

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　米Googleが開発するWebブラウ
ザ「Google Chrome（以下、Chro
me）」は、常に最新のWeb技術を
取り入れながら成長するその進化の
速度が強みの1つとなっています。そ
のChromeの新機能として話題に
なっているのが、Chrome 31より正
式サポートされた「PNaCL（Portable
Native Client）」です。PNaCLは
Webブラウザ内でネイティブコードを
実行するための技術で、生成したプ
ログラムを再コンパイルすることなく、
さまざまなプラットフォームで動作させ
られる点が大きな特徴です。
　Chromeでは従来よりPNaCLの
前身となる「NaCL」によってネイティ
ブコードの実行をサポートしていました。
NaCLもWebブラウザ向けのネイティ
ブアプリケーション実行基盤で、C/
C++のソースコードからWebブラウザ
で実行できるネイティブコードを生成し
て使用します。ただしNaCLの場合
には、コンパイル後のネイティブコード
がCPUに依存しており、CPUの種
類が異なる環境間では互換性がない
という問題がありました。
　PNaCLの場合は、LLVM（Low
Level Virtual Machine）の中間コー
ド（LLVM-IR/bitcode）を採用する
ことで、このCPU依存問題を解消し
ています。すなわち、PNaCLのコン
パイラは直接ネイティブコードを生成す
るのではなく、いったん中立的な
フォーマットの中間コードを出力します。
ChromeのPNaCL実行環境はこの
中間コードを読み込み、クライアント

側でネイティブコードに変換したうえで
実行するしくみになっています。中間
コードまでは環境に依存しないため、
PNaCLのプログラムは単一のコード
でさまざまなプラットフォームで実行で
きるというわけです。

　Googleでは、NaCLおよびPNa
CLのアプリケーションを作成するため
の開発環境として「Native Client
SDK」を提供しています。プログラミ
ング言語としてはC/C++がサポートさ
れており、NaCL用にはgccベースの
ツールチェーン（nacl-gcc）が、PNa
CL用には中間コードの生成をサポー
トするツールチェーン（PNaCl tool
chain）が用意されています。
　NaCL/PNaCLのプログラムから
Webブラウザの機能やその他のクラ
イアント機能にアクセスするためには、
SDKに含まれている「Pepper API」
と呼ばれる独自APIを使用します。
Pepper APIでは、ローカルファイル
やリモートファイルの入出力、マウス
やキーボードをはじめとする各種入力
機能、2D/3Dグラフィックス、オー
ディオ再生、JavaScriptインターフェー
スなどが利用できます。
　セキュリティの確保のために、
NaCL/PNaCLのクライアント側の実
行環境はサンドボックス化され、メモ
リ空間の利用や命令の実行などにつ
いてさまざまな制約が設けられていま
す。また、コード検証機を備えること
で、システムコールなどの危険な命
令の呼び出しを防止しています。
　作成したアプリケーションを配布す

るうえでの両者の大きな違いは、Na
CLの場合はChrome Web Storeで
の配布が原則となっているのに対して、
PNaCLは一般のWebサイト内に埋
め込んで使用することができるという
点です。そのほかの興味深い点とし
ては、PNaCLのほうは原理的には
LLVMの中間コードにコンパイルでき
れば、どんな言語でも対応できるとい
うことが挙げられます。現在サポート
されているのはC/C++のみですが、
将来的には多言語対応というシナリオ
も出てくるかもしれません。

　GoogleがNaCL/PNaCLの開発
を推進する背景には、JavaScriptの
最適化によるパフォーマンス向上が限
界に近づいているという事情が見え
隠れしています。もちろん、同社が
依然としてJavaScriptの性能向上に
積極的であることはV8エンジンの開
発実績などからも明らかです。しかし
ユーザ体験のさらなる充実を目指す
ために、JavaScriptとは異なるアプ
ローチも重要だということでしょう。
　一方で、このアプローチに懐疑的
な意見もあります。とくに強く懸念され
るのは、NaCLはWeb標準からは大
きく外れるためWebアプリの移植性
が犠牲になり、Webの断片化につな
がるのではないかということです。事
実、現状ではNaCLやPNaCLは
Chromeでしかサポートされていませ
ん。これらの懸念の払拭は、NaCL
/PNaCLがスタンダードになるために
不可欠な要素と言えるでしょう。s

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 62回

NaCL/PNaCL

s

Native Client
https://developers.google.com/native-client/

Webブラウザ用のネイティブ
コード実行基盤「PNaCL」

NaCL/PNaCLアプリの
開発

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

ネイティブコードサポート
の背景

mailto:sd@gihyo.co.jp
https://developers.google.com/native-client/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

■お問い合わせ
〒162-0846
新宿区市谷左内町21-13
株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180
メール：gdp@gihyo.co.jp

法人などまとめてのご購入については
別途お問い合わせください。

※販売書店は今後も増える予定です。

電 子 版の最 新リストは

G i h y o D i g i t a l P u b l i s h i n g の

サイトにて確 認できます。

h t t p : / / g i h y o . j p / d p

http://gihyo.jp/dp

http://sd.gihyo.jp/

https://gihyo.jp/site/inquiry/dennou

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.bluebox.ne.jp

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp

PRE - 1 - Software Design Feb. 2014 - PRE - 2

任せてしまうか、サーバを立ち上げるか、それらを
検討しましょう。LAN内で使用するプライベートIP

のセグメントも設計が必要です。
定番の 192.168.0 .0/24や 192.168.1.0/24、

192.168.11.0/24などをLAN内で使用すると、結構
はまってしまうので、なるべく別のアドレス帯にし
たほうが良さそうです。なぜハマるのか……？　そ
れは、端末からVPNなどを使うとき、自分がつな
いでいるネットワークと自宅がかぶってしまうと、
非常に困るからです。なるべく別のセグメントにし
ましょう。
また、筆者の経験上、192.168.0.1とかをルータに
割り当てると、親が勝手にルータを設定のためにつ
ないだらIPがぶつかった、ということもありまし
た。トラブルを防ぐためにも変更しておいたほうが
無難です。

DHCP、DNSを立ち上げるのであれば、どんな
OS上で稼働させるのか、仮想化するのか、なども
検討の必要がありますね。

固定IP対応のISPを検討するか、DDNSでやるの
か、まずはプロバイダおよび回線選びから始まりま
す。最近は「IPアドレス枯渇だー」とかいいつつも、
けっこう安価に固定IPや複数IPを割り当ててくれ
るプロバイダもありますので探してみてください。
単なる公開サーバを立ち上げるのが目的でしたら、
最近では各社VPSが1,000円前後～とお手軽な値段

ラック、電源、ネットワーク機器選び、サーバ選
び、ケーブリングとやってきました。
一通りの環境がそろったところで、実際に環境を
作ってみましょう。
環境があっても、どのようにレシピするか、決

まっていないと宝の持ち腐れどころか、重たい文鎮
になってしまいます。
まずは自分の中で目標を決めましょう。たとえ
ば、こんな感じでしょうか。

1. 買いそろえた環境で、生活環境のネットワークを

構築してみる

2. 公開サーバなどを立ち上げて、ブログなどを立ち

上げる

3. 実験して、勉強してみたい

結局のところ、世の中の大半の回線はPPPoE

（PPP over Ethernet）を使用する環境でしょうから、
ルータの設定（PPPoE、NAT、フィルタなど）、ス
イッチの設定がほぼ必須になるでしょう。

生活環境となると、無線LAN環境も欲しくなり
ますね。自分の生活用とゲスト用のネットワークを
VLANで分けて、フィルタを変更するなど試してみ
ても良いでしょう。となると、少なくともDHCP

サーバやDNSサーバも欲しくなるので、ルータに

はじめに

生活環境のネットワーク環境の構築

公開サーバをたててみる

ススメ

ネットワークエンジニア虎の穴

自宅ラック
文／ tomocha（http://tomocha.net/diary/）

の

環境構築のイロハ
第9回

イラスト：髙野涼香

http://tomocha.net/diary/

PRE - 1 - Software Design Feb. 2014 - PRE - 2

でやっていますので、単純に公開サーバを作りたい
というのであれば、価格面ではまったくメリットが
ありません。やっぱり、ハードウェアから触ってみ
たい！　VPSじゃスペックが……という方は、ぜひ
試してみてください。筆者は、自宅環境＋VPSな
どで用途ごとに使い分けています。最近であれば、
すべて自前で持つことを考えると、電気代や固定IP

のプロバイダ料金の面で、実はVPSのほうが安
かったりするケースも多々あります。VPS、自宅に
限らず、公開サーバをたててみる際にはセキュリ
ティにはしっかりと気をつけましょう。公開サーバ
に至らずとも、自宅内のファイルサーバなどから始
めてみても良いでしょう。

これは、完全に趣味や業務目的といろいろと環境
が混在すると思います。筆者は勉強してみたい、趣
味も兼ねてAS番号まで取得してしまい、BGPの世
界にまで足をつっこんでしまいました。おそらく本
稿を愛読されている方は、すでに、スイッチやルー
タ、ファイアーウォールなどそろっていると思いま
すので、まずは公開サーバをたててみて、それに付

随するネットワーク環境、ファイアーウォールを
しっかりと設けて、環境を構築します。次に、ネッ
トワークの冗長化やダイナミックルーティングを
やってみたい、VPNを併用して拠点間でやってみた
いことなどを考え始め、最後にはWANの冗長化な
ど、勉強してみたいってことで、BGPをやってみる
のも良いでしょう。BGPのお勉強をしてみるには、
IHANet注1などが楽しいかもしれません。

結局は、自宅ラックでネットワークを勉強してみ
ようと思ったら、DNSやDHCPなど、基本的な知
識、構築、運用。そして、サーバの設定などが必要
になってきます。用途ごとにサーバを立ち上げてい
たらいくら物理リソースがあっても足りませんし、
サーバもスペックがよくなっているので、筆者は大
半のサービスをVMWare上に環境構築をしています
（図1）。気付いたら相当な台数が動いていますね。
物理サーバはファイルサーバと公開サーバの一部く
らいでしょうか。｢

注1） http://www.ihanet.info/

のススメ
ネットワークエンジニア虎の穴

自宅ラック

▼図1　筆者の環境

実験して勉強してみたい

終わりに

http://www.ihanet.info/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

　2013年11月19日から22日の4日
間、コンピュータグラフィックスとインタ
ラクティブ技術に関する世界最大の
学会・展示会SIGGRAPHのアジア版
「SIGGRAPH ASIA 2013」が香港で
開催されました。香港は街中の標識が
英語と中国語で並記され、最新の高
層ビルが並ぶすぐ横には、古いビルの
改修のために竹で組まれた足場が見
られる混沌とした街でした。

SIGGRAPH ASIAとしては6回目、
香港での開催は2回目となります。今
回は世界52ヵ国から7,000人弱の参
加者を集めました。夏に米国で開催さ
れる本家のSIGGRAPHと比較すると
約半分の規模です。規模は小さいな
がらも内容は充実しており、各セッショ
ン・各種展示と、大変クオリティが高い
ものばかりでした。テーマは“SENSE
The Transformation”「変化を感じ
る」です。
　今年はBusiness Symposiumが
併設セッションとして開催されました。こ
のシンポジウムはCG/VFX業界での
ビジネス視点で催されたもので、テーマ
は“Hito/Kane/Mono”。そのとおり、人
材・資金調達・機材やキャラクタ・マー
ケットに関するもので、現状の課題や
解決方法、今後の課題など、数多くの
パネルセッションが行われました。
　また、展示会場やギャラリー会場に

は、地元の中高生も団体で訪れ大変
盛況でした。

SIGGRAPH ASIA 2013
公式ページ

SIGGRAPH ASIA 2013論文集
一覧（Ke-Sen Huang氏がまとめて
いる非公式なもの）

　昨今、SIGGRAPH ASIAが注目され
る背景としては、大手CGプロダクション
が軒並みアジア拠点を設けていること
にあります。たとえば、ILMシンガポール、
Double Negativeシンガポール、Pix
omondo上海、インドMPCなどです。

業界全体で人材の確保と、高騰する
人件費を抑える展開が行われ、しかも
時差を感じさせず、逆にうまく活かす。
世界的に環境が大きく変化してきてい
ることが感じられます。
では、SIGGRAPH ASIAの数多く

の論文・展示から、興味深いものをいく
つか紹介しましょう。

　物理的に再現した髪CGの表現。モ
デルの髪の毛を切ったときの動きもシ
ミュレーションできます。未来の美容院
向けの技術（写真A）。

香港にてSIGGRAPH ASIA 2013開催
～躍進するアジアのCG～

香港にてSIGGRAPH ASIA 2013開催～躍進するアジアのCG～

CGの祭典SIGGRAPHの
アジア開催

SIGGRAPH ASIA 2013の会場となっ
た香港コンベンションセンター

展示会場より。頭の位置を検知できる
ヘッドマウントディスプレイと3Dマウスを
操作する様子。クリスティデジタル社の
ブース

BrainLink

脳波コントロールデバイス
BrainLinkは脳波を受信するヘッドギアと
iOSアプリにより、ゲームやヘルスケアなど
に活用するためのデバイスです。iOSデバ
イス上の専用アプリとBluetoothで接続し
ます。頭部2個所と耳たぶのセンサーで検
知します。価格は1,999元（約33,000
円）。「ブレインコンピュータ」と銘打ってい
ますがそれほど多くのことができるわけでは
なく、脳波がリラックスしている状態なの
か、集中している状態なのか程度がわかる
だけということでした。

http://macrotellect.com/

Lapillus Bug

虫の空中浮遊
Lapillus Bugはアート作品として展示され
ものです。アレイ状に配置された小型超
音波集束装置による音響浮揚によって、
ごくごく小さな物質を、小さな虫のように動
かすしくみです。本当の虫ではない、単なる
黒い物体がレーザーポインタの赤点を追
いかけたり、野菜のトマトを追いかけたりす
る様は、本物の小バエがいるのかと認識
するほどのものでした。デジタル制御された
虫とインタラクションできる作品です。

http://star.web.nitech.ac.jp/pdf/2013EC.pdf

ARAtouch

背面認識の感覚タブレット
ARAtouchは、タブレット端末の裏側を操
作している指を鏡に映し、その映像から得
た情報を表側の画面にフィードバックする
ことで、画面に映し出された物体の柔らか
さや堅さを感じ取ることのできる研究です。
実際にタブレットの裏面の固さが変わるわ
けではありませんが、操作によって映像が
柔らかく動くのか、なかなか動かないのか、
映像から触覚を喚起することのできるデバ
イスになっています。写真はTボーンステー
キの部位によって固さが異なることを感じ
取るデモです。

http://www.cyber.t.u-tokyo.ac.jp/

Phonejoy

スマートフォン専用
ゲームコントローラ
Phonejoyは各種スマートフォンを挟んで、
モバイルゲーム機化するデバイスです。ボ
タンコントロールはBluetooth経由で行い、
ゲーマーには慣れた十字キーでスマート
フォンのゲームアプリを楽しむことができま
す。筐体は黒のみで69ドル。バッテリー搭
載で6～8時間使い続けられます。単にス
マートフォンを挟むだけの機器なので機種
を問わず、iPhoneやAndroidスマートフォ
ンの多くの機種に対応します。

http://phonejoy.com/

論文より

SIGGRAPH ASIA 2013
の特徴とCG研究の行方

Inverse Dynamic Hair Modeling
with Frictional Contact Paper
Abstract Author Preprint

写真A

写真C

写真E

写真B

写真D

写真F

http://sa2013.siggraph.org

http://kesen.realtimerendering.com/
siga2013Papers.htm

Cost-effective Printing of
3D Objects with
Skin-Frame Structures Paper
Abstract Author Preprint Paper
Video Paper Data

3-Sweep:
Extracting Editable Objects
from a Single Photo Paper
Abstract Author Preprint
Paper Video

Real-time 3D Reconstruction
at Scale using Voxel Hashing
Paper Abstract Author
Preprint Paper Video

3D Wikipedia:
Using Online Text to
Automatically Label and
Navigate Reconstructed
Geometry Paper Abstract
Author Preprint Paper Video

The Line of Action:
an Intuitive Interface for
Expressive Character Posing
Paper Abstract Author Preprint
Paper Video

Halftone QR Codes
Paper Abstract Author Preprint
Paper Video Demo Program
or Source Code

Designing and Fabricating
Mechanical Automata from
Mocap Sequences Paper
Abstract Author Preprint
Paper Video Interactive By-example Design

of Artistic Packing Layouts
Paper Abstract Author Preprint
Paper Video

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。

しんせん

Feb. 2014 - 1

http://www.andoh.org/
http://sa2013.siggraph.org
http://kesen.realtimerendering.com/siga2013Papers.htm

　3Dプリンティングも素材によって、ま
たは無駄なモデル形状データのために
コストがかさむことあります。本研究は
3D形状データを工夫して、より低コス
トで作成できる方法の提案です。中身
が全部詰まったモデルに比べ、必要な
強度を保ったまま、約15%の材料で済
むように節約できるそうです（写真B）。

　Automata（オートマタ）と呼ばれる機
械人形を自動生成する方法。動きを
データ化したモーションキャプチャデー
タから、実物モデルが作れる技術（写
真C）。

　2D画像の中のものを3D化し、形状
の編集を平易にできるようにする技
術。今年、最も注目されていた論文で
す（写真D）。

　CGで描かれた人物モデルのポーズ
を、線一本で指定するだけで、とても簡
単に創り出す方法（写真E）。

　細かなグラデーション表現ができる
ハーフトーンQRコードの提案（写真
F）。

　Kinectカメラを持って部屋の中を移
動し、3D空間データを再構成する手
法。とても高速です。

　Wikipediaを3D立体化したもの。
Wikipediaの単語の説明に3D表示
が使える方法。

　大量の大きさの違う物体の適切な
レイアウト手法の提案。1つ動かしただ
けでも全体が最適化される。

香港にてSIGGRAPH ASIA 2013開催
～躍進するアジアのCG～

香港にてSIGGRAPH ASIA 2013開催～躍進するアジアのCG～

CGの祭典SIGGRAPHの
アジア開催

SIGGRAPH ASIA 2013の会場となっ
た香港コンベンションセンター

展示会場より。頭の位置を検知できる
ヘッドマウントディスプレイと3Dマウスを
操作する様子。クリスティデジタル社の
ブース

BrainLink

脳波コントロールデバイス
BrainLinkは脳波を受信するヘッドギアと
iOSアプリにより、ゲームやヘルスケアなど
に活用するためのデバイスです。iOSデバ
イス上の専用アプリとBluetoothで接続し
ます。頭部2個所と耳たぶのセンサーで検
知します。価格は1,999元（約33,000
円）。「ブレインコンピュータ」と銘打ってい
ますがそれほど多くのことができるわけでは
なく、脳波がリラックスしている状態なの
か、集中している状態なのか程度がわかる
だけということでした。

http://macrotellect.com/

Lapillus Bug

虫の空中浮遊
Lapillus Bugはアート作品として展示され
ものです。アレイ状に配置された小型超
音波集束装置による音響浮揚によって、
ごくごく小さな物質を、小さな虫のように動
かすしくみです。本当の虫ではない、単なる
黒い物体がレーザーポインタの赤点を追
いかけたり、野菜のトマトを追いかけたりす
る様は、本物の小バエがいるのかと認識
するほどのものでした。デジタル制御された
虫とインタラクションできる作品です。

http://star.web.nitech.ac.jp/pdf/2013EC.pdf

ARAtouch

背面認識の感覚タブレット
ARAtouchは、タブレット端末の裏側を操
作している指を鏡に映し、その映像から得
た情報を表側の画面にフィードバックする
ことで、画面に映し出された物体の柔らか
さや堅さを感じ取ることのできる研究です。
実際にタブレットの裏面の固さが変わるわ
けではありませんが、操作によって映像が
柔らかく動くのか、なかなか動かないのか、
映像から触覚を喚起することのできるデバ
イスになっています。写真はTボーンステー
キの部位によって固さが異なることを感じ
取るデモです。

http://www.cyber.t.u-tokyo.ac.jp/

Phonejoy

スマートフォン専用
ゲームコントローラ
Phonejoyは各種スマートフォンを挟んで、
モバイルゲーム機化するデバイスです。ボ
タンコントロールはBluetooth経由で行い、
ゲーマーには慣れた十字キーでスマート
フォンのゲームアプリを楽しむことができま
す。筐体は黒のみで69ドル。バッテリー搭
載で6～8時間使い続けられます。単にス
マートフォンを挟むだけの機器なので機種
を問わず、iPhoneやAndroidスマートフォ
ンの多くの機種に対応します。

http://phonejoy.com/

論文より

SIGGRAPH ASIA 2013
の特徴とCG研究の行方

Inverse Dynamic Hair Modeling
with Frictional Contact Paper
Abstract Author Preprint

写真A

写真C

写真E

写真B

写真D

写真F

http://sa2013.siggraph.org

http://kesen.realtimerendering.com/
siga2013Papers.htm

Cost-effective Printing of
3D Objects with
Skin-Frame Structures Paper
Abstract Author Preprint Paper
Video Paper Data

3-Sweep:
Extracting Editable Objects
from a Single Photo Paper
Abstract Author Preprint
Paper Video

Real-time 3D Reconstruction
at Scale using Voxel Hashing
Paper Abstract Author
Preprint Paper Video

3D Wikipedia:
Using Online Text to
Automatically Label and
Navigate Reconstructed
Geometry Paper Abstract
Author Preprint Paper Video

The Line of Action:
an Intuitive Interface for
Expressive Character Posing
Paper Abstract Author Preprint
Paper Video

Halftone QR Codes
Paper Abstract Author Preprint
Paper Video Demo Program
or Source Code

Designing and Fabricating
Mechanical Automata from
Mocap Sequences Paper
Abstract Author Preprint
Paper Video Interactive By-example Design

of Artistic Packing Layouts
Paper Abstract Author Preprint
Paper Video

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。

しんせん

2 - Software Design

　今回のSIGGRAPH ASIA 2013で
は、とくにシンガポール、インド、上海の
プロダクションに勢いが感じられまし
た。アジア圏のCGプロダクションでは
ハリウッドの大作映画の特殊効果を請
け負う量も増え、徐々にハリウッドと同
じような分業スタイルを受け入れるよう
になってきています。
　映像制作に利用するツールに関し
ても、多少ライセンス料金が高額で
あっても業界スタンダードのツールや
ワークフローを採用し、多少はオープン
ソースのツール、社内開発したツール
などを駆使しながら北米のCG/VFX仕
事を請け負う前提で環境構築がなされ
ています。
　また、時差のある遠隔地で仕事をす
るデメリットは減ってきており、膨大な
データの送受信や大容量のストレー
ジ、プレビュー環境、コラボレーション
ツールの活用も一昔前とは大違いな
ほどに整備されてきました。
　CG研究の分野も、基礎研究が尊
重されつつも、実用分野の研究が増え
ています。大作映画の特殊効果に
よって現場での技術が進化しつつ、映
像分野、デジタルカメラ分野、各種デ
ジタルデバイス、テーマパークのアトラ
クション、インタラクティブ広告など、す
ぐに世の中に役立ちそうなものの比率
が増えてきています。
　また、コンピュータパワーが安価に大
量に使えるようになってきたことから、
データ駆動の手法や、旧来は遅くて使
えなかったような物理演算など、新しい
可能性も広がってきました。
2014年夏のSIGGRAPH 2014

はカナダのバンクーバーで8月10日か
ら14日に、次回のSIGGRAPH ASIA
2014は中国深圳で12月3日から6日
に開催される予定です。日本を含めた
アジアでのCG業界、CG研究の広が
りがますます期待されることでしょう。s

香港にてSIGGRAPH ASIA 2013開催
～躍進するアジアのCG～

香港にてSIGGRAPH ASIA 2013開催～躍進するアジアのCG～

CGの祭典SIGGRAPHの
アジア開催

SIGGRAPH ASIA 2013の会場となっ
た香港コンベンションセンター

展示会場より。頭の位置を検知できる
ヘッドマウントディスプレイと3Dマウスを
操作する様子。クリスティデジタル社の
ブース

BrainLink

脳波コントロールデバイス
BrainLinkは脳波を受信するヘッドギアと
iOSアプリにより、ゲームやヘルスケアなど
に活用するためのデバイスです。iOSデバ
イス上の専用アプリとBluetoothで接続し
ます。頭部2個所と耳たぶのセンサーで検
知します。価格は1,999元（約33,000
円）。「ブレインコンピュータ」と銘打ってい
ますがそれほど多くのことができるわけでは
なく、脳波がリラックスしている状態なの
か、集中している状態なのか程度がわかる
だけということでした。

http://macrotellect.com/

Lapillus Bug

虫の空中浮遊
Lapillus Bugはアート作品として展示され
ものです。アレイ状に配置された小型超
音波集束装置による音響浮揚によって、
ごくごく小さな物質を、小さな虫のように動
かすしくみです。本当の虫ではない、単なる
黒い物体がレーザーポインタの赤点を追
いかけたり、野菜のトマトを追いかけたりす
る様は、本物の小バエがいるのかと認識
するほどのものでした。デジタル制御された
虫とインタラクションできる作品です。

http://star.web.nitech.ac.jp/pdf/2013EC.pdf

ARAtouch

背面認識の感覚タブレット
ARAtouchは、タブレット端末の裏側を操
作している指を鏡に映し、その映像から得
た情報を表側の画面にフィードバックする
ことで、画面に映し出された物体の柔らか
さや堅さを感じ取ることのできる研究です。
実際にタブレットの裏面の固さが変わるわ
けではありませんが、操作によって映像が
柔らかく動くのか、なかなか動かないのか、
映像から触覚を喚起することのできるデバ
イスになっています。写真はTボーンステー
キの部位によって固さが異なることを感じ
取るデモです。

http://www.cyber.t.u-tokyo.ac.jp/

Phonejoy

スマートフォン専用
ゲームコントローラ
Phonejoyは各種スマートフォンを挟んで、
モバイルゲーム機化するデバイスです。ボ
タンコントロールはBluetooth経由で行い、
ゲーマーには慣れた十字キーでスマート
フォンのゲームアプリを楽しむことができま
す。筐体は黒のみで69ドル。バッテリー搭
載で6～8時間使い続けられます。単にス
マートフォンを挟むだけの機器なので機種
を問わず、iPhoneやAndroidスマートフォ
ンの多くの機種に対応します。

http://phonejoy.com/

論文より

SIGGRAPH ASIA 2013
の特徴とCG研究の行方

Inverse Dynamic Hair Modeling
with Frictional Contact Paper
Abstract Author Preprint

写真A

写真C

写真E

写真B

写真D

写真F

http://sa2013.siggraph.org

http://kesen.realtimerendering.com/
siga2013Papers.htm

Cost-effective Printing of
3D Objects with
Skin-Frame Structures Paper
Abstract Author Preprint Paper
Video Paper Data

3-Sweep:
Extracting Editable Objects
from a Single Photo Paper
Abstract Author Preprint
Paper Video

Real-time 3D Reconstruction
at Scale using Voxel Hashing
Paper Abstract Author
Preprint Paper Video

3D Wikipedia:
Using Online Text to
Automatically Label and
Navigate Reconstructed
Geometry Paper Abstract
Author Preprint Paper Video

The Line of Action:
an Intuitive Interface for
Expressive Character Posing
Paper Abstract Author Preprint
Paper Video

Halftone QR Codes
Paper Abstract Author Preprint
Paper Video Demo Program
or Source Code

Designing and Fabricating
Mechanical Automata from
Mocap Sequences Paper
Abstract Author Preprint
Paper Video Interactive By-example Design

of Artistic Packing Layouts
Paper Abstract Author Preprint
Paper Video

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。

しんせん

2 - Software Design Feb. 2014 - 3

http://macrotellect.com/
http://www.cyber.t.u-tokyo.ac.jp/
http://star.web.nitech.ac.jp/pdf/2013EC.pdf
http://phonejoy.com/

4 - Software Design

Default̶̶デフォルト

デフォルトとは

　デフォルト（default）とは、もともとは「完全
に不足している」という意味で、分野ごとに異
なる意味を持ちます。デフォルトという1つの
単語が「テニスの試合を棄権すること」を意味し
たり、「法廷へ出頭しないこと」を意味したりし
ます。金融用語のデフォルトは「なすべき義務
を果たさないこと」として「債務不履行」の意味
になります。
　この記事では「技術用語としてのデフォルト」
について書きます。技術用語としては「暗黙の値」
を意味します。暗黙の値というのはわかりにく
い表現ですが、「この場合はこの値になります」
と明示されていない値のことです。
　C言語とその仲間のプログラミング言語では、
ずばり“default”というキーワードがあります。
式の値によって処理が多方向に分岐するswitch

文で、明示的に値が書かれていないときの処理
を行う個所にdefaultというキーワードを使う
のです。たとえば「変数nの値が1の場合、2の
場合、3の場合にはそれぞれこんな処理を行い、
そ
・ ・ ・ ・ ・ ・ ・

れ以外の場合にはこんな処理を行う」という
場面での「それ以外の場合（明示的に値が与えら
れていない場合）」のところに、defaultと書き
ます。「デフォルトの処理」と呼ばれることもあ
ります（図1）。

　プログラマの会話では「デフォルト」という用
語はよく使われます。日常会話で使われるとき、
「普通の場合はそうする」や「特別に何も言わな
かったらそうなる」というニュアンスになります。
たとえばプログラマの宴会で幹事さんが「デフォ
ルトはビールとして、特別に何か頼みたい人い
ますか」と使っても自然に通じるはずです。「私
はウーロン茶」「僕はジンジャエール」のように
明示的に頼んだ人以外は、みんなビールになる
ということです。

安全装置としてのデフォルト

　プログラマは、コンピュータが行うべき処理
をよく考えてプログラムを書きます。ある変数
が取り得る値の範囲にはとくに注意を払う必要
があります。さもないと、プログラムは予想外
の振る舞いをしてしまいますから。
　そんなとき、デフォルトの場合を記述するの
が一種の安全装置として働くことがあります。
プログラマは変数の取り得る値を列挙して処理
を記述しますが、万一そこに漏れがあった場合、
すべてデフォルトの場合として捕捉することが
できるからです。デフォルトの処理としてエラー
処理を書いておけば、プログラマの考えに漏れ
があった場合でも最後の安全装置としてエラー

Default

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 9

2.5 10 3402.5
2.91.9 2.2

2.5
2.92.4

10
3.1

10 34010
121.91.8

0.1
0.7 1.81.3

default

0.1

1 2
2.52.5

3

-1
0.1

0
0.1

0.7
0.10.10.1

0.5

 ▼図1　デフォルトのイメージ図

http://www.hyuki.com/

4 - Software Design Feb. 2014 - 5

処理を行うことができるでしょう。

例外なのか？

　さてこのような「暗黙の値」を定めるデフォルト
ですが、ちょっと考えると「その他の例外」のよう
に感じられます。そう考えても悪くはないのです
が、実は逆です。「デフォルトの場合」というのは、
本来の意味からすると「明示的に言われなかった
場合」ですから、そちらのほうが「普通の場合」「あ
たりまえの場合」なのです。デフォルトじゃない
場合、すなわち明示的に示さなければいけない
ほうがどちらかといえば例外に相当するでしょう。

マナーとデフォルト

　考えてみますと、私たちはすべてを明示的に
表現して日常生活を送るわけではありません。
「普通はそうする」や「何も言わなかったらそう
なる」というデフォルトの処理がたくさん決まっ
ているのです。
　たとえば公共生活における「マナー」を考えて
みましょう。濡れた傘を振り回したりしない。電
車の中では大声で話さない。そのようなマナー
は明示的に指示されることは少ないですが、多く
の人があたりまえのこととして行動します。マナー
は一種のデフォルトの処理と言えるでしょう。
　たとえば「落とし物があったら交番に届ける」
というのはどうでしょうか。落とし物を見つけ
たときに多くの人が交番に届けるならば、それ
はデフォルトの処理と言えるでしょう。
　このようなマナーやエチケットに相当するも
のは、大げさに言えば、コミュニティや集団や
国の「文化」と呼べるかもしれません。それは「い
ちいち明示的に言われなくても普通はそうする」
という行動が集まったものだからです。

異文化とデフォルト

　海外旅行で別の国に行くと、基本的な生活習
慣が異なっていて驚くことがあります。たとえ
ば駅で電車を待つときに1列に並ぶかどうか。
電車に乗る前に切符の改札があるかどうか。逆

に、海外から日本に来た人に（日本人には）あた
りまえのことで驚かれることもあるでしょう。
　あまりにもあたりまえのことですので、明示
的に表現されることのないもの。明示的に表現
されなくても多くの人があたりまえとして行う
こと。それがデフォルトです。「異文化に出会う」
というのは、大げさに言えば「デフォルトの違
いに出会う」ということなのかもしれません。

サービスとデフォルト

　Webサービスにユーザ登録をするとき、多
くのサービスが「あなたに宣伝メールを送って
もいいですか」というオプションを用意してい
ます。自分のメールアドレスとパスワードなど
を記入して「登録」ボタンを押す。そのときに「あ
なたに宣伝メールを送ってもいいですか」の
チェックボックスがデフォルトでどうなってい
るかはサービス側にとっては重要です。デフォ
ルトがオンのほうがずっと多くのメールを送る
ことができるでしょう。

人間関係とデフォルト

　もっとプライベートな場面でもデフォルトが
重要な場合があります。たとえば仲良くなりか
けている異性のお友達同士でメールのやりとり
をしているとき。こちらからいつもより親密な
メールを送ったところ、返事が返ってこなかっ
たとします。この「返事がない状態」というのは
いったいどう解釈すればいいのでしょう。「う
れしいな、ありがとう」や「いやちょっとそうい
うのは違うから」のように明示的な返事をもら
えばはっきりします。でも「返事がない状態」̶ ̶
つまり、デフォルトではどう解釈したらいいの
でしょうね。「返事がない」ことがどちらの意味
になるかは、2人が作り出す人間関係の小さな「文
化」と言えるでしょう。
　あなたの周りを見回して、明示的に言わなく
ても決まっているもの̶̶デフォルト̶̶は見つ
かりますか。それは誰とどんな文化を共有して
いるのでしょう。ぜひ考えてみてください。｢

9

6 - Software Design Feb. 2014 - 7

enchantMOONの誕生［前編］第10回10

（株）ユビキタスエンターテインメント　清水 亮　SHIMIZU Ryo
　　　http://www.uei.co.jp

　レーサーミニ四駆の企画者、前田靖幸と共に
開発した「前田ブロック」を引っさげ、新しいプ
ログラミングスタイルへの模索が始まりました。

子供のための
プログラミング端末

　僕が小学生の頃、世はまさにマイコン全盛期。
PC-8800シリーズやMSX、ファミリーベーシッ
クといった、子供がプログラミングを学ぶことを
目的にしたハードウェアが数多く発売されていま
した。しかし同時に、多くの子供たちがプログラ
ミングに挑戦し、挫折を経験した時代でもありま
した。ごくわずかな子供たちだけが、プログラミ
ングの魅力に目覚め、それを職業にしていくこと
を考え始めます。そしてそれ以外の子供たちは、「プ
ログラミングって難しい」というニガテ意識を強く
植え付けられることになるのです。
　子供は誰でも、最初は自分の中に無限の可能
性があると信じています。それが子供向けに作
られたものであればなおのことです。しかし実
際には、BASICは思いどおりのことをやらせ
るには難しすぎました。子供が自発的にプログ
ラミングの世界にはまり、やがてより複雑で本
格的なプログラミングの世界にステップアップ
するという道筋をもっと丁寧にデザインする必
要があったと思うのですが、あの時代の非力な

CPUとRAMでは、BASICを動かすのがやっ
とでした。
　そして現代、今や高性能なコンピュータが一般
家庭に普及しましたが、“実用品”になってしまい
ました。かつてのホビーとしてのプログラミングは、
子供たちの手から離れてしまったのです。
　子供のためのプログラミング環境として、た
とえばRaspberry PiのようにPythonのIDLE注1

やScratch注2を使うことを前提にした環境があ
ります。しかし僕がそのとき想像したのは、もっ
と自由な端末でした。マウスもキーボードもい
らない、それ単体が独立したゲーム機のように
動き、子供たちが創造性を最大限発揮すること
にフォーカスした端末です。もっと安価なタブレッ
ト端末で構わないのです。お絵描きの延長上に
あるプログラミング。そういうものを実現したい。
　子供のためのプログラミング端末、そういう
ものがたとえば1万円程度で発売できれば、子
供たちが再びプログラミングに夢中になる時代
が来るかもしれない。その中から未来のビル・
ゲイツやマーク・ザッカーバーグが生まれるか
も̶̶そんなふうに考えていました。

次世代の紙を目指す。
しかし障害が……

　そうしたアイデアの一方で、僕は「Zeptopad」

注1） Pythonデフォルトの統合開発環境。
注2） MITメディアラボのライフロング・キンダガーデン・グループによって開発された、教育向けビジュアルプログラミング言語。

e n c h a n te n c h a n te n c h a n te n c h a n te n c h a n t

http://www.uei.co.jp

6 - Software Design Feb. 2014 - 7

enchantMOONの誕生［前編］enchantMOONの誕生［前編］第10 回

というアプリの開発をずっと行ってきました。
当時このソフトに興味を持ってくれたNECの
依頼で、Zeptopadをもとに同社の端末にプリ
インストールするノートアプリの開発をしてい
ました。しかし iPadでもAndroidでも、僕た
ちが思うような書き心地には程遠い感覚があり
ました。どれだけアプリケーションを最適化し
てもOSが手書きを重視していないので、努力
が報われる気がしない時代が長く続きました。
　僕たちとしては、ベクトルベースで、なおか
つ手書きの線を忠実に再現できるようなものを
作りたかったのですが、当時のキャパシティブ
タッチスクリーンの解像度では充分とは言えま
せんでした。NECは抵抗皮膜をかなり頑張っ
て最適化したのですが、キャパシティブにしろ
抵抗皮膜にしろ、紙と同じように画面に手をつ
くととたんに筆跡が乱れます。これではとても
実用的に使うことはできません。
　結局、どれだけ最適化を頑張ってもOSやハー
ドの制約がある以上、紙の書き心地には決して
追いつかないという事実は、僕たちを大いに落
胆させました。
　そのうえ、大メーカーと組んだ協業体制にも
落胆がありました。なにしろ、ハードがなけれ
ば我々の実現したいソフトは作れないのです。
しかし、誰も僕たちが求めるハードウェアを作っ
てはくれませんでした。
　こうなったら、いっそのこと自分たちでハー
ドを作ろう。僕はそう心に決めました。

enchantMOONの誕生

　僕は子供向けに、低価格のAndroidタブレッ
トをプログラミング環境とセットで製品化する
というアイデアを具体的に検討することにしま
した。これはハードウェアは非力であっても、
ソフトウェアによって付加価値を付け加えるこ
とができないかという挑戦でもありました。ちょ
うどスティーブ・ジョブズが復活したときの
Appleが採っていたような戦略です。Windows

PCとほとんど同じハードウェア構成で、値段
は高いけれどもMac OSを使いたいがために
Macを購入する、という路線です。
　2012年4月から具体的な検討を始め、9月に
はエンジニアリングサンプルをいくつか手に入
れました。その一方で筐体のデザインをイラス
トレーターで漫画家の安倍吉俊さんに依頼し、
監修を映画監督の樋口真嗣さんにお願いしまし
た。さらに確実を期すために、Androidの足回
りに強いエンジニアを国内最大手キャリアから
ヘッドハンティングしました。
　そうして体制を整える傍

かたわ

ら、僕はまったく未
経験のハードウェアビジネスにどう取り組んで
いくべきか頭を悩ませていました。
　実のところ、そもそも最初はAndroid端末を
作ろうと思っていました。ただし不安がありま
した。なぜなら、Android端末として販売する
場合、ライバルがあまりにも多いのです。我々
のような会社が単なるAndroid端末を発売して
も埋れてしまうし、せっかくソフトで付加価値
を付けようとしてもその意図がうまく伝わらな
い可能性もあります。
　圧倒的に違うものを作る必要がありました。
そうでなければ我々が産み出す意味がないので
す。そのために、コンセプトを極限まで尖らせ、
他の追従を許さない独創的な商品にする必要が
あると考えたのです。
　しかし、一体どのように独創的な製品を作り
出すか。僕にはさっぱり見当がつきませんでした。
　その問いに答えを出したのが辻秀美でした。
　魔法の紙、NO UI。そしてプログラミングま
で可能な万能端末。Zeptopadとenchant.jsとい
う2つのプロジェクトが初めてつながりました。
　これは圧倒的に違うモノでした。それどころか、
これまでの我々がやってきたことの道のり、そ
のすべてが凝縮されたと言っていい企画でした。
　僕は、自分が生まれてきた意味はここにあっ
た、と思いました。これほど独創的な製品を産
み出すことができるのは、世界でUEIしかあ
り得ないと。

8 - Software Design

e n c h a n t

Feb. 2014 - 9

　なぜなら、大企業なら確実に潰されるほど斬
新な企画であり、仮にやったとしても、他社な
ら膨大な努力をしてこのまったく新しいパラダ
イムに向けたアプリを開発してくれる人材を集
めなければなりません。たとえば世界的ベスト
セラー端末のGalaxy Noteでさえも、専用アプ
リを作ろうと思う開発者は世界に何人いるので
しょうか。
　しかし僕たちには2年間に渡って育ててきた
enchant.jsのコミュニティがすでにあります。
プログラミングの楽しさをもっと大勢の人に伝
えたいという活動が、すでに十分広まっていま
した。僕たちはenchant.jsでプログラムするこ
との楽しさを知った人々に、こう伝えるだけで
いいのです。「こっちに来て。もっとおもしろ
い世界があるよ」とね。
　新しいハードウェアやプラットフォームが成
功するためには開発者コミュニティの存在が不
可欠です。そしてこの端末は、アラン・ケイが
提唱するエンドユーザプログラミングというコ
ンセプトにまで接続されます。コンピュータの
歴史について充分な教養を持った人物ならば、
この端末を買ってくれるかどうかはともかく、
無視し続けるのは難しいはずです。そこに商機
があると思いました。そんなニッチな市場は、
いまや世界の誰も狙っていません。ブルーオー
シャンです。しかしニッチであるがゆえに、大
きな会社ではそこに向けた商品を開発するなん
て計画にGOサインは出ません。
　つまり、これをやるためには、1）アイデア
があり、2）充分な資金があり、3）開発能力が
あり、4）経営者にプログラミングについての
教養があり、5）なおかつ大企業ではない、と
いう5つの条件を同時に満たす必要があります。
　当初の目標販売台数は1,000台。これは工場
の主張する最小ロットでした。1,000台くらい
なら、そうしたニッチ市場には充分なニーズが
あるだろうと予測しました。
　この新しいコンセプトは、考えれば考えるほ
ど自信が湧いてくるという、僕の仕事の中でも

珍しい部類のものでした。しかし同時に、この
製品を理解するのはとてつもなく難しいもので
あることを僕は幾度も痛感させられることにな
ります。これほど本質を理解するのが難しく、
作るのが難しい製品はほかにないだろうと思い
知ることになったのは、製品を発表するより遥

はる

か以前でした。
　僕はまず、自分の組織の中にいる敵と闘わな
くてはならなかったのです。

四面楚歌

 「まあ夢の話は、もういいからさ」
　武市智行は取締役会で熱っぽくこの計画につ
いて語る僕をそう制しました。
　会社の中長期経営計画について説明している
ときの話です。僕はこのハードウェアとそこか
ら生まれる周辺技術を成長ドライバにして、こ
の会社を長期的に成長させていくべきと主張し
たのです。元銀行員でゲーム畑出身の武市にし
てみれば、ゲーム以外の事業の成長性を適正に
評価するのは難しかったのでしょう。彼はあく
までゲーム事業を主力として成長を目指すべき
だという主張を繰り返しました。
 「素人なので申し訳ありませんが、私には、こ
れが到底、売れるとは思えません」
　他の役員も口々に不安を述べました。
 「個人的な意見ですが、私は賛成できませんね。
まったく現実感を持ってこのビジネスの将来性
を感じることができないんですが……」
　大株主であるベンチャーキャピタル、ジャフ
コの坂本氏も苦言を呈します。
　なんて愚かな連中だ、と僕は思いました。彼
らはコンピュータの歴史も、意義も、教養も、
何もわかっていないのです。この製品がどうし
て革命的なのか、理解するのが難しいのはわか
ります。これだけ詳しく説明してもわからない
のだから、もうわかるわけがありません。アラ
ン・ケイが誰なのかもよく知らないような人た
ちのために時間を費やすのは本当に腹が立ちま

8 - Software Design

enchantMOONの誕生［前編］第10 回

Feb. 2014 - 9

enchantMOONの誕生［前編］第10 回10

した。
　この時代、ソーシャルゲームはもちろん重要
です。それは世の中の流れがソーシャルゲーム
に来ているからです。それもネイティブアプリ
へのシフトが起きていることもわかっています。
しかし、今、この瞬間だけしか見ていなかった
ら、正確な未来を予測することも、もちろん創
りだすこともできません。
　僕はハードウェアによって会社を成長させる
ことこそが最終的には最も会社の将来価値を高
める方法だと説明を繰り返しましたが、彼らは
まともに取り合うことをしませんでした。妥協
案として、僕の部署が稼ぐ想定利益を上限とし
て研究開発に投入する、という条件で、取締役
会はプロジェクトを渋々承認しました。
　その中でも無条件で応援してくれていたのは、
大手ゲーム会社から引き抜いて来たゲーム部門
のトップ、相原将也と、UEIの基幹事業である
ソリューションビジネス部のトップ、水野拓宏
でした。相原は僕を全面的に信頼してくれてい
たし、水野はコンピュータに対する深い教養が
あったため、僕の意図を理解してくれたのです。
ほかの全員が敵に回っていたのですが、稼ぎ頭
の彼らが応援してくれたお陰で、このプロジェ
クトをなんとかスタートすることができたのです。
　反対派を説得するためには、デモンストレー
ションとして International CESへ出展するこ
とは必須条件でした。何が出ようが、製品の開
発に失敗しようが、会社の宣伝にさえなればい
い、ということで彼らはこの無謀とも言えるプ
ロジェクトに目をつぶることにしたのです。
　しかし次の裏切りは、意外にも、僕の腹心の
部下たちでした。

裏切り

 「なんだこれは」
　気がつくと僕は会議室で怒鳴っていました。
　ポカンとした表情で僕を見つめたのは、この
プロジェクトを監督する増田哲郎でした。彼は

大学卒業後、新卒からずっと僕の直下で働き、
大きな案件は常に彼が事業のフロントとなって
実際に回してきた、いわば腹心中の腹心でした。
最も信頼できる部下であり、彼の長所も短所も
知り尽くしていると思って重用していました。
　しかしそのときの僕は、増田に対し強い怒り
を感じていました。
 「あのう……なにか問題がありましたか？」
　最終的な製品仕様が決まった、と連絡を受け
た僕は会議室に呼び出され、増田とプランナー
の辻から最終の仕様書のプレゼンを受けていま
した。開発は暫定的な仕様書をもとに進行して
おり、この開発がこのままスケジュールどおり
にいくとこのような製品になる、というプレゼ
ンです。
　ところが当初の勢いはどこへやら。僕にとっ
てこの製品の最大の魅力であるシールアプリや、
プログラミングという機能が完全に抜け落ちた
ものでした。
　目の前にあるそれは、一風変わった手書きノー
ト端末の企画に成り下がっていました。アプリ
の追加さえもできず、僕にはまったく魅力を感
じることができませんでした。
 「これ、君は59,800円で売ってたら買うの？」
　増田は答えました。
 「それは……プログラマと相談した結果、実装
を考えると、現実的にはこういう仕様しかない
と……」
　それで僕はああ、と思いました。“病気”が始
まったな、と思ったのです。どんなモノ作りの
現場にもある“病気”です。
　コンセプトがどれだけ尖っていても、否、尖っ
ているからこそ、プログラマが何を作ればいい
のか焦点が定まらなくなり、仕様書を策定する
段階で、「それはできない」「それは間に合わない」
と拒絶し、最終的に出来上がるのが、無難その
もののどこにでもある平凡な製品になってしま
うという病です。ﾟ

10 - Software Design

はじめに

　今回は久々にエルゴノミクスキー

ボードを紹介します。通常、タイピ

ングをする際は、机の表面に対して

手のひらが並行になるように手を置

くのが一般的です。しかし、それで

は腕をひねることになります。手の

ひらは机の表面に対して垂直となる

のが腕に優しいスタイルだ、という

考え方も存在します。エルゴノミク

スキーボードの中には、手のひらが

机の表面に対して垂直に近い状態で

タイピングできるように設計されて

いるものも存在します。今回はそん

なタイピング方法が可能なキーボー

ドを取り上げます。

Comfort
Keyboard
Original

　Comfort Keyboard Company

,Inc.が販売しているエルゴノミクス

キーボードです（写真1）。公式ペー

ジ注1を見る限りでは、本体色のバリ

エーションが黒と白、接続がUSB

とPS/2というバージョンがあるよ

うです。また、筆者は見たことがあ

りませんが、専用のフットペダルも

存在するようです。

特徴

　数々のおもしろい特徴を備えた立

体型で分離可能なキーボードです。

 •3つのパーツに分離でき、好きに

組み合わせられる

 •キーボードの角度を変更できる

 •キー配列を変更できる

　キーボードを3つの部位に分離で

きます。それぞれ左手で打つ部分、

右手で打つ部分、テン

キーの部分です。これ

らは鉄板に固定してず

れないようにしてあり

ますが、鉄板から取り

外して順序を入れ替え

ることもできます（写

真2）。「左利きだから

テンキーは左側に置き

たい」「テンキーを中央に置き左手で

打つ部分と右手で打つ部分を離して

肩が窮屈にならないようにしたい」

といったことが実現できます。

　また、3つの部位の角度は自由自

在に変更できます（写真2）。単純に

角度をつけるだけでなく、回転させ

ることもできます。ホームポジショ

ンで打つキーを縦にならべて、腕を

ひねらずに打つことも可能です（写

真3）。

　キー配列も自由自在に変えられま

す。変更した内容はキーボード側に

記憶されるので、どのような場面で

も変更した配列が使えます。マクロ

も使用可能で、複数のキー入力を1

コレクターが独断で選ぶ！

Comfort Keyboard
Original & SafeType

腕に優しい姿勢で
タイピングできる

偏愛キーボード図鑑

第10回

注1） http://www.comfortkeyboard.com/keyboards_comfort.html

写真1　Comfort Keyboard Original

写真2　順序入れ替えて、角度を変更した様子

株式会社 創夢
濱野 聖人HAMANO Kiyoto
khiker.mail@gmail.com
Twitter：@khiker

http://www.comfortkeyboard.com/keyboards_comfort.html

偏
愛
キ
ー
ボ
ー
ド
図
鑑

10 - Software Design Feb. 2014 - 11

vol.10 Comfort Keyboard Original & SafeType

つのキーに割り当てられます。マク

ロを定義すると既存のキーを1つ潰

すことになると思われるかもしれま

せんが、同製品の場合、必ずしもそ

うではありません。マクロを実行す

るキーは好きなキー（たとえばÎ

など）に定義するのですが、通常は

そのキーを押してもマクロは実行さ

れません。同製品にはComfort Key

というキーが存在し（写真4）、その

キーを押した直後にマクロを定義し

たキーを押すと、マクロが実行され

るようになっています。キー配列の

変更もマクロの定義もキーボードか

ら行え、特別なソフトウェアを必要

としないため、設定したいと思った

ときすぐに実施できます。

入手方法

　筆者の知る限り、日本で取り扱っ

ている店はありません。海外の

Amazon.comでは取り扱ってお

り、値段は$389です。Amazon.

comの場合、キーボードは日本に

直接発送してくれな

いことも多いので、一

番簡単な入手方法は

オークションサイト

を使うことです。

eBayでは比較的よ

く見かけ、落札価格は

$100を切ることも

あれば、$200を超す

こともあります。$200以下であれ

ば狙い目です。

SafeType
ergonomic
keyboard

　ErgoType BVが販売するエル

ゴノミクスキーボードです注2（写真

5）。黒色と白色のカラーバリエー

ションが存在します。

特徴

　特徴は見た目のとおりその形状で

す。腕をひねらずにタイピングが行

えるように、通常のキーが縦に配置

されています（写真6）。

ただ、その形状の結果

として、キーが見づら

くなっています。通常

のキーボードでは見下

ろせば良いだけですが、

SafeTypeでは顔を横

に向ける必要がありま

す。その対策として鏡

が付いており、鏡の反

射で縦に配置された

キーが見えるように

なっています。

　形状以外は一般的な

キーボードととくに変

わらず、普通のメンブ

レンキーボードです。

コンセプトに沿ったシンプルなキー

ボードですが、値段が高く入手しづ

らいのが難点です。

入手方法

　日本で取り扱っている店はないよ

うです。Amazon.comでは取り

扱っており、$280ほどです。オー

クションサイト（eBay）で比較的よ

く見かけるキーボードで、落札価格

は$100～200ほどです。

◆　◆　◆

　手のひらを机の表面に対して垂直

にかまえて操作するスタイルは、

キーボードだけでなくマウスでも存

在します。Vertical Mouseと言わ

れています。何種類か製品が出てお

り、日本でも秋葉原などの店頭で入

手可能です。まずはマウスで試して

みて、自分のスタイルに合うような

ら、Comfort Keyboard Original

などの利用を考えてみると良いで

しょう。s

注2） http://safetype.com/index.php

写真3　腕をひねらずにタイピングできる

写真5　SafeType ergonomic keyboard

写真6　SafeTypeの使用例写真4　Comfort Key

http://safetype.com/index.php

12 - Software Design12 - Software Design

はんだづけカフェ

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 40 回

秋葉原発！

　この連載のタイトルにも含まれている「はん
だづけカフェ」注1は、電子工作のための道具や
場所をシェアできるオープン・スペースです。
秋葉原の端にある末広町という場所で、電源や
ネット環境、ハンダごてといった、ちょっとし
た作業ができる環境と、そこにいる誰かと
ちょっとした会話をしたりする場を提供してい
ます（写真1）。
　はんだづけカフェは、ArduinoなどをWeb

ショップで販売しているスイッチサイエンス
が、「より多くの人に、電子工作の楽しさを
知ってもらいたい」ということで始め、場所代
や店員さんの人件費などを負担することで運営
しています。
　はんだづけカフェは、筆者が電子工作という
趣味を再開してしばらくした2010年5月9日
にオープンし、いろいろなことを学ばせても
らっている場所です。工作をするには多くの知
識が必要になるのは言うまでもありませんが、

注1） http://handazukecafe.com/

 ▼写真1　はんだづけカフェ（2010年ころ）

活字にはならないノウハウが多く存在します。
そういった情報をやりとりしたりできるスペー
スはとても有用です。はんだづけカフェで、
FPGA-CAFE/FabLab Tsukuba注2やTokyo

hackerspace注3といったほかのスペースの存在
も知りました。
　そうこうするうちに筆者は電子工作という趣
味にどっぷりハマリ、海外のMaker Faireに参
加したり、そのときに海外のhackerspaceを訪
問してみるのも楽しみになってきたのです。

　一昨年、筆者は仕事の都合で、東京から名古
屋に生活の中心を移しました。そうなると、こ
ういったおもしろいスペースが自分の近くにも
欲しくなりました。名古屋にはソフトウェアで
はgeek bar注4という集まりがありますし、隣の
岐阜県の大垣市にはIAMASイノベーション工
房［f.Labo］注5もあります。しかし、電子工作中
心で、比較的行きやすい場所はないだろうかと
いう思いは消えません。なければ作るしかない
ということで、こうして筆者は、はんだづけカ
フェを名古屋に作ることができないかと考え始
めました。

　ここまでFabLabやhackerspaceなどのス
ペースを挙げて来ました。日本には上陸してい

注2） http://www.fpga-cafe.com/

注3） http://www.tokyohackerspace.org/

注4） https://www.facebook.com/nagoyageekbar

注5） http://f-labo.tumblr.com/

スペースの運用形態

東海のスペース

Makerスペースを始めてみた

http://www.switch-science.com/
http://handazukecafe.com/
http://www.fpga-cafe.com/
http://www.tokyohackerspace.org/
https://www.facebook.com/nagoyageekbar
http://f-labo.tumblr.com/

12 - Software Design Feb. 2014 - 13

第 40 回

12 - Software Design

 ▼写真2　FabLabつくば

ある人々が集まるコミュニティによって運営さ
れるスペースです。1990年代にヨーロッパの
hackerたちが集まり、こういったスペースを
持ち始めたのがHackerspaceの始まりです。も
ともとhackとかhackerから連想されるように、
ソフトウェアやネットワーキング方面の集まり
でした。
　21世紀に入ってからHackerspaceはアメリ
カに輸入され、NYC ResistorやNoisebridgeな
ど数多くのHackerspaceが立ち上がりました。
Hackerspaceにもよりますが、それぞれソフト
ウェア方面に関心のある人が多いところや、
ハードウェア方面に強いところといった特色が
あったりもします。
　TechShopやFabLabは場所を管理する側と
利用者側が分かれていますが、Hackerspaceは
もっとコミュニティ寄りです。本連載でも何度
か紹介しましたが、メンバ費を支払っている人
はスペースの鍵を持っていて、公開日に一般の
人々にスペースを公開してメンバを集めるとい
う運営方法をよく見かけます。筆者がHacker

space巡りをするときには、公開日を狙った
り、アポを取ったりしてから行くようにしてい
ます（写真3）。
　はんだづけカフェは、これらのどれにも当て
はまりません。運用形態はFabLabに近いので
すが、ファブラボ憲章を掲げてはいないので
FabLabではありません。
　筆者がスペースを開くにあたって、気になっ
たのはおもに店番の人件費です。もちろん家賃

ませんが、TechShop注6というものもアメリカに
は生まれています。これらのスペースの違いを
簡単に紹介しましょう。
　TechShopでは、月$175の会費で、木工、
機械工作や溶接といったさまざまな設備のそ
ろった工房を提供してくれます。同社は2006

年創業で、このスペースをチェーン展開してい
るベンチャー企業です。TechShopを起業した
マーク・ハッチ氏はKinko's出身ということで、
そう聞くとTechShopはKinko'sの工房版とも
言えることに気づかされます。
　FabLabは、「ほぼあらゆるもの」を作ること
を目標とした工房です。MIT（マサチューセッ
ツ工科大）メディアラボのThe Center for Bits

and Atomsで行われていた研究から生まれまし
た。世界50ヵ国250ヵ所以上のFabLabが存在
し、国内には現在6ヵ所のFabLabが存在しま
す。FabLabには「ファブラボ憲章」注7という基
本理念や運営のガイドラインが存在し、この憲
章が世界中のFabLabで掲示されているはずで
す。ほかにFabLabとなるための条件も存在
し、その中では週一度は無償（か、バーターで）
一般に公開する日を設けることなどが定められ
ています。FabLabは教育機関や地方自治体、
非営利機関などによって運営されているケース
が多く存在します（写真2）。
　Hackerspaceは、おもにテクノロジに興味が

注6） http://www.techshop.ws/

注7） http://fablabjapan.org/fabcharter/

 ▼写真3　London Hackerspace

第 Makerスペースを始めてみた

http://www.techshop.ws/
http://fablabjapan.org/fabcharter/

14 - Software Design

はんだづけカフェなう
秋葉原発！

ている人たちとも知り合いました。現在、私た
ちのスペースの代表者をしてくださっている朝
尾さんとその友人たちです。朝尾さんは子供た
ちがものを作る経験ができる場所を作りたいと
考え、筆者はものを作ることを楽しむ仲間と出
会って一緒に遊べる場所がほしいと考えていま
した。モチベーションは違えど、人と関わりた
いという大きなくくりでは想いは一緒です。
　朝尾さんたちと一緒に物件探しなどをした結
果、昨年の7月によさそうな物件を見つけるこ
とができました。大家さんが、パルル注8とい
う多目的スペースを始めた方で、こういったス
ペースへの理解が深い方だったのです。また、
名古屋市内でも新栄という比較的交通アクセス
の良い場所にあるということもとても好都合で
した。家賃も予算内です（写真4）。

　場所が決まったので、次は工具などです。私
物を持ち寄ったり、知り合いのツテで置かせて
もらった工具などが少しずつそろい始めてきま
した。もちろん3Dプリンタもあります。ボー
ル盤一揃えを持ってきてくださる方がいたり
（写真5）、大型のCNCミリングを持って行っ

注8） http://www.parlwr.net/about.html

などの固定費も気にはなるのですが、店番とし
てアルバイトなどを雇うとなると、必要になる
コストは家賃の比ではありません。そして、こ
れらのコストを捻出するために、利用料をいた
だくというのは考えられませんでした。僕はさ
まざまな人と一緒に趣味を楽しみたいのであっ
て、店舗経営がしたいわけではないからです。
こういったことから、Hackerspaceのような運
営形態を採ろうという結論に達しました。

　スペースを始めたいと考えたころ、筆者は
「はんだづけカフェ 名古屋」を始めたいという
ことで仲間を探していました。Hackerspace形
式で行くのであれば、一緒に立ちあげる仲間が
いなければ筆者1人ですべての手続きや費用の
捻出をする必要があります。仲間を探すつもり
で少しずつ動いていたところ、名古屋にそうい
うスペースがほしいと思っている人々と知り合
うこともできました。
　スペースの継続性を考えると月々の家賃は
10万円以下に収めたいと考え、物件を探し始
めたりもしました。しかし、交通アクセスの良
いところで、かつ、人が出入りしたり、工作機
械を使っても良い場所となるとなかなか見つけ
るのは難しいものです。そうこうするうちに1

年近くの月日が経ってしまいました。

　やがて、名古屋にFabLabを作りたいと考え

名古屋でニーズはあるのか

工具

仲間 ▼写真5　 ボール盤で3Dプリンタの部品に穴を開け
る筆者

 ▼写真4　借りたての状態の物件

http://www.parlwr.net/about.html

14 - Software Design Feb. 2014 - 15

第 40 回

運営形態

最近の状況

ています。たとえば、壁。プロジェクターで壁
に何かを映したいと思っても、スクリーンがあ
りませんので、壁から作り始めました（写真
7）。もともと大工だった方に教えてもらって、
ホームセンターで買ってきた材料を使って壁を
少しずつ作り始めています。パテで補修などを
してから、最終的には壁をスクリーンにできる
塗料を塗ろうとしています。
　また、まだ私たち自身も加工機を使いこなせ
ている段階ではないため、ワークショップなど
を開催しながら加工機を使ってもらえる人を増
やそうと思っています。
　こんな、始まったばかりのMaker Lab

Nagoya注9（写真8）ですが、名古屋近郊の方はぜ
ひとも遊びにきてください。最近、なかなか忙
しくて顔を出せていないのですが、お声がけを
いただければ筆者もスペースでお話できるよう
に行こうと思います。ﾟ

注9） http://makerlab.jp/

ていいよと言ってくださる方がいたりと、当初
考えていたよりも多くの人が助けてくださいま
した。工具も一通りそろってきた9月、ささや
かなオープニングパーティーを開いてお披露目
もしました。また、最近では自分で購入した
レーザー加工機（写真6）をスペースに置いてく
ださる太っ腹な協力者も現れました。

　運営形態ですが、最終的にはHackerspace的
な運営になっています。鍵を持っている「コア
メンバ」と私たちが呼んでいる人々で家賃など
の維持費を負担しています。まだまだ、「来て
くれれば確実に楽しんで帰ってもらえる」と胸
を張って言える状態ではないのですが、コアメ
ンバになっても良いよと言ってくださる人が見
つかったのも驚きです。
　皆、それぞれ仕事があるので平日にスペース
を開けておくのは難しいのですが、祝祭日には
できるだけ開けるようにしています。スペース
を来て下さった方にはとくに費用負担を設けて
はいませんが、ドネート（寄付）を受け付けると
いう形で運営をしています。開いている日は、
はんだづけカフェを真似て、Googleカレンダー
に書き込んで見てもらえるようにしました。

　先ほどの写真のように、借りた段階ではまっ
たく内装もされていませんでしたので、少しず
つ自分たちでスペースをよくしようと工夫をし

 ▼写真6　レーザー加工機

 ▼写真7　作った壁

 ▼写真8　Maker Lab Nagoya

第 Makerスペースを始めてみた

http://makerlab.jp/

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ
『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2014 年 2 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

Blue
Raspberry Pi

Raspberry Pi 誕生1周年記念限定モデル。One-Nine-Design 社が特別
にデザインした専用箱に、基盤部分が青色のシリアルナンバー入り
Raspberry Pi「Model B Revision 2」、専用ケース、Raspberry Pi 財団
代表エベン・アプトン氏の署名入り証明書を同封したパッケージです。
 提供元 アールエスコンポーネンツ　 URL http://rswww.co.jp/

過負荷に耐える
Webの作り方
株式会社パイプドビッツ 著／
A5判、224ページ／
ISBN＝ 978-4-7741-6205-8

秒間 10,000ものアクセスに耐えることが求められる国民的アイドル
グループ選抜総選挙のWeb投票システム。そのシステムを開発し
たエンジニア自ら過負荷に耐えるシステム作りについて解説します。
 提供元 技術評論社　 URL http://gihyo.jp/

知識ゼロから学ぶ
ソフトウェアテスト
改訂版
高橋 寿一 著／
A5判、240ページ／
ISBN＝ 978-4-7981-3060-6

各種テスト手法の基礎とポイント、アジャイルなど新しい開発手法
に対応したテストの考え方など、テスト技術者にとって不可欠な知
識と情報を親しみやすい記述や例示でわかりやすく解説します。
 提供元 翔泳社　 URL http://www.shoeisha.co.jp/

HTML5ハイブリッド
アプリ開発［実践］入門
久保田 光則、アシアル株式会社 著／
A5判、384ページ／
ISBN＝ 978-4-7741-6211-9

フレームワーク「Apache Cordova」による開発から、ストレージの
使い分け、タッチジェスチャなどの活用など、HTML5ハイブリッド
アプリ開発に必須の知識をわかりやすく解説します。
 提供元 技術評論社　 URL http://gihyo.jp/

ESET
FAMILY
SECURITY
2014
Windows、Mac、Android の端末を合計 5台まで利用可能な総合セ
キュリティソフトの最新版。ホスト侵入防止システム機能や不正侵
入対策機能を強化しました。プレゼント提供の製品は 1年間のみ使
用可能。その後の契約更新はできませんが、機能は製品版と同じです。
 提供元 キヤノンITソリューションズ　 URL http://www.canon-its.co.jp/

ノートPC
タブレット
デュアルアーム
DN-10313
17 インチサイズまでのノート PCと、iPad や 7～ 10インチのタブレットを同時に設置でき
るアームセットです。それぞれのアームは使いやすい角度に調節でき、デスク上を効率良く
使えます。支柱に取り付けるアームの位置は任意に変更が可能。タブレットホルダーは、横
向き、縦向きに向きを変えられます。　※本製品に iPad とMacBook Pro は付属しません
 提供元 上海問屋　 URL http://www.donya.jp/

人生って、
大人になってからが
やたら長い
きたみりゅうじ 著／
A5判、176ページ／
ISBN＝ 978-4-344-02472-4

大人になってからの人生は結構イベントが多い。そんな果てしなく
長いように思える「大人になってからの人生」の苦労と喜びを、と
きにユーモラスに、ときにセンチメンタルに描くコミックエッセイ。
 提供元 幻冬舎、きたみりゅうじ氏　 URL kitajirushi.jp

1 名

5名

3名 5名

2名

2名 2名

著者サイン
入り！

 読者プレゼントのお知らせ 読者プレゼントのお知らせ 読者プレゼントのお知らせ

デュアルアーム

17 インチサイズまでのノート PCと、iPad や 7～ 10インチのタブレットを同時に設置でき

1 名

http://sd.gihyo.jp/
http://www.donya.jp/
http://rswww.co.jp/
http://www.canon-its.co.jp/
http://kitajirushi.jp
http://www.shoeisha.co.jp/
http://gihyo.jp/
http://gihyo.jp/

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ

λ

λ

λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ λ λ λ λ λ λ λ λ

λ

λ

λ

λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λλλλ

λ

λλλ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

関数型プログラミング言語について、プログラマ・エンジニアが再注目しています。CPUのマル
チコア・マルチスレッド化が進んでいるのに、既存の言語ではその機能を十分に活かせないからだ
と言われています。それがふたたび脚光を浴びている理由です。関数型プログラミング言語は、ス
クリプト言語に慣れた目では、一見わかりにくい特殊な記述方法が多いので面くらいますが、一度
その魅力に取り憑かれると、ファンになってしまうことが多いのです。誕生から数十年を経ても
Lispプログラマを名乗る方もたくさんいます。本特集では、元祖Lispから、OCaml、Haskellへと
解説を進め、Pythonでスクリプト言語の場合を考え、Erlangで実装例を知り、Java SE 8での関
数型の導入の状況を押さえ、最後にRubyでの関数型を探求します。抽象度が高いプログラミング
言語なのでいきなり習得するのは難しいですが、本特集を足がかりにして再入門してください。

CONTENTS

λ λ λ λ

λ

λ

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第1特集

Lispでウォーミングアップ... 18
 Writer るびきち

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第1章

Rubyで関数型脳を育てる方法とは？ .. 60
 Writer るびきち

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第7章

Java SE 8のラムダ式で変わるJavaプログラミングスタイル 55
 Writer きしだなおき

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第6章

実践Erlang ―高可用サーバを作ってみよう― 50
 Writer 篠原 俊一

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第5章

Pythonにおける関数型プログラミング ... 45
 Writer 柏野 雄太

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第4章

コマンド作りで知るHaskell ... 33
 Writer 上田 隆一

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第3章

今熱い！　快進撃のOCaml ... 23
 Writer 五十嵐 淳、古瀬 淳、Jacques Garrigue

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第2章

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ

λλ λ
λ
λ
λ
λ

λ
λλ

λ
λλ
λλ

関数型プログラミング
再入門

λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

18 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 19

関数型プログラミングを再入門する際に避けて通れないのが、Lispです。本章では、関数型プログラミングの元
祖であるLispの基礎文法を押さえます。その特徴である、式の評価、リスト、関数定義、ラムダ式の基礎的な
考え方を解説し、最後にリスト処理の方法のバリエーションを紹介します。

Lispでウォーミングアップ

 Writer るびきち（http://www.rubyist.net/~rubikitch/）／Twitter@rubikitch

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第1章

　

名前の由来

　Lispという言語があることを聞いたことが
ありますか？　関数型といえばLispについて
話しておく必要があります。Lispとは1958年
生まれのFORTRANの次に古いプログラミン
グ言語です。
　LispとはLISt Processingの略であり、リス
ト（list）処理を基本としています。ガーベッジ・
コレクション、高階関数などの先進的な特徴が
あの時代からあったのは驚くばかりです。初め
ての「パソコン」が登場する1974年の15年以上
も昔にLispが登場したのは、まさに古代の神
秘と言えるでしょう。

Lispの子供達

　Lispは容易に実装できるため、たくさんの方
言が生まれました。それらを標準化するため、
Common Lispが登場しました。ほかにも最小主
義のScheme、JVMで動くClojure、Emacsの拡
張言語としてEmacs Lispが現在おもに使われ
ているLisp方言です。本稿で取り扱うコードは
Emacs LispとCommon Lisp（処理系CLISP）で
動作します。
　現存する多くのプログラミング言語がLisp

の影響を少なからず受けています。第7章で取

り上げるRubyはMatzLispと言われているほ
ど強く影響を受けています。

（）だらけのLispのコード

　そして、Lispは関数型言語の元祖と言われ
ています。関数型言語がもてはやされている今、
Lispを知っておくことは大きな意味があります。
Lispプログラミングをしないとしても、知っ
ておくことで現在使っているプログラミング言
語を違った視点でとらえられるようになります。
　Lispのコードを見たらほぼ全員が大量の括
弧に圧倒されることは間違いありません（リス
ト1）。LispはS式と呼ばれるこのシンプルき
わまりない文法から驚くべき表現力を発揮しま
す。
　関数型と言われているLispは実はマルチパ
ラダイム言語で、命令型やオブジェクト指向プ
ログラミングにも対応しています。Emacs

LispはEmacsを操作するのが目的なので、も
はや命令型言語になっています。

リスト1　Lispのサンプルコード ▼

;;; nの階乗を求める関数
(defun fact (n)
 (if (= n 0)
 1
 (* n (fact (- n 1)))))
;;; 関数呼び出し
(fact 1) ; => 1
(fact 4) ; => 24
(fact 5) ; => 120

λ Lispとは

http://www.rubyist.net/~rubikitch/

18 - Software Design Feb. 2014 - 19

Lispでウォーミングアップ
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第1章

　本稿のコードを試すには、当然Lisp処理系
が必要です。Emacsを使用しているのであれば、
M-x ielmを実行すればプロンプトが出てきま
す（図1）。Common Lispの機能を使うためにcl

ライブラリを読み込んでおきます。
　そうでなければCommon Lisp処理系CLISP

をお勧めします（図2）。フリーで手軽に使える
Common Lispインタプリタです。インストールし
たらclispを実行すればプロンプトが出てきます。
　Common Lispを常用するならばEmacs上で
SLIMEを導入するともっと快適になります。
paredit.elを使えば括弧の対応に悩まされるこ
とがなくなります。

　Lispコードの最大の特徴は、いらいらするほ
ど括弧にあふれるこの構文ですね！　S式と呼ば
れるこの構文こそLispの表
現力の源です。S式はとても
解析しやすく、木構造を表現
するのにうってつけの構文に
なっています。プログラミン
グ言語は処理系によって構
文木に変換されますが、
Lispの場合は構文木そのも
のを書いていると言えます。
　S式は

（命令 引数 引数...）

という形式になっています。
そして引数も、S式を取りま
す。たとえば、数式

1+3*4

をS式で表現すると、

(+ 1 (* 3 4))

となります。S式での数式表現は慣れるまで多
少時間がかかると思いますが、見てわかるよう
にS式は評価の優先順位が明確になります。乗
算が加算より優先されるのは常識ですが、Lisp

以外でビット演算するには優先順位を知ってお
く必要があります。
　Lispプログラムを実行することを評価とい
います。評価には次の規則があります。

1）数値、文字列、t（真）、nil（偽・空リスト）
を評価すると、そのまま評価結果になる

2）クオートされたS式はクオートが取れてそ
のまま評価結果になる

3）シンボルを評価すると、その変数の値が評
価結果になる

4）リストを評価すると、関数・スペシャルフォー
ム・マクロを呼び出す

5）関数は引数をすべて評価してから呼び出す
6）スペシャルフォームとマクロには独自の評
価方法がある

図1　Emacsの場合（ M-x ielm と入力） ▼

*** Welcome to IELM *** Type (describe-mode) for help.
ELISP> (require 'cl)
cl

図2　CLIPSの場合 ▼

 i i i i i i i ooooo o ooooooo ooooo ooooo
 I I I I I I I 8 8 8 8 8 o 8 8
 I ･ `+' / I 8 8 8 8 8 8
 ･ `-+-' / 8 8 8 ooooo 8oooo
 `-__¦__-' 8 8 8 8 8
 ¦ 8 o 8 8 o 8 8
 ------+------ ooooo 8oooooo ooo8ooo ooooo 8

Welcome to GNU CLISP 2.49 (2010-07-07) <http://clisp.cons.org/>

Copyright (c) Bruno Haible, Michael Stoll 1992, 1993
Copyright (c) Bruno Haible, Marcus Daniels 1994-1997
Copyright (c) Bruno Haible, Pierpaolo Bernardi, Sam Steingold 1998
Copyright (c) Bruno Haible, Sam Steingold 1999-2000
Copyright (c) Sam Steingold, Bruno Haible 2001-2010

Type :h and hit Enter for context help.

