

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　近年、インフラの構築や運用管理
の現場で「Infrastructure as Code」
と呼ばれる考え方が注目を集め始め
ています。Infrastructure as Code
とは、ITシステムのインフラの構築や
運用をプログラミングのようにコードを
書くことで実現しようというアプローチ
です。
　従来、インフラの構成管理は構築
手順書を元に手動で行うことが一般
的でした。 Infrastructure as Code
では、構築手順書の代わりにソース
コードによってインフラ構築時に行うべ
き作業を定義し、それを実行すること
で実際の環境に反映させます。たと
えば、サーバにOSをインストールし、
ミドルウェアを導入し、各種設定を行
い、アプリケーションのデプロイなど
を行う。この一連の作業をプログラム
として記述するわけです。このような
コード化によって、次のようなメリット
が生まれます。

作業ミスなどのヒューマンエラーを•
減らせる
複数台のサーバを効率よく構築で•
きる
作業手順の曖昧さを回避できる•
コードがバージョン管理できるため、•
複数世代の構成を保持することが
可能
コードレビューによって品質向上や•
情報共有が行える
継続的インテグレーションが実現で•
きる

　Infrastructure as Codeを考える
うえで重要なのは、これが単にインフ
ラ構築を自動化するという話ではなく、
インフラをソフトウェアのように扱えると
いう点に着目することです。コード化
することと合わせて、ソフトウェアの世
界で培われてきたノウハウを適用する
ことによって、インフラ構築の迅速化
やコスト削減、品質の向上につなげ
ようというわけです。

　ビジネス市場の急速な変化に対応
していくためには、常に最新の動向を
取り入れた新しいITサービスを迅速
にリリースし続ける必要があります。そ
のためにはソフトウェアの継続的な更
新やデリバリーはもちろんのこと、シス
テムを支えるインフラにも常に手を加え
ていかなければなりません。
　最近では仮想化技術の発達やクラ
ウドの普及によって、サーバやネット
ワークといったインフラをソフトウェア的
に構成し、拡張性や柔軟性が極めて
高いシステムを構築できます。ハード
ウェアへの依存度が下がったことで、
インフラの再構築にかかるリスクも以
前に比べて大幅に小さくなりました。
Infrastructure as Codeという考え
方は、その柔軟性をさらに高め、継
続的にビジネス価値を創出し続けるこ
とを目的として誕生しました。
　Infrastructure as Codeが実現
すれば、ベースとなるインフラのライ
フサイクルと、そのインフラの上で提
供されるITサービスのライフサイクル
を同期させることができるようになりま
す。両者のライフサイクルの違いは、

長らく企業のITシステムの柔軟性を
阻害する要因のひとつとなっていまし
た。Infrastructure as Codeには、
その隔たりを解消する手段として大き
な期待が寄せられています。

　Infrastructure as Codeをサポー
トする代表的なツールには次のような
ものがあります。

Puppet• …サーバの環境構築を
コードに基づいて自動化する設定
管理ツール。言語は独自 DSL
(Domain Specific Language)を
使用
Chef• …Puppetと同様にサーバの
環境構築をコード化する設定管理
ツール。言語はRuby DSL
serverspec• …サーバ設定のテス
トを自動で行うためのフレームワー
ク。コード化したインフラの継続的
インテグレーションが可能になる
Docker• …コンテナ技術を用いて
サーバ上に独立したOS 環境を構
築できるツール
Serf• …オーケストレーションをコード
化するツール。ロードバランサや
サーバ管理ツールへの登録などと
いった作業を自動化できる

　これらのツールは、Infrastructure
as Codeという考え方が広まり、適用
する範囲や方法が明確になるのに
ともなって今も進化を続けています。
Infrastructure as Codeは、インフ
ラ管理のライフサイクルを改善するブ
レークスルーになるかもしれません。
｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 65回

　Infrastructure as Codeを考える 長らく企業のITシステムの柔軟性を

Infrastructure as Code

ITインフラ管理を変える
「Infrastructure as Code」

サポートするツール群

変わり続けるITシステム
を実現する

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

http://sd.gihyo.jp/

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／~＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／~＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
http://gihyo.jp/magazine/SD

をご覧ください。
PDF電子版の年間定期購読も受け付けております。

PDF電子版発売キャンペーン
2014年5月17日までにGihyo
Digital Publishingにて電子版年
間定期購読を新規にお申し込みの
方は、年間購読料12,000円
（税込み）でお求めいただけます。

14,880

電子版年間定期購読開始キャンペーン
1年間12,000円（税込み）

（2014年5月17日お申し込み分まで）

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

■お問い合わせ
〒162-0846
新宿区市谷左内町21-13
株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180
メール：gdp@gihyo.co.jp

法人などまとめてのご購入については
別途お問い合わせください。

※販売書店は今後も増える予定です。

電 子 版の最 新リストは

G i h y o D i g i t a l P u b l i s h i n g の

サイトにて確 認できます。

h t t p : / / g i h y o . j p / d p

http://gihyo.jp/dp

〒162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

養成読本編集部 編
B5判 ・ 216ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6422-9

養成読本編集部 編
B5判 ・ 196ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6425-0

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

養成読本編集部 編
B5判 ・ 224ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6377-2

TIS㈱ 池田 大輔 著
B5変形判 ・ 384ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6288-1

乾 正知 著
B5変形判 ・ 352ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-6304-8

髙橋 俊光、諏訪 悠紀、湯村 翼、
平屋 真吾、平井 祐樹 著
B5判 ・ 144ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6385-7

久保田 光則、アシアル㈱ 著
A5判 ・ 384ページ
定価 2,880円（本体）＋税
ISBN 978-4-7741-6211-9

森藤 大地、あんちべ 著
A5判 ・ 296ページ
定価 2,780円（本体）＋税
ISBN 978-4-7741-6326-0

㈱パイプドビッツ 著
A5判 ・ 224ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6205-8

プロになるための
JavaScript入門
河村 嘉之、川尻 剛 著
定価 2,980円＋税　ISBN 978-4-7741-5438-1

はじめてのOSコードリーディング
青柳 隆宏 著
定価 3,200円＋税　ISBN 978-4-7741-5464-0

Webサービスのつくり方
和田 裕介 著
定価 2,180円＋税　ISBN 978-4-7741-5407-7

Androidアプリケーション
開発教科書
三苫 健太 著
定価 3,200円＋税　ISBN 978-4-7741-5189-2

日本一の地図システムの作り方
㈱マピオン、山岸 靖典、谷内 栄樹、
本城 博昭、長谷川 行雄、中村 和也、
松浦 慎平、佐藤 亜矢子 著
定価 2,580円＋税　ISBN 978-4-7741-5325-4

OpenFlow実践入門
高宮 安仁、鈴木 一哉 著
定価 3,200円＋税　ISBN 978-4-7741-5465-7

サウンドプログラミング入門
青木 直史 著
定価 2,980円＋税　ISBN 978-4-7741-5522-7

〈改訂〉Trac入門
菅野 裕、今田 忠博、近藤 正裕、
杉本 琢磨 著
定価 3,200円＋税　ISBN 978-4-7741-5567-8

JavaScriptライブラリ実践活用
WINGSプロジェクト 著
定価 2,580円＋税　ISBN 978-4-7741-5611-8

小飼弾のコードなエッセイ
小飼 弾 著
定価 2,080円＋税　ISBN 978-4-7741-5664-4

データベースエンジニア養成読本
データベースエンジニア養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5806-8

Linuxシステム［実践］入門
沓名 亮典 著
定価 2,880円＋税　ISBN 978-4-7741-5813-6

Raspberry Pi［実用］入門
Japanese Raspberry Pi Users Group 著
定価 2,380円＋税　ISBN 978-4-7741-5855-6

Androidエンジニア養成読本Vol.2
Software Design編集部 編
定価 1,880円＋税　ISBN 978-4-7741-5888-4

データサイエンティスト養成読本
データサイエンティスト養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5896-9

独習Linux専科
中井 悦司 著
定価 2,980円＋税　ISBN 978-4-7741-5937-9

PHPエンジニア養成読本
PHPエンジニア養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5971-3

はじめての3Dプリンタ
水野 操、平本 知樹、神田 沙織、野村 毅 著
定価 2,480円＋税　ISBN 978-4-7741-5973-7

おいしいClojure入門
ニコラ・モドリック、安部 重成 著
定価 2,780円＋税　ISBN 978-4-7741-5991-1

菊田 剛 著
B5判 ・ 288ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6128-0

和田 裕介、石田 絢一（uzulla）、
すがわら まさのり、斎藤 祐一郎 著
B5判 ・ 144ページ
定価 1,880円（本体）＋税
ISBN 978-4-7741-6367-3

沼田 哲史 著
B5変形判 ・ 360ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-6076-4

大谷 純、阿部 慎一朗、
大須賀 稔、北野 太郎、
鈴木 教嗣、平賀 一昭 著
㈱リクルートテクノロジーズ、
㈱ロンウイット 監修
B5変形判 ・ 352ページ
定価 3,600円（本体）＋税
ISBN 978-4-7741-6163-1

養成読本編集部 編
B5判 ・ 184ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6424-3

https://gihyo.jp/site/inquiry/dennou

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.bluebox.ne.jp

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

　妄想の物語が詰まった書籍を多数
出版しているクラフト・エヴィング商會
の書籍の中に、「シガレット・ムー
ヴィー」という品物が載っています。そ
れは煙草の1本1本に映画の情景が
刷り込まれていて、その煙草を吸うと目
の前に映画の情景が浮かび上がると
いう妄想の品物です。
　煙草にはそれぞれ映画のタイトルが
小さな文字で書かれており、予告編も
何もなく、その煙草に火をつけてみない
と、どんな映像が浮かび上がってくるか
もわからないのです。また煙草の健康
への影響も、その映像次第、という妄

想全開の製品です。
　「そんなの無理だろ～」と笑い飛ば
すのは簡単です。けれども、もし何らか
の技術によって実現したらどう感じるで
しょうか？　100％完全に実現とは言
えずとも、少しでも実現する方法はない
でしょうか？
　たとえば、RFIDタグなどを搭載した
電子煙草と、プロジェクタを置いている
ことを意識しなくて済むような超単焦点
の壁面プロジェクタ、ネット経由のオン
デマンドの映画配信サービスの組み
合わせで、「シガレット・ムーヴィー」の妄
想を現実世界で実現できなくはないで
しょうか？

　単なる妄想を具現化し、アイデアや
デザインの宝庫として2005年頃から
続いている「Yanko Design」（http://
www.yankodesign.com/）というサイ
トには、数百種類のコンセプトデザイン
が紹介されています。すぐに商品化で
きそうなものから、現在の技術では実
現できそうもない、妄想全開のデザイン
もあります。海外のデザインアワードで
賞を取ったものもあり、商品化に向け
て進んでいるプロジェクトもあります。

　妄想にもいろいろな種類のものがあ
ります。新製品リリース直前の噂やリー

ク情報を見ながら、もうすぐ発表される
であろう新製品に思いを巡らせるのも
楽しい「妄想」です。人間が想像できる
ものであれば何でも作れそうに思えま
すが、妄想と理想の間には大きな壁が
ありそうです。それらを列挙してみましょ
う。

●製造限界。その大きさや小ささでは
作れない

●実現しようとなると高額すぎて、コス
ト的に見合わない

●物理的、物理現象として不可能
●コンピューティングパワーや処理ス
ピードがまだ足りない

●音声認識、画像認識や動態認識の
技術の不正確さのため必要不十分

●目的の強度や透明度など、必要な
素材がない

●ニッチな領域すぎて商用展開が難
しいと考えてしまうもの

●身近にある不便が不便と感じてい
ないため、その先に進まない

●エネルギー効率やコスト面であまり
にも効率が悪い

●無理な形状。職人芸や金型で製作
するのが無理な形状と素材

●手動やアナログで操作するのが当
たり前と思っていた事柄

●1つ1つが受注生産になってしまうた
め、実現が難しいもの

●思いもしなかったような組み合わせ
であるため、実現していなかったもの

●商業的に意味をなさないため、実現
していなかったもの

●人手で処理したほうが安価なため、
デジタル化が遅れている事柄

　なんだか読めば読むほどゲンナリし
てくるかもしれませんが、それを逆手に
取って、いろいろなものを考えてみま
しょう。
　たとえば、iPhoneを聴診器に変える
スマートフォン用ケース「Steth IO」。部
品を組み合わせて自由な機能を持た
せることができるスマートフォン

「Project Ara」など、たぶん妄想から始
まったであろうコンセプトも、最近の技
術で実現してしまっているのです。
　従来は、現実の延長線上に未来が
ありましたが、これからはコンピュータの
中やSF映画の中では実現できている
妄想を、どうやって現実世界に持ち出
してくれば良いのかを考えていくように
なるのかもしれません。

　未来に向けた先進的なモノやサー

ビスを考えるのは容易なことではありま
せん。現在のユーザは想定できても、
未来のユーザはまだいないからです。
そのような未来に向けての企画が求め
られる場合、“エクストリームユーザ”と
呼ばれる極端な特性を持ったユーザ
像を想定して考えます。一般的なユー
ザではなく、相対的な数は少なくとも先
進的で極端なユーザを想定するので
す。
　たとえば、先進的なスマートフォンア
プリを作ろうと考えたときは、片時もスマ
ホを手放さないようなヘビーユーザに
向けて考えたり、または、いっさいデジタ
ルデバイスを使わないようなユーザに
向けて考えたりするのです。
　また優秀なエンジニア／プログラマ
であればあるほど、常識や技術の限界
を意識しないで考えることが難しくなり
ます。現在の技術であればこれぐらいま
ではできる、と限界点を自ら設定してし
まうのです。「効率良く処理できるの
は、これぐらいのデータ量とこれぐらい
の情報」「現在のネットのスピードであ
れば、これぐらいのことができる」など自
分で実装することを想像し、企画の実
現のバランスを瞬時に考え、突拍子も
ない発想を押さえつけてしまうことがあ
ります。

　もちろん無理難題な企画を実現す
るのに苦労したあげく、中途半端なク
オリティで実現に至らないことは避けな
ければいけません。そのようなときに有
効なのは、発想を広げるブレインストー
ミングと、実装の方法を細かく検討する
プロダクション会議を分けて、それぞれ
別に実施するのです。メンバーは同じ
でもかまいませんが、目的と発想の観
点を変えることで、突飛な発想でも実
現する工夫ができたり、技術的要因
で、発想を押さえ込まれにくくなります。
　さらに、現時点では無理なサービス
や企画も、妄想は妄想のままで終わら
せずに企画を暖めておけば、近い将来
実現できるようになるかもしれません。
今から10年前を思い出してみると、今
は無理でも5年、10年経てば現実に
なっている可能性を否定しきれないで
しょう。
　皆さんが子供の頃、コンピュータに
声で尋ねると何でも答えてくれるような
漫画やアニメーションがなかったでしょ
うか？　その当時は未来の出来事でし
たが、2014年の今は、音声で検索で
きたり、音声でスマートフォンを操作した
り、知りたいことは何でも検索できたり。
　その頃妄想していた未来は、限りな
く近づいているように感じられます。｢

妄想のガジェット、理想のガジェット
妄想と理想の紙一重

安藤 幸央
EXA Corporation

Know Your Switches

フロアプラン電灯スイッチ
Know Your Switchesはデザイナー
Taewon Hwang氏によるコンセプトデザ
イン。部屋の間取りが複雑な場合、どこの
電灯スイッチがどこの電灯に対応するの
か、戸惑うことが多くはありませんか？　とく
に初めての会議室などですと、「前列」など
と文字で書かれていても、実際にはどこが
点灯／消灯するのかよくわかりません。
Know Your Switchesは、部屋の間取り
と同じ図柄のスイッチにすることで、誰もが
一目で理解できる見栄えになっています。
汎用化が難しく、コストがかかりそうです
が、液晶タッチパネル化などで実現してほ
しいアイデアです。

http://www.yankodesign.com/
2011/03/02/know-your-switches/

妄想のガジェット、理想のガジェット

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Blank Calls

見ないで操作できる
スマートフォン
Leo Marzolf氏デザインによるBlank
Callsは、おもに目の不自由な人向けの
スマートフォンとして考えられ、画面を見な
いで使えるというコンセプトを提示したも
のです。正方形で、どんな方向で持って
いても使え、手触りでアプリを見分けられ
ることを想定しています。形状に独特の
切り欠きがあることで、ヘッドホン端子の
位置や、持っている方向を素早く把握す
ることができます。文字を大きく表示する
機能やコントラストの強い白黒表示にす
る機能なども考えられています。

http://www.yankodesign.com/
2014/02/26/blank-calls/

dataSTICKIES

付箋紙のようなメモリ
dataSTICKIESはAditi Singh氏、
Parag Anand氏による、携帯できる新方
式のメモリのコンセプトデザインです。付
箋紙のようにメモを書き込んだり、付箋紙
を1枚1枚剥がすように、分離して容量を
分けて使うことができます。付箋紙と同じ
く、ノートや手帳に貼り付けることもできま
す。またUSBポートに差すのではなく、光
学式のデータ転送方式を用い、デバイス
にペタっと貼るだけでデータを転送してし
まうことを考えているもよう。

http://www.yankodesign.com/2014/02/21/
new-word-of-the-day-datastickies/

Future Control

手のひらを
タッチパネル化する装置
Dor Tal氏が考えるPredictablesプロ
ジェクトでは、未来の操作方法を提示し
ています。超小型のピコプロジェクタと認
識用のカメラを用いて、手のひらや部屋
の壁など、どこでも表示装置とタッチパネ
ルが使えるようにしてしまいます。腕時計
のような装置によって、手のひらに投影し
た映像をスマートフォンのタッチ画面のよ
うに操作することで、スマートフォンを直接
操作する必要はありません。

http://www.yankodesign.com/
2014/02/19/future-control/

USBで充電できる乾電池（似たアイデ
アがエコデンという名前で商品化）

3Dプリントされたランプ「Printed Bulbs
Light Bulb」

iPhoneを聴診器に変えるスマートフォン
用ケース「Steth IO」
http://www.stratoscientific.com/

組み合わせスマートフォン「Project
Ara」の部品群
https://dscout.com/ara

Project Araで組み合わせた筐体例

クリップとして使えるUSBメモリ

妄想の限界と理想の可能性

限界点を打ち破る手法

電子煙草 Hulu（既存サービス）

SONYの
壁面4Kプロジェクタ

（開発試作機）

シ
ガ
レ
ッ
ト・ム
ー
ヴ
ィ
ー・シ
ス
テ
ム
？

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 May 2014 - 1

http://www.andoh.org/
http://www.yankodesign.com/
http://www.yankodesign.com/

　妄想の物語が詰まった書籍を多数
出版しているクラフト・エヴィング商會
の書籍の中に、「シガレット・ムー
ヴィー」という品物が載っています。そ
れは煙草の1本1本に映画の情景が
刷り込まれていて、その煙草を吸うと目
の前に映画の情景が浮かび上がると
いう妄想の品物です。
　煙草にはそれぞれ映画のタイトルが
小さな文字で書かれており、予告編も
何もなく、その煙草に火をつけてみない
と、どんな映像が浮かび上がってくるか
もわからないのです。また煙草の健康
への影響も、その映像次第、という妄

想全開の製品です。
　「そんなの無理だろ～」と笑い飛ば
すのは簡単です。けれども、もし何らか
の技術によって実現したらどう感じるで
しょうか？　100％完全に実現とは言
えずとも、少しでも実現する方法はない
でしょうか？
　たとえば、RFIDタグなどを搭載した
電子煙草と、プロジェクタを置いている
ことを意識しなくて済むような超単焦点
の壁面プロジェクタ、ネット経由のオン
デマンドの映画配信サービスの組み
合わせで、「シガレット・ムーヴィー」の妄
想を現実世界で実現できなくはないで
しょうか？

　単なる妄想を具現化し、アイデアや
デザインの宝庫として2005年頃から
続いている「Yanko Design」（http://
www.yankodesign.com/）というサイ
トには、数百種類のコンセプトデザイン
が紹介されています。すぐに商品化で
きそうなものから、現在の技術では実
現できそうもない、妄想全開のデザイン
もあります。海外のデザインアワードで
賞を取ったものもあり、商品化に向け
て進んでいるプロジェクトもあります。

　妄想にもいろいろな種類のものがあ
ります。新製品リリース直前の噂やリー

ク情報を見ながら、もうすぐ発表される
であろう新製品に思いを巡らせるのも
楽しい「妄想」です。人間が想像できる
ものであれば何でも作れそうに思えま
すが、妄想と理想の間には大きな壁が
ありそうです。それらを列挙してみましょ
う。

●製造限界。その大きさや小ささでは
作れない

●実現しようとなると高額すぎて、コス
ト的に見合わない

●物理的、物理現象として不可能
●コンピューティングパワーや処理ス
ピードがまだ足りない

●音声認識、画像認識や動態認識の
技術の不正確さのため必要不十分

●目的の強度や透明度など、必要な
素材がない

●ニッチな領域すぎて商用展開が難
しいと考えてしまうもの

●身近にある不便が不便と感じてい
ないため、その先に進まない

●エネルギー効率やコスト面であまり
にも効率が悪い

●無理な形状。職人芸や金型で製作
するのが無理な形状と素材

●手動やアナログで操作するのが当
たり前と思っていた事柄

●1つ1つが受注生産になってしまうた
め、実現が難しいもの

●思いもしなかったような組み合わせ
であるため、実現していなかったもの

●商業的に意味をなさないため、実現
していなかったもの

●人手で処理したほうが安価なため、
デジタル化が遅れている事柄

　なんだか読めば読むほどゲンナリし
てくるかもしれませんが、それを逆手に
取って、いろいろなものを考えてみま
しょう。
　たとえば、iPhoneを聴診器に変える
スマートフォン用ケース「Steth IO」。部
品を組み合わせて自由な機能を持た
せることができるスマートフォン

「Project Ara」など、たぶん妄想から始
まったであろうコンセプトも、最近の技
術で実現してしまっているのです。
　従来は、現実の延長線上に未来が
ありましたが、これからはコンピュータの
中やSF映画の中では実現できている
妄想を、どうやって現実世界に持ち出
してくれば良いのかを考えていくように
なるのかもしれません。

　未来に向けた先進的なモノやサー

ビスを考えるのは容易なことではありま
せん。現在のユーザは想定できても、
未来のユーザはまだいないからです。
そのような未来に向けての企画が求め
られる場合、“エクストリームユーザ”と
呼ばれる極端な特性を持ったユーザ
像を想定して考えます。一般的なユー
ザではなく、相対的な数は少なくとも先
進的で極端なユーザを想定するので
す。
　たとえば、先進的なスマートフォンア
プリを作ろうと考えたときは、片時もスマ
ホを手放さないようなヘビーユーザに
向けて考えたり、または、いっさいデジタ
ルデバイスを使わないようなユーザに
向けて考えたりするのです。
　また優秀なエンジニア／プログラマ
であればあるほど、常識や技術の限界
を意識しないで考えることが難しくなり
ます。現在の技術であればこれぐらいま
ではできる、と限界点を自ら設定してし
まうのです。「効率良く処理できるの
は、これぐらいのデータ量とこれぐらい
の情報」「現在のネットのスピードであ
れば、これぐらいのことができる」など自
分で実装することを想像し、企画の実
現のバランスを瞬時に考え、突拍子も
ない発想を押さえつけてしまうことがあ
ります。

　もちろん無理難題な企画を実現す
るのに苦労したあげく、中途半端なク
オリティで実現に至らないことは避けな
ければいけません。そのようなときに有
効なのは、発想を広げるブレインストー
ミングと、実装の方法を細かく検討する
プロダクション会議を分けて、それぞれ
別に実施するのです。メンバーは同じ
でもかまいませんが、目的と発想の観
点を変えることで、突飛な発想でも実
現する工夫ができたり、技術的要因
で、発想を押さえ込まれにくくなります。
　さらに、現時点では無理なサービス
や企画も、妄想は妄想のままで終わら
せずに企画を暖めておけば、近い将来
実現できるようになるかもしれません。
今から10年前を思い出してみると、今
は無理でも5年、10年経てば現実に
なっている可能性を否定しきれないで
しょう。
　皆さんが子供の頃、コンピュータに
声で尋ねると何でも答えてくれるような
漫画やアニメーションがなかったでしょ
うか？　その当時は未来の出来事でし
たが、2014年の今は、音声で検索で
きたり、音声でスマートフォンを操作した
り、知りたいことは何でも検索できたり。
　その頃妄想していた未来は、限りな
く近づいているように感じられます。｢

妄想のガジェット、理想のガジェット
妄想と理想の紙一重

安藤 幸央
EXA Corporation

Know Your Switches

フロアプラン電灯スイッチ
Know Your Switchesはデザイナー
Taewon Hwang氏によるコンセプトデザ
イン。部屋の間取りが複雑な場合、どこの
電灯スイッチがどこの電灯に対応するの
か、戸惑うことが多くはありませんか？　とく
に初めての会議室などですと、「前列」など
と文字で書かれていても、実際にはどこが
点灯／消灯するのかよくわかりません。
Know Your Switchesは、部屋の間取り
と同じ図柄のスイッチにすることで、誰もが
一目で理解できる見栄えになっています。
汎用化が難しく、コストがかかりそうです
が、液晶タッチパネル化などで実現してほ
しいアイデアです。

http://www.yankodesign.com/
2011/03/02/know-your-switches/

妄想のガジェット、理想のガジェット

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Blank Calls

見ないで操作できる
スマートフォン
Leo Marzolf氏デザインによるBlank
Callsは、おもに目の不自由な人向けの
スマートフォンとして考えられ、画面を見な
いで使えるというコンセプトを提示したも
のです。正方形で、どんな方向で持って
いても使え、手触りでアプリを見分けられ
ることを想定しています。形状に独特の
切り欠きがあることで、ヘッドホン端子の
位置や、持っている方向を素早く把握す
ることができます。文字を大きく表示する
機能やコントラストの強い白黒表示にす
る機能なども考えられています。

http://www.yankodesign.com/
2014/02/26/blank-calls/

dataSTICKIES

付箋紙のようなメモリ
dataSTICKIESはAditi Singh氏、
Parag Anand氏による、携帯できる新方
式のメモリのコンセプトデザインです。付
箋紙のようにメモを書き込んだり、付箋紙
を1枚1枚剥がすように、分離して容量を
分けて使うことができます。付箋紙と同じ
く、ノートや手帳に貼り付けることもできま
す。またUSBポートに差すのではなく、光
学式のデータ転送方式を用い、デバイス
にペタっと貼るだけでデータを転送してし
まうことを考えているもよう。

http://www.yankodesign.com/2014/02/21/
new-word-of-the-day-datastickies/

Future Control

手のひらを
タッチパネル化する装置
Dor Tal氏が考えるPredictablesプロ
ジェクトでは、未来の操作方法を提示し
ています。超小型のピコプロジェクタと認
識用のカメラを用いて、手のひらや部屋
の壁など、どこでも表示装置とタッチパネ
ルが使えるようにしてしまいます。腕時計
のような装置によって、手のひらに投影し
た映像をスマートフォンのタッチ画面のよ
うに操作することで、スマートフォンを直接
操作する必要はありません。

http://www.yankodesign.com/
2014/02/19/future-control/

USBで充電できる乾電池（似たアイデ
アがエコデンという名前で商品化）

3Dプリントされたランプ「Printed Bulbs
Light Bulb」

iPhoneを聴診器に変えるスマートフォン
用ケース「Steth IO」
http://www.stratoscientific.com/

組み合わせスマートフォン「Project
Ara」の部品群
https://dscout.com/ara

Project Araで組み合わせた筐体例

クリップとして使えるUSBメモリ

妄想の限界と理想の可能性

限界点を打ち破る手法

電子煙草 Hulu（既存サービス）

SONYの
壁面4Kプロジェクタ

（開発試作機）

シ
ガ
レ
ッ
ト・ム
ー
ヴ
ィ
ー・シ
ス
テ
ム
？

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design

http://www.stratoscientific.com/
https://dscout.com/ara

　妄想の物語が詰まった書籍を多数
出版しているクラフト・エヴィング商會
の書籍の中に、「シガレット・ムー
ヴィー」という品物が載っています。そ
れは煙草の1本1本に映画の情景が
刷り込まれていて、その煙草を吸うと目
の前に映画の情景が浮かび上がると
いう妄想の品物です。
　煙草にはそれぞれ映画のタイトルが
小さな文字で書かれており、予告編も
何もなく、その煙草に火をつけてみない
と、どんな映像が浮かび上がってくるか
もわからないのです。また煙草の健康
への影響も、その映像次第、という妄

想全開の製品です。
　「そんなの無理だろ～」と笑い飛ば
すのは簡単です。けれども、もし何らか
の技術によって実現したらどう感じるで
しょうか？　100％完全に実現とは言
えずとも、少しでも実現する方法はない
でしょうか？
　たとえば、RFIDタグなどを搭載した
電子煙草と、プロジェクタを置いている
ことを意識しなくて済むような超単焦点
の壁面プロジェクタ、ネット経由のオン
デマンドの映画配信サービスの組み
合わせで、「シガレット・ムーヴィー」の妄
想を現実世界で実現できなくはないで
しょうか？

　単なる妄想を具現化し、アイデアや
デザインの宝庫として2005年頃から
続いている「Yanko Design」（http://
www.yankodesign.com/）というサイ
トには、数百種類のコンセプトデザイン
が紹介されています。すぐに商品化で
きそうなものから、現在の技術では実
現できそうもない、妄想全開のデザイン
もあります。海外のデザインアワードで
賞を取ったものもあり、商品化に向け
て進んでいるプロジェクトもあります。

　妄想にもいろいろな種類のものがあ
ります。新製品リリース直前の噂やリー

ク情報を見ながら、もうすぐ発表される
であろう新製品に思いを巡らせるのも
楽しい「妄想」です。人間が想像できる
ものであれば何でも作れそうに思えま
すが、妄想と理想の間には大きな壁が
ありそうです。それらを列挙してみましょ
う。

●製造限界。その大きさや小ささでは
作れない

●実現しようとなると高額すぎて、コス
ト的に見合わない

●物理的、物理現象として不可能
●コンピューティングパワーや処理ス
ピードがまだ足りない

●音声認識、画像認識や動態認識の
技術の不正確さのため必要不十分

●目的の強度や透明度など、必要な
素材がない

●ニッチな領域すぎて商用展開が難
しいと考えてしまうもの

●身近にある不便が不便と感じてい
ないため、その先に進まない

●エネルギー効率やコスト面であまり
にも効率が悪い

●無理な形状。職人芸や金型で製作
するのが無理な形状と素材

●手動やアナログで操作するのが当
たり前と思っていた事柄

●1つ1つが受注生産になってしまうた
め、実現が難しいもの

●思いもしなかったような組み合わせ
であるため、実現していなかったもの

●商業的に意味をなさないため、実現
していなかったもの

●人手で処理したほうが安価なため、
デジタル化が遅れている事柄

　なんだか読めば読むほどゲンナリし
てくるかもしれませんが、それを逆手に
取って、いろいろなものを考えてみま
しょう。
　たとえば、iPhoneを聴診器に変える
スマートフォン用ケース「Steth IO」。部
品を組み合わせて自由な機能を持た
せることができるスマートフォン

「Project Ara」など、たぶん妄想から始
まったであろうコンセプトも、最近の技
術で実現してしまっているのです。
　従来は、現実の延長線上に未来が
ありましたが、これからはコンピュータの
中やSF映画の中では実現できている
妄想を、どうやって現実世界に持ち出
してくれば良いのかを考えていくように
なるのかもしれません。

　未来に向けた先進的なモノやサー

ビスを考えるのは容易なことではありま
せん。現在のユーザは想定できても、
未来のユーザはまだいないからです。
そのような未来に向けての企画が求め
られる場合、“エクストリームユーザ”と
呼ばれる極端な特性を持ったユーザ
像を想定して考えます。一般的なユー
ザではなく、相対的な数は少なくとも先
進的で極端なユーザを想定するので
す。
　たとえば、先進的なスマートフォンア
プリを作ろうと考えたときは、片時もスマ
ホを手放さないようなヘビーユーザに
向けて考えたり、または、いっさいデジタ
ルデバイスを使わないようなユーザに
向けて考えたりするのです。
　また優秀なエンジニア／プログラマ
であればあるほど、常識や技術の限界
を意識しないで考えることが難しくなり
ます。現在の技術であればこれぐらいま
ではできる、と限界点を自ら設定してし
まうのです。「効率良く処理できるの
は、これぐらいのデータ量とこれぐらい
の情報」「現在のネットのスピードであ
れば、これぐらいのことができる」など自
分で実装することを想像し、企画の実
現のバランスを瞬時に考え、突拍子も
ない発想を押さえつけてしまうことがあ
ります。

　もちろん無理難題な企画を実現す
るのに苦労したあげく、中途半端なク
オリティで実現に至らないことは避けな
ければいけません。そのようなときに有
効なのは、発想を広げるブレインストー
ミングと、実装の方法を細かく検討する
プロダクション会議を分けて、それぞれ
別に実施するのです。メンバーは同じ
でもかまいませんが、目的と発想の観
点を変えることで、突飛な発想でも実
現する工夫ができたり、技術的要因
で、発想を押さえ込まれにくくなります。
　さらに、現時点では無理なサービス
や企画も、妄想は妄想のままで終わら
せずに企画を暖めておけば、近い将来
実現できるようになるかもしれません。
今から10年前を思い出してみると、今
は無理でも5年、10年経てば現実に
なっている可能性を否定しきれないで
しょう。
　皆さんが子供の頃、コンピュータに
声で尋ねると何でも答えてくれるような
漫画やアニメーションがなかったでしょ
うか？　その当時は未来の出来事でし
たが、2014年の今は、音声で検索で
きたり、音声でスマートフォンを操作した
り、知りたいことは何でも検索できたり。
　その頃妄想していた未来は、限りな
く近づいているように感じられます。｢

妄想のガジェット、理想のガジェット
妄想と理想の紙一重

安藤 幸央
EXA Corporation

Know Your Switches

フロアプラン電灯スイッチ
Know Your Switchesはデザイナー
Taewon Hwang氏によるコンセプトデザ
イン。部屋の間取りが複雑な場合、どこの
電灯スイッチがどこの電灯に対応するの
か、戸惑うことが多くはありませんか？　とく
に初めての会議室などですと、「前列」など
と文字で書かれていても、実際にはどこが
点灯／消灯するのかよくわかりません。
Know Your Switchesは、部屋の間取り
と同じ図柄のスイッチにすることで、誰もが
一目で理解できる見栄えになっています。
汎用化が難しく、コストがかかりそうです
が、液晶タッチパネル化などで実現してほ
しいアイデアです。

http://www.yankodesign.com/
2011/03/02/know-your-switches/

妄想のガジェット、理想のガジェット

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Blank Calls

見ないで操作できる
スマートフォン
Leo Marzolf氏デザインによるBlank
Callsは、おもに目の不自由な人向けの
スマートフォンとして考えられ、画面を見な
いで使えるというコンセプトを提示したも
のです。正方形で、どんな方向で持って
いても使え、手触りでアプリを見分けられ
ることを想定しています。形状に独特の
切り欠きがあることで、ヘッドホン端子の
位置や、持っている方向を素早く把握す
ることができます。文字を大きく表示する
機能やコントラストの強い白黒表示にす
る機能なども考えられています。

http://www.yankodesign.com/
2014/02/26/blank-calls/

dataSTICKIES

付箋紙のようなメモリ
dataSTICKIESはAditi Singh氏、
Parag Anand氏による、携帯できる新方
式のメモリのコンセプトデザインです。付
箋紙のようにメモを書き込んだり、付箋紙
を1枚1枚剥がすように、分離して容量を
分けて使うことができます。付箋紙と同じ
く、ノートや手帳に貼り付けることもできま
す。またUSBポートに差すのではなく、光
学式のデータ転送方式を用い、デバイス
にペタっと貼るだけでデータを転送してし
まうことを考えているもよう。

http://www.yankodesign.com/2014/02/21/
new-word-of-the-day-datastickies/

Future Control

手のひらを
タッチパネル化する装置
Dor Tal氏が考えるPredictablesプロ
ジェクトでは、未来の操作方法を提示し
ています。超小型のピコプロジェクタと認
識用のカメラを用いて、手のひらや部屋
の壁など、どこでも表示装置とタッチパネ
ルが使えるようにしてしまいます。腕時計
のような装置によって、手のひらに投影し
た映像をスマートフォンのタッチ画面のよ
うに操作することで、スマートフォンを直接
操作する必要はありません。

http://www.yankodesign.com/
2014/02/19/future-control/

USBで充電できる乾電池（似たアイデ
アがエコデンという名前で商品化）

3Dプリントされたランプ「Printed Bulbs
Light Bulb」

iPhoneを聴診器に変えるスマートフォン
用ケース「Steth IO」
http://www.stratoscientific.com/

組み合わせスマートフォン「Project
Ara」の部品群
https://dscout.com/ara

Project Araで組み合わせた筐体例

クリップとして使えるUSBメモリ

妄想の限界と理想の可能性

限界点を打ち破る手法

電子煙草 Hulu（既存サービス）

SONYの
壁面4Kプロジェクタ

（開発試作機）

シ
ガ
レ
ッ
ト・ム
ー
ヴ
ィ
ー・シ
ス
テ
ム
？

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design May 2014 - 3

http://www.yankodesign.com/2011/03/02/know-your-switches/
http://www.yankodesign.com/2014/02/21/new-word-of-the-day-datastickies/
http://www.yankodesign.com/2014/02/26/blank-calls/
http://www.yankodesign.com/2014/02/19/future-control/

4 - Software Design

Hook（フック）

フックとは

　フック（hook）というのは、プログラムの重
要ポイントに「別処理」を紛れ込ませるしくみで
す。プログラムは、動作中にフックを通過する
と、通常の処理から離れてフックに設定された
「別処理」に寄り道をします。そして、その「別
処理」を終えたらまた通常の処理に戻ります。
この様子を図1に示します。
　フック（鈎

かぎ

）という言葉がなぜこのような意味
で用いられているかは知りません。処理の流れ

が「別処理」に寄り道をする様子が鈎のように曲
がっているということなのか、あるいはプログ
ラムの開発者が用意した処理の流れを、別処理
を紛れ込ませる人が鈎を使って引き寄せるイメー
ジなのかもしれません。

フックの例

　フックはプログラミング技術として非常に多
く使われています。
　簡単な例として、たまたま筆者が先日体験し
たフックを紹介します。テキストエディタVim
を使っていて、「書き込んで終了」というコマン
ド :wqの代わりに :w:wqと入力してしまう
と:wqという変なファイルが作られてしまいま
す。もともと:wqというファイルを作ることは
考えにくいので「コロン（:）で始まるファイル
を作ろうとしたらエラーにする」という処理を
したいとしましょう。でも、Vimのソースコー
ドを書き換えてそのようなちょっとした処理を
組み込むことは（不可能ではないですが）たいへ
ん手間がかかることです。
　ありがたいことに、VimにはBufWriteCmd
というフックがあります（Vimの用語では自動
コマンドイベント）。BufWriteCmdは「Vimが
バッファ全体をファイルを書き込む前に自動的
に呼び出す別処理」にあたり、ユーザが自由に
設定することができます。BufWriteCmdを
Vimの開発者が入れてくれたおかげで、「コロ
ン（:）で始まるファイルを作ろうとしたらエラー
にする」のようなユーザ固有の処理を入れるこ

Hook

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 12

プログラム

プログラム
開発者が作成

プログラム
開発者以外が作成

フック

フックがあるなら
フックを呼び出す

別処理

通常の処理

フックの呼び出し

 ▼図1　フック

http://www.hyuki.com/

4 - Software Design May 2014 - 5

とがとても簡単にできます。これはまさにフッ
クの例になります（図2）。
　バージョン管理システムGitにもたくさんの
フックがあります。コミット時に関連したフッ
クだけでも4個（pre-commit、prepare-commit-
msg、commit-msg、post-commit）あります。こ
れはデフォルトのコミットメッセージを準備す
る前、ユーザがコミットメッセージを編集する
前、コミットメッセージを使う前、コミット終
了後、という重要ポイントにそれぞれ入れられ
ています。これらのフックを利用することで、
Gitのコミット処理の流れをユーザがカスタマ
イズできるようになります。

フックのメリット

　元のプログラムがたとえ書き換え不可能だと
しても、フックがあれば、ユーザがプログラム
の振る舞いを変更できます。このため、たとえ
ばROM化された組み込みプログラムでもフッ
クは非常によく使われます。適切なフックが用
意されているプログラムは機能拡張性に優れて
いると言えるでしょう。
　フックの目的はユーザのカスタマイズだけで
はありません。開発者がデバッグに用いること

もありますし、プログラムの動作テストや、パ
フォーマンスを測るために用いることもありま
す。たとえば、プログラムの中で使われている
すべての関数の実行前と実行後にフックを入れ
ておけば、プログラムが実行する間にどの関数
が何回呼び出されるかを計測することができる
でしょう。計測が終わったらフックを外してお
けば、製品となるプログラムのパフォーマンス
に悪影響は残りません。

日常生活におけるフック

　さて、私たちの日常生活にもフックに類似す
るものがあります。
　たとえば製品をリリースする場面を考えましょ
う。リリース手順の中に「チェックリストを見る」
という項目を含めておくのはいいことです。失
敗事例などを元に、チェックリストを更新して
おけばミスを減らせるでしょう。リリース手順
はずっと変わらないとしても、「チェックリス
トを見る」というフックを入れておくことで、
細かいカスタマイズができるわけです。
　もっと身近な例では「スーパーでの買い物」も
あります。スーパーをぐるっと回って買い物す
るというプロセスの中に「買い物の初めと終わ
りにメモを確認する」という項目を含めておく
のです。「買い物メモを見る」というフックを入
れておくことで、「買うべきものをメモに書い
ておけば買い物に漏れがない」という状況を作
ることができるでしょう。
　その他にも「毎年必ず行う必要がある作業」を
誕生日というイベントのフックとして実装して
いる人は多いかもしれません。

◆　◆　◆
　あなたの周りを見回して、いつも変化のない
一連の作業を探してみましょう。その中に「自
分がカスタマイズできる別処理」としてフック
を入れることはできるでしょうか。「作業前」と
「作業後」にフックを入れたらおもしろいことは
起きないでしょうか。
　ぜひ考えてみてください。｢

12

Vim

Vim
開発者が作成 ユーザが作成

フック

BufWriteCmd
呼び出し

ファイル名が“:”で
始まるならば

エラーを返す別処理

実際の書き込み

BufWriteCmd

 ▼図2　BufWriteCmd

w

6 - Software Design May 2014 - 7

チェイン・リアクション第13回

（株）ユビキタスエンターテインメント　清水 亮　SHIMIZU Ryo
　　　http://www.uei.co.jp

湖畔のレストラン

 「亮（リャン）よ、中国にはこういうルールがあ
る。兄弟の契りを交わすには、白酒（バイチュウ）
を6度飲めと。しかもこいつは超一級品で、最
近の38度くらいの軟弱なやつとは違う。古来
からの伝統の、50度の奴だ」
　工場長のビルはそう言って僕のグラスギリギ
リまで、白酒を注ぎました。
 「カンペー」
　グラスを合わせ、白酒をイッキ飲みします。
まるで焼けた溶岩が身体の中に入って来るよう
な独特の感覚が僕を襲いました。初めてウィス
キーを飲んだときのような、強烈な体験です。
 「さあ、6杯目だ。これで明日から量産に入れ
るぞ」
　量産開始の前日。郊外にある湖畔のレストラ
ンに僕たちは居ました。蚊取り線香の代わりに
ヤモリを多数放し飼いにしている店でした。天
井のあちこちにヤモリがへばりついています。
確かに蚊には刺されませんでした。
　ビルは再び白酒をグラスになみなみと注ぎ、
しかしそれだけでは満足しないというようにか
ぶりを振りました。
 「こないだ韓国のメーカー衆と飲んだとき、連
中はこうしたんだ」
　マッチから火を放ち、たちまち白酒はまるで

アルコールランプのように……いや、まさにア
ルコールランプそのものと化して煌

こうこう

々と辺りを
照らし始めました。
 「これを、飲むッ」
　ビルはそう言うと、火のついた白酒をそのま
まぐいっと丸呑みしました。
 「どうだ、リャン、おまえにできるか？」
　これが中国の流儀か。
　僕は恐る恐る火のついた白酒のグラスをとり、
一気に飲もうとしました……が、50度の酒を
一気に5杯飲んだ直後です。手元が狂いました。
 「キャアアア !!」
　写真を撮ろうと構えていた秘書の柿澤彩香が
悲鳴を上げます。僕がこぼした白酒で、僕の顔
が火だるまになったからです。
　慌てておしぼりで拭き取ります。軽く火傷を
負いましたが、まあ深刻なほどのものでもあり
ませんでした。円卓では、事の成り行きを工場
のスタッフやチェリーさん、そしてUEIの社
員が心配そうに見つめていました。
　とはいえ、僕は失敗してしまったのです。6
杯の白酒を飲むという兄弟の契りの儀式に。
　ビルは「いいガッツだったよ。ハッハッハ」と
笑いました。冷水でしぼったおしぼりですっか
り顔の痛みも引いた僕は、ニヤリと笑ってビル
に言いました。
 「日本ではな、『郷に入っては郷に従え』という
言葉がある。6杯の酒を飲めなかったら、もう

e n c h a n t

http://www.uei.co.jp

w

6 - Software Design May 2014 - 7

チェイン・リアクション第13 回

6杯、飲もうじゃないか。今度は火をつけても
しくじらないぞ」
 「おまえ、本気か？」
　それからさらに6杯に挑戦したところで、僕
は記憶をなくしました。

苦闘

　深
シンセン

圳での滞在はもう1ヵ月を超えようとして
いました。製造が遅れるどころか、始まってす
らいなかった、それどころかヨーロッパにコピー
品を勝手に売りつけようとしていた、などですっ
かりこの工場が信用できなくなっていました。
　しかし、工場長のビルと親しくすることで、
少しでも納期を短縮しようと僕はビルに近づき
ました。契約書を交わそうにも、英語がわかる
のが先日即日でクビになったセールスマネー
ジャーの女性だけで、あとは新入社員のショー
ンと大手メーカーから引き抜かれて来た工場長
のビルだけでした。おかげで先方から渡される
契約書の英語はほぼデタラメで、なんどもこち
らから修正をかけることになりました。
　しかしいつまで経っても量産が始まりません。
 「量産が始まるまで、毎日来るぞ」
　僕はショーンにそう宣言して本当に毎日工場
に行っては、あれがどうなってるんだこれがど
うなってるんだと現状の確認を続けました。
 「清水は製品ができあがるまで日本に帰るつも
りはないらしい」
　彼らがようやくそう認識したのは、僕が滞在
2週間を数えるころでした。とはいうものの、
量産したくてもできない事情が彼らにもありま
した。部材の調達です。
　工場というのは、大量生産には適しています
が、生産ラインを作るだけで半日から1日かかっ
てしまうので、できるだけそこまでにはすべて
の部材をそろえておく必要があります。しかし、
圧倒的に不足していたのは、縦横比4：3のタッ
チパネルでした。当時からすでに16：9が主流
になっており、4：3のタッチパネルはほぼデッ

ドストック状態にありました。タッチパネルと液
晶は、OGSと呼ばれる技術によって一体化する
ため、それが来ないことには本体の組み立てに
は入れません。それでタッチパネルが調達でき
るまでは、工場は生産ラインを作ることができ
なかったのです。
　僕はタッチパネルの工場や液晶の工場、ボディ
の工場に何度も足を運び、催促しました。しか
し僕たちの雇ったアッセンブリー工場は金払い
が悪いという評判で、部材の調達をしようにも、
なかなか優先権を渡してくれません。さらにタッ
チパネルの原料の調達でも手間取っていること
が解りました。まるで「ぷよぷよ」の連鎖反応の
ように、ある工場が滞るとそれに連なる他の工
場のスケジュールも遅れていくチェイン・リア
クション（連鎖反応）が起きていたのです。
　大ベストセラーのAllWinner A10チップも、
AllWinner社がすでに製造中止を宣言しており、
市場にあるものを買い集めるしかないというこ
ともわかっていました。僕はじりじりと時間だ
けが過ぎて行く日々を深圳で過ごしました。
　量産の目処がつき、現地にUEIの社員を呼
び寄せ、ソフトウェアの最終確認ができる、と
いう場面までやってくるのに、さらに3週間が
必要でした。ビルと湖畔のレストランで白酒を
12杯飲んだ日は、まさに部材の調達が完了し、
量産に入れるというその直前だったのです。

ソフトウェア開発チームとの溝

　日本から呼び寄せたのは、大手メーカーから
enchantMOONのプロジェクトに参加したくて
転職してきた日高正博と、僕の秘書をしていた
柿澤でした。柿澤は僕が不在の間、デバッグを
手伝い続け、いつのまにかenchantMOONのテ
スト項目に関しては誰よりも詳しくなった、と
現場から推薦を受けて送り込まれてきました。
　僕たちは量産されてくるハードウェアを使っ
て、最終版のソフトウェアを現地でテストする
つもりでいました。しかし、彼らが持って来た

8 - Software Design

e n c h a n t

May 2014 - 9

「最終版」のソフトウェアは、再現性100％で
チュートリアルの途中でハングアップしたり、
もともと操作を知っていなければ進めないよう
になっていたり、あり得ないところで止まった
りと、何かの間違いで古いバージョンを持って
来たのではないかと思うほどにデグレードして
いました。
　というのも、僕が深圳に来る前までに確認し
ていたソフトは遥

はる

かに高速に動作していて、お
かしな挙動もほとんどなかったからです。日本
で散々テストを重ねてきた柿澤でさえも「この
挙動はちょっとおかしいですね」と言い出すの
で、てっきり古いバージョンを持って来たのか
と思いました。しかし、何度確認しても、それ
は日本のソフトウェア開発チームが「最終版」と
して提出してきた、ホンモノのバージョンだっ
たのです。
　僕は滞在中ずっと、ソフトウェアが2ヵ月前
よりは進化していると信じてひたすらハードウェ
アの製造を見ていたのですが、僕が見ていない
間にソフトウェアはどんどん悪い方向に仕上がっ
ているようでした。なによりチュートリアルの
途中で確実に落ちるものを最終版として提出さ
れたこと自体が僕をひどく失望させました。
　これまで、ずっと定期的な報告は受けていま
した。深圳では通信回線が非常に細く、とくに
国外との通信は中国政府が設置したグレート・
ファイアー・ウォールによって厳しく制限され
ていました。そのためテレビ会議に参加するた
めにわざわざ通信環境がマシな香港まで出向き、
開発の進捗を聞いていたのですが、その場では
いい報告しか受けていませんでした。僕はよも
やこの状態で開発チームが「良し」と考えている
とは夢にも思わなかったのです。それどころか、
「いま開発チームは非常にいい雰囲気ですよ。
協力的でお互いの立場を尊重し合う空気が流れ
ています」という報告すら、現場のプログラマ
から得ていたのです。
　思えばこの時点でイヤな予感を感じてはいま
した。どうして製造が2ヵ月も遅れているハー

ドウェアを前に、開発チームが穏やかな雰囲気
でいられるのでしょうか。一見、穏やかに見え
る現場は、実は水面下ではドロドロした闇を抱
えているものです。その結果が表出したものが、
このいみじくも「最終版」と名付けられたMOON
Phaseでした。それはこのチームが考える品質
やチーム体制の限界を示していました。

苦渋の決断

　結局、量産は無事開始されたものの、僕はこ
のままのソフトウェアを最終版としては到底受
け入れられない、という結論を出さざるを得ま
せんでした。そこで量産の目処はついたものの、
発売日を約2週間後の「7月7日」と決めました。
苦し紛れの苦肉の策でしたが、1週間でこの最
終版をなんとかギリギリ「製品」の体裁まで持っ
て行けるのではないか、という読みからでした。
　急ぎ東京に戻り、チームを再編し、「製品版」
を整備する必要性を訴えました。
 「チュートリアルの途中で確実に落ちる。なぜ
これを君たちが“最終版”と呼んだのか。僕には
まったく、理解も想像もできない。確実に言え
るのは、君たちの基準が完全に狂ってるという
ことだけだ。チュートリアルの途中で確実に落
ちるものは製品とは到底呼べない。最初のバー
ジョンからはチュートリアルは削除する」
 「せっかく作ったのに削除するんですか？」
 「関係ない。ちゃんと動かないものを売るわけ
にはいかない。チュートリアルはアップデート
版で入れていく。まずは最低限の部分がきちん
と動くものを作る必要がある。また、メインプ
ログラマをベテランの布留川英一に変える。コー
ドの主導権を布留川くんに完全に移管するように」
　布留川英一は僕とは10年来のコンビを組ん
できた本当の大ベテランでした。ほかの案件で
引っ張りだこだったため、enchantMOONのプ
ロジェクトへかかわってくるのは遅れたのです
が、もはやこの土壇場では布留川に頼るしかあ
りませんでした。

8 - Software Design

チェイン・リアクション第13 回

May 2014 - 9

 「とはいえ、今のコードを完全に捨ててゼロか
ら書いたらとても2週間じゃ間に合わない」
　布留川は言い、極力今のコードを活かしつつ
もちゃんとバグを取るために、コードの道先案
内人としてこのコードを書いた人間は必要だと
主張します。僕はその主張を認め、言いました。
 「とにかく、最低限の機能がまずきちんとワー
クするものを作る。そこから時間をかけて、き
ちんとひとつひとつ最適化していく。製品の発
売はゴールではない。我々にとって、それは始
まりなのだ」
　磯玲子と上瀧英郎は、ソフトウェアの開発と
デバッグをギリギリまで引き延ばすため、ROM
焼きを中国ではなく成田で行う手はずを急ぎ整
えました。新入社員の片境泰聡は、英語が得意
でタフ、という理由だけで僕が帰国した翌日か
ら中国の工場に張り付き、プレッシャーを与え
続けます。
　そうしてなんとか出荷に間に合わせたROM
でしたが、僕は不満でした。しかしユーザとな
る皆様にした約束、ディストリビュータを買っ
て出てくださった方々とした約束を果たすため
には、これは苦渋の決断でした。アスキースト
アでは、発売日が1週間延びるたびに苦情の電
話に対応してくださっていたそうです。これ以
上出荷を遅らせるわけにはいきませんでした。
　少しでも良いものを、少しでも多くの方へ、
という思いを込めて、アップデートは毎週行い
ました。バージョン2.3で劇的に描画速度が改
善されたのは、布留川のチューニングによる描
画エンジンが初めて実装されたからです。これ
はバグを回避するために直前にした施策が、逆
に最初期バージョンの動作速度を低下させてい
たためでした。
　週ごとのアップデートは開発チームにとって
巨大な負担となりました。デバッグ期間を想定
すると、開発期間は2日か3日しかとることが
できません。それでも懸命なアップデートを続
けました。一度削除したチュートリアルはすぐ
に復活し、第2便出荷には間に合いました。そ

れでもすべての予約者の方々に行き渡るころに
は、もう中秋の名月を迎えてしまいました。そ
のころにはアップデートは月に1回程度となり、
僕はひとまず開発の現場を離れて enchant
MOONを活用する方法について知見を深める
ため、実際に大学で授業を行うことにしました。

文科系の女子大生に
プログラミングを教える

　成蹊大学の経済学部でプログラミングの授業
が始まりました。坂井直樹先生が担当している
授業で、そのうち1コマで僕がプログラミング
を教えることになっていたのです。
　これはとても得難い経験となりました。経済
学部の授業だったのですが、その過半数は女子
でした。そして彼女たちが、まったく見たこと
も聞いたこともないプログラミングというもの
に触れると、常に歓声を上げたのです。
 「すごい！　こんなことができるんだ！」
　その姿を見た僕は衝撃を受けました。僕自身、
大学をはじめ、さまざまな場所でプログラミン
グを教えた経験があります。しかしこれほどま
でストレートにポジティブな反応が返ってくる
ような授業を、今までただの一度もしたことが
なかったのです。
　そして同時に僕は確信しました。̶̶プログ
ラミングは、誰にとっても楽しいのだ̶̶と。
　経済学部で、プログラミングとは一生縁のな
さそうな女子大生たちが、嬌声を上げながら
HTMLやJavaScriptのコーディングを楽しむ
光景はとても奇妙で、しかし僕に大きな勇気を
与えてくれるものでした。
　彼女たちにenchantMOONを渡すと、大喜び
で使い始めました。僕は次回、出張による休講
が決まっていたので、その間にenchantMOON
でなにか作品を作ってごらん、と言うと、水を
得た魚のように彼女たちは目を輝かせました。
　そしてこのことが、enchantMOONが決定的
に前進する大きなきっかけを僕たちに与えてく
れることになったのです。ﾟ

10 - Software Design

はじめに

　今 回 は Happy Hacking Keybo

ard（以下、HHKB）のような形状の

小型メカニカルキーボードを紹介し

ます。小型メカニカルキーボードは、

近年になっていくつか製品が発売さ

れています。海外で販売されている

製品が多いですが、日本でもいくつ

か販売されています。筆者が所持し

ているうち、日本でも比較的簡単に

手に入るBLACK PAWN（写真1）、

M a j e s t o u c h M I N I L A 、

Majestouch MINILA Air を 紹 介

します。

小型メカニカル
キーボード

　小型メカニカルキーボードは、お

おむね次のような特徴を持ちます。

⿠⿠テンキーレスキーボードよりも小

さいHHKBのような形状

⿠⿠Cherryのメカニカルスイッチを

採用

⿠⿠DIPスイッチでの挙動変更

　HHKBのような形状で、ファン

クションキーのないキーボードが多

いです。その代替として とい

うキーが搭載されており、 を

押しながら1を押すと!を押し

たのと同じ動作をします。もちろん、

KBT Race

75％ 注 1（写

真2）のよう

にファンク

ションキー

も 搭 載 し、

テンキーレ

スキーボー

ドの隙間を

詰めたような形状の小型キーボード

も存在します。

　ほとんどの製品がCherryのメカ

ニカルスイッチを採用しており、た

いていは黒軸、赤軸、青軸、茶軸と

スイッチの異なる4バージョンが販

売されています。黒軸と赤軸の特徴

は、線形に重さが増す軸で黒軸のほ

うが重いです。青軸と茶軸の特徴は、

キーを押したと認識する直前で荷重

が強く、青軸にはクリック音があり

ます。これらの中から好みのタッチ

を自分で選べます。Matiasのmini

Quiet Pro注2のようなCherry以

外のメカニカルスイッチを採用して

いる小型のメカニカルキーボード

も、種類はかなり少ないですが存在

します。

　DIPスイッチを搭載しているキー

ボードが多く、細かく挙動が変えら

れます。Íと左lを入れ替え

コレクターが独断で選ぶ！

小型メカニカルキーボード

偏愛キーボード図鑑

第13回

注1）	 KBT Raceは一時期日本でも販売していました。今でも探せばあるかもしれません。
注2）	 大きめの量販店で入手可能です。

写真1　BLACK PAWN

写真2　ファンクションキー搭載の小型キーボード
KBT Race 75%

BLACK PAWN & Majestouch MINILA

株式会社 創夢
濱野 聖人HAMANO Kiyoto
khiker.mail@gmail.com
Twitter：@khiker

偏
愛
キ
ー
ボ
ー
ド
図
鑑

10 - Software Design May 2014 - 11

vol.13 BLACK PAWN & Majestouch MINILA
られるキーボードが多いです。

BLACK PAWN

　BLACK PAWNはセンチュリー

㈱が販売するメカニカルキーボード

で（写真1）、日本語配列のUSBキー

ボードです。Cherryスイッチを採

用し、黒軸、赤軸、青軸、茶軸それ

ぞれのバージョンがあります。キー

ボードのキーひとつひとつにバック

ライト LED が搭載されており、

＋vで点灯できるのが大きな

特徴です。

　DIPスイッチが搭載されており、

Íと左lを入れ替えられま

す。

　筐体はメタルでおよそ600gあ

り、ずっしりと重く、キーボードが

安定します。センチュリーの直販サ

イトやAmazon.co.jpで販売され

ており、価格は約12,000円です。

Mejestouch
MINILA

　Majestouchシリーズで有名な

ダイヤテック㈱の小型メカニカル

キーボードです（写真3）。USB接続

で、日本語配列と英字配列が存在し

ます。Cherryスイッチを採用して

おり、黒軸、赤軸、青軸、茶軸それ

ぞれのバージョンがあります。

　スペースバーの両隣に があ

り、親指で を押せるようになっ

ています。 とホームポジショ

ン周辺のキーを組み合わせることで

上下左右の矢印キーやrを入力

できるようになっています。そのた

め、ホームポジションを崩さずに矢

印キーやrを入力できます。

　DIPスイッチを搭載し、Íと

左lの入れ替えや、 をス

ペースに変更

することが可

能です（写真

4、5）。

　重 量 は 約

700gと重く

キーボードが

安定します。

価格は約12,000円で、ダイヤテッ

ク・オンラインショップやAmazon.

co.jpで購入できます。

Mejestouch
MINILA Air

　MINILAのBluetoothバージョ

ンです（写真6）。MINILAと基本的

に同じで、日本語配列と英字配列の

両方が存在します。Bluetoothの小

型メカニカルキーボードとなるとこ

れだけかもしれません。

　Bluetoothキーボードですと、

USB経由でバッテリーを充電して

使う方式もありますが、これはバッ

テリーではなく、単三電池2本で動

作します。USBポートは存在しな

いため、USBキーボードとしては

使えません。

　値段は約14,000円で、MINILA

同様、ダイヤテック・オンライン

ショップやAmazon.co.jpで購入

できます。

◆　◆　◆

　今回は、小型メカニカルキーボー

ドの中でも日本で入手可能な日本語

キーボードを中心に紹介しました。

英字キーボードであれば、海外では

ほかにKBT RaceやKBT PURE、

KBC POKER2などが販売されてい

ます注3。小型のキーボードをお探し

であれば、HHKBのProfessional

よりも安く、種類も多いので、探

してみると自分にあったものが見

つかるやもしれません。s

注3）	 PUREやPOKER2は、http://mechanicalkeyboards.com/で購入できます。

写真3　Majestouch MINILA（日本語配列）

写真6　Majestouch MINILA Air（英字配列）

写真4　DIPスイッチ 写真5　DIPスイッチの説明

http://mechanicalkeyboards.com/

12 - Software Design12 - Software Design

おさらい

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 43 回

秋葉原発！

　3回続けて紹介してきたステッピングモー
ター（ステッパー）を動かしてみるという記事で
すが、やっと3回目、後編にたどり着きました。
　前編ではステッパーのしくみと、トランジス
タアレイを使ってGPIO 4本でステッピング
モーターを動かすということをやってみまし
た。中編では、I2Cという信号線2本を使う通信
方法で接続できる、インテリジェントなPCA
9629Aというチップを使ってステッパーを動
かしてみました。

 ▼写真1　Replicator 2の制御基板

　今回は、アメリカのAllegro MicroSystems
という会社のA4988というステッパーモー
タードライバを使ってステッパーを動かしてみ
たいと思います。

　A4988というチップは、3Dプリンタのステッ
パーを駆動（ドライブ）するのに多用されていま
す。とりわけ、Pololuというアメリカのロボッ
トやエレクトロニクスのキットを開発・販売し
ている会社の“A4988 Stepper Motor Driver
Carrier”という製品がデファクトスタンダード
になっており、このボードや互換品が3Dプリ
ンタの制御基板に搭載されているのをよく見か
けます。筆者のRepRapでも、このドライバを
使っています。
　MakerbotのReplicator 2を修理したときに
も、このボードと互換のステッパーモーター
ドライバーが搭載されているのを見かけま
した。写真1の緑色の基板がドライバです。
Replicator 2では、X軸、Y軸、Z軸と、エクス
トルーダー（樹脂を送り出す機構）の4つのス
テッパーが搭載されていますので、ドライバも
4つ搭載されています。
　前回の最後でも触れたように、A4988はパワー
段（トランジスタアレイなど、大きめの電流を扱
うための回路）を内蔵しているのが特徴の1つで
す。またA4988は、マイクロステップという
励
れいじ

磁モードを扱うことができます。

　前回（中編）では励磁モードを紹介しました。

マイクロステップ

A4988

ステッパーをはじめよう（後編）

http://www.switch-science.com/

12 - Software Design May 2014 - 13

第 43 回

12 - Software Design

N

S

1

2

3

4

N

S

1

2

3

4

N

S

1

2

3

4

7:1にすると少し右に傾く 6:2にするともう少し右に傾くコイル1に通電すると1の向きに

 ▼図1　マイクロステップ

一相励磁や二相励磁といったフルステップに加
えて、一-二相励磁（ハーフステップドライブ）
にも触れました。これまでの方法では、電磁石
それぞれの磁力が同じだという前提でした。二
相励磁というのは隣り合う電磁石が引っ張る力
（磁力）が均等だから、モーターの軸は2つの電
磁石の中間に位置していました。
　ここで隣り合う電磁石の磁力を均等ではな
く、7：1の割合注1にするとどうなるでしょうか。
軸は磁力の強さに応じた位置を取ることになり
ます。次に6：2、5：3と変えていくと、二相励
磁（ハーフステップ）の4：4までの間にステッ
プを3つ追加できます。これがマイクロステッ
プと呼ばれる励磁モードの原理です（図1）。
　実際には、マイクロステップには、1/4、1/8、
1/16など、1/2nのステップをよく見かけます。
　電磁石で生じる磁力は電流に比例しますの
で、電磁石に流す電流の大きさを変えれば、磁
力も変わります。つまり、マイクロステップを
使用できるステッパーモータードライバには、
電磁石のON/OFFだけでなく、電磁石に流す
電流の大きさをコントロールする機能が付いて
いるということになります。

　A4988というチップは5mm角のとても小さ
いものです。そこで、ここでは先ほど紹介した
PololuのA4988基板を使ってステッパーを動

注1） 実際には、7：1の回転角にベクトルが向くように磁力（電
流）を計算して流します。

接続してみる
A4988基板

かしてみたいと思います。A4988にモーターを
動かす命令を出すために必要な信号線は、I2C
と同様に2本です（といっても、I2Cのように数
珠つなぎにすることはできません）。
　信号の一方は、STEPと言うもので、回転さ
せるために使う信号です。High（オン）にすると
1ステップ進むという命令を伝えることができ
ます。High（オン）とLow（オフ）を高速に切り
替えれば、それに応じた速度でA4988はス
テッパーを回そうとします。
　信号のもう一方はDIRで、ステッパーの回転
方向を指示するものです。High（オン）とLow（オ
フ）で、ステッパーの回転方向が変わります。
　また、ステッパーを動かすにはマイコンより
も大きな電流を流す必要があります。この電源
としてACアダプタなどを用意するのですが、
A4988基板には、ステッパーを動かすための
電源を接続する端子もあります。
　ほかに、基板にはMS1～MS3という端子が
あり、これを使って励磁モードやマイクロス
テップの細かさを切り替えることができるよう
になっています。

　今回もmbedを使って、A4988に信号を送っ
てみることにしました。
　A4988基板はスイッチサイエンスでも販売
しています注2。今回は、せっかくパワー段のあ

注2） http://ssci.to/582/

ステッパーをはじめよう（後編）

http://ssci.to/582/

14 - Software Design

はんだづけカフェなう
秋葉原発！

るA4988を使用しているので、筆者の手元に
あった比較的大きめのステッパー、SY42STH47-
1206Aを使ってみました。Pololuが年末のセー
ルをやっていたときに買っておいたもので
す注3。このステッパーは、ユニポーラーとして
も、バイポーラーとしても使うことができま
す。なおステッパーは、秋月電子通商でも比較
的手頃な価格で販売されています。
　配線図は図2のとおりです。ステッパーの線
の色は、メーカーなどによって異なります。ほ
かのステッパーを使うときには、製品の説明を
見て、配線図の線の色を適宜読み替えするよう
に注意してください。A4988のステッパーに接
続する端子は4ピンですので、バイポーラーと
して接続しました。このため、電磁石の真ん中
にある線は使っていません。

注3） http://www.pololu.com/product/1200

A4988基板の調整

VOUT

2

1

2

1

1C

2C

GND

p21
p22

ステッパー用
8-35V電源

VMOT
GND
2B
2A
1A
1B
VDD
GND

STEP
DIR

RESET
SLEEP

 ▼図2　配線図

　A4988基板には、ステッパーを動かすため
に使う8～35Vの電源を供給する必要がありま
す。ちょうど筆者の手元には12V 2AのACア
ダプタ注4がありましたので、これと、秋月電
子通商の「ブレッドボード用DCジャックDIP
化キット注5」を使ってブレッドボードの上で回
路を組んでみました（写真2）。
　なお、MS1～3には何も接続していませんの
で、マイクロステップでは駆動していません。
　ステッパーの線をブレッドボードに挿すため
に、線の端をはんだメッキ（電線の被覆を剥い
た部分にはんだを付けて固めること）しました。
　本稿では、あまりはんだづけをしなくて済む
ようにしたいのですが、いっさいはんだづけを
せずに実験回路を組んでみるというのは困難で
す。A4988基板も販売されている状態ではピン
ヘッダーが付いていませんので、はんだづけを
する必要があります。
　ステッパーの軸には、回転がわかりやすいよ
うに、テープを旗のように貼り付けてありま
す。本当はもう少しおもしろいものを回したほ
うが良いのでしょうが……。

　A4988基板を使うにあたって、まずステッ
パーに流す電流の上限（Current Limit）を設定

注4） http://akizukidenshi.com/catalog/g/gM-06239/

注5） http://akizukidenshi.com/catalog/g/gK-05148/

 ▼写真2　実験回路

 ▼写真3　 テスターを当
てる場所

http://www.pololu.com/product/1200
http://akizukidenshi.com/catalog/g/gM-06239/
http://akizukidenshi.com/catalog/g/gK-05148/

14 - Software Design May 2014 - 15

第 43 回

まとめ

プログラム

の間隔を求めて制御する必要があります。

　ステッパーは、デジタル制御で手軽に狙った
角度（ステップ）だけ動かせるので、プリンタな
どの機器に多用されています。しかし、動作さ
せるためには、マイコンが直接扱うことのでき
る電流よりも多くの電流を必要とします。この
ためにトランジスタアレイや今回のようなチッ
プを使って、ステッパーの中にある電磁石に電
気を流したり止めたりしてきました。
　自分が書いたコードで、何か物理的な動きを
させられるのがマイコンのおもしろいところで
す。mbedはTCP/IPも扱うことができますの
で、ネットワーク越しにステッパーをコント
ロールしたりすることもできるでしょう注6。ﾟ

注6） 大きな電流を扱う装置は火災の危険も高くなります。そ
のような実験は安全対策や目の届くところでするように
しましょう。

しておきましょう。あまり電流を流し過ぎる
と、ステッパーもA4988も熱くなり、故障の
原因になってしまいます。一方で、流す電流の
上限が小さ過ぎると、ステッパーが性能を発揮
できなくなり、脱

