

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　現在の ITシステムを支える要素の
ひとつとしてクラウドサービスは欠かせ
ない存在となっていますが、その一方
で特定ベンダーのクラウド基盤に依存
してしまう「ベンダーロックイン」の問
題が取り沙汰されています。このベン
ダーロックインを回避するために注目
を集めているのが「オープンクラウド」
です。
　オープンクラウドというのは、オー
プンソースの技術をベースとして構成
されるクラウド基盤のためのソフトウェ
アや技術を指す総称です。オープン
クラウドの具体的な定義は、これを推
進する団体ごとに少しずつ異なります
が、共通する方向性としては次のよう
な要件を挙げることができます。

オープンなインターフェースによっ•
て連携できる
データやメタデータがオープンな•
フォーマットによって表わされる
オープンなプラットフォームの上に•
構成される
ユーザは自由にデータの移植やア•
クセスを行うことができる
技術の開発や策定に参加できる•
オープンなコミュニティを持つ

　昨今のオープンクラウドを巡る動向
として特徴的なのは、IaaSや PaaS、
ネットワーク、データセンターなど、レ
イヤ横断的にその普及が進んでいる
という点です。たとえば IaaSレイヤで

は、オープンなOSや仮想化技術や
ストレージ管理技術などを利用して、
任意のスペックの仮想マシンやスト
レージ領域を提供できる基盤ソフト
ウェア群の開発が進められています。
PaaSレイヤでは、業界標準に準拠し
た複数の開発言語や開発フレーム
ワークをサポートするオープンソース
の基盤ソフトウェアが提供されていま
す。ネットワークレイヤで注目されてい
るのは、ネットワーク構成をソフトウェ
アによって定義・変更できる SDN
（Software Defined Networking）
技術です。そのほかにも、データセ
ンターの仕様やノウハウをオープン
ソース化することで高効率なデータセ
ンターの構築を目指すオープンデータ
センターと呼ばれる試みなども実施さ
れています。
　これらのオープンクラウド基盤は、
オープンソースであるために独自のカ
スタマイズが可能なことや、レイヤをま
たいで自由に組み合わせて利用でき
ること、組み合わせのパターンによっ
て他のクラウドシステムとの差別化が
図りやすいことなどが大きな強みと言
えます。

　ここでは、オープンクラウドのため
の主要な IaaS基盤ソフトウェアを2
つ紹介します。

● OpenStack
OpenStack Foundationによって開
発されている IaaS基盤ソフトウェア。
仮想ハイパーバイザ経由で計算ノード

を管理するNova、クラウドストレージ
の Swift、ブロックデバイスストレージ
の Cinder、仮想ネットワーク機能を
提供するQuantum、認証管理機
構を提供するKeystone、仮想マシン
イメージをストレージに格納する
Glance、管理 UIのHorizon（名
称はいずれもコード名）などといった
コアプロジェクトから構成される。
AWS互換の APIによって他のパブ
リッククラウドと組み合わせたハイブリッ
ドクラウド環境を構築することもできる。
また、Quantumはさまざまな仮想ネッ
トワークスイッチ製品向けのプラグイン
が多数用意されている点が大きな特
徴となっている。

● Apache CloudStack
現在はApache Software Founda
tionに寄贈されて開発が進められて
いる IaaS基盤ソフトウェア。仮想マ
シンのプロビジョニングやリソース管
理などの管理機能を提供する
Management Server、CPUやメモ
リなどのリソースを提 供 する
Computing Node、仮想ディスク領
域を提供するPrimary Storage、仮
想マシンのイメージやスナップショット
を格納するSecondary Storageなど
のコンポーネントから構成される。複
数ハイパーバイザーを同時稼働させら
れるほか、仮想ネットワーク技術によっ
てネットワーク構成を柔軟に設定する
ことが可能。s

普及が進む
オープンクラウド

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 54回

オープンクラウド

ことが可能。s

OpenStack
http://www.openstack.org/
Apache CloudStack
http://cloudstack.apache.org/

レイヤ横断で進む
クラウドのオープン化

主要なオープンクラウド
基盤

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

http://www.openstack.org/
http://cloudstack.apache.org/
mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

http://gihyo.jp/dp

http://sd.gihyo.jp/

https://gihyo.jp/site/inquiry/dennou

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.hyper-cloud.jp/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp/

Jun. 2013 - PRE-2-Jun. 2013 - PRE-2-PRE-1 - Software Design

文／ tomocha（http://tomocha.net/diary/）

PRE-1 - Software Design

Jun. 2013 - PRE-2-

Jun. 2013 - PRE-2-

20Uとなり、高さだけで、889mmとなります。約
89cm弱あるわけです。フルサイズ（42U）になると、
1866mm（約1.86m）もあるわけですね。これにフレー
ム分の高さや、土台、足の部分などが入ると、さら
に大きくなります。寸法について、ざっくりとイ
メージがついたら、実際に設置するにあたり、部屋
に入るか検討する必要があります。
一般家庭の場合、扉の寸法は、幅600mm～

800mm、高さ1800mm程度のことが多く、うっかり
選んでしまうと、ラックが扉より大きくなり、部屋
に搬入ができなくなってしまいます。また、扉の方
向や戸当たり、障害物（下駄箱や通路の曲がり角）の
分も考慮する必要が出てきます。もし部屋にラック
を設置する前提で、引っ越しを考えているのであれ
ば、搬入ルートや動線を考えておく必要があります。
多くの場合、ハーフラックであれば、高さの問題は
クリアでき、横幅が、600mm程度のものが多いので、
ポイントさえ押さえておれば、比較的容易に設置で
きるでしょう。

はじめに

今回は連載2回目。前回は、気づいたら自宅に
ラックを設置していて、こんなことやってましたと
いうお話でしたが、今回は、ラック選び、設置につ
いてお話しさせていただきます。

ラック選び̶̶EIAとJIS規格の違い

サーバラックにはEIA（米国電子工業会）規格と、
JIS（日本工業）規格の2種類がありますが、ラックマ
ウント型のサーバやネットワーク機器はEIA規格と
なり、EIA規格のものでもたくさんの種類のサーバ
ラックが存在します。では、どういうものを選べば
良いのでしょうか。
前回のおさらいになりますが、サーバラックに搭

載する機器は、U（ユニット）で表現され、1Uあたり、
高さが44.45mm、横幅が19インチで、482.6mmとなり
ます。すなわち、20Uのラックであれば、44.45mm×

▼写真1　ケージナット対応のラックの穴 ▼写真2　ネジ穴式のラック

Jun. 2013 -PRE- 2

文／ tomocha（http://tomocha.net/diary/）文／ tomocha（http://tomocha.net/diary/）文／ tomocha（http://tomocha.net/diary/）文／ tomocha（http://tomocha.net/diary/）文／ tomocha（http://tomocha.net/diary/）文／ tomocha（http://tomocha.net/diary/）文／ tomocha（http://tomocha.net/diary/）文／ tomocha（http://tomocha.net/diary/）文文／ tomocha（http://tomocha.net/diary/）／文／ tomocha（http://tomocha.net/diary/）t文／ tomocha（http://tomocha.net/diary/）o文／ tomocha（http://tomocha.net/diary/）m文／ tomocha（http://tomocha.net/diary/）o文／ tomocha（http://tomocha.net/diary/）c文／ tomocha（http://tomocha.net/diary/）h文／ tomocha（http://tomocha.net/diary/）a文／ tomocha（http://tomocha.net/diary/）（文／ tomocha（http://tomocha.net/diary/）h文／ tomocha（http://tomocha.net/diary/）t文／ tomocha（http://tomocha.net/diary/）t文／ tomocha（http://tomocha.net/diary/）p文／ tomocha（http://tomocha.net/diary/）:文／ tomocha（http://tomocha.net/diary/）/文／ tomocha（http://tomocha.net/diary/）/文／ tomocha（http://tomocha.net/diary/）t文／ tomocha（http://tomocha.net/diary/）o文／ tomocha（http://tomocha.net/diary/）m文／ tomocha（http://tomocha.net/diary/） o文／ tomocha（http://tomocha.net/diary/） c文／ tomocha（http://tomocha.net/diary/） h文／ tomocha（http://tomocha.net/diary/） a文／ tomocha（http://tomocha.net/diary/） .文／ tomocha（http://tomocha.net/diary/） n文／ tomocha（http://tomocha.net/diary/） e文／ tomocha（http://tomocha.net/diary/） t文／ tomocha（http://tomocha.net/diary/） /文／ tomocha（http://tomocha.net/diary/） d文／ tomocha（http://tomocha.net/diary/） i文／ tomocha（http://tomocha.net/diary/） a文／ tomocha（http://tomocha.net/diary/） r文／ tomocha（http://tomocha.net/diary/） y文／ tomocha（http://tomocha.net/diary/） /文／ tomocha（http://tomocha.net/diary/） ）

ススメ

ネットワークエンジニア虎の穴

自宅ラック
文／ tomocha（http://tomocha.net/diary/）

の

ラックの選び方
第2回

イラスト：髙野涼香

http://tomocha.net/diary/

Jun. 2013 - PRE-2-Jun. 2013 - PRE-2-PRE-1 - Software DesignPRE-1 - Software Design

Jun. 2013 - PRE-2-

Jun. 2013 - PRE-2-

どんなラックを選ぶべきか
̶̶ネジ選びがポイント

物理的に設置できるサイズがわかったら、どうい
うラックが良いか、悩む番がやってきます。ネジの
取り付け穴方法が重要となり、ケージナット対応の
四角い穴が空いたラック（写真1）と、ネジ穴式の
ラック（写真2）と2種類あります。サーバを搭載する
場合は、なるべくケージナット対応がお勧めです。
ツールレス（工具不要）のサーバ用のレールなどは、
ケージナット用の穴にはめる形（引っかけてはめるタ
イプ）なので、簡単に装着ができますし、取り外しも
容易です。また、ケージナットとネジの2つを準備し、
ネジ穴に固定することもできるため、ネジ穴がつぶれ
ても、ケージナットを交換することにより対応ができ
ます。ネジ（化粧ビス）のサイズもいくつか種類があり
ますが、ケージナットを交換すれば自由自在です。
とくに中古などで探すときは、値段を基準に選ぶ

と、ネジ穴式のものしか在庫がないというケースも
あると思いますが、このような場合は、ネジのサイ
ズに注意が必要です。ネジにも規格、サイズが存在
しており、M5やM6と言われ、ネジの径（太さ）が違
います。M5よりM6のほうがネジが太く、重量のある
機器などは、M6ネジが多かったりします（写真3）。こ
こはラックしだいですので、ネジを購入する場合は
気をつけましょう。
そのほか、ポスト（ケージナットやネジの取り付け

の支柱）とフレームの間に隙間があり、ケーブルを通
すスペースがあるか、ないかというのも非常に重要
なポイントになってきます。スペースが存在する物
ほど横幅が大きくなるため、考慮すると、選定が難
しくなりますが、可能な限りある物を選んだほうが
良いでしょう（写真4）。

ラック設置のポイント
̶耐荷重とは

次に、重要なことは、床の耐荷重を確認すること
です。一般的な住宅の場合、1平米あたり180kgまで
耐えられる設計になっていますが、1点に荷重がかか
りすぎると床などが抜ける場合がありますので、注

意が必要です。
また、荷重を分散させるように、コンパネを敷く
など工夫が必要です。ハーフサイズのサーバラック
の重量が60kg程度あれば、実際に利用可能な重量は
120kg程度となり、1Uあたりで使用可能な機器の重量
は、約6kg程度となります。このあたりはラックの重
量とユニット数、耐荷重との兼ね合いです。また、
耐荷重は部屋全体の平均で考えることが多く、梁

はり

の
近くや、壁側であれば、実際にはもう少し耐荷重が
高かったりすることもありますし、部屋の真ん中で
あれば、たわんでしまったりして、実際には低かっ
たりしますので、なるべく壁際や、梁の近くがお勧
めです。このあたりはしっかりと不動産屋などに確
認することをお勧めします（耐荷重って……？ と言
われることも多いですけど）。
耐荷重の次に重要なのは、地震対策。本来はラッ

クはボルトで固定するのが望ましいですが、ご家庭
では難しいため、どのようにして倒れないようにす
るかが大きな課題です。サーバラックは重たいので、
転倒防止のグッズではおそらく役に立たないでしょ
う。天井を突き破る可能性があります（ないよりマシ
ですが）。筆者のように、倒れるスペースを作らない
のも1つの手ですが、なかなか難しいと思います。な
るべく壁際に設置し、全高の低いラックを使用して、
重量物の機器はなるべく下に積むなど工夫をして、
転倒しにくい環境を作りましょう。｢

▼写真3　ケージナットとネジ

▼写真4　ポストスペースなし

のススメ
ネットワークエンジニア虎の穴

自宅ラック

Jun. 2013 -PRE- 2

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

　皆さんが普段、身につけているもの
といったら何でしょう？　お財布や携
帯電話は常に持ち歩いているかもし
れませんが、“身につける”のとはまた
違います。常に身につけるということ
であれば、指輪、メガネ、腕時計、ブレ
スレットなどでしょうか。人によっては入
れ歯とか、カツラとか、耳に挟んだ赤
ペンとかもあるかもしれませんね。身に
つける－－身体の一部となることで、－－身体の一部となることで、－
持ち歩くよりも一段と身体との関係

性が親密になります。今回は腕時計
とウェアラブルコンピューティングに注
目してみたいと思います。
　腕時計はおもに利き腕と反対側に
すると言われていますが人それぞれで
す。女性であれば、その所作が美しく
なるよう、腕の内側に盤面が向くよう
につけている人もいます。最近では腕
時計を身につけず、携帯電話の時計
で済ませている人もいるかもしれませ
ん。しかし、腕時計であれば時刻表示
を身につけているのと同じですが、時
刻表示ができるデバイスを持ち歩い

ていて、時刻を知りたいときに操作し
て見ることの間には大きな差がありま
す。時間を知りたいとき、腕時計であ
ればさっと袖をめくって盤面で時間が
わかります。Tシャツなど、腕がむき出し
の場合であればただ腕時計に視線を
向かわせるだけです。携帯電話やス
マートフォンでも時刻がわかるとはいっ
ても、動作の数が大きく違うことから
明らかでしょう。
　また腕時計には「時を知る」使い方
のほかにも、ファッションとしての要
素、嗜好品としての要素、そしてまた

身につける
デジタル＝ウェアラブル

究極のウェアラブルは腕時計？

Eco-Drive Proximity
http://www.citizenwatch.com/en-ir/
country-gate/

iPhoneと連携する
アナログ腕時計

究極のウェアラブルは腕時計？

見た目はアナログな針時計ですが、
iPhoneと連携してメールや電話が着信
するとわずかに腕時計が振動して知らせ
てくれます。もちろんこの時計自身でメー
ルを読み書きしたり通話はできませんが、
光で充電しながら使い続けられる腕時計
です。またiPhoneとの距離が離れ、接続
が切れたときも振動して知らせてくれるの
で、置き忘れ防止にも役立ちます。同じよ
うなデジタル時計にはCOOKOO watch
やG-SHOCK Bluetoothがあります。

Shine

http://www.misfitwearables.com/

超小型デジタル歩数計
一見、囲碁の石のような硬貨大のShine
は、スマートフォンと連携する画面のない
デジタル歩数計です。Misfit Wearables
社から99ドルで発売予定で、衣服や腕
時計、ペンダントなど好きなところに装着
できるアクセサリのようなデバイスです。
バッテリーは半年持ち、ユーザが自分で
交換できます。

MYO

https://getmyo.com/

ジェスチャコントロール用の
アームバンド
MYOは腕に装着し、腕や手の筋肉の動
きを読み取るジェスチャーコントロール用
のデバイスです。手の握り方や腕のねじ
り方で、マウスの代わりやゲームコントロ
ーラの代わりになります。料理中などで、
デジタルデバイスに直接触れないときな
どにも活用できます。

LinkMe
http://www.kickstarter.com/projects/
540550394/linkme-wrist-billboard

スマートメッセージ
組み込みリストバンド
LinkMeはスマートフォンと連携して、
LEDでメッセージを表示できる腕時計型
デバイスです。クロームメッキのリング状
のデバイスにはドット表示用LEDが搭載
されており、SNSのメッセージ、リマイン
ダ、アラートなどを表示できます。原稿執
筆時（2013年4月上旬）Kickstarterで
資金募集中です。無骨な電子機器では
なく、アクセサリのような輝く質感を持った
デザインに注目が集まっています。

ウェアラブルの定義

腕時計型デバイスの
サービス視点

続々と登場する
腕時計型デバイス

Googleが提出した特許
「US8279716 B1」番に掲載の図柄
※引用元　http://www.google.com/
patents/US8279716Nike+ FuelBand Pebble

ディック・トレイシーに出てくる通信機のおもちゃの広告
http://blog.modernmechanix.com/dick-tracy-wrist-radio/ UP

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Jun. 2013 - 1

http://blog.modernmechanix.com/dick-tracy-wrist-radio/
http://www.andoh.org/

身体から取り外されたときには収集物
（コレクション）や資産としての意味合
いを持ってきます。機能や役目だけで
はなく、ブランドや装飾品としての価
値が重視される場合もあり、その種類
の多さ、製造メーカーの多さ、100円
ショップで買えるものから家が買えるく
らいの価格の幅を考えると、まだまだ
デジタルデバイスでは到達し得ない
深みと広がりを持っていることがわか
ります。

　ウェアラブルコンピューティングの
ウェアラブルは“wear-able”、身につ
けることが可能という意味です。身に
つけて（wear）利用するコンピュータ
関連機器、つまりヘッドマウントディス
プレイや、衣類やアクセサリなど身に
つけるものと統合されたデジタルデバ
イスを示しています。
　腕時計が単なる時を知る機器か
ら、ウェアラブルデバイスに変化した
のはいつごろのことでしょう？　単なる
デジタル腕時計から一歩進んだ、ス
マートウォッチの誕生は1976年、タッ
チで表示が切り替えられるORIENT
Touchtronにさかのぼります。1980
年代にはボールペンの先で操作する
のかと思えるほど小さなボタンが並ん
だ電卓付きの時計、1998年には腕

時計型のコンピュータ「Ruputer」、
1999年の「SWATCH .beat」という
時計では全世界で同じ時間帯を利用
するインターネットタイムが提唱されま
した（http://www.swatch.com/jp_
ja/internettime.html）。2000年代
には、Microsoft SPOT Watchが登
場しました（現在は提供終了）。
　現在Microsoftの研究所に所属す
るユーザインターフェースの大家Bill
Buxtonによると、1976年以来、今年
になるまで37年間、スマートウォッチと
してさまざまな試みや製品が生まれて
は消えていったとのこと。ものすごく古
い例としては、1960年代のコミック
ヒーロー「ディック・トレイシー」で使わ
れていた双方向通信機も腕時計型
でした。そのほかにも、007をはじめス
パイの秘密道具として、日本では特撮
戦隊ものの通信装置として、腕時計
型デバイスは身近で未来的なデバイ
スとして定番のスタイルでした。

　腕時計型ウェアラブルデバイスに
は、スマートフォンやその他のデバイス
にはない、いくつも利点と課題が含ま
れています。
　日常的に肌に触れている。音に限
らず振動でも合図を知ることができる
　バッテリーの持ちへの高い要求。

充電なしでも1週間程度の動作が求
められる
　サブデバイスとしての位置づけ。表
示画面が小さく、操作もしづらいため
本体では単純な操作のみ。何かと連
携したり、ある機能だけ切り離して使
えるのが理想
　生活防水や素材としての耐性が
求められる。汗や雨、直射日光、振動
など過酷な状況で利用される
　機能をつめこんだスイスアーミーナ
イフのような万能で便利なデバイスか
ら、ある特定の単機能のみを分離して
シンプルに使いやすくしたもののほう
が、身につけるデバイスとしては向い
ています。日本では忙しいビジネスマ
ン以外、利用している人を見かけませ
んが、スマートフォン用のBluetooth
ヘッドセットもそういう機能分離型で
便利に使えるのデバイスの1つです。
　Appleからも「iWatch」なるスマー
トウォッチが出るとか出ないとか、まっ
たくの噂の領域を出ませんが、iPod
nanoを腕時計として使えるバンド以
上の何かが期待されます。Googleも
特許として提出されたアイデアの図
柄から、時計的なデバイスをまったく
考えていないわけではないことがうか
がえます。
　もともと身体の一部でないものを、
まるで一部であるかのように身につけ

身につける
デジタル＝ウェアラブル

　日常的に肌に触れている。音に限　日常的に肌に触れている。音に限

　サブデバイスとしての位置づけ。表　サブデバイスとしての位置づけ。表

　生活防水や素材としての耐性が　生活防水や素材としての耐性が

　バッテリーの持ちへの高い要求。　バッテリーの持ちへの高い要求。

Eco-Drive Proximity
http://www.citizenwatch.com/en-ir/
country-gate/

iPhoneと連携する
アナログ腕時計

究極のウェアラブルは腕時計？

見た目はアナログな針時計ですが、
iPhoneと連携してメールや電話が着信
するとわずかに腕時計が振動して知らせ
てくれます。もちろんこの時計自身でメー
ルを読み書きしたり通話はできませんが、
光で充電しながら使い続けられる腕時計
です。またiPhoneとの距離が離れ、接続
が切れたときも振動して知らせてくれるの
で、置き忘れ防止にも役立ちます。同じよ
うなデジタル時計にはCOOKOO watch
やG-SHOCK Bluetoothがあります。

Shine

http://www.misfitwearables.com/

超小型デジタル歩数計
一見、囲碁の石のような硬貨大のShine
は、スマートフォンと連携する画面のない
デジタル歩数計です。Misfit Wearables
社から99ドルで発売予定で、衣服や腕
時計、ペンダントなど好きなところに装着
できるアクセサリのようなデバイスです。
バッテリーは半年持ち、ユーザが自分で
交換できます。

MYO

https://getmyo.com/

ジェスチャコントロール用の
アームバンド
MYOは腕に装着し、腕や手の筋肉の動
きを読み取るジェスチャーコントロール用
のデバイスです。手の握り方や腕のねじ
り方で、マウスの代わりやゲームコントロ
ーラの代わりになります。料理中などで、
デジタルデバイスに直接触れないときな
どにも活用できます。

LinkMe
http://www.kickstarter.com/projects/
540550394/linkme-wrist-billboard

スマートメッセージ
組み込みリストバンド
LinkMeはスマートフォンと連携して、
LEDでメッセージを表示できる腕時計型
デバイスです。クロームメッキのリング状
のデバイスにはドット表示用LEDが搭載
されており、SNSのメッセージ、リマイン
ダ、アラートなどを表示できます。原稿執
筆時（2013年4月上旬）Kickstarterで
資金募集中です。無骨な電子機器では
なく、アクセサリのような輝く質感を持った
デザインに注目が集まっています。

ウェアラブルの定義

腕時計型デバイスの
サービス視点

続々と登場する
腕時計型デバイス

Googleが提出した特許
「US8279716 B1」番に掲載の図柄
※引用元　http://www.google.com/
patents/US8279716Ruputer .beat WRISTOMO

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design

http://www.swatch.com/jp_ja/internettime.html
http://www.swatch.com/jp_ja/internettime.html

るためには、重さや大きさ、形状、質感
や材質、丈夫さや電池の持ち、充電
方法も重要な要素です。加えて社会
的になじむまでにはいろいろな課題が
残っています。腕時計型のデジタル
デバイスが数多く出現するのも、そう
いった課題を乗り越え、受け入れられ
やすいと考えられているためでしょう。
数年のうちに「Google Glass」や
「Telepathy」といった頭に装着する
ウェアラブルデバイスが一般化するか
もしれませんが、それまでは腕時計や
メガネ以上の特殊な機器を身につけ
ても奇異な視線で見られてしまうで
しょう。

　運動する人にも、普段あまり運動し
ない人にも、体を動かすことを推奨す
る「Nike+ FuelBand」、さまざまな身
体情報を記録するJawboneの「UP」
や、歩けば歩くほど企業が寄付してく
れる「Striiv」、最適な睡眠サイクルを
記録・推奨する「fitbit」、フィットネス機
器「MOTOACTV」、Kickstarterで
大量の資金を集めた有機EL画面搭
載の「Pebble」と、いったい腕が何本
あればいいのでしょう？　皆さんもお
気に入りのものや、気分によってさま
ざまなデジタルデバイスを身につけ替
えるスタイルを楽しんでください！s

身につける
デジタル＝ウェアラブル

Eco-Drive Proximity
http://www.citizenwatch.com/en-ir/
country-gate/

iPhoneと連携する
アナログ腕時計

究極のウェアラブルは腕時計？

見た目はアナログな針時計ですが、
iPhoneと連携してメールや電話が着信
するとわずかに腕時計が振動して知らせ
てくれます。もちろんこの時計自身でメー
ルを読み書きしたり通話はできませんが、
光で充電しながら使い続けられる腕時計
です。またiPhoneとの距離が離れ、接続
が切れたときも振動して知らせてくれるの
で、置き忘れ防止にも役立ちます。同じよ
うなデジタル時計にはCOOKOO watch
やG-SHOCK Bluetoothがあります。

Shine

http://www.misfitwearables.com/

超小型デジタル歩数計
一見、囲碁の石のような硬貨大のShine
は、スマートフォンと連携する画面のない
デジタル歩数計です。Misfit Wearables
社から99ドルで発売予定で、衣服や腕
時計、ペンダントなど好きなところに装着
できるアクセサリのようなデバイスです。
バッテリーは半年持ち、ユーザが自分で
交換できます。

MYO

https://getmyo.com/

ジェスチャコントロール用の
アームバンド
MYOは腕に装着し、腕や手の筋肉の動
きを読み取るジェスチャーコントロール用
のデバイスです。手の握り方や腕のねじ
り方で、マウスの代わりやゲームコントロ
ーラの代わりになります。料理中などで、
デジタルデバイスに直接触れないときな
どにも活用できます。

LinkMe
http://www.kickstarter.com/projects/
540550394/linkme-wrist-billboard

スマートメッセージ
組み込みリストバンド
LinkMeはスマートフォンと連携して、
LEDでメッセージを表示できる腕時計型
デバイスです。クロームメッキのリング状
のデバイスにはドット表示用LEDが搭載
されており、SNSのメッセージ、リマイン
ダ、アラートなどを表示できます。原稿執
筆時（2013年4月上旬）Kickstarterで
資金募集中です。無骨な電子機器では
なく、アクセサリのような輝く質感を持った
デザインに注目が集まっています。

ウェアラブルの定義

腕時計型デバイスの
サービス視点

続々と登場する
腕時計型デバイス

Googleが提出した特許
「US8279716 B1」番に掲載の図柄
※引用元　http://www.google.com/
patents/US8279716

やG-SHOCK Bluetoothがあります。やG-SHOCK Bluetoothがあります。

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design Jun. 2013 - 3

http://www.citizenwatch.com/en-ir/country-gate/
http://www.misfitwearables.com/
https://getmyo.com/
http://www.kickstarter.com/projects/540550394/linkme-wrist-billboard/
http://www.google.com/patents/US8279716

4 - Software Design

はじめにひとこと

　こんにちは、結城浩です。「再発見の発想法」
という連載を始めます。ここでは、技術用語を
1つずつ取り上げ、その背後にある発想法を探
りましょう。今回は「Buff er（バッファ）」です。

Buff er̶バッファ

バッファとは

　病院には待合室というものがあります。病院
に行ってもすぐに診察してもらえるとは限りま
せん。たいていは、待合室で自分の番を待つこ
とになります。混んでいれば長く待たされます
し、空いていればすぐに診察されるでしょう
……これは誰しも病院で経験していますね。
　バッファ（buff er）とは、2つのプロセスの間
に置く領域で、2つのプロセスの処理スピード
の差をやわらげるためにあるもののことです。
たとえば、待合室は、患者の到着スピードと、

医者の診察スピードの違いをやわらげるバッファ
です。2つのプロセスとバッファの関係は、図

1の模式図で表せます。
　左のProducer（プロデューサ、生産者）がデー
タを生産し、右のConsumer（コンシューマ、消
費者）がデータを消費します。プロデューサと

コンシューマという2つのプロセスの間にある
のがバッファです。生産スピードが消費スピー
ドよりも速いときにはバッファ中に貯まるデー
タは多くなります。逆に、生産スピードが消費
スピードよりも遅いときには、バッファ中に貯
まるデータは少なくなります。
　バッファは、2つのプロセスの処理スピード
をやわらげる（緩衝する、緩和する）ものです。
バッファというと頭痛薬の「バファリン」を思い
出しますが、あれは「緩和する（buff er）」をもと
にして作られた名前だそうです。
　バッファを理解するには、バッファがない場
合に起きることを考えればいいでしょう。もし
も病院の待合室がなかったら、患者は診察時刻
ジャストに来院しなければなりません。早く来
すぎたら（待合室がないので）一度帰宅しなけれ
ばなりませんし、遅く来たら今度は医者のほう
が待たされて時間の無駄が生じます。
　病院の待合室がバッファの役割を果たすので、
患者が到着する時刻がばらついても、診察にか
かる時間が変化しても、患者・医者双方の負担
や無駄を減らせます。つまり、バッファは2つ
のプロセスの処理スピードにバラツキがあって
も無駄を防ぐ効果があるのです。

Producer Consumer

Bu�er

 ▼図1　プロセスとバッファの関係

Buffer

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 新連載

http://www.hyuki.com/

4 - Software Design Jun. 2013 - 5

バッファのエラー

　バッファも万能ではありません。医者が診察
できる人数を超えて患者数が多くなると、待合
室が溢れてしまうでしょう。いわゆるバッファ
のオーバーフローです。オーバーフローが起き
ないようにするためには、バッファの大きさを
十分大きくしておくか、生産者側を一時停止す
る措置が必要になりますね。

IT技術におけるバッファ

　IT技術ではあらゆる個所にバッファが存在
します。最も典型的なのはプリンタのバッファ
でしょう。プリンタのバッファは、コンピュー
タの処理スピードとプリンタの印字スピードの
差異を緩和するものです。プリンタに限らず、
マウスやキーボード、ネットワークなど、多く
のデバイスに対してバッファが存在します。
　コンピュータグラフィクスの分野ではダブル

バッファリングという技法が一般的です。これ
は描画する画像を作り出す描画プロセス
（Producer）と、表示プロセス（Consumer）のス
ピード差を緩和し「ちらつき」を防ぐ方法です。
ダブルバッファリングでは、描画するデータを
保持するバッファを2つ用意します。1つは描
画プロセスの書き込み用で、もう1つは表示プ
ロセスの読み出し用です。描画プロセスが1画
面分を描いたタイミングで2つのバッファをカ
チッと交換します。これで、画面のちらつきを
防げるのです（図2）。

日常生活でのバッファ

　「2つのプロセスの処理スピードの差異をや
わらげるもの」という視点を手に入れると、日
常生活のあちこちでバッファが見つかります。
　たとえば、財布もバッファです。お金が必要
なときに毎回銀行から預金をおろしていたら手
間がかかります。いったん銀行から財布にお金
を移し、細かい支払は財布から行うのです。処
理スピードの差異をやわらげるとともに、処理
コスト（手間）の差異をやわらげています。

蓄積が価値を生む

　さて、バッファは2つのプロセスの処理スピー
ドの差異をやわらげますが、途中にある蓄積が
価値を生む場合があります。処理スピードの差
異が作る時間差が価値を生み出すのです。
　プリペイドカードを考えてみましょう。図書
カードであれ国際電話カードであれ、プリペイ
ドカードは、利用者が運営者にお金を支払って
から、実際に使用するまでに時間差があります
（支払→使用の順）。一人一人の金額は少なくて
も、多数の利用者がいれば、運営者に多額のお
金がバッファされるでしょう。運営者はそのお
金を時間差の許す限り運用できます。
　クレジットカードでは、使用→支払の順にな
り、プリペイドカードの支払→使用とは逆です。
クレジットカードでは、支払日になったらバッ
ファされていた支払が一気に引き落とされます。
クレジットカードは、購買スピードと入金スピー
ドの差異を緩和させるバッファです。
　と考えると、クレジットカードの限度額オー

バーは、バッファのオーバーフローであるとわ
かります。購買スピードが入金スピードをオー
バーしたエラーということです。このエラーを
避けるには、信用限度額を増やす（バッファサ
イズを大きくする）か、購買を抑える（プロデュー
サ側を一時停止する）ことが必要です。
　身の周りにはどんなバッファがあり、何をや
わらげていますか。考えてみてください。｢

Producer Consumer

Double Bu�er

交換

 ▼図2　ダブルバッファリングのしくみ

新連載

6 - Software Design Jun. 2013 - 7

3人の少年第 2 回2

（株）ユビキタスエンターテインメント　清水 亮　SHIMIZU Ryo
　　　http://www.uei.co.jp

彼らはどうやって僕たちを
魅了（enchant）したか？
　enchant.jsというライブラリがどうして誕生し
たのか。そしてどうしてこれほど短期間で多く
の人々の心を捉え、魅了（enchant）したのか、よ
く聞かれます。今回はそのお話をいたしましょう。
　その誕生の背景にはいくつかのドラマチック
な出会いがありました。彼らとどのようにして
出会っていったのか、そこからお話しします。

不思議な学生

　2010年末。僕はとある大学生からメールを
いただきました。

「大学でやっている自主ゼミの中で、ARG（代
替現実感ゲーム）について研究発表したい。つ
いては清水さんにインタビュー取材をさせてい
ただきたい」

　僕は大学生からメールをいただいた場合、た
いていの場合は会ってみることにしています。
二つ返事で引き受けると、やってきたのは、伏
見遼平。東京大学の1年生でした。
　彼が取材したがっていたのは「CRIMSON

FOX」という、僕らが経済産業省のバックアップ
のもと、2008年に実施したA/ARG（Augmented/

Alternative Reality Game；拡張／代替現実感

ゲーム）についてでした。これは辻と僕が手がけ
た仕事でした。このゲームは実際の渋谷の街を
フィールドとして、街のあちこちに隠された暗
号を集め、優勝者には当時発売直前だった iPad

が授与されるというダイナミックなゲームでした。
　やってきた伏見という少年は、まだあどけな
さを残した少年でした。若干19歳です。
　しかし驚いたのは、この伏見という少年が、
あまりにも僕らの過去の仕事や、僕のブログの
内容、過去のインタビューについて詳細な事前
調査を重ねて来ていたことでした。彼の質問に
対して僕が一言答えると、「それは○○年○○月
のブログにあった内容ですね」と即座に出てきま
す。まるで僕も把握していない僕自身のデータベー
スが、伏見という少年の内部にあるかのようで
した。それどころか、いつのまにか、インタビュー
されているはずの僕よりも、伏見少年の発言回
数のほうが増えていき、僕はいつしか伏見少年
の主張に心をすっかり奪われていたのです。
　予定していたインタビューの時間が1時間過
ぎても、伏見少年はずっと喋り続けていました。
僕はずっと黙って話を聞いている辻のほうを見
ると、彼女は目を合わせて、ニコリと笑いまし
た。それで、僕は伏見少年の話を遮って、こう
言ったのです。
　「わかった。君がなにかとても言いたいこと、
やりたいことがあるのは解った。だったら来週
から、ここで働いてみないか？」

e n c h a n te n c h a n te n c h a n te n c h a n te n c h a n t

http://www.uei.co.jp

6 - Software Design

3人の少年第 2 回

Jun. 2013 - 7

3人の少年第 2 回2

enchant.js開発のきっかけとなったMSXとファミリーベー
シックは現在、五反田のゲンロンカフェに展示されている

　これが伏見少年との出会いでした。

もう一人の天才

　彼がただ者ではないことは、あっという間に
解りました。どんな仕事を与えても期待以上の
アウトプットを想像以上に短い時間で上げてく
るのです。
　それからしばらくして、伏見少年は僕のもと
にやってきて、こう言いました。
　「実は、同級生に田中くんという変わった奴
がいて、清水さんに会ってほしいのですが」
　そもそも伏見少年が変わった奴だったのに、
それに輪をかけて変わった奴というのはいかな
る人物なのか、僕は興味をそそられました。じゃ
あ会ってみようか、ということで急遽面接がセッ
ティングされ、僕はその1週間後には田中諒と
いう少年と面談をしていました。
　「普段、家でなにやってるの？」僕がそう聞
くと、
　「家ですか？　まあ、風呂に入ったり、寝た
りとかですかね」と所在なさそうに答えました。
　「趣味とかは？」さらに聞くと、
　「別にこれといって趣味みたいなのはないで
す」と興味がないように答えました。
　僕はなぜ伏見少年が彼を僕に引き合わせたい
と思ったのか意図がわからなくなり、続けてこ
う聞いてみました。
　「え、じゃあプログラミングはしないの？」す
ると田中少年はこう答えたのです。
　「風呂に入ってるときと寝てるとき以外はずっ
としてますね」
　彼にとって、プログラミングは趣味ではなかっ
たのです。そしてまさしく、寝ても覚めてもプロ
グラミングをするという資質こそが、僕が常日頃
から掲げる「優れたプログラマ」になるための1つ
の条件でした。それで伏見少年が僕に田中少年
を引き合わせた意図をようやく理解するのです。
　こうして伏見、田中コンビが毎日のように
UEIにやってくることになりました。

enchant.js

　2人のコンビが会社にやってきては、毎日楽
しくプログラミングで遊ぶという日々がはじま
りました。彼らはまるで子どもがいたずらを報
告するように、毎日僕のところにきて「こんな
ものを作った」と見せてくれたのです。
　これに気を良くした僕は、さらに多くの“才能
はあるけれどもその使い方を見つけることがで
きない少年たち”を集めようと、「少年プログラマー
よ、秋葉原に集え」というプログを書きました。
　するとさらに大勢の才能あふれる少年たちが
やってきました。そのうちの1人、高橋諒は、
電子回路からC言語までなんでも操れる万能の
19歳でした。いまどき電子回路を知っている
プログラマは珍しいので、僕は一瞬で彼に秘め
た才能があることを悟りました。彼はあまりに
突出した才能を持っているため、常に孤独で、
仲間や指導者を欲していました。そして伏見少
年や田中少年は高橋少年の良きライバルであり、
チームメイトとなる素養が充分にあったのです。
　あるとき田中少年が、いい加減、自分で思い
つくままにプログラミングすることに飽きたの
か、「なにか書く（プログラミングする）ものは
ないか」と僕に聞いてきました。
　これこそが、実は僕がずっと待ち望んでいた
瞬間でした。
　どれだけ優れた人間でも、思いっきり好きな
ものをプログラミングしたあと、ふと、なにを

8 - Software Design

e n c h a n t

Jun. 2013 - 9

enchant.jsの最初の
バージョンを2週間
で開発した田中諒

作ったら人に喜ばれるのか気まぐれに考えてみ
たくなるときがあるのです。
　僕はすかさず、「ならばBASICを作ってみ
ないか」と聞いてみました。ところが田中少年
はポカンとしています。BASICを知らないの
です。そこで僕は、すぐに秋葉原の電気街に出
かけて行って、MSXとファミリーベーシック
を買って来て、田中少年に見せました。
　サンプルコードが書かれたマニュアルを一読
すると田中少年は言いました。
　「まさか！　こんな短い行数でゲームが作れ
るの !?」
　その声に驚き、伏見少年、高橋少年も駆け寄っ
てきました。
　「噂には聞いたことがあったけれども、BASIC

というのは、まるで夢のような環境だな」
　「ポケコンのBASICしか触ったことない……」
　思い思いのことを言いながらも、彼らは
BASICの持つ可能性に目を輝かせていました。
　「こういうことができるもの̶̶つまり、スプラ
イトとBG、そういうものをHTML5でエレガント
に扱うライブラリ。そういうのを作ってみない？」
　返事はありませんでした。彼らは一目散にマ
シンの前に走って行ったからです。田中諒は夢
中になってコードを書き、わずか2週間でプロ
トタイプを完成させました。
　「これを見てください」
　息せき切ってやってきた田中諒が、スプライ
トとBGが見事に動くデモを完成させていまし
た。ソースコードを確認しようとフォルダを見
ると、「enchant.js」という見慣れないファイル
がありました。

　「このenchant.jsってのは？」
　「それが本体です」
　なるほど。面白い。enchant.js。それが誕生
した瞬間でした。

ミドルウェアの兵
へい たん

站戦略

　enchant.jsはすぐに社内の経験豊富なプログ
ラマ連中にお披露目されました。するとうるさ
がたの先輩プログラマ連中が「これ、いいんじゃ
ないの？」と口々に言いはじめたのです。実は
そのときまで、僕はenchant.jsをファイル名以
外はよく知りませんでした。けれども、長年ゲー
ム開発をしてきたベテラン連中が軒並み「筋が
いい」と褒

ほ

めるので、これはいけるかもしれない、
と思うようになります。
　時代はまさにHTML5が標準化されようとし
ていましたし、iOSとAndroidのクロスプラット
フォーム開発への関心も高まっていました。この
領域には決定版と呼べるようなミドルウェアがま
だ存在していなかったことも決め手となりました。
　よし、これを真面目に売り出してみよう。僕
はそう決意しました。いつしか僕自身もこのラ
イブラリに魅了（enchant）されていたのです。
　ただしこの手のライブラリを売り出すという
のは一般に言ってかなり難しいことも事実でし
た。もしこれがどこかの大学の研究室で生まれ
たり、もしくは大学生個人が発表したとしたら、
今のような流行には決してならなかったでしょう。
そして本誌の読者が一番気がかりなのは、まさ
しくこの部分だと思います。数あるオープンソー
スソフトウェアの中で、なぜenchant.jsだけが
これほどまでに注目を集めたのでしょうか。
　成功したものにあとから理由をつけるのは危
険なのですが、敢えてその愚を犯すとすれば、
成功の原因は僕らが“兵站戦略”と呼ぶものを
もってenchant.jsを組織的・計画的に普及させ
ていったことにあるでしょう。
　実は単独のライブラリとして見れば、enchant.

jsより多機能だったり、高性能だったりするも

8 - Software Design

3人の少年第 2 回

Jun. 2013 - 9

3人の少年第 2 回2

enchant.jsプロジェクトのリーダーとなる伏見遼平（右）と
リードプログラマとなる高橋諒（左）

のはいくらでもあります。しかし開発者は決し
て機能や性能だけでミドルウェアを選んではい
ないのです。たとえばRubyやPythonは、明ら
かにC++よりも実効効率で劣ります。にもかか
わらず、Rubyを好んで使うプログラマは少なく
ありません。PHPは言語的な美しさでは他の言
語に遥かに劣ります。しかし現実的にはPHPを
採用する企業が後をたちません。なぜでしょうか。
　Webサービスを作るとき、RubyがC++より
好まれるのはなぜか。それは明らかに、Ruby

on Rails（RoR）があるからです。RoRが登場す
るまで、WebサービスをRubyで構築する方法
がないわけではありませんでしたがあまり現実
的とは思われていませんでした。いわばRoR

によってRubyは開発者に“再発見”されたので
す。RoRは、非常に簡単に高品質なWebサー
ビスを構築できるということで、あっという間
に人気になりました。世界中で採用され、本も
多数出版され、RoRが使えることが技術者の1

つのスキルとして認知されるまでになりました。
専門学校や大学でもRoRが教材に使われるよ
うになっています。
　こうしたことすべて、つまりRuby以外の環
境すべてを、僕らは「兵站（へいたん）」と呼んで
います。兵站とは、戦争において、武器・弾薬
の補給、兵員の補充、新兵の確保と教育、通信
手段の確保など実際の戦闘以外を構成するすべ
てのことを指します。ベトナム戦争では5万人
の兵士が派遣されましたが、5万人の兵士を支
えるために米軍は20万人の兵站担当者を派遣
しています。炊事・洗濯、治療、建設、通信、
戦闘以外のすべてを支えるためにはそうした兵
站が不可欠なのです。
　武器の性能だけがいくら高くても、撃つ弾が
なければ負けてしまいますし、銃を構える兵士
が足りなければやはり負けてしまいます。だか
ら兵站戦略は軍事作戦において最も重要な概念
の1つなのです。将棋やチェス、囲碁といったゲー
ムに足りないのはまさしくこの兵站の要素です。
　実はミドルウェアも、実際の性能そのものよ

りももっと重要なのはそのミドルウェアの周辺、
つまり、

・ミドルウェアを使うプログラマの教育
・ミドルウェアを使うことが1つのスキルとし
て認知されること

・ミドルウェアの解説書やWebサイトが多数
出ていること

・サンプルコードが手に入りやすいこと
・コミュニティが活発であること

などがより重要なのです。この点を考慮しない
と、ミドルウェアは失敗します。誰も使わない
ミドルウェアには存在価値がないからです。
　21歳の頃、僕はまさにこのミドルウェアの
世界戦略を目の当たりにする立場に居ました。
米Microsoftで、DirectXのエヴァンジャライ
ズ活動に関わっていたのです。enchant.jsもゲー
ムが前提でない環境でゲーム開発を実現すると
いう視点では、実はDirectXと同じです。なら
ば、DirectXと同じやりかたで兵站戦略を実行
すれば成功する確率は高いと確信していました。
なによりこういう気軽にゲームを作って発表で
きる環境を、一番求めているのは僕自身でした。
僕には絶対の自信がありました。
　けれども、伏見、田中、高橋の3人は、自分た
ちが作っているものが世の中で受け入れられると
はまったく思っていませんでした。僕にはミドル
ウェア戦略の経験と人脈があり、彼ら若者には
未知のものに対する情熱がありました。enchant.

jsプロジェクトはこうしてはじまったのです。ﾟ

10 - Software Design

はじめに

　今月もDvorak配列にスポットを

あてていきます。先月も触れました

が、Dvorak配列とは英文入力に最

適化されたキーボード配列です。一

般的なQwerty配列と比較して、英

文を高速に入力できると言われてい

ます。

　前回のTypeMatrixはキーの並

びが「｜｜」型の格子状で特殊な並び

でしたが、今回は「＼＼」型の一般的

なキーボードと同じ並びでDvorak

配列を使えるキーボードを紹介しま

す。OSの設定でDvorak配列にす

るのではなく、もともとDvorak配

列となっているキーボードを使うこ

とで、BIOSの画面やLive CDでも

Dvorak配列が使えます。今回も英

語キーボードですので、OSのキー

ボード設定は英語にする必要があり

ます。

Matias Dvorak
Keyboard

　Matias Dvorak Keyboard（写

真1）は、アメリカのMatias社が販

売しています。一般的なキーボード

と同じキーの並びでDvorak配列を

全面に押し出した、非常に数少ない

キーボードです。

入手方法

　同社のサイト注1で販売していま

す。クレジットカードで支払いが可

能です。値段は、筆者購入当時で

$99ほどでした。日本へも発送し

てくれます。海外からの発送になり

ますので、注文から到着まで20日

ほどかかりました。

特徴

　Matias Dvorak Keyboardは、

次の特徴があります。

 •Dvorak配列

 •Qwerty配列に切り替え可能

 •メンブレンキーボード

　最大の特徴は、ハードウェアで

Dvorak配列であることです。キー

トップにDvorak配列の文字が大き

く印字されています（写真2）。キー

ボード上部にボタンがついており、

それを押すとQwerty配列にも切り

替えられます。Qwerty配列にして

いる際は、ボタンが青色に点灯しま

す（写真3）。これにより練習中や第

三者に一時的にキーボードを貸し出

す際にも、すぐに切り替えられます。

　キースイッチはメンブレンです。

ちまたにあるメンブレンキーボード

とそう変わらない打鍵感です。その

ため、一部の高級なキーボードと比

較するとどうしても打鍵感は劣りま

す。そのほかに、2ポートのUSB

ハブも内蔵しています。

コレクターが独断で選ぶ！

Matias Dvorak Keyboard & QIDO

一般的なキーの並びで
Dvorak配列を使える

偏愛キーボード図鑑

第2回

写真2　Matias Dvorak Keyboard
のキートップ

注1） http://www.matias.ca/dvorak/

写真1　Matias Dvorak Keyboard

写真3　Qwerty配列時のLED点灯

濱野 聖人HAMANO Kiyoto
khiker.mail@gmail.com
Twitter：@khiker

http://www.matias.ca/dvorak/

偏
愛
キ
ー
ボ
ー
ド
図
鑑

10 - Software Design Jun. 2013 - 11

vol.2 Matias Dvorak Keyboard & QIDO

QIDO

　QIDOはキーボードではなく、

keyghost社が販売しているUSB

アダプターです（写真4）。Qwerty-

In Dvorak-Outの略であり、Qwerty

配列をDvorak配列に変換します。

Qwerty配列のキーボードとPCの

間に接続して使います。

入手方法

　同社のWebサイト注2で販売して

います。Matias Dvorak Keyboard

と同様にクレジットカードで支払え

ます。値段は、筆者が購入した当時

は1個$89ほど。日本への発送も

可能で、送料は$20ほどでした。

特徴と利用方法

　QIDOの特徴は、既存のQwerty

配列のUSBキーボードをそのまま

Dvorak配列に変換できることで

す。普通のDvorak配列だけでなく

Dvorak配列のほかのバリエーショ

ンも使えます。

　デフォルトでは通常のDvorak配

列の設定ですが、QIDOを接続した

うえでテキストエディタにフォーカ

スをあて、「keydvorak」と打つと

以下のバリエーションに変更するた

めのメニューを開けます（図1）。

 •Dvorak-Qwerty

 •片手Dvorak（左手）

 •片手Dvorak（右手）

　メニューで変更した情報は、

QIDO自体に保存されるので、次回

からも変更後の配列で使えます。

　Dvorak-Qwerty と は 通 常 の

Dvorak配列と同じですが、修飾

キーと組み合わせてキーを打ったと

きQwerty配列となります。具体的

には、l、m、Windowsキー

と組み合わせて普通のキーを打った

ときQwerty配列となります。

¡ではDvorak配列のままで

す。たとえば、Windowsでコピー

内容を貼り付けるショートカットの

l＋vを押すとき、Dvorak配

列ですと、Qwerty配列のl

＋.と な り ま す が、Dvorak-

Qwertyではそのままのl＋v

の位置で入力できます。そのため、

キーボードショートカットを違和感

なくそのまま使うことができます。

　片手Dvorak（左手）と片手Dvorak

（右手）は、片手で打つ用のDvorak

配列です。詳細は省略します。

　˙をすばやく2度押すことで、

Dvorak配列とQwerty配列の切

り替えもできます。ただ、QIDOに

は次の制約があることに注意が必要

です。

①接続するキーボードは、英語キー

ボードである必要がある

②トラックパッドのようなキーボー

ドの追加機能を無効にする場合が

ある

③一部のUSBポートを持つキー

ボードでは動作しない

　①は、QIDOは英語キーボードを

前提としているので、日本語キーボー

ドを接続すると一部のキーがおかし

な位置に変換されてしまうというこ

とです。②は、トラックパッドを内

蔵しているようなキーボードと

QIDOを接続した場合、キーストロー

クは通るが、トラックパッドは無効

になる場合があるということです。

③は、たとえば、Happy Hacking

Keyboard Professional 2のよう

なUSBポートを内蔵するキーボー

ドでは、動作しないということです。

③について、表1に動作確認した一

例を挙げます。

◆　◆　◆

　これ以外にもDvorak配列を利用

できるキーボードは存在します。ま

た、キー配列を自由自在に変更でき

るプログラマブルキーボードを使う

という方法もあります。このプログ

ラマブルキーボードについては、今

後紹介する予定です。s

注2） http://www.keyghost.com/qido/

写真4　QIDO

キーボード 動作状況

HHKB Lite2（PS/2 モデル） 問題なし（PS/2→USB変換コネク
タを利用）

HHKB Professional 問題なし
HHKB Professional 2 動作せず
HHKB Professional 2 Type-S 動作せず
Realforce 87UB SE170S 問題なし
Majestouch Ninja Tenkeyless FKBN87MRL/EFB2 問題なし
Lenovo ThinkPad USBトラックポイントキーボード 問題なし（トラックポイントも動作）

表1　QIDOの動作状況

図1　QIDOのメニュー

http://www.keyghost.com/qido/

12 - Software Design12 - Software Design

Shenzhen Mini Maker Faire

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 32 回

秋葉原発！

　ちょうど1年前の本連載第20回で紹介した、
深
しんせん

圳でのMaker Faireが今年も開催され、出展
しないかというオファーをいただいたので参加
してきました。今年のMaker Faireは前回とは
違い、市内中心部の屋外に設置された大きなテ
ントのもとで開催されました（写真1）。
　今回のMaker Faireも前回と同様に、中国の

 ▼写真1　会場入り口

 ▼写真2　会場内

 ▼写真3　3Dプリンタ① ▼写真4　3Dプリンタ②

 ▼写真5　並んで待つ来場者

ホビースト（趣味に熱中している人）よりも、ロ
ボットを作っている会社、基板やキットといっ
たOSHW（オープンソースハードウェア）関連
の仕事をしている人々の出展が多くを占めてい
ました（写真2）。
　日本でも、3Dプリンタが注目を集めており、
今までものを作ることを趣味にしていなかった
人々も3Dプリンタに関心を持ち始めていま
す。同様に、今回の深圳でのMaker Faireには
3Dプリンタメーカーも出展しており、さまざ
まな3Dプリンタを見かけました（写真3、4）。
　このMaker Faireはかなりの盛況で、東京よ
りも規模自体は小さいものの、会場にはたくさ
んの来場者が訪れていました。午後からは来場
者数が多くなり過ぎたためか、入場制限が行わ
れるほどでした（写真5）。

　先ほどの会場入り口の看板にもロゴを刷って

筆者の出展

深
しんせん

圳のMaker Faireに出展してきた

http://www.switch-science.com/

12 - Software Design Jun. 2013 - 13

第 32 回

12 - Software Design

 ▼写真7　Makeblock

 ▼写真8　iPhoneガンコン

 ▼写真6　筆者のブース

DAPに対応させたものが開発されるなど、
CMSIS-DAPをGDB（GNU Project debugger）
と併用できる環境も整いつつあります。
　中国では英語を話せる人が少ないのではない
かと考え、パネルも中国語に翻訳してもらい、
中国語の通訳の人もお願いしました。もちろん
筆者の英語力が大したことないという事情もあ
るのですが、来場者の半数以上は英語でのコ
ミュニケーションが難しかったのでこのような
準備をしておいて正解でした。

　通訳の方が心強い方だったので、ほかの出展
者の出展内容も見てまわってきました。興味を
引いたものをいくつか紹介します。
　Makeblock（写真7）は深圳の企業が開発し販
売しているアルミ製のブロックで、ネジ止めを
することで簡単にロボットなどを作ることがで
きるものです。会場では、水が入ったコップを
叩いて演奏をするロボットが展示されていまし
た。
　iPhoneをオモチャの銃に吸盤で固定するガ
ンコントローラも見かけました（写真8）。正確

いただいていたのですが、筆者は最近“Tinker-

Pot”という名前で、自分が作った基板やキッ
トを出していきたいと考えています。今回は
急にオファーをいただき、とくに何か成果物を
用意していたわけではなかったため、ちょうど
試作を終えたところだったC

し む し ず だ っ ぷ

MSIS-DAPと
いうARMのプロセッサをデバッグするため
の標準化された規格に対応した、デバッグア
ダプタ（パソコンをマイコンのデバッグポート
に接続するための機器）などを展示してきま
した。
　また、第25、26回でも紹介したLPC1114FN

28と、最近リリースされたLPC810という
NXP社のブレッドボードで使えるARMマイコ
ン、それから、以前開発をしたmbedの互換機
を展示しました（写真6）。
　余談ですが、筆者は最近、マイコンでの開発
をprintfデバッグのみで行うことに疲れ、デ
バッガが使えることが楽しくてしかたありませ
ん。このCMSIS-DAPという規格を使ったデ
バッグ環境は、MDK-ARMというARM社の比
較的高価な開発環境が必要だったのですが、最
近はOpenOCDというソフトウェアをCMSIS-

筆者が興味を持った出展

第 深圳のMaker Faireに出展してきた

14 - Software Design

はんだづけカフェなう
秋葉原発！

プタは香港のRedBearLabが開発したもので、
会場では少しお得なプロモーション価格で販売
されていました。
　HEX AIR ROBOT（写真12）は、HAXLR8R

（ハクセラレーター）というものづくり支援プロ
グラムに参加している人達が作っている回転翼
機です。けっこうな大きさで、混み合っている
会場では全体をカメラのフレームに納めること
ができませんでした。興味を持った方は検索し
てWebを見てみてください。
　写真13は展示物ではないのですが、目につ
いたので撮らせてもらいました。Maker Faire

にはArduino Teamも出展していたのですが、
スタッフの1人がプレゼンをするために自作し
たものということです。比較的最近発売された
Arduino Microに赤外線リモコンの受信機を接
続し、赤外線リモコンでプレゼンのスライドを
切り替えることができるようにしたものです。

　Seeed Studioはかなりの量のシールドを開発

には出展者ではなく、会場に作ったものを持っ
てきていた方の作品ですが、銃を動かすと
iPhoneに表示されているゲームの画面が動き、
また引き金を引くといった操作もできていまし
た。英語が話せない方だったので、詳しくしく
みを聞くことができませんでしたが、なかなか
の人気を集めていました。
　とても中国的でおもしろいと思ったものが、
基板で作られた灯籠です（写真9、10）。上手に
基板を組み合わせて立体的な灯籠を組み立てて
いました。上部にはマイコンが搭載され、LED

の点灯をコントロールしていました。
　そういえば、この連載でBLE（Bluetooth

Low Energy）を扱ったことがありませんでし
た。BLEはBluetooth v4.0規格の一部で、
iPhoneと自作のハードウェアをつなぐ最も
手っ取り早い方法です。従来はBluetoothを
使ったアクセサリを開発するにはAppleのMFi

ライセンスプログラムに参加する必要がありま
したが、BLEを使った通信にこのような手続き
は必要ありません。写真11のシールドやアダ

Seeed Studioの出展

 ▼写真10　LED灯籠（全体）

 ▼写真9　LED灯籠（上部）

 ▼写真11　BLE

 ▼写真12　HEX AIR ROBOT

 ▼写真13　Arduinoリモコン受信機

14 - Software Design Jun. 2013 - 15

第 32 回

華強北（Huaqiangbei）

ところのようですので、近いうちにSeeed

Studioやスイッチサイエンスから購入できる
ようになるでしょう。価格などもわかりません
が、楽しみにしています。

　昨年深圳に訪問した際には行けなかったので
すが、華強北にも行ってきました。華強北は、
深圳市内にある秋葉原のような電子街です。秋
葉原には電子部品のお店が大分少なくなってし
まいましたが、製造業の盛んな深圳ですので、
華強北には多くの電子部品店が存在します。大
きなビルが建ち並んでいる街並みは、ぱっと見
は電子部品が売っているようには思えないので
すが、中に入ると写真17のようにところ狭し
と小さなお店が並んでいます。

◆
　深圳でのMaker FaireはHAXLR8Rに参加
している人々が出展していたこともあり、中国
人以外の出展者も多く、とても楽しめるもので
した。筆者は海外のMakerとの交流が楽しい
ので、Maker Faire Tokyoにももっと多くの外
国人出展者が増えるとおもしろくなるだろう
に、と感じています。ﾟ

 ▼写真14　Arduinoのシールド ▼写真15　Makey Makey

 ▼写真16　Crazy� ie
 ▼写真17　華強北のビル内

し、販売しています。写真14に展示されている
ものは一部なのですが、Maker Faireの彼らの
ブースに行くと、いつも写真のように多くの
シールドが展示されています。とくに、彼らが
出しているGroveというシリーズの製品は、
Arduinoにさまざまなセンサやデバイスを、は
んだづけすることなくケーブルで簡単に接続で
きますので、ちょっとArduinoをはじめてみた
いけれども面倒は嫌だという方にはお勧めです。
　Makey Makey（写真15）は、ミノムシクリッ
プでつなぐだけでいろんなものをパソコンの
キー入力のキーにできるオモチャです。ここで
はバナナを鍵盤にした展示がなされていまし
た。恥ずかしながら筆者はこのキットを知りま
せんでしたが、すでにスイッチサイエンスの
Webサイトでも販売されている比較的有名な
ものだそうです。
　筆者が個人的にほしいと思ったオモチャが、
このちっちゃいクワッドコプターです（写真
16）。裏側にマイコンが搭載されており、無線
でコントロールすることができるようです。当
日はゲーム機のコントローラで操縦していまし
たが、スマートフォンやパソコンでの操縦も可
能とのことでした。現在、量産をはじめている

第 深圳のMaker Faireに出展してきた

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ
『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2013 年 6 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

リュックの中身
Ver.3.0

リュックの中に入れて使うことで収納力をアップできるポケット
ボード。ノート PCやタブレット端末を持ち運びすることも考慮し、
衝撃吸収のためのスポンジパットや固定ベルトが付いています。
 提供元 ビー・ナチュラル
 URL http://www.b-natural.co.jp

ゲームメカニクス
アーネスト・アダムス、ヨリス・ドーマンズ　著／
B5変型判、400ページ／
ISBN＝ 978-4-7973-7172-7

RPGでも携帯電話のゲームでも、おもしろいゲームには優れたしく
みがある。本書はそんなゲームの核となるメカニクスについて設計、
テスト、チューニングする方法を解説する。
 提供元 ソフトバンク クリエイティブ　 URL http://www.sbcr.jp

これも
数学だった !?
河原林 健一、田井中 麻都佳　著／
新書判、208ページ／
ISBN＝ 978-4-621-05382-9

携帯電話、カーナビ、電力需給、物流、SNS など、コンピュータを
通して私達の生活に役立っている離散数学について解説します。プ
ログラマとして IT 企業で活躍したいと思っている人、必見です。
 提供元 丸善出版　 URL http://pub.maruzen.co.jp

SSD完全攻略読本
北川 達也、加藤 勝明、鈴木 雅暢、竹内 亮介　著／
A5判、192ページ／
ISBN＝ 978-4-8443-3366-1

I/O 効率に優れ、HDDの代替手段として注目を浴びている SSD。
そんな SSDの上手な選び方、使いこなし方、そして高速性を長持ち
させるテクニックなどを紹介します。
 提供元 インプレスジャパン　 URL http://www.impressjapan.jp

小飼弾の
コードなエッセイ
小飼 弾　著／
A5判、200ページ／
ISBN＝ 978-4-7741-5664-4

ブログ「404 Blog Not Found」でおなじみ小飼弾氏によるエッセ
イ集。2013 年 3月までの本誌連載の記事を中心に、コード、アル
ゴリズム、ソフトウェアについて語った内容を 1冊にまとめました。
 提供元 技術評論社　 URL http://gihyo.jp

スマートフォン
防水・防塵ケース
dicapac W-P2

お手持ちの iPhone やスマートフォンを手軽に防水化できます。濡
れた手でもタッチパネル操作できるうえ、完全に水に入っても大丈
夫。背面には撮影用ウィンドウ付きで鮮明な写真撮影が可能です。
 提供元 大作商事
 URL http://www.daisaku-shoji.co.jp

AtermWG1800HP

無線 LANの新規格「Draft IEEE802.11ac」に対応し
たWi-Fi ホームルータ。5GHz 帯で最大 1,300Mbps
の高速Wi-Fi 通信が可能。また世界最小クラスのアン
テナ「μSR アンテナ」を採用することで、Draft
11ac 対応でありながら従来機と同等のコンパクトデ
ザインを実現しています。
 提供元 NECアクセステクニカ
 URL http://www.necat.co.jp

※製品にスマートフォンは付属しません。※製品には写真内の収納品は付属しません。

1 名

3名

3名

1名

2名

2名 2名

防水・防塵ケース
dicapac W-P2

※製品にスマートフォンは付属しません。

リュックの中身

リュックの中に入れて使うことで収納力をアップできるポケット

 URL http://www.necat.co.jp

※製品には写真内の収納品は付属しません。

http://sd.gihyo.jp/
http://www.necat.co.jp
http://www.daisaku-shoji.co.jp
http://www.b-natural.co.jp
http://www.sbcr.jp
http://pub.maruzen.co.jp
http://www.impressjapan.jp
http://gihyo.jp

　今、多くのソフトウェア製品やWebサービスは、オブジェクト指向をベースにしたプログラ
ミング言語で開発されています。C++やJavaはもちろんオブジェクト指向を習得していること
が必要ですが、いまやスクリプト言語もオブジェクト指向でプログラミングするのがごく当然に
なってきています。しかし、オブジェクト指向は、わかっているようでわからなかったり、いつ
まで経ってもマスターできなかったりすることもよくあります。
　本特集は新年度を迎えるにあたり、そんな苦手意識を克服するには、どうしたらよいのか、そ
の手がかりを紹介します。Part1ではJavaで基本を押さえ、Part2では全体象を振り返り、Part3
では現場でどのように使われているのか確認し、Part4、Part5、Part6で実践的なコーディング
方法を示します。初心者プログラマさんだけでなく、ベテランの皆さんにもお勧めします！

組み込みからクラウドまで、オブジェクト指向は隅々と！ …… p036

● 井上樹
3

JavaScriptでオブジェクト指向 ……………………………………………………… p041

● 川尻 剛
4

PHPでオブジェクト指向……………………………………………………………………… p047

● 星野香保子
5

Perlによるオブジェクト指向入門 ………………………………………………… p051

● 深沢千尋
6

オブジェクト指向の基本を学ぶ ……………………………………………………… p018
● 増田亨

1

オブジェクト指向の学び方、教え方 …………………………………………… p031

● 青山幹雄
2

ちゃんと

できています
か？

ちゃんと

できています
か

できています
か

できています
か？？？？オブジェクト
指向

わかった人だ
けメキメキ上達

第１特集

18 - Software Design Jun. 2013 - 19

ちゃんとオブジェクト指
向できていますか？

第１特集
わかった人だけメ

キメキ上達

オブジェクト指向の良さとは、見通しのよいプログラムを書けるようになる
ことです。ソースコードを部品化し、それらを組み立て、動かす。実行して
エラーが出たら、その部分だけを修正する。もしくは動的に組み立てプログ
ラムを進化させることができます。本稿では、その基本を学ぶことで、皆さ
んの力を2倍にも3倍にもすることを目的にしています。

はじめに

　Javaは、さまざまな分野で使われているオ
ブジェクト指向のプログラミング言語です。
　この記事では「基本から学ぶオブジェクト指
向」ということで、

・オブジェクト指向の基本的な発想
・Javaでのオブジェクト指向実践のコツ
・オブジェクト指向をもっと勉強するヒント

を書いてみます。
　皆さんがオブジェクト指向の考え方を活かし
たプログラミングをすることのお役に立てれば
幸いです。

オブジェクト指向の発想

　「オブジェクト指向」は良いソフトウェアをで
きるだけ楽に開発するための工夫の1つです。
　特定のプログラミング言語や、特定の書き方
ではなく、プログラミングの「発想」、プログラ
ミングの「スタイル」と考えるのが良いでしょう。

オブジェクト指向の良さ

　オブジェクト指向でうまくプログラミングす
ると、全体の見通しが良くなり、機能追加や修
正が簡単で安全になります。
　プログラムの規模が大きく、機能追加や修正

が継続的に発生するソフトウェアを開発するとき、
オブジェクト指向のありがたさが実感できます。
　Javaは規模が大きく、継続的にコードを変
更するソフトウェア開発を意図した言語です。
Javaを使ってオブジェクト指向プログラミン
グする動機は「複雑さ」への対応や「継続的な変
更（拡張や修正）」が楽になることです。

オブジェクト指向は
部品指向

　「複雑さ」への対応や「継続的な変更」が楽にな
るのは、ソフトウェア全体をオブジェクトとい
う「部品」の集まりとして組み立てるからです。
　オブジェクト指向プログラミングとは「部品」
をいろいろ用意して組み立てる「部品指向」の作
り方なんです。
　ひとつひとつの部品（オブジェクト）を、小さ
く単機能にすることがオブジェクト指向プログ
ラミングのコツです。
　既存のクラスやメソッドにどんどんコードを
追加していくのは失敗パターンです。

・機能追加は、新しい部品（オブジェクト）の追
加を考える

・修正は、部品の差し替えを考える

　こういう発想でソフトウェアを育てていくの
がオブジェクト指向の基本の発想です。

動的に組み立てる

　現実の機械は部品間の関係ががっちり固定さ

オブジェクト指
向の

基本を学ぶ

有限会社システム設計　増田亨（ますだとおる）

オブジェクト指
向の

1

18 - Software Design Jun. 2013 - 19

1オブジェクト指向の基本を学ぶ

れています。
　オブジェクト指向プログラミングはもっと動
的です。プログラムをメモリ上で実行するとき
にオブジェクト（部品）の組み立て方や結びつき
方を動的にコントロールします。
　この「実行時に動的に組み立てる」という感覚
がオブジェクト指向プログラミングのもう1つ
のポイントになります。

名前をつける／
名前を変える

　ソフトウェアの規模が膨らみ、複雑になって
くると、だんだん見通しが悪くなってきます。
ちょっとした変更も、難しく危険な作業になり
ます。
　この問題を軽減するコツが「名前」の工夫です。
　パッケージ名、クラス名、メソッド名を意図
が明確で区別がしやすい名前にしましょう。名
前によって全体の見通しが良くなり、変更すべ
き個所の特定も簡単になります。
　オブジェクト指向プログラミングの成功と失
敗の分岐点は良い名前を見つけることができる
かどうかです。
　最初はぎこちない名前から出発して、プログ
ラミングしながら、何度も名前を見直し、より
わかりやすい名前に変えることを地道に続ける
ことが、オブジェクト指向プログラミングなん
です。

Hello, World!

