

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　「Intel XDK」は Intel社が開発・
公開している無償利用可能な
HTML5アプリケーション開発ツー
ルです。マルチプラットフォームに対
応しており、HTML5/CSS3/Java
ScriptによってWebアプリケーショ
ンを開発できるだけでなく、作成し
たアプリケーションを各モバイルプ
ラットフォーム用のネイティブアプリ
に変換して提供できるという特徴を
持っています。Intel XDKの前身と
なったのはAppMobi社が提供して
いた「jqMobi」をはじめとする一連
のHTML5開発ツールです。Intel
は2013年2月に同社からこれらの
ツール群を買い取り、統合的な開発
環境としてまとめたうえで同4月に
Intel XDKを発表しました。
　Intel XDKではおもに次のような
機能が提供されます。

高機能エディタ•
UI編集ツール•
デバッグ用コンソール•
多数の機種に対応したデバイス•
エミュレータ
モバイル向けにカスタマイズさ•
れた JavaScript UIライブラリ
クラウドベースのビルドシステム•

　Intel XDKで開発したアプリケー
ションは、デバイスエミュレータを
使用することによって実機を用意しな
くても動作確認を行うことができま
す。エミュレータではデバイスの場
所や向き、ネットワーク接続状態な

どを細かく指定できるため、実機に
近い条件でテストすることが可能で
す。
　ネイティブアプリへの変換は、
Apache Cordovaのビルドシステム
によって行われます。Apache
Cordovaはモバイルアプリ開発フ
レームワークであるPhoneGapの
オープンソース版で、HTMLベース
のWebアプリケーションから、iOS
やAndroid、Windows Phoneをは
じめとした各種モバイルプラット
フォーム向けのネイティブアプリを構
築することができます。構築したア
プリは、各プラットフォームのアプリ
ストアでの配布・販売にも対応します。

　Intel XDKの公式サイトでは、す
でに次期バーションとなる「Intel
XDK NEW」も公開されています。
Intel XDK NEWでは、従来の
バージョンに対して次のような拡張
が行われています。

オープンソースのコードエディタ•
「Brackets」の採用
多くのフレームワークに対応し•
た新しい UIビルダー
「Apache Ripple」ベースの新し•
いエミュレータ
USB接続した Androidデバイ•
スのリモートデバッグや Java
Scriptプロファイリング機能
ユーザインターフェースの刷新•
node-webkitへの置き換えに•
よって Javaと Chromeへの依

存性を解消
Cordova 2.9のサポート•

　上記に加えて、ネイティブアプリ
のビルドシステムのランタイムエンジ
ンとして「Crosswalk」を選択できる
ようになったことも大きな変更点です。
CrosswalkはオープンソースのWeb
アプリケーションランタイムで、現在
はAndroid版とTizen版が公開さ
れています。Googleがオープンソー
スで開発している新しいレンダリング
エンジンの「Blink」を採用すること
によって、極めて高速なレンダリング
やWebGL対応などを実現している
という強みがあります。
　また、CrosswalkはCordova API
をサポートしており、Cordova API
を使って作成されたアプリケーション
はそのままCrosswalkのランタイム
上で実行することができます。しか
もIntel XDK NEWでCrosswalk
向けのビルドを行った場合、自動的
にCordova APIを取り込むため、
Cordova向けのAPI追加などは必
要ないとのことです。
　Intel XDK NEWは、HTML5
ベースのアプリ開発者の選択肢をさ
らに拡げるものになるでしょう。な
おIntelでは、従来のIntel XDKの
提供を2014年2月末で終了させ、
その後は Intel XDK NEWをIntel
XDKの名称で提供していく方針を
表明しています。s

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 63回

Intel XDK

Intel XDK
http://xdk-software.intel.com/

Intel 製 HTML5アプリ
開発ツール「Intel XDK」

さらに進化した「Intel
XDK NEW」も登場

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
http://xdk-software.intel.com/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://mngsv.nttsmc.com/

http://sd.gihyo.jp/

■お問い合わせ
〒162-0846
新宿区市谷左内町21-13
株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180
メール：gdp@gihyo.co.jp

法人などまとめてのご購入については
別途お問い合わせください。

※販売書店は今後も増える予定です。

電 子 版の最 新リストは

G i h y o D i g i t a l P u b l i s h i n g の

サイトにて確 認できます。

h t t p : / / g i h y o . j p / d p

http://gihyo.jp/dp

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.bluebox.ne.jp

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読の
ご案内

毎月18日発売

富士山マガジンサービス版

年間購読なら
割引料金で
購読できます！

全国どこでも
直接お届け
しています！ 1年購読（12回）

14,580円（税込み、送料無料） 1冊あたり1,215円（5%割引）
・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも
　追加料金を支払うことなく読むことができます。

※ご利用に際しては、／~＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

デジタル版Software Design

年間定期購読

 ／~＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

家でも
外出先でも

Webで購入

［月額払い］
スタートしました！

http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

高宮 安仁、鈴木 一哉 著
A5判 ・ 336ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-5465-7

〒162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

データサイエンティスト
養成読本編集部 編
B5判 ・ 152ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-5896-9

Software Design編集部 編
B5判 ・ 176ページ
定価 1,880円（本体）＋税
ISBN 978-4-7741-5888-4

Japanese Raspberry Pi
Users Group 著
B5変形判 ・ 256ページ
定価 2,380円（本体）＋税
ISBN 978-4-7741-5855-6

水野 操、平本 知樹、
神田 沙織、野村 毅 著
B5判 ・ 128ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-5973-7

中井 悦司 著
B5変形判 ・ 384ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-5937-9

沓名 亮典 著
A5判 ・ 416ページ
定価 2,880円（本体）＋税
ISBN 978-4-7741-5813-6

ニコラ・モドリック、
安部 重成 著
A5判 ・ 336ページ
定価 2,780円（本体）＋税
ISBN 978-4-7741-5991-1

沼田 哲史 著
B5変形判 ・ 360ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-6076-4

TIS㈱ 池田 大輔 著
B5変形判 ・ 384ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6288-1

乾 正知 著
B5変形判 ・ 352ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-6304-8

大谷 純、阿部 慎一朗、
大須賀 稔、北野 太郎、
鈴木 教嗣、平賀 一昭 著
㈱リクルートテクノロジーズ、
㈱ロンウイット 監修
B5変形判 ・ 352ページ
定価 3,600円（本体）＋税
ISBN 978-4-7741-6163-1

菊田 剛 著
B5判 ・ 288ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6128-0

久保田 光則、アシアル㈱ 著
A5判 ・ 384ページ
定価 2,880円（本体）＋税
ISBN 978-4-7741-6211-9

㈱パイプドビッツ 著
A5判 ・ 224ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6205-8

プロのためのLｉｎｕｘシステム・
10年効く技術
中井 悦司 著
定価 3,400円＋税　ISBN 978-4-7741-5143-4

プロになるための
JavaScript入門
河村 嘉之、川尻 剛 著
定価 2,980円＋税　ISBN 978-4-7741-5438-1

業務に役立つPerl
木本 裕紀 著
定価 2,780円＋税　ISBN 978-4-7741-5025-3

サーバ/インフラエンジニア養成読本
管理・監視編
Software Design編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5037-6

データベースエンジニア養成読本
データベースエンジニア養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5806-8

サーバ/インフラエンジニア養成読本
仮想化活用編
Software Design編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5038-3

Apache[実践]運用/管理
鶴長 鎮一 著
定価 2,980円＋税　ISBN 978-4-7741-5036-9

Webサービスのつくり方
和田 裕介 著
定価 2,180円＋税　ISBN 978-4-7741-5407-7

日本一の地図システムの作り方
㈱マピオン、山岸 靖典、谷内 栄樹、
本城 博昭、長谷川 行雄、中村 和也、
松浦 慎平、佐藤 亜矢子 著
定価 2,580円＋税　ISBN 978-4-7741-5325-4

はじめてのOSコードリーディング
青柳 隆宏 著
定価 3,200円＋税　ISBN 978-4-7741-5464-0

OpenFlow実践入門
高宮 安仁、鈴木 一哉 著
定価 3,200円＋税　ISBN 978-4-7741-5465-7

小飼弾のコードなエッセイ
小飼 弾 著
定価 2,080円＋税　ISBN 978-4-7741-5664-4

Androidアプリケーション
開発教科書
三苫 健太 著
定価 3,200円＋税　ISBN 978-4-7741-5189-2

JavaScriptライブラリ実践活用
WINGSプロジェクト 著
定価 2,580円＋税　ISBN 978-4-7741-5611-8

サウンドプログラミング入門
青木 直史 著
定価 2,980円＋税　ISBN 978-4-7741-5522-7

〈改訂〉Trac入門
菅野 裕、今田 忠博、近藤 正裕、
杉本 琢磨 著
定価 3,200円＋税　ISBN 978-4-7741-5567-8

PRE - 1 - Software Design Mar. 2014 - PRE - 2

筆者はグローバルAS番号を持っています。イン
ターネット上で、BGPを触っていたり遊んでいたり
しています。実際にAS番号を取得してインター
ネットに接続するのは、非常にハードルが高く、
BGP接続が可能な事業者2社以上と接続する予定が
あるといった確認、使用する機材といった審査もあ
ります。そこでどうしてもBGPを使ってみたい方
に向けて、草の根的に構成されたBGPネットワー
クがあります。この集まりはIHANet注3（いはねっ
と）というユーザグループで、国内にあります（写真
1）。これに参加することで、インターネットとはひ
と味違うBGP技術やつながりを楽しむことができ
ます。また、実際に各ポリシーに基づき、接続・運
用することもできます。実インターネットと直接
BGPで接続されていないことから、コミュニティの
外に迷惑をかけることがありません。ちなみに筆者
は両方に接続していることから、間違えると迷惑を
かけてしまうことは十分にあります（笑）。

IHANetでは、プライベートで利用可能なAS番
号を用いて、BGP4＋プロトコルを使用し、相互に
接続してIPv6の経路交換を行っています。接続に
あたり、お互いのネットワークをポリシーに基づき
接続されています。ここは、誰でも参加できます
し、情報交換や意見交換などは、IRCやメーリング
リスト上で行われています。参加を希望する方は、

注3） http://www.ihanet.info/

自宅にラックやルータ、そしてサーバなどを設置
して遊んでいると、そのうち、インターネット接続
で、BGPを使用してみたいと思うこともあるでしょ
う。ということで、今回は少しおもしろいことがで
きる集まりを紹介してみたいと思います。

ネットワークエンジニアならば、BGP（Border

Gateway Protocol）は避けて通れない技術の1つにな
るでしょう。BGPとは、自律的にネットワークを構
成するために使用する技術です。インターネットの
世界で唯一の番号として、組織に1つもしくは複数
の識別番号（AS番号）があり、その番号に基づいて
経路情報の交換が行われます。具体的には、複数の
ネットワークに接続し、互いにアドレスブロック
（経路情報）を交換し合い、ルーティングが行われま
す。この際に経路の選択の仕方により、負荷分散・
経路最適化・ネットワークの冗長化などを行うこと
ができます。紙面の都合上詳しくは書けないので、
JPNICの「インターネット10分講座：BGP注1」や
「Geekなページ：BGPを解説してみた注2」などを読ん
でいただければわかりやすいと思います。

注1） https://www.nic.ad.jp/ja/newsletter/No35/0800.html

注2） http://www.geekpage.jp/blog/?id=2009/2/20/

はじめに IHANet（いはねっと）

BGPとは……？

ススメ

ネットワークエンジニア虎の穴

自宅ラック
文／ tomocha（http://tomocha.net/diary/）

の

自宅ラックのススメ、別府出張編
第10回

イラスト：髙野涼香

http://tomocha.net/diary/
https://www.nic.ad.jp/ja/newsletter/No35/0800.html
http://www.geekpage.jp/blog/?id=2009/2/20/
http://www.ihanet.info/

PRE - 1 - Software Design Mar. 2014 - PRE - 2

一度のぞいてみてください。インターネットを構成
するのと同じように、AS番号の割り当て、RR

（Routing Registry）の提供、LG（LookingGlass）など、
実際に運用されており、一通りのことは試してみる
ことができます。
また、ネットワークにかかわる団体として、

JANOG注4などもあります。2014年は別府で
JANOG33 Meetingを開催しました（筆者も参加しま
した）。ネットワークエンジニアや技術に興味のある
方々が集まることから、JANOGミーティング終了後
の翌日など、みんなで集まって、IHANetメンバーが
集まることが多く、勉強会やピアリングパーティー
（お互いのネットワークを接続し合う）といったこと
もやっています。昔のインターネットもこういう感
じで人のつながりがあり、ビールを飲みながらつな
がっていた時代もありました。beer and peerとか言
われたりもしていますし、IX（Internet eXchange）な
どではまだこの文化は若干残っています。

BGPは、技術的要素と、コミュニティー的な要
素があります。インターネットは、お互いの組織・
団体が各々のポリシーに基づき、協調・構成された
ネットワークで、各組織の配下のネットワークはコ
ントロールできても、インターネットは誰のもので
もなく、各組織・団体によって、運用されています。
すなわち、お互いが自立的に協調し合い、その方針
に基づいたルールをもとに、技術的に接続します。
何が言いたいかというと、人が集まり、組織を形成
し、それを形にしたのがBGPだということです。
こうやって、人同士がつながり、意見や情報交換な
どをしつつ、新しい世界ができていきます。いわゆ
る政治やコミュニティの上に成り立っている技術と
いっても過言ではありません。それを上手に転がす
のがおもしろいものだと考えています。

注4） http://www.janog.gr.jp/

BGPを触る場合は、BGPという技術が先か、コ
ミュニティが先かという問題はありますが、結果と
して人がつながり、その上でインターネットという
ネットワークが形成されているということを忘れて
はいけません。ということで、仲良くみんなで協調
し合って構成されているものが、インターネットで
すね。実ネットワークでは難しくても、こういう集
まりがあるということを皆さんに知っていただきた
いです。そのきっかけにしてみてください。1人で寂
しい思いをしている人も、表に出てきて楽しむの
も、エンジニアの生き方の1つだと思います。
機材が自宅にそろったら、ますはこういう世界・
活動を知ってもらいつつ、歩んでみてください。昔
のインターネットが形成されていた時の雰囲気にも
近いと思います。
さて、次回は最終回。ご期待あれ。｢

のススメ
ネットワークエンジニア虎の穴

自宅ラック

▼写真1　IHANet Meetingの様子BGPって何が楽しいの？

終わりに

http://www.janog.gr.jp/

https://gihyo.jp/site/inquiry/dennou

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

世界最大の家電見本市 Internati
onal CES（Consumer Electronics
Show）2014が、米国ラスベガスで
2014年1月7～10日の4日間開催さ
れました。

　多くの家電製品の新製品が発表さ
れる中でとくに注目を浴びていたのは、

4K高精細テレビ／カメラ、モノのイン
ターネット（後述）、ウェアラブル（グラス
ウェア）の分野です。そのほかにもロ
ボットやドローン（小型リモコンヘリコプ
ター）、車載機器、車載アプリ、ネット接
続自動車などが注目され、なかでも車
業界の展示は過去最大規模とのこと
でした。

　IoT（Internet of Things）は、IPアド
レスが枯渇し、IPv6の必要性が叫ば
れていた頃にも話題に上りました。コン

ピュータやデジタルデバイスがネットに
つながるのはあたりまえですが、従来
ネットやデジタルとは関係なかったモノ
もネットにつながることによってさまざま
な情報を得ることができます。
　モノがネット接続されることによって、
離れたところから操作できたり、離れた
ところからモノの状態を知ることができ
ます。また、人の手では一度に1つしか
操作、認知できないモノも、多数のデ
バイスを一度に操作したり、一度に状
態を把握できるようになります。さらにモ
ノとモノとが協調して何か物事を行っ

流行だけでない
ウェアラブルとモノのインターネット

流行だけでないウェアラブルとモノのインターネット

身につける
デジタルデバイス：
ウェアラブル

Fin

指輪型ジェスチャー
コントロールデバイス
Finは、RHL Vision Technologies社製
の指輪型デバイスです。Bluetooth接続
で、スマートフォンやスマートテレビ、車載機
などと連携する指輪型のジェスチャーコン
トロールデバイスです。本稿執筆時点では
プロトタイプの試作／テスト中です。少し
太め指輪を親指に装着して使います。防
水で、micro USBで充電します。上下左
右のスワイプ、タップ、そのほかユーザ固有
の動きを感知して操作します。予価99ドル
で2014年9月発売予定です。

http://www.wearfin.com/

PrioVR

全身センサー。
ゲーム向けモーション
キャプチャデバイス
PrioVRは身体各所に装着することで体
の動きを認識するゲーム用のデバイスで
す。ヘッドマウントディスプレイと組み合わ
せて使えば完全にバーチャルな世界に没
入できるかもしれません。腕と頭の動きだ
けのLZ版から、加えて足の動きも取得す
るLite版、さらに腰と肩、足首の動きまで取
得できるPro版に分かれます。Kinectとは
異なり、位置や環境にかかわらず、遅延が
少なく正確にデータを取得できるのが特
徴です。

http://www.priovr.com/

Lumo Lift

猫背防止デバイス
Lumo Liftは小さな四角いセンサーを衣服
につけておくことで、姿勢が悪くなったとき
にスマートフォンへ知らせてくれる小型専
用デバイスです。歩数計測やカロリー計
算もしてくれますが、主軸は猫背防止で
す。バッテリーは一度の充電で約5日間も
つそうです。2014年夏前に発売予定で、
予価69ドルとのこと。追加料金でカラフル
な色合いのものが用意されています。

http://www.lumobodytech.com/

iRing

楽器アプリ操作専用指輪
iRingはスマートフォンを触らずに操作する
ための、おもに楽器アプリ操作用の指輪
です。横一列に3個並んだドット（円形）、あ
るいは三角形の形に並んだドットが印字さ
れた指輪です。この指輪を手にはめて、
iPadやiPhoneの内側のカメラにかざして
楽器アプリを操作します。SDKも公開され
る予定で、iRing対応のほかのアプリが登
場するかもしれません。2014年春に24ド
ルで販売予定。

http://www.ikmultimedia.com/
products/iring/

モバイル専用QWERTY
キーボード「TREWGrip」
http://www.trewgrip.com/

SONYの活動量計
ウェアラブルデバイス「core」

スマートフォンで操る紙飛行機
「PowerUp 3.0」
http://www.poweruptoys.com/

水泳用のウェアラブルデバイス「Instabeat」
http://www.instabeat.me/

Google Glassの対抗馬。
メガネでスマートフォンを
操作する「GlassUp」
http://www.glassup.net/

Microsoftが提唱する
ブラジャー型ウェアラブルデバイス
（特許情報より）

SONYが提唱する
カツラ型ウェアラブルデバイス
（特許情報より）

モノのインターネット IoT
International CES
http://www.cesweb.org/

今度こそ、
本気のウェアラブル

これからの
ウェアラブルデバイス、
これからの
モノのインターネット

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Mar. 2014 - 1

http://www.andoh.org/
http://www.cesweb.org/
http://www.glassup.net/
http://www.instabeat.me/
http://www.poweruptoys.com/

たり、広範囲での状態／情報を知覚
できるようになります。
　単に便利になるだけではなく、人や
モノの行動や生活の情報を蓄積する
ことによって、今までにないサービスが
実現できるようになるのです。
　今回のCESではとくにCPUチップ
メーカーであるIntelのIoTへの力の入
れようが目立ちました（http://makeit.
intel.com/）。また最近、家庭内の冷
暖房をインテリジェントにコントロールす
るデバイスやネットワークに接続される
火災報知器を発売するNESTが、32
億ドルでGoogleに買収されました。ネッ
トビジネスが主な領域であったGoogle
が、確実に現実世界の「モノのイン
ターネット」に進出してきた気配がうか
がえます。
　IoT浸透の背景として、さまざまなセ
ンサーデバイスがより安価に、長寿命
で動作するようになり、今まで考えられ
なかったような「モノ」が真の意味で「ス
マート化」したことがあります。想像して
みてください。薬瓶がネットにつながる
デバイスになったとき、車のワイパーが
広域ネットにつながったとき、冷蔵庫の
ビール棚がECサイトとつながったとき、
トイレの電灯がネットにつながったとき
……。身の回りにあるものがネット化し
たとき、デジタル化したときに何が起こ
るのかを。
　その一方、プライバシーの課題も忘
れてはなりません。これからは便利さの
享受と、個人情報の開示とのバランス
が重要になってくることでしょう。

Google Glassの登場のおかげ（せ
い？）かどうかわかりませんが、CES
2014では数多くのメガネ形ウェアラ
ブルデバイスが台頭してきました。
Google Glassもその他のメガネ形デ
バイスも、デバイスそのものだけでは完
結せず、ネットと接続してどういう利用
体験ができるのかが焦点になります。
また、音声認識やタッチ操作、ウィンク
など目の動きによる操作など、操作性
に関する事柄が使い勝手に大きく影
響します。
　また、公共の場でのカメラ撮影によ
るプライバシー問題をはじめとする社
会的な要素など、さまざまな課題と可
能性も積み重なっています。そのうえ、
多くの人々に浸透するためにはファッ
ション的な要素も不可欠でしょう。視力
矯正のためのメガネはいまやファッショ
ンの一部となっている一方、レーシック
などの手術をしてまでメガネを外したい
と考えている人もいます。
　ウェアラブルという概念は、1992年
頃、もともとはペースメーカーなどを身
体に埋め込むことができる（ウェアラブ
ル）という言葉からきたものです。マサ
チューセッツ工科大学（MIT）のメディ
アラボで最初に提唱されました。
　言葉どおりに考えると、“ウェアラブ
ル＝着ることのできる”という意味です。
今では身につけることができるデジタ
ルデバイス、身につけたままで操作でき
るデジタルデバイス、身体と一体化し
て情報を取得したり、身体性を拡張す

るデジタルデバイスと広く捉えられま
す。
　人が常に身につけているものを考え
てみると、何があるでしょう？
　衣服、帽子、靴、腕時計、ネックレス
やブレスレットのような装飾品、指輪、メ
ガネ、カツラ、入れ歯、補聴器、心臓の
ペースメーカー、人工関節などなど。私
たちが常に持ち歩き、一日平均150回
は使っていると言われているスマート
フォンも、ウェアラブルデバイスに近い
存在なのかもしれません。ウェアラブル
業界は、今後5年で190億ドル市場に
なることが予想されています。

　一度美しい映像を見てしまった人間
は、すぐにその美しさに慣れてしまいま
す。Retinaディスプレイほどの解像度
は必要ないかも？と思いつつも、しばら
く使ってその細かさに慣れてしまうと、
従来のディスプレイを見比べたとき、や
けにぼやけたものに思えてしまいます。
　また、超高精細な映像は平面であっ
ても立体的に見えたり、奥行きを感じる
ことさえあります。必要十分と思いつつ
も、無限の解像度を持つ自然の風景
と見比べて、どこまでも高画質を追って
いくのが人の特性なのかもしれません。
　自動運転、エアバッグ、衝突検知、
自動車庫入れ……車の世界は、私た
ちが子供の頃の図鑑やSF小説に描
かれていた未来の自動車像をあらかた

流行だけでない
ウェアラブルとモノのインターネット

流行だけでないウェアラブルとモノのインターネット

身につける
デジタルデバイス：
ウェアラブル

Fin

指輪型ジェスチャー
コントロールデバイス
Finは、RHL Vision Technologies社製
の指輪型デバイスです。Bluetooth接続
で、スマートフォンやスマートテレビ、車載機
などと連携する指輪型のジェスチャーコン
トロールデバイスです。本稿執筆時点では
プロトタイプの試作／テスト中です。少し
太め指輪を親指に装着して使います。防
水で、micro USBで充電します。上下左
右のスワイプ、タップ、そのほかユーザ固有
の動きを感知して操作します。予価99ドル
で2014年9月発売予定です。

http://www.wearfin.com/

PrioVR

全身センサー。
ゲーム向けモーション
キャプチャデバイス
PrioVRは身体各所に装着することで体
の動きを認識するゲーム用のデバイスで
す。ヘッドマウントディスプレイと組み合わ
せて使えば完全にバーチャルな世界に没
入できるかもしれません。腕と頭の動きだ
けのLZ版から、加えて足の動きも取得す
るLite版、さらに腰と肩、足首の動きまで取
得できるPro版に分かれます。Kinectとは
異なり、位置や環境にかかわらず、遅延が
少なく正確にデータを取得できるのが特
徴です。

http://www.priovr.com/

Lumo Lift

猫背防止デバイス
Lumo Liftは小さな四角いセンサーを衣服
につけておくことで、姿勢が悪くなったとき
にスマートフォンへ知らせてくれる小型専
用デバイスです。歩数計測やカロリー計
算もしてくれますが、主軸は猫背防止で
す。バッテリーは一度の充電で約5日間も
つそうです。2014年夏前に発売予定で、
予価69ドルとのこと。追加料金でカラフル
な色合いのものが用意されています。

http://www.lumobodytech.com/

iRing

楽器アプリ操作専用指輪
iRingはスマートフォンを触らずに操作する
ための、おもに楽器アプリ操作用の指輪
です。横一列に3個並んだドット（円形）、あ
るいは三角形の形に並んだドットが印字さ
れた指輪です。この指輪を手にはめて、
iPadやiPhoneの内側のカメラにかざして
楽器アプリを操作します。SDKも公開され
る予定で、iRing対応のほかのアプリが登
場するかもしれません。2014年春に24ド
ルで販売予定。

http://www.ikmultimedia.com/
products/iring/

モバイル専用QWERTY
キーボード「TREWGrip」
http://www.trewgrip.com/

SONYの活動量計
ウェアラブルデバイス「core」

スマートフォンで操る紙飛行機
「PowerUp 3.0」
http://www.poweruptoys.com/

水泳用のウェアラブルデバイス「Instabeat」
http://www.instabeat.me/

Google Glassの対抗馬。
メガネでスマートフォンを
操作する「GlassUp」
http://www.glassup.net/

Microsoftが提唱する
ブラジャー型ウェアラブルデバイス
（特許情報より）

SONYが提唱する
カツラ型ウェアラブルデバイス
（特許情報より）

モノのインターネット IoT
International CES
http://www.cesweb.org/

今度こそ、
本気のウェアラブル

これからの
ウェアラブルデバイス、
これからの
モノのインターネット

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design

http://makeit.intel.com/
http://makeit.intel.com/
http://www.trewgrip.com/

実現してしまっています（まだ空を飛ぶ
車は見かけませんが、すでに自家用の
空陸両用車は販売されているそうで
す）。
　ウェアラブルの世界も、高精細ディ
スプレイの世界も、未来を描きつつ現
実世界での革新を一歩一歩進めてい
くことが重要です。
　デジタルカメラやバッテリー技術の
進化により、身につけて撮影し続ける
カメラが安価に作れるようになり、ライ
フログとしての映像記録が平易になり
ました。技術の進歩で今まで難しかっ
たことができるようになるとともに、だれ
でも使え、安価になることで、もう一歩、
違った使い方やさらなる活用方法が生
まれてくるのです。
　そして生活にとけ込むためには、常
に持ち運べるか、毎日充電できるか、
必要なときに素早く使えるか、使わない
とき邪魔にならないか、ファッション性
に優れており、装着して恥ずかしくない
かなど、心配する事柄は山積みです。
　あらゆる機能が載っており、スペック
表にはすべて丸が付くスイスアーミー
ナイフのようなデジタルデバイスが優れ
ているわけではありません。ある特定の
機能が素晴らしく良かったり、よく考え
られた使い込めるデザインが求められ
ています。時代を担ってきた数々の新
しい家電製品のデビューの場である
CES。来年もまた大きく流行が変化し
ていることでしょう。来年のCESでも、
未来的すぎない、すぐにでも使える興
味深い新製品群を期待しています。
s

流行だけでない
ウェアラブルとモノのインターネット

流行だけでないウェアラブルとモノのインターネット

身につける
デジタルデバイス：
ウェアラブル

Fin

指輪型ジェスチャー
コントロールデバイス
Finは、RHL Vision Technologies社製
の指輪型デバイスです。Bluetooth接続
で、スマートフォンやスマートテレビ、車載機
などと連携する指輪型のジェスチャーコン
トロールデバイスです。本稿執筆時点では
プロトタイプの試作／テスト中です。少し
太め指輪を親指に装着して使います。防
水で、micro USBで充電します。上下左
右のスワイプ、タップ、そのほかユーザ固有
の動きを感知して操作します。予価99ドル
で2014年9月発売予定です。

http://www.wearfin.com/

PrioVR

全身センサー。
ゲーム向けモーション
キャプチャデバイス
PrioVRは身体各所に装着することで体
の動きを認識するゲーム用のデバイスで
す。ヘッドマウントディスプレイと組み合わ
せて使えば完全にバーチャルな世界に没
入できるかもしれません。腕と頭の動きだ
けのLZ版から、加えて足の動きも取得す
るLite版、さらに腰と肩、足首の動きまで取
得できるPro版に分かれます。Kinectとは
異なり、位置や環境にかかわらず、遅延が
少なく正確にデータを取得できるのが特
徴です。

http://www.priovr.com/

Lumo Lift

猫背防止デバイス
Lumo Liftは小さな四角いセンサーを衣服
につけておくことで、姿勢が悪くなったとき
にスマートフォンへ知らせてくれる小型専
用デバイスです。歩数計測やカロリー計
算もしてくれますが、主軸は猫背防止で
す。バッテリーは一度の充電で約5日間も
つそうです。2014年夏前に発売予定で、
予価69ドルとのこと。追加料金でカラフル
な色合いのものが用意されています。

http://www.lumobodytech.com/

iRing

楽器アプリ操作専用指輪
iRingはスマートフォンを触らずに操作する
ための、おもに楽器アプリ操作用の指輪
です。横一列に3個並んだドット（円形）、あ
るいは三角形の形に並んだドットが印字さ
れた指輪です。この指輪を手にはめて、
iPadやiPhoneの内側のカメラにかざして
楽器アプリを操作します。SDKも公開され
る予定で、iRing対応のほかのアプリが登
場するかもしれません。2014年春に24ド
ルで販売予定。

http://www.ikmultimedia.com/
products/iring/

モバイル専用QWERTY
キーボード「TREWGrip」
http://www.trewgrip.com/

SONYの活動量計
ウェアラブルデバイス「core」

スマートフォンで操る紙飛行機
「PowerUp 3.0」
http://www.poweruptoys.com/

水泳用のウェアラブルデバイス「Instabeat」
http://www.instabeat.me/

Google Glassの対抗馬。
メガネでスマートフォンを
操作する「GlassUp」
http://www.glassup.net/

Microsoftが提唱する
ブラジャー型ウェアラブルデバイス
（特許情報より）

SONYが提唱する
カツラ型ウェアラブルデバイス
（特許情報より）

モノのインターネット IoT
International CES
http://www.cesweb.org/

今度こそ、
本気のウェアラブル

これからの
ウェアラブルデバイス、
これからの
モノのインターネット

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design Mar. 2014 - 3

http://www.wearfin.com/
http://www.priovr.com/
http://www.lumobodytech.com/
http://www.ikmultimedia.com/products/iring/

4 - Software Design

Synchronous
̶̶シンクロナス

シンクロナスとは

　シンクロナス（synchronous）とは、処理がど
のように行われるかを表す形容詞の1つです。
日本語では「同期的」と言います。反対語はエイ
シンクロナス（asynchronous）で、こちらは「非
同期的」と言います。asynchronousのはじめの
“a-”は否定を意味する接頭辞です。アシンクロ
ナスと呼ぶ場合もありますが、違いを強調する
ときには「エイ」と発音したほうが安全です。
　さて、プログラムPが処理Sを開始したとしま
す。制御がプログラムPに戻ってきたときに処理
Sがすべて完了しているなら、処理Sは同期的処
理と言えます。このイメージ図を図1に示します。

　制御が戻ってきたときに処理がすべて完了し
ているのはあたりまえのように感じますが、非
同期的処理と対比して考えると理解できます。
プログラムPが非同期的処理Aを開始したとし
ます。このとき、制御がプログラムPに戻って
きても処理Aはすべて完了しているとは限りま
せん。処理Aは、プログラムPとは独立に処理
が継続しており、処理Aが完了してからプログ
ラムPに「はい、完了しました」とあらためて通
知が行くのです。非同期的処理のイメージ図を
図2に示します。
　同期的／非同期的というのは複数のものが動
作しているときによく登場する考え方です。

典型的例

　同期的／非同期的処理の典型的な例は入出力
です。たとえば「データをファイルに書き込む」

Synchronous

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 10

プログラムP

処理Sの呼び出し 処理Sを実行せよ

処理Sの結果の
受け取りと
続きの処理

完了待ち

同期的な処理S

処理Sを完了した

処理の開始と
処理の実行
（同期的）

 ▼図1　同期的処理

プログラムP

処理Aの呼び出し 処理Aを実行せよ

処理Aを開始した

別の処理
別の処理
別の処理
別の処理

処理Aの結果の
受け取りと
続きの処理

開始待ち

非同期的な処理A

処理の開始

処理Aを完了した
（完了通知）

処理の実行
（非同期的）

 ▼図2　非同期的処理

http://www.hyuki.com/

4 - Software Design Mar. 2014 - 5

という処理について考えましょう。
　同期的処理Sの場合、データをファイルに書
き込む処理がすべて終わるまでは制御が戻って
きません。言い換えると、制御が戻ってきたな
らデータはファイルにちゃんと書き込まれてい
る保証があることになります。プログラムの構
造は単純になりますので、これはメリットです。
反面、制御が戻ってくるまでプログラムは待た
され、次の処理に進むことはできませんので、
これはデメリットです。プログラムの応答性が
悪くなりますので、ユーザは「重いな」と感じる
かもしれません。
　非同期的処理ではメリットとデメリットが逆
になります。非同期的処理Aの場合、処理を開
始した時点で制御が戻りますが、内部では書き
込み作業を継続します。すぐに制御が戻ってく
るので、プログラムは書き込み完了を待たずに
次に進めます。しかし、制御が戻ってきたから
といって書き込みが完了している保証がないの
で、プログラムの構造は複雑になりますし、書
き込まれた情報を使う必要があるなら結局完了
通知を待つ必要があります。非同期処理Aは多
重に実行される可能性があり、エラー処理は複
雑になることが多いでしょう。動作テストも難
しくなります。

日常生活での同期的作業

　実は日常生活でも同期的／非同期的の区別が
重要になることがあります。
　たとえば、あなたが誰かに作業を依頼したと
しましょう。成果物の出来によってあなたの次
の作業が変化するなら、あなたは同期的に作業
を進めるしかありません。つまり、成果物の完
成を待たなければならないということです。そ
れに対して、成果物の出来にかかわらずあなた
が自分の作業を進められるなら、非同期的に作
業ができるでしょう。
　複数人が共同作業を行う場合、互いに非同期
的に作業できるようにしないと効率が悪くなり
ます。そのためには、各人が他人の成果物に依

存せず作業できるように分担を考える必要があ
ります。一方、すべてが非同期的に動いている
と全体のとりまとめが難しく、進捗状況がわか
りにくくなる危険性もあります。

優先順位と同期的作業

　複数人が作業を行うとき、各人は自分の作業
の優先順位に注意しなければなりません。自分
の作業の結果を誰かが待つことになるなら、そ
の作業を優先して行う必要があるからです。つ
まりそれは「誰かを待たせない」工夫です。
　逆に、自分が誰かの作業の結果を待つ状況に
なるのも好ましくありません。そのためには〆
切を確認しておく必要があるでしょう。それは
「誰かから待たされない」ための工夫です。
　私たちはつい、自分が進めやすい作業から着
手しがちです。しかし、集団での生産性を上げ
るには、「誰かを待たせない」また「誰かに待た
されない」ように注意する必要があるのです。

完了通知の重要性

　集団の生産性を上げるには「私の作業は完了
しました」という完了通知が重要です。作業が
完了しても、成果物を待っている人に伝わらな
ければ待ち時間が発生してしまうからです。
　プログラムでは完了通知の方法が決まってい
ます。それと同じように、日常生活でも完了通
知の方法を合意しておくことは重要です。会っ
て伝えるのか、メールで伝えるのか、電話で伝
えるのか……前もって「プロトコル（約束事）」を
決めておいて、無駄な待ち時間が発生しないよ
うにしたいものです。

◆　◆　◆
　あなたの周りを見回して、同期的作業や非同
期的作業を探してみてください。作業をうまく
分担することで、同期的な作業を非同期的な作
業に変換することはできるでしょうか。また、「私
の作業は完了しました」という完了通知を明確
化し、無駄な待ち時間が発生しないようにでき
るでしょうか。ぜひ考えてみてください。｢

10

6 - Software Design Mar. 2014 - 7

enchantMOONの誕生［後編］第11回11

（株）ユビキタスエンターテインメント　清水 亮　SHIMIZU Ryo
　　　http://www.uei.co.jp

　取締役会の理解を得られないまま、なんとか
独自開発のコンピュータを作ろうというプロジェ
クトがスタートしました。製品の名前は「enchant

MOON」に決まりました。この名前は、企画者
の辻と僕で決めた名前でした。使う人の思考を
反射して輝く月のような端末。それが我々の作
る端末が目指すべき姿だと。
　ところがそうした崇高な志は、現場のプログ
ラマとの衝突で脆くも崩れ去りそうな勢いでし
た。僕は企画者の辻とプロジェクトマネージャ
の増田から会議室で最終仕様書のプレゼンを受
けていました。

仕様策定に潜む病

 「ハイパーテキストとプログラミング、それがこ
の企画の最大のウリだろう。なぜそこを削るんだ？」
　増田が答えます。
 「それは……プログラマと相談した結果……」
　僕はああ、なるほどな、と思いました。
 「開発の現場に丸め込まれたか」
　これはモノ作りの現場でしばしば出くわす組
織的な病です。企画がどれだけ尖っていようと、
否、尖っているからこそ、プログラマは自分の
仕事を想像することが難しくなるのです。
　モノ作り、特に尖ったもの、この世にないも
のを作ろうとすれば、次に待っているのはプロ
グラマとの闘いです。ゲーム畑出身の僕は、こ

の闘いを幾度もくぐり抜けてきました。プログ
ラマをなだめ、脅しすかしして、なんとか理想
とする仕様を組み込んでもらうのです。彼らが
どうしても言うことを聞かないときの僕の必殺
技は「そこをどけ、俺がコードを書く」でしたが、
増田も辻もプログラミングができません。プロ
グラマが無理だ不可能だやりたくないと言った
とき、言い返すことができなかったのでしょう。
　時には僕自身がプログラマとしてそうした
「尖ったものを拒絶する」側に回ったこともあり
ます。プログラマは、見込みのない仕事はやり
たくないものです。工数を見積もれと言われて
も、作ったことのないものや、やったことのな
い仕事に関しては工数を見積もることすらでき
ません。あらかじめ見積もった工数に差異が出
れば責められるのは自分ですから、自然と保守
的になるしかないのです。
　だがこれではダメだ。
　僕はこう言うしかありませんでした。
 「ハッキリ言って、いま君たちが作り、売ろう
としているものは、商品とは呼べない。完成す
る頃には新規性も薄れ、1台だって売れないだ
ろう。これはGalaxy Noteから速度と利便性と
通信機能を奪っただけの、劣化品だからだ。ハ
イパーテキストとプログラミング機能、手書き
とプログラミングの融合、これこそが、この企
画の最大の魅力であり、ウリだったはずだ。お
絵描きができるだけの端末なら、万に一つも我々

e n c h a n te n c h a n te n c h a n te n c h a n te n c h a n t

http://www.uei.co.jp

6 - Software Design Mar. 2014 - 7

enchantMOONの誕生［後編］第11 回 enchantMOONの誕生［後編］第1111 回

に勝ち目はない」
　増田は黙りました。かわりに辻が答えました。
 「プログラミング機能は難しいので次世代機に
載せようということになったんです」
 「次世代機だって !?」
　僕は呆れました。ついさっきまで、取締役の
連中を説得したと思ったらこの能天気さです。
今だって奇跡的な綱渡りの上に予算が組まれて
いるのです。次世代機なんて、この時点では夢
のまた夢でした。
 「そんなもの、一号機が成功しなけりゃ、あり
得ないだろ？　投資だって何億だぞ。これがコ
ケたら、会社は破産だ」
　僕は絶望的な気分になりました。なにしろ企
画を推進する当事者たちが、自分たちの考えた
企画の真の価値を理解していないうえに、それ
を実現する方法が目の前にあるにもかかわらず、
使おうともしないのです。彼らはただ、エンジ
ニア出身の管理職としての僕に、どうすればエ
ンジニアを説得できるか、仕様を詰める前にた
だ意見を聞けば良かっただけなのです。
 「なぜ僕は君たち

4 4 4

にこれを見せられてるんだ？」
　僕は問いました。
 「なぜ、僕

4

と君たち
4 4 4

なんだ？　なぜ、僕たち
4 4 4

じゃ
ないんだ？　どうして仕様を決めるプロセスに
僕を参加させないんだ？　僕がその場に居たら、
プログラマが無理と言っても、なんとかする方
法を考え出すことができたはずだ。それが“僕
のスキル”だからだ。僕は布留川くんほど堅実
なコードは書けないし、辻さんほど斬新な企画
を立てることはできない。だが“斬新な企画を
実現する方法”を考え出すことについては、少
なくとも君たちよりはずっとマシなアイデアを
出せるはずだ。そうまでして僕を無視した結果
が、これか」
　怒りと絶望で、気が変になりそうでした。
　僕は会議室を出ました。
　増田が追いかけて来て、僕の手をつかみ、何
か言いたそうに口を開きました。
　僕はそれを遮り、言いました。

 「いいか、君たちはとんでもない間抜けだ。ダ
イヤの原石を焚き火に放り込むようなことをや
ろうとしてる。一度でも炭になったダイヤは元
には戻らない」
　増田は顔を歪ませ、目に涙を浮かべました。
 「馬鹿野郎、泣くな」
 「すみません。開発者の気持ちや立場を考える
と言い返せず、最後は清水さんがなんとかして
くれると思っていました」
 「もし、まだ製品を少しでもマシなものにした
いと思うなら、明日、朝イチで会社に来い。と
にかくこれじゃダメだ。徹底的にコンセプトを
磨き上げる。開発者と話すのはそのあとだ」
　翌朝、集まった3人でブレインストーミング
が始まりました。この製品が目指す姿、人生の
どの時点でどのように活用されるべきか、その
将来像をまず徹底的に捉え直したのです。
　ふつう、この手のブレインストーミングを開
発が始まってからやることはあり得ません。し
かし、そのとき僕たちに必要だったのは、自分
たちが本当は何を作ろうとしているのか徹底的
に考え抜き、知ることでした。それがわからな
ければ、その後のプロモーション計画も、マー
ケティングも、何も立てることができなかった
からです。我々はなぜこの製品を作り、世の中
に何を問いかけたいのか。
　このときすでにハードウェアが非力であるこ
とはわかりきっていました。だからこそ、我々
はハードウェアの能力の向こう側にあるべき、
本当の理想像をできるだけ詳細かつリアルに描
き出す必要があったのです。そのうえで、機能
のロードマップを作り、何を優先して何を後回
しにすべきか、それを決めるためのプロセスが
このブレインストーミングでした。
　最終的に、子供が生まれてから老人になって
死ぬまでの間にこの製品がどのようにかかわっ
ていくか、議論を重ねた結果、人生のどの時点
でも人々のクリエイティビティに寄り添う“オー
ルライフコンピュータ”というコンセプトが固
まりました。

8 - Software Design

e n c h a n t

Mar. 2014 - 9

カスタムOSに潜む罠

　このコンセプトを持って、僕たちは現場の開
発者たちと会合を持つことになりました。とこ
ろが現場はそれどころではありませんでした。
CPUメーカーから渡されたオープンソースの
Android OSの性能が想像以上に低すぎたのです。
 「清水さん、ダメです。実機で前田ブロックを
動かすと、1fpsも出ません」
 「なんだって？」
　僕は驚いてエンジニアリングサンプルをひった
くるようにして見ました。たしかに、fps（フレー
ム毎秒）が0.3から0.8をうろうろしていました。
　この製品にプログラミング機能を持たせるた
めには、ビジュアルプログラミング言語を動作
させることは必須条件でした。ペン中心のタブ
レットで、プログラミングするのにキーボード
が必須なんてことは不自然だからです。
　このビジュアル言語は前田ブロックNEOと呼
ばれていて、すべてHTML5上で動くenchant.

jsの上で実装されていました。ところがターゲッ
トとなる基盤でいざ前田ブロックを動かそうと
すると、あまりにも遅すぎてとても実用的な速
度で動かないのです。
　現場はお葬式ムードです。増田も弱り切った
顔をしています。もう投げ出したい、そんな雰
囲気すら感じました。会議室を見回すと、誰も
が諦めた顔をしていました。この企画はものに
ならない。もうどうにもならないんだと。

　しかし僕は首を振りました。
 「いや、なにか方法があるはずだ」
　ハードウェアは非力とはいえ、少なくとも32

ビットマシンで、GPUまで搭載されているはず
です。思いどおりのパフォーマンスが出ないのは、
前田ブロックかWebブラウザ、どちらかの実装
がおかしいということになります。Androidの
解析を担当したエンジニアが言います。
 「たぶんWebブラウザがGPUを有効に使えてい
ないのだろうと思います。ソースコードレベルで
いろいろ試したけどダメでした。この人員でいま
からWebブラウザのソースコードを改造して
GPUに対応させるのは現実的に無理です。何ヵ
月かかるか……ひょっとすると年単位かも……」
　それを聞きながら、僕の頭の中に1つのアイ
デアが閃きました。間に合うかどうかわかりま
せんが、一か八か、試してみる価値はあると思
いました。
 「ケビン、Google V8でenchant.jsだけをGPUを
使って動作させるVMを作ることはできないか？」
　ケビンはドイツの名門、ミュンヘン工科大学
からやってきた留学生です。enchant.jsのとく
に難しい機能実装を担当しており、ARCきっ
ての天才と呼ばれていました。まだ日本語に慣
れていないため、僕の日本語がわからなかった
らしく、首をかしげています。僕は同じことを
英語で言い直しました。
 「作ることは……たぶん、できます」
　ケビンは片言の日本語でそう答えました。
 「V8はプリコンパイル方式だ。うまくいけば、
JIT方式のDalvikより速いかもしれない。ケビン、
1週間やる。できるかどうか、答えを出してくれ」
　僕は皆へ向き直り、言いました。
 「よし、前田ブロックはケビンの“Eagle”に賭ける。
ほかの者は基本機能の実装に全力を注いでくれ」
 「イーグルって何ですか？」
 「月着陸船だよ。この製品は、enchantMOONと呼
ぶことにしたんだ。カスタムAndroidがSaturn-V

（サターンファイブ）、その上で動くシェルが
Columbia（コロンビア）、そしてJavaScriptによる

コンセプトを最初から固め直し

8 - Software Design

enchantMOONの誕生［後編］第11 回

Mar. 2014 - 9

enchantMOONの誕生［後編］第11 回11

アプリ実行環境が、Eagleだ」
　アポロ計画をモチーフにしようと考えたのは
この頃でした。我々のような小さな組織が人類
を前進させるような新しい製品を目指して世界
の一流企業に戦いを挑むという無謀なこの挑戦は、
アメリカ合衆国という若い国家が、その総力を
結集して月を目指したアポロ計画とイメージが
重なったのです。
　1週間後、ケビンが声を弾ませて報告に来ま
した。
 「清水さん、15～20fpsです。10倍……もしか
すると50倍以上……高速化されてます」
　ケビンは指示どおりわずか一週間でGoogle

V8エンジンとGPUを組み合わせたEagleのプロ
トタイプを完成させたのです。ベンチマークの結
果は、これなら勝負できる、と自信を深めるに充
分なものでした。こうしてenchantMOONのプロ
ジェクトは前へ動き始めました。

だめかもわからん

　目先のトラブルを解決したとほっと胸をなで
下ろして会議室を出た僕を、財務担当取締役の
武市が待ち構えていました。僕は嫌な予感がし
ました。
 「清水さん、もうだめかもわからん。予定より
キャッシュロスが激しいんよ」
　会議室に入るなり、武市は僕に財務諸表を見
せました。
 「試作に関する金が予想外にかかりすぎとる。
開発の進捗も人を投入しすぎとるし、このまま
いくと、身売りも選択肢の1つとして考えなあ
かんかもしれんよ」
　そのとおりでした。気がつけば一番利益率の
高かった部門であるARCが、これまでにない
ほど新製品にリソースを集中した結果、会社の
キャッシュフローは急激に圧迫されていきまし
た。しかしそれは必要な支出でした。Microsoft

やAppleが何千人という開発者をOSに投じて
いるなか、OSで対抗しようとするのにたった

5人でやろうとしているのです。これが1人で
も欠けたら決して完成することはないでしょう。
　やるならば、覚悟を決めなければなりません。
僕は腹をくくりました。
 「銀行から借りましょう。私が個人保証します」
 「個人保証たって、何億やで。失敗したら……
大丈夫か？」
　個人保証といっても、何億なんていう借金を
即金で返せるあてがあるわけがありません。こ
の個人保証とは、失敗したら会社が潰れようが
僕個人が一生かかっても支払うという、いわば
奴隷契約のようなものです。
 「ここが僕の正念場です。借りましょう」
　それからしばらくして、メインバンクの重役
が僕に面会したいという申し出がありました。
おそらく借り入れの件だということで、武市も
僕も張りつめたような緊張感のなか出迎えました。
 「社長、お忙しいなか、お時間をいただき、あ
りがとうございます」
　重役は、穏やかな表情で僕を見ました。
 「ニュースで拝見しましたよ。国産のタブレッ
ト端末を作っていらっしゃるとか」
 「恐れ入ります」
 「大変興味深く拝見いたしました。期待してお
ります」
　じりじりとした時が過ぎる中、貸付けが実行さ
れた、という連絡が来ました。まさに薄氷を踏む
思いで、経営者としてプロジェクトの峠を超えま
した。しかし先に待ち受けていたのが、さらなる
困難だとはこのときの僕には思いもよらなかったの
です。ﾟ

ハードウェア
の試作機（塗
装前）

10 - Software Design

はじめに

　今回はキーボードの真ん中あたり

を境界に左右に分割されたキーボー

ドを紹介します。キーボードを2分

割することで、タイピングするとき

の左手／右手の置き場所がより自由

になります。前回紹介したComfort

Keyboard Originalは3分割され

たキーボードでしたが、鉄板の上に

固定する必要があり、自由度はその

範囲しかありませんでした。今回紹

介するKinesis Freestyle2（写真

1）は、左右のパーツがケーブルでつ

ながっているだけですので自由な位

置取りが可能です。

Kinesis
Freestyle2

　Kinesis社が販売するキーボード

です注1。Kinesisと言えば、コン

タードキーボードが有名ですが注2、

ほかにもいくつか種類があります。

Freestyle2はそのうちの1つで、

キー配列は普通の英字配列です。

特徴

　次の特徴があります。

 •左右に分割された形状

 •軽めのキー荷重

 •充実したアクセサリ

 •キーレイアウトは英字配列

　キーボードはテンキーレスキー

ボードをちょうど真ん中から割った

ような形となっています。分割され

た左右のパーツはケーブルでつな

がっており、その長さが9インチ（約

20cm）のバージョンと20インチ

（約50cm）のバージョンがありま

す。ケーブルは取り外しや交換がで

きないので、長い20インチのほう

がお勧めです。もちろんキーボード

を分割しないで使うこともでき、専

用のフックで左右のパーツをつなげ

られます。このフックはキーボード

の上部だけを止めるので、キーボー

ドを扇状に配置できます（写真2）。

　タイピングの際には、手幅や腕が

窮屈にならないように左右のパーツ

を離せば、ゆったりしたフォームを

取れます。また、左右のパーツの真

ん中にスペースが作れるので、そこ

にトラックボールやマウスのような

コレクターが独断で選ぶ！

Kinesis
Freestyle2

自分好みの手幅で
タイピングできる

偏愛キーボード図鑑

第11回

注1） http://www.kinesis-ergo.com/freestyle2.htm
注2） 本連載第3回（本誌2013年7月号）で紹介しました。

写真1　Kinesis Freestyle2

写真2　左右のパーツをフックでつなげる

株式会社 創夢
濱野 聖人HAMANO Kiyoto
khiker.mail@gmail.com
Twitter：@khiker

http://www.kinesis-ergo.com/freestyle2.htm

偏
愛
キ
ー
ボ
ー
ド
図
鑑

10 - Software Design Mar. 2014 - 11

vol.11 Kinesis Freestyle2

デバイスを置いたり、書籍を置いた

りできます（写真3）。

　Freestyle2はメンブレンキー

ボードですが、タッチは軽めで長時

間タイプしても疲れにくいです。よ

くあるメンブレンキーボードの場

合、タッチは重めです。たとえば

Happy Hacking Keyboard Lite

だと約55gです注3。Freestyle2は

軽く、約45gとなっています注4。こ

れは、Happy Hacking Keyboard

のProfessionalシリーズやメカニ

カルキーボードでよく採用されてい

るCherry軸の中でも最も軽い茶軸

や赤軸とほぼ同じ数値です。

　別売ですが、アクセサリも充実し

ています。アクセサリは複数種類存

在します注5。写真4はVIP3アクセ

サリを付けたものです。パームレス

トがつき、キーボードに傾斜がつい

ています。傾斜は、5度、10度、

15度と変えられます。

　その他のアクセサリとして、パー

ムレストのみのPalm Supports

や、パームレストがなく傾斜をつけ

る機能だけに絞った省スペースタイ

プのV3などがあります。

　キーレイアウトは、普通の英字配

列ですが、jやgが大きい

ことと「Copy」や「Cut」などのホッ

トキーがあることが特徴です（写真

5）。左右のパーツを離さないでも使

えるので、普通のキーボードと比較

しても違和感なく使えます。

　なお、Freestyleシリーズには古

いバージョンの「Freestyle」と最新

バージョンの「Freestyle2」の2種

類が存在します。Freestyle2が発

売されたのは比較的最近で、古い

バージョンのFreestyle

もまだ販売されていま

す。新旧の一番の違いは

キーボードの厚さです。

Freestyle2のほうが薄

くなっています（写真6）。

入手方法

　Freestyle2はKinesis社の日本

代理店である㈱エジクン技研注6、も

しくは日本のAmazon.co.jpから

購入が可能です。値段は1万5,000

円ほどです。旧バージョンの

Freestyleも取り扱っていますが、

在庫限りのようです。

◆　◆　◆

　今回はKinesis Freestyle2を

紹介しました。分割キーボードは使

用する際のハードルはかなり低く、

用途もいろいろあるので、「一定数

以上の需要がある」と筆者は思って

います。しかし、実際は製品の種類

があまりないのが現状です。とくに

日本語配列のキーボードの種類が少

ない注7ので、手頃な価格で販売され

ることを願っています。s

注3） http://www.pfu.fujitsu.com/hhkeyboard/leaflet/keyspec.html
注4） https://www.kinesis-ergo.com/wp-content/uploads/2013/06/freestyle_vs_ms4000-800x3381.jpg
注5） http://www.kinesis-ergo.com/shop/freestyle2-for-pc-us/
注6） http://edikun.ocnk.net/
注7） パーソナルメディア㈱が販売しているμTRONキーボードがありますが、5万円以上と非常に高価です。

写真3　中央に書籍を置く

写真4　VIP3アクセサリを装着

写真5　jとホットキー

写真6　Freestyle2（上）とFreestyle（下）

http://www.pfu.fujitsu.com/hhkeyboard/leaflet/keyspec.html
http://edikun.ocnk.net/
https://www.kinesis-ergo.com/wp-content/uploads/2013/06/freestyle_vs_ms4000-800x3381.jpg
http://www.kinesis-ergo.com/shop/freestyle2-for-pc-us/

12 - Software Design12 - Software Design

ステッパーとは

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 41 回

秋葉原発！

　ステッパーとは、ステッピングモーターある
いはパルスモーターと呼ばれるモーターの一種
です。海外ではよくStepper（ステッパー）と表
記されますが、日本ではたいていステッピング
モーターと呼ばれます。ステッピングモーター
は、モーターの軸を電気信号に合わせて一定角
度ずつ回すことができるモーターです。
　たとえばありふれた200ステップのステッピ
ングモーターですと、1周が200ステップに
なっているので、1ステップ動かすと1.8°ずつ
モーターが回ります。簡単な制御回路で位置を
割に正確に出すことができるので、正確さを要
求されるメカには多用されます。
　本誌2013年8月号の第1特集「3Dプリンタが
未来を拓く理由」でも紹介しましたが、ステッ
ピングモーターはインクジェットプリンタやス
キャナ、あるいはクオーツ時計といった、手軽
に正確な位置決めをしたい装置で多用されてい
ます。

　ステッピングモーターには「ユニポーラ型」と

バイポーラ型 ユニポーラ型

図 1: バイポーラ型とユニポーラ型

 ▼図1　バイポーラ型とユニポーラ型

「バイポーラ型」があります。回路記号を見ると
わかりやすいので図1に記しますが、バイポー
ラは電磁石の両端から線が延びていて、ユニ
ポーラでは加えて電磁石の真ん中からも線が出
ています。つまり、バイポーラ型の電磁石で磁
石の極性を切り替えるには、電流を流す方向を
変える必要があります。一方、ユニポーラ型で
は、1Cから1または1のどちらかに電流を流す
かで磁石の極性を変えることができます。半導
体は決まった方向の電流をON/OFFするのは
得意ですが、反対方向に流すのは得意ではあり
ません。
　よって、ユニポーラ型のほうが使用する周辺
回路を減らすことができるので、今回はユニ
ポーラ型を例に話を進めます。

　ステッピングモーターの内部には電磁石が
入っていて、軸には永久磁石が取り付けられて
います。図2はステッピングモーターの内部を
簡略化して記したものです。
　電磁石に電流を流していない状態では、図2
❶のように永久磁石は引っ張られていない自由
な状態です。1の電磁石に電流を流すと、図2❷
のように永久磁石は1の電磁石に引っ張られま
す。電流を流す電磁石を1→2→3→4→1と切
り替えていくと、図2❷→❸→❹→❺→❻のよ
うに永久磁石が回転し、軸が回転することにな
ります。
　逆回転をするときには、1→4→3→2→1の
順に電流を流していくことで、図2❻→❺→❹
→❸→❷のように回転することとなります。

ユニポーラとバイポーラ

ステッパーのしくみ

ステッパーをはじめよう（前編）

http://www.switch-science.com/

12 - Software Design Mar. 2014 - 13

第 41 回

12 - Software Design

N

S

1

2

3

4

N

S

1

2

3

4 NS

1

2

3

4

N

S

1

2

3

4

N S

1

2

3

4

N

S

1

2

3

4

N

S

電源

GND

N

S

電源

GNDGND

このスイッチ操作を
マイコンにやらせる！

 ▼図2　ステッパーのしくみ

 ▼図3　ステッパーの励磁

ません。
　この記事で紹介する、SPG20-1362という小
型のステッピングモーターの場合、コイル抵抗
は68Ωとあります。このモーターの電磁石（コ
イル）に5Vを加えると、100mAほど流れること
が予想できます。マイコンのI/O（入出力）ピン
に流しても良い電流はArduinoのATmega

328Pで20mA、mbedなどに使われているLPC

マイコンでたいてい4mAが最大となっていま
す。つまり数十mAもの電流をマイコンのI/O

ピンに流すとマイコンは壊れてしまいます。

　この電流を流すということを図にすると図3
のようになります。図3❶のように接続して、
スイッチを入れて電流を流すと図3❷のように
電磁石が永久磁石を引っ張ります。電磁石に電
流を流して磁石にすることを「励

れい じ

磁」と言いま
す。このスイッチ操作をマイコンにさせれば、
ステッピングモーターを意図したとおり回転さ
せることができます。

　モーターは、マイコンに直接接続してはいけ

❶ ❷ ❸

❹ ❺ ❻

❶ ❷

ステッパーを動かす回路

ステッパーをはじめよう（前編）

14 - Software Design

はんだづけカフェなう
秋葉原発！

　こういった場合、FET注1やトランジ
スタにスイッチの代わりをさせたりし
ます。今回は、ブレッドボードでお手
軽に試すことができるDIP注2で、価
格も安いので、東芝のTD62083APG

という8chトランジスタアレイを使用
してみることにします（図4）。トラン
ジスタアレイというのは1つのパッ
ケージに複数のトランジスタが入って
いる素子のことで、この場合8chです
ので8個のトランジスタが入っていま
す。このトランジスタは入力抵抗が
2.7kΩということで、マイコンのI/O

ピンが流さなければならない電流は
1mA程度で済みます。一方で、出力
電流は最大500mAと今回のモーター
を回すのには十分な値になっていま
す。もっと大型のステッピングモー
ターをコントロールするには、もっと
大型のトランジスタやFETを用意す
る必要がありますので注意してくだ
さい。

　では、実際に配線してみましょう。
図5のように配線を行います。今回必
要な材料は表1のとおりです。
　筆書と同じように、ジャンパワイヤ
の色が長さで決まるのが好きでない方
や、硬いジャンパワイヤが好きでない

注1） Field effect transistor；電界効果トランジス
タ

注2） Dual Inline Package；2列に並んだリード線
を備えた ICの形状

組み立て

GND
VU

HIGHのとき

電流が
流れる

p25
p26

p23
p24

LOWのとき

電流は
流れない

トランジスタアレイ

 ▼図5　ブレッドボード上での配線

 ▼表1　材料表（秋月電子通商での型番と執筆時の価格）

 ▼図4　今回の配線図

品名 型番 参考価格 URL
mbed LPC1768 5,200 円 http://akizukidenshi.com/catalog/g/gM-03596/
ステッピングモータ SPG20-1362 250 円 http://akizukidenshi.com/catalog/g/gP-04241/
ピンヘッダ 1x40 40 円 http://akizukidenshi.com/catalog/g/gC-00167/
トランジスタアレイ TD62083APG 100 円 http://akizukidenshi.com/catalog/g/gI-01516/
ブレッドボード EIC-801 250 円 http://akizukidenshi.com/catalog/g/gP-00315/
ジャンパーワイヤ EIC-J-L 300 円 http://akizukidenshi.com/catalog/g/gP-00288/

http://akizukidenshi.com/catalog/g/gM-03596/
http://akizukidenshi.com/catalog/g/gP-04241/
http://akizukidenshi.com/catalog/g/gC-00167/
http://akizukidenshi.com/catalog/g/gI-01516/
http://akizukidenshi.com/catalog/g/gP-00315/
http://akizukidenshi.com/catalog/g/gP-00288/

14 - Software Design Mar. 2014 - 15

第 41 回

ソフトウェア

もっと手軽に

討する必要があることに注意してください。
　筆者はmbedを使って組み立てましたが（写
真1）、もちろんArduinoでも同様の回路でス
テッピングモーターを動かすことができます。

　次はソフトウェアです。@tedd_okano氏が書
いたサンプルコードがありますので注3、使って
みたい方はダウンロードしてください。
　ソフトウェアのやっていることはものすごく
単純です。スイッチを順番に入れてモーターを
回しています。0.01秒のウェイトをなぜ入れて
いるかというと、あまり短時間電流を流しても
ステッピングモーターが追いつかないためで
す。こういう状態を脱

だっちょう

調と言います。同様に、
あまり速く回転させるとトルク（回転する力）が
下がります。
　ソフトウェアを走らせると、モーターがぐる
ぐると回りだすはずです。waitの値を変えると
モーターの回る速さが変わるのが確認できるで
しょう。

　ここまではとりあえずステッピングモーター
を回してみましたが、実際にステッピングモー
ターで機器の制御をするにはさまざまな要因を
考える必要があります。たとえば、台形速度制
御です。実際にステッピングモーターでモノを
制御するときには、加減速を考えてやらなけれ
ばなりません。滑らかに加減速をさせるために
は台形制御という技術が一般的に用いられま
す。こういった制御をCPUで行うことももち
ろんできますが、ステッパーモーターコント
ローラなどと呼ばれる制御を委ねられるチップ
もあります。次回は、このステッパーモーター
コントローラを使ってステッピングモーターを
コントロールしてみたいと思います。ﾟ

注3） http://mbed.org/users/okano/code/unipolar_stepper_
motor_operation_sample/

方は、さまざまなタイプのジャンパワイヤが売
られていますので試してみてください。
　ステッピングモーターをブレッドボードと
接続するには、ピンヘッダをステッピングモー
ターの線の先にはんだづけしなければなりま
せん。
　図4には記されていませんが、TD62083APG

には、還流ダイオードというものが入っていま
す。電磁石に流していた電流を切ったとき、逆
起電力と呼ばれる力が働き、それまでに流れて
いたのと反対方向に電流が流れます。この電流
はトランジスタを破壊してしまうことがあるた
め、還流ダイオードで逆向きの電流を逃がして
やることでトランジスタを保護します。図5中
に赤い矢印で記した配線が、還流ダイオードの
配線です。
　今回使用しているステッピングモーターは
12V用のものです。しかし、12Vの電源を用意
するのも面倒ですし、5Vで動かすことでモー
ターの加熱などを和らげることができますの
で、今回は5Vで動かしたいと思います。ま
た、100mA程度であればマイコンボードの電源
出力端子から取っても問題ないため、今回はマ
イコンボードの電源出力端子から電源を取って
みたいと思います。トランジスタと同様に、今
回は100mA程度をモーターを動かすために使
うだけですので、マイコンボードの電源を使っ
ています。もっと大きなステッピングモーター
を使う場合は、トランジスタと同時に電源も検

 ▼写真1　今回組み立てた例

ステッパーをはじめよう（前編）

http://mbed.org/users/okano/code/unipolar_stepper_motor_operation_sample/

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ
『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2014 年 3 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