だっちょう

調しやすくなってしまいま
す。電流の上限は、計算式「Current Limit =

VREF × 2.5」で求められます。
　このVREF（リファレンス電圧）というのは、写
真3の部分にテスターを当てることで測定できま
す。赤い矢印にテスターのプラスを、黒い矢印に
テスターのマイナスを当てて電圧を測ります。
　購入時の状態では、約0.4Vでしたので、ス
テッパーのコイルには、最大約1A流れること
になります。筆者の手元にあったステッパーの
定格電流は相あたり1.2Aと書いてあったので、
1Aで良しとしました。定格が0.5Aでしたら
0.2Vになるように、先ほどテスターを当てた
部品（半固定抵抗といいます）の＋になっている
部分をドライバでそっと回して調整します。

　mbedのプログラムはリスト1のとおりです。
STEPに接続されているピンをHigh（ON）と
Low（OFF）に切り替え、STEPに信号を送って
います。200ステップ分の信号を送ったあと、
DIRの信号を切り替え、再度200ステップ分の
信号を送るというものです。
　こうすると、1周200ステップのステッパー
を使っていれば、1周回ったあと、反対方向に1
周回るということを繰り返すはずです。
　ステッパーが回る速さは、wait()内の値によっ
て変わります。wait()内の値を小さくすれば、
STEP信号の出る間隔が短くなりますので、ス
テッパーが速く回転することになります。
　前回紹介したPCA9629Aで台形加速を行う
ときには、動作時間と初速、ステップ数を用意
するだけで台形制御を行うことが可能でした。
しかし、A4988を使う場合には、前編のトラン
ジスタアレイを直接コントロールするときと同
様に、マイコン側で加減速を計算してステップ

 ▼リスト1　mbedのプログラム

#include "mbed.h"

DigitalOut A4988STEP(p22);
DigitalOut A4988DIR(p21);
int a=0;

int main() {
 A4988DIR = 0;
 A4988STEP = 0;

 while(1) {
 if (a < 200) {
 a++;
 A4988STEP = 1;
 wait(0.008);
 A4988STEP = 0;
 wait(0.008);
 } else {
 A4988DIR = 1;
 a++;
 A4988STEP = 1;
 wait(0.008);
 A4988STEP = 0;
 wait(0.008);

 if (a>400) {
 a = 0;
 A4988DIR = 0;
 }
 }
 }
}

ステッパーをはじめよう（後編）

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ
『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2014 年 5 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

現代用語の基礎知識
1995 〜 2014
20 年分特別パック

『現代用語の基礎知識』の 20 年分のデータを収録した特別パック。
インクリメンタルサーチに対応しているほか、MS Office や一太郎、
IE へ辞典検索機能をアドインできます。Windows 8.1/8/7/Vista/
XP（XP は 32bit のみ）と Mac OS X 10.6.8 以上で動作可能。
 提供元 ロゴヴィスタ　 URL http://www.logovista.co.jp

アドテクノロジー
プロフェッショナル
養成読本
養成読本編集部 編／
B5 判、128 ページ／
ISBN ＝ 978-4-7741-6429-8

いち早くビッグデータを活用してきた広告業界。そのアドテク業界
をリードする執筆陣が、オーディエンスデータの理解、データ分析
を中心とした組織、広告の配信技術などについて解説します。
 提供元 技術評論社　 URL http://gihyo.jp/

はじめて UNIX で
仕事をする人が読む本
木本 雅彦、松山 直道、稲島 大輔 著、㈱創夢 監修／
B5 変形判、248 ページ／
ISBN ＝ 978-4-04-891392-8

UNIX の教育を受けずに IT 業界に就職した人向けに、仕事で UNIX
系 OS を使うための最低限の基礎知識をまとめました。UNIX の基
本操作、プログラミング環境、ネットワーク技術まで幅広く学べます。
 提供元 KADOKAWA　 URL http://ascii.asciimw.jp/

データベースの
限界性能を
引き出す技術
山崎 泰史、武吉 佑祐 著／
A5 判、224 ページ／
ISBN ＝ 978-4-7741-6364-2

ス ト レ ー ジ、CPU、 ネ ッ ト ワ ー ク な ど あ ら ゆ る 点 か ら「 な ぜ
RDBMS は遅くなるのか」「どうすれば性能を最大限引き出せるのか」
を徹底解説。Oracle Exadata などの最新動向も取り上げます。
 提供元 技術評論社　 URL http://gihyo.jp/

置くだけ
スピーカー
withバッテリー
本製品の上にスマートフォンを置くだけでスピーカーとして使えま
す。Wi-Fi などを利用しないので接続設定も必要なし。充電式電池
の充電もでき、本体とスマートフォンを USB でつなげば、電池から
スマートフォンへ充電できます。　※本製品にスマートフォンは付属しません。
 提供元 サンコー　 URL http://www.thanko.jp

サクス・
タブレット 7

（L-Sax Tablet 7inch）

Linux マシン専門ブランド「LinuxMania」から初めてのタブレットが登場しました。CPU は
Intel Atom Z2460 1.6GHz 1 コア、メモリは 1GB、OS は Android 4.04 を搭載。記憶容
量は 16GB です。IEEE 802.11b/g/n 準拠の無線 LAN を使用できるほか、端末本体には 0.3M
ピクセルのフロントカメラと 2M ピクセル背面カメラも備わっています。
 提供元 ソーソー　 URL http://www.linuxmania.jp/

iOS アプリテスト
自動化入門
長谷川 孝二 著／
A5 判、256 ページ／
ISBN ＝ 978-4-7980-4089-9

コンポーネントを依存関係から独立させテストする方法、ツールを
使ってエンドツーエンドのテストを自動化する方法など、iOS 開発
者が悩むテスト工程の知識とテクニックを詰め込んだ 1 冊。
 提供元 秀和システム　 URL http://www.shuwasystem.co.jp/

1 名

1 名 1 名

2 名

2 名 2 名

1 名

http://sd.gihyo.jp/
http://www.linuxmania.jp/
http://www.logovista.co.jp
http://www.thanko.jp
http://www.shuwasystem.co.jp/
http://ascii.asciimw.jp/
http://gihyo.jp/
http://gihyo.jp/

ネットワーク技術超入門

第１特集

―UNIXのしくみから紐解く
インターネットのしくみ
　日々インターネット上で、ネットワークとコンピュータ技術情報を発信し続けて
いる、あきみち さんと『小悪魔女子大生のサーバエンジニア日記』のaicoさんのコラ
ボレーションによる、新人さんに向けて贈るインターネットのしくみ講座です。
　本特集では、おそらくユーザ時代ではなじみがなかったであろうポートとソケッ
トの概念を通して、インターネットのしくみを図解しながら楽しく解説します。
ときどきプログラミングの話も出てきますが、自分が直観でわかるところから、読
み進めてください。きっと何か閃

ひらめ

くはず！

 UNIXネットワークのしくみ……………………………………………………………… 18
いきなりTCP/IPの解説に入る前に、コンピュータ内部でどのようなことが起きて、
通信ができるのか、根本から解説します。UNIXカーネル、プロセス、ソケットとポー
ト、IPアドレスの基礎を解説します。

 インターネットを上から眺めてみる……………………………………………… 26
インターネットのネットワーク環境を解説します。全世界で使用されることになった、
強靱なネットワークの舞台裏を解説していきます。

 おさえておきたいDNSのしくみ……………………………………………………… 45
インターネットを始めて最初にたどり着く重要な問題がDNSでしょう。
しっかりしくみを覚えてください。

 自分でネットワークを確認してみよう！……………………………………… 49
最後は実技です。ping、traceroute、digなどのコマンドの使い方をとおして
ネットワークがどんなものであるか体験していだだきます。

Part 1

Part 2

Part 3

Part 4

Writer 	あきみち（ギークなページhttp://www.geekpage.jp/　Twitter@geekpage）
イラストレーション 	aico（『小悪魔女子大生のサーバエンジニア日記』 http://co-akuma.directorz.jp/blog/）

楽しくネットワークを学びませんか？
新人歓迎 ITの基礎知識をインストール！

http://www.geekpage.jp/
http://co-akuma.directorz.jp/blog/

18 - Software Design

　20年前は通信プログラムを書くのであれば
ソケットを使うという選択が一般的でしたが、
昨今は非常に便利なツールやライブラリが用意
されているので、直接ソケットを使わなくても
良いことが多くなりました。そのため、そもそ
も「ソケット」や「ポート」というものが存在して
いることを知らずにプログラムを書き続けてい
る技術者に出会うこともあります。そのような
現状をふまえ、「ソケット（socket）」と「ポート
（port）」という切り口でインターネットを利用
した通信を紹介したら面白いのではないかとい
う考え方で本稿を構成しています。なお、本稿
はUNIX的な視点を前提に解説します。オペレー
ティングシステム（以降、OS）などによる差異
はあるかと思いますが、「ソケット」と「ポート」
という視点で簡単にまとめます。

ソケットとポートから
ネットワークを眺める 　ここまで「ソケット」という単語を説明せずに

使ってしまっていますが、socketという英単語
の日本語訳は「受け口」「コンセント」「差し込み
口」などです。身近なものでは、電球を差し込
む口や、CPUやチップなどを差し込む部位が「ソ
ケット」と呼ばれています。
　英単語としては、何かをつなぎ込むためのもの
が「ソケット」ですが、プログラミングにおける「ソ
ケット」は、通信を行うための「口」です。ユーザは、
ソケットにデータを書き込んだり、ソケットから
データを読み出したりすることでインターネット
を利用した通信を行います。最初にソケットとは
何かを紹介しますが、その前にOS側の通信機能
の肝となる「カーネル」から説明しましょう。

　皆さんが使っているPCは、OSと呼ばれる

通信の出入り口となる
「ソケット」

PCの中の執事「カーネル」

注1） 本稿は、UNIX系のOSを念頭に執筆しています。

UNIXネットワークのしくみ

ネットワーク技術超入門

何気なくインターネットを利用していると、手元の機器の中に世界中のコンテンツがそのまま入っているかのよう
な錯覚に陥りがちです。たとえば、スマホをちょちょいといじれば、世界の裏側にあるコンテンツだって見られま
すし、国境を越えてメールのやりとりもできてしまいます。インターネットを使って「簡単につながることができる」
わけですが、通信プログラムを書くのも同様です。今回は、そんな便利なインターネットを利用した通信プログラ
ムを理解するために、「ソケットとポート」に着目してTCP/IPを解説します注1。
Writer 	 あきみち　http://www.geekpage.jp/　Twitter@geekpage

イラストレーション 	 aico（『小悪魔女子大生のサーバエンジニア日記』http://co-akuma.directorz.jp/blog/）

―UNIXのしくみから
紐解く

　　インターネット
のしくみ

第１特集

http://www.geekpage.jp/
http://co-akuma.directorz.jp/blog/

18 - Software Design May 2014 - 19

ソフトウェアが稼働しています。OSという単
語は、ハードウェアを制御しつつコンピュータ
そのものを動作させるための基本ソフトウェア
である「カーネル」を示す場合と、管理用ソフト
ウェアなどの各種ソフトウェアを含めたパッケー
ジ全体を示すことがあります。
　カーネルは、ユーザのためにハードウェアを
制御してくれる執事のようなものです（図1）。
CPU、メモリ、通信用のネットワークインター
フェース、ディスプレイ、キーボード、マウス、
スピーカーなど、さまざまなハードウェアの制
御などをしています。
　たとえば、ユーザがPCを使うとき、情報を
ファイルに保存したりしますが、物理的なハー
ドディスクそのものが「ファイル」という概念を
直接扱っているわけではありません。カーネル

がユーザにとってわかりやすいように、「ファ
イル」という概念を構成してくれているのです。
このように、ユーザが使いやすいようにハード
ウェアの機能などを「抽象化注2」するのも、カー
ネルの重要な役割です。
　「カーネル」というと、ケンタッキーフライド
チキンの「カーネル・サンダース」を連想される
方もいらっしゃるかもしれませんが、そちらは
「Colonel Sanders」であり、コンピュータ用語
で利用される「Kernel」とはまったく異なる単語
です注3。
　コンピュータ用語の「Kernel」は、その英単語
がもともと持っていた意味が語源であると言わ
れています。「Kernel」という英単語は、クルミ
などの堅果の中心部や、ものごとなどの中心部
分や核心部分など最も大事な部分という意味を

注2） 対象となる物事の特徴を抽出し、その物事をシンプルに表すこと。本稿では、ハードウェアのような複雑なものを、ファイルとい
う概念で表現することをいいます。この言葉は情報科学や計算機科学でよく使います。プログラミングではモデリングとともに重
要な概念です。

注3） なお、カーネル・サンダースの「Colonel」は大佐という意味ですが、ハーランド・デーヴィッド・サンダース氏は軍隊で大佐だっ
たわけではなく、ケンタッキー州に貢献した人物に与えられる名誉大佐の称号です。

 ▼図1　執事のようなカーネル（カーネル・サンダースではないよ！）

20 - Software Design

持ちます。カーネルは、コンピュータを制御す
るためのまさに中心部分です。

　最近の一般的なOSのカーネルは、1つのPC
上でさまざまな作業を同時に行えるようにする
という機能もあります。PCの脳みそである
CPUは、同時に1つのことしかできません注4が、
カーネルが単一の脳みそで複数のアプリケーショ
ンを同時並行に行ってくれるので、ユーザは
PC上で複数の作業を同時に行えます。同時に
複数の作業を行えることは「マルチタスク」と呼
ばれています。
　アプリケーションは、「プロセス」という単位
で実行されます。一般的に、マルチタスクは、
実行されるべき複数のプロセスが存在するとき
に、各プロセスに対して短いCPUの実行時間
を与えつつ、それらを高速に切り替えながら実
行します。高速に切り替わりながら複数のプロ
セスが実行されるので、ユーザから見ると、あ
たかも複数のプロセスが同時に実行されている
かのように見えます。このような機能が存在し
ていなければ、Webページを見ながらメール

さまざまな作業を
同時に実行するしくみとは

を読むことはできませんし、PCで音楽を聴き
ながら文章を書くこともできません。
　このように、複数のプロセスが同時に実行さ
れるような環境をカーネルが提供しますが、各
プロセスは、互いに干渉しないようにできてい
ます。
　たとえば、各プロセスがコンピュータに内蔵
されているメモリを利用するとき、物理的なメ
モリのどの部分をどうやって書き換えるのかを
プロセスが直接指定することはできません（図
2）。各プロセスに対して、カーネルが提供する
のは仮想メモリ空間へのアクセスであって、物
理メモリへの直接のアクセスではないためです。
　各プロセスは、それぞれが管理する仮想メモ
リ空間に対してのみアクセスができます。その
ため隣のプロセスが使っているメモリを無理矢
理書き換えたりするようなことを防ぐしくみに
なっています。プロセスは、カーネルによって
管理された閉鎖空間であり、アプリケーション
はその閉鎖空間で動作しているのです。

　アプリケーションが動作するプロセスは、自

プロセス間通信

注4） マルチプロセッサ、マルチコア、SIMD（Single Instruction Multiple Data）の話は、本稿では説明をシンプルでわかりやすくするた
め割愛します。

 ▼図2　プロセスは他プロセスに干渉できない

ネットワーク技術超入門

第１特集

20 - Software Design May 2014 - 21

力で他のプロセスとのやり取りなどができませ
ん。また、直接ハードウェアを制御することも
できません。OSに対してハードウェア制御の
依頼を出すことしかできません。ユーザが書い
たアプリケーションプログラムが、プロセスの
外部と何らかのやりとりをするには、カーネル
の助けが必要です。カーネルに通信を仲介して
もらうわけです。
　OSによっては、アプリケーションがカーネ
ルに対する依頼を行うしくみを「システムコー
ル」と呼んでいます。通信を行うためのソケッ
トも、システムコールの1つです。
　OS内で稼働するプロセスは、互いに分離さ
れているため、直接やりとりできません。同じ
コンピュータ内に存在しているプロセス同士が
何らかのやりとりをするには、図3のように、
カーネルにデータの送受信を仲介してもらう必
要があります注5。
　同じコンピュータ内に存在するプロセス同士
の通信でさえ、カーネルの仲介が必要です。で
は、インターネットを介してコンピュータ同士
が通信を行う場合ではどうでしょうか。やはり
プロセスはカーネルの仲介を経由して通信を行

います。インターネットを利用した通信を行え
るソケットを用意したうえで、インターネット
に接続された相手を指定すれば、通信が使える
というわけです。
　図4のように、アプリケーションはソケット
を通じてカーネルとやりとりし、カーネルはイ
ンターネットに接続されたハードウェアを通じ
て通信を行うという感じです。インターネット
は、各コンピュータから送出されたデータを運
ぶ役割を担っています。
　このように、ソケットは、閉鎖空間であるプ
ロセスにとって「インターネットの出入り口」で
あり、アプリケーションをインターネットとつ
なぐための「コンセント」なのです。
　なお、「プロセスにとってインターネットの
出入り口となるソケットは必ず1つ」というわ
けではありません。たとえば、単一のプロセス
内に複数のソケットを作成することもできます。
具体的には、画像ファイルが複数含まれる
Webページを開いたときの一般的なブラウザは、
複数のソケットを通じて同時に複数の画像ファ
イルをダウンロードしています。

注5） プロセス間通信のしくみはソケットだけではありませんが、本節ではソケットだけに着目して解説をしています。

 ▼図3　同一PC内でのプロセス間通信のモデル（カーネルが通信の仲介をする）

―UNIXのしくみから紐解くインターネットのしくみ
Part1

22 - Software Design

　次は、インターネットを通じてデータのやり
とりを行う際に、「どうやって相手を指定する
のか？」という話をします。その前に、最近は
ソケットやポートを直接指定せずに通信を行え

普段は隠れている
「ソケット」と「ポート」

る環境が整っていることを紹介します。まず、
最初に、www.example.comというWebサーバ
からデータを取得する簡単なプログラムをいく
つか見てみましょう。
　Rubyではリスト1のように簡単に書けます。
Perlではリスト2、allow_url_fopen注6が有効
になっているPHPでは、fopenを使ってリスト
3のようにHTTPやFTPでの通信を行えます。
Objective-Cでは、NSURLConnection注7を使
うとリスト4のように書けます。Javaではリス
ト5のように書けます。
　これらに示すように、いろいろなプログラミ
ング言語でWebサーバからデータを取得して
表示するプログラムが簡単に書けます。どれも

#!/usr/bin/ruby

require 'net/http'

result = Net::HTTP.get('www.example.com', '/')

p result

 ▼リスト1　Rubyの例（Net::HTTPを使う）

#!/usr/bin/perl

use HTTP::Lite;

$http = new HTTP::Lite;

$req = $http->request("http://www.example.com/") ||ｭ
die $!;

print $http->body();

exit;

 ▼リスト2　Perlの例（HTTP::Liteを使う）

<?php
$fh = fopen("http://www.example.com/", "r");
if (!$fh) {
 exit;
}

while (!feof($fh)) {
 echo fgets($fh, 4096);
}

fclose($fh);
?>

 ▼リスト3　PHPの例（fopenを使う）

 ▼図4　ネットワークを介した通信（ソケットを介して通信をする）

注6） http://www.php.net/manual/ja/filesystem.configuration.php
注7） NSURLConnectionは iOSのクラスの1つ。クラスとはオブジェクト指向でいう機能を実現するプログラムの単位。

ネットワーク技術超入門

第１特集

http://www.php.net/manual/ja/filesystem.configuration.php

22 - Software Design May 2014 - 23

ソケットとポートをまったく意識する必要があ
りません。各種プログラミング言語の便利ライ
ブラリに共通しているのが、

①URLを指定する
②データを取得する

という手法です。これらのプログラムは、プロ
グラミング言語や利用するライブラリなどの
API（Application Programming Interface）に
よって異なりますが、「インターネットを使う」
という部分は同じなので似た構造になっていま
す。このように、裏側で動いているしくみが同
じであれば、言語が異なったとしても実現手法
が似てくるのです。

　先ほど挙げたサンプルリストのどれもが、ソ
ケットとポートを意識せずに済むのは、それら
がHTTPを扱うためのものだからです。Web

「HTTPだから簡単にできる」
という側面も

サーバからデータを取得するためにHTTPを
使うということは、次の2点が自明です。

・TCPを利用するということ
・とくに指定しなければ80番ポートを使うこと

　上記2点が確定しているので、Webサーバか
ら情報を取得するのであれば、URLを指定す
ればできます。Web技術で利用されている
HTTPは、今やインターネットにおける通信
の大半を占めるほど利用されているものですの
で、それを利用するためのプログラミング環境
も整備されていますが、HTTPではない通信
が同様に簡単に書けるとは限りません。
　HTTP以外の通信プロトコルを利用した通
信プログラムを書くときや、細かい処理が必要
な場合などには、ソケットを利用したプログラ
ムを書くことが求められることもあります。必
要に迫られて勉強する場合もあるとは思います
が、純粋に「知る」という方向での考え方もあり
ます。便利なツールやライブラリが裏で何をし
ているのかを知ることで、インターネットをよ

#import <Cocoa/Cocoa.h>

int
main()
{
 id pool = [[NSAutoreleasePool alloc] init];

 NSURL *url = [NSURL URLWithString:@"http://www.ｭ
example.com/"];
 NSMutableURLRequest *req = [NSMutableURLRequestｭ
requestWithURL:url];

 // 結果を格納するオブジェクト
 NSURLResponse *resp;

 // エラーを格納するオブジェクト
 NSError *err;

 // 同期的な呼び出し。sendSynchronousRequestを使っｭ
ているのが特徴です
 NSData *result = [NSURLConnection ｭ
sendSynchronousRequest:req
 returningResponse:&resp
 error:&err];

 write(1, [result bytes], [result length]);

 [pool release];
}

 ▼リスト4　 Objective-Cの例（NSURLConnectionク
ラスを使う）

import java.io.*;
import java.net.*;

public class SampleCode {
 public static void main(String args[]) {
 try {
 URL url = new URL("http://www.example.com/");

 Object content = url.getContent();

 if (content instanceof InputStream) {
 BufferedReader reader =
 new BufferedReader(new ｭ
InputStreamReader((InputStream)content));

 String str;
 while((str = reader.readLine()) != null) {
 System.out.println(str);
 }
 }

 } catch (Exception e) {
 System.err.println(e);
 }
 }
}

 ▼リスト5　 Javaの例（クラスライブラリの java.netを
使う）

―UNIXのしくみから紐解くインターネットのしくみ
Part1

24 - Software Design

り身近なものと感じられるかもしません。
　ということで、そういったしくみの裏側で動
いている「ソケット」と「ポート」に関して、もう
少し詳しく見ていきましょう。

　まずは、実際の例を見てみましょう。ソケッ
トを使ってインターネットでの通信を行うプロ
グラムは、図5のように、❶ソケットを用意し
て、❷通信したい相手の IPアドレスとポート
番号を設定し、❸相手とつないで、❹情報をや
りとりする、という過程を経て通信します。
　❶は、ソケットを用意するというものです。
ユーザから見ると、PCを通じて通信を行うた
めの「口」が、ニュウっと伸びて来ているような
感じに見えるかもしれません。ソケットを用意
するときに、そのソケットをどのように使いた
いのかも指定します。たとえば、インターネッ

通信の「入り口」となるソケット、
何と通信するかを指定する「ポート」

まずは通信手順を見てみよう

トを利用してWebサーバと通信したいのであ
れば、TCPでの通信を行うためのソケットを
用意します。
　❷は、通信相手と種類を指定するというもの
です。多少語弊はありますが、IPアドレスは「通
信相手」を指定するために利用されるもので、
ポート番号は「通信の種類」を指定するために利
用されます。
　ポート番号というのは、通信の種類を番号で
表したものです。たとえば、HTTPの一般的な
TCPポート番号は80番ですし、メール配信の一
般的なTCPポート番号は25番です。❷で重要
なのが、通信する相手のIPアドレスを指定する
というものです。たとえば、www.example.comは
IPアドレスではありません。www.example.comは、
「名前」であり、それをIPアドレスに変換したも
のが通信に利用されます（「名前」に関しては、
DNSの解説として後述します）。
　❸は、❷で設定した相手と実際に「つながる」
というものです。この作業が必要なタイプの通
信と、そうでないものがあります。TCPでの通

 ▼図5　ソケットとポートで通信する手順

ネットワーク技術超入門

第１特集

24 - Software Design May 2014 - 25

信では、「つながる」という作業が必要になります。
　❹は、つながったあとにデータをやりとりす
るというものです。
　一度つながってしまえば、あとはそのソケッ
トを利用してデータを出し入れするだけです。
ユーザから見ると、手元にあるファイルからデー
タを引き出すのも、ネットワークの向こう側に
あるサーバからデータを引き出すのも同じよう
な感覚で利用できます。ソケットを利用して
TCPで通信を行うと、こんな感じになります。
　ここまでの説明で、「クライアント」だの「TCP」
だのという単語を説明なしに使ってしまいました
が、それらをこのあとに徐々に紹介していきます。

　先ほどの例では、通信相手を IPアドレスと
ポート番号で指定しています。たとえば、Web
サーバとの通信が行いたいのであれば、Webサー
バのIPアドレスを指定したうえで、80番のポー
ト番号を指定します。
　IPアドレスは、「どのサーバと接続するのか？」
を指定するためのものです。現在のインターネッ

IPアドレスとポートを指定する！

トは、おもにIPバージョン4（以後、IPv4）によっ
て構成されていますが、IPv4での IPアドレス
は32ビットの値で表現されます。
　この32ビットのIPアドレスは、ドット付き十
進表記（dotted decimal notation）と呼ばれる0～
255の数字4組をドットでつないだ記法で表現さ
れます。たとえば、192.0.2.254のような感じです。
「.」の間にある数字は、人間が扱いやすいように、
32ビットのうちの8ビットずつを4つに分けて十
進数で表現したものです。それぞれ8ビットで
すので、表現できる範囲は0から255になります。
　IPv4やv6の話を聞くと（コラム参照）、「Web
サーバのIPアドレスだけで、何がいけないの？」
という疑問も持たれるかもしれません。
　そこで本稿では、IPアドレスとポート番号
が意味するところの違いを理解するためのアナ
ロジーとして「マンションと部屋番号」を提案し
たいと思います（図6）。
　あるWebサーバに対して1つの IPアドレス
が設定されていたとします。その中で、Webサー
バとしてのサービスと、メールサーバとしての
サービスが同時に動いていたとします。そのと

 ▼図6　IPアドレスがマンションで、ポート番号が部屋番号のたとえ

―UNIXのしくみから紐解くインターネットのしくみ
Part1

26 - Software Design

き、IPアドレスだけではWebサーバと通信を
したいのか、それともメールサーバと通信をし
たいのかがわかりません。あたかも郵便局員が
マンションに到着したけど、部屋番号がわから
ずにどこに小包を届けて良いのかわからなくな
るような感じです。
　たとえば、同じサーバでメールとWebと
DNSを運用したい場合を考えます。そういっ
た場合、メールが 25番、Webが 80番、DNS
が53番をそれぞれ使ってサービスを提供します。

さらに言うと、Webサーバを運用するために
80番のポート番号以外を使ってはならないと
いう決まりもないので、80番ではない番号で
運用をすることもできます。これにより、複数
のWebサーバを1台のコンピュータで稼働さ
せることも可能になります。
　このように、ポート番号が存在することによっ
て、1つのマンションに複数家庭が入居できる
のと同じように、1つのIPアドレスで複数のサー
ビスを稼働できます。

　TCPやポート番号に関する詳しい説明に入
る前に、まずはインターネットそのもののしく
みを紹介します。インターネットがどういうし
くみであるのかの概要を知っていると、さまざ
まなしくみが「なぜそうなっているのか？」を理
解しやすいからです。

　インターネットの特徴である「自律分散シス
テム」に着目して解説します。
　物理的な回線に障害が発生したとしても、何
らかの方法で障害発生個所を回避するという能
力がインターネットには備わっています。備わっ
ているというよりは、むしろ、そういった粘り
強いしくみを研究した結果として誕生したのが

インターネットのしくみ

いい加減だけど粘り強い、
インターネット

インターネットです。その粘り強いしくみは、
一見いい加減とも思える「自分ができること以
外はやらない」、「途中経路上のルータは、デー
タが相手に届くかどうかを気にしない」、「自分
が何をどのように転送しているのかも深く考え
ない」というようなしくみによって構成されて
います。誰もインターネットの全体像を知りま
せんし、知らなくてもなぜか相手と通信ができ
てしまいます。
　たとえば、ユーザの手元のPCは、宛先は把
握していますが、そこまでどのようにデータが
届けられるのかを知りません。一方で、データ
の転送を行っている途中経路の機器も、具体的
にどこをどうデータが届けられるのかを細かく
把握せずに動作しています。
　こういった「いい加減さ」が、逆に粘り強さを
実現しているのがインターネットの面白いとこ
ろでもあります。インターネットは、各自がそ

インターネットを上から眺めてみる

　IPv4での IPアドレスは32ビット長ですが、インターネット利用者数が非常に多くなったため、世界の IPアド
レスが枯渇してしまいました。2011年に発生した「IPv4アドレス中央在庫の枯渇」です。そのため、地域によって
は、新たに IPアドレスを取得するのが困難になっています。
　この IPv4の IPアドレス枯渇が発生することは、以前から予想されていたため、IPアドレス空間が非常に大きい
IPバージョン6（以降 IPv6）が作られています。IPv6の IPアドレスは128ビットで表現されているので、IPv4の IP
アドレスよりもかなり大きな空間です。これは、IPv4の4倍ではなく、2の96乗倍であり、非常に大きな値です。
IPv6のユーザ数は、IPv4と比べると、まだまだ少ないのですが徐々に増えつつあります。

「IPv4/IPv6」

ネットワーク技術超入門

第１特集

26 - Software Design May 2014 - 27

のときどきで最善の判断をしようとするので、
全体像を把握しつつ全体を制御するようなしく
みになっていません。
　そのため、「この1個所が潰されたらインター
ネット全体が完全停止してしまう」といった弱
点が構築されにくい構造になっています。誤解
を恐れずに書くのであれば、ちょくちょくと小
さな障害が発生するのは、インターネットその
ものの前提です。

　概念的な話ばかりになってしまうとわかりに
くくなるので、まずは具体的に日本にいるユー
ザがアメリカにあるサーバと通信する場合の物
理回線の例を考えてきます。
　インターネットは魔法ではないので、何らか
の物理回線を通じて通信が行われます。インター
ネットを構成する物理回線は、単一の事業者が
すべてを管理しているわけではなく、各所でさ
まざまな事業者が独自に用意したものが利用さ
れています。
　今回の例の全体像としては、図7のようにな
ります。
　まず最初に、家庭内LANから収容局までの
物理ネットワークがあります。各家庭までの回
線は「ラストワンマイル」と呼ばれることがあり
ますが、光ファイバや銅線による有線回線や、
モバイル通信サービスなどによる無線回線など

日本からアメリカへの
通信を運ぶ物理回線を考える

が考えられます。
　各収容局は、他のエリアと光ファイバで接続
されています。今回の例のように、日本からア
メリカへの通信を考える場合、収容局から光海
底ファイバ陸揚局までデータが配送されます。
日本からのデータをアメリカまで運ぶには、太
平洋を超えた通信が必要になります。太平洋を
超える通信は、海底に敷設された光海底ファイ
バを通じて行われます。アメリカ本土に到達し
たデータは、アメリカ国内での伝送を行う光ファ
イバ網を通ってアメリカ国内にあるデータセン
ターまで運ばれます。
　このように、インターネットを利用して海外
にある機器と通信が行えるのは、何らかの物理
的な方法によって手元のPCから海外まで通信
が行える回線がさまざまな事業者によって整備
されているためです。インターネットは、さま
ざまな運営主体が、さまざまな種類の機器を互
いにつなげ合って構成された世界的な巨大ネッ
トワークなのです。
　しかし、物理的なものは壊れることがあります。
インターネットを構成する回線も例外ではあり
ません。たとえば、日本国内でユーザの家庭に
伸びる光ファイバケーブルにクマゼミが卵を産
見つけて光ファイバが破損することもあります。
地中に埋められていた光ファイバをショベルカー
が掘り起こして切断されたり、漁船の錨が光海
底ケーブルを引っ掛けてしまって壊してしまう

 ▼図7　日本の家庭からアメリカのサーバまでの道のり

―UNIXのしくみから紐解くインターネットのしくみ
Part2

28 - Software Design

ようなこともあります。アメリカ国内で庭師が
光ファイバをハサミで切ってしまったり、ハン
ターが空中配線された光ファイバを散弾銃で撃っ
て壊してしまうこともあります注8。ケーブルが
盗まれることもあれば、ハリケーンなどの自然
災害の影響を受けることもあります（図8）。
　そのような物理回線への障害が発生すると、
その瞬間に転送されていたデータが壊れたりし
ます。いついかなるときも、転送中のデータが
絶対に壊れない物理回線というものは、恐らく
存在しないでしょう。

　データがどのように届くのかを知る前に、ま
ずはデータがどのような単位で相手まで届けら
れるのかを知る必要があります。
　インターネットを流れるすべてのデータは、
「パケット」と呼ばれる小さな単位に分割されて、
届けられます。各パケットはすべて個別の小包
や葉書のように別々に送付されます。たとえば、
あるPCからほかのPCにファイルを送信する
とき、図9のようにファイルが細切れに分割さ
れたパケットとして送信されます。
　この「小分けにされる」というのが非常に重要

データを送るための
パケット交換技術

です。小分けにしてデータを送ることができる
パケット交換技術が発明されるまでは、たとえ
ば電話などの通信は回線交換技術によって行わ
れていました。その欠点は回線交換技術は通信
中に回線を占有することです。
　一方、小分けにすると図10のように、各小
分けデータが回線を専有する時間を短くできる
ので、あたかも複数のデータが1つの回線を同
時に使っているように見えるようになります。
複数の通信を1つの回線で共有することで、回
線の利用効率が向上します。
　このようなパケットをインターネット上で転
送していく機器は「ルータ」と呼ばれます。ルー
タは、各自の範囲内でできることを行いつつ、
互いに連携しながら巨大なネットワークである
インターネットを構成しています。各ルータは
インターネットの全体像を把握しているわけで
はなく、パケットに記載されている宛先を見な
がら、次のルータに向けてパケットを転送して
いるだけです。

　インターネットは、ルータがパケットを転送
することで実現されています。ルータは、パケッ

パケットの宛先はどこ

 ▼図8　なんらかの理由で通信が届かないことも

注8） 次のURLは、2010年にGoogleが通信障害に関して語ったプレゼンテーションです。NANOG 49: Worse is better ; https://www.
nanog.org/meetings/abstract?id=1595

ネットワーク技術超入門

第１特集

https://www.nanog.org/meetings/abstract?id=1595
https://www.nanog.org/meetings/abstract?id=1595

28 - Software Design May 2014 - 29

 ▼図9　パケットに分割されて送信されるファイル（データを小分けにしている）

 ▼図10　パケットに区切ることによって回線を共有（少ない回線数で通信可能）

―UNIXのしくみから紐解くインターネットのしくみ
Part2

30 - Software Design

トを可能な限り転送する努力はしますが、パケッ
トの到着を保証しません。そのため、パケット
が途中経路で喪失することもあります。パケッ
トが喪失する理由には、ルータ間をつなぐ物理
的な回線障害以外にもいろいろあります。たと
えば、ルータが物理的に故障することもありま
すし、ルータに対して管理者が間違った設定を
してしまうこともあります。ある特定のルータ
に対して過度なトラフィックが集中して、ルー
タがパケットを処理しきれずにパケットが喪失
してしまうこともあります（図11）。
　何らかの理由によってパケットが喪失する障
害が発生したときに、「こっちは通信ができな
いらしい」と周辺のルータが把握し、代替経路
を各自が自律的に計算します（図12）。新しい
経路が発見されれば、その経路を通じてパケッ
トが送信されます。このように、インターネッ
トを構成するルータが各パケットの詳細を把握
せずに宛先だけを見てパケットを処理するのも、
インターネットの重要な特徴です。各パケット
がどのような順番で配送されるべきかなどを途
中経路上のルータが把握しなくても良いので、
ルータは必要最低限の情報だけを把握するだけ
で動作可能です。

　パケットの到達性が保証されないネットワー
クで通信を成り立たせるための機能を実現して
いるのがTCP（Transmission Control Protocol）
です。TCPは、実際に通信を行っている末端機
器同士が利用するしくみです。通信経路そのも
のを実現しているルータは、最低限のことだけ
を把握すれば良く、どのパケットがどのように
喪失したのかに関する処理は、通信を行う末端
同士が把握するという形です。
　途中経路上のルータがパケット喪失を把握し
なければならない設計であれば、ルータに要求
される性能が非常に高いものになるだけではな
く、そのネットワークに接続可能な機器の数も
著しく制限されていたはずです。パケットの配
送を行うルータは、可能な限り単純な作業だけ
を行い、末端同士が複雑なことをするような役
割分担にしたからこそ、インターネットは世界
規模の巨大ネットワークへと成長できたのだと
思います。
　TCPは、パケット喪失を検知するだけでは
なく、図13のように、届いていないパケット
を再度送信してもらうことを促します。途中経

到達性を保証するTCP

 ▼図11　過度なトラフィックによるパケットの喪失

ネットワーク技術超入門

第１特集

30 - Software Design May 2014 - 31

路上でパケットが喪失したとしても、送信元か
ら再度送信され、再送信されたパケットが宛先
に無事到着すれば、送信元から宛先まで必要な
データが届けられます。
　このように、相手にデータが届いたかどうか
を確認することで、TCPは仮想的な接続が存
在しているような機能を実現しています。これ
は、「バーチャルサーキット」と呼ばれています。
このバーチャルサーキットは、離れた相手とあ
たかも直接つながっているかのような錯覚を起
こさせるような機能を持っています。バーチャ
ルサーキットによって、ユーザはソケットが「ド
ラえもんのどこでもドア」のように見えます。「ど
こでもドア」に対してデータを入れたり出した

りするだけで通信が行えるためです（図14）。
　このように、TCPが裏で頑張ることによって、
TCPを利用するアプリケーションはあまり深
く考えずに離れた相手とデータのやりとりを行
えるわけです。アプリケーションを作る人が、
途中ネットワークでのパケット喪失を意識せず
にプログラムを書けるというのは、非常に大事
です。仮にTCPが存在しなければ、インター
ネットを利用するすべてのユーザが、ネットワー
クそのものの挙動を細かく知りつつ通信を行わ
なければならないという状況が存在したかもし
れないと思うと、TCPが存在しなければイン
ターネットは普及しなかった可能性すらある気
がしています。

 ▼図12　経路切り替えによるデータの喪失

 ▼図13　再送要求（パケットが消失したときは、再送信する）

―UNIXのしくみから紐解くインターネットのしくみ
Part2

32 - Software Design

　次は、TCPによる通信開始がどのように行わ
れるのかを紹介します。何もせずに、常にTCP
のバーチャルサーキットが存在し続けているわ
けではありません。TCPでの通信を行うには、
まず最初にTCP接続を確立する必要があります。
TCPでは、通信を開始したい側が「このポート
番号で接続させてください」という接続要求パ
ケットを送信します。接続要求を受け取った側は、
その接続を受け入れるのであれば、「いいです
よー」という内容の応答を返します。「いいです
よー」という応答を受け取った通信開始側は、「あ
りがとうございます。宜しくお願いします。」と
いう内容を送信して、TCP接続が確立します。
このやりとりでは、3回メッセージがやりとり
されるので、3 way handshake（3方向の握手）と
呼ばれています（図15）。
　3 way handshakeで最初に送信されるTCP
接続要求パケットは「SYNパケット」と呼ばれ
ます。このSYNというのは、「synchronize（同
期する）」という意味です。SYNパケットによっ

TCPによる接続の確立
て同期されるのは、パケットが運ぶデータの位
置を示すためのシーケンス番号です。シーケン
ス番号は、どのパケットが喪失したのかや、配
送中にパケットの並び替えが発生したことを検
知するために利用されます。接続を開始すると
いうよりも、シーケンス番号を同期することが
名称に反映されている点が非常に興味深いと言
えます。
　SYNパケットを受け取った側が、接続を許
可するときに送信するパケットは「SYN＋
ACK」と呼ばれています。ACKというのは、
受け取り通知や承認という意味を持つ英単語
「Acknowledgement」の頭文字です。「SYN＋
ACK」というのは、SYNに対するACKという
意味です。
　ACKは、3 way handshakeの最後に送信され
ますが、その後データをやり取りする際に「デー
タがちゃんと届きましたよー」という通知を接
続相手に伝えるためにも利用されます。

　これまで、「ポート番号」としてWebサーバ

セッションの識別と「ポート番号」

 ▼図14　バーチャルサーキットのモデル図

ネットワーク技術超入門

第１特集

32 - Software Design May 2014 - 33

が利用する80番などを紹介してきましたが、
それはポート番号の一部でしかありません。
TCPによって個々のバーチャルサーキットは、
それぞれ独立しており、それぞれの通信内容が
混じってしまうと困ります。TCPでは、各バー
チャルサーキットは「セッション（session）」と
呼ばれています。各TCPパケットが、どのセッ
ションに含まれたものであるかは、パケットの
IPヘッダとTCPヘッダに記載された情報によっ
て識別されます。
　識別に利用される情報は、IPヘッダに記載
されたプロトコル番号（TCPなので6番）と送
信元IPアドレスと宛先IPアドレス、TCPヘッ
ダに記載された送信元ポート番号と宛先ポート
番号の5つです。TCPセッションの識別に使
われるこれらの5つは、5タプル（5 Tuples）と
呼ばれることがあります（図16）。
　カーネルは、受け取ったパケットの IPヘッ
ダとTCPヘッダに含まれる情報から、各パケッ
トをどのように処理すべきかを判断します。図
17のように、カーネルがネットワークインター
フェースから受け取ったパケットをひとつひと

つ確認して、適切なソケットへデータが渡され
るようにします。
　TCPでは、パケットそのものがソケットを
経由してアプリケーションに渡されるわけでは
ありません。ユーザが欲しいのは、送信側のア
プリケーションで「どこでもドア」であるバー

 ▼図15　3 way handshake（3方向の握手）

 ▼図16　TCPパケットのモデル図

宛先IP
アドレス

送信元 IP
アドレス

宛先ポート
番号

送信元
ポート番号

IPヘッダ

TCPヘッダ

データ

―UNIXのしくみから紐解くインターネットのしくみ
Part2

34 - Software Design

チャルサーキットに送り込んだデータそのもの
であり、通信経路上でやりとりされるパケット
そのものではありません。
　カーネルは、ネットワークインターフェース
で受信したパケットを「ソケットバッファ」と呼

ばれる一時保管用の領域に格納したうえで、必
要に応じてソケットを経由してデータをアプリ
ケーションへと渡します（図18）。
　さて、次は、もう少しTCPのポート番号を
掘り下げて考えてみましょう。TCPは、バーチャ

 ▼図17　カーネルによるパケットの選別とソケット

 ▼図18　パケットに含まれるデータがプロセスに渡されるまで

アプリケーション（プロセス）

ネットワークインターフェース

データ

ソケット

ユーザ空間

カーネル空間
ソケットバッファ

パケット

ネットワークからパケットを受信

ソケットバッファにデータを格納

ネットワーク技術超入門

第１特集

34 - Software Design May 2014 - 35

ルサーキットを確立しますが、同じ IPアドレ
ス同士で2本以上のバーチャルサーキットを確
立するには、どうするのでしょうか？
　ポート番号に「送信元ポート」と「宛先ポート」
の2種類があるのは、そういった状況にも対応
できるようにするためです。
　図19は、192.0.2.1というIPアドレスで運用
されているWebサーバに対して、2つクライア
ントから TCP接続が張られています。
203.0.113.100という IPアドレスのクライアン
トから1本と、198.51.100.20という IPアドレ
スのクライアントから2本です。2つのクライ
アントは、Webサーバに対してTCPポート80
番を宛先とするTCP SYNパケットを送信して、
TCP接続を確立します。
　図19で着目すべきは、198.51.100.20という
IPアドレスを持つクライアントから2本の
TCP接続が確立されている点です。この2つ
のTCP接続で異なるのは、クライアント側の
送信元TCPポート番号です。このように、5
タプルのうち1つでも違えば、異なるTCPセッ
ションとして認識できるので、同じ機器同士で
複数のTCPセッションを通じて通信を行うこ
とができます。
　実際、皆さんが利用されているWebブラウ

ザは、ユーザが気がつかないうちに同じサーバ
に対して複数のHTTPセッション経由で同時に
データを取得しています。たとえば、1つの
Webページに複数の画像が含まれるときなどに、
複数のTCPセッションがデータを運んでいます。

　TCPの機能は、パケットの喪失に対応する
だけではありません。TCPが提供する非常に
重要な機能として、「利用可能なネットワーク
帯域に合わせた通信を行う」という輻輳制御機
能もあります。TCPの輻輳制御機構は、TCP
の重要機能であると同時に、インターネットに
とっても非常に重要な要素です。
　図20のように、インターネットに接続した
機器が、途中ネットワークでの輻輳をまったく
考慮せずに各自で好き勝手に「オラオラオ
ラー！」とパケットを送信してしまうと、途中
経路が輻輳だらけになってしまい、まったく通
信ができない状況が定常的に続いてしまう可能
性があります。
　TCPは、インターネットに接続された末端
機器同士が各自の判断で送信量を増やしたり減
らしたりしているわけですが、その結果として、
図21のように末端機器同士があたかも通信帯

TCPによる輻輳制御機構

 ▼図19　TCP接続の一意性
203.0.113.100

port 11111

198.51.100.20

Webサーバ
（192.0.2.1）

port 80

port 80

port 80 port 33333

port 44444

 ▼図20　ネットワーク輻輳状態とは

―UNIXのしくみから紐解くインターネットのしくみ
Part2

36 - Software Design

域を「ゆずりあっている」ようにも見えます。
　実際は、最適送信量でパケットを送ることで
効率良くデータを送信できる、ということを目
的としているので礼儀正しくすることを目的と
しているわけではないのですが、「オラオラオ
ラー！」と何も考えずにフルパワーでパケット
を送信しまくるのと比べると礼儀正しいように
も見えます。
　TCPの輻輳制御機構にはさまざまな種類が
ありますが、基本的なものとしてはたとえば、
パケット喪失が発生するまではパケット送信量
を倍々にしていき、パケット喪失を検知すると
パケット送信量を1に戻すという手法がありま
す注9。
　このような、徐々にパケット送信量を増やし
ていく方式は「スロースタートアルゴリズム」と
呼ばれます。
　スロースタートアルゴリズムでは、TCP接

続確立直後に同時送信可能なパケット数が1と
なるので、TCP接続確立直後は利用可能なネッ
トワーク帯域が狭いという特徴があります。こ
の特徴は、最近さまざまなところで話題の
HTTP 2.0が提案される背景にもなっています。

　TCP接続が確立されるとき、「ポート○○に
つなぎたいです」と言う側と、それに対して「い
いですよー」と言う側がいます。「つなぎたい」と
SYNパケットを送信する側は「クライアント」、
それを受け付ける側は「サーバ」と呼ばれます。
　TCPの接続が確立したあとは、TCPそのも
のの機能としてはサーバとクライアントに差異
はありませんが、TCP接続確立段階で動作が
違うので、その部分はプログラムの書き方も違
います。ソケットを利用したプログラミングを
行うときの、TCPサーバとクライアントの違

ソケットを利用した
TCPプログラミング例

 ▼図21　通信帯域の譲り合い

注9） ある閾値を超えると倍々ではなく1ずつ増えます。また正確には「パケット数」ではなく「セグメント数」です。本稿では詳細を割愛
しますが、興味がある方はTCPについて調べてみてください。面白いです。

ネットワーク技術超入門

第１特集

36 - Software Design May 2014 - 37

　本稿執筆時点ではHTTP 2.0はまだ検討途中であり、正式な仕様が決定しているわけではありません注10。しかし、
長年利用され続けているHTTP 1.1との後方互換性を維持しつつも、大規模な機能拡張が行われようとしています。
インターネットで行われる通信で、最も多く利用されているのがHTTPであるとも言われており、HTTPの新バー
ジョン登場はさまざまな変化を起こす可能性があります。
　従来HTTPとHTTP 2.0を比べると図22のようになります。具体的には、それまで基本的に1つのTCPセッショ
ンが1つのHTTPセッションとなり、1つのHTTPリクエストに対してHTTPレスポンスが返されるとTCPセッショ
ンも終了するという利用が大半でした注11。
　それまで、非常に細かい単位で毎回TCPセッションを張り直していたため、各TCPセッション開始直後のTCP
確立までの時間や、TCPセッション開始後のスロースタートが、TCPセッションごとに毎回行われていました。
　たとえば、あるWebページ内に画像ファイルが50個含まれていれば、元となるWebページを取得する1回の
TCPセッションの後に、画像ファイルを取得するために50回のTCPセッションが開始されます。数キロバイトぐ
らいの小さい画像ファイルが多い場合、接続してはすぐに切断するような細かいTCPセッションが頻発します。
　HTTP 2.0は、1つのTCPセッションで複数のHTTPセッションをやりとりできるようにすることで、それまで
TCPセッションのたびに行われていた処理が行われずに、HTTPセッションを高速化できるというものです。し
かし、TCPセッション数を減らすことによって通信性能が低下する可能性もあるので注意が必要です。
　TCPセッションによって利用可能な通信帯域の理論的な限界は、環境によってある程度推測できます（RFC
5348参照注12）。たとえば、遠距離で通信を行い、RTT注13が大きいような環境ではTCPセッションの本数を増や
したほうが通信性能が上昇する傾向があります。そのため、TCPセッション数を何本にするのかや、どういった
ときにどれぐらいのHTTPセッションを1つのTCPセッションに内包させるのかなどによって、各実装で通信性
能などに差が出てくるかもしれません。
　なお、HTTP 2.0の仕様は本稿執筆時点では、まだドラフトであり、決定しているわけではありません。

 ▼図22　従来HTTPとHTTP 2.0の違い

注10） Hypertext Transfer Protocol version 2 (internet draft)（http://tools.ietf.org/html/draft-ietf-httpbis-http2）
注11） HTTP 1.1のパイプラインのしくみを利用すれば1つのTCPセッションで複数のHTTPリクエストを処理できます。
注12） RFC 5348: TCP Friendly Rate Control (TFRC): Protocol Specification（http://tools.ietf.org/html/rfc5348）
注13） RTT（Round Trip Time）ある区間で行われている通信における送受信の経過時間。

「HTTP 2.0」

―UNIXのしくみから紐解くインターネットのしくみ
Part2

http://tools.ietf.org/html/draft-ietf-httpbis-http2
http://tools.ietf.org/html/rfc5348

38 - Software Design

いを図23に示します。
　TCPによる通信プログラムを書く場合、第1
引数をAF_INET（IPv6の場合はAF_INET6）、
第2引数をSOCK_STREAMにしたsocketシス
テムコールでソケットを作成します。この部分は、
サーバとクライアントで同じです。
　では、まずはクライアント側を見てみましょ
う。socketシステムコールを使って作成したソ
ケットを利用して、connectシステムコールで
通信を行いたい相手とTCP接続を確立します。
connectシステムコールの第2引数に接続相手
情報を渡すことでTCP接続の相手を指定でき
ます。TCP接続の確立に成功すると、connect
システムコールは成功しますが、そのソケット
に対して読み書きを行うことでサーバとデータ

のやりとりが可能になります。
　最後に、使い終わったソケットをcloseシス
テムコールで閉じて、ひととおり終了です。
　次に、サーバ側を見ていきましょう。socket
システムコールを使って作成したソケットに対
して、次節で説明するbindシステムコールを使っ
て待ち受け用のIPアドレスとTCPポート番号
を設定します。そのあと、listenシステムコール
によってTCP SYNを受け付けるようになります。
　listen実行後に、待ち受けが行われているポー
ト番号でTCP接続が確立されるようになります
が、確立し終わったTCP接続から新たなソケッ
トを生成するのがacceptシステムコールです。
サーバアプリケーションは、acceptシステムコー
ルが生成したソケットに対して読み書きを行う

 ▼図23　TCPのサーバとクライアント

ネットワーク技術超入門

第１特集

38 - Software Design May 2014 - 39

ことで、クライアントとの通信を行います。
　サーバ側では、closeシステムコールを
acceptで生成されたソケットすべてに対して個
別に行う必要があります。また、listenを行っ
たソケットも使い終わったらcloseします。
　では、実際に、サーバとクライアントのプロ
グラムの例を見てみましょう。
　まず、リスト6はクライアント側の例です。
自分自身を示す IPアドレスである127.0.0.1
（localhost）の11111番ポートに対してTCP接続
を確立したあとに、サーバからのデータを待ち
ます。サーバからのデータを受け取ると、標準

出力へと受信データを表示して終了します注14。
　リスト7は、サーバ側のサンプルプログラム
です。サーバ側は、ポート11111番で2本の

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int
main()
{
 struct sockaddr_in server;
 int sock;
 char buf[32];
 int n;

 /* ソケットの作成 */
 sock = socket(AF_INET, SOCK_STREAM, 0);

 /* 接続先指定用構造体の準備 */
 server.sin_family = AF_INET;
 server.sin_port = htons(11111);
 /* 127.0.0.1はlocalhost */
 inet_pton(AF_INET, "127.0.0.1", &server.sin_addr.ｭ
s_addr);

 /* サーバに接続 */
 connect(sock, (struct sockaddr *)&server, ｭ
sizeof(server));

 /* サーバからデータを受信 */
 memset(buf, 0, sizeof(buf));
 n = read(sock, buf, sizeof(buf));

 printf("%d, %s･n", n, buf);

 /* socketの終了 */
 close(sock);

 return 0;
}

 ▼リスト6　クライアント側の通信プログラム例

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int
main()
{
 int sock0;
 struct sockaddr_in addr;
 struct sockaddr_in client;
 socklen_t len;
 int sock1, sock2;

 /* ソケットの作成 */
 sock0 = socket(AF_INET, SOCK_STREAM, 0);

 /* ソケットの設定 */
 addr.sin_family = AF_INET;
 addr.sin_port = htons(11111);
 addr.sin_addr.s_addr = INADDR_ANY;

 bind(sock0, (struct sockaddr *)&addr, ｭ
sizeof(addr));

 /* TCPクライアントからの接続要求を待てる状態にする */
 listen(sock0, 5);

 /* TCPクライアントからの接続要求を受け付ける（1回目） */
 len = sizeof(client);
 sock1 = accept(sock0, (struct sockaddr *)&client, &len);

 /* 6文字送信('H', 'E', 'L', 'L', 'O', '･0') */
 write(sock1, "HELLO", 6);

 /* TCPセッション1の終了 */
 close(sock1);

 /* TCPクライアントからの接続要求を受け付ける（2回目） */
 len = sizeof(client);
 sock2 = accept(sock0, (struct sockaddr *)&client, &len);

 /* 5文字送信('H', 'O', 'G', 'E', '･0') */
 write(sock2, "HOGE", 5);

 /* TCPセッション2の終了 */
 close(sock2);

 /* listen するsocketの終了 */
 close(sock0);

 return 0;
}

 ▼リスト7　サーバ側の通信プログラム例

注14） 本稿のCサンプルはMac OS Xで書いています。Linuxの場合はsocklen_t部分が異なるので適宜修正してお試しください。エラー
処理は割愛しています。

―UNIXのしくみから紐解くインターネットのしくみ
Part2

40 - Software Design

TCP接続を受け付けてから終了します。1本
目のTCP接続に対しては "HELLO"と書き込
み、2本目には"HOGE"と書き込みます。
　本稿では、TCPサーバ側サンプルで、あえ
て2本のTCP接続を受け付けるように書いて
みました。これは、bindしたうえで listenして
いる待ち受け用のソケットと、acceptによって
新たに生成された通信を実際に行うためのソケッ
トが違うものであることを理解していただくた
めです。このように、サーバ側は待ち受けして
いるポート番号に対してTCP接続をしてくる
クライアントとのTCP接続を次々と確立でき
るのです。

　bindの部分をもう少し掘り下げてみましょう。
bindは「名前が付いていないソケットに名前を
付ける」と解説されますが、TCPにおける「名前」
とは送信元もしくは接続を受け付ける IPアド
レスと送信元ポート番号です。listenの前に
bindを行ったうえでacceptを行えば、bindに
よって設定されたTCPポート番号でTCP接続
要求を待つようになります。
　connectの前にbindを行えば、acceptを行う
サーバ側が認識するクライアント側のTCPポー
ト番号は、connect前に行ったbindによって設
定されたTCPポート番号になります。
　なお、ソケットに対してTCPのポート番号
が設定されるのは、bindを行ったときだけでは
ないのでご注意ください。connectと listenは、
それらのシステムコールを利用する前にbind
が行われていなければ、自動的にカーネルが送
信元ポート番号を設定する機能を持っています。
　たとえば、TCP SYNを送信するクライアン
ト側にも送信元ポート番号はありますが、一般
的なプログラミング手法では、bindを行わずに

TCPの送信元ポート番号を
設定する

connectが行われます。これにより、bindによ
る「名前付け」が行われずにTCP SYNが送信さ
れるわけですが、TCP SYNを送信するには、
何らかの送信元ポート番号が必要です。bindを
行わずに connectができるのは、connectを利
用する前にbindが行われていなければ自動的
にカーネルが設定を行ってくれているためです。
　あと、多少マニアックになってしまいますが、
TCP SYNを受け付けるサーバ側においても、
bindを行わずに listenを行うことで、カーネル
が自動的に設定したポート番号でTCP SYNを
待ち受けることができます。そういう書き方を
したときには、listen時点でどのようなポート番
号になるのかを事前に予測するのが難しいため、
listen後にgetsocknameというシステムコールを
利用して、設定されたポート番号を調べます。

　TCPはインターネットの初期から存在して
いました。そもそも、当初はデータの到着が保
証されるTCPだけですべての通信を実現しよ
うとしていました注15。
　しかし、それでは不都合がありました。音声
通信などでは、すべてのデータが正しく到達す
ることよりも、多少のロスが存在したとしても
短時間でパケットが到達することなどが必要で
あったため、UDP（User Datagram Protocol）
があとから考案されたとあります。TCPの IP
プロトコル番号注16が6、UDPが17であること
からも、UDPがあとから考案されたことがわ
かります。このように、ソケットを利用した通
信はTCPに限定されるものではありません。
　インターネットにおける通信の大半がTCP
によるものですが、音声や動画の通信であった
り、リアルタイム性が要求されたり、TCPほ

UDP（User Datagram
Protocol）

注15） 今のインターネットの前身であるDARPA Internetのしくみを解説した論文が1988年に書かれていますが、その論文の中にもTCP
が語られています。（http://portal.acm.org/citation.cfm?id=205458）D.D.Clark. The Design Philosophy of the DARPA Internet
Protocols, Proceedings of ACM SIGCOMM, Pages 106-114, September 1988.

注16） IPヘッダに書き込まれた識別番号（http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml）

ネットワーク技術超入門

第１特集

http://portal.acm.org/citation.cfm?id=205458
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

40 - Software Design May 2014 - 41

どの機能が不必要であったり、マルチキャスト
やブロードキャストによって同時に多数の相手
と通信したいときなどに使われるプロトコルと
して「UDP」があります。のちほど紹介する
DNSに対する問い合わせにもUDPが使われて
います。

　UDPはデータが宛先に届いたかどうかを関
知しないため、データの到着を保障しない点が
TCPと異なります。TCPでは相手にデータが
届いたかどうかなどを含めて丁寧にデータ確認
する一方で、UDPパケットの送信側は「投げっ
ぱなしジャーマンスープレックス！注17」という
感じで、「投げた後は知りません」というスタン
スです。TCPとUDPを比べると図24のよう

投げっぱなし
ジャーマンスープレックス！

になります。
　このため、UDPを使った通信を前提とする
プログラムを書く場合には、パケットがネット
ワークの途中で消えてしまうことも想定する必
要があります。「投げっぱなしジャーマンスー
プレックス！」なスタンスには利点もあります。
TCPでは、相手に対してデータが到着したか
どうかを確認したり、並び替えに対処するため
にパケットが到着していてもユーザに渡せなかっ
たり、輻輳制御のために送信量が制限されたり
します。しかも、これらの処理はOS内部で行
われるため、ユーザアプリケーションは何が起
きているのか感知しにくい構造になっています。
　このように、TCPでの処理はリアルタイム
性を損なうことがありますが、UDPにはそれ
らが存在しないため、UDPはTCPと比べてリ

注17） プロレスの投げ技。試合相手を背後から抱えたまま、自分の体をブリッジ状に後方に反り、相手の後頭部から背中にかけてマット
に接地させてフォールをとるのが基本型ですが、技の後半で抱えずに後方にほおり投げます。相手は受け身が取れずにダメージが
大きくなるので危険な技とされます。

 ▼図24　投げっぱなしジャーマンスープレックスのようなUDP

―UNIXのしくみから紐解くインターネットのしくみ
Part2

42 - Software Design

アルタイム性があります。UDPには複雑なし
くみが存在していないので、何か特別な処理が
必要である場合には、各アプリケーション実装
者がそれぞれプログラムを自作する必要があり
ます。たとえば、UDPを利用しつつ輻輳制御
が必要となるような場合には、輻輳制御機構を
自作する必要があります。めんどうではありま
すが、アプリケーションごとに各自が柔軟にし
くみを実装できるという利点があります。

　IPv4では、ユニキャスト、ブロードキャスト、
マルチキャストの3種類の通信方法が存在して
います注18。TCPは、1対1の通信だけを想定
しており、IPv4ではユニキャストでのみ通信
ができます。それに対してUDPは、1つのデー
タパケットを送ればネットワークで必要に応じ
て増やして送ってくるブロードキャストやマル
チキャストが利用できます。
　UDPを使うことで、途中経路上のルータが
パケットに対して勝手に「分身の術！」といった

分身の術！

感じで必要に応じて増えてくれます注19。ブロー
ドキャストやマルチキャストを利用することに
より、送信側は受信者数に関係なく必要最低限
のパケットだけ送っていれば、あとはネットワー
クが適切に処理をしてくれるため送信側のアプ
リケーションの負荷を大きく軽減できます。
　ブロードキャストやマルチキャストは、不特
定多数に送信できるものですが、相手を直接指
定せずに「必要な人が受けとって！」ということ
もできます。TCPを使うには通信相手を明示
する必要がありますが、UDPを使うことによっ
て、誰が受け取るかは知らないけど必要に応じ
て受け取ってほしい通信を実現できます注20。

　次は、実際にUDPパケットの送信や受信の
プログラム例を見ていきましょう。TCPでは、
相手を指定したうえで接続をしてから実際の通
信を行うという手順でしたが、UDPでは、図
25のように相手を指定していきなり送信します。

UDPプログラミング例

注18） IPv6では、ユニキャスト、マルチキャスト、エニーキャストの3種類です。IPv6では、ユニキャストとエニーキャストでTCPが利
用できます。ただし、昔は IPv6エニーキャストでTCPを利用できないしくみでした。

注19） ここではUDPの特徴というふうに紹介してしまっていますが、実際はブロードキャストやマルチキャストといった IPが持っている
特徴をTCPが使えないだけという話であったりもします。

注20） 実際はUDPの特徴ではなく IPの特徴ですが、ここでは割愛します。

 ▼図25　UDPを利用した送信と受信

socket()
ソケットの作成

受信側

bind()
ソケットに名前をつける

recv()
受信する

close()
ソケットを閉じる

接続待ちをするための
IPアドレスと

ポート番号を設定

socket()
ソケットの作成

送信側

sendto()
送信する

close()
ソケットを閉じる

接続相手のIPアドレスと
ポート番号を設定

ネットワーク技術超入門

第１特集

42 - Software Design May 2014 - 43

　まずは、UDPパケットを送信するプログラ
ムの例です（リスト8）。TCP用のソケットを作
るときには、socketシステムコールの第1引数
にAF_INETで第2引数にSOCK_STREAMを
指定していましたが、UDPでは第 1引数に
AF_INETで第2引数がSOCK_DGRAMになっ
ています。AF_INETとSOCK_DGRAMの組
み合わせは、IPv4のUDPになります。
　IPアドレスは自分自身を示す localhost
(127.0.0.1)、宛先ポート番号は11111番に送信
しています。送信しているデータは「'T', 'E',
'S', 'T', '＼0'」という5文字です。
　TCPのように、相手に接続する (connectする)
という段階が存在せず、いきなりsendtoを行っ

ているのが大きな特徴です注21。
　このサンプルでは、UDPの送信元ポート番
号はsendtoの時点で設定されています。sendto
を行う前にbindを行えば、UDP送信元ポート
番号を明示的に指定できます。
　次は、受信プログラムを見てみましょう。リ
スト9はUDP用のソケットを作成したうえで、
それに対して、bindシステムコールでポート番
号11111番という名前を付けています。bindで
受信用のポート番号を設定したあとに、recv

注21） UDPソケットに対してconnectを使うこともできますが、本稿では割愛します。

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int
main()
{
 int sock;
 struct sockaddr_storage ss;
 struct sockaddr_in *to = (struct sockaddr_in *)&ss;
 int n;

 sock = socket(AF_INET, SOCK_DGRAM, 0);

 to->sin_family = AF_INET;
 to->sin_port = htons(11111);
 n = inet_pton(AF_INET, "127.0.0.1", &(to->sin_ｭ
addr));
 if (n < 1) {
 perror("inet_pton");
 return 1;
 }

 n = sendto(sock, "TEST", 5, 0, (struct sockaddr *)ｭ
to, sizeof(struct sockaddr_in));
 if (n < 1) {
 perror("sendto");
 return 1;
 }

 close(sock);

 return 0;
}

 ▼リスト8　UDPパケット送信プログラムの例

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int
main()
{
 int sock;
 struct sockaddr_storage ss;
 struct sockaddr_in *bindaddr = (struct sockaddr_inｭ
*)&ss;

 struct sockaddr_storage senderinfo;
 socklen_t addrlen;
 char buf[2048];
 int n;

 sock = socket(AF_INET, SOCK_DGRAM, 0);
 if (sock < 0) {
 perror("socket");
 return 1;
 }

 bindaddr->sin_family = AF_INET;
 bindaddr->sin_port = htons(11111);
 bindaddr->sin_addr.s_addr = INADDR_ANY;

 if (bind(sock, (struct sockaddr *)bindaddr, ｭ
sizeof(struct sockaddr_in)) != 0) {
 perror("bind");
 return 1;
 }

 addrlen = sizeof(senderinfo);
 n = recvfrom(sock, buf, sizeof(buf) - 1, 0,
 (struct sockaddr *)&senderinfo, &addrlen);

 write(fileno(stdout), buf, n);

 close(sock);

 return 0;
}

 ▼リスト9　UDPパケット受信プログラムの例

―UNIXのしくみから紐解くインターネットのしくみ
Part2

44 - Software Design

fromシステムコールでUDPパケットの到着を
待っています。パケットを受信すると、write
システムコールを使用して標準出力に受信した
内容をそのまま表示しています。
　このようにUDPプログラミング例をご覧い
ただくと、本特集の前半で紹介したソケットプ
ログラミングが、実際は「TCPソケットプログ
ラミング」であることがわかると思います。
　TCPやUDP以外にも、ソケットにはさまざ
まな種類があります。本稿では、割愛しますが、
IPパケットを直接作成できるようなソケットや、
ホスト内のプロセス間で通信するためのソケッ
トなど、実際にはさまざまな種類のソケットが
あるので、興味がある方はぜひいろいろ調べて
みてください。

　TCPでは、データを双方向にやりとりする
ことができます。たとえば、Webで利用され
るHTTPのように、TCP接続確立後に、受け
取ったデータに応じて返答するようなこともで
きます。UDPソケットからパケットを受け取っ

UDPでの返信の例

たソケットを使って送信してきた相手にパケッ
トを送ることで、UDPでも「何かを受け取った
ら、その相手に返答する」ということができます。
　図26は、IPアドレス203.0.113.8の送信側が、
送信元ポート番号55555のUDPパケットを、
IPアドレス192.0.2.9のUDPポート11111番
宛に送信しています。IPアドレス192.0.2.9側
は、UDPパケットをrecvfromシステムコール
で受信します。recvfromシステムコールの第5
引数は、UDPパケットの送信元情報が含まれ
ているので、そこに記載された情報を元に
UDPパケットを送信しています。
　このように、UDPパケットに記載された送
信元の IPアドレスとポート番号を、そのまま
宛先情報として利用して返答するという実装方
法がさまざまなところで行われています。たと
えば、UDPを利用してDNSへの問い合わせを
行うときも、このような方式でDNSからの応
答が送信されています注22。
　この方式の問題点は、外部のユーザが偽造し
たものを受け取ったとしても気が付けない場合
があるというところです。

 ▼図26　UDPでの返信の例

待ち受け側：src port 11111 送信元：src port 55555

recv()

recv()

sendto()

sendto()

宛先ポート番号 11111
送信元ポート番号 55555

宛先ポート番号 55555
送信元ポート番号 11111

注22） DNSへの問い合わせがTCPで行われることもあります。

ネットワーク技術超入門

第１特集

44 - Software Design May 2014 - 45

　TCPでは、最初に3 way handshakeがあり、
シーケンス番号が同期していないとパケットが
受け付けられないのですが、UDPそのものに
はそういったしくみがないので、TCPと比べ
て偽造パケットを忍び込ませるハードルが低く

なっています（図27）。
　このような攻撃を防ぐためには、アプリケー
ションを実装する人が、偽造されたパケットを
無視できるようなしくみを独自に実装する必要
があります注23。

注23） RFC 2827(BCP 38)とRFC 3704(BCP 84)に関しては、本稿では割愛させてください。

 ▼図27　UDPパケットの偽造

　これまで、IPアドレスを直接指定するとい
う前提でソケットプログラミングを紹介してき
ました。インターネットにおける識別子は、
IPアドレスであり、通信は IPアドレスを基に
行われます。しかし、数値の羅列である IPア
ドレスは人間にとってわかりにくいので、
www.example.comなどの「名前」を使ってユー

IPアドレスと「名前」
ザが通信相手を指定するのが一般的です。とは
いえ、名前を直接 IPパケットのヘッダに書き
込むことはできないので、名前を IPアドレス
へと変換するしくみが必要になってきます。
　次は、こういった「名前」とは何かと、「名前」
を IPアドレスへと変換するしくみであるDNS
（Domain Name System）を紹介します。

　現在のインターネットにおける一般ユーザに

DNSのしくみ

おさえておきたいDNSのしくみ

―UNIXのしくみから紐解くインターネットのしくみ
Part3

46 - Software Design

とってのDNSは、DNS全体のしくみではなく、
最寄りのDNSキャッシュサーバを示すことが
多いです。たとえば、PCやスマホで「DNSの
設定」といえば、その機器が利用するDNSキャッ
シュサーバのIPアドレスです。
　一般的なユーザがWebを見るとき図28のよ
うに、DNSキャッシュサーバに名前解決を依
頼し、返ってきたIPアドレスを使ってWebサー
バとの通信を行います。
　ユーザにとっては、DNSキャッシュサーバ
は「いろいろ知っているすごいサーバ」のように
見えますが、実際はそうではありません。名前
に対応する IPアドレスの情報を持っている
DNSサーバは、「権威DNSサーバ」と呼ばれて
いますが、DNSキャッシュサーバはユーザに
代わって権威DNSサーバへの問い合わせを行っ
ているだけなのです。ユーザのために、裏でい
ろいろと頑張っているわけです。

　次は、DNSキャッシュサーバがどうやって
名前解決を行っているのかを見ていきます。
　ユーザが解決したかった名前が「www.
example.com」であったとしましょう。まず、
DNSキャッシュサーバという名前からもわか
るように、DNSキャッシュサーバは以前に行
われた解決結果を可能な範囲で保存しています。
キャッシュが存在していれば、ユーザに対して
それをそのまま返します。DNSキャッシュサー
バがキャッシュを何も持っていない場合は、図
29のようになります。

① まず、ユーザの手元からDNSキャッシュサー
バに対する問い合わせが行われます。このと
き、DNSキャッシュサーバはwww.example.
comに関連するいっさいのキャッシュを保持
していないとします。

