強会やイベン
トに人が集まりません。また、勉
強会やイベントをやったとしても
参加する人が少なければ長くは続
かず、さらに勉強会やイベントが

開催されなくなるという悪循環に陥りがちです。こ
れはインターネットなどを利用することで空間に縛
られずに仕事が可能であるとされるITエンジニア
においても、いまだにエンジニア人口が首都圏に集
中しているからだとも言えます。
　そうしたこともあって、地方都市ではイベントを
開催する際に著名な講演者を招き、インターネット
上で宣伝、告知していたとしても、都内では考えら
れないほど人が集まらないことがあります。
　しかし、エフスタ !!では福島県の郡山という地方
であっても、他の地方都市で開催される勉強会では
考えられないほどの参加者が集まります（写真1）。
筆者もHack For Japanスタッフの西脇資哲（@

waki）さんと共に、Hack For Japanの活動内容の紹

技術者が夢と
目標を持つ

コミュニティ

世界を変える
技術者が育つ

福島から
未来のITを創る

人と出会うことで
刺激を受ける

目標となれる人
との出会い

子どもたちへ
IT教育

 ◆図1　「エフスタ!!」活動理念 ◆図2　エフスタ君

 ◆写真1　受付に並ぶ参加者たち

166 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

介と西脇さんによる「プレゼンテーション・デモン
ストレーションスキルアップ～エバンジェリスト養
成講座～」という講演で、2011年9月に初めてエフ
スタ !!の勉強会に参加したところ、会場は満員で、
参加者も和やかながらも積極的に参加していまし
た。筆者は仕事柄、地方都市での開発者向けイベン
トにかかわることがよくあります。その経験からし
て、1コミュニティが主催しているイベントで教室
一杯に人が集まり、参加者の意欲、意識も高く、そ
れが自然に運営されているという例は非常に少ない
ため、そのことに衝撃を受けたのが今でも記憶に
残っています。

「エフスタ!!」の集客力

　なぜだろうかと不思議に思っていたこの秘密を、
大久保さんから伺うことができました。
　通常、IT関連の勉強会やイベントを開催しようと
したとき、まず最初に行うのはブログやTwitter、
Facebookなどからの告知、IT勉強会カレンダーな
どへの登録だと思います。しかし、こうした活動は
先ほど挙げた悪循環により、地元の勉強会をチェッ
クするという習慣がそもそもない、あるいはもはや
なくなってしまっている可能性が高いという点で、
勉強会やイベントの認知度を上げるには向いていな
いのです。
　そこで大久保さんらエフスタ !!のメンバーは地道
にIT企業や学校を訪問し、コミュニティの理念と
活動を伝え、徐々に勉強会の参加者を増やしていっ
たそうです。それも普通のIT企業や学校は土曜日、
日曜日は基本的に休みであるため、メンバー自身の
有給休暇を利用して訪問していくといった形で、で
す。これは誰もができる行動ではありませんが、福
島を変えたい、夢と希望を持った技術者を増やした
い、といった思いが通常では考えられないほどの集
客数と熱意ある参加者が集まるコミュニティを作っ
たのだと思います。
　こうしたエフスタ !!の活動は地方都市で勉強会や
イベントを開催するコミュニティの方にも必ずヒン
トになるだろうと思っています。
　そうして熱意のある福島のエンジニアたちが集

い、2009年の立ち上げから軌道に乗って成長してき
たエフスタ !!でしたが、2011年3月11日以降、福島
を取り巻く環境は他の被災地とはまったく別の大き
な問題を抱えたことで、エフスタ !!の活動にも大き
な影響を与えたのでした。

「エフスタ!!」と
Hack For Japan

　福島に夢と希望を持った技術者を増やすという目
的が、震災後の原発の問題も重なったことで福島の
現状を訴えるという使命を帯びたものとなりまし
た。いま、福島県下のいたる所に放射線のモニタリ
ングポストが設置されています。ガイガーカウンタ
を所持している福島県民の方も少なくありません
し、レンタルビデオ店でガイガーカウンタのレンタ
ルを行っていたり、小学校の運動会も体育館で行っ
ています。
　福島では日本の少子化問題に加えて、このような
原発の問題により福島の未来を担う子どもたちの人
口が急激に減少し、2040年には現在の4割もの子ども
たちが福島からいなくなってしまうという予測がたっ
ているそうです。もちろん放射線の影響を強く受け
てしまう子どもたちの未来を考えれば仕方のないこと
なのですが、福島の未来を変えよう、夢と希望を持
つエンジニアを増やそうという理念のもとに活動して
きたエフスタ!!からすると本当に悲しい現実です。
　しかし、常に放射線を意識せざるを得ない現実か
らも目をそらさず、福島を愛し「震災前の福島を取
り戻す」という気持ちで、エフスタ !!は以前からの
勉強会に加えて福島の現状を啓蒙する活動を実施し
ています。そうした中で、冒頭に書いたように
Hack For Japanともつながるのですが、エフスタ !!

メンバーの影山哲也さんは、震災後も変わらず継続
していた運営の中で、福島県外の人が語る「福島の
現状」が現実の

0 0 0

福島の現状と乖
かいり

離している点に違和
感を感じていました。「これは実際の福島がまだま
だ県外の人たちに伝わっていないのではないか？　
メディアでの原発に関する報道が減少しているから
なのではないか」と。この違和感を少しでも解決の
方向に向けようと、今回の初のエフスタ !!東京開催

Feb. 2013 - 167

福島のITエンジニアと復興を支援する
「エフスタ!!」の活動第14回

げメンバーでもある大久保さんと影山さんのお2人
の講演で、エフスタ !!の設立した経緯や福島で出
会った熱いエンジニアたちの話、そして福島の現状
を伝えるセッションでは都内からの参加者も多かっ
た今回に合わせ、東京開催に参加された方たちに期
待するところなどをお話しいただきました。
　また、福島の現状を伝える福島からの参加者らに
よるLT大会では、福島各地での線量計の数値を測
定して歩いた様子を伝えるビデオや、厳格な食品線
量検査の結果、安心して食べられる福島の物産の紹
介、エフスタ !!代表の大久保さんへの感謝の手紙な
ど、多種多様な発表がされましたが、そのどれもが
福島を愛する気持ちで一杯のものでした。
　そして最後にエフスタ !!メンバー全員が前にそ
ろって、メンバーの1人である本多裕幸さんが iPad

で演奏する「I love you & I need youふくしま」に合
わせて合唱する傍ら、大久保さんによる「震災前の
福島を取り戻したい」という気持ちの込められた熱
いLTで、初のエフスタ !!東京開催は締めくくられ
たのでした。
　これから長い時間をかけて復興していく福島を皆
さんもどうぞ応援ください。s

へとつながったのです。

エフスタ!!TOKYO開催

　2012年12月8日に、都内にて「エフスタ !!勉強会
Vol.11 IN TOKYO注5」が開催されました（写真2）。
Hack For Japanからは及川卓也（@takoratta）さん
による「見る前に跳べ～ギークの工夫で社会を変え
よう～2012年冬」と題して「Developers Summit

2012」で発表された内容のアップデート版での発表
が行われました。前述の西脇さんのときのように、
エフスタ !!の勉強会では毎回IT業界のプロフェッ
ショナルを招いて講演をしてもらうことで、エフス
タ !!に集まるエンジニアたちのスキル、マインドの
底上げを狙っています。
　エフスタ !!に参加されたことのない方から見る
と、ITプロフェッショナルの講演や福島の話となる
と非常にかたい勉強会という印象を抱かれるかもし
れません。これは実際に参加していただくとわかり
ますが、エフスタ !!の勉強会は非常にアットホーム
な雰囲気となっています。毎回、福島名物のおやつ
が配られるおやつタイムもあり、またパネルディス
カッションでゲストと参加者を交えておもしろおか
しいトークを織り交ぜ
ることで、参加者のみ
なさんは真剣に聴講す
ることと、会を楽しん
でリラックスして参加
することの両方ができ
ているのです。
　参加者のスキル、マ
インドを高め、リラッ
クスした後に福島の現
状を語る場も合わせて
用意することで、参加
者に福島にも興味を
持ってもらう。初の東
京開催となった今回
は、エフスタ !!立ち上

