

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　Swiftは、iOSおよびOS X向け
のアプリケーション開発のために
Appleによって作られた新しいプログ
ラミング言語です。同社が主催する
開発者向けイベント「WorldWide
Developers Conference 2014」に
おいて発表されると同時に、開発者
向けにベータ版の提供が開始されま
した。
　Appleでは、Swiftの特徴として
次のような点を挙げています。

モダン
　Swiftは、クロージャやジェネリク
ス、タイプインターフェース、タプル、
Optional型といった近代的なプロ
グラミング言語の機能を積極的に採
用しています。これによって、複雑さ
を排除したシンプルなコードで、素
早くアプリを開発することができます。

安全な設計
　Swiftは静的型付け言語であり、
コンパイル時の強力な型チェックに
よって型安全性が保証されます。さ
らに、変数の初期化の強制や、配
列や整数のオーバーフロー検出、参
照カウント方式による自動メモリ管
理、記述ミスによるバグ発生を抑制
する文法設計など、安全性を高める
さまざまな工夫が施されています。

インタラクティブ
　対話形式の実行環境が用意され

ており、コンパイラ言語でありなが
らインタプリタ言語のようなスタイル
で手軽にコードの実行やデバッグが
できます。この機能は「Interactive
Playground」と呼ばれ、Xcode 6
より新たに利用できるようになります。

高速
　Swiftのコンパイルと実行には
LLVM技術が採用されており、ハー
ドウェアごとに最適なネイティブコー
ドが生成されるため高速な実行が可
能です。Appleの発表によれば、そ
のパフォーマンスはObjective-Cを
上回るとのことです。

　

　Swiftの登場は、iOSやOS X向
けアプリケーションの開発者に対し
て極めて大きなインパクトを与えるも
のです。Objective-Cの歴史は古く、
それだけに蓄積されたノウハウも膨
大な量にのぼります。しかしその一
方で、古い設計の言語を拡張し続
けてきた副作用として言語仕様が煩
雑化し、最適化が難しくなってきて
いるという問題がありました。とくに
iPhone/iPadが登場してからは新
規の開発者が増え、モダンな開発
言語を望む声も少なくありませんで
した。
　Appleでは従来よりObjective-C
の拡張や開発環境による多言語サ
ポートなどによって、アプリ開発の
生産性を向上させるための取り組み
を続けてきましたが、それらはあく
までもObjective-Cを中核に据えた

ものでした。一方Swiftの場合は、
最初からObjective-Cの置き換えを
狙って設計されたという点で、これ
までのアプローチとは異なる位置づ
けを持っていると言えます。
　現在のところ、Swiftの発表は開
発者にはおおむね好意的に受け入れ
られているという印象を受けます。
歴史的な事情に左右されないシンプ
ルな言語仕様は、開発の効率を向
上させるだけでなく、性能の向上や
安定性の強化、より良いUIの実現
などにも影響します。新言語から開
発者が受ける恩恵は大きく、そのこ
とが歓迎ムードにつながっているも
のと考えられます。
　通常、新しい言語への移行には
既存の資産やノウハウが無駄になる
かもしれないという懸念が付きまとう
ものですが、Swiftの場合は既存の
実 行 環 境との互換 性が 高く、
Objective-Cと共存させられるとい
う強みがあります。従来のフレーム
ワークにも適合しており、ランタイム
もObjective-Cと同じであることか
ら、移行のハードルはきわめて低い
と言えるでしょう。
　Swiftは iOS 8およびOS X Yose
miteに合わせて正式リリースされる
予定で、現在はXcode 6のベータ
版によって試すことができます。また、
iTunes StoreではApple公式の言
語ガイド「The Sw i ft Program
ming Language」が公開されていま
す。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 68回

Swift

Swift Programming Language
https://developer.apple.com/swift/

iOS/OS Xのための
新言語「Swift」

Swift が与える
インパクト

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
https://developer.apple.com/swift/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

http://sd.gihyo.jp/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.bluebox.ne.jp

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）
14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／~＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

年間定期購読

 ／~＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

https://gihyo.jp/site/inquiry/dennou

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.asp.net/mvc
http://www.iis.net/downloads/microsoft/web-deploy
http://msdn.microsoft.com/ja-jp/library/dd393574.aspx
http://tanaka733.net

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

https://wiki.jenkins-ci.org/display/JENKINS/MSBuild+Plugin

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://grani.jp/recruit/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

　首都圏にお住まいの方は、東京
ビッグサイトや幕張メッセなどの巨大
な展示会場や、ホテルなどで開催され
るプライベート展示会など、数多くの
展示会に参加する機会があります。
企業の展示会の中には、全国各地を
行脚して開催されるものもあります。ま
た、各地に企業ショールームがありま
すし、大型家電ショップも一種の
ショールーム的役目を果たしていま
す。海外の展示会でさえ、ネットニュー
スやオンライン動画共有サイトの発達
のおかげでさまざまな最新情報を得る
ことができます。
　一方、そのような展示会に出展す
る企業側の方の中には、自社のプロ
ダクトやサービスを展示する役目を仰
せつかった人もいるでしょう。投資家
たちや株主の前で、限られた時間で

デモンストレーションする場面もあるか
もしれません。各種展示会の場合、も
ちろんブースの造作や、華やかなコン
パニオン、製品やサービスそのものの
魅力も重要ですが、「展示」そのもの
の工夫も、集客効果やその後のビジ
ネスに影響してきます。
　雑貨店のようにわざと混沌とした展
示をする場合もありますが、たいてい
の場合、良かったと思わせる展示は、
博物館や美術館のように観る人のこ
とをよく考えた展示であることがわかり
ます。たとえば、観る順番を迷わせな
いことに着目すると、「説明書きが適
切な高さ・位置にあること」「文字が読
みやすいこと」「展示ブースが混雑し
ているときにも、何らかの情報が得ら
れること」などが挙げられます。気配り
のあるブースには入りやすい・観やす
い雰囲気があり、ブースを離れるとき

には「必要な情報が得られた」「興味
を持った」といった満足感が得られま
す。
　イタリアの著名デザイナーであり、
数々の展示会の会場構成を務めた
アキッレ・カスティリオーニは、展示に
おける参加者は次の4種類に分かれ
ると述べています。

1　大雑把な説明で満足する人たち
2　きちんと理解したい人たち
3　細かいことにもうるさい人たち
4　子供、若い人たち

　これらの分類の中でどの人たちを
ターゲットにするのか。または、すべて
の人たちを対象とし、それぞれどのよう
に違った対応をしなければいけないの
かを考えておかなければいけません。

　一般的に常設の展示や長期間の
展示でないかぎり、実際に展示するま
での設営時間は短く、100％満足の
いく展示にすることはなかなか困難な
事柄です。けれども事前によく考えら
れた準備をしておくことによって、より
良い展示を素早く構築するための手
はずを整えることができます。注意点
は次のような事柄です。

●目線の高さや目線の動き（キャプ
ション［解説文］の示し方から作品
展示そのもの）を考慮する

●自分の影や反射が映り込まないよ
うに。見ている人、そのほかの存在
をできるだけ消すように（ブースを区
切ったり、入場制限をして順々に見
てもらうなども1つの方法です）
●多くの人が見に来る、あるいは一
度に触れる人は1人だけというよう
なサービスの場合、それ以外の多く
の人が見られるディスプレイ映像な
どを用意しておく
●人の動き、導線に配慮する。迷わ
ない人の流れを作り出す
●展示会場では、ネットがない環境や
うまくつながらないことを前提に準
備しておく。有線LANも検討

●短時間ですべてを知ることは難し
いので、別途Webサイトやパンフ

レットがあるといい
●すべて準備万端と思っても不慮の
ミスもある。リハーサルと確認を怠
らない
●液晶画面やディスプレイ画面は省
電力モードではなく、見やすく明るく
しておく
●スマートフォンの画面やディスプレ
イ画面などは、メガネ拭きできれい
にしておくなど最良の状態で

　照明、音、音楽や騒音など、展示の
現場でしかわからない条件もいろいろ
あります。展示空間は日常の仕事場
とは異質な空間なので、すべてがうま
くいくことを願いつつも、いろいろな事
柄がうまくいかない前提で対処してい
けばよいでしょう。いつも使えている
ケーブルですら、たまたま何かの不具
合で使えないといったことがあるかも
しれないのです。そしてそれに気づくの
はとても難しいことでもあります。いつ
もは抜けるはずのない電源ケーブル
に足を引っ掛けて抜いてしまったり、
転んで飲み物をこぼしてしまったり
……マーフィーの法則ではないです
が、何か困ったことが起こる可能性が
少しでもあれば、その困った事象は運
悪く本番で起こってしまうかもしれない
のです。
　さらに展示の場合、1人だけに説明

して、1人に観てもらえばいいわけでは
ありません。解説や説明をする人が必
ず一人一人に対応できるとも限りま
せん。実際に触ってみる試用体験や
視聴といった1人でしか体験できない
展示であれば、順番を待つ人が待つ
だけになってしまわないような配慮も
必要です。ほかにも、一度の展示で
満足していただけるものと、何度も足
を運んでほしいもの、口コミで多くの
人の話題になってほしいものなど、見
せ方だけでなく、その周辺の体験もう
まく配慮すると広がりが生まれます。

　LED照明が出始めのころは、繊細
な色、鮮やかな発色が難しかったよう
ですが、現在では良質のLEDライトの
登場で、展示会場や展示物のライ
ティング設計がいろいろと拡張でき、
自由度が広がってきたそうです。また、
反射しないガラスや透明度の高いガ
ラスの登場で、作品や展示物を保護
しつつも身近に感じながら観ることが
できるようになっています。技術の進
歩で展示方法も進歩してきました。
　「良かった」と思える展示は、違和
感やちょっとした引っかかりもなく、展
示物そのものの良さが素直に伝わる
環境が作られているのだと考えていま
す。たとえば、文字が横書きであれば、

たいていの言語の場合、左から右に
描かれます。つまり視線の移動は左
右に流れます。そう考えると、キャプ
ション（説明書き）から、商品やプロダ
クトといった作品展示への視線の流
れがスムーズだと違和感がないです
し、逆にそこに不必要な視線の動き
が生じると面倒さを感じてしまうのだと
思います。
　また数多くの展示を観て、良い要
素、または良くない要素を細かく分解
していくのも良い方法です。単に「良
かった」で終わらずに、良いと思った展
示のどこが良かったのか、何の要素
が「良かった」につながっているのか
を、客観的に評価するのです。
　さらに、同業種ばかりではなく、他業
種の展示、美術館や博物館、スー
パーや雑貨店、書店の展示も注意深
く観察することで、さまざまなノウハウ
を学び取ることもできます。
　自身の展示も客観的な目線で評
価し、改善要素を見つけていくのも重
要です。それこそ数日単位でなく、数
時間単位でも見直し、改善していく要
素が何かしらあるはずです。
　魅力のある展示のためには、人の
振る舞いや印象を知ることがとても大
切なのです。｢

展示のためのデジタル技術
さまざまな展示

安藤 幸央
EXA Corporation

展示のためのデジタル技術

188
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Space Player

照明型プロジェクタ
Space Playerは天井に設置するスポッ
トライト型の形状をした映像プロジェクタ
装置です。従来のスポットライトは光を当
てるだけでしたが、Space Playerは色を
持った映像を対象物に照射することがで
きます。映像の入力はSDカード、HDMI、
無線LAN（Miracast）経由など。本体色
は設置場所に応じてホワイトとブラック
の2色から選べます。光源はレーザーダイ
オードで1000ルーメン、1280×800の
解像度で動画／静止画の表示が可能
です。天井から吊り下げて設置する大型
のプロジェクタとは違い、照明器具と同
様に配線ダクト取り付けで設置できるの
も利点の1つです。

1GADGET

TABLETY

タブレットスタンド
TABLETYは盗難防止機能を備えた、フ
ロアスタンドタイプのタブレット端末用展
示機器です。スタンドタイプのほかにも壁
掛けタイプや、机の上に置くタイプなどが
あります。iPadなどのホームボタンが不用
意に押されないようカバーをしたり、充電
ケーブルが抜けないような配慮が施され
ています。別売りのセキュリティアラーム
を使用することもでき、防犯性にも優れて
います（盗難防止を確約するものではあ
りません）。

3GADGET

Transparent Showcase

透明ディスプレイ
Transparent Showcaseは、ショーケー
スの箱の前面に透明ディスプレイが設
置されたボックスです。透明ディスプレイ
は、通常の液晶ディスプレイの背面にあ
るライトが排除されたLEDパネルだけの
もので、コンピュータから真っ黒い画面を
映す指示を出せば、LEDには何も表示さ
れず向こう側が透けて見えるしくみです。
フルハイビジョン解像度で70インチ相当
の最大サイズのものから、最小で10イン
チ相当のものまでいくつかのサイズが用
意されています。透明ディスプレイに映し
出された映像は、それそのものは発光しな
いため、ショーケース内の照明用白色
LEDが必要です。

http://crystal-display.com/digital-signage/
transparent-displays-2/clearvue/

2GADGET

自然光LED薄型ライン照明

色彩を忠実に再現する
LEDライト
自然 光 L E D 薄 型ライン照 明は、幅
19mm、高さ12mmと小型で、さまざまな
狭所に設置可能なLED照明です。長さ
は4種類から選択またはカスタマイズも可
能。このLED照明に照らされた対象は、
自然光のもとで見た色合いにとても近く、
微妙な色合いを重視する化粧品や、革
製品などの展示にも使われているそうで
す。また、紫外線や赤外線をほとんど発し
ないため、対象物の色あせを心配するこ
となく、対象物のすぐ近くに設置すること
もできるようです。

http://www.ccs-inc.co.jp/museum/

4GADGET

展示を成功させるために

展示のこれから

http://www2.panasonic.biz/es/lighting/led/
special/spaceplayer/

http://workstudio.co.jp/product/
tablet/tablety/

サンフランシスコエクスプロラトリアム科学館の
立体視の原理を知るための展示

コンピュータヒストリーミュージアムの展示、
1969年のキッチンコンピュータ

爆発的に普及したPDA「Palm Pilot」の
スケルトンモデルと、開発初期段階の紙で
作られたプロトタイプ。アート作品ではなく、
工業製品の場合、その製品が作られる過
程を展示することも、その製品を知ってもら
い、親しく感じてもらう良い方法である

ムーアの法則の説明展示。半導体の集積
密度は18～24ヵ月で倍増するという法則
に基づく指数的な増加をネオンランプで示
すとともに、ディスプレイによる説明映像、
それに手元に置かれたシリコンウェハース
で実感のともなう統合展示になっている

巨大なマッチ棒細工の展示。大きさが比
較できる物が置いてあるのと、展示そのも
のが浮き上がって見えるよう、背景の壁が
ここだけ青色になっている

鶏のふ化の様子を展示したもの。暗いと
ころでも文字が読みやすいようにバックラ
イトで照らされており、展示そのものと説明
文が近くに配置されていて相互を順に見
やすい

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Aug. 2014 - 5

http://www.andoh.org/

　首都圏にお住まいの方は、東京
ビッグサイトや幕張メッセなどの巨大
な展示会場や、ホテルなどで開催され
るプライベート展示会など、数多くの
展示会に参加する機会があります。
企業の展示会の中には、全国各地を
行脚して開催されるものもあります。ま
た、各地に企業ショールームがありま
すし、大型家電ショップも一種の
ショールーム的役目を果たしていま
す。海外の展示会でさえ、ネットニュー
スやオンライン動画共有サイトの発達
のおかげでさまざまな最新情報を得る
ことができます。
　一方、そのような展示会に出展す
る企業側の方の中には、自社のプロ
ダクトやサービスを展示する役目を仰
せつかった人もいるでしょう。投資家
たちや株主の前で、限られた時間で

デモンストレーションする場面もあるか
もしれません。各種展示会の場合、も
ちろんブースの造作や、華やかなコン
パニオン、製品やサービスそのものの
魅力も重要ですが、「展示」そのもの
の工夫も、集客効果やその後のビジ
ネスに影響してきます。
　雑貨店のようにわざと混沌とした展
示をする場合もありますが、たいてい
の場合、良かったと思わせる展示は、
博物館や美術館のように観る人のこ
とをよく考えた展示であることがわかり
ます。たとえば、観る順番を迷わせな
いことに着目すると、「説明書きが適
切な高さ・位置にあること」「文字が読
みやすいこと」「展示ブースが混雑し
ているときにも、何らかの情報が得ら
れること」などが挙げられます。気配り
のあるブースには入りやすい・観やす
い雰囲気があり、ブースを離れるとき

には「必要な情報が得られた」「興味
を持った」といった満足感が得られま
す。
　イタリアの著名デザイナーであり、
数々の展示会の会場構成を務めた
アキッレ・カスティリオーニは、展示に
おける参加者は次の4種類に分かれ
ると述べています。

1　大雑把な説明で満足する人たち
2　きちんと理解したい人たち
3　細かいことにもうるさい人たち
4　子供、若い人たち

　これらの分類の中でどの人たちを
ターゲットにするのか。または、すべて
の人たちを対象とし、それぞれどのよう
に違った対応をしなければいけないの
かを考えておかなければいけません。

　一般的に常設の展示や長期間の
展示でないかぎり、実際に展示するま
での設営時間は短く、100％満足の
いく展示にすることはなかなか困難な
事柄です。けれども事前によく考えら
れた準備をしておくことによって、より
良い展示を素早く構築するための手
はずを整えることができます。注意点
は次のような事柄です。

●目線の高さや目線の動き（キャプ
ション［解説文］の示し方から作品
展示そのもの）を考慮する

●自分の影や反射が映り込まないよ
うに。見ている人、そのほかの存在
をできるだけ消すように（ブースを区
切ったり、入場制限をして順々に見
てもらうなども1つの方法です）
●多くの人が見に来る、あるいは一
度に触れる人は1人だけというよう
なサービスの場合、それ以外の多く
の人が見られるディスプレイ映像な
どを用意しておく
●人の動き、導線に配慮する。迷わ
ない人の流れを作り出す
●展示会場では、ネットがない環境や
うまくつながらないことを前提に準
備しておく。有線LANも検討

●短時間ですべてを知ることは難し
いので、別途Webサイトやパンフ

レットがあるといい
●すべて準備万端と思っても不慮の
ミスもある。リハーサルと確認を怠
らない
●液晶画面やディスプレイ画面は省
電力モードではなく、見やすく明るく
しておく
●スマートフォンの画面やディスプレ
イ画面などは、メガネ拭きできれい
にしておくなど最良の状態で

　照明、音、音楽や騒音など、展示の
現場でしかわからない条件もいろいろ
あります。展示空間は日常の仕事場
とは異質な空間なので、すべてがうま
くいくことを願いつつも、いろいろな事
柄がうまくいかない前提で対処してい
けばよいでしょう。いつも使えている
ケーブルですら、たまたま何かの不具
合で使えないといったことがあるかも
しれないのです。そしてそれに気づくの
はとても難しいことでもあります。いつ
もは抜けるはずのない電源ケーブル
に足を引っ掛けて抜いてしまったり、
転んで飲み物をこぼしてしまったり
……マーフィーの法則ではないです
が、何か困ったことが起こる可能性が
少しでもあれば、その困った事象は運
悪く本番で起こってしまうかもしれない
のです。
　さらに展示の場合、1人だけに説明

して、1人に観てもらえばいいわけでは
ありません。解説や説明をする人が必
ず一人一人に対応できるとも限りま
せん。実際に触ってみる試用体験や
視聴といった1人でしか体験できない
展示であれば、順番を待つ人が待つ
だけになってしまわないような配慮も
必要です。ほかにも、一度の展示で
満足していただけるものと、何度も足
を運んでほしいもの、口コミで多くの
人の話題になってほしいものなど、見
せ方だけでなく、その周辺の体験もう
まく配慮すると広がりが生まれます。

　LED照明が出始めのころは、繊細
な色、鮮やかな発色が難しかったよう
ですが、現在では良質のLEDライトの
登場で、展示会場や展示物のライ
ティング設計がいろいろと拡張でき、
自由度が広がってきたそうです。また、
反射しないガラスや透明度の高いガ
ラスの登場で、作品や展示物を保護
しつつも身近に感じながら観ることが
できるようになっています。技術の進
歩で展示方法も進歩してきました。
　「良かった」と思える展示は、違和
感やちょっとした引っかかりもなく、展
示物そのものの良さが素直に伝わる
環境が作られているのだと考えていま
す。たとえば、文字が横書きであれば、

たいていの言語の場合、左から右に
描かれます。つまり視線の移動は左
右に流れます。そう考えると、キャプ
ション（説明書き）から、商品やプロダ
クトといった作品展示への視線の流
れがスムーズだと違和感がないです
し、逆にそこに不必要な視線の動き
が生じると面倒さを感じてしまうのだと
思います。
　また数多くの展示を観て、良い要
素、または良くない要素を細かく分解
していくのも良い方法です。単に「良
かった」で終わらずに、良いと思った展
示のどこが良かったのか、何の要素
が「良かった」につながっているのか
を、客観的に評価するのです。
　さらに、同業種ばかりではなく、他業
種の展示、美術館や博物館、スー
パーや雑貨店、書店の展示も注意深
く観察することで、さまざまなノウハウ
を学び取ることもできます。
　自身の展示も客観的な目線で評
価し、改善要素を見つけていくのも重
要です。それこそ数日単位でなく、数
時間単位でも見直し、改善していく要
素が何かしらあるはずです。
　魅力のある展示のためには、人の
振る舞いや印象を知ることがとても大
切なのです。｢

展示のためのデジタル技術
さまざまな展示

安藤 幸央
EXA Corporation

展示のためのデジタル技術

188
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Space Player

照明型プロジェクタ
Space Playerは天井に設置するスポッ
トライト型の形状をした映像プロジェクタ
装置です。従来のスポットライトは光を当
てるだけでしたが、Space Playerは色を
持った映像を対象物に照射することがで
きます。映像の入力はSDカード、HDMI、
無線LAN（Miracast）経由など。本体色
は設置場所に応じてホワイトとブラック
の2色から選べます。光源はレーザーダイ
オードで1000ルーメン、1280×800の
解像度で動画／静止画の表示が可能
です。天井から吊り下げて設置する大型
のプロジェクタとは違い、照明器具と同
様に配線ダクト取り付けで設置できるの
も利点の1つです。

1GADGET

TABLETY

タブレットスタンド
TABLETYは盗難防止機能を備えた、フ
ロアスタンドタイプのタブレット端末用展
示機器です。スタンドタイプのほかにも壁
掛けタイプや、机の上に置くタイプなどが
あります。iPadなどのホームボタンが不用
意に押されないようカバーをしたり、充電
ケーブルが抜けないような配慮が施され
ています。別売りのセキュリティアラーム
を使用することもでき、防犯性にも優れて
います（盗難防止を確約するものではあ
りません）。

3GADGET

Transparent Showcase

透明ディスプレイ
Transparent Showcaseは、ショーケー
スの箱の前面に透明ディスプレイが設
置されたボックスです。透明ディスプレイ
は、通常の液晶ディスプレイの背面にあ
るライトが排除されたLEDパネルだけの
もので、コンピュータから真っ黒い画面を
映す指示を出せば、LEDには何も表示さ
れず向こう側が透けて見えるしくみです。
フルハイビジョン解像度で70インチ相当
の最大サイズのものから、最小で10イン
チ相当のものまでいくつかのサイズが用
意されています。透明ディスプレイに映し
出された映像は、それそのものは発光しな
いため、ショーケース内の照明用白色
LEDが必要です。

http://crystal-display.com/digital-signage/
transparent-displays-2/clearvue/

2GADGET

自然光LED薄型ライン照明

色彩を忠実に再現する
LEDライト
自然 光 L E D 薄 型ライン照 明は、幅
19mm、高さ12mmと小型で、さまざまな
狭所に設置可能なLED照明です。長さ
は4種類から選択またはカスタマイズも可
能。このLED照明に照らされた対象は、
自然光のもとで見た色合いにとても近く、
微妙な色合いを重視する化粧品や、革
製品などの展示にも使われているそうで
す。また、紫外線や赤外線をほとんど発し
ないため、対象物の色あせを心配するこ
となく、対象物のすぐ近くに設置すること
もできるようです。

http://www.ccs-inc.co.jp/museum/

4GADGET

展示を成功させるために

展示のこれから

http://www2.panasonic.biz/es/lighting/led/
special/spaceplayer/

http://workstudio.co.jp/product/
tablet/tablety/

サンフランシスコエクスプロラトリアム科学館の
立体視の原理を知るための展示

コンピュータヒストリーミュージアムの展示、
1969年のキッチンコンピュータ

爆発的に普及したPDA「Palm Pilot」の
スケルトンモデルと、開発初期段階の紙で
作られたプロトタイプ。アート作品ではなく、
工業製品の場合、その製品が作られる過
程を展示することも、その製品を知ってもら
い、親しく感じてもらう良い方法である

ムーアの法則の説明展示。半導体の集積
密度は18～24ヵ月で倍増するという法則
に基づく指数的な増加をネオンランプで示
すとともに、ディスプレイによる説明映像、
それに手元に置かれたシリコンウェハース
で実感のともなう統合展示になっている

巨大なマッチ棒細工の展示。大きさが比
較できる物が置いてあるのと、展示そのも
のが浮き上がって見えるよう、背景の壁が
ここだけ青色になっている

鶏のふ化の様子を展示したもの。暗いと
ころでも文字が読みやすいようにバックラ
イトで照らされており、展示そのものと説明
文が近くに配置されていて相互を順に見
やすい

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 6 - Software Design

　首都圏にお住まいの方は、東京
ビッグサイトや幕張メッセなどの巨大
な展示会場や、ホテルなどで開催され
るプライベート展示会など、数多くの
展示会に参加する機会があります。
企業の展示会の中には、全国各地を
行脚して開催されるものもあります。ま
た、各地に企業ショールームがありま
すし、大型家電ショップも一種の
ショールーム的役目を果たしていま
す。海外の展示会でさえ、ネットニュー
スやオンライン動画共有サイトの発達
のおかげでさまざまな最新情報を得る
ことができます。
　一方、そのような展示会に出展す
る企業側の方の中には、自社のプロ
ダクトやサービスを展示する役目を仰
せつかった人もいるでしょう。投資家
たちや株主の前で、限られた時間で

デモンストレーションする場面もあるか
もしれません。各種展示会の場合、も
ちろんブースの造作や、華やかなコン
パニオン、製品やサービスそのものの
魅力も重要ですが、「展示」そのもの
の工夫も、集客効果やその後のビジ
ネスに影響してきます。
　雑貨店のようにわざと混沌とした展
示をする場合もありますが、たいてい
の場合、良かったと思わせる展示は、
博物館や美術館のように観る人のこ
とをよく考えた展示であることがわかり
ます。たとえば、観る順番を迷わせな
いことに着目すると、「説明書きが適
切な高さ・位置にあること」「文字が読
みやすいこと」「展示ブースが混雑し
ているときにも、何らかの情報が得ら
れること」などが挙げられます。気配り
のあるブースには入りやすい・観やす
い雰囲気があり、ブースを離れるとき

には「必要な情報が得られた」「興味
を持った」といった満足感が得られま
す。
　イタリアの著名デザイナーであり、
数々の展示会の会場構成を務めた
アキッレ・カスティリオーニは、展示に
おける参加者は次の4種類に分かれ
ると述べています。

1　大雑把な説明で満足する人たち
2　きちんと理解したい人たち
3　細かいことにもうるさい人たち
4　子供、若い人たち

　これらの分類の中でどの人たちを
ターゲットにするのか。または、すべて
の人たちを対象とし、それぞれどのよう
に違った対応をしなければいけないの
かを考えておかなければいけません。

　一般的に常設の展示や長期間の
展示でないかぎり、実際に展示するま
での設営時間は短く、100％満足の
いく展示にすることはなかなか困難な
事柄です。けれども事前によく考えら
れた準備をしておくことによって、より
良い展示を素早く構築するための手
はずを整えることができます。注意点
は次のような事柄です。

●目線の高さや目線の動き（キャプ
ション［解説文］の示し方から作品
展示そのもの）を考慮する

●自分の影や反射が映り込まないよ
うに。見ている人、そのほかの存在
をできるだけ消すように（ブースを区
切ったり、入場制限をして順々に見
てもらうなども1つの方法です）
●多くの人が見に来る、あるいは一
度に触れる人は1人だけというよう
なサービスの場合、それ以外の多く
の人が見られるディスプレイ映像な
どを用意しておく
●人の動き、導線に配慮する。迷わ
ない人の流れを作り出す
●展示会場では、ネットがない環境や
うまくつながらないことを前提に準
備しておく。有線LANも検討

●短時間ですべてを知ることは難し
いので、別途Webサイトやパンフ

レットがあるといい
●すべて準備万端と思っても不慮の
ミスもある。リハーサルと確認を怠
らない
●液晶画面やディスプレイ画面は省
電力モードではなく、見やすく明るく
しておく
●スマートフォンの画面やディスプレ
イ画面などは、メガネ拭きできれい
にしておくなど最良の状態で

　照明、音、音楽や騒音など、展示の
現場でしかわからない条件もいろいろ
あります。展示空間は日常の仕事場
とは異質な空間なので、すべてがうま
くいくことを願いつつも、いろいろな事
柄がうまくいかない前提で対処してい
けばよいでしょう。いつも使えている
ケーブルですら、たまたま何かの不具
合で使えないといったことがあるかも
しれないのです。そしてそれに気づくの
はとても難しいことでもあります。いつ
もは抜けるはずのない電源ケーブル
に足を引っ掛けて抜いてしまったり、
転んで飲み物をこぼしてしまったり
……マーフィーの法則ではないです
が、何か困ったことが起こる可能性が
少しでもあれば、その困った事象は運
悪く本番で起こってしまうかもしれない
のです。
　さらに展示の場合、1人だけに説明

して、1人に観てもらえばいいわけでは
ありません。解説や説明をする人が必
ず一人一人に対応できるとも限りま
せん。実際に触ってみる試用体験や
視聴といった1人でしか体験できない
展示であれば、順番を待つ人が待つ
だけになってしまわないような配慮も
必要です。ほかにも、一度の展示で
満足していただけるものと、何度も足
を運んでほしいもの、口コミで多くの
人の話題になってほしいものなど、見
せ方だけでなく、その周辺の体験もう
まく配慮すると広がりが生まれます。

　LED照明が出始めのころは、繊細
な色、鮮やかな発色が難しかったよう
ですが、現在では良質のLEDライトの
登場で、展示会場や展示物のライ
ティング設計がいろいろと拡張でき、
自由度が広がってきたそうです。また、
反射しないガラスや透明度の高いガ
ラスの登場で、作品や展示物を保護
しつつも身近に感じながら観ることが
できるようになっています。技術の進
歩で展示方法も進歩してきました。
　「良かった」と思える展示は、違和
感やちょっとした引っかかりもなく、展
示物そのものの良さが素直に伝わる
環境が作られているのだと考えていま
す。たとえば、文字が横書きであれば、

たいていの言語の場合、左から右に
描かれます。つまり視線の移動は左
右に流れます。そう考えると、キャプ
ション（説明書き）から、商品やプロダ
クトといった作品展示への視線の流
れがスムーズだと違和感がないです
し、逆にそこに不必要な視線の動き
が生じると面倒さを感じてしまうのだと
思います。
　また数多くの展示を観て、良い要
素、または良くない要素を細かく分解
していくのも良い方法です。単に「良
かった」で終わらずに、良いと思った展
示のどこが良かったのか、何の要素
が「良かった」につながっているのか
を、客観的に評価するのです。
　さらに、同業種ばかりではなく、他業
種の展示、美術館や博物館、スー
パーや雑貨店、書店の展示も注意深
く観察することで、さまざまなノウハウ
を学び取ることもできます。
　自身の展示も客観的な目線で評
価し、改善要素を見つけていくのも重
要です。それこそ数日単位でなく、数
時間単位でも見直し、改善していく要
素が何かしらあるはずです。
　魅力のある展示のためには、人の
振る舞いや印象を知ることがとても大
切なのです。｢

展示のためのデジタル技術
さまざまな展示

安藤 幸央
EXA Corporation

展示のためのデジタル技術

188
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Space Player

照明型プロジェクタ
Space Playerは天井に設置するスポッ
トライト型の形状をした映像プロジェクタ
装置です。従来のスポットライトは光を当
てるだけでしたが、Space Playerは色を
持った映像を対象物に照射することがで
きます。映像の入力はSDカード、HDMI、
無線LAN（Miracast）経由など。本体色
は設置場所に応じてホワイトとブラック
の2色から選べます。光源はレーザーダイ
オードで1000ルーメン、1280×800の
解像度で動画／静止画の表示が可能
です。天井から吊り下げて設置する大型
のプロジェクタとは違い、照明器具と同
様に配線ダクト取り付けで設置できるの
も利点の1つです。

1GADGET

TABLETY

タブレットスタンド
TABLETYは盗難防止機能を備えた、フ
ロアスタンドタイプのタブレット端末用展
示機器です。スタンドタイプのほかにも壁
掛けタイプや、机の上に置くタイプなどが
あります。iPadなどのホームボタンが不用
意に押されないようカバーをしたり、充電
ケーブルが抜けないような配慮が施され
ています。別売りのセキュリティアラーム
を使用することもでき、防犯性にも優れて
います（盗難防止を確約するものではあ
りません）。

3GADGET

Transparent Showcase

透明ディスプレイ
Transparent Showcaseは、ショーケー
スの箱の前面に透明ディスプレイが設
置されたボックスです。透明ディスプレイ
は、通常の液晶ディスプレイの背面にあ
るライトが排除されたLEDパネルだけの
もので、コンピュータから真っ黒い画面を
映す指示を出せば、LEDには何も表示さ
れず向こう側が透けて見えるしくみです。
フルハイビジョン解像度で70インチ相当
の最大サイズのものから、最小で10イン
チ相当のものまでいくつかのサイズが用
意されています。透明ディスプレイに映し
出された映像は、それそのものは発光しな
いため、ショーケース内の照明用白色
LEDが必要です。

http://crystal-display.com/digital-signage/
transparent-displays-2/clearvue/

2GADGET

自然光LED薄型ライン照明

色彩を忠実に再現する
LEDライト
自然 光 L E D 薄 型ライン照 明は、幅
19mm、高さ12mmと小型で、さまざまな
狭所に設置可能なLED照明です。長さ
は4種類から選択またはカスタマイズも可
能。このLED照明に照らされた対象は、
自然光のもとで見た色合いにとても近く、
微妙な色合いを重視する化粧品や、革
製品などの展示にも使われているそうで
す。また、紫外線や赤外線をほとんど発し
ないため、対象物の色あせを心配するこ
となく、対象物のすぐ近くに設置すること
もできるようです。

http://www.ccs-inc.co.jp/museum/

4GADGET

展示を成功させるために

展示のこれから

http://www2.panasonic.biz/es/lighting/led/
special/spaceplayer/

http://workstudio.co.jp/product/
tablet/tablety/

サンフランシスコエクスプロラトリアム科学館の
立体視の原理を知るための展示

コンピュータヒストリーミュージアムの展示、
1969年のキッチンコンピュータ

爆発的に普及したPDA「Palm Pilot」の
スケルトンモデルと、開発初期段階の紙で
作られたプロトタイプ。アート作品ではなく、
工業製品の場合、その製品が作られる過
程を展示することも、その製品を知ってもら
い、親しく感じてもらう良い方法である

ムーアの法則の説明展示。半導体の集積
密度は18～24ヵ月で倍増するという法則
に基づく指数的な増加をネオンランプで示
すとともに、ディスプレイによる説明映像、
それに手元に置かれたシリコンウェハース
で実感のともなう統合展示になっている

巨大なマッチ棒細工の展示。大きさが比
較できる物が置いてあるのと、展示そのも
のが浮き上がって見えるよう、背景の壁が
ここだけ青色になっている

鶏のふ化の様子を展示したもの。暗いと
ころでも文字が読みやすいようにバックラ
イトで照らされており、展示そのものと説明
文が近くに配置されていて相互を順に見
やすい

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 6 - Software Design Aug. 2014 - 7

http://www2.panasonic.biz/es/lighting/led/special/spaceplayer/
http://www.workstudio.co.jp/product/tablet/tablety/
http://crystal-display.com/digital-signage/transparrent-displays-2/clearvue/
http://www.ccs-inc.co.jp/museum/

8 - Software Design

Tradeoff——トレードオフ

トレードオフとは

　トレードオフ（tradeoff）とは、ある量を都合
のいい方向に動かすと、別の量が不都合な方向

に動いてしまう関係のことです。トレードオフ
とは「取引」や「交換」という意味で、この用語は
「何かを自分が買うためには、その対価として
別の何かを支払う必要がある」ということを表
現しています。

時間と空間のトレードオフ

　プログラミングで起きる典型的なトレードオ
フは時間と空間のトレードオフです。たとえば、
プログラムの高速化を行うための技法として、
バッファリングやキャッシュがよく使われます。
これは、2回目以降のデータ取得を高速にする
ため、取得したデータをメモリ上に保存してお
く技法です。ここでは「データ取得を高速にする」
という「時間」を買うために、「データを保存し
ておくメモリ」という「空間」を対価として支払っ
ていることになります（図1）。
　時間と空間のトレードオフでは、いつも空間
を対価として支払うわけではありません。たと
えば、三角関数や対数関数のような数学的関数
をプログラムとして実装する場合、「前もって
数表を関数内部に持つ方法（空間を使う）」と「毎
回計算によって求める方法（時間を使う）」の2

つがあります。メモリに余裕がない環境では、
計算を行って実装したほうが都合がいい場合も
あるでしょう。これは「メモリ」という「空間」を
買うために、「毎回計算する」という「時間」を対
価として支払っていることになります。
　時間と空間のトレードオフは、時間か空間か
の二者択一というわけではありません。時間と
空間のどちらをどれだけ

4 4 4 4

買うか（支払うか）には、
幅広い選択の余地があります。そしてシステム
を設計する人は、環境に合わせて最も良いポイ
ントを選択することになります。たとえば数学
的関数を実装する場合、よく使われる値につい
ては数表を用意しておき、あまり使われない値
は計算を行うという実装も可能でしょう。

コンパイラのトレードオフ

　時間と空間のトレードオフ以外にも、プログ
ラミングではあちこちにトレードオフが発生し
ます。

Tradeoff

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 15

時間

長時間かかるが
省メモリ

トレードオフ
空間

時間

高速だが
メモリを食う

空間

 ▼図1　時間と空間のトレードオフ

http://www.hyuki.com/

8 - Software Design Aug. 2014 - 9

　たとえばコンパイラを考えてみましょう。プ
ログラマがコードを書き、それを直接インタプ
リタとして実行できるなら、コンパイルと最適
化のための時間を節約できますが、実行速度は
遅くなります。逆に、コンパイルと最適化のた
めに時間を使うなら、実行速度は速くなります。
ここではコンパイル時と実行時の2つの時間の
間にトレードオフが発生しています。
　トレードオフで最適なポイントがどこにある
かは、時代と環境に依存します。コンパイルと
最適化にどれだけ時間がかかるか、またそれに
よってどれだけ実行速度が向上するかの兼ね合
いということになるでしょう。インタプリタが
内部で中間コードにコンパイルを行うことも、
コンパイラがネイティブコードではなく仮想コー
ドにコンパイルすることも、さらに実行時にネ
イティブコードに変換することも、すべて「時
間を何のためにいつ使うか」ということを念頭
に置いたトレードオフの結果といえます。

選択は常にトレードオフ

　実際のところ「あれかこれか」という選択が生
じるところでは、常にトレードオフが存在して
いるといえます。
　これはトレードオフの意味から明らかです。
時間であれ、空間であれ、どんな量であれ、い
くらでも都合がいいように増加させられるなら、
何も悩む必要はなく、選択する必要もないから
です。
　選択が生じるのは、複数の選択肢のあいだに
何らかの相反する関係があるからです。完全に
いい選択肢が1つあるなら、それはもう選択肢
とはいえません。

トレードオフの原因

　ところで、どうして選択が生じるところで常
にトレードオフが生まれるのでしょうか。
　それは、多くの場合リソースに限界があるか
らです。もしも無限にリソースがあるなら、ほ
とんどのトレードオフは消えてしまいます。無

限に時間を使える場合、無限にメモリを使える
場合、無限にお金を使える場合などを考えれば
わかるでしょう。しかし現実の問題では、リソー
スを無限に使えることはありません。ですから
どうしてもリソースの「やりくり」が発生します。
リソースのやりくりをどうするか、これはまさ
にトレードオフに直面している状況になります。
　そう考えてくると、トレードオフに直面した
ときに最初に行うべきことは、リソース状況を
把握することになりますね。たとえば、時間と
空間のトレードオフなら、自分が使える時間と
空間がそれぞれどれだけなのかを把握するとい
うことです。それは自分が許容できる支払いと、
それを対価にして買えるものとを把握すること
にほかなりません。
　もしも、リソース状況を十分に把握すること
ができ、さらに自分が許容できる支払いを把握
することができたなら、トレードオフに直面し
ても、良い判断ができることになるでしょう。

日常生活とトレードオフ

　技術的な問題に限らず、私たちの日常生活で
もトレードオフは日々発生します。
　明日までに2つの作業をしなければならない
が、どちらにどれだけの時間を使うべきか。こ
こでは「明日までの時間」という限られたリソー
スをやりくりする状況を考えているわけです。
　作り上げたプロダクトやサービスの提供価格
の問題も、トレードオフと見ることができます。
単価が低ければたくさんの顧客に売れますが、
多数売らなければ売上が上がりません。一方、
単価が高ければ少数の顧客でも売上が上がりま
すが、そもそもその顧客がなかなか見つからな
いでしょう。

◆　◆　◆
　あなたの周りを見回して、トレードオフの関
係にあるものを探してみてください。きっと、
あらゆるところに見つかるはずです。そこでや
りくりされている有限のリソースは何でしょう
か。ぜひ考えてみてください。｢

15

w

10 - Software Design Aug. 2014 - 11

独裁者の帰還第16回

（株）ユビキタスエンターテインメント　清水 亮　SHIMIZU Ryo
　　　http://www.uei.co.jp

君たちのものだよ

　アラン・ケイ博士にふたたびお会いできる機
会を得られたのは、前回お会いしてからちょう
ど1年後のCES明けでした。場所は前回と同
じカリフォルニア州ロサンゼルス郊外のビュー
ポイントリサーチ社。アメリカ政府の施設で、
入室にはパスポートの確認が必要な厳重さです。
　再会に感謝の意を示し、現在のenchantMOON

を説明し、それから何か助言をください、と言
うと、ケイ博士はかぶりをふりました。
 「これはもう、君たちのアイデアだよ。私のも
のではない。君たちのものだ。助言できること
はもう何もないよ」
　意外な言葉でした。
 「君たちのアイデアの、いくつかの点は凄

すご

くい
い。いくつかの点は、私はそれほど好きではな
い。なかでも1つとても気に入っているのは、
ピクシーダストだ。ピクシーダスト。こんな演
出を、私たちは思いつかなかった。魔法だね。
まるで」
　魔法……魔法か。もはや僕たちエンジニアの
想像力はSFではなく魔法物語にインスパイア
されるべきなのかもしれません。草木が喋

しゃべ

り、
ホウキが空を飛ぶ、そんな魔法の世界です。
　そんな夢の最中、僕は一方で暗

あん たん

澹たる気分を
隠しきれませんでした。その改良は決して簡単

なものではなく、実装は理想像とはほど遠いも
のだったからです。アラン・ケイ氏にまで会っ
ておいて、自分の作っているものの惨めさと言っ
たら、悲惨そのものでした。
　どうにかしなければならない。僕は焦る一方
でした。この迷宮から、どうすれば抜け出せる
のかと、もがき苦しんでいました。

五里霧中

　enchantMOONのメインプログラマで、学生
時代から僕と長年の師弟関係にあった近藤誠が
去り、それを契機として僕と現場との距離がど
んどん離れていきました。僕は開発者たちの居
る部屋には一切立ち入ることをやめました。そ
う求められたからでもあり、そうすべきだと思っ
たからでもあります。
　それは成蹊大学の講義の後、開発者たちに厳
しい現実̶̶つまりいま我々が誇りを持って
開発し、販売している製品は、単なる欠陥品で
あるということ̶̶を見せつけた後も大きな変
化はありませんでした。もちろんそれもそのは
ずです。彼らに無謀な挑戦をさせ、完成度の低
いソフトウェアのまま製品を発売させることに
なったのは、トップマネジメントである僕自身
の責任だったからです。彼ら自身、納得のいか
ないまま、しかしこの先どうすればいいのかわ
からないという五里霧中、暗中模索のまま、闇

e n c h a n t

http://www.uei.co.jp

10 - Software Design Aug. 2014 - 11

独裁者の帰還第16 回

雲に時間ばかりが過ぎて行くのでした。
　しかし事態の悪化はそれだけに止まりません
でした。ある日のことです。
 「最新バージョンを持ってきました」
　秋葉原リサーチセンター部長の増田哲郎が僕
に1台の端末を差し出しました。僕はそれを少
し触り、書き心地を試してみて、それからペー
ジをめくってまた書いてみました。
 「どうでしょう？　だいぶ高速化されてると思
いますが」
 「そうか？　どのくらいだと思う？」
 「さあ……感覚では10～20％くらい速くなっ
た気がしますが」
 「じゃあこれを見てみろ」
　僕は普段持ち歩いているenchantMOONをカ
バンから取り出し、増田に差し出しました。
 「えっ……これ速いですね。清水さんが書いた
んですか？」
 「いいや。これは1ヵ月前のバージョンだ」
 「え……」
 「君たちは感覚が麻痺しているんだ。毎日毎日
いろんな最適化を試し、その都度、速くなった、
遅くなった、というのを感覚でつかもうとして
いるからだ。昨日、秘書にビデオを撮影して調
べてもらったところ、開発中の現行バージョン
は前バージョンより50％ほど遅くなっている」
 「そ、そんな……」
 「間違ってるんだよ。“速さの指標”が。確かに
現行バージョンは、ページを次々とめくるとい
うことに関しては前バージョンより高速化され
ている。しかしそれだけだ。実用的にページを
めくった直後にペンを走らせたときの速度は却っ
て低下している。こんなことを繰り返していて
はだめだ。根本的にアーキテクチャがダメなん
だよ。実態に即してない。これは誰もが認めな
ければならない。それと、ハイスピードカメラ
による動作速度の測定、これを毎日のルーチン
としてナイトリービルドごとにやらせなさい」
　現場に干渉しない、という約束のもとででき
る指示としては、僕にはこれが精一杯でした。

嫌われることを
怖れるのをやめよう

　しかし現場は幾度も手戻りを繰り返していま
した。ある部分が速くなったと思えば、また別
の部分が遅くなります。資金はどんどん目減り
し、ソフトウェアの完成度はいつまで経っても
上がらない。そんなことが繰り返されました。
　僕は10年来の旧友で最も信頼しているプロ
グラマの布留川英一を密かに呼びだしました。
 「いまのやり方じゃ、ぜんぜんダメだ。いった
いどうしたんだ。君らしくもないじゃないか」
　すると布留川は言いました。
 「自分だって精一杯やっている。けれども、物
事が前に進まない。誰も大局的な視点でプロジェ
クトを見ていないからだ。目先の細かいバグや
不具合修正に時間を浪費され、腰を据えた最適
化もできない。これ以上なんとかしろと言われ
ても、無理だ。“誰か”がきちんとリーダーシッ
プをとって完成させなければ、このプロジェク
トはいつまでたってもここから抜け出せない」
　珍しく、怒っていたと思います。
　そこで僕は理解しました。その「誰か」の役割
から逃げ回っているのは、他ならぬ自分なのだと。
　部下から嫌われたくない、疎まれたくない、
そういう僕の個人的な思いが、「現場の自主性」
という美辞麗句を盾にして現場への不干渉とい
う形をとっていました。
　しかしこちらからぶつかっていき、嫌われよ
うが疎まれようが、彼らが“正しい道”に戻るた

ナイトリービルド

12 - Software Design

e n c h a n t

Aug. 2014 - 13

めに何をすれば良いか、示すべきときに来てい
ると僕は思いました。部下が育つだとか、才能
を開花させるだとか、そういう目に見えないも
のに過剰に期待し、プレッシャーを与えるのを
やめよう。嫌われ、疎まれる自分の人生を受け
入れよう。それが彼ら開発チームだけでなく、
全社員の人生を預かる私として当然果たさなけ
ればならない責任であることは明白でした。

ジェットソン

 「今日から開発現場に戻る」
　翌週、僕は静かにそう宣言しました。
　僕は僕が知る限り最善の方法で開発を立て直
す必要性を誰よりも感じていました。全体の処
理を効率化し、ユーザインターフェースを改善
し、開発者に向けたAPIを整備し、このプラッ
トフォームの上で、作品やアプリを開発する開
発者たちにとって、何が必要で、何が不要か、
何があるべきで、何があるべきでないか、ユー
ザが画面を触ったときの手触りをどうすべきで、
画面はどのように動くべきか、1コマ単位で指
定できる人間をチームに復帰させることにしま
した。つまり、僕自身です。
　本来、100人以上の組織を運営する企業のトッ
プが現場に立ち戻り、ソースコードのレベルま
で立ち入って干渉するのは異例のことです。そ
もそも、僕の会社では過去5年に渡って、僕自
身が製品に関連するコードを書かないという暗
黙の了解のもとで仕事を進めてきました。しか
し、僕たちが開発しようとするenchantMOON、
そしてそのOSであるMOONPhaseは、かなり
複雑なシロモノで、頭の中に明確なビジョンを
描き、強いリーダーシップで牽引しなければ決
して本来の姿で完成に向かうことはありません。
　僕が現場に戻ると、露骨に不快感を表明する
社員もいました。以前なら彼らが退職を匂わせ
ただけで僕は怯んでいたでしょう。しかし、も
う僕は別の人間になっていました。このままで
はenchantMOONは単なる失敗作で、そのコン

セプトすらきちんと理解されずに終わってしま
う。そのためには何よりもまず、さまざまなし
がらみと妥協のもとでどうにもならなくなった
最初のソースコードを捨て去り、新しく、正し
いコードを書き直そう。ロケットが第一段を切
り離すように、さらに身軽で、合目的的なコー
ドを書き直そう。自分の全能力を賭けて、この
問題に取り組む必要がありました。
　僕は自ら線分の補完アルゴリズムや、フリー
ハンドで描かれた図形を長方形や円、三角形と
いった形状に認識させたり、モーフィングさせ
たりといったアルゴリズムを考案することにし
ました。新規のアルゴリズムの開発には時間と
手間がかかり、スケジュール化が読みづらかっ
たからです。そういう部分は専ら僕が担当し、
ほかの開発者たちは現在ある機能のリファクタ
リングと最適化に全力を傾けさせました。

スカイラブ計画

　布留川を始めとするエンジニアたちがMOON

Phaseの抜本的な刷新を進める他方、新入社員
の福本将悟は、PCやMacなど、enchantMOON

以外のデバイスでenchantMOONのコンテンツ
を閲覧する方法を探っていました。enchant

MOONで作られたハイパーテキストをHTML5

で再生するためのレンダリングエンジン「Gemini

（ジェミニ）」を開発していたのです。
　また同時に、コンテンツをアップロードし、
ネットを介して共有するためのクラウドサービ
ス「Skylab（スカイラブ）」も準備段階に入って
いました。これはアポロ計画以後に打ち上げら
れた宇宙ステーションSkylabに由来していま
す。なぜGeminiなのかというと、宇宙の実験
室として打ち上げられたスカイラブ計画では、
宇宙ステーションとの往復にアポロ宇宙船だけ
でなく、より小型のジェミニ宇宙船も用いられ
たという歴史的経緯からです。Geminiは月に
は行けないけれどもSkylabと地球を結ぶとい
う重要な役割を持っていたことに因

ちな

んでいます。

12 - Software Design

独裁者の帰還第16 回

Aug. 2014 - 13

　福本は複雑なイベントモデルを嫌い、素の
HTML5でGeminiのコーディングを進めてい
ました。しかし出来上がったものは、どうも古
ぼけて見え、enchantMOONらしさが出ません。
じっとコードを見ていた僕はふと思いつき、コー
ドを福本から引き継いで、その場でenchant.js

を使用したエフェクト入りのバージョンを作り
ました。伏見遼平が開発した tl.enchant.jsを使
えば、いとも簡単にエフェクトを実現できたか
らです。S-IIの画面エフェクトのプロトタイピ
ングにはもともと tl.enchant.jsを使っていまし
た。元のソースコードを使えば、実機以上に狙
いどおりのエフェクトが再現されるのは自明で
した。このプロトタイプを濱津誠に引き継ぎ、
Geminiは完成度を増していきました。
　そうして出来上がったGeminiのデビューは、
意外なところで果たされることになります。

S-IIシークエンス始動

　数々の技術者たちの努力により、まるで見違
えるように素早くキビキビとした動作になった
最新のMOONPhase、そしてSkylab注1とも連
携し、制作したハイパーテキストコンテンツを
ほかのユーザやユーザ以外の人とも共有できる
レベルまで高めることができた、ある意味で初
期コンセプトの完成形に近いバージョン2.9を、
僕はサターンV型ロケットの第二段になぞらえ、

「S-IIシークエンス」と呼ぶことにしました。
　サターンV型ロケットは、名前とは裏腹に実
は三段式ロケットです。第一段、S-ICシーク
エンスは、発射台から打ち上げられ、秒速3.3km

まで加速されます。第一段の燃焼が終了すると、
切り離され、第二段ロケット、S-IIシークエン
スが開始されて秒速7.0kmまで一気に加速され
ます。この秒速7.0kmというのは、第一宇宙速
度である秒速7.9kmに限りなく近い速度です。
このあと、S-IVBシークエンスで7.79kmへ加
速され、そこから月へ向かうのです。
　大規模なバージョンアップとして予定してい
る3.0の直前、2.9はまさにこの軌道速度へ迫
る加速という重要なプロセスを担うS-IIシー
クエンスなのです。
　僕は1年ぶりに内覧会の準備を進めました。
そこで用意したのが、enchantMOONで作られ
た内覧会の告知ページです。第一宇宙速度を意
味する方程式をクリックすると、次から次へと
印象的なエフェクトで不思議な画像が出てきま
す。最終的にはATNDのイベント申し込みペー
ジにジャンプする、という趣向でした。しかも
このコンテンツは、PCだけでなく iPhoneでも
Androidでも見ることができます。そう。実は
この時点でレンダリングエンジンGeminiをこっ
そりとお披露目していたのです。2.8までの長
い長い燃焼期間を終え、我々はついに月を目指
してふたたび加速を始めたのです。ﾟ

モーフィングのためのメモ 補完アルゴリズムを自ら検証

注1） https://skylab.enchantmoon.com/

https://skylab.enchantmoon.com/

14 - Software Design

　こんにちは。USP研究所の鎌田広

子（かまぷ）と申します。今月から毎回

いろいろなゲストを招いて対談いたし

ます。ほろ酔い気分でおもてなししな

がら、いろいろお話を聞いていこうと

思います。

	 （鎌田）——JPNICにお勤めされ

ているとのことですが、JPNICと

APNICって何がどう違うのですか？

	 （奥谷）APNICはアジア太平洋地

域でIPアドレスの管理を行っている

組織です。JPNICは日本国内でIPア

ドレスとAS番号の管理を行ってい

る組織で、私はIPアドレス管理の調

整をしています。といっても数字と

にらめっこばかりはなく、海外のカ

ンファレンスに参加したり、テレカ

ン（Tel Con ference）で外国の方と

打ち合わせすることが多いです。

 ——なぜIPアドレス管理を調整す

る必要があるのですか？

 IPアドレスは有限で、どこかの

国のものではなくて、世界共通の資

源なんです。それを管理している

ICANNの IANAが全世界のIPアド

レスを管理しているのです。IANA

から5つの地域に分けて配っている

んですね。北米、南米、中近東、ア

フリカ、アジアの5つです。APNIC

はアジアパシフィックで日本はこの

中に入ります。IPアドレスはまだ	

しもASは、ルーティングの業務に

かかわってないと、馴染みがないで

すよね。

 ——ルーティング業務やAS番

号って何ですか？

 ルーティングは、あるネットワー

クから別のネットワークにどういう

ふうに伝わるのか道案内を意味する

のですが、AS番号はそのネットワー

クのかたまりを意味します。それを

使って自分のもっているパケットを

どう運んでいくのか、IPアドレスと

AS番号を使って決めていくんです。

ネットを使うすべての方に必要な情

報ではないので、馴染みがないのだ

と思います。

 ——なるほど。JPNIC歴は長い

んですか？　またJPNICに入った

きっかけを教えてください。

 非営利団体で働きたくて、仕事

探しを始めたことがきっかけです。

競争ではなく連携しましょうとか、

協力しましょうというパートナー

シップを重んじた仕事をしたかった

からです。海外との交流もあるだろ

うと思いました。私自身は技術者で

はなく、IPアドレス管理などの調整

が主な業務です。また、インター

ネットのガバナンスに関する動向周

知など、JPNICが果たすべき役割は

さまざまです。

 ——非営利団体なのですよね、収

益はどうなっているのですか？

 会員さんの会費で事業を回して

います。職員は25名ぐらいですね。

 ——少ないですね！ 100人ぐら

いいるイメージがありました。申請は

電子データで管理しているのですか。

 そうです。専用のWebシステム

で申請いただいて、それで管理して

います。オフィスは神田にあって、

近くに飲み屋さんがたくさんありま

ゲスト：奥谷泉さん第1献

オーストリア・ウィーン Net-grrrlsランチの写真

奥谷泉さん
社団法人日本ネットワークインフォ
メーションセンター（JPNIC）
2000年 よ り 現 職。JPNICで の 主 な
役割はIPアドレスの管理に関する国
内外の調整。ISOC Advisory Council
Co-Chair。国内ではアドレス管理の
動向紹介や、JPNICでの管理方針の
見直しに関する調整に携わっている。
LinkedIn：izumi-okutani

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

14 - Software Design Aug. 2014 - 15

すよ。

 ——飲み屋！羨ましいですね。と

ころで、JPNICはIPアドレスはv4

とv6の2つを配っているのですか？

 両方ですね。v4が世界的になく

なってきているので、枯渇に向けて

の対策タスクフォースや、v6を利用

してもらうような周知、広報活動を

しています。アジアの中でもベトナ

ムはとても熱心な国の1つで、技術

の習得なども含めv6の普及に対し

ても積極的です。技術者に話を聞く

ために、先週も来日していました。

 ——ところで、大学で『比較文化』

を勉強されたということですが。

 たとえば、日本語で「甘える」と

いう言葉がありますよね、外国語に

はないのですよ。

 ——へえーそうなんですか？

「Depends on」とかは違いますかね。

 それだと意味合い的に「依存」に

近いですよね。今でも興味の視点は

変わっていないです。国際会議でも、

仕事の立ち位置だけでなく、国民性

も出ます。日本人は和だとかバラン

スを大事にすると言いますが、本当

にそう感じます。

 ——ええ、本当ですか？ 私の周

りは個性的な人ばかり……。

 日本人は調整役として欧米人に

重宝されるんですよ。アジアにもい

ろんな国があり、欧米人の考え方と

は違う国もあります。ですが、日本

人は西洋の文化も理解できる部分も

あって100％理解しているわけでは

ないですが、雰囲気は掴めているん

ですよね。一方アジア人でもあるの

で、アジア的な発想もわかる。国際

的な舞台で調整役として間に立つこ

とに日本人が適していると思う場面

は、結構あるような気がします。

 ——いいこと聞きましたね。日本

人の良さを知ることで、読者のみなさ

んのキャリアの視点が広がりそうで

す。

 西洋の考え方ってイデオロギー

を重視することが多いです。日本人

を含めたアジア人は、正しい正しく

ないよりも実を取りたいというか、

理想と現実を分けて対応する傾向が

比較的強い気がするんですよ。

 ——男女の違いもあると思うので

すが、業界やJPNICではどんな感じ

でしょうか？

 スタッフの比率は半分ぐらいが

女性です。ただ、業界全体では国内

外含め、女性は少ないです。Net-

grrrlsというコミュニティ（紹介写真

の右側）があって、そこで女性たち

とランチをすることがあります。女

性同士の会話も楽しいです。海外の

カンファレンスに夫婦で参加してい

る方々の中には子供を連れてきてい

るケースもあって、見ていて「いい

な」と思いますね。

 ——そういうやさしい環境であっ

たらがんばれますね。海外出張たくさ

ん行かれているようでうらやましいで

す。今まで行かれたところで一番よ

かったところはどこですか？

 ブエノスアイレスはまた行って

みたいです。南米は明るくてはしゃ

ぐというサンバのイメージがあった

のですが、街の雰囲気がとても落ち

着いていて、少し哀愁があって気に

入りました。あとお肉がすごく美味

しいんですよ。街のごく普通のレス

トランのウェイターさんも姿勢がき

れいで動作が洗練されていました。

 ——最後に、今年2014年に奥谷

さんの出身大学である上智大学に、生

成文法とベトナム反戦で有名な「ノー

ム・チョムスキー」さんがいらっしゃ

いましたよね。

 友人が好きで興味を持ちました。

チョムスキー氏は資本主義や体制の

矛盾やえぐい部分を鋭く指摘する印

象があります。言語学に関する著書

も読んでみたいです。

 ——私も参加したのです。勢いで

岩波ハードカバー本を購入しました。

まだ読破できてませんが（笑）。今回	

は楽しいお話ありがとうございまし

た。ｨ

16 - Software Design16 - Software Design

BLEとは

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 46 回

秋葉原発！

　ご存じの読者も多数いらっしゃると思います
が、BLEとは、Bluetooth Low Energyという
低消費電力を特徴とする2.4GHz帯の小電力な
無線通信を行う規格の略称です。携帯電話や
ゲーム機のコントローラなどで広く使われてき
たBluetoothですが、バージョン4.0で、この
Bluetooth Low Energyが盛り込まれました。
　Bluetoothという同じ名称が付いていますが、
Bluetooth Low Energyのみに対応しているデ
バイスは、Bluetooth 3.0以前のデバイスとは接
続できません。このような事情で、Bluetooth

Low Energyのみに対応しているデバイスは、
Bluetooth Smart機器と表現されます。一方、
従来のBluetoothとBluetooth Low Energyの
両方に対応したものは、Bluetooth Smart Ready

機器ということになります。たとえば、iPhone

4s以降の iPhoneはBluetooth 4.0を採用してい
ますが、従来のBluetoothもサポートしている
ため、Bluetooth Smart Ready機器ということ
になります。

　BLEの技術的な特徴には、従来のBluetooth

よりも進んだ低消費電力という点があります。
コイン型電池で1～2年間動かすこともできま
すが、引き替えに低頻度で少量のデータの通信
に向くという特徴もあります。従来の
Bluetoothは音声を流したりテザリングをした
りと、だらだらと通信をする用途に使われてき
ました。一方で、BLEが向いているのは、リモ

コンなどのように、たまに少しのデータ通信を
行うといった用途です。
　こういった規格の技術的な特徴のほかに、
BLEが開発者の間で注目を集めている大きな
理由があります。iPhoneや iPadといった iOSを
搭載したデバイスで動くアプリケーションと接
続する機器を開発するには、AppleとMade for

iPhone Program（MFi）の契約を結ぶ必要があり
ました。しかし、MFi Programに参加するの
は、Appleの iOS Developer登録を行うよりも遙
かに高いハードルです。しかし、Bluetoothでは
なく、Bluetooth Low Energyで接続する機器や
アプリケーションを開発するときには、この
MFi Programの契約を結ぶ必要がありません。

　nRF51822は、ノルウェーのNordic Semicon

ductorが開発した、無線通信モジュールとARM

Cortex-M0コアのSoCを搭載したチップです。
SoftDeviceと呼ばれるBLEプロトコルスタッ
クがあらかじめ用意されており、比較的手軽に
BLEデバイスの開発を行うことができます。比
較的手軽といっても、無線通信機器を開発する
には、技術と法制度のハードルがあります。
　技術的には、高周波回路設計が必要だという
点です。デジタル回路とは異なる知識や技術、
経験が必要な技術分野ですので、ソフトウェア
開発者が気軽に手を出せる分野とは言えませ
ん。こういった回路設計を行って、生産された
モジュールがさまざまなメーカーから提供され
ています。BLEモジュールを使えば、高周波回
路設計を行う必要がなくなります。

nRF51822

BLEの特徴

BLEで遊んでみよう

http://www.switch-science.com/

16 - Software Design Aug. 2014 - 17

第 46 回

16 - Software Design

 ▼図1　オンラインコンパイラ

　また、BLEの半導体とアンテナを自分で用意
して回路を組んだ場合、外部に電波が漏れない
試験環境で動作させるか、あるいは総務省の工
事設計認証を得る必要があります。いわゆる
「技適」です。この工事設計認証を得たBLEモ
ジュールを利用すれば、認証を受けるプロセス
を省略できます。
　nRF51822の技術などを得たモジュールも存
在するのですが、それでもまだソフトウェア開
発者が個人レベルで気軽に試作を行うにはハー
ドルが残されています。こういったモジュール
は、基板に搭載することを前提に設計されてい
て、基板設計などが必要になるという点です。
また、ARM Cortex-M0コアの開発を行うには、
この技術に関する知識も必要になります。こう
いった障壁を低くできないだろうかと思って

いたところに、筆者も普段から使っている
mbed注1がnRF51822にも対応するというニュー

注1） http://mbed.org/

mbed

スが流れてきました。

　mbed（エンベッド）については、過去に何度か
紹介していますが、あらためて簡単に紹介をし
ます。mbedは、ARMのCortex-Mシリーズのマ
イコンを手軽に開発できる環境です。mbedは、

❶�セットアップの必要がなく、ブラウザですぐ
に使うことのできるオンラインコンパイラ
（図1）
❷�マイコンのI/Oを操作するレジスタの詳細仕
様などを意識せず、手早く開発できるmbed
SDKと呼ばれるAPI群

❸�D&Dするだけでマイコンにプログラムを書
き込むことができるインターフェース

で構成されたラピッドプロトタイピングプラッ
トフォームです。
　マイコンにセンサなどを接続するときには、
一般的にはセンサをコントロールするコードも

BLEで遊んでみよう

http://mbed.org/

18 - Software Design

はんだづけカフェなう
秋葉原発！

書く必要があります。しかし、mbedのオンライ
ンコンパイラにはコードやライブラリを共有す
るSNSのような機能もあり、ほかの人が書い
て公開してくれているコードを再利用して手早
く開発を進めることができます。mbedが
nRF51822に対応したことで、nRF51822の詳
細仕様を把握する必要なく、手軽にセンサをつ
なげたりして自分が必要なBluetooth Smart機
器のプロトタイプが可能になりました。
　しかし、Nordic Semiconductorの開発した
nRF51822-mKITというmbedは、日本の認証
を受けていません。このため、認証を得たホシ
デンのHRM1017というBLEモジュールを
使って、国内で適法にBLEの開発ができる
mbedを作ってみました。

　写真1が、試作したmbed HRM1017です注2。
ブレッドボードを使ってちょっとした手間で試
作ができるような形状にしました。nRF51822

は、I2CやSPIといったよく使われるインター
フェースを備えています。筆者はまだBLEの
学習中ですので、mbedのWebサイトにあった
BLEを用いた体温計のサンプルプログラムと、
Nordic Semiconductorが配布している iOSア
プリケーションであるnRF Toolboxの組み合
わせで遊んでみました。

注2） http://www.switch-science.com/catalog/1755/

mbed HRM1017

　体温計ですので、温度センサをmbed

HRM1017に接続してみる必要があります。こ
こでは、NXPのI2C接続できる温度センサの、
LM75Bを使ってみました。mbed HRM1017と
LM75Bをブレッドボードの上に組んでみたの
が写真2です。ブレッドボードには抵抗も2本
搭載されていますが、これはプルアップ抵抗と
いうもので、I2Cを使うときには必要になるも
のです。
　サンプルプログラムが使っていたTMP102と
いうセンサのライブラリをLM75Bのライブラ
リに入れ替えて、オンラインコンパイラでコン
パイルすると、HEXファイルがブラウザでダウ
ンロードされてきます。このHEXファイルを、
パソコンからはUSBフラッシュメモリのよう
に見えるmbedのドライブにドラッグ&ドロッ
プすると、BLEモジュールにプログラムを書き
込むことができます。書き込みが終わると、モ
ジュールの中のCPU（nRF51822）がリセット
され、プログラムが動き始めます。iPhoneの
nRF Toolboxでmbed HRM1017に接続すると、
図2のような画面が表示されました。無事に温
度を読み込むことができています。mbedへの慣
れもあるとは思いますが、1時間もかからずに
このような実験ができるのがmbedでBLEの試
作ができることのメリットです。
　温度センサを接続し、気温をBLEで得て、
iPhoneで表示できたので、ほかの温度センサ
を接続してみました。第4回でも扱ったことの

 ▼写真1　mbed HRM1017 ▼写真2　試作1

http://www.switch-science.com/catalog/1755/

18 - Software Design Aug. 2014 - 19

第 46 回

まとめ

示されました（図3）。

　このように、BLEを搭載したマイコン、
nRF51822をmbedで開発できると、とても気
軽にスマートフォンと連動のできるBLE対応
機器をプロトタイピングできます。新しい技術
を身に付けるのには、実際に手を動かして開発
を経験するのが一番の近道だと思います。
　mbed.orgには、iBeaconのサンプルプログラ
ムもありますので、iBeaconを試してみたいデ
ベロッパも、気軽に自分のビーコン送信機を作
ることができます。また、iOSのデベロッパ登
録をしていなくとも、“techBASIC”というiOS

アプリケーションを使って、お手持ちの iPhone

でBLEアプリケーションを試作することもで
きます。
　筆者はAndroidにあまり馴染みがなくなって
しまったので詳しくはないのですが、API Level

18でBLE関連のAPIが搭載され、Android 4.3

以上が動いているBLE対応の端末であれば使
うことができるようです。
　Bluetooth Low Energyを使うと、スマート
フォンに実装できるアプリケーションやサービ
スの幅が大きく広がります。ぜひ、自分の
Bluetooth Smartデバイスを作って遊んでみて
ください。ｨ

ある、熱電対です。熱電対というのは、異なる
2種類の金属の接点を加熱すると一定の方向に
電流が生じる、ゼーベック効果を用いた温度セ
ンサです。この電流を測定してSPIで温度を
出力するチップを搭載した、スイッチサイエン
スの「K型熱電対温度センサモジュールキット
（SPI接続）MAX31855使用 3.3V版注3」を写真3
のように接続してみました。このMAX31855

というチップのライブラリはmbed.orgで見当
たらなかったので、公開されていたArduinoの
スケッチを参考にして、mbedのコードに書き直
しました。どちらもC/C++ですので、移植は
かなり容易に行えます。同じく、コンパイルし
てダウンロードしたHEXファイルをドラッグ
&ドロップすると、iPhoneで気温を表示するこ
とができます。ただし、K型熱電対は、室温く
らいの低い温度だと相対的に誤差が大きいの
で、あまり参考になりません。この熱電対キッ
トの計測できる範囲は、－200～＋1,350℃と
のことですので、ライターの炎を熱電対に

当てて、温度を測定してみました。Health

Thermomitorということで、体温計のデモア
プリケーションです。高い温度は表示できない
のではないかと心配していましたが、無事に表

注3） http://www.switch-science.com/catalog/864/

 ▼写真3　試作2

 ▼図2　nRF Toolboxの画面 ▼図3　高温も表示された

BLEで遊んでみよう

http://www.switch-science.com/catalog/864/

20 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ

Microsoft
All-in-One
Media Keyboard
　
フルサイズのキーセットと一体型マルチタッチトラックパッドを備えたコンパクトなキー
ボードです。トラックパッドで、スワイプ、ドラッグ、ズーム、クリックタッチの操作ができ、
マウスがなくてもパソコンを扱えます。また、カスタマイズ可能なメディアホットキーが備
えられており、Web やお気に入りの音楽、写真、映画を指先で操作できます。防滴仕様によ
り、万が一飲み物がこぼれても水分を簡単に取り除けます。インターフェースは、ワイヤレ
ス接続（USB 子機をパソコンに接続）となっており、最大 10m の範囲で操作ができます。
 提供元 日本マイクロソフト　 URL http://www.microsoft.com/ja-jp

OpenStack 入門
中井 悦司、中島 倫明 著／
B5 変型判、208 ページ／
ISBN=978-4-04-866067-9

業務システムとしてプライベートクラウドを構築しようとしている
エンジニアのために、OpenStack の構造や考え方・特性を解説す
る入門書。7 番目のリリースである「Grizzy」を基に解説しています。
 提供元 KADOKAWA　 URL http://www.kadokawa.co.jp/

OTG USB メモリ
Mobile X20

USB2.0 OTG 対応の USB フラッシュ
メモリです。1 つのボディに Micro USB と標準 USB（A タイプ）
のコネクタを両方搭載しており、スマホやタブレット、パソコンそ
れぞれに直接接続して使用できます。容量は 32GB になります。
 提供元 シリコンパワー　 URL http://www.silicon-power.com

『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2014 年 8 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

Red Hat
ノベルティグッズ
4 点
Red Hat 社のノベルティグッズです。同社のロゴが入った手帳、ファ
スナー付クリアケース、布細工の帽子のミニチュア、RED HAT
ENTERPRISE LINUX 7 のロゴステッカーの 4 点セットで提供します。
 提供元 レッドハット　 URL http://jp.redhat.com/

パーフェクト
Ruby on Rails
すがわら まさのり、前島 真一、近藤 宇智朗、
橋立 友宏 著／
B5 変形判、432 ページ／
ISBN=978-4-7741-6516-5

Ruby や Ruby on Rails に関する基本的なことから、開発や運用に
活用するツール、拡張方法など、現場で役立つ知識を中心に据えた、
最新の Rails4.1.1 に対応した書籍です。
 提供元 技術評論社　 URL http://gihyo.jp/

ウイルスバスター
モバイル

iPhone/iPad（iOS）に対応した「ウイルスバスターモバイル」の
最新版です。今回提供するのは、パッケージ版と同じ機能、期間で
使用できる非売品のカードです。専用サイトから同製品をダウンロー
ド後、アクティベーションキーを入力することで、利用いただけます。
 提供元 トレンドマイクロ　 URL http://www.trendmicro.co.jp

1 名

2 名

3 名 3 名

2 名 2 名

2 名

Nginx
T シャツ &
ロゴステッカー

「Nginx ユーザ会 #0」で配布された T シャツです。T シャツのサイズ
は S、M、L がありますので、ご希望のサイズがあれば応募の際にアン
ケート内にご記入ください。ロゴステッカーも 1 枚ずつお付けします。
 提供元 サイオステクノロジー　 URL http://www.sios.com/

※上の画像は、サンプルです。

http://sd.gihyo.jp/
http://www.microsoft.com/ja-jp
http://www.silicon-power.com
http://www.trendmicro.co.jp
http://jp.redhat.com/
http://www.sios.com/
http://www.kadokawa.co.jp/
http://gihyo.jp/

「さあ、ログを蓄えて宝の山を目指そう！」と、ひとかたまりの宝を探す冒険、とまではいきませんが、
コンピュータが動くとログが蓄積されます。そのログには宝の山と言える情報がたくさん入っています。
システムの内側で起きた出来事を記録していくシステムログ、Webサーバに接続してくるクライアント
の行動を記録するアクセスログ、データベースの利用状態を記録するクエリログやエラーログ……。
サービスの実装も大事ですが、ログを分析したり利用することで、管理・運用の効率が上がったり、次
に何をすべきかわかるようになります。意外に知られていない、でも重要なログの扱い方を70ページ
超の特集で解説します。システムログから MSP のログ監視テクニック、そして Fluentd と
MongoDBを利用した現代的なログの使用方法まで一挙に習得してみませんか？

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術
手がかりを見いだす眼力をつくる

CONTENTS

ログの基本をおさえておこう ...22第1章

Webサーバのログを見てみよう ..37第2章

MySQLのロギングを見てみよう ..52第3章
ログを管理・運用しよう ..63

（ログローテーションとログウォッチ）
第4章

MSP直伝・プロがやっているログ監視73第5章

イラスト　高野 涼香

フロントエンジニアもFluentd＋MongoDBで実践！
小さく始めるログ活用のすすめ ..83第6章

 Writer 第 1 ～ 4 章　近藤 成

 Writer 高村 成道

 Writer 羽田 健太郎

エラー原因の追及からユーザ動向までログは宝の山

22 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

　そもそもログは、ソフトウェア注1（プログラ
ムの意味）が実行された経過情報を出力したも
のです。つまり、プログラムが実行されたときに、

あらかじめ決められている出力先（ファイルなど）

へ、プログラムの処理情報を書き込みます。

　一般的なUNIX系のアプリケーション注2のほ
とんどは、ログの出力先（ファイル名など）を指
定ができるようになっており、そこにあらかじ
め設定しておけば、そのアプリケーションが起
動した際に、その設定情報を読み込み、指定し
てあるログの出力先（ファイルなど）へ出力され
るようになります（図1）。

ヒント ここで紹介するCentOSのデフォルトの
設定では、ログの出力先は、ほとんどの場合、
/var/log/配下のディレクトリおよびファイルへ
出力するようになっています。

　たとえば、図1はWebサーバとして有名な
Apacheのログ出力までの大きな流れです。

①	OSからApacheが起動される
②	Apacheは、起動時に設定ファイルの情報を
読み込む。そこで、ログの出力先を確認する

注1） ここでは、ハードウェアとの違いを強調するためソフトウェ
アという表現を使っています。ここでの意味は、プログラ
ムと同義です。

注2） プログラムの中で一般的にサービス（デーモン）として提供
されているプログラムをここではアプリケーションと呼ぶ
ことにします。

ログは、いつ、だれが、
どこに収集するの？

③	ログの出力先にApacheが起動した時のログ
情報を出力する

④	Apacheが起動完了し、Webサイトへのアク
セスが可能となる。そこへ、ユーザからその
Webサイトへアクセスがあったとする

⑤	ユーザからWebサイトへのアクセスをApache
は検出し、ユーザへ要求ページを返信する
と同時に、日時情報（いつ）とともにユーザ
情報（だれが）、要求されたページ情報（何を
したか）をログ情報として出力する

　このような流れでApacheのログ情報は出力
されます。Apacheのログについては、「第2章
Webサーバのログを見てみよう（p.37）」で解説

　ログは、システムの稼働状況をはじめとして、さまざまな情報を蓄積しています。本特集では、システムログ、
アプリケーションのログ、それぞれのログの読み方・扱い方を解説します。これによって、システムに障害が起
きたときに原因追及ができるようになったり、分析ができるようになります。まず第1章では、ログの基本をしっ
かりと学びます。

ログの基本を
おさえておこう

 Writer 近藤 成（こんどう じょう）　
 Mail jj2kon@gmail.com　 Web http://server-setting.info/

第1章

 ▼図1　Apacheのログ出力までの流れ

⑤Webサイトアクセスを検知、
　要求ページを返信し、同時に
　アクセス情報をログ情報として
　出力する

Apache

Apache

①Apache 起動

②設定ファイル
　を読み込み、
　ログの出力先
　を確認する

③ログファイル
　へ書き込む

④Webサイト
　へアクセス

http://server-setting.info/

22 - Software Design Aug. 2014 - 23

第1章ログの基本をおさえておこう

します。

ヒント 図1では、ログの出力先をファイルとし
ていますが、ログの出力先はファイルとは限りま
せん。データベースやメールなどへ出力されるこ
ともあります。

　Unix系OS（Linuxも含む）では、何といって
もログと言えばsyslog（シスログと呼ばれる）で
す。
　そもそもsyslogは、Mail（SMTP：Simple Mail

Transfer Protocol）サーバの代表的なアプリケー
ションであるsendmail注3のログアプリケーショ
ンとして開発されたものです。つまり、最初は、
単純にMailサーバ専用のロガープログラムだっ
たわけです。これが便利だと気づいた開発者た
ちが、こぞってほかのアプリケーション（FTP

サーバなど）でも取り入れて、sendmailと同じよ
うにsyslogアプリケーションを使ってログ情報
の出力を行ったので、デファクトスタンダード
になりました。このデファクトスタンダードになっ
たsyslogを体系づけてRFC 3164注4にまとめた
のがsyslogプロトコルと言われるものです。

ヒント 一般的に syslogというと、広義のアプリ
ケーションの総称（たとえば、以降で解説する
rsyslogや syslog-ngなどのアプリケーションを含
めたもの）として使うことが多いと思っていました。
しかし、最近のWeb情報では syslogとはプロトコ
ルだという記事をよく見かけるようになりました。
個人的に、少し違和感を感じて調べてみると
wikipediaにそれに近い表現で書かれているのを見
つけました。想像ですが、その情報を元に、いろ
いろな方々が書かれたのではないかと思います。
このような呼称は、広く普及したほうが正しくなっ
てしまうので、今では、どっちが正しいとは言え
なくなってきているのかもしれません。

注3） http://www.sendmail.com/sm/open_source/

注4） RFCとは、Request for Commentsの略で直訳すれば「コ
メント募集」となります。もともとは、広く意見を吸い上
げる意味合いで使用されたようですが、今では少し異なり、
インターネットに関する技術の標準を定める団体である
IETFが正式に発行する公開文書を意味します。RFC 3164
では、The BSD syslog Protocol が定義、公開されています。

syslogはログの
基本です

syslogの基本機能①
「ログを書き込む」

　1つ目の機能はログを書き込む機能です。言
い換えれば、ログの出力を管理する機能のこと
です。たとえば、ログの出力先がファイルの場
合は、ログファイルへの書き込み、ログファイ
ルの管理を行う機能のことです。
　たとえば図 2は、Mailサーバ（sendmailや
postfix注5など）やFTPサーバ（vsftpd注6など）か
らのログ情報をsyslogがログファイルへ書き込
むまでの大きな流れです。

①	MailサーバやFTPサーバなどでログ情報を書
き込みたい場合、syslogへログ情報を渡す

②	syslogはそのログ情報を受け取り、誰から
のログ情報か確認し、各アプリケーション
用のログファイルへ書き込む

　このように非常に単純な流れです。これによっ
てMailサーバやFTPサーバは、ログファイル
への書き込みおよびそのファイルの管理を行う
必要もなく、手間が省けて大助かりというわけ
です。ただ、必ずsyslogがインストールされて
いるとも限らないので、一般的なアプリケーショ

注5） http://www.postfix.org/　［日本語］http://www.postfix-
jp.info/

注6） https://security.appspot.com/vsftpd.html

 ▼図2　Syslogのログ書き込みの流れ

syslog

Mail
サーバ

FTP
サーバ

FTP
ログファイル

Mail
ログファイル

FTP
log

Mail
log

FTP
log

Mail
log

①ログ出力 ②ログファイル
　書き込み

http://www.sendmail.com/sm/open_source/
http://www.postfix.org/
http://www.postfix-jp.info/
http://www.postfix-jp.info/
https://security.appspot.com/vsftpd.html

24 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

ンは、自前のログ情報出力・管理機能を持って
います。もちろん、syslogへの出力機能も、ほ
とんどのアプリケーションが有しています。

ヒント Windowsでは、この syslogのログの出力
管理機能をイベントログが行っています。

syslogの基本機能②
「ログを収集する」

　2つ目の機能は、ログの収集管理機能で、複
数のサーバのログ情報を1台のログ専用サーバ
で集中的に収集し管理する機能です。
　たとえば図3は、図2の例に倣ってMailサー
バ（sendmailもしくはpostfixなど）や、FTPサー
バ（vsftpdなど）からのログ情報を syslog（アプ
リケーションサーバ）がログの専用サーバ（ログ
サーバ）へ送信し一括管理するという大きな流
れです。

①	MailサーバやFTPサーバなどでログ情報を
書き込みたい場合、アプリケーションサー
バ内のsyslogへログ情報を渡す

②	アプリケーションサーバ内のsyslogは、そ
のログ情報を受け取りログサーバへ転送する

③	ログサーバ内のsyslogは、そのログ情報を
アプリケーションサーバから受け取り、誰
からのログ情報かを確認し、各アプリケーショ
ン用のログファイルへ書き込む

　このようにネットワークを介してログ情報を
一ヵ所に集めて管理できます。大規模なシステ
ムでも、この機能を利用し、ログサーバの情報
管理をしっかり行えば、運用の手助けになるこ
とは間違いありません。
　このようにアプリケーションを開発する側と
したら、ログ情報をsyslogへポイポイと投げて
おけば、あとはsyslogが何とかしてくれるわけ
です。確かに便利ですよね。

syslogというアプリケーション
は今や利用されていない

　CentOS 5では、アプリケーションとしての
syslogd（syslogデーモン）は、

・syslogd
・klogd (カーネルログデーモン)

の2つのアプリケーション（デーモン）をsysklogd

という1つのパッケージで提供していました。
しかし、syslogdは、バージョン1.5（2007年リ

 ▼図3　syslogのログ収集の流れ

①ログ出力

②ログ情報を
　ログサーバへ
　転送する

③ログ情報を受信し、ログ情報に
　よってファイルを選択し、ログ
　ファイルへ書き込む

syslog

Mail
サーバ

FTP
サーバ

ログ
サーバ

アプリケーション
サーバ

FTP
log

Mail
log

FTP
ログファイル

Mail
ログファイル

FTP
log

Mail
log

Syslogsyslog

syslogがなかった時代
Column

　syslogがなかった、あるいはアプリケーションが
まだsyslogに対応していなかった時代では、ログの
一括管理は自前のUDPによるファイル転送などを
駆使して行っていました。その当時は、まだまだ、
電話回線＋モデムでの接続がメインで、TCP接続で
の常時接続などは夢物語のような時代でした。UDP
接続で1日に数回、コンピュータ同士を接続するの
が普通の時代です。メールもそのUDP接続で1日に
数回送られていた時代でもありましたから、メール
のやりとりは、文字どおり郵送の手紙感覚でした。
今でこそ、ほぼリアルタイムに送受信できるメール
もそんな感じだったんですよ。このsyslogも例外で
なく、開発された当時は、UDPがメインでした。
そのため、ここでの転送もUDPがメインです。

24 - Software Design Aug. 2014 - 25

第1章ログの基本をおさえておこう

リース）で更新が止まってしまいました注7。また、
syslogdは、ログ情報の紛失の可能性やネット
ワーク上のログ情報が暗号化ができないなどの
いくつかの問題が指摘されていました。
　これらの問題から、とくに多くのLinuxディスト
リビューションでは、sysklogd（つまり、syslogd、
klogd）パッケージは採用されなくなっています。
　代わりに採用されているsyslogアプリケーショ
ンの後継者には、大きくsyslog-ngとrsyslogの2

つがあります。以降、この2つのアプリケーショ
ンについて解説します。

syslog-ngの機能とは
　syslog-ng注8は、syslog New Generationの略
で、直訳すれば「次世代syslog」ぐらいの意味で
しょうか。この名前のとおり先のsyslogアプリ
ケーションの問題を解決すべく開発されたアプ
リケーションです。syslogプロトコルのサポー
トはもちろんのこと、次のような主だった機能
が追加されています。

・	ログの分類機能
・	TCPによるログ情報の送受信
　（ログ情報の紛失の回避）
・	SSL/TLSを使用してセキュアログ
　（ネットワーク経由の暗号化の実現）
・	データベースへのログ出力

などさまざまな機能が盛り込まれています。

rsyslogの機能とは
　rsyslog 注 9 は、rocket-fast system for log

processingの略で、直訳すれば 「猛烈に早い
syslog 」ぐらいの意味でしょうか。そもそも
rsyslogは、標準のsyslogdの後継として始まり
ましたが、多種多様なソースコードからの入力
を変換、結果をさらに多様な出力先への書き込

注7） http://freecode.com/projects/sysklogd

注8） ライセンス：LGPL（core部）、LGPLv2（plugin部）http://
www.balabit.com/network-security/syslog-ng/
opensource-logging-system

注9） ライセンス：GPLv3（http://www.rsyslog.com）

みを可能にすることでロギングのスイス・アー
ミーナイフのようなもの（写真1）へと進化しま
した（このキャプションは公式サイトの訳です）。
　先のsyslog-ng同様、rsyslogもsyslogプロト
コルのサポートはもちろんのこと、次のような
主だった機能が追加されています。

・	ログの分類機能
・	TCPによるログ情報の送受信
　（ログ情報の紛失の回避）
・	SSL/TLSを使用してセキュアログ
　（ネットワーク経由の暗号化の実現）
・データベースへのログ出力

　CentOS 6では、この rsyslogが採用されて
います。また、Debianでもrsyslogが採用され
ており、主要な2つのLinuxディストリビュー
ションで採用されたことによって、rsyslogが
今やデファクトスタンダードになりつつあると
言っても良いかもしれません。

ヒント Web 情 報 で rsyslog を 検 索 す る と、
rsyslogは、reliable syslog（信頼性の高い syslogの
意味）の略だというページを多く見つけました。
reliable syslogを目指したのは確かですが、名前の
由来は、公式サイトで上記のように記載があった
ので、プロトコルと混同されているのではないか
と思います。

 ▼写真1　スイス・アーミーナイフ

このようになんでもかんでも1つのナイフにぶら下がっている様を言
いたいんでしょうか、それとも、これだけ機能が豊富だよというこ
とでしょうか。いずれにせよ、便利であることは間違いないと思い
ます。

http://freecode.com/projects/sysklogd
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system
http://www.rsyslog.com

26 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

　ここまで、ログ、syslogの基本的な機能を解
説してきました。ここからは、実際にCentOS

6を使って具体的な設定、使い方を解説します。
また、以降syslogと表記する場合は、狭義の意
味でのrsyslogを指すのではなく、広義の意味
でsyslog対応アプリケーションの意味として表
記することに注意してください。

　ここでCentOS 6＋ rsyslog環境で実践する
ことで、まずはsyslogが、どのようなものかを
肌で感じてもらおうと思います。CentOS 6は、
2014年5月現在の最新版6.5です。rsyslogの
バージョンは、5.8.10です。また、CentOS 6

は便宜上リモートアクセス（SSH接続）して使
用します。SSH接続するためには、SSHサー
バ（openssh-server）がCentOS側で起動してい
なければいけません。
　もし、SSHサーバ（openssh-server）がインス
トールされていないようなら、サーバのコンソー
ル画面から次の要領で簡単にインストールでき
ますので、インストールしてみましょう。

$ yum install openssh-server
……（省略）……
Is this ok [y/N]: y
……（省略）……
Complete!

