

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　OpenSSLは、暗号通信のため
のSSLおよびTLSプロトコルを実装
したオープンソースソフトウェアです。
さまざまなOSやプログラミング言語
に対応しており、ソフトウェアに組み
込むライブラリとして利用することが
できるため、幅広い分野で標準的
に利用されています。
　2014年に入って、このOpenSSL
に2つの重大な脆弱性が報告されま
した。1つはTLSのHeartbeat拡
張機能に混入した「Heartbleed」と
呼ばれる脆弱性です。Heartbeat
拡張とは、ネットワークリソース間
で暗号通信のセッション保持時間を
延ばすためのしくみで、OpenSSL
では2012年3月にリリースされた
1.0.1よりサポートされました。しか
しこの実装にメモリの取り扱いに関
する深刻なバグがあり、不適切なリ
クエストを送ることで、本来は参照
することができないサーバのメモリ
の内容を最大で64KBまで読み取る
ことができてしまうことが判明しまし
た。それがHeartbleedです。この
脆弱性を利用することで攻撃者は痕
跡を残すことなくメモリの内容を読
むことができ、場合によっては秘密
鍵などの重大な機密情報が盗まれ、
暗号化そのものが無力化する恐れも
あります。
　Heartbleedの熱が冷めない中、
「CCS Injection Vulnerability」と
呼ばれる新たな脆弱性が報告されま
した。これはOpenSSLのハンドシェ
イク中に不適切な順序でChange

CipherSpecメッセージを挿入するこ
とによって、強度の弱い暗号通信へ
強制変更することができるというも
のです。この結果、適切な強度の
暗号化が行われずに、通信内容や
認証情報などの情報を読み取られた
り改ざんされる恐れがあります。

　OpenSSLのシェアは極めて高い
ことから、これらの脆弱性（とくに
Heartbleed）の発見は IT業界に大
きな衝撃を与えました。HTTPSサ
イトのうちの17.5％が脆弱性を抱え
たままHeartbeat拡張を有効にして
いたという報告もあり、その影響力
がWebの安全性を根底から覆しか
ねないものであることがわかります。
そのため、この衝撃的な発表を受け
て、OpenSSLをフォークした新しい
プロジェクトも発足しました。

LibreSSL
　「LibreSSL」はThe OpenBSD
Projectが立ち上げたプロジェクトで、
OpenBSDで 利 用されてい る
OpenSSLライブラリを置き換えるこ
とを目的としています。同プロジェク
トでは、OpenSSLの問題として古
いシステムをサポートするためにソー
スコードが肥大化・複雑化している
点や、mallocをはじめとするカスタ
ムメモリコールにさまざまな問題を
抱えている点などを挙げています。
またプロジェクトの管理方法にも問
題を抱えており、古いバグが解決さ
れないまま放置されているとも指摘し
ています。
　そこでLibreSSLプロジェクトでは、

OpenSSLのコード削減、メモリ管
理の標準ライブラリへの置き換えや
FIPS規格サポートの廃止、古い
バグの修正などを行い、よりシンプ
ルで安全性の高いセキュリティ基
盤を構築するとのことです。

BoringSSL
　「BoringSSL」はGoogleが立ち
上げたプロジェクトで、その目的はお
もにGoogle内部での利用を想定し
たコードベースの構築にあります。
Googleでは以前からOpenSSLの
コードを検証し、独自に多数のパッ
チを適用して自社のプロダクトに使用
してきましたが、その数が増えるに
したがってパッチを充てる労力だけ
でも大きな負担になっていたとのこと
です。そこでいったん本家の
OpenSSLから離脱して独自のコー
ドベースを築いたうえで、今後
OpenSSLに加えられる変更を取り
込んでいく、というスタイルを選ん
だ結果がBoringSSLというわけで
す。BoringSSLで は、OpenSSL
だけでなくLibreSSLに対する変更
も取り込んで行く方針を明らかにし
ています。

　こうした新しい活動に注目が集ま
る一方で、依然として脆弱性のある
OpenSSLを使い続けているWebサ
イトも多数存在するとのことで、事態
が完全に収束するにはもうしばらく
時間がかかりそうです。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 69回

OpenSSLとその派生プロジェクト

OpenSSL
http://www.openssl.org/

セキュリティ問題に揺れ
る「OpenSSL」

派生プロジェクトの登場

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
http://www.openssl.org/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

http://sd.gihyo.jp/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.bluebox.ne.jp

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp

https://gihyo.jp/site/inquiry/dennou

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）
14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／~＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

年間定期購読

 ／~＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

　2014年6月25日と26日の2日間、
「Google I/O 2014」が開催されまし
た。Google I/OはGoogleの各種技
術に関して、多くの発表とセッション、
展示が行われる開発者向けのカン
ファレンスです。今年も世界各国
85ヵ国から会場の定員いっぱいの約
6,000人を集め、盛大なイベントとな
りました。今年はとくにシリコンバレー
近辺の開発者はもとより、インド、アフ
リカ圏、アジア圏と多様な国々のさま
ざまな言語が飛びかう会場でした。

　一部のものを除き、ほとんどすべて
のセッション内容はYouTubeで公開
され、さらにI/O Bytesと呼ばれる各
テクノロジを要約した5分前後のダイ
ジェスト動画も数多く公開されていま
す。今年の傾向は次のとおりです。

●スマートフォン、タブレット、パソコ
ン、ブラウザにとどまらず、マルチプ
ラットフォーム戦略がより強固に。
テレビや車、ヘルスケア分野、家に
も手を広げる

●ライバルを牽制。今までGoogleは
ライバルを気にしない姿勢が強

かったが、最近はFacebook、
Apple、Amazonに対抗意識をあ
らわにしてきた印象が強い

●技術的な要素は大切にしつつも、
デザインやユーザ体験をより重視
する傾向に

●コンテキストアウェアネス：利用者
の文脈を理解し、サービス間のシー
ムレスな連携を考える

●Androidブランドを前面に押し出し
てきた。Phone＆Tablet/Wear/
TV/Auto/PlayとすべてAndroid
ブランドを中心に展開

●クラウドをとても重要視。クラウド開

発環境や安価に利用できるビッグ
データ解析基盤なども（ただしクラ
ウド関連は、2014年3月にクラウド
専門のイベントが開催されており、
重要な事柄は発表済み）

　テレビとの融合を進めるAndroid
TV、車載でもAndroidを推進する
Android Auto、腕時計型ウェアラブ
ル端末Google Wearや、新しいデザ
イン思想Material Designの発表な
ど盛りだくさんでしたが、それとは対照
的にGoogleが推進するSNSである
Google+は、ほとんど話題にのぼりま
せんでした。また、Gmail関連APIの
充実や、YouTubeではフルハイビジョ
ン映像の48fps/60fps対応に関す
る発表など、Google I/Oの各種発表
の影に隠れてしまった重要な発表も
いくつかありました。
　Google I/Oキーノート（基調講演）
会場に掲げられていたスローガン

「Keep building.」の文言が、開発者
たちに向かっていろいろなものを作り
続けてほしいという想いを込めている
とともに、Google自身も、今もいろい
ろなものを作り続けており、これからも

作り続けるのだという意思表示として
強く感じられた2日間でした。

　今年のGoogle I/Oのセッションは、
各テクノロジごとに分類されたもので
はなく、目的や環境ごとにまとまった話
の内容に変化してきていました。その
理由は、ある1つの技術だけで何か
サービスが作れるわけではなく、何か
ユーザに価値のあるサービスを提供
しようと思ったら、さまざまな技術の組
み合せで作り上げられるからだという
話でした。

　動画は英語字幕を一緒に見ると
理解しやすいと思います。また現在は
機械翻訳で日本語字幕を見ることも
でき、今後日本語翻訳字幕も予定さ
れているそうです。I/O Bytesと呼ば
れる5分前後のダイジェスト映像も含
めると、全部で180本もの動画が公
開されています。
　今年の一番人気は、段ボールの組

み立てキットとして配布された、Google
CardBoardでした（https://develop
ers.google.com/cardboard/）。
CardBoardとは英語で「段ボール」を
示す言葉です。安価で高性能なVRメ
ガネOculusがFacebookに約2,000
億円で買収されたことを相当意識して
いるらしく、コストは20ドルだけれども結
構な品質で立体視YouTube動画や
Google Earthを立体で見られます。そ
こそこのクオリティで没入感のある体
験が段ボールとスマートフォンでできて
おり、スマートフォンの地磁気センサー
を騙してスイッチにするための磁石や、
NFCタグも装備されています。
　CardBoardの設計図やレーザー
カッター用の図面は無料で公開され
ています。工作の得意な人であれば、
薄手の段ボールと、Amazonや百円
均一で入手できるレンズや磁石など
を利用して同等品がすぐに作れるそう
です。また、インターネットで同等品を
販売し始めたところもあります。

　今回のGoogle I/O 2014、とくに
新しいAndroid環境や、車載環境
Android Autoなどで盛んに取り上げ
られていたのは、「コンテキストアウェ
アネス（Context Awareness：文脈
理解）」という言葉でした。現在は、さ
まざまな検索キーワードを検索エンジ
ンに入力して、検索結果から人が適
切なものを見いだしています。将来的
には、検索せずとも適切な情報を提
示することを目指しており、Google
Nowの提示する各種の情報がその
先駆けとなっています。
　今後は、たとえばスマートフォンに
地図を表示した状態で、車に乗って
カーナビにスマートフォンを接続する
と、スマートフォンで表示していた地図
を使ってナビを開始。スマートフォンを
スリープ状態にしてカーナビに接続し
たときは単に充電するだけ。あるいは、
親が車で子供を保育園に迎えに行く
ときは大人向けの音楽が流れるが、
保育園に到着し、車のドアが開閉し
て乗員が増えたことがわかると、子供
用の音楽に切り替わるなど、その場の
状況や履歴をうまく活用した振る舞い
が自然にできるよう、いろいろと考慮し
始めているそうです。
　コンテキストアウェアネスを支える
技術としては、ある領域に侵入したら
通知するジオフェンシングやセンサー
群による移動状態（徒歩、自転車、
車、電車）を自動で見分ける手法がす
でに広く使われています。
　Googleの技術は生活のインフラと
してなくてはならないものになりつつあ
ります。Googleもさまざまなライバル
たちとしのぎを削りながら、そして
Google内部の技術者だけではなく、
世界中の開発者がGoogleの技術を
活用して、多彩なアイデアを実現して
いく状況が当分続きそうです。｢

Google I/O 2014で出会った
デジタルガジェットたち

開発者の祭典
Google I/O 2014

安藤 幸央
EXA Corporation

Google I/O 2014で出会ったデジタルガジェットたち

189
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Project TANGO

3D距離センサーつき
スマートフォン＆タブレット
Project TANGOはスマートフォンに人間
と同じような空間認識力をつけさせようと
いうプロジェクトで、Microsoft Kinectの
ような距離（深度）センサー、モーショント
ラッキングカメラ、高解像度カメラを搭載
するスマートフォンやタブレット端末をリ
リースする予定です。店内に並ぶ商品
棚の位置を把握してAR（拡張現実）情
報を提示したり、室内のストリートビューの
ような映像を生成したり、さまざまな挑戦
の最中だそう。

https://www.google.com/
atap/projecttango/

4GADGET

Project ARA

モジュール組み立て式
スマートフォン
プロジェクトARA（アラ）として進行中の、
機能モジュールを組み合せて必要な機
能／スペックのスマートフォンを組み上げ
ることができる機器です。仕様が公開さ
れており、試作が進んでいます。会場では
現在試作中のプロトタイプ上でAndroid
OSが起動した映像が公開され、拍手喝
采を浴びていました（起動直後にフリー
ズしてしまいましたが……）。利用シーン
に応じて性能の違うカメラモジュールを付
け替えたり、バッテリーを付け替えたりでき
れば、よりフレキシブルにスマートフォンが
活用できそうです。

http://www.projectara.com/

3GADGET

Android Wear

広がりが期待される、
腕時計型ウェアラブル端末
腕時計型のAndroid搭載ウェアラブル
端末として、LG、Samsung、Motorolaか
ら発 売されることが公にされ、L Gと
Samsungの四角い画面のタイプは、日
本からも2万円強でオンライン購入できる
ようになりました。Motorolaの丸いタイプ
は夏の終わり頃、倍くらいの価格で発売
予定とのこと。Androidスマートフォンと
連携させて使うのが前提で、スマートフォ
ンに届く通知情報を確認したり、Wear専
用アプリを動作させたりできます。サービ
スとアプリによって、さまざまな用途への
展開が期待されます。

http://www.android.com/wear/

2GADGET

Android TV

ゲームコントローラで
スムーズに操作できる
セットトップボックス

http://www.android.com/tv/

1GADGET

だま

巨大な会場と
興味深いセッションの数々

Googleが推し進める、
文脈理解

（コンテキストアウェアネス）

Google TV以降、3度目の挑戦となる
Android TVが発表されました。テレビの
HDMI端子に接続し、ゲームコントローラ
またはスマートフォンのリモコンアプリで
操作する、小型のセットトップボックスで
す。Google Playで購入した映画やドラ
マ、YouTubeの動画などを一括検索して
楽しむことができます。Android TV専用
のゲームアプリを楽
し ん だり 、さら に
Chromecastの機能
も包括しています。

Google I/Oセッションビデオ一覧
https://www.google.com/
events/io/io14videos

DoDoCase
CARDBOARD VR TOOLKIT

http://www.dodocase.com/products/
google-cardboard-vr-goggle-toolkit

19.95ドル（NFCタグ搭載版は24.95ドル）

会場となった米国サンフラン
シスコMoscone CENTER
WEST

会場ロビーに展示されたGoogle Glassの試作機

展示会場風景。ジャンルごとのミニセッション
会場、コードラボと呼ばれるプログラミング講
座なども

現在のGoogle Glass。度付きレンズ用のフ
レームも会場で販売されていた

Google CardBoard：段ボールで作られた安
価なVR（仮想現実）用メガネ。スマートフォンを
入れて利用します。Android用デモアプリ、デ
モアプリのソースコード、専用アプリ開発用の
SDK、ブラウザ用立体表示プラグインなどが
提供されています。
https://developers.google.com/cardboard/

会場入り口に設置された色
の変わる巨大なGoog l e
I/Oロゴ

キーノート会場に設置された
巨大な機械式カウントダウン
時計

基調講演会場に映し出され
たスローガン

“Keep building.”

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Sep. 2014 - 1

http://www.andoh.org/

　2014年6月25日と26日の2日間、
「Google I/O 2014」が開催されまし
た。Google I/OはGoogleの各種技
術に関して、多くの発表とセッション、
展示が行われる開発者向けのカン
ファレンスです。今年も世界各国
85ヵ国から会場の定員いっぱいの約
6,000人を集め、盛大なイベントとな
りました。今年はとくにシリコンバレー
近辺の開発者はもとより、インド、アフ
リカ圏、アジア圏と多様な国々のさま
ざまな言語が飛びかう会場でした。

　一部のものを除き、ほとんどすべて
のセッション内容はYouTubeで公開
され、さらにI/O Bytesと呼ばれる各
テクノロジを要約した5分前後のダイ
ジェスト動画も数多く公開されていま
す。今年の傾向は次のとおりです。

●スマートフォン、タブレット、パソコ
ン、ブラウザにとどまらず、マルチプ
ラットフォーム戦略がより強固に。
テレビや車、ヘルスケア分野、家に
も手を広げる

●ライバルを牽制。今までGoogleは
ライバルを気にしない姿勢が強

かったが、最近はFacebook、
Apple、Amazonに対抗意識をあ
らわにしてきた印象が強い

●技術的な要素は大切にしつつも、
デザインやユーザ体験をより重視
する傾向に

●コンテキストアウェアネス：利用者
の文脈を理解し、サービス間のシー
ムレスな連携を考える

●Androidブランドを前面に押し出し
てきた。Phone＆Tablet/Wear/
TV/Auto/PlayとすべてAndroid
ブランドを中心に展開

●クラウドをとても重要視。クラウド開

発環境や安価に利用できるビッグ
データ解析基盤なども（ただしクラ
ウド関連は、2014年3月にクラウド
専門のイベントが開催されており、
重要な事柄は発表済み）

　テレビとの融合を進めるAndroid
TV、車載でもAndroidを推進する
Android Auto、腕時計型ウェアラブ
ル端末Google Wearや、新しいデザ
イン思想Material Designの発表な
ど盛りだくさんでしたが、それとは対照
的にGoogleが推進するSNSである
Google+は、ほとんど話題にのぼりま
せんでした。また、Gmail関連APIの
充実や、YouTubeではフルハイビジョ
ン映像の48fps/60fps対応に関す
る発表など、Google I/Oの各種発表
の影に隠れてしまった重要な発表も
いくつかありました。
　Google I/Oキーノート（基調講演）
会場に掲げられていたスローガン

「Keep building.」の文言が、開発者
たちに向かっていろいろなものを作り
続けてほしいという想いを込めている
とともに、Google自身も、今もいろい
ろなものを作り続けており、これからも

作り続けるのだという意思表示として
強く感じられた2日間でした。

　今年のGoogle I/Oのセッションは、
各テクノロジごとに分類されたもので
はなく、目的や環境ごとにまとまった話
の内容に変化してきていました。その
理由は、ある1つの技術だけで何か
サービスが作れるわけではなく、何か
ユーザに価値のあるサービスを提供
しようと思ったら、さまざまな技術の組
み合せで作り上げられるからだという
話でした。

　動画は英語字幕を一緒に見ると
理解しやすいと思います。また現在は
機械翻訳で日本語字幕を見ることも
でき、今後日本語翻訳字幕も予定さ
れているそうです。I/O Bytesと呼ば
れる5分前後のダイジェスト映像も含
めると、全部で180本もの動画が公
開されています。
　今年の一番人気は、段ボールの組

み立てキットとして配布された、Google
CardBoardでした（https://develop
ers.google.com/cardboard/）。
CardBoardとは英語で「段ボール」を
示す言葉です。安価で高性能なVRメ
ガネOculusがFacebookに約2,000
億円で買収されたことを相当意識して
いるらしく、コストは20ドルだけれども結
構な品質で立体視YouTube動画や
Google Earthを立体で見られます。そ
こそこのクオリティで没入感のある体
験が段ボールとスマートフォンでできて
おり、スマートフォンの地磁気センサー
を騙してスイッチにするための磁石や、
NFCタグも装備されています。
　CardBoardの設計図やレーザー
カッター用の図面は無料で公開され
ています。工作の得意な人であれば、
薄手の段ボールと、Amazonや百円
均一で入手できるレンズや磁石など
を利用して同等品がすぐに作れるそう
です。また、インターネットで同等品を
販売し始めたところもあります。

　今回のGoogle I/O 2014、とくに
新しいAndroid環境や、車載環境
Android Autoなどで盛んに取り上げ
られていたのは、「コンテキストアウェ
アネス（Context Awareness：文脈
理解）」という言葉でした。現在は、さ
まざまな検索キーワードを検索エンジ
ンに入力して、検索結果から人が適
切なものを見いだしています。将来的
には、検索せずとも適切な情報を提
示することを目指しており、Google
Nowの提示する各種の情報がその
先駆けとなっています。
　今後は、たとえばスマートフォンに
地図を表示した状態で、車に乗って
カーナビにスマートフォンを接続する
と、スマートフォンで表示していた地図
を使ってナビを開始。スマートフォンを
スリープ状態にしてカーナビに接続し
たときは単に充電するだけ。あるいは、
親が車で子供を保育園に迎えに行く
ときは大人向けの音楽が流れるが、
保育園に到着し、車のドアが開閉し
て乗員が増えたことがわかると、子供
用の音楽に切り替わるなど、その場の
状況や履歴をうまく活用した振る舞い
が自然にできるよう、いろいろと考慮し
始めているそうです。
　コンテキストアウェアネスを支える
技術としては、ある領域に侵入したら
通知するジオフェンシングやセンサー
群による移動状態（徒歩、自転車、
車、電車）を自動で見分ける手法がす
でに広く使われています。
　Googleの技術は生活のインフラと
してなくてはならないものになりつつあ
ります。Googleもさまざまなライバル
たちとしのぎを削りながら、そして
Google内部の技術者だけではなく、
世界中の開発者がGoogleの技術を
活用して、多彩なアイデアを実現して
いく状況が当分続きそうです。｢

Google I/O 2014で出会った
デジタルガジェットたち

開発者の祭典
Google I/O 2014

安藤 幸央
EXA Corporation

Google I/O 2014で出会ったデジタルガジェットたち

189
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Project TANGO

3D距離センサーつき
スマートフォン＆タブレット
Project TANGOはスマートフォンに人間
と同じような空間認識力をつけさせようと
いうプロジェクトで、Microsoft Kinectの
ような距離（深度）センサー、モーショント
ラッキングカメラ、高解像度カメラを搭載
するスマートフォンやタブレット端末をリ
リースする予定です。店内に並ぶ商品
棚の位置を把握してAR（拡張現実）情
報を提示したり、室内のストリートビューの
ような映像を生成したり、さまざまな挑戦
の最中だそう。

https://www.google.com/
atap/projecttango/

4GADGET

Project ARA

モジュール組み立て式
スマートフォン
プロジェクトARA（アラ）として進行中の、
機能モジュールを組み合せて必要な機
能／スペックのスマートフォンを組み上げ
ることができる機器です。仕様が公開さ
れており、試作が進んでいます。会場では
現在試作中のプロトタイプ上でAndroid
OSが起動した映像が公開され、拍手喝
采を浴びていました（起動直後にフリー
ズしてしまいましたが……）。利用シーン
に応じて性能の違うカメラモジュールを付
け替えたり、バッテリーを付け替えたりでき
れば、よりフレキシブルにスマートフォンが
活用できそうです。

http://www.projectara.com/

3GADGET

Android Wear

広がりが期待される、
腕時計型ウェアラブル端末
腕時計型のAndroid搭載ウェアラブル
端末として、LG、Samsung、Motorolaか
ら発 売されることが公にされ、L Gと
Samsungの四角い画面のタイプは、日
本からも2万円強でオンライン購入できる
ようになりました。Motorolaの丸いタイプ
は夏の終わり頃、倍くらいの価格で発売
予定とのこと。Androidスマートフォンと
連携させて使うのが前提で、スマートフォ
ンに届く通知情報を確認したり、Wear専
用アプリを動作させたりできます。サービ
スとアプリによって、さまざまな用途への
展開が期待されます。

http://www.android.com/wear/

2GADGET

Android TV

ゲームコントローラで
スムーズに操作できる
セットトップボックス

http://www.android.com/tv/

1GADGET

だま

巨大な会場と
興味深いセッションの数々

Googleが推し進める、
文脈理解

（コンテキストアウェアネス）

Google TV以降、3度目の挑戦となる
Android TVが発表されました。テレビの
HDMI端子に接続し、ゲームコントローラ
またはスマートフォンのリモコンアプリで
操作する、小型のセットトップボックスで
す。Google Playで購入した映画やドラ
マ、YouTubeの動画などを一括検索して
楽しむことができます。Android TV専用
のゲームアプリを楽
し ん だり 、さら に
Chromecastの機能
も包括しています。

Google I/Oセッションビデオ一覧
https://www.google.com/
events/io/io14videos

DoDoCase
CARDBOARD VR TOOLKIT

http://www.dodocase.com/products/
google-cardboard-vr-goggle-toolkit

19.95ドル（NFCタグ搭載版は24.95ドル）

会場となった米国サンフラン
シスコMoscone CENTER
WEST

会場ロビーに展示されたGoogle Glassの試作機

展示会場風景。ジャンルごとのミニセッション
会場、コードラボと呼ばれるプログラミング講
座なども

現在のGoogle Glass。度付きレンズ用のフ
レームも会場で販売されていた

Google CardBoard：段ボールで作られた安
価なVR（仮想現実）用メガネ。スマートフォンを
入れて利用します。Android用デモアプリ、デ
モアプリのソースコード、専用アプリ開発用の
SDK、ブラウザ用立体表示プラグインなどが
提供されています。
https://developers.google.com/cardboard/

会場入り口に設置された色
の変わる巨大なGoog l e
I/Oロゴ

キーノート会場に設置された
巨大な機械式カウントダウン
時計

基調講演会場に映し出され
たスローガン

“Keep building.”

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design

https://developers.google.com/cardboard/
https://www.google.com/events/io/io14videos
https://developers.google.com/cardboard/
http://www.dodocase.com/products/google-cardboard-vr-goggle-toolkit
https://developers.google.com/cardboard/

　2014年6月25日と26日の2日間、
「Google I/O 2014」が開催されまし
た。Google I/OはGoogleの各種技
術に関して、多くの発表とセッション、
展示が行われる開発者向けのカン
ファレンスです。今年も世界各国
85ヵ国から会場の定員いっぱいの約
6,000人を集め、盛大なイベントとな
りました。今年はとくにシリコンバレー
近辺の開発者はもとより、インド、アフ
リカ圏、アジア圏と多様な国々のさま
ざまな言語が飛びかう会場でした。

　一部のものを除き、ほとんどすべて
のセッション内容はYouTubeで公開
され、さらにI/O Bytesと呼ばれる各
テクノロジを要約した5分前後のダイ
ジェスト動画も数多く公開されていま
す。今年の傾向は次のとおりです。

●スマートフォン、タブレット、パソコ
ン、ブラウザにとどまらず、マルチプ
ラットフォーム戦略がより強固に。
テレビや車、ヘルスケア分野、家に
も手を広げる

●ライバルを牽制。今までGoogleは
ライバルを気にしない姿勢が強

かったが、最近はFacebook、
Apple、Amazonに対抗意識をあ
らわにしてきた印象が強い

●技術的な要素は大切にしつつも、
デザインやユーザ体験をより重視
する傾向に

●コンテキストアウェアネス：利用者
の文脈を理解し、サービス間のシー
ムレスな連携を考える

●Androidブランドを前面に押し出し
てきた。Phone＆Tablet/Wear/
TV/Auto/PlayとすべてAndroid
ブランドを中心に展開

●クラウドをとても重要視。クラウド開

発環境や安価に利用できるビッグ
データ解析基盤なども（ただしクラ
ウド関連は、2014年3月にクラウド
専門のイベントが開催されており、
重要な事柄は発表済み）

　テレビとの融合を進めるAndroid
TV、車載でもAndroidを推進する
Android Auto、腕時計型ウェアラブ
ル端末Google Wearや、新しいデザ
イン思想Material Designの発表な
ど盛りだくさんでしたが、それとは対照
的にGoogleが推進するSNSである
Google+は、ほとんど話題にのぼりま
せんでした。また、Gmail関連APIの
充実や、YouTubeではフルハイビジョ
ン映像の48fps/60fps対応に関す
る発表など、Google I/Oの各種発表
の影に隠れてしまった重要な発表も
いくつかありました。
　Google I/Oキーノート（基調講演）
会場に掲げられていたスローガン

「Keep building.」の文言が、開発者
たちに向かっていろいろなものを作り
続けてほしいという想いを込めている
とともに、Google自身も、今もいろい
ろなものを作り続けており、これからも

作り続けるのだという意思表示として
強く感じられた2日間でした。

　今年のGoogle I/Oのセッションは、
各テクノロジごとに分類されたもので
はなく、目的や環境ごとにまとまった話
の内容に変化してきていました。その
理由は、ある1つの技術だけで何か
サービスが作れるわけではなく、何か
ユーザに価値のあるサービスを提供
しようと思ったら、さまざまな技術の組
み合せで作り上げられるからだという
話でした。

　動画は英語字幕を一緒に見ると
理解しやすいと思います。また現在は
機械翻訳で日本語字幕を見ることも
でき、今後日本語翻訳字幕も予定さ
れているそうです。I/O Bytesと呼ば
れる5分前後のダイジェスト映像も含
めると、全部で180本もの動画が公
開されています。
　今年の一番人気は、段ボールの組

み立てキットとして配布された、Google
CardBoardでした（https://develop
ers.google.com/cardboard/）。
CardBoardとは英語で「段ボール」を
示す言葉です。安価で高性能なVRメ
ガネOculusがFacebookに約2,000
億円で買収されたことを相当意識して
いるらしく、コストは20ドルだけれども結
構な品質で立体視YouTube動画や
Google Earthを立体で見られます。そ
こそこのクオリティで没入感のある体
験が段ボールとスマートフォンでできて
おり、スマートフォンの地磁気センサー
を騙してスイッチにするための磁石や、
NFCタグも装備されています。
　CardBoardの設計図やレーザー
カッター用の図面は無料で公開され
ています。工作の得意な人であれば、
薄手の段ボールと、Amazonや百円
均一で入手できるレンズや磁石など
を利用して同等品がすぐに作れるそう
です。また、インターネットで同等品を
販売し始めたところもあります。

　今回のGoogle I/O 2014、とくに
新しいAndroid環境や、車載環境
Android Autoなどで盛んに取り上げ
られていたのは、「コンテキストアウェ
アネス（Context Awareness：文脈
理解）」という言葉でした。現在は、さ
まざまな検索キーワードを検索エンジ
ンに入力して、検索結果から人が適
切なものを見いだしています。将来的
には、検索せずとも適切な情報を提
示することを目指しており、Google
Nowの提示する各種の情報がその
先駆けとなっています。
　今後は、たとえばスマートフォンに
地図を表示した状態で、車に乗って
カーナビにスマートフォンを接続する
と、スマートフォンで表示していた地図
を使ってナビを開始。スマートフォンを
スリープ状態にしてカーナビに接続し
たときは単に充電するだけ。あるいは、
親が車で子供を保育園に迎えに行く
ときは大人向けの音楽が流れるが、
保育園に到着し、車のドアが開閉し
て乗員が増えたことがわかると、子供
用の音楽に切り替わるなど、その場の
状況や履歴をうまく活用した振る舞い
が自然にできるよう、いろいろと考慮し
始めているそうです。
　コンテキストアウェアネスを支える
技術としては、ある領域に侵入したら
通知するジオフェンシングやセンサー
群による移動状態（徒歩、自転車、
車、電車）を自動で見分ける手法がす
でに広く使われています。
　Googleの技術は生活のインフラと
してなくてはならないものになりつつあ
ります。Googleもさまざまなライバル
たちとしのぎを削りながら、そして
Google内部の技術者だけではなく、
世界中の開発者がGoogleの技術を
活用して、多彩なアイデアを実現して
いく状況が当分続きそうです。｢

Google I/O 2014で出会った
デジタルガジェットたち

開発者の祭典
Google I/O 2014

安藤 幸央
EXA Corporation

Google I/O 2014で出会ったデジタルガジェットたち

189
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Project TANGO

3D距離センサーつき
スマートフォン＆タブレット
Project TANGOはスマートフォンに人間
と同じような空間認識力をつけさせようと
いうプロジェクトで、Microsoft Kinectの
ような距離（深度）センサー、モーショント
ラッキングカメラ、高解像度カメラを搭載
するスマートフォンやタブレット端末をリ
リースする予定です。店内に並ぶ商品
棚の位置を把握してAR（拡張現実）情
報を提示したり、室内のストリートビューの
ような映像を生成したり、さまざまな挑戦
の最中だそう。

https://www.google.com/
atap/projecttango/

4GADGET

Project ARA

モジュール組み立て式
スマートフォン
プロジェクトARA（アラ）として進行中の、
機能モジュールを組み合せて必要な機
能／スペックのスマートフォンを組み上げ
ることができる機器です。仕様が公開さ
れており、試作が進んでいます。会場では
現在試作中のプロトタイプ上でAndroid
OSが起動した映像が公開され、拍手喝
采を浴びていました（起動直後にフリー
ズしてしまいましたが……）。利用シーン
に応じて性能の違うカメラモジュールを付
け替えたり、バッテリーを付け替えたりでき
れば、よりフレキシブルにスマートフォンが
活用できそうです。

http://www.projectara.com/

3GADGET

Android Wear

広がりが期待される、
腕時計型ウェアラブル端末
腕時計型のAndroid搭載ウェアラブル
端末として、LG、Samsung、Motorolaか
ら発 売されることが公にされ、L Gと
Samsungの四角い画面のタイプは、日
本からも2万円強でオンライン購入できる
ようになりました。Motorolaの丸いタイプ
は夏の終わり頃、倍くらいの価格で発売
予定とのこと。Androidスマートフォンと
連携させて使うのが前提で、スマートフォ
ンに届く通知情報を確認したり、Wear専
用アプリを動作させたりできます。サービ
スとアプリによって、さまざまな用途への
展開が期待されます。

http://www.android.com/wear/

2GADGET

Android TV

ゲームコントローラで
スムーズに操作できる
セットトップボックス

http://www.android.com/tv/

1GADGET

だま

巨大な会場と
興味深いセッションの数々

Googleが推し進める、
文脈理解

（コンテキストアウェアネス）

Google TV以降、3度目の挑戦となる
Android TVが発表されました。テレビの
HDMI端子に接続し、ゲームコントローラ
またはスマートフォンのリモコンアプリで
操作する、小型のセットトップボックスで
す。Google Playで購入した映画やドラ
マ、YouTubeの動画などを一括検索して
楽しむことができます。Android TV専用
のゲームアプリを楽
し ん だり 、さら に
Chromecastの機能
も包括しています。

Google I/Oセッションビデオ一覧
https://www.google.com/
events/io/io14videos

DoDoCase
CARDBOARD VR TOOLKIT

http://www.dodocase.com/products/
google-cardboard-vr-goggle-toolkit

19.95ドル（NFCタグ搭載版は24.95ドル）

会場となった米国サンフラン
シスコMoscone CENTER
WEST

会場ロビーに展示されたGoogle Glassの試作機

展示会場風景。ジャンルごとのミニセッション
会場、コードラボと呼ばれるプログラミング講
座なども

現在のGoogle Glass。度付きレンズ用のフ
レームも会場で販売されていた

Google CardBoard：段ボールで作られた安
価なVR（仮想現実）用メガネ。スマートフォンを
入れて利用します。Android用デモアプリ、デ
モアプリのソースコード、専用アプリ開発用の
SDK、ブラウザ用立体表示プラグインなどが
提供されています。
https://developers.google.com/cardboard/

会場入り口に設置された色
の変わる巨大なGoog l e
I/Oロゴ

キーノート会場に設置された
巨大な機械式カウントダウン
時計

基調講演会場に映し出され
たスローガン

“Keep building.”

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design Sep. 2014 - 3

http://www.android.com/tv/
http://www.projectara.com/
http://www.android.com/wear/
https://www.google.com/atap/projecttango/

4 - Software Design

Scalability——スケーラビリティ

スケーラビリティとは

　スケーラビリティ（scalability）とは、システ
ムが処理すべき情報の規模が大きくなったとき

に対処できる能力のことです。スケーラビリティ
はスケール（規模）＋アビリティ（能力）と分解で
き、「規模に対処する能力」という意味になります。
　典型的な例としてWebサービスのスケーラ
ビリティを考えてみましょう。Webサービス
をリリースした直後、ユーザがまだ少ないうち
は軽快に動くけれど、ユーザが多くなってくる
と反応が鈍くなるのはよくあるトラブルです。
　このようなWebサービスは、規模（ユーザ数）
が大きくなると対処できなくなったので、「ス
ケーラビリティが低い」と言えます。逆に、ユー
ザが多くなってもずっと同じ反応速度を保って
いられるWebサービスは、「スケーラビリティ
が高い」と言えるでしょう。

　Webサービスにとってスケーラビリティは
重要です。ユーザの数が多くなったということ
は、Webサービスに人気が出たことを意味し
ます。そこできちんと対処できなかったら、せっ
かくのチャンスをみすみす逃してしまうことに
なりますね。

スケールアップとスケールアウト

　スケーラビリティを高める方法として、大き
く「スケールアップ」と「スケールアウト」という
2つの対処方法があります。
　スケールアップは、性能を上げて規模の増加
に対処する方法です（図1）。Webサービスの例
で言えば、性能の高いマシンを購入したり、ネッ
トの帯域を広げたりして対処するのはスケール
アップの一種です。これは自然な考えですが、
性能を上げるとコストもかかるので注意が必要
です。ユーザが少ないうちから高い性能のシス
テムを構築してしまうとコストの無駄になるで
しょう。
　スケールアウトは、性能を上げるのではなく、

Scalability

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 16

 ▼図1　スケールアップ ▼図2　スケールアウト

http://www.hyuki.com/

4 - Software Design Sep. 2014 - 5

システムを多数組み合わせることで規模の増加
に対処する方法です（図2）。Webサービスの例
で言えば、クラウド上の仮想サーバを使って実
装し、ユーザ数が多くなって負荷が増大したら、
インスタンスを増加させて対処するのはスケー
ルアウトの一種です。この方法なら、ユーザが
少ないうちはインスタンス数を少なく抑え、ユー
ザが多くなったらインスタンス数を多くするこ
とで対処できるので、コストの無駄も少なくな
るでしょう。
　とくに、最近のWebサービスへのアクセスは、
TwitterなどのSNSの影響で急激に増大する
ことがあるので、急激な負荷増大に動的に対処
するのは大切なことです。

問題の性質とスケーラビリティ

　スケーラビリティが高いシステムを構築する
ためには、対処する問題を詳しく調べる必要が
あります。スケールアウトしてスケーラビリティ
を上げるためには、大きな問題を、独立した小
さな問題群に分割する必要があります。
　たとえば、Webサービスの例で考えてみましょ
う。ユーザがいくら増えても、Webサービス
へのアクセスはユーザごとに独立ですから、複
数のインスタンスに振り分けることが容易です。
　しかしながら、もしもWebサービスの背後
で動作しているデータベースのスケーラビリティ
が低いと、そこにアクセスが集中してしまった
場合、結局スケーラビリティは低くなってしま
います。これはこの連載でも以前お話しした「ボ
トルネック」がスケーラビリティを低くしてし
まう例です。

組織とスケーラビリティ

　技術の世界だけではなく、日常生活でもスケー
ラビリティは重要な概念です。
　たとえば、会社などの組織は、個人で対処で
きない規模の問題を解決するために存在します。
個人が能力を高めて問題に対処するのはスケー
ルアップによる問題解決で、組織の中にいる複

数の人間が問題に対処するのはスケールアウト
による問題解決と言えるでしょう。
　事業が成功して大量の仕事がやってきたとき、
うまく「組織が回る」かは組織のスケーラビリ
ティが試されていると言えます。
　大きな問題を、独立性が高い小さな問題に分
割できるなら、いわゆる「人海戦術」が使えます。
とにかく人をたくさん投入すれば早く解決でき
る場合ですね。しかし、いつも人海戦術に頼る
わけにはいきません。
　組織には、大きな問題を独立性の高い小さな
問題に分割する人と、分割した問題を解く人の
両方が必要です。そして経営者は、Webサー
ビスの設計のように、組織のスケーラビリティ
が高くなるよう設計する必要があります。

個人とスケーラビリティ

　私たち個人も、自分のスケーラビリティを考
える意味があります。仕事であれ、プライベー
トであれ、私たちは多くの問題に直面します。
これまでうまく対処できていたのに、問題の規
模が大きくなると急に対処できなくなるのはよ
くあることです。
　その場合、自分の能力をアップして何とかし
ようと考えるのはスケールアップの発想です。
それは有効ですが、コストや時間がかかります
し、限界もあるでしょう。
　ほかの人に助けを頼んだり、専門家に任せた
り、あるいは同じ問題を抱えている人が集まっ
て集団として対処することもあるでしょう。こ
れは、スケールアウトの発想です。
　手に負えないトラブルが生じたとき、スケー
ルアップだけではなく、スケールアウトで対処
してもいいと気づくのは大切です。
　あなたの周りを見回して、処理すべき規模が
ときに大きくなる問題を探してみましょう。そ
の問題はスケールアップとスケールアウトのど
ちらで対処すべきでしょうか。そのときにコス
トや時間はどうなるでしょうか。ぜひ考えてみ
てください。｢

16

w

6 - Software Design Sep. 2014 - 7

新たなる挑戦第17回

（株）ユビキタスエンターテインメント　清水 亮　SHIMIZU Ryo
　　　http://www.uei.co.jp

（最終回）

enchantMOON S-II

　新たに設計しなおされたMOONPhase 2.9.0

は、まるで同じハードとは思えないくらい高速
に動きました。
　実は僕は開発現場から離れている間も、動作
が遅いという欠点をソフト以外の観点からなん
とかできないか検討を続けていました。CPU

世代を一世代新しくCortex-A9にしたり、そ
れをデュアル化、クワッド化して動作を検証し
ました。しかしいくらCPU世代を上げても、
クロック周波数を上げても、バージョン2.8ま
でのMOONPhaseは高速に動作しませんでした。
それどころかチューニングしていないぶん、
却
かえ

って遅くなるケースさえありました。
　つまりこれはハードウェアの問題に見
えがちですが、実際にはソフトウェア設
計の問題だったのです。だから次世代機
を開発する前に、完全な形でソフトウェ
アを再構築する必要があると僕は強く思
いました。
　現場との激しい軋

あつ れき

轢があるなか、僕は
できるだけ現場のエンジニアが納得し、
自分たち自身が「このままのやり方では
根本的にダメなのだ」ということに気付
いてほしいと願っていました。しかし結
局のところ、僕が思うようには事態は推

移しませんでした。当の開発者たち自身が、「こ
のハードじゃあこんなもの」「これが限界」と思
い込み、根本的な最適化を諦めていたからです。
 「ソースコードをすべて捨て、ゼロから再構築
しよう」
　数ヵ月ぶりに開発者たちと顔を合わせた僕は、
まずベンチマーク結果を見せました。
 「いいか？　みんなenchantMOONは遅いとい
う。ハードがダメなのだと。だが本当にそうか？
　ベンチマークをとってみた。それがこれだ。
実際には iPhone 4より速く、iPhone 5の3倍
遅いだけに過ぎない。では聞くが、iPhone 4

はそんなに遅かったか？」
　皆、「遅い」という言葉に囚

とら

われ、それが「ど
のくらい遅いのか」まで考えたことがなかった

ベンチマーク結果（SunSpider 1.0.2 JavaScript Benchmarkを使用）

e n c h a n t

http://www.uei.co.jp

6 - Software Design Sep. 2014 - 7

新たなる挑戦第17 回
（最終回）

のです。そしてそれがハードウェアの限界なの
か、ソフトウェアの限界なのか、切り分けをき
ちんとしてきませんでした。なにしろドキュメ
ントもろくにない中国製のハードウェア上で、
OSをきちんと動かす、ただそれだけで想像を
絶するほど大変だったからです。
 「なにが遅いのか？　アーキテクチャだ。もっ
と言えば、ベクトルの読み込みと書き込みだ」
　enchantMOONでは、すべてのベクトルデー
タをJavaScriptから扱いやすいようにJSON

データとして保存しています。しかしJSONデー
タとは、要はテキストファイルです。テキスト
ファイルを読み込むにはパーサーを通さなけれ
ばならず、これでは遅いのは道理です。しかも、
ページごとにすべてのベクトルデータを保存し
ています。この構造を持っている限り、実用的
な速度でenchantMOONを動かすことはできな
いと考えました。実際に計測してみると、ペー
ジ切り替え時に待たされる時間の大半が、
JSONの解釈に費やされていました。
 「このJSONを毎回すべて読み込む方式をやめ、
JSONを適宜追記していく方式に変更する。認
識が必要になったときに、改めて該当する部分
のJSONのみを読み込み、ベクトルデータとし
て再解釈する。データの基本構造をピクセルバッ
ファとし、表示にはピクセルを使う。つまり、
データの本質的な内容はJSONで保存するが、
処理するときにはピクセルを表示する。それが
もっとも高速なはずだ」
　僕が提案したのはハイブリッドのアプローチ
です。
 「これなら高速化できるはずだ」
 「しかしそれだとソースコードをすべて捨てて、
イチから作りなおしになります」
 「そうだろうな」
 「そんなことをしてもいいんですか？」
 「するしかない。それがMOONを蘇らせる唯
一の方法なら」
　こうして前代未聞の発売後半年経過してから
のOSソースコード全破棄を言い渡しました。

　メーカーから転職してきた開発者たちにして
みれば、「理屈上それが正しいとわかっていても、
メーカーでは決して許されない判断」なのだそ
うです。しかし僕にとって重要なのは、すでに
出荷した製品の性能が劇的に向上するならユー
ザに評価してもらうことであり、それを短期的
な利益やしがらみを優先してやらないという選
択肢は考えられませんでした。
　その結果、完成した enchantMOON S-II

（MOONPhase 2.9.0）はまるで別物、新機種と
言っても信じられてしまうほどに高速化しまし
た。たとえばかなりの書き込みデータがあった
場合、旧バージョンでは1ページめくるのに
40～50秒程度かかっていた処理も、0.5秒で処
理できるようになりました。単純計算で100倍
です。過去、どのような歴史を紐解いても、発
売から1年以内に、ソフトウェアアップデート
だけで100倍高速化したハードウェア製品は存
在しないと思います。
　もちろん、それだけ最初の製品の完成度が物
足りないものだったと後から言うことは簡単で
すが、それを実際に成し遂げた開発者たちには、
僕は感謝の気持ちしかありません。
　そしてGeminiを使ったインビテーションサ
イトを用意したS-IIの発表会では、MOON

Phaseを再構築するに至った思考プロセスを丁
寧に説明しました。無料のバージョンアップで
なぜ記者会見を開いたのか。単なるバージョン
アップではなく、かつてない規模で行われた本
当の意味でのアップグレードである、というこ

遅い原因

8 - Software Design

e n c h a n t

Sep. 2014 - 9

とを直に伝えたかったのです。

つかの間の休息、そして

　しかし現場はそれからの2週間、まさしく戦
場と化しました。大量のデバッグに追われてい
たからです。
　そしてついに4月10日、enchantMOON S-II

が正式にリリースされます。予定していた正午
のリリースの直前に大きなバグが1つ見つかり、
それを修正した後、少し遅れてのリリースとな
りました。
 「よし、みんなよく頑張った。今から打ち上げ
に行こう。もちろんオレのおごりだ」
　疲れきっていた開発者たちは、ぞろぞろと淡
路町の中華料理店に集まりました。食べ放題の
中華料理。北京ダックもあります。
 「酒もいくらでも飲んでいいぞ。今日までよく
頑張った」
　彼らは互いを讃

たた

え合い、つかの間の休息を満
喫しました。そう。これはほんのつかの間の休
息に過ぎませんでした。
　その日の夕方、僕はふたたび開発者たちを会
議室に集めました。
 「さて、S-IIは本当に素晴らしい仕事だった。
よく頑張ってくれた。君たちは素晴らしい」
　僕は開発者たちを一人一人の顔を確認しなが
ら、言いました。彼らは確かに疲れきっていま
した。しかし彼らの瞳の奥には、まだ光が残っ

ていました。
 「これで終わりってわけじゃないんですよね？」
　サターンVと呼ばれる、enchantMOONの基
礎となるOS開発を担当した濱津誠が薄笑いを
浮かべて言いました。
 「なにか新しい修羅場が始まるって聞いてます
が……」
　大手電機メーカーから、enchantMOONをや
りたくて飛び出して来た日高正博も苦笑いします。
 「ふむ」
　ドワンゴ時代から14年以上、常にもっとも
重要なプロジェクトの開発者として僕を支えて
来てくれた布留川英一は、僕と目が合うと、い
つものようにポーカーフェイスで頷き、その隣
でenchant.jsとMOONBlockを開発した高橋諒
も口を真一文字に結んで頷きます。インターン
時代にEagleVMを開発した凄腕のケヴィン・
クラッツァーは、正式にビザを取得し、ドイツ
から日本に移住してきていました。彼は不思議
そうにこの状況を眺めています。これから何が
始まるというのだ、という顔です。
　僕は薄ら笑いを浮かべました。密かに進めて
きた企画が、いまこそ実現するその寸前なので
す。enchantMOON S-IIは、その壮大な計画の
ほんの端緒に過ぎないのです。そして次に待ち
受けるのはまさしく真の修羅場です。人類の誰
もやろうとしたことがないような、まったく前
例のないものを創りだそうというのです。そし
てなによりそれは、僕自身がもっとも欲してい
る新しい「道具」でした。
 「新しい修羅場……でしょうね、また」
　新卒から7年、僕の右腕として常に働く増田
哲朗も、真顔とも笑顔ともつかない顔で頷きま
す。その様子を、MOONPhaseのコンセプトを
考え、今はマネージャーとして開発現場の統括
を行う辻秀美と、企画担当で新たに参加した渋
江さやかは楽しそうに眺めていました。
 「そのとおりだ。明日から我が社の歴史上、もっ
とも重要なプロジェクトに合流してもらう」
　やっぱりか、という空気が流れます。発表会の様子

8 - Software Design

新たなる挑戦第17 回

Sep. 2014 - 9

（最終回）

 「それはこれまで世界の誰も見たことがないソ
フトウェアだ。想像したことすらない。だが誰
しもに欲しいと思わせる、本物のソフトウェア
だ。それを見せよう」
　そこで僕は別働隊に密かに作らせていたビデ
オを見せました。それは僕が密かに温めていた
企画を、樋口監督に紹介していただいたとある
アニメ制作会社に依頼して映像化したものです。
　新しい企画のコンセプトをまず映像にして見
せてしまう、画面から、動きから、使い方から、
すべてです。誰もが製品の最終形を最初にイメー
ジできるように、最初に徹底的に動きを作って
しまう。今回はそういうやり方で行こうと僕は
決めていました。だからS-IIの開発を監督す
るその一方で、密かにまったく新しい企画を練
り上げて作っていたのです。その場にいる数人
を除けば、誰もその存在すら知りません。誰も
見たことがない、まったく新しい画面です。
 「はははは……」
　濱津は笑い出しました。ほかのメンバーもな
にか薄ら笑いを浮かべました。
 「これ、凄いですね。いったい誰が作るんでしょ
う？」
　僕は一同を見回し、それから言いました。
 「僕たちだ」
　僕にはわかっています。enchantMOON S-II

を創りだした僕たちなら必ず素晴らしいソフト
ウェアを作り上げることができると。そう、彼
らではなく、僕たちなら、できるのです。

月へ

　僕たちの挑戦はまだ道半ばにあります。これ
からも数々の困難が待ち受けているでしょう。
　コンピュータを実用的な文房具にまで落とし
込む̶̶なぜならそこはかつて多くの人々が挑
み、そして散って行った本当の未踏領域だから
です。そのために、ハードウェア、OS、プロ
グラミング言語まですべてを自分たちで作る。
そんな馬鹿げた挑戦を、社員数たったの100人、

売上高わずか14億円の小さな会社が行うのは、
やはり無謀でしょうか。
　しかし一方で、enchantMOONを始めとする
プロジェクトは僕たちの夢であり、希望そのも
のなのです。enchantMOONは、多くのユーザ
の皆様と、クライアント企業の皆様と、
enchantMOONにかかわる社員たちと、それを
支えるすべての社員、アルバイトたち。そうし
たものによって支えられている、ひとつの大き
な夢です。
　もし万が一、道半ばで資金が尽きたらどうし
よう、会社がなくなってしまったらどうしよう。
　僕は株式会社ユビキタスエンターテインメン
トの社長として、そして清水亮という一人の技
術者として、ひとつだけ皆さんにお約束します。
それは僕たちは決してこの夢を諦めたりしない
ということです。なにより僕自身がこの夢に魅
了（enchant）されてしまっているからです。
　そしてその先にどんな未来が待ち受けている
のか、それは神のみぞ知ります。もしかしたら
僕たちは奈落の底に突き進んでいるのかもしれ
ません。先のない技術、生涯ものにできない夢
を追い求めているのかもしれません。しかし、
僕たちは前進を続けます。その先にどれだけ困
難があろうとも、僕たちはかならずそれを乗り
越えてみせます。
　そしてすべての人々がコンピュータを意のま
まに操り、すべての人々がプログラミングをビ
デオの録画予約程度にまで簡単に行えるように
する。すべての人々がコンピュータを通して自
分の意志や考えを表明し、自分の能力をコン
ピュータによって無限に拡張していける。そん
な世界を実現するため、たゆまぬ努力を続けて
行きます。
　最後に、この連載を企画してくださり、ペー
ジを与えてくださったSoftware Design編集部
様に感謝致します。
　そして読者の皆様とまたどこかでお会いでき
る日を楽しみにしつつ、筆を置きたいと思いま
す。ﾟ

10 - Software Design

　こんにちは。USP研究所のかまぷ

です。今月もほろ酔い気分でゲストを

おもてなししながら、お話を聞いてみ

ます。

（鎌田）——ぎょりさん（永淵さん

のニックネーム）とは女性向けのイベ

ント（TechGIRL）で初めてお会いし

ました。元気のいいLightningTalk

（LT）を見て、今すぐ友達になりたいっ

て思いました。サーバーワークスで営

業職をされているとのことなのです

が、この業界、女性の営業職って少な

いですよね？

（永淵）そうでしょうか？　あま

り気にしたことがありません（笑）。

自分が会社の売上に貢献しているほ

うなので、むしろ女性のほうが向い

ていると思っています。私は新卒で

営業を希望し、それがかなって営業

配属になりました。その理由は、営

業のキーである数字や数学が好きな

のと、いろんな人に会えると思った

からです。とくに、IT業界の営業で

すと、お客さんの業界はさまざまで

す。実際に会って自分の知り得ない

新しい情報を聞く、逆に自分からも

キャッチアップできた仕事の情報は

常に提供する、ということに喜びを

感じています。

——入社数年で会社の売上に貢献

しているってすごいですね。コツはな

んでしょうか？

楽しんでやることですかね！　

今期の成績がよかったので、これを

維持しなきゃというプレッシャーも

あります。営業は理系が向いている

と思いませんか。自分はもともと数

字を追うのが好きなので、グラフを

作ったり、必要な数字をまとめたり

するのはまったく苦ではないんです。

営業は努力した分、利益として数字

で返ってくるのがおもしろいです。

AとB、2つの仕事があったら、ど

ちらが長期的に売上へ貢献するか？

などなど、常に頭を働かせています。

——とっても元気なのですっかり

体育会系かと思っていました！　営業

職なのにAWSの資格をお持ちだと聞

きましたが。

SA（Solution Architect - Associ

ate）を持っています。確かに営業職

で持っている人は少ないと思います。

私はJAWS-UGなどの勉強会でエン

ジニアの方と接することが多いので、

資格を勉強することは自然でした。

Twitterなどネットで情報を仕入れ

るのも好きです。それから表舞台に

立つのも好きですよ。LTや講演など

機会があったら手を挙げるようにし

ています。先日はRedshift Girlsと

いうユニットを作って巫女さんの衣

装を着て皆に楽しんでもらえる工夫

をしました。本気で楽しくプレゼン

するにはコスプレですよ！（笑）

——とても楽しそうですね。ちな

みにJAWS-UGはAWSユーザの日

本のローカルコミュニティですが、何

人ぐらいいらっしゃるんでしょうか？

具体的な数は把握していないの

ですが、Facebookで先日600「いい

ね」をカウントしました。東京支部

から沖縄支部まで地域ごとにグルー

プがあるので、勉強会などが日本全

国各地で行われています。一緒に勉

強する仲間を増やしたいと思ってい

るので、読者のみなさんにもぜひ勉

強会に参加してもらいたいです。こ

のコミュニティから産まれたもので

CDPというものがあります。

ゲスト：永淵恭子さん第2献

Mac使いで、ショートカットキーに慣れているそう。

永淵恭子さん
株式会社サーバーワークス　クラウド
女子会コアメンバー。美人CDP認定。
Redshift Girls。福岡県出身。営業を希
望して早３年。自分のあとに新卒女子が
入社しないことが目下の悩み。「技術を
もっと楽しく！営業ももっと楽しくわか
りやすく！そしてAWS女子を増やした
い！」を最近のモットーに日々奮闘中。
https://www.facebook.com/gyori.n

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

https://www.facebook.com/gyori.n

10 - Software Design Sep. 2014 - 11

——CDPとは何の略ですか？

AWSのサービスはおよそ40ぐ

らいあります。CDP（クラウドデザ

インパターン）はそれらのサービス

の設計や機能を使いこなすためのノ

ウハウを整理したものです。すでに

多くで活用されていて、書籍も出て

います。ちなみに美人CDP認定を

いただきました（照）。私が個人で

も使っているもので、「Amazon

Simple Storage Service（S3）」とい

うストレージサービスがあります。

これは個人ユーザに向いているかも

しれません。あまり知られていませ

んが、DropboxはS3をラッピング

しているものなのですよ。中身は

AWSということです。

——認定受けているだけあって、

詳しいですね（笑）。話は変わります

が、営業職だと出張はあるのでしょう

か？

営業は都内が多いですね。毎日

歩き回っています。平均訪問件数は

1日3件ぐらいです。クラウド系の

イベントが地方で行われるときに、

出張することがほとんどですね。2、

3ヵ月に1回ぐらいなので、そんな

に多くないと思います。先ほども触

れましたが、出張先でRedshift Girls

としてプレゼンしてきました。

——Redshiftはあまり聞き慣れな

い単語ですが、どういう意味ですか？

単語そのものの意味は「赤方偏

移」ですよね。宇宙が広がっていく

イメージでしょうか。AWSが提供

するData Ware House専用のサー

ビスです。初期投資なしで始められ

るので、大絶賛PUSH中です。Red

shift Girlsを始めたきっかけは、とあ

る人がJAWS-UGの勉強会に「Red

Bull Girlを呼びたいな～」という声を

上げ、これ対して、弊社の上司が冗

談で「“Redshift Girls” なら、なんと

か呼べるよ！（うちの女子社員だけ

ど）」と、即席アイデアを提案したと

いう経緯なのですが、その当時は

Redshiftもわからずに必死になっ

て、一から勉強したことは今となっ

てはいい思い出です。勉強は営業に

限らずどの職種でも必要です。でも、

息抜きも大事ですよね（笑）。

——そうそう、お酒好きそうです

よね。お好きな食べ物はなんでしょう

か？

ビール、日本酒、芋焼酎……。

コロッケやチャーハン、塩昆布キャ

ベツなどなど……居酒屋で出てくる

料理が好きですね。今日のチキンも、

ビールに合いますね！　美味しい♡

——家でお料理されたりするんで

すか？

たまにするくらいです。おつま

みを作ったりとか（笑）。食べるのは

生まれつき速いので、男性と一緒

に食事しても同じか先に食べ終わ

ります。でも猫舌なのでラーメンな

どになると、とたんに遅くなりま

す（笑）。

——最後に、クラウド女子と営業

女子を増やすためにメッセージいただ

けないでしょうか。

女性は営業に向いていると思う

んです。とくに、人一倍早く情報仕

入れたり、とにかく良さそうなもの

を試したり、女性はマルチタスクな

思考が得意だと思うのです。それは

鍛えようと思って身に付くスキルで

はないので。また、話がポンポン飛

ぶような話し方をしますよね。この

ことは良く捉えるとアイデアが湧き

出ているということだと思うのです。

仕事でもロールモデルが大事だと

思っているので、自分がロールモデ

ルになろうかと思ってます（笑）。

　最後に一言言わせてください。

JAWS-UGではクラウド女子勉強会

をやっているので、ぜひ、周囲の女

性に教えてあげてください。勉強の

機会や仲間を増やす機会を共有して

ほしいです。初心者も大歓迎です！

——素晴らしい！　私もいろいろ

頑張りたいです。今回は、楽しいお話

ありがとうございました！ｨ

　かまたさん、御入籍おめでとうございました。 ロケ地：よなよなBEER KITCHEN（赤坂見附）。 http://www.yonayonabeerkitchen.com/

ビアサーバから直接注いで飲める個室でのロケです。

http://www.yonayonabeerkitchen.com/

12 - Software Design12 - Software Design

はじめに

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 47 回

秋葉原発！

　前回に引き続き、今回もBluetooth Low

Energy（BLE）の世界を紹介します。今回は、
BLEの技術的な詳細にもう少し踏み込んでみ
たいと思います。Androidについては筆者が動
向をよく把握していないため、iOSを中心に話
を進めます。

　BLEには、大まかにいって、セントラルと
ペリフェラルという役割が存在します。セント
ラルとペリフェラルは、ちょうど親機と子機の
ような関係になっています（図1）。子機に相当
するペリフェラルは、アドバタイズと呼ばれる
同報送信（ブロードキャスト）を行い、ペリフェ
ラルの名前や提供できる機能などを広告（アド
バタイズ）します。一方、セントラルは、アド
バタイズの検出を行い、接続したいペリフェラ
ルに対して接続要求を行います。
　セントラルどうしや、ペリフェラルどうしは
接続できません。セントラルは、複数のペリ

Peripheral

Peripheral

Peripheral

Peripheral

Peripheral

CentralCentral

 ▼図1　セントラルとペリフェラル

フェラルと通信できます。iPhoneはセントラル
にも、ペリフェラルにもなることができます。
一方、先月紹介した、mbed HRM1017は、現在
のところ、ペリフェラルにしかなることができ
ません。この役割や、アドバタイズ、接続を司
るのが、Generic Access Profile（GAP）と呼ば
れるプロファイルです。

　先ほど「提供できる機能」と書きましたが、こ
の機能を表すのがサービスです。Bluetooth

Smartデバイスには複数の機能、たとえば
BLE体温計であれば、体温計と、体温計の電
池残量、といった具合に複数の機能を搭載する
ことができます。サービスは、この「体温計」や
「電池残量」といった個々の機能を表します。こ
のサービスの分け方を理解するには、少し慣れ
が必要かもしれません。しかし、Bluetooth SIG

が、いくつかのサービスを公開しています注1。
これらを眺めると、なんとなくBLEのお作法
が見えてきます。このページでは、すでに
Health Thermometer（体温計）や、Battery

Service（電池残量）といった具合に、一般的に
使われそうなサービスが標準として公開されて
います。こういった定義されているもののほか
に、開発者が独自にサービスを定義することも
できます。
　このページで、Health Thermometer（体温計）
というサービスを見ると、Service Character

isticsという項があります。ここを参照する

注1） https://developer.bluetooth.org/gatt/services/Pages/
ServicesHome.aspx

サービスとキャラクタリスティック
セントラルとペリフェラル

続・BLEで遊んでみよう

http://www.switch-science.com/
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

12 - Software Design Sep. 2014 - 13

第 47 回

12 - Software Design

Characteristic

Service

Service

Characteristic

GAP

GATT Server

-#2!"#$#%&'$()*%Characteristic

 ▼図2　GAPとGATT

 ▼写真1　 『Getting Started with Bluetooth Low
Energy』

と、Temperature Measurementなど、いくつか
の項が並んでいます。これがキャラクタリス
ティックです。つまり、体温計サービスの下に
は、温度というキャラクタリスティックなどが
定義されています。サービスは複数のキャラク
タリスティックを持つことができます。サービ
スやキャラクタリスティックは、GATT（Generic

Attribute Profile）と呼ばれるプロファイルで
規定されています（図2）。
　セントラルは、ペリフェラルのキャラクタリ
スティックを読んだり書いたりして通信を行い
ます。たとえば、iPhoneと接続したBLE体温
計であれば、セントラルである iPhoneが、
BLE体温計の体温が収まっているキャラクタ
リスティックから値を読んで、iPhoneの画面に
表示するといったことを行います。
　先ほどのHealth Thermometerのサービスが
記述されているページを見ると、「Assigned

Number」として、0x1809という値が記されてい
ます。この値は、サービスやキャラクタリス
ティックを識別するためのもので、UUID

（Universally Unique Identifier）と呼ばれます。
UUIDは、本来128bitの値ですが、このHealth

Thermometerのようによく使われるものには、
16bit長の0x1809がAssigned Numberとして
割り当てられています。このAssigned Number

は、“00001809-0000-1000-8000-00805F9B34

FB”という128bitあるUUIDの一部を切り出
したものです。先ほど開発者が独自にサービス
を定義できると記しましたが、このような独自
のものは、128bit長のUUIDを使わなければな
りません。

　ここまで、とてもざっくりとしたBLEのし
くみの説明を行いましたが、BLEのもっと詳し
いところを知りたいという読者のために書籍を
紹介しておきたいと思います。和書では良い本
を知らないのですが、オライリーの『Getting

Started with Bluetooth Low Energy（写真

iOSでの開発

参考になる書籍

1）』注2と、Prentice Hallの『Bluetooth Low

Energy』注3の2冊です。まず読む1冊を選ぶの
であれば、筆者はGetting Started……のほう
をお勧めします注4。

　iOSでBLEの通信を行うときには、Core

Bluetoothフレームワークを利用します。この
Core Bluetoothフレームワークは、BLEの低レ
イヤの部分を抽象化してくれますので、BLEの
深い知識を必要とせず開発を行うことができる
ようになっています。とはいえ、iOSアプリ
ケーション開発には、それなりのハードルがあ

注2） http://shop.oreilly.com/product/0636920033011.do

注3） http://www.amazon.co.jp/dp/B009XDA1G8/

注4） 筆者はこちらのほうが眠くなりませんでした（笑）。

続・BLEで遊んでみよう

http://shop.oreilly.com/product/0636920033011.do
http://www.amazon.co.jp/dp/B009XDA1G8/

14 - Software Design

はんだづけカフェなう
秋葉原発！

ります。こういったハードルを避けて、手軽に
遊ぶソリューションの1つに「konashi（写真2）」
があります。
　konashi注5は、gihyo.jpの記事注6でも紹介され
ているように、Objective-Cでアプリケーショ
ンの開発を行うことができます。それ以外に
も、JavaScriptを使って開発を行うことができ
ます。jsdo.itというWebサービスに保存した
JavaScriptを「konashi.js」という iOSアプリ
ケーションで実行できます。konashiのWebサ
イトで販売されている10,260円のボードを
買ってくるだけで、手軽にJavaScriptでBLE

を使ったスマートフォンとマイコンの連携を始
めることができます。
　前回、少しだけ紹介した techBASICも、
Objective-Cを使わずに iOS側のアプリケー
ションを書く手段です。konashi.jsと同じよう
に、iOSのアプリケーションの上でBASICを実
行できます。techBASICは、エディタ機能もあ
り、iOS上だけで開発を行うこともできます。
が、やはりスマートフォンの上でコーディング
するのは辛いので、パソコンで書いたものをコ
ピー&ペーストするのが良いでしょう。
techBASICについては、BLEのサンプルコー
ドが付属していますので、それを参照するのも

注5） http://konashi.ux-xu.com

注6） http://gihyo.jp/dev/serial/01/futuredevice/0001

手ですが、オライリーの『Building iPhone and

iPad Electronic Projects（写真3）』注7という本
が出ています。techBASICや、この本は、TI

（テキサスインスツルメンツ）のSensorTagと
いうBLE評価ボードを対象に書かれています。
先述のとおり、BLEはUUIDでサービスやキャ
ラクタリスティックを識別しています。サンプ
ルコードや同書の内容を参考に少し試行錯誤す
れば使い方を覚えることができます。
techBASICでのBLE関連情報は、micono氏の
ROBOMICというブログ注8にさまざまな情報
が記されています。micono氏は、前回紹介した
mbed HRM1017に techBASICから接続するサ
ンプルプログラムをさっそく作ってくださって
います注9。このプログラムをmbed HRM1017と
techBASICそれぞれに書き込んで実行をする
と、動作することが確認できました（写真4）。
　iOSでの開発ではありませんが、micono氏は
RCBControllerという iOSアプリ（写真5）も
作っています注10。このコントローラのサービス

注7） http://shop.oreilly.com/product/0636920029281.do

注8） http://micono.cocolog-nifty.com/blog/techbasic/

注9） http://mbed.org/users/micono/code/BLE_ADT7410_
TMP102_Sample/

注10） http://rcbcontroller.micutil.com/

 ▼写真2　konashi

 ▼写真3　 Building iPhone and iPad Electronic
Projects

http://konashi.ux-xu.com
http://gihyo.jp/dev/serial/01/futuredevice/0001
http://shop.oreilly.com/product/0636920029281.do
http://micono.cocolog-nifty.com/blog/techbasic/
http://mbed.org/users/micono/code/BLE_ADT7410_TMP102_Sample/
http://rcbcontroller.micutil.com/

14 - Software Design Sep. 2014 - 15

第 47 回

まとめ

BLE入門を果たしていただければと思います。
ｨ

とキャラクタリスティックのUUIDと書き込む
データが公開されているので、ペリフェラル側
のコードを書くと、手軽に iPhoneや iPadでコ
ントロールできるガジェットを作ることができ
ます。jksoft氏がBLE_RCBControllerという、
RCBControllerの操作をmbed HRM1017で取
得するサンプルをmbed.orgで公開していま
す注11。これらを組み合わせると、iPhoneで操作
できるBLEラジコンを自作する、といったこ
とが手軽に行えます。
　jksoft氏は、RCBControllerでコントロール
できる、壁にマグネットで貼り付くラジコン、
うぉーるぼっとの新型をプロトタイピングをし
ています注12（写真6）。

　紹介した書籍が洋書ばかりでしたので、BLE

のハードルを高く感じてしまった方が多いかも
しれません。しかし、今回の前半で説明した、
GAPとGATT、UUIDの知識を基に、サンプル
コードを読んで、いろいろ試してみるとBLE

の概要は掴むことができるはずです。スキルは
実際に手を動かしてみないと身につかないもの
だと筆者は信じています。ぜひ手を動かして、

注11） http://mbed.org/users/jksoft/code/BLE_RCBController/

注12） http://jksoft.cocolog-nifty.com/blog/

 ▼写真4　techBASIC

 ▼写真6　新型うぉーるぼっと

 ▼写真5　RCBController

続・BLEで遊んでみよう

http://mbed.org/users/iksoft/code/BLE_RCBController/
http://jksoft.cocolog-nifty.com/blog/

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ

エルゴスティック
マウス
400-MA059
人間工学に基づいた、腱鞘炎になりにくいワイヤレスのエルゴス
ティックマウスです。横から軽く手を添えるように握り、右に傾け
ると右クリック、左に傾けると左クリックが入力されます。サンワ
ダイレクト（http://direct.sanwa.co.jp/）の Web 限定商品です。
 提供元 サンワサプライ　 URL http://www.sanwa.co.jp/

Amazon Web Services
基礎からのネットワーク
＆サーバー構築
玉川 憲、片山 暁雄、今井 雄太 著／
B5 変形判、216 ページ／
ISBN ＝ 978-4-8222-6296-9

「Amazon Web Services を実機代わりにしてネットワークを学び
直す」をコンセプトにまとめた 1 冊です。低コストなクラウドでイ
ンフラ技術を学びましょう。
 提供元 日経 BP　 URL http://www.nikkeibp.co.jp/

LED キーボード
DN-11255

キーの内側から LED が発光するメカニカルタッチの cherryMX 青軸キーボードです。キー配
列は 87 キー英語配列、インターフェースは USB です。LED は　　＋øで明るくなり、　　
＋≤で暗くなり消灯します。ラインナップは、赤いキートップにレッド LED のモデルと、
青いキートップにグリーンLEDのモデルの2種類です。各カラー1名様ずつプレゼントします。
 提供元 上海問屋　 URL http://www.donya.jp/

『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2014 年 9 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

LinuxCon
Japan 2014
T シャツ
LinuxCon Japan 2014 の参加者に配られた T シャツ。フロントに
は「ワタシハ リナックス チョットデキル」、バックには、LINUXCON
のロゴが入っています。サイズは M サイズになります。
 提供元 The Linux Foundation　 URL http://www.linuxfoundation.jp/

シェルスクリプト
高速開発手法入門
上田 隆一、後藤 大地 著／ USP 研究所 監修／
B5 変形判、280 ページ／
ISBN ＝ 978-4-04-866068-60

UNIX のシェルスクリプトを用いて、実用的なアプリケーションを短
時間で開発する手法を解説しています。シェルスクリプトで Web サ
イトを作るという内容を全面的に扱った 1 冊です。
 提供元 KADOKAWA　 URL http://www.kadokawa.co.jp/

パスワード
マネージャ

パスワード管理のソフトウェア（Windows/Mac/Android/iOS 対
応）です。製品版と同じ機能、期間で使用できる非売品のカードを
プレゼントします。サイトから同製品をダウンロード後、アクティ
ベーションキーを入力して、ご利用ください。
 提供元 トレンドマイクロ　 URL http://www.trendmicro.co.jp/

エンジニアのための
伝わる書き方講座
開米 瑞浩 著／
A5 判、200 ページ／
ISBN ＝ 978-4-7741-6576-97

難しくなりがちな内容を相手に理解してもらうための「わかりやす
い文書」の書き方を指導する本です。IT エンジニアに馴染みのある
豊富な例文から、自分の仕事に近いものを見つけて学べます。
 提供元 技術評論社　 URL http://gihyo.jp/

2 名

1 名

1 名

2 名

2 名

2 名 2 名

※上の画像は、サンプルです。

FnFn

http://sd.gihyo.jp/
http://www.donya.jp/
http://direct.sanwa.co.jp/
http://www.sanwa.co.jp/
http://www.trendmicro.co.jp/
http://www.linuxfoundation.jp/
http://www.kadokawa.co.jp/
http://www.nikkeibp.co.jp/
http://gihyo.jp/

多くのプログラマ、エンジニアにとって避けて通れない 2つのテーマ「ポインタとオブジェクト指向」。
組込系開発だけでなく、最近流行のMake: 系ガジェットを自在に操りたいときに C言語が見直されてい
ます。さらにゲーム開発ではC/C++が重要な役割にあることは皆さん承知のことでしょう。
オブジェクト指向についても、Java での開発だけでなく、Python など各種スクリプト言語でもまさに
必須な考え方になっています。しかしながらいざ執筆依頼をし制作を進めてみると、筆者の皆さんの間で
オブジェクト指向プログラミングの習得について意見が分かれるという展開となりました。オブジェクト
指向をもとに開発を進めることは、もしかしたら再検討すべき分岐点に来ているのかもしれません。本特集
で皆さんも検討してみるのはいかがでしょうか。

CONTENT S

Ｃ言語ポインタの克服編第1部

—— 習得のヒントと実践

「C言語のポインタと
 オブジェクト指向」

この夏に克服したい2つの壁
第1特集

ポインタの理解と活用　 Writer 近藤 正裕 ...18その1

Javaでオブジェクト指向を知るための3つの基礎練習　 Writer 増田 亨36その1

メモリとポインタの関係　 Writer 岩尾 はるか ..21その2

急がず・慌てず自然なぺースで
オブジェクト指向を学ぼう！　 Writer 山本 裕介 ..39

その2

SmallTalkこそオブジェクト指向の
克服の手がかり　 Writer トム・エンゲルバーグ＆長谷川 裕一 ...54

その7

アドレスに見るポインタの動作　 Writer 小山 哲志 ...24その3

社会慣習としてのオブジェクト指向プログラミング　 Writer 柏野 雄太42その3

ポインタはどんなときに役立つのか　 Writer 前橋 和弥 ..27その4

組込エンジニアのためのオブジェクト指向　 Writer 星野 香保子45その4

ナンカ分カラナイケドで生きていけるポインタ入門　 Writer 村上 福之30その5

Android 開発でオブジェクト指向プログラミングするとは　 Writer 江川 崇 48その5

ポインタの魅力と危険性　 Writer 田中 邦裕 ...33その6

オブジェクト指向はまぼろしか？　 Writer きしだ なおき ..51その6

オブジェクト指向の克服編第2部

18 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

　ポインタは、Cをシステムプログラミング注1

言語たらしめている機能であり、メモリなどの
計算機資源を効率よく利用するタイトなコード
が書けます。反面、癖のある記法が初心者を混
乱させ、システムを不安定にするようなバグを
生むリスクもあります。

　プログラミングの初学者は、まず変数の使い
方から覚えます。変数を宣言し、数量や文字な
どの「値」を代入し、プリント命令（Cだとprintf

関数）に渡して表示したり、別の変数の値と比
較したり。値を保持するための器

うつわ

として使いこ
なせるようになるまでの段階があります。次に

注1） オペレーティングシステムなど、アプリケーションよりハー
ドウェアに近い部分のプログラミング。

配列やリストなどの使い方を覚えれば、いろい
ろとプログラムが書けるようになります。初め
て学ぶプログラミング言語がCだと、値の器と
しての変数とは別に、ポインタの操作も理解し
なくてはいけないため混乱が生じやすいのでしょ
う。ポインタの初期化をおさらいしてみましょ
う。
　リスト1では、int型の変数xとint型変数
へのポインタpを宣言し、xに100という整数
値を、pにxのアドレスを代入しています。ア
ドレス演算子「&」によって、計算機のメモリに
確保された変数xの物理的な位置（アドレス）を
取得できます。pはint型変数へのポインタで
すのでxのアドレスを代入できます。リスト1

実行時にコンピュータ内のメモリは図1のよう
な状態になります。
　このようにポインタは「特定の
型の変数のアドレス」を扱う特殊
な型なのです。コードとメモリ
イメージの対応を理解すること
はさほど難しくないと思います。
　さて、「アドレスだって値なん
だからアドレス型が1個あればい
いのでは？」と考える人もいるか
もしれません。実際、アドレスも
処理系によってbyte数は異なりま