　実際のコードで考えてみましょう。リスト1
は、おなじみのHelloWorld.javaです。プログ
ラミングの第一歩としては悪くはありません。
でも、オブジェクト指向プログラミングの第一
歩としては不適切なサンプルです。

・どこにオブジェクトがあるの？
・そのオブジェクトをどうやって用意したの？
・部品を組み立てる感じがでている？
・良い名前をつけているの？

……疑問だらけです。

オブジェクトを用意する

　部品を用意する感覚を身につける第一歩が、
リスト2とリスト3です。
　コンソール画面に Hello, world! を表示する
動きは同じですが、リスト1とは違う書き方に
なっています。

・LauncherとService にクラスを分けた
・パッケージhelloを宣言した
・クラス宣言はpublicではなくデフォルト（パッ
ケージスコープ）

・hello()メソッドもpublicではなく、デフォル
ト（パッケージスコープ）

　同じことをやるのに、パッケージを導入した
り、クラスを分けたりしています。行数も増え

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, world!");
 }
}

リスト1　HelloWorld.java ▼

package hello;

class Launcher
{
 public static void main(String[] args)
 {
 Service service = new Service();
 service.hello();
 }
}

リスト2　Launcher.java ▼

package hello;

class Service
{
 void hello()
 {
 System.out.println("Hello, world!");
 }
}

リスト3　Service.java ▼

20 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Jun. 2013 - 21

ました。ステートメント（文）の数で、リスト1

は3行なのに、リスト2と3の合計で9行。3倍
に膨らんでいます。
　リスト2で注目してほしいのは、

Service service = new Service();

の行です。
　new 演算子で、クラスのインスタンス（＝オブ
ジェクト）を作成していますね。Service クラス
は、リスト3のService.javaで宣言しています。
　リスト1に比べ、部品作って、実行時に動的
に組み立てる、という感じがでてきました。
　serviceオブジェクトに仕事をしてもらうた
めに、hello()というメッセージ注1を送っている
行も、オブジェクト指向らしい個所です。

もう少しまともな挨拶を

　ちょっぴりオブジェクト指向らしくなったと

ころで、Hello, world! を発展させてみましょう。

・午前と午後で別の挨拶をする
・相手の名前を呼ぶ

午前であれば「増田さん、おはようございます」、
午後なら「増田さん、こんにちは」という具合で
す。

 手続き型とオブジェクト
指向の発想の違い

　リスト4は手続型で書いてみました。10行ほ
どのプログラムです。
　リスト5は、リスト4のプログラムをメソッ
ドに分割して、構造化プログラミングのスタイ
ルで書いたものです（下請けのメソッドの内容
は省略）。
　構造化プログラミングは、手続きが複雑になっ
てきたら、小さな手続きに分割して組み立てる
という発想です。
　オブジェクト指向では、分割の単位が「手続き」
ではなく「オブジェクト」になります。
　オブジェクトに分割して、それぞれのオブジェ
クトに仕事を分担してやってもらう、という発
想です。

注1） 「オブジェクトにメッセージを送る」という言い方は、Java ではあまり一般的ではありません。オブジェクトという部品に仕事を依
頼する、という感じを大切にしたいので、この記事では、メッセージを送るという表現を使います。

package hello;

import java.util.Calendar;

class GreetingServiceProcedural
{
 void greet()
 {
 String user = System.getProperty("user.name");

 Calendar calendar = Calendar.getInstance();
 int hour = calendar.get(Calendar.HOUR_OF_DAY);

 String message = "";

 if(hour < 12)
 {
 message = "おはようございます";
 }
 else
 {
 message = "こんにちは";
 }

 System.out.println(user + "さん、" + message);
 }
}

リスト4　GreetingProcedural.java ▼

package hello;

import java.util.Calendar;

class GreetingStructured
{
 void greet()
 {
 String user = username();
 int hour = hour();
 String message = message(hour);
 print(user, message);
 }

 // 下請けメソッド群
 private String username() { ... }
 private int hour() { ... }
 private String message(int hour) { ... }
 private void print(String user, String ｭ
message) { ... }
}

リスト5　GreetingServiceStructured.java ▼

20 - Software Design Jun. 2013 - 21

1オブジェクト指向の基本を学ぶ

オブジェクトで
仕事を分担する

　リスト4の手続き型プログラムを、オブジェ
クト指向の発想で設計しなおしたのが、図1の
クラス図です。

　8つのオブジェクトで仕事を分担する設計に
しました。なぜこう設計したのか理由を説明し
ます。
　図1のクラスをリスト6からリスト13にコー
ディングしました。これらを参考にしてください。

package greetingservice;

class Launcher
{
 public static void main(String[] args)
 {
 GreetingService service = new GreetingService();
 service.greet();
 }
}

リスト6　Launcher.java ▼

package greetingservice;

import java.io.PrintStream;

class Transfer
{
 private PrintStream out;

 Transfer()
 {
 out = System.out;
 }

 void send(String message)
 {
 out.println(message);
 }
}

リスト8　Transfer.java ▼

package greetingservice;

import greetingmodel.Greeting;

class GreetingService
{
 User user;
 Transfer transfer;

 GreetingService()
 {
 this.user = new User();
 this.transfer = new Transfer();
 }

 void greet()
 {
 Greeting greeting = new Greeting(user.name());
 String message = greeting.message();
 transfer.send(message);
 }
}

リスト7　GreetingService.java ▼

Launcher
+ main()

Greeting
+ message()

AmPm
~ message()

GreetingFormat
~ text()

Clock
~ ampm()

GreetingService
~ greet()

User
~ name()

Transfer
~ send()

Service パッケージ Model パッケージ

図1　クラス図 ▼

22 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Jun. 2013 - 23

 Launcherと
GreetingServiceの分離

　GreetingServiceクラスは、挨拶する機能を
部品化したものです。プログラムの起動と、サー
ビスの実行を別のオブジェクトに分けるのは定

package greetingservice;

class User
{
 a private String name;

 User()
 {
 name = System.getProperty("user.name");
 }

 String name()
 {
 return name ;
 }
}

リスト9　User.java ▼

package greetingmodel;

class AmPm
{
 private Clock clock ;

 AmPm()
 {
 this.clock = new Clock();
 }

 String message()
 {
 String ampm = clock.ampm();

 String message = "";

 if(ampm.equals("am"))
 {
 message = "おはようございます";
 }
 else if(ampm.equals("pm"))
 {
 message = "こんにちは";
 }

 return message ;
 }
}

リスト11　AmPm.java ▼

package greetingmodel;

class GreetingFormat
{
 private String username;
 private String message;

 private static final String template = ｭ
"%sさん、%s。";

 GreetingFormat(String username, AmPm ampm)
 {
 this.username = username;
 this.message = ampm.message();
 }

 String text()
 {
 return String.format(template, username,ｭ
message);
 }
}

リスト13　GreetingFormat.java ▼

package greetingmodel;

import java.util.Calendar;

class Clock
{
 private Calendar calendar;

 Clock()
 {
 this.calendar = Calendar.getInstance();
 }

 String ampm()
 {
 int hour = calendar.get(Calendar.HOUR_OF_DAY);
 if(hour <= 12) return "am";
 return "pm";
 }
}

リスト12　Clock.java ▼

package greetingmodel;

public class Greeting
{
 private String username;

 public Greeting(String username)
 {
 this.username = username;
 }

 public String message()
 {
 AmPm ampm = new AmPm();
 GreetingFormat format = new ｭ
GreetingFormat(username, ampm);
 return format.text();
 }
}

リスト10　Greeting.java ▼

22 - Software Design Jun. 2013 - 23

1オブジェクト指向の基本を学ぶ

石ですね。プログラムを起動するmainメソッ
ドやmainメソッドを持つクラスに、それ以外
の仕事を詰め込んではいけません。

Userオブジェクト

　挨拶の相手ですね。「相手の名前」という要求
を素直にオブジェクトにしました。Javaプログ
ラムを実行しているユーザの名前を使っています。

Transferオブジェクト

　コンソールに出力する仕事を分離しました。
出力先を変更するときにはこのクラスが変更対
象です。Transfer#send()というメソッド名で
表したように将来は画面出力よりも、ネットワー
ク上に送信することを視野に入れました。

パッケージの分割

　Launcher、Greet ingService、User、
Transferを「サービスパッケージ」にまとめまし
た。Greeting、AmPm、Clock、GreetingFormat

は、「モデルパッケージ」にまとめました。サー
ビスパッケージは、アプリケーションの実行方
式や実行環境に依存したコードがいろいろ含ま
れています（Systemクラスとか）。モデルパッケー
ジは「挨拶する」という概念モデルをそのまま実
装したパッケージです。プログラムの実行環境
や実行方式に関係した変更は、サービスパッケー
ジで行います。どんなとき、どんな挨拶をするか、
という挨拶モデルの変更はモデルパッケージで
行います。モデルパッケージで公開しているのは、
Greetingクラスだけです。挨拶モデルのロジッ
クをモデルパッケージ内で変更しても、サービ
スパッケージは、それに影響されません。パッケー
ジを分離して、できるだけpublicスコープのク
ラスやメソッドを作らないのが、結びつきを弱
くする、変更に強くなる良い設計です。

Greetingオブジェクト

　「挨拶」を代表するオブジェクトです。モデル
パッケージの外部（使う側）に公開された唯一の

オブジェクトです。実際の仕事は、パッケージ
内のほかのオブジェクトに依頼します。外部と
やりとりするオブジェクトは、やりとりする役
割だけに専念させて、実際の仕事はほかのオブ
ジェクトに任せるのが、オブジェクトの役割分
担の定石の1つです。

AmPmオブジェクトと
 Clock オブジェクト

　午前と午後で別の挨拶をするロジックを2つ
のクラスで役割分担しました。Clockオブジェ
クトは、今が午前か午後であるかの判断を担当
します。AmPmオブジェクトは、Clockオブジェ
クトの午前／午後の判断を使って、挨拶の文言
を決めます。Clockオブジェクトは、たとえば、
朝の挨拶は12時ではなく11時まで、という判
断基準の変更を吸収します。将来は、夕方や深
夜も判断するように発展するかもしれません。
AmPmオブジェクトは、午前／午後の枠組み
を固定で想定したオブジェクト名になっていま
す。将来、いろいろな挨拶パターンを追加する
ときは、オブジェクト名やメソッド名はまった
く別のものになるはずです。今は「午前と午後
で挨拶を変える」という要求に合わせてこうい
うクラス名にしています。

GreetingFormat
オブジェクト

　名前に「さん」を付けたり、挨拶を文として組
み立てる仕事を担当します。言い方を変更する
ときには、このクラスで宣言している、テンプ
レートを変更します。

小さなオブジェクトで
仕事を組み立てる

　リスト4の手続き型の書き方で、10行ちょっ
とのプログラムを、オブジェクト指向的に書く
と、図1とリスト6～13のようになりました。
　いかがですか？
　ファイルが増え、コードの総行数が膨らみ、
どこで何をしているか、直観的にわかりにくく
なってしまいましたか？

24 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Jun. 2013 - 25

きに、仕事のパートナーを、自分で用意するわ
けです。
　破線は、メソッドが呼ばれたときに、一時的
にオブジェクトを準備します。メソッドが終了
すれば仕事の依頼先のそのオブジェクトは不要
になります。
　強く固定的な関係は、コンストラクタで（実
線で）、弱く一時的な関係は、メソッドで（破線
で）、という結びつき方の違いを意識しましょう。
　「午前午後」と「時計」とは、強く結び付いた関
係です。「挨拶サービス」と「挨拶」は弱い一時的
な関係です。
　強い／弱いをどう使い分けるかは単純なルー
ルはありません。またプログラムの目的や重視
するポイントが変われば、「午前午後」と「時計」
は、弱いつながりに設計しなおすべきかもしれ
ません。経験を重ねるとある程度は、使いわけ
のコツがわかってきますが、それでも悩むケー
スはでてきます。
　結びつき方の強さ・弱さの選択、オブジェク
トを準備するタイミング、準備する責任の割り
当ては、部品を動的に組み立てるという、オブジェ
クト指向の考え方の中核の設計課題の1つです。
　最初は、なかなか使い分けが難しいと思いま
すが、違いを意識しながら経験を積んでいくこ
とがオブジェクト指向設計のスキルアップの勘
所の1つです。

getter/setterを
安易に使わない

　Javaでは、getName()、setName()というよ
うに、getと setをペアにしたメソッドを用意
することが半ば習慣化しています。
　これは悪い癖です。本当に必要になるまでは、
できるだけget/setは書かないようにするのが、
オブジェクト指向らしいプログラムをするコツ
の1つです。
　リスト6～13を見てください。getter/setter

は1つもありません。
　setを使わない理由は簡単です。必要なデー

　筆者は、こういうスタイルを身につけること
で、ソフトウェア開発の仕事がずいぶん楽になっ
たし、良い仕事ができるようになったと思って
います。
　経験的には、リスト4やリスト5のスタイルで、
追加・修正を繰り返すと、書いた自分でも、ど
こを変更すればよいのかわからなくなり、わけ
のわからない副作用に悩まされるハメに陥ります。
　リスト6～13の、小さなオブジェクトに単純
な仕事を役割分担させるスタイルだと、変更す
べき個所は明確だし、変更が局所的になり、副
作用の心配が激減します。
　オブジェクトの役割を小分けにして、良い名
前を探すのは、たいへんな作業です。
　その代わりうまく役割分担ができて良い名前
が見つかったときには、びっくりするくらい全
体の見通しが良くなり、拡張や修正が簡単に安
全にできるようなります。

オブジェクトの作成

　オブジェクト指向プログラミングでは、オブ
ジェクトを「誰」が「いつ」作成するかは、重要な
設計課題です。new演算子をどこに書くか、と
いう問題ですね。

クラス図の表現、
コードの実装

　図1のクラス図で矢印の線が実線と破線を使
い分けていることに注目してください。
　リスト6～13のコードと突き合わせてもらえ
ばわかりますが、

・実線は、コンストラクタでnewしている
・破線は、メソッドでnewしている

という違いがあります。

結びつきの強さ

　実線矢印の場合は、コードではコンストラク
タで、仕事を頼むオブジェクトを作成していま
す。自分自身がオブジェクトとして誕生すると

24 - Software Design Jun. 2013 - 25

1オブジェクト指向の基本を学ぶ

タは、すべて、コンストラクタで準備してしま
うからです。オブジェクトを作ってから、あと
からsetでオブジェクトの内部を変更するのは、
悪い習慣です。やらないことが基本。
　getを使わないのは、意図が明確なメソッド
名にしたいからです。getXxxx()にすれば、あ
まり考えずにメソッド名が見つかります。
　それがだめなんです。名前を考えることがオ
ブジェクト指向プログラミングです。名前のつ
け方をルール化／パターン化すれば、いちいち
考えなくて良くなるから楽、という発想を捨て
ることが、オブジェクト指向プログラミングの
スキルアップのポイントの1つなんです。
　安易にgetter/setterを使わないことをぜひ
覚えてください。

if文とfor文を減らす

　わけのわからないバグで苦しむのは、だいた
いが、if文や for文が入り組んだ場所です。
　プログラミングを覚えたての頃は、ある程度
複雑な if文や for文を読んだり書いたりできる
スキルを磨くことが必要です。
　しかし、if文や for文をごりごり書くことが、
レベルの高いプログラミングではありません。

package greetingmodel;

enum MessageType
{
 am("おはようございます"),
 pm("こんにちは");

 private String message;

 MessageType(String message)
 {
 this.message = message;
 }

 String message()
 {
 return message;
 }
}

リスト14　MessageType.java ▼

package greetingmodel;

class AmPm
{
 private Clock clock ;

 AmPm()
 {
 this.clock = new Clock();
 }

 String message()
 {
 String ampm = clock.ampm();
 MessageType type = MessageType.valueOf(ampm);
 return type.message();
 }
}

リスト15　AmPm.java (if文をなくした版） ▼

　むしろ逆です。
　条件分岐を if文を使わずに書くスキル、一見
ループが必要な処理も for文を使わない書き方
を覚えること。それがプログラミングの力をつ
けることなんです。

列挙型（enum）

　Java の 列挙型（enum）は、if文の強力な代替
手段です。リスト14は、列挙型を使って、午
前と午後の挨拶文言を宣言しています。
　このMessageType.java を使うと、リスト11

の AmPm.javaは、リ ス ト 15の if文 の な い
AmPm.javaになります。
　手品のタネ（?）は、MessageType#valueOf()

メソッドですね。
　まず、if文以外に、こういう条件分岐の書き
方もあることを覚えましょう。Javaの列挙型
は入門書ではほとんど取り上げられませんが、
Javaでは、if文と同等かそれ以上に重要な条件
分岐のプログラミング手段です。

インターフェース宣言と
実装クラス

　列挙型（enum）を使った例では、MessageType

オブジェクトが午前の挨拶も、午後の挨拶も、
自分で宣言していました。

26 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Jun. 2013 - 27

　Messageはインターフェース宣言です。
MessageAmとMessagePmは、インターフェー
スMessageを実装したクラスです。
　クラス図（図2）とリスト17、18、19を参考
にしてください。
　このように、別々の実装クラスのオブジェク
トを、使う側（ここではMessageType)からは、
同じ型のオブジェクトとして扱えるようにする
しくみがインターフェース宣言です。
　仕事を頼む側から見ると、同じ型に見えるが、
実体は異なるオブジェクトというのが、オブジェ

　もっとオブジェクトを分割して役割分担をし
てみたのが、リスト16のMessageType(イン
ターフェース宣言と実装クラス版）です。
　リスト14では、am()、pm()のパラメータに、
Stringオブジェクトを書きました。
　リスト16では、Stringオブジェクトの代わ
りに、それぞれ、MessageAmオブジェクトと

MessagePmオブジェクトを作成しています。
　異なるオブジェクトを作成していますが、代
入先のmessage変数の型は、Messageという別
の型になっています。

package greetingmodel;

enum MessageType
{
 am(new MessageAm()),
 pm(new MessagePm());

 private Message message;
 MessageType(Message message)
 {
 this.message = message;
 }

 String message()
 {
 return message.value();
 }
}

リスト16　MessageType.java（インターフェース宣 ▼
言と実装クラス版）

package greetingmodel;

interface Message
{
 String value();
}

リスト17　Message.jav ▼

package greetingmodel;

class MessagPm implements Message
{
 @Override
 public String value()
 {
 return "こんにちは";
 }
}

リスト19　MessagePm.java ▼

package greetingmodel;

class MessageAm implements Message
{
 @Override
 public String value()
 {
 return "おはようございます";
 }
}

リスト18　MessageAm.java ▼

Message
<<interface>>

+ value() :String

MessageAm

+ value() :String

MessagePm

+ value() :String

図2　インターフェース宣言と実装クラス ▼

26 - Software Design Jun. 2013 - 27

1オブジェクト指向の基本を学ぶ

クト指向プログラミングの根幹のしくみの1つです。
　オブジェクトとオブジェクトの関係を固定で
はなく動的に切り替える変えるしくみとして、
異なる実装クラスのオブジェクトを同じ型とし
て使うことができるのは、実に強力なしくみです。
　このしくみをきちんと理解し、自信を持って
使えるようになることが、オブジェクト指向プ
ログラミングのスキルアップの当面の目標といっ
て良いかもしれません。

デザインパターン

　インターフェース宣言と実装クラスのしくみ
は、GoFの「デザインパターン」を勉強すると
良いでしょう。とくにStrategy/Stateパター
ンは、使う場面も多く必修です。ここで取り上
げた列挙型（enum）とインターフェース宣言・
実装クラスの例は、Strategy/Stateパターンの
簡単な例です。デザインパターンを理解し、使
える力を身に着けるのは良いことです。しかし、
デザインパターンを積極的に使うことが良いプ
ログラミングとは限りません。上級者は「知っ
ていても使わない」こともあるし「使いどころを
適切に判断する」ものです。

コレクションフレーム
ワークAPIに精通する

　Java のコレクションフレームワークは、言
語仕様のバージョンアップのたびに、地道に改
良されて（まだまだ不満はありますが）、それな
りに便利なAPIはそろっています。
　コレクションを扱うときに、List<String>＋
for文という短絡的な選択ではなく、

・SetやMapを使う
・Comparatorを実装する
・Collectionsユーティリティクラスを使う
・TreeSet、LinkedHashSetを使う

など、設計の選択肢、スキルの幅を広げること
が大切です。コレクションAPIをよく勉強し
て for文を使わなくてもできることをいろいろ
覚えましょう。

ファーストクラス
コレクション

　コレクションフレームワークのAPIに精通
しても、結局 for文を使うしかない場面が多い
のが現実です。そのときに、List<String>とか
Set<String>とかを、操作する for文があちこ
ちのクラスに散在するのは失敗パターンです。
コレクションを for文で操作することは、バグ
の入り込みやすい場所です。また、思わぬ場所
で副作用を起こしやすいしくみです。
　バグや副作用を減らすコツは、List<Order>

などのコレクション変数を1つだけ持った専任
オブジェクトに、コレクションの管理をさせる
ことです。「ファーストクラスコレクション」と
いう設計パターンの1つです。クラス名は、
Orders などの複数形か、OrderList などコレ
クションを明示した名前です。
　for文をファーストクラスコレクションクラ
スに集めると、思わぬ場所の副作用が防げます。
また、似たような for文を整理することで、バ
グの少ないコードに改良できる機会が増えます。
　どうしても、コレクションそのものを公開し
たい場合は、Collections#ummodifi ableList()

などのメソッドを使って、変更不可のコレクショ
ンオブジェクトを渡すのが良いプログラミング
の習慣です。

オブジェクト指向の
基本スキル

　Javaを使ったオブジェクト指向プログラミ
ングをコードサンプルで説明してみました。
　列挙型、インターフェース宣言、ファースト
クラスコレクションは、初心者には、ちょっと
難しい内容かもしれません。
　しかし、オブジェクト指向の基本という意味
で、列挙型、インターフェース宣言、ファース
トクラスコレクションは、必修科目だと思いま
す。
　複雑な if文や for文を書くことが、オブジェ
クト指向プログラミングの基本スキルではない
んです。

28 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Jun. 2013 - 29

クラス図のラフスケッチ

　プログラミングは、実際にコードを書くこと
が一番の学習方法です。オブジェクト指向プロ
グラミングは、さらに、オブジェクトの役割分
担を考えたり、名前を考えるスキルアップが重
要な学習テーマです。オブジェクトの役割分担
は、コードだけで考えるよりも、図1や図2の
ようなクラス図をいろいろ描いてみるほうが効
果的です。
　ツールを使ってきっちりとしたUML形式で
描く必要はありません。手書きでラフスケッチ
するほうが簡単だし、いつでもどこでも練習が
できます。プログラミング課題を考えるとき、
どんな部品をどうやって組み立てるかを考える
のは、クラス図のラフスケッチから始めるのが
良いでしょう。コードを書きながら、ぐちゃぐ
ちゃしてきたら、クラス図をラフスケッチして
みることも習慣にしたいものです。

参考書

　オブジェクト指向プログラミングのスキルアッ
プの参考書として、手元に置いて活用してほし
いのが、『リファクタリング』（マーチンファウ
ラー著、ピアソンエデュケーション）です。
　本書のリファクタリングパターンを丁寧に実
践すると、オブジェクトは小さく分割され、各
オブジェクトの役割が単純になる傾向がありま
す。
　『実装パターン』（ケント・ベック著、ピアソ
ンエデュケーション）も良い本です。クラスや
メソッドに、なぜ、どういう名前を付けるべき
かのガイドラインがたくさん書かれています。
　Java言語のしくみを活用するには『Eff ective

Java　第 2版』（Joshua Bloch著、ピアソンエ
デュケーション）は必読でしょう。
　オブジェクト指向設計を学ぶには『ドメイン駆
動設計』（エリック・エバンス著、翔泳社）がすば
らしい名著です。難解と言われるこの本を読み
解くには『オブジェクトデザイン』（レベッカ・ワー

オブジェクト指向の学び方

　オブジェクト指向プログラミングとは、モデ
リング（分析）、設計、そしてリファクタリング
（設計の改良作業）が、混然一体となったもので
す。分析は分析、設計は設計、プログラミング
はプログラミング、という発想・やり方だと、
オブジェクト指向の良さは出てきません。
　良い名前やオブジェクトの役割分担を考える
のは、分析やモデリングの作業です。
　動くものを作ってからがプログラミングの本
番です。地道にリファクタリングを繰り返し、
より良い設計を模索することが、オブジェクト
指向プログラミングの習慣であるべきです。
　オブジェクト指向プログラミングを学ぶため
には、分析やモデリング、リファクタリングを
積極的に学ぶべきなんです。

本を読む

　オブジェクト指向のスキルアップには、本を
読むことです。プログラミングの技術書だけで
はなく、小説、新書、各分野の入門書や専門書。
本であればなんでも良いです。英語など外国語
まで手を出せればいうことはありません。本は、
企画から始まって、情報の収集と整理、全体構
成の検討、読み直しと書き直し、など、たいへ
んな知的な活動の成果物です。そういう知的活
動の成果に触れることで、語彙が増え、部品か
ら全体を組み立てる構成力がアップしていきます。
　オブジェクト指向プログラミングは、数式を
組み立てるよりも、文章を組み立てる活動と似
ています。頭の中にある漠然としたイメージを
適切な言葉を選びながら、だんだん論理的な文
章に組み上げていく。それがオブジェクト指向
プログラミングです。
　オブジェクト指向プログラミングのスキルアッ
プには、本を読んで、文章力、国語力をアップ
することが一番なんです。

28 - Software Design Jun. 2013 - 29

1オブジェクト指向の基本を学ぶ

フスブラック著、翔泳社）と『実践UML　第3版』
（クレーグ・ラーマン著、ピアソンエデュケーショ
ン）を読んでおくと良いでしょう。
　ここで挙げた本は、いずれも古典的な名著で、
読むのがたいへんな本ばかりです。
　最初はざっと読んでみて、必要に応じて何度
も読み返し、末永くお付き合いすると良い本ば
かりです。

「創造的な学び」を
デザインする

　オブジェクト指向プログラミングに限らず、
ソフトウェア開発は学ぶべきことがやまほどあ
ります。
　しかも、誰かが丁寧に教えてくれるわけでは
ありません。自分自身で目標を設定しながら、
自分の力で学び続けることがソフトウェア技術
者の一番大切な習慣かもしれません。
　技術を学ぶときに、ぜひ参考にしてほしいの
が、慶応大学SFCの井庭研究室が作成した、
　学習パターン（http://learningpatterns.sfc.
keio.ac.jp/）です。
　同じ学習をするなら、楽しく、効果的に学び
たいものです。
　学習パターンは、技術者の創造的な学びのヒ

ントやコツが満載されています。

プロトタイピング

　プログラミングのテクニックやノウハウは作っ
てみてはじめてわかることばかりです（図3）。
　技術書を読むことは大切ですが、ただ読むだ
けでなく、実際にコードに書いてみて初めてわ
かることがたくさんあります。
　本を読みながら、実際に作ってみるを繰り返
すのがプログラミングの学び方のコツです。

「まねぶ」ことから

　まずは真似てみましょう。たいせつなのは「真」
に似せることです（図4）。
　表面的に同じにするだけでなく、考え方、そ
こに至った背景を思い浮かべながら、真似てみ
ることが大切です。
　思考を停止した「写経」や、ネット上からなに
も考えずにコピー&ペーストするのは「まねぶ」
ことではありません。

広がりと掘り下げの「T字」

　学習パターンの中で、筆者が一番お気に入り
のパターンです。

プロトタイピング

作ってみて初めてわかることがある。

図3　プロトタイピング（Copyright ▼ ©2009、慶應義
塾大学湘南藤沢キャンパス学習パターンプロジェクト）

「まねぶ」ことから

学ぶことは、真似ることから。

図4　「まねぶ」ことから（Copyright ▼ ©2009、慶應義
塾大学湘南藤沢キャンパス学習パターンプロジェクト）

http://learningpatterns.sfc.keio.ac.jp/
http://learningpatterns.sfc.keio.ac.jp/

30 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

・何かを掘り下げようと思ったら、幅広くいろ
いろなことに目を向ける

・いろいろなことを知りたかったら、1つのこ
とをじっくり掘り下げる

　これが技術を学ぶ奥義なんだと思います。
　特定の技術だけを追いかけて視野が狭くなる
と、その技術をほんとうに理解することはでき
ません。
　さまざまな技術に手を出すだけでは、ほんと
うの技術は身につきません。
　「広がり」と「掘り下げ」を並行して追いかけ続
けることが、結局は、両方とも手に入れること
になるわけです（図5）。

鳥の眼、虫の眼

　技術書を読むときや、大きなソフトウェアを
設計するときに、このパターンはほんとうに大
切です。
　全体を眺める鳥の眼と、部分を詳細に見る虫
の眼を両方持つこと（図6）。たいせつなのは、
両方の見方を、しょっちゅう行ったり来たりす
ること。

　オブジェクトの集まりを全体として眺める図1

のクラス図の見方が鳥の眼。リスト1のように、
実際のコードの1行1行を追いかけるのが虫の眼。
　どちらの眼も必要です。そして、両方の眼で、
いったりきたりすることが、一番大切なことです。
　バグ修正でコードを追いかけはじめると虫の
眼だけになって、鳥の眼を忘れがちです。意識
的に鳥の眼と虫の眼を切り替えながら仕事をす
ることを習慣にしたいものです。

終わりに

　オブジェクト指向の発想、プログラミング例、
技術の学び方を書いてみました。
　技術を覚えて、何かを作り上げることは、そ
れ自体、とても楽しいことです。仕事ですから、
つらいこともありますが、モノづくりの楽しさ、
技術がわかることの面白さが動機になって、筆
者はこの仕事を続けているんだと思います。
　みなさんが、楽しみながら、技術を覚えモノ
づくりに取り組むことに、筆者の書いたことが
少しでもお役にたてれば幸いです。ﾟ

広がりと掘り下げの「Ｔ字」

多くに目を向け、1つを極める。
これがすべての基本である。

図5　広がりと掘り下げの「Ｔ字」 ▼
（Copyright©2009、慶應義塾大学湘南藤沢キャン
パス学習パターンプロジェクト）

鳥の眼と虫の眼

俯瞰して全体を見ることと、
詳細に部分を見ること。

この2つの視点を行き来する。

図6　鳥の眼、虫の眼（Copyright ▼ ©2009、慶應義
塾大学湘南藤沢キャンパス学習パターンプロジェクト）

Jun. 2013 - 31

22222ちゃんとオブジェクト指
向できていますか？

第１特集
わかった人だけメ

キメキ上達

オブジェクト指向は、ほんの少しのきっかけで、大きく理解が進むこと
があります。Part2では、少し高い視点から見直してみます。おさえる
べき情報・知識をまとめて概観し、学ぶべきこと、もしくは先輩として
教えるべきポイントを確認してみませんか。

オブジェクト指向はなぜ
「難しい」か？

　オブジェクト指向を学ぶこと、教えることを「難
しい」と感じている人は少なくないと思います。
　筆者がオブジェクト指向という言葉に出会っ
たのは、約30年も前の1980年代初めでした。
その表紙の色からブルーブックと呼ばれる
Smalltalk-80の本を買って、毎月1回土曜日の
午後に会社の仲間で輪講をしました。筆者の担
当はメタクラス階層でした。今でもよく覚えて
いるのは、日本語に訳しても何のことか意味が
わからなかったことです。ただ、新しい技術へ
の皆の好奇心と熱意が推進力となり、1年間輪
講を続け、読み終えることができました。
　その後、オブジェクト指向の普及のために社
内の講習などにも関わってきました。大学に移っ
てからは、オブジェクト指向プログラミングな
どの科目で学生にオブジェクト指向を教えたり、
企業の技術者向け講習を長年続けてきました。
その場合、たとえば、C言語で開発していた人
が「難しい」と反応されることが少なくありません。
　では、なぜ、オブジェクト指向を学ぶ、ある
いは、教えるのは、「難しい」と思われているの
でしょうか？　その理由は、次の3点にあると
思います。

 ①オブジェクト指向技術の障壁が高いこと
　オブジェクト指向は、プログラミング技術や

ソフトウェア工学の発展の上に築かれた技術で
す。したがって、オブジェクト指向を理解する
ためには、これらの基礎技術を学ぶ必要があり
ます。そのため、難しく感じると思います。

 ②オブジェクト指向の広がり
　一口にオブジェクト指向と言っても、分析・
設計とプログラミングでは、学ぶべき内容が違
います。ソフトウェア開発にオブジェクト指向を
適用するには、上流工程の分析からオブジェク
ト指向を適用することが望ましいのです。しかし、
分析・設計とプログラミングでは行う内容が異
なるので、学ぶべき内容も広範囲となります。

 ③手続き指向からの発想の転換
　多くの技術者は、最初にC言語などの手続き
指向のプログラミング言語を学び、構造化分析・
設計などの機能中心の分析・設計をまず学び、
経験を積んでいることが、オブジェクト指向を学
ぶうえで、逆に、障壁になっているように思いま
す。筆者も同じでした。学生時代や企業に就職
して最初に学んだ言語はFORTRANやCOBOL、
アセンブラ言語でした。そのため、オブジェクト
指向の考えにすぐには馴染めなかったのです。

　このような、オブジェクト指向を学ぶうえで、
障壁となる点をまず知って、学習のポイントを
押さえておくことは、重要です。戦いに勝つには、
まず、敵を知ることです。ただ、ここで強調し

オブジェクト指
向の

学び方、教え方

青山幹雄（あおやまみきお）　南山大学 情報理工学部ソフトウェア工学科 教授

オブジェクト指
向の

2

32 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Jun. 2013 - 33

ておきたいのは、オブジェクト指向は強力な技
術であり、その技術を使いこなすことが、技術
者としての実力を高めることになることです。
　さらに、オブジェクト指向を学ぶためには、
学び方、教え方に技術が必要だということです。
高い山に登るには、近所の低山を登るのとは違
う準備や装備が必要です。オブジェクト指向を
学ぶことも同じです。良く準備をし、学び方を
工夫する必要があります。そうすれば、迷わず
山頂にたどり着け、絶景を楽しめることでしょう。

オブジェクト指向への
地図を持とう

　オブジェクト指向技術へ至る簡略な地図を図1
に示します。この地図は、技術の進化を表して
おり、技術マップと呼ばれます。この地図には、
オブジェクト指向の考え方、C言語などの手続き
型プログラミング言語との違い、オブジェクト指
向が基礎とする技術を示しています。オブジェ
クト指向に限りませんが、技術を学ぶ、あるいは、
教える上で重要なことは、その根本原理や考え
方を理解することです。表面的な知識だけでは、
本当の意味での理解に至らないのです。

原理

　オブジェクト指向に限らず、すべてのプログラ
ムはアルゴリズムとデータ構造からなっています。

考え方

　CにしろJavaにしろ、現代のプログラミン
グ言語は、アルゴリズムとデータ構造の表現を
高度化することにより表現能力を高め、ソフト
ウェアの生産性や品質の向上を目指しています。
表現の高度化とは抽象化することです。コン
ピュータの処理の詳細を知らなくても、やりた
いことを書けば実行してくれることです。たと
えば、アルゴリズムとデータ構造は、日常生活
での物事の「こと」と「もの」にそれぞれ対応しま
す。「もの」はプログラムではデータで表され、
それを用いて「こと」を成すのです。

実現技術

　実現技術はC言語などの手続き型プログラミ
ング言語とオブジェクト指向プログラミング言
語との違い、言語を実現する技術を表します。

原 理

C言語

C++、Java、
C#

プログラム ＝ ＋

考え方

実現
技術

手続き
（アルゴリズム）の

抽象化

データ構造の
抽象化

こと

アルゴリズム データ構造

もの

if

印刷

整数構造化プログラミング

関数、サブルーチン

メソッド

複合型（構造体）

抽象データ型

型

日付

整数の組

クラス

図1　オブジェクト指向の考え方 ▼

32 - Software Design Jun. 2013 - 33

2オブジェクト指向の学び方、教え方

C言語では、次の2つの技術を用いています。

 ①関数による手続きの抽象化
　関数によって、一連の手続きを1つの関数に
抽象化できます。関数を利用する人は、関数の
内部がどのようになっているか知らなくても使
えます。

 ②型によるデータの抽象化
　整数や文字列などのデータの型は、データの
分類を表します。同じ型のデータは同じ性質を
もちます。

　まず、扱うデータの型を定義することが重要
です。あらかじめ言語で定義された、ビルトイ
ンデータ型では複雑なデータ構造の表現が困難
です。そのため型を組み合わせてより高度な型
を定義する必要があります。たとえば、整数型
のYear、Month、Dayを組み合わせて日付を表
す場合です。C言語では構造体を用いますが、
外部から中のデータを変更できてしまいますの
で、データが破壊される恐れがあります。
　オブジェクト指向では、データの型の抽象化
を図りました。これを抽象データ型（Abstract

Data Type）と呼びます。オブジェクト指向プ
ログラミング言語は抽象データ型を基礎として
いる言語と言えます。では、なぜ、抽象データ
型でしょうか？　それは、現実のものがデータ
で表現されるからです。しかも、データこそが
継続して保存されるべきであるからです。

オブジェクト指向の意義

　抽象データ型には、互いに関係する、次の5

つの意義があります。

 ①現実世界のものに対応した高度な、す
なわち、抽象的なデータ型を定義できる

　日付や社員、学生など、複合型を一つの型と
して定義できます。

 ②ソフトウェア設計者がデータ型を定義
できる

　抽象的なデータ型を定義できることは、あら
かじめ言語で定義した型を組み合わせて、ソフ
トウェアの設計者、プログラマが型を定義でき
ることを意味します。

 ③データ型を処理するメソッドを定義で
きる

　プログラムに限らず、計算内容はデータ型に
よって決まります。たとえば、1＋1＝2の＋
は「整数の加算」の意味です。それは、整数とい
う型がまずあって、それに従って、「整数の加算」
が決まります。同じように、抽象データ型が決
まると、その計算方法が決まります。たとえば、
日付型を考えてみます。日付型の2つの変数、
Day1とDay2の差Day1－Day2は整数型の日
数として定義できます。このように、データ型
こそがプログラムの中心となることを理解する
ことが重要です。

 ④データ型とその処理をまとめてプログ
ラムの単位とできる

　これまでの説明から、データ型を中心に、そ
の処理をまとめることがプログラムの合理的な
単位となります。オブジェクト指向では、これ
をクラス（Class）と呼びます。データ型が実世
界のものを分類（classify）した結果を表してい
ますので、それによってできたプログラムの単
位をクラスと呼ぶことにしたのです。処理はデー
タ型へクラスの外部からアクセスする方法とな
りますのでメソッド（Method）と呼びます。ク
ラスのデータ型は、このクラスの性質を表すの
で、属性（Attribute）と呼びます。このように、
クラス、メソッド、属性などの名称には意味が
あります。

 ⑤クラスは安全で独立性の高いプログラ
ム単位となる

　データ型はメソッド、すなわち、インター

34 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Jun. 2013 - 35

フェースのみを介して利用できるので、C言語
の構造体のように直接外から操作できません。
さらに、データ構造を変えてもインターフェー
スを変えなければ、その変更はほかのクラスに
影響しません。この結果、クラスは安全で独立
性が高くなります。さらに、ソフトウェアが良
い構造となり、変更などが容易になります。

オブジェクト指向プログラミングの
発想「アーキテクチャが鍵」

　JavaやC++、C#といったオブジェクト指向
プログラミング言語はC言語から進化した、C

言語の仲間です。プログラム内の処理はC言語
の処理から受け継いでいるので、よく似ていま
す。とくに、C言語など手続き型プログラミン
グ言語を学んだ後にオブジェクト指向プログラ
ミング言語を学ぶことが多いので、その違いを
理解することはオブジェクト指向プログラミン
グ言語を理解するうえで有効です。
　C言語との違いで理解してほしい点は、文法
の細部ではなく、オブジェクト指向プログラミ
ング言語の背後にある考え方です。この考え方
を理解しないと、Javaで記述したC言語のプロ
グラムのようなオブジェクト指向とは言えない、
プログラムになってしまうことになりがちです。
　図2に、企業の人事管理システムのソフトウェ
アを手続き型、すなわち、機能指向とオブジェ
クト指向で実現する構造の例を示します。これ
をアーキテクチャと呼びます。

　機能指向では、機能である異動管理や給与管
理などを中心にソフトウェアを構成します。従っ
て、社員のデータはデータベースなどで管理さ
れ、共用されます。一方、オブジェクト指向で
は、所属、給与などのデータを中心に、各デー
タを処理するメソッドをデータと一緒にしてソ
フトウェアを構成します。ソフトウェアアーキ
テクチャの考え方がまったく逆になっています。
まず、アーキテクチャの違いを理解する必要が
あります。
　オブジェクト指向では、クラス間の関係を継
承や集約によって関係づけできます。また、抽
象クラスによって、上位の階層の構造を規定で
きます。これらの技術は、アーキテクチャを構
成する技術です。したがって、オブジェクト指
向により、良いアーキテクチャを実現できます。
　ただし、オブジェクト指向がすべて良いわけ
ではありません。データを中心とすることは処
理の流れをわかり難くします。これを機能の断
片化と呼びます。したがって、組込みソフトウェ
アのように処理に時間制約があるソフトウェア
では、処理を制御できる必要があります。その
ため、制御クラスと呼ぶ、ある範囲のクラスを
制御するクラスを置くことがあります。

オブジェクト指向分析・
設計を学ぶ

　これまでの説明はオブジェクト指向プログラ
ミングが中心でした。しかし、ソフトウェア開

人事管理

勤怠管理異動管理 給与管理

所属、勤怠、
給与のデータ

従業員

勤怠所属 給与
異動 勤務成績

人事管理

給与

処理と対応したプログラム構成単位

機能指向のソフトウェア　

開発対象と対応したプログラム構成単位

オブジェクト指向のソフトウェア　

図2　機能指向からオブジェクト指向へ ▼

34 - Software Design Jun. 2013 - 35

2オブジェクト指向の学び方、教え方

発のプロセスを考えれば、上流工程からオブジェ
クト指向により開発すべきです。そのために、
オブジェクト指向分析・設計の技術があります。
ただ、多くの場合、オブジェクト指向によるモ
デル化の言語であるUML（Unifi ed Modeling

Language）の習得が中心となっているように思
います。UMLは図で表現しますが、日本語と
同様、言語ですので、UMLを用いて良いモデ
ルを構築することが重要です。良いモデルは良
いアーキテクチャへつながります。
　モデル化の手段は抽象化です。しかし、実世
界は極めて複雑ですので、抽象化することは難
しい。そのため、複数の視点に分けることが基
本です。建築や機械などは3次元の物体ですの
で、2次元の図面を3つ用いて表します。これ
と同じです。情報システムの場合、図3に示す
次の3つの視点が基本です。

① 構造の視点
② 機能の視点
③ 振舞の視点

　この3つの異なる性質を表現する視点に分け
ることによって複雑な現実世界を正しく表現し、
理解できるようになるのです。UMLはこの複
数視点の考えに基づき設計された図形言語です。

オブジェクト指向を
使いこなす

　オブジェクト指向を使いこなすためには、教
える人、学ぶ人、ともに、その基本となってい
る考え方を理解することが重要です。そのよう
な考え方が参考文献［1］にまとめられています。
　さらに、実際に分析・設計やプログラミング
ができるためには、自ら考え、手を動かして課
題に適用してみる必要があります。図書館やレ
ンタルショップなどは、よく用いられる例題で
す。ぜひ、自分で試してみてください。
　さらに、オブジェクト指向の技術は、これま
でのソフトウェア工学の技術をその中に取り込
んでいることも理解しておく必要があります。
たとえば、UMLのユースケース図、シーケン
ス図、状態マシン図はオブジェクト指向とは異
なる分野で開発されたものです。ソフトウェア
工学を学ぶことも理解の助けになります。
　また、デザインパターンやリファクタリング
など、オブジェクト指向と関連する技術も実際
に役立つと思います。
　読者の皆さまがオブジェクト指向を使いこな
して、ソフトウェア開発が楽しくなることを期
待しています。ﾟ

● 参考文献
［1］青山幹雄、中谷多哉子（編著）、オブジェクト指向に強くなる、技術評論社、2003．

ユースケース図
シーケース図

実体関連図
（E-R 図）

クラス図

コミュニケーション図
構造化
分析・設計

リアルタイム
構造化
分析・設計

データフロー図
（DFD）

状態マシン図
（ステートチャート図）

状態遷移図
（STD図）

アクティビティ図

機能の視点 挙動の視点

UML

構造の視点 システムの構成要素とその関係
（継承・集約）［だれ、組織（もの）］

概念データモデリング

システムの実行順序と
そのタイミング［いつ］

システムの果たす機能と
その処理の流れ［何を（こと）］

図3　複数視点のモデル化とUML ▼

36 - Software Design

ちゃんとオブジェクト指
向できていますか？

第１特集
わかった人だけメ

キメキ上達

Part3では、現在では当たり前過ぎて話題にも上がらないオブジェクト指向が、
組み込み系や業務系のソフトウェア業界中で現在はどんな位置付けになって
いるのか見ていきましょう。

はじめに

　先日本誌の総集編が手元に届きました。懐か
しく昔の記事を見ていたのですが、思い返してみ
れば、筆者が初めて本誌にオブジェクト指向の
記事を書いたのは、もう10年、いや、20年近く
前になります。その間、オブジェクト指向は知る
人ぞ知るような存在から、当たり前過ぎて話題に
も上がらない状態まで、ソフトウェア業界に広まっ
て行きました。ではそんなオブジェクト指向が、
ソフトウェア業界の中で現在はどんな位置付けに
なっているのか、ここで見ていってみましょう。

オブジェクト指向の現在
～組み込み系の世界

　まずは組み込み系の世界でのオブジェクト指
向から行きましょう。組み込み系の世界でオブ
ジェクト指向が開発の選択肢として現実的になっ
てきたのは、ここ10年のことです注1。すべて
の開発がオブジェクト指向という状態ではない
ですが、今では、新規開発の際や、作り直しの
際に、オブジェクト指向を導入するという選択
肢が出るようになっています。ではこの10年
でどんな変化があったのでしょうか。
　もともと、オブジェクト指向は組み込み系と相
性の良い技術です。たとえば、モータというデ

バイスで考えてみましょう。モータには、ステッ
ピングモータやサーボモータのようにいろいろな
種類のものがあります。ですが、どのモータも
ソフトウェアから見たときにやりたいことは、回
転と停止といった共通なことです。これを何も
考えずC言語で設計すると、図1のような設計に
なってしまいます。ですが、オブジェクト指向を
うまく活用すると図2のように設計できます。
　図1のようなC言語の設計は、利用者はデバ
イスがサーボモータなのか、ステッピングモー
タなのかを理解して関数を使い分けなければな
りません。また、新しい方式のモータが出てき
た場合、それ用の関数一式を新たに追加しなけ
ればならず、利用者はそれを理解していないと、
新しいモータを使うことはできません。
　一方、図2のようなオブジェクト指向設計であ
れば、モータを利用するためのインターフェース
がモータクラスによって統一されているので、利
用者はモータの種類が違っても同じ操作名で制御
できますし、今後新しい種類のモータが出てきた
としても、モータを利用するソフトウェア側に大
きな変更は必要ありません。このような「デバイ
スの抽象化」を行うことで、より自然な考え方で
ソフトウェアを開発できるようになります（図3）。

 派生開発
　また、組み込み系のソフトウェアは「派生開発」

組み込みからクラ
ウドまで、

オブジェクト指向
は隅々と！

㈱豆蔵　井上樹（いのうえたつき）

注1） 組み込み系でのオブジェクト指向の取り組み自体は90年代からありますが、広まり始めたのはここ10年くらいです。

組み込み系や業務系のソフトウェア業界中で現在はどんな位置付けになって
いるのか見ていきましょう。

組み込みからクラ
ウドまで、

オブジェクト指向
は隅々と！

3

36 - Software Design Jun. 2013 - 37

3組み込みからクラウドまで、オブジェクト指向は隅々と！

といって、ベースになるソフトウェアを拡張・
改造しながら次の製品を作っていく方法が主流
です。派生開発をきちんと行うためには、開発
時に既存機能を壊すことなく新しい機能を追加
できたり、ほかの機能に影響を出さずに既存機
能の修正ができるような設計になっていること
がソフトウェアに求められます。そうした設計
は、オブジェクト指向の得意なところです。
　このように、オブジェクト指向にピッタリの
組み込み系なのですが、組み込み系といえば、
メモリも処理能力も潤沢にある一般的なコン
ピュータの世界と異なり、ギリギリまで下げた
処理能力、メモリ量で開発を行うのが当たり前
の業界です。2013年の今でも8ビットのCPU

が現役の業界です。そんな世界で、C言語注2で
開発した場合と比べて、処理速度が遅かったり、
メモリを多く必要とするオブジェクト指向は、
性能が出ない／メモリに収まらないという物理
的な理由で、なかなか導入が進みませんでした。

 組み込み系ソフトの大規模化
　しかし、そんな組み込み系のソフトウェアの
世界も、一般的なソフトウェアの世界と同じよ
うに年々ソフトウェアの大規模化が進み、数百
万行規模のソフトウェアで派生開発をやってい
かなきゃいけないという状況になってきました。
ここで、C言語で開発を行うときに採用される
構造化手法（機能分割でソフトウェアを考えて

注2） ハードウェア制御を行う組み込み系ソフトウェアの世界では、プログラムからメモリ操作が可能なC/C++が開発の中心です。
Androidは Javaだという声も聞こえてきそうですが、Androidでもハードウェア制御まで行おうと思ったら、C/C++が必要になります。

ERROR サーボモータ_回転(方向 dir) {
 /* サーボモータの回転処理 */
}

ERROR サーボモータ_停止() {
 /* サーボモータの停止処理 */
}

ERROR ステッピングモータ_回転(方向 dir) {
 /* サーボモータの回転処理 */
}

ERROR サーボモータ_停止() {
 /* サーボモータの停止処理 */
}

 ▼図1　C言語での設計

コントローラ
モータ

-motor

＋

＋ 停止() :ERROR

回転(方向) :ERROR
 0..1

サーボモータ

＋ 回転(方向) :ERROR

＋ 停止() :ERROR

ステッピングモータ

＋ 回転(方向) :ERROR

＋ 停止() :ERROR

 ▼図2　オブジェクト指向を使った設計

 ▼図3　モータ制御時のプログラムの違い

ERROR result;

/* サーボモータ制御 */
result = サーボモータ_回転(時計回り);
result = サーボモータ_停止();

/* ステッピングモータ制御 */
result = ステッピングモータ_回転(時計回り);
result = ステッピングモータ_停止();

・Cの場合

ERROR result;
モータ* motor;

/* サーボモータ制御 */
motor = new サーボモータ;
result = motor->回転(時計回り);
result = motor->停止();

/* ステッピングモータ制御 */
motor = new ステッピングモータ;
result = motor->回転(時計回り);
result = motor->停止();

・C++の場合

プログラマは使っているデバイスに応じて、
どの関数を使うか意識しないといけない

デバイスが違っ
ても同じように
利用できる

38 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

いく方法）は継続的な変更に弱い手法のため、
大規模な派生開発にも耐えられる、オブジェク
ト指向を導入したらどうかという流れが生まれ
ました。そして幸いなことに、ときを同じくし
て、高性能のチップやメモリが安くなり、C++

コンパイラの性能もよくなってきたので、処理
速度やメモリに余裕が生まれ、オブジェクト指
向を導入するための物理的な問題も解決され始
めました。そうして、組み込み系へのオブジェ
クト指向導入が進み始めました。これがここ
10年の話です。
　そして、さらにハードウェア性能が向上して
きた昨今では、ハードウェアをOSやプラット
フォームやインタプリタで抽象化して、そのう
えでソフトウェアを走らせても、問題ない速度
でアプリケーションが動くようになってきまし
た（図4）。それにより、組み込み機器向けのア
プリケーションをJavaやJavaScriptといった、
より扱いやすい（開発しやすい）プログラミング
言語で開発できるようになりました（ちなみに
FirefoxOSではJavaScriptでハードウェア制御
まで書けます）。こうした変化を受け、開発の
現場では、業務系のソフトウェア開発者が組み
込み系にやってくるという現象も起きています。

 組み込み系での今後のオブジェクト指向
　では今後、組み込み系の世界でオブジェクト
指向はどのような位置付けになっていくのでしょ
うか。筆者の個人的な見解ですが、組み込み系
の特徴である派生開発をやっていくうえで、オ

ブジェクト指向は外せない技術です。さらに、
組み込み系は後述の業務系の世界のような汎用
的なフレームワークの組み合わせでソフトウェ
アを作るのではなく、問題領域に合わせて、自
身でプラットフォームやフレームワークを作っ
ていくことが求められる世界です。ですので、
組み込み系の世界でのオブジェクト指向は、今
後ますますすべての開発者が身に付けておかな
ければならないソフトウェア設計のための中心
技術になっていくと考えられます。

オブジェクト指向の現在
～業務系の世界

　次は業務系の世界（乱暴ですが、基幹系や
Web系やクラウドもみんな合わせて、組み込
み以外のソフトウェアをまとめて、ここではそ
う呼びます）でのオブジェクト指向の現在を見
てみましょう。こちらの世界では、基幹系の業
務システムの一部を除けば、もうオブジェクト
指向は当たり前過ぎて、開発者の間で、ことさ
らオブジェクト指向という言葉も出てこないよ
うな状況になっています。業務系の開発で使わ
れている主要なプログラミング言語（C#、
Java、JavaScript、Ruby、Python、PHPなど
など）を見ても、当たり前のようにオブジェク
ト指向が取り入れられています注3。
　また、Gitなどのオープンソースプロジェクト
のアーキテクチャを解説した、“The Architecture

of Open Source Applications”注4を見ると、いく
つかのプロジェクトでは、何の説明もなく、いき

Gaia ： アプリケーション開発のためのAPI
Gecko ： レンダリングエンジン＋下位層へのアクセス
ハードウェア仮想化層 ： ハードウェアの違いを吸収
Linux ： OS部分（Androidを利用）

これだけ階層化されても
現実的な速度で動作

アプリケーション

Gaia

Gecko

ハードウェア仮想化層

Linux（Android）

 ▼図4　FirefoxOSの構造

注3） ScalaやErlangといった関数型言語の流れもありますが、現時点では主要なプログラミング言語とは言えないので、ここでは割愛します。
注4） http://www.aosabook.org/en/

http://www.aosabook.org/en/

38 - Software Design Jun. 2013 - 39

3組み込みからクラウドまで、オブジェクト指向は隅々と！

なりUMLで構造や振る舞いが説明されており、
説明しなくても大丈夫なぐらいオブジェクト指向
やUMLが使われているんだなというのがわかり
ます（図5）。
　また、こうした業務系の世界のソフトウェア
を開発するときは、今ではたいてい、フレーム
ワークを利用して（ときには複数組み合わせて）、
開発が行われていると思いますが、そもそも、
この「フレームワーク」や「アプリケーションフ
レームワーク」という考え方自体が、オブジェ
クト指向がなければ成立しません。
　といったように業務系の世界はオブジェクト
指向が当たり前であり、また、その状態で発展
が続いているので、オブジェクト指向前提で新
しい技術が出てきます。そのため、業務系の世
界で最新の技術動向を押さえていくためには、
オブジェクト指向をきちんと理解していること
が必要になります。

 プログラミングパラダイム
　たとえば、アスペクト指向というプログラミ
ングパラダイム注5がありますが、アスペクト
指向はオブジェクト指向の弱点を補うために出
てきた技術ですので、アスペクト指向を理解す

るためにはオブジェクト指向の弱点を知らない
と正しい理解や活用につながりません。
　ほかにも、プログラミングパラダイムといえ
ば、ScalaやErlangといった関数型プログラミ
ング言語がここのところ注目されていますが、
オブジェクト指向をきちんと理解していれば、
関数型プログラミング言語のメリット／デメリッ
トがわかり、オブジェクト指向と関数型の使い
分けができるようになります。とくにScalaは
オブジェクト指向と関数型のハイブリッドな言
語なので、Scalaを使いこなしたいと思ってい
るのであれば、関数型だけでなく、オブジェク
ト指向の知識も持っていたほうが良いです。
　また、ゲーム開発等で注目されているUnity

という環境がありますが、この環境では、画面
に出ているものすべてがオブジェクトという考
え方で、ゲーム自体もオブジェクト指向で設計
されたアプリケーションフレームワーク上に構
築していきます。こうした環境では、オブジェ
クト指向を知っているのと知らないのとでは、
開発効率に大きな差が出てきます。
　さらに、最近注目されているSysMLというモデ
リング言語があります。SysMLは名前からわかる
ようにUMLから派生したモデリング言語で、シス

GitObject
+ cha: String
+ type: String
+ size: Integer
+ content: [Byte]

Tree
+ name: String
+ type = "tree"

Blob
+ name: String
+ mode: Integer
+ type = "blob"

Commit
+ message: String
+ type = "commit"

Tag
+ name: String
+ type = "tag"

* subtrees *
1

0..*

 1
files

 0..*

 ▼図5　Gitのオブジェクト構造を表したモデル（UMLに似た表記）

注5） プログラミングパラダイムとは、プログラムの考え方です。たとえば、C言語は構造化、C#や Javaはオブジェクト指向、Erlang
は関数型、Prologは論理型というプログラミングパラダイムに属します。

http://www.aosabook.org/en/git.htmlより引用

http://www.aosabook.org/en/git.html

40 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

テムズエンジニアリング（複数のシステムを組み
合わせて新しい「超システム（SoS：System-of-

Systems）」を構築していく世界）の領域で使われ
る技術です。データセンターを構築するような
仕事では、役割の異なる多数のサーバを組み合
わせて、1つの大きなシステムを組むことにな
りますが、SysMLはそういった領域で今後使わ
れるようになります。このSysMLもモデリング
の基本的な考え方はオブジェクト指向です。
　このように業務系の世界は、表立ってオブジェ
クト指向が出てくることはほとんどないですが、
いたるところの背後にオブジェクト指向が潜ん
でいます。

 業務系での今後のオブジェクト指向
　では今後、業務系の世界でオブジェクト指向
はどのような位置付けになっていくのでしょうか。
組み込み系の世界と同じく筆者の個人的な見解
ですが、前述のように業務系の世界はフレームワー
クなどで、開発者にとってめんどくさいところ
は隠蔽され、より問題領域に注力してアプリケー
ションが作れるようになっていっています。で
すので、標準的なアプリケーション開発をする
だけであれば、オブジェクト指向は知らなくて
も問題ない世界になっていくと思います注6。
　しかし、最新の技術を追いかけたい、新しい
技術（新しい“サービス”ではないですよ）を作り
出していきたい、ほかの開発者と差別化したい、
問題領域をうまくとらえたいと考えているなら、
オブジェクト指向は必須です。とくに、新しい
技術を追いかけて行くのであれば、オブジェク
ト指向は現在のソフトウェア技術の根幹をなす
考え方ですので、一度オブジェクト指向をきち
んと勉強しておくことをお勧めします。

さいごに

　組み込み系と業務系のオブジェクト指向の位

置付けについて見て来ましたが、いかがだった
でしょうか。筆者がコンサルティングの現場で
見ている範囲のことですので、相当に主観的か
もしれませんがご容赦ください。主観ついでに
最後にもう1つ話をすると、ここまで、オブジェ
クト指向は普及している、当たり前になってい
るという切り口で書いて来ましたが、現在の開
発の現場でオブジェクト指向が活用されている
かというと、疑問が残ります。
　確かに、オブジェクト指向を実践する環境は
そろって来ましたし、オブジェクト指向プログ
ラミング言語を使った開発も一般的になってき
ました。しかしながら、現場で作られているソ
フトウェアの設計やコードを見ていると、オブジェ
クト指向を使ってはいるけど、オブジェクト指
向らしくないものを多く見ます。率直な言い方
をすれば、オブジェクト指向プログラミング言
語を使って機能分割中心の設計を行っているこ
とが多いです。つまり、オブジェクト指向を活
用できている人はまだまだ少数派といえます。
　たとえば、クラスとインスタンスの使い分け、
適切なカプセル化、情報隠蔽による疎結合な構
造の実現、ポリモルフィズムを使ったフレーム
ワーク化、といったことができている人は本当
に少ないです。
　また、組み込み系／業務系共通ですが、オブ
ジェクト指向を使った要求分析ができる人も少
数派です。オブジェクト指向を活用するために
は要求～設計～実装と一貫してオブジェクト指
向を利用するのが理想なのですが、各工程の目
的に合わせてオブジェクト指向を使い分けられ
ている人は、オブジェクト指向設計ができる人
以上に少ないです。
　ただこれは、裏を返せば、それだけ一味違う
エンジニアになる余地がまだまだあるというこ
とですので、ぜひ、オブジェクト指向をきちん
と学び、オブジェクト指向を活用できるエンジ
ニアを目指して下さい。ﾟ

注6） 高級化、抽象化能力の向上というプログラミング技術の進化の方向性からすれば、正しいと思います。

41 - Software Design Jun. 2013 - 41

44444ちゃんとオブジェクト指
向できていますか？

第１特集
わかった人だけメ

キメキ上達

現在主流となっている多くのオブジェクト指向言語では、クラス定義を積み
重ねてシステムを記述するようになっています。よって、設計や実装といっ
た開発の大半がクラスで行われることになり、その名前に反してオブジェク
トを意識する場面は少ないのではないでしょうか。JavaScriptへようこそ。
オブジェクトがオブジェクトの振る舞いを決める、異色のオブジェクト指向
の世界にご案内します。

オブジェクトと
アイデンティティ

　まずは「オブジェクトとは何か」というところ
から始めていきましょう。オブジェクト指向に
おいて、オブジェクトとはアイデンティティを
持つ値であり、JavaScriptにはオブジェクトと、
オブジェクトではない値があります。後者のオ
ブジェクトではない値を「基本値」と呼び、これ
には数値や文字列、真偽値などの種類がありま
す。
　ここで「アイデンティティを持つ」とは、同一
性を確認できることや、独自性を持つことなど
を意味します。たとえば、1を1で割った結果
の1が、式中の1と同じ存在かどうかは、プロ
グラム上は判定できません。これらの値は基本
値ですので、等価演算子は内容で比較するので
す。一方で、Numberクラスのインスタンスは

オブジェクトですので、リスト1に示すように
区別できます。
　なお、基本値では代入時に値が複製されるの
に対して、オブジェクトでは参照が複製されま
す。リスト1の例では、変数p1とp2はそれぞ
れ独立した値を保持しますが、変数o1とo2は
同一オブジェクトを参照します。よって、o1

の内容を更新すると、o2の参照先にも影響を
与えます。このあたりの動作の違いも、識別性
から連想するとわかりやすいのではないでしょ
うか。JavaScriptのオブジェクトは、内容より
も存在こそが重要となるのです。
　また、オブジェクトには内部状態を保持でき
るという特徴があります。オブジェクトは独自
性のある値ですので、自身で値を管理できると
考えると良いでしょう。JavaScriptではこれら
の状態をプロパティと呼び、リスト2のように
ドットで名前を指定することで操作できます。
　Objectインスタンスは、波括弧でプロパティ
群を囲むことでも生成でき、このような式を「オ
ブジェクト初期化子」と呼びます。先の例の内
容をオブジェクト初期化子で表現したサンプル
をリスト3に示します。ここではオブジェクト
初期化子がObjectインスタンスの生成と同じ

JavaScript
で

オブジェクト指
向

㈱日立ソリューションズ　川尻剛（かわじりたけし）

現在主流となっている多くのオブジェクト指向言語では、クラス定義を積み
重ねてシステムを記述するようになっています。よって、設計や実装といっ
た開発の大半がクラスで行われることになり、その名前に反してオブジェクた開発の大半がクラスで行われることになり、その名前に反してオブジェク

オブジェクトがオブジェクトの振る舞いを決める、異色のオブジェクト指向

4

//基本値(同値性判定となる)
var p1 = p2 = 1;
var p3 = p1 / p2;
p1 == p2; //=> true
p2 == p3; //=> true

//オブジェクト(同一性判定となる)
var o1 = o2 = new Number(1);
var o3 = new Number(o1 / o2);
o1 == o2; //=> true
o2 == o3; //=> false
o2.valueOf() == o3.valueOf(); //=> true

 ▼リスト1　サンプルコード：基本値とオブジェクト

var obj = new Object();
obj.a = 1;
obj.b = 2;
obj.a; //=> 1

 ▼リスト2　サンプルコード：オブジェクトとプロパティ

42 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

意味を持つことを確認しましょう。

関数とメソッド

　オブジェクトが理解できたところで、次はク
ラスへと進むために関数を確認していきましょ
う。関数はリスト4のように「functionキーワー
ド」で宣言でき、宣言した関数は括弧を指定す
ることで呼び出すことができます。なお、呼び
出し結果からわかるように、関数内部からは外
側の変数であるaを参照できます。逆に外側か
ら内側は参照できません。
　このようなJavaScriptの関数ですが、実は
内部ではオブジェクトとして表現されています。
先のサンプルコードでは、変数 funcが実行可
能なオブジェクトで初期化されていると考えて
ください。本オブジェクトはFunctionインス
タンスであり、通常の値と同じように変数や引
数などに指定できます。なお、宣言してから代
入するのではなく、直接代入したいような場合
は関数式が利用できます。プロパティfuncに関
数式を指定した例をリスト5に示します。この
ようにオブジェクトに属する関数をとくにメソッ
ドと呼びます。
　上記のメソッドの内部では「this」というキー
ワードを指定してaプロパティを参照しました。
「this」キーワードは常に何らかのオブジェクト
を参照し、関数をメソッドとして呼び出した場
合は、自身を呼び出したオブジェクトを指しま

す。この例では、変数objから呼び出している
ので、そのaプロパティは1を返します。
　なお、明示的に違うオブジェクトを参照した
い場合は、Functionインスタンスのbindメソッ
ドが利用できます。bindメソッドは指定された
引数で thisの参照先を束縛したFunctionイン
スタンスを生成します。リスト6の例で確認し
ましょう。

コンストラクタと
プロトタイプ

　ここまでの例では、オブジェクトに直接メソッ
ドを設定してきました。この方法は直感的です
が、オブジェクトごとにFunctionインスタン
スを生成することになるので、メモリ上に無駄
が生じます。次は、オブジェクト間でプロパティ
を共有する方法を確認していきましょう。
　まず、Functionインスタンスには、「new」キー
ワードを指定して呼び出すことで、オブジェク
トを生成できるものがあります。このような
Functionインスタンスをとくに「コンストラク
タ」と呼び、ユーザが定義した関数はすべてコ
ンストラクタとなります。
　コンストラクタはprototypeという特別なプ
ロパティを持ち、本プロパティが指すオブジェ
クトをとくに「プロトタイプ」と呼びます。プロ
トタイプはインスタンスのひな形のように動作
し、インスタンスが未設定プロパティを参照す
ると、代わりに参照されます。その結果、プロ

var obj = {
 a: 1,
 b: 2
};
obj.a; //=> 1

 ▼リスト3　サンプルコード：オブジェクト初期化子

var obj = {
 a: 1,
 func: function(b) {
 return this.a + b;
 }
};
obj.func(10); //=> 11

 ▼リスト5　サンプルコード：関数式とメソッド

var a = 1;
function func(b) {
 return a + b;
}
func(10); //=> 11

 ▼リスト4　サンプルコード：関数宣言と関数呼び出し

var func = obj.func.bind({a: 2});
func(10); //=> 12

 ▼リスト6　サンプルコード：this参照の束縛

42 - Software Design Jun. 2013 - 43

4JavaScriptでオブジェクト指向

トタイプのプロパティがインスタンス間で共有
されることになります。
　実際のコードで確認していきましょう。リス
ト7の例ではMyコンストラクタからインスタ
ンスを生成しています。インスタンスのうち、
my1オブジェクトではmethodメソッドを呼び
出していますが、本オブジェクトはmethodプ
ロパティを保持していません。よって、プロト
タイプに委譲されて、そこで指定されている
Functionインスタンスが呼び出されます。
　なお、リスト7のコンストラクタでは thisキー
ワードを使用しました。これは、コンストラク
タでは生成オブジェクトを参照するためです。
また、メソッド中でも thisを指定していますが、
本メソッドは生成オブジェクトから呼び出して
います。結果的に、コンストラクタとメソッド
中の thisは同一オブジェクトを参照することに
なります。

クラスとインスタンス

　ここまでの例では、オブジェクト初期化でメ
ソッドを指定してきました。これらはObject

インスタンスとなりますが、よく考えるとオブ
ジェクトが独自のメソッドを持っていることに
なります。
　一般的に、クラスは同じ振る舞いを持つオブ
ジェクトの集合ですので、インスタンスが勝手
に振る舞いを持つことに違和感を覚えるかもし
れません。実は、JavaScriptではインスタンス

の意味がほかの言語と少し異なるのです。最後
にこれらを確認してオブジェクト指向の実践へ
と入りましょう。
　まず、何をもって同じクラスとみなすかは技
術によって異なります。たとえば、Java言語
などでは同じインターフェースを備えるオブジェ
クトの集まりがクラスですが、HTMLでは同
じスタイルを持つ要素の集まりがクラスです
（class属性、擬似クラス）。また、正規表現で
は文字の区分がクラスであり（数値クラス）、
IPアドレスでは数値の範囲です（クラスAアド
レス）。そして、JavaScriptでは同じプロトタ
イプに委譲するオブジェクトの集合がクラスで
あり、Myインスタンスを生成するということは、
Myプロトタイプに委譲するオブジェクトを生
成することを意味します（図1）。
　ここで、MyプロトタイプはMyインスタン
スではない点に注意してください。クラス担任
がクラスメイトではないように、プロトタイプ
はそのクラスのインスタンスではないのです。
同様に、Objectコンストラクタのプロトタイ
プはオブジェクトですが、リスト8に示すよう
にObjectインスタンスではありません。
　復習しましょう。オブジェクトとは何か、ア
イデンティティを持つ値でした。Objectイン
スタンスとは何か、Objectプロトタイプに委
譲する具体例（instance）です。

function My(a) {
 this.a = a;
}

My.prototype = {
 method: function(){ return this.a; }
};

var my1 = new My(1), my2 = new My(2);
my1.method(); //=> 1
my1.method == my2.method; //=> true