　インストールを終えたら、起動しておきましょう。

　CentOS 6＋SSHサーバ（openssh-server)が

syslog へコマンドを
使って出力してみよう

$ /etc/init.d/sshd start
sshd を起動中: [OK]

インストールされた状態で、なおかつ、何も変
更されていない状態（初期（デフォルト）状態）で
あることを前提に解説します。

リモートアクセスしてみよう

　まずは、CentOSへログインしてみましょう。
SSHによるリモートログインを行うには、
Macでは、Mac OS Xターミナルを使うと良い
でしょう。Windowsのターミナルソフトは、
コマンドプロンプトです。そもそもデフォルト
でsshコマンドが存在しませんので、sshコマ
ンドのインストールを行うか、別のターミナル
ソフトを使うことになります。ここではターミ
ナルソフトのTeraTermを使ってリモートログ
インを行ってみます（TeraTermのインストー
ルおよび設定は多くのWebサイトで紹介され
ていますので、ここでは割愛します）。

コマンドを使ってみよう

　まずは、簡単なlsコマンド（Windowsでいう
ところのdirコマンド）を使ってみます（図4）。
　パラメータの“-l”はリスト出力、“-a”は、
すべてを意味します。実行すると上記のように
すべての情報をリスト形式で出力します。
　次にpsコマンドを使って、syslogのプロセ
スを確認してみます（図5）。
　psコマンドは、現在のプロセスの状態を出
力するコマンドです。“x”は、呼び出したユー
ザの所有する全プロセスを出力するという意味
で、“a”は、端末（tty）を持つすべてのプロセス
をリストで出力するという意味になります。
ちょっとわかり難いですが、“ax”を指定する
ことで全プロセスを出力してくれると覚えてお

$ ls -al
合計 20
drwx------. 2 hoge hoge 4096 5月 25 06:33 2014 .
drwxr-xr-x. 3 root root 4096 5月 25 06:33 2014 ..
-rw-r--r--. 1 hoge hoge 18 7月 18 22:15 2013 .bash_logout
-rw-r--r--. 1 hoge hoge 176 7月 18 22:15 2013 .bash_profile
-rw-r--r--. 1 hoge hoge 124 7月 18 22:15 2013 .bashrc
……（省略）……

 ▼図4　lsコマンドを試す

26 - Software Design Aug. 2014 - 27

第1章ログの基本をおさえておこう

ログはコンピュータの行動記録
Column

　ログとは、そもそも英語では logと書きます。英
和辞典を調べてみると最初に出てくるのが、丸太、
材木を切り出すという意味です。次が、測程儀（船
の速度を測る器具）や航海（航路）日誌（写真2）に記
入するなどの意味が出てきます。この2つは、まっ
たく意味が異なるもののようですが、これらを結び
つけるものは“船”であり“測程儀”です。船の速度を
測る器具（測程儀）に手用測程儀（hand log）というも
のがあります。これは、木片に長い紐を括り付けた
簡単な道具です。使い方も簡単で、木片を海に浮か
べ、紐を船上から垂らし、その紐がスルスルと簡単
に流れ出るようにして船を走らせるだけです。一定
時間内に紐がどれだけ流れ出たかで船の速度を測定
するというものです。船の速度でノット（英語：
knot、日本語：結び目）という単位が使われるのは、
この紐に一定間隔で結び目をつけ、先の計測方法で
流れ出た結び目の数を船の速度としたことに由来し
ます。この木片が丸太（log）であり、船の計測が航
海日誌（logbook）へと結びついたとされています。
　また、コンピュータ、とくにプログラミングの世
界では、プログラムが経時（あるいは処理経過）ごと
に（「いつ、だれが、どこで、何をした」という情報を）
記録することを「ロギングする」、記録したものを「ロ
グ」と呼びます。英語で“記録”は recordという単語
を使うことが多いですが、まさに logが使われてい
るのは、航海日誌（logbook）のように時間経過（あ
るいは作業経過）とともに記録を残したことにたと
えてのことだと言われています。
　さて、本題に入りましょう。なぜログが必要なの
でしょう。
　それは、大きく2つの理由があります。1つは、
不具合の修理、改善のためです。コンピュータシス
テムに完璧なものはありません。むしろ、コンピュー
タシステムほどよく壊れるものはないとさえ言える
かもしれません。今でこそ、少なくなりましたが、
パソコンが固まる（突然、動かなくなる）のは日常茶
飯事でした。もし、コンピュータシステムが完璧で
壊れないものであれば、そのような過去を記録した
情報（ログ）は、必要ないのかもしれません。しかし、
コンピュータシステムに限らず完璧なもの、壊れな
いものはありません。安全神話が妄想であるように、
それを正しく理解していれば壊れたときにどうしよ
うかと考えるでしょう。もし壊れれば、その原因を
究明し、修復・修繕し、二度と同じような壊れ方を

しないように（英語にもなった）改善（カイゼン）を図
るでしょう。その原因究明には、壊れた時の状態・
情報が非常に大事です。その貴重な情報がログです。
そのログが経時的（あるいは経過的）に記録された情
報であることから、壊れた時に何が起こったか、ハー
ドウェア・ソフトウェアを含めてシステムの状態を
時間をさかのぼって把握することができるのです。
その昔、大航海時代には、航海日誌が安全な航海の
ための貴重な情報だったように、このログも安定し
たシステム運用のための貴重な情報なのです。
　もう1つは、昨今、注目されているビッグデータ
に代表される痕跡情報（アクセス情報）としてのログ
の必要性が高まったことにあるでしょう。これは、
ログの特徴である「いつ、だれが、どこで、何をした」
という情報から、人の動向や意識、マーケティング
の調査などのためのデータマイニングの元データと
して用いられたりします。具体的に身近な例として、
Webサイトのアクセスログの解析があります。
Webサイトのアクセスログ解析では、どのページ
から入ってきて、どのページで離脱したか、どの地
域の人がどれくらいアクセスしたかなどさまざまな
分析が行われます。その分析結果は、より人が興味
を持つようなページ作りや人を見せたいページへど
のように導いていくか、いわゆる導線の張り方を考
える材料などに用いられたりします。これらは、先
の不具合の修理のように過去のデータから現在を改
善するのではなく、過去のデータから未来を予測（改
善）するという、同じログの情報でも活用の範囲を
広げた1つの解析（分析）方法でもあります。最近で
は、インターネットの発展とともに、これらの情報
活用が非常に注目を集めているだけに、ログという
とこちらのイメージが強い方も多いようです。この
ように、ログが、さまざまな切り口で利用され、改
修、改善を図る貴重なデータであることは間違いあ
りません。

 ▼写真2　大航海時代の海図

$ ls -al
合計 20
drwx------. 2 hoge hoge 4096 5月 25 06:33 2014 .
drwxr-xr-x. 3 root root 4096 5月 25 06:33 2014 ..
-rw-r--r--. 1 hoge hoge 18 7月 18 22:15 2013 .bash_logout
-rw-r--r--. 1 hoge hoge 176 7月 18 22:15 2013 .bash_profile
-rw-r--r--. 1 hoge hoge 124 7月 18 22:15 2013 .bashrc
……（省略）……

28 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

ヒント

くと良いと思います。
　“¦”（パイプと言います）は、続けてコマンド
を実行しなさいということです。つまり、ps
コマンドを実行したあとの主力を受けて、“¦”
の後のgrepコマンドを実行しなさいというこ
とです。
　grepコマンドは、ファイルやコマンドで出
力された文字列情報からパラメータ指定の文字
列を検索し、ヒットした行を出力するコマンド
です。ここでは、psコマンドが出力した内容（文
字列）をgrepで指定している文字列“syslog”
で検索した結果を画面に表示しています。図5
の出力結果からすれば、rsyslogd（rsyslogデー
モン）プロセスが、ちゃんと動いています。

　ここで紹介したps、grepコマンドは非常に
よく使う基本コマンドですので、使い方をマス
ターしておいたほうが良いでしょう。
　では、続けて、ログを出力してみましょう。

ログを出力してみよう

　SSHでログインできるようになったら、2つ
のターミナル（ここでの例ではTeraTerm）画面
からログインしてください（TeraTermのメ
ニューから［ファイル］－［新しい接続 ...］を選択
することでいくつでも画面を開くことができま
す）。これから次のように、TeraTermを操作
してみましょう（図7）。

　　　　　図4はユーザhogeのホームディレクト
リの出力結果です。ここで、.bashrc、.bash_profile
（bashのユーザ設定ファイル）があるようにLinuxの
ほとんどのディストリビューションでデフォルトの
シェルにbashを採用しています。Bourneシェルと
後方互換性を持つbashを含めて、広義の意味でBシェ
ルということがあります。これは、BSD系のCシェ
ル（csh、tcsh）と対比させた言い方となっています。
このbashは非常に便利で、コマンド補完や履歴読
出しなどいろんな機能があります。たとえばgrepと
入力したいけど、綴りを忘れたときは、“gr”まで入
力し†キーを押下すれば、1つしか候補がなけれ
ば、“grep”までを入力補完してくれます。2つ以上
の候補がある場合は、再度†キーを押下すれば
図6のように候補コマンドが一覧として出力されます。

　また、Ñキーを押下すれば、前に入力したコマン
ドが表示されます。1つ前に実行したコマンドがls
-alなら、Ñキーを1回押下すれば次のように出力さ
れるはずです。

$ ls -al

　これぐらいの機能なら、最近ではWindowsのコマ
ンドプロンプトでもできるようになりましたが、
UNIX系のシェルがその元祖です。参考までに、Mac
OS XがBSD系のUNIX OSであることを知らない方も
多いみたいです。そんな方は最近（Mac OS X 10.0から
10.2.8まで）まで、Mac OS Xが採用していたデフォル
トシェルが、BSD系のデフォルトシェルであるCシェ
ル（tcsh）だったことも、今はbashなのもご存じない
かもしれませんね。

$ gr
grefer grolbp groupmod grub-install
grep grolj4 groups grub-md5-crypt
grn grops grpck grub-terminfo
grodvi grotty grpconv grubby
groff groupadd grpunconv
groffer groupdel grub
grog groupmems grub-crypt
$ gr

 ▼図6　bashの入力補完機能

 ▼図5　psコマンドでsyslogのプロセスを確認

$ ps ax ¦ grep syslog
 797 ? Sl 0:00 /sbin/rsyslogd -i /var/run/syslogd.pid -c 5
 1528 pts/0 S+ 0:00 grep syslog

28 - Software Design Aug. 2014 - 29

第1章ログの基本をおさえておこう

・	一方の画面（図8では、TeraTerm#2）からロ
グ情報の書き込みを行う

・	他方の画面（図8では、TeraTerm#1）でリア
ルタイムにログ情報を確認する

　図7のように準備ができたら、ログ情報を出
力してみましょう。次のページの図8は、ここ
で準備した2つのターミナル画面に対して、時
系列にコマンドを入力する手順を記載したもの
です。まずは 図8の手順（1）から順番に、コマ
ンドをそれぞれの端末から入力してみてくださ
い。
　図8で使っているコマンドは2つだけです。
それも非常に簡単な使い方だけです。その2つ
のコマンドについて以降解説します。

tailコマンド
　1つは、tailコマンドです。このコマンドは、
ファイルの末尾を出力するコマンドです。デフォ
ルトでは、指定されたファイルの末尾の10行
を出力します。ファイルが10行に満たない場合、
すべての行を出力します。-fオプションは、ファ
イルの内容を常に監視し、表示をリアルタイム
に更新するというものです。

$ tail -f /var/log/messages

と入力した場合、/var/log/messagesという

ファイルの末尾10行を出力し、引き続きファ
イル内容を監視します。ファイルの更新があれ
ば、更新分を画面にリアルタイムに出力します。

loggerコマンド
　もう1つは、loggerコマンドです。このコ
マンドは、syslogにログ情報を渡すコマンドで
す。いろいろなパラメータがありますが、ここ
では、-pオプションだけを使っています。
syslogのログ情報には、ログの種別としてファ
シリティとプライオリティ（優先順位）がありま
す。-pオプションでは、そのログ情報のファ
シリティおよびプライオリティを指定すること
ができます。ファシリティは、日本語での適当
な訳がありませんが、ここではカテゴリの意味
で良いと思います。

$ logger -p mail.info mail-log

と入力した場合は、“mail-log”というログメッ
セージをファシリティ＝mail、プライオリティ
＝infoを設定したログ情報をsyslogへ渡します。
　syslogは、ログ情報のファシリティ、プライ
オリティに従って出力先（ファイルの場合は、
ファイル名になります）を選択し、該当出力先（こ
こでは、ファイル名：/var/log/maillogに

なります）へログ情報を出力します。

 ▼図7　TeraTerm同時2接続画面イメージ

30 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

TeraTerm#1

tailコマンドログファイルをリアルタイムでモニター
します。
（1）

$ tail -f /var/log/message
……（略）……
May 25 07:05:33 local65 root:default-log

loggerコマンド発行後、すぐに上記メッセージが出力されることを確認
できるでしょう。
ö＋Cでtailコマンドを終了し、続けて別のログファイルを読み
込みます

（3）

$ tail -f /var/log/secure
……（略）……
May 25 07:23:15 local65 root:secure-log

loggerコマンド発行後、すぐに上記メッセージが出力されることを確認
できるでしょう。
ö＋Cでtailコマンドを終了し、続けて別のログファイルを読み
込みます

（5）

$ tail -f /var/log/maillog
……（略）……
May 25 07:31:22 local65 root:mail-log

loggerコマンド発行後、すぐに上記メッセージが出力されることを確認
できるでしょう。
ö＋Cでtailコマンドを終了し、続けて別のログファイルを読み
込みます

（7）

$ tail -f /var/log/cron
……（略）……
May 25 07:40:20 local65 root:cron-log

loggerコマンド発行後、すぐに上記メッセージが出力されることを確認
できるでしょう。
ö＋Cでtailコマンドを終了し、続けて別のログファイルを読み
込みます

（9）

$ tail -f /var/log/spooler
……（略）……
May 25 07:45:11 local65 root:spooler-log

loggerコマンド発行後、すぐに上記メッセージが出力されることを確認
できるでしょう

Message from syslogd@local165 at May 25 ｭ
07:48:31...
root:emerg-log

loggerコマンド発行後、すぐに上記メッセージが出力されることを確認
できるでしょう。これは端末に出力されるのはもちろんのこと、ログファイ
ルにも書き込まれます

TeraTerm#2

（2）
loggerコマンドでログ情報をsyslogへ渡してみます。

$ logger default-log

（4）

$ logger -p authpriv.info secure-log

（6）

$ logger -p mail.info secure-log

（8）

$ logger -p cron.info cron-log

（10）

$ logger -p news.crit spooler-log

（11）

$ logger -p uucp.emerg emerg-log
Message from syslogd@local165 at May 25 ｭ
07:48:31...
root:emerg-log

loggerコマンド発行後、すぐに上記メッセージが出力されることを確認
できるでしょう。このメッセージは緊急時に全端末に送信されるもので、
全ログファイルへも保存されます

 ▼図8 　同時2接続画面でのやりとりを確認しよう

30 - Software Design Aug. 2014 - 31

第1章ログの基本をおさえておこう

　指定できるファシリティは表1のようになり
ます。CentOSでは、デフォルトの設定では11

～15の値は、使っていないようです。
　指定できるプライオリティは表2のようにな
ります。
　表1と表2のファシリティ名、プライオリティ
名を使えることはもちろんですが、数値を使う
こともできます。このとき、ファシリティは表

1の値2の列の数値を利用することに注意して
ください。

$ logger -p 16.6 mail-log

と入力した場合は、

$ logger -p mail.info mail-log

と入力した場合と同じ結果を得ます。

　また、-pオプションを指定しなかった場合は、
user.noticeを指定した場合と同じ動作にな
ります。

$ logger default-log

と入力した場合は、

$ logger -p user.notice default-log

 ▼表1　ファシリティ一覧

※ 値はRFC 3164注10で定義されている値です。値2は値の列の数値に2の3乗（23）を掛けたものです。また、この値2の数値
は loggerコマンドで指定できます。

値 値2 ファシリティ名 概要
0 0 kern カーネルメッセージ
1 8 user ユーザー・レベル・メッセージ
2 16 mail メール・システムメッセージ
3 24 daemon crondおよびrsyslogd以外のシステム・デーモンからのメッセージ
4 32 auth(security) セキュリティ、認証または認可メッセージ
5 40 syslog rsyslogdによって内部で生成されたメッセージ
6 48 lpr ライン・プリンタ・サブシステムメッセージ
7 56 news ネットワーク・ニュース・サブシステムメッセージ
8 64 uucp UUCPサブシステムメッセージ
9 72 cron cronメッセージ

10 80 authpriv セキュリティ、認証または認可メッセージ(プライベート)
11 88 ftp FTPシステムメッセージ
12 96 ntp NTPサブシステムメッセージ
13 104 log audit セキュリティ、認証に関して OSによっては、4,10,12,14 を使い分けることができる。
14 112 log alert 〃
15 120 clock daemon クロックデーモンに関して OSによっては、9,15を使い分けることができる。
16 128 local0 ローカルで使用（他のアプリケーションからのログで自由に使える）
⋮ ⋮ ⋮ ⋮
23 184 local7

 ▼表2　プライオリティ一覧

※ 値はRFC 3164注10で定義されている値です。また、こ
の値は loggerコマンドで指定できます。

※ 16：noneは、内部的に使われるものでRFCで定義さ
れているわけではありません。

値 プライオリティ名 概要
0 emerg(panic) 緊急事態（システムが不

安定な状態）
1 alert 警報（今すぐ対応が必要

な状態）
2 crit 危機的（クリティカル）な

状態
3 err(error) エラー
4 warning(warn) 警告
5 notice 注意（正常だが注意が必

要）
6 info 情報
7 debug デバッグ（問題対処・開

発用情報）
16 none プライオリティなし

注10） RFC 3164では、The BSD syslog Protocolが定義、公開されています。

32 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

と入力した場合と同じ結果を得ます。
　図8に従って行ったコマンドによるログの出
力で、loggerコマンドで指定した-pオプショ
ンによって、ログの出力先（ここでの例ではファ
イル）が変わったことに気づかれたと思います。
これは、-pオプションで指定するファシリティ、
プライオリティによって出力先を変えることが
できるということです。具体的に、rsyslogの

設定ファイルで指定、変更することができます。
　そこで、次にrsyslog設定ファイルを見てみ
ます。各ログの出力先が、どのように設定され
ているか確認してみましょう。

 ▼リスト1　/etc/rsyslog.conf（行番号は説明の都合で付けたもの）

 ▼リスト3　キャプション

01 # rsyslog v5 configuration file
02
03 # For more information see /usr/share/doc/rsyslog-*/rsyslog_conf.html
04 # If you experience problems, see http://www.rsyslog.com/doc/troubleshoot.html
05
06 #### MODULES ####
07
08 $ModLoad imuxsock # provides support for local system logging (e.g. via logger command)
09 $ModLoad imklog # provides kernel logging support (previously done by rklogd)
10 #$ModLoad immark # provides --MARK-- message capability
11
12 # Provides UDP syslog reception
13 #$ModLoad imudp
14 #$UDPServerRun 514
15
16 # Provides TCP syslog reception
17 #$ModLoad imtcp
18 #$InputTCPServerRun 514
19
20
21 #### GLOBAL DIRECTIVES ####
22
23 # Use default timestamp format
24 $ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat
25
26 # File syncing capability is disabled by default. This feature is usually not required,
27 # not useful and an extreme performance hit
28 #$ActionFileEnableSync on
29
30 # Include all config files in /etc/rsyslog.d/
31 $IncludeConfig /etc/rsyslog.d/*.conf
32
33
34 #### RULES ####
35
36 # Log all kernel messages to the console.
37 # Logging much else clutters up the screen.
38 #kern.* /dev/console
39
40 # Log anything (except mail) of level info or higher.
41 # Don't log private authentication messages!
42 *.info;mail.none;authpriv.none;cron.none /var/log/messages
43
44 # The authpriv file has restricted access.
45 authpriv.* /var/log/secure
46
47 # Log all the mail messages in one place.

32 - Software Design Aug. 2014 - 33

第1章ログの基本をおさえておこう

　早速、rsyslog設定ファイルを見てみましょう。
リ ス ト 1が rsyslogの設定ファイル（/etc
/rsyslog.conf）です。

各行の役割と解説
　これだけの行数がありますがコメント（“# ”
文字列以降はコメントになります）を除けば、
実質の行数は数行です。
　次に簡単に各設定について解説します。

8行目：ロードするモジュールを指定しています。
ここでは、imuxsockを指定しています。実際
にロードされるファイルは、/lib/rsyslog/

syslogの設定を確認
してみよう

imuxsock.soです。このモジュールは、ログ
ファイルへの書き込み、管理を行うものです。

9行目：ロードするモジュールを指定しています。
ここでは、imklogを指定しています。実際にロー
ドされるファイルは、/lib/rsyslog/imklog.
soです。このモジュールは、カーネルログをサ
ポートするためのモジュールです。p.24で解説
したsysklogdパッケージのklogd（カーネルログ
デーモン）の代替になります。

24行目：ログ情報の出力フォーマットを指定
しています。テンプレートとして次のものが用
意されています。また、各テンプレートを使っ
た時のlogger -p mail.info mail-log実行
時の出力イメージを記載しておきます。

48 mail.* -/var/log/maillog
49
50
51 # Log cron stuff
52 cron.* /var/log/cron
53
54 # Everybody gets emergency messages
55 *.emerg *
56
57 # Save news errors of level crit and higher in a special file.
58 uucp,news.crit /var/log/spooler
59
60 # Save boot messages also to boot.log
61 local7.* /var/log/boot.log
62
63
64 # ### begin forwarding rule ###
65 # The statement between the begin ... end define a SINGLE forwarding
66 # rule. They belong together, do NOT split them. If you create multiple
67 # forwarding rules, duplicate the whole block!
68 # Remote Logging (we use TCP for reliable delivery)
69 #
70 # An on-disk queue is created for this action. If the remote host is
71 # down, messages are spooled to disk and sent when it is up again.
72 #$WorkDirectory /var/lib/rsyslog # where to place spool files
73 #$ActionQueueFileName fwdRule1 # unique name prefix for spool files
74 #$ActionQueueMaxDiskSpace 1g # 1gb space limit (use as much as possible)
75 #$ActionQueueSaveOnShutdown on # save messages to disk on shutdown
76 #$ActionQueueType LinkedList # run asynchronously
77 #$ActionResumeRetryCount -1 # infinite retries if host is down
78 # remote host is: name/ip:port, e.g. 192.168.0.1:514, port optional
79 #*.* @@remote-host:514
80 # ### end of the forwarding rule ###

34 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

・RSYSLOG_TraditionalFileFormat

・RSYSLOG_FileFormat

・RSYSLOG_TraditionalForwardFormat

・RSYSLOG_SysklogdFileFormat

・RSYSLOG_ForwardFormat

・RSYSLOG_SyslogProtocol23Format

・RSYSLOG_DebugFormat

31行目：ロードする個別設定ファイルを指定
しています。具体的に/etc/rsyslog.d/配下
の.confの拡張子を持つファイルをすべて読
み込みます。

42行目：指定されたファシリティ、プライオリ

ティのログの出力先を指定しています。ここ

では、ログ情報が*.info;mail.none;authpriv
.none;cron.noneのいずれかに該当する場合、

May 25 09:29:25 local65 root: mail-log

2014-05-25T10:27:45.673814+09:00 local65 ｭ
root: mail-log

<22>May 25 10:28:15 local65 root: mail-log

May 25 10:28:30 local65 root: mail-log

<22>2014-05-25T10:28:43.940408+09:00 ｭ
local65 root: mail-log

<22>1 2014-05-25T10:29:00.574099+09:00 ｭ
local65 root - - mail-log

Debug line with all properties:
FROMHOST: 'local65', fromhost-ip: ｭ
'127.0.0.1', HOSTNAME: 'local65', PRI: 22,
syslogtag 'root:', programname: 'root', ｭ
APP-NAME: 'root', PROCID: '', MSGID: '
 -',
TIMESTAMP: 'May 25 10:29:15', ｭ
STRUCTURED-DATA: '-',
msg: ' mail-log'
escaped msg: ' mail-log'
inputname: imuxsock rawmsg: '<22>May 25 ｭ
10:29:15 root: mail-log'

/var/log/messagesへ出力します。
　ここで注意してほしいのは、ここで設定して
いるように、ワイルドカード“*”が使える点、“;”
区切りで複数指定できる点です。“*.info”は、
すべてのファシリティ＋infoプライオリティ
の意味です。また、さらに注意しておきたい点
は、ワイルドカードを使った場合、ログ情報に
よっては、複数の出力先が該当する場合がある
点です。たとえば“mail.info”の場合は、出力
先としてこの42行目と48行目がそれぞれ該当
します。この場合の出力先は、両方になります。

45行目：指定されたファシリティ、プライオ
リティのログの出力先を指定しています。ここ
では、ログ情報がauthpriv.*に該当する場合、
/var/log/secureへ出力します。

48行目：指定されたファシリティ、プライオ
リティのログの出力先を指定しています。ここ
では、ログ情報が mail.*に該当する場合、
/var/log/maillogへ出力します。ただし、ファ
イル名の先頭に“-”（マイナス）記号がついてい
ることに注意してください。これは、ファイル
の同期処理（fsync注10）を省略するという意味で
す。少し語弊がありますが、ファイルにちゃん
と書き込めたか確認しないということです。そ
うすることで、syslogでの負荷を軽減させるこ
とができるとされています。とくにメールのロ
グは、スパムを含めて負荷が高くなる可能性が
大きいためデフォルトとして“-”を付加してい
ることが多いです。

52行目：指定されたファシリティ、プライオ
リティのログの出力先を指定しています。ここ
では、ログ情報が cron.*に該当する場合、
/var/log/cronへ出力します。

注10） fsyncは、Unix系システムのファイル関連のシステムコー
ルの1つで、メモリ上にあるファイルの内容をストレージ
デバイス上のものと同期させるために使用するものです。
ここでの解説では、同期処理をしないということは、この
fsyncをコールしないという意味で使われています。

34 - Software Design Aug. 2014 - 35

第1章ログの基本をおさえておこう

　55行目：指定されたファシリティ、プライ
オリティのログの出力先を指定しています。こ
こでは、ログ情報が*.emergに該当する場合、
全ファイル・全端末へ出力します。

　58行目：指定されたファシリティ、プライ
オリティのログの出力先を指定しています。こ
こでは、ログ情報がuucp,news.critに該当
する場合、/var/log/spoolerへ出力します。

　61行目：指定されたファシリティ、プライ
オリティのログの出力先を指定しています。こ
こでは、ログ情報がlocal7.*に該当する場合、
/var/log/boot.logへ出力します。

設定ファイルの編集方法
　リスト1の設定ファイルは、テキストファイ
ルですので、viやnanoコマンドでTeraTerm

から簡単に編集できます。viやnanoがインス
トールされていない場合は、yum install
nanoのようにインストールしましょう。また、
先の設定ファイルを編集した際は、必ず、
rsyslogを再起動します。

　ここまでsyslogの大きな機能、ログ情報の流
れや出力先の設定方法など基本的な解説を行っ
てきました。また、loggerコマンドを使って

$ /etc/init.d/rsyslog restart
システムロガーを停止中: [OK]
システムロガーを起動中: [OK]

実際にログ情報を出力もしてみました。

　本章の最後の解説は、「ログファイルから必
要なログ情報をどうやって取り出すか？」です。
ログファイルは、随時、追加更新されています
から、ログの種類（ファシリティ、プライオリティ
の出力先）によっては膨大な量になっているこ
とがあります。
　一般的に、何か問題があってログ情報を見た
いと思った時、その膨大な量のログファイルを
開いて逐一見ることは、ほとんどありません。
そのような場合は、ログファイルから必要なデー
タを抜き出して（絞り込んで）、絞り込んだ情報
から、本当に必要な情報を確認していきます。
　ログファイルの中から取り出したいログ情報
をコマンドで取り出すには、p.28で解説した
grepコマンドが有効です。たとえば、一番よ
くあるのは日付によって情報を絞り込む方法で
す。問題が発生した日時がわかっている場合は、
その日時に、どんなログが出力されているか確
認したいと思うでしょう。その際、図9のよう
にgrepコマンドを使って必要な情報を取り出
すことができます。
　catコマンドは、指定したファイルの内容を
全出力するコマンドです。
　続けて“¦”ですから、grepコマンドが実行さ
れます。grepコマンドでは、'May 25 09'の
文字列のある行を検索し出力します。これで、

ログから必要な情報を
見つけよう

 ▼図9　ログファイルにgrepコマンドを使用する例

$ cat /var/log/messages¦grep 'May 25 09'
May 25 09:02:31 local65 root: test
May 25 09:02:45 local65 root: all
May 25 09:02:49 local65 root: lock
May 25 09:26:31 local65 root: mail-log
May 25 09:27:06 local65 kernel: Kernel logging (proc) stopped.
May 25 09:27:06 local65 rsyslogd: [origin software="rsyslogd" swVersion="5.8.1 0" ｭ
x-pid="1643" x-info="http://www.rsyslog.com"] exiting on signal 15.
May 25 09:27:06 local65 kernel: imklog 5.8.10, log source = /proc/kmsg started.
May 25 09:27:06 local65 rsyslogd: [origin software="rsyslogd" swVersion="5.8.1 0" ｭ
x-pid="1675" x-info="http://www.rsyslog.com"] start
May 25 09:27:12 local65 root: mail-log
May 25 09:28:36 local65 root: mail-log

36 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

5月25日9時台のログ情報がすべて出力された
ことになります。

　grepコマンドは非常に便利で、正規表現も
使えますから何かログ情報の中で検索したい文
字列のパターンがあれば、そのパターンで抜き
出すこともできます（図10）。
　図10で指定している

'signal ¥+[0-9]¥+¥.$'

は、暗号みたいですが、これが正規表現です。
　この正規表現は、

'signal' ：'signal'という文字列がある
' ¥+' ：半角スペースが1つ以上ある
'[0-9]¥+' ：数字が1つ以上ある
'¥.' ：'.'という文字列
'$' ：文末である

ヒント 実はgrepコマンドは、ファイルをそのま
ま指定できます。たとえば上記のコマンド

$ cat /var/log/messages¦grep 'May 25 09'

は、

$ grep 'May 25 09' /var/log/messages

と指定した場合と同じ結果を得ます。
　ただ、grepコマンドは、先にも書いたようにさ
まざまな用途で使用しますから、ほかのコマンド
と組み合わせて使用することが多いです。そのため、
ここでは、あえて“¦”（パイプ）を使ってgrepコマ
ンドを使っています。

これらの条件がマッチする行を検索しています
（各正規表現の記号の意味は表3を参照してく
ださい）。図10の出力例では、文末がすべて
'signal 15.'になっていることがわかるかと
思います。
　正規表現を使うと、いろんなパターンで情報
を検索、取り出すことができます。また、正規
表現は、ほかのコマンドやソフトウェアでも利
用できる場合が多いです。通常の検索では数回
の検索が必要なことも、正規表現を使えば1回
で済むこともよくあります。作業効率の面から
も、ぜひマスターしておきたいところです。
ﾟ

 ▼図10　grepの文字列処理の例

$ cat /var/log/messagesgrep 'signal \+[0-9]\+\.$'
May 25 08:31:40 local65 rsyslogd: [origin software="rsyslogd" swVersion="5.8.1 0" ｭ
x-pid="797" x-info="http://www.rsyslog.com"] exiting on signal 15.
May 25 08:33:05 local65 rsyslogd: [origin software="rsyslogd" swVersion="5.8.1 0" ｭ
x-pid="1626" x-info="http://www.rsyslog.com"] exiting on signal 15.
May 25 09:27:06 local65 rsyslogd: [origin software="rsyslogd" swVersion="5.8.1 0" ｭ
x-pid="1643" x-info="http://www.rsyslog.com"] exiting on signal 15.
May 25 10:27:36 local65 rsyslogd: [origin software="rsyslogd" swVersion="5.8.1 0" ｭ
x-pid="1675" x-info="http://www.rsyslog.com"] exiting on signal 15.
2014-05-25T10:28:13.233089+09:00 local65 rsyslogd: [origin software="rsyslogd" ｭ
swVersion="5.8.10" x-pid="1717" x-info="http://www.rsyslog.com"] exiting on signal 15.
May 25 10:28:42 local65 rsyslogd: [origin software="rsyslogd" swVersion="5.8.1 0" ｭ
x-pid="1748" x-info="http://www.rsyslog.com"] exiting on signal 15.
<46>1 2014-05-25T10:29:13.731474+09:00 local65 rsyslogd - - [origin software ="rsyslogd" ｭ
swVersion="5.8.10" x-pid="1778" x-info="http://www.rsyslog.com"] exiting on signal 15.

 ▼表3　grepコマンドで利用可能な正規表現の代表
　　 的なもの

記号 意味
. 改行文字以外の任意の文字列 (1文字)
* 直前の1文字の0回以上の繰り返しに一致
^ 行先頭
$ 行末尾
[] かっこ内の任意の1文字に一致
[^] かっこ内の任意の1文字に不一致
¥+ 直前の文字の1個以上の繰り返しに一致
¥? 直前の文字の0または1文字に一致
¥{n¥} 直前の文字のn個の繰り返しに一致
¥{n,¥} 直前の文字のn個以上の繰り返しに一致
¥{,m¥} 直前の文字のm個以下の繰り返しに一致
¥{n,m¥} 直前の文字のn個以上、m個以下の繰り

返しに一致

37 - Software Design Aug. 2014 - 37

 ▼表1　 HTTPステータスコード一覧（RFC 2616注1による定義一覧）

注1） RFC 2616では、HTTP/1.1のプロトコルが定義、公開されています。RFC2068の改訂版とされています。
英名：Hypertext Transfer Protocol -- HTTP/1.1

　前章では、syslogを含めてログの基本的な事項について解説してきました。この章では、より具体的なWebサー
バ（ApacheとNginx）のログについて解説します。まずログの種類を説明します。そしてWebalizerを使用し
た解析方法を解説します。これでログの見方がより具体的なものになっていきます。

Webサーバのログを
見てみよう

 Writer 近藤 成（こんどう じょう）　
 Mail jj2kon@gmail.com　 Web http://server-setting.info/

第2章

　Webサーバには、アクセスログとエラーロ

グがあります。アクセスログは、文字どおり、
アクセスした時のログ情報です。もちろん、要
求されたページを正常（HTTPのステータスコー
ドでOK（200））に返信した際にも出力されます

Webサーバのログに
は種類がある

が、HTTPのステータスコードで「Not Found

（404）」などに代表されるエラーステータスを
返信した場合もアクセスログに出力されます。
たとえば、404であれば、「XXXのページを要
求され404を返信した」というログ情報を出力
するもので、Webサーバでなぜ要求されたペー
ジが見つからなかったかというログ情報ではな
いことに注意してください（HTTPステータス

ステータス
コード 概要

100 継続：Continue
101 プロトコル切替え：Switching Protocols
200 OK：OK
201 作成：Created
202 受理：Accepted
203 信頼できない情報：Non-Authoritative Information
204 内容なし：No Content
205 内容のリセット：Reset Content
206 部分的内容：Partial Content
300 複数の選択：Multiple Choices
301 恒久的に移動した：Moved Permanently
302 発見した：Found
303 他を参照せよ：See Other
304 未更新：Not Modified
305 プロキシを使用せよ：Use Proxy
307 一時的リダイレクト：Temporary Redirect
400 リクエストが不正である：Bad Request
401 認証が必要である：Unauthorized
402 支払いが必要である：Payment Required
403 禁止されている：Forbidden
404 未検出：Not Found
405 許可されていないメソッド

：Method Not Allowed

ステータス
コード 概要

406 受理できない：Not Acceptable
407 プロキシ認証が必要である：

Proxy Authentication Required
408 リクエストタイムアウト：Request Time-out
409 矛盾：Conflict
410 消滅した：Gone
411 長さが必要：Length Required
412 前提条件で失敗した：Precondition Failed
413 リクエストエンティティが大きすぎる：

Request Entity Too Large
414 リクエストURIが大きすぎる：

Request-URI Too Large
415 サポートしていないメディアタイプ：

Unsupported Media Type
416 リクエストしたレンジは範囲外にある：

Requested range not satisfiable
417 期待するヘッダに失敗：Expectation Failed
500 サーバ内部エラー：Internal Server Error
501 実装されていない：Not Implemented
502 不正なゲートウェイ：Bad Gateway
503 サービス利用不可 :Service Unavailable
504 ゲートウェイタイムアウト：Gateway Time-out
505 サポートしていないHTTPバージョン：

HTTP Version not supported

http://server-setting.info/

38 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

コードの詳細につては、表1を参照してくださ
い）。
　エラーログは、404などに代表されるHTTP

のエラーステータスを返信した旨のログ情報で
なく、Webサーバで何らかのエラーが発生し
た場合に出力されます。たとえば、先に書いた
ように404（Not Found）を返信したログ情報は
アクセスログに出力されます。その際、なぜ発
生したかの原因がエラーログに出力されること
があります。
　静的なページであれば、エラーログには、ファ
イルが存在しない旨のエラー情報が出力される
ことになります。また、動的なページであれば、
その要因はプログラムのエラーかもしれません
が、ブログツールで有名なWordPressを含め
一般的なCMSであれば、要求されたページ情
報がデータベースになかっただけなのでエラー
ログには何も出力されないでしょう。

　このように404が出力されたからといってエ
ラーログに出力されるとは限りません。あくま
でエラーログはWebサーバがエラーを検出し
た際に出力されるものであって、HTTPのエラー
ステータスを返信したことと同義ではないこと
に注意してください。

ヒント

　静的なページとは、少し語弊がありますが、
URLに対してHTMLで記述されたファイルが1対1
で存在するページのことです。動的なページとは、
PerlやPHPなどのスクリプトを含めプログラム言
語を使用したソフトウェアが要求ページごとに実
行され、自動的にHTMLでページを作成、出力す
るページのことです。このとき、MySQLなどのデー
タベースを利用する場合が多いです。静的なペー
ジは、常に同じアドレスで同じページが表示され
るのに対して、動的なページは、アクセスするユー
ザや時間などさまざまな要因によってページを変
動させることができ、自在なページ表現ができる
特徴があります。

　実際にApacheを使ってログを出力してみま
しょう。CentOSでは、Apacheをhttpdという
パッケージ名で提供しています（アプリケーショ
ン名もhttpdです）。以降httpdと表記した場合
はApacheとします。
　まずは、httpd（Apache）をインストールしま
す（バージョンは2.2.15［2.2系］）。

　インストールを終えたら、起動しておきましょう。

Apacheの設定ファイルを
確認しておきましょう

　Apacheの基本設定は、/etc/httpd/conf/
httpd.confを編集します。また、デフォルトサ
イトの設定は、/etc/httpd/conf.d/welcome
.confを編集します。
　Apacheの基本設定ファイルの447行目付近
からリスト1のようにログに関する設定を行っ
ています（リスト1は、ログに関する設定だけ
を抜粋しています）。
　また、リスト1に抜粋していない情報でおさ
えておきたいものが、サーバのルートディレク
トリです。これは基本設定の57行目付近にディ
レクティブ：ServerRootで設定されています。

ServerRoot "/etc/httpd"

　パスを指定する他のディレクティブでフルパ
スを指定していない場合は、このルートディレ
クトリの配下と認識されます。
　以降リスト1のログ設定について解説します。

ログを出力してみよう
（Apache編）

$ yum install httpd
……（省略）……
Is this ok [y/N]: y
……（省略）……
Complete!

$ /etc/init.d/httpd start
httpd を起動中: 　　　 [OK]

38 - Software Design Aug. 2014 - 39

第2章Webサーバのログを見てみよう

ヒント

　Webサーバでは、とくに設定ファイルの設定項
目（キー情報）をディレクティブと言います。以降
で解説するNginxでも設定ファイルの設定項目（キー
情報）をディレクティブと言います。英語の
directiveの“指示”、“命令”などの意味から使われ
ています。

エラーログの設定
　ディレクティブ：ErrorLogを使用します。
次はリスト1の例です。

Errorlog log/error_log

　実際のログファイルのパスは、先のServer

Rootの設定＋ここでの設定パスになります。
つまり、/etc/httpd/logs/error_logにな
ります。
　また、関連したディレクティブに、LogLevelが
あります。

LogLevel warn

　ここで、エラーログへ出力するログレベルを
指定します。ここの例では警告（Warning）以上
の場合にエラーログへ出力されることになりま
す。ここで指定できるログレベルを表2に一覧
で載せています。その表2では上からログレベ
ルが高い順になっています。ここの例でいうと、

 ▼リスト1　/etc/httpd/conf/httpd.conf（ログ関連のみ抜粋）

#
ErrorLog: The location of the error log file.
If you do not specify an ErrorLog directive within a <VirtualHost>
container, error messages relating to that virtual host will be
logged here. If you *do* define an error logfile for a <VirtualHost>
container, that host's errors will be logged there and not here.
#
ErrorLog logs/error_log

#
LogLevel: Control the number of messages logged to the error_log.
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
#
LogLevel warn

#
The following directives define some format nicknames for use with
a CustomLog directive (see below).
#
LogFormat "%h %l %u %t ¥"%r¥" %>s %b ¥"%{Referer}i¥" ¥"%{User-Agent}i¥"" combined　 ←図1で詳細解説
LogFormat "%h %l %u %t ¥"%r¥" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

"combinedio" includes actual counts of actual bytes received (%I) and sent (%O); this
requires the mod_logio module to be loaded.
#LogFormat "%h %l %u %t ¥"%r¥" %>s %b ¥"%{Referer}i¥" ¥"%{User-Agent}i¥" %I %O" combinedio

#
The location and format of the access logfile (Common Logfile Format).
If you do not define any access logfiles within a <VirtualHost>
container, they will be logged here. Contrariwise, if you *do*
define per-<VirtualHost> access logfiles, transactions will be
logged therein and *not* in this file.
#
#CustomLog logs/access_log common

#
If you would like to have separate agent and referer logfiles, uncomment
the following directives.
#
#CustomLog logs/referer_log referer
#CustomLog logs/agent_log agent

#
For a single logfile with access, agent, and referer information
(Combined Logfile Format), use the following directive:
#
CustomLog logs/access_log combined

40 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

warn以 上 で す か ら、warn、error、crit、
alert、emergが出力対象となります。

アクセスログの設定
　ディレクティブ：CustomLogを使用します。
次はリスト1の例です。

CustomLog logs/access_log combined

　実際のログファイルのパスは、先のServer

Rootの設定＋ここでの設定パスになります。

つまり、/etc/httpd/logs/access_logにな
ります。フォーマットは、combinedを使用し
ます。combinedは、図1のようにディレクティ
ブ：LogFormatで定義されています。各パラメー
タはWebに公開されている書式注1に従ったも
のです。

注1） Apacheのアクセスログで使用できる書式一覧（http://
httpd.apache.org/docs/2.2/ja/mod/mod_log_config.
html#formats）

レベル 説明 例
emerg 緊急-システムが

利用できない
Child cannot open lock file. Exiting（子プロセスがロックファイルを開けないた
め終了した）

alert 直ちに対処が必要 getpwuid: couldn't determine user name from uid（getpwuid: UID からユーザ
名を特定できなかった）

crit 致命的な状態 socket: Failed to get a socket, exiting child（socket: ソケットが得られないため、
子プロセスを終了させた）

error エラー Premature end of script headers（スクリプトのヘッダが足りないままで終わった）
warn 警告 child process 1234 did not exit, sending another SIGHUP（子プロセス 1234が

終了しなかった。もう一度 SIGHUPを送る）
notice 普通だが、重要な

情報
httpd: caught SIGBUS, attempting to dump core in ...（httpd: SIGBUSシグナル
を受け、...へコアダンプをした）

info 追加情報 “ Server seems busy,（ you may need to increase StartServers, or Min/
MaxSpareServers）...”（「サーバは負荷が高い、（StartServersやMin/MaxSpare
Serversの値を増やす必要があるかも）」）

debug デバッグメッセージ “Opening config file ...”（設定ファイルを開いている ...）

 ▼表2　Apacheのエラーログで指定できるログレベル一覧（http://httpd.apache.org/docs/2.2/ja/mod/core.　
　　 html#loglevel）

 ▼図1　アクセスログcombinedのLogFormat

LogFormat　"&h %1 %u %t ¥"%r¥" %>s %b ¥"%{Referer}i¥" ¥"%{User-Agent}i¥"" combined

ヘッダ情報から
User-Agent 情報
を抽出、出力する

ヘッダ情報から
Referer 情報を
抽出、出力する

レスポンスのバイト数を出力する。
0バイト時は '-' を出力する

リクエストの
最初の行を
出力する

リモートホスト名
を出力する

リクエストを受け付けた時刻を出力するリモートユーザ
を出力する

リモート
ログ名を
出力する

最後のステータスを出力する

 ▼図2　アクセスログの出力先

$ ls -l /etc/httpd/
合計 8
drwxr-xr-x. 2 root root 4096 5月 25 14:49 2014 conf
drwxr-xr-x. 2 root root 4096 5月 25 13:11 2014 conf.d
lrwxrwxrwx. 1 root root 19 5月 25 13:04 2014 logs -> ../../var/log/httpd
lrwxrwxrwx. 1 root root 27 5月 25 13:04 2014 modules -> ../../usr/lib/httpd/modules
lrwxrwxrwx. 1 root root 19 5月 25 13:04 2014 run -> ../../var/run/httpd
……（省略）……

http://httpd.apache.org/docs/2.2/ja/mod/mod_log_config.html#formats
http://httpd.apache.org/docs/2.2/ja/mod/core.html#loglevel

40 - Software Design Aug. 2014 - 41

第2章Webサーバのログを見てみよう

 Webサイトへアクセスして
ログを出力してみよう

　Apacheが起動していない場合は、手動で起
動しておきます。

　先の設定を確認できたら、URLにCentOS

ヒント

　CentOS＋Apacheのログ出力先は、上記の設定
では、/etc/httpd/logs配下となっていますが、
実際に出力されるのは、/var/log/httpdの配下
と な り ま す。そ れ は、単 純 に /etc/httpd/
logs→/var/log/httpdへのシンボリックリンク
となっているためです。図2のようにコマンドls
-lでシンボリックリンクを確認できます。

$ /etc/init.d/httpd start
httpd を起動中: [OK]

の IP ア ド レ ス を、直 接 指 定（例：
http://192.168.1.65）してWebブラウザか
らサイトへアクセスしてみてください。図3の
ようにデフォルトページが見えればOKです。

ヒント

　SSHでログインできているのにWebブラウザか
らアクセスしてもデフォルトページを表示できな
い場合は、iptablesの設定でhttpのポートが規制
されているかもしれません。
　リスト2は iptablesのデフォルト設定です。SSH
が接続できているので、SSH（22番）ポートの設定
があるはずです。リスト2の9行目がその設定に
なります。その設定をまねて10行目のようにhttp
（80番）ポートの設定を追記します。
　この時、必ずSSH（22番）ポートの設定の後に挿
入します。順番を間違えるとポートを開くことが
できないことがありますので注意してください。
編集を終えたらファイルを保存し、図4のように
iptablesを再起動します。

 ▼リスト2　/etc/syscon�g/iptables

01 # Generated by iptables-save v1.4.7 on Sun May 25 14:07:05 2014
02 *filter
03 :INPUT ACCEPT [0:0]
04 :FORWARD ACCEPT [0:0]
05 :OUTPUT ACCEPT [32:3832]
06 -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
07 -A INPUT -p icmp -j ACCEPT
08 -A INPUT -i lo -j ACCEPT
09 -A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT
10 -A INPUT -p tcp -m state --state NEW -m tcp --dport 80 -j ACCEPT　 ←この行を追加
11 -A INPUT -j REJECT --reject-with icmp-host-prohibited
12 -A FORWARD -j REJECT --reject-with icmp-host-prohibited
13 COMMIT
14 # Completed on Sun May 25 14:07:05 2014

 ▼図4　iptablesの再起動

$ /etc/rc.d/init.d/iptables restart
iptables: チェインをポリシー ACCEPT へ設定中filter [OK]
iptables: ファイアウォールルールを消去中: [OK]
iptables: モジュールを取り外し中: [OK]
iptables: ファイアウォールルールを適用中: [OK]

 ▼図3　Apacheデフォルトページ

42 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

tailコマンドを使ってログを確認してみよう
　図3のようなページが見えていれば、アクセ
スログ（/var/log/httpd/access_log）が出力
されているはずです。tailコマンドで、最新
のアクセスログを出力してみます（図5）。
　403のエラーステータスが出力されていますが、
とりあえず脇に置いて（後で解説します）、続けて、
エラーログ（/var/log/httpd/error_log）も
確認してみましょう。同じようにtailコマン
ドを使って、最新のエラーログを出力してみま
す（図6）。

エラーを詳しく見てみよう
　エラーログに何かエラーが出力されています
ね。詳しく見てみましょう。まず、日時を確認
してみると、ちょうど先のアクセスログで403

が出力された日時と同じです。このエラー情報
の英語部分を直訳すれば「Optionsにて/var/

www/html/のディレクトリ一覧の出力は規制さ
れています」という感じでしょうか。つまり、こ
のエラーのために、アクセスログで規制されて
いる旨のステータスコードである403 が出力さ
れていたことが、なんとなく想像できますね。

エラーを回避してみよう
　では、このエラーをどうしたら回避できるで
しょうか。それは、このエラーが何を意味して
いるかを、もう少し深く理解する必要がありま
す。勘の良い方はピンと来ているでしょう。
　まず、デフォルトサイトの設定（/etc/httpd/
conf.d/welcome.conf）を確認します（リスト

3）。
　Optionsディレクティブで次のように設定
されています。

Options -Indexes

　この設定は、URLにファイル名が省略され

 ▼図5　tailコマンドで最新のアクセスログを出力

$ tail /var/log/httpd/access_log
……（省略）……
192.168.1.33 - - [25/May/2014:16:31:28 +0900] "GET / HTTP/1.1" 403 5039 "-" "Mozilla/5.0 ｭ
(Windows NT 6.2; WOW64; rv:24.0) Gecko/20100101 Firefox/24.0"
192.168.1.33 - - [25/May/2014:16:31:28 +0900] "GET /icons/apache_pb.gif HTTP/1.1" 200 2326 ｭ
"http://192.168.1.65/" "Mozilla/5.0 (Windows NT 6.2; WOW64; rv:24.0) Gecko/20100101 ｭ
Firefox/24.0"
192.168.1.33 - - [25/May/2014:16:31:28 +0900] "GET /icons/poweredby.png HTTP/1 .1" 200 ｭ
3956 "http://192.168.1.65/" "Mozilla/5.0 (Windows NT 6.2; WOW64; rv:24\.0) Gecko/20100101 ｭ
Firefox/24.0"

 ▼リスト3　/etc/httpd/conf.d/welcome.conf

#
This configuration file enables the default "Welcome"
page if there is no default index page present for
the root URL. To disable the Welcome page, comment
out all the lines below.

<LocationMatch "^/+$">
Options -Indexes
ErrorDocument 403 /error/noindex.html
</LocationMatch>

 ▼図6　tailコマンドで確認

$ tail /var/log/httpd/error_log
……（省略）……
[Sun May 25 16:31:28 2014] [error] [client 192.168.1.33] Directory index forbidden by ｭ
Options directive: /var/www/html/

42 - Software Design Aug. 2014 - 43

第2章Webサーバのログを見てみよう

た場合「もし表示するものが何もなかったとし
てもディレクトリ一覧は表示しない」という意
味です。エラーログの内容と一致しますね。
　さらに、ErrorDocumentディレクティブで「403

が発生したら/error/noindex.htmlを出力しな
さい」と設定されています。大方は、この
noindex.htmlが、先に表示されたデフォルトペー
ジだったであろうことに思い至るでしょう。
　ここで整理しておきます。まず、IPアドレ
スだけでアクセスしてみました。つまり、
URLにファイル名を指定していません（たとえ
ば、http://192.168.1.65/index.htmlのよ
うにindex.htmlを指定しなかったということ）
から、Apacheでは、あらかじめ設定されてい
る省略時のデフォルトファイルを探します。そ
のデフォルトファイルは、DirectoryIndexディ
レクティブで設定します。先のデフォルトサイ
トの設定（リスト3）には、そのDirectoryIndex

ディレクティブの指定がありませんでしたから、
基本設定ファイル（/etc/httpd/conf/httpd.
conf）の設定内容を引き継ぐことになります。
基本設定ファイルを確認してみます。図7のよ
うにcatとgrepコマンドで検索してみましょ
う。
　ありました。Apacheはファイル名を指定せず
にアクセスした場合は、index.htmlかindex.
html.varを探しに行くようになっています。
　さて、では、どこのディレクトリのindex.
htmlか index.html.varを探しに行くので
しょう？　これは、先のアクセスが IPアドレ

スだけを指定したので、デフォルトサイトのド
キュメントルートディレクトリはどこか？̶̶
というのと同義です。ドキュメントルートディ
レクトリは、DocumentRootディレクティブで
設定します。これは、デフォルトサイトの設定
（リスト3）にはありませんでしたから、これも
先と同様に基本設定ファイル（/etc/httpd/
conf/httpd.conf）の設定内容を引き継ぐこと
になります。先と同様、図8のようにcatと
grepコマンドで検索してみましょう。
　ありました。DocumentRootディレクティブ
には、/var/www/htmlと指定してありますから、
ここがドキュメントルートディレクトリという
ことになります。これもエラーログの内容と一
致しますね。
　さて、ここまで来ると、

ということに考えが至るでしょう。では、この
考えの裏付けとして、ドキュメントルートディ
レクトリ（/var/www/html）に本当に index.
htmlかindex.html.varが存在しないか、ls
コマンドで確認してみましょう。

$ ls /var/www/html
$

“/var/www/htmlに 表 示 す べ き フ ァ イ ル
(index.htmlか index.html.var)が存在しな
かったので、ディレクトリ一覧を出力しようと
したが、規制されていたのでエラー403を出力
した。403が発生した飛び先は、/error/
noindex.htmlと指定があるのでそのファイル
を返信した。”

 ▼図8　catとgrepで検索

$ cat /etc/httpd/conf/httpd.conf¦grep DocumentRoot
DocumentRoot: The directory out of which you will serve your
DocumentRoot "/var/www/html"
This should be changed to whatever you set DocumentRoot to.
DocumentRoot /www/docs/dummy-host.example.com

 ▼図7　catとgrepで検索

$ cat /etc/httpd/conf/httpd.conf¦grep DirectoryIndex
DirectoryIndex: sets the file that Apache will serve if a directory
DirectoryIndex index.html index.html.var

44 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

　何も出力されません。つまり、ここにindex.
htmlがあれば、このエラーは回避できそうです。
簡単なindex.htmlを作成してみます。

$ echo 'test' > /var/www/html/index.html
$ ls /var/www/html
index.html

　ここでは、echoコマンド（Windowsの echo

コマンドと同じで単純に指定された文字列を画
面出力します）を使ってファイルへ“>”リダイ
レクトして、“test”という文字列だけのテキス
トファイル（/var/www/html/index.html）を
作成しています。
　これで、再度、同じようにWebブラウザか
ら IPアドレスだけを指定してアクセスしてみ
ましょう。ブラウザには“test”の文字だけが
表示されるはずです。
　ブラウザに表示されたということは、アクセ
スログに何か出力されているに違いありません。
tailコマンドでアクセスログを確認してみま
しょう。

$ tail /var/log/httpd/access_log
……（省略）……
192.168.1.33 - - [25/May/2014:17:10:45 ｭ
+0900] "GET / HTTP/1.1" 200 5 "-" ｭ
"Mozilla/5.0 (Windows NT 6.2; WOW64; ｭ
rv:24.0) Gecko/20100101 Firefox/24.0"

　今度は、正常なレスポンス200が返信されて
います。
　続けて、同じようにtailコマンドでエラー
ログを確認してみましょう。

$ tail /var/log/httpd/error_log
……（省略）……

　アクセスログと同じ時間にエラーが出力され
ていないことが確認できたかと思います。
　このようにアクセスログ、エラーログで
Webサーバの問題点を見つけ出し、修正、改
善を図ることができます。

　次に、人気のWebサーバ「Nginx」を使って同
じようにログを出力してみましょう。
　NginxはCentOSにパッケージがありません。
そのため、Nginxの公式サイトからインストー
ルするためにリポジトリの設定から行います。

Nginx（バージョン1.6.0）を
インストールしよう

①/etc/yum.repos.d/nginx.repoの編集
　デフォルトではファイルが存在しないので作
成します。

[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/
centos/6/$basearch/
gpgcheck=0
enabled=1

②yumコマンドでインストール
　画面の指示に従いインストールします。

③Nginxの起動
　インストールを終えたら、起動しておきましょ
う。

$ /etc/init.d/nginx start
nginx を起動中: [OK]

Nginxの設定ファイルを確認し
ておきましょう

　Nginxの基本設定は、/etc/nginx/nginx.
confを編集します。また、デフォルトサイト
の 設 定 は、/etc/nginx/conf.d/default.
confを編集します。今回は、ログ以外の話は
少し脇に置いて話を進めます。Nginxの基本設

ログを出力してみよう
（Nginx編）

$ yum install nginx
……（省略）……
Is this ok [y/N]: y
……（省略）……
Complete!

44 - Software Design Aug. 2014 - 45

第2章Webサーバのログを見てみよう

定（/etc/nginx/nginx.conf）は、リスト4の
ようになっています（ログに関する設定は、設
定ファイルの先頭部分にありますので、該当部
分を抜粋しています）。
　各ログの設定について簡単に解説します。

エラーログの設定
　ディレクティブ：error_logを使用します。
次はリスト4の例（5行目）です。

error_log /var/log/nginx/error.log warn;

　warn（警告）以上のエラー情報を/var/log/
nginx/error.logへ出力します。
　ログレベルとして、ここでは警告（warn）を
指定していますが、ほかに［ debug ¦ info ¦

notice ¦ warn ¦ error ¦ crit ¦ alert
¦ emerg ］（左からログレベル低→高の順です）
のいずれかを指定できます。この値はApache

の表2と同じです。
　ここでの例ではwarn以上ですから、warn、
error、crit、alert、emergが出力対象です。

アクセスログの設定
　ディレクティブ：access_logを使用します。
次はリスト4の例（22行目）です。

access_log /var/log/nginx/access.log main;

　フォーマットmainの定義に従い、/var/
log/nginx/access.logへ出力します。フォー
マットmainは、ディレクティブlog_format

 ▼リスト4　/etc/nginx/nginx.conf（抜粋）

01
02 user nginx;
03 worker_processes 1;
04
05 error_log /var/log/nginx/error.log warn;
06 pid /var/run/nginx.pid;
07
08
09 events {
10 worker_connections 1024;
11 }
12
13
14 http {
15 include /etc/nginx/mime.types;
16 default_type application/octet-stream;
17
18 log_format main '$remote_addr - $remote_user [$time_local] "$request"\'　　 ←図9で詳細解説している
19 '$status $body_bytes_sent "$http_referer" '
20 '"$http_user_agent" "$http_x_forwarded_for"';
21
22 access_log /var/log/nginx/access.log main;
23 ……（省略）……

 ▼図9　ディレクティブ log_formatの定義

log_format main '$remote_addr - $remote_user[$time_local]"$request"'
 '$status $body_bytes_sent "$http_referer""$http_user_agent" "$http_x_forwarded_for"';

リクエストを
受け付けた
時刻を出力

リクエストの
最初の行を
出力

ヘッダ情報から
X-Forwarded-for 情報を
抽出して出力

ヘッダ情報から
User-Agent 情報を
抽出して出力

ヘッダ情報から
Referer 情報を
抽出して出力

レスポンスの
バイト数を出力する。
0バイト時は
'-' を出力する

最後の
ステータス
を出力

リモート
ユーザを
出力

リモート
ホスト名
を出力

46 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

 ▼表3　Nginxのアクセスログで使用できる書式一覧（http://nginx.org/en/docs/http/ngx_http_core_module.
html）：筆者による和訳です。機械的な訳ですがご容赦ください。

変数名 説明
$arg_name リクエストラインのパラメータ名
$args リクエストラインのパラメータ値
$binary_remote_addr バイナリフォーマットのクライアントアドレス。値の長さは、常に4バイトとなる
$body_bytes_sent レスポンスヘッダ情報を含まないクライアントへの送信バイト数。この値は、Apacheのmod_log_

configで定義されている%Bパラメータと同義である
$bytes_sent クライアントへ送信したバイト数
$connection 接続シリアル番号
$connection_requests 現在の接続リクエスト番号
$content_length リクエストヘッダの“Content-Length”
$content_type リクエストヘッダの“Content-Type”
$cookie_name クッキー名
$document_root 現在のリクエストのルートドキュメントあるいはaliasディレクティブの値
$document_uri $uriと同じ
$host 次に順で決まる。リクエストラインから抽出されるホスト名、あるいは、リクエストヘッダ情報の“Host”、

あるいは、リクエストに一致したサーバ名
$hostname ホスト名
$http_name 任意のリクエストヘッダフィールド。この変数名末尾の“name”は、リクエストヘッダのフィールド名

を小文字に変換し、ダッシュ“-”をアンダーバー“_”へ変換したものになる
$https SSLモードで接続の場合は、“on”それ以外は空文字
$is_args リクエストラインがパラメータを持つなら“?”以外は空文字
$limit_rate この変数を設定すると、制限のレスポンス率の制限できる。;limit_rate参照

$msec 現在時刻 （ms）、ログ出力時は、ログ書き込み時の時間 （ms）
$nginx_version Nginxバージョン
$pid ワーカープロセスのPID

$pipe パイプによるリクエストの場合は“p”以外は“.”
$proxy_protocol_addr PROXYプロトコルヘッダからのクライアントアドレス、それ以外は空文字。PROXYプロトコルは事

前に listenディレクティブのproxy_protocolパラメータを設定し有効にする必要がある
$query_string $argsと同じ
$realpath_root すべてのシンボリックリンクとともにリアルなパスへ解決されたルートに対する絶対パス、あるいは

現在のリクエストのためaliasディレクティブ値
$remote_addr クライアントアドレス
$remote_port クライアントポート
$remote_user Basic認証で指定されたユーザ名
$request すべてのオリジナルなリクエストライン
$request_body リクエストボディ。

この値は、proxy_pass、fastcgi_pass、uwsgi_passそしてscgi_passディレクティブによって処
理されたロケーションの中で使用できる

$request_body_file リクエストボディのテンポラリファイルの名前。処理の終わりに、このファイルは、削除される必要
がある。
常にリクエストボディをファイルへ書き込むために、client_body_in_file_onlyは、有効になってい
る必要がある。テンポラリファイル名が、プロキシリクエストやFastCGI/uwsgi/SCGIサーバへのリ
クエストの中で渡される時、そのリクエストボディは、それぞれのディレクティブproxy_pass_
request_body を off に す る、fastcgi_pass_request_body を off に す る、uwsgi_pass_
request_bodyをoffにする、あるいは、scgi_pass_request_bodyをoffにするで無効すべきであ
る

$request_completion リクエストが完了した場合“OK”以外は空文字
$request_filename 現在リクエスト、ルートに基づいた、あるいはaliasディレクティブ、そして、リクエストURIのファ

イルパス
$request_length リクエストの長さ （リクエストライン、ヘッダー、ボディを含む）
$request_method リクエストメソッド、通常、“GET”or“POST”のいずれか
$request_time リクエスト処理時間 （ms）;クライアントからのリクエストの最初のバイトを読み始めてから、最後の

バイトがクライアントへ送信された後にログを書くまでの経過時間
$request_uri オリジナルの全リクエストURI （パラメータ値も含む）

http://nginx.org/en/docs/http/ngx_http_core_module.html

46 - Software Design Aug. 2014 - 47

第2章Webサーバのログを見てみよう

変数名 説明
$scheme リクエストスキーマ。“http”or“https”のいずれか
$sent_http_name 任意のレスポンスヘッダフィールド。この変数名末尾の“name”は、レスポンスヘッダのフィールド名

を小文字に変換し、ダッシュ“-”をアンダーバー“_”へ変換したものになる。
$server_addr リクエストを受け入れたサーバのアドレス。この変数の値を計算することは、通常は1つのシステムコー

ルを必要する。システムコールを回避するためには、listenディレクティブで、アドレスを指定し、
bindパラメータを使用する必要がある。

$server_name リクエストを受け入れたサーバ名
$server_port リクエストを受け入れたサーバポート
$server_protocol リクエストプロトコル。通常は“HTTP/1.0”or“HTTP/1.1”のいずれか
$status レスポンスステータス
$tcpinfo_rtt,
$tcpinfo_rttvar,
$tcpinfo_snd_cwnd,
$tcpinfo_rcv_space

クライアントTCP接続情報。TCP_INFOソケットオプションをサポートしているシステム上で利用可
能

$time_iso8601 ISO8601標準フォーマットによる時間
$time_local Common Logフォーマットによる時間
$uri 統一化されたリクエストの現在のURI。$uriの値は、たとえば内部リダイレクトをするとき、または

インデックスファイルを使用するときのように、リクエストの処理中に変更されるかもしれない

で定義されています（図9）。
　図 9は Apacheの combinedの 定 義（図 1）に

X-Forwarded-For情報を付加しただけのもの
になっています。各パラメータは表3の書式に
従ったものです。
　Nginxの場合、使用可能な書式はNginxの設
定ファイルの中で使用できる変数そのものです。
ログのためだけに提供されたものでなく共通的
に提供されている変数（表3）をそのまま使用で
きるので、さまざまな情報を出力することがで
きます。ただし、必ずしもその値が設定されて
いるとは限らないので、その点は注意が必要で
しょう。

Webサイトへアクセスしてログ
を出力してみよう

　Nginxを起動しておきます。

$ /etc/init.d/nginx start
nginx を起動中:　　　 [OK]

　設定を確認できたら、URLに IPアドレスを
指定（例　http://192.168.1.65）してWebブ
ラウザからサイトへアクセスしてみてください。

tailコマンドを使ってログを確認してみよう
　図10のようなデフォルトページが見えてい
れ ば、ア ク セ ス ロ グ（/var/log/nginx/

access.log）が出力されるはずです。tailコ
マンドで、最新のアクセスログを出力してみま
す。

$ tail /var/log/nginx/access.log
……（省略）……
192.168.1.33 - - [25/May/2014:19:03:08 ｭ
+0900] "GET / HTTP/1.1" 200 612 "-" ｭ
"Mozilla/5.0 (Windows NT6.2;WOW64;rv:ｭ
24.0) Gecko/20100101 Firefox/24.0" "-"

　ステータスも200ですから、正しく表示でき
ているようです。
　エラーログ（/var/log/nginx/error.log）
も確認してみましょう。同じようにtailコマ
ンドを使って、最新のエラーログを出力してみ
ます。

 ▼図10　Nginxデフォルトページ

 ▼図11　Nginx 404ページ（例：http://192.168.1.
　　　 65/asdfasdfagasdgagoajoas.html）

48 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

$ tail /var/log/nginx/error.log
……（省略）……

　アクセスログと同時期のログは何も出力され
ていないことを確認しておきましょう。

あえてエラーを出力してみよう
　次に意図的に404エラーを起こしてみます。
先の IPアドレス＋ありえないファイル名を入
力しアクセスしてみます。
　図11のように404のページが表示されたら、
先の例と同じようにtailコマンドでアクセス
ログを確認してみましょう。
　図12のように予想どおりのログ情報です。
404を返していますね。続けて、同じようにエ
ラーログも確認してみましょう。
　図13のようにアクセスログと同時期に、こ
ちらは「そのようなファイルはありません」とい
うエラーが出力されています。こちらも予想ど
おりのエラーログです。このようにNginxでも
Apache同様にログの出力・確認ができました。
　次に、Webサイトにどんなアクセスがあっ
たか、アクセスログの解析を行うWebalizerを
使ってみます。

　CentOSには、Webサーバのアクセスログを
解析して、Webサーバで簡単に確認ができる
ようにHTML形式で結果を出力してくれる便
利なツールWebalizerがあります。以下に、こ
のWebalizerのインストールから実際のhttpd

（Apache）のアクセスログの解析までを、順を
追って解説していきます。ここで使用する
Webalizerのバージョンは、V2.21-02です。

①Webalizerのインストール

②Webalizerのテスト用設定ファイルの作成
　Webalizerは、設定ファイルを元にアクセス
ログの解析を行います。ここでは、テスト用の
設定ファイルをオリジナル設定ファイルをコ
ピー、編集して準備します。

　コピーした/etc/webalizer_test.confを
必要に応じて編集します。29行目あたりの
Webサーバのアクセスログファイル指定を確
認します。次のようになっていれば、デフォル

Webalizerを使って
ログを解析してみよう

$ yum install webalizer
……（省略）……
Is this ok [y/N]: y
……（省略）……
Complete!