DNSの問い合わせのしくみ

 ▼図28　ユーザにとってのDNS

ネットワーク技術超入門

第１特集

46 - Software Design May 2014 - 47

② DNSキャッシュサーバは、まず、ルートサー
バと呼ばれるDNSサーバに「www.example.
comを教えて！」と問い合わせます。ルート
サーバは、com、net、jpなどのトップレベ
ルドメインの権威DNSサーバに関する情報
を持っています。
③ www.example.comの名前解決問い合わせを
受け取ったルートサーバは、「.comの権威
DNSサーバに聞いて！」と応えます。

④ ルートサーバから.comの権威DNSサーバのIP
アドレスを教えたもらったDNSキャッシュサーバ
は、あらためて.comの権威DNSサーバに「www.
example.comを教えて！」と問い合わせます。

⑤ すると .comの権威DNSサーバは、「example.
comの権威DNSサーバに聞いて！」と応えます。

⑥ そこでDNSキャッシュサーバは、今度は
example.comの権威 DNSサーバに「www.
example.comを教えて！」と問い合わせます。

⑦ すると example.comの権威DNSサーバは、

www.example.comに対応する IPアドレスを
返してくれます。

⑧ 最終的にwww.example.comの IPアドレスを
得たDNSキャッシュサーバは、DNSクライ
アントにその結果を通知します。

　DNSでは、このように繰り返しさまざまな
サーバに質問を投げかけながら、最終的に情報
を知っている権威DNSサーバを探します。
DNSのこの検索方法を「再帰検索」といいます。
DNSキャッシュサーバにキャッシュがない場
合には、再帰検索によって裏でさまざまな問い
合わせが発生するので、応答に時間がかかりま
す。逆に、キャッシュが保持された状態では名
前解決が早くなります。
　Webを見るとき、最初の1回だけが妙に時間
がかかって次からは早くなることがありますが、
DNSを利用した名前解決にかかる時間も、そ
の一因です。再帰検索の特徴として「各権威

 ▼図29　DNSのキャッシュサーバのしくみ

―UNIXのしくみから紐解くインターネットのしくみ
Part3

48 - Software Design

DNSサーバが自分が把握すべき範囲を知って
いる」という点が挙げられます。すべての情報
を誰か1人が知っているのではなく、各自が分
担して自分の責任範囲を定義し、知っている範
囲内で次を教えるしくみです。
　このように、特定個所に負荷が集中すること
を避け、分散管理ができることを目指したしく
みであるからこそ、世界規模のネットワークに
なり得たとも言えます。

　IPv4と IPv6には直接的な互換性がありませ
ん。しかし、状況によって IPv4が使われたり、
IPv6が使われたりという感じになるので、一
般ユーザにはあたかも互換性があるような感覚
に陥ります。そのように感じるのは、インター
ネットの名前空間に対して IPv4とIPv6の両方
を関連付けられるようになっているためです。
　ユーザが IPv4を利用するのか、それとも
IPv6を利用するのかを大きく左右するのが
DNSであるというわけです。たとえば、www.
example.comという名前に対応する IPアドレ
スを調べたときに、IPv6アドレスがついてい
ればユーザは IPv6を利用した接続を試みたう
えで、失敗したら IPv4を使うといった挙動を
示す場合があります。
　これは、DNSに対してどのような IPアドレ
スが設定されているのかで、ユーザが選択する
通信手法が変わることを意味します。しかし、
DNS側がユーザの選択をすべて制御している
わけでもありません。DNSに対して、IPv4と
IPv6の両方を1つの問い合わせメッセージで
問い合わせることができない仕様になっている
ので、ユーザ側はDNSに対して IPv4用と
IPv6用の問い合わせを個別に行います。
　www.example.comに対する問い合わせであ
れば、「www.example.comのIPv4アドレスを教
えてください」と「www.example.comの IPv6ア
ドレスを教えてください」というふうに、別々
の問い合わせをするわけです。

IPv4とIPv6とDNS

　このように、IPv4と IPv6の問い合わせを両
方するのかどうかを判断するのは、あくまでユー
ザ側ですし、返ってきた応答に含まれる IPア
ドレスのうちどれを通信に利用するのかを判断
するのもユーザ側です。そして、ユーザが使う
プログラムを書く人がどのようにその部分を実
装するのかによっても、そのあたりの事情は変
わってきます。

　最近の便利なライブラリを利用していると、
アプリケーションが名前解決を行っていること
を忘れがちです。しかし、ソケットを利用した
プログラミングでは、名前解決部分は非常に重
要な要素です。
　ソケットを利用したプログラミングでの名前
解 決 は、getaddrinfoを 利 用 し ま す。昔 は
gethostbynameというAPIが利用されていまし
たが、gethostbynameはIPv4しか扱えないため、
現在は IPv4と IPv6の両方が利用可能である
getaddrinfoを利用することが推奨されていま
す。では、getaddrinfoを利用したサンプルプ
ログラムをご覧ください（リスト10）。
　getaddrinfoに対して渡す引数は、名前解決を
行う文字列だけではなく、そのあとにソケット
に対して設定したいポート番号なども含まれて
います。リスト10では、getaddrinfoが成功した
ら、その結果に含まれるパラメータを使ってソケッ
トを作成し、そのソケットに対してconnectを行っ
ています。connectに成功すれば、そのソケット
を利用しますが、失敗すればソケットを閉じて
getaddrinfoが返した次の結果を試してみます。
　getaddrinfoのAPIがソケットの種類やポー
ト番号などの情報を引数として渡すようにでき
ており、getaddrinfoが返す結果にもそれらが
含まれるので、その結果をそのまま利用して
socket、connect、bindなどのシステムコール
を使えるようになっています。
　実は、このサンプルのような書き方をしてい
ると、getaddrinfoが返す順番によってユーザ

getaddrinfo

ネットワーク技術超入門

第１特集

48 - Software Design May 2014 - 49

がどのような IPアドレスで通信を行うのかが
変わってきます注24。そのため、getaddrinfoが
結果を返す順番というのは非常に重要な要素と
なるわけです。DNSによって得られる名前解

決結果が複数存在するときに、getaddrinfoが
どのような順番で結果を返すのかに関しての標
準がRFC 6724注25に記述されているので、興
味がある方はぜひご覧ください。

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int
main()
{
 char *hostname = "www.example.com";
 char *service = "http";
 struct addrinfo hints, *res0, *res;
 int err;
 int sock;

 memset(&hints, 0, sizeof(hints));
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_family = PF_UNSPEC; /* IPv4とIPv6両方を取得 */
 if ((err = getaddrinfo(hostname, service, &hints,ｭ
&res0)) != 0) {
 printf("error %d･n", err);
 return 1;
 }

 for (res=res0; res!=NULL; res=res->ai_next) {
 sock = socket(res->ai_family, res->ai_socktype, ｭ
res->ai_protocol);

 ▼リスト10 　getaddrinfoを利用したサンプルプログラム

注24） ユーザがシステム内でgetaddrinfoが返す優先順位を設定できます（man gai.conf参照）。なお、余談ではありますが、getaddrinfo
とgethostbynameはカーネル内部に実装しなくても実現可能であるため、システムコールではなく、C言語用の基本ライブラリ（libc）
の一部として提供されています（man 3 getaddrinfo参照）。たとえば、ファイルを扱うための fopenや fclose、標準出力に文字列
を表示するprintfなども libcの一部ですが、getaddrinfoとgethostbynameも同様の扱いです。

注25） RFC 6724（Default Address Selection for Internet Protocol Version 6 (IPv6), http://tools.ietf.org/html/rfc6724）

 if (sock < 0) {
 continue;
 }

 if (connect(sock, res->ai_addr, res->ai_addrlen)ｭ
!= 0) {
 close(sock);
 continue;
 }

 break;
 }

 if (res == NULL) {
 /* 有効な接続ができなかった */
 printf("failed･n");
 return 1;
 }

 freeaddrinfo(res0);

 /* ... */
 /* ここ以降にsockを使った通信を行うプログラムを書いてｭ
ください */
 /* ... */

 return 0;
}

　プログラムを書かなくても、ネットワークを
体感できます。ネットワークを体感するために
お勧めなのが、次の3つのコマンドです。これ
らは主要なOSに最初からインストールされて
います。

・ping/ping6

ネットワークを体感する
・traceroute/tracert/traceroute6
・dig

　これらのツールは「少し試してみる」ためだけ
のものではありません。ネットワークを使うう
えで非常に有用で、重要なツールでもあります。
たとえば、ネットワークが何かおかしいと思っ
たときなどに、これらのツールを使って現状把
握や問題の切り分けを行うことができます。覚
えておいて損のないツールですので、ぜひ試し

自分でネットワークを確認してみよう！

―UNIXのしくみから紐解くインターネットのしくみ
Part4

http://tools.ietf.org/html/rfc6724

50 - Software Design

てみてください。

　まず、最初に紹介するのが最も原始的であり、
一般的なネットワークコマンドであるpingで
す（ping6は、UNIX系OSでの IPv6用 pingで
す）。pingは、指定した宛先までパケットが届
いているのかどうかを推測するために使えるツー
ルです。やっていることは非常に単純で、パケッ
トを相手に送り付けて、相手はパケットを送り
返すというものです。pingの名前も由来は「ping
pong」から来ています。
　百聞は一見にしかず、ですので、「なぜ動くか」
の先にどうやったら使えるかを説明します。まず、
Windowsであれば最初にコマンドプロンプトを
起動してください。Mac OS Xなら「ターミナル」
を実行してください。LinuxやFreeBSDなどの
UNIX系OSを利用しているときは、何らかの
方法でコマンドラインを出してください注26。
　次に、「ping ホスト名」とプロンプトが表示
されたコマンドラインで打ってください。
　「ホスト名」の部分は適当に思いつくホスト名
か、もしくは IPアドレスを使ってください。
筆者の手元の環境では、192.168.0.1がルー
タですので図30では「ping 192.168.0.1」とし
ます。
　図30は、pingが成功している例を示してい
ます。では、この成功例は何を示しているので
しょうか？　まず、前半の行を見ると56バイ

ping / ping6

トのデータパケットを送ってpingを行ってい
るのがわかります。その後の行を見ると、ping
に対する6回の応答が約4msで返ってきている
ということもわかります。TTLというのは IP
パケットのTime To Liveです。このTTLとは、
パケットがルータによって転送されてもよい回
数がIPヘッダに記述されたものです。
　次に、失敗している例を見たいと思います。
今度は、存在しないホストに対してpingを行い
ます。筆者の手元の環境では、192.168.0.200
というホストは存在しません。今度はそこに向
けてpingを行います（図31）。
　図31を見ると「Request timeout」が4回続い
ています。これは、「pingの応答を待ったけど帰っ
てこなかった」ということを示しています。
ping は、ICMP（Internet Control Message
Protocol）というプロトコルを利用しています。
ICMPは、エラーメッセージや制御メッセージ
を転送する IP上のプロトコルです。ICMPの
IPプロトコル IDは「1」です。これは、TCPの
プロトコル番号である6よりも小さい数字です。
このことからも、ICMPが非常に根本的なプロ
トコルであることがわかります。
　ICMPにはさまざまな機能がありますが、ping
はそのうちのEchoメッセージとEcho Replyメッ
セージを利用しています。Echoメッセージとは、
「Echoを返してくれ」というメッセージで、Echo
Replyメッセージは「Echoに対する応答」です。
pingは、Echoメッセージを送信し、Echo Reply

注26） というよりUNIX系OSをご利用の方々なら、ここら辺は説明する必要はないだろうと推測されます（汗。

% ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1): 56 data bytes
64 bytes from 192.168.0.1: icmp_seq=0 ttl=255 time=3.895 ms
64 bytes from 192.168.0.1: icmp_seq=1 ttl=255 time=3.986 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=255 time=3.890 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=255 time=4.669 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=255 time=3.951 ms
64 bytes from 192.168.0.1: icmp_seq=5 ttl=255 time=3.973 ms
^C
--- 192.168.0.1 ping statistics ---
6 packets transmitted, 6 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 3.890/4.061/4.669/0.274 ms

 ▼図30　Mac OS Xでのpingコマンド成功例

ネットワーク技術超入門

第１特集

50 - Software Design May 2014 - 51

メッセージが返ってくるのを待ちます。pingコマ
ンドは、Echo Replyメッセージを確認すると、
Echo Replyを受け取るのにかかった時間を計測
し表示しています。

　次は、ネットワークの向こうにいるホストま
での経路を知ることができる tracerouteコマン
ドです（UNIX系OSでは traceroute、Windows
では tracert、UNIX系での IPv6用が traceroute
6）。tracerouteは、指定した宛先までの途中経
路を表示してくれます。名前も「trace」と「route」
と、経路を探索するという意味を持っています。
　では、実際に tracerouteコマンドを試してみ
ましょう。たとえば、www.example.comまで
tracerouteした場合には図32のような出力に
なります。
　tracerouteの結果では、指定した宛先までの
途中ルータがわかります。また、それぞれまで
のRTT（Round Trip Time）も表示されます。
IPアドレスに対応する名前がDNSの逆引きで
取得できない場合には、IPアドレスのまま表
示されます。この例では、目的のホストまで6
ホップあることがわかります。

 tracerouteの原理
　では、なぜ tracerouteは動作するのかという

traceroute / tracert
/ traceroute6

説明をしたいと思います。インターネットには、
特定のパケットが永遠にネットワーク内を徘徊
しないように、各パケットに安全装置がありま
す。安全装置は、IPヘッダ内にTTL（Time To
Live）というフィールドを作ることによって実
現しています。このTTLフィールドは、ルー
タによりパケットが転送されるたびに値が1つ
引かれます。IPパケットの転送が繰り返され
ると、TTLの値は転送ごとに減っていきます。
最終的に IPパケットが宛先まで届けば良いの
ですが、宛先に届く前にTTLが0になってし
まうと IPパケットは消滅します。しかし、単
に消滅してしまうと何が起きたのかがわからな
い場合があるので、ルータはTTLが0の IPパ
ケットを破棄するときには IPパケットを送っ
た送信元に対して ICMP Time Exceededとい
う種類のICMPパケットを送信します。
　tracerouteは、このICMP Time Exceededを
利用しています。意図的にTTLの値を小さく
して、ICMP Time Exceedが発生する環境を
作成しているのです。
　では、実際の tracerouteの動作を見ていきま
しょう。tracerouteは、まず最初にTTL=1で
IPパケットを送信します。すると、パケット
が一度転送された状態でTTLが 0となり、
tracerouteを実行した機器の隣のルータから
ICMP Time Exceedが返ってきます。次に、

% ping 192.168.0.200
PING 192.168.0.200 (192.168.0.200): 56 data bytes
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
Request timeout for icmp_seq 2
Request timeout for icmp_seq 3
^C
--- 192.168.0.200 ping statistics ---
5 packets transmitted, 0 packets received, 100.0% packet loss===

 ▼図31　Mac OS Xでのpingコマンド失敗例

% traceroute www.example.com
traceroute to www.example.com (93.184.216.118), 64 hops max, 52 byte packets
 1 192.168.0.1 (192.168.0.1) 1.435 ms 0.744 ms 0.952 ms
 2 mito06.ap.XXXX.ne.jp (203.0.118.1) 12.963 ms 10.456 ms 10.793 ms
 3 09ig2-0.net.XXXX.ne.jp (192.0.2.1) 10.828ms 11.121 ms 11.434 ms
 4 nrt1.asianetcom.net (202.172.1.181) 14.400 ms 14.238 ms 15.390 ms
 5 sj1.asianetcom.net (202.147.51.127) 120.861 ms 121.717 ms 119.551 ms
 6 www.example.com (93.184.216.118) 131.956 ms 132.308 ms 129.135 ms

 ▼図32　traceroute実行例

―UNIXのしくみから紐解くインターネットのしくみ
Part4

52 - Software Design

TTL=2で IPパケットを送信します。今度は、
隣の隣にいるルータが ICMP Time Exceed を
返してきます。
　このように順次TTLを上げていき、徐々に
届く範囲を広げていきます。最終的にIPパケッ
トが目的の宛先に到着するまで送信するTTL
は上がっていきます。

 最後の1ホップ
　このようにTTLの値を利用して１ホップず
つ把握していける tracerouteですが、このまま
では最終的な目的地に到達したときに困ります。
本来の目的地についたということは、TTLと
して十分な値が設定されたということだからで
す。ICMP Time Exceedが送信されるのは
TTLが0となった場合であるため、パケット
が目的地に到達した場合には ICMP Time
Exceedは送信されません。
　そのため、tracerouteは最後の1ホップだけ
は ICMP Time Exceedを利用しません。最終
的な目的地に IPパケットが到着したことを知
る手段で一般的なものは2つあります。1つは、
tracertによって送信される IPパケットを
ICMP Echoパケットにすることです。それに
より、ICMP Echoパケットを受け取った宛先
はICMP Echo Replyを返してくれます。
　2つめの方法は、tracerouteによって送信さ
れる IPパケットをUDPにすることです。
UDPの宛先ポート番号は、宛先でサービスが
存在しないものを利用します。そうすることに
より、宛先にUDPパケットが届いたときに、
宛先ホストは ICMP Port Unreachを送り返し
てくれます。 ICMP Port Unreachは、「そのポー
トは開いていないよ」と教えてくれるICMPメッ
セージです。
　このような方法で tracerouteは途中経路を計
測しています。tracerouteはインターネットの
しくみを巧みに利用したアプリケーションであ
り、ネットワークのトラブルシューティングに
はなくてはならないものです。

　digやnslookupは、DNSに対しての問い合わ
せをします。本稿ではdigを説明します。筆者
がdigコマンドをよく使うのは、何らかの障害
が発生しているときです。「あれ？　何が起き
ているのだろう？　そもそも、この名前と通信
を行おうとしたときに、どことつながるのだろ
う？」といったことをdigコマンドで調べられ
ます。そのほか、そのドメイン名で運用されて
いるWebサーバなど、どのようなホスティン
グサービスを利用しているのかを推測したいと
きや、DNSの設定を確認するときなどにも利
用できます。
　digは、問い合わせを行うDNSメッセージの
詳細を指定できます。digの出力結果も、返っ
てきたDNSメッセージの詳細を知ることがで
きる表示になっています。
　まずは、www.example.comの IPv4アドレス
を調べる例です（図33）。IPv6アドレスを示す
AAAA（「クアッドA」と読みます）レコードを問
い合わせた場合には、図34のようになります。
　図33、図34のサンプルは、digコマンドを
実行しているシステムに対して設定してある
キャッシュDNSサーバへの問い合わせ結果です。
問い合わせを行うDNSサーバを指定するには、
「dig @サーバのIPアドレス www.example.com」
のように使います。
　ほかに良く使うのが「+trace」オプションです。
ルートサーバから目的とする名前までの権威
DNSサーバを順次調べたいときに「dig +trace
www.example.com」というふうにできます。そ
のほかにも、digを使っていろいろな問い合わ
せができます。さらに興味があるかたは、man
digをご覧ください。

　pingと tracerouteは、さまざまなオープン
ソースバージョンが存在していますし、大学の
授業で宿題として自作することがあるので、検

dig / nslookup

ソースコードを読んでみよう

ネットワーク技術超入門

第１特集

52 - Software Design May 2014 - 53

索エンジンで容易に発見できます。
　たとえば、「ping source code」や「traceroute
source code」などのキーワードで検索してみて
下さい。そのうえで、さらに理解を深めるために、
それらを自作してみるのも楽しいと思います。
digは、ISCのBINDに含まれています注27。

　本稿は、「ソケットとポート」に着目しつつ、
インターネットを解説することに挑戦してみま
した。実際にソケットを使ってプログラミング
を行うには、ここで解説している情報だけでは
足りないため、さらに色々と調べながらコード
を書くことになると思いますが、本稿がその一
助となれば幸いです。ﾟ

おわりに

注27） https://www.isc.org/downloads/bind/

% dig www.example.com

; <<>> DiG 9.9.5 <<>> www.example.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR,ｭ
id: 22000
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, ｭ
AUTHORITY: 2, ADDITIONAL: 4

;; QUESTION SECTION:
;www.example.com. IN A

;; ANSWER SECTION:
www.example.com. 40084 IN A 93.184.216.119

;; AUTHORITY SECTION:
example.com. 5547 IN NS b.iana-servers.net.
example.com. 5547 IN NS a.iana-servers.net.

;; ADDITIONAL SECTION:
a.iana-servers.net. 1788 IN A 199.43.132.53
a.iana-servers.net. 1788 IN AAAA 2001:500:8c::53
b.iana-servers.net. 1095 IN A 199.43.133.53
b.iana-servers.net. 1095 IN AAAA 2001:500:8d::53

;; Query time: 22 msec
;; SERVER: 192.168.0.1#53(192.168.0.1)
;; WHEN: Wed Mar 12 13:07:47 JST 2014
;; MSG SIZE rcvd: 185

 ▼図33　dig実行例

% dig aaaa www.example.com

; <<>> DiG 9.9.5 <<>> aaaa www.example.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49742
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, ｭ
AUTHORITY: 2, ADDITIONAL: 4

;; QUESTION SECTION:
;www.example.com. IN AAAA

;; ANSWER SECTION:
www.example.com. 36521 IN AAAA 2606:2800:220:6d:ｭ
26bf:1447:1097:aa7

;; AUTHORITY SECTION:
example.com. 1003 IN NS b.iana-servers.net.
example.com. 1003 IN NS a.iana-servers.net.

;; ADDITIONAL SECTION:
a.iana-servers.net. 377 IN A 199.43.132.53
a.iana-servers.net. 377 IN AAAA 2001:500:8c::53
b.iana-servers.net. 377 IN A 199.43.133.53
b.iana-servers.net. 377 IN AAAA 2001:500:8d::53

;; Query time: 19 msec
;; SERVER: 192.168.0.1#53(192.168.0.1)
;; WHEN: Wed Mar 12 13:10:55 JST 2014
;; MSG SIZE rcvd: 197

 ▼図34　dig実行例（IPv6アドレスの場合）

　pingや tracerouteの実験をするときに注意すべ
き重要なことがあります。覚えたら使いたくなるの
が人情ですが、自分で管理していないホストへむや
みに大量のpingや tracerouteをしないでください。
pingや tracerouteで、パケットを大量に送られる
ということを「攻撃をされた」と受け取る人もいます。
トラブルに巻き込まれないためにも、他人のホスト
に対して、むやみやたらに何かをするのは控えましょ
う。
　もう一点注意が必要なのが、セキュリティ上の理
由でpingや tracerouteなどができなくなっている
環境もあるということです。たとえば、会社のネッ
トワークなどでは、セキュリティ上の理由で ICMP
パケットの通過を許可していない場合があります。
そのようなネットワークでは、ホストに不具合がな
くてもpingに対する応答は返ってきません。また、
セキュリティソフトウェアやパーソナルファイア
ウォールにより、ICMPパケットがホスト側でフィ
ルタリングされている場合も考えられます。

「乱用禁止のpingと
 traceroute」

―UNIXのしくみから紐解くインターネットのしくみ
Part4

https://www.isc.org/downloads/bind/

54 - Software Design

　OSSの専門記者として有名な ITProの記者、
高橋信頼氏が2013年末に逝去された。その高橋
氏が2001～2013年に同メディアで発表した記
事の中から13本を選び、電子書籍としてまとめ
られた。過去記事をこうして読んでみると、高
橋氏の視野の広さを感じさせられる。たとえば、
Linuxなどの有名なOSSだけでなく、地味なが

らも多くのユーザを獲得している業務アプリの
OSSを紹介している。また、技術的な話題だけ
でなく、ライセンスにかかわる諸問題、コミュ
ニティ運営、震災におけるITやOSSの役割といっ
た話題も取り上げている。OSSにかかわってい
る人なら、一読することをお勧めする。OSSに
対して広い視点が持てるようになると思う。

高橋 信頼 【著】
103ページ （推定） ／価格＝500円／発行＝日経BP社
※本書は電子書籍です。 Amazon.co.jp （Kindle版） での販売になります。

　話題のNoSQLとひとくくりにされることが
多いMongoDB、Redis。これらはスケールアウ
トメリットがあるデータストアとして、迅速な
サービス展開が必須なWeb業界でもてはやされ
ている。しかし、どんなものにでもNoSQLを
導入すればOKなのかと言われるとそうではな
い。今まで使ってきた手になじんだ道具＝RDB

（Oracle）があるじゃないですか！̶̶というの
が本書の核心。まずはRDBのパフォーマンス向
上のための基礎理論を解説しながら、後半では
チューニングとボトルネックの探し方を紹介。
実際にSQLを書くというよりも、マネージャ層
向けの理論的な裏付けのある話題が多いので、
技術動向を知りたい人にもお勧め。

山崎 泰史、 武吉 佑祐 【著】
A5判、 224ページ／価格＝2,680円＋税／発行＝技術評論社
ISBN＝978-4-7741-6364-2

　㈱創夢といえば、泣く子も黙るUNIX虎の穴
といった腕利きぞろいの企業として有名。その
ノウハウを学べるならば、ぜひ読まねばなるま
いと正座をして精読。同社の新人研修用のテキ
ストを下書として執筆された本書は、まさにエッ
センシャルにUNIXの技術をまとめあげられて
いて非常に心地良い作り込み。ログイン方法の

説明から始まり、vi、Emacsの使い方、そして
シェルスクリプトの書き方と進み、セキュリティ
はsshから綿密に。開発はCやPerlなど古いと
ころから、新しいネタとしてGitまで幅広く取
り上げている。最後にUNIXのネットワーク管
理とセキュリティ。このあたりも盤石。新年度
に後輩に勧める本としてふさわしい。

木本 雅彦、 松山 直道、 稲島 大輔 【著】 ／㈱創夢 【監修】
B5変形判、 248ページ／価格＝1,800円＋税／発行＝KADOKAWA
ISBN＝978-4-04-891392-8

はじめてUNIXで仕事をする人が読む本

高橋信頼のOSS進化論
（日経 BP Next ICT選書）

　本書は、iOSアプリのユニットテスト、UIレ
ベルのテストなどを自動化する手法を紹介する。
Jenkinsを使った継続的インテグレーションも
取り上げている。自動化テクニックの細かな解
説というよりも、自動化を行う際の目的、検証
手段、ROI（投資利益率）などの考え方を示し、
それに使えるツールやフレームワークを紹介す

るという構成だ。ツールの使い方も基本的な手
順にとどめ、そのぶんより多くのツールやテス
ト手法を紹介している。個々のツールについて
詳細を知りたい人のために、参考資料が示され
ているのが助かる。「テスト自動化に取り組みた
いが、どこから手をつければいいかわからない」
そんな人には道しるべとなる1冊だろう。

長谷川 孝二 【著】
A5判、 256ページ／価格＝2,200円＋税／発行＝秀和システム
ISBN＝978-4-7980-4089-9

iOSアプリテスト自動化入門

データベースの限界性能を引き出す技術
NoSQLに飛びつく前に知っておきたい原理と最新テクニック

第2特集

UNIX必須
コマンドトレーニング

rmコマンドからcadaverまで基本を押さえる

新人エンジニアのなかには、UNIX系OSのコマンドラインに慣れていない人もいるのでは
ないでしょうか？　今回はそんな皆さんのためのコマンド特集です。単発のコマンドだけで
はなく、よく使うオプションとともに、あるいは、便利なコマンドの組み合わせとして紹介
しますので、まずは実際にコマンドラインで入力してみてください。実際に試すことで、オ
プションの使い方、コマンドの組み合わせ方など、勘どころがつかめますよ。

コマンドとの付き合い方 ..56
書き方からパイプ／リダイレクトまで

第1章

面倒なことをコマンドでまとめてやろう65
ファイル一括処理にマウスは不要！

第2章

サーバ管理者になったら頼りになるコマンド73
作業の効率化と自動化を見据えて

第3章

共同作業で役立つコマンド ..86
複数OS間でのファイル共有、文字コード対応

第4章

C O N T E N T S

 Writer くつなりょうすけ　㈱ネットワーク応用通信研究所／Twitter：@ryosuke927

56 - Software Design

リード文入る■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□

第1章 ●○●○●○●○
●○●○●○●○

はじめに
　LinuxなどのUNIX互換OSの普及や、Mac
OS XをWebクリエイターの人たちが使ってい
ることから、以前のWindows一色の時代に比
べてCLIに触れるケースは増えたと思います。
何よりこの記事を読み始めているあなたは、
CLIのこと、本当は気になってるんですよね？
いいんですよ、無理しなくても。
　コマンドラインは全然古くなく、今でもサー
バとしてUNIX系OSを使うときにはCLIが必
須で、GUIがあることが稀です。CLIとGUI
を比較した場合、GUIのメリットは、そこに
表示されているプルダウンメニューやセレクト
ボックスにオプションがあるので、直感的に使
えることでしょうか。逆に、CLIのメリットは
マウス操作を必要とせず、キーボードで入力し
た命令をそのまま実行してくれること。あとは、
コンピュータを使いこなしているようでカッコ
良く見られそうなことかな。
　CLIとGUI、それぞれに一長一短はありま
すが、今回はLinuxのコマンドライン初心者に
向けて、コマンドのすばらしさ／便利さをお見
せし、習得していただいてカッコよくなろう、
という特集です。なお、ここではコマンドを実
行するシェルにbashを使うことを前提にして
います。

コマンドを実行する
際の注意事項

　コマンドを実際に実行する前に、注意するこ
とがありますので、ココロのノートに書いてお
きましょう。
　複数のユーザが同時にシステムを利用できる
「マルチユーザ環境」であるLinuxでは大きく分
けて3種類のユーザがいます。管理者、システ
ムユーザ、一般ユーザです。管理者はLinuxが
稼動しているそのシステムで何でもできるユー
ザです。すべてのコマンドの実行、デバイスへ
のアクセスができ、どこのファイルでも閲覧／
編集／削除ができます。一方、一般ユーザはそ
のユーザが許可されたアクションしかできませ
ん。システムユーザは管理者でも一般ユーザで
もなく、WebサーバやSMTPサーバなどのサー
バソフトウェアを動作させるために利用される
ユーザです。
　管理者は自らが実行したコマンドで、システ
ムそのものを破壊することができることを覚え
ておいてください。これから実行するコマンド
は絶対に一般ユーザで実行することにしましょ
う。自分が一般ユーザであるかどうかを判断す
るにはシェルプロンプトとコマンドから判断で
きます。
　Linuxディストリビューションの標準シェル
bashで、ログイン後の管理者と一般ユーザの
それぞれの表示を見てみましょう。次の例は、

実務で使える実践的なコマンドを具体的に見ていく前に、まずは Linux における CLI（Command Line
Interface）の使い方を再確認します。コマンドの書き方だけでなく、コマンドの調べ方、パイプによるコマンド
の連結、リダイレクトによる入出力の切り替えといった各コマンドの活用の幅を広げるためのテクニックについ
ても解説します。

第1章 コマンドとの付き合い方
——書き方からパイプ／リダイレクトまで

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

56 - Software Design May 2014 - 57

リード文入る■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□

第1章 ●○●○●○●○
●○●○●○●○

一般ユーザのユーザ名はryosukeで、管理者の
ユーザ名はroot、ホストaxlにログインした場
合の表示例です。

ryosuke@axl:̃$ ←一般ユーザ
root@axl:̃# ←管理者

　この表示は「ユーザ名 @ホスト名 :ディレク
トリ名 プロンプト」を意味します。一般ユー
ザではプロンプトが「$」に、管理者では「#」に
なっているので、プロンプトを見れば、今利用
しているユーザが管理者か一般ユーザかを判断
できます（「̃」はホームディレクトリを示しま
す）。
　必要に迫られて管理者権限を利用したい場合
は、sudoという実行ユーザを切り替えてコマ
ンドを実行するツールを利用しましょう。
Ubuntuなど、そもそもrootユーザを使わせな
いポリシーのディストリビューションもありま
すが、これらも一般ユーザでsudoを実行する
ことを勧めています。

コマンド入力方法
　CLI環境であればユーザ名とパスワードを入
力してログインしたあと、プロンプトが表示さ
れれば、あなたの戦場は用意されたようなもの
です。
　GUI環境であればCLIと同じようにログイ

ン後に「GNOME端末」のような端末エミュレー
タを起動すれば、そこがあなたの戦場です。
GNOME 3やUnityなら、検索窓から「端末」と
検索すればショートカットが出てきます（図1、
図2）。端末エミュレータが見つからない場合は、
m＋lと!～&キーのどれか1つ
を押してみるとCLI環境になるので、そこを
利用しましょう。Linuxは6つの仮想コンソー
ルが標準で用意されており、画面とキーボード
をほかの仮想コンソールと独立して利用できま
す。GUIに戻る場合はmと'キーを押す
と戻れます。
　コマンドの実行は、実行したいコマンドと、
そのコマンドに与えるオプション、もしくは引
数からなります。たとえば、ディレクトリ
「/var/log」以下にあるすべてのファイル／ディ
レクトリ一覧を表示するls -al /var/log/
を例として挙げると、「ls」がコマンド、「-al」が
オプション、「/var/log/」が引数になります（リ
スト1）。
　コマンドによっては、オプションの中に内部
コマンドがある場合があります。次に示すのは

 ▼図1　GNOME 3で「端末」と検索

 ▼図2　Unityで「端末」と検索

 ▼リスト1　コマンド記述例

ls -al /var/log/

コマンド
オプション

引数

コマンドとの付き合い方
——書き方からパイプ／リダイレクトまで 第1章

58 - Software Design

opensslの例です。

openssl x509 -in cert.pem -noout -text

コマンド

内部コマンド

オプション 引数 オプション オプション

　このコマンドラインはSSL（Secure Socket
Layer）を実装した暗号ツールであるopensslの
内部コマンドx509を利用し、読み込むファイ
ルを指定するオプション -inに証明書ファイル
の「cert.pem」を付け、さらにファイルに出力せ
ずに標準出力に結果を出力する-nooutオプショ
ン、テキストファイル形式で出力する -textオ
プションを付けて、SSL証明書ファイルの内
容を標準出力に出します。
　このような内部コマンドや複数のオプション
とそれに対応する引数を渡せることもあります。
　ここで例に出した lsとopensslコマンドは実
行後に結果を表示するコマンドですが、UNIX
コマンドのほとんどは、実行に成功した場合は
たいてい寡黙であることを覚えておいてくださ
い。たとえば、空のファイルを作成したり、ファ
イルのタイムスタンプを現在時刻に変更したり
するtouchコマンドで、空ファイル test.txtを
作成すると何も表示されません。次のように、
実行後すぐにプロンプトが返ってきます。

$ touch test.txt
$

　何も反応がないと成功しているのかどうかわ
からないものですが、失敗した場合はエラーを
出力するのもUNIXコマンドの特徴です。次は
ファイルを作成できなかった場合のエラーメッ
セージです。英語のメッセージですが、日本語
環境が整っていれば「touch: `test.txt'に touchで
きません :許可がありません」のように表示され
ます。

$ cd /var/log
$ touch test.txt
touch: cannot touch 'test.txt': Permission
denied

　エラーメッセージは失敗した理由が書いてあ
る重要情報です。ちゃんと読んで間違っている
ところを修正して目的を達成しましょう。そう
でないと、連載「ひみつのLinux通信」（181ペー
ジ）のように先輩や顧客に絞られることになり
ます。

オプション
　オプションはそのコマンドの動作を変えるた
めの指令です。lsコマンドはカレントディレク
トリ（ユーザが今いるディレクトリ）にあるファ
イルとディレクトリ名を一覧表示するコマンド
ですが、-lオプションで名前以外にサイズとファ
イル属性を表示させる、-aでファイル名の先頭
に「.」が付いた隠しファイル／ディレクトリも
表示対象にする、-tでタイムスタンプ順に並べ
替える、--colorでファイルの種類によって画
面の文字に色を付けるなど、動作を切り替えら
れます。
　一般的に、オプションにはショートオプショ
ンとロングオプションがあります。lsコマンド
では -aがショート、--allがロングオプション
ですが、どちらを利用しても動作は同じです。
ショートオプションは-aと-lをあわせて-alと
記述できますが、ロングオプションは個別で入
力する必要があります。
　コマンドによって用意されているオプション
は異なります。詳細はマニュアルを参照するの
が正攻法です。

引数
　引数は、そのコマンドの操作対象などを指定
します。お約束の lsコマンドでは引数を指定し
ないとカレントディレクトリ（ユーザが今いる

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

58 - Software Design May 2014 - 59

ディレクトリ）の内容を一覧表示しますが、
「ls /bin/ls」のように引数として表示したい
PATHを指定すればそのディレクトリやファ
イルの情報を表示することができます。
　別のコマンドの例では、ICMPパケットを送
信してそのレスポンスによって対象ホストが稼
動状態にあるかの判断材料にするpingコマン
ドであれば、引数としてその対象ホストの IP
アドレスかホスト名を指定します。「ping
www.gihyo.jp」と実行する場合、「www.gihyo.
jp」が引数です。

PATH
　PATHには大きく2つの意味があり、1つは
「ファイルシステム中の位置」で、ディレクトリ
やファイルがそのシステムではどこに配置され
ているかを示します。コマンドの lsであれば
/bin/ls、pingであれば/bin/pingになります。
ディレクトリ構成の一部とファイル／ディレク
トリのPATHの対応を描いてみたものが図3で
す。この「/（ルートディレクトリ）」からファイル」
ディレクトリまでの経路をPATHと言います。
　もう1つは環境変数PATHで、シェルはこの
変数に指定されたディレクトリに配置されたコ
マンドを優先的に探します。本来、lsコマンド
を実行するには、/bin/lsとプロンプトに入力
する必要があります。しかし、lsと入力するだ
けで実行できるのは、PATHに/binが設定さ
れているので、/bin以下を探索して lsコマンド
にたどり着けるからです。コマンド実行までの
シェルのコマンド探索の旅を簡単にまとめると
次のようになります。

（1）�シェルはユーザからコマンド「ls」を実行す
ることを命令される

（2）�シェルはlsがどこにあるかわからないので、
環境変数PATHの中を1つ1つ探す

（3）�コマンドを見つけたらそれを実行するが、
見つけられなかったら「command not found
（コマンドが見つかりません）」というエラー
メッセージを表示する

　環境変数PATHの中身はechoコマンドで確
認できます。次の例では「:」区切りで複数の
PATHが設定されているのがわかります。

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/local/ｭ
games:/usr/games

　この環境変数PATHに追加でPATHを設定
する場合は、利用しているシェルの設定ファイ
ルに追加したいPATHの一文を追記します。
bashを利用している場合、.bash_profileに記述
すれば、再ログイン後から有効になり、.bashrc
に記述すれば新たにシェルを起動したあとから
そのPATHが有効になります。PATHの追加
は次のように記述します。下の例では、環境変
数HOMEで参照できるユーザのホームディレ
クトリ以下の adt/sdk/platform-toolsという
Android開発環境ディレクトリと、Google
Chromeブラウザがインストールされている/
opt/google/chromeディレクトリをPATHに追
加しています。

PATH=$PATH:$HOME/adt/sdk/platform-tools:ｭ
/opt/google/chrome/

実行権
　UNIX環境ではファイルやディレクトリへの
権限が設定されます。設定できる権限の種類は
3つで、読み込み／書き込み／実行です。コマ

コマンドとの付き合い方
——書き方からパイプ／リダイレクトまで 第1章

/ bin/
 ls ←/bin/ls
 ping ←/bin/ping
 usr/ bin/ ←/usr/bin
 awk ←/usr/bin/awk
 etc/ ←/etc/
 resolv.conf ←/etc/resolv.conf

 ▼図3　ディレクトリ構成とPATHの対応

60 - Software Design

ンドの場合は、読み込み／実行がユーザに許さ
れていないとユーザはコマンドを実行できませ
ん。
　ファイルへの権限はファイル属性を表示する
lsコマンドで参照できます。図4のように、対
象ファイルを指定して-lオプションを付けて実
行した際に表示される「-rwxr-xr-x」が権限です。
　この表示は「読み込み／書き込み／実行」を「所
有ユーザ／所有グループ／その他」でアクセス
できるかを示しています。

- rwx rwx rwx
❶ ❷ ❸ ❹

　❶はファイルの種類を表す文字が入り、「-」
はファイル、「d」はディレクトリを示します。
その後は「rwx」と同じ文字が並びます。❷はファ
イルの所有者、❸は所属グループ、❹はその他
ユーザです。❷～❹のそれぞれに、rは読み込
み（Read）、wは書き込み（Write）、xは実行
（eXecute）としてその文字があれば、ファイル
にその権限が付いていることを示します。この
記号は別の表現として「r--」であれば「100」、
「r-x」であれば「101」のようにビットパターン
に変換して、それを2進数から10進数に読み
替えることができます。その記号と10進数値、
権限の意味を整理したのが表1です。

　ファイルの権限はchmodコマンドで変更し
ます。chmodに設定したい権限と変更したいファ
イル／ディレクトリを指定します。この権限の
書き方が上記ビットパターンに関連するので、
ここで覚えてしまいましょう。
　よく使われる権限設定を表2にピックアップ
してみました。記号部分、先頭3文字のユーザ、
グループ、その他それぞれに設定される文字を
ビットに見立てて数値化し、3桁目、2桁目、1
桁目にしました。
　ここでモードという指定方法もあるので、つ
いでに見てみましょう。「対象フィールド [+-]
ビット」のように指定します。対象フィールド
はユーザは「u」、グループは「g」、その他は「o」、
すべては「a」で指定し、ビットにrwxのいずれ
かを「+」で追加、「-」で削除します。サンプル
のように複数フィールド、複数ビットをまとめ
て、「,」区切りで複数指定することができます。
「,」区切りの場合は左から順番に設定されます。
　次の2行は、ファイル test.txtを「rw-r--r--」
に設定するchmodコマンドの実行例です。

$ chmod 644 test.txt
$ chmod u+rw-x,og+r-xw test.txt

　表2のモードは、あらかじめファイルに設定
されているモードを無視して、新たに権限を設
定しています。すでに「rw-r--r--」の権限設定
がされている場合、簡単にどのユーザでも実行
できるようにするには、chmod +x test.txt
とすれば「rwxr-xr-x」になります。対象フィー
ルドの「a」は省略でき、何も指定しない場合は「a」

 ▼図4　ls -lの実行例

$ ls -l /bin/ls
-rwxr-xr-x 1 root root 109992 7月 21 ｭ
2013 /bin/ls

記号 10進数値 権限の意味
r-- 4 読み込み可
-w- 2 書き込み可
--x 1 実行可
rw- 6 読み書き可
r-x 5 読み実行可
rwx 7 読み書き実行可
--- 0 読み書き実行不可

 ▼表1　記号と10進数表現と意味

記号 数値 モード
rwx rwx rwx 777 a+rwx
rw- r-- r-- 644 u+rw-x,og+r-xw
rw- r-- --- 640 u+rw-x,g+r-rw,o-rwx
rwx r-x r-x 755 a+rwx,ug-w
rw- --- --- 400 u+rw-x,ou-rwx
r-- r-- --- 440 ug+r-wx,o-rwx

 ▼表2　よく使われる権限設定

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

60 - Software Design May 2014 - 61

が暗黙に指定されます。
　システムにあらかじめ用意されているコマン
ドのほとんどは、全ユーザに対し、読み込み／
実行権限が付いています。実行してみて、管理
者権限が必要と警告される場合に初めてsudo
コマンドを利用して管理者権限で実行しましょ
う。

コマンドの探し方
　やりたいことを実行する場合、どのようにコ
マンドを探しましょうか。インストールされて
いるコマンドのマニュアルはデータベースに保
持されています。これを検索するwhatisや
aproposというコマンドを使ってみましょう。
　whatisはコマンド名からマニュアルの要約を
検索表示します。例として「ユーザ管理に使え
そうなコマンドはインストールされているか
な？」と「user」を含むコマンド名の要約一覧を
表示してみましょう（図5）。
　-wオプションはワイルドカード（文字列の長

さが0以上の文字と数字を表す記号）「*」を使う
ためのオプションです。「*user*」が「"」で囲ま
れているのはシェルでの不用意なシェル展開を
防ぐためです……が、ここではとりあえず囲っ
ておいてください。すると、日本語マニュアル
のあるコマンドについては日本語で、日本語が
なければ英語で検索結果が表示されます。
　aproposは引数に渡された文字列をコマンド
の名前と要約から検索表示します。例として
「ユーザ」という文字列を検索してみましょう（図
6）。こちらもwhatisと同じように日本語のマ
ニュアルがインストールされていれば、日本語
で検索できます。
　ほかの手段としては、書籍のコマンドリファ
レンスなどを手元に置いておくのもいいでしょ
う。書店に行くとコマンド本は多数用意されて
います。大きさや重さ、値段、参照しやすさ、
サンプルの実用性がありそうかなどを見て1冊
手元に置いておきましょう。
　ちょっと慣れてくると、「何かを作るコマン
ドの場合は、mkから始まるコマンド名が多い」

 ▼図5　whatisコマンドの実行結果

$ whatis -w "*user*"
cuserid (3) - ユーザ名を取得する
endusershell (3) - 許可されたユーザシェルを得る
ftpusers (5) - FTP デーモン経由でのログインを許さないユーザのリスト
fuser (1) - ファイルやソケットを使用しているプロセスを特定する
getusershell (3) - 許可されたユーザシェルを得る

 ▼図6　aproposコマンドの実行結果

$ apropos ユーザ
access (2) - ファイルに対する実ユーザでのアクセス権をチェックする
chage (1) - ユーザパスワードの有効期限情報を変更する。
chfn (1) - ユーザの氏名や情報を変更する。
crontab (1) - 各ユーザのためのcrontabファイルを管理する（V3）

 ▼図7　シェルの補完機能を利用してコマンドを調べる

ch ←ここまで入力してTABキーを2回押しましょう。以下が表示されます。
chacl chardetect3 checkbashisms chkdupexe chrt
chage chat chem chmod chsh
chardet chattr chfn chown chvt
chardet3 chcon chgpasswd chpasswd
chardetect chdist chgrp chroot

コマンドとの付き合い方
——書き方からパイプ／リダイレクトまで 第1章

62 - Software Design

「何かを変更するコマンドの場合は、chから始
まるコマンドが多い」などを予測して「ch」まで
入力してkキーを押してシェルの補完機能
からコマンドリストを出して調べるという手段
もあります（図7）。この中からwhatisコマンド
で検索すると目的のコマンドが見つかるかもし
れません。
　最後は、Googleなどの検索エンジンに任せ
るという手段です。マニュアルに載ってない裏
技をブログに書いている人もいるので、世界の
広さを実感できて本当にお勧めです。

コマンドの使い方を
調べる

　システムにコマンドがインストールされてい
るならば、マニュアルファイルも一緒にインス
トールされているはずです。ここはmanコマン
ドを利用してコマンドの使い方を見てみましょ
う。manコマンドに調べたいコマンドの名前を
引数として付けて、man lsのように実行して
みましょう。
　manコマンドを実行すると画面にコマンドの
マニュアルページが表示されます。終了すると
きにはqキーを押します。ページ内はスペー
スキー、©キー、jキー、àキーなどで
下方向に、kキー、Ñキーで上方向に移動し

ます。
　manファイルには表3の内容が記載されてい
ます。
　この中の「DESCRIPTION（説明）」「EXAMPLE
（サンプル）」と「NOTES（備考）」「SEE ALSO
（関連項目）」あたりを見て概要をつかみ、
「OPTIONS（オプション）」で細かく何ができる
かを把握するのが真のコマンダーです。
　日本語マニュアルページは、有志が英語マニュ
アルを翻訳してパッケージングしているものが
ほとんどです。日本語でマニュアルを参照でき
ることに感謝すべきですが、タイミングによっ
てはコマンドの最新バージョンに追随しきれて
いない場合があります。最新の情報を参照した
い場合は、manコマンドの前に「LANG=C」を
付けてLANG=C man lsのように実行すること
でオリジナルの英語マニュアルを参照すること
ができます。

パイプと標準入力／標準
出力／標準エラー出力

　コマンドの実行結果をほかで利用するときは、
出力をコピーしてエディタを起動してペースト
すればいいの？　そんなことはありません。
UNIXコマンドの出力を別コマンドの入力にし
たり、ファイルに出力したりできます。

見出し（日本語） 見出し（英語） 記載内容
名前 NAME コマンドの名前と簡単な説明
書式 SYNOPSIS コマンドとオプションの記述方法
説明 DESCRIPTION コマンドの詳細説明
オプション OPTION コマンドのオプション説明
終了ステータス EXIT STATUS コマンド終了時に返す終了ステータス
戻り値 RETURN VALUE コマンド終了時に返す値
環境変数 ENVIRONMENT コマンド実行時に利用できる環境変数
ファイル FILES コマンド関連ファイル
備考 NOTES 注意書き
サンプル EXAMPLE コマンド実行例
関連項目 SEE ALSO 関連したコマンドや参考資料
バグ BUGS コマンドですでに知られているバグ
著者 AUTHOR コマンドの開発者

 ▼表3　manファイルの内容

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

62 - Software Design May 2014 - 63

　UNIXコマンドは実行されるとプロセスとな
り、3つの入出力チャンネルを持ちます。標準
入力というプロセスへの入力となるチャンネル、
標準出力というプロセスの結果を出力するチャ
ンネル、標準エラー出力というプロセスのエラー
メッセージを出力するチャンネルです。
　とくに指定しない限り、標準入力はキーボー
ド、標準出力／標準エラー出力はディスプレイ
が利用されます。実際にコマンドを使ってみま
しょう。まずは「|（パイプ）」を使ってコマンド
の出力を別のコマンドに渡してみます（図8）。
　①はechoコマンドに引数を渡して標準出力、
つまりディプレイに文字列を出力したところで
す。②はechoの出力と次のコマンドへの入力
を「|（パイプ）」で連結します。echoの出力が
revコマンドの標準入力として利用され、標準
出力はディスプレイに出力します。revは入力
文字列を逆さまに並べ替えた文字列を出力しま
す。コマンドはいくつでも連結でき、③では3
つのコマンドの出力と入力を「|」2個で連結し
ています。この場合はrevコマンドの出力を、
文字を削除／変更する trコマンドにつなげ、
スペースを削除しています（[:blank:]を指定
することでスペースを削除します）。パイプの
入出力の概念図を図9に示します。上が特別に

入出力を指定しない場合、下が、「|」を使って
入力と出力を指定する場合です。
　出力を別のコマンドの標準入力にする場合は
「|」ですが、ファイルを入出力に使う場合は「>」
と「>>」を使うとシェルの機能であるリダイレ
クトを利用できます（図10）。
　④はpsコマンドにaxオプションを付けて実
行した結果をファイル/tmp/ps.txtに出力して
います。実行後、ファイルの中身を見るページャ
の lessコマンドで/tmp/ps.txtを開くと、psコ
マンドを実行したのと同じ内容がそこにあるは
ずです。「>」はその後に指定されたファイルへ
出力する指示です。すでにそのファイルが存在
する場合は空にしてから書き込むので、重要な
ファイルに対して実行する場合は気をつけましょ
う。
　⑤はシステムの稼働時間／負荷状況などを表
示するuptimeコマンドを実行し、それを/tmp/
uptime.txtに「追記」します。「>>」は直後に指定
したファイルがすでに存在する場合は、ファイ
ルの末尾に出力内容を追記出力します。ファイ
ルが存在しない場合は、新規作成して出力しま
す。
　⑥は「>」だけではなく、「<」を利用しています。
これはdos.txtを入力として trコマンドに渡し

 ▼図8　パイプの使用例

$ /bin/echo "Hello Linux" ←①
Hello Linux
$ /bin/echo "Hello Linux" ¦ rev ←②
xuniL olleH
$ /bin/echo "Hello Linux" ¦ rev ¦ tr -d [:blank:] ←③
xuniLolleH

 ▼図10　リダイレクトの使用例

$ ps ax > /tmp/ps.txt ←④
$ uptime >> /tmp/uptime.txt ←⑤
$ tr -d \\r < dos.txt > unix.txt ←⑥
$ find /tmp/ > /dev/null ←⑦
$ find /tmp/ 2> /dev/null ←⑧

コマンドとの付き合い方
——書き方からパイプ／リダイレクトまで 第1章

キーボード

＜入出力を指定しない場合＞

入力 コマンドA ディスプレイ出力

コマンドA
パイプ

＜パイプを使って入出力を指定した場合＞

出力 コマンドB入力

 ▼図9　パイプの入出力の概念図

64 - Software Design

ます。trの出力は「>」の先にあるunix.txtです。
文字の変換／削除を行う trコマンドのオプショ
ン「-d ¥¥r」は「復帰コード」（CR）を削除するこ
とを示しています。Windowsで保存したテキ
ストファイルの改行コード「¥r¥n」（CR＋LF）
からUNIXのテキストファイル改行コード「¥n」
（LF）を残すために「¥r」（CR）を削除していま
す。これでLinuxでも、Windowsで作成された
テキストファイルを見やすく表示できるはずで
す（文字コードの違いはまた別ですが）。
　⑦と⑧はfindコマンドで/tmp/以下のファイ
ル／ディレクトリを出力しています。違うのは
リダイレクトの前に数字が付いているかどうか
です。⑦は「>」ですが、じつは「1>」の「1」が省
略されているのです。
　標準入力、標準出力、標準エラー出力はそれ
ぞれ0、1、2という番号が振られます。先ほど
のコマンドの⑦⑧の「1」と「2」はそれぞれ標準
出力と標準エラー出力を示す番号です。
　⑦の場合、標準出力「1」を/dev/nullにリダイ
レクトしています。/dev/nullは入力されたも
のは何でも吸い込むブラックホールで、この場
合は、標準出力を/dev/nullに渡すことで標準
エラー出力の内容のみを画面に出力します。こ
の例では、一般ユーザでfindコマンドを実行し
ているので、権限がないディレクトリを表示し
ようとした際のエラーが出力されるでしょう。
　⑧では、標準エラー出力「2」を/dev/nullにリ
ダイレクトしています。同じように考えると、
標準出力「1」は画面に出力されるので、エラー

メッセージを抜いたファイルリストが出力され
ます。
　標準出力と標準エラー出力はデフォルトでは
画面に出力しますが、⑦⑧の方法ならそれぞれ
をファイルに出力できます。両方を同じファイ
ルに出力するには「2>&1」という「標準エラー出
力を標準出力の複製にする」という指令を利用
すると一緒に標準出力経由で書き出すことがで
きます（⑨）。

find /tmp > /tmp/find.txt 2>&1 ←⑨

　1>/tmp/find.txtと2>&1のリダイレクトが
ある場合、左から評価されます。まず標準出力
がディスプレイから/tmp/find.txtに変更され、
次に標準エラー出力が標準出力に設定されてい
るファイル出力になるので/tmp/find.txtに両
方出力されます（図11-上）。
　これを「find /tmp 2>&1 > /tmp/find.txt」
のように順番を変えると、まず2>&1が評価さ
れて標準エラー出力は標準出力であるディスプ
レイ出力をコピーして利用することになります。
そのあとで標準出力はファイルに向けられます
が、標準エラー出力はディスプレイ出力のまま
ですので、標準出力のみがファイルに出力され
てしまいます（図11-下）。
　リダイレクトの順番は、失敗が多いほど慣れ
て体が覚えます。何度も間違えて体系的に慣れ、
理解しましょう。ﾟ

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

command 2>&1 >file
①ディスプレイ ①ディスプレイ ①file
②ディスプレイ ②ディスプレイ ②ディスプレイ
 （①のコピー）

command >file 2>&1
①ディスプレイ ①file ①file
②ディスプレイ ②ディスプレイ ②file
 （①のコピー）

※①は標準出力、②は標準エラー出力を表す

（ ・́ω・`）

（・∀・）

 ▼図11　リダイレクトの順番が違うと結果が異なる

65 - Software Design May 2014 - 65

UNIXコマンドは1つでも十分強力なこともありますが、基本的には1つ1つのコマンド機能はシンプルな設計
です。複数のコマンドを連結して目的の結果を得ることもコマンド環境の魅力のひとつです。ここでは用途から
コマンドの便利な使い方を見てみましょう。

第2章
面倒なことを
コマンドでまとめてやろう
——ファイル一括処理にマウスは不要！

　あるディレクトリ以下にある特定のファイル
を一括で削除する方法です。GUI環境であれ
ばエクプローラのようなアプリケーションで目
的のディレクトリを表示して、マウスを左クリッ
クしながら対象ファイルのアイコンを有効範囲
に入るようにドラッグして囲み、gキー
を押せば消えると思います。UNIXコマンドで
はrmを使います。
　rmコマンドは引数に渡されたファイルを削
除します。ファイル名にはスペース区切りで複
数のファイル名を指定できます。よく「*」のよ
うな記号を使って複数ファイルをまとめて削除
している場面を見ますが、これはシェルの特殊
パターン文字を使うことで任意のファイルをま
とめて削除対象にしています。冒頭のコマンド
例では、Emacsというエディタを利用した際に
バックアップファイルとして作成される「ファ
イル名̃」をすべて削除します。
　複数ファイルを候補にする特殊パターン文字
は、bashのマニュアルであれば「パターンマッ
チング」で参照することができますが、ここで
ほかのパータンマッチングも少しだけ見てみま
しょう。

例❶ $ rm ./*
例❷ $ rm test[0-9].{sh,txt}

　上記例①での「./*」はカレントディレクトリ
（./）のすべてのファイルを「*」で指し示してい
ます。これを実行すると、今いるディレクトリ
に存在するファイルは次の瞬間消えます（気を
つけて！）。
　例②の「test[0-9].{sh,txt}」は“test0から
test9までの名前で、かつ「.txt」か「.sh」の拡張
子がついたファイル”として展開されます。そ
れらがすべてrmの対象になるということです。
　rmコマンドはオプションを渡さないとファ
イルのみを削除し、ディレクトリは削除できま
せん。ディレクトリも含めて削除する場合は-r
オプションを指定するとディレクトリ以下も含
めて削除してくれます。-rはrecursiveのオプ
ションで再帰的にディレクトリの中身を削除し
ます。次はディレクトリを削除する例です。

$ rm -r testdir

　たとえば、Subversionの管理ディレクトリ
「.svn」を削除したい場合、次のように実行します。

$ rm -r .svn

　これでは直下のディレクトリにある .svnのみ
が削除対象になります。さらに階下のディレク
トリに .svnがあり、こちらも削除したい場合は

rmコマンドで複数ファイルを指定して削除する1
$ rm *̃

面倒なことをコマンドでまとめてやろう
——ファイル一括処理にマウスは不要！ 第2章

66 - Software Design

どうしましょう。大丈夫、シェルのパターン展
開を利用すればrm -r */.svn、さらに下なら

rm -r */*/.svnで消せます。でも……もっと
下があると面倒くさいですね。

　findコマンドは指定したPATH以下のファイ
ルとディレクトリに対し、検索条件を用意して
それにマッチする対象をリスト表示したり、リ
ストを別コマンドへの引数として渡すことがで
きます。
　冒頭のコマンド例では、ユーザが今いるディ
レクトリ（カレントディレクトリ、ワーキング
ディレクトリとも呼びます）を示す「.」をPATH
として指定し、検索条件に-nameオプションで
名前を「.svn」と指定しています。-execオプショ
ンからはfindコマンドでは「アクション」と呼ぶ
動作を指定する部分で、例ではrmコマンドに「{}」
を指定することで、検索条件でマッチしたファ
イルが1つずつ入れられてrmが実行されます。
　-exec以降を指定しないで、末尾に「̃」がつい
たファイルを階下まるっと表示する例を見てみ
ましょう。

$ find . -name "*̃"
./proj1/config/database.yml̃
./proj1/apps/app1.rb̃

　該当するファイル一覧が表示されました。
-execのようなアクションが指定されていない
場合は-printのアクションが暗黙に指定されて

検索結果が出力されます。
　これにアクションとして lsコマンドを実行し
てみましょう。-execオプションの後は検索結
果を渡すコマンドを渡し、「{}」をコマンドへの
引数として「;」の直前までを渡します。「;」はシェ
ルにコマンド区切り文字として展開されてしま
うので「╲;」のように「バックスラッシュ」でエス
ケープします。
　lsコマンドで“素振り”している状態ですが、
これでrmコマンドに置き換えれば目的のファ
イルを一括削除できますね。

$ find . -name “*̃” -exec ls {} ¥;
./proj1/config/database.yml̃
./proj1/apps/app1.rb̃

　この記述では1つ1つ検索結果ファイルを削
除することになります。「{}」の後に「+」をつけ
ると、処理する前に検索結果をコマンドに対す
る引数の末尾に追加するようになります。

$ find . -name "*̃" -exec ls {} +
./proj1/apps/app1.rb̃ ./proj1/config/ｭ
database.yml̃

findコマンドの検索結果を使って一括削除2
$ find . -name .svn -exec rm -rf {} ¥;

　findコマンドの-execオプションでrmコマン
ドを指定してファイルを削除するのもいいので
すが、xargsコマンドに引数として渡して実行
するという手段もあります。
　xargsコマンドは標準入力に渡された文字列

を、余分な空白や改行を取り除いて“引数”とし
て使いやすく整形します。xargsに実行するコ
マンドを指定しないと、echoコマンドを実行
するので1行表示されます。実行してみましょ
う。

findとxargsとの合わせ技で削除する3
$ find . -name “*̃” ¦ xargs rm

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

66 - Software Design May 2014 - 67

$ ls
test1 test11 test13 test15 test17 ｭ
test19 test20 test4 test6 test8
test10 test12 test14 test16 test18 ｭ
test2 test3 test5 test7 test9
$ ls ¦ xargs
test1 test10 test11 test12 test13 test14 ｭ
test15 test16 test17 test18 test19 test2 ｭ
test20 test3 test4 test5 test6 test7 ｭ
test8 test9 ←実際には1行

　この合わせ技の利点の1つはシステム負荷を
軽くできることです。findコマンドの -execオ
プションでrmコマンドを実行するとファイル
1つ1つにrmコマンドを実行するため、ファイ
ル数が大量になるとシステム負荷が高くなりま
す。一方、冒頭のようにxargsコマンドを利用
するとfindコマンドの結果、カレントディレク
トリにあるファイル名末尾に「̃」が付いている
ファイル一覧を1行にしてrmコマンドに渡す
ため、実際にrmコマンドを実行するのは基本
1回になります。

　別のケースでfindコマンドを使うほどでもな
い場合、上記の例で言えば「rm *̃」でもいいの
ですが、「*̃」でシェル展開されるファイルが多
すぎる場合に期待どおりファイルをすべて削除
できないことがあるので注意が必要です。
　Linuxはコマンドライン引数の最大文字数が
設定されているために、引数を無限に渡せるわ
けではありません。getconfコマンドでARG_
MAXを指定する（getconf ARG_MAX）とそれが
得られますが、この最大文字数を超える引数を
rmコマンドに渡すと「Argment list too long」の
エラーメッセージが出力されて実行されません。
xargsはこの部分を考慮し、ARG_MAXを超え
る引数が渡された場合はそれを複数に分割して
コマンド実行します。
　findコマンドの-execやrmコマンド単体で利
用するか、xargsコマンドと連結するかは削除
する対象ファイル数を予想して判断してもいい
でしょう。

　ディレクトリ下ファイルの拡張子「.txt」を持っ
たファイルをすべて「.csv」に変更する方法を考
えてみましょう。

例❶ $ mv test1.txt test1.csv
例❷ $ mv test1.{txt,csv}
例❸ $ rename 's/¥.txt$/¥.csv/' *.txt
例❹ $ rename txt csv *.txt
例❺ $ for f in *.txt; do
 mv $f $(basename $f .txt).csv
 done

　ファイル名の変更といえば、普通はmvコマ
ンドを例①のように変更前ファイル名と変更後
ファイル名を指定して行うと思います。実は1
つのファイル名を変更するのならば例②のよう
なやり方もあります。
　例②はシェルのブレース展開注1を利用した

指定方法です。「test1.{txt,csv}」とすると
「test1.txt test1.csv」と展開されます。そ
れをmvコマンドの引数として渡すので例①と
同じですね。
　例③と④の方法は、renameコマンドを利用
して複数のファイルを対象に名前の変更をしま
す。Debian系ディストリビューションでは、
renameはプログラミング言語Perlで書かれた
コマンドで、例③のように第2引数に渡した変
更前ファイル名に、第1引数で渡すPerlの正
規表現（コラム参照）での変更ルールを適用して
変更後ファイル名になります。RHEL（Red

「.txt」を持ったファイルをすべて「.csv」に変更する4
$ for f in *.txt; do
mv $f ${f/.txt/.csv}
done

注1） ブレース（{}）で囲まれた複数の文字列をブレース前後の
文字列（省略可）へ補完して複数の文字列にする処理。

面倒なことをコマンドでまとめてやろう
——ファイル一括処理にマウスは不要！ 第2章

68 - Software Design

Hat Enterprise Linux）系ディストリビューショ
ンではutil-linuxパッケージに含まれるバイナ
リを利用するので、Perl版とは使い勝手が異
なります。例④のように、引数として「変換前
文字列　変換後文字列　対象ファイル」を指定
します。使っているマシンにrenameが入って
いるなら、これを使うとファイル名の一括変換
は便利です。
　そして冒頭のコマンドと例⑤が、カレントディ
レクトリにある「.txt」のファイルをまとめて .csv
に変換する汎用的な実行方法です。シェルの
for文を利用し、「*.txt」の結果を1つずつ変数
fに設定し、mvコマンドを実行します。forは候
補がなくなるまで同じコマンドを繰り返します。
　冒頭のコマンドでは、mvコマンドの1つ目
の引数「$f」はそのまま変更前ファイル名が入
ります。2つ目の引数の「${f/.txt/.csv}」は
シェルのパラメータ展開を利用して変更後ファ
イル名を表現しています。
　シェル変数を fとすると、値を参照する際は
$fと記述して利用します。そのまま変数の値を
使う場合はこれでいいのですが、変数名もあわ
せて「{}」で囲んで、その中で呪文を追加すると
もう少し凝った利用ができます。この場合「${変

数名 /パターン /文字列 }」のルールで、変数名
の値が持つパターンを文字列で置き換えます。
変数 fに「test.txt」が入っていると考えた場合、
最初に「.txt」のパターンを用意し、文字列とし
て「.csv」を指定しているので「test.csv」と展開さ
れ、最終的に「mv test.txt test.csv」になり
ます。
　例⑤では、変更後のファイル名を生成する
のにbasenameコマンドを利用しています。
basenameは引数に渡された文字列からディ
レクトリ名を取り除くコマンドです。たとえば
「basename /var/log/syslog.2.gz」を実行
すると「syslog.2.gz」が出力されます。また、末
尾に文字列を追加指定するとそれも除去します。
「basename /var/log/syslog.2.gz .gz」を
実行すると「syslog.2」が出力されるわけです。
これを踏まえて例⑤を見ると、「$(basename
$f .txt)」は変数 fが test.txtだとすると、こ
れからディレクトリ名と「.txt」を除去するので
「test」が実行結果として出てきます。これに
「.cvs」をつけているので「test.csv」となります。
　なお、forなどのシェルの制御構造の詳細は今
回は紙幅の都合上残念ながら扱えませんので、詳
しくはマニュアルや書籍を参考にしてください。

正規表現とは

　正規表現とは文字列をパターンで表現する記述方
法で、Linuxコマンドではgrepや sedなどのコマン
ドで文字列の検索や置換に利用します。例として
grepコマンドでテキストファイル「dp.txt」の中にあ
る「daft punk」の文字を検索するケースを想定します。
タイプミスして「duft pank」と書かれているかもし
れませんね。これを考慮するとgrepは「grep 'd[au]
ft p[au]nk' dp.txt」のように実行します。
　「daft punk」を検索結果として絞り込むためにパ
ターンに当てはまる部分についてメタ文字を使って
表現します。上記の例では「[」と「]」で出てくる可
能性のある文字「a」と「u」を括ることで、想定した
タイプミスも検索結果として出せます。このメタ文
字の代表的なものを表Aに並べてみます。

　簡単に説明しましたが正規表現は奥が深いので、
興味を持ったらぜひ専門書を参照することをオスス
メします。

 ▼表A　代表的なメタ文字
メタ文字 意味
* 0回以上の直前文字繰り返しに一致
+ 1回以上の直前文字繰り返しに一致
. 任意の1文字に一致
? 0か1回の直前文字繰り返しに一致
[ABC] [] 内に記述されたいずれか1文字に一致
^ 行頭
$ 行末
[0-9], ¥d 数字

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

68 - Software Design May 2014 - 69

　この冒頭コマンドは、シェルのfor文を利用
し、ImageMagickパッケージに含まれる画像処
理コマンドのconvertを使って元画像から
33％にリサイズし、ファイル拡張子前に
「-33per」の文字を追加したファイル名に出力し
ます。
　convertはGIMPのような画像処理はできま
せんが、画像ファイルの変換には頼もしいツー
ルです。出力ファイル名の拡張子にあわせて
フォーマットを変換する機能は重宝します。
「.pdf」を指定すれば画像をPDFに埋め込んで
出力してくれます。オプションでは -rotateで
回転、-cropで始点と幅、高さを引数で渡せば

範囲を切り抜くこともできます。
　次は文字を画像に書き出してみましょう。
convertで使えるフォントは「convert -list
font」で得られます。
　下の例①では「label:」に指定した文字の画像
が作られます。-backgroundは背景色、-fillは
文字色、-fontはフォントを指定するオプショ
ンです。例②の「label:」直後にある＠はファイ
ル参照の目印です。ここでは標準入力から文字
を得るので「@-」を指定しています。ここでは
パイプ前半の実行結果が標準入力になるので、
それが画像になります。

画像ファイルの一括サイズ変更5
$ for f in *.jpg; do
convert -resize 33% $f ${f/.jpg/-33per.jpg}
done

例❶ $ convert -background white -fill red -size 800x600 -font "IPA-UIゴシック-Regular" ｭ
label:"ソフトウェアデザイン" sd.png

例❷ $ /sbin/ifconfig eth0 ¦ convert -font "IPA-UIゴシック-Regular" label:@- eth0.png

面倒なことをコマンドでまとめてやろう
——ファイル一括処理にマウスは不要！ 第2章

シェル変数の文字列展開

　シェル変数に入れた文字列を一部加工して再利用
する文字列展開は便利ですね。見出し4の「${f/.
txt/.csv}」や5の「${f/.jpg/-33per.jpg}」のよ
うな記述法ですが、ほかにも記述方法があるので
ちょっと触れておきます。
　シェルの変数は「$」をつけて参照します。変数名

を「f」とした場合「$f」でも「${f }」でも参照できます。
「{}」をつけるのは、ほかに「file」のような変数名があっ
た場合に、変数 fが変数 file巻き込まれずに展開で
きるようにします。また、「{ }」で変数を囲み、そこ
に条件をつけることで格納されている値を操作でき
ます。代表的な操作を表Bにまとめておきましょう。

書き方 処理内容 例
${変数 :先頭文字数 :
出力長}

先頭文字列数の文字から出力長
の文字数だけ出力

val="abcdefghijklmn"; echo ${val:3:5} ｭ
#=> defgh

${変数#文字列} 先頭から「文字列」にマッチした
部分を取り除いて出力

val="abcdef"; echo ${val#abc} #=> def

${変数%文字列} 末尾から「文字列」にマッチした
部分を取り除いて出力

val="abcdef"; echo ${val%def} #=> abc

${変数 /パターン /
置換文字}

変数内「パターン」にマッチする
文字を「置換文字」に置き換える

val="abcdef"; echo ${val/def/abc} ｭ
#=> abcabc

 ▼表B　文字列展開の代表操作例

70 - Software Design

　カレントディレクトリに「.html」の拡張子が
ついたHTMLファイルが複数あり、今まで
EUC-JPで編集していたのをUTF-8にすべて
文字コード変更したと仮定しましょう。このと
き、HTMLファイルなので文字コードの変換
を行ったら、HTMLヘッダにある次のような
行のcharsetもあわせて変更したいところです。