はじめに

ポインタの理解と活用
 Writer 近藤 正裕（こんどう まさひろ）　 Twitter @kondoumh

第1部 Ｃ言語ポインタの克服編

ポインタの
メモリイメージ

その1

int *p;
（値 0x7fff55092acc）

int x;
（値 100）

アドレス
0x7fff55092acc

 ▼図1　 リスト1の実行時のメモリイメージ

 ▼リスト1　ポインタの初期化

int x; /* int 型の変数 */
int *p; /* int 型の変数へのポインタ */
x = 100; /* x に整数値100を代入 */
p = &x; /* p に x のアドレスを代入 */

18 - Software Design Sep. 2014 - 19

その1ポインタの理解と活用
第1部Ｃ言語ポインタの克服編

すが数値ですので intや longに格納することは
できます。しかし、ポインタは単にアドレスを
格納するだけでなく、間接演算子「*」によって
自身が指している変数の値を取得したり、構造
体へのポインタの場合にはアロー演算子によっ
てメンバにアクセスしたりする機能があります。

・間接演算子の利用

printf("*p : %d¥n", *p); /* *p : 100 */

　これらの機能を1つのデータ型で実現するこ
とは難しく、仮にできたとしても利用側のプロ
グラムも複雑にしてしまうでしょう。それであ
らゆるデータ型に「*」を付けることでポインタ
型が利用できるようにしているのです注2。

　配列の処理を行うとき、ポインタでアクセス

注2） あらゆるポインタ型を代入できる「void *型」がありますが、
使用するときは実際の型へのキャストが必要です。

するか、添字アクセスにするか迷うことが多い
ですよね。配列とポインタの関係もメモリイメー
ジで確認しておきましょう。
　リスト3のように配列aを宣言すると、int
型の要素を持つ配列が、連続したメモリ領域に
確保されます（図3）。配列の添字演算子を使っ
て個々の要素にアクセスできますが、ポインタ
に加算した値に間接演算子を適用してもアクセ
スできます。ポインタpが配列の要素を指して
いる場合、「p + n」はpから数えてn番目の要
素を指すポインタになるからです。
　配列名に添字演算子[]がついていない場合、
その配列の先頭要素へのポインタとなります。
したがってリスト3でポインタpにaを代入す
ると、pは配列aの先頭要素を指すことになり、
pに間接演算子を適用しても、添字演算子を適
用しても配列aの要素にアクセスできます。p
は配列ではありませんが、配列のように扱える
ため一種の糖

シンタックスシュガー

衣構文と考えることができます。
ただし、ループ処理内の添字アクセスでは、添
字の計算が毎回行われるため、ポインタのイン

配列とポインタ

ポインタの宣言と間接演算子が紛らわしい
COLUMN

　筆者が新人でCのコードを書いていたころ、先輩
にC++を使っている人がいました。先輩は、ポイ
ンタを宣言するときに「int *p;」ではなく、「int*
p;」のように書いていました。C++で参照を定義す
るときには、「int &r」ではなく、「int& r」と書く
慣習があります注3。どっちで書いてもコンパイラは
怒りませんが、「int* p;」と書くと「int型変数への
ポインタ *p」ではなく、「int* 型の変数p」のように
にポインタ型として捉えやすくならないでしょうか。
　筆者はこの書き方を見たときにポインタが腹落ち
した気がします。宣言時の「int *p;」が間接演算と
似ているため、わかりにくさを助長していると思い
ます注4。ですので、宣言時はいつも「int*」のよう
に書きたいところですが、Cでは宣言時の「*」を変

数側に付ける慣習があります。ANSI-Cでは、関数
内で使用する変数の宣言を関数の先頭で行わなけれ
ばならず注5、同じ型の変数をまとめて1行で定義す
るプログラマが多くいました。
　図2をご覧ください。①のように宣言すると「int*
型」になるのはpaだけで、pbは「int 型」になってし
まいます。ポインタ型変数を複数定義するには、②
のようにそれぞれの変数に*を付けなくてはなりま
せん。ということで「int *型」として宣言をとらえ
るというのが無難でしょう。

注3） C++では参照の宣言がCのアドレス演算子と同じ「&」を
使っているため、ここでも誤解が生じやすくなっていま
すね。

注4） C++でも間接演算子はCとの互換のため、「*」を使用し
ます。間接演算はdereferenceの訳ですが、「参照外し」
と呼ぶ人もいました。

 ▼図2　複数のポインタ変数宣言

①int* pa, pb; /* int 型へのポインタ pa ｭ
と int 型変数 pb */
②int *pc, *pd; /* int 型へのポインタ pc ｭ
とint 型へのポインタ pb */

注5） C99以降は変数宣言の位置の制限はなくなり、必要になっ
た時点で宣言できるようになっています。

20 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

クリメントに比べて、実行効率がやや悪くな
ることには注意が必要です注6。

　関数へのポインタも定義できます。関数もロー
ドされたプログラムの特定のアドレスから取得
できるのです。Cの標準ライブラリには、クイッ
クソートアルゴリズムを実装したqsort関数
が提供されています。この関数のプロトタイプ
はリスト4のように定義されています。ポイン
タbaseを先頭とする要素数num・要素サイズ

sizeの配列を、関数ポインタcompareで指定
する比較関数を使って昇順にソートします。比
較関数自体は、「void *型」のポインタを引数
に取り、int型の戻り値を返すという規約を守
ればいいのです。値の比較をするためには、
「void *」を目的のポインタ型にキャストする
必要があります。比較関数を自分で定義すれば、
どんな型の配列でもソートできます。

　C++ の STL や Java の Apache Commons/

CollectionUtilsなどを使ったことがある方もい
るのではないでしょうか。Cでも関数ポインタ
を使えば、これらのライブラリのように、アル
ゴリズムとデータ構造を分離した、汎用的で拡
張性の高いプログラムを書くことができます注7。

　本稿では、ポインタのメモリイメージ、混乱
を生じやすい演算子、関数ポインタの利用など
を簡単に説明しました。C言語とポインタを扱
うシーンは減っていますが、C++やObjective-

CなどC直系の言語を使いこなすうえでも理解
しておくと良いでしょう。ﾟ

おわりに

関数ポインタ

 ▼リスト4　qsortの定義

void qsort(void *base, size_t num, size_t size,
 int (*compare)(const void*, const void*))

 ▼リスト3　配列とポインタ

int a[5] = {100, 200, 300, 400, 500};
printf("%d¥n", a[2]); /* 300 */
printf("%d¥n", *(a+2)); /* 300 */
int *p = a; /* p は 配列 a の先頭要素を差す */
printf("%d¥n", *(p+2)); /* 300 */
printf("%d¥n", p[2]); /* 300 */

a[4]
（値：500）

a[3]
（値：400）

a[2]
（値：300）

a[1]
（値：200）

a[0]
（値：100）

int a[5]={100, 200, 300, 400, 500);

a

p
p[0]

int *p = a;

a+1

p+1
p[1]

a+2

p+2
p[2]

a+3

p+3
p[3]

a+4

p+4
p[4]

 ▼図3　配列の要素と添字演算子、ポインタの関係

注6） よほどマイナーな環境でない限りコンパイラにより実行
コードが最適化されるため、多くの場合考慮不要です。 注7） キャストするため、型安全なプログラムにはなりませんが。

20 - Software Design Sep. 2014 - 21

メモリとポインタの関係
第1部Ｃ言語ポインタの克服編

その2

●○●○●○●○
●○●○●○●○

 Writer ●● ●●（●● ●●●）　●○●○●○／Twitter@XXXXX

第1部

第1章

Ｃ言語ポインタの克服編

メモリとポインタの関係
 Writer 岩尾 はるか（いわお はるか）　レッドハット㈱　 Twitter @Yuryu

第1部 Ｃ言語ポインタの克服編

　C言語の「ポインタ」は、ほかの言語と大きく
違う特徴を持ちます。このパートでは、ポイン
タの基本的な構文は理解している人を対象に、
なぜポインタが生み出されたか、ほかの言語が
持つ「参照型」と何が異なるかについて述べます。

　コンピュータのメモリは、そのすべてに「番
地（アドレス）」が振られています。64bit CPU

であれば0から18,446,744,073,709,551,615（16

進数で0xffff ffff ffff ffffと書きます）と、すべ
てのメモリ領域にほかの領域と重複しない番地
が付いています。それらを直接読み書きするた
めの道具がポインタです（図1）。
　実際のプログラムと、メモリ領域のイメージ
を対応付けながら説明します（図2）。

　まずリスト1に、ポインタ「p」をアドレス
0x1234にセットし、そこからデータを読み取
るプログラムを示します。実行結果は多くの場
合、次のようになります。

p = 0x1234
Segmentation fault (core dumped)

　「Segmentation fault」は、プログラムが本来
アクセスできない領域にアクセスしようとして、
OSから「待った」がかかり、エラーになったも
のです。つまり、アドレス0x1234は、指定は
することはできるが、読み取ることができない

ポインタとは

ポインタの2つの
使い方

その2

メモリ 番地
0

0xffff ffff ffff ffff

すべてのメモリに
番号が振られている

 ▼図1　 メモリと番地

 ▼リスト1　直接アドレスを指定してデータを読み出す

 1:#include <stdio.h>
 2:
 3:int main()
 4:{ ↓ char型へのポインタpを宣言し、アドレス0x1234を代入
 5: char *p = (char *)0x1234;
 6: ↓ ポインタpのアドレスを表示
 7: printf("p = %p¥n", p);
 8: printf("*p = %c¥n", *p);
 9:} ↑ ポインタpのアドレス0x1234が指す先に存在する、char

型の値を表示

メモリ

char c;

番地
0
0x1234

0x7fff 44e6 c917

char *p = (char *)0x1234;

char *p = &c;

0xffff ffff ffff ffff

 ▼図2　 ポインタとメモリ番地の関係

22 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

領域ということになります。
　通常のポインタの使い方というのは、リスト

2のようなものになります。実行結果は、実行
するたびに変わりますが、おおむね次のように
なります。

　先ほどのリスト1と異なり、「Segmentation

fault」が発生せず、変数cの中身である'A'が
表示されます。また、pに入っているアドレス
が非常に大きな値になっていることがわかります。
　&演算子は、通常のCの変数から、0x7fff

44e6c917といったアドレスを得る演算子にな
ります。直接0x1234のように代入することも
できますが、当てずっぽうで代入しても目的の
変数にアクセスできないので、既存の変数のア
ドレスを求める演算子が用意されています。
　C言語以外の多くの言語では、0x1234といっ
た任意のアドレスにアクセスする機能はありま
せん。通常役に立たないからです。ところが、
限られた状況下ではこれが役に立つ場面が出て
きます。

　なぜC言語では、一見役に立たない「任意の

アドレス」にアクセスする機能を付けたのでしょ
うか。それにはC言語の歴史を振り返ると理解
しやすいです。
　C言語は、米ベル研究所によって、1969年
ごろから開発が行われました。目的は当時アセ
ンブリ言語で書かれていた「Unix」を、別のコ
ンピュータに移植するためでした。アセンブリ
言語はコンピュータごとに文法が異なり、互換
性がありません。そのため、実行するコンピュー
タごとにすべて書き直しが必要でした。これを
避けるため、コンピュータに依存しない言語と
してC言語が開発されました。
　「Unix」というOSを開発するためにC言語が
設計されたため、当然アセンブリ言語でできる
ことは、ほぼすべてできるように設計されまし
た。その中の1つが「任意のアドレスにアクセ
スする機能」です。この機能の使い道のひとつ
に「Memory Mapped I/O（メモリマップドI/O）」
があります（図3）。
　コンピュータのメモリには、同じように番地
が振られていても、データを保存するためのメ
モリと、周辺機器にアクセスするためのメモリ
の2種類に分かれています。周辺機器にアクセ
スするためのメモリ領域は、通常のRAMでは
ない特別な回路に接続されていて、そこに読み
書きすると周辺機器と通信することができます。
このしくみが「Memory mapped I/O」です。
　「Memory mapped I/O」の代表的な例がVRAM

（ビデオRAM、またはビデオメモリ）です。VRAM

は通常、メインメモリとは独立した領域に設け
られ、CPUと専用の回路で接続されています。
つまり、物理的にはメインメモリとVRAMは
まったく別物です。ところがCPUからは、ま
るで通常のメモリと同じようにアクセスするこ
とが可能になっています。

直接アドレスを
指定する場面

c = A, p = 0x7fff44e6c917, *p = A

 ▼リスト2　通常のC言語のポインタの使われ方

 1:#include <stdio.h>
 2:
 3:int main()
 4:{ ↓ char型の変数 c を宣言し、文字'A'を代入
 5: char c = 'A';
 6: char *p = &c;
 7: ↑ char型へのポインタ p を宣言し、c のアドレスを代入
 8: printf("c = %c, p = %p, *p = %c¥n", c, p, *p);
 9:} ↑ char型の変数c、ポインタpに格納されているアドレス、
 ポインタpのアドレスが指す先に存在するchar型の値を表示

 ▼リスト3　VRAMに直接文字を出力するコード

　char型へのポインタvramを宣言し、メモリアドレス0xb8000番地を指すように指定します。PC/AT互換機のVRAMは0xb8000番地と、仕様で決
↓まっています
char *vram = (char *)0xb8000;
*vram = 'A'; ← 0xb8000番地が指す先（VRAM）へ 'A' の文字を書き込みます
*(vram + 1) = 0x07;
↑ 0xb8000 + 1番地、つまり0xb8001番地へ文字の属性を書き込みます。0x07は、黒画面に灰色の文字を表示という指定です

22 - Software Design Sep. 2014 - 23

その2メモリとポインタの関係
第1部Ｃ言語ポインタの克服編

　PC/AT互換機で、VRAMに直接アクセスを
して文字を出力するコードをリスト3に、動作
の概要を図4に示します。
　このコードは、通常のLinuxやWindowsと
いったOSが実行されている状態では動作しま
せん。OSそのものが内部で実行するコードです。
個別のプログラムが好き勝手にVRAMを書き
換え始めると、ほかのプログラムの出力結果を
操作できることになり、深刻なセキュリティ問
題となります。そのため、OSが個別のプログ
ラムからはVRAMを書き換えられないように
保護しています。
　C言語は、OSそのものを開発するために設
計されたため、このように特別なメモリ領域に
直接アクセスするためのしくみとして「ポイン
タ」が用意されました。この使い方はC言語特
有のもので、ほかの言語にはない特徴になって
います。

　LinuxやWindowsといったOSのもとで実行
される通常のプログラムは、ハードウェアに直
接アクセスできず、「Memory mapped I/O」を
利用することはありません。すでにプログラム
上で使用している、ほかの変数にアクセスする
用途で、ポインタが使われます。
　VRAMの例で見たように、「Memory mapped

I/O」では、コンピュータの仕様でそれぞれの
アドレスが決定されています。ところが、通常
のプログラムでは実行するたびにアドレスが変
わります。そこで、アドレスを動的に求めるた
めの演算子として「&」が用意されています。
　あらためてリスト2のプログラムを振り返っ
てみましょう。6行目で変数cのアドレスを「&c」
として取得し、ポインタ変数「p」に保存してい
ます。7行目で表示したときに、アドレスが
「0x7fff44e6c917」と表示されています。この
値は毎回変化します。ところが、「&」演算子を
使うことによって、正しくメモリ上の領域が取

得でき、目的のメモリ領域にアクセスできます。
　こちらの使い方は、多くの言語でも「参照型」
として同じ考え方を採用しています。

　C言語のポインタには、アドレスを直接数値
で指定してメモリ上の特定領域にアクセスする
使い方と、ほかの変数のメモリ領域を「&」演算
子によって求め、アクセスする使い方の2種類
があることを述べました。
　直接数値を指定する使い方はC言語独特のも
ので、ほかの言語にはない特徴の1つになって
います。これは、C言語が「Unix」というOSを
開発するために設計されたことに由来します。
　ポインタの使い方としては少し特殊な例を紹
介しましたが、理解の一助となれば幸いです。
ﾟ

ほかの変数を
参照する場面

まとめ

メモリ空間

VRAM

RAM

RAM

Memory mapped I/O

 ▼図3　メモリ空間とMemory mapped I/O

VRAM

'A'
0x07

…

0xb8000

0xb8000
0xb8001
0xb8002

拡大 char *vram = (char*)0xb8000

表示する文字
色指定

A

 ▼図4　VRAMとポインタ

24 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

アドレスに見る
ポインタの動作

 Writer 小山 哲志（こやま てつじ）　合同会社ほげ技研　 Twitter @koyhoge

第1部 Ｃ言語ポインタの克服編

　ここではポインタを理解するために、コン
ピュータの内部動作に少しだけ突っ込んで解説
していきます。現在のコンピュータは、CPU

がメモリから命令やデータを順番に読み込んで
実行することで動作しています。CPUが扱う
メモリには0から始まる「番地」が付けられてい
て、その番地を指定することで値を読み書きし
ています。その番地のことをメモリアドレス、
または単に「アドレス」と呼びます。アドレスは
CPUが扱えるメモリ空間での、先頭からの
byte数で表されています。つまり1つのアドレ
スに保持できる値の大きさは1byteです。
　C言語で変数を定義すると、その変数に対応
したメモリに値が保持されます。たとえば、

char c = 3;

というプログラムは図1のように、特定のアド
レスにその変数の値が書き込まれます（なおア
ドレスの表記には通常16進数が用いられますが、
今回はわかりやすさを優先して10進数表記で
行うことにします）。
　char型の変数を保持するには1byteの領域
で済むので、アドレスとその変数は1対1に対
応します。では変数を保持するのに2byteが必
要なshort型の場合はどうでしょう（図2）。

short s = 4;

　short型の変数sを保持するためには、アド
レス2つ分の領域を必要とします。この場合
104番地から2byte分ということですね。
　同様に保持に4byteが必要なlong型、float
型や、保持に8byteが必要なdouble型はその
分多くのメモリが必要となり、アドレスもたく
さん消費するということです。ここで注意しな
いといけないのは、たとえアドレスがわかった
としてもそれが指している変数の型がわからな
いと、どこまで読み進めれば良いのか判断でき
ないという点です。

　次にポインタを用いると、どのように変数が
保持されるのか見てみましょう（図3）。

char c = 5;
char* cp = &c;

　char型の変数cの場合は、最初の例の場合
と同様です。問題なのはcharのポインタ型の
変数cpの場合です。C言語の場合は変数名の
前に「&」を付けるとその変数のアドレスを意味

メモリアドレス

その3

ポインタ=
メモリアドレス?

100番地 3

 ▼図1　 特定アドレスに値が書き込まれる

104番地 4

 ▼図2　short型の例

200番地

204番地

5

200

 ▼図3　ポインタを使った例

24 - Software Design Sep. 2014 - 25

その3アドレスに見るポインタの動作
第1部Ｃ言語ポインタの克服編

しますので、cpには変数cが保持されている
メモリのアドレスが入ることになります。ポイ
ンタ型はこのようにアドレスを保持するための
専用の型なのです。
　ではポインタ型の場合に保持する領域は何
byte必要なのでしょうか?　これはCPUやOS

のモードによって異なります。読者のみなさん
は32bitや64bitという単語を聞いたことがた
ぶんあるでしょう。これは現在主流になってい
るコンピュータの動作環境で、32bitの場合は
4byte、64bitの場合は8byteがポインタ型の保
持に使われます。つまり図3はポインタの保持
に4byte使用していますので32bit環境での例
ということになります。

　ポインタ型の変数は、単にアドレスを保持し
ている変数ということではありません。ポイン
タを操作する場合には、「どの型に対するポイ
ンタか」ということが重要になってきます。

ポインタに対する数値の
加算・減算

　ポインタ型は、メモリのアドレスを保持する
専用の型だとすでに書きました。ポインタ型の
変数に数値を足したり引いたりすることは、通
常の変数とは違う効果をもたらします。次の例
を見てください。

short s = 6;
short* sp = &s;
sp += 1;

　変数spはshort型のポインタで、変数sが
保持している領域のアドレス、この場合は300

が入っています（図4）。

sp += 1;

　ここでspに1を足すと、spの値は301になる

ように見えますが、実際にはそうなりません。
spはshort型のポインタですので、1を加える
ことは、メモリをshort型の連なりとして考
えたときの次のアドレスを指すことになります。
つまりshortの保持に必要なbyte数である2を
加えた「302」がspの新しい値になります。
　これはCの処理系（コンパイラ）が、その変数
がどの型へのポインタであるか判断して、自動
的にそのような処理を行ってくれるのです。
　このようにポインタ型は、ある型のデータが
格納された連なりとしてメモリを考えた場合に、
指定された場所にすばやくアクセスするのに有
効なしくみなのです。

配列とポインタ

　C言語では、特定の型の変数をまとめて確保
する方法に「配列」を用いることができます。配
列を使ってもメモリ内に領域が確保されるのは
同様です。ただ配列を宣言した際の要素数分だけ、
連続して領域が確保されるところが異なります。

long la[3];
long* lp = la;

　この例ではlongの3要素分の変数laを宣言
していますので、32bitである環境としてlong
の大きさ4byteのメモリが3つ分、連続した領域
に確保されます（図5）。この変数laのアドレスを、
long型のポインタ変数lpに代入していますので、
lpの値はこの場合は400になります。
　ポインタ型の変数同士で引き算をすることも
できます。次の例ではlong型のポインタ変数
lp1、lp2を宣言して、lp1には配列laの0番
目の要素のアドレス（つまり400）を、lp2には
配列laの2番目の要素のアドレス（つまり408）
を、それぞれ代入しています。

ポインタの操作

300番地

304番地

6

300

 ▼図4　ポインタの加減算
400番地

404番地

408番地

412番地

la[0]

la[1]

la[2]

400

 ▼図5　配列のアドレスをポインタに代入

26 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

long* lp1 = &la[0];
long* lp2 = &la[2];
int distance = lp2 - lp1;

　lp2からlp1を引くと、アドレスを数値とし
て見た場合の差8には「ならずに」 、long型の
要素数の差、つまり2になります。

代入されていないポインタ

　ポインタ型の変数は、値の代入をせずに宣言
だけすることもできます。もちろん使用する前
にはきちんと代入をしないといけませんが、と
りあえず宣言だけしておくことは可能なのです。

long* lp;

　この例ではlong型のポインタ変数lpを宣言
だけしています。このときにメモリ上に確保さ
れるのは、アドレスを入れるための4byte（32bit

環境の場合）の領域だけです（図6）。代入が行
われていないので、その値は「不定」です。おそ
らく以前にその領域を使ったデータが、そのま
まゴミとして残っているでしょう。

ポインタのポインタ

　C言語の初心者が頭を悩ますものに「ポイン
タのポインタ」があります。ポインタというよ
くわからないものが、さらにダブルでやってく
るわけですからもうお手上げ、といったところ
でしょう。
　でもここまで読み進んで来た読者の方々は、
「ポインタとは本質的にはアドレスのことである」
とわかっているので、もう怖がることはないで
しょう。
　次の例を見てみます。

long l = 4126;
long* lp = &l;
long** lpp = &lp;

　long型の変数 lに値が代入されていて、
long型のポインタ変数lpには、変数lのアド

レスが代入されています。そこからさらに、
long型のポインタのポインタ変数lppに、変
数lpのアドレスが代入されています。この場
合メモリ上は図7のようになっていて、lpの
領域にはlのアドレスである600が、lppの領
域にはlpのアドレスである604が書き込まれ
ています（この例ではそれぞれの領域が連続し
ていますが、必ずしもそうなるとは限りません）。
　ポインタのポインタ変数lppから、lの値で
ある4126を取得するには、

のように「*」を用いた参照解決（デリファレンス）
を2回行えば良いです。

　これまで解説してきたように、ポインタはメ
モリアドレスを与えられた型に合わせて的確に
指し示すためのしくみです。ではなぜこのよう
なしくみが必要なのでしょうか？
　その答えは、C言語がハードウェアを直接扱
うことができる「低水準言語」だからです。この
場合の低水準とは、劣っているという意味では
なく、よりハードウェアに近いという意味です。
コンピュータが持つさまざまなデバイス、入出
力を司る各種コントローラなどを制御するには、
最終的には物理的なメモリを直接扱わなくては
なりません。この分野ではC言語（とC++言語）
は圧倒的なシェアを持っており、C言語がまさ
にそのために生き残っている理由でもあるの

です。
　つまりポインタを理解し使いこなすことは、
ほかの言語では実現不可能な「ハードウェアを
直接いじる」というC言語の強みをマスタする
ことでもあるのです。ﾟ

なぜポインタを
使うのか

long new_l = **lpp;

500番地 ？

 ▼図6　領域だけが確保される
600番地

604番地

608番地

4126

600

604

 ▼図7　ポインタのポインタ

26 - Software Design Sep. 2014 - 27

ポインタはどんなときに役立つのか
第1部Ｃ言語ポインタの克服編

その4

●○●○●○●○
●○●○●○●○

 Writer ●● ●●（●● ●●●）　●○●○●○／Twitter@XXXXX

第1部

第1章

Ｃ言語ポインタの克服編

ポインタはどんなときに
役立つのか

 Writer 前橋 和弥（まえばし かずや）

第1部 Ｃ言語ポインタの克服編

　Cのポインタについて、初心者がよく持つ疑
問として、「ポインタがなんの役に立つのかが
わからない」というものがあるようです。
　しかし、これはどうも妙な話に思えます。日
常的にCのプログラムを書いている人達がポイ
ンタを使っている以上、Cのプログラミングに
おいて、ポインタは必要です。にもかかわらず
初心者が「なんの役に立つのかわからない」とい
う疑問を持ってしまうのだとすれば、それは、
多くの教科書において、ポインタを使わなくて
良い例でポインタを説明しているからではない
かと思います。
　本稿では、「ポインタがなんの役に立つのか」
という疑問に対し、もっと実践的な面から説明
していきます。

関数から複数の値を返す

　関数から何らかの値を返すときには、通常、
戻り値を使います。しかし、Cでは、戻り値で
は1つの値しか返すことができませんので、複
数の値を返す場合には引数でポインタを渡し

ます。
　たとえば、「ユーザがマウスでクリックした
座標を取得する関数」を作るとすれば、その関
数からはX座標とY座標を返す必要があります。

具体的には次のような関数になるでしょう。

void get_clicked_point(int *x, int *y)
{
 *x = {ユーザがクリックしたX座標};
 *y = {ユーザがクリックしたY座標};
}

※ 実際に「クリックした座標」を取得する方法はOSなどにより異
なるでしょうから、その部分は「{ユーザがクリックしたX座標}」
のような書き方でごまかしています。

　この関数を呼び出す側では、次のように書く
ことになります。

int x;
int y;
get_clicked_point(&x, &y);

　呼び出し側のx, yという変数へのポインタ（ア
ドレス）をget_clicked_point()関数に渡し、
そのアドレスに、get_clicked_point()関数
側で値を設定してやるわけです（図1）。
　関数から複数の値を返すというのは、実際の
プログラムでもよく行われます。とくに例外処
理機構のないCでは、「処理が正常に終了した
かどうかを戻り値で返し、その関数で算出した
結果などは、引数として渡されたアドレスに返
す」という方法は定番ともいえます。このよう
な使い方においては、「ポインタがなんの役に
立つのかわからない」ということはないのでは
ないでしょうか。だって、ポインタを使わない
と書けないんですから注1！

はじめに

ポインタは
なんの役に立つのか?

その4

注1） 構造体を戻り値で返すような方法もありますが、用途によっ
ては構造体を定義すること自体がめんどくさいでしょう。

28 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

配列操作にポインタを使う

　Cの入門書などでよく見かけるのが、「配列
操作にポインタを使う」という使い方です。
　intの配列array（要素数は10）に格納された
値を順に表示する際、次のように配列の添字ア
クセスの形で書くのではなく、

int i;
for (i = 0; i < 10; i++) {
 printf("%d¥n", array[i]);
}

　次のようにポインタ演算を使う、というもの
です。

int *p;
for (p = array; p != &array[10]; p++) {
 printf("%d¥n", *p);
}

　この例では、intへのポインタ型である変数
pを最初に配列の先頭に向け、その後p++によ
りポインタを1つずつ進めています。最後に、
pが配列の最後の要素の次の要素を指したらルー
プを抜けます。ここで重要なのは、p++のよう

にしてポインタに1を加算したと
き、pは1byte分進むのではなく、
その指す型のサイズ分進むという
ことです。この例では、pはint
へのポインタですから、p++する
と pは 4byte進 み ま す（intが
4byteの処理系の場合）。
　――さて、こう書けばポインタ
を使って配列arrayの内容を表
示できるのは良いとして、多くの
人は、「なぜこう書かなければい
けないのか?」という疑問を持つこ
とでしょう。ポインタが「なんの
役に立つのかわからない」という
声は、こういう例でポインタを使
うところから出てくるように思い
ます。

配列を使うとき、あなたはすで
にポインタを使っている

　先ほどの例では、p++のようにして、変数p

の値を変更しました。しかし、pの値を変更し
なくても、*(p + i)のように書けば、pからi
だけ進んだ場所にアクセスできます。
　そして、*(p + i)という書き方は、単純に
p[i]に置き換えることができます。というより、
配列アクセス時に使う[]という演算子（添字演
算子といいます）は、もともとそういう意味し
かありません。最初の例でarray[i]と書いて
いるときも、コンパイラはこれを*(array + i)
と解釈します。もしあなたが「ポインタ演算は
なんだか難しいから、いつも添字でアクセスし
よう」と決めているのだとしても、配列をアク
セスするとき、あなたはすでにポインタ演算を
使っているのです。

配列とポインタの
関係

変数 x

変数 y

引数として変数x、yの
アドレスが渡される

呼び出し側

get_clicked_point()関数

&x &y

x y

get_clicked_point()関数
からは、このアドレスを介
して、呼び出し元の変数x、
yを変更できる

 ▼図1　関数から複数の値を返す

28 - Software Design Sep. 2014 - 29

その4 ポインタはどんなときに役立つのか
第1部Ｃ言語ポインタの克服編

ポインタ演算はやめてしまおう

　配列を使ったループの中でarray[i]を何度
も参照するのであれば、*(array + i)という
加算を何度も行うより、ポインタ変数pを導入
して、加算を一度のp++にまとめたほうが、性
能がよくなる――Cが開発された当初の、大昔
のCコンパイラであれば、そういうこともあっ
たのでしょう。実際、「ポインタを使ったほう
が一般に高速」と書いてある本もあります。し
かし、今どきのコンパイラであれば、この程度
の最適化は自動で行うので、性能に差が出るよ
うなことはまずありません。
　現状では、ポインタ演算を駆使したプログラ
ムを書く必要性はなく、素直に添字でアクセス
すれば良いと思います。

関数に配列を渡す

　Cでは、関数に配列を渡すとき、以下の3種
類の書き方があります。

void func(int *array) ←❶

void func(int array[]) ←❷

void func(int array[10]) ←❸

　この3つは、すべて同じ意味です。❷のよう
に書いても、実際にfunc()に渡されるのはポ
インタですし、❸では配列の要素数として10

と書いているように見えますが、この10はコ
ンパイラは単に無視します。
　そして、上記のどの方法で書いたとしても、
渡された配列はarray[i]のようにしてアクセ
スできます。
　なお、上記❷のような空の[]がポインタの
宣言を意味するのは、唯一上記のケースだけで
す。混乱しやすいのは次のような例です。

char *str = "abcdefg";
char str[] = "abcdefg";

　この例において、前者はポインタ変数strの
初期化であり、後者は文字型配列strの初期化
であり、それぞれ意味が違います。

malloc()で確保した領域を使用
する

　Cでは、配列の要素数は通常固定ですが、プ
ログラムによっては、実行するまで必要な要素
数が決まらない場合もあります。そのような場
合は、malloc()を使ってメモリを動的に確保
します。
　たとえばint型n個分のメモリが必要な場合
は、次のように書きます。

int *p;

p = malloc(sizeof(int) * n);

　これにより、intのサイズ×n byteのメモ

リが確保され、ポインタpがその先頭を指し

ます。
　こうして確保したメモリを利用する際は、
p[i]のように書いて配列のようにアクセスで
きます。前述のとおり、p[i]というアクセス
は*(p + i)と同じ意味ですし、pはintへの
ポインタですので、i加算すればsizeof(int)
×iだけ進むからです。

　Cにおいてポインタは難関と言われますが、
実のところ*p++のようなポインタ演算を使

うのをやめてしまえば、問題の半分は解決し

ます。
　残りの半分は「宣言の構文が不可解」という

ことですが、それはまたの機会としましょう。
ﾟ

おわりに

30 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

　「初心者読者さんが、思わず膝を打って「わかっ
た！」と思うような記事を2ページばかり書い
ていただけないでしょうか。ポインタがわかっ
た瞬間を紹介、こうするとポインタがわかりや
すくなるよ、といったアドバイス、仕事をしな
がらわかった事例など」とメールを編集からい
ただきました。わかりました。書きましょう。

　ポインタはフォースみたいなものです。

　考えるな！ 感じろ！

　それ以上書くこともないですし、それがわか
らなければ、あなたにはフォースとともになかっ
た人なので、プログラマなんてゴミみたいな仕
事はやめて、荷物をまとめてさっさとタトゥー
インに帰ってください。
　偉そうなことを言ってますが、そんな僕も、
最初からポインタがわかったわけでもありませ
ん。アホなんで、そんなのが一発でわかるわけ
がありません。ナンカ分カラナイケド、&か*
付ければいいんだろ !?

　ポインタ（pointer）とは、あるオブジェクト

がなんらかの論理的位置情報でアクセスできる

とき、それを参照するものである。有名な例と

してはC/C++でのメモリアドレスを表すポイ

ンタが挙げられる（wikipediaより）

　ポインタの宣言は*を名前の前に付けます。
「int *n;」でnを指す int型ポインタ、「char
*str;」でstrを指すchar型ポインタ、「double
*dp;」でdpを指すdouble型ポインタです。ア
ドレス演算子（&）はアドレスを得ます。間接演
算子（*）はポインタの指す値を得ます……と説
明されますが、20歳くらいの当時の僕には意
味がわかりませんでした。
　ぼくは「とりあえず動けばいいプログラマ」
だったことが長いので「わかんないけど&か*
を付けて、コンパイルが通って正常に動作した
らいいんだろ」ということをずっとやってたら、
そのうち覚えました。ポインタ入門でよくある
こういう値の交換ソースコードです（リスト1、
図1、リスト2、図2）。
　これを読むと、アドレスとかなんとかはよく

考えるな！ 感じろ！

ナンカ分カラナイケドで
生きていける
ポインタ入門

 Writer 村上 福之（むらかみ ふくゆき）　 Writer @fukuyuki

第1部 Ｃ言語ポインタの克服編

その5

 ▼リスト1　 aとbを交換しようとするがうまくいかな
い例

#include <stdio.h>

void swap(int a , int b){
 int tmp;
 tmp=a;
 a=b;
 b=tmp;
}

int main(){
 int a;
 int b;
 a=10;
 b=20;
 printf("a=%d b=%d¥n" , a , b);
 swap(a , b);
 printf("a=%d b=%d¥n" , a , b);
 return 0;
}

30 - Software Design Sep. 2014 - 31

その5ナンカ分カラナイケドで生きていけるポインタ入門
第1部Ｃ言語ポインタの克服編

わからないけど、整数値などで中身を書き換え
たいときは、呼び出し側で&を付けて、呼ばれ
るほうは*でもつけておけばいいんだろ？　と
いう理解をしました。
　最初のうちはこれで、なんとかゴマカシて動
かして、*か&を付けて動いたほうで、printf
デバッグを地道に繰り返していたら、なんとか
できました。ひどいもんです。それでも仕事は
できてしまうものなのです。

　 ナンカ分カラナイケド文字列は**付ければ

いいんでしょ？

　いわゆるポインタのポインタという意味を理
解するのもめんどくさいので、最初は「文字列
だったらなんでも**付けていた」ように思いま
す（リスト3）。

　たとえば、リスト3のように、文字列の中身
を変えるコードを書いていて、ナンカ分カラナ
イケド、使う前にmallocで使うメモリのサイ
ズを指定しないといかんらしい。sizeofって、
解説を読んだけど、わからないけど、書いてい
たし、ナンカ分カラナイケド、最後にfreeで
解放しないといけないらしい。ナンカ分カラナ
イケド、mallocで指定した値より長い文字列
を入れるとクラッシュするなど、体で覚えてい
たように思います。
　もちろんよくないですけど、システム的には
それで動いてしまうので、間違ったやり方でし
たが、それで覚えていたように思います。ただ、
このやり方は間違えると、明らかにクラッシュ
するので、まったくもってよくありませんが、
小手先の技術を使えば、適当に切り抜けていた
ように思います。
　そんなわけで、ポインタの意味を理解せずに、
パターンで覚えて、適当に使いまわしていたよ
うに思います。「文字列だから」「整数だから」
「Windowsのハンドルだから」などなど、意味
もわからずコードを書いていたように思います。
　その後、就職して、ユルいGUIを使ったヘ
ナチョコWindowsのアプリくらいだとポイン
タの意味なんて理解しなくても作れました。ポ

 ▼図1　リスト1の実行結果

a=10 b=20
a=10 b=20

 ▼リスト2　アドレス渡しをしてaとbを交換

#include <stdio.h>

void swap(int *a , int *b){
 int tmp;
 tmp=*a;
 *a=*b;
 *b=tmp;
}

int main(){
 int a;
 int b;
 a=10;
 b=20;
 printf("a=%d b=%d¥n" , a , b);
 swap(&a , &b);
 printf("a=%d b=%d¥n" , a , b);
 return 0;

}

 ▼図2　リスト2の実行結果

a=10 b=20
a=20 b=10

 ▼リスト3　**付きプログラム

#include <stdio.h>

void change_string(char** s){
 *s="bye";
}

int main(){

 char *str=(char*)malloc(sizeofｭ
(char)*5);

 strcpy(str , "hello");
 printf("before:str=%s¥n" , str);
 change_string(&str);
 printf("after:str=%s¥n" , str);

 free(str);

 return 0;
}

32 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

インタの意味をよくわかってない僕が書いたコー
ドが記録されたCD-ROMが工場で数十万枚量
産され、世界中の家電量販店で売られていたの
が、ぼくの90年代です。時効だから言います
けど、リコーさんやキャノンさんのプリンタに
ついていたバンドルアプリとかは、ポインタな
んか知らずに書いてました。

　こんなことを言うと怒られるかもしれません
が、外国語でも、プログラミング言語でも、最
初は模範解答みたいなものを大量に見て、写し
て、体で覚えて使えばいいと思います。たとえ
ば、僕が海外で働きながら英語を覚えたときも、
「ナンカ分カラナイケド、みんなメールの文末
にRegardsって付いているから、付けときゃい
いんでしょ？」みたいな感じで仕事もできてし
まいます。
　だいたい、学校でも数学の問題をまじめに考
えている奴は成績が悪くて、赤本の模範解答を
写しまくって体で覚えている奴のほうが偏差値
がよかったりします。分数の割り算をするのに、
どうして分子と分母をひっくり返すのかを理由
をいちいち考えるよりも、ナンカ分カラナイケ
ド、そんなもんなんだと思っている奴のほうが
成績がいいのです。
　嫁さんがなぜか意味もなく怒っていていても、
ナンカ分カラナイケドそんなもんなんだと思う
し、機嫌を取るために、東京レストランの最初
のページに載ってたレストランにとりあえず連
れて行くと、美味しいのか美味しくないのかわ
からないけど、機嫌がよくなったりしますが、
ナンカ分カラナイケドそんなもんなんだと思う
わけです。
　子供が生まれて、幼いころは「お父さんのお
嫁さんになるー」と言っていた娘も、中学の中
頃から、いつの間にかまったく口をきいてくれ
なくなったりしますし、ナンカ分カラナイケド
そんなもんなんだと思うわけです。

　プログラミング言語も、外国語も、社会のし
くみも、男女の関係も、家族の関係も、人生そ
のものも、最初はナンカ分カラナイケドそんな
もんなんだと思うしかないことが多いです。ナ
ンカ分カラナイケド前に進めることができる人
こそが、人生を1つ前に進めることができるの
です。ポインタでも人生でも、本当の意味を考
えてないといけないときは、自動的にやってき
ます。

　そんなことをやっているうちに、残念ながら、
ポインタの本当の意味を考えないといけないこ
とがやってきました。プリンタドライバ開発や
コンパイラ開発などのお仕事をしないといけな
いときにポインタとは何なのか理解しないと開
発ができない時期になってしまいました。
　ほかの執筆陣がかなりガチなことを書いてい
るらしいので、はしょりますが、ようするにポ
インタは単純にメモリの場所を示しており、デ
バッガなどでポインタの指し示すアドレスのメ
モリの内容をダンプせざるを得ないような仕事
をもらったら、ポインタなんて、勝手に覚え

ます。
　画像処理のコードを書いたり、複雑なデータ
処理をしたり、プロトコルスタックを組むよう
な仕事をもらうと、イヤでも覚えます。
　逆に、GUIをちょこちょこいじって、「ボタ
ンガー！」「リストボックスガー！」「テキスト
ボックスガー！」とかのコードしか組まないヘ
ナチョコさんは、ポインタの意味なんか理解し
なくてもコピペで書けます。
　そんなわけで、ポインタを理解できないとい
うのは、たぶん、ポインタを理解しないといけ
ない時期にきてないだけだと思います。最近は、
あまりメモリを直接意識する開発がどんどん減っ
てきたので、一生ポインタの意味を理解しなく
てもいいプログラマも増えてくると思います。
ﾟ

ナンカ分カラナイケド
だけが人生です

なんかわからないけどで、
すまなくなってきたとき

32 - Software Design Sep. 2014 - 33

ポインタの魅力と危険性
第1部Ｃ言語ポインタの克服編

その6

ポインタの魅力と危険性
 Writer 田中 邦裕（たなか くにひろ）　さくらインターネット㈱　 Writer @kunihirotanaka

第1部 Ｃ言語ポインタの克服編

その6

　私はC言語より前にアセンブラを使っていた
のですが、初めてC言語に触れたときの印象は
「アセンブラより楽な低級言語」というものでし
た。実際にC言語のコードをコンパイルしてで
きたバイナリを見てみると、C言語の記述と対
になってアセンブラのコードが生成されている
のがわかり、非常に勉強になったことを思い出
します。
　その中でもポインタというのは、CPUのメ
モリ空間を直に操作することができ、アセンブ
ラを理解していると非常に使いやすいなという
印象を持ちました。
　ポインタのメリットは、メモリ空間を自分の
頭の中で想像しながら何でもできるということ
であり、デメリットは何でもできてしまうため
にバグを生みやすいということといえます。
ここでは、カンマの入った文字列を、カン
マで区切って画面に表示するコードを見な
がら、メリットとデメリットを見てみるこ
とにします。

　まず、Perlで文字列をカンマで区切って表
示するコードを見てみます（リスト1）。$src
に初期の文字列（図1）を代入し、split関数を
使ってカンマで区切り、resultという配列に
代入するというものです。
　このコードの場合、分割されたそれぞれの文
字列は新たなメモリ空間へと代入されます。つ
まり、新たなメモリ空間を消費し、元の文字列
の入っているメモリ空間からコピーをしている
ことになります（図2）。この例では小さな文字
列ですのでオーバーヘッドは少ないのですが、

はじめに ポインタを使わない
Perlのコード

 ▼リスト1　Perlのサンプルコード

my $src = "tanaka,yamamoto,suzuki";
my @result = split(/,/, $src);
print $result[0] . "¥n";

元のメモリ

t a n a k a , y a m a m o t o , s u z u k i

src

 ▼図1　元の文字列

変更されたメモリ
元のメモリ

t a n a k a , y a m a m o t o , s u z u k i

src

t a n a k a y a m a m o t o s u z u k i

result[0] result[2]result[1]

それぞれの文字列をコピーするため、メモリー空間を消費し、コピーに手間もかかる

 ▼図2　ポインタを使わない場合

34 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

これが数百MBクラスの大きなデータだとする
と、消費メモリ、コピー時間ともに無視できな
いでしょう。

　これをC言語のポインタを駆使して書くとど
のようになるでしょうか？　リスト2がC言語
のコードです。
　まず、6行目でstringという配列に初期の文
字列を代入し、7行目でstringへのポインタを
srcというポインタに代入します（図3）。併せ
て8行目で結果のポインタを格納するための
resultという配列を定義しておきます。その
あと、10行目でresultの最初に文字列の先頭
を示すポインタを代入します。これで準備は完
了です。
　ここからは、11行目から17行目のルー
プで、文字列の最後を示す'¥0'に到達す
るまで、カンマを'¥0'に置き換えていき
ます。ちなみに、srcというポインタに「*」
を付与すると、そのアドレスにある文字に
アクセスできます。つまりwhileが始まっ
た直後は「*src」とすることで、tという文
字にアクセスできます。その後、「src++」
とすると、ポインタの位置が1つ後の文字
に移り、whileの 2回目のループでは
「*src」とすることで、aという2番目の文
字にアクセスできます。
　これを繰り返すと、文字列の最後を示す
'¥0'に到達し、whileを抜けます。while
の中では12行目でカンマを探し、見
つけたときは13行目で'¥0'を代入し
て文字列を分割し、14行目で'¥0'の
1つあとの文字を示すポインタを
resultに代入します。
　このコードの場合には、消費する
メモリ量は増えておらず、かつコピー
も発生していません。カンマのあっ
た2ヵ所に'¥0'を代入しただけであ

り、非常に高速に処理を行うことができます。

　ただ、デメリットもあります。このコードを
実行したあとは、srcの位置が文字列の最後に
なっており、元の文字列が含まれるstringの
中身も変更されています。stringを表示しよ
うとしてもtanakaという文字列しか返ってき
ません。それは、tanakaのあとのカンマが
'¥0'に置き換えられてしまったからです。
　これが意図したものであれば良いのですが、
意図せずにポインタの指し示す位置を変更して
しまうと、データの破壊を引き起こすことにつ
ながります。
　また、ポインタを使うとコードの可読性が低

ポインタを使った
C言語のコード

ポインタを使う
デメリット

 ▼リスト2　C言語でのサンプルコード

01: #include<stdio.h>
02:
03: int main()
04: {
05: int i=0;
06: char string[] = "tanaka,yamamoto,suzuki";
07: char *src = string;
08: char *result[3];
09:
10: result[i++] = src;
11: while(*src != '¥0'){
12: if(*src == ','){
13: *src = '¥0';
14: result[i++] = src+1;
15: }
16: src++;
17: }
18: printf("%s¥n", result[1]);
19: return 0;
20: }

変更されたメモリ
元のメモリ

t a n a k a y a m a m o t o s u z u k i

result[0] result[2]

string

src
result[1]

元の文字列のメモリ空間を直接操作するため、高速だが、
元の文字列stringが変更される

 ▼図3　ポインタを使う場合

34 - Software Design Sep. 2014 - 35

その6ポインタの魅力と危険性
第1部Ｃ言語ポインタの克服編

くなるというのも注意点です。今回はsrcとい
うポインタを操作しましたが、プログラムの実
行途上においてはsrcの指し示す文字の位置が
時々刻々と変化します。そのため、自分がどの
データを操作しているのかがわかりにくいとい
う問題が発生しがちです。
　なお、このコードには致命的なバグが含まれ
ています。それはresultという配列の長さを
チェックしていないということです。14行目
において、「result[i++]」という形で配列に
アクセスしていますが、8行目で配列を定義し
たときには3個しか確保していません。
　今回の例では、カンマが2つでしたので、文
字列は3つに分割されるわけですが、もしカン
マが3つ以上あったとすると、resultで確保
した配列のメモリ空間をオーバーフローするこ
とになります。

　ポインタや配列へのアクセスにおいては、言
語側でオーバーフローしているかどうかのチェッ
クをしてくれません。つまり、「result[3]」
というアクセスも言語的には通用してしまいま
す。ただ、OS的にはメモリ空間を確保してい
ないため、「Segmentation Fault」になってしま
います（図4）。そのため、14行目の代入の前に、
「if(i <= 3)」などといった、オーバーフロー
しないようなチェックが必要です。
　ちなみに、メモリ空間が別の変数によって確
保されている場合には、「Segmentation Fault」
にならない場合も考えられます。このときは、
意図しないデータへのアクセスが成立してしま
うなどの問題が発生する可
能性があります。
　たとえば、リスト3のよ
うなコードを書いて、図5

のようにresultという配
列で 2個のポインタと、
passwordというポインタ

を格納するための変数を定義したとします。
　このときに、result[2]とアクセスすると、
passwordへのポインタを取得できることにな
ります。
　ここまでわかりやすい間違いは少ないかもし
れませんが、もしこれがWebサービスなどで、
CGIの引数で配列にアクセスできるとしたら、
外部からパスワードを抜き取られてしまうこと
になります。

　今回、実際のコードを見ながらポインタのメ
リットとデメリットを見てきました。最近では
コンピュータも高速化し、高級言語で記述する
機会も増えてきたことから、さほどポインタに
ついて意識しなくても良いようになりました。
　しかし、本当に高速なコードを書くのであれ
ば、C言語とポインタを駆使することは大きな
メリットであるといえます。そのうえで、ポイ
ンタは何でもできる分、致命的なバグを生みや
すいということを知ってもらえればと思います。
　メリット／デメリットを知って、良いポイン
タライフを送られることを期待しております。
ﾟ

Segmentation Faultに
なる場合とならない場合

おわりに

result[0] result[1] result[2] result[3]?

result

 ▼図4　Segmentation Faultになる例

 ▼リスト3　ポインタ定義

char *result[2];
char *password;

t a n a k a y a m a m o t o d a i j i n a p a s s w o r d

result[0] result[1] password

 ▼図5　パスワードの漏えい

36 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

36 - Software Design Sep. 2014 - 37Sep. 2014 - 37

　Javaは、オブジェクト指向の考え方を重視
して開発されました。しかしJavaはオブジェ
クト指向「らしくない」書き方もできてしまいま
す。残念なことにJava入門書はオブジェクト
指向「らしくない」内容に多くのページを割いて
います。
　Java言語を習得するためには「らしくない」
部分の学習も必要です。しかしJavaを使うか
らにはオブジェクト指向「らしい」書き方を早く
から体験すべきです。
　この記事はJavaの初心者を対象に、Javaで
オブジェクト指向らしさに触れるための練習方
法を3つ紹介します。

・BigDecimalを使ってみる
・「コレクション」を使ってみる
・列挙型を使ってみる

　こういう「オブジェクト指向」らしい内容を早
くから体験し、なじんでおくことこそ、Java

でオブジェクト指向らしいプログラミングを習
得する効果的で実践的な学習方法です。

　オブジェクト指向らしさの第 1段は
「BigDecimalクラス」です。
　BigDecimalクラスを使って、数値計算をし
てみましょう。この練習で、次の2つのオブジェ
クト指向の基本の「感覚」が体験できます。

・オブジェクトを作る感覚
・複数のオブジェクトを組み合わせる感覚

　リスト1のサンプルコードを見てみましょう。
これの結果は、小数点以下2桁までに丸めた、
333.33になります。単純な割り算（1000÷3）
なのに、なぜ、こんな面倒くさい書き方をする
のか、最初はピンとこないかもしれません。
　しかし、BigDecimalクラスとMathContext

クラスで記述したリスト1の書き方には「オブ
ジェクト指向らしさ」の基本がぎゅっと凝縮さ
れています。

オブジェクトを作る

　リスト1の①、②、③で3つのオブジェクト
を作っています。
　①と②は、どちらもBigDecimalクラスのコ

Javaと
オブジェクト指向

 Javaで
オブジェクト指向を

知るための3つの基礎練習
 Writer 増田 亨（ますだ とおる）　ギルドワークス㈱／ Twitter @masuda220

第2部

その1

オブジェクト指向の克服編

BigDecimalを
使ってみる

リスト1　割り算（1000÷3）の例 ▼

BigDecimal a = new BigDecimal("1000"); ←①
BigDecimal b = new BigDecimal("3"); ←②
MathContext context = new MathContext(5, RoundingMode.HALF_EVEN); ←③
BigDecimal result = a.divide(b,context); ←④
System.out.println(result);

36 - Software Design36 - Software Design Sep. 2014 - 37

第2部オブジェクト指向の克服編

その1 Javaでオブジェクト指向を知るための3つの基礎練習

Sep. 2014 - 37

ンストラクタを呼び出しています。引数にはそ
れぞれ“1000”と“3”という異なる値を渡して、
別のオブジェクトを作っています。
　「同じクラス」のコンストラクタに「別の値」を
渡して、値の「異なるオブジェクト」を作る。こ
れがオブジェクト指向らしいプログラミングの
基本になります。
　③は桁数や丸め方法を指定するために、
MathContextクラスのインスタンスである
contextオブジェクトを作成しています。

オブジェクトを組み合わせる

　全部で3つのオブジェクトを作成しました。
この3つのオブジェクトを組み合わせて、④で
a.divide(b,context)の割り算を実行してい
ます。
　この「複数のオブジェクトを組み合わせて1

つの仕事をする」ことが、もう1つのオブジェ
クト指向のたいせつな感覚です。
　このサンプルは最初は「面倒なだけ」に見える
かもしれません。しかし入門書にありがちな、
int/doubleとif文を使う書き方を覚えるだ
けでは、いつまでたっても「オブジェクト指向
らしさ」を習得できません。
　BigDecimalクラスとMathContextクラスを
使ってオブジェクト指向らしい書き方を練習し
てみましょう。

　オブジェクト指向らしさの第2弾は「コレク
ション」です。
　Javaには集合を扱うやり方にはString[]など
の「配列」があります。しかし、オブジェクト指
向「らしい」のはList<String>などのコレクショ
ン型です。
　入門書では配列だけ説明し、コレクションの
説明が無いこともあります。配列を使ったサン
プルコードを学習するときには、コレクション
型を使った書き方にもぜひチャレンジしてくだ
さい。Javaでオブジェクト指向らしいプログ
ラミングスタイルを練習するには配列よりも、
java.utilパッケージに含まれるコレクション型
を使った練習を徹底的にやるほうが効果的です
（リスト2）。
　このコードの断片（スニペット）を参考に、実
際のプログラムを書いて動かしてみてください。
　ポイントは「型」と「クラス」の違いを理解する
ことです。
　リスト2の①、②、③で、変数a,b,cはどれ
も、Set「型」で宣言しています。
　3つのオブジェクトはそれぞれ別の「クラス」
のコンストラクタを使って作っています。
　ここが、初心者が間違って覚えやすいところ
です。

「コレクション」を
使ってみる

リスト2　コレクションのサンプル ▼

String[] data = {"one","two","three","one"};
List<String> list = Arrays.asList(data);

Set<String> a = new HashSet<String>(list); ←①
Set<String> b = new LinkedHashSet<String>(list); ←②
Set<String> c = new TreeSet<String>(list); ←③

System.out.println(a);
System.out.println(b);
System.out.println(c);

38 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

38 - Software Design Sep. 2014 - 39Sep. 2014 - 39

× クラス名 a ＝ new クラス名（引数）
○ 型名 a ＝ new クラス名（引数）

　右側の「クラス名」と、左側の「型名」は同じと
は限りません。
　クラスは「型」の1つですから、クラス名を型
名に使うことはできます。
　しかし、この例では「型」はSet型です。new

演算子で呼び出している「クラス」とは異なる型
を宣言しています。
　HashSetクラス／LinkedHashSetクラス／
TreeSetクラスのオブジェクトを、どれもSet
「型」として同じ「型」として扱っています。
　この「異なるクラスのオブジェクト」を「同じ
型」として扱うことがオブジェクト指向らしい
プログラミングの、たいへん重要なポイントで
す。
　オブジェクトは「部品」です。変数の「型」はそ
の部品をはめ込む「差し込み口」の形状です。同
じ形状の差し込み口に、異なるクラスから作っ
たオブジェクトを差し込むことが可能です。さ
まざまなタイプの部品（オブジェクト）の組み合
わせ方を柔軟に変更できるわけです。
　この部品の組み立ての柔軟さこそ、プログラ
ムの変更を容易にするオブジェクト指向の狙い
でありメリットなのです。

　Javaでオブジェクト指向らしさの第3段が列
挙型（enum）です。
　列挙型を単なる定数宣言として使うだけでは、
オブジェクト指向らしさは習得できません。
　リスト3のように、コンストラクタを使って、
定数ごとに異なる値を設定し、label()のよ
うに、定数ごとに異なる値を返すメソッドを用
意することが、オブジェクト指向らしい列挙型
の使い方です。
　リスト3の10行あまりのenumには、オブジェ
クト指向らしい考え方が凝縮されています。if

文/switch文を使わないオブジェクト指向らし
い書き方の簡単で強力な手段がJavaの列挙型
です。
　この例のように、コンストラクタとメソッド
を持った列挙型をいろいろ試してみてください。

　ここで紹介した、BigDecimalクラス／コレ
クション／列挙型は、「Java入門レベル」には
登場しない内容です。
　しかし、こういうオブジェクト指向らしい仕
組みに早くから触れることが、オブジェクト指
向を習得するために必要であり、また効果的な
のです。
　3つの練習課題は、初心者にはどれもハード
ルが高いと思います。
　そのハードルにチャレンジするためには「先
輩からうまく教わる」とか「参考になる情報をう
まく見つける」という「学び方」の工夫が必要で
す。
　Javaプログラマとして成長するためには、
この「学び方」の工夫と練習こそいちばんたいせ
つで効果的なことかもしれません。ﾟ

リスト3　enumのサンプル ▼

enum Guest
{
 adult("大人"),
 child("子供");

 private String label;

 private Guest(String label)
 {
 this.label = label;
 }

 public String label()
 {
 return label;
 }
}

列挙型（enum宣言）

オブジェクト指向らしさ
を早くから体験する

38 - Software Design38 - Software Design Sep. 2014 - 39

第2部オブジェクト指向の克服編

Sep. 2014 - 39

その2急がず・慌てず自然なぺースでオブジェクト指向を学ぼう！

急がず・慌てず
自然なぺースで

オブジェクト指向を学ぼう！
 Writer 山本 裕介（やまもと ゆうすけ）　㈱サムライズム／ Twitter @yusuke

第2部

その2

オブジェクト指向の克服編

　「これで私は英語がペラペラになりました！」
といった記事や広告はよく見かけますが、「私
もこれを見習ったらペラペラになりました！」
という話はあまり聞きません。人それぞれ勉強
方法には向き不向きがあります。オブジェクト
指向も英会話と同じく誰もが同じ方法で身につ
くものではありません。
　筆者は小学校から大学までBASICをはじめ
とする非オブジェクト指向言語に10年近く慣
れ親しんだあとにオブジェクト志向にとりかか
りました。今どきBASICからプログラミング
を始める方はなかなかいないと思いますが、こ
こでは1つの例として筆者がオブジェクト指向
を覚えた過程や、習得のコツを書きたいと思い
ます。

　オブジェクト指向の学習が難しい理由の1つ
として、オブジェクト指向という言葉が表す領
域が広いことが挙げられます。。オブジェクト
指向はモデリング手法やデータベースのアーキ
テクチャまであらゆる方面に応用可能な魔法の
技術のように、そしてときにはごちゃごちゃに
説明されます。「オブジェクト――つまり『物』
――をプログラムで表現できるため、現実世界
をプログラムでそのままモデル化・表現できる」
といった説明を見たことがあるのではないでしょ

うか？　あれがウソだとは言いませんが、あま
り真に受けないほうがよいです。広く使われて
いるオブジェクト指向技術は、あくまでプログ
ラムの拡張性、柔軟性、保守性を上げるための
表記方法に過ぎず、オブジェクト指向モデリン
グやオブジェクト指向データベースといった技
術が使われる場面は非常に限られます。

　小学生のころからプログラミングに親しんで
きた私がはじめてオブジェクト指向に出会った
のは大学3年生になります。研究室で「オブジェ
クト指向に親しもう」といった主旨で院生が課
題を出してくださいました。その課題の冒頭は
Javaコードで確かこのように書かれていました。

Person person = new Person();

　さすがにJavaを10年以上やってきている今
はすんなりと理解できますが、当時はさっぱり
意味がわかりませんでした。「Person型の変数
personを定義し、Personクラスのインスタン
スを代入する」「Personというクラスのひな形
を元に実体化する、上位クラスとしてHuman

型やAnimal型を定義することもできる」といっ
た説明を受けた気がします。「クラスは鯛焼き
の型で、生地と餡

あん

を垂らして焼いてできた物が
インスタンスにあたる」という説明もよく聞き
ますね。はい、意味がわかりません！
　筆者は結局この「パーソン パーソン イコー
ル ニュー パーソン」の意味をよく理解しない

オブジェクト指向学習
に近道なし

さっぱり理解できなかっ
た大学時代

オブジェクト指向は
なぜ難しいか

40 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

40 - Software Design Sep. 2014 - 41Sep. 2014 - 41

まま大学を卒業しました（よく理解しないなが
らも見よう見まねでコードは書けたのですが）。
　プログラムの中の世界をAnimalだとか鯛焼
きの型だといった具体的な物でたとえるのは無
理がある気がします。変数や配列を「箱のよう
なものだ」とするたとえが理解できずつまずく
人も多いですね。筆者と同じくたとえ話ですん
なり理解できない方はあまり気にせずひたすら
コードを読み、書き、実行して感覚的に身に付
けていくのがお勧めです。

　オブジェクト指向の本質を理解しないまま社
会人になった筆者を待ち受けていたのがデザイ
ンパターンの研修です。研修ではJavadocで書
かれたインターフェース仕様が提示され、仕様
に基づいた実装を行うというものでした。実装
が完了したら講師にコードレビューをしてもら
う……のではなく、指定されたスクリプトを実
行するだけでした。
　画面には ...E..F..といった形で結果が表示さ
れ、EもFも表示されなければその課題は合格、
そこではじめて講師のコードレビューと解説が
行われました。つまり受け入れテストがJUnit

のようなもの（JUnit.orgが誕生したのがちょう
ど同時期の2000年なので恐らくJUnitそのも
のは使っていませんでした）で書かれており、
どういった項目をテストしているかは隠されて
いるというなかなか面白い実習形式でした。そ
して提示されたインターフェースはデザインパ
ターンを適用する必要のある仕様になっており、
自然とデザインパターンを学べる……はずでし
た。怠慢な筆者はデザインパターンの本質を理
解せず、とにかくゴリ押しでテストが通るよう
に実装した覚えがあります。

　研究室で与えられた課題はイマイチ理解でき

ず、会社のデザインパターンの研修も「とにか
くこなした」不出来な、またはうまいこと世渡
りした筆者ですが、期せずしてオブジェクト指
向は独学で習得できてしまいました。きっかけ
は各言語で作ってきた習作です。どの言語を始
めるときも、その言語の特性を理解するために
同じテーマのコードを書いてきました。テーマ
は2つあって1つはコンピュータ対戦型のオセ
ロ、もう 1つはチャットプログラムです。
BASICやZ80のアセンブリ言語で書いたオセ
ロはまったくをもってオブジェクト指向ではあ
りませんでしたが、Javaで書いた際は「オセロ
の盤面をオブジェクトとして表現するには？」
「プレーヤをオブジェクトとして表現するには？」
「プレイのターンの概念はオブジェクトにする
べき？」などと考えながら書きました。そして
チャットプログラムではサーバソケットという
抽象的な存在ですら具象化（インスタンス化）し
て始めて利用できるようになる、といった概念
を学んだ覚えがあります。

　オセロのモデリングではオブジェクト指向モ
デリングは非常に難しいことを実感しました。
今言わせてみればオセロのモデルをどのように
Javaクラスに落とし込むのが良いかなどと頭
を捻
ひね

る必要はありません。現実世界はいかよう
にでもモデル化ができ、唯一の正解というもの

はありません。以前であれば「最初にした設計
は絶対」であり、一度動いたシステム、ある程
度デバッグの進んだプログラムの設計に変更を
加えるのは一種のタブーでした。しかし今はモ
デルにいささか不都合があったとしてもJUnit

のようなユニットテストツール、Jenkinsを始
めとする継続的インテグレーションツール、
Gitを始めとするバージョン管理ツール、仮想
化技術、そして進化した IDEの助けを借りて
以前と比べると一段と安全に、すばやくリファ
クタリング（挙動を変更せずにプログラムの記

デザインパターンとの
出会い

ゲーム開発で身につけたオ
ブジェクト指向

オブジェクト指向モデ
リングは使わない

40 - Software Design40 - Software Design Sep. 2014 - 41

第2部オブジェクト指向の克服編

その2急がず・慌てず自然なぺースでオブジェクト指向を学ぼう！

Sep. 2014 - 41

述、設計を改善すること）が行えます。ですので、
優れたモデルを時間をかけて生み出すよりも、
手っ取り早く動き、かつ十分な保守性を備える
バランスの取れたコードを生み出すほうがよほ
ど価値があります。
　そして実際の業務でシステム化対象をモデル
化して分析、などということはめったにありま
せん。オブジェクト指向はあくまでプログラム
の便利な記載方法であり、プログラムをシンプ
ルに、そして拡張性と保守性を高めるための手
段と割り切ったほうが良いでしょう。

　デザインパターンは非常に重要です。しかし、
そもそも習得の難しいオブジェクト指向が前提
となっているデザインパターンは当然ながらさ
らに難しいです。そして全部で23あるデザイ
ンパターンのうち、普段目にするのはほんの数
パターンです。デザインパターンを勉強したい
と思ったら全パターンを頭に叩き込むのではな
く、最初はどんなものがあるかさらっと眺める
程度で良いでしょう。筆者の場合は研修でよく
理解しないながらも一度叩き込まれたので、そ
のあと実践の場で「ここはデザインパターンが
適用できるかも！」「適用できた！」「考えては
いなかったけれどもよくよく見てみればデザイ
ンパターンが適用されていた」といったことが
多くありました。オブジェクト指向の理解が進
むにつれてデザインパターンも理解できるよう
になってきます。デザインパターンがしっかり
と身につくまでは1年に1回くらいの周期でど
んなパターンがあるか反復的に復習するほうが
効率はよさそうです。またGUIプログラミン
グにはデザインパターンが欠かせません。今は
Webシステムが流行ですが、デザインパター
ンを習得するためにGUIプログラミングをやっ
てみるのはたいへん有効です。筆者はチャット
プログラムをデスクトップアプリケーションと
して開発していましたので、デザインパターン

の多くをAWTやSwing（JavaのGUIプログラ
ミング用 API）から学びました。自然と
Abstract Factory、Composite、Observer、
Strategyといった重要なパターンが身につく
ことでしょう。

　最後になりますが、これからオブジェクト指
向の理解が進んで行くであろう皆さんに肝に銘
じてほしいのが「オブジェクト指向やデザイン
パターンを使わないようにする」ことです。と
かく凝った継承関係を持たせたり、デザインパ
ターンを適用したりすれば自己満足はできます
が、多くの場合はむやみやたらとクラス数が増
えてむしろ冗長になってしまうだけです。「こ
この部分を将来的に拡張できるように」などと
設計しても多くの場合その部分を拡張する必要
は出てこないものです。これはYAGNI（You

Ain’t Gonna Need It）――どうせあなたはそれ
を必要としない――などと呼ばれるeXtreme

Programmingやアジャイル界隈では有名な原
則です。つまり、拡張できるように事前に設計
しておく、よりも「拡張する必要が出てきた際
にコードをDRY（Don't Repeat Yourself）にま
とめる」ために初めてオブジェクト指向やデザ
インパターンを適用するのが良いでしょう。いっ
そのことオブジェクト指向やデザインパターン
は現代的なプログラミングをするうえでの教養
と割り切ってもいいかもしれません。イマドキ
のフレームワークやライブラリ、APIを利用し
ていれば、もはやオブジェクト指向を理解せず
ともプログラミングはできてしまいます。しか
し、オブジェクト指向がわかっていればフレー
ムワークやライブラリの設計の理解は進み、ト
ラブルシューティングもより自信を持って行え
ることでしょう。果ては自分がフレームワーク
を設計する立場になった際、オブジェクト指向
とデザインパターン、そしてプログラミングの
実践的な経験ほど強力なものはありません。ﾟ

GUIプログラミングで
覚えるデザインパターン

オブジェクト指向、デザイン
パターンは極力使わない！

42 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

42 - Software Design Sep. 2014 - 43Sep. 2014 - 43

　始めから暴論を投げるようで恐縮ですが、オ
ブジェクト指向プログラミング（Object

Oriented Programming、以下OOP）とは、「世
界をオブジェクト同士のメッセージのやり取り
で捉える」というようなポエティックな建前的
説明をするより、世界中のプログラマ間で合意
された一種の社会的な慣習に過ぎないと説明す
るほうがより実相に近いと筆者は考えています。
社会慣習ですから、人のコードを使ったり、人
にコードを使ってもらうにはこれを守る必要が
あります。そして、多くの慣習がそうであるよ
うに、最初は右も左もわからなくてウロウロし
ていても、その集団にいるうちにいつの間にか
その慣習に染まっているというのがOOPにも
言えます。
　ただし、ここで「OOP」と漠然に述べたとき
に厄介なのは、プログラム言語によって意味す
るものが著しく異なることです。たとえば、
C++では、クリエイタのビャーネ・ストロヴス
トルップ（ストラウストラップ）は「型を新たに
定義できるデータ抽象化機能をもち、継承など
の手法で型を階層化できるものがOOPだ注1」と
しています。
　一方で最初に「オブジェクト指向」という言葉
を生み出し、Smalltalkのクリエータの一人と
して有名なアラン・ケイは「（OOPとは）生物の
細胞のように、独立したオブジェクトがメッ

注1） Bjarne Stroustrup "What is‘Object-Oriented Programming’?"
（http://www.stroustrup.com/whatis.pdf）

セージをやりとりすることが何より大事だ。
……Simula 67のような継承の方法は嫌いで、
もっと良い方法が見つかるまで継承は（自分の
言語の実装から）取り除くことにした注2」と、多
くのOOPで必須であるとされる継承を、OOP

には本質的ではないとします。
　混乱してきました。「継承」というオブジェク
ト指向における最重要の概念を巡っても、1つの
言語では大事であるといい、他の言語では本質
的でないという。いったい何が正しいのでしょう。

　OOPの根底にある問題意識は、実は1960年
代に起こった「ソフトウェア危機注3」に端を発し
ています。1960年代になると大型計算機の発
展により、大人数による大規模なソースコード
が量産されはじめます。プログラミングは現実
の問題を計算機で解決するための手段です。そ
のために、プログラミングは現実の問題をコン
ピュータがわかる形で表現し写し取ります。こ
れをモデル化といいます。そして大きく複雑な
問題に対しては、モデル化されたプログラムも
大きく複雑なものになります。大きく複雑になっ
たプログラムは、ソフトウェアの開発継続性、
開発コスト、そしてメンテナンスコストが問題
になります。
　その結果、大きなソースコードベースでも壊
れない、可読性が高く検証可能なプログラミン

注2） Dr.Alan Kay on the Meaning of “Object-Oriented
Programming”（http://userpage.fu-berlin.de/~ram/
pub/pub_jf47ht81Ht/doc_kay_oop_en）

注3） http://ja.wikipedia.org/wiki/ソフトウェア危機

オブジェクト指向プログ
ラミングは慣習である

 社会慣習としての
オブジェクト指向
プログラミング

 Writer 柏野 雄太（かしの ゆうた）　kashino@bakfoo.com／ Twitter @yutakashino

第2部

その3

オブジェクト指向の克服編

大きなコードを
複数人で書く作法

http://www.stroustrup.com/whatis.pdf
http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en
http://ja.wikipedia.org/wiki/%E3%82%BD%E3%83%95%E3%83%88%E3%82%A6%E3%82%A7%E3%82%A2%E5%8D%B1%E6%A9%9F

42 - Software Design42 - Software Design Sep. 2014 - 43

第2部オブジェクト指向の克服編

その3 社会慣習としてのオブジェクト指向プログラミング

Sep. 2014 - 43

グの手法が方法論として必要になってきたので
す。その方法論を追求する過程で、ダイクスト
ラの構造化プログラミング注4などのソースコー
ドを整理する手法が提唱されました。その流れ
にあるのがOOPです。ですから、複数人が大
きなプログラムを壊れることなく書き続けるた
めのお作法を、あらかじめプログラム言語に組
み込んでおこうというのがOOP言語で、OOP

が広くプログラマの社会慣習として通用してい
るのです。
　つまり、OOPの目的とは、（言語が異なれば
機能や実装などに違いはありますが）大きなプ
ログラムを複数人で共有しながら書き上げるた
めのお作法である、ということです。

　大きく複雑なソースコードでも壊れることな
く書き続けるにはどうすればいいのでしょうか？
　それは現実の問題をソースコードに写し取っ
たときに意味的に文節化できる単位で1つにま
とめることです。これをモジュール化または隠

蔽化（カプセル化）といいます。プログラミング
とは端的に言うと、解決するべき問題をデータ

と関数で表現することですから、モジュール化

もデータと関数で行われることになります。こ
のモジュール化の単位をOOPではしばしばク
ラスと呼びます。クラスにおいてデータである

注4） http://ja.wikipedia.org/wiki/構造化プログラミング

クラス属性と関数であるクラスメソッドを持つ
のはその理由です。
　さらには、冗長さを無くして見通しを良くす
るには、まとめたクラスなどのモジュールを賢
く再利用する必要もあります。そのときに使う
慣習的な手法が継承（インヘリタンス）やミック

スインなどです。紙幅の関係上、ここでは取り
上げませんが、実はOOPを現実の問題に適用
すると、これらの再利用手法はいろいろな問題
を生みます。そしてその問題を解決するための
長年に渡る複雑な議論があるのです。
　さて、Pythonにおいてクラスを作るには
class文を利用します。つまりPythonにおい
てOOPを行うにはclassに習熟する必要があ
ります。Pythonにおける非常に簡単で典型的
なclassの利用はリスト1のようになります。
　リスト1を簡単に解説しますと、①class文
によりクラスの記述を始めます注5。②__init__

メソッドはコンストラクタメソッドとなってい
て、クラスからオブジェクト（インスタンス）を
作るときに最初に実行されます。Pythonにお
いてselfは自分自身のクラスオブジェクトを指
し示すための特別な意味を持ちます。③ self.

messageがこのクラスのクラス属性です。④こ
のクラスにはplayというクラスメソッドを1つ
だけ持たせます。⑤クラスからオブジェクト（イ
ンスタンス）をつくります。machineクラスを
原型として、異なる内部データを持ったオブジェ
クトを2つ作っています。⑥それぞれのオブジェ
クトのメソッドを実行するには、オブジェクト
名とメソッド名を .（ドット）で挟みます。
　リスト1を実行すると、それぞれのオブジェ
クトが内部に持っているデータ・関数が利用さ
れ、次のような結果になります。

$ python machine.py
recording message: こんにちは
recording message: さようなら

注5） classではクラス名を書くとともに、継承するべき親クラス
をカッコで指定します。ここではobjectクラスを親クラス
として指定しています。実はPythonではすべてのユーザ
定義クラスはobjectというPythonのもっとも基本となる
クラスが継承することになっているので、クラス文に
objectを継承するように明示するのです（https://docs.
python.org/release/2.2.3/whatsnew/sect-rellinks.html）。

Pythonを例にとって

リスト1　exapmle.py（サンプル） ▼

exapmle.py
coding:utf-8

class machine(object): ←①
 def __init__(self, message): ←②
 self.message = message ←③

 def play(self): ←④
 print('recording message: {0}'.ｭ
format(self.message))

hellomachine = machine('こんにちは') ←⑤
goodbymachine = machine('さようなら')

hellomachine.play() ←⑥
goodbymachine.play()

http://ja.wikipedia.org/wiki/%E6%A7%8B%E9%80%A0%E5%8C%96%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0
https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html

44 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

44 - Software Design Sep. 2014 - 45Sep. 2014 - 45

　今まで述べてきましたように、OOPは、ソー
スコードを流通させるための、プログラマの間
で広く行き渡った社会慣習ですから、これをマ
スターしないと人のコードが読めませんし、人
に使ってもらえるコードを書くために必要な作
法の大きな部分が欠落するという事態に陥りま
す。それでは、そのような慣習はどうやってマ
スターすればいいのでしょうか。それには端的
に言うと、良い教材でトレーニングをするしか
ありません。
　ここではPythonにおいてオブジェクト指向
プログラミングを学ぶために有効ないくつかの
定評のある教材リソースを以下に紹介します。

・『MIT Open Cource Ware "Introduction to

Computer Science and Programming"注6』

　まずは「計算機プログラムの構造と解釈」とい
う名著を生み出したとMITの入門講義の後継
です。いまはSchemeでなくPythonで講義を
行っています。オブジェクト指向プログラ

ミングは "14: Introduction to Object-oriented

Programming"　34:00くらいから始まります。

・『Learn Python Hardway注7』

　次は有名なハッカーのゼド・ショウの明快か
つ本質を突いたPython入門コースです。この
コースを手を動かしながら写経のように打ち込
み理解すれば、Pythonのイロハが身体に身に
つきます。オブジェクト指向プログラミングは