注5） URL http://kokucheese.com/event/index/60320

 ◆写真2　エフスタ!!勉強会の様子

http://kokucheese.com/event/index/60320

168 - Software Design

→Chris Timossi→SoftwareDesigner →#45 →Chris Timossi→SoftwareDesigner →#45→#45

　Chris Timossiが35年に及ぶ
キャリアの大半を過ごした職場
は、カリフォルニア大学バーク
レー校を臨む丘に設置された粒
子加速器である。ローレンス・
バークレー国立研究所（LBL）内
にあり、ALS（Advanced Light
Source）と名付けられたその施
設は、世界最大の高等教育科学
プロジェクトのようにも見える。
巨大な円形のシンクロトロン注1

にはアルミホイルでくるまれた
パイプがつながれていて、パイ
プの内部では75億個もの電子が
1秒あたり150万回転の速度で
駆けめぐり、太陽の10億倍も明
るい光を放出している。この放
射光は、地球科学、生物学、化
学、材料科学など、驚くほど広

注1） 磁場を強めると同時に加速周波数を変
えて軌道半径を一定に保つ方式の加速
器のこと。

学ぶ立場から
コンピュータサイエンス
を考える

範な学問分野の研究に利用され
ている。Timossiが大学院生とし
て研究していた物理学ももちろ
んその1つだ。
　2011年6月に退職するまで、
Timossiはシンクロトロンの制
御システムの設計と保守に携
わっていた。ミニコンピュータ
の黎明期に就職し、インター
ネットや携帯、マイクロコント
ローラの時代に引退した形だ。
最新技術に遅れずについていけ
るように、Timossiは数えきれ
ないほどの講座、ワークショッ
プ、セミナーなどに参加してき
た。今なお研究所の「アフィリエ
イト会員」としてそうした講座を
受講する資格を持ち、実際に受
講している。コンピュータ教育
に関するこのシリーズでは、教
える立場の3人にインタビュー
してきたが、今回は生涯にわ
たって学び続けてきた人物の話
を聞こう。
　私がChrisと出会ったのは
1976年だった。ちょうど彼が
LBLで最初の業務に就いた年だ。

彼はそれ以来の友人であり、
バックパッキングのパートナー、
技術関係の相談役でもある。
Chrisのおかげで私はある日本
の技術者と知り合いになり、そ
のまた知り合いだった雑誌編集
者が技術関連の記事を書ける米
国人を探していた縁で、二十数
年前に本誌の記事を担当するこ
とになった。Chrisを紹介する記
事を書いていると、ちょうど回
転する電子のように、歴史がま
さに一巡した感がある。私はこ
の連載で40人以上のインタ
ビューを行ってきたが、今回の
インタビューを締めくくりにし
たい。新しい生活̶̶今ほど締
め切りに追われない生活を始め
ようと思っている。ただ次回も
う一度だけ登板させていただき、
これまでを振り返ってみよう。

̶最初はコンピュータ処理をど
のようなものだと考えていました

か？

SoftwareDesigner #45

元ソフトウェアエンジニア、ローレンス・バークレー国立研究所

コンピュータサイエンス2.0
［Part 4］：
生涯学び続けることが
仕事の一部

Chris Timossi

Text=Bart Eisenberg　E-mail jaysteller@hotmail.com　　Translation=嶋崎正樹 SHIMAZAKI Masaki

スタート地点は粒子加速
器のオペレータ

168 - Software Design Feb. 2013 - 169

→Chris Timossi→SoftwareDesigner →#45

コンピュータサイエンス2.0［Part 4］：生涯学び続けることが仕事の一部

　私がカリフォルニア大学サン
タバーバラ校で修士課程にいた
ころ、物理学部はちょうどコン
ピュータを導入し始めたところ
でした。DECのPDP-8があっ
たと思います。物理学の教授の
1人がプログラミングに夢中に
なっていました。それで私も関
わるようになったのです。私が
興味を持ったのは研究用の機器
です。デジタル回路のプロジェ
クトを手がけていたころ、周囲
ではハードウェアとソフトウェ
アのインターフェースに取り組
んでいました。カラーテレビを
接続し、いわば最初期のカラー
ディスプレイを作っていたりし
ていましたね。Intelが初期のマ
イクロプロセッサを発表したば
かりのころです。当時はまだそ
の程度の段階でした。
　私はローレンス・バークレー
国立研究所に粒子加速器のオペ
レータとして就職しました。就
職できて大喜びでした。なにし
ろ巨大な科学研究所ですから、
いろいろなチャンスがありそう
に思えたし、実際にそうでした。
研究所ではミニコンが標準装備
されていて、その他にもCDC

（Control Data Corporation）社
の巨大なマシンが何台かありま
した。私が興味を持っていたの
は各種制御を行うアプリケー
ションで、当時としてもかなり
特殊でした。誰にとっても変化
の時代でしたね。オペレータの
多くは古い物理的なボタンに慣
れていました。粒子加速器の調
整項目ごとにあったボタンを、

キーボードで演奏するみたいに
扱っていました。そのような操
作をすべてコンピュータのディ
スプレイで行うというのはかな
り斬新なことだったのです。

̶どのようなものを使っていま
したか？

　当時研究所では、おもに
FORTRANを使っていました。
入力はカードやテープで行って
いました。また、OSはまだハー
ドウェアごとに違いました。

̶それから35年を経て、すっか

り様変わりした時代に研究所を退

職したわけですが、今までどのよ

うに続けてこられたのですか？

　研究所が大学と連携していた
ことが本当にありがたかったで
す。職場はメインキャンパスか
ら丘に登ったところにあります。
働きながら履修できる制度があ
り、コンピュータサイエンスの
学部生と同じ講座を受講できた
のです。そんなわけで、粒子加
速器のオペレータとして雇われ
た私は、まず最初に関連する講
座を履修しました。当時授業で
はPascalを使っていましたが、
OSの講座ではCを使っていま
した。その2つが最初に学んだ
言語です。
　その後、私はマイクロプロ
セッサをオンボードで使う別の
グループに配属されました。当
時 Intelは 8085と 8086のチッ
プを売り出していました。その
ため、それらのチップをサポー

トするボードと、ISISという
OSを用いたプログラミング用
の開発マシンを提供してくれた
のです。プログラミング言語は
PL/Mでした。それらについて
学ぶため、Intelが教える講座も
受講しました。これは当時に限
らず今もよくあることです。最
新の技術について最初に教える
のはやはりベンダです。当時プ
ログラミングに使えるメモリ容
量はほんのわずかでした。独立
した組込みのグラフィックス
カードのプログラミングも行い
ました。やがて、PC、Windows、
OS/2が登場しました。それで
私もMicrosoftに直接関わる機
会が増えました。

̶カンファレンスでBill Gatesに

会ったことがあるのですね。

　ええ。制御システム用にExcel

を多用している時期があり、
Microsoftが興味を示したので
す。ニューヨークでのOS/2用
Excelの発表会に招待されたり
しました。Microsoftは当時はま
だそれほど大きくありませんで
した。Bill Gatesは会場の後ろ
のほうにいて、私は彼と気軽に
技術の話をしました。