JetFlash 380

標準USB インターフェースとマイクロUSB インターフェースの 2
つの端子を搭載したデュアルUSBメモリです。デスクトップ／ノー
ト PCはもちろんのこと、USB OTG対応のスマートフォンやタブ
レット端末でも利用可能です。色はゴールドで、容量は 16GBです。
 提供元 トランセンドジャパン　 URL http://jp.transcend-info.com/

Redis 入門
Josiah L.Carlson 著、長尾 高弘 訳／
B5変形判、360ページ／
ISBN＝ 978-4-04-891735-3

OSS のキーバリューストア（KVS）の「Redis」の解説本。基礎から、
リアルタイムデータの前処理、インメモリデータセットの管理、
pub/sub（パブリッシュ／サブスクライブ）と設定まで解説します。
 提供元 KADOKAWA　 URL http://asciimw.jp/

詳説Cポインタ
Richard Reese 著、菊池 彰 訳／
B5変形判、248ページ／
ISBN＝ 978-4-87311-656-3

C 言語のポインタについて、図とコードを多用して視覚的かつ直観
的な理解を促します。メモリ構造と管理方法についても理解できる
ので、Java、C++、C#などのプログラマにも役立つ内容です。
 提供元 オライリー・ジャパン　 URL http://www.oreilly.co.jp/

超ブルーライト
削減

簡単操作で PCやスマートフォンの画面から出るブルーライトを削減で
きるソフトウェア。ディスプレイの色合いを調整することで、PCでは
約 69％のブルーライト削減効果が実証されています。対応OS は
Windows 8.1/8/7/Vista/XP、Android 2.2 ～ 4.4 です。
 提供元 ソースネクスト　 URL http://www.sourcenext.com/

REALFORCE108UG-HiPro
プロフェッショナル仕様のキートップを採用したキーボード。打鍵の際に指がキートップ天
面にフィットするよう深めに湾曲部をつけ、指がキーに馴染む形状になっています。タイピ
ングでよく使用する手前から２列目～５列目のキートップを高くすることで最前のキー列と
の段差を作り、誤って触れないよう考慮されています。インターフェースはUSB、配列は日
本語 108配列（カナ刻印なし）、対応OSはWindows 7 です。
 提供元 東プレ　 URL http://www.topre.co.jp/

Android のなかみ
Tae Yeon Kim、Hyung Joo Song、
Ji Hoon Park、Bak Lee、Ki Young Lim 著、
Android フレームワーク研究会 訳／
B5変形判、506ページ／
ISBN＝ 978-4-89362-288-4

Android の内部構造を徹底解剖。ソースコードの分析を通して
Android フレームワークの全貌に迫ります。構造と動作原理を理解
すれば、Android に最適なソフトウェアの設計に役立ちます。
 提供元 パーソナルメディア　 URL http://www.personal-media.co.jp/

Treasure Data
T シャツ
米 Treasure Data 社 は 2013 年 11
月に、同社のロゴおよびWebサイト
を刷新しました。それを記念して作ら
れた同社の新しいロゴ入り Tシャツ。
サイズはMになります。
 提供元 Treasure Data,Inc.　 URL www.treasuredata.com

1 名

4名

1名 2名

2名

2名 2名

1
 読者プレゼントのお知らせ 読者プレゼントのお知らせ 読者プレゼントのお知らせ 読者プレゼントのお知らせ 読者プレゼントのお知らせ 読者プレゼントのお知らせ

REALFORCE108UG-HiPro

JetFlash 380

1名

0

 URL http://jp.transcend-info.com/ 提供元

Android のなかみ0Android のなかみ0
Tae Yeon Kim、Hyung Joo Song、
Ji Hoon Park、Bak Lee、Ki Young Lim 著、
Android フレームワーク研究会 訳／
B5変形判、506ページ／
ISBN＝ 978-4-89362-288-4

Android の内部構造を徹底解剖。ソースコードの分析を通して
Android フレームワークの全貌に迫ります。構造と動作原理を理解
すれば、Android に最適なソフトウェアの設計に役立ちます。

Treasure Data

米 Treasure Data 社 は 2013 年 11
月に、同社のロゴおよびWebサイト
を刷新しました。それを記念して作ら
れた同社の新しいロゴ入り Tシャツ。

http://sd.gihyo.jp/
http://www.topre.co.jp/
http://jp.transcend-info.com/
http://www.sourcenext.com/
http://www.treasuredata.com
http://www.personal-media.co.jp/
http://asciimw.jp/
http://www.oreilly.co.jp/

「NoSQLが流行っているから、これでいこう」そんなに軽くていいのですか？　データベース
は企業の実績を支える重要な資産です。リレーショナルデータベースを本当に活用していますか？
あなたに本当に必要なデータベースは何ですか？　本特集では、データベースについてRDBか
NoSQLか根底から問いかけつつ、エンジニアの軸となる知識と技術を整理し紹介します。

RDBとNoSQL
 どちらを選びますか？

真っ当に考えるDBの鉄則

データベースの諸問題

データベース設計における地力をつけよう！
──「正規化」再考 .. 26

 Writer 小野 哲

第2章

データベースの根源的誤解 ... 18
 Writer 奥野 幹也

第1章

分散DBの適用範囲とは
──その概要と将来を見据えて .. 42

 Writer 神林 飛志、上新 卓也

第3章

分散からあえてRDBへ
──『過負荷に耐えるWebの作り方』のエピローグ ... 54

 Writer 林 哲也

第4章

RDBと比べてわかるMongoDBを
利用する際の注意点.. 58

 Writer 桑野 章弘

第5章

CONTENTS

第1特集

18 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 19

　リレーショナルデータベース（以下RDB）で
ないデータベースを総称してNoSQLと呼ばれ
ていますが、それらは非常に高い人気を博して
います。NoSQLというカテゴリのデータベー
ス製品が台頭して久しく、本稿を読んでいただ
いている皆さんの中にもすでに使ったことがあ
る、あるいは利用を検討しているという方も多
いのではないでしょうか。とくに新しいものが
好きな人、RDBを使った経験上で困難にぶち
当たったことがある人は、ユートピアを求めて
NoSQLに手を出そうとしてらっしゃるかもし
れません。
　しかしながら、世の中にはそのような都合の
良い世界というものは存在せず、NoSQLには
NoSQLなりの問題や課題があるものです。そ
こで、今回はデータベースにまつわる、人が陥
りやすい誤解について解説します。皆さんがデー
タベースを選定するうえでヒントになれば幸い
です。

　「RDBはもう古い。今はもうNoSQLの時代
だ」そんなセリフを聞いたことはないでしょう
か。一般的に、新しいもののほうが正しい、あ
るいは将来に渡って長く使うことができるとい

うようなコンセンサスが世の中にはありますが、
RDBに関してはそれは当てはまらないと言わ
ざるを得ません。RDBはかなり歴史のあるソ
フトウェアではありますが、現在進行中で最も
よく使われているデータベースソフトウェアで
あり、なおかつ今後も廃れることはないと考え
られるからです。

SQLより前の時代の
データベースとは何か

　当然のことですが、SQLを扱えるデータベー
スソフトウェア、すなわちRDBがこの世に登
場する前は、この世にあったデータベースソフ
トウェアはすべてNoSQLと呼ばれるカテゴリ
に含まれるものでした。なぜならば、まだ
SQLがこの世に登場していなかったからです。
とくに階層型データベースやネットワーク型デー
タベースがよく利用され、これらはトランザク
ションも実装しているものでした。しかしそれ
らのデータベースにはさまざまな課題や問題が
あり、それを克服するためにRDBが発明され
たという経緯があります。したがって、SQL

が時代遅れというよりは、NoSQLが先祖返り
という見方もできなくはないでしょう。

RDBには
確固たるデータモデルがある

　リレーショナルモデル最大の利点は、その背
後に集合論と論理学（述語論理）という確固たる
数学的モデルが存在する点です。NoSQLと呼
ばれるカテゴリのデータベースには、プログラ

NoSQLはRDBの
置き換えにはならない

RDBは時代遅れ
という3つの誤解

NoSQLが普及し、その可能性が評価される昨今、RDB（リレーショナルデータベース）についていろいろな誤解
をしていませんか。本章では、RDBにまつわるさまざま誤解を取り上げ、それらについて検証します。皆さん
のシステムで、NoSQLを使うべきか、それともRDBを使うべきか、一度じっくり考えてみませんか。

データベースの根源的誤解
 Writer 奥野 幹也（おくの みきや）日本オラクル（株）

http://nippondanji.blogspot.jp/ ／ Twiter@nippondanji

第1章

http://nippondanji.blogspot.jp/

18 - Software Design Mar. 2014 - 19

データベースの根源的誤解 第1章

ミングに役立つ便利なデータ構造を詰め合わせ
たようなものもあります。そういったデータベー
スソフトウェアは確かに便利ではあるのですが、
そのバックグラウンドとなる数学的モデルがな
いため、応用が利きにくいですし、将来に渡っ
て陳腐化させないのは難しいと言わざるを得ま
せん。数学的モデルがないことの何が問題なん
だ？̶̶と思われるかもしれませんが、数学的
モデルに基づいているというのは、データベー
スソフトウェアにとって重要です。

・さまざまな数学の公式や定理を応用できる
・複雑なクエリを表現できる
・データモデルの正しさがこの先も否定される
ことがない

　しっかりとしたデータモデルが存在すること
の意義はとても大きいです。リレーショナルモ
デルの背後にある数学的なモデルは、現時点で
はもちろん正しいものですから、時代遅れでは
ありません。また、集合論のようにベーシック
な概念は、将来的にも正当性が否定される可能
性はまずありませんので、末永く付き合ってい
くことができます。

日々進歩するRDB

　リレーショナルモデルの歴史は古く、そのア
イデアに目新しさはもはや皆無であると言って
も過言ではありません。しかしながら、RDB

はデータベースアプリケーションの最前線にい
まだ居座り続けています。というのも、RDB

自身が常に進化しているからです。とくに実装
面では常に洗練され、性能の向上あるいは新し
い機能の追加の勢いはとどまることを知りませ
ん。
　RDB製品の進化はなぜ起きるのでしょう
か？̶̶単なる既存の製品に対する改良という
ようなものでは説明のつかない部分があります。
その背景にあるのが次の2点です。

ハードウェアの進化
　RDBが進化する原因の1つは、やはりコン
ピュータハードウェアの進化があると考えられ
ます。コンピュータハードウェアは常に進化し
続けていますから、それを最大限活用するには
ソフトウェアも追随しなければなりません。
CPUが複数のコアを搭載するのが当たり前に
なって久しいですが、ソフトウェアの性能を最
大まで引き出すには、効率よくCPUコアを利
用できるようなアーキテクチャになっていなけ
ればなりません。各種RDB製品では、並列処
理を効率的に行うために、ボトルネックの解消
が日々精力的に行われています。
　また、最近はSSD（Solid State Drive）が普
及してきましたが、それによりデータベース
製品のトレンドも変化を受けています。ディ
スク I/Oがボトルネックというのは、従来か
らデータベースにとっては常識だったのですが、
その傾向にも変化が見られるようになって来
ました。とくにPCI Express接続のSSD製品
を搭載していると、先にCPUのほうが限界を
迎えることが多くなってしまいます。豊富な
コアがあるにもかかわらずにです。次世代イ
ンターフェースであるNVMe（Non-Volatile

Memory Express）が普及すれば、その傾向は
より顕著になるかもしれません。

ニーズの変化
　ハードウェアの進化という内向的な動機とは
対極的に、ニーズの変化という外向的な要因も
あります。ここ数年、ビッグデータというバズ
ワードが世間を賑わしています。ビッグデータ
がバズワードであるのは間違いありませんが、
データベースソフトウェアが管理しなければい
けないデータが年々増えてきているのはまぎれ
もない事実です。パーティショニングやインデッ
クス、あるいはストレージレイヤーの進化をは
じめとして、分散型やカラム指向のRDBといっ
たものも登場してきました。いかにして効率的
に大きなデータ、あるいは大きなトラフィック

20 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 21

を捌くことができるかというのは、これからも
データベースにとって最優先の課題であり続け
るでしょう。
　今のところ、RDBはハードウェアの進化、ニー
ズの双方に対してうまく追随しているように見
えます。その状態が続く限り、RDBが時代遅
れになることはないでしょう。

　NoSQLデータベースの利用を検討している
人には、漠然とRDBが遅いという考えを持っ
ている人が多いように見受けられます。確かに、
SQLの解析やアクセスコントロール、トラン
ザクションなどがある分、単純なしくみでアク
セスできるKVSなどに比べるとオーバーヘッ
ドは大きくなる傾向があります。しかしその一
方で、SQLは複雑なクエリを表現するのが比
較的容易だという利点がありますので、一概に
どちらが速いかというのは単純に比較すること
はできません。

JOINが遅いという誤解

　RDBにおいて散々言われてきた誤解があり
ます。それがJOINが遅いというものです。
　まず最初に、JOINと一口で言ってもさまざ
まなものが存在するという点に注意してくださ
い。2つのテーブルからそれぞれ1行ずつフェッ
チするだけで済むようなJOINであれば、イン

デックスが利用できれば極めて高速に処理でき
るでしょう。反対に、大量の行をJOINするよ
うなものなら遅くなって当然です。これは使い
方の問題であり、JOINそのものが遅いのでは
ありません。当然使い方を誤れば遅くなります
が、それはJOINだけでなくどのような演算で
も言えることです。
　また、もうひとつ覚えておいていただきたい
のは、RDBほどJOINを高速に処理できるソフ
トウェアはないという点です。たとえばKVS

に図1のような値が格納されている場合を考え
てみましょう。
　listで始まるキーには、userで始まるキーの
リストが格納されています。たとえば list:1を
getしてから、対応するuser:1,user:2,user:3を
mgetすれば、KVSでもJOINっぽい処理がで
きるというふうに考えることができます。とこ
ろが、このような処理の仕方は効率がよくあり
ません。
　この例のように3件程度ならたいした負荷で
はありませんが、1000件、100万件などを処
理しようとするとキーのやりとりだけでネット
ワークの帯域をかなり消費してしまいます。ま
た、KVSにはトランザクションがありません
ので、list:1をgetしてからuser:Xが更新され
てしまうかもしれません。KVSでJOINっぽい
処理をしようとすると、性能だけでなく、デー
タの整合性の面でも問題が生じてしまうことに
なります。

CAP定理という最大の誤解

　RDBが遅いという根拠として、度々CAP

（Consistency：一貫性 , Availability：可用性 ,

Partition-tolerance：分断耐性）定理が持ち出
されることがあります。しかし、CAP定理を
根拠にするのは危険です。なぜならばCAP定
理には致命的な問題があるからです。
　最大の問題は、CAP定理はそもそも定理と
呼べるものではないという点です。定理と名乗
るからには数学的な意味での定理になっていな

RDBが遅いという
3つの誤解

key value
list:1 1,2,3
list:2 3,4,5
user:1 A
user:2 B
user:3 C
user:4 D
user:5 E

図1　 KVSにおけるJOINの例 ▼

20 - Software Design Mar. 2014 - 21

データベースの根源的誤解 第1章

ければ誤解を生んでしまいますが、CAP定理
は定理としての要件を満たしていません。定理
というのは公理、あるいは別の定理から論理演
算によって導かれるものでなければならず、そ
の論理演算の過程を証明と言います。しかしな
がら、CAP定理にはそのような証明はありま
せん注1ので、定理とは呼べないのです。経験則、
よくても仮説止まりでしょう。「CAP仮説」と
いう名称ならば異論はありませんが、定理でな
いものを定理と呼ぶのは不適切です。
　誤った前提から出発すると、どのように議論
あるいは考察しても正しい結論は導かれないで
しょう。CAP定理はあくまでも参考程度の仮
説として考えておいたほうが無難です。将来的
にはCAP定理の殻を破ったデータベースソフ
トウェアが登場するかもしれません。

性能の見方についての誤解

　性能について検討するうえで欠かせないのが、
スループットとレスポンスについての理解です。
よく「NoSQLは速い !!」みたいな解説記事を巷
で見かけますが、根拠となっているベンチマー
クを見ると、レスポンスについてのものである
場合が多いです。
　レスポンスとは、ある処理の開始から完了す
るまでの時間です。もちろんレスポンスが良い
（時間が短い）に越したことはありませんが、デー
タベースサーバにより求められるのはスループッ
トです。スループットとは単位時間あたりにど
れだけの処理を実行できるかという指標で、同
時にどれだけの処理を実行できるかという性能
にも大きく関係してきます。最近はCPUのコ
ア数も増えて来ましたから、それらをいかに効
率的に使いこなせるかというのもデータベース
ソフトウェアにとって重要な課題です。
　ベンチマークを見るときは、どのように計測
したか、値にどんな意味があるのかということ
をふまえて吟味しましょう。

注1） 証明っぽいものならありますが。

　RDB最大の特徴は、何と言ってもそのデー
タモデルです。リレーショナルモデルはとても
よくできたデータモデルであり、複雑なデータ
構造を必要とするデータベースアプリケーショ
ンを構築するのに向いています。ところが、実
際の現場ではリレーショナルモデルがおろそか
にされがちで、その結果多くの人がRDBをう
まく使いこなせないという状況に陥っているよ
うです。

データベースは
単なる入れ物ではない

　開発者の中には、「データの加工やロジック
はアプリケーション側で頑張るから、データベー
スは何でも良い」とか「インデックスを付けてお
けば何とかなる」と考えてしまう人がいるよう
です。確かに、突き詰めればアプリケーション
側で実装すれば何でもできてしまうわけで、こ
のような主張もある意味では正しい側面もある
のは否定できません。ただし、どのようにデー
タベースを使うかで開発のたいへんさがまった
く違ってしまうという点が重要です。具体的に
は、DB設計のよし悪しによってクエリの書き
やすさが変わってきます。
　RDBに限った話ではありませんが、道具は
正しく使ってこそ便利なものとなります。たと
えば料理をするとき、スライサーは根菜などを
薄くカットするのに向いていますが、刺身を作
るのには向いていません。出刃包丁は魚を捌く
のに便利ですが、根菜をスライスするのには向
いていないでしょう。調理器具と同じように、
データベースも正しく使ってこそ真価を発揮し、
便利な道具となります。材料（テーブル）に応じ
て、適切な器具（クエリ）を選んで加工すること
で最適な性能が得られるのです。データベース
を単なるデータの入れ物だととらえて使い方を
間違えると、労力の割には報われないことになっ
てしまいます。

リレーショナルモデル
についての3つの誤解

22 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 23

　どのようにデータベースを設計すべきか、ま
たはクエリを書くべきかということを理解する
には、データモデルについての理解が不可欠だ
ということを覚えておいてください。RDBでは、
リレーショナルモデルです。

そもそもリレーションとは何か？

　リレーショナルモデルについての非常にポピュ
ラーな誤解は、リレーショナルモデルがテーブ
ル同士の関係を表現するデータモデルであると
いうものです。大事ですのでもう一度言います
が、リレーショナルモデルはテーブル同士の関
係を表すデータモデルではありません。
　ではリレーションとはいったい何でしょうか？

大学などで習ったという人にとっては常識とも
言えるのですが、現場ではリレーショナルモデ
ルはおろそかにされがちです。この問いに答え
られるようになってはじめて、リレーショナル
モデルを理解する第一歩を踏み出すことになり
ます。
　実は、リレーションとは、リレーショナルモ
デルにおける演算の単位、つまりデータの集合
なのです。SQLではテーブルがリレーション
に相当します。リレーションに対して演算を行
うデータモデルだから、リレーショナルモデル
という名前なのです。
　テーブルとリレーションは対応する概念です
が、SQLとリレーショナルモデルでは用語が
少しずつ違っています。SQLとリレーショナ
ルモデルの用語の対応を表1に記しておきます。
　リレーショナルモデルとSQLで名称が異な
るのは紛らわしいのですが、これには明確な理
由があります。テーブルとリレーションは対応
する概念ではありますが、性質に違いがあるの

です。性質が異なるから名称も異なるというわ
けです。本稿では詳しくは述べませんが、リレー
ションはテーブルと違って次のような性質があ
ります。

・NULLがない
・重複する要素を含まない
・タプル同士の順序がない
・更新できない

　本稿では深くは触れませんが、これからデー
タベースを学ぼうという人は、ぜひリレーショ
ナルモデルについてもっと詳しく勉強してみる
ことをお勧めします。

リレーショナルモデルの限界
　リレーショナルモデルについて詳しくなると、
その得手不得手もわかるようになります。これ
はどのようなデータモデルにも言えることですが、
万能なものはこの世には存在しません。リレー
ショナルモデルは優秀なデータモデルであるこ
とは間違いありませんが、当然の如く限界、つ
まりデータモデルを適用できないケースがあり
ます。ズバリ、リレーショナルモデルで表現で
きるのは「集合」として表現できるデータ構造に
限られるのです。たとえば多重集合やグラフ、
ツリー、履歴といったデータ構造は、本来リレー
ショナルモデルでは扱うことができない分野です。
　ところが、SQLはリレーショナルモデルの
垣根を超えてそういったデータ構造も扱えるよ
うになっています。その点を理解していないと、
テーブルとしてデータを表現できたけどなぜか
クエリをうまく書けないというような状況に陥っ
たとき、その理由がわからず苦労するでしょう。
　リレーショナルモデルが扱えないデータ構造
は、SQLなら表現可能とは言え、RDBが得意
とする分野ではありません。そのようなデータ
構造がメインであれば、ほかのデータモデルを
持ったデータベースソフトウェアの利用を検討
する価値はあります。

SQL リレーショナルモデル

テーブル（表） リレーション（関係）

カラム（列） アトリビュート（属性）

ロー（行） タプル（組）

表1　SQLとリレーショナルモデルの対応 ▼

22 - Software Design Mar. 2014 - 23

データベースの根源的誤解 第1章

ストアドプロシージャについて
の誤解

　とくに昔からRDBを使っている人に多いの
ですが、ストアドプロシージャこそがRDBの
真骨頂だと考えている人がいるようです。残念
ながら、それはとんでもない誤解だと言わざる
を得ません。
　リレーショナルモデルは集合論をベースとし
たデータモデルです。1つ、あるいは複数の集
合（＝リレーション）を用いて演算した結果、新
たな集合を得るというのが根本的な考え方です。
このようなモデルの最大の利点は、ループや分
岐といった手続き型の処理を排除できる点にあ
ります。ループの代わりに集合をベースとした
演算をすることで、シンプルにクエリを表現す
ることが可能になるのです。
　ところが、ストアドプロシージャはループや
分岐を使って処理を表現する方法ですから、ス
トアドプロシージャに頼っていてはリレーショ
ナルモデルの利点をすべてぶち壊してしまうの
です。ただし、リレーショナルモデルにうまく
適合できないデータをSQLで扱うような場合
には、ストアドプロシージャはたいへん強力な
ツールとなります。この点を理解していれば、
いつストアドプロシージャを使うべきかを判断
できるでしょう。

　RDBに限った話ではありませんが、DB設計
は極めて重要かつ難しいテーマです。にもかか

わらず、リレーショナルモデルへの理解不足か
ら、RDBを使っている現場ではDB設計につ
いての誤解が横行しているようです。その結果、
状況をより悪くしてしまっているケースが多々
あります。

正規化は重要でない？

　一番よくあるのが、正規化は必要ない、ある
いは重要ではないという誤解です。RDBを使
うならば、正規化はしっかりと行うべきです。
正規化はリレーショナルモデルにおける極めて
重要なDB設計理論です。正規化をすることで、
データの重複を排除し、その結果データの不整
合を防ぐことができます。重複がないというこ
とは、あるデータを更新しようと思ったら、一ヵ
所だけを更新すれば良いということです。
　反対に、重複がある場合には同じデータが出
現する複数ヵ所すべてを更新しなければなりま
せん。このとき、一ヵ所でも更新漏れがあると、
本来同じ値であるべきデータに食い違いが生じ
てしまうことになります。正規化されていない
テーブルを更新し、その結果不整合が生じた状
態を図2に示します。
　図2はとある会社の従業員の名簿をテーブル
として表したものです。従業員名、所属する部
署、部署の代表電話（内線番号）が含まれていま
す。あるとき、鈴木さんが営業部へ配属変更に
なったので名簿を更新しました。ところが、そ
のとき部署名は変更したのですが、電話番号を
更新するのを忘れてしまいました。長年この会
社に勤続している人なら、どの部署がどの内線

DB設計についての
4つの誤解

EMP_NAME DEPT_NAME DEPT_PHONE
山田太郎 営業 　　　　 1100
鈴木一郎 営業 　　　　 1200
山田花子 マーケティング 　　　　 1200
佐藤二郎 営業 　　　　 1100
山本三四郎 経理 　　　　 1300

EMP_NAME DEPT_NAME DEPT_PHONE
山田太郎 営業 　　　　 1100
鈴木一郎 マーケティング 　　　　 1200
山田花子 マーケティング 　　　　 1200
佐藤二郎 営業 　　　　 1100
山本三四郎 経理 　　　　 1300

図2　 更新による不整合の例 ▼

24 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 25

番号なのかを記憶しているかもしれません。し
かし、まったく知らない人が更新後のテーブル
を見て、営業部の内線番号が何かということを
判断できるでしょうか？「1200よりも1100のほ
うが出現回数が多いから1100かもしれない」と
推理することはできますが、それはあくまでも
推理であって、正しいという保証はないのです。
　このように、いったんデータに不整合が生じ
てしまうと、データそのものから「本当に正し
い値は何か」ということを導き出すことはでき
なくなってしまいます。つまり、不整合が生じ
たデータベースでは、クエリが正しいデータを
返すとは限らないのです。これはデータベース
にとって致命的です。
　DB設計で「重複がないこと」を保証できる正
規化は、RDBの運用をぐっと楽にしてくれる
強い味方なのです。

いったん設計したら
変更してはいけない？

　ウォーターフォール型の開発で問題になりが
ちなのは、先にDB設計を済ませてしまい、そ
の後そのスキーマを使って開発を行うというも
のです。プログラムがバグから逃れられないの
と同様、DB設計も最初から完璧なものを作る
ことはできません。とくにテーブル数が多けれ
ば多いほど、検討する必要がある組み合わせが
増えてしまうため、DB設計に欠陥が生じやす
くなってしまいます。コードを書いてみたらあ
らためてDB設計の欠陥に気がついたというこ
ともあるでしょう。
　DB設計の変更は手間がかかりますが、欠陥
が発覚したら修正をすべきです。時間はかかっ
てしまいますが、アプリケーションとデータベー
スをセットでリファクタリングする必要があり
ます。問題を放置してしまうとバグの温床にな
りますし、その欠陥をカバーするためのコード
は後から技術的負債となって重くのしかかって
来ることになります。

スキーマレスなら
DB設計がいらないのか？

　「スキーマレスなNoSQLを使えば、DB設計
に頭を悩ませなくても良い」というような発言
を耳にしたことはないでしょうか。残念ながら、
それも誤解と言わざるを得ません。スキーマを
柔軟に変更できることと、DB設計をしなくて
も良いことはイコールではないからです。
　ドキュメント型データベースを使っていても、
クエリを記述する際にはどこにどのようなデー
タが格納されているかという情報が必要です。
ドキュメント型データベースに問い合わせを行
う際には、ユーザが定義したデータ構造に従っ
てクエリを記述することになります。つまりユー
ザが事前に「ドキュメント内のどこにどんなデー
タを格納しておくか」ということを決めておか
なければならないのです。スキーマにその情報
が表れない分、スキーマレスのほうが返ってク
エリを書くのが難しいかもしれません。
　スキーマレスはDB設計を簡単にする万能薬
ではありません。確かにいつでも柔軟に好き
なようにデータの構造を変更できますが、た
だそれだけなのです。ドキュメント型データベー
スでも、RDBと同じように、データの重複と
いう問題がついてまわります。RDBとは違い
正規化によって解決できない分、ドキュメン
ト型データベースでは解決が難しいでしょう。
また、たとえ正規化を行ったとしても、ドキュ
メント型データベースではJOINできませんの
でクエリの記述は難解になってしまうでしょう。
さらに、データ構造の変更を防ぐ手立てがな
いという点も問題です。ドキュメントのデー
タ構造の変化に対して制約を付けることがで
きないため、何かの手違いでデータ構造が変わっ
てしまい、データの更新漏れが起きる可能性
があります。
　ドキュメント型データベースは、スキーマ
レスであるため扱いやすい点もありますが、反
対にスキーマレスであることが欠点にもなる
のです。

24 - Software Design Mar. 2014 - 25

データベースの根源的誤解 第1章

O/Rマッパーを使えば
DB設計は適当でよいのか？

　最近はO/Rマッパーを備えたフレームワー
クを使った開発が活発ですが、「オブジェクト
にマッピングしてしまえばDB設計はいろいろ
とボロがあってもプログラムで何とかできる」
というふうに考えてしまってはいませんでしょ
うか？……残念ながら、これも大きな誤りです。
　その理由は、たとえO/Rマッパーを使った
場合でも、その背後ではSQLが実行されてい
るからです。もしDB設計をおざなりにしてし
まって、たとえば正規化を行わなかったとする
と、重複による不整合が生じてしまうリスクが
残ってしまうのは、O/Rマッパーを使ってい
ようがいまいが同じなのです。

　データベースにまつわるさまざまな誤解につ
いて解説してきましたが、いかがでしたでしょ
うか。心当たりのあるものはあったでしょうか？

　NoSQLデータベースは、使いどころを間違
えなければ強力なデータベースソフトウェアで
あることは否定のしようはありません。
NoSQLの人気は増す一方のように見えますし、
新しいNoSQLソフトウェアも次々に登場して
います。一見すると、NoSQLはRDBに取って
代わる新しい世代のソフトウェアだと思ってし
まいがちです。しかし、そのような考えが誤解
であることは、本稿で説明したとおりです。
　とはいえ、RDBも万能ではありませんので、
いかにうまくNoSQLと使い分けるか、あるい
は併用するかがポイントとなります。使い分け
るべきポイントを見極めるには、やはりRDB

や各種NoSQLについて正しく理解することが
重要です。リレーショナルモデルの範疇はどこ
か、リレーショナルモデルに収まらないデータ
はどこまでならSQLで対応可能か、対象のデー
タに対応したデータベースソフトウェア
（NoSQL）は存在するか、といったことを理解
して初めて、正しい選択を行うことができるで
しょう。ﾟ

まとめ「データと向き
合い、使い分ける」

Column

DB設計に潜む罠

　筆者は、仕事がらさまざまなテーブルやクエリを
目にします。クエリのパフォーマンスチューニング
で調査をしていると、多くの場合はそのクエリがア
クセスするテーブルの設計に問題を抱えていること
に気づきます。そして、その兆候はすべてクエリに
表われています。その結果パフォーマンスに問題を
抱えることになってしまうのです。
　たとえば、カラムがNULLを許容するために
COALESCEや IFNULLが多数用いられていたり、テー
ブルにフラグを表すカラムが多数あるため検索条件
が複雑怪奇になっていたり、OLTPなのにクエリの
中で関数（MAXやMIN、COUNTなど）が用いられて
いたりといったものです。これらはすべてリレーショ
ナルモデルのセオリーを無視したテーブル設計が招
いた結果であり、こういった兆候を見かけたら、ク
エリをどうにかしようと考える前にまずはDB設計

を見直すべきでしょう。
　とはいえ、多くのユーザにとってDB設計を変更
するという決断は勇気が要るものであり、変更する
という判断はなかなか取られにくいものです。そん
なとき筆者は、インデックスやクエリの書き換えで
どうにか逃げるような対策をアドバイスしています。
DB設計がリレーショナルモデルのセオリーから外
れていても、インデックスを工夫したりストアドプ
ロシージャを用いたりすることで、何とかなってし
まうケースは多いです。
　しかし、当然そういったアドバイスは次善の策で
あり、その場しのぎであるため、対策が負債となっ
て残ってしまうでしょう。RDBが本来のパフォーマ
ンスを出すには、根本的にリレーショナルモデルに
沿ったDB設計が不可欠なのです。

26 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 27

正規化を
意識していますか？

　正規化という言葉。情報処理試験以来耳にし
ていないのではないでしょうか。普段なにげなく
行っているデータベース（以下、DB）設計ですが、
案外正規化について知らずに設計していたりす
るものです。実際にDB設計をする際、いちいち
「これは第三正規形まで到達している」とは考え
ずに一気に表構造に落とし込むものです。「正規
化なんて全然意識していないけど、設計できて
いるし……」という人がほとんどですよね。
　なのに、なぜここで正規化の話をするのか？
　ズバリ！正規化の意味を理解することでDB

設計における地力をつけるためです。正規化は
リレーショナルデータベース（以下、RDB）の
発生と進化の歴史そのものであり、それを理解
することはDBを理解することなのです。
　加えて、近年ビッグデータの流れに伴い、
NoSQLの話題が多く、一部ではRDBは過去
の技術であるとまで言われています。しかしな
がら、正規化について深く考察すると意外にも
NoSQLにおけるDBはどのように設計すべき
なのかが見えてくるものです。

歴史からの考察

　RDBの歴史が、1970年に発表されたコッド
（F.Codd）の 論 文「A Relational Model of Data

for Large Shared Data Banks（大規模共有デー

タバンクのデータ関係モデル）」からスタートし
たのは誰もが知っています。この論文は集合論
を発展させたリレーショナルデータモデルを説
明したものでしたが、そこには早くも正規化の
ことが触れられています（1.4章 正規化）。
　コッドの理論はDBの正規化を段階的に進化
させました。それがいわゆる第一正規形から第
三正規形に至る基本的な正規形でした。コッド
の理論を元にデータを表現／操作する最低の条
件は、第一正規形です。その理由は、データの
集合をスカラ値で表現することで集合演算が初
めて可能になるからです。詳しくは後で述べます。
　第二、第三正規形では集合演算の必須条件で
はなく、データの追加／更新／削除時の異常を回
避するための論理が重要視されます（1971年のコッ
ドによる論文）。
　その後、ボイスコッド正規形がボイス（Raymond

F.Boyce）とコッドによって定義され、第四、第五
正規形がロナルド・ファギン（Ronald Fagin）によっ
て定義されます。最初の論文から約7年で第五正
規形までを定義するに至り、ひとまずの完成を見
ることになりました。
　それと並行して、コッドのリレーショナルモ
デルの理論（リレーショナル理論）を使えば、数
学的にデータの構造を定義／操作できることが
わかると、世界の研究者によりこぞってリレー
ショナル理論が実装されていくわけです。その
実装系の代表がSQLなんですね。ちなみに、コッ
ド率いるIBMチームがSystem Rを世に出した

RDBは数学的な理論を元に実装されたものであり、正規化はその理論の中で定義されています。実用的なDBを
作る際には、あえて正規形を崩す必要もありますが、理にかなった崩し方をするためにも、理論を正しく理解し
ておきたいものです。本章では、理論に沿った正規化から現実的なDB実装まで一気に解説します。

データベース設計における
地力をつけよう！

̶ 「̶正規化」再考
 Writer 小野 哲（おの さとし）　フリーライター／街のRDBMS研究家

地力をつけよう！
第2章

26 - Software Design Mar. 2014 - 27

データベース設計における地力をつけよう！
̶̶ 「正規化」再考 第2章

のを皮切りに、コッドの論文を読んで影響を受
けたラリー・エリソン（Larry Ellison）がOracle

を、マイケル・ストーンブレーカー（Michael

Stonebraker）が Ingresを創り出し、SQLを実
装したのです。そうやってRDBMS（Relational
Database Management System）が完成されて
いったのです。

数学的な美しさか、実用性か

　リレーショナル理論から発展していった
RDBMSは、実装が進化するにしたがってDB

の世界を一新しました。SQLは簡単にデータ
モデルを記述／操作でき、従来の階層型DBや
ネットワーク型DBと違って、格段に使いやす
くわかりやすいものだったからです。
　ところが、RDBMSにおけるデータのモデリン
グ（リレーショナルモデル）はデータの正規化を
運命づけられているため、テーブルはどんどん
細分化する傾向にありました。あまりに正規化
し過ぎてシステムのパフォーマンスを落とすこと
もありました。そのため、現場ではわざと正規
化を崩すことも行われますが、データ構造を改
変するより別の方法を模索することもできます。

（1）CPUやメモリなど物理的な性能を上げる
（2）特殊なテーブルの管理（パーティショニング、

マテリアライズドビューなど）をする

　これらの方法をスケールアップといいます。い
ずれの方法も根本的なデータの構造は変えずに、
追加的にパフォーマンスを上げられます。ハード

ウェアの技術が発達にするにつれ、ハードウェ
アコストが劇的に低廉化し、スケールアップが容
易になり、致命的な問題は目立たなくなりました。
ところが、「それらの方法すら行き詰ったら？」と
いう命題が依然として残ったままです。スケール
アップの限界をどうするかということですね。
　これはすなわち、近年流行のビッグデータに
対する命題と同義でした。動画などのデータの
巨大化、SNSなどの爆発的なデータの増加な
どが現実的になり、DBシステムがスケールアッ
プで対処できないことが多くなったのです。よ
うやく問題点が目立ちはじめました。
　この命題に対するベターアンサーは分散です。
簡単にいうと、DBサーバを分散し並列度を上
げることです。これをスケールアウトといいま
す。（2）のパーティショニングなどは分散化可
能な技術ですが、RDBMSのように正規化され
それぞれの表が強い制約で結ばれている場合に
は、分散は限定的となり、大規模な分散は難し
くなります。つまり、正規化すればするほど分
散が困難になるというパラドックスが目立つこ
とになりました。ここに至って初めて非正規化
の有用性が出てきたのです。

スケールアウトを可能にした
NoSQL

　分散の実際の方法は意外に簡単です。データ
同士の依存性をなくし、データをまとまった単
位で分散することです。それにより書き込みも
読み込みも分散されるため、並列度が上がりパ
フォーマンスが向上します（図1）。実はこれが

RDBの世界

ディスク

サーバ

ディスク

サーバ

ディスク

サーバ

表表

表表
表表

NoSQLの世界

ディスク

サーバ

ディスク

サーバ

ディスク

サーバ

key

value key

value

key

value

図1　分散が難しいRDB、分散しやすいNoSQL ▼

28 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 29

NoSQLに求められていることであり、NoSQL

が得意とするところなのです。
　NoSQLの基本構造は、KVS（Key-Value-Store）
という、キーとデータで構成されるシンプルな方
法でデータを保存することです。キーに対しデー
タの中身はアイデアしだいで何でもアリで、配列
やリスト構造、大規模な動画データなどでもかま
いません。それぞれのデータが論理的に独立して
いることで、データの分散が容易になるわけです。
NoSQLが非正規化を好む理由はそこにあります。
NoSQLの登場によりスケールアウトが現実的に
なったのです。

「あれかこれか？」ではなく
「あれもこれも！」

　ところが仮に、正規化されたデータを
NoSQLで扱った場合、それはRDBMSで管理
するのと同じことになり、たちまち正規化のパ
ラドックスに陥ります。関係とその制約、一貫
性維持などを必要条件にした場合は、NoSQL

であってもRDBMSと同じくスケールアウトが
難しくなります。正規化を崩すという半端なレ
ベルではなく、データをあえて非正規化するこ
とにNoSQLの本領があるというのは、理屈が
わかるとおもしろいですよね。
　ですので、RDBMSかNoSQLかという二者
選択の議論は実に不毛で、ユーザの要件によっ
て選択は変化するということがわかりますし、
RDBMSもNoSQLも一緒に使う「あれもこれ
も」というのが賢い選択だということです。

正規化のおさらい

　では、ここから、おさらいのつもりで正規化に
ついての基礎を学びましょう。読者の中には、実
務でDB設計をしている人も多いと思います。正
規化やRDBMSについての書物を読むと、なん
となく難しい数学的表現でいやになってしまう方
もいるかもしれません。ドメインとかタプルとか
関数従属とか候補キーとか、それらの言葉に翻
弄されていた人も、この機会に苦手意識を克服

しましょう。そのためには、まず基本的な用語を
攻略します。これから一気に説明する用語さえ
押さえれば、ありがたい書物の正規化について
の記述もリレーショナル理論の記述もスラスラと
理解できるようになるはずです。理論武装ができ
れば普段のDB設計にも磨きがかかるでしょう。

集合論、ドメイン、タプル

　ある会社に図2-1のような社員の集合があると
します。一見して社員名の集合だとわかります。
集合は一般的に｛x|xは社員}のように表現します。
この場合は、社員という集合を表してしています。
この集合をドメインといい、図2-2のように表現
します。
　ここに部署というドメインが加わるとします
（図2-3）。この2つのドメインの属性の値同士の
組み合わせを直積といい、次のように表せます。

　この直積の集合の各要素をタプル（tuple＝組）
といい、直積の集合の任意の部分集合をリレー
ションといいます。リレーションは次のように

田中
佐藤
伊藤

図2-1　社員の集合 ▼

田中
佐藤
伊藤

 社員

図2-2　社員ドメイン ▼

田中
佐藤
伊藤

社員

開発
営業

部署

図2-3　社員ドメインと部署ドメイン ▼

28 - Software Design Mar. 2014 - 29

データベース設計における地力をつけよう！
̶̶ 「正規化」再考 第2章

表現します。

など

　ドメインの個数を次数といい、次数nのリレー
ションをn項のリレーションと表現します。今
回の例では2項のリレーションということにな
ります。ところで、現実の社員-部署の関係は
表で表せますね。たとえば図3-1のような表が
あったとします。
　この表そのものがリレーションです。リレーショ
ナル理論の実装系であるRDBMSの世界では表
であるリレーションをテーブルといい、ドメイン
の値を列（column）といい、タプルを行（row）とい
います。表1のように比較するとわかりやすいか

もしれません。
　さらに、RDBMSの世界では社員や部署とい
うドメインを属性名といい、表の名前を表名（リ
レーション名）といいます。この例ではさしず
め社員表と名付けられますね。ちなみに表題に
相当する部分をリレーションスキーマといい、
タプルの集まりであるデータの中身のことをイ
ンスタンスといいます。

主キー、外部キー、制約

　さて、社員表のタプルは一意であるように見
えます。しかし、同名の社員が存在すると仮定
すると、そのタプルは一意にはなりません。そ
のため、一意にすべくなんらかのしかけが必要
です。そこで識別番号のようなものを与えれば
一意のタプルを作れます。ここでは社員番号と
いう列名を付け足すことにします（図3-2）。
　これでタプルを一意にすることができました。
このようにタプルを一意に識別できる属性をキー
（一般的に候補キー）といいます。候補キーは複
数の組みであってもかまいません。候補キーの
中で1つを選んで代表的なキーにする場合、そ
れを主キーといいます。主キーは不定な値であ
るNull値を許さないという約束があります。
それを主キー制約といいます。
　部署表が別にあったとすると、社員表と部署
表は社員番号でつなげられます（図3-3）。
　部署表の部署番号は主キーです。社員表の部

署は、部署表の部署番号を参照し
ます。このようなキーの関係を
外部キーといいます。このとき
社員表の部署番号は、部署表の
部署番号の外部キーとなります。

社員 部署
田中 営業
佐藤 営業
伊藤 開発

図3-1　社員表 ▼

社員番号 社員名 部署
S1 田中 営業
S2 佐藤 営業
S3 伊藤 開発

主キー

図3-2　社員表（社員番号を追加） ▼

社員番号 社員名 部署番号（外部キー）
S1 田中 B1
S2 佐藤 B1
S3 伊藤 B2

社員 部署
部署番号（主キー） 部署名
B1 営業
B2 開発
B3 伊藤

図3-3　社員表と部署表をつなげる ▼

ファイルの世界 リレーショナル理論の世界 RDBMS実装系の世界
ファイル リレーション テーブル
レコード タプル 行
フィールド ドメインの値、属性 列

表1　 リレーショナル理論とRDBMSにおける用語の対比 ▼

30 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 31

　外部キーとして定義した場合、部署番号に登
録されていない番号、たとえばB4を社員表に
登録した際にはエラーとすることができます。
これによって論理的に矛盾するデータを防御す
る構造ができあがります。このような制約を外
部キー制約といいます。主キー制約や外部キー
制約などデータの論理的な矛盾を起こさないよ
うに制約をかけることを一貫性制約、または整
合性制約といいます。この関係の制約を定義で
きるのがRDBMSの大きな特徴です。

リレーショナル代数、
リレーショナル論理

　コッドによって提唱された重要な数学が、リ
レーショナル代数とリレーショナル論理です。
これを説明するには誌面の問題がありますので、
さらりと触れるだけにします。
　一般的に私たちはテーブルの操作をするとき
に、SELECT文を使います。ありとあらゆる
演算ができるので便利ですが、そもそもこの
SELECT文はリレーショナル代数によって成
り立っているものなのです。たとえば、「社員
番号がS01の人の名前と部署を求める」といっ
た問いをリレーショナル代数で表現すると次の
ようになります。

　πを射影、σを選択といいます。次のSQL

文と同じ意味です。

select 社員名,部署 from 社員表 where
社員番号='S01'

　一方リレーショナル論理は通常の集合論的な
記述のしかたです。たとえば集合の直積を表現
するときは次のようになります。社員表と部署
表の直積だとすると。

　「tとuのタプルのANDをとった集合」という
意味です。リレーション論理の中にもタプルリ
レーション論理式とドメインリレーション論理

式があり、代数と同じくデータの操作系を表現
できます。論理式の場合は代数より集合論的に
なります。参考までにタプルリレーショナル論
理式で「社員番号がS01の人の社員番号を求め
る」を記述すると次のようになります。

　これは次のSQL文と同じ意味です。

select 社員番号 from 社員 where 社員番号
='S01'

　リレーショナル代数／論理で記述できるデー
タ操作は、実際のRDBMSでもできなくてはな
りません。最低限これができるデータ操作系を
持ったRDBMSをリレーショナル完備といいま
す。今、世の中に存在するSQL処理系の多くが、
リレーショナル完備といえるでしょう。また
SQLの言語仕様が手続き型ではない理由もそ
こにあるわけです。
　このようにコッドが提唱したリレーショナル
理論は、最初からデータの操作をすべて数学的
に説明していました。そのあとづけでSQLが
実装されていったという事実をリアルに感じて

社員

繰り返しデータを排除する

①

社員②

社員番号 社員名 部署 好きなもの
S1 田中 営業 日本料理、車
S2 佐藤 営業 酒、たばこ、ギャンブル
S3 伊藤 開発 本、映画

社員番号 社員名 部署 好きなもの
S1 田中 営業 日本料理
S1 田中 営業 車
S2 佐藤 営業 酒
S2 佐藤 営業 たばこ
S2 佐藤 営業 ギャンブル
S3 伊藤 開発 本
S3 伊藤 開発 映画

図4　第一正規化 ▼

30 - Software Design Mar. 2014 - 31

データベース設計における地力をつけよう！
̶̶ 「正規化」再考 第2章

いただけたでしょうか。

第一正規形
̶̶繰り返しデータの排除

　一気にリレーショナル理論のおさらいをした
ところで、ここから正規形のお話に入ります。
ここまでの話でデータの最小単位はドメインの
値であるということがわかりました。その値は
分割できない単位であり、数学的にはスカラ値
といいます。複数存在する値や配列などの値は
スカラ値ではありません。もしデータの中にス
カラ値ではないものが含まれていたら、それを
排除しなくてはなりません。
　図4-①のような表があったとします。「好き
なもの」の値は複数存在しています。このよう
なデータはリレーショナル理論では扱えず、そ
れによって成り立つRDBMSでも基本的に扱え
ないことになっています。このようなデータの
形を非正規形といいます。
　このデータを最低限RDBMSで扱える形にす
る場合は、スカラ値の集合にする必要があるの
で、図4-②のようにすればいいことがわかり
ます。これを第一正規形といいます。正規化さ
れたデータは複数の行になります。

関数従属性とは

　次の説明の前に、従属性について説明してお
く必要があります。あるリレーションの中で属
性同士の関係が「Aが決まればBが一意に決ま
る」という関係が成り立つとき、BはAに従属
しており、ちょうどy=f(x)といった関係になり
ますね。それを関数従属性といいます。A→B

と表現し、BはAに関数従属していると表現し
ます。社員番号→社員名という関係です。
　一般に関数従属性はキーとそれ以外のものを
関連付ける場合に存在します。タプルを一意に
できる属性を持ったキーをスーパーキーといい
ます。社員番号はタプルを一意に決定できます
ので、スーパーキーといえます。ちなみに、候
補キー・主キーもスーパーキーです。
　また、社員番号は社員名を一意に決めますが、

1人の社員に複数の社員番号は存在しませんね。
完全に1対1の場合、BはAに完全従属してい
るといいます。
　一方、部署と社員の関係を見てみましょう。
営業に対して {田中 ,佐藤 }と複数対応していま
す。Aが決まるとBが複数決まりますね。これ
を多値従属性といい、A Bと表現します。
以上のリレーショナル理論の用語を覚えておく
と、正規化を理解するのに役立ちます。

第二正規形
̶̶部分関数従属性の排除

　では、第二正規形の説明です。図5-①のよう
な売上のデータがあったとします。繰り返しが
ないので第一正規形を満足しているといえますね。
　しかし、顧客だけではタプル（あるいは行）を
一意にすることはできません。「顧客」と「商品」
がセットになって初めてタプルを一意に識別で
きます。このとき｛顧客 ,商品｝が主キーであると
いえます。関数従属性からすると｛顧客 ,商品 }→
数量、｛顧客 ,商品 }→単価が成り立っています。
しかし、一方で「単価」は「商品」単独のキーによっ
て関数従属していることもわかります。つまり、
商品→単価という関数従属です（図5-②）。
　このように候補キーの1つが別の関数従属性
を持っている場合を部分関数従属といいます。
このような場合、データを更新することで矛盾
が発生することがあります。1つのタプルのデー
タの単価を10000円に更新したとすると、別の
タプルの単価は依然20000円のままです。この
データの矛盾を更新時異常といいます。データ
の矛盾をなくすためには、テレビを含んだタプ
ルすべてを更新しなくてはなりません。手間が
かかります。
　そこで、この部分関数従属を排除します。部
分関数従属を別のテーブルに分離することによ
り第二正規形となります（図5-③）。これによっ
てテレビの単価が変わったとしても1ヵ所を更
新するだけで良いので、更新時異常を回避でき
ます。このような状態を一事実一箇所（1 fact 1
place）といい、正規化での重要な原則の1つです。

32 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 33

第三正規形
̶̶推移関数従属性の排除

　図6-①のような表があったとします。部分
従属性はなさそうなので、第二正規形の条件は
満たしています。この表では、部署が決まると
勤務地が決まるものとします。なんとなく気持
ちが悪い感じがしませんか？　この違和感の正
体は何でしょうか。
　関数従属を見てみましょう。図6-②のよう
になります。第二正規形の条件は満たしながら
も1つのタプルに複数の関数従属が含まれてい
ます。社員番号→部署、部署→勤務地という従

属です。社員番号が決まれば部署が決まり、部
署が決まれば勤務地が決まるといったX→Y、
Y→Zという推移的な関数従属です。これを推
移関数従属性といい、第三正規形はこの推移関
数従属を排除したものをいいます。
　Xを主キーとすれば、Y→Zの関数従属性を
分割します。図6-③のようにすれば、第三正
規形が得られます。これにより、部署の勤務地
が変更になったら、社員表の該当データすべて
を更新しなければならないという更新時異常を
回避できます。
　第三正規形まで実施すれば、現実的な正規化

売上

部分関数従属性を排除する

① ②

売上 商品③

顧客 商品 数量 単価
A事務所 テレビ 1 20000
A事務所 ラジオ 2 3000
B事務所 テレビ 1 20000
B事務所 USBメモリ 1 1500

商品 単価
テレビ 20000
ラジオ 3000
USBメモリ 1500

顧客 商品 数量
A事務所 テレビ 1
A事務所 ラジオ 2
B事務所 テレビ 1
B事務所 USBメモリ 1

顧客 商品 数量 単価

図5　第二正規化 ▼

社員

推移関数従属性を排除する

① ②

社員 勤務地③

社員番号 社員名 部署 勤務地
S1 田中 営業 東京
S2 佐藤 営業 東京
S3 伊藤 開発 神奈川

社員番号 社員名 部署
S1 田中 営業
S2 佐藤 営業
S3 伊藤 開発

部署 勤務地
営業 東京
開発 神奈川

社員番号 社員名 部署 勤務地

図6　第三正規化 ▼

32 - Software Design Mar. 2014 - 33

データベース設計における地力をつけよう！
̶̶ 「正規化」再考 第2章

はほぼ終了とみなして良いでしょう。これ以上
の正規化は業務のルールなどでやるかやらない
かが決まりますし、場合によっては第三正規形
をあえて崩す場合もあります。現場で活躍する
SEはDB設計する段階で、無意識に正規化を
行っているものです。ただ、正規化のルールや
原則などを知っていると、設計時に理論的な
チェックを行えるようになりますし、正規形を
崩す場合にも意識的にできます。その意味では、
その先の高次の正規化についても知識として知っ
ておくと良いでしょう。

ボイスコッド正規形
̶̶非キー→候補キーの排除

　さて、ボイスコッド正規形の説明です。
Wikipediaによると「関係（リレーション）上に
存在する自明でないすべての関数従属性の決定
項が候補キーである」と定義されています。まっ
たく何のことかさっぱりわかりませんね。でも
大丈夫です。
　「自明でない関数従属性」というのはめんどう
な言い方ですが、なんてことはありません。{社
員 ,部署 }→社員や {社員 ,部署 }→部署など、説
明しなくてもわかっている関数従属性を自明な
関数従属性といいます。ですので、通常の形に
しておいて「自明でないすべての関数従属性の

決定項が候補キーである」ということは、あり
ていにいえば、候補キー→非キーの関係です。
すべての非キーの属性が候補キーに完全従属す
るということです。まあ、当然のようなことで
すが、この逆を考えれば良いのです。この条件
を崩すものはなんでしょうか？
　そうです。非キー属性が候補キーを決定づけ
るものです。すなわち候補キーが非キーに関数
従属する場合です。こういう形はボイスコッド
正規形ではないといえます。
　これをうまく説明できる例は現実にはあまり
ないので、教科書などでよく見かける例で説明
します。図7-①は社員が適正にしたがって受
けるセミナーを決める表だとします。社員とセ
ミナーで受ける講師が決まり、社員は複数のセ
ミナーを受けられます。しかし、講師は1つの
セミナーしか担当しないとします。
　このとき図7-②のような関数従属性が成り
立ちます。候補キーである {社員 ,セミナー}が
講師との関係従属性が成りたち、部分関数従属
性も推移従属性も存在しないことから、これは
第三正規形であるといえます。しかし、非キー
である「講師」と候補キーの一部である「セミ
ナー」が関数従属性にあることから、この表は
ボイスコッド正規形ではないといえます。

非キー → 候補キーの関係を排除する

① ②

③

社員 セミナー 講師
田中 論語 孔子
田中 政治学 孟子
佐藤 政治学 韓非子
伊藤 自然言語処理 老子

社員 講師
田中 孔子
田中 孟子
佐藤 韓非子
伊藤 老子

講師 セミナー
孔子 論語
孟子 政治学
韓非子 政治学
老子 自然言語処理

社員 セミナー 講師

図7　ボイスコッド正規化 ▼

34 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 35

　この例では {社員 ,セミナー}が主キーである
ことから、「社員」と「セミナー」が決定しないと
「講師」の登録ができないことになります。また
社員の田中を削除すると、講師の孔子と孟子が
存在しなくなってしまうという更新時異常が想
定されます。
　これらをボイスコッド正規形にするには、次
のような分解を行います。社員→講師、セミナー
→講師、講師→セミナー。ただ、セミナーと講
師の関係は1つで良いので、社員→講師と講師
→セミナーとの関係だけで良いことになります。
したがって、図7-③のようになります。これ
によって先の更新時異常も解決します。

第四正規形
̶̶自明でない多値従属性の排除

　第四正規形はボイスコッド正規形と同様に、
現実的にはあまり遭遇しないものです。理論上
あるという程度で覚えておけば良いでしょう。第
四正規形の定義は「関係に存在する多値従属性は、
自明であるか、決定項がスー
パーキーである」ということ
です。またわけのわからな
い定義ですね。
　関数従属性はA→Bのよ
うに「Aが決まれば一意にB

が決まる」ということでした。
これに対して「Aが決まれば
複数のB（多値）」が決まるこ
とを多値従属性といいまし
たね。A Bと表します。
　では、自明である多値従
属性の反対である「自明でな
い多値従属性」とはどういう
ものなのでしょう。それは
A Bという多値従属性の
データと別に、A Cとい
う多値従属性を持ったデー
タが混在していることを言
います。A B|Cと表しま
す。自明でない多値従属性

は対象性を持っているので、対象性のある多値
従属性ともいいます。そういったものは第四正
規形ではありません。
　図8-①のような表があるとします。これらす
べての属性をすべて組み合わせて主キーにした
とすれば、第三正規形もボイスコッド正規形も
いずれの条件も満たしています。しかし、このデー
タには社員 スキル、社員 資格の多値従
属性はあっても、スキルと資格の間には何ら従
属性がなく独立したものです。つまりA

B|Cの形となり、第四正規形ではありません。
　そこで、これらをA B、A Cの形に
分解します（図8-②）。こうすることにより、
対象性のある多値従属性が排除され、自明な多
値従属性を持った表に分割されました。これで
第四正規形を満たしたものとなります。
　さて、勘の良い人はすでに気がつきましたね。
分割した2つの表を自然結合したらどうなるの
か？　そうです、もとの表に戻りますね。難し

自明でない多値従属性を排除する

①

②

社員 スキル 資格
田中 コミュニケーション 税理士
田中 顧客開拓 税理士
田中 コミュニケーション 珠算一級
田中 顧客開拓 珠算一級
佐藤 コンサルティング 漢字検定二級
佐藤 新規事業開拓 漢字検定二級
佐藤 コンサルティング 英語検定二級
佐藤 新規事業開拓 英語検定二級
伊藤 基本設計 情報処理技術者一種
伊藤 要件定義 情報処理技術者一種

社員 スキル
田中 コミュニケーション
田中 顧客開拓
佐藤 コンサルティング
佐藤 新規事業開拓
伊藤 基本設計
伊藤 要件定義

社員 資格
田中 珠算一級
田中 税理士
佐藤 英語検定二級
佐藤 漢字検定二級
伊藤 情報処理技術者一種

図8　第四正規化 ▼

34 - Software Design Mar. 2014 - 35

データベース設計における地力をつけよう！
̶̶ 「正規化」再考 第2章

いことをいっていますが「自然結合された表は
第四正規形にはならないよ」といっているのと
同じなんですね。なあんだという感じですね。

第五正規形
̶̶結合従属性を保つ

　では第五正規形について述べます。第四正規
形までくると、これ以上分解できないという単
位に近くなりました。これ以上、正規化できる
のだろうかと思われます。
　第四正規形の場合A B|Cの自明でない多

値従属性をA B、A Cまで分解しました。
それら2つを結合すると元に戻ります。それを
結合従属性といいます。結合従属性が保たれて
いる場合は第五正規形を満たしているといいま
す。しかし、2つの結合だけでは元に戻らない
場合があります。
　第四正規形の場合は、独立した多値従属性だっ
たのですが、A B、A C、B Cという
ようにそれぞれが関連した多値従属性をもって
いるとき、A B、A Cの表結合だけでは

自明でない多値従属性を分解

社員_スキル 社員_担当業務

①

②

結合

③

社員 スキル 担当業務
田中 コミュニケーション 営業
田中 顧客開拓 営業
佐藤 コンサルティング 営業支援
佐藤 新規事業開拓 企画立案
伊藤 基本設計 システム開発
伊藤 要件定義 営業支援

社員 スキル
田中 コミュニケーション
田中 顧客開拓
佐藤 コンサルティング
佐藤 新規事業開拓
伊藤 基本設計
伊藤 要件定義

社員 スキル 担当業務
田中 コミュニケーション 営業
田中 顧客開拓 営業
佐藤 コンサルティング 企画立案
佐藤 新規事業開拓 企画立案
佐藤 コンサルティング 営業支援
佐藤 新規事業開拓 営業支援
伊藤 基本設計 システム開発
伊藤 要件定義 システム開発
伊藤 基本設計 営業支援
伊藤 要件定義 営業支援

社員 担当業務
田中 営業
佐藤 営業支援
佐藤 企画立案
伊藤 営業支援
伊藤 システム開発

SELECT "社員_スキル"."社員"
, "社員_スキル"."スキル"
, "社員_担当業務"."担当業務"
FROM "社員_担当業務", "社員_スキル"
WHERE "社員_担当業務"."社員"
= "社員_スキル"."社員"
AND "社員_スキル"."社員"
= "社員_スキル"."社員"

図9-1　結合従属性が保たれていない例 ▼

36 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 37

元に戻りません。B Cという表を作り、そ
れも含めて結合を行うことで元の状態に戻りま
す。それで第五正規形を満たしたといえます。
　図9-1-①を見てみましょう。これを第四正規
形で行ったように、自明でない多値従属性を分
解します（図9-1-②）。次に、この2つの表を結
合するとどうなるでしょうか（図9-1-③）。灰色
で示した行のように、最初に定義したものでは
ないデータが発生しています。これはB C

という関係を考慮しないために起こる現象です。
　ですので、その表（スキル_担当業務）を追加
し、再び結合してみます（図9-2）。無事に元の
表と同じになりました。結合従属性が保たれた
ことにより、第五正規形を満たしたものである
といえます。

実際に正規化を
してみよう

　第五正規形までを俯瞰的に見てみると、現実
の設計業務においては第三正規形までで十分だ
ということがご理解いただけたでしょう。第三
正規形より高次の正規形は意識しないでも分解

してしまっていることが多いので、普段見慣れ
ないだけなのです。
　理屈がわかったところで、ここで実際に正規
化をやってみながら、正規化のステップを確認
していくことにしましょう。さらにDBを構築
し、現実の業務に合わせた検証までのステップ
を説明したいと思います。図10-1のような「作
業報告書」を例題とします。

非正規形から第一正規形へ

　ある業務のDBを構築する際には、実際に業
務で使用している伝票や台帳などの書類を見る
のが一番です。DBに必要な項目はほとんどそ
こにあります。その項目それぞれがドメインで
あり、項目の集まりがタプルであり、伝票自体
がリレーションだと考えれば良いわけです。
　では始めましょう。最初の段階では非正規化
状態で良いので、項目を並べてみます。Excel

やCalc（OpenOffice.org（以下、OOo）、Libre

Offi ce）などの表計算ソフトを使って1つのシー
トにデータ項目を並べていくとわかりやすいか
もしれません。図10-2のような表が書けたの

社員_スキル 社員_担当業務 スキル_担当業務

結合

社員 スキル
田中 コミュニケーション
田中 顧客開拓
佐藤 コンサルティング
佐藤 新規事業開拓
伊藤 基本設計
伊藤 要件定義

社員 スキル 担当業務
田中 コミュニケーション 営業
田中 顧客開拓 営業
佐藤 コンサルティング 営業支援
佐藤 新規事業開拓 企画立案
伊藤 基本設計 システム開発
伊藤 要件定義 営業支援

社員 担当業務
田中 営業
佐藤 営業支援
佐藤 企画立案
伊藤 営業支援
伊藤 システム開発

スキル 担当業務
コミュニケーション 営業
コンサルティング 営業支援
基本設計 システム開発
顧客開拓 営業
新規事業開拓 企画立案
要件定義 営業支援

SELECT "社員_スキル"."社員"
 , "社員_スキル"."スキル"
 , "社員_担当業務"."担当業務"
FROM "社員_担当業務", "社員_スキル", "スキル_担当業務"
WHERE "社員_担当業務"."社員" = "社員_スキル"."社員"
AND "スキル_担当業務"."スキル" = "社員_スキル"."スキル"
AND "社員_担当業務"."担当業務" = "スキル_担当業務"."担当業務

図9-2　第五正規化（結合従属性が保たれている） ▼

36 - Software Design Mar. 2014 - 37

データベース設計における地力をつけよう！
̶̶ 「正規化」再考 第2章

ではないでしょうか。
　非正規化データは表計算ソフトを使って普通
に表現できるものですが、RDBMSでは扱えな
いわけですから正規化をしていきます。まず第
一正規形は繰り返しを排除することでした。図
10-3のようになりますね。

第二正規形へ

　次に第二正規形です。この表の中で主キーを
見極めましょう。主キーはタプルを一意に特定で
きるものですから、ここでは {日報番号 ,日時 ,プ
ロジェクト,作業項目}ということになりそうです。
　第二正規形は候補キーの中から部分関数従属
するものを探すことでした。{日報番号 ,日時 ,

 日報番号 20140101 部署名 開発
 社員ID S03 社員名 伊藤
 日時 プロジェクト 作業項目 時間 納期 顧客 連絡先
 2014/2/14 A販売管理 要件定義 6 2014/5/5 A商店 099-1111
 2014/2/15 A販売管理 設計 6 2014/5/5 A商店 099-1111
 2014/2/15 社内会議 会議 2 自社 087-6666
 2014/2/17 B工事管理 要件定義 8 2014/7/10 B建設 060-2222
 2014/2/18 B工事管理 設計 10 2014/7/10 B建設 060-2222
 2014/2/19 C生産管理 顧客プレゼン 5 2014/9/28 C工業 090-9999
 2014/2/20 C生産管理 要件定義 8 2014/9/28 C工業 090-9999
 2014/2/21 A販売管理 設計 7 2014/5/5 A商店 099-1111
 2014/2/22 B工事管理 設計 6 2014/7/10 B建設 060-2222