“ Exercise 40: Modules, Classes, and

Objects”注8から始まります。

・Pythonの標準ライブラリのソースコードを

読む注9

注6） http://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-00-introduction-to-computer-
science-and-programming-fall-2008/video-lectures/
lecture-14/

注7） http://learnpythonthehardway.org/book/

注8） http://learnpythonthehardway.org/book/ex40.html

注9） https://github.com/python/cpython/tree/master/Lib

　そして最後に、Pythonの標準ライブラリの
ソースコードを読むことはとても勉強になりま
す。ある意味これがPythonにおける最後のオ
ブジェクト指向プログラミングのお手本といっ
てもいいです。jsonライブラリでも良いですし、
loggingライブラリでも良いです。

　ただし、これまでいろいろと記したうえであ
えて言いたいことがあります。実はPythonは、
ソースコードとディレクトリ自体が __
init__.pyという名前のファイルがあればひ
とまとまりのモジュールとパッケージを作るこ
とができる仕様注10ですので、Pythonモジュー
ルとパッケージを使えば可読性があり再利用で
きる、十分に大きなプログラムを作ることがで
きます。従って、Pythonにおけるオブジェク
ト指向プログラミングは、Javaのように必須
ではありませんし、教条的な利用をすることも
ないというのが筆者の意見です。

　この稿のポイントは次になります。

・OOPは広くプログラマで共有された社会慣
習なので、好き嫌いにかかわらず、プログ
ラマとして覚えておいたほうが良い

・OOPの定義は言語や言語設計者によりいろ
いろと異なり混乱を生みがちだが、本質は
大きなプログラムを複数人で壊さず書くよ
うにすることを目的としたものである

・OOPを取得するにはトレーニングしかないが、
そのためのPythonにおける効果的なトレー
ニングリソースを紹介した

　以上の雑文が読者の皆様のオブジェクト指向
プログラミングの理解に少しでもお役に立てば
幸いです。ﾟ

注10） Python2.7 module（ https://docs.python.org/2.7/
tutorial/modules.html, Python3.4 module: https://
docs.python.org/3.4/tutorial/modules.html）

オブジェクト指向習得
の良書紹介

結論

ただし……

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-14/
http://learnpythonthehardway.org/book/
https://github.com/python/cpython/tree/master/Lib
http://learnpythonthehardway.org/book/ex40.html
https://docs.python.org/2.7/tutorial/modules.html
https://docs.python.org/3.4/tutorial/modules.html
https://docs.python.org/2.7/tutorial/modules.html
https://docs.python.org/3.4/tutorial/modules.html

44 - Software Design44 - Software Design Sep. 2014 - 45

第2部オブジェクト指向の克服編

Sep. 2014 - 45

その4組込エンジニアのためのオブジェクト指向

組込エンジニアのための
オブジェクト指向

 Writer 星野 香保子（ほしの かほこ）　㈲テクノランド

第2部

その4

オブジェクト指向の克服編

　状態遷移表をご存じですか？　いきなり唐突
な質問ですが、組込システムを設計するときに
は状態遷移表がよく使われています。簡単な例
を挙げます。たとえば図1のような「3分タイマー
装置」を作るとします。ボタンを押すとタイマー
が開始し、3分経過すると「ピピッ」と音が鳴る、
という機能を持つ簡素な装置です。タイマー稼
働中はランプが点灯し、3分経過するとランプ
は消灯します。

　組込システムは、動作中にさまざまなイベン
トを受け付け、イベントに対応する処理を行い
ながら動き続ける、という特徴があります。こ

の3分タイマー装置では、「ボタンが押された」、
「3分経過した」というのがイベントに該当しま
す。各イベントが発生したときの処理と状態の
変化を表にしたものが状態遷移表（表1）です。
状態遷移図（ステートマシン図：図2）も設計時
には有用で、状態が変化する流れを図で表現で
きます。今回作成する3分タイマー装置では、
最初の状態は「アイドル」です。ボタンを押すと
「3分経過待ち」状態に遷移し、3分経過すると「ア

組込システムには
状態遷移表！

イベントと状態とは

3分タイマー稼働中

スピーカー

ボタン

タイマー稼働中ランプ

図1　 3分タイマー装置 ▼

開始
アイドル 3分経過待ち

ボタンが押された

3分経過した

図2　 状態遷移図（ステートマシン図） ▼

状態
イベント アイドル 3分経過待ち

ボタンが押された
ランプを点灯する

（無視）「3分経過待ち」へ

3分経過した
（不可）

ランプを消灯してブザーを鳴らす
「アイドル」へ

表1　状態遷移表 ▼

46 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

46 - Software Design Sep. 2014 - 47Sep. 2014 - 47

イドル」に遷移します。

　さて、これらの状態遷移表と状態遷移図を基
にしてプログラムを作成する場合、一番簡単な
かたちとしてはリスト1のようになるでしょう
か。現在の状態を保持するフラグ変数を用意し、
イベント発生時にはフラグ変数を見て、そのと
きの状態に応じた処理を行います。この方法は
とくに問題があるわけではありませんが、イベ
ントの種類や状態の種類が増えた場合、switch

文の分岐が増えていき複雑なコードになりそう
です。

　そこで、装置の「状態」に着目し、発想を転換
してオブジェクト指向的な考え方を取り入れる
ように変更してみます。図3のようなクラスを
作成してみました。Deviceクラスが3分タイマー
装置を表しています。そしてここがポイントな
のですが、状態ごとにクラスを作成し、その状
態のときに発生したイベントに対応する処理を
実装します。

　プログラム例をリスト2からリスト6に示し

ます。コンソール上で模擬的に実行した結果が
図4です。ここでは、アイドル状態（IdleState）
と3分経過待ち状態（WaitState）のクラスを作っ
ていて、つまり、状態そのものがオブジェクト
になります。現在の状態はDeviceクラスが保
持していて、イベントが発生したときは、現在
の状態オブジェクトを使って対応する処理を呼
び出します。ボタンを押したときは、「アイド
ル状態」から「3分経過待ち状態」に遷移しますが、

リスト2の①で遷移先の状態
への入れ替えを行っています。
Deviceクラスでは、「現在ど
の状態なのか」を意識しなく
とも、イベント発生後には次
の状態に遷移するしくみに
なっています。もし状態の種
類が増えた場合は、状態クラ
スを追加して対応できるので、
拡張性が高く見通しの良いプ
ログラムを開発できます。

オブジェクト指向で
ない場合

リスト1　オブジェクト指向でないコード ▼

event = GetEvent(); // 発生したイベントを取得
switch (現在の状態) {
　case アイドル状態:
　　switch (event) {
　　　case ボタンが押された:
　　　処理;
　　　次の状態へ遷移;
　　　break;
　　case 3分経過した:
　　　break;
　}
　case 3分経過待ち状態:
　　switch (event) {
　　　case ボタンが押された:
　　　break;
　　　case 3分経過した:
　　　　処理;
　　　次の状態へ遷移;
　　　break;
　}
}

オブジェクト指向を
取り入れてみる

Device（タイマー装置）
-state:State
+evtPress()
+evtTimeup()

IdleState（アイドル状態）
-inst
+evtPress()
+evtTimeup()

WaitState（３分経過待ち状態）
-inst
+evtPress()
+evtTimeup()

<<interface>>
State

+evtPress()
+evtTimeup()

図3　 クラス図 ▼

ポイントは状態ごとの
オブジェクト

ボタン押下 ：ランプを点灯します。
3分経過 ：ランプを消灯してブサーを鳴らします。

図4　 実行結果 ▼

46 - Software Design46 - Software Design Sep. 2014 - 47

第2部オブジェクト指向の克服編

その4組込エンジニアのためのオブジェクト指向

Sep. 2014 - 47

リスト2　Device.java ▼

public class Device {
 private State state = null;
 public Device() {
 state = IdleState.getInstance();
 }
 public void evtPress() { // ボタンが押された時の処理
 state = state.evtPress(); ←①
 }
 public void evtTimeup() { // 3分経過したときの処理
 state = state.evtTimeup();
 }
} 　デザインパターンとは、再利用可能な設計パ

ターンを集めて分類したものです。オブジェク
ト指向プログラミングのデザイン
パターンで広く使われているも

のとしてGoF（Gang of Four）デザ
インパターンがあります。今回作
成した「状態そのものをオブジェ
クトにする」というプログラムは、
GoFデザインパターンのStateパ
ターンを取り入れたものです。
GoFデザインパターンと言えば、
大規模なアプリケーションに適す

るものと思っている人も
いるかもしれませんが、
組込システムにも応用で
きるパターンも存在しま
す。今回のプログラム例
ではJava言語を使用し
ていますが、C++言語や
C言語などの他の言語で
もオブジェクト指向的な
考え方を設計に取り入れ
ることは十分に可能です。
システムのすべてをいき

なりオブジェクト指向で開発するのは難
しいという場合でも、まずは部分的に利
用可能なパターンがあるかどうか、デザ
インパターンの本を眺めてみるのも良い
でしょう。組込システム開発において再
利用性や作業効率をアップさせるために、
オブジェクト指向を取り入れることを検
討してみてください。ﾟ

組込でも使える
デザインパターン

リスト3　State.java ▼

public interface State {
 public abstract State evtPress();
 public abstract State evtTimeup();
}

リスト4　IdleState.java ▼

public class IdleState implements State { // アイドル状態
 private static IdleState inst = new IdleState();
 private IdleState() {}
 public static State getInstance() {
 return inst;
 }
 public State evtPress() { // ボタンが押された時の処理
 System.out.println("ボタン押下：ランプを点灯します。");
 return WaitState.getInstance();
 }
 public State evtTimeup() { // 3分経過したときの処理
 return this;
 }
}

リスト5　WaitState.java ▼

public class WaitState implements State { // 3分経過待ち状態
 private static WaitState inst = new WaitState();
 private WaitState() {}
 public static State getInstance() {
 return inst;
 }
 public State evtPress() { // ボタンが押された時の処理
 return this;
 }
 public State evtTimeup() {// 3分経過したときの処理
 System.out.println("3分経過　：ランプを消灯してブザーを鳴らします。");
 return IdleState.getInstance();
 }
}

リスト6　Main.java ▼

public class Main {
 public static void main(String[] args) {
 Device dev = new Device(); // 3分タイマー装置

 dev.evtPress(); // ボタンを押したつもり

 // 3分経過待ち…

 dev.evtTimeup();// 3分経過したつもり
 }
}

48 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

48 - Software Design Sep. 2014 - 49Sep. 2014 - 49

　まず筆者が最も重視していることを最初に1

つ述べます。それは、「オブジェクト指向でプ
ログラミングする」ことは、「オブジェクト指向
プログラミング言語でプログラムを書く」こと
ではないという点です。世の中のプログラミン
グ言語は、手続き型言語、オブジェクト指向言
語、関数型言語といった観点で分類されること
がありますが、多くのプログラミング言語は完
全に分類できるわけではなく、複数のパラダイ
ムを併せ持っています。たとえば、Javaとい
う言語はクラスベースのオブジェクト指向言語
と呼ばれていますが、手続きや関数を書くこと
もできますし、書き方を工夫すればクロージャー
のような使い方もできます。筆者の好きなプロ
グラミング言語の1つであるErlangは関数型
言語の1つに位置付けられていますが、（やろ
うと思えば）プロセス単位で状態を持つことも
できます。プログラミング言語に対して世間か
ら貼られている一般的なレッテルにあまり振り
回されることなく、ぜひさまざまなプログラミ
ング言語に触れて自分なりの解釈を培

つちか

ってくだ
さい。

　筆者は、もともとC言語で制御系のプログラ
ムを書いていました。当時筆者が関与したプロ
グラムは、入出力が厳密に決まっており、いか
に正確かつ高速に処理を実現するかという点に

すべての価値がありました。Cは言語仕様がシ
ンプルで覚えやすい言語です。Cでは「関数」で
振る舞いを定義します。関数とは、あるデータ
を渡すと処理を実行して結果を返す命令のこと
です。関数は状態を持ちません。そのため、同
じ入力に対する出力は何度実行しても常に同じ
です。
　しかしながら一般的にはグローバルな領域に
変数を定義して利用する方法が採用されること
があります。この方法は副作用を生み、関数間
の依存性が高くなるため筆者は好きではありま
せんし、世間でもあまり推奨されませんが、必
要悪として広く使われているのが実状です。こ
のことは、手続きをプログラムとして表現する
うえで状態をセットにして考える方が理解しや
すい局面があることを示しているのではないで
しょうか。
　Cとは異なるパラダイムから生まれたものに、
クロージャーやオブジェクトといった考え方が
あります。どちらも振る舞い（関数）と値やデー
タ構造とを任意の単位でまとめることができる
ものです。お互いの要素の自律性が高まります
が、外部や内部の情報（環境や状態）に処理が依
存するため、副作用が生じる懸念点があります
（図1）。

　すでに述べたとおりオブジェクトは副作用を
含んでいますが、ある程度自律性のあるかたま
りの単位で物事を分類・分解できるため、複雑
なものを抽象的にとらえることに向いています。

プログラミング言語と
向き合う

Android開発で
オブジェクト指向

プログラミングするとは
 Writer 江川 崇（えがわ たかし）　Smartium㈱／ Twitter @t_egg

第2部

その5

オブジェクト指向の克服編

オブジェクトの利点状態による副作用と
自律性

48 - Software Design48 - Software Design Sep. 2014 - 49

第2部オブジェクト指向の克服編

その5Android開発でオブジェクト指向プログラミングするとは

Sep. 2014 - 49

言い換えれば、自分なりの解釈で説明・表現す
るための道具として適しています。日常生活で
の一般的な考え方と似たアプローチや語彙で説
明できると言ってもよいでしょう。
　あなたがAさんに対してBさんのことを説明
する状況を想像してください。おそらくたいて
いの人は、Aさんが知っていそうなことや、A

さんとBさんとの間にある何らかの共通点を
きっかけにして説明しようとするはずです。A

さんとBさんとの間に共通の知人のCさんがい
れば、Cさんのことを話題にするでしょうし、
趣味や学校、職業などで共通点があればそのこ
とを話題にするかもしれません。Aさんが記憶
している印象的な出来事にBさんが関与してい
たら格好の話のネタになるでしょう。Bさんに
ついての事実を単純に列挙していくよりも、そ
の方がAさんの興味を惹きつけやすく説明しや
すいからです。

　オブジェクトの考え方は、物事に対する分類
や分解の考え方です。オブジェクトはあくまで
も思考や表現の方法であり、プログラミング言
語の選択に対して大きな制約を与えるものでは
ありません。オブジェクトを使うと、自分の解
釈・分類を表現しやすくなり、結果として他者
と概念を共有しやすくなります。

　ここでは、Android SDK（Software Development

Kit）のJavaソースコードから画面まわりの基
本的な部品をいくつか抜粋します。Javaでは
まず型を定義して分類するプログラミングスタ
イルが一般的ですので、型を中心に見ていきま
す。
　Androidでは、画面を表現するUI部品は、
すべてViewです。そして、文字を表示する
ViewはTextView、文字の入力を受け付ける
ViewはEditText、複数のViewを束ねてレイ
アウトするViewGroupといったように、部品
の用途に応じて細かなオブジェクトを定義して
います。

入力 入力出力 出力
関数 関数

関数

オブジェクト

オブジェクト
振る舞い

状態（値）

オブジェクト
振る舞い

状態（値）

オブジェクト
振る舞い

状態（値）

図1　 関数とオブジェクトのイメージの違い ▼

オブジェクトとレビュー
COLUMN

　筆者の業務では日常的に分析や設計の成果物やソー
スコードをレビューする機会があります。筆者のレ
ビューの主な観点は次の2点です。
・分類や整理の観点を自分が理解できるか
・成果物内で一貫しているか
　決して、自分と同じ考え方かどうか（筆者が書く
ものと同じかどうか）という観点では見ません。こ
のレビューの考え方とオブジェクトの考え方は似て

います。一貫性のある適切な粒度のオブジェクトに
分割されたプログラムは、その人の思考が浮き彫り
になります。ある程度の期間レビューをしていると、
限定されたメンバーの中では成果物の断片を見ただ
けで誰が書いたものかわかるようになりますので、
利き酒ならぬ利きソースコードといったちょっとし
た遊びもできます。

Android SDKでの例

MotionEvent 0.1
…

Drawable.Callback KeyEvent.Callback

View

TextView

EditText

ViewGroup

図2　 UI部品の構造（一部のみ） ▼

50 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

50 - Software Design Sep. 2014 - 51Sep. 2014 - 51

　画像や色などの実際に画面に描画されるもの
は、Drawableです。Drawable（描画できるもの）
という命名は非常に理解しやすく秀逸ではない
でしょうか。Drawableも、ビットマップ画像
を 描 画 す る BitmapDrawable や、複 数 の
Drawableを重ねて描画できるLayerDrawable

のように用途に応じてさらに分類されています。

　なぜこのように実装しているのか、自分なら
どう書くかを意識しながら、世間で幅広く使わ
れているソースコードを読んでみると非常にい
い勉強になります。筆者は、Android SDKのソー
スコードを初めて読んだ際に、重要な要素の分
類に継承という言語機能を多用していることに
違和感を感じました。とくにJavaの場合、継
承はひとつしか取れませんので非常に強い関係
となることから大きなリスクがあるためです。
　Android 4.4.2のソースコードをベースにし
たViewまわりの行数（コメント含む）を示しま
す。

・View…………2万行
・TextView……820行
・EditText……130行

　筆者はViewやその周辺のソースコードを確
認する中で次のような意志表示を読み取りまし
た。

・UI部品として最低限必要と思われる処理を
View内に閉じておきたい

・UI部品としての用途に絞り、実際に使われ
る各部品での記述量をなるべく減らしたい

・そしてそのためには継承を使うことも辞さな
い

　この設計の是非はここでは述べません。当然
異なる実装方法も考えられますが、少なくとも
この設計の意図は読み手に伝わってきます。

　最後に、ぜひ世の中で広く使われているもの
や、世間からよいと評価されているものをただ
使うだけでなく、それらのソースコードをたく
さん読んで考え方に触れてほしいと思います。
そのことが自分ならどう書くかを考えるきっか
けとなり、自分の生きた知識として身につきま
す。本記事が皆さんのこれからの開発者人生を
考える一助となれば幸いです。ﾟ

自分ならどう書く？

まとめ

0.1
…

Drawable

BitmapDrawable ColorDrawable LayerDrawable

図3　 Drawableの構造（一部のみ） ▼

オブジェクトとモバイル
COLUMN

　モバイルデバイス上で動作するプログラムはリソー
スが限られるため、高速に動作させるためにはなる
べくオブジェクトを作らないほうがよいという話を
耳にすることがあります。また、Androidの実行ファ
イル（.dexファイル）には、メソッドを6万4千メソッ
ド以下にしなければならない「64K問題」などがあり
ます。通常はそこまでの数に達することはないもの
の、Googleの JavaライブラリであるGuava注1は1
万2千メソッド程度、Googleのサービスと連携す
るライブラリであるGoogle Play Servicesは2万4千
メソッド程度と、数が多いものがあります。そのよ

うなライブラリと組み合わるために、メソッド数を
減らす目的でオブジェクトを分割しない開発スタイ
ルを採用することもあります。
　もちろんPCなどと比較するとモバイルデバイス
では依然として制約を意識したほうがよいことは事
実ですが、現在のデバイスは性能が格段に向上して
います。64K問題もdexを分割するなどの回避方法
があります。これらの制約を理由にプログラミング
のスタイルを極端に曲げざるを得ない局面は日々少
なくなっています。
注1） https://code.google.com/p/guava-libraries/

https://code.google.com/p/guava-libraries/

50 - Software Design50 - Software Design Sep. 2014 - 51

第2部オブジェクト指向の克服編

Sep. 2014 - 51

その6オブジェクト指向はまぼろしか？

オブジェクト指向は
まぼろしか？

 Writer きしだ なおき　http://d.hatena.ne.jp/nowokay/

第2部

その6

オブジェクト指向の克服編

　オブジェクト指向の解説ということで定番の
説明をまとめようと思ったのですが、オブジェ
クト指向の説明で挙げられているようなことを、
筆者がプログラムを書くときには、考えてない
ことに筆者は気づきました。
　そこで「オブジェクト指向を学ぶには」という
記事ではありますが、「これをやればいいプログ
ラムになるというようなオブジェクト指向なん
かないよ」ということを書いていこうと思います。

　まず、簡単にオブジェクト指向の歴史をまと
めておきましょう。
　オブジェクト指向の要素をもった最初の言語
は1967年のSimulaだと言われています。そし
て70年代Smalltalkが現れ、80年代すでに主
流となっていたC言語にオブジェクト指向機能
を追加したC++が出てから、一気にオブジェ
クト指向の考えが広まります。
　90年代にはさまざまなオブジェクト指向方
法論が乱立しました。スリーアミーゴズと呼ば
れたブーチ、ヤコブソン、ランボーは記法や用
語の異なる方法論を統一しようと試みます。
　また90年代にはWindowsが使われるように
なりCUIが主体だったソフトウェアがGUIへ
と移行し始めます。オブジェクト指向はGUI

コンポーネント構築と非常に相性がよく、これ
もオブジェクト指向が必要とされた要因になり

ました。デザインパターンなど実装に対する理
解も進みます。その中で、1995年、オブジェ
クト指向を設計の中心とするJavaがリリース
されます。そして勢いは加熱し、オブジェクト
指向はマーケティング用語となり、多くのソフ
トウェア製品がオブジェクト指向を謳

うた

います。
　一方でブーチらの統一手法作成は難航し、ま
ずは記法だけを定義したUMLがリリースされ
ます。しかしながら90年代後半には、「よいプ
ロセスがよいプロダクトを作る」として、分析・
設計方法論から開発プロセスへとソフトウェア
工学の主流が移りました。ブーチらの統一手法
も、分析・設計方法論ではなく、統一プロセス
として発表されました。つまり、オブジェクト
指向として統一された手法が現れることはなかっ
たということです。
　2000年代に入ると、Webアプリケーション
が広まり始めます。勢いにのっていたJavaも
オブジェクト指向をベースとしてフレームワー
クを出しましたが、無駄に手順を増やしていた
だけという結果に終わりました。
　2005年ごろには、名前による処理関連付け
を主体とするRuby on Railsが流行り始め、オ
ブジェクト指向主体で設計されていたJavaの
フレームワークが否定され、関数型の機能を持っ
た言語が注目され始めます。2014年、今年3

月には、Javaにも関数を式として記述する表
記が導入され、主要な言語のほぼすべてが関数
型の機能を持つようになりました。オブジェク
トだけをコンポーネントとする言語がなくなり、
これによってオブジェクト指向の時代が完全に
終わったと言うことができるかもしれません。

オブジェクト指向なんか
ないよ！

オブジェクト指向の
歴史

http://d.hatena.ne.jp/nowokay/

52 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

52 - Software Design Sep. 2014 - 53Sep. 2014 - 53

　ランボーは、オブジェクト指向を「データ構
造と振る舞いが一体となったオブジェクトの集
まりとしてソフトウェアを組織化すること」と
しました。これは当時一般的な定義でした。
　またオブジェクトの特性として分類（カプセ
ル化）・継承・多相性（多態）を挙げ「同じデータ
構造と同じ振る舞いを持つオブジェクトを1つ
のクラスにグループ化する」「階層関係に基づ
いてクラス間で属性と操作を共有する」「同じ
操作であっても異なるクラスに対しては異なる
振る舞いをする」としています。
　そして、分析段階で見いだされたオブジェク
トがそのまま設計、実装へと引き継がれること
から開発手法の本命とされました。

手法

 2000年代になってアジャイルプロセスが広ま
りだすと、分析段階で実装に反映されるオブジェ
クトを決めてしまうことが馴染まなくなりまし
た。そこで、分析段階ではユースケース駆動、
責務駆動、ドメイン駆動のように、より抽象度
が高く実装に依存しない単位を対象にする手法
が使われるようになります。逆に実装段階では、
テスト駆動開発のように、実装のみを対象にし
た手法が注目されるようになりました。

業務システム

　オブジェクト指向が注目されなくなった背景
には、オブジェクト指向は業務システム開発に
はあまり向かなかったということもあります。
業務システムではデータベースを利用するため
データと処理が分離します。開発は、データの
関連を設計し、ワークフローを整理しながら画
面を抽出するといった流れになります。構造と
しては、プレゼンテーション層、ロジック層、

データベース層のようなレイヤ構造のほうが向
いています。

Webアプリケーション

　Webの発展とともに、HTTPとHTMLをベー
スとしたWebアプリケーションが広まってい
きます。サーバ側は、HTTPレスポンスをう
けとり、それに従ったHTMLを返すという独
立したハンドラの集合として実装されます。
　リクエストからレスポンスまでの1往復の処
理にオブジェクト構造は必要なく、構造として
関数的であることから、関数型の機能をもった
プログラミング言語が注目されていきました。

　オブジェクト指向の熱狂の中で発表された
Javaは、オブジェクト指向言語の代表として
扱われていました。しかし、バージョンが進む
に従って、オブジェクト指向的ではない機能を
取り入れています。

アノテーション

　Java2SE 5.0では大幅に文法が変更されまし
た。そのときに導入された構文のひとつがアノ
テーションです。アノテーションは、クラスや
メソッド、フィールドなどに補足情報をつける
ことができる構文です。
　アノテーションの処理では、裏側で動的にク
ラスを生成したり、リフレクション処理を使う
など、言語モデルとは無関係な処理が行われて
います。ここで、オブジェクト指向とは関係な
いモデルがJavaに持ち込まれるようになった
わけです。
　この時期の記述性の向上をEoDと言ってい
ました。この中で、コードをPOJO、つまり継
承を強制されないクラスで記述できるというこ
とがメリットとしてあげられていました。この
ときクラスは単に、記述をまとめ共通の設定を
適用する単位となります。EoDとはフレームワー
ク構築でのオブジェクト指向モデルからの決別

オブジェクト指向とは
何であったか

崩れるJavaの
オブジェクト指向

オブジェクト指向はいかに
使われなくなったか

52 - Software Design52 - Software Design Sep. 2014 - 53

第2部オブジェクト指向の克服編

その6オブジェクト指向はまぼろしか？

Sep. 2014 - 53

でもありました。

ラムダ式

　Java SE 8で、ラムダ式が導入されました。
ラムダ式は基本的に匿名クラスの省略形式です。
これを記述の点から見ると、関数を値として扱
えるようになったように見えます。
　ラムダ式はもともと関数型言語でよく使われ
ていた構文をJavaに持ち込んだものです。関
数型的な手法を使う場合には、オブジェクト指
向的ではないプログラム設計が必要になります。

　このような中で、それでもオブジェクト指向
を勉強するというときに、なにを注意すればい
いかまとめておきます。

オブジェクト指向は
よいプログラムの指標ではない

　まず知っておくべきなのは、オブジェクト指
向はいいプログラムの指標ではないということ
です。オブジェクト指向になっているからよい
プログラムだとか、オブジェクト指向になって
いないからダメだとか、そういうプログラムの
よさの指標ではありません。

オブジェクト指向の適用範囲を
把握する

　オブジェクト指向というのは、かなり適用範
囲の狭い技術です。もしうまくオブジェクト指
向ができないというときは、自分が作っている
ものがオブジェクト指向に向いていない可能性
を考えてみるほうがいいと思います。

言語仕様を把握する

　クラス、継承、オーバーライドといった、言
語機能を1つずつ把握して全体のイメージを構
築するよりは、オブジェクト指向というイメー
ジがあると楽になるとは思います。しかし実用
的にはオブジェクトをモジュールではなく型と
して、継承をモジュール拡張ではなく型の分類
として、型の扱いを主体に考えることも重要です。

差分プログラミングの道具だと
考える

　ひとまとまりの処理のうち共通部分をメソッ
ドとして抜き出す共通化はよく行われます。
　差分プログラミングの場合は、逆に違う部分
を抜き出します。異なる部分をメソッドとして
抜き出しておいて、継承したクラスでそれぞれ
の処理としてオーバーライドします。このよう
に継承を差分プログラミングの道具と考えます。
　ただし、異なる部分を関数として渡すという
関数型的な手法も考慮する必要があります。

OMTを勉強する

　やはり粋なクラス設計を一度やってみたいと
いうのは自然なことです。その場合は、ラン

ボーの提唱していたOMT（Object Modeling

Technique）を勉強するのがいいように思います。
OMTは、オブジェクトの静的モデル、動的モ
デル、機能モデルを構築していくという方法論
です。現在ではランボーによる解説書『オブジェ
クト指向方法論OMT』は絶版ですが、『憂鬱な
プログラマによるオブジェクト指向開発講
座注1』がOMTの流れをおおまかに解説してい
ます。古い本であり記述に指摘すべき点もあり
ますが。しかしながら、原典が絶版になり、新
しい解説本も出ていないというのが結局のとこ
ろ現実的な世間の評価ということでしょう。

　ここまでに見たように、開発手法、ツール、
プログラミング言語などソフトウェアに関わる
すべてがオブジェクト指向を乗り越え次へと進
んでいます。局所的なオブジェクト技術は必要
ですが、開発全体に適用するようなオブジェク
ト指向は、幻となりました。
　夢の技術としてのオブジェクト指向なんかな
いよ、ということを踏まえながら勉強していき
ましょう。ﾟ

注1） 『憂鬱なプログラマによるオブジェクト指向開発講座』
Tucker（著）、翔泳社、1998年

脱オブジェクト指向

オブジェクト指向を
どのように勉強するか

54 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

54 - Software Design Sep. 2014 - 55Sep. 2014 - 55

　̶̶某月某日、湯之上温泉注2を取材してい
た私は、トム・エンゲルバーグ氏（下の書影の
著作がある）がクラッシュパッド注3を担いで岩
場に向かう途中に接触することができ、わずか
な時間ながらも「新人エンジニアがオブジェク
ト指向をいかにして克服すべきか？」のインタ
ビューを敢行できた。本稿はそのときの様子を
でき得る限り忠実に再現したものである。

注1） 日本ツウのネイティブアメリカン（アパッチ族）。クライミ
ングを趣味とする自称アーキテクト。オブジェクト指向や
アジャイルについても詳しく、これまでにも雑誌などを通
して、IT業界にさまざまな提言を行っている。

注2） 会津にある、サスペンスドラマの舞台（殺人は「塔のへつり」
と呼ばれる景勝地であることが多い）に使われたこともあ
る渋い温泉地。

注3） 比較的小さな岩場で、岩登り（ボルダリング）をするときに
使う、落下しても大きな怪我をしないために敷くマット。
なお、原理主義的なクライマーは原理原則を重んじ、クラッ
シュパッドを敷かない。IT業界にも、こうしたオブジェク
ト指向原理主義者が存在し、その多くはこれから学ぶ
Smalltalkを愛するSmalltakerだといわれている。

長谷川：以降——）日本の多くのSI企業では、
新人研修で学ぶプログラミング言語として
JavaやC#を学んでいます。しかし、そこで多
くの新人がオブジェクト指向というキーワード
で詰まってしまうらしいのですが、それを打開
する良いアイデアはありませんか？
トム・エンゲルバーグ：以降トム）うん、なんだっ
て？　新人研修？　あぁ、あの会社に入って安
心しきっている若造が予習も復習もしてこない、
ヘナチョコな学校の授業みたいなやつだな。う
ん、そうだな……オブジェクト指向だとか言う
前に、奴らには研修会場にゴミを散らかさない
とか、とくに昼休み後のゴミ箱が酷いことになっ
てるからな、帰りに集団で居酒屋に行って、酔っ
て必要以上に大声で騒がないように教えた方が
良いぞ、うん、そうだ。
——えー、もちろんそのとおりですが、それは
置いておいて、新人エンジニアのオブジェクト
指向の克服法についてお伺いしたいのですが。
トム：うん、そうか、そうだなぁ、まず、新人
のエンジニアがオブジェクト指向を学ぶには、
JavaやC#は中途半端な言語だと私は思うね。
そう、きちんとオブジェクト指向を学ぶのであ
ればSmalltalkを学ばせるのが良いだろうな。
——つまり、新人エンジニアにJavaやC#を学
ばせるのは間違いだと言うことですか？
トム：いやいや、JavaやC#を学ぶのが間違い
だとは言っていない。今後の仕事に必要なら、

インタビューウィズ
エンゲルバーグ

 Smalltalkこそ
オブジェクト指向の

克服の手がかり
 Writer 語り手：トム・エンゲルバーグ注1　聞き手：長谷川 裕一

第2部

その7

オブジェクト指向の克服編

新人にJavaとか
C#とかどうよ？

『間違いだらけのソフトウェア・アーキテクチャ』
Tom Engelberg（著）、長谷川裕一、土岐孝平（訳）
技術評論社、2010年

54 - Software Design54 - Software Design Sep. 2014 - 55

第2部オブジェクト指向の克服編

その7 Smalltalkこそ オブジェクト指向の 克服の手がかり

Sep. 2014 - 55

JavaやC#で、RDBMSからデータを読み込ん
で、それをHTMLにしてブラウザに表示する、
そうしたWebアプリケーションを作るとか、
今までどおりやれば良いと私は思うね、まぁ、
それだけで良いとも決して思わないがね。ただ、
オブジェクト指向を理解するっていうのが目的
であれば、それにあった、プログラミング言語
や課題を新人研修担当者は考えるべきだろう
な注4。そこがあっていないのに、「オブジェクト
指向がわからないのですか？」と新人エンジニ
アに尋ねるほうが酷というモノだろ。

——なるほど、オブジェクト指向がよくわかる
ような教育体系になっていないのに、わかるほ
うが無理だと。しかし、なぜオブジェクト指向
を学ぶのにSmall「T」alkなのですか？
トム：ナニ！　Small「T」alkだと！　Tを大文
字で言ったな。一体全体、Smalltalkの tを大文
字にするとは穏やかじゃないな。まぁ、君が本
気でSmallTalk注5について話を聞きたいという
のなら別だがね。うん、まぁそれは良いとして、
Smalltalkを勧めるのは私の趣味だな。それに、
Smalltalkを学べばオブジェクト指向以外の知
見も得ることができると思うのだよ。そう、た
とえば、最近流行のアジャイル注6だ。アジャイ
ルを最初に世に問うたのはケント・ベック注7や
マーチン・ファウラー注8だが、彼らはいずれも
元はSmalltalker注9だ。つまり、アジャイルを
より理解したいのであれば、彼らの思考を育て
たSmalltalkというものを理解したほうが良い。
今では開発の定番とも言えるリファクタリング

注4） JavaやC#で何年も仕事をしている先輩エンジニアが、実
はオブジェクト指向を全然理解してないってことが、言語
と課題があっていないことの証明である。

注5） Smalltalkのジョーク版。http://smalltalk.smalltalk-users.
jp/

注6） アジャイルについては本誌（2012年7月号）の第2特集「も
しも、新卒女子SEが『アジャイル』をマスターしたら」を参照。

注7） 陽気な外人。
注8） 陰気な外人。
注9） Smalltalkを愛する頭のイカレタ人達。

やJUnitなんていうものも同様だ。こうした話
は「最近の若い奴は、C言語を知らないからポ
インタとかアドレスの概念がわかんないんだ
よ」ってことと私からすれば同じだよ。そうそう、
クラウドの中核技術である仮想マシンの概念も
Smalltalkでは学べるかな。実行環境しか提供
しないJavaのヘナチョコ仮想マシンと違って、
Smalltalkの仮想マシンは、開発環境も提供す
るちゃんとした仮想マシンだからね（そう言い
ながら、彼はクラッシュパッドの中からチョー
ク注10まみれのノートPCを開くと、次のよう
な画面（図1）を見せてくれた）。
トム：これはスクイークEtoys注11というもので、
Squeak注12というSmalltalk環境の上に作られ
ている小学生でも使える教育用のオープンソー
スソフトウェア（フリーソフト）だよ。このクル
マとハンドルは私が描いたんだが、こうしてハ
ンドルでクルマを動かすことができる（実際に
歪
いびつ

なハンドルをエンゲルバーグ氏がマウスを使っ
て動かすと、クルマがハンドルをきった方向に
曲がる）。まぁ、これは子供用のお遊びみたい
なものだが、まずは、この辺から始めて、オブ
ジェクトとは何か、メッセージや属性とは何か
を自分なりに考えてみたらどうかな？……それ
に、スクイークEtoysを使えば、さっき言った
仮想マシンなんかの話も実感できるだろう。
注10） クライマーが手につける白い粉の精神安定剤。滑り止めと

も称される。
注11） http://etoys.jp/squeak/squeak.html

注12） http://squeakland.jp/

青年よSmalltalkを
学ぶのじゃ

図1　 スクイークEtoys ▼

http://smalltalk.smalltalk-users.jp/
http://etoys.jp/squeak/squeak.html
http://squeakland.jp/

56 - Software Design

—— 習得のヒントと実践
「C言語のポインタとオブジェクト指向」

この夏に克服したい2つの壁

第1特集

56 - Software Design

——JavaやC#の新人教育とは趣がずいぶんと
違いますね。
トム：そうだね、新人研修が課題とするデータ
とその加工ばかりをしているエンタープライズ
な世界とはまったく違うね。まぁ、いったんそ
んなことは忘れたほうがいい。RDBMSとか
Springフレームワーク注13とかもな。Smalltalk

を学ぶのであれば、そうした世界と決別して、
オブジェクトとシミュレーションの世界にどっ
ぷりと浸ることが重要だと思うよ。

トム：まぁ、そもそも、Smalltalkは1960年代
という現在のインターネットや携帯端末の元ネ
タになるような技術が現れた時に、アラン・ケ
イという人物が、誰にでも使え、かつ、使う人
の思考を増幅させるためのコンピュータとはど
ういうものであるべきか、また、今後予見され
る大掛かりなシステムの複雑さを軽減するため
に、小さな部品同士を組み合わせて大きな仕事
をさせるためにはどうすればよいかを考えた末
に、産み出したという側面を持っているんだ。
　まず、最初の側面はスクイークEtoysで見た
とおりだ。思考の増幅には、現実では実現する
ことが困難なシミュレーションによる試行錯誤
が欠かせないだろ、つまりモノ（オブジェクト）
を描いて実際にシミュレーションができるとい
うことだね。
　次の側面だが、大掛かりなシステムは1台の
コンピュータではどうにもならん、かといって
でたらめに複数のコンピュータをつなげてもい
かん。そうすると、ある1台のコンピュータに
役割をもたせて、夫

それぞれ

々に役割に合致したデータ
とそれを使って計算する処理をもたせるはずだ。
そして、そうしたコンピュータ同士が通信をし
ながら何かの仕事をやり遂げることになるわけ
だ。それこそ、オブジェクト指向で最初に学ぶ、
注13） Javaの定番フレームワーク。プロジェクトでの利用事例は

多いが、プロジェクト関係者でSpringフレームワークがど
のように利用されているかを正確に知っている者は少ない。

オブジェクトはデータ（属性）と処理（メソッド）
をもっていて、互いに通信（メッセージ）をやり
取りしながら動作するということなのだよ（図2）。
　もっと身近なところで簡単に言えば、TVや
DVDレコーダとスピーカをつなげるようなも
のだと考えてもいいな。近い将来、家電同士が
コンピュータを内蔵して、相互につながるなん
ていう話も同じ類の話だ。もちろん、この話は
さっき見せたスクイークEtoysのクルマとハン
ドルとか、そう、生物の細胞なんかにも言える
ことだね。
　さぁて、本当はもう少し、Smalltalkには、
Javaでいうところの＋とか－とかの演算子や、
ifとかwhileの制御構文がないとか、文法はA4

用紙1枚で納まるとか、いろいろと話をしたい
ところだが、私はこのあと帰国前にどうしても
登らなければいけないボルダーの課題があるか
らな、あとは『自由自在Squeakプログラミン
グ注14』を読んで各自勉強するように伝えてくれ
るかな（と岩があるとおぼしき河原の方へ歩き
出した）。
——エンゲルバーグさん、すいません、最後に！
最後に一言だけ、読者である新人エンジニアの
方に！
トム：オブジェクト指向の頂きは1つではなく、
その頂きに到達する道も1つではないぞ！　そ
して、人生万事、道化芝居さ！（センバー・ファ
ルシシムス！）。ﾟ

注14） 梅沢真史さんの好意により、SRCから出版された『自由自
在Squeakプログラミング』のPDF版とサンプルコードがダ
ウンロードできます（http://swikis.ddo.jp/squeak）。ぜひ、
お読みください。

指向を増幅させる
道具＝コンピュータ

メッセージ

メッセージ

メッセージ

メッセージデータ

処理

図2　 つながるオブジェクト ▼

http://swikis.ddo.jp/squeak/

クラスタリングの
教科書
止まらないサービスを支える
システム構築の基礎
　クラスタ技術には大きく2つの側面があります。1つは分散処理による
高速化、もう1つは冗長構成による高可用性への適用です。本特集は「高
可用性」にフォーカスします。
　いまやクラウドサービスによって、ハードウェアの故障を気にするこ
となくサーバを運用できるようになりました。しかし、使っているイン
フラがどういうしくみで動いているのかを知ることは重要です。利用す
るデータセンターやクラウドサービスの高可用性をしっかりと量ること
ができるからです。もちろんシステム構築に携わるならば必須の知識です。
　本特集では、以前からあるクラスタリングの基礎はもちろん、クラウ
ドサービスを使ったシステム構築の際にも役立つ高可用性クラスタリン
グのテクニックなどを解説します。

第２
特集

第 1 章

クラスタシステムの
しくみ

p.58

避けられないシステム故障への備え 第 2 章

p.66

データセンターにおける
クラスタリングの実際

クラウドはいかにして守られているか

大久保 修一

田村 晋

第 3 章

p.76

データベースのクラスタ
構成とミラーリング方式

MySQLをベースに利点と注意点を整理

梶山 隆輔

58 - Software Design Sep. 2014 - 59

止まらないサービスを
目指して

　24時間365日のオンデマンドサービスが当た
り前となった今、それを支えるインフラに対し
てはダウンタイムを最小化することがこれまで
以上に求められています。ダウンタイムを少な
くする、つまり壊れにくい／復旧しやすいシス
テムを作ることを「可用性を高める」と言います。
　インフラはハードウェアとソフトウェアの2

要素によって構成されています。これらはいわ
ば車の両輪のようなものです。ハードウェアは、
ソフトウェアを止めずに実行し続けること、ソ
フトウェアは止まらずに実行し続けることが求
められています。しっかりしたソフトウェアを
作っていても、それが実行されるハードウェア
の品質が悪かったり、性能が不足していると、
期待したパフォーマンスは得られません。
　インフラの可用性を高めるためには、それを
可能にするソフトウェアとハードウェア両面の
実装が不可欠です。そのための技術的アプロー

チの1つとして、本特集の主題であるクラスタ
リングがあります。1章ではクラスタリング、
とくに高可用性（High Availability、略して
HA）のためのしくみや使われ方ついて解説して
いきます。

ダウンタイムに
つながる障害

　計画的なメンテナンス以外でのダウンタイム
は、予期せぬインフラの障害によって引き起こ
されます。表1、2に主な障害を挙げます。日々
の監視や構成管理、情報収集などで事前に対処
できる要素もある一方、ハードウェアの単純故
障は防ぐことが難しく、発生時には物理的な交
換作業が必要です。
　防ぎきれない障害に対しては、事前にそれを
想定したうえで発生時の対処法を決めておく必
要があります。さらに、それを自動化すること
ができれば、ダウンタイムを最小に抑えること
ができます。それを可能にするのがクラスタシ
ステムです。

クラスタシステムの
構成パターン

　クラスタシステムはいくつかの構成パターン
があり、目的に応じて選択することができます。
共通しているのは、複数のコンピュータを組み
合わせていること、組み合わせたコンピュータ
同士でデータ共有していることです。この章の
説明では組み合わせの構成を理解しやすくする
ため、演算処理を実行するシステム部分を「ノー

単純故障 ディスクやメモリ、CPUなどの故障

ファームウェアのバグ UEFI、BIOSの誤作動など

環境要因 温度上昇、電圧降下、停電など

表1　ハードウェアに関する主な障害 ▼

リソース枯渇 メモリ領域やクロックの不足、設
定の不備など

アプリケーションのバグ メモリリーク、デッドロック、予
期しない動作など

OSのバグ 208.5日問題、497日問題など

デバイスドライバのバグ デバイスのハングアップなど

表2　ソフトウェアに関する主な障害 ▼

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

第 1 章 避けられないシステム故障への備え

クラスタシステム
のしくみ

本章では「高可用性」に焦点を当てたクラスタリングに
ついて、代表的な構成例をあげながらそのしくみと有用
性、欠点などを解説します。また、障害発生時のノー
ド間の連携動作を知り、クラスタシステムの設計方針に
ついて概要をつかんでおきましょう。

●㈱ IDCフロンティア　田村 晋（たむら しん）

58 - Software Design Sep. 2014 - 59

ド」とし、データを共有する部分を「ストレージ」
として分けて説明していきます。
　いくつかの構成パターンについて、よく知ら
れている製品やソフトウェアもあわせてご紹介
します。興味があれば、実際に触ってみて理解
を深めていただければと思います。

ノードの構成パターン

　本章ではノードの構成パターンとして、比較
的よく使われているフェイルオーバークラスタ
とロードバランシングクラスタの2種類につい
て説明します。

 可用性を高めるフェイルオーバークラスタ
　フェイルオーバークラスタは稼動系と待機系
の2つのシステムを用意しておき、稼動系で障
害が発生した際に待機系に切り替えて稼働を継
続させる構成です。通常時に使われるシステム
は1系統だけのため、構成がシンプルになりま

す。ただし、同じシステムを2つ用意する必要
があるので、ハードウェアやソフトウェアライ
センスなどの初期導入コストは倍かかることに
なります。
　フェイルオーバークラスタの待機系の使われ
方には、ホットスタンバイとコールドスタンバ
イの2種類があります。
　ホットスタンバイは図1のように、稼動系と
待機系でセッション情報等の内部状態を同期し
ておき、障害発生時には待機系が稼動系の処理
をそのまま引き継ぐ動作をします（図2）。こう
することで、障害発生時のダウンタイムを最小
化することができるのです。一般に、このとき
の引き継ぎの動作のことをフェイルオーバー
（Failover）と呼びます。
　一方、コールドスタンバイは図3のように状
態の同期は行わず、単純に切り替えるのみです。
障害が発生した稼動系を停止し、待機系を稼動
系として起動させて使用します。
　切り替えに伴うデータやセッションのロスト
が許容されなかったり、よりダウンタイムを短
くする必要がある場合には、ホットスタンバイ
方式をとります。ただし、データの同期と、フェ
イルオーバーのためのしくみをソフトウェア側
でも作り込む必要があります。コールドスタン
バイ方式の場合は、単純に切り替えて起動させ
るだけのため、ソフトウェアの作り込みができ
ない場合に有効です。
　フェイルオーバークラスタを構成するパッケー
ジに、keepalived注1やHeartbeat注2があります。

注1） http://www.keepalived.org/ 注2） http://linux-ha.org/wiki/Heartbeat

稼動系 待機系
データデータ

図1　 ホットスタンバイのフェイルオーバークラスタ ▼
（通常時）

停止 稼動系

フェイルオーバー

データ

図2　 ホットスタンバイのフェイルオーバークラスタ ▼
（障害発生時）

稼動系 待機系
データ

図3　 コールドスタンバイのフェイルオーバークラ ▼
スタ（通常時）

第 1 章
クラスタシステムのしくみ
避けられないシステム故障への備え

http://www.keepalived.org/
http://linux-ha.org/wiki/Heartbeat

60 - Software Design Sep. 2014 - 61

 スループットを高めるロードバランシング
クラスタ

　ロードバランシングクラスタは図4のように、
システムを複数用意しておき、すべてを稼動系
として動作させる構成パターンです。予備とな
る待機系は用意せずに、障害が発生したシステ
ムは稼動系から外してクラスタシステムとして
の動作を継続させます（図5）。
　複数のシステムを並列で使用するため、フェ
イルオーバークラスタより効率的にリソースを
使用することができます。複数のシステムで処
理を分担させることで、同時に作動するシステ
ムが単一となる構成よりも、クラスタ全体での
スループットを高めることができます。
　近年の大規模Webサイトのインフラはこの
構成が主流です。フェイルオーバークラスタと
比べて構成は複雑になりますが、リソースの需
要に応じて柔軟にシステムをスケールさせるこ
とができるのが最大のメリットです。
　ロードバランシングクラスタを構成するパッ
ケージとしてはLVS（Linux Virtual Server）注3

やHAProxy注4が有名です。

ストレージの構成パターン

　クラスタシステムとして動作するためには、
すべてのノードが同じデータにアクセスできる
ようにする必要があります。ストレージは、ク
ラスタシステムの中でデータを保存し、共有す

る役割を担います。
　データを共有する方法はいくつかあります。
大きく分けると、1ヵ所に書き込む方法と、複
数個所に分散して書き込む方法に大別されます。

 共有ディスク方式
　1台のストレージをクラスタ内の複数のノー
ドが参照する構成です（図6）。シンプルな構成
なので運用しやすい一方、ストレージが単一障
害点となってしまうため、注意が必要です。
　この構成をとる場合は、ハードウェアレベル
での冗長設計がされている専用のストレージ装
置を使います。このストレージ装置は、構成し
ている部品それぞれが冗長化されており、どこ
か1ヵ所が故障しても停止することなく動作す
るよう設計されています。
　普通のPCサーバにソフトウェアパッケージ
をインストールして構築する場合は、NFSや
tgtd（iSCSI）、Samba（CIFS）を使って構成す
ることができます。

注3） http://www.linuxvirtualserver.org/ 注4） http://www.haproxy.org/

稼動系
データ

稼動系
データ

停止

図5　ロードバランシングクラスタ（障害発生時） ▼

ノード ノード

共有ディスク

図6　共有ディスク方式 ▼

稼動系
データ

稼動系
データ

稼動系
データ

図4　ロードバランシングクラスタ（通常時） ▼

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

http://www.linuxvirtualserver.org/
http://www.haproxy.org/

60 - Software Design Sep. 2014 - 61

 ミラーリング方式
　共有ディスクは使わずに、ノード同士でデー
タをリアルタイム同期させて共有する構成です
（図7）。同じデータを複数個所に書き込む共有
方法にあたります。あるノードで障害が発生し
ても、別のノードに同じデータが保存されてい
るため、データへのアクセスが失われることは
ありません。
　複数個所にデータを書き込むため、1ヵ所に
書き込むよりもオーバーヘッドが大きくなりま
す。ただし、データの読み込みはどこか1ヵ所
を参照するだけでよいので、読み込み負荷は分
散させることができます。
　ストレージのミラーリングは、DRBD（Distri

buted Replicated Block Device）注5を使って構
成することができます。

 レプリケーション方式
　ストレージ装置同士やノード同士で、一定間
隔でデータの同期をとる構成です（図8）。リア
ルタイムではなく、一定間隔での差分コピーを

とるようにすることで、書き込みのオーバーヘッ
ドを抑えることができます。
　レプリケーション構成は、データの書き込み
を受け付けるマスタと、データの同期先である
レプリカの区別があります。レプリカは、マス
タ側のコピーとして整合性を保つために読み込
み専用として振る舞います。
　マスタ側で障害が発生した場合には、レプリ
カをマスタとして切り替えることで、データの
読み書きができる状態に復旧させます。ただし、
リアルタイム同期ではないため、レプリカ側に
反映される前のマスタの書き込みデータは失わ
れることになります。
　ハードウェア制御のレプリケーションでは、
書き込み途中のアプリケーションのデータ整合
性を完全には維持することができないため、使
い方によってはバックアップとならない場合が
あることに注意しなければなりません。

 分散ストレージ方式
　複数のストレージ装置やノードにデータを分
散して保存する構成です（図9）。定められた単
位でデータを分割して同時に複数個所に書き込
みます。単純なミラーリングよりもスループッ
トを高めることができるうえ、規模をスケール
させることが可能になります。

注5） http://www.drbd.org/ja/home/what-is-drbd/

ノード ノード

図7　ミラーリング方式 ▼

ノード ノード

マスタ レプリカ

図8　レプリケーション方式 ▼ ノード ノード

図9　分散ストレージ方式 ▼

第 1 章
クラスタシステムのしくみ
避けられないシステム故障への備え

http://www.drbd.org/ja/home/what-is-drbd/

62 - Software Design Sep. 2014 - 63

　データは一定のブロックサイズやオブジェク
ト単位に分割して書き込まれます。分割するこ
とにより、複数のノードに分散して高速に書き
込むことができる一方、そのうちの一

ひと か けら

欠片でも
破損するとデータは読み出すことができなくな
ります。
　このため、分散ストレージは、ハードウェア
故障などで欠片の1つが破損しても、ほかから
同じデータを読み出せるように、2ないし3ヵ
所程度に同じデータを複製しておき、データの
消失を防いでいます。欠片の1つが失われた場
合には、残りの欠片を再度コピーすることで、
冗長を回復させることができます。
　分散ストレージは近年注目度があがってきて
います。構成するためのソフトウェアとしては
Riak注6やCeph注7が有名です。

クラスタシステムの
成り立ち

　しくみをざっと理解したところで、クラスタ
システムがなぜ必要とされるようになったかを
歴史的経緯から見てみましょう。
　現在では一般的となったクラスタシステムで
すが、その起源はかなり古く、メインフレーム
が主流だった時代までさかのぼります。
　コンピュータが民間企業に導入され始めた
1980年代、メインフレームと呼ばれる大型の
ホストコンピュータを中心としたアーキテクチャ
がとられていました。
　当時のコンピュータは大型で、接続に使う端
末の性能も限られていたため、高性能なコン
ピュータを1台導入し、そこに各ユーザが専用
の端末で接続して利用する形態をとっていました。
　1台のコンピュータが中核となるメインフレー
ムは、停止してしまうとすべての処理ができな
くなってしまいます。この弱点を克服するため、
電源や記憶装置、CPUの二重化によりシステ
ム単体としての信頼性が高められ、さらに共有
ディスクを用いた冗長化のしくみが導入されま

した。これがフェイルオーバークラスタの始ま
りとなりました。
　90年代に入ると、小型化された安価なサー
バが出現しました。ホストコンピュータの代わ
りに、サーバが処理の中核を担い、クライアン
トと呼ばれるコンピュータでそれにアクセスす
るアーキテクチャに変わりました。これがクラ
イアントサーバ型と呼ばれるモデルで、現代の
インフラはこの形態が一般的になっています。
　サーバはメインフレームのような大型のコン
ピュータに比べ、個々の性能と信頼性は劣ります。
それを克服するために、複数のサーバを連携さ
せてシステム全体で性能と信頼性を高めるロー
ドバランシングクラスタが生み出されました。

スケールアップから
スケールアウトへ

　システムの性能が不足したとき、性能向上の
ためには2つのアプローチがあります。そのひ
とつがスケールアップと呼ばれるもので、これ
はサーバのメモリやCPUを増設して1台あた
りの性能を高めるアプローチです。クラスタ化
されていないシステムはスケールアップするこ
とで性能を増強します。
　もうひとつのアプローチとして、同性能のサー
バを増設していき、システム全体でみた性能を
高めるスケールアウトがあります。とくに、サー
バを複数台組み合わせるロードバランシングク
ラスタの場合、スケールアウトのほうが有効で
す。サーバ1台あたりに搭載できるCPUやメ
モリ容量には上限があるためです。
　近年登場したクラウドコンピューティングに
よって、サーバやクラスタシステムの在り方も
変わってきました。従来は1台1台のサーバが
物理的なコンピュータであったため、スペック
アップや増設に手間がかかっていましたが、ク
ラウドコンピューティングの一種である IaaS

（Infrastructure as a service）がこれらの物理
的な作業を不要にし、簡単にサーバを増設する
ことを可能にしました。

注6） http://basho.co.jp/riak/ 注7） http://ceph.com/

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

http://basho.co.jp/riak/
http://ceph.com/

62 - Software Design Sep. 2014 - 63

　IaaSは仮想化技術を基盤として実現されて
いるサービスです。1台の物理的なサーバにハ
イパーバイザをインストールし、そこに仮想マ
シンを作成してサーバとして提供します。ソフ
トウェア的にサーバを作成、構築できるので、
物理的な作業の手間を省き、迅速な展開ができ
るようになりました。
　IaaSによって、負荷に応じてオンデマンド
でノードを自動増設し、システム全体の処理性
能を高めるような、ロードバランシングクラス
タのスケールアウトがより簡単にできるように
なったのです。

クラスタシステムの動作

　冒頭でクラスタシステムの構成パターンをい
くつかご紹介しました。ここではクラスタシス
テムとしての動作をより理解していただくため
に、ノード同士の連携のしくみについて説明し
ます。

フェイルオーバークラスタ

 マスタ／バックアップ
　フェイルオーバークラスタ（図10）は、稼動系
として動作するマスタと、待機系となるバック
アップの2つのノードで構成されます。マスタ
が処理を実行している間、バックアップはマス
タを監視して待機します。障害によりマスタが
動作を停止した場合、バックアップはそれを検
知して自身がマスタに昇格して処理を実行する
ようになります。

 ハートビート
　各ノードは、ハートビート（Heartbeat）と呼
ばれる信号を発信することによって自身の生存
を知らせます。ハートビートは一定間隔で発信
される生存を示す信号なので、鼓動を意味する
HeartBeatと呼ばれています。
　これが途切れると、クラスタシステムはその
ノードが機能を停止したとみなし、クラスタの

メンバから外す動作をします。

 フェイルオーバー
　ノードで障害が発生した際には、クラスタと
して正常な動作を継続させるためにフェイルオー
バーが行われます。フェイルオーバーが発動す
ると、障害が発生しているノードは処理を停止
し、データや機能、役割を別のノードが引き継
いで処理を再開します。
　フェイルオーバークラスタでは、バックアッ
プノードはマスタのハートビートを監視し、そ
れが途切れたタイミングで障害が発生したもの
とみなしてフェイルオーバーのアクションを開
始します。

 スプリットブレイン（予期しない動作）
　何らかの理由でハートビートの通信だけが途
切れ、マスタが処理を続けた場合には、スプリッ
トブレインという現象が起こります。
　ハートビートが途切れると、バックアップノー
ドは、マスタに昇格して処理を引き継ごうとし
ます。このとき、もともとのマスタがまだ処理
を継続していると、マスタが2つに増えてしま

ハート
ビート

フェイルオーバー

共有ディスク
データ

マスタ
 （稼動系）

バックアップ
（待機系）

図10　フェイルオーバークラスタ ▼

第 1 章
クラスタシステムのしくみ
避けられないシステム故障への備え

64 - Software Design Sep. 2014 - 65

い、データの不整合やリソースの奪い合いが生
じます。結果としてクラスタとしての動作を継
続することができなくなります。
　ハートビートだけが途切れる現象は、ネット
ワークの障害やプログラムの動作不具合、負荷
による一時的な応答遅延などにより起こります。
あまり珍しいことではありません。このため、
ハートビートは複数の伝達手段を組み合わせて
実装するほうが望ましいといえます。

ロードバランシングクラスタ

 コントローラ／ロードバランサ
　ロードバランシングクラスタ（図11）は、演算
処理を担当するノードと、クラスタ全体を管理
するコントローラで構成されます。ノードはす
べてが稼動系として処理を実行します。コント
ローラは各ノードにデータを渡し、演算処理の
指示をする監督者の役割です。また、各ノード
の状態監視も行います。
　ノードに異常が発生した状態ではそのノード
の演算結果は信頼できるものではなくなります。
故障によって完全に停止した場合、データへの

アクセスが失われる可能性があります。コント
ローラはこうしたノードを検知し、クラスタの
メンバから外すことで、クラスタシステムとし
ての正常性を維持します。

 ヘルスチェック
　先述したハートビートでは、各ノードの生存
を確認できますが内部の動作まで含めて正常に
機能しているかまではわかりません。ノードと
して生きていても、実際には演算処理を実行で
きない内部状態になっていた場合、クラスタシ
ステムは正しい演算結果を出すことができなく
なります。
　ヘルスチェックと呼ばれるしくみは、ノード
に対して決められた操作や入力を定期的に行い、
出力結果を評価して、正常に動作しているかを
チェックします。こうすることで単純な生存確
認ではなく、機能の正常性を確認します。

 リバランス
　ロードバランシングクラスタでは、参加する
すべてのノードが処理を実行します。障害によっ
てあるノードが停止したときには、その分の処
理は別のノードに再度分散されます。

クラスタシステムの設計

CAP定理

　クラスタシステムの構成を考えるうえでよく
出てくる用語に「CAP定理」と呼ばれるものが
あります。CAPとは次の3つの事項の頭文字
に由来します。

・一貫性（Consistency）……すべてのノードが
同じデータを参照できること

・可用性（Availability）……一部のノードが障
害で停止しても機能すること

・分断耐性（Parition tolerance）……ノード同
士連携できなくなっても機能すること

ヘルス
チェック

共有ディスク
データ

稼動系 稼動系稼動系

コントローラ／
ロードバランサ

図11　ロードバランシングクラスタ ▼

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

64 - Software Design Sep. 2014 - 65

　CAP定理は、これら3つの性質を同時にク
ラスタに実装することができないことを示して
います。
　たとえば、ミラーリングは一貫性と可用性を
実現できますが、ノード間のデータ連携ができ
ないと機能しないため、分断耐性はありません。
単一の装置で構成される共有ディスク方式の場
合は、分断されないという意味で分断耐性があ
りますが、1ノード構成になるため可用性が満
たせません。
　例を挙げればきりがありませんが、どのよう
な技術で実装されたクラスタであっても、面白
いほどこの定理が当てはまります。これからク
ラスタシステムの開発や運用にかかわっていく
方は、そのシステムがどの性質を満たしている
か考えてみると、理解を深めることができるも
のと思います。

単一障害点

　クラスタシステムは、複数のノードで構成す
るものであるため、一見、単一障害点はないよ
うに見受けられますが、システムを構成する要
素にはさまざまな単一障害点が潜んでいます。
主な個所と対処方法をいくつか示します。

・電源系統：物理的に2系統以上に分ける必要
があります。電源ユニットを冗長搭載でき
ない場合は、ノードごとに接続する電源系
統を分けるなどして、ブレーカトリップな
どの電源障害で全ノードが止まらないよう
にします

・ネットワーク：2経路以上の物理的な冗長化
が必要です。レイヤ2では、輻

ふくそう

輳による通信
断に備えてブロードキャストドメインを意
識する必要があります

・コントローラ／ロードバランサ：クラスタシ
ステムを制御する重要な役割であるため、コ
ントローラも冗長化が必要です

・共有ストレージ：すべてのノードがデータを
保存しているため、停止した場合の影響が

最も大きい個所です。ミラーリングによる
冗長化や、レプリケーションによるデータ
保護が必要です

データ保護が最重要

　フェイルオーバーやバランシングを前提とす
るクラスタシステムの場合、データの所在に気
を付けて全体を設計する必要があります。
　システム上に存在するデータは、永続的なも
のと揮発性のものに大別できます。これらは、
そのデータが存在する場所によって決まります
（表3）。永続的な領域は通電が停止されても保
持される記憶領域です。一方、揮発性の領域は、
通電が停止されるとデータを保持することがで
きず消失させてしまいます。フェイルオーバー
が発生した際にデータが失われる領域です。
　クラスタシステムはフェイルオーバーによっ
てシステムとしての動作を継続しますが、その
際に失われるデータがあることを意識しなけれ
ばなりません。失われては困るデータは、永続
的な領域にきちんと保存する実装にする必要が
あります。
　クラスタシステムに限らず、あらゆる情報シ
ステムが死守すべきはデータです。システムが
止まってしまうような事態に見舞われても、デー
タさえ残っていれば復旧させることが可能です
が、データが失われてしまうと復旧の可能性は
ゼロになります。
　今日のビジネスの根幹を支えているのは情報
システムのインフラです。システムの停止やデー
タロストは、企業の業務を止めてしまったり、
最悪の場合存続不可能にしてしまいます。クラ
スタリングをうまく活用し、強固なシステムを
作ることができれば、そのビジネスの成功はよ
り確実なものとなるでしょう。ﾟ

永続的な領域 ハードディスク／SSD、ノードから独立し
たストレージ

揮発性の領域 メインメモリ、キャッシュメモリ、ネット
ワーク

表3　データの保存のされ方と所在 ▼

第 1 章
クラスタシステムのしくみ
避けられないシステム故障への備え

66 - Software Design Sep. 2014 - 67

高可用性を実現する
クラスタリング

　改めて、クラスタリングを行う目的は何でしょ
うか？
　電気で動いている機器はいつか必ず故障しま
す。それは明日かもしれませんし、5年後かも
しれません。いつ壊れるかわかりませんが、そ
のままではサービス停止が発生します。障害か
らシステムを守り、サービスを継続するために
クラスタリングを行います。最終的には顧客満
足度を高めたり、収益を最大化したり、機会損
失を回避したりといったビジネスの成功を支え
るためでもありますが、直接の目的の1つは落
ちないシステムを構築すること（＝高可用性を
実現すること）と言えます注1。
　本章では、データセンターをケーススタディ
として、高可用性を実現するために、実際どの
ような対策を取っているかを説明します。

高可用性実現の前提となる
ファシリティ

　データセンターにおいて、高可用性を実現す
るうえで最も重要なポイントはファシリティで
す。データセンターは、さまざまなシステムを
稼働させるための物理的な場所、環境を提供し
ているという点から、ファシリティは第一に考
えなければなりません。具体的には次のような
検討が必要です。

・地震や津波などの災害発生の可能性が低い立
地条件、建造物の堅牢性

・周辺道路などのインフラが整備されており、
保守や障害などの緊急の際に現地に駆けつ
けやすいこと

・安定した電源供給を受けられること（複数変
電所から受電しているなど）

・商用電源がストップしてもバックアップでき
る無停電電源装置（UPS）、発電装置を備え
ていること

・長期間商用電源がストップした際にも発電装
置の燃料供給を継続して受けられる体制が
整っていること

・空調設備が十分なキャパシティを備えている
こと

・安定したネットワーク接続が実現されている
こと（光ファイバが複数経路で引き込まれて
いるなど）

　ほか、挙げればきりがありませんが、構築す
るサーバやネットワークシステムをいくらクラ
スタリングし、高可用性を実現したとしても、
そもそもの電源供給がストップしてしまったり、
データセンターが罹

りさい

災して使えなくなったりし
ては元も子もありません。
　インターネットなどの外部ネットワークへの
接続性もミッションクリティカルなファシリティ
の一部です。システムが稼働していてもネット
ワークが切れてしまってはサービスが停止して

注1） 実際には、どんな障害にも耐えられるシステムは存在しません。高可用設計はあらかじめ想定された救済すべき障害について対策
を行うものだからです。そういう意味では「落ちにくいシステム」が適切な表現かもしれません。

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

第 2 章 クラウドはいかにして守られているか

データセンターに
おけるクラスタリング
の実際

本章ではデータセンターで行われている多面
的なクラスタリングの例から、クラウドの背後
で行われている高可用性の実現がどのような
ものであるかが垣間見えます。また、クラウド
サービスを使う場合にユーザ側で行えるクラス
タリング手法も紹介します。

●さくらインターネット㈱　大久保 修一（おおくぼ しゅういち）

66 - Software Design Sep. 2014 - 67

しまいます。
　物理的な光ファイバの引き込みルートやバッ
クボーン機器などを2重化しているかどうか、
障害発生時に24時間常に対応可能な体制を整
えているかどうかも高可用性を実現するうえで
非常に重要なポイントです。

データセンターで動く仮想化
基盤のクラスタリング

　ここからは本題に入り、仮想化基盤の最たる
例であるIaaS（Infrastructure as a Service）クラ
ウドのシステムを取り上げ、高可用性を実現す
るための構成や対策など、実例を交えて紹介し
ます。筆者が勤めるさくらインターネット㈱では、
「さくらのクラウド」というIaaSを提供していま
す。システム構成は図1のようになっており、大
きく4つのパートに分けることができます。

① ホストサーバ
② ネットワーク
③ ストレージ、ストレージネットワーク（SAN）
④ �クラウドコントローラ、認証基盤、課金システム

　なお④については、一般的な業務アプリケー
ションの構成に近いため本稿では割愛します。

仮想化基盤独特である①～③についてこれから
詳細を見て行きましょう。

① ホストサーバ

　ホストサーバはクラウドのコアになる部分で、
ユーザの仮想サーバを収容するハイパーバイザ
です。多数の仮想サーバを起動するため、ハー
ドウェアスペック（CPUのコア数やメモリ）は
非常に高いものです。たとえばさくらのクラウ
ドで導入しているものは、1台あたり12コア（24

スレッド）、192GBのメモリを搭載しています。
　ホストサーバは、電源やNIC、OS起動用ディ
スクの冗長化を行うことで可能な限り単体での
可用性を高める対策を行っています。一方、
CPUやメモリ、マザーボードといった交換不
可能なパーツが故障することもあります。その
ような兆候が発見された際には、仮想サーバの
動作を継続したまま別のホストに移行する「ラ
イブマイグレーション」という技術を用いて、
ハードウェアメンテナンスを行います。
　しかし、突然故障して停止したり、ハイパー
バイザがクラッシュしたり、ライブマイグレー
ションができない状況もあります。その場合、
残念ながらホスト上で動作していた仮想サーバ

L2 ネットワーク

ストレージ
ネットワーク

インターネット

コントロールパネル

API（REST）

認証、課金システム

クラウドコントローラ

L2 スイッチなど

ホストサーバ

ルータ

L2スイッチなど

ストレージ

図1　さくらのクラウドのシステム構成 ▼

第 2 章
データセンターにおけるクラスタリングの実際
クラウドはいかにして守られているか

68 - Software Design Sep. 2014 - 69

はいったんダウンしてしまいます。その後、図
2のように正常稼働している別のホストで仮想
サーバを再起動させ、復旧します。仮想サーバ
を動作させるためのデータはストレージ側に格
納されており、どのホストでも起動できるよう
になっているのです。
　このように、ホストサーバ単体ではカバーで
きない故障などのケースをシステム全体でカバー
し、高可用性を実現しています。このような機
構は、クラウドサービスでは一般的に「HA機能」
あるいは「自動フェイルオーバー機能」と称され
ています。仮想サーバがまったくダウンしない
わけではないので注意してください。
　なお、ホストが突然ダウンしても仮想サーバ
の動作を継続できるFT（Fault Tolerance）と呼
ばれるしくみもあります。これは、2台のホス
ト上でプライマリ、セカンダリの仮想サーバが
動作し、CPUやメモリの状態をリアルタイムに
レプリケーションします。プライマリがダウン
した場合はセカンダリがプライマリに昇格し、
途中のCPU、メモリの状態から動作を継続しま
す。ただし、FTを実現するには構成の制限や
コスト上の課題があり、パブリックIaaSクラウ
ドで実装されているケースは少ないようです。

② ネットワーク

　クラウドのネットワークの役割は、仮想サー
バをインターネットやVPNといった外部のネッ
トワークへ接続し、また仮想サーバ間の通信を
実現することです。ネットワークが停止すると
仮想サーバが動作していても実質サービスでき
ない状態になります。当然ながら安定した動作、
高可用であること、さらにメンテナンスの際に
も停止が発生しないことが要求されます。
　さくらのクラウドのネットワーク構成を図3に
示します。おもに3つのパーツに分かれています。

（a） �ルータ……インターネットなどクラウド外
のネットワークと接続

（b） �Top of Rackスイッチ……ホストサーバや
ストレージの回線を収容するL2スイッチ

（c） �コアスイッチ……ルータやTop of Rackス
イッチをアグリゲーションするL2スイッチ

 （a）ルータのクラスタリング
　ルータの高可用性実現にはVRRPが一般的
に使用されます注2。VRRPは、Virtual Router

Redundancy Protocolの略で、複数のルータ間
で共通の仮想 IPアドレスを保持します。外か

注2） さくらのクラウドでは、VRRPに似たHSRP（Hot Standby Routing Protocol）を使っていますが、これだとどこのメーカーのルータ
かわかってしまいますね :-)

VM1 VM2

VM1 VM2

ホストサーバAに障害発生

仮想サーバを
別のホストで再起動

ホストサーバA

ホストサーバA

VM3 VM4

ホストサーバB

VM1 VM2 VM3 VM4

ホストサーバB

図2　ホストサーバ障害時のフェイルオーバー ▼

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

68 - Software Design Sep. 2014 - 69

ら見ると、それらが仮想的な1台のルータとし
て扱えるわけです。
　通常時、VRRPを設定したルータ内ではマ
スタがその仮想IPアドレスを保持しています。
マスタが故障すると、自動的に他のバックアッ
プルータが仮想 IPアドレスを引き継ぎます。
他のノードからは仮想 IPアドレスを参照して
いる限り、ルータの切り替わりを気にする必要
はありません。
　ところで、VRRPはその名のとおり、もと
もとルータの冗長化を目的として策定されたプ
ロトコルなのですが、サーバやネットワークア
プライアンスの冗長化にも広く活用されていま
す。VRRPの動作や設定は非常に簡単で、
VRRPさえ知っておけばクラスタリングが必
要なシチュエーションの多くをカバーできます。
この章の後半で、keepalivedを用いたLinuxの
VRRP設定について解説していますので、ぜ
ひ試してみてください。
　なお、VRRPには仮想 IPアドレスを切り替

える以上の機能はありません。そのためステー
トレスなノードのクラスタリングに向いていま
す。ステートフルなノード（サーバやデータベー
スなど、データが載っているノード）のクラス
タリングにはそれらを同期するしくみが別途必
要ですので、ご留意ください。

 （b）Top of Rackスイッチのクラスタリング
　Top of Rackスイッチ（以下、ToR）の高可用
性実現には、ボンディング（Bonding）と呼ばれ
る技術が用いられることが多いです。コアスイッ
チに接続したToRを1ラックあたり2台ずつ設
置し、ホストサーバやストレージは両方のスイッ
チに接続しておきます。通常、プライマリ側リ
ンクのToRにトラフィックを流します。プラ
イマリ側ToRが故障した際には、サーバやス
トレージ側でリンクダウンを検出し、バックアッ
プ側リンクのToRにトラフィックを切り替え
ます。
　このように、BondingはToR側ではなく接続

VRRP

mLAG

ボンディング ボンディング

ルータ

ラック ラック

インターネットバックボーン

ファブリック技術コアスイッチ

Top of Rack
スイッチ

ホストサーバ

図3　さくらのクラウドのネットワーク構成 ▼

第 2 章
データセンターにおけるクラスタリングの実際
クラウドはいかにして守られているか

70 - Software Design Sep. 2014 - 71

ノード側で切り替えを行うため、ToR自体に
は特別なクラスタリングのしくみは必要ありま
せん。なお、Bondingドライバによっては、単
純なリンクダウンをトリガーに切り替えるだけ
でなく、上位ルータにARPパケットを送信し、
そのレスポンスの有無で切り替えを行うような、
論理故障にも対応できるモードもあります。

 （c）コアスイッチのクラスタリング
　最近、イーサネットファブリックと呼ばれる
技術が広く使用されるようになりました。クラ
ウドのネットワークはコアスイッチ、ToRを
含め広域のL2ネットワークとなります。ファ
ブリックが登場する前までは、STP（Spanning

Tree Protocol）と呼ばれるしくみが使用されて
きました。しかし、STPではそのしくみ上、
大きなL2ネットワークを冗長化し、安定稼働
させるのは難しかったのです。ファブリック技
術の登場以来、そのようなネットワークを比較
的簡単に構築、運用することができるようにな
りました。
　ちなみに、STPは古くからの歴史あるプロ
トコルで、筆者も以前に設計、運用したことが
あります。トラブルが発生しやすいしくみで、
何度も泣かされた思い出深いプロトコルでもあ
ります（笑）。
　STPでは、L2ネットワークでは本来作って
はならないループをあえて構成し、スイッチに
設定したコストやプライオリティに基づいて、
一部のリンクを論理的にダウン（Block状態）さ
せます。論理的にループにならないようなトポ
ロジを構成しているのです。
　リンクやノードに障害が発生した際には、論
理トポロジを再度決定し、Block状態のポートを
アップ（Forward状態）させることでトラフィッ
クの迂回を行います。その際、TC（Topology

Change）というメッセージをネットワーク全体に
送信し、MACアドレステーブルをフラッシュ（破
棄）します。L2スイッチはMACアドレスを学習
しながら転送先ポートを決めているため、ネッ