 ▼リスト7　サンプルコード：独自インスタンスの生成
Myコンストラクタ

Myクラス

my1

my2

new

プロトタイプ

委譲

 ▼図1　プロトタイプとインスタンス

44 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

　なお、継承は性質を引き継ぐことですので、
JavaScriptではインスタンスを親と子の両方の
プロトタイプに委譲させることを意味します。
たとえばMyクラスのインスタンスは、図2に示
すようにObjectインスタンスにも処理を委譲す
るので、MyクラスはObjectクラスを継承して
いると言えます。ここで、数あるObjectインス
タンスのうち、独自の振る舞いを持ったものが
Myクラスのプロトタイプとなっている点に注目
しましょう。まるでJavaScriptにおいてインス
タンスを生成するとは、自身に教えを請う弟子

を生み出すようであり、クラスを継承するとは、
優れた弟子が新たな伝道師となるかのようです。

オブジェクト指向の実践

　以上で、JavaScriptでオブジェクト指向プロ
グラミングをするための知識が身につきました。
次はこれをWebアプリケーション開発で活か
す方法を確認していきましょう。ここでは一例
として、表示内容をその場で編集できるUI部
品を考えます。
　本部品は図3のように表示内容をクリックす
ることで入力欄に切り替わり、ボタンを押して
確定すると、入力内容で元の表示欄に戻るとし
ます。つまり、本部品は入力値という内部状態
を持つことになります。

var obj = {};
obj instanceof Object; //=> true
obj.prototype instanceof Object; //=> false

 ▼リスト8　サンプルコード：Objectプロトタイプ

　JavaScriptにクラスはあるのでしょうか。厳密には、ObjectインスタンスはObjectオブジェクトなどと呼び、仕
様ではクラスという用語を使用していません。歴史的経緯からこのような形となっていますが、instanceof演算子
が言語仕様に入った以上、クラスやインスタンスと呼ぶほうが自然と著者は考えます。
　開発者間のコミュニケーションでも、「XXのプロトタイプを親とするオブジェクト」などと呼ぶより、XXクラス
のインスタンスと呼ぶほうが解かりやすいのではないかという意見があります。多くのライブラリでも、これらの
概念をクラスと呼んでいますので、原理主義に陥らず積極的に使っていくことをお勧めします。

JavaScriptにクラスはあるの？コラム

Object
コンストラクタ Myコンストラクタ

Objectクラス Myクラス

プロトタイプ

obj

my1

my2

プロトタイプ
委譲 委譲

 ▼図2　クラスの継承

 ▼図3　InPlaceEditor部品

44 - Software Design Jun. 2013 - 45

4JavaScriptでオブジェクト指向

　このような部品の実装でよくやってしまうの
が、リスト9のように外部で内部状態を保持し
てしまうことです。この例ではボタンがクリッ
クされたタイミングで入力値を外部の変数
valueに退避し、その内容で表示欄を構築して
います。一見、問題なさそうですが、同じ画面
で本部品の利用個所が増えるとどうでしょうか。
その数だけ、状態の入れものが必要となり、不
慣れな後輩はコードごと複製して変数を
value2、value3と増やしていくかもしれません。
　リスト9の実装例を順に詳しく見ておきましょ
う。本サンプルでは jQueryとHandlebars注1と
いうライブラリを使用しました（A）。このうち

Handlebarsはテンプレートエンジンで、テン
プレート定義とパラメータから文字列を生成で
きます。ここでは表示欄と編集欄の2つのテン
プレート定義を用意して（H、I）、テンプレー
トを生成しています（B）。また、入力値を格納
するための変数valueを宣言し（C）、表示内容
の構築を行っています。
　この構築処理では、まず初期状態として表示
欄を表示し（D）、クリック操作で切り替えるよ
うにしています（E、G）。なお、編集欄から表
示欄に戻るときは入力内容を変数valueに退避
するようにしています（F）。

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <script src="jquery.min.js"></script>
 <script src="handlebars.js"></script> ... (A)
 <script>
 $(function() {
 var templates = {
 viewer: Handlebars.compile($("#viewer_template").html()),
 editor: Handlebars.compile($("#editor_template").html())
 }; ... (B)
 var value = "クリックして編集"; ... (C)
 var target = $("#target")
 .html(templates.viewer({value: value})) ... (D)
 .on("click", "p", function(ev) {
 $(ev.delegateTarget).html(templates.editor({value: value}));
 }) ... (E)
 .on("click", "button", function(ev) {
 value = $(ev.delegateTarget).find("input").val(); ... (F)
 $(ev.delegateTarget).html(templates.viewer({value: value}));
 }); ... (G)
 });
 </script>
 </head>
 <body>
 <script id="viewer_template" type="text/x-handlebars-template">
 <p>{{value}}</p>
 </script> ... (H)
 <script id="editor_template" type="text/x-handlebars-template">
 <input type="text" value="{{value}}"></input>
 <button>Save</button>
 </script> ... (I)
 <div id="target">
 </div>
 </body>
</html>

 ▼リスト9　サンプルコード：1人ぼっちの内部状態

注1） http://handlebarsjs.com/

http://handlebarsjs.com/

46 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

インスタンスによる
状態管理

　リスト9のコード部分をクラスで書き換える
とリスト10のようになります。修正前との最
大の違いは、内部状態をインスタンスで管理す
るようにしたことです（D）。これによってイン
スタンスごとに状態の入れものが用意されるの
で、その管理の手間から解放されることになり
ます。同じ部品を画面に増やしたい場合は、新
たにnewすると良いでしょう。
　また、副次的な効果として、部品や処理に命
名できているのがわかります。とくに表示内容
の切り替え処理がそれぞれメソッドとなり、
update_valueやopen_editorメソッドと名付け
ています（C、E）。これによってたとえば「表示
内容のクリック時（A）に、編集欄を開く（B）」と
いったことがコードから読み取りやすくなって
います。これは開発者間のコミュニケーション

が円滑になりますし、イベント処理に依存せず
実行できるのでテストもしやすくなるでしょう。
もしかすると状態管理よりも、こちらのメリッ
トがうれしい方が多いかもしれません。

まとめ

　本記事ではJavaScriptのオブジェクト指向
を通して、オブジェクトやクラスを少し変わっ
た角度から解説しました。これらの用語に慣れ
た方にも何か新しい発見があれば幸いです。ま
た、オブジェクト指向の実践例として、フロン
トサイドでの活用方法を紹介しました。近年の
フレームワークにはこれらのベストプラクティ
スを自然に実践できるようにしたものもありま
す。次のステップとしてBackbone.jsなどに挑
戦してみるのも良いでしょう。
　本記事がより楽しいJavaScriptプログラミン
グのきっかけとなることを祈っています。ﾟ

function InPlaceEditor($root, templates) {
 this.$root = $root;
 this.templates = templates;

 this.update_value("クリックして編集")
 .on("click", "button", function(ev) {
 this.update_value($(ev.delegateTarget).find("input").val());
 }.bind(this))
 .on("click", "p", function(ev) { ... (A)
 this.open_editor(); ... (B)
 }.bind(this));
}

InPlaceEditor.prototype = {
 update_value: function(value) { ... (C)
 this.value = value; ... (D)
 return this.$root.html(this.templates.viewer(this));
 },
 open_editor: function() { ... (E)
 return this.$root.html(this.templates.editor(this));
 }
};

$(function() {
 var templates = {
 viewer: Handlebars.compile($("#viewer_template").html()),
 editor: Handlebars.compile($("#editor_template").html())
 };
 var target = new InPlaceEditor($("#target"), templates);
});

 ▼リスト10　サンプルコード：オブジェクト指向の導入結果

47 - Software Design Jun. 2013 - 47

55555ちゃんとオブジェクト指
向できていますか？

第１特集
わかった人だけメ

キメキ上達

Part5ではPHPでのオブジェクト指向的なコードの書き方を紹介します。
オブジェクト指向でコードを書くと量が増えてしまいますが、オブジェク
ト指向でないコードと比較するとその特徴やメリットが見えてきます。

PHPでオブジェクト指向
プログラミング

　みなさんはPHPでオブジェクト指向的なコー
ドを書いていますか？　PHPにはオブジェク
ト指向プログラミングを行うための機能が備わっ
ています。PHPマニュアルの「クラスとオブジェ
クト」のページ（図1）を見ると、関連する文法
についての説明が数多くあるので、ざっと目を
通しておくことをお勧めします。

 オブジェクト指向プログラムにメリット
はあるのか

　PHP言語に限りませんが、オブジェクト指向
の文法を使ってコードを書いたからと言って、
必ずしもオブジェクト指向プログラムが出き上が
るわけではありません。オブジェクト指向ではコー
ドの量が増えるとも聞きますが、オブジェクト指
向で作るとどんなメリットがあるのでしょうか？

例題でオブジェクト指向を
考えてみる

　簡単な例題をもとに、まずはオブジェクト指
向でないコードを作成します。その後、オブジェ
クト指向のコードに変更して、その特徴やメリッ
トについて見てみましょう。

 作成するスクリプトの仕様
　図2のようなCSV形式の購入履歴ファイル

を読み込み、請求金額を計算して図3のように
結果を表示します。1行が1人分の顧客データで、
各行のデータは左から、名前、会員種別（Sま
たはA）、購入金額（円）です。各顧客への請求
金額は図4のように計算します。会員種別に応
じて、割引率と送料は異なります。

PHPで
オブジェクト指

向

㈲テクノランド　星野香保子（ほしのかほこ）

5

 ▼図1　PHPマニュアル（http://www.php.net/
manual/ja/language.oop5.php）

http://www.php.net/manual/ja/language.oop5.php

48 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

オブジェクト指向的でない
コード

　PHPのオブジェクト指向プログラミングで
はクラスを使うことが基本となりますが、まず
はクラスを使わずに書いたコード例をリスト1
に示します。

 コードの説明
　リスト1では、procKeisan()という関数に会
員種別と購入金額を引き渡して、請求金額の計
算処理を行っています。実装する機能の規模が
小さいので、クラスを使わなくてもとくに問題
ないと言えますが、機能が増えたときには見通
しが悪いコードになりそうです。もし会員種別
が増えたり計算方法や計算用パラメータ（割引
率、送料）が変更になったりした場合は、ロジッ
ク（制御構文の if文）に直接手を加えなければな
らず簡単には修正しづらい気もします。

オブジェクト指向的に
書き換えたコード

　クラスを使ってオブジェクト指向的に書き換
えたコード例をリスト2に示します。オブジェ
クト指向でないコードに比べてライン数が倍以
上になっていますが、オブジェクト指向による

<?php
//! @param $kaiinType 会員種別
//! @param $kingaku 購入金額
//! @return 請求金額 -1: エラー
function procKeisan($kaiinType, $kingaku) {
 $kei = -1;
 if($kaiinType === 'S'){
 $kei = (int)($kingaku * 0.9);
 }
 else if($kaiinType === 'A'){
 $kei = (int)($kingaku * 0.95) + 300;
 }
 return $kei;
}

if(($fd = @fopen('data.csv', 'r')) !== FALSE){
 while(($dt = fgetcsv($fd, 32, ",")) !== FALSE){
 $kaiinType = $dt[1];
 $kingaku = $dt[2];
 $kei = procKeisan($kaiinType, $kingaku);
 if($kei >= 0){
 echo $dt[0], 'さんへの請求額は、',
 $kei, '円です。
';
 }
 }
 fclose($fd);
}
?>

 ▼リスト1　オブジェクト指向的でないPHPスクリプト
（list1.php）

メリットもちゃんとあるのです。

 各クラスの説明
　リスト2で作成したクラスを図5に示します。

Hana,A,3200

Yumi,S,13000

Taku,S,34800

Hiro,A,1500

 ▼図2　購入履歴ファイル（data.csv）

 Hanaさんへの請求額は、3340円です。
 Yumiさんへの請求額は、11700円です。
 Takuさんへの請求額は、31320円です。
 Hiroさんへの請求額は、1725円です。

 ▼図3　実行結果

請求金額 ＝ （購入金額 × 会員種別に応じた割引率） ＋ 送料
会員種別Sの顧客は、割引率10％で送料は無料
会員種別Aの顧客は、割引率5％で送料は300円

 ▼図4　各顧客への請求金額の計算方法

48 - Software Design Jun. 2013 - 49

5PHPでオブジェクト指向

 //! @param $name 会員の名前
 //! @param $kaiin 会員種別
 //! @param $kingaku 購入金額
 function __construct($name, $kaiin, $kingaku) {
 $class = 'Kaiin' . $kaiin;
 if(class_exists($class)){
 $this->kaiin = new $class($kingaku); ⑤
 }
 $this->name = $name;
 }

 function getKingaku() {
 if(!isset($this->kaiin)){
 return;
 }
 $kingaku = $this->kaiin->procKeisan();
 echo $this->name, 'さんへの請求額は、',
 $kingaku, '円です。
';
 }
}

// 以下はクラスを使う側の処理
if(($fd = @fopen('data.csv', 'r')) !== FALSE){
 while(($dt = fgetcsv($fd, 32, ",")) !== FALSE){
 $user = new User($dt[0], $dt[1], $dt[2]); ⑥
 $user->getKingaku();
 }
 fclose($fd);
}
?>

<?php
class Kaiin { // 会員種別クラス ①
 protected $kingaku = 0;
 protected $waribiki = 0;
 protected $soryo = 0;

 //! @param $kingaku 購入金額
 function __construct($kingaku) {
 $this->kingaku = $kingaku;
 }

 public function procKeisan() {
 $kei = (int)($this->kingaku * $this->waribiki)
 + $this->soryo;
 return $kei;
 }
}

class KaiinS extends Kaiin { // 会員種別Sクラス ②
 protected $waribiki = 0.9;
 protected $soryo = 0;
}

class KaiinA extends Kaiin { // 会員種別Aクラス ③
 protected $waribiki = 0.95;
 protected $soryo = 300;
}

class User { // ユーザ管理クラス ④
 protected $name = '';
 protected $kaiin = NULL;

 ▼リスト2　オブジェクト指向的なPHPスクリプト（list2.php）

Client

継承 継承

#name(名前)

#kaiin(会員種別オブジェクト)

+getKingaku()

User(ユーザ管理)

 #waribiki(割引率)

 #soryo(送料)

KaiinS(会員種別S)

 #waribiki(割引率)

 #soryo(送料)

KaiinA(会員種別A)

 #kingaku(購入金額)

 #waribiki(割引率)

 #soryo(送料)

+procKeisan()

Kaiin(会員種別のベース)

 ▼図5　クラス図

50 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Userクラス（リスト2の④）は、ユーザに関す
る機能を管理するためのクラスです。Kaiinク
ラス（リスト2の①）は、会員種別のベースとな
るクラスです。このクラスをもとにして作った
のが会員種別ごとのKaiinSクラスとKaiinAク
ラス（リスト2の②と③）です。「extends Kaiin」
の記述によってKaiinクラスを継承しています。
請求金額の計算は会員種別によらず共通ですの
で、親クラスのKaiinクラスに procKeisanメ
ソッドとして記述しました。計算用パラメータ
（割引率、送料）は会員種別ごとに異なるので、
サブクラス（KaiinSクラス、KaiinAクラス）で
設定しています。

 会員種別ごとに異なるクラスを利用
　Userオブジェクトの生成時（リスト2の⑥）
に、ファイルから読んだ顧客情報（名前、会員
種別、購入金額）を引き渡し、会員種別に対応
するオブジェクトを生成します（リスト2の⑤）。
たとえば、会員種別が 'S'のときは 'KaiinS'と
いうクラス名を作り、newキーワードを使って
KaiinSオブジェクトを生成します。

オブジェクト指向
プログラムのメリット

　オブジェクト指向的なコードに変更したこと
で、どのようなメリットがあるのでしょうか？

 設計上の役割分担を明確にできる
　オブジェクト指向的なコード（リスト2）はラ
イン数がずいぶん増えていますが、次の2点を
分離するように設計したためです。

・ どのような機能を持たせるか？
・ どのように処理を実装するか？

　オブジェクト指向設計に限らずこれらの2点

を分けて考えることは大切です。リスト2では
次のようにクラスに対して分担を割り当て、「機
能」と「実装」を分離しています。

・Userクラス…… どのような機能を持たせる
かを決める

・Kaiinクラス…… 機能をどのように実装する
かを決める

　このようにすると、機能に影響を与えず実装
のロジックだけを差し替えるなどということが
可能になります。

 独立性と拡張性を高めやすい
　もし会員種別の種類が増えた場合には、
Kaiinクラスを継承したサブクラスを新たに作
ることで対応できます。計算方法が変更になっ
た場合にも、変更の影響範囲をKaiinクラスに
留めることができます。また、機能が増えた場
合は、Userクラスにその機能を追加して対応
できそうです。Userクラスを利用する側も、
内部の具体的な処理については意識せずに実行
したい機能をメソッドで呼び出せます。

おわりに

　例示したサンプルコードは規模が小さいので、
オブジェクト指向のメリットをなかなか実感し
づらかったかもしれません。オブジェクト指向
に関連する技術要素は種類が多く、本稿で説明
できなかったメリットもたくさんあります。以
下に参考文献を紹介しておきます。とくに「パー
フェクトPHP」では、オブジェクト指向的に作
られた実践的なアプリケーションのサンプルコー
ドが載っていますので参考にしてみてください。
ﾟ

● 参考文献
小川雄大、柄沢聡太郎、橋口誠著、「パーフェクトPHP」、ISBN978-4-7741-4437-5（技術評論社）
星野香保子著、「プロになるためのPHPプログラミング入門」、ISBN978-4-7741-4972-1（技術評論社）

Jun. 2013 - 51

66666ちゃんとオブジェクト指
向できていますか？

第１特集
わかった人だけメ

キメキ上達

本誌でははじめまして。深沢千尋と申します。技術評論社からは過去に
異常にゆるふわなPerl入門書『すぐわかるPerl』、『すぐわかるオブジェ
クト指向Perl』を出版しました。今回は伝統あるSD誌に登場できて光栄
です。Perlを使ったOOPというお題をもらいましたので、概説的な話
をしようと思います。

カンタンな
プログラミング言語Perl

　Perlと言えば、テキトーに書け、ちょっと
した用事を済ますのに便利なプログラミング言
語という印象ですね。とりあえず、手を抜ける
ところは全力で手を抜こうとします。ファイル
を辞書順にソートするプログラムは、

#! /bin/perl
sortStdinStdout.pl -- 標準入力をソートして標準出
力に出力する

print sort <>;

です。このように、ちょっとした用事には
Perlが最高です。

Perlには型がない

　カンタン言語Perlの1つの特徴として「型」
がないことが挙げられます。今、$dateという
スカラー変数を考え、日付を格納するとします。
Perlのスカラーには型がありませんので、

$date = 20130629;

のように数値を代入しても、

$date = "20130629";

のように文字列を代入しても、同じものとして
扱えます。

++$date;

で1が加算されますので20130630になりますし、

$date =̃ s/^2013/2014/;

では正規表現で年が検索置換され、20140630
に変更されます。

型が欲しいときもある

　しかし、型が欲しいときもあります。「日付型」
のようなデータを持っていて、日付らしい操作
をしたい。たとえば、スカラー変数$dateに
20140630が入っているとき、

++$date;

を実行すると、$dateの中身は20140631にな
ります。
　20140630という数字を見れば、我々人間は
2014年6月30日という日付のことだろうなー
と判断します。$dateに1を加算するというこ
とは、当然次の日の2014年7月1日になってほ
しい。しかしさすがのPerlもそこまで気を利
かせられず、2014年6月31日というあり得な
い日付になってしまいました。
　こういうとき、われわれはオブジェクト指向
（OOP＝Object Oriented Programming）の機能
を使います。
　たとえば「日付型」の変数を作って、1足せ
ば翌日に、1引けば前日になり、月末／年末も
的確に処理したい。その日付が何年か、何月か、
何曜日かもすぐわかる。こういう機能があった

Perlによる

オブジェクト指
向入門

深沢千尋（ふかざわちひろ）　Twitter@query1000

6 『すぐわかるオブジェクト指向Perl』
深沢千尋（著）、2008年、3,780円

52 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Jun. 2013 - 53

らいいと思いませんか。
　このとき我々はOOPの「日付クラス」を導入し、
$dateを日付クラスのオブジェクトにします。

CPANはプログラムの
宝庫

　では、「日付クラス」を作りたい／使いたいと思っ
たら、どうプログラムを書けばいいでしょうか。
こういうとき、普通は「車輪の再発明」を行わず、
インターネット上に世界中のPerl腕自慢が部分
プログラムをアップロードしたアーカイブ、
CPANをサーチします。下図はCPANを「Date」
という言葉で検索してみたところです（図1）。
　Date::Simpleというのが使いやすくて良さ
そうです（後で使ってみましょう）。

車輪の再発明も
時にはいいね！

　しかし、勉強のためにあえて，頑張ってスク
ラッチから書いてみるのもオツなものです。こ
れは絵画の「模写」に似ています。ということで、
PerlのOOPの勉強として、日付クラスを作っ
てみます。とりあえず

・ 日付はY+MMDD形式の5ケタ以上の数字で
ある（紀元前は考慮しない）

・数値nを足すと（年末、月末を考慮して）n日
後になる

という仕様にしましょう。

実験環境とファイル名

　今回テスト環境として、Windows 7で
ActivePerl 5.16を使いました。
　クラス定義は、メインプログラムと同じファ
イルに入れることもできますが、普通は再使用
のことを考えてモジュールというファイルに切
り分けます。今回は日付クラスのモジュールを
myDate.pmとします。このようにモジュール
のファイルの拡張子は.pmとします。
　一方、myDate.pmを使うテスト用のプログ
ラムをmyDateTest.plとします。この拡張子
はどうでもよくて、UNIX系では拡張子なしが
好まれます。WindowsのActivePerlは拡張
子.plでPerlエンジンと関連付けていますので、
ここでは .plを付けます。
　myDate.pmと、myDateTest.plは、カンタ
ンのため、単一のディレクトリ、C:\myperl
に入れました。

メインプログラムと
その動作

　では、すでにmyDateモジュールを作ったと
いう前提で、それを駆動するメインプログラム
を作ります（リスト1）。

#! /bin/perl
#
myDateTest.pl -- 日付のテスト

use strict;
use warnings;
use myDate;

my $date = myDate->new(shift);
print "Date is $date\n";

$date = $date->add(10);
print "10 days after is $date\n";
print "30 days after is ", $date + 30, "\n";

リスト1　myDateTest.pl ▼

図1　CPANをDateで検索してみた ▼

52 - Software Design Jun. 2013 - 53

6Perlによるオブジェクト指向入門

　もくろみどおり、スッキリしてますね。
　では実行します。

C:\Perl>myDateTest.pl 20140630
Date is 20140630
10 days after is 20140710
30 days after is 20140819

　バッチリですね。きちんと月末処理が行われ
ています。
　このように、モジュールを書いたら、なるべ
く小さなテストプログラムを書いてテストする
といいです。

メインプログラムのミソ

　では、メインプログラムのOOP部分を研究
します。

use myDate;

という文では、作成するモジュールmyDate.
pmを読み込んでいます。

my $date = myDate->new(shift);

は、myDateクラスのnewメソッドを呼び出し
ています。このメソッドはmyDateオブジェク
トのコンストラクタと呼ばれるメソッドで、新
しいオブジェクトを生成してそのリファレンス
を返します。

$date = $date->add(10);

は、$dateオブジェクトにaddメソッドを引数
10を渡して作用させ、10日後を得ています。

print "30 days after is ", $date + 30, "\n";

は、add同様の操作を、+演算子を使って行っ
ています。

myDate.pmの中身

　では、いよいよモジュールを作成します（リ
スト2）。
　OOP的なミソ部分を紹介します。

package myDate;

　これはプログラムがmyDateというパッケー
ジ（名前空間）に突入したことを示します。
OOPでは、オブジェクトが属するものをクラ
スと言いますが、Perlではクラスはパッケー
ジのことです。ここでmyDateパッケージは、
ファイルmyDate.pmが終了するまで続きます。
sub new {
 my ($class, $date) = @_;

　このnewはコンストラクタです。メインプロ
グラムmyTestDate.plからの

myDate->new("20140630")

という呼び出しは、実はPerlの内部的に

myDate::new('myDate', "20140630")

に展開され、第1引数にクラス名myDateが挿
入されます。だから引数の受け側は

 my ($class, $date) = @_;

というふうになり、newメソッドは$classに格
納されたクラス名myDateを使うことができます。
 bless { date => $date, y => $1, m => $2, ｭ
d => $3 } => $class;

　bless関数によって日付データを格納する無
名ハッシュリファレンスにクラス名を関連付け
ます。このように、Perlにおけるクラスはパッ
ケージで、オブジェクトはパッケージ名を
blessされたリファレンスです。

オブジェクトメソッドadd

　次に日付の加算を行うメソッドaddを研究し
ます。まず呼び出し側を見てみましょう。

$date->add(10)

　これによって、$dateオブジェクトのメソッ
ドaddを呼び出しています。これも実は

myDate::add($date, 10)

54 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Jun. 2013 - 55

に展開されます。これをmyDate.pmのaddメ
ソッドでは

sub add {
 my ($self, $add) = @_;

と受けます。変数$selfには、矢印記法->によっ
て挿入されるオブジェクト（リファレンス）が入
ります。

 my ($date, $y, $m, $d) = ($self->{date}, ｭ
$self->{y}, $self->{m}, $self->{d});

　この文では日付オブジェクト$selfを日付、年、
月、日という各要素に分解しています。$selfは
ハッシュリファレンスですので、$self->{y}で
は無名ハッシュのyというキーの値が取り出され
ます。ここでは2014のような年が取り出されます。

myDate.pm -- 日付のモジュール
use strict;
use warnings;

package myDate;

use overload
 '""' => 'toString',
 '+' => 'add',
;

sub new {
 my ($class, $date) = @_;
 unless (defined $date and $date =̃ /(\d+)(\d\d)(\d\d)/) { # 5桁以上の数字かチェック
 die "myDate: date $date should be 5 or more digits numeric!";
 } else {
 bless { date => $date, y => $1, m => $2, d => $3 } => $class;
 }
}

sub add {
 my ($self, $add) = @_;
 my ($date, $y, $m, $d) = ($self->{date}, $self->{y}, $self->{m}, $self->{d});

 for (1..$add) { # 加算する日付のぶんループする
 if ($m == 12 and $d == 31) { # 大晦日
 ++$y; $m = 1; $d = 1;
 } elsif ((&leap($y) and $m == 2 and $d == 29) # 月末
 or ($m == 2 and $d == 28)
 or (($m == 4 or $m == 6 or $m == 9 or $m == 11) and $d == 30)
 or ($d == 31)) {
 ++$m; $d = 1;
 } else { # それ以外
 ++$d;
 }
 }
 $date = $y. sprintf("%02d", $m). sprintf("%02d", $d); # 1桁の場合はゼロを付加
 bless { date => $date, y => $y, m => $m, d => $d } => ref $self;
}

sub toString { # 文字列スカラーに変換する
 return shift->{date}; # shiftは第1引数=オブジェクトそのもの
}

sub leap { # うるう年なら真を、それ以外なら偽を返す
 my $y = shift;
 return 1 if $y % 400 == 0;
 return 0 if $y % 100 == 0;
 return 1 if $y % 4 == 0;
 return 0;
}

1;

リスト2　myDate.pm ▼

54 - Software Design Jun. 2013 - 55

6Perlによるオブジェクト指向入門

　addの最後は次の文です。
 bless { date => $date, y => $y, m => $m, ｭ
d => $d } => ref $self;

　addもコンストラクタ（オブジェクトを作るメ
ソッド）です。というのは、addは日付に日数を
加算した日付（myDateオブジェクト）を返す手
続きだからです。ということで、加算によって
更新されたデータ構造に、今度は「ref $self」
という式をblessしています。refは$selfオ
ブジェクトのパッケージ名を抜き出す関数です。

演算子のオーバーロード

　なお、メインプログラムでは、

$date = $date + 30;

のように、プラス+演算子を使って日付の計算
もしています。これは、演算子+のオーバーロー
ド（多重定義）を行って、+演算子にaddメソッ
ドを関連付けています。これには、overload
モジュールを使います。

use overload
 '""' => 'toString',
 '+' => 'add', # 余計なカンマを付けておくとエントｭ
リーを追加するとき便利
;

toStringメソッド

　'""'というのは、オブジェクトを文字列化
する演算子で、toStringメソッドを割り当て
ています。これで

print "10 days after is $date\n";

のように$dateオブジェクトを二重引用符””で
囲むと20140715のような文字列に置き換わり
ます。
　toStringメソッドの中身はこれだけです。

sub toString { # 文字列スカラーに変換する
 return shift->{date}; # shiftは第1引数=オブｭ
ジェクトそのもの
}

　shiftは第1引数を返す関数で、ここでは
myDateオブジェクトになります。
　myDateオブジェクトはハッシュへのリファ
レンスですが、このリファレンスのdateキー
に対応する値（つまり20130630のような日付）
を得て、メソッドの戻り値として返しています。

「1;」って何？

　最後に

1;

という唐突な文を書いています。これはメイン
プログラムでモジュールを挿入するuse文が正
常終了するために書いているものです。まあ、1;
ぐらい気にしないで書いてください。
　以上で自作モジュールmyDateの解説を終わ
ります。

今度はCPANを
使ってみよう

　ではCPANモジュールDate::Simpleを使っ
て同様の操作をします。
　その前に、Date::Simpleは標準モジュール
（Perlにデフォルトでインストールされるモ
ジュール）ではありませんので、別途インストー
ルする必要があります。もしインストールして
いないモジュールをuseすると実行時に
Can't locate Date/Simple.pm in @INC (@INC
contains: C:/Perl/site/lib C:/Perl/lib .)...

というメッセージで怒られます。エラーで
@INCが出たらモジュールを入れてない、と覚
えてください。
　CPANモジュールのインストールは、最近
はcpanm（CPAN minus）というプログラムを使
うのが流行っています。
　また、本誌読者で一番多いと思うUbuntuや
MintなどのDebian系Linuxのユーザのみなさ
んは、apt-get installでモジュールをイン
ストールするのも簡単です。ここでは
ActivePerl付属のppmでインストールしました。

56 - Software Design

第１特集
ちゃんとオブジェクト指

向

できていますか？

わかった人だけメ
キメキ上達

Jun. 2013 - 57

テスト

　インストールができたらテストします。ここ
では、Date::Simpleの説明ページに使いやす
そうなサンプルプログラムがあるので（図2）、
この先頭部分にちょっと手を加えたものを試し
てみます。

#! /bin/perl
dateSimpleTest.pl --- Date::Simpleのテスト

use strict;
use warnings;

use Date::Simple ('date', 'today');

Difference in days between two dates:
my $diff = date('2001-08-27') - date('2000-08-ｭ
27');
print "$diff days passed from 2000-08-27 to ｭ
2001-08-27\n";

Offset $n days from now:
my $date = today() + 10;
print "10 days from now is $date in ISO 8601
format (YYYY-MM-DD)\n";

サンプルプログラムの
実行

　では、サンプルプログラムを実行してみましょう。

C:\Perl>dateSimpleTest.pl
365 days passed from 2000-08-27 to 2001-08-27
10 days from now is 2013-04-21 in ISO 8601
format (YYYY-MM-DD)

　いい感じですね。
　ではサンプルコードと実行結果を比較して解
説します。

use Date::Simple ('date', 'today');

　ここではDate::Simpleモジュールのメソッ
ド、dateとtodayをインポートしています。

my $diff = date('2001-08-27') - date('2000-08-27');
print "$diff days passed from 2000-08-27 toｭ
2001-08-27\n";

　これは、dateメソッドに'2001-08-27'と
'2000-08-27'を渡して引き算しているところ
です。このように、dateメソッドだけで簡単

に日付オブジェクトを作ることができます。

365 days passed from 2000-08-27 to 2001-08-27

　実行結果はこうです。1年離れているので、
ちゃんと365が返っています。

my $date = today() + 10;
print "10 days from now is $date in ISO 8601
format (YYYY-MM-DD)\n";

　これは、$dateに今日の10日後を入れてい
ます。$dateを""の中に入れるとおなじみの
YYYY-MM-DDフォーマットで表示します。
　以下説明は割愛しますので、各自研究してく
ださい。ほかにも年を返すyearメソッド、月を
返すmonthメソッド、曜日を返すday_of_week
メソッドなど、いっぱい機能があります。日付関
係はほぼこれで用が足りるのではないでしょうか。

継承する

　このように偉大なDate::Simpleモジュール
ですが、日本人にとっては和暦の日付が使えな
いのが残念です。このような場合、OOPではク
ラスの継承を行って自分好みの機能を追加しま
す。次は JapanDate.pmというモジュールで
Date::Simpleを継承しています。紙数の関係
で平成しかサポートしていません。コンストラ

図2　CPANのサンプルコード ▼

56 - Software Design Jun. 2013 - 57

6Perlによるオブジェクト指向入門

クタnewの引数に"H25-06-30"のよ
うに書くと、平成25年6月30日、つ
まり2013-06-30でnewしたのと同
じことになります（リスト3）。
　use base 文 は 基 底 ク ラ ス
Date::Simpleを指定しています。
　ここではnewメソッドを書き直し
ています。これをオーバーライド
（override、上書き）と言います。
　$class->SUPER::new($date) は
基底クラスDate::Simpleのnewを呼
び直しています。引数 $dateを、
H25-06-30のような平成和暦のとき
は西暦化して、それ以外のときはそ
のまま、基底クラスのnewメソッドを呼んでいる
わけです。
　このように、CPANモジュールにちょっと
だけ自分ならではの機能を追加できます。また、
Perlの標準モジュールも継承して改造するこ
とができます。

PerlとOOP

　あるプログラミング言語がOOLたりうる条件
は「カプセル化」、「多態性」、「継承」の3つで、こ
れを「オブジェクト指向の3本柱（three pillars of

object oriented programming）」と言います。
　カプセル化（encapsulation）はデータ構造や機
能の実装をユーザに意識させないこと（隠蔽）で
すが、これをPerlではパッケージ、リファレン
ス、bless、矢印記法で実装します。myDate.
pmでは年、月、日、月末、年末、うるう年チェッ
クなどを隠蔽して、リファレンス変数$dateが
日付型変数のように振る舞っています。
　多態性（polymorphism）は1つの機能が対象に
よって異なる振る舞いをすることですが、Perl

では演算子のオーバーロードで実装します。
myDateでは同じプラス+という演算子に「数字
+数字」の場合は普通の足し算をし、「日付+数字」
の場合は日付を進めるという複数の機能を与え

ています。
　継承（inheritance）はあるクラスの機能を自分
好みに作り替えることですが、Perlではuse
base、SUPER、オーバーライドの機能を使って
実装します。上記のJapanDateではCPANモ
ジュールDate::Simpleを継承して和暦機能を
追加しました。
　いかがでしょうか。PerlのOOPはバージョ
ン5になって後付けされたもので、ある程度ユー
ザが手作りで実装しなければいけない独特なと
ころがあります。しかし筆者は、この「普通の
言語にこれとこれを加えるとOOPになっちゃっ
たー」という感覚によって、かえってOOPの本
質が理解できました。これが「生まれつき
OOL」、「OOLで当然」、「逆に言うとOOPしか
できない」という言語では得られない面白い感
覚だと思います。
　何よりOOPはプログラミングをラクチンに
する技法です。「おぶじぇくとしこう……」など
と言うと、構えてお勉強しないといけないよう
なイメージがありますが、ざっと言うと本稿で
述べたこれだけのことです。いろんなCPANモ
ジュールをインストールして、ちょいちょいと
メソッドを呼び出すだけで、自分のプログラム
がどんどん高機能になっていく快感を、ぜひ楽
しんでください。ﾟ

JapanDate.pm -- 和暦が使える日付モジュール

use strict;
use warnings;

package JapanDate;
use base 'Date::Simple';

sub new {
 my ($class, $date) = @_;
 if ($date =̃ /^H(\d\d)-(\d\d)-(\d\d)/) { # Hがついていたら平成
 my ($year, $month, $day) = ($1, $2, $3);
 $year = sprintf "%04d", $year + 1988; # 平成元年は西暦1989年
 $date = "$year-$month-$day"; # 西暦に直した
 }
 $class->SUPER::new($date); # Date::Simpleの$dateを普通に呼ぶ
}

1;

リスト3　JapanDate.pm ▼

58 - Software Design

　本書は日常生活の中に潜んでいる数学、とく
に離散数学について解説する。野球の試合スケ
ジュールの計算、カーナビにおける最短経路の
計算、データマイニングなどさまざまな場面で
も数学が使われている。何の共通点もなさそう
なものばかりだが、いずれも単純に計算したら
膨大な計算量が必要なものばかり。これらをい

かに速く計算するかというところに離散数学は
使われている。速く計算するための効率的な計
算方法も多数紹介されている。いくら高性能な
CPUやメモリがある時代とはいえ、単純計算
を繰り返すだけでは無駄に時間がかかるだけ。
効率的なプログラムを書かけなければいけな
い。本書はそんな教訓を与えてくれる。

河原林 健一、 田井中 麻都佳【著】
新書判、 208ページ／価格＝798円（税込）／発行＝丸善出版
ISBN＝978-4-621-05382-9

　本誌2010年5月号から2013年3月号まで掲
載されてきた同名連載がこのほど書籍化。本書
における「コード」とは「電脳（コンピュータ）」
に適用されるもの、「人脳」に適用されるもの、
そしてこの世界に適用されている「法則」のこ
と。関数型言語のありがたみ、カーネルとプロ
グラミング言語のつながり、ハードウェアを理

解する重要性、数学的思考、ファイルシステム
がない世界……など、「コード」をテーマに縦
横無尽に語り尽くす。技術者、そして科学者た
る読者に向けた「我々は本当に世界を理解して
コードしているのだろうか？」という著者の問
いかけを、ぜひ味わい、そしてご自身の行動の
ヒントにしていただきたい。

小飼 弾　【著】
A5判、 200ページ／価格＝2,184円（税込）／発行＝技術評論社
ISBN＝978-4-7741-5664-4

　RPGの場合、ゲームをおもしろくするのは、
RPGそのもののルール、ストーリー、敵キャ
ラクターとの戦い、武器の入手による主人公の
レベルアップなどさまざまな要素がある。これ
らの要素や組み合わせをゲームメカニクスとい
う。RPGに限らずメカニクスがゲームのおも
しろさを決める。本書前半は典型的なメカニク

スのパターンを説明。後半はマキネーションと
いう著者が開発したメカニクスを視覚化する記
法を使ってメカニクス設計の解説を行う。ゲー
ム開発者にとって実践的な内容ではあるのだ
が、ゼルダの伝説、スーパーマリオなどを例に、
そのおもしろさの理由を分析している部分など
はゲーム開発者でなくともおもしろく読める。

アーネスト・アダムス、ヨリス・ドーマンズ【著】／ホジソンますみ、田中 幸【訳】／バンダイナムコスタジオ【監修】
B5変形判、 400ページ／価格＝3,990円（税込）／発行＝ソフトバンク クリエイティブ
ISBN＝978-4-7973-7172-7

ゲームメカニクス
おもしろくするためのゲームデザイン

これも数学だった！？
カーナビ・路線図・ＳＮＳ

　出始めはノートパソコン1台くらい買えそう
な価格だったSSDも、今や256GBのもので2
万円を切るお手頃な価格のものが出てきてい
る。高速化のためにHDDから乗り換えようと
思っている人も多いのではないだろうか。本書
は、SSDの基礎知識から活用方法まで幅広く
解説しており、各社SSDの速度の比較や売れ

筋の製品の詳細なカタログもあるので、導入方
法がわからず躊躇している人にとって役立つだ
ろう。HDDの載せ替えのテクニックや、RAID
構築、コントローラ、インターフェース、ファー
ムウェアの解説や実験、マニアックな記事もあ
り、すでにSSDを利用している人も一見の価
値がありそうだ。

北川 達也、 加藤 勝明、 鈴木 雅暢、 竹内 亮介【著】
A5判、 192ページ／価格＝1,974円（税込）／発行＝インプレスジャパン
ISBN＝978-4-8443-3366-1

SSD完全攻略読本

小飼弾のコードなエッセイ
我々は本当に世界を理解してコードしているのだろうか？

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない

第 2 特 集
いつ
覚えるか？今でしょ！

alias
cd

pwd
rmexit

jobsrmdir

sort

unalias

chmod
cat

com
m

dp
dd

diff

echofind

history

les
s

more

入社から1ヵ月が経ち、そろそろ IT エンジニア
としての仕事が見えてきたころでしょうか。本
特集はこれまでUNIX/Linux 系のOSに触れた
ことがあまりない新人 ITエンジニアさんに向け、
今後の仕事で力強い味方となる UNIX/Linux
系コマンドを紹介します。与えられたGUI ツー
ルできっちり仕事をこなすことはもちろん大切
です。しかし、コマンド操作には GUI 操作に
はないメリットがたくさんあります。サーバや
ネットワークの管理・監視、そしてデスクトッ
プ環境で、使い込むほど作業効率があがるコ
マンドを習得しましょう！　かたわらにコマンド
リファレンスの本を置き、本特集を読んでいた
だければ学習効果抜群です。

第1章 RHEL編 ..平 初 ● 60
UNIX/Linuxで必須のファイルシステムの基礎

第2章 CentOS編 .. 馬場 俊彰 ● 69
マネジメントサービスプロバイダ業務を支えてきた、
いざというときに備えるコマンド

第3章 FreeBSD編 .. 後藤 大地 ● 76
サーバ運用と自動化に役立つ厳選コマンドリファレンス

第4章 Ubuntu編 .. 水野 源 ● 88
GUIが苦手とする作業を効率よく解決するために、
デスクトップでもコマンドが活躍する

Column1 超入門者に捧げるコマンド＆シェルスクリプト.... 上田 隆一 ● 66
Column2 サーバを管理するコマンド講座の最初の最初.... 桑野 章弘 ● 74
Column3 Linuxのパフォーマンスモニタのおさらい......大久保 修一 ● 85

※本特集ではUNIXシステムライクなOSである Linux のコマンドも便宜上
　まとめて「UNIX コマンド」としておりますことをご了承ください。

60 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 61

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

ファイルシステムとは

システムに搭載されているハードディスクの容
量やセクタ数はシステムによって異なります。もし
OSがハードディスクの中に記憶領域の番地を決め
打ちでデータを格納していった場合、システムの管
理者は番地をすべて把握しておかなければならず、
ハードディスクの管理は複雑性の高い作業になるこ
とでしょう。
そこでOSの中ではファイルシステムというしく

みを提供しています（図1）。Windowsを使ったこと
がある人に一番簡単な表現をすれば、「C:ドライブ」
がそうだと言えばイメージできるでしょうか。今ま
でAndroidや iOSのスマートフォンしか触ったこと
がないニュージェネレーションの人には申し訳ない
ですが、ファイルシステムというものがコンピュー
タにあると覚えていただきたいです。

ファイルシステムは、ハードディスクの中身を
人間がわかりやすいように表現したデータ管理手法
です。ユーザはファイルシステムの中にディレクト
リ（フォルダ）やファイルを作成し、そして階層型の
データ管理を行います。つまりファイルシステムが
なければコンピュータ上のデータはファイルとして
管理することができません。RAWデバイスなど
ファイルシステムがなくてもハードディスク上に
データを格納する方法もあるが今回は割愛します。

ファイルシステムの種類（タイプ）

Linuxでは実にさまざまなファイルシステムを扱
うことができます。主なものは表1にまとめました
が、これ以外に数えきれないほどのファイルシステ
ムが存在します。
なぜ、ファイルシステムにこれほど多くの種類
があるかと言えば、ファイルシステムがコンピュー
タやディスクの性能、また時代ごとのさまざまな要
求によって進化したからです。どれが良いのか悩ま

UNIX/Linux OSにはじめて触れる方にとってファイルシステムの理解は
必須です。本稿では、ファイルシステムの作成と操作で重要なコマンド
を交えながら、その基礎を説明します。

平 初　TAIRA Hajime　レッドハット（株） ソリューションアーキテクト　 Twitter @htaira

第1章 RHEL編
UNIX/Linuxで必須の
ファイルシステムの基礎

図1　 ブロックデバイスとファイルシステムについて ▼
（イメージ）

ファイルシステム

ファイル

/dev/sda1 (ext4)

ハードディスク(ブロックデバイス)

/ (root) から始まるディレクトリ階層

/dev/sda2 (ext4)
file2 file3file1
file5 file6file4

/

etc usr var

bin lib share log

Minix Filesystem
Linux Extended Filesystem（ext1、ext2、ext3、ext4）
FAT12/16/32
ISO9660（CD-ROM用のファイルシステム）
XFS
ReiserFS
JFS
GFS（Global File System）

表1　Linuxが扱える主なファイルシステム ▼

60 - Software Design

第1章

Jun. 2013 - 61

RHEL編
UNIX/Linuxで必須のファイルシステムの基礎

第1章

しいところですが、どれも長所や短所があり、それ
ぞれのファイルシステムの使い道は適材適所です。
しかしながら、デフォルトで採用されるファイ
ルシステムが一番無難で汎用的であることは間違い
ありません。最近ではext4ファイルシステムが、
一般的なLinuxディストリビューションでデフォル
トとして選ばれる傾向にあります。本稿ではこの
ext4ファイルシステムを管理するためのコマンド
について取り上げていきます。

ext4ファイルシステムについて

Red Hat Enterprise Linux（RHEL） 6では最新の
ext4ファイルシステムがデフォルトになりました。
RHEL5までデフォルトだったext3ファイルシステ
ムでは、対応できるディスク容量の限界が懸念され
ていました。そこでext4が生まれたわけです。ext4

の一番の特徴は、大容量ファイルシステムのサポー
トです。ext4はファイルシステムの物理ブロック番
号が48bitで管理されるようになったため、仕様上
1EB（TBの100万倍）までのファイルシステム容量
を扱えます。RHEL6のリリースでは上限16TBまで
の容量がサポートされます。また、ext4はext3の後
継ファイルシステムであり後方互換性もあります。
ちなみに、RHEL6ではext4以外の大容量ファイル
システムとして「XFS」や「GFS2」も利用可能です。

■ ジャーナリング機能
エンタープライズのサーバ環境ではファイルシ

ステムにジャーリング機能が必要となります。ext4

はジャーナルをサポートするジャーナリングファイ
ルシステムです。
ジャーナリングとは、ファイルシステムに変更
がある場合に、その更新内容をジャーナルログに記
録します（図2）。電源喪失やハングアップなどのシ
ステム障害が生じた際、次回起動時にファイルシス
テムのチェックが行われますが、その際にジャーナ
ルログに記録された内容を確認するだけでよく、修
復作業が早くなります。したがって、サービス再開
までの時間が短縮できるメリットがあり、また問題

があった際にはジャーナルログを使った復旧が可能
となる優れた管理機能です。
とはいえジャーナリングでさえも、おかしな
データがジャーナルに入り込んでしまうとファイル
システムを破損する可能性はあります。ext4からは
ジャーナリングに対する整合性を確認するためのし
くみとして、ジャーナルのチェックサムを実装し、
ファイルシステムに対して確実な変更が適用できる
ようにしました。

ファイルシステムの作り方

ファイルシステムを作るには、まず、他のOSと
同じくパーティショニングを行う必要があります。
この点については日ごろパソコンを使っていると経
験する作業なので割愛します。Linuxの環境では、
ディスクはブロックデバイスファイルという/dev

内にある特別なファイルとして扱われます。とくに
最 近 のLinuxで は、SATAやSAS、FC（Fibre

Channel）経由で接続されているディスクは「/dev/

sda」や「/dev/sdb」といった命名規則でOSから認識
されています。
ブロックデバイスファイル/dev/sdbをパーティ
ショニングした場合、/dev/sdb1や/dev/sdb2など
の数字がブロックデバイスファイルの後にふられま
す。このブロックデバイスファイルに対して、mkfs
コマンドを実行することでファイルシステムが作ら
れます（いわゆるフォーマット）。ファイルシステム
を作るといっても何か派手なことが起きるわけでは
なく、パーティションの中身にメタデータが書き込
まれるだけのことです。

図2　 ジャーナリングファイルシステムの動き ▼
（イメージ）

OSの内部処理 ファイルシステム
/dev/sda2 (ext4)

定期的にコミット

データを書き込み
ファイルの更新

ジャーナルログジャーナルログ

データ ファイルメタデータ

62 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 63

Linuxではext3やext4、XFSなど有名なものか
ら、あまり馴染みがないファイルシステムまでさま
ざまなタイプを扱えることは前述しました。そのた
め、mkfsというコマンドも各ファイルシステムごと
に用意されています。ext4ファイルシステムを作る
mkfsコマンドには、mkfs.ext4という名前のコマン
ドが用意されています注1。

mkfs.ext4 /dev/sdb1

■ TRIMのサポートの可否

お使いのディスクがTRIM（Block Discard）に対
応しているか否かはhdparmコマンドを実行するこ
とで確認できます。たとえば、/dev/sdaに認識され
ているディスクが「SAMSUNG SSD 840 Series」と
いうモデルだった場合、図3のように表示されま
す。なお、grep注2コマンドで必要な部分だけ取り出
すとよいでしょう。

■ inodeテーブルの遅延初期化

ファイルシステムの作成を早く終わらせたい場
合、inodeテーブルの遅延初期化をオプションで指定
することで、mkfs.ext4コマンドの処理で時間がかか
る inodeテーブルの初期化作業をバックグラウンド
処理で行わせることができます。これを行うために
は、mkfs.ext4コマンドに「-E」オプションで「lazy_

itable_init=1」という値を渡して実行します（図4）。

注1） 最近の実装では、ストレージ側にTRIMやSCSI UNMAPなど
Block Discardと総称される機能が実装されているものがある
（SSDやハイエンドストレージ）。この場合には未使用ブロッ
クの回収作業が行われるトリガーの役割も兼ねている。

注2） 指定されたパターンを含む行を抽出し、結果を標準出力に出
力。

ちなみに筆者の手元の環境で1TBのハードディ
スクの中にファイルシステムを作成してみたとこ
ろ、デフォルトでは約3分かかっていた処理が、
inodeテーブルの遅延初期化をしたところたったの
5秒で完了しました。

ファイルシステムのマウント

ファイルシステムをマウントするには、mountコ
マンドを使います。通常はファイルシステムタイプ
とブロックデバイスファイルとマウントポイント
（ディレクトリ）の3つを指定します。必要に応じて
「-o」オプションでマウントオプション注3を指定でき
ます。何も指定しなければデフォルトで読み書き可
能モードでマウントされます。

mount -t ext4 /dev/sdb1 /srv

すでにマウント中のファイルシステムをオプ
ションを変更して再度マウントしたいときには-o

オプションで「remount」を指定する必要がありま
す。次の例はマウント中の/srvを、読み込み専用
を意味する「ro」を指定して再度マウントするという
指示です。この操作はレスキュー作業でファイルを
救うときに行う場合があります。

mount -o remount,ro /srv

なお、ファイルシステムをアンマウントする場
合には、umountコマンドを実行します。ちなみに
unmountコマンドは存在しませんのでスペルミスに
ご注意ください。

注3） 書き込み権限など指定が可能。

図3　TRIMに対応したディスクを見つける ▼

hdparm -I /dev/sda ¦ grep 'Model\¦TRIM'
↑詳細表示をする「-I」オプションで出力をgrepに渡し、その中から「Model」または「TRIM」が含まれる行を画面に表示
 Model Number: SAMSUNG SSD 840 Series
 * Data Set Management TRIM supported (limit 8 blocks)

図4　 inodeテーブルの遅延初期化を指定してファイルシステムを作成 ▼

mkfs.ext4 -E lazy_itable_init=1 /dev/sdb1

62 - Software Design

第1章

Jun. 2013 - 63

RHEL編
UNIX/Linuxで必須のファイルシステムの基礎

第1章

umount /home

また、リムーバブルハードディスクやUSBフ
ラッシュメモリなどの場合には、ブロックデバイス
ファイルに対してejectコマンドを実行すると自
動的にアンマウント処理も行われます。

eject /dev/sdb

ファイルシステムの修復方法

システムの起動時や、ファイルシステムのマウ
ント時にファイルシステムの整合性チェックが定期
的に実行されます。ext4ファイルシステムではファ
イルシステムの整合性チェックと修復を行うコマン
ドとしてfsck.ext4というコマンドが用意されて
います。
もし起動時にファイルシステムのエラーで起動で

きなくなった場合には、fsck.ext4コマンドで修復作
業を行わなければなりません。また、fsck.ext4を実
行する場合にはファイルシステムを一度アンマウン
トする必要があります。/（root）のファイルシステム
以外であればシステムが起動している状態でもアン
マウントできるため、ファイルシステムのチェック
を行うことができますが、/（root）のファイルシステ
ムに対しては、インストーラDVDにてレスキュー
モードで起動し、マウントされていない状態でfsck.

ext4コマンドを実行する必要があります。
オプションで「-fpcv」を指定して実行すると、

ファイルシステムの自動修復とバッドセクタの修復
を行います。

 -f …… ファイルシステムの状態がcleanでもファ

イルシステムチェックを行う

 -p ……ファイルシステムの自動修復を行う

 -c ……バッドセクタの修復を行う

 -v …… ファイルシステムのチェック状況を詳細

に出力する

fsck.ext4 -fpcv /dev/sdb1

root予約領域

ext4ファイルシステムには、従来のext2、ext3

ファイルシステムでも存在していた、rootユーザに
対して用意されるroot予約領域（Reserved block

count）があります。これはファイルシステムの容量
を100％使い果たした万が一の場合に、必要最低限
のオペレーションを管理者であるrootユーザが行
えるようにと確保されている領域です。しかしなが
ら、デフォルトでファイルシステムの全体容量の
5％が確保されるため、最近の4TBハードディスク
だと約200GBも使えない領域ができてしまいます。

/（root）ファイルシステムに対して、予約領域を
0％にしてしまうと緊急時に問題になってしまいま
すが、おもにファイルサーバのデータ領域や、仮想
化環境の仮想マシンイメージの保存先として使う場
合において5％はもったいないですね。

Reserved block countを確認するにはtune2fs注4

コマンドの結果をgrepコマンドにて「Reserved

block count」をキーワードに検索すれば見つかりま
す（図5）。

Reserved block countを0％にするには同じく
tune2fsコマンドで「-m」オプションを指定して図6
のように実行します。

注4） ファイルシステムのパラメータを調整する。

図5　Reserved block countの確認 ▼

tune2fs -l /dev/sdb1 ¦ grep 'Reserved block count'

図6　Reserved block countを0％にする ▼

tune2fs -m 0 /dev/sdb1

64 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 65

ファイルシステムの探し方
（UUIDやラベル）

ファイルシステムには、コンピュータがユニー
クに管理できるように16進数での表記のUUIDや、
人間がわかりやすいようにラベルという属性値がメ
タデータに含まれています。これらの値がわかれ
ば、ファイルシステムのマウント時にmountコマン
ドでブロックデバイスファイルを指定する代わり
に、UUIDやラベルとマウントポイントを指定する
だけで構いません。また、システムの起動時にマウ
ントする際に、そのブロックデバイスとマウントポ
イントのマッピングを行っている/etc/fstabにも、
UUIDやラベルで指定することができます。
なぜこのようにUUIDやラベルで指定したいかと

いうと、ブロックデバイスファイルの識別名はハー
ドディスクの認識順によって決まるため、たとえば
USB接続の外付けハードディスクなどで/dev/sdc1

だったものが、内蔵ハードディスクを増設して再起
動を行うと次回起動時に/dev/sdd1といった違った
識別名で認識されてしまうことが運用上起きるから
です。よってよほど特別な理由がない限り、ファイ
ルシステムをUUIDやラベルで指定したほうが賢い
選択と言えます。
説明が長くなってしまいましたが、UUIDやラベ

ルから、そのファイルシステムのメタデータに値が
含まれているブロックデバイスファイルを探すのが
findfsコマンドです。図7のように「UUID=ファイ
ルシステムのUUID」か、図8のように「LABEL=ラ
ベル名」をfi ndfsコマンドのオプションとして指定し
て実行することで、（見つかった場合は）そのブロッ
クデバイスファイルが結果として返ってきます。
なお、UUIDを調べるにはtune2fsコマンドの結
果から「UUID」をキーワードにして検索すれば見つ
かります（図9）。

マウント中のブロックデバイスの
探し方

シェルスクリプトなどでディレクトリの名前か
らマウント中のブロックデバイスファイルの名前を
知りたいときなど、df注5コマンドの結果を見てテキ
スト処理をするという方法もありますが、最近で
は、もっと便利なコマンドが存在します。それが
findmntコマンドです。オプションなしで実行す
ると findmntコマンドで取得できる情報がどのよう
なものかわかると思います。
たとえば、マウントポイント/srv/backupsの情
報を取得する場合は図10のようにします。また、

注5） ファイルシステムごとに空き容量や使用率などの情報を表示
する。

図7　UUIDからブロックデバイスファイルを調べる ▼

findfs UUID=79abb798-6664-44f1-929e-03919b1f3594
/dev/sda1

図8　LABELからブロックデバイスファイルを調べる ▼

findfs LABEL=/boot
/dev/sda1

図9　ブロックデバイスファイルのUUIDを調べる ▼

tune2fs -l /dev/sda1 ¦ grep UUID
Filesystem UUID: 79abb798-6664-44f1-929e-03919b1f3594

図10　/srv/backupsの情報を取得する ▼

findmnt /srv/backups
TARGET SOURCE FSTYPE OPTIONS
/srv/backups /dev/sdb3 ext4 rw,relatime,seclabel,data=ordered

64 - Software Design

第1章

Jun. 2013 - 65

RHEL編
UNIX/Linuxで必須のファイルシステムの基礎

第1章

マウントポイント/srv/backupsのブロックデバイ
スファイルだけを表示する場合には、次のオプショ
ンをつけて図11のように実行します。

 --noheadings ……ヘッダ情報を表示しない

 --output ……指定した情報だけ表示する

ファイルシステムのリサイズ

システムが運用を開始した後にデータ量の増加
により、ファイルシステムのサイズを変更（リサイ
ズ）したい要求が発生する場合があります。最近で
は各ファイルシステムごとにresize2fsや、xfs_

growfsといった専用のリサイズコマンドが用意さ
れています。ext4ファイルシステムにはresize2fs
コマンドがあります。resize2fsコマンドにはリサイ
ズしたい対象のブロックデバイスファイル名とサイ
ズをオプションで指定します。ファイルシステムを
拡張する場合はオンライン（マウント中の状態）で実
行可能です。たとえば、/dev/sdb1のファイルシス
テムを100GBに拡張したい場合には、次のように
実行します。

resize2fs /dev/sdb1 100G

ファイルシステムサイズを変更したい場合には、
事前にLVMなどでブロックデバイス側のリサイ
ズ、それもサイズ拡張を行った後に行われることが

ほとんどです。よってファイルシステムのサイズ指
定を省略することができます。

resize2fs /dev/vg01/lv02

これで指定したブロックデバイスのOSで認識
している容量までファイルシステムサイズを拡張
します。
なお、ファイルシステムを縮小する場合にはマウ
ント中のファイルシステムを一度アンマウントして
から、fsck.ext4コマンドにてファイルシステムの整
合性を確認したうえで行う必要があります（図12）。
ちなみに/（root）にマウントされているファイル

システムはアンマウントできないため、インストー
ラDVDにてレスキューモードで起動し、マウント
されていない状態にしてからresize2fsを実行する
必要があります。この前処理を怠ると図13のよう
にコマンドの実行が拒否されます。

おわりに

ファイルシステムの操作はLinuxシステムを運用
していくうえでとくに重要な操作の1つです。どの
コマンドも実行してから返答があるまで、しばらく
時間がかかります。実行時間が肌間隔でわかるぐら
いまで、テスト環境で何度も実行してみてくださ
い。ﾟ

図11　/srv/backupsのブロックデバイスファイルだけを表示させる ▼

findmnt --noheadings --output SOURCE /srv/backups
/dev/sdb3

図12　ファイルシステムのサイズを縮小する場合には、あらかじめ整合性をとるように指示される ▼

resize2fs /dev/vg01/lv01 20G
resize2fs 1.41.12 (17-May-2010)
Please run 'e2fsck -f /dev/vg01/lv01' first.