[1]>

λ 評価

λ プログラミング環境
の準備

20 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 21

　Lispプログラムはリストの集合体であり、
たくさんの関数と少数のスペシャルフォーム、
そしてユーザ定義のスペシャルフォームともい
えるマクロで構成されています。とくにLisp

のマクロは超強力でオリジナルの制御構造が定
義できるどころか、まったく新しい言語をも構
築できてしまうほどです。マクロ定義は高度な
話題になってしまうので、とても誌面では伝え
きれません。

　では、さきほどの式を評価してみましょう。
図3の過程をたどります。
　Lispではコードとデータが同じように書け
ます。今評価した式(+ 1 (* 3 4))は+、1、(*
3 4)を要素とするリストでもあります。これ
をプログラムとみなして評価した結果13とい
う値が得られました。評価器にデータとしてこ
のリストを渡すには '(+ 1 (* 3 4))のよう
に「'」をつけてクオートします。日本語でいう「」
みたいなものです。シンボルもクオートすれば
シンボルそのものを渡せます（図4）。

　リスト（list）はLispの代名詞と言えるオブ
ジェクトです。これまで出てきたLispコード
もリストです。リストはコンスセル（cons cell）
と呼ばれるペアのデータ構造を数珠つなぎにし
てつくられます。コンスセルは(C

カ ー

AR . C
クダー

DR)
のように表記します。たとえば、図5のように
1と2で構成されるコンスセルは(1 . 2)とな
ります。歴史的事情によりコンスセルの左は

car、右はcdrと呼ばれています。
　そして、それぞれのコンスセルのcdrを次の
コンスセルに設定すれば数珠つなぎになり、リ
ストとなります。(1 2 3)は(1 . (2 . (3 .
nil))) と同じです。リストはコンスセルで構
成されており、それ自身がコンスセルです（図6）。
　コンスセルとリストを評価器に渡してみましょ
う。コンスセルをそのまま渡すにはクオートが
必要です。carとcdrを取り出す関数、各要素
を評価してコンスセルやリストを作成する関数
が用意されています（図7、図8）。
　コンスセル以外の要素をアトムといいます。
数値、文字列、シンボルはアトムです。atom、
consp関数で判定できます。

　関数定義はdefunスペシャルフォームを使い
ます。ラムダ式はlambdaで定義します。ラムダ
式はリスト処理関数で大活躍します。関数を呼
ぶ関数funcallはラムダ式も呼び出せます（図9）。

 (+ 1 (* 3 4))

(+ 1 12)

13

引数1と(* 3 4)を先に評価する

(* 3 4)は3と4を引数に関数*を呼ぶ

1と12を引数に関数+を呼ぶ

図3　 式の評価過程 ▼

(1 . 2) 　　

1 2

図5　コンスセル ▼

(1 2 3) 　　

1 2 nil3

図6　コンスセルを数珠つなぎにする ▼

図4　評価例 ▼

ELISP> (+ 1 (* 3 4))
13

ELISP> '(+ 1 (* 3 4))
(+ 1
 (* 3 4))

ELISP> (eval '(+ 1 (* 3 4)))
13

ELISP> pi
3.141592653589793

ELISP> 'pi
pi

λ コンスセル・リスト・
アトム

λ 関数定義・ラムダ式

20 - Software Design Feb. 2014 - 21

Lispでウォーミングアップ
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第1章

　簡単なリスト処理の例として、リストの各要
素を2倍にするリストを作成するいろいろな方
法を紹介します。
　まずは命令型の考え方として、結果のリスト
を空リストnilで初期化→各要素を2倍にした
値を追加→ひっくり返すという方法をとります。
consとsetqでリストを更新すると、先頭にど
んどん追加されるので、ひっくり返す必要があ
ります。リストの各要素について式を評価する
関数mapcがあります。lambdaを書きたくない
ならばdolistを使います（図10）。
　やはり命令型ではLispらしさがまったく感
じられません。各要素において同じ計算を行っ
た新しいリストを返すmapcarを使いましょう。
これで余計なローカル変数も除去できます。さ
らに、(lambda (x) (twice x))は twiceと
同じなのでそのまま関数名を渡してしまいましょ
う。とても短く、関数型という雰囲気が出てき

ました（図11）。
　最後は、究極のLispマクロといえるloopマ
クロによる方法です。loopマクロは、mapcar
以外にも内部にループが使われている処理なら
ばほぼ何でも書ける「ループ用ミニ言語」という
べき代物です（図12）。Emacs LispではCommon

Lisp関数（マクロは可）が使いづらい状況にある
のでloopマクロを覚えることは重要なことです。
　loopマクロの全容を一度に把握しようとす
ると複雑すぎて挫折するかもしれません。関数
として提供されている処理と同じことをloop

図7　コンスセルとリストの例 ▼

ELISP> '(1 . 2)
(1 . 2)
ELISP> (car '(1 . 2))
1
ELISP> (cdr '(1 . 2))
2
ELISP> (cons 1 2)
(1 . 2)
ELISP> '(1 . (2 . (3 . nil)))
(1 2 3)
ELISP> (car '(1 2 3))
1
ELISP> (cdr '(1 2 3))
(2 3)
ELISP> (list 1 2 3)
(1 2 3)

図9　関数定義・ラムダ式 ▼

ELISP> (defun twice (x) (* x 2))
twice
ELISP> (twice 100)
200
ELISP> (lambda (x) (* x 2))
(lambda
 (x)
 (* x 2))
ELISP> (funcall (lambda (x) (* x 2)) 100)
200
ELISP> (funcall #'twice 100)
200

図10　命令型（mapc/dolist）の例 ▼

ELISP> (setq l '(1 2 3))　　
↑グローバル変数lを設定する
(1 2 3)

ELISP> (let ((result nil))　　
　　　　　　(mapc (lambda (x) (setq result
(cons (twice x) result)))
↑ローカル変数resultをsetqで更新
 l)
 (reverse result))
(2 4 6)

ELISP> (let ((result nil))
 (dolist (x l)
 (setq result (cons (twice x)
result)))
 (reverse result))
(2 4 6)

図8　N番目の要素、最後のコンスセル ▼

ELISP> (nth 0 '(1 2 3))
1
ELISP> (nth 1 '(1 2 3))
2
ELISP> (last '(1 2 3))
(3)

図11　関数型（mapcar）の例 ▼

ELISP> (mapcar (lambda (x) (twice x)) l)
(2 4 6)

ELISP> (mapcar #'twice l)
(2 4 6)

λ リスト処理

22 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

で書いてそれを熟語として覚えるのが習得のコ
ツです（図13）。

　Lispのほんのさわりを紹介しましたが、い
かがだったでしょうか？　Lispは奥深い世界
です。letの亜種としてlet*があります。条
件分岐はif、cond、when、unlessがあります。
ループはほかにもdotimes、doなどがあります。
リストの要素を分解してローカル変数に設定す
るdestructuring-bindも面白い存在です。
　もしLispを面白いと感じられたのならば、
いっそのことエディタをEmacsに乗り換えて
しまうのもアリではないでしょうか。Emacsを
使っていると否が応でもEmacs Lispに触れる
ことになるのですから。s

図13　他のリスト処理とloopマクロの例 ▼

ELISP> (find-if #'evenp l)　　
↑最初の偶数を取り出す
2

ELISP> (loop for x in l if (evenp x)
return x)
2

ELISP> (remove-if-not #'oddp l)　　
↑奇数をすべて取り出す
(1 3)

ELISP> (loop for x in l if (oddp x)
collect x)
(1 3)

ELISP> (reduce #'+ l)　　
↑合計を求める
6
ELISP> (loop for x in l sum x)
6

図12　loopマクロの例 ▼

ELISP> (loop for x in l
 collect (twice x))
(2 4 6)λ 終わりに

フランス人プログラマのニコラが、Clojureを包丁代わりにHadoop
やRedisといった流行の素材を自由自在にプログラミングします。
関数型プログラミングというと、敷居が高く扱うのが難しいのではな
いかと思い込んでいませんか。
本書は、環境構築からRubyとの連携をさらっと解説した後、
NoSQLでCassandraも、遺伝的アルゴリズムも、JBossも、MQも、
Herokuも、さらにはArduinoで組込まで、Clojureプログラミング
技術のフルコースを紹介します。
プログラマの能力を大きく成長させる極上メニュー、ぜひ賞味して
ください！ニコラ・モドリック、安部重成 著

A5判／336ページ
定価2,919円（本体2,780円）
ISBN 978-4-7741-5991-1

関数型プログラミングに興味を持つエンジニア

Feb. 2014 - 23

今熱い！　快進撃のOCaml
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第2章

航空機エアバスの内部システムでの採用、Webフレームワークへの応用など、O
オーキャメル

Camlを巡る状況は着実に変
化し、ふたたび注目を集めています。本稿は、そんなOCamlを再入門（再履修）するために、OCamlの誕生か
ら現在に至るプロセスを見直しながら、その特徴的なしくみや文法を体験していただきます。その中でこの言
語の熱気を見つけてください。きっと啓発されるはずです！

今熱い！ 快進撃のOCaml

 Writer 五十嵐 淳（いがらし あつし）京都大学、Jacques Garrigue（ジャック ガリグ）名古屋大学、
古瀬 淳（ふるせ じゅん）SCB Singapore

 Writer Writer

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第2章

はじめに

　OCamlは長い伝統を持った型付き関数型プロ
グラミング言語です。前から関数型言語に興味
を持つ人なら、Objective Camlという名前で知っ
ているかもしれません。2012年にバージョン4.00

がリリースされたとき、1997年から冠していた
Objectiveを1文字に短縮してOCamlとなりまし
た。1980年代から続いている本来の名前が
Camlなので、2文字目も大文字です。くれぐれ
も小文字で書かないでください。“Objective”が
示すように、OCamlにはオブジェクト指向機
能も備わっています。しかし、最大の特徴は実
行時型エラーを許さない型システムとほぼ完全
な型推論（変数や関数の型は書かなくて良い）、
そして高速で効率の良いコンパイラです。その
3つによって、安全で早いプログラム開発が可
能になっています。OCamlでは自由で自然な
形でプログラムが書けることが哲学になってい
ます。操作が自然に書ける関数型言語の核を基
本にして、高度なモジュールシステムやオブジェ
クトの構造をより細かく推論する機能が自由に
取捨選択できるのが特徴といえます。

エアバスはOCamlで飛んでいる！

　OCamlは昔から大学や研究所でコンパイラ
開発やプログラム生成・解析で広く使われてき
ています。こうした学術的な成功例には、定理

証明支援系のCoq注1やマイクロソフトリサーチ
が開発したデバイスドライバ解析ツール
SLAM注2などが挙げられます。しかし、最も
印象的なのはエアバスの飛行機開発での利用で
しょう。エアバスA340とA380では、飛行制
御システムの開発はSCADE注3というOCaml

で開発された形式手法のツール群を利用してい
て、飛行機の中で実行されているのコードの7

割がこのツールによって生成されています。C

などを使って直接書かれたコードについても、
OCamlで書かれたAstrée注4という解析ツール
によって実行時エラーの欠除が保障されていま
す。今やOCamlなしにエアバスは飛べないと
言っても過言ではないのです！
　OCamlの利用は前述の得意分野に限定されて
いません。最近目立っているのは、金融とWeb

開発での利用です。Lexifi 社注5の先物記述言語
やJaneStreet社注6の高頻度トレーディングシス
テムは異なる形で金融への応用を代表している

注1） The Coq Proof Assistant　http://coq.inria.fr/

注2） http://research.microsoft.com/en-us/projects/slam/

注3） http://www.esterel-technologies.com/products/scade-
system/

 http://www.esterel-technologies.com/success-stories/
airbus/

注4） http://www.astree.ens.fr/

注5） http://www.lexifi.com/

注6） https://ocaml.janestreet.com/

http://coq.inria.fr/
http://research.microsoft.com/en-us/projects/slam/
http://www.esterel-technologies.com/products/scade-system/
http://www.esterel-technologies.com/success-stories/airbus/
http://www.astree.ens.fr/
http://www.lexifi.com/
https://ocaml.janestreet.com/

24 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 25

といえます。Web言語のOPA注7やHaxe注8、Web

フレームワークOcsigen/Eliom注9もOCamlで作
られています。こういう新しい分野から新しい
ニーズと協力が集められたことがOCamlをよ
り使いやすいものにしています。

OCamlエコシステムの充実

　この数年、OCamlのコミュニティが非常に
活性化されてきています。その象徴とも言える
のがパッケージマネージャOPAM注10の登場で
す。協力をスムーズにするためには、皆が開発
したソフトウェアを簡単に導入できなければな
りませんが、OPAMにより、それが可能にな
りました。OPAMの利用は急激に広がっていて、
今ではOCamlで書かれたほとんどのソフトウェ
アがOPAM経由でインストールできるように
なっています。新しいソフトウェアの公開、提
供が非常に簡単になったため、新しく公開され
るソフトウェアの数も増えています。
　OPAMはOCamlProというOCamlのサポー
トを提供する会社が開発しています。アカデミ

注7） http://opalang.org/

注8） http://haxe.org/

注9） http://ocsigen.org/

注10） http://opam.ocamlpro.com/

アでも関数型プログラミング総合環境としての
OCamlシステムの普及開発を目指すOCaml

Labsがケンブリッジ大学に設立され、精力的
な活躍を始めました。
　このようなユーザベースの広がりから、石橋
を叩いて渡ることで有名なOCamlコンパイラ
開発元である INRIAも利用者が求める新しい
機能を早く取り込むようになっています。最近
では、安全性と型推論を壊さない形で、普通の
値のように使える第一級モジュールや、プログ
ラムの不変量を型にエンコードできるGADT

（Generalized Algebraic Data Type：一般化代
数的データ型）が追加されています。この好循
環が今OCamlを「熱い言語」にしているのです。

　ではOCamlの雰囲気を感じてみましょう。
え？　処理系をインストールするのが面倒くさ
い？̶̶そんなあなたにピッタリなのがTry

OCamlです。

Try OCaml

　図1のTry OCamlは、OCamlの対話的処理系
の ブ ラ ウ ザ 版 で、後 述 す るOCamlか ら

λ OCaml入門
（もしくは再履修）

図1　Try OCaml（http://try.ocamlpro.com） ▼

http://opalang.org/
http://haxe.org/
http://ocsigen.org/
http://opam.ocamlpro.com/
http://try.ocamlpro.com

24 - Software Design Feb. 2014 - 25

今熱い！　快進撃のOCaml
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第2章

JavaScriptへのコンパイラjs_of_ocamlを使って
実装されています。
　ページ右上の黒い領域が入力／応答です。こ
の領域をクリックしてから「1+2」と入力して
vキーを打ってみると、「- : int = 3」と
入力式の型であるintと計算結果の3が表示さ
れます。ページ左側には、簡単な、そして未完
成の ;-)チュートリアルがあって̶̶英語です
が̶̶説明を読みながら式を打ち込んでいくだ
けである程度OCamlの雰囲気がつかめるしく
みになっています（このチュートリアル、ちょっ
と面白いのは入力画面と連動していることです。
たとえばstep()と入力してみましょう。次の
項目に進めます。マウスに手を伸ばしたくない
という方はどうぞ）。
　以降の機能紹介での例もTry OCamlでの動
作を確認していますから、試しながら読んでみ
るといいでしょう。Try OCamlはvを押
すといきなり実行されてしまうので、複数行に
わたる入力はs＋vで改行してくださ
い。

（INRIAの）OCaml

　「ふつうの」OCamlコンパイラは、OCamlの

総本山であるフランスINRIAのWebサイト注11

で配布されています。可搬性の高いバイトコー
ドへコンパイルするocamlc、機械語にコンパ
イルするocamlopt、Try OCamlのような対話
的コンパイラocamlなどが含まれています注12。

OCamlの機能紹介

　紙幅の都合もあり、OCamlの主な特徴が現
れているプログラムを1つ示して超特急で雰囲
気をつかんでみましょう（図2）。題材は、二分
木を定義して、葉っぱの数を数える関数を書く、
です。
データ型定義（2～5行目）と木の定義（7行目、
10行目）
　二分木の型（itree と呼びます）を type宣言で
定義します。ここでの二分木は、

・（データを保持しない）葉っぱ（Leafで表す）
・整数を保持し、ふたつの部分木を持つノード
（Nodeで表す）

から作られるとします。Nodeのof以下には、ノー

注11） http://caml.inria.fr/

注12） 詳しいインストール方法は「http://ocaml.jp/インストール
方法」 に書かれています。

図2　二分木の定義 itreeと葉の数を数える関数count_leaves ▼

1 (* 二分木の型定義 *)
2 # type itree =
3 Leaf (* 葉っぱ *)
4 ¦ Node of itree * int * itree (* ノード *)
5 ;;
6 type itree = ...
7 # let t1 = Node(Leaf, 1, Node(Leaf, 2, Leaf));;
8 val t1 : itree = ...
9
10 # let t2 = Node(Node(Leaf, 5, Leaf), 6, Node(Leaf, 7, Leaf));;
11 val t2 : itree = ...
12
13 # let rec count_leaves t =
14 match t with
15 Leaf -> 1
16 ¦ Node(left, a, right) -> count_leaves left + count_leaves right;;
17 val count_leaves : itree -> int
18
19 # count_leaves t1;;
20 - : int = 3
21 # count_leaves t2;;
22 - : int = 4

※注　(* ... *)部分はコメント、処理系からの応答は 斜体、行頭の#は入力不要

http://caml.inria.fr/
http://ocaml.jp/%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%BC%E3%83%AB%E6%96%B9%E6%B3%95

26 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 27

ドを構成するデータの型が*で区切られて順番
に書いてあります。二分木をいくつか作ってみ
たのが、7行目、10行目です。let t1 = ...は
値の定義の構文で、右辺（の計算結果）にt1とい
う名前を付けています。図3にt1、t2がどうい
う木を表しているかを示しました。
　OCamlは、プログラムの実行前に型検査をす
るいわゆる静的型付き言語ですが、型推論とい
う機能があり、変数や関数の型宣言をしなくても、
処理系が補ってくれます。処理系からの応答の
コロン（:）以下がt1、 t2の型がitreeである
ことを示しています。
パターンマッチを使った関数定義（13～16行
目）
　関数の定義もlet（再帰的な場合はrecをつ
けます）を使って行います。tが仮引数で=の後
に関数の返値を計算する式が書いてあります。
この定義では、t中の葉っぱの数は

・tが葉っぱならば、葉っぱの数は1
・tがノードならば、求める葉っぱの数は（左
の部分木の葉っぱの数）＋（右の部分木の葉っ
ぱの数）

で計算することを示しています。
　具体的には、match構文と呼ばれる場合分け

とデータの取り出しを同時に行う機能を使って
書かれています。match t withを「tが」、->
を「ならば」、¦を「または」と読むと直観的に読
めるかもしれません。->の左側の Leafや
Node～はパターンと呼ばれ、たとえば
Node(left,a,right)の場合、対象となるデー
タがNode～という形をしているならば3つの
データにそれぞれleft、a、rightという名前
をつけた上で->の右側の計算を行うことを意
味しています。
　これがパターンマッチと呼ばれる機能で、
OCamlではなくてはならないものです。単にプ
ログラムが簡潔に書けるだけでなく、OCaml処
理系によって、パターンがtのとりうる値のすべ
ての可能性を尽くしていることまでチェックして
くれますから、場合分けの漏れなどによるバグ
も関数を定義した時点で見つかります。また、
上でもふれたように、プログラマはtの型や返値
の型を書かなくても、処理系がcount_leaves
はitreeを受け取ってintを返す関数であるこ
とを推論してくれています（17行目）。
　count_leavesの呼び出し例は19行目と21

行目になります。
　同じように、ノードに格納された整数の和を
計算する関数はリスト1のように定義できます。

リスト1　ノードに格納された整数和を求める関数例 ▼

let rec sum_nodes t =
 match t with
 Leaf -> 0
 ¦ Node(left,a,right) -> sum_nodes left + a + sum_nodes right;;
val sum_nodes : itree -> int

1
t1

2

6
t2

5 7

t1 t2

X
Leaf ...
Node(t1, x, t2) ...

図3　t1、t2の構造 ▼

26 - Software Design Feb. 2014 - 27

今熱い！　快進撃のOCaml
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第2章

多相的データ型定義
　図2の二分木の定義はノードに格納できるデー
タが整数に限られていましたが、型定義を少し
変更するだけで（木全体で統一されている限り）
さまざまなデータを格納できるようになります。
それがリスト2の型定義です。
　'aは型を動くパラメータ（C++のテンプレー
トの引数のようなものです）で、木に格納する
データの型を表しています。ですので、intと
書いてあったところが'aになっています。
　この定義のもとで、先ほどのt1を再定義し
てみましょう。

let t1 = Node(Leaf, 1, Node(Leaf, 2, ｭ
Leaf));;
val t1 : int tree = ...

　ここでは'aが具体化されてint treeとなっ
ている、つまり、t1が整数をノードに格納し
た二分木であることを、プログラマが何も言わ
なくても型推論によってわかったことに注目し
てください。要素の種類を変えるとそれに応じ
て型が変わります。

let t3 = Node(Leaf, 'a', Leaf);;
val t3 : char tree = ...

　また、この定義のもとでcount_leaves関数
を再定義してみると、

let rec count_leaves t = ...同上...;;
val count_leaves : 'a tree -> int = ...

となります。このcount_leavesの型は、任意
の種類の木から整数への関数であることを意味
しています。これは、count_leavesがノード
のデータを使うことなく計算をしていることと
対応しています。ですから、この関数はt1だ
けでなくt3にもそのまま使うことができます。

count_leaves t3;;
 - : int = 2

　一方、sum_nodesはノードに格納された数
の和を計算しますから、木の種類が限定されて、

let rec sum_nodes t = ...同上...;;
val sum_nodes : int tree -> int

と整数の木しか引数にとれないことが型から明
らかです（OCamlでは+はintの足し算に限ら
れます）。
　ですから、sum_nodesをt3で呼び出そうと
しても「t3は char treeなのに、sum_nodes
はint treeを欲しがっているよ」という型検
査時のエラーになります。

sum_nodes t3;;
File "", line 1, characters 10-12:
Error:This expression has type char tree
 but an expression was expected of type ｭ
int tree

　count_leavesのような、定義の一部の型を
いろいろ変えられたり、関数がいろいろな型の
引数を取れることを「多相性」といいます。

リスト3　tree_map関数の例 ▼

let rec tree_map f t =
 match t with
 Leaf -> Leaf (* 葉っぱはそのまま *)
 ¦ Node(left, a, right) -> Node(tree_map f left, f a, tree_map f right)
 (* a は f a に、左右の部分木は再帰的に変換 *)
;;
val tree_map : ('a -> 'b) -> 'a tree -> 'b tree

リスト2　型定義 ▼

type 'a tree =
 Leaf (* 葉っぱ *)
 ¦ Node of 'a tree * 'a * 'a tree (* ノード *)
;;

28 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 29

OCamlでは多相性がありながら型推論が可能
なので、簡潔さを保ちつつ再利用性の高いコー
ドを書くことが可能になります。
高階関数
　OCamlは関数型言語ですので、ほかの関数
型言語と同じく、関数を引数として関数に渡し
たりするようなことも当然できます。
　リスト3は、関数fに従って二分木tのノー
ドのデータを変換した木を返すtree_map関数
です。こういった関数を受け取る関数を高階関
数といいます。
　この型は、関数f ('a -> 'b 型)と、その引
数型 ('a)を要素とする二分木 ('a tree) tを引数
として渡すと、fの返り値型を要素とする二分木
が返ってくることを示してみます。tree_mapを
使ってt1の各ノードを1増やしてみましょう。

tree_map (fun x -> x + 1) t1;;
- : int tree = Node(Leaf, 2, Node(Leaf, ｭ
3, Leaf)

　fとして渡しているfun x -> x + 1は匿名
関数と呼ばれるもので「xを引数としてx + 1
を返す（無名の）関数」を表しています。
参照
　OCamlの変数は、Javaのfi nal変数のように
基本的には宣言時に初期値を与えたら中身を書
換えることはできませんが、参照という機能を
使えば書き換え可能な変数の真似事をすること
ができて、for文、while文なども使えます。
以下は、1から10までの和を計算してsumに格
納するプログラムです（応答は省略しています）。

let sum = ref 0;;
for i = 1 to 10 do sum := !sum + i done;;
!sum;;

　ref 0が参照と呼ばれる「初期値0の入った
箱」を作るものです。forはなんとなくわかる
とは思いますがdoとdoneではさまれた部分を、
iを増やしながら繰り返していきます。:=が箱
への代入、!が箱からの読み出しです。読み出
し時にわざわざ!をつけるのが面倒ですが、

OCamlプログラマは!を書くたびに「面倒くさ
い……こんなことなら参照を使わないプログラ
ムに書き換えた方がましだ」と思います（ちょっ
とだけウソです）。
モジュールシステム
　OCamlには先進的なモジュールシステムが
あり、OCamlの魅力の1つなのですが、すべて
を紹介するのは無理ですので基本的な部分のみ
ふれたいと思います。モジュール上の関数であ
るファンクタなどの上級者機能については、コ
ラムで紹介する書籍などをあたってください。
　モジュールはインターフェースと実装の記述
が分離していて、さらにモジュールが1ファイ
ル（正確にはインターフェースファイルと実装
ファイルがひとつずつ）に対応しています。た
とえば、ライブラリの文字列モジュールは、
string.mliという文字列関数の型（と機能に
関するコメント）だけが書かれたファイルと
string.mlという関数の定義が書かれたファ
イルで構成されています（図4）。このモジュー
ルを使う人はmliファイルだけを見てプログラ
ムを書きます。自分のプログラムのコンパイル
は、依存するモジュールのmliファイルだけあ
ればできるので、極端な話、（開発途中段階で）
実装されていないモジュールを使っていてもオ
ブジェクトファイルへのコンパイルまではでき
ることになります。OCamlプログラムは型検
査に通すまでがデバッグという感じですから、
実装が一部未完成でもデバッグができる、とい
うのは、複数人で分担して開発を行うときには
大変ありがたいです。

OCamlのメリット

完全な型推論
　OCamlプログラムで型を書くのは基本的に型
の定義だけです。後は省略したければ一切省略
できます。「完全」というのは一切省略できる、と
いうくらいの意味です（正確には、モジュールの
インターフェースや一部の機能を使うために型
の記述が多少求められますが、書かなければな

28 - Software Design Feb. 2014 - 29

今熱い！　快進撃のOCaml
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第2章

らない場所がきちんと決まっているのがよいです。
一方、ScalaやHaskellなど他の言語の型推論は
完全でなく、高階関数や型クラスを使うときに
型の記述が必要な場合があります）。
多相性
　上の例でも見たように、多相性を利用するこ
とで1つの型や関数の定義をさまざまな場面で
使うことができます。
厳密な型検査と型安全性
　OCamlは型安全性といって「いったんコンパ
イラの型検査に通れば値の種類に起因するバグ
（たとえば文字列で割り算をするとか）は発生し
ない」ということが保障されています。また、
場合分けの漏れなども、型定義とパターンマッ
チをうまく使うことで防ぐことができるため、
（応用分野にもよりますが）コンパイラの型検査
に通れば、その時点で「かなり正しい」プログラ
ムが得られる、というのが筆者の実感です。

　モジュール機能の紹介でもふれたように型検
査に通すまでがデバッグ作業になっているとも
言えます。プログラムを走らせることなくデバッ
グをするわけですから、慣れないうちは戸惑う
人も多いようですが、その分プログラムを書き
終えるころには、自分のプログラムが何をする
かの理解が深まっています。
欲しい機能はだいたいある
　紙幅の都合上紹介できませんが、機能はかな
りそろっています。

・オブジェクト、クラス
・多相バリアント
・ラベル付き引数、オプション引数
・GADT
・スレッド
・マーシャリング（シリアライズ）
・構文拡張（camlp4）

type 'a tree = ...
val count_leaves :
 'a tree → int

tree.mli

(* 文字列の長さ *)
val length : string → int
...

string.mli

tree.mlをコンパイルするのに必要なファイル

OCamlにおける分割コンパイル。実装（.mlファイル）をコンパイルするためには
依存するモジュールのインターフェース（.mli）のみが必須で実装は必要ない。

*.mli

type 'a tree= ...
let rec
 count_leaves t = ...

... String.length ...

 ... List.map ...

tree.ml string.ml
*.ml

イ
ン
タ
ー
フ
ェ
ー
ス
フ
ァ
イ
ル

実
装
フ
ァ
イ
ル

図4　モジュールシステムの例 ▼

30 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 31

・実行時コード生成（BER MetaOCaml）

　実行時に型情報が欲しかったり、Haskellの
型クラスが欲しくなったり、スレッドがマルチ
コアで並列実行できなかったりするのに悔しい
思いをすることがないとは言えませんが満足感
は高いです（マルチコアを有効活用する実装は、
OCamlLabsで現在鋭意開発中とのことです。
乞御期待）。
ポータビリティ
　Web（JavaScript）やスマホ（iOS、Android）
を含めて、ほぼすべての環境で動作し、クロス
コンパイルも可能です。
プログラムが何をするのか見える
　コンパイラが素直な作りをしていて、コード
を勝手に生成したりすることはなく、最適化は
わりと自明なものに限られています。これはダ
サいようで実は大きなメリットです。ある意味「プ
ログラムは書いたとおりに動く」ので、ソースコー
ドを変更した際の性能変化の予想がたてやすい
です。

　
　OCamlプログラミングが複雑になってくる
と対話型コンパイラだけを使っていたり、標準
システム一式をインストールしただけの状態で
は開発がたいへんになってきます。そこで、
OCamlプログラミング初級を脱出し、中、上
級 "OCaml rider"へ向かうための必須ツールの
数々を紹介します。

コマンドラインコンパイラ　　
ocamloptとOCamlFind

　対話式コンパイラでOCaml感をだいたいつか
んだら、ひとまず対話式は卒業してコマンドラ
インコンパイラocamloptに移行しましょう。
ocamloptは機械語を生成するため実行速度も高
速です。さらに、ライブラリを使用しはじめる
とocamloptもOCamlFindでラップして使用す
るのが普通です。OCamlFindは面倒なライブ

ラリのインクルードパスやライブラリファイル
の列挙作業を自動化してくれます。たとえば

ocamlfind ocamlopt -packages lwt -linkpkg -o
xxx.exe xxx.ml

とすると lwtパッケージに必要なスイッチを
ocamloptコマンドに自動的に付け加えてコン
パイルを行います。
　なお、バイトコードコンパイラ ocamlcは
ocamloptの生成する機械語より速度が劣るので
現在ではあまり使いません。

ビルドシステム

　複数のソースファイルを扱い始めると必要に
なるビルドシステム。古き良きMakefi leを使う
のも良いのですが、OCamlに特化したビルドシ
ステムを使うとルール記述がとても楽になります。
OCamlBuild
　OCaml標準システムに同梱のOCamlに特化
したocamlbuildコマンドを使う方法。公式周辺
ツールのビルドにも使われています。
OMake
　OMake注13はOCamlのための強力なマクロが
備わっているMake似のツール。百万行を超え
るOCamlプログラムのビルド実績もあります。

OPAM：GitHubを利用した　　
パッケージシステム

　2012～2013年のOCaml界隈で最も熱かった
ものと言えばOPAMの登場でしょう。OPAM

はOCamlの各種ソフトウェアをソースパッケー
ジとして提供する新しいシステムで、

opam install <パッケージ>

とすると依存するソースコードをネットからダウ
ンロードし、自動的にインストールを行います。
現在すでに500を超えるライブラリ、アプリケー
ションがパッケージとしてGitHub注14上で管理さ
れており、インストール時の問題点などもそこ

注13） http://omake.metaprl.org/

注14） https://github.com/OCamlPro/opam-repository

λ 真のOCaml riderへ
向けて

http://omake.metaprl.org/
https://github.com/OCamlPro/opam-repository

30 - Software Design Feb. 2014 - 31

今熱い！　快進撃のOCaml
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第2章

で一元的に議論されています。後述のツールも
すべてopam installコマンド一発でインストー
ル可能です。
　WindowsではOPAMは現在移植中で少し待
つ必要があるようです。

プログラミング環境強化

　OCaml 4よりコンパイラ内部APIが登場し
ました。これによりツール開発がとても楽にな
り、サードパーティの開発したOCamlプログ
ラミング環境強化ツールも充実してきました。
現時点での注目株を挙げておきます。
強化対話型コンパイラ「utop」
　生のocamlコマンドを試してみてイライラし
た方はutopをお勧めします。ラインエディタ
や補完機能が付いている強化版対話型コンパイ
ラです。
TypeRexや Merlinでエディタを IDE化
　TypeRexやMerlinはEmacsとVimの機能を
拡張し、OCamlプログラミングの効率を飛躍
的に高めるツールです。ソースコード上の部分
式の型情報の表示や定義へのジャンプ、文脈を
意識した補完機能などが提供されています。
API検索エンジン「OCamlOScope」
　OCamlOScope注15は検索文字列に似た型や名
前を持つAPIを探し出すWebサービスです。
この型を持つ関数は何という名前だったか、ど
んなライブラリが提供しているのか、といった
「逆引き」的疑問解決に威力を発揮します。

注目ライブラリ、フレームワーク

強化標準ライブラリ「 Batteries/Core」
　OCamlの「標準ライブラリ（stdlib）」は貧弱だ、
というのは有名です。これにはさまざまな理由
があるのですが、コミュニティレベルで「強化
標準ライブラリ」を作っていくという動きに今
は落ち着きました。
　有名な強化ライブラリにはOCaml Batteries

注15） http://ocamloscope.herokuapp.com/

Included（略称：Batteries）とJane Street Core

（略称：Core）があります。BatteriesはCoreと
比べるとstdlibの雰囲気をよく残しているので、
stdlibからの移行は比較的簡単です。一方Core

はOCamlを使用して金融取引を行っている
Jane Streetが内製していたものです。開発に
膨大な資源が投資されているので性能、信頼性
ともに非常に高いのですが、stdlibと非互換な
慣習を導入しているので良くも悪くも Jane

Street流OCamlプログラミングを行うことに
なります。
非同期演算ライブラリ「Lwt/Async」
　OCamlは現時点ではマルチコアを簡単に有
効利用する方法がなく並列（parallel）計算は不
得意とされています。しかしこれはOCamlで
は並行（concurrent）計算が難しい、ということ
ではありません。非同期並行計算ライブラリ
LwtとAsyncを使うと、無名関数を駆使した関
数型言語らしい、並行しつつも関連しあった複
雑な仕事を簡潔に書くことができます。
OCamlのWebフレームワーク
「Ocsigen/Eliomと js_of_ocaml」
　EliomはOCamlのWebフレームワーク。Eliom

では専用WebサーバOcsigenと、Webブラウザ
の間でOCamlで書いた共通のコードを走らせる
ことができます。ブラウザ上ではOCamlのコー
ドは js_of_ocamlコンパイラによってJavaScript

に変換されるため特殊なブラウザ拡張も必要あ
りません。Eliomでは、HTML、CSS、SQLに
いたるすべてのWeb開発もOCamlの強力な型シ
ステムのもとで完結してしまいます。
　js_of_ocamlは単体だけでもOCamlプログラム
をJavaScriptに変換するコンパイラとしてとても
面白いツールです。Try OCamlもこの js_of_

ocamlでOCamlコンパイラ自身をJavaScriptに
変換したものです。

http://ocamloscope.herokuapp.com/

32 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

　以上、駆け足でしたがOCamlの特徴を紹介
しました。Try OCamlでゆるゆると初体験でも

よいですし、一気にCoreで最前線OCamlに挑
戦してもよいでしょう。ぜひOCamlのコミュニ
ティに参加し、熱気にふれてください。ﾟ

λ 終わりに

「OCamlをもっと知りたいあなたに」Column

　日本語で書かれたOCaml情報サイト（http://
ocaml.jp/）にアクセスください。その他の日本語に
よるOCaml情報へのリンクも充実しています。
　書籍はこれまでに次の3冊が出版されています。

・『プログラミングの基礎』
　浅井健一（著）、サイエンス社
・『プログラミング in OCaml̶関数型プログラミン
グの基礎からGUI構築まで』

　五十嵐 淳（著）、技術評論社
・『入門OCaml̶プログラミング基礎と実践理解』
　OCaml-Nagoya（著）、毎日コミュニケーションズ

　『プログラミングの基礎』はOCamlを使った（静的
型付き）関数型プログラミングの入門書で、OCaml
の機能を網羅しているわけではありませんが、たい
へんわかりやすくよい本だと思います。残りの2冊
については、残念ながら現在、新品の入手が困難で
す。手前味噌で恐縮ですが『プログラミング in
OCaml』は、モジュール、オブジェクト、多相バリ
アント、ラベル付き引数あたりまでふれていて、機
能の網羅度は高めです。現在は、電子版が技評オン
ラインで（冊子版よりもずっと安く !（笑））入手でき
ます。『入門OCaml』は、標準ライブラリの関数や
MySQLとの連携についても書かれていますので、
応用面に興味のある方にも役に立つと思います。
　英語の書籍は（親戚の Standard MLの本は何冊
かあるものの）、実は最近まで良いものが少なかっ
たですが、最近になって状況が改善されつつあり
ます。

・『OCaml from the Very Beginning』
　John Whitington．Coherent Press. 2013.

　この本は、筆者（五十嵐）は未確認ですが、タイト
ルのとおりプログラミングの初心者用にていねいに

書かれているという評判を聞きます。ただし、オブ
ジェクト指向などの機能の一部は扱われていないよ
うです。

・『Introduction to Objective Caml』
 Jason Hickey
 http://� les.metaprl.org/doc/ocaml-book.pdf

　これも、OCamlプログラミング入門で、中核と
なる部分だけではなくモジュール・オブジェクトあ
たりまでカバーしています。

・『Unix system programming in OCaml』
 Xavier Leroy and Didier Rémy
 http://ocamlunix.forge.ocamlcore.org/

　通常はC言語で行われるUnixシステムプログラ
ミングをOCamlコンパイラ開発者たちがOCamlを
使って解説した教科書です。ポインタやメモリ管理
などC言語のはまりどころにとらわれずUnixプロ
グラミングを習得できます。

・『Real World OCaml: Functional programming
for the masses』

 Yaron Minsky, Anil Madhavapeddy, Jason Hickey
 https://realworldocaml.org/

　OCamlをまったく知らない人を対象としながらも、
そこから現在のOCamlの最前線まで触れることを
目指した非常に意欲的な形の入門書です。そのため、
入門時点から、標準のOCaml環境ではなく、強化
対話型コンパイラutopや強化標準ライブラリCore
などをOPAMパッケージシステムでインストールし
た状態から始まります。OCamlランタイムの解説や、
新しい外部関数呼び出しインターフェースCtypes
について触れられているなど、OCamlのベテラン
プログラマにも参考になる内容です。

http://files.metaprl.org/doc/ocaml-book.pdf
http://ocaml.jp/
http://ocaml.jp/
http://ocamlunix.forge.ocamlcore.org/
https://realworldocaml.org/

Feb. 2014 - 33

コマンド作りで知るHaskell
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第3章

　Haskellは、誰か1人が作り上げたのではなく、学者が委員会を組織して仕様を決めたユニークな言語です。
その仕様は数学に裏打ちされた厳格なもので、一見すると、他の頑固な関数型言語と比較しても、実用性という
観点を受け付けない頑固者に見えます。しかし、厳格な理論は合理性をもたらし、合理性は、最終的には実用性
をもたらします。本稿では、実際に仕事をするコマンドを作ることで、頑固者Haskellの内面を覗いてみること
にします。

コマンド作りで知るHaskell

 Writer USP友の会／産業技術大学院大学　上田 隆一（うえだ りゅういち）／Twitter@ryuichiueda

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第3章

　

　こんにちは、産業技術大学院大学の上田です。
と言うと、筆者をご存じの方だと「シェルだ逃
げろ」と思うかもしれません。確かに「シェルス
クリプトは関数型だ」などと不規則発言を繰り
返しているのでそう思われてもしかたないので
すが、今回はHaskellの話です。
　いわゆる「こわいひと」がたくさんいるHaskell魔
界の一番底辺にいる筆者が何でというところですが、
実は現在、USP研究所注1で使っているコマンド
のフリー版「Open usp Tukubai注2」をHaskellで書
き直す1人プロジェクトを行っています。
　本特集は初心者向けということで、Haskell

のおもしろいところをなるべく多く紹介したほ
うが良いのですが、一方でHello Worldみたい
なコードばかり並べてもつまらず、それをどう
やって実用するのか想像できません。その点、
コマンドは短いプログラムでも一人前に仕事を
しますし、オプション解析、データの読み込み、
データの加工、出力と4つの機能をこなす中で
Haskellを代表する特徴がいろいろ出てきます。
そこで、コマンドのコードを読むことでHaskell

の特徴を洗い出すのがおもしろいのではないか

注1） https://www.usp-lab.com

注2） https://github.com/usp-engineers-community/Open-
usp-Tukubai

と考えたしだいです。
　Haskellを学習するにはそれなりの順序があ
り、おそらく、本稿はその順序にはなっていま
せん。本稿は読み物です。「Haskellのコードや
考え方とはどんなものか」を力まずに眺めてい
ただければと存じます。

　Haskellの生い立ちは冒頭に書いたとおりです。
詳しい経緯についてはhttp://www.haskell.org/

onlinereport/preface-jfp.htmlにありますが、関
数型言語の乱立に歯止めをかけ、フリーかつきっ
ちりとした仕様の純粋関数型言語を作ろうとい
うことで、1987年に最初の集まりがあったよう
です。名前はHaskell B. Curryという数学者か
らとられましたが、1982年にすでに他界してお
り直接開発に携わったわけではありません。

学者の頭の中

　こういう生い立ちですので、Haskellを一言で
表すと「学者の頭の中」と言ってしまってもいい
かもしれません。数学者、物理学者はもちろん、
あるいは筆者のように専門不明学者でさえ、研
究には数学を使います。その、学者の数学には「関
数」というものがあります。

y = f(x)

λ はじめに

λ Haskellって何だ?

http://www.haskell.org/onlinereport/preface-jfp.html
http://www.haskell.org/onlinereport/preface-jfp.html
https://www.usp-lab.com
https://github.com/usp-engineers-community/Open-usp-Tukubai

34 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 35

x yf

 ▼図1　 関数（xを入れたらyが出てくる「箱」）

x yf

z

 ▼図2　 副作用のある純粋でない関数

というやつです。ただし、難しい数学をやって
いる人は、

f: x y

と書きます。
　どちらの書き方でも同じことですが、ここで
のfは、xという入力をyに変えて出力するもの
を表します。腕組みしたままうなっている学者
がいたら、図1のような、「何かを入れたら何か
が出てくる」ものが頭の中に一杯なのです。

「不純な関数」とは？

　さて、研究注3で使っている数式をプログラム
して何か計算しようとすると、普通の言語（ここ
では手続き型の言語の意）を使うとちょっと困っ
たことが起こります。たとえばC言語の「関数」
の宣言を見ると、

int f(char ch);

というように、さも「1文字入力して整数を出力」
するように見えますが、C言語の関数は、その
中でグローバル変数やファイルを好き勝手にい
じれてしまいます。図2のように、入出力だけ
のはずの関数にあろうことか横に手が生えたよ

注3） あくまで研究というのは一例で、Haskellは研究以外にも
使えます。

うなものになっています。こういうものは「副作
用」と呼ばれます。数学の関数にはないものです。
　何か融通が利いて良いような気もしますが、
副作用は学者の頭の中では数学の世界を破綻さ
せる悪魔になってしまいます。実際C言語の「関

数」は、数学で言うところの「関数」とは違うもの
なのです。

Haskellは純粋

　学者がこういう「関数もどき」を排除しよう

とするのは自然なことです。実は筆者も学生の

ときに、同じことができないかとC++のテンプレー
トで頑張ってみた経験があります。もちろん、情
報系の学生でもなく、何のスキルもなかったので
頓挫しました。それゆえに最近になってやっと
Haskellを知ったときの衝撃は計りしれませんで
した。
　一方、慣れていないと、純粋な関数の世界に
は不自由さを感じます。たとえば「変数に値を代
入する」という概念は、入出力だけ扱う関数の
世界にはありません。何かをHaskellのプログ
ラムに放り込んだら最後、数珠つなぎになった
関数を通って何か出てくるだけで、「中間のもの」
がないのです。
　これから読んでいくコードは、そういうわけ
のわからないものです。ただ、学者のエゴを押
し通したことで、かえって言語の仕様がスッキ
リしました。そのおかげで、現在のHaskellは「わ
かってしまえばすごい道具」と言えるものになっ
ています。

　さてコードを読んでいきましょう。Open usp

Tukubaiのselfコマンド注4のミニチュアを作ってい
きますので、みなさんはダラダラと読んでください。
　selfの動作は図3のようなものです。selfの後

注4） ht tps : / /uec.usp- lab.com/TUKUBAI_MAN/CGI /
TUKUBAI_MAN.CGI?POMPA=MAN1_self

λ コマンド読み開始 !

https://uec.usp-lab.com/TUKUBAI_MAN/CGI/TUKUBAI_MAN.CGI?POMPA=MAN1_self

34 - Software Design Feb. 2014 - 35

コマンド作りで知るHaskell
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第3章

ろにオプションで出力したいフィールド（列）を
指定します。最初の指定1は1列目を出力しろ
でOKです。次の3.3は「3列目の3文字目以降」
を出力せよということです。その次の2.3は「2

列目の3文字目以降」ですが、selfの「3文字目」
は半角文字数にして3文字目という定義で、全
角では2文字目ということになります。

環境について

　本稿で試したコードの動作確認には、Ubuntu

13.10を使いました。Ubuntu 13.10の場合、図4

のようにapt-get一発で環境が整います。本稿で
はコードはすべてコンパイルして実行します。
コンパイラにはGHC（Glasgow Haskell Compilar）
を使います。
　インストールした環境にはGHCだけでなく、
インタプリタGHCiが付いてきます。GHCiは、
図5のように使います。端末でちょっとコードを
試したいときに便利です。本稿では、型を調べ
るときにGHCiを使用します。

標準入出力（いきなり最大の山場）

　最初に提示するのはリスト1

のようなファイルです。本稿で
最初のHaskellのコードですが、
動作は標準入力から文字列を
読み込んで、行に分解して出力
するというものです。
　もうすでに難しい概念がたく
さんあり、Haskellを知っている
人からすると「そこから始めるん
かい！」とツッコミが入りそうで
すが、本稿は読み物ですのでと
言いわけをしておきます。あま
り深く考えないでください。
　説明は後回しにしてコンパイ
ルして動かしてみましょう（図6）。
　これでfirstというファイルが
できるので、これを実行します
（図7）。
　出てくる数字はUTF-8の文
字のバイナリですのでびっくり
しないでください。この出力を
見ると、[x,y]という形式になっ
ていますが、これは「リスト」と
いうもので、ここでは行が2つ
入ったリストが標準出力に出さ

 ▼図4　GHCのインストール

$ sudo apt-get install haskell-platform
$ ghc --version
The Glorious Glasgow Haskell Compilation System, version 7.6.3

 ▼図5　HaskellのインタプリタGHCiの使い方

$ ghci
GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help

（略）
Prelude> Data.List.sort [1,4,3] #コードを試す
[1,3,4]
Prelude> #Ctrl+dでインタプリタを抜ける
Leaving GHCi.

 ▼図6　�rst.hsのコンパイル

$ ghc first.hs
[1 of 1] Compiling Main (first.hs, first.o)
Linking first ...

 ▼図7　./�rstの実行

$ cat hoge ¦ ./first
["aaa \230\191\177\231\148\176 \239\190\138\239\190\143\239\ｭ
190\128\239\190\158","bbb \233\142\140\231\148\176 \239\189\ｭ
182\239\190\143\239\190\128"]

 ▼リスト1　�rst.hs

 1 import qualified Data.ByteString.Lazy.Char8 as B
 2
 3 main :: IO ()
 4 main = B.getContents >>= print . B.lines

※行頭の行番号は説明上入れたものです。プログラムリストには含まれません。

 ▼図3　selfの動作

$ cat hoge
aaa 濱田 ﾊﾏﾀﾞ 1列目
bbb 鎌田 ｶﾏﾀ ↓
$ cat hoge ¦ self 1 3.3 2.3 ←2列目の3文字目以降
aaa ﾀﾞ 田 ↑
bbb ﾀ 田 　3列目の3文字目以降

36 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 37

れたという理解で大丈夫です。リストについては、
後述の型の話と合わせてコラムに例を加えました。
　ここでリスト1の解説をしておきましょう。
Haskellのコードを読み解くには、「型」を手がか
りにします。CやC++だとintやdoubleやcharが
ありますが、その型です。Haskellでは多種多様
な型が登場しますが、関数に値を渡すときや、あ
る関数の返す値を別の関数に渡すときは、C/C++

と同様、いやそれ以上に厳密に型がピッタリ一致
している必要があります。
　1、3行目の説明は保留しておいて、4行目が
mainという関数の「定義」です。

main = B.getContents >>= print . B.lines

　これを大雑把に意訳すると「mainというもの
は、B.getContentsの出力を「print . B.lines」とい
う関数に入力した出力」という意味になります。また、
「print . B.lines」は、printとB.linesという2個の
関数が組み合わさったものです。要はmainという
関数は、3個の関数をくっつけたものと言えます。
そして、Haskellではこのような「関数の定義」をダ
ラダラ並べてコーディングします。プログラムは
全部定義でできています。代入ではなく定義です。
　B.＜関数名＞のBというのは、Data.ByteString.

Lazy.Char8の別名です。1行目は、Data.Byte

String.Lazy.Char8という「モジュール（関数の定
義の詰まったもの）」を読み込んでBという別名で
定義を使いたいという意味になります。ちなみに、
Haskellでは関数の名前の一文字目を小文字で書き、
型などの場合は大文字で書くというルールがあり
ます。

型を合わせて関数をくっつける

　もうちょっと細かいところを見て型を理解し
ましょう。「print . B.lines」は2つの関数
がくっついたもので、「合成関数」と言
います。数学のg(f(x))という式を想像し
てください。この場合、先にf(x)が計算
され、その値をg(x)に入力して計算して
います。これをHaskellでは、「(g . f) x」

と書きます。数学でもg○f(x) と書きます。
　このように関数を合成するには、fの返す型
とgの受け入れる型が一致している必要があり
ます。ghciで型を調べると、図8のように出て
きました。
　「:t hoge」で、関数hogeの型を表示せよとい
う命令になります。「:t」は「:type」と書いてもか
まいません。型は、GHCiのほか、Hackage注5

というサイトでも調査できます。
　図8の4行目の「B.lines :: B.ByteString -> [B.

ByteString]」という表記は、「::」の左側に関数の
名前を書いて、右側に入力と出力の型を書いた
ものです。この後のソースコード中にも、関数
の型を指定するためにこの記法が出てきます。
　入力が複数あるときは、

<関数名> :: <引数> -> <引数> -> ... -> <出力>

と書きます。出力は1つしか許されません。
　次に、printについてはもうちょっとややこし
くて、とりあえず「Show a =>」を無視すると、「a
-> IO ()」となっています。このaですが、実はい
ろんな型になれるので仮にaと書いているだけで
す。「print . B.lines」と書いた場合、aはB.lines

の出力の型 [B.ByteString]に化けます。化けるの
は、コードをコンパイルするときです。インタプ
リタであるGHCiの場合はコンパイルしませんが、
次のように合成関数の型を認識します。

Prelude B> :t print . B.lines
print . B.lines :: B.ByteString -> IO ()

　Haskellは、このように不定な型をコンパイル

注5） http://hackage.haskell.org/

 ▼図8　ghciで型を調査

$ ghci
Prelude> import qualified Data.ByteString.Char8 as B
Prelude B> :t B.lines
B.lines :: B.ByteString -> [B.ByteString]
Prelude B> :t print
print :: Show a => a -> IO ()

http://hackage.haskell.org/

36 - Software Design Feb. 2014 - 37

コマンド作りで知るHaskell
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第3章

getContents print . B.lines

標準入力① 標準出力④

aaa...
bbb...
aaa...
bbb... aaa...

bbb...
aaa...
bbb...

>>=

② ③③
aaa...
bbb...
aaa...
bbb...

aaa...
bbb...
aaa...
bbb...

aaa... bbb...aaa... bbb...

 ▼図9　mainで行う文字列の加工の流れ

時に合わせる「型推論」というしくみを持っていま
す。型推論のおかげで、printとB.linesという

別々の関数が「B.ByteString -> IO ()」という型を
持つ1つの関数となりました。めでたしめでたし。
　ところでaはどんな型にでも化けることがで
きるわけではなく、制限があります。「Show a

=>」がその制限を表しています。この場合の
Showは「型クラス」を表しています。ただ、こ
こで言う「クラス」はオブジェクト指向言語のソ
レではなく、演算するときのルールが同じ型の
グループという意味です。
　Haskellを書いていると何度となくコンパイ
ラに「型が合ってない」と叱られます。コードを
書いているときはこのエラーにイライラするの
ですが、結局型があってないものを書いている
ということはロジックの整合性がとれていない
ということですので、先に教えてくれるだけ親
切というものです。
　このように型はHaskellを支配する重要な概
念です。リスト1のような実践的なコードだと
説明に限界があるので、本章末のコラムに
GHCiとリストを使って少し例を示しておきます。

モナドで純粋性を保つ

　今度はリスト1の4行目のB.getContentsを見
てみましょう。

main = B.getContents >>= print . B.lines

　この関数の型は、IO B.ByteStringです。IO

B.ByteStringは出力の型です。あれ？ なんか
変です。

1）B.getContentsの入力は？
2）「print . B.lines」の入力は「IO B.ByteString」

ではなくB.ByteString

　文字だけで説明するのが到底無理ですので、
図9のような下手な絵を描いてみました。①～
④は、mainで行う文字列の加工の流れを示した
ものです。
　まず①ですが、これはgetContentsが標準入力
という「外」から文字列を入手している様子です。
標準入力は、関数getContentsの入力ではありま
せん。Haskellの中での入出力は、Haskellの中で
完結していて外とはいっさい関係ありません。
外とやりとりするのは「副作用」です。
　じゃあどうやって標準入力を読むのでしょう？
　getContentsの型は「IO B.ByteString」ですが、
これは、「標準入力を読んでB.ByteString型にす
るというIOに関する行為（アクション）」を出力す
るという意味になります。「一連の副作用となり
そうなものをひっくるめてアクションにして出力
しているので、これは副作用にならずに済む」と
いう、普通の人にはどう考えても屁理屈なのに数
学的には正しいという、驚異のテクノロジで
Haskellは純粋性を保っています。
　使うぶんにはそこまで考えなくても、B.Byte

String型の文字列が、IOという名前の台車に乗っ
ているという解釈で十分だと筆者は考えます。要
は「不純な文字列」と関数の世界を台車で分けて
いるわけです。Haskellにはこのような台車「IO

モナド」というものがあります。IOモナドは、副
作用である標準入出力の操作を純粋性を持って

扱えるようにデザインされたしく
みです。モナドはほかにもMaybe、
Etherなどいろいろ種類がありま
す。言うと混乱するだけですが、
実はリストもモナドでできており、
Haskellのコードには陰に陽にモナ
ドが出現します。
　我々はモナドの恩恵を受ける代
わりに、モナドを操作しなければ

38 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 39

いけません。それで、③にいきますが、「print .

B.lines」である②の文字列を受け入れるには、台
車を取って文字列だけにしなければなりません。
これをやっているのが「>>=」です。「>>=」が台車
から文字列を降ろし、「print ...」に入力します。
生身の文字列は、もうモナドを気にせず関数に入
力できるようになります。B.linesが行に分割し、
printにその出力が入ります。printの出力の型は
「IO ()」で再びアクションです。このアクションが
出力されたとき、関数の世界とはあずかり知らぬ
ところで、標準出力から処理結果が出力されます。
()というのは空という意味です。「>>=」は、右側
の関数の出力がきちんと台車つきでないと使え
ないので、この空の台車が必要になります。

型を作る

　さて、少し書き進めてリスト2のようになりま
した。4行目に「data Field = ……」とありますが、
これはFieldという型を新たに作るという意味です。
また、この1行で「Fieldという型はFullF Intか、
SubF Int Intのどちらかである」という意味になり
ます注6。この2つの型は、たとえばself 2 3.3など
と書いたときの、2（フィールドだけ指定）や3.3（文
字列の切断も指定）にそれぞれ対応します。
　ここではコマンドのオプションの読み込みは
実装せず、7行目で [FullF 1,SubF 2 3,SubF 3 3]

注6） FullFやSubFは、型コンストラクタという関数で、FullFは
1個、SubFは2個の整数を引数にとり、どちらもField型
の値を返します。

というオプションのリストをハードコーディン
グして先に進みます。
　リストには、同じ型のものしか入れることができ
ないのですが、これで2や3.3というオプションを、
どちらもFieldとしてリストに入れることができます。
Haskellのこのような型のしくみは、「代数的デー

タ型」というタイプのもので、硬派なHaskellが見
せる唯一（？）の柔軟な部分で、超強力な部分です。
　木構造なども、

data Node = Leaf Int ¦ Branch [Node]

などと左辺の定義を右辺の定義に再帰的に用い
ることで、ポインタなしで簡単に表現できます。

関数の書き方あれこれ

　次に9、10行目のslfにいきましょう。やっと
まともな関数が紹介できます（やれやれ）。
　9行目はslfの型を指定したもので、「[Field], B.

ByteStringを入力として受け付けてB.ByteString

を返す」という意味になります。「::」は型宣言、
「->」で区切られた一番右が戻り値で、その前は入
力です。2つの入力があるのがわかります。

slf :: [Field] -> B.ByteString -> B.ByteString

　10行目はslfの定義で、左辺の fsとcsは9行
目で型宣言されています。fsはそれぞれフィー
ルドのリスト、csは標準入力からの文字列にな
ります。

slf fs cs = B.unlines ｭ
(map (slfLn fs) ｭ
(B.lines cs))

　右辺を見てみましょう。まず、
「B.lines :: B.ByteString ->

[B.ByteString]」は、先ほども
出てきたように文字列を行で
分割します。「slfLn fs」は、
12行目に型の指定がありま
すが、1行を読み込んでフィー
ルドの指定に合わせた行に

 ▼リスト2　少し書き進める（second.hs）

 1 import Data.Char
 2 import qualified Data.ByteString.Lazy.Char8 as B
 3
 4 data Field = FullF Int ¦ SubF Int Int
 5
 6 main :: IO ()
 7 main = B.getContents >>= B.putStr . slf [FullF 1,SubF 2 3,ｭ
SubF 3 3]
 8
 9 slf :: [Field] -> B.ByteString -> B.ByteString
10 slf fs cs = B.unlines (map (slfLn fs) (B.lines cs))
11
12 slfLn :: [Field] -> B.ByteString -> B.ByteString
13 slfLn = undefined

38 - Software Design Feb. 2014 - 39

コマンド作りで知るHaskell
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第3章

変換して返す関数のつもりで型を定義しました。
ただ、まだ書いていないので13行目でundefined

としています。これでコンパイルは通るので、型
が合っているかどうかを調べることができます。
ただし、プログラムを実行するとエラーが返ります。
　それで、もう一度10行目を見てみましょう。
mapという関数の型は、

map :: (a -> b) -> [a] -> [b]

です。これは型 [a]のリストの要素ひとつひとつに、
「a -> b」という型の関数を適用し、それぞれの
出力を型 [b]のリストで返すという関数です。こ
のように、Haskellでは関数を入力に指定するこ
とがあります。mapのように関数を引数に取る
関数のことは「高階関数」と呼びます。
　もう1つ、mapの引数になった「slfLn fs」です
が、これは2つ必要なslfLnの引数のうち、1つ
しか指定されていません。この中途半端なもの
は何か？　実はこれも関数で、型は、

slfLn fs :: B.ByteString -> B.ByteString

となります。slfLn fsに入力されるのはB.lines

の出力したB.ByteStringのリストのひとつひと
つですから、つじつまが合っています。
　このように引数の一部を関数に適用して新し
い関数を得ることを、「部分適用」と言います。
実は7行目の「>>=」の右側も、部分適用された関
数になっています。この話を深堀りすると、「カ

リー化」という言葉に突き当たりますので、興味
のある人は調べてみてください。
　10行目では、mapの出力をB.unlinesに入力
して、行ごとにリストになった文字列を再び1

列の文字列にして、返します。このように括弧
が多いと読みにくいので、

B.unlines $ map (slfLn fs) (B.lines cs)

という書き方もできます。
　リスト3に、slfLn以下をちゃんと書いたもの
を示します。ここも見所がたくさんあり過ぎて
勘弁してくれと思われる方も多いと思いますが、

これは読み物です。我慢して読んでみてください。
コンパイルして動かすと図10のようになります。
このコード、エラー処理は適当ですのでご注意を。
また、UTF-8の文字列を処理するときに1バイ
ト文字と3バイト文字しか入力されないことを
仮定しています。
　まず、14行目のwhereから。13行目で、定義
されていない「p、ws」を使っていますが、これ
をwhere以下で定義できます。where以下は、
whereの範囲を示すためにインデントを合わせ
て書く必要があります。
　14行目のwsは、1行を空白で切ったフィールド
のリストになります。単語の分割にはB.wordsと
いう関数がありますが、欲しい動作と微妙に違う
ので自前で分割処理を書きました。filterは、map

と同じく第1引数にBool値を返す関数、第2引数
にリストをとります。そして、第1引数の関数が
Trueを返すものだけを残したリストを作ります。
ここでのfilterは、「B.split ' ' ln」で1行を空白で
区切ってリストにしたもののうち、空の文字列以
外を残すために使っています。第1引数の関数は、
「/= (B.pack "")」です。「B.pack ""」は空のB.Byte

String文字列のことですので、意味的には/= ""

という関数ですが、これって関数なんでしょうか？
　これも部分適用です。関数/=に""を適用した
ものと解釈できます。
　ところで14行目は「/= (B.pack "")」を、

\x -> x /= (B.pack "")

と書き換えても動きます。このように\と->を
使って書かれた関数は、「無名関数」と呼ばれます。
冒頭で、

f: x y

という関数の表現を見ましたが、これの「f」に相
当する名前がないという意味で無名です。また、
このような方法で定義された無名関数を「ラム

ダ抽象」や「ラムダ式」と呼びます。ASCIIコー
ドでλと書けないので、代わりに\を使います。
　この関数には、まだまだ別の書き方があります。

40 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 41

ws = [w ¦ w <- B.split ' ' ln , w /= ｭ
B.pack ""]

とも書けます。この書き方は、「リスト内包表記」
と呼ばれます。wsを「B.split ' ' ln」でできた各単
語wのうち、「w /= B.pack ""」を満たすものでリ
ストを作る、と読めます。

場合分けはパターンマッチとガードで

　ところで、whereの中にpという関数の定義が
2つあるのがわかるでしょうか？

パターンマッチ
　引数を見るとわかるのですが、上のpは、Field

のうち、FullFで作られたもの、下のpは、SubF

で作られたものに適用されます。関数の定義が2

つ以上あると、引数が書いてあるものと条件が一
致するか上から順にチェックされ、一致したもの
が適用されます。このような書き方を「パターンマッ

チ」を使うと言います。
　15行目の f、16行目の f、sには Int型の数字
が入るので右辺で使えます。15行目の「ws !! (f-1)」
は、wsから f-1番目の要素を表します。C言語

でいうws[f-1]ですね。

 p ws (FullF f) = ｭ
ws !! (f-1)
 p ws (SubF f s) = ｭ
B.pack $ cutW ｭ
(B.unpack $ ws !! ｭ
(f-1)) (s-1)

　16行 目 で は、B.packと
B.unpackという操作を「ws !!