̶キャリア全体を通じて、最も
大きく変化したものは何ですか？

　ハードウェアのプラット
フォームそのものですね。私が
PL/Mとマイクロプロセッサで
仕事を始めたころは、メモリの
制約にとても神経を使わなくて

なぜ技術に遅れずに
ついてこられたか

昔とは大きく変わったこと

170 - Software Design

→Chris Timossi→SoftwareDesigner →#45

SoftwareDesigner #45 Chris Timossi 元ソフトウェアエンジニア、
ローレンス・バークレー国立研究所

はなりませんでした。今最も将
来性のあるプラットフォームは
携帯電話で、膨大な可能性を秘
めた分野です。かつての私たち
にとってマイクロプロセッサが
そうだったように、斬新でワク
ワクします。もう1つは、Atmel

などが出している極小のマイク
ロコントローラです。CPUや入
出力装置、メモリなどがすべて
チップに収まっています。昔な
ら数万ドルもしたようなとてつ
もなく高度なツールも付属して
います。今では趣味でそのよう
なツールを手にできるのです。
制御システムを作ろうと思えば、
開発キットにすべての機能が含
まれています。

̶携帯電話で制御システムです
か？

　粒子加速器の制御まではでき
ないとしても、そこにはさまざ
まな可能性があります。簡単な
例ですが、私は iPhone用にApp

Storeからライト制御アプリを
購入しました。このアプリを使
えば、車から降りずに玄関の電
灯を点けることができます。粒
子加速器の分野でも世界全体で
も、知識がひたすら末端へと応
用されてきているという現象が
起こっています。何かにプロ
セッサを組み込みたいと思えば、
ほとんどの場合、そのための
ツールが存在します。次の段階
は、そうしたデバイス同士でど
のように通信を行うかを考える
ことにあるでしょう。大雑把に
言えば、私が仕事を始めたころ

の技術もそのような段階にあり
ました。唯一異なるのは、今は
「RAMが4Kバイトしかなかっ
た時代を覚えている？」なんて言
うことですね。
　そんなわけで、趣味でプログ
ラミングをする人にとってはと
ても良い時代になりました。ま
た、プロになろうと思う人に
とっては、この分野は今までと
同様に急速に変化しています。
たとえば私の同僚は、プログラ
ミング可能なデバイスとの超高
性能デジタルインターフェース
の構築に取り組んでいます。こ
れは非常に斬新な取り組みです。

̶そのようなことはどこで学べ
ばよいのでしょうか。

　若いプログラマには、学べる
機会があればどのような機会も
活用してほしいとアドバイスし
たいです。今でもベンダから教
材を入手できます。その点はあ
まり変わっていません。ベンダ
が新しい製品を出すときには、
何とか短期間で売ろうとします。
そのために、マーケティングの
一環として多くの教材を開発し
ていたりします。ときには有料
の場合もあります。とくに高度
に専門的な内容の教材はそうで
す。一方、オープンソースの技
術については、YouTubeのビデ
オで解説されていたりする場合
もあります。

̶書籍はどうでしょうか。
　書籍もずいぶん購入しました。

実際にそのうちの何冊を腰を据
えて読んだかは疑問ですけどね。
研究所に勤めていたころには、
O'Reillyのライブラリにオンラ
インでアクセスできるプログラ
ムがありました。なので、1冊
をじっくり読むより、そのライ
ブラリを巨大なデータベースと
して使い、サンプルを探してい
ました。実際に仕事に携わるエ
ンジニアにとっては、1冊を隅
から隅まで読み通すよりもその
ほうが理にかなっていると思い
ます。おそらく、だからこそ講
座の履修にも意味があるので
しょう。講座を受講すれば、気
を散らすことなくじっくり勉強
できますから。ベンダがサポー
トする無料のイベントもたくさ
んあります。私は今でもそのよ
うなイベントに出かけています。

̶ソフトウェアエンジニアにとっ
ては生涯学び続けることが仕事の

一部みたいな話ですね。

　実際にそうだと思います。一
方で、私が関わってきた分野な
どではさらに専門化が進んでい
ます。昔はそこまで進んではい
ませんでした。当時はプロジェ
クトチームで何が必要かを見定
め、全員で短時間でそれに対応
していくというやり方でした。
たとえば、今では厳密に粒子加
速器の制御システムソフトウェ
アだけを専門とするグループが
あります。仕事の幅をかなり絞
り込んでいるんですね。昔はい
ろいろなことを自分たちでやら
なければならず、OSに関わる

どのように学べばよいか

170 - Software Design Feb. 2013 - 171

→Chris Timossi→SoftwareDesigner →#45

コンピュータサイエンス2.0［Part 4］：生涯学び続けることが仕事の一部

こともありましたが、今は少な
くともいくつかの分野では状況
が変わっています。

̶若いプログラマが自分の専門
性を見いだし、その開発がキャリ

アのすべてになる場合もあるので

しょうか。そんなに専門化が進ん

でいるのですか？

　それはおもしろい質問ですね。
狭い専門分野で経験を積み、そ
れをキャリアにしてしまう可能
性は理論的にはあり得るでしょ
う。ですが、実際にはそうはな
らないのではないかと思います。
専門化にも流行り廃りがありま
すからね。逆にコンピュータサ
イエンスがもたらした変化の前
に戻っているようにも思うので
す。つまり、誰もが自分は機械
工学や電気の技術者、あるいは
物理学者だと思っていた時代で
す。将来について考えている学
生なら、自分が選んだ分野の基
礎をよく理解したうえで大学を

卒業したいと思うはずです。そ
れはつまり、専門分野がかなり
多様化し変化も速いために、仕
事をしていくうえでどの研究分
野もそれだけで十分とは言えな
くなっているからです。たとえ
ば、粒子加速器の制御システム
に関心があるなら、ハードウェ
ア／ソフトウェアのインテグ
レータと思って仕事をするより
も、機械工学や電気の技術者と
思うほうがよいかもしれません。

̶技術以外の教育はどうですか？

あなたは大学のころからシェーク

スピアに興味を持っていました。

オペラを観に行ったりもします。

地図やアウトドア活動にも関心が

あります。全体としてどう調和し

ているのでしょうか。

　どれも技術の場合と同じよう
なものです。たとえば、私は妻
のLoriとオレゴンのシェークス
ピアフェスティバルに何年も
通っていますが、そのときには
必ず無料の講演会にも行きます。

シェークスピアは、私がつねづ
ねもっと学びたいと思ってきた
テーマです。歴史的な背景、役
者がどう演じるか、当時の発音、
そして最大規模の原典コレク
ションの1つが日本にある話な
ど。シェークスピア関連の書籍
なら隅から隅まで読みます。
　同じプロセスは、アウトドア
の経験にも活かされています。
シエラネバダ注2にハイキングに
行く場合、あらかじめジョン・
ミューアなど昔の探検家の話を
読んでおくと、より濃密な時間
を過ごせます。風景を見ながら、
昔の人が冬の嵐に立ち向かった
り、黄金を求めてやってきたり
したことに思いを馳せることが
できます。あるいはガイドブッ
クを読んでおけば、昔の人が苦
労して場所を記し道順を示して
きたことを想うことができます。
｢

注2） カリフォルニア州の東部を縦貫する山
脈。

どのような分野でも
学び続けることが大切

 ▼サンフランシスコ湾を望む丘にあるALS

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.microad.co.jp/recruit/

176 - Software Design

　本書は本誌連載「こんな夜中にOpenFlow
でネットワークをプログラミング！［Trema
編］」（2011年11月号～2012年5月号）を大幅
に加筆修正したもので、3つのパート（「SDN/
OpenFlow入門」「OpenFlowプログラミング
入門」「ケーススタディ」）で構成されている。
OpenFlowのしくみが身近な例でわかりやすく

説明されており、自宅や職場で実際に試すこと
ができるプログラムのほか、OpenFlowスイッ
チの自作法やGoogleをはじめとする大規模
データセンターでのOpenFlow活用例なども紹
介されている。一歩先を目指すネットワーク技
術者はもちろん、ネットワーク制御の自動化に
興味を持つプログラマの方にも活用できる1冊。