 <meta http-equiv="Content-Type"
content="text/html; charset=EUC-JP" />

　これを実現するのが冒頭のコマンドです。
sedコマンドはストリームエディタというツー
ルです。入力として入ってくるデータを、与え
たフィルタで処理して出力します。冒頭のコマ
ンドは「-e」オプションでスクリプトを指定しま
す。「s/¥(charset=¥)EUC-JP/¥1UTF-8/i」が
スクリプトの部分で、「s/正規表現 /置き換え
文字列 /」という形式で記述し、正規表現にマッ

チする文字列を「置き換え文字列」で置き換えま
す。正規表現部分の「¥(charset=¥)」は部分正
規表現として囲んだ部分を、置き換え文字列内
で特殊エスケープとして「¥1」だけで扱えます（部
分正規表現が複数あれば9つまで「╲番号」のよ
うに使えます）。
　これで「charset=EUC-JP」の「EUC-JP」部分
を「UTF-8」に置き換えられます。また、最後
の「i」は大文字小文字を区別しないオプション
なので「EUC-JP」も「euc-jp」も対象になります。
本文中に「EUC-JP」単体での記述がある場合に
も変換対象になってしまうので、なるべく候補
を絞れるように「charset=」も検知対象にしてい
ます。
　最後に-iオプションを利用します。これは入
力ファイルと出力ファイルを同じファイル名で
利用するオプションです。

文字列を一括変換7
$ sed -e "s/¥(charset=¥)EUC-JP/¥1UTF-8/i" -i *.html

　「ああ、サーバの/homeが溢れてる……誰が
溜め込んでいるんだろう」というときに、ディ
レクトリ利用量を表示するduコマンドでユー
ザ一人ひとりのホームディレクトリを調べるの
は手間がかかります。
　冒頭のコマンドでは、/home以下の各ディレ
クトリを-execアクションでduコマンドを呼び、
人間が読みやすい形式で（-h）、合計容量のみ表
示（-s）するオプションをつけて渡します。find
コマンドの -type dはディレクトリを指定する
オプションで、-type fならファイルのみが検
索対象になります。-mindepthと -maxdepthは
ディレクトリ階層最低深度と最高深度を示し、

それぞれ「1つ下以上」「1つ下まで」を示すこと
で、/home直下の各ディレクトリの合計容量、
各ユーザのホームディレクトリ以下に作られて
いるディレクトリの容量まで表示しないように
します。
　この実行結果は次のように表示されます。

$ sudo find /home -mindepth 1 -maxdepth ｭ
1 -type d -exec du -hs {} ¥;
248G /home/ryosuke
4.8M /home/rino
7.6M /home/lfs

　長いコマンドラインを例にしましたが、同じ
結果は「du -hs /home/*」でも得られます。

各ディレクトリの利用容量を一覧表示する6
$ sudo find /home -mindepth 1 -maxdepth 1 -type d -exec du ｭ

-hs {} ¥;

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

70 - Software Design May 2014 - 71

コマンドを連結してログファイルの解析をする9
$ sudo zgrep "02/Mar" /var/log/apache2/access.log.3.gz ¦ ｭ

awk '{ print $1 }' ¦ sort ¦ uniq -c ¦ sort -r ¦ head -n 5

用するのが楽かもしれませんが、目的を達成す
るのに行数指定でも事足りるなら冒頭コマンド
のやり方を覚えておくと役に立つでしょう。
　いきなり for文から始まっていますが、カレ
ントディレクトリにある「.html」の拡張子があ
るファイルに対し、すべて3～5行目を削除し
て保存するコマンドです。実際のファイル編集
はedという行指向エディタを利用しています。
　行指向エディタとは1行ずつ編集する非常に
コンパクトなエディタで、ターミナルで実行し
た後はexコマンド使ってファイルを編集します。
viのコマンドモードを使ったことがある方は、
そのコマンドモードを利用すると思えばわかり
やすいかもしれません。ちなみにviは端末画
面すべてを使えるエディタです。行指向に比べ
てヴィジュアル効果が高いですよね。だから
VIsual editorの略で「vi」だそうです。
　この例では、edの引数に for文で変数 fに入っ
ているファイル名を渡します。「<<EOF」はヒ
ヤドキュメントと呼ばれる構文で、指定した文
字列が現れるまでの文字列をコマンドの入力に
するという機能があります。ここでは「3,5d～q」

までの3行がedの入力になります。「3,5d」は3
行目から5行目までを削除（deleteのd）する、
「w」は書き込み（writeのw）、そして「q」は終了
（quitのq）という意味のコマンドです。
　対象ファイルの末尾に文字列を追加する場合、
edへの入力は次のようにします。

ed $f <<EOF
 3,5d
 $
 a
 this is test
 .
 w
 q
EOF

　aで追記（appendのa）を指定すると挿入モー
ドに移行します。その後に追加するテキスト「this
is test」を入力し、コマンドモードに戻るため
に「.」を入力、「w」で書き込んで「q」で終了しま
す。するとそのファイルの末尾に「this is test」
が書き込まれています。
　大量の同じフォーマットのテキストファイル
が操作対象で、同じ個所のみを編集する、とい
う目的の場合だけに有効なように見えますが、
いざその場面が出てきたときに「このやり方な
らいける！」と思い出してほしいものです。

　ファイルの特定の行を編集する場合、対象文
字列のパターンがある程度絞れるならsedを利

テキストファイルの指定した行数を削除・編集する8
$ for f in *.html; do
ed $f <<EOF
3,5d
w
q
EOF
done

　Apache httpdサーバのアクセスログから特定 の日付（例として3月2日）のアクセス元を抽出し

面倒なことをコマンドでまとめてやろう
——ファイル一括処理にマウスは不要！ 第2章

72 - Software Design

注2） ローテートは、ログでストレージを埋め尽くさないよう
に定期的に退避・削除・新しくログファイルを作成する
しくみです。退避する際にgzip圧縮されることがあります。

注3） 「-F」オプションで文字列を指定すれば、デフォルトでは
空白を区切りと見なすところを指定した文字列で区切り
処理できます。たとえば「,」を指定すれば、CSVファイル
をいじれるようになります。

て、その結果からどれぐらいの回数アクセスが
あるかを調べてみましょう。httpdサーバのログ
はデフォルト設定では次のように出力されます。

49.YYY.157.XXX - - [02/Mar/2014:02:15:57 ｭ
+0900] "GET / HTTP/1.1" 200 4373 "-" ｭ
"Mozilla/5.0 (iPhone; CPU iPhone OS ｭ
7_0_6 like Mac OS X) ｭ
AppleWebKit/537.51.1 (KHTML, like Gecko) ｭ
Version/7.0 Mobile/11B651 Safari/9537.53"

　この中から、特定の日付ということで「02/
Mar」を対象にログから検索すれば良さそうな
のがわかります。3月2日のログの所在を調べ
ると /var/log/apache2/access.log.3.gzという
ファイルにすでにローテート注2されていました。
gzip圧縮されているためgrepでは検索できな
いので、zgrepという圧縮ファイルを検索でき
るコマンド利用しています。
　zgrepの出力は「¦（パイプ）」によってawkコ
マンドの入力に利用されます。awkはプログラ
ミング言語ですが、sedと似ており、流れてく
る文字列を処理するのに便利なのでこのような
使い方が多用されます。「'{ print $1 }'」は
awkスクリプトです。この意味は、入力された
各行の「空白区切り注3」で1つ目の項目を出力す
るということになります。
　第一項目は IPアドレスなので、それがその
まま「¦」を経由して次の「sort」、「uniq -c」に
続きます。sortコマンドは入力内容を並び替
えて出力します。uniqコマンドは重複する行
をまとます。-cオプションは出現回数をカウン
トします。カウントした出現回数の降順でソー
トし、「head -n 5」で上位5つの IPアドレス
を抽出します。
　ここまで説明した冒頭コマンドの実行結果が
次になります（アクセス回数上位5位までの IP
アドレスを表示）。

$ sudo zgrep "02/Mar" /var/log/apache2/ｭ
access.log.3.gz ¦ awk '{ print $1 }' ¦ ｭ
sort ¦ uniq -c ¦ sort -r ¦ head -n 5
366 27.YYY.203.XXX
344 66.YYY.79.XX
315 66.YYY.79.XX
289 66.YYY.79.XX
279 27.YYY.195.XXX

　同じ要領で、SSHログファイルから不正ア
クセスに利用されるユーザ名を調べてみましょ
う。SSHのログイン失敗ログはDebian GNU/
Linux系では/var/log/auth.log、RHEL系では
/var/log/secureに記録されます。フォーマッ
トはデフォルトでは次のようになります。

Mar 18 03:05:55 oakley sshd[29830]: ｭ
Invalid user recovery from 41.228.X.XX

　メッセージ「Invalid user」をログから抽出し、
先頭から空白区切りで8番目の文字列のログイ
ン試行ユーザ名をカウントします。筆者のサー
バで調べてみたところ、次のものがSSHログ
イン失敗ユーザ名ベスト10です。

$ sudo grep "sshd.*Invalid user" /var/ｭ
log/auth.log ¦ awk '{ print $8 }' ¦ ｭ
sort ¦ uniq -c ¦ sort -r ¦ head -n 10
 34 admin
 20 postgres
 16 guest
 15 webmaster
 15 user
 15 oracle
 15 ftpuser
 12 nagios
 11 www
 11 webadmin

　本当のところ、このようなログイン試行はア
タックなので、適切に IPアドレスを取り出し
て iptablesなどでブロックするのが望ましいと
ころです。ﾟ

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

73 - Software Design May 2014 - 73

サーバ管理者になると、一般ユーザとはまた違った観点でコマンドを使う必要があります。複数の情報を一度に
把握する、複数の作業をまとめて行う、といったことができる必要があります。また、作業効率化や自動化のた
めに、GUIでできることでもコマンドラインで実施できると便利な場合があります。

第3章
サーバ管理者になったら
頼りになるコマンド
——作業の効率化と自動化を見据えて

　稼働中のサーバでは、複数ユーザがログイン
できるため、ほかのユーザがシステムの設定作
業などを行っていることもあります。システム
にログイン中のユーザが、何をしているかを把
握するのも思いやり、配慮です。同じ設定ファ
イルを編集しようとしてエラーメッセージが出
ると「何か悪いことしたかな……」と心配しちゃ
いますものね。そんなときは、冒頭のwコマン
ドでログイン中のユーザを見てみましょう（図1）。
　図1ではユーザ ryosukeが3人、ユーザ rino
が1人ログインしているのがわかります。横1
列にUSER（ユーザ名）、TTY（端末名）、FROM
（接続元）、LOGIN（ログイン時間）、IDLE（何
もしていない時間）、JCPU（経過時間）、PCPU
（プロセス経過時間）、WHAT（何をしているか）
を示しています。
　表示内容について、1行目はユーザryosuke

が仮想端末 7番目（TTYの tty7）から GDM
（Gnome Display Manager）を 11時 36分 か ら
使っていること、次はユーザryosukeが仮想端
末2番目（TTYの tty2）からログインしてシェ
ルを利用中、14時6分ログインして17秒触っ
ていないことを示しています。3行目のユーザ
ryosukeが利用しているのはGNOME端末で、
その端末が疑似端末のpts/0を利用しています。
　この疑似端末は直接接続されていない端末へ
の入出力を擬似的に扱います。仮想端末はキー
ボードとディスプレイが直接つながっています
が、端末エミュレータやSSHなど直接つながっ
ていない場合に擬似端末を使います。
　最後の行はユーザrinoがFROMに表示され
ている接続元192.168.1.5から11時31分にロ
グインしていること、そして/etc/resolv.conf
をviで開いている様子がわかりますね。

ユーザのログイン状態を表示する1
$ w

 ▼図1　ログイン中のユーザを表示する

$ w
 14:06:49 up 2:32, 3 users, load average: 0.27, 0.40, 0.27
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
ryosuke tty7 :0 11:36 2:32m 1:03 0.06s gdm-session-worker [pam/gdm3]
ryosuke tty2 14:06 17.00s 0.08s 0.06s -bash
ryosuke pts/0 :0 11:36 1.00s 0.03s 4.88s /usr/lib/gnome-terminal/gnome- ｭ
terminal-server
rino pts/2 192.168.1.5 11:31 5.00s 0.02s 0.00s vi /etc/resolv.conf

サーバ管理者になったら頼りになるコマンド
——作業の効率化と自動化を見据えて 第3章

74 - Software Design

　システムで稼働しているプロセスを見るには、
一覧表示するならpsコマンド、リアルタイム
で負荷などを表示するなら後述のtopコマンド
を利用します。
　psコマンドはオプションを指定しないで実
行すると、その端末で実行しているプロセスの
みを表示します。次の例はGNOME端末上で
実行したので、シェルのbashと実行したpsコ
マンドが検知されています。ヘッダに表示され
ているのはPID（プロセス ID）、TTY（端末番
号）、TIME（実行時間）、CMD（プロセス名）です。

$ ps
 PID TTY TIME CMD
 5819 pts/1 00:00:00 bash
 5833 pts/1 00:00:00 ps

　しかし、現在の端末上のプロセスがわかって
うれしいときなど、ほとんどありません。実際
はシステム全体の状況を知りたいときが多いの
で、その場合は冒頭のコマンドを実行します。
オプションにすべてのプロセスを表示する「a」、
実効ユーザ名を表示する「u」、端末を持たない
プロセスも表示する「x」を指定します。

　図2がその実行結果です。左からUSER（ユー
ザ名）、PID（プロセス ID）、%CPU（CPU利用
率）、%MEM（メモリ利用率）、VSZ（プロセス
が起動した際に確保される仮想メモリ）、RSS（物
理メモリ利用量）、TTY（端末）、STAT（プロ
セス状態）、START（起動時刻）、TIME（CPU
利用時間）、COMMAND（プロセス名）を示しま
す。STATはD（スリープ）、R（実行可能状態）、
S（スリープ）、T（停止）、Z（ゾンビ化）などが
あります。
　画面に収まりきらない場合はps aux ¦ less
など、「¦（パイプ）」とlessコマンドなどのペー
ジャに渡してじっくり見るのがいいでしょう。
　プロセスには親子関係があり、たとえば、
httpdであれば最初に1つのプロセスが起動し、
そのプロセスが複数の子プロセスを生成します。
その子プロセスたちが、別ホストで稼働する
Webブラウザからのリクエストに答えます。
このようなプロセスの親子関係はpsコマンド
に fオプションを付けることで見られます（図
3）。また、pstreeコマンドがインストールさ
れていれば、簡略化されたプロセスツリーを見

システム全体のプロセス状態を一覧表示する2
$ ps aux

 ▼図2　システム全体のプロセスを表示する

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 13104 876 ? Ss 11:34 0:00 init [2]
root 2 0.0 0.0 0 0 ? S 11:34 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 11:34 0:00 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< 11:34 0:00 [kworker/0:0H]

 ▼図3　プロセスの親子関係を表示する

$ ps axf
 PID TTY STAT TIME COMMAND
 （略）
 3736 ? Ss 0:00 /usr/sbin/apache2 -k start
 3739 ? S 0:00 ¥_ /usr/sbin/apache2 -k start
 3740 ? S 0:00 ¥_ /usr/sbin/apache2 -k start
 3741 ? S 0:00 ¥_ /usr/sbin/apache2 -k start
 （略）

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

74 - Software Design May 2014 - 75

られます（図4）。
　プロセスが暴走した場合などは、そのプロセ
スに対して対応しなければいけないので、プロ
セスリストからの特定が必要です。あとで出て
くるkillコマンドではPID（プロセスID）を指定
するので、これを得るためにgrepコマンドと
連携しましょう。図5の例はapache2プロセス
に条件を絞って表示するpsコマンドの例です。
　これよりはpgrepコマンドでも可能です。
pgrepコマンドはプロセス名を指定すればその
PIDを出力してくれます。プロセス名を指定
しただけではPIDのみを表示しますが、-lオプ
ションを付ければプロセス名も表示するので、
目的のプロセスにマッチしているか確認ができ
ます（図6-①）。また、-dで出力項目間に挟む
文字として空白を指定すれば、1行にPIDを出
力でき（図6-②）、ほかのコマンドの引数に渡
すのも楽になりますね。

　もう1つのプロセス状態把握のツール topを
実行してみましょう。図7はオプションなしで
実行した画面です。標準の更新間隔は3秒です
が、これが長い場合は -dオプションに更新間
隔を秒単位で指定するといいでしょう。
　PIDから始まる黒い帯から上部分をサマリー
エリア、下部分をタスクエリアと呼びます。サ
マリーエリアの1行目にはプログラム名（ここ
では top）、現在時刻、システム起動時間、ログ
インユーザ数、1/5/15分間隔でのロードアベ
レージが表示されます。2行目は状態に合わせ
たプロセスの統計数、3行目はCPUの状態、4
行目はメモリの利用状況、5行目はスワップメ
モリの利用状況が表示されます。topを終了す
る場合はqを押しましょう。
　普段の利用で「なんだか動作が重いなぁ」と
思ったら topを見てみましょう。重いプロセス
がタスクエリアの上のほうに居座っているかも
しれません。サマリーエリアの4行目メモリ部
分で freeで示されている空きメモリがなく、5
行目スワップメモリの freeの空き領域も少な
い場合は、何かプロセスを抹殺したほうがいい
かもしれません。
　デフォルトのタスクエリアの見方は、左から
PID（プロセスID）、USER（実効ユーザ）、PR（タ
スクの実行優先順位）、NI（タスクのnice値）、
VIRT（仮想メモリサイズ）、RES（利用物理メ
モリ）、SHR（利用共用メモリ）、S（プロセス状
態）、%CPU（CPU利用時間）、%MEM（物理メ

 ▼図4　プロセスツリーを表示する

$ pstree
（略）
 ¦-tmux-+-bash-+-lv
 ¦ ¦ `-pstree
 ¦ `-bash
（略）

 ▼図5　 プロセス名からプロセス IDを調べる（psと
grep）

$ ps ax ¦ grep apache2
17614 pts/0 S+ 0:00 grep apache2
18790 ? S 0:00 /usr/sbin/ ｭ
apache2 -k start
18791 ? Sl 0:02 /usr/sbin/ ｭ
apache2 -k start
18792 ? Sl 0:02 /usr/sbin/ ｭ
apache2 -k start
32308 ? Ss 0:31 /usr/sbin/ ｭ
apache2 -k start

 ▼図6　プロセス名からプロセス IDを調べる（pgrep）

$ pgrep apache -l ←①
18790 apache2
18791 apache2
18792 apache2
32308 apache2
$ pgrep apache -d ' ' ←②
18790 18791 18792 32308

 ▼図7　リアルタイムにプロセス状態を表示する

サーバ管理者になったら頼りになるコマンド
——作業の効率化と自動化を見据えて 第3章

76 - Software Design

モリ利用率）、TIME（実行時間）、COMMAND
（プロセス名）となります。CPU利用時間やメ

モリ利用率、稼働時間を見てシステム負荷の判
断材料にしましょう。

　Linuxでプロセスが暴走しているなど、諸事
情ですぐに特定のプロセスを止めたいときは、
killコマンドを使います。直訳で「殺す」とい
う意味で物騒ですが、実はkill（1）のマニュア
ルには「プロセスを殺す」とは書かれておらず、
「プロセスにシグナルを送る」コマンドと説明さ
れています。
　シグナルとはプロセスに対して再起動や強制
終了などを依頼するメッセージです。プロセス
はシグナルを受け取るとその依頼に沿って動作
します。
　シグナル一覧はkillコマンドに-lオプション
を指定すると表示されます（図8）。プロセスに
送るシグナルを指定するには、kill -9
12345のように、1、2、3のような数字か、
SIGHUP、SIGINT、SIGQUITの文字列のど
ちらかを「-」の後ろに付け、さらに対象のプロ
セス IDを付けて実行します。これらの意味は
man 7 signalで確認できます。シグナルは重
要な概念ですが、ここではプロセスを終了させ
ることについてだけ扱います。
　シグナルを指定せずにkillコマンドを実行す

ると、プロセスを終了させる15）SIGTERMが
送られます。プロセスがこのシグナルを受け取
ると、決められた終了処理を実施してから終了
します。もしプロセスがこの終了処理を実行で
きない状態で止まっている場合は、何も反応が
なくプロセスが稼働しているように見えるでしょ
う。このような状況で使うのが9）SIGKILLで
す。このシグナルを受け取ったプロセスは強制
終了します。終了処理がされるわけではないの
でファイルを書き込んでいる最中だった場合は、
ファイルが破損する可能性もあります。
　まとめてプロセスを処理したい場合は、冒頭
に挙げた killallコマンドが便利です。
killall apache2のようにプロセス名を指定
し、該当する名前のプロセスにシグナルを送り
ます。

複数プロセスをまとめて終了させる3
$ killall apache2

 ▼図8　シグナル一覧を表示する

$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT ｭ
4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE ｭ
9) SIGKILL 10) SIGUSR1
（略）

　Linuxが自宅や職場のLANに接続するには、
ネットワーク設定が必要です。そのネットワー
クでユニークな IPアドレスが設定され、ほか
のネットワークへアクセスするためのゲートウェ
イの設定などは確認できないと困りますし、そ
して必要に応じて設定を変更できる必要があり

ます。
　定番の IPアドレス確認／設定コマンドは
ifconfigです。/sbin/以下に格納されている
ので、一般ユーザで環境変数PATHが通って
いない場合には「/sbin/ifconfig」と実行しましょ
う。図9では引数にeth0を渡しています。この

コマンドラインでIPv4の設定を行う4
ifconfig eth0 addr 192.168.1.111 netmask 255.255.255.0

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

76 - Software Design May 2014 - 77

出力から「HWaddr」でNICのMACアドレス、
「inet addr」／「Bcast」／「Mask」で IPv4アドレ
ス／ブロードキャスト／ネットマスク、「inet6
addr」でIPv6アドレスが設定されているのがわ
かります。
　行頭に「UP」のある行から下はインターフェー
スの状況を示します。UPはインターフェース
が稼働状態になっているかどうかです。未稼働
状態ではここに「UP」が表示されず、「DOWN」
も書かれず、ifconfigコマンドに -aオプション
を付けないとインターフェースすら見えません。
BROADCASTとMULTICASTはそれぞれブ
ロードキャスト、マルチキャストをサポートし
ていることを指します。RUNNINGはこのイン
ターフェースを使ってパケットが転送されてい
ることを示します。
　RXは受信したパケット、TXは送信したパ
ケット、collisionsは衝突パケット数、RX bytes
は受信したバイト数、TX bytesは送信したバ
イト数です。
　RHEL系では/etc/sysconfig/network-scripts/
ifcfg-インターフェース名、Debian系では/etc/
network/interfacesにインターフェースの設定
を記述して、serviceコマンドでネットワー
ク設定をリロードすれば、その設定が有効にな

るでしょう。しかし、そうもいかない状況が
……ある場合もあるので、ここでは ifconfigを
使って IPv4を設定する方法を見ておきましょ
う（管理者権限が必要です）。それが冒頭のコマ
ンドです。
　第1引数はeth0というインターフェースを指
定します。man interfaceの「書式」にもある
ように、第1引数はインターフェースに決まっ
ているので、順番に気をつけましょう。それ以
降は、addr引数のあとに IPv4アドレス、net
mask引数のあとにネットマスク値を指定します。
実行後、ifconfig eth0を実行してアドレス
が変わっていることを確認しましょう。実はこ
れだけでは不十分な場合があり、ifconfigで異
なるネットワークアドレスの IPv4アドレスを
変更したあとはrouteコマンドでのゲートウェ
イ設定が必要になります。
　routeコマンドはオプションも引数も与えな
いで実行すると、現在のルーティングテーブル
一覧を表示します（図10）。「Destination」は宛
先ネットワークホスト、「Gateway」がゲートウェ
イの指定です。宛先が「0.0.0.0」の行がデフォル
トゲートウェイの状態です。
　図11はネットワーク状態を表示する
netstatコマンドで、複数設定されたルーティ

 ▼図9　IPアドレスなどを確認する

$ sbin/ifconfig eth0
eth0 Link encap:Ethernet HWaddr d0:27:88:XX:XX:XX
 inet addr:192.168.1.98 Bcast:192.168.2.255 Mask:255.255.255.0
 inet6 addr: fe80::d227:88ff:XXXX:XXXX/64 Scope:Link
 inet6 addr: 2001:380:XXXX:XXXX:d227:88ff:XXXX:XXXX/64 Scope:Global
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:376744 errors:0 dropped:130 overruns:0 frame:0
 TX packets:273601 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:387490821 (369.5 MiB) TX bytes:77572048 (73.9 MiB)

 ▼図10　ルーティングテーブルを表示する

$ route
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 192.168.2.1 0.0.0.0 UG 0 0 0 eth0
192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

サーバ管理者になったら頼りになるコマンド
——作業の効率化と自動化を見据えて 第3章

78 - Software Design

 ▼図13　ルーティングテーブルを確認

$ route
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 192.168.2.1 0.0.0.0 UG 0 0 0 eth0
172.16.111.0 192.168.2.100 255.255.255.0 UG 0 0 0 eth0
192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

 ▼図12　ゲートウェイを追加する

route add -net 172.16.111.0 netmask 255.255.255.0 gw 192.168.2.100

 ▼図11　ネットワーク状態を表示する

$ netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 219.XXX.XXX.XXX 0.0.0.0 UG 0 0 0 eth0
172.16.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2
192.168.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 tun0
192.168.1.0 192.168.0.1 255.255.255.0 UG 0 0 0 tun0
192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0 br0
192.168.5.0 192.168.0.1 255.255.255.0 UG 0 0 0 tun0
219.XXX.XXX.XXX 0.0.0.0 255.255.255.248 U 0 0 0 eth0

ングテーブル一覧を表示します。表示される項
目は routeもnetstat -rnも同じです。ここ
で「192.168.1.0」と「192.168.5.0」ネットワーク
は192.168.0.1のゲートウェイを利用するよう
に設定されていることがわかります。
　ゲートウェイの追加は図12のようにコマン
ド実行します。addコマンドで-netと対象ネッ
トワーク、netmask引数に対象ネットマスク値、
経路であるゲートウェイアドレスをgw引数と
合わせて指定します。削除するときはaddを
delに変えて実行すれば消えます。ゲートウェ
イの追加は管理者権限が必要です。
　実行したらrouteコマンドでルーティングテー

ブルを表示してみましょう（図13）。期待どお
りにゲートウェイが追加されたでしょうか。
「172.16.111.0」から始まる行の設定が追加され
たことが確認できますね。
　ifconfigとrouteを使ってネットワーク設定し
ましたが、両方をこなせるipコマンドという
ものもあります。興味が湧いたらマニュアルを
見て使ってみてください。
　世の中は便利なもので、DHCPが稼働して
いる環境であれば、dhclient eth0のように
dhclientコマンドを実行するとIPアドレスな
どが自動設定されると思います。

　USBメモリや外付けHDDをマウントして
使っていたが、メンテナンスのためにumount

コマンドで取り外そうとしたら、図14のよう
なエラーが表示されました。そんな場合はメッ

デバイスを利用しているユーザ／プロセスを調べる5
$ lsof /media/

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

78 - Software Design May 2014 - 79

セージに書いてあるとおり、lsofかfuserで
原因がわかります。
　冒頭で挙げた lsofコマンドを使ってみましょ
う。lsofの引数にアンマウントしようとした
/mediaを与えてみます（図15）。結果、プロセ
スbashがPID29764としてユーザryosukeに実
行されていることがわかります。FDが「cwd」
になっているのでユーザが/mediaにとどまっ
ているのでしょう。
　この場合、ユーザryosukeに違うディレクト

リへ移動してもらうか、プロセス IDがわかっ
ているのでkill -9 29764でプロセスをkill
すればumountを実行することができます。
　lsofはストレージ以外にもポートでのプロセ
ス特定もできます。図16はTCPの80番を利
用しているプロセスの情報を表示しています。
見知らぬポートが開いているな、と感じたらす
かさずこれで利用しているプロセスを調べましょ
う。この出力例では、apache2プロセスをユー
ザwww-dataが実行しているのがわかります。

 ▼図14　umount時のエラーメッセージ

$ sudo umount /media
umount: /media: device is busy.
 (In some cases useful info about processes that use
 the device is found by lsof(8) or fuser(1))

 ▼図15　ストレージを利用しているユーザ／プロセスを把握する

$ lsof /media/
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 29764 ryosuke cwd DIR 8,17 4096 1 /media

 ▼図16　ポートを利用しているユーザ／プロセスを把握する

lsof -i:80
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
apache2 14370 root 4u IPv6 18715417 0t0 TCP *:http (LISTEN)
apache2 14373 www-data 4u IPv6 18715417 0t0 TCP *:http (LISTEN)
apache2 14374 www-data 4u IPv6 18715417 0t0 TCP *:http (LISTEN)
apache2 14375 www-data 4u IPv6 18715417 0t0 TCP *:http (LISTEN)

　「接続先のサーバにはpingが通るけど、Web
サーバは生きているか？　SMTPサーバは生き
ているか？」というときに、GUIがなければ、サー
ビスの稼働確認はどうしたらいいでしょうか。

例❶ $ w3m http://www.gihyo.jp
例❷ $ wget http://www.gihyo.jp
例❸ $ curl http://www.gihyo.jp
例❹ $ telnet www.gihyo.jp 80

　コマンドラインで使えるブラウザがあります。
例①のw3mブラウザをインストールしていれば、
Webサイトへのアクセスを確認できます（図17）。
　ほかに例②のwgetや例③のcurlは引数に渡
したURLのページを取得、出力するのでこち
らもWebサーバの稼働確認に使えます。
　例④のtelnetコマンドは対話的にWebサー
バにアクセスします。これはもともと telnetサー
バに接続し、TELNETプロトコルを利用して

Webサーバに接続してサービスの稼働確認を行う6
$ telnet www.gihyo.jp 80

サーバ管理者になったら頼りになるコマンド
——作業の効率化と自動化を見据えて 第3章

80 - Software Design

 ▼図17　w3mでのWebサイト表示

リモートメンテナンスするツールです。telnet
通信は暗号化されておらず、認証のためのパス
ワードが平文でやりとりされます。そのため盗
聴を危惧して現在はSSHを利用してリモート
ログインするのが一般的になりました。
　telnetはホスト名とポート番号を指定すれば、
TELNETプロトコルを使わない通信ができま
す。ここではそれを利用してWebサーバとし
て技術評論社のサイトに接続します（図18）。
telnetの引数に、対象ホスト名かIPアドレスと、
ポート番号を指定します。Webサーバから返
事が返ってきたら、HTTPのGETコマンドと、
取得するPATH、HTTPバージョンを入力し
ます（❶）。その後、空行を入力するために、何
も文字を入れずに©を押します。数行レ
スポンスがあったあと、そっけなくCloseされ
てしまいました。
　❷を見るとステータスコード302が返ってき
ています。技術評論社のトップページを取得し

ようとしましたが、別の場所を参照するように
言われています。❸のLocationがその参照先
ですね。
　HTTPは基本的に1つの接続で1つのファイ
ルを取得します。302のコードとLocationが返っ
てきてしまったら、もう一度アクセスして
URLを指定しなおさなければいけません。
Webブラウザはページにリンクされた IMGタ
グやLINKタグなどを参照して画像やCSSファ
イルを都度接続／取得します（Webサーバの設
定によっては、ページにリンクされているリソー
スすべてを取得するまで接続を切らないという
こともできます）。
　ブラウザはページ内の別ファイルの取得にも、
「別の場所を参照しろ」ということにも、ちゃん
と対応してページを表示してくれてエラいです
ね。では、その参照先にアクセスしてみましょ
う（図19）。無事に技術評論社のトップページ
が得られましたね。

 ▼図18　telnetでWebサーバに接続する（初回）

$ telnet www.gihyo.jp 80
Trying 49.212.34.191...
Connected to www.gihyo.jp.
Escape character is '^]'.
GET / HTTP/1.0 ←❶
 ←何も入力せずにENTER
HTTP/1.1 302 Moved Temporarily ←❷
（略）
Location: /?ard=1395297528 ←❸

Connection closed by foreign host.
※下線部分はユーザが入力する部分を表す

 ▼図19　telnetでWebサーバに接続する（2回目）

$ telnet www.gihyo.jp 80
Trying 49.212.34.191...
Connected to www.gihyo.jp.
Escape character is '^]'.
GET /?ard=1395297528 HTTP/1.0

HTTP/1.1 200 OK
（略）
<!DOCTYPE html>
（略）
<title>トップページ｜gihyo.jp ... 技術評論社</title>
<meta name="description" content="" />
<meta name="keywords" content="技術評論社,gihyo.jp," />
※下線部分はユーザが入力する部分を表す

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

80 - Software Design May 2014 - 81

　コマンドラインでの強力なツールの1つにcurl
があります。「Client for URL」の略で、ネットワー
クでつながるリソースURLに対するクライアン
トツールです。さまざまなプロトコルをサポート
し、豊富な機能を持っています。
　先ほどもcurlコマンドは登場していますが、
HTTPプロトコルを利用してファイルのダウン
ロードに利用していました。引数にURLを指定
すれば、標準出力に得られたファイルを出力し
てくれます。htmlファイルを取得する場合は、
-oで保存先ファイル名を指定するか、「¦」でテキ
ストブラウザに入力（curl http://gihyo.jp/
¦ w3mを実行してvを入力）すれば、HTML表示
を確認できます。
　認証が必要なページにアクセスする場合は、
図20のように実行すれば、アクセスできます。
例①がSSLクライアント認証、例②がBASIC
認証、例③がDIGEST認証になります。鍵ファ
イルにパスワードがかかっている際は、「証明書
ファイル:パスワード」のように引数を指定でき
ます。-kは自己署名証明書を使っているサーバ

に対してアクセスする際に、「認識済み」を伝え
るオプションです。
　コマンドラインからHTTP POSTメソッド
も実行できます。図21はWiki実装の1つであ
るHikiの検索ボタンを使って「WORD」を検索
した例です。出力に検索結果のHTMLが出て
きます。
　また、curlでメールを送ることができます。
図22では、--upload-fileオプションで指定す
るテキストファイルにメッセージを込めて送信
してくれます。ファイルに「From:」と「To:」、
「Subject:」の文字列があれば、相手のメールク
ライアントでもそれが表示されます。
　SSH経由でファイル転送するscpも利用で
きます。ファイルを取得する場合は、冒頭のコ
マンド（1行目）のように-oオプションでファイ
ルの保存先を指定します。
　scpでアップロードする場合は、冒頭のコマ
ンド（2行目）のように --upload-fileオプション
で転送ファイルを指定します。
　応用技として、図23はcurlを使ってチケッ

curlを使ったサーバとのデータ取得／送信7
$ curl -k -o data.txt -u ryosuke scp://example.com:22/tmp/ ｭ

data.txt
$ curl -k --upload-file data.txt -u ryosuke scp://example. ｭ

com:22/tmp/

 ▼図20　認証が必要なページにアクセスする

例❶ $ curl -k --cert 証明書ファイル --key 鍵ファイル --basic -u ユーザ名:パスワード URL
例❷ $ curl --basic -u ユーザ名:パスワード URL
例❸ $ curl --digest -u ユーザ名:パスワード URL

 ▼図21　HTTP POSTメソッドを実行する

$ curl --data "key=WORD&comment=search&c=search" http://example.com/hiki.cgi

 ▼図22　メールを送る

$ curl --mail-from ryosuke@example.com --mail-rcpt ryosuke@example.jp --upload-file msg.txt ｭ
smtp://example.com:25

サーバ管理者になったら頼りになるコマンド
——作業の効率化と自動化を見据えて 第3章

82 - Software Design

　SSLを利用しないWebサーバへの接続は
telnetでできるのを確認しました。ここでは
SSLを利用して暗号化通信をしているサーバ
への接続を試してみましょう。
　telnetではSSL通信を手作業で処理するの
は面倒ですので、opensslパッケージがインス
トールされているのなら、そちらを使いましょ
う。まずは、opensslコマンドの内部コマン
ドs_clientを利用します（図24）。-hostで接
続先ホスト名、-portで接続先ポート番号を指

定します。ほかのコマンドは1文字オプション
には「-」が1つで、2文字以上のオプションには
2つの場合が多いのですが、opensslコマンドは、
長い名前のオプションでも「-」が1つですので
気をつけてください。
　openssl s_client実行後、サーバ証明書
のダウンロードや検証がされていることを確認
できますね。証明書が返ってくるところまでく
れば、あとは telnetでのHTTPのやりとりと同
じです。コンテンツを確認してください。

httpsサーバに接続する8
$ openssl s_client -host example.com -port 443

ト管理システムTracに新しいチケットを追加
する様子です。BASIC認証だけがかかってい
るサイトですので、--basicと-uでユーザ名と
パスワードを指定します。❶はTracにアクセ
スしてCookieを--cookie-jarで取得します。最
近のTracはチケット登録にトークンを必要と
しているため、❸の登録コマンドで利用するた
めに、❷のコマンドでCookieからトークンを取
り出します。❸で --dataと --data-urlencodeを
使ってPOSTデータを作り、サーバに送ります。
URLエンコードが必要なパラメータのみを

--data-urlencodeオプションの引数に渡します。
　これで変数の値を入れ変えて実行するスクリ
プト作れば、いちいちブラウザでちょこちょこ
しなくても楽にチケット登録ができますね！
　curlはHTTPヘッダを出力したり、複数
NICを持つホストでどのインターフェースか
らアクセスするかを指定できたり、FTPや
telnetをしたりとできることが豊富です。自動
化に使えるコマンドですのでマニュアル読んで
習得しましょう。

 ▼図23　Tracにチケットを追加する

$ curl --basic -u ryosuke:passw0rd ¥ ←❶
--cookie-jar trac.cookie --output trac.html ¥
http://example.com/trac/sd/newticket
$ COOKIE=`tail -n1 trac.cookie ¦ awk '{ print $7 }'` ←❷
$ curl --basic -u ryosuke:passw0d ¥ ←❸
--cookie-jar trac.cookie --cookie trac.cookie ¥
--data "__FORM_TOKEN=$COOKIE" ¥
--data-urlencode "field_summary=テスト" ¥
--data-urlencode "field_description=テストチケット" ¥
--data
"field_type=defect&field_priority=major&field_milestone=&field_component=component1&field_ｭ
version=&field_keywords=&field_cc=&field_owner=&submit=SUBMIT" ¥
http://example.com/trac/sd/newticket
※行末に¥を入力することで、複数行に渡ってコマンドラインを記述できる

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

82 - Software Design May 2014 - 83

 ▼図24　httpsサーバに接続する

$ openssl s_client -host example.com -port 443
CONNECTED(00000003)
depth=0 C = COM, O = EXAMPLE, CN = example.com
verify error:num=18:self signed certificate
verify return:1
depth=0 C = COM, O = EXAMPLE, CN = example.com
verify return:1

Certificate chain
 0 s:/C=COM/O=EXAMPLE/CN=example.com
 i:/C=COM/O=EXAMPLE/CN=example.com

Server certificate
-----BEGIN CERTIFICATE-----
MIIDozCCAougAwIBAgIJAOvqkzGPQ0FNMA0GCSqGSIb3DQEBBQUAMD8xCzAJBgNV
BAYTAkpQMRUwEwYDVQQKEwxERUVSIE4gSE9SU0UxGTAXBgNVBAMTEGRlZXItbi1o
b3JzZS5uZXQwHhcNMTMwNzI2MDc0MDMzWhcNMjMwNzI0MDc0MDMzWjA/MqswCQD
（略）

GET /index.php HTTP/1.0
Host: example.com

HTTP/1.1 200 OK
Date: Sat, 22 Mar 2014 13:55:46 GMT
Server: Apache/2.2.22 (Debian)
X-Powered-By: PHP/5.4.4-14+deb7u7
（略）
※下線部分はユーザが入力する部分を表す

　dateコマンドは日時を設定／表示するコマ
ンドで、オプションも引数も渡さずに実行する
と、今の日時を表示します。この日時表示は、
次のように柔軟にカスタマイズできるので、有
効活用したいコマンドの1つです。

$ date +%Y-%m-%d
2014-03-18

　dateコマンドが重宝するのはバックアップ
ファイル名の指定などです。ファイルをバック
アップしたり、圧縮ファイルを作成するときに
「backup.tar.gz」や「backup.zip」など、ファイル
のタイムスタンプをたよりにバックアップを作
成するのは、非常に危険です。「backup-2014-

05-18.tar.gz」のようにファイル名に日付や時間
が入るのが理想的ですが、これをわざわざカレ
ンダーや時計を見て圧縮ファイル名を指定する
のではなく、dateコマンドから生成してもらう
のがいいでしょう。
　圧縮ファイルを作成する場合は、図25のよ
うにコマンドを実行します。ここではtarコマ
ンドで/etc/ディレクトリを1つのファイルに
まとめ、XZ圧縮して/var/backups/etc-2014-
05-18.tar.xzとして書き込まれます。
　dateコマンドは今の日付のみを扱うわけでは
なく、-dオプションで指定した文字列に対応
した日付を出力することもできます。この指定
文字列が比較的柔軟にできています。次の例で
は「3 days ago」を-dオプションに指定すること

ファイル名に自動的に日付を入れる9
tar cfvJ /var/backups/etc-`date +%Y-%m-%d`.tar.xz /etc

サーバ管理者になったら頼りになるコマンド
——作業の効率化と自動化を見据えて 第3章

84 - Software Design

で、今日から3日前の日付を整形して出力しま
す。

$ date -d "3 days ago" +%Y-%m-%d
2014-03-15

　バックアップで日付ごとに分けているディレ
クトリがあるとして、1日前と2日前との差分
を取りたい場合に図26のように実行すると楽
に取得できます。

　これは差分を出力するdiffコマンドに、-u（diff
のunified形式を利用して出力する）、-N（新し
いファイルも比較対象とする）、-r（サブディレ
クトリも再帰的に探索する）のオプションを付
けて、指定した1日前と2日前の2つのディレ
クトリの差分を出力します。
　-dの 指 定 文 字 列 に は「2014/05/18」や「1
month ago」などの文字も使えますが、実際に
希望した文字列が返ってくるかは、「素振り」を
しっかりしてからやりましょう。

 ▼図25　バックアップを取る際にファイル名に日付を入れる

tar cfvJ /var/backups/etc-`date +%Y-%m-%d`.tar.xz /etc

 ▼図26　1日前と2日前のバックアップファイルを比較する

$ diff -uNr /var/backups/etc-`date -d yesterday +%Y-%m-%d` /var/backups/etc-`date -d ｭ
"2days ago" +%Y-%m-%d`

　定期的バックアップはとても大切なことです。
ここでは tarによるアーカイブとrsyncで別ディ
レクトリ／別ホストへのバックアップを利用し
ます。
　tarコマンドは複数のファイルを1つのアー
カイブファイルにまとめるコマンドです。オプ
ションによっては、圧縮ライブラリを利用して
アーカイブを圧縮してファイルを作成します。
図27では、設定ファイルが詰まった/etc/ディ
レクトリを/var/backups/etc-年 -月 -日 .tar.xz
のファイルに圧縮して保存します。tarのオプ
ション「cfvJ」は前から「アーカイブを作成
（Create）」「ファイル名を指定（File）」「詳細出
力（Verbose）」「XZ圧縮する（なぜ“J”なんです
かね……）」の意味があります。オプションのあ
とに、出力ファイル名と対象ファイル（この場

合は/etcディレレクトリ）が指定されます。
　tarで圧縮しただけでは/var/backups以下に
アーカイブがたまる一方です。これをある程度
経ったら、古いファイルを削除するようにしま
しょう。図28では、findコマンドを使って
/var/backups/以下を対象に、最終更新日が3
日以前のファイルを抽出し、-exec rmで削除
を実施しています。findコマンドに-type fオ
プションを付けることでファイルのみが対象に
なり、さらに、-ctimeで最終更新日3日以前の
ファイルが対象になります。
　tarでのバックアップもいいですが、ローカ
ルへのファイルコピーでは、そのPCやHDD
がクラッシュした際が心配です。ここはリモー
トのホストに転送するようにしましょう。SSH
接続できるバックアップファイルコピー先ホス

リモートホストにバックアップファイルを作成する10
rsync -auvz -e ssh /var/backups/ ryosuke@backupsrv:̃/ ｭ

mybackups/

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

84 - Software Design May 2014 - 85

 ▼図27　バックアップファイルを作成する

tar cfvJ /var/backups/etc-$(date +%Y-%m-%d).tar.xz /etc

 ▼図28　最終更新日が3日以前のファイルを削除する

find /var/backups/ -type f -ctime +3 -exec rm -f {} ¥;

 ▼図29　tarでリモートホストにバックアップファイルを作成する

$ tar cvfJ - /etc ¦ ssh -l ryosuke 192.169.1.4 "cat > /var/backups/backup-$(date ｭ
+%Y-%m-%d).tar.xz"

トがあるとして、図29のように実行します。
　この例では、/etcをアーカイブすることは変
わりませんが、出力ファイルを示す引数に「-」
が指定されています。コマンドオプションで出
力ファイルを指定できる場合、それに「-」を指
定すると、標準出力に出力されることがUNIX
コマンドにはよくあります。ここではそれを利
用しています。
　また、続く「¦」の先のsshでは、バックアッ
プ先ホストへのログインオプションのあとに、
catコマンドを「"」で囲んで付けています。ssh
はログインオプションのあとにコマンドを記述
すれば、それをログイン先で実行してログアウ
トして戻ってきます。今回はコレを利用して、
tarコマンドの出力を、catコマンドの標準入力
として読み込み、/tmp/backups以下にアーカ
イブを出力します。catコマンドはとくに指定
しなければ、標準入力からの入力を標準出力に
書き出します。
　アーカイブファイルでの保存であれば、これ
でもいいでしょう。しかし、アーカイブではな
くそのままのファイル構造をバックアップして
おきたい場合は、rsyncコマンドを利用するの
がいいでしょう。rsyncコマンドはリモートや
ローカルにファイルをコピーできるツールです。
　冒頭に挙げたコマンドでは、ローカルの
/var/backupsディレクトリ以下を対象に、
rsyncコマンドを実行しています。rsyncコマ

ンドには-auvz -e sshのオプションを付けて
います。「ryosuke@backupsrv:̃/mybackups/」は
バックアップ先の指定で、ホスト名がbackup
srvの/home/ryosuke/mybackups/以下にコピー
することを示しています。
　rsyncのオプションは、「a」はアーカイブモー
ド（Archive）と呼ばれるオプションで、指定し
たディレクトリ以下をシンボリックリンク、ファ
イルの権限、タイムスタンプ、オーナー／グルー
プ権限、デバイス／特殊ファイルも含めてバッ
クアップします。「u」はバックアップ先より新
しい（Update）ファイルを転送、「v」は詳細な出
力（Verbose）、「z」は圧縮することを示します。
　「u」オプションを利用すると、新規／更新さ
れたファイルのみをバックアップ先に転送でき
るため、毎回大容量転送になりません。そこが
cpや tarよりも便利なところです。
　rsyncはネットワークを経由せずにローカル
ストレージへのコピーもできます。次のように
実行すれば、/etc以下で追加／更新されたファ
イルだけがバックアップされます。

$ rsync -auvz /etc /var/backups/etc

　cronなどで実行させる際は「v」オプションを
はずさないと、メールが飛びます。テストを行っ
たあとは「v」オプションを外し、標準エラーの
みがメールで飛ぶように調整しましょう。ﾟ

サーバ管理者になったら頼りになるコマンド
——作業の効率化と自動化を見据えて 第3章

86 - Software Design

リード文入る■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□

第1章 ●○●○●○●○
●○●○●○●○

　Windowsを利用することが多い環境では、
Windowsのファイル共有用のサーバが用意さ
れていると思います。この場合は、smbclient
コマンドを利用するとファイル一覧の取得やファ
イルのダウンロード／アップロードが手軽にで
きます。
　まずは、Windowsファイル共有にアクセス
できるかを確認しましょう。-Lオプションに
接続先ファイル共有ホストの IPアドレスかホ
スト名を指定します。図1では IPアドレス
192.168.1.4で稼動しているLinux上のSamba
サーバに接続します。

　Windowsがファイル共有サーバの場合は、
接続表示部分が「Domain=[ホスト名] OS=[Win
dows 7 Home Premium 7601 Service Pack 1]

Server=[Windows 7 Home Premium 6.1]」の よ
うになるだけで、その後の使い勝手は変わりま
せん。
　smbclientは引数にファイル共有サービス名
だけを指定（コマンドラインではsmbclient
//サーバ名 /共有名 /）すれば、パスワード認
証後に対話的にファイル共有ディレクトリを歩
きまわり、ファイルの取得、手元から共有ディ
レクトリへのファイルアップロードを行えます。
　スクリプトで自動実行したい場合などには、
対話的な利用は不便ですが、smbclientは1行
でのファイルのアップロード／ダウンロード／

世の中には、さまざまな人種、国と言語、文化、習慣があるように、コンピュータを使って仕事する際には、自
分が使うOSとは違うOSを使っている人とのコミュニケーションが必要です。ここでは、WindowsやMac
OS Xを使っている人との共同作業を前提に、ファイルのやりとりができるようになりましょう。

第4章
共同作業で役立つコマンド
——�複数OS間でのファイル共有、

文字コード対応

Windows共有への
アクセス

 ▼図1　ファイル共有ホストにアクセスする（対話形式）

$ smbclient -L 192.168.1.4
Enter ryosuke's password:
Domain=[ENDEAVER] OS=[Unix] Server=[Samba 3.6.6]

 Sharename Type Comment
 --------- ---- -------
 print$ Disk Printer Drivers
 IPC$ IPC IPC Service (endeaver server)
 mfc Printer mfc
 ryosuke Disk Home Directories
Domain=[ENDEAVER] OS=[Unix] Server=[Samba 3.6.6]

 Server Comment
 --------- -------
 ENDEAVER endeaver server

 Workgroup Master
 --------- -------
 ENDEAVER ENDEAVER

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

86 - Software Design May 2014 - 87

リード文入る■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□
□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□■□□□□

第1章 ●○●○●○●○
●○●○●○●○

閲覧もサポートしています。
　すでに共有ファイルサーバ内の目的のファイ
ルへのPATHがわかっているならば、コマン
ドラインで図2のように実行することで、ダウ
ンロード／アップロードができます。-cオプショ
ンで、実行するコマンドとファイルを「'（シン
グルクォート）」で括って指定することで、1行
で実行できます。たとえば、ファイルの取得で
あれば「get ファイル名」、ファイルのアップ
ロードであれば「put ファイル名」をコマンド
として指定します。複数ファイルを扱う場合は、
それぞれmget、mputに変えて使ってください。
　テキストファイルの中身を見る程度であれば、
図3のようにmoreコマンドを使えば、手元に
ダウンロードする手間が減り、ディスクにもや
さしいですよね。終了する際は、qを入力す
るとファイル内容表示から抜けます。
　ファイル共有に認証が必要であれば、図4の
形式のテキストファイルを作成して-Aオプショ

ンで指定すると、パスワードを読み込んでくれ
ます。便利な機能ですが、パスワードの書いて
あるテキストファイルは他人に見えないように
適切にパーミッションを設定しましょう。
　特定のディレクトリ以下をまとめて取得する
場合は、図5のように実行します。

Web共有への
アクセス

　WindowsでもUNIX環境でも、手軽に利用
できるWeb共有のWebDAV注1もよく利用され
る共有方法の1つです。ここへのアクセス方法
を見てみましょう。1つはcadaverコマンドの
利用です。認証情報は ̃/.netrcに記述します。
　cadaverには引数としてWebDAVのURLを
指定します。アクセスができると図6のように
表示されます。

注1） Web-based Distributed Authoring and Versioning

 ▼図2　 共有ホストのファイルをダウンロード／アップロードする（1行で実行）

$ smbclient //ENDEAVER/share -c 'get ¥photos¥2014-04-01¥IMG-0001.jpg'
$ smbclient //ENDEAVER/share -c 'put ¥photos¥2014-04-01¥index.html'

 ▼図3　共有ホストのファイルを参照する（1行で実行）

$ smbclient //ENDEAVER/share -c 'more ¥photos¥README'

 ▼図4　ファイルからパスワードを読み込んで認証する

$ cat ̃/.smbshare
username = ryosuke
password = passw0rd
domain = endeaver
$ chmod 600 ̃/.smbshare
$ smbclient //ENDEAVER/share -c 'get ¥photos¥2014-04-01¥IMG-0002.jpg' -A ̃/.smbshare

 ▼図5　ディレクトリ以下のファイルをまとめてダウンロードする

$ smbclient //ENDEAVER/share -c 'prompt; recurse; mget ¥photos/2014-04¥matome¥'

 ▼図6　WebDAVサーバにアクセスする

$ cadaver http://example.com/dav/
dav:/dav/> ls
Listing collection `/dav/': succeeded.
Coll: 無題のフォルダー 0 2月 15 2013
Coll: ProjectDNH 0 9月 22 2012
Coll: photos 0 12月 16 2013
 README 52 11月 27 2009
 index.html 8047 2月 1 2010

共同作業で役立つコマンド
——複数OS間でのファイル共有、文字コード対応 第4章

88 - Software Design

curlでアップロード
　もう1つ、curlを利用してファイルのアッ
プロードもやってみましょう（図7）。curlでは
-upload-fileオプションでファイルのアップロー
ドができます。また、IDとパスワードを含め
たURLを設定ファイルとして用意すれば、パ
スワードの入力なしでファイルのアップロード
が可能です。設定ファイルは任意のファイル名
で構いません。ただ、ほかのユーザに見られな
いようにchmod 600 .davshareと権限設定し
ておきましょう。ファイルの中身はURLに ID
とパスワードを「:」を挟んだものです。

ファイル名文字化け
に立ち向かう

　日本語ファイル名がZIP圧縮ファイルに格
納されると文字コードの取り扱いがイマイチの
ため、ディストリビューションに含まれる
unzipコマンドではファイル名の文字化けが発
生します（図8）。Ubuntu Japanese Teamが提
供しているunzipパッケージなら -Oオプショ
ンで文字コード指定できますが、ほかのディス
トリビューションではunarコマンドを利用す
るのが便利です（図9）。
　Debian GNU/Linux、Ubuntu、Fedoraに は
unarコマンドが含まれていますが、CentOS 6

 ▼図7　curlでファイルをアップロードする

$ curl -upload-file IMG-0003.jpg http://dav.example.com/photos/
$ cat ̃/.davshare
http://ryosuke:passw0rd@dav.example.com/photos/
$ curl -upload IMG-0004.jpg `cat ̃/.davshare`

 ▼図8　Windowsで作った日本語ファイル名のZIPを展開（unzip）

$ unzip /tmp/ログ20091021.zip
Archive: /tmp/ログ20091021.zip
 inflating: 20091021/readme.txt
 inflating: 20091021/?[/aptitude.log
 inflating: 20091021/?[/clientlog(TCP).log
 inflating: 20091021/?[/clientlog.txt
$ find .
.
./???O20091021
./???O20091021/?G???[
./???O20091021/?G???[/vpnclient.ini
./???O20091021/?G???[/clientlog.txt
./???O20091021/?G???[/aptitude.log
 ↑文字化けしている

 ▼図9　Windowsで作った日本語ファイル名のZIPを展開（unar）

$ unar /tmp/ログ20091021.zip
/tmp/ログ20091021.zip: Zip
 ログ20091021/readme.txt (1188 B)... OK.
 ログ20091021/エラー/aptitude.log (2958 B)... OK.
 ログ20091021/エラー/clientlog(TCP).log (15352 B)... OK.
$ find .
.
./ログ20091021
./ログ20091021/正常
./ログ20091021/正常/clientlog.txt
./ログ20091021/正常/aptitude.log
 ↑文字化けしていない

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

第2特集

88 - Software Design May 2014 - 89

にはまだ入っていないようです。ソースからビ
ルドするか、どこかからSRPMをダウンロー
ドし、ビルド、インストールするしかありませ
ん。
　convmvコマンドというファイル名の文字コー
ドを変換するperlスクリプトもあります。こ
れは-fオプションで元文字コード、-tオプショ
ンで変換先文字コードを指定します（図10）。
メッセージにあるように、-fと-tオプションだ
けでは実際の変換は行われません。--notestオ
プションを付けることで、実際のファイル名変
更が行われます。
　convmvコマンドは変更対象ファイルを指定
する必要があります。しかし、ファイル名が文
字化けしている段階で、それをコマンドライン
から指定することは難しいので、図10のよう
にワイルドカードを利用する必要が生じます。
この例では、もし同じディレクトリに「.zip」を
拡張子に持つファイルがあると、単純に*.zip
とは指定できないため、厄介です。実行する場
所を選ぶことになってしまうのが無念ですね。
　すでに展開してしまったファイルや、もらっ
たUSBメモリに直接入っていたファイルの日
本語ファイル名の変換が難しい場合には、GUI
が設定されている環境ならば、nautilusを起動

してファイルマネージャとして利用し、ファイ
ル名変更するのがいいでしょう。こういうのを
適材適所と言います。

半角カナ／全角カナの変換
　最近の日本語変換エンジンは半角カナを出し
てくれるので、あまり意味がないかもしれませ
んが、nkfで半角ファイル名も作ってみましょ
う（図11）。-Z4オプションを付けるとカタカ
ナを半角にしてくれます。入力に漢字がある場
合、それは全角のままでキープされます。半角
カナから全角カナに戻す場合は-Wオプション
を利用します（図12）。

まとめ
　これからLinuxを利用する人を対象にコマン
ドの使い方をまとめましたが、この特集でコマ
ンド使いになることを誓ってくれた方が1人で
もいれば幸いです。ここで扱ったコマンドはディ
ストリビューションに含まれるごく一部ですし、
コマンドオプションもその中のごく一部です。
もし興味がわいたら、各マニュアルや開発元
WebサイトやWebの情報などを検索して、奥
の深さを楽しんでください。ﾟ

 ▼図10　ファイル名の文字コードを変換する

$ convmv -f sjis -t utf8 *.zip
Your Perl version has fleas #37757 #49830
Starting a dry run without changes...
mv "./???{??@?C????.zip" "./日本語ファイル名.zip"
No changes to your files done. Use --notest to finally rename the files.

 ▼図11　ファイル名の全角カナを半角カナにする

$ cp ninjya.txt $(echo "ニンジャスレイヤー" ¦ nkf -Z4).txt
$ ls *.txt
ninjya.txt ﾆﾝｼﾞｬｽﾚｲﾔｰ.txt

 ▼図12　ファイル名の半角カナを全角カナにする

$ ls ﾆﾝｼﾞｬｽﾚｲﾔｰ.txt ¦ nkf -W
ニンジャスレイヤー.txt

共同作業で役立つコマンド
——複数OS間でのファイル共有、文字コード対応 第4章

90 - Software Design

アプリケーション開発者がインフラ担当に！
Rettyのサービス拡大を支えた“たたき上げ”DevOps短期集中連載

まあチャーハンでも
食べながら

　初めまして。Retty株式会社でチャーハン注1兼
インフラを担当している梅田です。私どもは「食
を通じて世界中の人々をHappyに」の理念のも
と、日本最大級の実名性グルメサイト「Retty注2

（レッティ）」を運営しています。Rettyは2011年
にサービスが開始して3年が経ち、おかげさま
で現在ではユーザ数200万人、投稿数80万まで
成長してきました。
　この短期連載ではRettyの開発を通して、ス
タートアップサービスが急速な成長過程に入っ
たときにどのようなことが起こり、それらにど
う対処すべきか、その一例をインフラ担当の筆
者の経験から紹介したいと思います。

Rettyというサービス
の開発的歴史

　Rettyはプログラミング未経験者も含めた（ス
ゴイ！）、ほんの数名での開発から始まったWeb
サービスです。このようなスタートアップサー
ビスが次第に多くのユーザ様に使ってもらうこ

ととなり、会社の成長を経て中規模、そして大
規模な開発への移行が必要となってきています
（2014年には1000万人以上のユーザ獲得を目指
してます）。現場ではその時々で、どのように
Webアプリケーションとインフラ、そして開発
プロセスをデザインしていくのかを考えてきま
した。
　詳しい話に入る前に、まずは筆者の経歴、普
段の業務、そして業務へのスタンスを知ってお
いてもらったほうが、本稿の視点が明確になる
と思います。

アプリケーション開発出身の
インフラ担当

　前職でソーシャルゲームの開発支援（おもにミ
ドルウェア周りの選定や保守、チューニング）、
前々職ではSNSプラットフォームで自社サービ
スの開発を行っていました。なのでインフラ担
当となったのは今回が初めてです（しかもインフ
ラ担当者は筆者1人）。
　“アプリケーション開発者がインフラ担当にな
る”というキャリアパスは想像していなかったこ
となので、我ながらとても面白く、日々勉強、
勉強です。

Rettyインフラ担当として
AWSとのかかわり方

　RettyではインフラにAWS（Amazon Web

短期集中連載

注1） Rettyでは社員それぞれに担当メニューが付きます（料理に
限らずバーやスイーツといったカテゴリもあります）。
チャーハンを選んだ理由はもちろん筆者が好きだからです
が、

 ・多くの人に愛されるメニュー
 ・ラーメンのように論争になりにくい平和なメニュー
 という点が挙げられます。
注2） http://retty.me

Rettyのサービス拡大を
支えた“たたき上げ”DevOps

アプリケーション開発者がインフラ担当に！

Vagrantを使って既存サーバの見通しを改善する！第1回

 Writer 梅田 昌太（うめだ しょうた）　Retty㈱　チャーハン担当　 Twitter @ebisusurf

実名ユーザたちによるお勧めからレストランを探せるグルメ系Webサービス「Retty」。急成長するサー
ビスの裏側では、融通のきかない古いシステムから大規模システムへの移行という難題が立ちはだかっ
ていました。それを乗り越えたのはインフラ経験なしのアプリケーションエンジニア。スマートなだけ
ではすまされない、現場でのInfrastructure as Code実践を紹介してもらいます。

http://retty.me

90 - Software Design May 2014 - 91

Vagrantを使って既存サーバの見通しを改善する！ 第1回

Services）を利用しています。現在筆者の仕事も
ほとんどがAWSとのお付き合いになります。ア
プリケーション開発者出身なので、ハードウェ
アのキッティング注3やケーブリング、データセ
ンター（以下、DC）選定のスキルなどはほとんど
ありません。それでもなぜ1人でインフラ担当
ができるのか。
　それはひとえにAWSが提供しているサービ
スの豊富さ、API、CLIツールがそろっている
ことで、プログラマブルにインフラを扱うこと
ができるからです。若干言い尽くされた感もあ
りますが、クラウドサービスを使ったインフラ
デザインのすごいところはコストの低さや導入
のスピードではなく（もちろんそれもあります
が）、インフラデザインを含めたオペレーション
そのものが変わったことだと思います。
　これまでのフローでサーバを増やそうと思っ
たら、「サーバの購入、DCでのキッティング、
環境の構築」などなど想像しやすいところから、
実際は「稟議書いてFAXで注文して」とか「電源
は足りるのか？」とか「ラックに入らなくなって
きたがDC内にもう空きがない」などといった実
務的なことや周辺環境に至るまで、本当に多く
のことを考慮する必要がありました。また、技
術レイヤーの壁も大きな問題です。アプリケー
ション開発者よりかなり下のレイヤー（物理層、
ネットワーク層）がカバーできているエンジニア
にしか手が出せなかったことが多かったのです。

　こういうワークフローそのものを、
「プログラマブルに」
「すべてオフィスや自宅からAPI経由で」
「必要なときに必要な分だけ素早く」
「インフラの状態をコード化してGitHubのよう
なVCS（Version Control System）で管理」
できるようになったことが非常に大きな転換だっ
たのではないでしょうか。最終的にはこれが開
発コストの削減や開発速度の向上といったこと
につながると考えています。

AWSは高い？
　実際問題、AWSの請求はそれなりによい金
額です。しかしながら「これまで5人いないとで
きなかったことが1人でできるようになった」と
なれば十分コストメリットがあります。リザー
ブドインスタンスの購入などで揺れ幅はありま
すが、Rettyではサーバコストがおおむね6,000
～7,000ドル／月前後で推移しています（ユーザ
数が増えているので緩やかに上がってきてはい
ますが）。これを高いと取るかどうかが非常に重
要です。
　筆者が考えるに、旧来のオンプレミス構成で
現状のRettyのスピード感に対応しようとする
と3～5人は必要になると思っています。いや、
経験的にスピード感で言うと、人数を増やして
もあまり上がらないことがほとんどで、意思疎
通コストや管理コストばかりが上がる印象です。
　仮に5人と仮定して2005年くらいのオンプレ
ミスインフラをイメージすると、図1のような

注3） ここではおおざっぱに機器の選定や組み立て、配置などの
意味です。

キッティング 機会損失

マネジメントコスト 人件費

2005 年

……

×5＋ 管理コスト、
スピードのロスト etc.