トワーク構成（トポロジー：Topology）が変化し
たときにはMACアドレスを再学習しなければな
らないのです。その際、しばらく通信が不安定
な状態が発生します。昨今の通信要件のシビア
なアプリケーションには不向きといえるでしょう。
　一方、最近導入が進んでいるファブリック技
術では、2台以上のL2スイッチを仮想的に1台
としてクラスタリングすることができます。そ
のメリットとしては、異なるスイッチシャーシ
をまたいでLAG（Link Aggregation）を組めた
り、任意のトポロジで構成できたりと、ループ
フリーである点が挙げられます。STPのよう
にBlockポートが存在しないため、宛先に近い
ほうのリンクを選択したり、トラフィック負荷
のロードバランスを行うこともできます。
　なお、ファブリック技術はメーカーによって
実装が異なり、マルチベンダでの構成が事実上
できないという欠点もあります。マルチベンダ
の場合、シャーシまたぎのLAGを用いて相互
接続することが多いのですが、メーカーによっ
てmLAG、vLAG、VLTなどの名称／実装が
存在し、相性問題もありますので、デプロイに
は十分な動作確認が必要です。

③ ストレージ

　クラウドでは、一言にストレージといっても
さまざまなものがあります。仮想サーバから内
蔵のHDDのように見えるブロックストレージ
（たとえばLinuxでは/dev/sdaのようにブロッ
クデバイスとして見える）、HTTPを用いて
REST APIにてデータの入出力を行うオブジェ
クトストレージ、UNIX系OSやWindowsから
ファイルシステムとしてマウント可能なネット
ワークファイルシステムなどがあります。ここ
では一例として、どのクラウドでも基本的な機
能として実装されているブロックストレージの
クラスタリングについて説明します。
　ホストサーバとストレージ機器間はいわゆる
SAN（Storage Area Network）と呼ばれる技術
を用いて接続され、ホストサーバは仮想サーバ

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

70 - Software Design Sep. 2014 - 71

に必要とするボリュームにアタッチします。図
4に構成図を示します。
　SANを含めたストレージシステムは非常に
安定性、高可用性が求められる部分です。レス
ポンスの遅延は即座に仮想サーバの動作に影響
します。ストレージが停止するとクラウドが停
止すると言っても過言ではありません。そのよ
うな理由から、ストレージ機器は一度運用を始
めるとメンテナンスなどでも停止することがで
きません。
　ストレージ機器は、電源、コントローラ、ハー
ドディスクやSSDといったすべてのパーツが
冗長化されており、一部のパーツが故障しても
I/O処理を継続できるようになっています。ホ
ストサーバとストレージ間は2系統のSANで
接続され、一般的に FC（Fibre Channel）や
iSCSIといったストレージプロトコルを用いて
接続されています。コントローラやSANの故
障に対しては、マルチパスというしくみを用い
て切り替えを行います。
　マルチパスは、あらかじめ2系統のSAN経
由で仮想ボリュームに対してセッションを張っ

ておき、通常時はプライマリ側コントローラに
対してI/O要求を行います。SANやコントロー
ラ故障などで I/Oエラーが返ってきた場合は、
バックアップ側コントローラに切り替え、I/O

処理を継続します。これにより、SAN自体の
故障やストレージコントローラの障害からサー
ビスを保護します。
　メーカー製ストレージは上記のようなしくみ
が一般的に用いられていますが、さくらのクラ
ウドではLinuxにオープンソースを組み合わせ
た図5のようなSSDストレージも運用してい
ます。使用しているソフトウェアは次のとおり
です。

・OS：CentOS
・HA：Pacemaker＋DRBD
・ボリューム制御：LVM
・iSCSI Target：scsi-target-utils

　SSDをRAID化した同じ構成の2筐体を1

セットとし、双方のRAIDプールをDRBDを
用いてネットワーク経由で同期レプリケーショ
ンしています。DRBDとは、LINBIT社が開発、

SAN1 SAN2 10GbE や FCなど

SAS: Serial Attached SCSI
FC: Fibre Channel

SAS ケーブルなど

RAID構成

コントローラ#0 コントローラ#1

ホストサーバ

マルチパス

ストレージ

図4　SANの構成 ▼

第 2 章
データセンターにおけるクラスタリングの実際
クラウドはいかにして守られているか

72 - Software Design Sep. 2014 - 73

提供しているソフトウェアでオープンソースと
して無償で公開されています（一部の機能は有
償版となっています）注3。
　HAの制御にはPacemakerを用いています。
マスタ、バックアップ間の生死確認、サービス
用の仮想 IPアドレスの制御、各種デーモンの
起動停止といったコントロールを行っています。

◆　◆　◆
　以上、IaaSクラウドをケーススタディとした、
データセンターで動く仮想化基盤のクラスタリ
ングの実例を紹介しました。クラウドサービス
を利用することで、データセンターファシリティ
から、サーバ、ネットワーク、ストレージまで
高可用性を実現したインフラを手軽に利用でき
ることがおわかりいただけたかと思います。

クラウドを利用するうえでの
クラスタリングの考え方

　ここからはクラウド利用者の視点で、クラウ
ド上に構築するクラスタリングシステムについ
て、どのような考え方や手法で構成するべきか

説明していきます。
　前節で説明したように、ネットワークやスト
レージは無停止の設計が行われていますので、
クラウドユーザ側での冗長化は不要です。たと
えば、仮想サーバに複数の仮想NICをアタッ
チし、ネットワークの経路冗長をとる必要はあ
りません。あるいは、複数の仮想ディスクをア
タッチして仮想サーバ側でRAID1を構成した
りする必要もありません。
　一方、ホストサーバの故障時には、別のホス
トサーバで再起動されるまで、仮想サーバの稼
働が一時停止する可能性があります。もし、そ
のような停止をも許容できないシステムを構築
する場合は、クラウド利用者側にて高可用性実
現のためのしくみを構築する必要があります注4。
　クラウド上に構築した仮想サーバを冗長化す
る手っ取り早い方法は、クラウドにて提供され
ているロードバランサを用いる方法です（図6）。
　通常、ロードバランサは負荷分散目的で使用
されますが、高可用性を実現するためのパーツ
としても利用可能です。クラウド事業者側でロー

注3） 詳細はDRBDのWebページを参照してください。
 http://www.drbd.org/ja/
注4） HA機能が実装されているかどうか、またその場合の再起動時間の目安については、クラウドベンダによって異なります。利用し

ているクラウド基盤の仕様をあらかじめ確認しておきましょう。

DRBD

Pacemaker
iSCSI ターゲット

RAID 構成

レプリケーションリンク

SSD

10GbEスイッチ

Linux サーバ（CentOS）

iSCSI ターゲット

RAID 構成

SSD

10GbEスイッチ

Linux サーバ（CentOS）

図5　DRBDを活用したLinuxベースのストレージ ▼

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

http://www.drbd.org/ja/

72 - Software Design Sep. 2014 - 73

ドバランサ自体も冗長化されています注5。
　なお、通常のロードバランサ（ローカルタイ
プのもの）では、同一のIPアドレスが引き継げ
る範囲でしか使用できません。異なるグローバ
ル IPアドレス間でフェイルオーバーする必要
のある場合（ゾーンやリージョン、あるいはク
ラウドをまたぐような環境）では、GSLB（Global

Server Load Balancing）を使用してください注6。

仮想サーバ冗長化の注意点

　仮想サーバの冗長化を行う場合に重要な注意
点があります。通常、仮想サーバを収容するホ
ストサーバは、クラウドコントローラのアルゴ
リズムによって任意に選択されます。冗長化し
ているつもりの2台の仮想サーバが、たまたま
同一のホストサーバに収容されてしまうと同時
にダウンする可能性があります。
　このような事態を回避するため、図6のよう
に2台の仮想サーバが異なるホストサーバに収
容されるように設定を行ってください。たとえ

ばさくらのクラウドでは、@groupタグを設定
することで制御可能です（図7）。
　@groupタグは、@group=aから@group=dま
での4種類が存在し、たとえば、@group=aと
@group=bのように異なるタグを付与した仮想
サーバは必ず別のホストサーバにて起動されま
す。なお、タグの効果はサーバ起動時に反映さ
れますのでご注意ください注7。

注5） さくらのクラウドでは、ロードバランサの冗長化あり／なしが選択できるようになっています。あらかじめ利用しているクラウド
の仕様を確認しておきましょう。

注6） 有名なところではAmazon Route 53などがあります。
注7） 詳細は以下URLを参照してください。
 http://cloud-news.sakura.ad.jp/special-tags/

クラウド事業者にて冗長構成で提供

ロードバランサ

ホストサーバA ホストサーバB

ロードバランサ

仮想サーバ 2仮想サーバ 1

クラウド内部ネットワーク

図6　ロードバランサを用いた仮想サーバの冗長化 ▼

図7　さくらのクラウドにおける@groupタグの設定例 ▼

第 2 章
データセンターにおけるクラスタリングの実際
クラウドはいかにして守られているか

http://cloud-news.sakura.ad.jp/special-tags/

74 - Software Design Sep. 2014 - 75

VRRPを用いた
仮想サーバのクラスタリング
　アプリケーションによってはクラウドサービ
ス側で提供されているロードバランサが使用で
きなかったり、自前でロードバランサを構築し
たいといったシチュエーションもあります。そ
のような場合、クラウド利用者にて冗長化設定
を行う必要があります。ここではLinux（CentOS

6.5）を例にVRRPを用いてサーバを冗長化す
る方法を紹介します。ここで説明する環境は図
8のようなものです。
　なお、クラウドの機能として次の条件を満
たす必要がありますので、事前にご確認くだ
さい注8。

・2台の仮想サーバを同一のセグメント（VLAN）
に接続できること

・VRRPのマルチキャストが2台の仮想サーバ
間で疎通できること

・IPエイリアスを使用できること

　まずは2台の仮想サーバを用意し、keepalived

をインストールします。

yum install keepalived

　続いて、keepalivedの設定を行います。/etc

/keepalived/keepalived.confファイルを図9の
要領で作成してください。設定内容は次のとお
りです（a～gの記号は図9に対応）。

 （a）state
　どちらの仮想サーバも“BACKUP”を指定し
ます。MASTERというキーワードもあるので
すが、ここではpriorityに応じてマスタを選出
する動作を行うため、初期状態（keepalivedの
起動直後）ではバックアップ状態になるように

注8） さくらのクラウドでは、「スイッチ」および「ルータ＋スイッチ」にてVRRPを利用可能です。共有セグメントでは使用できません。

VRRP

仮想サーバ 2

仮想スイッチ

仮想サーバ 1

172.16.1.100/24

仮想 IP アドレス 172.16.1.102

Master
Priority 225

Backup
Priority 100

172.16.1.101/24

図8　VRRPを用いた仮想サーバの冗長化 ▼

図9　keepalived.confファイルの内容 ▼

vrrp_instance V1 {
 state BACKUP ← (a)
 interface eth0 ← (b)
 virtual_router_id 2 ← (c)
 priority 255 ← (d) バックアップ側は100に
 advert_int 5 ← (e)
 virtual_ipaddress {
 172.16.1.102 ←（f）
 }
 notify_master /path/to_master.sh ← (g) 必要に応じて
 notify_backup /path/to_backup.sh ← (g) 必要に応じて
}

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

74 - Software Design Sep. 2014 - 75

しています。

 （b）interface
　VRRPを動作させるインターフェース名を
指定します。

 （c）virtual_router_id
　VRRPのグループを指定する ID（VRID）で、
1から255の範囲の数値を指定します。同じサ
ブネットで異なるVRRPグループを動作させ
る場合、この値がユニークになるように設定し
ます。

 （d）priority
　priorityの最も高いノードが自動的にマスタ
として選出され、仮想IPアドレスを保有します。
ここでは、マスタを255、バックアップを100

としています。もちろんほかの値でも構いませ
ん。

 （e）advert_int
　死活監視に用いられるVRRP Helloの送出間
隔（秒）です。障害発生時には、ここで指定した
秒数の3倍程度の時間で切り替わります。小さ
な値にするほど短時間で切り替わるようになり
ますが、負荷がかかり、瞬間的に処理が遅延し
た際に不必要なフェイルオーバーが発生して不
安定になる場合もあります。運用しながら値を
調整するようにしましょう。

 （f）virtual_ipaddress
　マスタノードが保有する仮想 IPアドレスで
す。複数必要な場合は、並べて記載します。

 （g）notify_master, notify_backup
　それぞれマスタ、バックアップに遷移した際
に実行するスクリプトを指定します。先に説明
したとおり、VRRPは単純に仮想 IPアドレス
を付け替えるだけの機能しかありません。状態
が遷移した際にデーモンを起動・停止したり、
何らかの動作を行いたい場合はこのパラメータ
で制御します。

　設定が完了したら、keepalivedを起動します。

service keepalived start

　しばらくすると、VRRPにてマスタノード
が選出され、仮想 IPアドレスが付与されるこ
とが確認できます（図10）。
　マスタ側をダウンさせ、仮想 IPアドレスが
バックアップ側に移るかどうか確認してみてく
ださい。

まとめ

　本稿では、データセンターのファシリティか
らクラウドインフラまで、どのようにクラスタ
リングや高可用性を実現しているのか、また、
クラウド上に構築するシステムのクラスタリン
グの考え方と簡単な設定例を紹介しました。い
かがでしたでしょうか？
　高可用なシステムを構築するには、機器やオ
ペレーションも含めてコストがかかります。運
用するサービスレベルや収支のバランスなどを
鑑みて、適切な高可用設計を行いましょう。
ﾟ

図10　仮想 IPアドレスの確認 ▼

ip addr show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
 link/ether 9c:a3:ba:21:cb:57 brd ff:ff:ff:ff:ff:ff
 inet 172.16.1.100/24 brd 172.16.1.255 scope global eth0
 inet 172.16.1.102/32 scope global eth0 ← 仮想IP

第 2 章
データセンターにおけるクラスタリングの実際
クラウドはいかにして守られているか

76 - Software Design Sep. 2014 - 77

データベースの
クラスタ構成に共通の考慮点
　データベースのクラスタ構成を考える際には、
どんな構成の場合にも、考慮すべき点が4つ挙
げられます。具体的には、障害検知、フェイル
オーバー、スプリットブレイン、ビジネスから
の観点の4つです。以下にその詳細を述べます。

障害検知

　クラスタリング構成内のデータベースに障害
が発生したことを検知するために、複数のレイ
ヤでの監視が行われることがあります。最も一
般的なのは、ネットワークレイヤにて相互にハー
トビートパケットと呼ばれる監視パケットの通
信を行うこと、およびサーバにインストールさ
れたエージェントプログラムによるOS上のプ
ロセス監視です。多くのクラスタリング構成で
はTCP/IPによる通信経路となる複数のネッ
トワークパスを設定することが推奨されていま
す。環境によっては、TCP/IP経由での監視に
加えて、サーバ間をシリアルケーブル経由で監
視することもあります。
　このハートビートパケットのチューニングに
は注意が必要です。ハートビートパケットを送
信して応答がなく、タイムアウトになったケー
スが複数回発生すると、障害として検知される
ことが一般的です。タイムアウト値を小さくし
過ぎると、ネットワーク遅延が大きい環境やシ
リアルケーブル経由の場合は、単に応答が遅い
だけでも障害として見なされてしまいます。ま

た、タイムアウト後のリトライ回数が小さい場
合には、一時的な応答の遅延でも障害として検
知されて、フェイルオーバーが発生してしまう
可能性が高まります。
　逆に、タイムアウト値を大きくし過ぎた場合
やリトライ回数を多くした場合は、障害が検知
されるまでの時間が長くなり、アプリケーショ
ンやビジネスへの影響が大きくなってしまいま
す。
　データベースプログラムによっては、サーバ
のプロセスが自動的に再起動されるように構成
されていることもあります。たとえば、
MySQLの起動スクリプト「mysqld_safe」では、
MySQLサーバプロセスの停止時に、自動的に
再起動するしくみになっています。クラスタリ
ング構成にて、プロセスの障害をきっかけとし
てフェイルオーバーする処理と競合してしまう
可能性があるので、mysqld_safeを使わずに
MySQLサーバプログラムを直接起動するよう
に設定する必要があります。
　また、データベースサーバのプロセスの稼働
状況に加えて、クライアントプログラムから接
続してSQL文を発行し、データベースとして
正しく稼働しているかの確認も求められます。
これは、OSが正常に稼働していてハートビー
トパケットへの応答ができており、かつデータ
ベースサーバのプロセスは起動しているものの、
データベースサーバ内で何らかの問題が起きて
おり正しく利用できない状況が考えられるため
です。
　Oracle DatabaseやMySQLで用意されてい

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

第 3 章 MySQLをベースに利点と注意点を整理

データベースの
クラスタ構成と
ミラーリング方式

データベース（DB）には、アプリケーションから常時必要と
され、かつ失われてはいけないデータが保管されているた
め、可用性が重要となります。ディスク冗長化のほかに、
サーバ自身の障害も考慮した高可用性クラスタリング構成
が必要とされます。本章ではMySQLを中心に、DBのクラ
スタリング技術と構築運用時の考慮点を解説します。

●日本オラクル（株）　梶山 隆輔（かじやま りゅうすけ）

76 - Software Design Sep. 2014 - 77

るDUAL表に対してSELECT文を投げること
もありますが、DUAL表では、実際のアプリケー
ションデータが格納されている領域や、スキー
マの状況がわかりません。アプリケーションデー
タが格納されている領域や、スキーマに置かれ
たダミーのテーブルを使って確認することもあ
ります。

フェイルオーバー

　サーバに障害が発生した場合、該当のサーバ
をクラスタリング構成から切り離して、別のサー
バで処理を継続させます。フェイルオーバーの
際には、アプリケーションからデータベースへ
の通信経路や、データベースサーバからデータ
を物理的に格納しているデバイス（ストレージ）
へのアクセスの切り替えを行います。
　アプリケーションからの通信経路は、ロード
バランサなどのネットワーク機器で切り替える
ケース、仮想IPアドレスを障害が発生したサー
バから別のサーバに付け替えるケース、アプリ
ケーションサーバやドライバの接続フェイルオー
バー機能を使うケースなどが考えられます。
　MySQLの JDBCドライバ「Connector/J」や
PHP用 ド ラ イ バ mysqlndの プ ラ グ イ ン
「mysqlnd_ms」などは、MySQLサーバ障害発生
時に、接続を別のMySQLサーバに切り替える
オプションを持っています。
　障害の検知からフェイルオーバーの完了まで
にかかる時間は、方式や構成によって大きく変
わります。全ノードが稼働状態にあるアクティ
ブ／アクティブ型では、障害が起きたサーバを
切り離すだけで、切り替えが必要なコンポーネ
ントは少ないためフェイルオーバーにかかる時
間は短くなります。平常時は待機しているだけ
のサーバに切り替えるアクティブ／スタンバイ
型では、最悪の場合は、

・ファイルシステムパーティションのマウント
・fsckなどによるファイルシステムの検査
・データを一致させる処理

・データベースプログラムの起動
・データベースの自動リカバリ
・アプリケーションからの接続受け入れ開始
・仮想IPアドレスの切り替え
・アプリケーションの再起動

などが続き、数分から数十分単位での時間がか
かってしまうことがあります。

スプリットブレイン

　クラスタリング構成で注意すべき課題にスプ
リットブレイン状態が挙げられます。ネットワー
クに部分的な障害が起き、サーバ間で相互に通
信ができなくなったものの、アプリケーション
からは接続できてしまう状態です。それぞれの
サーバはほかのサーバに障害が起きたと判断す
るため、引き続き処理を継続しようとするサー
バ同士や、フェイルオーバーで処理を引き継ご
うとするサーバとの間で、リソース利用の競合
やデータの不整合が起こる可能性があります。
　スプリットブレインによる不整合を防ぐため
には、どのサーバが処理を継続し、どのサーバ
を停止すべきかの判定をする必要があります。
判定方法には、次のような複数の方式がありま
す。

・通信可能なサーバの数の多数決（quorum vote）
・アクセス可能な範囲に特定のサーバや共有リ

ソースを保有できているかで決定
・外部のサーバが調停役（arbitrator）として判断

　この判定の際に、誤って全サーバを停止して
しまうことや、停止と再起動が繰り返されてし
まわないように設定に注意が必要です。

ビジネスからの観点

　高可用性を高めることは、一般的に運用の複
雑性やコストの上昇につながります。そのため、
ビジネスの観点から可用性の要件を検討するこ
とが必須です。データベースやシステムインフ
ラを直接担当していない側からは、「常に動い

第 3 章
データベースのクラスタ構成とミラーリング方式
MySQLをベースに利点と注意点を整理

78 - Software Design Sep. 2014 - 79

ていて当たり前」と、とらえられることが多々
ありますが、システムのメンテナンスや障害を
想定した停止許容時間（表1）を認識することが
重要です。

4つのデータベース
クラスタリング構成

　クラスタリング構成のデータベースにおける
データ管理は、それぞれのサーバに格納する
「データミラー型」と、共有ストレージに格納す

る「ディスク共有型」に大別されます。また、す
べてのサーバがアプリケーションから利用可能
かどうかで分類することができます。それぞれ
の特徴を整理したものが表2、図で表したもの
が図1になります。
　データミラー型では、データをコピーするタ
イミングや転送される内容によって応答性能が

①データミラー型＆アク
ティブ／アクティブ型

②データミラー型＆アク
ティブ／スタンバイ型

③ディスク共有型＆アク
ティブ／アクティブ型

④ディスク共有型＆アク
ティブ／スタンバイ型

レスポンス △～○ △～○ ○ ○

性能拡張性 ◎ × ○ ×

フェイルオーバー時間 ○ △ ○ △

構成例 MySQL Cluster DRBD、SIOS LifeKeeper
ほか

Oracle Real
Application Clusters

SIOS LifeKeeper、
NEC CLUSTERPROほか多数

表2　4つのデータベースクラスタリング構成（比較） ▼

可用性 99％ 99.9％ 99.99％ 99.999％

停止可能時間 3.65日 8時間45分 52分30秒 5分15秒

表1　年間停止可能時間 ▼

①データミラー型＆アクティブ／アクティブ型

稼動系サーバ

DBサーバ

ハートビート

データ転送

データ

稼動系サーバ

DBサーバ

データ

②データミラー型＆アクティブ／スタンバイ型

稼動系サーバ

DBサーバ ハートビート

データ転送
データ

待機系サーバ
DBサーバ
（停止中）

データ

③ディスク共有型＆アクティブ／アクティブ型

稼動系サーバ

共有ストレージ

DBサーバ DBサーバハートビート

データ

稼動系サーバ 稼動系サーバ

共有ストレージ

DBサーバ DBサーバ
（停止中）ハートビート

データ

待機系サーバ

④ディスク共有型＆アクティブ／スタンバイ型

図1　4つのデータベースクラスタリング構成（システム構成図） ▼

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

78 - Software Design Sep. 2014 - 79

異なります。詳細は後述します。

① データミラー型＆アクティブ／
アクティブ型

　「MySQL Cluster」に代表されるのが、共有
ディスクを使わず、かつすべてのノードがアク
セス可能な構成です。データベースへの同時ア
クセス数やデータ量に応じてサーバを追加して、
柔軟に拡張できることが最大のメリットです。
また、サーバ台数が2台に限定されますが、双
方向にデータレプリケーションを行う構成も類
型と言えます。
　たとえば、MySQLのレプリケーションでは、
双方向のレプリケーション構成とすることが可
能です。ただし、トランザクションはそれぞれ
のノードで管理され、非同期でデータが相互に
転送されるため、データの変更順が保証されず
データの矛盾が起きてしまう可能性があります。
MySQLのレプリケーションでは、この矛盾の
検知や解決はできません。ID番号別にデータ
変更するサーバを固定するなど、「同一のレコー
ドは、同時に別のサーバで変更しない」ように、
アプリケーション側での作り込みが必要です。

② データミラー型＆アクティブ／
スタンバイ型

　「 DRBD（ Distributed Replicated Block

Device）」注1や「SIOS LifeKeeper」などのクラ
スタリングソフトウェアで実現可能な構成です。
このようなデバイスレベルでの実装の場合、ス
タンバイサーバでは、データがコピーされるパー
ティションをアクティブサーバからアンマウン
トしておく必要があります。フェイルオーバー
時にはファイルシステムのマウントが行われる
ことにより、時間を要する場合があるので注意
が必要です。
　また、DRBD単体ではハートビートパケッ
トによる障害検知や障害時のフェイルオーバー
が行えないため、ノードの死活監視を行う
「Corosync」や、クラスタリソースの切り替え

などを行う「Pacemaker」と組み合わせて利用さ
れます。
　一方で、データベースレベルでのデータ複製
を行うMySQLのレプリケーションでは、コピー
先でもMySQLサーバが起動しており、コピー
されたデータの参照が可能となっています。そ
のため、単に高可用性としての利用だけではな
く、複数のサーバによって並列で参照処理に対
応する必要があるWebシステムのバックエン
ドとして広く利用されています。また、常に
MySQLサーバが起動しているため、フェイル
オーバーが高速になるという利点があります。

③ ディスク共有型＆アクティブ／
アクティブ型

　「Oracle Real Application Clusters」に代表さ
れる構成で、データを共有ストレージに格納し、
すべてのデータベースサーバがアプリケーショ
ンから利用可能になっています。1ヵ所にデー
タが集約されているため、テーブルを広くスキャ
ンするような処理や多くのテーブルを結合する
処理などは高速です。
　一方で、注意すべき点もあります。複数のア
プリケーションが同時に同じデータや同じデー
タブロック内のレコードを変更する処理の場合、
データの一貫性を保つためにデータベースサー
バのキャッシュの最新化処理が行われます。こ
の最新化処理により、性能低下が起きないよう
に並列実行を避ける工夫が必要です。また、共
有ディスクが単一障害点にならないよう、スト
レージデバイス、ファイバチャネル、およびス
イッチの多重化を行うため、コストが増大する
傾向にあります。

④ ディスク共有型＆アクティブ／
スタンバイ型

　多くのクラスタリングソフトウェアで利用可
能であり、小規模なシステムから大規模なシス
テムまで幅広く利用されている実績のある構成
です。類型としては、仮想マシンイメージを共

注1） http://www.drbd.jp/

第 3 章
データベースのクラスタ構成とミラーリング方式
MySQLをベースに利点と注意点を整理

http://www.drbd.jp/

80 - Software Design Sep. 2014 - 81

有ディスクに置いて運用する方法もあります（図
2）。しかし、これはフェイルオーバー時には、
仮想マシン上のOSの起動からとなるため、フェ
イルオーバーに時間がかかる可能性があります。
　アクティブ／スタンバイ型の構成を2組用意
して、平常時はすべてのサーバが稼働している
ように運用することも可能です（図3）。共有ディ
スク上に別のデータディレクトリを用意して、
それぞれのサーバで別のデータディレクトリを
利用するデータベースプロセス（インスタンス）
を起動します。データファイルを共有しないた

め、アクティブ／アクティブ型ではありません。
　片方のサーバに障害が発生すると、もう片方
のサーバで2つのデータベースプロセス（イン
スタンス）が起動され、CPUやメモリなどの利
用が増加するため、実際に利用されるケースが
かなり限定的になります。

データミラーリング方式の
詳細

　ここではデータミラー型のクラスタリング構
成におけるデータミラーリング方式を、

障害発生

稼動系サーバ

DBサーバ

DBサーバ

ハート
ビート

待機系サーバ
DBサーバ
（停止中）

DBサーバ
（停止中）

共有ストレージ

データ

データ

稼動系サーバ

DBサーバ

DBサーバ
ハート
ビート

待機系サーバ

DBサーバ
（停止中）

DBサーバ
（停止中）

共有ストレージ

データ

データ

図3　アクティブ／スタンバイ型を2組用意した擬似的なアクティブ／アクティブ型 ▼

サーバプール

共有ストレージ

VMサーバ VMサーバ

DBサーバ

VMイメージ

データ

サーバプール

共有ストレージ

VMサーバ VMサーバ

DBサーバ

VMイメージ

データ

障害発生

VMサーバ VMサーバ

図2　VMイメージを共有ディスクに置いたアクティブ／スタンバイ型 ▼

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

80 - Software Design Sep. 2014 - 81

MySQLサーバに関する構成を例に解説してい
きます。データミラー型の場合、データをコピー
するタイミングや、サーバ間でコピーされる内
容はさまざまです。
　トランザクションがコミットされた際に、デー
タをコピーするタイミングは大きく3つのパター
ンに分かれます。

・非同期：データの転送とコピー先でのデータ
への反映を待たずに、メインのサーバから
アプリケーションに応答を返す

・準同期：データの転送は待つが、コピー内容
がデータに反映されるのを待たずに、メイ
ンのサーバからアプリケーションに応答を
返す。MySQLのレプリケーションの場合、
トランザクションログのコピーは待つが、デー
タファイルへの反映は待たない

・同期：データの転送とコピー先でのデータへ
の反映を待ってから、メインのサーバから
アプリケーションに応答を返す

　性能の観点では、非同期型がデータの変更処
理に対する応答時間が最も短く、同期型が最も
長くなっています。一方で、データの耐障害性
の観点では、確実にデータがコピーされる同期
型のほうが優れています。非同期型の場合、ア
プリケーションに応答したもののデータの転送
が完了していないタイミングで、メインのサー
バが停止してしまうと、「コミットが成功した

のにデータを失ってしまう」という事象が発生
し得ます。
　準同期型は、これらの方式のそれぞれのデメ
リットを克服できます。ただし、コミットの応
答がアプリケーションに返ってきた時点では、
コピー先のデータがまだ反映されていない可能
性があります。MySQLのレプリケーションで
は、1台のサーバには準同期型としてデータを
コピーし、ほかのサーバには非同期型として同
時に配信することもできます。
　サーバ間のデータを一致させる方法を整理す
ると、表3のとおりになります。

トランザクションログのSQL文を
転送する論理方式

　MySQLのレプリケーションのデフォルトの
挙動は、マスタのバイナリログに記録された
SQL文をスレーブ注2のリレーログに転送する
「文ベース（Statement Based Format）」となっ
ています。スレーブではリレーログに書き込ま
れたSQL文を実行してサーバ間のデータを一
致させます。バイナリ化されたSQL文を転送
するため、1つのUPDATE文で100万行更新
する場合でも、サーバ間で渡されるのは
UPDATE文のみとなります。転送されるSQL

文は、バイナリログファイルに対して
mysqlbinlogコマンドを実行することで確認で
きます。
　この形式で注意すべきは、SQL文で利用す

論理方式 レコード方式 物理方式 二重永続化方式

構成例 MySQLの文ベース
レプリケーション

MySQLの行ベース
レプリケーション

DRBD、SIOS LifeKeeper
のディスクミラー MySQL Cluster

転送されるデータ トランザクション
（バイナリログの内容）

行イメージ
（バイナリログの内容） データブロック トランザクション

タイミング 非同期または準同期 非同期または準同期 同期 同期

コピー先での参照更新 参照のみ可能 ※ 参照のみ可能 ※ 参照更新不可 参照更新可能

データ不整合 関数により不整合の
可能性あり 不整合なし 不整合なし 不整合なし

表3　サーバ間のデータミラーリング方式 ▼

※MySQLのレプリケーションのスレーブ側では、データ更新はできますが、データ矛盾の検知や解決はされないため注意が必要です

注2） データのミラーリングにおいて、コピー元となるデータベースやディスクを「マスタ」と呼び、マスタからコピーされるほうを「スレー
ブ」と呼びます。

第 3 章
データベースのクラスタ構成とミラーリング方式
MySQLをベースに利点と注意点を整理

82 - Software Design Sep. 2014 - 83

る関数によってはデータの不整合が起こり得る
点です。たとえば、サーバ固有の IDである
UUIDを取得するUUID()関数や、システム日
付を取得するSYSDATE()関数などは、マスタ
とスレーブで実行されるタイミングによって返
る値が異なるため、これらの関数を利用して値
を変更する場合などに問題となります。問題と
なり得る関数やSQL文のリストは下記のURL

を参考にしてください。

参考URL：http://dev.mysql.com/doc/refman/5.6/en/
replication-rbr-safe-unsafe.html#idm47782054744
368

　これらの関数などを利用する場合には、次項
の「行ベース（Row Based Format）」、または両
方の方式のうち最適なものを自動的に選択する
「MIXED」に設定します。

データベースの行イメージを
転送するレコード方式

　バイナリログの形式を「行ベース」に設定する
と、バイナリログには変更後の行イメージが記
録されます。なお、MySQL 5.6から導入され
たサーバオプション binlog_rows_query_log_

eventsを有効にすると該当するトランザクショ
ンでのSQL文もバイナリログに記録されます。
mysqlbinlogコマンドに-vv（小文字のvを2個続
ける）オプションを付けて実行すると記録され
たSQL文をテキスト化できます。
　この形式のバイナリログを利用した「行ベー
ス」レプリケーションでは、行イメージをスレー
ブのリレーログに書き込み、その内容をスレー
ブのデータに反映します。行イメージをそのま
まコピーするため、どのような関数を利用して
も問題がなく、スレーブでのロックが最小限と
なることがメリットです。
　ただし、行イメージがバイナリログに記録さ
れて転送されるため、「文ベース」と比較してサー
バ間で渡されるデータ量が大きくなるケースが
ほとんどです。MySQL 5.6以降で利用可能な
サーバオプションbinlog_row_imageをminimal

に設定すると、主キーと変更のあった列のみを
バイナリログに記録するため、「行ベース」レプ
リケーションで転送されるデータ量を抑えるこ
とができます。また、SQL文が実行されない
ので、「行ベース」のレプリケーションではスレー
ブ側でのトリガが実行されません。

OSのデータイメージを
転送する物理方式

　DRBD（ Distributed Replicated Block

Device）は、ハードディスクなどのブロックデ
バイスの上、ファイルシステムの下で稼働し、
データブロックをLinuxサーバ間でミラーリン
グするオープンソースのソフトウェアです。
Linuxカーネルの2.6.33からカーネルモジュー
ルとしてパッケージされています。
　DRBDでは特定のディレクトリやファイル
を指定することはできず、/dev/sda1のように
表現されるブロックデバイス、またはパーティ
ション単位でのミラーリングを行います。その
ため、MySQLなどのデータベースに限らず、
ファイルシステムまたはRAWデバイス経由で
ディスクにデータを書き込もうとするあらゆる
プログラムのデータが、ミラーリング対象にな
り得ます。
　DRBDが設定された環境でデータをディス
クに書き込もうとすると、DRBDのモジュー
ルがリモートのサーバのDRBDモジュールに
内容を転送し、それぞれのディスクに実際に書
き込みにいきます。この際のデータの転送のタ
イミング、およびどこまで待機系の応答を待つ
かを決めるprotocolオプション（設定値はA、B、
C）によって、耐障害性とアプリケーションへ
の応答性能が変わってきます。
　デフォルトでは、完全同期レプリケーション
のCとなっています。これは、両ノードのディ
スクに書き込みが完了してから応答を返すので、
応答性能は最も低いものの、1台の障害ではデー
タを失うことがない最も耐障害性のある設定と
なっています。逆にAは、自機のディスクへの
書き込みとコピーするデータを自機のTCPバッ

クラスタリングの教科書
止まらないサービスを支えるシステム構築の基礎

第2特集

http://dev.mysql.com/doc/refman/5.6/en/replication-rbr-safe-unsafe.html#idm47782054744368

82 - Software Design Sep. 2014 - 83

ファに載せた段階でアプリケーションに応答を
返すため、応答性能は高いが、耐障害性が低い
設定となります。Bはその間を採った設定です。

参考URL：http://www.drbd.jp/users-guide/s-replica
tion-protocols.html

　なお、データがコピーされるブロックデバイ
スは、アンマウントされている必要があります。
MySQLのレプリケーションとは異なり、デー
タのコピーを受け取る側ではMySQLサーバを
稼働させることはできません。

データを自動的に冗長化する
二重永続化方式

　MySQL Clusterでは、SQL文の構文解析や
データの集約を行うSQLノードと、トランザ
クションの管理とデータの永続化を行うデータ
ノードにプロセスが分かれています。データノー
ドは通常2台1組でデータの二重永続化を行っ
ています。
　トランザクションを司るトランザクションコー
ディネータとして選ばれたデータノードに、
SQLノードからトランザクション内容が転送
されてきます。トランザクションコーディネー
タから該当するレコードを格納するデータノー
ドに対して、書き込み準備の確認をそれぞれ行っ
てから実際にレコードを書き込みにいく2フェー
ズコミットを行っています。これにより
MySQL Clusterは高い耐障害性を持つことが
できています。データとトランザクションログ
を書き込こんで、チェックポイントのタイミン
グでディスクに書き出すことでレイテンシを抑
えていますが、より高い性能のネットワークを
利用することが重要です。
　ハートビートパケットをノード間で相互に送
ることによって障害の検知を行い、ノードに障
害が発生すると自動的に構成から外され、残り
のノードで処理を継続します。アプリケーショ
ンからSQLノードへの接続に関しては、
JDBCドライバのConnector/Jなどの接続部品
の機能で接続の切り替えが可能です。

　なお、MySQL Cluster構成内のMySQLサー
バのバイナリログにトランザクション情報を集
約する「Binlog Injector」と呼ばれるしくみがあ
り、このバイナリログを使ってほかのMySQL

Clusterに対して非同期レプリケーションを行
うことができます。この非同期レプリケーショ
ンをデータセンター間で行うことで、ディザス
タリカバリ構成とすることが可能で、大手の通
信事業者の加入者データベースなどでも利用さ
れています。さらに高い可用性が必要となる場
合は、同じデータを持つデータノードを複数の
データセンターに配置して、レイテンシの極め
て低いネットワークでつなぐことで1つのクラ
スタ構成とする方法もあります。
　MySQL Clusterでは、データを各テーブル
の主キーでパーティショニングを行って複数の
データノードに分散配置します。構成するサー
バを追加することでスループットやデータ容量
を柔軟に拡張できます。サーバ追加時には自動
的にデータの再構成がバックグラウンドで行わ
れます。さらに、レイテンシを最小限に抑えた
C++やJavaなど複数のNoSQL APIによって
高速なデータアクセスを実現しています。

まとめ

　データベースのクラスタリング構成の中でも、
データミラー型は共有ストレージやファイバー
チャンネルハブなどのストレージ関連機器が不
要なため、低コストで高可用性構成を実現でき
ます。アプリケーションの要件に応じたデータ
ミラーのタイミングおよび方式の選択が可能と
なっているのも大きな利点です。とくに同時多
発的に大量のトランザクションが発生するアプ
リケーションや初期投資を抑えつつも将来的な
利用者の増加に対応する必要があるシステム向
けには、MySQL Clusterによる高い拡張性を
備えた高可用性構成を活用できると思います。
ﾟ

第 3 章
データベースのクラスタ構成とミラーリング方式
MySQLをベースに利点と注意点を整理

http://www.drbd.jp/users-guide/s-replication-protocols.html

84 - Software Design

SoftLayerが注目される理由

　SoftLayerは、今もっとも注目されている
IaaS型クラウドの1つです。IBMは2013年7

月に、SoftLayer Technology社を買収し、そ
れ以降 IBMのクラウドサービスとして展開す
ることになりました。2014年1月に追加投資
を行い、新たにデータセンターを世界中に開設
しています。最近では6月に香港、7月にロン
ドンデータセンターが完成し、日本でも2014

年中にデータセンターが開設される予定です。
　昨年まで「SoftLayer」を知らなかった方も多
いのではないでしょうか。実は、海外では
「Hostcabi.net」の人気ランキングでは常にトッ
プ 5入 り す る ク ラ ウ ド で す。欧 米 で は
slideshare.net、yelp、Citrix Systemsなどが、
日本では、データホテル、東芝 クラウド＆ソ
リューション、東急ケーブルネットワークなど
がSoftLayerの顧客です。このSoftLayerにつ
いて、いくつかの特徴を挙げて解説します。

高速なグローバルネットワークが
低コストに使える！

　図1に示すようにSoftLayerは、全世界にあ
る16のデータセンター、19のネットワーク拠
点間で、高速で安定したグローバルネットワー
クを提供しています（2014年7月現在）。この
グローバルネットワークは、複数のキャリアの
10Gbpsリンクを冗長構成した高速なネットワー

クです。2014年中にさらに拡張される予定です。
SoftLayerのユーザは、このグローバルネット
ワークを無料で使用できます。パブリックネッ
トワークからのインバウンドトラフィックにつ
いても無料です。パブリックネットワークへの
アウトバウンドトラフィックに関しては、仮想
サーバを使用していれば、1仮想サーバにつき
5TB／月まで無料です。物理サーバを利用し
ていれば、1物理サーバにつき20TB／月まで
無料で使えます。たとえば、アウトバウンドの
ネットワークトラフィックが大量に発生する動
画転送システムなどが、とくにSoftLayerと相
性が良さそうです。

ベアメアタルサーバでクラウドが
もっと自由になる！

　もう1つの特徴として、仮想サーバをクラウ
ド上に作るのと同様の手続きで物理サーバを作
成できるという点が挙げられます。シンプルな
物理サーバならば小一時間で、複雑な構成のサー
バでも数時間で作成できます。物理サーバをク
ラウド上に作成できるので、実現したいシステ
ムのバリエーションが増えます。たとえば、サー
バ仮想化やデスクトップ仮想化が挙げられます。
そしてOpenStack、CloudStackなどを使った
プライベートクラウドもクラウド上に構築でき
るようになります。つまり、ユーザはオンプレ
ミスのシステムをたやすく移行できるのです。
　また、作成されたサーバは、パブリックとプ
ライベートネットワークの2つのインターフェー

SoftLayerを
使ってみませんか？

ベアメタルクラウド活用入門

 Writer 常田 秀明（ときだ ひであき）　日本情報通信㈱　Hideaki_Tokida@NIandC.co.jp

IBMが満を持してサービスを開始したクラウドサービス「SoftLayer」を紹介します。全3回の予定で、まずはその
使い方を入門的に紹介し、次回は少し応用的な例を、そして3回目ではMVCモデルに基づいたWebシステムの構
築例を解説していきます。今回は、ベアメタルサーバの特徴をおもに紹介します。

IBMがリリースする真打ちクラウド特別企画

 北瀬 公彦（きたせ きみひこ） 日本アイ・ビー・エム㈱　kitasek@jp.ibm.com

84 - Software Design Sep. 2014 - 85

SoftLayerを使ってみませんか？ ベアメタルクラウド活用入門

スを持ちます。これらはVLANで実現されます。
パブリックネットワークでは、ファイアウォー
ルやロードバランサなどのネットワークサービ
スを配置できますし、プライベートネットワー
クでは、iSCSI、NASなどのストレージを配
置できます（図2）。
　さらに、仮想サーバからイメージを作成し、
そのイメージをもとに物理サーバを作成できま
す。開発環境では仮想サーバを使用し、本番環
境で物理サーバを利用するなど利用シーンに応

じて使い分けもできます。そして非常にたくさ
んのAPI（Application Programming Interface）
も用意されています。このAPIにより、仮想、
物理、両サーバを、スクリプトやアプリケーショ
ンからコントロールできます。

SoftLayerはインフラエンジニアの
技が活かせる！

　SoftLayerには、ベアメタルサーバを提供で
きるという大きな特徴があります。つまり、ク
ラウド上であっても、インフラエンジニアがこ

冗長化された10Gのネットワーク
マルチキャリアで構成
低遅延：60～80ms
広帯域：10Mbps～10GPsまで選択Network PoP Datacenter（2014年6月現在） Datacenter（2014年中）

Paris

Brazil

Miami

Washington D.C.
New York City
MontrealTronto

Chicago
Denver

Dallas

Houston

Mexico City

Los Angeles

San Jose

Japan
China

Hong Kong

Singapore

Melbourne
Sydney

India

Seattle

Atlanta

Frankfurt
AmsterdamLondon

Dubai

 ▼図1　SoftLayerのグローバルなネットワーク構成

パブリック プライベート

インターネット

アウトバンドマネージドネットワーク

Network
Security

Load
Balancer

Firewall*

Firewall*

Server*

Server*

iSCSI* NAS* Online
Backup*

OS Update Security DNS
Resolvers

IPSECPPTP VPNSSL VPNVPN Edge Router

*Indicates Premium Service

トランジット

ネットワーク ネットワーク

 ▼図2　ベアメタルサーバを含むシンプルな構成

86 - Software Design

れまでに培ってきたスキルを使って、クラウド
上にシステムを構築できることを意味します。
新たに複雑なクラウドサービスメニューを覚え
る必要はありません。オンプレミスのシステム
とほぼ同じアーキテクチャを使い、クラウド上
にシステムを構築できます。その意味では、非
常にわかりやすいクラウドだと言えます。

SoftLayerの使い方

【1st step】アカウントの作成

　このサービスを利用するには、SoftLayerと
契約し、アカウントを取得する必要があります。
利用契約が完了すると、実際に IaaSを利用で
きるようになります。このアカウントを利用し
てSoftLayerのさまざまなサービスを利用する
ことになります。
　アカウントの発行は無料です。しかし、アカ
ウントを作るためには必ず1台サーバを作成（購
入）しなくてはなりません。「ハードルが高い！」
と感じられるかもしれませんが、実際には無料
トライアルを利用してアカウントを発行するこ
とになります（この無料トライアルに参加する
ことにより、最小構成の仮想サーバが1台1ヵ
月利用できます）。
　このアカウントで、サーバの作成やネットワー
ク環境の構成以外にも支払精算の管理もする必
要があります。使用するサービスにより、時間
課金・月課金など課金のタイミングが違うもの
もあります。また支払い方法を変更することも
可能ですので適切に設定しておきましょう。こ
のアカウントがあれば何でもできてしまうので、
くれぐれも紛失したり不用意に公開したりしな
いようにしましょう。この無料トライアルを使
用して、SoftLayerの利用を始めましょう注1。

注1） アカウントが不要になった場合には、キチンとサーバを「削
除」しておきましょう。

【2nd step】サインアップからの物理
サーバの購入方法

　アカウントを作成し、サービスを開始する手
順は次のようになります。

①キャンペーンを探す
②初期のサーバ購入（アカウントの登録）
③ポータルへのログイン、利用ユーザの登録
④SoftLayerのサービスを使う

　最初の「キャンペーン」を探すのは重要です。
アカウントを作成したあとでも、まれに掘り出
し物がある可能性があります。

【3rd step】サーバ作成手順

　実際にSoftLayerのサイトからサーバを作成
する手順を示します。利用できるサーバはたく
さんありますが、一般的な無料トライアル
（https://www.softlayer.com/promo/freeCloud）
で利用できるサーバは、仮想サーバの最小スペッ
クモデル（CPU 1.2GHz Core/RAM 1GB/HDD

25GB/Public 5GB Bandwidth、1 IP Address、
100Mbps）にあたります。　今回は特別なキャ
ンペーン「ロンドンリージョン開設記念 500$

クーポン」を利用してサーバを購入します。こ
れで「Bare Metal Servers」と呼ばれる物理サー
バを利用できます。もし、すでにアカウントを
持っている場合にも、1回だけクーポンコード
が利用できるので試してみましょう。

【注意】キャンペーンは最初の1ヵ月だけ有効です。
それ以降課金されては困る方は、利用し終わった
ら管理ポータルから［Device］-［Device List］-
［Action」-［Device Cancel］を選択して、サーバを
削除してください。

キャンペーンをチェック
　2014年7月14日に「ロンドンリージョン」が開
設されました。その記念に IBMはDCオープンキャ
ンペーンを行っています。登録後1ヵ月有効の
＄500分が無料になるプロモーションコードを配
布しました。

COLUMN

https://www.softlayer.com/promo/freeCloud

86 - Software Design Sep. 2014 - 87

SoftLayerを使ってみませんか？ ベアメタルクラウド活用入門

①www.softLayer.comのキャンペーンバナー
から［Order Now and Save $500］をクリッ
クして進む。バナーが出ていない場合は、
www.softlayer.com/info/london-hosting
にアクセスする

②キャンペーンの説明がされているページから
［Order Today］を選択する。コードは「500LN」
となり2014年9月30日まで利用可能

③［Bare Metal Servers］の選択画面が出てく
るので好きな構成を選び、［Buy now］をク
リックする

④DataCenterは間違いなく［LON02］を選択し
＄500を超えないようにする。［Add Order］
をクリックする

⑤右の［Promotion Code］に先ほどのコードを
入力して［Apply］をするとProrated Totalと
Initial Chargeが$0になる（忘れずに実施す
るように）。その後画面のクレジットカード
情報などを入力してオーダーする

　・全角文字は使用できない
　・�氏名、会社名などの情報は、クレジットカー

ドに登録されているものと整合性が取れて
いる必要がある

　・�必ず英語で、かつアメリカの住所表記方法
に準拠する必要がある

　・�メールアドレスはSoftLayerからの通知な
どに利用される

　・�「Host Name」「Domain Name」はSoftLayer
の管理画面上の表記であるので自由に決め
る（Domain Nameはプロジェクトやシステ
ム名にしておく程度の意味合いでかまわない）

⑥オーダーを実施すると、登録したメールアド
レスに件名「Your SoftLayer Technologies,
Inc. Order # 2***** has been received」の
メールが届く

⑦30分程度でアカウント作成のメールが届く。
記載されている用意されたマスターユーザ、
パスワードを使用してSoftLayer Customer
Portal：https://control.softlayer.com（以

降管理ポータル）にログインする。場合によっ
ては、確認のための電話があるが、簡単な
確認事項なので落ち着いて対応する

物理サーバのオーダー
について

　「物理サーバ」をオーダーする際に少し気をつけ
ることがあります。SoftLayerでは要求されたハー
ドウェアが用意できない場合に上位互換のハード
ウェアが提供されることがあります。たとえば
2coreを注文したのに4coreであったりとかメモ
リが多くなる、ストレージのサイズが大きくなる
などが挙げられます。「ラッキー！」という場合は
良いのですが、ライセンスの問題などもあり
2coreなければ問題があるという場合などはサポー
トチケットにてその旨を伝えて調整をしてもらう
ようにしましょう。裏技的にはアップグレード前
提で小さめに頼んでみるのも良いかもしれません。

COLUMN

【4th step】インスタンスに
ログインしてみよう

　管理ポータルに接続します。SoftLayerを利
用するには、管理ポータルからすべてを行うこ
とになります。
　メニューより［Devices］-［Device List］をク
リックします。作成したサーバはここにリスト
されます。作成中は、サーバ名の左に時計のア
イコンが表示され、カーソルを載せるとステー
タスが確認できます。サーバが作成されれば、
時計アイコンが消えます。
　作成したサーバにログインするために、接続
先のIPアドレスとパスワードを確認してみます。

①［メニュー］→［Device］→［Device List］を選択
②デバイスリストの中から先ほど作成したサー

バを選択してクリック
③IPアドレスは画面に、Public IP/Private IP

として表示される
④タブ［Passwords］をクリックして表示され

る表からrootパスワードを取得する

　この、Public IPアドレスに対してログイン
をしてみましょう、利用したOSがLinux系の
場合には、ssh root@IP_Addressで接続がで

http://www.softLayer.com
http://www.softlayer.com/info/london-hosting
https://control.softlayer.com

88 - Software Design

きるようになっています。

【5th step】SoftLayerの
クラウド環境の特徴

　クラウドサービスはWebホスティングと違い、
1台のサーバがインターネット上に存在してい
るだけではありません。通常のオンプレミスと
同様に「サーバ」、「ネットワーク」、「ストレージ」
のリソースがクラウド上にも用意されています。
先ほど作成した物理サーバは、仮想ネットワー
クの上に構築されています。
　また、ObjectStorageのようなストレージサー
ビスやファイアウォール、負荷分散装置といっ
たネットワークサービスが利用可能です。この
ようにクラウド上に自分専用のシステム基盤環
境があり、その中にサーバなどのリソースをレ
イアウトしてシステムを作成できるようになっ
ています（図3）。
　SoftLayerでは、大きく2つのネットワーク
があります。「パブリックネットワーク」と「プ
ライベートネットワーク」です。管理ポータル
より、［Devices］-［Device List］をクリックし、
作成したサーバを確認すると、それぞれのIPア
ドレスがわかります。「パブリックネットワーク」
にはインターネットのトランジットと接続され
ている「Core Network」と、利用者のインター
ネット側のネットワークである「Frontend

Customer Network」があります。「プライベー
トネットワーク」には利用者のプライベート側
のネットワークの「Backend Customer Network」
とSoftLayerの提供するサービス群が配置され
ている「Backend Service Network」があります。
　作成されたサーバは、「Frontend Customer

Network」と、「Backend Customer Network」に
それぞれ所属しています。また、サーバの種類
によっては「Management Network」が接続され
ていることもあります（これはKVMなどのメン
テンナンス時に利用します）。それぞれわかり
やすくするために「パブリックネットワーク」「プ
ライベートネットワーク」と記載していきます。
　先ほどのサーバの設定を見ていきます（図4）。

「パブリックネットワーク」「プライベートネッ
トワーク」に対してIPアドレスが振られている
状態であることがわかります。
　物理サーバの場合には、負荷分散や障害対応
のために複数のNICをまとめて（ボンディング）
使うようになっています。bond1(eth4,eth6)
が「パブリックネットワーク」を示して、
bond0(eth5,eth7)が「プライベートネット
ワーク」に該当します。
　メンテナンス用のKVMなどを利用するため
の「Management Network」に接続されているIP

についてはサーバによってはeth*として表記
される場合もありますし、今回のように表示さ
れない場合もあります。　管理ポータルより、
［Devices］-［Device List］をクリックし、作成
したサーバをクリックします。「Remote

Mgmt」をクリックすると「Management IP」が確
認できます。この IPに対して、VPN経由でプ
ライベートネットワークよりブラウザで接続す
ると、物理サーバのマザーボードへ接続して操
作ができます。このあたりをいじることができ
るのも物理サーバの楽しさかと思います。購入
時に構成したRAID構成を変更したい場合には、
KVMで接続した後にBIOSのRAIDコントロー

Core Network

Frontend Customer Network

Backend Customer Network

インターネット

リ
ー

ジ
ョ

ン

パブリックネットワーク

プライベートネットワーク

Backend Service Network

 ▼図3　SoftLayerの基本的なネットワーク構成

88 - Software Design Sep. 2014 - 89

SoftLayerを使ってみませんか？ ベアメタルクラウド活用入門

ラ構成で行うことができます。
　サーバの購入時に、「Private Network Only」
と呼ばれるオプションを選択すると「プライベー
トネットワーク」には所属しない構成も取るこ
とができます。名前からもわかるように「パブ
リックネットワーク」は直接インターネットと
通信ができるグローバルアドレスが付与されま
すので、社内システムなどで外部との通信が不
要な場合には設定する必要はありません。
　図5のように、ルーティングを見てみると、
Private Network (10.0.0.0)に対しては
ルーティングが切られており、デフォルトゲー
トウェイはパブリックネットワーク側であるこ
とがわかります。
　SoftLayerのネットワークではリージョン、
VLAN、サブネットという概念があります。リー
ジョンとは、SoftLayerのサーバが置かれてい
るデータセンターの場所のようなもので、サン

ノゼ、ダラス、シンガポールや香港といった地
域ごとに作られています（早く東京ができてほ
しいところです。レイテンシが低く快適になり
ます）。リージョンの中には、VLANが複数あ
ります。VLANはプライベートネットワーク
にもパブリックネットワークにも存在しており、
任意に追加できます。そしてVLANを構成す
るのは複数のサブネットです。サブネットは
IPネットワークのサブネットであり、
［10.112.34.192/26］のように表現されます。
実際のサーバはこのサブネットに所属していま
す。
　SoftLayerでは、VLANはブロードキャスト・
ドメインであることを表しています。したがっ
て同じVLANに所属しているサブネット間で相
互に通信ができます。使うときには同じVLAN

であるかを気にしておけば問題ありません。

root@provisiontest1:̃# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 5.10.107.225-st 0.0.0.0 UG 0 0 0 bond1
5.10.107.224 * 255.255.255.240 U 0 0 0 bond1
10.0.0.0 10.112.34.193 255.0.0.0 UG 0 0 0 bond0
10.112.34.192 * 255.255.255.192 U 0 0 0 bond0

 ▼図5　ルーティング構成の確認

root@provisiontest1:̃# ip a ¦ grep -e ":.eth" -e ":.lo" -e ":.bond" -e "inet "
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
 inet 127.0.0.1/8 scope host lo
2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
3: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
4: eth2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
5: eth3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
6: eth4: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP ｭ
group default qlen 1000
7: eth5: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond1 state UP ｭ
group default qlen 1000
8: eth6: <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 qdisc mq master bond0 state ｭ
DOWN group default qlen 1000
9: eth7: <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 qdisc mq master bond1 state ｭ
DOWN group default qlen 1000
10: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group ｭ
default
 inet 10.112.34.196/26 brd 10.112.34.255 scope global bond0
11: bond1: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group ｭ
default
 inet 5.10.107.228/28 brd 5.10.107.239 scope global bond1

 ▼図4　IPアドレスの状態確認

90 - Software Design

【6th step】セキュリティの設定

　パブリックネットワークを利用している場合、

すべてのポートがオープンしている状態のため
非常に危険ですのでセキュリティの設定をする
必要があります。一部の機能については次回で
詳しく紹介をしていきたいと思いますが、ここ
では最低限実施しておいてほしい内容を書いて
おきます。

 システムの最新パッチの適応
　プライベートネットワークだけの環境でも
Windows Updateや各種Linuxのパッケージが
導入可能なリポジトリが用意されています。導
入時にリポジトリの参照先がSoftLayerのもの
に変更されていますので、とくに意識すること
なく各種OSのアップデートを利用できます。

 SSL-VPNの設定
　SSL-VPN接続では、プライベートネットワー
クに接続されます。この機能を利用して普段の
作業についてはプライベートネットワーク側か
ら利用することを勧めています。SSL-VPNの
設定はポータルから行うことができます。簡単
に流れを記載しておきます。また、ここでは記
載しませんが子ユーザごとに設定ができます。

①メニューの［Account］から［VPN Access］を
クリックする

②利用したいアカウントの［VPN Access］をク
リックする

③ダイアログで［VPN Type］を選択する画面が
でるので［SSL ＆ PTP］を選択し、右下の

［Save」をクリックする
④SSL-VPNを利用するパスワードを決める必

要があるため［Account］→［User］から該当
のユーザをクリックして選択する。［VPN
Password］に適切な値を入れて［EditUser］
をクリックする

⑤SSL-VPNクライアントは、Javaプラグイン

で動作する。Internet ExplorerかFirefoxを
利用して管理ポータルメニューの［Support］
→［Help］→［SSL-VPN login］をクリックして
ログイン画面を表示する。そのあと、さきほ
どのパスワードでログインが可能になる

 Firewallの適応
　サーバを保護するためのFirewallは複数の
サービスが用意されています。ここではまだ何
も購入していませんのでOS上の機能で保護を
しておきましょう。Linuxの場合には iptables

などを利用します。設定を簡単にするためにオ
プションで Advanced Policy Firewall（APF）
を利用することも可能です。上記のSSL-VPN

を利用するように構成したうえでパブリックネッ
トワークのインターフェースに対して必要最低
限のサービスポート以外はすべて閉じておきま
しょう。SoftLayerで提供されているFirewall

については次回説明をしたいと思います。

 バックアップ
　いざというときに備えてバックアップを取得
することは重要です。物理サーバを利用してい
る場合には2つの選択肢があります。1つは
RHELやWindowsサーバを選択している場合
で、「Flex Image Backup」が利用可能です。こ
れは物理と仮想を行き来することができるバッ
クアップのしくみです。もう1つはそのほかの
OSの場合に利用することになるEVaultバッ
クアップサービスになります。仮想サーバの場
合には、「Image Template」機能でバックアッ
プが実施可能です。いずれの場合においてもシ
ステムを維持運用するためにはバックアップの
設計はしっかりしておきましょう。

【7th step】アカウント管理

　SoftLayerのアカウント管理の特徴を紹介し
ます。最初に発行されたユーザは「マスターユー
ザ」であり、名称の先頭にSLが付きます（例：
SL012345678）。このSLユーザには、氏名や

90 - Software Design Sep. 2014 - 91

SoftLayerを使ってみませんか？ ベアメタルクラウド活用入門

住所、クレジットなどの請求情報が紐づきます。
　そして1つの企業に対して基本的には1SL環
境です。正確には、1つのクレジットカードあ
たり1つのSL環境です。したがってコーポレー
トカードなどを利用して復数の環境が欲しい場
合は、別途SoftLayer側の調整が必要になりま
す（ご注意！）。
　この最初のアカウントを以降「マスターユー
ザ」と呼びます。これが管理者の権限を持つユー
ザです。このマスターユーザに紐づいた子ユー
ザをいくつでも作れます。実際にはこの子ユー
ザで運用します（以降、子ユーザは「ユーザ」と
します。ユーザには任意の名前を付与できます）。
　ユーザに関しては用途に応じてさまざまな権
限をつけられますので、役割に応じて付与する
と良いでしょう。またユーザ単位に公開する
「サーバ」なども選択できますので、プロジェク
ト単位での管理面にも利用できます。API経由
でSoftLayerの環境を利用する際にも、ユーザ
ごとのAPIキーが発行されるので権限を制限
して利用してください。

 わからないことはサポートを利用
　SoftLayerのサポートは残念ながら（？）英語
だけのサービスですが、契約をすると無料で利
用できます。このサポートでは、障害の対応や
一般的な利用方法（仕様の確認）、また料金につ
いてなど、さまざまな内容を問い合わせできま
す。しかも柔軟に回答してくれるので非常に便
利です。使用していて、障害なのか仕様なのか
わからない場合、どんどん「サポート」に質問し
たほうが早く原因がわかります。追加コストが
かからないことはとても魅力的ですが、すべて
英語ですので少しハードルが高いかもしれませ
ん。ただ、筆者の英語力は低いのですが、判別
しにくいエラーメッセージの羅列を送っても親
切に対応してくれます（日本語での支援が必要
な場合には、日本SoftLayerユーザグループ :

http://jslug.jp のメーリングリストに質問すれ
ば、誰かが答えてくれるかもしれませんので、

このメーリングリストに参加することをお勧め
します。参加は、users-join@jslug.jpに空メー
ルを送信し、返信メールのリンクから承認する
だけです）。
　サポートは「オンラインチャット」「サポート
チケット」があります。チャットでは、すぐに
質問できる内容やオーダー時に悩んだ点などを
確認できます。ちなみに会話を長時間放置して
いても大丈夫ですので、翻訳する時間が十分あ
ります注2。まれにチャットで相談していると、
SoftLayerの運用側の方が代わりに操作してく
れることもあります。チャットは終了時に履歴
を保存できるので利用すると便利です注3。
　実際にシステムを利用していくうえでは、チ
ケットでの問い合わせが頻繁に行われます。こ
れは掲示板のような画面で表示されます。問い
合わせの履歴が見られ、エビデンスとしても便
利なのでサポートチケットでの問い合わせを行
い、補足としてオンラインチャットを使用する
方法が良いでしょう。
　障害が発生した際に、サポートは強力に利用
者の力になってくれます。必要に応じて実際に
サーバの中に入り確認をしてくれたりします。
筆者もこれまで何回もサポート側で対応をして
もらって助かったことがあります。

まとめ

　SoftLayerの物理サーバのインストール例と、
その使い方の簡単な解説を行いました。次号で
は、ネットワークの構成例やNFVの利用の紹介、
そしてサーバ構築時のTipsや簡単なAPIの使
い方など、少し応用的な事例を紹介していきま
す。ﾟ

注2） 海外にあるSoftLayerのサポート担当者と質問、依頼をや
りとりすることになるため、書き込む時間によっては対応
が遅くなるケースもあります。

注3） 質問をクローズする際、原則として質問者側がクローズし
ます。なお、5日間更新がない場合はサポート担当者から
クローズする旨の連絡が来るため、延長したい場合には質
問者側で延長する旨を連絡する必要があります。

92 - Software Design

うように自動的に切り替わります（図2）。この
処理はカーネルおよびドライバが担当しますの
で、通信を実施しているソフトウェアは何もす
る必要がありません。チーミング技術がよく使
われるのはこの用途です。故障が発生してシス
テムが使用不可能になると、被る損害が大きい
場合などにこうした構成が用いられます。
　本稿では前後編に分け、この技術をフェイル
オーバーの目的ではなく、「通信速度の向上」の
ために利用するというちょっと変わった方法を
紹介します。前編となる今回は、チーミングを
利用して通信速度を引き上げるその必要性や、
どういった特徴をもった通信を実現できるのか

ポートをまとめる
チーミングとは
～よく使われるのはフェイルオーバー

　基幹システムの開発などにおいては、複数の
NICのポートをまとめあげて1本の論理チャン
ネルとして利用することがあります。これはチー
ミング（teaming）と呼ばれ注1、おもにフェイル
オーバーの目的で使われています。ホスト間を
複数のネットワークケーブルで接続することで、
ホストとホストを結んでいるケーブルやNIC

のポート、またはそのチップなどに故障が発生
した場合でも、残りのポートとケーブルを使っ
て通信を維持しようというわけです。
　たとえば図1のように、ホストAとホストB

をフェイルオーバー目的のチーミングで接続し
たとします。2本のLANケーブルをチーミン
グして1本の論理チャンネルのように扱います。
この場合、1本がメイン回線（アクティブ）、も
う1本が予備回線（待機）となります。普段使わ
れるのはメイン回線です。
　この状態でメインの回線を切断したり、メイ
ン回線側のポートが故障するなどして通信が不
可能になると、通信はもう1本の予備回線を使

注1） チーミングは、Linuxでは使われているモジュールの名前
から「ボンディング」と呼ばれることがあります。また、
FreeBSDでは lagg（4）インターフェースが使われることか
ら「ラグ」といった呼ばれ方をされます。

 ▼図1　フェイルオーバー目的のチーミング構成

 ▼図2　メイン回線が通信不能になった場合の動作

アクティブ

待機

フェイルオーバー

ホストB

ホストB

ホストA

ホストA

待機
NIC

NIC NIC

NIC

切断

アクティブ

実力
検証

ネットワークを行き来するデータは増え続け、インフラ担当者には常に高速化が要求されます。より高速な通信機器に交換で
きればよいですが、立ちはだかるのはコストの壁です。そこで以前からある手法、「チーミング」を再考してみましょう。本稿
では前後編に分け、チーミングの手法と特性、そしてどの程度の高速化が見込めるのかを実験によって検証していきます。

後藤 大地（ごとう だいち）　㈲オングス　代表取締役

リンク・アグリゲーションってなに?前編

NICをまとめて
高速通信!

Sep. 2014 - 9392 - Software Design

を解説します。後編となる次回は、実際に8本
のLANケーブルをチーミング（リンク・アグリ
ゲーション）して、通信性能がどのように変化
するのかを紹介する予定です。

高速通信の実現に
使えるチーミング
～リンク・アグリゲーションとは

　現在、エンタープライズシーンでもコンシュー
マシーンでも、もっとも広く普及している有線
ネットワークは「1GbE」で構成されたネットワー
クです（図3）。このネットワークの通信速度で
は不十分なケースを考えます。MTU（Maximum

Transmisson Unit）の値を変更することで多少
の高速化は実現できますが、大幅な向上は難し
いところがあります。簡単に思いつく方法は、
1GbEのネットワークを10GbEのネットワーク、
40GbEのネットワークといったより高速なネッ
トワークへ置き換えることです（図4）。
　これはシンプルでわかりやすい方法です。実
現できるならもっともよい選択肢の1つといえ
ます。しかし、いくつかの理由でこうした変更
が困難、またはこれだけでは不十分な場合があ
ります。たとえば次のようなケースです。

・10GbEや40GbEに対応したネットワークア
ダプタやスイッチングハブといった製品の価
格は下がってきてはいるが、それでも現行の
1GbEの関連機材と比較するとかなり高価。
予算的に導入することができない

・10GbEや40GbEに対応したデバイスに置き
換えることは予算的には十分可能だが、それ
でもまだ速度が足りない

　既存のネットワークインフラストラクチャを
すべて10GbEや40GbEに置き換えようとすれ
ば、規模によってはかなりの予算が必要になり
ます。1GbEの機材の価格帯から考えると、そ
の必要性がかなり高い場合を除いてこの選択肢
を取るのは難しいでしょう。10GbEや40GbE

の関連機材の価格帯が現在の1GbEの価格帯ま

で下がってくるまで、1GbEの技術の枠の中で
高速化を実現したいと考えます。この場合、
1GbEを何本か組み合わせて通信の高速化を狙
います。こうしたケースで使える技術がチーミ
ングの中でもとくに「リンク・アグリゲーション」
と呼ばれる技術です。
　もう1つは10GbEや40GbEに変更しても、
それでもまだ通信速度が足りないといったケー
スです。こうしたケースでは、10GbEや
40GbEといったネットワークに切り替えたう
えで、さらに高速化の手段を取る必要がありま
す。こうしたケースでもリンク・アグリゲーショ
ンを使って通信速度の引き上げを実現すること
ができます。
　リンク・アグリゲーションでは複数のポート
をまとめて1つの論理チャンネルのように扱い
ます（図5、6）。オペレーティングシステムの
レイヤから見ると、この処理はカーネルやリン
ク・アグリゲーションドライバが担当しますの
で、ユーザランドで動作しているソフトウェア
には一切の変更が必要ありません。必要に応じ
てまとめ上げる本数を増やしたり、減らしたり
といったことも、ソフトウェア側は変更するこ
となく実現できます。
　複数のポートをまとめて1つの論理的なチャ
ンネルのように見せかけるためには、ポートや
ネットワークデバイスの間でそうした情報をや

実力
検証 NICをまとめて高速通信!

リンク・アグリゲーションってなに?前編

 ▼図3　1本の1GbEで接続されたホスト

 ▼図4　高速通信したいなら、もっと高速な
　　 ハードウェアへ変更する

ホストBホストA

1GbE

ホストBホストA

10GbE/40GbE/100GbE

NIC

NIC

NIC

NIC

94 - Software Design

いった顕著なケースを見てみましょ
う。これは天文学関連の観測データ
の処理などで見られるケースです。
アンテナで受信される大量のデータ
を処理するためには、スーパーコン
ピュータに分類される高速なマシン
で処理をこなす必要があります。こ
うしたマシンはアンテナの近くに設
置することはできませんので、アン
テナ付近からスーパーコンピュータ
までデータを高速に送信する必要が
あります。
　こうしたケースで活用できる技術
の1つがリンク・アグリゲーション
です（図7）。アンテナからデータを
吸い出すデータ集約サーバは一切の
データをディスクに書き込みません。

りとりする必要があります。そのやり取りを規
定したものが「IEEE 802.1AX Link Aggregation

Control Protocol（LACP）」です。メーカーが
独自に開発したプロトコルも存在しています。
LACPを使い、どの物理ポートが1つの論理チャ
ンネルとして設定されているかをネットワーク
デバイスが知ることで、複数の回線を利用した
通信が実現されています。LACPという言葉
が使われている場合、ここでの説明に使ってい
るリンク・アグリゲーションのことだと考えて
ください。

1. 大量の観測データを処理
　する必要があるケース
　10GbEや40GbEでは通信速度が足りないと

大量のメモリを搭載しておいて、データはいっ
たんメモリ上に保持します。この状態からその
ままリンク・アグリゲーションで構築されたネッ
トワーク経由でスーパーコンピュータへデータ
を送ります。スーパーコンピュータ側では送ら
れてきたデータを処理し、分析や集計などを実
施したあとの必要なデータだけをストレージ領
域に書き込みます（そうしないとデータ量が膨
大過ぎるためです）。

2. 上流だけは太く
　接続したいケース
　上流部分だけ通信速度が高速にできればよい
といった場合にもリンク・アグリゲーションを
活用できます。たとえば拠点Aと拠点Bといっ

データ集約
サーバ

 ▼図7　リンク・アグリゲーションを利用してデータの高速転送

 ▼図5　チーミング（リンク・アグリゲーション）
　　 例1：2本を1つの論理チャンネルへ

 ▼図6　チーミング（リンク・アグリゲーション）
　　 例2：4本を1つの論理チャンネルへ

1つの論理チャンネル

1つの論理チャンネル

ホストB

ホストB

HPC

ホストA

ホストA

大量のデータ送信

NIC

NIC NIC

NIC

NIC NIC

Sep. 2014 - 9594 - Software Design

た異なるネットワークを接続する
部分だけ高速にできればよい、と
いったケースです（図8）。10GbE

の機材を購入しなくても、既存の
1GbEのネットワークにいくらか
の機材を追加するだけで対応でき
るので、コストを抑えながら高速
通信も実現する必要があるといっ
た場合に活用できます。
　10GbEのネットワークアダプ
タもだいぶ値段がこなれてきてい
ますので、こうしたケースでは
10GbEのネットワークアダプタ
を購入して直接結線したほうが早
いケースも多いかもしれません。
ただし、10GbE以上のネットワークアダプタ
はコンシューマ市場にはあまり流通していない
ので、入手に時間がかかるという面はあります。

3. ストレージとの接続だけ
　太くしたいケース
　ストレージとの接続部分だけ太くしたいといっ
たケースもあります。ストレージはZFSで構
築されたストレージデバイスに集約してあり、
作業端末から iSCSI経由でディスクをマウン
トしたり、NFS経由でデータにアクセスする
といった場合です。こういった場合、NASと
各ホストをリンク・アグリゲーションで接続し
て通信の高速化をはかります（図9）。
　システムのブートまで含めてストレージシス
テムからデータを持ってくるようなディスクレ
スシステムを構築することもできます。その場

合、通信部分は高速になるならそれに越したこ
とはありません

リンク・アグリゲーションの
通信の特徴を知ろう!
　ここまでリンク・アグリゲーションを見てき
て、まるで束ねる本数を増やせば増やしただけ
通信速度が高速化するような書き方をしてきま
したが、実際にはそのような動作はしません。
LACPで構築されるのはあくまで「1つの論理
チャンネル」であって、回線1本1本の通信速
度は変わらないからです。
　つまり、1コネクション／1ストリームの通
信速度の最大値は1本でも8本でも同じです。
1本分の速度までしかでません（図10）。
　しかし、同時に複数のストリームを使った場
合、すべてを総合した通信速度は引き上がりま

実力
検証 NICをまとめて高速通信!

リンク・アグリゲーションってなに?前編

 ▼図8　上流部分だけといったように一部の区間だけを高速化したいケース

 ▼図9　ストレージとの通信を太くしたい

上流部分を高速化

拠点A 拠点BホストA ホストB

ホストA

NAS
（ZFS） ホストB

ホストC

ストレージアクセスの高速化

iSCSI

iSCSI

iSCSI

NIC

NIC

NIC

NIC

NIC

NIC

96 - Software Design

す（図11）。物理的に複数の回線を使ってデー
タの転送が実施されるからです。理想的な状況
になれば、8本分をまとめた回線では、8ストリー
ムで8倍の速度が期待できます。
　これは常に複数のコネクションが発生してい
るような用途で、性能の向上が期待できること
を意味しています。単一のコネクション／スト
リームで大量のデータを流すような用途には向
いていません。その場合、複数のストリームを
利用するようにソフトウェア側を書き換える必
要があります。
　また、リンク・アグリゲーションで性能の向
上が期待できるかどうかは、カーネルの内部の
実装にも依存していることに注意してください。
ネットワークスタックが複数のポートや複数の
コアに対してスケールしないカーネルでは、い
くらリンク・アグリゲーションを実施しても通
信性能の向上は期待できません。同じカーネル

でもバージョンが古いと性能がでないなどの違
いもありますので、実際に性能がでるかどうか
は実機で対象のオペレーティングシステムを導
入して実験してみる必要があります。

次は実験してみよう!