図13　/（root）に接続したままファイルシステムのサイズを縮小しようとした場合のメッセージ ▼

resize2fs /dev/vg01/lv01 18G
resize2fs 1.41.12 (17-May-2010)
Filesystem at /dev/vg01/lv01 is mounted on /; on-line resizing required
resize2fs: On-line shrinking not supported

66 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 67

未経験者のあなたへ

こんにちは。本誌の後ろのほうで『開眼シェルスク

リプト』を連載しているUSP研究所／USP友の会の

上田です。こちらの特集では、新人さん向けに「あな

たの知らないUNIXコマンドの使い方」というお題を

仰せつかりました。しかし、本誌の読者で「新人」と

言うと、まったく油断できません。「んなもん知っと

るわい」と言われかねません。それをかわしていると

やたらマニアックな記述になり……。悩ましい。

そこで、「あなた」は、未経験でこの世界に放り込

まれた人だと勝手に仮定して話を進めます。玄人の

人には、未経験者に最初何を教えるべきか考えつつ

読んでいただければと。

未経験者はどれくらい未経験か

筆者が大学生のころは、UNIX（今思うとBSD的な

何か）を使った情報処理の演習がありました。筆者

はすでにWindowsでC++を書いていたので楽勝

……と思ったのですが、計算機センターの安いモニ

タのちらつきが気持ち悪く、夜通し麻雀ばかり打っ

ていたというやむを得ない理由のため、講義中はほ

とんど寝てました。

ある日、どうしてもメールを読まなければならず

計算機センターに行きました。で、ログインしまし

た。画面に、

[hoge:̃] ueda%

と出てきたのでなんとかメールを読もうとガチャ

ガチャしてたら、ホームから叩き出されて、

[hoge:/] ueda%

となってしまいました。大パニックです。ホーム

に帰るべく、マニュアルを調べるけど「cdをオプ
ションなしで打つ」という正解にたどり着きません。

そして、「ログアウトしてログインする」という高

度な準最適解にたどり着いたのが、16年前の筆者で

す。

こんな野郎に、何から教えるべきか。筆者は仕事

で未経験者と接することが多いので理解できていま

すが、未経験者というのは、このような人たちです。

tree(1)

かつての筆者のケースを考慮すると、最初にちゃ

んとわかっておかなくてはならぬのは、1にも2にも

ディレクトリということになります。この際、別に

「フォルダ」と言ってもよいでしょう。いつまでも

フォルダじゃいけませんが。

ディレクトリを調べるのはpwd(1)やls(1)（（1）の
意味は後述）が王道のコマンドですが、こいつらは

ディレクトリの中の一部しか照らしてくれません。

ということで、最初に紹介するのはtree(1)コマ
ンドです。たとえば、筆者のUNIXマシン（＝Mac）

のホームで、

uedamac:̃ ueda$ tree ¦ less

と打つと、画面が切り替わり、

上田 隆一　UEDA Ryuichi　（有）ユニバーサル・シェル・プログラミング研究所　 Twitter @uecinfo

超入門者に捧げる
コマンド＆シェルスクリプト

Column1

66 - Software Design

第1章

Jun. 2013 - 67

超入門者に捧げるコマンド＆シェルスクリプト Column1

.
├── 201306.html
├── 201306.rst.txt
├── ARCHIVE
│ ├── DEL010224
│ │ ├── Picture
│ │ │ ├── Picture4
│ │ │ │ ├── 2.txt
│ │ │ │ ├── 3.txt
│ │ │ │ ├── 4.txt

というように、ファイルやらディレクトリやらが

木になって表示されます（treeが入ってない場合は、

人に頼んでインストールしてもらってください）。

less(1)コマンドの機能で、上矢印キーや下矢印
キー（本当はJキーとKキーがお勧め）で舐め回し

て見ることができます。閉じるときはQキーを押し

ます。

¦はパイプと言って、本来画面に表示される文字
を、右側のコマンドに渡すための記号です。実はこ

の「¦」（パイプ）は、UNIX系OSをUNIXたらしめてい
るものです。

treeに話を戻しましょう。これはCUIを使ってい

ても非常に直観的です。ディレクトリの中に、他の

ディレクトリやファイルがぶら下がっていることが

わかります。この図を見たら、UNIXを触ったことが

なくても、なんとかHDDの中身注1がどうなっている

かぼんやりわかるでしょう。

man(1)

次はman(1)コマンドです。
このコマンドは、システムにインストールされて

いるコマンドのマニュアルを表示するためのもので

すが、実質、「すでに知っているコマンドのオプショ

ンを調べるため」に使うものです。

manで見られるマニュアルには章立てがあり、

さっきからコマンドの後ろに「（1）」と書いているの

は、「1章」ということを示しています。コマンドのマ

ニュアルは1章にあるので、printf(1)と書いてあれ
ばそれはコマンドのprintfということになります。C

言語のprintfはprintf(3)です。

注1） 正確な表現ではない。

manを使ってみましょう。たとえば、後から出て

くるfind(1)について調べるにはコマンドを次のよう
に打ちます。「man 1 find」のように1章と明示する

方法もあります。

uedamac:̃ ueda$ man find

マニュアルが開いたら、less(1)と同じ操作で閲覧

できます。

FIND(1) BSD General Commands ｭ
Manual FIND(1)

NAME
 find -- walk a file hierarchy

SYNOPSIS
 find [-H ¦ -L ¦ -P] [-EXdsx] [-f path] ｭ
path ... [expression]
 find [-H ¦ -L ¦ -P] [-EXdsx] -f path ｭ
[path ...] [expression]
…（略）…

UNIXも英語も両方覚えるのは大変だ！　という

人には、日本語のマニュアルもありますので、無理

をしないでください。rootになって、たとえば

「intstall man 日本語 <お使いのOSなど>」などで検

索をかけてインストールの方法を調べましょう。

シェルスクリプトにメモ書き

パイプでコマンドをつなげると、コマンドの出す

文字を次のコマンドに次々と渡していくことができ

ます。たとえば、次のように書くと、今いるディレ

クトリの下で、「rstという拡張子で、かつ中にawk

という文字列があるファイル」という2つの条件で

ファイルを検索することができます。

uedamac:SD_GENKOU ueda$ find . ¦ grep "\. ｭ
rst$" ¦ xargs grep awk ¦ sed 's/:.*//' ¦ ｭ
sort -u
./201202.rst
./201203.rst
…（略）…

最初のうちは、頑張って書いたら取っておきたい

と思うでしょう。上矢印を押すと前に打ったコマン

ドが再表示されますので、コピーしてファイルに保

存します。ここではfindgrep.shというファイル名で

保存したとします。

68 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

cat(1)コマンドで保存したファイルを見て、次の
ような状態にします。

uedamac:SD_GENKOU ueda$ cat findgrep.sh
find . ¦ grep "\.rst$" ¦ xargs grep awk ¦ ｭ
sed 's/:.*//' ¦ sort -u

そうしたらchmod(1)で次のようにすることで、
fi ndgrep.shを実行可能ファイルにします。

uedamac:SD_GENKOU$ chmod +x findgrep.sh

これでOK。次のように打つと、さっきと同じファ

イルのリストが画面に表示されます。

uedamac:SD_GENKOU ueda$./findgrep.sh
./201202.rst
./201203.rst
…（略）…

素朴ですが、これがシェルスクリプトです。もう

少し垢抜けた（？）感じにすると次のようになります。

uedamac:SD_GENKOU ueda$ cat findgrep.sh
#!/bin/bash
$1ディレクトリの下のrstファイルから、
$2の語句を検索する ↗続く

find "$1" ¦
grep "\.rst$" ¦
xargs grep "$2" ¦
sed 's/:.*//' ¦
sort -u

実行してみましょう。

uedamac:SD_GENKOU ueda$./findgrep.sh . ｭ
awk ¦ head -n 2
./201202.rst
./201203.rst
…（略）…

このように、シェルスクリプトを書くと、コマン

ドの複合技を使えるようになります。「単純な数個の

コマンドで、どれだけ仕事ができるか」ということを

考えるのは、シェルスクリプトを書く楽しみであり、

古き良きUNIXプログラミングの技法でもあります。

個人的には、この程度のものは端末にすぐに書け

るようにして、シェルスクリプトにすることは極力

控えます。ただ、慣れるまでは、こういうふうに「動

くメモ書き」をたくさん残しておくこともアリかと思

います。ﾟ

第1章

Jun. 2013 - 69

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

VPS1台構成のシステムから100インスタンスを越えるシステムまで、多
数のサーバを監視・管理する筆者が遭遇した数々の危機。それらを乗り
越えるために活躍したコマンド・シェルを紹介します。

馬場 俊彰　BABA Toshiaki　（株）ハートビーツ　 Twitter @netmarkjp

第2章 CentOS編
マネジメントサービスプロバイダ
業務を支えてきた、
いざというときに備えるコマンド

どんな環境や状況でも変わらず使え
るコマンド・シェルは管理者必須

マネージメントサービスプロバイダ（MSP）業務
において、コマンド・シェルは必須ツールです。動
作がシンプルなコマンドの出力と入力をつないで、
情報を思いどおりに引き出し、加工し、状況を把握
して対応するのはMSP業務の醍醐味です。

MSP業務は大きく分けると“監視・障害対応”と
“サーバ管理”の2つに分かれます。サーバ管理とい
うと最近はPuppet注1やChef注2などのツールを使っ
てサーバの設定を一元的にバージョン管理するのが
常識ではありますが、筆者の勤務先は少数多種の
サーバを顧客と共同管理しているため、ツールあり
きの運用は厳しいという事情があります。そこでコ
マンドやシェルが大活躍しているのです。
また障害対応のときはタイムリーに情報を収集

し対応する必要があるため、コマンドやシェルを活
用して情報をすばやく収集することが迅速な対応の
肝になります。
そんなわけで本章では筆者の経験をもとに、現
場でよくあるシチュエーションでのコマンドの使い
方を紹介します。いざというときに使えるよう頭の
片隅に置いておいていただくと、そのうち̶̶た
ぶん割とすぐに̶̶役に立つと思います。

注1） https://puppetlabs.com/

注2） http://www.opscode.com/chef/

CASE 1● 刻一刻と減るディスク残
容量

ディスク残容量はサーバ監視の超定番項目です。
ディスク残容量が0になるのは非常にマズいです。
ログの書き出しができなくなり、プログラムによっ
ては動作が停止する深刻な事態です。
実際にサーバを運用していると、残容量20％を

切ったあたりでwarningアラートが発報し、それを
きっかけにログインして詳しい状況を確認……図1
のように、df注3コマンドを連打していると、みるみ
る残容量が減っていくことがよくあります。
こんなときも慌てずに原因を探りましょう。

ディスク残容量が減っているということは、ファイ
ルが新たに生成されているか、すでにあるファイル
のサイズが大きくなっているかのどちらかです。
ファイルを探すといえばfindコマンドです。fi nd

には作成日や更新日を条件にファイルを探すオプ
ションがあるので、それを利用しましょう。
今回使うオプションは「-mmin」です。このオプ
ションの値に「-15」とすると、15分以内に更新され
たファイルを探すことができます（図2）。
最近更新されたファイルが抽出できたら、あとは

ls注4コマンドやdu注5コマンドでファイルのサイズを

注3） ファイルシステムごとに空き容量や使用率などの情報を表示
する。

注4） 指定されたパスにあるファイルやディレクトリを一覧表示す
る。

注5） ディスクの使用量を確認する。

https://puppetlabs.com/
http://www.opscode.com/chef/

70 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 71

確認します。1ファイルずつ手作業であたるのはナン
センスなので、xargs注6コマンドを使って楽をしま
しょう（図3）。なお、xargsをうまく活用するとさま
ざまな作業がグンと楽になります。たとえばssh注7

コマンドと組み合わせて、多数のサーバに並列で処
理を実行させることもできます（本稿では割愛）。
ディスク使用量上位を確認する場合は、さらに

sortコマンドを組み合わせましょう（図4）。これ
で原因が特定できます。
たいていはユーザ操作による大容量ファイルの

アップロードや、アプリケーション設定の誤りによる
デバッグログ出力が原因です。変わったところでは、
ユーザがMovableTypeの出力ディレクトリ設定を誤

注6） 標準入力からコマンドラインを作成して実行する。
注7） 通信経路を暗号化してリモートホストにログインする。

り、今までとは違うディレクトリに大量の小さいファ
イルが生成され、結果としてディスク残容量がみる
みる減少する事態に立ち会ったこともあります。み
なさまディスクの使いすぎにはご注意ください。

CASE 2● 突然の死

さてはて、サーバの構築はしてみたけれど、な
ぜだかデーモンが起動しない。そんなことって、あ
りますよね。あるんですよ。
そんなとき、どうしましょう？
まずはログを見ます。ログを見てください。し

かしログすら出力されていないとき、ありますよ
ね。そんなときはstraceコマンドを使いましょう
（図5）。
トレースログが大量に出力されるので、ファイ

図2　15分以内に更新されたファイルを探す ▼

$ sudo find / -mmin -15 -type f > /tmp/newfiles.txt
↑「-type f」で検索対象をファイルに指定。「>」でその出力結果を/tmp/newfiles.txtに上書き保存

図4　図3での表示をファイルサイズの大きい順に並べ替えて表示 ▼

$ cat /tmp/newfiles.txt ¦ grep -vE "^/(proc¦sys)" ¦ xargs sudo ls -al ¦ sort -n -r -k 5 ¦ head
↑sortのオプションは「-n」で数値順、「-r」で逆順、「-k 5」でls -alで表示される5番目のフィールド、つまりファイルサイズでソートすることを指定している。
 最後のheadコマンドで受け取った出力の最初から10行目までを表示

図3　図2の結果から不要なものを除いてファイルサイズを表示する ▼

$ cat /tmp/newfiles.txt ¦ grep -vE "^/(proc¦sys)" ¦ xargs sudo ls -al
↑catコマンドでnewfiles.txtの中身を読み出してgrepコマンドに渡す。grepは拡張正規表現を使って行頭に/procや/sysを
 含まない行を出力しxargsに渡す。xargsの内容はlsの引数として渡されてファイルサイズ付きで一覧表示される

図1　ファイルシステムの使用状況をdfで細かくチェック ▼

$ df -m　　 ←-mオプションは容量をメガバイト単位で表示する指定
Filesystem 1M-ブロック 使用 使用可 使用% マウント位置
/dev/mapper/vg_root-lv_root
 50397 18802 29036 40%
tmpfs 3967 0 3967 0% /dev/shm
/dev/sda1 485 108 352 24% /boot
/dev/mapper/vg_root-lv_home
 398766 90166 288344 24% /home
$ df -m
Filesystem 1M-ブロック 使用 使用可 使用% マウント位置
/dev/mapper/vg_root-lv_root
 50397 19829 28008 42%
tmpfs 3967 0 3967 0% /dev/shm
/dev/sda1 485 108 352 24% /boot
/dev/mapper/vg_root-lv_home
 398766 90166 288344 24% /home

70 - Software Design

第1章

Jun. 2013 - 71

CentOS編
いざというときに備えるコマンド

第2章

ルに保存するのがいいでしょう。標準エラー出力を
ファイルにリダイレクトしてください（図6）。
トレースを見ていると、ファイルパスと共に「No

such fi le or directory」が大量に出力されていること
がありますが、これは問題ではないことが多いで
す。プログラム側で「ファイルがあれば読み込む」と
いうコーディングがされているため、そのように
ファイルを探しまわるのです。たとえばMySQLに
おける「${HOME}/.my.cnf」のような、あれば使う・
なければ使わないファイルがそれにあたります。
トレース出力を読んでいると、見たことがない・

知らないシステムコールがたくさん出てきます。知
らないシステムコールはmanコマンドで確認しま
しょう。manはコマンドだけでなくシステムコール
にも用意されています。トレース出力を確認するの
は骨がおれますが、原因を突き止められる可能性は
かなり高いです。最後の手段として覚えておきま
しょう。いざというときは「strace」です。

CASE 3● 消えたディスクイメージ

世はまさに、大仮想化時代！！！……というわけ
で猫も杓子も仮想化ですね。VMware、VirtualBox、
LXCなど実装はさまざまありますが、筆者の勤務先
ではKVMを多数利用しています。ディスクイメー
ジをファイルとして作成して利用しているのです
が、たまに100台に1台くらいの確率で……消える
んですよ、ディスクイメージのファイルが……仮想
マシン稼働中に。今までで3回ほど遭遇しました
……いや本当に……困る。
と思いきや大丈夫です。落ち着きましょう。VM

が起動している間はファイルは消えません。VMが

不慮の事故で停止する前にディスクイメージを復活
させましょう。手順はこうです。

1. ディスクイメージへのリンクを突き止める

2. ファイルを復活させる

まずはディスクイメージの i-node番号を突き止
めます。このためにlsof注8コマンドを使います。
rootユーザで実行しましょう。大量に出力されるの
で、grepでうまくフィルタしてください（図7）。
すると図7のようにコマンド、PID、ユーザ名な

どが一覧表示されます。「NODE」が i-node番号、
「NAME」がファイルパスです。
プロセスがオープンしているファイルは「/proc」

からたどることができます。具体的には「/

proc/<PID>/fd/<FD>」にシンボリックリンクがあ
ります。図7だと「/proc/1837/fd/9」になります。
この場所を図8のように確認しましょう。ありま
した。この「/proc/1837/fd/9」をcpコマンドでコ
ピーすると、その時点のデータが複製できます。

重要　cp -aではなくcpでコピーしてください！

さて、これでcp時点のデータが確保できました。
このあとVMを停止してからディスクイメージを再
配置し、VMを起動しなおせば万事解決なのですが、
コピーから停止までのデータはなくなってしまいま
す。そこでなんとかファイルを復活させてみましょ
う。具体的にはファイルシステムをいじって i-node

に対するリンクを手動で作成します。危険な方法な
ので、実施するなら気をつけてくださいね。
まずは先ほどと同じく lsofで目的のファイルの

i-node番号を確認します。今回は「9961507」です
ね。i-node番号が判明したら、この i-node番号をも
とにdebugfs注9コマンドを使ってファイルシステ
ムを書き込み可能で開いて、リンクを作成します。
リンクの作成先は目的のファイルと同じパーティ
ションである必要があります。

注8） 開いているファイルを表示する。
注9） システムファイルのデバッガ。

図6　標準エラーをファイルに保存 ▼

$ sudo strace -f /etc/rc.d/init.d/httpd ｭ
start 2 > /tmp/trace
 ↑2は標準エラー出力を指す。tmpディレクトリのtraceというファイルに保存

図5　straceでデーモンの起動を確認 ▼

$ sudo strace -f /etc/rc.d/init.d/httpd start

72 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 73

rootユーザでdebugfsを実行するとプロンプト
（debugfs:）が表示されます。リンクの作成は「link

<i-node番号> パス」です（図9）。i-node番号を「< >」
で囲う必要があるので気をつけてくださいね。この
操作により、目的の i-node番号を指すファイル「/

tmp/newfile」が作成できます。あとはVMを停止し
元々のファイルパスにcpしてください。
なお、この操作では/tmp/newfileのリンク数は0

と表示されます。debugfs実行中に「modify_inode」
をするとリンク数が変更できるのですが、筆者の理
解不足か、うまく反映されませんでした。うまく
いったらぜひblogなどを書いて教えてください。
なお、lsofの利用方法応用編として、不審なプロ

セスが起動しているときに、そのプロセスがどの
ファイルを開いているか確認することができます。
ただし不審なプロセスがあるということは lsofの結
果が操作されている可能性があるということなの
で、そのあたりも勘案して出力を確認しましょう。

CASE 4● 大丈夫か？

MSP業務では、作業1つ1つの確実性と合理性
がとても重要です。自分の知見が不足していること
を前提に「NG要素が見当たらなければOK」ではな
く「OKであることを検証すればOK」「OKでなけれ
ばNG」という考え方をする世界です。そのため誤
りがありそうな個所は事前に誤りを取り除いてお

く、前提がある場合はその前提を確認する必要があ
ります。そんなときに活躍するのがdiffコマンド
です。
失敗のあるあるとして、SSL証明書更新の際の証

明書とキーの不一致によるSSL証明書更新失敗が
あります。これを回避するためにSSL証明書と
キーが正しいかを事前に確認しておきましょう。

diff の入力はファイル名ですが、<(COMMAND)とい
う構文を使うことでコマンドの出力を直接diffに渡
すことができます（図10）。
コピペで使いまわせるように変数を利用してい

ます。「${変数名 :?}」の「:?」は「変数が定義されてい
なければ終了」という意味です。うっかりコマンド
部分だけ貼り付けてしまってもコマンドが実行され
ないので安心です。とくに書き換えや削除の対象を
指定する使い方をする場合には必ずつけてください
（例：rm -rf ${OLD_BACKUP:?}）。

diffは差がないと終了コードが「0」になるので、
それを利用して「&&」よる結果出力をするとわかり
やすいですね。図10ではdiffを1回しか実行してい
ませんが、たとえばダウンロードしたrpmのmd5

チェックサムをぱっと確認したいときに、図11の
方法で確認することができます。
「確実性」を求めるときにdiffは重宝します。つま
りMSP業務の場合は手放せません。手動でのサー
バ同士の移行で、構築ミスや設定漏れがないことを
確認するために両サーバの「/etc」配下をまるごと比

図7　ディスクイメージの i-node番号を調べた例 ▼

sudo lsof ¦ grep -E '(^COMMAND¦¥.img)'
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
qemu-kvm 1837 qemu 9u REG 253,2 21474836480 9961507 /var/lib/libvirt/images/guest.img (deleted)

図9　リンクの作成 ▼
$ sudo debugfs -w /dev/mapper/vg_localhost-lv_root
debugfs 1.41.12 (17-May-2010)
debugfs: link <9961507> /tmp/newfile
debugfs: quit　 ←debugfsから抜ける

図8　シンボリックリンクを確認 ▼

$ sudo ls -al /proc/1837/fd/9
lrwx------ 1 qemu qemu 64 Apr 4 23:03 /proc/1837/fd/9 -> /var/lib/libvirt/images/guest.img (deleted)

図9　リンクの作成 ▼

72 - Software Design

第1章

Jun. 2013 - 73

CentOS編
いざというときに備えるコマンド

第2章

較して、想定外の差分がないか確認する、「rpm

-qa」の出力を比較する、「php -i」の出力を比較する
などの操作は日常茶飯事です。

ChefやPuppetを使わない昔ながらの素朴な方法
で構築されたサーバはまだ山のようにあります。こ
れらを安全確実に運用するためにはdiffは必要不可
欠なのです。

CASE 5● 終わらないリストア

最近は本当にディスクが大きくなってきました。
伴って扱うデータ量が増え、そしてバックアップの
容量も大きくなってきました。データが大きいので
圧縮しますが、そうすると今度はリストアするとき
に時間がかかります。バックアップの容量は小さく
圧縮できるに越したことはありませんが、リストア
に時間がかかるのは困りものです。
そこで救世主登場。pbzip2コマンドを使いま
しょう。pbzip2を使えば、bzip2圧縮で容量節約、マ

ルチコア利用で圧縮・展開が高速といいことづくめ
です。CentOSであればEPELリポジトリにパッ
ケージがあるので、yumでインストールできます。
tar注10コマンドと組み合わせて使う場合は、図12

のようにオプションでpbzip2を使うよう指定します。
解凍するときも同じ要領です。/tmp配下に解凍す

るときは図13のようにします。pbzip2を活用してリ
ストア中の待ち時間を減らしましょう。

おわりに

本章ではMSP業務でよくあるコマンドの使い方
をいくつか紹介しました。ころばぬ先の杖。日頃か
らコマンドに慣れておき、いざというときにオドオ
ドせずスムーズに対応できるよう、普段から素振り
をしておきましょう。ﾟ

注10） ファイルやディレクトリをアーカイブする。

図10　di� を使った確認 ▼

$ KEYFILE=ssl.key
$ CRTFILE=ssl.crt
$ diff <(openssl rsa -in ${KEYFILE:?} -modulus -noout) \ 長いコマンドの途中で改行を入れたい場合は「\」を入れてから改行をする

 <(openssl x509 -in ${CRTFILE:?} -modulus -noout) \
 && echo 'OK'

図12　tarとpbzip2を組み合わせた圧縮 ▼

$ sudo tar cf backup.tar.bz2 --use-compress-prog=pbzip2 /etc /var/lib/mysql

図13　tarとpbzip2を組み合わせた解凍 ▼

$ sudo tar xf backup.tar.bz2 --use-compress-prog=pbzip2 -C /tmp

図11　md5チェックサムの確認方法 ▼

$ diff <(md5sum MySQL-client-5.5.30-1.el6.x86_64.rpm ¦ awk '{print $1}') \
 <(echo '6abd3f0ef88adb254c334ca9a7de37d9') \
 && diff <(md5sum MySQL-devel-5.5.30-1.el6.x86_64.rpm ¦ awk '{print $1}') \
 <(echo '8cdafd98919fb85961f586341e039a0a') \
 && diff <(md5sum MySQL-server-5.5.30-1.el6.x86_64.rpm ¦ awk '{print $1}') \
 <(echo 'fc81f2ce8f8c429a120bcacd6a45dc38') \
 && diff <(md5sum MySQL-shared-5.5.30-1.el6.x86_64.rpm ¦ awk '{print $1}') \
 <(echo '355bb32c659128912b42e6a2aa78d089') \
 && diff <(md5sum MySQL-shared-compat-5.5.30-1.el6.x86_64.rpm ¦ awk '{print $1}') \
 <(echo 'e4173e65e030f80f30b0f2fd5389e2ea') \
 && echo 'md5 checksum ok'

74 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 75

はじめに

渋谷のサイバーエージェントという会社でサーバ

サイドエンジニアとしてサーバの構築・運用などをし

ております。UNIXコマンドについてということです

が、筆者たちの仕事では日々いろいろな調査やファ

イル操作などにコマンドを使って処理しています。

今回はそれらの中から非常にシンプルだけれども

ちょっと役立つ、そんな使い方にしぼって実例を混

ぜながら紹介します。

ファイル操作

ファイルの操作をするコマンドです。サーバでの

作業をする際には必ずファイル操作が含まれるもの

ですが、コマンドの組み合わせによって省力化する

ことができます。

特定のファイルの操作 ■

たとえばディレクトリ/testdir以下にある、ファ

イル名に「del」が含まれるファイルの削除を行うには

どのようにするでしょうか。このような場合には

findコマンドとxargsコマンドを使います。xargsは

パイプ（|）で渡された出力をrmコマンドへと渡して
おり、この例ではfindで出力したファイルがrmで削

除されます（図1）。

削除以外にも、特定のファイルだけ権限や所有者

を変更したりと一括処理に便利です。ただし削除に

関しては、目的のファイル以外を削除しないように

よく確認してから実行しましょう。

［使われているコマンド］

fi nd……検索コマンド

xargs……渡された出力を別のコマンドへと渡す

rm……ファイルを削除する

他のサーバへのファイル書き出し ■

次に紹介するのは、ローカルディスクの容量がな

いサーバでの作業時に、tarコマンドでバックアップ
アーカイブを作りたい場合です。ローカルサーバに

置けないので別にサーバを用意する必要があります。

たとえば図2のようなコマンドを実行します。tar

で作成したアーカイブを標準出力として出力するた

めに「-」を使用します。tarコマンドでの「-」は、標準

出力にファイルの内容を出力し、後半の「-」にその

ファイルの内容が渡されます。結果として./

backupdir/以下をtarアーカイブとしてバックアッ

プしたものが、{別のサーバのIPアドレス}の/tmp/

send.tgzとして保存されることになります。

桑野 章弘　KUWANO Akihiro　（株）サイバーエージェント　 Twitter @kuwa_tw

サーバを管理する
コマンド講座の最初の最初

Column2

図1　「del」を含むファイルの削除 ▼

$ find ./testdir -name "*del*" -print ¦ xargs rm

図2　別のサーバでバックアップアーカイブを作る ▼

$ tar zcvf - ./backupdir/ ¦ ssh ${sshでログインできるユーザ}@${別のサーバのIPアドレス} "cat - > /tmp/ ｭ
send.tgz"

74 - Software Design

第1章

Jun. 2013 - 75

サーバを管理するコマンド講座の最初の最初 Column2

［使われているコマンド］

tar……tar形式のアーカイブを作成する

ssh……sshで他のサーバへ接続する

cat……ファイルの内容を表示する

ログファイルの集計

次に、あなたはApacheなどのHTTPサーバのロ

グファイル「access_log」を集計することになったと

します。担当サービスの4月10日の12時台のログ

を調べて、どのURLへのアクセスが多いかを集計し

て見るためにはどのようにすればいいでしょう。

ログは図3のようなものが1リクエスト1行形式

になります。実際に出力するためのコマンドは図4

ような形になります。

catでaccess_logの内容を出力し、grepコマンド
で、「10 Apr 2013 12」が含まれた行のみを抽出しま

す。次にある、「awk '{ print $11 }'」は、スペースで

区切られた11個目のフィールド（つまり、http://

example.jp/foo/bar.html）を出力します。この出力

を集計したいので、sortコマンドで同じものに並べ
替えた後に、uniq -cコマンドで集計します。uniq
-cの出力は行数の多いものが下にきてしまい見栄え

が悪いため、最後のsort -rnで、数字の多いもの
を逆順にしてもう一度並べ替えています。

集計が簡単にできましたね。難しい集計を始める

とパイプをつなげ続けたり、awkの中が複雑になった

りと、プログラムを書いたほうが良いのですが、簡

単な集計であればこれで十分です。

［使われているコマンド］

grep……特定の文字列のみを選択して出力する

awk……テキスト処理用のプログラム言語

sort……文字列の並べ替えをする

uniq…… 重複文字列を一つにまとめる。-cオプション

を付けると重複件数を合計する

まとめ

このように、さまざまなコマンドを使用すること

でサーバの管理を簡単にすることができます。ある

程度慣れてきたらスクリプトに組み込むことで、手

作業では面倒臭い作業をコンピュータに行わせるこ

とができます。

『UNIXという考え方』という本に9つの定理という

ものが紹介されていますが、その中には「一つのプロ

グラムには一つのことをうまくやらせる」「スモール・

イズ・ビューティフル」「すべてのプログラムをフィル

タとして設計する」といったものがあります。これは

UNIXコマンドの根底にある考え方です。今回はほ

んの一例を紹介しましたが、これらの考え方につい

て少しでもわかっていただけたら幸いです。

コマンドにはほかにもいろいろなものがあります。

調べてみると仕事などの役に立つことも多いですの

で、お暇なときに/bin/の中を調べてみてはいかが

でしょうか。ﾟ

図4　4月10日12時台のアクセス数を集計 ▼

$ cat access_log ¦ grep "10 Apr 2013 12" ¦ awk '{ print $11 }' ¦ sort ¦ uniq -c ¦ sort -nr
 1234 http://example.jp/foo/bar.html
 123 http://example.jp/foo/url2.html
 33 http://example.jp/foo/url3.html
 22 http://example.jp/foo/url4.html
 11 http://example.jp/foo/url5.html
 1 http://example.jp/foo/url6.html

図3　access_logの内容（一部） ▼

XXX.XXX.XXX.XXX [Wed, 10 Apr 2013 12:00:03 GMT] - - "GET http://example.jp/foo/bar.html HTTP/1.1" ｭ
304 undefined "" "Mozilla/5.0 (Windows; U; Windows NT 5.1; ja; rv:1.9.2.16) Gecko/20110319 ｭ
Firefox/3.6.16 (.NET CLR 3.5.30729)" 32
…（略）…

76 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 77

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

はじめに

FreeBSDは大規模Webサービスのプラット
フォームやホスティングサービスのプラットフォー
ム、高性能アプライアンス、家電機器、組み込み機
器など、さまざまな場所で活用されています。なか
でも企業や教育機関などで多くの方が扱うことにな
るのは、Webサーバやメールサーバ、DNSサーバ、
ファイルサーバなどエッジサーバとしての
FreeBSDでしょう。本章では、そうしたサーバ運
用を前提として、FreeBSDコマンドの使い方を紹介
します。
本章ではUNIXを利用するにあたっての基本的な

コマンド̶̶cat、cd、chmod、chown、chroot、cp、
date、dd、diff、find、fsck、hostname、kill、less、
ln、locate、ls、man、mkdir、more、mv、newfs、
passwd、patch、ps、pwd、reboot、rm、shutdown、
su、tarなど̶̶については紙幅の都合上説明してい
ません。ですが、これらのコマンドはもちろん使え
るようになっておきましょう。

ネットワーク管理

データセンターに格納されたラックマウントサー
バにインストールされたFreeBSDを管理したり、
ホスティングサービスで提供されているFreeBSD

を管理するなど、物理的にアクセスすることができ

その高い安定性が評価され、各種サーバ用途に多く採用されている
FreeBSDでは、とくにCLIによる操作が重要視されます。本章で厳選し
たFreeBSDコマンドを足がかりに、デキるサーバ管理者を目指してくだ
さい。
後藤 大地　GOTO Daichi　BSDコンサルティング（株）　 Twitter @daichigoto、@BSDc_tweet

第3章 FreeBSD編
サーバ運用と自動化に役立つ
厳選コマンドリファレンス

FreeBSDのアプリケーション管理にはPorts
Collectionを使います。Ports Collectionはソフト
ウェアのビルド方法やパッチなどをまとめたアプリ
ケーションカタログのようなもので、2万4千を超え
るソフトウェア情報が登録されています。

Ports Collectionは常に更新されていますので、
使う前に、次のようにportsnapコマンドを使って
最新の状態に更新します。

% portsnap fetch extract update
↑本当に最初の1回だけ
% portsnap fetch update
↑以後はこちらでアップデート

たとえばvimをインストールするのであれば、次
のように作業します。

% cd /usr/ports/editors/vim-lite/
% make install clean
…（略）…

Ports Collectionからパッケージをビルドするこ
ともできます。数十台や数百台のサーバに同じソフ
トウェアをインストールする場合、必要になるパッ
ケージをビルドして利用します。

ソフトウェアのインストールには「Ports Collection」NOTE

76 - Software Design

第1章

Jun. 2013 - 77

FreeBSD編
サーバ運用と自動化に役立つ厳選コマンドリファレンス

第3章

ないFreeBSDサーバを使うケースが多く見られま
す。ネットワーク関連のコマンドはFreeBSDサー
バを管理するための重要なコマンドです。

■ ifcon� g

ネットワークインターフェースに関する設定は
ifconfigコマンドで行います。IPアドレスの設定、
ネットマスクの設定、ネットワークインターフェー
スカードの状況確認、機能設定、有効無効の切り替
え、ブリッジの設定など、さまざまな操作が可能で
す。ネットワークの設定が固定化している場合には
使うことが少ないコマンドですが、システム構築時
などネットワークの設定を頻繁に変更したり、ノー
トPCなど接続場所を頻繁に変えるような場合には
よく使うコマンドです。

ifconfigは引数に何も指定しなければ、図1のよ
うに現在設定されているネットワークインター
フェースの情報が表示されます。この例であれば
em0というネットワークインターフェースと、lo0と
いうソフトウェア的に作成されたネットワークルー
プバックインターフェースが表示されています。
通常、ネットワークインターフェースの設定は

/etc/rc.confなどに書き込みます。実は、やっている
ことはシステム起動時にシェルスクリプトで/etc/

rc.confの内容を読み込んだ後に、ifconfi gコマンドを
実行してネットワークの設定を実施するというもの
です。典型的には図2のような使い方をします。図
2では、em0というネットワークインターフェースに
IPv4アドレス192.168.1.10を設定し、ネットマスク
として255.255.255.0を指定しています。
なお、読んでいてわからない部分が出てきたら
マニュアルを引いてみてください。この節の説明で
あれば、「man ifconfi g」「man em」「man lo」などでそ
れぞれの詳しい説明が表示されます。

■ dhclient

DHCPでIPアドレスを取得したい場合には
dhclientコマンドを使います（図3）。一時的にIP

アドレスを変更して作業するために ifconfigで設定
を変更して、そのあとでdhclientを実行して元の状
態に戻す（ここではDHCPでの集中管理が実施され
ていると想定して）といった場合に使います。作業
用のノートPCなどをネットワークに接続すると
いった用途でも使われます。

図2　ifcon� gの使用例 ▼

% ifconfig em0 inet 192.168.1.10 netmask 255.255.255.0 up

図3　dhclientの使用例 ▼

% dhclient em0
DHCPREQUEST on em0 to 255.255.255.255 port 67
DHCPACK from 192.168.1.10
bound to 192.168.1.101 -- renewal in 300 seconds.

図1　ifcon� gの実行 ▼

% ifconfig
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 options=4219b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4,WOL_MAGIC,VLAN_HWTSO>
 ether e0:69:95:f5:42:84
 inet 192.168.1.101 netmask 0xffffff00 broadcast 192.168.1.255
 nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
 media: Ethernet autoselect (1000baseT <full-duplex>)
 status: active
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
 options=600003<RXCSUM,TXCSUM,RXCSUM_IPV6,TXCSUM_IPV6>
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5
 inet 127.0.0.1 netmask 0xff000000
 nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>

78 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 79

■ ping / traceroute

特定のホストへの到達性を調べるコマンドが
ping、どの経路を通って到達しているのかを調べ
るコマンドがtracerouteです。pingは簡単なハー
トビート（死活確認）としても利用できます（図4）。

tracerouteは、たとえばメールが送れなくなった
とか、sshでログインできなくなったといった場合
に、そのホストにたどり着くためのネットワークの
どこに問題があるのかを調べるといった用途で使わ
れます（図5）。
たとえばクライアントからサーバに対して

tracerouteを実行し、LANとWANの接続部分にあ
たるルータまで到達していることがわかれば、たぶ
んルータで実施したファイアウォールの設定変更な
どが影響してアクセスできなくなったのではない

か、といったことが推測できます。

■ dig / resolv.conf(5)

DNSの正引きおよび逆引きの確認にはdigを使い
ます。図6の実行でDNSサーバに対してgihyo.jp

というドメイン名のAレコードを問い合わせてい
ます。ここではDNSサーバは「192.168.1.1」のIPv4

アドレスのサーバに存在しており、「gihyo.jp」とい
うドメイン名のIPv4アドレスは「49.212.34.191」で
あることがわかります。いわゆる正引きと呼ばれる
問い合わせです。
図7の使い方で逆引きになります。DNSサーバ（こ

こでは192.168.1.1）に対して「49.212.34.191」という
IPv4アドレスに対応するドメイン名を問い合わせ
ています。49.212.34.191に対応するドメイン名とし
て「gihyo.jp」が返ってきていることがわかります。

図4　pingの使用例 ▼

% ping -c 3 192.168.1.105
PING 192.168.1.105 (192.168.1.105): 56 data bytes
64 bytes from 192.168.1.105: icmp_seq=0 ttl=64 time=16.064 ms
64 bytes from 192.168.1.105: icmp_seq=1 ttl=64 time=292.466 ms
64 bytes from 192.168.1.105: icmp_seq=2 ttl=64 time=1.318 ms

--- 192.168.1.105 ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 1.318/103.283/292.466/133.908 ms

図5　tracerouteの使用例 ▼

% traceroute 192.168.1.105
traceroute to 192.168.1.105 (192.168.1.105), 64 hops max, 52 byte packets
 1 192.168.1.105 (192.168.1.105) 101.740 ms 0.982 ms 1.143 ms

図6　DNSの正引き ▼

% dig gihyo.jp a

; <<>> DiG 9.8.4-P1 <<>> gihyo.jp a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 24617
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;gihyo.jp. IN A

;; ANSWER SECTION:
gihyo.jp. 27650 IN A 49.212.34.191

;; Query time: 16 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Mon Apr 8 19:51:50 2013
;; MSG SIZE rcvd: 42

78 - Software Design

第1章

Jun. 2013 - 79

FreeBSD編
サーバ運用と自動化に役立つ厳選コマンドリファレンス

第3章

DNSでは、IPv4アドレスはPTRレコードという
形式で保存されます。49.212.34.191というIPv4は
アドレスは「191.34.212.49.in-addr.arpa.」という名前
で保存されます。アドレスを1バイトごとに区切っ
て、逆順に並び替えたものに .in-addr.arpa.という文
字列を付加したものです。図7のコマンドは「dig

191.34.212.49.in-addr.arpa. ptr」のようにコマンドを
実行して191.34.212.49.in-addr.arpa.のPTRレコー
ドを問い合わせるという内容と同じです。ただし、
これでは人間が理解しにくいので、「-x」オプション
をつけて自動的にPTRレコードに格納されている
形式に変換してから問い合わせるようにしていま
す。

DNSサーバのIPアドレスは/etc/resolv.conf

ファイルに書き込みます（リスト1）。dhclientを実行
するとresolv.confファイルは自動的に差し替わる
しくみになっています。

OSはDNSサーバに問い合わせを実施するため
のライブラリを提供しています。ライブラリは問い

合わせがあると/etc/resolv.confを読み、そこに記
載されているDNSサーバへ問い合わせを実施しま
す。リスト1のように「nameserver 192.168.1.1」のよ
うに記述があれば、192.168.1.1というIPv4アドレス
のサーバに対して名前解決の問い合わせをします。

■ netstat

ネットワークに関係するさまざまな情報を出力
するコマンドがnetstatです。もっとも使われる
のは、デフォルトルータのIPアドレスを取得する
ためではないかと思います（図8）。

■ fetch

HTTPやFTP経由のファイルを取得するには
fetchコマンドを使います（図9）。同じようなコマ
ンドにMac OS XやLinuxディストリビューション
などでよく使われるcurlがあります。

リスト1　/etc/resolv.conf ▼

search example.co.jp
nameserver 192.168.1.1

図7　DNSの逆引き ▼

% dig -x 49.212.34.191 ptr

; <<>> DiG 9.8.4-P1 <<>> -x 49.212.34.191 ptr
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17769
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:
;191.34.212.49.in-addr.arpa. IN PTR

;; ANSWER SECTION:
191.34.212.49.in-addr.arpa. 3566 IN PTR gihyo.jp.

;; AUTHORITY SECTION:
34.212.49.in-addr.arpa. 3566 IN NS ns2.dns.ne.jp.
34.212.49.in-addr.arpa. 3566 IN NS ns1.dns.ne.jp.

;; ADDITIONAL SECTION:
ns1.dns.ne.jp. 98 IN A 210.188.224.9
ns2.dns.ne.jp. 98 IN A 210.224.172.13

;; Query time: 8 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Mon Apr 8 19:52:12 2013
;; MSG SIZE rcvd: 141

80 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 81

■ newaliases / aliases(5)

FreeBSDサーバを構築したあとで管理者がすぐ
に作業することの1つに、/etc/aliasesファイルを編
集してrootに飛ばされるメールを自分のメールア
ドレスに転送する、というものがあります。こうす
るとFreeBSDからのメール、いわゆる「Charlie

Rootからのメール」が届くようになります。
FreeBSDではおなじみの名前であり、出社してか
ら最初にチェックするのは、このCharlie Rootか
ら届く報告メールです。
図10のような設定で、root宛てのメールがすべて

daichi@gihyo.jpおよびdaichi@gihyo.co.jpに転送さ

れるようになります。転送先に複数のアドレスを登
録する場合、カンマ区切りで連続してアドレスを記
述します。/etc/aliasesファイルは編集したあとで
必ずnewaliasesコマンドを実行してデータベース
を更新する必要があります。忘れないようにしま
しょう。

■ ipmitool

データセンターに設置されたラックマウント
サーバでは、物理的にアクセスできるサーバと違っ
てBIOSの設定変更や、強制的な電源リセットなど
が困難です。この場合、IPMIを使って制御します。
図11のようにipmitoolコマンドで192.168.1.103

図8　netstatの使用例 ▼

% netstat -nr -f inet
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 192.168.1.1 UGS 0 415939 em0
127.0.0.1 link#5 UH 0 3255 lo0
192.168.1.0/24 link#1 U 0 77678 em0
192.168.1.101 link#1 UHS 0 0 lo0

図9　fetchの使用例 ▼

% fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/amd64/amd64/ISO-IMAGES/9.1/FreeBSD-9.1-RELEASE- ｭ
amd64-bootonly.iso
FreeBSD-9.1-RELEASE-amd64-bootonly.iso 100% of 146 MB 324 kBps 00m00s

図10　aliasesの記述例（一部）と更新 ▼

% cat /etc/mail/aliases
…（略）…
root: daichi
daichi: daichi@gihyo.jp,daichi@gihyo.co.jp
…（略）…
% newaliases
/etc/mail/aliases: 31 aliases, longest 17 bytes, 330 bytes total

より高いセキュリティが求められるサービスを
提供する場合や、1台のサーバに何十といったホス
ト環境を作って提供する場合にはjailコマンドが
使われます。chrootの発想を推し進めた機能で、
ファイルシステム名前空間以外にもさまざまな空間
を隔離します。

jail環境の構築方法はここでは説明しませんので、
FreeBSD HandbookのJailの章（http://www.freebsd.
org/doc/handbook/jails.html）を参考にするか、PC-
BSDをインストールしてWardenを使ってみてくだ
さい。WardenはGUIで jailの構築や利用ができるツー
ルで、はじめて使ってみるにはよいとっかかりです。

仮想FreeBSD環境を構築する「jail」NOTE

http://www.freebsd.org/doc/handbook/jails.html
http://www.freebsd.org/doc/handbook/jails.html

80 - Software Design

第1章

Jun. 2013 - 81

FreeBSD編
サーバ運用と自動化に役立つ厳選コマンドリファレンス

第3章

の IPv4が設定されているBMC（Baseboard

Management Controller）に対して「ユーザ：admin、
パスワード：admin」というアカウント権限で電源リ
セットをかけています。物理的にリセットボタンを
押すのと同じ処理を実施していると考えてくださ
い。BMCはM/B（Motherboard）とは独立した回路
になっており、PCとは独立して動作するためこの
ような管理が可能になっています。
とくにサーバが反応しなくなった場合にハード

リセットをかけるためにIPMIが使われます。制御
用のコマンドはPorts Collectionのsysutils/

ipmitoolからインストールできます。

ファイル管理

■ tail

ログファイルを目視でモニタリングする場合に
tailコマンドが使われます。tailは「-f」オプション
を指定すると対象ファイルをモニタリングしつづ
け、新しい書き込みがあるとそれを読み込んで表示
します。設定の変更などを実施し、サービスが出力

するログをリアルタイムにチェックしたい場合など
に使います。
図12のコマンドで、/var/log/httpd-error.logと
いうファイルのモニタリングに入ります。ターミナ
ルはこの状態でいったん出力が停止し、何か新しい
メッセージが/var/log/httpd-error.logに書き込ま
れると、その内容が順次このターミナルに出力され
るようになります。

mount / swapinfo

ファイルシステムがどのようなオプション指定
で使われているかは、mountコマンドに引数を与え
ないで実行することで表示できます。dumpfsコマン
ドでより詳細なデータを得ることができますが、通
常の使い方であればmountで十分です。
たとえば図13の出力で、システムには/（root）、

/dev、/procという3つのマウントポイントがあり、
/はUFS＋Softupdatesでフォーマットされた物理
ディスク（SATAの1つ目に接続されたディスクの
GPTテーブル2番目のパーティションにある）であ
ることがわかります。/devは動的にデバイスファイ
ルを生成するデバイスファイルシステムになってい

図11　ipmitoolによるハードリセットの例 ▼

% ipmitool -I lanplus -H 192.168.1.103 -U admin -P admin chassis power reset

図13　mountの出力例 ▼

% mount
/dev/ada0p2 on / (ufs, local, soft-updates)
devfs on /dev (devfs, local, multilabel)
procfs on /proc (procfs, local)

図12　tailの使用例 ▼

% tail -f /var/log/httpd-error.log
[Fri Apr 05 21:51:56 2013] [notice] caught SIGTERM, shutting down
[Fri Apr 05 21:54:11 2013] [warn] Init: Session Cache is not configured [hint: SSLSessionCache]
[Fri Apr 05 21:54:11 2013] [notice] Digest: generating secret for digest authentication ...
[Fri Apr 05 21:54:11 2013] [notice] Digest: done
[Fri Apr 05 21:54:11 2013] [notice] Apache/2.2.24 (FreeBSD) PHP/5.4.13 mod_ssl/2.2.24 OpenSSL/ ｭ
0.9.8y DAV/2 configured -- resuming normal operations
[Fri Apr 05 21:54:34 2013] [notice] caught SIGTERM, shutting down
[Sat Apr 06 12:06:30 2013] [warn] Init: Session Cache is not configured [hint: SSLSessionCache]
[Sat Apr 06 12:06:30 2013] [notice] Digest: generating secret for digest authentication ...
[Sat Apr 06 12:06:30 2013] [notice] Digest: done
[Sat Apr 06 12:06:29 2013] [notice] Apache/2.2.24 (FreeBSD) PHP/5.4.13 mod_ssl/2.2.24 OpenSSL/ ｭ
0.9.8y DAV/2 configured -- resuming normal operations

82 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 83

ること、/procfsはプロセス情報をファイルシステム
に写像するプロセスファイルシステムであることが
わかります。
システムの故障やヒューマンエラーによるシス

テム破壊を避けるために、特定のパーティションを
リードオンリーにして運用することがあります。
リードオンリーにしたパーティションは図14や図
15のようにmountに「-o マウントオプション」で動
的に設定を変更できます。

mountではスワップの使用状況は表示されませ
ん。スワップ情報の確認にはswapinfoコマンドを
使います。図16の例ではちょっとだけスワップア
ウトが発生していることがわかります。
現在のシステムではメモリを十分に搭載すること

ができるので、基本的にはスワップアウトを発生さ
せないようにシステムを組みあげるのが、高速なシ
ステムを構築する場合のキーポイントです。swapinfo

を使ってスワップアウトが発生しているかどうかを
チェックし、スワップアウトしているようであれば
重いアプリケーションを終了させたり、システムを
再起動したり、メモリの追加を検討します。
データベースソフトウェアなどにバグがある場合、

使い続けると異様にメモリを消費することがありま
す。データベースに限らず、サーバのように動作し
続けるタイプのソフトウェアはこの問題を発生させ
ることがあります。swapinfoでスワップの状態を監視
し、スワップアウトが異常なレベルに達していると

判断した場合には、自動的にシステムを再起動する
といった処理を仕込むことがあります。安易な方法
ではありますが、実効性が高く効果的な方法です。

■ ch� ags

保護ドメインやアクセス制御リストで削除でき
ないファイルを作ることはできますが、管理者権限
では削除できます。MAC（Mandatory Access

Control；強制アクセス制御）を使って管理者も削除
できない状態にもできますが、これは規制が強すぎ
て不便だったりします。この中間的な機能として使
えるのが、ファイルシステムの拡張機能を使う
chflagsコマンドです。
どうしても削除してはまずいファイルについて

はchflagsで変更不可能のフラグを指定します（図
17、18）。管理者権限で誤ってrmを実行するといっ
たエラーからファイルを保護できます。

ジョブ、タスク管理

■ cron / crontab

サーバ管理の基本は、スクリプトで記述できる
ことなど、人間が作業する必要がないものについて
は、すべて自動化してサーバに自動的に実施させる
ことにあります。その場合、cronまたはcrontab
で自動的に実施するスクリプトやプログラムを指定

図14　書き込みを許可 ▼

% mount -u -o rw /

図15　書き込みを禁止 ▼

% mount -u -o ro /

図16　スワップ情報の確認例 ▼

% swapinfo
Device 1K-blocks Used Avail Capacity
/dev/ada0p3 4194304 35448 4158856 1%

図19　crontab（設定ファイル）の記述例 ▼

*/4 * * * * root /MONITOR/MONITOR.001.SH > /dev/null 2>&1
*/3 * * * * root /MONITOR/MONITOR.002.SH > /dev/null 2>&1
*/5 * * * * root /MONITOR/MONITOR.003.SH > /dev/null 2>&1

図17　削除不可設定 ▼

% chflags schg DATA.20130408
% rm DATA.20130408
chflags: invalid flag: unschg

図18　削除可能設定 ▼

% chflags 0 DATA.20130408
% rm DATA.20130408

82 - Software Design

第1章

Jun. 2013 - 83

FreeBSD編
サーバ運用と自動化に役立つ厳選コマンドリファレンス

第3章

して利用します（crontabはコマンド名と設定ファイ
ル名が同じなので注意してください）。
図19の設定で、15分ごとに/MONITOR/MONITOR.

001.SHが、20分ごとに/MONITOR/MONITOR.

002.SHが、12分ごとに/MONITOR/MONITOR.

003.SHが実行されるようになります。
このコマンドはさまざまな使い方ができます。
たとえば、“アクセスログをチェックし、sshポート
に対して不正アクセスを試みてくるIPアドレスを
ドロップの対象として、ファイアウォールの設定を
アップデートする”といった処理をするスクリプト
を10分おきに実行できたりします。

/etc/crontabにはシステムワイドなジョブを追加
します。書き変えたあとは「service cron restart」と
してcrondを再起動します。ユーザ権限で動作させ
る場合、対象となるユーザで「crontab -e」としてエ
ディタを起動し、ジョブスケジュールを書き込みま
す。なんらかの出力がある場合、実行されるごとに
メールが送られてきますので、それを避けたい場合
には上記のようにリダイレクトします。

ユーザ管理

■ adduser / passwd / pw

ユーザの追加にはadduserコマンド、パスワー
ドの変更にはpasswdコマンドを使います。adduser

とpasswdはインタラクティブ型のコマンドで、対
話的に入力しながら使います。管理するユーザ数が
少ない場合にはこれでもよいのですが、数百といっ

た単位で管理するとなると、この方法には限界があ
ります。また、繰り返し同じ環境をセットアップす
るスクリプトを制作する場合にも、インタラクティ
ブ型のコマンドは使えません。この場合、pwコマン
ドを使います（図20、21、22）。
作成したユーザにデフォルトの設定ファイルが

ほしい場合、/usr/share/skel/にテンプレートがあ
りますので、これをコピーします。ランダムなパス
ワードはapgコマンドを使えば簡単に作成できま
す。apgはPorts Collectionのsecurity/apgからイン
ストールします。

ツール・ユーティリティ

■ bash / zsh

サーバ管理業務はターミナルで行います。作業
効率の引き上げのために高機能シェルを使います。
これもなんでもよいのですが、シェルスクリプトと
同じほうが混乱が少なくてよいでしょうから、sh系
（POSIX.1/POSIX:2008）のシンタックスを採用し
ているbashかzshあたりがよいでしょう。bashは
shells/bashから、zshはshells/zshからインストー
ルします。

■ tmux

安定したネットワークと大きなスクリーンの
デュアルヘッドなど十分なスクリーンサイズが確保
されている場合、複数のターミナルソフトウェアを
起動してssh経由で作業できますが、ネットワーク

図22　パスワード設定 ▼

% printf "パスワード" ¦ pw usermod -n daichi -h 0

図21　ユーザ追加 ▼

% pw useradd -n daichi -u 1001 -m -d /home/daichi -g 1001 -s /bin/sh

図20　グループ追加 ▼

% pw groupadd -n daichi -g 1001

84 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

が不安定だったりノートPCなどディスプレイサイ
ズに限りがある場合、tmuxなどを併用します。

tmuxを使うことでコマンドの実行を中断するこ
となく接続・切断を繰り返したり、複数のターミナ
ルを単一のウィンドウの中に保持できます。tmuxは
sysutils/tmuxからインストールします。

■ alias

サーバ管理業務はパターン化した操作が多く、
作業の自動化が簡単です。多用する処理はスクリプ
トを記述したり、シェルのaliasに登録するなどし
て処理のショートカットを用意します（図23）。

■ kbdmap

FreeBSDは英語キーボードをデフォルトのキー
ボードとしています。日本語キーボードをサーバ
ルームに持って行って作業した場合、日本語キー
ボードを英語キーボードと解釈するため、キーに印
字されているものとは別のキーが入力されることが
あります。
サーバ管理者はこうした状況に遭遇することが

多いため、日本語キーボードのまま英語キーボード
の配列で入力するという技能を身につけてしまって
いることがありますが、キーマップを変更すれば済

む話ですので、変更します。kbdmapコマンドを引数
なしで実行すれば選択画面が表示されますので、そ
こから選択します（図24）。

おわりに

サーバ管理業務の基本は、自動化できることは
自動化し、人間が繰り返しの操作を行うようなこと
を避けることです。作業しながら人力で繰り返し作
業をしているなと感じたら、一度作業を止め、その
作業を自動化することを考えてみてください。ここ
で取り上げたコマンドはそうした自動化に貢献する
ツールになるはずです。ﾟ

図24　キーボード選択画面 ▼

図23　aliasの記述例 ▼

% alias
backup='/TOOLS/BACKUP.SH'
df='df -h'
du='du -h'
edit_ie6='vim /CONTENTS/IE6HACK.CSS'
edit_ie67='vim /CONTENTS/IE67HACK.CSS'
edit_ie7='vim /CONTENTS/IE7HACK.CSS'
edit_js='vim /CONTENTS/MENU.JS'
edit_main='vim /CONTENTS/MAIN.CSS'
edit_menu='vim /CONTENTS/MENU.CSS'
edit_temp='vim /CONTENTS/TEMPLATE.HTML; update_errors'
la='ls -a'
ll='ls -al'
ls='ls -G -w'
su='su -l'
update_errors='/TOOLS/ERROR404MAKE.SH; /TOOLS/ERROR400MAKE.SH'
update_event='/TOOLS/EVENTMAKE.SH'
update_news='/TOOLS/NEWSMAKE.SH'
update_top='/TOOLS/TOPMAKE.SH'
update_whatsnewrss='/TOOLS/RSSMAKEWHATSNEW.SH'
where='command -v'
which-command=whence

Jun. 2013 - 85

第1章

はじめに

普段、サーバの運用をしていると、ユーザからの

アクセスが増え、負荷が増大して遅くなったり、

サーバの操作が重くなったりすることがあります。

その際、ただ闇雲にチューニングしていては効果が

発揮されないばかりか逆効果になることもあります。

まずはきちんとボトルネックを把握し、有効な対策

をとれるようにしましょう。本稿では、筆者が普段

使用しているLinuxのパフォーマンスモニタを紹介

します。

CPUの負荷を把握する

サーバの動作が重いと感じたら、まず始めにtop
コマンドでCPU負荷の高いプロセスを調べてみま

しょう。図1のように表示されるはずです。

さまざまな情報が表示されますが、8番目のフィー

ルド（プロセス状態）に着目します。「R」と表示される

プロセスは、実行（可能）状態となっており、CPUリ

ソースを消費しています。併せて9番目のフィール

ド（CPU利用率）を確認し、継続してパーセンテージ

が高くなっている場合は、CPUがボトルネックに

なっている可能性があります。

状態が「D」になっているプロセスは、ストレージ

のIO完了待ち状態が頻発しており、ストレージがボ

トルネックになっている可能性があります。後述す

るストレージの利用状況を併せて把握すると良いで

しょう。

状態が「S」になっているプロセスは、単純にス

リープしているか、ネットワークを介したデータの

送受信などのイベント待ちの状態が多く発生してい

ます。CPUには余裕があるが、通信が遅くなってい

る場合は、ネットワークがボトルネックになってい

る可能性があります。

CPU、もしくはストレージがボトルネックになっ

ている場合、vmstatコマンドを用いて切り分けを行
います。実行例を図2に示します。

右から3番目のフィールド（cpuのid）がCPUの空

きぐあい（％）を、右から2番目のフィールド（cpuの

wa）がストレージのIO完了待ちの割合（％）を示して

大久保 修一　OHKUBO Shuichi　さくらインターネット（株）　 Twitter @jq6xze_1

Linuxのパフォーマンス
モニタのおさらい

Column3

図1　topコマンドの実行例 ▼

[root@test ̃]# top
top - 10:23:00 up 136 days, 16:00, 2 users, load average: 0.51, 0.95, 0.67
Tasks: 378 total, 2 running, 376 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.3%us, 1.0%sy, 0.0%ni, 98.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 16325776k total, 16155300k used, 170476k free, 139088k buffers
Swap: 18563064k total, 1115420k used, 17447644k free, 5219060k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 99 root 25 5 0 0 0 R 5.0 0.0 9579:25 ksmd
 419 root 20 0 511m 244m 876 S 0.3 1.5 205:50.17 qemu-kvm
27159 root 20 0 15264 1540 1000 R 0.3 0.0 0:00.07 top
…（略）…

86 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 87

います。この例ではCPUリソースは消費していない

もののIO完了待ちが発生しており、ストレージがボ

トルネックになっている様子がうかがえます。

なお、マルチコアのCPUを使用している場合、

vmstatは全コアの利用率を平均した値を示します。

併せてmpstatコマンドを用いて、コアごとの利用率
を把握すると良いでしょう。図3の例では、1つのコ

ア（#1）に処理が偏って頭打ちし、マルチコアを活か

せていないデーモンが存在することが確認できます。

特定コアに処理が偏っている場合、デーモンのプ

ロセス数やスレッド数を増やすなどの対策が有効で

す。もし増やせない場合やすでにすべてのコアを使

い切っている場合には、CPUのスペックアップやサー

バの負荷分散といった対策が必要になるでしょう。

メモリの利用率を把握する

現在のメモリの利用率を把握するには、freeコマ
ンドを使うのが手軽です。図4のように、「-m」オプ

ションをつけるとMB単位で表示されます。

この例では、トータル16GBの搭載メモリのうち、

空きメモリは169MBで、ほぼすべて使用されてい

ることがわかります。ただし、ストレージのキャッ

シュに使用されている空間（buffersとcached欄）が

5GB程度存在するので、プロセスに割り当てられて

いる実際の消費メモリは、差し引き10GB程度であ

ることがわかります。3行目の値は、補正した値が表

示されるため、この空きメモリが少なくなっている

場合は、メモリの増設といった対策が必要になるで

しょう。

4行目はSwap領域の利用量です。メインメモリ

から1GB程度のページが追い出されていることがわ

かります。休眠プロセスのページが多少追い出され

る分には問題ありませんが、アクティブなページが

追い出されると、パフォーマンス劣化につながりま

す。Swapの利用量が増えた場合は注意しましょう。

ストレージの負荷を把握する

ストレージへのアクセス状況を把握するには

iostatコマンドを用います。図5のように実行する
と、1秒間隔でブロックデバイス毎の負荷状況が表示

図4　freeコマンドの実行例 ▼

[root@test ̃]# free -m
 total used free shared buffers cached
Mem: 15943 15773 169 0 136 5098
-/+ buffers/cache: 10538 5404
Swap: 18127 1089 17038

図2　vmstatコマンドの実行例 ▼

[root@test ̃]# vmstat 1
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 0 34 1115420 157724 138616 5224504 0 0 4 12 0 0 1 1 96 2 0
 1 20 1115420 157700 138620 5224764 0 0 0 564 2040 3579 0 1 62 37 0
 0 0 1115420 157584 138624 5224992 0 0 0 304 1988 3292 0 1 71 28 0
…（略）…

図3　mpstatコマンドの実行例 ▼

[root@test ̃]# mpstat -P ALL 1
11:06:59 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle
11:07:00 all 12.55 0.00 0.12 0.00 0.00 0.00 0.00 0.00 87.33
11:07:00 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 99.00
11:07:00 1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:07:00 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
…（略）…

86 - Software Design

第1章

Jun. 2013 - 87

Linuxのパフォーマンスモニタのおさらい Column3

されます。

r/sは秒間あたりの読み込み、w/sは秒間あたりの

書き込みIO数（IOPS）を示しています。データベー

スのようにランダムアクセスが発生するワークロー

ドの場合、一般的なHDD単体では200～300IOPS

が限界となります。ストレージの性能はドライブの

種類（SSDやHDD）やRAID構成によって大きく変わ

りますので、事前に計測し、限界に近づいていない

か確認しましょう。もし、プロセス状態がIO完了待

ち（D）になるようであれば、ストレージの高速化が

必要になります。

ネットワークの流量を把握する

ネットワークの流量をリアルタイムに把握するに

は、vnstatコマンドが便利です。eth0の流量をリア
ルタイムに表示する例を図6に示します。

もし帯域が不足している場合は、NICやスイッチの

広帯域化が必要になるでしょう。一方、帯域は不足

していないのに思ったようにスループットが出ない

場合は、途中の経路で輻輳していたり、パケットロ

スが発生している可能性もあります。

ボトルネックの調査は難しい

本稿では、Linuxにおける主要なパフォーマンスモ

ニタの使い方を紹介してきました。ただし、実際の

現場では目に見えないボトルネックがたくさんあり、

追跡が非常に難しいケースもあります。とくにスト

レージはワークロードのパターン（ランダム、シーケ

ンシャル）で10倍以上も性能が変化しますし、イン

ターネットを経由した通信では、経路の途中で何が

起きているかまったくわかりません。

しかしながら、「調査の入り口」として今回紹介し

たコマンドをマスターしておけば、その後の切り分

けがスムーズに進むはずです。ﾟ

図5　iostatコマンドの実行例 ▼

[root@test ̃]# iostat -dmxt 1
04/15/13 21:29:52
Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util
sda 0.00 178.00 0.00 161.00 0.00 1.32 16.84 3.13 19.52 6.21 100.00
dm-0 0.00 0.00 0.00 339.00 0.00 1.32 8.00 9.24 27.30 2.95 100.00
dm-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dm-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
…（略）…

図6　vnstatコマンドの実行例 ▼

[root@test ̃]# vnstat -i eth0 -l
Monitoring eth0... (press CTRL-C to stop)

 rx: 256.63 Mbit/s 22665 p/s tx: 4.38 Mbit/s 8423 p/s

どうしてもボトルネックがわからない場合、最終
手段として流れているデータをダンプすることがあ
ります。ストレージの場合、blktraceコマンドを使
います。以前、IO発行に遅延が生じる事象をこのコ
マンドで調べた結果、IOスケジューラに起因してい
ることが判明したケースがありました。
ネットワークの場合、tcpdumpコマンドや

Wiresharkを用いてパケットの中身や送受信のタイ
ミングを確認します。ドライバのバグでチェックサ
ムが正しく生成されていなかったり、回線やルータ
の故障でビット化けが発生していたり、中身を見て
みなければわからないさまざまな事象を発見できま
した。

熟練者向けのコマンドNOTE

88 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 89

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

デスクトップOSでもコマンドライン
を使うワケ

本誌読者の中には、この春から仕事で、あるい
は研究で、UNIX/Linuxを使いはじめたという方も
多いと思います。1ヵ月が経ち、少しはUNIXの世
界に慣れてきたころでしょうか？
さて、本特集でも取り上げたRed Hat Enterprise

LinuxやCentOS、FreeBSDといったOSは、どち
らかと言えばサーバ用途として使われることが多い
OSです。通常サーバにはGUIをインストールせ
ず、コマンドラインから操作するのが普通です。で
すのでそのようなOSを業務で使う場合、Windows

やMacのデスクトップからSSHで接続して操作す
ることになるでしょう。ですが場合によってはデス
クトップでもUNIX系のツールを使うために（ある
いは新人が早くUNIX環境に慣れるために）、デス
クトップにもLinuxを使うというケースも、決して
珍しくはありません。現在、そのような用途でまず
最初に候補として挙げられるのがUbuntuではない
かと思います。

Ubuntuは「誰でも使える」ことを目指して開発さ
れているLinuxディストリビューションです。デス
クトップとしても使いやすいUNIX系OSという特
徴が注目され、最近では大学などで利用されるケー
スも増えてきました。

UbuntuのデスクトップはGUIだけで操作が可能
なように設計されています。各種設定や運用に必要

なツールにはGUIが用意されていますので、実際
の運用でコマンドラインが必要になる場面はほとん
どありません。またそのインターフェースは、
WindowsやMacの利用経験があるユーザであれば、
「なんとなく触っている」うちに使い方を身に付ける
ことができる程度には直感的です。そんなGUIだ
けで事足りるUbuntuで、あえてコマンドラインを
使う意味はあるのでしょうか？
答えはYesです。コマンドラインには、GUIには
ないさまざまなメリットがあります。たとえば大量
のデータの一括処理や処理の自動化は、マウスを
使った手作業の苦手とする分野ですが、逆にコマン
ドラインが最もその力を発揮する分野でもありま
す。ネット上では「コマンドラインは旧世代の遺物」
などといった意見も見られますが、これは大きな勘
違いだと言えるでしょう。GUIとコマンドラインに
はそれぞれ得手不得手があります。コマンドライン
は前時代的な道具などではなく、GUIが苦手とする
作業を効率よく解決するために、システムから与え
られた強力な武器なのです。
この章ではUbuntuをより便利に使うための、デ

スクトップユーザにも役立つコマンドラインの活用
法を紹介します。

コマンドを使って
面倒な作業を簡単に

デスクトップでメーラー、ブラウザ、オフィスス
イートなどを利用して仕事をしている場合で、コマ

WindowsやMacのGUI操作に慣れてしまうと、仕事でUNIX系サーバ
でも扱わない限り、コマンド操作なんて縁遠いものだと思っていません
か？　とくにデスクトップ環境ではほとんど考えたことがないと思います
が、実はコマンドラインのほうが楽できることがあるんです！
水野 源　MIZUNO Hajime　Ubuntu Japanese Team　 Mail mizuno-as@ubuntu.com

第4章 Ubuntu編
GUIが苦手とする作業を効率よく
解決するために、デスクトップ
でもコマンドが活躍する

88 - Software Design

第1章

Jun. 2013 - 89

Ubuntu編
GUIが苦手とする作業を効率よく解決するために、デスクトップでもコマンドが活躍する

第4章

ンドラインが役立つシチュエーションはどこでしょ
うか。それは前述のとおり、データの一括処理や処
理の自動化です。ここでは先日、筆者の職場で実際
にあった例をもとに、コマンドを使って大量のテキ
ストデータを処理、整形する方法を紹介します。

■ 大量のデータを表にまとめたい !