(f-1)」に適用しています。こ
れは些細なことなのですが、
B.ByteStringは単なるバイ
ト列扱いで、そのままだと文
字列処理が難しいので、一
度B.unpackという関数を通
して文字列型 [Char]にして
cutWに入力しています。
cutWの出力はB.packに通さ
れて再度B.ByteStringに戻
されます。
　cutWは文字を切り出す関
数で18行目以下に定義され
ています。文字列（リストに
なったバイト列）と、あと半
角いくつ分字を削れば良い
かを引数にとります。この関
数の19、20、21、25、28行
目はパターンマッチですが、
22行目などの縦棒「¦」で始
まる行は何でしょう？

 ▼図10　コンパイルして動作確認

$ ghc selfproc.hs
[1 of 1] Compiling Main (selfproc.hs, selfproc.o)
Linking selfproc ...
$ cat hoge ¦ ./selfproc
aaa 田 ﾀﾞ
bbb 田 ﾀ

 ▼リスト3　標準入力の処理部分を最後まで書いたもの（selfproc.hs）

 1 import Data.Char
 2 import qualified Data.ByteString.Lazy.Char8 as B
 3
 4 data Field = FullF Int ¦ SubF Int Int
 5
 6 main :: IO ()
 7 main = B.getContents >>= B.putStr . slf [FullF 1,SubF 2 ｭ
3,SubF 3 3]
 8
 9 slf :: [Field] -> B.ByteString -> B.ByteString
10 slf fs cs = B.unlines $ map (slfLn fs) (B.lines cs)
11
12 slfLn :: [Field] -> B.ByteString -> B.ByteString
13 slfLn fs ln = B.unwords $ map (p ws) fs
14 where ws = filter (/= (B.pack "")) (B.split ' ' ln)
15 p ws (FullF f) = ws !! (f-1)
16 p ws (SubF f s) = B.pack $ cutW (B.unpack $ ws !! ｭ
(f-1)) (s-1)
17
18 cutW :: [Char] -> Int -> [Char]
19 cutW [] _ = error "invalid cut pos"
20 cutW bs 0 = bs
21 cutW (a:b:c:bs) n
22 ¦ a < '\128' = cutW (b:c:bs) (n-1)
23 ¦ isHanKana a b c = cutW bs (n-1)
24 ¦ otherwise = cutW bs (n-2)
25 cutW (a:b:[]) n
26 ¦ a < '\128' = cutW [b] (n-1)
27 ¦ otherwise = error "invalid string"
28 cutW _ _ = error "invalid cut pos"
29
30 isHanKana a b c = x >= 0xEFBDA1 && x <= 0xEFBE9F
31 where x = (ord a)*256*256 + (ord b)*256 + (ord c)

40 - Software Design Feb. 2014 - 41

コマンド作りで知るHaskell
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第3章

ガード
　これは「ガード」というものです。関数の左辺
と右辺の間に「¦ <条件> =」と書くことで場合分
けができます。パターンマッチと似ていますが、
パターンマッチはおもに型やデータ構造を条件
に使いますが、ガードの条件にはBool値を返す
関数を指定します。
　これをふまえて18行目から下に向かってcutW

関数を読んでみましょう。まず、19行目のパター
ンは、[Char]のリストが空になってしまったらエ
ラーを返すという式です。文字列を空にすると
フィールドがずれるのでエラーにします。「error

:: String -> a」はかなり乱暴な関数で、文字列を
エラー出力に出してプログラムを終わらせます。
Haskellの世界ではあまり使わないほうが良いと
されていますが、コマンドは小さいプログラムで
すのであまり気にすることはないかなと考えてい
ます。もちろん、すぐ終わるからといってメモリ
リークするわけではありません。それから、15

行目などの「ws !! (f-1)」も、fに変な数字が入って
いたら、その場でプログラムは終わります。
　20行目は、削るときの数が0だったら、削る
必要がないので単にリストを返すという意味です。
21行目は「リストの先頭の3つのバイトが取り出
せたら」という意味になります。
　このパターンにマッチするのは、長さが3以
上のリストです。この行にマッチした場合、次
に22～24行目でガードを使ってさらに場合分け
します。ここでは、aが1バイト文字だったら、
aを削ったリスト「b:c:bs」を、自分自身である
cutWに渡します。また、削らなければならない
字数を半角1字分、減らします。このような再
帰呼び出しをHaskellでは多用します。
　ちなみに、正常に処理が進めば、20行目にマッ
チして再帰が終わります。23行目では、「a,b,c」
を関数 isHanKanaに渡して半角カナなのかどう
か判別しています。半角カナなら、「a,b,c」をリ
ストから除去し、半角1字分数字を減らして
cutWを呼び出します。24行目は、1バイト文字
でも半角カナでもなければ、全角文字と判断し（決

め付け）、cutWに3バイト削ったbsと、2文字
分減らした数字を渡します。
　25～27行目は、バイト列が2バイトの場合に
マッチしますが、説明は割愛します。
　29行目の「cutW _ _」については、「_」は何に
でもマッチします。ですから、27行目以上にマッ
チしないと必ず28行目にマッチし、エラーが呼
ばれてプログラムは終わります。

自然な感じでパーサを書く

　さて今度はリスト4に、オプションを解析す
るプログラムを示します。このプログラムは本
稿でぜひ触れたかった「パーサコンビネータ」を
使ったパーサです。実行すると、図11のような
出力でオプションがField型に変換されている
ことがわかります。
　リスト4について、文法はかなり端折って流
れだけ説明すると、7行目のgetArgsでselfコマ
ンドのオプションを読んでいます。オプション
はgetFieldsに渡ります。getFieldsはオプショ
ンを1つずつ、fieldというパーサ（文字列を解析
する関数）に食わせています。
　15行目のfieldは、「まずパーサsubFを適用し
てみて、失敗したらsimpleFを適用し、それで
も失敗したらエラーを返せ」という意味です。4

行目でdata FieldにError Stringという型コン
ストラクタが追加されていますので、エラーは
これに乗せて返します。型は型推論に任せて省
略しています。
　17～20行目のsubF関数は、まず数字を読み
込みドットを読み込んで、もう一度数字を読み
込みます。これがうまくいったら20行目で
SubFで読み込んだ数字をField型にします。
ドットがなくて失敗したら、失敗した旨を返し
ます。subFの中のdigitも数字1字を読むパー
サです。
　このように、パーサの関数fieldは、パーサの関
数 subFやsimpleF、subFはパーサの関数digit

などを組み合わせて構成されます。また、digit

は1字の数字のパーサですが、「many1 digit」と

42 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 43

することで、1字以上の数字の文字列というパー
サになります。
　こうやって小さいパーサを組み合わせて大き
なパーサを作るということがパーサコンビネー
タという言葉の意味です。BNF（バッカス・ナ
ウア記法）を表現するような特別なものを持ち込
まなくても、Haskellの関数をブロック遊びのよ

うに組み合わせるだけでパーサが書けるのです。
実際のselfのオプションはもっと複雑ですが、
それでもこんな調子で書いていけばあまり悩ま
なくて済みます。
　22行目の simpleFは、わざとsubFと違う書
き方をしました。再び「>>=」が登場しました。
実は裏にはモナドがいます。

　17行目のdoは何か手続
き型のプログラミングみた
いに見えますが、「>>=」で
一直線にモナドが操作で
きないときの書き方で、基
本、同じものです。
　最後に、作ったselfproc.

hsとselffield.hsを合体し
て self.hsを完成させま

す。冒頭の部分をリスト

5のように書き換えて、
あとは作った関数をself

proc.hs と selffield.hs の
mainとdata Field以外を
コピー&ペーストしてく
ださい。
　「え？　それで動くの
か？」さすがに正しくコ
ピー&ペーストしないと
いけませんが、動きます。
なぜなら、Haskellのコー
ドは、副作用のない関数
をつなげたものですので、
同じ名前の関数でもない
限り、互いに悪さはいっ
さいしないことが保証さ
れています。
　結局、このように互い
に関数の独立性が高くな
ることは、副作用を徹底
的に嫌ったことの成果と
も言えます。

 ▼リスト4　オプションを解析する（sel­eld.hs）

 1 import System.Environment
 2 import Text.ParserCombinators.Parsec
 3
 4 data Field = FullF Int ¦ SubF Int Int ¦ Error String ｭ
deriving Show
 5
 6 main :: IO ()
 7 main = getArgs >>= print . getFields
 8
 9 getFields :: [String] -> [Field]
10 getFields as = map f as
11 where f x = case parse field "" x of
12 Right opt -> opt
13 Left err -> Error (show err)
14
15 field = try(subF) <¦> try(simpleF) <¦> (return $ Error ｭ
"option error")
16
17 subF = do f <- many1 digit
18 char '.'
19 s <- many1 digit
20 return $ SubF (read f) (read s)
21
22 simpleF = many1 digit >>= return . FullF . read

 ▼図11　sel­eldの実行

$ ghc selffield.hs
[1 of 1] Compiling Main (selffield.hs, selffield.o)
Linking selffield ...
$./selffield 1.2 3.3 2
[SubF 1 2,SubF 3 3,FullF 2]

 ▼リスト5　self.hs（ただし冒頭だけ）

 1 import System.Environment
 2 import Data.Char
 3 import Text.ParserCombinators.Parsec
 4 import qualified Data.ByteString.Lazy.Char8 as B
 5
 6 data Field = FullF Int ¦ SubF Int Int ¦ Error String ｭ
deriving Show
 7
 8 main :: IO ()
 9 main = do as <- getArgs
10 cs <- B.getContents
11 B.putStr $ slf (getFields as) cs

42 - Software Design Feb. 2014 - 43

コマンド作りで知るHaskell
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第3章

の評価（実行）順序で実現されています。Byte

Stringの定義は、Data.ByteString.Lazy.Char8で
行っていますが、遅延評価を行わないようにした
Data.ByteString.Char8というモジュールもあります。
　これを使ってself.hsをコンパイルすると、図

13のようにメモリをバカ食いした挙げく終わらな
いコマンドができてしまいますので、ご注意を。

　本稿では、selfというコマンドを例に、実際に動
くHaskellのコードを読んで
特徴を洗い出しました。おそ
らく、わけのわからない概念
がたくさん出てきて読む方は
たいへんだったと思いますが、
筆者が考えるHaskellの比類
なき武器であるParsecまで紹
介できました。もし、「こうい
う世界」に何か感じるところが
あれば、もう、あなたは関数
の世界に足を突っ込んでいる
かもしれません。ﾟ

最後はLazyな話

　ところでこれ、ちゃんとまともに動くのでしょうか？

標準入力から何GBも読み込んだら、getContents

はメモリに全部抱え込むのではないでしょうか？　
そういう心配がないことは、図12のような実験で確
認できます。入力を始めたらすぐ出力が始まります。
　Haskellのプログラムは、「ある処理を行うために
必要になったら必要な処理を行う」という動作をし
ます。標準入力も必要な分だけチビチビ読まれま
す。このような動作は遅延評価というプログラム

λ おわりに

 ▼図12　大きなデータを読ませてもすぐ処理が始まる

$ ghc -O2 self.hs
[1 of 1] Compiling Main (self.hs, self.o)
Linking self ...
$ time seq 1 10000000000 ¦ ./self 1 ¦ head -n 3
1
2
3

real 0m0.023s
user 0m0.017s
sys 0m0.011s

 ▼図13　Data.ByteString.Char8の場合

$ time seq 1 10000000000 ¦ ./self 1 ¦ head -n 3
（終わらない）

GHCiを使って型の例をもう少しColumn

　selfが動いたので「実用コードでHaskellを説明」は達

成したものの、リストと型についてはもうちょっと簡単

な例で示した方がよいのでここで補足をします。

　たとえば、図AのようにGHCiでtehaiという「定数」を

定義します注7。letは、GHCiで関数や定数の定義を書く

ときに使うものです。コンパイラを使うときは不要です。

 ▼図A　GHCiでtehaiという「定数」を定義

Prelude> let tehai = ["東","南","南",ｭ
"南","西","西","西","北","北","北","II",ｭ
"II","3"]
Prelude> tehai
["\26481","\21335","\35199",...（略）

注7） 引数ゼロの関数じゃねえか！と思った方はかなり関数型
に毒されています。

　右辺がリストになっています。リストは、このよう

に同じ型の要素をカンマ区切りで並べて[]で囲って定

義します。

　GHCiで単に「tehai」と打つと、「print tehai」と打った

ことになりますが、printはあくまでデバッグ用です。

tehaiを日本語でちゃんと表示するには、putStrLnな

どの関数を使います。putStrLnとtehaiの型を調べて

みましょう。

Prelude> :t tehai
tehai :: [[Char]]
Prelude> :t putStrLn
putStrLn :: String -> IO ()

　tehaiが「文字のリストのリスト」、putStrLnが、文字

44 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

列を受け入れて「IO ()」を返す（そして標準出力に文字列

を出力）する関数です。実は[Char]とStringは同じ型を

指すのでtehaiの型は[String]と等価ですが、それにし

ても型が合っていないので、「[[Char]] (= [String])」を

Stringに変換しないとputStrLnが使えません。

　Haskellにそこそこ慣れると、じゃあ何か型を変換で

きる関数はないかという発想になります。こういうとき

は、たとえばunwordsという関数を使います。型はこ

うなってます。

Prelude> :t unwords
unwords :: [String] -> String

　unwordsの動作はまだ説明していませんが、型が

合ってたらつなぐことはできます。つなげて使って

みましょう。

Prelude> putStrLn (unwords tehai)
東 南 南 南 西 西 西 北 北 北 II II 3
Prelude> (putStrLn . unwords) tehai
東 南 南 南 西 西 西 北 北 北 II II 3

　ちゃんと日本語が表示されました。unwordsはリス

トの文字列を空白区切りでつなぐ関数で、その出力は

String、つまりputStrLnで扱える型になります。同じ

出力が2つの方法で得られましたが、前者の例は

「unwords tehai」で tehaiを Stringに変換してから

putStrLnに引数として渡す、後者の例は「putStrLn .

unwords」という「[String] -> IO ()」という型を持つ合成

関数にtehaiを渡しています。やっていることは同じで

すが意味的には違うということになります。

　そうこうしているうちに、東をツモりました。話が

麻雀にヨレてきましたが、とりあえず tehaiに組み入

れましょう。++あるいは :という演算子を使います。

演算子といってもこれらも関数扱いでき、

Prelude> :t (++)
(++) :: [a] -> [a] -> [a]
Prelude> :t (:)
(:) :: a -> [a] -> [a]

というふうに型を調べられます。型だけではわからな

いので動作を補足説明すると、++はリストとリストを

つなぎ、:はリストの要素とリストをつなぎますので、

Prelude> (putStrLn . unwords) ｭ
("東":tehai)
東 東 南 南 南 西 西 西 北 北 北 II II 3
Prelude> (putStrLn . unwords) ｭ
(["東"]++tehai)
東 東 南 南 南 西 西 西 北 北 北 II II 3

というように微妙な型の違いに気をつけて使います。

通常は :を使います。さらに3を捨てましょう。 lter

関数に「/= "3"」という関数を渡して "3"を除去します。

これだと "3"が2つ以上あると小牌しますが……。

Prelude> let tehai' = filter (/= "3") ｭ
("東":tehai)
Prelude> (putStrLn . unwords) tehai'
東 東 南 南 南 西 西 西 北 北 北 II II

※Haskellではもと
4 4

のものからちょっと違う変数や関数を作る
時に、もとの名前に「'」をつける習慣があります。

　 lterの型はこうなってます。

Prelude> :t filter
filter :: (a -> Bool) -> [a] -> [a]

　つまり、「a -> Bool」という型の関数とリストを引

数にとって、リストを返すわけです。型で見ると高

階関数も型の掟に従っているのがわかります。さら

に、部分適用で作った関数「 lter (/= "3")」の型を見る

と、文字列 "3"を手がかりに型aが [Char]に確定する

様子が観察できます。

Prelude> :t filter (/= "3")
filter (/= "3") :: [[Char]] -> [[Char]]
#（参考）別の型になる例
Prelude> :t filter (/= True)
filter (/= True) :: [Bool] -> [Bool]

　さあ、四
スーシーホー

喜和注8をテンパりましたが、これ以上書

くと叱られそうなのでここでやめときます。言いた

かったことは、とにかく型を理解して型を合わせる

ように書けばHaskellのコードが書けるようになるよ

ということでした。次号、詰むや、詰まざるや注9。

注8） 麻雀の役満。
注9） 将棋の決め台詞な上に次号もありません。

Feb. 2014 - 45

Pythonにおける関数型プログラミング
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第4章

Pythonにおける関数型プログラミングの位置づけと実践的な使い方を雑感的に述べます。

Pythonにおける
関数型プログラミング

 Writer 柏野 雄太（かしの ゆうた）バクフー株式会社代表取締役／Twitter@yutakashino

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第4章

　いろいろな人が指摘をしているが、Pythonが関数
型プログラミングの影響を強く受けているというのはまっ
たくありえない。僕は関数をファーストクラスオブジェク
トとして実装したけれど、CやAlgol 68のような手続
き型プログラミングのほうが全然得意だし、Pythonを
関数型プログラミングとしてみなすことはない。

　
　Pythonは次のように、関数型プログラミング
言語の多くの特徴を持っています。

・関数がファーストクラスオブジェクトである
・制御構造として「ループ」を再帰で表現する（こ
とができる）

・データや関数の処理がリストの処理となる
・データを再代入するなどの副作用を避けるこ
とができる（純関数型では許さない）

・宣言を避けることができる（純関数型では許
さない）

・高階関数をサポートする

　このような点から「Pythonは関数型プログラ
ミング言語である！」的な主題で本稿を「無理や
り」書いてもそれはそれで面白いとは思いますが、
日々多くの現実的な課題に直面する大人として、
やはりプラクティカルな面に着目するほうがよ
さそうです。
　結論から述べますと、元来Pythonは関数型
プログラミングを目指して作られていないために、
通常の関数型プログラミング言語に比べて、関
数型プログラミングは不得意です。Pythonのク
リエイターであるグイド・ファン・ロッサムもはっ
きりとPythonは関数型プログラミング言語でな
いと次のように述べています注1 。

注1） "Origins of Python's 'Functional' Features"(http://
python-history.blogspot. jp/2009/04/origins-of-
pythons-functional-features.html)

　関数型プログラミング言語として必要な機能
を、Pythonは言語として実装していないことが
その不得意さの理由となっています。たとえば
StackOverfl owの議論の1つ注2では、次の点に
よりPythonを純粋な関数型プログラミング言語
として扱うには無理があるとしています。

・末尾再帰がない
・パターンマッチングがない
・リスト操作が貧弱
・遅延リストがない
・ラムダに式しかかけない
・ifが式でなく文である

　本稿では、通常の関数型プログラミング言語
の特徴のうち、Pythonで利用するべきでないも
の、その反対に積極的に利用するべきものを、
網羅的には紹介できないですが、肩肘張らずに
雑感的に述べることにします注3。

注2） "Why i sn ' t Py thon very good for funct iona l
p rogramming?"（ ht tp : / / s tackover f low.com/
questions/1017621/why-isnt-python-very-good-for-
functional-programming）

注3） 以降の説明ではいまだに利用者が圧倒的に多いPython 2
系をターゲットにしますが、Python 3系もほとんど同じ
ように当てはまると思います。

λ Pythonと関数型
プログラミング

http://python-history.blogspot.jp/2009/04/origins-of-pythons-functional-features.html
http://stackoverflow.com/questions/1017621/why-isnt-python-very-good-for-functional-programming

46 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 47

　普通の関数型プログラミングでは、forや
whileなどの手続き型ループを使わず再帰でルー
プを表現します。Pythonでも再帰で関数ループ
を表現することもできますが、末尾再帰が言語
として実装されていないので、手続きループに
比べて遅く、メモリを使い果たし、とても非効
率です。このことを具体例で示します。
　今、ループをfor文と再帰で表現した2つの
関数を次のように記述します。

forvsrecurse.py
def forloop(n):
 for i in xrange(int(n)):
 x = 1

def recloop(n):
 if n <= 0: return
 x = 1
 recloop(int(n) - 1)

if __name__ == '__main__':
 pass

　ここで、それぞれの関数の引数として1,000を入
れてみた計算を、IPythonのtimeitマジック注4で
それぞれの関数の時間計測をします。結果は図1
のように、再帰が15倍以上も遅いことがわかります。
　実は Pythonにおける再帰は、速度が遅
いだけではありません。この例では sys.
setrecursionlimit注5によってあらかじめ最

注4） http://ipython.org/ipython-doc/dev/interactive/tutorial.
html

注5） http://docs.python.jp/2/library/sys.html

大再帰スタックを拡張していますが、デフォル
トのPythonの設定ではスタックがオーバーフ
ローしてクラッシュしてしまいます。
　このように、Pythonにおいてループを再帰で
表すのは、とても効率が悪く、関数型プログラ
ミングをしているという自己満足やほかの人へ
の意地悪くらいの効果しかないです。Pythonに
おける再帰の乱用はやめたほうがいいと思います。

　λ（ラムダ）計算は関数型プログラミングの最重
要のビルディングブロックの1つです。しかし、
Pythonにおけるλは、コールバック関数として利
用するのに便利なほかは、あまり使い勝手がよく
ないので、二級市民扱いです。それは次の理由か
らです。

・無名関数としても限定的な利用に限られる
・式のみで、宣言では使えない
・Pythonでは通常の関数の定義も2行増える
程度であるように、たいして難しくないので、
λ式のメリットがあまりない

・Pythonの最大の特徴である人間にわかりや
すい言語という側面が失われる

　→λ式では関数名が使えない
　→λ式ではdocstringが使えない

　ただし、Pythonのλ式はコールバックとして
は使い手があります。

>>> def somefunc(callback, arg):
... return callback(arg)
……（略）……
>>> somefunc(lambda x: x**2, 10)
100

　Pythonにおける関数型プログラミングの定番
モジュールといえば、itertoolsとfunctools
になります。しかし、この2つのモジュールの
解説をすると、それだけで紙幅が尽きてしまい
ます。一方で、これらのモジュールにはとても

λ Pythonでの
λ（ラムダ）

λ 定番モジュール：
itertools、functools

図1　関数処理の実測値 ▼

% ipython

In [1]: import forvsrecurse

In [2]: %timeit forvsrecurse.forloop(1e3)
10000 loops, best of 3: 21.5 μs per loop

In [3]: import sys

In [4]: sys.setrecursionlimit(int(1e6))

In [5]: %timeit forvsrecurse.recloop(1e3)
1000 loops, best of 3: 325 μs per loop

λ Pythonでの再帰

http://ipython.org/ipython-doc/dev/interactive/tutorial.html
http://docs.python.jp/2/library/sys.html

46 - Software Design Feb. 2014 - 47

Pythonにおける関数型プログラミング
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第4章

良いチュートリアルがありまして、それを紹介
することにして解説に変えさせていただきます。
itertools
・ダグ・ヘルマン氏の"Python Module of the
Week"のitertools解説注6

・ローリ・ゲーガン氏のMontrealPythonにお
けるitertools講演注7

functools
・ダグ・ヘルマン氏の"Python Module of the
Week"のfunctools解説注8

　Pythonにおけるスタンダードライブラリのmap、
apply、filter、reduceは非常に多く利用され
る関数型プログラミングフレーバーの関数群です。
そのなかでもmapやfilterは多用されると思いま
すが、Pythonでは一般的にmapを利用するよりも
リスト内包表現を利用したほうが、効率が良く、
わかりやすいです。具体例を示します。

注6） Doug Hellmann "Python Module of the WeeK: itertools
- Iterator functions for efficient looping"(http://
pymotw.com/2/itertools/index.html)

注7） Rory Geoghegan "Module of The Month: itertools"(http://
www.youtube.com/watch?v=VxPoJbpqAzI), "Module of
The Month: itertools 2"(http://www.youtube.com/
watch?v=nsLOzpwYII8)

注8） Doug Hellmann "Python Module of the WeeK: itertools
- Iterator functions for efficient looping"(http://
pymotw.com/2/functools/index.html)

　まずmapとリスト内包表現の実行速度を
IPythonのtimeitマジックで速度測定したもの
が図2、図3です。結果はわずかではありますが、
mapよりリスト内包表記が速いことがわかります。

　PythonにはHaskelなどが持つ純粋な関数型
プログラミングとしての網羅的な遅延評価の機
能がありません。しかし、Pythonにおいてジェ
ネレータは遅延評価される数少ない機能の1つで、
メモリリソースとCPU時間の効率的利用のため
に積極的に利用するべきです。
　遅延評価を用いないリスト内包表現とジェネレー
タ表現を比べてみます。リスト内包表現はすぐに
リストを返しますが、この返すリストが巨大にな
る場合、ここで大きなリソース消費が発生してし
まいます。

>>> [x**2 for x in xrange(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

　一方でジェネレータ表現は、次のようにすぐ
にはリストを返さず、ジェネレータオブジェク
トを返します。つまりジェネレータではすぐに
評価は行われないのです。ジェネレータオブジェ
クトはnext()メソッドが呼ばれることで初めて
評価を行い値を返します。このために巨大なオ
ブジェクトであってもこの方法ならリソースの
無駄遣いがなく効率よく処理できます。
>>> gen = (x**2 for x in xrange(10))
>>> gen
<generator object <genexpr> at 0x10047fd70>
>>> gen = (x**2 for x in xrange(10))
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
4

　別の例を見てみます。これは2009年のPyCon

USにおけるデビッド・ビーズリー氏の講演注9か

注9） David Beazley "PyCon 2009: A Curious Course on
Coroutines and Concurrency"(http://pyvideo.org/video/213/
pycon-2009--a-curious-course-on-coroutines-and-co, http://
pyvideo.org/video/215/pycon-2009--a-curious-course-on-
coroutines-and-c1, http://pyvideo.org/video/214/pycon-
2009--a-curious-course-on-coroutines-and-c0)

図2　内包表現の実測値 ▼

% ipython

In [2]: %timeit map(lambda x: x**2, xrange(1, ｭ
10))
1000000 loops, best of 3: 1.76 μs per loop

In [3]: %timeit [x**2 for x in xrange(1, 10)]
1000000 loops, best of 3: 1.23 μs per loop

図3　� lterのほうが処理が遅い ▼

In [6]: timeit filter(lambda x: x > 10, rxangeｭ
(1, 20))
100000 loops, best of 3: 2.55 μs per loop

In [7]: timeit [x for x in xrange(1, 20) if x ｭ
> 10]
1000000 loops, best of 3: 1.39 μs per loop

λ リスト内包表記は
積極的に

λ Pythonでの遅延評価：
ジェネレータ

http://pymotw.com/2/itertools/index.html
http://www.youtube.com/watch?v=VxPoJbpqAzI
http://www.youtube.com/watch?v=VxPoJbpqAzI
http://www.youtube.com/watch?v=nsLOzpwYII8
http://www.youtube.com/watch?v=nsLOzpwYII8
http://pymotw.com/2/functools/index.html
http://pyvideo.org/video/213/pycon-2009--a-curious-course-on-coroutines-and-co
http://pyvideo.org/video/215/pycon-2009--a-curious-course-oncoroutines-and-c1
http://pyvideo.org/video/214/pycon-2009--a-curious-course-on-coroutines-and-c0
http://pyvideo.org/video/215/pycon-2009--a-curious-course-oncoroutines-and-c1
http://pyvideo.org/video/215/pycon-2009--a-curious-course-oncoroutines-and-c1
http://pyvideo.org/video/214/pycon-2009--a-curious-course-on-coroutines-and-c0
http://pyvideo.org/video/213/pycon-2009--a-curious-course-on-coroutines-and-co

48 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 49

ら取った例ですが、カウントダウンを関数として
実現する例です。

>>> def cd(n):
... while n > 0:
... yield n
... n -= 1
...
>>> x = cd(10)
>>> x
<generator object cd at 0x10056b820>
>>> x.next()
10
>>> x.next()
9
>>> for i in x:
... print i,
...
8 7 6 5 4 3 2 1

　Pythonにおいて遅延評価のポイントとなって
いるのがyield文で、このyiled文があるため
に関数は値をまとめてすぐに返すことをしないで、
next()メソッドにより1つずつ生成するように
なるのです。これがPythonにおける遅延評価の
やり方です。

　
　ジェネレータを利用すれば、関数型プログラ
ミングでお馴染みのパイプライン処理を簡単に

コーディングできます。これも上記のビーズリー
氏の講演からの例ですが、UNIX系のシェルで
はお馴染みの、ログファイルをtail -fをして
grepをパイプでつなぐような処理を簡単に書く
ことができます（リスト1）。
　リスト1の例はMac OS Xのシステムログファ
イルをtail -fして“Safari”という文字列を探す
簡単な例です。follow関数がtail -fで、grep
関数がgrepです。どちらもyield文によりジェネ
レータ関数となっていまして、2つの関数が順次
呼ばれることにより、値が1つずつ評価され、パ
イプラインが実行できるようになっています。
　上記の例では、yield文がジェネレータ関数を
作り出し、遅延評価としてnext()で値を'pull'
する例をみましたが、Python 2.5からyieldを式
を使うことで、ジェネレータに値を'push'できる
ようになりました。この'push'と'pull'を使えば、
Pythonにおける軽量並行プログラミングのビル
ディングブロックとなるべきコルーチンが自然に
構築できます。Pythonのコルーチンの解説につ
いても、紙幅の関係でここでは述べることができ
ませんが、上記ビーズリー氏の講演（3つのビデ
オに分かれています）が素晴らしい解説となって
いますので、興味がある方は閲覧ください。

　
　fn.py注10はfunctoolsを拡張する関数型プロ
グラミングモジュールです。これを使うと、
Pythonを使っているのに見た目に関数型プログ
ラミングをしているような錯覚を味わうことがで
きます。たとえば、標準のPythonにはパターンマッ
チングはありませんが、fn.pyには_という関数
を利用して、それっぽい見せかけができます。

>>> from fn import _
>>> print (_ **2)(3)
9
>>> print (_ + _)(1, 2)
3

注10） https://github.com/kachayev/fn.py

リスト1　パイプライン処理の例 ▼

def follow(thefile):
 thefile.seek(0,2)
 while True:
 line = thefile.readline()
 if not line:
 time.sleep(0.1)
 continue
 yield line

def grep(pattern, lines):
 for line in lines:
 if pattern in line:
 yield line

if __name__ == '__main__':
 # Set up a processing pipe : tail -f ¦ ｭ
grep python
 logfile = open("/var/log/system.log")
 loglines = follow(logfile)
 greplines = grep("Safari", loglines)
 # Pull results out of the processing
pipeline
 for line in greplines:
 print line,

λ ジェネレータを利用した
パイプライン処理

λ 関数型プログラミング
拡張 : fn.py

https://github.com/kachayev/fn.py

48 - Software Design Feb. 2014 - 49

Pythonにおける関数型プログラミング
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第4章

　そのほかにもHaskelやScalaでお馴染みのス
トリームや無限シーケンスなどが簡単に実現で
きます。

>>> from fn import Stream
>>> s = Stream() << [1, 2, 3, 4, 5]
>>> s
<fn.stream.Stream object at 0x10057b2d8>
>>> list(s)
[1, 2, 3, 4, 5]
>>> s[1]
2
>>> from fn.iters import map, drop
>>> from operator import add
>>> f = Stream()
>>> fib = f << [0, 1] << map(add, f, drop(1,
f))
>>> list(fib[0:20])
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144, 233, 377, 610, 987, 1597, 2584, 4181]

　ただ、このモジュールはピュアPythonで書か
れたものなので、これを使って見た目に関数型
プログラミングっぽく実装できたからといって、
本当に効率がよくなるわけではないことに注意
してください。

　Pythonでは副作用を避けるための手段が著し
く限定されてます。副作用を避けるためには、
副作用のないイミュータブルなデータ型（タプル
やフリーズセット）を利用したり、イミュータブ
ルな属性を持つカスタムクラスとして実装する
ことになります。しかし、Pythonではそのこと
によって逆にコードが冗長になり読みにくくな
るという「副作用」が避けられず、一般的に実行
効率も悪いものとなりがちです。Pythonにおい
ては、副作用を避けるために無理なプログラミ
ングをしてもそれだけの効果は得られません。
　単にバグを生まないようにするという観点か
らは、コーディング規律として、

・グローバル変数を使わない
・クラスの実装では__init__に属性を集めて
副作用の範囲を限定する

・クラスメソッドにstaticmethodを使う

くらいに留めておいたほうがいいと思います。

　
　本稿で示したように、Pythonはある程度まで
関数型プログラミングが可能なことは事実です。
しかし、前に引用したPythonクリエイターのグ
イド・ファン・ロッサムも語るように、Python

は本質として関数型プログラミング言語ではあ
りませんし、それを指向してもいません。したがっ
て、ただ関数型プログラミングが「カッコイイ」
からといって、無理矢理Pythonで関数型プログ
ラミングをするのは、賢い大人のやることでは
ありません。
　その一方で、いくつかのPythonの関数型プ
ログラミング風の機能はとても有用です。たと
えば、リスト内包表現やジェネレータはPython

の関数型プログラミングの部品としてとてもよ
くできていますので、積極的に使うべきです。
結局のところ、Pythonにおける関数型プログラ
ミングにおいては、手続き型プログラミングや
オブジェクト指向プログラミングを組み合わせ
ながら得意な部分だけを小さく使うことが要諦
になります。
　よくPythonを使う人間の間において、Pythonic

かどうかというのが議論されますが、Pythonicと
いうのは得意な部分を手早くシンプルな記述でわ
かりやすく組み合わせる精神から出ているとも言
えます。Pythonicに関数型プログラミングとつき
あうことがPythonにおいて関数型プログラミング
を使うためのクライテリオンとなるでしょう。
　最後になりますが、この稿の骨子は2013年の
PyCon USにおけるマイク・ミューラー氏の講
演注11から多大に影響を受けています。筆者が長
年もやもやしていたPythonにおける関数型プロ
グラミングの位置づけを鮮やかに描き出してく
れました。氏に感謝します。ﾟ

注11） Mike Muller "Functional Programing with Ptyhon"(http://
www.youtube.com/watch?v=Ta1bAMOMFOI)

λ 副作用について

λ 終わりに

http://www.youtube.com/watch?v=Ta1bAMOMFOI

50 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 51

　みなさんは“Erlang/OTP”から何を思い浮かべるでしょうか。大量に起動可能な軽量プロセスや、メッセー
ジパッシングによる並行処理、そしてメッセージパッシングはネットワークを介しても透過性を持つという特
徴を考える方もいることでしょう。しかしErlang/OTPの最大の目的は高可用性を持つシステムの構築にあり
ます。高可用で高信頼のシステムをなるべく簡単に構築するため、Erlang/OTPがサポートする、いぶし銀の
機能を紹介します。

実践 Erlang　
～高可用サーバを作ってみよう～

 Writer 篠原 俊一（しのはら しゅんいち）　Bashoジャパン株式会社（http://basho.co.jp/）

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第5章

　
　Erlang/OTP注1は、高可用性を第一に設計、
実装された言語、処理系、およびフレームワー
クです。Joe Armstrongの論文注2冒頭の問題設
定では高い信頼性を持つシステムを作るという
実用主義的な目的を掲げています（以下に引用）。

　“The central problem addressed by this thesis is

the problem of constructing reliable systems from

programs which may themselves contain errors.”

　そこを出発点に、軽量プロセスによる並列処
理、メッセージパッシング、そして別ノード上
のプロセスも透過的に扱えるといった言語仕様
が、結果として導かれたのです。
　本稿では、サンプルアプリ作成を通じて、高
可用性を実現するためのErlang/OTPのしくみ
のうち、エラー処理と、稼働中の内部調査およ
びパッチ適用を紹介します。
　一方、Erlangを関数型言語の視点から見た
場合、単一代入、パターンマッチ、第一級オブ
ジェクトとしての関数という性質を持っていま
す。これらの性質により、ソースコードが短く

注1） Erlang/OTP：http://www.erlang.org/、https://github.
com/erlang/otp

注2） Joe Armstrong 論文、インタビュー：http://www.sics.
se/~joe/thesis/、http://www.se-radio.net/2008/03/
episode-89-joe-armstrong-on-erlang/

書ける、可読性が上がるという利点があります。
詳しくは、参考書籍注3をご覧ください。

　Erlang/OTPで構築されたシステムは、開発
元のエリクソンを含め、さまざまに使われてい
ます。
　Heroku社注4では、HTTPリクエストとDyno注5

をつなぐRouting MeshにErlang/OTPが使われ
ています注6。「賢いプロキシ」として、ルーティング、
ロードバランス、カスタムの認証、動的なアプリ
ケーション拡張といった役割を担っているようで
す。またlogprexというsyslogルータは、GitHub

上でOSSとして公開されています。
　比較的最近の話題としては、WhatsAppという
スマートフォン向けチャットアプリでの利用があ
ります。Erlang Factory 2012でのプレゼンテー
ション注7では、SMP環境でのスケーラビリティ
やボトルネック解析、Erlangの処理系（BEAM）

注3） Programming Erlang：http://pragprog.com/book/
jaerlang2/programming-erlang、この翻訳本は『プログ
ラミングErlang』：http://ssl.ohmsha.co.jp/cgi-bin/menu
.cgi?ISBN=978-4-274-06714-3

注4） https://www.heroku.com/

注5） Herokuでのプロセス単位。
注6） Erlang Factory - Blake Mizerany, Works with Ruby and

Erlang at Heroku：http://www.erlang-factory.com/
conference/London2009/speakers/blakemizerany

注7） Erlang Factory - Rick Reed, Software engineer at
WhatsApp：ht tp : / /www.er lang- fac tory.com/
conference/SFBay2012/speakers/RickReed

λ Erlang/OTPとは
λ 実稼働の例

http://basho.co.jp/
http://www.erlang.org/
https://github.com/erlang/otp
http://www.sics.se/~joe/thesis/
https://github.com/erlang/otp
http://www.erlang-factory.com/conference/SFBay2012/speakers/RickReed
http://www.sics.se/~joe/thesis/
http://www.se-radio.net/episode-89-joe-armstrong-on-erlang/
http://pragprog.com/book/jaerlang2/programming-erlang
http://pragprog.com/book/jaerlang2/programming-erlang
http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-06714-3
http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-06714-3
https://www.heroku.com/
http://www.erlang-factory.com/conference/London2009/speakers/blakemizerany
http://www.se-radio.net/episode-89-joe-armstrong-on-erlang/

50 - Software Design Feb. 2014 - 51

実践 Erlang
～高可用サーバを作ってみよう～

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第5章

のロックコンテンションなど濃い話題が満載です。

　1つ前に受け取ったメッセージをエコーする
サンプルアプリを作りましょう。
　目的は2つです。

①エラー発生時の挙動を知ること
　ソフトウェアのバグやネットワーク、ハードウェ
アの故障が避けられない以上、エラーの影響
を最小限に留めつつ、システムとして稼働し
続けることが重要です

②稼働中プロセスの内部調査
　システムの状態を詳細に取得できることは、障
害への迅速な対応、バグの原因発見を可能にし
ます。これをコードのホットスワップ機能と合
わせると、稼働しながら調査と修正ができます

　次に進む前に、R15B01以降のErlang/OTP

を準備してください。Erlang Solutions注8のバイ
ナリパッケージがお手軽です。

OTPに則ったapplicationと
releaseの生成

　Erlang/OTPでは、OSプロセスとして動作す
る単位をreleaseと呼びます。releaseは関連性
の強いモジュールのあつまりであるapplication

を複数含みます。これらを構成するには、決
まった作法に従う必要があります。OTP Design

Principles 注 9 や Learn You Some Erlang for

注8） https://www.erlang-solutions.com/downloads/
download-erlang-otp

注9） http://www.erlang.org/doc/design_principles/des_
princ.html

Great Good!注10は、監視ツリーのしくみやリリー
スについて詳細に説明している必読の資料です。
　ここではエッセンスを見るために、rebarを
使い複雑な手順をスキップしましょう。

$ git clone https://github.com/rebar/rebar
$ (cd rebar && make)

　次にdechoという名前でapplicationのひな形
を作成します（図1）。
　続いてreleaseを生成します。relディレクト
リにreleaseに必要なファイルを生成し、release

のレシピreltool.configを3ヵ所変更します（図2）。
　最後にreleaseを生成し、起動します。

$ (cd rel; ../rebar generate)
$ rel/decho/bin/decho console

　さて、見慣れたErlang shellが現れたでしょ
うか。application:which_applications()でdecho

が見えると成功です。
　生成された release rel/dechoには、Erlang

処理系と必要なライブラリがすべて含まれてお
り、別サーバにそのままコピーして動かすこと
ができます。ほかのソフトウェアとの依存関係
衝突やライブラリのバージョン間互換性に悩む
ことなく、全部入りにする潔さはErlang/OTP

の実用主義をよく反映しています。

エコーロジック実装

　ロジックの実装は簡単です。まずsrc/decho_

sup.erlを変更し、decho_serverを監視ツリー
に組み込みます（図3）。

注10） http://learnyousomeerlang.com/

 ▼図1　applicationのひな形を作成

$ mkdir decho && cp rebar/rebar decho/
$ cd decho
$ echo '{deps, [{eper, ".*", {git, "git://github.com/basho/eper.git", master}}]}.' \
 > rebar.config
$./rebar create-app appid=decho
$./rebar create template=simplesrv srvid=decho_server
$./rebar get-deps && ./rebar compile

λ decho
（Delayed-ECHO）作成

https://www.erlang-solutions.com/downloads/download-erlang-otp
http://www.erlang.org/doc/design_principles/des_princ.html
http://learnyousomeerlang.com/

52 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 53

　次はsrc/decho_server.erlです。1つ前のメッ
セージを保存する状態レコードstateを定義し、
初期化関数 initとメッセージ処理関数handle_

callで利用します（リスト1）。
　handle_callは1つ前のメッセージpreviousを
応答し、受けたメッセージは次の状態とします。
実装はこれで終わりです。先ほど起動中の
Erlang shellはq()で止めて、新しいコードで
起動しなおしましょう。

$./rebar compile
$ (cd rel; ../rebar generate)
$ rel/decho/bin/decho console

　サーバプロセスをgen_server:call/2で呼び出
すと、直前のメッセージを返すようになりました。

> gen_server:call(decho_server, ham).
undefined
> gen_server:call(decho_server, bacon).
ham

エラーが発生するとどうなる?

　正常系が動作するだけのソースコードと、高
可用性を持つシステムの間には一般に大きな溝
があります。プロダクションで使うコードには
多くの例外系の処理、エラーのハンドリングが
入っていることをよくご存じでしょう。
　ここまで準備したコードは正常系のみの処理
に見えます。わざとバグを埋め込み、エラーを
発生させ、挙動を見てみましょう。handle_call

に、boomメッセージをパターンマッチする処

 ▼図3　src/decho_sup.erlの変更

編集前: {ok, { {one_for_one, 5, 10}, []} }.
編集後: {ok, { {one_for_one, 5, 10}, [?CHILD(decho_server, worker)]} }.

 ▼リスト1　src/decho_server.erl

%% -export の後にレコード定義を追加
-record(state, {previous}).

%% init, handle_call 変更
init(_Args) ->
 {ok, #state{}}.

handle_call(Request, _From, #state{previous = Previous} = State) ->
 {reply, {ok, Previous}, State#state{previous = Request}}.

 ▼図2　releaseを生成

$ mkdir rel
$ (cd rel; ../rebar create-node nodeid=decho)

※注：--disable-hipeを指定した処理系を使っている場合は、{app, hipe, [{incl_cond, exclude}]},も追加する必要があります。

編集前: {lib_dirs, []},
編集後: {lib_dirs, ["../deps"]},

編集後: {rel, "decho", "1",
 [
 kernel,
 stdlib,
 sasl,
 eper, %% <== この行を追加
 decho
]},

編集前: {app, decho, [{mod_cond, app}, {incl_cond, include}]}
編集後: {app, decho, [{mod_cond, app}, {incl_cond, include}, {lib_dir, ".."}]}

52 - Software Design Feb. 2014 - 53

実践 Erlang
～高可用サーバを作ってみよう～

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第5章

理を追加し、存在しないモジュール boom:

boom()呼び出してエラーを発生させます（リス
ト2）。compile、generateして再起動しましょう。
boom以外のメッセージには以前と同じ動作で
すが、boomを渡した途端にエラーが発生しま
す（図4）。
　もう一度メッセージを投げるとどうなるでしょ
う。エラー後の最初の応答はundefinedとなり、
新しいプロセスが取って代わっていることがわ
かります。そして通常の処理が動作します。
　この裏側ではErlang/OTPがエラーログの出
力やプロセス再起動などを自動で行っています。
エラーログからは最後に来たメッセージ、状態
の情報、エラーが起きたファイル位置を含めた
停止理由が見て取れます。再起動のしくみには、
単に止めて起動しなおすだけではなく、一定期
間にエラー回数が閾

しきい

値を超えると監視ツリーの
上位へエスカレーションすることや、最終的に
はErlangノード自体の停止までを含んでいます。
OTPの作法に従うと、詳細なログや安全装置
つきのプロセス再起動といった高機能なしくみ
を簡単に利用できるのです。
　なぜエラー発生時に、プロセスの再起動のみ
で対応できるかについては一考の価値がありま
す。プロセス間でメモリを共有し、ロックを用
いてアクセスする場合には、プロセスクラッシュ

時の再起動のみで正しい状態に復帰できるとは
限りません。メモリを共有せず、メッセージパッ
シングを用いる設計の選択により、再起動で対
応ができ、高可用性を実現しやすくしているの
です。

稼働中アプリケーションの 　　
内部調査

　サーバアプリケーションをメンテナンスして
いる方は、たまに不可解な挙動をするが原因が
わからない、という経験が一度ならずあるので
はないでしょうか。Erlang/OTPには稼働中の
アプリケーションを停止せずに調査する機能も
備わっています。
　Erlang組み込みのトレース機能をラップし
たredbugを使ってみましょう。実は、先ほど
作成したreleaseはすでにredbugを含んでいま
す。decho_serverモジュールのすべての関数呼
び出しをトレースしてみます。

> redbug:start ｭ
 ("decho_server:'_' -> return").

　gen_server:call(decho_server, ham)を実行する
と実行がトレースされ、呼び出し時は引数、戻り
時は戻り値が出力されているのがわかります（図5）。
　redbugは、しばらくすると自動でトレースを
終了します。トレースは多かれ少なかれ稼働中

 ▼図4　実行するとエラーが発生する

> gen_server:call(decho_server, boom).
=ERROR REPORT==== 13-Dec-2013::16:24:17 ===
** Generic server decho_server terminating
** Last message in was boom
** When Server state == {state,bar}
** Reason for termination ==
** {'module could not be loaded', [{boom,boom,[],[]},
 {decho_server,handle_call,3,
 [{file,"/.../decho/src/decho_server.erl"}, {line,35}]},
[以下略]

 ▼リスト2　handle_callに存在しないモジュールを追加する

handle_call(boom, _From, State) ->
 {reply, {ok, boom:boom()}, State}; %% !!!セミコロン!!!
handle_call(Request, _From, #state{previous = Previous} = State) ->
 {reply, {ok, Previous}, State#state{previous = Request}}.

54 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

のプロセスに性能影響があるため、redbugは時
間とトレース回数の両方に上限を付け、プロダ
クション環境でも安全に使える配慮をしています。
　先ほどの呼び出しトレース中にboomメッセー
ジを送ったならば、プロセスが再起動されてい
る様子が明確にわかるでしょう。またメッセー
ジ通信のトレースをするとプロセスがどう通信
しているかを調べることもできます。稼働中で
も関数呼び出しなどの動的な情報を取得できる
ため、調査の幅が大きく広がります。
　そのほかにもErlang/OTPは内部の情報を取
得できる関数を多数もっています。たとえばノー
ドの中でメモリを多く消費しているプロセス一
覧や、処理待ちのメッセージが溜まっているプ
ロセス一覧、各プロセスのスタックなど、詳細
な情報を取得することも簡単です。

稼働中のパッチ適用

　最後に、止められないプロダクション環境を
想定して、プロセスを停止せずにこのエラーを
修正してみましょう。これも、Erlangならで
はの簡単さをお見せします。
　次の内容で src/boom.erlを作成します。
boom()という関数を呼ぶと、"BOOOOM!"とい
う文字列を返すだけの簡単な機能です。

-module(boom).
-export([boom/0]).
boom() -> "BOOOOM!".

　コンパイルして、稼働中の releaseにbeam

ファイルをコピーしましょう。

$./rebar compile
 $ cp ebin/boom.beamｭ
 rel/decho/lib/decho-1/ebin/

　起動中のシェルでモジュールをロードするこ

とで、稼働中のままエラーを修正できます（1

行目のロードの丸括弧の前は小文字のエルです）。

> l(boom).
{module,boom}
> gen_server:call(decho_server, boom).
{ok,"BOOOOM!"}

　これは新規モジュールだけでなく、ロード済
みのモジュールにも適用できますし、何度もロー
ドしなおすこともできます。これで、システム
を停止せずに実行ファイルを入れ替えられるこ
とが確認できました。実際に、プロダクション
環境で、無停止でのバグ修正などを行うことが
でき、高可用性に寄与するしくみの1つです。

　Erlang/OTPの高可用性という特徴を軸に、
実際のアプリケーション作成を通じて、エラー
時の挙動と稼働中の内部調査およびパッチ適用
を見てきました。関数型であることの利点や分
散システムといった華やかな側面とは違った、
少々泥臭い内容に感じられたかもしれません。
大規模な分散システムや、状態を多く持つよう
な複雑性の高いシステムでも安心して利用でき、
また状態を解析できるErlang/OTPの利点を感
じていただけたら幸いです。
　本稿では紹介できませんでしたが、高可用性
のためには複数サーバ上で分散して動作するこ
とも必要です。理由は単純でハードウェアは故
障するからです。たとえばErlang/OTPの一部
であるMnesiaというデータベースを用いると、
複数サーバ上でレプリカを作成し、シャーディン
グすることもできます。商用RDBMSの機能に
は劣りますが、ディスクへの永続化やACIDトラ

ンザクションもサポートして
います。Erlang/OTPにはほ
かにも多くの機能、利点があ
ります。興味を持たれた方は
ぜひ本稿で紹介した情報も
追いかけてみてください。ﾟ

λ まとめ

 ▼図5　gen_server:call(decho_server, ham)の実行

23:45:04 <decho_server> {decho_server,handle_call,
 [foo, {<0.663.0>,#Ref<0.0.0.56214>},
 {state,undefined}]}
23:45:04 <decho_server> {decho_server,handle_call,3} ->
 {reply, {ok,undefined}, {state,foo}}

Feb. 2014 - 55

Java SE 8のラムダ式で変わるJavaプログラミングスタイル
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第6章

　来年3月にリリース予定のJava SE 8ではλ（Lambda、ラムダ）式が導入され、関数型のプログラミングの
記述がやりやすくなりました。本稿はJavaを使って関数型プログラミングスタイルで記述する方法について解
説します。

Java SE 8のラムダ式で変わる
Javaプログラミングスタイル　

 Writer きしだなおき　http://d.hatena.ne.jp/nowokay/

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第6章

　
　Javaでは、関数を値として扱うことはでき
ません。そのため、今までであれば、「関数型
プログラミング再入門」という特集にJavaが加
わることはなかったと思います。
　しかし、今年2014年3月にリリースが予定
されているJava SE 8では、ラムダ式が導入さ
れて、関数を式として記述できるようになりま
す。型として直接関数が扱えるようになるわけ
ではないので、記述がスッキリしない部分もあ
りますが、関数型のプログラミングスタイルの
記述が非常にやりやすくなります。そのおかげ
で、今回の特集にもJavaを混ぜてもらえるよ
うになったわけです。
　本稿では、Java SE 8のラムダ構文の簡単な
概要と、そこから変わるJavaでのプログラミ
ングスタイルについて解説しようと思います。

Java SE 8のラムダ式

　それでは、簡単にラムダ式の構文を解説しま
す注1。
　今まで、たとえばSwingでのイベントハンド
ラを設定するときに、リスト1のような匿名ク
ラスを使っていました。

注1） 詳しい説明はこちらのエントリをご覧ください。http://
d.hatena.ne.jp/nowokay/20130824#1377300917

　これが、Java SE 8のラムダ式を使うとリス
ト2のようになります。
　匿名クラスから、インターフェース名とメソッ
ド名を省略して、引数部と処理部を「->」で結ん
だ形です。引数の型は省略できます。また、引
数が1つの場合は括弧 ()も省略できます。さらに、
処理部が1行のときには中括弧も省略できます。
　最終的に省略できるものをすべて省略すると、
リスト3のようになります。
　最初の、匿名クラスを使った書き方に比べる
と非常に簡潔になりました。このように、ラムダ
式は匿名クラスの簡易記法ということができま
す。実際には、より効率がよくなるようにコン
パイルされるので単なる簡易記法ではありません。

λ Javaに
ラムダ式が来たよ

 ▼リスト1　今までのSwingでのイベントハンドラを設定

ActionListener al = new ActionListener() {
 @Override
 public void actionPerformed
 (ActionEvent e) {
 showMessageDialog(f, "こんちは");
 }
};

 ▼リスト2　Java SE 8でラムダ式を使ったSwingの
 イベントハンドラ

ActionListener al = (ActionEvent e) -> {
 showMessageDialog(f, "こんちは");
};

 ▼リスト3　リスト2の記述を省略したもの

ActionListener al = e ->
 showMessageDialog(frame, "こんちは");

http://d.hatena.ne.jp/nowokay/
http://d.hatena.ne.jp/nowokay/20130824#1377300917

56 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 57

関数型インターフェース

　ここで、ラムダ式の対象になる型が、関数を
表すような型ではなく通常のインターフェース
になっていることに注意してください。ラムダ
式は、「実装すべきメソッドが1つだけのイン
ターフェース」のオブジェクトとして割り当て
ることができます。
　このような、「実装すべきメソッドが1つだけ
のインターフェース」のことを、関数型インター
フェースといいます。例に挙げたActionListener

インターフェースでは、実装すべきメソッドは
actionPerformedメソッドだけなので、関数型
インターフェースとして扱えます。ほかには、
Runnableインターフェースも実装すべきメソッ
ドが runメソッドだけなので関数型インター
フェースとして扱えます。
　既存のインターフェースのほかにも、引数1

つで戻り値をとる関数を表すFunctionや、引
数をとらず戻り値をとる関数を表すSupplier

などのインターフェースが追加されています。

メソッド参照

　ラムダ式の代わりに、定義済のメソッドを指
定することもできます。たとえば、リスト4の
ようなメソッドがあるとします。
　そうするとリスト5のようにメソッドを直接
指定できます。
　ラムダ式を匿名クラスの簡易記法と説明しま
したが、実際のコンパイル時には、ラムダ式の
内容がstaticメソッドとして定義されて、メソッ
ド参照が渡されるという形に展開されます。

　Java SE 8でラムダ式が導入される大きな目
的となったのが、Streamによるコレクション
処理です。for文などのループを使った逐次的
なコレクション処理では、効率的な並列化がで
きないということから導入されました。
　たとえば、生徒の一覧から福岡の人を抜き出
して得点の平均を得る、という処理をこれまで
のfor文を使って書くとリスト6のようになります。
　これをStreamで記述しなおすとリスト7の
ようになります。
　「生徒の一覧から福岡の人を抜き出して得点
の平均を得る」という、やりたいことに近い記
述になっています。
　Streamを扱うには、Streamを生成するソー
ス、Streamから別のStreamを生成する中間操
作、Streamから結果を取り出す終端操作の3

種類の操作を考える必要があります。次にまと
めてみます。

Streamのソース

　Streamでの処理を行うには、まずStreamオ
ブジェクトを取得する必要があります。このと
き、Streamの元になるものをソースと呼びます。
　ListなどCollectionインターフェースには、

 ▼リスト4　通常のメソッド記述

public void buttonOnAction(ActionEvent ae){
 showMessageDialog(frame, "こんちは");
}

 ▼リスト6　通常のメソッド記述

int total = 0;
int count = 0;
for(Student s : students){
 if("福岡".equals(s.pref)){
 total += s.score;
 ++count;
 }
}
double ave = (double)total / count;

 ▼リスト5　直接指定したメソッド記述

ActionListener al = this::buttonOnAction;

 ▼リスト7　直接指定したメソッド記述

double ave = students.stream()
 .filter(s -> "福岡".equals(s.pref))
 .mapToInt(s -> s.score)
 .average().orElse(0);

λ Streamで
コレクション処理

56 - Software Design Feb. 2014 - 57

Java SE 8のラムダ式で変わるJavaプログラミングスタイル
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第6章

streamというメソッドが追加され、このstreamメ
ソッドを呼び出すことでStreamを得ることができ
ます。また、配列を処理するStreamは、Arrays

クラスのstreamメソッドで得ることができます。
　このほかにも、IntStreamインターフェース
のrangeメソッドで数値列のStreamを得たり、
BufferedReaderクラスの linesメソッドで各行
を処理するStreamを得たりと、Streamがあれ
ば便利というところにStreamを生成するメソッ
ドが用意されています（表1）。

中間操作

　Streamから別のStreamを生成する操作を中
間操作といいます。中間操作には、Streamを
条件によってフィルタリングするfilterメソッ
ド、Streamの値を別の値に変換するmapメソッ
ド、要素数を制限する limitメソッドなどがあ
ります（表2）。
　このような中間操作をつないでいくことで、
Streamの処理を行います。

終端操作と畳込み

　Streamは、最終的にそれぞれの値について
なんらかの処理を行うか、値を束ねて1つの値

に変換する必要があります。このような処理を
終端操作をいいます。
　終端操作には、それぞれの値を処理する
forEachメソッドのほかに、集計を行って1つ
の値を取り出すメソッドがあります。集計メソッ
ドには、例でも挙げたようなaverageメソッド
や、個数を数えるcountメソッド、そして、さ
まざまな集計を行うcollectメソッドがありま
す（表3）。
　collectメソッドには、おもにCollectorsクラ
スのメソッドを使ってCollectorオブジェクト
を渡します。Collectorsクラスには、文字を連
結する joiningメソッド、Listに変換する
toListメソッドなどがあります（表4）。
　このように、コレクションを操作して1つの
オブジェクトにまとめることを畳込みといいま
す。最初に挙げた、for文を使うリスト1では
平均をとるのに合計と個数を集計するための変
数が必要になりました。for文を使う畳み込み
処理では、中間状態を管理する変数が必要にな
ります。しかし、Streamでの畳み込み処理で
はそのような中間状態が隠されて、どのような
畳み込みを行うかだけを記述すればよくなりま
す。中間状態の操作でバグを混入させてしまう

中間操作 説明
filter() 要素を選別する
map() 別の値に変換する
sorted() 整列する
distinct() 重複を省く
skip() 要素をとばす
limit() 要素数を制限する

 ▼表2　中間操作のメソッド

メソッド 説明
toArray 配列を取得する

sum, min, max, count 集計を行う

anyMatch, allMatch 条件にあてはまるか

forEach 要素ごとの処理を行う

findFirst 最初の要素を得る

reduce 一般的な畳み込み

collect 再利用可能な畳み込み

 ▼表3　終端操作のメソッド

メソッド 説明
toList Listを取り出す

joining 文字列を結合する

groupingBy グループ化してまとめる

summarizingInt 整数の集計を行う

 ▼表4　Collectorsクラスのメソッド

Streamソースになるメソッド
Collection#stream()

Arrays.stream()

IntStream.range()

BufferedReader#lines()

SplittableRandam#ints()

 ▼表1　Streamソースになるメソッド

※ #はインスタンスメソッド、.はstaticメソッド

58 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 59

 ▼リスト8　Streamを使った並列処理の例

double ave = students.parallelStream().
 .filter(s -> "福岡".equals(s.pref))
 .mapToInt(s -> s.score)
 .average().orElse(0);

ことがよくありますが、そのような操作を記述
する必要がなくなることで、バグを作りこんで
しまう可能性を減らし見通しをよくすることが
できます。

並列処理

　Streamを使った処理は、簡単に並列処理に
書き換えることができます。サンプルであれば、
streamメソッドでStreamを取得していたとこ
ろを、parallelStreamメソッドに置き換えるだ
けで並列処理に変更できます。
　for文を使った処理を並列化する際は、畳み
込み操作に該当する部分の書き換えに気を遣い
ます。Streamの処理では畳み込みの処理が隠
蔽されているために、プログラマがほとんど意
識せずに並列化が行えるようになるわけです。

　ここまでStreamによる処理を見てきました。
Streamによるコレクション処理は、Javaでの
プログラミングスタイルを最も大きく変えると
思いますが、ほかにもJavaのプログラミング
スタイルを変えるような記述やライブラリがい
くつかあるので、ここで紹介します。

制御構造の自作

　ラムダ式を使うと、メソッドに処理を渡すとい
うことが記述しやすくなります。そうすると、制
御構造を自作して使うことも楽になります。
StreamのforEachメソッドもその1つといえます。
　たとえば、リスト9のようなloopメソッドを用
意します。IntConsumerインターフェースは int

値を1つ受け取る関数として扱える関数型イン
ターフェースです。
　そうすると、リスト10のようにして、指定回
数繰り返すような制御構造として使えます。

遅延実行

　Haskellでは、関数の引数として渡した式は、
実際にその式の値が使われるときに評価されます。
このように、式の値が実際に使われるまで評価
されないようなしくみを遅延評価といいます。
　Javaでメソッドの引数として記述した式は、
メソッドの呼び出し前に評価されてその値が引
数として渡されます。この値がメソッド内で使
われなかった場合には、式の評価は無駄な処理
だったことになります。
　たとえば、次のようにデバッグログでオブジェ
クトの内容を出力するコードがあるとします。

logger.debug(params.toString());

　そうすると、デバッグ以
外のときには toString()メ
ソッドで生成された文字列
は出力されず、まったく無
駄な処理になってしまいま
す。このような場合、ラム
ダ式を使って式を間接的に
渡すようにすると、値が必
要になったときだけ式を呼
び出すということが可能に
なります。
　java.util.Loggerクラスの
debugメソッドなどでは、

λ Java SE 8で使える
プログラミングスタイル

 ▼リスト9　loopメソッド

static void loop(int count, IntConsumer proc){
 for(int i = 0; i < count; ++i) proc.accept(i);
}

 ▼リスト10　loopメソッドを制御構造として使う例

loop(5, i -> {
 System.out.println(i + "回目");
});

58 - Software Design Feb. 2014 - 59

Java SE 8のラムダ式で変わるJavaプログラミングスタイル
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第6章

Stringの代わりにSupplier<String>を受け取
るものが用意されているので、次のように記述
できます。

logger.debug(() -> params.toString());

　このようにすれば、実際にログ出力されると
きだけ toString()メソッドが実行されるように
なります。ラムダ式の導入で、こういった遅延
実行の記述がやりやすくなります。

nullの排除

　Javaではオブジェクトを持たないことを表
すためにnullが使えますが、このnullはバグの
温床にもなっています。また、nullに対応する
ためのコードも面倒なものになります。たとえ
ば次のようなProductクラスがあるとします。

class Product{
 String name;
}

　そして、キーに対応するProductクラスのオ
ブジェクトを返すメソッドがあるとします。キー
に対応するものがなければnullを返すとします。

Product findProduct(String key){
 return products.select("key=?", key);
}

　このとき、Productを検索して、名前を大文
字で表示するような処理は、次のようになります。

Product p = findProduct(key);
if(p != null && p.name != null){
 System.out.println(p.name.toUpperCase();
}

　ここで nullのチェックを忘れてしまうと、
NullPointerExceptionが発生する可能性が出て
しまいます。とくに、p.nameのnullチェックは忘
れたりサボったりしてしまいがちです。
　関数型の言語によく見られるのは、nullを扱
わず、HaskellのMaybeやScalaのOptionのよ
うに、値を持たない可能性がある型を用意する
ことです。型として明示することで、予期せず
値がないということが起きにくくなります。

　Java SE 8からは、値を持たない可能性があ
ることを表すOptionalクラスが導入されました。
Optionalクラスを使うとfindProductメソッド
は次のようになります。

Optional<Product> findProduct(String key){
 return Optional.ofNullable(
 products.select("key=?", key));
}

　そうすると、Productを検索して名前を大文
字で表示するような処理は次のように書くこと
ができます。

findProduct("1")
 .map(p -> p.name)
 .map(String::toUpperCase)
 .ifPresent(System.out::println);

　このOptionalのえらいところは、mapメソッ
ドで値を取得していく限りは、ずっと値を持つ
ことが保証されるということです。つまり、
Optionalを使うと、値があったりなかったりす
るOptionalの外の世界と、値があることが保証
されたOptionalの内側の世界とを分離できるわ
けです。

　ラムダ式が導入されるJava SE 8では、これ
までとは違った関数型のプログラミングスタイ
ルが使いやすくなります。
　もちろん、後付けであることからいろいろイ
ケてない点も多くあり、元から関数を扱うこと
が前提で設計されている言語のようにはスマー
トに記述できないというのも事実です。しかし、
関数型スタイルの記述が気軽に行えるようにな
ることで、Javaのプログラマにも関数型の考
え方が広がってくるのではないかと期待してい
ます。Java SE 8以降では、外部ライブラリに
も関数型の考え方を取り入れたものが増えて
くるでしょう。
　Javaでのプログラミングスタイルが、変わっ
ていくように感じています。ﾟ

λ まとめ

60 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 61

関数型プログラミング再入門の終章はRubyです。これまで、さまざまなプログラミング言語が生まれてきまし
たが、第1章で紹介したおなじみのLispからRubyに至るまでコンピュータの発展の歴史を表しているかのよう
です。その軸になるのは、関数型プログラミングというわけです。本章でそのエッセンスを堪能してください。

Rubyで関数型脳を育てる
方法とは？

 Writer るびきち（http://www.rubyist.net/~rubikitch/）／Twitter@rubikitch

λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第7章

　
　Rubyはオブジェクト指向言語として知られ
ていますが、実は関数型言語の影響をものすご
く強く受けています。しかもスクリプト言語な
のでオブジェクト指向と関数プログラミングを
身近なものにしてくれます。本記事ではRuby

を通して関数型脳をインストールしていただき
ます。
　関数型言語の元祖はLispです。Lispにはさ
まざまな変種があり、Lispから影響を受けた
言語が数多く存在します。Rubyもその1つで、
一部の人からは冗談交じりながらも「MatzLisp」
と呼ばれています。開発者であるまつもとさん
本人が「RubyはLispをベースとしている」と宣
言しています。

　「Ruby＝Lisp－マクロ－S式＋オブジェクト
指向＋ブロック＋Smalltalk＋Perl」といったと
ころでしょうか。「マクロとS式のないLispな
んて！」とかLisperから怒られそうですが、
Lispの考え方はしっかりと受け継がれています。
Lispのとっつきにくさを排除しつつ、Lispの魅
力を普通のプログラマに広めた言語とも言えます。

　それではRubyに見られるLispっぽさを
ちょっとずつ挙げていきましょう。
　Rubyはすべてのコードが「式」であり、値を
持っています。制御構造ですら例外ではありま
せん。たとえば「if」はC言語系列では文ですが、
Rubyでは最後に評価した値を返します。なお、
この例で使ってるシンボルもLispが由来です。

　RubyもLisp同様「最後に評価した値」
を返り値にする式が多いです。メソッド
の返り値にもあてはまるため、return
が省けるのもうれしいです（リスト1）。
　Lispは強力なマクロによるメタプログ
ラミングができます。関数を定義する関
数や制御構造が定義できます。そのおか
げでLispを問題領域に特化した言語
（DSL：Domain Specifi c Language）に変
化させられます。とくにリーダーマクロ
を使えば好き勝手な言語を構築できてし
まいます。

λ RubyはLisp
だった !？

λ Rubyに見られる
Lispっぽい特徴

Ruby is a language designed in the following steps:

 * take a simple lisp language (like one prior to CL).
 * remove macros, s-expression.
 * add simple object system (much simpler than CLOS).
 * add blocks, inspired by higher order functions.
 * add methods found in Smalltalk.
 * add functionality found in Perl (in OO way).

So, Ruby was a Lisp originally, in theory.
Let's call it MatzLisp from now on.