$ cp /etc/webalizer.conf /etc/webalizer_ｭ
test.conf

 ▼図12　開くアセスログの確認

$ tail /var/log/nginx/access.log
……（省略）……
192.168.1.33 - - [25/May/2014:19:06:14 +0900] "GET /asdfasdfagasdgagoajoas.html HTTP/1.1" ｭ
404 168 "-" "Mozilla/5.0 (Windows NT 6.2; WOW64; rv:24.0) Gecko/20 100101 Firefox/24.0" "-"

 ▼図13　エラーログの確認

$ tail /var/log/nginx/error.log
……（省略）……
2014/05/25 19:06:14 [error] 3017#0: *4 open() "/usr/share/nginx/html/asdfasdfa ｭ
gasdgagoajoas.html" failed (2: No such file or directory), client: 192.168.1.33, server: ｭ
localhost, request: "GET /asdfasdfagasdgagoajoas.html HTTP/1.1", host: "192.168.1.65"

48 - Software Design Aug. 2014 - 49

第2章Webサーバのログを見てみよう

トのApacheのアクセスログファイルと同じな
のでOKです。

LogFile /var/log/httpd/access_log

　42行目あたりのWebalizerの出力先ディレ
クトリを確認します。

OutputDir /var/www/usage

　設定されている出力先ディレクトリが存在す
るか確認します。インストール時に、デフォル
トの出力先ディレクトリは作成されるはずなの
で、以下のようにディレクトリおよびいくつか
のファイルが存在するはずです。もしディレク
トリが存在しない場合は作成します。

③Webalizerでアクセスログ解析
　次のように先に準備したテスト用の設定ファ
イルを指定してアクセスログの解析を行います。

④ Webalizerの出力先ディレクトリへのアク
セスを許可

　Webalizerをインストールした時点で、
Webalizer用のApache設定ファイル（/etc/
httpd/conf.d/webalizer.conf）が作成され
ますので、それを編集します（リスト5）。
　Webalizerは、デフォルトの設定でローカル
ホスト（内部）からのアクセスのみを許容するよ
うに設定してあります。そのためネットワーク
上の他のPCからアクセスした場合、403でエ
ラーとなってしまいます。
　ここでは、すべてリモートで操作しています
ので、ここもネットワーク上の他のPCのWeb

ブラウザからWebalizerの出力先ディレクトリ
にApacheを介してアクセスした場合、。その際
は、14行目のように、アクセスするPCの IP

アドレスを許容するように設定します。編集後

$ ls /var/www/usage
msfree.png webalizer.png

$ webalizer -c /etc/webalizer_test.conf

 ▼リスト5　/etc/httpd/conf.d/webalizer.conf

01 #
02 # This configuration file maps the ｭ

webalizer log analysis
03 # results (generated daily) into theｭ

URL space. By default
04 # these results are only accessible ｭ

from the local host.
05 #
06 Alias /usage /var/www/usage
07
08 <Location /usage>
09 Order deny,allow
10 Deny from all
11 Allow from 127.0.0.1
12 Allow from ::1
13 # Allow from .example.com
14 Allow from 192.168.1.33
15 </Location>

にApacheを再起動します。

⑤ Webalizerの出力先ディレクトリをWeb
ブラウザからアクセス

　URLに IPアドレス＋webalizerの出力先（例
http://192.168.1.65/usage/）を指定して、
Webブラウザからアクセスしてみましょう。
図14のようにグラフが表示されれば、正しく
解析できているでしょう。また、図14からリ
ンクをたどると図15のような詳細データを参
照できます。1日当たりのアクセス数や404の
返信数など、さまざまなデータを1つのページ
にまとめて表示できます。
　このように、Webalizerを使ってアクセスロ
グを毎日解析すれば、Webサイトのアクセス
状態をおおむね把握できます。そこで、次に
cronを使って毎日自動更新するように設定し
てみましょう。

$ /etc/init.d/httpd restart
httpd を停止中: [OK]
httpd を起動中: [OK]

50 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

⑥ crontabを編集してWebalizerを自動的
に毎日起動

$ vi /etc/crontab
……（省略）……
webalizer
0 4 * * * root /usr/bin/webalizer -c ｭ
/etc/webalizer_test.conf

 ▼図14　Webalizerの最初のページ

 ▼図15　Webalizerの詳細のページ

　このように設定注2しておけば毎日4時に
Webalizerがアクセスログを解析します。
　ここでは、Webalizerのデフォルトの設定だ
けでApacheアクセスログ解析してみましたが、
Webalizerには、ほかにも日本語の設定や IP

注2） /etc/crontabは、テキストファイルです。ここでは、viコ
マンドを使って編集していますが、nanoコマンドなどで
も同じように編集できます。

直近１年分のアクセスページ数、

ファイル数、ヒット数がグラフ

で表示されます。

さらに詳細な月ごとのアクセス

データが一覧表で出力されます。

また、Month列の各年月は、リ

ンクとなっていて、クリックす

ると図15へ遷移できます。

上図のリンクからたどれるさら

に詳細なページです。下記に加

えてHTTPのステータスコードご

との月合計数など、さまざまな

統計データが出力されます。

・月合計ヒット数
・月合計ファイル数
・月合計ページ数
・月合計訪問者数
・月合計伝送サイズ
・月合計ユニークサイト数
・月合計ユニークURL数
・月合計ユニークリファラ数
・月合計ユニークユーザエージェ
ント数

50 - Software Design Aug. 2014 - 51

第2章Webサーバのログを見てみよう

 ▼図16　Google Analytics画面

アドレスなどの条件で解析の対象を限定するな
ど、いろいろな設定ができます。もちろん、
Nginxのアクセスログ解析もできます。

WebalizerとGoogle Analytics
の違いって何？（おまけ）

　さて、Webサイトのアクセスログ解析では、
Google Analyticsという便利なツールがありま
す（図16）。
　WebalizerもGoogle Analyticsも同様にアクセ
ス数が出力されます。さて、この違いは何でしょ
う。先にも解説したように、Webサーバのアク
セスログを元に作成されるのがWebalizerの出力
情報です。それに対してGoogle Analyticsは、
訪問したユーザがWebブラウザのJavaScriptを
使ってGoogleのサーバへ通知し、Googleのサー
バでログ情報として保管します。その情報を元に、
Google Analyticsが解析、出力しています。
　つまり、Webalizerの解析結果は、

Webサーバが「……のページがアクセスされまし
た」と検出した情報を元に解析したものです。

　Google Analyticsは、

Webサイトへの訪問者が「……のページを見まし
た」とGoogleへ報告した情報を元に解析したも
のです。

　ただ、Google Analyticsの場合、訪問者が
JavaScriptを有効にしていない場合は、Google

へ報告を行わないため、実際の訪問者数とは差
があることがあります。
　最近では、Google Analyticsが圧倒的な機能
を誇っていますので、Webalizerが陳腐な存在
に感じておられる方が多いかもしれません。た
だ、Webalizerが出力する情報はリアルなサー
バ情報であることは間違いありません。また、
Webサーバが出力するログ情報は、アクセス
情報だけでなくサーバの負荷やエラー、障害な
どサーバの状態を細やかに知らせてくれます。
サーバの健康状態を監視・管理するには、これ
に勝るものはないでしょう。そう考えれば、
Google Analyticsはログ情報のほんの一面でし
かないと気づくでしょう。情報の質がそもそも
違うのですから、Google Analyticsがあるから
ログはいらないという短絡的なものでなく、こ
れらのログ情報と並行して、Google Analytics

の情報を使っていくことが今は求められている
のだと思います。ｯ

52 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

　MySQLのログには大きく分けて2つ、さら
に分類すると4つの種類があります。

・エラー系
	 エラーログ、一般クエリログ、スロークエ
リログ……問題解決を図る、MySQLの動作
に関するログ

・バックアップ系
	 バイナリログ……データベースの内容をバッ
クアップするためのログ

　ここでは、mysqlがインストール、および実
行されているものとして以降解説します。もし
インストールされていない場合は、yumコマン
ドを使ってmysql-serverをインストールして
く だ さ い。ま た、/etc/init.d/mysqld で
mysqlを起動しておきましょう。
　まずは、SQL文を使ってテスト用のデータ
ベース、テーブルの作成を行い、続けてログの
解説を行っていきます。

MySQLの基本操作

　MySQLのサーバにmysqlコマンドでログイ
ンすると、SQL文でデータベースの操作ができ
ます。mysqlコマンドは次の形式で使います。

mysql [オプション] [データベース]

MySQLの4つのログ
　ここでは、オプションは-u ユーザ指定ぐら
いしか使いませんが、非常に多岐にわたってい
ます。全オプションはMySQLの公式サイト注1

を参照ください。
　では、mysqlコマンドを使ってログインして
みてください。mysql -u rootだけでログイ
ンできる注2はずです。ログインできたら、以降
の手順でデータベース、およびテーブルを作成
し、データの操作を行ってみましょう。

①データベースの作成
　mysqlコマンドでログインしたら、mysql>
のようにプロンプトが表示されます。そこで、
次のようにのSQL文を入力し、テスト用のデー
タベース（SAMPLEDB）を作成します。
mysql> CREATE DATABASE SAMPLEDB;
Query OK, 1 row affected (0.03 sec)

ヒント
SQL文 : CREATE DATABASE データベース名;
これで指定したデータベース名のデータベースを
作成できます。

②操作するデータベースの切り替え
　使用するデータベースをテスト用のデータベー

注1） h t t p : / / d e v. m y s q l . c o m / d o c / r e f m a n /5 .1 / j a /
mysqlcommand-options.html

注2） MySQLはデフォルトでrootという管理ユーザが存在します。
CentOSでは、インストールした時点でrootにパスワード
なしでログインできます。これは本来よくありませんが、
本稿はログがテーマなので、それらの設定は割愛します。

　データベースのログは非常に大事です。経営を進めるうえで命とも言えるさまざまなデータを蓄積しているわけ
ですから、有事の際にいつでも回復できるようにしておかねばなりません。あらゆるコンピュータは機械ですので
壊れることがあります。そんなときにログが役に立ちます。本稿ではMySQL（Ver.5.1.73）のログを解説します。

MySQLのロギング
を見てみよう第3章

 Writer 近藤 成（こんどう じょう）　
 Mail jj2kon@gmail.com　 Web http://server-setting.info/

http://server-setting.info/
http://dev.mysql.com/doc/refman/5.1/ja/

52 - Software Design Aug. 2014 - 53

第3章MySQLのロギングを見てみよう 第3章第3章　MySQLのロギングを見てみよう

ス（SAMPLEDB）へ切り替えます。
mysql> USE SAMPLEDB;
Database changed

ヒント
SQL文 : USE データベース名;
指定したデータベースを使用できるようになります。
Windowsのcdコマンドと似ています。カレント
のデータベースを切り替えます。

③テスト用テーブル（SAMPLETABLE）の作成
　単純にNAMEという文字列のカラムを持つテ
スト用のテーブル（SAMPLETABLE）を作成します。

mysql> CREATE TABLE SAMPLETABLE (NAME ｭ
TEXT);
Query OK, 0 rows affected (0.01 sec)

ヒント
SQL文 : CREATE TABLE テーブル名 (テーブル構造
宣言);
指定したテーブル名のテーブルを作成できます。
ここで指定しているTEXTは文字列の意味です。つ
まり、NAMEというカラム（列）は文字列ですよ、
という宣言をしています。Excelならば“NAME”と
いう列を持つSheet（シート名“SAMPLETABLE”）を
作成するという具合です。

④テスト用テーブルの全出力
mysql> SELECT * FROM SAMPLETABLE;
Empty set (0.00 sec)

ヒント
SQL文 :SELECT * FROM テーブル名;
これで指定したテーブルの全出力をします。

　空を確認します。
⑤テーブルにデータ（1行）を追加

mysql> INSERT INTO SAMPLETABLE (NAME) ｭ
VALUES("TARO");
Query OK, 1 row affected (0.00 sec)

ヒント
SQL文 :INSERT INTO テーブル名(カラム名)
VALUES(値);
これで指定したテーブルにデータを挿入できます。
Excelでいうと行を追加するという具合です。

⑥再度、テスト用テーブルを全出力
mysql> SELECT * FROM SAMPLETABLE ;
+------+
¦ NAME ¦
+------+
¦ TARO ¦
+------+
1 row in set (0.00 sec)

　⑤で追加したデータ（行）が出力されたことを
確認します。最後は、exitでmysqlコマンド
を終了します。

mysql> exit
Bye

　SQLは、奥が深いので、ここではログの解
説に必要最小限のSQLだけを紹介しました。以
降、本節で作成したデータベース：SAMPLEDB、テー
ブル：SAMPLETABLEを使ってMySQLのログ
を解説します。

　エラーログは、システムロギングとも言われ、
mysqld（MySQLデーモン）の起動、実行、停止
のロギング、また発生したエラー情報などをロ
ギングします。

エラーログの設定を確認してお
きましょう

　このロギングを行うには、mysqlの設定ファ
イル（/etc/my.cnf）で、次の設定注3をします。

……（省略）……
[mysqld_safe]
log-error=/var/log/mysqld.log
log-warnings=1
……（省略）……

log-error：エラーログのファイル名を設定する。
log-warnings：警告を出力する場合は、1（デフォ
ルト）を設定する。0は出力しない。

注3） ここでは、mysqld_safeセクションにエラーログの設定を
行っていますが、そもそも、これは、CentOSのデフォル
トの設定をそのまま使用しているものです。mysqld_safe
セクションは、mysqld_safeによって読み込まれる設定情
報で、CentOSでは、mysqld_safeからmysqldが起動さ
れるため、mysqld_safeセクションにエラーログの設定が
あります。

エラーログを
使ってみよう

54 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

エラーログを見てみましょう

　エラーログは、CentOSではMySQLをイン
ストールした状態（デフォルト）で出力するよう
に設定されていますので、最初にMySQLを起
動した時点ですでに出力されているはずです。
　また、CentOS＋MySQLでデフォルトのエ
ラーログの出力先は、/var/log/mysqld.log

です。リスト1は、そのエラーログの出力例です。

ヒント
　エラーログで[Error]情報が出力された場合、
その情報はデータベースのファイルが壊れたり致
命的なことが少なくありません。その場合データ
ベースの作り直しなどの致命的な対処が必要な場
合が多くあります。そのため[Error]情報が出力
される前の早い段階で[Warning]、[Note]などの
情報に、十分目を光らせ早目早目の対応を心掛け
ておきましょう

　一般クエリログは、クエリ（SQL）ロギング
とも言われ、mysqld（MySQLデーモン）がクラ
イアントと接続したときの情報、ならびに実行
したクエリ（SQL）情報をロギングします。

一般クエリログの設定を確認し
ておきましょう

　このロギングを行うには、mysqlの設定ファ
イル（/etc/my.cnf）で次のような設定をします。

[mysqld]
……（省略）……
Query log
log=/var/log/mysql/sql.log
……（省略）……

一般クエリログを
使ってみよう

 ▼リスト1　/var/log/mysqld.log（[Note]は注意、 [Error]はエラー、 [Warning]は警告）

140525 23:07:04 mysqld_safe Starting mysqld daemon with databases from /var/lib/mysql
140525 23:07:04 InnoDB: Initializing buffer pool, size = 8.0M
140525 23:07:04 InnoDB: Completed initialization of buffer pool
InnoDB: The first specified data file ./ibdata1 did not exist:
InnoDB: a new database to be created!
140525 23:07:04 InnoDB: Setting file ./ibdata1 size to 10 MB
InnoDB: Database physically writes the file full: wait...
140525 23:07:05 InnoDB: Log file ./ib_logfile0 did not exist: new to be created
InnoDB: Setting log file ./ib_logfile0 size to 5 MB
InnoDB: Database physically writes the file full: wait...
140525 23:07:05 InnoDB: Log file ./ib_logfile1 did not exist: new to be created
InnoDB: Setting log file ./ib_logfile1 size to 5 MB
InnoDB: Database physically writes the file full: wait...
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created
140525 23:07:05 InnoDB: Started; log sequence number 0 0
140525 23:07:05 [Note] Event Scheduler: Loaded 0 events
140525 23:07:05 [Note] /usr/libexec/mysqld: ready for connections.
Version: '5.1.73' socket: '/var/lib/mysql/mysql.sock' port: 3306 Source distribution

ヒント
　MySQLでは、設定項目をオプションと呼びます。
このオプション名は、バージョンによって異なる
ので注意しておく必要があります。本稿で使用し
ているMySQLはバージョンが5.1ですが、MySQL
5.5以降では、オプション名のハイフン“-”は、ア
ンダーバー“_”に置き換えられます。ただし、
MySQL 5.5以前からあるオプションは、そのまま
ハイフン“-”を使ったオプション名も利用できます。
　たとえば、上記のオプションは次のように変更
されています。

log-err or log-error → log_error

log-warnings→log_warnings

ただ、上記オプションは、いすれも5.5以前からあ
るので両方とも利用できます（5.1では、ハイフン“-”
のみ利用可能）。

54 - Software Design Aug. 2014 - 55

第3章MySQLのロギングを見てみよう 第3章第3章　MySQLのロギングを見てみよう

log：一般クエリログの出力の有無を指定する。
　一般的に、ここにログファイル名を指定しま
す。オプションキーの“log”だけを指定して、ファ
イル名を指定しない場合は、ホスト名.logの
ファイル名で保存されます。一般クエリログを
出力しない場合は、オプションキーの“log”自
体を削除します。また、この設定例は古くから
ある設定方法で、今では次のように設定するこ
とで同じことが実現できます。

general-log：一般クエリログの出力の有無を
設定する（1：出力する、0：出力しない）。
general-log-file：一般クエリログのファイル名
を設定する。指定しない場合は、ホスト名.log
のファイル名で保存される。
log-output：一般クエリログとスロークエリロ
グの出力先を設定（TABLE：テーブルへのログ、
FILE:ファイルへのログ、NONE:テーブルま
たはファイルにログしない、のいずれか）。
　ここでは、出力先ディレクトリを、MySQL

用のディレクトリ（/var/log/mysql）にしてい
ます。このディレクトリは、デフォルトで存在

しませんので作成します。また、このディレク
トリにmysqldがファイルを作成できるように、
ディレクトリの所有者をmysqlに変更しておき
ます。

$ mkdir /var/log/mysql
$ chown mysql:mysql /var/log/mysql

ヒント
　chownコマンドは、所有者を変更するコマンド
です。パラメータには［所有するユーザ名］:［グルー
プ名＋変更したいディレクトリ名あるいはファイ
ル名］を指定します。

　すべての設定を終えたら、mysqldを再起動
します。

$ /etc/init.d/mysqld restart
mysqld を停止中: [OK]
mysqld を起動中: [OK]

一般クエリログを見てみましょう

　図1のようにmysqlコマンドでテーブルに
データを挿入してみましょう。ここでは、
mysqlコマンドにデータベース名を指定してい
ます。データベース名を指定することでSQL

文“use データベース名 ;”を省略できます。つ
まり、カレントのデータベースは、指定された
データベース名になります。
　次は、一般クエリログ（/var/log/mysql/
sql.log）を出力してみましょう。リスト2は、
その出力イメージです。出力された一般クエリ
ログを簡単に解説します。
1行目：mysqldのバージョン表記とログの開始
を出力したものです。
2行目：tcpポート番号、ソケット を出力した
ものです。
3行目：4行目からのタイトルを出力したもの
です。
6行目：日付、時間、ID番号、コマンド、パラメー
タがそれぞれ出力されています。日付は、“140526”
→“2014/05/26”の こ と で す。コ マ ン ド は
“Connect”：接続の意味です。また、パラメータ

[mysqld]
……（省略）……
Query log
general-log=1
general-log-file=/var/log/mysql/sql.log
log-output=FILE
……（省略）……

 ▼図1　データの挿入

$ mysql -u root SAMPLEDB
Welcome to the MySQL monitor. Commands ｭ
end with ; or ¥g.
……（省略）……
mysql> INSERT INTO SAMPLETABLE (NAME) ｭ
VALUES("JIRO");
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM SAMPLETABLE ;
+--------+
¦ NAME ¦
+--------+
¦ TARO ¦
¦ HANAKO ¦
¦ JIRO ¦
+--------+
3 rows in set (0.00 sec)

56 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

には、“root@localhost on SAMPLEDB”とあり
ます。これは、データベースSAMPLEDBを使用
しようとlocalhostのrootが接続してきたと
いう意味です。
11行目：mysqlコマンドでテーブルにレコー
ドを挿入したSQLログです。
12行目：mysqlコマンドでテーブルを出力し
たSQLログです。
　このようにクライアントが接続したログ情報、
SQLを処理したログ情報が出力されます。もし、
SQLで構文エラーが発生しても一般クエリロ
グには出力されません。発行（実行）したSQL

だけが出力されることに注意してください。

　スロークエリログは、スロークエリ（デバッグ）
ロギングとも言われ、mysqld（MySQLデーモン）
はlong_query_timeで指定した秒数より時間
を要したクエリ（SQL）、またはインデックスを
使用しなかったクエリ（SQL）をロギングします。

スロークエリログの設定を確認
しておきましょう

　このロギングを行うには、mysqlの設定ファ
イル（/etc/my.cnf）で、次の設定を行います。

[mysqld]
……（省略）……
Slow Query log
slow_query_log=1
slow_query_log_file=/var/log/mysql/slow.ｭ
log
long_query_time=1
log_queries_not_using_indexes
log_slow_admin_statements

スロークエリログを
使ってみよう

slow_query_log：スロークエリログの出力の
有無を設定する（1:出力する、0:出力しない）。
slow_query_log_file：スロークエリログのファ
イル名を設定する。指定しない場合は、
general_log_fileに従う（つまり、一般クエ
リログと同じになる）。
long_query_time：クエリの処理時間（秒単位）
を設定する。この秒数を超えるとスロークエリ
ログに出力される（デフォルトは10秒）。
log_queries_not_using_indexes：インデック
スしていないクエリをすべて出力する場合に指
定する（これを指定しておくと、先に作成した
テスト用テーブルはインデックスしていないた
め、テスト用テーブル操作の全クエリが出力さ
れる）。
log_slow_admin_statements：管理用のステー
トメント（OPTIMIZE TABLE、ANALYZE TABLE、
ALTER TABLEなど）についても同様に処理に時
間がかかるものを出力したい場合に指定する。

　ここでは、一般クエリログと同じように 出
力先ディレクトリを、MySQL用のディレクト
リ（/var/log/mysql）にしています。このディ
レクトリが存在しない場合は、作成します。ま
た、このディレクトリにmysqldがファイルを
作成できるように、ディレクトリの所有者を
mysqlに変更しておきます。

　すべての設定を終えたら、mysqldを再起動
します。

$ chown mysql:mysql /var/log/mysql

 ▼リスト2　一般クエリログをcatコマンドで出力

01 /usr/libexec/mysqld, Version: 5.1.73-log (Source distribution). started with:
02 Tcp port: 0 Unix socket: /var/lib/mysql/mysql.sock
03 Time Id Command Argument
04 140526 1:05:04 1 Connect UNKNOWN_MYSQL_US@localhost as anonymous on
05 1 Quit
06 140526 1:09:03 2 Connect root@localhost on SAMPLEDB
07 2 Query show databases
08 2 Query show tables
09 2 Field List SAMPLETABLE
10 2 Query select @@version_comment limit 1
11 140526 1:09:10 2 Query INSERT INTO SAMPLETABLE (NAME) VALUES("JIRO")
12 140526 1:09:34 2 Query SELECT * FROM SAMPLETABLE

56 - Software Design Aug. 2014 - 57

第3章MySQLのロギングを見てみよう 第3章第3章　MySQLのロギングを見てみよう

スロークエリログを見てみよう

　図3のようにmysqlコマンドでテーブルを出
力します。
　次にスロークエリログ（/var/log/mysql/
slow.log）を出力してみましょう。リスト3は
その出力イメージです。出力されたスロークエ
リログを簡単に解説します。
1〜4行目：一般クエリログと同じです（第3章
p.54参照）
5行目：接続ユーザ、ホスト名 が出力されます。
6行目：Query_time（クエリ実行時間）、Lock_
time（テーブルあるいはデータベースがロック
された時間）、Rows_examined（処理対象となっ
た行数）がそれぞれ出力されます。
9行目：先に実行したSQL文 が出力されます。

$ /etc/init.d/mysqld restart
mysqld を停止中: [OK]
mysqld を起動中: [OK]

　ここで出力されたスロークエリログ情報は、
遅延が発生してログ情報が出力されたわけでは
なく、log_queries_not_using_indexesを設
定していたために出力されたものです。もし、
クエリ遅延が発生したログ情報であれば、先の
設定では、Query_time（リスト3の6行目）が、
少なくとも10秒以上になっていないといけま
せん。ここでの出力では、“Query_time:
0.000201”とまったく問題ない数値です。
　また、Query_timeは、CPU処理時間でなく、
実際にリアクションするまでの時間なので、こ
こで出力された時間は、そのままユーザへのレ
スポンス時間に直結します。この値が大きい場
合は、ログ情報の実行したSQLを分析するこ
とで、データベースでの遅延個所を確定できま
すし、レスポンス時間の改善を図られるように
なるでしょう。

 ▼図3　テーブルの出力

$ mysql -u root SAMPLEDB
Welcome to the MySQL monitor. Commands end with ; or ¥g.
……（省略）……
mysql> SELECT * FROM SAMPLETABLE ;
+--------+
¦ NAME ¦
+--------+
¦ TARO ¦
¦ HANAKO ¦
¦ JIRO ¦
+--------+
3 rows in set (0.00 sec)

 ▼リスト3　/var/log/mysql/slow.log

01 /usr/libexec/mysqld, Version: 5.1.73-log (Source distribution). started with:
02 Tcp port: 0 Unix socket: /var/lib/mysql/mysql.sock
03 Time Id Command Argument
04 # Time: 140526 1:47:41
05 # User@Host: root[root] @ localhost []
06 # Query_time: 0.000201 Lock_time: 0.000095 Rows_sent: 4 Rows_examined: 4
07 use SAMPLEDB;
08 SET timestamp=1401036461;
09 SELECT * FROM SAMPLETABLE ;

58 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

　バイナリログは、バイナリ（バックアップ）ロ
ギングとも言われ、mysqld（MySQLデーモン）
のデータ変更のステートメントをバイナリ情報
でロギングします。また、レプリケーションに
も使用されます。

バイナリログの設定を確認して
おきましょう

　このロギングを行うには、mysqlの設定ファ
イル（/etc/my.cnf）で、次のような設定を行
います。

[mysqld]
……（省略）……
Binary log
log_bin=/var/log/mysql/bin.log
log_bin_index=/var/log/mysql/bin.list
max_binlog_size=1M
expire_logs_days=1

log_bin：バイナリログの出力の有無を設定し
ます。ここにログファイル名を指定することで、
出力を有効にします。
log_bin_index：バイナリログインデックスファ
イル名を設定します。バイナリログファイル名
を管理するためのファイル名になります。
max_binlog_size：バイナリログの最大ファイ
ルサイズを指定します。ここで指定したファイ
ルサイズを超えた場合は、ファイルを自動で切
り替えます。設定可能な値は、4,096B以上
1GB（デフォルト）以下です。

バイナリログを
使ってみよう

ヒント
レプリケーション（replication）は、日本語ではレ
プリカという言葉がなじみ深いでしょう。複製と
いう意味です。昔は1つの高性能なサーバにデー
タベースをインストールし、集中管理する方法も
よく用いられましたが、輻

ふくそう

輳した場合に1台への
負荷が集中してレスポンスが非常に悪くなるとい
う問題がありました。この問題の対策の1つとして、
レプリケーションを各サーバに配置することで、
少なくともデータベースの読み込みは、各サーバ
のレプリケーション（複製）に担わせ、負荷を分散
させる対策が図られるようになりました。

expire_logs_days：バイナリログの保存期間を
日数で指定します。この日数を超えたものは削
除されます。デフォルト0は、削除しません。
　上記以外にもバイナリログに関しては、いろ
いろ設定できるようになっています。たとえば、
binlog_format（バイナリロギング形式の設定）
は、STATEMENT（デフォルト）、ROW、MIXEDの
いずれかを指定します。

　これ以外にも、まだたくさんあります注4。
　ここでは、一般クエリログと同じように出力
先ディレクトリを、MySQL用のディレクトリ

（/var/log/mysql）にしています。このディレ
クトリが存在しない場合は、作成します。また、
このディレクトリにmysqld（MySQLデーモン）
がファイルを作成できるように、ディレクトリ
の所有者をmysqlに変更しておきます。

$ chown mysql:mysql /var/log/mysql

　すべての設定を終えたら、mysqldを再起動
します。

バイナリログを見てみましょう

　図4のようにmysqlコマンドでテーブルに
データを挿入します。次にバイナリログ（/
var/log/mysql/bin.000001）を出力してみま
しょう。バイナリログは、名前のとおりバイナ
リ情報なので、catコマンドなどで出力できま
せん。次のようにmysqlbinlogコマンドを使っ
てロギングされている内容を確認します。

$ mysqlbinlog /var/log/mysql/bin.000001

　このコマンドは、バイナリログをテキスト（ク
エリログ）変換するMySQLのユーティリティ

注4） 詳 し く は、http://dev.mysql.com/doc/refman/5.1/ja/
server-system-variables.htmlを参照してください。

$ /etc/init.d/mysqld restart
mysqld を停止中: 　　　　　　[OK]
mysqld を起動中: 　　　　　　 [OK]

http://dev.mysql.com/doc/refman/5.1/ja/server-system-variables.html

58 - Software Design Aug. 2014 - 59

第3章MySQLのロギングを見てみよう 第3章第3章　MySQLのロギングを見てみよう

ツールです。これもmysqlコマンド同様、オ
プションがたくさんあります。ここでは、バイ
ナリログのファイルを指定するぐらいのことし
かしませんが、詳しくは、MySQLの公式サイ
ト注5を参照ください。
　リスト4は、バイナリログファイル（/var/

注5） http://dev.mysql.com/doc/refman/5.1/ja/mysqlbinlog.html

log/mysql/bin.000001）を mysqlbinlog　
コマンドで出力したバイナリログを簡単に解説
します。
12行目：at 106の106がロールバックなどで
使うポジション番号です（第3章の「バイナリロ
グからロールバックしてみよう」p.60で使用）
24行目：mysqlコマンドでテーブルにレコー
ドを挿入したSQLログです。

 ▼図4　テーブルへのデータ挿入

$ mysql -u root SAMPLEDB
Welcome to the MySQL monitor. Commands end with ; or ¥g.
……（省略）……
mysql> INSERT INTO SAMPLETABLE (NAME) VALUES("SAKURA");
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM SAMPLETABLE ;
+--------+
¦ NAME ¦
+--------+
¦ TARO ¦
¦ HANAKO ¦
¦ JIRO ¦
¦ SAKURA ¦
+--------+
4 rows in set (0.00 sec)

 ▼リスト4　/var/log/mysql/bin.000001（#以降、/* */で括られた範囲はコメント）

01 /*!40019 SET @@session.max_insert_delayed_threads=0*/;
02 /*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
03 DELIMITER /*!*/;
04 # at 4
05 #140526 2:11:09 server id 1 end_log_pos 106 Start: binlog v 4, server v 5.1.73-log created 140526 ｭ
2:11:09 at startup

06 # Warning: this binlog is either in use or was not closed properly.
07 ROLLBACK/*!*/;
08 BINLOG '
09 LSSCUw8BAAAAZgAAAGoAAAABAAQANS4xLjczLWxvZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
10 AAAAAAAAAAAAAAAAAAAtJIJTEzgNAAgAEgAEBAQEEgAAUwAEGggAAAAICAgC
11 '/*!*/;
12 # at 106
13 #140526 2:13:18 server id 1 end_log_pos 218 Query thread_id=2 exec_time=0 error_code=0
14 use `SAMPLEDB`/*!*/;
15 SET TIMESTAMP=1401037998/*!*/;
16 SET @@session.pseudo_thread_id=2/*!*/;
17 SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=1, @@session.unique_checks=1, @@session.ｭ

autocommit=1/*!*/;
18 SET @@session.sql_mode=0/*!*/;
19 SET @@session.auto_increment_increment=1, @@session.auto_increment_offset=1/*!*/;
20 /*!¥C latin1 *//*!*/;
21 SET @@session.character_set_client=8,@@session.collation_connection=8,@@session.
collation_server=8/*!*/;
22 SET @@session.lc_time_names=0/*!*/;
23 SET @@session.collation_database=DEFAULT/*!*/;
24 INSERT INTO SAMPLETABLE (NAME) VALUES("SAKURA")
25 /*!*/;
26 DELIMITER ;
27 # End of log file
28 ROLLBACK /* added by mysqlbinlog */;
29 /*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

http://dev.mysql.com/doc/refman/5.1/ja/mysqlbinlog.html

60 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

　リスト4のmysqlbinlogコマンドによる出
力情報でわかるように全文SQLです。一般ク
エリログ、スロークエリログとは、その点で異
なりリスト4の情報は、そのままMySQLにて
実行することができるSQL文になっています。
このようにバイナリログから出力されるSQL

文をロールバック（用）SQL文ともいい、これ
を用いて好きな位置へロールバック（戻る）でき
ることから、バイナリログをバックアップログ
とも言います。
　最後に、実際にこのバイナリログを使ってロー
ルバックを試してみましょう。

　フルバックアップ＋バイナリログがあれば、
フルバックアップを行った時点からバイナリロ
グが存在する範囲内で好きな状態までロールバッ
クできます。ロールバックの前準備からロール
バック実施までを解説します。また、バイナリ
ログは、第3章p.58での設定例と同じようにす
でに設定されているものとして解説します。

フルバックアップを
準備しよう

mysqldumpコマンドでフルバックアップ
　図5のようにフルバックを行います。ここで
使用しているmysqldumpコマンドは、SQL形
式でデータベースをバックアップするコマンド
です。このコマンド自体は、コンソールへSQL

文を出力するだけなので、“>”リダイレクトを使っ

バイナリログからロール
バックしてみよう（おまけ）

てファイルに保存しています。ここで指定して
いるオプションは、ユーザ名とバックアップ対
象範囲（ここではすべて）です。本当に使うオプ
ションは限られていると思いますが、このコマ
ンドもオプションの数がすごいです注6。

フルバックアップ状態の確認
　図6のようにフルバックアップしたときの状
態を確認します。mysqlコマンドは、“-e”オプ
ションを使うと、以降に指定したSQL文を実行
できます。つまり、“show master status;”
はSQL文で、これをmysqlコマンド1行で実行
します。このSQL文は、マスターデータベース
の状態を出力したものです。File（バイナリロ
グファイル名）、Position（バイナリログファ
イルの現在の位置）でフルバックアップを実行
したときのバイナリログの正確な位置をしるこ
とができます。ここでは、この2つのデータを
使いますのでメモしておきましょう。ここまで
が前準備注7です。ここから先がロールバック可
能な範囲になります。

バイナリログを更新してみよう

　図7のように、テスト用テーブルに複数のテ
スト用のレコードを挿入することで、バイナリ
ログを更新します。ここでは、NAME列の

注6） http://dev.mysql.com/doc/refman/5.1/ja/mysqldump.htm
を詳しくは参照してください。

注7） 本来、この前準備は、データベースの更新を停止して行う
必要がありますが、ここではその手順を割愛しています。

 ▼図5　フルバックアップの実行

$ mysqldump -u root --all-databases > /var/log/mysql/all_backup.sql

 ▼図6　バックアップ状態の確認

$ mysql -u root -e "show master status;"
+------------+----------+--------------+------------------+
¦ File ¦ Position ¦ Binlog_Do_DB ¦ Binlog_Ignore_DB ¦
+------------+----------+--------------+------------------+
¦ bin.000001 ¦ 218 ¦ ¦ ¦
+------------+----------+--------------+------------------+

http://dev.mysql.com/doc/refman/5.1/ja/mysqldump.html

60 - Software Design Aug. 2014 - 61

第3章MySQLのロギングを見てみよう 第3章第3章　MySQLのロギングを見てみよう

“rollback1”から“rollback4”までの4つのレ
コードを挿入しました。

ロールバックしてみよう

　ここで何らかのトラブルが発生し、そのトラ
ブルを解決するために“rollback2”が挿入さ
れた位置（“rollback3”の挿入前）までロール
バックしなければならなくなったとしましょう。
以降、順を追って“rollback2”が挿入された
位置までロールバックをしてみます。

① バイナリログの全ファイルをコピー（バッ
クアップ）

$ mkdir /var/log/mysql/rollback
$ cp /var/log/mysql/bin* /var/log/mysql/ｭ
rollback/.

　ここでは、バイナリログを /var/log/
mysql/rollbackというディレクトリに、いっ
たん避難させます。
② “rollback2”の挿入位置を検索
　①で退避したバイナリログの中から
“rollback2“の挿入個所をmysqlbinlogコマ
ンドで確認します。mysqlbinlogコマンドは、
開始日時（“--start-datetime”オプション）、
終了日時 (“--stop-datetime”オプション)で
出力する範囲を指定できます。既知の範囲で指
定すると良いでしょう。図8では2014-05-26

 ▼図7　ロールバック

$ mysql -u root SAMPLEDB
Welcome to the MySQL monitor. Commands end ｭ
with ; or ¥g.
……（省略）……
mysql> INSERT INTO SAMPLETABLE (NAME) ｭ
VALUES("rollback1");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO SAMPLETABLE (NAME) ｭ
VALUES("rollback2");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO SAMPLETABLE (NAME) ｭ
VALUES("rollback3");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO SAMPLETABLE (NAME) ｭ
VALUES("rollback4");
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM SAMPLETABLE ;
+-----------+
¦ NAME ¦
+-----------+
¦ TARO ¦
¦ HANAKO ¦
¦ JIRO ¦
¦ SABURO ¦
¦ SHIRO ¦
¦ SAKURA ¦
¦ rollback1 ¦
¦ rollback2 ¦
¦ rollback3 ¦
¦ rollback4 ¦
+-----------+
10 rows in set (0.00 sec)

mysql> exit
Bye

 ▼図8　mysqlbinlogコマンドで確認

$ mysqlbinlog /var/log/mysql/rollback/bin.000001 --start-datetime "2014-05-26 02:30:00" --stop-datetime ｭ
"2014-05-26 03:00:00"
……（省略）……
INSERT INTO SAMPLETABLE (NAME) VALUES("rollback1")
/*!*/;
at 333
#140526 2:56:52 server id 1 end_log_pos 448 Query thread_id=2 exec_time=0 error_code=0
SET TIMESTAMP=1401040612/*!*/;
INSERT INTO SAMPLETABLE (NAME) VALUES("rollback2")
/*!*/;
at 448
#140526 2:56:54 server id 1 end_log_pos 563 Query thread_id=2 exec_time=0 error_code=0
SET TIMESTAMP=1401040614/*!*/;
INSERT INTO SAMPLETABLE (NAME) VALUES("rollback3")
/*!*/;
at 563
#140526 2:56:56 server id 1 end_log_pos 678 Query thread_id=2 exec_time=0 error_code=0
SET TIMESTAMP=1401040616/*!*/;
INSERT INTO SAMPLETABLE (NAME) VALUES("rollback4")
……（省略）……

62 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

02:30:00から03:00:00までの30 分を指定し
てます。
　この出力情報から“rollback2”を挿入した
位置は、SQL文"INSERT INTO SAMPLETABLE
(NAME) VALUES("rollback2")"の位置なの
で、そのSQL文の後のバイナリログの位置情
報 “# at”を確認します。ここでは“448”となっ
ています。つまり、データベースをフルバック
アップしたときの状態（Position:218）まで戻
して、②で確認した位置218〜448（ここで確認
した位置）までをロールアップすれば良いこと
になります。
　では、この手順にならい、まずフルバックアッ
プしたときまで戻してみましょう。

③フルバックアップした状態までロールバック

$ mysql -u root < /var/log/mysql/all_ｭ
backup.sql

　ここではフルバックアップファイル（/var/
log/mysql/all_backup.sql）を“<”リダイレ
クトを使ってmysqlコマンドへ渡しています。
“<”の後にファイル名を指定すると指定したファ
イルを読み込み、その内容を“<”の先のコマン
ドへ渡してくれます。つまり、フルバックアッ
プファイルのSQLを一気にmysqlコマンドを
使って実行したことになります。

④ フルバックアップした状態まで戻ったか
　確認

$ mysql -u root SAMPLEDB -e "SELECT * FROM ｭ
SAMPLETABLE ;"
+-----------+
¦ NAME ¦
+-----------+
¦ TARO ¦
¦ HANAKO ¦
¦ JIRO ¦
¦ SABURO ¦
¦ SHIRO ¦
¦ SAKURA ¦
+-----------+

　ここでは、mysqlコマンド-eオプションを
使うことでSQL文を実行しています。NAME

列の“rollback1”から“rollback4”までのレ
コードが見当たりませんから、確かに、フルバッ
クアップの時点まで戻ったようです。

⑤“rollback2”を挿入した位置まで更新

$ mysqlbinlog /var/log/mysql/rollback/bin.ｭ
000001 --start-position 218 --stop-position ｭ
448 ¦ mysql -u root

　ここでは、mysqlbinlogコマンドを使って
バイナリログファイルをSQL変換しています。
その際、開始ポジション（--start-position）、
終了ポジション（--stop-position）を指定す
ることで、その範囲内のデータをSQLに変換
するように指示しています。続けて、“¦”パイ
プ指定し、mysqlコマンドへ渡しています。こ
れで、指定されたポジションの範囲内のSQL

をmysqlコマンドは、先のフルバックアップ
と同じように一気に実行することになります。

⑥意図した位置にロールバックできたか確認

$ mysql -u root SAMPLEDB -e "SELECT * FROM ｭ
SAMPLETABLE ;"
+-----------+
¦ NAME ¦
+-----------+
¦ TARO ¦
¦ HANAKO ¦
¦ JIRO ¦
¦ SABURO ¦
¦ SHIRO ¦
¦ SAKURA ¦
¦ rollback1 ¦
¦ rollback2 ¦
+-----------+

　ここでのコマンドは④と同じです。この出力
結 果 に は、NAME 列 の“rollback1”か ら
“rollback2”までのレコードが出力されました。
“rollback3”以降は見当たりませんから、確か
に意図した位置にロールバックできたようです。
　うまくできましたでしょうか？　少し面倒で
すが、フルバックアップも含めバイナリログを
とっていれば、好きなところまで戻れる点は、
もし何かあったときの保険となりえます。その
意味でも、このバイナリログは、非常に有効な
ログであることは間違いありません。ﾟ

63 - Software Design Aug. 2014 - 63

　増加し続けるログファイルを管理しなければシステムは破綻してしまいます。そこでログの運用・管理として、
ログローテーションがあります。syslog、httpd（Apache）、Nginx、MySQLの設定例を紹介しながら、その
テスト方法を解説します。最後により仕事を便利にするログウォッチの方法を解説します。

ログを管理・運用しよう
（ログローテーションと

ログウォッチ）
第4章

　ログ情報はひたすら追加され、ファイルが肥
大化することに注意しなければなりません。ディ
スク容量が格段に増えた現在では、あまり気に
しない方も多いようですが、ログをそのままの
状態で取り続けると、いつかは破たんします。
　そこで必要なのが、ログファイルのローテー
ション（入れ替え）です。CentOSでは、ログファ
イルのローテーションを行うlogrotateアプ
リケーションが提供されています。
　図1は、ログローテーションの簡単な概念図
です。図1では、5月10日のログ情報が日にち
を追うごとにシフトされ4日間の保存期間を終
え、最後は削除されるというイメージです。こ
の時、大事なのは保存期間です。

　ログの保存期間は、最長でも3年、あとは1年、
半年、3ヵ月、短くて1ヵ月（4週間）という単位
でローテーションするのが一般的です。日本版
SOX法などの影響で会計に絡むシステムの場
合は、ログの保存期間を長くしなければならな
い場合もあります。また、プロバイダーなどの
通信事業を手掛ける会社および団体のサーバは、
ネット犯罪への情報提供などもあり、長期間の
ログを保存する必要があるでしょう。

ログの保存管理は
ローテーションが基本

ログの保存期間を
決めよう

　そうでない限り、ディスク容量が厳しい場合
であっても最低1ヵ月程度を目安とします。1

週間の保存期間では問題に気づいた時にはログ
が残っていない恐れがあり、それでは意味をな
しません。やはり、短くても1ヵ月（4週間）程
度以上のログの保存が必要です。
　まずは利用頻度にもよりますが、ディスク容
量に10GB程度以上の空きがあるなら、1年分
のログ保存期間を設定してみましょう。ディス
ク容量に余裕がない方は、許される範囲で可能
な限り長い期間のログを保存しましょう。最悪
の場合でもログが残る可能性が増します。また、
運用実績を積み上げれば1日あたりに必要とさ
れるログ容量のより正確な数値がわかります。

 Writer 近藤 成（こんどう じょう）　
 Mail jj2kon@gmail.com　 Web http://server-setting.info/

 ▼図1　ログローテーションのイメージ

5月14日

syslog_2014_05_10

5月13日

syslog_2014_05_10

5月12日

syslog_2014_05_10

5月11日

syslog_2014_05_10

5月10日

syslog_2014_05_10

http://server-setting.info/

64 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

それでログ保存最長期間を算出できます。より
正確なログ保存最長期間から、サーバの運用上
の問題点などを鑑み、最適なログ保存期間を決
定し、調整しましょう。
　とりあえず1年という期間が確保できれば、
じっくり腰を据えて最適な保存期間を検討でき
ます。最悪なのは、とりあえず1ヵ月とか、ディ
スク容量が少ないので10日とか、短い保存期
間を決めてしまうことです。とくにサーバの立
ち上げ期は、トラブルがつきものです。なるべ
く長く設定することをお勧めします。

　実は、ログのローテーションは、rsyslogで
も実現できます。ただ、ここまで紹介してきた
さまざなアプリケーションのログのほとんどは、
それぞれのアプリケーション単独でログを保存
する方法のみ（rsyslogでログを管理していませ
ん）を紹介してきました。そのため、ここでは、
rsyslogのローテーションでなくCentOS 6でデ
フォルトでインストールされているlogrotate
（Ver.3.7.8）を使ってログローテーションを実
施する方法について解説します。
　もしインストールされていない場合は、次の
ようにyumコマンドを使ってインストールしま
しょう。

　logrotateは、基本設定ファイル (/etc/
logrotate.conf）と、個別のアプリケーショ
ン用設定ファイル（/etc/logrotate.d/配下
にアプリケーションごとに設定ファイルがある）
で設定します。まず、基本設定ファイル（/
etc/logrotate.conf）を確認してみましょう。
次は、基本設定ファイルから、ログの保存期間
に関する情報を抜粋したものです。

ログローテーションを
設定してみよう

$ yum install logrotate
……（省略）……
Is this ok [y/N]: y
……（省略）……
Complete!

weekly
rotate 4

　この意味は次のとおりです。
weekly：ログファイルの切り替えタイミング
を1週間ごとに設定します。
rotate 4：ログファイルの保存期間を、ログファ
イルの切り替えタイミングが4回実施される間
に設定します。

　つまり、この2つの設定では、1週間ごとに
ログファイルを切り替え、それが4回（つまり
4週間）経過した時にログの保存期間を終える（削
除）ということになります。ただし、この設定
はデフォルトの設定となりますので、/etc/
logrotate.d/配下の各アプリケーションの設
定ファイルで上記のログファイルの切り替えタ
イミング、ログファイルの保存期間 を設定し
た場合は、そちらの設定が優先されます。
　続けて、各アプリケーションの設定ファイル
を確認してみましょう。logrotateは、/etc/
logrotate.d/配下に各アプリケーション対応
の設定ファイルを設置することでログローテー
ションを実行します。
　次に、syslog、httpd、Nginx、mysqlのログ
ログローテーションの設定について、簡単に解
説します。

syslogの設定を見てみよう

　リスト1の例では、切り替えタイミング、切
り替え回数が設定されていないので、基本設定
の内容が有効になります。つまり、保存期間は
4週間となります。
　簡単に解説しておくと、"{ }"の間が設定に
なります。"{"の前に記述されているのがローテー
ションの対象となるファイル（複数指定可、ワ
イルドカード使用可）です。各設定項目の詳細
は表1を参照してください。

64 - Software Design Aug. 2014 - 65

第4章ログを管理・運用しよう（ログローテーションとログウォッチ）

 ▼リスト1　/etc/logrotate.d/syslog

/var/log/cron　　　　
/var/log/maillog　　
/var/log/messages　　 ローテーションの対象ファイル
/var/log/secure　　　
/var/log/spooler　　
{
 sharedscripts　　 複数指定したログファイルに対してpostrotateまたはprerotateで記述されたコマンドを1回だけ実行する
 postrotate
 /bin/kill -HUP `cat /var/run/syslogd.pid 2> /dev/null` 2> /dev/null ¦¦ true
　　　　 ローテーションを実行した後に実施するコマンドイメージ
 endscript
}

 ▼表1　logrotateで使える設定項目一覧

設定値 解説
compress ローテーションされたログをgzipで圧縮する
create［パーミッション］

［ユーザ名］［グループ名］
ローテーション後に新たな空のログファイルを作成する。ファイルのパーミッション、
ユーザ名、グループ名を指定できる

daily 毎日ログローテーションする（正確な日時はcronに依存する）
weekly 毎週ログローテーションする（正確な日時はcronに依存する）
monthly 毎月ログローテーションする（正確な日時はcronに依存する）
ifempty ログファイルが空でもローテーションする
missingok ログファイルが存在しなくてもエラーを出さない
nocompress ローテーションされたログを圧縮しない
nocreate 新たな空のログファイルを作成しない
nomissingok ログファイルが存在しない場合エラーを出す
noolddir ローテーション対象のログと同じディレクトリにローテーションされたログを格納する
notifempty ログファイルが空ならローテーションしない
olddir ディレクトリ名 指定したディレクトリ内にローテーションされたログを格納する
postrotate - endscript postrotateとendscriptの間に記述されたコマンドをログローテーション後に実行する
prerotate - endscript postrotateとendscriptの間に記述されたコマンドをログローテーション前に実行する
rotate 回数 指定した回数だけローテーションする
size ファイルサイズ ログファイルが指定したファイルサイズ以上であればローテーションする
sharedscripts 複数指定したログファイルに対してpostrotateまたはprerotateで記述されたコマンド

を1回だけ実行する
nosharedscripts sharedscriptsの逆。複数指定したログファイルに対してpostrotateまたはprerotate

で記述されたコマンドをファイルの数だけ実行する

 ▼リスト2　/etc/logrotate.d/httpd

/var/log/httpd/*log {
 missingok
 notifempty
 sharedscripts
 delaycompress
 postrotate
 /sbin/service httpd reload >ｭ
/dev/null 2>/dev/null ¦¦ true
 endscript
}

 ▼リスト3　/etc/logrotate.d/nginx

/var/log/nginx/*.log {
 daily　　　　 毎日切替
 missingok
 rotate 52　 daily×52＝52日間の保存期間
 compress
 delaycompress
 notifempty
 create 640 nginx adm
 sharedscripts
 postrotate

[-f /var/run/nginx.pid] && kill -USR1 ｭ
`cat /var/run/nginx.pid`
 endscript
}

66 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

httpd（Apache）の設定を見て
みよう

　リスト2も保存期間関連の設定がないので、
保存期間は4週間になります。各設定項目の詳
細は表1を参照してください。

Nginxの設定を見てみよう

　リスト3は、Apacheと同様ですが、保存期
間の設定を行っています。この例では、毎日切
替、52 回の切替後削除となりますので、52日
間の保存期間となっています。その他の各設定
項目の詳細は表1を参照してください。

MySQLの設定を見てみよう

　MySQLは、rootのパスワードをlogrotate
に通知する必要があるため/root/.my.cnfに
MySQLのrootパスワードを設定しなければな
りません。そのため、デフォルトでは、全コメ
ントアウトとなっています（リスト4）。

　ほとんどのアプリケーション用設定ファイル
については、保存期間の変更以外は、デフォル
トのままで良いと思います。気になる方は表1

を参照のうえ、設定されるとよいでしょう。

　logrotateコマンドに-dパラメータを付け
て実行すれば、設定に誤りがないか簡単にテス
トできます。

ヒント

　ここで利用したパラメータは次のとおりです。
-d：デバッグ実行
-v：詳細表示
-f：強制的に実行
-m：メール送信のためのコマンドの指定
　　　　例）-m=/bin/mail
-s：状態ファイルのパスを続けて指定
　　　　例）-s=/var/lib/logrotate.status　
一般的に、-sは違うユーザがlogrotateを実行し
たい場合に、状態ファイルを分けることで混乱を
防ぐために使用します。

ログローテーションを
テストしてみよう

 ▼リスト4　/etc/logrotate.d/mysqld

This logname can be set in /etc/my.cnf
by setting the variable "err-log"
in the [safe_mysqld] section as follows:

[safe_mysqld]
err-log=/var/log/mysqld.log

If the root user has a password you have to create a
/root/.my.cnf configuration file with the following
content:

[mysqladmin]
password = <secret>
user= root

where "<secret>" is the password.

ATTENTION: This /root/.my.cnf should be readable ONLY
for root !
Then, un-comment the following lines to enable rotation of mysql's log file:\
#/var/log/mysqld.log {
create 640 mysql mysql
notifempty
daily
rotate 3
missingok
compress
postrotate
just if mysqld is really running
if test -x /usr/bin/mysqladmin && \
/usr/bin/mysqladmin ping &>/dev/null
then
/usr/bin/mysqladmin flush-logs
fi
endscript
#

66 - Software Design Aug. 2014 - 67

第4章ログを管理・運用しよう（ログローテーションとログウォッチ）

　logrotateの実行結果が正常な場合は、図2

のような詳細情報が出力されるでしょう。図2

から指定された設定ファイルに誤りはありませ
ん。ただし、“log does not need rotating”と出
力されていますので“ログローテーションは必
要なし”と判断されています。
　このように“必要なし”となるのは、エラーや
ログファイルが空、あるいはログファイルが存
在しない場合を除けば、ログローテーションを
最後に実行して、まだ1日以上経過していない
ために判断されていることが多いです。その場
合、先のログローテーション設定ファイルの内
容に誤りがないかを確認するために、次の
logrotate状態ファイル注1で最終ログローテー

注1） 通常、運用しているサーバでは、logrotate状態ファイル
を直接変更しません。テスト用に状態ファイルをコピーし、
logrotateコマンドの-sオプションでテストします。

ション実施日をテスト用に変更して確認すると
良いでしょう。
　CentOSの場合、その状態ファイルは/var/
lib/logrotate.status で す。こ こ で は
Nginxの実施日を変更してみます。
　ここの例では、

……（省略）……
"/var/log/nginx/access.log" 2014-5-26
……（省略）……

となっていたので次のように日付を1日前に編
集し保存します。

……（省略）……
"/var/log/nginx/access.log" 2014-5-25
……（省略）……

　保存後、再度logrotateコマンドを実行し
てみます（図3）。
　今度は“log needs rotating”と出力され、“ロ

 ▼図2　logrotateの実行結果（“ログローテーションは必要なし”）

$ logrotate -dv /etc/logrotate.d/nginx
reading config file /etc/logrotate.d/nginx
reading config info for /var/log/nginx/*.log

Handling 1 logs

rotating pattern: /var/log/nginx/*.log after 1 days (52 rotations)
empty log files are not rotated, old logs are removed
considering log /var/log/nginx/access.log
log does not need rotating
considering log /var/log/nginx/error.log
log does not need rotating
not running postrotate script, since no logs were rotated

 ▼図3　logrotateコマンドの実行結果（“ログローテーションは必要あり”）

$ logrotate -dv /etc/logrotate.d/nginx
reading config file /etc/logrotate.d/nginx
reading config info for /var/log/nginx/*.log

Handling 1 logs

rotating pattern: /var/log/nginx/*.log after 1 days (52 rotations)
empty log files are not rotated, old logs are removed
considering log /var/log/nginx/access.log
log needs rotating　
considering log /var/log/nginx/error.log
log does not need rotating
rotating log /var/log/nginx/access.log, log->rotateCount is 52　
dateext suffix '-20140526'
glob pattern '-[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]'
previous log /var/log/nginx/access.log.1 does not exist
……（省略）……
removing old log /var/log/nginx/access.log.53.gz
error: error opening /var/log/nginx/access.log.53.gz: そのようなファイルやディレクトリはありません

68 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

グローテーションは必要”と判断されました。
また、もしも設定情報に誤りがあった場合は、
図4のようにerror情報が出力されます。
　図4は、単純に 'aaa'を/etc/logrotate.
d/nginxのオプションに追記した場合のエラー
情報です。ここでのエラーは、「'aaa'という
オプションはありません」という意味になりま
す。

ヒント ここでは logrotateのパラメータに
Nginxの設定ファイルを使用しました。これはほ
かの設定ファイルが省略パラメータが多いため、
思ったとおりに動作しないためです。
　たとえば、httpd（Apache）の設定ファイルでは、
ログの切り替え、保存期間が省略されているため
/etc/logrotate.confで設定されている値が引
き継がれます。そのため、httpd（Apache)を正し
く確認するには、

と全体の設定ファイルを指定しないと正しくテス
トできません。それに対して、Nginxの設定ファ
イルは省略されていないので、そのまま設定ファ
イルを指定できます。

$ logrotate -dv /etc/logrotate.conf

　logrotateは、インストールされた時点で、
/etc/cron.daily/logrotate（リスト5）とい
う名前のシェルスクリプトファイルもインストー
ルされます。これは、ディレクトリ名からもわ
かるようにcronの日毎に実行されるスクリプ
トファイルです。
　単純にlogrotateを実行しているだけです
ね。もし、失敗したらloggerコマンドでその
旨をsyslogへ渡しています。
　さて、このlogrotateは、先にも書いたよ
うに毎日実行されます。しかし、何時何分に実
行されるのでしょうか。
　CentOS 5までは、/etc/crontabに次のよ
うな記述がありました。

……（省略）……
01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly
……（省略）……

ログローテーションが実行され
る時刻を知りたい（おまけ）

 ▼図4　logrotateコマンドの実行結果（設定に誤りあり）

$ logrotate -dv /etc/logrotate.d/nginx
reading config file /etc/logrotate.d/nginx
reading config info for /var/log/nginx/*.log
error: /etc/logrotate.d/nginx:2 unknown option 'aaa' -- ignoring line　

Handling 1 logs

rotating pattern: /var/log/nginx/*.log after 1 days (52 rotations)
empty log files are not rotated, old logs are removed
considering log /var/log/nginx/access.log
log needs rotating
considering log /var/log/nginx/error.log
log does not need rotating
……（省略）……

 ▼リスト5　/etc/cron.daily/logrotate

#!/bin/sh

/usr/sbin/logrotate /etc/logrotate.conf >/dev/null 2>&1
EXITVALUE=$?
if [$EXITVALUE != 0]; then
 /usr/bin/logger -t logrotate "ALERT exited abnormally with [$EXITVALUE]"
fi
exit 0

68 - Software Design Aug. 2014 - 69

第4章ログを管理・運用しよう（ログローテーションとログウォッチ）

　つまり、これは日毎を指定したジョブはすべ
て4時2分に実行されることを意味しています。
CentOS 5まではlogrotateもこれに従い、毎
日 4時 2分に実行されていました。しかし、
CentOS 6では/etc/crontabにこの記述がな
くなっています。
　CentOS 6では、日毎のジョブは（通常の
cronとは異なる）anacron（パッケージ名：
cronie-anacron）で実行するようになっていま
す。
　リスト6のように、anacronの設定ファイル
（/etc/anacrontab）では、日毎、週毎、月毎
のそれぞれの実行するスケジュールが設定され
ています。
　以降に日毎の設定に関して、簡単に解説して
おきます。
9行目：これは、0分から45分の間でランダム
に実行遅延時間を決めますという指定です。0

指定の場合は、ランダム遅延なしとなります。
11行目：開始時刻の範囲は、3時から22時ま
での間で決めますという指定です。
14行目：cron.dailyは、1日1回実行します。
但し、5分だけは必ず遅延させます。

　これらの設定であれば、普通に連続運転して
いる場合、3時6分から3時51分の間（9行目の
ランダム実行遅延時間に14行目の遅延5分を
足したもの、さらに、cronによって、時毎ジョ
ブが毎時1分起動となっているため＋1分とし

たもの）でランダムに決定した時刻にcron.
daily（日毎のジョブ）が実行されることになり
ます。anacronのすごいところは、サーバが
停止しても再起動した時点でcron.dailyを実
行しようとするところです。
　たとえば、CentOS 5では、4時2分にサー
バが停止していた場合、5時にサーバが復旧し
たとしても日毎のジョブは実行されません。し
かし、CentOS 6では、同じようにサーバが停
止したとしても、5時にサーバ復旧した時点か
ら1分後にanacronが起動し5分の遅延処理後、
日毎のジョブを実行しようとします。つまり、
ちょっとしたサーバの停止時間があっても日毎
のジョブは、3時から22時までの間なら取りこ
ぼしなく実行することになります。

CentOS5と同じ動作
にするには？

　先述のようにサーバが停止しなくても決まっ
た時刻に実施されないことに違和感を覚える方
や、会社のサーバなどでどうしても決まった時
間に実行してほしい場合があると思います。そ
の場合には次のような対策が考えられます。
　CentOS 5までのように定刻にジョブを実行
したい場合、

RANDOM_DELAY=0

とするとランダムな遅延は発生しませんから、
上記の設定であれば3時6分に実行されます。
分の微調整は、14行目の遅延時間の現行5分の

 ▼リスト6　/etc/anacrontab

01 # /etc/anacrontab: configuration file for anacron
02
03 # See anacron(8) and anacrontab(5) for details.
04
05 SHELL=/bin/sh
06 PATH=/sbin:/bin:/usr/sbin:/usr/bin
07 MAILTO=root
08 # the maximal random delay added to the base delay of the jobs
09 RANDOM_DELAY=45
10 # the jobs will be started during the following hours only
11 START_HOURS_RANGE=3-22
12
13 #period in days delay in minutes job-identifier command
14 1 5 cron.daily nice run-parts /etc/cron.daily
15 7 25 cron.weekly nice run-parts /etc/cron.weekly
16 @monthly 45 cron.monthly nice run-parts /etc/cron.monthly

70 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

ところを変更すれば良いです。cronによって、
時毎ジョブが毎時1分起動となっているので、
ここの設定を0と設定しても1分となります。
設定分＋1分になることに注意してください。
　もちろん、サーバが停止していた場合は、先
に解説したように復旧後に直ちに実行しようと
します。それもやめたい場合は、cronie-
noanacronを使うほうが良いでしょう。その
際は、必ず先にcronie-noanacronをインス
トールして、cronie-anacronを削除します。

　これだけで、CentOS 5と同じようになります。

　先の logrotateでログファイルがパンクする
ことはなくなりました。さあ、あとはログのモ
ニタリング（監視）です。毎日tailコマンドで
リアルタイムにログを眺めていられるほど時間
を持て余しておられる方は、そうそういないと

$ yum install cronie-noanacron
……（省略）……
Is this ok [y/N]:y
……（省略）……
Complete!
$ yum remove cronie-anacron
……（省略）……
Is this ok [y/N]:y
……（省略）……
Complete!

ログウォッチでログを
毎日チェックしよう

思います。もし、そういう方がいたとしても、
ボーっと眺めているだけではだめで、ログ情報
の中で問題がありそうなログを見つけ出す必要
があります。寝る時間も必要ですし、そんなこ
とを24時間できませんよね。
　そこで毎日ログの内容を分析し、問題があり
そうな怪しいログを検出してレポートしてくれ
るツールがlogwatchです。logwatchのレポー
トは、（デフォルトの設定で）メールで送信され
ますから、管理者は、毎日、そのメールによる
レポートを確認し、問題がないかチェックし、
問題があれば、その対応を行うという作業の流
れをルーチン化し、効率化を図ることができま
す。
　では、簡単にlogwatchのインストールから動
作確認までを解説します。また、httpdやsyslog

に関してはデフォルトのままでlogwatchが自動
でログの分析を行ってくれますが、Nginxの設
定はありません。そのため、ここでは、Nginx

を追加で分析するように設定する手順も合わせ
て解説します。

 logwatch（Ver.7.3.6）を
インストールしよう

　次のようにyumでインストールします。

$ yum install logwatch
……（省略）……
Is this ok [y/N]:y
……（省略）……
Complete!

anacronの採用で負荷分散
Column

　CentOS 6でanacronが採用されたのは、もちろ
ん、日毎、週毎、月毎のジョブの取りこぼしがない
ようするためもありますが、大きな要因は、仮想専
用サーバ（VPS）におけるcronの負荷分散と言われ
ています。
　レンタルサーバの世界では、VPSは格安で専用サー
バのように利用できることもあって大人気です。こ
の人気のVPSにのっているOSはCentOSが非常に
多いと言われています。VPSは、所詮複数のユーザ
で1台のサーバをシェア（共有）していることには変

わりませんから、同じOSがのっている場合、ほと
んど同じ時間にcronジョブが実行されます。そう
すると、CentOS 5では、日毎ジョブが実行される4
時2分は異常に負荷が高くなりサーバが不安定になっ
ていました。その昔どこかのレンタルサーバでは、
cron設定を変更してくれ……と泣きのお願いメー
ルがユーザへ送付される始末でした。今では
CentOS 6へ切り替わってそれに関連した問題は聞
かなくなりましたから、anacronによる負荷分散は
成功しているのではないかと思います。

70 - Software Design Aug. 2014 - 71

第4章ログを管理・運用しよう（ログローテーションとログウォッチ）

 解析用のNginx用設定
ファイルを作成しよう

　もともとログ情報は、httpd（Apache）とほぼ
同じですから、設定ファイルはhttpd（Apache）
のものをコピー、編集して作成します。まずは、
必要なファイルをコピーします（図5）。
　logwatchのデフォルト設定ファイルは、
/usr/share/logwatch/配下にあります。
　そこから、httpd（Apache）用の設定ファイル、
ログ設定ファイル、スクリプトファイルを
Nginx用にそれぞれコピーします。図5のよう
に 個別のサービスログ（ここではNginx）を追
加する際の各ファイルのコピー先は、/etc/
logwatch/配下になります。
　次 に コ ピ ー し た 設 定 フ ァ イ ル（/etc
/logwatch/conf/services/nginx.conf）を

次のように編集します。タイトルをhttpd →
nginxへ、ログ設定ファイル名を http →
nginxへ変更します。

……（省略）……
#Title = "httpd"
Title = "nginx"
Which logfile group...
#LogFile = http
LogFile = nginx
……（省略）……

　次にコピーしたログ設定ファイル（/etc/
logwatch/conf/logfiles/nginx.conf）を
編集します。リスト7のように、httpd（Apache）
の設定箇個所を行の先頭に“#”を挿入すること
でコメントアウトし、Nginxの設定を追記しま
す。
LogFile：監視するログファイル名を指定します。
Archive：アーカイブ化されたログファイル名
を指定します（ローテートされたファイル名）。
　それぞれ、httpd（Apache）からNginxの設定
に合わせて編集します。ここでは、いずれもワ
イルドカード“*”が使えます。
　コピーしたスクリプトファイル（/etc/
logwatch/scripts/services/nginx）は、怪
しいログがないか分析するスクリプトになりま
すが、httpd（Apache）とログフォーマットが同
じなので、そのまま使用できます。

Nginxの logwatchをテストし
よう

　図6のようにlogwatchコマンドを使って簡
単に動作確認ができます。
　logwatchコマンドのパラメータについて簡
単に解説します。
--print：画面に出力します。
--service：サービス名を指定します。ここでは、
nginxを指定しています。
--range：ログの解析範囲を指定します。ここ

 ▼図5　httpの設定ファイルのコピー

$ cp /usr/share/logwatch/default.conf/services/http.conf /etc/logwatch/conf/services/nginx.conf
$ cp /usr/share/logwatch/default.conf/logfiles/http.conf /etc/logwatch/conf/logfiles/nginx.conf
$ cp /usr/share/logwatch/scripts/services/http /etc/logwatch/scripts/services/nginx

 ▼リスト7　/etc/logwatch/conf/log�les/nginx.conf

……（省略）……
What actual file? Defaults to LogPath ｭ
if not absolute path....
#LogFile = httpd/*access_log
#LogFile = apache/*access.log.1
#LogFile = apache/*access.log
#LogFile = apache2/*access.log.1
#LogFile = apache2/*access.log
#LogFile = apache2/*access_log
#LogFile = apache-ssl/*access.log.1
#LogFile = apache-ssl/*access.log
LogFile = /var/log/nginx/*access.log
LogFile = /var/log/nginx/*access.log.1

If the archives are searched, here is ｭ
one or more line
(optionally containing wildcards) that tell
where they are...
#If you use a "-" in naming add that as well -mgt
#Archive = archiv/httpd/*access_log.*
#Archive = httpd/*access_log.*
#Archive = apache/*access.log.*.gz
#Archive = apache2/*access.log.*.gz
#Archive = apache2/*access_log.*.gz
#Archive = apache-ssl/*access.log.*.gz
#Archive = archiv/httpd/*access_log-*
#Archive = httpd/*access_log-*
#Archive = apache/*access.log-*.gz
#Archive = apache2/*access.log-*.gz
#Archive = apache2/*access_log-*.gz
#Archive = apache-ssl/*access.log-*.gz
Archive = /var/log/nginx/*access.log.*.gz
……（省略）……

72 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

では、all（すべて）を指定しています。
　図6の出力結果に第2章p.38でテストした
404エラーが正しく検出されました。問題なさ
そうですね。

ヒント

　logwatchのcron設定は、インストールした時点
で、/etc/cron.daily/0logwatchという名前のシェ
ルスクリプトファイルがインストールされますので、
すでに毎日自動的に実行されるようになっています。
そのためcron設定は不要です。

　logwatchのレポートをチェックしていれば
完璧というわけではありません。しかし、その
レポートにある小さな兆候も見逃さないように
していれば、早期の問題の検出につながります。

　本稿を書くにあたり、少しでも初心者の方々
にログに興味をもらってもらうために航海日記
の話からsyslogの歴史なども織り交ぜながら「ロ
グとは何？」を解説してみました。
　インターネットによる利便性は、昨今の多発
するクラックやそれに伴う改ざん、情報流出
等々、さまざまな危険と隣り合わせです。その
危険を減らすには、サーバを最新状態に保つと

おわりに

ともにログの収集が不可欠です。しかし、その
ログは近年重要性が増すとともに肥大化が進ん
でいます。さらには、クラウド化、ネットワー
ク分散化が進み、ログ収集・管理が非常に大事
な要素になってきています。そこで、最近注目
されているのが、あらゆるログの収集、解析・
出力に柔軟に対応できるように設計された
fluentdです。fluentdは、syslogと異なりファ
シリティやプライオリティなどではなく最近の
アプリケーションらしくタグで管理され、イン
プット、アウトプットの豊富なプラグインを用
いてさまざまなログの収集、解析・出力に対応
できるように設計されています。ここで紹介し
たsyslogも収集の対象にできます。
　興味のある方は、ぜひ第6章をご一読くださ
い。入門編を解説しています。さらに深く知り
たい方は、Webや本などでも紹介されていま
すので、調べられると良いと思います。
　少し脇道に逸れましたが、ログは問題検出の
1つの手がかりであり、問題解決および改善の
ための貴重な情報です。また、より良いサーバ
構築のヒントでもあります。これからますます
重要性の高まるなか、本稿を読まれた皆さんが
ログをより有効活用されることを願っておりま
す。ﾟ

 ▼図6　logwatchでNginxをテストする

$ logwatch --print --service nginx --range all

 ################### Logwatch 7.3.6 (05/19/07) ####################
 Processing Initiated: Mon May 26 13:33:16 2014
 Date Range Processed: all
 Detail Level of Output: 0
 Type of Output: unformatted
 Logfiles for Host: local65.rise43.com
 ##

 --------------------- nginx Begin ------------------------

 Requests with error response codes
 404 Not Found
 /asdfasdfagasdgagoajoas.html: 1 Time(s)

 ---------------------- nginx End -------------------------

 ###################### Logwatch End #########################

Aug. 2014 - 73

　システムに不具合が発生したとき、ログは原因切り分けや障害検知に役立つ貴重な情報です。しかし、ログに
出力されたメッセージをただ眺めているだけでは何がなんだかわかりません。そこで本章では、ログから障害原
因を特定するコツを伝授します。また、障害検知のしくみであるログ監視について、MSP（Management
Services Provider）の現場での経験を基に詳しく紹介します。

MSP直伝・プロが
やっているログ監視第5章

　一言でログといっても、ログを出力をするソ
フトウェアによってその内容はさまざまです。
また、ログファイルのサイズは、大きいもので
は数百GB程度に達することもあります。その
ような膨大な量のログから必要な情報を抽出す
ることは簡単ではありません。闇雲に最初から
最後まですべてに目を通していては日が暮れて
しまいます。そのため、ログの確認はポイント
を押さえて行う必要があります。ここでは、障
害原因を調査する際のログ確認のコツを紹介し
ます注1。

時刻で絞る

　ログ確認の基本は、障害が発生した時刻付近
のメッセージを確認することです。多くの場合、

注1） 実行環境：CentOS 6.5／Apache HTTP Server 2.2系／
MySQL Community Server 5.5系／Python 2.6系

膨大なログから原因を
掴むコツ

障害が生じた時刻の前後に原因となるエラーメッ
セージが出力されます。図1は、Linuxサーバ
のシステムログファイルに対して日付（6月4日）
と時間指定（20:00～20:05）を指定して抽出する
例です。なお、ログファイルを確認するときは
システムに負荷をかけないようにするために、
catやlessコマンドでファイルの内容をすべ
てを出力するのではなく、tailやheadコマン
ドでファイルの一部分だけを出力することも大
切です。また、niceやioniceなどを用いて、
処理を低優先度に実行することで、より負荷を
下げることができます（図2）。

ノイズを取り除く
　ログファイルを確認するときに注意しなけれ
ばならないのは、障害発生時刻に近いメッセー
ジのすべてが障害原因であるとは限らないとい
うことです。障害時刻付近で確認したエラーメッ
セージが障害発生前から出力されており、それ
が障害発生後も継続して出力されていた場合、

 Writer ㈱ハートビーツ　高村 成道（たかむら なりみち）
 Mail takamura@heartbeats.jp

図1　tailコマンドによるメッセージ確認 ▼

$ sudo tail -n 1000 /var/log/messages ¦ grep "Jun 4 20:0[0-5]"
Jun 4 20:01:20 test-01 dhclient[97109]: DHCPREQUEST on eth1 to 192.0.2.3 port 67
Jun 4 20:01:20 test-01 dhclient[97109]: DHCPACK from 192.0.2.3
Jun 4 20:01:21 test-01 dhclient[97109]: bound to 192.0.2.4 -- renewal in 15950 seconds.
Jun 4 20:04:31 test-01 ntpd[64182]: synchronized to 203.0.113.110, stratum 2

図2　niceコマンドで負荷軽減 ▼

$ sudo nice -n 19 ionice -c3 tail -n 1000 /var/log/messages ¦ grep "Jun 4 20:0[0-5]"

74 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

Aug. 2014 - 75

それは単なるノイズ（障害に直接関係のないメッ
セージ）であることが多いです。見通しをよく
したり勘違いを防止するためにも、ノイズは
grepの-vオプションを用いて抽出対象外にす
ることをお勧めします（図3）。

キーワードで絞る

　時刻による絞り込みだけの場合、同時刻に大
量のログが出力されていた場合に困ってしまい
ます。そこで有効なのが、キーワードを用いた
絞り込みです。

障害時に出力される文字列
　ログ確認を行う時点ですでに障害原因があら
かた推測できている場合、その障害のときに必
ず出力される文字列というものがあらかじめわ
かります。この場合は、その文字列を基に検索
するのが得策です。検索にヒットすればその障
害が発生しているということがわかります。ヒッ
トしない場合はその障害は発生していないとい
うことがわかります。たとえば、Apache HTTP

Server（以降、Apache）のエラーログに対して
"server reached MaxClients"と検索することで
Apacheが最大同時接続数に達していたかどう
かがわかります（図4）。この確認方法はあくま
でも小手調べ程度に用いるようにしましょう。
というのも、この絞り方は検索文字列がとても
具体的であるため、ほかの確認すべきメッセー
ジもフィルタリングしてしまっている可能性が

高いのです。同時に発生しているほかのエラー
を見落とすことで本当の原因を特定できなくなっ
てしまうというリスクもありますので、本章で
紹介するほかの手法と組み合わせて使うように
しましょう。

エラー文字列
　未知の障害が発生した場合に有効なのが、エ
ラー時によく出力されるログレベルの文字列を
キーワードにすることです。ログレベルは多く
のソフトウェアで用いられています。それぞれ
の優先順位や意味する内容はソフトウェアごと
に多少異なりますが、大まかには表1のとおり
です。ソフトウェアごとにログレベルの文字列
は多少異なります。Warningの場合、"Warn"

のように省略して出力されることもあれば、
"warning"のように小文字のみの場合もありま
す。そのため、ログレベルの仕様を把握するか、
ヒットしやすいパターンを指定するようにしま
しょう。検索でヒットしやすくするためのお勧
めはgrepの-iオプションです（図5）。このオ
プションを指定することで大文字小文字を区別

図3　grep -vでメッセージ抽出 ▼

$ sudo tail -n 1000 /var/log/messages ¦ grep "Jun 4 20:0[0-5]" ¦ grep -v "dhclient"
Jun 4 20:04:31 test-01 ntpd[64182]: synchronized to 203.0.113.110, stratum 2

図4　"server reached MaxClients"で検索 ▼

$ sudo tail -n 1000 /var/log/httpd/error_log ¦ grep "server reached MaxClients"
[Thu Jun 05 17:51:43 2014] [error] server reached MaxClients setting, consider raising the ｭ
MaxClients setting

図5　ログレベル "warn"を含むメッセージをgrep -iで抽出 ▼

$ sudo tail -n 1000 /var/log/hoge/applications.log ¦ grep -i "warn"

表1　ログレベル ▼
ログレベル 意味

Fatal、Critical 致命的なエラー障害

Error 致命的なエラー情報または
エラー情報

Warning 警告情報
Info、Note、Notice 一般的な（操作）情報
Debug、Trace デバッグ情報

74 - Software Design Aug. 2014 - 75

第5章MSP直伝・プロがやっているログ監視

しないで検索できます。

メッセージの量に着目する

　エラーメッセージには何も出力されていない
にもかかわらず、サイトが見られなかったりメー
ルが送られなかったりとサービスに影響が出て
いる場合は、要求に対して単にシステムの処理
性能が追いついていないことが原因かもしれま
せん。その場合は、メッセージの量（行数）を比
較してみましょう。ここでは、Apacheのアク
セスログ（図6）を集計するコマンドとして、時
刻で集計する場合とアクセス元 IPアドレスで
集計する例を紹介します。
　時刻ごとにアクセスログを集計した場合、ア
クセスの増減を読み取ることができます。図7
の例では、09:36付近でアクセスが急増してい
ることがわかります。集計結果を可視化すると

アクセスの様子がわかりやすくなります。ここ
ではuniq -cの結果を可視化するツールであ
るc2gを紹介します注2。これを用いると、図8
のように数字が棒グラフになります。Cactiや
Muninなどのモニタリングツールを導入するこ
とで、データの可視化をより強化できますが、
今回は省略します。
　アクセス元 IPアドレスごとに集計をすると、
どのIPアドレスからアクセスが多いかというこ
とがわかります。図9の例では、198.51.100.6

からのアクセスが非常に多いということがわか
ります。特定の IPアドレスからの接続が極端
に多い場合は、不正アクセスや検索エンジンロ
ボットによるスキャンの可能性がありますので
注意しましょう。

注2） https://gist.github.com/eidantoei/999146

図6　出力対象のApacheログ（サンプル） ▼

198.51.100.100 - - [05/Jun/2014:09:36:47 +0900] "GET /redmine/stylesheets/application.css ｭ
HTTP/1.1" 200 8903 "https://example.com/redmine/themes/farend_basic/stylesheets/application. ｭ
css?1390511924" "Mozilla/5.0 (X11; Linux x86_64; rv:29.0) Gecko/20100101 Firefox/29.0"

図9　アクセス元 IPアドレスごとにアクセスログを集計 ▼

$ sudo tail -10000 access_log ¦ grep "05/Jun/2014:09:36" ¦ awk '{print $1}' ¦ sort -n ¦ ｭ
uniq -c ¦ sort
 6 198.51.100.1
 8 198.51.100.2
 34 198.51.100.3
 40 198.51.100.4
 130 198.51.100.5
 3000 198.51.100.6

図7　時刻ごとにアクセスログを集計（分単位） ▼

$ sudo tail -10000 access_log ¦ grep ｭ
"05/Jun/2014" ¦ cut -d ':' -f 2,3 ¦ sort ｭ
¦ uniq -c
 383 09:35
 3253 09:36
 1120 09:37
 1196 09:38
 933 09:39
 355 09:40
 348 09:41
 219 09:42
 370 09:43
 218 09:44
 313 09:45

図8　c2gによるアクセスログ増減の可視化 ▼

 383 [¦¦¦] 09:35
3253 [¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦] 09:36
1120 [¦¦¦¦¦¦¦¦¦¦] 09:37
1196 [¦¦¦¦¦¦¦¦¦¦¦] 09:38
 933 [¦¦¦¦¦¦¦¦] 09:39
 355 [¦¦¦] 09:40
 348 [¦¦¦] 09:41
 219 [¦¦] 09:42
 370 [¦¦¦] 09:43
 218 [¦¦] 09:44
 313 [¦¦] 09:45

https://gist.github.com/eidantoei/999146

76 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

Aug. 2014 - 77

比較対象の選び方
　メッセージの量の比較対象は慎重に選びましょ
う。たとえば、セールか何かで1日中アクセス
が多い場合、数分前のメッセージ量と比較して
もアクセス増と判断できません。前日、3日前、
1週間前など、通常のアクセス状況と比較する
ことが大切です。サービスの利用ユーザの増加
に伴い、通常のアクセスが多くなった場合には
サーバのチューニングやスペックアップをする
ことで対策しましょう。

現場での障害原因切り分け例

　確認したログファイルから一度に原因が特定
できれば楽なのですが、実際にはそんなに簡単
にはいきません。ただ、根本的な原因ではない
にしても障害には関係のある大切なログである
ことはたしかです。ここでは、これまでに紹介
した方法が実際にMSPの現場でどのように使
われているのか、例を基に説明していきます。
　MySQL Community Server（以降、MySQL）
が突然停止するという障害が起きました。この
とき、まず確認するのがMySQLのエラーログ
です。障害時刻付近のメッセージを抽出した結
果がリスト1のとおりです。ここではMySQL

が停止したことが問題となっているため、それ
に関係のありそうなログを中心に見ていく必要
があります。また、ERRORやFATALなどの
文字列も見落とすことなく確認しましょう。こ
のような基準でログを確認すると、「mysqldが
停止していたので起動しようとしたが、メモリ
確保ができなかったため、また停止した」とい
うことがわかります。mysqldとはMySQL の
プロセス名です。しかし、すでに1行目のログ
出力の段階でmysqldが終了しているため、
MySQLのログを確認しただけでは根本的な原
因は不明なままです。しかし、2回目の起動は
メモリが確保できないために失敗しているとい
うことがわかりました。ここからは予測ですが、
もしかすると始めにプロセスが終了した原因も
メモリ周りが関係しているかもしれません。そ
のため、次にシステムログを確認します。
MySQLのエラーログにおいて1行目の時刻よ
りも前で、なおかつメモリに関係しそうなログ
を確認したところ、リスト2のようなログが出
力されていました。
　やはり、メモリ不足によって障害が発生して
いました。リスト2のログメッセージからで
OOM Killer（Out of Memory Killer）によって

リスト1　/var/lib/mysql/hogehoge.com.err ▼

 1 140612 20:42:09 mysqld_safe Number of processes running now: 0 // mysqld_safeがmysqld
が0であることを確認

 2 140612 20:42:09 mysqld_safe mysqld restarted // mysqldの起動を実施（すでにこの時点で終了
している！　）

 3 140612 20:42:15 [Note] Plugin 'FEDERATED' is disabled.
 4 140612 20:42:15 InnoDB: The InnoDB memory heap is disabled
 5 140612 20:42:15 InnoDB: Mutexes and rw_locks use GCC atomic builtins
 6 140612 20:42:15 InnoDB: Compressed tables use zlib 1.2.7
 7 140612 20:42:15 InnoDB: Using Linux native AIO
 8 140612 20:42:15 InnoDB: Initializing buffer pool, size = 256.0M
 9 InnoDB: mmap(274726912 bytes) failed; errno 12
10 140612 20:42:15 InnoDB: Completed initialization of buffer pool
11 140612 20:42:15 InnoDB: Fatal error: cannot allocate memory for the buffer pool // "Fatal

error"。buffer pool 用のメモリ確保に失敗
12 140612 20:42:15 [ERROR] Plugin 'InnoDB' init function returned error.
13 140612 20:42:15 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE failed. //

InnoDBの登録失敗
14 140612 20:42:15 [ERROR] Unknown/unsupported storage engine: InnoDB
15 140612 20:42:15 [ERROR] Aborting // 異常終了中
16 140612 20:42:15 [Note] /usr/libexec/mysqld: Shutdown complete // mysqld停止
17 140612 20:42:15 mysqld_safe mysqld from pid file /var/run/mysqld/mysqld.pid ended