筆者の職場では、多くのLinuxサーバを運用して
います。先日、その中のメールサーバを利用してい
るお客さんから、次のような要求がありました。

「メーリングリストをたくさん運用させてもらって

るんだけど、メーリングリストの一覧と人数、それ

と参加者のリストをもらえないかな。Exce lで注1」

メーリングリストの設定は、サーバのmlディレク
トリの中に格納されています。ディレクトリの中に
は、メーリングリストごとにサブディレクトリが切
られており、その名前は「メーリングリストのアド

注1） 最終的なデータをExcelやWordで要求されるのは、よくある
ことなのです……。

レスのローカルパート部分」となっています（図1）。
メーリングリストの参加者は、そのサブディレクト
リの中のmembersというテキストファイルに、1行1

ユーザの形式でリストアップされています（図2）。
ここで各メーリングリストのmembersファイル
をテキストエディタで開き、Excelにコピー＆ペー
ストしてもかまいません。メーリングリストの数が
2個や3個でしたら、それで対応できるでしょう。
しかし筆者がディレクトリの数を数えてみたとこ
ろ、その数は700を越えていました。とても手作業
で処理できる量ではありません。この時点で、コマ
ンドを利用した一括処理を検討します。

■ テキストの整形を繰り返し実行する
最終的に、表1のようなシートを起こすことを考
えてみます。ディレクトリ名にアドレスのドメイン
パートを追加すれば、メーリングリスト名が得られ
ます。参加人数は、membersファイルからコメント
行を除いたものの行数を数えればよいでしょう。メ
ンバー一覧は、membersファイルからコメントを除
いたものについて、改行をカンマ区切りに変換すれ
ば1行にまとめられそうです。これらの情報を1行
ずつ書き出してCSVファイルにできれば、目的は
達成できそうです。
そこで筆者は、図3のようなコマンドを考えてみ
ました。
まず複数のディレクトリを順番に処理する必要

図1　メーリングリストの設定の構成 ▼

/var/spool/ml
├── admin ← 各MLごとのサブディレクトリ
│ └── members ← そのMLの参加者のリスト
├── manager
│ └── members
├── market
│ └── members
…（略）…

図2　メーリングリストの参加者のリストの例（membersファイル） ▼

ikeuchi@example.com
#BYE horiuchi@example.com ← 先頭が#ではじまる行はコメントとして扱われ無視される。MLから抜けた人をコメントとして残してある場合などがある
#BYE kida@example.com
amano@example.com
murakami@example.com
takizawa@example.com

メーリングリスト名 人数 メンバー1 メンバー2 メンバー3 ……
admin@ml.example.com 5 ikeuchi@example.com amano@example.com murakami@example.com ……
manager@ml.example.com 6 ooki@example.com takaoka@example.com akiyama@example.com ……
market@ml.example.com 9 oshita@example.com miura@example.com uchimura@example.com ……

…（略）…

表1　メーリングリストのリストを表にする ▼

90 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 91

があるため、繰り返し構文のforを利用します。for
は inの後に指定されたリストの内容を、1つずつ変
数に代入しながら、doとdoneで囲まれた内容を繰り
返し実行する構文です。ここではリストに「*（アス
タリスク）」を指定しています。アスタリスクはワイ
ルドカードなどとも呼ばれ、あらゆるパターンの文
字列にマッチします。つまり、カレントディレクト
リにある全ファイル（各メーリングリストのディレ
クトリ）をリストに指定したことを意味します注2。
これでループが繰り返されるたびに、リストの要素
（カレントディレクトリ内にあるファイル／ディレ
クトリ名）が順番に変数dirに代入され、doとdone

の間にあるechoコマンドが実行されます。
それでは、echoコマンドが実際に出力するデータを
見ていきましょう。echoコマンドは、引数で与えられ
た二重引用符の中身を標準出力（ディスプレイ）へ出
力しています。二重引用符で囲われた中には変数や
他のコマンドがカラムごとに埋め込まれ、ここで各
メーリングリストの設定を1行に整形しています。

1カラム目の処理

まず最初は、メーリングリスト名です。変数dir

は、for文によってディレクトリ名が代入されていま
すので、その後にメーリングリストのドメインパー
ト（@ml.example.com）と、区切り用のカンマを出力し

注2） このコマンドはmlディレクトリで実行することを前提にして
おり、またmlディレクトリ直下には、各メーリングリストの
サブディレクトリ以外のファイルは存在しないことを想定し
ているため、アスタリスクを指定しました。もしも確実に
ディレクトリのみを抽出したいのならば、「ls -F | grep '/$'」な
どを併用してもよいでしょう。

ています。これで表の1カラム目が出力できました。

2カラム目の処理

次は2カラム目、メーリングリストの参加人数で
す。これはサブディレクトリ内のmembersファイ
ルから、コメントを除外した行数をwcコマンドで
数えることで実現しています。grepコマンドは、
ファイルや標準入力からパターンにマッチする行を
探すコマンドですが、「-v」オプションをつけると動
作が逆転し、パターンにマッチしない

4 4 4

行を探すこと
ができます。これを利用し、行頭が「#」ではじまら
ない行、つまりコメントではない行を探していま
す。wcコマンドは通常、行数、単語数、バイト数を
数えますが、「-l」オプションをつけると行数のみを
数えることができます。これをパイプでつないで
grepの結果の行数を数えています。
また、このコマンド全体を「$()」で囲んでいます。

これはコマンド置換と呼ばれ、この部分をコマンド
の実行結果と置き換える機能です。つまりechoが実
行される際には、$()で囲った部分全体は、$()内部に
書かれているコマンドの実行結果、つまりwcコマ
ンドの出力に置き換えられます。これで2カラム目、
メーリングリストの参加人数を出力できました。

3カラム目以降の処理

3カラム目以降には、メーリングリストに登録さ
れているメンバーのメールアドレスが並びます。こ
れも2カラム目と同様に、コマンド置換を用いて実
現しています。実行するコマンドもgrepでコメン

図3　メーリングリストごとの情報を1行で出力するコマンド例 ▼

for dir in *
do
echo "${dir}@ml.example.com,$(grep -v '^#' $dir/members ¦ wc -l),$(grep -v '^#' $dir/members ¦ tr ｭ
'\n' ',')" >> ̃/list.csv
done

図4　コマンドの実行例 ▼

admin@ml.example.com,4,ikeuchi@example.com,amano@example.com,murakami@example.com, ……
manager@ml.example.com,5,ooki@example.com,takaoka@example.com,akiyama@example.com, ……
market@ml.example.com,9,oshita@example.com,miura@example.com,uchimura@example.com, ……
nagoya@ml.example.com,8,tominaga@example.com,kawahara@example.com, ……
…（略）…

90 - Software Design

第1章

Jun. 2013 - 91

Ubuntu編
GUIが苦手とする作業を効率よく解決するために、デスクトップでもコマンドが活躍する

第4章

トを除外するところまでは同じで、パイプでつなぐ
コマンドだけが異なっています。
trコマンドは特定の文字を変換、あるいは削除

するコマンドで、1番目の引数に変換対象の文字を、
2番目の引数に変換後の文字を指定して使います。
ここでは改行（\n）をカンマに変換することで、1行
ごとに1ユーザが記述されたリストを1行にまとめ
ています。これで3カラム目以降の、カンマ区切り
のユーザ一覧が出力できました。

ファイルへの出力処理

最後の「>>」はリダイレクトと呼ばれる、出力先
を切り替える機能です。出力リダイレクトには「>」
と「>>」の2種類があり、「>」は都度ファイルを上書
きし、「>>」はファイル末尾に追記していくという違
いがあります。今回はループの度に上書きされては
困るので、「>>」を利用しています。これでコマンド
の実行結果を、ディスプレイからホームディレクト
リの「list.csv」というファイルに切り替えています。

■ 水平方向にファイルを結合する
前述の例では、各メーリングリストの情報を行

（横方向）にまとめました。これは行単位でデータを
読み書きする、UNIXコマンドのしくみから考えて
自然な動作だからです。しかし場合によっては表2
のように、情報を列（縦方向）にまとめたいという要

望もあるかもしれません。もしも表2のような表を
ループで出力しようとしたら、どうなるでしょう？
まず1行目に各メーリングリストのアドレスを表

記するために、すべてのサブディレクトリ名を調査
する必要があります。また2行目を書き出すために
は、また全メーリングリストのmembersファイル
を横断して検索し、行数を数えなくてはなりませ
ん。3行目以降はmembersファイルの内容を1行ず
つ順番に出力していかなければなりませんが、メー
リングリストごとに行数は違いますから、そこも考
慮しなくてはなりません。このように、少々処理が
複雑になってしまうでしょう。
そこで、あらかじめ各カラム単位の情報をまと
めておき、最後に結合するというアプローチを考え
てみます。
まず、各カラムの処理を図5のように考えまし

た。処理は先ほどと同じように、forでディレクトリ
ごとにループして行います。今回は縦方向に情報を
並べればよいので、trコマンドによるテキスト整形
などは不要です。変数と各コマンドの実行結果を、
catコマンドとヒアドキュメントを使って、「ML

名 .tmp」という一時ファイルに書き出しています。
「<<EOF」という記述がヒアドキュメントです。
これは「<<」の直後に指定した文字列が表れるまで
の内容を、コマンドへの標準入力として扱うという
機能で、複数行の入力を扱う際に便利です。catコマ

メーリングリスト名 admin@ml.example.com manager@ml.example.com market@ml.example.com ……
人数 5 6 9 ……

メンバー1 ikeuchi@example.com ooki@example.com oshita@example.com ……
メンバー2 amano@example.com takaoka@example.com miura@example.com ……
メンバー3 murakami@example.com akiyama@example.com uchimura@example.com ……

…（略）…

表2　行列を逆にした表 ▼

図5　 メーリングリストごとの情報をカラムにまとめるコマンド例 ▼

for dir in *
do
cat > ̃/${dir}.tmp <<EOL
${dir}@ml.example.com
$(grep -v '^#' $dir/members ¦ wc -l)
$(grep -v '^#' $dir/members)
EOL
done

92 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

Jun. 2013 - 93

ンドは標準入力から受け取った内容を、標準出力へ
出力するコマンドです。ヒアドキュメントと前述の
リダイレクトを組み合わせることで、複数行からな
る文字列をファイルに出力しています（図6）。
最後に、出力した一時ファイルをpasteコマン
ドで結合します（図7）。pasteコマンドは引数に指定
されたファイルの内容を、デリミタとして指定され
た区切り文字をはさんで水平方向に結合するコマン
ドです。CSVファイルとして出力したいので、ここ
ではデリミタ（-dオプション）にカンマを指定しま
した。pasteコマンドは各ファイルの行数の違いも考
慮し、末尾に到達してしまった場合はデリミタのみ
を出力してくれるため、表が崩れるようなことはあ
りません。

■ LibreO� ceでファイルを変換する

できあがったCSVファイルをLibreOffice Calc

やExcelにインポートすれば、期待していた表を得
ることができるでしょう。ですがせっかくコマンド
ラインを使っているのですから、ファイルの変換も
自動でやってしまいたいところです。Ubuntuに標準
搭載されているLibreOfficeは、実はコマンドライン

からファイルのコンバータとして利用することもで
きます。それではLibreOfficeをコマンドラインから
実行して、ファイルを変換してみましょう（図8）。

LibreOfficeの実行コマンドは、「/usr/bin/

soffi ce」です。「--help」を見るといくつものオプショ
ンがあることがわかりますが、今回はその中にある
「--convert-to」を利用します。これは文字どおり、
ファイルを変換するオプションです。オプション引
数として変換先のファイル形式を指定します。今回
のお客さんはExcel形式をご所望でしたので、xlsを
指定しました注3。また「--headless」は、LibreOffi ceを
ヘッドレスモード（ユーザインターフェースを使用
しないモード）で起動するオプションです。今回は
コマンドラインからファイルの変換をするだけなの
で、不要な画面を表示しないために利用していま
す。図9が出力結果を開いたものです。

■ テキスト一括処理のまとめ
今回はループを使ったテキストの一括処理のみ

を駆け足で紹介し、あまり凝ったテクニックやコマ
ンドは紹介していません。ですが実際のところ、
ループ、パイプ、コマンド置換という基本パターン
さえ覚えれば、大抵の処理は記述することができま
す注4。あとはUNIX/Linux環境に用意されている無
数のコマンドを組み合わせて、バリエーションを展

注3） 同様の方法で、PDFを作成することも可能です。
注4） もちろん少々効率の悪いスクリプトになってしまうこともあ

りますが、それが問題になるケースもあまり多くはないで
しょう。

図7　pasteコマンドでファイルを水平方向に結合する ▼

$ paste -d ',' ̃/*.tmp
admin@ml.example.com,manager@ml.example.com,market@ml.example.com, ……
4,5,9, ……
ikeuchi@example.com,ooki@example.com,oshita@example.com, ……
amano@example.com,takaoka@example.com,miura@example.com, ……
murakami@example.com,akiyama@example.com,uchimura@example.com, ……
takizawa@example.com,watabe@example.com,arita@example.com, ……
,fukazawa@example.com,hashino@example.com, ……
,,kiyota@example.com, ……
…（略）…

図8　LibreO� ceでCSVをxlsに変換する ▼

$ soffice --headless --convert-to xls list.csv
convert /home/mizuno/list.csv -> /home/mizuno/list.xls using

図6　一時ファイルの例 ▼

yokohama@ml.example.com
4
fukasawa@example.com
kai@example.com
nagano@example.com
tamaki@example.com
↑これが表2の1カラムに相当する

92 - Software Design

第1章

Jun. 2013 - 93

Ubuntu編
GUIが苦手とする作業を効率よく解決するために、デスクトップでもコマンドが活躍する

第4章

開していくだけです。それができれば、デスクトッ
プ環境で必要になるようなデータ処理のほとんどは、
より便利に、効率よくこなせるようになるはずです。
デスクトップを使ったドキュメント作業であっ

ても、コマンドを使って少し工夫する余地はない
か。考えてみるとよいかもしれませんね。

CLI環境をカイゼンしよう

Ubuntuにはコマンドラインをより便利に使うた
めの、Ubuntuならではのしくみがいくつも用意さて
います。ページの都合ですべてを紹介することはで
きませんが、これは便利、と筆者が思うものをピッ
クアップして紹介します。

■ Byobu

皆さんはGNU screenや tmuxを使っているで
しょうか？　screenや tmuxはターミナルマルチプ
レクサなどとも呼ばれる、複数の端末の同時利用、
端末の内容のコピー＆ペースト、端末のログの取得
などを可能にしてくれる、コマンドラインを使いこ
なすうえで必須とも言えるツールです。そして
screenや tmuxをより便利に使うためのフロントエ
ンドが、Ubuntu発の「Byobu」です注5。

Byobuを起動するには、ターミナルからbyobu
コマンドを叩くか、UnityのDashから「Byobu

注5） 「Byobu」パッケージをインストールしておく必要があります。
なおUbuntu Serverには標準でインストールされています。

Terminal」を検索して実行します（図10）。ターミナ
ルの最下行にウィンドウの一覧や、システムの各種
情報がグラフィカルに表示されるのがわかるでしょ
うか。screenや tmuxは、標準では最低限の設定しか
なく注6、“使いやすい”環境に育てるのはそれなりの
調整が必要です。Byobuは最初から必要な（やや過
剰かもしれませんが）情報が表示されるよう設定が
なされているため、インストールするだけで作業を
開始することができます。また設定用のメニューが
用意されており、チェックをオン／オフするだけで
表示する項目のカスタマイズができるようになって
います。

screenや tmuxは「不意の回線切断からセッション
を保護する機能」を提供してくれるため、リモート
でサーバを操作する場合には必須です。ですがせっ
かくですので、Ubuntuをリモートから操作する場合
には生のscreenや tmuxではなく、Byobuの利用を
検討してみるとよいでしょう。

■ run-one

あるコマンドを実行する際に、すでに同じコマン
ドが実行中であれば何もしないで終了したい……。
つまり同じコマンドを重複して起動したくない、と
いうシチュエーションはよくあると思います。こう
いう場合は、/run注7以下に<プロセス名>.pidという

注6） screenに至っては、標準の状態ではウィンドウの一覧すら表
示されません。

注7） 少し古いシステムの場合は、/var/run以下が使われます。
Ubuntu 13.04では /var/runが /runへのシンボリックリンク
になっています。

図9　CSVからコマンドで変換したExcelのシート ▼
図10　Byobuのスクリーンショット ▼

94 - Software Design

UNIXコマンドの使い方
研修じゃ

教えてもらえない!? あなたの知らない第 2 特 集

ようなロックファイルを作成し、ロックファイルが
存在する（＝コマンドが実行中）の場合は何もしな
い、というような例外処理を設けるのが普通で
す注8。ですがこういったしくみを設けるにはそれな
りの分量のシェルスクリプトを書く必要があり、単
発でコマンドを実行したい場合には不向きです。

Ubuntuには「run-one」というラッパーコマンドが
用意されています注9。run-oneは引数に実行したいコ
マンドを指定して使います。run-oneは内部でflock
コマンドを呼び出してロックファイルの排他ロック
を取得し、指定されたコマンドを実行するというし
くみになっています。自動的に作成されるロック
ファイル名には「実行されるコマンドと引数を合わ
せた文字列のMD5ハッシュ値」が利用されるため、
同一のコマンドの重複起動を防止することができる
ようになっています。Ubuntuならではの便利機能と
して、覚えておくと役に立つでしょう。

■ alert

Ubuntuのデスクトップを利用していると、シス
テムからのさまざまな通知情報が、半透明なポップ
アップで表示されることがあります（図11）。これ
はNotify OSD（On Screen Display）と呼ばれる機
能で、notify-sendというプログラムをキックするこ

注8） 典型的な /etc/init.d以下の起動スクリプトによく見られるしく
みです。

注9） 「run-one」パッケージをインストールしておく必要がありま
す。

とで、コマンドラインから任意のメッセージを
OSDで表示させることが可能です。つまりCLIの
出力をGUIで表示できるわけです。

Ubuntuでは、最初からログインシェル（bash）に
さまざまな設定が用意されているのですが、その中
に「alert」というエイリアスがあります（リスト1）。
これはnotify-sendのラッパーで、historyコマンド
の最後の1行からsedコマンドで実際に実行された
コマンド名を抜き出して、notify-sendコマンドでデ
スクトップ上に表示させています。また変数「$?（直
前のコマンドの成否）」をもとに、表示するアイコン
を変化させています。つまり直前に実行したコマン
ドの内容と、その成否を表示するという機能を持っ
ています。
図12の例のように、実行したいコマンドの後に

セミコロンとalertを指定して実行します。すると
コマンドの終了時にポップアップで成否が通知され
ます（図13）。とくにddやcpコマンドで大きな
ファイルをコピーしたり、wgetコマンドでISOイ
メージをダウンロードしたりといった、「時間がか
かるので実行したら放置しておく」タイプのコマン
ドを実行する際に利用すると便利です。ﾟ

図11　Notify OSDによる通知 ▼

図13　alertの表示例 ▼

リスト1　エイリアス「alert」の設定 ▼

alias alert='notify-send --urgency=low -i "$([$? = 0] && echo terminal ¦¦ echo error)"
"$(history¦tail -n1¦sed -e '\''s/^\s*[0-9]\+\s*//;s/[;&¦]\s*alert$//'\'')"'

図12　alertの使用例 ▼

$ wget http://ubuntutym2.u-toyama.ac.jp/ubuntu/quantal/ubuntu-12.10-desktop-amd64.iso; alert

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Jun. 2013 - 95

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％割引になります。デジタル版はPCのほかに iPad／ iPhoneにも
対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN&ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

 第1特集

IT業界ビギナーのための
お勧め書籍55＋α
新しい季節に君へ

 第2特集
覚えておきたい、ちゃんと使いたい！
正規表現をマスターしていますか？
 一般記事
・バーチャルネットワークコントローラ2.0開発の実際

1,280円

2013年5月号

家でも
外出先でも

Webで

購入 ！

 第1特集
僕（私）の言語の学び方
裏口からのプログラミング入門
 第2特集
オブジェクト指向再入門
ソフトウェア開発に効くSmall
Objectをご存じですか？
 特別企画
・スクウェア・エニックス＋Skeed
 「ゲーム開発の舞台裏」 1,280円

2013年4月号

2013年3月号
 第1特集
オープン環境でスキルアップ！
もっとクラウドを活用して
みませんか？
 第2特集
光、ギガビット、高速ネットワークを体験！
実践！ ワイヤリングの教科書

 一般記事
・「SSDストレージ」爆発的普及の理由

1,280円

 第1特集
いざというときに備える
システムバックアップ
 第2特集
IT業界のキーパーソンに聞く
2013年に来そうな「技術」・
「ビジョン」はこれだ！
 特別付録
法輪寺電電宮情報安全護符シール

1,380円

2013年1月号
 第1特集
判断をあおぐ／経緯を説明する／手順の理解を得る
文章を書くためのアタマの整理術
なぜエンジニアは
文章が下手なのか？
 第2特集
高速・高機能HTTPサーバ
Nginx構築・設定マニュアル
 一般記事
・エブリデープログラマの発想と実践

1,280円

2012年12月号

 第1特集
UNIXコマンド、fork、pipeを復習し、
高度なスクリプティングへ
シェルスクリプティング道場
 第2特集
忙しいITエンジニアのための
超効率的勉強法
 一般記事
・Samba 4.0.0ファーストインプレッション

1,280円

2013年2月号

http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

96 - Software Design

リアルタイム分散処理StormStorm春の嵐吹く

Twitter社が公開した
オープンソース
　「Storm」は、Twitter社が公開しているオープン
ソースプロダクトであり、耐障害性に優れたリアル
タイムの並列分散処理を簡単に実現するためのフ
レームワークです。もともとは、Twitterのつぶや
きを解析するシステムを開発していたBackType社
のメンバが、ビッグデータをリアルタイムに処理す
るためのプラットフォームとして、Stormの開発を
進めていました。そのBackType社を、Twitter社が
2011年7月に買収し、その後、オープンソースと
して公開されることになりました。
　今回は、Stormとはどのようなものなのか、Storm

を利用してどのようなことができるのか、その概要
を紹介します。

ビッグデータ×リアルタイム
＝ストリームデータ処理
　Stormで実現するリアルタイム処理は、より正確
に言うと、「ストリームデータ処理」というものに該
当します。「ストリームデータ処理」とは、連続的に
発生するデータ（これを、「ストリームデータ」と言
います）をリアルタイムに処理をし続けることです
（図1）。Twitterのつぶやきがそれに該当しますが、
ほかにもネットワークで発生するトラフィックデー

タ、工場などで利用されるセンサーが生み出すデー
タ、気候や株価の変動情報なども、ストリームデー
タに該当します。
　近年、ネットワークの普及やクラウド化が進んで
きたことにより、社会全体で扱うデータ量が爆発的
に増加しています。そのため、その大量データをい
かにリアルタイムに処理するか、ということで、ス
トリームデータ処理に対するニーズも高まっていま
す。

Stormで何ができるのか？

Stormが生まれた背景

　ビッグデータに対する処理と言えば、Hadoopが有
名でしょう。Hadoopの登場によりビッグデータとい
う言葉が広まった、といっても過言ではありませ
ん。しかしながら、Hadoopが対象とする分野は、基
本的にはバッチ処理です。そのため、リアルタイム
というニーズにはマッチングしにくい状況でした。
　一方、従来のシステムでは、リアルタイムで分散
処理を行う場合、MOM（Message Oriented Middleware）
のようなメッセージング技術を利用して、メッセー
ジのキューイングと非同期の処理を組み合わせて実
現することが一般的でした。しかしながら、従来の
技術では信頼性や拡張性を満たすためには、苦労す

リアルタイム分散処理

日々発生する大量なデータをリアルタイムに処理し続ける「ストリームデータ処理」に
対するニーズが高まっています。同じビッグデータでもバッチ処理のHadoopとは
また違った解決方法が求められる分野です。本記事ではそのストリームデータ処理を
実現するプロダクトとして、今、注目を集めている「Storm」について解説します。

StormStorm

春の嵐吹く

Acroquest Technology㈱
鈴木 貴典 SUZUKI Takanori

Jun. 2013 - 97

てやノードの再起動を行います。そのため、処理が

完全に停止してしまうようなことがありません注1

④データ処理の保証

何らかの理由により、データの処理に失敗したり、

タイムアウトが発生したりした場合でも、Stormは

それを検知し、再処理するしくみを有しています。

この機構により、すべてのメッセージが処理される

ことを担保できます

⑤さまざまな言語への対応

Storm自体はClojure注2で実装されていますが、

ユーザが開発するアプリケーション部分は、いろい

ろな言語で開発できます。Java、Scala、Ruby、

る部分も多くありました。
　Stormはそれらの課題を解決するために登場しま
した。Stormを利用することで、多大な苦労なく、
大規模なリアルタイム分散システムを構築すること
が可能となります。

6つの特徴

　Stormは次に示す6つの特徴があります（図2）。

①シンプルなAPI

StormのAPIは非常にシンプルです。複雑な分散処

理などをとくに意識することなく、システムを開発

可能です

②拡張性

Stormは複数のマシンで構成されるクラスタ上で並

列分散的に動作します。これにより、膨大な数の

メッセージに対しても低レイテンシを維持しつつ、

スケールします。スケールするために必要なことは、

マシンを増設して処理の並列数を増やすだけであり、

プログラムを改修する必要はありません

③耐障害性

障害が発生し、データ処理中のノードがダウンした

場合でも、Stormは必要に応じてタスクの再割り当

スマフォ
センサー

ログ

ストリーム
データ処理

SNS

監視や通知
デバイス

ダッシュボード
分析ツール

データストア

■■図1　ストリームデータ処理

データ処理
の保証

シンプルな
API

簡単な
デプロイと
運用

さまざまな
言語への
対応

拡張性

耐障害性

Storm

■■図2　Stormの6つの特徴

注1）	 処理のタイミング次第では、同一メッセージが重複して処理されることがあります。
注2）	 LISP系の言語の方言の1つ。関数型プログラミングのスタイルでのインタラクティブな開発を支援し、マルチスレッドプログラムの開発

を容易化する汎用言語です。Java仮想マシン上で動作します。http://clojure.org/

http://clojure.org/

98 - Software Design

リアルタイム分散処理StormStorm春の嵐吹く

ランザクションIDを利用することで、重複する処理

を判別することができます

Stormの基本アーキテクチャ

　Stormのプロセス構成、および、アプリケーショ
ン構成について説明します。

プロセス構成

　Stormは複数マシンにまたがって動作させられま
す。それら全体を「クラスタ」と呼びます。Stormの
クラスタは基本的にはMaster-Slave構成をとり、
具体的には図3のような構成となります。

◎◎Nimbus

クラスタ内に おけ るMasterノード で あり、

SupervisorやWorkerプロセスの管理を行います

◎◎Supervisor

クラスタ内におけるSlaveノードであり、タスク（後

述のSpoutやBoltが該当します）のアサイン待ち受

けや、Workerプロセスの起動／停止を行います

◎◎Worker

タスクを実行するプロセスになります

◎◎Zookeeper

ZookeeperはApache Foundationのプロダクトの

1つであり、Hadoopのサブプロジェクトの1つとし

て開発されました。StormではNimbusとSupervisor

間の協調管理に用いられています

アプリケーション構成

　Storm上で動作するアプリケーションは、Topology

（トポロジ）と呼ばれ、図4のようなイメージになり
ます。Topologyは次の要素から構成されます。

◎◎Tuple

Stormで処理されるメッセージのことです。デフォ

ルトではinteger、long、short、byte、string、double、

float、boolean、byte配列などをサポートします

◎◎Stream

途切れずに連続するTupleを意味します。どのよう

Python、Perl、JavaScript、および、PHPなどの

多くの言語をサポートしています

⑥簡単なデプロイと運用

Stormは簡単にデプロイし、動作させることが可能

です。システム構成もわずかな設定で変更できます。

また、Amazon EC2などのクラウド環境でも動作さ

せられます

　Stormでとくに興味深いのは、耐障害性やデータ
が完全に処理されることをサポートしている点にあ
るでしょう。このようなしくみが標準で備わってい
るため、ミッションクリティカルな分野にも適用し
やすくなっています。

Stormでできること

　ここではStormで実現できる、主な機能を紹介
します。

①継続的な並列処理

Stormの基本的な機能です。通常はストリームデー

タであるメッセージを一時的にキューに保存し、そ

のメッセージを継続的、かつ、並列的に処理し続け

ます

②メッセージのグルーピング

メッセージは特定のルールに従って、グルーピングし

て処理できます。グルーピングの方法としては、ラン

ダム（Shuffle grouping）、指定されたフィールドの

値が一致するもの（Fields grouping）、全メッセージ

を処理するもの（All grouping）などがあります。

Stormが標準で提供する7種類のグルーピングのほ

か、独自のグルーピングを実装することも可能です

③トランザクション

前述のとおり、Stormはメッセージが必ず処理され

ることを保証します。しかしながら、障害が発生し、

メッセージが再送された場合、重複して処理される

可能性があります。たった一度だけ処理をしたい場

合は、トランザクション機能（Transactional

topologies）を利用します。トランザクション機能を

利用した場合、Stormで処理されるメッセージには、

トランザクションIDが自動で付与されます。このト

Jun. 2013 - 99

　Topologyはある一連の業務フローに該当するも
のです。Topology同士はStormクラスタ内で複数存
在することが可能であり、それぞれのTopologyは
独立して動作します。

基本アーキテクチャ

　Stormを利用したストリームデータ処理を行うシ
ステムは、基本的には図5のようなアーキテクチャ
となります。

なTupleが流れるかはグルーピングより決定されま

す

◎◎Spout

Streamのソースとなるもので、外部からデータを取

得したり、受け付けたりして、Tupleを生成／送出

します。Stormの処理の起点となるものです

◎◎Bolt

Streamの変換処理を行います。単一または複数の

StreamからTupleを受信し、加工したうえで、新た

なStreamにメッセージを送信します

Nimbus

Nimbus

Zookeeper

Zookeeper

Zookeeper

Zookeeper

Supervisor

Supervisor

Worker

Stormクラスタ

StormクラスタにおけるMaster ノード
 •Worker プロセスへのタスクの割り振り
 •Worker プロセスのモニタリング

StormクラスタにおけるSlaveノード
 •タスクのアサイン待ち受け
 •Worker プロセスの起動／停止

Nimbusと Supervisoer 間の協調
 •各ノードで動作するデーモンの 状態を管理

タスクを実行するプロセス
 •Topology のサブセットの実行

Supervisor

Worker

Supervisor

Worker

Supervisor

Worker

Worker

■■図3　Stormクラスタの構成

Tuple
Tuple

Tuple

Tuple Tuple Tuple

Tuple
Tuple

Tuple

Tuple Tuple Tuple

Tuple
Tuple

Tuple

Tuple Tuple Tuple

Spout

Stream

Bolt

Bolt

■■図4　Topology

100 - Software Design

リアルタイム分散処理StormStorm春の嵐吹く

　Storm自体はデータを永続化する機能や、ユーザ
に処理結果を通知するためのUIなどは、提供して
いません。それらが必要な場合は、システムに合わ
せて開発することが必要となります。

Hadoopとの比較

　冒頭で、StormはHadoopでは困難なリアルタイム
処理を実現するために開発された、と書きました
が、HadoopとStormを比較した場合のそれぞれの特
徴を表1に示します。
　アーキテクチャとしてはHadoopに似た構成と
なっている部分もあり、どちらも分散処理を行うフ
レームワークですが、最大の違いはバッチ処理なの
か、リアルタイム処理なのか、というところにあり
ます。

①イベント受付

処理対象のイベントは一時的にメッセージキューに

保存するのが一般的です。これは大量のイベントを

受信した場合でも、イベントを消失することなく処

理を継続するためです

②イベント処理

次にメッセージキューに一時的に保存されたイベン

トをStormが取得し（Spout）、業務に応じた処理

（Bolt）を分散して行います

③結果の処理

Storm自体は処理結果を表示する画面などは提供し

ていません。そのため、Stormで処理をした結果は

ユーザへ通知されたり、RDBやKVS（NoSQL）など

に保存されたりします

メッセージ
キュー

 （イベントの
一時保存）

ユーザへ通知

Storm

ユーザへ通知

①イベント受付

イベント

②イベント処理 ③結果の処理

RDB や KVS
 （解析結果の蓄積）

■■図5　Stormを利用したシステムのアーキテクチャ

Hadoop Storm

対象 バッチ処理 リアルタイム処理

処理技術 MapReduce ストリームデータ処理

特性 ・巨大で有限のジョブ
・たくさんのデータを一度だけ処理する
・長い待ち時間

・小さい無限のジョブ
・無限のストリームデータを連続して処理する
・短い待ち時間

ノード マスター：JobTracker
スレーブ：TaskTracker

マスター：Nimbus
スレーブ：Supervisor

処理単位 Job Topology

■■表1　HadoopとStormの比較

Jun. 2013 - 101

て処理する構成に変更しています（図6）。
　それぞれのコンポーネントの処理内容は、表2の
ようになります。以降では、各コンポーネントの実
装について説明します。

データを取得する
−KestrelThriftSpout−

　Stormが提供するBaseRichSpoutを継承してSpout

クラスを実装します（リスト1）。KestrelThriftSpoutで
はおもに次の流れで処理を行います。

①Kestrelへ接続する

②Kestrelからデータを取得する

③Boltへデータを送信する

　ただし、HadoopとStormは競合するものではあり
ません。システムによっては、両者を組み合わせて
処理を行うケースもあります。重要なことは、導入
するシステムの特性を見極め、その特性に応じて使
い分けることと言えるでしょう。

サンプルプログラム

　次に、サンプルプログラムを用いてStormの実
装内容を解説します。今回のサンプルプログラム
は、文章を解析してそこに登場する単語数をカウン
トするものです。Stormのサンプルプログラムとし
て公開されているものがベースになっていますが、
もともとSpout内部で文章を生成していた部分を、
実際のシステムに近いイメージで処理するように、
メッセージキューのOSSであるKestrelと連携し

Kestrel
Thrift
Spout

Split
Sentence

Shuffle
grouping Fields

grouping

Word
Count

Split
Sentence

Word
Count

Split
Sentence

Word
Count

Split
Sentence

Word
Count

Split
Sentence

Word
Count

Kestrel
Thrift
Spout

Kestrel

BoltSpout

凡例

■■図6　サンプルプログラムの処理イメージ

コンポーネント 処理内容

KestrelThriftSpout
（Spout）

メッセージキューのKestrelから文章データ（今回は1行あたり約100バイ
トの英文データ）を取得する
取得した文章データを1行ずつBoltへ送信する

SplitSentenceBolt
（Bolt） 1行の英文の文章を単語単位に分割する

WordCountBolt
（Bolt） 分割された単語をカウントする

■■表2　コンポーネントの処理内容

102 - Software Design

リアルタイム分散処理StormStorm春の嵐吹く

KestrelClientInfoクラスをnewしています。

●●nextTupleメソッド
　次に、Kestrelからデータを取得するために、
nextTupleメソッドをオーバーライドします（リス

●●openメソッド
　最初に、Kestrelへ接続を行うため、Spoutのopen

メソッドをオーバーライドします（リスト2）。この
メソッドはSpoutが起動時に呼び出されます。ここ
では、Kestrelとの接続を行うためのクラスである

public class KestrelThriftSpout extends BaseRichSpout {

 @Override
 public void open(Map conf,
 TopologyContext context,
 SpoutOutputCollector collector) {
 （中略）
 }

 @Override
 public void nextTuple() {
 （中略）
 }

 @Override
 public void ack(Object msgId) {
 （中略）
 }

 @Override
 public void fail(Object msgId) {
 （中略）
 }

}

■■リスト1　KestrelThriftSpoutクラス

@Override
public void open(Map conf,
 TopologyContext context,
 SpoutOutputCollector collector) {
 this.collector = collector;

 （中略）

 int numTasks = context.getComponentTasks(context.getThisComponentId()).size();
 int myIndex = context.getThisTaskIndex();
 int numHosts = this.hosts.size();

 if (numTasks < numHosts) {
 for (HostInfo host: this.hosts) {
 this.kestrels.add(new KestrelClientInfo(host.host, host.port));
 }
 } else {
 HostInfo host = this.hosts.get(myIndex % numHosts);
 this.kestrels.add(new KestrelClientInfo(host.host, host.port));
 }
}

■■リスト2　openメソッド

Jun. 2013 - 103

③1行の英文を単語に分割し、次のBoltへ送出する

●●prepareメソッド
　Boltを初期化するためのprepareメソッドをオー
バーライドします（リスト5）。ここではcollectorを
インスタンス変数に設定するだけです。

●●executeメソッド
　executeメソッドの引数であるTupleは、英文の
1行のデータです。そのデータを単語単位に分割し
ます。その分割された単語は次のBoltへ送出する
ために、Spoutのときと同様に、collectorのemitメ

ト3）。tryEachKestrelUntilBufferFilledメソッド内
（本稿では具体的な処理は割愛します）で、Kestrelか
らデータを取得し、一時的にemitBufferに英文
データを格納しています。
　その後で、collectorのemitメソッドを呼び出すこ
とでデータをBoltに送出しています。collectorは
StormのSpoutやBolt間でTupleを受け渡すための
クラスで、openメソッド中で初期化されています。
　注意点としては、emitするオブジェクト（Tuple）
はシリアライズ可能であること、また、一意のID

を指定して送出する必要がある点があります。
　Spoutでは、上記の他に、Boltでの処理が成功／
失敗した際に呼び出される、ack／ failメソッドを必
要に応じて実装します。

単語単位に分割する
−SplitSentenceBolt−

　今回はSplitSentenceBolt、および、WordCount

Boltの2種類のBoltを実装していますが、最初に
SplitSentenceBoltについて説明します。Split

SentenceBoltはStormが提供するBaseRichBoltを
継承して、Boltクラスを実装します（リスト4）。
SplitSentenceBoltでは、おもに次の流れで処理を
行います。

①Boltを初期化する

②Tuple（1行の英文）を受信する

@Override
public void nextTuple() {
 if (this.emitBuffer.isEmpty()) {
 tryEachKestrelUntilBufferFilled();
 }

 EmitItem item = this.emitBuffer.poll();
 if (item != null) {
 if (this.immediateAck) {
 this.collector.emit(item.tuple);
 } else {
 this.collector.emit(item.tuple,
 item.sourceId);
 }
 }

 // Sleep Interval
 Utils.sleep(this.tupleEmitInterval);
}

■■リスト3　nextTupleメソッド

public class SplitSentenceBolt extends BaseRichBolt implements IRichBolt {

 @Override
 public void prepare(Map stormConf,
 TopologyContext context,
 OutputCollector collector) {
 （中略）
 }

 @Override
 public void execute(Tuple input) {
 （中略）
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 （中略）
 }
}

■■リスト4　SplitSentenceBoltクラス

104 - Software Design

リアルタイム分散処理StormStorm春の嵐吹く

はなく、failメソッドを呼び出すことが必要となり
ます（処理されるTupleは、必ずackか failが実行さ
れる必要があります）。

●●declareOutputFieldsメソッド
　declareOutputFieldsメソッドでは、Boltで送出す
るTupleの内容にフィールド名を付与します（リス
ト7）。今回の例では、「new Values(targetWord)」
と、フィールドは targetWordの1つだけであるた
め、「new Fields("word")」と1つのフィールド名を
指定していますが、複数指定することも可能です。
フィールド名はBoltがメッセージを受信する際の
グルーピングで利用されたり、次で処理を行う
Boltでフィールド名を指定して値を取得するのに
利用されたりするのに必要となります。

ソッドを呼び出しています（リスト6）。
　ここでTupleが処理されることを保証するための
機構について、簡単に説明しておきます。Tupleが
StormのTopology内を移動していく途中で、処理
が失敗した場合は、Spoutに通知されるようにする
必要があります。Tupleは、並列分散で処理される
ため、Tupleの生成元の参照を含めておくことで、
Spoutへの通知を行えるようにします。この方法を
「アンカリング」と呼びます。
　実際にこの「アンカリング」を行っているのは、
collector.emit()のステートメントになります。元の
Tupleを引数に含めていますが、そうすることで
Tupleの発生元をトレースすることが可能となりま
す。さらに、collector.ack()のステートメントが実行
され、各Tupleの処理結果が通知されます。もし、
Bolt内での処理に失敗した場合は、ackメソッドで

@Override
public void prepare(Map stormConf,
 TopologyContext context,
 OutputCollector collector) {
 this.collector = collector;
}

■■リスト5　prepareメソッド

@Override
public void execute(Tuple input) {
 // 文章を単語単位に分割する
 String sentence = input.getStringByField("str");
 String[] words = StringUtils.split(sentence);

 // 単語単位に Tupleに分割し、次の Boltに送信する
 for (String targetWord : words) {
 this.collector.emit(input, new Values(targetWord));
 }

 this.collector.ack(input);
}

■■リスト6　executeメソッド

@Override
public void declareOutputFields(
 OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
}

■■リスト7　declareOutputFieldsメソッド

Jun. 2013 - 105

取得し、カウントしています（リスト9）。同じ単語
であれば、カウントアップされていきます。

●●declareOutputFieldsメソッド
　WordCountBoltでは、「new Values(word, count)」
と2つのフィールドを指定しているため、"word"、
"count"という2つのフィールド名を指定していま
す（リスト10）。

全体をつなげる
−WordCountTopology−

　最後に、これまで作成したSpoutやBoltを連携
させるためのTopologyクラスを実装します（リスト
11）。Topologyを実装する際に意識するのは、並列

単語をカウントする
−WordCountBolt−

　WordCountBoltはBaseBasicBoltを継承してい
ます（リスト8）。SplitSentenceBoltが継承していた
BaseRichBoltクラスとの違いは、prepareメソッド
を必要としない点です。WordCountBoltでは、おも
に次の流れで処理を行います。

①Tuple（1単語）を受信する

②単語の出現回数をカウントする

●●executeメソッド
　SplitSentenceBoltでは、"word"というフィールド
名を付与してTupleを送出していたので、ここでは
そのフィールド名を使ってTupleから単語データを

public class WordCountBolt extends BaseBasicBolt {

 /** 単語出現回数カウンタ */
 Map<String, Integer> counts = new HashMap<String, Integer>();

 @Override
 public void execute(Tuple input, BasicOutputCollector collector) {
 （中略）
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 （中略）
 }
}

■■リスト8　WordCountBoltクラス

@Override
public void execute(Tuple input, BasicOutputCollector collector) {
 // 単語出現回数カウンタからカウンタを取得
 String word = input.getStringByField("word");
 Integer count = this.counts.get(word);

 if (count == null) {
 count = 0;
 }
 count++;

 // 結果を単語出現回数カウンタに反映
 this.counts.put(word, count);

 collector.emit(new Values(word, count));
}

■■リスト9　executeメソッド

106 - Software Design

リアルタイム分散処理StormStorm春の嵐吹く

　今回のTopologyの処理でサーバ（CPU：Xeon E3-

1230 3.2GHz 4Core、メモリ：32GB）2台で分散する
ようにして性能を測定したところ、次のような結果
になりました。

◎スループット（Tuple／秒）

・KestrelThriftSpout：3,302

・SplitSentenceBolt：3,302

・WordCountBolt：545,223

　今回の実装で、並列分散処理を意識し
た内容はほとんどありません。そのよう
な簡単な実装で、数千～数十万のイベン
トを処理するようなシステムを簡単に実
現できるようになるのは、Stormの効果
であると言えます。

今後の動向

　Stormはリアルタイムの並列分散処理
を実現するには非常に強力なフレーム
ワークですが、一方、それ単体では実現
できる処理はシンプルなものです。その
ため、StormとほかのOSSを連携する
SpoutやBoltが提供されつつあります。

⿠Spout：Kestrel、RabbitMQ、Kafka、	

　　　　 JMS、Redis、Scribe
⿠Bolt：HBase、Cassandra、Mongo

　Hadoopもそれ単体ではMapReduceと
いうシンプルな処理しか提供していませ
んでしたが、エコシステムという周辺プ
ロダクトが整備されたことにより、非常
に利便性が向上しました。SpoutやBolt

は疎結合であるため、同様に周辺プロダ
クトが整うことで、より効率的にシステ
ムを開発できるようになっていくことが
期待されます。
　また、その他にも、CEP（複合イベン

数とグルーピングとの指定です。
　並列数はSpout／BoltをTopologyに登録する際
に指定するだけです。パフォーマンスを向上させた
ければ、この数値を変更するだけで可能になりま
す。グルーピングについて、SplitSentenceBoltはラ
ンダムにデータを受け取るshuffleGrouping、
WordCountBoltは単語ごとにデータを受け取る必
要があるためfieldsGroupingを指定しています。

◆　◆　◆

@Override
public void declareOutputFields(
 OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word", "count"));
}

■■リスト10　declareOutputFieldsメソッド

public class WordCountTopology {
 public static void main(String[] args)
 throws Exception {
 （中略）

 // Topologyを作成する
 TopologyBuilder builder = new TopologyBuilder();

 // Add Spout(KestrelThriftSpout)
 KestrelThriftSpout kestrelSpout
 = new KestrelThriftSpout(kestrelHosts,
 kestrelQueueName,
 new StringScheme());
 builder.setSpout("KestrelSpout",
 kestrelSpout, 2);

 // Add Bolt(KestrelThriftSpout -> SplitSentence)
 builder.setBolt("SplitSentence",
 new SplitSentenceBolt(), 20)
 .shuffleGrouping("KestrelSpout");

 // Add Bolt(SplitSentence -> WordCount)
 builder.setBolt("WordCount",
 new WordCountBolt(), 10)
 .fieldsGrouping("SplitSentence",
 new Fields("word"));

 if (isLocal) {
 LocalCluster cluster = new LocalCluster();
 cluster.submitTopology("WordCount",
 conf, builder.createTopology());
 } else {
 （中略）
 }
}

■■リスト11　WordCountTopologyクラス

Jun. 2013 - 107

●●参考情報
◎Storm本家サイト

http://storm-project.net/
◎Storm-Installer

https://github.com/acromusashi/storm-
installer
Stormの環境を簡単に構築できるように、イン
ストーラを公開しています。

◎本記事のサンプル
https://github.com/acromusashi/storm-
example-wordcount
本書で利用したStormのサンプルプログラムです。

ト処理）や機械学習といった、より高度な機能の実
現が検討されています。このような機能が提供され
れば、適用範囲もより広がるでしょう。海外では、
すでにStormを利用した商用システムもいくつか
公開されています。今後、日本でも、そのようなシ
ステムが増えることが期待されます。s

Stormの日本語情報は、まだまだ少ないですが、筆者
が所属するAcroquest Technologyでは、若手エン
ジニアが、ブログでStormの情報を公開しています。

◎Taste of Tech Topics
http://acro-engineer.hatenablog.com/

本家のサイトでも公開されていないような、独自に調
査や評価した内容も掲載しています。ぜひ、参考にし
てみてください。

本書は、数あるJavaScriptのライブラリやjQueryプラグインから
厳選したものを、その特徴からサンプルソースを付けた使用例ま
で111個を紹介します。
取り上げるライブラリはそれぞれ「UI（ユーザインタフェース）編」
「スマートフォン編」「フレームワーク編」「テスト編」「小ネタ編」に
分けられており、デザイナも含むWebデベロッパー必携のライブラ
リ便覧です。

WINGSプロジェクト 著
B5判／352ページ
定価2,709円（本体2,580円）
ISBN 978-4-7741-5611-8

Webアプリケーション開発者、Webデザイナ

http://storm-project.net/
https://github.com/acromusashi/storm-installer
https://github.com/acromusashi/storm-example-wordcount
http://acro-engineer.hatenablog.com/

108 - Software Design

HiveでHadoopを活用してみませんか！
FBで生まれたビッグデータ分析ツール

Jun. 2013 - 109

HiveでHadoopを
活用してみませんか！

FBで生まれたビッグデータ分析ツール

上司より「ビッグデータを分析せよ！」と命じられていき
なりHadoop環境を構築して、さて次に何をすべき
か。また新たに勉強すべき知識が山ほどありそうです。
そんなあなたに強い味方がいます。SQLライクに
Hadoopを扱うことができる「H

ハ イ ブ

ive」です。本稿はそ
の導入方法と使い方のエッセンスを紹介します。Hive
でビッグデータ分析を始めましょう！

ハードルが高すぎる
Hadoop？
今でこそ機械学習や大量データ集計のツール
として、CoolなイメージがあるHadoopですが、
筆者の所属するリクルートテクノロジーズ（以
降、当社）が5年前に検証を始めたころ、その
導入目的は既存のバッチ処理の高速化と大量デー
タの保管という、たいへんシンプルなものでし
た。このゴールのためにリクルートグループの
各事業会社へ導入提案を積極的に推進したので
すが、そこで大きな障壁となったのが、
MapReduceで演算処理を書くコストの高さで
した。つまり「Hadoopを導入すれば大量データ
を蓄積し、高速に処理できるようになります。
でも、処理はJavaで記述しなくてはならない
のですけど」といった具合で提案をしても、
Javaを書くハードルの高さとCoolとはかけ離
れた「処理の高速化と大量データ蓄積」という地
味な目的とのトレードオフから、ユーザの皆さ
んの反応はいまひとつだったことを覚えていま
す。

ハードルを一気に下げる
Hive！
そのような状況を打開するために注目したの
が、米Facebookが開発を行っていたHiveでし
た。RDBMSで用いられてきたSQLと非常に
似たHiveQLと呼ばれる操作言語でHadoop

（HDFS）上のデータを処理できるエコシステム
です。
各事業会社では、RDBMSとJavaのフレー

ムワークを用いたアプリケーション開発が主流
のため、SQLの知見を持った方々が多くいます。
そのため簡単なSQLを書くことができる企画
担当者（ユーザ）が多かったのです。

Hiveを導入することで、利用初期に発生す
る単純な帳票出力のような「ちょっとやってみ
る作業」を事業のユーザの方々が自らHiveQL

を書いて実装しはじめました。そんな小さな一
歩から、Hadoopの活用が始まっていったのです。
誤解を恐れずにいえば、ユーザから見れば
Hadoopが大量のデータを高速に処理できる
DBぐらいの距離感になったといえます。もち
ろんユーザの方々にも「新しいものにも積極的

ビッグデータ活用のはじめの一歩　Hadoop エコシステム

株式会社リクルートテクノロジーズ 　　　　　　 　　　　　　　　　　　
ITソリューション1部 ビッグデータグループ　石川信行　ISHIKAWA Nobuyuki

108 - Software Design Jun. 2013 - 109

ビッグデータ活用のはじめの一歩　　　　Hadoop エコシステム

に取り組んでみよう」という心意気があったの
はいうまでもありません。
また、先述のようにRDBMS＋SQLで時間

がかかっていたバッチ処理を高速化するという
目的を達成するために、このHiveの導入が、
プログラミング工数の削減とHadoop上にデー
タがあれば既存システムに影響を与えず検証が
できるという観点で、Hadoop導入のハードル
を下げてきたとも言えます。

Hadoop Conference Japan 2013 Winterのエ
ントリ時のアンケートによればHadoopエコシ
ステムの中でHiveがもっとも使われているこ
とが示されており（Hadoop利用者624名のうち
245人）、同様な操作言語レイヤにあるPigと
くらべて3倍近く差もあることがわかっていま
す。このことからも当社だけではなくHiveが
日本でのHadoop利用のハードルをいかに下げ
てきたかがわかるかと思います。

Hive環境の構築は簡単！

HadoopおよびHiveのインストールはとても
簡単で、インストール手順の情報もWeb上に
溢れています。またHadoopのディストリビュー
ションを提供しているCloudera社のページ注1

やMapR社のページ注2でHadoopやHiveが包括
されたディストリビューションがダウンロード
できます。これらを利用すれば簡単に開発環境
を構築できます。ここではインストールの詳細
な手順は省かせていただき、Hiveの特徴にフォー
カスを当てて説明していきたいと思います。

Hiveの構造は図1のように概略できます。簡
単にいえばクライアントで作成したHiveQLを
ドライバ経由でパース（parse）し、MapReduce

処理に変え、メタストアにある定義で構造化さ
れたHDFSのデータを操作するというロジッ
クになっています。この構造をふまえてSQL

注1） https://ccp.cloudera.com/display/SUPPORT/Downloads

注2） http://www.mapr.com/products/download?utm_
expid=44001406-0&utm_referrer=http%3A%2F%
2Fwww.mapr.com%2F

とHiveの違いを理解するために、まず簡単に
HiveとSQLの相違点を表1にまとめてみます。

表 1を参照すると、UPDATEやDELETE

が使えない、データ型が限定されるなどがわか
ります。ただ、これをそのまま覚えるというよ
りは、次に示すような本質的な特徴を理解した
ほうが良いでしょう。
筆者の経験からHiveの特徴として少なくと
も押さえておきたいのは、次の2点です。

・裏でMapReduceに変換されること
・操作しているのはHDFS上のデータである

こと

この特徴をふまえてSQLとの違いを理解し
なければ、HiveはRDBMSをリプレイスできる
などの都市伝説を広めてしまうことになります。

Hiveをいかに導入すべきか
まず1つめですが、これはどんな小さな処理

でも必ずMapReduceに変換する準備時間がか
かります。つまり10件のテーブルから1件の
レコードを選択するだけでも、その準備で10

秒程度を要します。よってこのオーバーヘッド
が無視できるほど膨大な量のデータを扱う処理
がHiveには適しています。
当社の各事業部では、過去さまざまな指標を

集計・モニタリングしてきましたが、扱うデー
タ量が膨大になると、RDBMSや既存のGUI

ベースの集計ツールでは、性能やリソースの問

図1　Hiveの内部構造概略▼

Execution Engine

hadoop（HDFS）

Hive client

Parser

Planner

Optimizer

Hive QLドライバMeta store

https://ccp.cloudera.com/display/SUPPORT/Downloads
http://www.mapr.com/products/download?utm_expid=44001406-0&utm_referrer=http%3A%2F%2Fwww.mapr.com%2F

110 - Software Design

HiveでHadoopを活用してみませんか！
FBで生まれたビッグデータ分析ツール

Jun. 2013 - 111

題で処理できないという問題が起きていました。
当然のことながら処理の高速化という観点で

Hadoopへ移行するという案件も複数ありまし
た。その例の1つに、PV（Page View）や閲覧
数などの指標をカウントするSELECT文を1

行ずつシーケンシャルに何本も回している処理
をリプレイスするものがありました。これに関
しては、そのままHiveへ移行すると、繰り返
しシーケンシャルに流す分だけMapReduceの
オーバーヘッド分の秒数が加算され、結果的に
既存の処理より遅くなってしまったのです。こ
のような例もふまえ、Hiveの処理で得たい結
果とその形式を押さえたうえで、Hiveの
MapReduce変換のオーバーヘッドをなるべく
出さないようにするように、単一のHiveQLで

大きなデータを処理する方法を考えることが重
要だとわかりました。つまり、クエリプラン作
りの徹底です（場合によっては帳票フォーマッ
トの変更も必要かもしれません）。
前述のようにHive積極導入を推進している
筆者も、この性質をユーザにうまく伝えられな
かったことがあります。SQLライク処理がで
きるという認識のもとでHiveを使用し、実際
に単一レコード取得などをすると、「遅い」とい
う印象を与えてしまったのです。
既存のSQLをHiveにリプレイスする際には
単なるリプレイスではなく、新しい方針を打ち
出すことも大切です。たとえば、従来のSQL

では実行できそうもない、重たくて複雑な処理、
単純に対象の集計期間を増やすことから始まり、

機能 SQL（Oracleを想定） HiveQL
INSERT 可能 基本的にはOverWriteで上書き。パーティション

を駆使すれば部分 insertも可能（0.8で insert into
をサポート）

UPDATE 可能 不可
DELETE 可能 不可
SELECT 可能 可能
テーブル結合 可能 可能（内部結合、外部結合、部分結合、マップ結合）
トランザクション 可能 不可
オンライン処理 可能 不可（MapReduce処理オーバーヘッドあり）
CREATE/DROP TABLE文 可能 可能（EXTERNAL表も利用可能）
インデックス作成 可能 可能（キーだけの中間テーブルを作るイメージ。キー

へのアクセスはインデックス領域の全件検索）
※Hive0.8からはBitmap Indexesが対応している

ビュー ビュー、マテリアライズドビュー
で更新可能

読み出しのみで、マテリアライズドビューはサポー
トされない

サブクエリ 任意の節中に書け、相関サブク
エリであってもなくてもよい

FROM節中にしか書けなく、相関サブクエリはサ
ポートされない
別名必須

複数テーブルへのインサート 非サポート サポート
レイテンシ 1秒以下 分単位
拡張可能部分 ユーザ定義関数・ストアドプロ

シージャ
ユーザ定義関数・MapReduceスクリプト

NULL NULLと空文字は区別される NULLと空文字は区別される（NULLは¥Nで表現）
ROWNUM・OFFSET 利用可能 ROWNUM・OFFSETともに存在しない。LIMIT句

で表示データ数を制限可能
パーティション 可能 可能（SELECT時にパーティションを指定可能）
クライアント SQL*Plus(Sqlplusコマンド) HiveCLI（Hiveコマンド）
データ型 VARCHAR,CHAR,LONG,CLOB,

NUMBER,BINARY_FLOAT,BLOB,
DATE,TIMESTAMPなど、
さまざま

TINYINT,SMALLINT,INT,BIGINT,BOOLEAN,FLOA
T,DOUBLE,STRING,TIMESTAMP(Hive0.8),BINAR
Y(Hive0.8)

表1　HiveとSQLの比較 ▼ （※hiveはversion 0.7.1を想定）

110 - Software Design Jun. 2013 - 111

ビッグデータ活用のはじめの一歩　　　　Hadoop エコシステム

エリアや性別などで区切ってクロス集計してい
たものに、職種などの新たな条件軸を複数加え
て細分化するなどの新しい集計方針の提案です。

裏側のしくみを見極める
そして2つめは「裏で行っているのはファイ

ル操作にすぎない」ことです。Hiveでは
CREATE文を使ってテーブルを作成しますが、
これはただ単純にファイルのデータを特定のデ
リミタで区切り、指定したテーブル定義に合わ
せて構造化しているだけにすぎません。よって、
「カンマ」をデリミタに指定した際に不自然な位
置にカンマが混入してしまえば予期せぬ区切ら
れ方をすることもあります。しかも、データの
ロード時にカラムの数が合わなくてもエラーが
発生しないため注意が必要です（図2）。また
HiveがUPDATE文に対応していないこと、基
本的に INSERTは INSERT　OVERWRITE

であり、全件更新であるという特徴も裏がファ
イル操作といえば理解しやすいと思います。

Hiveサンプル実行

これらの特徴をふまえたうえで、実際にテー
ブル作成からサンプル実行までの過程を説明し
たいと思います。今回使用した環境は次のとお
りです。

・OS：Red Hat Enterprise Linux Server
Release 6.2

・Hadoop：0.20.2（MapR1.2.3）
・Hive：0.7.1

①Hadoopの起動
まずは、「$HIVE_HOME/bin/hive」をコマ

ンドライン上で実行し、Hiveを起動させます。
手始めにRDBMSと同様な感覚でスキーマを作
成します。

hive> CREATE DATABASE IF NOT EXISTS ｭ
RED_DATA;
OK
Time taken: 0.32 seconds

図2　Hiveのしくみと特徴 ▼

絶滅（ ,EX）,コウチュウ目,コゾノメクラチビゴミムシ,Rakantrechus elegans
準絶滅危惧（NT）,チョウ目,オオムラサキ,Sasakia charonda charonda

RANK , TAXON , JAPANESE_NAME , SCIENTIFIC_NAME
のカラムにカンマで区切って格納する

RANK , TAXON , JAPANESE_NAME , SCIENTIFIC_NAME
のカラムにカンマで区切って格納するが想定されない位置にカンマが入ってしまっていた場合

カラムずれが発生し、テーブルから後続のデータが消えてしまう。
しかもロード時にエラーが検知できないため実際に処理するまで気づかないことも多い

RANK TAXON JAPANESE_NAME SCIENTIFIC_NAM

絶滅（EX） コウチュウ目 コゾノメクラチビゴミムシ Rakantrechus elegans

準絶滅危惧（NT） チョウ目 オオムラサキ Sasakia charonda charonda

RANK TAXON JAPANESE_NAME SCIENTIFIC_NAM

絶滅（ EX） コウチュウ目 コゾノメクラチビゴミムシ

準絶滅危惧（NT） チョウ目 オオムラサキ Sasakia charonda charonda

絶滅（EX）,コウチュウ目,コゾノメクラチビゴミムシ,Rakantrechus elegans
準絶滅危惧（NT）,チョウ目,オオムラサキ,Sasakia charonda charonda

想定されない位置にカンマが！

112 - Software Design

HiveでHadoopを活用してみませんか！
FBで生まれたビッグデータ分析ツール

Jun. 2013 - 113

②テーブルの作成
次に、作成したスキーマ内にテーブルを作成

します。今回作成するテーブルには、次の
URL注3からダウンロードできる次のような
CSV形式のデータを格納します。

絶滅（EX）　コウチュウ目　カドタメクラチビゴｭ
ミムシ　Ishikawatrechus intermedius
絶滅（EX）　コウチュウ目　コゾノメクラチビゴｭ
ミムシ　Rakantrechus elegans
絶滅（EX）　コウチュウ目　キイロネクイハムシｭ
Macroplea japana
絶滅危惧㈵類（CR+EN）　トンボ目　オオセスジイｭ
トトンボ　Cercion plagiosum
絶滅危惧㈵類（CR+EN）　トンボ目　ヒヌマイトトｭ
ンボ　Mortonagrion hirosei
絶滅危惧㈵類（CR+EN）　トンボ目　オオモノサシｭ
トンボ　Copera tokyoensis
絶滅危惧㈵類（CR+EN）　トンボ目　オガサワラアｭ
オイトトンボ　Indolestes boninensis

このデータに見合うカラム名と型を指定し、
テーブルを作成します。カラムはカンマで区切
り（FIELDS TERMINATED）、改行で1レコー
ドとみなします（LINES TERMINATED）。

hive> CREATE TABLE IF NOT EXISTS ｭ
RED_DATA.NAME_LIST
 > (RANK STRING, TAXON STRING, ｭ
JAPANESE_NAME STRING, SCIENTIFIC_NAME ｭ
STRING)
 > ROW FORMAT DELIMITED FIELDS ｭ
TERMINATED BY ','
 > LINES TERMINATED BY '￥n';
OK
Time taken: 0.242 seconds

ここでHadoopのコマンドでHDFSの中身を
参照してみると作成したスキーマとテーブルは
HDFS上ではディレクトリのように表示され、
裏がファイルシステムだということがわかると
思います。

[hadoopuser@***** ~]$ hadoop fs -ls ｭ
/user/hive/warehouse/red_data.db
Found 1 items
drwxrwxrwx - hadoopuser hadoop 0 2013-04ｭ
-08 19:46 /user/hive/warehouse/red_data.ｭ
db/name_list

注3） http://www.biodic.go.jp/rdb/rdb_f.html　（ちなみに、なぜ
このデータなのかという問いには、筆者の大学時代の専攻は
昆虫機能学ですと答えておくことにします）

③データの投入とロード
上記で作成したテーブルにデータを投入しま
す。今回はHDFS上にあるファイルではなく、
ローカル上（Linux）にWebからダウンロードし
たテキストファイルを配置し、これをロードし
ています。

hive> LOAD DATA LOCAL INPATH '/tmp/ｭ
reddata_sample.txt'
 > OVERWRITE INTO TABLE name_list;
OK
Time taken: 0.286 seconds

④データの確認
実際にHDFSにどのようにデータが格納さ

れているかを確認すると次のようにテーブル名
と同じ名前のディレクトリの下にファイルが配
置されていることがわかります。

[hadoopuser@***** ~]$ hadoop fs -ls /ｭ
user/hive/warehouse/red_data.db
Found 1 items
drwxrwxrwx - hadoopuser hadoop 0 2013-ｭ
04-08 19:46 /user/hive/warehouse/red_ｭ
data.db/name_list

ちなみに、このHDFSのディレクトリ配下
にputコマンドなどで直接CSVファイルを配
置するだけでもHive上でデータを取り扱うこ
とが可能となります。

⑤テーブル操作
ここから実際に作成したテーブルに対してい
くつかの操作を行ってみたいと思います。
まずは手始めにLIKE句を使って絞り込んだ

あとにカウントをとってみます。簡単な
SELECT文でもMapReduceが起動し、オー
バーヘッドがかかることがわかります。

hive> SELECT COUNT(1) FROM RED_DATA.ｭ
NAME_LIST WHERE TAXON LIKE 'チョウ%';
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at ｭ
compile time: 1
……（中略）……
2013-04-10 21:41:00,793 Stage-1 map = ｭ
100%, reduce = 100%Ended Job =

http://www.biodic.go.jp/rdb/rdb_f.html

112 - Software Design Jun. 2013 - 113

ビッグデータ活用のはじめの一歩　　　　Hadoop エコシステム

Ended Job = job_201209031838_74061
OK
102
Time taken: 14.52 seconds

SELECT句でカラムを指定せず＊を使うと、
テーブル定義に合わせた解釈を行うため
MapReduceが走らず、高速に結果が返ってき
ます。

hive> SELECT * FROM RED_DATA.NAME_LIST ｭ
LIMIT 5;
OK
絶滅（EX）　コウチュウ目　カドタメクラチビゴミｭ
ムシ　Ishikawatrechus intermedius
絶滅（EX）　コウチュウ目　コゾノメクラチビゴミｭ
ムシ　Rakantrechus elegans
絶滅（EX）　コウチュウ目　キイロネクイハムシ　ｭ
Macroplea japana
絶滅危惧㈵類（CR+EN）　トンボ目　オオセスジイｭ
トトンボ　Cercion plagiosum
絶滅危惧㈵類（CR+EN）　トンボ目　ヒヌマイトトｭ
ンボ　Mortonagrion hirosei
Time taken: 0.097 seconds

⑥HiveQLのシーケンシャル実行
先ほどHiveの特徴で述べたとおり、複数の

簡単なカウント処理をシーケンシャルに流して
みます。Hiveでは-fオプションを付けることで、
ローカル上に置いたテキストファイルから
HiveQLを読み込み実行できます。まずは、次
のようなHiveQLを入力し、sample.hqlという
名で保存します。

SELECT COUNT(1) FROM RED_DATA.NAME_LIST
WHERE TAXON LIKE 'チョウ%';
SELECT COUNT(1) FROM RED_DATA.NAME_LIST
WHERE TAXON LIKE 'カゲロウ%';
SELECT COUNT(1) FROM RED_DATA.NAME_LIST
WHERE TAXON LIKE 'カメムシ%';
SELECT COUNT(1) FROM RED_DATA.NAME_LIST
WHERE TAXON LIKE 'ハチ%';

これを実行してみます。timeコマンドを付
けて時間も計測しておきます。

[hadoopuser@******* tmp]$ time hive -f ｭ
/tmp/sample.hql
Hive history file=/opt/mapr/hive/hive-ｭ
0.7.1/logs/hive_job_log__201304102213ｭ

Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at ｭ
compile time: 1
……（中略）……
Kill Command = /opt/mapr/hadoop/ｭ
hadoop-0.20.2/bin/../bin/hadoop job ｭ
-Dmapred.job.tracker=maprfs:/// ｭ
-kill job_201209031838_74086
2013-04-10 22:13:48,353 Stage-1 map = ｭ
0%, reduce = 0%
2013-04-10 22:13:52,371 Stage-1 map = ｭ
100%, reduce = 0%
2013-04-10 22:13:58,397 Stage-1 map = ｭ
100%, reduce = 100%
Ended Job = job_201209031838_74086
OK
55
Time taken: 11.43 seconds

real 0m50.470s
user 0m10.177s
sys 0m0.437s

このように1文ごとにMapReduceが起動し、
オーバーヘッドの時間が積み重なっていること
がわかります。これを次のようなHiveQLに書き
換えて一度で集計できるように変えてみましょう。

SELECT
 COUNT(IF(TAXON LIKE 'チョウ%', 1, ｭ
NULL)),
 COUNT(IF(TAXON LIKE 'カゲロウ%', 1, ｭ
NULL)),
 COUNT(IF(TAXON LIKE 'カメムシ%', 1, ｭ
NULL)),
 COUNT(IF(TAXON LIKE 'ハチ%', 1, NULL)),ｭ
FROM RED_DATA.NAME_LIST;

同様にconvert_sample.hqlという名で保存し
実行してみます。

[hadoopuser@******* tmp]$ time hive ｭ
-f convert_sample.hql
Hive history file=/opt/mapr/hive/hive-ｭ
0.7.1/logs/hive_job_
log_201304102241_642693019.txt
Total MapReduce jobs = 1
Kill Command = /opt/mapr/hadoop/ｭ
hadoop-0.20.2/bin/../bin/hadoop job ｭ
-Dmapred.job.tracker=maprfs:/// -kill ｭ
job_201209031838_74088
2013-04-10 22:41:51,057 Stage-1 map = ｭ
0%, reduce = 0%
2013-04-10 22:41:56,088 Stage-1 map = ｭ
100%, reduce = 0%

……（中略、次ページへ続く）……

114 - Software Design

HiveでHadoopを活用してみませんか！
FBで生まれたビッグデータ分析ツール

Jun. 2013 - 115

2013-04-10 22:42:03,129 Stage-1 map = ｭ
100%, reduce = 100%
Ended Job = job_201209031838_74088
OK
102 4 88 55
Time taken: 16.537 seconds

real 0m18.139s
user 0m8.473s
sys 0m0.298s

このようにMapReduceが起動のオーバーヘッ
ドが少なくなる分、処理時間が短縮されること
がわかります。ただし、カウントの結果を横並
びに出力することになるので最終帳票のフォー
マットなどは最初から考慮しておく必要があり
ます。
また、はじめてHiveを扱う際に地味に役立

つのがexplain句です。これを使用することに
より自分が描いたクエリが成功するかどうかを
チェックすることができます。

●成功例

hive> explain SELECT
 > COUNT(IF(TAXON LIKE 'チョウ%', ｭ
1, NULL)),
 > COUNT(IF(TAXON LIKE 'カゲロウ%', ｭ
1, NULL)),
 > COUNT(IF(TAXON LIKE 'カメムシ%', ｭ
1, NULL)),
 > COUNT(IF(TAXON LIKE 'ハチ%', 1, ｭ
NULL))
 > FROM RED_DATA.NAME_LIST;
OK
……（中略）……
 Fetch Operator
 limit: -1
Time taken: 2.661 seconds

●失敗例

hive> explain SELECT
 > COUNT(IF(TAXON LIKE 'チョウ%', ｭ
1, NULL)),
 > COUNT(IF(TAXON LIKE 'カゲロウ%', ｭ
1, NULL)),
 > COUNT(IF(TAXON LIKE 'カメムシ%', ｭ
1, NULL)),
 > COUNT(IF(TAXON LIKE 'ハチ%', 1, ｭ
NULL)),
 > FROM RED_DATA.NAME_LIST;
FAILED: Parse Error: line 6:0 cannot ｭ
recognize input near 'FROM' 'RED_DATA' ｭ
'.' in select expression

⑦サブクエリの実行例
もちろんSQLと同様にサブクエリやJOIN

も使用できます。サブクエリを実装した例を示
します。

hive> SELECT count(1)
 > FROM(
 > SELECT TAXON
 > FROM RED_DATA.NAME_LIST
 > GROUP BY TAXON
 >) A;
……（中略）……
Time taken: 23.973 seconds

JOINやサブクエリを使うと処理によっては
MapReduceが複数段走ることが特徴です。何
度も繰り返しますがその分だけオーバーヘッド
がかかることを忘れてはなりません。

GUIツールの活用
前述のようにSQLとの違いは、よく理解し

なければならないものの、MapReduceを直接
書くよりも導入コストが下がることは一目瞭然
です。このメリットはほかのデメリットを相殺
するほどです。MapReduceに変換されるゆえ
にUDFを使って自在に独自関数を作成可能な
ことも見逃せません。
当社ではこのHiveをさらに活用するために、

WebのGUIからHiveQLを入力し、HDFS上
のデータを操作・ダウンロードできるツールで
あるWebHiveをオープンソースとして公開し
ています注4。
コマンドラインのインターフェースに苦手意
識がある人に対してGUIツールを通して気軽
にHiveQLを書く機会を提供することで、
Hadoopを用いたデータの利活用が促進され、
施策接続へとつながっていっています。こうし
たBI（Business Intelligence）ツールなどをはじ
めとするGUIのツールと相性が良いのもHive

の特徴の1つと言えるでしょう。

注4） https://github.com/recruitcojp/WebHive

https://github.com/recruitcojp/WebHive

114 - Software Design Jun. 2013 - 115

ビッグデータ活用のはじめの一歩　　　　Hadoop エコシステム

Hadoopのエコシステムと
長所

RDBMSの処理を代替することでHadoopと
Hiveの有用さを確かめるという観点で、Hive

と相性がよく重要なツールとして挙げておきた
いのが、Sqoopというエコシステムです。
SqoopはおもにRDBMSからHDFSへデータ
のインポート、HDFSからRDBMSへエクス
ポートを行うために利用されます（図4）。この
Sqoop最大のメリットは、Hadoopクラスタ側
からJDBCでRDBMSへ接続を行うコマンドを
発行できることにあります。これにより、いち
いちRDBMSからHadoopへのファイル出力す
るためのバッチを書くなど、既存のアプリケー
ション開発者に余計な手間をかける必要がなく
なります。つまりHadoopによるデータ集計の
もっとも重要で手間のかかる部分であるデータ
をHDFSへ格納するというフェーズを簡略化
できます。
このSqoopにはHiveへデータ格納を行うオ

プションが存在し、これを併用すればRDBMS

からデータをHiveに直接格納し、HiveQLで操
作するといったシームレスな連携も可能となり
ます。また、既存のRDBMSのシステムに大き
な負荷をかけず、RDBMSと同等以上のデータ
量が入った大規模データ処理用システムをクロー
ンとして作れることで、導入難易度が著しく下
がりHadoopとHiveの活躍の場が増えたことも、
すでに当社内で実績として残っています。この
ようなエコシステムが豊富にそろっており、連
携な可能な点もHadoopの長所だと言えます。

Hadoopを
Hiveで活用しよう！

HadoopのCoolな利用シーンといえば冒頭に
も述べたとおり、計算量の膨大な機械学習であっ
たり、テキストや画像といった非構造データ解
析を想像しがちです。これはまったく間違いで

はなく、むしろ正しい利用シーンです。その証
拠して、当社ではデータの一元管理から始まり、
大量データ集計、パーソナライズ、機械学習、
自然語処理などのさまざまな処理をHadoopで
行っており、その結果を基にレコメンドや帳票
出力、内部システムのロジック改善などの施策
に結び付けその利活用を進めています。ですが、
その裏にはいわゆる集計・データ整形と呼ばれ
るような地味な作業がいくつも積み重なってお
り、ここで扱うデータも紛れもなく大量である
ケースがほとんどです。
こういった作業に対して、手軽にHDFSの

データ操作ができるHiveが活躍することは間
違いなく、また、Hadoop全体の利用を考える
うえで、ユーザの方に実際にHadoopに触れて
もらいイメージをつかんでもらうための、事始
めとして非常に有用なツールとなります。
これまで述べてきたようなHiveの特徴を把
握し、利用シーンが想像できれば、まさにこれ
からHadoop導入するみなさんにHiveは必須の
ツールの1つとなると言えるでしょう。
まずは、身近にあるRDBMSで大量のデー

タを集計しているSELECT文を見つけ、その
1つをHiveQLに書き換えることから、Hadoop

利用のCoolな第一歩を踏み出しましょう！ﾟ

図3　HiveとSqoopを用いた連携 ▼

RDBMS

現行システム

データ

Sqoop

Ubuntu 13.04“Raring Ringtail”
～新世代のUbuntuへの最初のマイルストーン～

116 - Software Design

Ubuntu 13.04
“Raring Ringtail”

　Ubuntu 13.04注1は、Ubuntuにとって18回目
のリリースにあたります。リリースマスコット
は「Ringtail」注2で、アライグマに似た、すばし
こく体が引き締まった小動物です。
　13.04は、12.04 LTSと14.04 LTSの間に行
われる3回の「standard」リリースのうち、2度目
のリリースとなります注3。LTSリリースから
ちょうど1年、大きな機能追加が完了するタイ
ミングです。結果、このタイミングのリリース
では、直前のリリースで大幅な変化が起きてい
なければ、非常に大きな変化が生じる傾向があ
ります。たとえば9.04では直前の8.10が「ブラッ
シュアップ」的なリリースだったこともあり、「起
動時間の大幅な短縮」という大きな変化が生じて
います。13.04も、12.10が比較的「おとなしい」
ものだったため、大きな変化があることを期待
されるリリースです。

　ところが、デスクトップやサーバ向けOSと
してのUbuntuにとっては、13.04は強烈な変化
を伴うリリースではありません。リリース時点
の変更は「おとなしい」もので、Unityのデザイ
ン修正やUIの修正、新しいソフトウェアの搭
載、といった程度で、「LTSとLTSの間に起き
る大きな変化」と言うには限定的です注4。
　これは、デスクトップやサーバに大きな変化
を起こすのではなく、タッチベースのデバイス
に向けたUbuntuである「Ubuntu Touch」、すな
わちUbuntu PhoneやUbuntu Tabletにリソー
スが向けられた結果です。Ubuntuがデスクトッ
プやサーバ、組み込み（Ubuntu Core）などだけ
でなく、スマートフォンやタブレットに広がる
未来がやってこようとしています。Ubuntu

Touchのリリース予定時期は2013年後半で、
13.04のリリース時点では「プレビュー」的な立
ち位置となります。

13.04の新機能

　前述のとおり13.04はやや「おとなしい」もので
はありますが、変更点が少ないわけでもありま
せん。13.04で変化する点を見て行きましょう。

Ubuntu Japanese Team
㈱創夢　吉田 史　YOSHIDA Fumihito　hito@ubuntu.com

Ubuntu 13.04
“Raring Ringtail”

～新世代のUbuntuへの
 最初のマイルストーン～

注1） Ubuntuでは「リリース月 .日」という形式でバージョン番
号を付与することになっています。2013年4月リリース
ですので「13.04」となります。

注2） 和名カコミスル。Ubuntuではリリースごとにシンボルと
なる動物を選び、さらに頭韻を踏む形容詞句をリポジトリ
名や相性として利用します。13.04では「raring」です。

注3） Ubuntuでは、「6ヵ月に一度リリースを行う」「2年に一度
は通常版（standard）ではなく、サポート期間の長い特別版
（LTS；Long Term Support）としてリリースする」というリ
リース方針を取っています。「standard を3回リリースし
たら、次はLTS」という周期です。 注4） メモリ容量の削減などは行われています。

本稿では、2013年4月25日にリリースされたUbuntu 13.04 “Raring Ringtail”の新機能と、
今後のUbuntuの方向性について説明します。

Ubuntu 13.04“Raring Ringtail”
～新世代のUbuntuへの最初のマイルストーン～

116 - Software Design Jun. 2013 - 117

「Nexus 7用リリース」の提供

　13.04における目玉の1つは、「Nexus 7用の
Ubuntu」が提供されることです。これをAndroid

のカスタムROMと同じ方法でインストールす
ることで、Nexus 7上でUbuntuを利用できます。
導入されるのは「Ubuntu Core」で、最小限の環
境だけが導入され、あとは利用者にまかせる形
です。OpenGL ESベースでUnityも動作し、デ
スクトップ版と同じUIが利用できます。
　Ubuntu上で動作する専用のインストールツー
ル（ラッパー）「ubuntu-nexus7-installer」（図1）
が準備されるため、デスクトップ／ノートPC