[ruby-talk:179642]より引用

http://www.rubyist.net/~rubikitch/

60 - Software Design Feb. 2014 - 61

Rubyで関数型脳を育てる方法とは？
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第7章

　Rubyにはマクロが存在しないものの、メソッ
ドを定義するメソッドや「eval」があるのでメタ
プログラミング可能です。しかもRubyはもと
もと可読性の高い構文なのでリーダーマクロな
どという難しい道具は不要です。マクロがなく
ても実用的なDSLが構築できるのはRailsや
Rakeで実証済です。RubyそのものがDSLになっ
ているのです。Ruby版Makefi leのRakefi leを
示しますが、初見でも意味は読み取れるでしょ
う（リスト2）。
　Lispには関数を呼び出す関数 funcall・
applyがありますが、Rubyにも同等の機能が
あります（リスト3、4）。Object#__send__は
シンボルで指定されたメソッドを呼び出します
（動的メソッド呼び出し）。また、配列の前に「*」
を付けてメソッドを呼び出せば、配列の各要素

が分解されてメソッドの引数に渡ります
（xmpfilterを使えば、# =>の後に式の値が注
釈され、出力結果は# >>で表示されます）。
　そしてLispの象徴とも言えるラムダ式ですが、
Rubyにもちゃんと存在します。ラムダ式は関数
プログラミングの中核を担います。そのまま使う
こともできますが、絶妙な形で融合されています。

　ではRubyのラムダ式を見てみましょう。ラ
ムダ式は次の文法になります。

lambda {¦args, ...¦ body ... }
lambda do ¦args, ...¦
 body
 ...
end

　Rubyをご存じならば、見てのとおり以降で
紹介するブロックと同じ構文です。むしろ、ラ
ムダ式を表現するのにブロックを使っています。
なお、Ruby 1.9からは次の文法も受け付けます。

->args, ... { body ... }

「->」を回転させればλに見えるとのことですが、
そう思ってください。->をλとみなせばλ計
算のλxx+1を->x {x+1}と表現できるので、
自然にラムダ式として読み下せます。
　ラムダ式を呼ぶには、メソッド呼び出しの()
の代わりに[]を使います。Ruby 1.9から「.()」
でも呼び出せます。

リスト1　if式・メソッドの返り値の例 ▼

def iftest
 if 4%2 == 0
 # return :evenとも書ける
 :even
 else
 :odd
 end
end
iftest # => :even

リスト2　シンプルなRake� leの例 ▼

task :default => ["hello"]
file "hello" => ["hello.c"] do
 sh "gcc -o hello hello.c"
end

リスト3　funcall相当の例 ▼

Math.sin(0) # => 0.0
Math.__send__ :cos, 0 # => 1.0
[:sin, :cos].map{¦m¦ Math.__send__(m, 0)} # => [0.0, 1.0]

リスト4　apply相当の例 ▼

def vsystem(*args)
 puts "$ #{args.join ' '}"
 system(*args)
end
vsystem "ruby", "-v"
>> $ ruby -v
>> ruby 2.0.0p247 (2013-06-27) [x86_64-linux]

λ ラムダ（lambda）で
遊んでみる

62 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 63

　もちろんラムダ式はクロージャーになっています。
リスト5の例で示すように、外側のローカル変数
zもラムダ式から参照できます。

　そして、Rubyを語るうえでは絶対欠かせな
いのが独特のブロック構文です！　一見とっつ
きにくいラムダ式・高階関数を一気に身近なも
のにしてくれます。ブロックを使いこなしてこ
そRubyらしいプログラムになり、関数型の恩
恵をも受けられるようになります。
　Lispは何個でも関数オブジェクトを引数に
持てますが、関数引数を持つ多くのLisp関数
は1つの関数引数しか持ちません。そこで、1

つの関数引数に特化した構文を考案しました。
それがブロックです。
　ブロック付きメソッドの呼び出しは次のよう
になります。ラムダ（lambda）はその一例に過
ぎないことがわかります。ブロック付きメソッ
ドの構文は2種類用意されています。意味は同
じですが結合の強さが異なります。{}のほう
は式で、do～endのほうは制御構造という感じ
がします。実際、endはクラス・モジュール定
義、制御構造の終点に使うので、do～endによ

るブロックは自作制御構造というニュアンスが
見て取れます。

recv.method(args, ...) {¦bargs, ...¦ body ... }
recv.method(args, ...) do ¦bargs, ...¦
 body
 ...
end

　おそらく、最初に出会うブロック付きメソッ
ドはeachでしょう。これは配列などのコレク
ションの各要素においてブロックを評価するメ
ソッドです。そして、次節で紹介する関数プロ
グラミング的なメソッドはeachを使って定義
されています。リスト6に、配列の各要素を表
示するコードを示します。
　ブロックはラムダ式の化身です。つまり、ブ
ロックの代わりにラムダ式を渡すことも可能で
す。ブロック付きメソッドの最後の引数に「&」
をつけてラムダ式を渡せば、そのラムダ式をブ
ロックとして扱ってくれます（リスト7）。もち
ろんこんな書き方はRubyとしてはお勧めでき
ません。ブロックを別のメソッドにそのまま渡
すのに&引数が使えます（リスト8）。
　ラムダ式ももちろんオブジェクトなので、
Lispのように複数のラムダ式を引数に渡せます。
Rubyではめったに登場しません。恣意的な例
ですが、関数（Rubyでは厳密な意味で関数は存
在しないが、トップレベルのメソッドは関数の
ように扱えるので便宜的に関数と呼ぶ）
result_formatterはヘッダと計算の2つのブ

リスト6　eachメソッドの例 ▼

[1,2,3].each {¦x¦ p x }
[4,5,6].each do ¦x¦
 p x
end
>> 1
>> 2
>> 3
>> 4
>> 5
>> 6

リスト7　ラムダ式をブロックにする例 ▼

[1,2,3].each(&->i{p i})
>> 1
>> 2
>> 3

リスト8　ブロックを別のメソッドに丸投げする例 ▼

def myeach(obj, &block)
 obj.each(&block)
end
myeach([1,2]){¦x¦ p x }
>> 1
>> 2

λ ブロック！

リスト5　ラムダ式の例 ▼

z = 3
f1 = lambda {¦x,y¦x+y+z}
f2 = ->x,y{x+y+z}
f1[3,4] # => 10
f2.(3,4) # => 10

62 - Software Design Feb. 2014 - 63

Rubyで関数型脳を育てる方法とは？
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第7章

ロックを受け取り、整形した文字列を作成する
ものと定義します。result_formatterでは、
2つのブロックを評価し、改行で結合するだけ
です（リスト9）。
　これではLisp臭がきついので、よりRubyら
しくするにはリスト10のようにクラスを定義し、
ブロック付きメソッドを立て続けに呼びます。
ブロック付きメソッドがあたかもブロックの名
前を示しているように見えるので、より読みや
すいコードになります。1つのメソッドにつき
1つのブロックしか持てませんが、自分自身を
返すメソッドをチェーンすることで事実上複数
のブロックを渡せることを示しています。

　Rubyで関数プログラミングをするにはラム
ダ式の化身であるブロックが鍵であることは示
したとおりです。eachはブロックを使ってい

るものの、所詮は単なる繰り返し処理メソッド
に過ぎないので命令型の考え方です。関数型は
抽象度をさらに高めます。

Enumerable#map

　まずはコレクションの各要素の値を2倍にし
た配列を返す処理を考えます。double_aryは
eachを使った命令型プログラミングによる関数
です。結果を返す空配列 resultを用意し、
eachで各要素を2倍にした値をresultに追加
（Array#<<）し、resultを返しています。
　この関数は「要素を2倍にする」処理と「新しい
配列に結果を追加する」処理に分かれています。
前者は問題によって変化しますが、後者は汎用
的に使えると思いませんか？̶̶そうです。後
者を「コレクションの各要素に対して共通の計
算をしてその結果の新しい配列を返す」処理と
して抽出したのがEnumerable#mapです。map
は前者の「共通の計算」をブロックとして受け取

リスト9　複数のラムダ式を引数に取る例 ▼

def result_formatter(header_block, result_block)
 format "%s\n%s", header_block[], result_block[]
end
puts result_formatter(->{"Result:"}, ->{Math.sqrt(2)})
>> Result:
>> 1.4142135623730951

リスト10　メソッドチェーンで複数ブロックを扱う例 ▼

class ResultFormatter
 def header(&block)
 @header = block # インスタンス変数にブロックを記憶(まだ評価しない)
 self # 自分自身を返すのがポイント
 end

 def result(&block)
 @result = block
 self
 end

 def process
 format "%s\n%s", @header[], @result[] # ここで記憶したブロックを評価する
 end
end

puts ResultFormatter.new.header{ "Result:" }.result{ Math.sqrt(2) }.process
>> Result:
>> 1.4142135623730951

λ 関数型を感じさせる
メソッドたち

64 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 65

り、ブロックの評価結果を結果の配列に渡すの
です（リスト11）。
　Lispのmapcarではlambdaを書く必要があ
りますが、Rubyのmapはその必要がありません。
結果的にとても短く簡潔に表記できます。

Enumerable#select

　今度は配列の中から偶数だけを取り出した
新しい配列を返す処理を考えます（リスト
12）。select_evens_aryは命令型で書いた関
数です。同様に、ifの条件式以外は汎用に使
えることがわかります。Enumerable#select
は条件式をブロックで受け取り、条件を満たし
た要素のみを取り出した配列を返します。Lisp

ではremove-if-not相当ですね。
　「&引数」を使うことでさらに短く書けます。
&引数はラムダ式以外にもメソッド名のシンボ
ルも渡せます。具体的には「{¦x¦ x.METH}」→
「&:METH」という感じです。メソッド名を直接
渡してるところで、もっともっと関数型な雰囲
気が出てきましたよね！

関数型メソッドあれこれ

　ここでmapとselectを取り上げましたが重
要なことがあります。それは、これらが繰り返

しメソッドであることを忘れさせてくれること
です。mapは「コレクションに写像（map）を適
用する」、selectは「条件を満たす要素を取り
出す」と読め、どこにも「繰り返し」に関する言
葉は出てきません。行いたい処理そのものがメ
ソッド名になっており、そこに必要な情報を指
定するだけで仕事をこなしてくれます。ほかに
もEnumerableモジュールには最大値・最小値
を求めたりソートをしたり要素数を求めたりな
ど、eachを使った便利メソッドがたくさん定
義されています。Enumerableはeachメソッド
の抽象度を上げるものです。
　各要素の総和・総積を求めるのはそれぞれ、
reduce(:+)・reduce(:*)を使います（リスト
13）。Enumerable#reduceはLispのreduce同
様に畳み込みを行うメソッドです。eachを使っ
てこの処理を書くと各要素において累積値を更
新していき、最後に累積値を返すことになります。
　eachによる命令型プログラミングだと、変
数の破壊的変更（map,selectに出てくる
Array#<<)や値の更新（reduceに出てくる
+=・*=）が出てきます。関数プログラミングは
これらの処理が出てこないうえ短くなるので、
プログラムが明確になりバグが少なくなります。
　ブロックは繰り返し処理に用いることが多かっ

リスト12　Enumerable#selectの例 ▼

def select_evens_ary(ary)
 result = []
 ary.each{¦x¦ result << x if x.even? }
 result
end
select_evens_ary [2,3,4] # => [2, 4]
[2,3,4].select {¦x¦ x.even? } # => [2, 4]
[2,3,4].select(&:even?) # => [2, 4]

リスト11　Enumerable#mapの例 ▼

def double_ary(ary)
 result = []
 ary.each{¦x¦ result << x*2 }
 result
end
double_ary [1,2,3] # => [2, 4, 6]
[1,2,3].map{¦x¦ x*2 } # => [2, 4, 6]

64 - Software Design Feb. 2014 - 65

Rubyで関数型脳を育てる方法とは？
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第7章

たため、かつてイテレータと呼ばれていました。
しかし、一度しか評価されないブロックも多く
なってきたため、イテレータとは呼ばれなくな
りました。たとえばopenは開いたファイルに
対する処理をブロックで記述できてcloseを
省けるなどです。ほかにも条件によって評価し
たりや文脈を変更するなどの用途があります。
関数プログラミングの観点ではやはり「イテレー
タ」としての用途が多くなります。

　
　それでは実際に命令型で書かれたプログラム
を関数型にしてみましょう。題材は「完全数」です。
　完全数とは、真の約数（自分自身を除いた約数）
の総和が自分自身に等しい自然数のことです。
言い換えると、すべての約数の総和（自分自身
含む）が自分自身の2倍になる自然数です。た
とえば、28＝1＋2＋4＋7＋14なので28は
完全数です。
　Nが完全数であるかを判定するメソッドであ
るInteger#perfect?を定義してみましょう。
perfect?それ自体は、約数の総和（sum_of_
factors）がNの2倍に等しいと書いてるだけ
なのですが、sum_of_factorsは命令型で書か
れています（リスト14）。
　約数は1から√Nまでの各整数においてNが
割切れるかどうかをチェックする方法をとって
います。もし割切れるのならば、その数（i）と
N/iが約数になるので両者を加えています。た
だし、平方数 (√Nが整数になる数)では両者
が等しくなるため、除外しています。
　完 全 数 は 6 28 496 8128 33550336
8589869056と続いていくのでプログラムは
正しく動作しています。
　sum_of_factorsを関数型で考えると、次の

4ステップとなります。

①1～√Nで割切れる数iをすべて求め、
②i→[i, N/i]の写像を適用して全約数を得る
③約数から重複を取り除き（平方数対策）、
④総和を求める

　①は剰余が0になる条件式をブロックで指定
したselectを使います。selectは取り上げた
ばかりなので問題ありません。a..bは範囲オブ
ジェクトでEnumerableのメソッドが使えます。
　②の写像適用は普通にmapを使えばよさそう
な気もしますが、実はうまくいきません。整数
→配列の写像になっているので、mapでは配列
の配列（2次元配列）が返ってきてしまいます。
そこで、ブロックの値を返り値の配列に結合す
るflat_mapという亜種を使います。これは、
1段階平滑化したmapなので、flat_map{～}
はmap{～}.flatten(1)と同じです。
　③で複数の同値要素を 1つにするには
Array#uniqを使います。
　④は出てきたばかりのreduce(:+)です。

リスト14　完全数を求める（命令型） ▼

class Integer
 def perfect?
 sum_of_factors == self * 2
 end

 private
 def sum_of_factors
 sum = 0
 (1..Math.sqrt(self)).each do ¦i¦
 if self%i == 0
 sum += i
 sum += self/i unless i == self/i
 end
 end
 sum
 end
end
テスト
1.perfect? # => false
28.perfect? # => true
496.perfect? # => true
8128.perfect? # => true
33550336.perfect? # => true
1～10000までの完全数をリストする
(1..10000).select(&:perfect?)
=> [6, 28, 496, 8128]

リスト13　Enumerable#reduceの例 ▼

[1,2,3,4].reduce(:+) # => 10
[1,2,3,4].reduce(:*) # => 24

λ 命令型から関数型へ

66 - Software Design

第1特集 関数型プログラミング再入門
λ式からはじめませんか？

Lisp/OCaml/Haskell/Python/Erlang/Java/Ruby

Feb. 2014 - 67

　これらをまとめると次のようになります。
perfect?は同じです。テストも正しく動作します。

・関数型にしたsum_of_factors
 def sum_of_factors
 (1..Math.sqrt(self)).
 select{¦i¦ self%i == 0 }.
 flat_map{¦i¦ [i,self/i]}.
 uniq.reduce(:+)
 end

　関数型のコードを見てみると、データを次々
に加工していることがわかります。しかも圧倒
的に短くなりました。

　
　そしてもうひとつ、関数プログラミングを語る
うえで忘れてはならないのが遅延評価です。
Ruby 2.0からはEnumerable#lazyの登場により
遅延リストがすぐに扱えるようになりました。
Rubyの関数型色がますます強まったことを意味
します。
　遅延評価の何がうれしいのかというと、とて

つもなく大きな列、それどころか無限個の列を
も扱えるようになることです。Haskellなどの
関数型言語では無限個の列を扱うのは普通です
が、Rubyでも可能になったのです。

巨大な列を扱う

　まずは、わざとらしいですが遅延評価とは何
かを感じ取っていただくために、1～100,000

の二乗から二桁の平方数を取り出してみましょ
う（リスト15）。馬鹿正直な方法（Mmap）では1

～100,000のそれぞれの二乗を計算した配列か
ら10以上100未満を取り出すことです。次に
遅延評価を使う方法（Mlazy）では、必要な部分
だけが計算されるようになります。そして最後
は命令型による方法（Meach）です。
　一番簡潔なのは馬鹿正直なMmapですね。し
かし、不要な部分を全部捨ててしまうので無駄
な計算があります。かといって、せっかく素晴
しい関数型のメソッドがたくさん用意されてい
るのに命令型プログラミングに戻ってしまうの
はとてもとても悲しいことです。命令型は確か
に無駄を省いてくれますが、関数型の簡潔性は

リスト15　3種類の方法によるベンチマーク ▼

require 'benchmark'
Benchmark.bm(10) do ¦b¦
 b.report("Mmap") do # 馬鹿正直に100000までの二乗を求める
 # 10未満の平方数を捨て、100未満の平方数だけを取得する、残りは捨てる
 (1..100000).map{¦n¦ n*n}.drop_while{¦x¦ x < 10}.take_while{¦x¦ x < 100}
 # => [16, 25, 36, 49, 64, 81]
 end
 b.report("Mlazy") do # 遅延評価を使って無駄な計算を省く
 (1..100000).lazy.map{¦n¦ n*n}.drop_while{¦x¦ x < 10}.take_while{¦x¦ x < 100}.to_a
 # => [16, 25, 36, 49, 64, 81]
 end
 b.report("Meach") do # 原始的な命令型プログラミング
 ret = []
 (1..100000).each do ¦n¦
 x = n*n
 next if x < 10
 break unless x < 100
 ret << x
 end
 ret # => [16, 25, 36, 49, 64, 81]
 end
end
>> user system total real
>> Mmap 0.000000 0.000000 0.000000 (0.006329)
>> Mlazy 0.000000 0.000000 0.000000 (0.000033)
>> Meach 0.000000 0.000000 0.000000 (0.000028)

λ 遅延評価

66 - Software Design Feb. 2014 - 67

Rubyで関数型脳を育てる方法とは？
λ

λ

λ λ
λ λ λ

λλ

λλ

λ
λλ
λλ
λλ
λλ
λλ

λ λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λ
λ
λ
λ
λ

λ
λλ
λλ
λλ
λλ
λλ

λ

第7章

捨てがたいですね。
　そこで 登 場してきたのが Mlazyで す。
Enumerable#lazyはコレクションを遅延オブジェ
クトに変換し、map、drop_while、take_while
などの配列を返すメソッドが遅延オブジェクトを
返すようになります。そして、to_aで「じゃあ、
今計算しろ！」と言うのです。その結果、必要な
部分だけmapに渡るようになり、簡潔性と速度を
両立できました。遅延オブジェクトのオーバーヘッ
ドがあるので、さすがにMeachよりも多少遅い
ですが簡潔性を考えれば十分許容範囲です。や
ることは、コレクションの後にlazyを、最後に
to_aをつけるだけです！

無限の列を扱う

　次は無限リストを扱ってみましょう。Prime.
instanceは素数を無限に生成するEnumerable

です。同じ数字が4つ続く素数のうち最初の5

つを列挙してみましょう。数字を文字列化した
ものが正規表現/(.)\1{3}/にマッチしたもの
を取り出せばいいのです（リスト16）。
　Enumerable#selectは全要素を要求してき
ます。そのため無限リストに対しては.lazy
をつけないと無限ループに陥ってしまいます。
現時点ではMlazyはMeachの2倍遅いですが、
今後の高速化に期待しましょう。

　Rubyで関数プログラミング、いかがだった
でしょうか？　関数プログラミングにおける関
数とは手続きではなくて数学的な意味の関数が
起源なので、数学の話題が中心になってしまい
ました。もちろん応用範囲は数学に限りません。
たとえば、巨大なファイルの先頭数行を読む場
合だったり、TwitterのStreaming APIを扱う
ときにも遅延評価が役立ちます。ブロックと遅
延評価をうまく活用して、関数型の簡潔性と命
令型の速度を両立させてください。
　ここでは紹介しきれませんでしたが、lambda
の亜種にProc.newがあります。これはreturn

の挙動が異なります。Enumerator.newは任意
のコレクションを定義できる面白いメソッドです。
　今月Rubyは21歳になります。開発当初から
ブロックが用意されており、関数型を強く意識
した言語設計になっています。そしてマルチコ
ア時代の今、関数プログラミングが人気が出て
います。そういう意味においてRubyは先見の
明があるのではないでしょうか。今後の発展が
楽しみです。ﾟ

リスト16　素数列を求める例 ▼

require 'prime'
require 'benchmark'
Benchmark.bm(10) do ¦b¦
 b.report("Mlazy") do
 Prime.instance.lazy.select{¦n¦ n.to_s =̃ /(.)\1{3}/}.first(5)
 # => [11113, 11117, 11119, 22229, 23333]
 end
 b.report("Meach") do
 ret = []
 Prime.instance.each do ¦n¦
 ret << n if n.to_s =̃ /(.)\1{3}/
 break if ret.length == 5
 end
 ret # => [11113, 11117, 11119, 22229, 23333]
 end
end
>> user system total real
>> Mlazy 0.010000 0.000000 0.010000 (0.011531)
>> Meach 0.010000 0.000000 0.010000 (0.004820)

λ 終わりに

〒162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

データサイエンティスト
養成読本編集部 編
B5判 ・ 152ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-5896-9

プロのためのLｉｎｕｘシステム・
10年効く技術
中井 悦司 著
定価 3,400円＋税　ISBN 978-4-7741-5143-4

プロになるための
JavaScript入門
河村 嘉之、川尻 剛 著
定価 2,980円＋税　ISBN 978-4-7741-5438-1

データベースエンジニア
養成読本編集部 編
B5判 ・ 136ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-5806-8

小飼 弾 著
A5判 ・ 200ページ
定価 2,080円（本体）＋税
ISBN 978-4-7741-5664-4

Software Design編集部 編
B5判 ・ 176ページ
定価 1,880円（本体）＋税
ISBN 978-4-7741-5888-4

業務に役立つPerl
木本 裕紀 著
定価 2,780円＋税　ISBN 978-4-7741-5025-3

サーバ/インフラエンジニア養成読本
管理・監視編
Software Design編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5037-6

サーバ/インフラエンジニア養成読本
仮想化活用編
Software Design編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5038-3

データベース技術［実践］入門
松信 嘉範 著
定価 2,580円＋税　ISBN 978-4-7741-5020-8

プロになるための
データベース技術入門
木村 明治 著
定価 3,180円＋税　ISBN 978-4-7741-5026-0

Apache[実践]運用/管理
鶴長 鎮一 著
定価 2,980円＋税　ISBN 978-4-7741-5036-9

Japanese Raspberry Pi
Users Group 著
B5変形判 ・ 256ページ
定価 2,380円（本体）＋税
ISBN 978-4-7741-5855-6

水野 操、平本 知樹、
神田 沙織、野村 毅 著
B5判 ・ 128ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-5973-7

中井 悦司 著
B5変形判 ・ 384ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-5937-9

沓名 亮典 著
A5判 ・ 416ページ
定価 2,880円（本体）＋税
ISBN 978-4-7741-5813-6

ニコラ・モドリック、
安部 重成 著
A5判 ・ 336ページ
定価 2,780円（本体）＋税
ISBN 978-4-7741-5991-1

沼田 哲史 著
B5変形判 ・ 360ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-6076-4

Webサービスのつくり方
和田 裕介 著
定価 2,180円＋税　ISBN 978-4-7741-5407-7

日本一の地図システムの作り方
㈱マピオン、山岸 靖典、谷内 栄樹、
本城 博昭、長谷川 行雄、中村 和也、
松浦 慎平、佐藤 亜矢子 著
定価 2,580円＋税　ISBN 978-4-7741-5325-4

はじめてのOSコードリーディング
青柳 隆宏 著
定価 3,200円＋税　ISBN 978-4-7741-5464-0

OpenFlow実践入門
高宮 安仁、鈴木 一哉 著
定価 3,200円＋税　ISBN 978-4-7741-5465-7

Androidアプリケーション
開発教科書
三苫 健太 著
定価 3,200円＋税　ISBN 978-4-7741-5189-2

大谷 純、阿部 慎一朗、
大須賀 稔、北野 太郎、
鈴木 教嗣、平賀 一昭 著
㈱リクルートテクノロジーズ、
㈱ロンウイット 監修
B5変形判 ・ 352ページ
定価 3,600円（本体）＋税
ISBN 978-4-7741-6163-1

JavaScriptライブラリ実践活用
WINGSプロジェクト 著
定価 2,580円＋税　ISBN 978-4-7741-5611-8

菊田 剛 著
B5判 ・ 288ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6128-0

久保田 光則、アシアル㈱ 著
A5判 ・ 384ページ
定価 2,880円（本体）＋税
ISBN 978-4-7741-6211-9

㈱パイプドビッツ 著
A5判 ・ 224ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6205-8

サウンドプログラミング入門
青木 直史 著
定価 2,980円＋税　ISBN 978-4-7741-5522-7

〈改訂〉Trac入門
菅野 裕、今田 忠博、近藤 正裕、
杉本 琢磨 著
定価 3,200円＋税　ISBN 978-4-7741-5567-8

原点に戻りながら次の一手を考える

2014年
IT業界はどうなるのか？

目利きによるトレンド予測第2特集

田中 邦裕／伊勢 幸一／小宮 崇博／佐野 裕

第1章 ネットワーク／インフラ技術はどうなるのか 70

川田 寛／羽生田 栄一／鈴木 宏康／山本 泰宇

第2章 ソフトウェア開発はどうなるのか 75

小島 克俊／やまねひでき／あわしろいくや／横山 哲也

第3章 OSとその周辺技術はどうなるのか 80

湯本 堅隆／神林 飛志／村上 福之／清水 亮

第4章 エンジニアの仕事のしかたを考える 85

結城 浩／古橋 貞之／佐藤 洋行／後藤 大地

第5章 エンジニアとしての幅を広げよう 90

※ 著者プロフィールにある 2013マイヒットとは、2013年に著者個
人にヒットしたキーワードを挙げてもらっています。

　さあ、2014年が始まりました！
　2013年はどうだったでしょうか。安倍内閣による政策によって景気は上向き傾向にあるそうです
が、皆さんの感覚はいかがでしょう。2020年の東京オリンピック開催決定、富士山の世界文化遺
産登録、4月からの消費税率8％決定、そしてたくさんの偉人がこの世を去りましたが、ダグラス・
エンゲルバート氏が逝去されたのも昨年でした。
　本特集では、2014年がエンジニアにとってどんな年になりそうかを、各分野で活躍するエンジ
ニアの方々にそれぞれの視点で予測していただきました。どういったテクノロジに注目し、どんな意
識を持って過ごすのか。どうぞ参考にしてください。

70 - Software Design

目利きによるトレンド予測

2014年IT業界はどうなるのか？

70 - Software Design

第2特集 目利きによるトレンド予測

2014年IT業界はどうなるのか？第2特集

第1章
ネットワーク／インフラ
技術はどうなるのか

　ITインフラを支える技術動向について2013

年を振り返ると、ネットワークにも押し寄せて
きた仮想化の波を現実的に検討するフェーズに
入ってきたように思います。SDN（Software

Defined Network）は Interop Tokyo 2013 の
テーマの1つとして、大いに注目を集めていま
した。ネットワーク管理を担うエンジニアには、
これまで以上にソフトウェアに対するスキルが
求められることになるでしょう。
　運用に関しては、2013年もさまざまなネット
ワークサービスが展開され、集客量の多いイベ

ントやソーシャルゲームでのアクセススパイク、
スマートフォンの普及によるモバイル機器から
のアクセス急増への対策が考えられたことでしょ
う。ハードウェアではストレージデバイスのボ
トルネックを解消するためのSSDや ioDriveと
いった製品が実績を上げています。クラウドサー
ビスでは相変わらずAmazon Web Service

（AWS）の強さが際立っていたように思います。
　本章では2014年のネットワーク／インフラ技
術について、4人のエキスパートに展望しても
らいました。

1996年にapache.or.jpを立ち上げて、Apacheの日本語翻訳やML運営の手伝い、パッチの送付など黎明期のWeb
系オープンソースにかかわりつつ、さくらインターネットを創業。現在は社長業をしながら社内の開発の手伝い
をしたり、オープンソース系のイベントに登壇したりしつつ、社業以外ではアニメのロゴジェネレーターを作る
などWebサービスを開発中。趣味はプログラミングと旅行、アニメ観賞など。 Twitter @kunihirotanaka
2013マイヒット MongoDB、3Dプリンタ

田中 邦裕（たなか くにひろ）
インフラエンジニアのあらたな始まりの年……71

（株）データホテル情報環境技術研究室執行役員として技術関連活動の推進と統括を行う傍ら、CUPAやOCDETを
通じてクラウドやネットワーク仮想化技術の評価検証と利活用の推進、OCPジャパンの運営委委員として高効率
データセンターの評価とOCP技術の啓蒙活動に従事。また ICTECPの主査として ICT技術関連人材の発掘育成にも
携わる。
2013マイヒット SDN、NFV、OCP、自然エネルギー冷却、電気代

伊勢 幸一（いせ こういち）
クラウド型とベアメタル型の双方をシームレスに扱える技術が必要に……72

ブロケード コミュニケーションズ システムズ（株） CTO。UNIXサーバシステムのシステムエンジニアリングや運
用管理ソフトウェアのプリセールスを行い、システム領域での経験を深めた。その後、情報漏えい対策ソフトウェ
アのビジネスの立ち上げなどを経て、ブロケードにて在職。現在はハードウェアやソフトウェアの新製品開発サ
ポートだけではなく、ビジネスモデルの開発などにもかかわっている。
2013マイヒット SDN for Mobile Ad-Hoc Network、GENIVI

小宮 崇博（こみや たかひろ）
スケーラブルな仮想データセンター構築技術に注目……73

大企業の ITインフラ運営現場でのシステム運営見習いを経て、2000年よりLINE（株）に創業メンバーとして参画し、
おもにサーバエンジニアとしてかかわり続け現在に至る。最近ではLINEというスマートフォン向けアプリが世界
規模で支持をいただいていることで、インフラ部門に求められるレベルが日に日に高度化しており、気が抜けな
い日々を送っている。sanonosa@gmail.com
2013マイヒット PCIe SSD、CDN、iSCSI SAN

佐野 裕（さの ゆたか）
スマートフォン時代のインフラはレスポンスタイムが生命線……74

ネットワーク／インフラ技術はどうなるのか

70 - Software Design Feb. 2014 - 71

第1章

70 - Software Design

目利きによるトレンド予測

2014年IT業界はどうなるのか？

インフラエンジニアの
あらたな始まりの年

 Writer 田中 邦裕

インフラエンジニアのニーズ
　インフラエンジニアが注目されている昨今、フ
ロントエンドのプログラマを中心に、オープン
ソースやクラウドを活用しながら、インフラレ
イヤーにまで自分の可能性を広げる動きが広まっ
ています。また、アプリケーションの開発サイ
クルが短くなり、かつオンライン化するなかで、
インフラエンジニアに対するニーズも高まって
きました。
　このような背景を元に、2014年は真のインフ
ラエンジニア元年になり、新たなキャリアパス
を見つける人が増えるのではないかと考えてい
ます。
　インターネットの初期においては大学の研究
室などで、サーバ構築からネットワーク設計ま
でやらされる時代がありましたが、90年代後半
からはプログラマ、サーバエンジニア、ネット
ワークエンジニアといったように役割が細分化
されました。それだけに、インフラエンジニア
への注目は、ある意味原点回帰なのかもしれま
せん。
　ただ、昔と変わってきたのは、プログラマか
らインフラエンジニアを目指す人が増えている
という点です。以前はサーバを準備するという
と、購入して、設置して、セットアップして、と
いうプロセスを経なければならず、設置方法や
相性の解消など物理的なノウハウが重視される
部分もありました。
　現在ではクラウドサービスをAPIでたたき、
プログラマブルにセットアップできてしまうと
いう時代になり、プログラミングの能力が必要
とされるようになりました。また、オープンソー
スの活用が広がり、障害対応やチューニングの
ために、ソースコードを改変しなければならな
いことからもプログラミング能力は重要です。
　このようなことから、プログラマはインフラレ

イヤーで求められている人材であり、hbstudy注1

やqpstudy注2といったインフラエンジニア向けの
勉強会への参加などを通じて、あらたなキャリ
アパスの模索をお勧めしたいと思います。

設備もプログラマブルに
　ちなみにインフラレイヤーの話で言うと、
DCIM（Data Center Infrastructure Manage

ment）というデータセンターをITで効率的に管
理するという取り組みに注目が集まっています。
今までのデータセンターは、空調やUPS、発電
機などのさまざまな設備が独立して稼働してい
たのですが、IPやIEEE1888などのプロトコル
で設備を相互接続し、物理的なレイヤーまでプ
ログラマブルにコントロールさせる時代が来て
います。
　たとえば、Webアプリケーションの負荷が下
がればサーバの電源を落とし、そのラックのファ
ンの回転数を下げ、空調設備の稼働を低減させ
る、といったような、フロントエンドのアプリ
ケーションからファシリティまでを一括でプロ
グラミングするといった時代が来ると思います。
天気が良く太陽光発電量が増えるとサーバを起
動してバッチを回すなんてことになるかもしれ
ません。
　これからは世界中のモノがインターネットに
接続され、ソフトウェアで制御される時代がやっ
てきます。そのような時代に、プログラマがど
んどんとインフラ分野へ進出し、ソフトウェア
で世の中のしくみを良くしていく動きに期待し
ています。
　そのきっかけの年として2014年が記憶される
ようになればと思っています。｢

注1） http://heartbeats.jp/hbstudy

注2） http://sites.google.com/site/qpstudy

http://heartbeats.jp/hbstudy
http://sites.google.com/site/qpstudy

目利きによるトレンド予測

2014年IT業界はどうなるのか？

72 - Software Design

第2特集

クラウド型とベアメタル型の双方を
シームレスに扱える技術が必要に

 Writer 伊勢 幸一

昨年までのトレンド
　昨年までクラウドコンピューティングやSDN

のように仮想技術を利用した実装とサービスが
IT技術トレンドの主流を占めていました。クラ
ウドコンピューティングは仮想コンピューティ
ングインスタンスを必要なときに必要な数だけ
利用し、実際に消費したリソース分の対価を支
払うだけで良いという、従来の設備投資概念を
根底から覆す斬新なサービスです。またネット
ワークの仮想化オーバーレイはそういった仮想
インスタンスを自由自在に運用するための通信
基盤を形成する必要不可欠な技術であり、SDN

がクラウドコンピューティングと共に大きく注
目されたことは当然でしょう。
　このようなオンデマンドコンピューティング
リソースサービスは利用者の設備投資負担を軽
減したことで、スタートアップ企業や中小企業
によるインターネットビジネスへのチャレンジ
を可能とし、さまざまなサービスとビジネスが
生まれ、成長したことは周知の事実です。
安定したサービスシステムは
クラウドからベアメタルへ

　しかし、クラウドサービスによって乱立した
オンラインサービス、とくにソーシャルゲーム
やソーシャルメディアの多くは2012年頃から次
第に淘汰され、現在では爆発的人気を得て成功
したサービスやゲームだけが生き残っている状
況です。その反面、多くのユーザに支持されな
かったサービスであったとしても、すでにいく
らかのユーザが付いてしまっているサービスを
収支に見合わないからといって乱暴に停止する
わけにもいきません。そこで、クラウド上の安
価なインスタンスにサービスサーバを集約し、
コストを最小限に抑えて維持するだけになって
いるケースも見受けられます。
　成功し、生き残ったサービスはその後もユー

ザ数を順調に増やし続け、ますます増大する大
量のリクエストを処理するため、サービスシス
テムを仮想オーバーヘッドのない従来型のベア
メタル環境へ移行するケースも増えてきました。
すでに何年も継続しているサービスであれば処
理負荷と収益の見込みがある程度予想できるた
め、クラウド上での流動的な仮想インスタンス
にこだわる必要性がなくなり、逆にサーバのコ
ストと性能が明確に想定できるベアメタル環境
のほうがサービスを維持拡大しやすいのです。
　実際、筆者の周辺でもある企業が展開する複
数のサービスの内、ユーザ数が増えないサービ
スをまとめてクラウドへ移し、当たったサービ
スだけを専用物理サーバホスティングへ移動す
るということが日々行われています。昨年、
OpenStackでは仮想環境からベアメタル環境へ
のマイグレーション機能がサポートされ、また
Ubuntu Linuxでも物理サーバをクラウド上の仮
想インスタンスのようにコントロールするMaaS

（Metal as a Service）プロジェクトがリリースさ
れたのも、前述のような仮想サーバからベアメ
タルサーバへのマイグレーション要求に対応す
るためでしょう。

今後のトレンドは
　今後必要とされる技術とはこのような流れを
受け、従来のクラウド環境で慣れ親しんだ優れ
たユーザインターフェースによってベアメタル
サーバ環境上で自由自在にインスタンスを立ち
上げ、ミドルウェアやアプリケーションをデプ
ロイするための技術です。たとえばPXEブート
やIPMIリモートコンソールとサーバコントロー
ル機能を活用するCobblerなどと、サーバ環境
をリモートから一括で整備するPuppetやChef

といった管理ツールとのフェデレーションが必
要であり、今後さまざまな実装や運用事例が重
要視されてくると考えられます。｢

2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？

ネットワーク／インフラ技術はどうなるのか

72 - Software Design Feb. 2014 - 73

第1章

スケーラブルな仮想データセンター
構築技術に注目

 Writer 小宮 崇博

2013年を振り返って
　2013年にIT業界において賑わった技術は、ほ
とんどすべてが「簡単」「スケーラブル」「コスト
パフォーマンス」の3つの言葉でまとめられてい
ます。ブロケードではシステムをスケーラブル
に拡張するためのネットワーク基盤としてデー
タセンター（以降、DC）のファブリック化を推進
しており、クラウドサービスプロバイダを中心
に多くのユーザに導入してきました。また、仮
想ネットワークファンクションとして、Virtual

ADXとVyatta vRouterを提供しました。新技
術としては、OpenStackとファブリックの連携
のためのNeutronプラグインも提供しましたし、
ADXシリーズADCのL3 DSR機能向けのプラ
グインもYahoo Japan!殿の事例とともに発表し
ました。

2014年に来るのはこれだ！
　2014年に実現する技術潮流としては、スケー
ラブルな仮想データセンターの構築があります。
前段と同様に「DC基盤」と「DC基盤における機
能」の2つに分けて説明しましょう。

　2014年のDC基盤はマルチテナント性におい
てスケーラビリティが向上します。これはファ
ブリックがL2スケーラビリティを向上する
TRILL Fine-Grained-Labeling（FGL）技 術 や
VXLANオーバレイに対応することで実現しま
す。
　同様に、2014年のDC基盤の各種機能も大き
く進化します。仮想スイッチだけではなく、仮
想ルータや仮想ロードバランサの実用化の年に
なるでしょうし、ファイルサービスも仮想化し
スケールアウト構成になっていくでしょう。イ
ンテルはデータパスの操作を改良し、遅延やパ
ケット処理の改善を行うソフトウェアキットを
提供していますが、これに対応する製品群が出
てくることになります。また、仮想ルータなど
の仮想アプライアンスが乱立するのは管理コス
トを引き上げるため、 イーサネットファブリッ
クのようなソフトウェアファブリック技術も出
てくることになるでしょう（図1）。
　ソフトウェアによる基盤機能のさらなるシン
プル化、高性能化そしてスケーラビリティを実
現できるようになるのが2014年だと言えるで
しょう。｢

分散ルータコントローラ

ルータ

ルータ

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

H/W
Fabric

Software
Overlay
Fabric

vRT/vFW

vRT/vFW

vRT/vFW

 ▼図1　ソフトウェアファブリック

目利きによるトレンド予測

2014年IT業界はどうなるのか？

74 - Software Design

第2特集

スマートフォン時代のインフラは
レスポンスタイムが生命線

 Writer 佐野 裕

　今は改めて言うまでもなくスマートフォンの
時代と言えます。ネット系企業において、2014

年はまさにスマートフォンに最適化したITイン
フラ環境が広く求められそうです。
　スマートフォン時代のITインフラの特徴を簡
単に押さえておくと、PCの場合はLANケーブ
ルや無線LAN経由の比較的安定した通信環境の
下でリッチなコンテンツが一度に大量にやり取
りされるのに対して、スマートフォンでは3G回
線、LTE回線、無線LANと品質の異なる多様
な通信環境の下で小さな単位のデータが頻繁に
やり取りされます。スマートフォンユーザは、
手持ち無沙汰なときに頻繁にサーバにアクセス
しますが、レスポンスが悪いとイライラして二
度とサービスを使ってくれなくなります。
　こういったスマートフォンの特性を押さえた
ITインフラを考えると、レイテンシ（ネットワー
クの遅延）を最大限抑えることと、サーバ側の
ディスクI/Oがボトルネックにならない対策を
徹底することに尽きると思います。
　ここで強調したいキーワードは「インメモリ」
「キャッシュ」そして「CDN」です。
　「インメモリ」は、サーバに搭載されているメ
モリ上にすべてのデータが載っている状態を指
し、ディスクI/Oを発生させずに高速なレスポ
ンスが実現します。幸いなことに近年は1台の
サーバに非常に大量のメモリを積むことができ
ます。たとえば、1Uサーバのような高密度サー
バでも24枚のメモリが搭載できる機種がありま
すが、こういったサーバに8GBのメモリを24

枚搭載すればメモリ搭載量は192GBにもなりま
す。これだけ大きなメモリ搭載量を満たすよう
なデータを用意するのは結構難しそうです。
　「キャッシュ」は、リクエストに対してレスポ
ンスの結果を保存しておいて、繰り返し発生す
る同等のリクエストに対して保存しておいた結
果からレスポンスを返すことで高速な応答を実

現するしくみのことです。レスポンスが遅くな
りそうなところの前にキャッシュを仕掛けるこ
とで高速なレスポンスが実現します。たとえば
検索サーバがあったとして、検索サーバの前に
キャッシュサーバを置くことで、よくある検索
結果は検索結果を生成するオリジンサーバに都
度問い合わせなくても、キャッシュサーバが保
存したデータから応答を返すことでレスポンス
を高速化します。スマートフォンはPCと違っ
て各ページで表示できる情報量が限られるため、
必然的にコンテンツ提供者は厳選したデータの
みを用意して表示することになります。ですか
ら、PC用サイトと比べると通常キャッシュヒッ
ト率が向上します。
　そして最後に「CDN（コンテンツデリバリー
ネットワーク）」です。CDNとは世界各国の主要
ISP配下にCDN業者のキャッシュサーバを配置
することで、世界のどこにいても注1低レイテン
シでコンテンツを取得できるしくみです。日本
国内限定のサービスであればレイテンシが大き
な問題になることは考えづらいですが、日本か
ら遠く離れた国ではどうしてもそれなりのレイ
テンシが発生します。少しでも快適なサービス
を提供するためには、世界のどこにいても低レ
イテンシでユーザがコンテンツを取得できる
CDNの利用は必須でしょう。
　以上、非常に当たり前のことを記しましたが、
それでもあえて今回3つのキーワードを強調し
たのは、スマートフォンの時代はPCの時代よ
りもレスポンスタイムに関する要求がシビアな
ため、このような当たり前なことを確実に実現
することが当たり前のように求められるためで
す。今回の話しでピンとこない方はぜひ一度ス
マートフォンを持って通信環境の非常に悪い国
に旅行してみてください。｢

注1） 特殊な事情がある国向けのCDN配信は別料金な場合があり
ます。

2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？

ソフトウェア開発はどうなるのか

75 - Software Design Feb. 2014 - 75

第2章
目利きによるトレンド予測

2014年IT業界はどうなるのか？

第2章
ソフトウェア開発は
どうなるのか

第2特集

NTTコムウェア（株） 技術SE部、Web技術者コミュニティ「html5jエンタープライズ部」部長。仕事ではプロジェク
ト支援を行いつつ、オープンコミュニティとの関わりを通じて、エンタープライズ向けWeb技術の変化を最前席
に座って眺めています。ブログ「ふろしき .js」 URL furoshiki.hatenadiary.jp　 Twitter @kawada_hiroshi
2013マイヒット Internet Explorer 11、ハーゲンダッツ（パンプキン味）

川田 寛（かわだ ひろし）
Web標準技術でいろんなモノの「幅」が広がっていく……76

（株）豆蔵の創業メンバーで現在、取締役CTO、プロフェッショナル・フェロー。技術士（情報工学部門）。ソフト
ウェア工学全般とくにモデリング・パターン・思考プロセスのコンサル・教育を実施し後進を育成。まみむメモ
法およびMVC/パターンダンスの創始者。けんちく体操の継承者。趣味は街歩き、へんな建築構造物、トマソン、
寂れたお社、お富士さん探し、古書店めぐり。永続的な関心は、オブジェクト指向、モデリング、パターンラン
ゲージ、思考プロセス、Scalaを含め関数型とオブジェクト指向との融合の可能性、教育の未来スタイル。
2013マイヒット 　 Scratch、坂口恭平とレイヤー化する社会、ニコニコ学会β、仮想貨幣ビットコイン、なめらかな

社会とその敵、論語と算盤、東大話法、伝播投資貨幣PICSYと分人民主主義Divicracy

羽生田 栄一（はにゅうだ えいいち）
アジャイルの浸透とモデリングの一体化、さらに上流工程との融合が進む……77

1975年愛知県生まれ。ベンチャー企業でさまざまなWebシステムの構築と運用を経験し、現在はアイレット（株）
のCTOとして、AWSの導入支援と運用保守に特化したcloudpack事業の舵取りに従事。システムインフラをクラ
ウド（AWS）にすることで障害時でもデータセンターに出動する必要はなくなったはずだが、現在、AWSと専用線
で接続するDirect Connectサービスを利用する都合、再びデータセンターにいくことになり、複雑な思いをして
いる。suzuki@cloudpack.jp　 URL http://blog.suz-lab.com/　 Twitter @suz_lab
2013マイヒット Clash of Clans（iPhoneゲーム）

鈴木 宏康（すずき ひろやす）
2013年に続々登場したAWS新プロダクト、その本格利用は2014年から！……78

サイボウズ（株）というWebグループウェアを開発している会社で10年以上働いています。JavaScript/HTML/CSS
は一度も真面目に書いたことがないのでWebエンジニアを名乗れません。プログラミングもばりばりこなします
が、どちらかというとシステム全体のアーキテクチャデザインが主要な業務です。オンライン活動はTwitterくら
いですが、気軽に@ツイートしてください！　 Twitter @ymmt2005
2013マイヒット Riak、etcd、コーン茶

山本 泰宇（やまもと ひろたか）
Go言語の使いどころ……79

　プログラミング言語、フレームワーク、開発
手法などソフトウェア開発技術は常に進歩して
います。日々の作業の効率化や課題解決のため
には、それらの技術動向を押さえておく必要が
あります。
　そこで本章では、ここ数年、注目技術と言わ
れている開発技術／手法について、最新動向や
現場での活用事例についてまとめました。具体
的には、「仕様が固まりつつあるHTML5など

Web標準技術の影響」「現場で試行錯誤が続けら
れているアジャイル開発の今後の行方」「2013年
リリースされたAWSの新サービスの中から今年
とくに使われそうなサービス」「一時注目を集め
たプログラミング言語Goの実用性」の4つの
テーマを取り上げます。
　自分のプロジェクトや仕事に活用できそう
な技術かどうか、その見極めの参考にしてくだ
さい。

http://furoshiki.hatenadiary.jp
http://blog.suz-lab.com/

目利きによるトレンド予測

2014年IT業界はどうなるのか？

76 - Software Design

第2特集

Web標準技術で
いろんなモノの「幅」が広がっていく

 Writer 川田 寛

　HTML5は2014年に、W3C勧告化される予
定ですが、すでに多くの技術がエコシステムを
持ち、ビジネスにも影響を与えています。今回
は筆者が注目している技術を中心に紹介します。
RIAの代替技術で、
OSSが存在感を強める

　FlexやSilverlightのようなプラグインを活用
したRIA技術は、Webのエコシステムから外れ
たことで一気に衰退しました。そして、2012年
頃から広がりだしたSPA（Single-page Appli

cation）は、その空いた椅子に収まるだけでなく、
RIA以上のポテンシャルを得ようとしています。
　これまで大規模なSPAは、ベンダ製品の活用
が近道でした。しかし、Gruntを中心とした開
発ツールが充実化し、AngularJSなどのフレー
ムワークが一般化したことで、寄せ集めのOSS

が高い競争力を獲得しました。AppCacheや
IndexedDBなどを用いたオフライン処理を大規
模な開発で扱う場合、フレームワークはとても
有益な手段です。今後、RESTと親和性の高い
Java/Ruby系開発者の間で、より広く普及する
ことが予想されます。
性能改善手法が、
スマートデバイスを使いやすくする

　現在のWeb技術での性能の議論は、依然とし
てDOMアクセスやJavaScript記述など、既存
技術を比較的低いレイヤで議論するのが中心で
す。しかし、Web標準側でも「Resource Priori

ties（リソースの優先付け）」や「prefetch/pre

render（コンテンツの先読み）」、Page Visibility

APIを用いた省電量化などが議論され、安定志
向のInternet Explorerでさえもサポートを始め
ました。
　こうした取り組みは、コンテンツの内容にも
性能評価の観点で定量的な判断基準を生じさせ
ます。今後の性能最適化はさらに上のレイヤへ
広がることが予想されます。とくにこれらのア

プローチはスマートデバイスのような貧弱な環
境下で高い効果を発揮するため、Webページの
UX向上のために必須になると考えています。
デザインから、
マウスという前提が姿を消す

　デバイスの多様化が進み、Surfaceのようなデ
バイスの違いをあいまいにするような端末も広
がりを見せ、ビューの横幅から入力デバイスを
判断するのが怪しくなってきています。ビュー
のマルチデバイス化は、横幅を検出しサイズに
合ったユーザビリティを提供する「レスポンシブ
Webデザイン」が一般化し、十分に成熟しました。
　しかし、タッチパネルなどの入力デバイスに
ついては標準化が難航し、ビュー側より約3年
遅れで実装が進んでいます。タッチパネルやマ
ウス、ペンなどの入力デバイスは、Web標準で
は「ポインター」という抽象的なデバイスとして
扱うことが推奨されています。これからは、ナ
ビゲーションバーのhoverを使ったメニュー表
示など、マウスを前提としたデザインの定石は
姿を消し、ポインターという概念で得られる最
高のユーザビリティについての議論が本格化す
るのではないかと睨んでいます。
通信技術は、
上位レイヤの進化を促す

　双方向通信を実現するWebSocketは、Javaの
Project Avator、.NETのSignalRと、新しい
アーキテクチャ作りの基礎技術として存在感を
強めています。Ajaxのようなただのデータ通信
ではなく、RPC／リソース同期と1つ上のレイ
ヤで技術進化の道が模索され続けるでしょう。
　ブラウザ間通信を実現するWebRTCは、これ
まではネイティブが中心だったOTTを、Web

で実現するという新たな道を作りました。今後
は、通信サービスというレイヤで、技術進化の
方法が検討されるでしょう。｢

ソフトウェア開発はどうなるのか

76 - Software Design Feb. 2014 - 77

第2章

アジャイルの浸透とモデリングの一体化、
さらに上流工程との融合が進む

 Writer 羽生田 栄一

　ソフトウェアの開発スタイルが今年大きく変
わるということは残念ながらなさそうですが、
とはいえ、いくつかの可能性の芽は誰の目にも
明らかなくらいには大きくなりつつあります。
それが2014年から2015年にかけて花開いてく
れることを祈りたいと思います。
　まずアジャイルプロセスが一般的になってき
たことをひしひしと感じます。1年前まではア
ジャイルプロセスって何か教えてくれというコ
ンサルや教育が多かったのですが、昨年からは、
一般的なユーザ企業・ITベンダーから「アジャ
イルで開発進めたい」「Dev&Opsを導入・実践し
たいのでメンバーを教育してほしい／コンサル
に入ってほしい」「ある組織全体にアジャイル開
発のバーチャルプロジェクトやってほしい」とい
うニーズが広がってきています。併行して、組
織的にScrumマスターの認定資格を取られる
ケースも増えています。なんちゃってアジャイ
ルを回避して、人中心のチーム実践が回せるよ
う頑張ってほしいと思います。
　一方、もうアジャイルなんて昔から当たり前
にやっているよというチームにも変化の兆しが
見えてきました。昨年の記事でも言及したDDD

（ドメイン駆動開発）を前提とするモデリングと
アジャイルが一体化した開発への本格的な取り
組みです。Scrumは所詮はプロジェクトの枠組
みに過ぎず、エンジニアリングに関してきちん
とした指針が望まれています。デザインやモデ
リングをアジャイル開発と一体化する、つまり
業務や問題領域について業務関係者と開発者が
「対話・会話」をとおして分析・理解する活動と、
設計・開発する活動を入れ子にすることで、健
全なシステムを目指す。TDD（テスト駆動開発）
やリファクタリングといった技術も、業務の理
解の深まりとともに更新されるドメインモデル
やアーキテクチャの整合を取り続けるために利
用する。改めてオブジェクト指向の現代的な意

義がここに来てようやく根付きそうです（DDD

アジャイルの際、JavaよりもScalaが有用であ
ることはいうまでもありません。3年目の真実）。
　さらにこうした枠組みの中で、いままで「上
流」という言い方で誤解されていた、“そもそも
そのサービスやプロダクトのバリューは何で、
それでビジネスをどう行うのか”に関するモデル
化も併せて行おうという動きが明確になってき
ました。たとえば、ビジネスモデルキャンバス
とピクト図解を組み合わせる手法やGOAL

（WHY?）、ACTORS（WHO?）、IMPACTS

（HOW?）、DELIVERABLES（WHAT?）をマイ
ンドマップで共有するインパクトマップの手法、
アジャイルを意識したBABOK（ビジネスアナリ
シス知識体系ガイド）などが登場し、アジャイル
とモデリングもここに来て「上流から下流まで」
というより「ビジネスとソフトウェア」「サービ
スと運用」をパラレルに実践できる上記のような
思考フレームワークと、クラウド関連のツール・
環境といった実践プラットフォームが整備され
てきたといえます。
　また、組込み・製造業の分野ではシステムズ
エンジニアリングへの注目がじわじわ上がって
きていますが、SysMLといったモデリング言語
の導入を通してトレーサビリティを追求するの
は、あくまでも取っかかりに過ぎません。シス
テム思考を実践しつつ創造的なサービスやプロ
ダクトを作りだす、という可能性に一部の組織
は気づいており、そこではデザイン思考とシス
テムマネジメントをうまく融合するといった、い
ままで予想もしなかった取り組みが始まってい
ます。その一方で、形式手法やMBD（モデルベー
ス開発）といった技術による信頼性・安全性の最
大限の確保への追及も自動車・ロボットなどの
分野で続いており、AlloyやSpin、Rodinといっ
た手軽で安価な軽量形式手法ツールの登場とと
もに一般にも普及していくと予想されます。｢

目利きによるトレンド予測

2014年IT業界はどうなるのか？

78 - Software Design

第2特集

2013年に続々登場したAWS新プロダクト、
その本格利用は2014年から！

2013年の振り返りと
2014年の展望

　昨年も本誌で2013年の展望的な記事を書かせ
ていただきました。そのときは、クラウドを扱
ううえでの心構え「クラウドアーキテクティング
原則」を紹介し、ITエンジニアをとりまく環境
は「クラウドを使ってみる」フェーズから「クラウ
ドを使いこなす」フェーズに遷移していくと結び
ました。
　実際に昨年の仕事を振り返ると、EC2（仮想
サーバ）だけでなく、いつもは我々から提案して
いたS3（ストレージサービス）やSQS（キュー
サービス）の利用も、顧客のほうから先に相談さ
れることが多くなっていました。また、6月の
「AWS Summit Tokyo 2013」ではAWS上に構
築された多くの事例が発表され、さらに、11月
に行われたAWSの世界的なイベント「re:

Invent」のセッションでは日本の事例としてNTT

ドコモの「しゃべってコンシェル」の講演が行わ
れました。まさに、1年かけて「クラウド（AWS）
を使いこなす」フェーズに遷移したと言っても過
言ではないと思います。
　昨年もAWSでは多くのアップデートがあり
ました。その中でもCDPへの影響度が高いと思
われるものを簡単に紹介させていただきます。

多機能CDN「CloudFront」
　CDNサービスのCloudFrontに「独自SSL証
明書対応」「POST、PUTなどのメソッドのサ
ポート」といった機能が追加されました。今後、
動的コンテンツに対するプロキシー的な利用例
も増え、CDPの動的コンテンツを処理するパ
ターンのいくつかは、CloudFrontを利用する形
に進化していくと思います。
クロスリージョンに関する
アップデート

　リージョンからリージョンへのバックアップ

（同期）を容易にする機能も、いくつか追加され
ています。

・AMIのリージョン間コピー
・RDSのリージョン間スナップショットコピー
・RDS（MySQL）のクロスリージョン・リード
レプリカ

　これにより世界展開するシステム構築やディ
ザスタリカバリ対策が、今まで以上に容易に実
現できます。今後、その手の事例が増えてくる
と思います。それに伴い、運用保守に関するパ
ターンも、より充実されるはずです。
新プロダクト「Kinesis」
「AppStream」

　上述の「re:Invent」で、「Kinesis」「AppStream」
という新プロダクトが発表されました。Kinesis

は大規模なストリーミングデータをリアルタイ
ムで処理する完全マネージド型サービス、
AppStreamは大量のリソースを使うアプリケー
ションやゲームをクラウドからストリーミング
できるようにするサービスです。これらは一昨
年の「Redshift」の発表と同じくらいインパクト
のあるものだと考えています。
　今年は、これらのプロダクトを利用するため
の準備がいたるところで行われるのではないか
と思っています（事例が出始めるのは来年あたり
でしょうか？）。これらのプロダクトを中心とし
たCDPもできていくはずです。
　2011年3月にAWSの東京リージョンができ
て、もうすぐ3年が経ちます。そのときから存
在するプロダクトは、かなり使いこなされてき
たとは思いますが、その間も新機能や新プロダ
クトは、どんどん発表されています。それらも
使いこなすために、AWSに関わるエンジニア
にとっては今年も楽しく激しい1年になるので
はないでしょうか？｢

 Writer 鈴木 宏康

ソフトウェア開発はどうなるのか

78 - Software Design Feb. 2014 - 79

第2章

Go言語の使いどころ

　2009年にGoogleからGo言語が発表されて4

年注1が経ちました。DockerやHekaのようにGo

で開発されたプロダクトも登場し、さまざまな
ライブラリもそろいつつあります。サイボウズ
でも、自社クラウドサービスcybozu.comのイン
フラで利用しています。その経験から、Go言語
の適用分野について考察します。

Go導入前の状況
　cybozu.comではさまざまなツールを自社で開
発して利用しています。バックアップ／リスト
ア機能を含む高可用ストレージシステム、
memcached互換でより高速かつ高可用なKVSの
yrmcds注2、分散P2P技術を利用した自動障害
回復システム、などです。
　ストレージシステムのコア部分やyrmcdsは
C/C++で開発されています。これらは性能が極
めて重要であるため、CPUコア、メモリ、スト
レージ、それにシステムコールを極限まで効率
的に使えるC/C++が合っています。技法として
も、ロックフリーなマルチスレッディングや非
同期 I/O、ストレージの先読みなどを駆使して
います。
　それ以外のプログラムの大半はPythonで開発
しています。便利で開発効率は悪くないのです
が、C/C++とPythonでは性能特性が違い過ぎ
るため、C/C++で書くほどではないけれど
Pythonでは満足できる速度ではない場面があり
ます。また、pylintという静的解析ツールの遅
さや不正確さにも不満がありました。

軽量言語とC/C++の狭間で
　Goは強い静的型付けでプラットフォームネイ
ティブな実行コードにコンパイルする言語です。

C/C++と特性が似ていますが、Goにはランタ
イムのオーバーヘッドがあるため、とことん
チューニングする目的で使っているC/C++の代
替にはしたくありません。
　ではPythonをGoで置き換えるかというと、
全面的な置き換えはかえって開発効率が下がる
と判断しました。Goのライブラリは充実してき
ましたが、コンパイルが必要なため手軽さの面
で劣るのです。具体的にはREPLがないのと、
XMLやJSONをカジュアルに取り扱えないと
いった点が不便です。
　以上を鑑みると、Goは軽量言語とC/C++の
間を埋める使い方が良いでしょう。具体的には、
ある程度の性能が求められ、手軽さよりもコン
パイル時の静的解析が有用になる規模のプログ
ラムです。GoはNode.js同様に非同期処理が得
意ですので、ネットワークサーバにはとくに適
しています。
Goの適用分野はどこまで
広がるか

　そんなわけで、Pythonへのわずかな不満から
Goを新規のネットワークサーバや、既存の
Python製のサーバを書き直す際に使うことにし
ました。卒直なところ、Go製のプログラムはま
だ数えるほどで、適用範囲は限定的です。
　ただし、最初からGoを使っていれば、もっと
多くのネットワークサーバをGoで書いていただ
ろうと思います。また、もし我々がC/C++に熟
達していなければ、C/C++の代替物として学習
コストが低いGoを利用していたかもしれませ
ん。
　Goが得意とする分野ではNode.jsが先行して
いる状況ですが、まだ勝負はこれからだと思い
ます。｢

 Writer 山本 泰宇

注1） http://blog.golang.org/4years
注2） http://cybozu.github.io/yrmcds/

http://blog.golang.org/4years
http://cybozu.github.io/yrmcds/

目利きによるトレンド予測

2014年IT業界はどうなるのか？

80 - Software Design

目利きによるトレンド予測

2014年IT業界はどうなるのか？第2特集第2特集

巨大構造物の建設に必要な地質調査のコンサルタントとして働き始めました。その後、リファレンスがない最新
製品の輸入販売を得意とした企業で技術を磨き、今はレッドハット（株）でプラットフォーム製品とサービスのプ
リセールス技術をしています。最近、18年間乗っていたアルミ製競技用自転車のヘッドに亀裂を発見し、買い換
えを決意しました。
2013マイヒット 『ヤバい経営学 世界のビジネスで行なわれている不都合な真実』（フリーク・ヴァーミューレン 著）

小島 克俊（こじま かつとし）
時代の要求に応え進化し、再び注目を集めるテープメディア……81

趣味はソーシャルゲームDebian。バグを潰したりバグを潰したりバグを登録したりパッケージをアップデートし
たりして、たまにDebConfという名前のオフラインイベントなどに出没しています。みなさんからの温かいAmazon
ギフト券お待ちしています。henrich@debian.or.jp　 URL http://goo.gl/yPhaPM
2013マイヒット ニンジャスレイヤー（http://ninjaslayer.jp/）

やまねひでき
2014年はDebian 8への準備期間、より効率的な開発をめざして……82

主としてUbuntu Japanese TeamとLibreO� ce日本語チームで活動。ほかにもVirtualBoxやFcitx（インプットメソッ
ド）などの翻訳なども行うが、英語力は残念の一言。本誌のほか、gihyo.jpの連載 "Ubuntu Weekly Recipe"など執
筆多数。ikuya@fruitsbasket.info
2013マイヒット ラブライブ！、ポール・マッカートニー、（不本意ながら）インプットメソッド

あわしろいくや
2014年のUbuntuは多様な広がりを見せつつも、進化は堅実に……83

企業向け教育サービスを提供するグローバルナレッジネットワーク（株）で、Windows Serverやクラウドの専門技
術教育を担当。2013年は『プロが教えるWindows Server 2012システム管理』（アスキー・メディアワークス）と『グ
ループポリシー逆引きリファレンス厳選92』（日経BP社）の2冊の共著書を出版。2003年から連続してMicrosoft
MVPとして表彰される。　ブログ「ヨコヤマ企画」　 URL http://yp.g20k.jp　 Twitter @yokoyamat
2013マイヒット 宮崎奈穂子（路上シンガー）、魔法少女まどか☆マギカ、岡田斗司夫（評論家）

横山 哲也（よこやま てつや）
2014年のWindowsは「サーバ運用」「仮想ネットワーク」「仮想ストレージ」に注目…84

第3章
OSとその周辺技術は
どうなるのか

　スマートフォン、タブレット、クラウドなど
新しいデバイスやサービスが登場するたびに、
その環境へ最適化することを求められるオペレー
ティングシステム。その変化は2014年も止まる
ことがありません。
　今回は Linux（RHEL、Debian、Ubuntu）と
Windowsの識者4名にそれぞれのOS／ディス
トリビューションの動向や注目すべきOS周り
の技術について聞きました。
　ストレージ、クラウド、ARMなど共通するト
ピックはいくつかあるものの、コンシューマ向

け、エンタープライズ向けなどそれぞれの立場
により、注目している技術は違います。伝統的
な技術に課題解決の糸口を見いだしている人、
最新技術に大きな変化を感じている人などさま
ざまです。また、企業のバックアップを受けて
いるもの、コミュニティ主導で開発が進められ
るもの、その開発の運用形態によっても、目指
すところや開発スピードに違いがありそうです。
　今のうちに、自分が利用しているOSについ
て、変化の方向性や課題を把握し、準備を進め
ておきましょう。

http://goo.gl/yPhaPM
http://yp.g20k.jp
http://ninjaslayer.jp/

OSとその周辺技術はどうなるのか

80 - Software Design Feb. 2014 - 81

第3章
目利きによるトレンド予測

2014年IT業界はどうなるのか？

時代の要求に応え進化し、
再び注目を集めるテープメディア

　2014年に来そうな技術として、インフラ設計
のプロでも見落としがちなテープ技術に注目し
ています。テープ製品の生産量が過去3年間、伸
びの傾向にあることをご存じでしょうか。コス
トと長期保存の観点からも、テープによるデー
タ記録が再び重要になると予想しています。

コストと保存期間ではテープが有利
　ストレージは高速かつ大量にデータを記録し、
同時に低コストを要求されることが増えていま
す。普段使いの容量だけではなく、中間計算結
果やアーカイブもあるので実際に必要な容量は
増え続けます。Red Hat製品ではRed Hat Sto

rage Serverがその解決策として利用されてい
ます。
　数PBクラスの保存を意識したストレージで
あっても必ず物理的な記憶メディアがあります。
SSD、HDD、テープの記録のコストを比較して
みます（表1）。秋葉原価格でみるとテープはダ
ントツに低コストです。
　SSDやHDDはメディアそのものの部品点数
が多く、故障のリスクが高いためRAIDによる
冗長化が必要です。RAID装置に電源が入って
いないとメディアの故障に気づくことすらでき
ません。機器の償却が終わる5年で電源を止め
るとデータは保証されません。長期間に渡って
記録を保管することを考えると素朴な作りのテー
プはHDDよりも有利です（表2）。

テープも進化している
　テープは小さな磁石の粒（磁性体）を記録に利
用しています。最近ではバリウムフェライトを
磁性体に使った製品が出荷されています。バリ
ウムフェライトの結晶は六方晶という六角形の
鉛筆をとても短くしたような形をしています。
そして表と裏がS極とN極になるようなはっき
りした性質を持っています。従来の球状や針状
の酸化鉄や鉄の合金よりも、均質かつ密度の高
いテープを作れる材料です。
　テープが緻密に記録できるようになった結果、
テープドライブも進化しました。ハイエンド機
だと1秒間に数百MBのデータ転送をします。ま
た、ライブラリ内でテープドライブは急加速、
急減速で移動します。テープカートリッジのリー
ル軸は1つだけで、ドライブがテープを高速に
巻き取っていきます。動作音も「うぃーん（ドラ
イブ移動）、がちゃがちゃ（テープ格納）、きゅ
いーん（テープ読み書き）」のような感じではあり
ません。「しゅぱ（ドライブ移動）、がこ（テープ
格納）、……（テープ読み書き）」です。
　テープを記録メディアとして利用する場合、
tarなどによる一時処理が必要でした。しかし最
近では、LTFS（Liner Tape File System）とい
うしくみが使われるようになってきました。USB

メモリと同様にテープメディアをファイルシス
テムとして直接マウントできます。理論的には
数PBのファイルシステムが使えます。
　テープに関わる技術は地味ですが、ハイエン
ドのシステムにはすでに不可欠です。「最近の
テープってバリウムフェライトですよね」とか
「LTFSはそのままでも便利だけど管理方法も最
適化したい」といった会話をしている方がいる
と、「さすが」と感じざるを得ません。｢

 Writer 小島 克俊

 ▼表1　記録メディアの価格
媒体 1TB単価

Tape 1,500円
HDD 5,000円
SSD 80,000円

 ▼表2　記録メディアの寿命（5年で通電停止を想定）
媒体 寿命年数

Tape 30年
HDD 5年
SSD 5年

参考資料：JE ITAテープストレージ専門委員会の資料
http://home.jeita.or.jp/cgi-bin/about/detail.cgi?ca=1&ca2=292

http://home.jeita.or.jp/cgi-bin/about/detail.cgi?ca=1&ca2=292

目利きによるトレンド予測

2014年IT業界はどうなるのか？

82 - Software Design

第2特集

2014年はDebian 8への準備期間、
より効率的な開発をめざして

2013年、予測ほど進展せず……
　2014年を占う前に、2013年の予測を振り返っ
てみましょう。昨年は予想として「autopkgtest/

DEP-8利用の進展」を挙げましたが、残念なが
ら芳しくありません。一応、リリースチーム側
はautopkgtestを利用しているパッケージについ
て「unstableから testingの移行日数を2日に減ら
す」というボーナスを提示しましたが、手元で更
新されていくパッケージのchangelogを眺めて
いる限りではautopkgtestを利用するパッケージ
が増加している感じはありません（そういえば筆
者もまだ使っていません……）。そして、ライセ
ンス記述の改善である「Machine-readable copy

right information」についても作業量がある割に
はその活用方法が見えず、新規パッケージにつ
いては対応が行われるものの、既存パッケージ
については対応が遅々としている印象です。ク
ラウド関連の対応はそれなりに行われています
（OpenStack関連パッケージのアップロードが
unstable/experimentalへ随時行われています）
が、これといって目を引く進捗はありません（残
念ながら筆者はあまり腕の良い占い師ではない
ようです ;-)

　あぁ、とくに問題なくDebian 7“Wheezy”が
リリースされたというのがありました。いった
んリリースが終わると安定版リリースはほぼ手
を加えないので、パッケージメンテナからする
と存在を忘れてしまいがちですね注1。

2014年、Debian 8に向けて
　さて、あらためて2014年を展望してみます
と、2013年と違って確実に当たる出来事、つま
りDebianのリリースは今年は残念ながらありま
せん。代わりに「年末にかけてフリーズが始ま
る」ことは断言します。明るい話題としては、次

のリリースに向けての障害となるリリースクリ
ティカルバグ（RC bug）の数がある程度ハンドリ
ングできるレベルまで「現在の時点で」軽減され
ていることです注2。これまではリリースに向け
て開発バージョンのフリーズが始まってから大
量のRCつぶしで大きく時間が経過して注3、リ
リースしたときには周回遅れのバージョン……
ということがありましたが、RCが減ることで
フリーズ期間が短縮され、よりタイムリーなリ
リース（おそらく2015年春）ができるようになる
でしょう。
　Debian 8で公式サポートアーキテクチャとし
て64bit ARMが入ることは、期待されています
が、実際そうなるかどうか微妙なところです。
開発ターゲットには確実に入っているものの、
ビルドサーバ群などの実機リソースを確保でき
るかどうかが見えていません注4。Debian 3.1

“Sarge”のときのamd64のように「公式リリース
からは外れるが準公式扱い」という可能性もあり
ます。
　「開発者の興味の赴くまま」にアーキテクチャ
／パッケージ数ともに拡大の一途をたどってい
たDebianですが、それに見合うだけの人的／機
械的リソースの増加が行われているかというと
正直そうでもありません。既存の枠組みでの運
用だけではなく、いかに自動化／省力化のしく
みを改善／構築できるか、そして状況の整理と
協力者を集められるかが今後の行方を占いそう
です。｢

 Writer やまねひでき

注2） http://bugs.debian.org/release-critical/参 照。「Number
concerning the next release」の数を確認してください（本
稿執筆時で600程度でした）。Debianの安定版リリースは
この数を0にするまで行われません。

注3） Debian 7の場合は10ヵ月の間フリーズとなっていました
が、8では半分程度に抑えられるのではないかと期待して
います。

注4） リリース対象となったとしても、ビルドエラーの山と戦
わなければならないので正直気が重いところです。ほか
のディストリビューションでも64bit ARM対応が行われ
ますので、その成果が利用できるとは思うのですが、対応
が必要となるサポート対象パッケージ数が段違いに多いの
で、Debian側で対応をがんばらねばならないものも多数
出るでしょう。

注1） その代わり、セキュリティパッチの作成などで難儀するの
ですが。

2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？

http://bugs.debian.org/release-critical/

OSとその周辺技術はどうなるのか

82 - Software Design Feb. 2014 - 83

第3章

2014年のUbuntuは多様な広がりを
見せつつも、進化は堅実に

2013年のおさらい
　2013年のUbuntuも、良くも悪くもさまざま
な注目を集めました。X.Orgに代わるMir注1の
発表、Ubuntu Edgeの挑戦注2、通常リリースの
サポート期間短縮注3、オーストリアのビッグブ
ラザー賞受賞注4、13.10でのインプットメソッ
ドの混乱注5などです。
　国内では日本HPがCanonical Ubuntu Server