76 - Software Design Aug. 2014 - 77

第5章MSP直伝・プロがやっているログ監視

mysqldが強制終了させられていたことがわか
りました。ここまで切り分けることができれば、
あとは障害の再発防止をする対策を実施するの
みです。このケースではメモリ使用量が高くな
りがちなApacheとMySQLに対して、メモリ
やコネクション設定のチューニングを行うこと
で解決しました。
　ログの情報を基に原因を切り分けることは障
害対応において非常に重要なスキルです。ここ
では、あるログから別のログへリンクするよう
なケースを例にとって説明しました。原因切り
分けの手法は、複数のログファイルを確認する
方法以外にもあります。個人的には、ソースコー
ドに対してエラーメッセージを検索（grep）する
方法がお勧めです。この方法によりライブラリ
のバグを検出できたこともあります。もちろん、
怪しいと思われる文字列を基にググるという方
法も、単純ですがとても有効な手段です。

　ログメッセージに対して検索するパターンが
決まれば、あとはそのパターンが出力されてい
るかどうかを調べるだけです。いつでも障害を

ログから障害を
検知する

検知できるようにするためには、24時間365

日ログを確認しなければなりません。そこで必
要となってくるのが監視です。監視とは、対象
のサービスやサーバの状態が正常であるかどう
かを継続的に確認し、報告を行うことです。具
体的には、数分ごとに監視プラグインを実行す
ることでサーバのステータスを確認し、異常が
あればメールなどで通知します。ここでは、代
表的な監視ツールであるNagiosで監視するこ
とを前提に話を進めていきます。
　それでは、ログ監視のしくみについて見てい
きます。Nagiosでは、ログ監視のプラグイン
としてcheck_logが用意されています。監視プ
ラグインを用いた監視は図10のとおりです。

リスト2　/var/log/messages ▼

 1 Jun 12 20:42:05 www kernel: [29204168.349016] httpd invoked oom-killer: gfp_mask=0x201da,
order=0, oom_score_adj=0

 2 Jun 12 20:42:05 www kernel: [29204168.349033] httpd cpuset=/ mems_allowed=0
 3 Jun 12 20:42:05 www kernel: [29204168.349077] Call Trace:
 4 Jun 12 20:42:05 www kernel: [29204168.349090] [<ffffffff8143eb2b>] dump_stack+0x19/0x1b
 5 Jun 12 20:42:05 www kernel: [29204168.349108] [<ffffffff814449ba>] ? error_exit+0x2a/0x60
 6 Jun 12 20:42:05 www kernel: [29204168.349126] [<ffffffff814444bb>] ? retint_restore_

args+0x5/0x6
 7 Jun 12 20:42:05 www kernel: [29204168.349137] [<ffffffff811191e9>] oom_kill_

process+0x1a9/0x310
 8 Jun 12 20:42:05 www kernel: [29204168.349153] [<ffffffff81208495>] ? security_capable_

noaudit+0x15/0x20
 9 Jun 12 20:42:05 www kernel: [29204168.349161] [<ffffffff81119939>] out_of_

memory+0x429/0x460
10 ...
11 Jun 12 20:42:05 www kernel: [29204168.573052] Out of memory: Kill process 19632 (mysqld)

score 78 or sacrifice child
12 Jun 12 20:42:05 www kernel: [29204168.573068] Killed process 19632 (mysqld) total-

vm:1542800kB, anon-rss:132108kB, file-rss:0kB // mysqldを強制終了

監視サーバ

チェック
を要求

結果を応
答

監視対象サーバ

監視
ツール

監視エージェント

監視プラグイン

CPU

メモリ

ログ

図10　監視プラグインを用いた監視 ▼

78 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

Aug. 2014 - 79

check_log

　check_log（図11）の実行例は次のとおりです。
1つめの引数に、監視対象のログファイルを指
定します。2つめは、一時ファイルを保存する
パスを指定します。この一時ファイルには、1

回前に監視プラグインを実行した時点でのログ
ファイルが保存されます。3つめは、監視した
いパターンを指定します。

$./check_log.sh -F logfile -O oldlog -q ｭ
query

なお、監視プラグインの初回実行時には古いロ
グファイルが存在しないため、初期化処理とし
て事前にcheck_logを一度実行する必要があり
ます。図11中の④の終了コードは、Nagiosが
サーバステータスを決定する際に用いられます。
0でない場合は、アラートを発報します。

　管理者の要望に合った監視をしようとした場
合、check_logでは機能が足りないケースが出
てきます。筆者がこれまで現場で経験してきた
ケースにはたとえば次のようなものがあります。

より柔軟なログ監視

・	サーバに負荷をかけずにログ監視をしたい
・	不要なアラート発報は避けたい
・	複数行のメッセージを監視したい
・	ログローテートが有効な場合でもロスなく
監視したい

　これらの要望を満たすために、筆者は
check_log_ngという監視プラグインを新たに作
成しました（図12）。これ以降は、現場での要望・
問題をどのような方法で解決したのか紹介しま
す。check_log_ngの詳しい使い方については
GitHub注3を参照してください。

サーバ負荷を抑える

　check_logでは、ログ監視を行う度に対象の
ログファイルをコピーしています。このしくみ
の場合、対象のログファイルのサイズが大きけ
れば大きいほどサーバにI/O負荷がかかってし
まい、本来優先すべきサービスに影響が出てし
まいます。また、ログファイル1つ分、余計に
ディスク領域を消費することになります。これ
らの問題は、seekファイルを用いたログ監視
を行うことで解決できます。seekファイルとは、
監視終了時点の読み込み位置を記憶するファイ

注3） https://github.com/nari-ex/check_log_ng

図11　check_logのしくみ ▼

　　現在のログと古いログの差分を
　　一時ファイル（tmp）に保存

current old
diff

tmp

current old
copy

　　一時ファイルに監視したいパターンが
　　含まれているかどうか検索

　　現在のログファイルをコピーして
　　古いログを上書き保存

　　②の結果から終了コードを決定する
　　（正常なら0、異常なら0以外の値を返す）

result

status == 0 RECOVERY
status == 1 WARNING
status == 2 CRITICAL
status == 3 UNKNOWN

statusgrep

tmp

① ②

③ ④

https://github.com/nari-ex/check_log_ng

78 - Software Design Aug. 2014 - 79

第5章MSP直伝・プロがやっているログ監視

ルです。擬似コードはリスト3のとおりです。
　seekファイルを用いるログ監視は、対象の
ログファイルすべてを読み込まずに、前回の続
きから検索を行います。そのため、毎回ファイ
ルすべてを読み込むcheck_logと比べて I/O処
理が減り、サーバへの負荷を軽減できます。
　seekファイルを用いたログ監視において、1

つ注意しなければならない点があります。それ
はseekファイルをむやみに更新してはいけな

いという点です。監視エージェント以外が
seekファイルを更新してしまうと、その間の
更新差分を監視エージェントでは監視できなく
なってしまいます。テストや複数監視拠点から
の並行監視を行う場合は、それぞれ個別の
seekファイルを指定するようにしましょう。

不要なアラート発報を抑制する

　監視をするうえで困るのは、対応する必要の

図12　check_log_ngのしくみ ▼

　　seek ファイルに記録されている
　　ポジションを確認

current
write

　　①で確認した読み込み位置から、
　　ログの末尾までパターン検索

　　ログの末尾の読み込み位置を
　　seek ファイルに保存

　　②の結果から終了コードを決定する
　　（正常なら0、異常なら0以外の値を返す）

result

status == 0 RECOVERY
status == 1 WARNING
status == 2 CRITICAL
status == 3 UNKNOWN

status
grep

read

seek

position = 1234

1234

1234

① ②

③ ④

current

seek

2345

2345

リスト3　seekファイルを用いたログ監視 ▼

 1 STATUS = 3 # 0: RECOVERY, 1: WARNING, 2: CRITICAL, 3: UNKNOWN
 2
 3 def pattern_match(logfile, posision, pattern):
 4 f = open(logfile, 'r')
 5 f.seek(offset, 0) # 読み込み位置を position まで移動
 6 status = 3
 7
 8 for line in f: # 1行ごとに処理
 9 # status に0～3の値を返す
10 result = 監視パターンマッチ(pattern, line)
11 ステータス更新(result) # resultの値によってSTATUSを変更
12
13 end_position = f.tell() # 検索し終えた位置を取得
14 f.close()
15 return end_position
16
17 def check_log(seekfile, pattern, logfile):
18 start_position = シークファイル読み込み(seekfile) ←①
19 end_position = pattern_match(position, pattern) ←②
20 シークファイル更新(end_position, seekfile) ←③
21 sys.exit(STATUS) ←④

80 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

Aug. 2014 - 81

図13　複数行に渡るエラーメッセージ出力 ▼

1 2014-06-09 20:36:12 [ERROR] [ForgeModLoader] The following problems were captured during
this phase
2 2014-06-09 20:36:12 [ERROR] [ForgeModLoader] Caught exception from LogisticsPipes¦Main
3 java.lang.IllegalArgumentException: Slot 882 is already occupied by ecru.MapleTree.block.
ecru_BlockMiniStairs@50ae8e0e when adding logisticspipes.blocks.LogisticsSolidBlock@64e6c903
4 Blocks should be registered before postInit for NEI to do proper conflict reporting
5 at codechicken.nei.IDConflictReporter.blockConstructed(IDConflictReporter.java:83)
6 at net.minecraft.block.Block.<init>(Block.java:347)
7 at net.minecraft.block.BlockContainer.<init>(SourceFile:9)
8 at logisticspipes.blocks.LogisticsSolidBlock.<init>(LogisticsSolidBlock.java:40)

ないアラートを発報してしまうことです。「ア
ラート発報したものの実際には対応不要だった」
というケースは、ログ監視では珍しいことでは
ありません。このようなことを再発させないた
めに、対応不要なログメッセージについてはア
ラート発報を抑制します。たとえばApacheの
エラーログ監視の場合、サービスに直接関係の
ない出力は無視したいことが多いです。
　次のログは、ロボット型検索エンジンに対す
る命令を記述するためのファイルが存在しない
ということを意味しています。検索エンジンが
サイトをスキャンするときにしかアクセスしな
いファイルですから、実サービスの表示に直接
的な影響はありません。しかし、監視文字列が
"error"の場合、検索エンジンがサイトをクロー
ルするたびにアラートが発報されてしまいます。

[Mon Jun 09 12:02:23 2014] [error] ｭ
[client 203.0.113.28] File does not ｭ
exist: /var/www/html/robots.txt

　このような問題を解決するために、監視プラ
グインに対して除外パターンを指定可能にしま
した。監視プラグインの変更内容は単純で、監
視パターンマッチの前に除外パターンのマッチ
を行うというものです。擬似コードは次のとお
りです。これは、リスト3の8～11行目を拡張
するものです。

for line in f: # 1行ごとに処理
 # status に0～3の値を返す
 if not 除外パターンマッチ（negative_ ｭ
pattern, line）:
 result = 監視パターンマッチｭ
（pattern, line）

複数行対応

　監視対象のメッセージにはさまざまな種類が
あります。それらがすべてsyslog形式とは限り
ません。一部のJavaアプリケーションでは、
図13のように一度に複数行、メッセージが出
力されます。図13のメッセージは2行目から7

行目まで1つのエラーに対するログであるため、
1行ごとに区別せず扱う必要があります。しかし、
先ほどまでの監視実装では1行ごとにマッチング
を行うため、このログに対して監視パターンと除
外パターンの両方を指定して監視を行った場合、
除外パターンが正常に動作しません。たとえば、
監視パターンとして"ERROR"、除外パターンと
して"Blocks should be registered"を指定した場
合、"ERROR"を含む2行目には除外パターン
が存在しないためアラートを発報してしまいま
す。
　また、エラーごとにまとめるだけでは不十分
な場合があります。たとえばこのアプリケーショ
ンでは、1行目のメッセージが出力されるとき
には必ず2行目のメッセージも出力されるとし
ましょう。この場合、1行目のメッセージにマッ
チするような除外パターンを指定したとしても、
2行目でERRORの文字列があるためにアラー
ト発報をしてしまいます。これらのメッセージ
はほぼ同時に出力されるため、エラーごとかつ
時刻ごとにログをまとめることで対策ができま
す。
　複数行のメッセージをまとめる際の基準につ
いては、ログ監視の仕様に沿って設定する必要

80 - Software Design Aug. 2014 - 81

第5章MSP直伝・プロがやっているログ監視

があります。そのため、現在はメッセージをま
とめるためのキーを正規表現で指定可能にする
ことで複数行のメッセージの対応をしています。
　フォーマットは、正規表現の組を指定します。
はじめの正規表現がキーとなり、もう1つのほ
うがメッセージとして扱われます。たとえば、
先ほど例に挙げたメッセージの場合は

^(%Y-%m-%d %T ¥[¥S+¥]) (.*)

のようなフォーマットを指定します。これにより、
1行目については、”2014-06-09 20:36:12
[ERROR]”がキー、それ以降の文字列がメッセー
ジとなります。なお、パターンマッチは、キー
とメッセージの両方に対して行われます。この
パターンにマッチしなかった場合、その文字列
はメッセージとして扱われます。その際のキー
は、前回までのキーを使いまわします。これに
よりキーごとに正しくパターンマッチを行うロ
グ監視を実現しています。なお、メッセージを
まとめる場合、まったく関係のないメッセージ

をまとめてしまう危険性もありますので、フォー
マットの指定には十分気をつけましょう。
　擬似コードはリスト4のとおりです。このコー
ドは、先ほどのリスト3のコードの8～11行目
を拡張するものです。forループ内では、一つ
前のキー(pre_key)を保持しており、このpre_

keyと行ごとのキー(cur_key)を比較することで
処理を分岐しています。pre_keyは1つ前のルー
プでセットされます。cur_keyについてはルー
プの先頭 (2～8行目)でセットされます。
　2つのキーが一致する場合は、メッセージを
まとめる必要があります。そのため、メッセー
ジをバッファに追加し監視パターンマッチを行
わずにループの先頭に戻ります。2つのキーが
一致しない場合は、エラーメッセージの区切り
を意味しますので次の行とは区別して扱う必要
があります。そのため、保留していたバッファ
をまとめ、監視パターンマッチをします。その
後、変数を初期化処理してループの先頭に戻り
ます。なお、ループ前の変数の初期化やループ

リスト4　パターンマッチを使ったログ監視 ▼

 1 for line in f:
 2 # 現在のキーとメッセージをセット
 3 if フォーマットに一致:
 4 cur_key = m.group(1)
 5 cur_message = m.group(2)
 6 else:
 7 cur_key = pre_key
 8 cur_message = line
 9 # pre_keyが存在しない場合、pre_keyに現在のキー、バッファに行全体をセットしてループの先頭へ戻る
10 if pre_key is None:
11 pre_key = cur_key
12 line_buffer.append(line)
13 continue
14
15 # 現在のキーと1つ前のキーが等しい場合、メッセージをバッファに追加する
16 if cur_key == pre_key:
17 line_buffer.append(cur_message)
18 # 現在のキーと1つ前のキーが異なる場合、監視パターンマッチを実行
19 else:
20 # バッファに保留していたメッセージをまとめる
21 message = ' '.join(line_buffer)
22 if not 除外パターンマッチ(negative_pattern, message):
23 result = 監視パターンマッチ(pattern, messsage)
24 ステータス更新(result)
25 # 次回のループのために変数を初期化する
26 pre_key = cur_key
27 line_buffer = []
28 line_buffer.append(line)

82 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

を抜けたあとのバッファの処理については省略
しています。

複数ファイル対応
　ログローテートが行われる場合、監視はロー
テート前とローテート後のファイルの両方をケ
アする必要があります。監視と監視の間にログ
ローテートされた場合、古いほうのログファイ
ルに検知対象の出力がないか見落とさないよう
にするためです。ローテートしたログファイル
のサフィックスは数字や日付などさまざまです。
　この問題を解決する方法はシンプルで「古い
ほうのログファイルも監視する」ということに
なります。そのため、check_log_ngでは複数の
ログファイルに対して更新日時を確認すること
で対応しています。複数ログ指定はglobを用
いて行います。たとえば、システムログを指定
する場合は

/var/log/messages*

のように指定します。末尾にアスタリスクを付
与することで、"/var/log/messages"で始ま
る任意の長さのファイル名が対象となります。
これにより、"/var/log/messages"に加え

"/var/log/messages-20140618" や "/var/
log/messages.1"といった名前のファイルも
監視対象となります。

　実装は、check_log関数のラッパー関数を追
加することでできます。globで指定されたパター
ンにマッチするファイルのリストを取得し、そ
れらすべてに対してcheck_log関数を実行しま
す。これだけでも動くには動きますが、ローテー
トした古いログファイルすべてをスキャンする
のは負荷のことも考えると危険です。そのため、
指定した時間（デフォルト：1日）よりも前に更
新されたファイルはcheck_log関数の実行を終
了するようにしています（リスト5）。なお、ロー
テート後にseekファイルが重複しないように
するために、ファイルの inodeを基にseekファ
イルを生成するオプションも実装してあります
が、それについては割愛します。

　いかがでしたでしょうか。ログは保存してい
るだけでは何の効果も発揮しません。ログから
必要な情報を得ることで初めて役に立ちます。
この記事を通して、ログを用いた障害検知や原
因切り分けの手助けができれば幸いです。
　ログ監視については、現場で実際にあった要
望とそれ対する解決策についても紹介しました。
監視プラグイン、ログ監視のパターンやロギン
グの設定を調整することで、自分の環境に最適
なログ監視を実装しましょう。ﾟ

まとめ

リスト5　複数ファイルのログファイル監視 ▼

 1 def check_log_multi(seekfile, logfile_pattern, neg_pattern, pattern, logfile):
 2 # 対象のログファイルを指定されたファイル名のパターンを基に取得
 3 logfile_list = get_logfile_list(logfile_pattern)
 4 # ファイルごとにcheck_log関数を実行
 5 for logfile in logfile_list:
 6 check_log(seekfile, pattern, neg_pattern, logfile)
 7
 8 def check_log(seekfile, pattern, neg_pattern, logfile):
 9 start_position = シークファイル読み込み(seekfile)
10
11 # 更新されていない古いログはチェックを行わない
12 if ファイルの最終更新時刻 < (現在時刻 - ユーザ指定の時間):
13 return False
14
15 end_position = pattern_match(position, pattern, neg_pattern)
16 シークファイル更新(end_position, seekfile)
17 sys.exit(STATUS)

Aug. 2014 - 83

　最近何かと話題のFluentdという技術があります。「ログデータがどうとか、何かと面倒なんでしょう？」とい
う声を聞いたりもしますが、それは本当に勘違いです。“すぐ使えるログ活用”ということで、本章ではFluentd
＋MongoDBで複数のログを1ヵ所に集計するシステムの構築手順やtips、活用例などを、Retty㈱での経験を
もとにお話します。

フロントエンジニアもFluentd＋
MongoDBで実践！

小さく始めるログ活用
のすすめ

第6章

使ってますか？　ログ

　Retty㈱の羽田と申します。実名性グルメサー
ビスRettyでスマホエンジニアをやっています。
スタートアップの企業ではスマホエンジニアと
言えど、自分でAPIを書いたりインフラ周り
を手伝ったりと、分野を横断してタスクが振っ
てくることもしばしば……。
　本稿はインフラ担当じゃない筆者がFluentd

を使い、複数のサーバから出るログデータをロ
グサーバ（MongoDB）に集計し、それを使うた
めのクエリを書いて利用した経験から、その過
程で考えたことや運用の注意点などを紹介しま
す。インフラ以外のフロントエンジニアの方や、
ディレクタの方にもログに興味を持ってもらう
ことを目的とした内容ですので、経験者の方に
は退屈な記事になってしまうかもしれませんが
ご容赦ください。

Fluentdとは？

　Webサービスを運用するサーバの維持には、
サーバの増減やその管理に日々の多くの時間が
割かれています。現在弊社では、AWS（Amazon

Web Services）の登場により、台数の管理や増
減にかかるコストは下がったものの、運用やそ
こに集まるサーバごとのログ情報を活用する手

Fluentdについて
段を模索中です。ログを活用するには、それら
のデータを一元的に管理できる別の機能が必要
になります。そういった複数個所にたまるログ
などのデータを一元的に処理するために生まれ
たシステムがFluentdです。
　FluentdはTreasure Data社注1の開発したロ
グ管理ツールで、オープンソースであり、さま
ざまな環境で動作することから近年いろいろな
ところで活用事例が報告されています。

・はてなブログ
	 https://speakerdeck.com/shibayu36/fluentd-
mongodb-kibanawoli-yong-sitahatenaburo	
guabtesutofalseshi-li

・COOKPAD
	 http://www.sl ideshare.net/hotchpotch/	
20120204fluent-logging

・NTTPCコミュニケーションズ
	 http://www.slideshare.net/keithseahus/big-
datafluentd

　大小さまざまな企業がこぞってFluentdを利
用している理由には、次のようなことがあると
考えています。

注1） http://www.treasuredata.com/jp/

 Writer 羽田 健太郎（はねだ けんたろう）　Retty㈱
 Twitter @jumbOS5

https://speakerdeck.com/shibayu36/fluentd-mongodb-kibanawoli-yong-sitahatenaburoguabtesutofalseshi-li
http://www.slideshare.net/hotchpotch/20120204fluent-logging
http://www.slideshare.net/keithseahus/big-datafluentd
http://www.treasuredata.com/jp/

84 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

Aug. 2014 - 85

Fluetndの特徴

［1］導入が容易
	 本稿後半で説明するtd-agent（Fluentdの安
定版）を用いたログの集計でも説明しますが、
Fluentdは導入がとても容易で、confファイ
ルにも小難しいことは書かずに運用が始め
られます。

［2］カスタマイズ性に富んでいる
	 Fluentdにはさまざまなプラグインがあり、そ
の導入もgemで管理されているため拡張性に
富んでいます注2。Amazon S3や各データスト
アとの連携、ログを飛ばす前にデータを加工
したり条件を追加するといったドキュメントや
事例も、Web上に多くあります。プラグイン
はRubyで記述されているため、Rubyが書け
れば自分のほしい機能も自作して導入できます。

［3］ログの集計と構造化
	 ログが使われない理由として集計が面倒だっ
たり、それに見合うだけのメリットがないと言
われてきました。しかしFluentdの登場により、
容易に構造化されたログを取り出すことがで
きるようになり、それと連携した可視化のアプ
リケーションが増え、生のデータでもユーザに
非常に使いやすい形で扱えるようになりました。

　サービスを成長させるために必要なデータを、
もっとエンジニアと近づけることのできる最初
の一歩として、Fluentdは最も適した技術だと
筆者は考えています。

ログを使う

　Webサービスにおけるログとはどんなもの
があるでしょうか？　ユーザのアクセスログ、
各プロセスの吐き出すログ、エラーログ、スロー

注2） http://fluentd.org/plugin/

Webにおけるログの
活用

クエリ……1つのサーバだけでも大量のデータ
がストリームで流れていきます。これらのデー
タは止まることなく、サービスの運用とともに
増加し、サービスの成長とともにその加速度も
増します。こういったデータを1つ1つサーバ
ごとに見ていく時間は、どこの企業にもないで
しょう。
　Rettyも例外ではなく、社内において「SEO

の観点から各Webサーバ（Apache）のアクセス
ログ、それとレガシーなコードを改善するため
にエラーログを集計・解析できる体制を作りた
い」という要望があがりました。そこで普段は
スマホエンジニアの筆者ですが、環境の構築と
設定を担当することになりました。

とりあえず一番イケてる方法を
試してみた

　Fluentd＋Elasticsearch注3＋Kibana注4でイケ
てる感じのシステムを組んで、ログをグラフィ
カルに表示させてみたりといろいろ試してみた
のですが……「これは別にほしくないし、グラ
フの活用法があまり見えない」と言われてしま
い。ここらあたりの技術はちょっと試す分には
オーバースペックなんだと感じました。
　とりあえずやってみよう程度の期待値で始まっ
たプロジェクトのため、あまり時間も割けずに
どうすればいいんだろう……と悩み、インフラ
部隊と相談して決まった方針が「コマンド一発
で必要な数字が出せる状態にすべき」というこ
とでした。

集計しておくべきログ

　どんな小さなWebサービスでも、自分でサー
バを持っている限りログは出力されます。上記
のようにさまざまなログが出力される中で、私
たちWebサービスエンジニアがとくに注目すべ
きログには何があるでしょうか？　筆者はWeb

サーバのアクセス／エラーログだと思います。

注3） http://www.elasticsearch.org/

注4） http://www.elasticsearch.org/overview/kibana/

http://fluentd.org/plugin/
http://www.elasticsearch.org/
http://www.elasticsearch.org/overview/kibana/

84 - Software Design Aug. 2014 - 85

第6章フロントエンジニアもFluentd＋MongoDBで実践！
小さく始めるログ活用のすすめ

アクセスログ
　Apacheのアクセスログは図1のように、いつ、
どこから、どこにアクセスがあったかを見るこ
とができます。出力される情報の形式はリスト
1のようになっていて、httpd.confに記述され
ています。細かいプロパティの説明は省きます
が、リモートホストとそのアクセス時間、レス
ポンスプロパティ、ユーザエージェントなどで
す。そのほかにもリクエストのメソッド名や応
答時間、リクエストに含まれるヘッダやレスポ
ンスのヘッダの情報などもログとして出力する
ことができます。
　アクセスログにはユーザのページごとのアク
セスや、アクセス元の情報が入っています。た
とえばここから、Googleのbotがアクセスして
きているかなどを読み取ることができます。

エラーログ
　サービスによってログ出力の規約などは異な
るとは思いますが、Apacheのエラーログには
エンジニアの意図していないクエリの結果や、
処理結果がたくさん詰まっています。ここを見
過ごしながらサービスを成長させるのは、負債
が増えていくのと同じです。エンジニアにはこ
のエラーログを読み取り、コードやサービスの
抱える問題を判断し、処理することが求められ
ます。

Fluentd＋MongoDBという選択

　Rettyでは「ログの可用性」というところに注目
して、ログサーバのデータストアにはMongoDB

を使っています。理由としてはCapped Collection

（後述）の存在とAggregation.Framework（後述）
のようなクエリの多様性、それに加えて既存の
取り組み事例が多く、すぐに導入できそうだっ
たことが挙げられます。
　Apacheのエラーログとアクセスログを集計
できる環境を1～2週間程度で仕事の合間に作
りました。実際に作業にあてた時間は非常に少
ないので、環境構築だけなら実質2、3日あれ
ば十分だと思います。一番時間がかかったのは
Fluentd関連のconfの設定と、ログを取り出す
クエリを書いたり、ログの形式を検討すること
でした。
　それでは次から設定の手順を説明します。

　導入手順

　図2のように、複数のWebサーバからログ
解析サーバにログを送信するような状況を仮定
して設定を行います。送信側と受信側各々に必
要なツールの導入と、その設定手順を述べてい
きます。本稿での実行環境はCentOSです。用
いるツールとしてはFluentdの安定版の td-

agent注5を使います。

注5） https://github.com/treasure-data/td-agent

Fluentdと
MongoDBの導入

図1　アクセスログ（例） ▼

XXX.XXX.XXX.XXX - - [11/May/2014:20:54:03 +0900] "GET /appRank/api/public/ranking/favorite/853444791 HTTP/1.1"ｭ
200 2393 "http://xxxxxxxxxxxxxyyxxxxxxxxx.com" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2)ｭ
AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14"
XXX.XXX.XXX.XXX - - [12/May/2014:00:51:15 +0900] "GET /muieblackcat HTTP/1.1" 404 210 "-" "-"
XXX.XXX.XXX.XXX - - [12/May/2014:00:51:15 +0900] "GET //phpMyAdmin/scripts/setup.php HTTP/1.1" 404 226 "-" "-"
XXX.XXX.XXX.XXX - - [12/May/2014:00:51:16 +0900] "GET //phpmyadmin/scripts/setup.php HTTP/1.1" 404 226 "-" "-"
XXX.XXX.XXX.XXX - - [12/May/2014:00:51:16 +0900] "GET //pma/scripts/setup.php HTTP/1.1" 404 219 "-" "-"
XXX.XXX.XXX.XXX - - [12/May/2014:05:24:29 +0900] "HEAD / HTTP/1.0" 200 - "-" "-"

リスト1　httpd.confに記載されているログ設定例 ▼

LogFormat "%h %l %u %t ¥"%r¥" %>s %b ｭ
¥"%{Referer}i¥" ¥"%{User-Agent}i¥"" combined
LogFormat "%h %l %u %t ¥"%r¥" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

https://github.com/treasure-data/td-agent

86 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

Aug. 2014 - 87

送信側（Webサーバ）手順
［手順1］td-agentの用意

　次のようにviで/etc/yum.repos.d/td.repoを
作成し、リスト2の内容に編集します。

　作り終えたら、次のように td-agentをインス
トールします。

［手順2］pos用のディレクトリの用意

　図3のように任意のディレクトリにaccess.

posとerror.posを作成します（本稿では/var/lib/

fluent/に置くこととします）。そして、それぞれ
の権限を書き込みができるよう変更してください。
　posファイルに読み込んだ位置を記録してお
くことで、td-agentを再起動した場合でも前ま
で読み込んだ位置から再開してくれます。これ
を指定しない場合はFluentdの起動時に、td-

agentのログに警告が出力されます。

［手順3］td-agent.confの書き換え

　この設定は、後述するプラグインを導入する
個所で述べます。

$ vi /etc/yum.repos.d/td.repo

$ sudo yum install -y td-agent

受信側（ログ解析サーバ）手順
［手順1］MongoDBのインストール

　次のようにviで/etc/yum.repos.d/10gen.repo

を作成し、リスト3の内容に編集します。

　作り終えたら、次のようにMongoDBをイン
ストールします。

　
　試しに起動してみましょう。mongoのプロセ
スをバックグラウンドで起動するには--forkの
オプションが必要になります。

［手順2］portの解放

　UDP、MongoDBで用いるポート群の解放を
行います。詳細は割愛します。

$ vi /etc/yum.repos.d/10gen.repo

$ yum update
$ yum install mongo-10gen mongo-10gen-ｭ
server

$ mkdir /data/db
$ mongod --fork --logpath /var/log/log
$ mongo

図3　posファイルの作成と権限の変更 ▼

$ sudo touch /var/lib/fluent/access.pos
$ sudo touch /var/lib/fluent/error.pos
$ sudo chmod 777 -R /var/lib/fluent/

リスト2　/etc/yum.repos.d/td.repo ▼

[treasuredata]
name=TreasureData
baseurl=http://packages.treasure-data.ｭ
com/redhat/$basearch
gpgcheck=0

リスト3　/etc/yum.repos.d/10gen.repo ▼

[10gen]
name=10gen Repository
baseurl=http://downloads-distro.mongodb.ｭ
org/repo/redhat/os/x86_64
gpgcheck=0
enabled=1

図2　Fluentdのためのサーバ構成 ▼

ログ解析サーバ

Webサーバ Webサーバ Webサーバ

IP : 192.168.11.XYZ
port : 24224

※サーバOS：CentOS release 6.4 (Final)

86 - Software Design Aug. 2014 - 87

第6章フロントエンジニアもFluentd＋MongoDBで実践！
小さく始めるログ活用のすすめ

［手順3］td-agentのインストール

　送信側の手順1と同じ操作で td-agentをイン
ストールします。

　以上がconfファイルの記述を除いた、必要
なモジュールのインストールと設定です。
　次は、必要なプラグインの説明とconfファ
イルの設定についてです。

プラグインを導入する

　td-agentを導入するとバンドルされたgemが
ついてくるので、これを用いて管理を行います。
試しに次のようなコマンドを叩いてみると、今
入っているプラグイン一覧が見られるはずです。

　便利なプラグインが豊富にありますが、本稿
ではデータを使うために最低限必要なコマンド
だけを入れます。MongoDBにデータをストア
するためのプラグイン「fluent-plugin-mongo注6」
です。
　標準のFluentdだとテキストファイルにダン
プすることしかできないので、jsonで送られて
くるデータを構造化して管理するためにこのプ
ラグインを使います。

td-agent.confを書くための
前知識

　td-agent は /var/etc/td-agent/td-agent.conf

のファイルの設定を起動時に読み込んでデータ
の管理をします。実際の設定内容を解説する前
に、ここでconfの記述の基本的なルールであ
るインプットプラグインとアウトプットプラグ
インの説明をしましょう。

インプットプラグインに関する仕様と設定
　インプットプラグインの設定は次のように
sourceディレクティブに記載します。

注6） https://github.com/fluent/fluent-plugin-mongo

$ /usr/lib64/fluent/ruby/bin/fluent-gem ｭ
list ¦grep fluent

<source>
 type インプットプラグインの種類の指定（tail、
execなど）
 その他パラメータ（利用するインプットプラグイン
に応じて必要なパラメータを追加指定）
 tag ログをタグを設定する
</source>

アウトプットプラグインに関する設定
　アウトプットプラグインの設定は、次のよう
にmatchディレクティブに記載します。

<match タグパターン>
 type アウトプットプラグインの種類の指定
（file、stdoutなど）
 その他パラメータ（利用するアウトプットプラグ
インに応じて必要なパラメータを追加指定）
</match>

　matchの後ろにタグのパターンを指定し、特
定のタグが付与されたログデータをどのアウト
プットプラグインで処理するかを指定します。

td-agent.confの設定

送信側（Webサーバ）
　送信側の td-agent.confは、リスト4のように
します。

①： tailプラグインを使ってApacheのアクセス
ログのファイルの更新をフックし、format

に指定した正規表現にマッチする行であれ
ばログとして出力します。Apacheのログ
フォーマットがデフォルトのフォーマット
のままであれば“Apache”と記述しても使え
ます。

②： tagには、アクセスログであることと、どのサー
バからのログかわかるようにaccess.web1の
ようにつけました。エラーログに関しても同
様です。

③： 最後にログを集約するログサーバの設定と
して、portやhostなどの設定を記述します。

　このconfファイルを各サーバごとに用意して、
web1の部分の設定のみ各サーバで固有のタグ

<source>
 type インプットプラグインの種類の指定ｭ
（tail、execなど）
 その他パラメータ（利用するインプットプラグｭ
インに応じて必要なパラメータを追加指定）
 tag タグを設定する
</source>

<match タグパターン>
 type アウトプットプラグインの種類の指定ｭ
（file、stdoutなど）
 その他パラメータ（利用するアウトプットプラｭ
グインに応じて必要なパラメータを追加指定）
</match>

https://github.com/fluent/fluent-plugin-mongo

88 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

Aug. 2014 - 89

をつけるようにします。正規表現の記述が間違っ
ていたりすると td-agentの起動に失敗します。
失敗しても起動時には何もエラーが出ないので、
起動しないようなら /var/log/td-agent/td-

agent.logを確認してみましょう。

受信側（ログ解析サーバ）
　受信側の td-agent.confは、リスト5のように
します。

①： forwardを最初に指定することで、受信側
のログサーバとして24224のポートでログ
を受け取ります。

②： 今回は使いませんが、confファイル中で
includeを用いて外部ファイルの設定を読
み込むことができます。たとえばサーバご
とに異なる設定を書きたい場合など、conf

ファイルが見にくくなるのをさけるために
ファイルを分けるといった利用が可能です。

③： アクセスログの受信部です。各サーバから
access.web1、access.web2……などのタグ
を持ったログが入ってきます。

④： mongo-pluginによってMongoDBへのスト
アが可能になっているので、typeとして指
定して、用いるデータベースとコレクション
の指定を行います。コレクションはMySQL

でいうところのテーブルに相当します。
⑤： include_tag_keyを指定することにより、
ログについている tagをストアされるレコー
ドに“tag”というキーで付与することがで
きます。これで同じコレクション内に複数
のサーバからのログを収集しても、それぞ
れがどのサーバからのログなのかを識別す
ることが可能です。

⑥： インストールしたMongoDBのportなどの
設定をここでします。

⑦： エラーログもアクセスログと同様に記述し
ます。ストア先のコレクションのみ別のも

リスト4　送信側の td-agent.conf ▼

送信側の/etc/td-agent/td-agent.confの設定
アクセスログの設定
<source>
①
 type tail
format /^(?<host>[^]*) [^]* [^]* [^]* ¥[(?<time>[^¥]]*)¥] "(?<method>¥S+)(?: +(?<path>[^]*) ｭ
+¥S*)?" (?<code>[^]*) (?<size>[^]*) (?<restime>[^]*)(?: "(?<referer>[^¥"]*)" "(?<agent>[^¥"]*)")?$/

time_format %d/%b/%Y:%H:%M:%S %z
 pos_file /var/lib/fluent/access.pos
 path /var/log/httpd/access_log
②
 tag access.web1
</source>

エラーログの設定
<source>
 type tail
 format /^¥[[^]* (?<time>[^¥]]*)¥] ¥[(?<level>[^¥]]*)¥] (?<message>.*)$/
 time_format %b %d %H:%M:%S %Y
 path /var/log/httpd/error_log
 pos_file /var/lib/fluent/error.pos
 tag error.web1
</source>

③
<match *.web1>
 type forward
 flush_interval 3s
 <server>
 # ログサーバのhostを設定
 host 192.168.11.XYZ
 port 24224
 </server>
</match>

88 - Software Design Aug. 2014 - 89

第6章フロントエンジニアもFluentd＋MongoDBで実践！
小さく始めるログ活用のすすめ

のにします。
⑧： 正規表現であてはまらなかったログなどが
出力されます。

　confファイルは頻繁に書き換えたりするので
Gitで管理するといいでしょう。状況に応じて
branchを切り替えて、使うconfを変えるのも
いいでしょう。そのときには td-agentを再起動
することを忘れずに。

使ってみる

　必要なモジュールのインストールも完了し、
confも書き終えたらいよいよ起動しましょう。
MongoDBの起動を確認してから、送受信側の
両方で次のように td-agentを起動します。

$ sudo service td-agent start

リスト5　受信側の td-agent.conf ▼

受信側の/etc/td-agent/td-agent.confの設定
送信側の設定を受信側でも設定しておく（口を開けｭ
ておくイメージ）

①
<source>
 type forward
 port 24224
</source>

②
include web_server.conf/*.conf

③
<match access.*>
 # plugin type
 # type mongo_replset
 type mongo

④
 # mongodb db + collection
 # dbとcollectionを指定
 database log
 collection access

⑤
 # set tag_name
 # 送信側で付けたタグをkey値でセット
 include_tag_key true
 tag_key tag

⑥
 # mongodb host + port
 host localhost
 port 27017

 # interval
 flush_interval 10s
 buffer_chunk_limit 10m
</match>

⑦
<match error.*>
 # plugin type
 #type mongo_replset
 type mongo

 # mongodb db + collection
 database log
 collection error

 ## set tag_name
 include_tag_key true
 tag_key tag

 # mongodb host + port
 host localhost
 port 27017

 # interval
 flush_interval 10s
 buffer_chunk_limit 10m
</match>

⑧
<match **>
 type file
 path /var/log/td-agent/no_match.log
</match>

　起動に失敗している場合、

とコマンドを打つと、“td-agentが停止してい
ますがPIDファイルが残っています”のような
メッセージが出ます。このときは/var/log/td-

agent/td-agent.logを確認してみてください。
confの記述を間違えていたり、正規表現がログ
の形式と合っていない場合などが原因で td-

agentのプロセスが落ちます。またログファイ
ルへのアクセス権限があるかどうかの確認も忘
れずに。
　これまでの設定により、たまるログはリスト
6のようになっています。これで jsonデータが
Webサーバから逐次送られてくるようなシス
テムが構築できました。

$ sudo service td-agent status

90 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

Aug. 2014 - 91

何を取り出すのか

　ここまでの手順で常に複数サーバからのログ
がログ解析サーバに蓄積されるようになりまし
た。次はこのログからデータを取り出してみま
しょう。MongoDBからデータを取り出すには
MongoQueryを書きます。
　JavaScriptで記述され、MySQLのようにカ
ラムが一様でないような情報に対しても柔軟に
アクセスできるフレームワークが用意されてい
ます。詳しいクエリはリファレンス注7を読んで
もらうとして、ここでは頻繁に使うクエリのみ
抜粋します。

【MongoDBの基礎的なクエリ】

●document数の取得
> db.access.count();

●access collectionのdocumentの取得
> db.access.find();

●最新の10件の取得
> db.error.find().sort({time:-1}).ｭ
limit(10);

注7） http://docs.mongodb.org/manual/reference/operator/
query/

ログの活用
●web1サーバのタグの情報のみ取得

>db.error.find({"tag":"error.web1"})

●messageを“HTTP_HOST”という単語でgrep
して検索
> var grepQuery = new RegExp("HTTP_HOST");
> db.error.find({message:grepQuery});

●指定時間内のクエリを取得
> db.error.find({time:{$gt:ISODateｭ
('2014-05-18 00:00:00'), $lt : ｭ
ISODate('2014-05-18 24:00:00')}})

●Aggregation.Frameworkによるクエリ（指
定時間内のmessageごとの行数を集計する、
MySQLにおけるgroupbyのようなもの）
> var start = ISODate('2014-05-18 ｭ
00:00:00');
> var end = ISODate('2014-05-18 ｭ
24:00:00');
> db.error.aggregate([
 {$match :{time:{$gte:start,$lt:end}}},
 {$group : { "_id" : "$message" , ｭ
"count" : { $sum : 1} }},
 { $sort : { count : -1 } },
]);

Rettyにおけるエラーログの
集計と活用

　Rettyでは、ログのメッセージに記述された
ログ情報から重要度を判別し、その行数をカウ
ントしています。リスト7のようなコードで、
指定の文言をmessageに含むドキュメントをカ
ウントアップするようなコードを用いています。
　こうすることで過去に追加されてしまった良

リスト6　たまるログ（抜粋） ▼

 ●アクセスログ例
{ "_id" : ObjectId("53044f6b1ed75a0e83b8f278"), "time" : ISODate("2014-02-19T06:29:54Z"), ｭ
"host" : "XXX.XXX.XXX.X", "method" : "GET", "path" : "/images/topics/markers/marker10.png", ｭ
"code" : "200", "size" : "5078", "restime" : "1045", "referer" : "http://retty.me/area/PRE13/ｭ
STAN5888/PUR1/", "agent" : "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)", ｭ
"tag" : "access.web1" }

 ●エラーログ例
{ "_id" : ObjectId("5378d5c41ed75a365660308d"), "time" : ISODate("2014-05-18T15:46:06Z"), ｭ
"level" : "error", "message" : "PHP Notice: Undefined index: HTTP_HOST in /var/www/html/ｭ
public/index.php on line 61", "tag" : "error.web1" }

http://docs.mongodb.org/manual/reference/operator/query/

90 - Software Design Aug. 2014 - 91

第6章フロントエンジニアもFluentd＋MongoDBで実践！
小さく始めるログ活用のすすめ

リスト7　エラーログ修正のクエリ ▼

var start = ISODate('2014-02-19 00:00:00');
var end = ISODate('2014-02-21 24:00:00');
const ACCESS_TAG_HEADER = "access.";
const ERROR_TAG_HEADER = "error.";

"time:"+start+" - "+end;

function getServerTagName(name, type){
 switch(type){
 case 0:{return ACCESS_TAG_HEADER + name ;}break;
 case 1:{return ERROR_TAG_HEADER + name ;}
 break;
 }
}

function getErrorLevelCtn(level, tag, grep){
var errorCountMethod;

 if(level){
 level = ",level:'"+level+"'";
 }else{level = "";}
 if(tag){
 tag = ",tag:'"+tag+"'";
 }else{tag = "";}
 if(grep){
 var grepQuery = new RegExp(grep);
 grep = ",message:grepQuery";
 }else{grep = "";}
 errorCountMethod = "db.error.find({time:{$gte: start, $lt: end}"+level+tag+grep+"}).ｭ

count()";
 return eval(errorCountMethod);
}

function showAllServerLog(){
 print("level[error]:"+getErrorLevelCtn("error"));
 print("level[notice]:"+getErrorLevelCtn("notice"));

 print(getErrorLevelCtn("","","PHP Fatal error"));
 print(getErrorLevelCtn("","","¥[EMERG¥]"));
 print(getErrorLevelCtn("","","¥[ALERT¥]"));
 print(getErrorLevelCtn("","","¥[CRIT¥]"));
 print("");
 print(getErrorLevelCtn("","","PHP Warning"));
 print(getErrorLevelCtn("","","PHP Notice"));
 print(getErrorLevelCtn("","","¥[ERR¥]"));
}

showAllServerLog();

くないコードや、新規追加されたコードで、テ
ストでは検知されないようなerrorやwarning

を吐き出しているものを見つけ出します。これ
らを撲滅することもエンジニアには大事な仕事
です。Rettyでは毎週Apacheのエラーログを

確認して、問題のある個所の修正だけでなく、
それを産むコードを共有することでノウハウの
共有とサービスの改善を行っています。
　これにより、新しくジョインして来てくれた
エンジニアと過去に書かれたコードについて議

92 - Software Design

第1特集
身近なシステムログからウェブやデータベース、そしてビッグデータの基礎まで

ログを読む技術 手がかりを見いだす眼力をつくる

論する場ができ、エンジニアが作りっぱなしで
終わらない体制をとっています。

　いかがだったでしょうか。小さく始めるログ
集計ということで、本稿ではログ活用の導入を
書かせていただきました。Fluentdは今ほんと
うに熱い技術の1つで、筆者のようなフロント
のエンジニアでも簡単に環境が構築でき、
MongoDBを使えばクエリもなじみのJavaScript

まとめ

で書けるので、サーバに眠るログを無駄にする
ことなく活用できます。
　いきなりABテストに使ったり、効果測定に
バンバン使おうとするのではなく、「とりあえず
なるはやでログを使える環境にしておく」という
視点で見ると、Fluentdは最善の選択肢だと思い
ます。その先でサービスに対して有効なログの
抽出の仕方が見えてくると思います。最後まで
読んでくださりありがとうございました。ﾟ

TIPS
Column

　MongoDBに関する tipsを紹介します。

［1］キー名
　MySQLと違い、MongoDBではレコードにキー値
が含まれていて、レコードごとにデータと共に記録
されます。そのため、キー値が長いと容量圧迫の原
因となるのでなるべく短い名前を使うべきです。

［2］mongotop、mongostat
　MongoDBの監視をしたければこのコマンドを使
います。mongotopは top、mongostatはvmstatの
ような機能を持ちます。

［3］クエリファイルとしての実行
　いちいちMongoDBの shellに入ってコマンドを
打ち込むのは面倒なので、処理を外部ファイル化し
てコマンド一発で呼び出せるようにしましょう。使
い方は簡単です。書きたい処理やshellをquery.jsの
ように保存しておいてディレクトリに置きます。そ
して次のように実行します。

　また、その結果をテキストなどに保存したい場合は、

$ mongo < query.js

$ mongo < query.js > result.json

などのようにして出力することが可能です。

［4］cronとしての実行
　定期的にクエリを実行してその結果をファイルに
保存しておきたい場合などは、cronに登録してお
くといいでしょう。

でcrontabを開き、次の行を追加します。

　これで「毎日夜19時5分にquery.jsの結果を json
として保存する」処理が登録されます。

［5］Capped Collection
　MongoDBにはCollectionの容量を固定長にする
ことで、古いデータを自動で消して新しいデータの
みを指定容量で残してくれる機能があります。エラー
ログなどはあまり過去のデータを保持している必要
がないので、固定長にするのが良いかもしれません。
�uentd-mongo-pluginはこの機能も提供してくれ
るので、オプションでこれを指定できます。

#crontab -e

$ 5 19 * * * mongo < query.js > ｭ
result_`date +＼%Y＼%m＼%d`.log

Linuxカーネルの
しくみを探る

forkを通して
考える・試す・コードを読む

第2特集

　カーネルとはOSの核となる機能のことです。CPU、メモリ、
入出力装置などのハードウェアを抽象化することで、アプリケー
ションが共通の命令で各ハードウェアを扱えるようにします。
また、アプリケーションを効率よく動作させるために、プロセ
スやメモリなどのリソースを管理します。
　信頼性が高く、処理の速いLinuxシステムを構築／運用する
場合、Linuxカーネルの知識を求められることもあるでしょう。
しかし、今のカーネルは機能の数が多く、処理の内容も複雑で
す。そこで、本特集では数あるカーネルの機能の中から「プロセ
ス管理」に注目して、そのしくみをひも解きます。プロセス管理
はシステムのパフォーマンスにも直結する要素ですので、実際
の開発や運用に活かせる知識もたくさん見つかるはずです。

プロセスに見るLinuxカーネルの役割

「fork」を通してカーネル内部を理解する

ソースコードで見るカーネルの全体像

中井 悦司 P.094

岩尾 はるか P.104

中井 悦司 P.115

1P a r t

2P a r t

3P a r t

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

94 - Software Design

カーネルを本気で学ぶ
第一歩

　この特集では、Linuxカーネルについての理
解を深めます。Unix/Linuxを本当の意味で理解
するには、カーネルを避けて通ることはできま
せん。その一方で、カーネルのしくみについて、
「実感」を持って理解して、その知識を役立てら
れるようになるには、少しばかり高いハードル
があるのも事実です。カーネルの「役割」を学ぶ
ことは、それほど難しいものではありませんが、
普通にLinuxを使っていても、一般のユーザに
はカーネルの「動作」は見えません。そのため、
どうすれば、そのしくみにまで踏み込んで理解
できるのか途方にくれてしまいます。
　そこで、この特集では、Linuxの「プロセス」
を足がかりに話を進めます。この後で説明する
ように、ユーザから見たLinuxの主役はプロセ
スです。プロセスの動作のしくみを理解すると、
その背後にあるカーネルのしくみが見えてきま
す。このPart1では、Linuxのプロセスのしく
みを徹底的に学びます。その後、Part2で、こ
れらのしくみがカーネル内部でどのように実現
されているのか、もう一歩踏み込んだ解説を行
います。
　とくに、新しいプロセスを生み出すしくみが、
プロセスの「fork（フォーク）」です。カーネル内
部において、どのようにプロセスが生み出され

て実行を開始するのか─ forkのしくみを丁寧
にひも解きながら、カーネルを理解する「コツ」
を実感していただきます。
　そして、カーネルのしくみがわかるようにな
ると、実際のソースコード（カーネルソース）に
も興味がわいてくるでしょう。最後のPart3で
は、カーネルソースを入手して、ソースコード
を「散策」する方法を紹介します。カーネルソー
スをいきなりすべて理解するのは不可能ですが、
カーネルのしくみの中で、興味がわいた部分の
ソースを覗きこむ方法を知っておくと便利です。
カーネルのしくみがわかってきたら、その後に
は、「ソースコードを読む楽しみ」─そんなす
ばらしい世界も待っています。

Linuxの主役はプロセス
　Linuxを利用すると、1台のサーバで、さまざ
まなプログラムを同時に実行することができま
す。今では当たり前のことですが、筆者が小～
中学生のころ（1980年代）に使っていた初期の
PCでは、同時に実行できるプログラムは1つで
した。好きなゲームのプログラムを起動すると、
そのPCはゲームの実行だけを続けます。ワー
プロを使いたくなったら、ゲームは終了して、
あらためて、ワープロのプログラムを起動しま
す。
　一方、Linuxサーバでは、WebサーバとDB

プロセスに見る
Linuxカーネルの役割

レッドハット株式会社　中井 悦司（なかい えつじ）
 Twitter @enakai00

本パートでは、「プロセスとは何か」「forkとは何か」というところから解説を始めます。カー
ネルの複雑な役割や動作を学ぶ前に、まずLinuxでは複数プログラムの同時実行をどうやっ
て実現しているのか、その基本的なしくみを理解しましょう。

1P a r t

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 1P a r tプロセスに見るLinuxカーネルの役割

94 - Software Design Aug. 2014 - 95

サーバを同時に起動しつつ、SSHでサーバにロ
グインしてviエディタを起動してファイル編集
までできてしまいます。Linuxでは、サーバ上
で稼働するそれぞれのプログラムを「プロセス」
として管理しながら、複数のプロセスを同時に
実行することでこれを実現します。
　正確に言うと、すべてのプロセスが完全に「同
時」に実行されるわけではありません。たとえ
ば、2コアのCPUが搭載されたサーバであれば、
それぞれのCPUコアが1つのプログラムコード
を実行するので、まったく同時に実行できるプ
ロセス（プログラム）は2つだけです。そこで、
Linuxカーネルは、複数のプロセスに対して、
CPUの処理時間を順番に割り当てることで、こ
れらを擬似的に同時実行します。Linuxカーネ
ル自身も1つのプログラムコードですので、図
1のように、1つのCPUコアの上では、各プロ
セスのプログラムコードとカーネルのプログラ
ムコードが順番に実行されていきます。
　このように、さまざまなプロセスの実行を通
して、ユーザの役に立つ仕事を行うのがLinux

サーバの役割です。先ほど筆者が小～中学生の
ころの話をしましたが、当時、こんな川柳（？）
を耳にすることがありました。

「コンピュータ　ソフトがなければ　ただの箱」

　コンピュータにおけるソフトウェアの重要性
を詠んでいるようですが、現代的に言うならば、
そのソフトウェアを実行する「プロセス」こそが、
Linuxの主役と言えるでしょう。この後は、Red

Hat Enterprise Linux（RHEL）6.5の環境を前提

に、プロセスの状態を確認するコマンドなどと
併せて、Linuxにおけるプロセス管理のしくみ
を解説していきます。もちろん、Linuxカーネ
ルの役割は、プロセス管理だけではありません。
カーネルの役割の全体像については、Part3で
説明します。

プロセススケジューリング

　プロセス管理におけるカーネルの役割につい
て理解を深めるため、図1において、CPUコア
で実行されるプログラムがプロセスからカーネ
ルに切り替わるタイミングを考えます。これに
は、大きく2つの場合があります。

・システムコール
・タイマ割り込み

　「システムコール」は、プロセスのプログラム
コードが、カーネルに何らかの処理を依頼する
場合です。たとえば、図1のプロセスAはC言
語のプログラムで、関数read()でファイルから
データを読み出すとします。このとき、実際に
ディスク装置にデータの読み出し命令を発行す
るのはカーネルの役割です（図2）。関数read()

は、Part2で説明するシステムコールのしくみ
によって、カーネルに処理を切り替えます。そ
の後、カーネルは、適切なデバイスドライバを
用いて、物理ディスクにアクセス命令を発行し

プロセス

Linuxカーネル

デバイスドライバ

プロセス

システムコール

アクセス命令発行

物理ディスク

…

プロセスA

プロセスB

プロセスC

カーネル

CPUコア

システムコール

タイマ割り込み

 ▼図1　CPUコアが実行するプログラムの切り替え

 ▼図2　システムコールによるカーネルへの処理依頼

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

96 - Software Design

ます。
　この後、実際にデータが読み出されてメモリ
上に配置されるまで、しばらく時間がかかりま
す。この間、プロセスAは何もすることがあり
ませんので、CPUコアの処理時間を無駄にしな
いよう、カーネルはほかのプロセスに実行を切
り替えます。
　そのほかのシステムコールの例には、「スリー
プ処理」があります。たとえば、Webサーバの
機能を提供するHTTPデーモンのプロセスは、
普段はとくにすることがありません。クライア
ントのWebブラウザからのアクセスがあっては
じめて、HTMLのコンテンツを送り返すという
仕事が発生します。そこで、HTTPデーモンは、
「クライアントからデータが届くまでスリープす
る」というシステムコールを発行します。
　このシステムコールを受けたカーネルは、該
当プロセスをスリープ状態にして、このプロセ
スには処理時間を割り当てないようにします。
そして、クライアントからデータが届いた際に、
あらためて、プロセスの実行を再開します。こ
の後でいくつかの例が出てきますが、プロセス
は、このほかにもさまざまな処理をカーネルに
依頼します。これらはすべて、システムコール
を通じて行われます。
　もう1つの「タイマ割り込み」は、システムコー
ルで中断されることなく、所定の時間、特定プ
ロセスの実行が続くと発生します。1つのプロ
セスの実行だけを続けるの
は不公平ですので、いった
ん、強制的にカーネルに処
理を切り替えます。この後、
カーネルは、次に実行する
プロセスを選択して、そち
らに処理を切り替えます。
　このように、実行するプ
ロセスを順番に切り替える
処理を「プロセススケジュー
リング」と言います。先ほ
ど、複数のプロセスを擬似

的に同時実行すると言いましたが、この切り替
えをうまく行わないと、プロセスを細切れに実
行していることがユーザにもわかってしまいま
す。Linuxカーネルのプロセススケジューリン
グには、多数のプロセスを効率的に切り替えな
がら、それぞれのプロセスをスムーズに実行す
る工夫がなされています。

プロセスの状態変化
　Linux上でプロセスが起動すると、カーネル
によってCPUコアの処理時間が割り当てられて
プログラムの実行が進む中、その「状態」が変化
していきます。プロセスの状態変化は、図3の
ようになります。また、これらの状態は、psコ
マンドのauxオプションで確認します。図4の
実行例において、「STAT」列にある最初の文字
（S、D、Rなど）が、図3の「STAT：R」などで
示した文字に対応します。
　それでは、これらの状態変化を少し詳しく説
明します。まず、新しく生成されたプロセスは、
実行状態「STAT：R」になり、プログラムの実
行が進みます。厳密には、図1で見たように、
CPUコアで実際に実行されている瞬間と、CPU

コアの実行時間が割り当てられるのを待ってい
る瞬間があります。しかしながら、これは「ミリ
秒」単位の変化ですので、psコマンドの表示上
は、どちらも同じ「R」の状態となります。

実行可能状態
CPU時間割り当て

STAT：R

I/O 完了待ち スリープ STOPシグナル受信

実行終了

CPU割り当て終了
実行状態

待機状態
（割り込み可能） 停止状態待機状態

（割り込み不能）

STAT：S STAT：TSTAT：D

I/O 完了 スリープ解除 CONTシグナル受信

ゾンビ状態

プロセス消滅プロセス生成

STAT：Z

 ▼図3　プロセスの状態変化

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 1P a r tプロセスに見るLinuxカーネルの役割

96 - Software Design Aug. 2014 - 97

　続いて、先に説明したシステムコールで、ディ
スクアクセスなどのI/O処理をカーネルに依頼
すると「STAT：D」の待機状態になります。そ
の後、カーネルに依頼した I/O処理が完了する
と、実行状態に戻ります。あるいは、先のHTTP

デーモンのように、自発的にスリープ状態
「STAT：S」に変化するプロセスもあります。こ
の場合は、事前に指定した状況（Webブラウザ
からのアクセスが届くなど）になると、実行状態
に戻ります。「sleep(60)」などの関数で、一定時
間スリープする場合もこれと同じです。この場
合は、「60秒経過したら実行状態に戻す」という
条件を指定して、スリープ状態に入るシステム
コールが実行されます。
　最後に、実行中のプロセスに外部からシグナ
ルを送って、動作を一時停止することも可能で
す。SSH端末でサーバにログインして、あるコ
マンドを実行したら、予想以上に時間がかかっ
て困ったことはないでしょうか？　次のコマン
ドプロンプトがなかなか表示されないので、あ
きらめて ÌCtrlÔ＋ ÌCÔでコマンドを中断した経験が
あるかもしれません。

　そのような場合は、ÌCtrlÔ＋ ÌZÔを押すと実行中
のコマンドが一時停止して、コマンドプロンプ
トに戻ります。その後、「bg」コマンドを実行す
ると、先のコマンドがバックグラウンドで実行
を再開します。端末上は、コマンドプロンプト
が表示されて次のコマンド入力ができますが、
先のコマンドは背後で実行を継続しています。
やや作為的な例ですが、図5は、sleepコマンド
を一時停止して、バックグラウンドでの実行に
切り替える例になります。
　このようなプロセスの一時停止／再開処理は、
内部的には、「プロセスシグナル」によって行わ
れます。シグナルの詳細はこの後で説明します
が、ÌCtrlÔ＋ ÌZÔを押すと、実行中のコマンドのプ
ロセスに「STOPシグナル」が送られて、プロセ
スは停止状態「STAT：T」になります。次のbg

コマンドでは、「CONTシグナル」が送られて、
これで実行状態に戻ります。
　図3には、このほかに、実行を終了したプロ
セスに対応する、ゾンビ状態「STAT：Z」とい
う怪しげな状態があります。これについては、
この後、プロセスの forkと併せて解説します。

 ▼図5　プロセスを一時停止／再開する例

sleep 60
^Z ÌÌCtrlÔ + ÌZÔで一時停止
[1]+ 停止 sleep 60
bg バックグラウンドで実行再開
[1]+ sleep 60 &
#
[1]+ 終了 sleep 60 バックグラウンドでの実行が完了

プロセスID プロセスの状態

 ▼図4　プロセスの状態を確認

ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 19400 1468 ? Ss 2011 0:44 /sbin/init
root 2 0.0 0.0 0 0 ? S 2011 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 2011 0:00 [migration/0]
root 4 0.0 0.0 0 0 ? S 2011 0:01 [ksoftirqd/0]
...（略）...
root 31862 0.1 0.0 79580 4728 ? S 20:47 0:00 /usr/sbin/packa
root 31872 30.8 1.8 470496 144464 ? D 20:48 0:02 /usr/bin/python
enakai 31874 1.0 0.0 110292 1148 pts/2 R+ 20:48 0:00 ps aux

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

98 - Software Design

シグナルでプロセスを操作
　図3において、「STOPシグナル」と「CONTシ
グナル」を紹介しましたが、プロセスを操作する
ためのシグナルには、ほかにもいくつかの種類
があります。参考として、表1に主要なプロセ

スシグナルをまとめてあります。
　それぞれのシグナルには、シグナル名のほか
にシグナル番号が割り当てられています。次の
ようにkillコマンドにシグナル名、もしくは、シ
グナル番号を指定して、プロセスにシグナルを
送信することができます。

kill -TERM 123
kill -9 123

　それぞれ、プロセスIDが123のプロ
セスに対して、TERMシグナルと
KILLシグナルを送信する例になりま
す。シグナルを送信する対象となるプ
ロセスのプロセスIDは、図4の「PID」
の列から確認します。killコマンドは、
内部的には、システムコールを利用し

　図3において、スリープによる待機状態「STAT：
S」とI/O完了待ちの待機状態「STAT：D」があること
を説明しました。これら2つの待機状態は、カーネ
ル内部では、「TASK_INTERRUPTIBLE」「TASK_
UNINTERRUPTIBLE」と呼ばれており、それぞれ、
「割り込み可能」「割り込み不可能」という意味があり
ます。
　これは、簡単に言うと、待機状態のプロセスを停
止できるかどうか、という違いになります。スリー
プ状態のプロセスは、「TERMシグナル」や「KILLシ
グナル」を外部から送信することで、プロセスを終了
することができます。一方、I/O完了待ちのプロセ
スは、外部からのシグナルを受け付けず、この状態
のプロセスを停止することはできません。
　これには、I/O処理に伴うデータを保護する役割
があります。たとえば、プロセスからの依頼で、カー
ネルがディスクにデータを書き込んでいる途中でプ
ロセスが停止すると、ディスク上のデータが中途半
端な状態になる恐れがあります。そのため、I/O処
理が完了してから停止するというわけです。
　以前は、このしくみが裏目に出て、困った状況に
なることもありました。たとえば、デバイスドライ
バの不具合（バグ）で、I/O処理が完了しているにも

かかわらず、カーネルがそれを認識しないことがあ
りました。その結果、このプロセスはいつまでも待
機状態「STAT：D」のままになります。しかたなくこ
のプロセスを停止しようとするのですが、割り込み
を受け付けないため、何をしても停止できません。
もはやサーバを再起動するしかなくなります。
　最近では、デバイスドライバの品質が良くなった
ので、このような問題は見なくなりましたが、ほか
には、NFSクライアントでも問題が発生します。NFS
サーバの共有ディレクトリにネットワーク経由でア
クセスしている際に、ネットワークの問題が発生し
てI/O処理が完了しなくなると、同様に待機状態の
まま停止できないプロセスが発生します。
　このような問題を改善するため、最近のカーネル
（バージョン2.6.25以降）には、「TASK_KILLABLE」
という新しい状態が用意されています。これは、一
般的なシグナルは受け付けないものの、プロセスを
強制停止するシグナルだけは受け付ける、という特
別な状態です。NFSクライアントでは、「TASK_
UNINTERRUPTIBLE」の 代 わ り に、「TASK_
KILLABLE」が使用されていますので、NFSで問題が
発生した場合は、「KILLシグナル」でプロセスの強制
停止が可能です。

止められないプロセスの問題

シグナル名 シグナル番号 デフォルトの処理内容
HUP 1 プロセスの終了
INT 2 プロセスの終了
KILL 9 プロセスの終了（変更不可）
TERM 15 プロセスの終了
STOP 19 プロセスの一時停止（変更不可）
CONT 18 プロセスの一時停止からの復帰
CHLD 17 子プロセス終了通知の確認処理

 ▼表1　Linuxの主なプロセスシグナル

コラム

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 1P a r tプロセスに見るLinuxカーネルの役割

98 - Software Design Aug. 2014 - 99

て、カーネルにシグナルの送信を依頼します。
　一方、シグナルを受け取ったプロセスの動作
については、少し注意が必要です。それぞれの
シグナルに対する反応は、プロセスとして実行
中のプログラムによって異なります。正確に言
うと、プログラムを作成するプログラマは、「シ
グナルハンドラ」と呼ばれる関数を用意すること
により、シグナルを受信した際の動作を指定す
ることができます。表1に記載の「デフォルトの
処理内容」は、シグナルハンドラが存在しない場
合の動作ですが、たとえば、「HUPシグナル」に
対するハンドラを用意して、プロセス終了とは
異なる動作をさせることもできます。
　多くのプログラム（とくにLinuxのサービスと
して起動するもの）では、HUPシグナルに対し
て、設定ファイルの再読み込み処理を割り当て
ています。あるいは、TERMシグナルについて
は、処理中のファイルの書き出しなど、プロセ
スの終了前に必要な処理を実施してから終了す
るシグナルハンドラを用意します。
　一方、KILLシグナルとSTOPシグナルだけ
は特別で、これらのシグナルハンドラを用意す
ることはできません。つまり、KILLシグナル
を送信すると、プログラマが用意した終了処理
は実施せず、その場で強制停止が行われます。
したがって、シグナルでプロセスを停止する際
は、TERMシグナルを使用することが推奨され
ます。KILLシグナルは、TERMシグナルで停
止できないような異常が発生した際に使うと良
いでしょう。

プロセスの forkとは？

　それではいよいよ、本特集のメインテーマと
なる「fork」の解説に移ります。Linuxで新しい
プロセスを起動する際は、必ず、その「親」とな
るプロセスが存在します。forkとは、親プロセ
スを複製して、同じプログラムを実行する「子プ
ロセス」を用意するしくみです。つまり、あるプ
ロセスは、システムコールを利用して、自分自

身を複製した子プロセスの作成をカーネルに依
頼します。これが forkです。
　「これだと同じプログラムのプロセスが増える
だけで、新しいプログラムが実行できないので
は？」─そのとおりです。実は、新しいプログ
ラムを実行する際は、forkだけではなく、もう
ひとつ、execというシステムコールを利用しま
す。こちらは、同じプロセスのままで、このプ
ロセスが実行するプログラムをそっくり新しい
ものに入れ替えます。この2つを組み合わせて、
forkしてできた子プロセスのほうでexecを実施
することで、新しいプログラムを実行する子プ
ロセスが誕生します。
　図6は、端末上のコマンドプロンプトに、「sl」
コマンドを入力して実行する例です注1。コマン
ドプロンプトを表示して、コマンド入力を受け
付ける処理は、シェル「/bin/bash」のプロセスが
行います。slコマンドを受け付けたシェルは、
forkシステムコールによって、同じシェルのプ
ロセスを子プロセスとして生成します。この後、
子プロセスのほうは、execシステムコールで、

注1） slコマンドは、lsと間違えて入力したユーザを驚かせる
ジョークコマンドです。導入手順は、この後の本文で説明
します。

/bin/bash

親プロセス slコマンド実行

fork

exec

/bin/bash

/usr/bin/sl

子プロセス

 ▼図6　プロセスの forkとexec

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

100 - Software Design

入力されたslコマンドのプログラム「/usr/bin/

sl」にプロセスの中身を入れ替えます。
　これだけを見ると、一度 forkした後に、あら
ためてexecするのは二度手間のように感じるか
もしれません。しかしながら、forkにはそれ自
身の使いどころもあります。たとえば、図7は、
Webサーバの機能を提供する、HTTPデーモン
を起動している環境において、HTTPデーモン
のプロセス「/usr/sbin/httpd」を確認した例で
す。多数のHTTPデーモンが起動していますが、
これは、一番上のHTTPデーモンが最初に起動
して、その後、forkによって多数の分身を子プ
ロセスとして生成したものです。HTTPデーモ
ンは、多数のWebブラウザからのアクセスに対

応するために、これらの子プロセスが並行して
アクセスを処理します（図8）。それでも処理が
追いつかなくなると、さらに forkして、子プロ
セスを増やすようになっています。
　このように、forkとexecは、複数プロセスで
並列処理を行う「マルチタスクシステム」として
のLinuxにとって、その根幹となるしくみにな
ります。

forkをプログラムする

　forkとexecが理解できたところで、実際にこ
れらを使用する簡単なプログラムを見てみましょ
う。リスト1は、forkを使って同じプログラム

/usr/sbin/httpd

/usr/sbin/httpd /usr/sbin/httpd /usr/sbin/httpd

親プロセス

fork

多数の子プロセスが並行して
Webブラウザからのアクセスを処理

 ▼図8　forkした多数の子プロセスで処理を分散

すべてのhttpdの親プロセス

プロセスID

子プロセス

親プロセスのプロセスID

 ▼図7　HTTPデーモンが forkで増殖している様子

ps -fC httpd
UID PID PPID C STIME TTY TIME CMD
root 9410 1 0 Apr15 ? 00:00:57 /usr/sbin/httpd
apache 32466 9410 0 May18 ? 00:00:00 /usr/sbin/httpd
apache 32467 9410 0 May18 ? 00:00:00 /usr/sbin/httpd
apache 32468 9410 0 May18 ? 00:00:00 /usr/sbin/httpd
apache 32469 9410 0 May18 ? 00:00:00 /usr/sbin/httpd
apache 32470 9410 0 May18 ? 00:00:00 /usr/sbin/httpd
apache 32471 9410 0 May18 ? 00:00:00 /usr/sbin/httpd
apache 32472 9410 0 May18 ? 00:00:00 /usr/sbin/httpd
apache 32473 9410 0 May18 ? 00:00:00 /usr/sbin/httpd
apache 32474 9410 0 May18 ? 00:00:00 /usr/sbin/httpd

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 1P a r tプロセスに見るLinuxカーネルの役割

100 - Software Design Aug. 2014 - 101

を実行するプロセスを複製する、C言語のプロ
グラム例です。説明のために行番号を付けてあ
ります。
　このプログラムを実行すると、11行目～21行
目の forループで、P_MAX（この例では3）個の
子プロセスを生成します。12行目の関数 fork()

は、システムコールを用いて、自分自身を複製
した子プロセスを生成するようにカーネルに依
頼します。fork()の戻り値は、生成した子プロ
セスのプロセスIDになります。ここでは、配列
pid[]にプロセスIDを保存しています。
　一方、forkで生成した子プロセスは、親プロ
セスと同じプログラムコードの実行を継続しま
す。同じプログラムを初めから実行するのでは
ありません。今の場合は、12行目の関数 fork()

が終了したところから、子プロセスの実行が始
まります。ただし、子プロセスのほうでは、関
数 fork()の戻り値は、0になります。そのため、
子プロセスのほうでは、13行目の if文が成立し
て、14行目～17行目が実行されます。ここで

は、しばらくスリープして終了するだけですが、
子プロセスの開始／終了のメッセージを表示す
るようにしてあります。
　他方、親プロセスのほうでは、13行目の if文
は成立しませんので、19行目に飛んで、「子プ
ロセスを開始した」というメッセージを表示しま
す。そして、P_MAX個の子プロセスの生成が
終わると、23行目～25行目のループで、すべて
の子プロセスが終了するのを待ちます。24行目
の関数wait()は、子プロセスのいずれか1つが終
了するまで待機します。子プロセスが1つ終了
するごとに関数wait()を抜けて、次の forループ
がまわります。forループがP_MAX回まわれ
ば、すべての子プロセスが終了したことになり
ます。
　このプログラムをコンパイルして実行する手
順は、図9のとおりです。「Development Tools」
のパッケージグループを導入した後、「fork.c」
をカレントディレクトリにおいてgccコマンド
でコンパイルしてください。

 ▼リスト1　forkのサンプルプログラム（fork.c）

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <unistd.h>
 4 #include <sys/wait.h>
 5 #define P_MAX 3
 6
 7 int main() {
 8 int pid[P_MAX];
 9 int status, i;
10
11 for (i = 0; i < P_MAX; i++) {
12 pid[i] = fork();
13 if (pid[i] == 0) {
14 printf("子プロセス No.%d: 開始¥n", i);
15 sleep(i+1);
16 printf("子プロセス No.%d: 終了¥n", i);
17 exit(0);
18 } else {
19 printf("親プロセス: 子プロセス No.%d(pid=%d)を開始¥n", i, pid[i]);
20 }
21 }
22 printf("すべての子プロセスの終了を待ちます¥n");
23 for (i = 0; i < P_MAX; i++) {
24 wait(&status);
25 }
26 return;
27 }

子プロセスは
この間を実行

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

102 - Software Design

　親プロセスが子プロセスを生成した後に、子
プロセスが開始／終了する様子がわかります。
この例からわかるように、親プロセスと子プロ
セスは、実行するプログラムコード自体は同じ
ですが、13行目の if文で処理を分けることで、
それぞれ、異なる仕事をすることが可能です。
　ここで、関数wait()のしくみについて補足し
ておきます。図3において、実行を終了したプ
ロセスは、「ゾンビ状態（STAT：Z）」になると
説明しました。このとき、Linuxカーネルは、終
了したプロセスの親プロセスに対して、
SIGCHLD（CHLD）シグナルを送信します。親
プロセスが関数wait()で子プロセスの終了を待っ
ている場合、このタイミングで関数wait()から
抜けて、引数の変数（リスト1の例では「status」）
に終了した子プロセスの情報が入ります。
　親プロセスが関数wait()を実行していない場
合、子プロセスはゾンビ状態のままでとどまり
ます。その後、関数wait()が実行されたタイミ
ングで、子プロセスの情報が親プロセスに受け
渡されて、子プロセスは完全に消滅します。親
プロセスに何らかの問題があって関数wait()を
実行できない場合、子プロセスはゾンビ状態で
残り続けます。「ps aux」コマンドで「STAT：Z」

のプロセスがいつまでも残っている場合は、親
プロセスに問題があると考えられます。
　なお、子プロセスが終了するより先に親プロ
セスが終了した場合は、Linux起動時に最初に
実行される、「プロセスID=1」のプロセス「/sbin/

init」が代わりの親プロセスとなります。この新
しい親プロセスが関数wait()の処理を実施する
ので、子プロセスは無事に終了、消滅すること
が可能です。
　wait()に類似の関数として、特定プロセス ID

の子プロセスについて、終了を待ち合わせる関
数waitpid()もあります。

 ▼リスト2　fork＆execのサンプルプログラム（fork-exec.c）

 1 #include <stdio.h>
 2 #include <unistd.h>
 3 #include <sys/wait.h>
 4
 5 int main() {
 6 int pid, status;
 7
 8 pid = fork();
 9 if (pid == 0) {
10 printf("子プロセス: 5秒後にslが走ります¥n", pid);
11 sleep(5);
12 execl("/usr/bin/sl","/usr/bin/sl", NULL);
13 printf("この行は実行されません¥n");
14 } else {
15 printf("親プロセス: 子プロセス pid=%d の終了を待ちます¥n", pid);
16 wait(&status);
17 printf("親プロセス: 終了¥n");
18 }
19 return;
20 }

子プロセスは
この間を実行

 ▼図9　fork.c（リスト1）を実行する

yum -y groupinstall "Development Tools"
gcc -o fork fork.c
./fork
親プロセス: 子プロセス No.0(pid=8672)を開始
子プロセス No.0: 開始
親プロセス: 子プロセス No.1(pid=8673)を開始
子プロセス No.1: 開始
親プロセス: 子プロセス No.2(pid=8674)を開始
すべての子プロセスの終了を待ちます
子プロセス No.2: 開始
子プロセス No.0: 終了
子プロセス No.1: 終了
子プロセス No.2: 終了

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 1P a r tプロセスに見るLinuxカーネルの役割

102 - Software Design Aug. 2014 - 103

fork＆execを
プログラムする

　続いて、forkで生成した子プロセスが、さら
にexecで新たなプログラムを実行する例を紹介
します。リスト2は、forkで生成した子プロセ
スがexecでslコマンドに変化する例です。図10
のようにEPELリポジトリからslコマンドの
RPMパッケージを導入した後、「fork-exec.c」を
カレントディレクトリにおいてコンパイル、実
行します。
　リスト2の8行目にある関数 fork()で子プロセ
スが生成されるところまでは、先の forkの例と
同じですが、今回、子プロセス側では、12行目
で関数execl()を実行しています。これは、シス
テムコールによって、この子プロセスの中身を
「/usr/bin/sl」に入れ替えます。この子プロセス
は、リスト2のプログラムを捨てて、slコマン
ドのプログラムを開始するので、その後の13行
目に戻ることはありません。slコマンドが終了
した時点で子プロセスは終了します。
　ただし、親プロセスとの親子関係は失われま
せん。子プロセスが終了した時点で、親プロセ
スにSIGCHLDシグナルが送信されて、親プロ
セスは16行目の関数wait()の待機状態から戻り
ます。
　最後に、プロセスの forkとexecに伴うメモリ
割り当てについて補足しておきます。プロセス
が実行中のプログラムコードは、当然ながら、
サーバのメモリ上に読み込まれています。fork

で子プロセスを生成する場合、子プロセスは同

じプログラムの実行を続けますので、親プロセ
スのメモリの内容を子プロセス用にコピーして
受け渡す必要があります。しかしながら、「fork-

exec.c」の例のように、forkした子プロセスが
execでほかのプログラムに切りかわる場合、せっ
かくコピーした内容がすぐに不要になります。
　そこで、Linuxカーネルは、forkの際にメモ
リの内容を丸ごとコピーするのではなく、物理
メモリ上の同じ内容を親プロセスと子プロセス
で共有するというテクニックを使用します。こ
れにより、メモリコピーにかかる時間を削減し
て、forkの処理を高速化します。このあたりの
詳細は、Part2で解説します。

まとめ

　Part1では、Linuxカーネルによって、複数の
プロセスが実行されるしくみについて、その概
要を説明しました。実行中のプロセスには、さ
まざまな状態があることがわかりましたが、シ
ステムの稼動状態を調査する際は、「ps aux」コ
マンドでプロセスの状態を確認することが大切
です。「STAT：S」のプロセスは、何もするこ
とがなくてスリープしていること、「STAT：D」
のプロセスが多数ある場合は、I/O処理がボト
ルネックになっているかもしれないこと、そし
て、「STAT：Z」のプロセスがずっと残ってい
る場合は、親プロセスに問題が発生しているこ
と、などは定番の確認ポイントです。
　また、プロセスは、システムコールによって、
カーネルにさまざまな処理を依頼します。fork

システムコールは、同じプログラムを実行する
子プロセスを生成して、execシステムコールは、
実行するプログラムを切り替えます。Part2で
は、カーネル内部のしくみに踏み込んで、これ
らシステムコールの舞台裏を徹底解説していき
ます。｢

 ▼図10　fork-exec.c（リスト2）を実行する

yum -y install http://download. ｭ
fedoraproject.org/pub/epel/6/i386/epel- ｭ
release-6-8.noarch.rpm
yum -y install sl
gcc -o fork-exec fork-exec.c
./fork-exec
親プロセス: 子プロセス pid=8993 の終了を待ちます
子プロセス: 5秒後にslが走ります
 ← ここでslコマンドが実行される →
親プロセス: 終了

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

104 - Software Design

forkとexecの全体像
　Part1では、forkとexecの使用例として、シェ
ル（bash）からslコマンドを実行する例を紹介し
ました（Part1の図6）。ここでは、bashでコマ
ンドを入力したあとに、新しいプロセスが生成・
実行される流れをステップごとに見ていきます。

1. bashでコマンドを実行
　bashのコマンドラインにslコマンドを入力し
て ÌEnterÔキーを押すと、bashはコマンドライン
を解析して、実行するコマンドの名前を取得し
ます。bashには、それ自身に内蔵されたコマン
ド（builtinコマンド）もありますが、「sl」は内蔵
コマンドではありませんので、外部のプログラ
ムを呼び出して実行する必要があります。bash

は環境変数PATHを順に検索して、slコマンド
が「/usr/bin/sl」に配置されていることを見つけ
ます。

2. forkシステムコールの発行
　新しいプログラムを実行する際は、forkのシ
ステムコールを実行する fork()と、execのシス
テムコールを実行するexec()の2段階で処理が
行われます。bashはまず fork()を実行して、自
分自身を複製することで子プロセスを作成しま
す。fork()を実行した親プロセスは、fork()から
返ってきた子プロセスのプロセスIDに対して、
その終了を待つ関数waitpid()を発行して、その
まま子プロセスが終了するのを待機します。
　一方、fork()で複製された子プロセス側のbash