作業報告書

図10-1　作業報告書 ▼

図10-2　表計算ソフトで項目を並べる（LibreO� ce Calc） ▼

38 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 39

プロジェクト ,作業項目 }の属性で関数従属し
ているものは何でしょうか。

日報番号→｛社員ID,社員名,部署名｝
プロジェクト→｛顧客名,連絡先,納期｝

となります。これらの属性を別の表に分割しま
しょう。図10-4のようになります。灰色になっ
ている部分が主キーです。

第三正規形へ

　次に第三正規形への落とし込みです。第三
正規形は推移関数従属を探すことです。日報
表を見ると、日報番号→社員ID、社員ID→｛社
員名 ,部署名｝という推移関数従属を見つけら
れます。またプロジェクトを見ると、プロジェ
クト→｛顧客名、顧客名→連絡先｝という推移

関数従属も見つかりました。これらを分解し
ます（図10-5）。
　これで第三正規形まで落とし込めました。こ
の時点でボイスコッド正規形、第四正規形、第
五正規形ともに満足しています。現実の設計で
は第三正規形までで終了と思って差し支えあり
ません。
　ですが、あと一歩踏み込みましょう。実際の
設計ではこれで終わりではありませんね。候補
キーに変更が予想される項目があります。たと
えば、「プロジェクト」や「顧客名」などです。こ
れらは通常 IDと名称に分けるのが普通です。
そうすることでプロジェクト名や顧客名を問題
なく更新できるからです。「作業項目」なども名
称変更の可能性がありますので、念のため ID

と名称に分けることにします。さらに、主キー

日報番号 社員ID 社員名 部署名 日時 プロジェクト 作業項目 時間 納期 顧客 連絡先
20140101 S01 伊藤 開発 2014/2/14 A販売管理 要件定義 6 2014/5/5 A商店 099-1111
20140101 S01 伊藤 開発 2014/2/15 A販売管理 設計 6 2014/5/5 A商店 099-1111
20140101 S01 伊藤 開発 2014/2/15 社内会議 会議 2 自社 087-6666
20140101 S01 伊藤 開発 2014/2/17 B工事管理 要件定義 8 2014/7/10 B建設 060-2222
20140101 S01 伊藤 開発 2014/2/18 B工事管理 設計 10 2014/7/10 B建設 060-2222
20140101 S01 伊藤 開発 2014/2/19 C生産管理 顧客プレゼン 5 2014/9/28 C工業 090-9999
20140101 S01 伊藤 開発 2014/2/20 C生産管理 要件定義 8 2014/9/28 C工業 090-9999
20140101 S01 伊藤 開発 2014/2/21 A販売管理 設計 7 2014/5/5 A商店 099-1111
20140101 S01 伊藤 開発 2014/2/22 B工事管理 設計 6 2014/7/10 B建設 060-2222
20140102 S02 田中 営業 2014/2/14 A販売管理 顧客訪問 3 2014/5/5 A商店 099-1111
20140102 S02 田中 営業 2014/2/14 書類整理 顧客プレゼン 3 自社 087-6666
 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

図10-3　第一正規形 ▼

日報

日報番号　　　社員ID　　　 社員名　　　部署名

日報明細

日報番号　　日時　　 プロジェクト　 作業項目　　時間

プロジェクト

プロジェクト　　顧客名　　連絡先　　納期

図10-4　第二正規形 ▼

社員

社員ID　　　　社員名　　　　部署名

顧客

顧客名　　連絡先　　

日報

日報番号　　　社員ID　　　　

日報明細

日報番号　　日時　　　　プロジェクト　 作業項目　　時間

プロジェクト

プロジェクト　　顧客名　　納期

図10-5　第三正規形 ▼

38 - Software Design Mar. 2014 - 39

データベース設計における地力をつけよう！
̶̶ 「正規化」再考 第2章

を参照している外部キーに（FK）と書き、明確
にしておきましょう（図10-6）。
　これで正規化が完了した段階ですが、表同士
の関係が一目見てわかるわけではありません。
正規化により表も細かく分割されましたので、
人に説明するのもたいへんそうです。そこで通
常は、DBの設計にはER図を描き、設計書類
とし、レビューやチェックを行います。

ER図を描き
ビジネスルールを検討

　誌面の関係でER図の描き方を説明する余裕

はありませんので、正規化された表をER図に
落とし込んだイメージ（図10-7）で説明しましょ
う。
　ER図を描くことにより正規化されたデータ
がどのような関係で結び付いているのかが、よ
くわかります。そして、これを眺めることでど
のような制約をかけたほうが良いのかが、見え
てきます。たとえば業務と照らし合わせながら、
それぞれの表の制約などを決めていきます。具
体的には、たとえば次のようなレビューを行い
ます。

①「日報」「プロジェクト」「作業項目」
は日報明細に対して、1：Nの関係
にある。そしてNull制約を定義し
値がNullであることを許可しない。
これによりデータの欠け落ちを防
御できる

②プロジェクトと顧客の関係は、0ま
たは1:Nにし、顧客が決まらなくて
も架空のプロジェクトを発足する
ことができる

　また、これと同時に正規化された
構造の中で、現実のビジネスルール

社員

社員ID　　　 社員名　　　 部署名

顧客

顧客ID　　　 顧客名　　連絡先　　

作業項目

作業項目ID　 作業項目名　　　

日報

日報番号　　　社員ID（FK）　　　　

日報明細

日報番号（FK） 日時　　 プロジェクトID（FK）作業項目ID（FK） 時間

プロジェクト

プロジェクトID　 プロジェクト名　 顧客ID（FK）　 納期

図10-6　IDを追加し、外部キー（FK）を明記する ▼

社員
社員ID
社員名
部署

顧客
顧客ID
顧客名
連絡先

日報
日報番号
 社員ID（FK）

プロジェクト
プロジェクトID
プロジェクト名
顧客ID（FK）
納期

作業項目
作業項目ID
作業項目名

日報明細
 日報番号（FK）
 日付
 プロジェクトID（FK）
 作業項目ID（FK）
 時間

図10-7　ER図 ▼

40 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 41

との矛盾がないかを検証します。たとえば次の
ような検証です。

❶部署は社員表の中で管理しているが、社員が
異動により部署が変わった場合、過去の日報
明細は現在の部署で集計されてしまうがそれ
でいいのか？

❷日報明細において主キーが｛日報番号,日付,プ
ロジェクトID,作業項目ID｝であるが、作業項
目が決まらなくても日報明細に書いておくと
いう業務は存在しないのか？

❸❷と同様に同じ日付で同じ作業項目の追加記
入はないのか？　追加があった場合は同じ作
業項目の時間を上書きすればいいのか？

　いかがでしょう。業務がからんでくると、ど
んどんデータ構造についての矛盾や疑問が浮か
んできます。それをどのようにビジネスルール
にしていくかで、DBの設計は変化するものです。
ここでは、話が複雑になるので設計レビューは
済んだことにして次のステップに進みます。

データベースを構築

　次は実際のDBを構築する段階です。ER図
を元にDB定義であるDDLを書いていきます。
CREATE TABLE、ALTER TABLEなどの
SQL文を列挙するわけです。そして、できあがっ
たDDLをPostgreSQL上で実行すれば、DB

が構築されます。今回は例としてPostgreSQL

を使用しました。
　さて、ここで提案したいことがあります。
ER図から1つ1つSQL文を組立てていくのは
勉強のためには良いのですが、ER図の変更や
スキーマの変更があるたびに、DDLを組立て
なおさなくてはなりません。設計段階では変更
はかなりの頻度で発生しますので、忙しい現場
だとたいへんなストレスになります。
　そこで、ツールを使います。最近はER図を
作成するツールがいくつかあり、DDLを自動
的に出力してくれるものもあります。そういっ
た機能を使うと変更があってもスムーズに対処

できます。ちなみに今回著者が使ったのは
「A5:SQL MK2」というツールで、無料でダウ
ンロードできます注1。
　A5:SQL MK2はDDLを自動出力してくれる
とともに、DBとの接続もできるので、出力し
たDDLをそのまま実行してDBを構築できま
す。DBの中身を参照更新できる機能も付いて
いるので、テストデータを作成したり参照した
りでき、非常に優れたツールです。今回テスト
したDBはこのツールで構築しました。

DBに接続して
テストデータを作成

　DBが構築できたら、設計は終了かというと、
そうではありません。理論的に成立していても、
データを入力していく中で、いろいろなことが見
えてくるものです。できあがったデータ構造の使
い勝手なども含めて検討する必要があるのです。
　ですので、なるべく簡単にテストデータを入力
して検証作業が行える環境が必要になります。著
者のお勧めは、オープンソースであるOOoや
LibreOffi ceのBaseなどのDBソフトをフロントエ
ンドにしてバックエンドに接続し（今回は
PostgreSQL）、簡易的な入力画面を作ってしまう
ことです。ちょっと手間はかかりますが、テスト
用アプリケーションプログラムを書くのに比べたら、
検証できるまでにかかる早さは比較になりません。
　ぜひともやりたいことは、図10-8のように
一画面に関連するテーブルを全部入れてしまう
ことです。見通しが良いので簡単にストレスな
くデータ作成や検証ができます。
　こういった入力画面を作る際のちょっとした
コツを述べます。日報と日報明細のテーブルは
ともに日報番号で関連付けられているので、日
報の行の選択が変わるごとに同じ日報番号の明
細データが表示されるようにします。
　日報明細のプロジェクト IDや作業項目 IDな
どの入力は、コードだとわかりにくいので、リ

注1） http://www.wind.sannet.ne.jp/m_matsu/developer/
a5m2/　このソフトウェアは無料ですが寄付を歓迎してい
ます。

http://www.wind.sannet.ne.jp/m_matsu/developer/a5m2/

40 - Software Design Mar. 2014 - 41

データベース設計における地力をつけよう！
̶̶ 「正規化」再考 第2章

ストボックスコントロールに変更し、ドロップ
ダウンで実際の項目名称が選択できるようにし
ます。また、日付項目もカレンダーを使って入
力できるようにします。これにより入力の効率
が格段に上がります。
　テーブルの関係が一目でわかるように、関連
するテーブル同士を線で結ぶようにお絵かきす
ると良いですね。誌面の関係でBaseを使った
入力画面の作成の方法は、別の機会に述べたい
と思います。

ビジネスルールを検証、
正規形を崩すこともある

　さて、このようなテスト用の入力画面を用意
して何をするかというと、各種の整合性／一貫
性制約のチェックを行うと良いです。制約が緩
過ぎないか、きつ過ぎないかなどです、たとえ
ば次のようなチェックを行います。

（1）社員表の社員を登録していなくても、日報
の社員IDを登録できるか？

（2）顧客IDが決まらなくても、プロジェクトは
登録できるか？

（3）日報明細にプロジェクトが存在するのに、
該当のプロジェクトを削除できるか？

（4）主キーにNullが入力できてしまわないか？

など、さまざまなテストが考えられますよね。
　そしてさらに、現場のビジネスルールにあっ
ているかどうか、チェックしながらテストをし
ます。これによりさらに正規化するか、わざと
正規化を崩すかということも見えてくるはずです。
　たとえばER図の設計レビューの際に、問題
になった「部署変更に伴う過去のデータの集計」
について、この検証の時点で「やはり過去の部
署は過去の部署として集計したい」と仕様が変
更になった場合、構造を修正する必要がありま
す。具体的には日報の中にも「部署」という属性
を設けて過去と今を意識的に分けることになり
ます。これは第三正規形ではなくなり第二正規
形への逆戻りとなるわけですが、ビジネスルー
ル上は解決します。ER図を描き直し、DBを
再構築して、またテストし、検証します。その
繰り返しです。それが設計の現場の日常なので
す。

まとめ

　以上、駆け足で正規化の理論と実際を見てき
ました。読者の理論武装に役立てれば幸いです。
　正規化は理論として成り立っており、実際の
設計においても有効であることは間違いありま
せん。しかし、最終的に決定する正規化のレベ

ルは、やはり現実の業務のあり
かたで決まるということです。
これはNoSQLの選定や設計で
も同じことです。誤解を恐れず
に言えば、NoSQLの最大の売
りである高速性と分散性は、非
正規化による現実との折り合い
の結果ではないでしょうか。そ
ういったことをふまえながら正
規化について再考すると、RDB

かNoSQLかという議論がいか
に不毛なものかをご理解いただ
けるのではないかと思います。
ﾟ

図10-8　テスト用データ入力画面（LibreO� ce Base） ▼

42 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 43

分散DBの定義／
位置づけ

　現状の分散DBは、HBase、MongoDB、Riak

を筆頭にOSS系を中心に発展してきたNoSQLに
現
 ● ●

在は代表されています。これ以外にもVoltDB、
DynamoDB（AWS）、F1（Google）も分散DBであ
れば外せない製品ですが、後者は純粋には
NoSQLとは言いがたいので、いったんは枠の外
においておきましょう。
　一方、現状で一般に使われているデータベー
スはRDBMSです。Oracle、MySQL、Postgre

SQLあたりが主流でしょう。従来は商用製品が
主流でしたが、最近ではOSS系も使われつつあ
ります。もともとNoSQLは、RDBMSでは処理
しきれないデータ量、アクセス頻度を処理する
ために考案され、実際のユースケースとしては
とくにWeb系のしくみとして発展してきました。
したがって、出自から見れば、NoSQLと
RDBMSはそれぞれの「最もパフォーマンスが発
揮できる場面」が異なり、本来は相互に補完関係
にあります。しかし、それぞれ独自の発展と、
運用上できれば単一のDBで管理したいという
ユーザニーズもあり、徐々に競合関係になりつ
つあります。
　以上をふまえ、お題である「分散DBの適用範囲」
について、「現状の分散DBはどこに使えるのか？」
という点を考えていきたいと思います。また、今
現在も世界各地（除く日本）で最も開発が競争的

に行われているものの1つはこの分散DBですの
で、現状だけではなく、今後の展望もふまえて
分散DBの適用範囲を考えていきましょう。
なお、本章では、HBase、MongoDB、Riakあた
りをまとめてNoSQLという言い方をさせていた
だきます。

NoSQLの定義を
どう考えるのか？

　もともとはNot Only SQLという表
● ●

現が、そ
もそものNoSQLのことの起こりです。しかし、
もはや現状ではどのNoSQLも、SQLライクの
インターフェースがそれらのエコシステムで準
備されていることが多く、Not Only SQLとい
う枠でくくるやり方はほとんど無意味になって
います。ここではNoSQLの出自がRDBMSの
限界を超えたところという点から、その定義を
考えていったほうが良いでしょう。
　RDBMSの限界は、大規模なデータの取り回
しでパフォーマンスがボトルネックになりやす
いという点です。これに対して、NoSQLは、
規模が足りないときには、ノードを追加してク
ラスタをスケールアウトさせるという戦略をとっ
て問題をクリアしています。
　とはいえ、すべてに万能のしくみはありません。
NoSQLも例外ではありません。ある機能やパ
フォーマンスを獲得すれば、その一方で捨てざ
るを得ないものもあります。NoSQLがRDBMS

の限界を超えるパフォーマンスを得るために、

前章のRDBから一転して、本章ではNoSQLについて解説します。前半では、分散DBという視点から、現在の
NoSQLがどんな領域に適用できるかを整理します。後半は、高いスケーラビリティと可用性だけでなく、RDB
のような一貫性を実現したGoogle F1を紹介します。そこから分散DBの将来像を展望します。

分散DBの適用範囲とは
̶̶その概要と将来を見据えて

 Writer 神林 飛志（かんばやし たかし） 上新 卓也（うえしん たくや）（株）ノーチラス・テクノロジーズ

分散DBの適用範囲とは

 Writer Writer

第3章

42 - Software Design Mar. 2014 - 43

分散DBの適用範囲とは
̶̶その概要と将来を見据えて 第3章

捨てた大きな資産の1つが一貫性になります。
一貫性はRDBMSで最も重要かつ重厚なしくみ
の1つです。これをNoSQLでは、ほぼきれいさっ
ぱり捨て去りました。
　ただし、まったく捨て去ってはそもそもデー
タベースとして使い物にはならないため、最低
限の“一貫性”のみを保持しています。一般に結
果一貫性（Eventually Consistency）と言われる
ものです。これは「最終的にはいつかデータの
整合性は合うはずです」という最低限の保証で
す注1。RDBMSのパフォーマンスを凌駕する読
み込み／書き込みを獲得する一方で、一貫性を
ある程度犠牲にした“分散DB”をここでは
NoSQLという定義に当てたいと思います。

分散DBはどこに
使えるのか？

　まずもって分散DBがRDBMSの持つような
一貫性を放棄している以上、一貫性を必要とし
ているしくみには基本的には分散DBは使えま
せん。後述するようにこのあたりは今後大きく
変わると思われますが、現時点では分散DBは
RDBMSのような一貫性を必要とするような用
途には使えないでしょう。一貫性を必要としな
い領域ということであれば、とりあえず仔細か
まわずデータをためておけ、という分野や、ほ
かのデータとの整合性は問わないが、とりあえ
ず準備されているデータをとにかく見せろとい
う分野に絞られていきます。これは現状では、
Webのログの収集、組込み系のしくみから自動
的に転送されるログの収集、これに類似する各
種ライフログの収集、また、できあがったデー
タの閲覧、といった分野になっていきます。
　上記の領域は、今流行の「ビッグデータ」の領
域と重なります。ビッグデータの領域とは、過
去の技術では解析できなかった大量のデータを

注1） なお、分散系の一貫性という概念とRDBMSでいう一貫性
の概念は本質的に異なるものですので、両者を峻別せずに
一貫性という言葉を使うことは極めて不適切です。ですが、
ここでは、データの最低限の整合性を保つという非常に広
い意味で“一貫性”という言葉を使わせてください。

収集／解析し、今まで発見されていなかった事
象や傾向を見つけ出し、積極的に利用していこ
うという動きです。このビッグデータの基盤と
して、現在の分散DBは適当ですし、実際ビッ
グデータの隆盛と分散DBの流れは軌を一にし
ています。つまりデータを大量にためて、解析し、
結果をバシバシ見せろ、というしくみですね。
　さてそれでは、今まで十把一絡げにNoSQL

と評していた分散DBをより細かく見ていきま
しょう。単純に大量のリードとライトに適して
いるといっても、各製品により癖があります。
そのあたりを大まかになりますが、適用範囲と
いうことで追っかけていきましょう。

HBase

　HBaseは、Apache Software Foundation（ASF）
により開発が行われているカラム指向データベー
スです。Google社によるBigtableを参考に、同
じくASFにより開発が行われているApache

Hadoopの分散環境上に構築され、大規模データ
に対する低遅延なランダムアクセスが可能です。

データモデル

　HBaseのテーブルは、行を特定するための
RowKey、カラムの 種 類に 応じた 複 数 の
ColumnFamily、カラムを特定するためのQualifi er

からなります。ColumnFamilyはテーブルを作成
する際に決定する必要がありますが、そこに含ま
れるQualifi erは必要に応じて指定できます。
RowKey、ColumnFamily、Qualifi erの組み合わ
せで、1つのCellを特定します。このCellが
RDBMSにおけるテーブルの特定行の列に相当し
ますが、Cellは複数バージョンのデータを持てます。
また、各行はRowKeyでソートされています。
　RowKeyを指定して1行ずつデータを取得
（Get）できるほか、RowKeyの範囲で一気にデー
タを取ってくること（Scan）ができます。Getや
Scanの際にはCellのバージョンの範囲を指定
したり、Filterをかけたりすることで取得する

44 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 45

データの絞り込みが可能です。
　データの書き込み（Put）を行う際には1行ずつ
処理することになりますが、この1行の操作に対
しては“一貫性”を保証しています。つまり、書き
込み操作が完了したら、すべてのクライアントか
らは最新のデータを取得できるということです。
また、CAS（Compare And Swap）操作や数値の
インクリメント処理もサポートしています。

シャーディング

　HBaseのテーブルはRowKeyの範囲でリー
ジョンと呼ばれる単位に分割し、これを各ノー
ドに分散配置することでシャーディングを行い
ます。リージョンのサイズが設定値よりも大き
くなると自動的にリージョンの分割が行われ、
それぞれノードに配置されます。標準ではセカ
ンダリIndexをサポートしていないため、想定
するアクセスパターンによってRowKeyの設計
を厳密に行う必要があります。
　たとえば、テーブルへのランダム書き込みは
ほとんどメモリ内の処理だけで終わるため非常
に高速です。しかし、前述したようにHBaseの
テーブルはRowKeyの範囲で分割されたリージョ
ンごとに分散配置されており、RowKeyの値が
近い大量のデータを書き込もうとすると特定の
ノードに書き込みが集中するため、そのような
状況が発生しないようにRowKeyがうまく分散
するようにしなければなりません。
　逆に読み込みについてはScanが高速に処理
できるため、同時に読み込む必要のあるデータ
はRowKeyを近い値に設定しておくべきです。
　このように、書き込みと読み込みのどちらが
多いのか、どのようなデータを同時に読み書き
するのか、などといったアクセスパターンに応
じてRowKeyを設計していきます。

冗長化

　HBaseは下層にあるHDFS（Hadoop Distributed

File System）を利用することでデータの冗長化を
行っています。Putなどのデータ操作はHDFS上

に先行書き込みログ（WAL：Write Ahead Log）
として書き込まれます。また、データはある程度
メモリ内で処理され、設定されたデータ量を超え
ると、HDFS上にHTableファイルとしてフラッシュ
（書き込み）されるようになっています。HDFSへ
の書き込みは複数個レプリカが作成されるため、
特定のノードがダウンしてもWALとHTableから
リージョンを復元できます。

使いどころ

　HBaseはランダム書き込みとRowKeyの範囲
を指定したシーケンシャルリードが得意です。
たとえばLINEやFacebookなどのメッセージ
機能のようなデータを格納するには、ユーザ
IDをRowKeyの頭に付けておくことで、多数の
ユーザによって書き込みを分散すると同時に、
各ユーザのメッセージについては近くにまとま
ることになりますので、あるユーザのメッセー
ジをまとめて持ってくることが容易にできます。
ユーザごとのアクセスログを記録する、という
用途も同様の考え方が使えます。
　さまざまな切り口でアドホックなクエリを利
用する場合には向いていません。セカンダリ
Indexが利用できないため、RowKey以外で検
索する場合にはテーブルをフルスキャンしなけ
ればなりません。どうしてもRowKey以外の検
索が必要な場合には自分で Indexを管理する必
要があります。ただし、クエリの結果を取得す
るのに時間をかけてもいい状況であれば、
MapReduceやHive、Pigなどと連携することで
取得することは可能です。

MongoDB

　MongoDBはMongoDB社によって開発されて
いるドキュメント指向データベースです。
JSON形式注2で表された「ドキュメント」を単位

注2） 内部的には JSONのバイナリフォーマットであるBSON形
式で格納している。

44 - Software Design Mar. 2014 - 45

分散DBの適用範囲とは
̶̶その概要と将来を見据えて 第3章

としてデータを格納します。RDBMSのように
スキーマが決まっているわけではなく、それぞ
れのデータを独自のドキュメントとして保存で
きます。いわゆる非構造化データをスキーマレ
スで扱えるわけです。そのため、あらかじめス
キーマを規定できないようなシステムや、シス
テムの成長に合わせてスキーマが拡張していく
ようなケースで利用できます。

データモデル

　MongoDBのデータベースの中には、「コレク
ション」と呼ばれるテーブルに相当するものが
あり、そこにドキュメントを格納していきます。
ドキュメントに“_id”という特殊なキーの値を
付けることで特定のドキュメントを取得できる
ようになります。“_id”フィールドがない場合
には自動的にObjectId型の値が設定されます。
　フィールドの値や範囲などの条件を組み合わ
せたクエリを実行できたり、また必要なフィー
ルドのみを指定してデータを取得できたりと、
柔軟な検索が可能です。クエリ言語自体が
JavaScriptであるため、演算子を定義したり、
Indexの利用はできなくなるものの、問い合わ
せ処理自体を実装したりすることもできるよう
になっています。
　コレクションには“_id”フィールドに対して
Indexが作成されています。またセカンダリ
Indexを作成できるので、クエリの高速化が期
待できます。利用できるIndexは、Bツリー、ハッ
シュ、2次元 Index、地理空間 Index、およびそ
れらの複合Indexなどが挙げられます。
　データの解析など、集計を行う場合には標準
的な集約関数が利用できるほか、MapReduceも
利用できます。

シャーディング

　MongoDBは、Shardキーを元に水平分割さ
れていきます。Shard内のデータが設定された
データサイズを超えると、そのShardが自動的
に分割されます。Shardキーは自由に決定でき

ますが、この選択は非常に重要になります。た
とえば、キーに指定したフィールドの取り得る
値の種類が少ない場合には、たかだかその種類
の数までしか分割されないことになり、データ
が分散されなくなってしまいます。
　Shardキーを含むクエリは指定されたデータ
を含むShardのみでクエリを実行することで負
荷分散できます。逆にShardキーを含まないク
エリは全Shardでクエリを実行してからマージ
する必要があります。また、Shardキーを含ま
ない場合に問題が生じるクエリがあるので注意
しましょう。
　一度設定したShardキーは変更できないので、
事前に十分検討する必要があります。

冗長化

　MongoDBで冗長構成をとるには、各Shard

をPrimaryノード1台とSecondaryノード複数
台を1組にしてReplicaSetという構成を作りま
す。Primaryノードに対する更新はSecondary

ノードにレプリケートされ、各ノードでデータ
を冗長に持つことになります。
　Primaryノードがダウンしてしまった場合には、
残りのノードでPrimaryを選出し昇格します。
Primaryノードの選出には投票権を持つノードに
よる多数決で行われます。投票権を持つノード
は、ReplicaSetの中に奇数台必要で、過半数をとっ
たノードがPrimaryとなります。ReplicaSetに奇
数台のノードが準備できない場合には、Arbiter

という、データを保持せず投票権のみを持つノー
ドを追加して奇数台の構成にしておきます。
　ReplicaSetを構成するノードは最大12台ま
でで、投票権を持つノードはReplicaSet内に最
大7台までとなっています。

使いどころ

　MongoDBは、非構造化データを大量に扱う
場合に有効です。スキーマレスですので、フィー
ルドを追加するのもドキュメント形式を変更す
るだけです。RDBMSにおけるJOINのような

46 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 47

処理も、非正規化やドキュメントを入れ子状に
して持つことで実現できます。セカンダリ
Indexも使えるので、あらかじめクエリを想定
できるのであれば、そのクエリを高速に実行で
きます。さまざまな形式のデータをいったん
MongoDBに入れておきさえすれば、出力時の
柔軟なクエリやMapReduceを使って目的のデー
タを取得できるでしょう。

Riak

　RiakはBasho Technologies社によって開発
されているKey-Value Storeです。もともとは
Amazon Dynamoの論文を参考に実装されてい
て、耐障害性や運用の容易性、スケーラビリティ
が特徴として挙げられます。データへのアクセ
スはHTTP REST API、または一部制限はあ
りますが、Protocol Buff ersも利用できます。

データモデル

　データのキーは、バケットによって分類され
ています。同じキーであっても、別々のバケッ
トに入っていれば違うものとして扱われます。
　HTTP REST API経由で値にアクセスする
際にはURLは次のようになっています。

http://${SERVER_NAME}:${PORT}/riak/ｭ
${BUCKET}/${KEY}

　値をPUTする際にContent-Typeを指定する
ことで、テキストやJSON形式のデータ、HTML、
XML、また画像ファイルなどHTTPで扱える任
意の形式のデータを格納できます。
　キーとキーを関連付ける、リンクと呼ばれる
機能もあります。あるキーから、リンクをたどっ
てリンク先の値を取得できます。
　また、MapReduceも利用できますし、バック
エンドストレージによってはセカンダリIndex

を利用できるので、これらを組み合わせること
で任意のクエリを実行できます。

シャーディング

　Riakにはマスタノードがなく、すべてのノー
ドが対等であるため、SPoF（Single Point of

Failure）が存在しません。クラスタにノードが
追加されると自動的にデータのリバランスが行
われます。逆に、ノードがダウンした場合であっ
ても、ほかのノードが肩代わりすることで処理
を継続できます。
　データは、Consistent Hashingにより分散さ
れます。バケットとキーの組み合わせから、
160bitのハッシュ値を生成します。この160bit

の整数空間をRiakではRiak Ringと呼び、どの
ノードにデータを置くのかを決定するのに利用
します。
　この整数空間を均等にいくつかのパーティショ
ンに分けて各パーティションが担当する値の範
囲を決めておき、この生成したハッシュ値を範
囲に含むパーティションがデータを持つことに
なります。これらのパーティションは、仮想ノー
ドもしくはvnodeと呼ばれます。物理ノードは
この仮想ノードを、順番に複数個担当すること
になります。
　たとえば、16パーティションに設定された4

ノード（node[0-3]）のクラスタであれば、各パー
ティションが受け持つ範囲の大きさは2160/16、
node0は0、4、8、12番めの4つのパーティショ
ンを受け持ちます。

冗長化

　データを格納する際には、複数個のレプリカ
を作成します（レプリカの数はパラメータNで
指定します）。レプリカの配置先は各パーティショ
ンの次のパーティションを受け持つノードにな
ります。2つのレプリカを作成する場合（N=2）
には次、3つの場合（N=3）にはさらにその次、
というように次へ、次へとレプリケートされて
いきます。デフォルトでは初めのものを含めて
全部で3つのレプリカを作る（N=3）ように設定
されています。

46 - Software Design Mar. 2014 - 47

分散DBの適用範囲とは
̶̶その概要と将来を見据えて 第3章

　データの書き込みの際には、いくつのレプリ
カが作成されたら書き込みが完了したとみなす
のかを設定できます（パラメータWで指定しま
す）。全部で3つのレプリカを作成するよう設
定されている場合でも、1つレプリカが作成さ
れた時点で完了とみなす（W=1）こともできます
し、3つとも作成されないと完了とみなさない
（W=3）ように設定することもできます。
　データを読み込む際には、レプリカがあるど
のノードからでも読み込みができます。また、
複数のノードからデータが読み込めた時点で読
み込みができたとみなすように設定することも
できます（パラメータRで指定します）。
　これら3つのパラメータは、データの整合性
とパフォーマンスの兼ね合いによって設定する
必要があります。たとえば、N=3、W=3、R=1

であれば、書き込み完了の時点ですべてのレプ
リカが作成できているので、どのレプリカから
読み込んでも最新のデータが取得できますが、
書き込みが遅くなってしまいます。また、N=3、
W=1、R=1とすると、書き込みが完了してもす
べてのレプリカが作成できているとは限らない
ので、古いデータを読んでしまうかもしれません。
N=3、W=1、R=3であれば、3つ読み込んだ中
に最新のデータが見つかりますが、読み込みが
遅くなります。
　データの整合性が問題となる状況であれば、
W+R>Nとなるようにそれぞれの値を設定する
必要があります。W、Rを指定しない場合、デフォ
ルトでN/2+1となるようになっています。N=3

であれば、W=2、R=2となります。

使いどころ

　Riakは耐障害性に優れているため、可用性が
優先されるシステムに向いています。たとえば
ユーザセッションの情報を格納したり、
Amazon S3のようなストレージサービスとして
利用したりできるでしょう。実際、S3 API互
換のストレージサービスとしてRiakをベースと
したRiak CSというプロダクトがBashoよりリ

リースされています。

ビッグデータ的な
使い方以外では？

　以上が、現在、隆盛を極めている分散DBの
概要と想定されている用途です。では「ビッグデー
タ以外の分野では適用できないのか？」という
のが、当然ですが次の注目点になります。まぁ
日本ではビッグデータの市場は喧伝されている
ほど大きくないのが実情ですし、「Web系以外
の一般業務に使えないのか？」ということは普
通に検討されます。
　まず、結論から言いますと、現

● ● ●

状の分散DB、
すなわちNoSQLはそれ以外の分野では、まず
いっさい使えません。使えません、という言い
方より「使いません」という言い方が正しいでしょ
う。要は、RDBMSを使います。

業務システムは
やはりRDBMS

　ビッグデータ系以外の領域であれば、これは
もう一般的なご

● ● ● ● ● ● ● ● ●

く普通の業務領域になります。
昔からありますし、今後もあります。こういっ
た領域では現状ではRDBMS一択です。業務的
な要請でRDBMSで想定される一貫性が担保さ
れている必要がありますし、また、現状のツー
ル群や今までのノウハウ、現在までに蓄えられ
てきた資産もあります。これを全部捨て去って、
業務システムをRDBMSから分散DBに移すに
は、メリットよりもデメリットのほうが大きい
でしょう。もちろん、RDBMSにはある程度の
スケールアウトの壁があるので、なんとか分散
DBを導入したいという動きもあります。巨大
になった商品マスターをRDBMSからHBaseに
移すというプロジェクトもありましたが、結局
「HBaseの上にRDBMSと同じ機能を一から作
る結果」になり断念ということのようです。
HBaseも良い製品なのですが、RDBMSと同じ
土俵に乗っては、このように分の悪い勝負になっ
てしまいます。

48 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 49

では将来も
だめなのか？

　NoSQLで業務系システムを構築するのは、
いろいろとハードルが高い、というのが現実です。
では将来はどうなのか？　最先端の分散DBの
状況を見ながら、考えていきましょう。
　現在のところ、分散DBの開発のフィールドは、
ほぼクラウド環境が前提になりつつあります。
これは、よりスケールアウトさせるビジネスが
クラウドで展開されていて、それを支えるデー
タベースが必要になるからです。クラウドでの
技術開発という点では、やはりGoogleが相当先
に進んでいます。分散DBの今後の発展の方向
性を見定めるには、残念ながらGoogleの研究を
見ていくことが第一でしょう。最新の動向は外
に出さないというのが、Googleの流儀のようで
すが、最近では現在の潮流をふまえたうえでい
ろいろと公表しています。このあたりを見ながら、
この先の分散DBの特質や使い方への示唆や、
ほぼ確実に到来するであろうアーキテクチャを
見ていきましょう。

Google F1

　GoogleのメインビジネスであるAdWordsビ
ジネスを支えている分散DB、これがF1です。
この概要が公表されています 注3。

F1の特長

　最大の特長は、NoSQL並みの高いスケーラ
ビリティと高可用性を確保しつつ、かつ
RDBMSの提供するACIDトランザクションと
同等の一貫性を確保している点です注4。NoSQL

とRDBMSの両者の弱点をなくした、まさに次
世代のデータベースと言えるでしょう。以下に、
そのアーキテクチャを中心に注目すべきポイン

注3） http://research.google.com/pubs/pub41344.html

注4） なお、ここでの一貫性は、トランザクションの意味での
serializableを意味しています。

トをかいつまんで見ていきましょう。

基本的アーキテクチャ

　F1は、トランザクション管理とクエリ処理
を行い、クライアントとの通信を制御するF1

サーバと、そのクライアント、そしてその下位
でトランザクション実行とデータレプリケーショ
ンを担当するSpannerで構成されています。
Spannerのさらに下位にファイルシステムとし
てCFS（Colossus File System）があります。
　F1サーバにデータが保存されることはなく、
すべてのデータは基本的にSpannerに保存され
ます。F1サーバもSpannerもそれぞれ分散アー
キテクチャになっており、とくにSpannerは複
数のデータセンターにまたがってデータの制御
を行っています。F1サーバはまず同じデータ
センター内部にあるSpannerサーバに問い合わ
せを行い、ロードバランスや可用性の確保が必
要な場合に、外部のデータセンターのSpanner

サーバに接続を行います。
　F1サーバ自体はステートレスであり、クラ
イアントは任意のF1サーバと接続できます。
ただし、ロックをとるトランザクションを行う
ときは例外で、そのトランザクションの実行時は、
特定のサーバにバインドされます。
　また、クエリ処理は、予想されるレイテンシー
を考慮し、分散処理と集中処理を選択して効率
の良い処理を実行します。また必要に応じて
MapReduceも実行します。基本的にクエリの
制御はすべてF1サーバで処理されますが、
MapReduceについては、アウトプットのボトル
ネックを発生させないために、クライアントか
ら直接Spannerにアクセスさせて制御している
ようです。

Spanner

　さて、トランザクションの根幹を担っている
のがSpannerと言われるミドルウェアです。
Spannerの提供する機能は、下位レベルのスト
レージ制御、データキャッシュ、データレプリ

http://research.google.com/pubs/pub41344.html

48 - Software Design Mar. 2014 - 49

分散DBの適用範囲とは
̶̶その概要と将来を見据えて 第3章

ケーション、可用性確保、データ分割（シャーディ
ングと移動）、ロケーション管理、そしてトラ
ンザクション機能です。分散トランザクション
のプロトコルは2PC（2 Phase Commitment）を
Paxosプロトコルで実行するしくみになってい
ます。
　このしくみが公開されたときには、非常に狭
い一部の界隈に、激震をもたらしました。後述
するように、Spannerは、いわゆるSnapshot

Isolationに準じるトランザクション制御を行っ
ており、First-Commit-Winルールを採用して
います。この手法はTimestampの順序確保が必
要な条件なのですが、分散処理では時刻が合わ
ない場合を前提にする必要があり、そのためな
かなか分散環境での実装が困難でした。この課
題をSpannerでは、ハードウェア（GPSと原子
時計を利用）で解決するという卑怯技を使って
乗り越えています。あぁ、やっぱりソフトウェ
アでは無理なのか。アルゴリズムでは無理なの
か。Googleよ、おまえもかと、この道で頑張っ
てきた人たちが天を見上げる事態になりました。
Googleがこの方

● ●

法を示したことは、一種のパン

ドラの箱を開けることになっています。いや、
ソフトウェアでできないならハードウェアで解
決って、それアリですか……。現在、各社（除
く日本のIT企業）が競ってこの分野に注力して
いる結果になっているようです。

データモデル

　F1のデータモデルは、基本的にテーブルモ
デルをベースにしたRelationalモデルと言って
良いでしょう。ただし、各テーブルが独立にあ
るのではなく、行単位で各テーブルの行が挟み
込まれるような階層構成になっています（図1）。
　このテーブル構成のメリットは、キーが同一
の場合、ある行から下位の階層の行へのアクセ
スが非常に速いという点です。また関連するデー
タの物理ロケーションが特定のノードに集中す
るため、不要に分散トランザクションをする必
要もありません。とくに更新処理でのオーバー
ヘッドが軽くなります。筆者の見るところ、こ
れはAdWordsの業務要請のアクセスパターン
には最適な構成になっていますが、横断的な更
新処理が頻発するような場合は、相当のコスト

Campaign (CampaignID, CustomerID,…)

AdGroup (AdGroupID, CampaignID,…)

Customer（1,…)
Customer（2,…)

通常のRDBMSでのスキーマ記述
各テーブルがロケーション分離の
バウンダリー

F1でのスキーマ記述
ルートID（ここではCustomer)が
ロケーション分離のバウンダリー

Customer (CustomerID, …)

Customer（1,…)
 Campaign（1,3,…)
 AdGroup（1,3,6,…)
 AdGroup （1,3,7,…)
 Campaign（1,4,…)
 AdGroup （1,4,8…)

Customer (CustomerID, …)
Campaign (CustomerID,CampaignID…)
AdGroup (CustomerID, CampaignID,
AdGroupID…)

Campaign（3,1,…)
Campaign（4,1,…)
Campaign（5,2,…)

AdGroup（6,3,…)
AdGroup（7,3,…)
AdGroup（8,4,…)
AdGroup（9,5,…)

Customer（2,…)
 Campaign（2,5,…)
 AdGroup（2,5,9,…)

図1　RDBMSのデータモデルとF1のデータモデル ▼

50 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 51

が発生するように思われます。F1ではデータ
センター間のトランザクションもサポートして
いるので、レイテンシーを下げるためにいろい
ろと工夫しているのでしょう。
　各カラムに格納されるデータタイプは
Protocol Buff ersの形式になっています。この
レベルだけ見るのであれば、Objectベースのデー
タベースとも言えます。Protocol Buff ersがベー
スになっていることで、O/Rマッピングのオーバー
ヘッドを最小にすることが可能になっています。
ただし、その代償としてProtocol Buff ersの内
部のフィールドに直接アクセスしたり、Indexを
行ったりする場合には通常のプリミティブなタ
イプとは異なり、多少コストがかかっています。
　Indexについてはローカル Indexとグローバ
ル Indexの2つの要素から構成されています。
ローカル Indexは単一の物理ロケーション、す
なわちSpannerサーバに格納され、Index先の
行と同一サーバに同居しています。また、グロー
バル Indexは複数のSpannerに分散配置されて
います。これは結果として、とくに大量の
Index更新処理のパフォーマンス劣化を引き起
こします。ここはまだ、Googleでもいろいろと
手段を検討しているようです。分散DBでのグ
ローバル Indexは、その更新処理とあいまって
決定的な良い解決案がないのが現状ですが、
Googleも苦戦をしているということでしょう。

スキーマ変更

　まずAdWordsのビジネス自体がGoogleの根
幹の1つですので、当然データベースのダウン
や停止は許されず、高い可用性を要求されます。
このような要求の中で必要に応じてスキーマ変
更をノンブロッキングで行う必要があります。
NoSQL系のデータベースでもスキーマ変更が
鬼門であることは周知のとおりです。F1では、
スキーマ変更はかなりトリッキーな手法を採用
しています。まず、スキーマ変更は、各サーバ
で非同期処理で行います。これによりノンブロッ
キングが確保できますが、当然データ不整合の

原因となります。そこで、複数のスキーマを同
時にアクティブにし、各スキーマ間で互換性が
あるように、与えられたオペレーションを操作
します。スキーマ移行が完了した段階で、古い
スキーマの使用を放棄します。この手法はおそ
らく、AdWordsのデータモデルを運用する場
合には可能ではあると思われますが、一般的な
分散DBではデータ不整合を防ぐために、相当
のワークアラウンドをアプリケーションに課す
ことになり汎用的とは言えないでしょう。

トランザクション

　F1ではACIDトランザクションを実現してい
ます。複数データセンターにまたがる大規模分
散DBでの分散トランザクションを、低遅延か
つプロダクションレベルで、ACID要件として
実現しているケースは世界で最初のものでしょ
う。以下に詳細を解説します。
　まず、実現されるオペレーションを、複数の
読み込みとそれに続く、必要に応じた書き込み
と類型化したうえで、複数のトランザクション
の手法を提供しています。

①Snapshotトランザクション
 いわゆるリードオンリー・トランザクションに
なります。Timestampを基準にしたSnapshot
を利用します。通常はローカル・レプリカを参
照し、時刻としては5～10秒の遅れた時刻を
利用します。ただし、明示的に時刻を指定す
ることも可能ですし、また現在時刻を指定す
ることも可能です。Spannerの原子時計が提
供する時間同期の面目躍如です

②悲観トランザクション
 ロックをとるトランザクションになります。リー
ドロックの場合は、共有ロックと排他ロックを
選択することが可能です

③楽観トランザクション
 典型的なオペレーションに対応したトランザク
ションです。リード時点では、ロックをとらず、
書き込み時点でロックをとり書き込みを行いま

50 - Software Design Mar. 2014 - 51

分散DBの適用範囲とは
̶̶その概要と将来を見据えて 第3章

す。このとき、リードした行について読み込み
時点での最終更新時刻より後で、更新処理が
コミットされたことが検出された場合は処理を
abortします。一般にSnapshot Isolationと言
われるトランザクション・プロトコルで、最後
に書き込みをコミットしたトランザクションが
有効になるので、First-Commit-Winルールと
言われます

　F1ではデフォルトでは、楽観トランザクショ
ンになります。この手法の最も大きいメリットは、
リードがノンブロッキングなのでパフォーマン
スが劣化しないという点でしょう。一方デメリッ
トは、F1の楽観トランザクションが比較的ナイー
ブなSnapshot Isolationの実装なので、固有の
anomalyが発生することでしょう。よく知られ
ているのは、いわゆるphantomと言われるもの
で、とくにInsert phantomは除去不能です。F1

では、ここではデータモデルの特性をうまく利
用してこの問題を解決する方法を提供していま
す。各テーブルが挟み込み形で階層構造になっ
ているため、更新処理のあるテーブルの行の上
位のテーブルの行をロックすることで Insert

phantomを除去できます。通常よくある回避策
はテーブルロックや、Indexを利用するもので
すが、F1ではスキーマ特性を利用しています。
　トランザクションの書き込み実行時のプロト
コルは2PCになっています。この合意形成は
Paxosによっています。Paxosは分散環境の合
意形成の手法としては、現在、最もデファクト
に近いアルゴリズムです。ただし、その原論文
が難解であることでも有名で、またさまざまな
バリエーションがあり、相当に複雑です。ここ
では以下のスライドを参考にしていただいたほ
うがいいと思います。
　まず、日本の分散合意業界の若手エースの@

kuenishiさんのスライドが以下。

http://www.slideshare.net/kuenishi/ｭ
genpaxos-1679212

　これまた、同じく日本の分散処理業界のホー
プの@nobu_kさんも貴重なスライドを公開して
ます。こちらもお勧めです。

http://www.slideshare.net/pfi/paxos-ｭ
13615514

　こちらはUstreamでの解説講義つきです。

http://www.ustream.tv/recorded/23776788

クエリ処理

　F1では分散クエリのしくみを導入しています。
単ノードで処理可能な場合は、手元のノードで
処理しますが、分散クエリのほうがより効率的
だと判断される場合は分散処理されます。デー
タはすべてSpannerに保存されているので、処
理はすべてリモートアクセスになります。横断
的に結合処理を行う場合は、複数のSpannerサー
バにアクセスすることになります。そのためク
エリ処理の実行パフォーマンスは従来の
RDBMSと異なりネットワークの遅延に大きく
左右されます。
　ネットワーク遅延を向上させるためにF1では、
パイプライン処理とバッチ処理を利用していま
す。たとえば結合処理は、個々のキーをまとめ
てバッチ的に各分散ノードにプッシュダウンし
て、各ノードで並列に処理を行います。この処
理はパイプライン化され、ストリーミング的に
処理されます。これは非同期の並列処理になり
ます。高いパフォーマンスを維持することが可
能ですが、その代償として個々の問い合わせの
実行順序は保証されません。なお、データのパー
ティションニングは細粒度で行われているため、
個々のノードのリソース競合が起こりにくくなっ
ています。したがって、処理性能をリニアにス
ケールアウトすることが可能です。
　クエリの実行計画の策定が非常に特徴的になっ
ています。通常、分散DBでは、データの分散
配置が一定のセマンティクスをもってパーティ
ショニングされることを利用して、クエリのプッ

http://www.slideshare.net/kuenishi/genpaxos-1679212
http://www.slideshare.net/pfi/paxos-13615514
http://www.ustream.tv/recorded/23776788

52 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 53

シュダウンを効率的に行いますが、F1ではこ
の戦略をとっていません。Spannerがデータの
パーティショニングをランダムかつ動的に行う
ため、F1側でクエリ実行時にデータの再パーティ
ショニングを行う必要があります。データ配置
のパーティショニングはハッシュ・パーティショ
ニングになっており、結果、統計データの取り
ようがなく、通常の最適化戦略がとれません。
確かに、結合戦略としては効率的な分散ハッシュ
結合を積極的に選択できますが、普通に考えれ
ば、この手の戦略は完全に力技で、再パーティ
ショニング時に簡単にネットワークが溢れてし
まいます。普通にアウトです……が、Googleで
は、これまたハードウェアで解決しているよう
です。ネットワーク機器を相当に強化して強引
に処理しきっているようです。
　従来のセオリーはネットワークの遅延コスト
をほかのリソースと比べて桁違いのオーバーヘッ
ドと見て、戦略を立てます。とくにF1のような
マルチデータセンター間の処理が前提であれば、
なおさらです。ですが、Googleはハードウェア
を含めた環境をまるごと強化し、「ゲームのルー
ル自体」を変えようとしているように見えます。
実際、世界各地でダークファイバーを買いまくっ
て、土管だけ借り、交換機は独自のものを持ち
込んでいるというところまでやっているようです。
ここまで前提が変わるのであれば、確かにこの
ような戦略も今後はありなのかもしれません。

今後の分散DBの
方向性

　さてF1の外観を見てきたところで、本筋に
戻って、今後の分散DBの潮流と利用の方向性
について検討してみましょう。

トランザクション

　上記のように、すでにF1のような分散DB上
でのRDBMS的な一貫性が担保されている以上、
今後の分散DBの潮流は間違いなく、一貫性を
サポートしたものになっていくでしょう。

　分散トランザクションの手法としては、Snapshot

IsolationとPaxosをベースにした2PCによる同
期が当面の間は分散トランザクションの主流に
なると思われます。ただし、F1の手法がそのま
まデファクトになるかと言えば、さすがにそうで
はないでしょう。Snapshot Isolationにしても、
F1のようにアプリケーションに制約をかけるこ
となくserializableな実行が可能なアルゴリズム
を利用するようなさまざまなバリエーションが検
討されています。また、同期処理についても負
荷の高い2PCではなく、よりlazyに同期処理を
実行する手法も多数検討されています。いずれ
にしろ、従来のRDBMSと同等の一貫性をサポー
トしていくという流れは決定的なものに見えます。

クエリ処理

　F1では分散クエリの結合戦略が、全面的にハッ
シュベースで行われている点が興味深い点です。
これは従来のセマンティクスベースを利用した
分散クエリの処理の理論とは違う方向です。従
来の分散クエリの基本は、クエリのロジックと
パーティショニングのロジックを合成して論理
計算を行い、クエリ実行のコストが最も低い実
行計画を作成し、これをもとに問い合わせ実行
を行っていました。このコスト計算では従来は
ネットワークコストをかなり高めに見積もって
計算するのが実態で、結果、できるだけデータ
のネットワークでの転送を抑える結合戦略が通
常は選択されます。
　これに対して、F1のハッシュベースのクエ
リ実行の手法は、デメリットはネットワーク負
荷が簡単に上がってしまう点ですが、他方、大
きなメリットとして分散のパーティショニング
のロジックの設計に対する大きなフリーハンド
を享受できます。現在の分散クエリの実行のス
タイルでは、データ分散のロジック（Predicate）
を、事前に発行され得るクエリをある程度先読
みしながら設計していかないと分散のパフォー
マンスが出ません。これは相当高度な設計技術
が要求されます。

52 - Software Design Mar. 2014 - 53

分散DBの適用範囲とは
̶̶その概要と将来を見据えて 第3章

　F1ではハッシュベースのメリットを享受し
つつ、デメリットのネットワークパフォーマン
スの負荷をハードウェアで回避するという手法
を導入しています。結果として、設計によるパ
フォーマンス向上策を打つ必要がなく、実は現
在の分散クエリ実行の難題への1つの解になっ
ている気もします注5。
　現状のGoogle並みのネットワーク環境が一
般に享受できるようになれば、分散DBでのク
エリ最適化戦略についても、よりユーザビリティ
の高いものに進化していくでしょう。

全体的なアーキテクチャから
推測されること

　分散処理の理論から見ても、大量のデータを
分散処理させつつ、パフォーマンスの向上と一
貫性の確保を両立させることは非常に困難です。
また、実際のNoSQLを見ても実現できていな
いことは明らかです。この壁をF1は、ハードウェ
アの発展と、ミドル層の制限をアプリケーショ
ンに制約を課すことでクリアしています。ハー
ドウェアでは、同期処理に原子時計とGPSを
導入し、ネットワークのトラフィックが増大し
ても処理しきってしまうスイッチ群やネットワー
ク環境を利用しています。またアプリケーショ
ン層では、スキーマ構造をある程度制限するこ
とでナイーブなトランザクションプロトコルで
も不整合が発生しないようにしています。
　つまり、データベースという枠を取り払い、
トータルのシステムとして分散DBの課題にあ
たることで解決案を導き出していると言えます。
これは、今後の分散DBのあり方の1つにはな
るでしょう。すなわち、ソフトウェアとしての
分散DBではなく、ハードウェアの環境までも
含めた分散DBというものが1つの形になるか
もしれません。どのような形で提供されるかは、
想像の域を出ませんが、一種のアプライアンス
の形で提供されるか、またはクラウドサービス

注5） ハードウェアでの解決は、解決にはなってないという考え
方もありますが。

の形でのみ提供されるようなものになるかもし
れません。また、ハードウェアベンダが、特定
のハードウェア環境とセットで分散DBを提供
してくる可能性もあるでしょう注6。

今後の適用領域

　分散DBで一貫性が確保される以上、現在の
単ノードでのアーキテクチャを基本とする
RDBMSベースで稼働しているシステムは、そ
のほとんどが分散DBへ移行させることが理論
上は可能になります。すなわち、現行の大半の
システムが、分散環境でのスケールアウトと高
いパフォーマンスのメリットを享受できるよう
になると思われます。
　ただし、分散DBの制約をさまざまなやり方
で克服していく必要があるでしょう。この課題
の乗り越え方については、Google F1は非常に
示唆に富んでいます。理論的な課題になってい
る部分を理論で解決するのではなく、ハードウェ
アを解決する手法として援用している点は見逃
せません。この結果、問題点を設計手法で回避
する労力が軽減されています。これは複雑になっ
た理論をいったん、簡易にリセットしている感
じも受けます。
　その一方で、スキーマを利用した回避策も実
施しています。これはアプリケーションの開発
とミドル層の制御が、分散DBでは表裏一体に
なっていることの現れでもあります。ハードウェ
アでの解決とは別に、分散DBでは設計／実装
については今までのRDBMS以上に、配慮すべ
きことが増えるということでもあります。
　分散DBの将来は、「確かに分散DBで通常の
処理はできるようにはなった。ただし、本来あ
る分散DBの課題をハードウェアなり、ソフト
ウェアなりさまざまな形で解決している以上、
その手法を考慮した設計／実装の手腕が求めら
れることにもなってきた」ということになるで
しょう。ﾟ

注6） 実際にそういう動きがあるという噂も耳にします。

54 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 55

　本誌の読者の皆さんはVoltDBのことをご存
じの方も多いことでしょう。インメモリDBで
スケールアウト可能、しかもSQLでデータ操
作が可能といった特長があります。しかし、実
際に本番稼働システムとして利用した事例は少
ないのかもしれません。VoltDB社の顧客紹介
ページには、さくらインターネット社がありま
すが、「VoltDB」とGoogleで検索すると検索候
補に「voltdb akb48」と出てくるように、3年前
に選抜総選挙でVoltDBを利用した事例が取り
上げられることも多いようです。
　システムを担当した当社が、選抜総選挙でど
のようにVoltDBを活用したかについては拙著
『過負荷に耐えるWebシステムの作り方』（技術
評論社）で紹介しています。そこでは主に2011

年に開催された第3回選抜総選挙のシステムに
ついての紹介でしたが、その後の投票では
VoltDBではなく、汎用的な RDBである
PostgreSQLに切り替えました。今回は、移行
に至った理由を、VoltDBの特徴の説明を通じ
てご紹介します。

　VoltDBは、IngresやPostgreSQLに携わった
Michael Stonebrakerにより設計され、VoltDB

社により開発が行われているインメモリデータベー
スです。VoltDBには次の特長があります。

・インメモリデータベースなので高速シャーディ
ングにより、スケーラブル

・管理オーバヘッドが低いので高速
・データの操作にSQLを利用可能
・他のNoSQLと異なり、ACID特性を有している

　VoltDB社の検証結果によると、通常のRDB

と比較して約45倍の性能を示しています。また、
スケーラビリティに関してはサーバを1台から
12台まで増やすことで性能が10.6倍にまで向
上するなど、かなり線形に性能が伸びることが
示されています（VoltDB社のホワイトペーパー
より）。次のように管理オーバヘッドを大幅に
削減することで、より多くの処理時間を実際の
データ処理に割り当てることができるため高速
に処理することが可能になっています。

・インメモリにすることでバッファ管理が不要
・各サーバ（シャード）上のシングルスレッドで
動くストアドプロシージャによりデータ操
作することで排他制御を簡素化

・各シャードを複数のサーバに複製することで
トランザクションログへの書き込みが不要

　シャーディングは他の多くのNoSQL製品と
同様にハッシュテーブルにより行われます。例
えばメールアドレス、名前、パスワード、会員
ランク、現在のポイントを持つ会員マスタテー

はじめに

VoltDBとは

国民的アイドルグループ選抜総選挙を支えたWeb投票システムは、当初KVSであるVoltDBをデータストアと
して利用していました。しかしシステムの運用が軌道に乗るにつれRDBであるPostgreSQLに移行しました。
本章では、Web投票システムの事例を紹介しながら、KVSのメリット・デメリットを説明し、適材適所でのデー
タベース利用を解説します。

分散からあえてRDBへ
̶ 『̶過負荷に耐えるWebの作り方』の

エピローグ
 Writer 林 哲也（はやし てつや）（株）パイプドビッツ　取締役CTO

分散からあえてRDBへ
̶̶

第4章

54 - Software Design Mar. 2014 - 55

分散からあえてRDBへ
̶ 『̶過負荷に耐えるWebの作り方』のエピローグ 第4章

ブルを3台のVoltDBサーバに分散させると図1
のようになります。ここではシャードを二重化（A、
B、Cの複製をA'、B'、C'）しているので、たと
え1台のサーバ（例：ノード3のシャードC、B'）
がダウンしても、他の2台のサーバにはすべて
のデータ（シャードA、B、C'）があるためにシス
テムは稼動し続けられます。
　特定のシャード内で完結する処理は非常に高
速に完了します。それは、SQLのWHERE句
で「シャードキー = 値」を指定するような場合
です。このテーブルの例で言うと、

select ポイント from 会員マスタ where ｭ
メールアドレス = 'suzuki@example.com';

や

update 会員マスタ set ポイント = ｭ
ポイント + 100 where メールアドレス = ｭ
'suzuki@example.com';

といった処理は、レコードの走査がシャードB

内だけで行われるので高速に処理されます。
　VoltDBはクライアントから呼び出されるス
トアドプロシージャでデータの操作を行います
が、リスト1のようなプロシージャを書くこと

リスト1　ストアドプロシージャによるトランザクション処理 ▼

package jp.co.pipe.procedures;
import org.voltdb.*;

public class UpdatePoints extends VoltProcedure {

 public final SQLStmt selectsql = new SQLStmt("SELECT points FROM members WHERE email = ?;");
 public final SQLStmt updatesql = new SQLStmt("UPDATE members SET points = points - ? WHERE ｭ
email = ?;");

 public VoltTable[] run(String email, long points) throws VoltAbortException {

 // メールアドレスで指定された該当会員のポイント数確認
 voltQueueSQL(selectsql, email);
 VoltTable queryresult = voltExecuteSQL()[0];

 // 所持ポイント数が、消費するポイント数よりも少なければ処理中断
 if (queryresult.getRowCount() == 0 ¦¦ queryresult.fetchRow(0).getLong(0) < points) throwｭ
new VoltAbortException();

 // ポイントの消費
 voltQueueSQL(updatesql, points, email);
 return voltExecuteSQL();
 }
}

ノード1

メールアドレス ポイント ランク ・・・
yamada@abc.com 120 S ・・・
taro@aaa.com 50 B ・・・
kato@bbb.com 800 G ・・・
・・・ ・・・ ・・・ ・・・

シャードA

ストアドプロシージャ

シャードC'

ノード2

メールアドレス ポイント ランク ・・・
suzuki@example.com 200 G ・・・
tamura@ccc.com 150 B ・・・
sato@ddd.co.jp 1000 G ・・・
・・・ ・・・ ・・・ ・・・

シャードB

ストアドプロシージャ

シャードA'

ノード3

メールアドレス ポイント ランク ・・・
shibata@eee.co.jp 120 S ・・・
eto@fff.com 600 G ・・・
ogino@ggg.com 0 B ・・・
・・・ ・・・ ・・・ ・・・

シャードC

ストアドプロシージャ

シャードB'
同期/
通信

同期/
通信

走
査

SQL

図1　 VoltDBのパーティションテーブル（シャーディング）処理 ▼

56 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 57

で、トランザクション処理を行うことができま
す。例では、指定のポイント以上を保持してい
るかどうかを確認（select）してから、指定ポイ
ントを減算（update）しています。このストアド
プロシージャは、シャードに対してシングルス
レッドで動作するために、処理中のレコードが
他のクライアントから操作されることがありま
せん。
　一方、たとえば会員ランクがGold（G）の会員
のポイントを集計（sum）することを考えると、
全てのシャードで会員ランクがGのものをピッ
クアップするためのレコード走査と、各シャー
ドの結果セットのサーバ間での伝送が発生しま
す。VoltDBでは（少なくとも選抜総選挙で使っ
たバージョン1.3では）、結果セットの転送量
が10MBを超えるとエラー（「Output from SQL

stmt overflowed output/network buffer of

10mb. 」）が発生してしまったので、その場合は
データの範囲を制限する必要があります。複数
シャードにまたがるデータの大量取得や集計関
数を使うと、このエラーが発生するようです。
　これらの特徴を理解することは、VoltDBを
適用するのに得意な分野、苦手な分野を判断す
るのに役立ちます。

選抜総選挙システム
でのVoltDBの使い方

　選抜総選挙では投票結果を記録するために
VoltDBを使用しました。シリアル番号、投票
先候補者ID、投票日時だけの非常に単純なテー
ブルが1つだけです。シリアル番号が主キーで
あり、シャードキーです。このテーブルに対し
て次の処理が行われます。

①投票（レコードの挿入。主キーによる同一シ
リアル番号による重複投票のチェック）

②投票後の集計（候補者IDでグループ化した投
票数合計）

　①の投票はVoltDBの特性を活かして、レコー
ドが挿入されるべきシャード上で重複チェック

をし、問題が無ければ挿入するという処理を高
速に行うことができます。しかしながら、②の
集計では問題がありました。前項で説明したと
おり、集計は複数シャードに対する処理であり、
結果セットのサーバ間通信が発生します。候補
者 IDが150程度であったので結果セットは大
きくないだろうと思っていたのですが、結果セッ
ト転送量に関するエラーが発生してしまいまし
た。そのため、集計用一時テーブルを用意し、
エラーが起こらない範囲に投票期間を3つに分
けて、それぞれ集計して一時テーブルに書き込
み、再度、その一時テーブルから最終結果を集
計するといった手間がかかりました。それでも
この作業は最終集計時の一度だけですので、十
分にVoltDBの高速処理のメリットを享受でき
ました。

VoltDBの得意な分野
と苦手な分野

　「SQLが使える」「テーブルのJOINができる」
「トランザクションが使える」「シャーディング」
等の観点で、他のKVSよりも強みを持つ
VoltDBですが、その性能を活かせるのは、や
はりシングルパーティション（シャード）での処
理です。シャードキーを指定したデータの操作
となります。
　SQLが使えるからと言ってRDBが使えるさ
まざまなSQLをVoltDBで処理しても、非効
率あるいは低速で処理される場合があります。
集約関数を使ったり、WHERE句でパーティショ
ンキー以外のものを指定したりする場合には、
VoltDBが最適かどうかを検討する必要がある
でしょう。

PostgreSQLへの
移行

　上記のように弊社が最初に担当した投票では
VoltDBを使いましたが、その後の投票では
「性能」「運用性」「開発保守性」の観点から、
RDBであるPostgreSQLにデータベースを変

56 - Software Design Mar. 2014 - 57

分散からあえてRDBへ
̶ 『̶過負荷に耐えるWebの作り方』のエピローグ 第4章

更しました。
　当初は過大な性能要求がされていたため
VoltDBを選択しましたが、実際には想定の
100分の 1程度の処理頻度でしたので、
PostgreSQLでも十分に対応可能だと考えまし
た。他の業務の関連もあり、実際にVoltDB 1.3

とPostgreSQL 9.0上で44万件の顧客テーブル
を使い、①重複しているメールアドレスがあれ
ばフラグを立てる、②1000行のメールアドレ
スを含むファイルを1行ずつ読み込んでメール
アドレスが一致するレコードにフラグを立てる、
という2つの性能検証を行いました。その結果
は表1のとおりです。②はVoltDBのデータ操
作は速いのでしょうが、その操作（Javaによる
ストアドプロシージャ）の呼び出しコストが高
いのだと考えます。
　運用性に関して、当社は「情報資産の銀行」の
事業コンセプトのもと、いくつかの製品やサー
ビスを提供していますが、データベース基盤と
してPostgreSQLを幅広く使っています。その
ため、PostgreSQLの運用・監視や障害対応に
は慣れていますが、VoltDBの経験は不足して
いました。そのためにVoltDBが性能的には良
い選択肢でも、システム運用メンバーの不安や
負荷が増えてしまいます。
　また開発保守性に関しても、VoltDBはデー
タ操作にSQLを使えるものの、シングルやマ
ルチパーティション（シャード）を意識してスト
アドプロシージャを開発したり、JDBCではな
く独自のクライアントライブラリを使ってアク
セスしたりと、複数の開発者で開発する場合に
は教育や保守コストも増えてしまいます。
　今回は会社組織の仕事のため上記の理由から
PostgreSQLに移行する判断をしましたが、自
分一人で仕事をするのであれば技術的な興味か

らVoltDBを使い続けたかもしれません。

まとめ「適材適所で
DBMSを選択する」

　データの持ち方、データベースにはさまざま
な種類や製品があり、一貫性を持ちトランザク
ション処理が得意であったり、大量レコードの
集計処理が得意であったり、それぞれに得意分
野があります。MySQL、PostgreSQL等の
RDBは汎用性が高く、そのために幅広い用途
で使われています。数百万～数億レコードといっ
たデータの集計処理であれば列指向データベー
スの方が適していますし、単純にキーに対する
属性値の取得であればKVSが適しています。
VoltDBはリアルタイムで訪問者の確認や更新
等、パーティションキーで指定可能なデータに
対する操作を、SQLやトランザクション処理
する場合に適していると思います。
　また、必ずしもDBMSだけが選択肢ではなく、
YAML、XML、JSONといったファイルへの
読み書きおよび共有や、プログラム中の変数や
定数としてメモリに保持して各アプリケーショ
ンサーバ間で通信するなど、さまざまなデータ
保持・管理の手法の中から用途に最適なものを
選択します。上記選抜総選挙のシステムでも、
VoltDBのレプリケーションだけではなく、ファ
イルへの書き出しも行うことで冗長性、信頼性
を高めています。
　それぞれの得意分野と、なぜそれが得意なの
かの技術的な理由を理解し、開発するシステム
に最適な製品を選択することが大切だと考えま
す。また、処理速度だけではなく、運用性、信
頼性、可用性、保守性、データ一貫性といった
観点も考慮に入れる必要があります。ﾟ