人件費 40 万円
月（諸々含めるとこの金額で採用はかなり難しいが）

 ▼図1　 2005年くらいのオンプレミスインフラの管理コスト
イメージ

AWS

DevOps

GitHub

くらい

EBT
（Elastic Beanstalk）

OpsWorks
……

Chef
Vagrant

……

×1＋
人件費 40 万円
月（たとえばです）

AWS 6,000～7,000ドル
月

 ▼図2　現在の筆者のインフラ管理コストイメージ

92 - Software Design

アプリケーション開発者がインフラ担当に！
Rettyのサービス拡大を支えた“たたき上げ”DevOps短期集中連載

感じでしょうか。これを筆者1人で行うと図2

のようになります。
　急遽スケールさせたくなったときはAMI
（Amazon Machine Image）から即座にインスタン
スを立ち上げてELB（Elastic Load Balancer）
の下に入れることが、AWSのAPIを使えば簡
単に行えます（ELBそのもののスケールはちょっ
とテクニックが必要です）。Multi-AZ注4で配備
することで可用性も容易に確保できます。スケー
ルアップもインスタンスタイプの変更を行うだ
けですぐにできます。ロール分けやコンテキス
トの維持は、GitHubのコードに落としておきま
す（Infrastructure as Codeですね！）。
　なので「開発の問題は増員でなく、お金で解決
してしまえ」と言えるかどうかはかなり大事で
す。従来のように、ベンダーやDCから見積書
をもらってから「もう少し安くならないか」「サー
ビスに対して適切か」といった検討をする、とい
う行為は、スタートアップ企業にはやりにくい
状況です。体感値として適切な見積もりはほぼ
無理ですし、そもそもそんなことを考えてる時
間がもったいない。クラウドのお金より人件費
のほうが高くついてしまいます。それよりも、
使ってから「実際必要になった金額」に対して予
算が適切かを検討できるクラウドを使ったイン
フラデザインのほうが、Rettyのようなサービ
スにはマッチしてると考えています（逆に、「適
切に見積もってキッチリ予定どおりの金額で収
める」という利用にはクラウドはあまり向いてい
ないとも言えます）。
　ということで、小規模のスタートアップでは
エンジニアが使える予算感はかなり大事ですし、
必然的に1人当たりの予算割当は大きくなって
きます。インフラ担当者としては、サービスを
さばくのがつらくなってきたら、インフラエン
ジニアを1人増やすよりも、「とりあえずAWS

のサービスを使って賄ってしまおう（お金で解
決）。その後チューニングで適切にスケールさせ
よう」という流れをよしとするコンセンサスを会
社側としっかり取っておくべきだと思います。
これははっきり言って技術の話ではなく会社と
の信頼関係の話ですが、現実問題として避けて
は通れない部分です。

Rettyインフラ担当と
してのゴール

　最終的には、DevOpsと呼ばれるインフラ担
当をやりつつサービスの開発にどんどんコミッ
トしていくことを目指しています。筆者自身サー
ビス開発は大好きなので、設定ばかりやらずに
少しでもはみ出していきたいと思っています。

サービスに途中参加した
エンジニアとして大事にすべきこと

　先程も書きましたが、Rettyは非エンジニア
が作り出したサービスで、徐々にエンジニアが
アサインしてきたチームです。こういった特性
上、開発やインフラに対するアンチパターンや
ら技術的負債やら、そんな格好いい呼び方もで
きないような、はっきり言ってしまえば「汚れた
構成」がいろいろと見受けられます。
　たとえば、

◦dynamicな領域であるアプリケーションのソー
スコード中に、staticな領域の構成情報（例：
ドメイン名、サーバ環境情報）がハードコードさ
れていて、GitHub上のソースコードと実稼働中
のアプリケーションサーバ内のソースコードとに
乖離がある。単純に言うとGitHubで管理され
ているソースコードをそのままデプロイすると動
かない

◦サブシステムが結合していてオペレーションや構
成の変更に対応できない

◦メールサーバ、バッチサーバ、デプロイサーバ、
監視サーバ、集計サーバが複数のサーバ上（ア
プリケーションサーバ含む）で同居しているため

注4） EC2のインスタンスを物理的に分けられた環境に配備でき
る機能。ロードバランサ配下に均等に置くことで、耐障害
性を高めることができます。RDSの場合、異なるAvailability
Zoneにスタンバイを配備してくれるだけでなく、障害時
には自動フェイルオーバーも行ってくれます。

92 - Software Design May 2014 - 93

Vagrantを使って既存サーバの見通しを改善する！ 第1回

「デプロイフローを変更したい」「メールサービス
をアウトソースしたい」「パッケージをアップデー
トしたい」といった業務効率化のための作業が
行いにくい

といった問題があります。ですが……。

今あるしくみは誰かが試行錯誤した
結果

　今あるしくみというのは、サービスを成長さ
せるために誰かが試行錯誤しながら何とか作り
上げてきたものです。まがりなりにも動いてい
るものを安易に否定することは絶対に良くない
と思っています。筆者自身がこれまで、「あるべ
き論」を大きな声で叫び過ぎたことで周囲を不快
にさせてしまったこともあり、非常に反省して
ます。
　とくにインフラレイヤーは構成の意図を読み
取ることが難しいので（多くの場合意図はなくて
「何となく」だったりしますがw）、まずは「でき
ることから1つずつ」を心がけてます。

Rettyの
リファクタリング

　ここからやっと具体的な話になってきます。
最も重要なことは「変化に対応できる」ようにす
ることです。Yahoo砲やWBS砲注5でアクセス
スパイクが起こるといった、指数関数的にユー
ザ数が伸びるチャンスはいつ来るかわかりませ
ん。チャンスを逃さないためには素早く変更で
きるようにする必要があります。
　今回はRettyのアプリケーションサーバのリ
ファクタリングを中心に書きたいと思います。
次回以降はサブドメインサービス、サブシステ
ム、アプリケーションのリファクタリングなど
について触れたいと思っています。

目的：64bit Amazon
Linuxへの移行

　入社直後、最初に取りかかったのが64bit
Amazon Linuxへの移行です。RettyではEC2に
Amazon Linuxを利用してます。が、これが32bit
のAMIで起動されていたため 64bit Amazon
Linuxへの移行を行いました。
　なぜ移行の必要があったのか？

◦サードパーティのサービスが使いにくい（New
Relicなど）

◦当時新発売のc3.large注6が使いたかった（お買
い得＆32bit非対応）

　とくに後者の理由が大きいです。世の中が
64bitに移行してるのは間違いないので、早々に
対応しておかないと使いたいサービスが使えな
かったりして開発の足を引っ張ります（ちなみに
執筆時点ではc3.largeを利用していますが、リ
ファクタリング直後は特定のAvailability Zone
が売り切れで、利用お預けを食らった期間があ
るくらい当時人気のインスタンスでした）。

アプリケーションサーバ
をリファクタリング

　イメージを入れ替えるということは、「素の
64bit Amazon Linux」に今本番環境で動いてい

注5） 言わずもがなかもしれませんが、Yahoo! Japanで人気ト
ピックになったり、テレビ東京の人気番組「World Business
Satellite」で取り上げられたりすることですね。

注6） h t tp : / /aws . typepad.com/aws_ japan/2013/11/
a-generation-of-ec2-instances-for-compute-intensive-
workloads.html

MySQL

Apache

PHP VPS

 ▼図3　 Rettyのアプリケーションサーバ構成（最初期）

EC2（MySQL）

EC2（Apache）

Route 53 AWS

 ▼図4　 Rettyのアプリケーションサーバ構成（AWS移
行期）

http://aws.typepad.com/aws_japan/2013/11/a-generation-of-ec2-instances-for-compute-intensive-workloads.html

94 - Software Design

アプリケーション開発者がインフラ担当に！
Rettyのサービス拡大を支えた“たたき上げ”DevOps短期集中連載

るサーバと同じ環境をセットアップする必要が
あります。わざわざ構成を掘り起こしてセット
アップしなおすのであれば、多少手間をかけて
でも構成を粗結合化することにしました。
　ここでRettyのアプリケーションサーバの歴
史について紹介したいと思います。
　最初期はVPS（仮想専用サーバ）で稼働してま
した（図3）。スタートアップだベンチャーだと
いってもそんなもんだと思います。これを図4の
ように、前任者がAWSへ移行してくれました。
　そして図5が、現状の大まかな構成になりま
す。「AWSで提供されているものをできるだけ
使う」というのがコンセプトです。Route 53
（DNS）→ CloudFront（CDN）→ Elastic Load
Balancer（ロードバランサ）→EC2（アプリケー
ションサーバ）→RDS（MySQL）という役割を
担っています。そのほかS3、ElastiCache、SQS、
Elastic Beanstalkといったサブシステムや、
EC2上にログ集積用のためのMongoDBを立て
ていたりもしますが、それらについては次回以

降の記事で解説する予定です。
　主観ではありますが、このへんのハンドリン
グを主体的に行えるのはスタートアップならで
はの面白いところだと思います。インフラとオ
ペレーションの最適化をセットで考えられます。
　さて、前述の「汚れた構成」から脱却するため、
アプリケーションサーバのリファクタリング時
に、バッチと監視の機能を引きはがして別サー
バとしました。図4のEC2（アプリケーション
サーバ部分）での構成を抜き出したものが図6で
す。この状態から、PHPとApacheのみが動い
ているシンプルなアプリケーションサーバにし
ます（Nagios＋NRPE注7での監視は行います）。
おおまかに図解すると図7のようになります。
　変更前のアプリケーションサーバ（図6）では
PHPとApache以外に、各サーバにMonit注8（プ
ロセス監視、ディスクなどの一部リソース監視）、
Nagios（一部エラーログ監視）、cron（バッチ処
理）が入っていて依存関係の高い構成になってま
した。
　変更後のアプリケーションサーバ（図7）には、
PHP＆ApacheとNagiosのクライアントのみと
し、次のような役割を切り離しました。

・ディスクなどサーバーリソースの監視は
CloudWatch（AWSのサービス）

・モニタリングにNew Relic注9（一部のサーバ、ELB

EC2

RDS

EC2

RDS

EC2

RDS

EC2

RDS

CloudFront

Route 53

SQS ……

ElastiCache

そのほか AWS

 ▼図5　Rettyのアプリケーションサーバ構成（現状）

バッチ

Apache

PHP

CloudWatch

cron サーバ

・AWS
・リソース監視

New Relic

・モニタリング

Nagios

・プロセス監視

切り出し

NRPE

 ▼図7　変更後のアプリケーションサーバ

Monit

Apache

PHP

cron

Nagios

プロセス監視
一部リソース監視
一部エラー監視

バッチ処理

 ▼図6　変更前のアプリケーションサーバ（図4の詳細）

注7） Nagios Remote Plugin Executor；http://exchange.
nagios.org/directory/Addons/Monitoring-Agents/
NRPE--2D-Nagios-Remote-Plugin-Executor/details

注8） http://mmonit.com/monit/
注9） http://newrelic.com/

http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
http://mmonit.com/monit/
http://newrelic.com/

94 - Software Design May 2014 - 95

Vagrantを使って既存サーバの見通しを改善する！ 第1回

サードパーティサービス）
・プロセスの監視はNagios（NRPEでのネット

ワーク監視）
・cron処理は別サーバに切り出し
　しかしこの分離作業がたいへんでした。なに
しろアプリケーションサーバの構成がわかるの
は「今動いているものだけ」なので、トライ＆エ
ラーでインストールされてるパッケージを探し
たり、コンフィグレーションを読みとる必要が
ありました。この作業負担をなるべく下げるた
め、次に解説するようにVagrantを使って試行
錯誤を繰り返しました。

Vagrantを使ったサーバの
リバースエンジニアリング

　Vagrant注10は今さらお伝えすることもないく
らい人気の、VM（Virtual Machine）の起動周り
を管理してくれる便利ツールです。Vagrantfile
というファイルにRubyでVMの起動時の挙動を
記述しておいて、vagrant upとコマンド入力
することで基本的にはどの環境でも同じ環境を
構築できます。こうしてローカル上で気軽にテ
スト環境を作り、その環境が壊れてしまったら、
vagrant destroyで削除して作り直せるとい
う、トライ＆エラー作業にもってこいのツール
です注11。
　Vagrantはサーバの構成を読み解くのに使う
ためのツールではないのですが、現状のサーバ

が「そもそもどういう構成になってるのかがわか
らない」ので、インストールしたり、設定を変え
たりをひたすら繰り返します。その「途中の状
態」や「経過」を記録するためにVagrantを通して
行いました。Vagrantを使わなくてもできるの
ですが、“ラクに”行うために使っていました。
　Vagrantはプラグインも充実していて
「vagrant-aws」というプラグインを使うことで
EC2へのインターフェースにもなります。ロー
カルVirtualBox上での環境構築と、EC2上での
環境構築を同じインターフェースで行えるので
とても便利です。図8のようにVagrantを通し
て、VirtualBox上でひたすら作っては壊してを
繰り返して、現状稼働しているRettyのアプリ
ケーションサーバ状態に近づけます。
　ここで重要なのは、あれこれイジったVMの

イメージそのものを管理しないということです
（即時起動させることが重要なもの、たとえば本
番アプリケーションサーバのAMIなどは別）。
サーバのセットアップをしていると、変更を行っ
た「前と後」について比較したくなることが必ず
あります。パッケージを入れる前と後、バージョ
ンを上げる前と後などなどです。しかし、これ
を行うために“VMのイメージに日付をつけて管
理するようなことはしない”ということです。VM
のイメージを管理するのではなく、プロビジョ
ニングファイルをGitでバージョン管理するこ
とで「前」の状態と「後」の状態を保持するように
します。
　そしてある程度環境が近づいたところで、EC2
上に環境を用意して再度テストします。このと
きに前述したvagrant-awsが登場します。プラ
グインインストールは次のように実行します。

vagrant plugin install vagrant-aws

　インストールが完了したら、Vagrantfileを用
意します。リスト1にサンプルを記します。
　Vagrantfileの準備ができたら、次のコマンド
を実行します。

注10） http://www.vagrantup.com/
注11） Vagrantの基本的な使い方は、『Vagrant入門ガイド』（新

原雅司 著、技術評論社 刊、Kindle版）がコンパクトにま
とまっていて良いと思います。

Mac

VirtualBox

Vagrant

EC2

 ▼図8　Vagrantを使ったサーバ構成の解析環境

http://www.vagrantup.com/

96 - Software Design

アプリケーション開発者がインフラ担当に！
Rettyのサービス拡大を支えた“たたき上げ”DevOps短期集中連載

% vagrant up --provider=aws

　これでVirtualBox上で作った環境と同じ環境
のEC2が起動します。リスト1のVagrantfileに
はポイントが3つあります。

①環境変数を用意すること
　VagrantfileはGitHubのようなVCS上で管理
することを前提にしているので、Vagrantfileに
AWSのシークレットキーやシークレットアク
セスキーを書いておくのはよろしくありません。
環境変数を用意しましょう。aws-cli（AWSコマ
ンドラインインターフェース）を使う際にも必要

になるので、用意しておいたほうが良いです。

https://console.aws.amazon.com/iam/home?#

security_credential

からキーを取得します。筆者はzshを使ってる
ので、.zshrcに、

export AWS_ACCESS_KEY_ID=YourAccessKey
export AWS_SECRET_ACCESS_KEY=YourSecret ｭ
AccessKey

こんな感じで設定しておいて、Vagrantfileから
は次のように環境変数で読み込みましょう（リス

ト1では❶の個所）。

 ▼リスト1　サンプルVagrant�le

-*- mode: ruby -*-
vi: set ft=ruby :
VAGRANTFILE_API_VERSION = "2"

AWS_DUMMY_BOX = "dummy"
AWS_DUMMY_BOX_URL = "https://github.com/mitchellh/vagrant-aws/raw/master/dummy.box"

AWS_KEY_PAIR_NAME = "YoureKey"
OVER_RIDE_SSH_USER_NAME = "ec2-user"
OVER_RIDE_SSH_PRIVATE_KEY = "~/.ssh/YoureKey"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.define :webserver do |webserver|
 # ec2用のダミーbox
 webserver.vm.box = AWS_DUMMY_BOX
 webserver.vm.box_url = AWS_DUMMY_BOX_URL
 # provisioning
 config.vm.provision :shell, :path => "retty_confs/provision.sh" ❷
 webserver.vm.provider :aws do |aws, override|
 # （VM 固有設定）
 aws.tags = {
 'Name' => 'Gihyo',
 'Description' => 'GihyoTest'
 }
 aws.instance_type = "t1.micro"
 aws.ami = "ami-0d13700c"
 aws.security_groups = ["YoureSecurityGroup"]

 # （AWS共通設定）
 aws.access_key_id = ENV['AWS_ACCESS_KEY_ID']
 aws.secret_access_key = ENV['AWS_SECRET_ACCESS_KEY']
 aws.region = "ap-northeast-1" # "Tokyo"
 aws.availability_zone = "ap-northeast-1a"
 aws.keypair_name = AWS_KEY_PAIR_NAME
 override.ssh.username = OVER_RIDE_SSH_USER_NAME
 override.ssh.private_key_path = OVER_RIDE_SSH_PRIVATE_KEY
 end
 end
end

 ❶

https://console.aws.amazon.com/iam/home?#security_credential

96 - Software Design May 2014 - 97

Vagrantを使って既存サーバの見通しを改善する！ 第1回

ENV['AWS_ACCESS_KEY_ID']
ENV['AWS_SECRET_ACCESS_KEY']

②プロビジョニングはshell

　Vagrantの話になると必ずといってよいほど
話題に上がるのが「プロビジョニングを何のツー
ルで行うのか？」です。これはVagrantの登場と
プロビジョニングフレームワークの盛り上がり
が時期として近かったのが背景にあるのだと思
いますが、入社当初はshellを選択しました。個
人的にChef注12やAnsible注13を利用しているの
ですが、RettyではPHPを中心に開発している
ことと、プロビジョニングフレームワークの導
入が行われていなかったためです。
　shellでもコンテキストの維持はできます。
Vagrantの主な役割はsandbox環境の構築なの
で冪
べきとうせい

統制はあえて無視しました（現在はロールが
増えてきたので、プロビジョニングフレームワー
クの導入を進めています）。VagrantはVMの起
動管理とプロビジョニングをセットにして動か
せるところがとても魅力的なので、プロビジョ
ニングの設定を使わない手はないと思います。

③confファイルはcopy

　プロビジョニングフレームワークを使わない
ので、confファイルの動的な生成はしません。
用意しておいたconfファイルをシェルスクリプ
トで上書きするようにしました（リスト1の❷の
個所）。
　Vagrantはホストとゲストとでフォルダを共

有してくれるしくみがあるので（デフォルトはホ
ストVagrantfile配下とゲストの/vagrant以下が
共有）、シェルスクリプトprovision.sh内部で、

httpd.confを元々用意していたファイルでcopy
cp /vagrant/retty_confs/httpd.conf /etc/ ｭ
httpd/conf/httpd.conf

といった形で用意したファイルで上書きします。
図9のように、confファイルをVagrantfileと同
居させておくと楽です。
　最近はDocker注14のようなLXCベースのコン
テナがとても流行っているみたいなので、いず
れチャレンジしたいなと思っています。

第1回のまとめ

　「ローカルのVMでプロビジョニング＆テス
ト」→「EC2で同じプロビジョニング＆テスト」
→「不備があったらまたローカルでプロビジョニ
ングしてテスト」→「EC2で同じプロビジョニン
グしてテスト」……。こういった作業もVagrant
のおかげでサーバの起動管理が非常に楽です。
　上記の作業をひたすら繰り返して、ようやく
アプリケーションサーバの状態を掘り起こすこ
とができました。前述したとおり、掘り起こし
たサーバの状態はVagrantfileとshellで管理し
ます。くれぐれも日付の入ったVMのイメージ
ファイルを管理するようなフローにはしないよ
うに（現実的には最新版のVMイメージくらいは
存在しても良いと思います、何かしらの用途で
「すぐに今の状態を使いたい」ってことはあると
思います）。
　そして2013年の12月に、無事64bit Amazon
Linuxへの入れ替えが完了しました。実際のと
ころはEBSの付け替え作業や、CloudWatchで
のモニタリング＆アラートの設定といった作業
も必要になるのですが、このあたりは次回以降
の監視周りで触れたいと思います。｢

retty_confs

Vagrantfile

provision.sh

httpd.conf

 ▼図9　Vagrant�leとconfファイルの置き方例

注12） http://www.getchef.com/
注13） http://www.ansible.com/

注14） https://www.docker.io/

http://www.getchef.com/
http://www.ansible.com/
https://www.docker.io/

98 - Software Design

さらに踏み込む、Mac OS Xと仮想デスクトップ
短 集 連期 中 載 Mac as a desktop Service -MaaS- !?最終回

作ってみよう仮想環境＋
Mac OS Xデスクトップ
ハイブリッド環境

　本連載第1回、第2回では、NFS、ssh(1)、
X Window Systemの基本的な機能の紹介と簡
単な使い方を紹介してきました。短期集中連載
最終回となる今回は、これら機能を組み合わせ
てハイブリッドなデスクトップ環境を作成する
方法を紹介します。組み方は用途に応じて人そ
れぞれだと思いますので、随所々々の設定を抜
き出して活用いただければと思います。

［モデルA］モバイル
（デスクトップMac、仮想環境UNIX系OS）

　MacBook AirやMacBook Proなど、おもに

ホストマシン：MacBook Pro Retina 13-inch
Late 2013

ホストOS：Mac OS X Mavericks
仮想化ソフトウェア：VMware Fusion 6
ゲストOS：Ubuntu 12.04 LTS（64bit）
ゲストOS：FreeBSD 10.0-RELEASE amd64
（64bit）

ゲスト〜ホスト間ネットワーク：Macを共有
（NAT）

　CUIの作業はMac OS Xのターミナルから、
ゲストで動作しているUNIX系OSにログイン
して行います。ホストとゲストの間は可能な限
りさまざまな部分を共有することで、別のOS
で動作していることを意識できないようにしま
す。

モバイルで使っているマシンの場合を
考えます。この場合、UNIX系オペレー
ティングシステム（以下、OS）は仮想
環境上で動作させ、ホストとゲストの
間をNFS、ssh(1)、Xで接続します。
ゲスト側の IPを固定しておきたいの
で、ここでは仮想化ソフトウェアが提
供しているNATを経由して接続する
ものとします（図1）。
　説明に使用するモバイル環境は次の
とおりです。

さらに踏み込む、
Mac OS Xと仮想デスクトップ

Mac as a desktop Service -MaaS- !?

後藤 大地（ごとう だいち） （有）オングス 代表取締役

複数のOS環境を必要とするMac使いのエンジニアにとって、仮想デスクトップ環
境をMacに構築することはもはやあたりまえのことのようです。筆者もその一人で
すが、日常的に使っているとOS間を行き来するオペレーションに煩わしさを感じ
るようになりました。この短期連載では、筆者がこの煩わしさから解放されるため
に行った、普通とはちょっと違ったアプローチをご提案します。

短 集 連期 中 載 最終回

#3

 ▼図1　MacBook AirやMacBook Proのような
　　 モバイル環境でのモデル

Mac OS X

ディスプレイ

MacBook Air/MacBook Pro などを想定（モバイル）

Xアプリ

キーボード

トラックパッド

マウス

Xプロトコル

ログインシェル

仮想UNIXサーバ

ファイル
システム

NFS
エクスポート

NFS

ssh（1）

Xサーバ

ネイティブ
アプリ

Xアプリ

ターミナル

ファイル
システム

NFS
マウント

98 - Software Design May 2014 - 99

システムの組み方：
ユーザアカウント

　NFSでファイルシステムを共有したいので、
ユーザのユーザIDとグループIDをホストとゲ

ストでそろえます。設定のしやすさを考えると、
Mac OS Xで使っているユーザ IDとグループ
IDの設定を、UNIX系OS（例ではUbuntu）に
反映させるほうがよいでしょう。ホームディレ
クトリのパスも同じにしておきます。ホームディ
レクトリやユーザ IDなどは図2のように確認
します。作成するアカウント情報を整理すると
表1になります。
　LinuxやFreeBSDでは管理者権限でvipw(8)
コマンドを実行するなどして、ユーザ ID情報
を書き換えます。グループIDは/etc/groupファ
イルを編集することで実施します。表1をもと
に、ここではリスト1のようにユーザID、グルー
プID、ホームディレクトリなどを設定します。
　グループ IDとグループ名のマッチングは
/etc/groupファイルに記載します。ここはリ

スト2のように書いておきます。

システムの組み方：
ネットワーク

　ホストとゲストの間のネットワークを設定し
ます。ここではVMware Fusionがデフォルト
で割り振る IPアドレスを使っています。使用
しているソフトウェアに合わせて適宜読み替え
てください。IPアドレスはMac OS Xでifco
nfig（8）コマンドを実行することで確認できま
す（図 3）。VMware Fusion 6であれば vmnet8
ネットワークインターフェースに設定されてい
るアドレスが該当します。
　ゲストで指定するデフォルトゲートウェイの
IPアドレスは、いったんDHCPで接続した状
態で図4のようにnetstat（1）コマンドを実行す
ることで確認できます。表示されたGateway
の部分に記載されています。
　この IPアドレスは常に固定です。MacBook
が接続するWi-Fiルータを変更しても、このロー
カルアドレスは固定したまま変わりません。基

#3

 ▼リスト1　vipw（8）で編集したユーザ情報の例

daichi:暗号化されたパスワード:1002:20::0:0:ｭ
Daichi GOTO:/Users/daichi:/usr/local/bin/zsh

 ▼リスト2　/etc/groupファイルの記述例

staff:*:20:

 ▼図2　Mac OS Xでのホームディレクトリ、ユーザ名、ユーザ ID、グループ名、グループ IDを確認

% echo $HOME
/Users/daichi
% id
uid=1002（daichi） gid=20（staff） groups=20（staff）,1011（daichi）,1002（smbusers）,12（everyone）,61（localｭ
accounts）,79（_appserverusr）,80（admin）,81（_appserveradm）,98（_lpadmin）,399（com.apple.access_ssh）,ｭ
33（_appstore）,100（_lpoperator）,204（_developer）,398（com.apple.access_screensharing）
%

 ▼表1　作成するアカウント情報

ホームディレクトリ
ユーザ名
ユーザ ID
グループ名
グループID

/Users/daichi
daichi
1002
staff
20

項目 値

 ▼図3　仮想化ソフトウェアが使っているNAT向けの IPアドレスを ifcon�g（8）コマンドで確認

% ifconfig
 …省略…
vmnet1: flags=8863〈UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST〉 mtu 1500
 ether 00:50:56:c0:00:01
 inet 192.168.218.1 netmask 0xffffff00 broadcast 192.168.218.255
vmnet8: flags=8863〈UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST〉 mtu 1500
 ether 00:50:56:c0:00:08
 inet 192.168.185.1 netmask 0xffffff00 broadcast 192.168.185.255
 …省略…
%

100 - Software Design

さらに踏み込む、Mac OS Xと仮想デスクトップ
短 集 連期 中 載 Mac as a desktop Service -MaaS- !?最終回

本的に外部のホストからアクセスすることはで
きません。ゲストでDHCPを使っても構いま
せんが、スタティックな設定として設定ファイ
ルに書いておきましょう（表2）。
　Mac OS Xのホスト名は［設定］→［共有］→［コ
ンピュータ名］で設定できます（図5）。名前は
なるべく統一しておいたほうが問題が少なくて
済みますので、ホスト名も ̃/.ssh/configの設定
もOSごとの設定もそろえておきます。

システムの組み方：
ホームディレクトリ共有

　モデルAはMac OS Xがベースになっていま
すので、Mac OS Xのユーザのホームディレ

クトリをまるごと仮想環境のユーザのホームディ

レクトリになるようにマウントして使います。

　まず、Mac OS X側でユーザのホームディレ
クトリをNFSでマウントできるように、リス

ト3のような内容の /etc/exportsファイルを
Mac OS X（ホスト）側に作成します。編集作業
はsudo（8）コマンドを経由して実施してくださ
い。マウント提供する対象をもっと絞り込みた
いなら、リスト4のように書いておいてもかま
いません。リスト3では192.168.185.0/24の
ネットワークに所属するホストに対してマウン
トが許可されますが、リスト4では192.168.
185.50のホストのみがマウントできます。
　/etc/exportsファイルを作成するとnfsd（8）
など必要なデーモンが自動的に起動して処理が
開始されます。/etc/exportsファイルの記述を
間違えると正しく処理できません。ファイルが
適切に記述されているかどうかはnfsd（8）コマ
ンドで確認できます。図6のように何も報告さ
れずにコマンドが終了すれば適切に記述されて
います。なお、Mac OS X Mavericksのnfsd（8）
コマンドはサブコマンドとしてcheckexports
以外にもenable、disable、start、stop、restart、
update、status、verboseを指定できます（図7）。
　次に仮想環境（ゲスト）側では、/etc/fstabに
リスト5のようなエントリを追加して、仮想環
境のユーザのホームディレクトリとしてMac
OS Xのユーザのホームディレクトリをそのま
ま使うようにします。NFSマウントエントリ
の書き方はOSごとに異なりますが、基本部分
は同じです。指定できるオプションなどに違い
があります。まずはリスト5のようになにもオ
プションを指定しないで使ってみましょう。

システムの組み方：
ssh（1）による双方向ログイン

　ホストとゲストの間でssh（1）による双方向

 ▼図4　netstat（1）コマンドでデフォルトゲートウェイを確認（Ubuntuの場合）

$ netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 192.168.185.2 0.0.0.0 UG 0 0 0 eth0
169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0
192.168.185.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
$

 ▼表2　ネットワーク設定

ホスト側のホスト名
ゲスト側のゲスト名
ホスト側の IPアドレス
ゲスト側の IPアドレス
ゲスト側で指定するデフォルト
ゲートウェイの IPアドレス

host
virt
192.168.185.1
192.168.185.50

192.168.185.2

項目 内容

 ▼図5　Mac OS Xのホスト名は
　　 ［設定］→［共有］→［コンピュータ名］で設定

100 - Software Design May 2014 - 101

のやり取りができるようにします。公開鍵認証

によるログインのみを許可し、相互にログイン

できるように ̃/.ssh/configファイルを編集しま
す（リスト6）。NFSでホームディレクトリを共
有していますので、̃/.ssh/configの設定もホス
トとゲストで共有されます。
　連載第2回目で紹介したように、この環境で
は ssh（1）のX11フォーワーディングの機能の
ほうが負担が少なかったので、この機能を有効
にするために「ForwardX11」と「ForwardX11
Trusted」を有効にしています。NFSでホーム
ディレクトリごとマウントしているので、秘密
鍵はホストとゲストで共有することになります。
Mac OS Xの認証エージェントによるパスフ
レーズの入力機能を活用したいので、「Forward
Agent」も有効にしておきます。
　ここではゲストへのログインは必ず“ホスト
からゲスト”にログインすることで開始される
ようにします（仮想化ソフトウェアの提供する
画面からログインして作業するといった使い方
はしません）。このため、ホストからゲストに
ログインするときは「ForwardAgent」のみを有
効にしています。これで相互にシームレスにロ
グインできるようになります。仮想化ソフトウェ

アが提供する画面からもログインして、そこか
らホストにログインするような場合にはさらに
適宜設定を追加します。

システムの組み方：
X Window System

　連載第2回目を参考にXQuartzをインストー
ルしておいてください。デフォルトインストー
ルの状態だとネットワーククライアントからの
接続が許可されないので、XQuartzの設定ダイ
アログから［セキュリティ］→［ネットワーク・
クライアントからの接続を許可］にチェックを
入れて有効化しておきます（図8）。

#3

 ▼図6　 /etc/exportsファイルの記述が適切であるか
チェック（適切であればなにも報告されない）

/Users/daichi% nfsd checkexports
/Users/daichi%

 ▼図7　nfsd（8）の動作状況をチェック

/Users/daichi% nfsd status
nfsd service is enabled
nfsd is running （pid 75, 8 threads）
/Users/daichi%

 ▼リスト3　Mac OS Xの /etc/exportsファイルの例 その1

/Users/daichi -mapall=1002 -network 192.168.185.0 -mask 255.255.255.0

 ▼リスト4　Mac OS Xの /etc/exportsファイルの例 その2

/Users/daichi -mapall=1002 -network 192.168.185.50

 ▼リスト6　~/.ssh/con�gに追加する設定

仮想環境ではNIC仮想デバイスやNAT変換にかかる負担が
大きく、SSHのX11フォワーディング機能を使ったほうが
負担が軽い
Host virt
 Hostname 192.168.185.50
 IdentityFile ~/.ssh/id_rsa
 ForwardAgent yes
 ForwardX11 yes
 ForwardX11Trusted yes

Host host
 Hostname 192.168.185.1
 ForwardAgent yes

 ▼リスト5　Ubuntu 12.04とFreeBSD 10.0の /etc/fstabに追加するエントリ

192.168.185.1:/Users/daichi /Users/daichi nfs rw 0 0

 ▼図8　 XQuartzインストール後「ネットワーク・クラ
イアントからの接続を許可」にチェックを入れ
て再ログイン

102 - Software Design

さらに踏み込む、Mac OS Xと仮想デスクトップ
短 集 連期 中 載 Mac as a desktop Service -MaaS- !?最終回

当するスクリプトを作成します。これでゲスト
で open .のように実行すると、ホストで
Finderが起動するようになります。本質的に
はmac open "¥${@}"のように実行するだけ
でよいのですが、オプションや引数のパスなど
も考慮して処理しておくとリスト9のようなス
クリプトになります。
　システムクリップボードにテキストをコピー

したり、そこからテキストを取り出すラッパー

スクリプトを「copy」および「paste」として用意

します。Xサーバを経由してホストとゲスト間
でのコピー&ペーストが可能です。copyと
pasteコマンドを使うことでこの処理をコマン
ドベースで実施できます。実際にシステムクリッ
プボードを操作するコマンドとしてはMac OS
Xではpbcopy（1）およびpbpaste（1）を使いま
す。UNIX系サーバではxsel（1）などを使いま
す（適宜インストールしてください）。リスト

10、11のようなスクリプトを作成します。
　普段頻用するコマンドは人それぞれだと思い
ますので、macスクリプトを使って自分がよく
使うMac OS Xでのコマンドをゲスト側から
シームレスに使えるように、シェルスクリプト
を作成していきます。このあたりはユーザが好
みでいろいろ作成する部分です。
　以上でモデルAの構築は完了です。

［モデルB］据え置き2台構成
（デスクトップMac、サーバUNIX系OS）

　次に、据え置きタイプのMacとUNIX系サー
バを連動させる方法を説明します（図9）。古く
なったMacBook AirやMacBook Proを据え置
きとして使う場合にも使えます。

システムの組み方：
ユーザアカウント

　ユーザアカウントについてはモデ
ルAと同じように設定します。

システムの組み方：
ネットワーク

　Mac OS XとUNIX系OSサーバ

ssh virtでログインしようとした場合に
XQuartzが起動していなければ、起動するよう
になります。open -a XQuartzで起動される
プログラムの名前は「Xquartz」になっています
ので、このあたりの大文字・小文字には注意し
てください。

システムの組み方：
融合させるためのシェルスクリプト

　ここでゲスト側にホスト側で使用するコマン
ドと同じ名前のコマンドを用意するといったよ
うに、細かに融合を進めるためのスクリプトを
作成していきます。まず、ゲストで実行したコ

マンドが実はホストで実行されるというしくみ
を実現するためにリスト8のように「mac」とい
うスクリプトファイルを作成します。たとえば
ゲストでmac psのように実行すると、ホスト
でps（1）を実行した結果が表示されます。
　次に、Mac OS Xのopen（1）コマンドに相

システムの組み方：
スタートアップスクリプト

　モデルAの場合、ssh（1）のX11フォワーディ
ング機能を使うので、使うにあたっての下準備
としてはゲストにログインした段階でホスト側

でXQuartzが動作しておいてほしい、といっ
たところになります。この場合、もっとも実行
が優先されるパスとして ̃/bin/などを追加して、
そこにリスト7のようなssh（1）のラッパスクリ
プトを作成して置いておきます。
　このスクリプトでホストからゲストに対して

#!/bin/sh

［ "0" = $# ］ && exit
exec ssh -t virt PATH=$PATH LANG=$LANG "${@}" 2〉 /dev/null

 ▼リスト8　macスクリプト：ホスト側でコマンドを実行するスクリプト

 ▼リスト7　~/bin/sshに設置するsshのラッパスクリプト

#!/bin/sh

case $（hostname -s）:"$1" in
host:virt）
 pgrep Xquartz 〉 /dev/null || open -a XQuartz
;;
esac
exec /usr/bin/ssh "$@"

102 - Software Design May 2014 - 103

のネットワークアドレスはここでは表3のよう
に設定しておきます。このアドレスはLANの
設定に合わせて読み替えてください。
　ネットワークの設定はMac OS Xであれば「シ
ステム環境設定」から、UNIX系OSの場合はそ
れぞれのやり方に合わせて設定してください。
UNIX系の場合は基本的にifconfig（8）コマン
ドでネットワークアドレスを設定できます。

システムの組み方：
データディレクトリ共有

　どちらを母体にするかによりますが、ここで
はUNIX系サーバのほうがストレージのサイズ
が大きいと仮定して、データは基本的にUNIX
系サーバで保持するものとします。作業は
UNIX系サーバにログインして行うことになり
ます。UNIX系サーバとMac OS Xとのデータ
共有は、UNIX系サーバのユーザのデータ領域

 ▼表3　Mac OS XとUNIX系OSサーバの
　　 ネットワークアドレス

Mac OS Xのホスト名
UNIXサーバのホスト名
Mac OS Xの IPアドレス
UNIXサーバの IPアドレス

mac
unix
192.168.1.10
192.168.1.20

項目 内容

 ▼表4　NFSマウントの対象

/Users/daichi/Desktop
/Users/daichi/Documents
/Users/daichi/Downloads
/Users/daichi/Music
/Users/daichi/Pictures

/Users/daichi/z/Desktop
/Users/daichi/z/Documents
/Users/daichi/z/Downloads
/Users/daichi/z/Music
/Users/daichi/z/Pictures

UNIX系サーバのディレクトリ Mac OS Xでの
マウント先

#3

 ▼リスト9　 openスクリプト：ゲストでopenコマンドを
実行するとホストで実行されるスクリプト

#!/bin/sh

l=""
while getopts etfFWRnghb:a: o
do
 case $o in
 e¦t¦f¦F¦W¦R¦n¦g¦h）
 l="$l -$o"
 ;;
 b¦a）
 l="$l -$o $（echo $OPTARG ¦ sed 's/ /\\ /g'）"
 ;;
 *）
 exit 1
 ;;
 esac
done
shift $（（$OPTIND - 1））
while ［ $# -gt 0 ］
do
 case "$1" in
 --args）
 l="$l --args"
 shift
 break
 ;;
 *）
 l="$l $（realpath "$1" ¦ sed 's/ /\\ /g'）"
 shift
 ;;
 esac
done
while ［ $# -gt 0 ］
do
 l="$l $（echo "$1" ¦ sed 's/ /\\ /g'）"
 shift
done
exec mac open "$l"

 ▼リスト10　 copyスクリプト：
システムクリップボードへコピー

#!/bin/sh

case $（hostname -s） in
host）
 pbcopy
 ;;
virt）
 xsel --input --primary --secondary ｭ
--clipboard
 ;;
esac

 ▼リスト11　 pasteスクリプト：
システムクリップボードからペースト

#!/bin/sh

case $（hostname -s） in
host）
 pbpaste
 ;;
virt）
 xsel --output --clipboard
 ;;
esac

 ▼図9　Mac Proや iMac、Mac miniのような
　　 据え置き環境とPCサーバを組み合わせるモデル

Mac OS X

ネイティブ
アプリ

ディスプレイ

Mac mini/Mac Pro/iMac などを想定（据え置き）

Xアプリ Xアプリ

キーボード

トラックパッド

マウス

Xプロトコル

ターミナル
ログインシェル

UNIXサーバ

ファイル
システム

ファイル
システム

NFS
エクスポート

NFS
マウント

NFS

ssh（1）

Xサーバ

104 - Software Design

さらに踏み込む、Mac OS Xと仮想デスクトップ
短 集 連期 中 載 Mac as a desktop Service -MaaS- !?最終回

を必要に応じてMac OS X側からNFSでマウ
ントするものとします（表4）。
　UNIX系サーバ側の /etc/exportsにリスト

12のような設定を追加します。/etc/exports
の書き方には実装ごとに制限や書き方がありま
すので、環境に合わせて設定してください。た
とえばFreeBSDの場合、同じファイルシステ
ム上のディレクトリは1行に書く必要あります。
ZFSのデータセットになっている場合にはそ
れぞれ個別に記述できます。リスト12の例だと、
/Users/daichi/MusicはZFSのデータセット
なので別の行に書いてあります。
　Mac OS X側では、NFSでこれら領域をマ
ウントするためのスクリプトを用意しておきま
す。たとえばリスト13のようなスクリプトを
「nfsctl」といった名前で作成して、パスの通っ
たディレクトリに実行権限を付与した状態で配
置しておきます。
　Mac OS X側でnfsctl attachでマウント、
nfsctl dettachでアンマウントです。UNIX
系サーバ側でMac OS Xの領域をマウントして
使いたいなら、同じ要領でマウントするスクリ
プトを用意します。Mac OS X側でNFSマウ
ントする場合、オプションに-o nfcを設定す
るのを忘れないようにします。また、文字列を
UFC（Unicode Normalization Form C：ユニ
コード正規化形式C）に変換しておかないと濁
点などを含むファイルやディレクトリなどが適
切に扱えなくなります。

システムの組み方：
ssh（1）による双方向ログイン

　相互に ssh（1）でログインできるように、
̃/.configを設定します。連載第2回目で紹介し
たように、物理サーバ間の場合はXクライアン
ト・サーバ通信のほうが負担が少なかったので、
ssh（1） X11フォワーディングの設定は入れな

い設定にします（リスト14、15）。

システムの組み方：
スタートアップスクリプト

　Mac OS XからUNIX系サーバにログインす
る段階で、UNIX系サーバで動作するXクライ
アントがMac OS Xで動作するXサーバにログ
インできるように、xauth（1）を自動的に実行
するようにします。しくみは連載第2回目で紹
介したとおりです。もっとも実行が優先される
パスとして ̃/bin/などを追加して、そこにssh
（1）のラッパスクリプトを作成して置いておき
ます。紙幅の都合でコードを掲載できませんで
したが、ご興味のある方は本誌サポートサイ
ト注1からダウンロードできるようにしておくの
でご覧ください。
　このスクリプトでMac OS XからUNIX系
サーバに対してssh unixでログインしようと
すると、XQuartzが起動していなければXQuartz
を起動し、さらにUNIX系サーバのXクライア
ントがXサーバにアクセスできるようにxauth
（1）コマンドがUNIX系サーバで実行されます。

システムの組み方：融合させる
ためのシェルスクリプト

　基本的にモデルAで作成したシェルスクリプ
トのホスト名や IPアドレスを、この環境向け
に編集することで使用できます。
　以上で、モデルBの環境構築作業は完了にな
ります。

［発展系モデルC］
モバイルにも据え置きにも

使うモデル
　持ち運んでも使うし据え置きとしても使うと

注1） http://gihyo.jp/magazine/SD/archive/2014/201405/
support （本記事で取り上げたコードすべてがダウンロー
ドできます）

 ▼リスト12　/etc/exportsのサンプル（FreeBSDの場合）

/Users/daichi/Desktop /Users/daichi/Documents /Users/daichi/Downloads /Users/daichi/Pictures ｭ
-mapall=1002 -network 192.168.1.0 -mask 255.255.255.0
/Users/daichi/Music -mapall=1002 -network 192.168.1.0 -mask 255.255.255.0

http://gihyo.jp/magazine/SD/archive/2014/201405/support

104 - Software Design May 2014 - 105

いった場合、モデルAとモデルBの設定を両方
とも施します。Mac OS Xのホスト名を統一す
る必要があるので、たとえば「mac」という名前
にするとしましょう。そのうえでシェルスクリ
プトにホストを加味した分岐処理を加えてあげ
ることになります。

システムの組み方：融合させる
ためのシェルスクリプト

　スクリプトはOSごとに個別に持っていると
管理が面倒になるので、どのホストで実行して
もよいように組み上げます。例として、リスト

7の sshスクリプトやリスト8のmacスクリプ
トをどちらの環境にあっても動作するように書
き換えましたので、本誌サポートサイトからダ
ウンロードしてみてください。
　ここから先は用途に応じてスクリプトを書い
ていく感じになります。不便だと感じたら、す
ぐにスクリプトを作成して違和感を吸収してい
きます。使い込み、作り込むことでもっと体に
なじむ環境ができあがります。

手になじむ道具を
作りあげる

　これまで 3回に渡ってNFS、ssh（1）、X
Window Systemについて取り上げ、それぞれ
をどのように使えばよいか、最終的にどういっ
た組み合わせ方があるかを説明しました。今回
紹介した内容は基本的なことばかりです。もっ
と複雑なネットワーク構成であったり、いった
ん踏み台サーバを経由してssh（1）する必要が
ある環境であるとか、さまざまな要求に対して
も基本的に今回紹介した技術の組み合わせで対
応できます。
　毎回煩わしい操作をしているとか、人間がす
る必要のない操作を繰り返していると感じたと
きは、シェルスクリプトを書いて自動化してし
まうのがよいでしょう。こうしたスクリプトの
作成と環境の整備を繰り返していくことで、自
分のノートPCが自分の手になじんだ扱いやす
い道具になっていきます :） s

#3

 ▼リスト13　nfscltスクリプト

#!/bin/sh

case "$1" in
attach）
 # 文字列をUFC（Unicode Normalization Form C：ユニコード正規化形式C）に
 # 変換して送信するオプション -o nfc を指定しておかないと、濁点を含む
 # ファイルなどが適切に扱えなくなる。
 sudo mount_nfs -o nfc 192.168.1.101:/Users/daichi/Desktop /Users/daichi/z/Desktop
 sudo mount_nfs -o nfc 192.168.1.101:/Users/daichi/Documents /Users/daichi/z/Documents
 sudo mount_nfs -o nfc 192.168.1.101:/Users/daichi/Downloads /Users/daichi/z/Downloads
 sudo mount_nfs -o nfc 192.168.1.101:/Users/daichi/Music /Users/daichi/z/Music
 sudo mount_nfs -o nfc 192.168.1.101:/Users/daichi/Pictures /Users/daichi/z/Pictures
 ;;
dettach）
 sudo umount -f /Users/daichi/z/Desktop
 sudo umount -f /Users/daichi/z/Documents
 sudo umount -f /Users/daichi/z/Downloads
 sudo umount -f /Users/daichi/z/Music
 sudo umount -f /Users/daichi/z/Pictures
 ;;
esac

 ▼リスト14　Mac OS X側の~/.ssh/con�gファイル

Host unix
 Hostname 192.168.1.20
 IdentityFile ~/.ssh/id_rsa
 ForwardAgent yes

 ▼リスト15　 UNIX系サーバ側の~/.ssh/con�gファイル

Host mac
 Hostname 192.168.1.10
 IdentityFile ~/.ssh/id_rsa
 ForwardAgent yes

106 - Software Design

短期集中連載Web標準技術 で行う
Webアプリのパフォーマンス改善

May 2014 - 107

ファイル読み込みで高速化を図る 第1回

ブラウザはネイティブ
アプリに勝てないのか？

　いつからでしょう。Webアプリはよくネイティ
ブアプリと比較されます。以前では、ブラウザ
はHTMLドキュメントを文章として表示する
ための単なる「ドキュメントビューア」だったわ
けですが、Web2.0や jQueryなどがもてはやさ
れ、すっかり目的も用途も変わってしまいまし
た。今では、アプリケーションのクライアント
を支える「プラットフォーム」として、さまざま
な業界を巻き込み幅広い領域で活用されるよう
になりました。
　そして最近の議論の中心は、やはりHTML5
です。エンジニアの目から見ると、さかのぼる
こと2009年、「Google I/O」で高い注目を集め
ました。ベンダに縛られない、オープンなクラ
イアントプラットフォーム技術であるHTML5
に、誰もが多くの期待を寄せたのではないでしょ
うか。
　ところが2012年、Facebookのマーク・ザッ
カーバーグ氏の「HTML5に失望！」「HTML5
はまだ早い！」とメディアを騒がせる事件が有
名となり、「HTML5って本当に大丈夫なの？」
と、ポテンシャルを不安視する声も聞こえ始め
ました。Webとネイティブの比較は、このこ
ろから議論され始めたように思います。

　世の中はいったい何を不安視しているのでしょ
う？　なぜ、Web標準技術ではダメなのでしょ
う？　Web標準技術とネイティブ、2つを比較
したとき、議論として盛り上がりをみせるのは
やはりこのテーマです。

「パフォーマンス」

　「新しいデバイスに追従できない！」「ビジネ
ス色が強過ぎる仕様はなかなか標準化が進まな
い！」という話もありますが、それは時間が解
決する問題です。ただ、Web標準技術はいく
らあがいても、パフォーマンスではネイティブ
を超えることはできません。
　とはいえ、企業向けのシステムなどでは、ネ
イティブほどのパフォーマンスは望めないもの
のWebアプリがデスクトップアプリの代わり
としてずっと使われてきました。ブラウザでデ
スクトップアプリのような動作をさせようと、
ポップアップを駆使してUIから戻る／更新ボ
タンを消し去ったり、JavaScriptで右クリック
を禁止させたりといった泥臭い対策が施される
ことも少なくなかったようです。
　最近では、「そういう用途を目的としたプラッ
トフォームを作ってしまおう」というアイデア
が生まれていたりします。MEAP（Mobile
Enterprise Application Platform）という、Web
標準技術でマルチデバイスなアプリケーション

HTML5のW3C勧告化が間近に迫っています。リッチなコンテンツが作れることはもとより、実用的なパフォー
マンスが得られるのかが気になるところです。今回から3回にわたって、Web標準技術におけるパフォーマン
ス改善手法について解説します。ブラウザの対応状況や業務での実用性などもふまえて検証していきます。

 Writer 川田 寛（かわだ ひろし）

技術者コミュニティ「html5jエンタープライズ部」 部長

　NTTコムウェア株式会社 技術SE部

 URL furoshiki.hatenadiary.jp　 Twitter @kawada_hiroshi

短期集中連載

ファイル読み込みで高速化を図る

Web標準技術 で行う
Webアプリのパフォーマンス改善

第1回

furoshiki.hatenadiary.jp

106 - Software Design May 2014 - 107

ファイル読み込みで高速化を図る 第1回

を開発する環境も、徐々にデスクトップアプリ
の世界に進出する勢いです。JavaでもJavaFX
というブラウザのレンダリングエンジンを活用
する技術を作っていますし、ベンダ製品だとデ
スクトップアプリの置き換えを狙ったような
JavaScriptライブラリが広がりを見せています。
　今後は、そのオープン性の高さからWeb標
準技術を使わざるを得ない、そんな状況も増え
ていくのでしょう。ネイティブに勝てないのは
わかっていても、取り巻く環境や業界の波が、
HTML5でやらざるを得ない状況に追い込んで
いるように思えます。

Web標準でできる
パフォーマンスへのアプローチ

　「このWebアプリ、すごく重い！」という場
合に、よくあるのは次の2つ議論です。

・JavaScriptのパフォーマンスを上げる
・DOMアクセスを最適化する

　前者は、JavaScriptのアルゴリズム、Java
ScriptVMの特性をふまえたうえで、高いパ
フォーマンスが得られるよう記述を工夫する方
法。後者は、DOMアクセスを最適化するために、
利用するAPIの種類や使い方を工夫しようと
いうもの。どちらもプログラムの書き方に関す
ることです。プログラマはパフォーマンスの高
いプログラムを書くことに喜びを感じるので、
こういう観点で議論するのが大好きです。
　しかし、大規模なアプリケーション開発にな
ると、パフォーマンス対策をプログラマだけに
依存させてしまうのは、あまり良い方法とは言
えません。もちろん、プログラマがそういうこ
とを意識するのは重要ですが、ある一定のライ
ンを超えるとそれはハッカーの仕事です。
　マネージャやITアーキテクトなら、プロジェ
クトに参加する全プログラマがハッカーである
ことを前提に開発を進められないので、特定の
人間に依存しないアプローチを試みたいと考え
るでしょう。それもプロジェクトの早期から、

せめて設計の段階から、パフォーマンスが明ら
かに悪くなるとわかっているところぐらいは、
何か手を打てないかと考えるはずです。
　実はこうした問題に対して、Web標準側で
もさまざまなアプローチ方法が議論されていま
す。W3Cで は、「Web Performance Working
Group」と呼ばれる団体が、パフォーマンスの
改善をめざした仕様を策定しています。Web
標準技術固有のパフォーマンス問題に対して、
対策するための仕様を検討し続けてきました。
　このワーキンググループは、Microsoft、
Google、Mozillaなどのブラウザベンダが集ま
り議論していますが、そこになぜか、何の
Webプラットフォームも持たないFacebookが
参加していたりします。2012年には「まだダメ
だ！」と言い放った彼らですが、1年後の2013
年にはちゃっかり「アプリのHTML5化を進め
よう！」という構想を再び立てていたりします。
ダメだと思った点を、改善しようと取り組んで
いるのです。
　最近はモバイルの登場で、安定した通信環境
を前提にできなくなりましたし、CPUやメモ
リリソースも意識しなくてはいけない。バッテ
リー稼働ですので、電気消費だって気にしなく
てはいけない。そんな状況であるにもかかわら
ず、Webアプリは今まで以上のことをやろう
とするわけですから、パフォーマンス改善のた
めに求められる機能も増えつつあります。そし
て、Web標準における多くのパフォーマンス
系の機能は、ほかの機能とは比較にならない速
度で標準化が進められ、ドラフト公開からわず
か3年足らずでW3C勧告に到達しています。
　本連載では、目的別に分類して、Web標準
でできるパフォーマンス改善方法をまとめます。
もし、あなたが開発しているWebアプリに、
パフォーマンスを悪化させる特徴的な機能が盛
り込まれるのであれば、本記事で解決のための
ヒントを探してみるのも良いかもしれません。

108 - Software Design

短期集中連載Web標準技術 で行う
Webアプリのパフォーマンス改善

May 2014 - 109

ファイル読み込みで高速化を図る 第1回

ファイルを
先に読み込ませる

　Webページの表示処理は、とにかく無駄が
多いです。ハイパーリンクやフォームのボタン
をクリックしてから、サーバへHTMLドキュ
メントのリクエストを行い、HTMLドキュメ
ントから参照されている画像ファイルや
JavaScript/CSSファイルを読み込み、逐次画
面に表示させていく、という過程を踏みます。
ユーザはコンテンツの内容がある程度見えるよ
うになるまで、待つ

4 4

必要があります。
　最近は、JavaScriptフレームワークが流行っ
ていますが、モノによってはメガバイトレベル
のものがあります。大量の画像ファイルを読み
込ませるだけでなく、フォントファイルに音声
ファイルや動画ファイルと、とにかく大容量の
データを読み込ませるWebアプリは少なくあ
りません。いくらコンテンツがすばらしくても、
表示されるまでの間、ユーザは待つ

4 4

ことを強い
られます。これが悪化すると、コンシューマ向
けサービスの場合は機会損失につながりますし、
ビジネスアプリだと作業効率の低下につながり
ます。目をつむれない問題です。
　この読み込みから表示までのプロセスを改善
すべく、余っているネットワークリソースに目
を向けました。ネットワークは、Webページ
の読み込みをしている間リソースを限界まで食
いつぶします。しかし、読み込みが終わると、
ほとんど何もしていないスカスカの状態になり
ます（図1）。ダイアルアップ接続の時代はこの

方法が歓迎されたのですが、今は常時接続が当
たり前の時代。
　そこでワーキンググループは、余っているネッ
トワークリソースを有効活用するためのアイデ
アとして「prerender」「prefetch」「dns-prefetch」
という仕様の標準化を始めました。Webページ
を表示している間に、裏でこれから使う可能性
のあるファイルなどのリソースを先読みできます。
　先読みは、その目的に応じてリスト1のタグ
をhead要素内に記述するだけと、非常にシン
プルです。
　prerenderとprefetchは、ファイルを先読み
することでパフォーマンスを改善する技術です
（図2）。dns-prefetchは、モバイル環境で問題
になりがちなDNSの名前解決を事前実行し、
パフォーマンスを改善する技術です。ここでは、
prerenderとprefetchについてより詳しく触れ
てみましょう。
　prerenderは指定したWebページの表示に必
要なファイルを丸ごと先読みさせる技術です。
URIにHTMLドキュメントを指定すると、
HTMLドキュメント内で参照されているCSS/
JavaScriptも一緒に先読みしてキャッシュして
くれます。さすがにJavaScriptの初期実行ま

<!-- 次のページの先読み -->
<link rel="prerender" href="./?page=2" />

<!-- 近いうちに必要になるリソースの先読み -->
<link rel="prefetch" href="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.6/angular. ｭ
min.js" />

<!-- 近いうちに必要になるDNSの名前解決 -->
<link rel="dns-prefetch" href="http://example.com/" />

リスト1　 prerender、prefetch、dns-prefetchの記述例 ▼

（
ネ
ッ
ト
ワ
ー
ク
負
荷
）

ハイパーリンクを
クリック

ユーザがWebページを閲覧し始める

（経過時間）

Webページが
見え始める

ネットワークリソースが
余っている状態

図1　 Webページ読み込み時のネットワークリソー ▼
スの偏り（ユーザのWeb閲覧時に注目）

108 - Software Design May 2014 - 109

ファイル読み込みで高速化を図る 第1回

ではしてくれませんが、「pre（事前に）＋render
（レンダリングする）」という名前のとおり、
Webページを裏で表示して待機しているよう
な振る舞いをします。
　対して、prefetchはファイル単体での先読み
です。prerenderと違って、HTMLドキュメン
ト内で参照されているCSS/JavaScriptなどの
ファイルを読み込むような動きはしません。そ
もそも、指定するURIはHTMLドキュメント
よりも画像ファイルやJavaScriptファイルな
どの単体のリソースの先読みが求められるケー
スに向いています。
　prerenderは1つのURIしか指定できないの
に対し、prefetchは複数指定できるという特性
を持ちます。たとえば、Internet Explorer 11（以
下、IE11）だと、prerenderは1つまでしかペー
ジを先読みできませんが、prefetchは10個の
ファイルまで指定できます。
　実際にどういう活用方法があるでしょうか？
　まずは、prerender。これはニュースサイト
のようないわゆる「Webサイト」と呼ばれるタ
イプのサービスに向いています。ニュースサイ
トだと、1ページ目を表示している間に、裏で
2ページ目を読み込んでおくような活用方法が

挙げられます。インターネット上のWebサイ
トはSEO（Search Engine Optimization：検索
エンジン最適化）が求められるため、Java
Scriptも装飾程度にしか活用されないことが多
いでしょう。このようなタイプのWebページは、
HTMLドキュメント内で表示に必要なファイ
ルは一通り定義されていることが多いため、高
い効果が期待できます。JavaScriptの初期実行
は先読みの段階で行われないため、ソーシャル
ボタンや広告が無駄に取得されるのを避けるこ
ともできます。
　一方で、prefetch。こちらはWeb版Gmailの
ような「Webアプリ」と呼ばれるタイプのサー
ビスに向いています。JavaScript内から、デー
タやファイルをガッツリ読み込むタイプのもの
です。prerenderはHTMLドキュメント内で参
照するファイルぐらいしか読み込んでくれませ
んが、prefetchはprerenderでは拾えないよう
な、たとえばJavaScript内から参照されるよ
うなファイルを、直接指定して先読みできます。
　最近は、SPA（Single-page Application：単
一ページアプリケーション）と呼ばれる、単一
のWebページ上で複数の画面を扱えるように
するWebアプリのアーキテクチャが広がりを

WebページAの表示に
必要なファイル

WebページBの表示に
必要なファイル

downloadする 表示

ブラウザ

ブラウザ

WebページBの表示に
必要なファイル

WebページBの
ハイパーリンクをクリック

downloadしない 表示

downloadする キャッシュ
しておく

図2　ファイル先読みのイメージ ▼

110 - Software Design

短期集中連載Web標準技術 で行う
Webアプリのパフォーマンス改善

May 2014 - 111

ファイル読み込みで高速化を図る 第1回

見せています。ただ、SPAはファイルサイズ
が大きいため、初期読み込みに時間がかかると
いう問題を抱えています。読み込みのパフォー
マンスを高めるために、ファイルそのものを圧
縮したり結合したりとさまざまなアプローチで
改善を試みていますが、それでも大規模ならメ
ガ超えが避けられないことがあります。しかも、
SPAは高度なオフライン処理を行うのに向い
ており、ネットワークが貧弱な環境でも多くの
機能を与えることができたりします。ネットワー
クの貧弱さを補うための対策が、読み込むファ
イルを肥大化させ、貧弱なネットワークに耐え
られないアプリになるという、ジレンマに悩ま
されるのです。
　このような特性を持つアプリでは、ログイン
ページを表示している間に、裏でprefetchを使っ
てSPAを構成するファイルをある程度読み込
んでおく、というアプローチが行えるでしょう。
「SPAって初期読み込みが遅い！」「この前、タ
ブレットで読み込もうとしたら、1分待たされ

たんですけど！」という意見をよく耳にするの
ですが、その多くはこうしたWeb標準の機能
で改善できたりします。
　なお、動作チェックについては、ブラウザ付
属の開発者ツールを使います。筆者のブログのペー
ジをURIに指定したものを参考にしてみましょう。
prefetchのようなシンプルなものは、開発者ツー
ルの「ネットワーク」タブの中で確認できます（図3、
4）。自身のページに加えて、prefetchで指定さ
れたHTMLドキュメントが読み込まれています。
　対してprerenderは、IE11では「ネットワー
ク」、Chromeはやや特殊で「タスクマネージャ」
で確認が行えます（図5、6）。Chromeは隠蔽さ
れているためわかりにくいですが、IE11の例
では、HTMLドキュメント以外にも大量のファ
イルの読み込みを行っているのが確認できます。
HTMLドキュメント内に記述した、scriptタグ
や imgタグで指定した外部ファイルが取得され
ているのです。
　prefetchは最新の主要ブラウザでは対応済み

図3　IE11でのprefetchの確認方法 ▼

図4　Chromeでのprefetchの確認方法 ▼

図5　IE11でのprerenderの確認方法 ▼

図6　Chromeでのprerenderの確認方法 ▼

110 - Software Design May 2014 - 111

ファイル読み込みで高速化を図る 第1回

ですが、prerenderは2013年末までChromeの
独自機能という扱いだったため、現在、最新の
Firefoxでもまだ未対応です。基本は無視され
動作しないという、ベストエフォートの扱いで
しょう。未対応ブラウザでも動かしたいという
のであれば、IE8からサポートされている
WebStorageを利用して、擬似的にこの機能を
再現させるアプローチもあります。
　ただ、この方法はお世辞にもきれいな方法と
は言えず、また、Web標準側が想定している使
い方かと言えば正直微妙なところです。このた
め、本記事では解説を割愛させていただきます。

ファイルを後で
読み込ませる

　ファイルの先読みはパフォーマンス改善で非
常に効果的な手段ですが、読み込めるファイル
の数には限界がありますし、ネットワークリソー
スにも限界があります。なんだかんだ言っても、
Webページの読み込み時は、ネットワークリソー
スを限界まで使いつぶして、必要なファイルを
すべて読み込むという前提のもと、作り方を考
えなくてはいけないでしょう。
　Webページのファイルの読み込みは、リソー
スの種類にもよりますが、並列で読み込むこと
が多いです。ファイルサイズが大きい場合、並
列に読み込んでいるファイルすべてが、ネット
ワークリソースを奪い合うように共有するため、
個々のファイルはゆっくりと読み込まれます。
同時に何本の並列化が行われるかは、HTTPの
バージョンやブラウザの種類／設定に依存する

のですが、いずれにせよ、Webページ読み込
み時にネットワークリソースに負荷が一気に集
中するという問題に変わりはありません（図7）。
　何をもってパフォーマンスが高いとするか、
その定義しだいでも変わってきますが、体感速
度を改善させたいのであれば、初期表示時に見
えているエリア内だけでも早く表示してしまい
たいところです。背景画像などは優先度を下げ
ても良いでしょう。縦長のサイトだと、スクロー
ルしないと見えない画像ファイルを多く含むこ
とになりますが、それをわざわざWebページ
の読み込み開始直後に取得する必要はないはず
です。動画／音声ファイルやCSS/JavaScript
ファイルなど、あとで読み込んでも大丈夫なも
のもあるでしょう。
　こうした「あとに読み込ませたい」というニー
ズに対しては、Web標準の「Resource Priorities」
が有益な手段です。HTMLドキュメント内か
ら参照されるファイルに対して、読み込むタイ
ミングの優先付けを行うものです。Webペー
ジの読み込み直後、ネットワークリソースに余
裕がない状況下で、最善のパフォーマンスが得
られます。
　これも利用方法は、非常にシンプルです。
HTMLとCSSの双方から指定可能です。

・タグで指定する場合

・CSSで指定する場合

img.hoge { resource-priorities : lazy-ｭ
load; }
img.fuga { resource-priorities : postｭ
pone; }

　サンプルでは「lazyload」と「postpone」の2種
類の設定方法を紹介しています。lazyloadはプ
ライオリティが低いという意味です。ほかのファ
イル読み込みに対して優先的にネットワークリ
ソースを与えるという動作をします。

（
ネ
ッ
ト
ワ
ー
ク
負
荷
）

ハイパーリンクを
クリック

ユーザがWebページを閲覧し始める

（経過時間）

Webページが
見え始める

ネットワークリソースに
余裕がない状態

図7　 Webページ読み込み時のネットワークリソー ▼
スの偏り（ハイパーリンククリック直後に注目）

112 - Software Design

短期集中連載Web標準技術 で行う
Webアプリのパフォーマンス改善

May 2014 - 113

ファイル読み込みで高速化を図る 第1回

　対して、postponeは必要なタイミングでの読
み込みを意味します。img要素に対して
postponeを指定すると、スクロールして対象
の img要素が画面内に入り込むまで、読み込み
を開始しなくなります。
　今のところ、実用的なのは lazyloadだけです。
postponeは現在、IEの最新版である11でもま
だサポートされていません。lazyloadもpostpone
も、Web標準としては2013年4月にドラフトが
公開された比較的新しい仕様であるため、残念
ですが、IE10以下を含む少し古いブラウザだと
この機能を持ちません。どうしても必要なら、
JavaScriptライブラリを活用することになります。
　画像ファイルでは、「Lazy Load Plugin for
jQuery」注1が有名です。今回紹介した lazyload/
postponeの動作を、完璧ではないにせよ模倣
してくれます。
　また、JavaScriptは古くからdeferという属
性が実装されており、単純な遅延読み込みであ
ればこれでも代替できます。

<script src="xxx.js" defer></script>

とはいえ、最近の JavaScriptファイルは、
jQueryのプラグイン然り、ファイル間に依存
性を持つものが多い状況です。遅延読み込みも
大事ですが、それ以上に、AMD（Asynchronous
Module Definition）と呼ばれる依存性解決を行
える機能が求められます。W3Cのメーリング
リストでも、2013年12月にこの話が持ち上が
りましたが、今のところ反応がなく、まだまだ
という印象です。実用性で見ると、Web標準
からはややズレますが、しばらくはCommonJS
というサーバサイドJavaScript標準のアイデア
を継承したJavaScriptライブラリ「RequireJS」注2

を利用するのが良いでしょう。
　CSSの遅延読み込みは、FOUC（Flash of

注1） http://www.appelsiini.net/projects/lazyload

注2） http://requirejs.org/

Unstyled Content）と呼ばれる、ページ読み込
み時に一瞬だけ表示が乱れる現象を発生させる
ため、あまり推奨されるものではありません。
とはいえ、どうしても必要な場合は、クロスブ
ラウザ対策で有名なModernizr注3の loadメソッ
ドや、これと同じ機能を単独で実装する
yepnope.js注4が、CSSファイルの遅延読み込み
にも対応しており、代替手段として利用できます。

ファイルを圧縮する

　ファイルを読み込むタイミングの制御だけで
なく、ファイルをそのもの圧縮してしまおうと
いうアイデアもあります。
　圧縮というと、JavaScriptやCSSファイル
内のスペースや改行を削除する処理を想像する
方もいますが、ここで取り扱うのはもう1つ下
のレイヤの機能です。ファイルの種類を問わず、
ファイルをgzip圧縮させた状態でクライアン
ト側に送信することで、ネットワークリソース
を効率化させよう、というアイデアです（図8）。
画像ファイルやPDF、Microsoft Office 2007
以降で採用されているファイル形式（OpenXML/
ECMA-376）や ODF（OpenDocument Format）
のような、圧縮を含むフォーマットに対しては
まったく効果が期待できません。テキストファ
イルのようなバイナリレベルで未圧縮のものに
適しています。
　この機能を利用するには、ファイルが圧縮され
ていることをブラウザに伝えるため、HTTPレス
ポンスヘッダに、次のプロパティを設定します。

注3） http://modernizr.com/

注4） http://yepnopejs.com/

クライアント

解凍 送信 圧縮

サーバ

図8　ファイルの圧縮転送のイメージ ▼

http://www.appelsiini.net/projects/lazyload
http://requirejs.org/
http://modernizr.com/
http://yepnopejs.com/

112 - Software Design May 2014 - 113

ファイル読み込みで高速化を図る 第1回

Content-Encoding: gzip

　実際には、HTTPヘッダにプロパティを付
与するような設定を直に作りこむのは、ものす
ごくハックしている感じがして、サーバ管理者
だと抵抗感を感じること間違いなしです。現場
で運用する場合は、たとえばApacheでは、1.x
はmod_gzip、2.xはmod_deflateを用いてファ
イル圧縮やHTTPヘッダの制御を自動化させ
るのが一般的です。deflateという見慣れない
キーワードが出てきましたが、これは圧縮フォー
マットの1つです。実はここで指定する圧縮方
式はgzipじゃなくても良いわけですが、ブラ
ウザ側の対応状況を鑑みると、gzipのほうが安
全です。名前こそmod_deflateですが、実際に
はgzipを使うというやや泥臭い感じがする設
定を作ることになります。
　筆者の手元の環境では、mod_gzipの場合、
Apacheのhttpd.confファイルにリスト2のよう
な設定が必要になりました。これは、古くから
の作法に則り、拡張子が「css」「js」のものに対し
て圧縮設定をしています。最近のWeb標準、た
とえば、WebGLのようなものになると、これ
ら以外のテキストファイルも含まれたりするの
で、そこは柔軟に対応する必要があるでしょう。
　この標準はわりと歴史が古く、W3Cではな
くRFC 2616として標準化されています。十分
に枯れていて、かなり実用的な技術です。ベン
ダ系のWeb開発製品だと、パッケージング／
ビルド／デプロイ処理の中に、デフォルトでこ
の圧縮設定が組み込まれているものもあります。
　ただ、IE6で最新のサービスパックが適用さ
れていないものには、不具合があるという話を

聞きます。筆者は手元の環境で再現ができてい
ないため断言はできないのですが、実質的には
IE7からの活用が望ましいと思われます。この
記事が世に出るころには、Windows XP版 IE6
もEOLを迎えていますので、この問題はあま
り意識しなくて良いと、信じたいところですね。
　また、この機能に未対応のブラウザでは、プ
ロキシが悪さをするという問題もあります。圧
縮がらみのネタは語りだすとキリがないので、
解説はこのあたりで止めておこうかと思います。

まだ終わりません

　さて、今回はファイルの読み込みにフォーカ
スして、パフォーマンスを改善するWeb標準
について紹介しましたが、いかがでしたでしょ
うか。パフォーマンス自体は、最近議論が始まっ
たわけでもなく、RFCにもその痕跡が多く残
されています。gzipなどがまさにそれですね。
古い技術が役立たずになるのかと言えばそうで
もなく、いつになってもそのエッセンスは活用
され続けるものです。
　次回は、こういう古い標準の考え方を取り込
み、パフォーマンスの改善に取り組んだ技術で
あるネットワークプロトコルやキャッシュの改
善について紹介します。また、今回は「速く動
かす」を目的とした改善方法を紹介しましたが、
「速く動かす」＝「パフォーマンスが高い」という
わけでもありません。あえて「遅く動かす」こと
を視野に入れる必要もあるのです。そういう話
もしようかと思います。
　それでは次回、またお会いしましょう！　あ
りがとうございました。ﾟ

<IfModule mod_gzip.c>
 mod_gzip_item_include file \.js$
 mod_gzip_item_include mime ^application/x-javascript$
 mod_gzip_item_include file \.css$
 mod_gzip_item_include mime ^text/css$
</IfModule>

リスト2　Apacheにおける圧縮転送の設定例 ▼

114 - Software Design

ようこそ、
Emacsの世界へ

　はじめまして、Emacsを溺愛しているるびき
ちと申します。『Emacsテクニックバイブル』と
『Emacs Lispテクニックバイブル』を著しまし
た。本誌でも昨年のEmacs特集のときには記事
を書かせていただいています。Emacs愛が高じ
て毎週土曜日に無制限メール相談付きの有料メ
ルマガも発行しています。そして今回はこの連
載を任されました。ありがとうございます。

色あせぬ・尽きぬ魅力

　筆者は、1996年はじめからEmacs一筋でたく
さんのEmacs Lispプログラムに触れ、自分でも
作ってきました。今年で19年目になりますがい
まだにEmacs愛は冷めることを知りません。
　今回は第1回目ということで、難しいことは
抜きにしてEmacsとは何なのか、そしてEmacs
の魅力について語っていこうと思います。

潤沢リソース時代のエディタの役目とは

　「Emacsとは何なのか？」と聞かれればテキス
トエディタというのが一般的な答えです。Emacs
vs Vi（m）はUnixテキストエディタ界の「きの
こ・たけのこ戦争」といったところで、両者は人
気を二分している状況でした。最近はSublime

TextやAtomなどの新しい勢力も現れてきてい
るうえ、Vimにも後れをとっている状況です。
今ではEmacsをわざわざ使う人はますます減っ
てきています。その流れでも、あえてEmacsを
選ぶ意味があります。
　元来テキストエディタはとても軽いアプリケー
ションで、シェルから瞬時に立ち上がり、テキ
ストを変更したら即終了という使い方をするも
のです。Vi（Vimではない）はまさにそんな使い
方をすることが念頭にありました。
　対してEmacsはヘビー級のアプリケーション
で、1つ立ち上げたらログイン中はずっとその
Emacsセッションを使い回す文化です。いわゆ
る「Emacsひきこもり」ですね。Emacsはあまり
にも大きいプログラムだったので、リソースが
厳しかった大昔は、Emacsを複数個立ち上げる
と怒られたものでした。今はリソースが潤沢な
のでEmacsを複数個立ち上げたくらいではびく
ともしません。Vimなど、ほかのテキストエディ
タも高機能化・充実したプラグインによりひき
こもり生活が送れるようになっています。Emacs
は30年以上昔からひきこもり文化であったこと
から、いかに特別な存在であったかがうかがい
知れます。今はヘビー級ひきこもりアプリケー
ションといえばWebブラウザにその地位を譲っ
てしまっていますが、Emacsは先駆者といえま
す。

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch

http://d.hatena.ne.jp/rubikitch/
http://www.rubyist.net/~rubikitch/

第1回 なぜEmacsをお勧めするのか？
Unixとともに育ち、多くのプログラマの道具として愛されてきたEmacs。本連載では、その使い方だけでな
く、その背景にある思想からもEmacsの解説を行います。まずはエディタとしての性格、一番大きなメリット
である文字入力の一元化、そして必須のEmacs Lispとの関係など、最初に知っておくとよい情報をガイダ
ンスします。

Writer

新連載

http://d.hatena.ne.jp/rubikitch/
http://www.rubyist.net/~rubikitch/

114 - Software Design May 2014 - 115

Emacs Lisp

　Emacsはテキストエディタの皮をかぶった
Lispマシンであり、1つの世界をつくっていま
す。Emacs環境にはさまざまなアプリケーショ
ンが存在します。これらはすべてEmacs Lispで
書かれています。

シェル：eshell
ファイラ：dired、nav、speedbar
ページャ：view-mode
メーラ：gnus、mew
Twitterクライアント：twittering-mode
Webブラウザ：emacs-w3m
RSSリーダー：newsticker
Skypeクライアント：skype
カレンダー：calendar
ワープロ：org
スケジュール・TODO管理：org
プレゼンテーションツール：org
バージョン管理：vc、magit、psvn、pcvs
メディアプレイヤー：emms
テキスト翻訳：text-translator
ゲーム：gomoku、tetris、doctor
manインターフェース：man
grepインターフェース：grep
……その他もろもろ

　Emacsの魅力は以下の3点に集約されます。そ
れでは1つ1つ見ていきましょう。

・文字入力が一元化される
・外部プログラムとの連携が得意
・拡張言語がLispであること

文字入力の一元化

　Emacsを使うことによって受ける最大の恩恵
が「文字入力の一元化」です。テキストエディタ
としてのEmacsは成熟していて、強力なカーソ

ル移動や入力機能が使えます。もちろん好きな
機能を自分で追加できます。それらの機能はプ
ログラミング時だけでなく、メールや文書作成、
TwitterやIMのメッセージ入力でさえも同じよ
うに使えるのです。
　想像してみてください。あなたは今プログラ
ミング用には普通のエディタを使っています。
メール、Twitter、Skypeはそれぞれ別のソフト
を使っています。ブラウザのフォーム入力はブ
ラウザからそのまま入力しています。ウィンド
ウが画面中に散らばっており、タスクを切り替
えるときにアプリケーションのウィンドウを切
り替えるのが面倒だと感じています。エディタ
で使えるはずの強力なコマンドが他のアプリケー
ションでは使えずにもどかしい思いをしていま
す。ブラウザで見ているサイトの内容をURL付
きで引用するメールを面倒だと思いながら書い
ています……。
　あなたがEmacsを使うようになったら、その
状況は一変します。普段使っている文字入力方
法、コマンドが「文字入力をするすべての場面
で」使えるようになるのです。つまり、文字入力
するときは一貫して同じ方法が使えます。アプ
リケーションごとに操作方法を切り替えるスト
レスから解放され、入力する内容に集中できま
す。ブラウザのフォーム入力時にEmacsを呼び
出せます。サイトの内容をURL付きで引用する
メールなど、Emacsを使えば楽勝で書けてしま
います。シェルコマンドの実行結果をそのまま
書き込むことができます。ふとアイデアを思い
付いたら、一瞬でメモ入力コマンドを起動し、
メモを書いたら自動的にメモ起動前のタスクに
戻ってくれます。
　アプリケーション間でデータのやりとりをす
るクリップボードなど、Emacsのキルリングと
比べたらオモチャ同然です。なぜたった1つの
テキストしか記憶できないのでしょうか？キル
リングは大昔から何個もテキストを記憶できて
いたというのに。
　プログラマはコマンドラインシェルも好んで