は、exec()の実行に進みます。

3. execシステムコールの発行
　子プロセス側ではexec()を呼び出して、「/usr/

bin/sl」を実行します。なお、exec()には、引数
の指定のしかたによっていくつかのバリエーショ
ンがあります（図1）。exec()というのはこれらの
総称で、実際には、これらの1つを選んで使用
します。
　それぞれ微妙に引数が異なりますが、execの
あとに続く文字には次のような規則があります。

「fork」を通して
カーネル内部を理解する

レッドハット株式会社　岩尾 はるか（いわお はるか）
 Twitter @Yuryu

Part1では、Linuxのプロセス管理について、その概要を説明しました。Part2では、新
しいプロセスを生み出す「fork」と「exec」が、カーネル内部でどのように実現されているの
かを説明します。実行中のプログラムの依頼を受けて、カーネルがさまざまな処理を行う
際は、「システムコール」と呼ばれるしくみが利用されます。ここでは、forkとexecを実
現するシステムコールの舞台裏を徹底解説していきます。

2

 ▼図1　exec()のバリエーション

int execl(const char *path, const char *arg0, ... /*, (char *)0 */);
int execv(const char *path, char *const argv[]);
int execle(const char *path, const char *arg0, ... /*, (char *)0, char *const envp[]*/);
int execve(const char *path, char *const argv[], char *const envp[]);
int execlp(const char *file, const char *arg0, ... /*, (char *)0 */);
int execvp(const char *file, char *const argv[]);

P a r t

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 2「fork」を通してカーネル内部を理解する P a r t

104 - Software Design Aug. 2014 - 105

・l	 プログラムへの引数を可変長引数として渡す
・v	 プログラムへの引数を配列として渡す
・e	 環境変数を配列として渡す
・p	 PATH環境変数を検索する

　Part1で登場した fork-exec.c（リスト1）中で
登場したexecl()の場合は、PATHを検索せず、
最初の引数「path」にフルパスまたは相対パスで
実行するプログラムを指定します。その後の引
数として、プログラムに引き渡すコマンドライ
ン引数を指定します。リスト1の12行目の例で
は、「/usr/bin/sl」が2回並んでいますが、最初
のものは実行するプログラムの指定で、2番目
のものはプロセス名の指定です。プロセス名は、
必ずしも実行するプログラムと同じ名前である
必要はありません。
　execファミリーの関数は、これを呼び出した
プロセスを、指定されたプログラムに置き換え
て、そのプログラムの先頭から実行を開始しま
す。exec()の実行に成功した場合、exec()を呼び
出したプロブラム自身はこのタイミングで解放
されて、exec()の呼び出し元に実行が戻ること
はありません（リスト1の13行目は実行されな
い）。

　このあと、exec()で開始した新しいプログラ
ムが終了すると、プロセスそのものが終了する
ことになります。今回の例では、fork()で複製
されたbashの子プロセスからexec()によって

「/usr/bin/sl」が実行されて、これが終了すると、
この時点で子プロセスは消滅します。

システムコールとヘルパー関数

　それでは、システムコールが呼び出されたと
きの流れを詳しく見ていきます。図2は、その
概略です（図に記載の用語は、このあとで説明し
ていきます）。Linuxの forkやexecは、実際に
はユーザ空間のC言語ライブラリ「libc」と、
Linux内のシステムコールの合わせ技で実現さ
れています。fork()やexec()という関数そのもの
がシステムコールというわけではありません。
　たとえば forkの場合、関数 fork()そのものは
libc内で定義されており、その中でLinuxのシ
ステムコール本体を呼び出します。後述するよ
うに、カーネル内部のシステムコールを実行す
る関数は、CPUの特殊な命令により呼び出され
ます。そのため、C言語のプログラムからは通
常の関数のように呼び出すことができず、その
ギャップを埋めるためのヘルパーとして libcが

 ▼リスト1　fork＆execのサンプルプログラム（fork-exec.c）

※ Part1のリスト2と同じものです

 1 #include <stdio.h>
 2 #include <unistd.h>
 3 #include <sys/wait.h>
 4
 5 int main() {
 6 int pid, status;
 7
 8 pid = fork();
 9 if (pid == 0) {
10 printf("子プロセス: 5秒後にslが走ります¥n", pid);
11 sleep(5);
12 execl("/usr/bin/sl","/usr/bin/sl", NULL);
13 printf("この行は実行されません¥n");
14 } else {
15 printf("親プロセス: 子プロセス pid=%d の終了を待ちます¥n", pid);
16 wait(&status);
17 printf("親プロセス: 終了¥n");
18 }
19 return;
20 }

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

106 - Software Design

使用されます。また、エラーが発生したときに
セットされるerrnoの値なども、この libcに存
在するヘルパー関数でセットされます。Linux

カーネルが、直接にユーザプログラムの変数を
変更しているわけではありません。
　さらに、今回例に挙がっている forkとexec

は、システムコールの中でも特殊なもので、ユー
ザ空間から見える定義とカーネル内部の定義が
1対1に対応していません。forkの場合、実際に
は、Linuxの「clone」というシステムコールを用
いて定義されています。
　一方execは、複数あるファミリー関数の中で、
execve()のみがシステムコールとして定義され
ています。それ以外の関数が持つ、パスからの
検索や可変長引数の処理はすべてライブラリ関
数の機能として実装されており、これらの処理
を行ったあと、内部的にexecve()を呼び出す流
れになります。
　ちなみに、execファミリーの関
数についてmanページを検索する
と、execve()のみがシステムコー
ルを集めた「Section 2」に掲載され
ており、その他の関数は、ライブ
ラリ関数を集めた「Section 3」に掲
載されています。システムコール
を呼び出すプログラムを書く場合、
「Section 2」に掲載されているもの
であれば、Linuxカーネルが処理
する範囲と、libcが処理する範囲
を意識する必要はありません。合
わせ技としてシステムコールが実
現されているというのは、あくま
で内部的な話になります。一方、
「Section 3」に掲載されている、
execve()以外のexecファミリーの
関数については、Linuxカーネル
の機能とは別に、ライブラリとし
ての追加の処理が行われているこ
とを知っておくと良いでしょう。
　ところで、このmanページのセ

クションを表すために、fork(2)やexecl(3)とい
うように、括弧の中に数字として書く表記がよ
く用いられます。このことを知っていると、
fork(2)のように、括弧の中に数字の2が入って
いる場合は、それがシステムコールを指すとす
ぐに読み取れるようになります。

システムコールの呼び出し方

　Linuxのシステムコールは、64bitアーキテク
チャ（x86_64）の場合、libc内部から「syscall」と
いう特殊なCPU命令によって呼び出されます。
これは、通常の関数呼び出しとは何が違うので
しょうか？　この違いを理解するために、まず
は、通常のプログラムとLinuxカーネルの違い
について説明します（32bitアーキテクチャでの
システムコールについては、本Part末尾の「コ
ラム：32bitアーキテクチャでのシステムコー

libcライブラリ関数

ユーザプログラム

Linuxカーネル

fork() 実行

syscall(56, …) で
カーネルを呼び出し

errno などを設定して
return

sys_clone() で
プロセスを複製

sysret で
ユーザモードに復帰

カーネル

プロセス

カーネルモード ユーザモード

メモリアクセス禁止

プロセス

 ▼図2　システムコールのおおまかな流れ

 ▼図3　カーネルモードとユーザモード

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 2「fork」を通してカーネル内部を理解する P a r t

106 - Software Design Aug. 2014 - 107

ル」を参考にしてください）。
　Linuxカーネルは、すべてのユーザプロセス
をまとめて管理する一方で、それぞれのプロセ
スはお互いに影響を与えず、独立して実行され
る必要があります。また、ユーザプロセスとし
て実行される通常のプログラムが、Linuxカー
ネルの処理を妨げたり、ほかのプロセスのメモ
リを破壊したりすると、システムが停止したり、
セキュリティ上の問題が発生することにもなり
ます。
　そこで、Linuxは、CPUの実行モードを「カー
ネルモード」と「ユーザモード」に分けて、カーネ
ルの実行とユーザプロセスの実行を分離します。
また、メモリの内容についても「カーネル空間」
と「ユーザ空間」の2種類に分けて管理します。
　「カーネルモード」で実行中のカーネルは、
「カーネル空間」と「ユーザ空間」のすべてのメモ
リ領域にアクセスできます。一方、「ユーザモー
ド」で実行される通常のプロセスは、自分自身が
使用する「ユーザ空間」のみにアクセスが可能で、
「カーネル空間」やほかのプロセスが使用するメ
モリへのアクセスはできません。図3のように、
カーネルから各プロセスのメモリへはアクセス
できますが、各プロセスは、カーネルやほかの
プロセスのメモリにはアクセスできないという
わけです。このようなアクセス権限の分離機能
を「特権レベル」と言います。この機能は、Linux

以外のOSでも一般的に使用されています。
　ここで、通常の関数呼び出しは、ユーザモー
ドのプロセスが、自分自身
のメモリ空間内部で、その
関数を実行するのが前提と
なります。一方、カーネル
の機能を呼び出すシステム
コールにおいては、カーネ
ルモードに権限を切り替え
て、カーネル空間に用意さ
れた関数を実行する必要が
あります。しかし、ユーザ
プロセスからカーネル上の

任意の関数を呼び出すことができてしまうと、セ
キュリティ上の問題や、カーネルが停止する致
命的なバグを引き起こす恐れがあります。その
ため、ユーザモードからカーネルモードへの切
り替えは、CPUの機能として厳しく制限されて
おり、この切り替えを行うための特別なCPU命
令として、syscall命令が用意されています（図4）。
　syscall命令は、カーネルが事前に設定したシ
ステムコール専用の関数（システムコールハンド
ラ）を呼び出す命令で、このときに「カーネルモー
ド」と「カーネル空間」への切り替えが行われま
す。システムコールを呼び出す際はシステムコー
ルハンドラに引き渡す値として、システムコー
ルごとに割り当てられた番号を引数として指定
します。
　このシステムコール番号は不変で、Linuxカー
ネルのバージョンが上がっても、増えることは
あっても変更されることはありません。カーネ
ルバージョン3.15の現在で、317個のシステム
コールが定義されており、cloneは56番、execve
は58番として定義されています。
　一般のC言語のプログラムでは、関数syscall()

を利用すると、指定のシステムコールを直接実
行できます。リスト2は、fork()を使用する代わ
りに、直接にcloneシステムコールを呼び出すプ
ログラムの例で、実行例は次のようになります。

$./a.out
Parent, child pid = 2455
Child, my pid = 2455

カーネル

カーネルモード ユーザモード

プロセス

sysret 命令

syscall 命令

通常の関数呼び出し

 ▼図4　syscall/sysret命令による特権モードの切り替え

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

108 - Software Design

　Linuxでは、1つのプロセスは逐次的に実行され、
1つのCPUコアしか利用できません。並列処理を行
いたいときは、基本的には複数のプロセスを起動す
ることになります。ところが、異なるプロセス間で
は、メモリの内容が共有されないため、プロセス間
でデータを共有するには一時ファイルやソケット、
共有メモリなどを使う必要があります。また、プロ
セスを切り替えるとページテーブルの切り替えが発
生し、大きなオーバーヘッドが発生してしまいます。
　Linuxでは、この問題を解決するために、1つのプ
ロセスの中で複数の実行単位を持てるように機能拡
張が行われました。これを「スレッド」と呼びます（図
5）。スレッドとプロセスの違いは、メモリ空間やファ
イルハンドラといったリソースを共有するかしない
かです。あるスレッドがグローバル変数に変更を加
えると、同じプロセス内のほかのスレッドからも、
変更された値を読み取ることができます。また、オー
プン中のファイルや確保したメモリなどはプロセス
単位で管理されており、1つのスレッドが変更を加
えるとそのほかのスレッドにも影響がおよびます。
プロセスが終了すると、そこに含まれるすべてのス
レッドが終了します。
　プロセスが分かれている場合、グローバル変数は
お互いに読み書きできませんし、1つのプロセスで
ファイルを閉じても、ほかのプロセスでは開かれた
ままになります。このような点が、単純に複数プロ
セスを実行する場合と、複数スレッド（マルチスレッ
ド）を実行する場合の違いになります。
　プログラムからスレッドを扱う際は、POSIXス
レッド（pthreads）というAPIを使用します。プログ
ラムは、このAPIを通じてスレッドを生成したり、
破棄したりできます。pthreadsの内部では、Linux
のcloneシステムコールを使って新しいスレッドを
生成しています。
　cloneシステムコールを呼び出す際に、フラグに
CLONE_THREADを指定すると、プロセスの代わり
にスレッドを生成します。この場合は、新しいプロ
セスIDを割り当てるのではなく、同じプロセスID内
に異なる実行単位を作成し、新しいスレッドIDを割

り当てます。また、メモリ空間やファイルを共有す
るために、CLONE_FILESやCLONE_VMといった
フラグも指定されます。
　Linuxカーネル内部では、リソースを共有している
ことと、複数のスレッドが1つのプロセスにまとめ
て所属していること（プロセスが終了するとスレッド
がすべて終了すること）を除けば、通常のプロセスと
ほぼ同じしくみで扱われています。これによって、
Linuxの高度なプロセス管理のしくみが、ほぼそのま
まスレッドの管理にも役立てられます。マルチコア
の環境下でもCPUコアの割り当てが、複数のスレッ
ドに対してきちんと動作するようになっています。
　Linuxでスレッドを確認するには、psコマンドに

「-L」オプションを付けます（図6）。
　通常のpsコマンドの出力と異なり、同じPIDの行
が複数存在し、LWPとNLWPという列が増えてい
ることがわかります。ここから、複数のスレッドが
1つのプロセスに属することがわかります。この例
では、プロセスID「608」のプロセスに、3つのスレッ
ドがあります。NLWPはスレッド数を表しており、
LWPは、それぞれのスレッドIDを示します。
　ちなみに、「LWP」は、Light Weight Processの略
で、軽量プロセスという意味です。過去のLinuxで
はスレッドが実装されておらず、軽量プロセスとい
う別のしくみを使って擬似的にスレッドを実現して
いたことに由来します。「NLWP」はNumber of LWP
で、軽量プロセス数という意味です。このように、
列の名称は過去のままですが、現在ではそれぞれが
スレッドIDとスレッド数を示しています。

マルチスレッドとは？コラム

マルチプロセス

プロセスA

マルチスレッド

プ
ロ
グ
ラ
ム
コ
ード
A

プロセスB

プ
ロ
グ
ラ
ム
コ
ード
B

プロセスC

プ
ロ
グ
ラ
ム
コ
ード
C

プロセスD

プ
ロ
グ
ラ
ム
コ
ード
D

同時に実行 同時に実行

 ▼図5　マルチスレッドのしくみ

 ▼図6　スレッドを確認する

$ ps axuw -L
USER PID LWP %CPU NLWP %MEM VSZ RSS TTY STAT START TIME COMMAND
root 608 608 0.0 3 0.2 326468 4500 ? Ssl 21:10 0:00 /usr/sbin/ModemManager
root 608 641 0.0 3 0.2 326468 4500 ? Ssl 21:10 0:00 /usr/sbin/ModemManager
root 608 702 0.0 3 0.2 326468 4500 ? Ssl 21:10 0:00 /usr/sbin/ModemManager
（出力から抜粋）

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 2「fork」を通してカーネル内部を理解する P a r t

108 - Software Design Aug. 2014 - 109

　syscall()は、ヘルパー関数を経由せずに、直
接にシステムコールを呼び出す関数で、プロト
タイプ宣言は次のようになっています。

int syscall(int number, ...);

　1つめの引数にシステムコールの番号を指定
し、その後ろにシステムコールに対する引数を
必要な数だけ渡します。syscall命令と名前が同
じで紛らわしいですが、関数syscall()の中で、
CPUのsyscall命令を発行しています。
　リスト2の8行目の例では、1つめの引数にあ
る「SYS_clone」は、システムコールの番号を表
すマクロです。ヘッダファイルの中で、cloneシ
ステムコールに対応する「56」として定義されて
います。2つめの引数はフラグで、メモリ空間
を共有したり、スレッドを生成したりなどのオ
プションが指定できます。ここでは、子プロセ
スが終了した際に、親プロセスにSIGCHLDシ
グナルを送ることだけ指定しています。3つめ
以降の引数はスレッドを利用する際に指定する
ものですが、ここでは解説は割愛します。マル
チスレッドについては、「コラム：マルチスレッ
ドとは？」を参照してください。
　厳密には、関数syscall()自体もヘルパー関数
の一種ではありますが、syscall命令を発行する
ための必要最低限の処理に限っています。その

ため、関数syscall()を利用することで、Linux

のシステムコールをよりダイレクトに呼び出せ
ていることがわかります。

カーネル内での fork処理
　ユーザプログラムにおいて、fork()、あるい
は、syscall()を実行すると、最終的にsyscall命
令によって、カーネル内のシステムコールハン
ドラを呼び出すことがわかりました（図4）。こ
のあと、カーネル内でどのような処理が行われ
るのかを見ていきます。
　システムコールハンドラは、引数に渡された
システムコール番号を基に、実際にシステムコー
ルを処理する、カーネル内の関数を決定します。
カーネル内ではそれぞれのシステムコールに対
応する関数はsys_から始まる名前で定義されて
おり、たとえば、clone()の場合は sys_clone()、
execve()の場合はsys_execve()となります。シス
テムコール番号と関数の対応付けはテーブルと
して管理されており、今回はシステムコール番
号としてSYS_clone（56番）が指定されています
ので、sys_clone()が呼び出されます（図7）。
　sys_clone()は、自分自身のプロセス定義をま
るごとコピーし、新たなプロセスを生成します。
まず、新しいプロセスIDを割り当てて、メモリ

空間やオープン中のファイルなど
の情報をすべてコピーします。こ
のとき、新しく生成されたプロセ
スにおいて、次に実行するべきプ
ログラムコードのアドレスとして、
カーネル内のret_from_fork()とい
う特別な関数を設定します。
　新しくプロセスを作成した時点
では、CPUは、まだそのプロセス
の実行を開始しません。sys_

clone()の処理の最後で、この新し
いプロセスをプロセススケジュー
ラに登録して実行可能にします。
これで、子プロセスは親プロセス

 ▼リスト2　clone.c

 1 #include <unistd.h>
 2 #include <sys/syscall.h>
 3 #include <sys/signal.h>
 4 #include <stdio.h>
 5
 6 int main() {
 7 // equivalent to fork()
 8 int pid = syscall(SYS_clone, SIGCHLD, 0, 0, 0, 0);
 9
10 if(pid == 0) {
11 int cpid = getpid();
12 printf("Child, my pid = %d¥n", cpid);
13 } else if (pid == -1) {
14 perror("SYS_clone: ");
15 } else {
16 printf("Parent, child pid = %d¥n", pid);
17 }
18 return 0;
19 }

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

110 - Software Design

の完全な複製となり、次にCPUが割り当てられ
た際には、前述の関数ret_from_fork()から実行
が再開されます。
　sys_clone()が終了すると、カーネルモードか
らユーザモードへの切り替えが行われ、呼び出
し元のユーザプロセスに実行が戻ります。これ
を実現する専用の命令がsysret命令で、syscall

命令とちょうど反対の役割を持ちます（図4）。
ユーザプロセスでは、ヘルパー関数の続きが実
行されて、変数errnoの変更などの必要な後始
末を行い、戻り値を返して終了です。
　最後に、生成された子プロセスの側の処理を
見てみましょう。前述のとおり、子プロセスで
はカーネル内の関数ret_from_fork()から実行が
再開されます。この関数は戻り値を0にセット
して、sysret命令でカーネルモードからユーザ
モードに戻るだけの処理を行います。子プロセ
スでは、親子が別れる直前に呼び出したcloneシ
ステムコールが、プロセス側に0を返してくる
ように見えます。Part1のリスト2のところで
説明したように、子プロセスの側で関数 fork()

の戻り値が0になるのは、このためです。これ
で forkの処理は完了です。

カーネル内でのexec処理
　次に、execveシステムコールがどのように動
作しているのかを見てみま
しょう。execveに対応して、
カーネル内で実際の処理を
行う関数は、sys_execve()

として定義されています。
その中での処理を順番に説
明します。

①指定されたファイルが実
際に存在するかを確認し
ます。存在しない場合は
エラーになります。

②指定されたファイルを開

き、先頭部分をメモリにロードします。
③ファイルの先頭部分を見てファイルの種類を
調べます。Linuxで実行可能なファイル形式
には、最も一般的なELF（Executable and
Linkable Format）のほかに、レガシーなa.out
やスクリプトファイルなどがあります。「ス
クリプトファイルが実行可能形式？」と思う
かもしれませんが、shebang（シェバン）と呼
ばれる「#!」の2文字で始まるテキストファイ
ルは、実行時には、ほかのバイナリファイル
と同じく実行可能ファイルとして扱われます。

④それぞれのファイル形式に応じた、専用の読
み込みルーチンを呼び出して、残りのファイ
ルを読み込みます。スクリプトファイルの場
合は、shebangの行で指定されたプログラム
を実行します（指定のプログラムについて、再
度、①からの処理を行います）。

⑤プログラムの先頭から実行を開始します。

　sys_execve()は、メモリ上に展開したプログ
ラムを先頭から実行しなおすだけで、それ以外
の特別な処理は行いません。たとえば、execve()

を呼び出したプロセスがオープン中のファイル
ハンドラは、そのまま実行されたプログラムの
中からも使えます。リダイレクトやパイプといっ
た処理は、親プロセス側でファイルハンドラを
用意して、fork()したあとに適切につなぎ変え

プロセス

syscall(56, …)

syscall(59, …)

sys_clone()

sys_execve()

プロセス

システムコール
ハンドラ

0: read
1: write
2: open

…
…

56: clone
…

59: execve
…
…

316: renameat2

システムコールテーブル

 ▼図7　システムコールテーブル

2「fork」を通してカーネル内部を理解する P a r t

110 - Software Design Aug. 2014 - 111

てからexecve()することによって実現されてい
ます。
　先に説明したように、sys_execve()では、ス
クリプトファイルもバイナリファイルと同じよ
うに扱い、必要に応じてshebangで指定された
プログラムを実行します。そのため、exec()ファ
ミリーの関数では、スクリプトファイルについ
ても、バイナリの実行ファイルと同様に扱うこ
とができます。

物理メモリと
仮想メモリの違い

　先に説明したように、forkは、親プロセスを
コピーすることで子プロセスを生成します。し
かしながら、その直後に子プロセスがexecを実
行する場合、すぐにコピーを破棄して、別プロ
グラムのメモリ空間を展開することになります。
これでは、最初のコピーの処理が無駄になり、
効率がよくありません。そのためLinuxカーネ
ルには、「Copy on Write(CoW)」というメモリの
不必要なコピーを省略するしくみが導入されて
います。CoWを理解するために、まず、物理メ
モリと仮想メモリの違いを説明します。
　Linuxを含むモダンなOSでは、メモリを「物
理メモリ」と「仮想メモリ」の2段階に分けて管理
しています（図8）。物理メモリは、物理的にサー
バに搭載されたメモリを
そのまま表します。16GB

のメモリが搭載された
サーバでは、16GB分の
単一のメモリ空間になり
ます。ただし、これをそ
のまま複数のプロセスか
ら利用するのは、少し無
理があります。どの部分
のメモリを使用するかに
よって、プロセスからみ
たアドレスが変わってし
まったり、複数のプロセ
スでメモリを取り合った

結果、断片化されたアドレスを使用せざるを得
なくなったりします。
　このような問題を解決するために、仮想メモ
リのしくみが導入されました。仮想メモリは、
すべてのプロセスに独立したメモリ空間を割り
当てる機能で、物理メモリのサイズにかかわら
ず、32bitアーキテクチャであれば4GiB、64bit

アーキテクチャであれば16EiB（264B）のアドレ
ス空間が利用できます注1。ただし64bitの場合、
現在のところ16EiBという広大な空間は必要と
しないため、Linuxでは、効率化のために
256TiB（248B）に制限しています。
　物理メモリと仮想メモリの対応付けは「ペー
ジ」という単位で行われます。x86_64アーキテ
クチャの場合、ページのサイズは4KiBです。こ
のページを管理するのが「ページテーブル」で、
どの仮想メモリがどの物理メモリに対応してい
るのかを記録します。仮想メモリはプロセスご
とに独立していて、それぞれに専用のページテー
ブルが用意されます。これにより、それぞれの
プロセスは、ほかに影響されない独立したメモ
リ空間を利用できます。

プロセスA

仮想メモリ 仮想メモリページテーブル ページテーブル物理メモリ

プロセスB

 ▼図8　物理メモリと仮想メモリの対応

注1） KiB、GiBなどは、1KiB=1024B、1GiB=1024KiBのよう
に、2進数に基づいた正確な単位を表す記号。

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

112 - Software Design

forkに伴うメモリのコピー
　それでは、forkに伴うメモリ管理の流れを説
明していきます。forkが実行されると、始めに、
プロセスが利用しているページテーブルの内容
がコピーされます（図9）。つまり、親プロセス
と子プロセスの仮想メモリは、同一の物理メモ
リにマッピングされて、両方のプロセスが同一
のメモリ内容を共有する形になります。このタ
イミングで、共有する物理メモリのすべての領
域を書き込み禁止にセットします。また、物理
メモリの参照カウンタを増加させて、物理メモ
リを共有していることを記録しておきます。
　その後、子プロセスがexecve()を実行した場
合は、子プロセスのページテーブルはすべて破
棄して、新しいプログラムコードをメモリに読
み込んで、対応するページテーブルを作成しま
す。このとき、共有していた物理メモリの参照
カウンタを減少します。参照カウンタが1になっ
て共有がなくなった場合は、次の書き込みが発
生した際に書き込み禁止が解除されます。この
ように、CoWのしくみでは、ページテーブルを
複製することで、実際のメモリ内容をコピーせ
ずに高速にメモリを複製します。これには、物
理メモリの消費を抑え
る効果もあります。
　それでは、forkした子
プロセスがexecを実行
せずに、共有状態のメモ
リに書き込みを行った
場合はどうなるので
しょうか？　この場合、
メモリへの書き込みが
発生した瞬間に、ページ
フォルトと呼ばれる動
作がCPUによって起動
されます。これにより、
プロセスの実行が一時
的に中断され、カーネル

へ動作が切り替わります。カーネルはページフォ
ルトの発生を検知すると、メモリの状態を調べ、
CoWによって物理メモリが共有されていること
を知ります。その後、書き込み対象の物理メモ
リ（メモリページ）のコピーを作成して、ページ
テーブルを更新することで、対象となるメモリ
ページの共有状態を解除します。また、コピー
された新しいメモリ領域は書き込み可能に設定
されます。コピー元の領域の参照カウンタは減
少されます。
　これらの処理が完了すると、カーネルは一時停
止していたプロセスに処理を戻して、プロセスに
よるメモリへの書き込み動作を再開します。Copy

on Write（書き込み時複製）という名前は、実際に
書き込みが発生した場合に必要最小限のコピーを
行うという、このしくみに由来しています。
　これで、forkとexecに関わるカーネルの動作説
明は終わりです。forkとexecの2種類のシステム
コールによって、プロセスの複製と新規プログラ
ムの実行が実現されることがわかりました。

システムコールにおける
vDSOの有用性

　最後に、システムコールの呼び出しを高速化
するしくみである「vDSO」について説明してお

親プロセス
ページテーブルを丸ごと複製

仮想メモリ 仮想メモリページテーブル ページテーブル物理メモリ

子プロセス

 ▼図9　CoWによるメモリの複製

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 2「fork」を通してカーネル内部を理解する P a r t

112 - Software Design Aug. 2014 - 113

きます。
　forkやexecといった、システムの状態を変更
するシステムコールは、syscall命令で呼び出さ
れます。このしくみは、ユーザモードとカーネ
ルモード、および、メモリ空間の切り替えが発
生するために、CPUでの実行コストが高く、処
理に時間がかかります。
　一方、gettimeofdayという、日付と時刻を読
み取るシステムコールがありますが、これはシ
ステムの状態をまったく変更せず、状態を読み
取るだけの処理になります。このようなシステ
ムコールを高速化するために、Linuxカーネル
には、vDSO（Virtual Dynamic Shared Object）
というしくみが導入されています。
　vDSOは、ユーザプロセスのメモリ空間の一
部に、カーネルのメモリを読み取り専用でマッ
プし、カーネルモードに切り替えることなくア
クセスできるようにするしくみです（図10）。
vDSOの領域は、Linuxカーネルがexecve()で新
たなプログラムの実行を開始する際に、自動的
にマップされるもので、仮想メモリ上のランダ
ムなアドレスに配置されます。この部分に、
gettimeofdayを実現するのに必要なコードと
データが読み込み専用でマップされており、こ
れを利用することで、システムコールの処理が
ユーザモードだけで
完結して、実行速度
が 向 上 し ま す。
vDSOの領域は、通
常の共有ライブラリ
と同じELF形式に
なっているので、
ユーザライブラリ
は、該当のシステム
コール名からアドレ
スを検索して、通常
の関数と同じ方法で
呼び出すことができ
ます。
　gettimeofdayを例

にとって、具体的に説明します。まず、プログ
ラムを起動した際に、プログラムにリンクされ
ている libcの初期化ルーチンが実行され、その
中でvDSOがマップされているアドレスを取得
します。さらに、vDSOで提供されるシステム
コールの名前から、それぞれのルーチンの存在
するアドレスを検索します。gettimeofdayの場
合は__vdso_gettimeofday()という関数がvDSO

領域内に存在するので、この関数へのポインタ
を libc内の変数に保存します。その後、
gettimeofdayシステムコールがユーザプログラ
ムから呼ばれると、libcは、本物のシステムコー
ルを実行する代わりにこの関数を呼び出します。
　vDSOを利用するシステムコールは、アーキ
テクチャによって異なります。現在のところ、
x86_64アーキテクチャにおいて、vDSO経由で
呼び出されるシステムコールは、clock_gettime、
getcpu、gettimeofday、timeの4つです。

まとめ

　Part2では、forkとexecを実現するシステム
コールについて徹底解説を行いました。システ
ムコールは、ユーザプログラムからカーネル内
部の関数を呼び出すという、おもしろい機能を

カーネルモード
／カーネル空間

syscall:
fork(), gettimeofday()

fork() の場合は
syscall 命令を発行

fork()、もしくは、
gettimeofday()を実行

gettimeofday() の場合は
vDSO の関数を実行

マップ

vDSO:
gettimeofday()

ユーザモード
／ユーザ空間

プログラム :
main()

libc:
fork(), gettimeofday()

vDSO:
gettimeofday()

 ▼図10　通常のシステムコールとvDSOによるシステムコール

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

114 - Software Design

実現するしくみです。Linuxカーネルとユーザ
プロセスが連携する様子が垣間見えたのではな
いでしょうか。CPUのアーキテクチャによって
システムコールの実現方法が異なるなど、ハー
ドウェアレベルのしくみにも興味がわくところ

です。
　最後のPart3では、プロセス管理を含めた、
Linuxカーネル全体の役割、そして、Gitを利用
したソースコードの読み方を紹介します。｢

　本文のシステムコールの解説では、64bitアーキテ
クチャのx86_64をベースにしました。それ以前の
32bitアーキテクチャである「i386」では、システム
コールの呼び出し方が少し異なります。
　i386では、システムコールの呼び出しは、ソフト
ウェア割り込みの機能を使って行われます。i386の
CPUには、ソフトウェアから呼び出せる割り込みが
256個用意されており、Linuxでは、0x80番をシス
テムコールに利用することになっています。libcの
ヘルパー関数は、syscall命令の代わりに、ソフト
ウェア割り込みを発生させるint命令を利用します。

int命令による呼び出し
　具体的には、0x80番目の割り込みを発生させる

「int 80h」命令を実行します。すると、0x80番目の
割り込みハンドラとして登録されている、カーネル
のシステムコール実行関数が動き出します。その後
のカーネル内の処理はsyscall命令で呼び出された場
合と同じですが、システムコールの関数からユーザ
モードに戻るときが異なります。syscall命令で呼び
出された場合は、対応するsysret命令でユーザモー
ドに戻りますが、int命令で呼び出された場合は、割
り込みから復帰するiret命令を使って戻ります。
　しかしながら、このint命令には欠点がありまし
た。もともとは、文字どおり「いつ発生するかわから
ない」割り込み処理を行うための命令だったため、シ
ステムコールの実行に使うにはオーバーヘッドが大
きく、CPU内部での無駄な処理が含まれていたので
す。そこで、システムコールを呼び出すための専用
の 命 令 と し て、Intel 社 は sysenter/sysexit 命 令、
AMD社はsyscall/sysret命令を追加しました。この
2種類の命令セットは、システムコールを呼び出す
という目的に最適化されており、int命令よりも高速
に実行できます。

CPUごとに自動的に最適化されるvDSO
経由のシステムコール

　ただし、これらの命令はIntel Pentium II、および、
AMD K6以降のCPUで実装されたため、古いCPU
では使用できません。また、IntelのCPUとAMDの
CPUで命令が異なるので、CPUの種類を判別して、
実行する命令を変更する必要があります。そこで、
i386版のLinuxカーネルでは、カーネル起動時に
CPUの種類を判別して、vDSO内にCPUに適したシ
ステムコールの呼び出し関数を用意することにしま
した。つまり、i386のlibcは、すべてのシステムコー
ルについて、vDSOを利用して呼び出します。libcが
vDSO内の関数を呼び出すと、そこに保存されてい
る関数がCPUごとに最適な命令を利用してシステム
コールを呼び出してくれます。カーネル起動時に関
数が用意されるため、オーバーヘッドも最小限に抑
えられています。
　x86_64のvDSOは、ユーザモードで処理が完結
するシステムコールだけを提供しますが、i386では、
すべてのシステムコールに対するヘルパーとして、
vDSOが利用されていることになります。また、互
換性のために、vDSOを使わずに、int 80h命令を利
用してシステムコールを呼び出すこともできます。
　本文で解説したx86_64の場合は、x86_64に対応
する、すべてのCPUでsyscall命令が用意されてい
るので、通常のシステムコールの呼び出しにはvDSO
は使用せず、syscall命令を直接に実行します。Intel
社製のCPUでもsyscall命令が利用可能になってい
るため、CPUごとに命令を切り替える必要はありま
せん。そのためi386に比べると、シンプルで統一さ
れたコードになっています。

32bitアーキテクチャでのシステムコールコラム

Aug. 2014 - 115

Linuxカーネルの
役割とは？

　Part1～Part2では、Linuxにおけるプロセス
管理、とくに forkと execのしくみを通して、
Linuxカーネルの動作を学びました。カーネル
がどのようなしくみでプロセスの動作を支えて
いるのか、その舞台裏を実感できたと思います。
ただし、Linuxカーネルの役割は、プロセス管
理だけではありません。プロセス管理を含め、
主要なカーネルの機能には、次のようのものが
あります。

・プロセス管理
・メモリ管理
・ファイルシステム管理
・物理ディスク管理
・ネットワーク管理

　「プロセス管理」は、これまでに説明したプロ
セススケジューリングや fork/execなど、プロ
セスを生成／実行する機能です。「メモリ管理」
は、プロセスに対する物理メモリの割り当てに
加えて、ディスクキャッシュに使用するメモリ
の管理などが含まれます。「ファイルシステム管
理」は、ext4などのファイルシステムの機能を
提供して、「物理ディスク管理」は、デバイスド
ライバを介して物理ディスクにアクセスする機
能を提供します。最後の「ネットワーク管理」は、

その名のとおり、ネットワーク経由でプロセス
同士が通信するための機能です。
　これらの機能はすべて、物理ハードウェアを
「抽象化」するものと考えることができます。わ
かりやすい例で言うと、サーバに搭載するハー
ドディスクには、さまざまな規格や種類があり、
ハードディスク自体が受け付ける命令はそれぞ
れに異なります。しかしながら、Part1の図2で
見たように、ハードディスクそのものへの命令
は、ハードディスクに合わせたデバイスドライ
バが発行します。そのため、Linuxを利用する
ユーザは、ハードディスクの種類を気にするこ
となく、「ls」「cat」などのコマンドでハードディ
スク上のファイルにアクセスが可能です。
　物理メモリの割り当ても同様で、サーバ上の
物理メモリをプロセスに配分する処理は、Linux

カーネルが行ってくれるため、それぞれのプロ
セスは、物理的にどの部分のメモリを使用して
いるかなど気にする必要はありません。アプリ
ケーションプログラムを書くプログラマは、
malloc()などの標準的なシステムコールで、メ
モリ領域を取得することが可能です。ほかのプ
ロセスが使用しているメモリ領域を誤って使用
することもありません。
　つまり、Linuxカーネルの働きによって、
Linuxを使用するユーザやアプリケーションプ
ログラムは、単純化された「架空のコンピュー
タ」を与えられるのです（図1）。Linuxが稼働す

ソースコードで見る
カーネルの全体像

レッドハット株式会社　中井 悦司（なかい えつじ）
 Twitter @enakai00

3
Part1とPart2で紹介したプロセス管理は、カーネルの役割の一部です。本パートでは、
カーネルのソースツリーを見ながら、ほかにどんな役割を担っているのかを見てみます。ま
た、カーネルのソースコードを読むときの手順や手がかりも示します。

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

P a r t

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

116 - Software Design

るハードウェアには、サーバ、PC、スマート
フォン、ゲーム機器などさまざまな種類があり
ますが、すべて、同じ「架空のコンピュータ」と
して、共通のコマンドやシステムコールで操作
することができるというわけです。

カーネルソースの入手方法
　Linuxカーネルは、これらさまざまな機能を
1つのバイナリコード（カーネルコード）で実現
しています。/bootディレクトリ以下にある
「vmlinuz」で始まるファイルがカーネル本体のバ
イナリコードです注1。ただし、このバイナリコー
ドの大元となるソースコードは、「サブシステ
ム」と呼ばれる機能単位に大きく分けられてお
り、Linuxカーネルの開発コミュニティには、そ
れぞれのサブシステムに対する責任者（メンテ
ナ）が存在します。各サブシステムのメンテナ
は、世界中の開発者から送られてくるパッチ（修
正コード）のレビューを行い、必要と判断したも
のについて、担当するサブシス
テムへの適用を行っていきます。
　それでは、実際にLinuxカー
ネルのソースコード（カーネル
ソース）を入手して、その中身を
覗いてみることにしましょう。
ただし、カーネルソースにはい
くつかの種類があります。まず、
開発コミュニティで日々開発が
続けられる「アップストリーム」
と呼ばれるソースコードがすべ
ての大元になります。アップス
トリームのカーネルは、2～3ヵ
月ごとにバージョンアップを続
けています。
　一方、Red Hat Enterprise Linux

（RHEL）などのLinuxディストリビューションで
は、アップストリームの特定バージョンのソー
スコードをベースに、独自の修正を施したもの
を使用しています。RHELの場合は、RHELの
メジャーバージョンごとにカーネルのバージョ
ンを固定することが目的です。「独自の修正」と
言っても、RHELだけに固有の機能を追加する
というわけではなく、アップストリームの新バー
ジョンで追加されたバグ修正や機能拡張のパッ
チの中から、必要なものを選択的に適用してい
ます。
　RHELのカーネルソースは、SRPMという
ソースコード用のパッケージ形式で配布されて
おり、これを元にして、自分でカーネルのRPM

パッケージを作成することができます。『プロの
ためのLinuxシステム・10年効く技術』［1］では、
RHELのカーネルソースを修正して、独自の
カーネルを作成する方法が紹介されています。
　一方、アップストリームのカーネルソースは、
分散バージョン管理システムのGitで管理され

物理ハードウェア

ユーザアプリケーションプログラム
#include <stdio.h>
int main(void) {
 printf("Hello, World!¥n");
}

Linuxカーネル

抽象化（単純化）された架空のコンピュータ

 ▼図1　Linuxカーネルによるハードウェアの抽象化

注1） 正確にはカーネル本体の起動後に、
追加でメモリに読み込む「カーネルモ
ジュール」もありますが、これも内部
的にはカーネルの一部として動作し
ます。

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 3ソースコードで見るカーネルの全体像 P a r t

 ▼図2　gitコマンドでカーネルソースをダウンロード

yum -y install git
git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
cd linux

ディレクトリ 説明
Documentation カーネルソースのドキュメント類
arch アーキテクチャに固有のソースコード
block ブロック I/Oレイヤー
configs カーネル・コンフィギュレーションの

サンプル
crypto 暗号化API
drivers デバイス・ドライバ
firmware ドライバのコンパイルに必要なファー

ムウェア
fs VFSレイヤー、およびファイルシステ

ム
include カーネル・ヘッダファイル
init カーネルの起動と初期化処理
ipc IPC（Interprocess Communication

Code：プロセス間通信）
kernel カーネルの基本機能（プロセス管理、

時間管理など）
lib ライブラリ・モジュール
mm メモリ管理サブシステム
net ネットワーク・サブシステム
samples サンプル・コード
scripts カーネル・ビルドに使用するスクリプ

ト
security Linuxセキュリティ・モジュール
sound サウンド・サブシステム
tools 開発用のツール類
usr 初期RAMディスク関連
virt 仮想化関連（Linux KVMなど）

 ▼表1　カーネルのソースツリーに含まれるディレクトリ

116 - Software Design Aug. 2014 - 117

ており、gitコマンドを使用すると、インター
ネット上のリポジトリから、手元のLinuxマシ
ンにダウンロードすることができます。
RHEL6.5の環境であれば、図2の手順になりま
す。
　図2では、gitコマンドのパッケージを導入し
た後、Linusが管理する最新のカーネルソース
をインターネットからダウンロードしています。
ダウンロード時に作成されたディレクトリ
「linux」の下は、表1のように、機能／役割ごと
にディレクトリが分けられています。この表に
よると、プロセス管理に関わるソースコードは、
カーネルの基本機能として「kernel」ディレクト
リに含まれています。本特集のメインテーマで
ある forkについては、ずばり、「kernel/fork.c」
というファイルがあります。
　「kernel/fork.c」を開いてみると、冒頭にリス
ト1のようなコメントがあり、1991年にLinus

自らがこのソースコードを作成したことがわか
ります。1991年といえば、まさにLinusがLinux

の開発をスタートした年であり、forkがLinux

の根幹となる機能であることがよくわかります。
ちなみに、その後ろのコメントを翻訳すると次
のようになります。

 ▼リスト1　fork.cの冒頭部分

/*
 * linux/kernel/fork.c
 *
 * Copyright (C) 1991, 1992 Linus Torvalds
 */

/*
 * 'fork.c' contains the help-routines for the 'fork' system call
 * (see also entry.S and others).
 * Fork is rather simple, once you get the hang of it, but the memory
 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
 */

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る
第2特集

118 - Software Design

「‘fork.c’はforkシステムコールのヘルパー関数
を含んでいる（entry.Sなども参照）。forkは、コ
ツさえつかめば簡単だが、メモリ管理について
は難解かもしれない。‘mm/memory.c’のcopy_
page_range()を参照するように」

　forkを開発中のLinusの気持ちがそのまま記
載されており、歴史の1ページに触れたような
気分になります。

Gitを駆使して
ソースコードを探索

　先ほど、Gitのことを「分散バージョン管理シ
ステム」と紹介しました。実は、先ほどダウン
ロードしたディレクトリには、過去のソースコー
ドの変更履歴が含まれており、gitコマンドを駆
使すると、ソースコードの各行について、いつ、
誰が、何のために、そのコードを書いたのかを
調べることが可能です。
　たとえば、先ほどの「kernel/fork.c」について、
次のコマンドを実行すると、図3のような表示
がなされます。

git blame kernel/fork.c

　これは、このソースコードの各行について、
その行を書いた「コミッタ」の名前と、ソースコー
ドに正式に取り込まれた「コミット日時」を表示
しています。ここでは、例として、「がちゃぴん
先生」として有名な、「KOSAKI Motohiro」氏が
コミットした行を記載しています。
　さらに、行頭の「コミットID」は、この行を追
加したパッチを特定するための ID番号です。次
のコマンドで、コミットIDに対応するパッチの
内容が確認できます。

git show c6a7f572

　図4は上記コマンド出力の冒頭部分です。パッ
チの説明文に続いて、パッチの承認記録が記載
されています。「Reviewed-by」は、このパッチ
をレビューして問題ないと確認した人物による
署名で、「Signed-off-by」は、パッチの作成者、
および、メンテナがこのパッチを正式採用する
ことに同意したことを示す署名です。「Linusの
右腕」と呼ばれるAndrew Mortonの後に、Linus

 ▼図3　「git blame kernel/fork.c」の出力（抜粋）

c6a7f572 (KOSAKI Motohiro 2009-09-21 17:01:32 -0700 204) static void account_kernel_stack(struct thread_info ｭ
*ti, int account)
c6a7f572 (KOSAKI Motohiro 2009-09-21 17:01:32 -0700 205) {
c6a7f572 (KOSAKI Motohiro 2009-09-21 17:01:32 -0700 206) struct zone *zone = page_zone(virt_to_page(ti));
c6a7f572 (KOSAKI Motohiro 2009-09-21 17:01:32 -0700 207)
c6a7f572 (KOSAKI Motohiro 2009-09-21 17:01:32 -0700 208) mod_zone_page_state(zone, NR_KERNEL_STACK, account);
c6a7f572 (KOSAKI Motohiro 2009-09-21 17:01:32 -0700 209) }
c6a7f572 (KOSAKI Motohiro 2009-09-21 17:01:32 -0700 210)
^1da177e (Linus Torvalds 2005-04-16 15:20:36 -0700 211) void free_task(struct task_struct *tsk)
^1da177e (Linus Torvalds 2005-04-16 15:20:36 -0700 212) {
c6a7f572 (KOSAKI Motohiro 2009-09-21 17:01:32 -0700 213) account_kernel_stack(tsk->stack, -1);
f19b9f74 (Akinobu Mita 2012-07-30 14:42:33 -0700 214) arch_release_thread_info(tsk->stack);
f7e4217b (Roman Zippel 2007-05-09 02:35:17 -0700 215) free_thread_info(tsk->stack);
23f78d4a (Ingo Molnar 2006-06-27 02:54:53 -0700 216) rt_mutex_debug_task_free(tsk);
fb52607a (Frederic Weisbecker 2008-11-25 21:07:04 +0100 217) ftrace_graph_exit_task(tsk);
e2cfabdf (Will Drewry 2012-04-12 16:47:57 -0500 218) put_seccomp_filter(tsk);
f19b9f74 (Akinobu Mita 2012-07-30 14:42:33 -0700 219) arch_release_task_struct(tsk);
^1da177e (Linus Torvalds 2005-04-16 15:20:36 -0700 220) free_task_struct(tsk);
^1da177e (Linus Torvalds 2005-04-16 15:20:36 -0700 221) }
^1da177e (Linus Torvalds 2005-04-16 15:20:36 -0700 222) EXPORT_SYMBOL(free_task);

コミットID
コミッタ

コミット日時

forkを通して考える・試す・コードを読む

Linuxカーネルのしくみを探る 3ソースコードで見るカーネルの全体像 P a r t

 ▼図4　「git show c6a7f572」の出力（冒頭部分）

commit c6a7f5728a1db45d30df55a01adc130b4ab0327c
Author: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Date: Mon Sep 21 17:01:32 2009 -0700

 mm: oom analysis: Show kernel stack usage in /proc/meminfo and OOM log output

 The amount of memory allocated to kernel stacks can become significant and
 cause OOM conditions. However, we do not display the amount of memory
 consumed by stacks.

 Add code to display the amount of memory used for stacks in /proc/meminfo.

 Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
 Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
 Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
 Reviewed-by: Rik van Riel <riel@redhat.com>
 Cc: David Rientjes <rientjes@google.com>
 Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

diff --git a/drivers/base/node.c b/drivers/base/node.c
index 91d4087..b560c17 100644
--- a/drivers/base/node.c
+++ b/drivers/base/node.c
（以下、パッチの内容が続く）

パッチの承認記録

118 - Software Design Aug. 2014 - 119

本人が同意して、このパッチが正式採用された
という流れになっています。
　ソースコードだけを見ていても、それが何を
するためのコードかはなかなかわかりませんが、
gitコマンドでパッチの説明を読むことで理解が
進みます。Gitには、このほかにもカーネルソー
スを読むうえで便利な機能があります。Gitの
参考書［2］［3］にも、目を通しておくと良いでしょ
う。

まとめ

　Part3では、Linuxカーネルの全体的な役割を
説明したうえで、それぞれの機能／役割に対応
するソースコードの「ありか」を紹介しました。
紙幅の都合もあり、ソースコードの内容を読み
解く部分までは踏み込みませんでしたが、まず
は、本文で紹介したgitコマンドを使って、さま
ざまなパッチの内容を眺めていくと良いでしょ
う。
　ちなみに、図3の「git blame」コマンドの出力
全体を眺めると、「がちゃぴん先生」以外にも多

数の日本人の名前が発見できます。日本人を含
めて、世界中の開発者がLinuxカーネルの開発
に貢献していることが実感できます。本特集を
機会に、ぜひ、Linuxカーネルの世界へもう一
歩、足を踏み出してください。ソースコードを
具体的に読み解く方法については、先ほどの書
籍［1］が参考になるでしょう。

◆　◆　◆
　ちなみに、先月、筆者の新著『オープンソー
ス・クラウド基盤 OpenStack入門』［4］が発売さ
れました。Linuxカーネルにも増して急速に進
化を続けるOpenStackですが、特定のバージョ
ンに依存しない、OpenStackを支える技術の「本
質」を伝えることを目指した内容となっていま
す。何事も基礎を固めることが大切です。｢

●参考文献
［1］ 中井悦司 著 『プロのためのLinuxシステム・10年効く技術』

技術評論社、2012年
［2］ Travis Swicegood 著、でびあんぐる 監訳 『入門git』 オーム

社、2009年
［3］ 岡本隆史、武田健太郎、相良幸範 著 『Gitポケットリファレ

ンス』 技術評論社、2012年
［4］ 中井悦司、中島倫明 著 『オープンソース・クラウド基盤

OpenStack入門』 KADOKAWA、2014年

120 - Software Design

セキュリティ実践の基本定石【特別編】

理解のための準備

　OpenSSLの問題を理解するために、まずは、2つ
のことを確認したいと思います。具体的には、C言
語の特性と、動的にメモリを確保するmalloc()関数
の2つです。

C言語

　まずはC言語の生い立ち注1を眺めてみましょう。
C言語はUNIXをアセンブラから高級言語に書き換
えるためにベル研のDennis Ritchie氏らによって設
計され、実装された言語です。
　それ以前のBCPLやBといった言語に影響を受
けていますが、注目すべきは、C言語は研究のため
ではなく、具体的にUNIXというOSを書き直すた
めに作られたということです。もともとは非常に柔
軟で多様な表現ができ、コンパクトな言語仕様で、
そのためコンパイラも（オプティマイズを考えなけ
れば）シンプルで作りやすい利点があります。
　「多様な表現」という言葉を使いましたが、いろい
ろな書き方を許している言語です。リスト1を見て

注1）	The Development of the C Language　Dennis M.
Ritchie　http://cm.bell-labs.com/who/dmr/chist.html

みましょう。char型の配列とchar型へのポインタを
使っています。bufferで8バイトの領域を確保し、
bufferを配列として表現するだけではなく、ポイン
タにbufferの場所を代入し、その内容にアクセスす
るというプログラムです。このプログラムが最後の
行に達したとき、bufferの中は図1のような並びに
なっています。「不定」とはコンパイラやOSの実装
により、予期しない値が入っていることを意味しま
す。同じ領域を配列とポインタを使って指し示せる
という極めてシンプルでプリミティブな言語です。
　C言語を例えるなら職人が使う切れ味の良い専用

前編では 「Heartbleed」として知られることとなったOpenSSLの
Heartbeat Buffer Overreadの脆弱性の経緯や、それをとりまく状況
を説明しました。後編ではOpenSSLのソースコードの中に踏み込んで問
題点の理解を試みます。

すずきひろのぶ
suzuki.hironobu@gmail.com

セキュリティ実践の
基本定石
【特別編】

main() {
 char buffer[8];
 char *a, *b;
 buffer[0]=0x41;
 buffer[7]=0x5A;
 a=buffer;
 b=buffer+4;
 *(a+2) = 'X';
 *(b+2) = 'Y';
}

 ▼リスト1　配列とポインタ

ITビジネスの足下を揺るがす大きなバグ

OpenSSLの脆弱性
“Heartbleed”の教訓 後編

 ▼図1　リスト1のbufferの中身

A 不定 X 不定 不定 不定 Y Z

http://cm.bell-labs.com/who/dmr/chist.html

Aug. 2014 - 121

後編

ITビジネスの足下を揺るがす大きなバグ

OpenSSLの脆弱性
“Heartbleed”の教訓

切削工具、あるいは料理人が使う恐ろしく切れ味の
良い包丁と言えます。その代わり使い方を間違える
と大怪我をします。
　今でこそISO/IEC 9899:2011として、がっちり
した規格になっていますが、1989年に最初のANSI

規格が出るまでは、1978年発行のDennis Ritchie氏
とBrian Kernighan氏の共著『プログラミング言語
C』が事実上の言語規格で、仕様としてあいまいな
部分もありました。またC言語はUNIXのために作
られているので、当然ながら標準ライブラリは
UNIXの機能を前提としています。

malloc(3)

　UNIXにはC言語から関数の形で呼び出せるライ
ブラリインターフェースとして、システムコールと
ユーザライブラリの2つがあります。前者はOSの
機能を呼び出すものであり、後者はユーザ権限とし
てプログラム内で実行されるライブラリ関数です。
UNIXでは、システムコールとユーザライブラリで
はマニュアルのセクションが違い、システムコール
（2）、ユーザライブラリ（3）という表現をして区別
します。関数malloc()は、ユーザ権限で動作するラ
イブラリですのでmalloc(3)と表現します。
　malloc(3)は動的にメモリ空間を確保する関数で
す。リスト2では128バイトの領域を確保し、ポイ
ンタpに引き渡しています。
　malloc(3)はGNU/Linux標準ではglibcのmalloc

実装が使われます。こちらはデフォルトでは内部で
mmap(2)を使ってメモリ空間を確保しています注2。
　malloc(3)はglibcのmallocの実装だけではなく、
これと互換性のあるGoogle提供の tcmallocや、
FreeBSDで採用している jemallocなど複数の実装
があります。
　malloc(3)は内部でシステムコールを呼び出し、
ページサイズ（通常4KB）のバウンダリで、ある程
度大きなサイズのメモリ空間をあらかじめ確保し、

注2）	メモリ空間は、古典的なUNIXではbrk(2)/sbrk(2)を使いま
したが、POSIX.1-2001でbrk(2)/sbrk(2)はシステムコール
から外されています。互換性を残すためLinuxカーネルでも
brk(2)/sbrk(2)のシステムコールを残していますが、その内
部動作は古典的UNIXでのbrk(2)/sbrk(2)とは違います。

それを要求されたサイズのメモリ空間に分割して引
き渡します（これを「アロケーション」と呼びます）。
切り出すときは、malloc(3)の引数で指定したサイズ
に対応するエリアのほかに、頭の部分にメタデータ
（制御情報）を入れます（図2）。
　メタデータとはアロケーションしたメモリ領域の
情報を保持する部分で、たとえばglibcのmallocの
場合、リスト3のような構造体になっています注3。

注3）	mallocでアロケーションしたメモリ領域が不必要になったと
き、free(3)を行うと、その領域は再利用するためのリストに
保持されます。次に、mallocが呼ばれたときに、再利用が必
要ならば、そのリストからアロケーションされます。このリス
トへの出入りをメタデータの情報を使って管理しています。

#include <stdlib.h>
main(){
 char *p;
 p = malloc(128);
}

 ▼リスト2　malloc(3)

 ▼図2　malloc(3)内部での配置のモデル

メタデータ 確保したエリア

大きなエリアから
小さな領域を
切り出して与える

struct mallinfo
{
 int arena; /* non-mmapped space allocated ｭ
from system */
 int ordblks; /* number of free chunks */
 int smblks; /* number of fastbin blocks */
 int hblks; /* number of mmapped regions */
 int hblkhd; /* space in mmapped regions */
 int usmblks; /* maximum total allocated ｭ
space */
 int fsmblks; /* space available in freed ｭ
fastbin blocks */
 int uordblks; /* total allocated space */
 int fordblks; /* total free space */
 int keepcost; /* top-most, releasable (via ｭ
malloc_trim) space */
};

 ▼リスト3　glibcのmallocが使うメタデータ（/usr/include/malloc.h）

122 - Software Design

セキュリティ実践の基本定石【特別編】

　さて、リスト4はmallocを呼び出
し、データを書き込んだ状態でポ
インタの参照を先に進める（buffer

overreadと呼ばれます）とどうなる
かを実験するプログラムです。
使っているmalloc(3)はUbuntu

12.04.4 LTSの標準で使われている
glibcのものです。
　allocdata()の中で、mallocしたエ
リアの先頭にA、B、Cと文字を書き
込んでいます。このA、B、Cは秘密
情報だとしましょう。ポインタは、
ある領域を指しているだけですの
で、参照先を進めていくと、書い
てある秘密の内容が読めてしまい
ます（図3）。
　図3でダンプしている内容はglibc

のmallocを使った場合の例で、すべての実装で同
じというわけではありません。tcmallocや jemalloc

では、内部のデータ構造が当然違ってきます。

バグとmalloc()

　malloc()で得たバッファ領域にオーバーライトす
ると、並びの次にある領域のメタデータを破壊し、
次のデータ領域まで破壊します。そしてその先の
データも、さらにその先も……となります。
　その場合、デバッキングがたいへんです。ある特

定のモジュールでデータを破壊しているとすると、
その副作用が現れるのは、破壊されたデータ領域を
使っている全然別のモジュールであったりします。
破壊しているモジュールを見つけるのは簡単ではあ
りません。Purify注4のようなメモリのデバッキング
ツールが出てくるまでは、ずっとたいへんな状況で
した。

注4）	現在は、Rational Purifyという名称になってIBMが販売して
います。　http://www-03.ibm.com/software/products/
en/rational-purify-family

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define LISTNUM 21
void allocdata (void)
{
 int i;
 char *d[LISTNUM];
 for(i = 0 ; i < LISTNUM ; i++) {
 d[i] = (char *) malloc (16);
 d[i][0]='A'+i;
 }
}
void main (void)
{
 int i;
 char *p;
 p = (char *)malloc(1); /* 読み出すための場所を取る */
 allocdata (); /* テストデータ生成中 */
 for (i = 0; i < 1024; i++,p++){ /* 1024バイト分進める */
 putchar (*p);
 }
}

 ▼リスト4　buffer overreadの実験プログラム

% ./a.out ¦ od -c
0000000 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000020 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ! ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000040 A ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000060 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ! ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000100 B ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000120 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ! ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000140 C ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000160 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ! ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000200 D ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000220 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ! ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000240 E ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000260 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ! ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000300 F ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000320 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ! ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000340 G ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
 （..以下略 ..）

 ▼図3　リスト4の実行結果（glibcのmallocの場合）

http://www-03.ibm.com/software/products/en/rational-purify-family

Aug. 2014 - 123

後編

ITビジネスの足下を揺るがす大きなバグ

OpenSSLの脆弱性
“Heartbleed”の教訓

▪Step 1：	 クライアントからサーバにHeartbeat
		 Messageを送る

Step 1-1：	payload_lengthを決める

Step 1-2：	payload_lengthのサイズ分のpayload

	 のエリアを確保する

Step 1-3：	paddingを確保する

Step 1-4：	サーバにHeartbeatMessageを送る

▪Step 2：	 サーバがHeartbeatMessageを受
		 け取る

Step 2-1：	先頭1バイトをHeartbeatMessageType

	 とする

St2p 2-2：	続く2バイトをpayload_lengthにする

Step 2-3：	続くpayload_length分の長さをpayload

	 としてバッファに保持する

▪Step 3：	 サー バ からクライアントにHeart
		 beatMessageを戻す

Step 3-1：	戻すためのHeartbeatMessageにHeart

	 beatMessageTypeの値をセットする

Step 3-2：	同じようにpayload_lengthの値をセッ

	 トする

Step 3-3：	payloadを保持しているバッファから

	 payload_length分をHeartbeatMessage

	 にあるpayloadバッファにコピーする

Step 3-4：	HeartbeatMessageのpaddingをセッ

	 トする

Step 3-5：	クライアントにHeartbeatMessageを

	 送る

　ここでクライアントからサーバに届いた
HeartbeatMessageのpayloadの実際のバッファのサ
イズよりも、payload_lengthの値を大きくすること
で、本来のpayloadのためのバッファの領域をこえ
て、メモリ領域をコピーしてしまいます。
　もちろん、payload_lengthの長さのチェックを行

い、不整合が発生しないかどうかを判断す
るコードを入れるべきなのですが、その
チェックが入っていませんでした。そのた
めにプログラム中で、使っているほかのメ
モリ内容までコピーして、外部に（クライ
アントに）送ってしまうことになりました。

OpenSSLの脆弱性

　いよいよ本題です。OpenSSLのバージョン1.0.1

から1.0.1fまでは、Heartbeat Buffer Overreadのバ
グが入っていました。このバグは、相手から送られ
るHeartbeatのバッファの実際の大きさと、それを
示すバッファ長の値が異なることで発生します。意
図的にバッファ長の値を、実際のバッファサイズよ
りも大きくすることで、メモリアロケーションで
使っていた領域をオーバーリードさせられます。
　リスト5はRFC6520で定義されているHeart

beatの通信のメッセージのデータ構造です。
　ペイロードの長さを表すpayload_lengthは2バイ
トの正の整数で表現されており、0～65,535までの
値を入れられます。実際のペイロードである
payloadのサイズは、本来ならpayload_lengthに
入っている値と同じサイズです。つまり、最大で
65,535バイトのサイズにできます。次のpaddingの
サイズは任意のサイズです。
　規格上ではHeartbeatMessage全体のサイズは、
16,384（214）バイト、もしくはRFC6066で定義して
いるmax_fragment_length（最大の値は212＝4,096

となる）ということになっています。よってペイ
ロードのサイズは、RFC6520では214＝16,384＝
16KBです。
　ちなみに、padding_lengthは最低でも16バイト以
上のランダムなサイズです。たぶんこのpaddingの
エリアは暗号通信時に盗聴側のトラフィック・アナ
リシスを回避するために付けているのでしょう。

どうして問題が発生するのか

　クライアントからサーバにHeartbeatMessageの
メッセージを送ったときの動作を説明します。

struct {
 HeartbeatMessageType type;
 uint16 payload_length;
 opaque payload[HeartbeatMessage.payload_length];
 opaque padding[padding_length];
} HeartbeatMessage;

 ▼リスト5　Heartbeatメッセージの構造体

124 - Software Design

セキュリティ実践の基本定石【特別編】

バグの原因となったソースコード

　では、具体的にOpenSSLのソースコードの該
当個所を見てみましょう。ここではopenssl-1.0.1f

を対象に説明します。OpenSSLの中の問題のコー
ドは、ssl/d1_both.cとssl/t1_lib.cに存在していま
す。基本的にロジックは同じですので、ここでは
t1_lib.cの該当部分2552～2598行目に解説を加え
たいと思います。リスト6がその問題の部分とな
ります。ここではクライアントからサーバに
Heartbeat Requestが送られた、という前提で説
明しています。

OpenSSLの修正内容

　では、リスト6のコードがどう修正されたかも見
てみましょう。基本的には、先ほどのコードの次の
2行の前後にペイロードのバッファ長が正しいかど
うかのチェックを入れています。

2562 hbtype = *p++;
2563 n2s(p, payload);

　リスト7が修正後のコードです。これでオーバー
ランはしなくなります。
　最初のパッチが入っているopenssl-1.0.1gのコー
ドはクイックハックだからなのかもしれませんが、

2552 #ifndef OPENSSL_NO_HEARTBEATS
2553 int
2554 tls1_process_heartbeat(SSL *s)
2555 {
2556 unsigned char *p = &s->s3->rrec.data[0], *pl;
2557 unsigned short hbtype;
2558 unsigned int payload;
2559 unsigned int padding = 16; /* Use minimum padding */
2560
2561 /* Read type and payload length first */
2562 hbtype = *p++;
2563 n2s(p, payload);
2564 pl = p;
（..略 ..）
2571 if (hbtype == TLS1_HB_REQUEST)
2572 {
2573 unsigned char *buffer, *bp;
2574 int r;
2575
2576 /* Allocate memory for the response, size is 1 bytes
2577 * message type, plus 2 bytes payload length, plus
2578 * payload, plus padding
2579 */
2580 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
2581 bp = buffer;
2582
2583 /* Enter response type, length and copy payload */
2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);
2587 bp += payload;
2588 /* Random padding */
2589 RAND_pseudo_bytes(bp, padding);
2590
2591 r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding);
2592
（..略 ..）
2597
2598 OPENSSL_free(buffer);

 ▼リスト6　openssl-1.0.1gのssl/t1_lib.c（Heartbeat Buffer Overreadの該当個所）

p の値はクライアントから届いた
HeartbeatMessage の内容となっている

hbtype は HeartbeatMessageType の
値が入っている。具体的には Heart
beat の request か、response の ど
ちらかとなる

n2s は p から 2 バイトを取って整数値にし
て int payload に値を入れる。つまり、ク
ライアントに戻す payload バッファのサイ
ズになっている。Heartbeat Buffer Overread
攻撃では、この時点で payload が不正な値
に設定されることになる

pl に payload のバッファのポ
インタがセットされている

payload は実際の pl のサイズよりも大き
く、ほかの領域までクライアントに戻す
バッファに書き込んでいる。つまり、ここ
がバッファのオーバーランしている実際の
部分である

padding 部分を埋めている

buffer を開放する

クライアントに Heartbeat のレスポンスを
送っている。この時点で、情報が漏洩する

クライアントに戻す内容を確保するための
バッファ領域をアロケーションしている。
OPENSSL_malloc は独自実装ではなく、
内部で malloc(3) を呼んでいるだけのラッ
パーの役割を果たしている。OPENSSL_
malloc に関しての詳細は後述

Aug. 2014 - 125

後編

ITビジネスの足下を揺るがす大きなバグ

OpenSSLの脆弱性
“Heartbleed”の教訓

筆者は、この修正は「本来の処理としては、まだ足
りない」という気がしています。
　RFC6520の記述では“The padding_length MUST

be at least 16.”（最低でも16バイトでなければなら
ない）とあり、16バイト以上で全体のメッセージの
サイズと不整合が起こらなければ任意長であるよう
に読めますので、固定的に16バイトで良いのかと
いう疑問があります。
　また、“The total length of a HeartbeatMessage

MUST NOT exceed 2^14 or max_fragment_length

when negotiated as defined in [RFC6066].”という記
述があり、仕様では最大16KBまでしか許していな
いように読めるのですが、このコードでは最大約
64KBまで許容するように見えます。暗黙のうち
に、ここまでの前の段階で16KBに収まっている可
能性はありますが、最終段階で明示的なチェックは
されていません。
　このような極めて単純なバグを出すことからもわ
かるように、（あとから付け加えられた）Heartbeat

関連のコードはあまり質が高くないのは確かなよう
です。

OPENSSL_malloc関数

　リスト6に出てくるOPENSSL_malloc()/OPEN

SSL_free()は、crypto/crypto.hの中で定義されてい
るマクロで、CRYPTO_malloc()/CRYPTO_free()に
展開されます。CRYPTO_malloc()とCRYPTO_

free()はcrypto/mem.cで定義されています。
　CRYPTO_malloc()とCRYPTO_free()の主な役
目はデバッグです。どのモジュールファイルの何行
目で呼び出されたかをダンプします。デフォルトで
は、内部で標準ライブラリのmalloc、realloc、free

を呼び出しています。

　これらのコードが用意されているsrc/crypto/

mem.cやsrc/crypto/mem_dbg.cを見ると、デバッ
グ用のデータダンプのためのコードが、山ほど組み
込まれています。Purifyといった開発ツールの利用
などを前提とせず、オリジナルでデバッグ環境を組
み入れてチェックしていたのでしょう。先ほど
malloc()関連でバグが発生するとたいへん面倒だと
説明しましたが、そのためにこのようなデバッグ環
境を組み込んだのは想像に難くありません。

実際に秘密情報は流出するのか

　OpenSSLはSSL証明書や、実行中の暗号鍵（復
号するための鍵）、あるいは暗号通信をしたあと、
復号した内容を保持するために、大量のデータを
mallocで確保したエリアに保持しています。
　しかし、Heartbeatで送られてきたHeartbeat

Messageをメモリ内のどこにアロケーションするか
は、事前にはわかりません。動的にメモリをアロ
ケーションしていますので、mallocがプールしてい
る大きな領域のどこに割り当てられるかは運です。
ですが、mallocの大きなメモリ領域には、確実に
データは残っていますし、その領域のどこかに
Heartbeat Requestで送られてきたHeartbeat

Messageはアロケーションされます。そして、そこ
から続く最大約64KBのメモリエリアをコピーして
Heatbeat Responseで戻します（外部に流出させま
す）。
　そこで、openssl-1.0.1gに用意されているdemos/

ssl/serv.cppとcli.cppの各ファイル名をserv.cと
clip.cに変更して、そのmallocのエリアをダンプし
て、どういう情報が漏れるか実験してみます。
　serv.cppとcli.cppに図4、図5の変更を行ったあ
と、serv.cppとcli.cppをコンパイルして、サーバ

2597 if (1 + 2 + 16 > s->s3->rrec.length)
2598 return 0; /* silently discard */
2599 hbtype = *p++;
2600 n2s(p, payload);
2601 if (1 + 2 + payload + 16 > s->s3->rrec.length)
2602 return 0; /* silently discard per RFC 6520 sec. 4 */

 ▼リスト7　openssl-1.0.1gのssl/t1_lib.c（修正後）

この条件が真なら、payload のバッファ長の値が 0 よ
り小さいこととなり整合性が取れないこととなる

この条件が真なら、payload のバッファ
長の値が実際に送られてきたデータサ
イズよりも大きいということになり整
合性が取れないこととなる

126 - Software Design

セキュリティ実践の基本定石【特別編】

serv、クライアントcliを作ります。そして、serv、
cliをそれぞれ実行します（図6）。なお、このserv.c

のコードでは、可能な限りメモリ内容をアクセスし
ダンプしますので、最後は“Segmentation fault

(core dumped)”で終了するのが、正しい終わり方に
なります。
　クライアント側から送られている“SecretSecret”
という文字列がdumpされているイメージ内にあれ

ば情報が漏れてしまう、ということです。では見て
みましょう（図7）。
　実際にSecretSecretという文字列を見つけるこ
とができました。パスワードなど文字で入っている
ようなもの、あるいはセッションIDも含めて
Cookieに秘密情報を設定しているものも入手可能
だということを、このダンプは意味しています。そ
のまま文字列で見えるので、ダンプをすれば簡単に
目視できます。もちろん、サーバのSSL証明書、
公開鍵、秘密鍵、また実行中の暗号鍵もすべてこの
ダンプしたデータに入っています。バイナリです
が、データ構造がわかっているので、トライ・アン
ド・エラー的に探すことが可能です。

流出した情報を取れるか
どうかは、別の問題

　繰り返しになりますが、実行時に動的メモリでア
ロケーションに使われるメモリ領域がどうなるか
は、そのときにならないとわかりません。また
TLS/SSLは、httpsだけではなくVPNや、ほかの
暗号通信のレイヤとしても使われています。メモリ
がどうマッピングされるかは、その通信でのメモリ
の使われ方やプログラムの作りに大きく左右される
ので、どうなっているかは一概に言えません。です
から、秘密情報が入手できる確率は高いにしても、
攻撃が成功するか否かは確定的ではないのです。
　その逆も言えます。たとえば、SSL-GATWAY-

PROXYのような、あまり内部的にメモリのアロ
ケーションを必要としない構造をしているプログラ
ムの場合、64KBもあればまるごと秘密鍵などの情
報が入ってくる可能性も否定できません。
　また、今回はglibcのmalloc()を前提にしていま
すが、サーバが tcmallocを使っていたり、jemalloc

を使っていたりすると、もっと複雑にメモリ領域に
展開しているので作業はより複雑です。しかし、秘
密情報が漏洩するという本質は変わりません。

まとめ

　今回のHeartbeat Buffer Overreadを筆者なりに

% diff cli.cpp cli.c
38c38
< SSL_METHOD *meth;

> const SSL_METHOD *meth;
41c41
< meth = SSLv2_client_method();

> meth=TLSv1_2_client_method();
97c97
< err = SSL_write (ssl, "Hello World!", ｭ
strlen("Hello World!")); CHK_SSL(err);

> err = SSL_write (ssl, "SecretSecret", ｭ
strlen("SecretSecret")); CHK_SSL(err);

 ▼図4　cli.cppの変更個所

% diff serv.cpp serv.c
31,32c31,32
< #define CERTF HOME "foo-cert.pem"
< #define KEYF HOME "foo-cert.pem"

> #define CERTF HOME "test-cert.pem"
> #define KEYF HOME "test-cert.pem"
52c52,55
< SSL_METHOD *meth;

> const SSL_METHOD *meth;
> char *dummy;
>
> dummy=(char *)malloc(1);
56c59
< SSL_load_error_strings();

>
58c61,62
< meth = SSLv23_server_method();

> SSL_load_error_strings();
> meth=TLSv1_2_server_method();
150a155,159
>
> while (dummy++)
> fprintf(stderr,"%c",*dummy);
>
>

 ▼図5　serv.cppの変更個所

Aug. 2014 - 127

後編

ITビジネスの足下を揺るがす大きなバグ

OpenSSLの脆弱性
“Heartbleed”の教訓

まとめてみます。

①TLS/SSLは暗号技術を用いて情報を保護する

ためのものであるにもかかわらず、その実装が

原因で情報が漏洩するという、あってはならな

い状況が発生した

②この漏洩は攻撃により確実に起こるものである

が、この攻撃が外部から行われていたか否か

を知る術はOpenSSL側にはなく、また、ログ

にも残らないので監査が実質不可能である

③攻撃はタイミングに依存し、どんな情報が漏

洩したかもOpenSSL側では察知することがで

きない

④漏洩する可能性があるものは、サーバの動的

にアロケーションされたメモリ上に存在してい

るものすべてである。具体的にはセッション中

に使われたパスワードも含むユーザの情報な

ど。セッションの暗号鍵も（たとえ使われたあ

とでも、まだ完全に破棄されていなければ）漏

洩する危険性がある。またサーバのSSL証明

書のようないったん漏洩するとサービスにとっ

て致命的な結果をもたらすものもある

⑤コーディングミスと思われがちであるが、指定

されたエリアのサイズと実際に確保しているサ

イズで不整合を起こさないか、あるいは仕様を

満たした使い方がされているかを確認するとい

う手順を怠った設計上の問題である

⑥今回のバグは、OpenSSLに限らずUNIX/C言

語では古くから何度も繰り返されている、典型

的な動的メモリアロケーションのバグである。

結果として極めて重大なセキュリティ問題を発

生するにもかかわらず、問題は極めて単純。し

かし、プログラミングで見落としがちであり、

デバッキングも容易ではない

　どんなにソフトウェアの品質技術が向上しても、
人間が作る以上、完全なソフトウェアというものは
存在せず、今後も、単純なミスが大きな問題を引き
起こすことはあるでしょう。だからこそ、前回言及
したような脆弱性流通のしくみが作られており、そ
れが上手に機能することが重要なのです。
　TLS/SSLをお使いの方は、すでにOpenSSLの
最新版に入れ替えたかと思いますが、早めにSSL

証明書（公開鍵証明書）も新しいものに取り替えるこ
とをお勧めします。
　今回の件で、ユーザのパスワードなど機密情報が
漏れたという可能性は否定できません。それを十分
に考慮する必要があります。

　今回だけではなく、今後も新しい脆弱性が
起因となって重要情報漏洩やパスワード漏洩
が起こる事案が必ず持ち上がってくるでしょ
う。今回の問題をきっかけに、そのような場
合のリスク管理も視野に入れて運用を考えて
いただければ幸いです。s

$ od -c dump
0000000 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0000020 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 301 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 260
0000040 1 257 001 ¥0 ¥0 ¥0 ¥0 z 261 C ¥0 ¥0 ¥0 ¥0 ¥0 X
 （..略 ..）
0431000 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 360
0431020 U ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 P E ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0
0431040 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 ¥0 4 003 $ 227 * e 332 273 S
0431060 e c r e t S e c r e t g 207 264 w 344
0431100 F 212 % 247 177 ^ 355 303 I k X 201 352 177 336 342
0431120 x 261 254 250 c 303 0 317 325 s 265 F d 314 336]
 （..以下略 ..）

 ▼図7　図6で取得したdumpの内容

 サーバ側を実行
$./serv > /dev/null 2> dump
$ Segmentation fault (core dumped)
 これで dumpの中に mallocの領域のイメージが入っているはず

 別シェルでクライアントを動かす
$./cli

 ▼図6　servとcliをそれぞれ実行

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

128 - Software Design

ネットワークを読む、
tcpdump（1）

　ネットワークを流れるデータは何もしなけれ
ば人間の目には見えませんので、ついほかの人
にも見えないものとしてとらえてしまいがちで
す。しかし、ネットワークを流れているデータ
は物理的に接続することができれば簡単に覗き
見することができます。これは良い面と悪い面
の双方を抱えています。
　良い面からいくと、ネットワークを流れてい
るデータを把握することでネットワークの設定
の確認、ソフトウェア動作の設定の確認、パ
フォーマンス向上のための調査データの取得、
ネットワークトラブル発生時の問題の調査など
を簡単に実施できることを意味しています。ま
ともな仕様書もないような状態でデータセンター
に放り込まれてシステムを組み上げるといった
仕事はざらにありますので、こういうときにこ
うしたことができないと手も足もでない状況に
なります。
　悪い面は、データが誰にでも読めてしまうの
でプライバシーに関するデータやユーザ名、パ
スワードなどが簡単に盗聴されてしまう点にあ
ります。しかし、実際にそうした現実に触れて
おくことで、プライバシーやセキュリティに対
する認識が改まるという面はありますので、ど
のみち一度はネットワークを眼で読んでおくと

よいでしょう。
　そうした場合に使うツールがtcpdump（1）注1

です。現在おもに使われているUNIX系オペレー
ティングシステム（以下、OS）ではどれでも使
用できますので、本稿を機に使ってみてくださ
い。

tcpdump（1）初体験

　現在では tcpdump（1）の実装系はすべて同じ
です。tcpdumpコマンドに-hをつけてバージョ
ン番号を表示させるとわかります。OSごとに
バージョンは異なりますが、同じ出力を確認で
きます（図1〜3）。
　まずは実行してみましょう。図4のように管
理者権限で tcpdump（1）コマンドを実行して、
「password」といったキーワードに関する出力
だけを抜き出すようにしてみます。grep（1）コ
マンドの -iオプションは“大文字と小文字を区
別せずにどちらも一致させよ”という指定です。
　しばらく放置しておくと図5のようにずらず
らと文字列が出力されます。この出力を見るだ
けでは意味がわからないと思いますけれども、
自分は送信したつもりがなくても、デフォルト
で動作しているサービスやソフトウェアは背後

注1） コマンドの後ろに付いている括弧書きの数字は、manコマ
ンドで見られるマニュアルの章番号を表しています。

使ってみよう!