の取り扱いを開始した注6のが大きなトピックで
しょうか。また、Canonicalの日本人社員が増え
たのも印象深いです。

2014年はどんな年？
　Ubuntuにとって2014年は重要な年です。正
確にはLTS（Long Term Support）注7が出る偶
数年はすべて等しく重要ではあるのですが。
14.10でタブレットやスマートフォンなどのモ
バイルとデスクトップでユーザエクスペリエン
スを同一にする意欲的な試みがなされるはずで
すが、当初の計画よりも進行が遅れ、現段階で
かなりトーンダウンしています。

Ubuntu 14.04/14.10
　13.10ではMirのX互換レイヤーであるXMir

をデフォルトに採用すべく開発が進んでいまし
たが、マルチディスプレイ対応が不完全という
ことで採用は延期となりました。今の段階でも
14.04では見送られる見通しです。ただし、

14.04.1といったポイントリリースで、HWE

（Hardware Enablement）スタック注8の一環で
XMirに移行する可能性はあります。Unityもこ
れまでどおり7系列で、ベースとなるGNOME

のバージョンも3.8と変わらず、13.10とあまり
代わり映えのしないものになりそうです。ただ、
インプットメソッドに関しては修正が入る見込
みですが、どのような変更になるのかは現段階
では決まっていません。いずれにせよ13.10よ
りはずっと使えるものになるはずです。
　本来の予定では14.10でMirとUnity 8に移行
することになっています。しかし、XMirのデ
フォルト化が早くてここになるので、XMirデ
フォルトをやめるのか、Mirデフォルト化を
15.04に先送りするのかが注目です。

Ubuntu Touch
　スマートフォンやタブレット端末で動作する
UbuntuをUbuntu Touchと呼んでいます注9。開
発は進んでいますが、Ubuntu Touch搭載ハード
ウェアが発売されるほどのクオリティに達して
いるかはやや疑問です。いずれにせよ、今年も
Nexusシリーズにイメージをインストールする
という使い方に大きな変化はなさそうです。

ARM ARM ARM
　ARMサポートも引き続き強化される見込みで
す。13.10では滑りこみセーフ（あるいはアウト）
なタイミングでARMv8サポートが入りました。
ARMv8は平たくいえば64bit版のARMアーキ
テクチャです。そもそも現時点では実機がほと
んどないものの、本年中にはいろいろ発売され
るでしょうし、それを見越して14.04でのサポー
トが強化されることは確実と見ていいでしょう。
｢

 Writer あわしろいくや

注1） http://unity.ubuntu.com/mir/
注2） ht tp : / /g ihyo. jp /admin/c l ip /01/ubuntu-top ics /

201308/23
注3） ht tp : / /g ihyo. jp /admin/c l ip /01/ubuntu-top ics /

201303/22
注4） http://www.omgubuntu.co.uk/2013/10/ubuntu-wins-

big-brother-austria-privacy-award
注5） 本誌に断続的に掲載してきたため、バックナンバーをご覧

ください。
注6） http://h50146.www5.hp.com/products/servers/

proliant/announcement/20131004/
注7） 通常のリリースでは9ヵ月サポートですが、LTSは5年サ

ポートです。
注8） https://wiki.ubuntu.com/Kernel/LTSEnablementStack
注9） https://wiki.ubuntu.com/Touch

http://unity.ubuntu.com/mir/
http://gihyo.jp/admin/clip/01/ubuntu-topics/201308/23
http://www.omgubuntu.co.uk/2013/10/ubuntu-wins-big-brother-austria-privacy-award
http://h50146.www5.hp.com/products/servers/proliant/announcement/20131004/
https://wiki.ubuntu.com/Kernel/LTSEnablementStack
https://wiki.ubuntu.com/Touch
http://gihyo.jp/admin/clip/01/ubuntu-topics/201303/22

目利きによるトレンド予測

2014年IT業界はどうなるのか？

84 - Software Design

第2特集

2014年のWindowsは「サーバ運用」
「仮想ネットワーク」「仮想ストレージ」に注目

　2014年の変化は小さく、技術的には暫定的な
変化にとどまると予想しています。ただし、技
術が変わらないということは、安心してビジネ
スに使えることを意味するため、利用シーンが
大きく変わる可能性はあります。Windowsに関
して言えば、Windows 8.1がブレークするはず
です。評判の悪かった8に比べ、8.1はおおむね
好意的に受け取られているようで、まるでVista

から7への流れを見ているようです。
　昨年は同様のテーマで、「仮想マシンの拡大」
「仮想スイッチ（ネットワーク）の強化」「クラウ
ドの本格利用」という3つのキーワードについて
触れました。いずれも、ほぼ予想どおりに進行
しています。クラウド利用の拡大や、サーバエ
ンジニアとネットワークエンジニアのスキルシ
フトについても予想どおり進行し、サーバエン
ジニアとネットワークエンジニアの融合（または
スキルシフト）が始まりました。「何でもこなせ
るエンジニア」という意味で「フルスタックエン
ジニア」という言葉も生まれました。
　ただし、仮想プライベートクラウドの本格導
入は来年に持ち越しそうです。また、ストレー
ジ機能についてはほぼノーマークでした。
Windows Server 2012の記憶域プールの可能性
には触れていましたが、Windows Server 2012

R2で既存のNASやSANと競争するほど進化す
るとは予想していませんでした。
　2014年のテーマは引き続き仮想化とクラウド
ですが、サーバそのものよりも、サーバ運用、
仮想ネットワーク、仮想ストレージが重要にな
ると考えています。
　Windows Server 2012でVMwareにほぼ追い
ついたHyper-Vは、Windows Server 2012 R2

でVMwareを上回る機能も搭載してきました。
しかしVMwareも負けていません。vSphere 5.5

では多くの新機能が搭載され、機能的にはどち
らを選んでもほとんど変わらない状態になりま

した。Hyper-Vが弱かったLinuxサポートも格
段に強化され、LinuxのためにHyper-Vを使う
という選択肢も不自然ではありません。Windows

AzureでもLinux仮想マシンが積極的にサポー
トされています。
　Hyper-VとVMwareの機能拡張の結果、2014

年のサーバ仮想化市場は「ITシステム全体の統
合運用管理」が差別化要因となります。Microsoft

製品では、オンプレミスとクラウドの両方を統
合管理できる「System Center 2012 R2」の存在
感が高まるでしょう。
　仮想マシンが一般的になると、仮想マシンを
接続するためのネットワークも重要になります。
ネットワーク管理者は仮想マシン管理者を兼任
し、データセンターを仮想化するNVGRE

（Microsoftなどが推進）と、VXLAN（VMware

などが推進）の検討に入ります。
　Windows Server 2012 R2ではストレージ
プールが拡張され、SSDを使った記憶域階層や、
重複排除機能の強化など、便利な機能が多く追
加されました。以前のソフトウェアRAIDより
もはるかに高度なRAID機能も搭載されており、
高価なハードウェアRAIDを必要としないのも
利点です。
　iSCSIターゲットサーバ機能も充実しており、
ローエンドSAN製品の代替としての実力を持っ
ています。
　また、Windowsのファイル共有プロトコル
SMB 3.0はエンタープライズレベルでも十分実
用的な機能と性能、そして信頼性があります。
今後はHyper-V仮想マシンやSQL Serverデー
タベースファイルの配置場所として広く利用さ
れるようになるでしょう。従来のSMBにあっ
た「遅い」イメージは一新され、SMB 3.0ベース
のNASの位置付けは変わります。2014年は、
NetApp社などの「高機能エンタープライズ
NAS」が普及すると予想しています。｢

 Writer 横山 哲也

2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？

エンジニアの仕事のしかたを考える

85 - Software Design Feb. 2014 - 85

第4章
目利きによるトレンド予測

2014年IT業界はどうなるのか？

第4章
エンジニアの
仕事のしかたを考える

第2特集

（有）エフ・ケーコーポレーション所属。生活雑貨のメーカー／卸売販売の会社で、独りでWebサイト／ネット
ショップ／業務システムを内製して運用している変わったエンジニア。ユーザ企業がこれからの ITの主役になる
ことを夢見ています。GoTheDistanceというブログ（http://gothedistance.hatenadiary.jp/）の中の人で、ござ先輩
という芸名で IT業界に関する硬派な論評記事をたくさん書いています。　 Twitter @gothedistance
2013マイヒット 楽天でお取り寄せ

湯本 堅隆（ゆもと みちたか）
ITのコモディティ化！　そのときエンジニアがとるべき道……86

ノーチラス・テクノロジーズ代表取締役社長で、Hadoopでの業務系バッチ処理を行うためのフルスタックなフ
レームワークであるAsakusaFrameworkの責任者。最近では、PMやら設計やら、できることはなんでもやってい
る状態。基本的なミッションは分散系の技術を業務系に生かすことで、企業の生産性をより高めること。いろい
ろ試行錯誤中。
2013マイヒット 分散トランザクション、RSSI、分散合意、MDCC

神林 飛志（かんばやし たかし）
2014年は「さらに先に行く技術」と「足下のSIビジネス」が乖離する年……87

（株）クレイジーワークス 代表取締役 総裁。ケータイを中心としたソリューションとシステム開発会社を運営。得
意なことは空気を読まない発言。苦手なものは人付き合い。休日は会う人がいないので、1日中ネットをし、ブロ
グなどで「死にたい」などを連発する優雅でセレブな休日を過ごす。
2013マイヒット Amazon DynamoDB

村上 福之（むらかみ ふくゆき）
2014年押さえておくべき技術……88

　数年前に活況を呈していたソーシャルゲーム
は、2013年は以前ほどの勢いはありませんでし
た。SIビジネスも常にインターネット上やイベ
ントでいろいろと問題提起されながらも、相変
わらず昔ながらの地味で気苦労の多い受託開発
を続けています。新しいプログラミング言語、
フレームワーク、サービス、ガジェットなど技
術的には明るい話題に事欠かない IT業界ですが、
エンジニアの働き方に目を向けると、先が見え
ない混沌とした状況です。
　とはいえ、ITエンジニア（とくに最新の技術動

向をウォッチしている弊誌読者）ならば、「日々
研鑽した己の技術力を活かせる仕事で飯を食っ
ていきたい」「変化の多い IT業界でもなんとか自
分の居場所を見つけ、活路を見いだしたい」と
願っているのではないでしょうか？
　本章では、IT業界の将来について言及するこ
との多い4名の方に、2014年にエンジニアが進
むべき方向性について持論を述べてもらいまし
た。自分なりの働き方や今後の道筋について考
える際の参考にしてみてください。

1976年新潟県長岡市産まれ。大学在学中に米Microsoft CorpでのSDK開発に携わる。98年より、（株）ドワンゴ
でエグゼクティブ・ゲーム・ディレクター、アーキテクトを歴任する。03年より独立し、（株）ユビキタスエン
ターテインメントを設立。04年度未踏スーパークリエイター。同社は11年にenchant.jsを発表し、13年に独自
ハードウェアenchantMOONを発売。
2013マイヒット 量子コンピュータ、ヒューマンエージェントインターフェース、暦本研のTraxion

清水 亮（しみず りょう）
次が見えない今だからこそチャンスはある…89

http://gothedistance.hatenadiary.jp/

目利きによるトレンド予測

2014年IT業界はどうなるのか？

86 - Software Design

第2特集

ITのコモディティ化！　
そのときエンジニアがとるべき道

　2013年（昨年）に今後の未来像について記載し
たとき、次のような展望を述べました。

・人月を積み上げて価格を算出する方式では価
格面でSaaSなどのビジネスには勝てない。
しかし、大手に限って基幹系／公共系がクラ
ウドに全部載ることは考えにくいので、影響
は限定的。影響を受けるのは中小規模案件

・SIで生き残るには、どんな形にせよ元請で顧
客と直接SIをやることでしか活路が開けない

　1年が過ぎましたが、おおむねこの大局観は
間違っていないと考えています。リーマン・
ショックとクラウド台頭のダブルパンチで中小
規模案件が減ったことで、システム／ソフトウェ
ア開発業者の倒産件数は2012年に過去最悪にな
りました。2013年の数字はこれから帝国データ
バンクなどから発表されますが、好況の兆しが
見られることはないと考えています。
　SIと言えば、受託開発です。受託開発は「シ
ステム構築ビジネスのコメ」とも言える大きな存
在ですが、人員をプロジェクトごとに割く必要
があることや一括請負契約が多いことから、開
発業者に請けるだけの体力が求められます。し
かしながら、大きな流れとして案件単価は下落
しており、人月単価も下落し続けています。
　友人のSI勤務者曰く「どこもデフレだよ」とつ
ぶやいていました。かつての価格水準は通用し
なくなっている中で、その「人月デフレ」の象徴
的事件が昨年ありました。クロノス（株）の取締
役である山本大さんが昨年ブログに書かれてい
た「人月0円セール」です。0円で送り込まなけれ
ばならない理由はさまざまでしょうが、1つの
時代が終わるのだなと感じました。システム構
築はクラウド技術によってコモディティ化した
ということです。
　ITリソースが湯水のごとく使える時代が、す
でにやってきています。技術で差別化するのが

難しいからこそ、固有技術をさらに極めて頂点
に立つという正統派なキャリアもあるでしょう。
ただ、頂点に立てる人間はとても少ない。それ
を考えると、筆者のように技術的に凡庸なエン
ジニアは多能化することで自分の技術を「活かす
技術」を身につけるべきだと考えます。
　筆者は大企業から年商数億の中小企業に転職
しました。この規模の企業の IT予算は年商の
1％、もしくはそれ以下であることも少なくあ
りません。情報システム部門など存在しておら
ず、請求書だけは出せないとマズイので伝票発
行／集計だけを行う既成のシステムを入れてい
るケースがほとんど。ITで会社の業務が変わる
ことがまったく想像できない人だらけの世界に
足を踏み入れました。
　そんな世界で生き残るために、「身の回りのこ
とをITを使って改善して、会社の経営に貢献す
る」こととは何かを探して、少しずつ内製の範囲
を広くしていきました。そうしないと、自分の
居場所を作ることはできませんでした。
　こんな時代に求められるのは、ビジネスを俯
瞰できて、新しいシゴトをデザインできる人で
す。IT技術を持っている人は、事業を変革させ
る／成長させる大きな武器をすでに持っていま
す。その武器の使い道を、ぜひとも探してくだ
さい。営業や経営がプログラムやシステムのこ
とをわかるようになるより、プログラマが業務
や経営戦略を理解できるようになるほうが、ずっ
と簡単。
　専門分野でスキルを持っているだけでなく、
異なる分野の高いスキルを持っている人をつな
げて、その会社なりが抱えている問題に対して
新しい何かを提案できる人が圧倒的に頼りにな
ります。しかし、数は少ない。だからこそそん
な存在をめざすというのが、日本の企業の99.9％
を占める非IT系中小企業の海で揉まれて得た、
生き残りの術です。｢

 Writer 湯本 堅隆

2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？

エンジニアの仕事のしかたを考える

86 - Software Design Feb. 2014 - 87

第4章

2014年は「さらに先に行く技術」と
「足下のSIビジネス」が乖離する年

 Writer 神林 飛志

　まずはビジネスの概況から言うと、確実に景
気は上向いています。結果としてSIビジネスの
受注は好調のまま2014年に突入し、受注増の形
でSIビジネスは進みます。その一方で人手不足
がさらに深刻化するでしょう。現場では、プロ
ジェクト推進力の維持が精一杯で、技術的なト
レンドの採用はますます困難になっていくでしょ
う……なので読者の皆様は、現場にどっぷりつ
かるのではなく、距離をとりつつ「自己研鑽が正
しい2014年」というのが結論ですね。

SIビジネスの延命措置の拡大
　人繰りですべてを回すSIは受注さえできてい
れば、ビジネス自体は回ってしまいます。ユー
ザサイドの体制は、今までのリストラによるス
タッフ部門の弱体化のボディーブローが効き過
ぎて崩壊気味です。よって、お金は払いますの
でSI屋さんへお任せスタンスがさらに拡大しま
す。若干景気も良くなっているので、システム
投資は少なくとも昨年よりは行われるでしょう。
　受けるほうのSI屋としては、営業も頑張るは
ずです。案件は確実に増えるでしょう。そもそ
も若年層の人口減少の日本労働市場では、でき
るだけ生産性を向上させていかないと企業活動
自体が窒息気味になるはずなのですが、SI屋さ
ん的には、「とにかく回せ。システム作ってたた
き込め」が優先モードで、生産性向上どころか力
業SIに拍車がかかります。結果、人数不足のデ
スマが増えるでしょう。しかし残念ながらSIビ
ジネス自体は回ってしまうわけです。本来では
次のスタイルを目指すべきSIビジネスは景気の
上向きとともに、「無理でもそのまま進め」の文
字どおりの延命措置のデスマーチならぬゾンビ
マーチが主軸になる。そんな2014年でしょう。

技術の進歩は分散処理に一直線
　その一方で、技術動向は完全に分散処理的な

ものに一直線です。現状の新技術はほぼすべて
クラウドからしか出てきていません。今のクラ
ウドはほぼ分散処理がベース・テクノロジーに
なりつつあり、理論と実践の試行錯誤が重ねら
れています。そして、その成果がオープンソー
ス・研究論文・プロダクツとして公開されてき
ています。こういった分散技術はクラウド上で
は開発は進んでいますが、いまだSIで使うには
十分な道具立てとして成熟してはいません。
　しかし、Hadoopが帳

とばり

を上げてしまったことに
加えて、ビッグデータというバズワードもこれ
らの分散技術の一般化を後押ししている状態で
す。新技術の採用動向としては無視するわけに
はいきません。分散クラスタでのR&Dや実装・
フレームワークはさらに雲霞のごとく出てくる
でしょう。日本の技術者も近い将来、これらの
技術を使っていくことが迫られるでしょう。
SIの延命とクラウド技術の進歩が
乖離し始める

　こういったSIビジネスの需要過多と安定供給
不足のマーケットの状況と、クラウド技術の乖
離は広がる一方なのが2014年です。回すことに
精一杯の状態では「お願いだから安定してない新
技術は使わないでね」が通常の現場になります。
技術的な試行錯誤ができない状況は、新しい技
術への追従のコストをさらに高めます。
　さて、では業務系エンジニアはどうしたら良
いか？ということになります。携帯ゲーム屋が
雲行き怪しいどころか土砂降り状態では、SI業
界からの転職脱出もまた難しくなりました。と
はいえ仕事は降ってきます。仕事を「選びなが
ら」被弾を少なくして、自己研鑽に時間を割くと
いう方法を選択していく以外にちょっと道はな
さそうです。景気が良くなるからといって、早々
都合良く物事が運ぶわけではありません。今ま
で以上に、自分の選択肢を増やす努力が必要な
のが2014年なのかもしれません。｢

目利きによるトレンド予測

2014年IT業界はどうなるのか？

88 - Software Design

第2特集

2014年押さえておくべき技術
 Writer 村上 福之

　2014年に押さえておくべきモバイル技術につ
いて、Tizenとウェアラブルコンピューティン
グについて書いておきます。

Tizenは押さえておくべき
　Tizenはぜひとも押さえておくべき、モバイ
ルOSです。絶対に押さえておくべきです。な
ぜなら、これほど出る前から期待されていない
のに、大手がかかわっているOSもないからで

す。Tizen Associationが頑張っているらしいの
ですが、コミュニティはさほど活発でもなく、
開発環境も未だに整ってないですし、一応、そ
れでも国内最大手のNTTドコモが2014年には
出すとアナウンスはしています。
　ソフトウェアエンジニアにとって、これほど、
伝説を作りやすいOSはありません。このよう
に「海外で開発されて、国内の大手が乗っかっ
て、早くに失敗したプラットフォーム」といえ
ば、「3DO」というゲーム機を思い出します。
　3DOといえば、同様に当時としては珍しい映
画的な手法で、ムービーをたれ流すだけのゲー
ムなのに伝説的名作と呼ばれた「Dの食卓」とい
う有名なゲームがありました。これも3DOで出
したためかメディア露出が多く、いろいろな賞
を取りました。その後、いろんなプラットフォー
ムに移植され、それなりに話題を呼びました。
ゲームの製作者であった飯野賢治さんも時代の
寵児と呼ばれました。彼は2013年に亡くなった
最も有名なゲームクリエイターでもあります。
もし、Dの食卓が3DOで出ていなかったら、こ
のような伝説を生まなかったでしょう。
　おそらく、Tizenでアプリを作る人は非常に
少ないですし、多少おかしなものでも審査が通
るでしょうし、ドコモのマーケットでトップを
取るのも容易でしょう。さらに、一応、サポー
トしていないAPIがいろいろありますが、
HTML5ベースでアプリを開発できますから、非

常に学習コストが低いです。あなたのソフトウェ
アエンジニア人生で名前を残し、伝説となるな
ら、Tizenしかないのではないでしょうか？
　あなたの人生の伝説のために、押さえておく
べきOS、それはTizenです。

ウェアラブルコンピューティング
　ウェアラブルコンピューティングもまた、押
さえておくべきテクノロジだと思います。2013

年中に発売されたメジャーなウェアラブルデバ
イスはGoogle Glass（一般販売ではありません
が）、Galaxy Gear、Sony SmartWatchです。こ
れらはすべてOSがAndroidです。Appleから
iWatchと呼ばれているものが出るとか出ないと
か言われていますが、今のところ、よくわかり
ません。
　Google Glass以外は今のところ、アプリケー
ション開発環境が載っていません。Google Glass

のほうは、Google Mirror APIを使ったGlass

wareアプリとGDK（Glass Developers Kit）を
使ったアプリがあります。前者はJSONを使っ
たRESTful APIですし、後者は通常のAndroid

のアプリケーションにAPIを拡張したものです。
つまり、ウェアラブルコンピューティングの多
くの実装技術は今後も、既存のテクノロジを流
用したものになる可能性が高いです。
　しかし、Googla Glassは表示領域が640×
360ピクセルしかありません。Galaxy Gearも
320×320ピクセルしかありません。通信が多
いとすぐ電池がなくなります。そんなわけで、
ウェアラブルコンピューティングにおいて今大
事なのは、限られたリソースと画面サイズで実
装するテクノロジとノウハウになってくると思
います。
　そんなわけで、2014年もおもしろいテクノロ
ジがでてくるのではないかと思います。｢

2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？2014年IT業界はどうなるのか？

エンジニアの仕事のしかたを考える

88 - Software Design Feb. 2014 - 89

第4章

次が見えない今だからこそ
チャンスはある

 Writer 清水 亮

本当の意味での「Ubiquitous
Computing」への理解

　パーソナルコンピュータの次にどんな時代が
訪れるのか、実はすでに名前がついています。
それが「Ubiquitous Computing（ユビキタスコン
ピューティング）」です。このアイデアもパーソ
ナルコンピュータと同じく、XEROXのパロア
ルト研究所で生まれました。半導体技術の躍進
によるダウンサイジングの結果生まれたパーソ
ナルコンピュータからさらに進み、これまで使
われることのなかったものにまでコンピュータ
が入り込むことで、あらゆる事物がシームレス
に接続されて1つの統一体のようにコントロー
ルされる。これがユビキタスコンピューティン
グの時代です。
　ところがこの10年というもの、日本ではこの
言葉の意味が誤解され、単に携帯電話にコン
ピュータが入った、という現象のみを指すよう
になってしまったのは非常に残念なことです。
　ユビキタス世代のコンピュータは、そのプロ
トタイプと呼べるものすら、未だ誕生していま
せん。しかし、Arduinoの台頭やさまざまな周
辺技術が出そろい、その実現は目前にまで迫っ
て来ています。こうした時代の流れを読み取る
には、やはり「どうして我々がここまで来たの
か」という歴史を深く知る必要があります。
トランジスタの発明は
ほとんど無視されていた

　昨年、量子コンピュータの実現に王手をかけ
た東大の古澤明教授にお会いした際、大変興味
深い話をうかがいました。それは世界で最初の
トランジスタ製品とはなにか、ということです。
　ほとんどの人は「ラジオ」だと答えると思いま
す。ところが実際は、ヘルメット大の巨大な補
聴器なのです。しかしそれまで、トランジスタ
がどのような産業的インパクトを持っているの
かわかっている人は世界のどこにもいませんで

した。ニューヨークタイムズは1948年7月1日
に、見出しなしのわずか40行の記事としてその
発明を紹介するだけでした。
　ところがヘルメット大の補聴器が作れる、と
いうことがわかった途端にトランジスタの可能
性に初めて注目が集まったのです。正確にはこ
こで発見されたのはトランジスタというよりも
半導体の可能性そのものです。半永久的に動作
し、真空管に比べてコンパクトで壊れにくく低
消費電力の半導体があれば、今まで物理的に不
可能だった補聴器を実現できるという事実は、多
くの科学者や発明家の心を捉えたのだそうです。
　日本の小さなベンチャー企業がその可能性に
注目し、膨大な特許使用料を支払って高周波へ
の応用を研究し始めます。その会社が高周波ト
ランジスタの生産に成功し、その後「SONY」と
名前を変えて世界規模の会社に成長しました。
イノベーションのタネは誰もが見落としている
ところにこそ、落ちているのです。

2014年は「新たなる希望」の年
　2013年にはMicrosoftのスティーブ・バルマー
が引退を宣言し、パーソナルコンピュータ革命
に重要な貢献を果たした主要な起業家（スティー
ブ・ジョブズ、ビル・ゲイツ、スティーブ・バ
ルマー）がすべて退場したかたちになりました。
　一方で、ウェアラブル端末として期待された
Galaxy Gearの不調、先の見えないGoogle

Glass、ここに並べるのは僭越ですが筆者らが
開発したenchantMOONなど、新しいことへの
果敢な挑戦は行われたものの、次世代はこれだ！
という決定打にはまだ欠けているという印象で
した。
　逆に言えば、2014年はまだまだ新しいアイデ
アを試せる時期、停滞しはじめたコンピューティ
ングの世界に新風を吹き込むチャンスがまだま
だあるということではないかと思います。｢

目利きによるトレンド予測

2014年IT業界はどうなるのか？

90 - Software Design

第2特集 目利きによるトレンド予測

2014年IT業界はどうなるのか？第2特集

「数学ガール」シリーズという書籍を書いています。最近はやさしめの「数学ガールの秘密ノート」という新シリー
ズにも力を入れています。　 Twitter @hyuki　 URL http://www.hyuki.com/
2013マイヒット MacBook Air、Vim

結城 浩（ゆうき ひろし）
具体化と抽象化の狭間で……91

Treasure Data,Inc. Software Architect & Founder。2012年に米国に渡り、ビッグデータ収集＆解析サービスを提供
するためのソフトウェア基盤の設計／開発に携わる。高速なオブジェクトシリアライザを開発するOSSプロジェ
クト「MessagePack」のコミッタ。またストリーミングデータ収集基盤「Fluentd」を開発し、こちらもOSSとして公
開している。　ブログ「古橋貞之の日記」 URL http://d.hatena.ne.jp/viver/　 Twitter @frsyuki
2013マイヒット Fluentd、RFCと IETF、PostgreSQL 9.3、Presto、ボーイング787、イタリア料理

古橋 貞之（ふるはし さだゆき）
ビッグデータに対する新たなニーズに応える「リアルタイムクエリエンジン」……92

（株）ブレインパッド アナリティクスサービス部 ゼネラル・マネージャー。1977年生まれ。2008年九州大学大学
院修了（農学博士）、大学院にてリモートセンシング画像解析の研究に従事し、2008年ブレインパッドに入社。大
手通販企業のプロモーション、顧客構造分析、Webマーケティング支援にデータサイエンティストおよびプロジェ
クトマネージャーとして従事。2012年7月より現職。ダイレクトマーケティング、R&D、テキストマイニングな
ど幅広い分野でのデータ分析に精通している。慶應義塾大学SFC研究所上席所員（訪問）も務める。
2013マイヒット 　 Data Management Platform、Scalable Machine Learning、パーソナルデータ、オープンデータ

憲章、データサイエンティスト

佐藤 洋行（さとう ひろゆき）
データサイエンティストという職業について……93

第5章
エンジニアとしての
幅を広げよう

　本章では2014年に限った話ではなく、これか
ら数年先をも見据えてエンジニアとして取り組
んでおきたい事柄を展望してみたいと思います。
　エンタープライズでもコンシューマでも、
CPUのマルチコア／メニーコアの流れはしばら
く続くでしょう。このCPUを効率よく使うため
に必要な並列処理の技術は、どのようなエンジ
ニアであっても学んでおいて損はありません。
並列処理には関数型言語が適しているとも言わ
れていますので、本誌第1特集にも関係する話
です。
　また、プログラマであれば、数学的な思考能

力や視点は大きな武器になります。増え続ける
一方のデータをビジネスに活かすため、データ
分析の需要が急激に高まっています。このデー
タ分析を行うためには、たとえツールが簡単に
やってくれるとしても、自分自身に統計解析の
知識がなければ、その分析の妥当性を判断する
ことはできません。これはほんの一例に過ぎず、
数学は至るところで力になってくれるはずです。
　次ページからの展望が、つねに自身の技術力
を高めているエンジニアの皆さんにとってなん
らかのヒントとなっていれば幸いです。

BSDコンサルティング（株） 取締役／（有）オングス 代表取締役／FreeBSD committer。エンタープライズシステム
の設計、開発、運用、保守から IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広く手がける。
2013マイヒット C、Shell、Retina Display、iPad、iPhone、MacBook、ssh、Life Hack、Health care

後藤 大地（ごとう だいち）
関数型言語のカーネルへの適用……94

http://www.hyuki.com/
http://d.hatena.ne.jp/viver/

エンジニアとしての幅を広げよう

90 - Software Design Feb. 2014 - 91

第5章
目利きによるトレンド予測

2014年IT業界はどうなるのか？

具体化と抽象化の狭間で

　次の式を見て、何か気づくことはありますか。

1＋8＋27＋64＝100

　多くの人が1、8、27、64に何か規則性があり
そうだと思うでしょう。そして注意深い人はこ
の4個の数がすべて3乗数になっていることに
気づきます。つまり、上の式は次のように書け
るということです。

13＋23＋33＋43＝100

　さらに、左辺で気づいたことを右辺に適用す
るとどうなりますか。右辺の100は3乗数では
ありませんが2乗数です。ですから冒頭の式は、

13＋23＋33＋43＝102

と書けることになります。
　もしかしたら、一般化して、こんな仮説が成
り立つのではないでしょうか。

13＋23＋33＋ … ＋n3＝N2 （仮説）

　ここには発想の飛躍がありますが、小さなn

で実験すると確かに成り立つことがわかります。
n＝1、2、3、4で実験すると、それぞれN＝1、
3、6、10で仮説が成り立ちます。
　ここで出てきたN＝1、3、6、10はどんな数
列でしょう。数列の謎を解くときの基本的な道
具は、隣り合った数同士の差をとることです。

 1 3 6 10

2 3 4

　これで、隣り合った数同士の差は1ずつ増え
ているらしいことが予想されます。仮説の式で
nが1増えるときNも1増えるので、実は次のよ
うなきれいな式が成り立つのです。これは簡単
に証明することもできます。

13＋23＋33＋ … ＋n3＝ (1＋2＋3＋ … ＋n)2

　以上、長々と考えてきましたが、実はここに
はデバッグのエッセンスがあります。
　デバッグを行うとき、今までお話しした要素
に出会います。目の前に現れる現象の規則性に
気づき、一般化し、仮説を立てること。仮説を
立てるためには道具も知らなければいけません。
　現象を把握するためには、意識して規則性を
見つけようとすることが大切です。そのために
は細かいところまで注意深く見ることが必要に
なります。
　規則性を見抜くためには構成要素に対する知
識も必要です。ちょうど27を33だと見抜くよう
に、あなたが扱っているプログラムの基本的な
構成要素の理解が大切です。
　規則性からさらに一般化する大胆な飛躍も大
切です。その際には具体的な数から離れ、変数
や文字を使った別の表現が必要になるかもしれ
ません。それは仮説となって表されます。
　一般化して得られた仮説は、検証が必要です。
小さな数で仮説をためしたように、自分のプロ
グラムが自分の仮説どおりになっているかどう
かを検証する必要があります。この検証がなけ
れば単なる推測で終わってしまうでしょう。
　デバッグをうまく行うというのは、問題解決
をうまく行うということです。あなたは毎日、
多くの問題解決を行っているでしょう。いきあ
たりばったりの活動にしないために、規則性を
見つける、仮説を立てる、検証する……といっ
た個々の活動を意識することが大切です。
　問題解決には、一見矛盾する2つの態度が必
要です。1つは具体的な問題にどっぷりつかり、
細かいところまで注意を払うこと。もう1つは
細かいところに惑わされず、抽象化した本質を
見抜くこと。具体化と抽象化の狭間を行き来し
て問題解決を行うのです。
　あなたの今年の問題解決が実り豊かなものに
なりますように。｢

 Writer 結城 浩

目利きによるトレンド予測

2014年IT業界はどうなるのか？

92 - Software Design

第2特集

ビッグデータに対する新たなニーズに応える
「リアルタイムクエリエンジン」

Hadoop／OLAPキューブの課題
　データ分析の目的は、データをさまざまな観
点から可視化することで、問題や傾向を発見し、
ビジネスや運用を最適化することにあります。
そんな中でHadoopは、月や日に1回といった頻
度でバッチ処理を行うことで、どんなに巨大な
データでも何らかの分析を可能にするという点
で強みを発揮しています。しかし一方で、「イン
タラクティブに条件を変えながら、データをい
じり回して分析＆可視化したい」というニーズに
応えられないという弱みを持っていました。
　これに対する代表的な解決策は、部分的に集
計した中間集計データをバッチ処理で事前に作っ
ておくという方法です。中間集計データのサイ
ズは、各集計軸が取り得る種類数の掛け合わせ
で決まります。たとえば「広告 ID」が50種類、
「ページID」が100種類、「時刻」が1時間単位で
24時間分の中間データを作成した場合、50×
100×24＝12万行のデータ量になります。この
程度ならストレスなく分析ができますね。しか
し、「アクセス元デバイス」30種類を追加すると、
データ量は360万行になります。さらに「ユニー
クユーザID」3,000種類も加えると、108億行に
膨れあがります。
　このように、中間集計してインタラクティブ
な分析をするには、どんな方法で分析をしたい
か予想し、条件に入れる項目を必要最小限に絞
らなければなりません。さもなければ、巨大な
中間集計データを高速に扱えるインメモリデー
タベースを別途構築する必要があります。その
どちらも非現実的であるケースも多々あります。

リアルタイムクエリエンジンの登場
　近年登場してきたリアルタイムクエリエンジ
ンは、以上のようなジレンマを解決します。
MapReduceとは異なるアーキテクチャを持ち、

「巨大なデータを直接、いかにストレスなくイン
タラクティブに分析するか？」という点に重点が
置かれています。2014年はさまざまな実装が群
雄割拠する年になるでしょう。
　多くの実装では、巨大なデータを保存する外
部ストレージ（多くの場合HDFS）、クエリを分
散処理するワーカー、そしてクエリの進行を統
括するコーディネータという3つの構成要素か
らなるアーキテクチャを持っています。中でも
ストレージとワーカーが分離されている点は伝
統的なMPPデータベースとは異なり、すでに
集約的に保存されている巨大なデータを移動さ
せることなくクエリを実行でき、またステート
レスなワーカーを必要に応じて柔軟に追加／縮
退する運用が可能になります。
　最後に実際に開発が進むOSSプロジェクトを
いくつか紹介します。

・Impala：C++で書かれており、単純なクエリ
を極めて高速に処理できる

・TezとStinger：TezはMapReduceをより一
般化し、単純な有向グラフに基づいた分散処
理モデルの上に載せ替える。StigerはPigや
HiveをTez上に直接再実装することで、既存
資産を活かしたまま大幅な最適化を目指す

・Drill：実績あるコストに基づいたクエリ最適
化機構を採用し、高い性能とSQL標準互換性
（SQL 2003）の実現を目指している
・Presto：高い拡張性とSQL標準互換性が特徴。
HDFSにも依存しないように疎結合化され、
非常にメンテナンス性の高い設計を持つ

・Tajo：ほかのプロジェクトでは低遅延性のた
めに可用性を犠牲にしがちである一方、Tajo
は数時間におよぶ長大なクエリの実行にも耐
える耐障害性を兼ね備える

　2014年の年始、この流れを先取りして試して
みるのもおもしろいのではないでしょうか。｢

 Writer 古橋 貞之

エンジニアとしての幅を広げよう

92 - Software Design Feb. 2014 - 93

第5章

データサイエンティストという
職業について

 Writer 佐藤 洋行

データサイエンティストはどこから
やって来るのか

　ビッグデータ時代である現在、データサイエ
ンティストと呼ばれる人材が強く求められてい
ます。しかし、必要とされるスキルの領域が多
岐にわたることもあり、専門的に育成されたデー
タサイエンティストが社会に排出されるように
なるまでには、もう少し時間が必要だと考えら
れます。では、直近の未来においてデータサイ
エンティストはどこからやって来るのでしょう。
　後述のとおり、データサイエンティストに求
められるスキルは、大きく「IT系スキル」「分析
系スキル」「ビジネス系スキル」に分けられると
考えられます。そこで当然、これからデータサ
イエンティストになろうとする、あるいはそれ
を育成する場合、これらのうちいずれかをあら
かじめ持つ人材が適していると言えるでしょう。
　中でも、現在の学習環境とビジネス事情を考
えますと、ビジネス系スキル以外の2系統のス
キルのいずれかを持つ人材のほうが、データサ
イエンティストになろうとする、あるいはそれ
を育成する場合に少なからず優位かと思います。
世に存在する数からしても、少なくともしばら
くは、SEまたはプログラマの中から生まれて
来る、というのが主流になりそうです。
データサイエンティストに
求められるスキル

　データサイエンティストには、データの分析
はもちろん、その結果をビジネスに活用するこ
とが強く求められます。そのため、まずデータ
をハンドリングするのに必要なRDBMSとSQL

の知識・実務経験は必須と言えます。もし、デー
タがより巨大である場合には、Hadoopとそれに
関連する知識（Java、HDFS、MapReduce、Hive

やPigなど）が必要になるかもしれません。また、
Linuxコマンドによるデータ処理もしばしば行
われます。

　次に分析という観点では、上記に加え、統計
解析や機械学習に関する知識が必要となります。
それらを実行するための言語としてのR、Python

やPerlは、アメリカにおけるデータサイエン
ティストの募集要項に必ず記載されるようになっ
てきています。ここでもデータが巨大であれば、
分散コンピューティング、あるいはIn-Database

処理を行うために、MahoutやMADlibのような
言語が必要となる場合もあるでしょう。
　一方、自らその知識や技術を身に付け、処理
する以外の選択肢もでてきています。「kaggle注1」
のようなクラウドソーシングを利用する、とい
う選択肢です。ビッグデータ分析のような非常
に幅広い知識を必要とする分野には、このよう
なクラウドソーシングは適合性が高いと考えら
れますので、これからの発展が期待されます。
　最後に、分析結果を活用するにあたって必要
とされるのは、分析対象となるビジネスの業界
や業務に対する知識です。実際にはすべての業
界や業務に対して深い知識を持つことは不可能
ですので、関係者へのヒアリングを行うのです
が、そこでは質問力や理解力が必要となってき
ます。また、最終的に分析結果を活用した施策
を実行するにあたっては、担当者に対して分析
結果を適切に説明するだけでなく、理解して行
動してもらわなければなりませんので、情報の
伝達力に加え、説得力、あるいはプロジェクト
の推進能力のようなものまで必要とされます。
　それらすべてを身に付けることは非常に困難
かもしれませんが、分析スキルを持つ人材が、
アメリカだけでも2018年までに14～19万人不
足するといわれている現在注2、そのような人材
になることを目指してみる価値はあるのではな
いでしょうか。｢

注1） http://www.kaggle.com/
注2） “Big data: The next frontier for innovation, competition,

and productivity”; McKinsey Global Institute, May 2011

http://www.kaggle.com/

目利きによるトレンド予測

2014年IT業界はどうなるのか？

94 - Software Design

第2特集

関数型言語のカーネルへの適用
 Writer 後藤 大地

マルチコア／メニーコアと
C言語の不仲？

　カーネルはCやC++/Objective-Cで開発され
ていることが多く、おおざっぱに言うと実装上
の工夫でもってマルチコア／メニーコアを活用
しています。この構成にはいくつかの課題が見
えています。C言語はもともとマルチコアやメ
ニーコアを意識して設計されたプログラミング
言語ではありませんので、並列処理を実装する
のが大変です。この方法ではいよいよ人間が負
担しなければならない部分が大きくなってきま
した。
　こうした理由もあって、カーネルをC言語系
以外の言語で開発するという取り組みは以前か
らありました。2014年はこのあたりがもっと進
展するかもね、というのが筆者の予想です。
　C言語系以外でカーネルの記述用言語として
開発者が採用できるプログラミング言語は、次
の特徴を備えている必要があります。

・CやC++/Objective-Cで開発したのと同レベ
ルに高速である

・プログラミング言語レベルで並列処理を想定
した設計が行われている

・強い型チェック機能を持っている
・コーディングが楽できる

　プログラミング言語が言語レベルで並列処理
を想定して設計されたものであるかどうかがと
くにポイントです。楽をして並列処理を記述で
き、効果的に論理コアを使い切れる言語である
必要があります。カーネルのビルドでは強い型
チェックを実施しますので、型のチェックもちゃ
んと行える言語である必要もあります。
代替候補を検討しなければ
ならない状況が到来

　2013年8月に英国のケンブリッジで開催され
たFreeBSD開発者会議では、ネットワークの

処理にカーネル内で動作するOCaml実行環境を
使う「Mirage/kFreeBSD」という取り組みが紹
介されました。FreeBSDカーネルに限らずカー
ネル内部の処理に関数型言語を使おうという取
り組みは以前からあり、試験的な取り組みも進
められています。
　予想という割には逆のことを言いますが、結
局のところ漸進的な改善を繰り返して、どこま
でいってもC言語系のプログラミング言語を使
い続ける可能性もあります。
　これまでと状況が違っているのは、マルチコ
ア／メニーコアのマシンがコンシューマ市場に
広がり、エンタープライズ市場ではさらに多く
の論理コアを搭載したマシンが登場したことで、
現場の技術者がリアルに「解決策」を求めだして
いる、という点にあります。なんらかの方策を
見つけなければならない時期が来てしまった、
というわけです。
当面はハイブリッドな利用で
技術の模索

　カーネルの実装が一気に別のプログラミング
言語に置き換わるということはあり得ないと思
います。Mirage/kFreeBSDのように特定の機
能を特定のプログラミング言語で実装するといっ
た取り組みの数が増えていく中で優れた方法を
模索する、というのが実際に起こる行動になる
と想定されます。
　ひとつ覚えておきたいのは、カーネルの機能
を実装する1つの手段として、従来のC言語系
以外の採用を現実的と考える技術者が増えてき
ている、ということです。そんなわけで、2014

年は並列処理の実装に向けた新しい年と位置づ
け、並列処理を言語レベルで取り込んだプログ
ラミング言語を学んでみるというのはいかがで
しょうか :) ｢

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Feb. 2014 - 95

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％割引になります。デジタル版はPCのほかに iPad／ iPhoneにも
対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

 第1特集
Vimを使いこなしてますか？
Vim至上主義
 第2特集
ネットワーク技術力のパワーアップ
ルータの教科書
 一般記事
・Key Value Storeをゼロから創る
・小規模プロジェクト現場から学ぶJenkins活用（4）

1,280円

2013年10月号

2013年9月号
 第1特集
今からはじめる
sed/AWK再入門
 第2特集

開発するなら
やっぱりMacですよね？
9人9色のデスクトップ拝見＋新OS傾向と対策

 一般記事
・小規模プロジェクト現場から学ぶJenkins活用（3）
・最終段階に入ったFedora 19 1,280円

 第1特集
シェルがわかればシステムがわかる
あなたの好きなシェルは何ですか？
 第2特集
未来を作るITインフラ
10ギガビットを実現する
ケーブリング技術
 特別付録 ＆ 一般記事
・法輪寺鎮守社電電宮 情報安全護符シール Ver.2
・ソーシャルゲームのDevOpsを支える技術（後編）

1,380円

2014年1月号
 第1特集
SDN/OpenFlowの流れを総まとめ！
SDN/OpenFlowで
幸せになれますか？
 第2特集
下手でも好印象で効果絶大
エンジニアの伝わる図解術
 一般記事
・ LinuxとFreeBSDのファイルシステムの良い・悪いとこ
ろをご存じですか？
・「Mirama」a.k.a. VIKING ほか 1,280円

2013年12月号

 第1特集
理論から実践まで
3Dプリンタが未来を拓く理由
 第2特集
バグを狙い撃つ技術
システムを見通す力でソフトウェ
ア開発を楽にしませんか！
 一般記事
・小規模プロジェクト現場から学ぶJenkins活用（2）

1,280円

2013年8月号

1,280円

2013年11月号
 第1特集
思考をコード化する道具
我が友 Emacs
 第2特集
コンピュータの加速装置
サーバサイドフラッシュ
Fusion-io全方位解説
 一般記事
・小規模プロジェクト現場から学ぶJenkins活用（5）
・ソーシャルゲームのDevOpsを支える技術（前編）
・Ubuntu 13.10 "Saucy Salamander"

http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

96 - Software Design Feb. 2014 - 97

会社組織を活性化するスパイス「コンパ」
―― 脈々と継承される稲盛イズム

たまには膝詰め・車座で語り合ってみませんか！

　若い社員の「宴会離れ」は最近よく言われる話です。会社の飲み会に参加することは、個人の意思を妨
げているとか、そうしたイベントに出ないと表明することが意識の高い若者であるような風潮すらあります。
確かに個人の意思は大事です。しかし、問題はそこでしょうか。話し合いの場としての社内宴会「コンパ」
を運用し、京セラコミュニケーションシステム株式会社（KCCS）は効果を上げてきました。組織活性化の
秘訣を同社常務取締役 松木憲一氏に伺いました。

なぜコンパ（Not 宴会）
なのか？

――最近の若い社員は、いわゆる会社の宴会
を好まないという風潮があります。そもそも、
なぜ社内宴会を重視されているのでしょうか。

松木：KCCSは京セラの情報システム部門が分
離独立し設立された会社です。京セラ文化を継
承しており、コンパもその1つです。京セラをはじ
めとして当社は「宴会」という言葉は使わずに「コン
パ」と呼んでいます。コンパの始まりは、京セラ創
業当時に遡ります。京セラはそもそも創業して
から半世紀以上経ちますが、当時は今でいうベ
ンチャー企業でした。知名度が低かったので人
材採用に非常に苦労したそうです。最初から優

秀な学生を採
れませんの
で、それなら
ばチームワー
クで市場に切
り込んでいこ
うと考えたの
です。
そのチーム
ワークは中途
半端なもので
はなく、強い

組織にしていかねばならなかったのです。人間
関係をすごく緊密にすることを前提に、他人に
対して斜に構えずに正面から付き合っていこう
と……それがスタートです。人が力を発揮する
ときは、トップから一気通貫に意識のベクトル
を合わせることが重要なんです。横のつながり
だけではなく、縦のつながりを作るために、コ
ンパが必要だったのです。コンパを重要視する
エピソードは稲盛名誉会長のさまざまな話の中
に出てきます。

――現在、飲み会・宴会はどれくらいの頻度
で行われているのでしょうか？

松木：公式なものは月1回程度ではないかと思
います。この宴会場は、比較的に公式なイベン
ト、たとえばプロジェクトのキックオフや、カッ
トオーバーの打ち上げ、歓送迎会、期が終わる
ときの決起集会などに使われていますが、予約
でいつも一杯です。

――この畳の宴会場はかなり広いですね？

松木：ここ東京支社は60畳以上で、80人は入
れます。京都のKCCS本社、烏丸事業所など、
ある程度規模が大きいところでは、コンパ用の
宴会場を備えています。烏丸事業所では、祇園
祭のときは長刀鉾が見える最高のロケーション
の部屋が使われています。

写真1　京セラコミュニケーション ▼
システム株式会社　常務取締役
ICT事業統括本部長 松木 憲一

取材／文：Software Design編集部

96 - Software Design Feb. 2014 - 97

 会社組織を活性化するスパイス「コンパ」
―― 脈々と継承される稲盛イズム

コンパの基本とは何か？

――コンパがいわゆる宴会と違うところは何
でしょうか？

松木：コンパの趣旨は、社員同士が本音で語り
合うことにあります。皆で膝と膝を突き合わせ
車座で座り、「俺はこう思っているんだ」と本音
で語る、お互いにふれあうほどの密度が重要で
す。なので「畳」が大事なのです。何年か前の話
です。某ホテルで新入社員の入社式の後にコン
パをしたのですが、畳敷きの部屋がなかったの
で、わざわざ畳を借りて持ち込んだこともあり
ました。そのくらい社員同士で話し合うことに
重きを置いています。

――アルコールが苦手な方はどうしたらよい
のでしょうか？

松木：酒嫌いの社員にソフトドリンクを必ず用
意しています。酒は無理にすすめません。カラ
オケもありますが，最近はあまり使いません。

――運用ルールのようなものはありますか？

松木：コンパは飲み会ではないので基本全員参
加です。決まりごととしては、プロジェクトの
場合、たとえ上位の管理職がいてもプロジェク
トマネージャーが最初の挨拶を行います。そし
て決意表明をよくやりますね。挨拶と乾杯をし

てから、決意表明をして、最後は一本締めです。
決意表明とは有言実行のスピーチみたいなもの
です。仕事上の目標や経営の数字に対しての自
分の思いなどのアピールをします。

仕事に効くコンパとは？

――コンパのメリットは何でしょうか？

松木：仕事場や会議などでは話せない本音を話
せたり、普段会えない方や直接関わりがない人
と話ができる、といったところでしょうか。い
つもは厳しい事業部長が家族の話をしたり、人
間の多面性を理解するきっかけになることです。
私は稲盛名誉会長にお会いする機会は年に1～
2回程度でほとんどないのですが、コンパの場
で仕事の話をお聞きできたりすると相当モチベー
ションが上がりますね。

――KCCS流コンパの極意とは何でしょうか？

松木：プロジェクトをうまく実践していくため
にはチームワークが欠かせません。OSI参照モ
デルにたとえると、チームワークを発揮しよう
というようなプレゼンテーション層やアプリケー
ション層レベルの話をいきなりしても心に響か
せるのは大変です。まずは物理層で線をつなぎ
ます。それをするのがコンパです。そこから信
頼関係を作りあげていけば一致団結できるはず
です。また、コンパは日常のオフィスでの職制
上の立場を切り替えるスイッチとも言えます。
少しお酒が入ることで、自制心の壁がやや低く
なって本音で語れるようになったりします。も
ちろん職場でも本音でぶつかりあいますが、ど
うしても立場があります。私には入社以来30

年一緒に飲んでいる仲間がいます。30年もです。
本音で語り合うことで強い組織を作り最高のパ
フォーマンスを生み出すその原動力がコンパな
のです。ﾟ

写真2　 コンパ風景 ▼

98 - Software Design

サーバマシンの測り方
─ ベンチマークを極める実践テクニック ─

Feb. 2014 - 99

I/O負荷が大きいDBベ
ンチマークのやり方とは

　データベースのベンチマークでは、ディスク
I/Oへの負荷がかからず、スコアがCPU性能
に依存するというケースがあります。しかし実
際のシステムでは、データベースの性能はディ
スクI/Oがボトルネックとなるケースが多々あ
ります。SysBenchではCPUに負荷がかかりや
すく、ディスクI/Oまで負荷をかけるのが難し
いです。今回は、tpcc-mysqlを用いてディスク
I/Oに負荷がかかるデータベースのベンチマー
クをしていきます。

tpcc-mysqlのパラメータ

　データベースのベンチマークでディスク I/O

に負荷をかける場合、データベースのサイズを
大きくすることと広範囲にアクセスさせる必要
があります。こうすることでメモリ上のキャシュ
にヒットせずディスクまでアクセスされること
が多くなります。tpcc-mysqlでは、warehouse

の値を大きくするとデータベースのサイズも大
きくなります。500～1000くらいの値にすると
ハイスペックなサーバでも十分なディスクI/O

が生じます。warehouseを500としたとき各テー
ブル合わせて約43GBのデータが生成されます。

MySQLのコンフィグ

　MySQLのコンフィグではおもにバッファプー
ルのサイズがディスクI/Oに大きく影響してき
ます。今回はデータベースエンジンとして
InnoDBを利用します。このとき、innodb_
buffer_pool_sizeの値が小さいとメモリが
使われずディスクへのアクセスとなり、値が大
きいとメモリへのアクセスとなります。ディス
クI/Oの性能を測りたい場合は、わざと値を小
さくするということもあります。しかし、メモ
リの容量も含めてそのサーバの性能とするとき
にデータベースのベンチマークをする場合、バッ
ファプールには十分な値を設定し、先述のデー
タベースのサイズを大きくすることでディスク
I/Oに負荷をかけます。

HDDとioDriveを比較

　では、実際に計測していきます。今回の測定
対象のサーバ環境は表1です。MySQLのコン
フィグ（/usr/my.cnf）はリスト1で計測しまし
た。innodb_buffer_pool_sizeは、控え目に
搭載メモリの50％としました。tpcc-mysqlの
warehouseは500です。次のコマンドで tpcc-

mysqlを実行しました。

サーバマシンの測り方
より速く、より莫大に、より高みへ！

─ ベンチマークを極める実践テクニック ─

第2回では、データベースのベンチマークツールを紹介しました。今回はディスク I/Oが多くなるケースのデータベー
スのベンチマークを実行して、Fusion-io社の ioDriveによる性能向上を見ていきます。さらに ioDriveのためのチュー
ニングをして、ベンチマークのスコアを上げていきます。

 Writer ㈱ IDCフロンティア　ソリューションアーキテクト　藤城拓哉（ふじしろたくや）／Twitter@tafujish

第3回　データベースベンチマークからioDriveを測る

$./tpcc_start -d tpcc -u root -w 500 ｭ
-c 30 -l 3600 -i 60 ¦ tee -a result.txt

98 - Software Design Feb. 2014 - 99

第3回　データベースベンチマークからioDriveを測る

teeコマンドは、標準出力を画面に出しつつ指
定したファイルにも出力するツールです。
tpcc-mysqlのように実行中にスコアが表示され
るようなベンチマークツールの場合便利なので
ぜひ利用してみてください。
　実行オプションとしては、コネクション数（-c）
30、計測時間（-l）3600秒、途中のスコア表示
の間隔（-i）60秒としました。ウォームアップ時
間（-r）はデフォルトの10秒としメモリに頼り
過ぎないようにしました。
　また、ベンチマークをかける（tpcc_startを
実行する）マシンと、ベンチマークをかけられ
る（データベースサーバ）マシンは同じマシン上

での実行となります。ベンチマークをかけると
きにCPU負荷もかかるため、CPU負荷が高い
ケースでは、ベンチマークをかけるマシンとか
けられるマシンは分けたほうが良いです。
　実行結果は図1です。-iで指定した60秒間隔
でのNew-order処理のトランザクション数です。
最終的なスコアは、SASのHDDが1本では、
1831.100 TpmC、SASのHDDを4本で構成し
たRAID10（キャッシュ有）の場合では12150.417

TpmCでした。RAIDキャッシュの効果でディ
スクの本数以上の性能が出ました。ioDriveは
33412.184 TpmCと高速で、ioDriveを入れるだ
けで速くなるという話が垣間見えました（いず
れもファイルシステムはEXT4で計測していま
す）。表1　測定サーバ環境 ▼

機種 HP ProLiant DL360p Gen8
CPU Intel Xeon E5-2670 (2.6GHz/8コア) 2個
Memory 64GB (PC3-10600R 8GB 8本)

Disk SAS 15000rpm 4 本 の RAID10、RAID
キャッシュ1GB

ioDrive ioDrive2 MLC 365GB

OS CentOS 6.4 x86_64、GCCはOS標準パッ
ケージ利用

MySQL MySQL Community Server 5.6.14 GA
Release

リスト1　計測に利用したMySQLコンフィグ ▼

[mysqld]
datadir=<対象パス指定>
user=mysql
max_connections = 1000
thread_cache_size = 1000
innodb_buffer_pool_size = 32G
innodb_log_file_size = 512M
skip-name-resolve

図1　 HDDとioDriveの比較 ▼

100 - Software Design

サーバマシンの測り方
─ ベンチマークを極める実践テクニック ─

Feb. 2014 - 101

ioDriveをチューニング
するには

　せっかくの ioDriveなのにもったいないとい
うことで、次に ioDriveのためのチューニング
をして、tpcc-mysqlのスコアを上げていきます。
ioDriveに対するチューニングのポイントとし
て、ファイルシステム、MySQL Serverを紹
介します。tpcc-mysqlの実行オプションは先と
同じで、その結果は図2にまとめました。

ファイルシステムをチューニング

　ioDriveを利用したときのファイルシステム
としてXFSが適しているという話はよく知ら

れているかと思います。XFSは並列処理に適
しているため、ioDriveとの相性が良いです。
インストールと設定は図3のとおりに行います。
ポイントとしては、I/Oスケジューラのuse_

workqueueの設定を忘れないようにしてくださ
い。そうしないと十分な性能を出せないケース
があります。
　図2の結果のとおり、XFS（38601.434 TpmC）
のほうがEXT4（33412.184 TpmC）より約15％
スコアが向上しています。ファイルシステムを
XFSにするのは有効でした。

MySQLコンフィグをチューニング

　MySQL Serverをチューニングすると言え

yum -y install xfsprogs　　XFSをインストール
mkfs.xfs -s size=4096 -b size=4096 /dev/fioa　　XFSでioDriveをフォーマット
mount -t xfs /dev/fioa <マウントポイント> -o nobarrier,noatime　　ioDriveをマウント
vi　/etc/modprobe.d/iomemory-vsl.conf　　 に「echo options iomemory-vsl use_workqueue=3」を追記

図3　XFSの利用設定方法 ▼

XFS+MySQLコンフィグ

図2　 ioDriveチューニングの結果 ▼

100 - Software Design Feb. 2014 - 101

第3回　データベースベンチマークからioDriveを測る

ばコンフィグをいじってということになります
が、ioDriveのI/O性能に合わせた設定がありま
す。今回は、MySQL 5.6向けにリスト1にリス
ト2の設定を追加しました。innodb_flush_
methodでダイレクト I/Oを利用します。
innodb_write_io_threads と innodb_read_
io_threadsで I/Oスレッド数を増やします。
innodb_io_capacityで I/Oオペレーション数
も増やします。ここでは、innodb_log_file_
sizeは変更しませんでしたが2Gくらいに増や
しても良かったです。
　MySQLのコンフィグをチューニングした結
果55994.266 TpmCと劇的な性能向上が見られ
ました。MySQLの I/O周りの設定をチューニ

ングすることは大きな効果があることがわかり
ました。

次回予告

　前回紹介した tpcc-mysqlを使いディスクI/O

に負荷がかかるデータベースのベンチマークを
実施しました。MySQLのコンフィグチューニ
ングで性能は大きく変わりますし、稼働させる
サーバのスペックによっても変わってきます。
そのため、ベンチマークによりその設定が有効
かどうか確認してみてはいかがでしょうか。
　次回はがらりと変えてCPUのベンチマーク
とその評価を行っていく予定です。ﾟ

企業は「ビッグデータ」時代を迎え、戦略上の意思決定をデータか
ら得られる判断に委ねようとしています。
ビッグデータを背景にしてあらわれた「データサイエンティスト」は、
データ収集に関するエンジニアリングの技術だけでなく、統計を用
いたデータ分析や問題解決能力などビジネス面にもわたる知識を
必要とします。
本書ではデータサイエンスの基本となる考え方、R言語によるデー
タ分析の基礎、大規模データマイニング事例など「データサイエン
ティスト」がおさえておきたい知識を解説します。データサイエンティスト

養成読本編集部 編
B5判／152ページ
定価2,079円（本体1,980円）
ISBN 978-4-7741-5896-9

・企業のデーアベース担当者
・企業のデータ解析担当者

リスト2　追加したMySQLコンフィグ ▼

innodb_flush_method=O_DIRECT
innodb_write_io_threads=16
innodb_read_io_threads=8
innodb_io_capacity=10000

102 - Software Design

分散データベース「未来工房」

Feb. 2014 - 103

　Hadoopは分散ファイルシステムと分散タス
ク管理が巧妙に組み合わさって I/Oから計算、
集約などの分散処理ができるという優れた製品
だ。それまで多数の分散処理のためのライブラ
リや製品が登場していたが、分散処理の本質的
な難しさから、専門家でない人にはなかなか使
い辛いものが多かった。Hadoopが優れている
のは、分散処理のいくつかの本質的な難しさを
システムとライブラリで解決しつつ、ある程度
の自由度をユーザに提供できるフレームワーク
だったためだ注1。
　Hadoopの登場によって、それまでは一部の
人たちだけのものであった分散処理、並列処理
は一気にポピュラーなものになり、これによっ
て多くの問題が解決された。こと分析やバッチ
処理については、他に選択肢がないといっても
過言ではない。
　Hadoopは大きくわけて2つのシステムに分
かれる。分散処理に最適化した形でデータを保
持 す る HDFS注 2と、そ の 上 で 動 作 す る
MapReduceのクラスタだ。2.0からはYARNと
いうジョブ管理システムも同梱されるようになっ
たが、ここでは、より構成がシンプルな1.2系

注1） 具体的には、I/Oの並列化、失敗したタスクの再実行の扱い、
結果の集約のしくみなど難しいポイントがいくつもある。

注2） Hadoop Distributed File System

のHadoopを例に説明する。
　MapReduceとHDFSはきれいに分離されて
おり、MapReduce自身がさまざまなファイル
システムからデータを読み出せるようにインター
フェースが抽象化されている。典型的には
HDFSだが、ほかにもさまざまなストレージ
から入力データを取り出せるようになっている。
通常のOSにマウントされたローカルのファイ
ルシステムだけでなく、FTPによるアクセス
やAmazon S3のインターフェースにも対応し
ている。このように、さまざまなシステムから
データを取り込めるようにエコシステムが発達
しているのもHadoopの魅力の1つだ。
　そこで今月号では、Riak CS上のデータを、
HadoopのMapReduceの入力データとして取り
込むことが実用的なレベルで可能なことを解説
し、最後に簡単に試す手順を紹介したい。

　Riak CSについては、本誌9月号の連載でも
解説した。そのときは自宅用ストレージへの応
用として紹介したが、当然、プロダクション向
けのシステムを組むことも可能だ。実際に
Riak CSを利用してストレージサービスを内部
向けまたは外部向けに運用している企業はいく
つかある。その特徴は、コモディティサーバを
複数台並べることで高可用性を担保しつつ、単
純なスケールアップも可能なところだ。また、

はじめに

Hadoop on Riak CS
の使いどころ

　ストレージは、そのデータを扱う処理装置と一緒になってこそ力を発揮する。Riak CSはまだ発展中のソフトウェ
アだが、Riak CS上のデータをプログラムで処理するには、プログラムが動作するCPUのあるところに移す必要
があった。そこで本稿では、Riak CS上のデータ処理の方法の1つとして、Hadoopを使ってデータ処理を行う方
法を解説する。 注）本稿は、筆者の意向により常体で表記している。

第8回

 Writer 上西 康太（うえにし こうた）　Bashoジャパン株式会社　kota@basho.com

分散データベース「未来工房」
物
書
て

　
　
扇
引
さ
く

　
　
　
　
　
余
波
哉

Hadoop on Riak CS

102 - Software Design Feb. 2014 - 103

Hadoop on Riak CS

下側のデータ保存レイヤには分散データベース
として実績のあるRiakを採用しているので、
運用が容易なRiakの特徴をそのまま引き継い
でいる。とくにサーバの追加時および障害時の
対応は非常に簡単で、その簡単さは本誌の連載
で何度か解説してきたところである。
　運用の簡単さの一例として、Riak CSのプロ
セス構成を説明しよう。Riak CSは図1のよう
なプロセス構成を持つ。このとき、データを保
持し、かつ状態を持つプロセスはRiakのプロ
セスだけなので、Riak CSとStanchionは起動、
停止などをカジュアルに実行することができる。
　また、Riak CSにはマルチテナントの機能が
あり、ユーザごとに分離された名前空間を提供
することができる。これによって、オペレーショ
ンミスなどで他のユーザのデータを見たり、消
したりすることができないことを保証しつつ、
設備に相乗りしてコストを下げることができる。

HDFSとRiak CSの比較

　MapReduceが登場する以前は、プログラム
がデータをロードし、プログラムが動作する
CPU上でデータの処理を実行してもとの場所
に戻すというコンピュータの基本的な概念にも
とづいたシステムがおもに使われていた。
MapReduceはこの既成概念を実用的なレベル
でひっくり返し、HDFS上のチャンクがあるマ
シン上にタスクを配置し、そこでロード、処理、
ストアの基本的な部分を分散処理させるという
モデルを選択した。つまり、プログラムのある
場所にデータを移動するのではなく、データの
ある場所にプログラムを移動したのである。こ
れによって、いままでのシステムの処理のネッ

クであったディスクI/Oを並列化することに成
功した。つまり、HDFSが最も威力を発揮する
のはノード間でデータを移動するコストが相対
的に高い場合である。
　一方で、Riak CSはコンシステントハッシュ
ベースのデータ分散で、ブロックサイズが1MB

であるため、HDFSのようにある程度まとまっ
たサイズでデータが局在していない。また、機
能面でも、ファイルのオフセットからデータを
持つサーバのネットワーク上の位置を知ること
はできない。このことから、HDFSのようにデー
タのある場所にプログラムを移動してI/Oを並
列化することが難しい設計になっている。
　ところが、近年では10Gbitのネットワーク
設備の価格が急速に下がってきたこと、
MapReduceで分散処理したいジョブは I/Oイ
ンテンシブなものだけでなくCPUインテンシ
ブなものもかなりの割合で存在することから、
HDFS以外のデータソースからもデータをロー
ドして、よりカジュアルにMapReduceを行う
ケースが増えてきている。
　つまり、I/Oインテンシブでない処理や、ネッ
トワーク帯域がある程度確保されている環境で
は、MapReduceの処理対象になるデータを
Riak CS上に置いても十分に実用的な分散処理
の性能が得られる。組み合わせて使うことで、
Riak CSのよいところと、Hadoopの強力な分
散処理基盤の両方のメリットを享受する方法を
これから紹介したい。

構成例

　最も素直な構成例としては、同一クラスタに
Riak、Riak CS、MapReduce の TaskTracker

が同居するものだ。ここは別にしてもよいとこ
ろだが、台数が限られている場合もあるだろう
から同じクラスタに同居するものとした。
　図2(a)は典型的なHadoopの構成である。
HDFS の DataNode と MapReduce の
TaskTrackerが同じマシンに同居しており、
JobTrackerは入力ファイルのデータの物理配
置から、処理対象になっているデータのあるマ

LB

Riak CS

Riak

Stanchion

Riak CSRiak CS

Riak

Riak CSRiak CS

Riak

図1　Riak CSプロセス構成図 ▼

第8回

104 - Software Design

分散データベース「未来工房」

Feb. 2014 - 105

シンに同居しているTaskTrackerにデータ処
理をさせる。TaskTrackerは同じマシンに同居
しているDataNodeからデータを読み出す。こ
のときDataNodeのローカルにあるものが優先
して指定されるため、ネットワークを経由せず
に入力データを読み出すことができる。これに
よって、ネットワークを経由せずにすべてての
データをロードすることができ、ボトルネック
になりやすいディスク I/Oの並列化をミドル
ウェアのレイヤーで実現できる。ネットワーク
コストが問題になる状況では、この構成が最も
有利である。

　ここでは、Riak CS 1.4.2をパッケージから
インストールする。主要な内容は本誌9月号に
も執筆したし、カーネルパラメータの設定まで
含めてドキュメント注3にもなっているからそち
らを参照いただきたい。ここではDebian、

注3） http://docs.basho.com/riakcs/latest/

UbuntuなどのAPTが利用できるLinuxについ
て例を掲載しておく。

Riak CS の設定や起動

　RiakとRiak CSそれぞれ、app.configと
vm.argsという設定ファイルがある。それぞ
れ /etc/riakと /etc/riak-csにあるので、
必要な設定を行う。こちらも詳しくは公式ドキュ
メント注4に掲載されているのでそちらを参照い
ただきたいが、Riakに必要なことは、

・ システムレベルで、プロセスあたりの最大ファ
イルディスクリプタ数を5万以上にしておく

・ 各種パラメータ変更を行う。とくにI/Oスケ
ジューラをcfqからdeadlineに変更しておく

・ riak coreのセクションにallow_multを設定する
・ riak kvのセクションでstorage_backendを
マルチバックエンドに変更する

・ vm.argsに適切なIPアドレスを設定する

だけである。これをもとに、Riakを設定すれば
アクセスできるようになる。あとは、Stanchion

注4） http://docs.basho.com/riakcs/latest/

図3　 Riak CSのインストール手順 ▼
（RiakとRiak CSはすべてのマシンにインストールする。Stanchionはどこか1台で動作していれば十分であ
る。マシンに対する負荷は小さいので、運用を簡単にするためJobTrackerと同じノードに入れてもよいだろう）

$ curl http://apt.basho.com/gpg/basho.apt.key ¦ sudo apt-key add -
$ sudo bash -c "echo deb http://apt.basho.com $(lsb_release -sc) main ¥
> /etc/apt/sources.list.d/basho.list"
$ sudo apt-get update
$ sudo apt-get install riak riak-cs stanchion

図2　Hadoop の典型的な構成と、Riak CSを使った構成例の比較 ▼

JobTracker

Task Task Task

TaskTracker

HDFS

TaskTracker

HDFS

TaskTracker

HDFS

JobTracker

Task Task Task

TaskTracker

Riak CS

TaskTracker

Riak CS

TaskTracker

Riak CS

JobTracker

Task Task Task

TaskTracker TaskTrackerTaskTracker

Riak CS

(a)典型的なHadoopの構成である。HDFS
の DataNode と MapReduce の Task-
Trackerが同居していることにより、ディス
ク I/Oの単純並列化を実現し、かなりの並列
処理性能を実現する。

(c)完全にサービスとしてMapReduceの計
算ノードと、データを保持するRiak CSの
クラスタを分離する構成例。ある程度クラ
スタを分離することによって構成管理を容
易にしたりと、システムの疎結合化を進め
ることができる。Riak CSのマルチテナン
ト機能を活かして、リソースが隔離された
複数の計算クラスタから利用する場合には
この構成がよいだろう。

(b)HDFSを単純に置換した例。Riak CSは
HDFSのようにデータの位置を取得するAPI
はないため、ローカルのRiak CSにアクセ
スしたからといって、その先で必ずローカ
ルのディスクにアクセスできるとは限らない。
しかし、ネットワークコストが安い環境や、
CPUインテンシブな種類のジョブを実行す
る状況では、あまり問題にならない。

Riak CSのセットアップ

http://docs.basho.com/riakcs/latest/
http://docs.basho.com/riakcs/latest/

104 - Software Design Feb. 2014 - 105

Hadoop on Riak CS

と Riak CS に anonymous_user_creation を
trueで設定すればよい（図3）。
　この状態で、Riakをすべて起動し、クラス
タ化する。ここでも細かい手順を省略するが、
基本的には図4のような流れになる。全マシン
を同時に追加する場合にはcluster joinの部
分を、追加したいノードの分だけ実行すること
になる。
　Stanchionは、1台だけ設定して起動すればよ
い。HTTPのアドレスとポート番号を設定して
おく必要があるので、それはあらかじめほかの
Riak CSプロセスがアクセスできるように設定
しておく。Stanchionの起動はstanchion start
とすればよい。Riak CSは全マシンでriak-cs
startを繰り返すとよい。
　Riak CSが起動したら、まず管理者アカウン
トを作成する（図5）。
　本来は、管理者アカウントの作成に成功し
たらそれをRiak CS、Stanchionに登録し、
anonymous_user_creationをfalseに戻した
うえで、作成した管理者アカウントから一般ユー
ザを作成して（設定を読み込むために再起動が必
要）、一般ユーザからRiak CSにアクセスを行う。
しかし、今回は簡単のため手順を省略する。
　最後に、s3cmdというツールで簡単な動作確
認を行う（図6）。ここでは、Riak CSをローカ
ルで動作させているため、s3cmdの設定には、

proxy_base、proxy_portの設定が必要だ。
　ここですべての設定に成功していたら、コン
ソールには何も表示されない。何も作成してな
いので当然だ。

　まず、簡単のためにHadoop MapReduceロー
カルファイルシステム上で動かす。筆者の実験
では、Apache版のHadoop 1.2.1を使用した注5。
　Hadoop 1.2.1は理研のミラーサイト注6などか
らダウンロードできる。本来はJRE で十分だが、
ここではJDK1.7.0_25を用いた。
　conf用のディレクトリのうち、masters、slaves

を設定する。それに合わせてmapred-site.shを
実行する。
　これでJobTrackerとTaskTrackerが起動する。
これで、通常のローカルファイルをインプット・
アウトプットとする設定は完了した。試しに
Examplesの中から、wordcountを適当なファイル
に対して実行すると、実際に結果を確認できる。
　最初にサンプルを実行する。Hadoopのサン
プルといえばwordcountが有名なので、まずは
動作確認する。catでWordcountの結果が内部
にあれば、無事に成功したことになる（図7）。

jets3tの設定

　jets3t注7は、Hadoopの配布バイナリに含まれ
ている、Amazon S3へアクセスするためのラ
イブラリだ。これを変更して、S3の代わりにロー
カルで起動しているRiak CSへアクセスでき
るように設定を行う。

注5） Hadoopには複数のディストリビューションがあり、オー
プンソースで最も安定しているのはCDHだろう。RPMや
debパッケージなどが豊富に準備されているので、インス
トールも簡単なので推奨する。

注6） http://ftp.riken.jp/net/apache/hadoop/common/
hadoop-1.2.1/

注7） 本家サイトによると、ジェットセットと読むそうだ。

図4　Riakのクラスタを構築するための主要なコマンド ▼

$ sudo riak start
$ sudo riak-admin cluster join riak@10.0.0.1
$ sudo riak-admin cluster plan
$ sudo riak-admin cluster commit

図5　Riak CSにおける最初のアカウント作成 ▼ （-cluster joinは各ノードで繰り返す）

$ curl -H 'Content-Type: application/json' -X POST http://localhost:8080/riak-cs/user ¥ｭ
--data '{"email":"foobar@example.com", "name":"foo bar"}'

図6　s3cmd によるRiak CS への最初のアクセス ▼

pip install s3cmd ## s3cmd インストール
$ s3cmd --configure ## s3cmd 設定
... ## 作成したアカウント情報を入力する
$ s3cmd mb s3://test ## bucket 作成
$ s3cmd ls ## 表示
$ s3cmd put README.txt s3://test

Hadoop（MapReduce）
のセットアップ

第8回

http://ftp.riken.jp/net/apache/hadoop/common/hadoop-1.2.1/

106 - Software Design

分散データベース「未来工房」

Feb. 2014 - 107

　まず、conf/jets3t.propertiesを作成し
て、Job-Tracker、TaskTrackerがアクセスす
る対象を設定する。ここでは、TaskTrackerが
アクセスするローカルのRiak CSに直接アク
セスさせるので、図8のように設定をする。
　これは、HostヘッダにはS3と同様のFQDN

を記述しておきながら、実際には別のホストと
ポート番号にアクセスする jets3tの機能で、ファ
イヤーウォール内にあるユーザ向けの機能であ
る。これを設定するとHadoopがAmazonだと
思ってアクセスしに行ったら、jets3tがプロキ
シとして設定されているホストにアクセスしに
いく。これを利用して、Riak CSなどS3以外
の別のシステムに接続できるようになる。
　また、最後に認証情報を core-site.xmlに書
いておく（図9）。ここまで設定しておくと、ロー
カルにあるRiak CSに対して、TaskTracker

がデータを読みに行くようになる。実際には、
図2(b)のようなシステム構成に近いものになる。

　設定が完了したら、実際に動かしてみよう。
図10のように、最終的にMapの出力で179、
Reduceの出力で131個のレコード（wordcountの
場合は単語の種類）が計算されたことがわかる。
　次に、結果の出力先を同じRiak CS上に設
定して実行してみる。途中まで正常にジョブが
実行され、大量のJavaのエラーが表示され、いっ

たん成功したかのような結果が表示されるが、
結果ファイルはRiak CS上には見つからない。
これはRiak CSにはまだrenameが実装されて
いないからと考えられるが、試す場合には注意
したほうがよい。
　renameは、Riak CS 1.5.0でできるようになる
予定で、すでにテスト実装も公開されている。し
かし、Riak CSでの巨大なファイルのrenameは
あまり推奨しない。当面はローカルファイルと
していったん出力してからコピーするのがよい
だろう。HiveなどMapReduce上の動作ツールを
使っている場合には適宜変更を加えるしか今の
ところは方法がない。ローカルに書き出すには
結果が大きい場合には、別途起動しておいた
HDFSに書き出してからdistcp するのも選択肢
の1つだろう。

本番環境で動かすために

　ここまで、ローカルでテスト環境を構築する方
法を簡単に解説してきた。これがうまく動作すれば、
fluent-plugin-s3などでRiak CSにログを集めつ
つ、MapReduceで分析のための前処理を行うと
ころまである程度のテストができてきたことに
なる。
　しかし、サーバ環境で、複数台のサーバを用
意するためにはまだいくつかやらなければなら
ないことがある。

ネットワーク環境
　ネットワークに負荷がかかるようなジョブを
実行する場合は、ネットワーク帯域をある程度
確保しておく必要がある。そうでない場合（CPU

インテンシブなタスクの場合など）でも、冗長

図7　ローカルでのMapReduceの実行例 ▼

$ bin/hadoop jar hadoop-examples-1.2.1.jar ¥
wordcount README.txt /tmp/wc
...
$ ls /tmp/wc
_SUCCESS _logs part-r-00000
$ cat /tmp/wc/part-r-00000
...