処理 VoltDB PostgreSQL

①重複チェック 125秒 188秒

②一致アドレス 11.2秒 8.2秒

表1　VoltDBとPostgreSQLの処理速度テスト ▼

58 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 59

　MongoDBについて、みなさんはどのような印
象をお持ちでしょうか。SNSなどでは、「開発し
やすいデータストアですね！」という意見と同時
に、「大規模に運用すると痛い目をみるデータス
トア」という意見が散見されます。みなさんも同
様の印象をお持ちではないでしょうか。筆者は
MongoDBを使ってきた感想として、これらの意
見は一面では合っていると思うし、ある面では
正しくないな、もったいないな、と考えています。
　MongoDBに限らず、NoSQLと言われるプロ
ダクトは、得意／不得意がハッキリ分かれる傾
向や、「これをやると失敗する。でもこれに使う
ならうまく使える」といった傾向が強いように思
います。とくに、RDBで実現できない／しづら
い部分を実現するためにNoSQLが生まれたこ
ともあり、RDBとは性質が異なる傾向が強いです。
　そこでこの章では、MongoDBを運用してきた
中で得た「うまく使うためにはどうしたらいいの
か？」というノウハウについて話していきましょう。

MongoDBの特徴

　それでは、最初に簡単にMongoDB注1の特徴を
まとめていきましょう。

注1） http://www.mongodb.org/

　MongoDBは、MongoDB社注2が開発している
オープンソースのデータストアです。MongoDBと
いう名前の由来は、「ばかでかい」という意味の英
単語“humongous”の“mongo”という部分からきてい
ます。おもにスキーマレスを始めとした「開発のし
やすさ」や、シャーディングを始めとした「スケール
アウト」を最初から考慮に入れて開発されています。
　そんなMongoDBで実現できることとは何で
しょうか。RDBと比較しつつ紹介していきます。

柔軟なデータ構造
　まず、MongoDBは柔軟なデータ構造を実現で
きるドキュメント指向データストアである、とい
う点が挙げられます。通常、RDBはテーブルと
テーブル間のリレーションでデータ構造を表現
します。MongoDBはデータ構造の変更の自由度
が高く、JSONに似たBSON（Binary JSON）形
式でデータを扱うため、リスト構造やネストの
深いデータ構造も表現可能です。
　もう1点、スキーマレスという特徴があります。
RDBの場合、テーブル構造はそのテーブル内で同
じでなければならず、変更する際にもすべての行
を変更しなければなりません。しかし、MongoDB

のコレクション（RDBでいうテーブル）内の構造は
各オブジェクトで同一である必要はありません。た
とえば、リスト1とリスト2のデータ構造が同一コ
レクション内に存在しても問題ありません。

注2） http://www.mongodb.com/

はじめに

本章ではNoSQLの1つであるMongoDBを利用する際のポイントを紹介します。サイバーエージェントでは、同
社のソーシャルゲームサービスでMongoDBを利用しており、また、ほかのサービスではRDBの運用経験も豊富
です。RDBの特徴や使い方と比べることで、MongoDB特有の注意点が見えてきます。

RDBと比べてわかる
MongoDBを利用する際の
注意点

 Writer 桑野 章弘（くわの あきひろ）（株）サイバーエージェント
Twitter@kuwa_tw／URL http://d.hatena.ne.jp/akuwano/

注意点第5章

http://d.hatena.ne.jp/akuwano/
http://www.mongodb.org/
http://www.mongodb.com/

58 - Software Design Mar. 2014 - 59

RDBと比べてわかるMongoDBを利用する際の注意点 第5章

サーバ冗長化
　RDBサーバで苦労することの1つに、サーバ
の冗長化があります。最近は、MySQL-MHA注3

などの普及により、冗長化の敷居は下がってき
ていますが、構築にはネットワークやDBサーバ
に関する知識が必要です。MongoDBではレプリ
カセットというしくみが標準で用意されています。
　レプリカセットとは、複数のmongodプロセ
ス注4でデータの同期とサーバの冗長化を行う機
能のことです。RDBにおけるレプリケーション
と冗長化を兼ね備えた機能と言えます。サーバ
の種別はプライマリとセカンダリとアービター
に分かれており、更新はプライマリサーバに向
けて、参照はセカンダリサーバに向けることも
できます。プライマリに障害が起きた際、新た
なプライマリの選出はレプリカセットの各サー
バによる投票によって行います（図1）。レプリカ
セットには最低3つの投票権を持つプロセスが
必要となります。
　レプリカセットはスプリットブレイン（ネット
ワーク分断）対策で、レプリカセットメンバの過
半数がいるクラスタ以外はプライマリにならな
いようになっています。図1では3台のレプリカ
セットのうち1台が壊れていますが、これでもレ

注3） 正式名称はMaster High Availability Manager and tools
for MySQL。MySQLのマスターの冗長化を行うためのソ
フトウェア。

注4） MongoDBの主となるサーバプロセス。実際のデータ、イ
ンデックスを保持している。

プリカセットは問題なく処理継続できます。で
すが、もう1台壊れて稼働台数が1台になると
1/3になり、レプリカセット内で過半数を取れな
くなり、処理継続は不可能になります。
　そのためサーバ台数は増える傾向にありますが、
アービターサーバという実データを持たない投
票権のみ持つ軽量プロセスを使うこともできます。

データのスケールアウト
　もう1つ、RDBサーバで苦労することとして、
データのスケーリングがあります。たとえば、あ
るサービスでユーザ数が増えてきたのでデータ
を分割しないといけないというケースがあります。
この場合には、データベースを分けて、ハッシュ
管理用のデータを作って、ユーザIDのレンジご
とに分けるなどして、各RDBのテーブルを分割
して振り分けを行います。これらは下手に運用
に入ってしまうと、ずっと手作業で行わないとい
けないなど、技術的負債になり得るものです。
　MongoDBの場合、スケールアウトに対する答
えとしてオートシャーディングが用意されてい
ます。これはデータの受け持ち範囲を各サーバ（も
しくはレプリカセット）単位に分けることでスケー
ルアウトするしくみです。アプリケーション側
はmongosプロセスに接続するだけなので、バッ
クエンドのサーバをいくら増やしても変わらず
にデータにアクセスできます（図2）。

分散データ解析
　昨今、ビックデータの話をよく聞くようになり

リスト2　データ構造の例2 ▼

{
 userId : 'kakerukaeru',
 favoritefood : ['curry']
 job : {
 name : “ServerSideEngineer”,
 level : 10
 }
}

リスト1　データ構造の例 ▼

{
 userId : 'kuwa_tw',
 sex : male,
 favoritefood : ['curry', 'mabodofu']
} プライマリ

セカンダリ セカンダリ → プライマリ

生きているサーバで
投票が行われ、新しい
プライマリが選ばれる

障害
発生

図1　レプリカセットにおける障害発生時の動き ▼

60 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 61

ました。Hadoopなどのソフトウェアを使い、
MapReduceでデータ解析を行っている方も多い
のではないでしょうか。データウェアハウス的に
RDB上で解析している場合もあると思いますが、
RDB単体ではMapReduceを行うことはできませ
ん。ここまでお話すれば、「またか……」と思う
かもしれませんが、MongoDBではAggregation

Frameworkを使用することで、MapReduceを
非常に簡単に使用できます。データ処理を行う
データストア上でMapReduceが行えるというの
は、データ取得からデータ解析までをノンストッ
プで行えるため非常に有用です。

RDBとMongoDB
どちらを使えばいい？

　前述したとおり、MongoDBではレプリカセッ
トで冗長化を行え、シャーディングでスケール
アウトを行え、AggregationFrameworkを使え
ばMapReduceまで行える万能なデータストアで

あると言えます（それ以外にも全文検索なども行
えるのです！　まだ日本語対応していませんが
……）。こんな話をすると、「じゃあ、MongoDB

で全部やったらいいの？」と思われるかもしれま
せんが、世の中そんなにいい話はありません。
何も考慮せずにただ使うと痛い目を見ることで
しょう。そこでRDBとMongoDBをどのように
選択していくのか、このあたりを話していきます。

MongoDBとRDBの比較

　MongoDBとRDBを比較していきましょう。
表1に簡単にまとめました。
　MongoDBに限りませんが、NoSQLはクセの
強いデータストアです。MongoDBの場合、書き
込みはデータベースレベルライトロックのため、
大量の書き込み処理には向いていません。ですが、
読み込みはデータオブジェクトがキャッシュさ
れている限りは高速にアクセスできるため、読
み込み処理が多いソフトウェアには有用です。

　次に、MongoDBはアクセスした
データオブジェクトを、MMAP

（MemoryMappedFile）を利用して
キャッシュします。そのためメモリ
が潤沢に存在し、OSによるガベー
ジコレクションがうまく動いている
間は、非常に高速にデータへのアク
セスを行います（図3）。ですが、単
位時間のデータアクセス量がメモリ
量を超え続けると、ディスクとメモ
リ間のアクセスが大量に発生するこ
とになります（図4）。それにより
MongoDBのスローダウンが発生し
てしまいます。これを避けるために

シャード1

ChunkA
ChunkA

シャード2

アプリケーションサーバ

ChunkB

シャード3

ChunkC
ChunkC
ChunkC

ChunkB
ChunkA
ChunkC

ChunkB
ChunkA
ChunkC

mongos

ChunkA → シャード1
ChunkB → シャード2
ChunkC → シャード3

mongosはmongocの情報に
基づいてChunkを各シャード
に割り振る

mongoc

mongocはシャーディング
の情報管理をする

Chunk……シャードごとのデータ受け持ち範囲

図2　シャーディングの概要 ▼

MongoDB RDB
アクセスパターン RDB以上に読み込み処理向き。データベースレベ

ルのロックのため大量の書き込み処理には不向き
読み込み処理向き。おもに行レベルのロック
なのでMongoDBよりは書き込み処理向き

データ方式 BSON テーブル
水平分散 シャーディング 単体ではアプリケーション実装が必須
冗長化 レプリカセット 単体ではない（MHAなどを利用することで可能）
得意なアクセスパターン ホットデータがあるもの ホットデータ&全体解析
重視するリソース メモリ メモリ（だが、ストレージ、CPUも必要）

表1　MongoDBとRDBの機能比較 ▼

60 - Software Design Mar. 2014 - 61

RDBと比べてわかるMongoDBを利用する際の注意点 第5章

は、「1回にアクセスするデータ量を決める」「そ
もそもデータを一定以上持たない」という戦略が
考えられます。「1回にアクセスするデータ量を
決める」場合はアクセスパターン分析とスキーマ
デザインを適切に行う必要があります。「そもそ
もデータを一定以上持たない」場合はCapped

Collection注5やTTLCollection注6を使う、もしく
は作業用データのみ毎回取得して作業後破棄する、
などの処理を行う必要があります。

こういうときは
MongoDBを使え！

　RDBとMongoDBの違いをふまえたうえで、
それぞれにマッチするパターンについてまとめ
ます。まず、MongoDBの得意なユースケースを
次のようにまとめました。こちらについて説明
していきましょう。

・ゲーム系
・一時データ処理

ゲーム系
　ゲーム系が得意である大きな理由として、必

注5） 古いデータを削除することで、データサイズを一定に保つ
ことができるコレクション。

注6） 定めた期間よりも古くなったデータを自動で削除するコレ
クション。

要な初期実装が簡単だということが挙げられます。
BSONオブジェクトを使用することで、アプリケー
ションとのデータのやりとりをJSONで行えます。
とくに最近、流行しているNode.jsでの開発に関
しては、サーバからデータストアまでをJSON

でワンストップで扱えるため、非常に簡単に実
装できます。手前味噌ではありますが、弊社の
提供している「ピグライフ」「ピグワールド」といっ
たサービスもすべてNode.js＋MongoDBという
構成で行っており、高速な開発スピードを維持
するのにMongoDBが一役買っています。
　もう1点はゲームのデータの中でアクセスされ
るデータは、一部のアクティブなユーザのもの
がほとんどである、という点です。そのようなデー
タ（ホットデータ）に関しては、MongoDBのキャッ
シュ機構がうまく働くため、パフォーマンスを
確保でき、MongoDBの良さを十分引き出せます。

一時データ処理系
　もう1つMongoDBが得意とするユースケース
は、一時的なデータ処理系です。「1回にアクセス
するデータ量を決める」「そもそもデータを一定以
上持たない」という戦略で行きましょうと前述しま

したが、まさに一時的なデータ処理
系はそれに沿った使い方です。たと
えば、次のようなものになります。

 ・少量かつ定量のデータを取得する
ための一時DB
 ・大規模データを処理しない
MapReduce処理

　Fluentdなどでログを貯める用途
として使う場合や、少量のデータを
取得するためのデータベースとして
使う場合には、CappedCollectionや、
TTLCollectionを使用することで
データ量の肥大化を避けられます。
それにより、MongoDBを高速に保
ちつつ、リアルタイムに近いログ解
析クエリを投げることができます。

datafile.0 datafile.1 datafile.2 datafile.3

MMAP

MongoDB
ホットデータがある場合は、
メモリを使いまわしながら効
率よくアクセスできる

メモリ

ディスク

図3　MMAPでの効率の良いキャッシュの例 ▼

datafile.0 datafile.1 datafile.2

MMAP

MongoDB
メモリ量以上のデータアクセスが
発生するごとに、メモリ⇔ディスク
へのアクセスが頻発する

メモリ

ディスク

図4　MMAPでのキャッシュあふれの例 ▼

62 - Software Design

第1特集 RDBとNoSQLどちらを選びますか？
真っ当に考えるDBの鉄則

データベースの諸問題

Mar. 2014 - 63

　もう1点、「AggregationFrameworkを使用す
ることで、現在入っているデータに対して
MapReduce処理を行える」ということも先ほど述
べました。ですが、大量のデータに対して
MapReduceを行うのはスローダウンの可能性が
あります。そのため、大元のデータはほかのデー
タストア（RDBなど）に貯めておきます。Mongo

DBはデータ削除、データインポートともに高速
なため、毎回必要な分だけMongoDB側へインポー
トしてMapReduceを行えば、簡易かつ結果を利
用しやすいしくみを構築できます。
　もし、「統合的なログ解析システムのバックエ
ンド」を構築したい場合には、MongoDBではなく
大規模なRDBやHBase、Cassandra、HDFSなど、
それにあったものを使用するようにしましょう。

こういうときはRDBを使え！

　それでは次に、RDBが得意とするケースにつ
いて説明していきます。具体的には次の場合に
なります。

・SNS／ブログサービスなど
・課金システム

SNS／ブログサービスなど
　まずは、SNSやブログサービスなどです。こ
の場合は何が問題になるかというと、やはりメ
モリの使い方になります。SNSやブログサービ
スはアクセスされるユーザが多岐に渡ります。ゲー
ムであればゲームをやっていないユーザのデー
タにはアクセスが行くことはありません。しかし、
SNSやブログといったサービスは広いユーザア
クセスが発生するため、MongoDBであればデー
タファイルのMMAPキャッシュの入れ替えが多
数発生してしまいます。これはMongoDBが苦
手とするアクセスタイプです。RDBであればバッ
ファプールやクエリキャッシュといったインテリ
ジェンスなキャッシュ機構が存在するため、あ
る程度広い範囲のアクセスも担保できます。
　そして、MongoDBの場合、セカンダリインデッ
クスの作成に対応してはいますが、現状はインデッ

クスの使用は1クエリで1インデックスという制
約があるので複雑なクエリを投げるのが難しい
のも、これらのサービスに向いていない点にな
ります。

課金システム
　もう1つは課金システムなどの堅牢なシステ
ムへの利用です。MongoDBにはRDBと同等レ
ベルのトランザクションはありません。一部の
Atomic処理は対応しているのですが、完全な
ACIDを保証していないため、完璧なロールバッ
ク、コミットを使用するためには自分たちで実
装する必要があります。信頼性の担保という点
ではRDBにはかないません。そのため堅牢なシ
ステムや、いわゆる「枯れた」システムに対して
はRDBを使用するのが無難であるといえます。

MongoDBの運用

　それではMongoDBの実際の運用について解
説していきましょう。

基本的な考え方

　まず、基本的な考え方になります。RDBの運
用時の考え方とは異なる部分をまとめてみました。

・トランザクションはない（Atomic操作は一部
存在する）

・メモリは潤沢に用意すべし
・単純にクラスタ台数を増やすことでスケール
アウト可能

・正規化は必ずしも良いものではない

　トランザクションと、メモリの話は先ほども
述べたので割愛しましょう。
　クラスタ台数を増やすことでスケールアウト
が可能ということについて説明します。シャー
ド分割が行われることで、1シャードが受け持つ
データ量はシャード数分に分割されます。結果、
1シャード当たりのデータ量は減ります。加えて
シャードが増えることで各シャードでメモリが

62 - Software Design Mar. 2014 - 63

RDBと比べてわかるMongoDBを利用する際の注意点 第5章

使用できます。そのため全体のメモリ使用量が
増え、キャッシュできるデータ量が増えます。
これはメモリを潤沢に用意する、というのと似
た話になります。
　正規化が必ずしも正しくないというのは、「メ
モリにおさめておきたいのか」「クエリ回数を減ら
したいのか」といった部分に起因する問題です。
たとえば、リスト2のデータをUserコレクション
とJobコレクションに分けた場合の例をリスト3
に提示します。この場合、Jobコレクションへの
アクセス頻度が高い場合は、メモリに収まるデー
タ量が多くなるため効率が悪くなるわけです。こ
のように1コレクションにデータを詰め込んだほ
うが効率がよくなる場合も多いので、正規化す
るかどうかは慎重に考えるようにしましょう。

そのほかに気になる点

学習コスト／必要なスキル
　MongoDBは使えるようになるまでの敷居が低
いデータストアです。各種設定については、設
定値をあまり複雑に持たないというポリシーで
開発しているようで、基本的な設定を入れれば
デフォルト値でもちゃんと動くところはすばらし
いです。逆に、ここは設定させてくれという設
定値（キャッシュポリシーなど）もありますが。
　必要なスキルに関しては、クエリがJavaScript

であるため、難しいクエリを投げるようになれば
なるほどJavaScriptに対する知識が必要になり
ます。ですが、必要になるといっても、1つ1つ
のクエリはそこまで難しいものではないので、

すぐに慣れるはずです。

費用／サポート
　費用としてはオープンソースソフトウェアな
ので、使用するだけであればもちろんお金はか
かりません。MongoDBのユーザコミュニティ
（MongoDB-JPなど）も国内に複数存在します。
ですが、MongoDB社で提供している有償版のサ
ポートを使用したり、サポート契約を結ぶ際に
は費用がかかります。開発元からの情報は役に
立つことも多いと思います。ただ、有料の情報
がなかったとしても開発者のJIRAのぺージや、
メーリングリストの情報などはとても有用です。
そして、最近では、NRI社がMongoDBのサポー
トを始めたというニュースもあります。まだノウ
ハウがなく使用に不安を抱える状態の場合はこ
ういったサポートの使用検討を行うのも良いと
思います。

MongoDBとRDBは
もっと仲良くできるはず

　ここまでいろいろな観点で、RDBとMongo

DBの比較をしてきました。そのため、みなさん
は「RDBとMongoDBは相容れないもの？」「どっ
ちを使えばいいの？」と思っているのではないで
しょうか。これらのプロダクトは、領域が重なっ
ている部分も少なくありません。それによって
どちらかを選択しなければならない場合はあり
ます。ですが、前述のとおりNoSQLは得意、
不得意が分かれるものです。RDBを使ったほう
が良い場合はRDB、MongoDBを使ったほうが
良い場合はMongoDB、だけではなく、1サービ
ス内でも動的なパラメータ変更部分はMongoDB

を使い、書き込みが多かったり、大事なデータ
が入っている部分はRDBを使う、というふうに
システム構成としてベストな方法を考察するこ
とが必要だと考えています。
　この章がNoSQLとそしてRDBとも、仲良く
できる一助になりますことを祈りつつ、この章
を終わらせていただければと思います。ﾟ

{
 userId : 'kakerukaeru',
 favoritefood : ['curry']
}

{
 userId : 'kakerukaeru',
 job : {
 name : “ServerSideEngineer”,
 level : 10
 }
}

リスト3　リスト2のデータを分けた場合の例 ▼

Userコレクション

Jobコレクション

64 - Software Design

　C言語の壁と言えば「ポインタ」の理解と昔
から言われてきているが、そのためにたくさん
の「ポインタ攻略」の書籍が出ている。本書は
その中でもさまざまな内容を網羅的に扱った全
部入りとも言えるもので、動的メモリ管理、関
数、配列、文字列、構造体のそれぞれの章で例
文を挙げながら詳しく解説されている。初心者

向けのやさしい本が多い中で、本書では最初か
らmallocに代表されるC言語のヒープ領域での
ポインタの使い方が出てくるなど、少し難しめ
に感じた。また、図でも解説されているが、あ
まり多くなく単純なものが多い。最初から読み
進めていくよりも、わからないところを重点的
に学習するのには良い教材ではないだろうか。

Richard Reese 【著】 ／菊池 彰 【訳】
B5変形判、 248ページ／価格＝2,200円＋税／発行＝オライリー ・ ジャパン
ISBN=978-4-87311-656-3

　本書のスタンスは「自分自身でネットワーク
をイチから構築して運用してみないと、インフ
ラ／ネットワークエンジニアとしての基礎力と
対応能力を身につけることは難しい」というも
の。既存のネットワークを相手に、与えられた
マニュアルどおりに運用しているだけだと感じ
たら、本書は絶好のステップアップの手引きに

なる。ネットワーク構築の要となる基本設計に
ついて、豊富な図とともに1冊まるまる使って
丁寧に解説している。基本設計の流れと本書の
章構成が対応づけられ、しっかりした設計手法
が自然に習得できるだろう。本書を教科書にネッ
トワークを構築してみてほしい。経験に裏付け
られたものこそが、自身の武器となるはずだ。

みやたひろし 【著】
B5変形判、 416ページ／価格＝2,980円＋税／発行＝SBクリエイティブ
ISBN＝978-4-7973-7351-6

　Androidは、Linuxカーネルを中心にランタイ
ム、各種ライブラリ、アプリケーションフレー
ムワークなどから成るフレームワークとして提
供されている。その内部を解説する1冊。プロ
セスの動作や各種フレームワークの役割や利用
方法について解説する。これはAndroidデバイ
スの開発者には必須の情報だ。フレームワーク

が提供する機能を知ることで、既存機能を利用
できるところ、自分が開発すべきところが明確
になる。また、アプリ開発者がAndroidに最適
な開発方法を身につけるためにも役に立つとい
う。本書を理解するには、システムコール、C、
Javaの知識が必要だが、アプリ開発の幅を広げ
るために、一度挑戦してみてはどうだろう？

Tae Yeon Kim、Hyung Joo Song、Ji Hoon Park、Bak Lee、Ki Young Lim【著】／Androidフレームワーク研究会【訳】
B5変形判、 506ページ／価格＝3,800円＋税／発行＝パーソナルメディア
ISBN＝978-4-89362-288-4

Androidのなかみ
Inside Android

詳説Cポインタ

　KVS（Key Value Store） の 実 装 は、 本 書
のRedisをはじめとして山ほどある。roma、
kumofs、VoltDBなどさまざまだ。okuyamaは
本誌でも読み切り記事があった。KVSはリレー
ショナルデータベースと異なり、シンプルなし
くみだからだろうか、多くの開発者が技術力を

競っているように見える。本書はインメモリ型
KVSと分類され、高速処理で評判の高いRedis
を導入からシステムでの利用までかなり詳しく
解説している。スクリプト言語 luaとの連携ま
で一通りカバーしており、最初の1冊としてお
勧めだ。

Josiah L.Carlson 【著】 ／長尾 高弘 【訳】
B5変形判、 360ページ／価格＝3,400円＋税／発行＝KADOKAWA
ISBN＝978-4-04-891735-3

Redis入門
インメモリKVSによる高速データ管理

インフラ／ネットワークエンジニアのための

ネットワーク技術＆設計入門

　本特集ではプロキシの教科書と題して、プロキシの基礎、リバースプロキシ
の実際、クラウド上でのプロキシサーバの3つに分けて解説します。
　CHAPTER1では、プロキシの歴史を振り返り、フォワードプロキシをメイ
ンに動作と利用方法を解説しています。
　CHAPTER2では、リバースプロキシに焦点を当て、サーバの代わりにクラ
イアントとのやりとりをする基本的な機能から応用まで、実例を交えて解説し
ます。
　CHAPTER3ではプロキシの応用例として、プロキシのテクノロジを利用し　CHAPTER3ではプロキシの応用例として、プロキシのテクノロジを利用し
たクラウドサービスとその利用方法を紹介します。たクラウドサービスとその利用方法を紹介します。

ネットワークエンジニアのための

プロキシサーバの
教科書

基本機能からリバースプロキシまで
構築＋運用マニュアル

第2特集

1
CHA P T E RC HA P T E RC HA P T E R

プロキシサーバの役割と変遷 伊勢 幸一 ..66
歴史をひもとけば見えてくる

2
CHA P T E RC HA P T E RC HA P T E R

リバースプロキシの用法と実例 佐野 裕 75
基本から応用まで

3
CHA P T E RC HA P T E RC HA P T E R

プロキシサーバの利用方法と応用例 馬場 俊彰 82
クラウドサービスで提供される

66 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集
ネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのための
プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書第第第2特集
ネットワークエンジニアのための
プロキシサーバの教科書第2特集

1
CHA P T E RC HA P T E RC HA P T E RC HA P T E RC HA P T E R

プロキシサーバの
役割と変遷

歴史をひもとけば見えてくる

株式会社データホテル
伊勢 幸一（いせ こういち）

歴史から見るプロキシ

　インターネットの歴史を振り返ると、常にデー
タを処理し情報を発信するサーバと、その情報
を受け取ってさまざまに活用するクライアント
という情報処理プログラムのコラボレーション
に牽引されて進化してきました。たとえば、メー
ルサーバとメーラー、FTPサーバとFTPクラ
イアント、NNTPサーバとNetNewsリーダなど
が古典的な例でしょう。そして、これらサーバ
-クライアントシステムに大きな変革を与えた
コラボレーションがWWW（World Wide Web）
を形成するHTTPサーバとHTMLブラウザでし
た。
　HTTPサーバ-クライアントがインターネッ
トを席巻する以前、一時的にFTPサーバコンテ
ンツをナビゲートするGopherとArchieや、テ
キストの全文検索を提供するWAISなどのサー
バ-クライアントシステムも存在しました。し
かし、サーバ -クライアントの相関関係が
GopherやArchieのようなツリー型ではなく、
メッシュ型で形成されるHTTPサーバ-クライ
アントの斬新なアイディアと、HTMLマーク
アップ方式を採用することによる簡易性と拡張
性に圧倒され、WWWが出現するやいなや鳴り
を潜めてしまいました。
　今では考えられないことですが、当時インター

ネットを利用できる学術機関や一部の組織では
LANに接続されたコンピュータにはグローバル
IPアドレスが与えられ、そのコンピュータは
LANとインターネットの境界に設置された単な
る IPルータを介して直接インターネット上の
サーバや他のコンピュータと通信を行っていま
した。つまり、それらのコンピュータはインター
ネット側からでも直接アクセスすることができ
たのです。この頃、インターネットの利用者は
軍、行政組織、企業の研究所、学術機関などに
限られ、不特定多数によるDoS攻撃、不正侵入、
情報改ざんなどのインターネットセキュリティ
がそれほど問題視されていなかったのです。

インターネット接続の増加
　日本国内で一般の利用者に対するインターネッ
ト接続サービスが開始されたのは1993年です
が、この頃からインターネットを利用する事情
に変化が生じてきました。日本をはじめ、世界
中に商用接続サービスが展開されていく中、ま
ず一般の民間企業がHP（ホームページ）と呼ば
れる自社Webサイトを立ち上げ始めます。また、
同時に企業や個人が ISPと契約してインター
ネットへのアクセスサービスを受けることによっ
て、WebサイトへのアクセスであるHTTPトラ
フィックがインターネット上を駆け巡ります。
　この時点でインターネット上にあるWebサイ
トは企業や店舗のプロモーションのための情報

プロキシを知るためには、まずその役割が必要になった背景を知る必要があります。イン
ターネットの歴史を振り返り、フォワードプロキシ／リバースプロキシの誕生とその役割
を確認しておきましょう。また、フォワードプロキシの動作と利用方法も解説します。

66 - Software Design Mar. 2014 - 67

1
CHA P T E R歴史をひもとけば見えてくる

プロキシサーバの役割と変遷

発信だったり、試験的な運用や学術機関が研究
情報を共有するための非営利目的サイトがほと
んどでした。それでも北米スタンフォード大学
の学生が独自に運営していたキャンパス周辺レ
ストランのメニューリストHPや国立がんセン
ター（現独立行政法人国立がん研究センター）が
配信していた気象衛星ひまわりの撮影画像、奈
良先端科学技術大学院大学が運営するShika

サーバで公開されていたPLAYBOYとPENT

HOUSEのカバーガール写真集などが筆者の印
象によく残っています。また、分割前のNTTが
運営していたWebサイトでは「日本のWWW

サーバ」というハイパーリンクリストがあり、当
時日本で稼働していたWebサーバサイト数はブ
ラウザ画面一枚に収まる程度でした。
　このような従来のテレビ、ラジオ、新聞、雑
誌とはまったく異なり、膨大な情報群からパソ
コン上のブラウザで利用者の意志とアクション
によって利用者が選択する情報にアクセスする
というコミュニケーションパラダイムに世界中
の人々が興奮したのです。

セキュリティとIPアドレスの枯渇問題
　自動的にインターネットにアクセスする利用
者も爆発的に増加し、不本意ではありますが中
には悪意をもって他組織のコンピュータにアク
セスして侵入したり、内部情報にアクセスした
りする事例も発生してきます。そこで、企業や
組織はインターネット側から簡単に社内のコン
ピュータにアクセスできないようなしくみを必
要としました。
　と同時に、この頃すでにIPv4アドレススペー
スの枯渇が懸念され始めます。先に述べたよう
に組織内LANに接続されていたほとんどのPC

はグローバルIPアドレスを持ち、それぞれが個
別にインターネット上のサーバにアクセスして
いました。中でも一部のUNIXとTCP/IPとい
う先進的技術をターゲットシステムとした企業
では、北米NIC（Network Information Center、
現 InterNIC）から直接クラスBのアドレスブ

ロック注1の割り当てを受けていたりしていまし
た。現在でいう/16プレフィックスのアドレス
空間を、数十人しかいないベンチャー企業が
LAN内部で利用していることなどあたりまえの
状態だったのです。
　そこで、1996年に IETFのRFC1918によっ
て、LAN内で利用するために特化したプライ
ベートアドレスが提案され、内部LANとイン
ターネットの境界をIPルータではなく何らかの
ゲートウェイによって遮断し、中継する技術が
必要とされました。そのネットワークをIP的に
遮断し、かつ中継するゲートウェイがNATや
ファイアウォール、もしくはHTTPプロキシ
サーバだったのです。

NATの登場
　これら3種類のゲートウェイはそれぞれ内部
LANとインターネットを何らかの法則によって
遮断し中継することを目的としていますが、方
法やしくみが異なります。最初に出現したのは
小型のルータ的外観であるNATアプライアンス
でした（図1上）。これは単にIPヘッダにある宛
先と送信元のIPアドレスを書き換え、内部のコ
ンピュータに対してはインターネットではなく
内部のサーバにアクセスしているかのように見
せかけます。同時にインターネット側のコン
ピュータにはグローバルIPを持つコンピュータ
と通信しているかのような働きをし、IPパケッ
トの中身に対して何らかの処理を行うことはあ
りません。これはLAN内のプライベートアドレ
スを持つコンピュータから、グローバルアドレ
スを持つインターネット上のサーバとのパケッ
ト送受信を中継しているだけであり、アドレス
の書き換えを除けば従来のIPルータとなんら変
わりはありません。後にIPアドレスだけではな
く、TCPやUDPヘッダのポート番号も変換す
るNAPT（一般的にはIPマスカレード）も登場し
てきますが、基本的にデータの中身にかかわら
ずアドレスやポート番号を機械的に変換する意
注1） 65,534台のサーバが接続可能。

68 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

味では同じです（図1下）。

ファイアウォールとプロキシの登場
　企業がインターネット接続する際に懸念され
た、内部情報の漏洩や内部コンピュータへの侵
入を発見して遮断する目的で導入されたセキュ
リティのしくみがファイアウォールです。これ
はNATのように機械的なアドレス変換を行うだ
けではなく、IPヘッダやその中にあるTCPポー
ト番号などをチェックし、転送が許可されてい
ないパケットを破棄して管理者に通知するといっ
た処理を行います。
　IPルータやNATのように機械的な自動処理
ではなく、パケットの中身を調べる処理や破棄、
転送、ロギングといったアクションをすべての
パケットに対して行うため、ゲートウェイの

CPUに対する負荷も高く、転送性能が著しく低
下します。LAN内のユーザ数が多い場合、Web

サーバからのレスポンスを常に数秒から数十秒
待たなければならなくなってしまい、利用者に
とってはストレスの高い環境にならざるを得ま
せん。
　そこでファイアウォールの内側にプロキシサー
バを設置し、パケットの中継だけではなく、デー
タのキャッシュを行うことによってインターネッ
トとの通信量を削減する手法が取られました（図
2）。

プロキシの利用目的
　通常プロキシサーバは、NATやファイア
ウォールのようにコンピュータ間の通信を中継
するだけではなく、通信しているデータを一時

的にキャッシュします。そ
して他のクライアントから
であっても同じURIへのア
クセスであれば、インター
ネット側にアクセスリクエ
ストを転送せず、ローカル
ストレージにあるキャッ
シュを返します。このしく
みでクライアントへのレス
ポンス遅延を軽減させると
同時に、通信回線の有効利
用を図る目的で導入されま
した。
　というのは、1993年当時
のインターネット黎明期に
おいて、インターネットへ
の接続料金は非常に高価で
した。筆者の記憶では、IIJ

から提供されていた64kbps

デジタル専用線での接続料
金は月額50万円以上であ
り、128kbpsでは80万円以
上の料金がかかっていまし
た。現在、インターネット

グローバルネットワーク プライベートネットワーク

送信元 202.131.193.1: 3000
宛先 125.5.175.100 : 23

送信元 202.131.193.2: 3210
宛先 125.5.175.100 : 23

送信元 192.168.1.1: 3000
宛先 125.5.175.100 : 23

送信元 192.168.1.10: 3210
宛先 125.5.175.100 : 23

変換

NAT

送信元 202.131.193.1 : 8000
宛先 125.5.175.100 : 23

送信元 202.131.193.1 : 8002
宛先 125.5.175.100 : 23

送信元 192.168.1.1 : 3000
宛先 125.5.175.100 : 23

送信元 192.168.1.10 : 3210
宛先 125.5.175.100 : 23

変換

NAPT

 ▼図1　NATとNAPT

ローカルドメイン

Firewall キャッシュ

Proxy

Internet

 ▼図2　ファイアウォールとプロキシサーバ

68 - Software Design Mar. 2014 - 69

1
CHA P T E R歴史をひもとけば見えてくる

プロキシサーバの役割と変遷

の接続料金はNTT東西の光フレッツ100Mbps

で ISP料金とを合わせても月額3,000円程度で
す。つまり、この20年でインターネット接続料
金はなんと26万分の1にも下がっているのです
（64kbpsと100Mbpsで比較）。
　それほどインターネット接続は非常に高価で
あり、かつ64kbpsという非常に狭い帯域を何十
人もの利用者で共有する必要がありました。当
時のWebコンテンツはテキストベースのページ
がほとんどであったとはいえ、すべての利用者
がブラウザ上のハイパーリンクをクリックする
たびに64kbpsの細い回線の中に IPパケットを
往来させることなど現実的ではありません。ま
た、Webサイトへのアクセスにもパレートの法
則注2が当てはまり、インターネットとの通信の
80％はわずか20％のサイトへのアクセスである
と推定され、この20％のWebサイトのデータを
内部でキャッシュしておけば回線の利用効率を
劇的に向上させることも可能です。
　当時はBlogやSNSなどのサービスもなく、ほ
とんどのWebサイトは運営者が手動で更新して
いたためそれほど頻繁に内容が変わるわけでも
なく、通常の利用形態であれば常にWebサイト
からデータを読み込む必要もあまりありません
でした。最新の情報を取得することより、スト
レスのないレスポンスのほうが優先されたため、
プロキシサーバによるキャッシュはインターネッ
トの利用効率に絶大な効果をもたらしました。
　もちろんプロキシサーバ自身をファイアウォー
ルとして運用することも可能ですが、それには
サーバOSやHTTPサーバに潜在するセキュリ
ティホールをよく熟知し、ネットワークやプロ
グラムに対する知識や経験が豊富な管理者が常
にパッチを適用したりログから不正アクセスを
摘出したりする必要があり、通常の組織でそこ
まで人的リソースを割くことは難しいでしょう。
したがって、ファイアウォールは商用のパッケー
ジを利用し、プロキシサーバはもっぱらキャッ

シュサーバとして運用されていました。稀
まれ

にこ
れらインターネットアクセスに関する技術的知
識を持つ組織では有償パッケージなどは使用せ
ず、オープンソースを使ったファイアウォール
やプロキシサーバ、SOCKSサーバなどを利用
してインターネットアクセスを可能にしていた
団体もあったことは事実です。

フォワードとリバース

　歴史を見てきたとおり、インターネット黎明
期におけるプロキシサーバとは基本的にフォワー
ド型のプロキシサーバであり、プロキシといえ
ばシステムの利用者がインターネット上のコン
テンツを閲覧するために介在するサーバのこと
を示していました。したがって現在のようにフォ
ワードプロキシという単語も存在していません
でした。
　その後、さらにインターネットの利活用が拡
大し、かつてWebブラウザ1ページ分しかなかっ
た国内のWebサーバも、さまざまな企業や組織、
そして個人までもがWebサーバを運用するよう
になっていきます。また単なるプロモーション
目的ではなく、利用者の求める商品やサービス
をWeb上で提供するE-コマース、ニュースや
記事の配信、それらインターネット上のサービ
スやコンテンツとその利用者をマッチングする
ディレクトリサービス、検索サービスなどが出
現してきます。
　すると有用な情報を配信する人気の高いWeb

サーバにインターネット上の利用者が集中する
ようになり、今度は配信側が1台のサーバでは
アクセスを捌

さば

き切れなくなってきました。そこ
で、DNSラウンドロビンなどを活用し、単一の
URLに対して複数のサーバにアクセスを分散し
て処理する方法が導入されてきます（図3）。し
かしDNSによる分散手法には問題がありまし
た。いわゆる「DNS更新遅延」という問題です。
マスターレコードを持つDNS権威サーバが提供
するFQDNと IPアドレスのアソシエーション

注2） 全体の数値の大部分は、全体を構成するうちの一部の要素
が生み出しているという説のこと。

70 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

情報はクライアントが権威サーバから直接取得
するよりも、インターネット接続サービスを提
供するISP側に設置されたDNSキャッシュサー
バという仲介者を介して取得されます。その
キャッシュには有効期限が設定されており、オ
リジナルの権威DNSサーバ側のレコードが更新
されても、キャッシュサーバ側が有効期限切れ
で破棄するまでキャッシュにある古いレコード
がクライアントに返されてしまいます。そこで、
WWWサービス側のリニューアルやサービスの
追加変更に伴うシステム構成の変更を利用者が
使えるようになるまで時間がかかってしまうの
です。

配信側システムの変化
　そこで取り入れられた技術がロードバランサ
であり、シスコシステムズ社のLocalDirector

やアルテオンウェブシステムズ社のACE

directorといったアプライアンス製品が導入さ
れました。ロードバランスの導入により、1つ
のグローバルIPアドレスでも複数のHTTPサー
バによって大量のアクセスを処理するという情
報発信形式が確立され、これが標準的なWeb

サーバのシステム構成になっていきます。サー
バの追加、変更、削除はロードバランサの設定
によって実行されるので、DNSラウンドロビン
でのレコード更新遅延時間に影響されるという
問題はありません。

　Webサイトが流通サービスやコンテンツ提供
などのビジネス用途に活用されはじめると、単
に静的なHTMLドキュメントを配信するだけで
はなく、クライアントからの入力に従った動的
ドキュメントを返すインタラクティブサービス
が増加します。この際、動的なドキュメントを
生成するのがNCSA httpdでサポートされた
CGIプログラムでした。現在ではさまざまなプ
ログラム言語によって書かれていますが、当時
のほとんどのCGIはC/C++言語、Perlそして
Javaによって書かれていました。
　ところが、インタラクティブサービスがリッ
チになるにつれ、画像や静的コンテンツを配信
するサーバと同じサーバ上でCGIプログラムも
実行すると負荷が大きく、サーバの配信能力に
問題が生じます。そこで、ブラウザとのHTTP

通信を司るWebサーバと、CGIプログラムを実
行するアプリケーションサーバを分離するシス
テム構成が取られます。さらに、アプリケーショ
ンが取り扱うデータを格納するデータベース
（DB）サーバや静的データを格納するストレージ
も分離され、システム構成はフロントエンド、
アプリケーション、バックエンドという3段階
の構成が取られるようになりました（図4）。

リバースプロキシの登場
　そして、このフロントエンドであるHTTP

サーバはブラウザとの通信だけではなく、サー

DNS サーバ

Internet

10.10.10.1 10.10.10.3 10.10.10.2

DNSレコード
$ORIGIN foo.org.
www IN A 10.10.10.1
www IN A 10.10.10.2
www IN A 10.10.10.3

10.10.10.1 10.10.10.3 10.10.10.2

 ▼図3　DNSラウンドロビン分散

70 - Software Design Mar. 2014 - 71

1
CHA P T E R歴史をひもとけば見えてくる

プロキシサーバの役割と変遷

ビスや処理によってアプリケーションサーバを
選択したり、プリレンダリングされたHTMLド
キュメントや画像などの静的データをキャッシュ
してバックエンド側データベースやストレージ
システムへのアクセス負荷を軽減する役割を担
うようになります。つまり、先に述べたインター
ネット側のコンテンツをローカル側のHTTP

サーバでキャッシュし、回線帯域の有効利用と
レスポンスの向上を図ったプロキシサーバと、
ちょうど逆の働きをするのです。
　この逆向きのキャッシングと中継を行うプロ
キシサーバがリバースプロキシサーバです。そ
れまでプロキシにはフォワードもリバースもあ
りませんでしたが、この配信用プロキシサーバ
の出現により、従来型のプロキシサーバをフォ
ワードプロキシ、逆向きのプロキシをリバース

プロキシと呼ぶようになったのです（図5）。
　わかりやすく言うと、運用者から見てデータ
を受信するためのプロキシがフォワードで、デー
タを送信するためのプロキシがリバースです。

プロキシサーバの動作と
利用法

　リバースプロキシについてはChapter 2で詳
細に解説されるので、ここではフォワードプロ
キシを例にプロキシサーバの動作のしくみと利
用法を図6を用いて簡単に解説します。

プロキシを使うための設定
　通常ブラウザはあるインターネット上のWeb

サーバが持つhttp://foo.org/index.html という
URLにアクセスしようとする場合、そのURL

の最初のフィールドにあるFQDN（foo.org）の名
前を解決します。そして、そ
のFQDNに一致する IPアド
レス宛のパケットを、イン
ターネットへのデフォルト
ルートであるファイアウォー
ルへ送信します（図6のグレー
の矢印）。したがって、任意の
URLへアクセスする場合、イ
ンターネットとの境界にある
ルータへ直接送信されてしま
うため、そのままではHTTP

リクエストパケットがプロキ
シサーバに届けられません。

Internet

フロントエンド

アプリケーション

バックエンド

DBサーバ ストレージ
サーバ

キャッシュ
&

キューサーバ

Web
アプリケーション
サーバ

ロード
バランサ

リバース
プロキシ

 ▼図4　Webサーバ構成

Internet

フォワードプロキシ

データの流れ

キャッシュ

Proxy

Internet

リバースプロキシ

データの流れ

キャッシュ

Proxy

 ▼図5　フォワードプロキシとリバースプロキシ

http://foo.org/index.html

72 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

プロキシサーバに届けるためには、ブラウザ側
で明示的にプロキシサーバを介してターゲット
にたどり着く設定をする必要があります。
　世界初のHTMLブラウザであるMosaicの初
期バージョンにはプロキシサーバの設定機能が
ありませんでしたが、Version 2.4からプロキシ
設定がサポートされました。その後にリリース
されたNetscape Navigatorなどのブラウザで
は、標準でプロキシサーバの設定が実装される
ようになりました。ブラウザのプロキシ設定
フィールドにプロキシサーバのFQDNか IPア
ドレスを指定しておくと、どのサーバへのHTTP

リクエストであってもまずはプロキシサーバへ
そのリクエストパケットが届けられるというし
くみです。また最近では、プロキシサーバの指
定をブラウザ単位ではなくOS側のシステム設
定として行うのが一般的になっています。
　通常HTTPサーバへのリクエストはTCPポー
ト80番をターゲットとして送信されますが、同
じサーバで組織向けのWebサーバなどが稼働し
ている場合、そのサーバとプロキシサーバを区
別するため80番以外のポート番号でプロキシ
サーバを起動することがあります。そのため、
通常ブラウザやシステムでのプロキシサーバ指

定にはFQDN/IPアドレスとポート番号によっ
てプロキシを設定できるようになっています。
　ブラウザが送るインターネット上の任意のサー
バに対するHTTPアクセスリクエストを受け
取ったプロキシサーバは、そのリクエストパケッ
トをルータを介して本来の宛先であるHTTP

サーバに転送し、HTTPサーバからのレスポン
スを受け取ります（図6の黒い矢印）。その受け
取ったデータをそのままローカルディスクに
キャッシュとして記録すると同時に、そのリク
エストを送ってきたクライアントブラウザに戻
します。クライアントに届くIPパケットの送信
元はプロキシサーバのIPアドレスですが、TCP

ペイロードの中身はオリジナルのHTTPサーバ
が返信してきたHTTPデータです。したがって、
その中身を解釈しブラウザ上に表示すると、あ
たかもオリジナルのHTTPサーバからの返信を
直接受け取ったかのような表示が得られます。

キャッシュの働き
　次に、同じURLに対して別のブラウザから
HTTPリクエストがプロキシに届けられた場合、
プロキシサーバはまずキャッシュ領域をチェッ
クします。同じURLのファイルがあればそれを

同一URLへのアクセス

Webサーバ
foo.org

ローカルドメイン

Firewall
デフォルトルート

キャッシュ

Proxy

Internet
http://foo.org/index.html

 ▼図6　プロキシ設定とアクセス

http://foo.org/index.html

72 - Software Design Mar. 2014 - 73

1
CHA P T E R歴史をひもとけば見えてくる

プロキシサーバの役割と変遷

読み出してブラウザに返信し、キャッシュにな
ければ前と同じようにインターネット側のオリ
ジナルサーバへそのリクエストを転送します。
　キャッシングというと複雑な処理を連想しま
すが、HTTPコンテンツは基本的にオブジェク
ト形式になっているので、もっとも簡単なキャッ
シング方法はキャッシュ領域にURLと同じファ
イルを作成し、そのファイルにオリジナルサー
バから送られてきたHTMLメッセージをそのま
ま書き出すだけでも機能します。キャッシュの
有無をチェックする場合でも、ブラウザから送
られてきたメッセージの中にあるURLと同じ名
前のファイルがあるかどうかだけをチェックす
れば良いので、性能やセキュリティさえこだわ
らなければ、多少のプログラミング経験がある
と誰でも比較的簡単に作成することができます。
　キャッシュの作成方式にハッシュを使ったり、
オリジナルサーバのHTMLツリー構造をそのま
ま再現してみたり、キャッシュの生存期間の調
整や頻度の高いキャッシュをSSDディスクなど
の高速ストレージに配置するなど、いろいろ独
自に試してみるのも楽しいことなので、プログ
ラミング講習などの良い課題になるでしょう。

プロキシサーバの変遷

　HTTPプロキシサーバはWWWがインター
ネット上に登場した時点から存在しています。
1991年に公開された世界初のHTTPサーバで
あるCERN（欧州原子核研究機構）版には最初か
らプロキシ機能が付随していました。1993年に
公開された世界で 2番目のHTTPサーバは
NCSA（米国立スーパーコンピュータ応用研究
所）版ですが、不思議なことにこちらにはプロキ
シ機能は実装されていませんでした。その代わ
り初めてCGI機能が実装されたのがNCSAであ
り、NCSAは同時にMosaicを開発中だったので
WWWの閲覧よりも配信に特化したサーバを作
りたかったのかもしれません。同じ頃、プロキ
シ専用サーバとして電総研（現産業技術総合研究

所）の佐藤豊氏が開発したDelegatedサーバがあ
ります。これは当時統一されていなかった
HTML内の日本語コードを変換し、ブラウザが
サポートする日本語コードに合わせて表示する
という利用方法もありました。
　その後、CERN版もNCSA版もアップデート
が滞るようになり、NCSAユーザの有志によっ
てNCSA版に対してプロキシなどさまざまな機
能を追加するためのパッチが実装されデプロイ
されていきます。そしてついにNCSA版が開発
中止となった後、これらNCSA版に対するパッ
チ群を元にApacheサーバがリリースされまし
た。Apacheは「とあるパッチ的サーバ（A patchy

Server）」が語源であり、北米先住民部族の名称
とは関係ないとされていますが、単なる噂に過
ぎないようです。Apacheにはプロキシキャッ
シュ機能が実装されていたため、従来のプロキ
シサーバのほとんどはApacheに差し替えられて
いくようになります。
　CERN、NCSA、Apacheは基本的にオープン
ソースベースの実装でしたが、Apacheがリリー
スされたころ、Netscape Communications社、
Microsoft社、Sun Microsystems社（現Oracle）
といった各ベンダーから独自の有償HTTPサー
バがリリースされ、当然のことながらプロキシ
機能が実装されていました。しかしコードはオー
プンソースではなく、かつ有償パッケージだっ
たので、各ベンダーのユーザ企業がほかの製品
とともに利用する例もありましたが、ほどんど
のWebサイトはオープンソースであるApache

が使われていました。2013年末の段階でもいま
だApacheがHTTPサーバシェアのトップを
守っています。
　また、コンテンツを配信するのではなく、コ
ンテンツキャッシュやSSL処理を主たる目的と
したHTTPサーバも出現します。オープンソー
スで公開されているSquidが代表的なHTTP

キャッシュサーバの実装でしょう。Squidは水
平型分散と垂直型分散の両方のキャッシュ体制
をサポートし、おもにフォワードプロキシでは

74 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

なく、大規模なWebサイトでのリバースプロキ
シとして利用されてきました。しかし、Apache

のキャッシュとロードバランシング機能の拡充
やLinux OSが提供するLVS負荷分散機能の安
定化、非常に高速なリバースプロキシの出現、
分散型KVSキャッシュシステムなどの台頭によ
り、その構築運用の複雑さゆえ、次第に姿を消
していく傾向にあるようです。
　ここ数年で最もよく利用されている実装とい
えば、リバースプロキシで利用されるNGINX

（エンジン・エックス）でしょう。これは処理速
度と並列化に優れた実装であり、大量のHTTP

リクエストを遅延なく処理して結果を返さなけ
ればならないようなWebサイトで多く利用され
ています。
　現在、インターネット接続回線の高速化と低
価格化のお陰で、回線帯域の節約とキャッシュ

による高速なレスポンスを提供するフォワード
プロキシはそれほど需要が多くなくなってきて
います。個々のブラウザ側でキャッシュデータ
を持つようになったこともありますが、非常に
リアルタイム性の高いインタラクティブコンテ
ンツの増加により、Webサイトのコンテンツを
ゲートウェイ側でキャッシュすることにあまり
意味がなくなってきました。しかし、今後高解
像度の画像、音声、動画などインターネット側
からダウンロードするには多少ストレスがある
コンテンツを主軸とした何らかのサービスが展
開されるなら、従来とは別の目的で再びフォワー
ドプロキシが活用される場面が来るかもしれま
せん。筆者はもう25年以上、このインターネッ
トと付き合ってきましたが、いまだ、明日何が
起こるか想像もつかない世界です。｢

Mar. 2014 - 75

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

2
CHA P T E R

リバースプロキシの
用法と実例

基本から応用まで

LINE株式会社　佐野 裕（さの ゆたか）
Twitter @sanonosa

はじめに

　リバースプロキシと一口に言ってもさまざま
な用途で使われています。リバースプロキシと
いう名称を聞いたことがなくても、コンテンツ
キャッシュ、負荷分散（ロードバランス）、もし
くはSSL（Secure Sockets Layer）アクセラ
レーションといった用語は聞いたことがあるか
と思います。これらもリバースプロキシの考え
方を応用したしくみとなります。そのほか、コ
ンテンツ圧縮やシングルサインオンといった
用途でリバースプロキシが使われることがあり
ます。
　前置きが長くなりましたが、本章ではさまざ
まなリバースプロキシで使われている用法を紹
介していきます。なお、つい数年前までリバー
スプロキシの用途でSquidが用いられることが
多かったですが、最近は有力なオープンソース
がさまざま登場してきましたので、今回はその
中からVarnish CacheとNGINXでの実例も紹
介します注1。

コンテンツキャッシュ

　リバースプロキシの代表的な用途としてコン
テンツキャッシュが挙げられます。コンテンツ

フォワードプロキシではクライアントの代わりにサーバとのやりとりをプロキシサーバが
代行するのに対し、リバースプロキシではサーバの代わりにクライアントとのやりとりを
プロキシサーバが代行します。
リバースプロキシはWebサーバやDBサーバなどと比べて存在は地味ですが、ちょっと大
きいWebサイトを運用するうえでは必須も言えるほど重要な存在です。

キャッシュ

オリジン

 ▼図2　コンテンツキャッシュ

Web サーバ

Webサイト

リバース
プロキシサーバ

利用者

 ▼図1　AWSのElastic Load Balancingの動作

注1） 今回紹介する実例はCentOS 5.8での例となります。OSや
ディストリビューションなどによって多少設定方法が変わ
ることがありますのであらかじめご了承ください。

76 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

キャッシュはコンテンツ配信元であるオリジン
Webサーバから出力されたコンテンツをキャッ
シュしておき、クライアントからのリクエスト
に対して即座に応答することでレスポンスタイ
ムを向上させられます（図2）。
　ここでは高速なリバースプロキシとして最近
広く使われているVarnish Cacheを試してみた
いと思います。公式ページに行くと、「 Varnish

Cache is really, really fast. It typically speeds

up delivery with a factor of 300 - 1000x,

depending on your architecture.」と書いてあり
ます。よほど高速動作に自信があるのでしょう
ね。
　Varnish Cacheではvarnishとdefault.confに

設定を記載します。
　まず、Varnish Cacheをインストールした直
後は待ち受けTCPポートが6081番となってい
ますので、これを80番に変えます。

/etc/sysconfig/varnish

VARNISH_LISTEN_PORT=6081
　　　↓
VARNISH_LISTEN_PORT=80

　次にバックエンド側に配置されるオリジンサー
バのホスト情報と接続ポート番号を記載し、か
つ「sub vcl_recy」のコメントアウト（#）をすべて
削除します。リスト1の例ではオリジンサーバ
の IPアドレスは192.168.0.1、TCPポートは

 ▼リスト1　/etc/varnish/default.conf

backend default {
 .host = "192.168.0.1";
 .port = "8080";
}

Below is a commented-out copy of the default VCL logic. If you
redefine any of these subroutines, the built-in logic will be
appended to your code.
sub vcl_recv {
 if (req.restarts == 0) {
 if (req.http.x-forwarded-for) {
 set req.http.X-Forwarded-For =
 req.http.X-Forwarded-For + ", " + client.ip;
 } else {
 set req.http.X-Forwarded-For = client.ip;
 }
 }
 if (req.request != "GET" &&
 req.request != "HEAD" &&
 req.request != "PUT" &&
 req.request != "POST" &&
 req.request != "TRACE" &&
 req.request != "OPTIONS" &&
 req.request != "DELETE") {
 /* Non-RFC2616 or CONNECT which is weird. */
 return (pipe);
 }
 if (req.request != "GET" && req.request != "HEAD") {
 /* We only deal with GET and HEAD by default */
 return (pass);
 }
 if (req.http.Authorization ¦¦ req.http.Cookie) {
 /* Not cacheable by default */
 return (pass);
 }
 return (lookup);
}
以下略

76 - Software Design Mar. 2014 - 77

2
CHA P T E R基本から応用まで

リバースプロキシの用法と実例

8080番となっています。
　以上の設定を行ったらVarnish Cacheを起動
します。

service varnish start

　コンテンツキャッシュが無事作動しているか
確認する方法にはいろいろありますが、次の例
では、クライアントからのアクセスに対して
キャッシュがヒットしたかどうかを、hitかmiss

というわかりやすい表記で確認ができます。

varnishncsa -F '%U%q %{Varnish:handling}x'

/index.html hit
/common.js hit
/logo.jpg miss
/getcode.php miss

　また、Varnish Cacheではさまざまな方法で
Varnish Cacheの稼動状況が確認できます。図
3の例はアクセスログの確認です。
　図4の例はVarnish Cacheの統計情報の確認
です。

負荷分散
（ロードバランス）

　一般的にWebサーバ群は安価なサーバを複数
並べるスケールアウト構成を取ります。スケー
ルアウト構成ではクライアントからのリクエス
トを各Webサーバに振り分ける役割が必要とな
ります。またWebサーバを常時死活監視（ヘル
スチェック）して何らかの原因で停止している場
合は振り分け先から除外するしくみも併せて必
要となります。この負荷分散用途としてリバー

 ▼図3　アクセスログの確認

varnishncsa

192.168.1.11 - - [04/Jan/2014:21:03:54 -0800] "GET http://10.0.0.10/ HTTP/1.1" 304 0 "-" ｭ
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ｭ
Chrome/31.0.1650.63 Safari/537.36"

#varnishtop
list length 49

 3.15 CLI Rd ping
 0.93 CLI Wr 200 19 PONG 1388898292 1.0
 0.81 CLI Wr 200 19 PONG 1388898289 1.0
 0.80 VCL_return deliver
 0.74 SessionClose timeout
 0.74 StatSess 192.168.1.11 50335 0 1 1 0 0 0 315 0
 0.70 CLI Wr 200 19 PONG 1388898286 1.0
 0.59 CLI Wr 200 19 PONG 1388898283 1.0
 0.52 SessionOpen 192.168.1.11 50335 :80
 0.52 ReqStart 192.168.1.11 50335 1860921082
 0.52 RxRequest GET
 0.52 RxURL /
 0.52 RxProtocol HTTP/1.1
 0.52 RxHeader Host: 192.168.1.3
 0.52 RxHeader Connection: keep-alive
 0.52 RxHeader Cache-Control: max-age=0
 0.52 RxHeader Accept: text/html,application/xhtml+xml,application/xml;q=0.9,ｭ
image/webp,*/*;q=0.
 0.52 RxHeader User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 ｭ
(KHTML, like G
 0.52 RxHeader Accept-Encoding: gzip,deflate,sdch
 0.52 RxHeader Accept-Language: ja,en-US;q=0.8,en;q=0.6
 0.52 RxHeader If-None-Match: "e-4ef27896eda28"
 0.52 RxHeader If-Modified-Since: Sat, 04 Jan 2014 16:29:55 GMT
 0.52 VCL_call recv
 0.52 VCL_return lookup
 0.52 VCL_call hash

78 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

 ▼図4　Varnish Cacheの統計情報

% varnishstat

 8 0.00 0.06 client_conn - Client connections accepted
 808 0.00 6.52 client_req - Client requests received
 807 0.00 6.51 cache_hit - Cache hits
 1 0.00 0.01 cache_miss - Cache misses
 1 0.00 0.01 backend_conn - Backend conn. success
 1 0.00 0.01 backend_recycle - Backend conn. recycles
 1 0.00 0.01 fetch_length - Fetch with Length
 10 . . n_sess_mem - N struct sess_mem
 1 . . n_sess - N struct sess
 1 . . n_object - N struct object
 3 . . n_objectcore - N struct objectcore
 3 . . n_objecthead - N struct objecthead
 2 . . n_waitinglist - N struct waitinglist
 1 . . n_vbc - N struct vbc
 100 . . n_wrk - N worker threads
 100 0.00 0.81 n_wrk_create - N worker threads created
 1 . . n_backend - N backends
 20 . . n_lru_moved - N LRU moved objects
 1 0.00 0.01 n_objwrite - Objects sent with write
 8 0.00 0.06 s_sess - Total Sessions
 808 0.00 6.52 s_req - Total Requests
 1 0.00 0.01 s_fetch - Total fetch
 254951 0.00 2056.06 s_hdrbytes - Total header bytes
 14 0.00 0.11 s_bodybytes - Total body bytes
 4 0.00 0.03 sess_closed - Session Closed
 808 0.00 6.52 sess_linger - Session Linger
 108 0.00 0.87 sess_herd - Session herd
 31865 0.00 256.98 shm_records - SHM records
 1129 0.00 9.10 shm_writes - SHM writes
 1 0.00 0.01 backend_req - Backend requests made
 1 0.00 0.01 n_vcl - N vcl total
 1 0.00 0.01 n_vcl_avail - N vcl available
 1 . . n_ban - N total active bans
 1 . . n_ban_gone - N total gone bans
 1 0.00 0.01 n_ban_add - N new bans added
 808 0.00 6.52 hcb_nolock - HCB Lookups without lock
 1 0.00 0.01 hcb_lock - HCB Lookups with lock
 1 0.00 0.01 hcb_insert - HCB Inserts
 124 1.00 1.00 uptime - Client uptime

プライベートIPアドレス

グローバル IPアドレス

VIP（Virtual IP）を使って
インターネット側と通信する

リクエストを各Webサーバに
振り分けて処理を分散する

 ▼図5　負荷分散

78 - Software Design Mar. 2014 - 79

2
CHA P T E R基本から応用まで

リバースプロキシの用法と実例

スプロキシが用いられます（図5）。
　リバースプロキシを用いた負荷分散の副次的
効果としてセキュリティが向上します。インター
ネット配下にWebサーバを直に置かず、リバー
スプロキシサーバを間に挟むことによって外部
からWebサーバへの直接的なアクセスを防ぐこ
とができます。
　ここでは最近Webサーバやリバースプロキシ
の分野で人気急上昇のNGINXを試してみたい
と思います。NGINXはWebだけでなくHTTP

やメールのリバースプロキシとしても使われま
す。
　NGINXではNGINX.confを書き換えることで
設定を行います（リスト2）。
　設定例では、各Webサーバを「backend」とい
う名前で定義し、80番ポートで listenするよう
に記しています。
　ここまでの設定を行ったらVarnish Cacheを
起動します。

service nginx start

　NGINXの場合は、死活監視の設定を行わな
くてもWebサーバが落ちている場合は自動的に
振り分け先から除外されます。商用バージョン
であるNGINX Plusでは health_checkという

ディレクティブが有効となり、たとえば5秒ご
とに死活監視を行うといった設定が行えるよう
になります。リスト3が商用バージョンである
NGINX Plusでのヘルスチェック設定の例です。

コンテンツ圧縮

　HTTPでは、配信するコンテンツをgzip圧縮
してから送信し、Webブラウザ側でそのコンテ
ンツを解凍するしくみがあります。このしくみ
によりネットワーク通信量を削減できます。し
かしWebサーバ側で都度gzip圧縮を行うとWeb

サーバにCPU負荷がかかります。リバースプロ
キシを用いたコンテンツ圧縮機能ではこの処理
をリバースプロキシが代行することで、Webサー
バはそのままでコンテンツ圧縮が行えます。
　ここでは再度NGINXでの設定を試してみた
いと思います。コンテンツ圧縮の場合も先ほど
と同様にnginx.confを書き換えることで設定を
行います（リスト4）。
　設定例を見ていただければわかりますが、gzip
off をgzip onに書き換えてNGINXを起動するこ
とでコンテンツ圧縮が可能となります。
　まずgzip off 、すなわちコンテンツ圧縮がか
かっていない状態で試してみます（図7）。

 ▼リスト2　/etc/nginx/nginx.conf

http {
 upstream backend {
 server 192.168.0.1:80;
 server 192.168.0.2:80;
 server 192.168.0.3:80;
 server 192.168.0.4:80;
 }

 server {
 listen 0.0.0.0:80;
 server_name www.example.com;

 location / {
 proxy_pass http://backend;
 }
 }
}

 ▼リスト3　NGINX Plusでのヘルスチェック設定例

location / {
 proxy_pass http://backend;
 health_check interval=5 fails=1 passes=1 uri=/;
}

圧縮された
データ

未圧縮
データ

圧縮

 ▼図6　コンテンツ圧縮

80 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

　今後はgzip onにしてみるとどうなるでしょ
う。出力結果が変わりコンテンツが圧縮されて
配信されるようになりました（図8）。
　今回紹介したコンテンツ圧縮機能はgzip圧縮
を用いる方法です。gzip圧縮の特性上HTML、
JavaScript、CSSなどのテキストデータに対す
る通信であれば圧縮率が上がり結果的に送信す
るデータ量が大きく削減されますが、画像デー
タなどのバイナリデータの場合はgzip圧縮率が
低く送信するデータ量はあまり変わりません。
よってコンテンツ圧縮機能を用いる場合、通常
は設定例のようにプレーンテキスト、CSS、
XML、JavaScriptなど、gzip圧縮効果が高い
ファイルのみコンテンツ圧縮対象とします注2。

SSLアクセラレーション

　低スペックのWebサーバに対してSSLのよ
うなCPUリソースを多く使う処理が集中すると

ハードウェアリソースがすぐに枯渇してしまい
ます。このような場合はWebサーバのCPUを
増強するハイスペック化によって対処すること
もできますが、SSLアクセラレーター（もしく
はSSLオフローダーとも呼ばれる）用途として
リバースプロキシを用いることで、Webサーバ
はそのままでSSL対応強化が行えます（図9）。
　SSLアクセラレーションはリバースプロキシ
の仲間ですが、ハードウェアとソフトウェアが
一体化したアプライアンスサーバとして販売さ
れていることが一般的です。

シングルサインオン

　シングルサインオンは、複数システムにおけ
る認証を1つに集約することで、ユーザは1回
認証を受けるだけですべてのシステムを扱うこ
とができるようになります。
　リバースプロキシ型シングルサインオンでは、
クライアントとのやりとりをリバースプロキシ
が代行するしくみであるため、たとえば「リバー

 ▼リスト4　/etc/nginx/nginx.conf

#gzip off
gzip on;
gzip_comp_level 9;
gzip_disable "MSIE [1-6]\.";
gzip_http_version 1.1;
gzip_min_length 1000;
gzip_proxied off;
gzip_types text/plain
 text/xml
 text/css
 application/xml
 application/xhtml+xml
 application/rss+xml
 application/javascript
 application/x-javascript;

HTTP
通信

HTTPS通信

SSLアクセラレータ

 ▼図9　SSLアクセラレーション

 ▼図7　コンテンツ圧縮がかかっていない状態

curl -H "Accept-Encoding:gzip,deflate" http://(NGINXサーバのIPアドレス)/
Welcome!
test test test test test test test test

 ▼図8　コンテンツ圧縮がかかった状態

curl -H "Accept-Encoding:gzip,deflate" http:// (NGINXサーバのIPアドレス)/
+O?I??MU(J,60??*I-.Q '?????<

注2） NGINXではgzip onするとhtmlファイルが標準的にgzip
圧縮対象となりますので今回の設定例からは除外してあり
ます。

80 - Software Design Mar. 2014 - 81

2
CHA P T E R基本から応用まで

リバースプロキシの用法と実例

スプロキシにアクセスしてきたユーザに対して
認証を行い、通過しないと配下のサーバに通信
を代行しない」といったしくみを構築できます。

最後に

　一口にリバースプロキシと言っても、非常に
さまざまな使われ方をされていることがおわか
りいただけたかと思います。その中には今回リ
バースプロキシとして紹介しましたが、世の中

一般的にはキャッシュサーバやロードバランサ
などと呼ばれていてリバースプロキシであるこ
とがあまり認識されていないものもあったかと
思います。
　リバースプロキシの役割は、サーバハードウェ
アやネットワーク回線の進化により時代ととも
に位置づけが変わってきたと思います。昔はサー
バのパワーが低くネットワーク回線も細かった
ので、限りあるハードウェアやネットワーク資
源を節約する目的でリバースプロキシが用いら

れていたように思います。しかし
最近は余りあるサーバのハード
ウェアパワーと太いネットワーク
回線により、高速なレスポンスを
さらに高速にするためにリバース
プロキシが使われているような気
がします。
　今後ハードウェアとオープン
ソースがどのように進化していく
のか楽しみですね。｢

認証

リバースプロキシサーバで認証を行い
Cookieにトークンを記録する方法で
シングルサインオン認証が可能

 ▼図10　シングルサインオン

82 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集
ネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのためのネットワークエンジニアのための
プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書プロキシサーバの教科書第第第2特集
ネットワークエンジニアのための
プロキシサーバの教科書第2特集

はじめに

　筆者が勤めるハートビーツでは、インターネッ
トサービスのためのシステムの運用管理・監視
をアウトソースで請け負っています。ここ数年
は新規のシステムの9割以上がクラウド基盤を
利用しています。クラウド基盤ではさまざまな
サービスが提供されていますが、その中にはプ
ロキシの技術を利用したものが数多くあります。
そこで本章ではクラウドにおけるプロキシ型サー
ビスを中心に、Amazon Web Services（AWS）を
題材にプロキシサーバの応用例を紹介します。
　今回紹介するのは下記のサービスですが、ぱっ
と見でプロキシというテクノロジの応用範囲の
広さを感じていただけると思います。

・クラウド型ロードバランスプロキシ
・クラウド型コンテンツキャッシュプロキシ
・クラウド型セキュリティプロキシ
・クラウド型メールプロキシ
・クラウド型ストレージプロキシ

クラウド型
ロードバランスプロキシ

　リバースプロキシを利用してロードバランス
機能を提供するサービスは、多くのパブリック
クラウドサービスで提供されています。代表的な
サービスとしてAWSのElastic Load Balancing

（ELB）があります（図1）。HTTP/HTTPSのバ
ランサとして使うことが多いですが、TCP/

TCP+SSLのバランシングもできます。
　L7ロードバランサとして見ると機能的には非
常にシンプルで、sorryサーバ設定機能や代替コ
ンテンツ返却機能、バックエンド側でのリトラ
イの機能はありません。
　分散方式は一般的に round robinや least

connectionなどがありますが、ELBにおいては
Elastic Load Balancing Developer Guide（API

Version 2012-06-01）によると、

 By default, a load balancer routes each request

independently to the application instance with the

smallest load.