後藤 大地（ごとう だいち）　（有）オングス　代表取締役

ネットワークを流れるデータはシステムのトラブル解決やセキュリティ
認識にとって多くの情報を提供してくれます。誰でも簡単なコマンド
で見ることができる便利さと怖さの両面を知っておいてほしい、IT
エンジニア必修の基本中の基本のお話です。

tcpdump

ネットワークを眼で読む

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

128 - Software Design Aug. 2014 - 129

でネットワーク通信をおこなっており、その中
には「password」というキーワードで絞り込ん
だだけでも結構なデータが流れていることがわ
かります。このように誰でも見られるものなん
だという認識を持っておきましょう。

tcpdump（1）の使い方

　tcpdump（1）は図6のように使います。なに
もオプションや条件を指定しないと、そのマシ
ンに流れているすべてのパケットの通信情報を
表示します。オプションを指定することで表示
するデータの内容を変更したり、条件を指定す
ることで表示するパケットを絞り込むことがで
きます。
　いくつもオプションがありますが、とくによ
く使われるオプションをまとめると表1のよう

 ▼図1　tcpdump（1）／Mac OS X Mavericks

 ▼図2　tcpdump（1）／Ubuntu 12.04 LTS

 ▼図3　tcpdump（1）／FreeBSD 10.0-RELEASE

 ▼図5　コマンドの実行結果

 ▼図4　tcpdump（1）で指定したネットワーク
　　 インターフェースに流れているデータを表示

sudo tcpdump -A ¦ grep -i password

 ▼図6　tcpdump（1）の基本的な使い方

tcpdump オプション ［条件］

使ってみよう! tcpdump
ネットワークを眼で読む

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

130 - Software Design

 ▼表3　条件で使用できるキーワード

type
dir
proto

host、net、portrange
src、dst、src or dst、src and dst、ra、ta、addr1、addr2、addr3、addr4、inbound、outbound
ether、fddi、tr、wlan、ip、ip6、arp、rarp、decnet、tcp、udp

修飾子の種類 指定できる値

 ▼表4　条件の指定例

dst host ホスト
src host ホスト
host ホスト
gateway ホスト
dst net ネット mask ネットマスク
src net ネット mask ネットマスク
net ネット mask ネットマスク
dst port ポート番号
src port ポート番号

port ポート番号

dst portrange
ポート番号1-ポート番号2
src portrange
ポート番号1-ポート番号2
portrange
ポート番号1-ポート番号2

ip proto プロトコル

ether broadcast
ip boradcast
ether multicast
ip multicast
vlan VLANID
pppoed
pppoes

IPパケットの行き先が指定されたホストになっているもの
IPパケットの送信元が指定されたホストになっているもの
IPパケットの行き先または送信元が指定されたホストになっているもの
指定したホストをデフォルトゲートウェイとして使っているパケット
IPパケットの行き先が指定されたネットワークに含まれているもの
IPパケットの送信元が指定されたネットワークに含まれているもの
IPパケットの行き先または送信元が指定されたネットワークに含まれているもの
パケットの行き先ポート番号が指定されたポート番号になっているもの
パケットの送信元ポート番号が指定されたポート番号になっているもの
パケットの行き先ポート番号または送信元ポート番号が
指定されたポート番号になっているもの

パケットの行き先ポート番号が指定されたポート番号範囲の中にあるもの

パケットの送信元ポート番号が指定されたポート番号範囲の中にあるもの

パケットの行き先ポート番号または送信元ポート番号が
指定されたポート番号範囲の中にあるもの
パケットのプロトコルが指定されたプロトコルのもの
（icmp、icmp6、igmp、pim、ah、esp、vrrp、udp、tcp）
パケットがイーサネットブロードキャストパケットであるもの
パケットが IPv4ブロードキャストパケットであるもの
パケットがイーサネットマルチキャストパケットであるもの
パケットが IPv4マルチキャストパケットであるもの
パケットが指定されたVLANIDを持ったIEEE 802.1Q VLANパケットであるもの
パケットがPPP-over-Ethernetディスカバリパケットであるもの
パケットがPPP-over-Ethernetセッションパケットであるもの

条件 意味

 ▼表2　tcpdumpの代表的な使い方

tcpdump -A -i インターフェース
tcpdump -A -i インターフェース port 80
tcpdump -i インターフェース -w ファイル

指定したネットワークインターフェースに流れるデータをすべて表示
ポート番号80を指定しているパケットを表示
指定したファイルにキャプチャしたパケットを書き出し

コマンド 内容

 ▼表1　tcpdump（1）でよく使われるオプション

-i インターフェース
-w ファイル
-r ファイル
-A
-X
-c 回数
-n
-p
-s バイトサイズ

指定したネットワークインターフェースをモニタリングしてパケットをキャプチャ
指定したファイルへキャプチャしたパケットデータを保存
指定したファイルからキャプチャデータを読み込んで処理
パケットをASCIIで表示
パケットをHEXおよびASCIIで表示
指定した回数分だけパケットをキャプチャし、その後終了
ホストアドレス、ポート番号などを名前へ変換しない
プロミスキャスモードで動作しない
表示するパケットサイズを指定（デフォルトは64KB）

オプション 意味

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

130 - Software Design Aug. 2014 - 131

になります。なかでも -Aで人間でも読めるテ
キストでパケットの内容を表示、-iでモニタリ
ングするネットワークインターフェースの指定、
-wでキャプチャしたデータをファイルへ出力、
あたりは覚えておきたいところです。本当に簡
単にですが、よく使われるような書き方をする
と表2のようになります。
　また、条件で指定できるキーワードには
type、dir、protoという3つの種類があります。
指定できるキーワードを分類するとそれぞれ表
3のとおりになります。どういったキーワード
があり、どのように指定するのかはpcap-filter

（7）のマニュアルにまとまっていますので、基
本的にはこのマニュアルを読みながら条件を書
くことになります。とくによく使うような条件
指定を表4にまとめておきます。

HTTPプロトコルを
読み取ってみよう

　Webサーバとのやりとりを tcpdump（1）で覗
いてみましょう。たとえば図7のようなtcpdump

（1）を実行すると、ネットワークインターフェー
スen0を流れるHTTP関連のパケットをキャプ
チャできます。
　このコマンドの実行前にHTMLファイルを
用意しましょう。Webサーバ側では/admin/

index.htmlファイルにアクセスされると、ベー
シック認証を経た後にリスト1のHTMLファ

イルを返すように設定しておきます。
　ブラウザからアクセスすると図8のようにベー
シック認証の後でページが表示されます（図9）。
　この状態で図7を実行すると図10のような
テキストを出力します。図中に示したとおり、
どの IPアドレスのどのポートから、どのIPア
ドレスのどのポートへデータが送信されている
のかがわかります。パケットの種類も表示され
ていますし、HTTPリクエストでは「Authoriza

tion: Basic ZGFpY2hpOjEyMzQ1Njc4」のよう
にベーシック認証で使われるハッシュ値も確認
できてしまいます。
　実行するコマンドはとても単純ですけれども、
これだけでネットワークインターフェースに到
達するさまざまな種類のパケットの中身を見る
ことができます。問題発生時の調査からセキュ
リティ脆弱性の発見など、さまざまなことが可
能です。

 ▼図7　 HTTPのパケットをキャプチャするコマンド指定

sudo tcpdump -A -i en0 port http

〈!doctype html〉
〈html lang="ja"〉
〈head〉
 〈meta charset="utf-8"〉
 〈title〉Hello World〈/title〉
〈/head〉
〈body〉
Hello World
〈/body〉
〈/html〉

 ▼リスト1　用意するHTMLファイル

 ▼図8　ブラウザからのアクセス

 ▼図9　表示されたページ

実践1

使ってみよう! tcpdump
ネットワークを眼で読む

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

132 - Software Design

ば、あとから tcpdump（1）で解析したり、別の
ソフトウェアを使って分析するといったことが
できます。先ほどのHTTPパケットのやり取
りを図11のようにいったんファイルに保存し
ます。
　tcpdump（1）のデータを解析するソフトウェ

パケットをもっと
詳しく分解してみよう

　tcpdump（1）がキャプチャしたパケットデー
タは -wオプションを使うことでファイルに保
存できます。いったんファイルに保存しておけ

アはいくつかありますが、視覚的に操
作するとなると「Wireshark」が便利で
す。WiresharkはOSが提供している

 ▼図11　 キャプチャしたデータをファイルへ出力

sudo tcpdump -A -i en0 -w tcpdump.out port http

実践2

 ▼図10　 キャプチャコマンドの実行結果

/Users/daichi% sudo tcpdump -A -i en6 port http
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on en0, link-type EN10MB （Ethernet）, capture size 65535 bytes
17:48:13.928934 IP 192.168.1.106.56860 〉 192.168.1.101.http: Flags ［P.］, seq 218332280:218332804,
ack 2321383149, win 8212, options ［nop,nop,TS val 1341836418 ecr 2019424190］, length 524
.¦x.］‾... ..R......e...P
O...x］..GET /admin/index.html HTTP/1.1
Host: 192.168.1.101
Connection: keep-alive
Cache-Control: max-age=0
Authorization: Basic ZGFpY2hpOjEyMzQ1Njc4
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 （Macintosh; Intel Mac OS X 10_9_1） AppleWebKit/537.36 （KHTML, like Gecko）
Chrome/32.0.1700.107 Safari/537.36
Accept-Encoding: gzip,deflate,sdch
Accept-Language: ja,en-US;q=0.8,en;q=0.6
If-None-Match: "52fc86a6-87"
If-Modified-Since: Thu, 13 Feb 2014 08:47:34 GMT

17:48:13.934252 IP 192.168.1.101.http 〉 192.168.1.106.56860: Flags ［P.］, seq 1:372, ack 524, win
1040, options ［nop,nop,TS val 2019448732 ecr 1341836418］, length 371
.‾.............e...j.P...］‾.
x^W.O...HTTP/1.1 200 OK
Server: nginx/1.4.4
Date: Thu, 13 Feb 2014 08:48:11 GMT
Content-Type: text/html
Content-Length: 135
Last-Modified: Thu, 13 Feb 2014 08:48:10 GMT
Connection: keep-alive
ETag: "52fc86ca-87"
Accept-Ranges: bytes

〈!doctype html〉
〈html lang="ja"〉
〈head〉
 〈meta charset="utf-8"〉
 〈title〉Hello World〈/title〉
〈/head〉
〈body〉
Hello World
〈/body〉
〈/html〉

17:48:13.934381 IP 192.168.1.106.56860 〉 192.168.1.101.http: Flags ［.］, ack 372, win 8189, options
［nop,nop,TS val 1341836423 ecr 2019448732］, length 0
.‾..］.¥`.....F......e...P
O...x^W.
^C
3 packets captured
27 packets received by filter
0 packets dropped by kernel

HTTPリクエスト

HTTPレスポンス

パ
ケ
ッ
ト
ヘ
ッ
ダ

パ
ケ
ッ
ト
ヘ
ッ
ダ

HTTPプロトコルヘッダ

HTMLデータ

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

132 - Software Design Aug. 2014 - 133

パッケージ管理システム経由でインストールす
るか、Wiresharkのサイト注2からバイナリパッ
ケージをダウンロードして利用できます。
　図12のように、Wiresharkではペインが3

つに分かれています。1番上のペインで調査し
たいパケット（イーサネットフレーム）を選択し、
2つ目のペインでヘッダやフィールドを選択し
ます。選択結果は3つ目のペインで強調表示さ
れるしくみです。この機能を使うと、実際に送
られてきたデータにどのようなデータが含まれ
ているのかを詳しく知ることができます。
　今回の例ですと、たとえばHTTPレスポン

注2） http://www.wireshark.org/

スが含まれているパケットを調べてみると、次
のような構造になっていることがわかります。
先頭から順にイーサネットパケット（フレーム）
のヘッダ、IPv4のヘッダ、TCPのヘッダ、とヘッ
ダが続いたあとでHTTPプロトコルがあり、
最後にHTMLデータが送られていることがわ
かります（表5）。
　こうした構造になっていることは仕様書など
に掲載されていますのでよく見かけますが、実
際に解析したデータで同じものが確認できると、
なにかこう実感がわいてきませんか。フィール
ドまで含めてさらに詳しく分析していくと表6
のような構造になっていることが確認できます。
　OSのTCP/IPスタックはNICから得られる
こうしたデータを加工して、最終的にソケット
を経由して、ユーザランドで動作するソフトウェ
アがネットワーク通信できるようにデータを提
供しているわけです。なかなか普段は気にしな
い部分ですが、内部ではこうした処理を繰り返
し繰り返し実行しながら、ネットワーク通信を
実現しているわけですね。

 ▼図12　 取得したキャプチャデータをWiresharkで解析

 ▼表5　 キャプチャされたHTTPレスポンスを含むフ
レームの大枠の構造

1　Ethernet IIヘッダ
2　IPv4ヘッダ
3　TCPヘッダ
4　HTTPプロトコル
5　HTMLデータ

14バイト
20バイト
32バイト

236バイト
135バイト

ヘッダやデータ バイト数

使ってみよう! tcpdump
ネットワークを眼で読む

http://www.wireshark.org/

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0

134 - Software Design

り分けが簡単になります。便利なコマンドです
ので、まだ使ったことがなければ使ってみてく
ださい。
　また、データを視覚化することでセキュリティ
に対する意識も高まります。こうした通信を確
認すると、ssh（1）やHTTPSで通信することの
安全性などが身をもって体感できます。s

とにかく使ってみよう!

　なにか問題でも発生しない限り tcpdump（1）
は使うことがないかもしれませんが、このコマ
ンドでどういったことができるのかを知ってお
くと、トラブルが発生したときなどに問題の切

 ▼表6　HTTPレスポンスを含むパケットのより細かな内容を整理

行き先のMACアドレス
送信元のMACアドレス
データの種類

バージョン
ヘッダの長さ

DSフィールド
トータルの長さ
識別子
フラグ
フラグオフセット

TTL

プロトコル
ヘッダチェックサム
送信元 IPアドレス
行き先 IPアドレス

送信元ポート番号
行き先ポート番号
シーケンス番号
確認応答番号
ヘッダの長さと
その他もろもろ
ウィンドウサイズ
チェックサム
オプション

64:4b:f0:00:13:4c

e0:69:95:f5:42:84

0x0800（IP）

4

20

0（DSCP）

423

0xffb5

0x02（フラグメントしていない）

0

64

6（TCP）

0xb57b

192.168.1.101

192.168.1.106

80

56948

1

525

32

1040

0x80a3

01:01:08:0a:12:1e:d2:9d:50:01:d3:95

HTTP/1.1 200 OK¥r¥nServer:
nginx/1.4.4¥r¥nDate: Thu, 13 Feb 2014
08:48:11 GMT¥r¥nContent-Type: text/
html¥r¥nContent-Length: 135¥r¥nLast-
Modified: Thu, 13 Feb 2014 08:48:10
GMT¥r¥nConnection: keep-alive¥r¥nETag:
"52fc86ca-87"¥r¥nAccept-Ranges:
bytes¥r¥n¥r¥n

〈!doctype html〉¥n〈html lang="ja"〉¥n〈head〉
¥n¥t〈meta charset="utf-8"〉¥n¥t〈title〉Hello
World〈/title〉¥n〈/head〉¥n〈body〉¥nHello
World¥n〈/body〉¥n〈/html〉¥n

14バイト

6バイト

6バイト

2バイト

20バイト

1バイト

1バイト

1バイト

2バイト

2バイト

3ビット

13ビット

1バイト

1バイト

2バイト

4バイト

4バイト

32バイト

2バイト

2バイト

4バイト

4バイト

1バイト

2バイト

2バイト

12バイト

236バイト

135バイト

ヘッダやデータ フィールド 値 サイズ

Ethernet IIヘッダ

IPv4ヘッダ

TCPヘッダ

HTTPプロトコル

HTMLデータ

Aug. 2014 - 135

　ネットワークスペシャリスト試験の教本。各
節で例題として取り上げられている「午後問題」
は、企業の新技術導入といった実務的な事柄を
扱うことが多いので、その節で扱われるネット
ワーク技術がイメージしやすい。
　ネットワーク分野で肝心なTCP/IPプロトコル
の章は、ひとつひとつの例題のボリュームが大

きく、その解説も詳しいので、問題を解きなが
ら重点的に学ぶことができる。最近よく話題に
上る仮想化技術の章では、ホストOS型・ハイパー
バイザ型の違いが、図を使ってわかりやすく解
説されている。難易度は比較的やさしく、ネッ
トワーク分野を概観する入門書として読むこと
もできるだろう。

Gene、ふたつ愛子、山田 剛士 【著】
A5判、368ページ／価格＝2,800円+税／発行＝マイナビ
ISBN＝978-4-8399-5081-1

　Ruby on Rails（以下Rails）の初級～中級者を
対象とした解説書。Railsのインストールから、
基礎・応用まで、幅広くカバーしている。Rails
を使ったWebアプリについては、その開発面だ
けでなく、VagrantやChef、Capistranoなどを
使った「運用面」についてもページが多く割か
れており、実践的な内容となっている。また、

MVCの解説、DevOpsの概要など、Ralisに限ら
ない、Webアプリ開発全般に通じる知識も豊富
だ。さらに仮想マシンの構築についても説明が
あるので、Railsを学びながら、Webアプリ開発
のフローも習得・再確認できるだろう。第10章
ではRailsの拡張を扱っており、上級者を目指す
人にとっても充実した内容となっている。

すがわらまさのり、前島 真一、近藤 宇智朗、橋立 友宏 【著】
B5変形判、432ページ／価格＝2,880円+税／発行＝技術評論社
ISBN＝978-4-7741-6516-5

　OpenStackはクラウド基盤を構築するための
コンポーネント群。こう聞くだけでは、抽象的
でわかりにくい製品だが、本書では実際の構築
例を示しながら解説されるので、製品の機能や
使い方が具体的に理解できる。前半は、物理マ
シン1台だけで実現できる IaaSを構築する。本
書の手順に沿って設定作業を行えば、仮想マ

シン／仮想ネットワークの管理や、クラウド基
盤の何たるかがわかってくる。後半では、複数
の物理サーバを使った本格的な IaaS構築を試す
が、実際にはKVMで1台の物理マシンに複数の
仮想サーバを立てて実習する。このように、個
人でも試せるよう例題が工夫されているので、
実際に動かして学習してみてほしい。

中井 悦司、中島 倫明 【著】
B5変形判、208ページ／価格＝1,800円+税／発行＝KADOKAWA
ISBN＝978-4-04-866067-9

オープンソース・クラウド基盤 OpenStack入門
構築・利用方法から内部構造の理解まで

短期集中！　ネットワークスペシャリスト教本

　クラウドが普及するまでの歴史や社会的背景、
クラウドを支えるネットワーク技術・仮想化技
術を幅広く解説した、クラウドの教科書。また、
Amazon EC2やGoogle Appsなど、現存のさま
ざまな企業のサービス・製品が紹介されており、
クラウド業界の全体像を概観できる。
　「クラウドと紛らわしい言葉や概念」の節では、

クラウド、グリッド、ユビキタスといった、似
た概念を持つまぎらわしい言葉を紹介し、登場
経緯や現状をふまえながら、違いを説明してい
る。次々と新しい技術や専門用語が生まれるク
ラウド業界だが、言葉ひとつひとつの意味をと
らえ、基礎知識を充実させることが、変化につ
いていくうえで重要となるはずだ。

黒川 利明 【著】
A5判、192ページ／価格＝2,300円+税／発行＝共立出版
ISBN＝978-4-320-12374-8

クラウド技術とクラウドインフラ
̶黎明期から今後の発展へ̶

パーフェクトRuby on Rails

136 - Software Design

エンジニア人生を
主体的に生きるために

　みなさんご存じのとおり、クラウドの台頭に
よってシステム開発の現場が大きく変わろうと
しています。ビジネスの面では大きなメリット
のあるクラウドですが、エンジニアの視点では
「とりあえずJavaかPHPあたりができれば何
とかなった」という牧歌的な時代が終わるとい
う大変革を強いられることが間違いないという、
いささか迷惑な状況でもあります。
　こうした変革が訪れる中、これからエンジニ
アはどのようなキャリアプランを描けば良いの
か、エンジニアに将来どのような可能性がある
のか、読者のみなさんと一緒に考察することで
より良いエンジニアライフを送る一助になりた
いという想いで筆を執りました。
　まずは、クラウドに至るまでの ITの流れを
振り返ることで、過去数年に登場した技術や製
品が、筆者たちの生活、エンジニアの存在にど
のようなインパクトを与えてきたのかをおさら
いしたいと思います。

モバイルの始まり

　「モバイルの始まり」などと大げさな見出しを
付けましたが、みなさんにとってモバイルコン
ピューティングの始まりとはどのあたりでしょ

うか？　Jornada？　ウルトラマンPC？　ご
存じのない方はぜひこの機会にググってみてく
ださい。こんな時代もあったんです（写真1）。
　筆者のモバイル生活はPalm Pilotが始まり
でしたが、当時の端末はネットにつなぐことも
一苦労で、今のモバイルコンピューティングの
スタイルとはかけ離れたものでした。「通信機
能とデバイス本体が高度に融合された、今のス
タイルのモバイルコンピューティング」という
意味では 2005年にSHARPから発売された

 ▼写真1　HP Jornada680（ジョルナダ、上）、
　　　 IBM Palm Top PC 110（ウルトラマンPC
　　　 下）写真提供：PDA博物館

情 報システムとエンジニアの 未 来

クラウドの登場によって、情報システムのありかた、そしてエンジニアのキャリアそのものが大きく変わろうとし
ています。本連載では、クラウドの登場とそれによって情報システムがどのように変わろうとしているのか、そし
てエンジニアのキャリアがそれによってどのように変わろうとしているのか、すでに起こりつつある変化を読み取
ることで、みなさんが自分のキャリアを考えるための材料を提供するものです。

 Writer ㈱サーバーワークス　代表取締役　大石 良（おおいし りょう）／ http://blog.serverworks.co.jp/ceo/

第1回　クラウド前夜「スマートフォンの登場」

新連載

http://blog.serverworks.co.jp/ceo/

136 - Software Design Aug. 2014 - 137

第1回　クラウド前夜「スマートフォンの登場」

W-ZERO3がスタートだと思います（写真2）。
　著者の会社でも、インフラのお守りをするた
めにW-ZERO3をエンジニアに貸与して、い
つでもどこでもSSHできるようにしていまし
た。今思うとありがた迷惑な話ですが、当時は
「どこでも仕事をしなければいけない」というプ
レッシャーよりも「W-ZERO3のようなユニー
クな端末を会社が貸し出してくれる」というメ
リットのほうが大きくとらえられていたようで、
おおむね好評だったようです。

意外な共通点

　自分たちでモバイル端末を持つことで、その
後使うことになる「クラウド」と「モバイル」との
意外な共通点がわかってきました。
　それは、
「コンピュータのある場所に行かなくて良い」
ということです。
　当たり前のように聞こえますが、これは
2006～2008年くらいの時点では非常に画期的
なことでした。2006年頃ではまだまだ「何かあっ

たらデータセンターにかけつける」ことが半ば
当たり前とも言える状況で、当社のエンジニア
が取っていた記録でも1年間にデータセンター
に駆けつけて作業する時間は、年間90時間を
超えていました。
　ところが、モバイル端末を持つようになって
データセンターに駆けつける、作業のために会
社に行くということが激減します。そして実は、
クラウドもまったく同じように「駆けつけ作業」
をなくすことができたのです。
　知り合いのコンサルタントの方が、こんなこ
とを仰っていました。
　「モバイルとクラウドというのは、実に人間
的なテクノロジだ。これまでのコンピューティ
ングはコンピュータの場所に人間が行くことが
前提だったが、モバイルもクラウドも人間の場
所でコンピュータを操作できる初めてのテクノ
ロジだ」。
　筆者たちは、これをのちに痛感することにな
りますが、そのエピソードは次稿に譲ります。

スマートフォンによる変革

　W-ZERO3などのスマートフォンで、モバイ
ルコンピューティングの可能性に大きな期待を
寄せていたところに、モバイルに大変革をもた
らすあの端末がやってきます。そう、iPhone

です。
　2008年に iPhone 3Gが発売されたとき、ま
だまだ一部の人が持つオタク向けガジェットと
いう趣でしたが、筆者たちはW-ZERO3です
でにモバイルの予習は終わっていましたので、
すぐにそのパワーを理解できました。会社から
貸与する端末も徐々に iPhoneに切り替えてい
き、iPhoneありきの業務に少しずつ変更して
いったのです。

Google Appsへ

　こうして iPhoneが業務で使われるようにな

 ▼写真2　W-ZERO3（縦、横でも使用できる。
 しかもミニキーボードも展開する）
 写真提供：シャープ株式会社

138 - Software Design

ると、「メールをGoogle Appsへ換えよう」とい
う話になっていったのです。
　それまではずっと「管理がしやすい」などの理
由でExchangeなどのメールシステムを選んで
いたのですが、今回は違います。初めてユーザ
視点、つまり「iPhoneとの相性が良いものは何
か？」という視点で、クラウド上のメールサー
ビスに置き換えようという話になったのです。
こうした動きは、今でこそ「コンシューマライ
ゼーション」という言葉で表現されていますが、
当時は筆者たちもこれが良い選択なのかどうか、
半信半疑という状態での選択でした。――です
が、結果からいうと筆者たちの想定以上に
Google Appsと iPhoneの相性がよく、それに
よってカレンダーの共有など iPhoneを業務で
使う場面が多くなり、この選択は結果的に良かっ
たと考えています。

クラウド

　そして、Google Appsの体験は筆者たちの事
業そのものにも大きな影響を与えることになり
ます。筆者たちは2007年からAWS（Amazon

Web Services）を試験的に使い始めており、
2008年1月には「社内サーバ購入禁止令」を出
して、より踏み込んでAWS（当時は「EC2」と
呼ぶことがほとんどでした）を使っていました
が、Google Appsの体験から「どうもGoogleや
Amazonなど大規模事業者に運用まで任せたほ
うが良さそうだ」と感じるようになってきたの
です。こうして、モバイルデバイスが起点とな
り、少しずつGoogle、Amazonなどのクラウド
利用を増やしていくことになるのです。

蓄積の消失

　さて、このようにモバイルデバイスがクラウ
ドの導入を後押しし、ITのサービスを「使う」
ようになってくると、筆者たちにも次のような
変化が訪れることになりました。

・メールサーバを立ち上げなくなった
・物理サーバを買わなくなることで、インストー
ルや設置などの業務が激減した

　2008年頃は、メールサーバの立ち上げも一
苦労でした。qmail＋vpopmailという組み合わ
せが多かったのですが、2002年ごろから6年
くらいかけてさまざまな環境でqmailをインス
トールしていた筆者たちは、シェルスクリプト
などを作ってqmailをスピーディにインストー
ルしたり、迷惑メールが大量に飛んできたとき
の対応策を共有したりするなど、実にさまざま
なノウハウを蓄積してきました。ところが、
Google Appsによってそれらが一瞬で必要なく
なってしまったのです。
　これは筆者たちにとって最初の衝撃でした。
　「技術を蓄積しても、一瞬でそれが必要なく
なるかもしれない」。
　今までも同じようなことが言語の世界ではあっ
たかもしれませんが、少なくとも書いたコード
のメンテナンスという業務は残り続けることが
約束されており、「運用の必要性が皆無になる」
ということは起きていなかったように思います。
それが、クラウドでは「構築業務も、運用ノウ
ハウも、どちらも必要ない」ということが起きる。
クラウドの登場によって、技術の選別が決定的
に大切になる、と思い知らされた最初の出来事
だったのです。このことは後からもう少し詳し
く触れます。

エンジニアの姿

　さて、ここまでで2005年から2009年くらい
の間に起きた大きな変化を振り返ってみました。
この時点で本誌を購読している読者の中で「エ
ンジニア」というと、おおよそ次に挙げる3パ
ターンの、いずれかに属しているのではないか
と思います（あくまで「想定」です）。

138 - Software Design Aug. 2014 - 139

第1回　クラウド前夜「スマートフォンの登場」

（1）SI企業のエンジニア
　ユーザにシステムを納入する立場のエンジニ
ア。上流の方は設計やプロジェクトの進行、ベ
ンダーコントロールに関する業務が中心で、下
請けのSIerの方はJavaのコーディングが中心。
下流の方は「コードも書けないやつが設計やる
なんて」などとグチをこぼすのがお約束。

（2）ユーザ企業の IT部門
　自社にシステム、IT環境を提供する立場の
エンジニア。というと聞こえは良いが実際には
過去のシステムの保守・運用、サーバやネット
ワークのお守りだけで手一杯。しかもベンダー
をコントロールするだけなので技術は身につか
ない。SIer側にいた人が酷い扱いに嫌気がさ
して転職するが、自分が同じことをやってしま
うという悪しき循環。

（3）ベンチャー・Web系のサービス開発エ
ンジニア

　自社で提供するサービスを開発する立場のエ
ンジニア。何やら最先端の技術に触れられそう
だと意気込んで転職してみたものの、思ったよ
り分業が進んでおり技術を学ぶ機会が限定的。
技術より課金。昔いたCTOとか呼ばれる人が
作ったオレオレフレームワークでできたゲーム
をコピー&ペーストしてパラメータをちょっと
変えるだけの簡単なお仕事。

　ここではエンジニア像をわざとネガティブな
イメージで描いています。
　なぜなら、現状に満足していて将来も楽観し
ている方は本稿に目を通すことはないだろうと
思われるからです（笑）。
　ですが、モバイルとクラウドという2つのト
レンドは、上の3パターンのどのキャリアの方
にとっても、将来をまったく変えてしまう大き
なインパクトがあります。
　しかし、それは決してネガティブなことばか
りではないと思います。筆者たちがかつてそう

だったように、なかなか楽観的なキャリアプラ
ンを描くことが難しい、不確実性の高い中でも、
新しいサービス、モノに触れ、時代の流れをちゃ
んととらえることで、明るい未来を創ることは
必ずできると信じています。
　本連載で、IT業界がどのように変わりそう
なのか、そして前述のイメージに当てはまるエ
ンジニアの方々にどのような変革が訪れるのか、
一緒に考えていきます。

次回予告

　こうしてみると、思いのほか速いスピードで
「モバイル」と「クラウド」という破壊的なテクノ
ロジが筆者たちの身の回りに普及していったこ
とがわかると思います。そしてすでにこの時点
で、筆者たちの仕事に変化が訪れてきています。
筆者は、すべてのエンジニアがクラウドとモバ
イルという2つの破壊的なテクノロジの時代で
も幸せなキャリアプランを描くことができると
確信していますが、それには正しい前提の認識
や、これから必要とされる技術・能力の把握が
不可欠です。そのためにも、筆者たちの例を挙
げて過去を振り返り、「これから何が起きそう
なのか」もっと言うと「すでに起こっていること
で、未来に影響を及ぼすものは何なのか」を把
握する必要があると考え、第1回目は「モバイル」
と「クラウドの」のスタートをひもといてみるこ
とにしました。
　さて、第2回目ではSalesforce、AWSとい
うクラウド時代の本命サービスが立ち上がって
くるにあたり、これらのサービスが世の中に与
えたインパクトがどれくらい大きかったのか、
具体的にどんなプロジェクトがあって、エンジ
ニアの将来にどんな影響を及ぼそうとしている
のか、具体的な事例と数字を基に考えていきま
す。ﾟ

140 - Software Design

SKKとは

　ども、Emacs廃人のるびきちです。Emacsの
最大の恩恵とは何か覚えていますか？　そう、
「文字入力の一元化」でしたね！　つまり、文章
の入力・編集をEmacsに一任すれば快適になる
ということです。それだけEmacsの編集能力は
すごいものがあります。Emacsスキルが上がっ
てくると、ブラウザの textareaで文章を書いて
いた自分自身がバカらしくなってくるはずです。
　ではその第一歩として、Emacs上での日本語
入力システムの1つSKKを今回紹介します。
SKK は Simple Kana to Kanji conversion

programの略で、シンプルな操作性が持ち味で
す。筆者はEmacsを使うのと同時にSKKを使
い始め、今でも手放せないツールとなっていま
す。
　SKKでの日本語入力方法はやや特殊ですが、
少し練習すればすぐに慣れます。優れたチュー
トリアルがついているので御安心ください。

単語変換＋文節マニュアル指定

　SKKは単語変換がベースとなっています。
「え、今さら単語変換の日本語入力システム？」
と思われるかもしれませんが、シンプルさを追
求した結果、単語変換に行き着きました。一見

非効率に思われそうな入力方式ですが、入力効
率は悪くはありません。単語変換だからこそ実
現できることもあります。
　SKKの最大の特徴とも言えるのが「かなと漢
字の境界を人間が指定すること」です。文節の区
切りはコンピュータではなくて人間が指定する
のです。最近は日本語の解析を高精度で行える
ようになったものの、通常の連文節変換では文
節区切りミスをゼロにはできません。ひらがな
だけでは文節の区切りが不明な例すらあります。
有名な文が「ここではきものをぬいでください」
で、「ここでは着物を脱いでください」とも「ここ
で履物を脱いでください」とも変換できます。ひ
らがな文字列でこの文のみが与えられた場合、
いかに精巧なアルゴリズムをもってしても、ど
ちらの変換が正しいかは決定できないのです。
これが日本語の宿命です。
　そして、連文節変換における文節区切りミス
の修正はかなり面倒でイライラするものです。
文節を判断するアルゴリズムは難しいです。そ
れならいっそのこと文節は人間が指定すればい
いじゃないかというのがSKKの結論です。「単
語変換＋文節マニュアル指定」こそがSKKであ
り、シンプルそのものです。面倒かもしれませ
んが、正しく入力する限り、文節区切りミスが
根絶できるのはうれしいものです。SKKを使っ
ていて文節を間違ったとき、それは自分が入力

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch

http://d.hatena.ne.jp/rubikitch/
http://www.rubyist.net/~rubikitch/

第4回 SKK＋AZIKで快適・効率的な日本語入力を！
　Emacsによる文字入力一元化を実現するために、スムーズな日本語入力は必要不可欠なものです。本
稿では、それを手助けするシンプルな日本語入力システム「SKK」、習得が簡単な拡張ローマ字入力システ
ム「AZIK」を紹介しています。実際にインストール＆入力してみて、その便利さ、普段の日本語入力との違い
を実感してください。

Writer

http://d.hatena.ne.jp/rubikitch/
http://www.rubyist.net/~rubikitch/

140 - Software Design Aug. 2014 - 141

を間違ったということですので自己責任です。
ものすごく潔いスタンスです。
　SKKでは、かな→漢字、漢字→かなに移ると
きに大文字を使います。SKKモードのとき、普
通にローマ字入力していればひらがなが入力さ
れます。そして、漢字が登場したらその読みの
ローマ字の先頭文字を大文字にします。また、
送り仮名が登場したときも先頭文字を大文字に
します。たとえば「動く」は「UgoKu」と入力しま
す。

スムーズな単語登録

　単語変換という一見時代遅れに思えるシステ
ムですが、単語変換だからこそ実現できた機能
が存在します。シンプルかつ強力な単語登録、
そして特殊変換です。
　連文節変換での単語登録は面倒なものです。
読み（見出し語）と漢字だけでなく、品詞情報ま
で登録する必要があるのですから。たとえば
ATOKの顔文字辞書の1エントリはこうなって
います。[TAB]がタブ文字で、前後にスペース
は入っていません。「独立語 *」というのが品詞情
報です。

ぱんち [TAB] ｏ-_-)＝○) O゚ ）゚ [TAB] 独立語*

　SKKは文節区切りという日本語の一番難しい
部分を人間に任せているため、品詞という概念
は存在しません。淡々と見出し語を変換するだ
けです。あるのは、見出し語と変換候補のテー
ブルのみです。変換できない場合は、すぐに単
語登録モードに入り、ユーザは変換後の文字列
を入力するだけで単語登録が終わります。単語
登録は入力を妨げるのではなく、呼吸をするよ
うに自然な流れになっています。
　言葉は生き物で、どんどん新語が登場してき
ます。アーチスト名、キャラクタ名などの固有
名詞もどんどん増えてきます。アニメや漫画で
は長く難しい漢字名の必殺技だって登場してき
ますね。辞書のデータが古い場合、新語はもち
ろん登録されていないので、出てくるたびに単

語登録することになります。連文節変換では品
詞情報も指定する必要があるため、単語登録は
面倒そのものです。SKKはあっさり単語登録が
終わるので、新語の対応は簡単です。
　SKKの単語登録は再帰的に行われます。たと
えば、「再帰」と「的」と「頭字語」のみが変換でき
る場合に「再帰的頭字語」に変換しようとします。
そのとき、「さいきてきとうじご」はそのまま変
換できないので、単語登録モードに入ります。
そこで「再帰的」＋「頭字語」で変換しようとして
も、今度は「さいきてき」が変換できないので、
再び単語登録モードに入ります。このとき、単
語登録モードの中で単語登録モードに入りまし
た。落ち着いて「再帰」＋「的」で「さいきてき」を
単語登録します。すると、「再帰的」が入力され
ている状態で「さいきてきとうじご」の単語登録
モードに戻るので、「頭字語」と入力すれば「さい
きてきとうじご」が単語登録されます。
　言葉で書くとすごく複雑そうですが、実際に
再帰的単語登録をやってみればごくごく自然な
流れだとわかります。品詞情報不要の単語変換
だからこそスムーズにできるのです！
　SKKのラージ辞書はかなり多くの単語が含ま
れていますが、複合語はあまり含まれていませ
ん。複合語を変換しようとすると、しばしば単
語登録モードに入ります。たとえばブログなど
でよく使われる表現の1つ「超絶便利」は入って
いないので、そういう場合でも落ち着いて単語
登録してください。
　複合語を登録しておくと、しばしばタイプ数
が削減できます。なぜなら、入力中に見出し語
補完する機能が備わっているからです。「超絶便
利」と変換したあとに「ちょ」と入力したら「ちょ
うぜつべんり」が見出し語候補に登ります。

特殊変換emacs

　ほかにもアルファベットや記号を見出し語に
して変換する機能が存在します。「computer→
コンピュータ」、「skk→Simple Kana to Kanji

conversion program」などです。さらに、skkの

第4回 SKK＋AZIKで快適・効率的な日本語入力を！

142 - Software Design

あっても、問題なく日本語入力できます。新し
いコンピュータを使うときに、EmacsとSKKさ
えインストールしてしまえばいいのですから。
複数のOSを使う人にとって、日本語入力シス
テムを使い分ける必要がないのは、とてもうれ
しいことではないでしょうか。

インストール

　APTなどのOSのパッケージシステムで
ddskkが存在するのであれば、そこからインス
トールしてください。Debian系列のGNU/Linux

では「sudo apt-get install ddskk skkdic」でおし
まいです。Emacs初心者がGNU/Linuxで使う
場合ならば、これが無難です。その時点で初期
設定は済んでいます。
　ddskkのアーカイブからインストールするの
はちょっと手間がかかります。展開したら、ま
ずdicディレクトリに移動し、辞書ファイルを
ダウンロードして置いてください 注1。その後
makeします。もし、うまくいかない場合はSKK-

CFGファイルを編集してください 注2。

$ cd dic
$ wget http://openlab.ring.gr.jp/skk/ ｭ
skk/dic/SKK-JISYO.L
$ cd ..
$ make what-where
emacs -batch -q -no-site-file -l SKK-MK -f
SKK-MK-what-where Loading /home/rubikitch/
emacs/ddskk-15.1/SKK-CFG...

SKK modules:
 skk-viper, skk-jisx0213, ...（略）...
 -> /usr/local/share/emacs/24.3/site-lisp
/skk
...（略）...
SKK tutorials:
 SKK.tut, SKK.tut.E, NICOLA-SKK.tut, skk.
xpm
 -> /usr/local/share/skk
$ make install

　そして、次の初期設定をすれば使えます。
̃/.emacs.d/init.elに書き加えてEmacsを再起動

変換を進めていくとSKKのバージョンが出てく
るというおもしろい機能もあります。
　応用例として、特殊変換を簡単なデータベー
スとして使えます。たとえば、「emacs→http://

www.gnu.org/software/emacs/」のようにURL

やメールアドレスを登録することもできます。
　単語変換だからといって馬鹿にはできないで
しょう？　シンプルながらも多機能で柔軟的な
のがSKKなのです。
　日本語入力についてはGoogle日本語入力が有
名ですね。Google日本語入力はGoogleの高性
能サーバを使って膨大なデータから最適かつ正
確な変換をしてくれます。もちろん連文節変換
もできます。サーバ経由ですので、自分で単語
登録せずともすでに新語が登録されています。
APIが提供されているので、SKKからGoogle

日本語入力の機能を使うことすらできます。サー
バ経由ですので一見遅いようですが、もちろん
キャッシュが用意されているので問題ありませ
ん。SKKなのに連文節変換もできてしまいま
す。シンプルなSKKだからこそ、両者の強味を
共存させられるのです。

いろいろなSKK実装

　SKKはもともとEmacs Lispで実装されてい
ますが、SKKファンはEmacsの外でもSKKを
使いたくなるものです。そのため、いろいろな
環境への移植版が作られています。Windows用
の「SKK日本語入力FEP」、Mac OS X用の
「AquaSKK」などです。
　現在のEmacs用SKKはddskk（Daredevil SKK）
です。SKKという名前ではとっくのとうに開発
終了しており、ddskkという名前になって開発
が続けられています。よって、Emacsの文脈で
SKKといえば自動的にddskkとなるわけです。
本稿でもSKK＝ddskkと認識してください。
　SKKはEmacs Lispでのみで書かれているの
で、Emacsさえ動けばどのOSであっても同じ
操作性で日本語入力できます。英語版のOSで

注1） http://openlab.ring.gr.jp/skk/skk/dic/SKK-JISYO.L
注2） WindowsではREADMEs/README.w32.jaを参照してく

ださい。

るびきち流
Emacs超入門

142 - Software Design Aug. 2014 - 143

してください。

;; make what-whereでSKK modulesで表示される
ディレクトリを指定
(add-to-list 'load-path "/usr/local/ ｭ
share/emacs/24.3/site-lisp/skk")
;; M-x skk-tutorialでNo file found as ～と
エラーが出たときにskk-tut-fileを設定
;; make what-whereでSKK tutorialsで表示される
ディレクトリ上のSKK.tutを指定
(setq skk-tut-file "/tmp/share/skk/SKK.tut")
(require 'skk)
(global-set-key "\C-x\C-j" 'skk-mode)

　Lispファイルの検索パスである load-pathの
設定は重要です。SKKをmakeでインストール
した場合は、SKK用のLispディレクトリが作
成されるので、load-pathに加えておく必要があ
ります。さもなければskkを読み込んでくれま
せん。
　C-x C-jを押すとSKKモードになります。も
しC-x C-jにdired-jumpが割り当てられている
場合は、(require 'dired-x)をglobal-set-keyの前

4

に
4

書いてください。dired-xをロードした時点で
C-x C-jにdired-jumpが割り当てられてしまう
ので、あらためてglobal-set-keyでskk-modeに
再割り当てするためです。

チュートリアルから
始めよう

　SKKには優れたチュートリアルがあります。
そのため、実際のSKKでの入力方法については
本稿では触れません。はじめてSKKを使うとき
は、チュートリアルに従って手を動かして覚え
ていってください。チュートリアルはM-x skk-

tutorialで実行できます。
　チュートリアルで十分過ぎるほどの情報量で
すので、日常的な日本語入力は一部の機能を使
えば十分間に合います。無理に全部覚える必要
はありません。ゆっくりでいいです。

拡張ローマ字入力
AZIK

　ここからはSKKの応用設定の話です。
　現在の日本語入力方法の主流は当然ローマ字

入力ですね。しかし、ローマ字入力というのは
非効率的な入力方法なのです。ひらがな1文字
入力するのに、ほぼ2ストローク必要になるの
はかなり多くの打鍵数が必要といえます。おま
けに漢字変換する必要があり、正しく変換され
たかどうかを目視で確認する必要があります。
　少しでも入力効率を上げるにはどうすれば良
いのでしょうか？

漢直入力は……

　その問題を解決する方法として漢直入力があ
ります。漢直入力というのは、漢字変換なしで、
直接漢字を入力する入力方式です。2ストロー
クの組み合わせに1文字を割り当てています。た
とえば、T-Codeで使われるキーは40種類程度
ですので、2ストロークでは40×40で1,600通
りになります。その1,600個それぞれに文字を
割り当てれば、2ストロークで漢字やかなを直
接入力できるのです。
　しかし漢直入力というのは、1文字1文字スト
ロークを覚える必要があるという重大なデメリッ
トがあります。あなたが小中学生で漢字を1文
字覚えるついでに漢直入力のストロークを覚え
られればいいのですが、残念ながら日本の教育
はそうなっていません。大人になってから覚え
るのはとてもつらいもので、漢直入力に挑戦す
るも挫折した人はたくさんいます。脳科学的に、
人間は14歳を過ぎれば丸暗記がしにくくなって
いるからです。
　このように新たな入力方式を習得するには、
習得コストが問題になります。漢直入力はロー
マ字入力といういつもの習慣を捨て去る必要が
あるうえに、せめてよく使う文字のストローク
を覚えるまでは実用になりません。それでは日
常業務に差支えてしまいますね。「T-Codeを覚
えるために3ヵ月間仕事を休ませてください」な
んて通るはずがありません。

第4回 SKK＋AZIKで快適・効率的な日本語入力を！

144 - Software Design

拡張しています。
　AZIKではおもに表1のように入力します。
「っ」と「ー」が劇的に打ちやすくなったのは特筆
すべき点です。これだけでもAZIKを習得する
価値はあります。
　母音+は、日本語のパターンから頻出のもの
を入力しやすくするための拡張です。たとえば
母音+aというのは「か」などで、「かん」は「kz」で
入力できるようになります。実際にやってみれ
ばわかりますが、これらは指の動きを少しずら
すだけで効率的に入力できます。慣れないうち
は「ん＝q」を使って「kaq」と入力しても良いで
す。
　ほかにも互換キーや特殊拡張もありますが、
まずは上記の基本をしっかりマスターしたうえ
でゆっくりと覚えれば良いです。実は筆者も全
部は覚えきれてはいません。詳細はAZIKの
Webページ 注3を参照してください。

skk-azikを使う

　SKKでもAZIKに対応しています。次の1行
を ̃/.skkに加えるだけです。

(setq skk-use-azik t)

　なお ̃/.skkはSKKローカルの設定ファイル
で、M-x skk-restartを実行すれば再読み込みさ
れます。それ以外は ̃/.emacs.d/init.elとの違い
はありません。
　SKKではローマ字に出てこないqや lをモー
ドの切り替えに使っていますが、AZIKではこ
れらの文字も使っています。よって、SKKの
AZIK拡張では一部異なる操作となっています。

小指を守ろう

　SKKではかな漢字の区切りには大文字を使い
ます。実際に使っていくとわかりますが、SKK

を使い続けていくと　　　 を押す小指が疲れてShift

ローコスト・ハイリターンのAZIK！

　大人にとっては漢直入力は現実的な入力方式
ではありません。かといってローマ字入力の非
効率さはなんとかしたいものです。そこで、「ロー
マ字入力改」というべきAZIKという入力方式が
考案されました。AZIKならばローマ字入力が
ベースですので、無意識で行っているローマ字
入力という資産を捨てる必要はありません。
　AZIKでの入力方法がわからないAZIK初心
者であっても、ほとんどのケースで従来のロー
マ字入力が使えます。よって、AZIKは日常業
務に影響することなく、段階的に習得できるの
です。筆者もAZIKを愛用しています。
　AZIKは実用的なアプローチをとっています。
日本語の音韻を研究し、よくあるパターンの入
力を簡潔化しています。既存の入力方式は（ロー
マ字入力もかな入力も漢直入力も）日本語という
言語そのものの特性を考えているわけではあり
ません。AZIKは日本語の文章を効率よく入力
できるように、ローマ字→かな変換テーブルを

入力対象 キー 備考

ん q skk-azikでは@でかなカナ切り
替え

っ ; なんとホームポジションに！

ー : わざわざ小指を上に動かす必要
なし！

しゃ xa しゅ、しょも同様
ちゃ ca ちゅ、ちょも同様
ゎ lwa skk-azikではxwa
ぁ la skk-azikではxxa
ゃ lya skk-azikではxya
母音+aん z aの下
母音+iん k iの下
母音+uん j uの下
母音+eん d eの下
母音+oん l oの下
母音+aい q aの上隣り
母音+uう h uの斜め下隣り
母音+eい w eの左隣り
母音+oう p oの右隣り

 ▼表1　AZIKでの入力方法

注3） http://hp.vector.co.jp/authors/VA002116/azik/azikinfo.
htm

るびきち流
Emacs超入門

http://hp.vector.co.jp/authors/VA002116/azik/azikinfo.htm

144 - Software Design Aug. 2014 - 145

一緒にEmacs力を
高めませんか？

　筆者は毎週土曜日にEmacsのメルマガを発行
しています。多くの解説ではその機能の説明に
終始しており具体例に乏しいため、理解するの
にとても時間がかかるうえ、今の自分に必要な
のかどうかを見極めることも難しいです。メル
マガではチュートリアル形式で手を動かして学
ぶ形式になっているので、たった5分でその内
容を習得できるようになっています。わかりに
くい資料で長時間悪戦苦闘するか、月々527円
で時間差を買うかはあなたしだいです。無制限
メール相談権も付けています。初月無料ですの
で安心して登録してください 注4。Happy Emacs

ing！ﾟ

しまいます。残念ながら、それがSKKの大きな
欠点です。
　でも御安心ください。　　　 を使わずにかな
漢字の区切りを指定する方法があるのです。
̃/.skkにて変数skk-sticky-keyに区切りキーを
設定すれば、　　　 を使わずに快適にSKKが使
えるようになります。変換キーや　　　 キーは
親指で押せるのでお勧めです。たとえば「動く」
は「UgoKu」ではなく「　　　 ugo　　　 ku」で
入力できます。

;; Windows 環境だと [noconvert]
(setq skk-sticky-key [muhenkan])

　muhenkanなどのキー名はどうやって取得する
のかというと、<f1> cを使います。そのあとに
　　　 キーを押せば「<muhenkan> is undefined」
と出てきます。

Shift

Shift

無変換

無変換 無変換

無変換

注4） http://www.mag2.com/m/0001373131.html

フロントエンドエンジニアは、主にWebブラウザとシステムの間を
取り持つエンジニアとしてWeb系企業では一般的になった職種
と言われていますが、実際の仕事の領域や扱う技術は会社に
よってバラバラです。
本書では、フロントエンドエンジニアとしての心構えを指南し、フロ
ントエンド開発の基礎知識から現役のエンジニアがステップアッ
プするために必要な技術を幅広く解説します。
本書を通してフロントエンドエンジニアが身に付けるべき知識が
どういうものか概観できます。

養成読本編集部 編
B5判／212ページ
定価（本体1,980円＋税）
ISBN 978-4-7741-6578-3

新人エンジニア、フロントエンドエンジニア

第4回 SKK＋AZIKで快適・効率的な日本語入力を！

http://www.mag2.com/m/0001373131.html

146 - Software Design

トピック

　AWS Command Line Interface（以下「AWS

CLI」）に、31番目のコマンドとして"emr"が追
加されたことが6月5日に告知されました注1。
　これは、Amazon Elastic MapReduce（以下
「EMR」）を操作するためのコマンドで、すでに
その詳細なマニュアルがAWS CLIリファレン
スに追加されています注2。
　2014年6月時点ではまだプレビュー版のため、
その利用にはあらかじめ下記のコマンドを実行
する必要があります。

・コマンド:

% aws configure set preview.emr true

　このコマンドを実行すると ̃/.aws/configに下
記の行が追加され、以後はemr関連の約20個
のサブコマンドが利用できるようになります。

・~/.aws/config:

[preview]
emr = true

注1） URL https://aws.amazon.com/jp/about-aws/whats-
new/2014/06/05/announcing-a-preview-of-amazon-
elastic-mapreduce-commands-on-the-aws-cli/

注2） URL http://docs.aws.amazon.com/cli/latest/reference/
emr/index.html

　EMRの追加により、AWSマネジメントコン
ソール上のサービスメニューに表示されている
29サービスのうち、AWS CLIが対応していな
いものは下記の4サービスとなりました。

・workspaces
・cloudfront
　（レビュー版、リファレンスへの記載なし）
・glacier
・appstream

　AWS CLIの急ピッチな利便性向上を嬉しく
思う一方で、個人的にCloudFrontの正式対応
を期待したいところでもあります。
　さて今月号の本題に入ります。

今回の流れ

　前回は、AWSアカウントの作成後にやって
おくと良い下記の4つの作業のうち、請求関連
の設定について解説しました。

1.AWS CloudTrail（APIのロギング）の設定（第
3回）

2.作業用AWS Identity and Access Management
（以下IAM）ユーザの作成（第3回）

3.請求関連の設定（前回）
4.多要素認証（MFA）の設定

シェルスクリプトではじめる
AWS入門
―AWS APIの活用と実践

Writer　波田野 裕一（はたの ひろかず）／運用設計ラボ　operation@office.operation-lab.co.jp

第5回　AWS利用環境の構築（後編）　MFA設定

https://aws.amazon.com/jp/about-aws/whats-new/2014/06/05/announcing-a-preview-of-amazon-elastic-mapreduce-commands-on-the-aws-cli/
http://docs.aws.amazon.com/cli/latest/reference/

146 - Software Design Aug. 2014 - 147

第5回　AWS利用環境の構築（後編）　MFA設定

　今回は、4つ目の多要素認証（MFA）の設定に
ついて解説します。

Note
　第2回および前回の記事でも言及しましたが、
AWSマネジメントコンソールの操作においては、
Google Chromeの利用を推奨します。

MFA（多要素認証）の設定

　前回までの設定で、AWSアカウントでなけ
ればできないことは請求情報の変更や請求レポー
トの閲覧以外ほぼ無くなり、日常運用について
は第3回に作成した IAMユーザで行うことが
できるようになりました。普段使わなくなった
AWSアカウントについては、多要素認証
（Multi-Factor Authentication）を導入して防御
を固めておきましょう。

AWSアカウントにMFAを設定

　MFAは、AWSのサービスにアクセスする際
に、専用デバイス（ハードウェアMFAデバイス）

もしくはスマー
トデバイスのソ
フトウェア（仮
想MFAデバイ
ス）などにより
生成されるワン
タイムの認証
コードを要求す
る認証方式で、

なりすまし防止効果の向上が期待できます。
　今回は、AWSアカウントに対して、仮想
MFAデバイス（iPhone＋Google Authenticator）
を利用した多要素認証の設定をし、なりすまし
によるAWSマネジメントコンソールへのサイ
ンインの防止を図ります。

手順①　Google Authenticatorのインストール
　最初に、利用しているスマートデバイスのアプ
リケーションストア（iPhoneの場合はAppStore）
にアクセスして、Google Authenticatorをイン
ストールしてください（図1）。

Note
　https : / /code.google .com/p/google -
authenticator/に入手先へのリンクが掲載され
ています。

手順②　AWSマネジメントコンソールでの設定
　MFAの設定は、Security Credentialsペー
ジ注3で行います。［マネジメントコンソールの
右上のアカウント名］→［Security Credentials］
の順にクリックするとアクセスできます（図2）。
　“AWSアカウントは権限が無制限なので
IAMユーザを使いましょう”という趣旨の注意
が表示されます。今回はそのAWSアカウント
へのアクセスに制約を追加する作業を行うので、
［Continue to Security Credentials］ボタンをク
リックします（図3）。

注3） U R L h t tp s : / / conso l e . aws .amazon . com/ i am/
home?#security_credential

 ▼図1　 Google Authenticator
のインストール

 ▼図2　コンソールメニュー画面

 ▼図3　 警告表示画面で［Continue to Security Credentials］を押下

https://code.google.com/p/google-authenticator/
https://code.google.com/p/google-authenticator/
https://console.aws.amazon.com/iam/home?#security_credential

148 - Software Design

　［Multi-Factor Authentication（MFA）］の左
の［＋］ボタンをクリックすると［Activate MFA］
ボタンが表示されるのでクリックします（図4）。
　MFAデバイスを選択する画面が表示される
ので、今回は［A virtual MFA device］（仮想
MFAデバイス）を選択し、［Continue］ボタンを
クリックします（図5）。
　AWS MFA互換アプリケーションのインス
トールを促すメッセージが表示され、［Continue］
ボタンをクリックするとQRコードが表示され
ます（図6）。

手順③　 Google Authenticator と AWS ア
カウントの関連付け

　QRコードが表示されたら、Google Authenticator

とAWSアカウントの関連付けを行います。具
体的には、Google AuthenticatorにAWSアカ
ウント情報を登録し、表示される認証コードを
AWSマネジメントコンソールに転記する作業
を2回行います。
　まず、スマートデバイスでGoogle Authenticator

を起動します。右上の鉛筆のアイコンをクリッ
クすると、一番下に［＋］ボタンが表示されるの
でクリックします。［入力を追加］画面が表示さ
れるので［バーコードをスキャン］を選択します
（図7）。
　Google Authenticator内部でカメラが立ちあ
がるので、AWSマネジメントコンソール上に

表示されているQRコードを読
み取らせましょう。正常に読み
取れればGoogle Authenticator

の［認証システム］画面に新しい
欄が追加されているはずです（図
8）。

 ▼図4　［Activate MFA］ボタンの表示

 ▼図6　QRコードの表示

 ▼図5　MFAデバイスの選択

 ▼図7　 ［入力を追加］画面から［バー
コードをスキャン］を選択

 ▼図8　 ［認証システム］画面に新し
い欄が追加される

148 - Software Design Aug. 2014 - 149

第5回　AWS利用環境の構築（後編）　MFA設定

　ここに表示されている6桁の数字が認証に必
要な認証コードで、30秒周期で更新されます。
認証コードは通常は青で表示されていますが、
更新5秒前から色が替わり点滅しはじめます。
右下に残り時間が円グラフで表示されているの
で、残り時間が少ない場合は次の更新を待って
利用するようにします。
　また、数字の下にはラベル欄があり、ここに
はアカウント情報が薄字で表示されています。
このメモ欄は右上の鉛筆ボタンを押した後に編
集可能になるので、忘れないうちに適切な名称
に書き換えておくことをオススメします。
　Google Authenticator上に認証コードが表示
されるようになったら、その数値をAWSマネ
ジメントコンソール上の［Authentication Code

1］欄に転記します。
　Google Authenticator上で認証コードが更新
されるのを待ち、更新されたらその数値を
AWSマネジメントコンソール上の［Authentication

Code 2］欄に転記します。この認証コードは、
［Authentication Code 1］欄に転記した認証コー
ドのすぐ次に表示された認証コードである必要
があります（つまり、2つの認証コードは連続
して表示されたものでなければダメです）。
　［Continue］ボタンをクリックして“The MFA

Adevice was successfully associated.”と表示さ
れればMFAの登
録は成功です。
［Finish］ボタンを
クリックしてくだ
さい（図9）。
　［Multi-Factor

Authentication

（MFA）］欄に、今
登 録 し た 仮 想
MFAデバイスが
表示されているこ
とが確認できます
（図10）。

手順④　 MFAを利用したサインイン
　設定が完了すると、これ以降はMFA仮想デ
バイスなしではAWSマネジメントコンソール
へのサインインができなくなります。ほかの端
末もしくはブラウザで実際にサインインしてみ
ましょう。
　サインアップ画面から通常通りサインインし、
パスワード認証が完了すると、［Amazon Web

Services Sign In With Authentication Device］
画面が表示されます（図11）。
　Google Authenticatorに表示される認証コー
ドを［Authentication Code］欄に入力し、［Sign

in using our secure server］ボタンをクリック
すると、サインインが完了しています。
　なお、MFAによるなりすまし防止は、AWS

マネジメントコンソールに対しては有効ですが、
アクセスキーを利用したAPIへのアクセスに
対しては基本的に効果がありません。
　MFAの設定の有無にかかわらず、アクセス
キーの管理については引き続き注意を払うよう
にしましょう。

 ▼図9　MFAの登録の完了

 ▼図10　仮想MFAデバイスの表示

 ▼図11　 Amazon Web Services Sign In With Authentication Device画面表示

150 - Software Design

Note
　一部のAWSサービスではAPIへのアクセス制
御にMFAを利用することが可能です。

MFAの利用を止めるには

　MFAの利用をやめたいときは、Security

Credentialsペ ー ジ に お い て［Multi-Factor

Authentication（MFA）］欄に表示されている仮
想MFAデバイスについて“Deactivate”を行え
ば、その仮想MFAデバイスが無効になり、通
常のサインインができるようになります（前掲
図10参照）。MFAを無効化したアカウントに
ついては、Google Authenticatorからも忘れず

に削除しておきましょう。ただし、MFAを無
効化するよりも先にGoogle Authenticatorから
そのアカウント情報を削除してしまうとサイン
インができなくなってしまうのでご注意くださ
い。
　万が一、MFAデバイスが故障したり紛失し
た場合は、公式ドキュメント注4に従ってMFA

デバイスの無効化を行ってください。

次回は

　次回からは、いよいよ実際にAWS APIをシェ
ルスクリプトで利用する方法の解説に入ってい
きます。ﾟ

注4） URL http://docs.aws.amazon.com/ja_jp/IAM/latest/
UserGuide/LostMFA.html

http://docs.aws.amazon.com/ja_jp/IAM/latest/UserGuide/LostMFA.html

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Aug. 2014 - 151

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

2014年3月号
 第1特集
データベースの諸問題
RDBとNoSQL
どちらを選びますか？
 第2特集
ネットワークエンジニアのための
プロキシサーバの教科書
 一般記事
・さらに踏み込む、Mac OS Xと仮想デスクトップ #1

定価（本体1,219円＋税）

 第1特集
設定ファイルの読み方・書き方でわかる
Linuxのしくみ
 第2特集
Windows XPからの乗り換えにいかが？
Ubuntu 14.04 "Trusty Tahr"過酷な
環境でも信頼できるLTSバージョン
 一般記事
・Google Glassアプリ開発事情
・OpenTSDB（前編） ほか

2014年6月号

定価（本体1,220円＋税）

 第1特集
<Java/JavaScript/PHP>言語別で考える
なぜMVCモデルは
誤解されるのか？
 第2特集
ネットワークエンジニア養成
ロードバランサの教科書
 一般記事
・さらに踏み込む、Mac OS Xと仮想デスクトップ #2
・SIMのしくみ

2014年4月号

定価（本体1,219円＋税）

 第1特集
［多機能］［高速処理］［高負荷対策］
そろそろNginxを考えている
あなたへ
 第2特集
知っているようで知らない
DHCPサーバの教科書
 一般記事
・OpenSSLの脆弱性"Heartbleed”の教訓（前編）
・Webアプリのパフォーマンス改善（最終回） ほか

2014年7月号

定価（本体1,220円＋税）

2014年5月号
 第1特集
ネットワーク・ビギナー向け基礎講座

「ポート」と「ソケット」がわかれば
TCP/IPネットワークがわかる！
 第2特集

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

 一般記事
・Rettyのサービス拡大を支えた「たたき上げ」DevOps
・Webアプリのパフォーマンス改善 ほか

定価（本体1,220円＋税）

 第1特集
λ式からはじめませんか？
関数型プログラミング再入門
 第2特集
目利きによるトレンド予測
2014年IT業界はどうなるのか？
 一般記事
・会社組織を活性化するスパイス「コンパ」

2014年2月号

定価（本体1,219円＋税）

http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com

152 - Software Design

bhyveにおける仮想シリアルポートの実装（その1） 第21回

　前回（6月号）の記事では、bhyveにおける仮想ディ
スクの実装について解説しました。今回は、現在
bhyveにおける唯一のコンソールデバイスである、仮
想シリアルポートの実装について解説していきます。

　シリアルポートの仮想化について触れる前に、物
理PCにおけるシリアルポートの仕様について簡単
におさらいしましょう。

　ISAバス注1がまだ搭載されていた頃のPCでは、
シリアルポートはフロッピーディスクコントローラ
やPS/2ポート、パラレルポートなどと共にISAバ
スに接続されていました。現在のPCでは古くなっ
たISAバスは廃止されましたが、シリアルポートな
どのレガシーデバイスは完全に廃止されておらず、
代わりにLPCバス注2により接続されています。
　LPCバスは低帯域なレガシーデバイスを接続する
ための専用バスで、I/O Controller Hub（ICH）注3に実
装されています。LPCバスの物理的仕様はISAバス
と互換性がありませんが、ソフトウェアからは従来
のISAバスのように見えます。シリアルポートなど

注1） ISA：Industrial Standard Architecture

注2） LPC：Low Pin Count

注3） 略称 ICH、サウスブリッジとも呼ばれる。

のレガシーデバイスはスーパーI/Oチップと呼ばれ
る単一のチップにまとめて実装されており、LPCバ
スの信号線からICHへ接続されています（図1）。
　LPCバスはPCI-LPCブリッジを用いてPCIバス
へ接続され、レガシーデバイスはLPCバスからPCI

はじめに

物理 PCにおける
シリアルポートの仕様

ハイパーバイザの作り方
ちゃんと理解する仮想化技術

浅田 拓也（あさだ たくや）　Twitter @syuu1228

bhyveにおける
仮想シリアルポートの実装（その1）

第21回
Writer

接続バス

▼図1　スーパー IOチップがLPCバスによってサウスブリッジに
　接続されていることを示すブロック図
　（CC-BY-SA 3.0 Moxfyre）

Northbridge

(memory
controller hub)

Southbridge

(I/O controller
hub)

Cabeles and
ports leading

off-board

IDE
SATA
USB

Ethernet
Audio Codec

CMOS Memory

Serial Port
Parallel Port
Floppy Disk

Keyboard
Mouse

CPU

Clock
GeneratorGraphics

card slot

High-speed
graphics bus
(AGP or PCI

Express)

Chipset

Front-side
bus

Internal
Bus

PCI
Bus

PCI Slots

PCI
Bus

Memory
bus

Memory Slots

LPC
Bus Super I/O

Flash ROM
(BIOS)

Onboard
graphics
controller

152 - Software Design Aug. 2014 - 153

bhyveにおける仮想シリアルポートの実装（その1） 第21回

バスを経由してコンピュータと接続されます。
　図2にlspciコマンドを用いてPCIデバイスリスト
上にPCI-LPCブリッジが存在することを確認する
コマンド例を示します。
　このように、シリアルポートなどのレガシーデバ
イスは現在のPCにおいても互換性の維持のために
ISAバスの時代と同様の方法でアクセスできるよう
に設計されています。

　ISAバス（実際にはLPCバス）ではPCIバスと異
なりバス上のデバイスを検出する方法がありませ
ん。代わりに、デバイスごとに既定のIRQ番号、I/O
ポート番号、メモリマップ先アドレスなどが決めら
れており、ドライバは固定されたIRQ番号、I/Oポー
ト番号などを使用します。シリアルポートに割り当
てられているIRQ番号、I/Oポート番号を表1に示し
ます。
　シリアルポートはISAデバイスのままの仕様です
ので、割り込みはPCIデバイスのようにレベルトリ
ガではなくエッジトリガで行われます。また、割り
込みはIO-APIC注4を経由しCPUへルーティングさ
れます。ソフトウェアからみると、エッジトリガで
ある点を除けば、MSI注5をサポートしないレガシーな
PCIデバイスの割り込みに似ています。

　PCのシリアルポートには初期のPCから現在のPC

まで16550A UART注6コントローラ互換のチップ注7が
使用されています（現在のPCではUARTコントロー
ラはスーパーI/Oチップ内に実装されています）。

注4） APIC：Advanced Programmable Interrupt Controller

注5） MSI：Message Signalled Interrupt

注6） UART：Universal Asynchronous Receiver Transmitter

注7） 厳密には初期のモデルのPCでは、これよりも古く機能の少な
いコントローラが使用されており、現在では16550Aの上位
互換なチップが使用されている。

　16550A UARTコントローラは、より古いコント
ローラとの後方互換性を保つため1バイトずつの送
受信を行うFIFO注8無効なモードと、数バイトの
データをバッファできるFIFO有効なモードを持ち
ます。
　RS232C上のRTS/CTS、DSR/DTR各信号線を用
いてFIFOのフロー制御ができます。これはハード
ウェアフロー制御と呼ばれており、これに対してソ
フト的なメッセージによってフロー制御を行う方式
をソフトウェアフロー制御と呼びます。
　表2に16550Aが持つハードウェアレジスタの一
覧を示します。
　各レジスタは使用するシリアルポートに割り当て
られたI/Oポートの先頭アドレス＋offset（COM1の
IERなら0x3F8＋1＝0x3F9）へin/out命令を行うこ
とでアクセスできます。また、offset 0と1のレジスタ
はDLAB（LCRの7bit目）の値で切り替えて使用しま
す。すべてのレジスタは1バイト幅になっています。
　次に、表3から表10に各レジスタのフィールドと
値の意味を示します。
　OSからシリアルポートを初期化するには、リス
ト1のような手順で値をレジスタに書き込む必要が
あります注9。
　OSからシリアルポートに届いたデータ1バイトを
変数cへ受信するには、シリアルポートへ割り込み
ハンドラからリスト2のような手順でレジスタへの
アクセスを行います。

注8） FIFO：First In, First Out：先入れ、先出し。
注9） リストではわかりやすくするためにビットフィールド単位で

値を書き込んでいますが、実際にはレジスタ単位で読み書き
を行います。

割り込みとレジスタアクセス方法

$ lspci ¦ grep LPC
00:1f.0 ISA bridge: Intel Corporation 82801JIR (ICH10R) LPC Interface Controller

▼図2　PCI-LPCブリッジを lspciコマンドで確認

IRQ I/O port
COM1 4 0x3F8-0x3FF
COM2 3 0x2F8-0x2FF

▼表1　シリアルポートの IRQと I/Oポート番号

16550A UARTコントローラ

154 - Software Design

bhyveにおける仮想シリアルポートの実装（その1） 第21回ハイパーバイザの作り方
ちゃんと理解する仮想化技術

IO port offset R/W DLAB 名前 説明
0 R 0 RBR（Receive Buffer Register） データの受信

W 0 THR（Transmitter Holding Register） データの送信
RW 1 DLL（Divisor Latch LSB） ボーレート（下位バイト）

1 RW 0 IER（Interrupt Enable Register） 割り込みの有効化・無効化
RW 1 DLM（Divisor Latch MSB） ボーレート（上位バイト）

2 R - IIR（Interrupt Indication Register） 現在の割り込み要因
W - FCR（FIFO Control Register） FIFOの設定

3 RW - LCR（Line Control Register） 通信方式（7bit目がDLAB）
4 RW - MCR（Modem Control Register） 制御信号の送信
5 R - LSR（Line Status Register） 通信状態
6 R - MSR（Modem Status Register） 制御信号の受信
7 RW - SCR（Scratch Register） ソフトウェアが自由に使えるレジスタ

bps DLL DLM
9600 0x0c 0x00

19200 0x06 0x00
38400 0x03 0x00
57600 0x02 0x00

115200 0x01 0x00

bit 要因
0 FIFO有効化
1 RX FIFOのクリア
2 TX FIFOのクリア
3 0b: 1バイトごとに割り込み

1b: RX FIFOトリガ・RX FIFOタイムアウト・TX
FIFOが空の時に割り込み

6-7 RX FIFOトリガ割り込みを行うバイト数
00b: 1byte
01b: 4byte
10b: 8byte
11b: 14byte

bit 要因
0-1 ワード長

10b: 7bit
11b: 8bit

2 0b: 1ストップビット
1b: 2ストップビット

3 パリティ有効
4 0b: 奇数パリティ

1b: 偶数パリティ
5 送信データのパリティ値を固定
6 ブレークシグナル有効
7 DLAB

bit 要因
0 割り込みペンディング

1-3 000b: MSRの変更通知／MSR readでクリア
001b: データを送信可能（FIFO有効時はTX FIFOが空）／ IIR read・THR writeでクリア
010b: データが着信（FIFO有効時はRX FIFOトリガ）／RBR readでクリア
011b: LSRの変更通知／LSR readでクリア
110b: RX FIFOタイムアウト／RBR readでクリア

6-7 00b: FIFO無効
11b: FIFO有効

bit 要因
0 Data Terminal Ready（DTR）をアサート
1 Request To Send（RTS）をアサート
3 割り込み有効

bit 要因
0 データが着信（FIFO有効時はRX FIFOトリガ・タ
イムアウト）

1 データを送信可能
2 LSRの変更通知
3 MSRの変更通知

▼表2　16550Aのレジスタ一覧

▼表3　ボーレートの設定（DLL、DLM）

▼表6　FIFOの設定（FCR） ▼表7　通信方式の設定（LCR）

▼表5　現在の割り込み要因（IIR）

▼表8　制御信号の送信（MCR）

▼表4　有効化・無効化する割り込みの種類（IER）

154 - Software Design Aug. 2014 - 155

bhyveにおける仮想シリアルポートの実装（その1） 第21回

　OSからシリアルポートへ変数cから1バイト送信
するには、シリアルポートへリスト3のような手段
でレジスタへのアクセスを行います。

　LinuxやFreeBSDなどのOSをシリアルコンソー
ル上で動かすには、上述のレガシーなシリアルデバ
イスを用いる必要があります。
　これらのOSでは、USB接続のUSB-RS232C変換
ケーブルや準仮想化コンソールデバイスのような、
非標準のコンソールデバイスを用いてブートメッ
セージを出力できないためです。
　このため、bhyveではPCIデバイスの1つとして動
くPCI-LPCブリッジのエミュレータとISAデバイ
ス注10の1つとして動くシリアルデバイスのエミュ
レータを実装しています。また、シリアルデバイス
のエミュレータは16550A UARTコントローラをエ

注10） 前述のとおり、実際にはLPCバスに接続されたデバイスだが
OSから見て ISAデバイスと違いがない。

ミュレートしています。
　シリアルデバイスの入出力は、他のハイパーバイ
ザと異なり単純に標準入出力に対して行われます。
このため、仮想マシンをバックグラウンド動作させ
てコンソールをアタッチ・デタッチできるようにす
るには、tmuxのようなターミナルマルチプレクサを
用いたり、nmdm(4)を用いてbhyveを実行している端
末から標準入出力を切り離し、外部からアクセス可
能にする必要があります。

　今回は物理PCにおけるシリアルポートの仕様を
中心に解説しました。次回は、bhyveのPCI-LPCブ
リッジと仮想シリアルデバイスのソースコードを解
説します。｢

▼リスト1　シリアルポートの初期化手順 ▼リスト2　シリアルポートの受信処理

▼リスト3　シリアルポートへの送信処理

LCR[0:1] = 11b // ワード長 8bit
LCR[2] = 0 // 1 ストップビット
LCR[3] = 0 //パリティ無効
DLL = 0x01
DLM = 0x00 // 115,200 bps
FCR[0] = 1 // FIFO有効
FCR[1] = 1 // RX FIFOクリア
FCR[2] = 1 // TX FIFOクリア
FCR[3] = 1 // RX FIFO割り込み有効
FCR[6:7] = 11b // 14byteバッファしてから割り込み
MCR[0] = 1 // DTRをアサート
MCR[1] = 1 // RTSをアサート
MCR[3] = 1 // 割り込み有効

if LSR[0] == 1 // データが着信している
 c = RBR
end

loop_until LSR[5] == 1 // TX FIFOに ｭ
未送信データが残っている間、待つ
THR = c

bhyveにおける
仮想シリアルポートの実装

まとめ

bit 要因
0 データが着信
1 受信データ溢れ
2 パリティエラー
3 フレーミングエラー
4 ブレークシグナル受信
5 THRまたはTX FIFOが空
6 THRまたはTX FIFOが空で、かつ送信が完了している
7 RX FIFOにエラーのあるデータを受信

bit 要因
0 Clear To Send（CTS）が変化
1 Data Set Ready（DSR）が変化
2 Ring Indicator（RI）がネゲート
3 Data Carrier Detect（DCD）が変化
4 Clear To Send（CTS）がアサート
5 Data Set Ready（DSR）がアサート
6 Ring Indicator（RI）がアサート
7 Data Carrier Detect（DCD）がアサート

▼表9　通信状態（LSR） ▼表10　制御信号の受信（MSR）

156 - Software Design Aug. 2014 - 157

活躍の場が広がっている

　2007年に発表され、翌年にオープンソースが
公開されたAndroidも今年で7年目となりまし
た。この間に全世界のスマートフォンの8割超
に搭載され、事実上の標準プラットフォームと
なるまでに普及しました。そのAndroidに、こ
こ一年新しい兆候が見え始めていました。それ
はスマートフォン以外の用途への活用です。そ
れが、今年6月に米国サンフランシスコで行わ
れたGoogleのイベント「Google I/O」にて、さら
にその動きが公式な形で加速されました。
　その1つがAndroidのクルマへの応用である
「Android Auto注1」。そして、ウェアラブルデバ
イスへの応用である「Android Wear注2」、テレビ
への応用である「Android TV」。そして、それら
と連携することを前提としたスマートフォン
Androidである「Lリリース」です。スマートフォ
ンのAndroidのときもそうでしたが、ワクワク
するのは、今までプログラムできなかったとこ
ろが自分たちの手でプログラムできるようにな
るところです。Androidが登場した当初、携帯
電話の「待ち受け部分」も自分たちの手で自由に
プログラムできると宣伝されていたように、携
帯電話の機能を制限されることなく自由に開発

注1） http://developer.android.com/auto/index.html

注2） http://developer.android.com/wear/index.html

することなど、従来の携帯電話（フィーチャー
フォン、ガラケー）ではあり得なかったことで
す。この解放こそ、Android普及の原動力です。
　ここに来てAndroid Wearが発表されたこと
は、スマートウォッチなどのウェアラブルデバ
イスのプログラムを自分たちの手で行えること
を意味し、開発環境の解放を意味します。これ
はAndroidがスマートウォッチの世界で普及す
る、きっかけとなるでしょう。同じく、クルマ
関係のAndroid Autoも新しくワクワクする開発
環境です。ただしこちらは機能の性格上、誰で
も自由に開発できるようなオープンな運用はさ
れないかもしれません。
　このほかにも、Google I/Oでは発表されませ
んでしたが、興味深いAndroid関連の取り組み
もあります。スマートフォンの機能をモジュー
ル化し、自由に組み合わせて自分好みのスマー
トフォンを作り出す「Project Ara注3」（写真1）も
Androidを用いた新しい試みです。
　さまざまなデバイスにAndroidが広がること
は、Android開発者にとっては喜ばしいことで
す。スマートフォン以外のデバイスで、我々が
慣れ親しんだAndroidと同じ方法でアプリケー
ション（以下、アプリ）が作成できるためです。
ますます、Androidでプログラムを楽しむ私た
ちが活躍できる世界が加速して広がっています。

注3） http://www.projectara.com/

G o o g l e A n d r o i d

嶋 是一　SHIMA Yoshikazu
NPO日本Androidの会 理事長

 Twitter @shimay

スマートフォン用のOSであったAndroidがいま変貌を遂げよう
としています。この状況の変化を今年6月に行われたGoogle I/O
での情報を含めながら、Androidの最新動向を紹介しましょう。

Androidが生まれ変わる、
活躍の場が広がる
～Google I/O 2014より

第49回Android
エンジニアからの

招待状

http://developer.android.com/auto/index.html
http://developer.android.com/wear/index.html
http://www.projectara.com/

156 - Software Design Aug. 2014 - 157

Androidが生まれ変わる、活躍の場が広がる ～Google I/O 2014より 第49回

Androidの躍進

　冒頭にも書いたとおり、Androidは全世界の
8割を超えるスマートフォンに搭載されている
OSです。高機能スマートフォンが流通端末の
中心である日本国内では iOSのシェアが強いた
め、それほど高いシェアの実感はありません。
しかし、海外の廉価版スマートフォンを含める
とAndroidのシェアは圧倒的となっています。
　とくに今年のGoogle I/Oで報告された中で注
目なのが、タブレットの世界でも6割を超える
シェアを獲得していること、そして1ヵ月で10

億台のAndroid端末がアクティベートされてい
る事実です。アクティベートとは、ユーザが
Android端末の電源を入れ、Googleアカウント
を入れて動かした数となります。昨年は5.4億
台／月でしたので、2倍の増加率です。世界の
人口は72億人ですから、その7分の1にあたり
ます。もし自分の開発した1円アプリがすべて
の端末にダウンロードされるとしたら、1億円
が儲かる計算です。もちろんあり得ませんが、
これくらいの市場の可能性があります。
　また、おもしろい数字として、人がどの程度
Android端末を使っているかという点では、1日
に200億のテキストメッセージが交換され、1日
に自撮りカメラで9,300万枚の写真が撮られ、1

日に1.5億歩が歩かれ、1日に1,000億回ロック
解除して端末をのぞいています。このくらい、
生活に密着した使われ方がされています。

Android Lリリース

　Google I/Oで期待されたAndroidの新バー
ジョンは、命名は決まらぬままその概要が発表
され、現在はデベロッパプレビュー版が公開さ
れています注4（写真2）。Androidのバージョンは
表1にあるように、お菓子の名前のコードネー
ムがついています。このコードネームの先頭1

文字はアルファベットの順番となっています。
Cから始まって、最新の市場バージョンは
KitKatの「K」です。そのため、今回は先頭に「L」
が付与された名前になると期待されていました
が、Google I/Oではこのコードネームはお目見
えされず「Lリリース」という名前で発表されま
した。その特徴的な機能を紹介します。

新しいUXによる操作の向上

　WebにもAndroid端末にも共通する「マテリア

注4） http://developer.android.com/preview/index.html

写真1　 Project Ara ▼

機能モジュールがブロック状になっており、それを組
み合わせることでスマートフォンとして機能

写真2　Android L開発者向けプレビュー ▼

表1　Androidバージョン ▼
コードネーム バージョン SDKリリース日

1.0 2008年9月23日
1.1 2009年2月9日

Cupcake 1.5 2009年4月30日
Donut 1.6 2009年9月15日
Eclair 2.0, 2.1 2009年10月26日
Froyo 2.2 2010年5月21日
Gingerbread 2.3 2010年12月6日
Honeycomb 3.0, 3.1, 3.2 2011年2月22日
Ice Cream Sandwich 4.0 2011年10月18日
Jelly Bean 4.1, 4.2, 4.3 2012年6月27日
KitKat 4.4 2013年10月31日

http://developer.android.com/preview/index.html

158 - Software Design

Android
エンジニアからの招待状

presented by Japan

Android Group
http://www.android-

group.jp/

Aug. 2014 - 159

ルデザイン」というデザインコンセプトが発表さ
れました（図1）。
　Androidのアプリでも、選択した途端に画面
の全体が一気に「パッ」と切り替わってしまうと、
利用者が面喰い、何が起こったのか認識できな
くなることがあります。そのため、前の画面と
次の画面の間で、画面の中の部品の関係の変化
がわかるようにアニメーションを使って表現さ
れます。
　また、Google+でもよく用いられているよう
なカード型のUIベースとなり、カードを触った
ときにはリップルという水の波紋が現れて、選
択したことのフィードバックが表現されるよう
になっています。タッチパネルを触れても、正
しく入力されたか、失敗されたかわからないこ
とがよくあります。とくに端末の動作が遅いと
きに、触れたのが失敗したと思って二度目を触
ると、最初に触れた動作が動いてしまい、二度
目のタッチはそのあとの画面でタッチしたこと
となり、誤操作を引き起こすことが多々ありま

す。このあたりが改善されていることが期待さ
れます。

ART

　Androidは図2のように、Javaの実行環境と
してDVM（Dalvik Vertual Machine）を利用して
いました。これはJIT（Just-In-Time）などを用
いて高速化したJavaの仮想マシンです。Lリ
リースからはこれが変更となり、ARTが標準の
仮想マシンとなります。
　ARTはLLVMという機構を用いたインター
プリタ型の仮想マシンで、高速化手法としては
AOT（Ahead-Of-Time）やJITも用いた仮想マシ
ンです。実はバージョン4.4のKitKatからART