第1回 なぜEmacsをお勧めするのか？

116 - Software Design

じように実行できます。端末での実行とは違い、
過去の出力を遡れるし、コピーもできるメリッ
トがあります。
　M-x compileはコンパイルコマンドを実行さ
せて、エラー行にジャンプできます。さまざま
なプログラムのエラーメッセージ表示形式に対
応していて自動判別してくれます。コンパイル
エラーが起きたら次にやることは該当行にジャ
ンプすることなので、このインターフェースは
とても素晴しいです。
　M-x grepはその応用例でgrep -n形式の出
力に対応しています。grepの出力結果から該当
行にジャンプできます。Emacs Lispでgrepを
書くこともできますが、速度はgrepプログラム
の圧勝です。そこで検索処理をgrepプログラム
に丸投げして、grepを呼び出す部分と検索結果
からジャンプする部分を、Emacs Lispで書く方
法を採用しました。これにより全部Emacs Lisp
で書くことと比べて行数を大幅に削減でき、grep
の速度も活かせます。
　この方法の嬉しい副産物として、grep以外の
コマンドでも行番号にジャンプすることができ
ます。M-x grepではgrepの代わりにソースコー
ド検索に特化したackやagを呼び出してもよい
のです。出力がgrep -n形式でありさえすれば
任意のプログラムが使えます。
　同じことはEmacs内でmanpageを開くM-x

manでも言えます。これは内部でmanを呼ぶの
ですが、manの代わりにmanと同じようにふる
まう別のプログラムに設定できます。
　manpageだけだとわかりにくいので、具体例も
表示してほしいですよね。それならば、ワンライ
ナー検索サイトcommandline-fuの検索結果も出力
するスクリプトを作成し、manの代わりに呼び出
すように設定すればM-x manで具体例つきの
manpageが見られるようになります。外部プログ
ラム側を拡張することで、M-x manに「憑依」する
形でcommandline-fuのEmacsインターフェース
も同時に手に入ります。一石二鳥ですね。
　M-x find-diredはfindプログラムの引数を

使います。文字入力の一元化というのは、シェ
ルにも波及します。M-x shell注1はいつも使って
いるシェルをEmacs上で動かしているので、
Emacsの持つ強力な機能がそのまま使えます。
しかし、シェルの持つ本来の機能が使えない欠
点もあります。それに対して eshellは完全に
Emacs Lispで書かれたシェルであり、しっかり
作り込まれています。通常のシェルとは異なり
eshellはフルEmacs Lispなのでコードを書けば
完全に自由にアレンジできます。しかも
Windowsでも問題なく使えるので複数のOSを
使う人ならばeshellは手軽でお勧めです。真新
しいWindows PCが筆者に与えられた場合、
真っ先にEmacsをインストールしてeshellを立
ち上げるところからスタートです。

外部プログラム
との連携

　Emacs自体でもEmacs Lispでいろいろなも
のが作れますが、それだけだと力不足なことも
あります。そこで外部プログラムとやりとりす
ることになります。シェルコマンドの実行結果
を表示・挿入することはもちろん、シェルなど
の対話的プログラムを動かせます。また、プロ
グラムをEmacsから使いやすくするコマンドが
たくさんあります。「Emacsはエディタではなく
て環境だ」とか「EmacsはOSだ」と言われている
最大の要因はこのプロセスを扱う機能のおかげ
です。

各コマンドの説明

　M-!は、シェルコマンドの実行結果を表示し
ます。このコマンドを使えばシェルコマンドの
実行結果を含む文書を楽に作れます。
　M-x shell、M-x telnet、M-x rlogin、M-x
run-rubyなどは対話的プログラムを実行する
例です。Emacsのバッファ上で通常の端末と同

注1） 「M-x」はaを押しながらXを押すEmacs流キー表記。
M-xはコマンド名を指定して実行します。Emacsのコマン
ドを明示的に表記するときにも「M-x コマンド名」が使われ
ます。

るびきち流
Emacs超入門

116 - Software Design May 2014 - 117

入力することで、その結果をdiredで表示しま
す。diredなので表示されたファイルを開くこ
とはもちろん、その他のdiredのコマンドが使
えます。
　このように、Emacsは外部プログラムとつな
ぐことを得意としています。外部プログラムを
呼び出して、その結果を処理することで、あた
かもEmacs組み込みの機能であるかのように動
作してくれます。

Lisp・関数プログラミング
養成エディタ

　Emacsについて語る場合、Emacs Lispについ
て触れないわけにはいきません。高機能でひき
こもりができるエディタは今やほかにもありま
すが、なぜEmacsがいいのかというと、それは
Emacs Lispの存在です。プログラマにとっての
エディタは野球選手でいうバットやグローブの
ようなもので、まめに手入れをする必要があり
ます。エディタの手入れとは設定やカスタマイ
ズですが、EmacsではLispを使って行います。
　昔から「プログラマならばLispを学べ」と言わ
れています。実際に使うか使わないかはともか
く、Lispを学べばよりよいプログラマに成長し
ていきます。現在のプログラミング言語の多く
はLispの影響を受けているので、Lispを学ぶこ
とで、常用している言語に新たな視点を与えて
くれます。
　Lispは最初の関数型言語として知られていて、
進化を続けて今も使われています。Lisp自体は
古代の言語ですが、当初から高階関数、ガーベッ
ジ・コレクション、クロージャーなどといった
先進的な機能がありました。Emacsを使うとい
うことはEmacs Lispに日々触れるということで
あり、Emacsを心から愛するようになったら、
それこそLisp漬けの日々です。Emacsを好きに
なれば、だんだんLispも好きになっていき、そ
れがさらにEmacs愛を深めることになります。
エディタのカスタマイズという身近なテーマを
通してLispを学べるのです。

　筆者は2月号で関数プログラミング特集の記
事も書きましたが、今まさに関数プログラミン
グが注目されています。Emacs Lispはその性
質から命令型プログラミングが主流になってい
ますが、腐ってもLispです。Emacs Lispから
関数プログラミングを学ぶことができるんで
す。
　LispハッカーにとってみればEmacs Lispは
オモチャでしかありませんが、Emacs Lispは着
実に進化しています。Emacs24でレキシカルク
ロージャーが正式サポートされました。CPAN
やAPTを連想させるパッケージシステムが登場
し、現代的で強力なライブラリも簡単に導入で
きるようになりました。Emacs Lispだってスタ
イリッシュに記述できる時代です！
　Lispの考え方、関数プログラミングが好きな
人やこれから学びたい人ならば迷わずEmacsで
す。大量の括弧が嫌いな関数プログラミング好
きも実はEmacs向きです。括弧アレルギーなど
すぐに克服してしまう方法があるからです。

おわりに

　今回はEmacsの世界に初めて足を踏み入れた
人向けに、Emacsとはどんなものなのかについ
て書きました。今後も本連載では入門者にもわ
かりやすいようにEmacsの魅力を余すことなく
お伝えしていきます。次回をお楽しみに！
　もっとEmacsについて学びたい意識の高いあ
なたのために、筆者は毎週土曜日にEmacs専門
メルマガを発行しています注2。無制限メール相
談権付きであなたを徹底サポート致します。個
別メールでよりよい提案を行ったり、Emacsに
関するトラブルを解決いたします。月頭に登録
すれば無料で1ヶ月間サポートが受けられます。
次の月からは月々512円かかりますので、不満
であれば解除していただいてかまいません。メ
ルマガの登録お待ちしております。ﾟ

注2） http://www.mag2.com/m/0001373131.html

第1回 なぜEmacsをお勧めするのか？

http://www.mag2.com/m/0001373131.html

118 - Software Design

JAWS DAYS 2014に
参加してきました
　2014年3月15日の土曜日、新宿のイベント
ホールでAWSのユーザコミュニティによる交
流イベント「JAWS DAYS 2014」が開催され、
全国から1,000人以上の参加者が集い、大小6
つのブースで並行してテクニカルセッションや
ディスカッションが行われました。筆者もほぼ
終日参加していましたが、各ブースの発表者の
声が会場内に響きわたり、参加者の皆さんが好
きなタイミングで気になるセッションを立ち聞
きしたり、空いているスペースで意見交換をし
たりと自由な雰囲気で参加していることが大変
印象的でした。
　今年の会場では「Immutable Infrastructure」
というキーワードが特に注目を集めていました。
サーバなどのITインフラを管理運営するうえで、
利用しているITリソースが「状態を持っている
こと」が物事を複雑にしているのであれば、「状
態を持たない、不変の（immutable）」のインフラ
ストラクチャリソースを作ればよいのではない
か、そのための環境が昨今は整い始めている、
というのがこの議論の起点となっています（と
筆者は理解しています）。今後、AWSをはじ
めとするクラウドプラットフォームサービスを
利用するうえで「プログラマブルであること
（Infrastructure As Code）」「状態を持たせない
こと（Immutable Infrastructure）」「疎結合であ

ること」の3点を意識することの重要性が高まっ
ていくことは避けられないのではないかと感じ
ました。そしてその基盤技術としてのAWS
APIをはじめとするWebAPIの利用知識も必
須となっていくと確信したのでした。というこ
とで、今月号の本編に入ります。

AWS APIの利用方法

　AWS APIを利用するには、おもに次の3つ
の方法があります。

1. AWS Software Development Kits（AWS
SDK）の利用
2. AWSコマンドラインインターフェース（AWS
CLI）の利用
3.APIに直接アクセス

AWS Software Development Kits
（AWS SDK）

　AWSのサービスをプログラミング言語から
扱うためのSDK（Software Development Kits）
がAWS本体やサードパーティから提供されて
います。AWS SDKでは、AWS APIのリソー
スや機能をプログラミング言語ごとに抽象化し
てメソッドやプロパティとして提供しており、
ユーザは好みの言語からAWS APIを間接的に
操作できます。
　2014年3月現在、AWS公式サイトで紹介さ

シェルスクリプトではじめる
AWS入門
―ゼロから始めるAWS API

Writer　波田野 裕一（はたの ひろかず）／運用設計ラボ　operation@office.operation-lab.co.jp

第2回　AWS APIの利用方法と環境の構築

118 - Software Design May 2014 - 119

第2回　AWS APIの利用方法と環境の構築

れているSDKには次の9種類があります。

・AWS SDK for Android
・AWS SDK for iOS
・AWS SDK for Java
・AWS SDK for JavaScript（in the Browser）
・AWS SDK for JavaScript（in Node.js）
・AWS SDK for .NET
・AWS SDK for PHP
・AWS SDK for Python（boto）
・AWS SDK for Ruby

AWSコマンドラインインター
フェース（AWS CLI）

　コマンドラインからAWSの各サービスを操
作するための公式ツールとして、AWSコマン
ドラインインターフェース（AWS CLI）が、
Windows向け、Mac/Linux向けに公開されて
います注1。AWS CLIには、サービス別にリソー
スや機能を操作するためのサブコマンドが定義
されており、コマンドライン上からAWS API
を間接的に操作できます。作業手順に必要な一
連のCLIコマンドをシェルスクリプトで記述し、
作業の自動化も比較的容易に実現できます。

APIに直接アクセス

　3つ目の方法として、AWS SDKやAWS
CLIに頼らずに、生のHTTPリクエストを自
力で作成し、コマンドやブラウザで直接API
に送信する方法があります。AWS SDKや
AWS CLIに比べると格段に情報が少なく、
AWS公式ドキュメント以外にはサポートも得
られにくいというイバラの道ですが、AWS
APIの動作を知る最も効果的な方法だと考え
ています注2。
　本連載では、AWS APIの理解を深めること

注1） URL http://aws.amazon.com/jp/cli/

を目的に「APIに直接アクセス」する方法を中心
に解説し、補助的にAWS CLIを利用していき
ます。また、APIへのリクエストとそのレスポ
ンスを防護するために、APIへのアクセスには
HTTPS通信を利用することにします。

クライアントマシン環境の
準備と確認
　まず、APIに直接アクセスしてリクエストを
行ううえで必要な、クライアントマシン環境を
準備します。ここでは、Mac OS X Mavericks
上でのクライアントマシン環境の構築について
解説していきます。

インターネットコネクティビティ

　最初に、当然なのですがAWS APIに接続す
るためにはインターネットにつながっていなけ
ればなりません。ブラウザでAWSの公式ペー
ジ（http://aws.amazon.com/jp/）にアクセスで
きていれば問題ありません。

デジタル署名ツール

　AWS APIでは、リクエスト時にリクエスト
メッセージにデジタル署名を添付します。本連
載では、主要ディストリビューションに標準で
含まれているopensslコマンドでデジタル署名

注3） URL http://docs.aws.amazon.com/ja_jp/AWSEC2/
latest/UserGuide/using-query-api.htm

注意
　AWSに限りませんが、APIに直接アクセ
スする場合は要求メッセージのサイズや単
位時間あたりの送信量が過大にならないよ
うに注意してください。たとえば、Amazon
Elastic Compute Cloud（Amazon EC2）に お
いては、AWSアカウントごとに「クエリ
APIリクエスト率」による制限があること
が明記されています注3。

注2） これ以外にも、統合開発環境（IDE）向けのツールキットやサー
ドパーティによるコマンドラインツールなども提供されて
います（https://aws.amazon.com/jp/tools/）。

http://aws.amazon.com/jp/
http://aws.amazon.com/jp/cli/
https://aws.amazon.com/jp/tools/
http://docs.aws.amazon.com/ja_jp/AWSEC2/latest/UserGuide/using-query-api.html

120 - Software Design

を行います。
　Mac OS X Mervericksに標準で組み込まれ
ている opensslコマンド（/usr/bin/openssl）は
0.9系と古いため、本稿では最新の1.0系バー
ジョンのものをインストールして利用します。
MacPortsもしくはHomebrewで何らかのパッ
ケージをすでにインストールしている場合は、
依存関係に応じてすでに最新のopensslコマン
ドが入っていることがあります。ここでは、
MacPortsを利用した場合の、opensslコマンド
のインストール先とインストールコマンドを例
示します。

・MacPortsの場合
インストール先：
/opt/local/bin/openssl

・インストールコマンド :

$ sudo /opt/local/bin/port install openssl

HTTPSクライアント

　AWS APIにリクエストを送信するために
HTTPSに対応したクライアントソフト（HTTPS
クライアントとして利用可能なコマンドもしく
はWebブラウザ）が必要です。

コマンド
　Mac OS XなどのいわゆるUNIX系OSには、
HTTPS通信が可能なコマンドがいくつか存在
します。本連載では、前述のデジタル署名で利
用する opensslコマンドを、おもに手動での
HTTPS通信を説明するときのHTTPSクライ
アントとして利用します。必要に応じてほかの
HTTPS対応のコマンドにも言及する予定です。

Webブラウザ
　前回の「AWS APIの全体像」で説明したとお
り、AWSの一部のサービスではREST形式の

APIが提供されています。このREST APIを
Webブラウザから直接利用するためには、そ
のWebブラウザがGET/POST/PUT/DELETE
の4種類のHTTPメソッドを適切に扱える必要
があります。しかし、Firefox/Safari/Chrome
などの主要Webブラウザは、2014年3月現在
PUTメソッドとDELETEメソッドには対応
していません。WebブラウザでAWS APIにア
クセスしたい場合は、Google Chromeとその拡
張であるREST Consoleの利用を検討してくだ
さい注4。

・Chrome:
https://www.google.com/intl/ja/chrome/
browser/

・REST Console:
https://chrome.google.com/webstore/detail/
rest-console/cokgbflfommojglbmbpenpphppikmonn

AWS CLI

　AWS CLIはPythonのパッケージとして提
供されているため、pipコマンド経由でインス
トールします。

・インストールコマンド

$ sudo easy_install pip
$ sudo pip install awscli

　/usr/local/bin/awsとしてコマンドがインス
トールされていますので、バージョンを確認し
てみましょう。

・バージョン確認コマンド

$ aws --version

注4） AWSマネジメントコンソール利用時にも、基本的に
Google Chromeを利用したほうが良いようです。筆者は
Safariを使っていて、AutoScalingで作成したリソースが（い
くらリロードしても）CloudWatchから見えず悩んだ経験
があるのですが、Google Chrome上でリロードすれば見
えるという助言に助けられました。

https://www.google.com/intl/ja/chrome/browser/
https://chrome.google.com/webstore/detail/rest-console/cokgbflfommojglbmbpenpphppikmonn

120 - Software Design May 2014 - 121

第2回　AWS APIの利用方法と環境の構築

・バージョン確認結果

aws-cli/1.3.1 Python/2.7.6 Darwin/13.1.0

その他のコマンド

　一般的なUNIXコマンドや上記コマンドの他
に、エンコードを行う際に必要となるコマンド
（base64、odなど）があります。これらは必要
なタイミングで個別に紹介する予定です。

WebAPI検証環境の構築

　AWS APIは、リクエストを処理するうえで
何らかの問題があった場合、HTTPステータ
スコードとXML形式のレスポンスデータでエ
ラーを返します。リクエストのボディ部分（ク
エリデータなど）が不正な場合は、AWS API
が返すレスポンスデータ内のエラーメッセージ
を参考にして対応すればよいのですが、リクエ
ストヘッダが不正な場合は、APIにたどり着く
手前のWebサーバが返す"400 Bad Request"な
どのHTTPステータスコードしか手掛かりが
ないため、エラー原因の切り分けが難しくなっ
てしまいます。
　本番のAWS APIを直接叩く場合は、事前に
手元の環境でリクエストが正常な（"200 OK"が
返ってくる）形式であるか確認することをお勧め
します。HTTPリクエストとして正常であるこ
とがあらかじめ確認できていれば、あとはAWS
APIの仕様との格闘に集中できるわけです。
　本稿ではこの確認環境として、Mac OS X
Mavericksに標準でインストールされている
Apacheを利用して、ローカルマシン上に
HTTPS対応のWebサーバを構築し、PHPに
よる簡易WebAPIを実装します。具体的には
次の作業を行います。

・SSL証明書の作成
・Apacheのセットアップ (HTTPS、PHP)

・簡易WebAPIの作成 (PHPスクリプト)

SSL証明書の作成

　まず、ローカルマシン上のWebサーバを
HTTPS対応にするために、SSL証明書を作
成します。今回は、ローカルマシン上のユーザ
しかWebAPI検証環境にアクセスしない前提
のため、自己証明の証明書を作成します。

1.秘密鍵の作成
　秘密鍵の作成にはopensslコマンドを使います。

% cd /private/etc/apache2/
% sudo openssl genrsa -des3 -out server.ｭ
key 2048

　次にパスフレーズの入力が求められますので
任意の文字列を入力します（あとで使うので忘
れないでください）。

Enter pass phrase for server.key:
Verifying - Enter pass phrase for ｭ
server.key:

　秘密鍵ファイル（ここではserver.key）が生成
されます。

2.パスフレーズなしの秘密鍵の作成
　SSLが有効となっているApacheは、秘密鍵
のパスフレーズを入力しないとプロセスの起動
ができません。外部に公開されているWebサー
バではセキュリティを考慮するうえで当然の動
作なのですが、今回は、停止および起動が頻繁
に発生することが多いクライアントマシンを利
用すること、ローカル環境でのWebAPI検証
環境としてのみ利用することの2点を前提に、
パスフレーズありの秘密鍵はバックアップして
おき、別途パスフレーズなしの秘密鍵を作成し
て利用することとします。
　次のように秘密鍵ファイルをバックアップし、
パスフレーズのない秘密鍵ファイル（ここでは

122 - Software Design

server.key）を作成します。

% sudo mv server.key server.key.org
% sudo openssl rsa -in server.key.org ｭ
-out server.key
Enter pass phrase for server.key.org: ｭ
(秘密鍵のパスフレーズを入力する)

3.CSR（Certi�cate Signing Request）の作成
　次に、サーバ証明書を発行するうえで必要な
署名要求 (CSR)を作成します。

% sudo openssl req -new -key server.key ｭ
-out server.csr
 入力例
Country Name (2 letter code) [AU]: ｭ
JP
State or Province Name (full name) ｭ
[Some-State]: Tokyo
Locality Name (eg, city) []: ｭ
Shinjuku-ku
Organization Name (eg, company) ｭ
[Internet Widgits Pty Ltd]: Sample
Organizational Unit Name (eg, section) ｭ
[]: System
Common Name (e.g. server FQDN or YOUR ｭ
name) []: example.jp
Email Address []: 入力不要
A challenge password []: 入力不要
An optional company name [] 入力不要

　これでCSRファイル（ここには server.csr）
が生成されます。

4.SSLサーバ証明書の作成
　CSRファイルと秘密鍵を利用して、SSLサー

バ証明書を作成します。1年間有効の証明書を
作成する場合、次のコマンドでSSLサーバ証
明書ファイル（ここではserver.crt）が生成され
ます。

% sudo openssl x509 -req -days 365 -in ｭ
server.csr -signkey server.key -out ｭ
server.crt

Apacheのセットアップ

1. 設定ファイルの修正
　次にApacheの設定をします。ポイントは3
点です。

・Apacheの基本設定（ServerName）
・HTTPSの設定
・PHP（CGI）の設定

　/private/etc/apache2/httpd.confフ ァ イ ル
（リスト1）の編集をします。設定ファイルを修
正したら、必ずバリデーションチェックをしま
す。
　

% apachectl configtest
Syntax OK

　結果が "Syntax OK"であれば、Apacheの設
定は完了です。

2. Apacheの起動
　次のコマンドでApacheを起動します。

% sudo apachectl start

　https://localhost/index.htmlにアクセス
して、"It works!"と表示されれば、Apache
の起動およびHTTPS対応は成功していま
す。

 ▼リスト1　httpd.confファイル

 #118行目付近（コメントをはずす）
LoadModule php5_module libexec/apache2/libphp5.so
 #163行目付近（コメントをはずし、ホスト名の修正をする）
ServerName localhost:80
 #181行目付近（Option行に"ExecCGI"を追加。Allow行を追加）
Options FollowSymLinks ExecCGI
Allow from localhost
 #389行目付近（行を追加）
AddType application/x-httpd-php .php
 #400行目付近（コメントをはずす）
AddHandler cgi-script .cgi
 #492行目付近（コメントをはずす）
Include /private/etc/apache2/extra/httpd-ssl.conf

122 - Software Design May 2014 - 123

第2回　AWS APIの利用方法と環境の構築

3. PHPの動作確認
　Apacheが起動したら、PHPスクリプトの動
作確認のためのコンテンツを作成します。

% sudo /bin/sh -c "echo '<?php ｭ
phpinfo();' > /Library/WebServer/ｭ
Documents/phpinfo.php"

　https://localhost/phpinfo.phpにアクセスし
て、PHPのバージョンやモジュール情報の一
覧が表示されればPHP対応は成功しています。

簡易WebAPIの作成

　ApacheのDocument Root下に簡易WebAPI
のスクリプトを設置します（リスト2）。

簡易WebAPIの動作確認

　スクリプトの設置が完了したら、実際に簡易
WebAPIにリクエストを投げてみましょう。
HTTPS経由でアクセスするため、opensslコ
マンドで localhostのTCP443番ポートにアク
セスします。

% openssl s_client -connect localhost:443

　コマンドを実行すると、数十行のメッセージ
が流れて、最後に

 ……（省略)……
Timeout : 300 (sec)
Verify return code: 18 (self signed ｭ
certificate)

と表示されてコマンドが待機状態になります。
ここにリクエスト文を入力すると、Webサー
バにリクエストが送信されますが、入力ミスや
タイムアウトを避けるためにクリップボード経
由で貼り付けるのが良いでしょう。
　まず、リクエストが正常な場合の動作の確認
をします。ここではリスト3のGETリクエス
トを送信します。
　リクエストの最後に空行を送信すると、実際
にWebサーバにリクエストが送信され、すぐ
に次のようにサーバからのレスポンスが表示さ
れます（図1）。
　次に、リクエストが不正な場合の動作確認と
原因の確認をしてみましょう。たとえば、
HTTP/1.1ではHost行を忘れると、"400 Bad
Request"が返ってきます（図2）。
　ご覧のとおり「あなたのブラウザはサーバが
理解できないリクエストを送りました」という

情報しかないため、これだ
けではエラーの原因を特定
するのは難しいと思われま
す。
　そのときはApacheのエ
ラーログ（OSX標準では /
var/log/apache2/error_

log）を見てみましょう（図
3）。
　ログの記述内容から、エ
ラーの原因がホスト名の指
定漏れによるものだとわか
るわけです。
　次に、GET以外のメソッ
ド（POST/PUT/DELETE）

 ▼リスト2　/Library/WebServer/Documents/request.php

<?php
echo "<!DOCTYPE html>";
echo "<html lang=¥"ja¥"><head><meta charset=¥"utf-8¥">ｭ
<title>request checker</title></head><body>";
// method
echo "<h1>Method: " . $_SERVER['REQUEST_METHOD'] . "</h1>";
// HTTP header
echo "<h2>Header</h2>";
$headers = getallheaders();
while (list ($key, $value) = each ($headers)) { echo "$key: ｭ
$value
"; }
echo "<hr>";
// HTTP body
echo "<h2>body (POST/PUT/DELETE)</h2>";
$body = file_get_contents("php://input");
var_dump($body);
echo "<h2>body (GET)</h2>";
$query = $_SERVER["QUERY_STRING"];
var_dump($query);
echo "</body></html>";

124 - Software Design

のサンプルリクエストを例示します（リスト4〜6）。
ぜひ実際に簡易WebAPI環境で実行してみてくだ
さい。この環境は、AWS APIに限らず各種
WebAPIを検証するときにも便利に使えると思い
ますので活用ください。
　次回は、実際にAWSを触るために必要な
AWSアカウントの作成、AWSマネジメントコ
ンソールでの初期設定について解説します。ﾟ

 ▼図1　実行結果

HTTP/1.1 200 OK
　 ……（省略）……
<!DOCTYPE html><html lang="ja"><head><meta
charset="utf-8"><title>request checker</
title></head><body><h1>Method: GET</
h1><h2>Header</h2>Host:
localhost
<hr/><h2>body (POST/PUT/
DELETE)</h2>string(0) ""
<h2>body (GET)</h2>string(47) "AWSAccessK
eyId=AKIAIOSFODNN7EXAMPLE&Action=Test"
</body></html>

 ▼図2　エラーレスポンス（例）

HTTP/1.1 400 Bad Request
 ……（省略）……
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML
2.0//EN">
<html><head>
<title>400 Bad Request</title>
</head><body>
<h1>Bad Request</h1>
<p>Your browser sent a request that this
server could not understand.

</p>
</body></html>

 ▼図3　エラーログ（例）

[Wed Mar 12 16:34:59 2014] [error] [client
127.0.0.1] client sent HTTP/1.1 request
without hostname (see RFC2616 section
14.23): /request.php

 ▼リスト3　サンプルリクエスト（GETメソッド）

GET /request.php?AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Action=Test HTTP/1.1
Host: localhost
 空行

 ▼リスト4　サンプルリクエスト（POSTメソッド）

POST /request.php HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: 47
 空行
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Action=Test

 ▼リスト5　サンプルリクエスト（PUTメソッド）

PUT /request.php HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: 47
 空行
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Action=Test

 ▼リスト6　サンプルリクエスト（DELETEメソッド）

DELETE /request.php HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: 47
 空行
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Action=Test

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

May 2014 - 125

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

2014年3月号
 第1特集
データベースの諸問題
RDBとNoSQL
どちらを選びますか？
 第2特集
ネットワークエンジニアのための
プロキシサーバの教科書
 一般記事
・さらに踏み込む、Mac OS Xと仮想デスクトップ #1

定価（本体1,219円＋税）

 第1特集
SDN/OpenFlowの流れを総まとめ！
SDN/OpenFlowで
幸せになれますか？
 第2特集
下手でも好印象で効果絶大
エンジニアの伝わる図解術
 一般記事
・�LinuxとFreeBSDのファイルシステムの良い・悪いとこ
ろをご存じですか？

・「Mirama」 ほか

2013年12月号

定価（本体1,219円＋税）

 第1特集
<Java/JavaScript/PHP>言語別で考える
なぜMVCモデルは
誤解されるのか？
 第2特集
ネットワークエンジニア養成
ロードバランサの教科書
 一般記事
・さらに踏み込む、Mac OS Xと仮想デスクトップ #2
・SIMのしくみ

2014年4月号

定価（本体1,219円＋税）

 第1特集
シェルがわかればシステムがわかる
あなたの好きなシェルは何ですか？
 第2特集
未来を作るITインフラ
10ギガビットを実現する
ケーブリング技術
 特別付録 ＆ 一般記事
・法輪寺鎮守社電電宮 情報安全護符シール Ver.2
・ソーシャルゲームのDevOpsを支える技術（後編）

2014年1月号

特別定価（本体1,314円＋税）

2013年11月号
 第1特集
思考をコード化する道具
我が友 Emacs
 第2特集
コンピュータの加速装置
サーバサイドフラッシュ
Fusion-io全方位解説
 一般記事
・小規模プロジェクト現場から学ぶJenkins活用（5）
・ソーシャルゲームのDevOpsを支える技術（前編） ほか

定価（本体1,219円＋税）

 第1特集
λ式からはじめませんか？
関数型プログラミング再入門
 第2特集
目利きによるトレンド予測
2014年IT業界はどうなるのか？
 一般記事
・会社組織を活性化するスパイス「コンパ」

2014年2月号

定価（本体1,219円＋税）

http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

126 - Software Design

分散データベース「未来工房」

　Riakでは、レプリカ（複製）を3個作成する。
しかし、レイテンシを重視するため、各ノー
ドへ転送した書き込みリクエストのAckはす
べてを待たない場合がある。たとえばN=3、
W=2であれば、3つ目のレプリカの書き込みが
失敗してしまった場合、このままではデータ
の複製の数が2のままシステムが稼働し続けて
しまう。
　ほかにも、レプリカの数が既定よりも少なく
なるケースはいくつもある。データの書き込み
時にはネットワークの瞬断、タイムアウトなど
が考えられる。また、レプリカを3つ作成した
後に、ディスク故障やノード故障により、レプ
リカ数が既定より少なくなる場合もある。
　また、Quorumによるレプリケーションで、
1つだけ書き込みに成功し、残りの2つの書き
込みに失敗した場合、クライアントには失敗が
返るが実際には新しいデータが1つだけ残って
いる場合がある。
　このように、ノードやネットワークが不安定
になると、すべてのレプリカを同じ値に保つこ
とができなくなる。これまで2回にわたって説
明してきたように、いつでも書き込める高い可
用性を実現するために、これは必要な設計であ
る。しかしながら、それだけではレプリカはハー

ドウェアの故障が起きるたびに減っていき、最
終的にはなくなってしまうだろう。それを防
ぐ手段として、リードリペアと、アクティブア
ンチエントロピー（以降、AAEと呼ぶ）という
レプリカの修復機構がRiakには用意されて
いる。

　レプリカの不整合や不足を補償する手段の1
つとして、Riakにはリードリペアというしく
みが組み込まれている。これは、データを読み
出した際に、異なるレプリカが見つかると、最
新の値で書き戻すというしくみだ。
　たとえば、あるキーに対して、図1のように、
レプリカCだけが古い値を持っていたものとする。
おそらくは、v2を書き込んだときにレプリカC
を持ったノードが落ちていて、そのままv2 をC
に書き込めないままタイムアウトしたのだろう。
　このように古いデータが残ってしまうような

レプリカの不一致または
不足が起きるケース

リードリペアによる
レプリカの復元

 ▼図1　 レプリカが不整合な状態
vnode A、Bは最新の値v2を保持しているが、
vnode Cは古い値v1しか持っていない。

VNode A

k:v2

VNode B

k:v2

VNode C

k:v1

第11回

 Writer 上西 康太（うえにし こうた）　Bashoジャパン株式会社　Twitter@kuenishi

分散データベース「未来工房」
風
流
の

　
　
初
や
お
く
の

　
　
　
　
　
田
植
う
た

Riakはなぜデータを
なくさないのか（3）

最終回

　ここまで、2回にわたって、Riakではなぜデータがなくならないかということを、分散データベースにまつわ
る整合性と永続化の問題と一緒に解説した。Riakがそのような問題にどう対処しているか、これまで解説してき
たヒント付きハンドオフ、Siblings、ベクタークロック、に加えて、本稿ではアクティブアンチエントロピーに
ついて解説する。 注）本稿は、筆者の意向により常体で表記している。

126 - Software Design May 2014 - 127

Riakはなぜデータをなくさないのか（3）

不整合状態を防ぐ方法として、他には、Cがク
ラスタに戻って書き込みリクエストに返答する
まで、レプリカの書き込みをリトライし続ける
という設計案もある。しかし、Riakはそういっ
た設計にはしていない。たとえばCが復帰する
のは1年後の場合もあったり、そのまま故障し
て復帰できない場合もある。復帰するかどうか
もわからないレプリカに対してリトライをし続
けるのは現実的ではないから、このような設計
にはなっていない。
　Riakでは、その代わりとして、このデータ
が読まれた際にv2をCに書き戻すことによっ
て図2のように、Cも最新の値で上書きしてし
まう。これによって、最終的に図3のようにレ
プリカを整合した状態に戻すことができる。
　このとき、どちらのレプリカが新しいかを判
定することは、ただのキーと値のペアだけでは
不可能だ。しかし、Riakでは前回解説したよ
うに、すべてのキーにはベクタークロックが割
り当てられ、どちらが新しいかというデータの
因果関係がわかるようになっている。前回の解
説で述べたように、この「新しい」という言葉は、
単にタイムスタンプの値が大きいという意味で

はないことに注意していただきたい。ここでは
v1、v2と便宜的に表記したが、実体はベクター
クロックである。
　もちろんベクタークロックなので、v1と v2
は因果関係を定義できない組み合わせになって
いる場合もある。この場合は、Sibling同士をマー
ジして、v1＜ v3かつ v2＜ v3となる新しい値
v3を作成し、それを用いて上書きを行う。

　それでは、ネットワークが分断したような状
況でも、実際にリードリペアによってデータが
正しく修復され、マージされていることを確か
めてみよう。前回と同様、3台でのRiakのクラ
スタのセットアップをしているものとする。手
順は次のとおりである。

$ git clone git://github.com/basho/riak
$ cd riak
$ git checkout riak-2.0.0pre15
$ make devrel
$ dev/dev1/bin/riak start
$ dev/dev2/bin/riak start
$ dev/dev3/bin/riak start
$ dev/dev2/bin/riak-admin cluster ¥
 join dev1@127.0.0.1
$ dev/dev3/bin/riak-admin cluster ¥
 join dev1@127.0.0.1
$ dev/dev1/bin/riak-admin cluster plan
$ dev/dev1/bin/riak-admin cluster commit
$ dev/dev1/bin/riak-admin transfers
$ curl -i -X PUT ¥
 http://localhost:10018/buckets/b/ ｭ
props ¥
 -H 'content-type:application/json' ¥
 -d '{"props":{"allow_mult":true}}'

 ▼図2　 リードリペアの動作
GETのリクエストに対してvnode A、Bは最
新の値 v2を返すが、vnode Cは古い値 v1
を返す。このとき、クライアントに対しては
v2を返すが、非同期にv2をvnode Cに書
き戻す。

VNode A

k:v2

k:v2 k:v2

k:v2

k:v2

k:v1

VNode B

k:v2

VNode C

k:v1

VNode A

k:v2

VNode B

k:v2

VNode C

k:v2

 ▼図3　 レプリカが整合した状態
vnode A、B、Cが最新の値v2を保持している。

リードリペアの上書きを
確かめてみよう

第11回

128 - Software Design

分散データベース「未来工房」

　ネットワーク分断が起きて、ノード1だけの
世界と、ノード2、3だけの世界に分かれてしまっ
たとしよう。ノード1とほかのノードが一切通
信できないことを、起動時間をずらして表現す
る。まずはriak stopによってノード2、3を
停止させた状態で、図4のようにノード1だけ
を起動してデータを入れよう。
　次に、ノード1を停止し、ノード2、3を起
動する（図5）。
　これによって、ノード2、3に 'r'というデー
タが記録された。最後に、ノード1を起動する
ことで、擬似的に実現していたネットワーク分
断を元に戻して、実際にどのようなベクターク
ロックになるかを確認しよう。おそらく、ノー
ド1が起動してから、実際にこのキーの値が変
わるのには何度かリクエストを繰り返す必要が
あるだろう。

　はたして、図6では、どのようになっただろ
うか。末尾の 4文字に注目すると、図4で
は、...wxfFgA=、図5では ...hm+LAA=でそ
れぞれ終わっていたベクタークロックが図6で
は...FQWAA==で終わる異なる値になっており、
また長さも長くなったことがおわかりいただけ
るだろうか。また、実際に手元で試したとき
図6では、2つのSiblingもできているだろう。
このように、リードリペアによって、ネットワー
ク分断によって異なる値が保存されてしまった
ケースでも、一致していないレプリカを一致さ
せることができる。
　このあと、ノード1を停止してからノード2
にGETをしても、ノード2、3を停止してノー
ド1にGETをしても同じ値がとれるようになっ
ている。ぜひ確認していただきたい。

dev1/bin/riak stop
dev2/bin/riak start
dev3/bin/riak start
$ curl -X PUT http://localhost:10028/buckets/b/keys/k -d 'r'
$ curl -i http://localhost:10028/buckets/b/keys/k
HTTP/1.1 200 OK
X-Riak-Vclock: a85hYGBgzGDKBVIcMRuucwUrf56TwZTImMfK8Nhr1hm+LAA=

 ▼図5　ノード2、3にデータを記録する

dev1/bin/riak start
curl -i http://localhost:10018/buckets/b/keys/k
……（中略）……
curl -i http://localhost:10018/buckets/b/keys/k
HTTP/1.1 300 Multiple Choices
X-Riak-Vclock: a85hYGBgymDKBVIcMRuucwUrf56TwZTImMfK8Nhr1hk+qNTRoI3cQKlpUKlWkFQWAA==

 ▼図6　ネットワーク分断が修復された後のリードリペアを確認する

dev1/bin/riak start
$ curl -X PUT http://localhost:10018/buckets/b/keys/k -d 'l'
$ curl -i http://localhost:10018/buckets/b/keys/k
HTTP/1.1 200 OK
X-Riak-Vclock: a85hYGBgzGDKBVIcR4M2cgcrf56WwZTImMfK0Oo16wxfFgA=

 ▼図4　ノード1にデータを記録する

128 - Software Design May 2014 - 129

Riakはなぜデータをなくさないのか（3）

　では、実際に複数の vnode を保持している
Riakノードのディスクが故障したケースを考
えてみよう。ディスク交換後に、新しいディ
スクと共にクリーンになって戻ってきたマシ
ンの IPアドレスとRiakのノード名は同じと
仮定する注1。単に起動しただけではRiakはも
とのクラスタには復帰しないので、クラスタ
に対する join/plan/commitを次のように行う
必要がある。

riak-admin cluster join riak@ ｭ
<クラスタ内の別ノードのアドレス>
riak-admin cluster plan
riak-admin cluster commit

　これで、Riakはクラスタに参加したことに
なる。riak-admin transfersの様子を見て
も、故障前に持っていたデータは復旧していな
いことがわかるだろう。これを復旧させるため
にリードリペアを使うことができる。たとえば、
故障していたノードにあるvnodeをBとして、
Riakのリング上で前後にあるvnodeをそれぞれ
A、Cとして説明する。このとき、リング上でA、
B、Cと連続しているので、Bが持つべきデー
タはすべてA、C上にコピーがなければならな
い。そこでA、Cが持っているすべてのキーに
対してGETを実行することによってリードリ
ペアを強制的に発動する。このときBはデータ
を持ってないために、常にデータがないと返す
が、実際には他のレプリカからデータがあるこ
とがわかり、リードリペアによって、Bに対す
る書き戻しが行われる。
　これが完了すると、リードリペアによって
Bが持つべき全てのデータが復元されたこと
になる。しかし、故障や瞬断が起きる度にこ

注1） 異なる IPアドレスでも、force-replaceというコマンド
を使うと同様のことができるが、ここでは単純のため解説
しない。

ういった操作を手動で実行したり、データの
完全性を守るために外部から定期的にこのよ
うな操作を行うことはRiakの運用性を大きく
下げることになる。実際に、過去には上記の
ようなリードリペアのオペレーションを行っ
ていた。
　Riakのあるバージョンからは、前後のvnode
A、Cからデータの該当範囲をまるごとコピー
してくるという機能が追加され随分簡単になっ
た。しかし、やはり手動での操作には運用上の
難しさがある場合も多く、Riakの1.3からは、
アクティブアンチエントロピー（AAE）という
仕組みでこれを自動的に行うようにした。
　もちろんこのようなリペアのオペレーション
は、いまでもAAEを使わない場合の代替策と
して残っており、折にふれて役立っている。最
新のRiakでは、動作しているノードに次のよ
うにattachして実行できるので、ぜひ試しても
らいたい。

riak attach
> {ok,Ring} = riak_core_ring_manager ｭ
:get_my_ring().
> MyPart = riak_core_ring:my_ ｭ
indices(Ring).
> [riak_kv_vnode:repair(Part) ¦¦ Part ｭ
<- MyPart].

　リードリペアを故障時または定期的にマニュ
アルで行うことは、やはり運用のコストを上げ
ることになる。そこで Riak 1.3からは、アクティ
ブアンチエントロピー（AAE）という、レプリ
カの不整合を自動的に修復していく機構が
Riakに組み込まれた。これによって、Riakは
完全な結果整合性（Eventual Consistency）を備
えたといってよいだろう。つまりアトミックブ
ロードキャストを必要とするようなレプリカ作
成のメカニズムを用いずに可用性を優先しつつ、
最終的にレプリカが整合した状態を保証するた

リードリペアを用いた
故障時のオペレーション

アクティブアンチ
エントロピー（AAE）

第11回

130 - Software Design

分散データベース「未来工房」

めのしくみである。

　しかしながら、障害回復時のオペレーション
のように、定期的にすべてのキーをスキャンし
てGETしていくのではシステムに対する負荷
が非常に大きい。そこで、AAEではvnodeご
とのレプリカの不整合を検出するためにハッシュ
ツリーを用いている。具体的には、レプリカに
含まれるデータが更新されるごとにハッシュツ
リーを更新し、AAE動作時にはハッシュツリー
をチェックすることで不整合が起きているキー
を効率的に検出し、差分のあったデータだけリー
ドリペアを動作させる。
　AAEのしくみは非常に簡単で、①最初に
vnodeごとにツリーをビルド、②データの更新
があればAAEツリーを更新定期的にチェック、
③ツリーをロックして同時に1つだけ交換、不
整合が検出されたらリードリペアを実施、とい
う流れになる。ほかにもDynamo論文に習って
ハッシュツリーでのAAEを実装しているシス
テムがあるが、Riakではこのハッシュツリー
はディスク上に永続化されているため、メモリ
を不必要に圧迫することがない、再起動をして
もツリーの再ビルドが発生しないなどの利点が
ある。

　AAEの動作状況はriak-admin aae-status
というコマンドで確認できる。ここでは、その
ノードが保持しているvnodeごとに、

・	最後にハッシュツリーが最後に前後のvnode
と交換・比較されたのがいつか（Exchanges）

・	最後にハッシュツリーが構築されたのがい
つか（Entropy Trees）

・	最新の修復で修復されたキーの数（Keys
Repaired）

を見ることができる。

　ここまでの3回で、Riakがなぜデータをなく
さないかというテーマについて解説してきた。
　第1回では、可用性を重視しつつネットワー
クの分断耐性を持った設計にするためには、
書き込み競合の扱いが非常に難しいことを解
説した。暗黙の上書きを防ぐためには、アトミッ
クブロードキャストプロトコルによるCASの
ような操作を提供するか、Riakのように
Siblingsで両方のデータを保持しておくかし
かない。しかし、前者ではネットワーク分
断時にRiakほどの可用性を得にくい場合が
あり、Riakでは運用を簡単にするためにも
ハンドオフというしくみを用意しているこ
とも解説した。
　第2回では、Siblingsによって書き込み競合
時も双方のデータを保持した上で、ベクターク
ロックを導入して異なるデータの間に、タイム
スタンプとは異なる形で因果関係を導入した。
これによって、暗黙の上書きが起きないデータ
の上書きを実現すること、ネットワーク分断と
削除の組み合わせでも削除したはずのデータが
復帰しないことも示した。
　本稿では、第3回としてネットワーク以外の
故障、具体的にはディスクの故障などによって
レプリカが一時的に不整合となったり、レプリ
カの数が故障のたびに縮退していくことを防ぐ
方法として、リードリペアとアクティブアンチ
エントロピー（AAE）の解説をした。これによっ
て、アトミックブロードキャストがないシステ
ムであっても最終的にレプリカが一致するとい
う結果整合性を実現できる。
　これで、Riakを使っている限り、データが
絶対になくならないということを理解いただけ
ただろうか。ﾟ

AAEの動作状態の確認

まとめAAEのハッシュツリー

May 2014 - 131

第2話 竜の卵

　「常識とは18歳までに君が積み重ねた偏見で
ある」と言ったのはアインシュタイン̶̶という
のもまた我々が積み重ねた偏見の1つだという
疑惑もあるのですが注1̶̶それはさておき、も
しそれが真実だとしたら、その偏見から自由に
なるためには、その偏見が存在しない環境で育
つしかないことになります。そんなことは可能
でしょうか？　そう、SFならね。
　作品名としては、『断絶への航海』（James P．
Hogan）ということになります。第三次世界大戦
で3つに分かれて戦い、その結果疲弊しきった
地球人たちは、一路アルファ・ケンタウリを目
指します。大戦前に送り込まれたロボット移民
船によって植民星を、ライバルたちより一足先
に我が者にするために。しかしその結果、我が
者となったのは誰か……。
　ロボット移民船に乗船していたのは、凍結受
精卵と子守りロボット。常識に染まった社会 (人)
は文字通りの意味で重たすぎて積載できなかっ
たわけです。こうして地球の「偏見」と断絶され
た社会ができ上がったわけですが、それが「常
識」と出会う時、一体何が起るのか……。
　今は亡き作者James P．Hoganは、これまた
今は亡きDECの元エンジニア。それもあってか
彼の作品の構成は文芸作品というよりはサイト
構築を彷彿とさせます。とくにそれが強いのは、
サンドボックスの使い方。『未来の二つの顔』で 題字・イラスト／aico

『断絶への航海』
（James P．Hogan／
ハヤカワ文庫SF）

はスペース・コロニーが、そして本作ではアル
ファ・ケンタウリの惑星ケイロンがそれにあた
ります。「いくら考えてもわからないなら、実際
に作ってみればいいじゃん。でも現状が壊れな
いように隔離環境で」というのは、昔も今もエン
ジニアの常套手段。ライト兄弟が偉いのは、最
初に有人動力飛行機を飛ばしたことよりも、風
洞を作ったことにあると私は思っています。
　AWSにAzureに（Open|Cloud）Stack……ま
してやITの世界では、少なくとも「あちら側」に
関しては仮想環境をいくつも作って、そのうち
「一番いい」のをそのまま本番環境とするのも当
たり前。本作の仮想環境は、現実世界にデプロ
イ可能でしょうか？　とりあえずはご一読を。
気に入らなければポイできるのも仮想環境の良
さなのですし。｢

注1） http://en.wikiquote.org/wiki/Albert_Einstein

 第5回

http://en.wikiquote.org/wiki/Albert_Einstein

132 - Software Design

サーバマシンの測り方
─ ベンチマークを極める実践テクニック ─

ネットワークボトルネック
を見つけるには

　ある程度のWebアクセスを見込んだネット
ワーク構成を考えます。ファイアウォールがあ
り、Webからのアクセスをロードバランサが
捌くという、よくあるシステムです。このよう
な構成のとき、ファイアウォールやロードバラ
ンサがボトルネックになることもあります。構
成要素が増えるにつれ、ボトルネックの調査は
たいへんになっていきます。そこで今回は、
HTTPベンチマークを使用し、ネットワーク
上のボトルネックを調べるプロセスを紹介しま
す。
　図1のネットワーク構成を例に挙げ、それぞ
れのマシンについて説明します。

　ファイアウォールはVyattaCore 6.6R1注1で
構築しました。ロードバランサはCentOS 6.5
でDSR注2構成のLVS注3を構築しました。Web
サーバは第 5回で取り上げたものと同じ
CentOS 6.5上にNginxにて構築しロードバラ
ンサのバランシング先（リアルサーバ）に4台を
ラウンドロビンで設定しました。すべてのマシ
ンが4コアのCPUを搭載し、1Gbpsのネット
ワークで接続しています。ファイアウォール以
外の各マシンには、第5回で取り上げたチュー
ニング設定を入れています注4。

注1） URL http://www.vyatta.org/

注2） DSR（Direct Server Return）構成：ロードバランサがサー
バにリクエストを投げ、受けたサーバがダイレクトにクラ
イアントにレスポンスするしくみ。

注3） LVS（Linux Virtual Server）
注4） Nginxで「Too many open files」エラーが出ていたので、

configに「worker_rlimit_nofile 50000;」を追記しています。

サーバマシンの測り方
より速く、より莫大に、より高みへ！

─ ベンチマークを極める実践テクニック ─

前回はabを用いたベンチマークの方法を紹介しました。最終回の今回は、abよりも強力なHTTPのベンチマークツー
ルを紹介し、ファイアウォールやロードバランサがあるネットワーク全体に対してベンチマークし、ボトルネックが
どこになるかを見ていきます。

 Writer ㈱ IDCフロンティア　ソリューションアーキテクト　藤城拓哉（ふじしろたくや）／Twitter@tafujish

第6回［最終回］　続・HTTPベンチマークからネットワーク

①

④

192168.0.5 ③

② 192.168.0.0/24

10.0.0.0/8

ロードバランサ
LVS（DSR）

WEB
サーバ 1

WEB
サーバ 2

WEB
サーバ 3

ファイアウォール
Vyatta Core 負荷発生元

WEB
サーバ 4

 ▼図1　 ネットワーク構成

132 - Software Design May 2014 - 133

第6回　続・HT TPベンチマークからネットワーク

　通信の流れとしては、次のとおりです。

①負荷発生元からabなどを実行し、ファイア
ウォールへ向かう（宛先IPアドレスはロード
バランサでここでは192.168.0.5）

②ファイアウォールを経由したあと、ロードバ
ランサへ向かう

③ロードバランサからいずれかのWebサーバ
へ転送される

④DSR構成のためWebサーバからゲートウェ
イであるファイアウォールに直接返す（返り
はロードバランサを経由しない）

ネットワーク帯域がボトルネック

　連載第5回でも触れましたが、ネットワーク
の負荷試験をするときはネットワーク帯域が一
番ボトルネックになりやすくなります。負荷を
かける先のコンテンツとして、22KBのテキス
トを設置しました。たとえば次のように負荷を
かけます。

$ ab -c 1000 -n 100000 ｭ
http://192.168.0.5/test22k.html

　ab実行後、まずはTransfer rateの値を確認
しましょう。値が125,000KB/sec（1Gbps）付近
であれば1Gbpsの帯域がボトルネックになっ
ているとわかります。今回の構成では、ファイ
アウォールのところで1Gbpsに達しています。
ロードバランサがDSR構成のためロードバラ

ンサやWebサーバの帯域がボトルネックには
なりませんでした。負荷試験中に各マシンでト
ラフィックの値を確認するのも良いでしょう。

abがボトルネック

　こちらも連載の第5回で触れたとおり、負荷
をかける元がボトルネックとなり、十分な負荷
をかけきれない場合もよくあります。では実際
にその様子を見てみましょう。帯域がボトルネッ
クにならないように2Byteのテキストを設置し、
次のように負荷をかけました。

$ ab -c 1000 -n 10000000 ｭ
http://192.168.0.5/test2b.html

　負荷試験の最中は各マシンにて topコマンド
でCPU使用率を確認し、このときの様子が図
2です。負荷発生元の1つのCPUコアでアイド
ルが0％すなわち使用率100％になっています。
そして、ほかのマシンのCPU使用率はまだま
だ余裕がある状態です。abは1つのCPUコア
しか利用できないので、ここがボトルネックで
す。そして、これ以上負荷がかからない状態だ
とわかります。スループットとしては約
57Mbpsでした。

強力なベンチマーク
ツールを使う

　abのようなHTTPのベンチマークツールは、
ほかにもたくさんあります。abはCPUが1コ

ファイアウォール

ロードバランサ

WEBサーバ1

負荷発生元（ab）

 ▼図2　 ab実行時のCPU使用率

134 - Software Design

サーバマシンの測り方
─ ベンチマークを極める実践テクニック ─

アしか利用できないためパワー不足となりまし
たが、マルチスレッドに対応したツールもあり
ます。筆者の知る限りこれが定番と言えるまで
のツールはありませんが、よく名前を聞くツー
ルとしてweighttp注5とwrk注6があります。今回
のネットワーク構成に対して、先述の負荷試験
と同じく-c 1000としたとき、wrkのほうがよ
り負荷をかけられたのでここではwrkを紹介し
ます。

wrkの使い方

　wrkは図3のようにインストールします。ソー
スをGitHubから取得しビルドします。基本的
に abと同じ操作感で使えます。-cは同じく
concurrency（同時接続数）を指定しURLを書き
ます。abと異なる部分として、abでは-nでリ
クエスト総数を指定していましたが、wrkでは
-dにて負荷をかけ続ける時間（秒）を指定しこ
の間実行され続けます。また、マルチスレッド
に対応しているので-tにて指定します。実行
するマシンのCPUのコア数と同じ値にするの
で、今回のマシンが4コアのため-t 4としま
した。
　実行結果もabと同様、秒間のリクエスト処
理数（Requests/sec）や秒間の転送量（Transfer/
sec）が得られるのでこの値を結果とします。

注5） URL https://github.com/lighttpd/weighttp

注6） URL https://github.com/wg/wrk

　abでは 31827.26req/sec（6.98MB/sec）だっ
たのが、wrkでは143664.51req/sec（32.19MB/
sec）と4倍以上の結果となりました。

補足：concurrencyを大きく

　abではconcurrency（-c）の値は20,000までし
か指定できませんでしたが、wrkやweighttpで
はこれ以上の値を指定可能です。ただし、
CentOS 6系のデフォルトでは、ソースポート
の範囲が32768～61000（28232ポート）までと
なっておりこの範囲を超えてconcurrencyの値
を設定できません。この範囲を最大限大きくす
るには、/etc/sysctl.confに

net.ipv4.ip_local_port_range = 1024 65535

と記述し、sysctrl -pで反映させることで
concurrencyの値を60,000以上まで扱えるよう
になります。

結局どこがボトルネックに
なったか

　図3のwrkを実行したときの各マシンのCPU
使用率が図4です。ファイアウォールの2つの
コアの使用率が大きく、ネットワーク処理の負
荷によりこのファイアウォールの限界近くまで
きていることがわかります。一方で、wrk側の
1つのコアでもCPU使用率が大きいです。si（ソ
フトウェア割り込み）の値が1つのコアだけ大き
いことから、ネットワーク処理により1つのコ
アの使用率が大きくなっているとわかります。

$ sudo yum -y install gcc openssl-devel
$ git clone https://github.com/wg/wrk.git
$ cd wrk/
$ make
$./wrk -t 4 -c 1000 -d 300 http://192.168.0.5/test2b.html
Running 5m test @ http://192.168.0.5/test2b.html
 4 threads and 1000 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 6.73ms 32.15ms 2.68s 97.23%
 Req/Sec 36.19k 7.25k 66.65k 68.99%
 43099022 requests in 5.00m, 9.43GB read
 Socket errors: connect 0, read 0, write 0, timeout 165
Requests/sec: 143664.51
Transfer/sec: 32.19MB

 ▼図3　wrkのインストールと実行方法

https://github.com/lighttpd/weighttp
https://github.com/wg/wrk

134 - Software Design May 2014 - 135

第6回　続・HT TPベンチマークからネットワーク

 ファイアウォールとwrk側のどちらがボトル
ネックか確認するためには、wrkの実行結果で
エラーが出ていないか確認します。図3の結果
のとおり、timeoutエラーが出ており、これは
ネットワーク上で処理しきれなくなったか
Webサーバが応答できなかったということに
なります。Webサーバ側のCPU使用率に余裕
があり、WebサーバのmessagesやNginxにエ
ラーログがなければWebサーバ側ではなくファ
イアウォールがボトルネックになったとわかり
ます。

おわりに

　今回はwrkを用いてネットワーク全体に対し

て負荷試験をしました。測定したい対象とボト
ルネックのポイントをきちんと見極めてベンチ
マークしないと本当に必要な値は取得できない
ことがわかっていただけましたでしょうか。　
　本誌2013年7月号のベンチマーク入門と本
連載の内容をご覧いただき、サーバや各パーツ
自体の性能測定からシステム全体のネットワー
ク性能測定まで一通りできるよう参考になって
いれば幸いです。最後にこれまで紹介したツー
ルを、おすすめ度というか筆者が実際に業務で
活用している度合に応じて星取り表でまとめま
した（表1）。半年間ありがとうございました。
ﾟ

負荷発生元（wrk）

ファイアウォール

ロードバランサ

WEBサーバ1

 ▼図4　 wrk実行時のCPU使用率

ツール名 お勧めレベル 振り返り

UnixBench ★★★
おもにCPUの性能を測定する。さまざまな種類のテストを繰り返し実行するので手軽に良い測定結果
が得られる

SysBench ★★★
CPUやメモリなどさまざまな対象の性能を測定する。中でもOLTP（DB）のベンチマークでは、MySQL
やPostgreSQLなどいろいろなDBの測定が手軽にできて便利

�o ★★★
DiskI/Oの性能を測定する。さまざまなオプションが用意されており多用な I/Oパターンを測定できる。
job�leを利用し自動化すれば測定も楽である

ioping ★★ DiskI/Oの測定だがレイテンシに特化している。ping間隔でレイテンシを測定できるので簡単便利

mysqlslap ★
DB（MySQL）の性能を測定する。MySQLをインストールしたらすぐに測定を開始できる。本気でベン
チマークをしようとすると少し不便

tpcc-mysql ★★
DB（MySQL）の性能を測定する。ディスク I/Oまで負荷をかける、大規模なDBへ長時間負荷をかけるな
ど本気でDBベンチマークするならこちらがお勧め

netperf ★
ネットワークの帯域を測定する。ネットワークベンチマークを、帯域の測定するだけならばこれで十分。
オプションも豊富なので帯域をフルに測定可能

ab N/A
Webサーバの性能を測定する。定番ツールだが非力。ただし、たいていのWebアプリに対しては十分
負荷をかけることができる

wrk ★
Webサーバの性能を測定する。abで足りなければこちらをどうぞ。ただし、今回の記事で紹介したネッ
トワーク規模への負荷が限界。もっと大規模に負荷をかける場合は Jmeter（https://jmeter.apache.
org）や商用ツールを使用すること

 ▼表1　 本連載で紹介したツールのまとめ

https://jmeter.apache.org
https://jmeter.apache.org

136 - Software Design

今回はいつもの実践的な話題ではなく、情報セキュリティを広い視点から見つめ直すために、スノーデ
ン事件とその背景を追っていきます。この事件を追うことで、いつもとは違う角度から情報セキュリ
ティとは何かを考えてみたいと思います。

スノーデン事件とは

　アメリカやヨーロッパとは違い、日本ではスノー
デン事件をきちんと報道しているところをほとんど
見かけないので、まずはスノーデン事件について説
明します。
　エドワード・J・スノーデン（Edward Joseph
Snowden）は1983年アメリカ生まれの男性です。こ
の一大スキャンダルは、2013年6月にスノーデンが
英ガーディアン紙と米ワシントンポスト紙に、米国
諜報部局の活動についてリークしたことから始まり
ます。このリークにより、諜報部局がインターネッ
ト監視のために行っているプログラムPRISM、
MUSCULAR、XKeyscore、Temporaと、米国内と
EU国内の通話記録を大規模に収集していることが
公表されました注1。
　日本では、彼のことを元CIA職員と紹介します
が、正しくは、ブーズ・アレン・ハミルトンという
コンサルティング会社の社員として、NSAに派遣さ
れていたときに、外部公開することを前提にこれら
の情報を密かに収集していました注2。日本では
NSAという組織に馴染みがないためか、この問題
と直接は関係ないそれ以前のキャリアである元CIA
という肩書きを使うため、この事件の本質がぼやけ
てしまっている気がします。

NSA

　NSA（National Security Agency）は、日本では国
家安全保障局という名前が使われています。インテ
リジェンス（諜報）のとくにSIGINT（Signal
Intelligence）を中心に担当している専門部局です。
SIGINTとは国家安全保障上の観点から通信（シグ
ナル）を取り込み、諜報活動を行うことを指します。
　電信、電波という技術を持って以降、これらの通
信技術は連絡をするのに重要な役割を果たしてきま
した。その通信によって重要な情報を送るわけです
が、その通信を盗聴して相手が行動に出る前に何を
企てているかがわかれば、これほど有利なことはあ
りません。もちろん重要な通信内容は暗号化されて
います。この暗号を解読することが重要かつ決定的
な意味を持ちます。

暗号解読の重要性が認知された
ミッドウェイ海戦

　1941年12月7日（現地日時）に、大日本帝国海軍
（以下、日本海軍）はハワイオアフ島の真珠湾にある
米国海軍太平洋艦隊基地を攻撃します。この真珠湾
攻撃はまったくの不意打ちでした。米海軍の
SIGINT部隊であるOP-20-G（Office of Chief Of
Naval Operations, 20th Division of the Office of Naval

Communications, GSection / Communications Security）

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第十一回】

すずきひろのぶ
suzuki.hironobu@gmail.com

スノーデン事件が意味するもの

注1）	 http://www.theguardian.com/world/the-nsa-files
注2）	 http://bigstory.ap.org/article/ap-impact-snowdens-life-surrounded-spycraft

http://www.theguardian.com/world/the-nsa-files
http://bigstory.ap.org/article/ap-impact-snowdens-life-surrounded-spycraft

May 2014 - 137

が当時、日本海軍の使っていた「海軍暗号D号」、
米国側でJN-25と呼んでいた暗号を解読できな
かったためです注3。
　そのJN-25は1942年5月までにほぼ解読されま
す。1942年6月4日（現地日時）に、ミッドウェイ島
周辺で行われた日米の大規模な海戦「ミッドウェイ
海戦」では、すでに日本側の通信が解読されて、そ
の動きが米軍に事前に把握されていました。当初、
米軍は日本海軍が“AF”へ攻撃を加えるということ
はわかったのですが、そのAFがどこかがわかりま
せんでした。そこで米軍は、「ミッドウェイ島では
水が足りない」という偽の情報を流します。日本軍
は「AFは水が足りない」という暗号文を流し、AFが
ミッドウェイ島だということがわかってしまいます
（写真1）。
　ミッドウェイ海戦で日本海軍は大打撃を受け、こ
れが太平洋戦争のターニングポイントになります。
このような歴史的とも言える状況を作り出したミッ
ドウェイ海戦は米国戦史においてSIGINTによる劇
的な成果をあげた歴史的場面でもありました。この
勝利から「暗号解読技術というのは、
戦況を大きく左右する重要な軍事技
術だ」という認識になり、その後、長
い間厚いベールに隠されます。
　筆者は、ハワイの真珠湾にあるア
リゾナメモリアルを訪れたことがあ
ります。そのメモリアルには、ミッ
ドウェイ海域に偵察に向かったパイ
ロットが日本の艦隊を見つけ、基地
に打電するという伝説的な物語が紹
介されています。その物語では、あ
たかもパトロール中に偶然発見した
かのような書きぶりです。もちろん
それは違い、日本海軍の行動を暗号
解読により把握し、海域を集中的に
探査したものです。とはいえ、大海

原で探すのはたいへん労力を要したのは言うまでも
ありません。しかし、事前に察知したにもかかわら
ず、そのようなことがいっさい書かれていないの
は、米国の暗号解読技術が戦略技術として長い間、
極秘事項にされていたからです。

秘密裏に設立されたNSA

　第二次世界大戦後、いくつかの経緯を経て1952
年にSIGINT専門の諜報組織NSAが作られます。
しかし、第二次世界大戦で戦況を大きく左右させた
暗号技術は、軍事機密として最高レベルのものであ
り、米国政府はNSAという組織の存在すらも公式
には認めず、NSAは“No Such Agency（そんな組織
はない）”と言われるぐらい徹底した極秘ぶりでし
た。1983年にニューヨークタイムス紙にNSAにつ
いての報道がなされるまで米国政府は正式にその存
在を認めませんでした注4。
　ところがいったん認めてしまうとあっさりしたも
ので、それから13年後の1995年、ワシントン
D.C.にいる友人と、郊外をドライブしていると高

【第十一回】 スノーデン事件が意味するもの

◆◆写真1　“AF IS SHORT OF WATER”

筆者がNSAの国家暗号博物館（National Cryptologic Museum）に訪れたときに撮影し
た写真。パネル中央の写真下のプレートに有名な“AF IS SHORT OF WATER”という言
葉が刻まれている。

注3）	 What Every Cryptologist Should Know about Pearl Harbor　http://www.nsa.gov/public_info/_files/cryptologic_
quarterly/pearlharbor.pdf

	 Pearl Harbor Review - JN-25　http://www.nsa.gov/about/cryptologic_heritage/center_crypt_history/pearl_harbor_
review/jn25.shtml

注4）	 http://www.nytimes.com/1983/03/27/magazine/the-silent-power-of-the-nsa.html

http://www.nsa.gov/public_info/_files/cryptologic_quarterly/pearlharbor.pdf
http://www.nsa.gov/about/cryptologic_heritage/center_crypt_history/pearl_harbor_review/jn25.shtml
http://www.nytimes.com/1983/03/27/magazine/the-silent-power-of-the-nsa.html

138 - Software Design

速道路の出口にデカデカと「NSA職員のみ利用可
能」と看板が出ていてビックリしました（極秘組織
じゃなかったのか……）。
　さらに余談ですが、それから6年後の2001年
USENIX SecurityのエクスカーションでNSA敷地
内にある国家暗号博物館を訪れて、過去にNSAが
利用していた歴代のスーパーコンピュータや暗号解
読の歴史を見ることができました。ついでに売店で
NSAのロゴが入ったポロシャツシャツ、帽子、ス
テッカー、マウスパッドも購入しました。

NSAは矛と盾を持つ

　NSAのWebサイト注5にいくと“NSA/CSS”とい
う表記がなされていることに気づくと思います。
CSSはCentral Security Serviceの略で、NSAは通
信を盗聴し暗号解読するエキスパートですが、その
能力をもって、今度は同時に通信を守ることもその
ミッションとして割り当てられています。
　NSAは軍事だけではなく、インテリジェンス・コ
ミュニティ、つまり数ある米国の諜報部局の中の1
つとして、あらゆる分野のSIGINTを担当していま
す注6。

DNIとNSA

　日本ではあまり知られていないですが、現在、米
国のインテリジェンス・コミュニティを理解するう
えで、重要な役割を果たすDNI（Director of
National Intelligence：国家情報長官）を紹介しま
しょう。
　2001年9月11日に米国で発生した同時多発テロ
事件、いわゆる911テロのあと、「米国インテリ
ジェンス・コミュニティがうまく機能していなかっ
たために、この米国史上最悪のテロを事前に防げな
かった」という批判が噴出しました。テロ計画の情
報は、断片的にはいろいろな諜報部局でつかんでい
たのは事実のようです。しかし、おのおのの諜報部

局はセクショナリズムが横行し、情報を共有するこ
とはなく、その結果として取り返しのつかない大き
なテロへつながった。そのような分析がなされてい
るようです。
　それまでインテリジェンス・コミュニティの取り
まとめの役割を負っていたのは、DCI（Director of
Central Intelligence：中央情報長官）で、CIA長官
が兼任していました。CIA長官という立場とほかの
組織をまとめるという立場で利益相反してしまい、
結果としてうまく調整ができていないと議会による
911検証レポート（The 9/11 Commission Report）で
指摘されてしまうこととなります。その結果とし
て、2004年よりDNIが正式に発足しました（その前
身は2002年から）。
　ちなみに、16組織あるこのインテリジェンス・コ
ミュニティ（図1）の総予算は2005年時点で440億
ドル（当時のレートで約4兆8,000億円）だったこと
を、当時の副長官だったメアリー・マーガレット・
グラハム（Mary Margaret Graham）が講演で語って
います注7。
　のちにODNI（Office of DNI）が中心となり、イン

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注5）	 http://www.nsa.gov/
注6）	 1995年の日米自動車交渉といった政府間協議の場面でも暗躍しています。
注7）	 Defense Dept. pays $1B to outside analysts　http://usatoday30.usatoday.com/news/washington/2007-08-29-dia_N.htm

◆◆図1　16組織から成るインテリジェンス・コミュニティ

出 典：http://en.wikipedia.org/wiki/United_States_
Intelligence_Community
911テロ以降、米国のインテリジェンス・コミュニティは体制が
再編され、現在はODNI傘下の組織として再編されている。

http://www.nsa.gov/
http://en.wikipedia.org/wiki/United_States_Intelligence_Community
http://usatoday30.usatoday.com/news/washington/2007-08-29-dia_N.htm

May 2014 - 139

　ODNI傘下に再編され、911以降にマージされた
プロファイリング・データベースに、どこからか筆
者に関係する重要なキーワードが入りました。それ
は「オープンソース」です。諜報での「オープンソー
ス」とは開示されている情報から、諜報活動を行う
ことを指します。そのことをOSINT（Open Source
Intelligence）と言います。
　なぜ、そんなことを筆者が知ったかというと、直
接ODNIからオープンソース・カンファレンスの案
内メールが筆者に送られてきたからです。そのとき
は、ODNIの組織体制も知らず、単純に「米国政府関
連のセキュリティ組織がオープンソースを本格的に
使うのか」くらいにしか考えていませんでした。米
国政府が主催で無料だし、おもしろそうなので、自
由ソフトウェアがどのように使われているか一度調
べてみたかったので、さっそく申し込み、ワシント
ンD.C.まで飛びました（写真2）。
　実際にカンファレンス会場について、最初のキー
ノートスピーチを聞いて初めて、筆者は大きく勘違
いしていることに気がつきました。もちろんODNI
が筆者のことを大きく間違えているのが、この信じ
られない出来事の発端なのですが、事実は小説より
奇なり、周りの人のネームタグにある所属はCIA、
NSA、FBI、DoDなどが8割で、あとの2割は大学