高宮 安仁、鈴木 一哉【著】
A5判、336ページ／価格＝3,360円（税込）／発行＝技術評論社
ISBN＝978-4-7741-5465-7

　1975年にリリースされたSixth Edition Unix
（UNIX V6）のカーネルのソースコードを解説
した書籍。はるか昔のOSのコードを読むなん
てよほどの物好き？と思う人もいるかもしれな
いが、UNIX V6のカーネルにはOSの基本とな
るアイディアがほとんど実装されていて、最新
OSの理解の助けにもなる。かつ、カーネルソー

スコードのボリュームも約1万行と、1人でも
読み切ることが可能な範囲。OSのカーネルの
ソースコードを読み解くことで、コンピュータ
システムの全体像が理解できるようにもなる。
UNIX V6のコードをプロセス、割り込み、ファ
イルシステムなどのパートごとに解説した本
書。じっくり読んでみていただきたい。

青柳 隆宏【著】
A5判、448ページ／価格＝3,360円（税込）／発行＝技術評論社
ISBN＝978-4-7741-5464-0

　本書は絶版となっていた『ものづくり革命』※
の復刊本。現在、世界的にパーソナルファブリ
ケーション（以下、PF）が注目を集めている。
3Dプリンタやレーザーカッターを使い、イン
ターネットで情報を共有し合えば、個人でも高
度な創作に取り組めるというもので、MITで行
われた「（ほぼ）なんでもつくる方法」という講

座をきっかけに始まった活動だ。本書はその講
座を担当した著者が、受講者および世界各地の
PFの先駆者が作った作品、製作の動機、製作
過程などを紹介する。高度な機器やノウハウが
オープンになると、企業には無理なニッチな作
品を個人が作り出すようになる。そんなものづ
くり文化の変化を感じることができる。

Neil Gershenfeld【著】／田中 浩也【監修】／糸川 洋【訳】
A5判、264ページ／価格＝2,415円（税込）／発行＝オライリー・ジャパン
ISBN＝978-4-87311-588-7

Fab
パーソナルコンピュータからパーソナルファブリケーションへ

クラウド時代のネットワーク技術

OpenFlow実践入門

　VMware vSphereの実践的なテクニックを紹
介する1冊。vSphere Client、ESX/ESXi、vCenter
Server、ネットワーク、ストレージ、仮想マシン、
CLI、トラブルシューティングの分野から全96
個のレシピが紹介されている。同製品の利用者
を対象としているため、冒頭から専門的なレシ
ピ紹介が始まる。いずれも具体的な課題を示し、

それに対する解決策と操作方法を説明するとい
う流れ。単なる操作方法だけでなく「vSphere
の○○を理解する」といった課題も用意されて
おり、そこでは図を用いながら数ページに渡っ
て本製品の機能やしくみを解説する。操作手順
だけでなく、しくみを理解しながら、効果的な
使い方を習得できるよう工夫されている。

㈱ネットワールド 工藤 真臣、ネットアップ㈱ 田中 隆行、シスコシステムズ合同会社 中本 滋之、樋口 美奈子【著】
B5変型判、336ページ／価格＝3,570円（税込）／発行＝インプレスジャパン
ISBN＝978-4-8443-3317-3

VMware vSphere構築・運用レシピ

はじめてのOSコードリーディング
UNIX V6で学ぶカーネルのしくみ

※ソフトバンククリエイティブ、2006年、978-4797333145

Feb. 2013 - 177

SD News & Products

　㈱キングジムは2012年12月19日より、ワイヤレ
ス共有メモリ「パケッタ」を販売開始した。
　同製品は無線LAN環境のない会議やミーティングな
どの場で、出席者同士がデータを共有することを想定
して開発された製品。インターネット環境がなくても、
パケッタがその場で新たなネットワークを作ることで、
複数の人とすぐにデータのやりとりができる。データ
を共有する際の手順は次のとおり。

①あらかじめ共有したい端末（無線LAN機能が付いた
PCやiPhoneなど）すべてに専用ソフトをインストー
ルする

②パケッタの所有者がSSIDとパスワードを決めて「マ
イネット」を設定する

③パケッタを持っていない人は自分のPCやiPhoneな
どから、そのマイネットを選択する

④マイネットにつながった全員が、自分の端末からパ
ケッタの中身を参照できるようになる。データはド
ラッグ&ドロップでやりとりが可能

　

　パケッタの所有者同士なら、ワンクリックで相手と
接続できる「かんたん接続」機能も利用できる。
　通信規格はIEEE802.11b/g/nに対応し、通信速度
は150Mbpsと高速であるため、容量が大きいデータ
も簡単に転送できる。
　PCのほか、iPhoneやiPadなどのiOS端末でも利用
が可能。最大32人同時にデータを共有できる。
　本体色がホワイトでメモリ容量が8GB（9,870円（税
込））のタイプと、本体色ブラックでメモリ容量16GB
（14,700円（税込））のタイプの2種類がある。

キングジム、
周囲の人とその場でデータを共有できる
ワイヤレス共有メモリ「パケッタ」を発売

Hardware

㈱キングジム
URL http://www.kingjim.co.jp

CONTACT

　アライドテレシス㈱は、ギガビット・インテリジェ
ント・スタッカブルスイッチ「CentreCOM x510シリー
ズ」を12月26日より出荷開始した。
　同シリーズは、10/100/1000BASE-Tポートを24
ポート搭載した「AT-x510-28GTX」、10/100/1000
BASE-Tポートを48ポート搭載した「AT-x510-52
GTX」からなるインテリジェント・エッジ向けのxシリー
ズの新製品。

■CentreCOM x510シリーズの特徴
業界標準のコマンド体系に準拠したOS「AlliedWare ¡
Plus」を搭載。SwitchBlade x908やx900シリー
ズなどのxシリーズと組み合わせることで、コアか
らエッジまでの品質均等化を実現
スタティックルーティング機能を標準搭載。ヘッド ¡
オフィスやブランチオフィスのディストリビュー
ションスイッチやエッジスイッチとして最適
10ギガビットイーサネットモジュール（SFP+）に ¡
対応したスロットを4基備えており、別売のSFP+
モジュールを搭載することで高速／大容量の10ギガ

ビットイーサネット環境を構築できる
固定式冗長電源を標準搭載し、オプションのリダン ¡
ダント電源装置を使用せずに電源冗長化が可能
複数のスイッチに双方向40Gbpsの帯域幅を持つ専 ¡
用のスタックモジュール「AT-StackXS/OPシリー
ズ」を装着することで1台の仮想スイッチとして扱う
ことができるVCSをサポート。また、「ロングディ
スタンスVCS」を標準搭載し最大9kmまでの長距離
VCSが可能

アライドテレシス、
10G対応インテリジェント・スタッカブルスイッチ
「CentreCOM x510」シリーズをリリース

Hardware

アライドテレシス㈱
URL http://www.allied-telesis.co.jpCONTACT

◀パケッタ
　WS10-16G

製品名 標準価格（税別）
AT-x510-28GTX 298,000円
AT-x510-52GTX 498,000円
AT-StackOP/0.3
（ファイバースタッキングモジュール（300m））