とのことです。しかし筆者が確認した範囲では、
バックエンド側インスタンスのCPU使用率を見
てくれるわけではなさそうですので注1、あまり
過度な期待はしないほうがよさそうです。
　なおELB自体の冗長化について検討したい場
合は、同じくAWSのAmazon Route 53という
DNSサービスを利用して、DNSサーバからの
ヘルスチェックとDNSレベルでのフェイルオー
バーを設定できます（図2）。いわゆるグローバ

3
CHA P T E RC HA P T E RC HA P T E RC HA P T E RC HA P T E R

プロキシサーバの
利用方法と応用例

クラウドサービスで提供される

株式会社ハートビーツ　馬場 俊彰（ばば としあき）
Twitter @netmarkjp

本章ではプロキシの応用例として、プロキシのテクノロジを利用したクラウドサービスと
その利用方法を紹介します。便利なサービスがたくさんありますのでこの機会にぜひ触れ
て感じてみてください。

注1） 複数のインスタンスをELB配下にぶらさげた状態で「dd if=/
dev/zero of=/dev/null bs=1M count=`expr 1024 '*'
1024 '*' 1024`」として意図的に特定インスタンスの負荷
を上げて5分ほど様子をみた結果、各インスタンスに振り
分けられるリクエスト数に変動はありませんでした。

82 - Software Design Mar. 2014 - 83

3
CHA P T E Rクラウドサービスで提供される

プロキシサーバの利用方法と応用例

ルサーバロードバランス（GSLB）機能のよう
に、Route 53がELBに対してヘルスチェック
を実施し、応答が悪いELBを切り離してくれ
ます。

自動スケーリングが
クラウドらしくてイイ
　筆者がとてもクラウドらしくていいなと思う
のは、ELB自身の自動スケーリング機能です。
ELBのキャパシティはユーザがとくに指定す
る必要も（方法も）なく、AWS側で自動的に決
定されます。そしてアクセスが増えた場合には
自動的にキャパシティが向上し、ユーザがあ
らかじめキャパシティを指定する必要がありま
せん。
　最近はHTTPSでのサービス提供が当たり前

になってきています。サイトを全面的にHTTPS

に移行するとSSL暗号化・復号化の負荷が問題
になりがちですが、ELBを利用することでその
部分をまるっとAWSに任せることができます。
　ただしELBの自動スケーリングは瞬時にス
ケーリングするわけではないので、処理が完了
するまでの間は利用者に対してELBの処理性能
が不足した状態になります。あらかじめ（ELB

的に）突発的なトラフィックが流れることがわ
かっている場合には、サポート窓口から暖機運
転の依頼をできます（サポートレベルビジネス以
上）。この暖機運転によりあらかじめELBのキャ
パシティを増やしておくことができ、アクセス
のとりこぼしを防ぐことができるかもしれませ
ん。ただしTwitterでのバズりなど予測不可能
な突発アクセスに対処するためには、すべて

internet

Amazon EC2

Elastic Load
Balancing

Route 53

Elastic Load
Balancing

 ▼図2　AWSのAmazon Route 53の動作

HTTP

HTTPS

TCP

HTTP

TCP

Amazon EC2Elastic Load
Balancing

TCP+SSL

 ▼図1　AWSのElastic Load Balancingの動作

84 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

ELBに依存するのではなく後述するCloud

Frontも併用しましょう。
　IPアドレスやSSLクライアント証明書によ
る接続元制限や同時接続数制限、一定時間内の
接続数制限のような細かいアクセス制御はでき
ませんが、そのぶんシンプルで使いやすくなっ
ています。このシンプルさが目的にマッチする
ようであればぜひご活用ください。

クラウド型コンテンツ
キャッシュプロキシ

　多数のユーザへの高速なコンテンツ配信を実
現するためのソリューションとしてContents

Delivery Network（CDN）というサービス形態が
あります。コンテンツキャッシュサーバをイン
ターネット上に多数配置することで、ユーザに
迅速にコンテンツを配布できるようになります。
　オンデマンドで利用でき、費用的・工数的に
たいへん利用しやすいサービスとしてAWSの
Amazon CloudFrontがあります。CloudFrontを
利用することで、短時間で従量課金制のCDN

サービスをセットアップし利用できます。
　CloudFrontはプロキシサーバとして動作し、

レスポンスのキャッシュ制御命令に基づきコン
テンツをキャッシュします。CloudFrontがユー
ザからのアクセスを受付・配信することで、サー
バ側のリソース（おもにCPU・メモリ）やネット
ワーク帯域を節約できます。
　AWS推奨の鉄板構成は前段にCloudFrontを
置き、動的サイトのバックエンドはELB→EC2、
静的コンテンツはS3に配置してCloudFront経
由で配信というもので、通常のWebサイトであ
ればこの構成が一番ユーザレスポンスがよくな
ると思います（図3）。

CloudFrontを物理サーバと
組み合わせて使う
　突然ですが、

「ホスティングサーバで運用しているあのサイト
が、TVで取り上げられることがきまりました。
3日後に」

と言われたらどうしますか？　困りますね。そ
んなときに使える、既存のサイトと組み合わせ
て、必要なときに必要なだけ使えるCloudFront

internet

Amazon EC2

Amazon EC2

Amazon S3

Elastic Load
Balancing

Elastic Load
BalancingCloudFront

 ▼図3　CloudFrontの構成

84 - Software Design Mar. 2014 - 85

3
CHA P T E Rクラウドサービスで提供される

プロキシサーバの利用方法と応用例

の使い方を紹介します。

　①CloudFrontを前段に配置する
　② コンテンツを書き換えて特定の静的ファイ
ルのみCloudFrontで配信する

　③ リダイレクトして特定の静的ファイルのみ
CloudFrontで配信する

　CloudFrontは今や独自ドメインのSSL証明
書やルートドメインホスティング、カスタムエ
ラーページ、POSTメソッドにも対応しとても
使いやすくなっています。HTTPSについては、
「*.cloudfront.net」というFQDNのものであれ
ば、証明書の手配なども必要なくすぐに利用で
きるのでたいへん捗ります。
　「CloudFrontを」というよりはCDNを利用す
るうえで1点注意しなければならないのは、
キャッシュ制御についてです。キャッシュの破
棄（＝purge）に少し手間がかかるので、キャッ
シュ制御を柔軟に実施する必要がある場合には
CDNを使わずに、Varnishなどを利用してうま
く制御するのが良いでしょう。
　またサイトのデザインリニューアルなどのた
めに、あるタイミングからキャッシュをすべて
破棄したい場合には無理に破棄しようとせず、
別のdistributionを作りDNSで切り替えるなど
柔軟に対応してください。

①CloudFrontを前段に配置する
　まずはCloudFrontを前段に配置する方法です
（図4）。

・既存サーバ側（オリジン）にオリジン用のVirtual
Hostを定義する

・CloudFrontでdistributionを作成し、オリジ
ンを作成したVirtualHostに向ける

・DNSを書き換え、ユーザのアクセスがCloud
Frontに流れるようにする

　この方法は3つの中で一番配信効率が良いの
ですが、プロキシを経由することを考慮してい
ないアプリケーションがないか注意が必要です。
万が一キャッシュ制御命令が適切に設定されて
いなかった場合に、ユーザ個別であるはずのデー
タが混ざるなど大惨事になる可能性があるため、
事前に十分に動作検証・技術検証できる状況で
利用することをお勧めします。
　またアクセスされる際のFQDNを意識するア
プリケーションの場合には、サーバ着信時の
Hostヘッダの値が変わるため動作不具合を起こ
す可能性があります。

② コンテンツを書き換えて特定の静的
ファイルのみCloudFrontで
配信する

　次にコンテンツを書き換えて特定の静的ファ
イルのみCloudFrontで配信する方法です。これ
はいたって簡単で、CloudFrontでオリジンをサ
イトにしたdistributionを作成し、サイトの中の
静的ファイルのURLをCloudFrontに向けてし
まえばOKです（図5）。
　静的ファイルとはいえ .js（JavaScript）ファイ

internet internet

サーバCloudFront

www.example.com origin.example.com

 ▼図4　CloudFrontを前段に配置する場合

86 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

ルはSame-Origin Policyの影響で配信元FQDN

により動作が変わる可能性があるため、適用す
るサイトで動作問題が出ないか十分に注意して
検証してください。
　よくあるミスとして同一URLでHTTPと
HTTPSを両方提供している場合に、URLを
HTTPで記載してしまうことがありますので注
意してください。
　この方法で、

・上流が10Mbps共有回線
・Wordpressをベースにカスタマイズ
・専用サーバホスティングサービスを利用

という環境で3日後のTV放映を乗り切ったこと
があります。期間的・費用的にサーバのスペッ
クアップやネットワーク増強などは難しかった
ため、CloudFrontを活用することで普段の3倍
以上のアクセスにも対処できました。また短期
間のアクセスのために長い契約期間のサービス
を利用する必要もなく、クラウドの良さである
オンデマンドのリソース割り当てにより、チャ
ンスを逃さず対応できました。

③ リダイレクトして特定の静的ファイ
ルのみCloudFrontで配信する

　最後にリダイレクトして特定の静的ファイル
のみCloudFrontで配信する方法です。
　①か②の方法で対応できれば良いのですが、
①だとピーク以外のときも常時トラフィックが
CloudFrontを流れるため課金が心配、②だとコ
ンテンツ書き換えの手間があり対応しきれない
ということは往々にしてありますよね、そんな
ときに利用できる方法です。
　一度オリジンサーバでリクエストを受け、
CloudFrontへリダイレクトする方法です。オリ
ジンサーバが受け付けるリクエスト数は変わり
ませんが、処理が軽くなり転送量も格段に減る
ためマシンリソースやネットワーク帯域の節約
ができます（図6）。①、②の方法と比較すると
節約効果は落ちますが、既存サイトへの影響が
小さい・切り戻しが容易などのメリットがある
ので、導入までに時間がなく最大効率よりも安
全性をとりたい場合にお勧めの方法です。
　オリジンサーバでApacheを利用している場
合、下記のように「mod_rewrite」で特定コンテ
ンツのみ転送できます。「mod_rewrite」では日
時を条件にすることも可能ですので、ピークタ

internet

internet

サーバ

CloudFront

www.example.com

www.example.com

or

static.example.com
or

xxx.cloudfront.net

 ▼図5　コンテンツを書き換えて特定の静的ファイルのみCloudFrontで配信する

86 - Software Design Mar. 2014 - 87

3
CHA P T E Rクラウドサービスで提供される

プロキシサーバの利用方法と応用例

イムのみCloudFrontを利用するなどの仕込みも
できます（リスト1）。
　なお、あらかじめ②の準備ができているので
あれば、③の方法を使わずに必要なときのみ
DNSを切り替える方法のほうが良いと思いま
す。DNSとして普段からAmazon Route 53を利
用しておけば、APIベースで動作をプログラミ
ングできるため、このようなアジリティの高い
運用を容易に実現できます。こちらの場合も前
項の方法同様にHTTP/HTTPSの混在に注意し
てください。
　この方法を使って、通常時ピーク700Mbps程
度の物理サーバ構成のメディアサイトで、ピー
ク時のみ2Gbps相当のトラフィックを処理でき
るようになりました。

クラウド型
セキュリティプロキシ

　リバースプロキシのテクノロジのおもしろい

活用方法を紹介します。Web Application Firewall

（WAFと略されたりします）をご存じでしょ
うか？　昨今騒がれてきたSQL InjectionやOS

Command Injection、Directory Traversalなど、
Webアプリケーションに対する攻撃に対処する
ためのテクノロジです。リバースプロキシがリ
クエストの内容を精査し攻撃をreject（拒絶）す
ることで、バックエンドのWebサーバに対する
攻撃をブロックします（図7）。
　クラウド型でSaaSとして利用可能な製品と
して、セキュアスカイ・テクノロジ社が提供す
るScutum注2というサービスがあります。
　リバースプロキシ型でサービスを提供するこ
とで、オリジンサーバ側へのリクエストの精査
だけでなく、オリジンサーバからのレスポンス
も精査し情報流出をブロックするしくみになっ
ています。

internet

internet

サーバ

CloudFront

www.example.com

www.example.com

location:http//xxx.cloudfront.net/logo.png/

static.example.com
or

xxx.cloudfront.net

 ▼図6　リダイレクトして特定の静的ファイルのみCloudFrontで配信する

 ▼リスト1　.htaccess記載例

 RewriteEngine On
 RewriteCond %{HTTP_USER_AGENT} !CloudFront
 RewriteCond %{HTTP_REFERER} !.swf$
 RewriteCond %{HTTP_REFERER} !.xml$
 RewriteCond %{REQUEST_URI} ^/resize_image.php$ [OR]
 RewriteCond %{REQUEST_URI} .(jpe?g¦gif¦png¦bmp¦ico)$ [NC]
 RewriteRule ^/?(.*)$ http://xxx.cloudfront.net/$1 [QSA,NE,R=302,L]

注2） http://www.scutum.jp/outline/saas_waf.html

http://www.scutum.jp/outline/saas_waf.html

88 - Software Design

ネットワークエンジニアのための
プロキシサーバの教科書第2特集

メールもリバースプロキシで
セキュリティ対策
　前項ではHTTP、HTTPSでのセキュリティ
ゲートウェイサービスを紹介しましたが、メー
ルでも同じような実装ができます（図8）。
　送受信時のウィルスチェック・スパムチェッ
クをゲートウェイ側で提供することで、オリジ
ンサーバ（この場合はPOP/SMTPサーバ）での
負荷・運用の手間などを回避できます。
　受信メールについてはDNSのMXレコードを
セキュリティゲートウェイサービスに向け、送
信メールについてはメールサーバでスマートホ
スト機能を利用し、全メールがセキュリティゲー
トウェイを経由するよう設定します。
　ウィルスメール・スパムメールはいつまでたっ
ても悩みの種ですので、アウトソースできると

たいへんすばらしいですね。

クラウド型
メールプロキシ

　メールについてはすでにセキュリティサービ
スを紹介しましたが、もう1つたいへん助かる
サービスを紹介します。
　ご存じの方も多いと思いますが、メールの大
量配信はとてもたいへんです。そこでたいへん
な部分を肩代わりしてくれるクラウドサービス
としてAWSのAmazon Simple Email Service

（Amazon SES）があります（図9）。
　テクノロジ的にフォワードプロキシと言える
か微妙なところではありますが、スマートホス
ト機能でオリジンサーバからのアウトバウンド

internet internet internetセキュリティ
ゲートウェイ

メールサーバ

mx.example.com

mail.example.com

ウィルス・スパム
をブロック

ウィルス・スパム
情報漏洩をブロック

 ▼図8　メールでのセキュリティゲートウェイ

注3） http://sendgrid.com/

Amazon EC2

internet internetWAF

サーバ
www.example.com origin.example.com

リクエストを精査し
攻撃をブロック

レスポンスを精査し
情報漏洩をブロック

 ▼図7　WAFの動作

http://sendgrid.com/

88 - Software Design Mar. 2014 - 89

3
CHA P T E Rクラウドサービスで提供される

プロキシサーバの利用方法と応用例

をサービスへ流し込むことで、実際の配信時の
諸問題を肩代わりしてくれます。
　最近は同種のサービスであるSendGrid注3も
日本に上陸しました。配信のみではなく解析な
どの機能も充実していて、今後国内での利用も
増えていきそうです。

クラウド型
ストレージプロキシ

　最後に少し変わったプロキシを紹介します。
AWS Storage Gatwayというサービスです。
　用意された仮想マシンイメージをローカルネッ
トワークの仮想化基盤（VMware ESXi または

Microsoft Hyper-V）で起動することで、そのイ
ンスタンスがAWSのストレージサービスであ
る Amazon Simple Storage Service（Amazon

S3）やAmazon Glacierのゲートウェイになりま
す（図10）。

　ユーザから見るとStorage Gatewayの仮想マ
シンがS3やGlacierへのフォワードプロキシと
して機能し、データのキャッシュなどを実現し
てくれます。

最後に

　本章ではプロキシのテクノロジを利用したク
ラウドサービスと、その利用方法をいくつか紹
介しました。プロキシは処理の委譲の典型的な
構成でもあり、多くのクラウドサービスで利用
されています。とても応用範囲の広いテクノロ
ジですので、うまく活用できるようになりましょ
う。クラウドサービスを企画される方の参考に
もなりましたら幸いです。｢

AWS Storage Gateway

Amazon S3

Amazon Glacier

internet
iSCSI etc...

 ▼図10　AWS Storage Gatwayの概念

Amazon EC2 Amazon SES

Relay
(smarthost)

 ▼図9　Amazon SESの概念

90 - Software Design90 - Software Design

さらに踏み込む、Mac OS Xと仮想デスクトップ
短 集 連期 中 載 Mac as a desktop Service -MaaS- !?

合理的な選択肢？
「仮想デスクトップ」

　Software Design 2013年10月号第2特集「開
発するならやっぱりMacですよね？」では、さ
まざまなエキスパートの方々のMacの使い方が
紹介されました。誠に恐縮ながら自分の開発環
境も紹介させていただきましたが、Mac OS X

以外のオペレーティングシステム（以下、OS）
を使うために仮想化ソフトウェアを導入してい
る話もいくつか掲載されていました。
　仮想化ソフトウェアを導入して複数のOSを
使う理由はさまざまだと思いますが、そういっ
たことが実用的に実施できるパワーが現在のマ
シンにあるというのは間違いのないところです。
実際、自分はそのように活用していますし、十
分に機能しています（図1～3）。

便利だけれど
ストレス感じてませんか?

　プロセッサのマルチコア／メニーコア化が進
んだこと、仮想化技術が実用的なレベルで利用
できること、リーズナブルな価格で豊富にメモ
リを積んだマシンが利用できることなどの要因
があって、ノートPCで複数のOSを活用する
ことが日常的に行えるようになりました。現在

さらに踏み込む、
Mac OS Xと仮想デスクトップ

Mac as a desktop Service -MaaS- !?

後藤 大地（ごとう だいち） （有）オングス 代表取締役

複数のOS環境を必要とするMac使いのエンジニアにとって、仮想デスクトップ環
境をMacに構築することはもはやあたりまえのことのようです。筆者もその一人
ですが、日常的に使っているうちにOS間を行き来するオペレーションに煩わしさ
を感じるようになりました。この短期連載では、筆者がこの煩わしさから解放さ
れるために行った、普通とはちょっと違ったアプローチをご提案したいと思います。

 ▼図1　Mac OS X Mavericksスクリーンショット

 ▼図2　Windows 7 on Mac OS X
　　 ～仮想デスクトップとして動作するWindows

 ▼図3　Linux Mint on Mac OS X
　　 ～仮想デスクトップとして動作するLinux Mint

短 集 連期 中 載

#1

90 - Software Design Mar. 2014 - 91

とゲストで動作しているアプリケーションを、
ホストで動作しているアプリケーションのよう
にホスト側に表示して使用することができます
（図4、5）。
　こうした機能も便利なのですが、ちょっとし
た操作、たとえば「通常の仮想デスクトップで
あればこの操作ができるのに、ユニティで使う
とこの操作ができなくなる」程度のことが大き
なストレスになります。コピー＆ペーストがで
きるところとできないところがある、ショート
カットキースキーマの異なるウィンドウが同じ
画面に混在している、これらは考えている以上
にストレスです。
　ある程度は慣れの問題もあるのですが、利用
するアプリケーションごとに操作を変える意識
を持つというのは本当の意味でのシームレスに
はなりません。また、仮想化ソフトウェアが提

供するこれら機能はRetinaディスプレイとの
連動がうまくいかないケースもあり、これもス
トレスです。動くには動くが、できればさらに
なんとかしたいわけです。

もっとOS間の
使い勝手を良くしたい！

　本短期連載の目的はそこにあります。こうし
た仮想化ソフトウェアの機能と、Mac OS Xが
従来から提供している基本的な機能を組み合わ
せて、自分の扱いやすい融合環境を構築しよう、
という内容です。最終的にはやっぱり仮想デス
クトップをフルスクリーンで使ったほうが使い
やすいという結論を得るかもしれませんし、
Mac OS XのGUIをベースに融合させたほう
が扱いやすくなったという結論が得られるかも
しれません。このあたりは好みや使い方の問題
もあるので、作る人それぞれ異なる結果が得ら

のハードウェアスペックと仮想化ソフ
トウェアの性能を考えると、仮想環境
で動作しているOSの動きに日常的な
鈍重さを感じることはありません。
　ただし、こうした仮想デスクトップ
に慣れてくると、いくらか不便な点が
でてきます。たとえばUNIX系OSを
使って開発をしながら、iMessageで
メッセージングもしたいし、Power

Shellも目の届く範囲においておきた
い。Mac OS Xですべてやろうとすれ
ば、あのコマンドがない、あの設定が
ないといった苛立ちを感じます。UNI

X系OSでやろうとすれば、Flashプ
レーヤのプラグインがないとか、Java

プラグインが動かないとか、iMessage

が使えないなど、やはり不便です。
　仮想化ソフトウェアはそういった用
途に応える機能も提供しています。た
とえばVMware Fusionの「ユニティ」、
Parallels Desktop for Macの「Cohere

nce」、VirtualBoxの「シームレス」と
いった機能です。これらの機能を使う

#1

 ▼図4　VMware Fusionのユニティ表示でネイティブアプリ
　　 のように振る舞うWindows PowerShell

 ▼図5　VMware Fusionのユニティ表示でネイティブアプリ
　　 のように振る舞うXアプリケーション

92 - Software Design92 - Software Design

さらに踏み込む、Mac OS Xと仮想デスクトップ
短 集 連期 中 載 Mac as a desktop Service -MaaS- !?

れると思います。まず、そのどちらも体験でき
るようにしよう、というのがこの短期連載の目
的です。
　組み上げに利用する基礎技術はどれも従来か
らよく知られたものです。しかし、Webアプリ
ケーション開発からPCを使い始めた世代や、
MacBook AirやMacBook Proのようによくま
とまったデバイスから使い始めた世代では知ら
ないことが多いでしょう。これら技術の基本的
な機能や設定方法を紹介しながら、自分の手に
合うように環境を融合していく方法を紹介しま
す。
　記事は3回に分けて掲載します。1回目と2

回目は基礎技術の紹介、3回目は実際にどういっ
た設定をすればよいのかの紹介です。実際に試
しながら読めるようにしていきますので、作業
環境をさらに洗練させるテクニックとして活用
していただければと思います。

仮想デスクトップと
Macのタイトな融合

　Mac OS XにはMacPortsやHomebrewといっ
たサードパーティ製のパッケージ管理システム

が存在します。しかし、パッケージ管理システ
ムの総合評価を考えると、やはりLinuxや

*BSDのほうが登録されているソフトウェアの
数も多く必要に応じて柔軟にカスタマイズでき
ることから、Mac OS XではなくLinuxや *BS

Dを使いたくなります。GUI部分はMac OS X

を使い、ターミナルの中身がLinuxや *BSD、
そしてネイティブのターミナルのようにLinux

/*BSDターミナルとMac OS XのGUIがシー
ムレスに連動する、そういった両者のいいとこ
ろ取りの環境を組み上げるのが、今回構築を目
指す環境です（図6、7）。
　GUIはおもにMac OS X、CUIはおもにUNI

X系OSといった使い方に割り切ると、商用ア
プリケーションを活用しやすくなるというメリッ
トがあります。仮想デスクトップという形で独
立して使用した場合、Mac OS XとUNIX系
OSとで別々の日本語入力システムを使う必要
があります。UNIX系OSの利用はMac OS X

のターミナルアプリケーション経由といった形
に絞っておくと、Mac OS Xの日本語入力シス
テムに統一して利用できます。辞書データを単
一管理できますし、ATOKのように商用で提

 ▼図6　ターミナルから仮想環境で動作するゲストOSにリモートログインしている様子

 ▼図7　ゲストOSでコマンドを実行すると
　　 ホストOSのFinderが連動して動作

 ▼図8　XアプリケーションとMac OS X
　　 アプリケーションを混在させた使用例

92 - Software Design Mar. 2014 - 93

供されている変換効率の良い日本語入力システ
ムが使えます。
　また、「Mac OS Xのアプリケーションでも
よいのだけれど、どうしてもUNIX系OSでし
か提供されていないGUIアプリケーションを
使いたい」ということがあります。いままで使
い慣れてきたアプリケーションは、なかなかほ
かのアプリケーションに置き換えられないもの
です。そうした場合に、UNIX系OSで動作す
るGUIアプリケーションをMac OS X側に表
示して扱いたいわけです（図8）。
　Mac OS XにもLinux/*BSDにも、こうした
しくみを実現するための機能が標準で備わって
います。基礎技術を組み合わせるだけでそういっ
た環境を作ることができます。このしくみは、
ゲストOS向けのドライバが提供されていない
OSをゲストとして動作させる場合にも有益で
す。ユニティやシームレス、Coherenceといっ
た機能が利用できないOSでも、似たようなこ
とを実現できます。

知るべき
3つの基礎技術

　ここでは次の3つの技術を使います。どの技
術も現在のUNIX系OSでは標準で機能が提供
されています。Mac OS X MavericksにはX

Window Systemの実装系は含まれていません
が、「XQuartz」という形で別途提供されていま
すのでそちらを利用します。

・ファイルシステム共有「NFS」
・リモートログイン「ssh」
・ウィンドウシステム「X Window System」

　デスクトップ（ワークステーション）向けのた
いていのLinuxディストリビューションはウィ
ンドウシステムにX.Orgを採用しています。
X.OrgはX Window Systemの参照実装系です
ので、デスクトップ向けのLinuxディストリ
ビューションを扱ったことのある大半の方がX

Window Systemを使ったことがある、という

ことになります。
　X Window Systemのしくみを利用するだけ
なら、ディストリビューションに含まれている
ような大量のソフトウェアは必要なく、必要最
低限のライブラリとxauth（1）注1だけで十分です。
ssh（1）のX11フォワーディング機能を使うな
らxauth（1）も不要です。ただ、そもそもXサー
バへの接続の認証処理がどういったものである
か理解しておいたほうがいろいろ細かいことが
できるようになりますし、パフォーマンス上の
利点もありますので、この短期連載ではどちら
のやり方も説明します。

目指すモデルはコレ

　技術の組み上げ方次第でさまざまなことがで
きます。ここでは内容を理解しやすくするため
に、次の2つのモデルを想定してシステムを組
み上げていきます。

①MacBook AirやMacBook Proに仮想化ソ
フトウェアを導入。UNIX系OSを仮想環境で
動作させ、ホスト（Mac OS X）とゲスト（UNI
X系OS）を融合させる（図9）

②iMacやMac Pro、Mac miniなどの据え置
きタイプのMacと、既存のLinux/*BSDマ
シンを融合させる（図10）

　モバイルで移動するマシンと、据え置きで動
かすことがないような2つのタイプを作ります。
これらの組み合わせをさらに組み合わせると、
据え置きとしてもモバイルとしても使える環境
を用意できたり、さらに仮想化ソフトウェアが
提供しているユニティ／シームレス／Coherence

などの機能を組み合わせるなど、よりさまざま
な面から融合を進めることができます。
　説明に使用するモバイル環境は次のとおりで
す。

注1） コマンドのうしろにある括弧付きの数字は、manコマンド
で見られるマニュアルに掲載されている章番号を表してい
ます。

#1

94 - Software Design94 - Software Design

さらに踏み込む、Mac OS Xと仮想デスクトップ
短 集 連期 中 載 Mac as a desktop Service -MaaS- !?

・ホストマシン：MacBook Pro Retina 13-
inch Late 2013

・ホストOS：Mac OS X Mavericks
・仮想化ソフトウェア：VMware Fusion 6
・ゲストOS：Ubuntu 12.04 LTS（64bit）
・ゲストOS：FreeBSD 10.0-RELEASE amd
64（64bit）

・ゲスト－ホスト間ネットワーク：Macを共
有（NAT）

　モバイル用途では接続するネットワークが移
動しながら変わりますので、ゲストのネットワー
ク接続をブリッジにすることは扱いやすいとは
いえません。ここではNATを経由する方法に

Mac mini／Mac Pro／iMac などを想定（据え置き）

 ▼図10　Mac Proや iMac、Mac miniのような据え置き環境でのモデル

 ▼図9　MacBook AirやMacBook Proのようなモバイル環境でのモデル

Mac OSX

Mac OSX

ネイティブ
アプリ

ネイティブ
アプリ

ディスプレイ

ディスプレイ

MacBook Air／MacBook Pro などを想定（モバイル）

Xアプリ

Xアプリ

キーボード

キーボード

トラックパッド

トラックパッド

マウス

マウス

Xアプリ

Xアプリ

Xプロトコル

Xプロトコル

ターミナル

ターミナル

ログインシェル

ログインシェル

仮想UNIXサーバ

UNIXサーバ

ファイル
システム

ファイル
システム

ファイル
システム

ファイル
システム

NFS
マウント

NFS
エクスポート

NFS
エクスポート

NFS
マウント

NFS

NFS

Xサーバ

Xサーバ

ssh（1）

ssh（1）

94 - Software Design Mar. 2014 - 95

します。つまり、ホストとゲストを接続するネッ
トワークのIPアドレスは常に固定です。
　ホストの外側のネットワークアドレスは接続
する場所によって変わります。その間のアドレ
ス変換はVMware Fusionが提供するNAT機能
が実施します。NATの処理が挟まるので通信
性能は低下します。性能と利便性のバランスに
関しては次回で解説します。
　一方、説明に使用する据え置き環境は次のと
おりです。

・Macマシン：MacBook Pro Retina 13-inch
Late 2013

・Mac OS：Mac OS X Mavericks
・UNIXサーバ：FreeBSD 10.0-RELEASE amd
64（64bit）

・UNIXサーバ－Mac間ネットワーク：1000ba
se-T（全二重）

　据え置きの説明にもかかわらずノートPCを
テスト環境にしていますが、先に述べた据え置
き型の iMac/Mac Pro/Mac miniでもやり方は
同じですのでご容赦ください。
　理由は実際自分がそうしているから、という
面も大きいのですがほかにもあります。MacBo

ok AirやMacBook Proを購入するユーザは繰
り返し同じモデルの最新版を購入する傾向が見
られます。たとえば2年ごとに最新のモデルを
購入した場合、まだまだ使えるマシンが余ると
いう状況になります。こうしたマシンを据え置
き用に使い、これまで使ってきたUNIXサーバ
と組み合わせて動作させるといった用途を想定
してみました。MacBookの出力をデュアルディ
スプレイやトリプルディスプレイに拡張して利
用すると、作業スペースが広がります。1920

×1080対応の液晶は廉価に購入できますので、
費用の割に効果が見込める投資です。
　仮想化ソフトウェアとしては、グラフィック
のレンダリング性能を求める場合にはParallels

Desktop for Macのほうが性能を発揮できると
言われています。本稿でVMware Fusionを使っ

ているのは、VMware Fusionは対応している
ゲストOSの幅が広いこと、UNIX系OSがよ
く動作すること、USBシリアルケーブルをゲ
ストから扱いやすいこと、ゲストからホストマ
シンのCPU仮想化機能を利用できることなど
の理由があります。多種多様な環境を構築する
には都合がよいソフトウェアです。オープンソー
スの仮想化ソフトウェアを使いたいという場合
にはVirtualBoxを使えばよいと思います。

環境構築［1］ファイル
システムの共有「NFS」

　まず、ファイルシステムを共有するために
NFS（Network File System）を使います。仮想
化ソフトウェアを使用すると、何も設定しなけ
ればホストとゲストのファイルシステムはまっ
たく別の分離したものになります。一部の領域
を共有する機能は提供されていますが、ホスト
とゲストのファイルシステムの双方を共有する
といったようなことはしません。
　しかし、仮想デスクトップを使い続けると、
こうしたファイルシステムの分断が面倒なもの
に思えてきます。いちいちデータをコピーする
作業がストレスになってくるのです。どちらか
らもラクに使いたいので、ホストもゲストも、
ユーザのホームディレクトリとデータディレク
トリはいっそ同じファイルシステムを扱ってく
れないかと感じるようになります。
　NFSはネットワーク経由でファイルシステ
ムを共有できるクライアントサーバモデルの分
散ファイルシステムです。UNIX系OSの多く
がデフォルトで対応しており、システムのデフォ
ルトのファイルシステムとよく連動します。
Mac OS X Mavericks は NFSv2、NFSv3、
NFSv4に対応し、NFSサーバとしてもNFS

クライアントとしても機能します。この機能を
使えば先ほどの要求は実現できます。UNIX系
OSを使う場合はNFSでファイルシステムを共
有する設定を知っておけば、ファイルシステム
共有でやりたいようなことはだいたいできると

#1

96 - Software Design96 - Software Design

さらに踏み込む、Mac OS Xと仮想デスクトップ
短 集 連期 中 載 Mac as a desktop Service -MaaS- !?

思います。

NFSの使い方

　NFSクライアントにマウントを許可するファ
イルシステム（またはZFSであればデータセッ
ト）に関する設定は、NFSサーバ側（例では
Mac OS X）の/etc/exportsファイルに書きま
す。たとえばリスト1のように設定ファイルを
書きます。この場合、Mac OS Xユーザ“daichi”
のホームディレクトリ以下（/Users/daichi）は、
192.168.185.0/24のネットワークに所属してい
るホストからマウントできる、という指定にな
ります。1002はユーザdaichiのユーザ IDで、
このファイルシステムをマウントするNFSク
ライアンからのアクセスはすべてのこのユーザ
からのアクセスという扱いになります。
　設定に必要な要素の具体的な調べ方は第3回
で説明しますので、ここでは簡単にこれらの情
報を調べる方法を紹介しておきます。まず、ユー

ザ IDやグループ IDなど、使っているユーザに
設定されている値は id(1)コマンドで確認でき
ます。また、ここでのネットワークアドレスは
VMware Fusionが自動的に設定するものをそ
のまま使っています。Mac OS Xで ifconfi g(8)

コマンドを実行するとvmnet8というインター
フェースが見つかると思いますが、このインター
フェースに192.168.185.1/24が割り当てられ
ています。これに合わせてゲスト側に 192.

168.185.*/24 のアドレスを割り当てて使うこ
とになります。
　Ubuntu（NFSクライアント）から、設定した
領域をNFSマウントすると図11のようになり
ます。マウントしたディレクトリ以下は、Mac

OS Xの/Users/daichi/以下と同じディレクト
リやファイルが表示されます。FreeBSDでも
同じプロトコルで通信していますので、できる
こともほとんど同じです。
　逆にMac OS XをNFSクライアントとして、

 ▼リスト1　NFSサーバ側の /etc/exportsファイルの設定例

 ▼図11　NFSクライアント（Ubuntuの場合）

 ▼図12　NFSクライアント（Mac OS Xの場合）

/Users/daichi -mapall=1002 -network 192.168.185.0 -mask 255.255.255.0

UBUNTU /Users/daichi$ df
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 28G 3.3G 23G 13% /
udev 989M 4.0K 989M 1% /dev
tmpfs 400M 800K 399M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 998M 152K 998M 1% /run/shm
192.168.185.1:/Users/daichi 466G 143G 322G 31% /Users/daichi
UBUNTU /Users/daichi$ ls
Desktop Downloads Library Music Public Templates bin
Documents Dropbox Movies Pictures Sites Videos tmp
UBUNTU /Users/daichi$

/Users/daichi% mount -t nfs
192.168.1.101:/z/daichi/Desktop on /Users/daichi/z/Desktop (nfs)
192.168.1.101:/z/daichi/Documents on /Users/daichi/z/Documents (nfs)
192.168.1.101:/z/daichi/Downloads on /Users/daichi/z/Downloads (nfs)
192.168.1.101:/z/daichi/Pictures on /Users/daichi/z/Pictures (nfs)
192.168.1.101:/z/daichi/Music on /Users/daichi/z/Music (nfs)
192.168.1.100:/n/Netdisk on /Users/daichi/n/Netdisk (nfs)
/Users/daichi%

96 - Software Design Mar. 2014 - 97

きるようになります（図13）。Mac OS Xのユー
ザランドはFreeBSDのユーザランドを移植し
ていますので、このあたりのしくみはFree

BSDと似ています。
　NFSはユーザ IDとグループ IDをそのまま
使いますので、基本的にはマウントする側とさ
れる側でユーザ名、ユーザ ID、グループ名、
グループIDなどを合わせておく必要があります。
Mac OS X側のユーザ IDを変更したりグルー
プ IDを変更するには dscl(1)ユーティリティを
使うのですが、ちょっとばかり面倒なのと、操
作を誤るとログインできなくなるなど弊害も出
るので、本稿ではその方法は説明しないでおき
ます。これも具体的には第3回で説明しますが、
Linuxや *BSD側でユーザ IDやグループ IDを
変更するのには、vipw(8)コマンドや /etc/

groupファイルを編集することで実施します。
また、管理対象が多い場合にはNISという別
の技術を合わせますが、本稿では個人が使う内
容ということでこちらも割愛します。

第1回のまとめ

　短期連載第1回目の今回は、仮想デスクトッ
プとMacデスクトップをもっと融合するため
に使う基本的な機能と構築方針を紹介し、
NFSを利用する方法まで解説しました。次回
は ssh(1)とX Window Systemを解説し、第 3

回で具体的な設定方法や、違和感のない融合を
実現するためのシステムの設定方法、コマンド

の組み立て方などを解説する予定です。
　ノートPCは開発者にとって仕事をするため
の重要な道具です。仕事道具として長い時間を
共にする相棒ですから、自分にとって扱いやす
いものへカスタマイズして、自分の仕事に磨き
をかけたいところです。既製品を使うだけでは
なく自分だけのツールに仕上げていくことで、
愛着のある仕事もできるようになるというもの
です :)

ほかのUNIXサーバやNASス
トレージが提供しているNFS

領域をマウントすることもでき
ます。たとえばMac OS Xから
NFSマウントした例を図12に
示します。
　NFSマウントした領域は指
定したディレクトリにマウント
され、その領域はボリュームと
してFinderからもチェックで

#1

 ▼図13　Mac OS X：NFSマウントした領域はボリュームとして扱われる

NFSv3とNFSv4の
どっちがよい？

　現在おもに使われているNFSのバージョンは
3または4です。NFSv4はこれまでNFSv3で問
題視されてきた部分の機能を整理してプロトコ
ルに取り込まれています。NFSv4ではNISを使
わなくてもユーザ IDのマッピングが可能であ
るほか、ファイルロック関連の設定もNFSv3
のときよりもすっきりしています。
　ただし、NFSv4で提供された新しい機能をと
くに必要としないのであれば、NFSv3のほうが
安定しているところがあるので、NFSv3のほう
がお勧めです。また、相互接続性に関しても、
NFSv4を使うときよりもNFSv3を使うときのほ
うが優れているように感じます。
　本稿では安定して動作するファイルシステム
共有を求めていますので、とくに理由がなけれ
ばNFSv3でシステムを組み上げ、試してみて
問題がないようであればNFSv4も使ってみる、
といったスタンスで取り組んでおくとよいと思
います。

column
1

98 - Software Design98 - Software Design

さらに踏み込む、Mac OS Xと仮想デスクトップ
短 集 連期 中 載 Mac as a desktop Service -MaaS- !?

 ▼図A　NFSクライアントに必要なプロセス（Ubuntu 12.04）

 ▼図B　NFSクライアントに必要なプロセス（FreeBSD 10.0）

 ▼図C　NFSクライアントに必要なプロセス（Mac OS X Mavericks）

UBUNTU /Users/daichi$ ps axww ¦ grep -E '(nfs)¦(rpc)¦(lock)' ¦ grep -v grep
 18 ? S< 0:00 [kblockd]
 571 ? S< 0:00 [rpciod]
 572 ? Ss 0:00 rpcbind -w
 584 ? S< 0:00 [nfsiod]
 613 ? Ss 0:00 rpc.statd -L
 617 ? Ss 0:00 rpc.idmapd
 2620 ? S 0:00 [lockd]
UBUNTU /Users/daichi$

FREEBSD /Users/daichi% ps axww ¦ grep -E '(nfs)¦(rpc)' ¦ grep -v grep
 621 - Ss 0:00.02 /usr/sbin/rpcbind
 659 - Ss 0:00.02 /usr/sbin/rpc.statd
 663 - Ss 0:00.02 /usr/sbin/rpc.lockd
7668 - SL 0:00.00 [newnfs 0]
FREEBSD /Users/daichi%

MAC /Users/daichi% ps axww ¦ grep -E '(nfs)¦(rpc)' ¦ grep -v grep
 65 ?? Ss 0:00.03 /usr/sbin/rpc.statd -n
 111 ?? Ss 0:00.01 /usr/sbin/rpc.lockd
 113 ?? Ss 0:00.01 /usr/sbin/rpc.statd
 114 ?? Ss 0:00.08 /usr/sbin/rpcbind
 119 ?? S 0:00.48 /usr/sbin/rpc.lockd
 2229 ?? Ss 0:03.40 /sbin/nfsd
 2230 ?? Ss 0:00.01 /usr/libexec/rpc.rquotad
MAC /Users/daichi%

　NFSクライアントとして動作する場合、NFSサー
バと通信するためのnfsd(8)デーモンまたはNFS
カーネルスレッドが動作していればよいと考えそ
うになりますが、それだけでは都合が悪いことが
あります。NFSv2やNFSv3のプロトコルにはファ
イルロックに関するものが含まれていません。ファ
イルロックを利用するソフトウェアをNFSクライ
アント側で実行しようとした場合、その機能は別
のデーモンが提供する必要があります。
　Ubuntu 12.04であれば［lockd］がそれに該当し
ます（図A）。Mac OS XとFreeBSDなら rpc.lockd(8)
です（図B、C）。これらデーモンがファイルロッ
ク処理のやりとりをすることで、ファイルロック
機能を使用するソフトウェア（たとえばバージョ
ン管理システムなど）を適切に動作させることが
できます。

　ほかにもステータスモニタリングを実施するデー
モンが必要です。rpc.statd(8)が担当します。こ
のデーモンが動作していないと、たとえば
MacBook AirやMacBook Proであればサスペンド
／レジューム実施後にNFSの動作がおかしくな
ります。rpc.lockd(8)も rpc.statd(8)も動作に rpc
bind(8)が必要です。つまり必要最低限、nfsd(8)、
rpcbind(8)、rpc.lockd(8)、rpc.statd(8)またはこれ
に類するソフトウェアを動作させる必要がありま
す。
　マウントしたファイルシステムで動作するソフ
トウェアと動作しないソフトウェアがある場合に
は、これらデーモンが動作しているか確認してく
ださい（NFSサーバ側にはさらにマウントを受け
付けるデーモンなども必要になります。NFSv4に
なるとさらに動作するデーモンは増えます）。s

ファイルロックはNFSv3プロトコルには
含まれていない？

column
2

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Mar. 2014 - 99

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％割引になります。デジタル版はPCのほかに iPad／ iPhoneにも
対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

 第1特集
Vimを使いこなしてますか？
Vim至上主義
 第2特集
ネットワーク技術力のパワーアップ
ルータの教科書
 一般記事
・Key Value Storeをゼロから創る
・小規模プロジェクト現場から学ぶJenkins活用（4）

1,280円

2013年10月号 2013年9月号
 第1特集
今からはじめる
sed/AWK再入門
 第2特集

開発するなら
やっぱりMacですよね？
9人9色のデスクトップ拝見＋新OS傾向と対策

 一般記事
・小規模プロジェクト現場から学ぶJenkins活用（3）
・最終段階に入ったFedora 19 1,280円

 第1特集
シェルがわかればシステムがわかる
あなたの好きなシェルは何ですか？
 第2特集
未来を作るITインフラ
10ギガビットを実現する
ケーブリング技術
 特別付録 ＆ 一般記事
・法輪寺鎮守社電電宮 情報安全護符シール Ver.2
・ソーシャルゲームのDevOpsを支える技術（後編）

1,380円

2014年1月号

 第1特集
SDN/OpenFlowの流れを総まとめ！
SDN/OpenFlowで
幸せになれますか？
 第2特集
下手でも好印象で効果絶大
エンジニアの伝わる図解術
 一般記事
・ LinuxとFreeBSDのファイルシステムの良い・悪いとこ
ろをご存じですか？
・「Mirama」a.k.a. VIKING ほか 1,280円

2013年12月号

 第1特集
λ式からはじめませんか？
関数型プログラミング再入門
 第2特集
目利きによるトレンド予測
2014年IT業界はどうなるのか？
 一般記事
・会社組織を活性化するスパイス「コンパ」

1,280円

2014年2月号

1,280円

2013年11月号
 第1特集
思考をコード化する道具
我が友 Emacs
 第2特集
コンピュータの加速装置
サーバサイドフラッシュ
Fusion-io全方位解説
 一般記事
・小規模プロジェクト現場から学ぶJenkins活用（5）
・ソーシャルゲームのDevOpsを支える技術（前編）
・Ubuntu 13.10 "Saucy Salamander"

http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

100 - Software Design

サーバマシンの測り方
─ ベンチマークを極める実践テクニック ─

Mar. 2014 - 101

新CPU導入時に気を
つけるポイントとは

　当社のサービスにて、これまで Sandy

Bridgeマイクロアーキテクチャ世代のXeon

E5-2670を利用していたところを、今後のサー
バ増設からは新しくリリースされたIvy Bridge

マイクロアーキテクチャ世代のXeon E5-2600

v2シリーズを利用することになりました。そ
こで、新しいCPUのモデルを何にするかとい
う話になります。モデルを決めるための要件は、
費用が上がらないこと、消費電力が上がらない
こと、同等以上の性能が出ることの3つでした。
また、同等以上の性能とは、シングルスレッド
とマルチスレッド両方の性能において達成する
必要がありました。
　昨今のCPUは、ターボブーストや省電力の
機能が入り動作周波数が動的に変化します。モ
デルに応じた動作周波数やコア数だけで比較す
ることが難しくなってきました。そこで、前半
ではCPU性能にかかわってくるポイントにつ
いて調査し、新しいCPUの特性を把握します。
後半では2つの世代のCPUについて性能を比
較します。
　現行のサーバは、Xeon E5-2670（8コア、
2.6GHz）のCPUを2基搭載しています。新し
いCPUの評価対象としてXeon E5-2697 v2（12

コア、2.7GHz）のCPUを2基搭載したサーバ
を用意しました。

　本来であれば、動作周波数やコア数が同じ
CPUモデルで比較したほうがわかりやすいの
ですが、残念ながら今回は用意できませんでし
た。UnixBench v5.1.3を、

./Run

と実行した結果で比較します。また、CPUの
コア数が16より多いため、UnixBenchのサイト
のIssuesにある「Can't do default run completely

with > 16 CPUs注1」のパッチを適用しています。

ハードウェアパワー
マネージメント

　昨今のサーバには、そのハードウェアで消費
電力と処理性能のバランスをとる省電力機能が
付いています。つまり、消費電力あたりの処理
性能が最大となるので、CPU本来の最高性能
が出るわけではありません。
　BIOSやUEFIの電力関連の設定から、「最
大性能」と「電力と性能のバランス」のそれぞれ
に設定したときのUnixBenchのスコアを比較
します。結果は表1のとおりで、1並列、複数
並列ともに「最大性能」のほうが高速で、1並列
では5割近くの性能比が出ました。
　単純にCPUの処理性能を測定し比較するの
であれば、「最大性能」でCPU本来の性能で比
較するのが良いでしょう。また、本番環境にお

注1） https://code.google.com/p/byte-unixbench/issues/
detail?id=4

サーバマシンの測り方
より速く、より莫大に、より高みへ！

─ ベンチマークを極める実践テクニック ─

Ivy BridgeマイクロアーキテクチャのXeon E5-2600 v2搭載のサーバが出始め、前世代のSandy Bridgeマイクロアー
キテクチャ（Xeon E5-2600）から世代交代が進んでいるころかと思います。今回はSandy Bridgeから Ivy Bridgeへ
CPUモデルを変更した弊社での事例を紹介します。

 Writer ㈱ IDCフロンティア　ソリューションアーキテクト　藤城拓哉（ふじしろたくや）／Twitter@tafujish

第4回　Xeon E5-2600 v2を測る

https://code.google.com/p/byte-unixbench/issues/detail?id=4

100 - Software Design Mar. 2014 - 101

第4回　Xeon E5-2600 v2を測る

いても電力に問題や制限がなければ「最大性能」
を選ぶと有効でしょう。なお、この設定のデフォ
ルト値は、サーバメーカーによって異なるので
必ず確認しましょう。

OSパワーマネージメント

　OS上からCPUの電圧や動作周波数を変化さ
せる省電力機能もあります。/proc/cpuinfo
や lscpuで動作周波数を見たときに、その
CPUモデルの動作周波数より低い値になって
いるようであればこの機能が有効になっていま
す。cpufrequtilsやcpupowerutilsでこの設定を
操作できます。cpufrequtilsの置き換えとして、
cpupowerutilsが登場していますので、ここで
は新しい cpupowerutilsを紹介します。図1の
ように利用します。デフォルトのガバナー（調
整器）は［ondemand］に設定されています。
［ondemand］だとCPU使用率が95％を越えると
動作周波数が上がりますがそれまでは低い動作
周波数での動作となります。常に100％の負荷
がかかり続けるようなベンチマークツールであ
れば、この機能の影響は出ませんが、一定でな
い負荷や負荷がかかり切らないベンチマークツー
ルでは結果が低く出てしまう可能性があります。
この場合は［performance］に設定すると常に最
大の動作周波数で動きます。なお、［ondemand］
を選択したとき、後述のターボブーストが有効
に働くとその動作周波数で動作するので、それ
ほど性能への影響を気にする必要はなさそうで

す。
　ちなみに執筆時点（2013年12月）でのCentOS

6.5のcpupowerutilsではドライバ未対応のため
［no or unknown cpufreq driver is active on

this CPU］となります。Xeon E5-2600 v2シリー
ズにまだ対応しておらず、最大の動作周波数で
動作となります。

ターボブースト

　Nehalemマイクロアーキテクチャ以降の
CPUには、ターボブーストテクノロジの機能
が付いています。電源や温度に余裕があるとき
に、負荷の高いコアの動作周波数を自動でクロッ
クアップする機能です。たとえばXeon E5-

2697 v2は、定格で2.7GHz動作ですが、1コア
のみに負荷がかかっている場合は3.5GHzまで
上がります。この機能はハードウェア側で自動
に動作するためOS側には依存しません。
BIOSやUEFIからこの機能を有効・無効に選
択可能です。
　OS上からターボブーストに対応しているか
の確認やクロックアップされた動作周波数を確
認するときにも

cpupower frequency-info
……（略）……
 boost state support:
 Supported: yes
 Active: yes

を利用します。また、ターボブーストが効いて
いるときの動作周波数を見るには、

cpupower monitor

を実行したときのMperfのFreqの値で確認で
きます（MHz）。ただし、先述のとおりドライ
バが対応している必要があります。

表1　ハードウェアパワーマネージメントの　 ▼
　　　UnixBenchスコア比較（E5-2697 v2）

1並列 48並列
最大性能 　1572.3 　11130.8

電力と性能のバランス 　1067.2 　 8654.9

yum -y install cpupowerutils　　インストール

cpupower frequency-info　　現在の設定を確認

cpupower frequency-set -g performance　　常に最高クロックを維持するガバナーに変更

図1　cpupowerコマンドの利用方法 ▼

102 - Software Design

サーバマシンの測り方
─ ベンチマークを極める実践テクニック ─

Mar. 2014 - 103

　ターボブーストを有効・無効で比較した結果
が図2です。UnixBenchを-cオプションで並列
数を変えていきましたが、すべての結果でター
ボブースト有効のほうが高速な結果となり、ター
ボブーストによって性能が向上することが確認
できました。Xeon E5-2697 v2では12コアす
べてクロックアップが可能なため、すべての並
列数にてターボブースト有効のほうが高速な結
果となりました。

ハイパースレッディング

　Ivy Bridgeマイクロアーキテクチャにおいて
も1つのコアが2つの論理的なコアとして動作
するハイパースレッディングテクノロジの機能
が実装されています。
　BIOSやUEFIからハイパースレッディング
の有効・無効が選べます。この結果の比較が表
2です。物理コアとしては24個、ハイパースレッ
ディングを有効にしたとき論理コアは全部で
48個となるため、並列数をこれに合わせました。
48並列の比較では、論理CPUの数の差が出て、

ハイパースレッディング有効のほうが高速でし
た。物理コアが同じ24並列の比較においても
結果はハイパースレッディング有効のほうが高
速でした。これはUnixBenchの一部のテスト
項目（たとえばshell8）では、指定した並列数以
上に並行動作するためです。

Sandy Bridgeと比較

　今回、Sandy Bridgeと Ivy Bridgeを比較す
るにあたり用意できたCPUは、コア数も動作
周波数も異なるスペックです。そのため、シン
グルスレッド性能つまり1並列における動作周
波数あたりの性能を比較します。この性能指標
が得られれば、動作周波数とコア数に比例して
予測性能を計算できます。もちろん、キャッシュ

図2　 ターボブーストのUnixBenchスコア比較（E5-2697 v2） ▼

表2　 ▼ ハイパースレッディングのUnixBenchスコア比較
　　　（E5-2697 v2）

24並列 48並列
ハイパースレッディング有効 9197.9 11130.8
ハイパースレッディング無効 8513.0 10568.7

102 - Software Design Mar. 2014 - 103

第4回　Xeon E5-2600 v2を測る

やバスの構成なども変わってくるため正確な情
報としては使えませんが、傾向を見るには十分
です。

事前に予測をたてる

　実際にベンチマークを走らせる前に結果の予
測を立てます。CPUの世代が変わるときに、
どんなアップグレードがあるかWebから情報
を収集するなどします。また、新しいCPUが
出ると Intelがベンチマーク情報を公開注2して
います。ほかにもSPECベンチマークの結
果注3が公開されていますのでこの情報は役に立
ちます。新しい機種でも早いタイミングで情報
が公開されています。E5-2600シリーズ（Sandy

Bridge）とE5-2600 v2シリーズ (Ivy Bridge)と
で動作周波数とコア数が同じサーバで比較する
と、ほとんど性能差がないことがわかります。

実際に計測し、比較

　動作周波数あたりの性能を比較するにあたり、
可能な限り固定された環境下で計測することが
望ましく、次の条件下で比較しました。ハード
ウェアパワーマネージメントは最大性能を選択。
OSパワーマネージメントはperformanceガバ
ナーを選択（ドライバが対応しているE5-2670

のみ実施）。ターボブーストは無効。ハイパー
スレッディングは有効にしました。
　結果は表3です。シングルスレッドとマルチ
スレッドの性能を測定するため並列数を変え計
測し、それぞれの並列数にて計測したスコアを

注2） URL http://www.intel.com/performance/

注3） URL http://www.spec.org/cpu2006/results/

動作周波数で割ったスコア（1GHzあたりのス
コア）同士を比較します。たとえば、1並列だ
とE5-2697 v2は 527、E5-2670は 509とほぼ
同じと言えます。他の並列数で実行した結果を
見ても多少の計測誤差はあっても大差はなく、
E5-2600シリーズ（Sandy Bridge）とE5-2600

v2シリーズ (Ivy Bridge)との動作周波数あたり
の性能は同等と推測できます。今回はそれぞれ
UnixBenchを1回づつ計測した値ですが、複数
回実行しその平均をとると誤差が小さくなりよ
り正確な比較ができます。

次回予告

　今回はUnixBenchを用いてE5-2697 v2と
E5-2670比較しました。実際はUnixBenchだ
けを利用するのではなく、前回までに紹介した
SysBenchなどでCPUやDBのベンチマークを
実施するなどいくつかのツールを用いて比較し
ていきます。結果としてはサーバ用途で考えた
ときにSandy Bridgeと Ivy Bridgeでは動作周
波数あたりの性能差はないという結論から、
E5-2670と動作周波数とコア数が同じである
E5-2650 v2を選択しました。なお、E5-2670

とE5-2650 v2が同等性能かという答え合わせ
は、当社のブログ（http://www.idcf.jp/blog/）
で紹介する予定ですので興味あればこちらもど
うぞ。
　次回はHTTPのベンチマークなどネットワー
クのベンチマークとチューニングをしていきま
す。ネットワークをチューニングして負荷をか
け切りましょう。ﾟ

表3　Sandy BridgeとのUnixBench比較 ▼

E5-2697 v2 (Ivy Bridge)
2.7GHz

E5-2670 (Sandy Bridge)
2.6GHz

計測スコア 1GHzあたりのスコア 計測スコア 1GHzあたりのスコア
1並列 1422.6 527 1323.8 509
2並列 1921.9 712 1889.8 727
3並列 2521.1 934 2603.4 1001
4並列 3081.3 1141 3017.7 1161

http://www.intel.com/performance/
http://www.spec.org/cpu2006/results/
http://www.idcf.jp/blog/

104 - Software Design

分散データベース「未来工房」

Mar. 2014 - 105

　「データベースはACID特性を持っていなけ
ればならない」とはよく聞く言い回しであるが、
ここではACIは措

お

くとして、DことDurability

が意味するものを考えてみる。よく直訳して永
続性というが、いったん書き込んだデータは、
システムが想定しているレベルの障害であれば、
どれだけ起ころうとも失われないことを指すの
が一般的だ。
　つまり「絶対にデータをなくさない」とは、単
に障害が起きてもバックアップから復旧できる
という単純な理解では意味がない。そのシステ
ムがどのような障害を想定し、どこまで対応し
ているかを把握し、データベースを利用するア
プリケーションが必ず読み込めるようになって
いなければならない。
　そのうえで結論からいうと、Riak は動作を
継続している限り、アプリケーションがデータ
の更新を知らずに上書きしてしまうということ
は起きない。世の中に多くあるKVS（Key

Value Store）はPUT/GET/DELETEの3種類
だけのものであり、memcachedやRedisなどの
分散しないタイプはこれに加えてCAS

（Compare and Swap）などのデータ操作API が
用意されている。CASを使えば、アトミック

な更新を行うことで、書き込みの競合が起きた
ときに、データの更新を知らずに上書きしてし
まうことを防げる（図1）。
　データの更新を知らずに上書きしてしまうと
いうことは、誰にも知られずに捨てられた更新
が存在するということである。誰にも読まれな
いデータは意味がなく、ここではこれもデータ
をなくしたものと定義する。いわゆる“Lost

udpate”（失われた更新）というものだ。これを
防ぐためにはロックやCAS を用いて、並列に
起きているデータの更新を排他するのが最も簡
単な方法だ。
　しかし、排他制御を行うということは、その
瞬間にデータにアクセスできるのはたった1つ
のクライアントということになる。また、排他
ができないケースでは誰もデータを更新できな

くなってしまう。Pthreadプログラミングなど
の経験があれば、排他制御そのものはロックを
使えばある程度は簡単にできる場合が多い。し
かしながら、レプリケーションを行って耐障害
性を高めたい場合、問題は簡単ではなくなる。
とくにロックを持ったままプロセスが停止した
場合には、ほかのプロセスがタイムアウトなど
でロックをとれるようにするまでそれなりに時
間がかかる。この間の停止時間は、通常の死活
監視システムでは数秒～数分の間設定するもの
だが、その期間中に書き込みができなくなると、

データをなくさないとは
どういうことか？

　データベースに求められる要件はさまざまだが、永続性（Durability）はあって当然だと思われている場合が多い。
トランザクションのないデータベースであれば、永続性がないことを承知で使っている場合も多いが、Riakはト
ランザクションがないにもかかわらず「絶対にデータをなくさない」アプリケーションの設計や運用が可能になる。
今月は「データをなくさない」とはどういうことなのか、それがRiakでどう実現されているかについて解説する。
 注）本稿は、筆者の意向により常体で表記している。

第9回

 Writer 上西 康太（うえにし こうた）　Bashoジャパン株式会社　kota@basho.com

分散データベース「未来工房」
月
清
し

　
遊
行
の
も
て
る

　
　
　
　
　
砂
の
上

Riak はなぜデータを
なくさないのか（1）

104 - Software Design Mar. 2014 - 105

Riak はなぜデータをなくさないのか（1）

可用性に影響がある。多くのデータベース製品
はそのように割り切っている。
　ほかにも、レプリカのないデータベースがディ
スクの故障などによって永久に読めなくなるこ
ともデータをなくしたといえる。
　このように、「データをなくさない」という観
点で見ると可用性と永続性（整合性）の間にト
レードオフがあることがおわかりいただけただ
ろうか。
　Riakの話に入る前に、RDBやHBaseなどの
整合性重視のシステムで可用性と整合性のトレー
ドオフをどのように取り扱っているか見てみよ
う。とくにネットワーク障害、書き込みの競合、
多重故障のケースなどで、データをなくしてし
まういくつかのケース注1と、それを防ごうとし
て可用性を下げざるを得ないケースについて解
説していきたい。