テリジェンス・コミュニティが、今日使っている情
報システム共通基盤が構築されていきます。情報シ
ステム基盤が共通化されることで、どこからでも情
報を入れたり出したりでき、情報が有機的につなが
り、911テロのような諜報作戦が後手後手に回るよ
うなことがないような体制を整えられます。ただ
し、これはあくまでも理想論であり、本当にできる
かどうかは別問題です。
　この共通化システムという背景が、米国のインテ
リジェンス・コミュニティにおけるスノーデン事件
のインパクトをより大きくします。なぜならば、ス
ノーデンがリークしたシステムは、1つの諜報部局
に止まらず、ODNI傘下にある米国すべての諜報部
局に影響を与えるからです。

共通化システムが筆者にもたらした
意外な展開

　共通化システムでは、ODNIの各諜報部局が持っ
ていたいろいろなデータベース（たとえば、人物プ
ロファイルなど）をマージしています、というか、
たぶんマージしたのだと思います。だいたいにおい
て、似ているけど少しずつ違うデータベースをかき
集めたら、その内容が怪しくなるものです。なぜ、
そんなことが言えるのか？　これは筆者の体験談に
よるものです。
　コンピュータ・セキュリティや暗号システムの研
究や開発などいろいろなことをしている筆者です
が、その中で、海外の方々と名刺交換したり、ある
いは米国政府組織主催のワークショップに参加した
りしています注8。
　米国において暗号技術は伝統的に国家安全保障の
扱いですので、米国政府主催の暗号関連カンファレ
ンスなどに登録すれば自動的にNSAのデータベー
スにプロファイリングされます。FBI、シークレッ
トサービス、国防総省傘下の研究所の人とコン
ピュータ・セキュリティのカンファレンスなどで名
刺交換するのもそうです。それらの人物プロファイ
リングが各組織にあったときは、おのおののデータ
は整合性が取れていたことでしょう。

【第十一回】 スノーデン事件が意味するもの

注8）	 過去に、それらのレポートを『Software Design』に書いたこともあるので、知っている読者もいらっしゃるかもしれません。

◆◆写真2　DNI Open Source Conferenceの看板

2007年7月16〜17日に米ワシントンD.C.で開催されたDNI
Open Source Conferenceに参加した。参加費は無料だが、参
加人数が限られており、案内メールが送られて3日後には定員に達
してしまった。

140 - Software Design

の人間でした。
　そのときに、壇上で講演するメアリー・マーガ
レット・グラハムを直接見ることができたのですが、
CIAで27年間勤めあげ、アメリカの諜報のNo.2だ
とは思えない品のいいやさしそうなおばさんでし
た。グラハムは政府の仕事から引退し、現在はハー
バード大学のInstitute of Politicsにフェローとい
う肩書きを持って活躍しているようです注9。
　たいへん横道に外れてしまいました。さて、繰り
返しになりますが、911テロ以降は、米国のインテ
リジェンス・コミュニティは、昔のようにCIAや
NSAといった諜報部局がおのおの独立して
情報を管理しているわけではなく、ODNI傘
下で共通化しているという時代になってい
ます。
　そして、現在、DNIのポジションには米空
軍出身のジェームズ・クラッパー（James R.
Clapper）が就いています。スノーデン事件
から明るみに出た同盟国首脳の電話盗聴な
ど数々のスキャンダルの事態の収拾を図っ
ています。

PRISM

　PRISMとは、NSAが2007年からスタート
させた極秘の巨大データをマイニングする
監視システムです。これはSIGINT Activity
Designator（SIGAD）と呼ばれる情報収集に分
類される活動です。この活動の政府コード
はSIGAD US-984XNとなっています。つ
まり、SIGINTの活動範囲なのでNSAの作業
分担であることがよくわかります。
　PRISMはインターネット上のデジタル情
報を収集する活動です。図2〜4はスノーデ
ンがリークした内部資料の一部です。図2を
見ると、大手のポータルサイトやインター
ネットサービスから、電子メール、チャッ
ト、VoIP、ビデオなど、我々がコミュニケー

ションで使っているほぼすべてのデータを監視して
いるのがわかります。
　インターネットに使われている回線を盗聴し、
データを入手する方法を採っているようで、これら
のデータを保持している会社から直接入手する、あ
るいはサーバに侵入してデータを盗む、といった手
法ではないようです。ですからターゲットとされた
会社もユーザも誰もわからない間に監視が行われて
いるという状態になっていたはずです。
　PRISM計画の進捗（図3）を見ると、2007年に
Microsoftからスタートし、2012年のApple社まで

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注9）	 Mary Margaret Graham 2008 Fall Resident Fellow　http://www.iop.harvard.edu/mary-margaret-graham

◆◆図2　PRISMが収集している情報

出典：http://en.wikipedia.org/wiki/PRISM_(surveillance_program)

◆◆図3　PRISM計画の進捗

出典：http://en.wikipedia.org/wiki/PRISM_(surveillance_program)

http://en.wikipedia.org/wiki/PRISM_(surveillance_program)
http://www.iop.harvard.edu/mary-margaret-graham
http://en.wikipedia.org/wiki/PRISM_(surveillance_program)

May 2014 - 141

毎年20百万ドル（約20億円）を投入し、徐々に作り
上げていったことがわかります。また、これらで入
手した監視情報はNSAで最高機密として扱われ、
必要に応じてFBIやCIAからアクセスできるかた
ちになっています。
　GoogleのGmailにアクセスするときは、SSLで保
護されています。そして、この連載でもSSLが正
しく設定されていれば、その通信は確実に保護され
ると説明してきました。では、なぜ暗号で保護した
通信が盗聴できるのでしょうか。Googleのクラウド
内の盗聴を表している図4を見ると一目瞭然です。
　ユーザからのSSLはフロントエンドのサーバに
接続され、インターネットの回線上は確実に保護さ
れています。クラウド内部の矢印は、データベース
へのアクセスや処理分散をしている部分、はたまた
プロキシをかけているようなデータの流れを意味し
ています。いったん内部に入ってしまえば、データ
センター内では暗号化していないのが普通です。な
ぜならば、その領域は外部からは接続できない内部
ネットワークだからです。このような構成はごくご

く一般的なものです。図4を見る限り、Googleクラ
ウドが入っているデータセンター内のネットワーク
トラフィックを盗聴していると判断できます。しか
し、最大の謎が残ります。なぜデータセンターのト
ラフィックをやすやすと盗めるのだと。このあたり
が我々には計りしれない米国の諜報部局のなせる技
なのでしょう。

陰謀論ではない現実

　莫大な予算を持つNSAという組織が存在し、イ
ンターネット上の情報を盗聴、監視していること
は、はるか以前から言われていました。
　たとえば、Emacsではspook.elというプログラム
が用意されています注10。Emacsで“M-x spook”と実
行するとバッファに（文章としては意味をなさない）
NSAの盗聴システムが反応するようなキーワード
が入ります（リスト1）。そのプログラムのリポジト
リを見ると、最初のバージョンは1988年に登録さ
れています。つまり、NSAが電子メールを盗聴／監

視しているのは、1988年から織り込み済みと
いうわけです。ただし、これまでそれを証
明するチャンスはありませんでした。
　もしスノーデンがリークしなかったら、
あるいは内部から持ち出したこれらの資料
の存在を英ガーディアンや米ワシントンポ
ストといった有力新聞社の手によって公開
されなかったら、監視システムがあると噂
されていても、永遠に陰謀論として一蹴さ
れていたでしょう。
　なんであれ第三者から情報を保護するの
が情報セキュリティの重要な役割です。こ
れらの盗聴からデータを守る技術を開発す
ることが我々セキュリティ技術者には課せ
られているのではないでしょうか。s

【第十一回】 スノーデン事件が意味するもの

注10）	http://cvs.savannah.gnu.org/viewvc/emacs/emacs/lisp/play/spook.el

nitrate insurgency NORAD event security $400 million in gold bullion red noise Exon Shell
bullion AIMSX Janet Reno assassinate NSA Craig Livingstone passwd Geraldton

◆◆リスト1　spook.elで表示されるキーワードの例

◆◆図4　Googleのクラウド内の盗聴

出典：http://en.wikipedia.org/wiki/PRISM_(surveillance_program)

http://en.wikipedia.org/wiki/PRISM_(surveillance_program)
http://cvs.savannah.gnu.org/viewvc/emacs/emacs/lisp/play/spook.el

142 - Software Design

bhyveにおける仮想NICの実装 第19回

　これまでに、ゲスト上で発生したI/Oアクセスの
ハンドリング方法、virtio-netのしくみなど、仮想
NICの実現方法について解説してきました。今回の
記事では、/usr/sbin/bhyveが、仮想NICのインタ
フェースであるvirt-netに届いたパケットをどのよ
うに送受信しているのかを解説していきます。

　bhyveでは、ユーザプロセスである/usr/sbin/
bhyve にて仮想I/Oデバイスを提供しています。ま
た、仮想I/Oデバイスの1つであるNICは、TAPを
利用して機能を提供しています。仮想NICである
TAPを物理NICとブリッジすることにより、物理
NICが接続されているLANへ参加させることがで
きます（図１）。
　どのような経路を経て物理NICへとパケットが送
出されていくのか、ゲストOSがパケットを送信し
ようとした場合を例として見てみましょう。

▶ ① NICへのI/O通知

　ゲストOSはvirtio-netドライバを用いて、共有メ
モリ上のリングバッファにパケットを書き込み、I/O
ポートアクセスによってハイパーバイザにパケット
送出を通知します。I/Oポートアクセスによって
VMExitが発生し、CPUの制御がホストOSのvmm.

koのコードに戻ります注1。vmm.koはこのVMExitを
受けてioctlをreturnし、ユーザランドプロセスであ
る/usr/sbin/bhyveへ制御を移します。

▶ ② 共有メモリからパケット取り出し

　ioctlのreturnを受け取った/usr/sbin/bhyveは、
仮想NICの共有メモリ上のリングバッファからパ
ケットを取り出します注2。
▶ ③ tap経由でパケット送信

　②で取り出したパケットをwrite()システムコール
で/dev/net/tunへ書き込みます。

注1） I/Oアクセスの仮想化とVMExitについては連載第3回を参照
してください。

注2） 仮想NICにおけるvirtio-netのデータ構造とインターフェース
の詳細に関しては、連載第11回・第12回を参照してくださ
い。

はじめに

ハイパーバイザの作り方
ちゃんと理解する仮想化技術

浅田 拓也（ASADA Takuya）　Twitter @syuu1228

bhyveにおける仮想NICの実装第19回
Writer

bhyveにおける仮想 NICの実装

▼図1　パケット送信手順

②共有メモリからパケット取り出し

①NICへの IO通知

B
S
D
カ
ー
ネ
ル

③tap 経由で
　パケット送信

④bridge 経由で物理NICへ送信

bhyve

libvmmapi

/dev/vmm/VM名
（vmm.ko）

/dev/net/tun

bridge

NICドライバ

物理NIC

bhyve

仮想 NIC

142 - Software Design May 2014 - 143

bhyveにおける仮想NICの実装 第19回

▶ ④ bridge経由で物理NICへ送信

　TAPはbridgeを経由して物理NICへパケットを
送出します。

　受信処理ではこの逆の流れをたどり、物理NICか
らtapを経由して/usr/sbin/bhyveへ届いたパケット
がvirtio-netのインタフェースを通じてゲストOSへ
渡されます。

TAPとは何か

　bhyveで利用されているTAPについてもう少し詳
しくみていきましょう。TAPはFreeBSDカーネルに
実装された仮想Ethernetデバイスで、ハイパーバイ
ザ／エミュレータ以外ではVPNの実装によく使わ
れています注3。
　物理NIC用のドライバは物理NICとの間でパケッ
トの送受信処理を行いますが、TAPは/dev/net/tun

注3） 正確にはTUN/TAPとして知られており、TAPがEthernetレイ
ヤでパケットを送受信するインターフェースを提供するのに
対しTUNデバイスは IPレイヤでパケットを送受信するイン
ターフェースを提供します。また、TUN/TAPはFreeBSDのほ
かにもLinux、Windows、OS Xなど主要なOSで実装されてお
り、共通のAPIで操作することができます。

を通じてユーザプロセスとの間でパケットの送受信
処理を行います。このユーザプロセスがSocket API
を通じて、TCPv4でVPNプロトコルを用いて対向
ノードとパケットのやりとりを行えば、TAPは対向
ノードにレイヤ2で直接接続されたEthernetデバイ
スに見えます。
　これがOpenVPNなどのVPNソフトウェアが
TAPを用いて実現している機能です（図2）。
　では、ここでTAPがどのようなインターフェース
をユーザプロセスに提供しているのか見ていきましょ
う。TAPに届いたパケットをUDPでトンネリングす
るサンプルプログラムの例をリスト1に示します。

▼リスト1　TAPサンプルプログラム（Ruby）

require "socket"
TUNSETIFF = 0x400454ca
IFF_TAP = 0x0002
PEER = "192.168.0.100"
PORT = 9876
TUNTAPをオープン
tap = open("/dev/net/tun", "r+")
TUNTAPのモードをTAPに、インターフェース名を"tapN"に設定
tap.ioctl(TUNSETIFF, ["tap%d", IFF_TAP].pack("a16S"))
UDPソケットをオープン
sock = UDPSocket.open
ポート9876をLISTEN
sock.bind("0.0.0.0", 9876)
while true
 # ソケットかTAPにパケットが届くまで待つ
 ret = IO::select([sock, tap])
 ret[0].each do ¦d¦
 if d == tap # TAPにパケットが届いた場合
 # TAPからパケットを読み込んでソケットに書き込み
 sock.send(tap.read(1500), 0, Socket.pack_sockaddr_in(PORT, PEER))
 else # ソケットにパケットが届いた場合
 # ソケットからパケットを読み込んでTAPに書き込み
 tap.write(sock.recv(65535))
 end
 end
end

ユーザ
プログラム

通常の場合 TAPを使ったVPNの場合

socket

TCP/IPスタック

NICドライバ

物理NIC

B
S
D
カ
ー
ネ
ル

ユーザ
プログラム

① ③

②

socket

TCP/IPスタック

物理NIC

B
S
D
カ
ー
ネ
ル /dev/tap0

NICドライバ

OpenVPN

▼図2　 通常のNICドライバを使ったネットワークとTAPを使った
VPNの比較

144 - Software Design

bhyveにおける仮想NICの実装 第19回ハイパーバイザの作り方
ちゃんと理解する仮想化技術

　ユーザプロセスがTAPとやりとりを行うには、
/dev/net/tunデバイスファイルを用います。
　パケットの送受信は通常のファイルIOと同様に
read()、write()を用いることができますが、送受信処
理を始める前にTUNSETIFF ioctlを用いてTAPの
初期化を行う必要があります。
　ここでは、TUNTAPのモード（TUNを使うかTAP
を使うか）とifconfigに表示されるインターフェース
名の指定を行います。
　ここでTAPに届いたパケットをUDPソケット
へ、UDPソケットに届いたパケットをTAPへ流すこ
とにより、TAPを出入りするパケットをUDPで他

ノードへトンネリングできます（図2の右側相当の
処理）。

　VPNソフトウェアではTAPを通じて届いたパ
ケットをユーザプロセスからVPNプロトコルでカ
プセル化して別ノード送っています。
　ハイパーバイザでTAPを用いる理由はこれとは
異なり、ホストOSのネットワークスタックに仮想
NICを認識させ物理ネットワークに接続し、パケッ
トを送受信するのが目的です。

▼リスト2　/usr/sbin/bhyveの仮想NICパケット受信処理

/* TAPからデータが届いたときに呼ばれる */
static void
pci_vtnet_tap_rx(struct pci_vtnet_softc *sc)
{
 struct vqueue_info *vq;
 struct virtio_net_rxhdr *vrx;
 uint8_t *buf;
 int len;
 struct iovec iov;
 ……（中略）……
 vq = &sc->vsc_queues[VTNET_RXQ];
 vq_startchains(vq);
 ……（中略）……
 do {
 ……（中略）……
 /* 受信キュー上の空きキューを取得 */
 assert(vq_getchain(vq, &iov, 1, NULL) == 1);
 ……（中略）……
 vrx = iov.iov_base;
 buf = (uint8_t *)(vrx + 1); /* 空きキューのアドレス */
 /* TAPから空きキューへパケットをコピー */
 len = read(sc->vsc_tapfd, buf,
 iov.iov_len - sizeof(struct virtio_net_rxhdr));
 /* TAPにデータがなければreturn */
 if (len < 0 && errno == EWOULDBLOCK) {
 ……（中略）……
 vq_endchains(vq, 0);
 return;
 }
 ……（中略）……
 memset(vrx, 0, sizeof(struct virtio_net_rxhdr));
 vrx->vrh_bufs = 1; /* キューに接続されているバッファ数 */
 ……（中略）……
 vq_relchain(vq, len + sizeof(struct virtio_net_rxhdr));
 } while (vq_has_descs(vq)); /* 空きキューがある間繰り返し */
 ……（中略）……
 vq_endchains(vq, 1);
}

bhyveにおける仮想 NICと TAP

144 - Software Design May 2014 - 145

bhyveにおける仮想NICの実装 第19回

このため、VPNソフトウェアではソケットとTAPの
間でパケットをリダイレクトしていたのに対して、
ハイパーバイザでは仮想NICとTAPの間でパケッ
トをリダイレクトすることになります。
　それでは、このリダイレクトの部分について
bhyveのコードを実際に確認してみましょう（リスト
2）。
　この関数はsc->vsc_tapfdをkqueue()/kevent()で
ポーリングしているスレッドによってTAPへのパ
ケット着信時コールバックされます。コードの中で
は、virtio-netの受信キュー上の空きエリアを探して、
TAPからキューが示すバッファにデータをコピーし
ています。これによって、TAPへパケットが届いた
ときは仮想NICへ送られ、仮想NICからパケットが
届いたときはゲストOSに送られます。その結果、
bhyveの仮想NICはホストOSにとってLANケーブ
ルでtap0へ接続されているような状態になります。

前述の状態になった仮想NICでは、IPアドレス
が適切に設定されていればホストOSとゲスト
OS間の通信が問題なく行えるようになります。
しかしながら、このままではホストとの間でしか
通信ができず、インターネットやLAN上の他
ノードに接続する方法がありません。この点にお
いては、2台のPCをLANケーブルで物理的に直
接つないている環境と同じです。
　これを解決するには、ホストOS側に標準的に搭
載されているネットワーク機能を利用します。1つの
方法は、すでに紹介したブリッジを使う方法で、
TAPと物理NICをデータリンクレイヤで接続し、物
理NICの接続されているネットワークにTAPを参
加させることます。しかしながら、WiFiでは仕様に
よりブリッジが動作しないという制限があったり、
LANから1つの物理PCに対して複数のIP付与が許
可されていない環境で使う場合など、ブリッジ以外
の方法でゲストのネットワークを運用したい場合が
あります。
　この場合は、NATを使ってホストOSでアドレス

変換を行ったうえでIPレイヤでルーティングを行い
ます注4。bhyveではこれらの設定を自動的に行うしく
みをとくに提供しておらず、TAPにbhyveを接続す
る機能だけを備えているので、自分でコンフィギュ
レーションを行う必要があります。
　リスト3、4に/etc/rc.confの設定例を示します。な
お、OpenVPNなどを用いたVPN接続に対してブ
リッジやNATを行う場合も、ほぼ同じ設定が必要
になります。

　今回は仮想マシンのネットワークデバイスについ
て解説しました。次回は、仮想マシンのストレージ
デバイスについて解説します。｢

注4） NATを使わずにルーティングだけを行うこともできますが、
その場合はLAN上のノードからゲストネットワークへの経路
が設定されていなければなりません。一般的にはそのような
運用は考えにくいので、NATを使うことがほとんどのケースで
適切だと思われます。

▼リスト3　/etc/rc.conf設定例1（ブリッジの場合）

▼リスト4　/etc/rc.conf設定例2（NATの場合）

cloned_interfaces="bridge0 tap0"
autobridge_interfaces="bridge0"
autobridge_bridge0="em0 tap*"
ifconfig_bridge0="up"

firewall_enable="YES"
firewall_type="OPEN"
natd_enable="YES"
natd_interface="em0"
gateway_enable="YES"
cloned_interfaces="tap0"
ifconfig_tap0="inet 192.168.100.1/24 up"
dnsmasq_enable="YES"

TAPを用いた
ネットワークの構成方法

まとめ

146 - Software Design

スペックアップしませんか？

　連載のタイトルを決めるにあたって正直なと
ころちょっと悩みました。Red HatやFedora
関連の旬のニュースを取り扱いつつ、主に初心
者に向けた内容をとの執筆依頼でしたが、"Hot
Topics"はすでにDebian山根さんが使ってます
し、浅田さんや青田さんのように"ハイパーバ
イザ "とか "kernel"といった深い内容でもあり
ませんし。
　連載プランを検討している最中にRPM注1パッ
ケージについては必ず説明しようと思ったとこ
ろで、ふと、RPMパッケージを作成する際に用
いる定義ファイルであるSPEC（Specification、
「仕様」）ファイルに行き当たり、初心者が「スペッ
クアップ」するきっかけになるような連載を心が
ける、ということと掛けて「.SPECs（ドット・スペッ
クス）」としました。
　Red Hat Enterprise Linux（以降、RHELと省
略、RHELはレルと発音する）の技術面での基
礎的な内容については、同僚である中井悦司氏
が6月号で説明する予定です。そこで連載第1

回となる本稿では商用Linuxに初めて触る、あ
るいはしばらく触っていなかったエンジニアの
方を対象として、「エンジニアが扱わないとな
らないことも多いけれど、純粋に技術的とは言
えない話題」についてご紹介します。

純粋に技術的とは
言えない話題

　上述の導入部に対して読者諸氏は「何を書く
んだろう？」と思われたかもしれません。とい
うのも技術誌である本誌で、プログラミング言
語でも、最新のLinuxカーネルのパッチでも、
仮想化ハイパーバイザでも、そしてエディタの
話題でもないというと、何を？と思われるのは
もっともなことです。
　でも、実際にRed Hatに問い合わせいただい
ている質問注2の多くは、契約に関することや、
サポートの内容に関すること、あるいはRed
HatのWebサイトに掲載されていることだった
りするのも純然たる事実です。
　また、学生時代にLinuxに触れたことがある、
あるいは入社して商用Linux（ここではもちろ
んRHELのことですが）に初めて触ったという

新連載

注1） RPM：もともとは"Red Hat Package Manager"の略だが、現在は"RPM Package Manager"となっている。
注2） Red Hatへの一般的な問い合わせ窓口（http://jp.redhat.com/contact/sales.html）。

第 1 回 技術と技術の間にあるもの

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

Red Hat Enterprise Linuxは、企業向けの商用Linuxディストリビューション
の国内市場において圧倒的なシェアを持つ一方で、意外とその利用方法がきちん
と理解されていない面があります。連載第1回では、Red Hatとサポート契約を
結ぶメリットとサポートの利用方法を理解しましょう。

レッドハット株式会社　グローバルサービス本部プラットフォームソリューション統括部
ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）

http://jp.redhat.com/contact/sales.html

146 - Software Design May 2014 - 147

第 1 回技術と技術の間にあるもの

注3） ディストリビューション：配布物。"Linux"は狭義には"Linux"という名前のカーネルを指し、シェルやライブラリと組み
合わせて初めて実用的な"OS"となる。この「組み合わせて配布されるもの」を"Linuxディストリビューション"と呼ぶ。組
み合わされるソフトウェアの出自がGNUプロジェクトに由来するものが多いため、"GNU/Linux"（グニュー（ニュー）・スラッ
シュ・リナックス）と呼ぶべきだという意見も根強い。

注4） 古いRed Hat Linuxなどの入手（ftp://archive.download.redhat.com/）。

エンジニアは、Linuxのコマンドや設定ファイ
ルに通じていても、いざ商用サービスの構築に
際してRed Hatとサポート契約を結ぶという段
になると知らないことの方が多いというのは、
技術を深掘りしてきた人にほど当てはまること
のように思えます。

Red Hatとの契約＝
サブスクリプション

　Red HatのLinuxの歴史は1993年に遡ること
ができます。Red Hat LinuxはSlackwareや
Debianと並ぶ最古参のLinuxディストリビュー

ション注3の1つで、雑誌の付録CD-ROMや ftp
サイト注4などを通じて無償で配布され、技術サ
ポートが必要になったらRed Hatとサポート契
約を結ぶというのが、そもそもの始まりでした。
　1990年代後半になると、商用のアプリケー
ション、たとえば独・SAP社や米・Oracle社
が提供する製品がRed Hat Linuxでの動作を保
証するようになりました。しかし当時のRed
Hat Linuxはマイナーバージョンが更新（例：7.0
から7.1）されるとカーネルやライブラリの互換
性が失われ、企業のシステムで用いるには安定
性に欠けるという弱点が露呈しました。

 ▼図1　Red Hatのサポートフロー

エンドユーザ

OEM サポート TAM

RHN

カスタマサポート（GSS）

Issue Tracker

コミュニティ・開発者

Bugzilla SEG / Dev.
Issue

Issue

TAM：Technical Account Manager、顧客専属のサポートで通常のサポート契約とは別の契約が必要。
SEG：Software Engineering Group、RHN：Red Hat Network、GSS：Global Support Services。

「直接サポート」はGSSに問い合わせ、OEMサポートは（おもに）サーバベンダーのサポート窓口に問い合わせることになる。

148 - Software Design

　そこで2002年にRed Hat Linux 7.2をベース
に、Red Hat Enterprise Linux 2.1（リリース当
初は、Red Hat Linux Advanced Server 2.1）と
いう、企業向けに長期のサポートを提供する専
用のディストリビューションを提供開始しました。
　このサポート契約は期限（例：1年間、3年間）や
サポートレベル（Standard、Premium）を定めて提
供されるもので、サブスクリプション（Subscription、
「購読権」）と呼びます。よく「LinuxはGPL（GNU
General Public License）なんだから無償でしょ？」
と言われるのですが、それはソースコードやバイナ
リコードについて言えること注5で、サポート契約は
サポートエンジニアの工数やノウハウを提供するも
のなので有償となっています。

サブスクリプションの
手続き

　上述したようにRed HatはRHELやRed Hat
JBoss Middlewareなどさまざまな製品のサポー
トを提供しており、サポートの窓口は大別して
2種類あります。1つはRed Hatの直接サポー
トで、もう1つはOEMパートナー各社が提供
するサポートです（図1）。これらは最終的に
Red Hatがサポートするという点では同じなの
ですが、サポートの一次問い合わせ先が異なり、
おおむねサーバハードウェアと一緒に購入した
場合はOEMサポート注6、別に購入した場合は
直接サポートです。前者ではハードウェアとソ
フトウェアのサポートをワンストップで提供し
てもらえます。後者の直接サポートについては

商流が複数あります。大別するとRed Hatから
直接購入する方法注7と、ディストリビュータ
と呼ばれる販社から購入する方法があります。
いずれの場合も購入申込書やWebサイトの
フォームに記入して発注することになります。
　サブスクリプション契約が成立すると「納品
書」と「サブスクリプション証書」ならびに、も
し発注していれば「インストールメディアキッ
ト」であるDVD注8が送付されます。また、同
時にユーザのRed Hatアカウントにサポートを
利用する権利が紐付けされます。これはダイレ
クトエンタイトルメントと呼ばれ、発注時に
Red Hatアカウントを持っていればそれを指定
します。持っていなければ新規にアカウントを
作成するためのURLがメールで送信されるよ
うになっています。

サポートを受ける前提条件

　サポートを受けるにはいくつか条件がありま
す。詳細はEA（Enterprise Agreement）という
契約文書注9に記載されているので、契約内容
やサポートレベルの確認も含め、必ず読むよう
にしてください。
　サポートの可否を判断する際に特に重要な
項目として、ハードウェア動作認定リスト
（HCL注10）が挙げられます。HCLはハードウェ
アベンダーがRed Hatの「ハードウェアプログ
ラム」に参加し注11、認定を取得したいバージョ
ンのRHEL上でテストプログラムを実行し結

注5） RHELをはじめとするLinuxディストリビューションにはGPLだけでなくBSDライセンスやApacheライセンスなど、オープ
ンソースソフトウェア（OSS）で用いられるさまざまなライセンスが設定されたソフトウェアが含まれ、それらを集めた「集合
著作物」のライセンスとしてGPLを設定している。

注6） OEMサポートベンダーの一覧（http://jp.redhat.com/partners/）。
注7） 購入手順について（http://jp.redhat.com/footer/japan-buy.html）。
注8） メディアキットはRHELのすべてのマイナーバージョンについて用意されているわけではない。Red Hat NetworkからDVD

のイメージファイル（.isoという拡張子のファイル）をダウンロードして、DVD-Rドライブで「焼く」か、仮想化環境でイメー
ジファイルをそのまま使う方が一般的。

注9） 「RED HATエンタープライズ契約」という名称で入手可能（http://jp.redhat.com/footer/japan-buy.html）
注10） HCL：Hardware Certification List（https://hardware.redhat.com）
注11） 2014年3月現在、ハードウェアプログラムの参加費用は$5,000/年。

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

http://jp.redhat.com/partners/
http://jp.redhat.com/footer/japan-buy.html
http://jp.redhat.com/footer/japan-buy.html
https://hardware.redhat.com

148 - Software Design May 2014 - 149

第 1 回技術と技術の間にあるもの

果をRed Hatに送付すると、RHELのバージョ
ンやCPUアーキテクチャ（i686、x86_64など）
と共に掲載されるようになっています。Red
Hatは、動作認定されたマイナーバージョン
以降注12のRHELでハードウェアに依存する
問題が発生した場合、このHCLの掲載の有無
でサポートするか否かを決定します。ただし、
ハードウェアに依存しない問題、たとえばネー
ムサーバであるbindにセキュリティの脆弱性
が発見された、といった場合にはHCLがサポー
トの可否に影響することはないので安心して
ください。

Red Hatは
何をしてくれるの？

　ここまで「サポート」という単語を何の定義
もなく用いてきましたが、Red Hatが提供す
る「サポート」にはさまざまな要素が含まれて
います。ソフトウェアの不具合の修正はもち
ろんですが、電話やwebサイトによる問い合
わせや、サブスクリプション契約の金額の範
囲内での訴訟費用補償注13などが挙げられます。
契約によって提供される項目やレベルは前述
したEA契約に定義されているので、Red Hat
に支払う金額分以上に上手に利用してください。
　ソフトウェアの不具合の修正に関して、少し
詳しく説明しましょう。Red Hatが提供するソ
フトウェアのうち、どのパッケージや機能がサ
ポートの対象となるのかはWebサイトに定義さ
れています注14。かいつまむと、Red Hatが提供

する RPMパッケージのうち "Optional"や
"Supplementary"というチャネル注15に含まれず、
第三者によって改変されていないものや、
Release Notes / Technical Notes 注 16 で
"Technical Preview"に指定されていない機能が
サポートの対象となります。

Sales Kick O� in Macau

　最後にRed Hat周辺の話題を。3月11日から
14日までマカオでSales Kick Offという社内イベ
ントがありました。日本法人であるレッドハット
株式会社はAPAC（Asia Pacific）地域に属してお
り、APACでは毎年3月に営業系の社員を集めて
営業戦略や新製品の情報を共有するイベントを、
APACのいずれかの都市（昨年はバンコク、一昨
年は北京）で開いています。今回はやはりRHEL
7やOpenStack、Red Hat Storageなどがプラッ
トフォーム側の話題の中心でした。これらの新製
品の情報については、今後の連載の中で紹介して
いこうと考えていますので、ご期待ください。
　一方で（おそらく）PM2.5による大気汚染は
一昨年の北京より深刻度を増しているように
見受けられ、せっかくの海外出張であるにも
かかわらず、ホテルのチェックインからチェッ
クアウトまで、筆者はまったくホテルの外に
足を運びませんでした。ちょっと残念でした
ね……。ﾟ

注12） たとえばRHEL 6.4で動作認定を取得していれば、6.5、6.6……での動作が保証される。ただしメジャーバージョンについ
ては適用されないため、RHEL 7.xで再度取得する必要がある。

注13） Open Source Assuranceと呼ばれる。Red Hatが提供するソフトウェアがソフトウェア特許に抵触した場合に、当該部分のソー
スコードの差し替えや、エンドユーザが訴訟の対象となった場合の訴訟費用の補償などを含む（http://www.redhat.com/
rhel/details/assurance/）。

注14） サポートの対象となるソフトウェアについて（https://access.redhat.com/site/support/offerings/production/soc）。
注15） RPMパッケージをまとめたものをチャネルと呼ぶ。いわゆる"OS"と呼ばれているものは「親チャネル」でkernelやglibcな

どが含まれる。一方でRed HatがAdd-onとして提供している高可用性クラスタなどは「子チャネル」と呼ばれ、ベースとな
る親チャネルに紐付く。"Optional"や"Debug Info"なども子チャネルとなる。

注16） Release Notes/Technical Notesは次のURLを参照（http://docs.redhat.com/）。インストーラに含まれるのはString Freeze
という開発フェーズのもので、オンライン版は必要があれば更新される。

http://www.redhat.com/rhel/details/assurance/
https://access.redhat.com/site/support/offerings/production/soc
http://www.redhat.com/rhel/details/assurance/
http://docs.redhat.com/

150 - Software Design

ベースシステムから
BINDを廃止？

　FreeBSD 10.0-RELEASEではいくつかソフト
ウェアの入れ替えも行われました。もっともユーザ
に影響を与える可能性が高い変更は、ベースシステ
ムからBINDが取り除かれたことでしょう（図1）。
これまでFreeBSDのベースシステムにはBINDが
マージされていました。chroot(8)環境下で動作する
ように設定されたBINDで、rc.conf(5)に設定を追加
したあとはBINDの設定ファイルを書けば使える状
態になっていました。
　ネームサーバの実装系の中でデファクトスタン
ダードに近いポジションにあるソフトウェアが
BINDなわけですが、BINDのリリースエンジニア
リングがFreeBSDプロジェクトと合わないため
ベースシステムから抜くことになりました。BIND
はセキュリティ脆弱性が発見されることが多いソフ

トウェアでもあります。ベースシステムにマージさ
れたソフトウェアのアップデートはpkg(8)やports(7)
経由でインストールしたアプリケーションほどは簡
単にアップデートすることができません。ports(7)で
提供するほうが適切と判断したわけです注1。

ローカルキャッシュリゾルバと
ツール UnboundとLDNS

　BINDを置き換える目的ではなく補う目的で、
FreeBSD 10.0-RELEASEにはUnboudとLDNS
が追加されています（図2）。Unboundはローカル
キャッシュリゾルバとして使用する目的で、LDNS
はBINDが提供していたユーティリティを提供する
目的で導入されています。なお、BINDが提供して
いたユーティリティと同じものを継続して使いたい
場合には、bind-toolsをインストールして使います
（図3）。
　正引きや逆引きを実施するのに使われてきた

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第7回 ❖ BINDの廃止とUnbound/LDNSの導入

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

% freebsd-version
10.0-RELEASE
% which named
named not found
% which dig
dig not found
%:

▼▼図1　�FreeBSD 10.0-RELEASEからはベースシステ
ムからBINDが抜かれている

% which unbound
/usr/sbin/unbound
% which drill
/usr/bin/drill
% which host
/usr/bin/host
%

▼▼図2　補完目的でUnboundとLDNSが導入されている

% pkg search -o bind-tools
dns/bind-tools
%

▼▼図3　�BINDユーティリティと同じコマンドが使いたいな
らbind-tools

注1	 ports(7)からインストールするBINDはベースシステムにマージされていたときのBINDと、rc.conf(5)での設定方法や設定ファイルの配
置される場所が同じとは限りません（ちょくちょく変わっています）。本番機に導入する前に実験機で試すようにしてください。

May 2014 - 151

▶第7回◀
BINDの廃止とUnbound/LDNSの導入

dig(1)ですが、このコマンドはLDNSのdrill(1)
コマンドに置き換わりました。drill(1)コマンドはす
べてのDNSクエリを発行できるように開発が進め
られているコマンドで、dig(1)よりも多機能です。
使い方や表示されるフォーマットなどはdig(1)と同
じです。今後は基本的にdrill(1)を使うものだと考
えておいてください。

使ってみようUnbound

　さっそくUnboundを使ってみましょう。効果の
大きい機能なので基本的に有効にしておいてよいと
思います。まず/etc/rc.confに次の設定を追加しま
す。

local_unbound_enable="YES"

　そして、service(8)コマンドでUnboundを次のよ
うに起動します。

$ service local_unbound start

　drill(1)コマンドを使って正引きを実施してみま
す。Unboundを起動した直後に1回実行すると図4
の結果が得られます。クエリにかかった時間は690
ミリ秒です。この状態でもう1回正引きを実行して
みます。すると図5のようにクエリにかかった時間
が0ミリ秒と報告されます。
　DNSクエリの処理がローカルでキャッシュ処理
されたため高速になりました。このように、有効化

% drill www.freebsd.org
;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 36771
;; flags: qr rd ra ; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;; www.freebsd.org. IN A

;; ANSWER SECTION:
www.freebsd.org. 170 IN CNAME wfe0.ysv.freebsd.org.
wfe0.ysv.freebsd.org. 3415 IN A 8.8.178.110

;; AUTHORITY SECTION:

;; ADDITIONAL SECTION:

;; Query time: 690 msec
;; SERVER: 127.0.0.1
;; WHEN: Sat Mar 15 17:25:30 2014
;; MSG SIZE rcvd: 72
%

▼▼図4　www.freebsd.orgを正引き：1回目

% drill www.freebsd.org
;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 3014
;; flags: qr rd ra ; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;; www.freebsd.org. IN A

;; ANSWER SECTION:
www.freebsd.org. 108 IN CNAME wfe0.ysv.freebsd.org.
wfe0.ysv.freebsd.org. 3353 IN A 8.8.178.110

;; AUTHORITY SECTION:

;; ADDITIONAL SECTION:

;; Query time: 0 msec
;; SERVER: 127.0.0.1
;; WHEN: Sat Mar 15 17:26:33 2014
;; MSG SIZE rcvd: 72
%

▼▼図5　www.freebsd.orgを正引き：2回目

152 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

するだけで効果が期待できる機能です。

Unboundの設定は
/var/unbound/

　Unboundを起動すると、システムの状態から
/var/unbound/以下に図6の設定ファイルが自動的
に生成されます（リスト1、2）。forward.confにDNS
サーバを指定して、unbound.confにローカルで使用
する名前解決の設定などを追加できるようになって

います。

hosts(5)の代わりに
Unboundを使ってみよう！

　ちょっとした数のホストの名前解決であれば、
/etc/hostsに名前を書いておくという使われ方をし
ている方もいらっしゃるかと思います。Unboundが
導入されたので、FreeBSD 10.0-RELEASE以降は
この設定をUnboundで肩代わりするといったこと
ができます。
　たとえばリスト3のようにunbound.confを書き換

Generated by local-unbound-setup
server:
 username: unbound
 directory: /var/unbound
 chroot: /var/unbound
 pidfile: /var/run/local_unbound.pid
 auto-trust-anchor-file: /var/unbound/root.key

include: /var/unbound/forward.conf

▼▼リスト2　/var/unbound/unbound.confの例

server:
 username: unbound
 directory: /var/unbound
 chroot: /var/unbound
 pidfile: /var/run/local_unbound.pid
 auto-trust-anchor-file: /var/unbound/root.key

 # Unboundで名前解決を提供する場合の設定例
 interface: 127.0.0.1
 interface: 192.168.1.10
 access-control: 192.168.1.0/24 allow

 local-zone: "ongs.co.jp." transparent

 local-data: "localhost. IN A 127.0.0.1"
 local-data: "gps1. IN A 192.168.1.11"
 local-data: "gps1.co.jp IN A 192.168.1.11"
 local-data: "gps2. IN A 192.168.1.12"
 local-data: "gps2.ongs.co.jp IN A 192.168.1.12"

 local-data-ptr: "127.0.0.1 localhost."
 local-data-ptr: "192.168.1.11 gps1.ongs.co.jp."
 local-data-ptr: "192.168.1.12 gps2.ongs.co.jp."

include: /var/unbound/forward.conf

▼▼リスト3　編集した/var/unbound/unbound.confファイル

Generated by local-unbound-setup
forward-zone:
 name: .
 forward-addr: 192.168.185.2

▼▼リスト1　/var/unbound/forward.confの例

% tree /var/unbound
/var/unbound
├── forward.conf
├── root.key
└── unbound.conf

0 directories, 3 files
%

▼▼図6　自動生成されるUnboundの設定ファイル

May 2014 - 153

▶第7回◀
BINDの廃止とUnbound/LDNSの導入

えます。この設定で表のような名前解決（正引き、
逆引き）を設定したことになります。
　service local_unbound restartのようにコ
マンドを実行してUnboundを再起動したら、図7、8
のようにdrill(1)を使って正引きを逆引きを実施し
てみましょう。

BINDに代わる機能の導入は
FreeBSD 11を目指す

　Unboundはローカルキャッシュリゾルバの目的
で導入されています。BINDが提供してきたコンテ
ンツサーバとしての目的では導入されていません。
コンテンツサーバを運用する場合にはpkg(8)や
ports(7)でBINDやNSDといったソフトウェアをイ

ンストールする必要があります。
　FreeBSDのベースシステムにDNSのコンテンツ
サーバをマージするかどうか、どのソフトウェアを
マージするかは現在議論が進められている段階にあ
ります。FreeBSD開発者会議での会議やメーリング
リストでの会議などを経て選定が進められ、
FreeBSD 11を目処に導入される見通しです。s

% drill gps1
;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 27920
;; flags: qr aa rd ra ; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;; gps1. IN A

;; ANSWER SECTION:
gps1. 3600 IN A 192.168.1.11

;; AUTHORITY SECTION:

;; ADDITIONAL SECTION:

;; Query time: 0 msec
;; SERVER: 127.0.0.1
;; WHEN: Sat Mar 15 17:37:29 2014
;; MSG SIZE rcvd: 38
%

▼▼図7　正引きの確認

% drill -x 192.168.1.11
;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 9431
;; flags: qr aa rd ra ; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;; 11.1.168.192.in-addr.arpa. IN PTR

;; ANSWER SECTION:
11.1.168.192.in-addr.arpa. 3600 IN PTR gps1.ongs.co.jp.

;; AUTHORITY SECTION:

;; ADDITIONAL SECTION:

;; Query time: 0 msec
;; SERVER: 127.0.0.1
;; WHEN: Sat Mar 15 17:40:35 2014
;; MSG SIZE rcvd: 72
%

▼▼図8　逆引きの確認

▼▼表1　設定した内容

ホスト名 IPv4アドレス 備考

localhost 127.0.0.1

gps1.ongs.co.jp 192.168.1.11

gps2.ongs.co.jp 192.168.1.12

gps1 192.168.1.11 正引きのみ

gps2 192.168.1.12 正引きのみ

154 - Software Design

14 Debian Developer　やまねひでき　henrich@debian.org

「ピン留め」でパッケージの
バージョンを細かく管理する

DebianにもLTS？

　セキュリティチームが「Bits from the Security
Team」というアナウンスで、DebianでもLTS
（Long Term Support、長期間サポート版）の提
供を検討していることを伝えました。これは現
在の安定版Debian 7「Wheezy」についてではな
く、2014年5月上旬にサポートが終了する予
定のDebian 6「Squeeze」に対してとなっていま
す。Squeezeに対して実験的にLTSサポート
を提供し、その結果を見てWheezyやJessieで
もLTSを提供するかどうかを決めよう、とい
うことのようです。また、次の方針が出されて
います。

¡	LTSの対象アーキテクチャはi386とamd64
のみ

¡	LTSではマイナーな問題の修正は行わない
¡	情報の分断を避けるため、LTS専用メーリン
グリストは設置しない

¡	今のところサポート期間の明示はなし

　Squeeze-LTSの提供が行われる場合は、
Squeezeのサポート提供終了後の2014年5月
以降となる予定です。Debian公式ブログ「Bits
from Debian」注1では「LTSは空から降ってくる
ものではないので、興味がある人みんなの協力
が必要です。セキュリティチームが行うのは、

実施作業そのものではなく取りまとめです」と
あります。実現に協力いただける方は、お早め
に team@security.debian.orgまでご連絡ください。

詳解apt line
〜「ピン留め」編

　前回、案内したbackportsは便利ですが、た
まに「backportsにはないけれど、testing/un
stableにはある」パッケージを使いたい、とい
う場合もあるでしょう（メンテナががんばって
backportsに含めておいてくれると安心便利
……ですが、ベストエフォートでの提供ですの
でしかたがないですね）。そのような場合でも、
aptを適切に設定することで testing/unstable
などのパッケージを導入できます。作業は次の
手準で行います。

①	apt lineにtesting/unstableの設定を追加
②	/etc/apt/preferencesの設定で「ピン留め」を
実施

③	「apt-cache policy」でピン留めの設定を確認
④	明示的に別バージョンからパッケージを入れ
るテストをして、どのパッケージが導入される
かを確認したあと、パッケージをインストール

　まず、①についてですが、/etc/apt/sources.

 ▼リスト1　/etc/apt/sources.listに複数のバージョンを記述

 wheezy（stable）を使いつつ、jessie（testing）を追加
deb http://ftp.jp.debian.org/debian/ wheezy main
deb http://ftp.jp.debian.org/debian/ jessie main

注1） URL http://bits.debian.org/

http://bits.debian.org/

154 - Software Design May 2014 - 155

「ピン留め」でパッケージのバージョンを
細かく管理する 14

listに複数のバージョンを記述して apt-get
updateします（リスト1）。
　重要なのは、②の「ピン留め」（apt pinning）
という設定作業です。apt lineには複数のバー
ジョン（squeeze/wheezy/jessie/sid/experimental）
を記述できますが、そのままapt-get upgrade
をすると、すべてのパッケージが可能な限り一

4

番新しいバージョン
4 4 4 4 4 4 4 4 4

注2へと一律に更新されます。
リスト1の場合は多くのパッケージが jessieに
更新されてしまい、wheezyと混ぜて記述する
意味がなくなります。「全体として安定した状
態を保ちつつ、一部のソフトウェアだけは更新」
という目的を満たすには、ピン留めが不可欠で
す。
　ピン留め設定は /etc/apt/preferences（また
は /etc/apt/preferences.d以下のファイル）に
次のような形式で記述します（ちなみにデフォ
ルト状態では/etc/apt/preferencesファイルは
存在していませんので、追加してください）。

Package: *
Pin: release a=testing
Pin-Priority: 100

　Pinで指定した「release a=xxx」はリリースに
ついてのピン留めで、Archive名（stable/test
ing/unstable）を指定します。コードネームで

指定する場合は「release n=jessie」のようにし
てください。Pin-Priorityの数値は大きいほど
優先度が高くなります。ここでは testingに対
してデフォルト値「500」より低い値である「100」
を割り当てることで、明示的に testingでのイ
ンストールを要求しない限りstableのパッケー
ジのインストールを優先するように設定してい
ます。数値の概要は表1を参照してください。
　この設定を行った結果、

¡	未インストールのパッケージをインストール
する→stableがインストールされる

¡	インストール後にピン留め設定を実施、apt-
get upgradeを行う→自動的にtestingのバー
ジョンに更新される

という動作になります。
　特定のパッケージについて設定をしたいとき
は、Package行にパッケージ名を明記します。
複数の場合はパッケージ名の間に空白を挟みま
す。

Package: iceweasel iceweasel-l10n-ja
Pin: release a=experimental
Pin-Priority: 990

　特定のバージョンに固定させたい場合、パッ
ケージ名とバージョンを指定することで実現で
きます。たとえば、アップデートは基本的に実
施したい（squeezeを利用していてwheezyに
アップグレードしたい）けど、PHPは5.3で固
定したい場合は、次のように設定します。

Package: php5*
Pin: version 5.3*
Pin-Priority: 1001

注2） 「可能な限り」というのは一部のパッケージが「dist-
upgrade」を実行しないとアップデートされない場合があ
るからです。パッケージによっては、アップグレードの
ためにパッケージの削除が必要だったり、新規のパッケー
ジをインストールしないといけないものがあったりします。
そのような場合、「upgrade」は安全側に倒してアップデー
トを行いません。「dist-upgrade」はアップデートを優先
して関連パッケージの削除や追加を行います。「dist-
upgrade」の乱用を行って「なんでパッケージが削除され
るんだー！」などと叫んでいる人がいますが、そうならな
いように「まずはupgrade、必要に応じて変更点を確認し
てdist-upgrade」というのを肝に命じておきましょう。

 ▼表1　Pin-Priorityの概要

Pin-Priorityの数値 意味
1 指定すればインストールできるが、updateの対象にならない（experimentalがこの設定）

100 インストール済みパッケージについては、ピン留めされたバージョンまでアップデートする
500 現在インストールされていないパッケージの優先度（デフォルト）
990 ピン留めされたバージョンでインストールを実施する

1001 ダウングレードになるとしても、そのパッケージを指定されたバージョンでインストールする

*を使ってどの名前／バージョ
ンにでもマッチするように指定

156 - Software Design

　PHP 5についてはバージョンを5.3.*で優先
度「1001」とすることで、「何が何でもバージョ
ン5.3.*を利用する」という意味になります。
　次に③の作業です。「apt-cache policy」コマ
ンドを実行すると、現在のピン留め設定が出力
されます。図1ではPHP 5関連のパッケージ
がピン留めされていることや、testingのピン
留めが優先度100で設定されていることが確認
できます。
　図1の「release o=Debian,a=testing,n=jessie,l
=Debian,c=main」などの意味ですが、参照先サー
バにあるReleaseファイル（ftp.jp.debian.org/

debian/dists/wheezy/Releaseなど）を覗くと、
先頭にリスト2のような記載があります。
　Releaseファイルの記載と/etc/apt/preferen
cesでの記述は表2のように対応しています（お
およそ頭文字でわかるかと思います）。さらな
る詳細設定については「man apt_preferences」
を参照してください。
　ピン留め設定を行ったら、④の作業です。意
図どおりにインストールされるか、apt-getで
インストールのテストをしてみましょう（テス
トだけをして、実際にインストールを行わない
のは「-s」オプションを指定）。図2では、筆者

 ▼図1　apt-cache policyコマンドでピン留め設定を確認

$ apt-cache policy
パッケージファイル:
100 /var/lib/dpkg/status
 release a=now
100 http://ftp.jp.debian.org/debian/ testing/main amd64 Packages
 release o=Debian,a=testing,n=jessie,l=Debian,c=main
 origin ftp.jp.debian.org
500 http://ftp.jp.debian.org/debian/ wheezy-updates/main amd64 Packages
 release o=Debian,a=stable-updates,n=wheezy-updates,l=Debian,c=main
 origin ftp.jp.debian.org
500 http://security.debian.org/ wheezy/updates/main amd64 Packages
 release v=7.0,o=Debian,a=stable,n=wheezy,l=Debian-Security,c=main
 origin security.debian.org
500 http://ftp.jp.debian.org/debian/ wheezy/main amd64 Packages
 release v=7.4,o=Debian,a=stable,n=wheezy,l=Debian,c=main
 origin ftp.jp.debian.org
Pinされたパッケージ:
 （中略）
 php5-xsl -> 5.3.3-7+squeeze17
 php5-mongo -> (見つかりません)
 php5-mysqlnd -> (見つかりません)
 php5-remctl -> (見つかりません)
 php5 -> 5.3.3-7+squeeze17
 （略）

 ▼リスト2　Releaseファイルの内容（先頭のみ抜粋）

Origin: Debian
Label: Debian
Suite: stable
Version: 7.4
Codename: wheezy
Date: Sat, 08 Feb 2014 10:36:03 UTC
Architectures: amd64 armel armhf i386 ia64
kfreebsd-amd64 kfreebsd-i386 mips mipsel
powerpc s390 s390x sparc
Components: main contrib non-free
Description: Debian 7.4 Released 08
February 2014

 ▼表2　Releaseファイルの記載と
 /etc/apt/preferencesの対応

Releaseファイル /etc/apt/preferences
Origin: Debian o=Debian
Suite：stable a=stable注3

Codename:wheezy n=wheezy
Label: Debian l=Debian
Components: main c=main

注3） 「Suiteでなぜ aなんだ？」という疑問はもっともです。
stable/testing/unstableは、場面によってArchiveと呼ば
れたり、Suiteと呼ばれたり、ディストリビューションと
呼ばれたり、バージョンと呼ばれたりとブレがあり、ドキュ
メントでも一致していません。

156 - Software Design May 2014 - 157

「ピン留め」でパッケージのバージョンを
細かく管理する 14

がパッケージをメンテナンスしている IRCク
ライアント「loqui」のパッケージを例にします。
　普通に apt-get installすると、Debian:7.4/
stableからバージョン0.5.3-3が取得されます。
ここで-tオプションを付けて取得先のターゲッ
トとして testingを明示してみましょう（図3）。
同じパッケージの取得ですが、出力が変わり、
Debian:testingからバージョン0.5.5-2がインス
トールされることがわかります。

依存関係には注意

　このように便利なピン留めですが、testing/
unstableからパッケージを借りてくる

4 4 4 4 4

ため、依
存関係によっては意図しない大量のパッケージ

の変更が必要になることがあります。
　図4ではJDパッケージを testingから取得し
ようとしたところ、依存関係から221個のパッ
ケージがアップグレード、新規インストールが
160個、そして38個のパッケージが削除され
るという事態になっており、このまま進めると
1/6ぐらいが testingという状態になってしま
います。中途半端で、ちょっとstableとは言い
づらいですね。パッケージによって依存関係の
状況は異なりますので、必要に応じてテストし
てPinを使うかどうかを判断してください。

「ピン留め」の活用で
stable生活を豊かに

　「常に testing/unstableを使うのはためらわれ
るけど、stable（と backports）
のパッケージだけだと不満が
……」という方も、ここで紹介
したピン留め（apt pinning）を
使えば解決できる場合があり
ます。ちょっと動作が難解か
もしれませんが、トライして
みる価値はありますので、一
度お試しあれ。｢

 ▼図2　インストールのテスト

$ sudo apt-get -s install loqui ←-sでシミュレーション
パッケージリストを読み込んでいます...完了
依存関係ツリーを作成しています
状態情報を読み取っています...完了
以下のパッケージが新たにインストールされます:
loqui
アップグレード: 0個、新規インストール: 1個、削除: 0個、保留: 7個。
Inst loqui (0.5.3-3 Debian:7.4/stable [amd64])
Conf loqui (0.5.3-3 Debian:7.4/stable [amd64])

 ▼図3　testingを明示的に指定してインストール

$ sudo apt-get -s install loqui -t testing ←-tでターゲットを明示
パッケージリストを読み込んでいます...完了
依存関係ツリーを作成しています
状態情報を読み取っています...完了
以下のパッケージが新たにインストールされます:
loqui
アップグレード: 0個、新規インストール: 1個、削除: 0個、保留: 1234個。
Inst loqui (0.5.5-2 Debian:testing [amd64])
Conf loqui (0.5.5-2 Debian:testing [amd64]) ←testingから先ほどと異なるバージョンを取得できていることに注目

 ▼図4　大量のパッケージ変更が必要になる場合

$ sudo apt-get install jd -t testing
パッケージリストを読み込んでいます...完了
依存関係ツリーを作成しています
状態情報を読み取っています...完了
 （中略）
アップグレード: 221個、新規インストール: 160個、削除: 38個、保留: 981個。
233 MBのアーカイブを取得する必要があります。
この操作後に追加で246MBのディスク容量が消費されます。
続行しますか[Y/n]?

1つのパッケージ更新だが、libcなどへの依存
から大量のパッケージがアップグレードされている

シンガポールより
こんにちは

　こんにちは、レッドハットの鶴野です。筆者
は、2011年まで東京オフィスでプリセールスの
仕事をしていましたが、今はシンガポールオフィ
ス（写真1）にてプロダクトマネージメントの仕
事をしています。担当としては日本を含むアジ
ア圏でのRed Hat Enterprise Linuxやアドオン
製品のプロダクトマネージメントをしています。
仕事の内容としてはプリセールスのころよりも
表舞台というよりは裏方に近い立場になります。
毎日のように客先に訪問していたプリセールス
時代よりも夜中に本社と電話会議したり、とい
う地味な内容です。会社は同じでも国、仕事を
変えられるというのが当社の面白いところだと
思います。

国境のないオフィスと
柔軟なキャリアパス

　Red Hatでは社内の異動というのがある程度
自由にできるようになっています。しょっちゅ
う知らない人がデスクに座っていて「1ヵ月だけ
日本で仕事することにした」、とか「ちょうど休

みでロンドンに行くから、休暇のあとはロンド
ンオフィスでしばらく仕事する」というような話
を聞きます。実は、今日も今まで一緒に仕事を
していたほかの部署の女性が旦那様の仕事の都
合でロンドンに引っ越し、そのままRed Hatの
ポジションもロンドンに持っていくと聞きまし
た。
　一時的に違う場所で仕事ということであれば、
仕事の内容や上司の了解などをクリアしておけ
ば手続きは簡単ですが、完全に移籍となるとあ
る程度の手順を踏むことになります。そこで社
内のイントラネット上にはジョブポスティング
があり、どの国のどんなポジションに空きがあ
るかわかるようになっています。
　「お、これは」というポジションがあれば応募
書類を出して人事や上司と話を進めていく形に
なります。筆者の場合も仕事の引き継ぎなどい
ろいろとあり、異動まで1年弱かかりましたが、
思ったよりもスムーズでした。同じ会社内で築
いてきた経験や人脈を無駄にすることなく異動
できる、というのはキャリアパスとしても良かっ
たと思います。

シンガポールの
お国事情

　さてここからシンガポールと周辺東南アジア
のお話を少ししたいと思います。シンガポール
というと南国、ドリアン、マーライオン、Marina
Bay Sandsあたりが有名かと思いますがだいた
いそんな感じです。マレー半島が指だとすると、
シンガポールは「あ、そろそろ爪切るかな」とい
うときの爪の先のような小さな国なので見どこ
ろというのはそんなに多くありません。逆に言
うと数日もあればだいたい普通の観光は完了で
きる便利な国とも言えます。気候は暖かく過ご
しやすいところですが雨季にはゲリラ豪雨が日
に一度ドカッと来てサッと止みます。夏の気候
が好きな筆者としては気に入っています。食事
は外食産業が発達していて値段も安価なため太
るのが困りものですが……。

恵比寿通信
レッドハット

鶴野 龍一郎
TSURUNO Ryouichiro

レッドハット㈱ シンガポール支社
Platform BU Manager APAC

グローバル企業のキャリアパス

第 回20

シンガポール通信

158 - Software Design

　人口の約1/3が外国人というシンガポールは
国際色豊かで個人的には楽しいところです。最
近は貧富の差も広がり、生粋のシンガポール人
にとっては仕事が外国人に奪われてしまうとい
う現実もありますが、人口の少ないシンガポー
ルにとっては移民受け入れも国策の1つであり、
シンガポールをユニークな国にしているといえ
ると思います。
　また、シンガポールは外資系企業を誘致する
ために税制が優遇されており、アジアのヘッド
クオーター（HQ）をシンガポールに置くケースが
少なくありません。Red Hat以外にも大手のIT
企業のアジアHQをシンガポールに置いている
企業がたくさんあります。筆者の日本人の友人
にも日本のポジションをアジアに拡大してシン
ガポールに移住してきた人がいます。もちろん
一足飛びに本国の本社で仕事、というのも良い
と思いますがやはり今熱いアジアでの仕事が個
人的には面白いと思います。

シンガポールビジネス
のチャンスとは

　それ以外にシンガポールの利点としてはアジ
ア圏のどこにでも行きやすいという点が挙げら
れます。日本までは飛行機で6～7時間といった
ところですがアジア圏に出張の多い身としては
短時間でいろいろな国に行けるのは大変便利で
す。日本以外で出張が多いのが――ご近所様の
マレーシア、インドネシア、タイなど――です
が、どこも1～2時間で行けます。
　インドネシアやマレーシアの成長率は非常に
高く、注目されていますが出張に行くと、さら
にその勢いを肌で感じます。イベントなどで講
演をする機会もあるのですが、そこでお会いす
る技術者の皆さんのレベルも高くなってきてい
ます。現在アジア内でトップレベルの成長率と
いうのも首

しゅこう

肯できます。彼らはオープンソース
ソフトウェアに対する造詣も深く、政府レベル
での推進が進んでおり、場合によっては日本よ
りも先を行っているケースもあるようです。

　お客様の案件もUNIXからLinuxへの移行案件
など、日本でもよくあるものなのが面白いとこ
ろです。プロダクトマネージメントの仕事とい
うこともあり、アジアの他国の技術者や顧客か
ら「今こんな案件を扱ってるんだけど事例ない？」
と聞かれることがあります。
　多くの場合日本でも似たような案件があり日
本での経験が役に立つのですが、筆者の技術力
では全面的にサポートして差し上げることがで
きず、いつも「日本の経験のある技術者がいれば
なあ……」と思うことしきりです。

エンジニアが活きる
海外の職場

　そういうことがあるたびに日本の優秀な技術
者の皆さんはすでに世界で活躍できるレベルに
あること、そのための土壌はもうできており、
あとは皆さんが思い切って一歩を踏み出せば良
いだけ、ということを実感します。
　日本の優秀なエンジニアの皆さんがさらに海
外でも活躍してくれることを願ってやみません。
ｯ

恵比寿通信レッドハット
グローバル企業のキャリアパス

シンガポール通信 第 回20

写真 1　向かって右のビルにシンガポール支社のオフィスがある

158 - Software Design May 2014 - 159

160 - Software Design

Ubuntu Monthly Report

　APUはAMDの造語で、“Accelerated Processing
Units”の略です。要するにCPUとGPUを統合した
ものであり、先日発売されたSony PlayStation 4に
も搭載されていたりもします注1。現行のAMDのマイ
クロアーキテクチャはおもに3つあり、うち1つは
AMD FXというCPU向けのPiledriverで、もう1つ
はその後継のSteamrollerです注2。今回紹介する
「AMD APU A10 7700K（以下A10-7700K）はこれを
採用しています。残るJaguarがPlayStation 4で採
用されており、要するに今回取り上げるA10-7700K
とは別のマイクロアーキテクチャです。
　Steamrollerを採用したAPUのコードネームが
Kaveriで、Jaguarを採用したAPUのコードネームが
Kabiniと、何を考えてこう名付けたのか首を傾げて
しまうほど似通っています。
　3月中旬現在Kaveriは2種類発売されていて、
A10-7700Kとその上位のA10-7850Kです。後者は
A10-7700Kを購入したころには品薄で入手困難でし
たが、本誌が店頭に並ぶころには品切れ感は解消さ
れていることでしょう。
　Kaveriの特徴はいくつかあって、まずは28nmプロ

注1） 日本では未発売のMicrosoft Xbox Oneも同様です。
注2） 将来的にSteamrollerを採用したAMD FXシリーズが発売さ

れるかもしれませんが、とりあえず置いときます。

APU
セスルールで製造されていることです。AMDは数年
前に製造部門を分社化してGLOBALFOUNDRIES
という企業が生まれましたが、Kaveriはここで製造を
行っています。一方KabiniやPlayStation 4で採用し
ているAPUはTSMCで製造しています。前の世代
は32nmプロセスルールだったので進歩はしています
が、Intelは22nmプロセスルールであり、王者はさす
がの貫禄だなと思うわけです。
　おもしろい機能として、Configurable TDPという
のがあります。A10-7700KはTDP 95Wですが、
BIOS（UEFI）がこのConfigurable TDPに対応して
いると、65Wと45Wに変更できます。消費電力が減
るのは当然のこととして、それに伴ってどのぐらい
性能が落ちるのかをテストしてみました（詳細後述）。
　前の世代と比較して一番大きな特徴はAPU内部
のCPUとGPUの統合がより進み、HSA（Heterogene
ous System Architecture）に対応したことです。HSA
が何かというのはここでは解説しませんが注3、
LibreOffice 4.2はこのHSAに対応したアプリケー
ションのうちの1つです。HSAを使用するためには
GPUドライバーのサポートが必須で、もちろん最新
のバージョンでなくてはいけません。となると、
LibreOfficeもGPUドライバーも最新版が使える
Ubuntu 14.04をインストールするのは必然、という
わけです。

注3） CPUの処理をGPUに渡したり、またその逆がよりスムーズにで
きるようになったという理解でいいのではないかと思います。

Ubuntu Japanese Team
あわしろいくや　AWASHIRO Ikuya

 Mail ikuya@fruitsbasket.info

今回は1月に発売されたAMD APU A10 7700KをUbuntu 14.04（の開発版）にインストールし、

活用する様子を報告します。

Ubuntu Monthly Report

最新のAPUに
最新のUbuntuを

第49回

160 - Software Design May 2014 - 161

最新のAPUに最新のUbuntuを 第 49 回

　表1のような構成にしました。新規に購入したの
はAPUとマザーボードだけであり、メモリは在庫
品注4、SSDとケースは使い回しです。
　今回マザーボードはASRockのFM2A88X-ITX+
にしました。前述のとおりConfigurable TDPは
BIOSサポートが必須ですが、アップデートによって
A10-7700Kにも対応したことがわかったからです注5。
購入前に注意すべきは、BIOSがKaveriに対応したも
のになっていないと起動すらしないということです。
PCパーツショップで事前にアップデートしてもらう
か、手持ちのSocketFM2 APUでアップデートする
必要がありますが、後者は割に非現実的です注6。ちな
みに筆者はPCワンズ注7というPCパーツショップに
行き、BIOSアップデート済みのマザーボードを購入
しました。このようなサービスを行っているPCパー
ツショップで購入するのがお勧めです。
　購入した時点のBIOSのバージョンは2.10でした
が、このバージョンだとA10-7700KのConfigurable
TDPには対応していません注8。ですので2.20以降に
アップデートする必要がありますが、今はとても簡
単に行えます。LANケーブルが接続されていれば
DHCPでIPアドレスを取得してBIOSのアップデー
トを確認し、自動的に取得する機能があるので、今
回はそれを使用しました。
　W3U1600F-4Gは型番からも推測できるとおり
DDR3-1600のはずなのですが、1333で認識されてし
まいました。BIOSからこの修正も簡単にできます注9。
　mini-PCIeスロットには無線LANとBluetoothが
セットになったモジュールが接続されており、
Ubuntu 14.04ではAR9462で認識していました。
IEEE 802.11aに対応していて巨大なファイルをやり

注4） 一昨年の年末、メモリなど各種PCパーツが値上がりすること
を見越し、現在の1/3近い価格で購入しています。

注5） ほかにも対応しているマザーボードはあるはずです。
注6） 筆者ですら所有していません。
注7） http://1-s.jp/

注8） A10-7850Kは対応しています。
注9） 今回はとくに表記がない限り1333でベンチマークを計測して

います。

構成

とりしないのであれば有線LANは不要なくらいです
が、アンテナの取り付けは困難でしたのでお気をつ
けください。このモジュールを取り外せば、mSATA
のSSDも接続できます。

　Ubuntu 14.04のリリース予定日は4月17日、すな
わち本誌の発売予定日前日です。予定どおりにリ
リースされても、日本語Remixはまだである可能性
が極めて高いタイミングであり、また本誌来月号で
特集が予定されているのでアップグレードはまだ
ちょっと待ったほうがいいかもしれませんが、新規
インストールであればとくに問題ないでしょう。と
いうか多少の不具合があったとしてもAPUの機能
をフルに引き出せるほうがいいでしょう。
　インストールイメージはUbuntu 12.04でダウン
ロードし、［ブータブルUSBの作成］で転送します。
この際［シャットダウン時に、すべての変更を破棄す
る］を選択するといいでしょう注10。USB 3.0のUSB
メモリを使用すれば、転送もインストール自体も
あっという間に終わります。
　インストールを完了し（図1）、各種アップデート
の後、［システム設定］-［ソフトウェアとアップデー
ト］-［追加のドライバー］タブから注11プロプライエタ
リなドライバーをインストールしてください（図2）。
再起動するとこのドライバーが有効になります。

注10） 以前いろいろトラブルがあり、イメージの転送が終わらない
ということがありました。それが理由で［データ保存領域を確
保し、行われた変更を保存する］を使用しないようになりまし
たが、現在はこのトラブルがなくなっているかもしれません。

注11） もちろん画面右上のインジケーターに告知アイコンが表示さ
れている場合は、そちらからでもいいです。

Ubuntu 14.04の
インストール

APU AMD A10-7700K
マザーボード ASRock FM2A88X-ITX+
メモリ CFD販売 W3U1600F-4G
SSD Samsung SSD 830 MZ-7PC256N/IT※

ケース IN-WIN IW-BP671B/300 相当品
※ もともとはクレバリーという自作PCパーツショップの専売品
だったようで、その時期に購入したのですが、残念ながら倒産し
てしまい、現在は IN-WINブランドで販売されています。

表1　テストしたマシン構成

http://1-s.jp/

162 - Software Design

Ubuntu Monthly Report

にこれこそがHSAの目に見える特徴ということで
す。それと、CPU部分の演算ユニットが4、GPU部
分のそれが6、というのも興味深いです。AMDはこ
れらをまとめてCompute Coreと呼んでおり、パッ
ケージには［10 Compute Cores（4 CPU + 6 GPU）］
と書かれています。
　残念ながら筆者はCalcをそれほど活用しているわ
けでもなく、またベンチマークと行ったものも存在
しないので、どのぐらい速くなっているか定量的に
計る手段がないのは残念です。

　前述のとおり筆者にとっては久しぶりに購入した
APUですので、CPU部分がどのぐらい速くなってい
るのか興味があります。また、Configurable TDPに
よってTDPを下げるとどのぐらいの影響があるのか
も計ってみたくなりました。ベンチマークの方法も
いろいろありますけど、今回はLibreOfficeのビルド
時間を計測することにしました。具体的には次のよ

CPU部分の速度と
Configurable TDP

　Calcを起動して、［ツール］-［オプション］-
［LibreOffice Calc］-［数式］の［詳細な計算の設定］を
［ユーザー定義］にし、［詳細］をクリックして［一部の
数式の演算にOpenCLを有効にする］をクリックして
ください。この方法は本連載第47回でも紹介したの
ですが、まずは同じものを再掲します（図3）。これ
はA8-3820というAPUを使用して撮影したもので
す。世代的にはA10-7700Kの3世代前です。［周波
数］が［2500］、［演算ユニット］が［4］、［メモリー
（MB）］が［7459］というところから、APUのCPU部
分に関する表示であることがわかります。
　一方GPU部分の表示はありません。図4は
NVIDIA GeForce GT 640での状態であり、どう見
てもGPUの表示です。これがKaveriだとどうなる
のかというと、図5と図6のようになります。図3は
APUのGPU部分であり、図6はAPUのCPU部分
です。当然図5の設定のほうが速いはずです。まさ

LibreOffice 4.2のHSA

図3　本連載第47回で紹介した。A8-3820での結果図2　［システム設定］-［詳細］の概要

図1　ソフトウェアとアップデート画面

［追加のドライバー］タブで［AMDグラ
フィックアクセラレーター用のビデオド
ライバーを fglrxから使用します（プロプ
ライエタリ）］にチェックを入れて、［変更
の適用］をクリックしてください

プロセッサとグラフィックで内容が重複しているのが興味深いです

162 - Software Design May 2014 - 163

最新のAPUに最新のUbuntuを 第 49 回

うなコマンドを実行します。

$ sudo apt-get build-dep libreoffice
$ apt-get source libreoffice
$ cd（ソースコードがあるフォルダ）
$ time dpkg-buildpackage -r -uc -b -j6

　-j6はスレッド数×1.5から決定しています。2ス
レッドであれば-j3、8スレッドであれば-j12です。
ビルドしたLibreOfficeのバージョンは検証時期の関
係で4.2.1です。1秒未満は四捨五入しています。結
果は表2をご覧ください。
　Pentium G3220はOSが違う注12のであくまで参考
値ですが、それにしても6,000円ほどで売られてい
るCPUに負けているというのはいささかショックで
した。A8-3820と比較しても30分ほどしか速くなっ
ていないのもかなりのショックだったのですが。た
だ、TDPを落としても誤差ほどの違いしか出なかっ
たのはなかなか興味深いです。今回のベンチマーク
はGPU部分をまったく使っていないので、こちらに
回される電力をCPU部分に振り分けた結果、CPU部
分の速度が落ちなかったのではないかと推測できま
す。CPUとGPUどちらも使うベンチマークだった場
合は速度が落ちるはずですし、確かにいくつかのベ
ンチマークを見た限りでもそのような結果になって
いました。
　メモリの速度を上げてみると誤差とは言えないほ
どの差が出ており、Kaveriを使用する場合は可能な
限り高速なメモリを使用するのがいいということが

注12） Ubuntu 12.04で計測したほか、HDDも別など計測環境が異な
るため。

わかりました。

　今回はGPU部分の検証は行いませんでしたが、
巷のベンチマークを見る限りではかなり強力ですの
で、UbuntuもサポートしているSteam注13のゲームを
するにはなかなかよさそうですが、それ以外は筆者
のようなAMDにロマンを感じる人でないと厳しい
かな、というのが正直な感想です。でもそれでいい
のではないでしょうか。大事です、ロマン。｢

注13） http://store.steampowered.com/?l=japanese

どういう人が
買うべきなのか

APU/CPU かかった時間
A8-3820 217分33秒
A10-7700K（TDP 95W） 186分22秒
A10-7700K TDP 65W 185分41秒
A10-7700K TDP 45W 186分14秒
A10-7700K TDP 45W DDR3-1600 179分31秒
Pentium G3220（参考値） 172分27秒

表2　LibreO�ce 4.2.1のビルドにかかった時間

図4　NVIDIA GeForce GT 640での結果

図5　A10-7700KのGPU部分 図6　A10-7700KのCPU部分

http://store.steampowered.com/?l=japanese

164 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

　Linux 3.14-rc7がリリースされ、3.14のリリー
スも間もなくではないかと思われます。Linus
も-rc7のリリースメール注1で、“but with some
luck thatwon‘t happen and this is the last rc.”
と書いているとおり、3月23日には3.14がリリー
スされているかもしれません。今月はLinux 3.14
のコードネームについてと、userlandでも使え
るようになった lockdepという機能について解
説します。

3.14のコードネーム
　Linux kernelのトップレベルのMakefileを見
ると、“NAME”というものが設定されているの
に気がつきます。これはいくつかのバージョン
ごとに付けられる愛称のようなもので、たとえ
ば Linux 3.11で は“Windows for Workgroups
3.11”とかけて“Linux for Workgroups”と名付
けられていました。このコードネームを3.14と
いうことで、円周率にちなんだ名前にしてくれ
とのリクエストがLinusのもとにもたくさん届
けられていたようです。しかし「円周率なんて
20ケタぐらい昔から覚えてるでしょ。そしたら
3.14なんて全然円周率に近くないよね。」と言っ

注1） https://lkml.org/lkml/2014/3/16/166

て退けてしまいました。その代わりに3.14には
“Shuffling ZombieJuror”というコードネームが
付けられました。

lockdep
　ロックはときにやっかいな問題をひき起こし
ます。単純な例であればリスト1のコードのよ
うに、AとBというつ2つのロックがあって片
方のスレッド（locktest-f）がAのロックのあとに
Bのロックを取ろうとする一方で、もう1つの
スレッド（locktest-g）がBのあとにAを取ろうと
すれば、互いにどちらのロックも取ることがで
きないデッドロックが引き起こされます。これ
ぐらいのコードであれば、カーネルがハングし
てしまってもどこに原因があるのかすぐにわか
りますが、コードが複雑になってくると、なぜカー
ネルがハングしたのかを特定することは難しく
なってしまいます。
　こうした問題への対抗策として、Linux
kernelには lockdepというしくみが導入されて
います。これはロックの依存関係を追跡し、デッ
ドロックを検出した場合にどのようなロックが
行われていたかなどの情報をダンプしてくれる
機能です。ダンプを見ることでロック周りの問
題の解決が容易になります。

Linux 3.14の
コードネームとlockdep機能
Text：青田 直大　AOTA Naohiro

第26回第26回

https://lkml.org/lkml/2014/3/16/166

164 - Software Design May 2014 - 165

Linux 3.14のコードネームとlockdep機能 第26回第26回

　たとえば、リスト1のプログラムを実行すれ
ば図1のような出力を得ることになります。
　❶循環依存しているロックの取り方をしてい
ると表示されています。
　❷では“locktest-g”というスレッドが“lockA”
を取ろうとしているが、❸すでに“lockB”という
ロックをこのスレッドが取っていることを示し
ています。
　❹この“locktest-g”におけるロックの取り方と
整合しない、ほかのロックの取り方が示されて
います。ロックの依存関係が逆順に表示されて
いて、“locktest-f”のスレッドで行っている
“lockA”を取って、“lockB”を取る操作と対応し
ています。このようにロックを取る順番が一致
していないときに、その情報を出力してくれる
わけです。
　❺また、「CPU0が lockBを取ったあとに、
CPU1が lockA、lockBを 取 得 し、CPU0が
lockAを取得しようとするとデッドロックが起
きるよ」とロックがおかしくなる状況の例示まで

してくれます。
　❻最後に、この時点で取得されているロック
の一覧と、スタックトレースとが表示されてい
ます。

lockdepのしくみ
　lockdepでは個々のロックにそれぞれ1つの
IDを与えています。このIDを用いて新しくロッ
クを取るときに、すでに同じIDのロックを取っ
ていないか、循環依存が含まれていないかなど
をチェックします。さらに、ロックのIDを使っ
てロックのチェーンのハッシュ値を計算します。
チェーンの検証後ハッシュ値を覚えておくことで、
同じチェーンの検証はスキップし、検証の負荷
を抑えるようにしています（図2）。

userland lockdep
　さて、このようにロックの問題を見つけ出し、

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/kthread.h>
#include <linux/spinlock.h>

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Naohiro Aota");
MODULE_DESCRIPTION("Lock test");

static struct task_struct *t1, *t2;
DEFINE_SPINLOCK(lockA);
DEFINE_SPINLOCK(lockB);

static int f(void *data)
{
 while (!kthread_should_stop()) {
 spin_lock(&lockA);
 spin_lock(&lockB);
 pr_info("locktest: f¥n");
 spin_unlock(&lockB);
 spin_unlock(&lockA);
 schedule_timeout_interruptible(HZ);
 }
 return 0;
}

static int g(void *data)

{
 while (!kthread_should_stop()) {
 spin_lock(&lockB);
 spin_lock(&lockA);
 pr_info("locktest: g¥n");
 spin_unlock(&lockA);
 spin_unlock(&lockB);
 schedule_timeout_interruptible(2*HZ);
 }
 return 0;
}

static int __init lock_init(void)
{
 t1 = kthread_run(f, NULL, "locktest-f");
 t2 = kthread_run(g, NULL, "locktest-g");
 return 0;
}

static void __exit lock_cleanup(void)
{
 kthread_stop(t1);
 kthread_stop(t2);
}

module_init(lock_init);
module_exit(lock_cleanup);

 ▼リスト1　デッドロックを起こすコード

166 - Software Design

Linuxカーネル観光ガイド

 （次ページに続く）

[6087.543426] ==
[6087.543428] [INFO: possible circular locking dependency detected] ❶
[6087.543432] 3.14.0-rc7+ #338 Tainted: G W O
[6087.543434] ---
[6087.543436] locktest-g/19086 is trying to acquire lock: ❷
[6087.543439] (lockA){+.+...}, at: [<ffffffffa02c1028>] g+0x28/0x60 [locktest]
[6087.543450]
but task is already holding lock: ❸
[6087.543452] (lockB){+.+...}, at: [<ffffffffa02c101c>] g+0x1c/0x60 [locktest]
[6087.543460]
which lock already depends on the new lock.