図8　 ローカルのRiak CS へアクセスする jets3tの ▼
設定例

s3service.https-only=false
s3service.proxy-host=localhost
s3service.proxy-port=8080

図9　 Riak CSのアカウント情報をcore-site.xmlに ▼
設定する

<property>
 <name>fs.s3n.awsAccessKeyId</name>
 <value>J_PJJS7NEHXJSQQV5X..</value>
</property>
<property>
 <name>fs.s3n.awsSecretAccessKey</name>
 <value>rktX1Hy4VX3V0Favo3b...</value>
</property>

動かしてみる

106 - Software Design Feb. 2014 - 107

Hadoop on Riak CS

化も兼ねてたとえば1GbEのケーブルをトラン
ケートまたはボンディングなどをして少し帯域
を広げておくとよいだろう。また、Riak 1.x系
は認証などの機能がないため、Riak CSのネッ
トワークに意図しないアクセスが行われないよ
うに、ネットワークレベルでのセキュリティを
確保しなければならない。

DNSの設定など
　Riak CSをテスト以外の目的で運用する場合、
FQDNを固有のものに変更して運用することが
推奨されている。たとえば、riak-cs.example.

comというURLでRiak CSのサービスを行う場
合には（図2(c)のような環境）、ロードバランサ
やDNSのラウンドロビンを使ってシステムを構
成し、Riak CSのサーバに正しくアクセスでき
るようにしておく必要がある。httpsを利用する
場合にはサイト証明書の準備も必要だ。

endpointの変更
　固有のFQDNを設定できたら、今度は jets3t

の設定を変更してやる必要がある。デフォルト
のままではAWSのs3.amazonaws.comに接続し
てしまうためだ。jets3t.propertiesに図11のよ
うに設定を行う。ポート番号がもし80や443の
デフォルトから変更されている場合はここを併
せて変更しておこう。disable-dns-bucketsは、
bucketname.riak-cs.example.comのようなアクセ
スを許すかの設定で、DNSが正しく設定されて

いれば問題ないだろう。

他システムとの組み合わせ

　本稿では、Riak CSのHadoopとの連携につ
いて解説してきたが、他のさまざまなシステム
との連携を行うことができる。2013年11月に
筆者が主催したRiak Meetup Tokyo#3で発表
されたmixiの事例注8がよい例になるだろう。
各種ログ、静的コンテンツ、MySQLのスナッ
プショットなどさまざまなデータをRiak CS

に保存しつつ、HiveでRiak CS上のデータを
分析している。

　本稿では、Riak CS上にあるデータをHadoop

のMapReduceの入力として読ませて分散処理す
るための方法について解説した。サンプルは1

台のマシン上で実行するだけのものであるが、
分散環境で構築するためのポイントも解説した。
　Hadoopは、それだけでも巨大なエコシステ
ムを持っている。そこに多くの製品が参加して
おり、やりたいことに合うものを見つけ出して
組み合わせるだけでもたいへんだ。データベー
ス、ストレージ、分散処理、クエリエンジンな
ど、それぞれ用途が異なるものがある。
　筆者はあくまでもRiakとRiak CSを推薦す
るが、読者諸賢においては、自分たちの用途に
合わせて最適な製品とシステム構成を選択して、
スケールアウトするインフラを構築してビジネ
スを拡大してもらいたい。ﾟ

注8） 「Riak CSとmixiのプライベートクラウド環境」http://
www.slideshare.net/hidetakakojo/riak-meetup3-
upload

図11　 FQDNを設定したRiak CSにアクセスする ▼
jets3tの設定例

s3service.s3-endpoint=riak-cs.example.com
s3service.s3-endpoint-http-port=8080
s3service.s3-endpoint-https-port=8443
s3service.disable-dns-buckets=true

図10　 Riak CS 上のデータを入力にした ▼
MapReduceの実行例

$ bin/hadoop jar hadoop-examples-1.2.1.jar ¥
wordcount s3n://bucket-name/README.txt /ｭ
tmp/wc2
...
Total committed heap usage (bytes)=274661376
CPU time spent (ms)=980
Combine input records=179
SPLIT_RAW_BYTES=86
Reduce input records=131
Reduce input groups=131
Combine output records=131
Physical memory (bytes) snapshot=281690112
Reduce output records=131
Virtual memory (bytes) snapshot=1763856384
Map output records=179

まとめ

第8回

http://www.slideshare.net/hidetakakojo/riak-meetup3-upload

108 - Software Design

前回に続き、フィッシングをテーマに取り上げます。個人ができるフィッシング対策として「怪しいリ
ンクはクリックしない」ということが盛んに語られますが、本当にそれで良いのでしょうか？　今回は
そもそもフィッシングとはどんな行為なのかを整理し、個人で対策できることは何か、国家や世界レベ
ルではどんな対策がなされているのかについて考えてみます。

フィッシングとは

　「フィッシング（Phishing）」は、電話回線を不正使
用する「フリーキング（Phreaking）」と人を釣る
「フィッシング（Fishing）」の合成語だと言われてい
ますが、この説はどこまで正しいかわかりません。
いつの間にか、人をだます電子メールを送り、偽サ
イトを使ってユーザアカウントとパスワードを盗む
ことをフィッシングと呼んでいました。極めて単純
なモデルにもかかわらず、昔も今も非常に有効な手
法です。
　またフィッシングは、これまでのセキュリティの
問題とは異なり、愉快犯とかバンダリズム注1と
いった類のものではなく、最終的には窃盗を目的と
するものです。また、法の改正により、今では
フィッシングを企てた段階ですでに犯罪として成立
する時代になっています。

すべては電子メールから
始まる

　フィッシングの始まりは、まず電子メールがやっ
てきます。その電子メールは、どこかの有名な電子
商取引サイトや、銀行のオンラインサイト、あるい
はクレジットカード会社のサイトへのリンクが張ら

れています。そこには、「セキュリティの問題が発
生しました。パスワードを変更してください」「重要
なメッセージが届きました。確認してください」「支
払いの確認があります。ログインしてください」と
いったようなアカウントとパスワードを利用させる
ようなメッセージが書かれているはずです。
　そして、そのリンクをクリックすると、サイトが
開き、あなたはアカウントとパスワードを入力しま
す。すると、入力エラーが発生します。再度入力画
面になりますが、入力エラーは日常茶飯事ですし、
あなたは何も気にせずにもう一度入力するはずで
す。今度は、無事にサイトに入ることができます。
何かおかしいような気がするかもしれませんが、
「このサイトはいつもよくわからない」と自分に言い
きかせて終了させることでしょう。
　この時点で、あなたはアカウントとパスワードが
抜き取られていることになりますが、それに気がつ
く人はごくごく僅かでしょう。ほかのバリエーショ
ンとしては、クレジットカードの情報を入力させる
などがあります。

フィッシングは
意外と敷居が低い

　同じく電子メールをきっかけに発生する問題とし
ては、電子メールでマルウェアを送ったり、あるい

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第八回】

すずきひろのぶ
suzuki.hironobu@gmail.com

注1） 破壊をして喜ぶ行為。

真のフィッシング対策は「敵を知り、己を知る」ことから

Feb. 2014 - 109

は、マルウェアを用意して
いるサイトを閲覧させてマ
ルウェアをシステムに侵入
させる標的型攻撃がありま
す。標的型攻撃の場合、攻
撃側はマルウェアを用意す
るという技術的スキルを必
要としますが、フィッシン
グの場合はWebサイトのデ
ザインさえできれば良く、
技術的な敷居は極めて低く
なっています。
　もちろん、標的型攻撃の場合、成功したならばシ
ステムに対し大きなダメージを与えられます。「シ
ステムの支配権を奪う」「個人の権限でアクセスでき
るすべてのファイルに対して何かをする」など大き
な脅威となりますので、インパクトは標的型攻撃の
ほうが大きいのは言うまでもありません。しかし、
それを行うには技術的に一定のスキルを必要としま
す。
　フィッシングは「メールを送ること」、そして「見
た目が本物によく似たWebサイトを作れること」と
いった要件を満たしていればできるのです。
　2013年10月に起こったゲームサイトのフィッシ
ングでは、18歳の少年を逮捕しています。

偽サイト開設容疑、18歳少年を初逮捕 清水署

　インターネット上で他人のIDとパスワードを盗
み取る「フィッシングサイト」を開設したとして、
清水署と県警生活経済課サイバー犯罪対策室は
16日、不正アクセス禁止法違反と商標法違反の
疑いで沖縄県宜野湾市の店員の少年（18）を逮捕
した。

（中略）
　昨年5月の改正不正アクセス禁止法施行後、
フィッシングサイト開設による逮捕者は全国で初
めて。

（静岡新聞 2013年10月17日7時35分
http://www.at-s.com/news/detail/775173052.html）

　この18歳店員がフィッシングを試すことができ

たというだけで、フィッシングの敷居が低いことは
理解できると思います。ですが一方で、インター
ネット上で証拠を残さないようにフィッシングサイ
トを用意するのは難しいということもわかります。

フィッシングは
目的が明確

　フィッシングには1つの特徴があります。狙われ
るのはたった1つのアカウントとパスワードです
が、それを使うサイトは必ずお金を扱うか、あるい
は何か価値のある利用方法を持つサイトだというこ
とです。そして、そこから推察できることはフィッ
シングはその目的が明確であるということです。逆
の言い方をすると、どこかのサイトを真似て人をだ
ますわけですから、そのターゲットとなるサイトを
選んだ時点で、目的は明らかというわけです。
　表1はフィッシング対策協議会（後に説明します）
のサイトで2013年12月10日に確認した緊急情報
一覧です。
　銀行のアカウントとパスワードを盗もうとしてい
るならば、それは銀行口座にあるお金をすべてどこ
かに送金するためでしょう。クレジットカードも同
様です。金銭目的だというのは簡単に想像つきます。
　表1にはありませんが、オークションのアカウン
トであれば、登録しているクレジットカードを使っ
てオークションをして決算する、あるいは、そのア
カウントの情報を書き換え、自分がオークション出
展者になるなどに使われるでしょう。
　Webメールのアカウントを盗めば、これまた足

【第八回】 真のフィッシング対策は「敵を知り、己を知る」ことから

◆◆表1　フィッシング対策協議会 緊急情報一覧（2013年12月10日確認分）

掲載日時 概要

2013年12月10日 ハンゲームをかたるフィッシング

2013年11月19日 コミュファ光 Webメールをかたるフィッシング

2013年11月18日 三菱東京UFJ銀行をかたるフィッシング

2013年11月15日 ［11/15更新］eoWEBメールをかたるフィッシング

2013年10月10日 スクウェア・エニックスをかたるフィッシング

2013年10月10日 UCカード（アットユーネット）をかたるフィッシング

2013年10月03日 ODNをかたるフィッシング

2013年10月01日 ポータルサイトgooをかたるフィッシング

2013年08月07日 ハンゲームをかたるフィッシング

2013年06月07日 NCSOFTをかたるフィッシング

110 - Software Design

がつかないアカウントを手に入れたことになるの
で、直接的な金銭の被害はなくとも、そのメールア
カウントは不正なことに使われることでしょう。
　ゲームの場合は、いろいろなアイテムを盗んでト
レーディングすることにより金銭的利益を得ると
いったことが十分に考えられます。ただし、中には
キャラクターを使って本来の自分の経験値を上げる
といった子どもじみた動機もあるような気がします。
　フィッシングの目的は昔も今も、愉快犯でも腕試
しでもなく明確に犯罪目的です。法律の面では、現
在では国内法は改正されて、かなり厳しい扱いに
なっています。改正された「不正アクセス行為の禁
止等に関する法律」では、フィッシングそのものも
が、「識別符号の入力を不正に要求する行為の禁止」
ということで違法化されています。フィッシングに
よりアカウントとパスワードを取るのはもちろんの
こと、それ以前にフィッシングサイトのURLを送
りつけたところで違法になります。

フィッシングする立場で
考える

　フィッシングを行う側、つまり犯罪者側から考え
てみます。フィッシングサイトを作るのに特殊なス
キルはいりません。ターゲットとしたWebサイトの
見た目を真似するだけなら、ホームページビルダー
のようなツールを使ってでもできます。ちょっとぐ
らい変でも、前回の本連載で紹介した「100万円札
贅
ぜいたく

沢ふせんが1万円札として使われる」という例から
もわかるように、人間の観察力はそれほど鋭くあり
ません。かといって、すべての人間がだまされるわ
けでもありませんので、この発見する／したら、と
いう議論はちょっとの間だけおいておきましょう。
　サイトのデザインはわりと技術を理解していなく
ても簡単に作れますが、実際に偽サイトを作るとな
ると、格段に難しくなります。少なくとも日本国内
で法に従ってインターネットにアクセスする限りは
利用者を探し当てることができます。携帯電話もイ
ンターネットも契約がなければ使えません。フリー
アクセスのアクセスポイントを使えばどうにかなる
と思うでしょうが、通信のデータリンク層で使われ

るMAC（Media Access Control）アドレスがハード
ウェアに組み込まれているので、それが残ります。
（WiFiの）通信チップの「指紋」を残すようなもので
す。その指紋がどこかで見つかれば、簡単に特定で
きます。ましてや合法的にWebサーバを使うとな
ると隠れようがありません。
　そこでは（非合法に）Webサーバを乗っ取るなど
の行為が必要になるでしょう。フィッシングは、
フィッシング単独には止まらず、そのようなほかの
問題も同時に発生している場合がほとんどです。そ
の際には、外部からサイトを乗っ取るようなスキル
が必要になるはずです。
　ただし、高度なスキルが必要かといえば、そうで
もありません。世の中にはインターネットに接続さ
れているにもかかわらず、まともに整備されていな
いサーバがいくらでもありますから、簡単に手に入
るでしょう。しかも、ほんのわずかな期間、たぶん
1日も経たないうちに閉鎖されるので、サーバの安
定性などは考える必要はありません。理屈の上では
サーバである必要はなく、インターネット側からア
クセスできれば十分ですので、インターネット側か
らダイレクトにアクセスできるパソコンにマルウェ
アを感染させ、HTTPをサポートするサーバアプリ
を立ち上げることで代用することも可能です。
　フィッシングする側の立場で考えると、犯罪捜査
をかわすために、中国やロシア、あるいは東欧諸国
や東南アジアといった、捜査のしづらい地域や、イ
ンターネットは使えるものの環境整備が遅れている
地域を選び、そこのサーバ、パソコンを使う（乗っ
取る）という戦略を立てるはずです。つまり「海外を
経由するならば、わりと簡単」という結論に結びつ
きます。

フィッシングの
電子メール対策を考える

　URLを電子メールに添付するだけでは、その先
のサーバを検査しない限り、そこがフィッシングサ
イトかどうかはわかりません。
　パソコンの電子メールのユーザアプリケーション
におけるユーザインターフェースは、いい意味で

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

Feb. 2014 - 111

でHTMLのメールにアンカータグ（
であるタグ）がある場合には、それをクリックして
も勝手にブラウザで開くことがないような設定にし
ていました。FirefoxがVer 3になってフィッシング
検知機能がつき、その機能が信頼できるレベルだと
判断したので、今では、Firefox 3を呼び出す形でア
クセスできるようにしています。

フィッシング対策は
情報共有から

　最初に答えをいうと個人の心がけや判断では
フィッシングに対応できません。もちろん筆者のよ
うに「全部のメールのURLを無効にする」「URLを開
く場合は、わざわざURLをコピーしてブラウザに貼
り付ける」といった極端な方法をとるならば可能です
が、さすがにこれは現実的ではありません。個人の
ユーザを効果的に守るには、システムがアシストす
るしかありません。しかし、それは裏方がいて情報
共有するしくみがあって初めて可能になります。
　日本国内では、2005年にフィッシング対策協議会注2

（図1）が作られ、事例情報、技術情報を収集し、提
供する活動が行われています。総務省、経済産業
省、警察庁、金融庁などの省庁やISP、銀行、電子

も、悪い意味でも良くできており、ユーザがその内
部の複雑なしくみを意識することなく使えるように
できています。HTMLフォーマットで送付されると
き、ユーザには「このボタンをクリック」とか「銀行
サイトへ」といった形で表示され、その実際のURL

はわかりません。人間が理解する情報と、実際の中
身の情報が違うのですから、専門家でもない人にわ
かれというほうが無理です。
　また、そもそも論ですが、フィッシングサイトと
いうサイトはありません。既存の、あるいは新規の
サーバがフィッシングに用いられるサイトになるだ
けです。つまり、いったん、誰かがフィッシングサ
イトであると認定し、その情報を広く配布しない限
り、どこがフィッシングサイトなのかという情報を
共有できません。
　いまだに「電子メールにある怪しいサイトなどに
は～」という類の注意書きを目にしますが、人間に
怪しいかどうか判断することを求めているならば、
それは効果がないどころか逆効果です。なぜなら
ば、その言葉を裏返して読んでしまい「怪しくない
ならばアクセスして良いという錯覚」を起こしてし
まうからです。そもそもフィッシングのメールを送
る側は、「怪しいサイトだと思わせないように工夫」
をこらしたものを送ってくるのですから、
その結果は「怪しくないならばアクセスし
て良い」ということに結びつくはずです。
　フィッシングの対策としては、「電子
メールで送られてくるURLを使ってアク
セスしたサイトにはいっさい入力はしな
い」、あるいは「自動的にフィッシングの
検知をするブラウザを使う」のどちらかで
す。動的にフィッシングの検知をするブ
ラウザを使うというのは、完璧ではあり
ませんし、標的型攻撃には効果は薄いで
す。それであっても無防備よりはまだ十
分に意味があります。
　ちなみに筆者はEmacsのメールリー
ダーを使っているのですが、つい最近ま

【第八回】 真のフィッシング対策は「敵を知り、己を知る」ことから

注2）	 http://www.antiphishing.jp/　Twitterアカウントは　@antiphishing_jp

◆◆図1　フィッシング対策協議会のサイト

http://www.antiphishing.jp/

112 - Software Design

商取引サイト、セキュリティベンダが
メンバーになっています。
　世界的にはAnti-Phising Working

Group注3（図2）という組織があって、世
界中にあるフィッシング対策のグルー
プが情報交換をするしくみがあります。
　フィッシング対策協議会ではフィッ
シングサイトが報告／発見された場合、
関係団体に働きかけ、そのサイトを停
止する役割も果たしています。また、
フィッシングサイトのURLをサービス
事業者へ提供するしくみがあり、セ
キュリティベンダや通信事業者などは、
それらの情報を共有し、システムで
フィッシングサイトへのアクセスを警
告、あるいは遮断するようになっています。

問題はタイムラグと
情報の拡散

　フィッシングに対応する組織が活動していても、
もちろん限界があります。たとえば、フィッシング
が発生してから、そのフィッシング対応をするまで
のタイムラグです。

Step 0：フィッシングを計画／フィッシングサイトの

		 入手および構築／フィッシングメールの送付

Step 1：ユーザがフィッシングを認知し対応組織に

		 通報

Step 2：フィッシング情報を確認して対応に入る

Step 3：フィッシングの警告告知

Step 4：フィッシングのURLを提供

Step 5：フィッシングサイトの停止（テイクダウン）

Step 1

　Step 0はフィッシング犯側ですので我々は次の
ステップであるStep 1からの話になります。
　たとえばeBayを使っていないユーザに「eBayの
パスワードを変更しろ」というメールが送られてき

たら、すぐに「これはフィッシングのメールだな」と
気がつくと思います。ところが、これが実際に自分
が使っている商取引サイトからのメールを偽ってい
たらどうでしょうか。この連載でも過去に取り上げ
ていますが、商取引サイトや会員サイトから大量の
ユーザのメールアドレスとパスワードが漏れていま
す。ただし、パスワードの保護のしくみがしっかり
していれば、計算してパスワードを探すにも骨が折
れます。
　そこで、このメールアドレスを使い、次の文面が
書かれたうえで送られてきたらどうでしょうか。

「報道のとおりシステムからパスワードが流出しまし
た。ユーザの安全のために速やかにパスワードを変
更してください。現在、サイトは復旧中のため仮サ
イトから登録をお願いしております」

　わざわざHTMLメールではなく、URLをかくす
ことなく堂々と、しかもSSLサーバ証明書まで取
得しているこんなURLが張ってあったなら、どう
でしょうか。

https://secure-password.example.com注4

　かなりの数のユーザがだまされることが想像でき

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注3）	 http://antiphishing.org/
注4）	 もちろん、こんなサイトは存在しません。SSLサーバ証明書にも盲点がある点に関しては、前回の本連載をご覧ください。

◆◆図2　APWG（Anti-Phising Working Group）のサイト

http://antiphishing.org/

Feb. 2014 - 113

ます。とくにテレビや新聞で、「大量のパスワード
が流出」などと大きな報道があって、それをすでに
見聞していた場合、「何かしなければいけない」とい
う心理になっているはずです。
　一方で、だまされる人がいれば、少数とはいえ必
ず見破る人も出てくるわけで、そこから対応組織に
通報するという善意の行動も生まれるでしょう。

Step 2〜4

　組織に通報してからの行動ですが、すべての組織
が24時間体制ということはできず、また、関連し
ている企業や団体も営業時間や組織の体制との兼ね
合いがありますから一晩越してしまうこともあるで
しょう。ですが、基本的にはStep2からStep4まで
は短い時間で対応されます。
　ただし、一般に情報を告知しても、その告知が必
要な人に必要なタイミングで届くかどうかはわかり
ません。Twitter上にフィッシング対策協議会のア
カウント「@antiphishing_jp」があるのですが、フォ
ロワーも少なく、あまり注目されていないようで
す。また、フィッシング対策協議会のアカウントも
2013年12月10日現在、公式アカウントとはなって
いないのもちょっと気になるところです。

Step 5

　いくら告知しようとも、あるいは、システムが
フィッシング情報を持っていて排除しようとして
も、そこから漏れてしまう人たちは大勢いるはずで
す。フィッシングサイトを停止させないことには、
根本的な解決にはなりません。ちなみに停止という
のを「テイクダウン」という言葉で表現するときがあ
りますが、これはアメリカンフットボールのボール
を持ったプレイヤーを止めるときの言葉「テイクダ
ウン」から来ています。
　国内ですと、Step2～4と同じレベルで迅速に対
応される場合がほとんどだと思います。一方、サイ
トが日本国外の場合、まず日本国内から海外の対応
窓口へコンタクトを取ります。多くの国も同じく
フィッシングの問題を抱えていますので、国際的な
連携は取れており、国際間の連絡はスムーズにいく

と思われます。しかし、日本国内と同様のスピード
で解決されるとは限りません。その点は十分に理解
すべきでしょう。
　国内外に限らずサイトが乗っ取られている場合な
どは、単純にフィッシングサイトの停止という対応
だけでは済まない場合も考えられます。
　このようにStep 5に関してのタイムラグは想定
しておく必要があり、またその期間のリスクを理解
する必要があるでしょう。

最後に

　繰り返しますが、フィッシングの対応は、個人で
何かを判断するというアプローチでは限界があり、
システムのアシストがない限り難しいということを
重ねて理解してほしいと思います。組織であればア
ンチフィッシングのシステムを入れる、個人でパソ
コンを使っていれば、やはりアンチフィッシングの
セキュリティソフトを入れる、あるいは電子メール
から使うWebブラウザはフィッシング警告の機能
のあるものを使うといった方法を選ぶのが属人性に
とらわれず、かつ最も効果的な対策です。
　逆にこれまでよく言われていた「怪しいサイトだ
からクリックしない」というアプローチは問題であ
り、怪しいサイトかどうかは深い洞察力がない限り
判断は難しく、むしろ安易に「怪しいサイトではな
い」という判断をしてしまい、結果的に「怪しいサイ
トと思わないからクリックする」ということにつな
がることを強く指摘したいと思います。
　日本国内ではフィッシング対策協議会、世界では
APWGのような組織が活動していることにより、
ユーザは安全なインターネット環境を利用できてい
ることを理解してほしいと思います。また、電子商
取引やフィッシングの対象になる企業も、フィッシ
ング対策の組織の存在を理解してほしいです。みん
ながそれらの組織と連帯し、より一層の効果的な
フィッシング対策が進むことを願って、今回は終わ
りたいと思います。s

【第八回】 真のフィッシング対策は「敵を知り、己を知る」ことから

114 - Software Design

プログラム知識ゼロからはじめる

iPhoneブックアプリ開発

アプリ内のデータを
保存する

プログラム知識ゼロからはじめる
iPhoneブックアプリ開発

プログラミングをしたことのない方にもアプリを作る楽しさを味わっ
てもらいたい本連載。今回はこれまで作ってきたブックアプリに、ア
プリを終了しても覚えておきたいデータを保存する機能を追加する方
法を解説します。

第10回

GimmiQ（ギミック；いたのくまんぼう＆リオ・リーバス）
 URL http://ninebonz.net/

 URL http://www.studioloupe.com/
イラスト●中川 悠京

1回だけのアプリで
終わらせないために
　これまでの連載でブックアプリだけでなくク
イズアプリやノベルゲーム、時計アプリなどい
ろいろなアプリを作ることができる知識を得た
かと思います。今回はこれらのアプリに必要と
なるであろうアプリ内のデータの保存方法を学
びましょう。ブックアプリをどこまで読んだか

やゲームの得点、各種アプリの設定などを、ア
プリを終了しても覚えているようにするために
必要な機能です。
　これができるようになればアプリが1回こっ
きりのものではなく、前回の続きから本を読ん
だり、ゲームを遊んだ結果が蓄積されていくよ
うなことが実現でき、アプリの楽しみ方に奥行
きを持たせられるようになります。それでは、
さっそく学んでいきましょう！

　応用が利きやすいように、今回は次のような
シンプルな形で機能を追加します。

・各ページが閲覧された回数を数える
・各ページにその閲覧回数を表示
・閲覧回数を保存し次回起動時にも正しく続き
から数えられるようにする

　完成イメージは図1になります。

ステップ1

　まずは1ページ目のViewControllerに必要な変
数を追加しましょう。ヘッダファイル「Page1
ViewController.h」を開いてください。
@interface Page1ViewController : UIView
Controller <UIActionSheetDelegate>
{ …… }の中に次の2行を追加してください。

各ページの表示回数を記録する
 ▼図1　今回の完成イメージ

http://www.studioloupe.com/
http://ninebonz.net/

114 - Software Design Feb. 2014 - 115

アプリ内のデータを保存する第10回

NSInteger pageReadNumber;
UILabel *readNumberLabel;

　これは、1ページ目が読まれた回数を収納しておくための変数（pageReadNumber）とその回数を表示
するためのラベル（readNumberLabel）を定義しているコードになります。
　追加位置はどこでもかまいませんが、作例では先月号で追加したコードの下に追加しました（図step1）。

ステップ2

　続いて「Page1ViewController.m」に実際のコードを記述していきましょう。
　まずは- (void)viewDidLoad{ …… }の中に次のコードを追加します。

//ページ毎の閲覧回数の初期値を設定
 NSMutableDictionary *defaults = [NSMutableDictionary dictionary];
 [defaults setObject:@"0" forKey:@"PAGE1_NUMBER"];
 [[NSUserDefaults standardUserDefaults] registerDefaults:defaults];

　アプリ停止後も保存しておきたいデータを記録するには、NSUserDefaultsというしくみを使用します。
　イメージとしてはアプリごとにNSUserDefaultsという箱があり、その中にさまざまなデータを「名前
をつけて」保存しておき、その値を取り出すときはその「名前」を使って呼び出すと思ってください。この
名前のことを「キー」と呼びます。
　そして先ほどのコードは、その保存するデー
タの一番最初の値をNSUserDefaultsに保存す
るためのコードです。1ページ目の閲覧回数に
「PAGE1_NUMBER」というキー（名前）をつけ、
また初期値として「0」を設定してNSUser
Defaultsに保存しています。
　この保存のイメージを図で表すと図step2の
ようになります。

 step1 step1

NSUserDefaults

PAGE1_NUMBER

0

 step2 step2

116 - Software Design

プログラム知識ゼロからはじめる

iPhoneブックアプリ開発

ステップ4

　そして、ページが表示されるたびに閲覧回数を増やして、表示を更新するコードを記述します。
- (void)viewDidLoad{ …… }の後に次のコードを追記してください。

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 //ページ毎の閲覧回数を更新
 pageReadNumber = [[NSUserDefaults standardUserDefaults]integerForKey:@"PAGE1_NUMBER"];
 pageReadNumber++;
 readNumberLabel.text = [NSString stringWithFormat:@"%d",pageReadNumber];
 [[NSUserDefaults standardUserDefaults] setInteger:pageReadNumber forKey:@"PAGE1_NUMBER"];
 [[NSUserDefaults standardUserDefaults] synchronize];
}

　この- (void)viewWillAppear:(BOOL)animated{ …… }というのはUIViewControllerの主要メソッドの1
つで、ViewControllerが画面に表示される直前に呼び出されるものです。
　この中にページごとの閲覧回数をカウントし、ラベルの表示を更新する処理を書けば、このページが
表示されるたびにページ上の数字が1つずつ増えることになります。
　それではこのコードの解説をしていきましょう。
　pageReadNumber = [[NSUserDefaults standardUserDefaults]integerForKey:@"PAGE1_
NUMBER"];の部分は、pageReadNumberにNSUserDefaultsからデータを取り出しています。このとき
に、初期値を設定したときと同じキー「PAGE1_NUMBER」を使用しています。
　そして取り出した値をカウントアップしているのがpageReadNumber++;の部分です。この「変数＋＋」
という書き方はインクリメントと言い、変数の値を1増やす動作をします。つまり変数が0のときにイ
ンクリメントすると変数は1になり、さらにインクリメントすれば2になるということです。
　次の行ではラベルに表示された数字を更新しています。readNumberLabel.textに表示したい文字列を
代入するのですが、pageReadNumberは文字ではなく数字ですので、stringWithFormatを使用して文字
に整形しています。
　最後にインクリメントされたpageReadNumberをNSUserDefaultsに書き戻す必要があります。
[[NSUserDefaults standardUserDefaults] setInteger:pageReadNumber forKey:@"PAGE1_
NUMBER"];の部分でpageReadNumberの内容をPAGE1_NUMBERのキーをつけ、NSUserDefaultsに

ステップ3

　次に、この閲覧回数をページに表示するための、ラベルを配置するコードを追加します。先ほどのコー
ドに続いて次のコードを追加してください。

 //ページ毎の閲覧回数を表示
 readNumberLabel = [[UILabel alloc] initWithFrame:CGRectMake(270, 10, 40, 20)];
 readNumberLabel.textAlignment = NSTextAlignmentCenter;
 readNumberLabel.textColor = [UIColor grayColor];
 readNumberLabel.backgroundColor = [UIColor whiteColor];
 [readNumberLabel setFont:[UIFont boldSystemFontOfSize:14]];
 [self.view addSubview:readNumberLabel];

　先月行ったように、コードのみでラベルを配置しています。ラベルの位置を右上（270, 10, 40, 20）
に、文字色をグレー（grayColor）、ラベルの背景を白（whiteColor）、文字の大きさを14ポイント（bold
SystemFontOfSize:14）に設定しています。

116 - Software Design Feb. 2014 - 117

アプリ内のデータを保存する第10回

格納しています。その後、[[NSUserDefaults standardUserDefaults] synchronize];でNSUserDefaults
への変更を即時反映しています。
　このステップで追加したコードで、viewDidLoad～viewWillAppearは図step4のようになっているは
ずです。

 step4 step4

118 - Software Design

プログラム知識ゼロからはじめる

iPhoneブックアプリ開発

ステップ6

　きちんと動作することが確認できましたら、同
様な追加を各ページに行いましょう。その際に注
意しなければいけないのは、NSUserDefaultsに
格納する際につけるキーが重複しないようにする
ことです。
　これまで見てきたようにNSUserDefaultsに格
納、また取り出しを行う際にはキーを手がかりに
行います。ですので、キーが重複してしまってい
るとほかのページの値を上書きしてしまったり、
予期せぬ不具合の原因となりますので注意しま
しょう。
　今回の作例ではPAGE1_NUMBER、PAGE2_
NUMBER 、PAGE2B_NUMBER 、PAGE3_
NUMBER……のようにページ番号に合わせて名
付けました（図step6）。

ステップ5

　それでは実行してみましょう。いかが
でしょう、図step5-1のように1ページ目
の右上にカウンターが表示されたでしょ
うか？　他のページに移動して、再び1
ページ目に戻ってくるとちゃんとカウン
ターが増えているはずです（図step5-2）。
　また、一度アプリを落として再起動し
た際も、ちゃんと続きからカウントアッ
プされているか確認しましょう。

NSUserDefaults

PAGE2_NUMBER

1
PAGE1_NUMBER

3
PAGE3_NUMBER

…
…

0

 step6 step6

 step5-1 step5-1

 step5-2 step5-2

118 - Software Design Feb. 2014 - 119

アプリ内のデータを保存する第10回

リオ・リーバス／Leo Rivas　
 Twitter @StudioLoupe

iOSアプリ開発を中心に電子絵本作家・
漫画家として活動中。代表作は、KDDI
株式会社に社内導入され、世界で40万ダ
ウンロードを記録する革新的な電卓アプリ
「FusionCalc」と、国 連 主 催 のWSA
Mobile 2013を受賞した、顔の動きで電
子書籍が読める「MagicReader」。電子
絵本はiBookstore/Kindleストア共に児童
書カテゴリ総合1位を獲得。

いたのくまんぼう／Itano Kumanbow
 Twitter @Kumanbow

神奈川工科大学非常勤講師。リオさんと
はGimmiQ名義で「MagicReader」（手を
使わずにページがめくれる電子書籍ビュー
ワ）をリリース。個人ではNinebonz名義で
「江頭ジャマだカメラ」（無料総合1位獲得）、
「i列車の車窓から-そうだ！ 京都行こう！-」
（バーチャル旅行アプリ）などをリリース。アプ
リ紹介サイト「あぷまがどっとねっと（http://
appmaga.net/）」の技術サポータ。

初期値について

　さて、ここで1つ疑問に思うことはないでしょ
うか？　ステップ2で記述した初期値をNS

UserDefaultsに保存しているところですが、
viewDidLoadはViewControllerがメモリにロー
ドされる際に実行されます。つまりアプリを起
動するたびなどに、初期値である「0」がNSUser

Defaultsに書き込まれてしまうのではないかと
心配になりませんか？
　実行してみるとわかりますが、実際にはその
ようなことにはなりません。それはなぜかと言
いますと、初期値を登録する registerDefaults:
というメソッドの動きが鍵になっています。
　registerDefaults:は指定されたキーに対応し
た値がNSUserDefaultsに存在するときは何も
せず、存在しなかった場合にのみ初期値を
NSUserDefaultsに収納してくれるからです。と
ても便利な機能ですので積極的に使っていきま
しょう。

データの種別について

　今回は保存する数値が「ページ数」でしたので
整数形式に対応したメソッド integerForKey:と
setInteger:を使用しました。NSUserDefaultsに
値を保存するためには、扱うデータ種別にあわ
せたメソッドを使用する必要があります。主な
メソッドを表1に記載いたしますので参考にし
てください。

アプリの寿命を延ばそう

　いかがだったでしょうか？　これで、アプリ
内のデータを次回起動時にも引き継ぐことがで
きるようになりました。アプリを使うたびにな
にかが蓄積されたり、成長していくような要素
を入れるとアプリ自体も長く使ってもらえるよ
うになります。
　NSUserDefaultsを使って何ができるか、い
ろいろ考えてみるのも楽しいと思います。｢

データ種別 メソッド メソッド
整数型 integerForKey: setInteger:
浮動小数点型 fl oatForKey: setFloat:
倍精度浮動小数点型 doubleForKey: setDouble:
論理型 boolForKey: setBool:
文字型 stringForKey: setObject:

 ▼表1　 データ種別に対応する主なメソッド

本連載のサポートページで記事の補足説明をしています。あわせてご活用ください！
 http://www.gimmiq.net/p/sd.html

http://www.gimmiq.net/p/sd.html
http://appmaga.net/
http://appmaga.net/

120 - Software Design120 - Software Design Feb. 2014 - 121

アプリを育てよう

　前々回、前回と、LikeSiriというアプリを通
してアプリの発想から実装、さらにアップデー
トを行う流れを見てきました。アプリをGoogle

Playストアなどに公開すれば、ユーザからの意
見や、皆さんが思いついたアイデアを追加で実
装することによって、ユーザの増減が発生しま
す。
　今回は、アプリを育てるために必要となる運
用面に注目してみたいと思います。

Developer Consoleで
アプリの状況確認

　完成したアプリは、まずはGoogle Playスト
アに公開することを考えるでしょう。現在の
Androidアプリの大半はGoogle Playストアか
ら配信され、ユーザがダウンロードしているた
めです。開発者の皆さんは「Developer Console」
でアプリを公開することになります。

Developer Console
 URL https://play.google.com/apps/publish/

　公開すると、Developer Console側で利用者
のダウンロード数やアンインストール数が日々
記録されるようになります。このとき、ユーザ
と開発者とでは蓄積される情報を見る視点が違
います。ユーザが気になるのは、「みんなが使っ

ているのはどのアプリ？」ということなのではな
いかと筆者は考えています。そこでユーザには、
「先日公開のアプリ、XXXのダウンロード数が
○○○○を突破しました！」などとTwitterや
Facebookといったソーシャルメディアやブログ
を通して展開していくことになります。
　しかし、開発者が気にするべきはダウンロー
ド数だけではありません。Developer Consoleか
ら得られる情報にはもっと重要な情報が含まれ
ています。その1つは、「現在どれぐらいのユー
ザが端末にインストールしてくれているのか」と
いう情報です。インストールされている端末の
数が、現在のユーザ数とほぼ一致すると考えら
れます。Developer Consoleのトップ画面では、
各アプリの「現在のインストール数／総インス
トール数」という表示が行われています。
　Developer Consoleでは、それ以外にも次の
ような情報を確認することができます。

1日のインストール数（端末数） •
1日のアンインストール数（端末数） •
1日のアップグレード数（端末数） •
現在のインストール数（ユーザ数） •
総インストール数（ユーザ数） •
1日のインストール数（ユーザ数） •
1日のアンインストール数（ユーザ数） •
昨日の平均評価 •
累計平均評価 •

G o o g l e A n d r o i d

重村 浩二　SHIGEMURA Koji
日本Androidの会 中国支部長

 Mail k-shigemura@android-group.jp

モバイルデバイス初のオープンソースプラットフォームとして、
エンジニアから高い関心を集めるGoogle Android。いち早くそ
のノウハウを蓄積したAndroidエンジニアたちが展開するテク
ニックや情報を参考にして、大きく開かれたAndroidの世界へ
踏みだそう！

［アプリ開発2013］
6 アプリの成長の
ための運用

第45回

モバイルデバイス初のオープンソースプラットフォームとして、
エンジニアから高い関心を集めるGoogle Android。いち早くそ
のノウハウを蓄積したAndroidエンジニアたちが展開するテク
ニックや情報を参考にして、大きく開かれたAndroidの世界へ
踏みだそう！

第Android
エンジニアから

の

招待状

G o o g l e A n d r o i dG o o g l e A n d r o i dG o o g l e A n d r o i dG o o g l e A n d r o i dG o o g l e A n d r o i d

Android
エンジニア

G o o g l e A n d r o i dG o o g l e A n d r o i d

エンジニアエンジニア
Android

https://play.google.com/apps/publish/

120 - Software Design Feb. 2014 - 121Feb. 2014 - 121

［アプリ開発2013］6アプリの成長のための運用 第45回

アプリの成長状況を確認する

　筆者の場合は前述に加えて次の情報を定期的
に確認するようにしています。

 1日のインストール数（端末数) －1日のアン
インストール数（端末数）＝1日のインストー
ル増減数（端末数）

　1日のインストール増減数を日々比較しなが
ら確認することで、現在そのアプリが「成長
フェーズ」にあるのか、「衰退フェーズ」にあるの
かということを簡単に確認できます。増加数が
低いようであれば、プロモーションなどに力を
入れてユーザに知ってもらうことに注力します。
逆に減少しているようであれば、アプリの操作
性や見た目、機能への不満などが考えられると
思いますので、そういったポイントから重点的
に改善方法を模索します。高い増加数を出して
いても安心はできません。数日間の動向を確認
し、増加しているダウンロードがどこから流入
してきているのかを可能な限り調査しましょう。
レビューサイトで掲載されたことがきっかけと
なることもありますし、口コミだけで伸びてい
ることも考えられます。大事なのは、高い増加
数が一時的なものなのか、継続して得られてい
るものなのかを理解しておくことです。このア
プローチは、とくにアプリのアップデートを行っ
た後のタイミングに既存のユーザがどう反応し
たのかを見るのによい指標となります。
　アプリを成長させていくには、図1のような
アプローチをとるのがよいでしょう。この図は、
『リーン・スタートアップ注1』（写真1）という書
籍で取り上げられている手法で、起業や新規事
業を立ち上げるプロセスで実践するとよいとさ
れています。この手法は、アプリの開発でも応
用することが可能です。
　まず、課題などからどのようにアプリを改善

注1） エリック・リース 著、井口 耕二 訳、伊藤 穣一（MITメディ
アラボ所長）解説／日経BP社 刊／ISBN：978-4-8222-
4897-0／発行日：2012年4月16日

すれば利用ユーザ数が増加するのか「仮説」を立
て、それをもとに改善点をアプリに実装して「構
築」します。ここでの「仮説」には、「目標」が含ま
れています。前述でしたら「利用ユーザ数の増
加」が目標ですし、ショッピング系のアプリであ
れば「指定の画面を呼び出した回数が○○回に到
達すること」が目標となります。次に、構築した
アプリをユーザに使ってもらうことで、仮説の
なかで立てた目標に到達できそうかを「計測」し
ます。仮説を立てるときの目標は、数値化して
分析できるものにしておくことが計測をするう
えでの大事な点です。そして、「計測」すること
で導き出された成果をもとに、改善した効果が
出たのか、出なかったのかを「学習」します。立

構築

学習 計測

▼図1　リーン・スタートアップのモデル

▼写真1　『リーン・スタートアップ』

122 - Software Design122 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

Feb. 2014 - 123

てた目標によって、得られる成果も、学べる内
容も変わってくるでしょう。大事なのは、ここ
から学んだことをもとにして、次のアクション
につなげることです。そのために再びアプリの
改善点を導き出す次の「仮説」を立て、これをも
とにアプリを改善し、「構築」を行っていくこと
です。このようなサイクルを回していくことで、
アプリをより良いものへと進化させていくこと
ができるのです。

アプリの利用状況を
分析する

　前述したDeveloper Consoleから得られる情
報も、仮説をもとに「構築」したアプリを「計測」
した情報として見ることができると思います。
しかし、それだけでは本質的な情報は得られま
せん。Developer Consoleから得られる情報は、
アプリを「インストールしてくれている人の数」
であって、「アプリを利用してくれている人の
数」ではないのです。
　「このアプリ、使いやすそう」と感じてインス
トールしてくれたユーザが増えたとしても、日々
アプリを利用をしてくれているアクティブユー
ザとはイコールではないことを見誤ってはいけ
ません。この両者の違いこそが改善の仮説を立
てるうえで重要なポイントです。
　その情報を補完するためにGoogleから提供さ
れているのが、「Google Analytics」です。

Google Analytics
 URL http://www.google.com/intl/ja/analytics/

　Google Analyticsを導入することで、現在利
用しているユーザの状況をほぼリアルタイムに
分析することが可能となります。
　取得できる情報には以下のようなものが含ま
れています。

新規ユーザ数 •
アクティブユーザ数 •
セッション数 •

国／地域 •
端末 •
閲覧したスクリーン数 •
平均セッション時間 •
セッション別スクリーン数 •

　これら以外にも、さまざまな視点から情報を
分析するための情報が詰まっているのがGoogle

Analyticsなのです。Analyticsなのです。

Google Analyticsの導入

　Google Analyticsを導入するには、まず前述
のGoogle Analyticsのサイトでアプリ用のアカ
ウントを作成する必要があります注2。ユーザアカ
ウントを作成後、アプリ用のアカウントを作成
することで利用が可能になります。
　アプリ用のアカウントを作成すると、トラッキ
ングID（UA-XXXXXXXX-X。Xは英数字）が発
行されるので、こちらをメモしておいてくださ
い。このアカウントをアプリ側に設定して、アプ
リの操作情報をGoogle Analyticsに蓄積します。
　アプリ側にGoogle Analyticsを導入するには、
Google Developersより「Google Analytics SDK

for Android v3（Beta）」をダウンロードします。
「Beta」とありますが、サイト上ではGoogleから
こちらを推奨（Recommended）されています。
Android SDKからもGoogle Analyticsがダウン
ロードできますが、あちらは「v2」と、1つ古い
バージョンとなっていますのでインストール時
には注意してください。

Google Analytics SDK for Android v3(Beta)
のダウンロード先
 URL https://developers.google.com/analytics/

devguides/collection/android/resources
?hl=ja

　zipファイルで提供されているので解凍すると

注2） 本記事ではGoogle Analyticsのアカウント作成に関する詳
細な手順は省略します。アカウント作成の手順については
公式サイトなどを参考にしてください。

http://www.android-group.jp/
http://www.google.com/intl/ja/analytics/
https://developers.google.com/analytics/devguides/collection/android/resources?hl=ja

122 - Software Design Feb. 2014 - 123Feb. 2014 - 123

［アプリ開発2013］6アプリの成長のための運用 第45回

「libGoogleAnalyticsServices.jar」とい
うライブラリが格納されています。こ
ちらを導入したいプロジェクトの/libs

ディレクトリにコピーし、Build Path

でExportされるように設定を行ってく
ださい。これでGoogle Analytics利用
のためのメソッドが利用可能となりま
した。

実装方法 ■
　Google Analyticsで分析を行うアプ
リには、リスト1にあるパーミッショ
ンの許可を行います。そして、トラッ
キングを行いたいActivityに対して、
リスト2のような実装を追加します。
EasyTrackerというクラスを利用し
て、Activityの開始と終了を activity

Start/activityStopメソッドで記録し
ていきます。
　最後にres/valuesディレクトリ配下
に、リスト3にあるようなanalytics.

xmlというリソースファイルを用意す
れば、基本的な情報の収集が可能とな
ります。もしも lintチェッカーでトラッキング
IDに含まれている「-」でワーニングが出る場合
には、リスト4のように、<resources>タグに対
する lintチェックを無視するよう設定してくだ
さい。
　この状態にしてアプリをアップデートするこ
とで、日々のアクティブユーザ数、そのうちの
新規ユーザ数、さらにそのユーザがどの国／地
域からアクセスしているのか、端末はどんな端
末（モバイルなのか、タブレットなのか、メー
カーの詳細）などなど、さまざまな利用状況の詳
細情報を追加で取得することが可能となります。

Google Analytics
利用時の注意点

　このように利便性の高いGoogle Analyticsで
すが、導入を行うときにGoogle Analytics利用
規約とSDK Policyに同意する必要があります。
この中でもとくに重要なのが、SDK Policyに
含まれている「Google Analyticsによる情報収集
に関してはユーザからの同意を得る」という内容
です。
　Google Analyticsは使い方によっては個人情
報に当たる情報まで収集することが可能なため、
そのような情報は取らないようにと、事前に

▼リスト1　パーミッションの許可

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

▼リスト2　トラッキングの開始と終了

@Override
public void onStart() {
 super.onStart();

 // トラッキングの開始
 EasyTracker.getInstance(this).activityStart(this);
}

@Override
public void onStop() {
 super.onStop();

 // トラッキングの終了
 EasyTracker.getInstance(this).activityStop(this);
}

▼リスト3　analytics.xmlの準備

<?xml version="1.0" encoding="utf-8" ?>
<resources>
 <!--トラッキングIDの指定。取得した値に差し替えてください-->
 <string name="ga_trackingId">UA-XXXXXXXX-X</string>

 <!--Activityでのトラッキングを許可します-->
 <bool name="ga_autoActivityTracking">true</bool>

 <!--例外処理（異常終了）のトラッキングを許可します-->
 <bool name="ga_reportUncaughtExceptions">true</bool>
</resources>

▼リスト4　lintチェックの無視

<resources
 xmlns:tools="http://schemas.android.com/tools"
 tools:ignore="TypographyDashes">

124 - Software Design124 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

Feb. 2014 - 125

Google Analytics側で規約やポリシーが作られ
ています。

SDK Policy
 URL https://developers.google.com/analytics/

devguides/collection/protocol/policy

　ユーザから許可が得られない情報を収集しな
いしくみをオプトアウトと言います。Google

Analyticsを利用する1つの実装方法として、リ
スト5にあるように使用許諾の画面を呼び出し、
そちらで許可が得られたらアプリが利用できる
ようなしくみにするのがよいでしょう。setApp

OptOutメソッドで、Google Analyticsのオプト
アウトが有効化されているのか、されていない
のかを設定することができます。このしくみの
実現方法は、前回の記事で取り上げたShared

Preferencesを用いたデータの保存を用いるの
がとても簡単ですので、ぜひ取り入れてみてく
ださい。

アクティブユーザを
増やすための施策

　前項までに示したGoogle Analyticsを利用す
ることで、利用状況まで取得できるようになり
ました。最後に、アクティブユーザを増やすた
めの施策について考えてみたいと思います。
Android上で実現できる手法には、以下のよう
なものが考えられるでしょう。

❶ 広告やソーシャルメディアを利用した宣伝
❷ ステータスバー上にアプリ利用促進のメッ
セージ表示

❸ アプリ評価依頼のメッセージ表示
❹ 定期的なアプリの更新

　❶の広告やソーシャルメディア、レビューサ
イトを利用した宣伝は、新規ユーザを獲得する
ために手軽に使える手段の1つかと思います。ア
プリレビューサイトのAndroiderへの登録や、
TwitterやFacebookでの宣伝はぜひ漏らさずし
ておくべきでしょう。

▼リスト5　利用許諾の確認

// プリファレンスから使用許諾の取得
SharedPreferences prefs =
PreferenceManager.getDefaultSharedPreferences(this);
if (!prefs.getBoolean(KEY_AGREEMENT, false)) {
 // アプリ使用許諾用画面の呼び出し
 Intent intent = new Intent(this, AgreementActivity.class);
 startActivityForResult(intent, REQ_AGREEMENT);
 GoogleAnalytics.getInstance(getApplicationContext()).setAppOptOut(true);
} else {
 // KEY_AGREEMENTのboolean値がtrueであれば、情報の収集開始
 GoogleAnalytics.getInstance(getApplicationContext()).setAppOptOut(false);
}

// Activityからの応答処理
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQ_AGREEMENT) {
 if (resultCode == RESULT_CANCELED) {
 // アプリ使用許諾用画面でキャンセルされたら、アプリを終了する例
 finish();
 }
 }

 super.onActivityResult(requestCode, resultCode, data);
}

http://www.android-group.jp/
https://developers.google.com/analytics/devguides/collection/protocol/policy

124 - Software Design Feb. 2014 - 125Feb. 2014 - 125

［アプリ開発2013］6アプリの成長のための運用 第45回

　❷❸のステータスバー上へのアプリ利用促進
のメッセージ表示とアプリ評価依頼のメッセー
ジ表示は、少し敷居が上がる手法です。
　定期的にアプリを利用してもらうため、たと
えば家計簿系のアプリの中には、1日アプリの
利用がなければ、入力を促すためにステータス
バー上にメッセージを表示するものがあります。
　アプリの評価依頼は、Google Playストアで
のレビュー評価が多いほうがそれだけ新規ユー
ザに注目してもらえることから、アプリ内で一
定回数の利用があったことを確認してから、評
価依頼を行うような仕掛けを組み込むというも
のです。
　筆者の場合、図２のような評価ダイアログを
一定回数使っていただいたユーザに向けて表示
し、評価を促すような試みを行っています。「評
価する」というボタンを押せば、Google Playス
トア上のアプリ画面を呼び出すような仕掛けを
実現しています。
　これらの手法はうまくいくと効果が高いです
が、あまりやりすぎるとユーザに煩わしさを感
じさせてしまうため、逆にユーザが離れてしま
う結果につながってしまうリスクがあります。
使うアプリの特性に合わせて、無理のない範囲
で導入することが望ましいでしょう。
　❹の定期的なアプリの更新は、大変ですが一
番効果のある手段です。とくにすでにアプリを
インストールしてくれているユーザに対して利
用を促す効果が出ますので、まずはぜひアプリ
の更新を実施していってください。

まとめ

　今回は「運用」という点に注目して、開発した
アプリをいかにして育て上げていくのか、その

手法の一部を筆者の実践している手法を交えて
紹介しました。
　なかでもGoogle Analyticsは大変高機能で、
紹介できなかった機能がまだまだたくさんあり
ます。たとえばアプリ内でのボタン押下といっ
たイベント情報をトラッキングすることで、実
装した新機能が使われているかどうかを確認す
る手法などは、UIのA/Bテストを行うときに
も有効でしょう。広告に仕掛ければ、より詳細
な広告のクリック状況が分析できます。
　アプリの改善点はいたるところに転がってい
るものですので、本稿で紹介した手法を用いな
がら、より良いアプリへと進化させてください。
｢

重村 浩二 （しげむら こうじ）　日本Androidの会 運営委員 中国支部長

日本Androidの会にて運営委員、中国支部長として毎月山口県・広島県を中心に自作アプリの発表やハッカソン、ハンズオ
ンなどを中心とした勉強会を精力的に開催。個人としても、雑誌への寄稿などを中心に活動中。
 URL http://buildbox.net/ Twitter @shige0501

▼図2　評価ダイアログの表示例

http://buildbox.net/

126 - Software Design Feb. 2014 - 127

ちゃんと理解する仮想化技術ちゃんと理解する仮想化技術

ハイパーバイザの作り方ハイパーバイザの作り方ハイパーバイザの作り方ハイパーバイザの作り方

浅田 拓也（ASADA Takuya）Twitter @syuu1228

仮想マシンの初期化と
BHyVeのゲストOSローダ

第17回

　前回は、VT-dの詳細について解説しました。今回
は、仮想マシンの初期化とBHyVeのゲストOSロー
ダについて解説していきます。

　まず、物理マシンの初期化手順について考えてい
きましょう。物理マシンの電源投入時には、次のよ
うな手順で初期化処理が実行されます。

 ①物理的な初期化

　コンピュータの電源が投入されると、CPUは決め
られたアドレスから命令の実行を開始します。この
アドレスにはROMがメモリマップされており、電
源投入時にCPUはROM上のファームウェア注1の初
期化ルーチンから実行を開始します。電源を上げた
ときのレジスタ値やメモリ内容、周辺デバイスの状
態は初期化されていないため不定ですが、ファーム
ウェアが最低限の初期化を行います。

 ②ファームウェアのロード

　初期化が終わると、ファームウェアはブートロー
ダまたはOSをロードします。

注1） PCでは通常BIOSまたはUEFIがファームウェアとして用いら
れています。同じx86 CPUが搭載されていてもファームウェ
アの仕様が異なれば別々のブートローダを用意しなければな
らなくなるため、BIOSもUEFIもベンダ間で差異が生じないよ
う仕様が定められています。

 ③OSのロード

　ブートローダを実行した場合、ブートローダがOSを
ロードします。この初期化手順はPCに限ったもので
はなく、スマートフォンのようなデバイスやマイコン
のようなより単純なデバイスでもおおむね同じです。
　一般的に、CPUのレジスタやメモリ上のデータは
電源を遮断すると状態を維持できません。このた
め、電源投入ごとに上述のような初期化処理を行う
必要があります。
　しかしながら、仮想マシンはにはこのような物理
デバイスの制約がないので、必ずしも物理マシンと
同じ初期化手順を踏む必要がありません。

　いくつかのハイパーバイザでは、ブートローダー
を実行することなく、直接OSをブートするダイレ
クトブートを実装しています。これは、上述のよう
な仮想マシンの特性を活かしたものです。
　たとえばQEMU（KVM）では、次のようなコマン
ドでホストOS上に置かれたLinuxカーネルをロー
ド・ブートできます。

$ qemu -kernel vmlinuz -append "ro ｭ
root=LABEL=/ " -initrd initrd.img

　BHyVeでは、このダイレクトブートを利用してゲ
ストOSを起動します。これは、現在BHyVeに
BIOSが実装されていないためです。
　FreeBSDゲストのロードでは、FreeBSDブート
ローダをホストOSのユーザランドへ移植しレジス
タアクセスやメモリアクセスをゲストマシンに対す
るアクセスで置き換えています。これによって、通

はじめに

物理マシンの初期化と
仮想マシンの初期化の違い

ゲスト OS のダイレクトブート

126 - Software Design Feb. 2014 - 127

仮想マシンの初期化とBHyVeのゲストOSローダ第17回

常のブートローダと同じインターフェースを持つ
OSローダを実装しています。
　LinuxゲストやOpenBSDゲストのロードでは、同
様の手法でGRUB2をホストOSへ移植することに
より注2、通常のGRUB2と同じインターフェースを持
つOSローダを実装しています。このとき、ゲスト
OSローダはゲストOSをメモリ上にロードし、レジ

スタの初期値を設定し、CPUのモードをプロテクト

モードに切り替えてから仮想マシンを始動します。
これは従来ブートローダが行っていたことであり、
この方法ではBIOSへ依存するブートローダをホス
トOS側で動作するプログラムで置き換えています。
　ただし、ゲストOSが実行中にBIOSを呼ぼうと
するとBIOSコールハンドラが存在しないため、エ
ラーが発生してしまってOSが正常に動作しません。
これに対処するには部分的にせよBIOSサポートを
導入するしかなく、そのためBHyVeでは動作しない
ゲストOSが存在します注3。

　BHyVeでは、VMインスタンスの操作は/dev/
vmm/<VM名>に対してioctl・mmapなど発行すること
によって行います。ただし、これらの処理を書きや
すくするためにvmmapiというライブラリが用意さ
れているので、通常こちらを利用します。
　以降に行いたい操作の種類によってどのような実
装を行えばよいかを示します。

 VMインスタンスの作成

　新しくVMインスタンスを作成するときは、まず
sysctlを通して/dev/vmm/<VM名>を作ります。
このデバイスファイルはBHyVeが保持するVMイン

注2） https://github.com/grehan-freebsd/grub2-bhyve

注3） FreeBSD/i386など。

スタンスのステート（注：CPU数などの情報、レジス
タ値、メモリの内容などを含む）をユーザランドか
ら操作するためのインタフェースになっています。
vmmapiではこれをvm_create()という名前で定義
しています（リスト１）。以降のVMインスタンスの
操作はvm_open()して取得したctxポインタを使用
します。

 メモリへの書き込み

　ページテーブルの作成など、ゲストメモリ空間へ
の書き込みはvmmapiを用いてゲストメモリ空間を
mmapすることによって行います（リスト2）。
　まず、vm_setup_memory()でゲストマシンのメモリ
サイズを指定し、/dev/vmm/<VM名>をmmapしてプロ
セスのメモリ空間へゲストメモリ空間をマップします。
　次に、vm_map_gpa()へオフセットを渡すことによ
りポインタを取得できます。

 レジスタへの書き込み

　ゲストマシンのレジスタへの書き込みはvmmapiを
通じてioctlを発行することによって行います（リスト
2）。セグメントレジスタとそれ以外のレジスタでは
VMCSのフォーマットが異なるため、APIが異なりま
す。セグメントレジスタではvm_set_desc()で
base、limit、accessを設定し、vm_set_register()
でselectorを設定します。その他のレジスタでは、
vm_set_register()で値を設定します。

▼リスト2　メモリへの書き込み

▼リスト3　レジスタへの書き込み

ctx = vm_open(VM_NAME);
vm_setup_memory(ctx, M_MEM_SIZE, VM_MMAP_ALL);
ptr = vm_map_gpa(ctx, addr, len);

ctx = vm_open(VM_NAME);
vm_set_register(ctx, cpuno, VM_REG_GUEST_RFLAGS, val);
vm_set_desc(ctx,cpuno, VM_REG_GUEST_CS, base, limit, access);
vm_set_register(ctx, cpuno, VM_REG_GUEST_CS, selector);

具体的な実装方法

▼リスト1　VMインスタンスの作成

vm_create(VM_NAME);

https://github.com/grehan-freebsd/grub2-bhyve

128 - Software Design Feb. 2014 - 129

 コンソールへの文字列表示

　コンソールへの文字列表示に関しては、printf()や
puts()を用いればよいため、vmmapiは使用しません。

 ディスクの読み込み

　ディスクイメージは通常のファイルであるため、
通常のファイルAPIを使用できます。

▼リスト4　簡易ローダのソースコード

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/stat.h>
#include <machine/specialreg.h>
#include <machine/vmm.h>
#include <x86/segments.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <vmmapi.h>

#define VM_NAME "test1"
#define VM_MEM_SIZE 128 * 1024 * 1024UL

#define MSR_EFER 0xc0000080
#define CR4_PAE 0x00000020
#define CR4_PSE 0x00000010
#define CR0_PG 0x80000000
#define CR0_PE 0x00000001
#define CR0_NE 0x00000020

#define PG_V 0x001
#define PG_RW 0x002
#define PG_U 0x004
#define PG_PS 0x080

#define ADDR_PT4 0x2000
#define ADDR_PT3 0x3000
#define ADDR_PT2 0x4000
#define ADDR_GDT 0x5000
#define ADDR_STACK 0x6000
#define ADDR_ENTRY 0x10000

#define DESC_UNUSABLE 0x00010000

#define GUEST_NULL_SEL 0
#define GUEST_CODE_SEL 1
#define GUEST_DATA_SEL 2
#define GUEST_GDTR_LIMIT (3 * 8 ‐ 1)

int
main(int argc, char** argv)
{
 struct vmctx *ctx;
 uint64_t *gdt, *pt4, *pt3, *pt2;
 int i;
 unsigned char *entry;
 unsigned char program[] = {　

①ゲストマシンで実行するプログラムです。
ALレジスタに*（ASCIIコードで0x2a）をロード、DXレジスタにシリアル
ポートのデータレジスタのアドレスをロード、outbでALレジスタの内
容をDXレジスタで指定したポートへ書き込み、を繰り返し行っています。
ここではプログラムのロード処理を省略するため、配列上にプログラム
のHEXダンプを持ってきています。