198,000円

AT-StackOP/9.0
（ファイバースタッキングモジュール（9.0km））

448,000円

AT-StackXS/1.0
（カッパースタッキングモジュール（1.0m））

50,000円

▼価格

http://www.kingjim.co.jp
http://www.allied-telesis.co.jp

178 - Software Design

SD News & Products

　㈱バッファローは2012年12月12日、法人向けNAS
「テラステーション5000シリーズ」のラックマウント
モデル「TS5400Rシリーズ」（容量：16TB/12TB/
8TB/4TB）を発売した。
　同製品は19インチラックに格納できるラックマウン
ト（1U）対応の法人ユーザ向けのNASで、ファイルサー
バとしての利用はもちろんPCサーバのバックアップに
も利用できる。
　高速転送を実現するためIntel Atomデュアルコアプ
ロセッサ（2.16GHz）とDDR3メモリ2GBを搭載して
いるほか、4台のハードディスクを搭載し、保存データ
を保護するRAID 1/5/6/10と、4台の合計容量を1ド
ライブとして利用できるRAID 0に対応している。
　Amazon Simple Storage Service（Amazon S3）
との連携や遠隔地のテラステーションとの共有フォル
ダの同期に対応しており、インターネット回線を通じ
た遠隔地へのバックアップなどに活用できる。
　監視カメラで撮影した動画データの保存先としても
利用が可能なIPカメラ（RTSPカメラ）対応となって
おり、カメラ1台分のライセンスを標準添付している。

無償提供のソフトウェアで映像データの管理／監視が
行えることに加え、オプションの追加ライセンスを購
入すれば最大10台のカメラによる録画に対応する。IP
カメラによる監視環境の構築にも活用できる。

バッファロー、
最新の Intel Atomプロセッサ搭載の
法人向けNASのラックマウントモデルを発売

Hardware

㈱バッファロー
URL http://buffalo.jp

CONTACT

　グレープシティ㈱は、Windows 8、Visual Studio
2012といった新しいWindows環境に対応するコン
ポーネント7製品と「JPAddress 辞書更新サービス」
の販売を2012年12月5日に開始した。具体的な発売
製品は右表のとおり。
　今回の7製品と1サービスの同時発売を記念して、次
の2つのキャンペーンが行われている。

■JPAddressの無償提供
　下記に該当する場合は「JPAddress for .NET 1.0J」
の開発ライセンスを無償で提供する。提供期間は2013
年3月末日の出荷分まで。

SPREAD Desktop Pack 2013Jの購入者 ¡
InputMan Desktop Pack 2013Jの購入者 ¡
InputMan for Windows Forms 6.0Jユーザが ¡
7.0Jにバージョンアップする場合

■Desktop Packシリーズの同時購入キャンペーン価格
　入力コンポーネントInputManと表計算データグリッ
ドのSPREAD、それぞれのDesktop Pack 2013Jを

一緒に購入する人に割引価格（3万円～8万円引き）を
提供。キャンペーン価格の適用は3月末日の申し込み
分まで。

グレープシティ、
Windows 8対応コンポーネント7製品を同時発売Software

グレープシティ㈱
URL http://www.grapecity.com/tools

CONTACT

容量・ドライブ構成 型番 価格（税込）
16TB（4TB× 4） TS5400R1604 514,500円
12TB（3TB× 4） TS5400R1204 420,000円
8TB（2TB× 4） TS5400R0804 357,000円
4TB（1TB× 4） TS5400R0404 231,000円

▼価格

▲TS5400Rシリーズ

製品名
ライセンス価格

（税込）
概要

InputMan for Windows
Forms 7.0J 126,000円 日本仕様の入力支援コン

ポーネント
MultiRow for Windows
Forms 7.0J 126,000円 日本仕様の1レコード複数

行グリッド
SPREAD for Windows
Forms 7.0J 168,000円 Excel ライクなグリッドコ

ンポーネント
SPREAD for WPF 1.0J 168,000円 最強の表計算グリッド
SPREAD Desktop
Pack 2013J 189,000円 それぞれのWPFと

Windowsフォーム用コン
ポーネントが同梱された
セット製品

InputMan Desktop
Pack 2013J 147,000円

JPAddress for .NET
1.0J 31,500円 日本仕様の住所検索ライブ

ラリ
JPAddress 辞書更新
サービス 年額47,250円～ ※ JPAddressの住所ファイル

更新サービス

▼新製品一覧

※ 住所ファイルを配布するクライアント数により異なる

http://buffalo.jp
http://www.grapecity.com/tools

Feb. 2013 - 179

SD News & Products

　西日本電信電話㈱（以下、NTT西日本）とエヌ・ティ・
ティ・スマートコネクト㈱（以下、NTTスマートコネ
クト）は、現在提供中の「Bizひかりクラウド」のサービ
スラインナップの拡充の一環として、セキュアな閉域
網からも利用でき、共用サーバながら仮想的に専用サー
バと同等の機能を有するIaaSメニュー「スマートコネ
クトVPS」を2012年12月11日から提供開始した。
　データセンター内に構築したサーバ群を、仮想化技
術を用いて、ユーザごとに専用のVPSとして提供する。
個々のユーザのニーズに合った性能のVPSを複数組み
合わせて利用できる。

■スマートコネクトVPSの特徴
「vSphere」によるVPSの提供 ¡
数多くの導入／運用実績を持つVMware社のハイ
パーバイザ「vSphere」を採用しているため、豊富な
アプリケーションに対応している
設備二重化などによる安定稼働 ¡
サーバ設備の二重化はもちろんのこと、サーバ設備
の故障発生時にHA技術を活用したサーバ切り替え

を行い、ユーザシステムの安定稼働を実現する。また、
スナップショットによる世代管理とシステム全体の
バックアップの2つ機能を標準で提供することによ
り、サーバ設備の故障発生などの場合に、ユーザの
データやシステムをスナップショット／バックアッ
プ取得時点に復旧可能
監視運用保守 ¡
ユーザのシステムを24時間365日体制で監視し、
安心して利用できる環境を提供する
多様なネットワーク接続 ¡
インターネットに加え、フレッツ・VPNワイドなど
の閉域網や、学術情報ネットワーク（SINET4）など、
多様なネットワークと接続することが可能

　料金は、ユーザごとに要望を聞きながら個別に見積
もりを行う。

NTTスマートコネクト、
仮想専用サーバ「スマートコネクトVPS」を提供開始Service

NTTスマートコネクト㈱
URL http://www.nttsmc.com

CONTACT

　シスコシステムズ合同会社が、グローバルで展開
しているマーケティングキャンペーン「Internet of
Everything̶インターネットですべてをつなぐ」の
一環として、2013年2月13日 ～14日 に「Cisco
Connect Japan 2013」を開催する。
　同イベントでは、ネットワークの力によって変革さ
れる未来とシスコが提唱するビジネステクノロジを体
感できるという。40社の同社のパートナー企業の協力
のもと、各界で活躍しているゲストによる講演、技術
動向や先進事例を紹介するセッション、最新ソリュー
ションを体験できる展示などのプログラムを実施する。
基調講演、ゲスト講演として、次の講演が予定されて
いる。

「コラボレーション革命～あなたの組織を引き出す ¡
10のステップ」出版記念講演
シスコシステムズ シニアバイスプレジデント　カー
ル・ウィージ氏、シスコシステムズ バイスプレジデ
ント　ロン・リッチ氏
チーム力を最大限に導くプロフェッショナルの行動 ¡

力とコラボレーション
脳科学者　茂木健一郎氏
クラウドで広がる新しい世界 ～人とモノ、モノとモ ¡
ノをつなげる～
モデレータ：東京大学大学院 情報学環 学環長　須藤
修氏
生き残るための攻撃的経営 ～マルチデバイス・クラ ¡
ウド・ソーシャル武装論～
慶應義塾大学 政策メディア研究科 特別招聘教授　夏
野剛氏

シスコシステムズ、
「Cisco Connect Japan 2013」を開催Event

シスコシステムズ合同会社
URL http://www.cisco.com/web/JPCONTACT

イベント名 Cisco Connect Japan 2013
日時 2013年 2月 13日（水）・14日（木）
会場 東京ミッドタウンホール＆カンファレンスおよびザ・