　今回はチーミング（リンク・アグリゲーション）
で通信速度を引き上げる必要があるシーンやケー
ス、実際にどういったタイプの通信で速度の向
上が実現できるのかなどを説明してきました。
次回は実際に8ポートをチーミングして、どの
ように通信性能が変化するかを紹介します。ま
た、フェイルオーバー目的での利用や、ロード
バランス、ラウンドロビンなどで利用した場合
の性能、MTUの値を変化させて通信速度を向
上させる方法なども紹介します。s

 ▼図11　複数のストリーム全体で通信速度の向上が期待できる

 ▼図10　1ストリームあたりの最大通信速度は同じ

1コネクションの
最大通信速度は1本分が最大

ホストA

ホストA

ホストB

ホストB
複数のコネクションで
最大通信速度が向上

NICNIC

NIC NIC

Sep. 2014 - 97

　著者が所属するUSP友の会のWebサイトは、
著者自らがシェルスクリプトで開発したもの。
本書はその開発ノウハウを解説するのだが、開
発を実況中継するかのような展開で話が進む。
基本コマンドの説明などはなく、最初からサイ
トの構造やコンテンツの開発を順を追って説明
していく。コマンドの説明などは新しいものが

登場する都度、行われる。なぜそのコマンドな
のか、なぜそのような設計なのかという理由も、
開発を進める中で説明される。そのような展開
のためか、必要な部分から作り、部品を積み上
げるようにサイトを完成させていく様子がよく
わかる。その開発の軽快さ、スピード感に注目
して一読することを勧める。

上田 隆一、後藤大地 【著】 ／USP研究所 【監修】
B5変形判、280ページ／価格＝2,600円+税／発行＝KADOKAWA
ISBN＝978-4-04-866068-6

　ITエンジニアの皆さんが説明しなければいけ
ない事柄は、用語や知識の前提がある程度必要
なため、非エンジニアの方には「わかりにくい」
と感じてしまわれがち。本書ではわかりやすい
文書にするためのコツを、例文を分解・再構築
することで具体的に解説し、考え方や手法を身
につけるための方法を紹介している。

・書く前が重要。6つのポイントを押さえる
・図解＋文章でわかりやすい「文書」になる
・構造を図解するための典型的な型を知る
・誰が読むのか。文書の役割を考える
　ITエンジニアに馴染みのある例文から、求め
る文書に近いものを見つけて真似ることからは
じめてみてほしい。

開米 瑞浩 【著】
A5判、200ページ／価格＝1,980円+税／発行＝技術評論社
ISBN＝978-4-7741-6576-9

　インフラに詳しくない人が「自分でネットワー
クやサーバを構築できるようになる」ことを目
指して書かれた本。Amazon Web Services（以
下AWS）上でWordPressを使ったblogシステ
ムを完成させることを目標に、リージョンの
選択からVPC（Virtual Private Cloud）の作成、
Webサーバ、DBサーバ、NATサーバの設定まで、

各ステップを、AWSの設定画面を見せながら具
体的に解説している。
　AWS上ですべてを行うことで、ハードウェア
を購入せずとも、インフラの構築について、実
際に手を動かしながら学習できる。TCP/IPや
Webサーバの基礎知識も紹介されており、初心
者にも易しくわかる本となっている。

玉川 憲、片山 暁雄、今井 雄太 【著】
B5変形判、216ページ／価格＝2,700円+税／発行＝日経BP社
ISBN＝978-4-8222-6296-9

Amazon Web Services
基礎からのネットワーク＆サーバー構築

フルスクラッチから 1日で CMSを作る

シェルスクリプト高速開発手法

　「スクラム」とは、アジャイルの中でもチーム
開発に重きを置いた開発手法の1つ。本書では
そのスクラムについて、用語の説明からプロジェ
クトの流れまで、網羅的に解説している。プロ
ダクトオーナー、スクラムマスタ、開発メンバ、
マネージャー、それぞれの立場の人に向けて書
かれた章があり、開発に関わるあらゆる人が読

者対象だ。昨今徐々に広まりつつあるテスト駆
動開発、継続的インテグレーションをスクラム
の流れの中で学ぶこともできる。
　スクラムについて膨大で緻密な情報が紹介さ
れており、自分が今いる環境・立場に合わせて
各章・各ステップから必要な知識を選び取り、
実務に活かすのがいいだろう。

Kenneth S.Rubin 【著】 ／岡澤 裕二、角 征典、髙木 正弘、和智 右桂 【訳】
B5変形判、448ページ／価格＝3,800円+税／発行＝翔泳社
ISBN＝978-4-7981-3050-7

エッセンシャルスクラム
アジャイル開発に関わるすべての人のための完全攻略ガイド

文章嫌いではすまされない！

エンジニアのための伝わる書き方講座

オーケストレーションツールSerf・Consul入門特別企画

98 - Software Design

オーケストレーション
ツール

　ここ数年、クラウドコンピューティングの広
がりにより、動的にサーバリソースやシステム
規模の変更を容易に行う環境が整ってきました。
海外のみならず、日本国内市場においても、ク
ラウド事業者の参入や、それらを基盤として提
供するサービス提供者も増えつつあります。
　その結果、開発や運用を問わず、業務の流れ
が変化しつつあります。たとえば、構成管理ツー
ルであるChefやPuppetを使い、システムの構成
を自動化することが顕著です。構成管理を通し
て、コードとしてインフラを管理する考え（Infra

structure as a Code）も一般化しました。ほかに
はCapistranoを使ったコンテンツのデプロイや、
ServerSpecやJenkinsなどのように、自動テスト
やCI（Continuous Integration：継続的インテグ
レーション）ツールを利用する手法も広まりつつ
あります。さらにImmutable Infrastructureとい
う概念も登場し、変化する環境に応じ、開発や
運用の流れを最適化しようという機運が高まり
つつあります。
　このような自動化を推進する流れの中で、Serf

やConsulは登場しました。どちらもVagrantを
開発しているHashicorp社によるもので、オー
プンソースとして公開・開発が進められていま
す。Serfは、オーケストレーションツールとし

てシステム全体に一斉に処理を行うツールとし
て活躍します。Consulは、サービス単位での検
出や監視を通し、オーケストレーションを支援
するしくみを提供します。
　本稿を通しSerfとConsulに対する理解を深
め、開発・運用の現場で活用するためのヒント
なり、きっかけになればと思います。

Serf

Serfとは�
　Serfは、クラスタのメンバ管理や、障害検知
の機能を備えた、オーケストレーションを行う
ツールです。オーケストレーションには諸説あ
りますが、ここではクラスタ全体に対して、一
斉に処理を行うことと定義します。たとえば、
管弦楽のオーケストラで、指揮者が振るタイミ
ングで、曲調を同時にコントロールするような
イメージです。一斉に行う対象が、それぞれの
楽器ではなく、Serfの場合はSerfエージェント
の入ったノードです。
　このSerfを使い始めるのは、非常に簡単です。
Serfはバイナリ1個で動作し、CLIとエージェ
ントを兼用した“serf”コマンドを実行するだけ
で、クラスタを形成します。常駐メモリも少な
いため、システムに対する影響を深く考慮する
必要はありません。また、コマンドラインでの

オーケストレーションツール
Serf・Consul入門

クリエーションライン株式会社 Technology Evangelist 前佛 雅人（ぜんぶつ まさひと）
 Twitter @zembutsu　 Web http://pocketstudio.jp/log3/

　開発や運用の流れを最適化しようという機運が高まりつつある中で、オーケストレーションツー
ルとしてシステム全体に一斉に処理を行う「S

サ ー フ
erf」と、サービス単位での検出や監視を通し、オーケ

ストレーションを支援する「C
コ ン サ ル
onsul」が登場しました。本企画では2回にわたってそれぞれを解説し

ます。今回は「Serf」について解説します。

Serf編

特別企画

http://pocketstudio.jp/log3/

オーケストレーションツールSerf・Consul入門 オーケストレーションツールSerf・Consul入門

98 - Software Design Sep. 2014 - 99

Serf編

操作が比較的わかりやすいです。
　公式サイト注1には、次のような使用例が書か
れています（抜粋）。

・Webサーバとロードバランサの自動連携
・memcachedやRedisクラスタのノード管理
・Serfを起点としてデプロイを行うシステム
・クラスタ状態に応じてDNSレコードの更新
・単純なコマンド実行による調査

機能�
　Serfにはオーケストレーションを行うための、
おもに次の3つの機能があります。

	 1　メンバ管理
　Serfエージェントは、相互に通信を行うクラス
タを構成します。エージェント起動時に接続先を
明示することで、クラスタに参加できます。いっ
たんクラスタが形成されると、ゴシッププロトコ
ル（後述）に基づき、相互に死活状態を監視し、メ
ンバの稼働状況を監視できるようになります。
また、新規メンバの参加や離脱は、リアルタイム
にクラスタ内で情報共有されます。この情報のこ
とを、Serfでは「イベント」と呼びます。

	 2　障害検知と復旧
　あるノード上のSerfエージェント間で通信が
できなくなると、対象のノードを障害が発生し
たとみなします。また、クラスタ全体に対して
障害発生を通知し、対象ノードで問題が発生し
たという情報が伝わります。通信ができなくなっ
ても、一定期間は既存ノードが定期的に接続を
試みます。もしノードとの通信が復旧すると、
エージェント起動時にとくに明示しなくても、
自動的にクラスタに復旧する特長があります
　なお、Serf公式サイトでは、これらをゾンビの
例えで紹介しています。ある街の住人が、互いに
人間かどうかを確認するような世界において、ゾ
ンビが見つかったら、住人全員に対して「ゾンビ

がここにいるぞ！」と伝えるようなしくみです。

	 3　イベントとイベントハンドラ
　イベントはSerfクラスタ上での何かの変化の
ことです。たとえば上記のメンバ参加や障害発
生がイベントです。イベントは2種類あります。

・Serfのメンバ管理イベント（システムによる自
動発行）

・ユーザによる任意イベント（随時に発行）

　それぞれのイベント発生のタイミングで、任
意のコマンドやスクリプトを実行できます。た
とえば、ノード追加時に構成管理用のコマンド
を実行したり、任意イベント発生のタイミング
で、プロセスの再起動ができます。このしくみ
がイベントハンドラです。

アーキテクチャ�
	 非中央集権型のクラスタ
　Serfクラスタは、Serfエージェント間で構成
されます。本体の“serf”バイナリは2つの役割
を兼ね備えます。

・クラスタを維持するエージェント
・コマンドラインインターフェース（CLI）

　Serfクラスタは、中心となるサーバが存在し
ない、非中央集権型です（図1）。Serfは一見す
るとクライアント／サーバ型に見えますが、ク
ラスタ内のSerfエージェントは互いに通信し
（TCPおよびUDPのPort 7946を使用）、全体
として1つのクラスタを形成します。
　それでは、クライアントの問い合わせ先は、
どこでしょうか。答えは、クラスタ上のserfエー
ジェントが動作しているノードであれば、どこ
でもかまいません。ノードに対して問い合わせ
をすると、結果が得られます。クラスタ内では
情報が同期されているため、どこに問い合わせ
をしても、常に同じ結果を得られます。
　なお、クライアントはクラスタに参加する必要
はありません。クライアントは、標準のCLIを使注1） http://www.serfdom.io/

http://www.serfdom.io/

オーケストレーションツールSerf・Consul入門特別企画

100 - Software Design

うか、MsgPack over TCP（Port 7373）を用いてク
ラスタに接続し、RPCプロトコルで通信します。

	 ゴシッププロトコル
　このようなクラスタを構成できるのは、Serf

が採用しているゴシッププロトコル注2のお陰で
す。ランダムに相互の死活監視を行い、クラス
タを構成・維持します。また、後述するSerfの
イベント情報を、クラスタ全体で瞬時に同期す
るしくみも提供します。

開発体制�
　開発主体はVagrantやPackerを開発している
Hashicorp社です。コードにコミットしているの
は、Mitchell Hashimoto氏ら、おもに社員の方で
すが、開発体制はオープンです。GitHub注3や
IRC注4、メーリングリスト注5を通して議論が行
われ、ときおり新しい機能がコミュニティを通
して取り込まれています。また、Go言語で書か

れたすべてのソースコードは公開されており、
オープンソース注6として利用できます。

ほかのツールとの比較�
　オーケストレーションを行うツールは、ほか
にもありまが、Serfがほかのツールと決定的に
違うのは、非常に簡単にクラスタを構成でき、
手軽に使えるという点です。Serfは、1つのバ
イナリファイルを置き、いくつかのコマンドを
実行するだけで、簡単にクラスタを構成できま
す。同時にコマンドを実行させるために必要な
言語は何でもかまいません。シェルスクリプト
でもかまいませんし、RubyやPerlでも自分なり
現場なりで必要な言語を使って処理ができます。
　また、多くのツールとは競合するものではな
く、併用することもできます。たとえば、構成
管理ツールとの連携として、設定投入のための
トリガとして機能させることができます。

環境構築

セットアップ�
	 動作環境
　Serfは幅広いOSに対応したバイナリが配付

されています。バイナリファイ
ルを1つ置くだけで動作するた
め、追加でほかのアプリケー
ションをセットアップする必要
がありません。また、ソースコー
ドはGitHubで公開されていま
すので、それをもとに構築する
こともできます。その場合は、
各OS環境上で、Go言語の開発
環境を用意してください。

serf
agent

serf
agent

serf
agent

client

serf クラスタ

ゴシッププロトコル TCP 7373

TCP 7373

TCP/UDP
7946

TCP/UDP
7946

クライアントは、クラスタの
どこにでも問い合わせ可能

RPC プロトコルで通信
・serf CLI
・MsgPack over TCP

TCP/UDP
7946

 ▼図1　アーキテクチャ

注2） 正確には“SWIM：Scalable Weakly-consistent Infection-
style Process Group membership Protocol”論文をもと
に、伝播速度などの改良を加えたものです。計算では、100
ノードに対して約2秒で情報が伝わります。

注3） https://github.com/hashicorp/serf/
注4） #serfdom（freenode.net）
注5） Serf Google Group: https://groups.google.com/group/

serfdom/

注6） Mozilla Public license, version 2.0

https://github.com/hashicorp/serf/
http://freenode.net
https://groups.google.com/group/serfdom/

オーケストレーションツールSerf・Consul入門 オーケストレーションツールSerf・Consul入門

100 - Software Design Sep. 2014 - 101

Serf編

	 Linux版（x86_64）のダウンロードと展開
　バイナリはダウンロード用のページ注7から取
得できます。現在のバージョン0.6.3（原稿執筆
時）では、Linuxのほか、Mac OS X、Windows、
FreeBSD、OpenBSDに対応しています。図2
はwgetを用いた展開例です。Serfは頻繁にバー
ジョンアップしていますので、最新版はダウン
ロードのページを確認してください。
　ファイルを設置後は、“serf -v”と入力する
ことでバージョンが表示されます（図3）。
　ここで注目するのはバージョン番号
“Protocol:4”です。Serfはバージョンが変わっ
ても、2世代前までは互換性があります注8。し
かし、一部機能に相違が出てくる可能性があり
ます。これまでにあった大きな変更点は、“role”
機能が“tag”に置き換えられたことです。常に
最新の機能を使いたい場合、将来的なバージョ
ンアップを計画してください。
　なお、この例では“/usr/bin/serf”にserfを
置きましたが、環境内のパスの通るところであ
れば、どこに置いてもかまいません。

初めてのSerfクラスタ構成

エージェントの起動�
　Serfでクラスタを構成するためには、エー
ジェントを起動する必要があります。Serfの引

数に“agent”を付けると、それだけで起動でき
ます（図4）。ここでは動作確認のため、バック
グラウンドでserf agentを起動しましょう。
　これでエージェントが起動しました。バック
グラウンドで動作させると、デバッグ用のログ
が画面に表示されます。このログは“serf
monitor”と実行しても、同じ内容を確認できま
す。
　次はメンバ情報を確認します。“serf
members”とコマンドを実行すると、ホスト名や
IPアドレスに加え、クラスタがどのような状況
になっているかが表示されます。

$ serf members
node1 192.168.39.1:7946 alive

　ここでは、自分自身のホスト情報が表示され
ます。ノードの状態は“alive”であり、正常に
稼働中です。

クラスタの形成�
　次は、2台のサーバ上で動くSerfで、クラス
タを構成します（図5）。ここでは、次のような
2台のサーバが動いているものと想定します。

・node1（192.168.39.1）
・node2（192.168.39.2）

 ▼図2　wgetを用いた展開例

$ wget -O 0.6.3_linux_amd64.zip https://dl.ｭ
bintray.com/mitchellh/serf/0.6.3_linux_amd64.zip
$ unzip ./0.6.3_linux_amd64.zip
cp ./serf /usr/bin/serf

 ▼図3　Serfのバージョンを表示する

$ serf -v
Serf v0.6.3
Agent Protocol: 4 (Understands back to: 2)

注7） http://www.serfdom.io/downloads.html
注8） http://www.serfdom.io/docs/compatibility.html

 ▼図4　エージェントの起動

$ serf agent &
==> Starting Serf agent...
==> Starting Serf agent RPC...
==> Serf agent running!
 Node name: 'node1'
 Bind addr: '0.0.0.0:7946'
 RPC addr: '127.0.0.1:7373'
 Encrypted: false
 Snapshot: false
 Profile: lan

==> Log data will now stream in as it ｭ
occurs:

 2014/07/06 21:17:43 [INFO] agent: ｭ
Serf agent starting
 2014/07/06 21:17:43 [INFO] serf: ｭ
EventMemberJoin: node1 192.168.39.1

http://www.serfdom.io/downloads.html
http://serfdom.io/docs/compatibility.html

オーケストレーションツールSerf・Consul入門特別企画

102 - Software Design

　サーバに複数のインターフェースが付いてい
る場合は、エージェント起動時に明示しなくて
はいけない場合があります。もし想定している
インターフェースが自動で使用されない場合、
“-iface”タグを付ける必要があります。

・例：eth1を使用する場合
$ serf agent -iface=eth1

	 serf join
　次は、node1からnode2に接続を試みましょ
う。2台のサーバをつなぐには、“serf join”
コマンドを使います。node1でコマンドを実行
します。

$ serf join 192.168.39.1

　コマンド実行後、ただちに双方がお互いをク
ラスタのメンバとして認識します。“serf
members”コマンドを実行すると、どちらのサー
バでも同様の結果が表示されます。

$ serf members
node1 192.168.39.1:7946 alive
node2 192.168.39.2:7946 alive

　今回はnode1からnode2に接続を試みました
が、逆の接続もできます。node2上でnode1に
対して joinしても、結果的に2台で同一のクラ
スタを構成します。

	 エージェント起動時にjoin
　サーバ台数が増えてくると、その都度“serf
join”を行うのはたいへんです。エージェント
起動時に“-join”を使うと、自動的に指定した

ノードに対して接続を試みます。

$ serf agent -join=node2

　join先のサーバが不明な場合や、“-discover”
オプションを使う方法があります。

$ serf agent -discover=serf

　この例は、同一ネットワークの“serf”という
名前のクラスタに対して、自動的に joinするも
のです。あえて join先のホストを明示する必要
はありません。ただし、この便利な方法が使え
るのはマルチキャストDNS（mDNS）が利用可能
なネットワークだけです。環境によっては通信
が制限され、利用できないことがあるので注意
してください。

クラスタ上でイベントを発行�
　Serfのクラスタを形成したあとは、すべての
ノードで一斉にイベントを処理できるようにな
ります。ここでは“test”という名前のイベント
が発生すると、同時に実行されることを確認し
ます。イベントは“serf event”コマンドを使っ
て発行できます（図6）。
　コマンドを実行すると、ノードが稼働してい
る両方のサーバで“Received event”という情
報が表示されます。これはSerfの持つイベント
の機能のうち、ユーザが任意に発行できるもの
です。このほか、Serfシステムが自動的に使用
する、“member-*”系のイベントがあります。

エージェントの停止�
　エージェントを停止するには ÌCtrlÔ＋ ÌCÔキーを
押して処理を中断します。あるいは“kill”コマ
ンドを使って、停止させることもできます。

イベントとイベントハンドラ

イベント�
　イベントは、Serfで何か処理を行う際のトリ

node
1

join node
2

192.168.39.1 192.168.39.2

 ▼図5　Serfクラスタのイメージ図

オーケストレーションツールSerf・Consul入門 オーケストレーションツールSerf・Consul入門

102 - Software Design Sep. 2014 - 103

Serf編

ガとなるものです。イベントが発生するタイミ
ングで、都度、あらかじめ指定したコマンドを
実行させることができます。この一連の処理の
ことをイベントハンドラと呼びます（図7）。ま
た、Serfの特長として、特定のSerfノードで発
生したイベントは、瞬時にクラスタ全体に伝わ
ります。つまりSerfがあれば、クラスタ内の何
らかのイベント発生をトリガとして、クラスタ
全体に対して一斉に処理を行うことができます。
このイベントハンドラのしくみこそが、Serfが
オーケストレーションツールであると言えるゆ
えんなのです。

	 イベントの種類
　それでは、イベントの詳細を見ていきましょ
う。イベントには、システムが自動的に発行す
るものと、ユーザが任意に発行できるものと、2

種類があります。

・メンバ管理：“member-*”という名称で、シス
テムが自動発行するクラスタ管理用のイベント

・ユーザイベント：“event”と“query”はユー
ザが任意タイミングで発行可能なイベント

	 メンバ管理
　メンバ管理系のイベントは、クラスタへのメ
ンバ参加や離脱（障害発生）をトリガとして、何
かの処理を行うために使います（図8）。

・member-join
　メンバがクラスタに参加したときに発生しま
す。“serf join”コマンド実行時に発行される
イベントです。クラスタ全体に新しいノードが
参加したことが伝わります。
・member-leave
　メンバがクラスタから明示的に離脱したとき

に発生します。正常終了（明示的に離脱）したと
きに発生するイベントであり、この状態のノー
ド上でSerfを起動しても、自動的にクラスタに
復帰することはありません。
・member-failed
　メンバとの通信が途絶したときに発生します。
障害発生とみなすタイミングが、このイベント
発生時です。定期的にSerfクラスタからの監視
が継続しますので、エージェントとの通信が回
復すると、自動的にクラスタに再参加できます。
・member-reap
　メンバ情報をクラスタ上から抹消するときに
発生します。デフォルトではmember-failed発
生後、24時間後です注9。
・member-update
　メンバのタグ情報更新時に発生します。“serf
tag”コマンドを使って、タグの変更を行うと、
クラスタ全体に更新情報が通知されます。
　イベントハンドラは、前述のとおり、イベン
トの発生をトリガとして任意の処理を行うこと
ができます。Serfのノード状態を変化として、
さまざまな処理に応用ができます。とくに、ロー

node
1

event

node
2

片方でイベントが発生すると……

node
1

node
2

クラスタ全体でイベントが同期し、イベントハンドラを実行

event
handler

event

event
handler

event

 ▼図7　イベントとイベントハンドラ

 ▼図6　すべてのノードで一斉にイベントを処理する

serf event test
 2014/07/09 22:28:34 [INFO] agent: Received event: user-event: test

注9） 間隔は、Serf起動時に設定ファイルで明示することで、変
更できます。

オーケストレーションツールSerf・Consul入門特別企画

104 - Software Design

ドバランサや監視設定の追加削除に応用できる
のではないでしょうか。

・member-join：	 �対象のノードをロードバランサ
に加えたり、監視設定を開始

・member-leave：	�ノードをロードバランサの設
定から削除

・member-failed：�ノードへの監視を一時的に	
停止

・member-reap：	 �ノードへの監視設定の情報を
削除

　その他、タグの変化に応じてもイベントハン
ドラを処理できますので、roleに応じてアプリ
ケーションをデプロイしたり、チェック用のコ
マンドを実行するなどの応用が考えられます。

	 ユーザイベント
　ユーザ側が任意のタイミングで発行できるイ
ベントは2種類あります。

・event：任意の名称のイベントを発行する
・query：任意の名称のイベントと発行し、結果
を取得する

　“event”と“query”の違いは、結果を取得す

るかしないかの違いです（図9）。これは、一方
的にコマンドを実行するだけの“event”と、イ
ベントを発行したノードに対して処理結果（標準
出力の内容）を取得するかの違いです。たとえば、
単純に“network restart”コマンドを実行した
い場合は“event”を使いますが、その処理結果
が正常かどうかを判別できるのは“query”です。

イベントハンドラと環境変数�
　イベントハンドラは、エージェント起動時に
定義します。あらかじめ何のイベントに対して、
どのような処理を行うかを明示します。あるい
は、汎用的にイベントハンドラを指定し、イベン
トの種類を指定する環境変数“SERF_EVENT”を
使い、条件付けを行うこともできます。
　また、イベントハンドラで処理できるのは、
コマンドライン上で扱えるものであれば何でも
かまいません。一番簡単なものは、単純なコマ
ンドの実行です。あるいは、コマンドを羅列し
たシェルスクリプトも利用できますし、Rubyや
Perlなど、自分が得意な任意のスクリプト言語
に処理を引き渡すこともできます。また、環境
変数が扱えないプログラムに対しても、あらか
じめ条件を指定しておけば容易に利用できます。

a b

Serf クラスタ

member-join
新メンバ a がクラスタに参加

a b

Serf クラスタ

a b

member-leave
a が b にクラスタ離脱を宣言

a b

member-fail
b は aとの通信途絶を障害とみなす

member-reap
メンバからa の情報を抹消

 ▼図8　メンバ管理イベント

オーケストレーションツールSerf・Consul入門 オーケストレーションツールSerf・Consul入門

104 - Software Design Sep. 2014 - 105

Serf編

	 イベントハンドラを指定するには
 エージェント起動時、“-event-handler=”を
指定します。

$ serf agent -event-handler=./event.sh

　スクリプトでどのような環境変数を扱えるか
は、リスト1のサンプルスクリプトを利用くだ
さい注10。
　この状態で、“serf event”を実行すると、ス
クリプト側ではさまざまな環境変数を取得でき
ていることがわかります。

	 環境変数“SERF_EVENT”
　環境変数“SERF_EVENT”が、イベントを判別
するために頻繁に使います。ここでは、“membe-
join”や“member-leave”のほか、“user”や“query”
など、あらゆる種類のイベントで必ず使用されま
す。そのため、イベントに応じてさまざまな処理
を行う汎用的なスクリプトを書くこともできます。
　その他、環境変数の詳細は、公式サイトのド
キュメント注11を参照してください。

	 queryを取得する
　イベントハンドラでqueryを指定することも

できます。たとえば、クエリ名“check”時に
“uptime”コマンドを実行させるには、図10の
ようにします。
　コマンドラインからqueryを実行するには、図
11のようにします。正常に応答があれば、各Serf

クラスタでuptimeの実行結果が返ってきます。

event

処理処理処理

event は結果を求めない

query

処理処理処理

query はイベント処理結果が戻る

 ▼図9　eventとqueryの違い

注10） GitHubの issueに掲載されていたものに、新しい環境変数
を追記しました：参照 https://github.com/hashicorp/serf/
issues/54

注11） http://www.serfdom.io/docs/agent/event-handlers.
html

 ▼リスト1　サンプルスクリプト（event.sh）

#!/bin/sh

echo
echo "$0 triggered!"
echo
echo "SERF_EVENT is ${SERF_EVENT}"
echo "SERF_SELF_NAME is ${SERF_SELF_NAME}"
echo "SERF_SELF_ROLE is ${SERF_SELF_ROLE}"

echo "SERF_SELF_TAG is ${SERF_SELF_TAG}"
echo "SERF_TAG_ROLE is ${SERF_TAG_ROLE}"
echo "SERF_TAG_STATUS is ${SERF_TAG_STATUS}"
echo "SERF_USER_EVENT is ${SERF_USER_EVENT}"
echo "SERF_USER_LTIME is ${SERF_USER_LTIME}"
echo "SERF_QUERY_NAME is ${SERF_QUERY_NAME}"
echo "SERF_QUERY_LTIME is ${SERF_QUERY_
LTIME}"
echo
echo "BEGIN event data"
while read line; do
echo $line
done
echo "END event data"
echo "$0 finished!"
echo

 ▼図10　イベントハンドラでqueryを指定する

$ serf agent -event-handler=query:check=uptime

https://github.com/hashicorp/serf/issues/54
http://www.serfdom.io/docs/agent/event-handlers.html

オーケストレーションツールSerf・Consul入門特別企画

106 - Software Design

LVSを使った
ロードバランサへの応用

LVSとSerf�
　これまではSerfの概念や使い方が中心でした。
次は、実際にSerfを使ったオーケストレーショ
ンを行いましょう。ここではLVS（Linux Virtual

Server）のDSR（Direct Server Return）方式に
よるロードバランサに適用します。
　LVSは軽量で手軽にバランシングを行うこと
ができますが、コマンドラインでの管理が必要
です。そのため、基本的なバランシング用のノー
ドの追加や削除は、都度コマンドを実行します。
この手作業で行うコマンド実行を、Serfのイベ
ントハンドラに置き換えます。Serfがあれば、
Serfのメンバ参加・離脱をトリガとして、バラ
ンシング対象に加えたり、削除できます。
　本構成は、次のようにしました（図12）。なお、
本環境はCentOS 6.5で検証を行いました。

・LVSサーバ（192.168.39.1）
　クライアントからの HTTP リクエストを受け
止める

・LVSクライアント（192.168.39.2および3）
　バランシング先として、実際にクライアント
に返す

LVSの準備�
	 LVS サーバ側
　はじめにLVS管理用のツール ipvsadmのセッ
トアップを行います。

yum -y install ipvsadm

　必要があれば、サーバ再起動後、自動的に設
定が反映されるようにします。

/sbin/chkconfig ipvsadm on
$ /sbin/chkconfig --list ipvsadm
ipvsadm 0:off 1:off 2:on ｭ
3:on 4:on 5:on 6:off

　ポートフォワーディングの有効化と、rp_filter
の無効化を行います。

sysctl -w net.ipv4.ip_forward=1
sysctl -w net.ipv4.conf.default.rp_ｭ
filter=0

　サーバ再起動後も有効にしたい場合は/etc/

sysctl.confにも同様に記述を追加します。

	 LVS クライアント
　LVSサーバに届いたパケットを扱えるように
コマンドを実行します。

iptables -t nat -A PREROUTING -d ｭ
192.168.39.1 -j REDIRECT
service iptables save

　設定が有効かどうかは、iptablesコマンドを
使います。

iptables -t nat -nL
Chain PREROUTING (policy ACCEPT)
target prot opt source ｭ
 destination
REDIRECT all -- 0.0.0.0/0 ｭ
 192.168.39.1

　また、ブラウザからアクセスしたときに、ど
のホスト情報が表示されるかわからなくなるの

 ▼図11　コマンドラインからqueryを実行する

$ serf query check
Query 'check' dispatched
Ack from 'node1'
Response from 'node1': 23:56:38 up 5:12, 2 users, load average: 0.00, 0.00, 0.00
Ack from 'node2'
Response from 'node2': 23:56:37 up 5:27, 2 users, load average: 0.00, 0.00, 0.00
Total Acks: 2
Total Responses: 2

オーケストレーションツールSerf・Consul入門 オーケストレーションツールSerf・Consul入門

106 - Software Design Sep. 2014 - 107

Serf編

で、次のようにドキュメントルートに何らかの
ホストを識別できるファイルを置くと便利です。

hostname > /var/www/html/hostname.html

LVSサーバ側のSerf設定�
　サーバ側では、イベントハンドラで呼び出さ
れるスクリプト（リスト2）を設置します。
　ファイルを設置したあとは、“chmod +x ./
lvs.sh”のように、実行属性を与えます。あと
は、エージェント起動時に、このスクリプトが
呼び出されるように指定します。

$ serf agent -event-handler=./lvs.sh

動作確認�
　クライアント側では、通常どおりエージェン
ト を 起 動 し ま す。join先 を LVSサ ー バ
（192.168.39.1）にしつつ、タグで“ROLE”を指定
します。これは、SerfクラスタすべてをLVS

に登録するのではなく、ROLEに“webapp”の指
定があるサーバのみを対象とします。

$ serf agent -join=192.168.39.1 -tag ｭ
ROLE=webapp

　同様のコマンドを、もう1台のノードでも実

serf

LVS

192.168.39.1

192.168.39.0/24 serf

Web1

192.168.39.11

Serf のクラスタを構成

serf

Web2

192.168.39.12

 ▼図12　LVS（DSR）の構成

 ▼リスト2　イベントハンドラで呼び出されるスクリプト（lvs.sh）

#!/bin/sh

while read line
do
echo ${line}
 HOSTNAME=`echo ${line} | cut -d ' ' -f 1`
 ADDRESS=`echo ${line} | cut -d ' ' -f 2`
 ROLE=`echo ${line} | cut -d ' ' -f 3`

 case ${SERF_EVENT} in
 "member-join")
 if ["${SERF_TAG_ROLE}" = "webapp"] ; then
 ipvsadm -a -t 192.168.39.1:80 -r ${ADDRESS}:80 -g
 fi;;
 "member-leave" | "member-failed")
 if ["${SERF_TAG_ROLE}" = "webapp"] ; then
 ipvsadm -d -t 192.168.39.1:80 -r ${ADDRESS}:80
 fi;;
 \?)
 echo "other";;
 esac
break
done
exit 0

標準入力から
ホスト名
IPアドレス
ロール名を取得

環境変数で判別
${SERF_EVENT}

クラスタ参加時
‘ipvsadm ‒a’を
実行しLVSに登
録する

クラスタ離脱・
障害時
‘ ipvsadm ‒d ’
を実行しLVSか
ら削除する

Serfが起動し
ている間は、常
に待ち受け

オーケストレーションツールSerf・Consul入門特別企画

108 - Software Design

行します。
　この状態でLVSサーバ側で確認コマンドを実
行すると、各Serfノードが、自動的にバランシ
ング設定が追加されていることがわかります（図
13）。
　各ノードのSerfエージェントを停止すると、
自動的にバランシング設定は外れます。再び

Serfを起動すると、再びバランシング対象に含
まれます。
　今回の例はLVSを扱いましたが、HAProxy

に置き換えてもかまいません。コマンドを使う
設定であれば、ほかの処理にも置き換えること
ができます。

 ▼図13　LVSサーバ側で確認コマンドを実行

ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 192.168.39.1:80 rr
 -> 192.168.39.11:80 Route 1 0 0
 -> 192.168.39.12:80 Route 1 0 0

オプション名（CLIオプション） 動作
node_name “-node” ノード名称を指定。“serf members”などで参照
tags “-tag” ノードのタグを指定。タグは“key=value”の形式
bind “-bind” Serfエージェントが内部通信で使用する IPアドレス割り当て
interface “-iface” 複数のネットワークインターフェース混在時に明示可能
advertize “-advertize” 自身のノードの IPアドレスを明示。bindと違い、実 IPアドレスの必要がない
discover “-discover” mDNS（Multicast DNS）利用可能な環境で、クラスタを自動検出
encrypt_key “-encrypt” 暗号化秘密鍵を指定。鍵生成は“serf keygen”
leg_level “-log-level” エージェントが表示するログレベルの指定。“trace”“debug”“info”“warn”

“error”の5種
profle “profile” Serfノード間の障害検出用に使用。チェックのタイミングを変更。通常デ

フォルトのまま
protocol “-protocol” 新旧のバージョンが混在する環境で、プロトコルのバージョンを明示
rpc_addr,rpc_aut “-rpc-addr” 通常はポート7373をバインド。変更可能
event_handlers “-event-handler”イベント発生時に実行するコマンドを明示
start_join “-join” agent 起動時のジョイン先を明示。複数指定可
replay_on_join “-replay” start_joinと同様の機能だが、過去のイベントもさかのぼって取得する
snapshot_path “-snapshot” スナップショットは停止後の復旧時、過去イベントを重複受信しないようポ

インタを指定
leave_on_terminal エージェントを“kill -TERM”か“kill -15”シグナルで停止したときの振る舞

い。標準は“false”。このオプションを“true”にすると、停止時にmember-
leave扱いとなり、障害発生時もステータスを“left”にする

skip_leave_on_interrupt エージェント稼働時c＋Cで中断したときの振る舞い。デフォルトは
“false”で、中断すると“left”になる。“true”にすると、中断時の処理は“failed”
扱いになる

reconnect_interval エージェントの fail検出後、何秒ごとに復帰したか確認する（デフォルト30秒）
reconnect_timeout failedになってから、復帰を諦めるまでの時間（デフォルトは24時間）で、経

過すると“member-reap”イベントが自動発行
tombstone_timeout leftしてから情報を保持する時間。reconnect_timeoutと違い、復旧するか

どうかのチェックは行わない
disable_name_resolution 名前解決を行わない

 ▼表1　主要なオプション

オーケストレーションツールSerf・Consul入門 オーケストレーションツールSerf・Consul入門

108 - Software Design Sep. 2014 - 109

Serf編

設定オプション

主要なオプション�
　主要なオプションは表1のとおりです。なお、
オプションの詳細については、日本語での解説
（拙作となりますが）もあります。

・Serf設定オプションまとめ | Pocketstudio.jp
log3

　http://pocketstudio.jp/log3/2014/03/29/
serf_configuration_quick_guide/

　筆者の場合は、リスト3のようなテンプレー
トをあらかじめ作成しておき、汎用的に使い分
けています。

まとめ

　これまで見て来たとおり、Serfは非常にシン

プルです。また、Serfを導入することにより、
既存の作業手順を変更する必要はありません。
日々のコマンド、むしろ日々の業務における手
作業で面倒なところを、適切に処理してくれる
ツールであると言えるでしょう。
　筆者の場合、現在は運用の現場から離れてし
まいましたが、もし1年前にSerfがあれば、こ
のように使っていました。

・メンテナンス時のhttpd一斉停止
・ネットワーク設定（gatewayなど）の切り替え
・新しい設定ファイルを反映させるための同時
restart

　このほか、イベントハンドラは任意に設定で
きますので、現場しだいでさまざまな応用がで
きるのではと思います。Serfは使えるようにな
るまでの時間がとても短いので、まずは手を動
かして、試してはいかがでしょうか。ﾟ

 ▼リスト3　筆者の作った汎用設定テンプレート

{
 "node_name": "miku3", …… ノード名は「miku3」
 "tags": { …… ノードにタグを付ける
 "role": "develop", …… タグ「role=develop」
 "network": "local" …… タグ「network=local」
 },
 "interface": "eth1", …… インターフェースは「eth1」
 "discover": "mikusan", …… discoverするネットワークは「mikusan」

 "encrypt_key": "o6Md8LBVhwPi2UnbJBAwNA==", …… 暗号鍵の指定
 "log_level": "debug", …… ログ出力は「debug」レベル

 "leave_on_terminate": true, …… `kill`で停止しても「left」扱いにする
 "skip_leave_on_interrupt": false, …… ÌCtrlÔ＋ÌCÔで停止したら「left」扱いにする

 "reconnect_interval": "5s", …… 再接続間隔を「5秒」
 "reconnect_timeout": "30m", …… “failed”発生から「30分」復帰を待つ
 "tombstone_timeout": "30m", …… “left”後、ノード情報を「30分」まで保持する

 "event_handlers": […… イベントハンドラの指定
 "./event.sh", …… すべてのイベントで「./event.sh」を実行
 "user:deploy=./deploy.sh" …… ユーザイベント“deploy”時に「./deploy.sh」を実行
]
}

110 - Software Design

Heroku

　みなさん、Herokuをご存じでしょうか。聞
いたことはあるけど触ったことはない、という
人も多いのではないかと思います。今回は連載
を通じて、Herokuでできることを実例も混ぜ
て紹介していき、みなさんに実際に手を動かし
てHerokuを体験してもらいたいと思っています。
　Herokuは会社の名前であり、その製品の名
前でもあります。ローマ字読みでそのまま「ヘ
ロク」と読んでください。Herokuは2007年、
ジェームス、アダム、オライオンの3人で設立
したスタートアップが始まりで、2010年末に
セールスフォース・ドットコムにより買収され
ています。日本風のデザインや商品名を多用し
ているので日本の会社と思われがちですが、本

社はアメリカのサンフランシスコにあります。

Herokuとは

　Herokuとは具体的に何をするサービスなの
でしょうか。Herokuを知らない方、アプリケー
ション開発初心者の方には筆者は「Herokuは自
分で作ったアプリケーションを全世界の人に見
てもらえるように公開できるところ・サービス」
と説明するようにしています。これだけだと少
し具体性に欠けるので、ここでは一歩踏み込ん
だ形で説明したいと思います。

PaaSとIaaS

　Herokuはいわゆる「クラウド」分野の製品で、そ
の中でもPaaS（Platform as a Service）に分類され
ます（図1）。似たものとしてはIaaS（Infrastructure

as a Service）としてAmazonが
提供しているEC2があります。
　簡単に言うと IaaSでは、
空のコンピュータが提供され
るので、OSなどを選択し、
デプロイしたいアプリケーショ
ンに応じたミドルウェアや実
行環境、ライブラリ群などを
自分で用意し、そのうえにア
プリケーションを自分でデプ
ロイします。一方PaaSでは
アプリケーションが走るプラッ
トフォーム、デプロイ方法ま

 ▼図1　Herokuの立ち位置

サポートエンジニアのクラウドワークスタイル

新連載

今月号から始まる「Heroku女子の開発日記」は、PaaS製品である「Heroku」のユー
ザを、導入から開発・運用までサポートします。毎月、連載の終わりには、筆者が西
海岸での仕事・生活をレポートする「サンフランシスコだより」も掲載します。第1回は、
Herokuの概要について説明していきます。

Heroku事始め
第 1回

Heroku　織田 敬子（おだ けいこ）

110 - Software Design Sep. 2014 - 111

注1） http://12factor.net/
注2） https://devcenter.heroku.com/
注3） https://devcenter.heroku.com/articles/dynos
注4） https://addons.heroku.com

で用意するので、開発者はローカルで開発して
いるアプリケーションをただデプロイします。
このように、開発者が実行環境などを意識する
必要がなく、コアであるアプリケーションの開
発に注力できるのはPaaSの大きな利点です。
　逆に簡単にカスタマイズできず、自由度が低
いというのはPaaSの欠点でもあります。とくに
IaaSに慣れている人には、使っているライブラ
リが入っていない、バージョンが古いなど不都
合に感じることもあるかもしれません。
　Herokuでは現在、カスタマイズをしたい人が
使いやすいようにするしくみに取り掛かってお
り（buildpackなどはその一例）、将来的には
PaaSの利点は残したままプラットフォーム部分
のカスタマイズが容易にできるようになってい
くでしょう。

Herokuの特徴

　PaaSの特徴はHerokuの特徴でもありますが、
ここではもう少し例を挙げたいと思います。

 git push heroku master
　Herokuでは、デプロイにGitを用います。
Gitを用いたバージョン管理は現在のアプリケー
ション開発では主流となっていますので、開発
者はデプロイ時に特別に何かを学習することな
く、Herokuへのデプロイを行うことができます。

 heroku ps:scale web=100
　Heroku上のアプリケーションは、上記のよ
うなコマンド1つで簡単にスケールアウト・ス
ケールインすることができます。これにより、
急なトラフィックの増加にもすぐ対応できます。
　このほかにもHerokuにはアドオンや多言語

サポートなどさまざまな特徴があります。これ
らについてはのちほど詳しく説明します。

もっとHerokuを知る

　Herokuの創業者の1人であるアダムが書い
た「The Twelve Factor App」注1に は、Heroku

上だけではなく、あらゆるクラウド上で走らせ
るアプリケーションの開発手法がどうあるべき
かが書かれています。Herokuで走るアプリケー
ションはどのようにあるべきなのかを知るうえ
でもぜひ読んでみることをお勧めします。
　Dev Center注2にはHerokuに関するすべての
ドキュメンテーションがあります。Herokuで何
かわからないことができたら、まずはここで検
索してみましょう。この連載でも、Dev Center

への引用を多用することになると思います。

Herokuの用語

　Herokuではいくつかの独自に使っている用
語があります。ここでは、その中でも代表的な
3つを紹介します。

dyno（ダイノ）

　Heroku上で走るインスタンスの単位。アプ
リケーションごとに数を自由に増やしたり減ら
したりできます。サイズ（おもにメモリ・CPU

性能の差）が設定でき、現在1X（シングル）、2X

（ダブル）、PX（パフォーマンス）があります注3。

add-on（アドオン）

　アプリケーションに追加できる拡張機能。お
もにサードパーティ製です。データベースや、メー
ル送信、ログ・モニタリングなどがあります注4。

Heroku事始め　 第 1 回

http://12factor.net/
https://devcenter.heroku.com/
https://devcenter.heroku.com/articles/dynos
https://addons.heroku.com

新連載
サポートエンジニアのクラウドワークスタイル

112 - Software Design

注5） https://devcenter.heroku.com/articles/buildpacks
注6） https://devcenter.heroku.com/articles/quickstart
注7） https://www.heroku.com/pricing
注8） https://addons.heroku.com/

　アプリケーションをデプロイしたときに走るス
クリプト。ここでRubyをインスタンスに入れたり、
依存関係を解決したりします。Herokuが提供・
サポートしているものもあれば、自分で作ること
もできます注5。

多言語サポート

　Herokuで現在サポートされている言語

はRuby、JVM系（Java、Scalaなど）、Node.js、
Python、PHPなどがあります。これらの言語は、
Herokuによってbuildpackが作成されメンテナ
ンスされています。このような形でサポートし
ていない言語でも、buildpackを使うことによっ
て対応できます。
　サポートしている言語については、言語ごと
にそれぞれ精通したエンジニアがおり、日々進
歩するこの業界において新しい技術をすぐさま
Heroku上で使えるようにしています。たとえば、
Rubyなどは新しいバージョンがリリースされ
たらほとんどその日のうちにHeroku上でも使
えるようになっています。
　また、言語やその代表的なフレームワークご
とに充実したgetting startedページ注6もあり、
自分の得意な言語でHerokuを使い始めてみる
ことができます。

料金体系

　Herokuの課金は、使った分だけの従量課金
となっています。ベースの金額については、
dynoのサイズ（1X、2X、PX）によって異なり

ます。以下、dynoのサイズごとの料金です。
Webページ注7上で価格をシミュレーションし
てみることもできます。

1X dynos : $0.05 / hour
2X dynos : $0.10 / hour
PX dynos : $0.80 / hour

　アドオンについては各アドオン、またアドオ
ン中でのプランごとにベースの金額が異なって
きます。たとえば、Heroku postgresアドオン
には無料のものから$6,000／月するものまで
さまざまなプランが用意されています。詳しく
はアドオンのページ注8を参考にしてください。
　dynoについては時間単位、アドオンについて
は月単位での価格が記載されていますが、これ
らの課金はすべて秒単位で計算されています。
　Herokuには、1つのアプリケーションにつ
き1ヵ月あたり1X dyno約1つ分が無料でつい
てきます。1X dynoが 1つあれば、個人で
Herokuを試してみるには十分です。この、無
料から始められるというのはHerokuの大きな
特徴でしょう。
　Herokuの使用料の支払いは基本的にはクレ
ジットカードで行われます。月々に使用した料
金が翌月請求されます。Herokuはクレジット
カード情報を登録しないと利用できないと思わ
れている方も多いのですが、実はHerokuはク
レジットカード情報を登録することなく始めら
れます。アドオンを試してみる場合にはクレジッ
トカード登録が必要です（Heroku postgres、
pgbackupsアドオンを除く）。クレジットカー
ド情報の登録なしでは作成できるアプリケーショ
ン数など利用できる範囲も限られてきますが、
その枠内でも十分に試してみることができるで

buildpack（ビルドパック）

https://devcenter.heroku.com/articles/buildpacks
https://devcenter.heroku.com/articles/quickstart
https://www.heroku.com/pricing
https://addons.heroku.com/

112 - Software Design Sep. 2014 - 113

しょう。
　請求書払いなども対応したエンタープライズ
向けパッケージ注9での販売もしていますので、
興味のある方はぜひお問い合わせください。
　ここでカバーしたことも含めて料金の詳細は、
Webページ注10を参考にしてください。

Sign Up

　Herokuへのサインアップはとても簡単です。
Herokuのホームページ注11へ行くと中央に大き
く「Sign up for free」と書かれたボタンが見え
ます。メールアドレスを入力すると確認メール
が届きますので、確認メール中のリンクよりパ
スワードを設定し、アカウントを作成してくだ
さい。以降、https://dashboard.heroku.comが
あなたのHerokuダッシュボードになります。
ここでアプリケーションやアカウントの管理が
できます。

Heroku toolbelt

　サインアップも終わったので、次はHeroku

toolbeltのインストールにとりかかりましょう。
ToolbeltはCLIツールであるHeroku client、ア
プリケーションをローカル上で動かすときに役
立つForeman、バージョン管理ツールのGitの3

つから構成されています。Toolbeltをページ注12

からダウンロードし、インストールしてください。
そのあと、Macの場合はターミナル、Windows

の場合はコマンドプロンプト注13を開き、次の
とおりherokuコマンドを使ってログインをし
てみましょう。

$ heroku login
Enter your Heroku credentials.
Email: adam@example.com
Password:
Could not find an existing public key.
Would you like to generate one? [Yn]
Generating new SSH public key.
Uploading ssh public key /Users/adam/.ssh/id_rsa.pub

　今回はここまでです。ちょっと物足りないな、
という方はheroku helpコマンドを打って、
どんなherokuコマンドがあるか見てみたり、
Herokuダッシュボードでアカウント情報を見
てみたりしましょう。

サンフランシスコ
だより

　はじめまして。この連載を書いているKeiko

と申します。HerokuではTechnical Support

Engineerをやっています。2013年4月より働
いており、今年8月からサンフランシスコ勤務
になりました。各連載の終わりに、筆者の住ん
でいるサンフランシスコについてコラム形式で
少し書いていきたいと思っています。サンフラ
ンシスコに来る予定のある方は、ぜひHeroku

に遊びにきてください！

Heroku internal conference
Shinzoku-kai

　少し前の話になりますが、6月の末にサンフ
ランシスコでHerokuの internal conferenceで
あるShinzoku-kai（親族会）が行われました（写
真1）。不思議なことに、Herokuは内部ツール
やイベントの名前に日本語を使いたがります。
社員の中にも、少し日本語ができる人がけっこ
ういます。

注9） https://www.heroku.com/critical
注10） https://devcenter.heroku.com/articles/usage-and-billing
注11） https://www.heroku.com
注12） https://toolbelt.heroku.com
注13） Windowsでうまくいかない場合は、Heroku toolbeltをインストールした際に同時にインストールされたGit Bashを使って

コマンドを実行してみてください。

Heroku事始め　 第 1 回

https://www.heroku.com/critical
https://devcenter.heroku.com/articles/usage-and-billing
https://www.heroku.com
https://toolbelt.heroku.com

新連載
サポートエンジニアのクラウドワークスタイル

114 - Software Design

　Herokuは、実は半数近くがリモート勤務の
ため、こういった internal conferenceは皆が世
界中から一堂に会するいい機会です。筆者のチー
ムも世界各地に散らばっているのですが、普段
チャットやGoogle hangoutでしか話さないみ
んなと実際に顔を合わせて話すととてもうれし
くなりますし、あとあとの仕事にもいい影響を
与えます。

サンフランシスコの宿泊と交通

　Shinzoku-kaiの日程がGoogle I/Oと被ったと
いうこともありホテル価格も高騰していたため、
筆者は同僚と一緒にAirbnb注14を
利用しました。夜にリビングなど
で話す機会があり、なんだか合宿
のようでとてもよかったです。サ
ンフランシスコはAirbnbの本社
がある土地ということもありたく
さんの候補地があるので、機会が
あればぜひ利用してみてください。
　移動はよくUber注15を使いまし
た。Uberは普通黒塗りの車なの
ですが、その1つランクが下の
Uber X（普通の乗用車）を使うと、
タクシーよりたいてい安いです。

複数人で移動するととても経済的ですし、降り
るときにチップの計算もいらず財布も出さなく
ても良いのでとても便利です。サンフランシス
コでは空港はもちろん市内いたるところにUber

がはびこっていますので、こちらもサンフラン
シスコへ来たときには利用されることをお勧め
します。

Heroku O�ce

　Herokuの Officeは SoMa（South of Market）
と呼ばれる地区にあります。サンフランシスコ
とサンノゼをつなぐCaltrainと呼ばれる鉄道の
San Francisco駅の近くになります。この
SoMa地区にはたくさんの IT系企業のオフィ
スがあります。2013年の夏にこのオフィスに
引っ越しをしたのですが、筆者はこのオフィス
がとても気に入っています！　広くて、たくさ
んの遊び心のあるスペースがあり、こだわりを
感じ、それでいてとても居心地が良い。みなさ
んも遊びに来たらきっとHerokuで働きたくな
ることでしょう（写真2）。YouTubeにオフィス
の紹介ビデオ注16がありますので、ぜひご覧く
ださい。ﾟ

 ▼写真2　Herokuオフィス（Photo by @seaofclouds）

 ▼写真1　Shinzoku-kaiの様子（Photo by Yannick）

注14） https://www.airbnb.com/ （宿泊施設を貸し出せる、借りられるWebサイト）
注15） https://www.uber.com/ （携帯アプリケーションから利用できる配車サービス）
注16） https://www.youtube.com/watch?v=WLGLTX4yqSA

https://www.airbnb.com/
https://www.youtube.com/watch?v=WLGLTX4yqSA
https://www.uber.com/

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Sep. 2014 - 115

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

2014年3月号
 第1特集
データベースの諸問題
RDBとNoSQL
どちらを選びますか？
 第2特集
ネットワークエンジニアのための
プロキシサーバの教科書
 一般記事
・さらに踏み込む、Mac OS Xと仮想デスクトップ #1

定価（本体1,219円＋税）

 第1特集
設定ファイルの読み方・書き方でわかる
Linuxのしくみ
 第2特集
Windows XPからの乗り換えにいかが？
Ubuntu 14.04 "Trusty Tahr"過酷な
環境でも信頼できるLTSバージョン
 一般記事
・Google Glassアプリ開発事情
・OpenTSDB（前編） ほか

2014年6月号

定価（本体1,220円＋税）

 第1特集
<Java/JavaScript/PHP>言語別で考える
なぜMVCモデルは
誤解されるのか？
 第2特集
ネットワークエンジニア養成
ロードバランサの教科書
 一般記事
・さらに踏み込む、Mac OS Xと仮想デスクトップ #2
・SIMのしくみ

2014年4月号

定価（本体1,219円＋税）

 第1特集
［多機能］［高速処理］［高負荷対策］
そろそろNginxを考えている
あなたへ
 第2特集
知っているようで知らない
DHCPサーバの教科書
 一般記事
・OpenSSLの脆弱性"Heartbleed”の教訓（前編）
・Webアプリのパフォーマンス改善（最終回） ほか

2014年7月号

定価（本体1,220円＋税）

2014年5月号
 第1特集
ネットワーク・ビギナー向け基礎講座

「ポート」と「ソケット」がわかれば
TCP/IPネットワークがわかる！
 第2特集

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

 一般記事
・Rettyのサービス拡大を支えた「たたき上げ」DevOps
・Webアプリのパフォーマンス改善 ほか

定価（本体1,220円＋税）

 第1特集
システムログからWebやDB、ビッグデータの基礎
まで
ログを読む技術
 第2特集
forkを通して考える・試す・コードを読む
Linuxカーネルのしくみを探る
 一般記事
・OpenSSLの脆弱性"Heartbleed”の教訓（後編）
・使ってみよう！ tcpdump

2014年8月号

定価（本体1,220円＋税）

http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com

116 - Software Design

クラウド導入の失敗と成功

　前回は「クラウド前夜」と題して、国内にスマー
トフォンが入ってくる流れについて話しました。
今回は、筆者たちがこの3つのメジャーなクラ
ウドサービスをどのように使っていき、どんな
ふうに付き合うことにしたのか、その流れを紹
介させていただくとともに、そこから筆者たち
が何を学び、将来のエンジニア像をどのように
イメージすることになったのか、筆者たちの事
例を紹介します。

Google Apps導入の
理由とは

　前回、筆者たちが「モバイルが起点になって、
Google Appsを使うことになった」という話を
しました。「iPhoneから業務をやりやすくする」
ことを中心に据えるようになると、いろいろと
会社のツールが合わないケースが出てきます。
もっともその影響を受けたのは、SharePoint

でした。筆者たちは、2006年からMicrosoft

Office SharePoint Server（MOSS）をグループ
ウェアとして使っていましたが、「Internet

Explorerからでないと使えない」ことが致命傷
になっていました。今となっては信じられない
ことですが、2006～2007年当時は、筆者たち
も社内のPCとブラウザを「Windows＋Internet

Explorer」で決め打ちにしていたのです！
　個人的にSharePointはとても気に入ってい
たのですが、「iPhoneから使えないのではしか
たない」と考えるようになり、スケジュール・
カレンダーはGoogle Appsに、ファイル共有は
ローカルのファイルサーバに、と分割して機能
させることにしました。こうして、オンプレミ
ス環境だったグループウェアがGoogle Appsと
いうクラウドサービスに取って代わりました。

増え続けるサーバへの
対策

　そして、ほどなくしてAWS（Amazon Web

Services）と出会います。当時は「EC2」として
認知されるケースがほとんどでしたので、筆者
たちも、AWSというよりは「EC2と出会った」
という感覚でした。もともと大学向け合否照会
システムの運用をしていた筆者たちは、「2月
の特定の日の、午前10時から15分間だけに発
生する極端なスパイクトラフィック」を何とか
して解決しようと、さまざまなソリューション
を検討していました。
　初期のころはハードウェアからのアプローチ
が中心でした。ブレードサーバによるスペース
集約などはかなり早くから実施し、一定の効果
を上げましたが、ハードウェアのアプローチで
もっとも効果的だったのがCitrix NetScalerの
導入でした。今はロードバランサやアプリケー

情 報システムとエンジニア の 未 来

クラウドの登場によって、情報システムのありかた、そしてエンジニアのキャリアそのものが大きく変わろうとし
ています。本連載では、すでに起こりつつある変化を読み取ることで、みなさんが自分のキャリアを考えるための
材料を提供します。

 Writer ㈱サーバーワークス　代表取締役　大石 良（おおいし りょう）／ http://blog.serverworks.co.jp/ceo/

第2回　Google Apps、SalesforceそしてAWS

http://blog.serverworks.co.jp/ceo/

116 - Software Design Sep. 2014 - 117

第2回　Google Apps、SalesforceそしてAWS

ションデリバリーコントローラと呼ばれ
るケースが多いようですが、当時は「Web

アクセラレータ」というカテゴリの製品で
した。
　当時はまだ低速なモバイル端末からの
アクセスが非常に多かったのですが、低
速な回線から大量にアクセスが集中する
と、Apacheのプロセスが大量に立ち上がっ
てしまい、メモリを圧迫するという問題
に悩まされていました。NetScalerは非常にイ
ンテリジェントで、Webサーバの前に配置す
ることで、リバースプロキシとして動作するこ
とに加え、HTTP1.0のアクセスもHTTP1.1に
してWebサーバに転送してくれるため、回線
が遅いときに全部のコンテンツを返し終わるま
でApacheがメモリに滞留してしまうという問
題が解決されたのです。これはとても効果的で、
アクセスが増え続ける中でもサーバ台数を増や
さなくても対応できるまでになりました。サー
バ台数が、アクセス数に応じてリニアに増え続
けるという悪夢を、未然に防ぐことに成功した
のです。
　ですが、ハードウェア自体が相応の価格にな
ることに加え、結局こうしたハードウェアの保
守・メンテナンスも追加で行う必要が発生する
ようになり、「現状維持はできるようになったが、
運用のための負荷が下がったわけではない」と
いう状況に変化はありませんでした。

AWSとの出会い

　こうした中で、当社のエンジニアが「これは
スゴいですよ」と見せてくれたのが、EC2でし
た。筆者も最初は「なぜあのAmazonが？」と思
いました。しかも、今と違いEC2のタイプも「イ
ンスタンスストアタイプ」と呼ばれる「インスタ
ンスを停止させると、その仮想サーバの中身も
まるごと消える」というタイプからしか選択で
きなかったのです。今でこそ「immutable

infrastructure」という概念がよく知られていま

すが、当時はSSHでログインしてhttpd.conf

をゴリゴリ書き換えるのが当たり前でした。「止
めたら中身が消える仮想サーバをいったい何に
使うんだ！？」という反応が、正直な第一印象
でした。
　それでも、よく調べてみると「EC2以外のと
ころにすごみがある」ことがわかってきました。
とくにAmazon S3のインパクトは強烈で、当
時の情報ではいったいどうやって実装している
のかまったく想像もつかないレベルでした。「こ
れは何かとてつもないことが起きるかもしれな
い」と予感した筆者たちは、2008年の正月に「社
内サーバ購入禁止令」を出します。まずは開発
サーバや自社サーバなどから強制的にEC2を
使い始めてみて、最初の予感が本物かどうか確
かめるためです。そして「これはいける」と判断
しました。2008年から外販を始め、2009年か
らは「事業の主軸をAWSにする」と決断するに
いたりました。
　余談ですが、インスタンスストアタイプしか
なかったころは、みんなよってたかって「EC2

は止めたらデータが消えるから使えない」と文
句を言っていましたが、今になって「サーバの
内部にデータを残すなんてイケてない！　これ
からは immutable infrastructureだ！」という風
潮が高まっており、AWSの中の人は「それみ
たことか」と思っているのではないかとニヤニ
ヤ観察しています（笑）。

118 - Software Design

Salesforceの導入に
失敗！

　さて、このような理由で筆者たちはAWSに
焦点を当てることにしたのですが、事業推進の
ためには営業が大切なので、営業支援ツールを
本格的に探すことにしました。いくつか選択肢
はあったものの――確実に違いないと考え――
Salesforceのアカウントをごく少数契約し、社
内への導入を図ってみました。ところが見事に
頓挫しました。まず営業からはクレームが頻発
しました。「画面がイケてない。使い勝手が悪い。
自分たちのやりたいことが実現できない」など
など、細かい要請が積み重なります。会社とし
ても、現場で使われないのにこの金額では高過
ぎる、ということになり結局導入に失敗しまし
た。

内製ツールで
しのごうとするも失敗！

　この失敗を「Salesforce固有の問題ではない。
自分たちの業務に合うモノは自分たちで作らな
いと満足できるものは作れない」と考えた筆者
たちは、営業支援ツールを内製することにしま
した。幸い自社に開発者もいますし、こういっ
たツールを作る経験はそれなりにしてきました
ので、特有の業務要件はあったものの構築自体
はそれほど高いハードルではありませんでした。
こうして内製のツールが完成します。
　「めでたしめでたし」に、なるハズでした。と
ころが、また別な問題がわき上がりました。業
務が少しずつ変わってきたにもかかわらず、ツー
ルを修正するための人手が割けなかったのです。
これは開発者を抱える会社が陥りがちな「罠」で
すが、「開発者がいれば、いつでも修正できる」
と錯覚してしまうのです。開発者のリソースが
空いていれば、内製システムを作ったり修正し
たりといったことができるかもしれませんが、
実際にそんなに人手が空いていません。SIをやっ
ている会社が「SIをやりながらパッケージやサー

ビスを作ろう」としてもうまくいかないのも、
同じ理由です。結局、筆者たちが内製したツー
ルも「いつまでたっても問題が修正されない」状
態が長期にわたって放置されることになってし
まい、結局「Salesforceを使っていたときより
も営業からのクレームが大きくなる」という逆
転現象を招いてしまったのです。

再度Salesforceへ

　このような失敗を経て、筆者たちは「システ
ムは作った瞬間よりも、継続して運用できるか
どうかのほうが大切だ」というごく当たり前の
ことを、身をもって体験しました。そして同時
に「開発者がいるからといって、いつでも自社
ツールのために時間を使えるわけでもないし、
ベストなものが作れるわけでもない」というこ
とも学習しました。でも、こうした課題を解決
するためには「やはりSalesforceが良いかもし
れない」と考えるようになったのです。ただし、
前回と同じことをやっては同じ結果を招くだけ
です。「今度こそ絶対に営業支援ツールの導入
を成功させる」という意気込みのもと、次のア
クションを設定しました。

・まず、経営者である筆者がSalesforceの中
身／価値をよく理解すること

118 - Software Design Sep. 2014 - 119

第2回　Google Apps、SalesforceそしてAWS

・営業全員に、全お客様情報、全商談を必ず入
力させること

・営業が自分でレポートなどを作れるようにし
て、自分たちで営業成績をあげるための使
い方ができるようにサポートすること

　こうしたアクションを経て、ようやく
Salesforceが社内に定着するに至りました。

自社開発の失敗で
思うこと

　当社の事例は、このように2回の失敗を経て
結局Salesforceで成功を迎えましたが、このこ
とは筆者たちにとっても非常に大きなインパク
トがありました。
　前号の記事で「自分たちはメールサーバを立
てて運用する能力があると思っていたが、実際
にはGoogleを使ったほうがずっとよかった」と
紹介しましたが、これはインフラの話でした。
ところが、アプリケーション開発の分野でも「自
分たちで作ることができると思っていたが、
Salesforceを使ったほうがずっとよかった」と
いう事実を突きつけられたのです。
　これは恐怖でした。SIerといえば、アプリケー
ションを開発して、インフラを運用して、そし
てお金をいただく商売です。それが「アプリケー
ションの開発もインフラの運用も、どちらもク
ラウド事業者のほうが優れている」という事実
を突きつけられたのです。この経験が「作らな
いSI」という筆者たちの方向性につながってい
くのです。
　実は「作らないSI」という方向性と、「作らな
いSI時代のエンジニア像」こそが、筆者がこの
連載でもっとも伝えたいことなのです。

「クラウドありき」ではない

　さて、著者の会社は「AWS専業インテグレー
タ」と称してはいるものの、決して2010年当時
から「すべてのシステムをAWSなどのクラウド

にするのがベストだ」と考えていたわけではな
いことが理解いただけたのではないでしょうか。
　Google Appsは「モバイル業務を進めるため」、
AWSは「突発的なトラフィックをさばくため」、
そしてSalesforceは「自分たちの業務を円滑に
するため」という目的でした。それぞれ達成す
るための解決策を探していたら、結果としてク
ラウドになった――のです。
　筆者たちはクラウドインテグレータを標榜し
ていますが、決してクラウドを「目的」にしてい
るわけではありません。どこまでいってもコン
ピュータは人間の「道具」であり、クラウドその
ものが目的になることはないと思います。しか
し、試行錯誤で最適解を見つける努力をしてい
るうちに、結果として「これはクラウドのほう
がいいよね」という領域が増えていった、とい
うことなのです。そして「作らないSI時代のエ
ンジニア像がある」ことがわかってきたのです。
　次稿では、「作らないSI」の流れと社内シス
テムの未来像についてもう少し詳しく掘り下ま
す。ﾟ

㈱サーバーワークス
代表取締役
大石 良（おおいし りょう）

・�昭和48年7月20日新潟市生まれ
・コンピュータとの出会いは10歳の頃
・当時はPC-8001にベーマガのプログラムを
入力する日々

・コンピュータの購入は11歳／SHARP X1
・中2の時に初めてプログラムが書籍に掲載
・高校入学記念にX68000を購入
・大学生の時にパソコン通信開始。本格的にシェ
アウェアを販売

・総合商社でインターネットサービスプロバ
イダー事業に携わる

・2000年にECのASPを立ち上げるべく起業

120 - Software Design

　ども、Emacsと熱愛状態にあるるびきちです。
「Emacsの恩恵は文字入力の一元化にある」とい
う路線で本連載は進めていっています。今回は
テキストエディタの本質であるカーソル移動と
効率的な文字入力について触れていきます。本
記事を読んで設定していけば、Emacs以外で文
章を書くことが本当に馬鹿らしくなってきます
ので楽しみにしててください。

カーソル移動

基本

　まずはカーソル移動についてです。カーソル
移動の最小単位は文字・行です。C-b（←）、C-f
（→）、C-p（↑）、C-n（↓）はもう無意識で使えて
いますか？　マウスやカーソルキーを使ってい
ない時点でメモ帳やブラウザの textareaなどた
だのおもちゃレベルで、相手になりません。
　その次は単語単位の移動になります。M-b

（←）、M-f（→）というふうに、lがMetaに変
わっただけですが、少し離れた位置にカーソル
を移動させる場合に重宝します。また、C-a（行
頭）、C-e（行末）も大事なコマンドです。
　プログラミング言語を編集する場合は、単語
とは別に「まとまり」単位で動いてほしいことが
あります。変数名や関数名といったシンボル、

文字列リテラル、対応する括弧の末尾など、自
然言語における「単語」とは違ってプログラミン
グ言語的に意味する構成要素があります。たと
えば、Emacs Lispで「find-file」という文字列が
ある場合、単語としては2語ですが、Emacs Lisp

としては1つのシンボル（名前）です。その構成
要素を「S式」といいます。S式単位の移動は
C-M-b（←）、C-M-f（→）です。
　S式はLisp由来の概念で、Emacs Lispにはと
くによくなじんでいます。ほかの（非Lisp系で
さえも）言語でもシンボルや括弧に囲まれたもの
はS式とみなされます。S式という概念を詳し
く説明するのは本稿から外れてしまうのでこれ
くらいにしておきますが、コーディングにおい
てC-M-bとC-M-fは基本的なカーソル移動手段
なので感覚を身につけておいてください。

インクリメンタルサーチ

　Emacsでのカーソル移動コマンドは強力です
が、到達したい場所が離れている場合は、それ
だけでは力不足です。離れた場所にでもすぐに
到達できるようにするためには、移動したい場
所の文字列を指定して、エディタに探してもら
う「検索」という機能が必要となります。
　Emacsでの検索はインクリメンタルサーチ
（isearch）が採用されています。普通の検索は検
索文字列を入力したあとに検索を始めますが、

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

第5回 カーソル移動と入力支援でスピードアップ！
エディタ選びで最初に注目するのは、やはり「どれだけ効率的に文章・コードを書けるか」ですよね。今回は
「isearch+Migemo（+ace-jump-mode）」を使った高速なカーソル移動、「dabbrev-expand」、「hippie-
expand」を使った強力な入力支援を紹介します。

Writer

http://rubikitch.com/

120 - Software Design Sep. 2014 - 121

タ文字「.」は改行以外の文字にマッチするので、
この場合 xと fにマッチします。厳密には
「C-[xf]」を指定すべきですが、「.」を使ったほ
うが手軽です。その分余計な文字にもマッチし
てしまうので、臨機応変に対処してください。

Migemoを使って、ローマ字で日本語を
isearch

　isearchはカーソル移動においては不可欠です
が、日本語とは相性がよくありません。なぜな
ら、日本語文字列を検索するには、わざわざ漢
字変換をする必要があるからです。漢字変換す
るくらいならカーソル移動コマンドをそのまま
使ったほうが早いくらいです。漢直入力を使わ
ない限り、日本語と漢字変換は切っても切れな
い関係であり、大きなハンデとなっています。
　漢字変換なしでローマ字で日本語文字列を
isearchできたらいいなと思いませんか？　その
願望を叶えてくれる神ツールがMigemoです。
Migemoはもともと、内部処理を担当するRuby

スクリプトmigemoとEmacsインターフェース
のmigemo.elの2つで構成されています。今の
Rubyではmigemoは動かないので、内部処理は
C言語で書かれたcmigemoを使います。よって、
必要なのはcmigemoとmigemo.elです。
　Debian系列のGNU/Linuxならば両者とも
パッケージ化されているのでインストールは簡
単です。「sudo apt-get install cmigemo migemo-el」
を実行するだけで、初期設定までしてくれて、

isearchは検索文字列をタイプするたびに検索し
ます。そのおかげで最小限のタイプ数で到達し
たい場所へとカーソルを移動してくれます。だ
からこそ isearchは重要なカーソル移動コマンド
です。少し離れた場所に移動する場合は isearch、
これは鉄板です。邪魔なダイアログボックスが
現れないこともありがたいです。
　isearchは前方（カーソル以降）にはC-s、後方
（カーソル以前）にはC-rを使います。1ストロー
クの押しやすいキーに割り当ててあることから、
多用されるべき機能であることが見て取れます。
　isearchをしていて目的の場所に到達したとき
は　　　 を押して終了します。C-fなど、ほか
のカーソル移動コマンドでも isearchを抜けられ
ます。
　isearch一発で目的の場所に到達するとは限り
ません。その場合に採れる選択肢は2つです。さ
らに検索文字列を入力するか、同じ文字列を検
索するかです。同じ文字列を検索するには
isearch中にC-s（前方）かC-r（後方）を使います。
　isearch終了後に最後に検索した文字列を再検索
するにはC-s C-sあるいはC-r C-rを使います。
　C-uを前置すると正規表現 isearchになりま
す。つまり、前方はC-u C-s、後方はC-u C-r

です。正規表現とは文字列のパターンを記述す
るミニ言語で、あらゆる分野で使われています。
正規表現についてはかなり奥が深く、それだけ
で1冊の本になっているほどです。ですが、最
小限の正規表現を知っておくだけでEmacsでの
日常的な編集はまかなえます。
　正規表現で使われる文字は「メタ文字」（表1）
と「それ以外の文字」に分かれます。メタ文字と
は、パターンを表現するために特別な意味を持
つ文字です。メタ文字以外の文字はその文字そ
のものにマッチします。Emacsの正規表現はや
やクセがあり、「(」と「)」と「|」はそれぞれバック
スラッシュを付けて「\(」、「\)」、「\|」とします。
　たとえば、後方にある「C-x」と「C-f」を検索す
るときには正規表現 isearchを使います。C-u

C-rのあとに文字どおり「C-.」を入力します。メ

RET

メタ文字 意味
. 改行以外のすべての文字
* 直前の表現が0回以上
+ 直前の表現が1回以上
? 直前の表現が0回か1回

[...] 文字クラス（...の文字に一致）
[^ ...] 否定文字クラス（...の文字に一致しない）

$ 行末
\｜ \｜で区切られた表現のうちどれか

\(... \) グルーピング

 ▼表1　主な正規表現のメタ文字

第5回 カーソル移動と入力支援でスピードアップ！

122 - Software Design

ace-jump-mode

　isearchは強力なカーソル移動方法ですが、も
う1つ便利なカーソル移動コマンドを紹介して
おきます。M-x ace-jump-word-modeは画面内
の任意の単語開始位置に3ストローク以内でジャ
ンプするコマンドです。isearchはカレントバッ
ファ全体が走査対象ですが、ace-jump-word-

modeは画面内の移動に特化しています。isearch

では検索文字列が多数マッチしたときに何度も
C-sやC-rを押す必要があって手間がかかりま
すが、ace-jump-word-modeはそんな問題とはお
さらばできます。また、ウィンドウが分割され
ていたとしても、画面に表示されているのであ
ればウィンドウ切り替えなしで即ジャンプでき
ます。筆者は導入後あっさり魅了されました。　
　リスト1でMELPAを使用可能にして、

M-x package-install ace-jump-mode

でインストールし、リスト3のように初期設定
を行います。筆者はC-oに割り当てていますが、

そのまま使えます。多くのGNU/Linuxはパッ
ケージシステムがあるため、インストール・設
定・管理がとても楽です。パッケージを使うた
めには初期設定が必要となります（リスト1）。
　OS側でパッケージ化されていない場合は
cmigemoとmigemo.elは別個でインストールし、
初期設定も行う必要があります。Macは「brew

install cmigemo」で、Windowsは@kaoriya氏の
サイト注1からcmigemoのバイナリを取ってきま
す。
　migemo.elはMELPA（Milkypostman's Emacs

Lisp Package Archive）に登録されています。初
期設定でHEREと書かれた部分は環境に合わせ
て書き換えてください（リスト2）。次のように
してインストールが終われば、init.elに設定を
書き加えてください。

M-x package-refresh-contents

M-x package-install migemo

Migemoをインストールしたら、Emacsを再起動し
てローマ字で日本語文字列を検索してください。
たとえばC-s nihoで「日本語」に到達で
きるようになります。実際に使ってみれ
ば感動すること請け合いです。

注1） URL http://www.kaoriya.net/software/
cmigemo/

 ▼リスト1　非公式Emacs Lispパッケージ（MELPA・Marmalade）を使うための初期設定

(package-initialize)
(add-to-list 'package-archives '("marmalade" . "[http://marmalade-repo.org/packages/]"))
(add-to-list 'package-archives '("melpa" . "[http://melpa.milkbox.net/packages/]") t)

 ▼リスト2　migemo.elからcmigemoを使う初期設定

(when (locate-library "migemo")
 (setq migemo-command "/usr/local/bin/cmigemo") ; HERE cmigemoバイナリ
 (setq migemo-options '("-q" "--emacs"))
 (setq migemo-dictionary "/usr/local/share/migemo/utf-8/migemo-dict") ; HERE Migemo辞書
 (setq migemo-user-dictionary nil)
 (setq migemo-regex-dictionary nil)
 (setq migemo-coding-system 'utf-8-unix)
 (load-library "migemo")
 (migemo-init))

 ▼リスト3　ace-jump-word-modeの初期設定

(require 'ace-jump-mode)
(setq ace-jump-mode-gray-background nil)
(setq ace-jump-word-mode-use-query-char nil)
(setq ace-jump-mode-move-keys
 (append "asdfghjkl;:]qwertyuiop@zxcvbnm,." nil))
(global-set-key (kbd "C-:") 'ace-jump-word-mode)

▼リスト1　非公式Emacs Lispパッケージ（MELPA・Marmalade）を使うための初期設定

(package-initialize)

るびきち流
Emacs超入門

http://www.kaoriya.net/software/cmigemo/

122 - Software Design Sep. 2014 - 123

❶カレントバッファのカーソル位置に一番近い
単語

❷カーソル位置から離れた単語

❸ほかのバッファ

　これは言葉で説明するよりも、実際に手を動
かしてください。これを知ると本当に世界が変
わります。初めて使ったときには、まるで魔法
でもかかっているかのように適切に補完してく
れることに驚くことでしょう。文章入力でもプ
ログラミングでもあらゆる局面で使えます。
　プログラミングにおいては言語固有の補完を
使うのが普通ですが、一部の言語では正確な補
完候補を求めるのが困難なケースがあります。
たとえばRubyプログラミングで補完すべきメ
ソッド名がわかっている場合は補完コマンドを
使うのではなくてM-/で済ませてしまいます。
　ただ、日本語においては単語の間に空白を入
れないために相性が悪いです。お使いの日本語
入力システムでカバーしてください。SKK（第
4回で紹介）は過去に入力した見出し語を補完で
きるので便利です。dabbrevは英文やコーディ
ングに絶大な威力を発揮します。
　M-/を多用するようになると、そのうち打ち
づらく感じてくることでしょう。押しやすいキー
に各自割り当てると快適になります。次の設定
例ではC-@に割り当てています。