のしくみは搭載されており、設定により
「DVM→ART」の変更が可能となっていました。
デフォルトがDVMであるためにほとんど気に
することはありませんでしたが、今回はARTが
メインとなります。また、64ビットを含めた、
ARM、x86、MIPSの各CPUにも対応してお
り、クロスプラットフォームを実現しています。

端末連携

　Lリリースは、スマートフォンだけでなく、
車載端末、TV、スマートウォッチなどのディス
プレイと連携するしくみが実装されています。
とくにロック画面にも、カード型UIのノーティ
フィケーションが表示され、それらを操作する
ことができるとともに、ほかのデバイスとも同

図1　マテリアルデザイン ▼

図2　Androidのアーキテクチャ図 ▼

アプリケーション

アプリケーションフレームワーク

ライブラリ DVM→ART

Linuxカーネル

http://www.android-group.jp/

158 - Software Design Aug. 2014 - 159

Androidが生まれ変わる、活躍の場が広がる ～Google I/O 2014より 第49回

期されます。
　ロック解除機能としては、登録してあるBLE

（Bluetooth Low Energy）機器（スマートウォッ
チなど）が近づくと、自動的にロックが解除され
るような機能も搭載されています。これはBLE

の周囲端末を探し出す機構を利用したものです。

バッテリー

　Google内での「Project Volta」という取り組み
により、Lリリースに省電力のしくみが搭載さ
れました。JobSchedulerというAPIが搭載され
ており、優先度が低い周期的なネットワーク通
信などを遅延できるようにしています。たとえ
ば、端末から無線通信する通信の回数を減らし
て省電力に貢献するようなしくみです。このス
ケジュールは通信に限らずに利用することがで
きます。

Android One

　Androidはこれまでソフトウェアプラット
フォームでしたが、今回ハードウェアも含んだ
プラットフォームとして「Android One」が発表
されました（写真3）。
　iPhoneと同じような、ハードウェアとソフト
ウェアの一体化が実現できたという見方もでき
ますが、本取り組みは新興市場に向けた廉価ス
マートフォンの取り組みとなります。価格も、
100ドル程度でDualSIM、SDカード、4.5イン
チディスプレイ、FMラジオを搭載したスマー

トフォンが計画されています。
　これまではハードウェアの部品についての規
定はCDD注5の規定しかなかったので、実際には
端末メーカーが数々の設計を行う必要がありま
した。その開発作業と検証費用により端末の開
発費が高くなってしまい、安いAndroidスマー
トフォンの開発を難しくしていました。Android

Oneによりこの費用が下がり、廉価端末の実現
を可能としています。

Android Wear

　Google I/Oに合わせて、「Moto 360」（図3）
「Gear Live」「LG G Watch」の3つのスマート
ウォッチの発表がありました注6。これらは
Android Wearベースのスマートウォッチです。
これまでもSDKは公開されていましたが注7、動
かすためにはエミュレータの上でしか実行でき
ず、試せる機能が限られており、実機の登場が
待望されていました。このうちMoto 360につい
ては高級感ある仕上がりとなっており、話題を

注5） http://source.android.com/compatibility/

注6） 【Samsung Mobile Press】
 http://www.samsungmobilepress.com/2014/06/26/

Samsung-Expands-Gear-Portfolio-with-Android-
Wear-1

 【Samsung Mobile Press】
 http://www.samsungmobilepress.com/2014/06/26/

Gear-Live
 【LG G Watch】
 http://www.lg.com/global/gwatch/index.html
 【Moto 360 by Motorola】
 https://moto360.motorola.com/

注7） http://developer.android.com/wear/preview/start.html

▶写真3　Android One ▼

http://source.android.com/compatibility/
http://www.samsungmobilepress.com/2014/06/26/Samsung-Expands-Gear-Portfolio-with-Android-Wear-1
http://www.samsungmobilepress.com/2014/06/26/Gear-Live
http://www.lg.com/global/gwatch/index.html
https://moto360.motorola.com/
http://developer.android.com/wear/preview/start.html

160 - Software Design

Android
エンジニアからの招待状

presented by Japan

Android Group
http://www.android-

group.jp/

Aug. 2014 - 161

呼んでいます。
　動作としては、Androidスマートフォンに
Wearアプリを入れておき、スマートフォンに
届いた通知情報がWear端末に転送されて表示
されるしくみとなります。

Android Auto

　スマートフォン向けの現在のAndroidは、当
初OHA（Open Handset Alliance）が設立され、
ここからオープンソースのAndroidが公開され
ていました。これと同じような枠組みを行って
いるのが「Open Automotive Alliance」です。自
動車にAndroidの搭載を進める団体であり、現
在44社から構成されています。
　Android Autoはスマートフォンやそのウェア
ラブルデバイスをクルマと接続することで、よ
り良い車内 IT環境を実現する取り組みです。
AppleのCar Playと同じように、USBケーブル
をクルマと接続して利用します。スマートフォ
ンに搭載されているMediaアプリの画面を、ク
ルマの中に入っているAutoアプリが受け取っ
て、社内ディスプレイに表示を行います。
　クルマの中で利用されるアプリであるため、
Media UI（自動車に特化したUI。図4）、Notifi

cations（スマートフォンの通知）、Voice Actions

（音声コマンド）、Easy Development Workflow

（開発の簡易さ）などの特徴があります。これら
のアプリケーションを開発する「Android Auto

SDK」が公開予定となっています。

Android TV

　HDMIでテレビと接続するADT-1注8という開
発キットが発表されました。今後Android TV注9

対応のテレビが発売される予定です。STB用の
Android OSで あ る Android TVを 用 い て、
Androidのアプリをテレビのような大画面で動
かすことができるようになります。
　現在は開発キットがAndroid Lリリースのプ
レビュー版向けに提供されており、エミュレー
タで動作させることができるようになっていま
す。しかしながらテレビである以上、放送を受
けて番組を表示するためのチューナーやリモコ
ンなどの、非スマートフォン関連の機能機構が
必要となります。そのために今回はADT-1を発
表しました。まさに、STB（セットトップボッ
クス）のプラットフォームともいえます。“A

Platform for the living room（リビングルームの
プラットフォーム）”と知らされています。

Project Ara

　Project AraはAndroidをソフトウェアプラッ
トフォームとして流用した、モノづくりのため
のプロジェクトです。

注8） https://developer.android.com/preview/tv/adt-1/index.
html

注9） http://developer.android.com/tv/index.html

図3　Moto 360のWebサイト ▼

https://moto360.motorola.com/
http://developer.android.com/auto/overview.
html

図4　Android Autoのランチャーメニューの例 ▼

http://www.android-group.jp/
https://moto360.motorola.com/
http://developer.android.com/auto/overview.html
https://developer.android.com/preview/tv/adt-1/index.html
http://developer.android.com/tv/index.html

160 - Software Design Aug. 2014 - 161

Androidが生まれ変わる、活躍の場が広がる ～Google I/O 2014より 第49回

　この成果物は、スマートフォンをレゴブロッ
クのように自由に組み合わせることでスマート
フォンを作り出すことができます。このデバイ
スをフレームに差し込み、磁石の力でスマート
フォン本体と接点とを接続します。
　しかしこのデバイスが出てくるのは、2015年
の第一四半期となります。それまでは実機での
確認はできません。その前にProjectAraの開発
キットとして、「the Module Developers Kit

（MDK）」がリリースされています。
　そしてこのプロジェクトのポイントは「モノづ
くり」である点です。提供されているオープン
ソースのツールにて、回路設計から３Dプリン
タで出力するための機構設計が行えるのです。
単一のツールで、ハードウェアからソフトウェ
アまで統合されて開発できる環境を作り、開発

の速度を上げる、これがこのプロジェクトの目
的です。

まとめ

　Androidをプラットフォームとして、さまざ
まなデバイスがサポートされるようになりまし
た。スマートフォンの普及とは別に、新しいデ
バイスの領域にAndroidが生まれ変わろうとし
ています。また、これらを横断して、ノーティ
フィケーションの通知や、さまざまな連携機能
がシームレスに行われる環境が提供されていま
す。Androidのアプリ開発者としては、いろん
な機器が連携したアプリやサービスが作れるこ
ととなり、Androidは、ますます夢を広げてく
れるプラットフォームとなっています。｢

嶋 是一 （しま よしかず）　NPO日本Androidの会 理事長

日本Androidの会でAndroidに関する活動を行う傍ら、株式会社KDDIテクノロジーに所属し、モバイル関連の技術開発を
行う。日本のモバイル関連技術の普及活動を継続して行っている。

162 - Software Design

RHEL7の新機能・変更点

　米 国 時 間 2014年 6月10日 に Red Hat

Enterprise Linux 7（以降、R
レ ル

HEL7）がリリー
スされました注1。前バージョン6のリリースは
2010年10月18日でしたので、1,331日・約3

年8ヵ月ぶりの新バージョンということになり
ます。kernelは3.10を採用し、システムに搭載
できるメモリ容量の増大に対応するためサポー
トするCPUは64ビットのみ、x86_64/ppc64/

s390xの3アーキテクチャ注2をサポートします。

RHEL 7のファイルシステム

　デフォルトのファイルシステムは従来の
ext4に代わり、xfsが採用され最大で500TBを
サポートする一方で、RHEL6では最大で
16TBをサポートしていたext4はサポートの上

限が50TBに設定されました。btrfsも利用で
きますが、Technology Previewという位置づ
けのためプロダクションシステムでの利用は推
奨されません。

RHEL 7のインストールと
サブスクリプション管理

　RHELのインストーラであるanacondaはワー
クフローが大きく変更されモジュール＆ハブ形
式のデザインになりました。従来は対話型のウィ
ザード形式でしたが、複数の項目をデフォルト
のパラメータのままインストールする場合には途
中のステップが煩わしく感じることも多く、今回
の改良によりデフォルト以外の項目だけを選択
して変更することが可能になっています（図1）。
　インストール作業そのものが面倒だという人
向きにはPXEブート注3によるkickstartインス
トール注4をお勧めします。さらにインストール
作業をせずに利用したいということであれば、

注1） 同日付でopensslやkernelなどのエラータがリリースされており適用が強く推奨される。
注2） x86_64は米 Intel社や米AMD社のいわゆる“Long Mode”をサポートするCPU、ppc64は米 IBM社のCPU・POWER

7/7+/8、s390xは米 IBM社の system zのCPUを表す「CPUアーキテクチャ・コード」。過去には ia64（Itanium/Itanium2）、
ia32e（64ビットをサポートする初期の米AMD社のCPU）などのコードも存在した。

注3） RHEL7ではPXEの設定ファイル（/var/lib/tftpboot/linux-install/pxelinux.cfg/defaultなど）の“append”に“inst.repo”を追加す
る必要がある。たとえば、inst.repo=http://example.com/rhel7dvd/など。追加しない場合、Dracutによる“Warning: /dev/
root does not exist”というエラーメッセージが表示されインストーラが停止する。インストール方法の詳細については、
Red Hatのカスタマーポータル（https://access.redhat.com/）の“Installation Guide”を参照（サブスクリプションは不要）。

注4） kickstartインストールはLinuxの自動インストールのしくみ。kickstart設定ファイルを用意し、起動ディスクやWebサーバ
などから取得することで自動的にLinuxをインストールすることができる。テスト環境などの構築にはプライベートクラウ
ドや仮想化とともにテンプレートを用いるのが一般的になりつつあるが、kickstartでは最新のリポジトリに追随したクリー
ンインストールが短時間でできる特徴がある。

第 4 回 Red Hat Enterprise Linux 7に触れてみよう

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

前回はRed Hat Enterprise Linuxの開発フローについて理解し、サーバを可能
な限り安定的に運用する方法について説明しました。今回と次回の2回にわたり、
待望の新バージョン・RHEL7の新機能や「お試し方法」を中心に紹介します。

レッドハット（株）グローバルサービス本部プラットフォームソリューション統括部
ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）

https://access.redhat.com/

162 - Software Design Aug. 2014 - 163

第 4 回Red Hat Enterprise Linux 7に触れてみよう

注5） AWSのMarketplaceから利用可能（https://aws.amazon.com/marketplace/pp/B00KWBZVK6）。
注6） Red Hat Satellite（旧称・Red Hat Network Satellite）を別途購入している場合には rhn_registerが利用可能。
注7） Subscription Managerの利用方法については、https://access.redhat.com/site/ja/node/69764

Red HatがKVMのゲスト用のイメージを配布（図
2）していますし、米・Amazon社のAWS（Amazon

Web Service）に用意されたRHEL7のAMI注5

という選択肢もあります。
　RHEL7ではサブスクリプションの管理方法と
して利用されてきたrhn_register（RHN Classicと
呼ばれます）は廃止され注6、
RHEL5.7/6.1から利用可能
（RHN Classicと並行する形で）
となっていた、Subscription

Manager注7だけが提供される
ようになりました。システムへ
のサポート権の付与（エンタイ
トルメントと呼ばれます）が完
了したあとは、従来と同じyum

コマンドによるパッケージ管理
ができます。

RHEL7のGUI環境

　デフォルトのGUI環境は
GNOME 3.8の“Classic”とな
り（図3）、一足早くFedora

で利用可能となっていた
GNOME Shell（図4）はログ
イン時（GNOMEセッション
の開始時）に選択可能なオプ
ションとなりました。一見す
るとわかるようにGNOME

Shellは先進的なUI（User

Interface）である一方で、お
もに企業における利用が指向
されるRHELにおいては敬
遠される程度に大きな変更で
あるため、GNOME 3.8を採
用しつつも従来のGUI環境
と違和感なく利用できる

“Classic”がデフォルトとして用意されたとい
う経緯があります。

RHEL7のブートローダー

　従来の GRUB Legacy（0.9x系）に代わり、
GRUB 2が採用されています。これに伴い

 ▼図1　モジュール＆ハブ形式のインストーラ

（ウィザード形式で順番に設定する従来方式と異なり、必要な個所だけ変更すればインストー
ルを開始できる）

 ▼図2　Red Hatが配布するRHEL 7のイメージファイル

（“KVM Guest Image”は RHEL や RHEV（Red Hat Enterprise Virtualization）、RHEL-OSP
（OpenStack）のNova Compute Nodeで利用可能）

https://aws.amazon.com/marketplace/pp/B00KWBZVK6
https://access.redhat.com/site/ja/node/69764

164 - Software Design

BIOSだけではなく UEFI（Unified

Extensible Firmware Interface）へ の
完全対応が含まれており、GRUB

LegacyでUEFI採用システムへのイ
ンストール・起動時に発生していたト
ラブルが減少することが期待できます。
一方で設定ファイル（/boot/grub2/

grub.cfg）の書式が変更されており、
エディタによる直接の編集は禁止され
ました。設定方法としては grub2-

mkconfigコマンドが提供されます。

systemd, systemd, systemd!

　本誌でも数回にわたって紹介されて
いますが、従来のSysV Initに代わり、
systemdがユーザスペースのさまざま
な管理をすることになりました。
RHEL7の最大の変更点は systemdの
採用であり、誤解を恐れずに言うなら
ばLinuxの 20年の歴史においても
「RHEL7はまったく別のOS」といっ
ても過言ではありません。
　systemdの管理ツールとしてsystemctl、
systemadmを 用 い ることとなり、
chkconfig、service、init、runlevel と
いった非常に多くのコマンドが廃止さ
れていますが、これらのコマンドを実
行するとsystemctlコマンドに「転送」することで
従来との互換性を保っています。この互換性は
将来的に廃止されていく可能性が高いため、
RHEL7ではsystemctl、systemadmに習熟する
ことをお勧めします。

ネットワーク関連の強化ポイント

　systemdに次いで大きな変更の 1つが
NetworkManagerへの全面移行でしょう注8。長
らく利用されてきた system-config-networkや

ifconfigなどのツールを含むnet-toolsパッケー
ジはデフォルトではインストールされず、
Infinibandや Bonding、Teaming、VLANな ど
を含むネットワークの設定のいっさいは、
nmcliコマンド、nmtui-edit、nm-connection-

editorを利用して行います。パッケージグルー
プとして最小インストールを選択した場合注9、
従来どおり ipコマンドを含む ip-routeパッケー
ジがインストールされているので、IPネットワー
クの設定や表示などについては ipコマンドを

注8） NetworkManagerそのものはRHEL4から提供されていた。
注9） x86_64用のRHEL7.0を最小インストールした場合のRPMパッケージは言語設定が英語の場合324、日本語の場合325。

 ▼図3　GNOME Classic

（デスクトップにゴミ箱などのアイコンがなく、操作の起点は左上の［アクティビティ］
メニュー、あるいは【Windows】キーとなる。ユーザのホームフォルダ以下にあ
る「デスクトップ」フォルダ内のファイルなどはデスクトップに表示されない）

 ▼図4　GNOME Shell

（デスクトップにゴミ箱等のアイコンがあり、ユーザのホームフォルダ以下にある［デ
スクトップ］フォルダ内のファイル等もデスクトップに表示される従来どおりのイ
ンターフェース）

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

164 - Software Design Aug. 2014 - 165

第 4 回Red Hat Enterprise Linux 7に触れてみよう

利用することもできます。
　NIC（Network Interface Card）のデフォルト
の命名規則はPredictable Network Interface

Namesと呼ばれるポリシーに変更されました。
マザーボード上なのかPCIバス上なのか、何
番目のポートなのかといったファームウェアが
認識するNICの物理的な「位置」に基づくとい
う点ではRHEL6で導入されたbiosdevnameと
似ている注10のですが、udevのルールによって
命名される点ではより「筋の良い」実装注11に変
更されたと言えます。命名規則は次の順に適用
されます。

①オンボード（例：eno1、“On-board”）
②PCI Express（例：ens1、“Slot”）
③NICのコネクタの物理的な位置
（例：enp2s0、“Physical”、“Slot”）

④MACアドレス（例：enx78e7d1ea46da）
⑤従来どおりのカーネルによる命名方法
（例：eth1）

　このため、たとえばオンボードのNICの名前は、
“eth1”（従来の命名規則）→“em1”（biosdevname）
→“eno1”（udev）と変わっているので注意が必要
です。
　ホスト名の変更についてもRHEL7では新し
いツールが用意されました。従来は /etc/

sysconfig/networkや /etc/hostsなどホスト名
を設定するファイルが複数あり、これがトラブ
ルの原因となることも少なくなかったのですが、

RHEL7では設定ファイルは/etc/hostnameに
統一されたうえ、hostnamectlコマンドを用い
ることになりました。
　ファイアウォールは従来の iptablesから
firewalldがデフォルトになりました。firewalld

は「動的ファイアウォール」と呼ばれる実装で、
既存のネットワークコネクションを維持したま
まファイアウォールのポリシーを変更できます。
管理にはfirewall-cmdコマンドやGUIツールの
firewall-configを利用します。

ご注文はdockerですか？

　RHEL7に同梱されるのか、またサポート対
象に含まれるのかが直前まで決まらなかった
Linuxのコンテナ実装の1つであるdockerは、
最終的に「ミッションクリティカル環境では用
いないことが推奨される」という制限付き注12な
がら、RHEL7に同梱されました。ただし
RHEL7のインストーラDVDには含まれてお
らず、“Extras”というチャネル注13を追加登録
すれば利用ができます。

次回は

　まだまだRHEL7の新機能については紹介し
たいことが山ほどあるのですが、紙幅が尽きて
しまいました。次回はRHEL7を試用する方法
や、注意点について紹介する予定です。ﾟ

注10） RHEL6では米・Dell社製サーバにおいてbiosdevnameによる命名がデフォルトで、マザーボード上のNICであれば“em1”
（Embeddedの意）、PCIバス上のNICのポート1であれば“p1p1”といった名前になる。より正確にはbiosdevnameの命名
ポリシーとして“physical”を指定しているために物理的な位置に基づく命名が行われる。biosdevnameを利用せずに従来ど
おりの命名規則を用いることも可能で、インストール時あるいは起動時のkernelパラメータ、もしくはgrub2のテンプレー
トファイルである /etc/default/grubの“GRUB_CMDLINE_LINUX”に、“biosdevname=0”を追加する。詳しくはman
biosdevname。

注11） デバイスの命名規則全般を扱うべきudevとは別に、biosdevnameというツールが用意されるのは「筋が悪い」という意味。
注12） RHEL 7のリリースノート、“1. New Features”中の“7. Linux Containers with Docker Format”に次の記載がある。Docker

is still in development and has not yet reached version 1.0. For this reason it is not recommended to use Docker in
mission-critical production environments.

注13） RHELのRPMパッケージは「チャネル」と呼ばれるグループに分類されている。インストーラDVDに入っているのは「Baseチャ
ネル」であり、開発に必要な*-develパッケージなどが含まれる「Optionalチャネル」、米・IBM社の Javaランタイムなどが
含まれる「Supplementaryチャネル」などがあり、Subscription Managerでシステムにこれらのチャネルを追加することで
利用可能となる。

166 - Software Design

GCCからLLVM Clangへ、
ベースシステムから
GCCを排除

　FreeBSD 10.0-RELEASEからはデフォルトの
コンパイラがLLVM Clangへ変更されています。
これまでFreeBSDはGCCをシステムのデフォル
トコンパイラとして活用してきました。しかしこの
数年をかけてGCCの依存状態から脱却し、LLVM

Clangをデフォルトのコンパイラとする取り組みを
進めてきました。現在のところamd64版と i386版
が対応していますが、今後はほかのアーキテクチャ
もLLVM Clang化が進められる見通しです。
　FreeBSDがデフォルトコンパイラをGCCからほ
かのコンパイラへ変更したのにはいくつかの理由が
あります。とくに重要な理由をまとめると次のよう
になります。

●● FreeBSDベンダからの要望もあり、FreeBSDプ

ロジェクトはGPLv3のソースコードをベースシ

ステムに取り込まないとしている。GCCはGCC

4.2.1よりも後のバージョンでGPLv2から

GPLv3へ移行したため、FreeBSDプロジェクト

は古いGCC 4.2.1を使い続けるしかなかった。

この状態を改善するために、ほかのコンパイラへ

移行する必要があった

●● LLVM Clangは後発のコンパイラインフラストラ

クチャだけあってよく設計されており、コンパイ

ル時間が短く、生成されるバイナリも性能がよい

という特徴がある。さらにBSDライセンスのもと

で提供されているためFreeBSDへマージしやすい

●● FreeBSDプロジェクトとLLVM Clangプロジェ

クトは関係性もよく、デフォルトコンパイラを

LLVM Clangへ変更することは有益

　10.0-RELEASEでは、amd64版と i386版でも
ブートコードまわりなどいくつかの点はLLVM

Clangではカバーすることができずに、従来のツー
ルチェーンが使われています。今後のリリースで
ツールチェーンのすべてをLLVMプロジェクトの
提供するものへ置き換えていく予定です。

コンパイル時間大幅短縮
LLVM Clang

　LLVM ClangとGCCのコンパイル時間を
FirefoxとThunderbirdで比較すると、表1、2、図
1、2のようになります。LLVM Clangのほうが1.7

倍ほど早くビルドが完了していることがわかりま
す。Ports Collectionからパッケージをビルドする
作業などに直接影響を与える数値です。LLVM

Clangへの移行は作業時間の短縮化という点でもプ
ロジェクトにとって必要な作業でした。
　カーネルおよびユーザランドのビルドは現在のと
ころ簡単に切り替えられるようにはなっていませ
ん。LLVM Clang以外のコンパイラへの切り替えが

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第10回 ❖ コンパイラ〜GCCからLLVM Clangへ

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

Aug. 2014 - 167

▶第10回◀
コンパイラ〜GCCからLLVM Clangへ

　次に、ソースコードのどこかに記述誤りがあり、
GCCがそれを検出したときのエラーメッセージを
図4に示します。
　「echo.c:114:5: error: request for member 'iov_

base' in something not a structure or union」が
エラーメッセージです。vp.iov_base = *argv;のよ
うに構造体のメンバに値を入れようとしています
が、この記述に問題があるようです。vp.iov_baseの
「.」に矢印「^」がついていますので、この部分に問
題があるように見えます。
　メッセージの内容はこのようになっています。
「echo.cファイルの114行目、iov_baseメンバへアク
セスしようとしていますが、構造体にもユニオンに
もそのようなメンバは存在しません」。このエラー
メッセージからはまず、たぶん「iov_base」という名
前をタイポ（誤入力）しており、別の名前なんだろ
う、ということが予測できそうです。
　同じソースコードをLLVM Clangでビルドする

簡単にできるようにする取り組みは、現在整理が進
められている段階にあります。切り替えが簡単にで
きるようになったら、ビルド時間の比較結果などを
紹介したいと思います。

エラーメッセージの
わかりやすさ

　LLVM Clangを開発に採用しているデベロッパ
であればすでに体感していることだと思いますが、
LLVM Clangはコンパイルエラー発生時に出力し
てくれるエラーメッセージがとてもわかりやすいと
いう特徴を持っています。これは開発時間にもデベ
ロッパの精神的な負担にもかかわってくる大切なポ
イントです。
　たとえば、図3のようなecho (1)コマンドのビル
ドを考えます。問題がなければ図3のようにコンパ
イルが実行され、バイナリファイルとマニュアル
ファイルが生成されます。

▼▼図1　�Firefoxコンパイル時間比較（GCC 4.9.0 vs.
LLVM Clang 3.3）　※短いほど高速

800

GCC 4.9.0 LLVM Clang 3.3

643.77

390.48

600

400

200

0

▼▼図2　�Thunderbirdコンパイル時間比較（GCC 4.9.0
vs. LLVM Clang 3.3）　※短いほど高速

8,000

GCC 4.9.0 LLVM Clang 3.3

6018.53

3566.71

6,000

4,000

2,000

0

% ls
Makefile echo.1 echo.c
% make
Warning: Object directory not changed from original /Users/daichi/tmp/echo
cc -O2 -pipe -fno-omit-frame-pointer -std=gnu99 -Qunused-arguments -fstack-protector -c echo.c
cc -O2 -pipe -fno-omit-frame-pointer -std=gnu99 -Qunused-arguments -fstack-protector -o echo echo.o
gzip -cn echo.1 > echo.1.gz
%

▼▼図3　echo(1)コマンドのビルド

168 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

と図5のようになります。
　「echo.c:114:5: error: member reference type

'struct iovec *' is a pointer; maybe you meant

to use '->'?」がLLVM Clangの出力したエラー
メッセージです。こんなことが書いてあります。
「echo.cファイルの114行目ですが、“struct iovec *”
はポインタですので、（「.」ではなく）「->」ではあり
ませんか？」
　実際、変数vpは次のように iovec構造体へのポイ
ンタとして宣言されています。

struct iovec *iov, *vp;

　処理の途中でリスト1のようにメモリを確保して
使われています。ですので、「vp.iov_base」ではな

く「vp->iov_base」または「(*vp).iov_base」と書く必
要があります。LLVM Clangのエラーメッセージは
このように丁寧な出力になっていることが多く、デ
ベロッパの負担を減らしてくれるという特徴があり
ます。ヘッダファイルの指定がなければ「このヘッ
ダファイルの指定を忘れていませんか？」といった
メッセージを出力してくれるなど便利です。

FreeBSD 11へ向けた
Intelコンパイラへの対応

　現在FreeBSDプロジェクトでは、コンパイラと
してIntel製のコンパイラを利用する方向について
も模索しています。2014年5月にカナダの首都オタ
ワで開催された開発者会議では、基本的にIntelの

% make CC=gcc49
Warning: Object directory not changed from original /Users/daichi/tmp/echo
gcc49 -O2 -pipe -fno-omit-frame-pointer -std=gnu99 -fstack-protector -c echo.c
echo.c: In function 'main':
echo.c:114:5: error: request for member 'iov_base' in something not a structure or union
 vp.iov_base = *argv;
 ^
*** Error code 1

Stop.
make: stopped in /Users/daichi/tmp/echo
%

▼▼図4　ビルドエラー：GCCの出力

% make
Warning: Object directory not changed from original /Users/daichi/tmp/echo
cc -O2 -pipe -fno-omit-frame-pointer -std=gnu99 -Qunused-arguments -fstack-protector -c echo.c
echo.c:114:5: error: member reference type 'struct iovec *' is a pointer; maybe you meant to use '->'?
 vp.iov_base = *argv;
 ̃̃^
 ->
1 error generated.
*** Error code 1

Stop.
make: stopped in /Users/daichi/tmp/echo
%

▼▼図5　ビルドエラー：LLVM Clangの出力

if ((vp = iov = malloc((veclen + 1) * sizeof(struct iovec))) == NULL)

▼▼リスト1　途中でメモリを確保して利用

Aug. 2014 - 169

▶第10回◀
コンパイラ〜GCCからLLVM Clangへ

担当者の了解は取り付けてあるといった説明があり
ました。あとは開発を担当するコミッタがつけば、
Intelコンパイラを使ったカーネルおよびユーザラ
ンドの構築ができるようになる可能性があります。
　Intelコンパイラへ対応させる場合、現在よりも
積極的にコンパイラの動的切り替えができるように
Makefile一式を整理する必要がありますが、これが
完成すると適材適所で利用するコンパイラを切り替
えることができるようになり、FreeBSDを適用でき
る幅が広がります。Intel x86系以外のアーキテク
チャへの対応はGCCが優れた状況にありますので、
LLVM Clang、GCC、Intelのコンパイラをそれぞれ
切り替えてシステムを構築できることは、オペレー
ティングシステムを稼働させるマシンやアーキテク

チャの種類の増加につながります。

C/C++言語勉強の
プラットフォームとして

　FreeBSD 10.0-RELEASE以降はLLVM Clang

がデフォルトのコンパイラとして同梱されています
ので、C言語やC++を勉強しようという場合には手
軽に環境を用意できるプラットフォームです。カー
ネルやコマンドのソースコードも含まれています
し、勉強用の教材として利用するには扱いやすい成
果物です。一度このコンパイラで遊んでみてはいか
がでしょうか :) s

170 - Software Design

17 Debian Developer　やまねひでき　henrich@debian.org

Debian GNU/Hurdの状況／
Squeeze LTSの使い方

開発の進捗どうですか

Hurdは順調

　先月号ではsparcの進捗が思わしくない、と
いう話をしたので逆に好調なDebian GNU/

Hurdについて取り上げます。昨年にDebian

GNU/Hurd 2013がリリースされ、その後も順
調に進捗が進みパッケージのカバー率が80％
に達しました（これは2012年と比べると10％
の向上となります）。また、カバーされているパッ
ケージのバージョンも98％が最新バージョン
に追随するなど、良好な状況のようです。
　この背景にはパッケージ側の修正もさること
ながら、ビルドマシンが安定して稼働するよう
になったことも大きく寄与しています。この調
子でいけば、あと2、3年でほぼすべてのパッ
ケージがHurdでもインストールできるように
なるはずです（動くかどうかはまた別問題では
ありますが）。うまく動作するようになった例
として Iceweasel 29が挙げられており、libc側
も修正を加えたとのこと。デスクトップ分野で
Hurdを使う人がどの程度いるのかは疑問です
が、何はともあれめでたいですね。
　Initシステムについても、自前でこしらえて
いたシェルスクリプトから、SysVinitに移行し
てさまざまな動作が改善されました。これによ
り、halt/shutdownコマンドが動作するようにな
り、ようやく各種サービスが正常に終了するよ

うになったとのことです（筆者はパッケージにお
けるHurdでの問題を修正する際、QEMUで動
作確認したあとで無理やり終了するしかなくて
何度かイメージを壊していました……）。
　Hurdが「Jessie」のリリースターゲットに含
まれるかどうかは微妙ですが、いい感じで進ん
でいるようですので興味のある方はこれからも
ウォッチしてみてください。
　試してみたいと思った方は、初期設定済みの
QEMUイメージが用意されていますので注1、そ
ちらをご利用ください。

eglibcからglibcに出戻り

　これまで、Debianで使われている基本ライ
ブラリ（libc）は glibcではなく、その派生の
eglibc注2が使われていました。これは、glibcの
メンテナであったRed Hat社のUlrich Drepper

さんが、エキセントリックな言動とともに、
ARMなどのサポートに対して拒否的な姿勢を
示していたことに起因します。当時のARMは
今よりずっとマイナーなアーキテクチャだった
からでしょう。そこで有志が「組込み向けのアー
キテクチャにフレンドリーなglibcを作ろう」と
eglibcを立ち上げ、多アーキテクチャサポート
を進めるDebianが採用したのです。
　しかしその後、状況は変化します。リポジト
リがGitに移ったことで、開発体制がUlrich

注1） URL http://people.debian.org/~sthibault/hurd-i386/

注2） eglibc＝Embedded GLIBC

http://people.debian.org/~sthibault/hurd-i386/

170 - Software Design Aug. 2014 - 171

Debian GNU/Hurdの状況／
Squeeze LTSの使い方 17

Drepperさんの中央集権的状態から分散的なも
のになったのに加えて、UlrichさんがRed Hat

社を離れたことにより、glibcはより自由度の
高い開発が行われることになりました。
　象徴的なのが、2012年にglibcの開発につい
て中央委員会が解散し、開発者らが門戸が広く
なっているのを訴えかけたことです。結果、
eglibcの活動は停滞し、今回、Debianでは「glibc

へマージして注力したほうが良い」との判断が
下されました。なお、Debianとしてはすでに
sid（unstable）では glibcに移行していますが、
実質的には「あまり変化はない」状態で、これと
いって問題や挙動の変化などは出ていません。
今後は淡々と残っているパッチがマージされて
いくものと思われます。

Squeeze LTS

　Debian 6“Squeeze”に対するLTS（Long Term

Support、長期間サポート）の案内が出ました。
とはいえ、当の作業の中心であるFreexian社の
Raphaël Hertzogさんは自身のブログ注3で次のよ
うに言及しています。
　「LTSが開始されたことはメディアで報じら
れているが、残念なことに作業の手助けが必要
なことにはまったく触れられていない。まだ
LTSは満足のいく作業量をこなしているとは
言えない状況だ」。
　続けて「いつものように必要な作業をするの
に協力者が足りていないのだが、今回は特例で
簡単な方法がある。必要な作業をする人に支払

いをすれば良い」と述べ、この作業を行うため
の資金として、Debianを利用している数千の
企業のうち、サポートを購入する企業があと
50社ほど必要であることが示唆されています。

¡	サポートのサブスクリプション費用は、255〜
24,480ユーロ（約3.5万〜340万円）／年（台
数は関係なし）

¡	サポートは支払額によって次のような権利
が付与される

　-支援企業として会社のロゴを掲載
　-プライベートなメーリングリストへの参加
　-LTS作業者への直接のコンタクト
　-各企業のテストケース検証

　日本のDebian利用企業も、Squeezeを使い続
けたい場合は、上記サポート注4の購入を検討し
ていただければと思います（専任の人を雇うより
はるかにお安いですし、宣伝にもなりますよ）。

LTSをシステムに適用！

　背景はこの程度にして、LTSを実際に適用
する最小限の手順を説明します。Debian 6は
この手順を踏まないとLTSにはならないので、
ご注意ください（勝手にLTSになるわけではあ
りません。設定を追加する必要があります）。

①	apt line（/etc/apt/sources.list、あるいは/etc/	
apt/sources.list.d/*.list）にSqueeze LTSの
リポジトリを追加

②	apt-get updateしてリポジトリの追加を反映
③	apt-get upgradeしてパッケージの更新を反映
④	debian-security-supportというチェック用の
ツールをインストールし、システム内のサポート
対象外パッケージを確認する

⑤	チェックの結果、
必要に応じて自前で
更新するなどの対応
を検討する

　実際のコマンドは
図1のようになります。

 ▼図1　Squeeze LTSの適用手順

$ sudo sh -c "echo deb http://ftp.jp.debian.org/debian/ squeeze-lts ｭ
main contrib non-free >> /etc/apt/sources.list" ←①
$ sudo apt-get update; sudo apt-get upgrade ←②、③
$ sudo apt-get install debian-security-support ←④
 （図2の画面が表示される）
$ check-support-status ←再度チェックをしたい場合に実行

注3） URL http://goo.gl/9hFhr1
注4） 詳細は URL http://www.freexian.com/services/debian-

lts.htmlを参照。

http://goo.gl/9hFhr1
http://www.freexian.com/services/debian-lts.html

172 - Software Design

④のインストール時に、現在のシステムに入っ
ているサポート対象外パッケージが表示されま
す。図2はその一例で、webkit関連パッケージ
が対象外となっていることが表示されています。
　check-support-statusによって判別されるサ
ポート外パッケージについて、自前でのセキュ
リティ更新対応が難しそうな場合は、速やかに
Debian 7“Wheezy”へのアップグレードを実施
するなどして対応することを検討しましょう。

ビルドに必要な
ファイルを探す術

　おもしろそうなソフトウェアを見つけ、ソー
スを持ってきてビルドをした注5が、「ファイル
が足りなくてエラー！」という経験をした方は
少なくないと思います。このような場合、どう
やって対処すれば良いのでしょう？　Debian

で同じソフトウェアのパッケージがある場合は
非常に簡単で、apt-getコマンドのオプション
を使えば解決できます。

　これだけで、パッケージの「Build-Depends」

$ sudo apt-get build-dep <package>

に定義されている、このパッケージのビルドに
必要となるパッケージ群を一気に丸ごと持って
きてくれます注6。あとは適当に configureや
makeなどのビルドのコマンドを実施すれば解
決です。
　しかし、同じソフトウェアのパッケージがな
い場合は、この手は使えません。configureで
行き詰まった場合、出力されたconfig.logなど
のエラーの内容を見ると足りないファイルの名
前はわかります。しかし、どうやって必要なファ
イルを持ってくればいいのでしょう？　Debian

は豊富なパッケージ群を持っていますので、何
かのパッケージを入れれば解決！……のはずで
すが、「さて、どれを入れていいのか」と見当が
つかず途方に暮れる方もいるでしょう。これに
ついては2つの方法があります。

（1）Debianのサイトで検索をする
（2）apt-fileユーティリティを使う

　まず、Debianのサイトに「パッケージ」のペー
ジが用意されています注7。お世辞にも見やすい
とは言えませんが、このページの一番下のほう
に「パッケージの内容を検索」という項目があり、
「キーワード」にファイル名を入れて適当なオプ
ションを選択すればそのファイルが含まれてい
るパッケージ一覧が表示されます。
　しかし、「サイトから検索すると、大量にヒッ
トし過ぎて見づらい」「適当に絞り込みたい」「何
回も繰り返して検索する場合に、いちいちブラ
ウザを開くのは面倒」という要望が出てきます。
この場合、apt-fileユーティリティがあなたの

 ▼図3　apt-�leの使い方

$ sudo apt-get install apt-file ←apt-fileをインストール
$ apt-file update ←apt-fileのデータベースを最新化
$ apt-file search <file> ←ファイルを検索
$ apt-file search <file> | grep foobar ←検索出力が多い場合、grepでフィルタする
$ apt-file search --regexp <正規表現> ←オプションを付ければ正規表現で検索も可能

 ▼図2　debian-security-supportの画面

注6） 逆にapt-get build-depで取得したパッケージをまとめて
一気に消す方法は、今のところないようです。

注7） URL https://www.debian.org/distrib/packages

注5） 典型例は「./configure; make」などですね。

https://www.debian.org/distrib/packages

172 - Software Design Aug. 2014 - 173

Debian GNU/Hurdの状況／
Squeeze LTSの使い方 17

助けになります。コンソールから呼び出せるの
で、リズムを崩さずに作業できます。また、単
純な検索ツールですのでgrepなどと組み合わ
せて容易に絞り込みができます（図3）。
　Debian上でソフトウェアの開発作業をする際、
必要なファイルを探してGoogle検索して右往
左往するよりも、上記のような解決策がすでに
用意されているのを知っているとグッとQOL

が上がることでしょう。ぜひ活用ください。

イベントの報告＆お知らせ

　6月14日に、Debian JP Projectとして「オー
プンソースカンファレンス2014 Hokkaido」（以下、
OSC）に参加出展しました。イベントには数百名
が参加し盛況の中、筆者は「Does Cowgirl Dream

of Red Swirl ?」（カウガールは赤い渦巻きの夢を
見るか）注8と題して、Debianの開発の流れや、次
期リリースDebian 8“Jessie”の展望などを説明し
ました（写真1）。参加者のアンケート結果を見ると、
幾人かからお褒めの言葉をいただけたのでうれ
しい限りです。
　また、翌日に札幌市内で「Debian meetup

Hokkaido 14.06」を開催し、前日のOSCの振
り返りや各自のDebian関連作業を行いました。
　筆者は、本誌連載「Ubuntu Monthly Report」
の執筆などでお馴染みのUbuntu Japanese Team

の水野源さんがメンテしている「silversearcher-

ag」パッケージ注9のレビューを手伝ったり、コミュ
ニティ活動の事務作業的な事柄を淡々とこなし
たりしていました。また来年などに機会があれば
来訪したいと思っていますので、北海道のみな
さまよろしくお願い致します。OSC北海道スタッ
フのみなさま、景品提供に協力いただいた編集
担当さま、快くMeetupイベントの会場を貸して

いただいた㈱インフィニットループの方々注10、
そして参加していただいたみなさまに感謝です。
　次のイベントとしては、京都リサーチパーク（KRP）
で開催されるOSC 2014 Kansai@Kyoto注11に関西
Debian勉強会が参加出展を行います。近隣の方
はぜひご参加ください。参加日は8月2日（土）で、
セミナーは本連載でもRuby関連記事を寄稿いた
だいた佐々木洋平さんが担当する予定です。
　なお、東京エリアDebian勉強会／関西Debian

勉強会は毎月開催されていますので、折をみて
参加いただければと思います。開催日程／場所
については、Debian JP Projectのサイト注12に
近日予定しているイベント一覧がありますので、
そちらを参考にしてください（載っていない場
合は筆者の怠慢ですのでツッコミを入れていた
だければ……）。
　なお、勉強会は毎度ネタに飢えていますので、
「こんな話を聞いてみたい」（あるいは「こんな
話をしてみたい」）という提案も歓迎します。詳
しくは参加時に相談してみると良いでしょう（お
もしろい話ができると思いますよ）。｢

 ▼写真1　OSC北海道での筆者の発表

注8） タイトルの元ネタは「アンドロイドは電気羊の夢を見るか」
です。

注9） grepを賢くしたようなソフトウェア「ag」のパッケージです。
詳細についてはgihyo.jpのUbuntu Weekly Recipe第287
回「Ubuntuで超高速 grep『The Silver Searcher』を使う」
 URL http://gihyo.jp/admin/serial/01/ubuntu-recipe/
0287をご覧ください。

注10） インフィニットループさんは今回のようなイベントに会
議室の貸出を随時行っているそうですので、札幌近郊で
勉強会などのイベント開催を検討されている方にお勧め
です（会場には「うまい棒」の箱があって、自由に食べられ
るようになっているなど太っ腹）。詳しくは URL http://
www.infiniteloop.co.jp/をご覧ください。

注11） URL http://www.ospn.jp/osc2014-kyoto/
注12） URL http://www.debian.or.jp/community/events/

http://www.infiniteloop.co.jp/
http://www.infiniteloop.co.jp/
http://www.ospn.jp/osc2014-kyoto/
http://www.debian.or.jp/community/events/
http://gihyo.jp/admin/serial/01/ubuntu-recipe/0287
http://gihyo.jp/admin/serial/01/ubuntu-recipe/0287

RHELと
Fedoraの関係

　本連載第2回を執筆した平です。2年ぶりです
が、今回も恵比寿にある「世界最大のオープン
ソースの会社」（の東京オフィス）のソリューショ
ンアーキテクトが日々、何をしているのか紹介
します。第2回の恵比寿通信では「OSSで飯を
食うということ」をテーマに書いてから2年経過
しましたが、おかげさまで飯は食えています。
　最近のホットトピックと言えば、米国時間の
2014年6月10日に、待望のRed Hat Enterprise

Linux 7（RHEL7）がリリースされました。前回
のバージョン6から約3年の歳月を経てリリー
スされた最先端の
OSです。RHEL7は
Fedora 18 と 19 を
ベースとしたパッ
ケージで構成されて
います。
　製品ライフサイク
ル と し て 10年 サ
ポートを基本として
おり、ミッションク

リティカル向けのサポートプログラムを適用す
ると13年間使えるLinuxディストリビューショ
ンです（図1）。13年間も同じカーネルを使うと
か正直ぞっとしますね。
　RHELの話は、ここまで。今回はRHELの開
発ベースとなっているFedoraについて書きたい
と思います。Fedoraはコミュニティベースで開
発が行われているLinuxディストリビューショ
ンです。2003年にWarren Togami氏が前身と
なるFedora Linux Projectを立ちあげたのが
きっかけです。そのころはOS本体ではなくRed

Hat Linux用の追加ソフトウェアのyumとaptの
リポジトリを提供していました。
　そして、そのころRed Hat Linuxの今後の方
針を模索していたRed Hat社に対して、Fedora

Linux ProjectのリーダーであったWarren氏が
話を持ちかけてできたのが The Fedora Project

とFedora Core 1（現在のFedora）というLinux

ディストリビューションです。
　Fedoraはリリースサイクルは約6ヵ月で、ラ
イフサイクルは約12ヵ月です。最新のFedora

がリリースされたときに2つ前のバージョンが
サポートから外れます。そんなサイクルで開発
を続け、Fedora 20のリリースを迎えました。そ
して今はFedora 21の準備を行っています。

筆者とFedoraとの
出会い

　筆者がThe Fedora Projectに加わったのは
2004年のことで、かれこれもう10年になります。

2010

RHEL7

RHEL6

RHEL5

Production 1 Production 2 Production 3

2011 2012 2013 2014

.6.5 .7 .8 .9

.0 .1 .2 .3 .4 .5

.0

.10 .11

 ▼図1　現在サポート提供中のRHELのバージョンとライフサイクル

恵比寿通信
レッドハット

平 初
Hajime TAIRA

レッドハット （株）グローバルサービス本部
プラットフォームソリューション統括部
ソリューションアーキテクト

OSSに求められる合理性

第 回23

174 - Software Design

オフ会に参加してしまった
のがきっかけで、今では
Fedora L10N Japanese

Teamのコーディネーター
を務めています。当時は
The Fedora Projectのほ
かに、重松直樹氏が立ちあ
げたFedora JP Projectと
いう日本人および日本語を
母語とする人たちのための
ローカルコミュニティがあ
りました。　
　また、http://fedora.jp/

というサイトが2008年ごろまでありました。
Fedora JP Projectでは、アプリケーションの
日本語ローカライゼーションを行ったり、独自
の日本語インストレーションガイドを作成した
り、2005年ぐらいから有志による勉強会なども
開催していて割と活発に活動していました。今
で言う勉強会ブームの先駆けだったと思います。

Fedora JP Projectを閉じた理由

　Linuxディストリビューションとしての
Fedoraとしても、EUC-JPからUTF-8への文
字コード移行問題をはじめとする日本語環境の
安定化が落ち着いてきたというのと同時に、そ
のころのFedora JP Project関係者の中には
“Go upstream!”という思いがありました。日本
のローカルコミュニティの中だけでタコ壺になっ
ていないで、Fedora に収録されるさまざまな
ソフトウェアのコミュニティのUpsteam（上流に
ある開発コミュニティ）で創造的な作業をしよう
という合い言葉です。
　そこでFedora JP Projectは、すべての創造
的活動をThe Fedora Projectで行うべきだとい
う当時のコアメンバーの意向で2008年に発展的
解散（The Fedora Projectへの移行）をしました。
　Red Hatの開発では“Upstream first”という手
法が行われます（図2）。これは開発コミュニティ
に対してバグ修正や機能改善を行ったうえで、

自社のディストリビューションの中のパッケー
ジに修正を取り込むというやり方です。オープ
ンソースソフトウェアにおいて、ソースコード
を公開しない独自拡張をメンテナンスするため
にフォークするのは手間もコストもかかり合理
的な選択肢ではありません。GPL以外の一部の
ライセンスではフォーク後のソースコード開示
義務がないライセンスも存在しますが、どこか
の会社がクローズドな独自拡張の部分実装を抱
え込むのは合理的ではありません。
　同じくFedoraのコミュニティもローカルでコ
ソコソやるのではなく世界に1つのほうが合理
的だという結論を導き出したのです。

有益な情報、
どこに書いていますか？

　時々、日本のエンジニアの方で、海外の有益
な情報を独自に日本語化してブログに掲載され
る方がいますが、情報の価値を高めるのために
は Upstreamの開発コミュニティのサイトに掲
載してもらうように調整するほうが合理的です。
個人のブログはSEO的にもヒットする可能性が
低いですし、鮮度が保てないとすぐにインター
ネットという広い宇宙の塵となってしまいます。
“Go upstream!”゚

 ▼図2　Upstream �rst!

恵比寿通信レッドハット 第 回23
OSSに求められる合理性

174 - Software Design Aug. 2014 - 175

176 - Software Design

Ubuntu Monthly Report

　SoftEther VPNは、本誌の読者であればどこかで
耳にしたことがあるのではないでしょうか。簡単に
解説すると、ソフトイーサ社注1のPacketix VPN 4.0

の一部の機能を除いて注2GPL2で公開されているソ
フトウェアVPNサーバ／クライアントです。とにか
く難しいことが簡単にできてしまいます。

　実のところSoftEther VPNはUbuntuというか非
Windows環境だけで使用するのはなかなかたいへん
なのですが、Windows用のサーバ設定ツールは
Wine注3でも動作するので、今回はWineを使用しま
す。ちなみにLAN内のどこか注4にWindowsがあれ
ば設定ツールが使えるので、実運用の際にはWine

を使う機会はあまりないでしょう。Wineは依存の関
係上、大量にパッケージをインストールするのでイ
ンストールしたくないということもあると思います。
その場合も、別途仮想マシンにWineをインストー

注1） http://www.softether.jp/

注2） http://ja.softether.org/3-spec/cureent_limitations

注3） これも解説は不要かと思いますが、LinuxでWindowsのプロ
グラムを動作させるソフトです。

注4） 厳密にいえば IPアドレスがあればいいのでWANからでもい
いかもしれません。

SoftEther VPNとは

方針

ルしたUbuntuがあればいいということでもありま
す。GUIのないUbuntu ServerでSoftEther VPNを
動作させ、設定自体は別のUbuntuから、というの
が割と現実的な想定環境でしょう。
　ただしWindows用のクライアント設定ツールは
Wineではうまく動作しないため、コマンドからすべ
ての設定を行います。サーバの設定と比較すると簡
単なので、順番さえ間違えなければ設定できるはず
です。
　ソースコードの中にはdebianフォルダがあり、Deb

パッケージが比較的簡単に作れるようになっていま
す。make installするよりもパッケージ化してしまっ
たほうがメンテナンスが楽なのはいうまでもないの
で、今回はそうします。
　サーバのネットワーク環境は、ルータの設定がで
きない完全なNAT（Network Address Translation）
の中にあります。クライアントはスマートフォン
（au）のLTE回線を使用します。いわゆるテザリング
でUbuntu注5がインストールしてあるノートPCにつ
ないでいます。SoftEther VPNがあったら便利だと
言える一般的な環境だと思います。

　ソースコードはGitHub注6から取得してもいいので

注5） 実際にはUbuntu GNOMEです。
注6） https://github.com/SoftEtherVPN/SoftEtherVPN/

ソースコードのダウンロード

今回はソフトウェアVPN（Virtual Private Network）サーバ／クライアントのSoftEther VPNを、

Windowsを使わず簡単に使用する方法を紹介します。

SoftEther VPNを
Ubuntuだけで使用する

Ubuntu Monthly Report第52回

Ubuntu Japanese Team
あわしろいくや　ikuya@fruitsbasket.info

http://www.softether.jp/
http://ja.softether.org/3-spec/cureent_limitations
https://github.com/SoftEtherVPN/SoftEtherVPN/

176 - Software Design Aug. 2014 - 177

SoftEther VPNをUbuntuだけで使用する 第 52 回

すが、今回はtarball（圧縮したtar形式のファイル）
を取得します。ソースコードのダウンロードペー
ジ注7にアクセスし、［ダウンロードするソフトウェア
を選択］を［SoftEther VPN （Freeware）］にします。
［コンポーネントを選択］は［Source Code of SoftEther

VPN］にします。［プラットフォームを選択］は［tar.gz

package］にします。各バージョンが表示されますが、
今回は執筆時点で最新のRTM版である［Ver 4.08,

Build 9449, rtm］にしました。ソースコードのダウ
ンロードが終わったら、［コンポーネントを選択］を
［SoftEther VPN Server Manager for Windows］に
変更し、［プラットフォームを選択］を［Windows （.zip

package without installers）］にし、サーバ設定ツー
ルもダウンロードします。

　方針に従ってDebパッケージを作成しますが、詳
しく解説すると、それだけで紙幅が尽きてしまうた
め、ごくごく簡単に解説します。
　ホームフォルダにsoftether-vpnというフォルダを
作成し、そこに先ほどダウンロードしたソースコー
ドを移動したと仮定して話を進めます。
　次のコマンドを実行してソースコードを伸張します。

$ cd ~/softether-vpn
$ tar xf softether-src-v4.08-9449-rtm.tar.gz
$ cd v4.08-9449

　ビルドに必要なパッケージをインストールします。

$ sudo apt-get install dpkg-dev fakeroot debhelｭ
per libncurses-dev libssl-dev libreadline-dev

　debianフォルダーにはchangelogファイルがあっ
て、パッケージのバージョンはここで決定するので
すが、添付されているスクリプトを使用してこの
ファイルを更新します。そのスクリプトとはdch-

generate.shです。まずはこれを編集してください。

$ editor debian/dch-generate.sh

注7） http://www.softether-download.com/ja.aspx

バイナリパッケージの作成と
インストール

　変更するのはこの3つの変数です。

status="trusty"
DEBFULLNAME="AWASHIRO Ikuya"
DEBEMAIL="ikuya@fruitsbasket.info"

　見てのとおりですが、“status”はUbuntuのバー
ジョンのコードネームを入れてください。例の
“trusty”は14.04で、12.04だ と“precise”で す。
“DEBFULLNAME”はご自分の名前を、“DEBE

MAIL”はご自分のメールアドレスを入れてくださ
い。
　編集が完了したら次のコマンドを実行してください。

$ debian/dch-generate.sh > debian/changelog

　このままパッケージを作成してしまうと、サーバ
もクライアントも注8自動で起動しないので、いちい
ち使用するときに起動する必要があり、非常に不便
です。debianフォルダに init.dというフォルダがあり、
ここにvpnserverというサーバ用の起動スクリプト
がありますが、このままだと使われません。debian

フォルダにパッケージ名 .initというファイルがあれ
ば（すなわちdebian/softether-vpnserver.initという
ファイルがあれば）パッケージに収録されますが、多
少修正が必要なので差分をリスト1に掲載します。
　同時にクライアントも常時起動しておくと便利な
のでdebian/softether-vpnclient.initを作成します。
これもinit.d/vpnserverへの差分としてリスト2に掲
載します。もちろん常時起動する必要がないという
のであれば、この起動スクリプトをパッケージに含
めなくてもけっこうです。注意点としては、SoftEther

VPNの解説によっては起動する際に、

$ sudo /etc/init.d/vpnserver start

もしくは、

$ sudo service vpnserver start

というコマンドを紹介していることがあるかもしれ
ませんが、これは、

注8） SoftEther VPNはクライアントも常時起動しておくのが便利
そうな作りです。

http://www.softether-download.com/ja.aspx

178 - Software Design

Ubuntu Monthly Report

$ sudo /etc/init.d/softether-vpnserver start

もしくは、

$ sudo service softether-vpnserver start

と読み替えてください。あとは実際にパッケージを
作成します。

$ dpkg-buildpacka　ge -r -uc -b

　無事に完了すると、1つ上のフォルダに拡張子
が .debの4つのパッケージが作成されます。インス
トール方法は図1のとおりです。サーバのインス
トールは1行目と2行目を、クライアントのインス
トールは1行目と3行目を実行してください。両方イ
ンストールする場合は3つのパッケージを同時にイ
ンストールしてください。softether-vpncmdパッケー

$ cd ../
$ sudo dpkg -i softether-vpnserver_4.08.9449-rtm_amd64.deb softether-vpncmd_4.08.9449-rtm_amd64.deb
$ sudo dpkg -i softether-vpnclient_4.08.9449-rtm_amd64.deb softether-vpncmd_4.08.9449-rtm_amd64.deb

図1　インストール方法

--- debian/init.d/vpnserver
+++ debian/softether-vpnserver.init
@@ -8,7 +8,7 @@

 PATH=/usr/local/sbin:/usr/local/bin:/sbin:/ｭ
bin:/usr/sbin:/usr/bin:/usr/qmsys/bin
 DAEMON=/usr/bin/vpnserver
-NAME=vpnserver
+NAME=softether-vpnserver
 DESC="SoftEtherVPN Server"

 PIDFILE=/var/run/$NAME.pid
@@ -25,13 +25,13 @@

 case "$1" in
 start)
- echo -n "Starting $DESC: $NAME"
- $DAEMON -start
+ echo -n "Starting $DESC: "
+ $DAEMON start
 echo "."
 ;;
 stop)
- echo -n "Stopping $DESC: $NAME"
- $DAEMON -stop
+ echo -n "Stopping $DESC: "
+ $DAEMON stop
 echo "."
 ;;
 #reload)
@@ -53,10 +53,10 @@
 # option to the "reload" entry above. If ｭ
not, "force-reload" is
 # just the same as "restart".
 #
- echo -n "Restarting $DESC: $NAME"
- $DAEMON -stop
+ echo -n "Restarting $DESC: "
+ $DAEMON stop
 sleep 1
- $DAEMON -start
+ $DAEMON start
 echo "."
 ;;
 *)

リスト1　debian/softether-vpnserver.initへの差分
--- debian/init.d/vpnserver
+++ debian/softether-vpnclient.init
@@ -7,9 +7,9 @@
 set -e

 PATH=/usr/local/sbin:/usr/local/bin:/sbin:/ｭ
bin:/usr/sbin:/usr/bin:/usr/qmsys/bin
-DAEMON=/usr/bin/vpnserver
-NAME=vpnserver
-DESC="SoftEtherVPN Server"
+DAEMON=/usr/bin/vpnclient
+NAME=softether-vpnclient
+DESC="SoftEtherVPN Client"

 PIDFILE=/var/run/$NAME.pid
 SCRIPTNAME=/etc/init.d/$NAME
@@ -25,13 +25,13 @@

 case "$1" in
 start)
- echo -n "Starting $DESC: $NAME"
- $DAEMON -start
+ echo -n "Starting $DESC: "
+ $DAEMON start
 echo "."
 ;;
 stop)
- echo -n "Stopping $DESC: $NAME"
- $DAEMON -stop
+ echo -n "Stopping $DESC: "
+ $DAEMON stop
 echo "."
 ;;
 #reload)
@@ -53,10 +53,10 @@
 # option to the "reload" entry above. If ｭ
not, "force-reload" is
 # just the same as "restart".
 #
- echo -n "Restarting $DESC: $NAME"
- $DAEMON -stop
+ echo -n "Restarting $DESC: "
+ $DAEMON stop
 sleep 1
- $DAEMON -start
+ $DAEMON start
 echo "."
 ;;
 *)

リスト2　debian/softether-vpnclient.initへの差分

178 - Software Design Aug. 2014 - 179

SoftEther VPNをUbuntuだけで使用する 第 52 回

ジのインストールは必須です。

　サーバの設定は前述のとおりWindows用の設定
ツールを使用します。ということはWineのインス
トールが必須です。次のコマンドでインストールし
てください。

$ sudo apt-get install wine

　先ほどダウンロードしたsoftether-vpn_admin_

tools-（中略）.zipを伸張し、vpnsmgr.exeを右クリッ
クして［Wine Windowsプログラムローダー］をク
リックしてください。すると［SoftEther VPN サー
バー管理マネージャー］というウィンドウが表示され
ます。［新しい接続設定］をクリックしてください。
　［新しい接続設定の作成］というウィンドウが表示
されますので、［接続設定名］と ［ホスト名］と［管理
パスワード］を入力してください。ただし［ホスト名］
以外はあまり真面目に入力しなくても大丈夫です。
入力が終わったら［OK］をクリックしてください。す
ると前の［SoftEther VPN サーバー管理マネー
ジャー］に戻ります。［接続］というボタンが押せるよ
うになっているのでこれをクリックします。
　今度はユーザ名とパスワードを入力するウィンド
ウが表示されますが、ここではパスワードを空欄の
ままにするのがポイントです。先ほど入力したパス
ワードは入力しないでください。そのまま［OK］をク
リックするとあらためてパスワードを設定するダイ
アログが表示されるので、入力してください。あま
り真面目に入力しなくても大丈夫です、というのは、
ここであらためて入力するから、という意味です。
　次に進むと［SoftEther VPN Server / Bridge 簡
易セットアップ］というウィンドウが表示されます。
一番上の［リモートアクセス VPN サーバー］に
チェックを入れ、［次へ］をクリックしてください。
するとダイアログが表示され、先に（不真面目に）設
定した内容が初期化される旨の確認をされますの
で、［はい］をクリックしてください。
　今度は［仮想HUB名］を入力するダイアログが表

サーバの設定と接続

示されます。これは重要ですので真面目に入力して
ほしいのですが、デフォルトのままでもさしたる問
題はありません。入力して［OK］をクリックすると
［ダイナミックDNS機能］の設定ができます。覚えや
すいものに変更しておくといいでしょう。その次は
［VPN Azureサービス］を使用するかどうかですが、
今回のような用途では必須です。これも必要であれ
ばドメインを変更してください。
　いよいよユーザ名とパスワードの設定です。［ユー
ザーを作成する］をクリックして新規作成ウィンドウ
を表示します。今回はパスワード認証にしますので、
［ユーザー名］［本名］［パスワード］［パスワード確認入
力］の4つに入力すればいいです。あとは［ローカル
ブリッジの設定］でEthernetデバイスを選択すれば
設定はおしまいです。仮想マシンで使用している場
合はさらにウィンドウが表示されますが、詳細はコ
ラム「SoftEther VPNを仮想マシンのゲストOSで
動作させる場合」をご覧ください。

　前述のとおりクライアントはauのLTE回線を経
由したUbuntuから接続します。まずは次のコマンド
を実行してください。

$ vpncmd

　すると何を行うかの選択が表示されますので、今
回は2を押して［VPN Client の管理］を選択します。
次に接続先が表示されますが、今回は localhostです
のでそのまま©キーを押してください。すると

VPN Client>

というプロンプトが表示されますので、「NicCreate」
と入力して©キーを押してください。クライア
ントの仮想LANカード名を尋ねられますので、任意
のものを入力してください。次ですぐに使用します。
　続いて、「AccountCreate」を実行してください。こ
こで尋ねられるのは順番に接続設定の名前、接続先
VPN Serverのホスト名とポート番号、接続先仮想
HUB名、接続するユーザ名、使用する仮想LAN

クライアントの設定と接続

180 - Software Design

Ubuntu Monthly Report

カード名です。接続設定の名前は任意のもので、使
用する仮想LANカード名は先ほど設定したもので
す。残りはサーバの設定を使用しますが、接続先
VPN Serverはvpnazure.netドメインで、ポートは
443としました。
　まだパスワードは設定していないので、「Account

PasswordSet」を実行してください。接続設定の名前
（先ほど任意で決定したもの）とパスワードを入力し
ます。［standard または radius の指定］も聞かれます
が、“standard”（引用符は不要）と入力してください。
　いよいよ接続します。

AccountConnect (接続設定の名前)

で接続しますが、接続されているかどうかはわかり
ません。確認のために、

AccountStatusGet (接続設定の名前)

を入力し、［セッション接続状態］が［接続完了 （セッ
ション確立済み）］になっていれば接続されています。
［再試行中］だと接続されていないので、「Account

Disconnect」で切断したあと、「AccountDelete」でア
カウントを削除し、再設定してください。
　無事接続完了になったら、今度は/etc/network/

interfacesファイルに、

iface vpn_(仮想LANカード名) inet dhcp

を追記し、

$ sudo ifup vpn_(仮想LANカード名)

を実行すると接続先のIPアドレスを取得し、実際に
アクセスできるようになります。仮想LANカード名
がわからない場合は、ifconfigコマンドを実行すると
わかります。｢

SoftEther VPNを仮想マシンのゲストOSで
動作させる場合

　今回の環境はVirtualBoxのゲストOSにXubuntu
14.04 LTSをインストールし、作成しました。仮想マ
シンのゲストOSでSoftEther VPNサーバを動作さ
せる場合は、ネットワークアダプタをブリッジモード

にする必要があります。あとは、忘れずにプロミス
キ ャ ス モ ー ド を 有 効 に し て く だ さ い。図2は
VirtualBoxでの設定例です。

図2　VirtualBoxのネットワーク設定には、そのものずばりプロミスキャスモードという設定項目がある

〒162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

養成読本編集部 編
B5判 ・ 128ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6429-8

養成読本編集部 編
B5判 ・ 212ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6578-3

WINGSプロジェクト 著
B5判 ・ 256ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6566-0

養成読本編集部 編
B5判 ・ 216ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6422-9

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

TIS㈱ 池田 大輔 著
B5変形判 ・ 384ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6288-1

乾 正知 著
B5変形判 ・ 352ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-6304-8

寺島 広大 著
B5変形判 ・ 440ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6543-1

遠山 藤乃 著
B5変形判 ・ 392ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6571-4

松本 直人、さくらインター
ネット研究所（日本Vyatta
ユーザー会） 著
B5変形判 ・ 320ページ
定価 3,300円（本体）＋税
ISBN 978-4-7741-6553-0

久保田 光則、アシアル㈱ 著
A5判 ・ 384ページ
定価 2,880円（本体）＋税
ISBN 978-4-7741-6211-9

森藤 大地、あんちべ 著
A5判 ・ 296ページ
定価 2,780円（本体）＋税
ISBN 978-4-7741-6326-0

㈱パイプドビッツ 著
A5判 ・ 224ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6205-8

養成読本編集部 編
B5判 ・ 184ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6424-3

養成読本編集部 編
B5判 ・ 196ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6425-0

〈改訂〉Trac入門
菅野 裕、今田 忠博、近藤 正裕、
杉本 琢磨 著
定価 3,200円＋税　ISBN 978-4-7741-5567-8

JavaScriptライブラリ実践活用
WINGSプロジェクト 著
定価 2,580円＋税　ISBN 978-4-7741-5611-8

小飼弾のコードなエッセイ
小飼 弾 著
定価 2,080円＋税　ISBN 978-4-7741-5664-4

データベースエンジニア養成読本
データベースエンジニア養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5806-8

Linuxシステム［実践］入門
沓名 亮典 著
定価 2,880円＋税　ISBN 978-4-7741-5813-6

Raspberry Pi［実用］入門
Japanese Raspberry Pi Users Group 著
定価 2,380円＋税　ISBN 978-4-7741-5855-6

Androidエンジニア養成読本Vol.2
Software Design編集部 編
定価 1,880円＋税　ISBN 978-4-7741-5888-4

データサイエンティスト養成読本
データサイエンティスト養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5896-9

独習Linux専科
中井 悦司 著
定価 2,980円＋税　ISBN 978-4-7741-5937-9

PHPエンジニア養成読本
PHPエンジニア養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5971-3

はじめての3Dプリンタ
水野 操、平本 知樹、神田 沙織、野村 毅 著
定価 2,480円＋税　ISBN 978-4-7741-5973-7

おいしいClojure入門
ニコラ・モドリック、安部 重成 著
定価 2,780円＋税　ISBN 978-4-7741-5991-1

Androidライブラリ実践活用
菊田 剛 著
定価 2,480円＋税　ISBN 978-4-7741-6128-0

Webアプリエンジニア養成読本
和田 裕介、石田 絢一（uzulla）、
すがわら まさのり、斎藤 祐一郎 著
定価 1,880円＋税　ISBN 978-4-7741-6367-3

レベルアップObjective-C
沼田 哲史 著
定価 3,200円＋税　ISBN 978-4-7741-6076-4

［改訂新版］Apache Solr入門
大谷 純、阿部 慎一朗、大須賀 稔、
北野 太郎、鈴木 教嗣、平賀 一昭 著
定価 3,600円＋税　ISBN 978-4-7741-6163-1

iOSアプリエンジニア養成読本
髙橋 俊光、諏訪 悠紀、湯村 翼、
平屋 真吾、平井 祐樹 著
定価 1,980円＋税　ISBN 978-4-7741-6385-7

[改訂新版]Linuxエンジニア養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6377-2

サウンドプログラミング入門
青木 直史 著
定価 2,980円＋税　ISBN 978-4-7741-5522-7

182 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

　今月もLinux 3.15の変更点について解説しま
す。今回は仮想メモリのキャッシュに関する改
良とスリープからの復帰レイテンシなどの制限を、
さまざまな場所からシステムに設定する機能を
提供する、PM QoSフレームワークの新機能に
ついて解説します。

Linuxのメモリ管理と
ビッグデータ

　まず始めに去年の 11月に“Linux memory

manager and your big data”というタイトルのCitus

Data社のブログ記事注1に書かれている例につい
て紹介します。
　そこでは2つの、いずれも42GBという大き
なCSVデータを順番に“wc -l”で行数を数える
という簡単な処理を行っています。この処理が
行われたマシンのメモリサイズは68GBで、こ
れらのファイルサイズはメモリのサイズの60％
ほどにはなりますが、個々のファイルは十分メ
モリに入るサイズです。
　1つめのファイルを2回“wc -l”してみると、1

度目はディスクからの読み込みですので10分ほ
どかかりますが、2度目はメモリ上にデータが
キャッシュされていることから20秒も経たずに

注1） http://citusdata.com/blog/72-linux-memory-manager-
and-your-big-data

終了します。まさにファイルキャッシュの威力
を見たといったところですね。ところが、2つ
めのファイルも同様に“wc -l”にかけてみてもまっ
たく所要時間が変わりません。本来ならば2つ
めのファイルもキャッシュされて高速になるは
ずです。しかし、何度やってもキャッシュを一
度完全にクリアしてからやりなおさない限り、
処理はまったく速くなりません。実はLinux 3.15

ではこの問題を解決する変更がメモリ管理シス
テムに入っています。では、いったい何が起き
ていて、Linux 3.15ではどのようにこの問題を
解決したのかを見ていきましょう。

キャッシュリスト管理の
改良

　まずメモリキャッシュ管理の改良について解
説します。一般にOSではメモリよりも格段に
遅いディスクからデータ（ページ）を読み出した
ときに、あとでもう一度そのデータが必要になっ
たときに備えて、メモリの中にそのデータをキャッ
シュしておきます。ですが、メモリの中にディ
スクのデータをすべてキャッシュしておくこと
は不可能ですので、何をキャッシュし、何を捨
てれば良いのかが問題になります。そこで何を
残し、何を捨てるかの判定のためにLRU（least

recently used）リストというものを使用します。

Linux 3.15の変更点
〜キャッシュ管理の改善とPM QoS
Text：青田 直大　AOTA Naohiro

第29回第29回

http://citusdata.com/blog/72-linux-memory-manager-and-your-big-data

182 - Software Design Aug. 2014 - 183

LInux 3.15の変更点 〜キャッシュ管理の改善とPM QoS 第29回第29回

このリストは、先頭が一番最近に使用されたペー
ジに、末尾がリストの中で使用された時間が最
も古いページになるように整列されているリス
トです。新しく読み込んだページ、またはリス
トの中で使用されたページをリストの先頭に移し、
キャッシュの削除は末尾から行われます。

2つのリスト
　LRUリストが単純に1つだけという実装では、
新しくファイルを読み込んだときに問題が出て
きます。すなわち、新しいファイルを一度しか
読み込まなくても、その一度の読み込みがLRU

リストの中の本当によく使われるページを簡単
に追い出してしまいます。そこで active/

inactiveと2つのリストを作ります。
　初めにページを読み込んだときは、そのペー
ジを inactiveリストの先頭に配置します。この
inactiveリストの中のページが再度読み込まれ
ると、このページはactiveリストに移動されます。
また、メモリ逼

ひっぱく

迫時のページ回収は inactiveの
リストからだけ行います。こうすることで、先
ほどのような一度しか読み込まれないファイルが、
よくアクセスされるページを追い出してしまう
問題を避けることができます。
　次に問題となるのはactiveリストと inactive

リストとのバランスです。ページの回収が、
inactiveリストからだけ行われるので、activeか
ら inactiveへのページの移動を行わないと、
inactiveにいる間にもう一度アクセスされたペー
ジはいつまでもactiveリストに居座ったまま回
収されないことになります。このactiveから
inactiveへのページ移動の条件として、ページ
を回収するときに、activeリストが inactiveリス
トよりも長くなっていればactiveリストからい
くつかのページを inactiveリストの先頭へと移
動するというルールを使っています。こうする
ことでactiveリストと inactiveリストがキャッ
シュに使えるメモリの中で半々となり、よく使
われるページをactiveリストで保護することと、
なおかつ新しく頻繁に使われるようになってき

たページを検出することとの両方をほどよく実
現できます。

キャッシュが有効に働かない場合
　さて、このようにキャッシュ管理はうまく考
えられているわけですが、ある種のワークロー
ドではうまく動かないことがあります。たとえ
ばページAからページIまでの9つのページを何
度も繰り返して読み込む作業を考えてみましょ
う（図1）。もしも inactiveのリストのサイズが9

よりも小さい場合には、inactiveリストにページ
AからIのすべてをキャッシュしておくことはで
きないのでこの作業ではページを1つ読み込むと、
毎回以前にキャッシュしていたページが捨てられ、
必要になったページをディスクから読み込んで
くることになります。もちろんキャッシュに使
うことができるメモリのサイズが本当に9より
も小さいのであれば、これはしかたのないこと
です。しかし、キャッシュに使うことができる
サイズには余裕があるのに以前にactiveリスト
に入って今はほとんど使われていないページの

 ▼図1　キャッシュからデータが捨てられてしまう

A

ディスク

B C D E F G H I

E

inactive active

A からEを読み込む

Aは捨てられてしまう

以後、ディスクから読み込むたびにキャッシュから
前のデータが捨てられていく

D C B A W X Y Z

A

ディスク

B C D E F G H I

F

inactive active

Fを読む

E D C B W X Y Z

A

184 - Software Design

Linuxカーネル観光ガイド

ために、今本当に必要なページをキャッシュに
乗せておくことに失敗しているのであれば、こ
れは改善すべき状況と言えるでしょう。

Linux 3.15での動作
　では、どうやってこのような状況を改善でき
るでしょうか。もちろんどのページがどのよう
にアクセスされているかを完璧に追跡しておけば、
より頻繁にアクセスされているページを優先し、
activeリストに居座っている、以前には何度か
アクセスされたものの今はアクセスされていな
いページを追い出すこともできるでしょう。し
かし、今の実装がそうなってないことからもわ
かるように、すべてのページアクセスを追跡し
ておくことはとてつもなくコストの高い処理で
現実的ではありません。
　そこでLinux 3.15ではページがキャッシュか
ら削除されてから、次にアクセスされてキャッシュ
に読み込まれるまでにどれぐらいの「距離」があっ
たのかを追跡し、その「距離」に応じて読み込ん
だページをいきなりactiveリストに追加する変
更が導入されました。
　「ページアクセスの距離」について見ていく前
に、前述のような例での inactiveリスト内のペー
ジの動きについてよく見てみましょう。新しく
読み込まれたページはまず inactiveリストの先
頭に配置されます。このページは inactiveリス
トの中でどのように動いていくでしょうか。こ
の注目されたページへのアクセスを除くと、ペー
ジへのアクセスは次の3つに分類できます。

❶	activeリスト内のページへのアクセス
❷	inactiveリスト内のページへのアクセス
❸	active/inactiveどちらのリストにも入って
いないページへのアクセス

　❶の場合にはactiveリスト内で順番の変更が
あるだけで、inactiveのリストは変わることはな
く、注目しているページは動くことはありません。
　❷の場合には、アクセスされた inactiveリス
ト内のページがactiveリストへと移動されるので、

注目しているページは inactiveリストの末尾の
ほうへと1つスライドします。
　最後に❸の場合には、アクセスされたページ
は新しくinactiveリストへと追加され、inactive

リストの末尾のページがキャッシュから追い出
されることになるので、この場合も注目してい
るページは inactiveリストの末尾へと1つスライ
ドすることになります。
　以上のことから、inactiveリストからページ
が追い出された数、およびページがactiveリス
トに移動された数とを合計しておき、ある2つ
の時点におけるその合計の差をとることによって、
その2つの時点の間にいくつの inactiveなペー
ジがアクセスされたかの最低値を示すことにな
ります。また、inactiveリストの中のあるページ
がN個末尾に近付くには、最低でもN回の
inactiveページへのアクセスが起きていること
がわかります。すなわち、あるページが inactive

リストから追い出されたときには、少なくとも
inactiveリストの長さの数と同じだけの inactive

リストへのアクセスが起きています。

inactive_ageの利用
　また、あるページが inactiveリストから追い
出されるときに、「そのときまでのinactiveリス
トからページが追い出された数、およびページ

がactiveリストに移動された数の合計」（以下、
inactive_ageと呼びます）がいくつのときにその
ページが追い出されたのかを記録しておき、そ
の後そのページがふたたび読み込まれ、inactive

リストに入ってきたときの inactive_ageとの差
をとると、それはそのページがキャッシュの外
に置かれていた時間を示します。この差をペー
ジが追い出されてからまたアクセスされる
（refaultする）間の距離と見て“refault distance”
と呼びます。
　すると、このページが一度アクセスされてから、
（一度キャッシュから消えて）ふたたびアクセス
されるまでには最低でも、“<inactiveリストの長
さ>＋<refault distance>”の数だけのページ

184 - Software Design Aug. 2014 - 185

LInux 3.15の変更点 〜キャッシュ管理の改善とPM QoS 第29回第29回

がアクセスされていることがわかります。もし
もこの「アクセス距離」がキャッシュ内に保持し
得るページの数以下であれば、このページは
キャッシュ内に残しておくほうが良かったとい
うことがわかります。
　「キャッシュ内に保持し得るページの数」とい
うのは“<inactiveリストの長さ>＋<activeリ
ストの長さ>”であることから、整理すると次の
式が成り立てばそのページはキャッシュの中に
残しておいたほうが良かったということになり
ます。

<refault distance> ≦ <activeリストの長さ> ……1

　結局のところ、このページがactiveリストに
入ることができなかったのは inactiveリストの
長さが不足しているからだということになります。
かと言って、inactiveのリストを伸ばしてしまう
のは、それだけ activeリストの長さを小さくす
ることを意味し、よくアクセスされているペー
ジのキャッシュ保持数を減らしてしまうことに
つながるので好ましくはありません。そこで、
1式が成り立ったページは、通常キャッシュに
読み込まれたページのように inactiveリストに
入れるのではなく、いきなりactiveリストへと
登録します。こうすることで、activeリストに
居座っている、もう今ではあまりアクセスされ
ていないページをacitveから inactiveへと追い
出すことができるようになります。もちろん本
当によくアクセスされるページだけがactiveリ
ストに残っていたときも、これらのページが再
度activeになり、今いきなりactiveリストに入
ることができたページはやがては inactiveになり、
キャッシュから追い出されていくのでこの場合
も問題はありません。

動作例
　最後に簡単な動作例を見てみましょう（図2）。
activeリストにもうアクセスされていないものの
過去にはアクセスされていたW、X、Y、Zとい
う4つのページがあるという状況で、AからIの

ページに何度も繰返し（これらのページだけを）
アクセスしていく状況を考えてみましょう。こ
こでキャッシュに使うことができるページの数
は9とします。また、わかりやすい例にするため、
最初のinactive_ageを0とします。
　AからEを読み込むまではキャッシュに余裕
があるので、キャッシュから追い出されるペー
ジもなく、inactive_ageは0のまま推移します。
次にFを読み込もうとすると、それに伴ってA

がキャッシュから追い出され、invalid_ageは1

となります。このときに“A”が invalid_age=1の
ときに追い出されたと記録をとっておきます。
　このままG、H、Iを読み込むと、順次B、C、
Dが追い出されそれぞれの invalid_ageが記録さ
れます。そしてもう一度Aが読み込まれるとこ
ろまで来ると、まずEが追い出され invalid_age

がインクリメントされます。そして、ここでA

の<refault distance>＝5-1＝4が計算されます。
これがactiveリストの長さ＝4以下なので、A

はacitveリストへと追加されます。この後、B、C、
D、Eと読み込んでいくことでactiveリストに居
座っていたW、X、Y、Zはすっかりactiveリス
トから追い出されてしまいます。
　この次にFが読み込まれる時点で、Zがキャッ
シュからも追い出されていきます。最終的にA

からIがすべてキャッシュに乗ってしまい、ディ
スクから読みにいかない高速な作業が可能とな
ります。

PM QoS
システムの制限

　次にLinux 3.15で機能が拡張されたPM QoS

フレームワークについて解説します。PM QoS

はドライバなどが望むレイテンシ、スループッ
トといったパフォーマンス上の制限をとりまと
めて、制限内容をカーネルとユーザ空間とに見
せるためのフレームワークです。
　具体的な例としてCPUについて見てみましょ
う。以前にも紹介したように、現在のCPUには
一口にアイドル状態といっても複数のアイドル