などにNexus 7を接続し、ツール（図2）を用い
てインストールすることもできます注5。
　注意すべきは、Nexus 7用リリースは実際に
は「実用的なものではない」、ということです。
このリリースは、ARM SoCベースの環境、す
なわちx86に比べるとCPU性能やメモリ容量、
ストレージ性能などが限定的で、かつバッテリ
駆動時間がシビアに要求される環境で、「使いも
のになる」状態を作ることができるか、という
チャレンジに用いられる、開発者向けのリリー
スとなっています。とはいえ、7インチ、300g

強のデバイスでUbuntuが「そこそこ」動作するた
め、モバイルなどに用いることもできます。

インターフェースの改良

　Ubuntu 13.04のデスクトップ環境の変更は、
おもにユーザインターフェースの更新となって
います。変更点を見て行きましょう。

 ■Unityの更新
　Unityそのものはそれほど大きく変化してい
ませんが、UnityのDash呼び出しアイコン（通
称「大きなヘンなボタン」；Big Funny Button。

画面左のLauncherの一番上に登録されたアイコ
ン）のリデザインが行われています（図3）。
　Unityそのものへの変更は、「Scope」と呼ばれ
る検索カスタマイズや、検索結果からU1MS

（Ubuntu One Music Store）を利用して「その場
で音楽を購入できる」といった新機能が品質上の
問題から見送られたため、それほど多くありま
せん。
　なおRaringでは、これまでに引き続きCompiz

ベースで実装されたUnityが利用されます。
12.04まで提供されていたQtベースのフォール
バック実装（Unity 2D）は存在しないため、GPU

ドライバがOpenGLないしOpenGL ESをサ
ポートしていない場合はLLVMpipeによるエ
ミュレーション動作を用いることになります。

注5） 興味がある場合は、https://wiki.ubuntu.com/Nexus7/
Installationを参照してください。

 ▼図1　Ubuntu Core Nexus7 Installer

 ▼図2　インストール画面

 ▼図3　リデザインされた大きなヘンなボタン

https://wiki.ubuntu.com/Nexus7/Installation
https://wiki.ubuntu.com/Nexus7/Installation

Ubuntu 13.04“Raring Ringtail”
～新世代のUbuntuへの最初のマイルストーン～

118 - Software Design

 ■シャットダウンダイアログとアップデート
マネージャ

　Unity組み込みの機能の中では、シャットダ
ウンダイアログが新しいものに更新されていま
す（図4）。UnityのDash（Windowsキーで展開さ
れるアイコンベースのランチャー画面）とデザイ
ンがそろえられ、これまでのGTKベースの確認
ダイアログよりもわかりやすいものになりまし
た。また、このダイアログはステートに応じて
変化し、たとえばカーネルの更新など、再起動
が必要なタイプの処理が行われたあとでは「再起
動」が優先される、あるいはまだファイルを開い
ているアプリケーションが存在する場合はそれ
に応じた確認を行うようになっています。
　同じように、アップデートマネージャのデザ
インも変更され、現代的なデスクトップ環境に
合わせたものになっています（図5）。

 ■新しい Indicator
　画面上部／右端に登録される各種アイコン
（Indicator）にもいくつかの変更が加えられてい
ます。
　まず、Bluetooth Indicator（indicator-bluetooth）
がブラッシュアップされ、非常にわかりやすい
ものになりました（図6）。Bluetoothデバイスの
操作の中でもっとも頻繁に行われるであろう、
電波のOn/Off と、「Visible」（サーチ可能）の切
り替えをワンタッチで行えるようになっていま
す。
　また、Ubuntu One（Dropboxに似たオンライ
ンストレージサービス）の動作を制御する、
「Sync」Indicator（indicator-sync）が追加され、
Ubuntu Oneの同期設定をワンタッチで制御でき
るようになりました（図7）。これらはとくに、
タッチベースのインターフェースを採用したデ
バイス（タブレットやスマートフォン、そして
Windows 8対応のPC）でも利用できるようにす
るためと考えられます。

 ▼図4　シャットダウンダイアログ

 ▼図5　アップデートマネージャ

 ▼図6　Bluetooth Indicator

 ▼図7　Ubuntu Oneの同期設定

Ubuntu 13.04“Raring Ringtail”
～新世代のUbuntuへの最初のマイルストーン～

118 - Software Design Jun. 2013 - 119

コア部分の変更

　Ubuntuにとって、「目に見えない部分」の更新
も重要です。13.04で更新された、「目に見えな
い場所」の更新点を見て行きましょう。

 ■カーネル
　Ubuntu 13.04 で は、Linux Kernel 3.8.5 を
ベースにしたカーネルが利用されます。Ubuntu

では、いわゆる“Mainline”、kernel.orgで開発さ
れているツリーに、次の機能を追加注6してビル
ドしたもの注7が用いられます。

・Ubuntu独自のドライバ（aufs、dm-raid45、
overlayfsサポートと、EFI環境向けのefi varfs
など）

・Ubuntu独自の拡張機能、パッチ（各種入力デ
バイス用ドライバや、OEMで採用されてい
るノートPC向けのパッチ、AppArmorの調整
など）

・一部のARM SoC（OMAP3、OMAP4、Evnergy
Core）向けBSP（Board Support Package）
由来のドライバの追加

　特筆すべきは、これまでSoCごとに管理され
ていた（場合によってはSoCごとにベースバー
ジョンすら違っていた）カーネルソースツリーが
統合されたことです。統合されたツリーから
x86、x64、OMAP3、OMAP4、Calxeda

EnergyCore EMX-1000向け（i386/generic、
amd64/generic、armel/omap3、armhf/omap3、
armhf/omap4、armhf/highbank）がビルドされる
ことになります。ただし、前述の「Nexus 7向け
リリース」ではTegra 3への対応の都合から注8、

3.1.10ベースの別ツリーが使われます。

 ■Upstart 1.8
　Ubuntuが採用する initデーモンである
Upstartは、13.04では1.8が採用されます。
　Upstart 1.8では、ファイルの変化をトリガー
としてプロセスを起動できる、「upstart-fi le-

bridge」と、テクノロジプレビューとしてUser

session機能が搭載されています。また、Upstart

イベントを追跡するための、upstart-monitior

ツールが追加されました。

 ■upstart-� le-bridge
　upstart-fi le-bridgeは、「ファイルが変化した」
ときにemit（Upstartにおけるイベント発呼）が
行われる機能です。たとえば、『「/var/run/http-

alert」というファイルが変化するたびにアラー
トを発呼するプログラムを起動する』という設定
ができます。この設定を行うには、/etc/init/以
下に、リスト1のような設定を記載した定義ファ
イルを設置します。Upstartはこの設定ファイ
ルをもとに自動的にファイルシステムの監視を
行い、/var/run/http-alertが作成／変化／削除
されたタイミングで自動的に/usr/local/sbin/

alert-by-mailを実行するようになります。監視
する対象はファイルだけでなく、ディレクトリ
やglobパターン（アスタリスクなどを使った指
定）にも対応します。

注6） https://wiki.ubuntu.com/KernelTeam/Specs/Raring
KernelDeltaReview 参照。

注7） 13.04で変更されたオプションを把握したい場合、https://
wiki.ubuntu.com/KernelTeam/Specs/RKernelConfig
Reviewを参照してください。極端に大きな変化はありま
せんが、NFS_V4_1（NFS_V4ではなく、長らく experi
mental扱いだったV4_1）が有効になっており、pNFSなど
のNFS 4.1ベースの機能が利用できるようになっています。

注8） これはTegra 3用のBSP（Board Support Package。SoCベ
ンダが各OS用に提供する「オリジナルのカーネルからの差
分」をひとまとめにしたもの。Linuxの場合はとくにLSP/
Linux Support Packageと呼ばわれることもあります）の
サポートがLinux Kernel 3.1系をターゲットにしたもので、
3.8などの新しいカーネル用に移植が完了していないこと
によります。

 ▼リスト1　定義ファイル

example : alert when trigger file created
description "http-alert catcher"

start on file FILE=/var/run/http-alert
stop on runlevel [06]

expect fork
exec /usr/local/sbin/alert-by-mail

https://wiki.ubuntu.com/KernelTeam/Specs/RaringKarnelDeltaReview
https://wiki.ubuntu.com/KernelTeam/Specs/RKernelConfigReview
https://wiki.ubuntu.com/KernelTeam/Specs/RKernelConfigReview
https://wiki.ubuntu.com/KernelTeam/Specs/RKernelConfigReview
https://wiki.ubuntu.com/KernelTeam/Specs/RaringKarnelDeltaReview

Ubuntu 13.04“Raring Ringtail”
～新世代のUbuntuへの最初のマイルストーン～

120 - Software Design

 ■user session
　Upstartのuser session機能は、これまでの
「user job」、「ユーザ個別のサービス管理デーモ
ン」としての機能を応用し、デスクトップセッ
ションで必要なサービスの管理を行うための機
能です。
　user jobは、通常のシステムジョブ管理と同
じく、システム上特定のイベント（たとえば「ファ
イルシステムがマウントされた」「ネットワーク
が有効になった」「Xが起動された」）をトリガー
にして、ユーザ用のプロセスを起動／終了でき
ます。たとえば、「なんらかのUSB接続ストレー
ジがシステムに接続されたタイミングで中身を
確認する」といったことに用います。
　user sessionはこの機能をさらに拡張し、デ
スクトップセッションで必要となるデーモンす
べてをUpstart経由で管理する機能です。13.04

ではあくまでプレビューとして搭載されており、
有効にできるのは13.04のみ、かつ、有効化に
は/etc/upstart-sessionを編集し、user session

を有効にするデスクトップ環境を指定する必要
があります。この変更を行ってからログインす
ると、デスクトップで必要なデーモンが/usr/

share/upstart/sessions/以下にあるupstartの
native job設定ファイルに基づいて起動される
ようになります。

　また、「created」「modify」「delete」トリガーを
指定することで、検知する変化を指定すること
もできます。たとえば、図8のように「EVENT=

create」を指定することで、ファイルが新規作成
された場合だけを検知対象にします。

 ■upstart-monitor
　upstart-monitiorは、Upstartの各種イベント
が発生したこと、そしてそこから各種プロセス
が正常に起動されたかどうかを追跡するための
プログラムです（図9）。この機能と、以前から
搭載されている initctl2dot（Upstartのイベント
間の依存関係をdot形式で出力する）プログラム
を組み合わせることで、イベントのデバッグが
可能になります。複雑なサービス定義ファイル
を記述する場合、この機能を用いて動作を確認
することが必須になるでしょう。
　デフォルトではインストールされていないの
で、明示的に「upstart-monitor」パッケージのイ
ンストールが必要です。GUIモード／コンソー
ルモードを切り替えて利用することができます。
デフォルトではuser sessionへ接続しようとす
るので、「--destination=」を用いて接続先を適切
に指定する必要があります。より詳しい使い方
は、man upstart-monitorを参照してください。

 ▼図9　Simple Upstart Event Monitor

 ▼図8　「EVENT=create」を指定

start on file FILE=/var/run/http-alert EVENT=created

Ubuntu 13.04“Raring Ringtail”
～新世代のUbuntuへの最初のマイルストーン～

120 - Software Design Jun. 2013 - 121

　現時点ではこの機能はあまり役に立ちません
が、将来的にデスクトップ環境との統合が進む
と、「特定のイベントが発生した場合、必要なプ
ロセスをすべて再起動する」といった機能が搭載
できるようになります。また、「このプロセスの
あとにこのデーモンを起動したい」という挙動が
実現できます。たとえば、Unityが完全に起動
しきってからインプットメソッドを起動したい、
といった指定も可能になるため、タイミング的
にデーモンの起動が失敗する問題を根絶できる
ようになります。

その他の変更点

 ■OpenStack
　Ubuntuは、OpenStackの主要な動作プラット
フォームでもあります。UbuntuではOpenStack

側のリリースだけでなく、Ubuntu Serverで
「apt-get install」するだけで簡単に扱えるよう、
Ubuntu側で別途パッケージングが行われてい
ます。13.04世代のOpenStackはOpenStack

“Grizlly”（2013.1）注9です。
　Grizllyのリリースが4月に入ってからだった
こともあり、13.04のリリース時点には間に合
わず、リリース後に -updatesや -backportsと
いったリポジトリ経由で別途提供されることに
なる可能性もあります。なお、OpenStack関連
は「その時点で最新の standardとLTSリリー
ス」に対して提供されるため、12.04（12.04.2）用
にもパッケージングが行われる予定です。
　また、HAProxyを利用することで、Open

Stackの各ノード（Quantum、Nova、Cinder、Key

stone・Glance/Ceph）の擬似冗長構成を採る
ことができるようになっています。この機能は
Juju注10を用いて制御できるため、数操作で冗長化
されたOpenStack環境を構成することもできます。

 ■Wubi
　Ubuntu 13.04では、「品質上の理由からWubi

（Windows環境向けインストーラ）はリリースイ
メージに含まれない」という決定が行われていま
す。これは、Windows 8上で期待どおりに動作
しないことや、多くのバグを抱えたままになっ
ているためです。今後バグが修正された時点で
再びリリースイメージに含まれるようになる可
能性もありますが、13.04ではWindows環境と
併用する場合はDVD/USBからブートするか、あ
るいは仮想環境を利用することになります注11。

 ■“Ubuntu GNOME”と“Kylin”
　13.04では、Ubuntuの公式なFlavourとして、
「Ubuntu GNOME」と、「Ubuntu Kylin」が追加さ
れました。前者は12.10で「GNOME Remix」と
呼ばれていたGNOME3/GNOME Shellベース
のデスクトップ環境、そして後者が中国政府が
主導する「Kylin」プロジェクトのUbuntu版注12

です。
　Ubuntuには豊富なデスクトップ環境やアプリ
ケーションが存在するため、インストールイメー
ジに収録するプリセットを変更することで、さ
まざまなバリエーションを作ることができます。
これを「Flavour」と呼びます。たとえばKDEを
メインにしたKubuntu、Xfceをメインにした
Xubuntuなどです。これら以外にもさまざまな
バリエーションが存在し、Ubuntu的に公式に認
定されたもののうち、特別な許可を得たものが
「Ubuntu ****」あるいは「***buntu」のネーミング
を使うことを許されます。これ以外に、公式な
認定を受けたものが「Edition」、そうでないもの

注9） OpenStackのバージョン表記は、「年 .（リリース回）」方式
で、Grizzlyは「2013年の 1回目のリリース」ですので
2013.1です。

注10） https://blueprints.launchpad.net/ubuntu/+spec/
servercloud-r-openstack-ha

注11） 基本的にWubiは「NTFS領域にOSイメージを配置し、
WindowsのブートローダーからLinuxカーネルをキック
してNTFS上のイメージをマウントする」というしくみで動
作するもので、もともと非常にhackyな実装です。基本的
に「テスト用」として提供されるものですので、これによる
影響はそれほど大きくありません。UbuntuとWindows
をデュアルブートにすることもできますが、各OSでトラ
ブルが起きた際のリカバリーの難易度が上がってしまうた
め、あまりお勧めしません。

注12） 「Kylin」は「中国におけるスタンダードシステム」として開
発されているOS環境で、以前はFreeBSDベースで実装さ
れていました。これがUbuntu Chinese Remixベースの
Ubuntu Kylinに引き継がれる形です。

https://blueprints.launchpad.net/ubuntu/+spec/servercloud-r-openstack-ha

Ubuntu 13.04“Raring Ringtail”
～新世代のUbuntuへの最初のマイルストーン～

122 - Software Design

を「Remix」と呼びます。この方針に基づいた審
査をクリアしたうえで、GNOME Remixは
「Ubuntu GNOME」とリネームされています。

13.04のサポート期間は9ヵ月

 ■ローリングリリースに関する議論
　Raringのリリース前のタイミングで、Ubuntu

では「半年ごとのリリースは非効率的なので、
ローリングリリースモデルに切り替え、リリー
ス作業は2年に一度、LTSのみとするべきでは
ないか」という議論が行われました。
　これは、各リリース時に行われるQA作業、あ
るいは各リリース単位のセキュリティアップデー
ト作業の負荷が大きなものになっている、とい
う賛成派と、定期的なリリースは品質の担保と
して重要であり、同時にローリングリリースモ
デルはユーザが混乱しないように仕上げるのが
困難なので切り替えるべきではない、という反
対派に分かれ、綿密な議論が行われました。実
際には賛成派と反対派も流動的で、「より良いリ
リース体制とはどのようなものか？　ただしコ
ストは下げたい」という立ち位置のもと、各人が
アイデアを出すという状態が続きました。こう
して、約3ヵ月にわたる非常に長い議論の末、最
終的に、「半年ごとにリリースすべきである」と
いう結論となり、「6ヵ月ごとのリリース」とい
うUbuntuのポリシーは維持されています。

 ■サポート期間の短縮
　しかし、6ヵ月ごとにリリースを行う以上、作
業コストはそれほど少なくなりません。Jenkins

などを用いた継続的インテグレーションのため
の自動化は進められていますが、根本的な作業
コストそのものを軽減する必要がありました注13。
　そこでUbuntu Teamが下した結論は、「非
LTSリリースのサポート期間を半分にするこ
と」です。これにより、「少なくとも5～6系統の
Ubuntuのメンテナンスをする」という状態から
脱却できます注14。併せて、「非LTS」リリース

については「standard」と呼ぶことになりました。
この変更は 13.04から適用され、以前の
「standard」リリース、11.10と12.10には影響せ
ず、これらのリリースは18ヵ月のサポートが提
供されることになります（ただし、11.10は5月
9日に18ヵ月のサポート期間を終了します）。
　6ヵ月ごとのリリースと、それぞれ9ヵ月のサ
ポート期間が提供されることから、今後
「standard」リリースを使う場合は、「新しいバー
ジョンが出てから3ヵ月以内にアップグレード
する」という運用になります。

13.04以外の動き

　12.10のリリースから 13.04までの間に、
Ubuntuには多くの変化が起きました。13.04を
語るにはこれらについても把握しておく必要が
あります。簡単に見て行きましょう。

Steam for ubuntu

　現在のUbuntuでは、いわゆる「PC向けゲー
ム」で遊ぶことができます。これは、大手ゲーム
パブリッシャーであるValveが、自社のゲーム
配信システム『Steam』をUbuntu向けにリリース
したためです。
　これは2012年夏から宣言されていたもので、
11月にベータ版が、そして2月に正式版がリリー
スされました。推奨環境はUbuntu 12.04 LTS

と12.10です。Valveからリリースされるゲー
ムには「Half-Life」や「Counter Strike」「The

注13） これは、Ubuntuの支援企業であるCanonical社の収支に
も大きな影響を与えます。リリースされた各Ubuntuの
バージョンのメンテナンスは、おもにCanonicalに雇用さ
れた開発者によって行われており、メンテナンスコストの
増大はそのままCanonicalの収支に影響を与えます。
Ubuntu Touchなどの新しい方向へ舵を切ろうとしている
Canonicalにとっては、メンテナンスのためにコストを取
られるのはあまり望ましい展開ではありません。

注14） もともと「18ヵ月のサポート期間を提供する」というポリ
シーは、LTSの影も形もない初期リリース、2004年10月
にリリースされた4.10で採用されたものです。この後、エ
ンタープライズ用途などでの利用に適合するように6.06
でLTSがリリースされるポリシーに切り替わっています。

Ubuntu 13.04“Raring Ringtail”
～新世代のUbuntuへの最初のマイルストーン～

122 - Software Design Jun. 2013 - 123

Elder Scrolls V: Skyrim」など、非常に強力な
タイトルがそろっており、「ゲームプラット
フォームの1つ」としてUbuntu搭載PCが選択
肢になり得る状態になりました。残念ながら
Linux向けにリリースされるタイトルは現状で
は限定的なものの、今後、Ubuntuがユーザを獲
得していくうえで強い味方になる可能性を秘め
ています注15。

Mirへの移行

　UNIX環境ではGUI表示時にはX Window

Systemをディスプレイサーバとして使う、とい
う常識が変わろうとしています。古典的なX環
境はあまりにも複雑過ぎるため、モバイルなど
の非力な環境で使ったり、あるいは積極的な機
能追加を行う際の実装難度が高い、といった問
題を抱えています。こうした問題を解決するた
め、「Xに代わる実装」が作られようとしていま
す。代表的な実装はWaylandで、以前はUbuntu

もWaylandへの移行を宣言していました。
　しかし、13.04の開発フェーズにおいて、
UbuntuではCanonicalが独自に開発したディス
プレイサーバ「Mir」（ロシアの宇宙ステーション、
ミールと同じスペルです）を採用することが宣言
されました。いわゆるデスクトップ環境、すな
わちPC向けだけでなく、モバイルにも展開さ
れる予定で、Ubuntu TouchについてはMir上で
動作するデモ版が存在します。Waylandでは
Canonicalが求める機能が実現できないから、と
いうことが理由とされています。

Ubuntu Touch

　13.04世代には間に合わないものの、Ubuntu

には非常に大きな変化が訪れようとしています。

それが「Ubuntu Touch」で、スマートフォンとタ
ブレットに対応したUbuntu注16です。アプリケー
ション開発のためにQMLベースのSDKが提供
され、また、HTML5アプリケーションを動作
させることができる、新しいスマートフォン環
境です。UnityのQML移植版が動作し、デスク
トップに触ったことがあれば、直感的に操作で
きるようになっています。画面左側に表示され
るLauncherもデスクトップ同様です。
　また、Ubuntu Touchには「標準的なUbuntuア
プリケーション」の動作をとくに阻害する要素が
ないため、実装上の問題が出てこなければ、必
要に応じてデスクトップ版と同じアプリケーショ
ンを利用できる可能性があり、また、クレード
ルなどからキーボード、マウス、ディスプレイ
に接続することで、そのままスマートフォンや
タブレットをデスクトップPCライクに利用す
る機能も提供される予定です。
　リリース時点ではAndroidカーネル（しかも通
常のものではなく、CyanogenModのもの）をそ
のまま利用したもので、一部のユーザの間で利
用されている「AndroidにchrootしたUbuntu環
境を導入する」というものに近似した実装でし
た。ただし、これはあくまでプレビュー版で、
最終的にMirベースのGUIを実現するものにな
る予定です。
　UbuntuにはUbuntu TVや自動車向けのプロ
ダクトも存在するため、このプロジェクトが首
尾よく進むと、「コンピュータへのインター
フェースはすべてUnity」という未来がやってく
る可能性があります。｢

注15） いわゆる「ゲーム向けPC」の中にもUbuntuを搭載したモ
デルが登場しており、USAのDell（Alienwareブランド）か
らUbuntuプレインストールモデルが提供される予定です。
http://alienware.com/ubuntu/

注16） 開発コードネーム的なネーミングでは、「Ubuntu for
Phablet」という名称もあります。Phabletはスマートフォ
ンとタブレットの中間的なデバイス、とくに5～7インチ
のモバイル回線に対応したデバイスを指す単語ですが、
UbuntuでのPhabletは「PhoneとTablet」というニュアン
スを持っています。

http://alienware.com/ubuntu/

124 - Software Design

プログラム知識ゼロからはじめる

iPhoneブックアプリ開発

GimmiQ（ギミック；いたのくまんぼう＆リオ・リーバス）
 URL http://ninebonz.net/

 URL http://www.studioloupe.com/

おさらい

　前回の記事で説明した写真集アプリは完成し
ましたでしょうか？　動くものを完成させる喜
びを知っていただくために、前回はプログラム
のコードを一切書かないで簡単にアプリを完成
させてみました。今回は少しだけコードを書い
て機能アップしたアプリにしてみましょう。

アプリの基本部分を作成

　今回のアプリはこれから先の連載の基礎とな
る部分を作成します。一見、前回のものと似て
はいますが、メモリ管理などをきちんとできる
ものになっています。前回はコードを書かない

ページが戻れるしくみを入れる

で作る都合上、メモリ管理のことなどは考慮し
ませんでした。ですので前回の作り方ではペー
ジを作るたびにメモリを消費してしまい、何千
ページもあるものを作ると問題が出る可能性が
あります。今回はこの部分をクリアするために
Navigation Controllerを使い、コードも多少書
いています。
　連載2回目ですので、まずは復習もかねて新
プロジェクトを作って前回のステップ11まで進
めてください。これがこれから作るアプリの基
本部分となります。なお、お手元に前号がない
場合は連載のまとめページ注1にステップ11まで
の手順を公開していますのでそちらをご覧くだ
さい。
　さて、準備できましたか？　Xcodeの操作に
もだいぶ慣れてきたのではないでしょうか。

　前回の記事で作成したアプリはページを進めるのみで、戻ることはできませんでした。より本らし
くするためにページを戻るしくみを入れたアプリにしましょう。

ちょこっとコードを
書いて、より本らしく！

プログラム知識ゼロからはじめる
iPhoneブックアプリ開発

プログラミングをしたことのない方にもアプリを作る楽しさを味わっ
てもらいたい本連載。前回はコードを書かずに最もシンプルな写真集
アプリを作ってみました。今回はちょっとコードを入れるだけで、前
回より一歩進んだアプリになります。

ステップ1

　なるべく簡単にページの前後への移動、つまりナビゲー
ションを実現するためにNavigation Controllerを使います。
これはその名のとおり画面の遷移をコントロールするパー
ツだと考えてください。
　StoryBoardにある1ページ目となるView Controllerを

 step1-1 step1-1

第2回

注1） http://www.gimmiq.net/p/sd.html

http://ninebonz.net/
http://www.studioloupe.com/
http://www.gimmiq.net/p/sd.html

124 - Software Design Jun. 2013 - 125

ちょこっとコードを書いて、より本らしく！第2回

ステップ4

　まずは、1ページ目に写真を貼り付けます。Xcodeの右カ
ラムの「Media library」から1ページ目の画像を1ページ目の
View Controllerまでドラッグ＆ドロップします（図step4-1）。
　配置後、画像をクリックし
選択状態にしたまま、Xcode
の右カラムの「Size inspector
（サイズインスペクター）」の
アイコンをクリックすると画
像の位置（X, Y座標）と大きさ
（幅、高さ）が確認できます。
図step4-2と同じ値になって

1～2ページ目を作る
　それでは1ページ目と2ページ目を作りましょう。

ステップ3

　続いてステータスバーも非表示にします。同じくアトリビュートイン
スペクターの「Status Bar」の項目をクリックし、「None」を選択してくだ
さい（図step3-1）。
　これでページの前後への移動の準備ができました。

ステップ2

　このままですと、実行時に画面上部にナビゲーションバー（図step1-2
参照）が表示されてしまいます。写真集アプリなどでは表示の邪魔になっ
てしまいますのでNavigation Controllerの機能は使いつつ、表示自体は
しないようにします。
　StoryBoardのNavigation Controllerページをクリックし、選択状態に
したままXcodeの右カラムにある「Attributes inspector（アトリビュート
インスペクター）」をクリックしてください。「Bar Visibility」の「Show
Navigation Bar」のチェックを外します。これでNavigation Controllerは
表示されなくなります（図step2-1）。

クリックし選択状態にしたまま、メニューバーから［Editor］
－［Embed In］－［Navigation Controller］を選択します（図
step1-1）。
　StoryBoardが図step1-2のような状態になったと思いま
す。これはNavigation Controllerの管理下に1ページ目の
View Controllerが配置されている状態を表しています。

 step1-2 step1-2

 step2-1 step2-1

 step3-1 step3-1

Navigation Controllerページ

ナビゲーションバー

Attributes
inspector

 step4-1 step4-1

Media library
 step4-2 step4-2 Size inspector

126 - Software Design

プログラム知識ゼロからはじめる

iPhoneブックアプリ開発

ステップ5

　2ページ目も用意しましょう。Xcode右下の「Object
library」から「View Controller」をStoryBoardの1ページ
目の横の位置にドラッグ＆ドロップします（図step5-1）。
このView Controllerが2ページ目になります。ステップ4
と同様の手順で、2ページ目のView Controllerにも2ペー
ジ目の画像を貼り付けてください。

ステップ6

　ページ移動用のボタンを配置します。「Object
library」から「Round Rect Button」を1ページ目に
ドラッグ＆ドロップし貼り付けます（図step6-1）。
　貼り付けた「Round Rect Button」をクリックし
て選択状態にし、右カラムのサイズインスペク
ターのアイコンをクリックします。図step6-2と
同じ値になるように各値を入力してください。こ
れは1ページ目から2ページ目へ、ページを進め
るためのボタンになります。
　2ページ目にも同様に「Round Rect Button」を
ドラッグ＆ドロップします。位置とサイズは図
step6-3にあわせてください。こちらは2ページ
目から1ページ目へ、ページを戻るためのボタン
になります。

いるか確認してください。なっていなければここの数値を
直接編集して修正します。 step5-1 step5-1 Object library

 step6-2 step6-2 step6-3 step6-3

 step6-1 step6-1

126 - Software Design Jun. 2013 - 127

ちょこっとコードを書いて、より本らしく！第2回

ステップ8

　ページを戻る機能を組み込むにはソースコードの
ほうに少しだけ手を加える必要があります。恐れな
くても大丈夫です。今回追加するコードは大変簡単なもので、厳密に言う
と関数を追加するだけで、関数の中身は空のままですので難しいことはあ
りません。
　まずは各ページに対応したソースコードを用意しましょう。Xcodeのメ
ニューバーから［File］－［New］－［File］を選択します。
　表示されたウィンドウ（図step8-1）左のカテゴリから「Cocoa Touch」を、
右のファイル種類は「Objective-C class」をそれぞれ選択し、［Next］をク
リックします。
　次のウィンドウ（図step8-2）ではソースコードのファイルネームなどを
決めます。「Class」の項目にクラス名を入れます。この名前がそのままファ
イルネームになります。ここでは1ページ目の制御に使うソースであるこ
とをわかりやすくするために「Page1ViewController」という名前にしま
しょう。今回はStoryBoard上の各ページのView Controllerに対応したソー
スを用意しますので「Subclass of」は「UIViewController」を選択します。
［Next］ボタンを押すと保存先を指定するダイアログボックスが表示される
ので、保存先にプロジェクトフォルダを指定します。作例ではデスクトッ
プに置いた「MyBook」フォルダです。

ページをつなげる
　1ページ目と2ページ目を行き来できるようにしましょう。

ステップ7

　1ページ目のボタンを ÌcontrolÔキーを押しながらド
ラッグし、表示された青い線を2ページ目まで引っ
張り、2ページ目が青い枠で囲まれたらマウスのボ
タンを放します（図step7-1）。すると図step7-2のよ
うなメニューが出ますので、「push」をクリックしま
す。これでページが進む方向には移動できるように
なりました。

 step7-1 step7-1

 step7-2 step7-2

 step8-1 step8-1 step8-2 step8-2

128 - Software Design

プログラム知識ゼロからはじめる

iPhoneブックアプリ開発

ステップ9

　1ページ目のView Controllerと1ページ目のソースファイルを
関連づけます。StoryBoardの1ページ目のView Controllerを選択
し、右カラムの「Identity inspector（アイデンティティインスペク
ター）」のアイコンをクリックします。「Class」の項目をクリックし
「Page1ViewController」を選択します（図step9-1）。

ステップ11

　2ページ目のボタンを1ページ目につなぎましょう。StoryBoardの2
ページ目に置いたボタンを ÌcontrolÔキーを押しながらドラッグし、View
Controller下にある緑色の四角いアイコン「Exit」につなげます（図step11-
1）。
　図step11-2のようなメニューが表示されますので、「page1ReturnSegue:」
をクリックします。このメニューに表示されたのは先ほどソースコードを
追記した、ページを戻るための目印としての関数です。

ステップ10

　いよいよソースコードを修正します。左カラム
の「Project Navigator」から「Page1ViewCon
troller.m」をクリックし、ソースコードを表示し
てください。ファイル末尾の「@end」の前に次の
コードを追記します（図step10-1）。

- (IBAction)page1ReturnSegue:ｭ
(UIStoryboardSegue *)segue
{
}

　これは関数と呼ばれるものです。関数とはある
まとまった処理をするものと考えてください。追
記したこの関数が他のページから1ページ目に
戻ってくるための目印となりますので、それとわ
かる名前にしましょう。作例では「page1Return
Segue」という名前にしてあります。
　関数では「{」から「}」までの間に処理のコードを記述するのですが、今回はページを戻る際の目印として
だけ使用しますので、関数の中身は空っぽのままでかまいません。

 step10-1 step10-1

 step9-1 step9-1

 step11-1 step11-1

 step11-2 step11-2

Identity inspector

128 - Software Design Jun. 2013 - 129

ちょこっとコードを書いて、より本らしく！第2回

ステップ12

　ボタンが写真を隠してしまっていてじゃまですので、ボタンを透明
にします。ボタンをクリックして選択状態にし、右カラムのアトリ
ビュートインスペクターアイコンをクリックします。図step12-1のよ
うに「Type」を「Custom」に設定し、「Title」に入力されている「Button」
という文字列を削除します。これでボタンが透明になりました。

ステップ13

　Xcodeのウィンドウ左上にある「Run（実行）」のアイコンをクリック
しましょう。iPhoneシミュレーターが起動し、1ページ目の画像が表
示されていると思います。1ページ目の右半分をタップすると2ペー
ジ目へ、2ページ目の左半分をタップすると1ページ目へとページの
行き来ができるはずです。

実行して確認

ステップ14

　あとはステップ4～ステップ12を繰り返して、ページを増やしてい
くだけです。注意点は次の2つです。

・View Controllerとソースファイルはページごとに用意する
・ソースファイルとその中に記述する戻り用の関数の名前は、どの
ページのものなのかわかりやすくする

　サンプルでは第1回目同様6ページまで作成してみました。このと
きのファイル一覧は図step14-1のようになりました。

ページを増やして完成

　今回作ったアプリがこれからの基本形となります。次回からはこ
れを発展させ、アプリでしかできないさまざまな要素を入れていき
たいと思いますのでご期待ください！｢

いたのくまんぼう／Itano Kumanbow　 Twitter @Kumanbow

神奈川工科大学非常勤講師。リオさんとはGimmiQ名義で
「MagicReader」（手を使わずにページがめくれる電子書籍ビュー
ワ）をリリース。個人ではNinebonz名義で「Crop It Cam!」（お
しゃれな切り抜き写真カメラ）、「i列車の車窓から－そうだ！ 京都
行こう！－」（バーチャル旅行アプリ）など。アプリ紹介サイト「あぷ
まがどっとねっと（http://appmaga.net/）」の技術サポータ。

リオ・リーバス／Leo Rivas　 Twitter @StudioLoupe

iOSアプリ開発を中心に電子絵本作家・漫画家として活動中。
個人ではスタジオルーペとして数字を指でドラッグ＆ドロップ保存で
きる「フュージョン計算機（FusionCalc）」が代表作。電子絵本
はiBookstore/Kindleストア共に児童書カテゴリ総合1位を獲
得。現在HPにてWeb漫画「HELL BASEBALL」を連載中。

 step12-1 step12-1

 step14-1 step14-1

http://appmaga.net/

130 - Software Design Jun. 2013 - 131

ちゃんと理解する仮想化技術ちゃんと理解する仮想化技術

ハイパーバイザの作り方ハイパーバイザの作り方ハイパーバイザの作り方ハイパーバイザの作り方

浅田 拓也（ASADA Takuya）Twitter @syuu1228

Intel VT-xを用いたハイパーバイザの実装
その5「vmm.koへのVMExit」

第9回

はじめに

　前回は、vmm.koがVM_RUN ioctlを受け取ってか
らVMEntryするまでの処理を解説しました。今回は
VMX non root modeからvmm.koへVMExitしてきた
ときの処理を解説します。

解説対象のソースコードについて

　本連載では、FreeBSD-CURRENTに実装されてい
るBHyVeのソースコードを解説しています。
　このソースコードは、FreeBSDのSubversionリポ
ジトリから取得できます。リビジョンはr245673を
用いています。お手持ちのPCにSubversionをイン
ストールし、次のようなコマンドでソースコードを
取得してください。

svn co -r245673 svn://svn.freebsd.org/base/ｭ
head src

/usr/sbin/bhyveによる
仮想 CPUの実行処理のおさらい

　/usr/sbin/bhyveは仮想CPUの数だけスレッドを
起動し、それぞれのスレッドが/dev/vmm/${name}に
対してVM_RUN ioctlを発行します（図1）。vmm.koは
ioctlを受けてCPUをVMX non root modeへ切り替
えゲストOSを実行します（これがVMEntryです）。

　VMX non root modeでハイパーバイザの介入が必
要な何らかのイベントが発生すると制御がvmm.koへ
戻され、イベントがトラップされます（これが
VMExitです）。
　イベントの種類が/usr/sbin/bhyveでハンドルされ
る必要のあるものだった場合、ioctlはリターンされ、
制御が/usr/sbin/bhyveへ移ります。イベントの種類
が/usr/sbin/bhyveでハンドルされる必要のないもの
だった場合、ioctlはリターンされないままゲスト
CPUの実行が再開されます。
　今回は、VMX non root modeからvmm.koへVMExit

してきたときの処理を見ていきます。

vmm.koが VM_RUN ioctlを
受け取ってから VMEntryするまで

　vmm.koがVM_RUN ioctlを受け取ってからVMEntry

するまでの処理について、順を追って見ていきます。
今回は、I/O命令でVMExitしたと仮定します。
　前回解説のとおり、VMExit時のVMX root modeの

▼図1　VM_RUN ioctlによる仮想CPUの実行イメージ

/usr/sbin/bhyve
user
program

guest
kernel

BSD
kernel vmm.ko

VMEntry

VMExit

ioctl（VM_RUN）

130 - Software Design Jun. 2013 - 131

Intel VT-xを用いたハイパーバイザの実装
その5「vmm.koへのVMExit」

第9回

再開アドレス（RIP注1）はVMCSのHOST_RIPで指定
されたvmx_longjmpに設定されています。vmx_

longjmpはvmx_setjmpと対になっている関数で、
POSIX APIのsetjmp/longjmpに近い動作を行いま
す。つまり、vmx_longjmpはvmx_setjmpが呼ばれた直
後のアドレスへジャンプします。結果として、
VMExitされるとvmx_longjmpを経由しvmx_runの
whileループへ戻ってくることになります。
　また、vmx_setjmpはどこからreturnしてきたかを
示すために戻り値を用いています。ここではvmx_

注1） すでに前回までの記事でも「RIP」と表記していますが、なんの
ことだろうと思った方もいらっしゃるかもしれません。これ
は、x86_64アーキテクチャでの64bit幅のEIPレジスタ（イン
ストラクションポインタ）の名前です。ほかにもEAX、EBXレ
ジスタがRAX、RBXのような名前になっています。

longjmpから戻ってきたことを表すVMX_RETURN_

LONGJMP を返します。
　では、以上のことをふまえてソースコードの詳細
を見ていきましょう。リスト1、リスト2、リスト3
に示します。解説キャプションの番号は、注目すべ
き処理の順番を示します。

sys/amd64/vmm/intel/vmx.c

　intel/ディレクトリにはIntel VT-xに依存したコー
ド群が置かれています。今回はゲストマシン実行
ループの中心となるvmx_runと、VMExitのハンドラ
関数であるvmx_exit_processを解説します。

▼リスト1　sys/amd64/vmm/intel/vmx.c

……（省略）……
 1197: static int
 1198: vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
 1199: {
 1200: 　　int error, handled;
 1201: 　　struct vmcs *vmcs;
 1202: 　　struct vmxctx *vmxctx;
 1203: 　　uint32_t eax, ecx, edx;
 1204: 　　uint64_t qual, gla, gpa, cr3, intr_info;
 1205:
 1206: 　　handled = 0;
 1207: 　　vmcs = &vmx->vmcs[vcpu];
 1208: 　　vmxctx = &vmx->ctx[vcpu];
 1209: 　　qual = vmexit->u.vmx.exit_qualification;
 1210: 　　vmexit->exitcode = VM_EXITCODE_BOGUS;
 1211:
 1212: 　　switch (vmexit->u.vmx.exit_reason) {
……（中略）……
 1238: 　　case EXIT_REASON_INOUT:
 1239: 　　　　vmexit->exitcode = VM_EXITCODE_INOUT;
 1240: 　　　　vmexit->u.inout.bytes = (qual & 0x7) + 1;
 1241: 　　　　vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
 1242: 　　　　vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
 1243: 　　　　vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
 1244: 　　　　vmexit->u.inout.port = (uint16_t)(qual >> 16);
 1245: 　　　　vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
 1246: 　　　　break;
……（中略）……
 1310: 　　default:
 1311: 　　　　break;
 1312: 　　}
……（中略）……
 1351: 　　return (handled);
 1352: }
 1353:
 1354: static int
 1355: vmx_run(void *arg, int vcpu, register_t rip)

⑲Exit Qualificationを取り出す

㉑Exit Reasonを代入
㉒Exit Qualificationか
らアクセス幅を代入

㉓Exit Qualificationか
らアクセス方向を代入

㉔Exit Qualificationか
らString命令かどうかのフ
ラグを代入

㉕Exit Qualificationか
らrep prefix付きかどう
かのフラグを代入

㉖Exit Qualificationか
らポート番号を代入

㉗raxレジスタの値を代入
㉘EXIT_REASON_INOUTでは、ユーザランドでのエミュレーション
処理を要求するためhandled = 0を返す

⑳I/O命令でVMExitした場合、Exit Reason
30（EXIT_REASON_INOUT）となる

132 - Software Design Jun. 2013 - 133

sys/amd64/vmm/intel/vmx_support.S

　vmx_support.SはC言語で記述できない、コンテ

キストの退避／復帰やVT-x拡張命令の発行などの
コードを提供しています。今回は、vmx_setjmp・vmx_

longjmpを解説します。

 1356: {
……（中略）……
 1394: 　　do {
……（中略）……
 1398: 　　　　rc = vmx_setjmp(vmxctx);
……（中略）……
 1402: 　　　　switch (rc) {
……（中略）……
 1412: 　　　　case VMX_RETURN_LONGJMP:
 1413: 　　　　　　break;　　　　　　/* vm exit */
……（中略）……
 1437: 　　　　}
 1438: 　　　　
 1439: 　　　　/* enable interrupts */
 1440: 　　　　enable_intr();
 1441:
 1442: 　　　　/* collect some basic information for VM exit processing */
 1443: 　　　　vmexit->rip = rip = vmcs_guest_rip();
 1444: 　　　　vmexit->inst_length = vmexit_instruction_length();
 1445: 　　　　vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
 1446: 　　　　vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
……（中略）……
 1455: 　　　　handled = vmx_exit_process(vmx, vcpu, vmexit);
 1456: 　　　　vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
 1457:
 1458: 　　} while (handled);
……（中略）……
 1481: 　　return (0);
……（中略）……
 1490: }

⑫vmx_returnからここへリターンされてくる。戻り値として
VMX_RETURN_LONGJMPを返す

⑬rcはVMX_RETURN_LONGJMP

⑭VMCSからゲストOSのRIPを
取得してvm_exit構造体に
セット

⑮VMCSからRIPが指して
いる命令の命令長を取
得してvm_exit構造体に
セット

⑯VMCSからExit
reasonを取得し
てvm_exit構造体
にセット

⑰VMCSからExit
qualificationを
取得してvm_exit
構造体にセット

⑱vmx_exit_processで
Exit reasonに応じた処理
を実行

㉙handled = 0が返ったため、ループを抜けvmx_runから抜ける

▼リスト2　sys/amd64/vmm/intel/vmx_support.S

……（中略）……
 100: /*
 101: * int vmx_setjmp(ctxp)
 102: * %rdi = ctxp
 103: *
 104: * Return value is '0' when it returns directly from here.
 105: * Return value is '1' when it returns after a vm exit through vmx_longjmp.
 106: */
 107: ENTRY(vmx_setjmp)
 108: 　　movq　　(%rsp),%rax　　　　　　/* return address */
 109: 　　movq %r15,VMXCTX_HOST_R15(%rdi)
 110: 　　movq %r14,VMXCTX_HOST_R14(%rdi)
 111: 　　movq %r13,VMXCTX_HOST_R13(%rdi)
 112: 　　movq %r12,VMXCTX_HOST_R12(%rdi)
 113: 　　movq %rbp,VMXCTX_HOST_RBP(%rdi)
 114: 　　movq %rsp,VMXCTX_HOST_RSP(%rdi)
 115: 　　movq %rbx,VMXCTX_HOST_RBX(%rdi)
 116: 　　movq %rax,VMXCTX_HOST_RIP(%rdi)
 117:
 118: 　　/*
 119: 　　 * XXX save host debug registers

①スタック上のリターンアドレスを
%raxに取り出す

②次の行では、VMEntry時にVMCSへ自動保存されない
ホストOSのレジスタをvmxctx構造体へ保存している

③%raxに取り出したリターンアドレスをvmxctx構造
体のhost_ripメンバに保存。ここまでがVMExit前に
行われている処理

132 - Software Design Jun. 2013 - 133

Intel VT-xを用いたハイパーバイザの実装
その5「vmm.koへのVMExit」

第9回

 120: 　　 */
 121: 　　movl　　$VMX_RETURN_DIRECT,%eax
 122: 　　ret
 123: END(vmx_setjmp)
 124:
 125: /*
 126: * void vmx_return(struct vmxctx *ctxp, int retval)
 127: * %rdi = ctxp
 128: * %rsi = retval
 129: * Return to vmm context through vmx_setjmp() with a value of 'retval'.
 130: */
 131: ENTRY(vmx_return)
 132: 　　/* Restore host context. */
 133: 　　movq　　VMXCTX_HOST_R15(%rdi),%r15
 134: 　　movq　　VMXCTX_HOST_R14(%rdi),%r14
 135: 　　movq　　VMXCTX_HOST_R13(%rdi),%r13
 136: 　　movq　　VMXCTX_HOST_R12(%rdi),%r12
 137: 　　movq　　VMXCTX_HOST_RBP(%rdi),%rbp
 138: 　　movq　　VMXCTX_HOST_RSP(%rdi),%rsp
 139: 　　movq　　VMXCTX_HOST_RBX(%rdi),%rbx
 140: 　　movq　　VMXCTX_HOST_RIP(%rdi),%rax
 141: 　　movq　　%rax,(%rsp)　　　　　　/* return address */
 142:
 143: 　　/*
 144: 　　 * XXX restore host debug registers
 145: 　　 */
 146: 　　movl　　%esi,%eax
 147: 　　ret　
 148: END(vmx_return)
 149:
 150: /*
 151: * void vmx_longjmp(void)
 152: * %rsp points to the struct vmxctx
 153: */
 154: ENTRY(vmx_longjmp)
 155: 　　/*
 156: 　　 * Save guest state that is not automatically saved in the vmcs.
 157: 　　 */
 158: 　　movq　　%rdi,VMXCTX_GUEST_RDI(%rsp)
 159: 　　movq　　%rsi,VMXCTX_GUEST_RSI(%rsp)
 160: 　　movq　　%rdx,VMXCTX_GUEST_RDX(%rsp)
 161: 　　movq　　%rcx,VMXCTX_GUEST_RCX(%rsp)
 162: 　　movq　　%r8,VMXCTX_GUEST_R8(%rsp)
 163: 　　movq　　%r9,VMXCTX_GUEST_R9(%rsp)
 164: 　　movq　　%rax,VMXCTX_GUEST_RAX(%rsp)
 165: 　　movq　　%rbx,VMXCTX_GUEST_RBX(%rsp)
 166: 　　movq　　%rbp,VMXCTX_GUEST_RBP(%rsp)
 167: 　　movq　　%r10,VMXCTX_GUEST_R10(%rsp)
 168: 　　movq　　%r11,VMXCTX_GUEST_R11(%rsp)
 169: 　　movq　　%r12,VMXCTX_GUEST_R12(%rsp)
 170: 　　movq　　%r13,VMXCTX_GUEST_R13(%rsp)
 171: 　　movq　　%r14,VMXCTX_GUEST_R14(%rsp)
 172: 　　movq　　%r15,VMXCTX_GUEST_R15(%rsp)
 173:
 174: 　　movq　　%cr2,%rdi
 175: 　　movq　　%rdi,VMXCTX_GUEST_CR2(%rsp)
 176:
 177: 　　movq　　%rsp,%rdi
 178: 　　movq　　$VMX_RETURN_LONGJMP,%rsi
 179:
 180: 　　addq　　$VMXCTX_TMPSTKTOP,%rsp
 181: 　　callq　　vmx_return
 182: END(vmx_longjmp)

⑧次の行では、VMExit時にVMCSから自動復帰され
なかったホストOSのレジスタを復帰している

⑨vmxctx構造体のhost_ripメンバか
ら%raxへリターンアドレスをコピー
⑩リターンアドレスをスタックにセット

⑪⑩でセットしたアドレスへリターン

④VMExit時にはここから実行が再開される。以降
の行で参照されている%rspはVMEntry時に自動保
存され、VMExit時に自動復帰されている

⑤次の行では、VMExit時にVMCSへ自動保存されな
かったゲストOSのレジスタを保存している

⑥戻り値としてVMX_RETURN_LONGJMPを指定

⑦vmx_returnを呼び出してホストOSのレジスタを
復帰する

134 - Software Design

sys/amd64/vmm/vmm.c

　vmm.cは、Intel VT-xとAMD-Vの2つの異なる

ハードウェア仮想化支援機能のラッパー関数を提供
しています。今回はvmx_runのラッパー関数のvm_

runを解説します。

まとめ

　VMX non root modeからvmm.koへVMExitしてき

▼リスト3　sys/amd64/vmm/vmm.c

……（中略）……
 672: int
 673: vm_run(struct vm *vm, struct vm_run *vmrun)
 674: {
……（中略）……
 681: 　　vcpuid = vmrun->cpuid;
……（中略）……
 686: 　　vcpu = &vm->vcpu[vcpuid];
 687: 　　vme = &vmrun->vm_exit;
 688: 　　rip = vmrun->rip;
……（中略）……
 701: 　　error = VMRUN(vm->cookie, vcpuid, rip);
……（中略）……
 709: 　　/* copy the exit information */
 710: 　　bcopy(&vcpu->exitinfo, vme, sizeof(struct vm_exit));
……（中略）……
 757: }

㉚vmx_runはEXIT_REASON_
INOUTをハンドルしてここへ抜
けてくる

㉛vm_exit構造体の値はユーザ
ランドへの戻り値としてここで
コピーされる

たときの処理について、ソースコードを解説しまし
た。次回は、I/O命令によるVMExitを受けて行われ
るユーザランドでのエミュレーション処理について
見ていきます。｢

本物のオブジェクト指向をJavaScriptで実践する方法を解説し、
高い評価を得てきた『Java開発者のためのAjax実践開発入門』
が、最新のWeb開発事情に合わせ内容を全面刷新。90％以上書
き直し、JavaScriptをオブジェクト指向で根底から学ぶトレーニング
方法や、node.jsによるサーバサイドの開発、jQueryMobileによる
スマートフォン対応など、仕事ですぐに役立つ技術解説を高密度
に濃縮。今後10年以上稼ぐための基礎を、スジ良く学べる最強の
JavaScript解説書です。

河村嘉之、川尻剛 著
B5変形判／480ページ
定価3,129円（本体2,980円）
ISBN 978-4-7741-5438-1

・JavaScriptプログラマ
・Webプログラマ

136 - Software Design Jun. 2013 - 137

　みなさん、いい季節いかがお過ごしでしょう
か。この原稿を書いているのが3月頭ですので、
筆者は現在、杉からの花粉ハラスメントを受け
ている最中です。
　そんな時差を利用した小話はいいとして、今
回のテーマは「サーバを股にかける」です。「時を
かける少女」じゃなくて、「サーバをかけるオッ
サン」になろうということで、いろいろネタを準
備しました。
　字しか書けない端末の良いところは、1つの
端末に字を書くだけであっちこっちのコンピュー
タを気軽に使えることです。vncやリモートデ
スクトップではそうはいかず、あっちこっちの
画面を覗いているうちに疲れてきます。データ
を移すのにも一苦労です。やりたいことに対し
て情報量が多いことは、けっして良いことでは
ありません。
　そういえば、ガンカーズのUNIX哲学には、
主要な9ヵ条のほかに、二軍の10ヵ条がありま
すが、その中に、

「90パーセントの解決を模索せよ。」

というのがあります。プログラムを書いたり、
仕事をしたりすると、本筋でない雑事が気にな
るものですが、それにはある程度目をつぶれと
いうことを言っています。
　これは、時短の発想であるとも解釈できます。
筆者の仕事の場合は、端末とWebブラウザがあ

はじめに
れば、仕事の90％は片付いてしまいます。その
うちの端末を使う数十％の仕事は字だけを見て
さっさと終わってしまうので、たとえ残りの10

％で困ったとしても、メニューをマウスでクリ
クリしている人よりは、トータルでも時間を得
しているはずです。

実行環境

　今回は多種多様です。図1で簡単に説明しま
す。なるべくみなさんを混乱させないように注
意しながら話を進めます。
　USP友の会のサーバは、www.usptomo.comと
いうホスト名でDNSに登録されています。bsd

は秘密のサーバですが、bsd.hoge.hogeで登録さ
れているとしておきます。

鍵認証の設定で悩まないために

　シェルスクリプトという範囲の話ではありま
せんが、今回はscpコマンドやsshコマンドを多
用しますので、ssh接続の鍵認証の方法につい
て触れておきます注1。いや、手順については「ssh

鍵認証」などと検索すれば方法が書いてあるので
ここでは説明しません。が、鍵認証はクライア
ントとサーバ、公開鍵と秘密鍵が登場して、どっ
ちで何をするのか慣れるまで非常に混乱するの

注1） パスワードを入れなくてもログインできるアレのことです。
念のため。

環境の準備

第18回 サーバにデータを渡して処理させる
̶̶ nc、ssh、scpを使う

テキストデータならお手のもの

㈲ユニバーサル・シェル・プログラミング研究所　http://www.usp-lab.com
上田 隆一 UEDA Ryuichi　 Twitter @uecinfo

http://www.usp-lab.com

136 - Software Design Jun. 2013 - 137

で、そんな人のために、次の一文を書いておき
ます。
　「ssh接続されるほう（サーバ）は危険に晒され
るので、接続してくる奴をリスト化して管理し
なければならない」
　このリストに登録されるのは、「接続してくる
奴」の公開鍵です。ですから、クライアント側で
は秘密鍵と公開鍵を準備し、公開鍵をサーバに
登録してもらうという手続きを行うことになり
ます。これを頭に入れて、設定をお願いします。

bashの/dev/tcp/

　さて本題に入っていきましょう。まずはbash

ほかのマシンと通信する

の機能を使ってみます。どのバージョンからか
は調べていませんが、少なくとも3以降のbash

には、図2の方法で、特定のホストの特定のポー
トにfi leの内容を送信する機能があります。リ
ダイレクトの左側は、echoでもgrepでもなんで
もかまいません。
　さっそく使ってみましょう。と言ってもこの
機能単独だと、いたずら程度くらいしか思いつ
きませんので、図3のようにUSP友の会のサー
バを餌食にしてみました。みなさんも何かメッ
セージを残してもらってかまいませんが、あま
り連発しないでください。
　図4のように調べるとわかりますが、/dev/

tcp/はシステム側にあるわけではなく、bashが
擬似的にファイルに見せかけているようです。
　/dev/udp/も準備されていますので、UDPを

サーバにデータを渡して処理させる
̶̶ nc、ssh、scpを使う 第18回

 1. 筆者のMacBook Air（uedamac）
uedamac:̃ ueda$ uname -a
Darwin uedamac.local 12.2.1 Darwin Kernel Version 12.2.1: （略）
uedamac:̃ ueda$ bash --version
GNU bash, version 3.2.48(1)-release (x86_64-apple-darwin12)
Copyright (C) 2007 Free Software Foundation, Inc.

 2. VPS上のFreeBSD（bsd）
bsd /home/ueda$ uname -a
FreeBSD bsd.hoge.hoge 9.0-RELEASE FreeBSD 9.0-RELEASE #0: (略)

 3. VPS上のUSP友の会サーバ（tomonokai）
[ueda@tomonokai ̃]$ cat /etc/redhat-release
CentOS release 6.3 (Final)

 4. ビジネス版Tukubaiが使えるサーバ（usp）
[ueda@usp ̃]$ cat /etc/redhat-release
CentOS release 5.9 (Final)

図1　登場するマシン、サーバ ▼

$ cat file > /dev/tcp/<ホスト名>/<ポート番号>

図2　bashで通信するときの書式 ▼

 macからUSP友の会のサーバにちょっかいを出す
uedamac:̃ ueda$ echo aho > /dev/tcp/www.usptomo.com/80
 USP友の会のサーバのログに記録が残る
[root@tomonokai ̃]# tail -n 1 /var/log/httpd/access_log
123.234.aa.bb - - [03/Mar/2013:00:58:21 +0900] "aho" 301 231 "-" "-"

図3　Apacheにいたずらする ▼

uedamac:̃ ueda$ ls /dev/tcp
ls: /dev/tcp: No such file or directory

図4　/dev/tcpは存在しない ▼

138 - Software Design

テキストデータならお手のもの

Jun. 2013 - 139

使うサービスにもちょっかいが出せます。

Netcatを使う

　bashの/dev/tcp/を使うと、基本的にデータ
をポートに投げつけることしかできません。投
げつけたデータの受け手として、Netcatを紹介
します。
　たいていの環境では、ncというコマンドで
Netcatが使えます。bashからテキストを投げて、
ncで受けてみましょう。もちろん文字は暗号化
されずにそのまま送られるので、秘密の情報は

送らないようにしましょう。この実験をするに
は、受信側で使うポートが開いている必要があ
ります（図5）。
　図6のようにシェルスクリプトにして実行す
ると、ちょっとしたサービスのように振る舞い
ます。
　NetcatはWikipediaに「ネットワークを扱う万
能ツールとして知られる。」とあるように、単に
ポートをリッスンするだけでなく、データの送
信側になったり、邪悪な組織のポートスキャナ
になったりします。

 先にncで受信側のポートを開いておく
 ncが立ち上がったままになる
[ueda@tomonokai ̃]$ nc -l 10000 > hoge

 データを投げる
uedamac:̃ ueda$ echo ひえええええ > /dev/tcp/www.usptomo.com/10000
 ncが終わって、hogeの中に文字列が
[ueda@tomonokai ̃]$ cat hoge
ひえええええ

図5　10000番ポートで通信する ▼

[ueda@tomonokai ̃]$ cat file.sh
#!/bin/bash

mkdir -p ./tmp/

n=1
while nc -l 10000 > ./tmp/$n.txt ; do
 n=$((n + 1))
done

 立ち上げる
[ueda@tomonokai ̃]$./file.sh
 送る
uedamac:̃ ueda$ echo ひえええええ > /dev/tcp/www.usptomo.com/10000
uedamac:̃ ueda$ echo どひぇー > /dev/tcp/www.usptomo.com/10000
uedamac:̃ ueda$ echo NOOO! > /dev/tcp/www.usptomo.com/10000
 l+C（シェルスクリプトを終了）してファイルができていることを確認
[ueda@tomonokai ̃]$./file.sh
^C
[ueda@tomonokai ̃]$ head ./tmp/{1,2,3}.txt
==> ./tmp/1.txt <==
ひえええええ

==> ./tmp/2.txt <==
どひぇー

==> ./tmp/3.txt <==
NOOO!

図6　whileループで何回も受信 ▼

138 - Software Design Jun. 2013 - 139

　さて、いつも大きなデータを扱っている人は、
サーバ間で何十GBものファイルをコピーしな
ければいけないことがあります。このようなと
きは図7のように、普通はscpを使うことでしょ
う。図中の-P 11111は、USP友の会のサーバ
がデフォルトの22番でなく11111番でssh接続
を受け付けているため、必要となります注2。
　scpには圧縮してデータを送る-Cというオプ
ションがあります。図8のように使います。た
だ、圧縮はCPUを酷使するので効果のある場合
は限られます。1回しか試していないのでかかっ
た時間は参考程度にしかなりませんが、user時
間で圧縮にかなり時間を使っていることがわか
ります。
　実は、暗号化しなくてよいなら図9のように

注2） 実際には別のポートを使っています。

ファイルを転送する
転送するほうが速いことがあります。user時間
はほとんどゼロです。
　CPUが速くて通信速度が遅いときは、scpの
-Cオプションが有効になりますが、上のncの
方法でgzipやbzip2などを挟んで送ったほうが、
速いこともあります。速いこともある、という
より、本来圧縮はscpの仕事ではないはずです
し、圧縮の方式も自由に選べるべきですので、
面倒ですがこっちのほうがUNIX的です。ただ
まあ、そういうチューニングは本当に困ったと
きだけにしておきましょう。
　1つの巨大なファイルを複数のサーバにコピー
したい場合は、図10のようなことを試みても良
いでしょう。頭がこんがらがるかもしれません
が、ちゃんと書けばちゃんと動きます。
　この方法のようにサーバを数珠つなぎにする
と、何台ものサーバに同時にコピーができます。
ただし、サーバが同じハブにぶらさがっている
と、ハブにトラフィックが集中します。
　あともう1個だけ紹介します。sshコマンドを

サーバにデータを渡して処理させる
̶̶ nc、ssh、scpを使う 第18回

bsd /home/ueda$ time scp -P 11111 TESTDATA www.usptomo.com:̃/
TESTDATA 100% 4047MB 4.0MB/s 16:48

real 16m49.064s
user 3m2.550s
sys 13m38.727s

図7　普通にscpでファイルをコピー ▼

bsd /home/ueda$ time scp -C -P 11111 TESTDATA www.usptomo.com:̃/
TESTDATA 100% 4047MB 2.6MB/s 26:16

real 26m16.678s
user 20m33.275s
sys 6m55.593s

図8　圧縮送信したらかえって遅くなった ▼

 受信側で待ち受け
[ueda@tomonokai ̃]$ nc -l 10000 > TESTDATA
 送信
bsd /home/ueda$ time cat TESTDATA > /dev/tcp/www.usptomo.com/10000

real 12m3.584s
user 0m0.000s
sys 10m22.737s

図9　ポートをダイレクトに使ってファイル転送 ▼

140 - Software Design

テキストデータならお手のもの

Jun. 2013 - 141

ない状況を考えます。筆者の場合は、USP研究
所のビジネス用Tukubaiコマンドを使いたい場
合や、あるマシンのTeXの環境を使いたいとい
う場合がこれに相当します。
　一例として、手元にあるファイルをリモート
のサーバでソートして戻してもらうことを考え
ましょう。
　まず図12に、普通のシェルスクリプトを示し
ます。これは、あるリモートのサーバにscpで
ファイルを送り込み、ソートしたあとにファイ
ルを戻すという処理です。Macのsortコマンド
で1千万行のソートなんかやってしまったらい

使ってもファイルを転送できます（図11）。この
例で、sshコマンドが標準入力を受け付けるこ
とがわかります。

　さて、もっと便利に使ってみましょう。この
ままではコピーだけで今回の記事が終わってし
まいます（それはそれでおもしろいかもしれませ
んが……）。
　たとえば、今使っているマシンが遅い場合や
使いたいコマンドなどがインストールされてい

リモートマシンで計算する

 友の会サーバで10000番ポートからファイルへリダイレクト
[ueda@tomonokai ̃]$ nc -l 10000 > TESTDATA
 bsdサーバで9999番ポートからの出力をteeでファイルにためながら
 友の会サーバにリダイレクト
bsd /home/ueda$ nc -l 9999 ¦ tee TESTDATA > /dev/tcp/www.usptomo.com/10000
 手元のMacからbsdサーバにデータを投げる
uedamac:̃ ueda$ cat TESTDATA > /dev/tcp/bsd.hoge.hoge/9999

図10　一度の転送で2つのサーバにファイルをコピー ▼

bsd /home/ueda$ time cat TESTDATA ¦ ssh -p 11111 www.usptomo.com 'cat > TESTDATA'

real 16m22.054s
user 2m46.163s
sys 12m44.448s

図11　sshコマンドの標準入力を使う ▼

 このデータ（1千万行）を左端の数字でソートしたい
uedamac:̃ ueda$ head -n 2 TESTDATA10M
2377 高知県 -9,987,759 2001年1月5日
2910 鹿児島県 5,689,492 1992年5月6日
uedamac:̃ ueda$ cat sort.sh
#!/bin/bash -xv
 usp.usp-lab.comは、図1のuspサーバのフルドメイン
scp -P 11111 ./TESTDATA10M usp.usp-lab.com:̃/
 msortは、マルチスレッドの高速ソートコマンド
ssh -p 11111 usp.usp-lab.com "msort -p 8 key=1 ̃/TESTDATA10M > ̃/ueda.tmp"
scp -P 11111 usp.usp-lab.com:̃/ueda.tmp ./TESTDATA10M.sort

 手元のMacで実行
uedamac:̃ ueda$ time ./sort.sh

real 4m1.717s
user 0m13.969s
sys 0m10.090s
 結果が得られた
uedamac:̃ ueda$ head -n 2 TESTDATA10M.sort
0000 岩手県 5,630,892 2006年5月26日
0000 新潟県 1,367,399 1998年8月22日

図12　「べたな」リモートサーバの使い方 ▼

140 - Software Design Jun. 2013 - 141

つ終わるのか読めないので、これくらいのこと
は行う価値はあります。
　こういった通信ばっかりのシェルスクリプト
を書いた人はそんなにいないと思いますが、シェ
ルスクリプトなどしょせん、人の操作のメモ書
きですので、いつもscp、sshを使っていれば理
解できるでしょう。
　ところでこのシェルスクリプトでは、中間ファ
イルがリモートのサーバにできてしまっていま
すが、これを避けるにはどうすればよいでしょ
うか。こういう中間ファイルは、計算をl+c

などで中断した場合にリモートのサーバにゴミ
を残すことになります。処理によっては、次に
計算したときに悪さをすることもあります。
　これを解決するには「シェル芸」です。「開眼
シェルスクリプト」という名前で連載をしていま
すが、

不要なシェルスクリプトと中間ファイルはゴミ

です。こんなもん、ワンライナーで十分です。
図13に示します。
　これで、sshでソートした出力は、手元のMac
の標準出力から出てきます。sshが（リモートで
なく）手元のマシンの標準入出力に字を出し入れ
してくれることは、sshコマンドが手元のマシ
ンで動いているので当然と言えば当然ですが、
よくよく考えるととても便利なことです。ワン
ライナーとしては難解かもしれませんが、リモー

トとローカルがシームレスにつながっています。
パイプラインですので、ストレージを使うこと
もありません。
　ちょっとやり過ぎですが、筆者の自宅とサー
バの間の通信速度がそんなに速くないので、
gzip、gunzipを使って図14のようにチューンし
たらさらに時短できました。

　今回も前回に引き続き作り物をさぼって、サー
バを股にかけてデータをやりとりし、処理する
方法について書きました。bashの通信機能や、
ssh、scp、ncなどのコマンドについてちょっと
した使い方を紹介しました。
　マシンを複数台使うと頭の中が混乱しがちで
す。その点、sshをパイプにつなぐことを覚え
ると、あまり頭を悩ませずに複数のマシンを使
いこなすことができます。パイプラインは一方
通行で順番にサーバをつなげていくだけですの
で、頭の中でいろんなマシンの絵を同時に思い
浮かべる負荷が不要です。マシン間の通信速度
はまだ向上していくでしょうから、これからは
使う人が増えるかもしれません。
　通信を扱ってウォーミングアップできました
ので、禁断のお題をやる覚悟ができました。次
回からは「シェルスクリプトでCGI」というお題
で作り物をしてみます。｢

終わりに

サーバにデータを渡して処理させる
̶̶ nc、ssh、scpを使う 第18回

uedamac:̃ ueda$ time cat TESTDATA10M ¦ ssh -p 10022 usp.usp-lab.com 'cat ¦ ｭ
msort -p 8 key=1' > TESTDATA10M.sort3

real 5m0.033s
user 0m14.077s
sys 0m9.415s

図13　リモートサーバを使うワンライナー ▼

uedamac:̃ ueda$ time gzip < TESTDATA10M ¦ ssh -p 10022 usp.usp-lab.com 'gunzip ¦ ｭ
msort -p 8 key=1 ¦ gzip' ¦ gunzip > TESTDATA10M.sort3

real 1m10.669s
user 0m42.874s
sys 0m2.806s

図14　圧縮を挟み込んだワンライナー ▼

142 - Software Design

はじめに

　2000年代末に出現したクラウドコンピュー
ティングとOpenFlowによるSDN（Software

Defi ned Networking）に刺激を受け、ネットワー
クの仮想化技術に対しさまざまなプロトコルが
提案され導入が検討されています。ITU-T

Y.3011勧告におけるネットワークの仮想化フ
レームワークでは、さまざまな物理コンピュー
ティング資源を仮想的に統合し、さらにそれら
をサービス別に分離分割して運用することを指
しています。しかし、この仮想化技術は現在ま
だ研究開発段階にあり、一般的にとらえられて
いる仮想ネットワークとは、コンピューティン
グリソースを含まず、物理ネットワークレイヤ
に依存しないネットワークコネクティビティを
形成することを指す場合が多いでしょう。その
コンピューティング資源を柔軟に連結すること
を可能とする仮想ネットワークですが、その恩
恵と引き換えにさまざまなことが犠牲になるこ
とはあまり議論されていません。本連載では、
それら仮想的なコネクティビティを形成するネッ
トワークの仮想化技術の概要と特徴を示しつつ、
そのメリットではなく仮想ネットワーク導入を
検討する際に考慮しなければならないデメリッ
トに焦点を当てて考察したいと思います。