ケース1「ネットワーク分断」

　典型的なデータベースの冗長構成としては、
更新リクエストを受け付けるマスターのノード

注1） “Lost update”も含む。

と、更新情報をコピーして保存するスレーブの
ノードを2台用意するものがある。この場合、
マスターに故障が起きて再起不能になった場合
は、いったんスレーブがマスターに昇格するの
が一般的だ。スレーブはマスターの故障を検知
してマスターとしての動作を開始する。マスター
に接続していたデータベースはスレーブへ接続
しなおしてあらためてデータの更新リクエスト
を送り始める。アクト－スタンバイ構成と呼ぶ
こともある。
　このような構成では、片系の故障については
ロバストに動作するが、マスターとスレーブ間
の通信路に異常があった場合は動作しない注2。
マスターからこの現象を見た場合は、スレーブ
が応答しないのでスレーブが故障したように見
える。一方、スレーブからみるとマスターが応
答していないので、マスターが故障したように
見える。このときスレーブはマスターへの昇格
を行いリクエストを受け付け始めるだろう。こ

注2） スイッチの冗長化などで信頼性を担保するのが一般的かも
しれないが、スイッチやネットワークの冗長化は、コモディ
ティ製品では対応してない場合が多くコストがかさみがち
になるだろう。

図1　 プロセスAとプロセスBから1つの排他制御のないデータベースにread-modify-writeを行った結果 ▼

Process A Process BDB

GET(V)

V=－1

V=－1

V=1

V=0

V'=V+1=1

V'=V－1=－1SET(V=1)

OK(V=0)

OK

GET(V)

OK(V=0)

PUT(V=－1)

OK

Process A Process BDB

GET(V)

V=1

V=1

V=0

V'=V+1=1

V'=V－1=－1CAS(V=0, 1)

OK(V=0)

OK

GET(V)

OK(V=0)

CAS(V=0, －1)

Fail

(a)複数の更新が来ると、一度データを読んでから変更した結果
を再び書き込むことができず、データの更新を知らずに上書き
してしまう。

(b)CAS（Compare and Swap）があるだけでも、データの更新を
安全に行うことができるようになる。

第9回

106 - Software Design

分散データベース「未来工房」

Mar. 2014 - 107

の状況を、一般的にはネットワーク分断とか、
スプリットブレイン（Split Brain）と呼ぶ。こ
れが起きてもシステムが破綻しないことを分断
耐性があると呼ぶ。
　このとき、同期レプリケーションを行ってい
た場合は、単にレプリケーションができず更新
がいっさいできなくなる。つまり、更新に関し
てはダウンタイムとなってしまい、可用性が低
下する。非同期のレプリケーションを行ってい
た場合は、マスターとして動作するプロセスが

2ヶ所で別々に更新を受け付けてしまい、図2
のようにデータの矛盾が起きる可能性がある。
　これへの運用レベルの対処としては、手動で
のマスターフェイルオーバーを行う、データの
矛盾が起きたら片系のノードのデータを捨てて
レプリケーションをやり直すなどが考えられる
が、いずれも大規模なシステムになってくると
負担が大きい。

ケース2
「多数決と並行書き込み」

　このようなネットワーク分断の問題を解決す
るためには、通信ができない状態でも「どれが
正しいデータか」を決める方法が必要になる。
このための最も一般的な方法が多数決だ。つま
り、ネットワークが分断された際も過半数を確
保したものが正しいという約束をレプリカ間で
合意しておくことによって、分断した際に過半
数を確保できていない側のノードは更新が成功
したとはみなさない（図3）。
　これの最も単純なものはクォーラム（定足数）
によるレプリケーションという。こうすれば、
ネットワーク分断が起きていても、落ちている
ノードが一部あっても問題なく更新に成功する。
　しかしながら、複数の更新が同時にやってき
た場合は逆に問題になるケースがある。図1や

図2　 AとBの更新がマスターとスレーブでそれぞ ▼
れ成功してしまった場合、データベースが矛
盾を起こしてしまう

図3　 クォーラム（定足数）によるレプリケーション ▼
レプリカ数3の場合、典型的には書き込みと読み出しの定足数
をそれぞれ2に設定する。この場合、2個以上のレプリカから応
答があるとその操作は成功と定義される。そうでない場合は古
いデータが見えてしまうケースがあるため操作を失敗とする。

Process
A

DB
Master

DB
Slave

Process
B

answer=42 answer=42

Masterの応答がなくなり
Masterに昇格

ネ
ット
ワ
ー
ク
分
断

answer=666answer=0

BEGIN
select answer
where id=7
from universe;
=> 42;
insert into universe
(answer) values(0);
COMMIT

BEGIN
select answer
where id=7
from universe;
=> 42;
insert into universe
(answer) values(666);
COMMIT

Process
A

Replica
1

Replica
2

Replica
3

Process
B

OK

Fail

PUT

PUT

Process
A

Replica
1

Replica
2

Replica
3

Process
B

OK

V=0

V=0

V=0V=42V=42

OK

PUT
(V=42)

PUT
(V=0)

V=42V=42

図4　 クォーラムによるレプリケーションの例外 ▼
クォーラムによるレプリケーションがあっても、複数の書き込
みが同時に起こると、値の上書きによって読み出されることの
ない書き込みがあり得る。

106 - Software Design Mar. 2014 - 107

Riak はなぜデータをなくさないのか（1）

図4のように、成功したにもかかわらず一度も
読まれることのないデータがあり得る。
　これを可能にするためには、堂々巡りになる
ようだが、複数のノード間での厳密な排他制御
を導入する必要がある。その難しさは先ほど説
明したとおりだ。

ケース3
「アトミックブロードキャスト」

　このような分散環境での排他制御には、
ZooKeeperのようなシステムを使った分散ロッ
クを構築して書き込みをシリアライズすれば、
確かにうまく動くだろう。しかしながら、
ZooKeeperの内部で、上記のようなネットワー
ク分断やレイテンシ、データ永続化に関する
まったく同じ問題を解決しているに過ぎない。
　システムはコンポーネントが1つ増えると複
雑さがそれだけ増える。なるべくコンポーネン
トを増やさず、データベースのシステムだけで
それを解決すればよいのか？――その答えの1

つが、ZooKeeperの中にある。同じ問題を解
いているのだから当然である。
　ZooKeeperやChubbyをはじめとするこのよ
うなシステムは、内部的にはアトミックブロー
ドキャストという技術で実現されている。アト
ミックブロードキャストとは、クラスタを構成
するノードとノード間の通信路がすべて非同期
的で、いつでも故障し得るという前提で、クラ
スタを構成するノードがすべて、メッセージが
欠落することなく順序保証された情報伝達を実
現する通信プロトコルのことを指す。これは具
体的な特定プロトコルを指すわけではなく、ブ
ロードキャストのプロトコルやアルゴリズムが
上記のような性質を満たすときにアトミックと
呼ばれる。
　実際にZooKeeperが採用しているアトミッ
クブロードキャストプロトコルはZABである。
ほかにもPaxosやRaftが著名であるがここで
具体的に解説することはしない。重要なのは、
レプリケーションされるデータがアトミックな
ブロードキャストによってレプリカ間で整合し

た状態で、多少の故障があってもシステムが詰
まることなく動作可能になるということだ。
　ほかの実装例としては、GoogleのChubbyや、
Cassandraの CAS、Riak 2.0で提供される
Strong Consistencyの機能ではPaxosが使われ
ている。近年注目されているものとしては
etcd注3という類似のシステムがあるが、こちら
はRaftというアルゴリズムを採用している。
　しかしながら、アトミックブロードキャス
トの実装の多くでは、レプリカ数や、レプリ
カを保持するノードは固定されている場合が
多い。また、多数決を使った場合に、遅いノー
ドがいた場合でもある程度の性能を得ること
はできるが、最悪のケースでは実際にレプリケー
ションされている数が過半数程度しかなく、
あるべきレプリカの数だけデータのコピーが
されていない場合がある。この点で、永続性
の観点から、レプリカを保持するメンバーが
固定されているアトミックブロードキャスト
では運用しにくい面がある。
　また、アトミックブロードキャストのプロト
コルはいずれも、ノード間の通信が一往復で済
まないようなものになっていて、性能を得にく
い場合がある。

　ここまで説明してきたような、データを永続
化することの難しさに対してRiakではどうい
う解決をとっているかということをここから解
説する。
　Riakでは、アトミックブロードキャストを
用いずに、データの永続性を担保する方法とし
てヒント付きハンドオフとSiblings（シブリン
グ）という方法をとっている。
　ヒント付きハンドオフは、おおざっぱにいう
と、ノードが故障してデータを書き込めないと
きには、クラスタの別のノードにとりあえず書

注3） https://github.com/coreos/etcd

Riakはなぜデータを
なくさないのか？

第9回

https://github.com/coreos/etcd

108 - Software Design

分散データベース「未来工房」

Mar. 2014 - 109

き込んでおくという動作である。これによって、
データのコピーが必ず規定数だけあることを保
証する。

Riakの分散のしくみ

　まず、ヒント付きハンドオフを説明する前に、
Riakにおけるデータの分散の方法と、書き込
みが完了するまでの大まかな流れを正常系と故
障時それぞれについて解説しよう。
　2013年の8月号でも解説したが、Riakでは
“ring”と呼ばれるハッシュ空間を等分割し、そ
れぞれをパーティションと呼ぶ。パーティショ
ンは等分割された空間の左端のハッシュ値で
表現し、そのパーティションをプライマリで
担当するデータベースのフラグメントを“vnode”
（ブイノード）と呼ぶ。この vnodeが、Riakで
のデータ分散の基本的な単位になる。n番目の
vnodeを表すハッシュ値P(n)は、分割数を64

とすると、

P(n) = 2160 n
64

となる。このvnode を各ノードに均等に配置す
ることで全体の負荷分散となる。また、どのノー
ドがどのvnode を持っているかはゴシッププロ
コトルでに共有されている。アクセスしたいデー
タのキーがわかっていれば、そのデータが所属

するvnodeは、

P(n)＜ Hash(key) ＜ P(n + 1)

で決まるn番目のものであることがわかる。n_
val=3のとき注4、データのコピーは3つ必要な
ため、このキーを保存・処理する責任があるの
はn、n＋1、n＋2番目のvnodeを保持してい
るノードである注5。実際のレプリケーションは
この3ノードの間で行われる。Riakは、この中
からランダムに1つコーディネータを決定して、
まずはそこにリクエストを転送する（図5）。
　コーディネータがリクエストを受け取ると、
そこから残りのレプリカへリクエストを転送す
る注6。転送されたリクエストを受け取った各ノー
ドはローカルのディスクへPUTを行い、結果
をコーディネータへ返送する。コーディネータ
は自分も含めAckが既定のW以上になったら
リクエスト元へ成功を返す注7。ここまでの正常
系の動作では、先ほど説明したクォーラムのレ
プリケーションとほぼ同じだ。
　PUTの場合、ここでの書き込みの方法に

注4） これは、1つのキーと値のペアにいくつのコピーをRiakが
用意するかという値である。

注5） ほとんどのケースでコピー数は3であり、Riakはそこに最
適化されているが、変更することも可能。

注6） GET/PUTの違いはデータをvnodeへ書き込むか読みだす
かの違いであり、このレイヤーではほとんど違いがない。

注7） デフォルトではWは2である。

図5　 Riak における正常系の書き込み ▼
いずれのノードも故障していない。

図6　 障害時の書き込み ▼
node 4はすでに故障とマークされているため、node 1が持っ
ているvnodeへの書き込みが行われる。

Hash(key)

n

n+1

n+2

PUT(key,V)またはGET(key)

node1

node2

node3

node4

Hash(key)

n

n+3

n+2

PUT(key,V)またはGET(key)

node1

node2

node3

node4node4

108 - Software Design Mar. 2014 - 109

Riak はなぜデータをなくさないのか（1）

「絶対にデータがなくならない」ことを保証す
る若干の工夫がされているが、これは後で解
説する。

故障時の挙動

　それでは、3つのレプリカのうち1つが故障
していて、アクセスできない状態であった場合
にはレプリケーションはどういう挙動を示すだ
ろうか。
　Riakのクラスタを構成するノードはお互い
の死活監視を行っているため、アクセスできな
いノードはあらかじめわかっている。PUTや
GETのリクエストが来た時、そのデータを保
存すべきvnode を持っているノードが故障して
いる場合は図6のように、リストの次にいるノー
ドへリクエストをフォールバックする。たとえ
ばn＋1のvnodeを保持しているノードが故障
していてアクセスできないことがわかっている
場合には、このリクエストを処理する責任があ
るvnodeはn、n＋2、n＋3番目のvnodeとなり、
正常系と同様に実際にリクエストが転送される。
このように、リストの次にいるノードがリクエ
ストを処理することは、“Hinted Handoff”（ヒ
ント付きハンドオフ注8）と呼ばれる。

注8） Hinted Handoff：ハンドオフとは「手渡しする」という意味。
翻訳するとヒントに従って手渡しするしくみ、といったと
ころだろう。

　ヒント付きハンドオフでは、n＋3番目の
vnodeを保持しているノードに渡す。そのとき
テンポラリにvnodeのファイルを作成して、そ
こに書き込みを行う。

復旧後の挙動

　故障から復帰したときも、ノードがふたた
びクラスタに登場したことをフックして、復
帰したノードが持っている vnodeの一覧を、
自分が持っているものと比較する。もしもヒ
ント付きハンドオフにより、復帰したノード
に属するvnodeが持つべきデータを持っている
場合は、vnodeを所有しているノードへ図7の
ようにデータを返却する。この様子は riak-

admin transfersというコマンドで監視するこ
とができる。データの返却が終わると、ヒント
付きハンドオフで一時的に保存していたデータ
を自動的に削除するようになっている。
　このように、本来あるべきノードにアクセス
できない場合にはヒント付きハンドオフで代替
ノードを用意し、そこに一時的に書き込むこと
によって、正常系、故障時、異常時のいずれに
おいてもデータのコピーが3つあることを保証
する。
　ネットワーク分断が起きても同様に、アクセ
ス可能なノードの中でnの次にあるvnodeを持っ
ているノードを2つ探して、代替ノードとして
そこにPUTやGETのリクエストを転送する。
Riakではアクセスできないノードに対して必
ず代替ノードを用意しておいて、復旧後に本来
持つべきノードへデータを返却することで、あ
るキーに関するデータを持っているノードが必
ず3台いる状態を維持する。
　もっと極端な例を解説しよう。図6のケース
をさらに発展させて、node 1、2、3がすべて
停止しているケースを考えるとRiakの可用性
がわかりやすい。このようなケースでは、
vnodeのn、n＋1、n＋2が使えず、n＋3だけ
が利用可能だ。しかしながら、もう2ヵ所書き
こむべきで、そのvnodeはn＋4以降で生きて

図7　障害からの自動復旧 ▼
node 4の復旧とともに、node 1へ一時的に書き込まれたデー
タがnode 4へ返却される。

n+1

(key,V)

n

n+3

n+2

node1

node2

node3

node4

第9回

110 - Software Design

分散データベース「未来工房」

いるノードから順番に選ばれる。このケースで
はおそらくn＋4からn＋6も同様に生きてい
ないだろうから、n＋7とn＋11と、さらに後
ろから選ばれる。この例では4台しかないが、
10台などノード数がもっと多いケースであれ
ば別のノードにコピーされることになるだろう。
このように、システムが部分的に大きく欠けて
いたとしても、残っているノードでなんとか書
き込みを受け付けるようになっており、これは
メンバーが固定されたアトミックブロードキャ
ストでは難しいところである。
　だからこそ、Riakは常にデータをなくさな
いし、いつでも書き込むことができるのである。

　Riakの、いわば「とりあえず誰でもいいから
アクセスする」というしくみやハンドオフによっ
て、同じキーに属するデータのコピー数が3つ
あることが保証されていることは説明したが、
上記で説明した、いったん書き込みに成功した
データが読まれることなく上書きされるケース
については、まだ防げていない。このままでは
書き込まれたはずのデータが失われてしまう。
　また、ヒント付きハンドオフによっていった
んほかのノードに書き込まれたデータが返さ
れるときに、もともとの古いデータが残って
いた場合に、タイムスタンプ等で上書きしてし
まっては同様にデータが失われてしまう可能性
がある。

　これを防ぐしくみが、Siblingsとベクターク
ロックである。この2つのしくみとPUT時の
“read-modify-write”を徹底することによって、
書き込みに成功したデータをアプリケーショ
ンが無視することのないしくみを作ることが
できる。

　ここでは、データベースの永続性とは何か、
データがなくならないとはどういうことかを、
読まれることのない更新が起きないことと定義
した。単なる上書きでは失われてしまう更新が
あること、それを避けるためにトランザクショ
ンなどを用いた排他制御のしくみがあるとよい
が、システムを冗長化するとネットワーク分断
の耐性を得ることが難しくなる。
　それを解決するためにアトミックブロードキャ
ストのプロトコルを実装するのが1つの解では
ある。しかしRiakではヒント付きハンドオフと
そのデータの返却をすることで、どのような故
障があっても「とりあえず既定の数のコピー数
を確保する」しくみになっていることを説明した。
　しかし、とりあえず書きこむというだけでは、
データの上書きや整合性がまだ担保されている
とは言いがたく、どのように「絶対にデータを
なくさない」ことが保証されているかがわから
ないことと思う。RiakではSiblingsとベクター
クロックを用いてそれを解決するが、長くなっ
たので続きは次号に譲ることとしたい。ﾟ

まとめ

「とりあえず書き込む」
ことの代償

　そこがRiakの賢いところで、すべての隣り合う
vnodeおよび2つ隣のvnodeは別のノードに保存
されるようにノード配置を計算している。単純に
並べるだけだと、ノード追加時の再配置のトラ
フィックが非常に大きいので、ヒューリスティッ
クに並べる順番を工夫しており直感的な順番では
ないが、n_val=3のときにこの条件を満たすため
には必ず5ノード以上必要になる。このようにハ

ンドオフを正常に動作させるために、Riakの最低
稼働台数は5台からということになっている。も
ちろん、データのコピーを2ヵ所に分けて保存し
たい（2ノードで動かしたい）ということであれば
2台でも動作するが、このようなヒント付きハン
ドオフのしくみがうまく動作しないため、5台以
上でのクラスタ構成を推奨している。

連続する番号を持つvnodeは必ず別のノードに保存されるのか？コラム

Mar. 2014 - 111

　/から消したらどうなるんだろう、という好奇心は大切だと思います。他人に迷惑かけない程度でその探求心を満たしてほしいものです。
仮想環境も手軽に用意できる昨今はこのような行為も手軽に試せていいのですが、それが重要な開発環境だったり、ファイル共有マウン
トしてると大惨事になります。「素振り」はしっかりしましょう。

『Linux

コ
マ
ン
ド
ポ
ケ
ッ
ト
リ
フ
ァ
レ
ン
ス
』改
訂
版
の
出
版
も
決
ま
り
、
さ
ら
に
絶
好
調
の
く
つ
な
先
生
に
愛
の
手
紙
を
!

作）くつなりょうすけ
@ryosuke927

①②

③

⑤

⑦

④

⑥

⑧⑨

幸せを運ぶコマンド第 3 回

先輩！
たすけてぇ～！

え

ん

な、なんだ？
どうしたの？

USBスティック
をなくした？

お茶を
こぼした？

今の君にぴったりな
コマンドを紹介して
説明してくれる。
これに従ってコマンド
を実行するといいよ。

追加説明
があるよ。

RAIDが
壊れた？

ぼくは不幸な
星の下の選ばれし
人間なんだ!!

それ
いい！

幸せになれる
Linuxコマンド
ポケットリファレンス～！

なになに……
客のシステムで

rm　-rf /
を実行

GNUのrmなら
「--no-preserve-root」
を忘れるな――って。

fsckと
mkfsを
間違えた？

大げさだな……。
よし、君のために
イイものを
出してあげるよ。

さっそく
引いて
みよう！

もう
そんな本
捨てろよ。

なになに？
なにが
出るの？

壺とか売り
つけられても
困るよ……。

オイオイ、
殺され
るよ。

112 - Software Design

昨年、日本のスーパーコンピュータを保有する研究所や大学の施設に対し、SSH経由で不正アクセスが
行われたという報道がありました。SSH（Secure Shell）は安全に遠隔でシェルを使うためのプログラムで
す。しかし、どんなものでも当たり前ですが、正しい使い方をしなければ安全ではありません。そこで
今回は、SSHの安全な使い方について考察します。

SSHについて

ネットワーク端末telnet

　今のインターネットと呼ばれるネットワークの最
初の実験は1969年に行われました。実験内容はカ
ルフォルニア大学ロサンゼルス校（UCLA）、スタ
ンフォード研究所（SRI）、カリフォルニア大学サン
タバーバラ校（UCSB）、ユタ大学（The U）の4つの
サイトで通信をすることでした。そのネットワーク
を経由してリモートのコンピュータにログインする
ために作られたネットワーク端末ソフトウェアが
telnetです注1。
　telnetはTCP/IPで通信し、リモートのコンピュー
タにログインするために古くから使われているプロ
グラムで、ネットワークで接続されたコンピュータ
をまるでシリアルラインで接続した端末のように使
えます。ポートを指定してネットワークからサーバ
に対してキーボード入力することもできます。

　また、rloginは1983年に4.2BSDの上に作られま
す。これはBSDにTCP/IPが実装される際に作ら
れたUNIXのためのリモートログイン機能で遠隔地
のUNIXにログインします。rloginの最初のRFCは
RFC1282として確認できます。
　rshはリモートシェルで遠隔地のUNIX上でシェ
ルを実行します。

　これらは非常に便利なのですが、1つ大きな問題
があります。それは、暗号化などの対策は何もせず
に通信をしているため、そこで送られたデータがす
べて見えてしまうことです。たとえばWireshark注2

のようなネットワークをモニタリングするツールを
使い、telnetの通信をモニタリングすればログイン
のときに入力するユーザIDもパスワードも全部見
えてしまいます。
　rloginが作られた頃は牧歌的な時代だったのです
が、90年代においては極めて「危険」なプログラムと
指摘されるまでになってしまいました注3。

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第九回】

すずきひろのぶ
suzuki.hironobu@gmail.com

注1）	 telnetの一番最初のドキュメントはRFC25で、これは1969年9月25日にユタ大学のC.Stephen Carr氏によって書かれています。最
初の通信は1969年10月29日にUCLAからシリコンバレーにあるSRIまでを結んだのものでした。最初に行ったテストはtelnetを使っ
てインターネット経由でコンピュータにログインすることでした。telnetはインターネット最古のプログラムの1つと言えるのです。

注2）	 http://www.wireshark.org/
注3）	 Lawrence R.Rogers,“rlogin(1): The Untold Story”,1998　http://www.cert.org/archive/pdf/98tr017.pdf

SSHが危険に晒されるとき

% telnet www.sample.com http
GET / ←キーボードから入力
 ここに Webサーバからのレスポンスが表示される

% rsh example.com date
Fri Jan 17 03:36:22 JST 2014

http://www.wireshark.org/
http://www.cert.org/archive/pdf/98tr017.pdf

Mar. 2014 - 113

SSH

　SSHはSecure Shellの名前から想像するとおり
に telnet、rlogin、rshを代替するために作られたプ
ログラムです。1995年、ヘルシンキ工科大学の
Tatu Ylonen氏が開発したものです。学内のネット
ワークにおいて通信している最中に、パスワードを
盗聴されないようにするのが最初の目的でした。無
料で配布したので注4、瞬く間に広がり使われるよ
うになりました。氏は後にSSH Communications

Securityという会社を設立します。
　長い間、デファクトスタンダートとしてオリジナ
ルのSSHを実装の基準にしていたのですが、やっ
と2006年にRFC4253が発行されます。初期のプ
ロトコル設計には問題があり、それを回避するため
にRFC4253では以前のプロトコルとは互換性のな
いものとして作られます。RFC4253からのプロトコ
ルはSSH-2と呼ばれ、それまでのプロトコルは
SSH-1と呼ばれ区別されるようになりました。
　現在は、いくつかのサーバ実装があります。一番
多く使われているのは、おそらくOpenSSHでしょ
う。OpenSSHはセキュリティには定評のある
OpenBSDプロジェクトから出てきた実装です。フ
リーソフトウェアではGNUプロジェクトでも lsh

というSSH-2実装があります。しかし、開発はす
でに不活発でDebianプロジェクトでメンテナンス
しているだけになっていますので、利用はお勧めし
ません。また、これら以外に商用のサーバもいくつ
かあります。
　一方で、クライアントはたくさんあります。
Windows上、Mac上といろいろと存在しています。

SSHの保護モデル

　SSHのモデルは通信路を暗号化し、通信している
内容を保護するというものです。データは暗号化さ
れているため、外部からは内容を見られません（図
1）。よってパスワードなどの情報を入力したとして
も外部から覗き見ることはできません。

　接続先とはディフィー・ヘルマン鍵共有アルゴリ
ズム、またはRSA暗号アルゴリズムを使ってデー
タ通信時に使う共通鍵暗号の鍵を交換します。ディ
フィー・ヘルマン鍵共有アルゴリズムも、RSA暗号
アルゴリズムの鍵共有も、相手を確認しない、つま
り電子署名にあたるような相手の確認ができないの
で、そのままではMAN-IN-THE-MIDDLE攻撃（図2）
をされた場合、内容を盗聴されてしまいます。
　SSHのサーバ認証は、通常、最初に接続した際
にサーバから署名を検証するための検証鍵をもら
い、それをユーザが確認しクライアント側に登録し
ておきます。次回以降は、その検証鍵を使って接続
先サーバが以前と同じものであるかどうかを検証し
ます。同じものでない場合、ユーザに警告メッセー
ジを出したうえで接続を中断します。このようにし
て騙されることを阻止します。

注4）	 筆者の記憶に頼るのですが、このときのライセンスは独自のライセンスで、今で言うオープンソースにも当てはまらないし、もちろん
GPLとも互換ではありませんでした。

【第九回】 SSHが危険に晒されるとき

◆◆図2　MAN-IN-THE-MIDDLE攻撃（中間者攻撃）

接続元（Alice）と接続先（Bob）を騙して、
両者の間に入って盗聴する

Alice
本来すべき接続

Bobのつもりで接続

Alice のふりをして接続

Bob

Mallory

◆◆図1　通信路保護のモデル

外部から攻撃を受けても内容は見られない

暗号により経路が
保護されている

Attack

Attack

114 - Software Design

ユーザの接続認証

　SSHはサーバ側のシェルを動かします。その際
に、ユーザ認証をする方法は2つあります。1つはパ
スワード認証、もう1つは公開鍵認証です。
　パスワード認証は通常のUNIXのパスワード認証
と基本的に同じです。UNIXのシステムが持ってい
るメカニズムを呼び出しています。ですからGNU/

LinuxでLinux-PAM注5を使っている場合、Linux-

PAMの機能と連動できます。sshdの設定に関して
は/etc/pam.d/sshdで行います。
　最近のLinux-PAMはSELinuxの機能と連動する
ことも可能で、SELinuxがenforcing（有効）のとき
のみユーザがシステムにログインできるなど、これ
までのUNIXのセキュリティよりもレベルを高くす
ることが可能です。
　もう1つは公開鍵認証です。それまでのリモート
端末のソフトウェアにはなかった機能で、この機能
のおかげで、パスワード方式よりも一歩進んだ安全
性を確保できます。

電子署名を使うユーザ認証
（公開鍵認証）

　まず、ssh-keygenコマンドを使って署名鍵／検証
鍵のペアを作ります。次に署名鍵（秘匿鍵）を手元の
クライアント側におき、検証鍵（公開鍵）をサーバ側
におきます。sshで接続する際は手元のクライアン
トにおいてある署名鍵を使い電子署名し、それを
サーバ側に送ります。サーバ側は検証鍵を使い正し
い相手であるかどうかを確認します。
　図3では2,048ビット長のRSA暗号の鍵ペアが作
られます。sample-id-rsaに署名鍵が入っており
sample-id-rsa.pubに検証鍵が入っています。電子
署名アルゴリズムはDSA-1024（現在では鍵長が十
分ではありません）やECDSA（楕円曲線DSAアル
ゴリズム、ECDSA 256）も使えます。sample-id-rsa

はパスワードで暗号化されており、第三者が
sample-id-rsaを盗んで使おうとしてもパスワード
を突破する必要があります。

検証鍵の扱い

　サーバにログインするために先ほど作った検証鍵
（拡張子が .pubのファイル）の内容をログイン先の
$HOME/.ssh/authorized_keysに入れることによっ
て使えるようになります。
　また大規模なサイトではユーザ管理をLDAPで
実施しているようなところもあるでしょう。そのよ
うなサイトでは、SSHの検証鍵をLDAPで管理する
ことも可能です注6。

SSHから侵入される
ケース

　さて、ここまではSSHの全体像を理解するため
の説明でしたが、ここからは最初のテーマ、SSHか
ら侵入されてしまったケースについて考えていきま
す。特定のケースのみを詳細にレポートするわけで
はなく、SSHならばこのような脅威が考えられると
いうように、広く考えていきたいと思います。

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

　手元にあるDebianとCentOSでOpenSSHの
バージョンの違いをチェックしてみました。Debian
7.1.0ではOpenSSH_6.0を採用し、CentOS 6.5で
はOpenSSH_5.3を採用していました。鍵交換のア
ルゴリズムの組み合わせ（Cipher Suite）は次のとお
りです。

・楕円曲線ディフィー・ヘルマン鍵共有 ecdh-sha2-
nistp256,ecdh-sha2-nistp384,ecdh-sha2-
nistp521

・ディフィー・ヘルマン鍵共有 diffie-hellman-group-
exchange-sha256,dif f ie-hellman-group-
exchange-sha1, dif f ie-hellman-group14-
sha1,diffie-hellman-group1-sha1

◉OpenSSHサーバ
　について

注5）	 ほとんどのディストリビューションが採用しているパスワード認証のフレームワークです。
注6）	「そろそろLDAPにしてみないか？ 第6回 OpenSSHの公開鍵をLDAPで管理」 http://gihyo.jp/admin/serial/01/ldap/0006?ard=1389964348

http://gihyo.jp/admin/serial/01/ldap/0006?ard=1389964348

Mar. 2014 - 115

の組織のどのシステムでも共通認証基盤を使ってロ
グインできるようになっている可能性が高いです。
とくに大学などはどこでも同じ環境を使えるように
認証基盤が便利にできています。そのような環境で
は学内Webサーバへログインするのも、学事カレ
ンダーにアクセスするのも、そしてスーパーコン
ピュータを使うためのゲートウェイも同じパスワー
ドが連動していたりします。
　パスワードが漏れるリスクはたくさんあります。
使っているクライアントにマルウェアが感染してパ
スワードを盗まれる場合、ほかのWebサービスな
どにも使いまわしているパスワードがWebサービ
ス側の不手際で漏れる場合、最近ではスマートフォ
ン経由で漏れる可能性も考えられます。
　漏れなくともパスワードの辞書攻撃で使われるよ
うなキーワード／パスワードを使っている場合は、
簡単にわかってしまいます。このようなブルート
フォース系の攻撃を回避する定番はiptablesを使うこ
とです。一定時間に接続してくる回数を見て、その
接続を無効にすることです。完全なコードではあり

パスワードクラック

　電子署名によるユーザ認証を使わず、古典的なパ
スワードを使っている場合です。この連載で何度も
繰り返しているように、ユーザの一定数は弱いパス
ワードを使っています。よって利用ユーザのリスト
が手に入るならば、SSHに接続し、可能性の高いパ
スワードを次々に試していけばいいだけです。一定
の確率でパスワードの弱いユーザのアカウントを見
つけられます注7。
　では、なぜ、ユーザ名がわかるのでしょうか。そ
れは組織内で共通のアカウント名を使う運用になっ
ているところがほとんどだからです。たとえばlabo.

example.orgという大きな研究組織があったとしま
す。そこでhironobu@labo.example.orgというメール
アドレスを使っていると、いつしか大量のスパムが
届くようになるのは、私たちが日頃、経験している
ことです。スパムリスト業者にはどんどんlabo.

example.orgのユーザ名が蓄積されていきます。
　次に、ユーザhironobu@labo.example.orgは、こ

【第九回】 SSHが危険に晒されるとき

注7）	 デフォルトではrootはログインできない設定になっていますし、これを意図的にONにしてセキュリティのリスクを負ってまで運用する
特殊なケースはまれですから、ちょっとrootのケースは横に置きます。

% ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/hironobu/.ssh/id_rsa):
sample-id-rsa ←署名鍵／検証鍵のファイル名を入力
Enter passphrase (empty for no passphrase): ←パスワードを入力（エコーバックなし）
Enter same passphrase again: ←再度パスワードを入力
The key fingerprint is:
94:df:19:1a:1c:19:02:09:01:38:8e:aa:47:ff:a9:ba hironobu@sample.com
The key's randomart image is:
+--[RSA 2048]----+
¦ ...oo.o. oo ¦
¦o . +.. ¦
¦o. o o . ¦
¦.. . . + o ¦
¦. S o o ¦
¦. . ¦
¦.. . ¦
¦. . . . ¦
¦ .Eo.oo ¦
+-----------------+

% ls -l sample-id-rsa*
-rw------- 1 hironobu hironobu 1766 Jan 17 21:37 sample-id-rsa ←署名鍵
-rw-r--r-- 1 hironobu hironobu 394 Jan 17 21:37 sample-id-rsa.pub ←検証鍵

◆◆図3　署名鍵／検証鍵のペアファイルの作り方

116 - Software Design

ませんが、リスト1のようなiptablesの使い方がヒン
トになるのではないかと思います。

電子署名で使う鍵が盗まれる

　パスワードには問題があるので、電子署名方式
（公開鍵認証）でのみSSHでの接続を許す運用をし
ている環境も多くあります。パスワード方式よりは
安全に運用できます。ただし、鍵の管理をきちんと
しているという前提が必要です。
　ssh-keygenでパスワードを入力しなければ、署
名鍵にパスワードはかかりません。つまり「裸」の署
名鍵を作れます。ネットで検索するとその説明が大
量に見つかります。パスワードがなぜ必要なのかと
いうことを無視している文章は多いです。「パス
ワード入力の手間が省けるので作業がはかどる」と
いった趣旨の内容を書いているサイトもあります。
　とくにPC上でのSSHクライアントの場合「ク
リックだけで接続できるほうがユーザフレンド
リー」のような書き方をしているサイトもあり、そ
れを読むと「PCユーザの感覚ではそれが当たり前
なのかもしれない」と問題の根深さを感じざるを得
ません。
　そうでなくとも、バッチ的なスクリプト処理を書
くときに、どうしても処理上、パスワードなしにし
たくなることがあります。パスワードなしの署名鍵
の危険性を理解したうえで使うという場面があるの
は否定しません。しかし、リスクを理解せずに使う
のは極めて危険です。けっしてお勧めできません。
　盗む方法は多くの場合、マルウェア感染でしょ
う。偶然にマルウェアに感染してしまうか、あるい
はターゲット型攻撃で狙われるかはわかりません。
唯一言えることは、そのマルウェアはSSHクライ
アントアプリケーションの設定情報（プロファイル）
や署名鍵があれば、真っ先に外部に流出させるで
しょう。そして、どこのサイトのどのアカウントに
使う署名鍵なのかわかっていますから、それを使わ

れたらいともやすやすと侵入されてしまいます。
　一度流出してしまえば、その署名鍵でさえ守られ
ているのはパスワードです。そして、パスワードであ
る以上、ブルートフォースをかけてしまえば破られる
確率は高いのです。ただし、マルウェアに感染して、
署名鍵を盗まれ、ブルートフォースされて署名鍵を
使われ始めるまでには少しだけ時間を稼ぐことがで
きます。その間に、署名鍵が盗まれたことに気づき、
対処できればどうにかできるかもしれません。このよ
うに、どんな場合にもリスクはあるのです。

ホームディレクトリの
ネットワーク共有

　大量のハードウェアがあり、ユーザがどこにログ
インしてもかまわないような環境を構築しているサ
イトでは、ユーザのホームディレクトリはネット
ワークファイルシステムの環境で提供しているケー
スを多く見かけます。
　この場合、自分のホームディレクトリ$HOME/

.sshの下にあるファイルは自分の使っているマシン
以外にファイルサーバのroot管理者も同様にアク
セスできます。ですからネットワークファイルシス
テムでホームディレクトリを共有するときは、
$HOME/.sshにアクセスできるユーザ範囲（権限範
囲）が自分が思うよりも大きい場合がありますので
十分に注意してください。署名鍵や検証鍵を書き換
えられたり、あるいは意図しない検証鍵が追加され
外部から侵入されたりしないよう注意が必要です。

LDAP管理

　SSHの検証鍵をLDAPで管理して、LDAPで認
証管理しているどのマシンからでも使えるようにし
ている場合、LDAPサーバに不正侵入があったり、
あるいはLDAPのほうの情報が不正書き換えされ
たりすると、何でもできてしまいます。たとえば
スーパーコンピュータへのアクセスゲートとなって
いるマシンへのリモートログインを守るには、スー

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

iptables -A INPUT -p tcp --syn --dport 22 -m state --state NEW -m recent --set
iptables -A INPUT -p tcp --syn --dport 22 -m state --state NEW -m ｭ
recent --update --seconds 60 --hitcount 8 -j DROP ← 60秒以内に 8回以上の接続があれば制限する

◆◆リスト1　ブルートフォース攻撃を回避するiptablesの設定

Mar. 2014 - 117

パーコンピュータへのアクセスゲートを集中的に守
るだけでは不十分で、認証サーバであるLDAPも
同じレベルで守らなければ意味がありません。
　このようにどこか一部だけでも弱い部分があると
全体のセキュリティレベルが、そのセキュリティの
弱い部分と同じになるということを弱い輪から切れ
るチェーンにたとえて“The Weakest Link”と言っ
たり、桶の板が一番低い部分以上に水がたまらない
“Barrel Theory”（図4）と言ったりします注8。
　どんなにお金をかけて一部分のセキュリティを高く
してもダメで、全体のセキュリティをバランスよく向
上していかなければ意味をなさないのです。

SSHの未知の脆弱性への攻撃

　SSHには頻繁にいろいろな地域から攻撃がきま
す。それは攻撃が成功したならば、システムにログ
インすることに直結するからです。そして未知の脆
弱性に対しゼロデイ攻撃がしかけられた場合、直接
的な対応はたいへん難しい、むしろないと言ったほ
うが良いと思います。
　そこで少しでもリスク軽減をするために、関連す
る環境を整備することを検討してください。まず接
続先が決まっているならば iptablesなどを使い、厳
密にアクセスできるIPアドレス空間を絞ってくだ
さい。また限定的なユーザだけが使うように明示的
に設定しましょう。そして、標準ポート番号22か
ら別のポート番号に変更しても問題とならないとき
は、ポート番号を変更することを検討してみてくだ
さい。関係者しか知らない番号に移行するだけで、
そのようなランダムで無用な攻撃を受けなくなりま
す。

SSHをもう一度
確認してみよう

　ここまでの議論を整理します。
　パスワード認証はなるべく使わないようにし、デ
フォルトは電子署名認証方式にしましょう。ただ
し、どうしても検証鍵をユーザ自身で設定する必要

があるなら、パスワード認証を残しておく必要があ
るかもしれません。その場合は、Linux-PAMと連
動させてパスワード失敗時の再チャレンジ回数を極
端に小さくし、失敗時の復帰時間間隔を極端に長く
するといった方法も検討してください。
　パスワードを設定していない署名鍵を使うのはご
法度です。これを必要とする場合は、極めて特殊な
運用です。
　ネットワークファイルシステムでのホームディレ
クトリの共有は注意しなければいけません。当初予
定されていなかった自分の管理の届かないところで
鍵情報の流出や書き換えが起こる可能性を考慮しな
ければなりません。

SSHが安全なのではない

　SSHはオリジナルのコードからRFCのSSHに
移行する際に、多くの時間をかけて議論をしまし
た。安全性を確保する／検討するというのは、非常
にたいへんです。時間のかかる作業を行い、ついに
はSSH-1から互換性の取れないレベルのSSH-2へ
と変貌しました。完璧ではありませんが、信頼のお
けるレベルであり、現在も改良／改善が続けられて
います。
　結局、最後は使う側の問題で、安全か否かが変
わってきます。SSHを使うから安全なのではありま
せん、正しくSSHを使えて初めて安全になるので
す。s

【第九回】 SSHが危険に晒されるとき

◆◆図4　Barrel Theory
（出典：http://en.wikipedia.org/wiki/Liebig's_
law_of_the_minimum）

注8）	 日本では「リービッヒの最小律」「ドベネックの桶」と呼ばれる場合が多いです。

http://en.wikipedia.org/wiki/Liebig's_law_of_the_minimum

118 - Software Design

プログラム知識ゼロからはじめる

iPhoneブックアプリ開発

多言語ローカライズで世界に
通用するアプリを目指そう！

プログラム知識ゼロからはじめる
iPhoneブックアプリ開発

プログラミングをしたことのない方にもアプリを作る楽しさを味わっ
てもらいたい本連載。今回はこれまで作ってきたブックアプリを多言
語対応にする方法を解説します。

第11回

GimmiQ（ギミック；いたのくまんぼう＆リオ・リーバス）
 URL http://ninebonz.net/

 URL http://www.studioloupe.com/
イラスト●中川 悠京

電子書籍コンテンツも
アプリにするわけ
　これまでの連載でも何度か言ってきましたが、
アプリと電子書籍とではできることの幅が大き
く異なります。アプリとして作ればかなり自由
なことができますが、電子書籍では多くの制限
が現在ではついてしまいます。中でもアプリで
作る大きなメリットの1つは、簡単に「多言語
ローカライズ」ができることでしょう。

　電子書籍では言語の自動切り替えが簡単にで
きないため、1つ1つの言語用に別々のパッケー
ジを用意するケースが多いです。たとえば現在
iBooks Storeで無料配信されているビートルズ
のインタラクティブ絵本『Yellow Submarine』も
言語ごとに別々の本として用意されています（図
1）。
　しかし、これでは対応言語が多ければ多いほ
どパッケージが増え、作業工数や管理の手間、
審査の回数などが増えることになります。アプ

 ▼図1　言語ごとに販売される電子書籍の例

http://ninebonz.net/
http://www.studioloupe.com/

118 - Software Design Mar. 2014 - 119

多言語ローカライズで世界に通用するアプリを目指そう！第11回

リであれば1つのパッケージの中に対応したい
言語をいくらでも詰め込むことができ、端末の
言語設定に応じて自動的に適切な言語に切り替
わるようにできるというメリットがあります。
　一応、電子書籍でも1つの本の中にいくつも
の言語のバージョンを入れることは不可能では
ありません。たとえばページの左側は英語、右
側は日本語、といった形式や、最初の50ページ
が英語、51ページ目から日本語版、101ページ
からフランス語、などといった方法で無理矢理
詰め込むことは可能です。しかしそれはあまり
スマートな方法とは言えませんし、この手法で
多言語対応している電子書籍は一般的ではあり
ません。

アプリの多言語
ローカライズのメリット

　今やアプリは世界中で配信することが可能で
す。しかし、日本語のみに対応したアプリが他
国でダウンロードされるかと言えばそう簡単に
はいきません。最低限、英語には対応しなけれ
ば、アジア圏外の国々で注目されることは難し
いでしょう。ローカライズはアプリをより多く
の人に届けるためにはとても重要と言えます。
　そこで今回はXcodeを使って、アプリを多言
語ローカライズ化する方法を紹介します。ロー
カライズの方法はいくつかありますが、今回は
Storyboard上の文字列だけを手っ取り早くロー
カライズするシンプルな方法を紹介したいと思
います。

ステップ1

　まずはXcodeでプロジェクトを開きま
しょう。Xcode左側のProject Navigatorか
らプロジェクトファイル（作例では「My
Book2」）を選択し（図step1-1の1）、右側に
現れる「四角の中に三角が入ったボタン」を
クリックします（図step1-1の2）。
　図step1-2のように「PROJECT」と「TAR
GETS」のリストが現れるので、「PROJE
CT」の下のプロジェクト名（作例では「My
Book2」）の部分を選択してください。

多言語ローカライズ
 step1-1 step1-1

 step1-2 step1-2

120 - Software Design

プログラム知識ゼロからはじめる

iPhoneブックアプリ開発

ステップ2

　PROJECT情報の下のほうに、「Localizations」という項目があるので、その中の一番最後にある「Use
Base Internationalization」と書かれたチェックボックスにチェックを入れます（図step2-1）。
　ダイアログが現れるので、そのまま［Finish］を選択しましょう（図step2-2）。

 step2-1 step2-1

 step2-2 step2-2

120 - Software Design Mar. 2014 - 121

多言語ローカライズで世界に通用するアプリを目指そう！第11回

ステップ3

　次に、図step3-1のようにチェックボックスの
上にある「＋」マークを押し、選択肢の中から
「Japanese (ja)」を選んでください。するとダイ
アログが現れるので、そのまま［Finish］を押して
ください（図step3-2）。

ステップ4

　Localizationsに新しく「日本語」を追加したことで、左ペインの「MainStoryboard.storyboard」に新しく
「▼」マークが追加されます。それをクリックすると、下に「MainStoryboard.storyboard (Base)」と「Main
Storyboard.strings (Japanese)」が現れます（図step4-1）。
　「MainStoryboard.strings (Japanese）」を選択してみてください。一見複雑そうな文字列がずらっと現
れるはずです（作例では図step4-2のような感じです）。これはStoryboard上のあらゆる文字列を自動で
摘出したものです。ここで行わなければいけないことは至って単純な作業で、「=」の後につづく「"」と「"」
の間の文字をすべて日本語に置き換えるだけです（手間はかかりますが……）。作例では図step4-3のよ
うになりました。
　すべての文字列の変換作業が終われば、日本語のローカライズが完成したことになります。ステップ
3とステップ4を繰り返せば、他の言
語にも対応させることが可能です。

 step3-1 step3-1

 step4-1 step4-1

 step3-2 step3-2

 step4-2 step4-2

122 - Software Design

プログラム知識ゼロからはじめる

iPhoneブックアプリ開発

ステップ5

　では、実際にシミュレータで日本語と英語が切
り替わるかどうかの確認をしてみましょう。
Xcode左上の（再生ボタンのような）ボタンをク
リックしてください（図step5-1）。もしもシミュ
レータが初期設定のままであれば、恐らく英語設
定として起動されるはずです（図step5-2）。
　言語を変更するためには、キーボードで ÌshiftÔ

＋ ÌcommandÔ＋ ÌHÔを入力しましょう。これでシミュ
レータ上のホーム画面に戻れます（図step5-3）。
「Settings（設 定）」ア プ リ を 開 き「General」→
「International」→「Language」と選択していき（図step5-4～6）、「日本語」を選び、右上の「Done」を押しま
しょう（図step5-7）。
　シミュレータが再起動されたら、自分のアプリのアイコンをクリックしてみましょう。今度は日本語
設定の状態で開くので、図step5-8のように日本語の文字に切り替わっていることが確認できるはずです。

 step5-2 step5-2 step5-3 step5-3 step5-8 step5-8

 step4-3 step4-3

 step5-1 step5-1

122 - Software Design Mar. 2014 - 123

多言語ローカライズで世界に通用するアプリを目指そう！第11回

リオ・リーバス／Leo Rivas　
 Twitter @StudioLoupe

iOSアプリ開発を中心に電子絵本作家・
漫画家として活動中。代表作は、KDDI
株式会社に社内導入され、世界で40万ダ
ウンロードを記録する革新的な電卓アプリ
「FusionCalc」と、国 連 主 催 のWSA
Mobile 2013を受賞した、顔の動きで電
子書籍が読める「MagicReader」。電子
絵本はiBookstore/Kindleストア共に児童
書カテゴリ総合1位を獲得。

いたのくまんぼう／Itano Kumanbow
 Twitter @Kumanbow

神奈川工科大学非常勤講師。リオさんと
はGimmiQ名義で「MagicReader」（手を
使わずにページがめくれる電子書籍ビュー
ワ）をリリース。個人ではNinebonz名義で
「江頭ジャマだカメラ」（無料総合1位獲得）、
「i列車の車窓から－そうだ！ 京都行こう！－」
（バーチャル旅行アプリ）などをリリース。アプ
リ紹介サイト「あぷまがどっとねっと（http://
appmaga.net/）」の技術サポータ。

まとめ

　以上がStoryboardを簡単にローカライズする
方法でした。今回は紹介しきれませんでしたが、
このほかにも文字だけでなく画像を言語ごとに
変更する方法や、本誌連載第9回で覚えたUI

ActionSheetやUIAlertViewなども言語別に対
応させる方法などがあります。
　ローカライズは対応する言語の数だけ作業量
が増えるため、最初からどこまでローカライズ

するべきかの判断はなかなか難しいところです。
最初は最小限の言語に対応した状態でリリース
し、ほかに需要が高そうな国があれば、後から
アップデートで追加していくという手もありま
す。ただ、日本語のほかに英語くらいは対応し
ておくと世界に広まるチャンスが上がることは
間違いないので、できるのであれば対応するこ
とをお勧めします。手間をかけた分だけアプリ
を使ってもらえる可能性が高まるので、ぜひが
んばってみてください！｢

 step5-5 step5-5 step5-4 step5-4 step5-6 step5-6 step5-7 step5-7

本連載のサポートページで記事の補足説明をしています。あわせてご活用ください！
 http://www.gimmiq.net/p/sd.html

http://www.gimmiq.net/p/sd.html
http://appmaga.net/
http://appmaga.net/

124 - Software Design124 - Software Design Mar. 2014 - 125

はじめに

　今回はHTML5とAndroidを使って外部器機
を制御する、もっとも簡単な方法の1つを紹介
します。ダイヤルトーン（DTMF）とAndroidス
マートフォンを用いたRGB LED（発光ダイオー
ド）の制御です。HTML5を用いるメリットはプ
ラットフォームに依存しないところです。しか
しハードウェアに直接アクセスすると、プラッ
トフォーム依存になってしまいます。この矛盾
を解決する1つの手段がDTMF（Dual-Tone

Multi-Frequency）を使うことなのです。
　しくみはいたって単純で、DTMFの音源をサ
ウンドファイルとしてWebサーバ側に用意して
おき、HTML5でこの音源を再生します。外部

機器側ではDTMFレシーバ ICで解釈（デコー
ド）し、4bitの信号として取り出します。このう
ちの3bitを用いてRGB LEDを8色に変化させ
ています。
　今回はコードを書くだけでなく、電子工作的
な要素も盛り込んでいます。ブレッドボードを
用いるので半田付けは必要ありませんが、ラジ
オペンチやニッパをご用意ください。動作確認
にはテスタもあったほうがよいかもしれません。

HTML5でLEDを点灯させる
しくみ（システム概要）

　図1がシステムの概要図です。ローカルデバ
イスであるスマートフォンの音声出力ジャック
と外部デバイスであるブレッドボード上の回路
とは、オーディオケーブルで接続されています。

G o o g l e A n d r o i d

今岡 通博　IMAOKA Michihiro
日本Androidの会 コミュニティ運営委員

 Facebook https://www.facebook.com/imaoka.micihihiro

モバイルデバイス初のオープンソースプラットフォームとして、
エンジニアから高い関心を集めるGoogle Android。いち早くそ
のノウハウを蓄積したAndroidエンジニアたちが展開するテク
ニックや情報を参考にして、大きく開かれたAndroidの世界へ
踏みだそう！

HTML5で
Lチカに挑戦

第46回

モバイルデバイス初のオープンソースプラットフォームとして、
エンジニアから高い関心を集めるGoogle Android。いち早くそ
のノウハウを蓄積したAndroidエンジニアたちが展開するテク
ニックや情報を参考にして、大きく開かれたAndroidの世界へ
踏みだそう！

第Android
エンジニアから

の

招待状

G o o g l e A n d r o i dG o o g l e A n d r o i dG o o g l e A n d r o i d

Android
エンジニアエンジニアエンジニア

Android

Web
サーバ

HTML5

DTMF音源

ローカルデバイス オーディオケーブル DTMFレシーバ

音声出力
ジャック 音声信号→

外部デバイス
発光
ダイオード

インターネット

図1　システム概要図 ▼

https://www.facebook.com/imaoka.micihihiro

124 - Software Design Mar. 2014 - 125Mar. 2014 - 125

HTML5でLチカに挑戦 第46回

スマートフォンが発する音声信号が外部デバイ
スに伝わるしくみです。ブレッドボード上には
DTMFレシーバ ICとそれを動作させるために
必要な周辺回路で構成されています。スマート
フォンから発せられたDTMFダイヤルトーンを
解釈（デコード）した結果は、RGB LEDが点灯
する色として反映されます。
　サンプルコード注1で利用するサーバのURLは、

 URL http://imaoca.webcrow.jp/dtmf/

です。また、その下のディレクトリaudio-dtmf/

以下にDTMF音源ファイルが格納されていま
す。なお動作の様子はYouTubeでご覧いただけ
ます注2。

HTML5でDTMFダイヤルトーン
を発声させてみよう（SOFT編）
　全ソースコードはリスト1に掲載しています。
HTMLファイルの構成は<head></head>で囲ま
れたヘッダ部分と<body></body>で囲まれたボ
ディ部分に分けられます。ヘッダ部分は各種属
性や、後ほど説明するスタイルシートやスクリ
プトを記述します。ボディ部分はHTML本体を
記述します。
　ヘッダ部の中の、<style></style>に囲まれた
部分はスタイルシートを記述します。HTML5

ではスタイルシートはCSS（Cascading Style

Sheets）という別ファイルにする場合も多いの
ですが、当サンプルコードではヘッダの中に記
述しています。
　HTMLコードが表示するページの内容である
のに対し、スタイルシートはその見え方やレイ
アウトを効率的かつ統一的に記述します。また、
ブラウザによる差異を限定的な個所に集めて記
述するためのものでもあります。
　図2はローカルデバイスのブラウザでサンプ
ルコード index.htmを実行したイメージです。残

注1） 本誌サポートページからダウンロードできます。
 URL http:/ /gihyo. jp/magazine/SD/archive/2014/

201403/support

注2） http://www.youtube.com/watch?v=6WwrrZjSuAA

念ながら本誌面はカラーページではないので確
認しづらいですが、左から緑、青、シアン、赤、
黄、マゼンタ、白、黒とボタンが並んでします。
ボタンを押せば、その色に発光ダイオードが点
灯する画面デザインになっています。
　#contents{……}の節（リスト1-❶）ですが、
これは後で説明するbtnの配置を横並びにする
ための記述です。display項にはさまざまなオ
プションがあります。それぞれ -webit-boxが
Safari/Google Chrome用、-moz-boxがFirefox

に対応した記述となります。
　.btn（リスト1-❷）はクラス名btnとして正方
形の図形を定義しています。widthとheightで
縦横とも50ピクセルの長さに設定します。

marginで隣り合う図形との間隔を4ピクセルに
設定します。border-radiusで角に丸みを持たせ
ています。
　.btn:mth-of-type(番号)の節（リスト1-
❸）は、btnの番号順の要素にスタイルを適応し
ています。このサンプルでは1番目の要素から
8番目の要素に色を設定していきます。
　<script></script>の間（リスト1-❹）に、
JavaScriptで index.htmの動作を記述します。
window.onload以下の項はブラウザ上で index.

htmを開いたときに一度だけ実行する処理を記
述します。まずクラス名btnのオブジェクトを
すべて取得し、eBtnListへ格納します。次にそ
のオブジェクトリストをもとに、すべてのbtn

オブジェクトにクリックイベントを登録してい
きます。クリックイベントが発生したときにそ
れぞれのbtnに対応した音声ファイルがAudio("

ファイル名 ").play()により再生されます。たと
えば1番目のbtn（図2の1番左のオブジェクト）
が押されると、audio-dtmf/dtmf_1.wavが再生さ
れるしくみです。
　HTMLの本体部分（リスト1-❺）には表示され
るボタンを記述します。またボタンが押された
とき、イベントリスナーの function（リスト1の
下線部分）から、ボタンの属性としてDTMF音
源ファイル名の一部を“val”という属性名で取り

http://imaoca.webcrow.jp/dtmf/
http://gihyo.jp/magazine/SD/archive/2014/201403/support
http://www.youtube.com/watch?v=6WwrrZjSuAA

126 - Software Design126 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

Mar. 2014 - 127

出せるようにぞれぞれのボタンと関連付けてい
ます。

図2　サンプルコード動作画面 ▼

リスト1　サンプルソースコード（index.htm） ▼

<!DOCTYPE html>
<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <meta charset="UTF-8">
 <title>HTML5でLチカ</title>
 <style>
 #contents {
 background-color: aliceblue;
 display: -webkit-box;
 display: -moz-box;
 display: -o-box;
 display: box;
 }
 .btn {margin: 4px; border-radius: 8px;width: 50px; height: 50px;}　　
 .btn:nth-of-type(1) { background-color: green; }
 .btn:nth-of-type(2) { background-color: blue; }
 .btn:nth-of-type(3) { background-color: cyan; }
 .btn:nth-of-type(4) { background-color: red; }
 .btn:nth-of-type(5) { background-color: yellow; }
 .btn:nth-of-type(6) { background-color: magenta; }
 .btn:nth-of-type(7) { background-color: white; }
 .btn:nth-of-type(8) { background-color: black; }
 </style>
 <script>
 window.onload = function() {
 var eBtnList = document.getElementsByClassName("btn");
 　　for (var i=0,len=eBtnList.length; i<len; ++i) {
 eBtnList[i].addEventListener("click", function(){
 (new Audio("audio-dtmf/" + this.getAttribute("val") + ".wav")).play();
 }, false);
 }
 };
 </script>
 </head>
 <body>
 <header id="header"><h1>HTML5でRGB行灯の色を変えてみよう.</h1></header>
 <div id="contents">
 <div class="btn" val="dtmf_1">1</div>
 <div class="btn" val="dtmf_2">2</div>
 <div class="btn" val="dtmf_3">3</div>
 <div class="btn" val="dtmf_4">4</div>
 <div class="btn" val="dtmf_5">5</div>
 <div class="btn" val="dtmf_6">6</div>
 <div class="btn" val="dtmf_7">7</div>
 <div class="btn" val="dtmf_8">8</div>
 </div>
</body></html>

❶

❸

❹

❺

❷

DTMF音声ファイルの生成

　ここでお断りしておくと、HTML5ではブラ
ウザにより再生できる音声ファイル形式がこと
なるので、ブラウザに実装されている音声ファ
イル形式を取得して、それに応じて適切な音声
ファイルを提供するしくみにするのが本来の作
法です。しかし今回は本稿の趣旨にかかわらな
いコードは極力省くという方針ため、音声ファ

http://www.android-group.jp/

126 - Software Design Mar. 2014 - 127Mar. 2014 - 127

HTML5でLチカに挑戦 第46回

イル形式はwavのみとさせてもらいました。wav

フォーマットに対応していないブラウザ注3で試
したい場合は、フォーマットの変換を行ってく
ださい。
　さて、DTMFのダイヤルトーン音源はあらか
じめ生成したwavファイルをaudio-dtmf/ディレ
クトリの下に格納します。図2のように、ブラ
ウザのページ上では左からDTMFトーンの1番
から8番に対応するように並んでいます。btn番
号とDTMF番号とファイル名の対応は表1を参
照してください。
　DTMFの音声ファイルを生成する方法はいろ
いろあるとは思いますが、Web上で任意のDTMF

音声ファイルをダウンロードできる「ON LINE

DTMF Tone Generator注4」というサイトを見つ
けましたので、ここではそれを紹介します。
　このサイトのページ中段にある「Type your

keypad sequence here」の下のテキストボックス
と「Download.wav fi le」と書かかれたプッシュボ
タンがあるので、これらを操作するだけです。
　テキストボックスには「112163 11219611

#9632 ##9696」とあらかじめ表示されています
が、いったんこれをクリアします。そして、た
とえばDTMF番号1の音声ファイル（wavファイ
ル）を生成したいのであれば、テキストボックス
に「1」と入力し、プッシュボタンを押します。す
るとローカルPCのダウンロードフォルダに適

注3） https://developer.mozilla.org/ja/docs/Web/HTML/
Supported_media_formats

注4） http://www.audiocheck.net/audiocheck_dtmf.php

当なファイル名でwavファイルが生成されます。
これを表1に従ってdtmf_1.wavにリネームし、
audio-dtmf/ディレクトリ内にコピーします。こ
の操作を同様に8回繰り返せばDTMF番号に相
当する8個のwavファイルが用意できます。もっ
とも、この操作が面倒という方は筆者がアップ
した音源ファイルをそのままコピーして使って
くださっても結構です。
　今回のサンプルでは1つのボタンにDTMF1

音しか割り当てていませんが、1つのファイル
に複数のダイヤルトーンを連続して生成するこ
とも可能です。それを使うとLEDを特定のシー
ケンスで点滅させることもできます。

DTMFで発光ダイオードを
点灯させてみよう（HARD編）
　DTMFダイヤルトーンの番号と点灯するLED

の色の関係について説明します。 DTMFは数字
の0から9までとA、B、C、Dと＊、#の16種
類の記号を2種類の音声帯域の周波数の組み合
わせで送る規格です。今回の用途では数字の1

から8までの符号を用います。
　DTMFレシーバ ICにどのDTMFダイヤル
トーンが入ってくると、LEDが何色に光るかを
表1に示しました。RGB LEDは赤、緑、青に
光るLEDが同一のパッケージに封入されてお
り、それぞれリード線につながっています。こ
れらのリード線をON/OFFすることで光の3原
色が交じり合って8通りの色を表現します。今
回は色がうまく交じり合うようLED光拡散

表1　ブラウザ上に表示されるオブジェクトとDTMF音源のファイル、LEDの色の対応表 ▼
ブラウザに表示
されるbtn番号

DTMF番号（ダイヤ
ルパッドの番号）

ファイル名
audio-dtmf/

周波数
低域 (Hz)

周波数
高域 (Hz)

D2
(Red)

D1
 (Blue)

D0
(Green)

LEDの色

1 1 dtmf_1.wav 697 1209 0 0 1 Green
2 2 dtmf_2.wav 697 1336 0 1 0 Blue
3 3 dtmf_3.wav 697 1477 0 1 1 Cyan
4 4 dtmf_4.wav 770 1209 1 0 0 Red
5 5 dtmf_5.wav 770 1336 1 0 1 Yellow
6 6 dtmf_6.wav 770 1477 1 1 0 Magenta
7 7 dtmf_7.wav 852 1209 1 1 1 White
8 8 dtmf_8.wav 852 1336 0 0 0 Black

https://developer.mozilla.org/ja/docs/Web/HTML/Supported_media_formats
http://www.audiocheck.net/audiocheck_dtmf.php

128 - Software Design128 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

Mar. 2014 - 129

キャップを使いました。
　DTMFの音を解釈して4bitの出力信号として
取り出すのがDTMFレシーバ（HT9172）です。
表1をご覧ください。DTMFレシーバの出力、
D0、D1、D2はRGB LEDのそれぞれGreen、
Blue、Redに接続されています。すなわち、
DTMFダイヤルトーン1の音を入力するとD0

の出力が1となり、Greenが点灯するという具
合です。ダイヤルトーン2の音の場合はD1の出
力のみが1となり、Blueが点灯します。ダイヤ
ルトーン3の場合はD0とD1が1となり、Green

とBlueが点灯して2つの光が交じり合った水色
（Cyan）となります。このようにDTMFダイヤ
ルトーンに1から8を入力すると、それに対応
した色にLEDが点灯するというわけです。
　図3が外部デバイスの回路図です注5。オーディ
オケーブル経由で流れてきた音声信号をミニ
ジャックで受け、コンデンサと抵抗を経て
DTMFレシーバの2番ピンに入ります。推奨回
路注6ではDTMFレシーバの7番ピンと8番ピン
には3.579545MHzの水晶発振子を接続していま
すが、筆者は3.58MHzのセラロック発振子（コ
ンデンサ内蔵タイプ）を用いました。セラロック

注5） 回路図とブレッドボード配線図は本誌サポートサイトにも
アップしておきます。

注6） http://www.holtek.com/pdf/comm/9170v111.pdf

は水晶と比べ多少精度は劣るものの、低価格で
あることと入手性の良さから採用しました。
　入力されたDTMFのデコード結果は11番ピ
ン、12番ピン、13番ピン、14番ピンにそれぞ
れD0、D1、D2、D3が出力されます。このうち
の3bitの出力信号は抵抗経由で、RGB LEDの
それぞれ対応する色のアノードに接続されてい
ます。これらの抵抗値は、RGBの色のバランス
をとるために調整された値を用いますが、今回
はすべて100Ωとします。
　これ以外にDTMFレシーバに接続されている
部品および値は、データシートの推奨回路と同
じ値を採用しています。VDDには供給電源のプ
ラス側を、GNDにはマイナス側を接続します。
供給電源の電圧は5Vが標準です。だいたい3.6V

から動作しますが、5.5Vは超えないようにして
ください。

ブレッドボード上に回路を
構成する（MAKE編）

　それではいよいよ図3の回路をブレッドボー
ド上に構成していきます。ブレッドボードの部
品を装てんするホールの行には数字、列にはア
ルファベットのアドレスがふられています。X