186 - Software Design

Linuxカーネル観光ガイド

状態が存在します。これは一
般に、C0、C1、C2、C3とい
うようにCに番号を付けた名
前で呼ばれます。番号が大き
くなるほどその状態において
消費する電力は減っていきま
すが、同時に実行可能状態に
戻るまでの時間（レイテンシ）
も大きくなっていきます。そ
うすると、一度やることがな
くなったからといってすぐに
一番深い（番号の大きい）
C-stateに入るのは得策では
ありません。現在の稼働状況
によって小さな消費電力と大
きなレイテンシがつりあう
C-stateを選択する必要があ
ります。
　稼働状況と同様にデバイス
やアプリケーションから稼働
状態に戻るまでのレイテンシ
に制限が付けられる場合もあ
ります。たとえば drivers/

media/platform/via-camera.c

ではリスト1のようにレイテ
ンシに制限をかけています。
C3以上深いC-stateに入るこ
とでDMA転送がcorruptして
しまうので、アイドル状態に
なっても高々C2までになるよ
うにレイテンシが50マイクロ
秒（μsec）以上になるC-state

には入らないような設定をし
ています。
　またユーザ空間でリアルタ
イムアプリケーションを動か
している場合、CPUがアイ
ドル状態に入ってしまうと実
行すべきイベントが起きたと
きからアプリケーションが動

 ▼図2　動作例

E0

1

invalid_age

D C B A W X Y Z

F

inactive active

Fを読み込む

E D C B W X Y Z

F

A：1

I4

5

H G F E W X Y Z

Aを読む

I H G F W X Y Z

A：1 B：2 C：3 D：4

A：1 B：2 C：3 D：4 E：5

5－ 1＝4≦4

Bを読もうとする

Aは activeリストへ

I5

6

H G F

I H G F E

WA X Y Z

WA X YI H G F

B：2 C：3 D：4 E：5

F：6B：2 C：3 D：4 E：5 F がキャッシュから外れ、
Zが inactive に落ちる

6

9

Z I H G AB W X Y

DE C B AW X Y Z

C：3 D：4 E：5 F：6

F：6 G：7 H：8 I：9

13 D C B A

186 - Software Design Aug. 2014 - 187

LInux 3.15の変更点 〜キャッシュ管理の改善とPM QoS 第29回第29回

作できるようになるまでに、C-stateから戻って
くる時間が余計にかかってしまいます。これを
防止する1つの方法は、カーネルの起動パラメー
タにprocessor.max_cstates=1を付けることです。
　しかし、この方法では常に（リアルタイムアプ
リケーションが動作していないときにも）深い
C-stateに入れなくなってしまいます。ここで
PM QoSフレームワークのユーザランドからの
インターフェースを利用できます。/dev/cpu_

dma_latency を開き32bitの数値（単位はマイク
ロ秒）を書くか、または“0x12345678”といった
10文字の16進数文字列を書くことで、ファイ
ルを開いている間だけ稼働状態に戻るまでのレ
イテンシが設定した値以上になるC-stateに入
らないようになります。
　さて、今度はこうして設定された制限がどの
ように使われるかについて見てみましょう。現在
の制限値を取得するには“pm_qos_request()”関
数に対応する引数を渡します。つまり、CPUの
レイテンシの場合“pm_qos_request(PM_QOS_

CPU_DMA_LATENCY)”と呼び出します。こ
の関数は、現在登録されている制限のうち一番
厳しいもの、すなわちレイテンシの場合には一
番小さいものが返ってきます。
　CPUのドライバはこれを使って移行する
C-stateを決定します。たとえば、drivers/

cpuidle/governors/ladder.c の ladder_select_

state関数などで、この情報が使われています。
また、制限の値が変わったときに、変更された
通知を受けることもできます。たとえば
drivers/cpuidle/cpuidle.cでは cpuidle_latency_

notify()関数で通知を受け取り、残りのCPUを
C-stateから起こす処理を行います。
　また、ユーザランドからも/dev/cpu_dma_

latencyを読み出すことで現在の制限値を取り出
すことができます。例として/dev/cpu_dma_

latencyの読み書きを見てみましょう。図3の実
行例では、まず/dev/cpu_dma_latencyを読みこ
みんでいます。この例の場合レイテンシの制限
は“0x000b71b0”（＝ 750000μ sec＝ 0.75秒）と
設定されています。デフォルトで設定されてい
る場合はより大きく2,000秒となっています。
筆者の例の場合では、音楽を流しているのでサ
ウンドドライバがこの値を設定しています。こ
こで現在設定されている値よりも、より小さい
値を書きこみ、書き込みに使ったファイルを3

秒間開いておきます。同時に1秒後に、値を読
み出すようにします。すると、0x00001234が
読み出され確かに一番小さい値が使われている
とわかります。最後にwaitして、書き込みに用
いたファイルが閉じてから、再度読み出してみ
ると、値が元に戻っていることも確認できます。
　このようにPM QoSフレームワークの1つの
機能は、ドライバやユーザランドのプログラム
などさまざまな場所から設定されるレイテンシ
などの制限を整理し、その制限の情報を使いた
いドライバに最も厳しい制限値を伝える機能と
なっています（図4）。今回の例ではCPUのレイ
テンシを取り上げましたが、ほかにもネットワー
クのレイテンシとネットワークのスループット
の制限も設定できます。これらの制限値はユー
ザランドからは、それぞれ /dev/network_

latencyと/dev/network_throughputからアクセ
スできます。ネットワークレイテンシの制限値
は無線LANのドライバで実際に使われている
ようですが、ネットワークスループットのほう
は制限の設定は行われているもののその値を使っ
ている個所は今のところないようです。

/*
 * If the CPU goes into C3, the DMA transfer gets corrupted and
 * users start filing unsightly bug reports. Put in a "latency"
 * requirement which will keep the CPU out of the deeper sleep
 * states.
 */
pm_qos_add_request(&cam->qos_request, PM_QOS_CPU_DMA_LATENCY, 50);

 ▼リスト1　via-camera.c内のCPUレイテンシ制限例

188 - Software Design

Linuxカーネル観光ガイド

PM QoS
デバイスの制限

　ここまでに紹介したPM QoSは、CPUやネッ
トワークなどシステム全体で1つの制限をかけ
てきました。最近の周辺機器の中には電源管理
機能を持ち、実行時にサスペンドする機能を持っ
たものもあります。これらのデバイスをサスペ
ンドにするかどうかをデバイスごとに制御でき
るようにするのがPM QoSのもう1つの機能で
す。
　デバイスドライバに設定できる制限はCPU

の場合と同じ復帰までのレイテンシと、フラグ
を設定できます。レイテンシのほうはCPUとまっ
たく同じで、設定されたレイテンシよりも長い
復帰時間になるサスペンドモード（D-state）に入
らないようにドライバが動作します。フラグに
は NO_POWER_OFFと REMOTE_WAKEUP

 のフラグとがあります。NO_POWER_OFFフ
ラグを付けていると、カーネルドライバは、デ
バイスから完全に電源を取り去ってしまわない
ように動作します。
　たとえば、drivers/acpi/device_pm.cのacpi_

pm_device_sleep_state()関数ではリスト2のよ
うにNO_POWER_OFFフラグをチェックして
います。デバイスの電源モードにはD0からD3

まであり、さらにD3はD3hotとD3coldに分か
れています。D3coldであれば、完全に電源が切
れてしまうので、NO_POWER_OFFフラグで
D3coldに入れるかどうかを制御しているという
ことになります。もう1つのフラグ、REMOTE_

WAKEUPフラグは、そのデバイスの remote

wakeupを有効にするかどうかを設定します。
remote wakeupは外部からのイベント（たとえば
キーボードのキーを押すなど）に反応してデバイ
ス自体のサスペンドを解除したり、あるいはマ

 ▼図4　PM QoSフレームワーク

CPUアイドルドライバ

カメラデバイスドライバ

アプリケーション

サウンドサブシステム

pm_qos_add_request /dev/cpu_dma_latency

pm_qos_add_notifier

変更通知 PM QoS

pm_qos_request
pm_qos_update_request

pm_qos_add_request
pm_qos_update_request

では
30μsecで
復帰すれば
いいな

50μsec
以内で
復帰して
ほしい

制限が
変わったよ

30μsec
以内で

0.75 秒で

$ sudo hexdump -C /dev/cpu_dma_latency
00000000 b0 71 0b 00 |.q..|
00000004
$ (echo 0x00001234; sleep 3)|sudo tee /dev/cpu_dma_latency& sleep 1; sudo hexdump -C /dev/
cpu_dma_latency
[1] 22120
0x00001234
00000000 34 12 00 00 |4...|
00000004
$ wait; sudo hexdump -C /dev/cpu_dma_latency
[1]+ Done (echo 0x00001234; sleep 3) | sudo tee /dev/cpu_dma_latency
00000000 b0 71 0b 00 |.q..|
00000004

 ▼図3　/dev/cpu_dma_latencyの読み書き

188 - Software Design Aug. 2014 - 189

LInux 3.15の変更点 〜キャッシュ管理の改善とPM QoS 第29回第29回

シンのサスペンドから復帰することを可能にす
る機能です。
　これらの制限は、ユーザ空間ではレイテンシ
は sysfsの /sys/devices以下の power/pm_qos_

resume_latency_usフ ァ イ ル、NO_POWER_

OFFフラグは同ディレクトリのpm_qos_no_

power_offファイル、REMOTE_WAKEUPフラ
グは同pm_qos_remote_wakeupファイルで制御
できます。またカーネル内からも、dev_pm_

qos_add_request()、dev_pm_qos_update_

request()によって制御できます。たとえば、
drivers/mtd/nand/sh_flctl.c の flctl_select_

chip()関数ではリスト3のように、レイテンシの
制限を100マイクロ秒に制限しています。

PM QoS
デバイス内での電源管理

　さて、ここまでのPM QoSフレームワークは
すべてカーネルドライバに制限内容を伝えるた
めに使われるものでした。しかし、最近ではデ
バイスが自分自身で（ドライバの助けを借りずに）
自身の電源状態を制御するような周辺機器も出
てきています。これらのデバイスはアクセス状
況によって自動的にスリープ状態に入ります。
そうすると、ここにもまた「スリープしてほしく

ないときにスリープしてしまう」問題が出てきま
す。この問題に対処するために、Linux 3.15では、
PM QoSを拡張し、デバイス側にレイテンシの
制限を伝え、デバイスがそのレイテンシを考慮
してスリープ状態への遷移を判断できるように
しました。
　このレイテンシの設定が可能なデバイスに対
応する/sys/devices以下のディレクトリのpower/

下には、pm_qos_latency_tolerance_usファイル
が作られます。このファイルに許容される最大
のレイテンシの値、または“any”か“auto”を書き
こみます。“any”の場合にはとくにレイテンシの
制限は設定しませんが、ハードウェアが自動的
に許容レイテンシを判断することは許可しません。
一方で、“auto”の場合は完全にハードウェアが
必要に応じて許容レイテンシを自動的に設定す
ることを許可します。
　この機能をサポートしているデバイスのドライ
バは、dev_pm_info構造体のset_latency_tolerance

にコールバック関数を設定します。今のところ
ACPILPSS（Low-Power Subsystem）ドライバ
であるdrivers/acpi/acpi_lpss.cのacpi_lpss_

set_ltr()関数だけがこのコールバック関数とし
て実装されています。｢

if (!flctl->qos_request) {
 ret = dev_pm_qos_add_request(&flctl->pdev->dev,
 &flctl->pm_qos,
 DEV_PM_QOS_RESUME_LATENCY,
 100);
 if (ret < 0)
 dev_err(&flctl->pdev->dev,
 "PM QoS request failed: %d¥n", ret);
 flctl->qos_request = 1;
}

 ▼リスト3　カーネル内からデバイスの復帰レイテンシを設定

if (d_max_in > ACPI_STATE_D3_HOT) {
 enum pm_qos_flags_status stat;

 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
 if (stat == PM_QOS_FLAGS_ALL)
 d_max_in = ACPI_STATE_D3_HOT;
}

 ▼リスト2　NO_POWER_OFFのチェック

190 - Software Design

を感じるようになり、それを埋めるような書籍を作
りたいということで臼田さんに企画書を送ったのが
制作のきっかけです。創夢は社内研修でUNIXを教
えているので、その資料をもとに執筆が始まりまし
た。最初は20人ぐらいで書いていたのですが、人数
が多過ぎてうまく進まず、仕切りなおしをする段階
で今回の講師3人による執筆に切り替えたそうです。
また、編集側も、企画段階では臼田さんが担当して
いたのですが途中で異動になってしまい、その後は
鈴木さんが進行管理を務めました。

■話題の選択と分担

　収録する話題の選択は、おもに木本さんの手で行
われました。その際に重視したのは、長く使える普
遍的な話題を選ぶことです。その結果、本書は、「コ
マンドラインの操作を中心に解説する」「カスタマイ
ズについては触れない」「多くのUNIX系OSで共通
に使えるテクニックを中心に説明する」といった特徴
を持っています。なお、実行例などで使われている
OSはFreeBSDとUbuntuです。創夢にはSolarisや
NetBSDのユーザも多いのですが、世間のユーザ数
や、これから勉強する人のための書籍であることも
考慮して木本さんが選びました。
　執筆の分担は、第1部・生活環境編を木本さん、第
2部・プログラミング環境編を稲島さん、第3部・ネッ
トワーク技術編を松山さんが担当しました。このよ
うな構成になっているのは、創夢では開発系の部署
と運用系の部署があり、生活環境編は全員が受講し
ますが、その後は配属先に応じた内容を学ぶという
カリキュラムに起因します。また、編集担当の裏話

　6月にjusとしては久しぶりの勉強会を実施しまし
た。その模様をお伝えします。

	 ■はじめてUNIXで仕事をする人に教えたいこと

	【講師】木本 雅彦（㈱創夢）、松山 直道（㈱創夢）、

	 	 稲島 大輔（㈱創夢）、鈴木 嘉平（㈱KADO

	 	 KAWA）、臼田 良寛（㈱KADOKAWA）

	【司会】法林 浩之（日本UNIXユーザ会）

	【日時】2014年6月4日（水）19:00〜22:00

	【会場】角川第3本社ビル 14F会議室ハワイ

　今年の春に出版された『はじめてUNIXで仕事をす
る人が読む本』（図1）を題材に、これからUNIXで仕
事をする人に何を勉強してもらいたいか、どんな教
え方をすればいいのかを一緒に考えるという主旨の
もとに開催されました。参加者は33人でした。

■本書の制作経緯

　勉強会の第1部は「『は
じめてUNIXで仕事をす
る人が読む本』ができるま
で」と題し、本書の著者と
編集者に制作過程や裏話
を語っていただきました。
　創夢の社内研修を担当
していた木本さんが、ベ
テランと若者のUNIX

ユーザの間で世代の違い

2014年6月jus勉強会

図1　木本雅彦、松山直道、
稲島大輔 著、㈱創夢 監
修 『はじめてUNIXで仕
事をする人が読む本』
KADOKAWA、2014年

はじめてUNIXで仕事をする人に教えたいこと

NO.34
August 2014

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/

Aug. 2014 - 191190 - Software Design

として、ページ数の割に校正の回数が多く、原稿の
確定に時間がかかったのですが、良い書籍を作るに
は必要なことと考えてアスキー注1社内の説得にあ
たったという話がありました。それから、本書では
一貫して、「UNIX/Linux」などと書かずに「UNIX」で
表記を統一しています。この点について著者陣から
は「特定のOSの解説書ではなく、UNIX系OSで共通
に使える技術の解説書であることを示したかったか
ら」という説明がありました。

■内容の紹介

　この後は本書の目次を見ながら内容を紹介してい
きました。まず仙人と弟子のイラストが描かれた表
紙ですが、これはかつてアスキーから出版された
『The Art of UNIX Programming』（図2）の表紙にイン
スパイアされたものです。それから、臼田さんから
企画時の目次案が提示され、制作の過程で章立てが
大きく変化したことが示されました。とくに生活環
境編は仕切りなおしをするときに大部分を書き直し
ました。生活環境編で注目したいのはエディタの章
で、vi/vimやEmacsも書いてありますが、最初にed

の解説があり、またエディタが使えないときにecho

やcatでファイルを操作する話も記述されています。
プログラミング環境編は研修資料がかなり使えたの
ですが、研修ではSolarisを使っているところを本書
ではFreeBSDやUbuntuで説明しているので、実行

例をすべて取りなおすの
がたいへんでした。ネッ
トワーク技術編は、OSIモ
デルなど基礎的な概念の
説明が研修資料にないの
で書き下ろしました。
　講師陣から、「新人が直
接手に取るのでなく指導
者経由でもいいから本書
が広まってほしい」「創夢

でやってきたことの成果を書籍という形で残せてよ
かった」「アスキーでは古くから『たのしいUNIX』注2

などUNIXの入門書を出してきたが、久しぶりにそ
の類の本を作ることができてうれしい」などの言葉を
いただいて終了となりました。

■BoF

　第2部は、ビールとピザをつまみながらBoF形式
でトークを進めました。その中の一部を紹介します。

・	 近年、若い開発者たちがMacBookなどを購入し、

UNIXユーザになる例が急増しています。しかし

彼らはこれまでGUIしか使ってこなかったせいか、

CUIの操作をこわがっているようです。また、教

科書の操作例をプロンプトも含めて入力したり、

ヒストリー機能を知らないのでコマンドを毎回全

部打ちなおしたりする例が散見され、UNIXの操作

を体系的に教わっていない人が多いようです

・	 SIerでは、先輩もUNIXを知らないので、新人は

UNIXを教えてもらえず、上達しないと言います。

昔は同じマシンを使っている他人の設定ファイル

を見て勉強できたのですが、今は各自でマシンを

所有して設定ファイルを共有しないので、そうい

う勉強のしかたができません。やはり周囲にUNIX

ユーザの先輩がいるのが最高の教材のようです

・	 最近はシェル芸勉強会など、シェルをテーマとす

る勉強会が行われ、ある程度の参加者を集めてい

ます。UNIXを使い始めた人たちの間でシェルに対

する関心が高まっていることがうかがえます。本

書ではコマンドを組み合わせて処理するような

シェルプログラミングの考え方には触れていませ

んが、そこを教えてほしいという声がありました

◆　◆　◆
　このような話を笑いも交えて繰り広げるうちに、
予定の時間を大幅にオーバーして終了となりました。
jusならではのテーマで勉強会を行うことができて非
常に有意義であったと思います。｢

注2） 坂本文 著 『たのしいUNIX̶̶UNIXへの招待』 アスキー、1990年

注1） 本書はKADOKAWAから発行されていますが、企画／制作は
㈱アスキー・メディアワークスのもとで始まりました。その後
の2013年9月に、アスキー・メディアワークスは㈱角川書店
などと合併し、KADOKAWAとなりました。

図2　Eric S.Raymond 著、長
尾高弘 訳 『The Art of
UNIX Programming』 ア
スキー、2007年

はじめてUNIXで仕事をする人に教えたいこと August
2014

192 - Software Design

島ソンとは？

　Code for Shiogamaは東日本大震災で被災した宮
城県塩竈市の地域活性をITの力で行っていこうとい
う団体です注1。震災復興団体とIT技術者がお互いに
意見を出し合うミーティングの開催をしています。
今回はCode for Shiogama/Hack For Japanの主催
で2014年5月24～25日に行った「第1回　島ソン～
浦戸諸島ハッカソン～注2」の模様について紹介しま
す（写真1）。

開催のきっかけ

　まだ震災から間もない2011年7月にHack For

Japanでは、今回の島ソンの舞台である宮城県塩竈
市の浦戸諸島を視察しました。離島であるため重機
が入りづらく、震災の爪痕が強く残る中での視察注3

でした（写真2）。その視察からほぼ3年が経過し、
「うらとラウンジ菜の花」という人が集まるための場
所が浦戸諸島開発総合センター（ブルーセンター）と
いう研修センター内に作られました。
　筆者は塩竈市の出身です。家が浦戸諸島にあるわ
けではありませんが、同じ塩竈で震災の被害の大き
かった浦戸諸島にITの力でより貢献したいと以前
から思っていました。そして、人が集まれる場所が
できたということで今回の島ソンを企画しました。

島ソンのコンセプト

　今まで筆者はHack For Japanが主催するものを

はじめとしたHackathonに多く参加し、スタッフと
して運営も多く行ってきました。そこで感じていた
のが、①このプロダクトは本当に役に立つのか、②
プログラムを組めない人が暇になる、③どんな良い
プロダクトでもHackathonが終わるとそれで終息し
てしまう、ということです。
　①を解消するために、島に住む方・島で仕事をし
ている方にイベントに参加してもらうことにしまし
た。一緒にアイディアを出しあい、一緒にプロジェ
クトとして進めていきました。②に対しては、ガイ
ドと一緒に島を歩いて見てもらい、島の実際を知っ
てもらうというイベントを入れました。
　このような対策を取っているHackathonは多いで
す。しかし、③への対策には多くのHackathonが取
り組みを見せつつも、あまりうまく機能しているよ
うに見えているものは個人的にはありませんでし
た。今回、ここを解決するために石巻専修大学の舛
井研究室とタッグを組み、「学生のみなさんがこの
イベントを通じて自分の名刺代わりとなるコンテン
ツを作る」という方法を取りました。舛井研究室の
みなさんは経営学部なのでプログラム経験のある方
はわずかです。しかし、「自分の名刺代わり」にする
ためにはHackathonが終わった後も活動を続けなけ
ればならない。そして、何よりこれが学生のみなさ
んにも就職で自分をアピールしやすい材料になりま
す。この流れでHackathonの後も活動を続けようと
いう試みです。

Hackは随所に！

　Hackathonは野々島にある市の出先機関の浦戸諸
島開発総合センターにて行われました。センターに
は宿泊ができる大広間があり、キッチンや体育館も

Hack For Japan
エンジニアだからこそできる復興への一歩

島ソン！　電波も届かない離島でのハッカソン第32回
“東日本大震災に対し、自分たちの開発スキルを役立てたい”というエンジニアの声をもとに発足された
「Hack For Japan」。今回は宮城県の浦戸諸島で行われたハッカソンの報告です。

●Hack For Japanスタッフ
　小泉　勝志郎 Katsushiro Koizumi
　 Twitter @koi_zoom1

注1	 https://www.facebook.com/CodeForShiogama
注2	 http://tohoku-dev.jp/modules/eguide/event.php?eid=255
注3	 2011年7月の浦戸諸島視察の模様　 http://blog.hack4.jp/

2011/07/hack-for-japan_13.html

https://www.facebook.com/CodeForShiogama
http://tohoku-dev.jp/modules/eguide/event.php?eid=255
http://blog.hack4.jp/2011/07/hack-for-japan_13.html
http://blog.hack4.jp/2011/07/hack-for-japan_13.html

Aug. 2014 - 193

島ソン！　電波も届かない離島での
ハッカソン第32回

備わっている施設で1泊2日の
Hackathonをするにはうってつ
けの場所でした。
　が……離島だけあって電波の
入りに少々難が。とはいえ、そ
こはハッカーのみなさん。なん
とステンレスボウルを駆使して
簡易パラボラアンテナを作成！
（写真3）　Wi-Fiがぜんぜん電波
を拾わなかったのが、このおか
げで動画を見られるくらいにま
でに大変化が！
　また、今回のHackathonでは
夕食・昼食は自炊！　ここでも魚
捌きHackや夕食の残りを朝食の
おかずにトランスフォームするなどのHackが繰り
広げられました。

ディスカッションから
スタート

島のみなさんから話を聞く

　今回の島ソンでは、仙台はもちろんのこと、東京
や福島、遠くは大阪からも参加が！　そして前述の
とおり、石巻専修大学からの学生と島の方も含めて
総参加者数はなんと47名。
　参加者の全員が浦戸諸島の現状について詳しいわ
けではないため、島の方の話をもとにいくつかの
ワークショップを織り交ぜてHackathonに取り組
む、というプログラムを運営スタッフの中西さんに
構成いただきました。
　島からの参加者は浦戸諸島で漁師をされている
方、石浜区長、海産物販売をされている方などから
島の現状について話をしてもらいます。区長という
のは東京23区とは異なり、一般で言う町内会長に
相当して行政区分の長ではありません。しかし、浦
戸諸島には自治区という扱いで通常の町内会長とは
異なる大きな影響力があります。
　Hackathon初日は、まず島の方の話をうかがうこ
とからスタート。このディスカッションでは「後継

者問題」、「震災で海の生態バランスが崩れ漁がしづ
らくなった」、「島の年齢層が高く保守的なところが
ある」、「島と本島の塩竈を行き来する汽船の本数が
少なく、島に住みながら塩竈や仙台で働くことがで
きない」、「救急で人が倒れても救急船が来るまでに
1、2時間かかる」といった話がされました（写真4）。
　島の方から話を聞いた後、参加者同士で感想や疑
問点を話し合い、さらに島の方への質問タイムを挟
んで昼食へ。昼食は「島巡り弁当」という浦戸諸島の
各島（桂島・寒風沢島・野々島・朴島）の味がすべて
楽しめる豪華なお弁当です。

島のみなさんとアイディアを
膨らませる

　午後からは話し合いたいテーマを各自が発表。漁
業体験、島を利用した脱出ゲーム、浦戸諸島で採れ
る健康にいい海藻アカモクのPRなど、たくさんの
テーマが提案されました。
　そこから似たテーマを出した者や連携できそうな
者同士がチームを構成して、いくつかのグループ分
けを行いました。それぞれのチームでマインドマッ
プを使って、さらにテーマを関連キーワードで広げ
ながら掘り下げていきます（写真5）。この中でも目
立っていたのが、島の方がふと発言したほら穴

4 4 4

につ
いての発言が広がりを見せて生まれた、ほら穴グ
ループ。なんと婚活グループと結びついて議論とい

◆◆写真1　島ソンボード ◆◆写真2　震災当時の浦戸諸島

◆◆写真3　ステンレスボウルアンテナ ◆◆写真4　ディスカッションの様子

194 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

う奇妙な光景も。
　マインドマップを行った後、自分がHackathonで
やってみたいアイデアを各々が用紙に書き込みプレ
ゼン。気に入ったアイデアに参加者を募って
Hackathonに取り組むグループ分けがなされました。

手を動かすだけではなく
足も動かす！

いざ島あるきへ！

　通常のHackathonでは、グループ分けの後は各グ
ループの作業となりますが、今回は先に述べたよう
に島の方に島内を案内いただいての島あるき！
　複数の斑に分かれての島あるきでは話題になった
ほら穴を見て回ったり、アカモクを取る現場を実際
に見たり、船に乗ったりとグループによってさまざ
まな体験を行えました。
　実際に島について知る貴重な機会を得たあとは、
お待ちかねの開発へ……と、すぐには行かずにまず
は夕食へ。夕食は自炊なのでHackポイントです。
港の街、塩竈の刺身をはじめとした美味しい海産
物。そして、牡

か き

蠣やホタテのバーベキュー！　たっ
ぷりおなかを満たして果たして開発はできるのか？

開発作業！

　食事が終わってしばらくは満腹感に満たされてい
ましたが、そこはHackerのみなさん。夜も更ける
ころにはみなさん真剣な表情での開発が始まりまし
た。PCでの作業だけでなく、素材となるムービー
や写真を撮りに行ったりするなど、現地にいながら
にして開催されるHackathonならではのやり方に
チャレンジしているチームも見られました。

そして成果発表へ

　それぞれのチームのテーマと発表内容を紹介します。

❶「ほら穴」
　野々島に多数存在している「ほら穴」に着眼。廃墟
マニアなどが存在していることから、ほら穴マニア
もきっといるという、ほら穴を観光資源として活用
するアイデア。名付けて「ほら穴るるぶ」！　実際の
ほら穴を使って撮影したPRムービー、旅行者と島
の方がほら穴画像の投稿を通じて交流が図れる
SNSサイトを提案し、スマホ閲覧機能付きのサイ
トのデモも行われました。

❷「謎解きゲーム」
　観光資源はあるのに訪れる人が少ないという課題
を受けて、複数の島から成り立つ浦戸諸島そのもの
に注目。謎解きゲームを開催して、若い人に浦戸諸
島を知ってもらうきっかけイベントとしてはどうか
というアイデア。リアル脱出ゲームの波にうまく乗
れるとおもしろくなりそうです。

❸「写真」
　島の紹介がされているガイドマップの情報量が少
ない、見落とされているスポットが多いなどの課題
があるので、それらを解決するアイデアを提案。住
民の方から仕入れたネタを入れた解説付きのガイド
アプリ、旅行者と島の方が写真を通じてSNSで交
流できる写真アプリ、THETAを使った360度の風
景スポットを見られるストリートビュー注4を発表
しました。

❹「レシピ」
　「島の食材＋マッシュアップ」という発想から

注4	 野々島ストリートビュー https://plus.google.com/photos/107760690310294960125/albums/6017705989741573009

◆◆写真6　ほら穴見学◆◆写真5　マインドマップ ◆◆写真7　船で島巡り

https://plus.google.com/photos/107760690310294960125/album/6017705989741573009

Aug. 2014 - 195

島ソン！　電波も届かない離島での
ハッカソン第32回

ました。今回の島ソンでは島の方に話題提供者と
なって参加いただくだけでなく、マインドマップ作
成や島見学などに協力してもらったことで、一緒に
取り組んでいくHackathonとなりました。

イベントを終えて

　島ソンは筆者からの次の言葉で締めました。
 「こうやって地方でハッカソンなどイベントを起こ
しても、イベントが終わったらそれで終わりという
ケースが多いです。ここでハッカソンをしたことに
もっと意味を持たせるためにも、今回ここで出たア
イディアや作ったものを、これからも継続していき
ましょう。」
　そう。イベントが終わったら終わりではなくここ
からが始まりなのです！
　謎解きチームは実際にイベントの企画を始めPV

を制作しました。新しい交流文化のチームはプロ
ジェクトI.G.として毎週集まってゲームを作り始め
ています。アカモクチームもぎばさちゃんのデザイ
ンのほか、Facebookページにアカモクの販売促進の
ためのコネクトを作るなど精力的に活動が行われて
います。これからほかのチームでも新しい成果が
続々出てくるでしょう。島ソンはHackathonだけで
は終わらないHackathonなのです。
　最後に今回のHackathonでも多くの方々に協力を
いただきました。島の方や参加いただいた方はもち
ろんのこと、食事のサポート、事前準備に時間を割
いてくださった方など、関係くださった皆さまにあ
らためて感謝いたします。

最後に

　Code for Shiogamaでは、復興に携わっている方
とIT技術者が議論することで生まれる化学反応を
生み出したいと思っています。今後も定期的に開催
していきますのでよろしくお願いいたします。s

「島っしゅ。」と名付けられたアプリを披露。思いつ
いた食材を入れてスマホを振ると浦戸諸島で採れる
食材と組み合わせたレシピが表示され、表示された
浦戸諸島の食材が購入までできるようにサポートさ
れています。

❺「養殖（育てる）」
　島の方の「島の物産を身近なものとしていろいろ
な人に知ってほしい」という想いをもとに、養殖を
イメージした育成ゲームを想定していたものを、
ターゲットや内容のハードルの高さから方向を変え
て、海産物が購入できる「海の子ネットオンライン
ショップ」を多くの人に広めていくアイデアを提案。
おねだり機能を実装して、おねだりコメントが
Facebookに投稿されるといった「一緒に食べよ」と
いうサービスを発表しました。

❻「アカモク」
　Facebookページ、Twitterボット、NAVERまと
め、萌えキャラといったツールを使って浦戸諸島で
採れる海藻アカモクをPRするアイデアをそれぞれ
実際に作成して披露注5。萌えキャラは「渚の妖精ぎ
ばさちゃん（ギバサはアカモクの別名）」としてクラ
ウドソーシングサービスにてコンペでイラストを募
集。イベント終了後の6月16日には総応募数31点
とかなりの人気案件に。今回は図1のイラストを採
用しました。

❼「新しい交流文化」
　浦戸諸島について知らない人が多く、まずは興味
を持ってもらうことから始めるために聖地化すると
いうアイデアを提案。浦戸諸島をモチーフにした
「Island Girls」というキャラを考えました。アドベ
ンチャーゲーム、チャットといったキャラを使った
バーチャルなコミュニケーションを手始めに、浦戸
諸島を訪れるとARデートができるプランを発表
し、 こ れ ら の イ
メージPVを作成し
ました注6。
◆　◆　◆

　上記7つのアイ
デアを発表して島
ソンは終了となり

注5	 アカモクbot https://twitter.com/akamokubot
注6	 イメージPV https://www.youtube.com/watch?v=j_2VGTFmZlA

◆◆図1　ぎばさちゃん

https://twitter.com/akamokubot
https://www.youtube.com/watch?v=j_2VGTFmZlA

196 - Software Design

はじめに

　今回は1980年前後に外部記
録媒体として用いられていたカ
セットテープ注1とデータレコー
ダについてお話します。

カセットテープ
とは

　カセットテープは音声や音楽
を録音・再生するために使われ
ているメディアです。オランダ
のフィリップス社が互換性厳守
を条件に基本特許を無償公開し
たことにより標準化が進み、世
界中で広く普及しました。
　プラスチックのケースに2つ
の軸が入っていて、片側に巻か
れた感じでテープが入り、もう
片方に巻き取られるときに、外
に露出したテープ部分に磁気
ヘッドが当たり、録音と再生が
できるしくみです。テープが長
いほど長時間録音ができ、市販
されているものとしては30分、
46分、60分、90分、120分な
どの種類があります。カセット

注1） カセットテープは、テープがケース
に入った状態のメディアの総称です
が、今回は狭義のコンパクトカセッ
トのことを指しています。

テープには表面と裏面があり、
ひっくり返すことで両面に記録
ができます。たとえば録音時間
が60分のカセットテープの場
合は各面30分ずつ録音できま
した注2。

データレコーダ

　データレコーダとはカセット
テープにデータを記録すること
のできる装置のことです。パソ
コンに既に内蔵されているもの
もあれば、メーカーから純正品
として発売されたものもありま
した注3。また、市販の音楽用カ
セットレコーダ（俗称テレコ）を
利 用 し、プ ラ グ を RECや
PHONE端子に接続するような
タイプのものもありました。

アナログと
デジタル

　パソコンのデータを保存した
カセットテープを音声として聴

注2） テープの素材の違いで、クロムやメ
タルなどの高音質で価格の高いもの
もありました。また、長時間録音で
きるテープが長いものは、絡みやす
く、ワカメ状になってしまうことも
しばしば起こりました。

注3） 中には早送りや巻き戻し、頭出しを
自動的に行う高機能なものもありま
した。

いてみると、「ピーーガラガラ
ガラ」といったように聞こえる
のは、実際にカセットテープに
データを保存したことがある人
は誰しも思い浮かぶ光景注4で
しょう。
　カセットテープはアナログ
（音声）で記録するメディアです
が、データは0と1のデジタル
データであるため、録音した
データを読み書きする際は変復
調というアナログデータとデジ
タルデータの変換を行う必要が
あります。
　アナログで0と1を表現する
ために1,200Hzと2,400Hzの矩
形波の並びで記録します。たと
えば一定時間内に1,200Hzが2
回続けば0、2,400Hzが4回続け
ば1といった具合注5です。

転送速度

　カセットテープは非常に遅い
外部記憶方法でした。1つのプ
ログラムを読み込むのに短いプ
ログラムで数分、長いプログラ

注4） FAXの送受信音に近い感じです。
注5） 記録方式にはいろいろな種類があり、

当時はカンサスシティスタンダード
と呼ばれる方式が主流でした。また
日本の人が考えたサッポロシティス
タンダードという方式もありました。

温故知新
ITむかしばなし

LINE株式会社　佐野 裕　SANO Yutaka　sanonosa@gmail.com

カセットテープと
　データレコーダ

第36回

196 - Software Design Aug. 2014 - 197

ムで数十分かかるといったこと
がざらにありました。
　当時のデータレコーダは300
～2,700baud注6程度の性能があ
りました。つまり当時データレ
コーダは1秒間に300～1,200
回、さらに性能の良いものだと
2,400～2,700回変復調を行えま
した。仮に1baudあたり1bit処
理されていたとすると、転送速
度は300～2,700bit/秒、すなわ
ち 37.5～337.5byte/秒となり
ます。最近のSATAインター
フェースは6Gbpsですので、単
純には比較できませんが
1,200bit/秒と 6,000,000,000bit
/秒ということは、当時よりも
転送速度が500万倍にもなって
いるのですね。

保存可能容量

　カセットテープの保存可能容
量は、録音可能時間をボーレー
トで掛ければ算出できます。
　たとえば30分テープに1,200
baud（仮に1,200bpsとする）で
記録する場合は、2.16Mbit（≒
270Kbyte）となります。270K
byteと言えば最近の写真デー
タ1枚すら収まらない容量です。

ランダムアク
セスできない

　カセットテープはハードディ
スクなどとは違い、1本のテー
プを最初から最後まで順に読ん
でいくタイプのメディアで、
シーケンシャルアクセスしかで

注6） 1秒間に変復調を行う単位のことを
baud（ボー）という単位で表します。

きません。1本のテープに複数
のプログラムやデータがある場
合、自分でテープを該当のデー
タがある位置まで早送りもしく
は巻き戻しするような使い方を
します注3。
　そのようにランダムアクセス
を手動で行うのは効率が悪いの
で、理想的にはプログラムごと
に違うカセットテープを使う方
法が一番わかりやすいのです
が、当時著者は小学生で、お金
がなかったので1本のテープに
それこそ何十個ものプログラム
を詰め込んだのは懐かしい思い
出です。

ダビング

　ダブルデッキラジカセと呼ば
れる、音楽録音再生用途で使わ
れていたカセットテープが2本
入るタイプの装置を使うと、音
声の入ったカセットテープを空
のカセットテープにダビング
（コピー）を簡単に行うことがで
きました。当時パソコン用市販
ソフトもカセットテープに入っ
て売られていたため、ダビング
を行うことで簡単に不正コピー
できるということが問題となっ
ていました注7。

　2倍モード

　通常の半分の回転速度に落とす
ことで、音質を犠牲にして2倍の

注7） ただしダビングを行うと、ダビング
された側は信号レベル低下とノイズ
混入の影響で、マスターテープより
もリードエラーが発生しやすくなる
ため、繰り返しダビングを行うとパ
ソコンから読めなくなります。

時間録音できる機能を搭載したカ
セットテープレコーダがよく見ら
れました。これは会議など、とく
に音質が重視されない環境におい
て有効な機能でしたが、ことパソ
コンのデータ記録用に限って言え
ば、読み込みエラー発生率が明ら
かに上がるため、よほどの理由が
ない限り使われませんでした。

テレビでプログラム
を配信

　当時パソコン専門のテレビ番
組がありました。そこでは番組
で紹介したプログラムなどの
データを副音声に乗せて流し、
それを視聴者が、自分のテレコ
やラジカセで録音してからパソ
コンに読み込ませるなんてこと
もありました。
　ただ、どんなに神経を使って録
音しても、アナログの世界ではど
うしてもノイズが入っていまい、
うまく録音したつもりでもパソコ
ンにうまく読み込めないといった
ことが頻繁に発生していました。

終わりに

　さすがに現在では、パソコン
の外部記録装置としてカセット
テープを使っている人はいない
と思われますが、音楽用メディ
アとしてのカセットテープの需
要はまだまだ健在だとのこと。
高齢者のカラオケ練習用や発展
途上国での音楽販売など、需要
は当面なくならないようです。
ｨ

温故知新 ITむかしばなし
カセットテープとデータレコーダ

第36回

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.link.co.jp/
http://app-plat.jp/

202 - Software Design

SD News & Products

　㈱ハートビーツは7月1日、子会社として「㈱ウォル
ティ」を発足させた。ウォルティはサーバサイドのセキュ
リティスキャン「Walti.io」をSaaSで提供する。
　Walti.ioの特徴として次の3つが挙げられる。

¡¡OSSのセキュリティスキャナを利用し、FW・ミドル
ウェア・Webアプリケーションなどのセキュリティ
チェックを簡単・安価に利用できる
¡¡スキャンを定期的に自動化し、ITシステムのセキュ
リティ管理を継続できる
¡¡JenkinsなどのCIツールとAPIを通じて連携できる

　現在、Walti.ioのクローズドβのテストユーザが募集
されており、以下のフォームから応募できる。
応募フォーム：http://goo.gl/w7zQPj

CONTACT ㈱ハートビーツ
URL http://heartbeats.jp/

ハートビーツ、
サーバのセキュリティスキャンサービスを提供する子会社
「ウォルティ」を発足

Service

　キヤノンITソリューションズ㈱は、2種類のMac OS
X用セキュリティ製品、総合セキュリティ対策プログラ
ム「ESET Cyber Security Pro」および、ウィルス・
スパイウェア対策プログラム「ESET Cyber Security」
の新バージョンV6.0を、6月17日より提供開始した。
　V6.0では、フィッシング対策機能が、個人向け
Windows用総合セキュリティ対策プログラム「ESET
Smart Security」と同等の性能に強化された。ログイ
ン用ユーザ名・パスワード、クレジットカード情報など
の機密情報を盗もうとする、悪意のあるWebサイトへ
のアクセスを未然に防ぎ、パソコンを機密情報漏えいの

脅威から保護できる。また、SNS保護機能である「ESET
Social Media Scanner」が搭載され、投稿されたコメ
ントなどの情報の安全性のチェックや、オンラインス
キャンによってパソコンの検査を実施する。

CONTACT キヤノンITソリューションズ㈱
URL http://www.canon-its.co.jp/

キヤノン ITソリューションズ、
「ESET Cyber Security」の新バージョンV6.0を提供開始Software

　シリコンパワージャパン㈱は5月9日、USBフラッ
シュメモリ「Mobile X20」を発売した。
　本製品は、パソコンを介することなくUSB機器を相
互に接続するための規格OTG（USB ON-The-Go）に
対応している。本体にはMicro USBと標準USB両方
を備えており、パソコンだけでなく、スマートフォン
（Android）やタブレットに直接接続してデータのやり
とりができる。さらに、キャップが本体とつながってい
るので、キャップをなくしてしまう心配もない。インター
フェースは、USB 2.0 / Micro USB（USB1.1互換）で、
本製品を介した充電はサポートしていない。

シリコンパワージャパン㈱
URL http://www.silicon-power.com/

CONTACT

シリコンパワージャパン、
OTG対応USBメモリ「Mobile X20」発売Hardware

▲Mobile X20

容量 8/16/32GB
インターフェース USB2.0/Micro USB

対応 OS
Windows 8/7/Vista/XP、
Mac OS 10.3 以上、
Linux 2.6 以上

モバイル端末
Android4.1 以上、
Windows Phone 8

保証期間 永久保証

社名 株式会社ウォルティ（Walti, Inc.）
代表取締役 CEO 藤崎 正範

取締役 CTO Michael H. Oshita
所在地 東京都新宿区新宿 1-8-4 JESCO 新宿御苑ビル 6F

ティザーサイト URL http://walti.io

OS
OS X Mavericks / Mountain Lion / Lion /Snow Leopard

（※ サーバ OS を除く）
CPU インテルプロセッサ（※PowerPC は対象外）

メモリ 512MB 以上
ハードディスク 150MB 以上の空き容量

▼Mobile X20 仕様

▼ウィルティ 会社概要

▼動作環境

http://www.silicon-power.com/
http://www.canon-its.co.jp/
http://goo.gl/w7zQPj
http://walti.io
http://heartbeats.jp/

Aug. 2014 - 203

SD News & Products

Nginxユーザ会発足&「NGINX Plus」発売Report

　6月18日、オープンソースのWebサーバ「Nginx」
のユーザ会が発足され、サイオステクノロジー㈱、ハー
トビーツ㈱の支援の下、第1回（#0）の会合がサイオ
ステクノロジー東京オフィス（港区）で開催された。当
日は、Nginx社のCEOであるGus Robertson氏、事
業開発担当のAndrew Alexeev氏、そして開発者の
Igor Sysoev氏が招かれた。
　Gus Robertson氏は、Nginxの普及・発展に大き
く寄与したというユーザコミュニティ活動の重要性を
語り、日本のユーザ会発足に大きな期待を抱いている
と述べた。Igor Sysoev氏は自身の来歴と、Nginxの
誕生、今後の展開について語り、質疑応答の時間には
来場者と技術的な意見を交わした。
　サイオステクノロジー㈱は、6月17日に「Nginx
Plus」の国内販売の代理店契約を締結している。ユーザ
会の立ち上げによって、Nginxのすそ野を広げ、Nginx
のエコシステムを発展させたいとのことだ。今後は、定
期的な勉強会やエンジニアを招いたセミナーも展開し
ていく予定である。
　「NGINX Plus」はOSS版Nginxの機能を拡張し、

Nginx社が2013年8月より米国で販売している商用
製品。本製品はサブスクリプション契約によって提供
され、エンタープライズ向けのサポートサービスが付
加されている。おもな拡張機能は次のとおりである。

¡¡Health checks with NGINX Plus
　管理者が広範囲の障害をチェックできる
¡¡Advanced cache control with NGINX Plus

　キャッシュパージとキャッシュの状態を視覚化できる
¡¡Streaming media delivery with NGINX Plus

　Apple HLSとAdobe HDSとVODアプリケーショ
　ン用のアダプティブストリーミングをサポート

　サイオステクノロジー㈱はNGINX Plusに日本語で
のサポートを付加し、7月1日より販売している。契
約は年間契約となり、価格は202,500円（税別）から。

　8月1日、8月2日の2日間、京都リサーチパーク（京
都府左京区）において、「オープンソースカンファレン
ス2014 Kansai@Kyoto」が開催される。
　オープンソースカンファレンスは2004年から全国各
地で開かれている、オープンソース関連の開発者・コミュ
ニティ・企業・団体が集う大型イベント。京都での開催
は今年で8回目となっており、去年は2日間でのべ1,300
名が来場した。
　会場では、オープンソースコミュニティ・企業による
展示が並び、最新技術に関する無料セミナーも開かれる。
ローカル企画として、オープンソースの啓蒙と、若者・
女性へのプログラミング教育の推進を目的とした「オー
プンソース入門塾」、オープンソースのハードウェアと
ソフトウェアを通して、コンピュータの原理が学べる
「LilyPad Arduino の手芸作品展示」なども行われる。
　また、広い展示スペースを、実行委員会のメンバが
見学者と一緒に訪れる「展示ツアー」が実施されるので、
初心者にもやさしいイベントとなっている。
　会場では、スタンプラリーも開催される。受付で配布
されるタイムテーブルには「スタンプラリー参加シート」

が挟まれている。展示ブースに設置してあるスタンプを
参加シートに集めることで、各種OSPN.JP特製グッズ
がもらえるとのこと（※無くなり次第終了）。

（スタンプ設置ブース）
Hinemos（NTTデータ）、Joe’sクラウドコンピューティ
ング、ほか

SC2014 kansai@Kyoto 公式サイト
URL http://www.ospn.jp/osc2014-kyoto/

CONTACT

Event オープンソースカンファレンス2014 Kansai@Kyoto開催

日程 2014 年 8 月 1 日 (金)・2 日 (土) 10:00 〜 17:00 予定

会場
京都リサーチパーク（KRP）アトリウム・１号館４階
京都市下京区五条七本松通

費用 無料

内容

オープンソースに関する最新情報の提供
（展示）
　オープンソースコミュニティ、企業・団体による展示

（セミナー）
　オープンソースの最新情報を提供

▼開催概要

日本Nginxユーザ会
URL http://nginx-ug.jp/

CONTACT
サイオステクノロジー㈱
URL http://www.sios.com/

http://www.ospn.jp/osc2014-kyoto/
http://nginx-ug.jp/
http://www.sios.com/

204 - Software Design

SD News & Products

　日本を代表するアニメーションスタジオ、㈱プロダ
クション・アイジーと日本マイクロソフト㈱が、Web
標準技術であるHTML5のWebGL機能を活用した
3DWebゲームを6月18日より無料公開した。
　これは、アニメ「翠星のガルガンティア」をもとに
したスカイアクションゲームで、Webプログラマ向け
にソースコードと3Dモデルが公開される（http://fly.
gargantia.jp/）。オープンソースのTurbulenz Engine
（http://biz.turbulenz.com/）を利用し、自分でゲー
ムが開発できるようになる。ゲーム自体はInternet
Explorer 11に最適化し、タブレット端末（Surface

Pro2）でのタッチ操作に
も対応。ソースコードも
GitHubからダウンロード
できる。これらはゲーム
開発者育成サポートの一
環として進めていくとの
こと。

日本マイクロソフト、プロダクション・アイジー、
WebGLを活用した3D Webゲーム「翠星のガルガンティ
ア～キミと届けるメッセージから」を無料公開

Software

　Infoblox㈱はDDIの世界市場の50％のシェアを持
つ。DDIとは、DNS、DHCP、IPAM（IP Address
Management）のことで、同社は独自技術（Gridテク
ノロジー）を実装しエンタープライズユーザ向けの製品
として販売を行っている。日本では、ポッカサッポロフー
ド＆ビバレッジ㈱、青山学院大学などが汎用のDNS・
DNSサーバでは対応できないインターネットからの攻
撃に耐性が高いことから同社の製品を導入し、システム
統合やセキュリティ面で効果を上げている。
　同社創設者・CTOであるスチュワート・ベイリー氏
と研究チームが、SDNコミュニティへの貢献として、

関数型言語Erlangを使用
したソフトウェアスイッチ
「LINCX」を提供開始した。
こ れ はFlowFowarding.
orgプロジェクトから無料
ダウンロードできる。汎
用的なPCとLinux、Xen
HypervisorとLING（Xen
上のErlang環境）があれば使用可能だ。

CONTACT Infoblox㈱
URL http://www.infoblox.jp/

Infoblox、
「効果的なSDNスイッチングを実現したLINCXを発表」Software

　 ㈱ デ ー タ サ ル ベ ー ジ は、 同 社 が 開 発 し た
「MASAMUNE（マサムネ）」をフリーウェア化すること
で、ハードディスクなどの故障予測事前検知システムを
構築し、新サービスとして提供することを6月24日に
発表した。
　「MASAMUNE」は、データ復旧やフォレンジックに
おける証拠保全のための、ソフトウェア・デュプリケー
タ。ハードディスクの高速コピー、データ消去、ベン
チマークの各機能などを持つ。使用時に対象ハードディ
スクの「S.M.A.R.T（Self-Monitoring, Analysis and
Reporting Technolog）情報」が同社のサーバに送信さ

れる。集積するデータは、メーカ名、モデル名、不良セ
クタなどである。これらは匿名で管理され、障害予測分
析のために利用される。ハードディスクの経年劣化によ
る障害は避けられないが、サービスの利用者には有料で
故障予測情報が提供される予定である。

▼「MASAMUNE」の詳細ページ
http://ja.masamune.com/

㈱データサルベージ
URL http://www.data-salvage.co.jp/

CONTACT

データサルベージ、
「ストレージ故障予測事前検知システム」
サービスを立ち上げ

Service

日本マイクロソフト㈱
URL http://www.microsoft.com/

CONTACT
㈱プロダクション・アイジー
URL http://www.production-ig.co.jp/

▲スチュワート・ベイリー氏（創設者・
　CTO）

▲発表会には主人公役の声優・石川界
　人氏も参加

http://www.infoblox.jp/
http://ja.masamune.com/
http://www.data-salvage.co.jp/
http://www.production-ig.co.jp/
http://www.microsoft.com/
http://biz.turbulenz.com/
http://fly.gargantia.jp/
http://fly.gargantia.jp/

Aug. 2014 - 205

SD News & Products

　ネットワークインフラ・技術・製品を中心としたイ
ベント「Interop Tokyo 2014」が開催された。今年は、
カンファレンスが6月9日、10日にAP品川（東京都）で、
展示会が6月11日〜13日に幕張メッセ（千葉県）で行
われた。21回目となる今年は、展示会に185の出展社
が参加した。

Interop独自ネットワーク「Shownet」
　「ShowNet」とはInterop会場で実際に構築される、
相互接続検証ネットワーク。産業界、学会、研究機関
から最新鋭の機器と技術、優秀なエンジニアが集まり
構築される。このShowNetはイベント会期中、出展者
や来場者がインターネットへ接続するためのISP、キャ
リアとして運用される。NOC（Network Operation
Center）が会場の中心付近に設置され、ShowNetの運
用を来場者が見学できるようになっている。センター
の中では、ネットワークを監視するためのリアルトラ
フィック可視化ツール「NIRVANA改」が常時稼働し、
センターの横にはイン
ターネット接続やファ
イアウォールを実現す
るラックがずらっと並
ぶ。ShowNetの解説ツ
アーでは、「今のインター
ネットはあと10年耐え
られるだろうか!?」とい
う疑問が強調され、ネッ
トワークの仮想化やク
ラウド間イーサネット

接続など、さ
まざまな新し
い挑戦がなさ
れていること
が紹介された。今回のShowNetは、参加エンジニア数
400名、提供機器・サービス総額約70億円の大規模な
ライブネットワークとなっている。

基調講演「モノと人をクラウドがつなげる」
　Interopでは各界のエンジニアやエバンジェリストを
招いた基調講演も行われる。
　初日の6月11日に開かれた、アマゾンデータサービ
スジャパン㈱玉川憲氏による講演「モノと人をクラウド
がつなげる」は、座席が満員、立ち見の聴講者も多く見
られ盛況だった。講演の内容は、AWS（Amazon Web
Service）の果たした役割、導入事例、今後の課題に関
するものだった。玉川氏は「大規模なデータ解析やハイ
パフォーマンスコンピューティング、IOT（Internet of
Things）など、一部の大企業しか実施できなかったサー
ビスに、初期費用・運用コストが低いAWSを利用する
ことで、中規模小規模のプレーヤが参入しやすくなった」
と話した。また、異なる民族グループから1000人分の
匿名ゲノムの配列決定を行う「1000人ゲノムプロジェ
クト」で得られた人間のゲノム情報を「AWS Public
Data Set」で公開するといった導入事例も紹介された。
最後に、AWSの今後の課題として、さらなる運用コス
トの低減を目指すと語った。

Interop Tokyo 2014開催Report

Interop Tokyo 2014
URL http://www.interop.jp/2014/

CONTACT▲Shownet NOC

▲会場の様子

CONTACT

　容量無制限クラウドストレージサービスを提供する
Bitcasa社は、6月23日に同社のクラウドストレー
ジ技術を開発者が活用できるようにする新サービス
「CloudFS Platform」をリリースし、同時に日本を拠
点としてクラウドストレージを展開することを発表し
た。Bitcasaの特徴は、従来のネットワークストレージ
サービスに比べ、セキュリティの面とマルチデバイス
対応で他のサービスと大きく差を広げていることにあ
る。ストレージ中に500億のブロックに分散されたデー
タはユーザ側が持つセキュリティキーで管理され、そ
の内容の秘密は完全に保護されている。本サービスは、¡

Mac OS X、iPhone、Android、
Windowsなど9つのプラット
フォームに対応している。今
回 のAPIサ ー ビ スCloudFS
Platformは、さまざまなWeb
サービスに対応し、パブリック
クラウドストレージ上のカスタ
ムアプリケーション導入期間短
縮を可能にするもの。

Bitcasa、
開発者とサービスプロバイダ向けのAPIサービス
「CloudFS Platform」を発表

Service

Bitcasa, Inc.
URL https://www.bitcasa.com/

▲来日したブライアン・タペッ
　チ氏（最高経営責任者・　
　CEO）

https://www.bitcasa.com/
http://www.interop.jp/2014/

206 - Software Design

SD News & Products

CONTACT

　㈱スイッチサイエンスは、Bluetooth Low Energy
（BLE）の通信が可能なARM mbed対応開発ボード
「mbed HRM1017」を、7月に発売する。
　本製品は、BLEによるBluetooth Smartデバイスを
手軽に開発できるキット。ソフトウェアの開発はmbed
環境で行う。パソコンからはUSBメモリとして認識さ
れるので、ドラッグ＆ドロップするだけでマイコンにソ
フトウェアを書き込める。iBeaconのようなビーコン
装置、無線センサ、IoTデバイスなどの開発に向いてい
る。また、総務省の工事設計認証（いわゆる技適）を得
たモジュールを搭載しており、日本国内でも合法的に使

用できる。希望小売価格
は5,400円（税込）となっ
ている。
　本製品は本誌連載「は
んだづけカフェなう」
（p.16～19）でも紹介し
ているので、試用例など
はそちらを参照のこと。

㈱スイッチサイエンス
URL http://www.switch-science.com/

スイッチサイエンス、
ARM mbed対応開発ボード「mbed HRM1017」を発売Hardware

CONTACT

　㈱ユビキタスエンターテインメントは、同社製タブ
レット端末「enchantMOON S-II」を使ったハイパーテ
キスト絵本コンテストを開催する。作品の応募はすでに
始まっており、締め切りは8月31日（日）の23時59分。
　手書きでハイパーテキストコンテンツが簡単に作れる
enchantMOON S-IIを使い、ビジュアルプログラミン
グ機能などを活用したユニークな作品を募集している。
作例はSkylab βで公開中（Webブラウザで閲覧可）。

▼作例『料理兵ソルトの大冒険』
http://skylab.enchantmoon.com/stickers/stack/4

㈱ユビキタスエンターテインメント
URL http://www.uei.co.jp/

ユビキタスエンターテインメント、
ハイパーテキスト絵本コンテスト開催　作品を募集中Event

CONTACT

　サイボウズ㈱は、クラウドサービス「cybozu.com」
上で動くサービスの脆弱性を発見・報告した人に報奨金
を支払う「脆弱性報奨金制度」を6月19日に新設した。
2014年2月から開始した常設の「脆弱性検証環境提供
プログラム」でサービスの信頼性向上につながる報告が
多数あったことを受け、今回の制度を新設したとのこ
と。また、同プログラムの開始以降、すでに報告があっ
た37件の脆弱性に対しても、遡って報奨金を支払う。

▼詳細・申込
http://cybozu.co.jp/company/security/bug-bounty/

サイボウズ㈱
URL http://cybozu.co.jp/

サイボウズ、
「脆弱性報奨金制度」を新設Service

▲mbed HRM1017

対象
・cybozu.com で稼働する各サービス
・同社指定のパッケージ製品、API、Web ページ
（詳細ページに記載あり）

期間 2014 年 6 月 19 日〜 12 月 25 日

報奨金

金額は共通脆弱性評価システム CVSS v2 の評価結果をもとに
設定
CVSS v2 の基本値が 7.0 以上：CVSS v2 基本値 ×3 万円
CVSS v2 の基本値が 6.9 以下：CVSS v2 基本値 ×1 万円

（Web ページの問題は一律、1 件につき 1 万円）

▼報奨金制度の詳細

応募期間 2014 年 6 月 23 日〜 8 月 31 日 23:59
審査日程 2014 年 9 月中旬予定
結果発表 2014 年 10 月上旬予定

賞金 10 万円

応募方法

・�enchantMOON 専用クラウドサービスSkylab βにコンテンツを
アップロードする際に「ハイパー絵本コンテストに応募する」のチェッ
クボックスをオンにする

・�すでに投稿している作品を応募する際にも「Edit」画面で同チェッ
クボックスをオンにすることでコンテスト参加可能
Skylab β　http://skylab.enchantmoon.com/

▼コンテスト概要

http://www.switch-science.com/
http://skylab.enchantmoon.com/
http://skylab.enchantmoon.com/stickers/stack/4
http://www.uei.co.jp/
http://cybozu.co.jp/company/security/bug-bounty/
http://cybozu.co.jp/

Aug. 2014 - 207

SD News & Products

CONTACT

ブロケードコミュニケーションズシステムズ、
Brocade Vyatta 5600 vRouter提供開始Service

　ブロケードコミュケーションズシステムズ㈱は、
NFV（Network Functions Virtulization）を実現する
仮想ルータ「Brocade Vyatta 5600 vRouter」を今春
から提供開始した。
　新しいIntel DPDK（Data Plane Development Kit）
をベースにアーキテクチャを刷新したもので従来のもの
より10倍の性能向上を実現した。その特徴はコントロー
ルプレーンとデータプレーンを分けたことが第一に挙げ
られる。これによりネットワークのコンポーネントを1
つのVM（仮想マシン）に持たせるのではなく一元化し、
データプレーンを複数コントロール可能となり、スケー

ルアウトさせやすくなる。クラ
ウド市場でのネットワーク機
能提供に必須の機能である。
　Vyattaの有償化については、
市場ニーズへの迅速な対応の
ためだという。しかし、オープ
ンソースコミュティにはコー
ドベースで積極的に貢献し公
開していくとのこと。

ブロケード コミュニケーションズ システムズ㈱
URL http://www.brocadejapan.com/

　6月11日、アトラシアン社のプロジェクト管理ツー
ル「JIRA」および「JIRA Agile」に関するセミナーが、
販売パートナーであるリックソフト㈱の主催で行われ
た。

セッション1：これからのソフトウェア開発でのプ
ロジェクト管理の展望～アトラシアン製品の価値

　セッション1は、アトラシアン㈱エバンジェリストの
長沢智治氏による講演。同氏は開発現場の効率化業務に
長く携わってきた経験をふまえ、ソフトウェア開発の変
遷とプロジェクト管理のあり方について解説した。
　プロジェクトマネージャがすべてを把握して管理する
従来の統制型管理では難しいプロジェクトが多くなって
きていることから、これからはチームとして情報を共有
し、各人ができる管理をそれぞれに行う自律型管理が望
ましいとした。そのうえで、継続的デリバリーの開発手
法を推奨する。
　しかし、管理方法の切り替えは簡単に行えるものでは
なく、環境を整えることが重要であると指摘。アトラシ
アンでは、「企画・計画・開発・ビルド・デプロイ」の
各段階に役立つツールを提供しており、しかも各段階相
互の動きが追えるしくみが備わっていることが自律型管
理をより行いやすくしているとアピールした。
　最後に、「導入したとしても最初は汚い環境になって
しまうことが多くありますが、最初はうまくいかなくて
当然です。うまくいかないからといってやめてしまうの
ではなく、現状がこういうものだという認識に活かして
ください。どこがうまくつながっていないかがわかれば、
改善できます」と締めくくった。

セッション2：「JIRA」「JIRA Agile」デモによ
る活用紹介

　セッション2は、リックソフト㈱の樋口氏による
「JIRA」および「JIRA Agile」の製品デモ。プロジェク
ト管理によく使われるツールとしてMicrosoft Excelを
引き合いに出し、共有データのバージョン管理機能やコ
ミュニケーション機能がないことによる共同作業の弱さ
を指摘。そのうえで、JIRAの優位点であるコミュニケー
ションをからめたアジャイルモデルでの開発の進め方を
デモンストレーションで紹介した。
　最後に、プロジェクト管理ツールを使うメリットを次
のように示して締めくくった。
¡¡プロジェクトメンバーのコミュニケーションツールになる
¡¡プロジェクト状況をリストやグラフによって可視化できる
¡¡プロジェクトのナレッジ・データベースになる
¡¡ソースリボジトリ、ビルドツールとの連携により修正理由
が明確になる

アトラシアン×リックソフト
プロジェクト管理ツール「JIRA」「JIRA Agile」
活用セミナー

Report

▲ロバート・ベイズ氏（同社ソフ
　トウェア・ネットワーキング　　
　R&D担当CTO）

▲リックソフト㈱　樋口氏▲アトラシアン㈱　長沢智治氏

リックソフト㈱
URL https://www.ricksoft.jp/

CONTACT
アトラシアン㈱
URL https://www.atlassian.com/ja/

http://www.brocadejapan.com/
https://www.ricksoft.jp/
https://www.atlassian.com/ja/

208 - Software Design

　ある作品がSFなのか否かだという命題は、本
誌の読者にとって「Emacsがエディタなのか
Lisp仮想マシンなのか」ぐらいホットな話題だ
ということは本連載でも何回か紹介しましたが、
「これはSFに分類せざるを得ない」のが、異星
人が登場する作品。もうウェルズの「宇宙戦争」
以来の伝統といっても過言ではありません。い
かにサイエンスの部分がビミョーでも、宇宙人
さえ出てくればSFに分類されるのは“Star

Wars”を見てのとおり。
　そして異星人が出てくる作品では、彼らは人
類の敵となったり味方となったりします。その
傾向をざっくり見ると、Fに重きをおく作品で
は人類の敵となる場合が多く、そしてSに重き
を置く作品では友好的な異星人が多いという傾
向が明らかに見られます。後者のトレンドは年
を追うごとに増しているようで。ウェルズの『宇
宙戦争』のように（当時の）科学的に人類に敵対す
る異星人が最近ではなかなかお目にかかれず、
前回紹介した『ディアスポラ』の「異宇宙人」も、
本連載第2回で紹介した『竜の卵』のチーラもい
たって人類に友好的でした。なぜサイエンスに
重きを置くと異星人が友好的になるのかといえ
ば、その方がリアルだというのが現代における
定説で、『コンタクト』の作者でもある科学者、
故カール・セーガンに言わせれば、好戦的な異
星人は人類と戦争する前にとっくに自滅してい

題字・イラスト／aico

『太陽の簒奪者』
（野尻抱介／早川書房）

るはずだ、と。
　だとしたら、『未知との遭遇』は人類にとって
いいことづくめなのでしょうか？　異星人に悪
気はないのに人類存亡の危機が訪れるというこ
とはありえないのでしょうか？　『太陽の簒奪
者』（野尻抱介）が指摘するのは、まさにその可
能性です。
　異星人のナノマシンが水星を削って築き上げ
たのは、太陽をとりまく直径8,000万kmのリン
グ。そのリングがたまたま地球に影を落とした
からさあ大変。地球は一挙に氷河期へ。人類が
この先生き残るには、まずこのリングを破壊し
なければなりません。そのリングは異星人の宇
宙船を止めるためのレーザー発振器らしいこと
が判明するのですが、だとしたらリングを壊し
たら異星人に対する宣戦布告になってしまうの
では？
　よく考えると、我々は相手を敵に回すにせよ
味方にするにせよ、その前に相手の意図を知り、
相手に自分の意図を知らせようとします。しか
し意志疎通を待っていては人類滅亡というのは、
「敵か味方か」より一段とリアルな未知との遭遇
ではないでしょうか。彼らは我々の敵にも味方
にもならず、ただ［す

フ ラ イ バ イ

れ違って］しまうのか。ぜ
ひご確認を。｢

 第8回

209 - Software Design Aug. 2014 - 209

ejectコマンドは光学ドライブのトレイを排出するコマンドです。遠
リモート

隔から実行してPC近くにいる人を驚かせることもできます。「-t」が
トレイを収納するオプションなので何度でも出し入れできますよ。1Uサーバに装備する薄型ドライブでは「-t」で収納できない場合がある
ので注意しましょう。筆者も誤って出してしまい、現場の人にトレイを収納してもらったことがあります。最近はデータを持ち帰るのも、
OSインストールもUSBメモリで事足りるために光学ドライブを利用する機会が減っているのでejectコマンドの活躍の場も減りました。
次のUSB規格で排出機能が提案されればejectで飛び出すUSBメモリを見られるかしら……。

梅
雨
明
け
と
海
開
き
を
心
待
ち
に
し
て
い
る
リ
ア
充
野
郎「
く
つ
な
先
生
」に
愛
の
ム

ツ
イ
ー
ト
＆
メ
ー
ルチ

を
!

作）くつなりょうすけ
@ryosuke927

①①

②

②

③

③

④④

ejec t（2） eject（1）

ejectコマンド第 8 回

もうeject打てない
ようにキーボードの
「e」を抜いとくぞ
ゴルァ!!

はぁ？

有
給

俺が寂しがっ
ているんじゃ
ないかって？

サーバラックの
前にいること
なんで
わかるんだ？

トレイに
メディアが
入っている
……。

あの野郎、
凝りもせずに同じ
ネタをかまして
きやがって。

あれ？

謝罪する時は
土下座は
標準装備
じゃねーの？

あぁん？
メディアが読みたい？　
1Uサーバの薄型ドライブ
だと「eject -t」
できないものな。

こういうとき、
社会人ならば
俺になんて
言うの？

210 - Software Design

第1特集　設定ファイルの読み方・
書き方でわかるLinuxのしくみ

　Linuxを使っていると、設定ファイル変
更などの作業は避けて通れません。本特
集ではLinuxのユーザ管理、ネットワーク
管理などの設定ファイルと、Apache/

Sambaの設定ファイルについて、基本的
な項目の意味や設定例を説明しました。

Linuxのしくみがわかりやすくまとまっ
ており、参考になった。パートの分け方
が良く、すいすい頭の中に入った。

大阪府／てんぷるさん

何をするにしても、まず設定ファイルを
書き換えたり、作ったりしないといけな
いので、とてもよかったです。

愛知県／kmさん

systemdの話はよかった。
東京都／どら猫さん

本特集で紹介できたのは、一部の
設定ファイル／項目だけですが、

これを機にほかの設定ファイルについて
も、意味や役割を見直ししてみてはいか
がでしょうか。

第2特集　Ubuntu 14.04 LTS
“Trusty Tahr”

　4月17日に最新のLTS（長期サポート

版）である“Trusty Tahr”が公開されまし
た。デスクトップとサーバ関連の機能の
解説や、前LTSからのアップグレードにお
ける注意点などを取り上げました。

Ubuntu Touchもいつ実用に耐えられ
るようになるかわかりませんが、iOS、
Androidに続くOSになってもらいたい
です。

神奈川県／吉田さん

Ubuntuもいろいろと進化が楽しみで
す。遅れず試しながらついていきます。

富山県／Qkobさん

最近、サーバ用途としてもUbuntu

が使われる事例を目にします。今
後、そのような事例が増えてくると、ま
すますLTSの重要性が増してきますね。

一般記事　どうなってる？「Google
Glass」のアプリケーション開発

　一時、世間を賑わしたGoogle Glass。
一般にはなかなか発売されないので、そ
の後の状況がわかりにくいですが、アプ
リの開発環境は徐々に整えられてきてい
ます。その開発環境の概要、開発のイ
メージなどを紹介しました。

Google Glassについて日本での普及は
不透明ですが、先進的なモノが大好き

なエンジニアにはヒットしそうな印象で
す。開発にも興味がわいてきました。

東京都／ひよこ大佐さん

日本では利用に制限があることがわかっ
ただけでもよかったです。

千葉県／Tayuさん

読者アンケートでは、「Google

Glassは技適マークがないため、
国内では無線の使用ができない」という
情報に関するコメントが多かったです。最
近は、海外発の新しいガジェットが出て
も、この技適で制限を受けることが多い
ような気がします。もっと柔軟な運用を
期待したいですね。

複雑化するサーバ環境の監視を
変える「OpenTSDB」前編

　ノード数が数万台といった大規模シス
テムでの利用を想定して開発された監視
ツール「OpenTSDB」の解説記事です。前
編では、Vagrant上でOpenTSDB環境を
構築し、リアルタイム分析を行う手順を
紹介しました。

監視ツールはたくさんあるので、情報収
集に役立ちました。

埼玉県／コーヒーブレイクさん

リアルタイム分析がどこまでできるのか

6月に発表された政府の成長戦略素案に、「義務教育段階からのプログラミング
教育を推進する」ということが書かれていました。来たる小学校でのプログラミ
ング必修化に備えて、SDも今から子供向けプログラミング入門記事を扱うべきで
しょうか。全国に小学校は22,000校あるそうです（2007年、文科省調べ）の
で、全国の小学校でSDが定期購読されれば、ウハウハですよ！

Software Design読者層の若返り計画!?

2014年6月号について、たくさんのお便りをありがとうございました！

Aug. 2014 - 211

興味がある。
大阪府／オブジェクト脳192さん

OpenTSDBは大規模向けという特
徴だけでなく、分析ツールも充実

していますので、中小規模システムで監
視を行っている方々も、今の監視ツール
に不足を感じている方は、OpenTSDBを
検討してみると良いかもしれません。

短期集中連載　Rettyのサービス拡
大を支えた“たたき上げDevOps”

　RettyのDevOpsの取り組みを紹介す
る記事の第2回目。セキュリティとシステ
ム監視について、取り上げました。

「AWSあるある」がたくさん出てきて、
とても興味深かったです。

東京都／n0tsさん

サービス目線の場合、どうしても古いブ
ラウザの対応も考慮しないといけないた
め、最新機能の導入が難しい。しかし、
いずれ実践してみたいと思える内容だっ
た。

東京都／もぐまぐさん

WebSocketを使った開発について参考
になる。

徳島県／花岡さん

パフォーマンス改善にもさまざま
なアプローチがあることが、わ

かっていただけたのではないでしょうか。
アプリ側での改善、サーバ側での改善な
ど、対策を施す場所もいくつかあるので、
性能改善はシステム全体で考えないとい
けませんね。

DevOpsの事例として参考になりまし
た。

茨城県／サファイアさん

本記事は、システム運用時の悩み
が生々しく書かれているのが特徴

的ですが、その分、最終的なシステム構
成に至った経緯もわかりやすいです。み
なさんの現場で、課題を分析する際の参
考になれば幸いです。

短期集中連載　Web標準技術で行
うWebアプリのパフォーマンス改善

　通信環境を改善することで、パフォー
マンスを向上させる方法を取り上げまし
た。具体的にはWebSocketなどのプロト
コル、AppCacheなどのキャッシュ機能に
ついて解説しました。

6月号のプレゼント当選者は、次の皆さまです
①クリップ専用プリンター「ココドリ」 神奈川県　西野豊陽様
②カバンの中身mini ...愛知県　権田裕昭様

★その他のプレゼントの当選
者の発表は、発送をもって
代えさせていただきます。
ご了承ください。

　ペンホルダー付きのノートや手帳
はペンと一緒に持ち運べて便利で
す。だから、ホルダーの付いていな
いノートにもホルダーを取り付けたく
なりませんか？　そんな場合は、この
Belt Sealが便利です。ノートの裏表
紙にシールでベルトを貼り付け（写真
①）、表紙に留め金のマグネットを貼
り付けると（写真②）、あっという間に
ペンホルダー付きノートに早変わり
（写真③）。やや強引ですが、すでに
ペンホルダー付きの手帳に、Belt

Sealでもう1本分のペンホルダーを
増設することもできました。Belt Seal
を貼り付けるときは、ホルダーにペ
ンを挿した状態でやると、適切な位
置に付けやすいですよ。

エンジニアの能率を高める一品
仕事の能率を高める道具は、ソフトウェアやスマートフォンのようなデジタルなものだけではありません。
このコーナーではエンジニアの能率アップ心をくすぐるアナログな文具、雑貨、小物を紹介していきます。

Belt Seal（マグネット）
480円（税別）／㈱デザインフィル　www.midori-japan.co.jp

▲写真 Belt Seal取り付け手順

①

②

③

http://www.midori-japan.co.jp

Software Design
2014年8月号

発行日
2014年8月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2014年9月号
定価（本体1,320円＋税）

176ページ

September 2014
8月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2014 技術評論社

●今月の特集記事は特盛です。案外知られていない

「ログ」を取り上げてみたのですが、そこにはきわめて

人間的な世界が広がっていました。そもそもコンピュー

タの行動記録なわけですが、さらにもとを探れば人間

の欲望の集積結果と言えます。見る人が分析すれば

「全部お見通しよ ！ 」のデータになるわけです。（本）

●以前はEmobileルータとiPad、iPod Touch、Nexus7、

HTC J、コンデジ、モバイルバッテリという布陣だったが、

最近はXperia Z1とiPad mini retina with IIJmioだけで済

むようになった。しかし、緊急時対策として水1Lや食料、

サバイバル系が増えて重量は変わらない。所詮、重力に

魂を縛られているのだろうか。（感違幕）

●本誌特集で好評いただいた文書術が本になりまし

た ！　『＜文章嫌いではすまされない ！ ＞エンジニアの

ための伝わる書き方講座』という書名です。苦手意識

を軽減する視点を身につけることで、自身の技術力を

伝えるコミュニケーションツールの1つとして、文書を

活用していただくための本です。（キ）

●前号でLinuxConのTシャツを今号のプレゼントにす

ると言いましたが、多くの企業からプレゼント品提供の

お申し出があり、あぶれてしまいました。またの機会

に提供します。同様に余っているノベルティなどがたく

さんあります。いつか蔵出し大放出しようと思いつつ、

たまっていく一方です。（よし）

●6月初め、宮古島へ旅行に行きました。気温は東京

よりも5℃程高く、蒸し暑い気候でした。島で一番驚い

たことは、きれいな海 ！　ではなく、海ぶどうの味 ！　

甘酸っぱいデザートのようなものだと思い込んでいたの

ですが、むしろ塩っぱいんですよね。オリオンビールに

良く合いました。（な）

●実家で家庭菜園をしたいという話をしたところ、きゅ

うりとオクラの苗を分けてもらいました。さっそく家に

帰って植木鉢に植え、一晩たって見てみたら……きゅう

りの苗がしおれ気味。どうやら水が足らなかったみたい

で、吸い上げに失敗している模様。慌てて水をあげま

したが、収穫までたどり着けるかな？（ま）

S D S t a f f R o o m

［第1特集］ パワーアップのチャンス！

この夏に克服したい2つの壁
「C言語のポインタとオブジェクト指向」
　多くのプログラマ、エンジニアにとって避けて通れないテーマである「ポインタ」
と「オブジェクト指向」。組込系開発だけでなく、最近流行のMake:系テクノロジを
自在に操りたいときにC言語が見直されています。さらにゲーム開発ではC/C++が
重要な役割にあることは皆さん承知のことでしょう。オブジェクト指向についても、
Javaでの開発だけでなく、スクリプト言語でもまさに必須な技術です。
　本特集では、これら2つの壁を乗り越える手がかりを多面的に紹介します。ITエ
ンジニアのための「精神と時の部屋」で鍛えてみませんか！

［第2特集］ 基本技術を学ぶ

ネットワーク、データベースのための
「クラスタリング」の教科書
■特別企画
・［実践＋基礎］Serf・Consul超入門̶̶オーケストレーションツール事始め
・IBMが放つ IaaSプラットフォーム「SoftLayer」の使い方
■特別付録
　より抜き「網野衛二の3分間ネットワーク基礎講座」

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

212 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2014年8月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 ログを読む技術
	・第1章：ログの基本をおさえておこう......近藤 成
	・第2章：Webサーバのログを見てみよう......近藤 成
	・第3章：MySQLのロギングを見てみよう......近藤 成
	・第4章：ログを管理・運用しよう(ログローテーションとログウォッチ)......近藤 成
	・第5章：MSP直伝・プロがやっているログ監視......高村 成道
	・第6章：小さく始めるログ活用のすすめ......羽田 健太郎

	■第2特集 Linuxカーネルのしくみを探る
	・Part1：プロセスに見るLinuxカーネルの役割......中井 悦司
	・Part2：「fork」を通してカーネル内部を理解する......岩尾 はるか
	・Part3：ソースコードで見るカーネルの全体像......中井 悦司

	■一般記事
	・AWS＋Windows環境における大規模ソーシャルゲーム開発／運用の実際【2】......田中 孝佳
	・OpenSSLの脆弱性“Heartbleed”の教訓【後編】......すずきひろのぶ
	・使ってみよう！ tcpdump......後藤 大地

	■Catch up new technology
	・クラウド時代だからこそベアメタルをオススメする理由【新連載】......Software Design編集部

	■連載：Column
	・digital gadget【188】展示のためのデジタル技術......安藤 幸央
	・結城浩の再発見の発想法【15】Tradeoff......結城 浩
	・enchant 〜創造力を刺激する魔法〜【16】独裁者の帰還......清水 亮
	・軽酔対談　かまぷの部屋【新連載】ゲスト：奥谷泉さん......鎌田 広子
	・秋葉原発！　はんだづけカフェなう【46】BLEで遊んでみよう......坪井 義浩
	・Hack For Japan〜エンジニアだからこそできる復興への一歩【32】島ソン！　電波も届かない離島でのハッカソン......小泉 勝志郎
	・温故知新 ITむかしばなし【36】カセットテープとデータレコーダ......佐野 裕
	・SDでSF【8】『太陽の簒奪者』......小飼 弾
	・ひみつのLinux通信【8】ejectコマンド......くつなりょうすけ

	■連載：Development
	・サーバーワークスの瑞雲吉兆仕事術【新連載】クラウド前夜「スマートフォンの登場」......大石 良
	・るびきち流Emacs超入門【4】SKK＋AZIKで快適・効率的な日本語入力を！......るびきち
	・シェルスクリプトではじめるAWS 入門【5】AWS利用環境の構築（後編）MFA設定......波田野 裕一
	・ハイパーバイザの作り方【21】bhyveにおける仮想シリアルポートの実装（その1）......浅田 拓也
	・Androidエンジニアからの招待状【49】Androidが生まれ変わる、活躍の場が広がる......嶋 是一

	■連載：OS/Network
	・RHELを極める・使いこなすヒント .SPECS【4】Red Hat Enterprise Linux 7に触れてみよう......藤田 稜
	・Be familiar with FreeBSD~チャーリー・ルートからの手紙【10】コンパイラ〜GCCからLLVM Clangへ......後藤 大地
	・Debian Hot Topics【17】Debian GNU/Hurdの状況／Squeeze LTSの使い方......やまねひでき
	・レッドハット恵比寿通信【23】OSSに求められる合理性......平 初
	・Ubuntu Monthly Report【52】SoftEther VPNをUbuntuだけで使用する......あわしろいくや
	・Linuxカーネル観光ガイド【29】Linux 3.15の変更点〜キャッシュ管理の改善とPM QoS......青田 直大
	・Monthly News from jus【34】はじめてUNIXで仕事をする人に教えたいこと......法林 浩之

	■アラカルト
	・ITエンジニア必須の最新用語解説【68】Swift......杉山 貴章
	・Hosting Department【100】
	・読者プレゼントのお知らせ
	・SD BOOK FORUM
	・SD NEWS & PRODUCTS
	・Letters From Readers
	・バックナンバーのお知らせ
	・年間定期購読のご案内
	・Software Design plusのお知らせ
	・次号のお知らせ