(global-set-key (kbd "C-@") 'dabbrev-expand)

hippie-expand

　dabbrev-expandは極めて強力なコマンドです
が、この進化形と言えるコマンドが標準で存在

ここではC-:に割り当てています。
　使い方は簡単です。C-:を押したら単語の先
頭に別色で文字 注2が表示されるので（図1→図
2）、移動したい場所の色文字をタイプしてくだ
さい。

入力支援機能

　後半はEmacsの強力な入力支援機能をいくつ
か紹介します。とくにdabbrevは、これなしで
は生きていけないほど超強力です。

dabbrev-expand

　入力支援機能の内、真っ先に紹介しておきた
いのがこのdabbrev機能です。dabbrevとは動的
略語展開のことで、長い文字列を補ってくれる
ものです。
　Emacsを使っていると、どうしても同じ単語を
何度も打ち込むことが多くなりますね。でも、毎
回馬鹿正直にタイプすると、時間がかかる上に、
タイプミスが起こりやすくなってしまいます。
　そこで、長い単語を入力するときは先頭の数
文字をタイプしてからM-/を押してみましょう。
たとえば interのあとにM-/を押してみると、
internet、interesting、interactive、intervalな
どの単語に補完されます。もし望みの単語でな
ければ繰り返しM-/を押してください。もし、
行き過ぎてしまったらC-/で戻してください。
　M-/がどのように補完されるかは状況に依存
します。連続で押していくと、次の場所から探
索されます。

注2） 図2中、他より淡い色の文字がace-jump-modeの表示で
す。

 ▼図1　ace-jump-mode実行前 ▼図2　ace-jump-mode実行後

第5回 カーソル移動と入力支援でスピードアップ！

124 - Software Design

と、最初に try-complete-file-name-partiallyが
働き、最低限の補完が行われます。そして、再
実行すると try-complete-file-nameが働いて、存
在するファイル名が実行するたびに出てくるよ
うになります。たとえば、SD1404.pdfと
SD1405.pdfが存在するときは、SDのあとに
hippie-expandを実行するとSD140と補完され
ます。そのあとはファイル名の一部を入力する
か、再びhippie-expandを実行するかで挙動が変
わってきます（図3）。
　try-expand-lineは同じ行を入力しようとしま
す。たとえば「ab cd」という行が存在したときに
「a」のあとにhippie-expandを実行すると「ab cd」
が出てきます。
　try-expand-listは括弧に囲まれた内容を入力
しようとします。たとえば「(a b)」とどこかに書
いてあるときに「(a」が「(a b)」になります。
　hippie-expandはdabbrevにファイル名補完が
付いたものとして使われることが多いと思われ
ます。筆者の経験上、try-expand-lineと try-

expand-listのお世話になったことがありません。
しかも dabbrevよりも先に実行されるので
dabbrevのつもりでhippie-expandを実行したら
思わぬ結果に戸惑ってしまいます。
　また、dabbrevの下にEmacs Lispシンボル補
完が設定されていますが、Emacs Lispファイル
以外でEmacs Lispシンボルを入力することは
めったにありません。ChangeLogなどでシンボ
ルを入力することはありますが、そのシンボル
はdabbrevの時点で補完できます。なぜなら、そ

します。M-x hippie-expandです。M-/では開
かれているバッファの中が補完候補になります
が、hippie-expandでは入力中のファイル名だっ
たり、Emacs Lispのシンボルだったり、キルリ
ングの中身からも走査してくれます。
　hippie-expandはとても賢く、入力の状況に応
じて空気を読んでくれます。とくにファイル名
を入力しているときには先頭数文字だけ入力す
れば適切な補完をしてくれるありがたいコマン
ドです。
　使い方はM-/と同じで、数文字タイプしてか
ら実行し、望みの結果と異なるときには再実行
します。本稿では次のように、dabbrev-expand

と同じC-@に割り当てていますが、dabbrev-

expandに慣れてからhippie-expandに乗り換え
ればいいです。

(global-set-key (kbd "C-@") 'hippie-expand)

　変数 hippie-expand-try-functions-listは
hippie-expandでどのように補完するかを細かく
指定できます。補完の方法は tryから始まる関
数で指定してあり、デフォルトではリスト4の
ような設定になっています。上から順番に関数
を実行していき、実際に補完が行われたときに
hippie-expandの実行は終了します。好みに応じ
て削除したり順番を入れ替えたりできます。
hippie-expandを実行すると「Using try-expand-

dabbrev」などと表示されますが、どの補完が働
いたのかを示しています。
　ファイル名入力中にhippie-expandを実行する

 ▼リスト4　hippie-expandのデフォルト設定

(setq hippie-expand-try-functions-list
 '(try-complete-file-name-partially ; ファイル名の一部
 try-complete-file-name ; ファイル名全体
 try-expand-all-abbrevs ; 略語展開(より良い方法があり、今はあまり使われない)
 try-expand-list ; 括弧に囲まれた内容(役立たない)
 try-expand-line ; 行そのもの(役立たない)
 try-expand-dabbrev ; カレントバッファでdabbrev
 try-expand-dabbrev-all-buffers ; すべてのバッファでdabbrev
 try-expand-dabbrev-from-kill ; キルリングの中からdabbrev
 try-complete-lisp-symbol-partially ; Emacs Lispシンボルの一部(役立たない)
 try-complete-lisp-symbol)) ; Emacs Lispシンボル全体(役立たない)

るびきち流
Emacs超入門

124 - Software Design Sep. 2014 - 125

登録してしまえばいいのです。SKKでは真っ先
に変換候補として出るのが最近使った単語なの
で、こういう単語登録は邪魔にはなりません。
使わなくなった単語登録は候補の後ろへ追いや
られるだけです。一時的に使う入力短縮のため
に積極的に単語登録できるのがSKKの強みの1

つです。もちろんURLやメールアドレスを単語
登録することだってできます。
　さらに次の設定を加えると、見出し語入力中
に最後に入力した見出し語が表示されるように
なります。

(setq skk-dcomp-activate t)

　最後に「日本語」と入力したときに再び「Ni」と
入力すると、別の色で「にほんご」と出てきます。
そのまま変換したいときはM-SPCを押します。
これを知っているだけでもかなりタイプ数を減
らせます。

終わりに

　今回はカーソル移動と文字入力というテキス
トエディタの基本機能を快適に使うお話でした。
少し難し過ぎましたか？　入力支援機能は、もっ
ともっと高度で便利なものが存在しますが、今
回はシンプルなものを取り上げました。それで
もMigemoとdabbrevには驚かれるかと思います。
　筆者はEmacsの週刊メルマガ 注3を書いてい
ます。Emacsをもっともっと便利に使いたい、
将来的にはEmacsの達人になりたいのならば登
録お願いします。Happy Emacsing！ﾟ

のシンボルが書かれているEmacs Lispファイル
をすでに開いているからです。
　一般に、多機能ということには余計なものが
含まれていたり、想定とは異なる挙動をしてし
まうことが多々あります。自分の理解を超えた
機能というのは必要ありません。筆者はhippie-

expandのデフォルトの設定は複雑過ぎると考え
ています。ファイル名補完＋dabbrevで十分で
しょう（リスト5）。

SKKを使う

　dabbrev-expandやその進化形の hippie-

expandは強力ですが日本語を苦手としています。
日本語入力においては独自のノウハウがありま
す。
　第4回で紹介した日本語入力システムSKKは
単語変換だからこそ独自のメリットが存在しま
す。特筆すべきはすぐに使える単語登録と英字
変換です。SKK辞書は品詞情報がないため、見
出し語と変換結果のテーブルにすぎません。つ
まり、好き勝手に単語登録しまくれるのです。
　そして、英字変換は英数字を見出し語にでき
ることです。たとえば、「code→コード」のよう
な変換が行えます。「/code」を変換すればコード
と出てきます。
　この2つを組み合わせれば現在書いている文
章に頻出する単語を登録してすぐに出せるよう
になります。たとえば、「日本語入力」という単
語が頻出する場合には「/n」で出せるように単語

 ▼リスト5　hippie-expandの推奨設定

(setq hippie-expand-try-functions-list
 '(try-complete-file-name-partially
 try-complete-file-name
 try-expand-dabbrev
 try-expand-dabbrev-all-buffers
 try-expand-dabbrev-from-kill))

 ▼図3　hippie-expandの実行例

SD
↓ hippie-expand
SD140
↓ 5を入力してhippie-expand
SD1405.pdf

SD
↓ hippie-expand
SD140
↓ hippie-expand
SD1404.pdf
↓ hippie-expand
SD1405.pdf

注3） URL http://www.mag2.com/m/0001373131.html

第5回 カーソル移動と入力支援でスピードアップ！

http://www.mag2.com/m/0001373131.html

126 - Software Design

トピック

　現在世界に8つあるリージョンのすべてで
CloudTrailを利用できるようになったことが6

月30日に公表されました注1。これにより、よう
やく東京リージョンでもCloudTrailが使える
ようになっただけでなく、どこのリージョンで
あるかを問わずAWSの操作ログを保存するこ
とが可能になりました。特に複数人で同一の
AWS環境を運用している場合には、なるべく
CloudTrailの設定をしておくようにしましょう。
　設定はCloudTrailマネジメントコンソー
ル注2からリージョンごとに行います。このとき
に次の2つの選択肢があります。

1.全リージョンのCloudTrailログを1つのS3
バケットに保存

2.各リージョンごとにそれぞれ保存

　1の場合は、CloudTrail設定画面の［Create

a new S3 bucket?］欄 で［No］を 選 択 し、［S3

Bucket］のプルダウンメニューから既存のS3

バケットを選択します。2の場合は、［Create

a new S3 bucket?］欄では［Yes］を選択し、［S3

Bucket］欄に新しいS3バケット名を入力します。
この場合、S3バケットはそのリージョンに作

注1） URL http://aws.typepad.com/aws_japan/2014/07/
cloudtrail-expands-again.html

注2） URL https://console.aws.amazon.com/cloudtrail/home

成されます。
　検証程度にAWSを利用している場合は、
API操作ログが一個所に保存されるため利便
性を優先して1の方法を取ることが考えられま
す。本格的にAWSを利用しているのであれば、
リージョンまたぎによる転送遅延やS3バケッ
ト共有による容量圧迫リスクを考慮して、2の
方法を取るほうが良い場合もあるでしょう。

今回のテーマ

　前々回までで、AWSアカウントでなければ
できないことは請求情報の変更や請求レポート
の閲覧以外ほぼなくなりました。前回の設定で
AWSアカウントのセキュリティについても強
化が完了しました。さて、今回からは実際に
AWS APIの話に……と思っていたのですが、
本記事を執筆中の7月7日に「AWS Billingコン
ソールに対してIAMによる制御が可能になった」
旨のアナウンス注3がAmazonからありました。
　これにより「AWSアカウントでなければで
きないこと」がほぼなくなるため、今回は急遽
予定を変更して、次の「IAMグループとユーザ
の作成」について解説します。

注3） URL http://blogs.aws.amazon.com/security/post/
Tx2154FGFDNMQNP/Enhanced-IAM-Capabilities-for-
the-AWS-Billing-Console

シェルスクリプトではじめる
AWS入門
―AWS APIの活用と実践

Writer　波田野 裕一（はたの ひろかず）／運用設計ラボ　operation@office.operation-lab.co.jp

第6回　AWS利用環境の構築（補足：Billing関連IAMユーザの作成）

http://aws.typepad.com/aws_japan/2014/07/cloudtrail-expands-again.html
https://console.aws.amazon.com/cloudtrail/home
http://blogs.aws.amazon.com/security/post/Tx2154FGFDNMQNP/Enhanced-IAM-Capabilities-for-the-AWS-Billing-Console

126 - Software Design Sep. 2014 - 127

第6回　AWS利用環境の構築（補足：Billing関連IAMユーザの作成）

・�請求情報だけにアクセスするための
IAMグループ（マネージャ向け。以下
「請求レポートグループ」）
・�支払い情報だけにアクセスするための
IAMグループ（経理担当者向け。以下
「支払グループ」）

　これに加えて、「サポート」にAWSマネジメ
ントコンソールからアクセスするための IAM

グループの作成についても解説します。

請求情報に対する
IAMアクセスのアクティブ化

　請求情報および支払情報に IAMからアクセ
スするためには、AWSアカウントの設定で「請
求情報に対する IAMユーザーアクセス」を許可
する必要があります。

①言語設定を日本語に変更
　AWSアカウントでログインし、アカウント
設定画面注4にアクセスします。画面右下に言語
選択のプルダウンメニューがあるので「日本語」
を選択します。

②［請求情報に対する IAMユーザーアクセス］
の編集

　画面中段に［請求情報に対する IAMユーザー
アクセス］と表示されている欄があるので、「編
集」リンクをクリックします（図1）。

③情報の更新
　［IAMアクセスのアクティブ化］にチェック
を入れ、［更新］ボタンをクリックします（図2）。

④ IAMユーザーアクセスのアクティブ化
　更新すると「IAM設定は現在ご利用いただけ
ません」と表記されていた一文が「請求情報に対
する IAMユーザーアクセスがアクティブ化さ

注4） URL https://console.aws.amazon.com/billing/home?#/
account

れます。」と表示が変わります。

　ここまででAWSマネジメントコンソールで
のみ可能な作業は完了です。これ以降はAWS

CLIで作業を進めていきます（AWS CLIの設
定については連載第3回の記事を参考にしてく
ださい）。

IAM全体の設定

　連載第2回の解説では言及しませんでしたが、
IAMを日常的に利用するうえで欠かせない次
の2つの設定について、ここでは解説します。

・パスワードポリシー
　…… IAMユーザのパスワードに強度が弱い

文字列を設定不可にする。

・アカウントエイリアス
　…… IAMユーザのログイン用ページのURL

をわかりやすいものにする。

①パスワードポリシー設定
　IAMユーザのパスワードポリシーを設定し
ます。次のコマンド実行例では IAMが提供す
る次のすべてのポリシーを適用し、さらにパス
ワード文字列を9文字以上とします。

 ▼図1　 ［請求情報に対する IAMユーザーアクセス］

 ▼図2　 情報の更新

https://console.aws.amazon.com/billing/home?#/account

128 - Software Design

・記号（require-symbols）
・数字（require-numbers）
・大文字（require-uppercase-characters）
・小文字（require-lowercase-characters）
・ユーザ自身のパスワード変更許可（allow-
users-to-change-password）

　実際には次のようになります。

・コマンド：

$ aws iam update-account-password-ｭ
policy --minimum-password-length 9 ｭ
--require-symbols --require-numbers ｭ
--require-uppercase-characters ｭ
--require-lowercase-characters ｭ
--allow-users-to-change-password

②アカウントエイリアス設定
　アカウントのエイリアスを設定します。これ
は、IAMユーザのログインURLである“https://

XXX.signin.aws.amazon.com/console”の XXX

の部分についてわかりやすい文字列を指定でき
る機能です。標準では12桁のアカウント IDに
なっているので、利便性向上のためエイリアス
設定をしておきましょう。
　エイリアス名は世界でユニークである必要が
あります。ここでは例としてexampleをアカウ
ントエイリアスとして設定します。

・コマンド：

$ aws iam create-account-alias ｭ
--account-alias example

　これで、“https://example.signin.aws.amazon.

com/console”から IAMログインすることが可
能になります。

請求レポートグループ／
支払グループの作成
　まず、請求情報にアクセスする2つのグルー
プを作成しましょう。
　2つのグループは、次の項目が異なるだけで
作成手順は同じです。

・グループ名
・ポリシードキュメント

IAMグループの作成手順

①グループ名の決定
　最初に、それぞれのグループ名を決めましょ
う。ここでは、次のとおりとします。

・請求レポートグループ：BillingReport
・支払グループ：Payment

②ポリシードキュメントの作成
　次に、各グループのアクセス権限を定義する
ポリシードキュメントを作成します（リスト1、
リスト2）。

NOTE
　本記事のポリシードキュメントでは、アクセ
スを許可する“Allow”定義のみサンプルとして
掲載しています。AWSのポリシードキュメン
トでは、明示的なDeny、明示的なAllow、未
定義（暗黙的なDeny）の順で適用されるため、
確実にアクセスを拒否したい場合はDeny定義
をポリシードキュメントに記述するようにして
ください。前述のblog記事のサンプルには
Deny定義についても記述されているので参考
にしてください。

IAMグループの作成と
ポリシー設定

① IAMグループの作成
　IAMグループの作成は次のように行います。

・コマンド：

$ aws iam create-group --group-name ｭ
BillingReport
$ aws iam create-group --group-name ｭ
Payment

　実行結果は、次に示すような形式で生成され
ます。

128 - Software Design Sep. 2014 - 129

第6回　AWS利用環境の構築（補足：Billing関連IAMユーザの作成）

・結果（BillingReportの例）：

{
 "Group": {
 "Path": "/",
 "CreateDate": "2014-07-10T03:ｭ
41:06.651Z",
 "GroupId": ｭ
"AGPAJXXXXXXXXXXXXXXXX",
 "Arn": "arn:aws:iam::ｭ
XXXXXXXXXXXX:group/BillingReport",
 "GroupName": "BillingReport"
 }
}

② IAMグループにポリシーを適用
　同様に次のようにコマンド入力します。

・コマンド：

$ aws iam put-group-policy --group-name ｭ
BillingReport --policy-name ｭ
policyBillingReport --policy-document ｭ
file://policy-BillingReport.json
$ aws iam put-group-policy --group-name ｭ
Payment --policy-name policyPayment ｭ
--policy-document file://policy-Payment.ｭ
json

・結果：

（戻り値なし）

　ここまでで、グループの作成は完了です。

IAMユーザの作成

　次に IAMユーザを作成します。ここでは各
IAMグループに個別に IAMユーザを1つずつ
登録していきます。bilユーザをBillingReport

グループに、payユーザをPaymentグループに
登録します。

① IAMユーザの作成
　同様に次のようにコマンド入力します。

・コマンド：

$ aws iam create-user --user-name bil
$ aws iam create-user --user-name pay

　次のような出力が得られます。

・結果（bilの例）：

{
 "User": {
 "UserName": "bil",
 "Path": "/",
 "CreateDate": "2014-07-10T03:ｭ
49:05.462Z",
 "UserId": "AIDAJXXXXXXXXXXXXXXXX",
 "Arn": "arn:aws:iam::ｭ
XXXXXXXXXXXX:user/bil"
 }
}

 ▼リスト1　請求レポートグループ用ポリシードキュメント
 （policy-BillingReport.json）

{
 "Statement": [
 {
 "Action": [
 "aws-portal:ViewUsage",
 "aws-portal:ViewBilling",
 "aws-portal:ｭ
ModifyBilling",
 "ec2-reports:ｭ
ViewInstanceUsageReport",
 "ec2-reports:ｭ
ViewReservedInstanceUtilizationReport"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

 ▼リスト2　支払グループ用ポリシードキュメント
 （policy-Payment.json）

{
 "Statement": [
 {
 "Action": [
 "aws-portal:ViewBilling",
 "aws-portal:ｭ
ViewPaymentMethods",
 "aws-portal:ｭ
ModifyPaymentMethods"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

130 - Software Design

②各 IAMユーザのパスワードの設定
　次のように入力し作成します。

・コマンド：

$ aws iam create-login-profile --userｭ
-name bil --password 'XXXXXXXX'
$ aws iam create-login-profile --userｭ
-name pay --password 'XXXXXXXX'

Note
　XXXXXXXXの文字列は、さきほど設定したパ
スワードポリシーに従ったものにしてください。

　bilを例とした場合、次のような出力が得ら
れます。

・結果（bilの例）：

{
 "LoginProfile": {
 "UserName": "bil",
 "CreateDate": "2014-07-10T04:ｭ
04:39.068Z"
 }
}

IAMユーザの
IAMグループへの登録

　各 IAMグループ、IAMユーザの作成が完了
したので、次に各 IAMユーザをそれぞれ IAM

グループに登録していきます。
　入力するコマンドは次のようになります。

・コマンド：

$ aws iam add-user-to-group --groupｭ
-name BillingReport --user-name bil
$ aws iam add-user-to-group --groupｭ
-name Payment --user-name pay

ログイン確認
　さきほど作成したURL注5からAWSマネジ
メントコンソールにログインします。
　ログイン時に必要な情報は下記のとおりです。

・Account：�アカウントエイリアス（あらかじ
め値が入っている）

注5） 例：https://example.signin.aws.amazon.com/console

・User Name：ログインするIAMユーザ名
・Password： ログインするIAMユーザのパス

ワード
　各ユーザがそれぞれ下記ページの情報を閲覧
できることを確認します。

・bilユーザ：
　-�Billingダッシュボード（https://console.aws.amazon.

com/billing/home?#/）

　-�レ ポ ー ト（https://console.aws.amazon.com/billing/

home?#/reports）など

・payユーザ：
　- Billingダッシュボード（https://console.aws.amazon.

com/billing/home?#/）

　-�お支払方法（https://console.aws.amazon.com/billing/

home?#/paymentmethods）

　以上で「請求レポートグループ」「支払グルー
プ」とそれぞれのIAMユーザの作成は完了です。
各担当者（上司や経理担当者）に IAMユーザの
ログイン情報を伝えてさっそく利用してもらい
ましょう。
　Billingマネジメントコンソールでの権限設
定については、公式ドキュメント注6にいくつか
事例が掲載されていますので参照ください。

サポート利用グループの作成

　AWSマネジメントコンソールの「サポート」注7

はAWSサポートチームに対する問い合わせの
ためのWebユーザインターフェースを提供し
ています。サポートレベルがビジネス以上の場
合はTrusted Advisorというユーザ設定に対す
る自動チェックツールにもアクセスが可能です。
　これらはAWS CLIからのアクセスも可能で
すが、通常運用で利用するには作り込みが必要

注6） URL http://docs.aws.amazon.com/ja_jp/awsaccountbilling/
latest/about/ControllingAccessWebsite.html

注7） URL https://aws.amazon.com/support/

https://console.aws.amazon.com/billing/home?#/
https://console.aws.amazon.com/billing/home?#/reports
https://console.aws.amazon.com/billing/home?#/
https://console.aws.amazon.com/billing/home?#/paymentmethods
http://docs.aws.amazon.com/ja_jp/awsaccountbilling/latest/about/ControllingAccessWebsite.html
https://aws.amazon.com/support/

130 - Software Design Sep. 2014 - 131

第6回　AWS利用環境の構築（補足：Billing関連IAMユーザの作成）

となるので、24時間監視チームなど、「AWS

プロダクトの操作はしないがAWSサポートチー
ムへの問い合わせは行なうことがある」という
立場の人達（以下「サポート利用グループ」）を想
定したIAMグループを作成します。

①サポート利用グループ名の決定
　最初に、サポート利用グループのグループ名
を決めましょう。ここでは、“Support”とします。

②ポリシードキュメントの作成
　次にサポート利用グループのアクセス権限を
定義するポリシードキュメントを作成します（リ
スト3）。

③ログインして確認
　これ以降の IAMグループ作成、IAMユーザ
作成手順は前項の「請求レポートグループ」「支
払グループ」と同じです。「サポート利用グルー
プ」のメンバーとして例えば“sup”という IAM

ユーザを作成して、ログイン確認してみましょ
う。

④サポートセンター利用で注意すべき点
　次の2点が挙げられます。

1.言語選択
　日本語で問い合わせを行う場合は、必ず「言
語選択」で「日本語」を指定してください。言語
選択が英語になっていると、英語圏のサポート
センターにケースが送付されるらしく、日本語
で再度起票ということになってしまいます。

2.メールアドレス
　IAMユーザでケースを作成する場合は、更
新通知するためのメールアドレスが必須事項に
なっています。あらかじめ通知先のメールアド
レスを決めておきましょう。ケースに対して更
新が行なわれるたびにメールで通知されます。

　以上で「サポート利用グループ」とその所属
IAMユーザの作成は完了です。24時間監視チー

ムなどのメンバーにIAMユーザのログイン情
報を伝えてさっそく利用してもらいます。

Note
　本記事では、説明の便宜上各 IAMグループに
1つずつ IAMユーザを作成しましたが、実運用
では IAMユーザは必ず担当者個々人に対して作
成し、同一 IAMユーザを複数人で使いまわすよ
うな運用はしないようにしてください。

次回は

　今回までの設定で、組織上の経理（支払い
管理）、マネジメント（請求管理）、実作業
（Administrator）、サポート利用（24時間監視
チーム）それぞれに必要なIAMユーザを作成し
ました。これによってAWSサービスにおける
rootアカウントとも言うべき「AWSアカウント」
を使う機会がなくなったと言ってよいと思いま
す。
　次回からは、実際にAWS APIをシェルスク
リプトで利用する方法の解説に進みます。ﾟ

 ▼リスト3　サポート利用グループ用ポリシードキュメント　
　　　　 （policy-Support.json）

{
 "Statement": [
 {
 "Action": [
 "support:*",
 "ec2:DescribeInstance*",
 "ec2:DescribeVolume*",
 "ec2:DescribeRegions"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

132 - Software Design

bhyveにおける仮想シリアルポートの実装（その2） 第22回

　前回の記事では、PCアーキテクチャにおけるシリ
アルポートの仕様について解説しました。今回は、
bhyveにおける仮想シリアルポートの実装について解
説します。

　bhyveに実装されている仮想シリアルポートは、
PCI-LPCブリッジのエミュレーション（pci_lpc.c）と
16550A UARTコントローラのエミュレーション
（uart_emul.c）に分かれています。
　これは、LPCバス接続のレガシシリアルデバイス
のほかにPC接続のシリアルデバイスもサポートし
ているのでコードの重複を避けてUARTコントロー

ラのコードだけを切り離しているためですが、今回
はLPCバス接続のものだけを解説します。

　PCI-LPCブリッジのエミュレーションコードは、
次の2つの役割を担っています。

・PCIデバイスの1つとしてPCI-LPCブリッジを登

録、OSからブリッジが発見できるようにする

・PCIデバイスエミュレーション経由でIOAPIC経由

割り込みとI/Oポートハンドラを登録、UARTエ

ミュレータが割り込みとI/Oポートを使えるよう

にする

　では、PCI-LPCブリッジのコードをみていきま
しょう。
　リスト1で紹介するpci_lpc_initは、PCI-LPCブ

はじめに

bhyveにおける
仮想シリアルポートの実装

PCI-LPCブリッジの
エミュレーションコード

ハイパーバイザの作り方
ちゃんと理解する仮想化技術

浅田 拓也（あさだ たくや）　Twitter @syuu1228

bhyveにおける
仮想シリアルポートの実装（その2）

第22回
Writer

static int
pci_lpc_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
{
　if (lpc_bridge != NULL)
　　return (-1);

　if (lpc_init() != 0)
　　return (-1);
　/* initialize config space */
　pci_set_cfgdata16(pi, PCIR_DEVICE, LPC_DEV);
　pci_set_cfgdata16(pi, PCIR_VENDOR, LPC_VENDOR);
　pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_BRIDGE);
　pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_BRIDGE_ISA);
　lpc_bridge = pi;
　return (0);
}

▼リスト1　pci_lpc_init

初期化コードの本体である
lpc_initを呼ぶ（後述）

PCIコンフィグレーション空間にデ
バイスID、ベンダID、クラスコー
ドを書き込む。クラスコードとし
てPCI-ISAブリッジの値を使用する

132 - Software Design Sep. 2014 - 133

bhyveにおける仮想シリアルポートの実装（その2） 第22回

リッジがbhyve上で初期化され、メモリ空間・I/O空
間に接続されるときに呼び出されるコードです。リ
スト2では、初期化コードの本体であるlpc_initを示
しています。 　UARTレジスタの書き込みは、リスト3のように

なります。

UARTエミュレーションのコード

▼リスト2　lpc_init

static int
lpc_init(void)
{
　struct lpc_uart_softc *sc;
　struct inout_port iop;
　const char *name;
　int unit, error;

　/* COM1 and COM2 */
　for (unit = 0; unit < LPC_UART_NUM; unit++) {
　　sc = &lpc_uart_softc[unit];
　　name = lpc_uart_names[unit];

　　if (uart_legacy_alloc(unit, &sc->iobase, &sc->irq) != 0) {
　　　fprintf(stderr, "Unable to allocate resources for "
　　　 "LPC device %s¥n", name);
　　　return (-1);
　　}

　　sc->uart_softc = uart_init(lpc_uart_intr_assert,
　　　　 lpc_uart_intr_deassert, sc);

　　if (uart_set_backend(sc->uart_softc, sc->opts) != 0) {
　　　fprintf(stderr, "Unable to initialize backend '%s' "
　　　 "for LPC device %s¥n", sc->opts, name);
　　　return (-1);
　　}

　　bzero(&iop, sizeof(struct inout_port));
　　iop.name = name;
　　iop.port = sc->iobase;
　　iop.size = UART_IO_BAR_SIZE;
　　iop.flags = IOPORT_F_INOUT;
　　iop.handler = lpc_uart_io_handler;
　　iop.arg = sc;

　　error = register_inout(&iop);
　　assert(error == 0);
　}

　return (0);
}

注1） 以降「ttyデバイス」として解説しますが、標準出力または tty
デバイスのどちらかが使用されます。

I/Oポート番号とIRQ番号を
UARTエミュレータに通知する

割り込み通知（lpc_uart_intr_assert）／割り込み解除コー
ルバック関数（lpc_uart_intr_deassert）を登録してUARTエ
ミュレータを初期化する。lpc_uart_intr_assertはioapic_
assert_pinを呼び出して、割り込みをアサートする。そして
lpic_uart_intr_deassertはioapic_deassert_pinを 呼 び
出して割り込みのアサートを解除する。どちらもUARTエミュ
レータから関数ポインタとしてコールされる

UARTのバックエンドデバイスを
設定している。bhyveではUARTの
接続先として標準入出力かttyデ
バイスを選択できる注1が、ここ
ではbhyveの引数に渡された値に
応じて接続先を切り替えている

UARTのI/Oポートをハンドルするようにbhyveに登録して
いる。ハンドラとしてlpc_uart_io_handlerを指定してい
る。このハンドラ関数はI/Oポートアクセスの方向に応じ
てUARTエミュレータのuart_read/uart_writeを呼び出す

COM1とCOM2の両方を
初期化する

134 - Software Design

bhyveにおける仮想シリアルポートの実装（その2） 第22回ハイパーバイザの作り方
ちゃんと理解する仮想化技術

void
uart_write(struct uart_softc *sc, int offset, uint8_t value)
{
　int fifosz;
　uint8_t msr;

　pthread_mutex_lock(&sc->mtx);
　
　if ((sc->lcr & LCR_DLAB) != 0) {
　　if (offset == REG_DLL) {
　　　sc->dll = value;
　　　goto done;
　　}
　　
　　if (offset == REG_DLH) {
　　　sc->dlh = value;
　　　goto done;
　　}
　}

switch (offset) {
　case REG_DATA:
　　if (sc->mcr & MCR_LOOPBACK) {
　　　if (fifo_putchar(&sc->rxfifo, value) != 0)
　　　　sc->lsr ¦= LSR_OE;
　　} else if (sc->tty.opened) {
　　　ttywrite(&sc->tty, value);
　　} /* else drop on floor */
　　sc->thre_int_pending = true;
　　break;
　case REG_IER:
　　/*
　　 * Apply mask so that bits 4-7 are 0
　　 * Also enables bits 0-3 only if they're 1
　　 */
　　sc->ier = value & 0x0F;
　　break;
　　case REG_FCR:

　　　if ((sc->fcr & FCR_ENABLE) ^ (value & FCR_ENABLE)) {
　　　　fifosz = (value & FCR_ENABLE) ? FIFOSZ : 1;
　　　　fifo_reset(&sc->rxfifo, fifosz);
　　　}

　　　if ((value & FCR_ENABLE) == 0) {
　　　　sc->fcr = 0;
　　　} else {
　　　　if ((value & FCR_RCV_RST) != 0)
　　　　　fifo_reset(&sc->rxfifo, FIFOSZ);

　　　　sc->fcr = value &
　　　　　 (FCR_ENABLE ¦ FCR_DMA ¦ FCR_RX_MASK);
　　　}
　　　break;
　　case REG_LCR:
　　　sc->lcr = value;
　　　break;
　　case REG_MCR:
　　　/* Apply mask so that bits 5-7 are 0 */
　　　sc->mcr = value & 0x1F;

注2） 書き込んだデータが読み込みで取り出せるようになる→ループバック

▼リスト3　uart_write

DLLレジスタ、DLMレジスタへのアクセスを検出するために
LCRレジスタのDLABビットをチェックしている。書き込み値
はuart_softc構造体のdllメンバ、dlmメンバへ書き込まれる

sc->lcrにLCRレジスタへの書き込みを保存

MCRレジスタにループバックビットが立っているときだ
けRX FIFOへデータが書き込まれる注2。それ以外の場合
はttywriteを呼び出して初期化時に指定されたttyデバ
イスへ1文字書き込む。sc->thre_int_pendingにtrue
をセットして、送信可能割り込みを有効にする

sc->mcrにMCRレジスタへの書き込みを保存し、
sc->msrへMSRレジスタの更新された値を構築する

sc->ierにIERレジスタへの書き込みを保存

FIFOが有効から無効、無効から有効へ移行す
る場合はfifo_resetでRX FIFOをゼロクリア
して状態をリセットする。この時に一緒に書
き込まれた6～7ビットの設定でFIFO長が設定
される。それ以外の場合で、FIFO有効ビット
が0ならばsc->fcrをゼロクリアする。FIFO有
効化ビットが1ならばsc->fcrに書き込まれた
値を代入する。FIFO有効化ビットが1かつRX
FIFOリセットビットが1の場合には、ステー
トが移行する場合と同様にfifo_resetでRX
FIFOをゼロクリアして状態をリセットする

次ページに続く

134 - Software Design Sep. 2014 - 135

bhyveにおける仮想シリアルポートの実装（その2） 第22回

　　　msr = 0;
　　　if (sc->mcr & MCR_LOOPBACK) {
　　　　/*
　　　　 * In the loopback mode certain bits from the
　　　　 * MCR are reflected back into MSR
　　　　 */
　　　　if (sc->mcr & MCR_RTS)
　　　　　msr ¦= MSR_CTS;
　　　　if (sc->mcr & MCR_DTR)
　　　　　msr ¦= MSR_DSR;
　　　　if (sc->mcr & MCR_OUT1)
　　　　　msr ¦= MSR_RI;
　　　　if (sc->mcr & MCR_OUT2)
　　　　　msr ¦= MSR_DCD;
　　　}

　
　　　if ((msr & MSR_CTS) ^ (sc->msr & MSR_CTS))
　　　　sc->msr ¦= MSR_DCTS;
　　　if ((msr & MSR_DSR) ^ (sc->msr & MSR_DSR))
　　　　sc->msr ¦= MSR_DDSR;
　　　if ((msr & MSR_DCD) ^ (sc->msr & MSR_DCD))
　　　　sc->msr ¦= MSR_DDCD;
　　　if ((sc->msr & MSR_RI) != 0 && (msr & MSR_RI) == 0)
　　　　sc->msr ¦= MSR_TERI;

　　　sc->msr &= MSR_DELTA_MASK;
　　　sc->msr ¦= msr;
　　　break;
　　case REG_LSR:
　　　break;
　　case REG_MSR:
　　　break;
　　case REG_SCR:
　　　sc->scr = value;
　　　break;
　　default:
　　　break;
　}

done:
　uart_toggle_intr(sc);
　pthread_mutex_unlock(&sc->mtx);
}

　ttyデバイスへの文字列出力は、DATAレジスタへ
の1文字書き込みからttywriteを経由し、ttyデバイス
へwirteで直接書き込まれることによって行われま
す。

ttyデバイスへの文字列出力 まとめ

　今回はbhyveの仮想シリアルポートのソースコー
ドのうち、LPC-PCIブリッジとUARTコントローラ
のレジスタへの書き込みハンドラを解説しました。
　次回はUARTコントローラのレジスタからの読み
込みハンドラとttyのイベントポーリングハンドラ
を解説します。｢

sc->scrにSCRレジスタへの書き込みを保存

更新されたUARTコントローラのステートを元に、割り込みをアサートまたはデ
アサートする。割り込みのアサート／アサート解除にはUARTエミュレータ初期
化時に渡されたlpc_uart_intr_assert、lpc_uart_intr_deassertを使用する

LSRは読み込み専用レジスタなので何もしない

リスト3の続き

136 - Software Design

ここ2回に渡り特別編として、OpenSSLの脆弱性「OpenSSL Heartbeat Buffer Overread」の話題を取り
上げました。今回は、その問題の背景の1つであった動的メモリアロケーションについて、プログラム
を書く立場から解説を行います。

前提

　動的メモリアロケーションはセキュリティだけで
はなく、もともとC言語プログラミングで最もやっ
かいなバグを発生しやすい部分です。説明されても
わかりづらいことが、さらにバグの温床となりやす
いという悪循環を生んでいます。
　しかし、OpenSSL Heartbeat Buffer Overreadの
ようなコードが生み出されたことを考えると、「難し
いから」「わかりづらいから」といって、ここを避けて
通っても良い結果を生まないことは容易に想像でき
ます。今回は良い機会ですので、動的メモリアロ
ケーションの落とし穴を取り上げたいと思います。
　なお、本文でのmalloc()は、GNU/Linux上におい
てデフォルトで使われているglibcのmalloc()を前
提として説明を進めていきます。

バグと脆弱性との境界線

　まず議論を始める前に、ただの「バグ」と「脆弱性」
の違いを考えてみたいと思います。
　本稿で扱う「バグ」とは、プログラム内のミスによ
り、本来の意図した処理を行わない、つまり、プロ
グラムが正常に動かないこと、またその原因です。
　また、「脆弱性」とは、第三者が意図的にそのバグ

を発現させることができ、それによりシステムが機
密性を失ったり、あるいは可用性を失ったりしてし
まうこと、またその原因です。
　たとえば、サーバプログラムがバグでクラッシュ
して停止してしまっても、そのバグを意図的に発現
させられないなら、単純に「品質の悪いソフトウェ
ア」というカテゴリに入ってしまいます。しかし、
このバグを、意図的に発現させることができるなら
ば、その行為は「サービス不能攻撃」であり、そのプ
ログラムは「脆弱性を持つソフトウェア」となりま
す。広く使われているものであれば、JVN（Japan

Vulnerability Notes）のような脆弱性を管理する枠
組みに組み入れて、対処する必要が出てきます。

セキュアコーディング

　情報セキュリティのチームとして世界で最も古い
歴史を持つチームの1つで、かつ先端的な活動をし
ているカーネギーメロン大学ソフトウェア工学研究
所のCERT/CCが、安全なコーディング基準「セ
キュアコーディング」注1を広めようとしています。
セキュアコーディングのチェックすべきポイントと
して、メモリ管理の項目もあり、動的メモリアロ
ケーションについて言及しています。
　日本版もJPCERT/CCからオンラインで公開さ
れているので、プログラマであれば動的メモリアロ

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第十三回】

すずきひろのぶ
suzuki.hironobu@gmail.com

動的メモリアロケーションの落とし穴

注1）	 CERT/CC、“CERT C Coding Standard” 08.Memory Management(MEM)　https://www.securecoding.cert.org/confluence/
pages/viewpage.action?pageId=437

	 日本語版はJPCERT/CCのサイトで読むことができる。「CERT C セキュアコーディングスタンダード」　https://www.jpcert.or.jp/
sc-rules/#c08

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=437
https://www.jpcert.or.jp/sc-rules/#c08

Sep. 2014 - 137

ケーションだけでなく、ぜひ、全体に目を通してみ
てください。

UNIXとC言語とライブラリ

　最初、アセンブラで書かれていたUNIXカーネル
を書き換えるために、C言語は設計されました。コ
ンパイラが作りやすいシンプルな構造を持った言語
です。C言語の設計者であるDennis M. Ritchie氏が
書いた“The Development of the C Language”とい
う文章の中には、「FORTRAN、PL/IやAlgol 68も
検討したが、仕様や必要とするリソースが大き過ぎ
る問題があった」といったことが書かれています。
　さて、C言語にはUNIXの機能をフルに使うため
のプログラミングライブラリが用意されています。
その1つが動的メモリアロケーション関数malloc()

です。これは現在では、IEEE Std 1003.1-2001で
定義されています。ここには動的メモリアロケー
ション関数としてリスト1の4つの関数が定義され
ています。各関数の機能は次のとおりです。

●● malloc()：メモリ領域をアロケーションする関数
●● free()：不必要なメモリアロケーションを再利用

できるように解放する関数
●● calloc()：ゼロクリアしたメモリ領域をアロケー

ションする関数
●● realloc()：すでにアロケーションされたメモリ領

域を拡張する関数

　今回は話を絞り、malloc()と free()の2つについて
説明します。malloc()は、ほしいメモリのサイズを
与えると、その領域を確保して、そのポインタを戻
します。free()は、malloc()で確保した領域のポイン
タを与えると、その領域を解放します。
　中身を理解しなくても、APIや動作だけを知って
いれば、とりあえずプログラムは書けると思いま

す。しかし、セキュリティのことを考えた場合、一
歩踏み込んで理解すべき点（あるいは、疑問点と
言ってもいいのかもしれません）があります。まず、
次の2点を考えるところからスタートしてみます。

●● malloc()領域はどこからやってくるのか
●● free()の「解放」とはどういう意味か

メモリ領域の確保

　ここではmalloc()の基本的なモデルを説明しま
す。malloc()のメモリ領域は、要求されたサイズが
すでにユーザ領域として確保しているメモリ領域か
ら割り当てることができれば、そこから切り出され
ます。足りなければ、システムから新しいメモリ領
域を割り当ててもらうために、システムコールを呼
び出し領域を確保します。
　足りない場合、古典的なUNIXではbrk/sbrkと
いうシステムコールを呼び出します。これはヒープ
エリアを拡張するシステムコールです。しかし、シ
ステムコールbrk/sbrkは標準規格であるIEEE Std

1003.1-2001からすでに外されています。今日で
は、GNU/Linuxとglibcのmalloc()の組み合わせで
は、メモリ領域はmmap()を使って新たに確保して
いると理解しておいたほうが良いでしょう。
　リスト2は、システムコールmmap()を使って
8KBのメモリ領域を確保している例です。mmap()

は、ファイルをメモリのようにマップするためのシ
ステムコールです。これによりメモリもファイルも
同一のアクセス方式で処理できるようになります。
　この考え方は単一レベル記憶と呼ばれ、アイデア
はUNIXより以前に設計されたMulticsというOS

にすでに取り入れられています。IBMのミニコン
OSでは古くから用意されていた機能ですが、UNIX

では4.3BSD以降に取り入れられました。
　リスト2では、引数でMAP_ANONYMOUSを指

【第十三回】 動的メモリアロケーションの落とし穴

char *mm;
mm = (char *)mmap(0, 8096, (PROT_READ ¦ PROT_WRITE), ｭ
MAP_ANONYMOUS ¦ MAP_PRIVATE, -1, 0);

◆◆リスト2　mmapでメモリ領域を確保する例
#include <stdlib.h>

void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);

◆◆リスト1　IEEE Std 1003.1-2001で定義されて
いる動的メモリアロケーション関数

138 - Software Design

定しているため、具体的なファイルにはマップせ
ず、仮想記憶の空間からメモリ領域を用意します
（コラム参照）。また、MAP_PRIVATEを指定して
いるので、自分しかアクセスできません。

malloc()の役割

　malloc()は、このような形で内部に確保された大
きなメモリ領域から、要求に応じて細分化し提供し
ます。malloc()で得られたメモリ領域は、より大きい
ユーザのメモリ領域の一部分です。これは、得られ
たメモリ領域を越えて、内部で確保したメモリ領域
のどの部分でもアクセスできることを意味します。
　次に重要な点は、malloc()が与えるメモリ領域に
は内部的に、管理情報が含まれたヘッダが付けられ
ています（図1）。これはメモリ領域が不必要になっ

たときに、free()で解放できるようにするためのも
のです。ヘッダ部分にはmalloc()で切り出した複数
のメモリ領域を管理するための情報が入っており、
内部的に整合性を持たせています。
　もし、この部分を壊すとmalloc()全体の整合性が
取れなくなり、指し示しているアドレスなども誤っ
たものになり、結果としてプログラム自体のクラッ
シュを引き起こす可能性があります。いつクラッ
シュしてもおかしくないという意味では、「可能性」
という表現では弱く、本質的には「バグ」と呼ぶべき
かもしれません。これを外部から発現させられるな
ら、その用法は「サービス不能攻撃」と呼ばれ、その
バグは「脆弱性」と呼ばれることになります。

free()の役割

　free()の役割は、多くの場合「メモリの解放」とい
う表現で説明されます。ですが、より正確に表現す
ると、「不必要になったメモリ領域を再利用するた
めに、再利用リストに登録する」ということになり
ます。そして次にmalloc()をするときに、その再利
用リストに適当なものがあれば、それを使います。
なければ、新たに内部保留したメモリ領域から必要
なサイズの領域を切り出します。もし、内部保留し
ている領域も足りなくなったら、mmap()を使ってさ
らにメモリ領域を確保し、その中から用意します。
　free()したとき、中身をクリアする、といったこ
とはしません。ですからmalloc()をしてメモリ領域
に何かを書き込み、そののちに free()をしても、メ
モリ領域の中身はそのまま残っています。

malloc()で起こりがちな
バグとその対処法

　malloc()を使って、誰でも一度はやってしまった
経験のあるバグは、リスト3のようなものでしょう。
　まず、7行目で lの値は14となります。8行目でmm

の領域は14バイト確保されています。9行目で
mm[14]の場所に値0をセットします。そして10行

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注2）	 仮想記憶において、メインメモリの容量が不足したときに、ハードディスク上に割り当てられる領域のこと。この領域をメモリに見立てて
使用する。

　mmap()で仮想記憶を利用するときに、セキュリ
ティ的に1つ注意してほしいのは、仮想記憶である
以上、何かの拍子にスワップファイル注2に秘密情
報を書き出す可能性があるということです。最近の
ディストリビューションであれば（GNU/Linuxだと
ディストリビューションが多過ぎて筆者が知らない
ものも多々ありますが）、インストール時にスワップ
ファイルを暗号化するオプションがあったり、デ
フォルトで暗号化するようになっていたりするはず
ですので、それを有効に活用してください。

◉mmap()で仮想記憶を
　利用するときの注意点

◆◆図1　malloc()で得られるメモリ領域の内訳

①管理情報が含まれている
　ヘッダ部分

②要求したメモリ領域として
　戻ってくる部分

malloc() で戻ってくるポインタ

malloc() で戻ってくるポインタは、②の先頭を指している

Sep. 2014 - 139

 （...省略 ...）
 9 mm[l]='¥0';
10 mcheck_check_all(); ←追加
 （...省略 ...）

　コンパイル時に-lmcheckを付けます。できあ
がった実行ファイルa.outを実行すると、図2のよ
うなエラーメッセージが出て停止します。誤った値
を入れたあとのmcheck_check_all()を呼び出したと
ころでプログラムがストップしてしまいます。
　実際のgdb（The GNU Project Debugger）を使っ
たデバッキングでは、ソースコードの6～7行目の
部分にmcheck_check_all()の1行を加えます（任意
の場所で呼び出す準備のため）。
　次にgdbでステップ実行していき、mm[l]='\0'の行
を実行したのちに、gdbのコマンドcallで関数
mcheck_check_all()を呼び出します。そうすると
SIGABRTをキャッチしプログラムが停止し、先ほ
どのメッセージが現れます（図3）。こうすることで
デバッグ文をいちいちコードの中に用意せずとも、
任意の行でmcheck_check_all()を実行し、チェック
することができます。
　mcheck()の利用方法は、詳しくはマニュアルに譲
るとして、このような関数を活用すればソースコー
ドを目で追ってチェックするよりも、ずいぶんと良
い結果を生むと思います。
　ただ、この場合も、値を挿入するならばチェック
できますが、OpenSSLのHeartbeat Buffer Overread

のように値を参照するだけの場合はチェックできま
せん。
　ここではmcheck()を紹介しましたが、もちろん

目でmmを解放しています。どこが間違いかわかる
でしょうか？
　C言語の配列はゼロオリジンです。つまり、本来
mmは、mm[0]～mm[13]の範囲しか割り当てられてい
ません。ですから、mm[14]の場所に値0を設定して
いるのは不正です。ですが、C言語の配列は（ポイン
タも）、あるアドレスを指し示しているだけですの
で、チェックせず、そのまま値を書き込めてしまい
ます。

問題を見つけるのは難しい

　malloc()と free()を繰り返していると、内部で確
保していた大きなメモリ領域の中で、利用、再生が
繰り返されます。フラグメント（断片化）していき、
どんどん虫食い状態になっていきます。そんな状態
だと、次にmalloc()をしたとき、どこのメモリ領域
が使われるかは、誰も予測がつかなくなります。
　先ほどのような領域を侵害して情報を破壊してい
る個所を、ソースコードから追いかけていくのは、
至難の技です。まだUNIXが定着していなかった
80年代後半に、研究会レベルの論文ではあります
が、「いくらソースコードをチェックしてもmalloc()

の問題は見つからなかった。malloc()のライブラリ
の問題と結論づけられる。UNIXのライブラリは安
定していない」と書かれている論文を、筆者は目に
したことがあります。
　GNU/Linuxの環境だと、簡易版のチェックで良
ければ、mcheck()というmalloc()の状況をチェック
する関数があります。わかりやすいように、先ほど
のコードの問題個所でmcheck_check_all()を呼び出
してみます。

【第十三回】 動的メモリアロケーションの落とし穴

 1 #include <stdlib.h>
 2 #include <string.h>
 3 main() {
 4 char sdstr[]="SoftwareDesign";
 5 char *mm;
 6 int l;
 7 l = strlen(sdstr);
 8 mm = (char *)malloc(l);
 9 mm[l]='¥0';
10 free(mm);
11 }

◆◆リスト3　malloc()に関連する典型的なバグ
$ cc -lmcheck -g foo.c
$./a.out
memory clobbered past end of allocated block
Aborted (core dumped)

◆◆図2　mcheck()を付けて実行した例

(gdb) call mcheck_check_all()
memory clobbered past end of allocated block
Program received signal SIGABRT, Aborted.
 （...省略 ...）

◆◆図3　gdbを使った際のエラーメッセージ

140 - Software Design

商用のRational PurifyPlus注3のような多機能で使
い勝手の良いメモリアロケーション専用のデバッグ
環境を使うのも良い選択だと思います。

free()前に機密情報はクリアする

　malloc()で獲得したメモリ領域を使い終わった
ら、free()を使って解放します。前述のとおり、動
作としては、そのメモリ領域を再利用リストに戻し
ます。次にmalloc()が呼ばれたとき、再利用リスト
を確認し、そこに利用可能なものがあれば再利用リ
ストから取り出し、そのメモリ領域を使います。こ
のとき、メモリ領域には以前の古いデータが、まっ
たく手つかずのままで残っています。
　一般的には、「malloc()で得たメモリ領域の値は不
定である。ゼロクリアしたメモリ領域を利用するに
は、calloc()を使う」と説明されていると思います。
これは、見方を変えれば、「malloc()で得たメモリ領
域には以前に利用したデータが含まれている」とい
うことです。また、free()したのち、再度、malloc()

で使われるまでは、メモリの中に秘密情報を保持し
たまま再利用リストに登録され続けている、という
ことでもあります。
　たとえば、パスワードや秘密鍵、あるいは復号処
理のときに使う各種パラメータなどが、すでに不必
要になっているのに保持されている、ということで
す。これらのデータが何らかの拍子で外部に漏れる
可能性は否定できません。
　そこで、秘密情報を扱ったメモリ領域は不必要に
なった時点でクリアし、それから free()するといっ
たプログラミングスタイルが必要になります。

動的メモリ確保の
ライフサイクル

　malloc()で動的にメモリ領域を取得し、そこを利
用し、不必要になれば free()で解放する、というの
がメモリ領域のライフサイクルです。不必要になっ
たにもかかわらず、free()をせずにそのままにして
いると、メモリ領域が再利用されず、新しいメモリ

領域がどんどん使われていき、無駄にメモリを消費
してしまいます。このことを一般に「メモリリーク」
と呼んでいます。しかし、「漏れる（leak）」というよ
りは「無駄にしてしまう／浪費してしまう（waste）」
といったほうが、適切な表現だと思います。
　その一方で、まだ使っているメモリ領域をfree()

してしまうというのもありがちなバグです。C言語
のポインタは単純にアドレスを指し示すだけですの
で、そのポインタが示している領域が有効であるか
どうかは自明ではなく、自分のプログラム側で注意
深く設計し、実装しなければなりません。
　リスト4では、10～11行目でmalloc()で獲得した
メモリ領域mmの（1オリジンで数えて）5バイト目
と10バイト目を2つのポインタに入れています。p

とqがまだ使っているにもかかわらず、13行目で
mmを free()してしまいます。そして、14～15行目
でpとqにまたアクセスします。もちろん、14～15

行目はバグです。
　この小さなプログラムだと簡単にバグだとわかり
ますが、見通しの悪い大きなプログラムでメモリ領
域をあちこちから参照している場合、どこで、どの
タイミングで、どういう具合に使われているかを確
実に把握するのは、たいへんに難しいと言えます。
　その状況で、まだ利用しているエリアを free()し
てしまえば、もちろんそれはバグです。free()した
あとにmalloc()を行い、そのメモリ領域が再利用さ

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注3）	 Rational PurifyPlus　http://www-06.ibm.com/software/jp/rational/products/purifyp/

 1 #include <stdlib.h>
 2 #include <string.h>
 3 #include <stdio.h>
 4 main() {
 5 char sdstr[]="Software Design";
 6 char *mm;
 7 char *p,*q;
 8 mm = (char *)malloc(strlen(sdstr));
 9 strncpy(mm,sdstr,strlen(sdstr));
10 p = &mm[4];
11 q = &mm[9];
12 printf("%s¥n",mm);
13 free(mm);
14 printf("%s¥n",p);
15 printf("%s¥n",q);
16 }

◆◆リスト4　解放後のメモリ領域を使うバグ

http://www-06.ibm.com/software/jp/rational/products/purifyp/

Sep. 2014 - 141

れてしまうと、今度は、2つ、あるいはそれ以上の
意味の違うポインタが同じメモリ領域を指し示し、
そこのデータを参照したり、書き換えたりするわけ
ですから、これはもう、どんな副作用が出るかは予
測がつきません。また、どこで書き換えているかと
いったことを探すのは、容易ではありません。

malloc()の失敗

　ここまでのmalloc()のサンプルコードでは、説明
を簡略化するために、malloc()が失敗したときの
コードはいっさい入れていません。malloc()を呼び
出して失敗する確率は低いですが、それでも
malloc()が失敗しないわけではありません（その場
合、NULLポインタを返します）。まれであっても
何らかの理由で発生する可能性はあるので、その際
に必要な適切なエラー処理をきちんと入れるべきで
す。

動的メモリアロケーション
ライブラリのバリエーション

　ここまでGNU/Linuxのデフォルトライブラリで
あるglibcのmalloc()を前提に説明してきましたが、
オープンソースの動的メモリアロケーションライブ
ラリとして、ほかのものを使うこともできます。た
とえば、Googleは tcmallocを公開していますし、
FreeBSDは jemallocを採用しています。これらは
「スレッド性能が良い」「より効率的にメモリ領域を
利用する」「デバッキングやチューニングがより楽で
ある」といったアドバンテージがあります。
　プログラミングの面では、malloc()と引数などは
同じに作ってあり、代替の動的メモリアロケーショ
ンとして、あとからリンクするライブラリを変更す
ることも可能です。もちろん、これらはglibcの
mallocとは内部データ構造も実装もまったく違うも
のです。
　アプリケーションは独自にこれらの動的メモリア
ロケーションを使うことが可能ですし、実際に使わ
れています。たとえば、Google Chromeは tcmalloc

を利用し、Mozilla Firefoxは jemallocを利用してい

ます。Google Chromeで“chrome://tcmalloc”の
URLにアクセスすると、Google Chromeのmalloc()

の利用状況が表示されます（図4）。
　必要に応じてglibcのmalloc()ではなく tcmalloc

や jemallocを組み入れるという選択肢も考慮に入れ
るべきではないかと思います。

セキュアプログラミング
の本質とは

　malloc()の例を見て、すでにお気づきかと思いま
すが、セキュリティの問題を抱えるというのは、ソ
フトウェア品質として問題点を抱えているというこ
とです。セキュリティの問題を解決するとは、ソフ
トウェア品質を向上させるということです。
　「抜けのないロバストな（しっかりした）プログラ
ミングコードにすること」「正しい動作を行うプログ
ラムを作成すること」「バグのないプログラムを作る
こと」といった当たり前のことを、当たり前にする
ことが、セキュアプログラミングの本質なのではな
いでしょうか。s

【第十三回】 動的メモリアロケーションの落とし穴

◆◆図4　Chromeの内部でtcmalloc()の状態を表示する

142 - Software Design

はじめに

　Android端末をはじめとするスマートフォン
の販売開始以降、依然として「電池の持ち」は、
エンドユーザのスマートフォン利用における満
足度を決定づける重要な一要因にあります。
フィーチャーフォン（いわゆるガラケー）とは異
なり、スマートフォンを構成するハードウェア
コンポーネントは高性能化・多機能化が進み、
さらにアプリはこれらのリソースをたいへん自
由度高く利用できるようになりました。一方で、
電池というリソースには限りがあることから、
電池持ちの観点をふまえてアプリを作る・動か
すことが重要視されるようになっています。
　本稿では、電池にやさしい省電力なアプリを
作るためのヒントとして、とくに、アプリ開発
者目線では見えないスマートフォンの特徴・挙
動と電力消費について解説します。アプリを設
計される際の参考情報となれば幸いです。

何が電池を
食うのですか？

　筆者がこれまでスマートフォンの省電力化に
関する仕事をするなかで、本当によく聞かれる
質問が、「何が一番電池を食うのですか？」でし
た。正直、「これです」と端的に答えることがで
きなくて本当に困ります。アプリや使い方で大
きく変わるのでなんとも、としか言いようがあ

りません。
　図1は、あるスマートフォンを構成する各ハー
ドウェアコンポーネントがそれぞれフル稼働し
たときの消費電力です。ご覧のとおり、現在の
スマートフォンでは常にもっとも支配的なもの
というのはなく、CPU、無線、GPU、GPS……
等
とうとう

々、消費の大きなコンポーネントが複数存在
することがわかります。前述したように、これ
らは各コンポーネントの最大消費電力ですので、
実際には稼働状態に応じて変動するわけですが、
つまり、これらの組み合わせや度合いを最終的
に決定づけるのが、アプリとその使い方なので
す。
　では、アプリによって電池消費の主要因が異
なる例を示したいと思いますが、その前に、ご
存じの方には不要ですが、電池の消費量の考え
方について説明します。
　スマートフォン用に限らず、電池にはそこか
ら利用可能なエネルギー量を示す値として○Ah

（電流量）、または○Wh（電力量）といった表示
がされています。一方、電流（A）または電力（W）
は、簡単にいうと消費される瞬間のエネルギー
の大きさを示す値になりますので、消費された
時間をかけることで電流量または電力量が求め
られます（図2）。ここでご理解いただきたいの
は、アプリによる電池消費への影響を考える際、
単に“消費電力の大きなコンポーネントを使うか
否か”というだけでなく、想定するアプリの利用
シナリオを通した“期間での消費電力量”が重要

G o o g l e A n d r o i d

神山 剛　KAMIYAMA Takeshi
㈱NTTドコモ 先進技術研究所

モバイルデバイス初のオープンソースプラットフォームとして、エ
ンジニアから高い関心を集めるGoogle Android。いち早くそのノ
ウハウを蓄積したAndroidエンジニアたちが展開するテクニックや
情報を参考にして、大きく開かれたAndroidの世界へふみだそう！

省電力なアプリ開発
のために知っておきたいこと

第50回Android
エンジニアから

の

招待状

142 - Software Design Sep. 2014 - 143

省電力なアプリ開発のために知っておきたいこと 第50回

だということです。
　図3はいくつか実際のアプリを所定の操作シ
ナリオで動作させたときの電流量を、コンポー
ネントごとの内訳と共に示したものです。
「Offset」とあるのは後述しますのでここでは除
外して見てください。前述したように、特定の
コンポーネント分が際立っているケースもあれ
ば、消費量の組み合わせが微妙に異なるパター
ンもあり、電池を食う要因はアプリとその使い
方によってケースバイケースであることがわか
ります。

省電力なアプリ開発
のためのヒント

　省電力なアプリ開発のためのヒントとして、と
くにアプリ開発者の立場では見えにくいスマート
フォンの電力消費の特徴についてご紹介します。

モバイル無線 IF（3G/LTE）の
電力消費

　市場にあるアプリの大部分はモバイル環境で
のデータ送受信を伴うものであると思いますが、
ここでは3GやLTEといったモバイル無線IFを
使用したデータ送受信の電力消費の特徴につい
て解説します。
　通常のアプリ
開発では、デー
タ送受信部分を
設計する際、皆
さんどこまでの
プロトコルレイ
ヤを意識してい
るでしょうか？
　たいていはあ
らかじめ用意さ
れたAPIを利用
してhttpなどで
データ送受信部
を実装するで
しょうし、サー
バを含めたシス

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

1.62

0.84

1.32

0.25 0.16

3G/LTE GPUCPU OLED
（有機ELディスプレイ）

GPS

電
力（
W
）

 ▼図1　ハードウェアコンポーネントの最大電力

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4

電
力（
W
）

電力量（Wh）

経過時間（h）

電池使用量→消費した電力量
電力量（Wh）＝電力（W）×時間（T）
→つまり上記グラフの面積

 ▼図2　電力と電力量の考え方

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Mail
<3G>

Mail
<LTE>

Map
<LTE>

Calendar Movie
Player

Phone
Book

AnTuTu
CPU

AnTuTu
GPU

E
ne

rg
y

co
ns

um
p

tio
n

(A
h) CPU Core2

CPU Core1

GPS

GPU

LTE

3G

Disk Write

Disk Read

Display

Offset

 ▼図3　アプリ使用時の電力量（電流量）

144 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

テム全体の設計でもTCP/IPあたりまでを考慮
されているのではないかと思います。電力消費
の観点からも、省電力を意識して、「送受信デー
タを圧縮する」「キャッシュを活用する」などし
て送受信量を減らすといった工夫をされている
方もいらっしゃると思います。
　しかし、実はここにまだ落とし穴があるので
す。それは、モバイル無線環境でデータ通信を
確立するために必要な、3G/LTE特有のプロト
コルの特徴にあります。

RRC
（Radio Resource Control）

　まず、できるだけ簡単に、この特徴について
解説していきます。モバイル無線通信では、デー
タ通信を確立するためにRRC（Radio Resource

Control）と呼ばれるプロトコルが3GPPで規定
されています。
　自宅やオフィスでの光回線、カフェなどの公衆
無線LANなど、一定の閉じた空間でのインター
ネット接続とは異なり、モバイル環境での利用は
広範囲な移動を伴うことが前提となっていますの
で、図4のように、端末は複数の基地局との無線
接続を切り替えながら、データ送受信を維持し
なければなりません。RRCは端末と基地局間の
無線通信の確立・開放など、無線リソースを制
御するためのプロトコルとして動作しています。
誌面に限りがありますので、RRCについて詳細
な説明は省略しますが、ここで注目いただきたい
のは、データ通信の際の端末・基地局間での接
続状態（RRC state）についてです。
　RRCでは、端末・基地局間の無線リソースの
制御に複数のモードがあり、図5のように各モー
ドに対応したRRC stateが定義されています。た
とえば3Gの場合、何もデータ送受信なく基地局
とのコネクションが解放された状態がIDLEにあ
たりますが、アプリなどからのデータ通信要求に
応じて、データ送受信を行うためのDCH

（Dedicated Channel）に遷移します。なんらかの
データ送受信が終わり、一定時間、無通信状態が
継続すると、FACH（Forward Access Channel）
など下位のstateに遷移し、最終的にはIDLEに
戻るというのが基本的な流れです。なお、下位の

stateへの遷移契機となる無通
信時間は、stateごとにタイ
マーとして個別の値（だいたい
数秒～数十秒）が設定されてお
り、実際にはキャリアによっ
て独自の値が設定されていま
す。

モバイル無線
IFの消費電力

　モバイル無線 IFの消費電
力は、図6の例のように、
DCH、FACHといった上位
のstateほど大きな電力を消

コアネット
ワーク

固定電話

インター
ネット

無線アクセス
ネットワーク

無線アクセス
ネットワーク

無線アクセス
ネットワーク

携帯
基地局

RRC

 ▼図4　モバイル無線通信システム

3G LTE

大

　
　
　
　
　
　消
費
電
力

　
　
　
　
　
　
　
　小

一定時間データ
送受信がないと
下位に遷移

無通信
タイマー

DCH

FACH

PCH

Connected

Connected
DRX

IDLE

IDLE

無通信
タイマー

無通信
タイマー

消費電力が低い
IDLEに戻るには
時間がかかる

 ▼図5　RRC state遷移

http://www.android-group.jp/

144 - Software Design Sep. 2014 - 145

省電力なアプリ開発のために知っておきたいこと 第50回

費する傾向にあり、IDLEで
はほぼゼロに近い値になりま
す。
　ここでのポイントは、モバ
イル無線IFの消費電力は、ど
のRRC stateにいるかでほ
ぼ決まってくる、ということ
です（もちろん、実際には電
波環境なども影響します）。
これは言い換えると、アプリ
的には何もデータ送受信して
いなくても、DCH、FACH

などのstateにいる限り、無
通信タイマーが満了するまで
データ送受信中とほぼ同等の
電力を消費し続けてしまうと
いうことです。「何もデータ
を送ってないのに、なぜ電力
を食うんだ？」と違和感を感
じられる方もいるでしょう。
これは、アプリが扱うデータ
送受信とは別の、RRCによ
る無線リソース制御のための
制御信号のやり取りなどが、
各stateで行われているため
です。
　図7のイメージ図を例に説明します。なお、こ
こでは説明上、DCH→FACH遷移とFACH→

PCH（Paging Channel）遷移のための無通信タイ
マーの値をそれぞれ10秒、20秒とします。ま
ず、アプリ側からのデータ通信要求に基づき、
DCHに遷移し、データ送受信が1秒間行われた
とします。次に、無通信状態が続き、DCH→

FACHの無通信タイマー10秒がカウントされ、
FACHに遷移します。この時点ですぐお気づき
の方もいるかもしれませんが、たった1秒程度
のデータ送受信を行うのに、無通信タイマー動
作中は尾を引く形で無駄な電力を要してしまう
のです。図7の例に戻ります。FACHに遷移し
た後、データ通信要求がないので20秒の無通信

タイマーがカウントされていきます。そのまま
20秒経過すればさらに下位のPCHに遷移する
ところですが、7秒後にデータ通信要求が起こっ
たためDCHにふたたび遷移します。そこから先
は、前述のとおりのロジックです。順調にIDLE

まで落ちていけばいいですが、なかなか落ちず
にDCHとの行き来を延々と繰り返すとなると最
悪です。
　このように、十数秒おきに比較的少量のデー
タ送受信を繰り返すようなパターンは、実際の
アプリ利用で結構あるのではないかと思います。
ニュースリーダやTwitterクライアントなど、読
んでは次をダウンロード……を繰り返すような
アプリはわかりやすい例です。または、サーバ

1000

800

600

400

100

0
DCH FACH PCH IDLE

電
力（
m
W
）

 ▼図6　RRC stateごとの消費電力

消
費
電
力（
W
）

時間（s）
10秒

DCH

10秒7秒 …

アプリ的には少量・短時間で
終わるデータ送受信でも、
無通信タイマー中は尾を引く
電力消費が生じる

IDLEに落ちる前にまたデータ
送受信が発生すると、前回同
様の尾を引く。この繰り返しに
なるのが最悪のケース

FACH

濃い色
データ送受信あり

薄い色
データ送受信なし

 ▼図7　無通信タイマーによる状態遷移のタイミングと消費電力

146 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

とのデータ同期などなんらかの目的で周期的な
バックグラウンドタスクとしてデータ送受信を
行うアプリもあるでしょう。具体的な事例は参
考文献［1］に多く紹介されていますので、興味
があればご覧ください。

省電力化のためのヒント

　さて、では効率的なデータ送受信となるため
にどうアプリを設計したらよいか、まとめて本
項を締めたいと思います。

❶	データ圧縮・キャッシュ利用などで1回の送
受信量を減らす工夫をする

❷	プリフェッチなど1回の受信で充分なデータ
をあらかじめ取得しておき、データ送受信の
頻度・間隔を最適化する

❸	少なくとも5〜10分程度の間隔をあける形
で、データ送受信の頻度を下げる

　❶については、ブラウザでは従来より一般的
に考慮されているポイントですが、ニュースリー
ダなど、テキストだけでなく画像なども含むコ
ンテンツを扱うアプリではとくに有効かと思い
ます。また同時に、❷のように、コンテンツの
一覧表示画面をもつアプリの場合は、小分けに
複数回ダウンロードするのではなく、一度にダ
ウンロードする記事件数を最適化することで頻
度を下げることができます。実際、とある
Twitterクライアントでそのような改善を施し
たところ、大幅な省電力効果がありました。最
後に❸ですが、これは本項で取り上げたとおり
です。もちろん、先に挙げたRRC stateの遷移
条件を厳密に考慮する必要はまったくありませ
ん。タイマーの値などキャリアによって仕様が
異なりますので現実的に不可能です。ただし、
どうしても無駄が出やすいポイントであること
をご理解ください。

バックグラウンドタスク
による影響

　ここからは省電力化のアプローチを変え、ユー

ザの目に見えないバックグラウンドタスク（以下、
BGタスク）をもつアプリの設計に参考になるポ
イントを解説します。ここでいうBGタスクとは、
端末のディスプレイがOFFで、ユーザによるア
プリ操作のない状態において、AlarmManagerや
BroadcastReceiverなどを契機に実行されるタス
クのことを指します。前述しましたモバイル無線
IFの省電力化のポイントと一緒に考慮いただく
とより効果的です。
　省電力化の観点から、BGタスクを頻繁に実
行させないようにするべきという考え方は一般
的に知られていることだと思いますが、それは
なぜでしょうか。あまり大きなCPU負荷のある
タスクを頻発すべきではない、前項で述べたよ
うに無駄に通信すべきではないなど、個々のハー
ドウェアコンポーネントのリソース消費を抑え
るべきという考え方がその理由なのではないで
しょうか。
　もちろんそれは正解です。しかし、本項の内
容は、それらとは異なる部分にフォーカスした
ものです。本記事の冒頭で、いくつかのアプリ
ごとの消費電流量とその内訳（図3）について触
れましたが、そのうちOffsetと記された部分に
ついては省略しました。本項で解説するポイン
トは、まさにそのOffset部分に関するものです。
これがBGタスクとどう関係するか、解説して
いきます。

O�set電力とは

　まず、Offset電力について説明します。なお、
以降も記事中においてOffsetと呼んでいきます
が、これは一般的に知られている用語ではなく、
あくまで筆者を含む研究チーム内で勝手に命名
したものになりますのでご注意ください。
　図8は、ある端末でメールアプリを使用した
ときの消費電流です。CPUやLTEなどの内訳
があるなか、一番下におよそ0.15Aくらい常に
消費している成分があります。これがOffset電
力です。メールアプリ使用期間中において、消
費電流全体にOffsetが占める割合が大きいこと

http://www.android-group.jp/

146 - Software Design Sep. 2014 - 147

省電力なアプリ開発のために知っておきたいこと 第50回

がわかります。
　Offset電力は、端末上でアプリなどのソフト
ウェアが動作可能な状態においては、CPUなど
コンポーネントの稼働状態にかかわらず必ず消
費する消費電力を指しています。少し言い換え
ると、ディスプレイはOFFだが、CPUをはじ
め端末全体がSleepしておらず、各コンポーネ
ントがIdle状態であるときの端末全体の消費電
力です。フィーチャーフォン含め基本的にすべ
ての携帯電話は、ユーザが使用していないとき、
いわゆる待受状態の電池消費を極力抑えるため、
ディスプレイをOFFにし、CPUなどチップセッ
ト上の各コンポーネントを休眠状態（Sleep）に移
行させます。言うまでもなくアプリはこの状態
のままでは動作できませんので、ユーザ操作に
よるディスプレイONか、ディスプレイOFFの
ままでもOSなどシステム側の制御を契機に
Sleep状態から復帰したうえで動作します。
　つまり、Offsetはアプリが動作中は必ず消費
してしまう電力ですので、アプリがいくらハー
ドウェアコンポーネントの使用を抑えても、結
局削減できない大きな電力成分が残っていると
いうことです。とくに、ディスプレイOFFの状
態でBGタスクを実行させるときには、より
Offsetが占める割合が高くなりますし、バック
グラウンド状態での動作は目に見えないため、
アプリ開発者でもなかなか気づきにくいポイン
トだと思います。また、Sleep状態から時刻指

定などでBGタスク起動する際は、基本的にそ
のアプリのためだけにSleep状態からの復帰と
Offsetの消費を伴うことになります。そのため、
多くのアプリがインストールされた端末全体で
見たとき、各アプリから個別にタスク起動が頻
発すると電池消費への影響は非常に大きくなる
といえます。

省電力化のためのヒント

　すでにお気づきの方もいらっしゃるかもしれ
ませんが、アプリ設計からOffset分の「電力」を
削減することはできませんが、「電力量」を削減
することはできます。それはBGタスクの動作
時間を短縮することです。前述したとおり、電
力量は電力×時間ですので、時間を短縮するこ
とで結果的に電力量を削減することができます。
　そのためには、まず、BGタスクの起動タイ
ミングや回数が本当に適切か、機能要件とあわ
せてご検討ください。たとえば、目覚まし時計
のように必ず朝7時に起動しなければいけない
といった実時間制約があるか、または多少の遅
れが許されるか、などが挙げられます。
　そのうえで、さらに動作時間を削減するため
には、図9のように、他のBGタスクと起動タ
イミングを集約することができれば、その分端
末のSleep時間を確保でき、Offset分の電力量
を1回に抑えることができます。
　起動タイミングの集約方法をご紹介します。

 ▼図8　メールアプリ使用時の消費電流

148 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

基本的に、実時間制約のないBGタスクが、サー
ビス性の観点から集約の対象になります。具体
的には、AlarmManagerにBGタスクの起動スケ
ジュールを設定する際のポイントになります。
ご自身のアプリだけでなく、ほかのアプリのBG

タスクも含めて、OS側のしくみ、または制御
によって、自動的に集約することが可能です。

❶	スケジュール設定ではWAKEUP指定をしな
い

❷	set()の代わりにsetWindow()を使う
❸	繰り返し処理のスケジュール設定では

setInexactRepeating()を使う

　AlarmManager関連のメソッドはAPIレベル
によってその有無や挙動が異なりますので、詳
しくはAPIドキュメントなどをご参照ください。
　❶について、スケジュール設定を行うメソッ
ド（set()や setRepeating()など）の引数Typeに、
ELAPSED_REALTIME_WAKEUP ま た は
RTC_WAKEUPを指定すると、指定されたタ
イミングで端末がSleep状態であればそれを解
除して、必ずタスクが起動されます。起動タイ
ミングの遅延が許容されるタスクに対しては、
WAKEUPのないTypeを指定しておけば、他の
タスクなどによるSleep状態の解除を契機に起
動され、結果的に複数タスクの起動が同じタイ
ミングになります。
　ただ、これだといつタスクが起動されるのか

わからず不安になるかもしれません。その場合、
❷のとおり、APIレベル19から新たに加わった
メソッドの1つ、setWindow()を用いると良いで
しょう。引数に期間を指定する形で、その期間
内にタスクが起動されるようOSが制御してく
れます。このとき期間内に起動する予定のタス
クがほかにあれば、タイミングが集約されます。
また、周期的な繰り返し処理を行う場合には、
setInexactRepeating()でスケジュール設定を行
うと、周期的に同じ傾向をもつほかのタスクが
あれば、同じタイミングで起動するようにOS

が制御してくれます。

おわりに

　最後になりますが、筆者自身、アプリの省電
力化を図るからといって、結果的にサービスの
品質レベルやユーザ体験を損なってはいけない、
それらなしに省電力化を優先すべきではないと
思っています。また、品質レベルを担保するの
に必要最小限のエネルギーであるなら、それは
「無駄」ではないと思います。ユーザにアプリが
どう使われるかよく考えたうえで、アプリ品質
のイチ指標として省電力化観点を考えていただ
けると幸いです。｢

タスクA

Offset

タスクB

Offset

タスクC

Offset

消
費
電
力（
W
） 時間（s）

ほかのタスクと起動タイミングを
あわせれば、O�setの負担を
共有できる

タスクA

タスクB

Offset Offset

タスクC

Offset

消
費
電
力（
W
） 時間（s）

 ▼図9　 BGタスクのタイミング調整によるO�set電力の
削減

参考文献
［1］ F. Quin, et al, Profiling Resource Usage for

Mobile Applications: A Cross-layer Approach,
MobiSys’11, June 28-July 1, 2011, Bethesda,
Maryland, USA.