列とA列の間には1ホール分のスペースが空い
ています。E列とF列の間には2ホール分のス

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

D3

D2

D1

D0
R1

GNDGNDGND

DTMF Receiver HT9172

3.58MHz
セラロック

ミニ
ジャック

R2

R3

330KΩ（R4）

100KΩ（R5）

100KΩ
（R6）

0.1μF

0.1μF

VDD

G

RGB LED
カソードコモンタイプ

B

R

※R1～3は 100Ω

アノード
コモンタイプ

VDD

図3　回路図 ▼

http://www.android-group.jp/
http://www.holtek.com/pdf/comm/9170v111.pdf

128 - Software Design Mar. 2014 - 129Mar. 2014 - 129

HTML5でLチカに挑戦 第46回

ペース（溝）が空いています。
　今回利用するブレッドボードはX列、Y列が
それぞれ内部で電気的に接続されています。ま
た中央の溝を挟んで、それぞれの行も内部で接
続されています。
　図4がこれからブレッドボードに装てんする
部品群です。各部品の入手先は表2の部品表を
参考にしてください。これらをブレッドボード
に2段階に分けて装てんしていきます。

部品装てん1段階目

　図5が最初のステップです。ジャンパ線と背
の低い部品を先に装てんします。図4（G）のよう
なジャンパを用意
します。直径0.6mm

のスズめっき線を
適当な長さに切り、
両端を1cm程度折
り曲げます。今回の
製作ではブレッド
ボードの1ホール
またぐジャンパを6

本、2ホールまたぐ
ジャンパを2本、3

ホールまたぐジャ
ンパを1本用意し
ます。ブレッドボー
ドのホールの間隔

は2.54mm（0.1インチ）ですので、それに応じて
スズめっき線をニッパなどでカットします。
　抵抗は図4（E）のような横向きにブレッドボー
ドに装てんする抵抗を作製します。これらは
DTMFレシーバとRGB LEDの各アノード間に
入る抵抗です（R1～3）。DTMFレシーバのD0と
RGB LEDの緑のアノードをつなぐ抵抗は5ホー
ル、D1と青をつなぐ抵抗は5ホール、D2と赤
をつなぐ抵抗は4ホールまたぎますので、それ
に合わせてリード線をカットし両端をジャンパ
同様1cm程度折り曲げます。
　用意した部品を図5のように装てんしていき
ます。これらの部品は極性などありませんから

表2　部品表 ▼
部品名 数量 参考価格 参考購入先

HT9172 DTMF Receiver 1 105 マルツパーツ館
セラロック3.58MHz 1 20 秋月電子通商
抵抗100KΩ 2 1 秋月電子通商（100個購入時の単価）
抵抗300KΩ 1 1 秋月電子通商（100個購入時の単価）
抵抗100Ω 3 1 秋月電子通商（100個購入時の単価）
セラミックコンデンサ0.1μF 3 10 秋月電子通商（10個購入時の単価）
3.5mmステレオピンジャック基板取付用AJ-1780 1 50 秋月電子通商
ブレッドボードEIC-301 1 150 秋月電子通商
RGB フルカラーLED　5mm　OSTA5131Aカソードコモン 1 60 秋月電子通商
LED光拡散キャップ 1 4 秋月電子通商 (50個購入時の単価)
クリスタルイヤホン　みのむし端子付（動作検証用） １ 380 若松通商
備考：2013/12/27現在のものです。価格および在庫を保障するものではありません。

（A） RGB LED
　　（LED）

（I） DTMF レシーバ（IC1）

（J）クリスタル
　 イヤホン

❶

図6　ブレッドボード完成図6　ブレッドボード完成図6　ブレッドボード完成

❷
❸

❸

❹

❶
❷❸ ❹ ❶ ❷

❶

❶

❶❷❸❹❺❻❼❽❾

181716151413121110

❷

❷

（D）セラロック
　 発振子（CL1）

（B）足を
　 折り曲げた図

（C）セラミック
　 コンデンサ
 （C1, 2）

（E）抵抗
　 横向き（R1-3）

❶

❶

❷

❷

（G）ジャンパ

（H）ミニジャック
　 裏面（JC1）

❶ ❷

（F）抵抗
　 縦向き（R4-6）

❷

❹

図4　部品図鑑 ▼

130 - Software Design130 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

Mar. 2014 - 131

向きを気にする必要はありません。

部品装てん2段階目

　次のステップでは残りの部品を図6のように
装てんしていきます。比較的背の低い部品から
装てんしていくと楽に作業ができます。まず、
DTMFレシーバ（図4（I））を装てんします。この
部品は向きを逆に装てんすると、動作しないば
かりか壊れてしまう可能性がありますので注意
してください。部品の表面のどちらか一端には
半月状のくぼみがあります。これを左に向けて
下に来るピンが左から1番から9番まで並んで
います。上のピンに移って9番の対面が10番ピ
ン。右から順に18番ピンまで並んでいます。1

番ピンがブレッドボードのホールアドレスF列
の9行になるように装てんします（IC1）。
　セラロックを装てんします。これは3本足で

すが極性がありません（CL1）。次は縦向きに装
てんするよう抵抗を図4（F）のように折り曲げま
す。330KΩ 1本（R4）と 100KΩ 2本（R5、R6）
を用意し、図6に従って装てんします。次にセ
ラミックコンデンサ（図4（C））を装てんします
（C1、C2）。極性はありません。F列の6行です
が、ここは1つのホールにジャンパとセラミッ
クコンデンサのリード線を入れますので注意し
てください。
　ミニジャックを装てんします。図4（H）はミニ
ジャックの裏面です。1番ピンがブレッドボー
ドのY列の4行に来るように位置決めしてくだ
さい（JC1）。ミニジャックのピンは少しホール
の大きさに合わなくてきついのですがしっかり
押し込んでください。今のところ実用的には問
題ないようです。ただこのブレッドボードを再
利用して、他の部品を装てんすると穴が広がり
すぎていて多少接触が悪くなるかもしれません。
その点はご了承ください。
　最後にLEDを装てんして作業完了です。図4
（A）はRGB LEDのピン配列を示しています。❶
が緑のアノード、❷が青のアノード、❸が3つ
のLEDの共通カソード、❹が赤のアノードと
なっています。図4（B）のように3番ピンを折り
曲げます。長さは2ホールまたぐ長さにして、先
を1cmほど折り曲げます。ほかのピンも1cmく
らい残してカットします。ただ、仮装てんであ
ればカットしないで直接ブレッドボードに差し
込んでも問題ないでしょう。
　これで、すべての部品の装てんが完了しまし
た。早速電源をつないでみたいところですが、
はやる気持ちを抑えてもう一度ブレッドボード
の配線を確認してみてください。テスタがあれ
ばX列とY列間の抵抗値を測ってみてください。
両者がショートしてないことが確認できたら、
次に電源を接続します。X列にプラス、Y列に
マイナスを接続します。くれぐれも電源電圧が
5.5Vを越えないようにしてください。電源を入
れた直後はDTMFレシーバの出力の状態は不定
なので、電源を入れるたびにLEDが何色になる

A

X

B
C
D
E

F
G
H
I

Y

J

R3
R2

R1

図5　ブレッドボードジャンパ配線 ▼

A

X

B
C
D
E

F
G
H
I

Y

J

IC1

JC1

CL1

LED

C1

C2

R4

R6

❸

❶
❷

❹

R5

図6　ブレッドボード完成 ▼

http://www.android-group.jp/

130 - Software Design Mar. 2014 - 131Mar. 2014 - 131

HTML5でLチカに挑戦 第46回

今岡 通博 （いまおか みちひろ）　日本Androidの会 コミュニティ運営委員

松山市在住。今岡工学事務所（個人事業主）として組込み系、FPGAがらみの開発を生業とするかたわら、日本Androidの会、
SAKURAボードユーザ会などのオープンソース系コミュニティの運営に携わる。
 Mail imaoca@gmail.com　 Facebook https://www.facebook.com/imaoka.micihihiro
 YouTube http://www.youtube.com/user/imaoca

かはわかりません。筆者の場合は3.6Vの電源を
用いましたが、テスタがある方は、電源とブレッ
ドボードのX列あるいはY列の間の電流を測っ
てみてください。LEDが消灯あるいは未装てん
の状態で1.5mA程度であれば回路はほぼ問題な
いでしょう。

動作確認

　ローカルデバイスと外部デバイスをつないで
結合テストです。まずローカルデバイスでブラ
ウザを立ち上げて、DTMF音が再生できるか確
認してください。確認できたらオーディオケー
ブルでローカルデバイスの音声出力ジャックと
外部デバイスのミニジャックを接続します。外
部デバイスの電源を入れてください。LEDは何
かしらの色で点灯していると思います。いよい
よブラウザの操作でDTMF音を外部デバイスに
送り込んでみます。LEDは意図した色に点灯し
たでしょうか。
　うまくいかなかった場合は1つ1つ確認して
いきましょう。原因としてローカルデバイスの
音量不足が考えられます。音量を上げて試して
みてください。それでもうまくいかない場合は、
外部デバイスのDTMFレシーバに音声信号が伝
わっていない可能性があります。ブレッドボー
ドのY列の任意のホールとJ列10行のホール間
に、クリスタルイヤホン（図4（J））を接続すると
小さな音ですがDTMF音を確認できます。音が
確認できても正常動作しない場合は、ブレッド
ボード上の配線をもう一度確認してみてくださ
い。
　音が確認できない場合は、オーディオケーブ
ルとミニジャックの接触あるいは相性の問題か

ミニジャックがブレッドボードに適切に装てん
されてない可能性があります。これらを確認し
てみてください。
　ブラウザの操作でLEDの色は変わるが、意図
した色にならない場合は、DTMFレシーバの出
力とLEDのアノードまでの経路を確認してみて
ください。
　ブレッドボードに部品やジャンパを装てんす
る際、ホールの中の接点までリード線が届いて
ないことがよくあります。この場合ブレッドボー
ドの表面を見ただけでは、なかなか問題個所を
発見することができません。必ず1cm以上はホー
ルにリード線を差し込むようにしてください。
　完成が確認できたら、筆者はホットボンドで
装てん部品を固定しています。しばらく使って
いるうちに部品が取れたりするトラブルを避け
ることができます。部品やブレッドボードを再
利用する際も、あとを残さず比較的簡単にはが
すことができるので重宝しています。

まとめ

　いかがでしたか。ブラウザの操作でLEDの色
が変わるだけなのですが、なぜか楽しくなりま
せんか。DTMFレシーバの出力は4bitあるので、
もっといろんなものをつなげれば楽しいかもし
れませんね。YouTubeの筆者のチャンネル注7に
は、同じしくみでモータを制御したりする動画
もアップしています。HTML5とDTMFレシー
バの組み合わせはとても単純ですが、さまざま
な応用が可能かと思います。ぜひチャレンジし
てみてください。｢

注7） http://www.youtube.com/user/imaoca

http://www.youtube.com/user/imaoca
https://www.facebook.com/imaoka.micihihiro
http://www.youtube.com/user/imaoca

132 - Software Design

FreeBSD 10.0新機能、
次世代パッケージ管理システ
ムpkg(8)

　FreeBSDはサードパーティ製ソフトウェアの導入
や管理に「Ports Collection」を使用しています。Ports

Collectionはmake(1)をベースメカニズムに採用した
ソフトウェアビルドやインストール方法をまとめた
もので、アプリケーションの情報、ビルド方法、
パッチ、インストール方法、依存関係などのデータ
がまとまったソフトウェアのカタログ集のようなも
のになっています。ユーザはPorts Collectionを使
うことで、2万5千個ほどのサードパーティ製ソフト
ウェアをインストールして利用できます。
　FreeBSDではPorts Collectionを使って、事前
にコンパイルしたソフトウェアからサードパーティ
製ソフトウェアを導入したり管理したりする方法も
提供しています。こちらは「パッケージ」と呼ばれて
います。パッケージはFreeBSD 9までとFreeBSD

10以降で別のものに変わります。ここではこの2

つのパッケージ管理システムを、それぞれ「従来の
パッケージ」「pkg(8)」という言葉で区別します。
pkg (8)がFreeBSD 10以降の新しいパッケージ管
理システムです。
　従来のパッケージにはいくつかの課題がありまし
た。主な課題をまとめると次のようになります。

 ●一貫性のあるアップグレード方法が提供されてい

ない
 ●依存関係のトラッキングが不完全

　従来のパッケージはリリースバージョンに対し
て、その時点のPorts Collectionを使ってビルドさ
れたソフトウェアをまとめたものです。リリース時
のインストールには便利ですが、その後のバージョ

ンアップには向いていません。通常、インストール
後のアップグレードにはportupgrade (1)や
portmaster (8)などの管理ツールを使い、Ports

Collectionからビルドする方法を利用するか、Ports

Collectionからパッケージを作成し、そのパッケー
ジからインストールするといった手段を取ります。
　pkg(8)はこうした課題に対する1つの答えを提供
するものです。パッケージ管理システムとしては最
後発となるもので、yum(8)やapt-get(8)と似ていま
す。yum(8)やapt-get(8)との大きな違いは、常に最
新版にアップデートされ続けるPorts Collectionと
シームレスに統合していることと、週に1回といっ
たペースで最新のパッケージが提供される点にあり
ます。
　pkg(8)の提供する機能は強力です。FreeBSD 10

以降はFreeBSDをベースに構築されたシステムの
パッケージ管理の手法が一変すると見られます。本
稿ではpkg(8)の基本的な動作を説明するとともに、
セキュリティ脆弱性への対応方法やPorts

Collectionと混在して運用する方法を紹介します。

pkg(8)の基本的な使い方

　pkg(8)は「pkg サブコマンド」または「pkg オプ
ション サブコマンド オプション 引数……」と

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第5回 ◆ 次世代パッケージ管理システム pkg(8)

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

Mar. 2014 - 133

▶第5回◀
次世代パッケージ管理システム pkg(8)

いった形で使用します（図1）。サブコマンド
で動作を切り替えるしくみを採用していて、
pkg(8)コマンドだけでパッケージ管理できる
ようになっています。提供されている主なサ
ブコマンドやオプションは表1、2のとおりで
す。
　パッケージをインストールするには「pkg
install パッケージ名」で実施します（図
2）。アンインストールは「pkg remove パッ
ケージ名」です（図3）。インストールできる
パッケージの検索は「pkg search キーワー
ド」で実施します（図4）。インストールされ
ているパッケージの情報は「pkg info パッ
ケージ名」で得られます（図5）。インストー
ルされているパッケージの一覧を見るなら
「pkg info -a」と実行します。
　パッケージのビルドは毎週水曜日に実施さ
れ、数日後にリポジトリに反映される予定に
なっています。週に1回のペースで最新版に
更新していくといった運用方法になります。
アップグレードはインストール済みソフト
ウェアすべてに対して実施されます。「pkg
upgrade」でその作業を行えます。
　個別にアップグレードしたり、アップグ
レードを停止する場合はPorts Collectionを
使ったり「pkg lock」を使います。

pkg(8)のしくみを知ろう

　pkg(8)コマンドは2つ存在します。/usr/

sbin/pkgと/usr/local/sbin/pkgです（図6）。

% pkg
Usage: pkg [-v] [-d] [-l] [-N] [-j <jail name or id>¦-c <chroot path>] [-C <configuration file>] [-R ｭ
<repo config dir>] <command> [<args>]

Global options supported:
 -d Increment debug level
 -j Execute pkg(8) inside a jail(8)
 -c Execute pkg(8) inside a chroot(8)
 （…略…）

For more information on the different commands see 'pkg help <command>'.
%

 ▼図1　pkg(8)コマンド実行例

 ▼表2　pkg(8)主要オプション
pkg(8)
オプション 意味

-j 指定したjail(8)環境下でpkg(8)を実行せよというオプション

-c 指定したchroot(8)環境下でpkg(8)を実行せよというオプ
ション

-l サブコマンド一覧の表示

-v pkg(8)バージョン番号の表示

 ▼表1　pkg(8)主要サブコマンド
サブコマンド 意味

add パッケージの登録とインストール

annotate パッケージのアノテーション編集（追加、削除、変更）

audit セキュリティ脆弱性を抱えたパッケージの報告

autoremove オルファンパッケージの削除

backup ローカルパッケージデータベースのバックアップとリストア

check データベース一貫性のチェックと依存関係エラーのチェック

clean キャッシュから古いパッケージを削除

create ソフトウェアパッケージディストリビューションの作成

delete パッケージのアンインストール

fetch リモートリポジトリからパッケージのダウンロード

help サブコマンドの使い方などの情報を表示

info インストール済みパッケージの情報を表示

install パッケージのインストール

lock パッケージのロック

register パッケージをローカルデータベースへ登録

remove パッケージのアンインストール

search パッケージの検索

set ローカルデータベースにおけるパッケージ情報を編集

shlib 対象のライブラリにリンクしているパッケージの表示

stats パッケージ統計情報の表示

unlock パッケージのロックを解除

update パッケージリポジトリカタログのアップデート

updating UPDATING情報の表示

upgrade パッケージの一斉アップグレード

version インストール済みパッケージのバージョン情報を表示

which 指定したファイルがどのパッケージ経由でインストールされ
たものかの表示

134 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

チャーリー・ルートからの手紙チャーリー・ルートからの手紙

i-node番号やファイルのサイズを確認すると、それ
ぞれ別のソフトウェアであることがわかります。
　/usr/sbin/pkgはFreeBSDのベースシステムと
して提供されているコマンド、/usr/local/sbin/pkg

はports-mgmt/pkgからインストールされるソフト
ウェアです（図7、8）。

　pkg(8)コマンドはその性質上、pkg(8)コマンドそ
のものをかなり頻繁にアップグレードする必要があ
ります。ベースシステムに統合したコマンドではそ
ういったことを実施できません。このため、ベース
システムにマージされたpkg(8)は/usr/local/sbin/

pkgをインストールして、そちらへ処理を移すブー

pkg install dash
Updating repository catalogue
The following 1 packages will be installed:

 Installing dash: 0.5.7

The installation will require 121 KB more space

68 KB to be downloaded

Proceed with installing packages [y/N]: y ← yと入力
dash-0.5.7.txz 100% 68KB 68.3KB/s 68.3KB/s 00:00
Checking integrity... done
[1/1] Installing dash-0.5.7... done
#

 ▼図2　パッケージのインストール

pkg remove dash
Deinstallation has been requested for the following 1 packages:

 dash-0.5.7

The deinstallation will free 121 KB

Proceed with deinstalling packages [y/N]: y ← yと入力
[1/1] Deleting dash-0.5.7... done
#

 ▼図3　パッケージのアンインストール

pkg info dash
dash-0.5.7
Name : dash
Version : 0.5.7
Origin : shells/dash
Architecture : freebsd:10:x86:64
Prefix : /usr/local
Categories : shells
Maintainer : eadler@FreeBSD.org
WWW : http://gondor.apana.org.au/̃herbert/dash/
Comment : POSIX-compliant implementation of /bin/sh
Flat size : 121KiB
Description :
DASH is a POSIX-compliant implementation of /bin/sh that aims to be as small as
possible. It does this without sacrificing speed where possible. In fact, it
is significantly faster than bash (the GNU Bourne-Again SHell) for most tasks.

WWW: http://gondor.apana.org.au/̃herbert/dash/
#

 ▼図5　インストール済みパッケージの情報表示

ls -il /usr/sbin/pkg /usr/local/sbin/pkg
45434 -r-xr-xr-x 1 root wheel 133568 Dec 20 06:03 /usr/local/sbin/pkg
19824 -r-xr-xr-x 1 root wheel 33400 Dec 17 10:49 /usr/sbin/pkg
#

 ▼図7　/usr/local/sbin/pkgはports-mgmt/pkgで作成されたパッケージ

pkg search subversion
git-subversion-1.8.4.3
p5-subversion-1.8.5
py27-hgsubversion-1.5.1
py27-subversion-1.8.5
ruby-subversion-1.8.5
subversion-1.6.23_2
subversion-1.7.14
subversion-1.8.5
subversion-book-4515
subversion-static-1.8.5
#

 ▼図4　パッケージの検索

which -a pkg
/usr/sbin/pkg
/usr/local/sbin/pkg
#

 ▼図6　pkg(8)は2つ存在する

Mar. 2014 - 135

▶第5回◀
次世代パッケージ管理システム pkg(8)

トストラップコマンドになっています。/usr/local/

sbin/pkgはベースシステムに統合されたコマンド
ではありませんので、pkg(8)経由で頻繁にアップグ
レードできます。
　従来のパッケージではインストールしたソフト
ウェアの情報は/var/db/pkg/以下にテキストファ
イルの状態で保持されていました。pkg(8)ではそれ
ぞれSQLiteのデータベースとして保持されるよう
になります（図9）。これらデータベースを直接操作
することは推奨されておらず、pkg(8)コマンド経由
で操作するようにとされています。

自動アップグレードとカスタマ
イズのバランスのよい運用へ

　FreeBSDカーネルおよびユーザランドは
FreeBSD Updateで自動アップグレードが可能で
す。pkg(8)でサードパーティ製ソフトウェアの自動
アップグレードも可能になります。FreeBSD 10か
らはBHyVeハイパーバイザも利用できるようにな
りますので、たとえばホスト環境はFreeBSD

Update＋pkg(8)でアップデートを完全に自動化し
ておき、カスタマイズしたカーネルの機能やオプ
ションを指定してビルドしたソフトウェアについて
はBHyVe上で実行する、といったように切り分け
る運用もできるようになります。
　FreeBSD 10以降で登場する新機能はFreeBSD

の運用やシステム構築のスタイルを大きく変えるも
のがあります。しばらくはこうした新機能を紹介し
ていこうと思います :) s

pkg info -l pkg
pkg-1.2.4_1:
 /usr/local/etc/bash_completion.d/_pkg.bash
 /usr/local/etc/periodic/daily/411.pkg-backup
 /usr/local/etc/periodic/daily/490.status-pkg-changes
 /usr/local/etc/periodic/security/410.pkg-audit
 /usr/local/etc/periodic/security/460.pkg-checksum
 /usr/local/etc/periodic/weekly/400.status-pkg
 （…略…）
 /usr/local/sbin/pkg
 /usr/local/sbin/pkg-static
 /usr/local/sbin/pkg2ng
 （…略…）
#

 ▼図8　periodic(8)も/etc/periodic/ではなく/usr/local/etc/periodic/が使われる

tree /var/db/pkg/
/var/db/pkg/
¦-- auditfile
¦-- local.sqlite
¦-- repo-FreeBSD.sqlite
¦-- repo-packagesite.sqlite
¥`-- vuln.xml

0 directories, 5 files
#

 ▼図9　 /var/db/pkg/以下はSQLiteデータベースと脆
弱性データファイル

p.s. PBIとpkg(8)という
 両極端のアプローチ
　FreeBSDに限らずほかのUNIXやLinuxでも同様

ですが、サードパーティ製ソフトウェアの管理には必

ず「依存関係」という課題が発生します。一部をアップ

デートすればほかのソフトウェアの依存関係に影響が

出る可能性があります。ここを解決しないと、安定的

に最新のソフトウェアを使用することができません。

　1つの解決方法はWindowsやMac OS Xのアプリ

ケーションのように、そのアプリケーションの動作に

必要になるライブラリなどを単一のパッケージのなか

に全部含めてしまうというアプローチです。ほかのソ

フトウェアへの依存度が低くなり、そのアプリケー

ションのみでバージョンアップやロールバックを実施

できます。UNIXではPC-BSDの採用しているPBIが

このアプローチを採用しています。

　pkg(8)はこれとは真逆のアプローチを取ったとこ

ろが興味深いところです。全体としての依存関係があ

るのだから、なるべく短周期で登録されているサード

パーティ製ソフトウェアを全部ビルドして最新版を提

供すればよい、という発想です。FreeBSDプロジェ

クトでは、この発想を実現するためにネットワークイ

ンフラとビルドインフラのハードウェアやサービスを

含めて強化に取り組みました。

はじめに

　筆者は、恵比寿の会社で営業の管理職をして
います。オープンソースの会社であるにもかか
わらず、自分でLinuxのソースコードをあまり
見たことはありません。恵比寿の社員はみんな
がソースコードを読めるということはなく、筆
者のように「残念な」ひともいます。

きっかけ

　そんな残念なひとですが、恵比寿通信に寄稿
することを、何気なく引き受けてしまいました。
10年以上Software Designを読んだこともない
ため、年末年始の休みに、本屋で手に取った表
紙に踊る言葉は「あなたの好きなシェルは何です
か？」。筆者の世代（50歳を越えてます）だとcsh

ですか。筆者は、営業が使うワークステーショ
ンでさえSolarisという会社にいましたのでcsh

を使っていました。ただ、親しみがあるのはbsh

とその互換シェルのkshです。社会人になって
5年目に、当時勤めていたメーカーでUNIX

System V Release 4（SVR4）をベースにした

OS開発プロジェクトのプロジェクト管理とビ
ルドチームを担当することになりました。2年
にわたりグループメンバと毎日のビルドとエラー
対応に悪戦苦闘。bshスクリプトを大量に書き、
そして、その数十倍を読みました。ソースファ
イルツリーにある膨大な数のMakefileでは、
UNIXのデフォルトシェルであるbshで手続き
が記載されていたためです。

それなりに
オープンだった時代

　技術者として、営業として、UNIXとLinux

の両方に関連する仕事をしてきました。いうま
でもありませんが、UNIXとLinuxは似ていま
す。LinuxはPOSIXにだいたい準拠していま
す。プログラムを書いて、ビルドする基本的な
方法も似ています。
　最近では、レガシィと悪口を言われるUNIX

ですが、開発現場はオープンな雰囲気でした。
『伽

がら ん

藍とバザール』で言われる「伽藍」の印象は、
内側でバタバタしていた技術者としては、まっ
たく感じませんでした。インターネットで相互
接続され緊密に連携した開発コミュニティこそ
UNIXにはありませんでしたが、AT＆Tやカリ
フォルニア大学バークレイ校を中心として組織
された開発者集団が作りあげたソースコードが、
有償／無償のライセンスで頒布され、世界中の
技術者がUNIXの進化を実現するために力を尽
くしていました。ライセンスされたソースファ
イルを展開して、初めてエディタで開いたとき、
「これが世界への扉だ」と感動したのを思い出し
ます。
　当時の筆者の職場では、AT＆Tから独立し
たUnix System Laboratories（USL）が開発し
たソースコードを基にAT＆Tのハードウェア
である3b2からMIPS CPUのワークステーショ
ンに移植し、独自にマルチプロセッサ化したり、
新機能を追加していました。移植というと簡単
に思われるかもしれませんが、アーキテクチャ
がまるで異なるCPUへの kernelの移植はとて

恵比寿通信
レッドハット

纐纈 昌嗣
Koketsu MASATSUGU

レッドハット㈱　
常務執行役員
製品・ソリューション事業統括本部長

そのソースコード
forkしてませんか？

第 回18

136 - Software Design

もたいへんでした。プロセス、メモリ管理の中
核はアセンブラ。実際には、機能不足があるの
で、自分たちで造り込みもする。品質への要求
がUSLと日本のメーカーで異なるので、バグの
洗い出しと、徹底した性能改善。TPCなどとい
う、世界標準のベンチマークで他社と性能を比
べられるので必死です。パニック文なんてけし
からんものはなくして、何があっても必要な情
報はとったうえで問題なくシステムを停止でき
るようにする。lint、kdb、cvsだけの開発環境
でUNIX kernelの開発をするのは、それはたい
へんでした。アセンブラと16進数のデータを読
んでCのソースコードが即座に頭に浮かぶくら
いプログラミングとデバッグに明け暮れました。
おかげで、体力だけはつきました。
　UNIXのGUIやファイルシステムは発展途上
でした。OPENLOOKやMotifなどのウィンド
ウ管理システムも何が主流になるかわからず、
ネットワークファイルシステムとしてAFS（今
ではOpenAFSとしてオープンソースになって
います）でなくてサン・マイクロシステムズの
NFSを選択するのにさえ勇気が必要でした。メ
インフレーム出身の上司たちからは、リソース
管理の機能が必要だと言われて独自に作り込み
もしました。RHEL6のcgroupと同じ機能を20

年以上前に作り込みました。
　ちなみに、NFSはサン・マイクロシステムズ
が開発したものだということはご存じでしたか。
当時、サンは自社の開発した技術を低価格でラ
イセンスをしてその技術の普及に努めていまし
た。後に、オープンソース「的」なアプローチで
Javaが大きく普及することになる片鱗を見るこ
とができます。
　筆者のいた会社だけでなく、世界中のコン
ピュータメーカーが、同じように、独自のUNIX

を作っていたと思います。自社の作った技術を
他社にライセンスすることもありました。実際
に、筆者も自社の開発したUNIXを国内外のメー
カーにライセンスする営業活動をしました（筆者
の営業としての原点です）。日本語マニュアルを

作って、USLに逆ライセンスもしました。それ
までのメインフレームやオフコンとは異なり、
UNIXの世界では、自社だけで開発した技術に
は価値がなくなり、外から飛びこんでくる新し
い技術を自分たちの技術に昇華させ、自分たち
の開発した技術を世界に普及させるということ
が最重要課題でした。

互換性の維持は難しい

　UNIXの普及により、OS技術の共通化は進み
ました。しかし、SVR4という共通のソースコー
ドであったにもかかわらず、互換性は高くあり
ませんでした。POSIX仕様で縛ってもすべての
動作が同じになるわけではなく、結局は別のOS

になってしまいました。同じソースコードを同
じCPU向けにビルドしたはずのUNIXも、実際
のビルド環境によって違ったものになります。
ライセンス先の外国企業がソースコードから日
本語のライブラリを外してしまったので、static

linkされていたviのバイナリからエラーが出て
いたのを思い出します。加えて、それぞれの企
業が独自に機能追加やバグ修正をしていくので、
互換性がドンドンなくなっていきました。
　オープンに世界を相手に仕事をしていたつも
りだったのですが、出てきたものは結局「囲い込
み」の道具になってしまいました。

悪者はfork

　Linuxでも同じことが起きてもおかしくあり
ません。オープンソースではすべてのソースコー
ドが共有され、公開されます。しかしコンパイ
ラや、そのオプション、ヘッダやソースファイ
ルのレイアウトはビルド環境で異なりますから、
ビルドしたものがバイナリレベルでの互換性が
あるとは言えません。ましてソースコードが変
わってしまえば、UNIXの二の舞です。
　POSIX仕様が互換性の拠り所だったUNIXか
らは大きく進歩しました。しかし、まだUNIX

恵比寿通信レッドハット 第 回18
そのソースコードforkしてませんか？

136 - Software Design Mar. 2014 - 137

と同じ非互換の罠にはまるリスクがあります。
ソースコードの「fork」です。forkさえしなけれ
ば、ソースコードレベルでの互換性は維持でき
ます。恵比寿の会社では、forkは「悪者」です。
「悪者」の誘惑はカスタマイズ文化の日本ではと
くに強いのですが、筆者達は頑固なまでに拒絶
しています。この forkを許さない厳しい姿勢が
Red Hat Enterprise Linuxが生き残ってきた最
大の理由だと思います。

ドアの影から

　オープンソースは新しい時代に入っています。
OpenStackやHadoopがITの未来を築きつつあ
ることは、もはや否定できないでしょう。新し

く生まれたテクノロジも、しっかりしたコミュ
ニティのガバナンスの中で、各メーカーの「囲い
込み」のための独自色を捨てて普及を図っていか
なればなりません。そうでなければ、forkのた
めに失速したUNIXの時代に逆戻りしかねませ
ん。
　オープンソースの世界では、エンジニアの皆
さんは技術革新を実現していくグローバルなコ
ミュニティの一員です。オープンソースは人類
共通のソフトウェア資産を作り上げるうえでの
最良の方法だと思います。が、forkにはご注意
を。ドアの影からあなたを覗いているかもしれ
ません。最近また、forkを世の中で見かけます
から……。ﾟ

多くの企業で導入され、基幹業務やミッションクリティカルなWebシ
ステムにおいて絶大な支持を受けているJBossは、Java言語によ
るオープンソースミドルウェアとして全世界で利用されています。
本書は、JBossの開発に関わるレッドハットの技術陣と、その実践に
おいて確固たる実績のあるNTTオープンソースセンタによる解説
書です。JBossのインストールから各種設定、環境構築方法、エン
タープライズレベルで各種サービスを運用するうえでのプロの技な
ど、総合的に紹介していきます。システム構築から運用まで本書1
冊で完璧です。NTTオープンソースソフトウェアセンタ、

レッドハット㈱ 著
B5変形判／448ページ
定価3,990円（本体3,800円）
ISBN 978-4-7741-5794-8

Javaを利用するシステムエンジニア、プログラマ

138 - Software Design

139 - Software Design Mar. 2014 - 139

LibreOffice 4.2の新機能 47 回

　LibreOffice（以下LibO）は1年に2回のメジャー
バージョンアップが行われていますが、4.2はそのス
ケジュールに沿った本年最初のリリースです。4.1で
はApache OpenOffi ce 4.0からの機能の取り込みが多
かったのですが、4.2ではあまり多くなく、LibreOffi ce

独自の新機能が目白押しで、それだけ開発が活発に
行われているということです。
　新機能に一貫性がないのはいつものとおりなので
すが、今回は昨年のGoogle Summer of Code

（GSoC）での成果がいち早く取り込まれているのが
目立ちます。これまでは別ブランチで途中まで開発
して放置ということもありました。今回もそういう
のもありますがあまり多くなく、GSoCでの開発がお
おむねスムーズに進んだことが伺えます。

概要

 ■スタートスクリーン
　Ubuntuで使っている分には気づかないかもしれま
せんが、LibOを引数なしで起動すると表示されるス
タートスクリーンが一新されました（図1）。これは
GSoCでの成果です。WriterやCalcなどが起動でき
るのはこれまでと同じですが、過去に作成／編集し
たファイルも表示されるようになりました。

 ■Google Drive
　ついにLibOから直接Google Driveにアクセスし
てファイルの編集ができるようになりました。これ
もGSoCでの成果です。ただし、残念ながらLinux

版の4.2.0では動作しませんでした。また、特殊な
configureオプションが必要ですので、パッケージ
版、すなわちUbuntuに最初からインストールされて
いるLibOではこの機能が有効になっていない可能
性があります。
　この機能が有効かどうかは、次の方法で確認して
ください。まず［ツール］-［オプション］-［全般］の
［LibreOfficeダイアログを使用する］にチェックを入
れてください。次にファイルダイアログを開き、右
上にある［...］をクリックします。するとリモートアク
セスに必要な設定を行うダイアログが表示されるの
で、［種類］を［CMIS］にしてください。［サーバーの

全般

Ubuntu Japanese Team
あわしろいくや　AWASHIRO Ikuya

 Mail ikuya@fruitsbasket.info

今回は無事に1月30日にリリースされた、LibreOffice 4.2の新機能を紹介します。

Ubuntu Monthly Report

LibreOffice 4.2の新機能

第47回

図1　刷新されたスタートスクリーン

140 - Software Design

Ubuntu Monthly Report

種類］に［Google Drive］があればこの機能が使用でき
ます。コツとしては、［ユーザー名］はGmailのアドレ
スであることくらいです（図2）。

 ■すべて検索
　検索機能に［すべて検索］ボタンが追加されまし
た。これまでだと上下の矢印で1個ずつ検索する必
要がありましたが、［すべて検索］ボタンを使うと上
下の区別がなく一気に全部検索できます。

 ■囲み線
　Wordでいうところの囲み線機能が実装されまし
た。これもGSoCの成果です。Writerでも同じ翻訳
にしました。囲みたい文字を選択し、［書式］-［文字］
-［囲み線］で設定できます。日本語的には［囲い文字］
のほうがよく使う気もしますが、残念ながらこの機
能は実装されていません。

 ■コアの書き換え
　Calcは平均してどのバージョンでもかなりの改善
があるのですが、4.2ではついにコアを書き換えるとこ
ろまで来てしまいました。コアの書き換えによって処

Writer

Calc

理速度が向上し、メモリの使用量も減少している、と
のことです。そればかりか、OpenCLを使用してGPU

での計算もできるようになりました。
　AMDの発表によると、AMDの新アーキテクチャの
APUを使用する注1と、従来よりも7倍の速度で処理
できる（こともある）とのことです。もちろんそこまで
高速化はされなくてもOpenCLなのでAMDのAPU

だけではなくIntelやNVIDIAでもOpenCLを有効
にすればこの恩恵にあずかることができます。
WindowsだとOpenCLが有効になっているドライバ
をインストールするとおしまいという感じなのです
が注2、Ubuntuだとそうもいかなくてやや困難な場合も
あります。具体的には、AMDのAPUでOpenCLを有
効にするにはUbuntu 14.04にあるドライバが必要で
す。Calcを起動して［ツール］-［オプション］-
［LibreOffi ce Calc］-［数式］-［ユーザー定義］-［詳細］-
［一部の数式の演算にOpenCLを有効にする］を［真］
にしてください（図3）。

 ■関数の追加
　関数はExcelとの相互運用性を向上させるために
追加されることが多いのですが、4.2ではいつもより
多くの関数が追加されています。詳しくは表1を参
照してください。ほとんどがExcel 2010の関数です
が、一部Excel 2013で追加された関数にも対応して
います。しかもWEBSERVICE関数とFILTERXML

注1） コードネーム“Kaveri”のAPUです。すでに販売は開始してい
ます。

注2） 筆者が所有するWindows PCで確認してみたところ、Intelと
AMDはドライバが新しければOpenCL対応になっているとい
う感じでした。NVIDIAは確認していないものの同様だと思わ
れます。

図2　 このように設定できれば、
Google Driveにアクセスできます

図3　 Ubuntu 14.04であれば、プロプライエタリなドライバを
インストールするだけでOpenCLが有効になります

140 - Software Design Mar. 2014 - 141

LibreOffice 4.2の新機能 第 47 回

関数ですので、外部で取得したデータを加工して
Calcにインポートできます。

 ■乱数生成
　筆者にはどのようなニーズがあるのかとんと見当
がつかないのですが注3、［編集］-［連続データ］-［乱数］
で簡単に乱数が生成できるようになりました。

 ■統計
　［データ］-［統計］に、

• サンプリング
• 基本統計量
• 分散分析（ANOVA）
• 相関
• 共分散
• 指数平滑
• 移動平均

が追加され、これらの計算ができるようになりまし
た。Excelの分析ツールと比較するとまだ足りない部
分もありますが、統計関係で確実にCalcを使う機会
が増えるであろう新機能です。

 ■サイドバーがデフォルトに
　これまでのタスクペインに代わり、サイドバーが

注3） 適当な数字でサンプルデータを作るのに便利かなと思いまし
たが、そんなの原稿書く人でないと使わないですよね……。

Impress

デフォルトになりました。もちろん実験的な機能で
はなくなっているのですが、デフォルトで表示され
るのはImpressだけで、あとは必要な場合［表示］-
［サイドバー］のチェックを入れて表示させる必要が
あります。タブが横にまとまり、クリップアートの
挿入もしやすくなって使い勝手が向上したのではな
いでしょうか。

 ■アニメーションの設定
　［アニメーションの設定］が刷新されました。機能
がボタンにまとまったので、ページ内に設定したア
ニメーションの一覧が広く表示されるようになりまし
た。これまではアニメーションの一覧の枠があまり広
くなく、1ページにたくさんのアニメーションを設定す
るとスクロールして確認する必要がありましたが、
その問題を解消して視認性が大幅に向上しました。

 ■Impressリモート
　Impressリモートはプレゼンの最中にImpressを操
作する機能で、今まではAndroid用しかありません
でしたが、GSoCで iOS用も開発されました。しか
し、1月中旬現在ではまだApp Storeでは配信されて
いません。また、Android用Impressリモートも改良
されています。こちらもやはりGSoCの成果です。

 ■Firebird
　今まで内蔵データベース（組み込みデータベース）

Base

関数 Excelの
対応バージョン ジャンル

WEBSERVICE, FILTERXML 2013 文字列
LEFTB, LENB, MIDB, RIGHTB 2000 文字列
COVARIANCE.P, COVARIANCE.S 2010 統計
STDEV.P, STDEV.S 2010 統計
VAR.P, VAR.S 2010 統計
BETA.DIST, BETA.INV 2010 統計
BINOM.DIST, BINOM.INV 2010 統計
CONFIDENCE.NORM, CONFIDENCE.T 2010 統計
F.DIST, F.DIST.RT, F.INV, F.INV.RT, F.TEST 2010 統計
EXPON.DIST, HYPGEOM.DIST, POISSON.DIST, WEIBULL.DIST 2010 統計

表1　4.2で追加された関数

142 - Software Design

Ubuntu Monthly Report

はHSQLDBだけだったのですが、4.2からはFirebird

も選択できるようになりました。ただしRC2で確認
する限りWindowsでは両者が選択できるのですが、
Linux版はHSQLDBだけでした。もちろんUbuntu

パッケージ版だとどうなるのかもわかりません。

 ■Basic IDEのコード補完
　Baseに限ったことではありませんが、Basicでコー
ドの補完ができるようになりました。詳細な設定は
［ツール］-［オプション］-［LibreOffice］-［Basic IDE

オプション］から変更できます。

 ■フィルタ
　AppleのKeynoteインポートフィルタが実装されま
したが、ちょっと試してみたところではあまり精度
はよくなかったです。そもそもKeynoteのファイル
をImpressで開くことはあまり多くないのかなと思い
ます。ほかにもいくつかインポートフィルタが実装
されていますが、古いMac（Macintosh）用だったりし
て、あまりお世話になることはなさそうです。
　既存のフィルタでは、Microsoft Offi ce形式注4の相
互運用性は向上しています。とくにWord（DOCX）
はかなり手が入っています。このあたりを重点的に
開発している企業（CloudOn）が昨年Advisory Board

になったため、今後も継続的な改善が期待できま
す。また、パスワード付きのMicrosoft Offi ceファイ
ルを扱えるようになりました。聞いたところによる
と今までは2007までの対応だったのですが、今回
2013まで対応したとのことです。Microsoftが暗号化
の形式をいろいろと変えているので、対応できなく
なっていたらしいです。

　Apache OpenOfficeからのソースコードの取り込
みも継続的に行われています。大きな変更点だと

注4） 古いバイナリ形式も、新しいXML形式もです。

インポート

Apache OpenOffi ce
からのソース取り込み

IAccessible2サポートがありますが、4.2では実験的
な機能であり、デフォルトでは有効になっていませ
ん。IAccessible2はその名のとおりアクセシビリティ
ツールのためのAPIです。もともとIBM Lotus

Symphonyにあった機能でApache OpenOffi ce 4.0に
盛り込まれる予定でしたが、4.1に延期になりました。
その4.1も春にはリリース予定です。リリース前に
実験的機能として盛り込んでしまうのはサイドバー
でも同じでした。小さな変更だと各種バグフィック
スもあります。ここでいうところの大きな変更／小
さな変更というのはソースコードの修正量のことで
あり、重要かそうでないかということではないこと
にご注意ください。

　バイナリを使っているぶんにはあまり関係ありま
せんし、開発者的にもあまり関係はないのですが、
バイナリのライセンスがLGPL3からMPLv2に変更
になりました（図4）。確かにAL2とMPLv2のソー
スコードが増えているにもかかわらず、バイナリの
ライセンスがLGPL3というのは実体に即していな
かったので、落ち着くところに落ち着いたという感
じです。また1つOpenOffice.orgの呪縛から解き放
たれたともいえます。

 ■Gladeへの置き換え
　LibOは各種ダイアログ／ウィンドウをGlade注5で

注5） ざっくり解説すると、GTK+アプリケーションで使われている
XMLで構成されたUIです。

ライセンス

その他

図4　ライセンスがMPLv2になりました

142 - Software Design Mar. 2014 - 143

LibreOffice 4.2の新機能 第 47 回

書き換えるという作業を継続的に行っており、4.2で
もかなり進行しています注6。このペースだと4.3には
だいたい終わるのではないかと思っていたりもしま
すが、既存の翻訳がリセットされるので翻訳者とし
てはとてもたいへんです。ちなみにGladeで書き換
えたダイアログ／ウィンドウとそうでないのは、
ウィンドウサイズを変更できるかどうかで区別でき
ます。わかりやすいところでは［ファイル］-［PDFと
してエクスポート］で、4.2だと確かにウィンドウのサ
イズが変更できるようになっています。

 ■上級者向き設定
　［書式］-［ページ］-［LibreOffi ce］-［詳細］に［上級者
向き設定］というボタンが追加されました。これは
Firefoxでいうところの“about:config”に相当するも
ので、生の設定を直接変更できます。すなわち本来
はあまり触るべきところではないのですが、今まで
はどういじっていいかもよくわからなかったので設
定項目が増えたことはいいことではないでしょうか。

 ■スマイル
　主としてDraw/Impressの［記号シェイプ］にある
［スマイル］が、より笑顔になりました。ある意味4.2

の一番重要な変更点といえます注7（図5）。

注6） 1月現在で70％ほどが完了しているとのことです。
注7） ネタばらしするのもあれですが、リリースノートでもオチっ

ぽく紹介されているのでここでもそうしてみました。

　前述のとおり新機能がいろいろとあり、UIの書き
換えも進んで8000語前後という未訳語がありました
が、なんとか翻訳が進んで4.2.0リリース時点での未
訳語は700語前後になりそうです。残っている部分
は、おおむねその分野の専門知識がないと翻訳でき
ない部分です。また、同じダイアログでも前のバー
ジョンと翻訳が変わってしまうことも容易に想像で
き、それはすべてにおいていいことではないので
Windows向けの翻訳確認バイナリを用意し、それが
窓の杜注8で紹介されたりもしました。Windows版の
バイナリビルドは根気と時間とWindowsの知識が必
要でUbuntuでビルドするのと比較してすごくたい
へんなのですが、やはりユーザベースが多いので確
認してくれる人の見込みも多いのです注9。

　Ubuntu 14.04にはデフォルトで搭載されます。通
常リリースのサポート期間が9ヵ月になったというこ
とは13.10ユーザはアップグレード必須ですし、
12.04ユーザも順次アップグレードしていくでしょう
し、LibO 4.2だけを単体でインストールすることは
あまりないのではないかと思われます。
　とはいえ、今回もPPA注10での提供はされるで
しょう。ただし問題があり、12.04にPPAのLibre

Officeをインストールするとファイルサーバに置い

翻訳

Ubuntuで4.2を
使用する方法

てあるファイルを開けないという不具合が
あります。それを考えても、今回ばかりは
PPAを使用するのではなく、Ubuntuそのも
のをアップグレードしてしまうのがいいで
しょう。｢

注8） http://www.forest.impress.co.jp/docs/news
/20140110_630372.html

注9） とはいえ期待したほどではないので、やはりユー
ザが少ないということを意識せざるを得ません。

注10） https://launchpad.net/~libreoffice

図5　4.1と4.2のスマイルを比較

http://www.forest.impress.co.jp/docs/news/20140110_630372.html
https://launchpad.net/~libreoffice

144 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

　Linusの旅行の影響で一週間遅れることとな
りましたが、Linux 3.13も無事にリリースされ
ました。今回は3.13に追加された新しいパケッ
トフィルタリングエンジンnftablesについて解
説します。

nftablesとiptables
　新しいパケットフィルタリングエンジンと聞
くと「なぜ今さら?」と思われるかもしれません。
確かにLinuxカーネルにはすでに iptablesなど
のパケットフィルタリング機能が入っていますが、
IPv4や IPv6などで同じようなコードが使われ
ている、カーネル内部にパケットにマッチする
ルールを記述しているため拡張性が悪いといっ
た問題があります。nftablesはこういった問題
を解決し、カーネル内のコードがシンプルになっ
ているという利点があります。それでは
iptablesの現状と、nftablesではそれがどのよう
に変わるのかを見ていきましょう。

iptablesの問題
コードの重複

　今のLinuxカーネルにはパケットを扱うフレー
ムワークが4つも存在しています。まずはIPv4、
IPv6それぞれのパケットを扱う「iptables」と

「ip6tables」、ARP（アドレス解決プロトコル）パ
ケットを扱う「arptables」、そしてbridgeインター
フェースを通過するパケットを扱う「ebtables」
の4つです。この4つのフレームワークの中に
それぞれ同じようなコードが書かれています。
　たとえばどちらもパケットフィルタリングを
行っている部分である iptablesの関数 ipt_do_

table（リスト1）とip6tableの ip6t_do_table（リス
ト2）とを見てみましょう。IPv4とIPv6の違い
ということで“ip”が“ip6”になっていたりと細
かな違いはいくつか見うけられますが、コメン
トも含めてほとんど似たものになっていること
が確認できます。「IPv4と IPv6ということで
とくに似ている」というのもありますが、このよ
うに iptablesではコードが重複して書かれてい
ます。
　この部分に対応するコードがnftablesではリ
スト3、4のように変わっています。それぞれの
関数では IPv4、IPv6のヘッダ位置を示すオフ
セットなどの情報を設定する関数が呼び出され、
メインのルールを適用してパケットを落とすか
どうか決定するような部分は共通のnft_do_

chain_pktinfo関数によって行われるようになっ
ています。
　このようなフィルタ実行部分のコード重複だ
けではなく、ほかのマッチやターゲットといっ

Linux 3.13の新機能
パケットフィルタリングエンジン
nftables
Text：青田 直大　AOTA Naohiro

第24回第24回

144 - Software Design Mar. 2014 - 145

Linux 3.13の新機能
パケットフィルタリングエンジンnftables

第24回第24回

/* Returns one of the generic firewall policies, like NF_ACCEPT. */
unsigned int
ipt_do_table(struct sk_buff *skb,
 unsigned int hook,
 const struct net_device *in,
 const struct net_device *out,
 struct xt_table *table)
{
 static const char nulldevname[IFNAMSIZ] __attribute__((aligned(sizeof(long))));
 const struct iphdr *ip;
 …

 /*
 * Ensure we load private-> members after we've fetched the base
 * pointer.
 */
 smp_read_barrier_depends();
 table_base = private->entries[cpu];
 jumpstack = (struct ipt_entry **)private->jumpstack[cpu];
 stackptr = per_cpu_ptr(private->stackptr, cpu);
 origptr = *stackptr;
 …

 t = ipt_get_target(e);
 IP_NF_ASSERT(t->u.kernel.target);

#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
 /* The packet is traced: log it */
 if (unlikely(skb->nf_trace))
 trace_packet(skb, hook, in, out,
 table->name, private, e);
#endif

…

}

 ▼リスト1　net/ipv4/net� lter/ip_tables.c

/* Returns one of the generic firewall policies, like NF_ACCEPT. */
unsigned int
ip6t_do_table(struct sk_buff *skb,
 unsigned int hook,
 const struct net_device *in,
 const struct net_device *out,
 struct xt_table *table)
{
 static const char nulldevname[IFNAMSIZ] __attribute__((aligned(sizeof(long))));
 …

 /*
 * Ensure we load private-> members after we've fetched the base
 * pointer.
 */
 smp_read_barrier_depends();
 cpu = smp_processor_id();
 table_base = private->entries[cpu];
 jumpstack = (struct ip6t_entry **)private->jumpstack[cpu];
 stackptr = per_cpu_ptr(private->stackptr, cpu);
 origptr = *stackptr;
 …

 t = ip6t_get_target_c(e);
 IP_NF_ASSERT(t->u.kernel.target);

#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
 /* The packet is traced: log it */
 if (unlikely(skb->nf_trace))
 trace_packet(skb, hook, in, out,
 table->name, private, e);
#endif

…

}

 ▼リスト2　net/ipv6/net� lter/ip6_tables.c

146 - Software Design

Linuxカーネル観光ガイド

た部分にもコードの重複があります。たとえば
ah matchのコードもリスト5、6のように似てい
ます。

iptablesの問題 カーネル内
のプロトコル解析コード

　前項でも見たように iptablesにはさまざまな

部分にコードの重複がありました。それだけで
はなくiptablesではカーネル内部にプロトコル
の解析コードを持っています。もし新しくフィ
ルタの条件にしたい部分ができた場合は、カー
ネルモジュールを新しく書く必要があります。
　nftablesではリスト7のようなプログラムをバ
イトコードに変換してカーネル側に送ります。

static unsigned int
nft_do_chain_ipv4(const struct nf_hook_ops *ops,
 struct sk_buff *skb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *))
{
 struct nft_pktinfo pkt;

 nft_set_pktinfo_ipv4(&pkt, ops, skb, in, out);

 return nft_do_chain_pktinfo(&pkt, ops);
}

 ▼リスト3　IPv4のnftables

static unsigned int
nft_do_chain_ipv6(const struct nf_hook_ops *ops,
 struct sk_buff *skb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *))
{
 struct nft_pktinfo pkt;

 /* malformed packet, drop it */
 if (nft_set_pktinfo_ipv6(&pkt, ops, skb, in, out) < 0)
 return NF_DROP;

 return nft_do_chain_pktinfo(&pkt, ops);
}

 ▼リスト4　IPv6のnftables

net/ipv4/netfilter/ipt_ah.c
/* Returns 1 if the spi is matched by the range, 0 otherwise */
static inline bool
spi_match(u_int32_t min, u_int32_t max, u_int32_t spi, bool invert)
{
 bool r;
 pr_debug("spi_match:%c 0x%x <= 0x%x <= 0x%x¥n",
 invert ? '!' : ' ', min, spi, max);
 r = (spi >= min && spi <= max) ^ invert;
 pr_debug(" result %s¥n", r ? "PASS" : "FAILED");
 return r;
}

static bool ah_mt(const struct sk_buff *skb, struct xt_action_param *par)
{
 struct ip_auth_hdr _ahdr;
 const struct ip_auth_hdr *ah;
 const struct ipt_ah *ahinfo = par->matchinfo;

 /* Must not be a fragment. */
 if (par->fragoff != 0)
 return false;

 ah = skb_header_pointer(skb, par->thoff, sizeof(_ahdr), &_ahdr);
 if (ah == NULL) {
 /* We've been asked to examine this packet, and we
 * can't. Hence, no choice but to drop.
 */
 pr_debug("Dropping evil AH tinygram.¥n");
 par->hotdrop = true;
 return 0;
 }

…

}

 ▼リスト5　IPv4のah match

146 - Software Design Mar. 2014 - 147

Linux 3.13の新機能
パケットフィルタリングエンジンnftables

第24回第24回

　リスト7のバイトコードでは、

・ ネットワークヘッダから16byte目から4byte
をレジスタ1に読み込む

・ レジスタ1と0x00ff ff ff の論理積をとる
・ レジスタ1 == 0x005000fd9 の比較を行う
・ レジスタ1 == 0x005000fd9 であればカウ
ンタを増やす

といった処理が実行されます。すなわち、宛先
アドレスが“217.15.8.0/24”であるような IPv4

パケットをカウントする処理が行われます。
　このようにnftablesではプログラムをカーネ
ル側に送ることができるので、新しくマッチし
たい部分ができても対応するバイトコードをユー
ザ空間で書いて送信すれば良いので、カーネル
内部に新しいコードを書く必要がありません。
実際にカーネル内のコードが iptablesの70,000

行ほどから、nftablesでは7,000行まで減ってシ

ンプルになっています。また、nftablesではカー
ネルの更新なしに新しいマッチを行うことが可
能になっているわけです。

iptablesの
その他の問題

　iptablesには、ほかにもルールの数が増えて
くるとルールの追加に時間がかかるという問題
がありました。nftablesでは1回のカーネル ̶

ユーザ間の通信で複数のルールを送信できるよ
うになったのでこの問題が解決されています。
また、ユーザプログラムの観点では、iptablesは
ほかのプログラムから呼び出すことのできるラ

net/ipv6/netfilter/ip6t_ah.c
/* Returns 1 if the spi is matched by the range, 0 otherwise */
static inline bool
spi_match(u_int32_t min, u_int32_t max, u_int32_t spi, bool invert)
{
 bool r;

 pr_debug("spi_match:%c 0x%x <= 0x%x <= 0x%x¥n",
 invert ? '!' : ' ', min, spi, max);
 r = (spi >= min && spi <= max) ^ invert;
 pr_debug(" result %s¥n", r ? "PASS" : "FAILED");
 return r;
}

static bool ah_mt6(const struct sk_buff *skb, struct xt_action_param *par)
{
 struct ip_auth_hdr _ah;
 const struct ip_auth_hdr *ah;
 const struct ip6t_ah *ahinfo = par->matchinfo;
 unsigned int ptr = 0;
 unsigned int hdrlen = 0;
 int err;

 err = ipv6_find_hdr(skb, &ptr, NEXTHDR_AUTH, NULL, NULL);
 if (err < 0) {
 if (err != -ENOENT)
 par->hotdrop = true;
 return false;
 }

 ah = skb_header_pointer(skb, ptr, sizeof(_ah), &_ah);
 if (ah == NULL) {
 par->hotdrop = true;
 return false;
 }

…

}

 ▼リスト6　IPv6のah match

payload load 4b @ network header + 16 => reg 1
bitwise reg 1 = (reg=1 & 0x00ffffff) ^ 0x00000000
cmp eq reg 1 0x005000fd9
counter pkts 0 bytes 0

 ▼リスト7　カーネル側に送られるプログラム

148 - Software Design

Linuxカーネル観光ガイド

イブラリを実装していないという問題があります。
つまり、ほかのプログラムから iptablesの機能
を使おうと思えばコマンドを叩くしかありませ
んでした。
　nftablesでは libnftnlというnftablesの機能へ
のライブラリが開発されています。このライブ
ラリを使うことで、nftコマンド（nftables用のコ
マンド）を使わずに自分でnftablesのルールを参
照・追加・削除するようなプログラムを書くこ
とができるようになります注1。

nftの使い方
　ここからはnftablesのコマンドnftの使い方に
ついて見ていきます。nftでルールを設定するに
は3つの方法があります。1つはコマンド引数と
して指定する方法、2つめはファイルに書いて“-f”
の引数として指定する方法、そして3つめは“-i”
引数を用いてnftコマンドを interactiveモード
で起動する方法です。
　iptablesでは初めから tableとchainが設定さ

注1） たとえばnftablesのルールを jsonの記述から追加するCの
コードが公開されています。https://git.netfilter.org/
libnftnl/tree/examples/nft-rule-json-add.c

れていました注2が、nftablesでは初めから設定
されているtableとchainはありません。ですの
で、まずはtableとchainを設定する必要があり
ます。nftablesのソースに同梱されている“ipv4-

fi lter”というファイルが iptablesに相当する
chainを追加するためのルールを記述したファイ
ルですのでこれを使います。“nft -f”でファイル
を読み込み、“nft list table ip fi lter”を使うと
chainが正しく追加されていることが確認できま
す（図1）。
　では次に“8.8.4.4”へのパケットをカウントす
るルールを追加してみましょう。ルールの追加
には“add rule <ファミリー> <テーブル >

<chain> <条件> <ターゲット>”といった記法を
使います。ターゲットに“counter”と“log”とい
う2つが一度に指定できていることに注目して
ください（図2）。“list table”してみるとcounter

の値が0で表示されています。8.8.4.4に1回
pingしてから再度“listtable”するとcounterの値
が正しく増えていることを見ることができます。

注2） そのため、何もルールを設定していなくてもパフォーマン
スが落ちる問題がありました。

cat /etc/nftables/ipv4-filter
#!/sbin/nft -f

table filter {
 chain input { type filter hook input priority 0; }
 chain forward { type filter hook forward priority 0; }
 chain output { type filter hook output priority 0; }
}
nft -f /etc/nftables/ipv4-filter
nft list table ip filter
table ip filter {
 chain input {
 type filter hook input priority 0;
 }

 chain forward {
 type filter hook forward priority 0;
 }

 chain output {
 type filter hook output priority 0;
 }
}

 ▼図1　tableとchainの設定

https://git.netfilter.org/libnftnl/tree/examples/nft-rule-json-add.c

148 - Software Design Mar. 2014 - 149

Linux 3.13の新機能
パケットフィルタリングエンジンnftables

第24回第24回

nftables：set
　iptablesでもIP setを使うことで IPアドレス
の集合を扱い、その集合についてのルールを記
述できます。nftablesではより統合された形で

 IPアドレスやポート番号の集合を定義し、使用
できます。集合には無名の集合と、名前付きの
集合とがあります。無名の集合は図3の❶のよ
うに“add rule”で“{”と“}”とでくくって使用でき
ます。❷名前付きの集合はまず“add set”を使っ
て名前の型を指定して定義し、❸その集合に要

nft -i
nft> flush table ip filter
nft> add rule ip filter output ip daddr { 8.8.8.8, 8.8.4.4 } counter ……❶
nft> list table ip filter
table ip filter {
…
 chain output {
 type filter hook output priority 0;
 ip daddr { 8.8.8.8, 8.8.4.4} counter packets 5 bytes 331
 }
}
nft> add set ip filter google_dns {type ipv4_address;} …………❷
nft> add element ip filter google_dns {8.8.8.8, 8.8.4.4} ………❸
nft> flush table ip filter
nft> add rule ip filter output ip daddr @google_dns counter ……❹
nft> list table ip filter ……❺
table ip filter {
 set google_dns {
 type ipv4_address
 elements = { 8.8.8.8, 8.8.4.4}
 }
…
 chain output {
 type filter hook output priority 0;
 ip daddr @google_dns counter packets 0 bytes 0
 }
}
nft> delete set ip filter google_dns

 ▼図3　IP setで IPアドレスの集合を扱う

nft add rule ip filter output ip daddr 8.8.4.4 counter log
nft list table ip filter
table ip filter {
…
 chain output {
 type filter hook output priority 0;
 ip daddr google-public-dns-b.google.com counter packets 0 bytes 0 log
 }
}
ping -c 1 -q 8.8.4.4
PING 8.8.4.4 (8.8.4.4) 56(84) bytes of data.