リッツ・カールトン東京
主催 シスコシステムズ合同会社
参加費 無料（事前登録制）

▼開催概要

http://www.nttsmc.com
http://www.cisco.com/web/JP

180 - Software Design

SD News & Products

　㈱IDCフロンティアは、利用者のWAN環境とIDCフ
ロンティアの閉域網をインターネットを介さず安全に
相互接続する「プライベートコネクト」を2012年12
月6日より提供開始した。
　IDCフロンティアの各データセンターや同社が提供す
るサービスは閉域網によって接続されているが、そこ
に利用者のWANを相互接続可能にした。これにより、
同社のデータセンターやパブリック／プライベートク
ラウドサービスと、利用者のデータセンターや他クラ
ウドとの接続が行えるようになる。このサービスでパ

ブリッククラウドの異なるリージョン間を接続すれば、
広域分散クラウドとしてシステムを構築することも可
能。物理的な障害の影響を避けられ、広域サーバ負荷
分散と組み合わせれば、負荷分散やバックアップサイ
トへの自動切り替えもできるようになる。
　将来的には、外部通信キャリアや他事業者クラウド
サービスとの相互接続も予定しており、第1弾としてソ
フトバンクテレコム㈱が提供する各種閉域ネットワー
クサービスとの接続を行う。

㈱ IDCフロンティア
URL http://www.idcf.jpCONTACT

IDCフロンティア、
データセンター・クラウド相互接続サービス
「プライベートコネクト」を提供開始

Service

　日本セーフネット㈱は2012年12月11日、米国
SafeNetのソフトウェア保護、ライセンス付与、ラ
イセンス管理プラットフォーム「Sentinel License
Development Kit（以下、Sentinel LDK）」の提供を開
始した。
　Sentinel LDKとは、ハードウェアキーベースのプロ
テクション（HL）とソフトウェアアクティべーション
によるプロテクション（SL）を融合した業界初のソフト
ウェア著作権マネージメント。128bitAES暗号アルゴ
リズムに基づいた強力なコピープロテクションに加え、
ハードウェアとソフトウェアから自由にプロテクショ

ンキーを選択することで、多彩なライセンシング機能
を使用できる。コピープロテクション機能、アンチ・
リバースエンジニアリング機能、セキュア・ライセン
シング機能などを備えており、ソフトウェアベンダは
さまざまな方法で違法コピーの防止が可能になる。
　同製品のプロテクションをソフトウェアへ組み込む
ためのツールキット「Sentinel LDKデモキット」は無
料で提供されている。

日本セーフネット㈱
URL http://jp.safenet-inc.comCONTACT

SafeNet、
次世代ソフトウェア収益化プラットフォーム
Sentinel LDKを発表

Software

　米国Amazon Web Services社（以下、AWS）は2012
年12月26日、新たなAmazon Elastic Compute
Cloud（Amazon EC2）のインスタンスファミリーであ
る「ハイストレージインスタンス」を発表した。
　このインスタンスは大容量データに高速アクセスが
要求されるアプリケーション向けに最適化されており、
35 EC2 Compute Units （ECUs）のコンピュート性
能、117GiBのRAM、最大秒間2.4GBのI/O性能を
出せる24個のハードディスクドライブで構成された
48TBのインスタンスストレージを提供する。
　インスタンスごとに大容量のダイレクトアタッチト

ストレージを持っているため、AWSクラウドで稼働
するHadoopワークロード、ログ処理やデータウェア
ハウジングのようなデータ集中型のアプリケーション、
大量のデータセットの処理と分析するための並列ファ
イルシステムに最適だという。
　現在は、米国東部（北バージニア）リージョンで利用
可能で、今後数ヵ月の間にほかのAWSリージョンでも
利用可能になる予定。

Amazon Web Services
URL http://aws.amazon.com/jpCONTACT

Amazon Web Services、
データ集中型アプリケーションに最適化された
「ハイストレージインスタンス」を発表

Service

http://www.idcf.jp
http://jp.safenet-inc.com
http://aws.amazon.com/jp

Feb. 2013 - 181

SD News & Products

　エンバカデロ・テクノロジーズは2012年12月10日、
C++用ビジュアル開発環境「C++Builder XE3」のアッ
プデートを提供開始した。同製品およびRAD STUDIO
XE3のProfessional版以上を購入した登録ユーザは無
償で入手できる。
　同製品はマルチプラットフォーム開発を特徴として
おり、従来よりWindows XP/Vista/7/8（Windows
8 UIサポート）、Mac OS X（Retinaディスプレイサポー
ト）、そしてWeb向けのアプリケーションが単一コー
ドで作成できる。今回のアップデートでWindows向け

64bitコンパイラを搭載したことにより、同開発環境で
作成したアプリケーションの稼働環境は従来のWin32
とMac OS XにWin64が加わり、次のようなアプリケー
ションの開発が行えるようになる。
広大なメモリ空間の利用 ¡
64bit CPUの能力をフル活用 ¡
C++11の機能やライブラリなどを利用可能 ¡
高度に最適化されたネイティブコードの生成 ¡

エンバカデロ・テクノロジーズ合同会社
URL http://www.embarcadero.com/jpCONTACT

エンバカデロ、
64bit Windowsに対応したC++Builder XE3の
アップデートをリリース

Software

　2012年12月5日、IPv6普及・高度化推進協議会は
「アプリケーションのIPv6対応ガイドライン基礎編」（第
1.0版）を公開した。
　同協議会のIPv4/IPv6共存WG アプリケーションの
IPv6対応検討SWGは、アプリケーションのIPv6対応や、
Webアプリケーションおよびソケットを直接扱うアプ
リケーションの両面についての情報を整理している。
　2012年5月にソケット編のパブリックコメントを募
集し、集まったコメントを盛り込み、「アプリケーショ
ンのIPv6対応ガイドライン基礎編」としてまとめた。
この度、正式版として次の3種類の文書を公開した。

アプリケーションのIPv6対応ガイドライン基礎編 ¡
（第1.0版）
アプリケーションのIPv6対応ガイドライン基礎編添 ¡
付資料 アプリケーションのIPv6化例示プログラム集
Asterisk の IPv6対応について ¡

　同SWGでは、今後も引き続きWebアプリケーショ
ンの対応についてまとめ、公開に向けた準備を行って
いく。

IPv6普及・高度化推進協議会
URL http://www.v6pc.jpCONTACT

IPv6普及・高度化推進協議会、
アプリケーションのIPv6対応ガイドライン基礎編（第1.0版）
を公開

Topic

　NECはOpenFlowによる新たなネットワーク制御技
術ProgrammableFlowに対応した製品「UNIVERGE
PFシリーズ」において、プログラマブルフロー・コン
トローラ「UNIVERGE PF6800」（以下、PFC）の機能
を強化し、併せて、プログラマブルフロー・スイッチ（以
下、PFS）の新製品「UNIVERGE PF5248」「UNIVERGE
PF5220」を2012年12月27日から販売開始した。
　PFCで強化したのは、PFSへの設定を容易にするコ
ンフィギュレーション簡易化機能の追加と、世界初と
なる仮想ルータでのIPv6ルーティングへの対応。
　PFSは10Gポートにサーバを直接収容可能な

「UNIVERGE PF5248」と、エッジスイッチとして最
適な24ポートGbEスイッチ「UNIVERGE PF5220」
をラインアップに追加した。

日本電気㈱
URL http://jpn.nec.comCONTACT

NEC、
OpenFlowに対応した「UNIVERGE PFシリーズ」の
コントローラ機能を強化、スイッチの新製品を発売

Hardware

製品名 価格（税別） 備考

UNIVERGE PF5248 215万円～
2ポート（10/100/1000BASE-T）
8ポート（10GBASE-R、1000BASE-X）

UNIVERGE PF5220 139万円～
24ポート（10/100/1000BASE-T）
2ポート（10GBASE-R、1000BASE-X）

▼価格

http://www.embarcadero.com/jp
http://www.v6pc.jp
http://jpn.nec.com

182 - Software Design

第1特集
なぜエンジニアは文章が下手なのか

　ITエンジニアが書く仕様書、マニュア
ルなどの文章はわかりにくい、とよく言わ
れます。本特集ではそれを改善するため
に、わかりにくくなる原因を探り、情報を
整理し、表現する手法を紹介しました。