［2］ 小西 哲平 , 稲村 浩 , 川崎 仁嗣 , 神山 剛 , 大久
保 信三 , 太田 賢 , "画面オフ状態におけるバッ
クグラウンドタスク同時実行によるAndroid
端 末 の 省 電 力 化 ", 情 報 処 理 学 会 論 文
誌 ,55(2),587-597 (2014-02-15)

［3］ Takeshi Kamiyama, Hiroshi Inamura, Ken Ohta,
"A Model-based Energy Profiler using Online
Logging for Android Applications", Proc. of
The seventh International Conference on
M o b i l e C o m p u t i n g a n d U b i q u i t o u s
Networking (ICMU2014), pp.7-13, January
2014.

http://www.android-group.jp/

148 - Software Design Sep. 2014 - 149

省電力なアプリ開発のために知っておきたいこと 第50回

神山 剛 （かみやま たけし）　㈱NTTドコモ 先進技術研究所

大学時代の零細 IT企業代表を経て、現在はNTTドコモ 先進技術研究所に勤務。入社以来、モバイルコンピューティング、
とくに端末ソフトウェアの省電力化や分散システムに関する研究開発に従事。釣りなどアウトドアライフをこよなく愛し、
いつかは ITとは無縁の世界で生きていきたいと願っている。

　Docomo Application Profiler（以下、DAP）とは、
省電力なアプリ開発を支援するためのアプリ評価
ツールです（図A）。後述のURLからアカウント登
録いただければ、どなたでも無料でご使用いただ
けます。DAPは、実際の端末・使用環境において
開発中アプリの動作ログを収集し、サーバ上で解
析を行います。主な特徴は次の3点です。

1消費電力の可視化
アプリ動作中の電力消費をシミュレーションする
技術を用いることで、測定器を用意しなくても簡
単にアプリの消費電力を評価できます。図8のよ
うに、CPUなどハードウェアコンポーネントごと
の内訳も確認できます。

2アプリ改善個所の可視化
Activity、ServiceといったAndroidアプリを構成
するソフトウェアモジュール単位でアプリ挙動と
消費電力をとらえ、可視化することで、電力消費
量の高い、優先的に改善すべきモジュールの特定
を可能にします。たとえば図Bのようなグラフで、
モジュール間の呼び出し関係とモジュールごとの
電力量の合計を可視化することで、もっとも消費
量の大きいモジュールを特定でき、優先的に改善

することで効果的にアプリの省電力化を図ること
ができます。

3アプリの実利用動向の把握
テストユーザやテストシナリオを増やすことで、
開発時に想定しにくいアプリの使われ方や、利用
環境の違いを把握し、アプリの評価や改善ができ
ます。

　詳しくは、以下、Docomo Application Profiler
Webサイトよりご覧ください。
 URL https://dap.dev.smt.docomo.ne.jp/

Column

Docomo Application Pro�lerのご紹介

▼図A　DAPのロゴ

統計的にAlarmManagerによる起動頻度が高く、
一番電力消費量の大きいモジュールであることがわかる

Alarm
Manager

Service B
4.2Ah

Activity C
2Ah

Activity A
1.1Ah

▼図B　モジュール遷移グラフ

https://dap.dev.smt.docomo.ne.jp/

150 - Software Design

RHEL7の試用版の
入手方法

　製品として利用するにはサブスクリプション
を購入する必要がありますが、レッドハットで
は試用・評価する方法も用意しています。試用
版（Evaluation Subscription）は30日間利用可能
となっており、製品版との技術的な違いはあり
ませんし、評価終了後にサブスクリプション契
約を結べば、そのまま本番環境でも利用可能です。
評価版の入手方法を次で説明しましょう。

●Step1
　Red Hat Customer Portal（https://access.

redhat.com/home）にアクセスし、［RED HAT

ENTERPRISE LINUX 7］バナーをクリック
します（図1）。
●Step2
　“ INTRODUCING RED HAT ENTER-

PRISE LINUX 7”のページにおいて、“TRY

IT FREE FOR 30DAYS”の［ Request an

Evaluation］のリンクをクリックします。
●Step3
　“Important Evaluation Terms”が表示される
ので熟読し、内容に合意できる場合、［By

proceeding, ...］チェックボックスをチェックし、
［Continue］ボタンをクリックします（図2）。
●Step4
　Red Hatログインページでアカウント情報を
入力してログインします（図3）。アカウントを
持っていない場合は、［登録］ボタンをクリック
して作成します。アカウントの作成は無償です。
●Step5
　アカウントへの評価版の追加登録が完了する
と“Thank you!”ページが表示され、数分後には
メールが届くので、Webページあるいはメー
ルの［Explore Your Evaluation］ボタンをクリッ
クします。

第 5 回 Red Hat Enterprise Linux 7とDockerに触れてみよう

 ▼図1　［RED HAT ENTERPRISE LINUX 7（https://
 access.redhat.com/home）

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

前回はRed Hat Enterprise Linuxの新バージョンである7の新機能を中心に紹介し
ました。今回は「お試し方法」を中心に紹介します。話題となっているDockerの利
用方法についても紹介しますので、本稿を参考にぜひ触れてみてください。

レッドハット（株）グローバルサービス本部プラットフォームソリューション統括部
ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）

https://access.redhat.com/home
https://access.redhat.com/home
https://access.redhat.com/home

150 - Software Design Sep. 2014 - 151

第 5 回Red Hat Enterprise Linux 7とDockerに触れてみよう

●Step6
　Step2の ペ ー ジ が 表 示 さ れ る の で、
“DOWNLOAD RED HAT ENTERPRISE

LINUX 7”の［Get Installation Media］のリンク
をクリックします。
●Step7
　評価版としてダウンロードできる製品の一覧
が 表 示 さ れ る の で、［Red Hat Enterprise

Linux］のリンクをクリックします。
●Step8　
　［RHEL 7.0 Binary DVD］（3.49GB）を ダ ウ
ンロードします。“Supplementary”は IBMの
Javaランタイムなどが必要な場合にダウンロー
ドします。
●Step9　
　ダウンロードが完了したらチェックサムを
チェック注1します。

　以上の手順でインストーラのDVDイメージ
が入手できたので、DVD-Rに焼いて物理マシ
ンか、ISOイメージを仮想DVDドライブを通
じて仮想マシンに接続してインストールします。

RHEL7の登録

　前回説明したようにRHEL7のインストーラは
ハブ＆モジュール形式になっており、変更した
い個所だけを任意の値に設定すればインストー
ルが可能です。またサブスクリプションの管理
についてはRed Hat Satellite注2のユーザを除き
rhn_registerが廃止され、subscription-manager

のみが利用可能となったことも説明しました。
具体的な手順については触れませんでしたので、
推奨されるインストール時設定のパッケージグ
ループのMinimal（日本語では「最小限のインス
トール」）を選択してインストールした前提で、
CUIあるいはターミナルを起動してコマンドを
実行する手順を説明します。

●Step1
　サブスクリプションマネージャでRed Hatに
登録します。評価版の入手時の「Red Hatアカ
ウント」が「ユーザー名」です（図4）。

 ▼図2　［Continue］で先に進める

 ▼図3　アカウント作成

注1） RHEL 7.0 Binary DVDであれば“85a9fedc2bf0fc825cc7817056aa00b3ea87d7e111e0cf8de77d3ba643f8646c”。Linux
であればsha256sumコマンドが、Mac OS Xであれば“shasum -a 256”コマンドを実行し比較する。

注2） Red Hat Satellite（旧称・Red Hat Network Satellite）は、RHELを大量に利用する場合やインターネットに接続できない環境
でRPMパッケージの更新やシステムの管理を行うための製品。システムの標準化などにも用いられ、Red Hat製品のレポジ
トリとして利用可能。

subscription-manager register
ユーザー名: rfujita
パスワード:
システムは ID で登録されています: af5261a5-efe8-45ae-b23c-d76be374e834

 ▼図4　サブスクリプションマネージャで登録

152 - Software Design

●Step2
　利用可能なプールの一覧を取得します。ここ
で表示される「プール ID」をコピーしておきま
す（図5）。
●Step3　
　システムにプールを紐付けます（図6）。
●Step4
　yumコマンドで登録されたレポジトリを確認
します。確認後、最新のパッケージにアップデー
トします（図7）。

　yumコマンドでのアップデートが完了したら、
kernelを最新のバージョン注3に置き換えるた
めに再起動しましょう。

RHEL7でDockerしよう！

　前回の記事でRHEL7にはDockerが同梱さ
れ、extrasチャネルを追加すれば利用可能にな
ることをご紹介しました。RHEL7のインストー
ルが完了すれば、Dockerの利用は非常に簡単
です。次の手順でDockerをインストールします。

●Step1
　レポジトリを追加します（図8）。
●Step2　
　Dockerを追加インストールします。

subscription-manager list --available
+---+
 利用可能なサブスクリプション
+---+
サブスクリプション名: 30 Day Self-Supported Red Hat Enterprise Linux Server, (2 sockets) (Up to 1 guest)
Evaluation
提供: Red Hat Beta
......
プール ID: 8a85f98146f719190146fb3c2bae1859
......

 ▼図5　利用可能なプール一覧の取得

subscription-manager attach --pool=8a85f98146f719190146fb3c2bae1859
サブスクリプションが正しく割り当てられました: 30 Day Self-Supported Red Hat Enterprise Linux Server, (2 sockets)
(Up to 1 guest) Evaluation

 ▼図6　システムへのプール紐づけ

yum repolist
読み込んだプラグイン:product-id, subscription-manager
rhel-7-server-rpms | 3.7 kB 00:00
......
リポジトリー ID リポジトリー名 状態
rhel-7-server-rpms/7Server/x86_64 Red Hat Enterprise Linux 7 Server (RPMs) 4,480
repolist: 4,480
yum -y update
......

 ▼図7　yumでアップデートしておく

subscription-manager repos --enable=rhel-7-server-extras-rpms
リポジトリ 'rhel-7-server-extras-rpms' はこのシステムに対して有効になっています。
subscription-manager repos --enable=rhel-7-server-optional-rpms
リポジトリ 'rhel-7-server-optional-rpms' はこのシステムに対して有効になっています。

 ▼図8　レポジトリの追加

注3） 執筆時点ではkernel-3.10.0-123.4.2.el7が最新。

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

152 - Software Design Sep. 2014 - 153

第 5 回Red Hat Enterprise Linux 7とDockerに触れてみよう

yum -y install docker

　これでDockerのインストールは完了です。次
にDockerサービスを起動し有効化します（図9）。
　執筆時点ではDockerはfirewalldとコンフリ
クトするためfirewalldを停止します。

systemctl stop firewalld
systemctl disable firewalld

　以上でDockerを利用する準備が整いました。
レッドハットのレジストリ注4からイメージを
ダウンロードしましょう（図10）。
　ダウンロードが完了したら、イメージを確認
しましょう（図11）。
　これで準備が整いました。早速、このイメー
ジを動かしてみましょう（図12）。

　これでコンテナ内でbashシェルを実行できま
した。これだけではとても実用的とは言えませ
んが、レッドハットのドキュメント注5や同僚の
中井氏のスライド注6にサーバを動かす例などが
あるので、それらを参考にしてみてください。

次号は！

　米 国 時 間 の 2014年 7月 1日 に Red Hat

Satellite 6のパブリックベータ版が公開されま
した。RHEL7を含む数十台～数千台のRHEL

サーバの管理を可能にするSatelliteのしくみ
と機能について紹介する予定です。ﾟ

systemctl start docker
systemctl enable docker
ln -s '/usr/lib/systemd/system/docker.service' '/etc/systemd/system/multi-user.target.wants/docker.service'
systemctl status docker
docker.service - Docker Application Container Engine
 Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled)
 Active: active (running) since Mon 2014-07-07 16:08:47 JST; 1min 25s ago
......

 ▼図9　Dockerサービスの起動と有効化

docker pull registry.access.redhat.com/rhel
Pulling repository registry.access.redhat.com/rhel
e1f5733f050b: Pulling image (latest) from registry.access.redhat.com/rhel, endpo
e1f5733f050b: Download complete

 ▼図10　Dockerのイメージのダウンロード

docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
registry.access.redhat.com/rhel latest e1f5733f050b 4 weeks ago 140.2 MB

 ▼図11　Dockerイメージの確認

docker run -it registry.access.redhat.com/rhel /bin/bash
bash-4.2# id
uid=0(root) gid=0(root) groups=0(root)
bash-4.2#

 ▼図12　Dockerイメージの稼働

注4） Dockerではコンテナに割り当てるファイル等のデータをイメージと呼び、レジストリにイメージを登録して用いる。レジ
ストリを独自に構築することも可能だが、本稿では説明の簡略のためレッドハットのレジストリを利用。

注5） http://red.ht/1zjfOPU
注6） http://www.slideshare.net/enakai/docker-34526343

http://red.ht/1zjfOPU
http://www.slideshare.net/enakai/docker-34526343

154 - Software Design

カーネルネイティブ
iSCSIターゲット

　FreeBSD 10.0-RELEASEで追加された新機能
のうち、業務向けの機能として最たるものの1つが
カーネルネイティブに動作する iSCSIターゲット
／イニシエータ注1の機能です。FreeBSD 10.0-

RELEASEからはソフトウェアを追加することな
く、iSCSIのターゲットやイニシエータとして使う
ことができます。
　FreeBSDはクライアントとして使うよりはサー
バとして使うことのほうが多いオペレーティングシ
ステム（OS）ですので、シーンとしては iSCSIター
ゲットとして使われることのほうが多いでしょう。
ZFSで対象となるボリュームを作成し、iSCSIター
ゲットデーモンを通じて iSCSIターゲットとして
機能させます。
　セットアップも簡単にできますので、今回は
iSCSIターゲットを作成してWindowsクライアン
ト向けにボリュームを提供する方法を紹介します。

ZFSでボリューム管理

　NAS（Network Attached Storage）や iSCSIター
ゲットなど、ストレージシステムを構築する場合に
力を発揮するファイルシステムでありボリューム管
理システムであるのがZFSです。/boot/loader.conf
ファイルに次の設定を追加してZFSを有効化します。

zfs_load="YES"

注1）	iSCSIでは、レスポンスを返すサーバ側のことをターゲット、
コマンドを発行するクライアント側のことをイニシエータと
呼びます。

　続いてZFSでボリュームを作成して、そのボ
リュームを iSCSIターゲットとして使用すること
にします。
　次にZFSで利用するプールを作成します。次の
ようにコマンドを実行すると、SATA接続された3

つ目のディスク（ada2）と4つ目のディスク（ada3）を
RAID1構成（ミラーリング）にして、プール「z1」が
作成されます。

zpool create z1 mirror ada2 ada3

　zpool listで確認すると1.81TBのプールが作
成されていることがわかります（図1）。
　zpool statusでより詳しい状態を確認できます
（図2）。
　プールを作成したら次はボリュームを作成しま
す。次のようにzfs createを実行すると50GBの
「z1/disk」というボリュームが作成されます。

zfs create -V 50G z1/disk

　作成したボリュームは図3のようになっているこ
とが確認できます。このボリュームは/dev/zvol/

z1/diskというブロックデバイスとして認識されま
す（図4）。これで iSCSIターゲットで使用するボ
リュームの準備は完了です。

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第11回 ❖ FreeBSD 10.0新機能紹介 〜iSCSIストレージの作りかた〜

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

Sep. 2014 - 155

▶第11回◀
FreeBSD 10.0新機能紹介 〜iSCSIストレージの作りかた〜

iSCSIイニシエータ側では「iqn.2002-05.jp.co.

ongs:disk」というターゲットを見つけて、ユーザ名
に「daichi」、パスワードに「NH6dcqNu9T0eQ」で接
続すればこのターゲットを利用できます。
　設定ファイルを作成したらctld(8)デーモンを次
のように起動します。

　なお余談になりますが、ZFSは単一のディスクで
プールを構築してもあまり意味がありません。ここ
で示したように2台でRAID1、または4台以上で
RAID1＋0、複数台でRAID-Z（RAID5やRAID6

に相当）を構成する方法が推奨されます。

iSCSIターゲット管理

　iSCSIターゲットとしての機能はctld(8)デーモ
ンが担当します。次の設定を/etc/rc.confに追加し
て、ctld(8)デーモンを利用できるようにします。

ctld_enable="YES"

　どのボリュームを誰に対して提供するのか、アク
セスするユーザの認証はどうするのか、といった設
定は/etc/ctl.confファイルに記述します。
　たとえばリスト1のような/etc/ctl.confファイル
を作成します。
　設定されている内容の意味は表1のとおりです。

zpool list z1
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
z1 1.81T 603G 1.22T 32% 1.00x ONLINE -
#

▼▼図1　1.81TBのプールz1

zfs list z1/disk
NAME USED AVAIL REFER MOUNTPOINT
z1/disk 51.6G 1.19T 16K -
#

▼▼図3　zfs listで作成したボリュームを確認

ls -l /dev/zvol/z1/
total 0
crw-r----- 1 root operator 0x9e Jul 5 10:08 disk
#

▼▼図4　ボリュームはブロックデバイスとして認識される

zpool status z1
 pool: z1
 state: ONLINE
 scan: resilvered 479G in 3h1m with 0 errors on Thu Dec 13 15:33:30 2012
config:

 NAME STATE READ WRITE CKSUM
 z1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada2 ONLINE 0 0 0
 ada3 ONLINE 0 0 0

errors: No known data errors
#

▼▼図2　z1プールのより詳しい情報

portal-group pg0 {
 discovery-auth-group no-authentication
 listen 0.0.0.0
}

target iqn.2002-05.jp.co.ongs:disk {
 portal-group pg0
 chap daichi NH6dcqNu9T0eQ
 lun 0 {
 path /dev/zvol/z1/disk
 size 50G
 }
}

▼▼リスト1　�iSCSIターゲット設定を記述した
/etc/ctl.conf

156 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

service ctld start

　設定がちゃんと機能しているかはctladm
devlistを使って確認できます（図5）。作成したボ
リュームがターゲットとして提供されていることが
わかります。
　/etc/rc.confに設定を追加しましたので、OSを再
起動してもctld(8)は自動的に起動してくれます。

Windows 7から
使ってみよう

　それではWindows 7から使ってみましょう。
「iSCSIイニシエーター」を起動すると、設定した
ターゲットがリストに掲載されていることを確認で
きます（図6）。
　ターゲットを選択して詳細設定のダイアログを表
示させます。「名前」部分がユーザ名、「ターゲット
シークレット」部分がパスワードです。ここに設定
した値を入力します（図7）。

　ターゲットに接続したら「ディスクの管理」を起動
します。接続したターゲットが認識されますので、
フォーマットして利用できる状態にします（図8）。
　フォーマット後に49.87GBのNTFSでフォー
マットされたボリューム「E:」が作成されたことを確
認できます（図9、10）。
　このようにちょっとした作業ですぐに実用的な
iSCSIストレージシステムを構築できます。

活用はアイディア次第

　簡単に利用できるのであっという間に作業は終
わってしまいますが、これはとても強力な機能なの
で、さまざまなシーンでさまざまな使い方ができま
す。業務システムのクライアントディスクを集約し
てディスクレスシステムを構築するといったことか
ら、プロジェクトごとに必要になるストレージの提
供など業務的な使い方もできますし、個人のツール
としても活用できます。

　仮想環境との組み合わせ
も便利です。業務で利用す
るデータは iSCSIターゲッ
ト側で保持して、仮想環境
には最低限のデータだけを
保持するといった組み合わ
せで、仮想環境側のリソー
スを抑えながら利用するス
トレージを大きく持ってお

大枠 項目 内容

portal-group pg0 ポータルグループの設定。iSCSIターゲットの探索を許可する範囲を設定。
ここでは誰に対しても探索を許可している

discovery-auth-group no-
authentication 探索に関しては認証なし

listen 0.0.0.0 すべての範囲を対象

target iqn.2002-
05.jp.co.ongs:disk

ターゲットの名称。disk部分は任意の文字列。iqn.2002-05.jp.co.ongs
は「iqn.ドメインを取得した年-ドメインを取得した月.ドメイン名の逆さ
順」を指定

portal-group pg0 ポータルグループ（探索範囲）を指定

chap daichi NH6dcqNu9T0eQ このターゲットにアクセスするための認証設定（CHAP認証、ユーザ名
daichi、パスワードNH6dcqNu9T0eQ）

path /dev/zvol/z1/disk 提供するボリューム

size 50G 提供するボリュームのサイズ

▼▼表1　/etc/ctl.confの設定内容の意味

ctladm devlist -v
LUN Backend Size (Blocks) BS Serial Number Device ID
 0 block 104857600 512 MYSERIAL 0 MYDEVID 0
 lun_type=0
 num_threads=14
 file=/dev/zvol/z1/disk
 cfiscsi_target=iqn.2002-05.jp.co.ongs:disk
 cfiscsi_lun=0
#

▼▼図5　設定の確認

Sep. 2014 - 157

▶第11回◀
FreeBSD 10.0新機能紹介 〜iSCSIストレージの作りかた〜

くことができます。アイディア次第で多くのことが
できます。

ストレージシステムを
つくってみよう

　FreeBSDは複数社のエンタープライズ向けのス
トレージアプライアンスで採用されています。この
ため、こうした機能はすでにハードウェアベンダは
独自の実装として持っていました。今回、デフォル
トの機能として iSCSIターゲット／イニシエータ

の機能が導入されたことで、ストレージシステムを
構築するためのOSとして今までよりも便利になり
ました。s

▼▼図6　設定したターゲットを確認

▼▼図7　CHAP認証のユーザとパスワードを設定

▼▼図8　認識される新しいボリューム

▼▼図9　新しいボリューム「E:」

▼▼図10　ボリュームのプロパティをチェック

158 - Software Design

18 Debian Developer　やまねひでき　henrich@debian.org

設定ファイルの読み方・書き方で
わかるLinuxのしくみ（Debian編）

Debian 7.6/6.0.10が
リリース

　7月 に は、Debian 7.6と Debian 6.0.10が、
アップデートとしてリリースされました。
Debian 6はLTSとして、一部のパッケージの
セキュリティ修正は行われるはずですが、アッ
プデートリリースは6.0.10が最後になります。
そして、Debian 8の開発スケジュールは変わ
らずフリーズが着々と近づいており、作業に手
のついていない筆者にはプレッシャーとなって
います。

RHELの流儀だけが
Linuxではありません

　本誌2014年6月号の第1特集は「設定ファイ
ルの読み方・書き方でわかるLinuxのしくみ」と
題した、レッドハット㈱の中井悦司氏による記
事でした。当然のことながら、内容はRHEL 6

（Red Hat Enterprise Linux 6）を前提にした説
明となっていました。しかし、RHELとDebian

では若干の差異があります。Debianユーザで、
この情報を参考にしている方がつまずかないよう、
「設定ファイルの読み方・書き方でわかるLinux

のしくみ（Debian編）」をお送りしたいと思いま
す（なお、本誌6月号が手元にあることが前提と
なっている点が多いのは、ご容赦ください）。

/tmpは定期的に空に……
されません

　DebianはRHELとは違って tmpwatchは用意

されていませんので、/tmpに置いたファイル
が勝手に消えることは、基本的にありません。
「基本的に」と述べたのは、デフォルトでは/tmp

は tmpfsというメモリファイルシステム上に置
かれるようになっており注1、再起動するとメモ
リはクリアされますから、それに伴って/tmp

の内容も空になるからです。「再起動しなけれ
ば/tmpの中身は消えない」と覚えてください。

viエディタ……なの？

　Debianの最小構成ではvi（あるいはvim）はイ
ンストールされません（当然、Emacsもですよ、
念のため）。代わりのエディタとして「n

な の

ano」が
用意されています。
　visudoコマンドでsudoユーザの編集をしよ
うとすると、nanoが起動され、「なんじゃこ
りゃぁ!?」と叫ぶユーザもいることでしょう注2。
edじゃないことに感謝してください……とい
うのは冗談ですが、vi（vim）を使いたい場合は、
適宜、apt-get install vimなどとしてパッ
ケージをインストールしてください注3。

注1） RHEL 7では「systemctl enable tmp.mount」とすることで、
Debianと同様に /tmpを tmpfsにできるようになっていま
す。

注2） visudoでは、/usr/bin/editorが呼ばれます。これが /etc/
alternatives/editorを参照していて、alternativesという
しくみでエディタを切り替えて使うことになっています。
alternativesは、Debian由来でRHELにも採用されている
機構です。詳細はupdate-alternatives(8)を参照してくだ
さい。

注3） vimのパッケージでも、最小限の機能を持ったvim-tinyパッ
ケージと、機能を網羅しているvimパッケージがそれぞれ
あります。「vimを入れたのに、矢印キーでカーソルを移動
できない」という相談を受けたことがありますが、そのよ
うな場合は、「hjklで移動しろ」ではなく、vim-tinyパッケー
ジが入っているので、vimパッケージを入れれば解決します。

158 - Software Design Sep. 2014 - 159

設定ファイルの読み方・書き方でわかる
Linuxのしくみ（Debian編） 18

cronは「.」を含まない
ファイル名で指定せよ

　「Debianを新しく設定したので、cronでシェル
スクリプトを定期的に実行しよう。/etc/cron.d

にファイルを置いてと……あれ、実行されてい
ない？　権限も問題ないはずだし、前に設定し
たCentOSでは動いてるんだけど？」という人、
実はちょっとした罠

わな

があるのです。
　man cronすると「DEBIAN SPECIFIC」とい
う項目があり、そこにはこんな説明があります。

Files in this directory have to be owned by

root, do not need to be executable (they are

configuration files, just like /etc/crontab) and

must conform to the same naming convention as

used by run-parts(8): they must consist solely

of upper- and lower-case letters, digits,

underscores, and hyphens. This means that

they cannot contain any dots.

（このディレクトリ以下に置くファイルの所有
者は、rootでなければならず（/etc/crontabの
ように設定ファイルですので）、実行権限は不
要です。そして、run-partsで使われている命
名規則に従わねばなりません。ファイル名は大
文字、小文字、数字、アンダースコア（_）、ハ
イフン（-）で構成する必要があります。これは
ドット（.）を含んではいけないということです）

　そう、実行しようとしているファイル名が
hoge.shというように「.」を含んでいませんか？　
その場合、この制限に引っかかって動作しませ
ん（「いや、なんでそんな制限あるの」というのは

ごもっとも……はて、なんでですかね？）。これ
は/etc/cron.hourly (daily, weekly, monthly)に配
置するファイルも同様です。

ユーザの作成とユーザID

　RHELと同じくDebianにも、ユーザ／グルー
プを作成するuseradd/groupaddコマンドが、
用意されています。ですが、それとは「別
に」注4Debianには「adduser」と「addgroup」とい
うコマンドもあります……超混乱しますね。
　「では、どっちを使うのがいいのか？」という
と、答えはuseraddのmanpageに記載されてい
て、“useradd is a low level utility for adding

users. On Debian, administrators should

usually use adduser(8) instead.”（Debianでは、
管理者の方は通常はadduserを使ってください）
とあります。スクリプトで作業するときには
useradd/groupaddを使うのですが、ターミナ
ルを使って作業する場合は、インタラクティブ
に指定ができるadduser/addgroupのほうが良
いでしょう。
　そして、Debianの場合、作成されたユーザ
のユーザ IDは「1000」から始まります注5（表1）。
500から始まるRHELとは違いますので、
NFSやほかのシステムからの移行時にはお気
をつけください。

ランレベルと各デーモンの
initスクリプト制御

　RHELだとランレベルを変えて動作を変更

注4） RHELでは adduser/addgroupは、useradd/groupaddへ
のシンボリックリンクです。

注5） この指定については /etc/adduser.confを参照。

 ▼表1　ユーザ ID（UID）／グループ ID（GID）の割り当て範囲
ユーザ／グループの種類 RHEL 6まで Debian

root 0 0

システム 1～499 1～99（割り当て済み）、
100～999（インストール時に割り当て）

個人 500～60000
（RHEL 7では1000～） 1000～59999※

※ Debian Policyでは59999までとなっていますが、/etc/login.defでの最大UID指定は60000です。/etc/adduser.confで29999になっ
ているので、adduserコマンドを使った場合は、29999までのUID……とそれぞれ微妙に異なっています。この辺になぜ差異があるの
か、問題ないのかは、もう少し調べてみたいところです。

160 - Software Design

するという概念があります。Debianではラン
レベル2～5には、動作の違いがありません注6（表
2）。ですので、GUIを自動起動したくない場
合は、ランレベルを変更して……ということが
できません。
　「では、どうするのか？」というと、GDM3/

KDM/lightDMなどのディスプレイマネージャーを
入れないか、またはディスプレイマネージャーの
動作を停止しておくことになります。
　ですが、chkconfigでディスプレイマネージャー
を停止しようとしても、Debianにはchkconfigは
デフォルトインストールでは存在していません。
chkconfigパッケージ自体は存在していますので
入れることも可能ですが、デフォルトでは
insservコマンド（図1）、あるいは原始的に
update-rc.dコマンドを使って停止することにな
ります（ほかの方法としてはrcconfパッケージや
sysv-rc-confパッケージを入れる方法もあります）。
　このあたりは、systemd採用で差異が吸収さ
れていくものと推測しています。systemdにつ
いては、いち早く採用を行ったRHEL 7やCent

OS 7、Fedoraなどの情報を参考にしてください。

注6） なぜ、ないんでしょうね？　筆者も不勉強でわからないので、
おわかりになる識者の方ご連絡ください。

grub.confは直接いじるな

　6月号の特集記事では、例としてgrub.conf

が取り上げられています。Debianの場合は、
このgrub.confの中心要素を抜粋したものであ
る/etc/default/grubを編集し、update-grubコ
マンドで変更をgrub.confに反映します注7。

ネットワーク設定ファイルの
場所が異なる

　ネットワークの設定はRHELとは違い、Debian

では/etc/network/interfacesにまとめて書かれま
す注8。設定の詳細はman interfacesで、マニュ
アルを参照してみてください。

注7） RHEL 7からは同様に /etc/default/grubを編集します。で
すが、変更反映のコマンドはgrub2-mkconfigです。

注8） RHELも6と7で大幅に変わっているようで、RHEL 7から
はNetworkManagerを使った設定が推奨です。デスクトッ
プ向けツールの印象が強いNetworkManagerですが、コ
マンドラインからの設定やキャラクタベースのインター
フェースなども追加されました。さらに、サーバで使うた
めに、未設定のインターフェースでの自動設定を抑止する
オプションと、リンクがなくてもstatic IPの設定を行うオ
プション設定が可能なNetworkManager-config-server
パッケージも追加されています。

 Debianのnetwork-managerパッケージも、コマンドラ
インからの設定ツール「nmcli」に加え、対話式で設定可能
な「nmtui」が含まれた最新のNetworkManagerが、先日、
利用可能になりました（余談ですが、Fedora 20にもまだ
nmtuiは含まれていませんでした。RHELのほうがFedora
よりもソフトウェアのバージョンが新しいことがあるので
すね）。

 ▼表2　RHEL（6まで）とDebianのランレベル
ランレベル RHEL 6まで Debian

1 シングルユーザ シングルユーザ
2 マルチユーザ（ネットワーク接続なし）
3 マルチユーザ マルチユーザ、X11が動作する
4 （未使用）
5 X11が動作する
6 再起動 再起動

 ▼図1　insservを使ってGDM3を制御する

$ sudo insserv -r gdm3 ←GDM3が起動しないように設定
$ sudo service gdm3 stop ←現在動いているGDM3を停止

 ▼図2　ufwを使ったHTTPサーバのアクセス権の設定例

$ sudo apt-get install ufw
$ sudo ufw enable
$ sudo ufw allow OpenSSH ←SSHで接続している場合は遮断されないようにする
$ sudo ufw allow WWW ←外部からのHTTP接続を許可する
$ sudo ufw default deny ←上記以外、デフォルトでは遮断にする
 必要に応じてufwコマンドを使って調整

160 - Software Design Sep. 2014 - 161

設定ファイルの読み方・書き方でわかる
Linuxのしくみ（Debian編） 18

手軽にiptablesを設定

　iptablesを手動設定するのも理解が深まりま
すが、「ufw」というフロントエンドを使えば、
図2のようにHTTPサーバへのアクセスを許可
するような典型的な設定は間違いなく済ませら
れます。

SELinuxは？

　DebianでもSELinuxは存在するものの、デ
フォルトでは設定がまったく入りません注9。手
動でインストールしたとしても、パッケージ側
では設定情報があまり整っていません。利用で
きるようになるまでには、茨の道が約束されて
います。「安全のためデフォルトでSELinuxを
enforcing設定にしたい！」という人は、パッケー
ジの修正のほうで未来のバージョンでのサポー
トに向けて一緒にがんばりましょう。

パッケージといったらaptだろ！

　パッケージ管理ツールというと、RHELで
はrpm/yumですが、Debianはdpkg/apt（apt-get

/apt-cache）です。yumは先発であるaptを意識
して作られているためでしょうか、使い方は似
ており、ものによってはオプションも同一です。
　普段の使い方で気がつくであろうところは、
yumは「update」オプションでパッケージ自体の
更新が実行されますが、aptの「update」オプショ
ンではパッケージ自体はアップデートされず、
パッケージデータベースの情報だけが更新され
ます。aptでパッケージ自体のアップデートを
するには、別途「upgrade」オプションを使う、
ということを覚えておくと良いでしょう。

DebianでもApacheを
設定してみるか……

　RHELやCentOSを利用してきたユーザが
Debianを使ってみてよく言うのが、「Apache

注9） UbuntuだとAppArmorという別のセキュリティ実装が採
用されています。また、ほかの実装としてはTOMOYO
Linuxがtomoyo-toolsパッケージとして存在しています。

の設定ファイル構成がよくわからない」という
ものです。Debianの場合は「機能ごとに細切れ
にするのが方針」ですので、次の点に留意して
設定しましょう

¡	パッケージ名はhttpd ではなくapache2。
ディレクトリも/etc/apache2となる

¡	httpd.confは存在するが、ここにまとめて記
述するのではなく、設定するサイトごとにファ
イルを分けて/etc/apache2/site-available
以下に置くのが推奨（例：/etc/apache2/site-
available/www.example.comなど）

¡	サイトを利用する場合はa2ensiteコマンド、
無効にする場合はa2dissiteコマンドを使
う注10

¡	全サイトに対して設定を行う場合は、機能ご
とに/etc/apache2/conf-availableにファイ
ルを置き、a2enconf/a2disconfで切り替える

¡	機能モジュールについても、同様にa2enmod
/a2dismodでモジュールの有効／無効を切り
替える

¡	設定を変えたらサービスを再起動するなど
して反映する

なぜ違いがあるの？

　一部からは「違いを把握するなんてめんどく
さいなー」という声が聞こえてきそうですが、
問題に対するアプローチと解き方は、1つとは
決まってはいません。筆者は上記のような違い
について「覚え」なくても「RHELだとこういう
考え方だからこういうアプローチで、Debian

だとこういうアプローチ」という「背景にある考
え方の理解」をすることが重要だと考えていま
す注11。｢

注10） 実はこの辺、単にsymlinkを張っているだけです。ls -al /
etc/apache2/sites-enabledなどと、実行してみるとわか
ります。モジュールについても同様です。結構簡単な作り
なのですね。

注11） そうでないと、資格試験のために単に暗記しただけで応用
が効かない……という残念なことになります。そもそも世
の中いろいろな事柄についてさまざまな種類のものが共存
しているというのに、Linuxについては1種類になるべき
というのは暴論でしょう（面倒なのは理解できますが）。

はじめに

　こんにちは。2014年5月からレッドハットで
働いている、岩尾はるかです。肩書は「ストレー
ジソリューションアーキテクト」と少し長いです
が、簡単に言うと、ストレージが専門のプリセー
ルスエンジニアです。入社前は、家電メーカー
やWebサービス会社で働いていました。
　入社して間もなくこの記事を依頼され、何を
書いていいのかと過去記事を読み返したところ、
自分なりの言葉で会社のカルチャーを伝えれば
いいとの考えに至りました。そこで、これまで
働いていた環境との違いを中心にまとめました。

メールが基本

　過去に働いたWebサービス会社では、Skype

やHipChatなどのチャットが主要なコミュニ
ケーションの道具でした。ところが、レッドハッ
トではメールとメーリングリストがもっとも活
発な議論の場所になっています。これには大き
く2つの理由が挙げられます。1つ目は拠点が世
界各国にあるので、メールのほうが時差を吸収

しやすいこと。2つ目は、レッドハットの各製
品にはupstream（アップストリーム）と呼ばれる
オープンソースのプロジェクトがあり、これら
の主な議論の場がメーリングリストであること。
とくに2つ目の理由は、レッドハット独特だと
感じました。
　私がおもに担当しているストレージ製品も、
upstreamとなるGlusterFSやCephといった
オープンソースプロジェクトが存在しています。
これらのプロジェクトのメーリングリストをの
ぞいてみると、レッドハットのメールアドレス
からの投稿が多く見られます。社外の開発者や
ユーザとのやりとりだけではなく、時には社員
同士で、公開のメーリングリストで議論するこ
ともあります。つまり、ソフトウェアの開発が
100％オープンソースの世界で完結していて、途
中過程も含めた意思決定を、コミュニティを中
心に行っているということです。通常のクロー
ズドな製品を開発していると、普段のメールの
相手は同僚のエンジニアばかりですから、これ
は実際に体験すると新鮮な驚きでした。
　もちろんリアルタイムに会話をしたい場合に
は、IRCや電話会議などを使うこともあります。
それでも製品開発の議論が、公開のメーリング
リストを中心に行われているのは、他の企業と
違う大きな特徴だと思いました。

Upstream First

　レッドハットの製品開発は「Upstream First」
という考え方に沿って行われています（図1）。
メーリングリスト文化とも重なりますが、新機
能の開発、バグ修正などを含めたすべての開発
業務を、「Upstream」つまり商品の元となるオー
プンソースプロジェクトで行うという意味です。
　社内で開発したライブラリなどをオープンソー
スとして出すことはあっても、コードの変更は
まず社内版で行ってから後でまとめてリリース
したり、新機能の議論は社内で行われているこ
とが、よくあるのではないでしょうか。また、

恵比寿通信
レッドハット

岩尾 はるか
IWAO Haruka

レッドハット （株）グローバルサービス本部
プラットフォームソリューション統括部
ストレージソリューションアーキテクト

Upstream First！

第 回24

162 - Software Design

社内版だけに存在するバグ修正がオープンソー
ス版に取り込まれず、公開しているバージョン
と使っている版に差があったりすることもある
かもしれません。
　レッドハットでは「Upstream First」の考え方
を徹底し、原則オープンソース版に取り込まれ
ないコードは製品にも取り込まない、というポ
リシーを貫いています。また、自社製品で見つ
かったバグは必ずオープンソース版に取り込ん
でいます。こうすることで、オープンソース版
と製品版の差を縮め、機動的な開発を可能にし
ています。
　この「Upstream First」には違った側面もあり、
それは「製品が売れることも大事だけど、オープ
ンソース版が広く利用され、コミュニティとし
て活発で健全であることも同じぐらい大事」と
思っている社員が多いことです。そのため、
LinuxConをはじめとするオープンソースプロ
ジェクトの会議で発表する開発者が多くいます
し、コミュニティのメーリングリストに投稿し
てきた質問に対してボランティアとして答える
こともあります（無保証です。サポートが必要な
場合は製品版をご利用ください）。日本国内でも
勉強会で発表したり、オープンソース版を元に
した書籍を書いたりしている社員がいます。
　私自身、製品を売る立場としては、オープン
ソース版にはない付加価値をどんどん提供して
いかなければならないので、苦しいこともある
反面、コミュニティから学べることも多く、非

常に良い刺激になっています。個人的にも、ど
んどんコミュニティ活動をしていきたいと思っ
ています。

英語

　外資系企業に勤めるのは初めてなので、仕事
でどの程度英語を使うのかなあと、入社前は少
し心配していました。ふたを開けてみると、恵
比寿オフィスで働いている人は日本語が話せる
人がほとんどで、オフィスでの会話はほとんど
日本語でした。一方で、upstreamのコミュニ
ティや、アメリカのエンジニアとやりとりする
機会が毎日のようにあり、そちらでは英語を使っ
ています。これは日系企業であってもソフトウェ
アエンジニアであれば、あまり変わらないかな
と思います。人や部署によっては上司が外国の
オフィスで働いている場合があり、その場合は
上司との会話はすべて英語になるので、私の部
署よりも英語を使う機会が多いです。

まとめ

　入社する前から「Upstream First」やオープン
ソースコミュニティへの投資をしている会社だ
という印象はありましたが、入ってみてきちん
と実践しているなと思いました。私もオープン
ソースと、ストレージの世界を盛り上げていく
べく、精一杯がんばります。ﾟ

Upstream
例: Fedora, GlusterFS

新機能の開発、
バグ修正

バグ修正QA
パッケージング

サポート

開発者

商品
例: Red Hat Enterprise Linux,

Red Hat Storage

 ▼図1　「Upstream First」

恵比寿通信レッドハット 第 回24
Upstream First！

162 - Software Design Sep. 2014 - 163

164 - Software Design

Ubuntu Monthly Report

　7月下旬にLibreOffice（LibO）の最新版である4.3

の最初のリリースが行われる予定です注1。4.3は4.2

とは異なってCalcのコアを差し替えるといった大胆
な変更はありませんが、確実に使い勝手は向上して
います。今回はとくにこれまでの仕様と異なる部分
を重点的にピックアップしてみました。

段落あたりの文字数の増加

　LibOとその前身であるOpenOffice.org（OOo）に
は、1段落あたり65,535文字までという制限がありま
した。この数字を見たらピンとくると思うのですが、
16bitという制限があったということです。4.3では、
これが32bit（約21億文字）まで拡大されました。OOo

のバグ報告注2を見ると、最初に報告があったのは
2003年7月21日と、修正に約11年かかったことに
なります注3。現実的には1段落に6万文字も書くこと
はほとんどないと思いますが、内部的な仕様を突破
注1） いつもであればほぼ正確な日時が書けるのですが、今回は大

人の事情で不可能でした。しかし、いずれにせよ本誌が店頭
に並ぶころにはリリースされているはずです。

注2） 現在は事実上の後継プロジェクトであるApache OpenOffice
（AOO）のバグ報告ですが。

注3） ちなみにAOOでは修正されていません。

はじめに

Writer

するには、別プロジェクトになって数年の時間が必
要であったというところが興味深いです。

ナビゲーションボタンの移動

　4.2まではスクロールバーの下端にナビゲーション
ボタンがありました。しかし、これを使ったことが
ある人はほとんどいないでしょう。移動先は検索
バーですが、サイドバーにも表示されるのでやはり
あまり使われることはないように思います。それよ
りもスクロールバーのスペースが広くなり、利便性
が向上したと言っていいでしょう。

文字の拡大／縮小の制限撤廃

　拡大／縮小したい文字を選択してl+]キー
（拡大の場合）／l+[キー（縮小の場合）を押す
か、サイドバーを表示してプロパティパネルを表示
し、文字の拡大／縮小ボタンを押すと、4.2までは96

ポイントまでプルダウンメニューと同じ間隔で文字
の拡大／縮小が可能でした注4。しかし、4.3からは2ポ
イント単位での拡大縮小が可能になり、また96ポイ
ントまでという制限も撤廃されました。

コメントの入れ子をインポート／
エクスポート可能に

　これは表題のとおりですが、ODFや各種Word用

注4） リリースノートでは72ポイントまでになっていますが、どう
確認しても96ポイントまでは拡大できました。

　今回は恒例となったLibreOfficeの最新版である4.3の新機能や仕様の変更点をまとめます。

LibreOffice 4.3の
新機能

Ubuntu Monthly Report第53回

Ubuntu Japanese Team
あわしろいくや　ikuya@fruitsbasket.info

164 - Software Design Sep. 2014 - 165

LibreOffice 4.3の新機能 第 53 回

のフォーマットでコメントの入れ子がインポート／
エクスポートできるようになりました。もともと
Apache OpenOffice 4.1での機能だったのですが、
LibOにも取り込まれました。

画像の拡大／縮小の仕様変更

　4.2までは画像の拡大縮小が自由にできていまし
たが、やはりこれは不便で、縦横の比率は固定で
あったほうがうれしく、サイズ変更する場合は

`キーを押しながらしていたと思います。4.3で
はこの挙動が逆になり、普通にサイズを変更すると
縦横の比率が固定され、`キーを押しながらだ
と自由に変更するようになりました。

テキスト枠で相対サイズの指定が
ページ全体に関しても可能に

　これはスクリーンショットを見ていただくほうが
早いですが（図1）、これまでも［挿入］-［枠］のテキス
ト枠では相対サイズの指定は可能でしたが、何に対
する比率なのかがわかりくかったです。4.3からは、
上下左右の余白を含むかどうかを選択できるように
なりました。［段落範囲］は余白を含まず、［ページ全
体］は含みます。すなわち、同じ比率でも［段落範
囲］にするとテキスト枠は小さくなり、［ページ全体］
にすると大きくなる、ということです。

テキスト枠の内容の
配置位置を指定

　テキスト枠内の文章を上（デフォルト）、中央、下
に配置できるようになりました。上と中央は使いど
ころがありますが、下はどんなときに使ったらいい
のか直感的には思いつきません。しかし、いずれに
せよテキスト枠の用途が広まったように思います。

コメントを余白に印刷

　これまでもコメントを印刷する方法はいくつかあ
りましたが、すぐ横の余白に印刷することはできま
せんでした。しかし、4.3ではこれができるようにな
りました。方法は印刷タブで［マージン内の位置］を
選択するだけです（図2）。［ツール］-［オプション］-

［LibreOffice Writer］-［印刷］の［コメント］で既定値
を変更することもできます。

コメントの書式が設定可能に

　これまでコメントの書式を一括で変更する方法は
ありませんでしたが、コメントの削除と同じ方法注5

で一括変更が可能になりました。

ステータスバーに選択している
列と行の数を表示

　ステータスバーに選択している列と行の数を表示

注5） コメントの枠内の右下にある▼ボタンをクリックするとサブ
メニューを表示します。

Calc

図1　相対サイズの基準を選択できるようになった

図2　 左下の［コメント］を［マージン内の位置］にすると、コ
メントを余白に印刷できる

166 - Software Design

Ubuntu Monthly Report

するようになりました。

アクティブセルの1つ上の内容を
アクティブセルにコピーする機能の追加

　Excelをお使いの方はl＋`＋'（シン
グルクォーテーション）の機能、というとわかりやす
いかもしれませんが、アクティブなセルの1つ上の
セルにある内容をアクティブなセルにコピーします。
複数にコピーしたい場合はオートフィルが便利かも
しれませんが、1つの場合はこの機能を使うのが便利
でしょう。
　ただしCalcのデフォルトではl＋'キーに割
り当てられており、手元のUbuntuでは機能しません

でした。ですので、まずはこのキーバインドを
Excelと同じくl＋`＋'キーに割り当て
ましょう。
　［ツール］-［カスタマイズ］-［キーボード］タブを表
示し、［分類］を［編集］に、［機能］を［Fill Single Edit］
にし、［ショートカットキー］の［Ctrl+Space+'］を選
択した状態で［変更］をクリックすると［Ctrl+

Space+'］が追加されます（図3）。［Fill Single Edit］
は未訳ですので今後訳されるかもしれませんが、そ
の場合は［Ctrl+'］に割り当てられた機能を見て、ど
のように訳されたのか確認してください。
　あとはコピーしたい内容のあるセルの下をアク
ティブなセルにし、l＋ÿ＋'を押すと
その内容がコピーされた状態で編集ができます。こ
れは知っているのと知らないとでは完全に作業効率
が変わるほどの便利な機能だと思います。

テキストを数値に変換する
場合のルールを選択可能に

　やや難解ですが、［ツール］-［オプション］-
［LibreOffice Calc］-［数式］-［ユーザー定義］-［詳細］
に［文字から数値への変換］という項目が追加されま
した（図4）。セルの中で「"」（ダブルクォーテーショ
ン）でくくられている場合、数字であっても文字とし
て扱われますが、これを数字として扱い、計算でき
るようにするためのオプションです。
　［#VALUE!エラーを出力］は、そのような計算は
エラーを返します。すなわち、［1+"1"］はエラーにな
ります。［0として扱う］は、文字部分を0にします。

すなわち［1+"1"］は1になります。［一義
的な場合のみ変換］は、［1+"1"］は2にな
りますが［1+"1.000"］はエラーになりま
す。なぜかというと、ロケールによっ
ては千の単位での区切りに「,」ではなく
「.」を使う場合もあるからです。［ロケー
ルに依存して変換］は、千の単位の区切
りが「.」の場合は［1+"1.000"］を1.001に、
日本を含むそうでない場合は2になりま
す。

図3　 ［Fill Single Edit］をl+`+'に割り当て
ます

図4　［文字から数値への変換］のルールを4つから選択します

166 - Software Design Sep. 2014 - 167

LibreOffice 4.3の新機能 第 53 回

追加された関数

　4.3でもたくさんの関数が追加されました。表1に
まとめましたのでご覧ください。なお、対応する
Excelのバージョンはすべて2010です。

ページ総数のカウント方法の変更

　［挿入］-［フィールド］-［ページ総数］でページ総数
を挿入できますが、4.2までは非表示スライドもカウ
ントしていました。すなわち、スライドのページ数
が3枚で1枚非表示の場合、［3］が挿入されていまし
た。しかし、4.3からは［2］が挿入されるようになり、
実態に即したページ数となりました。

スライドをウィンドウにフィット

　ステータスバーのズームを変更するスライダーの
左側に［+］に似たアイコンのボタンが追加されまし
た。これをクリックするとスライドをウィンドウに
フィットできます。表示倍率の数字を右クリックし
て［ページ全体］をクリックしてもできましたが、ワ
ンクリックでできるようになったのは便利です。

選択していないスライドをわかりやすく

　たとえば3枚のスライドがあり、これを全部選択
して真ん中だけ選択解除するには、lキーを押し
ながらクリックします。これが4.2ではマウスを動か
さないと選択解除したかどうかがよくわかりません
でした。しかし、4.3では即座に色が変わるので選択

Draw/Impress

解除がはっきりとわかるようになりました。

Drawでプロパティパネルの削除

　Drawでサイドバーを有効にし、プロパティパネ
ルを開くと4.2ではシェイプの挿入ができていまし
た。しかし4.3ではこの機能が削除されました。「プ
ロパティパネルは現在のプロパティを変更するため
にあるので、新たにシェイプを追加するのは役割と
して違う」ということになったようですが、あったら
あったで便利だったのでちょっと不便になったよう
な気はします。

3Dモデルの追加

　Impressのみ注6であり、アーキテクチャもLinuxと
Windowsのみという制限はありますが、［挿入］-［オブ
ジェクト］-［3Dモデル］が追加されました。JSON（GL

Transmission Format）とDAE（COLLADA）とKMZ

（Keyhole Markup language Zipped）形式の3Dモデル
を挿入できます。サンプルファイル注7で試してみたと
ころ、オブジェクトを選択し、編集状態だと再生ボタ
ン注8を押した状態で、スライドショー実行時はとくに
何もしないで、3Dモデルのwキーを押すと拡大、s

キーを押すと縮小、aキーを押すと右に移動、dキー
を押すと左に移動、mキーを押したあとマウスをク
リックしたまま移動すると3Dモデルを回転すること
ができます。ただ、筆者が試した限りではお世辞に
も安定しているとは言えず、何度も強制終了してしま

注6） Drawでは非対応という意味です。
注7） https://wiki.documentfoundation.org/images/e/e1/Duck_

gltf_model.odp

注8） 動画ファイルとして読み込まれているのか、再生ボタンや停
止ボタンが表示されています。

関数 ジャンル
GAMMA.DIST, GAMMA.INV, GAMMALN.PRECISE 統計
LOGNORM.DIST, LOGNORM.INV, NORM.DIST, NORM.INV, NORM.S.DIST, NORM.S.INV 統計
T.DIST, T.DIST.2T, T.DIST.RT, T.INV, T.INV.2T, T.TEST 統計
PERCENTILE.EXC, PERCENTILE.INC, PERCENTRANK.EXC, PERCENTRANK.INC, QUARTILE.EXC,
QUARTILE.INC, RANK.EQ, RANK.AVG

統計

MODE.SNGL, MODE.MULT, NEGBINOM.DIST, Z.TEST 統計
FLOOR.PRECISE, CEILING.PRECISE, ISO.CEILING 数学
NETWORKDAYS.INTL, WORKDAY.INTL 日付と時刻
ERF.PRECISE, ERFC.PRECISE 統計

表1　4.3で追加された関数

https://wiki.documentfoundation.org/images/e/e1/Duck_glth_mode.odp

168 - Software Design

Ubuntu Monthly Report

いました。正直なところどういうときに役に立つのか
はよくわかりませんが、今後のバージョンアップによ
る機能追加に期待したいところです。

　その他の追加された機能は次のものです。

・	 FAX送信の方法が変更になりました。そしてプリンタ
設定ツールであるspadminがなくなりました

・	 OOXMLサポートが改善しました
・	 PDFインポートが改善しました
・	色の選択がやりやすくなりました
・	スタートセンターが改善しました
・	 HiDPIサポートを開始しました

　いくつか補足します。まず、FAXは印刷と同じよ
うな方法で送信できるようになりました。しかし、
これには［fax4CUPS］というパッケージが必要なの
ですが、Ubuntuのリポジトリにはありません。HiDPI

サポートは、今のところなんの苦労もなく動作する
のはWindows 8.1とGNOMEのみで、Unityでも問題
があるようです。

　ユーザインターフェースの翻訳対象語は99,951語
（4.3.0）であり、4.2の97,426語よりもだいぶ増えまし
た。しかし、翻訳率は99％であり、未訳語を目にす
る機会はあまりないレベルになりました。とはいえ、
品質を考えると多くの人の「目」と「手」が足りない状
態であるのはまったく変わらないので、興味がある
方はLibreOfficeの日本語メーリングリスト注9に投稿
していただけると幸いです。

　LibOはどのバージョンが安定版なのか極めてわ
かりにくいという問題がありました。何を以って「安

注9） http://ja.libreoffice.org/get-help/mailing-lists/ discuss@で
もusers@でもどちらでもけっこうです。

その他

翻訳状況

「安定版」の意義の変化

定版」とするかですが、LibOの母体であるThe

Document Foundation（TDF）では伝統的に企業での
大量導入に勧められるかどうかで安定版か否かを区
別していました。具体的には4.1だと4.1.3以降を安
定版としています。これはTDFのリリースアナウン
スを見ないとわかりませんでした。しかし、4.2の途
中からは4.1を安定版、4.2を最新版注10としました。
大規模導入は4.2.5からお勧めとなり、安定版と大量
導入できるかどうかを切り離すことにしたようです。
　ただし気を付けなくてはいけないのは、4.1は5月
28日でサポートが切れています。それじゃあ大量導
入なんてできないじゃないかというツッコミはその
とおりで、「そのような場合にはTDFはL3サポート
を提供している企業とサポート契約を結んでくださ
い」という立場をとっています。L3サポートとは、簡
単に言えば使い方とかだけではなくソースコードレ
ベルでのサポートのことです。大量導入したいけど
サポート契約は結びたくないという場合は、X.Y.5か
6を半年ごとに更新していけばいいということにな
ります。もっとも、Ubuntuの場合はそのリリースに
含まれているものを継続使用しないといけないこと
になりますので、安定版云々は関係ありません。当
然のことではあるのですが、具体的にはUbuntu

12.04では3.5、14.04では4.2です。3.5は公式には
2012年11月にサポートが切れていますが、12.04で
は2017年4月までは継続されます。

　実のところ最新のLibOを試すには、Ubuntuではな
くXubuntuやLubuntuと行ったUbuntuフレーバーを
インストールし、そこにダウンロード注11したオフィ
シャルビルドをインストールするのが簡単です。
UbuntuにインストールされているLibOをアップデー
トする場合は、PPA注12から行ってください。Ubuntu

14.10には4.3.2あたりが搭載されているでしょうか
ら、急がない場合はそれを待つのもいいでしょう。｢

注10） 原文は“Fresh”。
注11） http://ja.libreoffice.org/download/libreoffice-fresh/

注12） https://launchpad.net/~libreoffice

4.3を使うには

http://ja.libreoffice.org/get-help/mailing-lists/
http://ja.libreoffice.org/download/libreoffice-fresh/
https://launchpad.net/~libreoffice

Sep. 2014 - 169

　SFといえば未来。未来といえば予測。そして
予測といえば、『ファウンデーション』は外せま
せん。Mac OS Xや iOSでアプリを作るときに
必ず importするアレ？　いえいえ。日本では『銀
河帝国の興亡』として知られる、アイザック・ア
シモフの二大シリーズの1つのほうです。
　「ガスの分子は多すぎて、ひとつひとつ追跡は
できないけれども、統計的にまとめることでそ
の振る舞いを理解し予測できる。ならば人間ひ
とりひとりは予測できなくとも、人類全体なら
ば同様に理解し予測できないか？」̶ ̶ハリ・セ
ルダンはそう仮説し、そしてついにその仮説を
理論にすることに成功しました。これが、［心理
歴史学］（サイコヒストリー）。セルダンは理論
にとどまらず、その理論を彼の住む人類世界、
銀河帝国に適用してみました。その結果得られ
たのは、銀河帝国の崩壊は避けられず、そして
その混乱は一万年に及ぶというものでした。自
らの予言に戦慄しつつも、人類の将来を案じた
セルダンは、一万年の暗黒時代をわずか一千年
に縮める方法を見つけます。
　それが、原題ともなった［基盤］（ファウンデー
ション）。これまでの人類の叡智を、戦乱の及ば
ぬ辺境の星にまとめ、それを［銀河百科事典］（エ
ンサイクロペディア・ギャラクティカ）としてま
とめるのです……。ローマ人もびっくりのスケー
ルですね。ノーベル経済学賞を受賞したポール・

題字・イラスト／aico

『ファウンデーション──
銀河帝国興亡史〈1〉』
（アイザック・アシモフ／
早川書房）

クルーグマンは、心理歴史学者になりたくて経
済学を志したそうですが、このスケールがどれ
ほどの読者の心をわしづかみにしたのかは、一
読すればわかります。
　とはいうものの、20世紀の今読み返すと、経
年劣化も否めないのが正直なところでもありま
す。はるか未来の登場人物たちなのに、タバコ
ふかしまくってるわ、単位系がヤードポンド法
だわといったレトロさは愛嬌としても、「個はわ
からずとも全ならわかる」という着想そのものが
現実に追い抜かれている感もあります。今や流
体シミュレーションでは空気をガスではなく分
子の集まりとしてモデル化してますし、銀河百
科事典はWikipediaとして実現した感がありま
すし、ネットの巨人たちはビッグデータで個人
を追っています。「あなたの本の読者は、こんな
本も読んでいます」とAmazonに言われたらアシ
モフはどう反応したのか、見てみたかったなあ
……。
　このように「偉大なる失敗」としても読める同
作ですが、実はこのあとさらに大きな失敗が待っ
ています。次回はより大きなその失敗について
語ることにしましょう。｢

 第9回

170 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

　今月もひき続きLinux 3.15について解説して
いきます。Linux 3.15はコミット数が多かった
ため紹介する機能追加も多くなっています。今
回はファイルシステムに関連する2つの変更、
「fallocateシステムコール」の新たなフラグと
renameの新機能「cross rename」、そして「VMA

cache」について取り上げていきます。

fallocateシステム
コールの進化

　まずは「fallocateシステムコール」について解
説します。このシステムコールはもともと、そ
の名前のとおり「ファイルの指定した領域に対応
するディスク領域を確保する」ためのシステムコー
ルでした。すなわち、ファイルに書き込みを行
う前にディスク領域を確保しておくことで、確
保した区間への書き込みはファイルシステム上
の容量が足りないという理由で失敗することが
なくなります。また、事前に領域が確保される
ことで、連続した領域がディスク上でも連続し
て確保されやすくなり、パフォーマンスの改善
にもつながります。
　このfallocateが、ファイル領域に関する操作
をより効率に行うためのシステムコールとして
近年進化を続けています（図1）。たとえば、
Linux 2.6.38か ら は FALLOC_FL_PUNCH_

HOLEフラグを使った“punch holing”が実装さ
れました。これは元の fallocateとは逆に、ファ
イルのディスク上に割り当てられている領域に「パ
ンチ穴を開けて」ディスク上の領域を解放する
処理を行います。この「穴を開けられた」領域は、
アプリケーションには0が連続した領域に見え
ます。0で埋められた領域を解放することでディ
スクの節約につながります。

Linux 3.15の新機能
fallocate、cross rename、
VMA cache
Text：青田 直大　AOTA Naohiro

第30回第30回

 1 #include <unistd.h>
 2 #include <sys/types.h>
 3 #include <sys/stat.h>
 4 #include <fcntl.h>
 5 #include <stdio.h>
 6
 7 #define BUF_SIZE 4096
 8 static char buf[BUF_SIZE];
 9
 10 int main()
 11 {
 12 int i;
 13 int fd = open("file.img", O_RDWR);
 14 lseek(fd, 1024*1024*1024, SEEK_SET);
 15 for(i = 0; i < 512*1024; ++i) {
 16 int r = write(fd, buf, BUF_SIZE);
 17 if (r != BUF_SIZE) {
 18 perror("write");
 19 return 1;
 20 }
 21 }
 22 fsync(fd);
 23 close(fd);
 24 return 0;
 25 }

 ▼リスト1　hole-write.c

170 - Software Design Sep. 2014 - 171

Linux 3.15の新機能
fallocate、cross rename、VMA cache

第30回第30回

　Linux 3.14からはさらにFALLOC_FL_ZERO

_RANGEとして、指定した領域をI/Oなしに0

埋めする機能が追加されました。一見、punch

holingと似ていますがパンチホールではその領
域に相当する部分がディスク上から解放されて
しまうのに対して、zero rangeではディスク領
域が解放されないことが異なっています。
　そして、Linux 3.15ではFALLOC_FL_COLL

APSE_RANGEというフラグが追加されました。
このフラグを使うと、指定した領域が削除され、
さらにその領域よりも後ろの部分が削除された
分だけで前につめられます。
　それではfallocateを実際に使ってみましょう。
4GBのファイルを作成し、その中の中間の2GB

を0埋めするという作業をwriteと fallocateで
やってみましょう。writeを使うプログラムとし
てhole-write.c（リスト1）を、fallocateを使うプ
ログラムとしてhole-{punch,zero,collapse}.c（リ
スト2）を作成します。ここではhole-write.cと
hole-punch.cだけを示していますが、hole-

{zero,collapse}.cは hole-punch.c（リスト2）の12

行目の fallocateのフラグが表1に示したように

書き換わっているだけです。
　実行してみると、writeの場合に比べて
fallocateの場合が格段に速く効率が良いことを
確認できます（図2）。また、ファイルサイズに
注目するとcollapseの場合には、collapseが指
定範囲を抜き取る操作であることからファイル
サイズが2GBになっていることが確認できます。

 ▼図1　fallocateの進化

File File

Disk
File

fallocateする fallocateする

デフォルトのfallocate zero range

0埋めされた領域 File

Disk

0に見える

ディスク割り当ては
そのまま

File

Disk

fallocateする領域1 領域2File

Disk

fallocateする

File

Disk

領域2領域1 領域2

punch hole

File

Disk

0に見える

ディスク割り当てが
消える

collapse

 1 #define _GNU_SOURCE
 2 #include <unistd.h>
 3 #include <sys/types.h>
 4 #include <sys/stat.h>
 5 #include <fcntl.h>
 6 #include <stdio.h>
 7 #include <linux/falloc.h>
 8
 9 int main()
 10 {
 11 int fd = open("file.img", O_RDWR);
 12 int r = fallocate(fd, FALLOC_FL_ｭ
PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
 13 1024*1024*1024, (off_t)ｭ
2*1024*1024*1024);
 14 if(r<0)
 15 perror("fallocate");
 16 fsync(fd);
 17 close(fd);
 18 return 0;
 19 }

 ▼リスト2　hole-punch.c

172 - Software Design

Linuxカーネル観光ガイド

名を変更するシステムコールです。mvコマンド
を使ったことがあれば、すぐにわかるように、
もしも変更先に指定した名前と同じファイルが
存在していた場合、そのファイルはアトミックに
変更元のファイルに置き換えられます。
　これに対して、今回追加された「cross

rename」はアトミックに変更元と変更先のファ
イル名を入れかえます。この機能を使うことで
たとえば、随時openされて書き込みがあるよう
なログファイルと空ファイルを入れ替えて、アー
カイブを作るといったようなことができるよう
になります。そのほかにも、実はこの機能は
overlayfsでさまざまな操作をアトミックに行え
るように活用することが予定されています。
　overlayfsとは2つの任意のディレクトリツリー

を「上下に重ねて」新しいファイル
システムツリーを見せることがで
きるファイルシステムです（図3）。
2つのディレクトリツリーに同じ
名前のファイルがあれば上のツリー
のファイルが見え、下のファイル
は隠蔽されます。また、上下に同
じ名前のディレクトリがある場合
はそのディレクトリは上のディレ
クトリのファイルも下のディレク
トリのファイルも持っているよう
に見えます。たとえば、これを
LiveCDの読み込み専用のルート
ディレクトリを下に、USBメモリ
上の書き込み可能なファイルシス
テム上のディレクトリを上に重ね
れば、LiveCDにもともとあるファ
イルを使いつつ書き込みはUSB

メモリ上に行われ、通常であれば

同様にディスク上のサイズはpunchとcollapse

の場合に元より減って2.1GBになっていること
がわかります。最後にsha1sumの結果を見てみ
ましょう。write、punch、zero rangeの場合は
どれも読み込み側からは指定した範囲が0で埋
められているように見えてsha1sumの結果が一
致しています。一方でcollapseではファイルの
内容がほかのものとは変わっていて、sha1sum

の結果も異なっています。

cross rename
　次にLinux 3.15から追加された、renameの
拡張である「cross rename」を解説します。rename

はすなわちmvコマンドで使われているファイル

方法 時間
（秒）

ファイル
サイズ

ディスク上の
サイズ fallocateのフラグ

write 32.320 4.0GB 4.1GB -
punch 0.405 4.0GB 2.1GB FALLOC_FL_PUNCH_HOLE,FALLOC_FL_KEEP_SIZE
zero range 0.411 4.0GB 4.1GB FALLOC_FL_ZERO_RANGE,FALLOC_FL_KEEP_SIZE
collapse 0.603 2.0GB 2.1GB FALLOC_FL_COLLAPSE_RANGE

 ▼表1　実行結果のまとめ

$ dd if=/dev/urandom of=file.img bs=4096 count=1048576
$ cp file.img file.img.bak

$ cp file.img.bak file.img
$ time ./hole-write; sha1sum file.img; ls -lhs file.img
./hole-write 0.02s user 1.22s system 3% cpu 32.320 total
ab94270ef0c71e4e20e5eeda884879fa28d255cb file.img
4.1G -rw------- 1 naota naota 4.0G Jul 15 14:22 file.img

$ cp file.img.bak file.img
$ time ./hole-punch; sha1sum file.img; ls -lhs file.img
./hole-punch 0.00s user 0.39s system 95% cpu 0.405 total
ab94270ef0c71e4e20e5eeda884879fa28d255cb file.img
2.1G -rw------- 1 naota naota 4.0G Jul 15 14:25 file.img

$ cp file.img.bak file.img
$ time ./hole-zero; sha1sum file.img; ls -lhs file.img
./hole-zero 0.00s user 0.39s system 93% cpu 0.411 total
ab94270ef0c71e4e20e5eeda884879fa28d255cb file.img
4.1G -rw------- 1 naota naota 4.0G Jul 15 14:29 file.img

$ cp file.img.bak file.img
$ time ./hole-collapse; sha1sum file.img; ls -lhs file.img
./hole-collapse 0.00s user 0.57s system 95% cpu 0.603 total
1270b3a98e83a1ba84c464b0624d73348d681498 file.img
sha1sum file.img 9.21s user 0.61s system 49% cpu 19.993 total
2.1G -rw------- 1 naota naota 2.0G Jul 15 14:33 file.img

 ▼図2　fallocateのテスト実行結果

172 - Software Design Sep. 2014 - 173

Linux 3.15の新機能
fallocate、cross rename、VMA cache

第30回第30回

読み込み専用のLiveCD上のシステムをあたか
も書き込みもできるシステムのように使うこと
ができるようになります。
　overlayfsで問題になるのは下のディレクトリ
ツリーのファイル削除です。下のほうには書き
込みができないので、上のディレクトリツリー
に「削除した」という意味のファイルやディレク
トリを作らなければいけません。たとえば、ファ
イルを削除するには、major/minor=0/0である
キャラクタデバイスファイル（whiteoutと呼ばれ
ます）を同名で上のツリーに作成し、ディレクト
リを削除するにはxattr（拡張ファイル属性）の
“trusted.overlay.opaque”を“y”に設定したディ
レクトリ（opaqueディレクトリと呼ばれます）を
作成します。上のツリーでwhiteoutやopaque

ディレクトリを見つけると、overlayfsは下のツ
リーの同名のファイルやディレクトリを無視し、
whiteoutや opaqueファイル自体も無視して
overlayfsのユーザに見えないようにします。
　このように削除をwhiteoutやopaqueディレク
トリによって実現するために、本来であればア
トミックに実現できていた操作がoverlayfsでは
アトミックではなくなる（そのために特殊な処理
を上のツリーのファイルシステムに導入する必
要がある）という問題がありました。具体的に下
のツリーに存在するfooというファイルを削除し、
同名のディレクトリを作成するという2つの操
作を連続して行う場合を考えてみましょう。一
般のファイルシステムであれば、

・	fooの削除 → unlink foo
・	ディレクトリfooの作成 → mkdir foo

という操作が行われ、unlinkの前には「fooとい
うファイルが存在する状態」であり、unlinkのあ
とからmkdirの前までは「fooというファイルも
ディレクトリも存在しない状態」であり、mkdir

のあとは「fooというディレクトリが存在する状
態」というように推移します。一方で、cross

renameがない場合のoverlayfsの動きについて
考えてみましょう。workdirはoverlayfsによっ
て使われる作業ディレクトリで、読み込み時に
はoverlayfsによって見えなくされる特殊なディ
レクトリとします。そうするとoverlayfsでは次
のような操作が必要になります。

・	fooの削除
　whiteout foo（fooという名のwhiteoutを作成）
・ディレクトリfooの作成
　rename foo workdir/foo.X（fooというwhiteo	

utを作業ディレクトリの中にどかす）

　mkdir foo
　unlink workdir/foo.X

　ひとつひとつ fooの状態について考えてみま
しょう。whiteoutの前までは「fooというファイ
ルが存在する状態」です。whiteoutから“rename

foo workdir/foo.X”までは「fooというファイル
もディレクトリも存在しない状態」です。その後
“mkdir foo”までの期間にもう一度「fooという

 ▼図3　overlayfs

D-1

CBA

overlayfs

D

D-2 D-3 D-4 D-1

CA
D F

D-2

D-3

CB
D

D-4 F-1

E

E

F

F-2

whiteout

（opaque）

上のツリー

下のツリー

Cは上の
ツリーのデータ

E、Fはwhiteout、
opaqueによって隠される

174 - Software Design

Linuxカーネル観光ガイド

ファイルが存在する状態」が起きます。そして、
“mkdir foo”が終われば「fooというディレクトリ
が存在する状態」となります。このようにcross

renameがなく特殊な操作を使わないと、“fooの
削除”を行ったあとに、再び fooが存在する瞬間
ができてしまいます。ここでもしcross rename

を使うことができれば、ディレクトリfooの作
成を次のように行うことができます。

・	mkdir workdir/foo（作業ディレクトリの中に
fooを作成）

・	cross-rename workdir/foo foo
・	unlink workdir/foo

　こうするとcroos-renameの前までは「fooとい
うファイルもディレクトリも存在しない状態」で
あり、cross-renameのあとには「fooというディ
レクトリが存在する状態」となり、一般のファイ
ルシステムでの状態遷移との一貫性をとること
ができるようになります（図4）。

　このほかにも、上のツリーに存在するディレ
クトリを削除し、下のツリーのファイルを見せ
ないために、ディレクトリを削除すると同時に
whiteoutを作成しなければいけない場合や、下
のツリーに存在するファイルと同名の上のツリー
のファイルをリネームする場合（上のツリーで元
ファイルをwhiteoutしなければいけない）に、こ
のcross renameを用いることで、これまではア
トミックに行うことができなかったこれらの操
作をアトミックに行うことができます。

VMA cacheの改善
　次に紹介するのはVMAキャッシュの改善です。
各プロセスはそれぞれに固有の仮想アドレス空
間を持っています。この仮想アドレスの、どの
領域がどのようにファイルやスタックに割り当
てられているかは“cat /proc/<PID>/maps”する
とみることができます。プロセスが自分の仮想

アドレス空間にアクセスすると、ア
クセスしたアドレスにちゃんと物理
メモリが割り当てられていればプロ
セスは何ごともなくそのアドレスに
アクセスすることになります。
　しかし、物理メモリの割り当ては
システムの状態によって、swapされ
たりキャッシュから落とされたりと
変わっていくので、アクセスしてみ
ても物理メモリが割り当てられてい
ない場合（ページフォルト）もあります。
そういうときには、カーネルが物理
メモリの割り当ての作業を行わなけ
ればいけません。
　では、どこからそのアドレスにあ
るべきデータを読み込むのか、ある
いはそもそもそのアドレスは有効な
のかといった情報を管理するため

に、カーネルはVMA（virtual memory

area）を管理しています。VMAには
仮想アドレス空間のどこからどこが

 ▼図4　cross renameの有無による動作

ディレクトリの作成

ファイルを削除
（whiteoutの作成）

cross renameがあるとき
ディレクトリを作っておいて

cross renameがないとき
一度whiteoutをどかして

入れかえる

whiteout

whiteout whiteout whiteout

whiteout whiteoutwhiteout

一度消えた
ファイルが

見えてしまう

174 - Software Design Sep. 2014 - 175

Linux 3.15の新機能
fallocate、cross rename、VMA cache

第30回第30回

どのようなアクセス権限で割り当てられている
のか、どのファイルのどこかから割り当てられ
ているのかといった情報が含まれています（図5）。
　さて、このようにカーネルはページフォルト
のたびに、そのアドレスを管理するVMAの情
報を取得しなければいけません。この作業を効
率的に行うために、VMAを赤黒木注1で管理し、
また最後にアクセスしたVMAの情報をキャッ
シュしておくという方法を使い赤黒木の探索の
手間さえも省略しようとしていました。
　Linux 3.15ではこのVMAのキャッシュ方法
が改善されています。具体的にはスレッドごと
に最大4つのVMAをキャッシュすることにしま
した。まず、当たり前ですがキャッシュ数を増
やしたことでキャッシュのヒット率が改善され
ます。さらに、プロセスごとのキャッシュをスレッ
ドごとにしたことで同じアドレス空間を共有す
るものの、別々のアドレスに動作することが多
いマルチスレッドアプリケーションでのキャッ
シュヒットが改善されています。たとえばパッ
チのメール注2によれば、システムの起動時の
キャッシュヒット率が50％から73％に改善され、
必要なCPUサイクル数も199憶サイクルから

注1） 2色木（red-black tree）。マップ（連想配列）の実装の1つ。
注2） http: / / thread.gmane.org/gmane. l inux.kernel .

mm/114050

136憶サイクルに減少しているということが言
われています。

Eudyptula
Challenge

　最後にEudyptula Challenge注3について紹介
します。これはLinux カーネルのプログラミン
グについて、カーネルモジュールのHello

WorldからLinuxカーネルのメインツリーに
patchを受け入れてもらうレベルまで学ぶこと
ができるインターネット上のコースです。このコー
スでの学習はすべてE-mailを使って行われます。
Webサイトに記載してあるメールアドレスに参
加したい旨を送ると、最初の問題とどのように
このコースが行われるかのメールが返信されて
きます。そして問題を解いて、また次の問題が
送られてくる……という過程がすべてE-mailを
通じて行われます。E-mailを使うのはLinuxカー
ネルの開発も、すべてがE-mailを使って行われ
るからだそうです。LinuxカーネルHackを始め
てみたいけれど、何をどうしたらいいのかわか
らないという方はこのEudyptula Challengeか
ら始めてみてはいかがでしょうか。｢