--- 8.8.4.4 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 52.542/52.542/52.542/0.000 ms
nft -n list table ip filter
table ip filter {
…
 chain output {
 type filter hook output priority 0;
 ip daddr 8.8.4.4 counter packets 1 bytes 84 log
 }
}

 ▼図2　パケットをカウントするルールを追加する

150 - Software Design

Linuxカーネル観光ガイド

素を追加します。❹こうして、名前を付けた集
合はルールの定義の中で“@”を先頭に付けて参
照できます。❺“list table”を使って“table ip

fi lter”の中に定義されている集合を見ることが
できます。

verdictsとmapping
　最後にverdictsとmappingについて見てみま
しょう。これは多くのプログラミング言語で使
われている「辞書」のようなデータ構造を使って
ルールのマッチングをできるしくみとなります。
たとえば、“192.168.0.0/24”へのパケットを落
とすが、“192.168.0.5”へのパケットだけは通す
といった処理をverdictsを使って図4のように
書くことができます。verdictsも集合の場合と
同様に名前を付けることができます。

　まだ多くのドキュメントでverdictsの“キー”
と“値”の区切りに“=>”が使われていますが、こ

れではシェルで使いにくいこともあり“:”を使う
ように変更されていることに注意してくださ
い注3。

まとめ
　今回は iptablesなどを置き換えることを目的
とした、新しいパケットフィルタリングエンジ
ンnftablesについて解説しました。nftablesに
よってカーネル内にコードを書かなくても新し
いマッチを行えるようになったり、ほかのプロ
グラムから使えるライブラリが提供されるなど、
パケットフィルタの開発が容易になります。
　Linux 3.13がリリースされたことで3.14の
マージウィンドウが開始されています。次回は
3.14にどんな機能が入るのかを紹介できるかと
思います。｢

注3） https://git.netfilter.org/nftables/commit/src/parser.y?id
=21cfa9a7405f78f424c869e592d21ebdaf379803

nft -ni
nft> flush table ip filter
nft> add rule ip filter output ip daddr vmap {192.168.0.0/24 : drop, 192.168.0.5 : accept}
nft> list table ip filter
table ip filter {
…
 chain output {
 type filter hook output priority 0;
 ip daddr vmap { 192.168.0.0-192.168.0.4 : drop, 192.168.0.5 : accept, ｭ
192.168.0.6-192.168.0.255 : drop}
 }
}
nft> add map ip filter verdict_map {type ipv4_address : verdict;}
nft> add element ip filter verdict_map {8.8.8.8:drop}
nft> add rule ip filter output ip daddr vmap @verdict_map
nft> list table ip filter
table ip filter {
 map verdict_map {
 type ipv4_address : verdict
 elements = { 8.8.8.8 : drop}
 }
…
 chain output {
 type filter hook output priority 0;
 ip daddr vmap { 192.168.0.0-192.168.0.4 : drop, 192.168.0.5 : accept, ｭ
192.168.0.6-192.168.0.255 : drop}
 ip daddr vmap @verdict_map
 }
}
nft> flush chain ip filter output
nft> delete map ip filter verdict_map

 ▼図4　verdictsとmapping

https://git.netfilter.org/nftables/commit/src/parser.y?id=21cfa9a7405f78f424c869e592d21ebdaf379803

Mar. 2014 - 151

第3話 声の網

　「SDでSF」といったら、やはり避けられない
のが「人工頭脳の支配と反乱」というテーマ。ロ
ボット工学三原則の生みの親であるアイザック・
アシモフも好んで取り上げたテーマですし、そ
の「ロボット」という言葉の生みの親であるカレ
ル・チャペックの『R.U.R』自体、このテーマの
作品になっています。ここであえて「電子頭脳」
ではなく「人工頭脳」と書いたのは、電子計算機
よりも古いテーマだから。実際アシモフの人工
頭脳は、電子回路ではなく陽電子回路という謎
技術で作られたという設定になっています。
　しかし、この頃の人工頭脳には、人格と意志
がありました。ある意味ふつうの「寛

B e n e v o l e n t

大なる
独
D i c t a t o r

裁者」。しかし人格を持った人工頭脳はいまだ
実現されていないのは、みなさんご存じのとお
り。HAL9000もアトムもどう実現したものや
らいまだに見当もつきません。え？　北の独裁
者三代目はドクター・ゲロ作ですって？　それ
はマンガの読みすぎですっ。
　にもかかわらず、「人格なき人工頭脳に
よる人類支配」は、見事に予言されていま
す。星新一その人によって。『声の網』が
上梓されたのは1973年。さすがにスマホ
どころかパソコンもない時代に書かれた
だけあって、人工頭脳とのやりとりは入
出力とも電話による音声というところに
こそ時代を感じさせますが、コンピュー

タではなくコンピュータネットワークが
「支配者」であること、そこには「独裁者」が存在
しないこと、そしてなによりそのネットワーク
が人類の福祉と治安を向上させるために生まれ、
育てられたことは「完全に一致」しています。
　本書を21世紀においてリアルにしているの
は、「支配者」の手足が生身のヒトであること。
ネットの通報で現場に向かう警官もヒトなら、
データセンターで壊れた部品を交換するのもヒ
トなら、ポチられた商品を玄関まで届けてくれ
るのもヒト。「支配網」を実現するのにあたって、
人格をもった支配者も必要なければ支配を実行
する手足も必要なかったのですね。我々自身と
いう部品がすでにあるのですから。
　圧巻なのは、それがクラッキングやフィッシ
ングといった悪意ではなく、それを防ごうとい
う善意の積み重ねによって実現したこと。その
善意の一つ一つを短編とし、それを十二編集め
て長編としたことは、ショートショートの第一
人者の面目躍如。読者の皆さんは、その善意の
一片を担う立場にいるはずです。一時絶版だっ
たのですが、復刊されたうえにKindle化されて
いることは、電網時代におけるせめてもの救い
かもしれません。｢

題字／イラスト　by aico

『声の網』
（星新一／角川文庫）

 第3回

152 - Software Design

があるのですが、砂原さんは「勝手に取られている情
報もたくさんある」と指摘します。これからはそのよ
うな個人情報を各自が意識できる形で預け、何かに
役立てるしくみを作りたいという考えを示しました。
その実現を目指すのが「情報銀行」プロジェクトです。
このようなしくみができれば、たとえば医療におい
ても個人の体質などのデータを利用した効果的な健
康管理や予防治療が可能になりますし、ほかにも街
づくりや災害対策などさまざまな方面への適用が考
えられます。
　情報銀行のしくみは、個人は総合的な個人情報の
管理／利用を情報銀行に「信託」し、企業は情報銀行
から情報を受け取り自社のサービスに利用する、と
いうものです。実現のポイントとして、情報を保護
するのは当然ですが、統合化された個人情報から新
しい価値を生み出せることや、社会から信頼され、
ここに預けることで良いことがある、というブラン
ドを確立することが重要です。活動としては、まず
母体となる組織として情報銀行コンソーシアムを設
立し、技術開発や実証実験、社会に受け入れられる
ためのしくみ作り、利活用についての検討などを
行っていきます。当初の活動期間は3年を予定して
います。詳しくは情報銀行コンソーシアムのWebサ
イト注1をご覧ください。
　質疑応答の時間も十分にあり、とくにKOFの基調
講演のため来場していた高木浩光さんとの議論は貴
重な1コマでした。これからどのような活動成果が
出てくるか楽しみです。

注1） URL http://www.information-bank.org/

　今回は2013年11月に大阪と大分で行った研究会
の模様を報告します。

 ■Thinking RealSpace：みんなのパーソナル

情報を集め気持ちよく提供してもらい活用しよ

う!!!　̶情報銀行：あなたの「情報」を預けて利

活用してみませんか？̶

 【講師】砂原 秀樹

 （慶応義塾大学／日本UNIXユーザ会）

 【司会】法林 浩之（日本UNIXユーザ会）

 【日時】2013年11月8日（金）15:00～15:50

 【会場】大阪南港ATC ITM棟 10階サロン

　大阪大会は前回報告した関西オープンフォーラム
（KOF）の中で行いました。2013年8月の島根大会と
同じテーマで砂原さんに発表していただきましたが、
今回は持ち時間が50分あったのでじっくりとお話を
お聞きしました。参加者は38人でした。
　最初に、これまでの砂原さんの研究テーマの中か
ら「個人から情報を集める」例がいくつか紹介されま
した。たとえばインターネットカーのプロジェクト
では、個々の車両から集めた情報を集積し地図に
マッピングすることで、渋滞状況やタクシーの巡回
状況などがわかるようになりました。これらの成果
は今では実サービスとして利用されています。

■「勝手に取られる」から「意識的に預ける」しくみへ

　前述のように個人から出される情報には高い価値

IT業界の2つのムーブメントを追う（情報銀行＆AWS）

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

NO.29
March 2014

大阪大会

http://www.jus.or.jp/
http://www.information-bank.org/

Mar. 2014 - 153152 - Software Design

 ■JAWS-UG熊本の活動について

 【講師】松岡 祥仁（JAWS-UG熊本支部 副会長）

 【司会】法林 浩之（日本UNIXユーザ会）

 【日時】2013年11月23日（土）15:15～16:00

 【会場】大分県消費生活・男女共同参画プラザ

 「アイネス」小会議室2

■国内シェア1位のAWS、その理由は？

　大分大会は2年連続の開催となりました。今回は
Amazon Web Services（以下、AWS）のユーザグルー
プ「JAWS-UG」熊本支部の松岡さんにご講演いただ
きました。参加者は7名でした。
　はじめに、同支部の主要メンバーが支部設立後
続々と独立した（松岡さんもその1人）というエピ
ソードを紹介し、このようなことが可能なのもAWS

のおかげであるという話がなされました。続いて同
支部の活動紹介として、まず2013年6月に行われた
AWS Summit Tokyoに主要メンバー全員で参加した
話が、多数の写真を交えて紹介されました。
　同イベントには約9,000人が参加し、場内の混雑
も相当なものでした。このときに日本のAWSユー
ザ数が初めて発表されたのですが、約2万社が採用
しているとのこと。国内クラウドサービスでもAWS

がシェア1位であることが明らかになりました。
　イベントのスポンサー一覧を見ると、小さな会社
がエバンジェリストなどの人的貢献を評価されて上
位クラスのスポンサーに名を連ねています。これは
AWSを使うことで小企業も大企業と対等に勝負でき
ることの表れであり、そんな夢のある世界であるこ
とが、これだけ多くの人をイベントに引き寄せてい
るのではないかというのが松岡さんの分析です。

■とはいえ、まだ課題も

　熊本支部ではこれまでに4回のセミナーを開催し
ていますが、上記の盛り上がりとは裏腹に、回を追
うごとに参加者数が減っているというデータが紹介

されました。3回目が18人にまで落ち込んだことに危
機感を持ち、4回目は懇親会を熊本の路面電車を借り
切って開催したら参加者が増えました。参加者数の
伸び悩みの理由は、「AWSは基本的に英語で提供さ
れている」「サービスが多岐に渡るため理解しにくい」
「ハンズオンセッションでインスタンスを作成するの
にも費用がかかる」「クラウドにデータを預けること
への抵抗感がまだ根強い」などが挙げられます。そし
て、やはり金の匂いがしないと人が集まらないので、
AWSを基盤とする新たなビジネスを考えていきた
い、具体的にはAndroid搭載のSmart TV製品と
AWSを組み合わせたサービスを検討中であるという
話をして講演を締めくくりました。
　時間に余裕があったので質疑応答もいくつか行い
ました。熊本支部で行っているセミナーの内容は、
AWSのサービスから1つを選んでエバンジェリスト
が解説、ハンズオンセッション、導入事例のライト
ニングトーク、セミナーが終わってからの懇親会と
いったところです。九州のJAWS-UGで一番活発な
のは福岡で、ほぼ毎週会合を行っています。

■価格面も魅力の1つ

　AWSの最大の魅力は価格で、とくにアップロード
時は課金されずダウンロード時のみ課金されるしく
みのため、大きなデータを長期保存するのに適して
います。また、冗長化のしくみが標準で装備されて
いるのも利点です。AWSは稼働時間で課金されるの
で、使わないインスタンスは停止しておくと課金さ
れないといったノウハウも紹介されました。熊本支
部の今後の活動としては、2014年3月頃に次回のセミ
ナーを実施すべく企画しています。

◆　◆　◆
　JAWS-UGは全国で草の根的に支部が立ち上がっ
ており、九州内にもいくつかの支部があるそうです。
このような動きの背景には技術的なおもしろさだけ
でなくビジネス的な要素もあることが今回の講演で
わかり、これはもしかしたら1990年頃のUNIXブー
ムと同じようなものなのかもしれないと思いました。
｢

IT業界の2つのムーブメントを追う（情報銀行＆AWS） March
2014

大分大会

154 - Software Design

　前号では、ITを用いた復旧・復興支援を行ってい
る団体やコミュニティ、個人が集まり、今後の活動
を議論するための「ITx災害」会議の背景や準備、午
前中の会議の様子をお伝えしました。今号では、参
加者間のネットワーキングを広げる試みとして企画
した芋煮会と、午後のアンカンファレンスについて
ご紹介します。

芋煮会

　前号でお伝えした参加証のほかに、もう1つの参
加者の交流を促すしかけが「芋煮会」です（写真1）。
皆さんは芋煮という料理をご存じでしょうか。芋、
野菜、肉など具材を持ち寄って屋外で煮込んで皆で
食べるという芋煮会は、東北でもとくに山形と宮城
の秋の風物詩でもあります（写真2）。
　今回のイベントのランチタイムには「芋煮はコ
ミュニケーションプラットフォーム」と掲げて活動
されている全日本芋煮同好会注1の皆さんにより、
山形風の醤油ベースの芋煮とカレーうどんが振る舞
われました。当日は天候が良かったこともあって、

屋外で正に芋煮会さながらに、参加いただいた皆さ
んが和やかな場の中で会話を楽しんでいました。ア
ンカンファレンスの場とはまた違った雰囲気で、新
しいつながりが生まれていたようです。

午後の部：
アンカンファレンス

　参加者の皆さんには大型の付箋紙に自分が考えて
いるトピックを書いて、それをホワイトボードにど
んどん貼り付けてもらいました（写真3）。午後は皆
さんから出していただいたそれらのトピックを14

に絞り込み、AからEの5つのトラックに分かれて
アンカファレンス方式でディスカッションが行われ
ました。各トラックにはファシリテーターが付き、
トピックごとに参加者からトピックリーダーが選出
されて議論が進められていき、最後に各トラックか
らの発表注2が行われました。

Aトラック

　Aトラックでは環境というキーワードを軸に、被
災者自身による情報、ツールをどうするかについて

Hack For Japan
エンジニアだからこそできる復興への一歩

「ITx災害」会議（後編）第27回
社会的課題をテクノロジで解決するためのコミュニティHack For Japanの活動をレポートする本連載。
今号も前号に引き続き、昨年10月6日に開催された「ITx災害」会議の後半の模様をお届けします。

●Hack For Japanスタッフ
　及川 卓也　OIKAWA Takuya
　 Twitter @takoratta
　高橋 憲一　TAKAHASHI Kenichi
　 Twitter @ken1_taka

注1 https://www.facebook.com/imonikai
注2 個別セッション発表の動画 URL http://youtu.be/1YekN9CwH7k

 ◆写真1　芋煮会会場の様子 ◆写真3　続々と集まるトピック

 ◆写真2　芋煮

https://www.facebook.com/imonikai
http://youtu.be/1YekN9CwH7k

Mar. 2014 - 155

「ITx災害」会議（後編）第27回

議論が行われました。
 ●被災者自身による情報発信
　“マスメディアは命を救うことはできない”という話
が出ました。マスメディアのようなトップダウンでは
なく、ボトムアップによる市民メディアが必要で、
その例として女川災害FMの事例が挙がりました。
　女川災害FMはローカル発信のメディアとして
Twitterで発信している人たちを集めて発信し、震
災時に役立ちました。その反面、個人が発信する情
報の信頼性も問題となり、女川災害FMにおいても
信頼性に対するリテラシーを高めていくことにチャ
レンジしていました。
　また、女川災害FMからの情報を東北放送が放送
するといったこともあり、情報発信のプラット
フォームについての議論もありました。
 ●ツールをどうするか
　災害時に人の命を救うようなアプリケーションは
どのようなものがあるかを考えました。状況によっ
て、ネットにつながっている場合と、つながらない
場合の2つの前提があります。
　つながっている場合でも、災害用サービスを使え
る状況になっているのは2割というデータがありま
す。緊急地震速報を受信したら自動的に立ち上がる
アプリなどを最初から組み込んでおくことが必要と
されるのではないかと思われます。
　一方つながっていない場合には、まず何とか被災
地でのネットワークを構築できないかという話にな
り、携帯をトランシーバーのように使えるような、
Wi-Fiのアドホック通信などの話が出ました。長い距
離での通信ができるようにして、避難所間で支援の情
報などが共有できると良いのではないかと思います。
 ●プロジェクト継続
　お金の問題、人の問題、体制の問題の3つの軸で
議論しました。
　お金については、災害といっても普通のビジネス
と同じような問題があります。ボランティアにエン
ジニアはいても、企画や営業の人があまりいなかっ
たのではないでしょうか。そういう人にお金を回す
しくみを考えてもらえると良いのではないかという
話がありました。

　人については、気持ち、情熱、やりがいがどこま
で続くかという問題が出てきます。ボランティアで
やっていただいたことに対してお金を払うようにし
た後、そのお金の範囲でしか成果が出てこなくなっ
たという事例もあり、ビジネスとボランティアとい
う相反する中でどう自分の立ち位置を決めるか難し
いのではないかと思います。
　体制については、プロジェクトの立ち上げ時に合
意形成をしないといけない、ということが挙げられ
ました。

Bトラック

　Bトラックでは連携というキーワードを軸に、地
図情報、プライバシー、団体間連携について議論が
行われました。
 ●地図・地理情報

　地図をどう使ったかの振り返りを行いました。災
害時、既存の地図は必ずしも使いやすいものとはな
らず、地図と何をひもづけるか、たとえば物資をど
こに送るかなどに活用できるよう、自転車に何かセ
ンサーを付けることで地図作りができるのではない
かというアイデアが出ました。
 ●プライバシー

　アーカイブとしていろいろ残っているものの中
に、忘れる権利、忘れてほしい、というものもある
のではないかという議論がありました。「プライバ
シー」という言葉が片仮名であるように、日本では
そもそも対応する概念がないのではないでしょう
か。たとえばTwitterのアーカイブを削除する権利
もあるのではないかと思います。
　客観的なプライバシーと主観的なプライバシーの
違いもあり、不安を持たずに個人情報を登録する環
境はないかという話になり、個人情報保護法など法
整備の問題があるが民間主導型でやれると良いので
はという話も出ました。
 ●団体間連携

　「連携したほうがいいよね」と言っているだけでは
なく、想いがあって動ける人が集まる今日のような
場を継続してやっていくことが大切です。顔を突き
合わせた関係はオンラインより強いので、ネットだ

156 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

けでなくリアルでの飲み会などをやっていきたいと
いうことになりました。

Cトラック

　Cトラックでは行政と民間の連携、オープンデー
タ、記録・アーカイブについて話し合われました。
 ●行政と民間連携
　緊急時、復興時の話がありますが今回おもに話し
たのは緊急時のことで、行政のほうに根本的な思想
がないので統一した動きが取れていないのではない
かという話がありました。民間のほうもバラバラで
はなくまとまるべきで、最終的には人間関係が大切
だという話になりました。
 ●オープンデータ
　オープンデータと言ってしまうと余計な調整が
入ってしまう恐れがあります。災害時公開情報とい
うような言い方にして災害時公開協定というような
ものを作り、具体的な事例とセットで設けておくと
良いのではないかという話が出ました。
　また、行政との間で共同でアイデアソンを行っ
て、お互いの合意を取っていくことができると良い
のではないでしょうか。
 ●記録アーカイブ
　基本的に“残すことは良し”という方針で議論しま
した。利用する際には、いかにしてアーカイブした
ものを見やすくするかを考える必要があります。
アーカイブの可能性としては、個人が撮ったものも
残していけないかと思っているが、個人の写真や顔
が入ってしまったものをどう扱うかというスクリー
ニングが課題となります。
　また、ライセンスの問題もあります。例として、
気仙沼のリアスアーク美術館ではスクリーニングが
されており、個人撮影のものが展示されていて参考
になります。

Dトラック

　Dトラックでは人材について、ITリテラシーが高く
ない人への対応をどうするかなどの話をしました。
 ●IT弱者
　おもに高齢のIT機器を使えない人に、どうやっ

て情報を届けるかということを議論しました。通話
とメールしかできない人にどうやって届けるか、若
者と高齢者がコミュニケーションを取れるようにし
て、そこから伝えてもらうようにするのが良いので
はないでしょうか。その一方で、タブレット機器は
高齢の方でも使ってみたいということがあるので、
UIを工夫して使ってもらえるようなものを考えて
いく必要もあると思います。
　このテーマはなかなか成功例が見えてこない分野
でもありますので、引き続きアイデア出しと実践を
やっていかなければいけないと感じています。
 ●ITベテランの役割

　ITベテランとは、ここでは災害を経験し、そこ
で何らかの活動をした人と定義しています。ハッカ
ソンをどんどん開催し、いざというときに役立てら
れるよう、その成果をストックしていつでも見られ
るようにしておくのが良いと思います。実際の災害
時にはニーズが合わないことも想定されますが、短
時間で何かを仕上げるハッカソンではスピードと忍
耐力が鍛えられるため、緊急時にはその忍耐力を活
かして物を作っていくことができたらと思います。
　そして、そういったイベントに若者をどんどん巻
き込んでいくべきです。なぜなら今ここにいるベテ
ランの人は、次に何か起こったときには高齢化して
るかもしれないからです。
 ●復興・IT・若者

　ITの教育といっても上からではなく「自走するた
めのエンジンを身につける」ことが大切です。ほか
の人にも教える、伝える、クローズドにせず成果を
公開して誰でも使えるものにすることが広がりを産
んでいきます。

Eトラック

　Eトラックでは復興事業の立ち上げについて、過
疎の加速、何を魅力に人は集まるのかなどについて
話し合いが行われました。
 ●プロジェクト立ち上げ

　災害発生後10から100時間の間にやっていくこ
とを話しました。避難所のガバナンスの話で、地域
にリーダー的な人がいる場合は良いのですが、そう

Mar. 2014 - 157

「ITx災害」会議（後編）第27回

活用するかを事前に明文化しておき、発災ととも
に、そのポリシーを明示することなどが議論されま
した。
　また、東日本大震災でもITが必ずしも有効に活
用されていなかった事実を冷静に見つめなおし、発
災後のある段階からより効率的にITを活用するた
めに、もっと組織的に取り組むための話し合い（情
報支援レスキュー隊構想）も行われました。
　この「減災ソフトウェア開発に関わる一日会議」に
見られるように、10月26日の会議は、会議を行うこ
とが目的ではなく、これをきっかけとしてITによる
災害への対応を具体的に進めていくことが目的で
す。そのため、アンカンファレンスで出たアイデア
などを実現していくためのしくみをスタッフ側では
用意しようと考えています。具体的には、Wikiを立
ちあげ、そこに派生したプロジェクトの進捗や作業
メモなどを保管できるようにします。このWikiは発
災後の情報ポータルとしても活用可能です。現在、
「ITx災害」サイト注4はイベントの報告が中心となっ
ていますが、今後、Wiki上で派生したプロジェクト
の情報が蓄積されていったならば、それらの紹介を
掲載したりすることで、より汎用的にITと災害を考
えられるサイトに変更していこうと思います。s

いう人がいない場合は治安の問題なども発生する確
率が高かったようです。
　また、避難訓練の際に避難所を立ち上げてITで
やることも同時に訓練すると良いのではないかとい
う話もありました。
 ●復興事業の立ち上げ
　被災地の過疎化は実は震災が起こる前から進んで
いて、そこに震災が起きてスピードアップしてし
まった状況です。そこでどうやってコミュニティを
活性化するかということがポイントになります。人
を集めるしかけ、しくみづくりが必要ということで
いろいろな提案があり、人口を増やすことに成功し
た徳島の事例を東北と共有すると良いのではないか
という話が出ました。
　また、コミュニティを再生するにはマネジメント
スキルを持つ人が必要で、そういう人をいかにして
地元で育て、活躍してもらうかということが必要で
す（写真4）。

その後

　2013年10月6日の会議を受けて、10月26日には
「減災ソフトウェア開発に関わる一日会議注3」が行わ
れました。これは、10月6日の議論を深め、さらに
新たな知見を集めることで、災害発生時にどのよう
な対応をとることができるのか、実践的かつ理論的
に討議することを目的としたものです。
　ここでは発災直後のITの役割やソーシャルメ
ディアの活用ポリシー、被災地で早急にインター
ネットアクセスを可能にするための技術などについ
て話されました。たとえば、東日本大震災の際、
ソーシャルメディアで情報の拡散を依頼されること
がありました。情報によって拡散すべきものとそう
でないものがありますし、またより精度の高い情報
が後に提供された場合に、拡散した情報をどのよう
に扱うかは検討が必要です。デマが拡散されてし
まった事例などを思い出す人もいるでしょう。この
ように、発災後にどのようにソーシャルメディアを

注3 http://gensai.itxsaigai.org/
注4 http://www.itxsaigai.org/

 ◆写真4　アンカファレンスの様子

http://gensai.itxsaigai.org/
http://www.itxsaigai.org/

158 - Software Design

CPU TMS9995（16bit）

VDP TMS9918

メモリ ROM20KB、RAM16KB

キーボード 56キー（ゴムキー）

グラフィック機能 256×192ドット

表示能力 16色

サウンド 擬音4種類 /3和音

メディア ROMカートリッジ

大きさ 370×255×63（mm）

重さ 1.7kg

はじめに

　今回は1980年代に発売された
ぴゅう太についてお話をしたいと
思います。
　ぴゅう太はトミー社（現在タカラ
トミー社）より発売された16ビッ
トゲームパソコン注1です。初代
ぴゅう太は1982年に59,800円で
発売されました（表1）。
　トミー社といえばプラレールや
黒ひげ危機一髪などが有名な玩具
メーカーです。玩具メーカーがゲー
ムパソコンを発売するだけに、完
全にホビーユースが想定されてい
ました。他社のパソコンは通常パ
ソコンショップで発売されていた

注1） 当時はマイコンと呼ばれていました。

のに対して、ぴゅう太は玩具売り
場で発売されていたという点で、
他社とは一線を画していました。
筆者も当時、玩具売り場の店頭に
展示されていたぴゅう太でさまざ
まなゲームを楽しんだ記憶があり
ます。
　8ビットが主流だったこの時
代のパソコンの中で、16ビット
CPU注2を採用することになった経
緯は謎です。16ビットだからと
いって演算能力が特段優れていた
わけでもなく、搭載メモリもわず
か16KB（16MBや16GBではない
です !）程度でしたので、CPUが16

注2） Texas Instruments社製。レジスタが
3個（プログラムカウンタ、ワークス
ペースポインタ、ステータスレジス
タ）で16ビットでした。それ以外の
レジスタは当時はCPUより高速だっ
たメインメモリ上にありました。

ビットである必要があったのか謎
は深まるばかりです。

ROMカート
リッジ

　ぴゅう太にはさまざまなゲーム
がROMカートリッジで提供され
ました。いずれも4,800円で、そ
の中にはフロッガー、スクランブ
ル、プーヤン、ガッタンゴットン、
Mr. Do!など、当時ゲームセンター
で人気があったゲームの移植作品
も含まれます。
　ぴゅう太に限らず1980年代のホ
ビー向けパソコンでは市販ソフト
をROMカートリッジで提供する
ことが一般的でした。当時主流だっ
た外部記憶媒体はカセットテープ
でしたが、データレコーダは別売
りであることに加え、カセットテー
プでプログラムを1本読み書きす
るには数分から数十分かかるため、
ゲームマシンとして考えた場合、
電源投入後すぐにゲームが楽しめ
るROMカートリッジが主流に
なったものと予想されます。
　一応カセットテープ媒体のゲー
ムも数種類発売されました。カセッ
トテープは1本のテープにA面と
B面があり、それぞれに別のゲー
ムが入って1,000円とROMカート
リッジと比べてとても安価な価格

 ▼表1　初代ぴゅう太の仕様

温故知新
ITむかしばなし

LINE株式会社　佐野 裕　SANO Yutaka　Twitter：@sanonosa

ぴゅう太

第31回

158 - Software Design Mar. 2014 - 159

設定でしたが、主流となりません
でした。

日本語BASIC
言語搭載

　初代ぴゅう太が異色な存在だっ
たのは、日本語BASIC言語「G-

BASIC」を搭載していたことです。
日本語BASICと言っても本格的
な日本語処理に長けていたという
ことではなくて、扱われるコマン
ドがすべてカタカナになってい
ました。
　プログラミングを学習したこと
がある人の中には「何でプログラミ
ング言語は英語なんだ。日本語だっ
たら良いのに」と思ったことがある
人がきっと大勢いることでしょう。
筆者もその1人でした。
　しかしぴゅう太の日本語BASIC

プログラムを見たらその考えが
180度変わった記憶があります。率
直に言うとプログラムがたいへん
見づらいです（リスト1）。同様の
意見が多かったのか、その後に発
売されることになる「ぴゅう太
mk2」では英語版G-BASICが採用
されることになります。

スプライト機
能の搭載

　ぴゅう太ではゲームを作りやす
くするためにスプライト機能が搭

載されていました。スプライト機
能とは、背景画面と特定サイズの
キャラクターが自然に重なって見
えるようにハードウェアが自動的
に計算して合成してくれる機能の
ことです注3。アクションゲームを作
るのに大変便利な機能ですので、
ゲームパソコンとしてこの機能は
あって当然の機能だったと推測で
きます。もしスプライト機能がな
かったら、自分で合成処理機能を
開発するか、もしくは背景画像と
キャラクターが重ならないような
ゲームデザインを行う必要があり
ます。
　当時はゲームセンターにあった
ゲームをパソコンでも遊べるよう
移植することが求めらていた時代
でしたので、このスプライト機能
は、自作ゲームを作るのに便利だっ
ただけでなく、アーケードゲーム
を移植しやすくするという意味で
も大変有利な機能でした。

ゲームマシンと
してのぴゅう太

　その後「ぴゅう太Jr」という機種
が定価19,800円で発売されまし
た。ぴゅう太Jrは完全にゲームマ
シンとして割り切り、大胆にも
G-BASICとキーボードが取り払
われました。
　続いて発売された「ぴゅう太
mk2」では日本語G-BASICの代わ
りに英語G-BASICが採用され、
かつキーボードがゴム製注4からプ

注3） ちょうど画面上に別レイヤがあり、そ
こにキャラクタを定義しておいて、そ
の座標値だけで移動できるようなし
くみです。

注4） 当時は消しゴムキーボードと呼ばれ、
ちょうど中心部分を押さないと入力
されないことがある使いにくいもの
でした。

ラスチック製となり、定価29,800

円で発売されました。
　しかしこのころ任天堂社から世
界的大ヒットゲームマシン「ファミ
リーコンピューター（ファミコン）」
が発売され、ゲームマシンの主役
は完全にファミコンとなり、ゲー
ムパソコンとしてのコンセプトで
発売されていたぴゅう太が終焉を
迎えることとなりました。

終わりに

　1980年台はさまざまなメーカー
からいろいろなコンセプトのパソ
コンが登場していた非常におもし
ろい時代でした。ビジネス向けの
硬派なパソコンもあれば、ぴゅう
太のようなゲームマシンに近いパ
ソコンやビジネスとホビーのいず
れも意識したパソコンなどいろい
ろな機種があり、各メーカーの試
行錯誤が続いていました。価格帯
も3万円～20万円くらいと幅が広
くてどのパソコンを買うか選ぶの
が楽しい時代とも言えました。
　「どんなゲームが遊べるのか」と
いうのはパソコン選びの大きな要
素のひとつとなっていました。そ
ういう意味でぴゅう太のゲームパ
ソコンとしての割り切りは、理に
かなったものだったと言えそうで
す。ﾟ

10 シキ I=1
20 カケ I
30 シキ I=1+1
40 モシ I=10ナラバ60 ニイケ
50 20 ニイケ
60 オワリ

 ▼リスト1　 日本語BASICでのプロ
グラム例

 ▼写真　 初代ぴゅう太

温故知新 ITむかしばなし
ぴゅう太

第31回

160 - Software Design

　レッドハット㈱は1月28日、「Red Hat Enterprise
Linux OpenStack Platform 4.0」（以下、RHELOP）
を一般向けに提供を開始した。また同日、「Red Hat
Enterprise Virtualization 3.3」（以下、RHEV）と「Red
Hat Cloud Infrastructure 4.0」の提供も開始した。

Red Hat Enterprise Linux OpenStack
Platform 4.0

　同製品は、OpenStackをベースとしたクラウド基
盤を構築するためのプラットフォーム。米Red Hat
社によって強化されたOpenStack Havanaコード
と、OSである「Red Hat Enterprise Linux 6.5」、
KVMベースのハイパーバイザ「Red Hat Enterprise
Virtualization Hypervisor」で構成されている。
　 最 新 版 の4.0で は、「Foreman」、「OpenStack
Orchestration（Heat）」、「OpenStack Networking
（Neutron）」などの機能をフルサポートする。ま
た、「Red Hat CloudForms」や「Red Hat Storage
Server」といった同社のインフラストラクチャ製品と
の統合も進められている。各機能や製品の概要は次の
とおり。

 ¡Foreman：物理と仮想両方のインフラリソースのプ
ロビジョニングができるライフサイクル管理ツール
 ¡OpenStack Orchestration（Heat）：広範なインフ
ラリソースのプロビジョニングを迅速に行えるオー
ケストレーションエンジン
 ¡OpenStack Networking（Neutron）：仮想ネッ
トワークインターフェースカードなどのインター
フェースデバイス間のSDN（Software Defined
Network）を提供する
 ¡Red Hat CloudForms：複数の仮想化ソリューショ
ン、およびRHELOPに対して統一された管理イン
ターフェースを提供する
 ¡Red Hat Storage Server：ソフトウェアによる分
散ストレージ基盤をRHELOPに提供し、高いスケー
ラビリティと可用性を備えたストレージプラット
フォーム

Red Hat Enterprise Virtualization 3.3
　同製品は、ホストOSとゲストOSの管理コンソール
「Red Hat Enterprise Virtualizationマネージャ」と
ハイパーバイザ「Red Hat Enterprise Virtualization
Hypervisor」から構成される製品。データセンターな
どの大規模な仮想化環境を効率よく構築／管理できる。
　最新版で強化された点は次のとおり。

 ¡Red Hat Enterprise Virtualizationマネージャをホ
スト上の仮想マシンとして配備できるようになり、
環境構築に必要なハードウェアを減らせる
 ¡バックアップ＆リストア用のAPIが追加され、サー
ドパーティのソフトウェアで仮想マシンのバック
アップ／リストアを行えるようになった
 ¡OpenStack GlanceとOpenStack Neutronのサ
ポートにより、プライベートクラウドとデータセン
ター仮想化の間で共通のインフラストラクチャを使
用可能になった。これにより仮想マシンテンプレー
トの保存や、先進的なネットワークを構成できる

Red Hat Cloud Infrastructure 4.0
　同製品は、先に紹介したOpenStackベースの仮想環
境構築プラットフォームRHELOPと、データセンター
仮想化プラットフォームRHEV、そして複数の異なる
仮想環境で統一された管理インターフェースを提供す
る管理ツール「Red Hat CloudForms」とを合わせて提
供するもの。RHELOPとRHEVのバージョンアップに
伴い、同製品も4.0へとアップデートされた。
　同社は、同製品の利用により、RHEV、VMware
vSphere、Microsoft Hyper-Vを含む異種混合のクラ
ウド環境を管理できるほか、SDN技術との統合を通し
てより高度なネットワーク方式を利用できるとしてい
る。
　RHEVとRHELOPは、それぞれNeutronとGlance
を通してネットワークとイメージライブラリのサービ
スを共有しているため、ユーザは1つのストレージリポ
ジトリからOpenStackイメージの作成、編集、実行を
行えるという。
　同製品の最新版は、既存のユーザの場合、Red Hat
Cloud Infrastructureのサブスクリプションを通して、
すでに利用可能。

レッドハット、
「Red Hat Enterprise Linux OpenStack Platform 4.0」
などクラウド管理製品の最新版を提供開始

Software

レッドハット㈱
URL http://jp.redhat.com/

CONTACT

SD News & Products

Red Hat
Cloud Infrastructure

Red Hat
Enterprise Linux
OpenStack Platform

Red Hat
Enterprise
Virtualization

Red Hat
CloudForms

▲Red Hat Cloud Infrastructureの構成

http://jp.redhat.com/

Mar. 2014 - 161

SD News & Products

　日本ヒューレット・パッカード㈱は1月30日、“自
働サーバ”「HP ProLiantサーバGeneration 8」に、
最新のインテルXeonプロセッサ「E5-2400 v2」製品
ファミリーを搭載した5つの新モデルを発売した。
　同製品は、リモート管理機能、電力管理／制御機
能に加え、サーバ導入時間を大幅に短縮する「HP
Intelligent Provisioning」、OSに依存しないエー
ジェントレス監視機能、すべてのログを記録する「HP
Active Health System」など、システム管理者の運用
工数削減に寄与する新機能を標準で提供する製品ファ
ミリー。
　今回発表されたのは次の5モデル。

　これらの製品は、従来製品と比較して最大25％の
性能向上を実現したほか、DL360e Gen8、DL380e
Gen8は今回から80 Plus Titanium電源をサポートし、
最大96％の交流／直流変換効率による電力削減を実現
している。
　同時に、期間限定で「HPサーバへのりかえ割キャン
ペーン」を実施している。詳細は次のとおり。

HPサーバへのりかえ割キャンペーン
期間：2014年1月16日～2014年4月30日
内容：最新のインテルXeonプロセッサ E5-2400 v2/

E5-2600 v2製品ファミリーを搭載したHP
ProLiant Gen8サーバとオプションを、30％
引きの特別価格で提供する。HP OEM版の
Windows Server OSを同時に購入すると、追
加で5％引きの35％引きで提供する

日本ヒューレット・パッカード、
“自働サーバ”「HP ProLiant」の新モデルを5製品を発売Hardware

日本ヒューレット・パッカード㈱
URL http://www.hp.com/jp/

CONTACT

　日本オラクル㈱は、最新世代の高速データベースマ
シン「Oracle Exadata Database Machine X4」の国
内提供を1月21日より開始した。
　前世代の製品からハードウェアおよびソフトウェア
が刷新され、性能の向上、容量の拡大、データベース
展開の効率性およびサービス品質の向上が図られてい
る。同社調べによると、性能は50～100％向上し、ス
トレージ容量は33～100％拡大したとのこと。
　「Oracle Database 12c」の新機能であるマルチテ
ナントアーキテクチャを利用することで、データベー
ス集約における高いリソース効率と運用工数の削減を
可能にした。さらに「Oracle Enterprise Manager
12c」のクラウドサービス機能に含まれるデータベース
サービスのプロビジョニングを始めとした管理機能を
利用することで、自社内におけるDBaaSを迅速かつ容
易に実現できるようになった。
　同製品の参考価格（税抜）は2,390万円～。

「Oracle Exadata Database Machine X4」の強化点
 ¡何百ものデータベースをDBaaSアーキテクチャとし

て単一のラックに統合でき、コストを抑えながらデー
タベースサービス作成の俊敏性を向上させる
 ¡物理フラッシュの大容量化と独自の超高速フラッ
シュ圧縮技術により、有効フラッシュメモリ容量を
4倍に拡大し、OLTP処理が大幅に高速化。単一ラッ
クの「Oracle Exadata」
のデータスループットは
100GB／秒
 ¡データウェアハウスで一
般的なテーブルおよび
パーティションのスキャ
ン処理に焦点を当てた新
しいFlash Cachingアル
ゴリズムにより、データ
ウェアハウジング処理の
性能が向上

日本オラクル、
高速データベースマシンの最新版
「Oracle Exadata Database Machine X4」を提供開始

Hardware

日本オラクル㈱
URL http://www.oracle.com/

CONTACT

▼新製品のラインアップと価格
製品名 希望小売価格（税抜）

HP ProLiant ML350e Gen8 v2 168,000円～
HP ProLiant DL360e Gen8 237,000円～
HP ProLiant DL380e Gen8 344,000円～
HP ProLiant BL420c Gen8 228,000円～
HP ProLiant SL4540 Gen8 1,044,000円～

▲Oracle Exadata Database
Machine X4

http://www.hp.com/jp/
http://www.oracle.com/

162 - Software Design

SD News & Products

　NECとNECアクセステクニカは、LTEモバイルルー
タとしてBluetoothテザリング機能により、最大約24
時間の長時間連続通信を実現した「AtermMR03LN」を
2月1日より発売した。価格はオープン。
　㈱NTTドコモが提供するクアッドバンドLTEサービ
スを利用した通信サービス「BIGLOBE LTE・3G」「@
nifty do LTE」「ぷららモバイルLTE」に対応するLTE
モバイルルータとして、各ISPより順次販売される。
　同製品はWi-Fiの最新規格IEEE802.11acへの対応
による高速通信（最大433Mbps）とともに、消費電力
の少ないBluetoothを用いたテザリング機能による長

時間使用も可能としている。特徴は次のとおり。

 ¡Bluetoothテザリングによる長時間利用を実現
 ¡クアッドバンドLTEと11ac対応による高速通信
 ¡持ち運びやすい小型／軽量を実現
 ¡6色のカラータイルから選べるタッチパネルカラー
ディスプレイ
 ¡ギガビットイーサ対応のクレードル

NECアクセステクニカ㈱
URL http://www.necat.co.jp/

CONTACT

NEC、NECアクセステクニカ、
最大約24時間の連続通信が可能なLTEモバイルルータ
「AtermMR03LN」を発売

Hardware

トランセンドジャパン㈱
URL http://jp.transcend-info.com/

CONTACT

トランセンドジャパン、
デュアルUSBメモリ「JetFlash 380」を発売Hardware

　トランセンドジャパン㈱は、マイクロUSB端子が付
いたデュアルUSBメモリ「JetFlash 380」を発売した。
　JetFlash 380は標準USBインターフェースでPC
に接続できるだけでなく、マイクロUSBインターフェー
スでUSB OTG対応のモバイル機器にも接続できる。
製品は8GB、16GB、32GBの容量とゴールド、シルバー
の2色を用意している。
　本製品と一緒に使うと便利な専用アプリ「Transcend
Elite App」も提供されている。Google Playから
無料ダウンロードでき、アプリをインストールした
Android機器に同製品を接続すると自動で起動する。

当アプリを利用する
ことで、モバイルデ
バイスでもファイル
の検索やバックアッ
プが簡単に行える。
Android 4.0以降の
端末で利用可能。
　価格はオープン。実勢想定価格（税込）は、8GBが
1,580円、16GBが2,480円、32GBが4,880円。

▲JetFlash 380

　東プレ㈱は、人気キーボード「REALFORCE」シリー
ズの新製品として、2013年夏に3機種を発売している。
　そのうちの1つが「REALFORCE104UG－HiPro」。
これは、本誌今月号の読者プレゼントになっている
「108UG-HiPro」（写真）の英語配列版。キートップ天
面の形状やキートップの高さなどのプロフェッショナ
ル仕様はそのままに、キーレイアウトは英語104配列
を採用している。インターフェースはUSB。店頭価格
は27,800円。
　そのほか2機種は海外では定着し、日本発売のリク
エストが多数寄せられた英語87配列キーボードの白

と黒の2機種。白が「REALFORCE87UW」で、黒が
「REALFORCE87UB」。ともにインターフェースは
USB。店頭価格は21,800円。

東プレ㈱
URL http://www.topre.co.jp/

CONTACT

東プレ、
REALFORCEの英語配列キーボード3機種を発売中Hardware

▲REALFORCE108UG-HiPro

http://jp.transcend-info.com/
http://www.necat.co.jp/
http://www.topre.co.jp/

Mar. 2014 - 163

SD News & Products

　グレープシティ㈱は、アプリケーション開発に便
利なコンポーネントを多数収録したスイート製品
「ComponentOne Studio」シリーズの新エディション
「ComponentOne Studio for WinRT XAML」（以下、
WinRT XAML）を1月30日に発売した。また、同エディ
ションを加えた「ComponentOne Studio 2013J v3」
も合わせて発売した。

ComponentOne Studio
　幅広いプラットフォームで業務システムを効率的に
開発できるコンポーネントセット製品のシリーズ。各
開発プラットフォームに対応した5つのエディション
（WinForms、ASP.NET Wijmo、WPF、Silverlight
と新発売のWinRT XAML）とそれらすべてを収録し
た「Studio Enterprise」、「Ultimate」という上位製品
がある。どのエディションにもデータグリッドや帳票、
チャート、UI部品などをバランスよく収録している。

ComponentOne Studio for WinRT XAML
　このたび、同シリーズに加わった新エディション。

Visual StudioおよびExpression Blendで、あらゆる
ジャンルのアプリケーションを開発できるWindowsス
トアアプリ用コンポーネントセット。FlexGrid、チャー
ト、PDFビューワ、Excel出力などのコンポーネント
を24種収録している。収録されているすべてのコント
ロールは、Windows RTでも実行可能。

価格
　ComponentOne Studioシリーズはサブスクリプ
ション方式で販売しており、初回費用（税別）は「Studio
Enterprise」が150,000円、WinRT XAML単体が
100,000円。1年単位の更新費用はそれぞれ初回費用
の40％となる。
　サブスクリプション契約期間内の「Studio
Enterprise」、「Ultimate」のユーザに対しては、
WinRT XAMLは「ComponentOne Studio 2013J」
のメジャーリリースとして無償で提供される。

グレープシティ、
ComponentOne Studioシリーズの新エディション
「ComponentOne Studio for WinRT XAML」を発売

Software

グレープシティ㈱
URL http://www.grapecity.com/tools/

CONTACT

　トレンドマイクロ㈱は、スタンドアロンやクロー
ズド環境向けのウィルス検索／駆除ツールの新製品
「Trend Micro Portable Security 2」を、1月27日よ
り受注開始した。
　同製品はUSBメモリ型の製品検索ツールで、インター
ネットに接続されていなくても、USBインターフェー
スを使って手軽にウィルスの検索や駆除が行える。
　インターネットに接続されていないスタンドアロン
／クローズド環境は、安心／安全と考えられがちだが、
実際にはUSBメモリや持ち込みPCを通じて、ウィル
ス感染の脅威に晒されている。そんな場合でも、同製
品を使うことでセキュリティ対策を行える。同製品の
特徴は次のとおり。

 ¡管理プログラムの集中管理機能により、各拠点の検
索ツールの検索ログを一元的に把握できる。検索ツー
ルのパターンファイルのアップデートや各種設定を
一括で行うことも可能
 ¡検索ツールに搭載されたLEDにより、検索ステータ
スと結果を3段階（青色：検出なし、黄色：検出／駆

除済み、赤色：検出／駆除処理待ち、検索中はLED
が点滅）で通知する
 ¡管理プログラムを使用しないモードを選択すれば、
検索ツールとインターネット接続された汎用端末を
用いてパターンファイルのアップデートやログの閲
覧が可能

　参考標準価格（税別）は28,800円（1年間のスタンダー
ドサポートサービス料金、ハードウェア保証を含む）。
新規購入時の最低購入本数は5本。検索ツール1本で複
数端末のウィルスチェックが可能。
　 ま た、2月17日
～5月16日 の 間、
同製品の新規購入
者を対象に、20％
OFFの価格で提供
するキャンペーンを
実施している。

トレンドマイクロ、
スタンドアロン向けのウィルス検索／駆除ツール新製品
「Trend Micro Portable Security 2」を提供開始

Hardware

トレンドマイクロ㈱
URL http://www.trendmicro.co.jp

CONTACT

▲Trend Micro Portable Security 2

http://www.trendmicro.co.jp
http://www.grapecity.com/tools/

164 - Software Design

SD News & Products

　日本マイクロソフト㈱は、Windows XPおよび
Office 2003を利用中の中小企業、公共機関、医療機
関を対象に、Windows 8.1やOffice 365などの最新
PC環境へ移行する際のライセンス価格を最大25％割
引で提供するキャンペーンを2月1日～4月30日の期
間限定で実施している。
　Windows XPとOffice 2003は、同社の「サポート
ライフサイクルポリシー」に基づくサポートの提供を4
月9日（日本時間）に終了する。サポート終了後は、セキュ
リティ上の脅威に対応することが困難になることから、
同社はパートナー各社と連携しながら本キャンペーン
を活用した最新環境への移行を推進している。

キャンペーン概要
①ビジネスに最適な、良いとこ取りOS Windows 8.1
移行促進キャンペーン
対象期間：2014年2月1日～4月30日
対象：PC台数が250台未満の中小企業、公共機関、
　　　医療機関
概要：Windows XPなど対象OSからWindows 8.1

　　　Proへのアップグレードライセンス価格を
　　　20％割引する
Webサイト：http://aka.ms/win81cp

②Office 365への移行促進キャンペーン
対象期間：2014年2月1日～4月30日
対象：PC台数が250台未満の中小企業、公共機関、
　　　医療機関
概要：クラウドサービスOffice 365のライセンス価
　　　格を単年購入時に20％、複数年一括購入時に
　　　25％割引する
Webサイト：http://aka.ms/365cpn

　最新環境への移行費用について、今年度（2014年3
月末日まで）の予算化が難しいユーザ向けに「PC購入
支援キャンペーン」も3月末まで提供している。これに
より金利ゼロでPCの調達と導入を今年度内に終了し、
来年度予算で費用を支払うことが可能になる。

日本マイクロソフト、
Windows XP/Office 2003から
Windows 8.1/Office 365への移行促進キャンペーンを実施

Service

日本マイクロソフト㈱
URL http://www.microsoft.com/ja-jp/

CONTACT

　The Linux Foundationは、5月20日～22日に椿山
荘会議センターで開催する「LinuxCon Japan 2014」
と「CloudOpen Japan 2014」（同時開催）の発表者
募集（CFP：Call for Participation）を開始した。ま
た、7月1日～2日に同会場で開催する「Automotive
Linux Summit 2014」のCFPも開始した。発表案は同
団体のWebサイトにて3月14日まで受け付けている。

Linux Con Japan 2014
　日本、アジア地域の最大のLinuxカンファレンス。
世界中のトップクラスの開発者が集結する。各種プレ
ゼンテーション、チュートリアル、BOF（分科会）、基
調講演、ミニサミットなどが用意されている。
CFP推奨トピック：
Linuxカーネル開発の進化／オープンクラウド、仮想化、
および分散サービス／Linuxによる企業基盤の最適化
／Linuxシステム管理＆セキュリティほか

CloudOpen Japan 2014
　クラウド構築に関わるOSSプロジェクト、テクノロ

ジ、企業などについて支援や検討を行うカンファレン
ス。昨今のクラウドやビッグデータエコシステムを牽
引しているOSSプロジェクト、製品、企業のほか、伝
統的なOSS分野のベストプラクティスが集結する。
CFP推奨トピック：
Linux／KVM／Xen／Hadoop／Puppet／Chef／
Gluster／Devops／ビッグデータほか

Automotive Linux Summit 2014
　自動車システムエンジニア、Linuxエキスパート、
R&Dマネージャー、ビジネスエグゼクティブ、OSSラ
イセンスやコンプライアンスのスペシャリスト、Linux
コミュニティの開発者などが集結。世界中のトップク
ラスの講演者陣が登壇し、数々の革新的なプログラム
コンテンツが提供される。
CFP推奨トピック：
Linux車載システム／ミッションクリティカル向けの
Linux／グラフィック、暗視スコープ、拡張現実ほか

The Linux Foundation、
「LinuxCon Japan 2014」など、Linuxイベントの発表
者募集を開始

Topic

The Linux Foundation
URL www.linuxfoundation.jp

CONTACT

http://www.linuxfoundation.jp
http://aka.ms/win81cp
http://aka.ms/365cpn
http://www.microsoft.com/ja-jp/

Mar. 2014 - 165

SD News & Products

　米Parallels社は、iPadからWindowsおよびMac
アプリケーションにリモートアクセスし、それらを
iPad専用アプリのように使用可能にするiPad向けア
プリ「Parallels Access for iPad」（以下、Parallels
Access）に日本語対応を含む新機能を追加搭載した、
新バージョン1.1を発表した。1月28日より提供を開
始している。
　新バージョンでは、これまでの英語およびドイツ語
に加え、新たに日本語を含む11言語に対応した。
　また本バージョンより、Windows PCの正式サポート
が開始される（これにより対応OSは、Windows 7/8/

8.1、Mac OS X Lion、Mountain Lion、Mavericks
となる）とともに、企業ネットワーク内など特定の環境
下でのユーザ作業を円滑化するシングルポート接続も
使用可能となった。
　さらに、本バージョンから新しい価格体系が導入さ
れた。ユーザは1ヵ月間450円、または1年間4,300
円のいずれかのサブスクリプションを選び、Parallels
Accessを最大10台のWindows PC、またはMac PC
で利用できる。

パラレルス㈱
URL http://www.parallels.com/jp

CONTACT

Parallels、
MacとWindowsアプリをiPadから利用可能にする
「Parallels Access」の新バージョンを発表

Software

　米Red Hat社は1月15日、CentOSの開発において
CentOSプロジェクトと協力していくことを発表した。
　CentOSはRed Hat Enterprise Linux（RHEL）の
コードをベースにして開発されているLinuxディストリ
ビューション。その安定性の高さから多くの企業、サー
ビスで利用されている。今後、同社はCentOSプロジェ
クトに対して、さまざまなリソースや専門知識を提供
していく。こうした協力関係を築くことで、CentOS
とRHEL双方の認知度向上させ、ひいてはRHELの需
要増大につなげようというのが同社の狙い。
　同社は「CentOSはRHELのコードをベースとして

いるが、ビルド環境が違ったり、一部で異なるカーネ
ルやOSSコンポーネントが含まれていたりすることか
ら、両者は完全に同じというわけではない」と主張する。
RHELは主要なメーカーと提携して多くのハードウェ
アでテストを行い動作認定も提供しているため、「最新
のイノベーションを利用、体験、実験したい場合には
CentOSを選択し、本番環境での利用や、プロフェッショ
ナル向けの認定とサポートを望む場合にはRHELを選
択するのが適切」としている。

レッドハット㈱
URL http://jp.redhat.com/

CONTACT

Red Hat、
CentOS開発において、CentOSプロジェクトとの協業を
発表

Topic

　㈱アシストは、米Calpont社が提供する大量データ
分析に特化したデータベース「Calpont InfiniDB」の新
バージョン「InfiniDB 4」の提供を開始した。
　InfiniDBは、ビッグデータの分析処理をシンプルか
つ高速に実現する列指向型データベース。データ量の
増加にスケーラブルに対応し、またチューニングレス
（インデックス不要）にもかかわらず安定したパフォー
マンスが得られる。最新版のInfiniDB 4では、次の点
が強化された。

 ¡分析関数として知られる「ウィンドウ関数」のサポー

トにより、分析作業の処理効率がさらに向上した
 ¡ネットワークトラフィックを従来バージョンの2分
の1以下に圧縮したことで、これまで以上にスムー
ズで安定したデータ処理環境を提供する
 ¡物理的に増え続けるデータ量をさまざまな単位（デー
タベース、スキーマ、表、列）で簡単にレポートでき、
将来的にどのくらいのストレージが必要であるかを
予測できる

アシスト、
列指向データベース「InfiniDB 4」をリリースSoftware

㈱アシスト
URL http://www.ashisuto.co.jp/

CONTACT

http://jp.redhat.com/
http://www.parallels.com/jp
http://www.ashisuto.co.jp/

166 - Software Design

第1特集
あなたの好きなシェルは何ですか？

　UNIX系OSを使う場合、私たちは常に
シェルを通して作業を行います。シェル
にもsh、ash、dash、bash、ksh、csh、

tcsh、zshといろいろあります。本特集で
はこれらのシェルの特徴を整理しました。
また、コマンドやパイプ、変数などシェル
の基礎となる概念やしくみについて解説
しました。

シェルスクリプトは、使いこなせると便
利だよなあ、といつも思っていますが、
なかなか……。今回の特集を参考に今
一度トライしたいと思います。

神奈川県／kumaaさん

縁の下の力持ち的な位置づけで、普段
はごく一部の機能しか使っていない。そ
んなシェルのことを深く掘り下げる、良
い企画でした。最も身近なツールなの
だから、もっと活用しなければ。

神奈川県／hiroさん

シェルといえば、やっぱりshかな……。
だって、自分のキャパシティが小さくて
覚えきれないから（笑）

埼玉県／南雲さん

役立つが、最新情報や目新しい情報は
なく、雑誌ではなく書籍で読むのが良い

と感じる。
東京都／ IT企業経営者さん

「好きなシェルは何ですか、と訊か
れても……、とくに気にせずに、

OSからデフォルトで提供されているシェ
ルを使っています」という人も多いでしょ
う。しかし、今後は端末を使うときの作業
効率や、シェルスクリプトの移植性などを
考慮して、最適なシェルを選んでみては
いかがでしょうか？

第2特集　10ギガビットを実現
するケーブリング技術

　クラウドコンピューティングの普及によ
り、ネットワークの広帯域／高速化が求め
られています。本特集では10GBASE-T

や光ファイバを使ったネットワーク環境を
導入する際に気をつけるべき点、ケーブ
ル敷設方法や、エアフローも考慮した
ケーブリングについて取り上げました。

10GBASE-Tは、普及期だと思うので
ちょうど良かったです。1年ちょっと前は、
対応スイッチが少なくて導入を断念しま
した。

東京都／hiddenさん

1本のケーブル内を流れる情報の量が、
増えれば増えるほどノイズなどの影響を
受けやすくなるので、確かにこれからは

大切だと感じました。
長崎県／ romeosheartさん

こういうハードウェアの技術も興味があ
るけれども、知識があまりなかったので
良かったです。

石川県／Keiさん

考えたことはなかったが、これほどまで
深い話があるとは驚き。

東京都／藤田さん

聞きなれない用語も多く、やや専
門的な内容でしたが、いかがでし

たでしょうか？　機器の吸気や排気を考慮
したラック内／ラック間のケーブルマネジ
メントも紹介しましたが、これらは

10GBASE-Tや光ファイバに限らず活用で
きるアイデアです。業務でラックを組むと
きには、参考にしてみてください。

特別企画　ソーシャルゲームの
DevOpsを支える技術（後編）

　2013年11月号で掲載した記事の後編
です。今回は、開発者サイドから

DevOpsの取り組みについて、クラウド事
業者サイドから膨大な負荷をさばくため
のインフラ作りについて、それぞれのノ
ウハウを紹介しました。

技術よりも、開発者の意識、コンセプト

脆弱性の発見やWeb改ざんなど、セキュリティ関連のニュースは日々、途絶え
ることがありませんが、最近で一番衝撃的だったニュースは「冷蔵庫がスパム
メールを大量送信した」というもの（結局は誤報だったようです）。冷蔵庫がメー
ルを送信するなんて、一見、人間的で微笑ましい感じがするものの、いずれ家
電にまでウィルス対策ソフトを入れないといけないと思うと、やっぱり嫌ですね。

家電も狙われる時代!?家電も狙われる時代!?

2014年1月号について、たくさんのお便りありがとうございました！

Mar. 2014 - 167

をぶらさないという姿勢に興味を覚えま
した。

長野県／清水さん

技術者に「なのは」ファンは多そう。た
だ、ハードウェアにも人にも負荷が高そ
うなシステムだ。

神奈川県／miffさん

半端ない負荷に対応していると知りまし
た。

奈良県／管理されるのは嫌いさん

読者のみなさんの感想には、有名
なソーシャルゲームの裏側を知る

ことができて良かったという声とともに、
運用がたいへんそうだという同情も多
かったです。

バグの発生を抑止する護符もほし
い、というご要望も、けっこう多く

いただきました。日ごろのみなさんが、
どれだけバグに悩まされているのか……
その苦労が垣間見れました。

連載

先日、久しぶりにサーバラックを組み直
す機会があったので、「自宅ラックのす
すめ」が非常に参考になった。

東京都／ひろし＠巣鴨さん

1月号の当連載は、第2特集「10

ギガビットを実現するケーブリング
技術」に呼応するかのように、ケーブリン
グが主題でした。ぜひ、それぞれの記事
を読み返して、ケーブリングの技術を磨
いてください。

特別付録
情報安全護符シールVer2.0

　2013年1月号で好評だった情報安全
護符シールを、2014年も付録として付け
しました。今回も、京都府嵐山の法輪寺
に供養していただいた本格的な護符シー
ルです。

真面目に供養しているのが珍しい。
神奈川県／高畑さん

年賀状に貼って人に送ったつもりが、気
がついたら2013年のものを貼って送っ
てました。

滋賀県／田中さん

こういう神社があること自体知りません
でした。

青森県／神さん

1月号のプレゼント当選者は、次の皆さまです
①Olasonic TW-BT5 ...長野県　池上圭二様
②弥生会計14スタンダード ...埼玉県　小堀大介様

★その他のプレゼントの当選
者の発表は、発送をもって
代えさせていただきます。
ご了承ください。

　「電車通勤時に楽に本を読みたい」そんな願いを叶えてくれるの
が、読書補助具「サムシング」。片手だけでしっかり本を広げられる
一品です（さすがにページをめくるときは、もう片方の手が必要で
す）。同製品のWebサイトなどで紹介されている使用例は写真1の
ような感じですが、ここまで深くまっすぐに親指を突っ込むとページ
がめくりにくいうえに、親指が疲れます。写真2のように軽く斜めに
あてがう程度で十分です。これならページも比較的めくりやすいで
す。片手読書で親指がつらくなるのは、本の終盤に差し掛かったと
き。終盤になるほど
本は自然に閉じようと
するので、親指の負
担が増します。その
ときに本製品がある
と、最後まで楽に読
めます。本の終盤に
きたときにだけ使うと
いうのもアリですね。

エンジニアの能率を高める一品
仕事の能率を高める道具は、ソフトウェアやスマートフォンのようなデジタルなものだけではありません。
このコーナーではエンジニアの能率アップ心をくすぐるアナログな文具、雑貨、小物を紹介していきます。

サムシング
350円（税抜）／丸善㈱　https://www.maruzen.co.jp/

▲写真1 基本的な使い方▲写真2 斜めにあてがうとラク

https://www.maruzen.co.jp/

Software Design
2014年3月号

発行日
2014年3月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2014年4月号
定価1,280円　176ページ

April 2014

3月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2014 技術評論社

●1月に2冊を作るという年末進行の怒濤の混乱を終

えたのち、感染性胃腸炎にかかり地獄を見た。狂乱

の全社忘年会には参加できず、翌日の納会も中座。

およそ3Kgの減量になるも、正月の宴会で元にもど

る。リバウンドしなかっただけいいじゃないか。次回、

「黄金週間進行」まだ原稿は来ない。（本）

●50歳を越えてからというものの、体調が変化してき

ているのがよくわかる。昔はもっと頑張れたと思うが、

集中力が続かない。健康診断も近く、以前は直近に

はダイエットやら運動やらしていたが、今年は成り行き

でもいいかという感じ。日々楽しくないと長続きしない

と実感。それでも2週間くらいは禁酒します。（幕）

●今年も行って参りました次世代ワールドホビーフェ

ア。年末に痛めたヒザを抱え、入場まで約3時間立

ちっぱなしで並んだのはつらかった。バンダイブース

からヨーヨーがなくなってしまい寂しい限り。短い冬

になるといいなぁ。今冬、小学生男子にとっては「バ

ディファイト」が熱いようです（我が家調べ）。（キ）

●高齢者が餅を喉につまらせて病院に運ばれる事件

が多いので、妻に「あなたのおばあちゃんにも気をつ

けてあげないとね」と言ったところ、妻曰く「うちは

父親にも気をつけないといけないのよ」とのこと。そ

うか、自分たちの親も、もう高齢者の年代に入りつ

つあるのだった。うーむ、笑えない。（よし）

●また健康診断です。例年通り激太りしてます。去

年はフレンチ惣菜屋の売れ残りを相当もらって食べた

し、内臓脂肪もドエライ事になっていそう。残り1か

月、猛ダイエット中ですが、夜を軽くしている為、空

腹で4時に目覚め、仕方なくスープを飲んで再度寝

てます。これでいいのか?!（ブタえもん）

●平日に風邪をひいて休んだ時のこと。食欲はあった

のでお昼どうしようかと思い台所へ行ったが、食材を

前日に使い切ってしまっていたのでない。近くにスー

パーもあるが、買いに行く気力はなく、保存用に買っ

ていたカップ麺を食べました。実家では食に困ること

がなかったのでありがたみを再実感しました。（ま）

S D S t a f f R o o m

［第1特集］ Java、JavaScript、PHP言語別で考える

なぜMVCモデルは誤解されるのか？
　Web開発においてMVCモデルをベースに開発を行うことが定番となっています。
しかしながらMVCモデルを正しく理解して使っている方は多いとは言えず、思い込
みのうえで誤った設計・実装がよく見られ、議論の対象になっています。
　本特集は各言語別にMVCモデルを復習し、正しい理解ができるようになることを
目標としています。開発の効率を向上させ、デバッグやメンテナンスにおいても見
通しをよくするMVCモデルをきちんとマスターしてみましょう！

［第2特集］ ネットワークエンジニア養成

ロードバランサーの教科書
　ネットワークの負荷分散を行うロードバランサーの基礎を解説します。ハードウェ
ア・ソフトウェアの両面から解説をすることで、高い視点からネットワークを理解で
きるようになります。

［特別企画］ 今すぐ知りたいSIMのしくみ
［新 連 載］ シェルスクリプトではじめるAWS入門
※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
　「ハイパーバイザの作り方」（第18回）、「Debian Hot Topics」（第13回）は都合によりお休みいたします。

168 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2014年3月号
	表紙
	目次1
	目次2
	目次3
	■第1特集 RDBとNoSQLどちらを選びますか？
	・第1章：データベースの根源的誤解......奥野 幹也
	・第2章：データベース設計における地力をつけよう！......小野 哲
	・第3章：分散DBの適用範囲とは......神林 飛志、上新 卓也
	・第4章：分散からあえてRDBへ......林 哲也
	・第5章：RDBと比べてわかるMongoDBを利用する際の注意点......桑野 章弘

	■第2特集 ネットワークエンジニアのためのプロキシサーバの教科書
	・Chapter 1：プロキシサーバの役割と変遷......伊勢 幸一
	・Chapter 2：リバースプロキシの用法と実例......佐野 裕
	・Chapter 3：プロキシサーバの利用方法と応用例......馬場 俊彰

	■短期集中連載
	・さらに踏み込む、Mac OS Xと仮想デスクトップ【1】......後藤 大地

	■特別企画
	・スマートコネクト マネージドサーバ【前編】大規模Webサイトの構築・運用を強力にサポート......Software Design編集部

	■連載：Column
	・＜ネットワークエンジニア虎の穴＞自宅ラックのススメ【10】自宅ラックのススメ、別府出張編......tomocha
	・digital gadget【183】流行だけでないウェアラブルとモノのインターネット......安藤 幸央
	・結城浩の再発見の発想法【10】Synchronous......結城 浩
	・enchant 〜創造力を刺激する魔法〜【11】enchantMOONの誕生［後編］......清水 亮
	・コレクターが独断で選ぶ！ 偏愛キーボード図鑑【11】Kinesis Freestyle2......濱野 聖人
	・秋葉原発！　はんだづけカフェなう【41】ステッパーをはじめよう（前編）......坪井 義浩
	・ひみつのLinux通信【3】幸せを運ぶコマンド......くつなりょうすけ
	・SDでSF【3】『声の網』......小飼 弾
	・Hack For Japan〜エンジニアだからこそできる復興への一歩【27】「ITx災害」会議（後編）......及川 卓也、高橋 憲一
	・温故知新 ITむかしばなし【31】ぴゅう太......佐野 裕

	■連載：Development
	・サーバマシンの測り方【4】Xeon E5-2600 v2を測る......藤城 拓哉
	・分散データベース「未来工房」【9】Riak はなぜデータをなくさないのか（1）......上西 康太
	・セキュリティ実践の基本定石〜みんなでもう一度見つめなおそう〜【9】SSHが危険に晒されるとき......すずきひろのぶ
	・プログラム知識ゼロからはじめるiPhoneブックアプリ開発【11】多言語ローカライズで世界に通用するアプリを目指そう！......GimmiQ（いたのくまんぼう、リオ・リーバス）
	・Androidエンジニアからの招待状【46】HTML5でLチカに挑戦......今岡 通博

	■連載：OS/Network
	・Be familiar with FreeBSD~チャーリー・ルートからの手紙【5】次世代パッケージ管理システム pkg(8)......後藤 大地
	・レッドハット恵比寿通信【18】そのソースコードforkしてませんか？......纐纈 昌嗣
	・Ubuntu Monthly Report【47】LibreOffice 4.2の新機能......あわしろいくや
	・Linuxカーネル観光ガイド【24】Linux 3.13の新機能　〜パケットフィルタリングエンジンnftables〜......青田 直大
	・Monthly News from jus【29】IT業界の2つのムーブメントを追う（情報銀行＆AWS）......法林 浩之

	■アラカルト
	・ITエンジニア必須の最新用語解説【63】Intel XDK......杉山 貴章
	・Hosting Department【95】
	・読者プレゼントのお知らせ
	・SD BOOK FORUM
	・SD NEWS & PRODUCTS
	・Letters From Readers
	・年間定期購読のご案内
	・バックナンバーのお知らせ
	・Software Design plusのお知らせ
	・次号のお知らせ