自分も文章が下手なのですごく頭に入っ
てきました。下手シリーズは、ぜひ、ま
たやってください。今度は「プレゼンが
下手」をよろしくお願いします。

和歌山県／たろサさん

まさに今直面している課題です。
愛知県／岩井さん

秀逸でした。今までシステム構築をして
きましたが、「マニュアル」「システム説
明書」など、ユーザに好評だったことは、
ほとんどありません。とくに「知識・目
的」のGAPの説明が良かったです。今
後システム設計・構築に関わるエンジニ
アの人は、今号の考察・知見を参考に、
さらに「伝える技術」を磨き、顧客に喜
ばれるシステム作りをしてもらいたいと
思います。お世辞ではなく、今号は永
久保存版にします。

富山県／むさしまるお

文章の書き方というのはどの分野におい

ても一番重要なアウトプットの要素であ
り、以前からとても興味があり、特集が
あっただけでも満足でした。

大阪府／河合さん

文章の書き方の本は多数出版されてい
るし、購入もしています。しかし、今月
の特集はエンジニアに特化した内容でと
ても参考なりました。今後活用できると
良いのですが。

愛知県／なおなおさん

「コンピュータ技術と関係ないので
は？」という声もあった一方で、普

段の業務で苦労しているため、役に立っ
たという意見もたくさんいただきました。

第2特集
Nginx構築・設定マニュアル

　ここ数年急速にシェアを伸ばしている

OSSのWebサーバ「Nginx」。高速で軽
量というのが特徴です。そのNginxのイ
ンストールや設定の方法、具体的な利用
のしかたを取り上げました。

基本的には商用サーバを使うので今は利
用することはないが勉強になった。

兵庫県／yoneさん

WebサーバといえばApacheが当たり
前という考えが自分の中にあったのです

が、Nginxというものは初めて知りまし
た。シェアもそこそこあるようですし、
自分でも機会があれば構築してみたいと
思いました。

神奈川県／あろてぃさん

まだまだApache一辺倒なきらいがある
のでApache、lighttpd、Nginxでの
パフォーマンス比較をやってほしいです。

東京都／hiddenさん

WebサーバはApacheを使ってい
る読者の方がやはり多いようです

ね。大規模なWebサービスを手がける
企業においては、大量並列処理が得意な

NginxはすでにWebサーバの選択肢の1

つとして考えられているようです。今後、
注目に値するソフトウェアだと思います。

一般記事
エブリデープログラマの発想と実践

　プログラミングの楽しさにすっかりはま
り、サンデープログラマならぬエブリデー
プログラマになってしまった著者による、
初心者に向けたプログラミング入門記事
をお送りしました。

プログラマにかぎらず多くの人がコン
ピュータを使う時代になってきましたの
で、誰もがある程度はプログラミングで
きたほうがハッピーになれる確率が上が

総務省の調査によると、インターネットの利用時間が5年間で1.5倍に増えたそう
です。前回の調査では1日平均25分だったのに対し、今回は39分とのこと。し
かし、39分程度ならちょっとスマホを使っているだけでいってしまいます。Gmail
やSkypeなどを使っていると、もっといきます。こういうWebサービスが仕事で
当たり前に使われるようになると、次の調査ではもっと爆発的に増えそうです。

インターネット利用時間が1.5倍に増加インターネット利用時間が1.5倍に増加

2012年12月号について、たくさんのお便りありがとうございました！

Feb. 2013 - 183

ると思います。
大阪府／SoGeeさん

昔、ひたすら自己のためだけに趣味でプ
ログラミングをしていたころを思い出し
ました。いつまでも初心を忘れないよう
にしていきたいと思いました。

石川県／Keiさん

自分に必要なものを自ら作ること
ができる。作っている過程も楽し

い。それがプログラミングの良いところ
です。仕事になると忘れがちですが、そ
ういう楽しさを思い出していただけたので
はないでしょうか。

一般記事
「Mahout」勉強会レポート

　2012年9月26日、機械学習ライブラリ

する手段として機械学習はなくてはなら
ない技術になっています。すでに誰もが
恩恵を受けている技術と言えるでしょう。

フリートーク

Windows 8を発売日にインストールし
ました。画面をタッチすると、肩がこり
ます。目の前に液晶ディスプレイ2画
面、手元に横スクロール用の小さな画
面で合計3画面です。これで快適になり
ました。

東京都／WIN8さん

担当は考えが古いせいか、タッチ
パネル搭載のPCでも画面に直接

指を触れるのに抵抗を感じてしまいます。

Windows 8搭載PCを購入しても、使い
慣れるまでに時間がかかりそうです。

「Mahout」の勉強会が開催されました。
同ライブラリ開発の第一人者である

Grant Ingersoll氏を迎えての開催です。
その勉強会の様子をレポートしました。

自分の関心のある分野の記事でした。
神奈川県／眞　泰志さん

機械学習にたいへん興味あります。
福島県／黒田さん

触れる接点がないためとっつきにくかっ
た。

兵庫県／長谷川さん

機械学習に興味があるという方、
身近では使うことはないという方、

両極端でした。しかし、私たちがよく使う

Webサービスでは、ビックデータを解析

12月号のプレゼント当選者は、次の皆さまです
①My Passport for Mac USB 3.0 ..沖縄県　鳥居恭時様
②充電式ラジオライト グラピカ ...和歌山県　平林忠様

★その他のプレゼントの当選
者の発表は、発送をもって
代えさせていただきます。
ご了承ください。

エンジニアの能率を高める一品
仕事の能率を高める道具は、ソフトウェアやスマートフォンのようなデジタルなものだけではありません。
このコーナーではエンジニアの能率アップ心をくすぐるアナログな文具、雑貨、小物を紹介していきます。

　机で仕事をするとき、よく使う筆記具は常に手元に置いてお
きたいところですが、机上が散らかるのが困りもの。そんなと
き、ペントレーを使うと雑多なものを置く場所が決まって、机上
がスッキリします。ペン立てだと、数本のペンの中から必要な1
本を選ぶ手間すら面倒なことがありますが、トレーの上には一番
よく使う1本だけを置いておけば、そんな面倒も感じません。付
箋紙やクリップ、スマホを置くのにも良いです。本製品はキー
ボードの奥に置いて使うことを想定して開発されたようですが、
ケーブルが真ん中についているキーボードではトレーを置く位置
をずらす必要があります。ワイヤレスキーボードだとそんな問題
もなく、ケーブルがないことでさ
らに机上がきれいになります。
ショートタイプは意外に置ける量
が少ないので、こまごましたも
のが多い人は60cmのロングタ
イプが便利かもしれません。
（読者プレゼントあります。16ページ参照）

Vブロック（ペントレー）／ショートタイプ
1,890円（税込）／margherita　http://www.margherita.jp

本を選ぶ手間すら面倒なことがありますが、トレーの上には一番
よく使う1本だけを置いておけば、そんな面倒も感じません。付
箋紙やクリップ、スマホを置くのにも良いです。本製品はキー
ボードの奥に置いて使うことを想定して開発されたようですが、
ケーブルが真ん中についているキーボードではトレーを置く位置
をずらす必要があります。ワイヤレスキーボードだとそんな問題
もなく、ケーブルがないことでさ
らに机上がきれいになります。
ショートタイプは意外に置ける量
が少ないので、こまごましたも
のが多い人は60cmのロングタ
イプが便利かもしれません。
（読者プレゼントあります。16ページ参照）