仮想ネットワークの
必要性

　そもそもオンプレミスシステムの運用や iDC

（データセンター）などが顧客別に数十台のサー
バを提供するホスティングシステムを運用する
上で、現状のネットワークをさらに仮想化しな
ければならない理由はありません。Ethernetと
TCP/IPによって発展してきた現在のコン
ピューティングネットワークは、すでにプロト
コル階層によって必要十分に仮想化されている
からです。
　たとえば、データリンク層プロトコルはメタ
ルケーブルやファイバーケーブルなどの物理的
な単一伝送媒体上に複数の論理的な通信チャン
ネルを形成します。またネットワーク層プロト
コルは単一、もしくは複数のデータリンクセグ
メント上に論理的なネサブネットを構成し、さ
らにIPアドレスで一意に識別される物理サーバ
上にはTCP/UDPポートによって複数のエンド
システムが個別に動作しています。これらの状
態はまさにネットワークコンピューティングシ
ステムを仮想化していることにほかなりません。
　現状のネットワークシステムをさらに仮想化
しなければならないのはいったいどのような環
境なのでしょうか。SDNや仮想ネットワークの
技術について議論する場合、それら技術の特徴

S D N は 使 え る の か、使 う べ き な の か？

第1回
ファブリックモデルの検証

――TRILL、SPB、MACアドレス学習問題

株式会社データホテル
伊勢幸一（いせこういち）

Twitter＠ibucho

短期集中連載

142 - Software Design Jun. 2013 - 143

や想定されるユースケース、そして性能比較に
始終するばかりで、それらの技術を導入する本
質的必要性についてはあまり議論されない傾向
にあります。しかし、本来はその必要性と実際
に適用されるべき環境と状況をまず最初に精査
するべきではないでしょうか。
　仮想ネットワークの多くは、従来のL2/L3

ネットワーク上に仮想的なL2もしくはL3セグ
メントをオーバーレイし、さらにそのセグメン
ト最大数をIEEE802.1Qの最大VLAN数以上に
することを目的としています。つまり、物理的
なMACアドレス、もしくはIPアドレスによっ
て一意に識別されるサーバ上に複数の仮想サブ
ネットが存在し、かつ、単一のネットワークシ
ステム内にそのサブネットが4,094以上にある
環境が仮想ネットワークのターゲットです。す
ると現状考えられる仮想ネットワークのユース
ケースとは仮想マシンによって4,000以上のテ
ナントを収容するレンタルサーバ事業者かIaaS

事業者でしょう。ただし、VLAN数が4,000を
超えるからといって必ずしもネットワークを仮
想化しなければならないというわけではありま
せん。4,000以上の契約が見込めるならば、あ
らかじめ2つのネットワークシステムを用意す
るか、必要になった時点で別途もう1つのネッ
トワーク・システムを構築すれば良いだけです。
　1つのネットワークシステムで4,000以上のテ
ナントを集約しなければならないというのは、
個々のテナントが利用する仮想マシン数が随時
大幅に変動し、その追加や除去要求を数分で対
処しなければならない場合のみです。仮想マシ
ン環境の変更に数時間、もしくは数日の猶予が
あれば物理セグメントを再構築しサーバを新た
に用意して対処することはできます。つまり現
実的には仮想ネットワークを必要とするのは現
在4,000テナントを超える、もしくは手が届き
そうなパブリッククラウド事業者であり、国内
ではパブリッククラウドシェアの上位5社程度
（筆者調べ）でしょう。
　ではこのような状況下で仮想ネットワークを

議論することは無意味なのでしょうか。
　複数のクラスタで構成されるシステムでは特
定のクラスタ内通信の品質を維持するため、ネッ
トワークをほかのクラスタから分離したい場合
があります。現段階でそれほど多くのテナント
契約がなくとも、今後、サービスやアプリケー
ションによっては1つのテナントが数十の
VLANを必要とし、同時に敏速な仮想マシンの
追加除去を要求してくる可能性が絶対にないと
は言い切れません。また、将来的にまったく別
の目的でネットワークを仮想化する必要性が発
生するかもしれません。本来の目的では利用さ
れず、当初想定していなかった用途で注目され
活用されたという技術はいくつもあります 注1。
　また、仮想ネットワークやSDNを評価検証し
た結果、まったく別のアイデアやコンセプトが
閃く可能性もあります。現状必要なくとも常に
新しい技術を理解し把握しておくことはエンジ
ニアにとって大きなチャンスであり、さらに誤っ
た利用や導入の判断をしないためにも技術のメ
リットとデメリットを明らかにしておくことは
重要なことです。
　現在提案されている仮想化技術にはブリッジ
パスツリーを多重化し、ECMP 注2によってL2

スイッチ間帯域パスを柔軟に形成するファブリッ
クモデルと、トンネル技術を用いてオーバーレ
イネットワークを構成するエンドポイントモデ
ルがあります。ファブリックモデルはおもに新
しいプロトコルを実装した物理的ハードウェア
によって実現されるため、本来仮想ネットワー
クとは言い難い側面もあります。しかしECMP

による柔軟なマルチパスを形成することで仮想
的に通信チャンネルの動的広帯域化と冗長化を
提供するという意味で仮想ネットワークの範疇
に入れてもかまわないでしょう。本連載では第
1回でファブリックモデル、第2回でエンドポイ
ントモデル、第3回でOpenFlowについてそれ

注1） たとえばMPLS（Multi-Protocol Label Switching）など。
注2） Equal-cost multi-path。SPF（Shortest Path First）に基づ

き、コスト値が同じ複数経路を探すプロトコル。

第1回
ファブリックモデルの検証

――TRILL、SPB、MACアドレス学習問題

144 - Software Design

はTRILLとSPBについて解説します。

TRILL

　TRILLは IETFのRFC5556、6326、6325、
6327、6439によって標準化されたプロトコル
であり、メッシュ状に接続されたスイッチファ
ブリックにおいてブリッジループの発生を回避
しつつ、リンクステート型のルーティングプロ
トコルによって、最短距離の選定とECMPによ
る複数経路パスを形成する技術です。基本的に
どのスイッチがどのVLANへの到達性を持って
いるかという情報を経路情報とし、VLAN単位
の仮想ネットワークをファブリック内に形成し
ます。RFC6325では当該VLANへの到達性を
示す経路情報交換プロトコルとしてIS-ISを用
いることを提案していますが、実際の製品では
必ずしもIS-ISが用いられているとは限りませ
ん。
　TRILLプロトコルをサポートし、Ethernet

ファブリックを構成するスイッチをRBridge

（Routing Bridge）と呼びます。各RBridgeは個
別の IS-IS IDを持ち、その IDをブリッジの識
別子としてルーティング情報を交換します。同
時に2バイトのニックネームを持ち、TRILLシ
グナリングによる経路表やTRILLヘッダでの
RBridge識別子には IS-IS IDではなくニック
ネームが使われます。
　各RBridgeはどのVLANセグメントへの到達
性を持っているかという情報をIS-ISでファブ

ぞれの概要とデメリット、欠陥などについてお
話します。

ファブリックモデル

　ファブリックモデルはメッシュ状に相互接続
したネットワークスイッチやブリッジによって
構成され、耐障害性、冗長性と帯域拡張性を同
時に実現する技術です（図1）。ただし、あくま
でも物理スイッチによる実装であり、前述のよ
うにネットワークシステム内の最大VLAN数制
限を解決することはできません。また、メッシュ
接続された物理スイッチ上に仮想的な多重パス
ツリーを形成するのでオーバーレイネットワー
クと言えなくもないですが、既存ネットワーク
上に論理的なL2/L3オーバーレイを形成するわ
けでもありません。しかし、第2回で解説する
エンドポイントモデルによる仮想ネットワーク
も結果的にはスイッチ機器によるアンダーレイ
ネットワーク上に構成されるため、ファブリッ
クネットワークの仮想化技術を知っておくこと
も必要です。
　現在最も有力なプロトコルにはIETFが標準
化作業をしたTRILL（Transparent Interconnec

tion of Lots of Links）、IEEEで勧告されてい
るSPB（Shortest Path Bridging）、そしてONF

が提案するOpenFlowホップバイホップ形式が
あります。
　OpenFlowホップバイホップ形式については
第3回であらためて取り上げるとして、ここで

Fabric
Switch

Physical
Machine

Physical
Machine

Physical
Machine

Physical
Machine

General
Ethernet

ファブリックネットワーク

General
EthernetFabric

Switch

Fabric
Switch

Fabric
Switch

Fabric
Switch

 ▼図1　ファブリックモデル

短期集中連載
SDN は使えるのか、使うべきなのか？

144 - Software Design Jun. 2013 - 145

リック側に広告します。次に同じVLANセグメ
ントへの到達性を持つRBridge群の中から代表
ブリッジが選出され、その代表ブリッジをルー
トとするパスツリーを構成します。ARPやNDP

のようなブロードキャスト、マルチキャストフ
レームは、その形成されたVLANツリーに対し
て配送されます。ノード間ユニキャストフレー
ムは、ファブリックの入り口にあるRBridge

（Ingress RBridge）が Ethernetフ レ ー ム に
TRILLヘッダを付加します。このTRILLヘッ
ダにはフレームの寿命を示すTTLフィールドが
あり、RBridgeを通り抜けるたびにデクリメン
トされ、途中でTTLが0になったフレームを破
棄することでブリッジループを回避しています。
次にエンドノードへの直接到達性を持つ
RBridge（Egress RBridge）に向けてフレームを
送出しますが、TRILLフレームの宛先MACア
ドレスはEgress RBridgeのMACアドレスでは
なく、個々のRBridgeの経路表にある隣接
RBridgeのMACアドレスが利用され、経路途

中のRBridgeを通り抜けるたびにこの宛先MAC

アドレスと送信元MACアドレスが差し替えら
れます（図2）。
　したがってTRILLファブリック内でのある
ノードからあるノードへの経路は経路途中の
RBridgeしだいであり、エッジにあるIngressや
Egressスイッチはその途中経路を知りません。
逆に言うと、ファブリック内では Ingress/

Egressスイッチに依存しない経路を形成するこ
とが可能であることからファブリック内ルーティ
ングやECMP化の自由度が高いことを示してい
ます。

互換性の問題

　TRILLが持つ欠陥の 1つは、すべての
RBridgeがすべてのエンドノードのMACアド
レスを学習しなければならないため、MACアド
レス学習負荷が大きいことと、個々のRBridge

が持つMACアドレステーブルサイズが肥大化

mac1 mac3mac2 mac4 mac8mac6mac5 mac7

Ingress
RBridge

送信元エンド
ノード

IRB NRB ERB

宛先エンド
ノードEgress

RBridge

TRILLドメイン

DA : mac4

SA : mac3

タイプ(0x22F3)

TRILL

DA : mac8

SA : mac1

タイプ

DA : mac8

SA : mac1

タイプ

ペイロード ペイロード ペイロード ペイロード

FCS FCS FCS FCS

DA : mac8

SA : mac1

タイプ

DA : mac6

SA : mac5

タイプ(0x22F3)

TRILL

DA : mac8

SA : mac1

タイプ

mac8

 ▼図2　TRILLによる転送

第1回
ファブリックモデルの検証

――TRILL、SPB、MACアドレス学習問題

146 - Software Design

を介して遠隔データセンターとファブリックを
形成する場合も、その広域網内のすべてのスイッ
チがTRILLをサポートしていない限り、直接
TRILLによるファブリックを遠隔地に拡張する
ことはできません。キャリア網内のMAC-in-

MAC形式でトンネリングされるのであれば
TRILLフレームは遠隔地に到達しますが、その
場合、TRILLフレーム長はキャリアが提供可能
なMTUサイズ以下である必要があります。現
在、各ベンダが独自にこういった非互換性を吸
収し、既存ネットワークや広域Ethernetサービ
スを介してTRILLファブリックを拡張するゲー
トウェイ製品を提供してはいますが、これもベ
ンダ独自の実装であるためベンダ間の互換性は
まったくありません。
　このようにTRILLにおける致命的欠陥とは、
ベンダ間と前方後方に対する非互換性です。現
状のスイッチネットワークをすべて同じベンダ
のTRILLスイッチに置き換えるということは
投資的観点から非現実的であり、またベンダロッ
クインを確定してしまう恐れもあります。しか
も既存機器とのファブリック的連携も不可能で
あり、利用できる製品寿命が短い（可能性があ
る）ことなどを考慮すると、導入には相当な勇気
を必要とするでしょう。

SPB

　SPB（Shortest Path Bridging）は IEEE に
よって標準化が進められているファブリックプ
ロトコルであり、2006年頃に最初のドラフトが
提示されました。SPBはSTP（IEEE802.1d）、
RSTP（IEEE802.1w）、お よ び MSTP（IEEE

802.1s）の後継プロトコルとして位置付けられて
おり、前項で解説したTRILLとよく比較され
る技術です。基本的にはEgressブリッジをルー
トブリッジとするパスツリーを形成し、ループ
を排除すると供にブロックリンクの低減を実現
しつつECMPも可能としています。
　L2スイッチ、すなわちマルチポートブリッジ

するという問題です。1つのTRILLファブリッ
クに膨大なノードが接続された場合、RBridge

のアドレステーブルが溢れ、テーブルからMAC

アドレスが除外されたり新しいMACアドレス
が登録されなかったりといった問題が起こる可
能性が高くなります。すると、通信の途中で
RBridgeが該当ノードへの方向がわからなくな
り、フレームがブラックホール 注3へ吸い込まれ
る恐れがあるのです。
　そのため、大規模なファブリックへ導入する
場合、想定される最大ノード数のMACアドレ
スを十分格納できるテーブルサイズのモデルを
選択する必要があります。
　もう1つの欠陥とは前方互換性がまったくな
いことです。図2で示したようにTRILLによっ
て運ばれるEthernetフレームにはTRILLヘッ
ダとアウターEthernetヘッダが追加されますが、
このTRILLヘッダはまったく新しく定義され
たヘッダフォーマットであり、既存のスイッチ
機器がこの新しいヘッダを認識することはでき
ません。つまり、TRILLによってファブリック
を形成する範囲のスイッチはまったく新しく設
計し製造されたTRILLスイッチだけであり、既
存のスイッチが途中に介在したりすることはで
きないのです。また、標準化よりも実装のほう
が早く、ベンダによってはIS-IS以外のプロト
コルを使ったり、IS-ISのTLVレコードを独自
に拡張していたりもするため、ベンダ間での相
互接続性もまったく期待できません。
　将来的に標準化によってベンダ間の相互接続
性が実現されるとしても、現状の実装を変更せ
ざるを得ないため後方互換性の保証も怪しくな
ります。これは IETFの標準化作業が実装者に
よるボトムアップ形式の提案型であり、同じ目
的のためにいくつもの標準や実装が生まれやす
く、前後方互換性にそれほど神経質ではないこ
とが原因なのかもしれません。
　また、キャリアの広域Ethernetサービスなど

注3） 網内で行き場を失ったフレームはその時点で破棄されるた
めこのように言われます。

短期集中連載
SDN は使えるのか、使うべきなのか？

146 - Software Design Jun. 2013 - 147

によってポート障害やスイッチ障害による問題
を回避するため、接続リンクを多重化してファ
ブリックを形成するとファブリック内にブリッジ
ループが発生します。EthernetヘッダはTTLな
どのフレーム寿命を示すパラメータを持たない
ため、ブリッジループが発生するとブロードキャ
ストやマルチキャストフレームなどは永久にルー
プ内を巡回しつつコピーされ増殖してしまうの
でネットワークにパケットストームが起こり、場
合によってはネットワークが全落ちします。
　このブリッジループ発生を回避する伝統的な
技術がSTP（Spaning Tree Protocol）です。STP

はファブリック内で1つのルートブリッジを決
定し、各ノードはルートブリッジからの最短距
離を順番に計算してパスツリーを形成し、選択
されなかったリンクを論理的に遮断してループ
の発生を防ぐという方法です。STPでは各ブ
リッジから送られてくるBPDU（Bridge Proto

col Data Unit）によってツリーの形成や死活確
認を行っていますが、隣接ブリッジからのBPDU

がある一定時間届かなくなるとそのブリッジが
ダウンしたと認識し、ツリーの再構成を行いま
す。したがってツリー内のブリッジが障害を起
こした時点から、BPDUを待つタイムアウトと
ツリーを再構成している間、ファブリックは非
常に不安定な状態になります。この問題を解決
するため、隣接ブリッジの死活監視をタイムア
ウトで行うのではなく、提案と合意というメッ
セージを交換することによって行うプロトコル
がRSTP（Rapid STP）です。このメッセージ交
換間隔をSTPのタイムアウトよりも短くするこ
とで障害検知から復旧までの時間を短縮してい
るのです。
　しかし、STPもRSTPもファブリック内で選
出されたルートブリッジを頂点とする単一のパ
スツリーしか形成しないため、そのパスが常に
各ブリッジ間の最短パスとは限らず、またルー
プを回避するために無効化されたポート（ブロッ
クポート）も多く、性能、耐障害性、コストパ
フォーマンスにおいて効率的ではありません。

そこで、ファブリック内にある複数のVLANに
よってリージョンを定義し、そのリージョン単
位でパスツリーを形成することでポートの利用
率を上げ、コストパフォーマンスを向上させた
プロトコルがMSTP（Multiple STP）です。しか
し、MSTPもリージョン単位でルートブリッジ
を選出し、そのルートブリッジを頂点とするパ
スツリーによってブロードキャストセグメント
を構成することから、ファブリック全体の利用
効率を向上させるとはいえ、リージョン内のパ
スツリーが常に各ブリッジに対して最適化され
るているというわけではありません。そこで、
新たに開発されたプロトコルがSPBです。
　SPBはファブリックのエッジにあるIngress/

Egressブリッジをルートブリッジとしたパスツ
リーを個々に形成します。したがって1組のエッ
ジブリッジ間のパスは常に最短パスを選択する
こととなり、STP、RSTP、MSTPにおけるパ
フォーマンスの問題を解決しました。しかし、
すべてのエッジブリッジをルートとするパスツ
リーを個別に形成すると、エッジ間の経路が行
きと戻りで異なるパスを選択してしまう可能性
があります。図3で示すようにブリッジAから
BへのパスはA-B-C-Gが選択され、ブリッジB

からAへのパスにB-F-E-Aが選択されたとする
と、Aから送出されたブロードキャスフレーム
はBで折り返してAまで戻ってきてしまうので
ブロードキャストストームが発生します。
　そのため、SPBでは図4で示すように常に対
向するエッジブリッジ間のパスには同じ選択ポ
リシーを用いてパスを対称化し、ループが発生

A

B C

E F

D G

フレーム

フレーム
フレーム

フレーム

フレ
ーム

フレ
ーム

 ▼図3　非対称パスにおけるループ

第1回
ファブリックモデルの検証

――TRILL、SPB、MACアドレス学習問題

148 - Software Design

することを回避しているのです。

MACアドレス
学習問題

　SPBにはオリジナルのEthernetフレームを
IEEE802.1adに準拠したVLANタグでカプセリ
ングするQ-in-Q方式（SPBV）と、IEEE802.1ah

に従うアウターEthernetでカプセリングする
M-in-M方式（SPBM）があります。Q-in-Q方式
ではTRILLと同じようにファブリック内のす
べてのブリッジがエンドノードのMACアドレ
スを学習する必要があり、TRILLと同じくアド
レステーブルが枯渇するという危険性を秘めて
います。M-in-M方式の場合、エンドノードの
MACアドレスを学習するのはエッジブリッジだ
けであり、ファブリック内のブリッジはSPBブ
リッジのMACアドレスだけを学習すればよく、
アドレステーブルの枯渇という問題は発生しづ
らくなっています。そのため、どちらかという
とSPBVはLAN内での利用が多く、SPBMは
広域Ethernetを運用するキャリア・ネットワー
クへの適用が多くなっています（図5）。
　しかし、クラウド環境においてはこのMAC

アドレス学習がSPBVとSPBMに共通する致命
的欠陥になります。クラウド環境では物理サー

バ上にいくつもの仮想マシン（以後VM）が起動
されており、そのVMは頻繁にアップダウンを
繰り返します。また、場合によってはVMが物
理マシン上を移動する可能性もあります。
TRILLの場合、VMやエンドノードが新たに追
加されたり、直接接続するエッジRBridgeを移
動したりした場合、そのエンドノードが新たな
RBridgeの到達性範囲にポップしたことを
ESDAI（End Station Destination Address

Information）メッセージによってパスツリー全
体にブロードキャストします。したがってエン
ドノードのロケーション移動や追加に伴うMAC

アドレス学習を一瞬で完了することができます。
　しかし、SPBによって構築されたファブリッ
ク網では基本的にエンドノードのMACアドレ
ス学習をIEEE802.1Dに準拠した学習で行うた
め、各ブリッジ（SPBMの場合はエッジブリッ
ジ）はエンドノードからのEthernetフレームが
自身を通り抜けない限りそのノードのアドレス
を学習することはできません。したがって、あ
るエッジブリッジに接続されているエンドノー
ド上のVMが別のエッジブリッジに接続されて
いるエンドノードにマイグレーションされた場
合、そのVMへのEgressブリッジが変更したと
いう情報がファブリック全体に伝播するにはあ
る程度の時間を要します。その間、古いロケー
ション情報を持つブリッジにそのVM宛のフレー
ムが届くと、テーブル情報と実際のロケーショ
ンが異なるためフレームはブラックホールへ吸
い込まれることになります。
　つまりSPBは高い柔軟性と弾力性が要求され
るクラウド・コンピューティング基盤には不向
きなファブリック技術なのです。ほとんどVM

がマイグレーションせず、また追加や除去の少
ないクラウド環境であれば有効ですが、そもそ
もそのような環境をクラウド化する必要もなく、
クラウド化されていない環境にイーサネットファ
ブリックのような仮想ネットワークは必要あり
ません。結果的にSPBはデータセンターやLAN

上で運用されるクラウド基盤向けのファブリッ

A

B

E

B C

D

E F

GA

D G

F

C

ブロック

対称パス

Aをルートとするパスツリー

Bをルートとするパスツリー

ブロック

 ▼図4　対称型パスツリー

短期集中連載
SDN は使えるのか、使うべきなのか？

148 - Software Design Jun. 2013 - 149

ク技術ではなく、長期契約によって仮想回線を
提供する広域Ethernetサービス用に限定される
技術ということになります。

おわりに

　TRILLやSPBのようなL2技術については古
くからIEEEのドキュメントに親しんでいる人
以外には中々把握しにくい内容かもしれません。
本稿では誌面の関係上、詳細説明は割愛しまし
たが、もし興味があれば拙書『SDN/OpenFlow

で進化する仮想ネットワーク入門』（インプレス
R＆D）に詳しく書いてあるのでそちらを参照し
てください。
　一般的に新しい技術を論じる場合、その技術
や実装を提供する側が主導権を握る傾向がある

ためそのメリットについての議論に多くの時間
とリソースを割き、デメリットについてはわず
かに触れるだけにとどまることが多いでしょう。
しかし、その技術や実装を導入する立場にとっ
てはメリットよりもデメリットのほうが重要な
のです。なぜならば筆者の経験上、デメリット
を知らずして、もしくは目を背けたまま導入し
てしまうと高い確率で甚大な被害と尽きること
のない大きな責任を背負うことになります。逆
にデメリットを十分理解把握したうえで、メリッ
トの部分を活かそうという姿勢での導入であれ
ば、思いもかけぬ障害や困難に窮することが避
けられるでしょう。
　次回はVXLAN、NVGRE、そしてSTTに代
表されるエンドポイントモデルの仮想ネットワー
クについて、その致命的欠陥をお話します。ﾟ

C-Tag
TPID(0x8100)TPID(0x8100)

タイプ

ペイロード

FCS

C-Tag
TCI

C-Tag
TPID(0x8100)TPID(0x8100)

タイプ

ペイロード

FCS

C-Tag
TCI

I-Tag
TPID(0x88e7)

I-Tag
TPID(0x88e7)TPID(0x88e7) TPID(0x88e7)

I-Tag
PCP

I-Tag
PCPPCP PCP

I-Tag
I-SID

I-Tag
I-SID

mac1 mac3mac2 mac4 mac8mac6mac5 mac7

Ingress
RBridge

送信元エンド
ノード

宛先エンド
ノード

Egres
RBridges

ESPBISPB SPB

SPBドメインC-VLAN C-VLAN

VLAN-SW1 VLAN-SW2VLAN-SW1

B-DA : mac6
B-SA : mac3

DA : mac8

タイプ

ペイロード

FCS

SA : mac1

DA : mac8

タイプ

ペイロード

FCS

SA : mac1
DA : mac8
SA : mac1

DA : mac8
SA : mac1

B-DA : mac6
B-SA : mac3

C-Tag
TPID(0x8100)TPID(0x8100)

タイプ

ペイロード

FCS

C-Tag
TCI

C-Tag
TPID(0x8100)TPID(0x8100)

タイプ

ペイロード

FCS

C-Tag
TCI

I-SID I-SID
DA : mac8
SA : mac1

DA : mac8
SA : mac1

I-Tag I-Tag

B-Tag
TPID(0x88a8)
B-Tag
TCI

B-Tag
TPID(0x88a8)
B-Tag
TCI

C-Tag C-Tag

S-Tag
TPID(0x88a8)
S-Tag
TCI

S-Tag
TPID(0x88a8)
S-Tag
TCI C-Tag

S-Tag
TPID(0x88a8)
S-Tag
TCI

C-Tag

S-Tag
TPID(0x88a8)
S-Tag
TCI

 ▼図5　SPBMによるフレーム転送

第1回
ファブリックモデルの検証

――TRILL、SPB、MACアドレス学習問題

150 - Software Design

4 Debian Developer　やまねひでき　henrich@debian.org

ソフトウェアをDebian
公式リポジトリに入れるには

はじめに

　そろそろDebian7.0「Wheezy」のリリースが
……と前回も書きましたが、ようやく5月4日
（あるいは5日）になるとの発表がありました。
残念ながら本稿にはギリギリ間に合わないため、
7.0の特徴や新機能などの記事は次回にまわす
ことにして、今回は読者からリクエストがあっ
た話題をとりあげてみたいと思います。

公式パッケージへのいざない

　さて、この原稿と前後してリリースされてい
るはずのDebian 7.0では 6.0と比較して約
12,800個のパッケージが新

・ ・ ・

規に利用できるよ
うになっています。しかし、自分が開発してい
る（あるいは使っている）ソフトが、Debianの
公式リポジトリにはまだ入っていない……とい
うちょっと残念な状況は、これほど豊富なパッ
ケージ数を誇るDebianであってもままありま
す。そんなときにはソースから入れておしまい、
ではなくて「使っているソフトを開発者にお願
いして公式パッケージとして取り込んでもらう」
ということを考えてみるのはいかがでしょうか。

公式パッケージになることの
メリット

　「公式パッケージとして取り込んでもらう」の
は大変そう……ソースから入れるほうが気楽で
良いんじゃないの？という疑問を持たれる方も

いることでしょう。しかし、公式パッケージに
なると、面倒な苦労を上回るさまざまなメリッ
トがあるのです。ざっと挙げてみましょう。

¡	依存している必要なパッケージも漏れなく
一発でインストール完了

¡	各所に存在するリポジトリミラーに配布さ
れるので、インターネットにつながりさえ
すればどの環境でも、コマンド一発でイン
ストール可能

¡	アップデートが楽（ソースで入れるとライブ
ラリの不整合が出るなど、アップデートが
煩雑になりがち）

¡	自分以外の多くの人も使うため、広範囲な
テストが行われ、問題点が洗い出される

¡	ほかの人が修正パッチを書いてくれる可能
性が出てくる。セキュリティ問題も基本的
に考慮してくれる

　公式パッケージになるということは、世界各
地に存在するDebianミラーにパッケージが用
意されます。いちいちソースのバージョンを確
認しつつ導入したり、導入手順書を延々と書い
たり、オレオレパッケージ用のリポジトリを作
成する必要はありません。「○×パッケージを
インストール」ということだけを書けば良いの
で、何より簡潔でわかりやすくなります。しか
も作業担当者は「楽」ができるわけです。
　また、「公式パッケージになる」ということを
「さまざまな環境／アーキテクチャ／利用方法
でのテスト人員を無償で確保できる」と考えて

150 - Software Design Jun. 2013 - 151

ソフトウェアをDebian
公式リポジトリに入れるには

4

みてはどうでしょう？ これを費用を支払って
実現しようとすると、膨大な金額になってしま
うのは容易に想像できるかと思います。かなり
コストパフォーマンスが良いと思いませんか？
　さらに自分が手動で入れたソフトウェアは修
正も自分で行わなければいけませんが、Debian

公式パッケージであればセキュリティ修正を含
む重大な問題はディストリビューション側がケ
アしますので、リスクを減らせます。
　まとめると、

¡	楽ができて
¡	コストメリットがあり
¡	リスクを減らせる

と良いことずくめなのです。いかがでしょうか、
手間をかける価値があるとは思いませんか？

では、その気になった、ということで次へ進ん
で具体的な手順を確認してみましょう。

取り込んでほしいソフトウェア
を提案する際のお作法

　単に「取り込んでー」「オッケー」というやり
とりで済むほど、Debianの状況はシンプルで
コンパクトなものではありません。若干の形式
に従ったやりとり（プロトコル）を理解する必要
があります。とはいえ、この短い記事を読み終
えるころにはだいたい理解できるぐらいのもの
ですので、肩の力を抜いていただいて結構です。
流れとしては「事前調査」→「RFP/ITP注1の登
録」→「パッケージ作成」→「アップロード」の4

つに分かれます。では、それぞれのフェーズに
ついて説明していきましょう。

事前調査をしよう

　確認が必要なことは3つです。

注1） URL http://www.debian.org/devel/wnpp/ 参照。それぞ
れ「Request For Package」「Intent To Package」の略。RFP
は「こんなソフトウェアがあるから誰かパッケージにして
くれないかなー(ﾁﾗｯﾁﾗｯ」、ITPは「このソフトウェアを私が
パッケージにします！宣言」だと思ってください。

¡	そのソフトウェアはDebianで配布可能なラ
イセンスなのか？

¡	開発元（upstream）は「非協力的」ではないか？
¡	興味を持ってくれそうなDebian開発者はい
るか？

そのソフトウェアはDebianで配布可能な
ライセンスなのか？

　まず、確認すべきことは「そのソフトウェア
のライセンスはDFSG（Debian Free Software

Guidelines）注2に従っているものか？」というこ
とです。難しいことのように聞こえますが、
DFSGは「オープンソースの定義」注3のもとに
なったものですので「≒そのソフトウェアがオー
プンソースソフトウェアであるか？」と考えて
いただければだいたい間違いがありません注4。
　Debianのリポジトリに入るソフトウェアは3

種類に分類されます。1つめはDFSGに準拠し
ている（DFSG-freeと称します）ソフトウェア。
これはDebianの「main」コンポーネントとして
配布されます。
　2つめは、ソフトウェア自体はDFSGに従っ
ているものの、動作にDFSG-freeではない別
のソフトウェアが必要になるもの。「Contrib」
コンポーネントとして分けて配布する形になり
ます注5。
　そして最後に、ソフトウェアをそのまま再配
布することは可能だが、変更して再配布が行え

注2） URL http://www.debian.org/social_contract#guidelines
注3） URL http://www.opensource.gr.jp/osd/osd-japanese.

html　参照。オープンソースソフトウェア (OSS)はそも
そもが意図的に作られたマーケティング用語であり、き
ちんとした定義があります。「OSSってソースがネットで
公開されていて、タダで手に入るソフトウェアのことだ
よね？」などと言っている読者の方はいらっしゃいません
よね？

注4） なぜ「＝」ではないか、というとOpen Source Initiativeが
OSSと認定していてもDebianではDFSG-freeではない、
と考えられているライセンス（たとえば、CDDL。
OpenSolarisなどに使われていたライセンス）があるから
です。

注5） たとえば、flashplugin-nonfreeパッケージはソフトウェ
ア自体はDFSG-freeですが、DFSGに合致しないプロプ
ライエタリなAdobe Flashに依存するので、contribコン
ポーネントに収録されています（名前と若干ギャップがあ
りますが……その点はスルーで）。contribに収録されて
いるものはデフォルトでは利用できないのでユーザが設
定を有効にする必要があります。

http://www.debian.org/devel/wnpp/
http://www.debian.org/social_contract#guidelines
http://www.opensource.gr.jp/osd/osd-japanese.html

152 - Software Design

ないなどの制限があるもの。これは「non-free」
コンポーネントに収録されます注6。
　そして、上記の3区分以外のソフトウェアは
Debianでは配布していませんし、残念ながら
配布自体もできません注7。このライセンスに関
する判断は煩雑ですので、図1に簡単なフロー
チャートを挙げました。参考にしてください。
　とはいえ、ライセンス周りは複雑怪奇なこと
があり、なかなかわかりづらいので、判断に迷
うことがあれば1人で悩まずにメーリングリス
ト注8で尋ねてみることをお勧めします。

開発元（upstream）は非協力的ではないか？
　読者の中には「協力的かどうか」じゃないの？
と思った方もいらっしゃることでしょう。非協

力的というのは、ビルドエラーの無視とか、
Debianがらみで送ったパッチを意途的に無視
とか、わざわざDebianにだけ発現するトラッ
プをしかける注9などの行為がそれにあたります。
　Debianでは Intel/AMD以外のマイナーな
CPUをサポートしていたり、カーネルも
FreeBSDカーネルをeglibc環境に持ってきて
使っていたりなど、upstreamの開発者が想定
している「一般的ではない」環境でビルドと使用
を行うことがあります。こんな場合にバグ報告
などをupstreamに送って協力を仰いだりする
わけですが、ごくたまに「そんな環境知らねぇ
し！」と協力をまったく拒否するような人もい
るわけです注10。こうなってしまうとDebianと
してはメンテナンスするリスクとコストが高い

と判断し、基本的には「何とかし
てそのソフトウェアは使わない」
方向に向かってしまいます。そ
んなソフトウェアをパッケージ
にしてもしかたがないので、こ

そのソフトウェアは
自由に再配布可能か？

矛盾したライセンスを
採用していないか？

※

そのソフトウェアの
ライセンスはDFSG-free か？

そのソフトウェアは
non-free または、
プロプライエタリな
ソフトウェアに依存して

いないか？

Debian には収録不可

「non-free」へ

「contrib」へ

「main」へ

スタート

※GPLなのにOpenSSLライブラリとリンクしている、
IPAフォントライセンスで OFL のフォントと合成し
ている、など。

YES

No

YES

YES

No

No

No

YES

 ▼図1　Debianへの収録におけるライセンス確認の簡易フローチャート

注6） ちなみにnon-freeに収録されている
ソフトウェアは「Debianの一部ではな
い」というのが公式見解です。このあ
たりはあまり手をかけずにプロプライ
エタリなビデオドライバが入っている
restrictedリポジトリが使えたり、
Canonicalという企業がバックについ
てpartnerリポジトリを持っていたり
するUbuntuと比較されるところです。
楽に使えるのが一番ではあるのですが、
Debianの目的は「フリーなOSを開発
すること」ですので、この辺は「目的と
姿勢の違い」と理解してください。

注7） 一部のプロプライエタリなソフトウェ
ア（Adobe Flash、Oracle Javaなど）は
再配布が許可されてないので「無理」で
す。

注8） debian-devel@lists.debian.or.jp
注9） 昔、Debianのパッケージメンテナと

険悪になった開発者が、メンテナの開
発環境では発現しないよう細工を施し、
ほかの環境では「このパッケージ使う
よりうちから直接ダウンロードした方
が良いぜ！」と表示されるようにトラッ
プをしかけたことが過去に1回だけ
あったのです……。

注10） 有名どころではglibc開発者だった
Ulrich Drepper氏がバグ報告に対して
「このクソなアーキテクチャ以外では
ちゃんと動く。ARMのためだけにパ
フォーマンスを犠牲にするなんてこと
はしないね」「自分に給料を払ってる
わけでもないのに命令するな」などの
素敵な語録を残し、Debianがglibcか
らeglibcに移行するきっかけを作って
くれました。

152 - Software Design Jun. 2013 - 153

ソフトウェアをDebian
公式リポジトリに入れるには

4

の点はクリアしておく必要があります。

興味を持ってくれそうなDebian開発者は
いるか？

　そして、興味を持ってくれそうなDebian開
発者を見つけること、が重要になります。なぜ
かというと「リポジトリへパッケージを新規に
アップロードできる権限を持っているのは公式
Debian開発者だけ」だからです注11。
　しかし、実際のところ、Debian開発者はメー
ルベースでの処理を大量に行っているので、お
作法に従ってRFP登録したとしても、アピー
ル下手な場合は残念ながらメールの山に埋もれ
て検討すらしてもらえない可能性もあります。
方法は問いませんので「パッケージにしてメン
テしてくれそうな人を見つけて直接アタックし
てみる」注12か「そのソフトウェアが有用である
ことをDebian JPのメーリングリストで発信す
る」などを行いましょう。

RFP/ITPの登録をしよう

　RFPは図2のようなフォーマットになりま

す（ITPも同様です）。
　To:とかSubject:ってメールみたいだな？と
思われる方がいるかもしれません。はい、メー
ルです。実はDebian BTSは世にも珍しい「メー
ルベースのバグトラッキングシステム」ですの
で注13、submit@bugs.debian.org宛にフォーマッ
トに従ったメールを送ることで、パッケージ作
成依頼の登録が行えます。これで「RFP/ITP

の登録」は完了です。そして、この後「パッケー
ジ作成」→「アップロード」となります……が、
ページ数も尽きてしまうので、この説明は別の
機会に譲りましょう。

最後に

　この記事を読んでくれた方で、パッケージに
したほうが良さそうだな、というソフトウェア
が思い当たりましたら、ぜひメーリングリスト
などでご相談／情報共有いただけるとうれしく
思います注14。Debian（とその派生ディストリ
ビューション）を一緒に改善していきましょう

:-) ｢

 ▼図2　RFPのフォーマット

To: submit@bugs.debian.org
Subject: RFP: birdfont -- TTF, EOT & SVN font editor ←わかりやすくRFP/ITPと先頭に付ける

Package: wnpp ←必ずwnppにする
Severity: wishlist ←重要度は「要望（wishlist）」
X-Debbugs-CC: debian-devel@lists.debian.org, pkg-fonts-devel@lists.alioth.debian.org
 ↑登録と同時に同報する宛先
 ※ここまでがBTSの既定フォーマット。以下がRFP/ITPの既定フォーマット
 Package name: birdfont ←パッケージ名
 Version: 0.8.0 ←バージョン
 Upstream Author: 2012 Johan Mattsson <johan.mattsson.m@gmail.com> ←作者
 URL: http://birdfont.org/ ←入手先
 License: GPL-3 ←主なライセンス

 Description: TTF, EOT & SVN font editor ←説明
 Birdfont is a free, open source font editor that lets you create outline
 vector graphics and export ttf, eot & svg fonts.

注13） バグ報告と操作記録はhttp://bugs.debian.orgで「参照」
できます。が、操作自体はすべてメールベースで実施し
ます。一応「reportbug」というツールも準備されていま
すが、結局のところSMTPを使って処理を行います。

注14） もちろん、定期的に開催されているイベント (http://
www.debian.or.jp/community/events/)などで尋ねてみ
るのもありです。イベント情報はTwitter：@debianjpな
どを参照ください。

注11） この理由はパッケージのインストールは root権限で行わ
れる（つまりパッケージのメンテナスクリプトに命を預け
ている）、という点から考えると理解しやすいかと思いま
す。考えたくはないですが、悪意を持ったパッケージが
気軽に公式リポジトリに登録できる状態ですと、いった
ん被害が起きると甚大なことになります。

注12） メール／Twitter／勉強会などのイベントで直接、という
のが考えられます。

http://bugs.debian.org
http://www.debian.or.jp/community/events/
http://www.debian.or.jp/community/events/

154 - Software Design

Ubuntu Monthly Report

第38回 Ubuntu Monthly Report

Ubuntu Touch

長南 浩　chonan@progdence.co.jp

先日スペインのバルセロナで行われたMWC2013 で発表された

Ubuntu Touch は大きな注目を集めました。今回は開発者向けイメー

ジのインストール方法と開発環境について紹介します。

　2013年2月、スマートフォンとタブレット向けの
新OSであるUbuntu Touchの開発者向けプレビュー
版注1がMWC2013に先駆けて公開されました（図1）。
今日UbuntuはLinuxディストリビューションとして
有名になりましたが、その一方でテレビ向けの
Ubuntu TV注2やクレードルに接続するとUbuntuの
デスクトップ環境が使えるUbuntu for Android注3な
ど、さまざまな分野での取り組みがCanonicalを中
心に進められています。今回のUbuntu Touchはス
マートフォンとタブレット向けに iOS、Androidに続

注1） https://wiki.ubuntu.com/Touch
注2） http://www.ubuntu.com/devices/tv
注3） http://www.ubuntu.com/devices/android

第3のモバイルOSを
狙うUbuntu Touch

く、第3のモバイルOSを目指す野心的な試みといえ
ます。
　現在、公式にサポートされているデバイスは、
Google が開発者向けに販売しているデバイスのう
ち、Nexus 4、Nexus 7、Nexus 10、Galaxy Nexusの
4機種です。これ以外の機種への移植や動作報告な
どはXDA Developers注4などの開発者フォーラムで
議論や報告が行われているようです。

　インストール方法については、公式Wiki注5の
ページに詳しく掲載されていますが、デバイスの
ブートローダをアンロックしたうえで、Ubuntuが動
作するPC上からOSイメージを書き込む方法でイン
ストールします。事前に、図2のようにツールをイ

実デバイスへの
インストール

ンストールし、ブートローダをア
ンロックして開発者モードが有効
となったデバイスを、USBケーブ
ルで接続し、

$ sudo phablet-flash -b -l

とすると、最新のOSイメージを
ダウンロードした後にデバイス
に書き込みを行います。OSのイ

注4） http://www.xda-developers.com/
注5） https://developers.google.com/

android/nexus/images

図1　Nexus 10でのUbuntu Touchのホーム画面

https://wiki.ubuntu.com/Touch
http://www.ubuntu.com/devices/tv
http://www.ubuntu.com/devices/android
http://www.xda-developers.com/
https://developers.google.com/android/nexus/images

154 - Software Design Jun. 2013 - 155

Ubuntu Touch 第 38 回

メージは500MB以上あるため、高速なインターネッ
ト環境が必要です。デバイスへのOS書き込みには
けっこう時間がかかるため、途中でハングアップし
たかのように見えますが、終了するまで気長に待っ
てください。
　書き込みが終了すると、デバイスが再起動され、
Ubuntu Touchが起動します。なお、現時点では
Ubuntu Touchのイメージは毎日更新されており、
phablet-flashコマンドの「-l」オプションで明示的に
最新のファイルがダウンロードされます。
　また、一度Ubuntu Touchをインストールしたデ
バイスをもとのAndroidに戻すには、Googleが公開
している工場出荷時のイメージ注6を入手して書き戻
す方法があります。現状のUbuntu Touchはあくま
で開発者向けという位置づけですので、事前にリカ
バリ手順を確認したうえでインストール作業を行っ
てください。とくにNexusデバイス以外のものにつ
いては、デバイスがまったく動作しない状況（文鎮
化）となる可能性があるので、サポートされているデ
バイスにインストールすることを強く推奨します。

　そんなUbuntu Touchですが、アルファ版ながら、
アプリケーション開発のためのUbuntu SDKが公開
されています。インストールはUbuntu 12.10、

開発環境の構築

phablet-flashコマンドでインストールされるイメージ
には、日本語のフォントは入っていないので「fonts-

takao*」をapt-get→ installからインストールしておく
といいでしょう。ただしこの際にデバイスはWifi経
由でパッケージファイルを取得しようとするので、事
前にWifiの設定を済ませておく必要があります。ま
た、アプリケーションを開発し、デバイスにインス
トールするのであれば、Developer Connectionを有効
にしておきましょう（図6）。

　Ubuntu TouchアプリケーションはQt Quickフ

Ubuntu Touch
アプリの特徴

12.04LTSの場合は図3のように、ま
たUbuntu 13.04 の場合は図4の一連
の操作でインストールできます。ま
た、開発環境としてQt Creator（図5）
を使いますが、上記の操作中に自動的
にインストールされます。
　PCにデバイスを接続した状態でQt

Creatorを使うと、デバイス上のパッ
ケージをapt-getで管理したり、sshでデ
バイスへログインするといった操作を
Tools→Ubuntu→Deviceメニューから
行うことができます。現状では

注6） https://developers.google.com/android/
nexus/images

$ sudo add-apt-repository ppa:phablet-team/tools
（PPAインストールのための確認が行われます）
$ sudo apt-get update
$ sudo apt-get install phablet-tools android-ｭ
tools-adb android-tools-fastboot

図2　事前にツールをインストールする

$ sudo add-apt-repository ppa:canonical-qt5-ｭ
edgers/qt5-proper
$ sudo add-apt-repository ppa:ubuntu-sdk-team/ppa
$ sudo apt-get update
$ sudo apt-get install ubuntu-sdk notepad-qml

図3　Ubuntu 12.10、12.04LTSをインストールする場合

$ sudo add-apt-repository ppa:ubuntu-sdk-team/ppa
$ sudo apt-get update
$ sudo apt-get install ubuntu-sdk

図4　Ubuntu 13.04をインストールする場合

図5　Qt Creator

Welcome画面にはUbuntu Touchでの開発ドキュメントへのリンクが表示される

https://developers.google.com/android/nexus/images

156 - Software Design

Ubuntu Monthly Report

レームワーク上で動作し、QMLというUIに特化した
言語で記述されます。Windowsストアアプリ開発や、
WPF（Windows Presentation Foundation）での
XAML（Extensible Application Markup Language）、
AndroidでのレイアウトXMLに相当するものです
が、JSONのような文法で比較的単純な構造になって
います。開発環境もLinux環境にありがちなソース
ファイルをエディタで編集してコンパイラやインタ
プリタに処理させるのではなく、Qt CreatorをIDE

とした、よりモダンなスタイルでの開発を行うこと
ができます。Visual Studioほど万能ではないのです

が、ボタンやテキストボックスなどの配置をGUIで
調整することもできます（図7）。
　QMLのコードはUIを記述するだけではなく、ボ
タンが押されたときの処理などをJavaScriptで記述
できます。一般的にある程度規模が大きいアプリ
ケーションになると、UIとその処理を分離すること
が求められますが、その場合にはJavaScriptの関数
を別ファイルに用意して、QMLファイルの冒頭で適
宜 importするスタイルとなります。ちょっと乱暴な
言い方かもしれませんが、AndroidでのDalvik仮想マ
シンの代わりにUbuntu TouchではQt Quickフレー
ムワークを使用し、JavaScriptとHTML5でアプリを
開発するのが定番開発パターンとなりそうです。

　サンプルとして、ごくごく単純なアプリケーショ
ンを書いてみました（リスト1）。ボタンを押すと、
次の本誌の発売日を表示させるというものです。
MainView上にラベルとボタンを配置して、ボタン

が押されたらラベルの文字列を変化
させるというアプリケーションです
（図8）。
　ボタンが押された場合の処理は
JavsScriptを埋め込んでいますが、
それを含めて60行程度の分量です。
iOSやAndroidでのアプリ開発に比
べて簡単に記述できることがわかり
ます。JavaScriptを使うという特性を
うまく利用すると、スムーズに開発
を進めることができそうです。とく
にHTML5と関連テクノロジを追い
かけている開発者は比較的簡単に
Ubuntu Touchアプリを書くことがで
きるでしょう。
　掲載したサンプルアプリはQt

Creator経由でデバイスにインストー
ルして動作させることができます。

サンプル
アプリケーション

図6　Qt Creatorからデバイスにapt-getコマンドを発行できる

図7　Qt CreatorでのUIデザイン

図8　 サンプルアプリケーションをQt Creatorで
実行したところ

156 - Software Design Jun. 2013 - 157

Ubuntu Touch 第 38 回

　今回はUbuntu Touchのインストールと開発環境
を駆け足で紹介しました。モバイルOSについては
Ubuntu Touch以外にもFirefox OSやTizenなどの

おわりに
新しい製品が名乗りを上げるなどMobile World

Congress 2013前後から、にわかに活気がでてきま
した。
　iOSやAndroidの2強が支配するモバイルOS分野
で、Ubuntu Touchがどれだけの地位を築くことがで
きるのかは今後も注目しておきたいところです。｢

import QtQuick 2.0 // Qt Quick v2 フレームワークを使用
import Ubuntu.Components 0.1 // Ubuntu Touch 用の部品をインポート

MainView { // MainView の中に Label と Button をそれぞれ1個配置
 objectName: "mainView" // ビューの名前を設定
 applicationName: "Sample" // アプリケーション名を設定
 id: root // ビューのid を設定

 width: units.gu(60) // ビューの幅と高さを設定
 height: units.gu(80) // units.gu() を使うことで解像度の違いを吸収できる

 property real margins: units.gu(2) // マージンとボタン幅のサイズを設定
 property real buttonWidth: units.gu(9)

 Label { // 上部の文字列ラベルの設定
 id: title // ラベルのid。title.text などとして参照・変更される
 ItemStyle.class: "title" // ラベルのスタイルを設定
 text: "push button..." // ラベルの文字列
 height: contentHeight + root.margins
 anchors { // 上面、左右面を親要素(=mainView)に合わせる
 left: parent.left
 right: parent.right
 top: parent.top
 }
 }
 Button { // ボタンの設定
 x: units.gu(2) // ボタンの表示位置を x: y: で設定
 y: units.gu(8)
 width: units.gu(20) // ボタンの大きさ(幅・高さ)を設定
 height: unis.gu(4)
 text: "Software Design" // ボタンの文字列
 onClicked: { // ボタンがクリックされたときの処理(Javascript埋込)
 // 月の名前を配列に格納
 var monthName = [
 "Jan","Feb","Mar","Apr",
 "May","Jun","Jul","Aug",
 "Sep","Oct","Nov","Dec"];
 // 現在の日付を格納
 var currentDate = new Date();
 // 表示月は後ほどセットするが、あらかじめ宣言しておく
 var nextDate;
 if (currentDate.getDate() <= 18) {
 // 現在の日付が「18日以前」の場合には当月を表示月とする
 nextDate = currentDate; // 日は考慮しないので現在の日付をそのまま採用する
 } else {
 // 「19日以降」の場合には翌月を表示月としたいのだが...
 if (currentDate.getMonth() == 12) {
 // 当月が12月の場合は「翌年の1月」を翌月として表示月にセット
 nextDate = new Date(currentDate.getFullYear() + 1,
 0, // 月は0(1月)～11(12月)で指定するので、0(1月)を設定
 1); // Dateコンストラクタは日まで指定するので1日を設定
 } else {
 // それ以外の場合には、「同年の1月後」を表示月にセット
 nextDate = new Date(currentDate.getFullYear(),
 currentDate.getMonth() + 1,
 1);
 }
 }
 // 表示月と月名配列をもとに title ラベルの文字列を更新
 title.text = "Next SD will be sold on ";
 title.text += monthName[currentDate.getMonth()] + " 18.";
 }
 }
}

リスト1　サンプルアプリケーション

はじめに

　レッドハットの小島克俊です。プラットフォー
ム製品のソリューションアーキテクトです。レッ
ドハットの製品とサービスについてお客様やパー
トナー企業へ技術面からそれらの利点を伝えて
います。かつてUNIXサーバの販売量で世界一
だった日本企業に所属していました。今回はそ
のころの話をおもにします。UNIXとかクラウ
ドなどについてです。

きみはUNIXを
わかっていない

　あなたはUNIXをご存じでしょうか。
　UNIXとLinuxの違いをPOSIXを引き合いに
出してうまく説明できたり、Mac OS XはUNIX

だとか知っていれば、ずいぶんなUNIX好きだ
と思います。そんなあなたがUNIXに習熟した
エンジニアだったとして「きみはUNIXがわかっ
ていない」と言われたらどう感じるでしょうか。
　UNIXという言葉が非常にミステリアスな何
かすごい技術として日本でも知られるようになっ
たのはサン・マイクロシステムズ社（以降、サン

社）がUNIX製品を販売しはじめたときです。サ
ン社が大学サークルから発展してベンチャー企
業になった1980年代のころのことです。
　当時UNIXに多くの機能を追加していたビル・
ジョイ氏はEthernetを利用した共有ファイルシ
ステムを作ることに夢中になっていました。ビ
ル・ジョイ氏はviエディタを作り、実際にUNIX

の重要な部分を開発した人であり、現在では
UNIXの神の領域にいると評価されている人で
す。今でこそコンピュータ同士で同じファイル
が同時に操作できることは当たり前ですが、そ
のころは先進的な考え方でした。
　技術オタクとして社内で知られた大先輩がサ
ン本社への調査を命じられます。そこではビル・
ジョイ氏が対応にあたりました。そこで先輩は
ネットワークでつないだファイルシステムを作
る、ということの実現について情熱的な説明を
受けます。あまりに熱心に説明するのを聴いて、
筆者の先輩もエンジニアとしての知見を総動員
させて考え、冷静に評価したそうです。
　ステートレスなUDPでファイルシステムを作
るという説明に不安を感じた先輩はビル・ジョ
イ氏にこう言いました。「きみはUNIXをわかっ
てない」と。そう言われたビル・ジョイ氏はかな
りショックを受けたらしく、さらに真剣に説明
を試みたそうです。時間にして1時間程度でしょ
うか。あまりに熱心に語るビル・ジョイ氏を見
て「なかなか見所がありそうなアイデアだ」と
言ったその先輩は、今ではこのときのことを一
生の不覚と語ります。
　ご存じのようにこの機能は現在ではNFSと呼
ばれ、当たり前のように利用されています。
　日本に戻った先輩は上司へ「技術的に先進性が
あり、かつ実現の見込みあり」と報告しました。
　UNIXを作っている最中の神に会い、意見し
たことを先輩は恥じているのですが、それは時
間が経ってから評価が決まったことです。先輩
が気にしているやりとりがあったにしても、そ
んなことはどうでも良いくらいUNIXの輸入販
売は結果として大成功を収めます。

恵比寿通信
レッドハット

小島 克俊
KOJIMA Katstoshi

レッドハット㈱グローバルサービス本部
プラットフォームソリューション統括部
ソリューションアーキテクト

オープンソースが
本当に当たり前になるとき

第 回9

158 - Software Design

　シリコンバレーでは起業しても100のうち3

つも残らないといわれますが、先輩らの技術調
査の対象になった企業は10に3つくらいが当た
りだったそうです。

クラウドが始まる

　2000年代に入り、Linuxでのビジネスが始
まったころ、別な大先輩がこんなことを言いま
した。「おい、トムがラリーに買収されたぞ」。
　トム・シーベル氏はもともとオラクル社の天
才営業といわれた人で、袂

たもと

を分かちシーベル・
システムズ社（以降、シーベル社）を起業しまし
た。その企業がオラクル社に買収されたのでし
た。シーベル社はCRM分野そのものを開拓す
るような製品を作っていました。販売営業員ら
のノウハウを顧客（会社や個人）にひもづけて記
録し、シェアするしくみを提供する製品です。
営業員の退職によるノウハウ損失も少なくなり
ますし、営業活動においてとても有効なツール
となります。その製品はセールス・フォース・
オートメーションという名称でした。
　その後、クラウドコンピューティングの代表
格となるセールスフォース・ドットコム社のサー
ビスはシーベル社製品と同様の機能を提供する
ことからスタートしています。
　実はその先輩、起業間もないシーベル社に派
遣され、製品の日本語化を進める作業のとりま
とめを担当した経験がありました。日本での販
売拡大を考えていたトム・シーベル氏から先輩
は大きな期待をよせられ、エンジニアとしては
格別な待遇を受けていたのです。
　当時はストックオプションを選んだ社員がカ
ローラで通勤していたのにある日突然ポルシェ
で来た、みたいなことも日常茶飯事だったそう
です。そんな栄華を誇ったシーベル社がクラウ
ドサービスが登場しはじめたころに買収されて
しまったのは象徴的な話だと思います。

ハードウェアの変化

　アプリケーションのGUIで［保存］を意味するア
イコンにフロッピーディスクが使われていること
があります。しかし実際にフロッピーディスクを
見たことがないエンジニアも増えています。最後
にフロッピーディスクを使ったのはいつでしょ
う。筆者は覚えていません。同様にモデムを見た
ことがないエンジニアが増えています。
　ハードウェア技術はとにかく速く変化し、どう
使ったらいいかすらわからないものが出てきます。
　たとえばIntel Xeon Phiのようなものも出て
きました。PCI拡張カードに通常のCPUと同じ
命令が処理できるコプロセッサです。使い方が
まだ確立していません。
　レッドハットの製品では何P

ペタバイト

Bでも1つのシス
テムとして管理できるストレージ製品が増えま
した。サーバとネットワークが価格の割に性能
がよくなったことで実現したソリューションで
す。PBクラスのストレージを使いこなすこと
ができる人はまだ多くありません。今までそん
なサイズのストレージが普通にはなかったから
です。これからいろいろな事例ができていくこ
とでしょう。とても楽しみです。

オープンソース
ソフトウェア

　そんな目まぐるしく変化する業界最先端で走
り続けた先輩達からのアドバイスはこうです。
「チャレンジしてもないことで人を批判するのは
ダメ。評論家と同じで絶対に世界を変えられな
い。とにかくチャレンジしろ」と、アメリカンな
プラグマティズムを地でいくような感じです。
確かに、真似をするためのリファレンスがない
とき、どうすべきか自分で考えて対処する裁量
が大きいほど個人の能力が発揮され、良い結果
がついてくるような気がします。
　この試練はすごいな、という例を1つ。大先

恵比寿通信レッドハット 第 回9
オープンソースが

本当に当たり前になるとき

158 - Software Design Jun. 2013 - 159

輩らと同じ部署に入社した新卒2年生の話です。
　サウジアラビアの日本企業に納品したシステ
ムが故障し、単身現地に派遣されたものの検査
器具がないので東京の会社に連絡したところ「サ
ガセ」とだけ電報を受けます。近くの別な日系企
業でオシロスコープを借り、ジープを飛ばして
持ち前の技術力で問題個所を特定したところ、1

つのICチップが故障していたことがわかりまし
た。再度、会社に連絡すると「ナオセ」と電文で
す。その新人はこんな状況を「おもしろい」と感
じました。稀

まれ

な人材ですね。
　その後、その人はお客様から信頼される仕事
を数多くこなし、若くして執行役員にまでなりま
した。大先輩たちもなるほどと思える人事です。
　さて、その人が技術部署の長となり、筆者が
所属しているときのことです。筆者はオープン
ソースに関わる製品やサービス、仮想化技術に
ついて調査を担当していました。あるときRuby

技術認定資格の制度開始を支援をするチャンス
がありました。部署長は「とにかくチャレンジし
ろ」と後押ししてくれました。オープンソースに
期待され、コンセプトに共鳴してもらえたと記
憶しています。そして数年後、制度は実現しま
した。楽しい仕事でした。

それから

　しばらく経ちました。オープンソースソフト
ウェアのいいとこ取りをした製品を作り、保守
サービスを提供する企業に今筆者は所属してい
ます。レッドハットのソフトウェア製品は設計
図にあたるソースコードが公開されています。
つまり製品そのものに企業秘密がありません。
ものを売るというよりはアイデアやノウハウを
売っています。とにかくチャレンジングな企業
だと思います。
　サン社のUNIXも sendmailなどBSDに含ま
れる公開された既存ソフトウェアをパッケージ
の一部として製品にしたものでした。結局、今
も昔も知性の集約をするには同じ手法が活かさ

れているのだと思います。

それはノイマン型なのか

　ある企業でメインフレーム以外のコンピュー
タを導入検討するとき、「それはノイマン型なの
か」という質問があったときいたことがあります。
　技術的に理解している人にとっては質問に違
和感があるものの、エグゼクティブ向けの説明
にそういった言葉があり、基準のようにとらえ
られた結果の質問だったとも思われます。当た
り前だからあえて確認しない不自然な質問です。
　今は「それはオープンソースなのか」といった
質問がときおりあります。
　ソフトウェアの生産性と品質の両立を考える
とソースコードが公開されていることは重要で
す。この質問自体に違和感を感じるようにオー
プンソースであることが当たり前になるときが
きっとくるな、と感じています。

書籍紹介

　今までの話が面白いと感じた皆さんはこんな
書籍も楽しめると思います。
『目利き――シリコンバレーの
スター経営者たちが最も信頼する日本人』

桐山秀樹、日経BP社、1999年、1,470円

大先輩達が口をそろえて最もおっかないけど尊
敬できる上役だったという方が主人公です。歴
史的記述として楽しめます。
『Ruby技術者認定試験 公式ガイド』

伊藤忠テクノソリューションズ（著）、Rubyアソシ

エーション（監修）、ITpro（編）、日経BP社、2009年

資格制度事業化のとき、書籍出版にもチャレン
ジさせていただきました。Amazonで少しだけ
立ち読みできます。
『ソフトウェア・グラフィティ』

岸田孝一、土屋正人、石曽根信、中小路久美代、石

井達夫（著）、中央公論事業出版、2012年、1,785円

VAXによるUNIXのビジネスの話が含まれてい
ます。日本でのGNUの歴史も読み取れます。
ﾟ

恵比寿通信レッドハット 第 回9
オープンソースが

本当に当たり前になるとき

160 - Software Design

161 - Software Design Jun. 2013 - 161

Linux 3.9の新機能 ～dm-cache～ 15回15回
Linux

カーネ
ル

観光ガ
イド

　今回はLinux 3.9の新機能“dm-cache”につい
て解説します。dm-cacheはSSDをキャッシュ
として使用することで、ディスクブロックのパ
フォーマンスを向上するための機能です。

dm-cache
　SSDは一度使うと病みつきになってしまうよ
うな速度を誇っています。みなさんの中にも
HDDの速度には戻れないな……と思っている方
もいらっしゃるのではないでしょうか。ただ、
この高速なSSDにも、まだまだ容量が小さく価
格が高いという弱点があります。HDDで2TB

が買えるような値段で、SSDではまだ250GB

といったところでしょうか。
　HDDの容量とSSDの速度、この2つの利点
を活かすべくSSDをキャッシュとして活用する
ためのパッチが各種投稿されてきていました。
“fl ashcache”や“bcache”といった名前に聞きおぼ
えがあるのではないでしょうか。本稿では、そ
の中からカーネルにマージされたdm-cacheの動
きを中心に見ていきます。

Device Mapper
　dm-cacheはその名の中に“dm”という言葉を含
んでいるとおり、Linuxの“Device Mapper（dm）”

の機能を用いて実装されています。このDevice

Mapperとはどのような機能なのでしょうか？
　Device Mapperとは、仮想的なブロックデバ
イスを作り、その仮想デバイスへのアクセスを
設定されたテーブルをもとにほかのブロックデ
バイス注1へのアクセスに変換するしくみです。
これを使って、LVM2、multipath-tools、dmraid、
cryptsetupといった機能がLinuxでは実装され
ています。
　では、まず筆者の環境で設定してあるLVM

（Logical Volume Manager）を例にして、具体的
にこのDevice Mapperについて見てみましょう。
LVMは論理ボリュームマネージャ（Logical

Volume Manager）というもので、複数の物理デ
バイス、パーティションをまとめて、そこから
論理的なディスク領域を作ることができる機能
です。たとえば、1つのディスクの大きさにと
らわれずに、大きなサイズのファイルシステム
を作り出すことができます。

LVMの物理デバイス
　物理デバイスに近いところから見ていきましょ
う（図1）。pvsコマンドで、LVMで使われてい
る物理デバイスを見ることができます。この

注1） 実際のHDD、SSDはもちろんのこと、また別のDevice
Mapperによる仮想ブロックデバイスなどに変換すること
もできます。

Linux 3.9の新機能
～dm-cache～

第15回第15回

162 - Software Design

Linuxカーネル観光ガイド

3つのパーティションsdb3、sdc1、sd2はpv

createというコマンドでLVM用に初期化が行
われています。LVM用に初期化された、これ
らの物理ボリューム（PV）をボリュームグループ
（VG）に所属させます。ここではすべてのPVを、
vg2というVGに所属させています。
　最後にVGから論理ボリューム（LV）を切り出
します。この論理ボリュームを、通常のパーティ
ションかのようにファイルシステムを作ったり
と利用できます。LVMによって/dev/“ボリュー
ムグループ名”/“論理ボリューム名”というデバ
イス（へのシンボリックリンク）が作られています。
　シンボリックリンクの先が“dm-<番号>”となっ
ていることからも、LVMがDevice Mapperを使っ
ていることがはっきりとわかります。これらの

デバイスをDevice Mapperの側から見てみましょ
う。dmsetup lsでDeviceMapperによる仮想デバ
イスを見ることができます（図2）。ここで括弧の
中に数字が書かれています。これが相当する仮
想デバイスのデバイス番号となります。Device

Mapperによって、作成される/dev/mapper下の
シンボリックリンクと/dev/dm-*とを見てみると、
対応していることが確認できるでしょう。
“dmsetup table”コマンドを使うことでDevice

Mapperの「テーブル」を見ることができます。
Device Mapperはこのテーブルに従って仮想デ
バイスへのアクセスを変換していきます。たと
えば、“vg2-storage”を見てみましょう。このデ
バイスのテーブルは表1のようになっています。

pvs
 PV VG Fmt Attr PSize PFree
 /dev/sdb3 vg2 lvm2 a-- 147.96g 0
 /dev/sdc1 vg2 lvm2 a-- 298.09g 0
 /dev/sde2 vg2 lvm2 a-- 931.69g 819.09g
vgs
 VG #PV #LV #SN Attr VSize VFree
 vg2 3 10 0 wz--n- 1.35t 819.09g
lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
 Walbrix vg2 -wi-a---- 14.65g
 debian-root vg2 -wi-a---- 20.00g
 debian-swap vg2 -wi-a---- 2.00g
 genbutu vg2 -wi-a---- 15.00g
 gentoo-fbsd vg2 -wi-ao--- 20.00g
 gentoo-fbsd-broken vg2 -wi-a---- 20.00g
 gentoo-fbsd8 vg2 -wi-a---- 20.00g
 gentoo-linux vg2 -wi-a---- 20.00g
 nix vg2 -wi-a---- 30.00g
 storage vg2 -wi-ao--- 397.00g
$ ls -l /dev/vg2
合計 0
lrwxrwxrwx 1 root root 7 4月 8 22:23 Walbrix -> ../dm-4
lrwxrwxrwx 1 root root 7 4月 8 22:23 debian-root -> ../dm-7
lrwxrwxrwx 1 root root 7 4月 8 22:23 debian-swap -> ../dm-8
lrwxrwxrwx 1 root root 7 4月 8 22:23 genbutu -> ../dm-3
lrwxrwxrwx 1 root root 7 4月 8 22:23 gentoo-fbsd -> ../dm-5
lrwxrwxrwx 1 root root 7 4月 8 22:23 gentoo-fbsd-broken -> ../dm-6
lrwxrwxrwx 1 root root 7 4月 8 22:23 gentoo-fbsd8 -> ../dm-2
lrwxrwxrwx 1 root root 7 4月 8 22:23 gentoo-linux -> ../dm-1
lrwxrwxrwx 1 root root 7 4月 8 22:23 nix -> ../dm-9
lrwxrwxrwx 1 root root 7 4月 8 22:23 storage -> ../dm-0

 ▼図1　LVMの表示

開始セクタ サイズ マップ方法 マップのパラメータ
0 310304768 linear 8:19 384

310304768 340656128 linear 8:33 284477440
650960896 8388608 linear 8:33 182454272
659349504 173219840 linear 8:66 2055

 ▼表1　vg2-storageのテーブル

162 - Software Design Jun. 2013 - 163

Linux 3.9の新機能 ～dm-cache～ 第15回第15回

　/dev/vg2/storageの0～310304767セクタ注2

までが、linearという方式で“8:19 384”という
パラメータを用いてマップされます。linearで
はパラメータは“<デバイス番号> <オフセット>”
という解釈となります。つまり、ここでは/

dev/vg2/storageの 0セ ク タ 目 が /dev/sdb3

注2） 1セクタは512バイト。

（8:19）の384セクタ目に、1セクタ目が385セク
タ目に、というように310304767セクタまで対
応していきます。そして /dev/vg2/storageの
310304768セクタからは、テーブルの次のエン
トリになり、/dev/sdc1（8:33）の284477440セク
タ目からにマップされていく、となります。

dmsetup ls
vg2-gentoo--fbsd--broken (253:6)
vg2-debian--swap (253:8)
vg2-debian--root (253:7)
vg2-storage (253:0)
vg2-nix (253:9)
vg2-Walbrix (253:4)
vg2-gentoo--fbsd (253:5)
vg2-gentoo--linux (253:1)
vg2-genbutu (253:3)
vg2-gentoo--fbsd8 (253:2)
$ ls -l /dev/dm-* /dev/mapper/*
brw-rw---- 1 root disk 253, 0 4月 8 22:23 /dev/dm-0
brw-rw---- 1 root disk 253, 1 4月 8 22:23 /dev/dm-1
brw-rw---- 1 root disk 253, 2 4月 8 22:23 /dev/dm-2
brw-rw---- 1 root disk 253, 3 4月 8 22:23 /dev/dm-3
brw-rw---- 1 root disk 253, 4 4月 8 22:23 /dev/dm-4
brw-rw---- 1 qemu qemu 253, 5 4月 11 13:16 /dev/dm-5
brw-rw---- 1 root disk 253, 6 4月 8 22:23 /dev/dm-6
brw-rw---- 1 root disk 253, 7 4月 8 22:23 /dev/dm-7
brw-rw---- 1 root disk 253, 8 4月 8 22:23 /dev/dm-8
brw-rw---- 1 root disk 253, 9 4月 8 22:23 /dev/dm-9
crw------- 1 root root 10, 236 4月 8 22:23 /dev/mapper/control
lrwxrwxrwx 1 root root 7 4月 8 22:23 /dev/mapper/vg2-Walbrix -> ../dm-4
lrwxrwxrwx 1 root root 7 4月 8 22:23 /dev/mapper/vg2-debian--root -> ../dm-7
lrwxrwxrwx 1 root root 7 4月 8 22:23 /dev/mapper/vg2-debian--swap -> ../dm-8
lrwxrwxrwx 1 root root 7 4月 8 22:23 /dev/mapper/vg2-genbutu -> ../dm-3
lrwxrwxrwx 1 root root 7 4月 8 22:23 /dev/mapper/vg2-gentoo--fbsd -> ../dm-5
lrwxrwxrwx 1 root root 7 4月 8 22:23 /dev/mapper/vg2-gentoo--fbsd--broken -> ../dm-6
lrwxrwxrwx 1 root root 7 4月 8 22:23 /dev/mapper/vg2-gentoo--fbsd8 -> ../dm-2
lrwxrwxrwx 1 root root 7 4月 8 22:23 /dev/mapper/vg2-gentoo--linux -> ../dm-1
lrwxrwxrwx 1 root root 7 4月 8 22:23 /dev/mapper/vg2-nix -> ../dm-9
lrwxrwxrwx 1 root root 7 4月 8 22:23 /dev/mapper/vg2-storage -> ../dm-0
dmsetup table
vg2-gentoo--fbsd--broken: 0 41943040 linear 8:33 221562880
vg2-debian--swap: 0 4194304 linear 8:33 178259968
vg2-debian--root: 0 20971520 linear 8:33 157288448
vg2-debian--root: 20971520 20971520 linear 8:33 263505920
vg2-storage: 0 310304768 linear 8:19 384
vg2-storage: 310304768 340656128 linear 8:33 284477440
vg2-storage: 650960896 8388608 linear 8:33 182454272
vg2-storage: 659349504 173219840 linear 8:66 2055
vg2-nix: 0 62914560 linear 8:66 173221895
vg2-Walbrix: 0 30720000 linear 8:33 190842880
vg2-gentoo--fbsd: 0 41943040 linear 8:33 115345408
vg2-gentoo--linux: 0 41943040 linear 8:33 2048
vg2-genbutu: 0 31457280 linear 8:33 83888128
vg2-gentoo--fbsd8: 0 41943040 linear 8:33 41945088