簡易ローダの実装例

　このため、vmmapiは使用しません。

　BHyVeにおけるOSローダの実装方法を例示する
ため、シリアルコンソールにアスタリスクを表示し
続けるだけの簡単なプログラムをゲストマシンへ

128 - Software Design Feb. 2014 - 129

仮想マシンの初期化とBHyVeのゲストOSローダ第17回

 0xb0, 0x2a, /* mov $0x2a,%al */
 0xba, 0xf8, 0x03, 0x00, 0x00, /* mov $0x3f8,%edx */
 0xee, /* out %al,(%dx) */
 0xeb,0xfd /* jmp 7 <loop> */
 };

 vm_create(VM_NAME);　
 ctx = vm_open(VM_NAME);
 vm_setup_memory(ctx, VM_MEM_SIZE, VM_MMAP_ALL);　

 pt4 = vm_map_gpa(ctx, ADDR_PT4, sizeof(uint64_t) * 512);　
 pt3 = vm_map_gpa(ctx, ADDR_PT3, sizeof(uint64_t) * 512);
 pt2 = vm_map_gpa(ctx, ADDR_PT2, sizeof(uint64_t) * 512);
 gdt = vm_map_gpa(ctx, ADDR_GDT, sizeof(uint64_t) * 3);
 entry = vm_map_gpa(ctx, ADDR_ENTRY, sizeof(program));

 bzero(pt4, PAGE_SIZE);
 bzero(pt3, PAGE_SIZE);
 bzero(pt2,PAGE_SIZE);
 for (i = 0; i < 512; i++) {　
 pt4[i] = (uint64_t)ADDR_PT3;
 pt4[i] ¦= PG_V ¦ PG_RW ¦ PG_U;
 pt3[i] = (uint64_t)ADDR_PT2;
 pt3[i] ¦= PG_V ¦ PG_RW ¦ PG_U;
 pt2[i] = i * (2 * 1024 * 1024);
 pt2[i] ¦= PG_V ¦ PG_RW ¦ PG_PS ¦ PG_U;
 }

 gdt[GUEST_NULL_SEL] = 0;　
 gdt[GUEST_CODE_SEL] = 0x0020980000000000;
 gdt[GUEST_DATA_SEL] = 0x0000900000000000;

 memcpy(entry, program, sizeof(program));　

 vm_set_desc(ctx, 0, VM_REG_GUEST_CS, 0, 0, 0x0000209B);　
 vm_set_desc(ctx, 0, VM_REG_GUEST_DS, 0, 0, 0x00000093);
 vm_set_desc(ctx, 0, VM_REG_GUEST_ES, 0, 0, 0x00000093);
 vm_set_desc(ctx, 0, VM_REG_GUEST_FS, 0, 0, 0x00000093);
 vm_set_desc(ctx, 0, VM_REG_GUEST_GS, 0, 0, 0x00000093);
 vm_set_desc(ctx, 0, VM_REG_GUEST_SS, 0, 0, 0x00000093);
 vm_set_desc(ctx, 0, VM_REG_GUEST_TR, 0, 0, 0x0000008b);
 vm_set_desc(ctx, 0, VM_REG_GUEST_LDTR, 0, 0, DESC_UNUSABLE);
 vm_set_desc(ctx, 0, VM_REG_GUEST_GDTR, ADDR_GDT, GUEST_GDTR_LIMIT, 0);　

 vm_set_register(ctx, 0, VM_REG_GUEST_CS, GSEL(GUEST_CODE_SEL, SEL_KPL));
 vm_set_register(ctx, 0, VM_REG_GUEST_DS, GSEL(GUEST_DATA_SEL, SEL_KPL));
 vm_set_register(ctx, 0, VM_REG_GUEST_ES, GSEL(GUEST_DATA_SEL, SEL_KPL));
 vm_set_register(ctx, 0, VM_REG_GUEST_FS, GSEL(GUEST_DATA_SEL, SEL_KPL));
 vm_set_register(ctx, 0, VM_REG_GUEST_GS, GSEL(GUEST_DATA_SEL, SEL_KPL));
 vm_set_register(ctx, 0, VM_REG_GUEST_SS, GSEL(GUEST_DATA_SEL, SEL_KPL));
 vm_set_register(ctx, 0, VM_REG_GUEST_TR, 0);
 vm_set_register(ctx, 0, VM_REG_GUEST_LDTR, 0);

 vm_set_register(ctx, 0, VM_REG_GUEST_CR0, CR0_PG ¦ CR0_PE ¦ CR0_NE);　
 vm_set_register(ctx, 0, VM_REG_GUEST_CR3, ADDR_PT4);　
 vm_set_register(ctx, 0, VM_REG_GUEST_CR4, CR4_PAE ¦ CR4_VMXE);　
 vm_set_register(ctx, 0, VM_REG_GUEST_EFER, EFER_LMA ¦ EFER_LME);　
 vm_set_register(ctx, 0, VM_REG_GUEST_RFLAGS, 0x2);
 vm_set_register(ctx, 0, VM_REG_GUEST_RSP, ADDR_STACK);　
 vm_set_register(ctx, 0, VM_REG_GUEST_RIP, ADDR_ENTRY);　

 return (0);
}

②vm_create()でvmm.koへsysctlを発行し、
VMインスタンスを作成します。作成したイン
スタンスは/dev/vmm/<VM名>で表され、ioctl
で制御できます。

③vm_setup_memory()でゲストマシンのメ
モリサイズを指定し、/dev/vmm/<VM名>を
mmapしてプロセスのメモリ空間へゲストメモ
リ空間をマップしています。

④vm_map_gpa()でゲストメモリ空間へのポ
インタを取得しています。ゲストメモリ空間
上のアドレスは引数で指定しています（ここ
ではADDR_PT4 = 2000h）。vm_map_gpa()で
は渡されたアドレスをオフセットとしてポイ
ンタを計算します。ここでは、ページテーブ
ル（pt4,pt3,pt2）、GDT、プログラム領域
（entry）のアドレスを指定してそれぞれのポ
インタを取得しています。

⑤ゲストメモリ空間上のページテーブルを初
期化しています。

⑥ゲストメモリ空間上を初期化しています。

⑦ゲストメモリ空間へ①で記述したprogram
をコピーしています。

⑧各セグメントレジスタを初期化しています。

⑨GDTRに作成したGDTのアドレスをセットし
ています。

⑩CR0レジスタにプロテク
テッドモード有効、ペー
ジング有効などのビット
を設定しています。

⑪CR3レジスタに作成し
たページテーブルのアド
レスを設定しています。

⑫CR4レジスタにPAE
有効化などのビットを
設定しています。

⑬EFERレジスタに64bit
有効化などのビットを設
定しています。

⑭RSPレジスタにスタックアドレスの初期
値を設定しています。

⑮RIPレジスタにロードしたプログラムの
アドレスを設定しています。

130 - Software Design

ロードする簡易ローダを実装しました注4。
　このローダを使うと、ゲストマシンが起動した最初
の瞬間から、64bitモード・ページングが有効な状態で
実行されます。リスト4にソースコードを示します。

　ビルドしたローダは次のようなコマンドで実行で
きます（リスト5）。

注4） https://github.com/syuu1228/bhyve-embedded-guest

　以上、物理マシンのような制約のない仮想マシン
の解説をしました。制約の少ない仮想マシンでは、
仮想マシンの状態を設定して仮想マシンを動作させ
ることができます。BHyVeが採用しているダイレク
トブートは、この特徴を活かしてBIOSを用いずに
ゲストOSの実行を実現しています。｢

▼リスト5　画面出力

sudo ./load
sudo bhyve ‐ c 1 ‐ m 128 ‐ s 0:0,hostbridge ‐ S 31,uart,stdio test1

実行イメージ

まとめ

Linuxの仕組みを本格的に知りたい、そして自分で試しながら機能
を根底から理解したい！̶ ̶そんな初学者のために本書は作られま
した。
サーバ利用を中心に5章に分け、1章ではインストールからユーザの
環境設定、2章ではプロセスとジョブ管理、合わせてシェルの使い方
も解説します。3章はファイルシステム、4章はサーバ管理、5章では実
際にアプリサーバの動作を深く学びます。読み終えると、一人のエン
ジニアとして何をすべきかが明確にわかるようになります。そうした本
物の基礎を学ぶことができる新定番のLinux独習書です。

中井悦司 著
B5変形判／384ページ
定価3,129円（本体2,980円）
ISBN 978-4-7741-5937-9

Linuxを本気で学んでみたい方

https://github.com/syuu1228/bhyve-embedded-guest

131 - Software Design Feb. 2014 - 131

PowerCapとSquashfsのマルチキュー対応 第23回第23回
Linux

カーネ
ル

観光ガ
イド

　今月もLinux 3.13に追加された機能について
解説していきます。今月は電力消費を制御する
PowerCapという機能、そしてSquashfsのマル
チキュー対応について見ていきます。

PowerCap
サブシステム

　Linux 3.13では新しくPower Capというサブ
システムが実装されました。これは電力制限が
可能なデバイスをユーザ空間から操作するため
のインターフェースになります。もともとIntel

のRunning Average Power Limit（RAPL）専用
のドライバが提案されていたものが、汎用的な
サブシステムに書き換えられたのもあってIntel

RAPLのみが現在はサポートされていますが、
やがてはほかのデバイスのドライバも実装され
ていくかと思います。
　では、PowerCapの使い方を見てみましょう。
PowerCapのインターフェースは syfsの/sys/

class/powercapからアクセスできます。図1の
ように、ドライバのトップレベルおよび電力制
限をかけることができる各部分へのアクセスを
提供するディレクトリへのsymlinkが作られて
います。symlink先を見るとわかりますが、図2
の よ う に intel-raplの 下 に“intel-rapl:0”が、
“intel-rapl:0”の 下 に“intel-rapl:0:0”と“intel-

rapl:0:1”が配置されています。後述するように、
CPUの構造がこのディレクトリ構造に反映され
ています。
　“intel-rapl:0”は“power zone”と呼ばれ、その
下の“intel-rapl:0:0”、“intel-rapl:0:1”は“subzone”
となっています。“inte-rapl:0”、“intel-rapl:0:0”、
“intel-rapl:0:1”の下にはそれぞれ“name”という
ファイルがあるので、これを読むとそれぞれ
“package-0”、“core”、“uncore”という名前になっ
ていることがわかります（図3上部）。“package-0”
が1つのプロセッサパッケージ内の電力について、
“core”がその中のCPUコアの電力について、そ
して“uncore”がグラフィックスなどコア以外
の部分の電力についてのディレクトリとなり
ます。
　nameと同様にenergy_ujというファイルも各
区分のディレクトリ下にあります。これを読む
ことで累積消費電力量をマイクロジュール単位
で見ることができます（図3下部）。この値は累
積ですので段々と増えていきmax_energy_

range_ujまでいくと0から折り返します。この
値を読むだけでも興味深いデータを得ることが
できます。たとえば、muninのプラグイン（リス
ト1）を書いてプロットすると図4のような結果
を得ることができます。

Linux 3.13の新機能
PowerCapと
Squashfsのマルチキュー対応
Text：青田 直大　AOTA Naohiro

第23回第23回

132 - Software Design

Linuxカーネル観光ガイド

電力の制限
　次に電力の制限について見てみましょう（図5）。
電力制限に関する値は“constraint_”から始まる
ファイルに記載されています。packageには
constraint_0と constraint_1という2つの制限
が、coreとuncoreにはconstraint_0の1つだけ
の制限をかけることができます。time_window_

usで指定したマイクロ秒数の間の平均消費電力
をpower_limit_uwにするようにCPUに設定し
ます。ここで設定できる値はmax_power_uw以
下になります。例の部分で“intel-rapl:0:0”と
“intel-rapl:0:1”の constraint_0_max_power_uw

が「利用可能なデータがありません」となってい
るように、CPUにとっては取得できない値もあ
ります。これらの値を設定したときは、enabled

を1にして設定が適用されるようにしてください。

cd /sys/class/powercap/
ls -l
合計 0
lrwxrwxrwx 1 root root 0 12月 10 19:40 intel-rapl -> ../../devices/virtual/powercap/intel-rapl
lrwxrwxrwx 1 root root 0 12月 10 19:40 intel-rapl:0 -> ../../devices/virtual/powercap/intel-rapl/intel-rapl:0
lrwxrwxrwx 1 root root 0 12月 10 19:40 intel-rapl:0:0 -> ../../devices/virtual/powercap/intel-rapl/intel-rapl:0/intel-rapl:0:0
lrwxrwxrwx 1 root root 0 12月 10 19:40 intel-rapl:0:1 -> ../../devices/virtual/powercap/intel-rapl/intel-rapl:0/intel-rapl:0:1
ls -l intel-rapl/
合計 0
-rw-r--r-- 1 root root 4096 12月 10 19:42 enabled
drwxr-xr-x 5 root root 0 12月 10 16:54 intel-rapl:0
drwxr-xr-x 2 root root 0 12月 10 19:42 power
lrwxrwxrwx 1 root root 0 12月 10 16:54 subsystem -> ../../../../class/powercap
-rw-r--r-- 1 root root 4096 12月 10 16:54 uevent
ls -l intel-rapl:0/
合計 0
-r--r--r-- 1 root root 4096 12月 10 19:40 constraint_0_max_power_uw
-r--r--r-- 1 root root 4096 12月 10 19:40 constraint_0_name
-rw-r--r-- 1 root root 4096 12月 12 20:19 constraint_0_power_limit_uw
-rw-r--r-- 1 root root 4096 12月 10 19:40 constraint_0_time_window_us
-r--r--r-- 1 root root 4096 12月 10 19:40 constraint_1_max_power_uw
-r--r--r-- 1 root root 4096 12月 10 19:40 constraint_1_name
-rw-r--r-- 1 root root 4096 12月 10 19:40 constraint_1_power_limit_uw
-rw-r--r-- 1 root root 4096 12月 12 20:26 constraint_1_time_window_us
lrwxrwxrwx 1 root root 0 12月 10 19:40 device -> ../../intel-rapl
-rw-r--r-- 1 root root 4096 12月 10 19:40 enabled
-rw-r--r-- 1 root root 4096 12月 12 14:45 energy_uj
drwxr-xr-x 3 root root 0 12月 10 16:54 intel-rapl:0:0
drwxr-xr-x 3 root root 0 12月 10 16:54 intel-rapl:0:1
-r--r--r-- 1 root root 4096 12月 10 19:40 max_energy_range_uj
-r--r--r-- 1 root root 4096 12月 10 19:40 name
drwxr-xr-x 2 root root 0 12月 10 19:40 power
lrwxrwxrwx 1 root root 0 12月 10 16:54 subsystem -> ../../../../../class/powercap
-rw-r--r-- 1 root root 4096 12月 10 16:54 uevent

 ▼図1　PowerCapのディレクトリ構造

intel-rapl：0

long_term（constraint_0）
40W/1s

long_term（constraint_0）
255W/1s

short_term（constraint_1）
255W/976us

long_term（constraint_0）
0W/1s

intel-rapl：0：0 intel-rapl：0：1

Core
（subzone）

Uncore
 （subzone）

Package-0
（Powerzone）

 ▼図2　intel-raplの構造

grep . */name
intel-rapl:0/name:package-0
intel-rapl:0:0/name:core
intel-rapl:0:1/name:uncore
grep . */energy_uj */max_energy_range_uj
intel-rapl:0/energy_uj:34046807281
intel-rapl:0:0/energy_uj:31149954772
intel-rapl:0:1/energy_uj:30208578598
intel-rapl:0/max_energy_range_uj:65535999984
intel-rapl:0:0/max_energy_range_uj:65535999984
intel-rapl:0:1/max_energy_range_uj:65535999984

 ▼図3　名前と電力量の表示

132 - Software Design Feb. 2014 - 133

PowerCapとSquashfsのマルチキュー対応 第23回第23回

RAPLの実装
　そもそもIntel RAPLとはSandy Bridge以降
のCPUに実装されている消費電力を監視し、
消費電力を制限するための機能です。実際にモ
デル固有レジスタ（MSR）への読み書きをしてみ
て、RAPLの中身について見ていきましょう。
　まずはRAPLで使われる電力・電力量・時間
の単位を決定します。単位についての情報は
MSR_RAPL_POWER_UNIT（0x606）で管理さ
れています（図6）。3から0bitは電力単位に、
12から8bitが電力量単位に、19から16bitが時
間単位の設定に使われます。それぞれこの値を
Xとすると“1/2X”が単位量となります。すなわ
ち下の例（CPUのデフォルト値のまま）では、
1/8ワット、15.26マイクロジュール、976.56マ
イクロ秒が単位となります。後述のMSRから
読み取られる値にこの単位量をかけることで求
めたい値がわかります。
　次にenergy_ujに対応する値を読んでみましょ
う。"intel-rapl:0"のenergy_ujに対応する値は
MSR_PKG_ENERGY_STATUS（0x611）を読

#!/bin/bash

case $1 in
 config)
 cat <<'EOM'
graph_category system
graph_title energy
graph_vlabel Energy Watt
graph_args --base 1000 -l 0
package.label Package
package.type DERIVE
package.min 0
core.label Core
core.type DERIVE
core.min 0
uncore.label Graphics UnCore
uncore.type DERIVE
uncore.min 0
EOM
 exit 0
 ;;
esac

cd /sys/class/powercap
printf "package.value "
cat "intel-rapl:0"/energy_uj ¦ perl -ne
'print int($_/1000000),"¥n"'
printf "core.value "
cat "intel-rapl:0:0"/energy_uj ¦ perl -ne
'print int($_/1000000),"¥n"'
printf "uncore.value "
cat "intel-rapl:0:1"/energy_uj ¦ perl -ne
'print int($_/1000000),"¥n"'

 ▼リスト1　munin plugin

 ▼図4　muninによるプロット

134 - Software Design

Linuxカーネル観光ガイド

むことで取得できます（図7）。MSRからの出力
をマイクロ単位に変換（106を掛ける）し、上で
取得したとおりに216で割ることでenergy_ujと
MSRの値が確かに一致していると確認できます。
このMSRはおよそ1ミリ秒に一度更新されるの
でぴったり同じにはならないこともあります。
　最後にconstraintに関係する値を読みとって
みましょう（図8）。MSR_PP0_POWER_LIMIT

（0x638）の14から0bitが"intel-rapl:0:0"のconst

raint_0_power_limit_uwに対応し、23から17

bitがconstraint_0_time_window_usに対応して
います。たとえば14から0bitから得られる値が
320で、1/8ワット単位なので40,000,000マイ
クロワットとなっています。時間のほうは読み
方が少し特殊になっています。21から17bitの
値をX、23から22bitの値をYとおくと“2X× （1

+ Y/4）×<単位時間>”という読み方をします。

PowerClampとの
比較

　Intel RAPLはCPUの消費電力を制限すると
いう点でLinux 3.9に入った機能であり、以前
に紹介したIntel PowerClampとも似ています。
この2つはどのように違っているのでしょうか。
1つの違いは対応CPU世代です。Intel RAPL

はSandyBridge以後のCPUでしか動きません
が、Intel PowerClampはNehalemでも動作しま
す。もう1つの違いはRAPLではCPUのモデ
ル固有レジスタ（MSR）に目標とする電力値を設
定し、CPUに任せるというある意味でシンプル
なカーネル実装になっているのに対して、
PowerClampでは各CPUに優先度が最高のカー
ネルスレッドを割り付けて、そのスレッドによっ
てCPUを強制的に一番消費電力が低くなる動
作状態に移行するというOSの実装側でがんばっ
ているしくみになっています。また、Intel

RAPLは最終的にPowerCapサブシステムの一
部とされたようにほかのCPU・アーキテクチャ
を想定した作りをしていますが、Intel

PowerClampにはそのような様子はありません。
設定項目も含めてまとめると表1のようになり
ます。

Squashfsのマルチ
キュー対応

　Squashfsは、1つのファイルに圧縮されたファ
イルツリーを読み込み専用でマウントできるファ
イルシステムです。LiveCDなどのディスク容
量が限られているようなデバイスで、読み込み
専用のファイルシステムを提供するのによく使

grep . */constraint_*
intel-rapl:0/constraint_0_max_power_uw:95000000
intel-rapl:0/constraint_0_name:long_term
intel-rapl:0/constraint_0_power_limit_uw:255000000
intel-rapl:0/constraint_0_time_window_us:1000000
intel-rapl:0/constraint_1_max_power_uw:0
intel-rapl:0/constraint_1_name:short_term
intel-rapl:0/constraint_1_power_limit_uw:255000000
intel-rapl:0/constraint_1_time_window_us:976
grep: intel-rapl:0:0/constraint_0_max_power_uw: 利用可
能なデータがありません
intel-rapl:0:0/constraint_0_name:long_term
intel-rapl:0:0/constraint_0_power_limit_uw:40000000
intel-rapl:0:0/constraint_0_time_window_us:1000000
grep: intel-rapl:0:1/constraint_0_max_power_uw: 利用可
能なデータがありません
intel-rapl:0:1/constraint_0_name:long_term
intel-rapl:0:1/constraint_0_power_limit_uw:0
intel-rapl:0:1/constraint_0_time_window_us:1000000
grep . */enabled
intel-rapl/enabled:1
intel-rapl:0/enabled:1
intel-rapl:0:0/enabled:1
intel-rapl:0:1/enabled:1

 ▼図5　電力制限に関する値の表示

rdmsr -u --bitfield 3:0 0x606
3
rdmsr -u --bitfield 12:8 0x606
16
rdmsr -u --bitfield 19:16 0x606
10

 ▼図6　RAPLでの使用単位の読み取り

cat "intel-rapl:0"/energy_uj & rdmsr -u 0x611
[1] 2174
2364038996
36072372375
[1]+ 終了 cat energy_u
python
>>> 2364038996 * (10 ** 6) / (2 ** 16)
36072372375

 ▼図7　消費電力量の読み取り

134 - Software Design Feb. 2014 - 135

PowerCapとSquashfsのマルチキュー対応 第23回第23回

われています。Linux 3.13では、このSquashfs

にパフォーマンスを改善する変更が2つ追加さ
れました。
　Squashfsでは圧縮されているファイルを適宜
展開して、ファイルシステム中のファイルへの
アクセスを提供しています。今まではこの展開
はシングルスレッドで行われてきました。今で
はマルチコアのCPUが増え、VMの中でも複数
のCPUが与えられていることもある中で、この
実装はパフォーマンスの大きな足かせとなります。
そこでLinux 3.13ではSquashfsが複数のI/Oを
行っているときに、展開も複数のスレッドで行
えるような変更が入りました。具体的には次の
2つの展開方法が使えるようになりました。

・ 各CPUにつき最大2個までの展開スレッドを
作る

・ 各CPUにつき1つずつロードバランスされる
ように展開スレッドを作る

　もう1つのパフォーマンス改善は、展開のた
めの中間バッファを排除したことで実現されま
した。今までは中間バッファに展開し、それか
らその内容をページキャッシュにコピーしてい
たものを、直接ページキャッシュへと展開でき
るようにしました。これはメモリコピーの手間
を減らすだけではなく、複数のI/Oが行われて

いるときの中間バッファのロック競合も取り除
きパフォーマンスを劇的に改善しています。
　どちらの変更にも、コミットログにパッチ作
者のパフォーマンステストの結果が報告されて
いますので、紹介しておきましょう。1つめの
複数スレッドでの展開では、4つの1GBのファ
イルを2コア・メモリ4GBのKVM上でそれぞ
れ1つのddプロセスで読み込みます。以前には
1分39秒かかっていたものが、複数スレッドに
することで9秒になると驚くほどの改善が報告
されています。もう一方の中間バッファを取り
除く変更では、ファイルを同時に4つ読み出す
のに以前は13.7MB/sだったものが、変更後に
は67.7MB/sと5倍ほどに向上しています。ど
ちらのパッチも大きなパフォーマンス改善が実
現できておりたいへん期待できる変更ですね。

まとめ
　今回は電力監視・制限を行う Intel RAPL、
そしてSquashfsのパフォーマンス改善について
解説しました。電力消費が問題となることも多
くなっているのではないでしょうか。ぜひまず
は監視からでも始めてみてください。｢

grep . "intel-rapl:0:0"/constraint_0_{power_limit_uw,time_window_us}
intel-rapl:0:0/constraint_0_power_limit_uw:40000000
intel-rapl:0:0/constraint_0_time_window_us:1750000
rdmsr -u --bitfield 14:0 0x638
320
rdmsr -u --bitfield 21:17 0x638
10
rdmsr -u --bitfield 23:22 0x638
3
python
>>> (2 ** 10) * (1 + 0.25 * 3) * (10 ** 6) / (2 ** 10)
1750000.0

 ▼図8　constraint関係の値の読み取り

対応世代 実装方法 設定項目
PowerClamp Nehalem～ カーネルスレッドで低電力の状態にする アイドルのCPU時間の割合
RAPL Sandy Bridgeから CPUのMSRに制限を設定 時間あたりの平均消費電力

 ▼表1　PowerClampとRAPLの違い

136 - Software Design

ディスクの性能を
使い切れているか調べる方法、
知ってますか?

　コンシューマ向けに出荷されているSSDはだい
ぶ値段がこなれてきました。T

テラバイト

Bクラスの商品も登
場しはじめています。SSDとHDDを組み合わせた
ハイブリッドなディスク（SSHD）も普及をはじめて
います。だいたい容量単価あたりの価格が高いほう
が高速に動作するようです。
　HDDをSSDに換装するとシステムが高速に動作
するようだ、ということは実感としては理解できる
のですが、実はどの程度速くなったのか、そもそも
ディスク部分が原因で動作速度が遅いと感じている
のか、そのあたりを調べる方法を知らないまま直感
で判断していることがあります。
　ディスクの性能を調べる方法がわかれば、システ
ムがどういった状態にあるのか、どういったディス
クやストレージへ交換すればシステムの性能を上げ
ることができるのか、こういったことがわかるよう
になります。今回はそうした場合に利用するコマン
ドを紹介します。

ディスクの限界性能を調べる
（UFSの場合）

　まず一番最初にするのは、そのディスクとファイ
ルシステムのもっとも高い性能を知ることです。こ
こでは/dev/ada1として認識されているディスクを
調べてみます。図1のようにgpart (8)でパーティ

ショニング情報をチェックすると、/dev/ada1 p1が
UFSファイルシステムになっていることがわかり
ます。
　このファイルシステムがどのようなオプション指
定でフォーマットされたものかはdumpfs (8)コマン
ドに-mオプションを指定すると調べることができま
す。たとえば図2で調べたパーティションはUFS2

でフォーマットされており（-O 2）、Soft updates（-U）
とSoft updates journaling（-j）が有効になったファイ
ルシステムだということがわかります。
　ファイルシステムの使用状況などの詳細情報も
dumpfs(8)コマンドで確認できます。dumpfs(8)の出
力データの読み方については、連載の間においおい
解説するとしましょう。図3の出力を見る限りで
は、まだまだ余裕がある状態だとわかります。

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第4回 ◆ ボトルネックはHDDか？　交換の前にシステム情報から推測しよう

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

% gpart show ada1
=> 34 488397101 ada1 GPT (233G)
 34 482344960 1 freebsd-ufs (230G)
 482344994 6052141 - free - (2.9G)

%

% dumpfs -m /s
newfs command for /s (/dev/gpt/s)
newfs -O 2 -U -a 4 -b 32768 -d 32768 -e 4096 -f 4096 -g 16384 -h 64 -i 8192 -j -k 6408 -m 8 -o time -s
482344960 /dev/gpt/s
%

 ▼図1　gpart(8)でディスクのパーティショニング情報を確認

 ▼図2　newfs(8)でフォーマットしたときのオプション

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

Feb. 2014 - 137

▶第4回◀
ボトルネックはHDDか？　交換の前にシステム情報から推測しよう

　このディスクへの書き込みを
実施して限界性能を調べます。
図4のようにdd(1)コマンドでゼ
ロデータを10GB分書き込みま
す。この作業を実行している間
に、別の疑似端末で図5のよう
にiostat (8)コマンドを実行し
ます。
　iostat(8)コマンドによる1つめ
の出力はシステム稼働時間全体
に渡る入出力の統計情報です。
ここでは2つめ以降の値、とくに
ada1の「tps」と、cpuの「id」に注
目してください。このディスク
では1秒間に2,000回のトランザ
クションを実行するというのが
書き込み性能の上限値のようだ
ということが、tpsの値から推測
できます。その間、idの値は98前後ですので、ほと
んど「アイドル状態」にあることがわかります。プロ
セッサをほとんど使っていませんので、ディスクの
書き込み処理性能をほぼほぼ計測できていることに
なります。

ディスクの限界性能を調べる
（ZFSの場合）

　入出力の限界性能はファ
イルシステムによって大き
く変わります。先ほどと同
じモニタリングをZFSで
やってみましょう。図6によ
ると、ここで使用したZFS

はディスクを2台ミラーリン
グしたZFSプール上のデー
タセットで実行されている
ことがわかります。
　図7のようにdd(1)で書き
込みを実施します。図4では
40秒ほどで終わっていまし
たが、こちらは110秒ほどか

% iostat -d -C -w 10 ada1
 ada1 cpu
 KB/t tps MB/s us ni sy in id
 50.05 2 0.09 0 0 0 0 100
 127.53 1795 223.57 0 0 2 0 98
 127.18 1956 242.91 0 0 3 0 97
 127.63 1970 245.52 0 0 2 0 98
 127.49 1973 245.60 0 0 3 0 97
^C
%

 ▼図5　 別の疑似端末でiostat(8)コマンドを実行して入出
力状況を確認

% dumpfs /s ¦ head -18
magic 19540119 (UFS2) time Fri Dec 6 18:33:03 2013
superblock location 65536 id [527eca07 3775b6b3]
ncg 377 size 60293120 blocks 58396030
bsize 32768 shift 15 mask 0xffff8000
fsize 4096 shift 12 mask 0xfffff000
frag 8 shift 3 fsbtodb 3
minfree 8% optim time symlinklen 120
maxbsize 32768 maxbpg 4096 maxcontig 4 contigsumsize 4
nbfree 6348236 ndir 91419 nifree 29210281 nffree 244335
bpg 20035 fpg 160280 ipg 80256 unrefs 0
nindir 4096 inopb 128 maxfilesize 2252349704110079
sbsize 4096 cgsize 32768 csaddr 5056 cssize 8192
sblkno 24 cblkno 32 iblkno 40 dblkno 5056
cgrotor 99 fmod 0 ronly 0 clean 0
metaspace 6408 avgfpdir 64 avgfilesize 16384
flags soft-updates+journal
fsmnt /s
volname swuid 0 providersize 60293120
%

 ▼図3　ファイルシステムの詳細情報

% dd if=/dev/zero of=out bs=1024x1024x100 count=100
100+0 records in
100+0 records out
10485760000 bytes transferred in 40.857527 secs (256642064 bytes/sec)
%

 ▼図4　/s/の下でゼロデータで埋められたファイルを作成

% zpool status z1
 pool: z1
 state: ONLINE
 scan: resilvered 479G in 3h1m with 0 errors on Thu Dec 13 15:33:30 2012
config:

 NAME STATE READ WRITE CKSUM
 z1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada2 ONLINE 0 0 0
 ada3 ONLINE 0 0 0

errors: No known data errors
%

 ▼図6　/z1/は2台のディスクをミラーリングで構成したZFSプール

% dd if=/dev/zero of=out bs=1024x1024x100 count=100
100+0 records in
100+0 records out
10485760000 bytes transferred in 108.842429 secs (96338901 bytes/sec)
%

 ▼図7　/z1/の下でゼロデータで埋められたファイルを作成

138 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

チャーリー・ルートからの手紙チャーリー・ルートからの手紙

かっています。だいぶ遅いことがわかります。dd(1)

で書き込み実行中に、iostat(8)コマンドを使ってモ
ニタリングを実施します（図8）。こちらもほとんど
プロセッサを使っておらず、出力の限界性能を計測
していることになります。
　ZFSのほうでは1秒間の最大トランザクション
回数が800回くらいということがわかります。たと
えばZFSのデータセットを使っているシステムを
構築しているのであれば、システム動作時の単位時
間当たりのトランザクション回数をどれだけこの値
に近づくようにできるかが、そのシステムで書き込
み性能を使い切れているかということになります。
　ZFSはUFSと比較するとかなり複雑な作りをし
ています。ここまで機能を詰め込んでいるにもかか
わらずそれほど性能が劣化しないのは、かなり大量
のキャッシュを活用しているからです。ZFSを使っ
ているシステムでtop (1)コマンドを実行すると、
図9のように固定化されたキャッシュ（Mem:の
Wiredの項目）が13GBあることがわかります。
Wiredにはスワップの対象とならないメモリの領域
が表示されます。たとえばカーネルそのものがここ
に該当します。カーネルがスワップアウトしてし
まってはシステムが動作しません。

　しかしカーネルはいくら大きくても13GBもあり
ません。これはほとんどZFSのキャッシュに使わ
れています。FreeBSDのZFSではZFSキャッシュ
がスワップアウトしない領域として扱われます。
ZFSのキャッシュを表現するARC:の項目が11G

になっていることからもわかります。

プロセッサを使い切って
ディスク性能がまったく
使い切れていないケース

　では先のUFS環境で、模擬的に入出力性能を使
い切れていない状況を作り出してモニタリングして
みましょう。まず、システムのプロセッサの論理コ
ア（スレッド）の数を調べます。図10のように
sysctl(8)コマンドでhw.ncpuの値を調べます。こ
のシステムの論理コア（スレッド）の数は8個である
ことがわかります。
　データの圧縮や復号処理を、指定した数で並列し
て実施するコマンドにpigz（/usr/ports/archivers/

pigz/）があります。これを図11のように実行して
10GBのファイルの圧縮を試みます。このpigz(1)の
実行中に iostat(8)を実行すると、図12のような出
力が得られます。プロセッサをほぼ使い切ってい
て、かわりにディスクの性能はほとんど発揮できて
いません。最大で2,000トランザクション/秒くら
いのところが、50トランザクション/秒くらいに
なっています。
　こういった使い方をしているシステムでは、ディ
スクを高速なものに換えても処理性能の向上は望め

last pid: 43376; load averages: 0.14, 0.20, 0.14 up 1+01:46:03 18:39:04
58 processes: 1 running, 57 sleeping
CPU: 1.5% user, 0.0% nice, 1.1% system, 0.0% interrupt, 97.4% idle
Mem: 21M Active, 941M Inact, 13G Wired, 3288M Buf, 2127M Free
ARC: 11G Total, 723M MFU, 10G MRU, 213K Anon, 39M Header, 399M Other
Swap: 2047M Total, 2047M Free

 ▼図9　ZFSは高速に動作するために大量の領域をスワップ不可能なキャッシュとして使用する

% iostat -d -C -w 10 ada2
 ada2 cpu
 KB/t tps MB/s us ni sy in id
 10.39 1 0.01 0 0 0 0 100
 119.40 781 91.08 0 0 1 0 99
 119.36 675 78.65 0 0 1 0 98
 120.70 790 93.14 0 0 1 0 98
 121.63 797 94.67 0 0 1 0 99
 119.16 775 90.19 0 0 2 0 98
 118.77 658 76.26 0 0 1 0 98
 120.46 681 80.13 0 0 1 0 98
 123.70 703 84.96 0 0 1 0 99
 121.86 691 82.24 0 0 1 0 99
 122.78 785 94.15 0 0 1 0 99
 124.04 808 97.88 0 0 2 0 98
^C
%

 ▼図8　 別の疑似端末でiostat(8)コマンドを実行して入出
力状況を確認

% sysctl hw.ncpu
hw.ncpu: 8
%

 ▼図10　プロセッサの論理コア（スレッド）の個数を確認

% pigz -p 16 -11 out

 ▼図11　16並列でファイルの圧縮処理を実行

Feb. 2014 - 139

▶第4回◀
ボトルネックはHDDか？　交換の前にシステム情報から推測しよう

データの読み込みにおいてキャッシュが効かないよ
うに、いったんキャッシュをすべて削除しています。
　たとえば図15のようにdd(1)コマンドを実行すれ
ば読み込みキャッシュをほぼ無効にできます。
top(1)のBufに表示された値が3.2GBほどでしたの
で、図15のようにランダムデータを4GBほど書き
出してあげると、キャッシュされていた分がすべて
消えることになります。もちろんここで消している
のはUFS2のキャッシュです。
　キャッシュ効果はよく効きます。メモリをたくさ
ん積んだマシンでは、実のところSSDとHDDの違
いを体感できないことがあります。これはキャッ
シュにデータが載って、SSDでもHDDでもメモリか
らデータが読み込まれている場合などに起こります。

おわりに

　今回は iostat(8)の読み方を中心に単位時間当たり
のトランザクション回数を読むということ、プロ
セッサの使用率との関係からシステムの性能ボトル
ネックを判断する方法などを紹介しました。今まで
よくわからなかったコマンドの出力の意味がわかる
ようになってくると、システムの動きが目に浮かぶ
ようになりますよね（ならない？）s

ません。この場合、もっとコアの多いプロセッサに
換えるとか、もっと処理速度が速いプロセッサに交
換することが、システムの性能を引き上げることに
つながります。

ディスクもプロセッサも
性能を使い切れていない
ケース

　ちょっとだけ先ほどのコマンドのオプションを変
更してみましょう。-pオプションで指定する値を16

から4へ変更してみます（図13）。
　今度は図14のような結果が得られます。プロ
セッサが50％くらいアイドルした状態で、かつ、
ディスクもほとんど性能を発揮できていない状態で
あることがわかります。この場合には処理の並列度
をあげることで全体としての処理性能を向上させる
ことができる可能性があります。
　このような感じで動作しているシステムの状態を
入出力（単位時間当たりのトランザクション回数）と
プロセッサの使用率という側面で捕らえると、どこ
が性能のボトルネックになっているかがわかるよう
になります。

おまけ：
読み込みキャッシュも
意識してみよう

　ディスク入出力系のベンチマークを実施する場合
にはキャッシュ効果に注意してください。たとえば
今回の記事ですと、モニタリングを実施する前に

% iostat -d -C -w 10 ada1
 ada1 cpu
 KB/t tps MB/s us ni sy in id
 89.42 4 0.35 0 0 0 0 100
 125.75 51 6.25 99 0 1 0 0
 125.35 51 6.28 99 0 1 0 0
 124.50 52 6.27 99 0 1 0 0
 125.32 51 6.26 99 0 1 0 0
 125.50 51 6.24 99 0 1 0 0
 125.18 51 6.29 99 0 1 0 0
 127.31 51 6.31 99 0 1 0 0
 127.49 50 6.25 99 0 1 0 0
^C
%

 ▼図12　 CPUを使い切り、逆にディスクの入出力性能は
使い切れていない

% iostat -d -C -w 10 ada1
 ada1 cpu
 KB/t tps MB/s us ni sy in id
 93.00 4 0.40 0 0 0 0 99
 108.70 40 4.26 50 0 0 0 50
 96.23 16 1.54 50 0 1 0 50
 93.28 7 0.63 50 0 0 0 50
 101.29 11 1.09 50 0 1 0 50
 102.38 9 0.91 50 0 0 0 50
 100.26 16 1.57 50 0 1 0 50
 107.93 22 2.36 50 0 0 0 50
 115.47 36 4.03 50 0 1 0 50
 123.35 38 4.64 50 0 0 0 50
^C
%

 ▼図14　 CPUも使い切れていないし、ディスクの入出力
性能も使い切れていない

% pigz -p 4 -11 out

 ▼図13　4並列でファイルの圧縮処理を実行

% dd if=/dev/random of=hoge bs=1024x1024x100 count=40

 ▼図15　dd(1)で読み込みキャッシュを無効化

140 - Software Design

12 Debian Developer　やまねひでき　henrich@debian.org

前途多難なInitシステム／64bit ARM対応、
動き出したRCバグ対応

はじめに

　読者のみなさん、2014年が始まりましたが、
年末年始の長期休暇からの復帰に遅滞はありま
せんか？　筆者はこの原稿を書いているときは
年末進行まっただ中で、例のごとく遅延して編
集の方をお待たせしています……毎度すみませ
ん。2014年はこのへんが改められればいいの
ですが。

Initシステムと
技術委員会の動向

　2014年1月号の本連載でお伝えしたDebianで
の標準 Initシステムを巡る騒ぎですが、
いまだに結論は見えないままです。ホリ
デーシーズンへ突入したためか開発メー
リングリスト（debian-devel）での議論は
停滞ぎみになっており、技術委員会（ctte）
からもとくに意見表明が出ていません。
ctteメーリングリストでは議論が続いて
おり、2013年12月時点では systemd/

upstartのセキュリティ問題などへ議論
は発散しています。興味のある方は

Bug#727708を引き続きウォッチしてください。
　そして技術委員会についてですが、Keith

Packardさんが空席を埋める新たな委員として
任命されました注1。KeithさんはIntel社に所属
してX.orgのupstreamとして活動をしている
のでDebian以外のところで名前を見かけてい
る人も多いかもしれません注2。

「不具合パッケージ自動削除」
の効果測定

　また、2013年12月号の本連載で取り上げた
「不具合パッケージの自動削除（auto-rm）」です
が、大きな効果が出ているようです注3。バグの
数の減り方のグラフ（図1-②）を見てみると明

 ▼図1　RCバグの状況注4

縦軸：件数　横軸：月・年
凡例：①現在（unstable）のRCバグ数　②次のリリース（testing）に

対するRCバグ数　③安定版（stable）のRCバグ数

注1） URL https://lists.debian.org/debian-devel-
announce/2013/11/msg00009.html

注2） 個人的にはBdale Garbeeさんと一緒にロケット
打ち上げて楽しんでいる人、という印象が強い
です。

注3） パッケージメンテナとしては最終的にはバグ
修正する必要があるので、直すのを先回しに
しただけとも言えるのですが……。

注4） URL http://bugs.debian.org/release-critical/

https://lists.debian.org/debian-devel-announce/2013/11/msg00009.html
http://bugs.debian.org/release-critical/

140 - Software Design Feb. 2014 - 141

前途多難なInitシステム／64bit ARM対応、
動き出したRCバグ対応 12

らかに減少していることがわかります（stable

でのRCバグ（Release Critical bug）に近い数に
なってきています）。testingに大きな機能の欠
損がなければDebian 8“Jessie”のリリース作業
は以前よりスムースなものとなるでしょう。

64bit ARMサポートへの道程

　2013年11月14～17日にMiniDebConf in UK

がケンブリッジのARM社で開催されました。
100名程度の参加者を集めてさまざまな発表が
行われました。開催地からもわかるようにおも
にARM関連の作業が「ARM sprint注5」として実
施され、その結果をまとめた「Bits from ARM

porters」というメール注6が流れています。内容
をかいつまむと、

・	性能のいいARMサーバが手に入ったらそこ
で集中してビルドしようと考えていた。し
かし、ARMv5tのマシンでARMv4tのコード
をビルドした場合などに潜在的な問題が出
てくる可能性があるので、これは止める

・	armelはしばらくビルドを続ける注7

・	armhfマシンはいくつかのハードウェアベン
ダから寄付のオファーをもらっている

・	Jessieではarmhfでarmmpとlpaeのサポー
トを追加する

・	GRUBでのARMサポートを実験的に追加
・	Jessieのフリーズ前に64bit ARMマシンが

手に入らなければ、Jessieでのサポートは
見送る

というものでした。
　そして、64bit ARMのサポートの話題につ
いては、

注5） sprintとは短期間にある事柄について集中して作業するイ
ベント。

注6） URL https://lists.debian.org/debian-devel-announce/　
2013/12/msg00001.html

注7） armel自体はDebianの公式サポートアーキテクチャから
は外れています。

「入手できるarm64注8マシンそのものが市場
にない（唯一、iPhone 5sがあるがこれはビ
ルドマシンという目的に合わないので対象
外）。また、Debianは寄付で成り立っており、
ARM（32bit）サーバに7,000ドルもかけると
いう選択肢はない。Canonical社がアプライ
ド・マイクロ・サーキット社とX-Geneサー
バ注9をUbuntu arm64版のために提供してく
れるよう交渉しているようだが、我々はあ
と半年は使えそうになく、できたとしても
Debian 8“Jessie”のフリーズ直前になる。
とりあえず、クロスビルドかqemuでのビル
ドを正式版になる前の足がかりとして作成
するのが良いのではないか」
「リリースに間に合わないのであれば、以前
に行った『etch-m68k』のようにunstableの
スナップショットを『jessie-arm64』という
形で提供すれば良いのでは？注10」

などの意見が出されています。
　Debianプロジェクト内にはARM社に雇用さ
れている人や、Linaro注11で働いている人が何
人かいるなど、それなりにつながりはあるよう
です。しかし、ARM社はプロセッサを直接生
産しておらずCPUのライセンスを各社に提供
するだけです。ライセンス供給を受けた会社が
各チップを設計／生産するという Intel/AMD

社のx86とは違うスキームのため、arm64のマ
シンを入手できそうなコネがないのが辛いとこ
ろです。
　また、通常アーキテクチャを追加する際には

注8） Debianで利用する正式なアーキテクチャ名はAARCH64
ですが、arm64のほうが通りが良いので皆そちらを使って
いるようです。

注9） URL http://www.apm.com/products/data-center/
x-gene-family/x-gene/　「世界初の64bit ARMサーバ」だ
そうです。

注10） 以前にDebian 3.1“Sarge”の際、公式リリースにはamd64
は含まれず、あとから「sarge-amd64」としてビルドが提供
されたことがあったので選択肢としてはありえそうです。

注11） ARM用のLinuxカーネル開発などを推進している非営利組
織。 URL http://www.linaro.org/jp　ARM社やCanonical
社から出向して作業している人も結構います。

https://lists.debian.org/debian-devel-announce/2013/12/msg00001.html
http://www.linaro.org/jp
http://www.apm.com/products/data-center/x-gene-family/x-gene/

142 - Software Design

前段階としてdebian-ports注12で作業が行われ
るのですが、これについてのやりとりも

「debian-portsへarm64移植版を追加するよ
うに依頼を受けて準備はしておいたよ。ずっ
とbuildd注13のセットアップに必要な情報を
待っているんだけど」
「その返信は見てなかった……まだ実機がな
いので作業できない。linaroのパートナーが
持っているarm64マシンに一時的にアクセ
スできるようにはなったけど、NDAのせい
で私は触れない（けれどアクセスできる別の
Debian開発者がいるよ）」

というような感じで「準備は進めているものの
利用できるハードウェア待ち」といった様子で
す。
　なお、debian-portsは、Debian本体で利用し
ているインフラではなく独自のインフラを持っ
てパッケージの管理を実施しています。これを
Debian本体と統合する話も出ていますが、

「debian-portsをDSA注14管理にするのはい
いけど、機能は落とさないでね。それから、
移行するにしてもフリーズ期間中であって
も更新パッケージをかまわずにアップロー
ドできるようにしてくれないと移植作業が
滞る。この機能（unreleased suite）をdak注15

に追加をしてほしいと言ったのだけど、誰
も作業してくれていない（からまだ無理なん
じゃないの？）」

とこちらも検討はしているものの滞っている様
子。

注12） URL http://www.debian-ports.org/　Debianの公式移植
版の前段階としてインフラを提供するプロジェクト。

注13） build daemon、パッケージビルドサーバのこと。
注14） Debian System Adminの略で、debian.orgドメインのサー

バ管理を行う人たちを指します。ちなみに同じ略語で
Debian Security Advisoryというのもあります。ややこしい。

注15） Debian Archive Kitの略。Debianのリポジトリ管理を行っ
ているツール。

　debian-portsをDebian本体のインフラと統
合することで、将来的なインフラ拡張への柔軟
性を高めることと、debian-ports側の作業を減
らして新規アーキテクチャのサポート追加／公
式サポートから外れたアーキテクチャを
debian-portsへ移管する作業がスムースに進む
ことが期待されますが、現在運用している公式
インフラの統合を行うのにはある程度の時間集
中して関係者の人的リソースを提供する必要が
あります。フルタイムで雇用されている人員が
いないDebianではこの辺のハードルが高そう
です。

MiniDebConf in Paris/
FOSS ASIA 2014

　台北、ケンブリッジと続けて開催されている
MiniDebConfですが、ちょうどこの号が出る
ころの2014年1月18～19日にパリでも開催す
ること注16をSylvestre Ledruさん注17が発表し
ています。詳細は（本稿を書いている時点では）
まだこれからのようですが、すでに20名ほど
の登録者がいるので、今回も盛況となりそうで
す。
　また、Debianも参加するイベントとして
「FOSS ASIA 2014」注18の情報が入ってきまし
た。2014年2月28日～3月2日にカンボジアの
プノンペンで行われ、さまざまなFLOSSコミュ
ニティが参加します。興味のある方はTwitter

で@fossasiaをフォローしてみてください。

AWSからの寄付と
アーカイブリビルド

　Debianではパッケージがビルドできないバ
グを重大な問題として位置づけています（これ

注16） URL http://lists.debian.org/debian-devel-announce/ 2013/11/
msg00004.html

注17） LLVM周りのパッケージをメンテナンスしている方。clang
のバージョンアップごとにDebianの全パッケージをビル
ドしなおしてステータスをまとめている URL http://clang.
debian.netなども彼の手によるものです。

注18） URL http://fossasia.org/

http://fossasia.org/
http://lists.debian.org/debian-devel-announce/2013/11/msg00004.html
http://clang.debian.net
http://www.debian-ports.org/
http://clang.debian.net

142 - Software Design Feb. 2014 - 143

前途多難なInitシステム／64bit ARM対応、
動き出したRCバグ対応 12

を FTBFS（Fails To Build From Source）、つ
まりソースからビルドできないという略語で示
します）。FTBFSはリリースの障害となるRC

バグとして扱われるので、リリース前にはすべ
て解決しなければなりません。この問題への対
処策の1つとして、定期的に全パッケージをビ
ルドする「アーカイブリビルド」という作業が、
数年前から現プロジェクトリーダーのLucas

Nussbaumさんによって開始されました。この
作業によって、ビルドに問題の発生しているパッ
ケージを早期に洗い出して修正ができるように
なり、リリースの遅延が軽減されています。
　すべてのパッケージのリビルド作業ですから、
膨大なマシンパワーが必要になります。最初の
うちはLucasさんが利用可能なフランスの研究
機関所有のグリッドクラスタマシンによって行
われていました。しかし、これだとLucasさん
以外の人が触れないことから、現在はグリッド
クラスタからAWS上に移行して作業が継続さ
れています（現在はDavid Suarezさんがメイン
で実施）。そして、この作業にかかる費用はす
べてAWSからの寄付で賄われており、2014年
はその寄付額が8,000ドルとなることが報告さ
れました。AWSのソリューションアーキテク
トである James BrombergerさんがDebian開
発者であることから一連の寄付が実現したとの
ことで、ありがたい限りです。
　ただ、定期的とはいえアーカイブリビルドの
実施とパッケージのアップデートにはタイムラ
グが生じているので、個人的には「より早期の
対処を目的としてCI（継続的インテグレーショ
ン）が実現できればいいな」と考えています。

ゲームOSとDebian

　コアなゲーマーの方であれば、「Steam」の名
前を聞いたことがあるのではないでしょうか。
SteamはValve社が提供するゲームのダウン
ロード販売サービスで、このSteamで購入／
ダウンロードしたゲームをプレイすることに特

化したOS「SteamOS」（現在開発中）はLinuxを
採用していることが知られています。以前ささ
やかれていたようにUbuntuをベースとしてい
るのではなく、Debianに手を入れたものであ
ることが明らかにされています。
　SteamOS FAQ注19によると、

・	Debian 7“Wheezy”ベース
・	glibcをtestingからbackport
・	kernelも3.10ベースに変更
・	グラフィックドライバを更新、その他グラ

フィックコンポーネントを独自で実装
・	ValveのSteamOSリポジトリから自動更新

するようにしている

などが記載されています。また新たなDebian

派生ディストリビューションが登場するわけで
すね。

Debian 8“Jessie”用
アートワーク募集中

　最後は軽めの話題で。次のリリース用デスク
トップテーマの公募が始まっています注20。
Debian 6ではポップな「Space Fun」、Debian 7

では打って変わってシックな「Joy」が採用され
ました。Debian 8ではどのようなものになる
のか、すでにいくつかのテーマがDebian Wiki

に掲載されているようですので注21、ちょっと覗
いてみてJessieのデスクトップを想像するのも
楽しいのではないでしょうか。デザインに自信
のある方はぜひご応募ください。

◆　◆　◆
　読者のみなさんの興味を引くような話題はあ
りましたか？　ぜひご意見を@gihyojpまたは
@debianjpまでお寄せください。可能な限り反
映させていただきます。末尾になりましたが、
本連載を今年もよろしくお願い致します。｢

注19） URL http://steamcommunity.com/groups/steamuniverse/
discussions/1/648814395741989999/

注20） U R L http://lists.debian.org/debian-devel-announce/
2013/11/msg00002.html

注21） URL https://wiki.debian.org/DebianArt/Themes

http://steamcommunity.com/groups/steamuniverse/discussions/1/648814395741989999/
http://lists.debian.org/debian-devel-announce/2013/11/msg00002.html
https://wiki.debian.org/DebianArt/Themes

はじめに

　こんにちは。レッドハットでミドルウェアの
ソリューションアーキテクト（プリセールス）を
担当している梅野です。とくにビジネスルール
マネージメントシステム（BRMS）を中心に担当
しています。BRMSはここ2年くらいで急速に
注目を浴びてきています。

BRMSって何？

　2007年からこのBRMSに関する仕事をして
います。当時は大手検索エンジンで検索しても、
出てくるのはベンダーのサイトが数件ある程度
でした。それが今では21万件以上のヒットがあ
ります。かなりメジャーになってきましたが、
今一度ここで説明します。
　皆さんが会社で業務を行うにあたり、会社の
決まりに従って行動していると思います。モノ
を作っている会社ではレシピに従ってモノを作っ
ていく、サービスの販売ではオプションの組み
合わせで、これとコレの組み合わせはOKだけ
ど、アレとコレの組み合わせにはソレも必要と

説明したりしているでしょう。
　これらすべてが人の頭の中に入っていて、誰
でも同じ品質で作業ができていれば問題はあり
ませんが、競争相手が新しいことを考えてくる
と、業務はだんだん複雑になっていきます。そ
うなると、デキる人にばかり仕事が回されたり、
確認や承認に時間がかかってくるようになりま
す。おそらく皆さんの会社・組織でもそのよう
なことがあるのではないでしょうか。
　このために、「アプリケーション」というもの
を作って、仕事を楽にしようとしています。IT

が業務を支えているところです。
　ところが、その「アプリケーション」の作りが、
とりあえず動けばいいや……という観点で作ら
れていると、業務の変更要求が来た場合に応え
られなくなります。アプリケーションの改造に多
額のお金と手間がかかってくることになります。
　そこで活躍するのがルールエンジンです。ア
プリケーションの主要な部分を占める、データ、
プロセス、ルールのうち、プロセスとルールの
部分をアプリケーションから切り出し、外で管
理・実行するようにします。さらに、その「ルー
ル」を、スプレッドシートで記述できて、書いた
ものがそのまま動くとなると、メンテナンス性
が非常に高くなります（図1）。

BRMSの2つの顔

　今読んでいただいた部分を、筆者はBRMSの
表の顔と言っています。わかりやすい表現でロ
ジックを作るというところです。もう1つに裏
の顔というのがあります。それは、パターンマッ
チングをベースとした人工知能のアルゴリズム
を使うことで、難しいロジックを簡単に記述す
ることです。難しくは推論という分野になりま
す。40年ほど前に発明されたRETEアルゴリズ
ムというのを脈々と受け継いでいます。その昔
は、エキスパートシステムと呼ばれていたこと
もあります。
　今までRETEアルゴリズムが受け入れられて

恵比寿通信
レッドハット

梅野 昌彦
UMENO Masahiko

レッドハット㈱
シニアソリューションアーキテクト

2014年はBRMSが来る？

第 回17

144 - Software Design

いなかったのは、そのままでは扱いが難しかっ
たのと、オブジェクト指向でメモリを多く消費
する傾向にあるからです。ビジネスルールとい
う表の顔を得たことと、メモリの価格が下がり
64bit OSが当たり前になって利用可能なインフ
ラが整ったお陰で、ようやく陽の目を見るよう
になってきたように思えます。

BRMSの効果

　ロジックが可視化されることは意外と多くの
メリットがあります。業務ユーザが書いたスプ
レッドシートをそのまま取り込めるので、少し
ですが工数の削減になります。また、仕様の変
更時に、スプレッドシートで直接変更指示がで
きますので、システム開発側との言葉の齟齬が
なくなります。
　開発スタイルも、設計時からプロトタイプを
繰り返し作って、少しずつ大きくしていく形に
なります。デスクワークだけで作られた設計書
を元に作られたプログラムと、技術的に裏を取
りながら作られた設計書で作られたプログラム

を比較すると、テスト工程まで
行ったときの品質が全然違いま
す。その結果、開発工数、テス
ト工数が少しずつ削減され、ち
りも積もれば山となり、結果的
には大きく工数が削減されるこ
とが多くのプロジェクトで実証
されています。
　残念なことにSIは今や精神的
におかしくなってしまう人も生
んでしまう産業になってしまっ
ていますが、残業がない・品質
が悪くならないとなると、不幸
になる人も減ります。経営者か
らするとこの効果は絶大なはず
です。
　ITとしての直接的な効果だけ
でなく、ビジネスへの間接的な

効果、経営への副次的な効果がジワジワ出てく
るのが特徴です。

恵比寿といえば

　この見出しにも鯛が描かれているのに、今ま
での恵比寿通信の中で触れられていないので筆
者が紹介します。恵比寿といえば、「ひいらぎ」
という鯛焼き屋さんがあります。パリっとした
薄皮の中に甘さ控えめのアンコがギッシリ詰まっ
ています。筆者が心を動かされて、人生で初め
てファンクラブに入り、仕事のPCにもサイン
を頂いた歌手のMay'n（メイン）さんもここの鯛
焼きが大好きで、店内にはサインも飾ってあり
ます。恵比寿に来られたときはぜひ訪れてみて
ください！　May'nさんのライブは、時には楽
しく、時には誰にも触られたことのないココロ
の隙間をつつかれるようで、歌がとても熱くて
素敵です。今年はデビュー10周年で、47都道府
県＋ワールドツアーを行うようなので、ぜひ遊
びに行ってみてください！ﾟ

RuleTableキャンペーン
CONDITON CONDITON CONDITON CONDITON ACTION
Item Item b:Basket
Itemname Itemname Date ＞＝ $1 Date ＜ $1 b.setPoint(point *$1)
商品名1 商品名2 キャンペーン開始 キャンペーン終了 Point倍率
ViVidカラーの
ツバサ 妖精の鏡 2014/1/1 0:00 2014/3/31 23:59 100

白鳥のドルチェ ダイヤモンド
Jewels 2014/1/1 0:00 2014/3/31 23:59 100

ポイント100倍キャンペーン！
2014/1/1 0:00～2014/3/31 23:59までに下記の組み合わせでご購入の場合、
ポイントを100倍差し上げます！
ViViDカラーのツバサと妖精の鏡の組み合わせ
白鳥のドルチェとダイヤモンドの組み合わせ
…

ビジネスルール

while (basket[i] == null){
 if (basket[i] == ViViD) flag = true; i++;}
while (basket[i] == null) {
 if (combi == true && basket[i] == Yousei) point = point * 100; i++;}
…

通常のプログラミング

BRMS

 ▼図1　ルールの説明

どちらが
わかりやすい
でしょう？

恵比寿通信レッドハット 第 回17
2014年はBRMSが来る？

144 - Software Design Feb. 2014 - 145

146 - Software Design

Ubuntu Monthly Report

　読み手としては、電子書籍は十分に普及したと
言っていいと思います。筆者もAmazonのKindleや
角川のBook Walkerでライトノベルやマンガをたく
さん読んでいます。では書き手としてはどうでしょ
うか。PDFで出力するのであれば、おおよそどのよ
うなアプリケーションでもいいですが注1、やはり
EPUBでも出力したいです。PDFもEPUBも互いに
得手不得手があり、読者に選択する権利があるのが
望ましいと考えるからです。
　筆者が普段執筆に使用しているLibreOfficeでも、
拡張機能をインストールすればEPUBで出力すること
もできます。しかし、当然ですがLibreOfficeが持つ機
能のごく一部分しか反映できず、それを意識すると執
筆がおろそかになるという本末転倒な未来が見えます。
やはり専用のツールを使用するのがいいと考えました。
　EPUBにもPDFにも出力できる電子書籍作成シ
ステムはいくつかあるようですが、筆者は迷いもな
くReVIEW注2にしました。記法が比較的容易であ
り、かつ普通のテキストエディタで執筆できること
と、Ubuntuで容易に環境構築できそうなことが決め
手でした。仮想環境などを使わず、最短ならたった

注1） とくにUbuntu上だとPDFでの出力は印刷するように簡単に
行えますし。

注2） https://github.com/kmuto/review

電子書籍と
ReVIEWとフリーと

2行のコマンドで準備完了というのは、それだけで
極めて魅力的です。PDFはバックエンドでTex Live

を使用しているうえに、ReVIEWの開発は日本人に
よって行われているので、組版ルールを最大限に考
慮した美しい仕上がりが期待できたという点も重要
です。実際に高品位で満足しています。
　ReVIEW自体のライセンスはLGPLであり、その
他使用するアプリケーションはすべてオープンなラ
イセンスのものです。そればかりかEPUBもPDF

もフリーなフォーマットです。これもフリーにこだ
わりたい筆者にとってはとても魅力的でした。

　ReVIEWは1章につき1ファイルにしてください。
ファイルにはreという拡張子を付けます注3。CHAPS

には、各章のファイル名を記入します。1行目が1章、
2行目が2章となります。1章しかなくてもこのファイ
ルは用意してください。
　画像は imagesファイルにまとめます。注意すべき
はファイル名で、対応するreファイルの拡張子を除
いたものと画像のユニークな名前をハイフンでつな
ぎます。具体例はのちほど紹介します。画像の形式
はJPEGやPNGが使えるようですが、今回はPNG

を使用しました。

注3） 仕様上はこれでなくてもいいようではありますが、これ以外
のものにする積極的な理由が思い当たりません。

ReVIEWの構造

Ubuntu Japanese Team
あわしろいくや　AWASHIROI Ikuya

 Mail ikuya@fruitsbasket.info

今回はReVIEWを使用して1つのソースからPDFとEPUB形式の電子書籍を作成してみます。

Ubuntu Monthly Report

ReVIEWで電子書籍を
作成してみよう

第46回

https://github.com/kmuto/review

146 - Software Design Feb. 2014 - 147

ReVIEWで電子書籍を作成してみよう 第 46 回

　今回はVirtualBoxを用意し、そこにXubuntu

13.10をインストールしました。もちろんUbuntuな
どでもいいですし、ReVIEWを使用するだけであれ
ばGUIすらも必要ありません。しかし、制作した環
境で手軽にプレビューしたかったので、仮想環境で
も軽快に動作するXubuntuを選択しました。Ubuntu

のバージョンは12.10以降であればなんでもいいで
す。サポート期間を考えると13.10が無難でしょう。
VirtualBoxのバージョンは4.2.20や4.3.4以降にし
てください。これより前のバージョンでは、共有
フォルダの扱いに不具合があります。どうしてもこ
のバージョンのVirtualBoxが用意できない場合は、
Ubuntuのバージョンを下げてください。
　共有フォルダはゲストでGuest Additionsをインス
トールし、vboxsfグループにユーザを追加します。コ
マンドで追加する場合は、

$ sudo adduser $USER vboxsf

を実行してください。ホストでは、［設定］-［共有フォ
ルダ］-［共有フォルダを追加］で共有フォルダを指定
してください。その際、［自動マウント］にチェックを
入れてください（図1）。このようにPublicフォルダを
共有フォルダに指定した場合は、ゲストOSからは“/

media/sf_Public”でアクセスできるようになります。
　いよいよ必要なパッケージをインストールします。
今回はrubygemsとtexlive-lang-cjkとtexlive-fonts-

recommendedが必須です。必須ではありませんが、
EPUBの確認用にCalibreをインストールしておく
と便利です。コマンドラインからインストールする
場合は、図2のコマンドを実行してください。
　実のところReVIEWはSubversionやGitからもイン
ストールできますが、今回はgemにしました。インス
トールするだけでパスが通っているので楽というの
が主な理由です。開発版ではなくリリース版を手っ取

ReVIEWの環境準備
り早く使うにも、gemはいい選択肢だと思います。Re

VIEWのgemは次のようにインストールしてください。

$ sudo gem install review

　ReVIEWのgemは/var/lib/gems/1.9.1/gems/

review-1.1.0にインストールされています注4。ここに
はサンプルの書籍も収録されています。まずはこれ
でビルドができるかどうか確認してみましょう。
　testフォルダの下にsample-bookフォルダがある
ので、これをまるごとHOMEフォルダにコピーしま
す。今回はHOMEフォルダ直下にしますが、もちろ
ん別のところでもかまいません。コマンドラインか
らコピーする場合は、次を実行してください。

$ cp -r /var/lib/gems/1.9.1/gems/review-1.1.0/ｭ
test/sample-book/ ̃/

　では、実際にビルドしてみます。まずはHTMLに
変換して確認します。ここから先はコマンドライン
で行うのがいいでしょう。

$ cd ̃/sample-book/src
$ review-compile --target html -a

　これで ch01.htmlとch02.htmlとpreface.htmlの3

つのファイルができました。targetオプションで変換
する形式を選択し、aオプションでそのフォルダにあ
るすべてのreファイルを変換します。もしch01.

htmlだけを変換する場合は、

$ review-compile --target html ch01.re > ｭ
ch01.html

注4） 執筆の段階でです。バージョンによって読み替えてください。

サンプルでビルド確認

$ sudo apt-get install rubygems texlive-lang-cjk texlive-fonts-recommended calibre

図2　必要なパッケージのインストール

図1　VirtualBoxの共有フォルダの設定

148 - Software Design

Ubuntu Monthly Report

としてください。見てのとおり、リダイレクトしな
いと標準出力に表示されるだけで終わってしまいま
す注5。サンプルですので当然エラーは出ませんが、重
大なエラーがあったら標準出力に表示されることが
ありますので、そのエラーは見逃さないでください。
　HTMLを確認したら、次はEPUBを出力してみま
す。EPUBの出力にはzipパッケージが必要ですが、
Xubuntuにはデフォルトでインストールされている
のでとくにインストールはしていません。次のコマ
ンドを実行してください。

$ review-epubmaker config.yml

　config.ymlファイルはその名のとおり各種設定が
書かれています。ここにbooknameというパラメータ
があり、出力に成功するとこれに拡張子（今回は
epub）がついたファイルができます。すなわち、今
回はbook.epubが出力されます。そのほかにbook-

注5） もちろんページャーに渡して脳内でHTMLをレンダリングし
てもいいのですが、普通はファイルとして出力してWebブラ
ウザで確認するのがいいと思います。

epubというフォルダも出力されています。review-

epubmakerを再実行する場合は、このフォルダと
ファイルを事前に削除してください。
　作成されたEPUBファイルを確認する場合は、先
ほどインストールしたCalibreを使用します。book.

epubをダブルクリックしてみてください（図3）。
　次はPDFを作成してみます。次のコマンドを実行
してください。

$ review-pdfmaker config.yml

　ここでもconfig.ymlファイルを使用しています。
作成されるファイル名も同じルールで、book.pdf（図
4）とbook-pdfフォルダができました。再作成する場
合も、やはり事前にこれらのファイルとフォルダを
削除してください。確認した限りでも、PDFの出力
はエラーが出やすいです。ただ、このサンプルでは
texlive-fonts-recommendedさえインストールされて
いればエラーは出ないはずです。

　ビルド環境を整えるのと、実際に書くのとはもちろ
ん順番が前後してもかまわないので、まずはとにか
くReVIEW形式の文章を書き始めるのもいいと思い
ます。なお、/var/lib/gems/1.9.1/gems/review-1.1.0/

doc/format.rdocにより詳細な解説がありますので、
こちらを参照してほしいのですが、ここには書かれ
ていないハマりどころを解説していくことにします。

 ■箇条書き
　箇条書きを有効にするためには、前後にも改行が
必要です。すなわち、箇条書き全体が1つの段落に
なっている必要があります。

 ■脚注
　記法に関する注意ではなく運用上の注意ですが、
脚注には識別子注6が必要で、最初のうちは数字を使
用していましたが数が多くなると破綻するので、こ

注6） という表現が正確なのかはわかりませんが。

ReVIEWの記法
図3　 CalibreのEPUB表示アプリケーションでサンプル

のEPUBファイルを表示させた

図4　book.pdfを表示させた

148 - Software Design Feb. 2014 - 149

ReVIEWで電子書籍を作成してみよう 第 46 回

れはやめたほうがいいです。

 ■図
　図の記法は、

//image[ファイル名][キャプション]

ですが、ファイル名には拡張子は含めません。また、
実際の画像のファイル名とそっくりそのまま使用すれ
ばいいわけでもないです。たとえばubuntu.reという
ReVIEWファイルからsaucy.pngを呼び出したい場合、

//image[saucy][これがSaucyのデスクトップ]

と記述します。画像のファイル名は images/ubuntu-

saucy.pngとすると呼び出せます。

 ■表
　表自体はシンプルな記法ですが、PDFにした場合
は改行しないので、右端が切れてしまいます。1行を
あまり長くしないほうがよさそうです。また、表中
での脚注も正しく使用できなかったので、頭を抱え
るということがありました。

　というわけで、今回は試しに『Ubuntuの基礎知識』
という本を書いてみます。内容はリスト1（introduc

tion.re）のとおりです。これをサンプルフォルダ（̃/

sample-book/src）に保存します。CHAPSファイルを開
き、“introduction.re”（引用符は不要）の1行だけにしま
す。今回はPREDEFファイルとpfeface.reは使用し
ないので削除します。最低限これは必須です。表示画
像が images/cover.jpgにありますが、今回はcover.

pngを新たに作成しました。その場合、_cover.htmlを
開き、忘れずにファイル名を変更してください。
　最後にconfig.ymlを編集します。おおよそコメン
トのとおりに書き換えればいいので、とくに躓くと
ころはないはずです。あとは先にも出た、“review-

epubmaker config.yml”や“review-pdfmaker config.

yml”を実行し、EPUBやPDFを生成してください
（図5）。｢

実際に書いてみる

= Ubuntuとは

== Ubuntuとは？
UbuntuはLinuxディストリビューションのひとつです。ｭ
Debianをベースとし、半年に一度定期的にリリースさｭ
れます。偶数年の4月にはLTS(Long Term Supprt)がｭ
リリースされ、5年間サポートが継続されます。それ以ｭ
外の通常リリースは9ヶ月サポート@{fn}{support}です。
//footnote[support][12.10までは18ヶ月サポートで
したが、13.04から半減しました]

バージョンはリリースされた年と月から取り、コードｭ
ネームも割り当てています。

ほかにも、

 * 主としてデスクトップ環境を変更したフレーバーｭ
を多数用意
 * 企業によるサポートあり
 * サーバー版も用意

といった特徴があります。

==[column] Ubuntuの意味は？
Ubuntuは、ズールー語やコサ語で「他者へのおもいやり」ｭ
という意味です。@
{}
発音は「ウブントゥ」が近いです。しかし「ウブンツ」とｭ
発音する人も多いです。