[6087.543463]
the existing dependency chain (in reverse order) is: ❹
[6087.543465]
-> #1 (lockB){+.+...}:
[6087.543471] [<ffffffff810e7073>] lock_acquire+0x93/0x130
[6087.543477] [<ffffffff81790ac0>] _raw_spin_lock+0x40/0x80
[6087.543482] [<ffffffffa02c1088>] f+0x28/0x57 [locktest]
[6087.543486] [<ffffffff810b79bf>] kthread+0xff/0x120
[6087.543492] [<ffffffff817998ec>] ret_from_fork+0x7c/0xb0
[6087.543497]
-> #0 (lockA){+.+...}:
[6087.543502] [<ffffffff810e6553>] __lock_acquire+0x1773/0x1ae0
[6087.543506] [<ffffffff810e7073>] lock_acquire+0x93/0x130
[6087.543509] [<ffffffff81790ac0>] _raw_spin_lock+0x40/0x80
[6087.543513] [<ffffffffa02c1028>] g+0x28/0x60 [locktest]
[6087.543517] [<ffffffff810b79bf>] kthread+0xff/0x120
[6087.543521] [<ffffffff817998ec>] ret_from_fork+0x7c/0xb0
[6087.543526]
other info that might help us debug this:

[6087.543528] Possible unsafe locking scenario: ❺

[6087.543531] CPU0 CPU1
[6087.543532] ---- ----
[6087.543534] lock(lockB);
[6087.543538] lock(lockA);
[6087.543541] lock(lockB);
[6087.543544] lock(lockA);
[6087.543548]
 *** DEADLOCK ***

[6087.543551] 1 lock held by locktest-g/19086: ❻
[6087.543553] #0: (lockB){+.+...}, at: [<ffffffffa02c101c>] g+0x1c/0x60 [locktest]
[6087.543561]
stack backtrace:
[6087.543565] CPU: 4 PID: 19086 Comm: locktest-g Tainted: G W O 3.14.0-rc7+ #338
[6087.543568] Hardware name: System manufacturer System Product Name/P8H67-M PRO, BIOS 3806
08/20/2012
[6087.543570] ffffffff8254e7b0 ffff8804afcdfc98 ffffffff817885e1 ffffffff8254e7b0
[6087.543578] ffff8804afcdfcd8 ffffffff81783992 ffff8804afcdfd30 ffff88057a468860
[6087.543583] 0000000000000000 ffff88057a468828 ffff88057a468000 ffff88057a468860
[6087.543589] Call Trace:
[6087.543596] [<ffffffff817885e1>] dump_stack+0x4e/0x7a
[6087.543602] [<ffffffff81783992>] print_circular_bug+0x201/0x210
[6087.543606] [<ffffffff810e6553>] __lock_acquire+0x1773/0x1ae0
[6087.543611] [<ffffffff81791c20>] ? retint_restore_args+0xe/0xe
[6087.543616] [<ffffffff810e7073>] lock_acquire+0x93/0x130
[6087.543620] [<ffffffffa02c1028>] ? g+0x28/0x60 [locktest]

 ▼図1　lockdepの出力

166 - Software Design May 2014 - 167

Linux 3.14のコードネームとlockdep機能 第26回第26回

解決するのに有用な情報を提供してくれる
lockdepを、kernelの中ではなくuserlandで使
えるように移植したものが、Linux 3.14の
tools/lib/lockdepにコミットされています。た
とえばリスト2のようなデッドロックを起こす
コードを書いて、-D__USE_LIBLOCKDEPを
付けて、liblockdep.aとリンクしてビルドして実
行します（図3）。するとkernelのときと同じよ
うな出力をuserlandのプログラムでも得ること
ができることが確認できます。
　この方法では liblockdepに静的リンクを行っ
ていますが、動的リンクを用いた方法も使うこ
とができます（図4）。静的リンクのほうは“-D__

USE_LIBLOCKDEP”によってmutex.h（リスト
3）がpthreadの lock関数をコンパイル時に置き
換えていて、動的リンクのほうでは“LD_
PRELOAD”を用いて“pthread_mutex_lock”を
実行時に上書きしています。

まとめ
　今回は、userlandでも使えるようになった
lockdep機能について紹介しました。Linux
kernelでいくつものロック関係の問題を解決し
てきたという lockdepを、ぜひuserlandのプロ
グラムでも試してみてください。｢

 lockAを取る

さらに lockBを取る
同じロックの取得・循環がないので検証にパス

lockを開放し、lockBをとる

さらに lockAをとろうとして、B→Aの依存関係を導入すると、
B→A→Bの循環ができてしまい検証に失敗する

チェーンのハッシュ：747

チェーンのハッシュ：e8e748

チェーンのハッシュ：748

チェーンの検証失敗

lockA
ID:747

lockA
ID:747

lockB
ID:748

lockB
ID:748

lockB
ID:748

lockA
ID:747

[6087.543627] [<ffffffffa02c1000>] ? 0xffffffffa02c0fff
[6087.543631] [<ffffffff81790ac0>] _raw_spin_lock+0x40/0x80
[6087.543636] [<ffffffffa02c1028>] ? g+0x28/0x60 [locktest]
[6087.543640] [<ffffffffa02c1028>] g+0x28/0x60 [locktest]
[6087.543645] [<ffffffff810b79bf>] kthread+0xff/0x120
[6087.543651] [<ffffffff810b78c0>] ? kthread_create_on_node+0x250/0x250
[6087.543655] [<ffffffff817998ec>] ret_from_fork+0x7c/0xb0
[6087.543659] [<ffffffff810b78c0>] ? kthread_create_on_node+0x250/0x250

（前ページの続き）

 ▼図2　lockdepの動作

168 - Software Design

Linuxカーネル観光ガイド

$ cd ~/linux-2.6/tools/lib/lockdep
$ make
 CC FPIC common.o
 CC FPIC lockdep.o
 CC FPIC preload.o
 CC FPIC rbtree.o
 BUILD STATIC LIB liblockdep.a
 BUILD SHARED LIB liblockdep.so
$ cd ~/locktest
$ gcc -o userlockdep -ggdb -pthread -lpthread userlocktest.c -I../linux-2.6/tools/lib/ｭ
lockdep/include -Wall -D__USE_LIBLOCKDEP ../linux-2.6/tools/lib/lockdep/liblockdep.a
$./userlockdep
locktest: f
locktest: f
…
locktest: f
locktest: f

==
[25/1846]
[INFO: possible circular locking dependency detected]
liblockdep 0.0.1

userlockdep/3700 is trying to acquire lock:
 (&lockA){......}, at: ./userlockdep() [0x400ce7]

but task is already holding lock:
 (&lockB){......}, at: ./userlockdep() [0x400cdd]

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (&lockB){......}:
./userlockdep[0x4011f8]
./userlockdep[0x402d53]
./userlockdep[0x402ff0]
./userlockdep[0x40360e]

 ▼図3　コンパイルと実行

 （次ページに続く）

#include <liblockdep/mutex.h>
#include <stdio.h>
#include <unistd.h>

pthread_t t1, t2;
pthread_mutex_t lockA, lockB;

static void *f(void *data)
{
 for(;;) {
 pthread_mutex_lock(&lockA);
 pthread_mutex_lock(&lockB);
 printf("locktest: f¥n");
 pthread_mutex_unlock(&lockB);
 pthread_mutex_unlock(&lockA);
 }
 return NULL;
}

static void *g(void *data)
{

 for(;;) {
 pthread_mutex_lock(&lockB);
 pthread_mutex_lock(&lockA);
 printf("locktest: g¥n");
 pthread_mutex_unlock(&lockA);
 pthread_mutex_unlock(&lockB);
 }
 return NULL;
}

int main(void)
{
 pthread_mutex_init(&lockA, NULL);
 pthread_mutex_init(&lockB, NULL);

 pthread_create(&t1, NULL, &f, NULL);
 pthread_create(&t2, NULL, &g, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 return 0;
}

 ▼リスト2　デッドロックを起こすコード

168 - Software Design May 2014 - 169

Linux 3.14のコードネームとlockdep機能 第26回第26回

（前ページの続き）

./userlockdep[0x4040b8]

./userlockdep[0x404b7f]

./userlockdep[0x400c43]

./userlockdep[0x400ca7]
/lib64/libpthread.so.0(+0x8227)[0x7fe6985fc227]
/lib64/libc.so.6(clone+0x6d)[0x7fe698331c8d]

-> #0 (&lockA){......}:
./userlockdep[0x4011f8]
./userlockdep[0x402667]
./userlockdep[0x402c39]
./userlockdep[0x402ff0]
./userlockdep[0x40360e]
./userlockdep[0x4040b8]
./userlockdep[0x404b7f]
./userlockdep[0x400c43]
./userlockdep[0x400ce7]
/lib64/libpthread.so.0(+0x8227)[0x7fe6985fc227]
/lib64/libc.so.6(clone+0x6d)[0x7fe698331c8d]

other info that might help us debug this:

 Possible unsafe locking scenario:

 CPU0 CPU1
 ---- ----
 lock(&lockB);
 lock(&lockA);
 lock(&lockB);
 lock(&lockA);

 *** DEADLOCK ***

1 lock held by userlockdep/3700:
 #0: (&lockB){......}, at: ./userlockdep() [0x400cdd]

stack backtrace:
./userlockdep[0x400efa]
./userlockdep[0x402721]
./userlockdep[0x402c39]
./userlockdep[0x402ff0]
./userlockdep[0x40360e]
./userlockdep[0x4040b8]
./userlockdep[0x404b7f]
./userlockdep[0x400c43]
./userlockdep[0x400ce7]
/lib64/libpthread.so.0(+0x8227)[0x7fe6985fc227]
/lib64/libc.so.6(clone+0x6d)[0x7fe698331c8d]

$ LD_PRELOAD=../linux-2.6/tools/lib/lockdep/liblockdep.so ./userlockdep

 ▼図4　動的リンクを用いる方法

#ifdef __USE_LIBLOCKDEP

#define pthread_mutex_t liblockdep_pthread_mutex_t
#define pthread_mutex_init liblockdep_pthread_mutex_init
#define pthread_mutex_lock liblockdep_pthread_mutex_lock
#define pthread_mutex_unlock liblockdep_pthread_mutex_unlock
#define pthread_mutex_trylock liblockdep_pthread_mutex_trylock
#define pthread_mutex_destroy liblockdep_pthread_mutex_destroy

#endif

 ▼リスト3　mutex.h

170 - Software Design

間を割いて解説されました。フリーソフトウェアに
は2種類のライセンスがあります。1つはcopyleftで、
GNUなどが該当します。copyleftは再配布などのとき
に同じライセンスを表示することが義務づけられて
います。もうひとつはpermissiveで、MIT、Apache、
BSDなどのライセンスはこちらに分類されます。
permissiveでは再配布時にコードの公開をしなくて
も良いなど、copyleftとの違いがあります。
　ライセンスの利用状況としてはGPL2が約3割で
首位、Apache、GPL3、MIT、BSDなどがこれに続
いています。2008年のデータでは7割ぐらいがGPL
だったのですが、近年はGPLが減少傾向にあり、
代わってpermissiveの類が増加しています。ライ
センスの設定は、そのソフトウェアをどう育ててい
きたいかという意志の表れであるとともに、ソフト
ウェアを使うだけでコミュニティへの還元を行わな
いフリーライダーを排除する意図もあります。
　しかし、2012年に行われた調査によるとGitHubで
公開されているソースコードの77％はライセンス条
項が付いておらず、これでは良くないということで、
今ではGitHubで公開する際にライセンスをMIT、
Apache、GPLから選ぶようになりました。

■エンジニアのかかわり方がOSSの性格や勢いを

決める

　さらに次の話題として、OSSコミュニティの話が
ありました。OSSコミュニティの典型的構造は、そ
のソフトウェアの作者が最上位にいて、その下に数
名から数十名のコミッタやメンテナ、さらにその下
に多数のコントリビュータ、その下に無数のユーザ

　今回は、3月に行ったjus研究会東京大会の模様を
お伝えします。

	 ■オープンソースの利用とハッカー文化

	【講師】よしおかひろたか（楽天）

	【司会】法林 浩之（日本UNIXユーザ会）

	【日時】2014年3月1日（土）15:15〜16:00

	【会場】明星大学 日野キャンパス 28号館 201教室

■OSSの発展にはライセンスの理解が不可欠

　楽天の技術理事を務めているよしおかさんを講師
にお迎えし、オープンソースやハッカー文化につい
ての解説と、それらを楽天の社内に広める活動につ
いて紹介していただきました。参加者は46人でし
た。
　はじめにオープンソースの概説がありました。
1970年代からパブリックドメインやプロプライエタ
リソフトウェアといった区別があり、1980年代には
フリーソフトウェアが登場しました。オープンソー
スの概念が定義されたのは、1990年代の後半に
Netscape Navigatorがソースコードを公開したころ
です。現在では、オープンソースソフトウェア
（OSS）の利用はごく普通のことになりましたが、こ
こまで普及した背景には、「従来にない新しいソフト
ウェアを利用できること」「自分で機能拡張や修正が
できること」「そのような改良の積み重ねとしてソフ
トウェアの品質が高いこと」などが挙げられます。
　次に、ソフトウェアライセンスについて多くの時

ハッカーへの第一歩、OSSとの正しい付き合い方

NO.31
May 2014

東京大会

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/

May 2014 - 171170 - Software Design

という階層構造です。具体例として、Linuxはコント
リビュータが1万人、コミットが460万回、ソース
コードが1,600万行であり、Rubyはコントリビュータ
が90人、コミットが3万回、ソースコードが100万
行という規模です。
　これらのデータでおもしろいのは、同種のソフト
ウェアでもコミッタの人数とコミット回数に大きな
違いがあることです。クラウド基盤ソフトウェアの
OpenStack、CloudStack、Eucalyptusを比較すると、
Eucalyptusは少数のコントリビュータがたくさんコ
ミットし、OpenStackは多数のコントリビュータが少
しずつコミットしています。これらのデータからプ
ロジェクトの性格やコミュニティの勢いみたいなも
のも感じ取ることができます。
　もうひとつ、OSSを語るうえで欠かせないのがバ
ザールモデルと呼ばれる広域分散協調による開発モ
デルです。その根底となる考え方であるハッカー倫
理の話もありました。ハッカー倫理については、
1980年代のハッカーたちについて記された『ハッ
カーズ』注1という書籍に詳しく書かれています。要約
すると、ハッカー共通の価値観は「コンピュータは生
活を向上させるものである」「ラフなコンセンサスと
動くコードが重要」「何かをするときに周囲に許可を
求めない」「間違ったことをしたときは謝罪する」と
いったものです。

■楽天におけるOSSの利用／開発／教育

　OSSやハッカー文化の話はここで一段落し、ここ
からは楽天でのOSS利用についての話になりまし
た。楽天でのOSSの利用動機は、ユーザとしてすで
に社内の至るところで使っていたというのもありま
すが、今後もベンダによる囲い込みから逃れたいと
いう意図があり、積極的にOSSへの参加を行ってい
ます。OSSへの関与の成熟度として、発見→使う→
コミュニティに参加→コミュニティを作る、という
段階があります。現在の楽天は「使う」と「参加」の中
間ぐらいの段階にあるだろうとのことです。楽天で

注1） Steven Levy 著、古橋芳恵、松田信子 訳、工学社、1990年

もOSSの開発を行っており、分散KVSの「ROMA」
やファイルシステム「LeoFS」などの開発事例があり
ます。
　社内でOSSを利用および開発するときは、OSSラ
イセンスを遵守するよう注意する必要があります。
何も考えずに使うと著作権違反や特許侵害などの恐
れがあるため、とくにアプリケーションや電子書籍
リーダーなどクライアントに配布するソフトウェア
のコードを書くときは注意が必要です。また、
MongoDBなどAGPLで公開されているソフトウェ
アは改変したコードも公開しなければならないので、
サーバサイドで利用するソフトウェアについてもラ
イセンスは要確認です。楽天ではライセンスに関す
るトレーニングやマニュアルを作って教育している
とのことで、併せて特許や著作権などの教育も必要
だそうです。
　最後にまとめとして、「こういう場を通してエンジ
ニア共通の価値観を共有していきたい」「OSSコミュ
ニティはイノベーションのエンジンになっている」
「みなさんもハッカーになり、より良い社会を作って
いってほしい。そして自分は楽天でその手伝いをし
ていきたい」というメッセージで講演を締めくくりま
した。

◆　◆　◆
　今回の研究会もオープンソースカンファレンスの
中で開催しました。同じ時間帯に人気のセミナーが
多く、集客に苦戦するのではないかと心配しました。
しかし、実際には予想以上に多くの方に参加してい
ただき、これからOSSの世界に入る若い人への教材
となるような講演を提供できてよかったと思います。
　今回の講演はよしおかさんの手により資料が公開
されています。また動画も公開していますので、時
間がありましたらご覧ください。｢

・	 資料：http://www.slideshare.net/hyoshiok/using-

oss-and-hacker-culture-at-an-internet-company-

osctokyo-20140301rev

・	 動画：http://www.youtube.com/watch?v=BJ	

D9eb-dLV4

ハッカーへの第一歩、OSSとの正しい付き合い方 May
2014

http://www.slideshare.net/hyoshiok/using-oss-and-hacker-culture-at-an-internet-company-osctokyo-20140301rev
http://www.youtube.com/watch?v=BJD9eb-dLV4

172 - Software Design

先端テクノロジを街で
活かすためのハッカソン

　2月15日、16日にHack For Japan主催による
「Hack For Town in Aizu」が開催されました。Hack
For Townとは、最先端テクノロジを用いて街中に
設置された最先端ハードウェアをハックするという
主旨のイベントで、将来的には最先端テクノロジを
用いて新しい街を創造することを目指しています。
　その第1回目の場所が福島県会津若松市となり、
Hack For Town in Aizuとして開催されました。会
津若松市には、会津若松駅からクルマで5分ほどの

ところに神明通りという商店街があります。今回は
この神明通りの各所にBeaconデバイスを設置注1

し、商店街という環境ならではのロケーションを活
かしたHackathonに、参加者たちがチャレンジしま
した（写真1、写真2）。
　またBeaconデバイス以外にも、スマートフォン
やタブレットで操縦可能な4翼ヘリコプターのガ
ジェットAR.Drone 2.0、パーソナル向けで小型・軽
量タイプの3Dプリンタ、バーチャルな空間をより
リアルに楽しめるヘッドマウントディスプレイの
Oculus Rift、名刺サイズの格安PCボードである
Raspberry Pi、人感センサ・照度センサ・音センサ・
温度センサ・湿度センサ・気圧センサを搭載した環
境センサといったハードウェアを用意しました（写
真3）。それらに加え、市内企業が保有している fab
スペース、APIとしては会津若松市に関するオープ
ンデータなどが案内され、さまざまなハードウェア
やデータを組み合わせた開発ができるような環境が
用意されていました。

Hack For Japan
エンジニアだからこそできる復興への一歩

街をハックする「Hack For Town in
Aizu」開催！第29回

“東日本大震災に対し、自分たちの開発スキルを役立てたい”というエンジニアの声をもとに発足された「Hack
For Japan」。今回は街をハックするという新しい試みのHack For Townというイベントについて紹介します。

●Hack For Japanスタッフ
　佐々木 陽　SASAKI Akira
　 Twitter @gclue_akira
　佐伯 幸治　SAEKI Koji
　 Twitter @widesilverz

注1	 https://mapsengine.google.com/map/edit?mid=z-JddsFmwUAw.k9yiocwcHkOk

◆◆写真2　�今回使用したDIYのBeacon。ポールに引っ掛
けるためのフックが付いている

◆◆写真1　神明通りとポールに設置されたBeacon

https://mapsengine.google.com/map/viewer?mid=z-JddsFmwUAw.k9yiocwcHkOk

May 2014 - 173

街をハックする「Hack For Town in Aizu」開催！第29回

　こういったHack For Town in Aizuの事前の情報
はwikiを使ってまとめられ注2、参加者はこちらで概
要をつかみ、どんなことができるかを前もって検討
しておくことができるようになっていました（図1）。

大雪の影響から開始を
遅らせてのスタート

　Hackathon当日。この日は雪害となる大雪で交通
機関に影響が出ており、Hackathonの運営にも大き
な支障をきたしました。そこで1日目の午前中に予
定していた開始時間を遅らせてスタート。午前中は
参加者の来場状況を見ながらHackathonを進めてい
くことを決定し、予定されていた参加者からのアイ
デアピッチを午後からとして、Hack For Japanス
タッフであり、今回のイベントの提案者でもある
佐々木陽からBLE（Bluetooth Low Energy）や
iBeacon注3についてのレクチャーがなされました。
　次に、Hack For Japanスタッフの及川卓也から
Hack For Townの説明注4があり、合わせてオープ
ンデータを用意していることも伝えられました。具
体的に案内されたオープンデータは、「会津若松市
内のバス停データ」、「会津のバス運行情報（時刻
表）」、「会津若松市内の消防水利位置情報」、「会津若
松市の公共施設マップデータ」、「毎月大字別人口」、
「月別1歳毎年齢別人口」、「開発プロバイダ向けク
ラウドサービス」といったものです。オープンデー
タについては「現状、必ずしも必要なデータがそ

ろっているわけではありません。もし『こんなデー
タが公開されていたらこんなことができるのに』と
いうアイデアがあれば、データが公開されていると
いう前提で開発をしてください。日本全国すべての
自治体がデータをオープンにすることに対して積極
的に取り組んでいるわけではありません。なかに
は、データが公開されていたらどんなことができる
かというイメージを持てないために、オープンデー

注2	 http://www.hack4town.org/wiki/index.php?Hack%20for%20Town
注3	 iBeaconは、Apple Inc.の登録商標です。コラム参照。
注4	 http://www.slideshare.net/skkj2014/hack-fortowninaizu

◆◆写真3　環境センサ（写真左上）、Raspberry Pi（写真右上）、AR.Drone 2.0（写真右下）といったデバイスも用意

◆◆図1　�Hack For TownのwikiにあるBeaconのペー
ジ。さまざまな情報を集約

http://www.hack4town.org/wiki/index.php?Hack%20for%20Town
http://www.slideshare.net/skkj2014/hack-fortowninaizu

174 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

タに取り組んでいないというケースも考えられま
す。Hackathonでは『住民の方に使ってもらえる便利
なサービスを作るためにこういったデータの公開が
必要』といったアプローチも大歓迎です。データが
ないからといってあきらめないでチャレンジしてく
ださい」とその重要性にも触れていました。

　最後にフリービット社の渡邉知男氏から環境セン
サについての説明注5がなされました。この環境セ
ンサは佐賀県唐津市と同社による「高齢者向け安心
見守り・健康相談システム」の実証実験に使用され
ているものでもあるそうです。
　午後から本格的にHackathonに入りました。参加
者各々が考えているアイデアを披露し、興味を持っ
たアイデアに参加するといった形でチーム分けを
行った後、開発が始まりました（この日のアイデア
ピッチについてはYouTube注6にてご覧いただけま
す）。2日目の午前中も前日から引き続いての
Hackathonを行い、夕方に成果発表となりました。

数々の街ハックの
アイデアが生まれる

　今回のHackathonでは以下のような成果が発表さ
れました注7。

●●サックマンのパックマン
街中に設置したBeaconをエサに見立てたAR版

パックマン。ゲームとしても、スタンプラリー

としても活用できることを目指したもの。

●●Anko-Kivy

KivyというPythonで記述するNUI（Natural User

Interface）でフレームワークを作成。BLE、Beacon

をマルチプラットフォームで使えるようにする。

●●BoarDrone
利用者の持っているAndroidでBeaconの信号を

受信すると、その場所にDroneが飛んできて案

内をするというもの。

●●iMenu
最寄りのBeaconを検知してユーザがいる店舗の

情報を取得し、メニューを表示するシステム。

●●障害者のための障害物検知アプリ
目の不自由な方に対して、たとえば滑りやすい

道や工事中で通れない道、段差のある道があっ

た際に音声で通知してくれるアプリ。

注5	 http://www.slideshare.net/tomowatanabe/hack4-town
注6	 http://www.youtube.com/playlist?list=PLjaU4dlb6AW5Arc9NyqBODNTCBs0upWkQ
注7	 成果発表や表彰式は動画で見られます。http://www.youtube.com/playlist?list=PLjaU4dlb6AW5Arc9NyqBODNTCBs0upWkQ

　iBeaconとは、AppleがiOS 7から搭載したBlue
tooth Low EnergyベースのMicro Locationのしくみ
です。iBeaconはCoreLocation APIを参照しますの
でロケーション用のしくみになっています。
　Bluetooth Low EnergyはBluetooth 4.0からLow
Energyという新しい規格が取り入れられたもので、そ
れまでのBluetoothにおいて懸念されていた電力消費
の大きかった点が見直され、たとえばスマートフォン
の電力消費改善にもつながっています。最近では
Bluetooth Low Energyに対応したハードウェアが出
てきており、今後のトレンドになるとも言われていま
すが、そのしくみの1つがiBeaconとなります。
　iBeaconにはUUIDを設定します。iOS上でiBeacon
のUUIDがマッチした場合、minor ID（2バイト $0000
〜$ffff=0-65535）、major ID（2バイト $0000〜
$ffff=0-65535）、rssi（受信信号 dBm）、proximity

（Beaconと の 距 離 ／Immediate、Near、Far、
Unknownで定義）がアプリで取得できます。
　イベントとしてはiBeaconを見失ったときに呼び出
されるdidExitRegion、iBeaconを発見したときに呼び
出 さ れ るdidEnterRegion、 常 時 ま わ り に あ る
iBeaconをスキャンするdidRangeBeaconsがあり、
アプリがバックグラウンドにあろうと、フォアグラン
ドにあろうとイベントを取れます。
　このしくみを使って何ができるかというと、たとえ
ば、お店に入った時点でポケットに入れておいた
iPhoneがiBeaconを発見して、何かしらのイベント
が発生するといった使い方ができます。サーバに接続
するロジックを入れておくとログも取れますので、オ
フィスにiBeaconを設置しておいて、iBeaconを認識
したら出勤・見失ったら退勤といったような出勤表を作
ることもできます。アメリカのアップルストアでは
iBeaconとアップルストアのアプリを使って、アップ
ルストアに入ると場所ごとにiPhoneの画面にさまざま
な情報が案内されるサービスも提供されています。

iBeaconについてColumn

http://www.slideshare.net/tomowatanabe/hack4-town
http://www.youtube.com/playlist?list=PLjaU4dlb6AW5Arc9NyqBODNTCBs0upWkQ
http://www.youtube.com/playlist?list=PLjaU4dlb6AW5Arc9NyqBODNTCBs0upWkQ

May 2014 - 175

街をハックする「Hack For Town in Aizu」開催！第29回

の方々からのご協力の下、運営がなされました。市
役所の方々が運営のサポートに入ったこともお伝え
しておきます。開催場所も市役所の会議室や会津若
松市生涯学習総合センターを提供いただきました
（写真4）。
　会津若松市では、たとえば年齢別人口や町・大字
別人口といった統計データ、消火栓位置情報や公共
施設マップの公開などを実施することで、オープン
データの普及・啓発活動を積極的に行っており（注
8）、今回ようなITイベントについても理解・協力が
得やすい環境が整っていると実感しました。
　「日本には実際のフィールドでセンシング、IT機
器、クラウド連携を試せる場所がない。アメリカの
サウスバイサウスウエストのようなイベントが日本
であってもいいんじゃないか。『会津若松に来れば2
日間だけは街中を自由にハックできます』といった
ITの実証実験ができるような、そういったしくみ
をつくるためにHack For Townを開催することに
しました。地方も東京も同じですが、商店街に人が
来ませんとか、お年寄りが増えていますとか、そう
いった根本の問題を解決するきっかけにもHack
For Townはなるんじゃないか」
　スタッフ佐々木のそんな想いからはじまった
Hack For Town。実行委員会も立ち上げる予定です
ので、またイベントが開催されることと思います。
次回のHack For Townで皆様にお会いできるのを
楽しみにしています。s

●●消えたプリンセスを探せ！
神明通りの各所に設置されたBeaconから情報を

得て、神明通りに逃げ込んだキャラクターを探

すアドベンチャーゲーム。

●●一緒に歩こう

Beaconの設置してある場所に行くと女性の音声

が流れる。設定された速度で歩かないと声が遠

ざかる。二次元キャラとリアルに歩く感覚を追

求したアプリ。

●●会津クライシス

Googleストリートビューの神明通りを取り込ん

だDroneを使ったシューティングゲーム。向

かってくるゾンビを打ち倒す。

●●トロッコ列車
神明通りをトロッコが走る3DゲームをUnityを

使って目指した。

●●動物レストラン
親子連れをターゲットに商店街に行くきっかけ

を作るためのアプリ。商店街に設置したBeacon

を果物のエサと見立てて、その果物を動物に見

立てた iPhoneが食べるというもの。

●●ぴかり

Beaconのハード制御によって通信でLEDを光ら

せる。特定の iPhoneが近づいたときにBeacon

が光るほかに、音声を流してしゃべっているよ

うに見せることもできる。

　発表では室井照平 会津若松市長、会津大学 次期
理事長兼学長 岡嶐一氏といった方に審査委員とし
て参加いただき、各発表に対して評価がなされ、市
長賞「BoarDrone」、Hack For Japan賞「障害者のた
めの障害物検知アプリ」、会津ゲームLAB賞「消え
たプリンセスを探せ！」という結果となりました。

ITの実証実験ができる
場づくりを

　今回、街をハックするというはじめての試みで開
催されたHack For Town in Aizuでしたが、数多く

◆◆写真4　会津若松市役所に貼られた案内

注8	 会津若松市 オープンデータの取り組み。http://www.city.aizuwakamatsu.fukushima.jp/docs/2009122400048/

http://www.city.aizuwakamatsu.fukushima.jp/docs/2009122400048/

176 - Software Design

はじめに

　今回はハードディスクと接続
インターフェースのお話です。

IBM PC

　1981年 IBM PCが発売され
ました。IBM PCはインター
フェースをオープンにしたた
め、さまざまな周辺機器がサー
ドパーティから発売されまし
た。その中のコンパック社が開
発したのが、拡張スロットに接
続インターフェースとシーゲー
ト社製ハードディスクを一体化
した 5MBハードディスク装
置 注1（以後HDD）でした。
　汎用機やワークステーション
で使われていた13インチや8イ
ンチのHDDは非常に高価であ
りながら、運搬中や使用中に簡
単に“壊れる”ことでも有名でし
た。
　コンパック社のHDDは、イ
ンターフェースボード上にドラ
イブを搭載しIBM PCに内蔵で

注1） それまでの外部記憶装置は8インチ
や5インチサイズの柔らかいフロッ
ピーディスクが多く、それに対して
固い円盤を使うため「ハード」ディス
クと呼ばれています。

きる構造にして、取り扱いを簡
単にした製品でした。
　フロッピーディスクと比べて
外部記憶へのアクセススピード
を画期的に高速化した、このコ
ンパック社の5インチHDDは
大ヒット製品となりました。そ
の後、本家IBM PC/XTでもイ
ンターフェースバスを高速化
し、10MB HDDを搭載してい
ました。

Macintosh

　1986年SCSIインターフェー
スが搭載されたMacintosh Plus
から漢字対応OS注2も発売され、
日本でMacintoshの普及が始ま
ります。
　Macintosh Plus購入時、友人
に「買え！」と言われて手に入れ
たApple社製HD-20SCが、筆
者が初めて購入したHDDです。
容量20MBで定価28万円と高価
な買い物で、当時の月給の2倍
もしました。
　このHDDに出会う10年前、
初めて買ったApple製ディスク
装置に使うフロッピーディスク
は、1Dタイプ140KB用で1枚

注2） 漢字Talkという名前でした。

2,400円。2Dタイプとして使う
ためにノッチを切り込んで使っ
ていました注3。カセットテープ
ユーザだった筆者には、カッチャ
ンカッチャンと動くのが気持ち
良い製品でした。しかしHDDに
出会ってしまうとカッチャン
カッチャンは、“なんと遅いん
だ”に変わってしまいました。
　GUIを持つMac OSはサイズ
が大きくフロッピーからの起動
は遅く、Macintoshユーザに
とってSCSI HDDは必需品と
なります。MacintoshではSCSI
HDDを複数台接続すると起動
しない経験を持つ方々は“非常
に多く”おられると思います。
Macintosh内蔵SCSIコントロー
ラNCR53C90は最大10MB/sec
（以後MB/s）と高速でしたが、
非常に不安定でもありました。
　不安定な原因はケーブルのイ
ンピーダンスにあり、当時の技
術では小型コネクタでSCSI規
格に合致するインピーダンス
100Ωのケーブルが作れません

注3） フロッピーディスクは、片面（1）と両
面（2）があり、容量（単密度（S）／倍密
度（D）／倍密度倍トラック（DD）、高
密度倍トラック（HD））と合わせて呼
ばれていた。1Dは片面単密度のこと。
Apple用フロッピーディスクではラ
イトプロテクト部分（ノッチ）に切り
込みを入れ、両面使うのが常識で、そ
のための器具も売られていました。

温故知新
ITむかしばなし

杉田 正　SUGITA Tadashi Twitter:@sugipooh

ハードディスクと
接続インターフェース

第33回

176 - Software Design May 2014 - 177

でした。また、ターミネータも
安定に整合できない製品が多く
販売されていました。外部HDD
やMO、スキャナやカラープリ
ンタなど接続台数が増えるとさ
らに不安定になり、安定に動か
す“ノウハウ”がMacintoshユー
ザには大事なことでした。
　ケーブルはハイインピーダン
ス化され、ターミネータはSCSI
規格が20MB/s、40MB/sと上が
るにつれて安定化電源内蔵や、
端子ごとにインピーダンスを合
わせる ICを搭載するアクティ
ブ型に発展し、SCSI利用は安
定化していきます。

Cバスと
SCSI

　NEC PC-9801には、オリジ
ナルな拡張インターフェース“C
バス”を持っていました。SASI
インターフェースボード（NEC
型番から27ボードと呼ばれた）
や、SCSI HDDを接続する“55
ボード”がありました。
　当時のSCSI最大転送速度規
格は10MB/sでありながら純正
55ボードの実効転送速度は
0.5MB/sと低速だったため、互
換ボード高性能化競争が始ま
り、FIFO（First In, First Out）
と呼ばれるキャッシュ機構を搭
載しSCSIインターフェース
ボードとセットされた安価で高
性能なHDDがアイシーエム社、
アイテック社、緑電子社などか
ら発売されました。
　HDDは3.5インチタイプが一
般的になり、SCSIインター
フェースを内蔵して 20MB、
40MB、80MBと容量が上がっ

ていきます。
　1991年ごろ 200MBハード
ディスクを30万円で、筆者は
たいへん安く買ったと喜んだこ
とがあります。

ADAPTEC

　インテル社 486DX 33MHz
DOS/V互換機は、グラフィッ
ク性能も高く、海外互換機でも
漢字が扱えたためPC-9801に
変わって普及していきます。
DOS/V互換機でSCSI HDD
やMOを使う場合に標準的に使
われたSCSIインターフェース
がアダプテック社AHA-2940
です。DOS/V互換機拡張イン
ターフェースISAバスに対応し
たAHA-2940はヒット製品で、
このボードが動作しない互換機
やマザーボードは不良品扱いさ
れる時代でした。
　1994年ごろには4GBコナー
社製HDDが約10万円で購入で
きるようになりました。
　サーバでは、通電時に交換で
きるホットプラグなコネクタを
持ち、80MB/s、160MB/sに高速
化され、電源も供給するSCA-2
コネクタを持つSCSI HDDが使
われるようになります。
　Windows 95の普及により、
Macintoshと同様にDOS/V機
ユーザも使う外部ストレージ容
量が大きくなり、ADAPTEC社
製SCSIボードは、DOS/V機
でのSCSIインターフェースの主
役になります。SCSI規格高速化
により20MB/s、40MB/s、80MB/s、
160MB/sまで製品化されていき
ます。

IDE

　IBM PC互換機やPC-9801に
おいては内蔵HDD専用インター
フェースが進化していきます。
SCSIよりもインターフェースを
簡便化し、接続ドライブ数を2台
までとして低コスト化したIDEイ
ンターフェースをコンパックとウ
エスタンデジタルが開発します。
　接続コネクタは逆挿しもできる
し、1列ずれて差し込むことがで
きてしまうため、パソコンを組み
立てて“動かない！”というドキド
キを何度も経験しました。それで
も壊れない丈夫なインターフェー
スでした。後にATAインター
フェースとして規格化されます。

ATA

　IDEが標準規格化されたのが
ATAインターフェースです。
33MB/sが限界と言われていま
したがケーブルの80本化など
で133MB/sまで高速化されま
した。SCSIのような起動時の
接続機器確認がないので起動時
間が短く、ドライブコストも安
価であったため、サーバなどエ
ンタープライズ系を除いてパソ
コンに内蔵されるHDDイン
ターフェースはATAが主流に
なります。
　DOS/V互換機では当初120
GBを超えるHDDを想定せず、
160GB HDDが使えない時期も
ありましたが、2000年ごろには
ATA 300GB HDDが10万円以
下で購入できるようになりまし
た。｢

温故知新 ITむかしばなし
ハードディスクと接続インターフェース

第33回

178 - Software Design

SD News & Products

Mirama Prototype II登場！
　Mirama（a.k.a Viking）については以前、Software
Designの2013年12月号に詳細を掲載しました。い
わゆるスマートグラスのひとつで、㈱ブリリアントサー
ビスによって開発が進められているデバイスでありソ
フトウェアでもあります。2014年3月13日に最新の

「Mirama Prototype II」の販売が開始されたのですが、
翌日から東京で開催されたAsiaBSDCon 2014で、開
発者のJohannes Lundberg（ヨハネス・ルンベリ）氏
と議論する機会を得ましたのでその様子をお伝えしま
す。もちろん実際に試作機を使わせてもらったわけで
すが、なかなかの近未来感でした :-)

よりスタイリッシュに
　MiramaはFreeBSDベースのオペレーティングシス
テムで開発が進められているスマートグラスです。アプ
リの開発にはLLVM ClangおよびObjective-Cが使わ
れます。眼鏡型デバイスのグラス部分が透過タイプの

液晶になっており、人間の
視界に情報がオーバーラッ
プされて見えるというしく
みになっています。
　Prototype IIでは顔認識
機能、顔認識からメールの
作成と送信、画像ファイル
の閲覧、ジェスチャーによ
るアプリの操作などを体験
してきました。スペック上
ではDSPプロセッサが眼鏡
デバイス側に搭載されるよ
うになったあたりが大きな
変更点です。Prototype Iの

ときと同じですが操作に難しいことはなく、早く製品
化されないか期待して止まないデバイスです。

Prototype IIIは眼鏡デバイス、分離構造へ
　Johannes Lundberg氏から今後のロードマップに
ついても教えてもらいました。次期Prototype IIIは
2015年第2四半期あたりを目指していること。この
プロトタイプでは眼鏡デバイスと処理装置を分離して、
フィールド検証などもできるようにするということで
す。Prototype IIIはおもに産業界向けということにな
るようです。
　演算処理装置はARMボードのような小型のPCを採
用し、ペンダントのようにしてポケットに入れて持ち
運ぶといったスタイルを考えているということでした。
眼鏡デバイス部分もダウンサイジングを進めて、現在
よりも実機に近いものにしていくということです。今
からMirama Prototype IIIの登場が楽しみですね。

Mirama Prototype IIで未来を見る !
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　取材・文　後藤 大地

Report

㈱ブリリアントサービス
URL http://www.brilliantservice.co.jp/

CONTACT

▲図2　Mirama Prototype II
をセットアップするJohannes
Lundberg氏

▲図1　Mirama（http://mira.ma）

▲図3　眼鏡デバイス部分

▲図4　演算処理装置と眼鏡デバイス

http://mira.ma
http://www.brilliantservice.co.jp/

May 2014 - 179

SD News & Products

　㈱ハイパーボックスは3月10日、サーバ監視サー
ビス「NetKids iMark SaaS」を、専用サーバサービス

「blue Box」とクラウドサービス「HyperCloud」の新
しいオプションとして提供を開始した。
　同サービスは、㈱アイ・エス・ティが提供するサー
バ監視ツール「NetKids iMark」をパッケージソフト
ではなくSaaS（Software as a Service）で提供す
るというもの。「NetKids iMark」はサーバやネット
ワーク機器などの稼動状況をさまざまなプロトコルで
リモート監視するとともに、対象機器の異常発生時に
はメールなどでリアルタイムに通知が行える。これま
ではCD-ROMでの提供だったため、納品やインストー
ル、アップグレードに時間や費用がかかるという課題
があった。そこでSaaSで提供することにより、納品
後すぐの監視運用開始と、低料金での提供を実現した。
同サービスの特徴は次のとおり。

¡¡監視対象のサーバの設定が不要なエージェントレス
でも50種類以上の監視項目をサポート。エージェン
トを利用した場合は、100種類以上の項目を監視す

ることが可能。また、各種OS（Windows、Linux、
Solaris）に対応したエージェントは無料提供である
ため、必要に応じていくつでも利用可能
¡¡監視設定はWindows Server上のGUIで行える。使
い慣れたWindowsアプリケーションと同様の感覚で
操作、設定ができる
¡¡エラー発生時には、電子メール、メッセージ表示な
どさまざまな方法で通知できる。1つのアラートに対
し複数の通知を行ったり、閾値を超えた場合や、正
常に戻った場合に、通知を行うなどの設定もできる

ハイパーボックス、
サーバ／ネットワーク機器監視のSaaSサービスを提供開始Service

㈱ハイパーボックス
URL http://www.hyperbox.co.jp/

CONTACT

　㈱ユビキタスエンターテインメントは3月14日、同
社発のタブレットデバイス「enchantMOON」の新バー
ジョン「enchantMOON S-II（エンチャントムーン エ
ス・ツー）」（以下、S-II）の内覧会を行い、その開発経
緯や旧バージョンからの変更点などを披露した。
　S-IIでの主な強化点は、「ペンの書き心地向上（レイ
テンシ最大81ms）」（同社計測では旧バージョンが
112ms、Galaxy Note3は118ms）「カメラの高画
質化（暗所に強くなった）」「Webブラウザの高速化」

「YouTubeでの動画再生対応」「ページ遷移の高速化」
「ハイパーリンクの高速化」「新しいページめくり機能」
「領域形状の自動補正」といったところ。おもに旧バー
ジョンで不満とされてきた点を改善している。
　評価用機材を試用してみたところ、起動時間が旧＝
約53秒、新＝約32秒。同じデータの10ページを手動
でめくるのにかかった時間が旧＝約46秒、新＝約8秒。
サムネイル画面への切り替え速度が旧＝約11秒、新＝
約3秒など、かなりの速度向上がみられた（いずれも本
体内に同じデータがある状態で実測。計測の数値はデー
タによって大きく変動するため参考値）。

　これらの速度向上は、ソフトウェアの改善のみで行
われている。OSであるMOONPhaseを0から書き直
す徹底的なリファクタリングにより実現。S-IIのハード
ウェアは旧バージョンとまったく同じものが採用され
た。そのため旧バージョンユーザに対しても、同社は
OSの無償アップデートを提供し、この速度向上の恩恵
を受けられるとしている。
　発売は4月を予定。価格は16GB版が49,800円、
32GB版が59,800円（いずれも税込み）。
　さらに今後のプロジェクトとして、enchantMOON
で作成したハイパーテキストをPCやMac、iOSや
Androidでも動作可能にする「Project Gemini」や、
enchantMOON専用クラウドサービスの「Project
Skylab」を紹介。本体についても2014年第4四半期
には「S-IVB」へのバージョンアップを、2015年には
コードネーム「MkII」という新製品を計画していること
が同社CEO 清水亮氏の口から告げられた。

ユビキタスエンターテインメント、
新製品「enchantMOON S-II」と関連プロジェクトを発表Hardware

㈱ユビキタスエンターテインメント
URL http://www.uei.co.jp/

CONTACT

▼ライセンス料金（税込）
サービス 初期費用 月額 年額

50 項目版 0 円 19,440 円 194,400 円
100 項目版 0 円 21,600 円 216,000 円
250 項目版 0 円 23,760 円 237,600 円
500 項目版 0 円 31,320 円 313,200 円
1000 項目版 0 円 35,640 円 356,400 円

※項目とは、1つの監視チェックを表す。

http://www.uei.co.jp/
http://www.hyperbox.co.jp/

180 - Software Design

SD News & Products

　㈱ソーソーは、2月5日より「LinuxMania」初のタ
ブレット製品となる「サクス・タブレット7（L-Sax
Tablet 7inch）」を発売している。
　「LinuxMania」とは、同社が展開するLinuxマシン専
門ブランド。これまではデスクトップPCを中心に製品
を販売してきたが、このたび初めてタブレット製品を
発表した。OSにはAndroid 4.04を搭載している。
　ハードウェアのおもなスペックは、CPUがIntel
Atom Z2460 1.6GHz 1コア、メモリは1GB。記憶容
量は16GB。Bluetoothおよび、IEEE 802.11b/g/n
準拠の無線LANを使用できるほか、端末本体には0.3M

ピ ク セ ル の フ
ロ ン ト カ メ ラ
と2Mピクセル
背面カメラが備
わっている。価
格 は19,440円

（税込）で、同社
Webサ イ ト か
ら注文できる。

㈱ソーソー
URL http://www.linuxmania.jp/

CONTACT

ソーソー、
LinuxMania初のタブレット「サクス・タブレット7」を発売Hardware

　3月13日、ONF（Open Network Foundation）の
設立3周年を祝う懇親会がザ・ランドマークスクエア・
トーキョー（東京都港区）にて開催された。国内のSDN

（Software Defined Networking）普及を推進する業
界関係者が集い、情報交換と交流を行った。
　当日は、ONFのエクゼクティブ・ディレクターの
Dan Pitt氏も参加し、海外におけるSDNの普及／振
興状況について話し合われた。6月に開催されるネッ
トワーク技術の総合展示会「Interop Tokyo 2014」で
SDNをどのように紹介していくかなど話題は尽きな
かった。

　Dan Pitt氏へのサ
プライズで3周年を
記念したケーキが振
る舞われ、懇親会は
盛り上がりを見せた。

Open Network Foundation
URL https://www.opennetworking.org/ja/

CONTACT

Open Network Foundation、
3周年パーティを開催Report

　ぷらっとホーム㈱は3月6日、M2M（Machine to
Machine）やIoT（Internet of Things）通信に対応
し、ルータ機能を内蔵したマイクロサーバの新モデル

「OpenBlocks A7/IoTR」を発表した。
　同製品は、汎用Linuxサーバ「OpenBlocks A7」が
ベースとなっており、拡張性に優れたインターフェー
スを持つ。TCP/IPはもちろん、IEEE1888、REST、
SOAPなどの高度な広域インターネットプロトコルに
対応し、データの加工や処理／判断のための柔軟で高
度なプログラミングが可能。また、Oracle Java SE
Embeddedが搭載されており、既存のソフトウェア資

源を高い移植性を活かして動作させることができる。
　加えて、ルータ機能の強化により、多拠点／多地点
へのIoT展開が安定かつ容易に実現可能となった。今後
のIoTサーバに必要なローカルエッジにおける情報処理
の実現とともに、従来はルータ＋サーバの2機種構成
であったシステムを1機種で実現する。
　価格は数量や構成などにより異なるため、オープン
価格となっている。

ぷらっとホーム㈱
URL http://www.plathome.co.jp/

CONTACT

ぷらっとホーム、
「OpenBlocks」シリーズの IoTルータエディション
「OpenBlocks A7/IoTR」を発表

Hardware

▶︎
ONFエクゼクティブ・ディレクター

Dan Pitt氏（写真中央）

▲サクス・タブレット7（L-Sax Tablet 7inch）

https://www.opennetworking.org/ja/
http://www.plathome.co.jp/
http://www.linuxmania.jp/

181 - Software Design May 2014 - 181

　エラーメッセージはあなたを救いますよ。それが英語でも大事だから絶対読みましょう。某勉強会で「insult（侮辱）」用オプションをつ
けてビルドし、設定ファイルを編集することで「sudoに罵られる」というネタがありまして、やってみたらこれが結構面白いのでオススメ
です。sudo実行時のパスワードを間違えることで「Where did you learn to type？（どこでタイピング習ったんだよ？）」とか「Are you on
drugs？（キメてんの？）」などと罵られるとちょっと快感になるかもしれませんよ。

四
十
肩
で
ペ
ン
タ
ブ
以
外
持
て
な
い
体
に
進
化
し
た
く
つ
な
先
生
の
マ
ン
ガ
が
読
め
る
の
は
本
誌
だ
け
!

作）くつなりょうすけ
@ryosuke927

①⑤

⑥

⑦

②

③

④

モヒカン先輩第 5 回

コマンドの
スペルを
間違え
てるで。

sudo実行
ユーザに
なって
ないじゃ
ないか。

逆ギレかよ。
ターミナルの
バッファを
さかのぼっ
て間違い
オプションを
確認しろよ。

パーティションの
残り容量が
ないんじゃ
ないか？

書き込み
権限が
ないだけ
だろ。

その端末は
ネットワークに
つながって
るのか？

コマンドが
実行できて
ないぞ！

sudoで
コマンド実行
できないよう！

オプションを間違えた
みたいだけど、
表示されるヘルプが
長すぎだよ！

先輩なんで
すぐ原因が
わかるんですか。
もしかして
エスパー…

ファイルの
コピーに失敗
しちゃうぞ！

ファイルに
書き出せ
ないよう！

接続先から
返事が
ないよう！

ち
ゃ
ん
と

エ
ラ
ー
メ
ッ
セ
ー
ジ

読
み
や
が
れ

　
　っ

お
わ

っ
！

182 - Software Design

第1特集　RDBとNoSQL
どちらを選びますか？

　新しいデータベースとしてNoSQLが注
目されています。しかし、流行しているか
らという理由だけでNoSQLを導入してい
いのでしょうか？　本特集では従来からあ
るRDBと新進気鋭のNoSQL、両者の特
徴を整理し、「どんな場面で導入するべき
か」について解説しました。

リレーショナルデータベースの設計ネタ
を今後もお願いします。

東京都／池野さん

後輩に教えるための良い教科書になりま
した。

神奈川県／ふかさん

それぞれのデータベースの特徴がわかり
やすく取り上げられており、たいへん参
考になりました。ところで、22ページの
「リレーショナルモデルの限界」に取り上
げられていたグラフ、ツリー、履歴に適
したデータベースモデル（アプリケーショ
ン）にはどのようなものがあるのか、機
会があれば、取り上げてくださるとうれ
しいです。また、それらとRDBと連携
して使用する方法についても知りたいで
す。

大阪府／出玉のタマさん

正規化はもう少し実践的なサンプルのほ
うがいいかもしれません。どうしても情
報処理試験を意識して読み飛ばす傾向
にあると思うので。

兵庫県／yoneさん

普段はRDBを使っているので、NoSQL

のことを知ることができてよかった。
静岡県／ももんがさん

NoSQLが台頭してきたからといっ
て、RDBがまったく不要になるとい

うことはありえません。それぞれに得意
不得意があり、適材適所で使い分ける必
要がある。なんとなくはわかっていた結
論かもしれませんが、技術的な裏付けと
ともに説明されると、あらためて納得で
きますね。

第2特集
プロキシサーバの教科書

　Webシステムではすでにあたり前のも
のとなっているプロキシサーバ。その基
本的な役割をおさらいするとともに、ク
ラウドサービスで提供されるプロキシ
サーバなど最近の話題についても取り上
げました。

ちょうどリバースプロキシ導入予定だっ
たので、興味のある内容だった。

東京都／まさかり持った桃太郎さん

リバースプロキシはWebシステム構築
時に頻繁に使っており、今の開発でも
使っているので、現場の若い子にも読ま
せたい記事でした。

北海道／後藤さん

プロキシは古い書籍にしか情報がないた
め、この特集があって良かったです。

大阪府／Yutakaさん

ひとくちにプロキシサーバといっても、
時代の変化とともにいろいろな役割が出
てきました。そのあたりが詳しくまとめ
られていて参考になる内容でした。

埼玉県／犬棟梁さん

設計、構築部分をもっと詳細に取り上げ
てほしかった。

東京都／blackbirdさん

第1特集のデータベースと同じく、
第2特集のプロキシサーバも昔か

らあるものですが、こちらもみなさんの
関心が高かったようです。Webシステムに
は必須のものだから、現場で触れる機会
も多いのでしょう。

短期集中連載　さらに踏み込む、
Mac OS Xと仮想デスクトップ

　Macの仮想デスクトップについての新
連載です。複数のOS環境を今まで以上

一時期、インターネット上でExcel方眼紙の是非について、議論が交わされてい
ましたね。幸い弊社の社内文書には、Excel方眼紙はありません。「さすがコン
ピュータ技術書の出版社。Excelの正しい使い方をわかっていらっしゃる！」そう思
うのは早いですよ。なぜなら事務的な申請用紙はいまだに紙なのです！　承認は
もちろんハンコです！

技術評論社はExcel方眼紙なんぞ使いません！

2014年3月号について、たくさんのお便りありがとうございました！

May 2014 - 183

に快適に利用するためのノウハウを紹介
しました。

Macにそんなに興味がなかったが、お
もしろかった。

岐阜県／トッチさん

Macだけは専用ハードウェアを購入しな
いと使えないので、次回購入対象として
考えている。仮想環境にしてさまざまな
OSを試そうと自分でも考えていた。今
後の連載にも期待します。

岩手県／バイク王さん

次にOSをバージョンアップするときは
Mac＋VMware＋Windowsと決めて
おります。

千葉県／Tayuさん

レッドハットといえば、今月号から
は、Red Hat Enterprise Linuxの

技術解説を行う連載記事「.SPECS」も始ま
りました。こちらもご注目ください。

表紙

派手過ぎず落ち着いた風合いがたいへ
ん良いです。

愛知県／CoSMoSさん

ジャポニカ学習帳の路線かな？
大阪府／オブジェクト脳192さん

今月号から表紙のデザインが新し
くなりました。2012年度の表紙は

花、2013年度は鳥でしたが、2014年度
は犬です。ジャポニカ学習帳の路線じゃ
ありませんよ！

Macを導入しようと考えている読
者の方々がみんな、仮想デスクトッ

プで複数OSを使いたいと考えているの
が、印象的でした。「複数OS使うなら

Mac」となるのは、「OS XはWindowsで
動かせないから」という理由もあるので
しょうが、基本的な機能も使いやすいか
らですかねえ。

連載

「レッドハッド恵比寿通信」がいつもユ
ニークな文章でおもしろいです。毎回、
筆者が変わるにもかかわらず、ほとんど
の号で専門知識が少なくても読めるよう
な配慮と小気味よい言い回しが好きで
す。これからも毎月読むのでがんばって
ください。

北海道／ひみなとさん

3月号のプレゼント当選者は、次の皆さまです
①REALFORCE108UG-HiPro ..東京都　梅原潤様
② JetFlash 380 ...神奈川県　八巻淳様

★その他のプレゼントの当選
者の発表は、発送をもって
代えさせていただきます。
ご了承ください。

　今回紹介するのは蔵書目録を作るのに便利なバーコードリーダ。
使い方ですが、まず本製品をPCとUSBでつなぎます。次に、PC上
でテキストエディタを開きます。その状態で書籍背面にあるISBNの
バーコードを本製品で読み取ります。すると、図1のように読み
取った ISBNコードがエディタに入力されます。世の中には、
Amazon社が公開する書誌情報にアクセスし、ISBNから書名、著
者名、出版社名などの情報を取得してくれるサービス／ツールがい
くつかあります。それらと併用すれば、バーコードで読み取るだけ
で蔵書の一覧が作れます。たとえば、図2は本製品の販売元
Yomuparaが提供する「書誌コレクター」サービス。バーコードで読
み取ると、 逐
次、書名などの
情報を補って一
覧表示してくれ
ます。一覧は
CSVにも変換で
きて、便利です。

エンジニアの能率を高める一品
仕事の能率を高める道具は、ソフトウェアやスマートフォンのようなデジタルなものだけではありません。
このコーナーではエンジニアの能率アップ心をくすぐるアナログな文具、雑貨、小物を紹介していきます。

バーコードリーダ［USB］
9,180円（税込）／快読ショップYomupara　http://www.yomupara.com/

▲図1 ISBNがテキスト
データ（ 改 行 付
き）で入力される ▲図2　http://www.yomupara.com/isbn_corrector.php

http://www.yomupara.com/
http://www.yomupara.com/isbn_corrector.php

Software Design
2014年5月号

発行日
2014年5月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2014年6月号
定価（本体1,220円＋税）

176ページ

June 2014
5月17日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2014 技術評論社

●『王様達のヴァイキング』というハッカー漫画をご

存じだろうか。これは、はじめて「ハッカー」を漫画

でかなりリアルに表現できた記念すべき物語なのだ。

奥付を見ると、協力者の皆さんはどこかで見かけた

方ばかり。本誌も出させてくれないだろうか。なーん

てことを思ったりして。そのくらい大好き。（本）

●健康のため、週に数回、終業後に市ヶ谷からお

茶の水まで歩いている。途中、靖国神社の前を通

るが、ちょっと前は警官が大勢いた。不審火事件が

あったらしい。今は春の宴で出店が出てお花見真っ

最中。その中にも例年より多くの警察官を見かける。

それを見て怖いと思うか頼もしいと思うか。とにかく

お疲れ様です。（幕）

●編集後記を通勤電車の中で書こうとNexus 7を取

り出したそのとき！　乗車してきたビジネスマンが取り

出したのは「HP200LX」!!　「この人、できる」「ふん、

しょせん貴様はマシンの性能に頼りすぎなのだよ」

……ガーン（いや、目すら合ってないですけどね）。

そんな妄想日和のうららかな春の朝でした。（キ）

●「増税前に、駆け込みで物を買うなんてみっともな

い」そう思っていたら、3月末に自宅のトイレットペー

パーがきれました。しかも、タイミング悪く、腹痛に

も見舞われました。このままでは、家で手洗いもまま

なりません。消費税とは関係なく、べつの意味で駆

け込み買いせざるをえませんでした。（よし）

●新たにクレジットカードをつくってみたが、マイ

ページへのログインパスワードの設定で超難儀。英

数全半角および記号を使うよう指示されつつエラー

を繰り返し設定すること十数回……やっと設定できた

パスワードは24ケタ。まったく覚えられません……ま

だ一度も使ってないけど早く解約しよ。（なか爺）

●いままで我が家にはパソコンがなかったのですが、

増税を機にとうとう購入することにしました。私自身

まったくこだわりがないので、メーカーすら旦那さん

にすべてお任せ。晴れてご購入となったが、回線工

事に時間がかかり、まだ回線がつながっていないの

でただのオブジェ。この号が出るころにはネットも見

れるようになってるはず……。（ま）

S D S t a f f R o o m

［第1特集］ 新人Linux使い養成講座

設定ファイルの読み方・書き方で
わかるLinuxのしくみ
上達のヒントは設定ファイルを大事に扱うこと
　UNIXを使い始めて、戸惑うのは設定ファイルの多さ、そしてその保存場所で
す。本特集では、Linuxをベースに、ディレクトリとファイル編集の方法を最初に
学びます。さらにユーザ管理、システム設定、ネットワーク設定、各種アプリケー
ション設定などの要点を押さえていきます。スジ良くLinuxのシステムを深く理解
するための基礎体力をつける基礎講座です。システム管理者予備軍だけでなく、
クラウドでDevOpsな皆さんにもぜひ！

［第2特集］ 今日から始めるUbuntuライフ

Ubuntu 14.04 LTS徹底解説
　エントリーユーザからベテランまでUbuntu漬け！！

［特別企画］ 「Google Glass」GDK先取り解説
※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
　「Androidエンジニアからの招待状」（第48回）は都合によりお休みいたします。

184 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2014年5月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 ポートとソケットがわかればTCP/IPネットワーク技術がわかる......あきみち+aico
	・Part1：UNIXネットワークのしくみ
	・Part2：インターネットを上から眺めてみる
	・Part3：おさえておきたいDNSのしくみ
	・Part4：自分でネットワークを確認してみよう！

	■第2特集 UNIX必須コマンドトレーニング......くつなりょうすけ
	・第1章：コマンドとの付き合い方
	・第2章：面倒なことをコマンドでまとめてやろう
	・第3章：サーバ管理者になったら頼りになるコマンド
	・第4章：共同作業で役立つコマンド

	■一般記事
	・Rettyのサービス拡大を支えた“たたき上げ”DevOps【新連載】……梅田 昌太
	・さらに踏み込む、Mac OS Xと仮想デスクトップ【最終回】......後藤 大地
	・Web標準技術で行うWebアプリのパフォーマンス改善【新連載】......川田 寛
	・Mirama Prototype IIで未来を見る！......後藤 大地

	■連載：Column
	・digital gadget【185】妄想のガジェット、理想のガジェット......安藤 幸央
	・結城浩の再発見の発想法【12】Hook......結城 浩
	・enchant 〜創造力を刺激する魔法〜【13】チェイン・リアクション......清水 亮
	・コレクターが独断で選ぶ！ 偏愛キーボード図鑑【13】BLACK PAWN & Majestouch MINILA......濱野 聖人
	・秋葉原発！はんだづけカフェなう【43】ステッパーをはじめよう（後編）......坪井 義浩
	・SDでSF【5】『断絶への航海』......小飼 弾
	・Hack For Japan〜エンジニアだからこそできる復興への一歩【29】街をハックする「Hack For Town in Aizu」開催！......佐々木 陽、佐伯 幸治
	・温故知新 ITむかしばなし【33】ハードディスクと接続インターフェース......杉田 正
	・ひみつのLinux通信【5】モヒカン先輩......くつなりょうすけ

	■連載：Development
	・るびきち流Emacs超入門【新連載】なぜEmacsをお勧めするのか？......るびきち
	・シェルスクリプトではじめるAWS入門【2】AWS APIの利用方法と環境の構築......波田野 裕一
	・分散データベース「未来工房」【最終回】Riakはなぜデータをなくさないのか（3）......上西 康太
	・サーバマシンの測り方【最終回】続・HTTPベンチマークからネットワーク......藤城 拓哉
	・セキュリティ実践の基本定石〜みんなでもう一度見つめなおそう〜【11】スノーデン事件が意味するもの......すずきひろのぶ
	・ハイパーバイザの作り方【19】bhyveにおける仮想NICの実装......浅田 拓也
	・RHELを極める・使いこなすヒント .SPECS【新連載】技術と技術の間にあるもの......藤田 稜

	■連載：OS/Network
	・Be familiar with FreeBSD~チャーリー・ルートからの手紙【7】BINDの廃止とUnbound/LDNSの導入......後藤 大地
	・Debian Hot Topics【14】「ピン留め」でパッケージのバージョンを細かく管理する......やまねひでき
	・レッドハットシンガポール通信【20】グローバル企業のキャリアパス......鶴野 龍一郎
	・Ubuntu Monthly Report【49】最新のAPUに最新のUbuntuを......あわしろいくや
	・Linuxカーネル観光ガイド【26】Linux 3.14のコードネームとlockdep機能......青田 直大
	・Monthly News from jus【31】ハッカーへの第一歩、OSSとの正しい付き合い方......法林 浩之

	■アラカルト
	・ITエンジニア必須の最新用語解説【65】Infrastructure as Code......杉山 貴章
	・Hosting Department【97】
	・読者プレゼントのお知らせ
	・SD BOOK FORUM
	・SD NEWS & PRODUCTS
	・Letters From Readers
	・年間定期購読のご案内
	・バックナンバーのお知らせ
	・Software Design plusのお知らせ
	・次号のお知らせ