 ▼図2　Device Mapperの表示

164 - Software Design

Linuxカーネル観光ガイド

いろいろなマップ方式
　先ほど「linearという方式で」と書いたとおり、
Device Mapperには linear以外にも多くのマッ
プ方式を備えています（図3）。
　簡単なものでは、striped、mirror、crypt、
verifyといったものがあります。stripedは複数
のデバイスにデータをストライプ状にばらけさ
せることができます。たとえば、ストライプの
サイズを128とすると仮想デバイスの0～127セ
クタが/dev/sda1に、128～255セクタが/dev/

sdb1に、256～383セクタはまた /dev/sda1に
……といったようにマップします。I/Oが複数
のデバイスにばらけるのでスループットの向上
が期待できます。
　mirrorはその名のとおり、複数の物理デバイ
スにデータのミラーを作ることができます。
cryptでは透過的に下位のデバイスへの暗号化
を施します。verifyは読み込み専用のデバイス
を作ります。このデバイスから読み込まれたデー
タは、「ハッシュ用デバイス」に記録されたハッ
シュによって検証が行われます。もしディスク
への改ざんなどがあってハッシュが一致しない
場合、そのI/Oは失敗します。Chrome OSでは

 この方式を用いて、Verifi ed bootを実現しよう
としています。
　変わったものではerror、zero、delay、fl akey

といった方式があります。errorは常にI/Oがエ
ラーとなり、zeroでは常に0が読み込まれ書き
込みは無視し、delayは指定されたミリ秒だけ
I/Oを遅延させます。fl akeyは一定の間隔で、
正常状態と異常状態とを交互に繰り返ようなデ
バイスを作ることができます。異常状態の間は
書き込みを無視する／読み書き時に指定したバ
イトのデータを書き換えて伝える、といった設
定ができます。これらの方式はおもにデバッグ用、
テスト用として使われることが多いです。

snapshot関連のマップ方式
　そしてsnapshot関連のマップ方式があります。
LVMにてスナップショットを作成する様子を見
てみましょう（図4）。
　まずスナップショットの元となるLV baseが
あります。スナップショットsnap1を作ると、
baseのテーブルはsnapshot-originを使ったマッ
プに変えられます。また、もともとbaseで参照
できていた領域はbase-realという名前の新しい
マップに変えられます。そしてsnapというLVと、
snap-cowというLVの2つも新しく作られます。

Data1 Data2

Data1 Data2

Data

不一致

一致照合された
データ

I/Oエラー

… …Data1 Data2

Hash

mirrorlinear

LV

HDD1 HDD2

LV

HDD1 HDD2

striped verify

LV

HDD1 HDD2

……

…… ……
照合

 ▼図3　Device Mapperのマップ方式

164 - Software Design Jun. 2013 - 165

Linux 3.9の新機能 ～dm-cache～ 第15回第15回

　snapはsnapshotというマップであり、snap-

cowは linearの マ ッ プ と な っ て い ま す。
snapshot-originは元の領域をパラメータとして
とります。baseに書き込むと、同時にbase-real

にあった古いデータがsnap-cowへと書き込まれ
ます。snapshotは元の領域および古いデータが
保存される領域をパラメータにとります。この2

つの領域のデータをマージして、昔のデータを
見せることでスナップショットを実現しています。

dm-cache
　これらのマップ方法と同じように今回紹介す
るdm-cacheも実現されています。dm-cacheの
テーブルは図5のようなパラメータで構築され
ます。

　このパラメータからわかるように、dm-cache

では3つのデバイスを使用しています。オリジナ
ルデータデバイスはキャッシュの元となる、大容
量で遅いデバイス（HDDなど）であり、キャッシュ
デバイスはデータをキャッシュする小容量で速
いデバイス（SSDなど）です。メタデータデバイ
スにはキャッシュ上のデータだけが更新されて
いて、オリジナルデータが更新されていない状
態である、などの管理用データが記録されます。
　featureには現状writebackもしくはwritethro

ughのどちらかが指定されます。writebackの場
合、キャッシュされているデータに対して書き
込みがあったときに、キャッシュにだけ書き込
みを行い、dirtyフラグを立ててI/O処理を終了
します。オリジナルデータデバイスへの更新は、
このdirtyフラグをもとにして後で行われます。

cache <メタデータデバイス> <キャッシュデバイス> <オリジナルデータデバイス>
<ブロックサイズ>
<feature引数の数> [<feature引数>]*
<ポリシー> <#ポリシー引数の数> [ポリシー引数]*

 ▼図5　dm-cacheのテーブルパラメータ

Data

デバイス
番号は
一致

snapshot前

snapshot後

snapshotへの書き込み

snapshotから読み込み

マージされて
元のデータが読み込まれる

Data

base

HDD

linear map

Data snap-cow

Data

base

HDD

linear map

base snap

Data snap-cow

snap-cow

Old
Data

Old
Data

Data

base

HDD

Old
Database-real

linear map

base
元データの転送

New
Data

New
Data

base

New Data

 ▼図4　snapshot

166 - Software Design

Linuxカーネル観光ガイド

writethroughの場合、オリジナルデータに書き
込みを行ったあとにキャッシュデータを更新し、
I/O処理を終了します。
　ポリシーにはデータをキャッシュにのせる／
キャッシュから消すといった基準を決定するポ
リシーの名前を指定します。今のところ
multiqueueというポリシーと、cleanerというポ
リシーとがあります。しかし、cleanerのポリシー
の方はすでにキャッシュに入っているかどうか
を返し、キャッシュへやキャッシュからの移動
はまったく行わないキャッシュの動作には役に
立たないポリシーになっています。このcleaner

ポリシーはdirtyなキャッシュをオリジナルデー
タデバイスに書き戻していくので、キャッシュ
を“clean”にして解放するために使えます。

multiqueueポリシーの動作
　そ れ で はデ ータの 動きを 見 な がら、
multiqueueポリシーの動作を見ていきましょう。
multiqueueではpre_cacheとcacheという2種類
のキューがあります（図6）。

　最初にデータにアクセスすると、そのアドレ
スへのアクセスエントリが作成され、pre_cache

キューに挿入されます。アクセスエントリには
hit_countというアクセスされた回数をカウント
した変数があります。pre_cacheキューもcache

キューも内部が16段階（レベル）に分かれてい
ます。
　アクセスエントリがキューのどのレベルに入
るかは log_2（hit_count）によって決定されます。
ここでは最初のデータアクセスで“hit_count=1”
ですのでレベル0に入ります。pre_cacheキュー
に入ってもまだデータのキャッシュは行わず、
オリジナルデータデバイスからデータを取得し
てもらいます。
　アクセスがあるたびにhit_countが1つずつ増
加し、新しいhit_countに応じたレベルのキュー
にエントリが挿入されなおします。こうしてデー
タが何度もアクセスされているとやがてデータ
をキャッシュへと移す（promoteする）ときがやっ
てきます。判定基準は図7のようになっています。
　基本しきい値は、cacheキュー内のhit_count

address=A
 hit_count=1

address=A
 hit_count=5

pre_cache

0

1～15 は空

address=C
 hit_count=1

address=B
 hit_count=1
address=D
 hit_count=2
address=A
 hit_count=4

pre_cache

0

1

2

3～15 は空

cashe
すべて空

cashe
すべて空

cashe
0、1、3～15 は空

1． アドレスAを読み込む

2．AAABCDDと読む

address=C
 hit_count=1

address=B
 hit_count=1
address=D
 hit_count=2

pre_cache

0

1

2～15 は空

3．さらにAを読む

2

cacheキューへと移動
アドレスAのデータもSSDにコピーされる

hit_count=1とはなってpre_cacheへ移動
アドレスAのデータがキャッシュから削除される
レベル0のcacheが空になっているとすべてのレベルが1ずつ下げられる

address=C
 hit_count=8

cashe

address=A
 hit_count=1
address=D
 hit_count=2

pre_cache

0

1

2～15 は空

4．cacheからの追い出し

2

address=B
 hit_count=51

 ▼図6　pre_cacheとcacheのデータの動き

166 - Software Design Jun. 2013 - 167

Linux 3.9の新機能 ～dm-cache～ 第15回第15回

が少ないものから20個のアクセスエントリの
hit_countの平均値となっていて、定期的に更新
されています。読み書きによる調整は、そのア
クセスが読み込みである場合に4、書き込みに
ある場合に8となっていて、読み込みのほうが
より早くキャッシュに乗るようになっています。
キャッシュからの削除のことを考えると、書き
込みの場合にはキャッシュ内のデータをオリジ
ナルデータデバイスに書き戻す手間がかかります。
そのため読み込みよりも書き込みのほうがしき
い値が厳しく設定されているわけです。
　やがて、このデータがアクセスされなくなり
キャッシュが別のデータで埋まってくると、ア
クセスエントリがcacheキューの先頭へと移動
していき、先頭に到達してさらにキャッシュさ
れる新しいエントリがでてきた時点でキャッシュ
からデータが追い出されます。
　dm-cacheのmultiqueueポリシーの大雑把な流
れは以上のようになっています。細かいところ
ではもう少し調整が行われています。たとえば、
I/Oパターンを調べておいて、その I/Oがシー
ケンシャルなものかランダムなものかを判定し
ます。大規模で連続したI/Oであれば、HDDで
あっても良いパフォーマンスとなるので、この
場合はオリジナルデータデバイスから読み書き
するようになっています。

まとめ
　今回はHDDとSSDの利点を活かし、大容量
で高速なデバイスを実現するdm-cacheという新

しいDevice Mapperのマップ方式を紹介しまし
た。ポリシーの切り替えができるように設計さ
れているので、自分でポリシーを書いてみるの
もおもしろいかもしれませんね。
　さて、おまけとして最近（4月初めごろ）投稿
された変わったパッチを2つ紹介しましょう。
　1つめはチューリングマシーンのサポートで
す注3。まだまだ作成中のようでconfi g項目と簡単
なMakefi leのみのパッチですが、無限に長いテー
プをLinuxでサポートするようです。
　2つ め は event subsystemの event typeに
conferenceを追加しようというものです注4。
event subsystemは入力デバイスの1つで、たと
えばマウスやキーボードといったデバイスから
入力をイベントという形式で受け取ります。た
とえば、筆者のマシンであれば図8のようなコ
マンドで、マウスを動かすとイベントが出力さ
れている様子を見ることができます。このパッ
チではカーネルサミット、LinuxConといった
Linuxのイベントをこのeventシステムで取り扱
うことができるように、これらのイベントに定
数を設定しています。こちらはstableカーネル
メンテナのGreg KHからAcked-Byがついてい
るのでもしかしたらマージされるかもしれませ
んね注5。どちらも奇妙なパッチですが、脚注の
URLを見れば投稿された日付がわかるかと思い
ます ;-)｢

注3） https://lkml.org/lkml/2013/4/1/11
注4） https://lkml.org/lkml/2013/4/1/181
注5） https://lkml.org/lkml/2013/4/1/355

sudo dd
if=/dev/input/by-id/usb-ELECOM_ELECOM_USB_mouse_with_whell-event-mouse
of=/dev/stdout ¦hexdump -C

 ▼図8　デバイスからイベントを受け取る

hit_count ≧（基本しきい値）＋（読み書きによる調整）

 ▼図7　キャッシュ移動の判定基準

https://lkml.org/lkml/2013/4/1/11
https://lkml.org/lkml/2013/4/1/181
https://lkml.org/lkml/2013/4/1/355

168 - Software Design

ションやコラボレーションの能力を身につけるべき
である」という意見が提示され、その具体例をいく
つかのプロジェクトを交えつつ紹介されました。
　たとえば、4月にオープンする大阪駅北側の梅田
北ヤード地区（通称：うめきた）の開発プロジェクト
においては、中野先生は都市計画や建築の専門家た
ちと一緒に街のコンセプト作りを考えました。ま
た、ここに入居するVislab Osakaは可視化にまつ
わる技術とノウハウを結集した組織ですが、可視化
を実現するにはコンピュータの知識だけでなく、
アーティストやディレクターなどとコミュニケー
ションする能力も問われます。大阪府立大学が取り
組む植物工場というプロジェクトは、空調や照明な
どを制御して完全人工光型の植物栽培を実現すべく
研究していますが、これも生物や農業に携わる人々
とのコラボレーションが必要です。このようにIT

は幅広い分野で活用されるようになってきています
が、それに伴って発生するセキュリティやプライバ
シーの問題を考慮せずにシステムが作られることも
多いので、たとえばそういうところにIT技術者の
出番があるだろうというのが中野先生の見解です。

 ■好きなことはコミュニティ活動に見いだす

　また、後半ではボランティアに対する考えも示さ
れました。自分の好きなことが生業になれば幸せで
すが、必ずしもうまくいくとは限りません。そこ
で、稼ぐための仕事とは別にボランティアという形
で好きなことをやるのも1つの方法で、実際にIT

コミュニティにはそういう人がたくさんいます。中
野先生はそういう関わり方を肯定しつつも、それを

　今回は、3月に徳島で行いました研究会の模様をお
伝えします。また、6月より新年度を迎えるにあた
り、新規会員を募集致します。

 ■IT技術者とITコミュニティのこれから

 【日時】2013年3月9日（土）16:15～17:00

 【会場】とくぎんトモニプラザ

 （徳島県青少年センター）

 【講師】中野 秀男（大阪市立大学名誉教授／

 大阪市ITアドバイザ／中野秀男研究所）

 【司会】法林 浩之（日本UNIXユーザ会）

　2012年度としては最終回となる jus研究会を、jus

の行事としては初開催となる徳島県で行いました。
今回の講師には大阪市立大学名誉教授の中野先生を
お迎えし、IT技術者やITコミュニティのあり方に
ついてご講演いただきました。今回も展示会場内に
セミナーブースが設けられていたために観覧者が多
く、47人の方にご参加いただきました。

 ■他業界とのコラボレーションを見据えること

　はじめに中野先生から自己紹介があり、自身と徳
島の関わりとして、徳島県方面の組織をインター
ネット（当時はJUNET）につなぐことに尽力した話
が紹介されました。その後、本題に入りましたが、
先に結論として、「ITは当たり前の時代に入ったの
でそれ以外の得意分野を何か作ったほうが良い。そ
してほかの分野の人と協業するためにコミュニケー

IT業界や仕事以外にも目を向けよう̶IT技術者のこれから

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

NO.20
June 2013

jus研究会徳島大会の報告

http://www.jus.or.jp/

Jun. 2013 - 169168 - Software Design

先々どのようにしていくか（やがては生業にしたい
のかどうかなど）のビジョンを持って活動してほし
いとコメントされました。そして最後に、ITの世界
は勉強を続けていくことが必要であるとし、今後も
イベントに出かけて勉強を続けていきたいという意
思を示されました。
　中野先生は4月から帝塚山学院大学の教授に着任
されるとのことで、これからもまだまだ頑張る姿を
見ることができそうです。なお、今回の講演は次の
URLで映像を見ることができます。また、中野先
生自身により資料も公開されていますので、併せて
ご参照ください。

¡ 講演の映像

　http://www.ustream.tv/recorded/29845788
¡ 講演で使われた資料

　http://nakanohideolab.jp/wp/contents/rejume

　jusは6月に新年度を迎えます。jusへの入会は随
時受け付けていますが、新年度を迎えるにあたり、
とくに積極的に会員募集を行っています。jusの活動

に賛同される方々のご参加をお待ちしております。
　jusは、本会の主旨に賛同する個人もしくは組織
が会員となっており、個人会員、学生会員、法人会
員、賛助会員から構成されています。それぞれの入
会資格、年会費は、表1のとおりです。
　jus会員の主な特典としては、次のものがありま
す。

¡ 勉強会、ワークショップなど、jusの開催するイベン

トへ（表2）の参加費割引（法人会員／賛助会員は、

その組織に所属する方すべてが対象となります）

¡ イベント告知などを載せた会員向けニュースレ

ターの配布

¡ 会員向け機関誌「/etc/wall」の配布

　jusへの入会をご希望の方は、offi ce@jus.or.jpまで
お問い合わせください。また、jusのWebサイト
（http://www.jus.or.jp/）にも入会案内や入会申込
フォームを用意していますので、そちらもご覧くだ
さい。これからも jusをよろしくお願いします。｢

▼表1　jusの入会資格／年会費

種別 資格 初年度年会費 次年度以降
個人会員 個人 7,000円 6,000円
学生会員 学生 4,500円 3,500円
法人会員 組織（営利団体） 95,000円 90,000円（1口あたり）
賛助会員 個人または組織（非営利団体） 45,000円 40,000円

▼表2　2013年度 jus行事予定

行事 開催時期 開催場所
定期総会 7月 東京都内
Lightweight Language Matsuri 8月24日 すみだ産業会館
Internet Conference 2013 10月24～25日 慶應義塾大学 三田キャンパス
関西オープンソース 2013 11月8～9日 大阪南港ATC
Internet Week 2013 11月後半 東京都内（予定）
勉強会 随時 東京、大阪、名古屋など
研究会 年6回程度 全国各地
ワークショップ 年2回程度 －
運用研究会 不定期 －
その他協力イベント オープンソースカンファレンス、Developers Summit、TechLIONなど

IT業界や仕事以外にも目を向けよう̶IT技術者のこれから June
2013

2013年度新規会員募集

http://www.ustream.tv/recorded/29845788
http://nakanohideolab.jp/wp/contents/rejume
http://www.jus.or.jp/

170 - Software Design

昨年度の振り返り

高橋：まずは昨年度、3月までの振り返りから話し
ていきたいと思います。印象に残ったイベントや出
来事などあればお願いします。

宮城、福島での活動

佐々木：石巻の「IT Bootcamp注1」に皆で行けたのは
面白かったですね。あとはHack For Fukushimaと
しては活動が停滞しているので、そこは反省すべき
点だったと思います。どうして停滞したかを考えて
みると、昔は福島は静かなところなので結構のんび
りと仕事をしていたんですね。震災後の1年目は良
くも悪くもいろいろな人が来るし雑音も入るしで、
かなりハイペースになっていたんです。いろんなも
のが。2年目は余韻で土日は休もうかという雰囲気
になっていたように思います。そして3年目は元ど
おりのペースでできることをやっていこうかという
感じになり、そういった反動でゆったりしすぎてい
た感はありますね。
高橋：会津では今年はHack For Japanのイベントを
やることができていなかったですね。
佐々木：確かに会津ではやっていなかったのですが、
会津大学のイベントや「ABC注2」もありましたよね。
そちらのほうの準備に追われていた感はあります。
あとは石巻のBootcampも結構準備に時間はかかり

注1） 2012年7月に石巻の高校生に3日間でアプリ開発を学んでも
らったイベント。

注2） 日本 Androidの会主催のイベント、Android Bazaar and
Conferenceのこと。2012年10月はICT ERA＋ABCとし
て仙台で開催され、Hack For Japanでも2つのセッション
を担当。

ました。
関：福島全体としてほかのコミュニティなどからの
ITによる支援はあったのでしょうか。
佐々木：福島は広いので地域ごとに独立していて、
そのハブになるような人がいなかった状況です。あ
とはイベントをやっても人を集めるのが大変になっ
てきたように感じます。たとえば、モバイルクリエ
イターズサミットで実施したビジネスプランコンテ
ストは賞金も用意して復興3県（岩手、宮城、福島）
で開催しました。現地では地元の人が協力してくれ
て集まるのですが、東京で決勝戦をやったときは事
前登録で100人を超すのが大変でした。東京でモバ
イルコンテンツ系のイベントをやると200人くらい
は楽に集まるのですが、復興系のイベントで人を集
めようとするとなかなか大変です。IT業界と復興支
援のボランティアをやっている人とは意外と距離が
あるのではないかと感じています。
鎌田：去年「エフスタ注3」さんのイベントをYahoo!

Japanでやったときは集客は盛況でした。
小泉：どういうリーチのさせ方をするかにもよると
思います。今年の3月11日に仙台で「ITで日本を元
気に」の佐々木賢一さんがやったイベントでは、平
日にも関わらず150人くらい来ていました。以前ほ
どは集まりにくくなっているとは思うのですが、
持って行き方次第だと思います。

OpenStreetMapの課題

岩切：私の活動報告としては、岩手で3月、5月、9

月にOpenStreetMap（以下OSM）のイベントを3回

注3） 福島で活動しているITエンジニアのためのスキルアップ応援
コミュニティ。

Hack For Japan
エンジニアだからこそできる復興への一歩

Hack For Japanスタッフ座談会［前編］第18回
東日本大震災から2年が経過しました。ITで復興支援を考えるHack For Japanとし
て活動を続けていくにあたり、「これまでの振り返りと今後に向けた決意」をテーマに
スタッフで座談会を開きました。当日は約2時間、盛りだくさんの内容となったため
今号と次号の2回に分けてお送りします。

Jun. 2013 - 171

Hack For Japanスタッフ座談会［前編］第18回

やりました。世界で活躍するOSMマッパーの方々
を岩手で案内することもやりました。ほかには、IT

の縛りを除いて岩手で頑張っている人を応援するイ
ベントをやってくれないかと岩手側から打診を受け
て、「いわて未来Meetup」を11月に盛岡で、2013年
3月には東京でもやりました。
　OSMについてはもう一度総括が必要ですね。
OSMの東京側の人の熱意はあるのですが、地元で
すでに復興支援のことで頑張っている方々にさらに
OSMの作業をやってもらうというのは、ハードル
が高いのではないかと感じています。本当に必要な
のは岩手側で何か困ったことが起きたときに、技術
者同士が連携できるしくみが求められていると思う
のですけれども、2013年はそれに取り組めたらいい
なと思っています。
　一方、「いわて未来Meetup」で感じたことは、ス
タートアップの仕事を流されてしまった人たちが被
災地でもう一度起業したり、何かプロジェクトを起
こしたりということをやっているところではITは
すごく使われているということです。Microsoftが支
援して学校を開いてくれたり、Matz注4が来てくれた
りとニュースには事欠かないのですが、そういうこ
とを上手く使って東京で稼ぎたい人たちをつなぐ活
動もしていきたいです。
高橋：OSMで復興する街を記録するイベントは、今
注4） Rubyのまつもとゆきひろ氏。

度は石巻でもやりますよね。
関：OSMとして復興マッピング活動は初めての試み
だったし、可能性はまだすごく感じています。反省
としては、やはりコミュニティ活動なので地元で理
解して主導してくれる人がいないとなかなか上手く
いかないということです。いつまでも遠隔地からの
サポートでは続かないです。
　一方で、復興マッピングの活動が仕事に結びつく
かというと、なかなかお金にはならないので継続す
るためのハードルが高いという課題もあります。出
口としては“印刷”が1つのポイントだと思っていま
す。今でも手書きの地図を配布している人がいたり
と、紙地図のニーズは高いので、印刷ツールがある
と役に立つと思っています。そのためのツールの整
備はやりたいです。お金にならなくてもそれが役に
立てば良いと思っています。次の石巻ハッカソンで
は印刷して配れるところまでは見せたいですね。結
局、地図を充実させても使えなければ意味がないの
で、シンプルに小さく回るプロセスを1つ作ろうか
なというところです。

OpenDataへの取り組み

関：ほかに挙げられるのは、本連載でも何度か取り
上げているように、OpenData関連のハッカソンが
発展していっていることです。この活動をやってい
るうちに防災関連のさまざまなところから声をかけ

及川 卓也
Hack For Japanの立ち上げメン
バ ー の1人。 普 段 はGoogleで
Chromeを担当しているほか、知
り合いのスタートアップやNPO
に助言を与えたりしている。今回
はGoogle Hangoutで参加。

小泉 勝志郎
サンキュロットインフォ代表。ス
マートフォンアプリ開発関連の事
業を行う。震災で失業者が多い南
相馬でアプリ開発者育成をした。
震災復興では「うらと海の子再生
プロジェクト」にてIT関連を担当。

岩切 晃子
（株）翔泳社勤務。毎年開催されて
いるデブサミを運営。岩手県釜石
市出身でHack For Japanの活動
で岩手とのパイプ役として奮闘し
ている。

（H
ack F

o
r Jap

an

ス
タ
ッ
フ
）

参
加
者
紹
介

172 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

てもらいました。たとえば消防庁からは、大規模災
害時におけるSNSなどによる緊急通報のあり方を
検討する委員会に呼んでもらって、大規模な災害が
起きたときに電話が通じなくなっても緊急通報が
Twitterなどから送れるようにしようというワーキ
ンググループに入れていただきました。あとは内閣
府がやっているOpenData推進のIT戦略会議の委
員をやらせていただいたりと、しくみを変える部分
からいろいろ関われるようになったという変化が起
こっています。
岩切：昨年6月の復旧・復興データベースAPIハッ
カソンと、今年の2月にもやったOpenData のハッ
カソンは国からも人が来ていたし、東京でできる意
義のある活動だったかなと思います。
関：経産省の人たちも「あれは良かった」と言ってく
れています。
鎌田：OpenData活動については、震災当時データ
がオープンではなかったために力が発揮できなかっ
たエンジニアがすごく多かった印象を持っているの
で、ここはお手伝いしていきたいと思っています。
全体としては、ハッカソンであまりにも成果を求め
すぎていたのが1年目で、2年目はその中で試行錯誤
していたということかなと思うのですが、ハッカソ
ンを継続的にやっていくことでエンジニア同士の緩
やかなつながりを持ち続けるコミュニティができ上
がっていくことのほうが、今後の震災に備えるとい
う点で意義があるかなと思います。OpenDataもそ

の流れでどんどん出て行くような流れを作れれば、
次に何かあったときへの備えという点で、人の面で
もデータの面でも形付けられるのではないかと思っ
ています。先日読んだCode for AmericaのHacking

the Hackathonという記事の中でも、「アウトプット
を求めすぎず、コミュニティの形成が大切」という
ことが挙げられていて、こういう活動を通してエン
ジニア同士がつながっていくことや、メンターを探
そうという意識はいろいろな課題を解決する枠組み
になるのではないかという気がしています。
関：まさにコミュニティが大事だと思っています。
最近はOpenDataハッカソンをやると毎回来てくれ
る人もいますし、何よりいいのはエンジニアと行政
とGLOCOM注5のような公共を改善しようとしてい
る人たちが集まった結果、顔見知りが増えてきて動
きやすくなっています。

コミュニティ形成の重要性

岩切：そういう活動を見て「参加したい」と思ってく
れる人も増えるような気がしていて、デブサミ注6で
ITによる復興支援系のコンテンツをいくつか入れ
たのですが、集客は悪くなかったです。皆さんの関
心は冷めてはいない、一時ほどの熱はないもののむ

注5） 国際大学グローバル・コミュニケーション・センター。「情報
社会学」と総称される情報社会の諸側面の学際的・総合的研究
を行う研究所。

注6） 翔泳社主催のデベロッパーズサミット。Hack For Japanで
もOpenDataに関するセッションを担当。

鎌田 篤慎
普段はヤフー（株）が公開するAPI
などの利用促進、デベロッパリ
レーションなどを業務としている。
Hack For Japanでは復旧復興支
援データベースAPIへの改善要望
をまとめ、国に提言した。

佐々木 陽
会津若松の（株）GClueの代表取締
役。Android、iOSアプリケーショ
ン開発が主な事業。未来の主戦力
となるエンジニアを育てるため、
大学生などに教える活動を10年
間行っている。

佐伯 幸治
Hack For Japanではコピーライ
ティングをおもに担当。普段はフ
リーランスとしてWebや紙媒体の
編集制作・コピーライティングに
携わっている。

（H
ack F

o
r Jap

an

ス
タ
ッ
フ
）

参
加
者
紹
介

Jun. 2013 - 173

Hack For Japanスタッフ座談会［前編］第18回

トを作りました。今のところ25人の登録があり、
スキルの高い方にも登録していただいています。も
し被災地でITの手を借りたいという方がいたら、
すぐにでも申し出ていただければと思っています。
佐伯：思った以上に知られていないのではないで
しょうか。
石野：まだ登録者が少ない状況で、あまり大っぴら
に言えないかなというのもあります。
高橋：そこは鶏と卵の話に近い気がしますね。
佐伯：「スキルマッチングやってます」ということを
ほかの人に向けてもっと伝える必要があると思いま
す。
岩切：「遠野まごころネット注10」が東京支部を作って
活動していて、毎週水曜に「まごころカフェ」という
場で今の復興支援の話をやっているのですが、すご
く良いコンテンツなのにUStreamを使える人がい
ないので広く公開できないといった、プログラミン
グ以前に、ITに詳しい人が必要とされている場面も
あるので、潜在的なマッチングの需要はかなり多い
と思います。

◆ ◆ ◆
　次号の後編では、福島の問題に対して我々ができ
ること、教育活動、今後に向けた決意についての話
を展開していきます。s

注10） 東日本大震災で被災した岩手県沿岸部の被災者の方々を支
援するべく、遠野市民を中心として結成されたボランティ
ア集団。 URL http://tonomagokoro.net/

しろ冷静に見ることができている人が増えていると
思いました。
関：あのセッションを聴いて、spending.jpのしくみ
を使って自分の街の税金がどのように使われている
か可視化する“Action注7”をしてくれた人がいたのも
良かったですね。
岩切：佐伯さんの復興イベントカレンダー注8もいい
ですね。
佐伯：復興イベントカレンダーを作った理由は、自
分が東京で何ができるのかという思いがあったの
と、イベントの日付が手軽に作れるしくみを作って
おくと減災に役立てることができるかと思って、コ
ンパクトに作れるしくみを運用してみようと考えま
した。これが形になれば被災地で使える可能性もあ
ると思ってやっています。あとは、ちょこちょこと
ネタを落としていくとコミュニティの活性化につな
がるかなという気がしてやっています。
高橋：石野さんのスキルマッチング注9のほうは何か
ありますか？
石野：12月から登録を開始して、Facebookではあ
まり盛り上がらなかったので登録者メーリングリス

注7） 今年のデブサミのテーマ。セッションを聴いて終わりではな
く、実際に行動につなげてほしいという想いが込められてい
る。

注8） 都内＆近郊で開催される復興イベントをお知らせする取り組
み。Facebookのほか、TwitterやGoogleカレンダーでも運
用中。 URL http://www.facebook.com/fukkouevent

注9） 復興支援などに対してITを活かして貢献したい方と支援を必
要としている方とをつなぐための取り組み。 URL http://
blog.hack4.jp/2012/12/blog-post.html

（H
ack F

o
r Jap

an

ス
タ
ッ
フ
）

参
加
者
紹
介

関 治之
Georepublic Japan社CEO。
Geo Developerとして位置情報
系のサービスを数多く立ち上げて
きた。Hack For Japanでは、復
興マッピングやオープンデータ
ハッカソンなどを実施している。

石野 正剛
震災直後に福島第一原発から放出
される放射性物質と風向きを地図
上に可視化するスマホアプリ「風
＠福島原発」を開発した。富士通
（株）でソフトウェアのUXデザイ
ンを担当している。

高橋 憲一
普段は（株）スマートエデュケー
ションのエンジニアとしてiOSや
Androidの子供向け知育アプリ開
発を行っている。最近は東北
TECH道場の講師として宮城県の
石巻を頻繁に訪れている。

http://tonomagokoro.net/
http://www.facebook.com/fukkouevent
http://blog.hack4.jp/2012/12/blog-post.html
http://blog.hack4.jp/2012/12/blog-post.html

174 - Software Design

はじめに

　8bit時代にマルチユーザOS
は存在しました。ザイログの
Z80より古い、2MHzのインテ
ル8080 CPUで動作する「MP/
M」は、「CP/M」のマルチユーザ
版で1979年に発売されました。

CP/M

　CP/MはMS-DOSの手本に
なったOSで、プロンプトは
「A>」です。CP/Mは1974年頃
から開発され、1977年頃世界的
に有名になっていた8080（Z80）
用 の OSで す。　当 時、ス タ
ティックRAMは1Kbit/1チッ
プが主流で、やっとDRAMは
4Kbitのものが標準になり、
Apple IIのような先進的な機械
が4K～12KB程度を実装して
いました。

MP/M

　そういう時代に、MP/Mは
8080（Z80）で、32KB以上のメ
モリを使用し、16ユーザを同時
サポートしたのです。端末は、
通常はシリアルポートに接続

し、16台の端末を接続できまし
た。MP/M II（8080版）では、最
終的にメモリのバンク切り替え
をサポートし、400KBのメモリ
が使用できました。
　MP/MはCP/Mのシステム
コールのすべてをほぼそのまま
サポートしたので、CP/Mの豊
富なソフトウェアがそのまま使
えました。
　MP/Mは、1人のユーザが複
数のプログラムを同時に使うこ
とも可能で、あるプログラムが
入力待ちのとき、キーボードか
ら「^D」を入力すると、そのプロ
グラムはサスペンド（デタッチ）
され、コマンドプロンプト「A>」
に戻ります。そこで別のプログ
ラムを起動し、実行できました。
そのプログラムでも、「^D」を入
力すると、そのプログラムをサ
スペンドできます。
　そしてコマンドプロンプト
「A>」で、「^D」を押下すると、
先にサスペンドされたプログラ
ムの実行が再開されます。プロ
グラムの再開は、ATTACHコ
マンドで明示的に行うこともで
きます。これは、UNIX/Linux
の csh/bash の「^Z」による
suspend、jobコントローラと同
様のものです。

UNIXライク
なコマンド

　MP/Mには、UNIXのatコマン
ドに相当するSCHEDコマンド
があり、特定の日時に所望のコ
マンドを実行することが可能で
した。UNIXのkill相当のABORT、
psのようなMPMSTATという
コマンドもありました。プリン
タのスプーラを備え、SPOOL
コマンドで印刷ジョブをいくつ
も投入できました。
　MP/Mでは、おもにフロッ
ピーディスクが使用されていた
ので、メディアを取り替える前
にDSKRESETコマンドを使
用することが必須になっていま
した。これはUNIXの umount
と似たような意味です。また、
「QUEUE」というタスク間通信
の機能も備えており、それを使
用して、タスク間の排他制御、
同期、通信が行えました。

リロケータブ
ルバイナリ

　8080（Z80）にはメモリのアド
レス変換を行うような高級な
ハードウェアはありません。し
かし、マルチタスクのためには、
プログラム（とデータ）を物理メ

温故知新
ITむかしばなし

たけおかしょうぞう　TAKEOKA Shouzou　take@takeoka.net

MP/M

第23回

174 - Software Design Jun. 2013 - 175

モリの異なったアドレスに配置
しなければなりません。
　そこで、MP/Mのプログラム
のバイナリは、再配置可能なリ
ロケータブルバイナリとし、再
配置のための情報が付加された
ものとなっています。プログラ
ムの実行開始時に、MP/Mは必
要な物理メモリを確保し、そこ
に、プログラムのバイナリを
ロードします。そのとき、再配
置情報を参照し、バイナリ中の
アドレス情報を適切に書き換え
ながらメモリ上に配置していき
ます。
　MP/Mのリロケータブルバイ
ナリ形式は非常に単純で、256
バイト（ページ）単位で再配置可
能です。8080のアドレス空間は
16bitです。メモリへのロード
時には、16bitアドレスの上位
8bit（1バイト）だけを、書き換
えます。プログラムバイナリ中
のどのバイトがアドレスの上位
バイトを保持しているかは、
ビットマップで表現していま
す。プログラムコードの各バイ
トを1bitで表したビットマップ
を作り、書き換えるべきアドレ
ス上位が入ったところを示す
1bitを、1として表すのです。
ロード時に、先頭となった物理
番地に対していくらの値を加え
るかは、対象であるバイトの中
に書いておきます。この形式を
CP/Mフ ァ ミ リ で は「PRL
（Page Relocatable）」と呼んで
います。

RPLとDDT

　PRLは、MP/Mから出現し、

開発ツールも同時に提供開始さ
れましたが、実は、CP/M1.4の
時から存在するDDTというデ
バッガは、PRLと同じ手法を使
用していました。
　DDTは、通常のCP/Mコマ
ンドとして0x100番地からロー
ドされ実行されるのですが、
実行開始直後に、自分の本体を
メモリの最後尾（OSの直前）に、
PRLと同じ手法で最配置し、
その後、デバッグ対象のプロ
グラムを0x100番地からロード
して、デバッグを開始していま
した。
　MP/Mの 開 発 元 で あ る
Digital Research社からMP/M
とともに供給される標準コマン
ドは、PRLに変更され、複数の
人が、エディタを使用しながら、
アセンブルを行う、ということ
が可能になっていました。

協調型のシ
ステム

　MP/Mのシステムは、ハード
ウェアにメモリプロテクション
機構もなく、OSにも、アクセ
ス権限やその管理についての考
えがほとんどありません。かろ
うじて、ファイルの存在をほか
のユーザからやや見えなくする
こと、Read onlyにすること、パ
スワードでファイルアクセスを
させない、という機能があるだ
けです。つまり協調型のマルチ
ユーザ／マルチタスクシステム
ということです。1979年のク
ロック周波数2～4MHzの8bit
のマシンをホストとして、同じ
チームで資源を共有するという
考えなのでこの程度の実現が妥

当だったと思われます。
　ちなみに、2MHzの8080は、
Intel Core i7 2600Kの「100万
分の2.6」ぐらいの性能です注1。
8086用のCP/M86をもとに、
1981年にはMP/M86がリリー
スされていました。MP/M86は
8086のセグメント機能を利用
していたので、8080用のMP/
Mよりは実現がすっきりしてい
ましたが、機能的には8080版
とほぼ変わりがありません。
　MP/Mには、CP/Netという
ネットワーク拡張があり、CP/
Mをクライアントにして、MP/
Mサーバ上のファイルを操作で
きるようになっていました。

Concurrent
CP/M

　MS-DOSに負けかけていた
Digital Research 社 は、MP/
M86をもとにGUIを付け、シン
グルユーザでマルチタスクの
「Concurrent CP/M」をリリー
スし、その後それは、「Concur
rent DOS」となっていきました。
　ちなみに、Z80pack注2という
サイトから、Z80シミュレータ
と、CP/M2.2, MP/M IIなどが
1つにパッケージされたものを
ダウンロードできます。Ubuntu
でコンパイル&実行したとこ
ろ、CP/M2.2、CP/M3、MP/
M IIどれも、とても調子いいで
す。｢

注1） 英語版Wikipedia：「Instructions per
second」の 項（http://en.wikipedia.
o rg /w ik i / I n s t ruc t i ons_pe r_
second）による。

注2） h t t p : / /www.au tome te r. de /
unix4fun/z80pack/index.html

温故知新 ITむかしばなし
MP/M

第23回

http://en.wikipedia.org/wiki/Instructions_per_second
http://www.autometer.de/unix4fun/z80pack/index.html

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

178 - Software Design

SD News & Products

　㈱ユビキタスエンターテインメント（以下、UEI）
が、手書きメモに特化した独自OS搭載コンピュータ
「enchantMOON（エンチャントムーン）」の発売と販
売価格の決定を発表した4月23日。同日の19時よ
り、一般の方を招待してのタッチ＆トライイベント
「enchantMOON Night」を開催した。
　会場となった五反田のゲンロンカフェは19時の開始
時には満員となっていたが、その後も続々と来場者が
詰めかけ、急遽イベントを2回に分けて行うほどの盛況
ぶりだった（来場者数は250名との公式発表）。

現状のタブレットの不満を解消する
　詰めかけた聴衆はUEIの清水亮CEOの熱弁に耳を傾
けていた。なかでも聴衆の共感を得ていたように思えた
のは、「ここに来ている皆さんはiPadもしくはAndroid
タブレットを使ったりしていて、何らかの不満がある
んじゃないでしょうか」と問いかけたときだ。指では
思ったように書けない。描いている線の追従性が悪い。
enchantMOONはこの不満を解消することに注力され
ている。その最たる行為がOSレベルでのチューンナッ
プだ。Androidのアーキテクチャをベースにしながら
enchantMOON専用のOS「MOONPhase」を開発。
最短反応遅延は0.05秒を実現している。

紙とペン――思考するための道具
　なぜそこまで手書きにこだわるのか。
　ITの最先端にいる人たちでも、紙（あるいはホワイト
ボードなど）とペンが手放せない状況を紹介。かたわら
に高性能なPCがあるプログラマでさえ、紙とペンがあ
れば自然にそこで筆算してしまう。冗談めかして紹介
されるが、そこには思考の過程ではPCよりも高速に処
理できる手書きの良さが詰まっている。考えを手で描
き、目で確認してまた考える。このプロセスが大切だ

ということで、清水
氏はこれを「思考の
動脈と静脈」と表現。
　さらに、iPhone
発 表 の 壇 上 で ス
ティーブ・ジョブズ
が「指」を「だれも
が生まれながらに持
つ世界最高のデバイ
ス」と言ったことについて、Appleフリークでもある清
水氏に「あれは間違い」と言わしめるほどにペンの重要
性が説かれた（きっとジョブズのことだから、将来「あ
れは間違いだった」と撤回するのを想定したうえでの発
言だったんじゃないか、と補足していたが）。
　一方、紙となるディスプレイは表示解像度こそXGA
とiPad miniと同等だが、ペン入力の分解能は815ppi
という精細さを持つ。つまり、ディスプレイの5倍以
上の解像度を持つデジタイザ（読み取り解像度5120×
3840ドット相当）が搭載されているということで、非
常に細かい文字も認識できる能力を持っている。

だれもがプログラマになれる
　enchantMOONのユーザレベルを年齢で想定する
と、3歳くらいでハイパーテキストの扱いができるよ
うになり、6歳くらいでMOONBlock（後述）によるプ
ログラミング、12歳にもなればJavaScriptを使い、
16歳以上ならモジュールのコーディングまでできるよ
うになるだろうとしている。ここで見られるように、
enchantMOONはプログラミング教育での役割にも
フォーカスしている。
　enchantMOONに備わるビジュアルプログラミング
機能の言語は「MOONBlock」と呼ばれる。だれでも簡
単に、いつでも思いついたときにプログラミングでき
るようにと考えられたものだ。このMOONBlockの存
在が他のタブレットデバイスと一線を画す、“思考と創
造のためのデバイス”と感じさせる要因の1つだろう。
　この機能の搭載は将来の展望にもつながる。出てきた
キーワードは増井俊之氏の「全世界プログラミング」だ。
ブロック型プログラミング言語によって老若男女問わ
ず誰もが身の回りのものをプログラミングできるよう
にすることで、enchantMOONがホームネットワーク、
スマートフォン、カーナビ、デジタルカメラなどといっ
た機器とやり取りするハブになるという構想。この実
現に向けて、まずは「MOONBlock」をオープンソース
として提供することが予定されている。

enchantMOON予約開始イベント
「enchantMOON Night」レポートEvent

CONTACT
㈱ユビキタスエンターテインメント
URL http://www.uei.co.jp

▼ユビキタスエンターテインメント　代表取締役社長兼CEO　清水亮氏

▼enchantMOON

http://www.uei.co.jp

Jun. 2013 - 179

SD News & Products

　㈱KDDIウェブコミュニケーションズは、4月17日、
米国Twilio社が提供するクラウド電話API「Twilio」
（トゥイリオ）の、日本での提供を開始した。
　クラウド電話APIとは、Webサイトやアプリケーショ
ンに実装することで、インターネット上から電話をか
けたり、電話を受けたりができるようになるもの。今
回提供されるTwilioでは、電話の送受信機能、アップロー
ドした音声を再生する再生機能、文字列を音声に変換
できる音声合成機能、ネットワークを通して音声デー
タを送受信するVoIPが利用可能になる（メッセージ送
受信機能は提供開始予定）。Twilioは利用開発者数15

万人、サービス提供国40ヵ国以上の実績を持つサービ
スで、KDDIウェブコミュニケーションズが業務提携を
結び、サービス提供に必要な各種設備や日本国内の通
信事業者との接続を行うことで国内提供開始に至った。
これにより、オンラインとオフラインを連携したサー
ビスを短期間に低価格で実現できるとしている。
　Twilioの利用には電話番号利用料として月額490円
（税込）と、従量制の通信料が必要となる。

　㈱ミックスネットワークは、複数のWebサイトおよ
びWebサービスを一元管理できる大規模向けWebサイ
ト構築運営プラットフォーム「SITE PUBLIS Multisite
ライセンス」を、4月30日より提供開始した。
　同サービスは、複数サイトにおける運用の一元化、
レイアウト／デザイン、コンテンツ資産やデータ活用
などを集中管理できる機能を搭載している。数多くの
製品ポータルサイトや海外法人を持つ企業、多くの関
連法人や外部組織を持つ官公庁、自治体などでの利用
を想定している。
　同サービスは、各サイトで分断されていた構築／運

用を横断的に行え、個別に集積されていたマーケティ
ングデータやコンテンツ資産も集約管理することがで
きる。またブロック部品を組み合わせてWebサイトを
編集する独自の「ブロック方式」で、スマートフォン、
モバイル、タブレット、PCなどのマルチデバイスへの
対応を複数サイト全体で行える。
　価格は、1ライセンス（10サイト）で1,500万円（税
別）～となっている。

㈱ミックスネットワーク
URL http://www.micsnet.co.jp

CONTACT

ミックスネットワーク、
大規模向けWebサイト構築運営プラットフォーム
「SITE PUBLIS Multisiteライセンス」を提供開始

Service

㈱KDDIウェブコミュニケーションズ
URL http://kddi-web.twilio.jp

CONTACT

KDDIウェブコミュニケーションズ、
クラウド電話API「Twilio」の提供を開始Software

　㈱ブレインは、㈱ハイパーボックス、㈲ネットグルー
ヴワークスと提携し、両社が提供するホスティングサー
ビスから、社内向けSNS「CHITCHAT!」のユーザ登録
が一括でできるしくみを4月19日より提供開始した。
　CHITCHAT!はブレインが提供する社内向けSNSで、
組織内のホウ・レン・ソウを効率的かつ効果的に行う
ことを目的に開発された。操作画面はタイムライン形
式を採用し、グループ設定、画像投稿、チャットといっ
た機能を完全無料で提供している。
　これまで、社内SNSのユーザ登録作業は1件1件個
別に行っており、規模の大きい企業は登録作業に大き

な手間がかかっていた。そこで、社内SNSが同一ドメ
インのメールアドレスで運用されている点に着目し、
メールアドレスを管理するホスティングの管理画面と
のシステム連携を考案した。このAPI連携により、社
員にメールアドレスを発行するのと同様に、ホスティ
ングの管理画面から同一ドメインを持つ社員全員に対
して一括でSNSのユーザ登録が可能になった。社内
SNSとホスティングのAPI連携は業界初の試みだとい
う。

ブレイン㈱
URL http://www.blayn.co.jp

CONTACT

ブレイン、
ホスティング管理画面から社内SNS「CHITCHAT!」の
ユーザ一括登録ができる機能を提供開始

Service

http://www.micsnet.co.jp
http://kddi-web.twilio.jp
http://www.blayn.co.jp

180 - Software Design

SD News & Products

　㈱IDCフロンティアは、パートナーとサービスやソ
リューションを共同開発し、データセンターおよびク
ラウドサービスの販売、提供を行う「IDCフロンティア
パートナープログラム」（以下、IDCFパートナープロ
グラム）を4月1日より開始した。
　同プログラムは、IDCフロンティアがパートナー企業
と共同で、同社の各種サービスとパートナー企業の機
器／サービスなどを組み合わせたソリューションを開
発し、販売を行うというもの。すでに、アイウェイズ
㈱のクラウドとのデータ連携を行う「DataBridge」な
どのサービスが展開され始めている。
　同社はパートナー企業に対して、システムの構成例
も含めた販売案件情報の蓄積、成功モデルの共有、サー
バなど検証環境の無償提供といった支援を実施してい
くという。同社が持つITインフラ提供に関するノウハ
ウを共有することにより、パートナー企業はデータセ
ンターとクラウドサービスを組み合わせた拠点間分散
やハイブリッド構成などの高度なソリューションや付
加価値サービスを提供することが可能となる。
　制度の開始当初は独立系の開発会社やシステムイン

テグレータなどを中心に約70社で展開する。データセ
ンターおよびクラウドサービスにパートナー各社のさ
まざまなソリューションを加えて提供することで、ユー
ザのITインフラの革新とより一層の販売拡大を狙う。

■IDCFパートナープログラムの特徴
①パートナー各社とのサービスやソリューションの共
同開発／提供

②案件ごとにリセールまたは取次形態の選択が可能な
柔軟な契約形態

③パートナー企業へサービスの検証環境無償提供およ
びエンジニアの技術支援

④データセンターとクラウドを組み合わせたハイブ
リッド構成の販売／取次が可能

■パートナー企業一覧
http://www.idcf.jp/cloud/partner/

IDCフロンティア、
共同でソリューションを開発／提供する
販売パートナー制度を展開

Service

㈱ IDCフロンティア
URL http://www.idcf.jp

CONTACT

　非営利団体The Linux Foundationは4月8日、
「OpenDaylightプロジェクト」の立ち上げを発表した。
　このプロジェクトは、コミュニティがさまざまな企
業の力を借りながら、Software Defined Networking
（SDN）に関するよりオープンで透明性の高いアプロー
チの構築を目指す共同開発オープンソースプロジェク
ト。次の企業がプラチナおよびゴールドメンバーとし
てプロジェクトに参加している。

■参加企業
•Big Switch Networks •Brocade
•Cisco •Citrix
•Ericsson •IBM
•Juniper Networks •Microsoft
•NEC •Red Hat
•VMware

　これらの企業がソフトウェアや開発人材の提供を通
じて協力しあい、今後のオープンなSDNプラットフォー
ムを構築していく。

　具体的には、2013年の第三四半期にOpenDaylight
の最初のコードをリリースすることを予定している。
また、オープンコントローラ、バーチャルオーバーレ
イネットワーク、プロトコルプラグイン、スイッチデ
バイスの改良といった寄付やプロジェクト展開も予定
している。
　いくつかの企業や団体がすでに開発貢献や主要技術
のオープンソース化の意向を示しており、これらの開
発貢献や主要技術はOpenDaylightの技術運営委員会
（OpenDaylight Technical Steering Committee）に
よってレビューされ、採用が決定される。
　同プロジェクトには、今後も企業や学校、個人から
製品やコードが提供される予定。また、オープンソー
スの開発コミュニティからのコードの提供は常に歓迎
しているという。

The Linux Foundation、
「OpenDaylightプロジェクト」の立ち上げを発表Topic

The Linux Foundation
URL http://www.linuxfoundation.jp

CONTACT

http://www.idcf.jp/cloud/partner/
http://www.idcf.jp
http://www.linuxfoundation.jp

Jun. 2013 - 181

SD News & Products

　キヤノンITソリューションズ㈱は、5月7日より、
法人で利用可能なAndroid用総合セキュリティプロ
グラム「ESET Endpoint Security for Android」と、
Android端末を管理できるクライアント管理用プログ
ラム「ESET Remote Administrator」のモニター版を
提供開始した。
　「ESET Endpoint Security for Android」は、企業
での業務端末として利用が増えているAndroid OSに対
応したESETの総合セキュリティプログラム。Android
OSを標的としたマルウェアからの保護だけではなく、
盗難対策、パスワード保護などの機能を備えている。
　また、企業内のサーバにクライアント管理用プログ
ラム「ESET Remote Administrator」を導入すること
で、Android端末の各設定やログ情報の閲覧、オンデ
マンド検査の実行、ウィルス定義データベースのアッ
プデートといった操作をシステム管理者からリモート
で実行することができる。WindowsやMac、Linuxと
いったほかのOSと合わせて一括管理が可能。
　これらのプログラムを次の期間、モニター版として
提供する。

■モニター版プログラムの提供について
提供期間：
　2013年5月7日～2013年5月24日
評価レポート受付期間：
　2013年5月7日～2013年5月31日
プログラム申込方法：
　2013年5月7日より次のURLから申込受付開始
　http://canon-its.jp/eset/eesa/

　ESET Endpoint Security for Androidの動作環境
は、対応OSがAndroid 2.0/2.1/2.2/2.3/3.0/3.1/3
.2/4.0/4.1、メモリは1MB以上。microSDカードなど
の外部媒体へのインストールには対応していない。
　クライアント管理用プログラム「ESET Remote
Administrator」のモニター版プログラムの動作環境に
ついては、http://canon-its.jp/eset/eesa/を参照の
こと。

キヤノン ITソリューションズ、
「ESET Endpoint Security for Android」の
モニター版の提供を開始

Software

キヤノンITソリューションズ㈱
URL http://www.canon-its.co.jp

CONTACT

　グレープシティ㈱はプラットフォームごとに幅広い
分野のコンポーネントを数多く収録したスイート製品
「ComponentOne Studio」シリーズの新バージョンお
よびjQueryウィジェット集「Wijmo Professional」
をサブスクリプション方式にて5月29日に発売する。
　ユーザライセンス価格はEnterpriseで、初回費用が
157,500円（税込）。更新料は初回費用の40％。Web
アプリケーションを開発する場合は別途コアサーバラ
イセンスが必要。

ComponentOne Studio 2013J
　ComponentOne Studioは、Windowsフォームから
HTML5対応のASP.NETアプリケーションを開発した
り、WPFなどのプラットフォームで業務システムを開
発したりできるコンポーネントスイート製品。データ
グリッドや帳票、チャート、各種UI部品などをバラン
スよく収録している。
　新バージョンではパッケージ販売を廃止し、サブス
クリプション方式を採用した。定められた契約期間中
の無償バージョンアップや日本語による技術サポート

を無制限に受けることが可能となる。パッケージ製品
と比べて機能追加や新環境への対応、不具合修正がこ
れまでよりも格段に早くなるという。
　ライセンス体系が異なるだけでコンポーネントのク
ラス構造や機能はこれまでと変更はなく、上位互換を
保証する。

Wijmo Professional 2013J
　HTML5アプリケーション開発用の新製品「Wijmo
Professional」も同時にサブスクリプション方式で発
売する。同製品はjQuery UIにはない高機能ウィジェッ
ト集。jQuery自体はオープンソースとして利用可能
だが、同製品ではウィジェットを販売するだけでなく、
日本語による技術サポートや日本語ドキュメントと
いったサポートサービスも提供する。

グレープシティ、
日本語技術サポート付きjQueryウィジェットと
コンポーネントセットをサブスクリプションで提供

Software

グレープシティ㈱
URL http://www.grapecity.com/tools

CONTACT

http://canon-its.jp/eset/eesa/
http://canon-its.jp/eset/eesa/
http://www.canon-its.co.jp
http://www.grapecity.com/tools

182 - Software Design

第1特集
裏口からのプログラミング入門

　異業種からソフトウェア開発の世界に入
り、活躍している若手エンジニア、プログ
ラマの方々に、どのようにプログラミング
を勉強し、仕事に活かせるようになったの
か、紹介してもらいました。4月から入社
した新人エンジニアの方、今後の学習の
参考になりましたか？

IT業界とは関係のない世界から転身さ
れた方の体験談から、ひょっとしたら自
分にもできるかもしれないという夢や自
信をいただいたような気がします。

宮崎県／maehrmさん

人の経験談や勉強法はとても参考になる
し、モチベーションアップにつながる。

東京都／chimさん

プログラミング雑誌としては「裏技」の記
事ですね！　意表を衝かれました。

熊本県／しゅさん

なかなか真似はできないとも思われます
が、おもしろく拝読しました。

富山県／QKobさん

IT業界には文系エンジニアも多い
でしょう。技術をどのように身につ

ければいいか悩んでいる人もいると思い

ます。今回の特集を参考にしてください。

第2特集　ソフトウェア開発に効く
Small Objectをご存じですか？
　お馴染みトム・エンゲルバーグ氏による
オブジェクト指向再入門の記事をお送りし
ました。

オブジェクト指向の目的やいいところが
わかりやすく書いてあると感じました。

福岡県／Ashleyさん

最近の関数型ブームに逆らってオブジェ
クト指向の内容が読めてよかった。

東京都／藤田さん

どんなふうにシステムを構築していくこ
とが理想なのか、そういう目標地点がわ
かり、ためになりました。

兵庫県／ポーさん

オブジェクト指向は昔から叫ばれ
つつも、なかなか身につけられな

い技術の1つですね。本特集で実践の勘
どころがつかめたでしょうか。

特別企画　Luminous Studioが
変えるゲーム開発の舞台裏

　スクウェア・エニックスで利用されている
ゲームエンジンLuminous Studio。Skeed

との協業でさらに進化しました。その機

能について解説しました。

よく知らなかったのだが、ゲームエンジ
ンって描画ロジックのライブラリかと思っ
てたら、リソースDBなんですね。

神奈川県／速水さん

スクウェア・エニックスのイメージが変
わった。

東京都／hiddenさん

大規模オンラインゲームともなる
と開発資産の管理／共有が大きな

課題となります。それをどう解決している
のか、ユーザ側からは想像のつかない領
域ですが、その一端が垣間見れました。

特別企画
ゲーム開発の舞台裏座談会

　Skeedの金子勇氏、スクウェア・エニッ
クスの橋本善久氏などLuminous Studio

の開発に関わったエンジニアによる座談
会の様子をお伝えしました。

技術の問題点などが話題にあがっていて
楽しく読めました。

滋賀県／東川さん

ゲーム開発については知識がありません
でしたが、読んでいて楽しかったです。

東京都／佐伯さん

4月に行われた第2回電王戦でついにコンピュータが人間を圧倒しました。機械
学習のおかげで、開発者自身の将棋の強さに関係なく、コンピュータが独自で強
くなっていけるとのこと。囲碁だけはまだプロ棋士には及ばないレベルと言われ
ていますが、この様子では囲碁でもコンピュータ優勢の時代が来るのは、そう遠
くないかもしれません。

機械学習恐るべし機械学習恐るべし

2013年4月号について、たくさんのお便りありがとうございました！

Jun. 2013 - 183

大規模開発ならではの課題に取り
組む様子が生々しく語られていま

した。巨大なデータの管理など、ゲーム
開発には業務システム開発とは違った悩
みがあるものだと感じました。

連載

「温故知新 ITむかしばなし」のPrologの
お話が興味深かったです。ICOTの成果
が低いのは目標と具体的な成果の乖離
を上手に説明できなかったからではない
でしょうか。並行処理は大切な機能なの
で、今後その成果が活かされて再評価
されるといいですね。

大阪府／出玉のタマさん

世界で評価されているのに、国内
での評価が低いというのは、まる

が売れることで、紙のバックナンバーが
捨てられていくのは、少しさみしかったり
もします。

最近入社してから初めて部署が異動にな
りました。新しい現場は想像以上に自分
の知らないことだらけで悪戦苦闘な日々
です。貴誌を読んでいたおかげで普通
に仕事していたなら知らなかったことも
あり、助けられております。しかし、手
を動かさずに読むだけだったので、あま
り理解しきれていないということも痛感
する今日この頃です。

兵庫県／yoneさん

担当も勉強のために記事の内容を
実機で試してみようと思いつつ、

実際にはできていません。やはり、自分
のものとするには実践が必要ですね。

で初期のRubyのようですね。利用事例
もありますし、今後、Rubyのように逆輸
入のようなかたちで国内でも評判になる
かもしれません。

フリートーク

総集編のPDF化がすごくうれしいです。
SDは、今は使わないけど後から必要と
なる内容が結構あるので、気になる記
事がある時は買うようにしています。し
かし、保管場所に苦慮していました。こ
うしてPDF化されるとわかっていると逆
に安心して講読できるようになります。

東京都／杉原さん

5月25日には創刊号からの記事を
収録した第2弾も発売しますので、

ぜひ手に取って下さい。しかし、電子版

4月号のプレゼント当選者は、次の皆さまです
①ロジクールタッチマウスt620 ..神奈川県　田中孝治様
②Boombero Wireless Speaker ...愛知県　加藤謙一様

★その他のプレゼントの当選
者の発表は、発送をもって
代えさせていただきます。
ご了承ください。

　もうすぐ梅雨の時期ということで、雨の日も安心なスマホ用防水
ケースを紹介します。dicapac W-P2はどのメーカーのスマホにも使
えるビニール製の防水ケースです（縦128mm×横65mm×厚み
13mm以内が快適に使える目安）。防水という面では申し分なく
シャワーをジャバジャバ浴びせても（写真）、水にドブンと浸けても
スマホは濡れません。さすがに水中では無理ですが、ケースと手
が濡れている程度なら、ケースの上からタッチパネルの操作ができ
ます。ケースの中に空気が入っているとうまく操作できないので、
しっかり空気を抜くことが効率よ
く使うポイントです。これなら台
風の日でも屋外でスマホを使え
ます。首からかけるストラップ
が付属しているのですが、雨の
日は傘をさしていて手がふさ
がっていることが多いで、これ
は便利だと思いました。（読者プ
レゼントあります。16ページ参照）

エンジニアの能率を高める一品
仕事の能率を高める道具は、ソフトウェアやスマートフォンのようなデジタルなものだけではありません。
このコーナーではエンジニアの能率アップ心をくすぐるアナログな文具、雑貨、小物を紹介していきます。

dicapac W-P2
2,992円（税込）／大作商事　http://www.daisaku-shoji.co.jp

▲シャワーでびしょびしょ濡らしても、
タッチパネルの操作は可能

※製品にスマートフォンは
付属しません。

http://www.daisaku-shoji.co.jp

Software Design
2013年6月号

発行日
2013年6月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2013年7月号
定価1,280円　176ページ

July 2013

6月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2013 技術評論社

●ちょうど5月号の発売時に後記を書いている。特

集や新連載の反応を見るに、といってもTwitterをモ

ニターしているだけだけど、けっこう手応えがあって

うれしい。特に本は重要。いまをときめく若手エンジ

ニアがタネンバウム先生の本を勧めている。難解で

高価格だけど、それだけの価値がある本は長生き。

そして影響を与え続ける。（本）

●テレ東の金曜夜が熱い！　「みんな！　エスパーだ

よ！　」は夏帆のお色気シーンや真野恵里菜、神楽坂

恵といった完璧な女子陣に加え、イジリー岡田、安

田顕、栗原類とツボな方々が勢揃い。「ヴァンパイア

†ヘブン」は大政絢と本田翼！　のコケティッシュな魅

力がハンパない。殿
しんがり

は牙狼の新シリーズ。週末の楽

しみが増えた。（幕）

●ついにenchantMOONが正式にリリースされまし

た。スマホやタブレットの選択肢は増えましたが、自

分にはどれも同じに見えてイマイチ。が、久々に心

が躍るデバイスが出てきた感じです！　もちろん5月

号からはじまった連載「enchant」でも清水氏に語っ

ていただきますよ。乞うご期待 !!（キ）

●総集編の制作で大量のテキストデータを扱うときに

正規表現がとても役に立ちました。5月号の特集は

自分にとってタイムリーなネタでした。正規表現はエ

ンジニアでなくても役立つので、インターネットやオ

フィスツール同様、教育現場でコンピュータ関連の

一般教養として学ぶ場があってもいいように思います。

（よし）

●父親の調子が悪くなり病院に行ったら即入院に。

当初は1週間入院すれば大丈夫ということでしたが、

数日後隠れ病が原因でかなり危険な状態となり、母

親とあわてて病院に駆けつけました。幸い回復しまし

たが当然入院生活は長引くことに。親孝行しないと、

というか親不孝しないようにしないといけないなと実

感中です。（ま）

S D S t a f f R o o m

［第1特集］ データの目利きになりたい！

機械学習＋データ分析「超」入門
　なんらかの ITシステムを運用していれば、自然にログが膨大な量に嵩んでいきま
す。Googleサーチエンジンレベルのビッグデータではありませんが、一般的なエン
ジニアでも身の回りにあるデータから意味を見いだすために、統計的な分析をする
ことが多くなっています。フリーの統計ツール「R」やテキストマイニング、データマ
イニング、Apache Mahout、fluentdなどなど、「データをうまく扱う技術」をわか
りやすく解説します。

［第2特集］ 自分の定規を持っていますか？

原因追及「ベンチマーク」テクニック
　サーバやネットワークが遅い、ボトルネックはどこに？　そんなとき各種ベンチマー
クツールが役立ちます。適用の勘所、データの読み方などチェックポイントを紹介し
ます。

［一般記事］

サーバラック・ケーブリング入門
※特集・記事内容は、変更になる場合もあります。あらかじめご了承ください。

次号予告

休載のお知らせ
　「Androidエンジニアからの招待状」（第38回）、「システムで必要なことはすべてUNIXから学んだ」（第10回）、「IPv6
化の道も一歩から」（第7回）は都合によりお休みいたします。

184 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2013年6月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 ちゃんとオブジェクト指向できていますか？
	Part1：オブジェクト指向の基本を学ぶ......増田 亨
	Part2：オブジェクト指向の学び方、教え方......青山 幹雄
	Part3：組み込みからクラウドまで、オブジェクト指向は隅々と!......井上 樹
	Part4：JavaScriptでオブジェクト指向......川尻 剛
	Part5：PHPでオブジェクト指向......星野 香保子
	Part6：Perlによるオブジェクト指向入門......深沢 千尋

	■第2特集 あなたの知らないUNIXコマンドの使い方
	第1章：UNIX/Linuxで必須のファイルシステムの基礎......平 初
	第2章：マネジメントサービスプロバイダ業務を支えてきた、いざというときに備えるコマンド......馬場 俊彰
	第3章：サーバ運用と自動化に役立つ厳選コマンドリファレンス......後藤 大地
	第4章：GUIが苦手とする作業を効率よく解決するために、デスクトップでもコマンドが活躍する......水野 源
	Column1：超入門者に捧げるコマンド＆シェルスクリプト......上田 隆一
	Column2：サーバを管理するコマンド講座の最初の最初......桑野 章弘
	Column3：Linuxのパフォーマンスモニタのおさらい......大久保 修一

	■一般記事
	春の嵐吹く、リアルタイム分散処理Storm......鈴木 貴典
	HiveでHadoopを活用してみませんか！......石川 信行
	Ubuntu 13.04 “Raring Ringtail”......吉田 史

	■連載：Column
	＜ネットワークエンジニア虎の穴＞自宅ラックのススメ【2】ラックの選び方......tomocha
	digital gadget【174】究極のウェアラブルは腕時計？......安藤 幸央
	結城浩の再発見の発想法【新連載】Buffer......結城 浩
	enchant 〜創造力を刺激する魔法〜【2】3人の少年......清水 亮
	コレクターが独断で選ぶ！ 偏愛キーボード図鑑【2】Matias Dvorak Keyboard & QIDO......濱野 聖人
	秋葉原発！　はんだづけカフェなう【32】深圳のMaker Faireに出展してきた......坪井 義浩
	Hack For Japan〜エンジニアだからこそできる復興への一歩【18】Hack For Japanスタッフ座談会［前編］......高橋 憲一
	温故知新 ITむかしばなし【23】MP/M......たけおかしょうぞう

	■連載：Development
	プログラム知識ゼロからはじめるiPhoneブックアプリ開発【2】ちょっとコードを書いて、より本らしく！......GimmiQ
	ハイパーバイザの作り方【9】 Intel VT-xを用いたハイパーバイザの実装その5「vmm.koへのVMExit」......浅田 拓也
	テキストデータならお手のもの　開眼シェルスクリプト【18】サーバにデータを渡して処理させる--nc、ssh、scpを使う......上田 隆一

	■連載：OS/Network
	仮想ネットワークの落とし穴【新連載】ファブリックモデルの検証——TRILL、SPB、MACアドレス学習問題......伊勢 幸一
	Debian Hot Topics【4】ソフトウェアをDebian公式リポジトリに入れるには......やまねひでき
	Ubuntu Monthly Report【38】Ubuntu Touch......長南 浩
	レッドハット恵比寿通信【9】オープンソースが本当に当たり前になるとき......小島 克俊
	Linuxカーネル観光ガイド【15】Linux 3.9の新機能〜dm-cache〜......青田 直大
	Monthly News from jus【20】IT業界や仕事以外にも目を向けよう—IT技術者のこれから......法林 浩之

	■連載：Inside View
	インターネットサービスの未来（これから）を創る人たち【23】プライベートクラウド構築プロジェクトの裏側（後編）......川添 貴生

	■アラカルト
	ITエンジニア必須の最新用語解説【54】オープンクラウド......杉山 貴章
	Hosting Department【86】
	読者プレゼントのお知らせ
	SD BOOK FORUM
	バックナンバーのお知らせ
	SD NEWS & PRODUCTS
	Letters From Readers
	Software Design総集編2001〜2012のお知らせ
	次号のお知らせ