==現在サポートが継続しているUbuntuのバージョン
//table[version][Ubuntuのバージョン]{
バージョン リリース日 サポート終了月
--ｭ

10.04 2010/04/29 2015/04
12.04 2012/04/26 2017/04
12.10 2012/10/18 2014/04
13.04 2013/04/25 2014/01
13.10 2013/10/17 2014/07
//}
ただし10.04ではサーバー版のみで、デスクトップ版はｭ
すでにサポートが終了しています

==ダウンロード
Ubuntuでは日本語Remixという日本語向けのバージョｭ
ンがあり、特段の理由がない限りはこれを使用してくｭ
ださい。

@<href>{http://ubuntulinux.jp/, Ubuntu ｭ
Japanese TeamのWebサイト}からダウンロードしてくｭ
ださい。

リスト1　ReVIEWで書いたサンプル（introduction.re）

図5　でき上がったEPUBを表示したところ

150 - Software Design

　とくに高木さんの登壇は開催前から話題になり、
多数の参加がありました（写真1）。山口さんの講演
も、大人たちの間では意外に知られていない子供の
ネット利用の実態が詳細に報告される濃い内容で、
反響が大きかったです。

■ユーザ企画

　参加団体が自主的に企画し、実施するセミナーなど
のセッションです。10階の多目的ホールとサロン、9階の
セミナールーム2部屋、6階PCルームを利用し、東邦之
さん（Cubicroot）による「実践的bouncehammer」、新原
雅司さん／原田康生さん（Kansai PHP Users Group）に
よる「Composerを活用しよう」など、2日間で31本を実
施しました。jusもjus研究会大阪大会を行いました。

■展示企画

　10階のデザインギャラリーとデザインショーケース
を利用しての展示会です（写真2）。ファーエンドテク
ノロジー、Joe'sクラウドコンピューティング、KDDI

ウェブコミュニケーションズなど47団体が出展しま

　今回は2013年11月に大阪で行われた関西オープ
ンフォーラムの模様をお届けします。

 ■関西オープンフォーラム2013

 【日時】2013年11月8日（金）～11月9日（土）

 【会場】大阪南港ATC ITM棟

　関西圏では屈指のITコミュニティイベントである
関西オープンフォーラム（KOF2013）が2013年も開催
され、2日間合計で約1,500人の参加者を集めました。
実施されたプログラムの中から一部を紹介します。詳
細はKOF2013のWebサイト注1を参照してください。

■基調講演

　実行委員会が講師を招待して行う講演会です。今
回の講演は次の4本でした。

• 「パーソナルデータ保護を考える」

高木浩光［産業技術総合研究所］

• 「地場産業としてのオープンデータの可能性」

大向一輝［国立情報学研究所］

• 「国内最大級の省エネ型データセンター『石狩デー

タセンター』のご紹介」

田中邦裕［さくらインターネット］

• 「『知らなかった』から『聞いたことがある』へ ～『子

供とネットを考える会』で考えていること」

山口あゆみ（はなずきん）［子供とネットを考える会］

関西ITコミュニティの熱気に包まれた2日間 KOF2013

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

NO.28
February 2014

関西オープンフォーラム2013

写真1　基調講演の様子注1） URL http://k-of.jp/2013/

http://www.jus.or.jp/
http://k-of.jp/2013/

Feb. 2014 - 151150 - Software Design

した。例年の光景ですが企業もコミュニティも机1つ
でところ狭しと出展する様子は、このイベントの熱さ
と手作り感を象徴しているように思います。

■ショーケース

　新たな試みの1つとして、デザインショーケースの2

部屋を利用して、従来の枠には収まらないような形態
のプログラムを実施しました。1つはMozilla Japanに
よるFirefox OS搭載スマートフォンの展示とFirefox

OSアプリ開発ワークショップです。もう1つはCTF

（Capture The Flag）注2のデモと解説で、実際にセキュ
リティ系の問題を解く様子を画面で見せつつ解説がな
されました。

■ステージ企画

　展示会場の片隅に設けた特設ステージで繰り広げ
られるショートプレゼンテーションです。下野智美さ
ん（GMOクラウドWEST）による「ヮピコ誕生物語」、
鈴木敏郎さん（神戸ITフェスティバル実行委員会）に
よる「『自慢したくなるスゴいIT』神戸ITフェスティバ
ルの自慢話」をはじめ、後述する書籍関連のセッショ
ンも含めて合計27本を実施しました。例年実施して
いる15分間の対談形式のほかに、初の試みとして5

分間のライトニングトーク形式の発表も行いました。

■ジュンク堂書店KOF店

　展示会場の一角にジュンク堂の出張書店が設けられ

ました。参加団体から推薦された書籍を取りそろえ、
充実したラインナップでの出店となりました。また、
書店ブースの向かいにある特設ステージを利用しての
書籍紹介やサイン会も行われました。とくに、横田真
俊さん（さくらインターネット）による『ブログ＋ツイッ
ター＋フェイスブック使い分け・連携テクニック』注3の
書籍紹介は観客も多く、盛り上がりました。

■ウォーキングツアー

　実行委員の引率で会場内を見て回るツアーです。
金曜日2回、土曜日3回の計5回実施しました。10階
の展示会場からスタートし、ユーザ企画が行われる
サロンや多目的ホールを経由して、9階のセミナー
ルームまで足を伸ばしてから展示会場に戻る、所要
時間約30分のコースです。参加者は毎回数名です
が、1人でも多くの人にこのイベントの開催意義を理
解してもらうことは重要と考えています。

■懇親会

　KOFにおける最重要イベントの1つが懇親会です。
例年どおり金曜日の夜に行いましたが、前回まで利用
していた店が閉店したため、今回はITM棟6階にあ
るPIER6にて開催しました。152人という大勢の参加
があり、ビアスポンサー提供によるベルギービールを
はじめとするお酒や料理とともに、コミュニティ活動
に携わる者同士の熱い交流が展開されました。

■終わりに

　jusはKOF創立時から共催という形で参加してい
ましたが、KOFの財政もようやく安定してきたので、
2013年からは人的支援を中心とする協賛という名義
に変わりました。しかし、名義は変わっても幹事数
名が実行委員会に名前を連ね、当日も現場で手伝う
といった協力体制はこれからも続けていきます。
2014年のKOFも11月7日（金）～8日（土）に大阪南港
ATCにて開催の予定です。｢

注3） 横田真俊、秀和システム、2012年9月、978-4-7980-3513-0

注2） DEF CONなどで実施されているコンピュータセキュリティ
技術の競技。リバースエンジニアリング、パケット分析、プ
ロトコル解析、暗号解読などの知識技能が試される。

関西ITコミュニティの熱気に包まれた2日間 KOF2013 February
2014

写真2　展示会の様子

152 - Software Design

　Hack For Japanは2011年3月11日の東日本大震
災発生直後に活動を開始し、まもなく2年9ヵ月（執
筆時点）になろうとしています。今までの活動の中
には、成果を出せたものもあれば、かけ声だけに終
わったものや、あまり効果的ではなかったものなど
もあります。
　また、私たちHack For Japanの活動はITを活用
した復旧・復興支援の中でも「開発」に重きを置いた
ものですが、私たち以外にも多くのITを用いた復
旧・復興支援を行っている団体やコミュニティ、そ
して個人がいます。
　思いを同じとする人々が集まり、今までの活動を
振り返るとともに、今後の活動を検討し、協力関係
の可能性を検討するためにと企画されたのが、「ITx

災害」会議です。
　2013年10月6日に開催されたこの「ITx災害」会
議の模様を今回はご紹介します。

きっかけと準備

　2012年、Hack For Japanでは、復興支援などに
対して ITの力を活かして貢献したいという思い
を持つ方と支援を必要としている方とをつなぐた
めの取り組みである、スキルマッチングを開始しま
した注1。しかし、今に至るまであまり活用されて
いません。Hack For Japanの活動に賛同してくだ
さっている人は多いものの、やはり開発者が参加者
の多数を占めるHack For Japanのコミュニティだ
けでは協力関係構築が難しかったのではないかと考
えられます。この課題はスタッフの中では認識され

ており、コミュニティの拡大やほか団体との連携な
どが以前から検討されていました。
　そのような中、Hack For Japanに当初から参加い
ただいている方から、今までの活動を振り返り、IT

による復興支援のあり方を考える必要があるのでは
ないかという声もあがってきました。
　これらがきっかけになり、「ITによる復興支援の
あり方会議」（当初、「ITx災害」はこう呼ばれていま
した）の準備会が発足しました。2013年6月末に行
われた最初の準備会では30名近くの方が集まり、
震災以降の取り組みなどが共有されました。お互い
にそれぞれの存在は知ってはいたものの、直接話す
のは初めてという参加者も多く、「つながる」という
意義を再確認し、本会議への期待がさらに高まりま
した。
　その後の準備会で、将来に起きうる災害に対して
の防災や減災も話し合うことから、会議名を「ITx

災害」会議（「x」は「かける」と読みます）とすること
に決定しました。また、参加者全員に積極的に参加
してもらうため、アンカンファレンスという形式を
とることとしました。
　アンカンファレンスとは、Software Designの読
者であればすでにお馴

な じ

染みかもしれませんが、あえ
て事前にセッション内容などを決めずに、当日に参
加者自身に提案してもらう形式のカンファレンスで
す。通常のカンファレンスの場合、セッションで話
す人と聞く人というのが明確に別れてしまいがちで
すが、アンカンファレンススタイルの場合はセッ
ションのトピックを提案できますし、たとえほかの
人が提案したトピックであったとしても、事前にス

Hack For Japan
エンジニアだからこそできる復興への一歩

「ITx災害」会議（前編）第26回
社会的課題をテクノロジで解決するためのコミュニティHack For Japanの
活動をレポートする本連載。今回と次回は2013年10月に開催された「IT災
害」会議の模様を前後編に分けて紹介します。

●Hack For Japanスタッフ
　及川 卓也　OIKAWA Takuya
　 Twitter @takoratta
　高橋 憲一　TAKAHASHI Kenichi
　 Twitter @ken1_taka

注1 http://blog.hack4.jp/2012/12/blog-post.html

http://blog.hack4.jp/2012/12/blog-post.html

Feb. 2014 - 153

「ITx災害」会議（前編）第26回

ライドなどが準備されていることは
まれなので、全員が同じ立場でセッ
ションに参加できます。
　準備会は合計4度行われ、総勢20

名以上のスタッフが手分けして準備
を進める、文字どおりの手作りの会
議として用意され、当日を迎えまし
た。

午前の部：
ショートスピーチ

　「ITx災害」会議は10月6日に東京
大学駒場リサーチキャンパスにて行
われました（写真1）。参加者は112

名となりました。この会議は招待制
としたのですが、招待した方の9割
以上が参加されるという大変高い参
加率の会議となりました。
　午前の部はイベントの主旨の説明
と、これまで復興支援活動をされて
きた10名の方からのショートスピー
チが行われました（写真2）。

◆ ◆ ◆

 ◎RCF復興支援チーム：藤沢烈さん
　情報を復興に活用する3つのキーワードを紹介した

いと思います。

1. ラストワンマイル～地域コミュニティ形成

 「復興においてこそ、情報が必要である」

ラストワンマイルをつなぐために現地コーディ

ネーターが必要

2. One to One～産業復興

被災者、被災事業者と支援者がOne to Oneで結

ばれることが意味があり、持続的なかかわりが求

められる

3. テーマ別のプラットフォーム～人材支援

今回の震災は被災地も多く、支援も多い。被災地

と支援側のニーズを集約し、見える化するテーマ

別のプラットフォームが必要

　復興には10年以上かかり、まだ入り口の段階。引

き続き東北を支えるためにも、情報の整理がたいへん

大事だと思っております。

◆
 ◎岩手震災IT支援プロジェクト：村山優子さん
　災害時のネット接続支援の課題として、IT支援の重

要性が必ずしも認識されないというものがありまし

た。まず支援ありきのスタンスではダメで、相手が必

要とするものを理解し、人や車が先、そのうえで情報

交換が必要です。また、組織プロトコルも重要で管轄

する部署への説得、なぜインターネットが必要か、今

起こっていることをどうやって意思疎通するかという

ことが大切です。できることから1つ1つ解決してい

くと信頼が出てきて、最終的には情報処理が必要だと

いうことがわかってもらえます。

 ◆写真1　会場風景

 ◆写真2　ショートスピーチの様子

154 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

◆
 ◎さくらインターネット研究所：松本直人さん
　写真からはたくさんのことがわかります。言葉は曖

昧さを持っているため、より多くの視覚情報の共有、

正確な位置情報、データ加工の容易さが大切です。と

くにGPS情報付き写真は災害直後の復旧のときに有

用となります。必要な情報がリアルタイムで手に入る

環境づくりを見据えて、GPS情報付き写真を発信しま

しょう。常に自分でも情報発信することを心がけてい

ると役に立つことがあります。

◆
 ◎うらと海の子再生プロジェクト：小泉勝志郎さん
　私自身が宮城県塩竈市で被災し、弟が携わっている

浦戸諸島という離島の養殖業も壊滅状態となってしま

いました。それを救うために始まったのが「うらと海

の子再生プロジェクト」で、クラウドファンディング

で1億8千万円を集め、現在はオーナーさんにほぼ返

した状態となっています。

　また、よくボランティアが集まらないという話を聞

きますが、つらいとか大変という言葉ばかりでは誰も

来たいと思いません。楽しい要素を伝える必要があり

ます。たとえば浦戸は海の物が豊富でそれを採ったり

食べたりすることが楽しめるといった地域の魅力を伝

えていけば、ボランティアも集まってくるのではない

かと思っています。

◆
 ◎岩手医科大学：秋冨慎司さん
　スーパーコンピュータによる試算では揺れだけを計

算して、津波を考慮していませんでした。それが岩手

は大丈夫という当初の誤認識につながりました。情報

の持つ怖さというものがあると思います。

　また、災害後のフェーズは10のn乗の時間で考え

ることが大切です。

1時間：自分たちの安全確保
10時間：救助、救援の準備、情報収集
100時間：人命救助
1000時間：復旧活動
10000時間：復興活動

　このように受ける側、送る側の双方がきちんと時間

軸で考えていく必要があります。

　情報のマネジメントの仕方によっては、嘘の情報で

も本当の情報になってしまうことがあります。テレビで

「かわいそうですねぇ、ここの避難所」といったような取

り上げられ方をした場所に支援が集中し、斑
まだら

が発生し

ます。また道路が復旧したという情報も、民間の利用

により、自衛隊などが使えないことがあってはいけま

せん。情報は魔物にも神にもなると思っております。

◆
 ◎株式会社Eyes, JAPAN：山寺純さん
　アメリカで盛り上がっているヘルスケアITの日本

版を推進しており、Health 2.0 Fukushimaチャプ

ターを務めています。昨年は医療ハッカソンも行いま

した。

◆
 ◎情報支援プロボノプラットフォーム（iSPP）：
岸原孝昌さん
　被災地の情報サービスにおいてさまざまな取り組み

が行われたと思うのですが、ちゃんと記録にとってお

かないと次に進められません。そこで、地域と時系

列、情報ツールが生きていたのか、提供されたものと

必要とされた情報の差などについて情報行動調査を行

いました。

　災害発生直後はラジオが有効で、徐々に携帯電話、

インターネットなどのメディアに移行していき、必要

とされた情報も時系列とともに変わってくることがわ

かっています。まだ構想段階ですが、情報支援レス

キュー隊のコンセプトを検討しています。

◆
 ◎Code for Japan：高木祐介さん
　Hack For Japanなどで行ってきたハッカソンは

コミュニティ形成や問題への理解の促進には効果を発

揮するが、継続したサービスに結びつけていくのは難

しいと考えて始めたのがCode for Japanです。

オープンデータを活用することで地域防災を推進して

いき、緊急時にスムーズな対応ができるように地域で

のITコミュニティ作りを支援します。

◆
 ◎イトナブ石巻：古山隆幸さん
　震災後に街づくりの活動をしていく中で、ITを活用

して若者たちが動けるフィールドを作っていこうと始

Feb. 2014 - 155

「ITx災害」会議（前編）第26回

り、当日の受付が混乱する可能性もある中で、さら
にスタッフにも参加者にも負荷のかかる作業を追加
する意味があるかが争点となったからです。
　結果から言うと大成功でした。PDFのテンプレー
トを用意し、参加者に項目を埋めてもらうようにし
た注2のですが、それぞれ工夫を凝らしてさまざま
な参加証を用意していただきました。図1、2は筆者
（及川）の参加証をスキャンしたものです。
　今回はPDFでテンプレートを用意したのですが、
「開発」「運用」「インフラ」などの自分の専門分野に関
しては複数選択可能としていたので、Acrobat

Readerのレイヤー機能を利用して、該当する分野
のレイヤーを有効にしてもらうようにしました。残
念ながら、ITの専門家ではない参加者には難易度が
高い操作だったようで、ふと気づくと、そこかしこ
にすべての分野の専門家というスーパーエクスパー
トがいるという状態になっていました。次回がある
ならば、この部分はWebのフォームに該当項目を
入力することで、PDFが自動生成されるようなシス
テムを用意できればと考えています。
　次号では後編として、お昼に振る舞われた芋煮の
話と午後の部のアンカンファレンスについてレポー
トします。s

めたのがイトナブです。支援を受け続けるだけではな

く、自活できる人作り＝自立した産業の開拓サイクル

を回していくという活動を目指しています。

◆
 ◎IPA/WASForum：岡田良太郎さん
　震災後、個人として社会継続のために自発的に行動

した人たちによるWeb上の支援サイトを調査したと

ころ、地理情報を扱ったものが44％、人命を取り

扱ったものが41％、さらに起案からリリースまで72

時間以内のものが52％、さらに半数が3名以下のプ

ロジェクトだったという統計が得られました。利用可

能なデータがなくて苦労したという話もありますが、

プライバシーの問題など、当時はスピードのことを考

えて意識していなかったこと、なりゆきでやってはい

けないことが、改めて考えると多々あるはずです。

◆ ◆ ◆

参加証にひと工夫して
交流のきっかけに

　会議では参加者間の交流を促すために、いくつか
のしくみを用意しました。その1つが参加証です。
首から下げた参加証で、名
前と所属がわかるというの
はどのイベントでも良くあ
る風景なのですが、今回の
会議では、その参加証を自
作してもらうようにしまし
た。
　実は、参加証をスタッフ
側で用意し、受付でそれを
受け取ってもらう方法にす
るか、事前に参加者に作っ
てもらうようにするかは、
準備会でかなりの議論を重
ねました。というのも、た
だでさえ準備に時間がかか

注2 http://www.itxsaigai.org/20131006/namecard.html

 ◆図1　参加章の例（表） ◆図2　参加章の例（裏）

http://www.itxsaigai.org/20131006/namecard.html

156 - Software Design

はじめに

　今回は電話回線を使ったモデ
ムから現在に至るまで筆者が経
験したネットへのアクセスとバ
イナリファイルの転送について
振り返ります。

モデムの
時代

　現在のように携帯電話などの
無線機器が一般化していないこ
ろは、通信に利用できるのはア
ナログ回線と呼ばれる加入者電
話のみでした。
　そのころに通信に使用されて
いたのが、パソコンと電話回線
をつなぐモデム（Modulator-
Demodulator：変復調装置）で
す。パソコンからRS-232C経
由で渡されたデータを音声に変
換し、電話回線を使って遠隔の
目的地に送信し、先方で逆の経
過でパソコンでデータを受け取
るものです。
　筆者が一番最初に使ったモデ
ムは、秋月通商の手作りキット
で友人が作成したものでした。
蓋が半透明のタッパウェアに
入っていて「弁当箱」と呼んでい
ました。通信速度はたしか

110bpsだったように思います。
当時はモジュラージャックでは
なく電話機と並列に電線をつな
いで、アクセスする際は電話機
で電話番号をまわして相手側の
音が聞こえてからおもむろにモ
デムのスイッチを入れて受話器
を置いてました（ちなみに受話
器をはめ込むタイプの音響カプ
ラというものもありました）。
　その後、300bps→1,200bps
と速くなり、2,400bpsの時代に
筆者が使っていたのは当時普及
していたオムロンのモデムでし
た。1988年頃の広告を見ると、
OMRON MD2400F MNP
Class 5は59,800円となってい
ます。MNPといえばすぐに思
い浮かぶのが、携帯電話会社を
変更する際の番号ポータビリ
ティですが、当時はモデムで使
われてる通信規格の呼称で、誤
り訂正や圧縮機能でMNP4とか
MNP5とかがありました。
　モデムを使っていても音声通
話と同じく電話料金がかかりま
すが、当時はまだ市外通話が高
く、アクセスポイントがどちら
にあるかで通信料金が大きく
違ってきていました。当時、テ
レホーダイと呼ばれる23時～
翌日8時までの固定料金サービ

スも始まり夜中のネット人口が
増大した時期でした。
　筆者が通っていた大学や会社
では、JUNETに接続して電子
メールやNetNewsを使うこと
ができました。その当時モデム
として使われていたのは、アメ
リカのTelebitが製造していた
TrailBrazer T2000 や T2500
です。接続する先でこの機種を
使っているのでこちらもこれ一
択でした。

ISDN
（MN128-SOHO）

　アナログ回線を使ったモデム
では最大速度で56kbpsほどで
回線の状態によっては速度低下
もあるため、安定した速度で最
大128kbps接続可能なISDN回
線は1990年代後半のアクセス
方式として使われていました。
　とくにNTT-MEとBUGが
共同開発したMN128-SOHOは
TAとルータ機能が一体化して
いて、価格も当時としては破格
的に安く注1、設定方法も現在
では一般的となっているWebイ
ンターフェースを採用していま
した。

注1） といっても69,800円しました^^;

温故知新
ITむかしばなし

北山 貴広　KITAYAMA Takahiro　kitayamat@gmail.com

ネットアクセスと
バイナリファイルの転送

第30回

156 - Software Design Feb. 2014 - 157

　当時のモデムやルータの設定
は、シリアル接続で直接コマン
ドやパラメータを渡す方式だっ
たので、一般の人には使いにく
いものでした。MN128-SOHO
では外部からPHSのPIAFSプ
ロトコルを使った接続も可能
だったため、筆者は自宅にPHS
で接続し、そこからインター
ネットに接続して自宅のルータ
経由でインターネットにアクセ
スしていました。

CATV
（子羊ルータ）

　その後2000年ごろに筆者の
住む西宮市の地域ケーブルテレ
ビのケーブルビジョン西宮で
CATVインターネットが開始さ
れました。月額固定料金で下り
が256kbpsと、今から見ると低
速ですが、固定料金で常時接続
できるようになったので喜んで
加入しました。
　CATV会社から貸与された
ケーブルモデムは、DHCPでIP
アドレスを1つ割り当てる方式
だったので、同時に接続できる
パソコンは1台だけでした。そ
んなわけで、当時はルータを接
続して複数台のパソコンから接
続できるようにするのが流行っ
ていました。
　このころワイルドラボからも
のすごくコンパクトな子羊ルー
タ注2が発売されました。49,800
円でしたが筆者は即買いしまし
た。Linuxがコンパクトな箱で

注2） 型番は LAMB-RT-01。AMDの486
SX互換CPUを搭載した、小型ルータ
の先駆けで、3.5インチのフロッピー
ディスク7枚を重ねた大きさ。今だ
とOpenBlockSのイメージか。

動くのがとてもうれしいのは、
現在のRasberry Piがかわいい
のとまったく同じ感覚です。

バイナリ→テキスト
ファイル変換

　バイナリファイルを転送する
方法として、バイナリファイル
をアスキー文字列の範囲内に置
き換えてテキストとして転送
し、受信側は転送されたテキス
トファイルをバイナリに変換す
ることが行われていました。当
時はDOSだと ish注3、Unixだと
uuencode/uudecodeなどが使われ
ていました。また同時に、複数の
ファイルを1つにまとめるアー
カイブ機能と、ファイルサイズ
を圧縮する圧縮機能を備えた、
DOSではZIPやLZH、Unixだと
tar.gz（tar ball）が利用されてい
ました。

バイナリ転送
プロトコル

　バイナリファイルをテキスト
化して送信する方法以外にも、
直接転送する方法もありまし
た。ただし、シリアル通信では
ホストがバイナリ転送に対応し
ていなければならなかったため
に普及が遅れたのです。
　たとえば現在でも利用するこ
とができるシリアル転送ソフト
にTera Termがあります。筆者
が現在使っているTera Term

Version 4.71では、メニューバー
でファイル（F）-転送（T）を選択

注3） 開発者の石塚氏の名前から ishと命名
された。当時は通信環境が悪くテキ
ストの通信でも文字化けが頻発して
いた。ishは誤り訂正機能もあり、当
時のデファクトスタンダードだった。

すると、Kermit、XMODEM、
YMODEM 、ZMODEM 、
B-Plus、Quick-VANを選択す
ることができます。これらはバ
イナリ転送プロトコルです。当
時は、インターコムのまいと～
くや、技術評論社のCCT-98注4

などが使われていました。
　実際にファイルを転送すると
きは、ホストにログインし、ホ
ストのメニューからバイナリ転
送プロトコルを選択し、その後
Tera Termなどの端末エミュ
レータ側で該当するバイナリ転
送プロトコルを実行すること
で、バイナリファイルをアップ
ロードやダウンロードするしく
みです。
　その間は端末はバイナリ転送
に使われていますので、ファイ
ル転送が終わるまでは端末が使
えませんでした。

終わりに

　携帯電話の新たな通信規格で
現在主流となっているLTE
（Long Term Evolution）の下り
通信速度は、最大37.5Mbps～
326Mbpsとなります。アナログ
回線の限界64kbpsからすると
1,000倍以上の速度進化ですね。
　昔は音声の電話回線を使って
一生懸命デジタルデータを送っ
ていたのに、今はデジタルの回
線を使って一生懸命音声を送っ
ているってなかなかおもしろい
もんだと思いますし、土台が変
わったのを実感します。｢

注4） CCTはConcurrent Communication
Terminalの略。バイナリ転送中にエ
ディタが使えるために命名された。

温故知新 ITむかしばなし
ネットアクセスとバイナリファイルの転送

第30回

158 - Software Design

　Webシステムにおいて急激なアクセス、すな
わち過負荷な状況に耐えることは企業にとって
とてもメリットがある。Webページから情報を
途切れることなく配信したり、データの入力を
取りこぼしなく行ったりといった、普段できて
いることを過負荷な状況でも遂行できれば運営
側の信頼性が著しく向上するのは言うまでもな

い。本書は、オンプレミス環境下で秒間10,000
アクセスに耐えるWeb投票システムの舞台裏を
解説したものだ。顧客から示されたシビアな条
件をクリアすべく、開発・運用の各面で技術者
が工夫をしながらシステムを完成し、実運用に
耐えるシステムを作り上げる様子は、Webに関
わる人なら誰しも興味が湧くのではなかろうか。

パイプドビッツ株式会社 【著】
A5判、 224ページ／2,480円 （税別） ／発行＝技術評論社
ISBN＝978-4-7741-6205-8

　いまやスマートフォンアプリケーション開発
では、iOS、Androidの双方に対応することは必
須とも言える要件になっている。さらに、短納期、
低予算ということも多い。こうした制約に対応
しつつ、ユーザのニーズに応えるアプリ開発を
実現する方法として、HTML5ハイブリッドアプ
リが注目されている。本書は、このHTML5ハ

イブリッドアプリ開発の基礎知識と、現場で役
立つ実践的なノウハウ、知識を1冊に集約した
書籍。実際の開発で役立つ、Apache Cordova
（PhoneGapのOSS版）による開発、ストレー
ジの使い分け、タッチ・ジェスチャなどの活用、
デバッグノウハウなどをわかりやすく解説して
いる。

久保田 光則、 アシアル株式会社 【著】
A5版、 384ページ／価格＝2,880円 （税別） ／発行＝技術評論社
ISBN＝978-4-7741-6211-9

　カバレッジテスト、同値分割法、境界値分析
法などの伝統的なテスト技法を解説しつつ、最
新の技法も学べる。たとえば、ホワイトボック
ステストの章では、TDD（テスト駆動開発）の考
え方や実践例が示される。SI業界ではよく仕様
書をもとに作成したテストケースに従って網羅
的なテストを行うが、それでもリリース後に単

純なバグが見つかることが多い。そんな問題に
悩んでいる人は、探索テストの章を読んでみて
ほしい。テストケースベースのテストでは発見
できないバグを見つけるためのヒントが得られ
るだろう。テストに重要なのは網羅性だけでは
なく「適材適所でいろいろなテスト技法を試み
ること」。そんな考え方が身につく1冊だ。

高橋 寿一 【著】
A5判、 240ページ／価格＝2,400円 （税別） ／発行＝翔泳社
ISBN＝978-4-7981-3060-6

知識ゼロから学ぶソフトウェアテスト【改訂版】

Software Design plusシリーズ

過負荷に耐えるWebの作り方
国民的アイドルグループ選抜総選挙の舞台裏

　仕事、出産、子育て、家購入など、大人になっ
たら多くのイベントがあり、その時々で悩みが
ある。そんな悩みに対して著者がどのように考
え、乗り越えてきたかを、おもしろおかしく描
いたコミックエッセイ。仕事の話題については
「ああ、自分も同じ悩みを持ってた！」とうなず
けることが多かった。著者は一時期、転職セミ

ナーで講演していたこともあるというから、転
職希望者の生の声をたくさん聞いた経験が活か
されているのかもしれない。著者の考えも、気
負い過ぎておらず、庶民目線なのがいい。日常
生活や仕事に疲れたら、本書をパラパラと見て
みると良い。頑張るだけでなく、立ち止まって
一息つく時間も大切だと感じられるはずだ。

きたみりゅうじ 【著】
A5判、 176ページ／価格＝1,200円 （税別） ／発行＝幻冬舎
ISBN＝978-4-344-02472-4

人生って、大人になってからがやたら長い

Software Design plusシリーズ
［iOS/Android対応］

HTML5ハイブリッドアプリ開発［実践］入門

Feb. 2014 - 159

SD News & Products

　日本OpenStackユーザ会は2014年2月13日、
14日の2日間、OpenStack専門カンファレンス
「OpenStack Days Tokyo 2014」を、御茶ノ水ソラ
シティカンファレンスセンターにて開催する。
　「OpenStack Days Tokyo」は2013年3月12日に
第1回が開催され、国内外22社が講演や出展を行い、
700名以上が来場。第2回となる今回は会期を2日間
に拡大して開催し、1,500名の来場を見込んでいる。
　基調講演は、OpenStackプロジェクト共同創始者の
1人であり、OpenStack FoundationのCOOとして、
OpenStack開発コミュニティとビジネスエコシステム
を成長させるためのマーケティングやビジネスディベ
ロップメントを主導するMark Collier氏が登壇。グロー
バルのOpenStackエコシステムや最新の導入事例など
について講演する。
　また、2013年5月から商用環境にOpenStackを導
入し、運用／改善を続けているグリー㈱の渡辺光一氏、
松橋洋平氏が登壇する。OpenStackを商用環境にリ
リースするに至った経緯、自社インフラへOpenStack
を導入するにあたり、実際に行った技術面の工夫や悩

んだ点について実例を交えた紹介が行われる。また、
導入フェーズが一段落した今、OpenStackについて感
じていることや、これからの展望についても語られる
とのこと。

日本OpenStackユーザ会、
2月13日、14日に「OpenStack Days Tokyo 2014」を開催Event

OpenStack Days Tokyo 2014公式サイト
URL http://openstackdays.com

CONTACT

　サイボウズ㈱は、2013年11月11日～25日の2週
間に渡り開催していた脆弱性発見コンテスト「cybozu.
com Security Challenge」の途中結果を発表した。
　cybozu.com Security Challengeとは、同社サービ
スの品質向上を目的にSECCON（特定非営利活動法人
日本ネットワークセキュリティ協会が主催する日本最
大級のセキュリティコンテスト）の協力のもと実施した
オンラインによる脆弱性発見コンテスト。

コンテスト結果
 ¡開催期間：2013年11月11日～11月25日
 ¡申込人数：95名
 ¡参加人数：75名
 ¡脆弱性の報告者：14名
 ¡発見された脆弱性：19件

　コンテスト実施期間の15日間で、アクティブに検証
に参加した人の延べ人数は75名。報告された脆弱性
19件を同社で評価した結果、緊急対応が必要な深刻な
脆弱性は検出されなかった。

　コンテスト上位入賞者は2014年3月に東京で実施さ
れる「SECCON全国大会」にて発表し、どんな脆弱性を、
どのように発見したのかを本人に紹介してもらうとい
う。
　同社は今回のコンテストにより、具体的な脆弱性の
発見のみならず、「リアルタイムのモニタリング（画像）
によって、攻撃の手法に関するノウハウを得られた」「報
告された脆弱性と不具合の切り分け方に関して社内の
認識を統一できた」といった成果を得た。報告された脆
弱性情報は、同社の脆弱性対応ポリシーに従って、改
修していく。
　今後は、cybozu.com Security Challengeに続
き、セキュリティ検査を実施したい人たちに向けた
cybozu.comの開発環境の公開などを検討している。
　同社は、引き続き外部の専門家の協力を得ながら、
より高度なセキュリティを兼ね備えた製品を提供して
いくという。

サイボウズ、
脆弱性発見コンテスト「cybozu.com Security Challenge」
中間報告

Topic

サイボウズ㈱
URL http://cybozu.co.jp

CONTACT

▼開催概要
名　称 OpenStack Days Tokyo 2014
テーマ 広がるオープンクラウド エコシステム
会　期 2014年 2月 13日（木）、14日（金）

会　場
御茶ノ水ソラシティカンファレンスセンター 2F（御茶ノ水
駅徒歩1分）　http://solacity.jp/cc/access/

主　催 OpenStack Days Tokyo 2014実行委員会
内　容 基調講演、協賛企業セッション、協賛企業ブース展示

対　象

クラウドを導入したいCTO/CIO層、クラウドビジネスの企
画者、クラウド業界のビジネスユーザ、クラウド業界内開発
者、パートナ企業、データセンター／テレコム業界のビジネ
スユーザ、ICTへの関心と利用率の高いビジネスユーザ

定　員 1,500名（予定）
参　加 無料

申し込み方法 同イベント公式サイトより申し込みのこと

〆　切
2014年 2月 7日（金）17:00まで（予定）
※定員になりしだい締め切る

http://openstackdays.com
http://cybozu.co.jp

160 - Software Design

SD News & Products

　データ復旧の業界団体である日本データ復旧協会は、
2011年に引き続き、2012年統計のデータ復旧業界の
市場規模を発表した。
　2012年1月～12月における業界全体のHDDの復
旧依頼件数は、前年と比べて4,000台少ない74,000
台（2011年：78,000台）。復旧件数は前年の東日本
大震災など自然災害が減少した分上昇し、700台多い
59,200台（2011年度：58,500台）。

今後のマーケットの展望と課題について
　同団体は、今後のマーケットについて、スマホやタブ
レット端末の普及、クラウドサービスの増加で、クラ
イアントPCは減少するとみている。とはいえ、2013
年に起こったデータセンターの大規模な事故をきっか
けに、クラウドサービスを利用した社外でのデータ保
持が必ずしも安全ではないという認識が広がり、社内
でのデータ保持の必要性が見直されている。そのため、
サーバやNASなどの案件は現状維持、または微増する
だろうと予測している。
　また、2014年はWindows XPサポート期間終了に

伴うPCリプレイス時のデータ事故も多く予想されるこ
とから、業界全体として準備態勢を整えているという。
　さらに、同団体はタブレット端末、スマートフォン
端末のデータ復旧も課題として挙げている。これらの
データ復旧技術はいまだ確立した状態にないとのこと。
「タブレット端末に搭載されているSSDは、HDDとは
まったく異なったデータ記録方式を採用しているため
に、現段階では、まだ復旧技術が確立していない部分
がある」「スマートフォンの場合はデータの暗号化の問
題など、技術的な困難さが存在しており、いまだ研究
開発が必要」というのがその理由だ。タブレット端末や
スマートフォンのデータ復旧を行っている企業はある
が、業界のスタンダードサービスとして確立されてい
るわけではない。今後、スタンダードサービスとして
確立されたら、発表の機会を持ちたいという。
　本発表の詳細な数字、レポート内容は同団体のWeb
サイトで確認できる。

日本データ復旧協会、
2012年のデータ復旧市場規模を発表Topic

日本データ復旧協会
URL http://www.draj.jp

CONTACT

　キヤノンITソリューションズ㈱は、「ESETセキュリ
ティソフトウェアシリーズ」の新バージョンを、2013
年12月12日より販売開始した。
　Windows用プログラムの新バージョン「ESET
Smart Security V7.0」「ESET NOD32アンチウイル
ス V7.0」では、次の3機能が追加された。

 ¡アドバンスドメモリスキャナー
高度に難読化、暗号化されたウイルスによる不審な
プロセスの振る舞いを監視し、メモリ内でウイルス
を解析する。これにより難読化や巧妙な手法で偽装
されたウイルスの検出力が向上した
 ¡エクスプロイトブロッカー
アプリケーションの脆弱性を悪用する動作を監視し、
疑わしい振る舞いを検出したら、動作をブロック。
脆弱性を悪用して個人情報やFTPアカウントなどを
盗もうとするウイルスに対して検出力が向上した
 ¡バルナラビリティシールド（※「ESET Smart
Security V7.0」のみ対応）
脆弱性に対してネットワークレベルで機能する。こ

れにより既知の脆弱性やセキュリティホールを悪用
したウイルスによる攻撃、ハッキングによる外部か
らのネットワーク攻撃に対する防御力が向上した

　製品のラインナップ概要は次のとおり。パッケージ
版、ダウンロード版の有無や価格など詳細については
同社Webサイトを参照のこと。

<個人向け総合セキュリティソフト>
 ¡ESETファミリーセキュリティ
 ¡ESETパーソナルセキュリティ

<法人向け総合セキュリティソフト>
 ¡ESETオフィスセキュリティ 5PC+5モバイル
 ¡ESETオフィスセキュリティ 1PC+1モバイル

<法人向けウイルス・スパイウェア対策ソフト>
 ¡ ESET NOD32アンチウイルス Windows/Mac対応
 ¡ ESET NOD32アンチウイルス Windows/Mac対応 5PC

キヤノン ITソリューションズ、
「ESETセキュリティソフトウェアシリーズ」の新バージョンを
販売開始

Software

キヤノンITソリューションズ㈱
URL http://www.canon-its.co.jp

CONTACT

http://www.draj.jp
http://www.canon-its.co.jp

Feb. 2014 - 161

SD News & Products

　エンバカデロ・テクノロジーズは2013年12月10日、
「C++Builder XE5」のアップデートのリリースを発表
した。
　2013年9月に販売開始した同製品は、Windows、
Macのネイティブクロス開発を実現したビジュアル開
発ツール。今回のアップデートで新たにiOS向け開発
もサポートし、デスクトップPCからスマートフォン、
タブレットに至る幅広いデバイスに対応できるように
なった。具体的には、次のiOS開発機能が提供される。

 ¡ iOSアプリのネイティブ開発
C++Builder ARM最適化コンパイラを搭載し、最高
レベルのパフォーマンスを発揮するiOS向けネイティ
ブアプリを構築できる
 ¡FireMonkeyアプリケーションプラットフォーム
iOS、Windows、Mac OS Xのマルチデバイスに対
応した高性能アプリケーションを単一のコードベー
スで開発でき、大幅な工数削減が可能
 ¡モバイルフォームデザイナ
画面サイズの異なるiPhone、iPod touch、iPad向

けのUIをドラッグ&ドロップ操作で容易に設計でき
る
 ¡企業のバックエンドシステムに接続
企業のシステムとモバイルアプリをつなぐ技術を提
供。DataSnapと呼ばれる多層技術をモバイルアプ
リから簡単に使える
 ¡高度な機能も柔軟に利用可能
ジャイロ、GPS、カメラ、加速度センサーといった
デバイスサービスやセンサーを利用可能。高度なプ
ログラミングを必要とする場合には、iOS APIへの
アクセスも可能で、高い拡張性と柔軟性を提供する

　登録ユーザは、アップデート版を2013年12月11
日よりダウンロード可能となっている。C++Builder
XE5 Enterprise以上、またはC++Builderを含むス
イート製品RAD Studio XE5 Professional以上の購入
者は無料でアップデートできる。

エンバカデロ・テクノロジーズ、
「C++Builder XE5」で新たに iOS向け開発をサポートSoftware

エンバカデロ・テクノロジーズ
URL www.embarcadero.com/jp

CONTACT

　日本ヒューレット・パッカード㈱は、バックアップ
ストレージ製品「HP StoreOnce」とアーカイブスト
レージ製品「HP StoreAll」のラインアップを刷新した。
　HP StoreOnceは、同社独自の連携型重複排除エン
ジンを搭載し、シングルアーキテクチャで、アプリケー
ションサーバからバックアップサーバ、バックアップ
アプライアンスまで、適材適所でデータの重複排除を
行える次世代バックアップストレージ製品。今回リリー
スされるのは、小規模環境やリモート拠点向け「HP
StoreOnce 2700 Backup」、中規模環境向け「HP
StoreOnce 4500 Backup」「HP StoreOnce 4700
Backup」、大規模環境およびデータセンター向け「HP
StoreOnce 4900 Backup」「HP StoreOnce 6500
Backup」の全5モデル。2013年12月19日より販売
開始している。
　HP StoreAllは、オブジェクトファイルに対応した
データアーカイブ向けのストレージ製品。性能、機能
を強化したゲートウェイタイプ「HP StoreAll 8200
Gateway」とアプライアンスタイプ「HP StoreAll
8800 Storage」の2モデルを提供する。2014年1月

23日より販売開始される。

日本ヒューレット・パッカード、
バックアップ／アーカイブのストレージラインアップを刷新Hardware

日本ヒューレット・パッカード
URL http://www.hp.com/jp

CONTACT

▼新製品のラインアップと価格
製品名 参考価格

HP StoreOnce 2700 Backup 1,260,000円～
HP StoreOnce 4500 Backup 4,200,000円
HP StoreOnce 4700 Backup 11,550,000円
HP StoreOnce 4900 Backup 個別見積もり
HP StoreOnce 6500 Backup 個別見積もり
HP StoreAll 8200 Gateway 個別見積もり
HP StoreAll 8800 Storage 個別見積もり

▲HP StoreOnce 4500 Backup

http://www.embarcardero.com/jp
http://www.hp.com/jp

162 - Software Design

SD News & Products

　㈱IDCフロンティアは2013年12月3日、クラウド
サービスのラインアップに、新たにスマートフォンな
どのモバイルアプリケーション向けプラットフォーム
サービスを追加し、提供することを発表した。
　第1弾として、グルーヴノーツ社と提携し、ゲーム
開発者向けに「ネイティブアプリケーションプラット
フォーム for Gaming」を提供する。同社は今後、ゲー
ム業界を皮切りに、順次他分野のアプリケーションプ
ラットフォームにも対応していく。

ネイティブアプリケーションプラットフォーム
for Gaming

　「ネイティブアプリケーションプラットフォーム for
Gaming」は、グルーヴノーツ社が持つゲーム業界向
けクラウドサービス「GSS Fairy」と「IDCフロンティ
アクラウドサービスセルフタイプ」「コンテンツデリバ
リーネットワーク（CDN）」「ネイティブアプリケーショ
ンに必要となるUIやAPI」「運用管理基盤」をプラット
フォーム化したサービス。
　iOSやAndroidのほか各種ゲーム機などにも対応可

能で、スマートフォンと専用ゲーム機およびモバイル
ゲーム機とのゲーム相互利用を見据えたクロスデバイ
ス開発の効率を高めることができる。
　これにより高度なインフラ構築や運用の知識は不要
になり、開発も容易になる。運用工数の大幅な削減も
実現できるという。おもな機能は次のとおり。

 ¡クロスデバイス認証機能（複数種類の端末で共通の認
証が可能で独自実装不要）
 ¡マルチタイトル管理機能（複数ゲーム間でのユーザ情
報の共有）
 ¡レポート機能（ユーザやゲームタイトル単位での利用
状況把握）
 ¡UI/APIとCDNおよびアプリケーション実行環境用
仮想マシン

IDCフロンティア、
「ネイティブアプリケーションプラットフォーム for Gaming」
を提供開始

Service

㈱ IDCフロンティア
URL www.idcf.jp

CONTACT

　米Treasure Data社、およびトレジャーデータ㈱は、
「トレジャーデータサービス」の新サービスとして「ト
レジャービューワー」と「トレジャークエリーアクセラ
レーター」を追加した。
　トレジャービューワーは、ブラウザ内でデータを簡
単に可視化できるサービス。基本的なグラフなどであ
れば、他社から販売されている高度なBIツールを使わ
なくても、同サービスだけで可視化が行える。
　また、トレジャークエリーアクセラレーターは、ア
ドホックなクエリーの実行速度が従来の10～50倍に
高速化されるオプションサービス。データ集計／分析
をこれまで以上にすばやく行える。
　さらに、これらの新機能の提供に合わせて、価格体
系を一新した。これまでは、月額3,000ドル（約31万円）
の「スタンダード」価格と、ユーザ企業ごとに価格を設
定する「カスタム」価格の2種類だったが、月額7,500
ドル（約77万円）の「プレミアム」価格が新たに加わった。
　「プレミアム」価格でのサービス内容には、今回追加
された新サービス「トレジャークエリーアクセラレー
ター」が含まれているほか、CPUは16コアと高性能で、

データの保存量は年間あたり500億件となっている。

トレジャーデータ、
新サービス「トレジャービューワー」と
「トレジャークエリーアクセラレーター」を提供開始

Service

トレジャーデータ㈱
URL http://www.treasure-data.com

CONTACT

▼「トレジャーデータサービス」新価格体系

分類 価格／月
保存データ
件数／年

その他

スターター 無料 20億件

・トレジャーデータのサービスの概要
や簡単なプロトタイプ、基本的な利
用方法を理解できる

・オンラインサポート付き

スタンダード 3,000ドル 150億件

・クエリーの実行数は無制限でCPU
は8コア

・サポートが含まれる
・小中規模の企業向け。投資対効果
を短期間で得られる

プレミアム 7,500ドル 500億件

・クエリーの実行数は無制限でCPU
は16コア

・サポートが含まれる
・トレジャークエリーアクセラレーター
が含まれる

・構築開始から14日間で導入可能
カスタム 個別対応

http://www.treasure-data.com
www.idcf.jp

Feb. 2014 - 163

SD News & Products

　ソースネクスト㈱は、PCやスマートフォンの画面か
ら出るブルーライトを軽減するソフトウェア「超ブルー
ライト削減」について、2013年11月のダウンロード
版の発売に続き、2013年12月13日よりパッケージ
版も販売開始した。
　ブルーライトとはPCやスマートフォンから発せら
れる波長が400～500ナノメートルの青色光で、目の
疲れや痛みの原因になると言われている。本製品は画
面表示の色合いを調整することで、ブルーライトを抑
えるソフトウェア。ISO取得企業が行った検証により、
PC画面で約69％の削減効果が実証されている。

　「ワンタッチでON/OFFの切り替えが可能」「スライ
ドバーで濃度を調節できる」「起動時に自動でONにな
るよう設定できる」といった特徴を持つ。
　本製品1つで3台までのデバイスで使える。PCは
Windows 8.1/8/7/Vista、スマートフォン／タブレッ
トはAndroid 2.2～4.2で動作する。価格は2,980円（税
別）。
　ダウンロード版については、同社オンラインショッ
プで、すでに3,500本を販売しているとのこと。

ソースネクスト㈱
URL http://www.sourcenext.com

CONTACT

ソースネクスト、
PCのブルーライトを軽減するソフトウェア「超ブルーライト
削減」を発売

Software

　㈱アシストは、「Postgres Plus Advanced Server」
（開発元：EnterpriseDB Corporation／エンタープラ
イズDB㈱）の新バージョン9.3に対応した各種支援サー
ビスの提供を開始した。
　Postgres Plus Advanced Serverは、Postgre
SQLをベースにし、可用性向上やOracle Databaseと
の互換性などの企業向け機能を付随したデータベース
ソフトウェア。新バージョンの9.3は、PostgreSQL 9.3
をベースに開発されている。同社はこの製品のミッショ
ンクリティカルシステムへの導入を支援する2つのサー
ビスを提供する。

 ¡パーティション設計サービス
検索性能、データメンテナンスの効率化を目的にパー
ティショニングを実装する。各種パーティショニン
グ設計、データ移行、運用に関する支援を行う
 ¡データベース移行支援サービス
商用RDBMSやPostgreSQLから同製品への移行に
関する計画策定および移行作業を実施する。移行計
画の検討、利用機能の選定、アプリケーション移行、
データ移行の支援を行う

㈱アシスト
URL http://www.ashisuto.co.jp

CONTACT

アシスト、
「Postgres Plus Advanced Server」新バージョン9.3
の各種支援サービスを提供開始

Service

　アライドテレシス㈱は、マルチレイヤー・モジュール・
スイッチ「AT-SwitchBlade x8106」と予備用ファント
レイ「AT-SBxFAN06」を12月16日より出荷開始した。
　AT-SBx8106は、高さ4Uサイズ、コントロールファ
ブリックカード用に2スロット、ラインカード用に4ス
ロット、システム用電源を2スロット、PoE用電源を
2スロット搭載した計6スロットタイプのシャーシ型ス
イッチ。販売中のAT-SBx8112と共通のラインカード
を利用可能。ギガ、PoE、10ギガインターフェースな
どさまざまな種類のラインカードがラインアップされ
ているため、用途やネットワーク構成に合わせて必要

なラインカードを選択できる。
　価格はAT-SBx8106が828,000円。AT-SBxFAN06
が98,000円。

アライドテレシス㈱
URL http://www.allied-telesis.co.jp

CONTACT

アライドテレシス、
マルチレイヤー・モジュール・スイッチ
「AT-SwitchBlade x8106」をリリース

Hardware

が98,000円。

▲AT-SwitchBlade x8106

http://www.allied-telesis.co.jp
http://www.ashisuto.co.jp
http://www.sourcenext.com

164 - Software Design

　SFというのは実に懐が深いジャンルで、「す
べてのノンフィクションはSFに入る」と豪語し
ている人も少なからずいます。それでも「SFっ
ぽくない」作品と「SFとしかいいようがない作
品」は確かにあって、後者の代表が「ハードSF」。
SFという言葉が本来Science Fictionを意味す
るのであれば、徹底的に科学的考証にこだわっ
たのがこのジャンル。
　「科学的にありうる」以上、ある意味最も現実
的なはずなのに、最も常識離れしているのがこ
れで、個人的には最も好きな分野です。
　その中でも最高傑作なのが、『竜の卵』（ロバー
ト L. フォワード／ハヤカワ文庫）。まず舞台が
すごい。中性子星。超新星爆発した星の芯。そ
の爆誕の瞬間をニュートリノで撮った小柴昌俊
がノーベル賞を取ったことはみなさんご存じの
はずですが、本作はその中性子星「竜の卵」で進
化した知的生命体、いや、宇宙人チーラたちの
歴史と、竜の卵を探索するべく派遣された人類
の科学者たちとの交流の物語なのです。
　中性子星のスペックを見れば、これがどれほ
どパネェか、いやほど伝わってきます。表面温
度、8,000度。磁力、1億テスラ。そして表面重
力、670億G。太陽より熱く、分子がちぎれる
ほどの高磁場で、そして体どころか原子がひしゃ
げるほどの重力。こんなところで「ヒト」以前に
「生命」なんてありえるのでしょうか？　竜の卵

と比べたら火星なんて地球の双子といえるほど、
両者はかけはなれているのに。
　生命活動に不可欠な化学反応は、電子に被わ
れた原子同士ではなく原子核同士でやればいい。
ただし反応速度は100万倍。世界のさしわたし
が600分の1なら、体の大きさだって600分の1

にすればいい。だいたい2～3mmぐらい。これ
で計算すると、体重は60kgぐらい。なんてこっ
たい。我々と同じぐらいじゃないか！
　さすがに重力と磁力が強すぎて、同じ姿とは
まではいきません。その艶姿はaicoさんのイラ
ストで見ていただくとして、もうひとつ重要な
違いがあります。彼らは我々の100万倍速で生
きているのです。彼らの一生は我々の15分。「中
国4000年」の歴史も、たった1日。そんな彼ら
と我々にコミュニケーションの成立する余地は
あるのでしょうか……。
　ぜひ読者自身の目でご確認を。1980年に書か
れた本作は今や古典ですが、いまだ新品で手に
入ります。さらに余裕があれば原著も。Kindle

で簡単に手に入りますし、科学の言葉で書かれ
ているだけあって技術書を読める皆さんなら読
みこなせるはずですヨ。｢

題字／イラスト　by aico

『竜の卵』
（ロバート L. フォワード／
ハヤカワ文庫）

 第2回

Feb. 2014 - 165

　Linuxをどうやったら楽しく使えるかを考えると、使い始めた人にとって最初の障壁はやっぱりコマンドラインだと思うんですよ。そ
のまま考察を深めるとコマンドを覚えられないんじゃないかと。そこで、みんな大好き『ジョジョの奇妙な冒険』なんかで遊んでみるとい
いんじゃないかと提案します。コマンドも「能力」で覚えれば記憶に残るはず。「お前、新手のコマンド使いか！」って職場で話題になれば「こ
の人はコマンドラインが使える人」って扱いにグレードアップ！̶̶なワケないか……。

既
刊『Linux

シ
ス
テ
ム﹇
実
践
﹈入
門
』が
売
れ
筋
の
く
つ
な
先
生
の
連
載
が
読
め
る
の
は
S
D
だ
け
!!

④

⑤

作）くつなりょうすけ
@ryosuke927

①

②

③

さてはコマンド使いだな !第 2 回

本体：ビリー・ブロンコ
スタンド：cat
ファイルなら何でも出力・連結する能力。
行頭に行番号をつけて出力するのも意
外と便利。バイナリファイルを出力して
ターミナル表示を壊すことがある。

本体：レディオ・ガガ
スタンド：tar
複数ファイルを一まとめにして圧縮する
能力。オプションをつければ圧縮率の
高いアルゴリズムを使える。ファイル名
は標準入力からも流し込める。

本体：マニュエル・リー
スタンド：touch
触れたところに空ファイルを作成、触れ
たファイルのタイムスタンプを変える能力。
電車の中で触れてしまった事実を残して
面倒なことになった経験もあるらしい。

―
―
っ
て
な
感
じ
で

コ
マ
ン
ド
覚
え
て

使
え
た
ら

楽
し
そ
う

で
す
よ
ね
。

カ
ー
ド
ゲ
ー
ム
に
し
て

一
発
当
て
ら
れ

な
い
か
な
。

い
や
ぁ

ム
リ

じ
ゃ
ね
？

OSの擬人化は
あったけどコマンドの
スタンド化は面白い!!

166 - Software Design

第1特集　SDN/OpenFlow
で幸せになれますか？

　2012年はまだ概念的な技術だった

SDN/OpenFlow。2013年になってようや
く機器やソフトウェアに実装され、ビジネ
スへの適用も進んできました。そんな

SDNについて、現在の状況、利点／欠
点、実用例などを整理してみました。

OpenDaylightやMininet、hostapd

のコマンドやサンプルプログラムのおか
げで、SDNの理解が深まりました。やは
り手を動かさないとなかなか頭に入りま
せんね。

東京都／山下さん

ネットワークの仮想化は今後避けて通る
ことのできないテーマなので、今回の
特集は社内のネットワーク仮想化を検討
する際の参考になりました。

茨城県／ルビーさん

個人的にネットワークの分野に強い興味
があり、今後のネットワーク構築、管理
方法において大きな分岐点になり得る
OpenFlowの話は、ぜひ読んでみたい
と思っていた。

東京都／HL.Tさん

中小の社内SE向けな視点がほしい。
沖縄県／當眞さん

データセンターなどでの活用が期
待されるSDNですが、第7章の

OpenFlowによる無線LAN構築などは、
一般的なオフィスでも使えそうな例です。
以前と比べて、かなり身近な活用例が出
てきましたね。

第2特集
エンジニアの伝わる図解術

　2012年12月号の特集「なぜエンジニ
アは文章が下手なのか」に続く、文書作
成術特集の第2弾です。今回は、図解の
しかたにスポットを当ててお送りしました。

以前の「なぜエンジニアは文章が下手な
のか」と組み合わせることで、すごくた
めになった。

神奈川県／kysさん

表現に関する技術はとても大切。これか
らも取り上げてください。

長崎県／ JavaSplictさん

エンジニア以外にも使える。
長野県／高橋さん

エンジニアが業務で作る資料は、
文章よりも図のほうが多いかもし

れません。文章で説明するのが難しいと
きは、効果的に図解できるようになりた
いものですね。

特別企画　LinuxとFreeBSDのファイル
システムの良い・悪いところをご存じですか？

　OSの基本的な機能でありながら、案
外知られていないファイルシステムにつ
いて、そのしくみを解説しました。

概要はわかっていても、実際の細かい
検証まではたいていしない。それをして
くれるところがありがたい。

東京都／つんさん

最近のファイルシステムについて理解し
ていなかったので、本記事は勉強になり
ました。自分の知識は古かったために、
「FreeBSDに比べてLinuxのファイルシ
ステムは脆弱」と思い込んでいましたが、
今はそんなことないのですね。ZFSが
Linuxで安定して使えることには期待し
たいです。

埼玉県／犬棟梁さん

オープンソースのOSを使うなら、
用途に合わせてファイルシステム

そのものや、設定を変えて、チューニン
グできるようになりたいですね。その参
考になったのではないでしょうか。

一般記事　iOS 7アプリの魅力
はどうやって引き出すのか

　2013年9月にiOS 7がリリースされま
した。デザインは一新され、新たなフ

2013年はGNUや日本UNIXユーザ会が30周年、FreeBSDが20周年を迎える
など、本誌でもお馴染みのOSSプロジェクトの節目の年でした。2014年はどん
な年なのでしょう？　Wikipediaで「2014年」を調べたところ、大きなイベントと
してソチオリンピックやFIFAワールドカップが挙げられています。IT関連では
「Windows XPのサポート期間終了」。重要なイベントですが、地味ですね。

2014年はどんな年？2014年はどんな年？

2013年12月号について、たくさんのお便りありがとうございました！

Feb. 2014 - 167

レームワークやAPIが追加されました。
記事では、その中から代表的な変更点を
ピックアップして解説しました。

iOSの新たなおもしろさを見た気がしま
す。また新しい情報があれば紹介してく
ださい。

愛知県／榎本さん

いつかはアプリを開発して、お小遣いを
稼いでみたいです。

大阪府／山崎さん

多くの人に使われる魅力的なアプ
リを開発するには、常にiOSの最

新バージョンに追随していく必要がありま
す。iOSアプリ開発者の方は、本記事を
きっかけにiOS 7に本格的に取り組んで
みてはいかがでしょうか？

Miramaも今はゴツゴツした試作
機ですが、やがてはスマートなメ

ガネの形状になると思うと、早く完成形
が見てみたい気がします。

フリートーク

Raspberry Piにはまっています。ほか
の人はどんな使い方をしているか興味が
あります。

富山県／ jukさん

Raspberry Pi、人気ですね。弊社
から『Raspberry Pi［実用］入門』と

いう書籍も出ていますので参考にしてみ
てください。また、今号の読者プレゼン
トは限定版Raspberry Piです。ぜひご応
募ください。

一般記事
「Mirama」a.k.a VIKING

　メガネ型情報機器「Mirama」とその専
用OS「Mirama OS」を紹介しました。開
発担当者へ直接取材し、Mirama OSに採
用されている技術や今後の開発の方向性
について聞きました。

便利だとは思うけど、使用環境について
熟考が必要だと思う。

東京都／戸澤さん

未来を感じさせる記事でした。
神奈川県／眞　泰志さん

実社会への浸透はまだまだ難しいと思う
が、新技術の紹介として興味深かった。

北海道／村橋さん

12月号のプレゼント当選者は、次の皆さまです
①My Book 2TB ...愛知県　川上　拓真様
②ウイルスバスタークラウド1年版富山県　小林久壽雄様

★その他のプレゼントの当選
者の発表は、発送をもって
代えさせていただきます。
ご了承ください。

　狭いデスクで複数の端末を使うときは、本製品のようなアームで
立体的に端末を設置すると、デスクのスペースを有効活用できま
す。本アームはノートPCとタブレット端末を同時に取り付けられま
す。写真1の例では、メインで使用するMacBook Proはデスク上
に置き、それとはべつに本アームを使って iPadとMacBookを設置
しました。ノートPCをアームの一番低い位置で取り付けても、それ
なりの高さがあるので、アームに設置するPCはタイピングよりも、
ブラウザやSNSのタイムラインを常時表示させるなど、「見る」こと
を主にした使い方をするほうが効果的です。1台のPCでいくつもの
ソフトウェアを起動させる
くらいなら、表示させてい
るだけのソフトは空いてい
るタブレットなどに任せま
しょう。メインPCは動作
が軽くなり、快適に作業
できますよ。（読者プレゼント
あります。P.16参照）

エンジニアの能率を高める一品
仕事の能率を高める道具は、ソフトウェアやスマートフォンのようなデジタルなものだけではありません。
このコーナーではエンジニアの能率アップ心をくすぐるアナログな文具、雑貨、小物を紹介していきます。

ノートPCタブレットデュアルアームDN-10313
6,999円（税込）／上海問屋　http://www.donya.jp/

▲写真1 アームにMacBookとiPadを設置

http://www.donya.jp/

Software Design
2014年2月号

発行日
2014年2月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2014年3月号
定価1,280円　176ページ

March 2014

2月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2014 技術評論社

●『過負荷に耐えるWebの作り方』は2年越しの企

画。気鋭のイラストレータaicoさんと、パイプドビッ

ツのエンジニアとのコラボレーション。先月号を作っ

ているときが山場で、同時にもう1冊作っていて、

そのままの流れで年末進行にはいったら風邪を引きま

した。抗生物質投与もいまだ治らず。（本）

●幕張メッセ近辺で呑んだ後、ぶらぶらしていたら外人

に「マンハッタンどこですか？」と英語で聞かれた。そん

な名前のホテルがあったなと思ったが簡単に説明でき

ず、iPad mini retinaをポケットから取り出し、Google

Mapで見せた。「ありがと」って日本語で言われた。み

おぽんONでよかった。（幕）

●昨年秋スタートのアニメでは『ガンビル』（略したほ

うが恥ずかしい？）を親子で見ています。ガンダム世

代の私はセリフやマニアックなMSに過剰に反応して

しまうわけですが、そんな予備知識のない子供たち

にも好評。お正月はガンプラ作りで、父の技術を子

に伝承するつもりです（ろくでもないね☆）。（キ）

●最近、購入した「あったか敷パット」がとても良い。

夜寝るときに、敷布団の上にそれを敷いて寝るわけ

ですが、さらに湯たんぽを入れると最高にあたたか

い。だめだ……、思い出しただけで眠ってしまう。

昨年は電気毛布を使っていましたが、今年は不要で

すね。これで原発も止めて大丈夫だな。（よし）

●先日、部屋の壁紙の張り替えをしてもらいました。

壁紙を100種類近くから選ぶことができ、キッチン

は私の自由にしていいとのことだったので、明るい

雰囲気の花柄模様に。と同時にキッチンの掃除にも

入ってもらったのでピカピカ。ようやくキッチン雑貨

も置けるようになり、どれを買うか悩み中です。（ま）

S D S t a f f R o o m

［第1特集］ データベースの諸問題

RDBとNoSQLどちらを選びますか？
　真っ当に考えるDBの鉄則
　「NoSQLが流行っているから、これでいこう」そんな軽くていいのですか？
　データベースは企業の実績を支える重要な資産です。リレーショナルデータベー
スを本当に活用していますか？　あなたに本当に必要なデータベースは何ですか？　
　本特集では、データベースについてRDBかNoSQLか根底から問いかけつつ、エ
ンジニアの軸となる知識と技術を整理し紹介します。

［第2特集］ ネットワークエンジニアのための

プロキシーサーバの教科書
　基本機能からリバースプロキシーまで構築＋運用マニュアル
　単なるプロキシーから、リバースプロキシーまで実際の構築方法と運用の基本を
押さえ、クラウド・オンプレミスの混在環境での利用まで事例をもとに解説します。
※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

■2014年1月号　連載「IPv6化の道も一歩から」最終回
●P.125　左段
　［誤］金沢星陵大学 ［正］金沢星稜大学

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

168 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2014年2月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 関数型プログラミング再入門
	・第1章：Lispでウォーミングアップ......るびきち
	・第2章：今熱い！ 快進撃のOcaml......五十嵐 淳、Jacques Garrigue、古瀬 淳
	・第3章：コマンド作りで知るHaskell......上田 隆一
	・第4章：Pythonにおける関数型プログラミング......柏野 雄太
	・第5章：実践Erlang 〜高可用サーバを作ってみよう〜......篠原 俊一
	・第6章：Java SE 8のラムダ式で変わるJavaプログラミングスタイル......きしだなおき
	・第7章：Rubyで関数型脳を育てる方法とは？......るびきち

	■第2特集 2014年IT業界はどうなるのか？
	・第1章：ネットワーク／インフラ技術はどうなるのか
	・インフラエンジニアのあらたな始まりの年......田中 邦裕
	・クラウド型とベアメタル型の双方をシームレスに扱える技術が必要に......伊勢 幸一
	・スケーラブルな仮想データセンター構築技術に注目......小宮 崇博
	・スマートフォン時代のインフラはレスポンスタイムが生命線......佐野 裕

	・第2章：ソフトウェア開発はどうなるのか
	・Web標準技術でいろんなモノの「幅」が広がっていく......川田 寛
	・アジャイルの浸透とモデリングの一体化、さらに上流工程との融合が進む......羽生田 栄一
	・2013年に続々登場したAWS新プロダクト、その本格利用は2014年から！......鈴木 宏康
	・Go言語の使いどころ......山本 泰宇

	・第3章：OSとその周辺技術はどうなるのか
	・時代の要求に応え進化し、再び注目を集めるテープメディア......小島 克俊
	・2014年はDebian 8への準備期間、より効率的な開発をめざして......やまねひでき
	・2014年のUbuntuは多様な広がりを見せつつも、進化は堅実に......あわしろいくや
	・2014年のWindowsは「サーバ運用」「仮想ネットワーク」「仮想ストレージ」に注目......横山 哲也

	・第4章：エンジニアの仕事のしかたを考える
	・ITのコモディティ化！　そのときエンジニアがとるべき道......湯本 堅隆
	・2014年は「さらに先に行く技術」と「足下のSIビジネス」が乖離する年......神林 飛志
	・2014年押さえておくべき技術......村上 福之
	・次が見えない今だからこそチャンスはある......清水 亮

	・第5章：エンジニアとしての幅を広げよう
	・具体化と抽象化の狭間で......結城 浩
	・ビッグデータに対する新たなニーズに応える「リアルタイムクエリエンジン」......古橋 貞之
	・データサイエンティストという職業について......佐藤 洋行
	・関数型言語のカーネルへの適用......後藤 大地

	■一般記事
	・会社組織を活性化するスパイス「コンパ」......Software Design編集部

	■連載：Column
	・＜ネットワークエンジニア虎の穴＞自宅ラックのススメ【9】環境構築のイロハ..….tomocha
	・digital gadget【182】香港にてSIGGRAPH ASIA 2013開催〜躍進するアジアのCG〜......安藤 幸央
	・結城浩の再発見の発想法【9】Default......結城 浩
	・enchant 〜創造力を刺激する魔法〜【10】enchantMOONの誕生［前編］......清水 亮
	・コレクターが独断で選ぶ！ 偏愛キーボード図鑑【10】Comfort Keyboard Original & SafeType......濱野 聖人
	・秋葉原発！　はんだづけカフェなう【40】Makerスペースを始めてみた......坪井 義浩
	・Hack For Japan〜エンジニアだからこそできる復興への一歩【26】「ITx災害」会議（前編）......及川 卓也、高橋 憲一
	・温故知新 ITむかしばなし【30】ネットアクセスとバイナリファイルの転送......北山 貴広
	・SDでSF【2】『竜の卵』......小飼 弾
	・ひみつのLinux通信【2】さてはコマンド使いだな！......くつなりょうすけ

	■連載：Development
	・サーバマシンの測り方【3】データベースベンチマークからioDriveを測る......藤城 拓哉
	・分散データベース「未来工房」【8】Hadoop on Riak CS......上西 康太
	・セキュリティ実践の基本定石〜みんなでもう一度見つめなおそう〜【8】真のフィッシング対策は「敵を知り、己を知る」ことから......すずきひろのぶ
	・プログラム知識ゼロからはじめるiPhoneブックアプリ開発【10】アプリ内のデータを保存する......GimmiQ（いたのくまんぼう、リオ・リーバス）
	・Androidエンジニアからの招待状【45】［アプリ開発2013］［6］アプリの成長のための運用......重村 浩二
	・ハイパーバイザの作り方【17】仮想マシンの初期化とBHyVeのゲストOSローダ......浅田 拓也

	■連載：OS/Network
	・Linuxカーネル観光ガイド【23】Linux 3.13の新機能〜PowerCapとSquashfsのマルチキュー対応〜......青田 直大
	・Be familiar with FreeBSD~チャーリー・ルートからの手紙【4】ボトルネックはHDDか？　交換の前にシステム情報から推測しよう......後藤 大地
	・Debian Hot Topics【12】前途多難なInitシステム／64bit ARM対応、動き出したRCバグ対応......やまねひでき
	・レッドハット恵比寿通信【17】2014年はBRMSが来る？......梅野 昌彦
	・Ubuntu Monthly Report【46】ReVIEWで電子書籍を作成してみよう......あわしろいくや
	・Monthly News from jus【28】関西ITコミュニティの熱気に包まれた2日間 KOF2013......法林 浩之

	■アラカルト
	・ITエンジニア必須の最新用語解説【62】NaCL/PNaCL......杉山 貴章
	・Hosting Department【94】
	・読者プレゼントのお知らせ
	・バックナンバーのお知らせ
	・SD BOOK FORUM
	・SD NEWS & PRODUCTS
	・Letters From Readers
	・Software Design plusのお知らせ
	・次号のお知らせ