▲ワイヤレスキーボードのほうが使
いやすく、机上もスッキリする

http://www.margherita.jp

Software Design
2013年2月号

発行日
2013年2月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
 ＊
細谷謙吾（書籍編集長）
取口敏憲

●編集アシスタント
松本涼子

●編集協力
坂井直美
金子卓也 (トップスタジオ)

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2013年3月号
定価1,280円　176ページ

March 2013

2月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2013 技術評論社

●忙しくて夜空の月も観てない日々で、年末が暮れ

ようとしています。そんな時期に編集後記を書いて

いますが、まだ特集製作が終わっていません（汗）。

通り一遍ならばこなすことはきっと簡単なのに、春夏

秋冬いつも原稿を依頼しては書を作り、気がつくと1

年過ぎてしまいます。漢一匹編集稼業也。（本）

●先月のノロウイルス感染に引き続き、今度は年末進

行中に伝染性単核球症（キス病）というのに罹患する。

調べてみると爆笑問題の田中が入院した病気らしい。

肝機能障害と血小板減少を併発し、忘年会は全て酒

無し。免疫力が落ちてるのを実感。年末感ゼロだ。

今年は病気にならないことを目標に。健康第一！（ま）

●もうすぐ息子がドラクエⅡ（！）をクリアしそうだ。か

つてゲーセンでこづかいをつぎ込み、アトラスを通過

できずに終わってしまった私。こうして父を追い越し

ていくのだなぁあ……と、奥付のネタのために無理矢

理こじつけてみたりする年末進行の恐ろしさ。本年も

よろしくお願いいたします。（キ）

●「私はキリスト教ではないので、クリスマスには特

に何もしません」という人をたまに見かけます。妻の

祖母（90歳）はクリスチャンですが、昨年のクリスマ

スに特別なことはしなかったようです。これはキリス

ト教云々というより、彼女がたんに日本の「おばあ

ちゃん」だからだと思います。（よし）

●Kindle Paperwhite 3Gが届きました。個人的に

は、 iPadやAndroid端末で読むより紙の本に近い、

心落ち着く感じがします。新聞もこれで読めると、新

聞紙っぽくて馴染む気がします。端末の普及には時

間がかかると思いますが、持ち歩きたいデバイスだ

なと感じる次第です。（ほ）

●昨今、バックカントリースキーにハマってる（ゲレン

デ外の裏山で滑る）。不整地・深雪なので太い板が

有利。僕の板は片方で普通の板の２本分。今のとこ

ろチューン代は普通の板と同じだが、ＲＶ車の洗車み

たくデカイ＝割高になり、いつぞやか今シーズンは片

方だけで……なんてなりませぬよう。（yeti）

●今シーズン初生ガキ～と喜んだのも束の間、ノロウ

イルスに侵されました。奇跡的に症状は軽かったので

すが結局寝込むこと数日。体力には自信があったの

に……。1週間以上経った今もまだ胃腸の調子は戻ら

ず（涙）。美味しいものも食べたいし、スノボにも行

きたいから早く本調子に戻ってほしいなぁ。（まつ）

S D S t a f f R o o m

［第1特集］ OpenStack、CloudStack、Cloudfoundry、Scalr、Eucalyptus

オープン環境でスキルアップ！
もっとクラウドを活用してみませんか？
［第2特集］ 光、ギガビット、高速ネットワークを体験！

実践！ ワイヤリングの教科書

次号予告

■2013年1月号　
●第1特集「いざというときに備えるシステムバックアップ」
P.19　特集タイトル部分
［誤］：「システム復旧術」
［正］：「システムバックアップ」

P.55　コラム　左段下から3行目 P.55　コラム　右段上から1行目
［誤］：HDDは長い期間512KB/Sectorでしたが ［誤］：/Secotrですので
［正］：HDDは長い期間512B/Sectorでしたが ［正］：/Sectorですので

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

休載のお知らせ
　「温故知新　ITむかしばなし」（第20回）、「インターネットサービスの未来（これから）を創る人たち」（第20回）は都合に
よりお休みいたします。

184 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2013年2月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 シェルスクリプティング道場
	第1章：なぜ今、シェルスクリプトの習得が必要なのか？......上田 隆一
	第2章：シェルの動作原理を“深く”理解する......後藤 大地
	第3章：シェルスクリプトがファイル入出力に強いわけ......後藤 大地
	第4章：シェルスクリプトのエラーハンドリングとデバッグ......當仲 寛哲
	第5章：パイプのしくみを読み解く......後藤 大地
	第6章：シェルスクリプトの覚えておくと便利な技......後藤 大地

	■第2特集 超効率的勉強法
	第1章：明日の朝までにこれを読んでこい！......森川 滋之
	第2章：お前はノートもろくに取れへんやろ？......森川 滋之
	第3章：人に教えてはじめてわかる......森川 滋之

	■一般記事
	緊急レポート】Samba 4.0.0がやってきた！......たかはしもとのぶ
	FreeBSD正式対応の狙い......編集部

	■連載：Column
	digital gadget【170】家電のデジタル化≠多機能化......安藤 幸央
	小飼弾のコードなエッセイ【#32】Can we still stay hungry?......小飼 弾
	Google、Apple、Twitter…深掘り裏読み最新Webトレンド【34】Facebook、モバイルウォーズを仕掛ける／Facebookと民主主義......滑川 海彦、高橋 信夫（TechCrunch Japan翻訳者）
	秋葉原発！　はんだづけけカフェなう【28】Raspberry PiでI/Oしてみよう（前編）......坪井 義浩
	ニートなphaのぶらぶら日記　ギークハウスなう【34】Maker Faire Tokyo 2012に行ってみた......pha
	Hack For Japan〜エンジニアだからこそできる復興への一歩【14】福島のITエンジニアと復興を支援する「エフスタ!!」の活動......鎌田 篤慎
	Software Designer【46】コンピュータサイエンス2.0［Part 4］：生涯学び続けることが仕事の一部Chris Timossi......Bart Eisenberg

	■連載：Development
	Emacs 64bit化計画！【6】COM対応（その1）......太田 博志
	テキストデータならお手のもの　開眼シェルスクリプト【14】簡易メーラーを作る——メールファイル操作の応用......上田 隆一
	iPhone OSアプリ開発者の知恵袋【34】iPad mini登場！　アプリ開発で押さえるべきポイント......嶋田 智成
	Androidエンジニアからの招待状【34】マルチプラットフォーム開発環境を使ってみよう（3）......嶋崎 聡
	ハイパーバイザの作り方【5】I/O仮想化「割り込み編・その2」......浅田 拓也

	■連載：OS/Network
	レッドハット恵比寿通信【5】地方エンジニアあるある......田中 耕輔
	IPv6化の道も一歩から【3】押さえておきたいIPv6とIPv4 の10 個の違い......廣海 緑里、渡辺 露文、新 善文、藤崎 智宏
	Ubuntu Monthly Report【34】リモートデスクトップの活用......あわしろいくや
	システムで必要なことはすべてUNIXから学んだ【8】コンソール......水越 賢治
	Linuxカーネル観光ガイド【11】VM_pressureとVFS Hot Data Tracking......青田 直大
	Monthly News from jus【16】大阪秋の陣　—KOF2012—......法林 浩之

	■連載：Inside View
	マイクロアドが開発／運営する広告配信システムの裏側【新連載】0.1秒で行われるリアルタイムトレード......編集部

	■アラカルト
	ITエンジニア必須の最新用語解説【50】Firefox OS......杉山 貴章
	Hosting Department【82】
	読者プレゼントのお知らせ
	Software Design plusのお知らせ
	SD BOOK FORUM
	バックナンバーのお知らせ
	SD NEWS & PRODUCTS
	Letters From Readers
	次号のお知らせ