注3） http://eudyptula-challenge.org/

$ cat /proc/self/maps
00400000-0040b000 r-xp 00000000 00:10 5926 /bin/cat
0060b000-0060c000 r--p 0000b000 00:10 5926 /bin/cat
0060c000-0060d000 rw-p 0000c000 00:10 5926 /bin/cat
0222c000-0224d000 rw-p 00000000 00:00 0 [heap]
7fbf67651000-7fbf6db7c000 r--p 00000000 00:10 498149 /usr/lib64/locale/
locale-archive
7fbf6db7c000-7fbf6dd19000 r-xp 00000000 00:10 498065 /lib64/libc-2.19.so
7fbf6dd19000-7fbf6df18000 ---p 0019d000 00:10 498065 /lib64/libc-2.19.so
7fbf6df18000-7fbf6df1c000 r--p 0019c000 00:10 498065 /lib64/libc-2.19.so
7fbf6df1c000-7fbf6df1e000 rw-p 001a0000 00:10 498065 /lib64/libc-2.19.so
7fbf6df1e000-7fbf6df22000 rw-p 00000000 00:00 0
7fbf6df22000-7fbf6df43000 r-xp 00000000 00:10 498073 /lib64/ld-2.19.so
7fbf6e128000-7fbf6e12b000 rw-p 00000000 00:00 0
7fbf6e141000-7fbf6e142000 rw-p 00000000 00:00 0
7fbf6e142000-7fbf6e143000 r--p 00020000 00:10 498073 /lib64/ld-2.19.so
7fbf6e143000-7fbf6e144000 rw-p 00021000 00:10 498073 /lib64/ld-2.19.so
7fbf6e144000-7fbf6e145000 rw-p 00000000 00:00 0
7fffa884f000-7fffa8870000 rw-p 00000000 00:00 0 [stack]
7fffa89fe000-7fffa8a00000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

 ▼図5　VMAの割り当て

http://thread.gmane.org/gmane.linux.kernel.mm/114050
http://eudyptula-challenge.org/

176 - Software Design

　勉強会の前半は座学です。「ソフトウェアツール
とAWK・sedについて」という表題でUNIXの歴史、
テキストを操作するコマンド、AWK、sedについて
の説明がありました。理解が深まったところで4問
の問題を解くことになりました。

お題の例

問題1：次のechoの出力にパイプをつなげて、カン

マで区切られた数を足し算してください。

 $echo -12,135,123,135,123

　読者のみなさんはこのお題、どのように取り組ま
れるでしょうか。回答例として、まずカンマをsed

の正規表現か trで取り除く。その次にawkで加算、
または＋を正規表現で挿入し結果をbcに渡す、な
どの方法がありました。
　後半は初学者と上級者がペアとなって実践問題に
取り組みました。提示された問題は次のとおり。

問題5：CSVに保存されている数字の加算（桁がカ

ンマで区切られダブルクォーテーションで

くくってある数字の文字列あり）

問題6：3次正方行列の転置

問題7：IPv6のアドレスから省略した0を復元

問題8：問題7の応用

　シェル芸勉強会の特徴は、誰もが手を動かして参
加することにあります。後半の問題は初学者には難
しいですが、ペアとなった上級者の取り組みを横で
見たり、語句の説明を受けたりするうちに慣れ親し

　以前に比べるとITコミュニティが主催するイベ
ントが激増し、開催日が重なることも珍しくなくな
りました。しかし、jusはなぜか団体内でも行事が重
なってしまうことがあります。今回は6月14日に
行った2つのイベントを報告します。

	 ■jus＆USP友の会共催

	 	 シェルワンライナー勉強会@関西

	【講師】上田 隆一（USP友の会／産業技術大学院大学）

	【司会】榎 真治（日本UNIXユーザ会）、

	 	 齊藤 明紀（日本UNIXユーザ会）

	【日時】2014年6月14日（土）13:30〜18:00

	【会場】ECCコンピュータ専門学校 1号館4階

　大阪で行った勉強会は、関西地区初開催のシェル
芸勉強会。参加者は学生から一般まで18人、会場
はほぼ満員となりました。
　シェル芸とは、UNIXシェル（おもにbash）のワン
ライナーを駆使して文字列加工を自由自在に操る技
です。シェル芸を磨くことで文字列の整形や数値の
集計、特定文字の抜き出しなど、データの加工がす
ばやく、大量に実行できるようになります。
　勉強会はまず講師の自己紹介から始まりました。
上田さんは日々、シェル芸の普及活動にあたられて
いますが、専門はロボット工学です。本業は産業技
術大学院大学で教鞭を取っていらっしゃいます。ま
た、民間企業のアドバザリーフェローでもあり、活
躍場所は多岐に渡っています。

2014年6月jus勉強会（大阪）

同日開催！ 大阪vs札幌！

NO.35
September 2014

日本UNIXユーザ会　http://www.jus.or.jp/
内山 千晶　UCHIYAMA Chiaki　chiaki@jus.or.jp
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/

Sep. 2014 - 177176 - Software Design

むようになります。上級者もほかの回答で新たな発
見を得られるようです。また、Twitter経由の回答
を見るのも醍醐味の1つ。遠隔からの達人たちのす
ばやい回答でも会場がにぎわいました。中にはピュ
アシェル芸と称してawk、sedを使わず解く回答もあ
り、どよめきが聞こえてくることも。上田さんの
ユーモア溢れる講評とともに終始笑いに包まれなが
ら、勉強会は盛況のうちに終わりました。

	 ■元IT技術者が田舎暮らしを始めたら

	 	 〜田舎のネットワーク事情と様々な工夫〜

	【講師】岡 善博

	【司会】法林 浩之（日本UNIXユーザ会）

	【日時】2014年6月14日（土）15:15〜16:00

	【会場】札幌市産業振興センター 技能訓練棟3階

　講師の岡さんは、以前は jus関西UNIX研究会な
どによく参加されていましたが、現在は北海道・十
勝地方の中

なかさつない

札内村にお住まいです。都会を離れた土
地におけるIT事情について話をしていただきまし
た。39人という多くの方の参加がありました。
　はじめは岡さんの経歴紹介です。まずPET 2001、
VIC-1001、PC-9801、PC386LSなどのコンピュー
タと出会い、次に職場（松下電器）のUNIXマシンに
アカウントをもらってインターネットと出会いまし
た。当時はNetNewsやメーリングリストがさかん
で、そこで世界が広がりました。fj.forsaleでSun

Microsystems社（以下、Sun）のワークステーション
が売りに出ていたので購入し、当時は商用インター
ネットがまだなかったのでJuiceに接続しました。
それからFreeBSDとの出会いも重要で、ノート
PCはWindowsとFreeBSDのデュアルブートにし、
自宅や職場のサーバでも利用しました。
　続いては北海道への移住の話です。もともと北海
道が好きで、定年後は移住したいと考えていたとこ
ろ、中札内で村営分譲宅地が売られていたのを気に
入り、購入して自宅を建てました。定年後に建てた

のでは遅いので、定年前に建て、定年までは大阪と
往復しながら生活しました。自宅にはISDN、LAN、
電話、電源などの口を備えたコンセントを導入。建
築当初はISDNでの接続でしたが、その後はADSL

を経て現在はBフレッツで接続しています。建築当
時は中札内には光ファイバーは来ないかもしれない
と思っていたそうですが、一応設備だけは用意して
おいたのが後年役に立ちました。
　中札内あたりのIT事情としては、市街地ではB

フレッツが使えますが、ADSLのままの人も多いと
のこと。理由として、局舎に近い場所ではある程度
の速度が出ることと、Bフレッツは集合住宅では安
いですが一戸建てでは高いというのがあります。ま
た、市街地から離れるとADSLは厳しく、ワイコ
ムのAir5Gという無線インターネットがよく使わ
れます。帯広市内では、固定回線を捨ててWiMAX

一本の人もいますが、中札内にはWiMAXは来てい
ません。道央の長沼町では自治体で補助金を得て街
全体に光ファイバーを敷設し、郊外は無線で接続で
きるようにするという取り組みを行っています。
　さらに自宅サーバの遍歴が紹介されました。最初
はSunやLunaなどワークステーションを使ってい
ましたが、その後はDigital HiNote UltraやLet's

noteなどのノートPCにFreeBSDをインストール
して運用しています。現在はGoogle Appsも併用し
ています。自分でnakasatsunai.jpドメインも運用
していて、DNSの設定なども見せていただきまし
た。最近は iPadを手に入れたのを契機に自宅サー
バをUTF-8化し、iPadでサーバにログインして
EmacsとMewでメールを読み書きしています。
　最後に、田舎暮らしの経験から得られたこととし
て、買い物は通販があるので困らない、ITの仕事は
ない、IT事情を考慮するなら田舎でも市街地に住む
ほうが良い、といったコメントで講演を締めくくり
ました。
　都会のIT事情を聴ける機会はあっても、田舎の
IT事情を聴ける機会はさほど多くありません。と
くに自宅を建てる際の考慮点は非常に参考になるも
のであり、貴重な研究会であったと思います。｢

jus研究会札幌大会

同日開催！ 大阪vs札幌！ September
2014

178 - Software Design

Race for Resilienceとは

　Race for Resilieneは「発展途上国×防災・減災」
をテーマにしたグローバルハッカソンです。実際に
NPOやNGO、世銀関連機関の発展途上国の防災・
減災活動に取り入れられるようなソフトウェア、
ハードウェアをつくりあげ、自然災害に対してしな
やかな社会をつくることを目指して開催されまし
た。世界銀行の主催でアジア数ヵ国およびハイチ、
ロンドンでのハッカソンの後、各国の優秀プロダク
トはグローバル審査に進み、6月30日にロンドンで
グローバルアワード表彰式が行われました。日本で
は2014年2月8日と9日に石巻、東京、名古屋の
3ヵ所でハッカソンが開催されました。

雪の中でのハッカソン

　ハッカソンが行われた2月8日と9日は、石巻と
東京の会場ではちょうど大雪に見舞われた日で、と
くに石巻では91年ぶりと言われるほど大量の積雪
があり、1日目の夜には写真1のようなかまくらを
作って、その中で開発ができるほどでした。東北と
はいえ太平洋側沿岸に位置する石巻では、これほど
の雪が降ることは滅多にないため交通機関もストッ
プし、東京から参加していたHack For Japanス
タッフの及川と高橋は1日延泊を余儀なくされると
いう状況でした。

グローバル審査

　グローバル審査に進むことになったプロジェクト

はハッカソン終了後も引き続き開発が続けられ、最
終提出期限が迫っていたことから4月末から5月に
かけてのゴールデンウィークも返上で各プロジェク
トのメンバーが頑張っていました。
　Hack For Japanの取り組みでもたびたび課題と
して挙がるのですが、ハッカソンでは1日、もしく
は2日間のイベント終了後はプロジェクトが継続さ
れないことも多いなか、今回は各会場で、国内、グ
ローバルという複数段階での審査が、ある程度の期
間をあけて設けられていたこともあって、複数のプ
ロジェクトで継続して開発が進められたことも特筆
できる点だと思います。
　グローバルアワードの最終発表と表彰式は、6月
30日にロンドンで行われた「Understanding Risk

Forum注1」の中で行われ、ファイナリストとして
残った10のプロジェクト注2の紹介もされました。
グランドプライズ注3には、インドネシアからの

Hack For Japan
エンジニアだからこそできる復興への一歩

Race for Resilienceハッカソン第33回
“東日本大震災に対し、自分たちの開発スキルを役立てたい”というエンジ
ニアの声をもとに発足された「Hack For Japan」。今回は「発展途上国×防
災・減災」をテーマにしたグローバルハッカソンの報告です。

●Hack For Japanスタッフ
　及川 卓也　OIKAWA Takuya
　 Twitter @takoratta
　関 治之　Hal Seki
　 Twitter @hal_sk
　高橋 憲一　TAKAHASHI Kenichi
　 Twitter @ken1_taka

注1	 https://www.understandrisk.org/UR2014
注2	 http://www.codeforresilience.org/blog/announcing-

code-resilience-finalists
注3	 http://www.worldbank.org/en/news/feature/2014/06/30/

innovative-apps-for-disaster-risk-reduction-win-
global-attention

◆◆写真1　かまくらの中で開発

https://www.understandrisk.org/UR2014
http://www.codeforresilience.org/blog/announcing-code-resilience-finalists
http://www.worldbank.org/en/news/feature/2014/06/30/innovative-apps-for-disaster-risk-reduction-win-global-attention

Sep. 2014 - 179

Race for Resilienceハッカソン第33回

「Jakarta Flood Alert」「Quick Disaster」という2つ
のプロジェクト、日本からの「逃げ地図」プロジェク
トが選出されました。

各プロジェクトについて

　グランドプライズは逃してしまいましたが、ここ
ではHack For Japanスタッフがかかわった3つの
プロジェクトの解説をしたいと思います。

Survival Toolboxプロジェクト

　Survival Toolboxプロジェクトは、石巻在住の中
塩成海さんが自身の被災体験を基に2月のRace for

Resilience石巻会場でのアイデアピッチで提案した
プロジェクトです。
　中塩さんは東日本大震災のときに、身近なものを
組み合わせるなど創意工夫して困難な状況を乗り切
りました。例として自転車を使った発電のアイデア
などを披露し、このようなアイデアは日頃から考え
て試してみるのが良いのではないかということで、
アイデアをレシピとして公開し共有するプラット
フォームを作りたいと仲間を募りました。
　その提案に賛同して、中塩さんの妹さんとその友
人（お2人とも石巻在住の女子高生です）、東京在住
のソーシャルメディアの研究者、仙台在住のフリー
ランスエンジニア、ドイツ人ITコンサルタントが
メンバーとして加わりました。さらには、現地で参
加はできなかったのですが、横浜からはデザイナー
も加わって開発が進みました。
　結果、現地での審査では見事2位になり、ロンド
ンを目指すことになります。
　その後、関西在住のフリーランスエンジニアも加
わり、プロジェクトはハングアウトとFacebookグ
ループを介したオンラインでの開発をベースとして
進みます。学業を優先させる中塩さんの事情なども
あり、開発は必ずしもスムーズには進みませんでし
たが、審査に必要なサイトやオープンソースのレポ
ジトリ、Code for Resilienceへの登録などをメン
バーで手分けして行いました。グローバル審査では
残念ながらファイナリストには選ばれなかったので

すが、現在もサービス開始に向けて開発を進めてい
ます。
　このプロジェクトの特徴は平時と発災時において
インターフェースを変化させる点です。防災・減災
用のアプリケーションやサービスには、普段使って
いないものをいかに災害時に使えるようにするかと
いう課題があります。平時にはアイデアを競い合う
ような楽しさを取り入れ、発災時には共有されてい
るアイデアをその災害の内容や段階に応じて、積極
的に提示するという形にしようと検討しています。
　また、利用者の分析も行いました。災害発生後の
状況では、被災者自身がスマートフォンやWebを
使ってアイデアを検索する余裕があるとは考えづら
いこともあり、このサービスはもっぱら支援者を対
象としています。支援者が被災者に必要と思われる
情報を伝達するために、アウトプットとしては紙も
想定しており、その紙を印刷したり、FAXで送信し
たりすることを考えています。
　グローバル審査ではAndroidアプリケーションと
して動作するものを提出しましたが、これはあくま
でも短期間のプロジェクトの成果としてのプロトタ
イプのようなものであり、アイデアを共有する部分
を含むバックエンドやほかのインターフェース
（Webや紙）での入出力はまだまったく手を付けら
れていません。
　本プロジェクトに賛同する方はぜひともプロジェ
クトメンバーにコンタクトしてみてください。プロ
ジェクトのサイトはこちらになります。

 URL http://survivalpad.net

Flood ARプロジェクト

　Flood ARは2月のハッカソンの石巻会場で1位
となり、グローバル審査に進んだプロジェクトで
す。その後ファイナリストには残ったものの、惜し
くもロンドンへ行くチャンスは逃してしまいまし
た。
　これはAndroid端末用のアプリケーションで、津
波の発生した状況下での避難をシミュレートするも
のです。このアプリケーションの着想は、事前に
行ったアイデアソンで石巻の高校生が話してくれた

http://survivalpad.net

180 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

被災時の体験が基になっており、たとえ膝の高さ程
度の浸水でも歩行には困難を伴うこと、また実際の
水の色はほぼ黒で地面は見えず、足下に何があるか
わからないという危険があることをAR（拡張現実）
を用いて画面上に表現します。今までの津波対策の
避難訓練は津波が来る前に逃げることを想定したも
のでしたが、実際に東日本大震災では警報が届かな
かったり、警報があっても逃げ遅れてしまったなど
で多くの被害者が出ました。このアプリケーション
を使うことで、津波の脅威をより身近に感じてもら
うことができます。
　起動すると、性別、年齢、身長、そして避難先の
位置をマップ上で指定して入力します。Startボタン
でシミュレーションを開始するとAR画面になり、
性別に応じた自分自身を示すアバターが表示され、
身長に合わせた高さの浸水が表現されます（図1）。
このアバターはアプリの使用者の状態に応じてアニ
メーションするようになっており、止まっていると
きは周囲を見渡す動作、ほかに歩く、走る際はその

スピードに合わせたアニメーションをします。
　シミュレーション実行中は定期的に自分の現在地
をGPSから取得して移動経路を記録し、移動速度
を算出しており、浸水している状況下での歩きにく
さや、通常のスピードで歩くことができないことを
示すため、想定より速い速度で歩いていると判定さ
れた場合は、もっとゆっくり歩くように促すメッ
セージが表示されます。そして、避難先として設定
した地点に到着すると結果表示画面に切り替わり、
実際にここまで移動するのにかかった時間と想定時
間、実際の歩いてきた経路をマップ上で確認するこ
ともできます（図2）。

●●実装裏話
　今の潮流ではこのような3Dグラフィクスのアニ
メーションを活用したアプリケーションを作る場合
はUnityを使うケースが多いと思うのですが、今回
は標準のAndroid SDKにてJavaで開発を行いまし
た。開発にかかわったメンバーが通常のJavaでの
Androidアプリ開発に慣れていることと、現在地情
報の取得やGoogle Maps APIの活用を考慮すると
Javaから3Dグラフィクスをコントロールしやすい
ようにしたほうが良いと判断したためです。とはい
え、OpenGL ESを直接使用して人型のアバターに
アニメーションをさせるにはかなりの開発時間を必
要とし、現実的ではありません。
　そこで今回は、オープンソースで公開されている
ライブラリを活用することにしました。当初のバー
ジョンではJavaのみで書かれたライブラリを使用
していたのですが、扱うことのできる3Dモデル、
およびアニメーションデータの種類に難があり、
Unityがデータをインポートする際にも使われてい
る fbx形式のデータを扱えるよう、最終的にはC++

で書かれたライブラリをNDKを用いてJavaからコ
ントロールできるようにして実現しました。
　また、ハッカソン直後の最初のバージョンでは、
水の表現も単に青色の半透明の板を置いていただけ
にとどまっていたのですが、実際の浸水時の水の色
はもっと黒に近い色に見えるため、そのような色の
水のテクスチャを用意してより実際のものに近い表

◆◆図1　AR画面

◆◆図2　結果表示

Sep. 2014 - 181

Race for Resilienceハッカソン第33回

りが通行止め」
というものや、
「 子 ど も が パ
ニックになり、
家に帰りたいと
ぐずる」など、
ロールカードを
持っている人に
対する指令など
も存在します。
管理者（ゲーム
マスター）は、
各チームに対し
て、学習効果が
高まるようにさ
まざまな指令を出していきます。
　ゲーム終了後には戻ってきて振り返りのミーティ
ングを行うことで、災害時に起きうることや心構え
などについて気づいてもらって終了します。
　Webサイトには、今も当時のプロトタイプアプ
リケーションとプレゼンスライドがアップされてい
ますので興味のある方はご覧ください。

 URL http://race2s.opendata-tokai.jp/

　残念ながら、このプロジェクトはCode for

Resilienceの世界大会での選考からは漏れてしまい
ましたが、その後、災害救援ボランティア推進委員
会の宮崎さんがいる明治大学での避難訓練で、トラ
イアル的に利用をしていただき、好評を得ました。
　また、8月に浦安市で行われる予定の、浦安市「立
志塾」宿泊型防災研修プログラム（DECO）の中の企
画として、バージョンアップした「すごい災害対応
訓練」を提供、実施する予定です。コンセプトはそ
のままですが、機能面については実際のユースケー
スに合わせシンプル化し、管理画面などを実装する
ことで本番運用に耐えられるようにしています。ま
た、市が提供するハザードマップの組み込みなども
行う予定です。本誌が発売されるころには、結果が
Webサイトにも公開されていると思います。良け
れば探してみていただければと思います。｢

現にしました。このようにしてアバターと水面の表
現をカメラからのプレビュー画像の上に重ねて、歩
いている自分のイメージを画面上に投影できるよう
にしています。
　このプロジェクトの説明と動画はこちらから参照
できます。
 URL http://www.codeforresilience.org/
　 app/flood-ar-0

すごい避難訓練プロジェクト

　すごい避難訓練プロジェクトは、Race for

Resilienceの名古屋会場で1位を獲得したプロジェ
クトです。従来型の避難訓練は、単なる「避難経路
の確認」を超えていないという問題意識から、本当
に役に立つ避難訓練のあり方を提示する目的で作ら
れました。この記事を書いているCode for Japanの
関と、Code for Nagoyaの河合さんのアイデアを元
に、デザイナーや大学の先生、ITエンジニアなどが
参加したプロジェクトです。その後、すごろくチー
ムをやっていた西村さんが参加し、プロジェクトが
続いています。
　実際の災害時には、あらかじめ決められた避難経
路をたどっていくようなことよりも、さまざまなア
クシデントへの対応を求められる場合が多いと思い
ます。たとえば、お年寄りに遭遇する、一緒に避難
しているメンバーが怪我をしてしまった、通れるは
ずの道が火災で通れない、などなどです。このアプ
リケーションでは、そういったリアルな災害状況を
シナリオに沿って体験することで、避難訓練自体を
自発的に楽しみながらできるようになっています。
　すごい避難訓練はシナリオゲーム型避難訓練に
なっており、チームリーダーがスマートフォンを持
ち、数名のメンバーと共に避難訓練を行います。メ
ンバーはロールカードを持っており、「お年寄り」
「子ども」などといった仮想の役割が割り当てられま
す。避難訓練中にはスマートフォンにイベントが届
くようになっており、状況が刻々と変化します（図3）。
ゲーム参加者は、発生イベントとロールの制約の中で
避難を行わなくてはいけません。
　発生するイベントには、「火災が発生し、◯◯通

◆◆図3　スマートフォンに送信される
イベント例

http://www.codeforresilience.org/app/flood-ar-0
http://race2s.opendata-tokai.jp/

182 - Software Design

VRAMとフレー
ムバッファ

　現在のPCなどの画面表示は、
「フレームバッファ」というもの
が一般的です。フレームバッ
ファは、1980年代は「V

ブ イ ラ ム

RAM」
と呼ぶのが一般的で、「Video
RAM」の略でした。
　VRAM（フレームバッファ）は、
メモリ空間中のRAM領域に、
CPUから情報を書き込むと、そ
れが自動的に画面に表示される
ものです。VRAM方式では、基
本的にDMA（Direct Memory
Access）技術を使用して、表示
回路はCPUの動作と無関係に
RAMを読み出します。しかし、
CPUを止めるDMA方式は、
CPUが動作する時間を奪われ、
速度が低下します。そのためア
クセスが簡単で比較的高速なス
タティックRAM（SRAM）をメ
インメモリ（DRAM）とは別に用
意し、通常は表示回路だけがそ
のSRAMをアクセスし、VRAM
の情報の読み書きのときだけ、
CPUがそのSRAMをアクセス
するような回路を設け、SRAM
を実質的に2ポート化していま
した。

帰線時間の
利用

　通常、CPUからのアクセスは、
表示回路より優先され、表示回
路がデータの読み出し中にCPU
がアクセスすると、画面表示が
乱れました。そこで、その対策
として、各社はいろんな工夫を
していました。一般的にアナロ
グテレビの場合、表示の帰線時
間（表示回路からのSRAMアク
セスがない期間、V-Sync（垂直帰
線時間）、H- Sync（水平帰線時
間）と呼ばれる）をCPUから検知
できるようにして、帰線時間だ
けCPUからアクセスさせるよう
にすることが多かったです。タ
ンディラジオシャックのTRS-80
Model-1注1（1977年リリースと言
われるが、日本上陸はApple IIよ
りも遅かった、Z80 CPU搭載）
や、シャープのMZ-80K（1978年
発売、Z80 CPU搭載）はこうい
う回路を採用しています。

サイクル
スチール

　いわゆるメジャーパソコンと
して1977年、最初に登場した
注1） TRS80 Mode-1 回 路 図；http://in

color.inetnebr.com/bill_r/trs80_
schematics.htm

Apple IIは、前述の回路とはまっ
たく異なる方式を採用していま
す。6502は6800系のいわゆる
「同期式バス」というもので、シ
ステム全体が1つの基本タイミ
ングで動作していました。CPU
はその基本タイミングの「表」を
使用してメモリアクセスを行い、
表示回路はCPUの「裏」のタイ
ミングでメモリアクセスを行う
のです。それによって、CPUと
表示回路が競合することは絶対
になく、CPUは常にフルスピー
ドで走行し、いつでもVRAM領
域にもアクセスできました。こ
ういう方式を「サイクルスチー
ル」と呼びました。Apple IIは、
280×192ドット×6色の高解
像度グラフィックスを実現し、
VRAMとして、当時としては多
い約8KBのメモリを使用しまし
た（しかも、2組を使用できた）。
Apple IIでは、VRAMは通常の
メインメモリと、何の差もない
ので、テキスト表示のみのアプ
リケーションでは、グラフィッ
クメモリを通常のRAMとして
使用しました。

CPUを止め
ての高速化

　時代を遡
さかのぼ

ると、NECのTK-80

温故知新
ITむかしばなし

たけおかしょうぞう　TAKEOKA Shouzou

画面表示あれこれ

第37回

http://incolor.inetnebr.com/bill_r/trs80_schematics.htm

182 - Software Design Sep. 2014 - 183

（8080 CPU搭載）の8桁LEDも
DMAをしていました。これは、
メインメモリ（512B；1,024bitの
SRAM 4個で構成）の後方を、
VRAMとしてシンプルな回路
が、CPUを止め、RAMをDMA
して表示していました。TK-80
も、DMAを止めると実行速度
が上がりました。
　日本で1979年に発売された
NECのPC-8001（Z80 CPU搭
載）は、低解像度のカラーグラ
フィックを備えたパソコンです。
このマシンは、表示のために
μPD3301を搭載していました
が、表示のためにCPUを止め
るDMAを行っていました。
PC-8001では、画面表示をや
め、DMAを止めると30％以上
も高速になったと言われていま
す。このアーキテクチャはPC-
8801にも受け継がれました。

キャラクタ
ジェネレータ

　8bit、16bit時代のパソコン
は、文字表示用に、「キャラク
タジェネレータ（略称：キャラ
ジェネ／キャラゼネ）」という、
ハードウェアのテーブルを持っ
ていました。CPUは、VRAM
には「文字コード」を書き込みま
す。すると表示回路は、DMA
で読み出した文字コードでキャ
ラクタジェネレータから文字パ
ターンを呼び出します。そして、
文字を構成するドット（横1列
分6～8ドット）が得られます。
それを、1ドットずつ、適切な
タイミングでアナログ信号にす
ると、ブラウン管に点が表示さ
れていく、というしくみです。

8bit時代は、文字表示は40文字
×25行程度だったので、VRAM
領域は1KB、16bit漢字VRAM
時代は、80文字（漢字40文字）
×25行だったので、2K～4KB
程度のサイズでした。

PCGと
スプライト

　PC-8001、MZ-80Kには、「プ
ログラマブルキャラジェネ
（PCG）」というものが販売され
ていました。前述のキャラジェ
ネは、パソコン内ではROMで
実現されていましたが、それを
高速なSRAMに取り替え、その
SRAMの内容をCPUから自由
に書き換えられるようにしたも
のです。これはその後、シャー
プ X-1（1982年）やMSX（1983
年）などで標準装備されるよう
になった「スプライト」の初期の
形です。スプライトは、表示で
きる座標が文字単位の座標指定
ではなく、もっと自由であるこ
とが通常です。また、カラーで、
その名前の由来である「透明色」
を持ち、スプライト同士が重
なったときの優先度指定なども
あります。

VRAMなし
の機種も

　VRAMを持たない機械もたく
さん存在しています。たとえば、
ファミコンなどの古いゲーム機
はVRAMなしで動作していま
す。前述の「スプライト」と「背景」
は、少量のRAMか、カセット
のROM上にありました。背景
は、小さなパターンの繰り返し
でROM上にあり、RAMは少し

しかありません。背景のスクロー
ルなどはハードウェアで行えま
す（回路として非常に簡単）。プ
ログラムは、スプライトの情報
や背景の表示位置を計算し、
V-Syncのうちにそれらの値を
ハードウェアにセットしなければ
なりません。それに失敗すると
表示が乱れてバグとして見えた
り、処理落ちになったりします。
　シャープX-1、X68000（1987
年）は、ビットマップのVRAM
もあり、スプライトもあるので、
それらの組み合わせでいろんな
解決方法を考えられたという、
たいへんに贅

ぜいたく

沢な機械で、しか
も、CPUもほぼノーウェイト
で走行していた、いい機械だっ
たと思います。

ワークステー
ションの原型

　ビットマップディスプレイを
備えた、初期のAI用「ワークス
テーション」の原型であるXerox
Alto注2（1973年）は、606×808
ドット（縦長）の高解像度白黒
ディスプレイの表示を行うのに、
16WordのバッファにCPUが
データを送り込み、表示ハード
ウェアはそれを1ドットずつシ
フトしながらブラウン管に表示
しました。16Wordのバッファ
へデータを送るのは、マイクロ
コードで行いました。必要最小
限のハードウェアで高解像度
ディスプレイを実現し、AI開発
などを行うマシンとしているの
が興味深いところです。｢

注2） Xerox Alto ハードウェアマニュア
ル；http://bitsavers.informatik.uni-
stuttgart.de/pdf/xerox/alto/Alto_
Hardware_Manual_Aug76.pdf

温故知新 ITむかしばなし
画面表示あれこれ

第37回

http://bitsavers.informatik.uni-stuttgart.de/pdf/xerox/alto/Alto_Hardware_Manual_Aug76.pdf

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://link.co.jp/
http://app-plat.jp/

187 - Software Design Sep. 2014 - 187

パスワード管理って面倒くさいですよね。パスワード管理ツールを利用すると、そのツールを開くパスワード1つ覚えるだけで楽です。サー
ビスごとに別パスワードを使うのにも便利です。ですが、世の中には各サイト別パスワードに対応可能な人が実はいて驚きます。本当に
全パスワードを覚えてる人、サービス名から連想できる仮面ライダー名をつけるという人（Amazon利用時のパスワードを予想できそうで
すよね）。あと頭文字にサービス名「tw」とか「ggl」とか用意してその後は共通の複雑文字列を覚えるってアイデアを聞いた時は膝を叩きま
したね。管理ツールを利用する場合はそのデータをどう管理するかでまた悩むんですけどね。ちなみに、この妖怪との戦い話は続きません。

夏
休
み
は
海
の
家
で
暮
ら
し
て
い
る
ノ
マ
ド
ワ
ー
カ
ー
の
く
つ
な
先
生
に
愛
の
お
手
紙
を
! （
物
理
メ
ー
ル
限
定
）

作）くつなりょうすけ
@ryosuke927

①

③

⑥⑦

④

②

⑧

スマホのアプリでも
いいよね。
パスワード生成して
管理もできるし。

アプリを使い始めれば
付箋紙にして貼るよりも
安全になるよね。
付箋紙パスワードは
オワコンだ
www

付箋紙パスワード
がオワコンだとぉ？

あなたたちは！？

だ、……誰
ですか、

アイツは
ダメパスワード
管理の
なかでも最弱。

まったく奴は、
我らシステム
脆弱化妖怪
四天王の
面汚しよ。

アカウントの重要性
を舐めて扱う系

0000とかadmin
とかデフォルト
尊重系

ペットとか恋人の
名前をつけて会話
にもよく出る系

我ら安直パスワード
妖怪組を追い払えるかな？！

今でも、社内に我ら
の手に落ちている
人間がたくさん
いるのだぞ！！

なんだとぉ！
社内のセキュリティの
危険が危ない

いや、
勝てるだろ……

⑤

パスワード管理第 9 回

1つのパスワードを使い回し
ていると一個所で漏洩事故
があったときに怖いから、

それぞれパスワード
を作るように
なったけど……。

pwgenのほかに
apgとかも
便利だよ。

opensslの
randコマンドを
使うのもありだよ。
「openssl rand
-base64 文字数」
とかで簡単に
作れちゃう。

パスワードを作ると
言えば、一昔前は
expectに入っている
mkpasswdを使って
　　　　いたけど、

最近は、
pwgenとか
生成ソフトが
使えて便利
だよね。

パスワードを
作るのも管理するのも
面倒くさいよね。

188 - Software Design

SD News & Products

　アールエスコンポーネンツ㈱は、名刺サイズのワン
ボードPC「Raspberry Pi」の新モデル「Raspberry Pi
Model B+」を7月16日に発売した。
　本製品は、既存商品「Raspberry Pi Model B」と同
じ価格（3,940円（税抜き））のまま、使い勝手のよさを
追求した新モデル。主な特長は次のとおり。

¡¡リニア電源からスイッチング・レギュレータに変更
し、消費電力を約30％削減
¡¡USBポートを4基備え、HUBによるカスケード接続
を使用することなく、各デバイスの同時接続が可能

¡¡GPIOの ピ ン
を26ピンから
40ピンに増加
¡¡音声の出力品質
や側面のコネク
タの配置を改善
¡¡ソケットをSD
からmicro SD
に変更

CONTACT アールエスコンポーネンツ㈱
URL http://rs-components.jp/

アールエスコンポーネンツ、
「Raspberry Pi Model B+」発売Hardware

CONTACT

　7月10日、レッドハット㈱は「Red Hat Enterprise
Linux 7（以下RHEL 7）」を提供することを発表した。
　動作環境は、x86_64、IBM POWER、IBM System z。
インストールアーキテクチャは64bitのみとなっている

（32bitアプリケーション用ライブラリを同梱）。今回、
次のような新機能が追加された。

¡¡Linuxコンテナにより、アプリケーションのデプロ
イを簡素化／迅速化。cGroups、ネームスペース、
SELinuxなどの技術を用いてセキュアなマルチテナ
ントを実現

¡¡デフォルトのファイルシステムとしてXFSを採用。
500TBまで拡張可能
¡¡Microsoft Active Directoryと の 連 携 を 強 化。
Microsoft WindowsドメインとRHELドメインの混
在環境において、セキュアなアクセスを実現できる

　そのほか、起動処理をsystemdへ変更、システム管
理インターフェースOpenLMIを導入するなどの変更が
あった。

レッドハット㈱
URL http://jp.redhat.com/

レッドハット、
Red Hat Enterprise Linux 7を発表Software

▲Raspberry Pi Model B+

　㈱Skeedは昨年 7月6日に逝去した同社創業者兼前
CINO（Chief Innovation Officer）の故金子勇の一周忌
を迎え、IOT（Internet of Things）市場に対して、同社
が培ってきたP2P自律分散ネットワーク技術を核とし
た新事業に着手することを7月9日に発表した。
　同社はIOT事業開発室を6月1日に設置しており、
WinnyのP2Pアーキテクチャの「多段転送」および「マ
ルチパス」に加えて「自律分散ストレージ」、「自律分散
処理」の技術を基にエッジコンピューティング（PCや
スマートフォンなど端末側のみでデータを生成・伝送・
処理・保管するシステム）の実現に取り組んでいる。こ

れにより、クラウドなどデータセンタへの一極集中によ
る単一障害ポイントや、データトラフィック増大に伴う
輻
ふくそう

輳などの課題を解消する。
　具体的な事業としては10月1日から次の3つの製品・
サービスの提供を開始する予定だ。

① IOT端末開発者向けモジュール（ライブラリ）
② サービス提供者向けソフトウェアプロダクト
③ P2Pアーキテクチャ活用サービス事業

CONTACT ㈱Skeed
URL http://skeed.jp/

Skeed、
自律分散ネットワーク技術の事業化構想を発表Service

http://jp.redhat.com/
http://rs-components.jp/
http://skeed.jp/

Sep. 2014 - 189

SD News & Products

　7月17、18日に品川のグランドプリンスホテル新高
輪で、「AWS Summit Tokyo 2014」が開催された。
　AWS Summitは世界各地で開催される、Amazon
Web Services（以下AWS）に関する最大規模のカン
ファレンス。東京での開催は今年で3回目。Amazon.
comのCTO,Werner Vogels氏、アマゾンデータサー
ビスジャパン㈱代表取締役社長の長崎忠雄氏による基調
講演に加え、2日で合計72にもおよぶセッションが行
われた。

グラニセッション〜AWS + C#でWebアプリケー
ション開発

　ソーシャルゲームの開発を行う㈱グラニの取締役
CTOの河合宜文氏は、AWSとC#で開発するWebソー
シャルゲームに関するセッションを行った。
　グラニではAmazon Elastic Compute Cloud（以下
EC2）でWindows Server 2012とRedis（key-value
データストアソフトウェア）を、Amazon Relational
Database Service（以下RDS）でMySQLを稼働させ、
ソーシャルゲームの開発を行っている。

　セッションの中で同氏は、ス
ケーリングが容易でサポート
が豊富なRDS、非同期処理を
得意とするC#の利点を強調
し、高負荷になりがちなWeb
ソーシャルゲームでそれらが
性能を発揮すると語った。ま
た今後の展開として、Amazon
RedShiftを使ったアプリケー

ション分析も模索しているとのことだ。最後には、「言語
（C#）も環境（AWS）も常に進化し続ける。最新の状態を
維持することは、難しいが、重要なこと」と締めくくった。

NTTデータセッション〜AWS + Hinemosでク
ラウド運用自動化

　㈱NTTデータのセッションでは、2名のスピーカー
がインフラの自動化について講演した。錦織真介氏は日
本における基盤自動化について、Chefを使った厳密な
管理、Gitを使った海外のエンジニアとのチーム開発、
本番環境に手を加えない「Immutable Infrastructure」
の3点が重要だと語った。
　また、長妻賢氏はオープンソースの統合運用管理ツー
ル「Hinemos」について語った。同ツールにより、クラ
ウドにおける構成管理への自動追随、インスタンスの各
種制御、課金情報の可視化・監視を容易に行うことがで
きる。また同氏は、HinemosをAWS上でクラスタリン
グできるオプション「Hinemos HA on AWS」を9月に
リリースすることを、本イベントで初めて発表した。

AWS Summit Toyo 2014、開催Report

CONTACT アマゾンデータサービスジャパン㈱
URL http://aws.amazon.com/jp/

　7月8日、日本アイ・ビー・エム㈱は、クラウド統合
環境「BlueMix」を体験・実習できる女性限定のイベン
ト「BlueMix女子会」を渋谷の21cafe（運営：ギークス
㈱）にて開催した。
　BlueMixはIBMが提供するPaaS（Platform as a
Service）製品。クラウド・アプリケーションの作成、
デプロイ、管理を迅速に行える特長がある。
　本イベントでは、冒頭にBlueMixの概要・機能につ
いての紹介があり、次いで、BluMixでアプリケーショ
ンを開発する実習の時間が設けられた。内容は、Java
アプリ・PHPアプリのデプロイや、Boilerplate（テン

プレート）を使ったIOT
アプリの開発など実践
的なプログラムが多く、
講師が参加者一人一人
にレクチャーを行った。
本イベントの参加者は、
半数が女子大生、もう
半数が企業で開発に携
わる女性社員だった。

CONTACT 日本アイ・ビー・エム㈱
URL http://www.ibm.com/jp/ja/

日本アイ・ビー・エム、
「BlueMix女子会」開催Report

▲会場の様子

▲㈱グラニ　取締役CTO
　河合宜文氏

▲㈱NTTデータ　錦織真介氏 ▲㈱NTTデータ　長妻賢氏

http://www.ibm.com/jp/ja/
http://aws.amazon.com/jp/

190 - Software Design

第1特集
Nginx移行を考えているあなたへ

　Nginxは、従来のApacheに比べて、
高速で高負荷にも耐えられると評判の

Webサーバです。とはいえ、すべての

WebサーバをApacheからNginxに移行
して良いものでしょうか？　本特集では両
ソフトウェアの長所短所を整理したうえ
で、効果的な移行方法を紹介しました。

Apacheから単純に置き換えるのではな
く、それぞれの特徴を活かした使い方が
重要なんですね。個人的にはNginxの
少ないメモリで動作する点に興味がある
ので、機会があればそのような特徴を
発揮するための設定などを具体的に取り
上げてくださるとうれしいです。

大阪府／出玉のタマさん

アーキテクチャの比較、移行前のチェッ
クポイント洗い出しの解説が参考になっ
た。

岩手県／隼さん

今までApacheしか触ってこなかった
が、必要に応じてNginxにすることも考
えたほうがいいかもしれない。

東京都／ tomato360さん

細かく比べると「Apacheにはある
が、Nginxにはない」機能もいくつ

かありました。移行する際は、そういった
点を十分に考慮しなければなりませんね。

第2特集
DHCPサーバの教科書

　IPアドレスを自動で割り振るサーバが

DHCPサーバです。本特集では、あらた
めてDHCPの役割、動作原理を解説しま
した。

基本的なところからクラウド時代の今ど
きの話まであってよかった。

東京都／松本さん

冒頭の「固定 IPをExcelで管理」という
ところに懐かしさを感じました。当時、
DHCPを提案したら「管理できなくなる
だろ！」と一蹴されたのを思い出します。

神奈川県／ewiad420さん

今や、百近いコンピュータがつな
がるLANも珍しくありません。そ

んな環境では、もはやDHCPサーバなし
での運用は考えられませんね。

一般記事　OpenSSLの脆弱性
“Heartbleed”の教訓（前編）

　世間でも大きな問題となったHeart

bleed問題。原因は単純なプログラムミ
スですが、それがどのように作りこまれた
か、その経緯を解説しました。

TVなどでも特集が組まれたりしていた
が、本記事はわかりやすくていいと思
う。後編が楽しみです。

静岡県／ももんがさん

OpenSSLの脆弱性が多くて困ります
ね。セミナーとかでも話題に挙がること
が多いです。

京都府／クラウドマンさん

十分に枯れた技術と思っていた

OpenSSLに脆弱性があったことに
は、驚きましたが、オープンな議論を経
て取り込まれた機能にもかかわらず、単
純なミスが誰にも発見されなかったとい
う事実は、さらに衝撃的でした。

短期集中連載　Web標準技術で行
うWebアプリのパフォーマンス改善

　最終回のテーマは、パフォーマンス計
測技術。より実態に近い値を計測できる

RUMという技術を取り上げました。

ブラウザで計測するのはいいと思った。
東京都／binaさん

今回のNavigation Timingは利用者
目線のQoSを改善するうえで非常にあ
りがたかったです。

愛知県／NGC2068さん

夏の風物詩と言えば花火ですが、今の花火の打ち上げはコンピュータで制御さ
れており、秒単位で点火のタイミングを調整できるそうです。花火大会の打ち上
げの流れは最初からプログラミングされており、スタートの指示を出すだけで、
あとはすべてそのとおりに打ち上げられるとのこと。そのデータがあれば、同じ
花火大会を再現したり、PC上でシミュレーションしたりできるのですかねえ。

ITで変わる？　花火大会

2014年7月号について、たくさんのお便りをありがとうございました！

Sep. 2014 - 191

本記事の著者の川田寛氏が作った

html5jパフォーマンス部のWeb

サイト（http://perf.html5j.org/）では、実
際にRUMで計測できるようになっていま
す。ぜひ一度、ご覧ください。

複雑化するサーバ環境の監視を
変える「OpenTSDB」後編

　サーバ監視ツール「OpenTSDB」記事
の後編です。効果的に分析するために、
どんなデータを、どのように記録するか、
どうやってグラフ化するかなど、実践的な
内容を取り扱いました。

サーバ環境の複雑化は現代社会の重要
課題だと思う。

長崎県／システム・ナルシストさん

OpenTSDBをまったく知らなかったが、

ンションが上がります」に同感です。
東京都／山下さん

1、2回目を読み飛ばしていたが、現在
の業務改善に役立ちそうなヒントがあっ
たので、連載全体を読み返そうと思っ
た。短期連載で取り上げるのに、うって
つけの内容だったと思う。

千葉県／若山さん

この回の記事タイトルは、「やっぱ
り楽しい！　トレンドに乗ったインフ

ラ改善」でした。これだけで、著者の前向
きな姿勢が伝わってきますね。ともする
と、「システムのお守り」というふうにマイ
ナス思考に陥りがちなインフラ業務です
が、やるからには、このように積極的に取
り組みたいものですね。

使ってみようと思う。
東京都／blackbirdさん

今回は、ツールの使い方だけでは
なく、測定するデータの意味や特

徴についても言及していました。Open

TSDBに限らず、それらをきちんと理解し
ておかないと、効果的な監視はできませ
んね。

短期集中連載　Rettyのサービス拡
大を支えた“たたき上げDevOps”

　最終回は、今流行の Immutable Infra

structureについて、Rettyではどのような
形で実現しているのかを紹介しました。

文体が読みやすくて好感が持てました。
記事中の「ここ最近のインフラ周りの進
化には目を見張るものがあってとてもテ

7月号のプレゼント当選者は、次の皆さまです
① iPad Air対応 QODE Thin Typeキーボード 東京都　松本直樹様
②mouse fit ..宮城県　伊勢雅博様

★その他のプレゼントの当選
者の発表は、発送をもって
代えさせていただきます。
ご了承ください。

　ずっとPCに向かって仕事をしていると、ジャンクなお菓子の1つ
もつまみたくなります。しかし、ポテトチップスのような脂っこいも
のや、チョコレートのような溶けるお菓子は手が汚れます。汚れた
手でキーボードはさわれないので、タイピングの手を止めずに
ちょっとお菓子をつまむということができません。本製品はそんな
悩みを解決します。ゆびサックのようなトングを指にはめてお菓子
をつまめば、指が汚れません（写真1、2）。片手だけで着脱できる
ので、キータイピングの合間に、サッとトングをはめて、ひとつま
みすることも可能です。「トングだけあれば、ボウルはいらないので
は？」と言われそうですが、お菓
子が袋に入ったままだと、袋に手
を突っ込んだときに、手のほかの
部分が汚れたり、上手くつまめな
かったりするので、最初からお菓
子をボウルなどに出したほうが食
べやすいですよ。ただ、本製品
のボウルではやや小さいかも。

エンジニアの能率を高める一品
仕事の能率を高める道具は、ソフトウェアやスマートフォンのようなデジタルなものだけではありません。
このコーナーではエンジニアの能率アップ心をくすぐるアナログな文具、雑貨、小物を紹介していきます。

ゆびトング付き菓子ボウル
380円（税別）／ゲットクラブ　http://www.get-club.net/

◀写真1　ゆびトング ▲写真2　ゆびトング装着

http://perf.html5j.org/
http://www.get-club.net/

Software Design
2014年9月号

発行日
2014年9月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2014年10月号
定価（本体1,220円＋税）

176ページ

October 2014
9月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2014 技術評論社

●『システム管理者の眠れない夜』の著者である柳原

秀基さんが7月4日に急逝されました。この場を借り

て謹んでお悔やみ申し上げます。ちょうど前号の入

稿と重なり大阪での葬儀に行けませんでしたが、FB

などのTLを見て彼のことを悼みました。きっと天国

でも泡盛片手に技術論を語っているんだろうな！（本）

●腐敗した鶏肉や牛肉などを原料とした加工食品が

流通しているようだ。しかし、下水道から油を取り出

したり、腐ったりカビが生えた原料から食べてもわか

らないレベルのものを作れる技術ってすごいなと思

う。そういえばどっかで聞いたことがある。「ただち

に健康に影響はない……」（自家水耕栽培お勧め幕）

●娘のバレエ発表会がありました。今回は初めてトウ

シューズを履いての舞台。なぜつま先立ちをしたまま

踊れるのか不思議で仕方ありません。それはそうと、

このバレエ発表会での楽しみは毎回ゲストで呼ばれ

る一人の男性ダンサー。ダンスはもちろん、立ち居

振る舞いでの演技力にいつも惚れ惚れします。（キ）

●夏になると不思議に思うのは、アスファルトだらけ

のオフィス街でも、多くのセミが鳴いていること。彼

らはどこから来るのでしょう？　街路樹のところにあ

る、わずかな土の中から這い出てくるのでしょうか？

だとすると、街路樹の根元には、相当数のセミの幼

虫がギッシリつまっていることに……！（よし）

●都電荒川線に乗ってみました。東京に来てから初

めてその存在を知り、驚いたのを覚えています。休

日の夕方に乗ったのであまり混んでおらず、情緒あ

る雰囲気も相まってのんびりできました。路地の間

ギリギリを通る区間もあり、おもしろかったです。た

だ、けっこう揺れるんですよね！　酔いました。（な）

●年に数回、風邪をこじらせて通院するのですが、

今月だけですでに二回。冷房が苦手で、実家にいる

ときはほとんど使わなかったのですが、さすがにそ

うもいかず、設定温度高めでお互い妥協したのです

が、寝ているときは防寒対策も効果なし。夏の間は

家庭内別居が平和に落ち着くのかな（笑）（自然派）

S D S t a f f R o o m

［第1特集］ 言語仕様、開発環境、デバッグ機能

あなたはどこまで使いこなせてる？

今ふたたびのJava
　1996年に最初のバージョンが公開されて以来、Javaは今でも機能が追加／改善さ
れています。2014年3月にはJava SE 8もリリースされました。Javaユーザのみんな
がみんな、追加されてきた新機能を使いこなせているのでしょうか？　初心者だからっ
て、くり返し、条件文、配列など、基本的な文法だけでコーディングしていません
か？　Java経験が長いからって、昔ながらの言語仕様のままで、ずっとコーディングし
てきていませんか？　今のJavaなら、もっと効率的で品質の高い書き方ができます！

［第2特集］ 進化したアーキテクチャを一瞥で分析

サーバの目利きになる方法［前編］
オンプレミスを制するものはクラウドを制する
　絶え間なく進化するサーバマシンの「目利き」になる方法を前後編に分けて解説。
10G/100Gbps高速通信ネットワーク対応、サーバサイドフラッシュ、大容量HDD、
マルチコアCPUなどなど、最新サーバマシンを支える技術をわかりやすく紹介！
■新連載 帰宅が5分早くなり、休出もなくなる ！？

Hinemosで学ぶジョブ管理超入門
※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

192 - Software Design

mailto:sd@gihyo.co.jp

3 minutes Networking - 1

● IP アドレスと MAC アドレス

	 さて、レイヤー 3の話を『改訂新版ネットワーク基礎講座』の第 3章から
しているわけだ。レイヤー 3は「インターネットワーク」を実現する役割、
を担っていたわけだ。

	 「ネットワーク間でのデータの転送」がインターネットワーク、でしたよね。
レイヤー 1がケーブルで信号を運ぶ、レイヤー 2がケーブルでつながって
いる範囲としてのネットワーク内でのデータ転送。そしてレイヤー 3が
ネットワーク間、ですね。

	 そういうことだ。各レイヤーが、それぞれの範囲でのデータのやり取りの
しくみを決めているわけだな。レイヤー 3は「アドレッシング」と「ルー
ティング」でインターネットワークを行う。そのうち、前掲書の第 3章で
はアドレッシングを説明したわけだ。

	 アドレッシング、IPアドレスですね！！　「どこのネットワークにある」「ど
のコンピューター」という情報が IP アドレスでしたよね。IP アドレスで
場所を特定して、「ルーティング」で道筋を決定するんでしたっけ。

	 そういうことだ。IPアドレスはあて先を特定する役割だった。で、ネット
君。この「あて先」というのはなにかね？

	 え？　データのあて先のコンピューターでしょ？

	 そうだな。「論理アドレス」である IP アドレスはデータのあて先のコン
ピューターを指定する。じゃあ、MACアドレスは？

	 MACアドレス……、イーサネットや無線 LANで使用されている、LAN
インターフェースに付属の「物理アドレス」ですよね。MACアドレスは、
あて先のコンピューターを示して……、あれ？

アドレスと経路
1

2 - Software Desgin 9月号特別付録

	 IP アドレスもMACアドレスも、どちらもあて先を特定する。ではどこが
異なるかというと、MAC アドレスは同じネットワーク内でのあ
て先を特定する。それに対して IP アドレスはあて先のコンピュー
ターを特定する。つまり、IP アドレスが最終的なデータの届け先、MAC
アドレスが次の届け先、ということになる。

	 MACアドレスが次の届け先？　IP アドレスが最終的なアドレス？　どう
いうことですか？

	 インターネットワークでは、データは複数のネットワークを経由して、最
終的なあて先のコンピューターまで届く。経由していくのはいいのだが、
「誰に経由してもらう」かがわからないと困るだろう？　例えば、とある
ネットワークAから、ネットワークBを経由してネットワークCに行く
とする。Aから出たデータグラムはBに入ってその次にCへ行くわけだが、
Bに入った時点で「Cへ中継してくれる誰か」のところへ行かなければい
けない。それを指定するのがMACアドレス、「次に送る場所」の決定と
いうわけだ。（図 1 ー1）

	 ん〜、MACアドレスで「次に送る場所」を指定する。そこに届いたら、
またMACアドレスで「次に送る場所」を指定する。それを繰り返して、
最終的なあて先へ届く、ということですか。……ということは、あて先と
なるMACアドレスはころころ変わるんですね？

	 そういうことになる。MACアドレスは「次のあて先」だから、そのコン
ピューターに届いたら、さらに次を指定する必要がある。よって、MAC
アドレスは変更される。一方で IP アドレスは変更されない。だから、IP
アドレスが最終的なデータの届け先、MACアドレスが次の届け先、とい
うわけだ。

●経路

	 さて、MACアドレスにより「次のあて先」を、IP アドレスで「最終的な
あて先」を指定するわけだ。それにより、あて先までの経路ができる。

	 経路……、つまりアレですね、まず送信元から次のあて先がMACアドレ
スで指定されて、そこへ届いたら次のあて先がまたMACアドレスで指定
されて……、を繰り返して、最終的に IP アドレスで指定される本来のあ
て先に届く、と。その動きをつなぐと、確かにあて先までの「道」ができ
ますね。

2 - Software Desgin 9月号特別付録 3 minutes Networking - 3

第1回　アドレスと経路

	 そうだ、それが「あて先への経路」となる。そして、この経路を決定す
る役割を持つ機器がルーターだ。このルーターが行う経路の決定だ
が、実は「経路を決定」しているわけではない。

	 え？　じゃあなにを決定してるんですか？　ルーティングするのがルー
ターで、ルーティングであて先までどうやって行くか、つまり経路を決定
しているんじゃないんですか？

最終的なあて先のIPアドレス、次のあて先のMACアドレス

論理アドレスはあて先Aの論理アドレスであるAA
物理アドレスは同じネットワーク内で中継をしてくれる機器であるyyになる

送信元：X

あて先：A

W
物理アドレス：ww

物理アドレス：yy

物理アドレス：zz
論理アドレス：AA
物理アドレス：aa

Y

Z

機器Yが中継して送信する場合
論理アドレスは変わらずAAだが、
物理アドレスは次の中継先zzになる。物理アドレスでzzを指定することにより、
中継先が明確になる（機器Wではなく、機器Zに送ることを明示している）

送信元：X

あて先：A

W
物理アドレス：ww

物理アドレス：yy

物理アドレス：zz
論理アドレス：AA
物理アドレス：aa

Y

Z

あて先
論理アドレス：AA
物理アドレス：yy

あて先
論理アドレス：AA
物理アドレス：zz

図 1 ー1　IP アドレスと MAC アドレス

4 - Software Desgin 9月号特別付録

ルーターは次のあて先を決め、それがつながって経路になる

Fへの経路

Fへの経路

Fへの経路

Fへの経路

Fへ
の経路 Fへの経路

ネットワークB

ネットワークA

ネットワークF
ネットワークC

ネットワークEネットワークD ネットワークG

ネットワークF

1番

1番あて

ネットワークA
からFへの経路

Fへ
の経路

図 1 ー 2　ホップバイホップ

	 まぁ、確かにその通り。ただ、基本的にルーターが決定しているのは「経
路の一部」にすぎない。つまり、自分の場所からあて先まで行くために、
次にどこへ送ればよいかを決定しているだけなのだよ。「送信元から
あて先」までのすべての道筋を理解しているわけではない、ということだ。

	 ふむふむ、次の場所は知っているけど、その次からどうやって行くか、ま
では理解していないということですかね。なんていうか、「方向指示機」
みたいな感じですね。あそこへ行きたいならこっちへ行け、でそこまでつ
いたらまた指示をあおげ、みたいに？

	 うむ、その考え方は間違っていない。このように、順繰りに「次への道」
を指示していく方式をホップバイホップ［Hop-by-Hop］と呼ぶ。ホッ
プとは、ルーティングではルーターを指す言葉だ。（図 1 ー 2）

	 このように「次の」あて先を示すことを、複数のルーターが繰り返すこと
によって、全体の「経路」ができていくわけだ。そしてルーターはネッ
トワークの境界上に配置され、受け取ったデータグラムをルーティン
グし、次のあて先を決定する。

	 う〜ん、その次のあて先ってのは具体的になんですか？

4 - Software Desgin 9月号特別付録 3 minutes Networking - 5

第1回　アドレスと経路

	 基本的にはあて先へ行くための次のルーターだ。ただし、あて先が
そのルーターに接したネットワーク内にある場合は、あて先のコンピュー
ターそのものが次のあて先になる。

	 ここで重要なのは、ルーターがなければ別のネットワークへデー
タグラムを送ることはできないということだ。これは絶対のルール
だ。ルーターがルーティングすることにより、別のネットワークへの「経路」
ができる。この「経路」ができなければ別のネットワークへは届かない、
ということだ。

	 絶対ですか？　例えば、直接つながっていたとしても？　ネットワークっ
て、コンピューターのグループですよね。同じマルチアクセスネットワー
クに、違うネットワークのコンピューターがつながっていたらどうなるん
ですか？

	 それでもダメだ。例えば、同じハブに 2台のコンピューターがつながって
いて、その 2台が別のネットワークに所属するように設定されていたとす
る。この状態の場合でも、別のネットワークのコンピューター、つまり同
じハブにつながっているもう 1台にはデータグラムは届かない。

	 え？だって、データグラムを送ってしまえば、ハブは受信したインター
フェース以外のすべてのインターフェースから送信する「フラッディング」
をするんですよね。であるなら、別のネットワークだろうがなんだろうが、
信号は送られるわけですから、あて先のコンピューターには届きません
か？

	 いや、届かない。なぜならば、コンピューターは「あて先が別のネットワー
クにある場合はルーターへ送信する」「あて先が同じネットワークにある
場合は直接あて先へ送信」する、というルールで動いている。よって、ルー
ターがないと別ネットワークへは送れない。（図 1 ー 3）

	 へー、もしコンピューターに「ルーターが設定されていない」ならば、別
のネットワークへのデータの送信自体が行われないんですね。

	 そういうことだ。このとき、コンピューターが指定するルーターのことを
デフォルトゲートウェイ［Default Gateway］と呼ぶ。これについ
ては先で説明する（P.13参照）。とりあえず、今回はここまでとしておこう。

	 はい。3分間ネットワーク基礎講座でした〜♪

6 - Software Desgin 9月号特別付録

ネット君の今日のポイント

● IP アドレスは「最終的なあて先」、MAC アドレス
は「次のあて先」を決定する。

●ルーティングは次のあて先を指定していくことで行
うホップバイホップである。

●ルーターがなければ別のネットワークへデータグラ
ムを送ることはできない。

●コンピューターに設定しているルーターはデフォル
トゲートウェイと呼ぶ。

別ネットワークあてならばルーター（デフォルトゲート
ウェイ）へ、同一ネットワークあてなら直接通信する

10.1.1.1

10.1.1.2

10.1.1.10

ルーター（デフォルトゲートウェイ）：10.1.1.10

172.16.1.1
・同一ネットワークあてならば
直接あて先へ送信する

・別ネットワークあてならば
デフォルトゲートウェイに設定
されたルーターへ送信する

・同一ネットワークあてならば
直接あて先へ送信する

・別ネットワークあてならば
送信不能とする

①ルーター（デフォルトゲートウェイ）が設定されている

10.1.1.1
あて

172.16.1.1
あて

10.1.1.1

10.1.1.2

10.1.1.10

ルーター（デフォルトゲートウェイ）：－－－－－

172.16.1.1

②ルーター（デフォルトゲートウェイ）が設定されていない

10.1.1.1
あて

172.16.1.1
あて

送信不能

図 1 ー 3　コンピューターが送信するルール

6 - Software Desgin 9月号特別付録 3 minutes Networking - 7

●ルーターとは

	 さて、ルーターがなければ別のネットワークへデータグラムを送信するこ
とはできない。つまり、インターネットワークを実現する機器がルーター
なのだということだ。

	 インターネットワークは、「ネットワーク間でのデータの転送」でしたよ
ね（『改訂新版ネットワーク基礎講座』の第 3章 P.123）。ルーターがなけ
れば別ネットワークへデータグラムを送信できない。つまり、ルーターが
なければネットワーク間でのやり取りができない、ですね。

	 そういうことだ。ルーターはルーティングを行い、別のネットワークへの
データ転送を行う。つまりルーターこそがインターネットワーク
の最重要機器ということになる。それで、だ。ルータールーターと何回
か言葉が出てきたが、実際どのような機器か説明していない。

	 え〜っと、ルーティングする、ネットワークの境界上に配置される？　
……、えっと他になにかありましたっけ？

	 まず、ネットワークの境界上に配置される、から説明しようか。ルーター
はとあるネットワークから別のネットワークへデータグラムを送り出すと
いう役割上、「ネットワークとネットワークの境界上」に配置される。つ
まり、複数のインターフェースを持つ。

	 複数のインターフェースを持っていて、そこから複数のネットワークにつ
ながっているってことですね。それが、ネットワークの境界上にあるとい
うことの意味ですか。

ルーター
2

8 - Software Desgin 9月号特別付録8 - Software Desgin 9月号特別付録

	 そういうことだな。ルーターのインターフェースには論理アドレス、つま
り IP アドレスが設定されている。つまり、ルーターの各インターフェー
スはそれぞれのネットワークに所属している形になるわけだ。（図
2 ー1）

	 その結果、ルーターは単独ではなく、複数のネットワークに所属するわけ
ですね。

	 そして、ルーティングする。ルーティングとは簡単に言えば、データグ
ラムのあて先 IP アドレスを元に、次に送信するルーターを決
定することだ。これを行うことで「経路」が決定される、というわけだ。

ルーターは複数のインターフェースを持ち、
それぞれ異なるIPアドレスを持つ

192.168.0.0ネットワーク 201.72.110.0ネットワーク

133.158.10.0ネットワーク

201.72.110.1

201.72.110.3201.72.110.3

201.72.110.2

192.168.0.1192.168.0.1 192.168.0.3192.168.0.3192.168.0.2

133.158.10.1133.158.10.1 133.158.10.3133.158.10.2

192.168.0.100

201.72.110.10

133.158.10.200

図 2 ー1　ルーターの接続

8 - Software Desgin 9月号特別付録 3 minutes Networking - 98 - Software Desgin 9月号特別付録

第2回　ルーター

	 ふむふむ、経路を決定する、と。ルーターは「ネットワークの境界上に配置」
されて「ルーティング」する。他の役割はないんですか？

	 そうだな。まず、ルーターはネットワークの境界線上にあるため、複数
のネットワーク同士をつなぐ役割を持っている。この「複数のネッ
トワーク」は、LANで使われているイーサネットの場合もあるし、WAN
で使われている回線の場合もある。これら違う種類のネットワークを「つ
なぐ」のもルーターの役割だ。

	 こっちはイーサネット、こっちはWANの回線。違う種類のネットワーク
の間にいて、データの「中継」をするってことですね。

	 そういうことだ。あとは、流れてきたデータグラムに対し、条件をつけて
そのデータグラムを破棄してしまうフィルタリング［Filtering］とい
う処理を行ったりもする。例えば、大学のコンピューター実習室のネット
ワークからは、学生のデータが入っている事務室のネットワークへはデー
タを流さない、とかだな。

	 なるほど、確かに学生のみんなが使うコンピューター実習室から、事務室
へデータがやり取りできちゃうと悪いことを考えちゃいそうです。僕の成
績証明書を……。

	 もちろん、ウチの学校はそんなことはできないぞ。では、まとめてみると、
だ。ルーターは「ネットワークの境界上にあり」「複数のネットワーク同
士をつなぎ」？

	 「ルーティングにより次のルーターを指定して経路を作る」？

	 さらに「フィルタリングによりルーティングするデータを仕分けできる」、
ということだ。

●ルーターの動作

	 では実際のルーターの動作を説明しておこう。まず、ルーターはルーティ
ングテーブルというものを持っている。

	 るーてぃんぐてーぶる？

10 - Software Desgin 9月号特別付録10 - Software Desgin 9月号特別付録

	 うむ。最適な経路の地図だと思ってもらうとわかりやすい。つまり、ルー
ターが受け取ったパケットのあて先までの最適な経路が載っている地図
だ。

	 最適な経路が載っている地図。それを見て、ルーターはあて先ネットワー
クまでの経路を決定するんですか？

	 そうだ。この地図には、あて先ネットワークまでの距離、次に届
けるルーター、そのルーターにつながっている自分のインター
フェースなどが載っている。ルーターはこのテーブルに従って、受け取っ
たパケットをあて先まで送る。つまり、ルーティングテーブルこそ
がルーターの要なのだよ。（図 2 ー 2）

	 ふむふむ。ルーティングテーブルから、あて先のネットワークを見つけて、
次に届けるルーターを決定して、インターフェースから送信するってこと
ですね。

	 そういうことだ。ではポイントを説明しよう。まず、前にも説明したよう
にルーターが決定するのは「次のあて先」だ（P.4 参照）。ルーティングテー
ブルにも「次のあて先になるルーター」が記載されている。

	 でしたよね。ホップバイホップで、次のルーター、次のルーターって順番
に届いていくわけですよね。

	 そうだ。ルーティングテーブルから次のあて先を探し出すわけだが、どう
やって探しているかというと、これは最長一致ルールと呼ばれるルー
ルで決められている。英語で言うと、ロンゲストマッチ［Longest
Match］という。

	 ろんげすとまっち？　最長一致って、なにが最長一致なんですか？

	 実際のデータグラムのあて先 IP アドレスから、ルーティングテーブルの
あて先ネットワークアドレスを決定して、次のルーターや送信インター
フェースを決定する。そこで、「あて先 IPアドレス」と「あて先ネットワー
クアドレス」を比較するときのルールが最長一致のルールだ。（図 2 ー 3）

	 IP アドレスのビット列と、ネットワークアドレスのビット列を先頭から順
番に比較していって、一番多く一致するものから選ぶんですね。だから、
最長一致？

10 - Software Desgin 9月号特別付録 3 minutes Networking - 1110 - Software Desgin 9月号特別付録

第2回　ルーター

ルーティングテーブルから次のあて先となるルーター、
送信するインターフェースを決定する

1番

2番

ルーティングテーブル

3番

あて先
1.0.0.0
2.0.0.0

次ルーター
ルーターX
ルーターY

送信インター
3番
2番

距離
5
3

インターフェースの番号

①ホストからパケットを受け取る

1.0.0.1
あて

1番

2番

ルーティングテーブル

3番

あて先
1.0.0.0
2.0.0.0

次ルーター
ルーターX
ルーターY

送信インター
3番
2番

距離
5
3

②あて先IPアドレスからあて先ネットワークを決定する

1.0.0.1
あて

1番

2番

ルーティングテーブル

3番

あて先
1.0.0.0
2.0.0.0

次ルーター
ルーターX
ルーターY

送信インター
3番
2番

距離
5
3

③ルーティングテーブルから、次に中継するルーター、送信するインターフェースが決定される

1.0.0.1
あて

1番

2番

ルーティングテーブル

3番

あて先
1.0.0.0
2.0.0.0

次ルーター
ルーターX
ルーターY

送信インター
3番
2番

距離
5
3

④決定したインターフェースからパケットを送信する

1.0.0.1
あて

図 2 ー 2　ルーターの動作

12 - Software Desgin 9月号特別付録

ネット君の今日のポイント

●ルーターが経路選択を行う。
●ルーターのインターフェースは、IPアドレスを持つ。
●ルーターは経路を選択するためにルーティングテー

ブルを持つ。

	 そういうことだ。ルーターは非常に重要なので、しばらくルーターの話を
続ける。ではまた次回としよう。

	 了解。3分間ネットワーク基礎講座でした〜♪

あて先IPアドレスともっともビットが一致するものを選ぶ

あて先IPアドレス
192.168.12.5

ルーティングテーブル

次のルーターIPアドレス/
プレフィックス長

送信
インター

メト
リック

192.168.0.0/16

192.168.12.0/24

192.168.10.0/24

172.18.5.2

172.16.10.2

172.17.22.2

0番

1番

2番

2

3

8

あて先IPアドレスとルーティングテーブルのエントリの比較

1100 0000

192.168.0.0/16

192.168.12.0/24

192.168.10.0/24

1100 0000

1100 0000

1100 0000

1010 1000

1010 1000

1010 1000

1010 1000

0000 1010

0000 0000

0000 1010

0000 1000

0000 0101

0000 0000

0000 0000

0000 0000

あて先
192.168.12.5

プレフィックス長の
16ビットまで一致
プレフィックス長の
24ビットまで一致
プレフィックス長の
24ビットまで一致
せず

プレフィックス長まで一致した
なかでもっともプレフィックス
長が長いこの経路を使用する

図 2 ー 3　最長一致のルール

3 minutes Networking - 1312 - Software Desgin 9月号特別付録

●ブロードキャストドメイン

	 前回はルーターの話だったな。ルーターはネットワークの境界上に配置さ
れ、ルーティングを行う。それにより経路が設定され、あて先までデータ
グラムが届くようになる。

	 ルーティングテーブルを持っていて、次に届けるルーター、送信するイン
ターフェースを決定するんでしたね。

	 うむうむ。さて今回は、ルーターの役割、というか機能の話をしよう。ルー
ターを越えてブロードキャストは流れないという話を以前した
な。

	 え〜っと、ネットワークを分断することで、ブロードキャストが流れる量
が減るって話をしましたよね（『改訂新版ネットワーク基礎講座』の第 3
章 P.125）。

	 そうだ。つまりルーターがネットワークを分断することで、ブ
ロードキャストが他のネットワークに流れないようにしている。
このブロードキャストが届く範囲のことを、ブロードキャストドメイ
ン［Broadcast Domain］というが、ルーターはブロードキャストドメ
インを分けることができるのだよ。

	 ぶろーどきゃすとどめいん？　え〜っと、前に出てきた、ほら、信号を送
ると衝突が起きるかもしれない範囲のことを指す、えっと、そう、衝突ド
メインってのに似てますね。

	 うむ。考え方は同じだ。衝突の影響が及ぶ範囲が、衝突ドメイン。ブロー
ドキャストが及ぶ範囲が、ブロードキャストドメイン。衝突ドメイン
はスイッチが区分けし、ブロードキャストドメインはルーター
が区分けする。（図 3 ー1）

デフォルト
ゲートウェイ

3

14 - Software Desgin 9月号特別付録14 - Software Desgin 9月号特別付録

	 ハブはどちらにも影響を及ぼさないですね。

	 そういうことだ。ルーターはブロードキャストドメインを分割する、つま
りルーターがブロードキャストドメインの境界になる、ということになる
わけだ。よって？

	 よって？　……あれ？　ルーターはネットワークの境界上にもあるんです
よね。ブロードキャストドメインとネットワークってどう違うんですか？

	 うむ、基本的に違いはない。ブロードキャストドメイン＝ネットワーク、
と考えて問題はないのだよ。

● ARP とルーター

	 ルーターは、ブロードキャストを他に転送しない。このことで考えなけれ
ばいけないことがある。ネット君、あて先のMACアドレスを知る方法は
なんだった？

ブロードキャストが届く範囲がブロードキャストドメイン

ブロードキャスト
ドメイン

衝突ドメイン

スイッチスイッチ

ルータールーター

ハブ

スイッチスイッチ

図 3 ー1　ブロードキャストドメイン

14 - Software Desgin 9月号特別付録 3 minutes Networking - 1514 - Software Desgin 9月号特別付録

第3回　デフォルトゲートウェイ

	 え〜っと。ARPです。

	 そう、あて先の IP アドレスからあて先のMACアドレスを調べるのには
ARP（Address Resolution Protoco）を使う。この ARP であて先
MACアドレスを調べるための「ARP要求」がブロードキャストを使用す
るというのが問題だ。

	 ARPはブロードキャスト。ということは、ルーターはARPを他のネット
ワークに流さない。ということは、他のネットワークにあるコンピューター
のMACアドレスはどうやって知るんですか？

	 ルーターがブロードキャストを他のネットワークに流さないので、ARP
はあて先まで届かない。あて先まで届かないと、もちろんあて先
MACアドレスがわからないことになる。（図 3 ー 2）

	 そうなると。4つのアドレスがそろわないから、データ送信ができないっ
てことになりますよね。ネットワークを接続するのがルーターの役割なの
に、ルーターがARPを止めてしまうせいでネットワーク間のデータ転送
ができなくなってしまうんですね。

ルーターはブロードキャストを止めてしまうため、異なる
ネットワークにあるあて先のMACアドレスをARPで入手できない

②ルーターはブロードキャストを
　止めてしまうのでARPは届かない

①10.0.0.1へデータを送るために
　10.0.0.1のMACアドレスをARPにより
　入手したいのだが…

IP：10.0.0.1
MAC：00-00-11-22-33-44

ARP
要求

図 3 ー 2　ARP とルーター

16 - Software Desgin 9月号特別付録16 - Software Desgin 9月号特別付録

	 そういうことだ。そこで、デフォルトゲートウェイという言葉を思い出し
てもらおう。デフォルトゲートウェイは、コンピューターが次に送るルー
ターだったな（P.5 参照）。ルーターはネットワークの境界上にあり、他
のネットワークへのデータグラムをルーティングする。つまり、デフォ
ルトゲートウェイがネットワークの出入り口となる。

	 コンピューターは別のネットワークにデータグラムを送信する場合、必ず
デフォルトゲートウェイに送信する、でしたよね。そう考えれば、「ネッ
トワークの出入り口」とも言えますね。

●デフォルトゲートウェイ

	 他のネットワークへデータ転送を希望するホストは、一度デフォルト
ゲートウェイにデータを送り、他ネットワークへ転送しても
らう。つまり、コンピューターが最初にデータを送るあて先は
デフォルトゲートウェイということになる。

	 最初にデータを送るあて先がデフォルトゲートウェイ……。ということ
は？

	 ということは、だ。IP アドレスとMACアドレスはあて先の意味にどんな
違いがあるのだったかね、ネット君？

	 IP アドレスは「最終的なあて先」を、MACアドレスは「次のあて先」を
指定するんでしたよね。ということは、コンピューターが別のネットワー
クへデータを送信する場合のあて先は、必ずデフォルトゲートウェイの
MACアドレスになる？

	 そういうことだ。つまり、コンピューターは別のネットワークへ
データを送信したい場合、デフォルトゲートウェイに対して
ARP を行う。（図 3 ー 3）

	 ははぁ。そうすればARPにより、デフォルトゲートウェイのMACアド
レスが入手できるわけですね。えっと、まとめるとコンピューターはあて
先を決定すると、あて先が同じネットワークかどうかを調べて？

	 同じネットワークならば、あて先 IP アドレスあてにARPを行い、そのコ
ンピューターのMACアドレスを入手する。そうでない、つまり別ネット
ワークがあて先ならば？

16 - Software Desgin 9月号特別付録 3 minutes Networking - 1716 - Software Desgin 9月号特別付録

第3回　デフォルトゲートウェイ

コンピューターは別ネットワークがあて先の場合は
デフォルトゲートウェイにARPを行う

①他のネットワークへデータを送りたい場合、ホストはデフォルトゲートウェイにARPを
　行い、デフォルトゲートウェイのMACアドレスを入手する

ARP

ホストA ホストB

デフォルト
ゲートウェイ

デフォルト
ゲートウェイ

デフォルト
ゲートウェイ

③受け取ったデフォルトゲートウェイはルーティングを行い、中継ルーター、送信ポートを決定
　し、次に受け取る相手（中継ルーターまたはあて先）にARPを行う

ARP

ホストA ホストB

②ホストはあて先MACアドレスをデフォルトゲートウェイに、　あて先IPアドレスを
　あて先ホストにしてパケットを送る

パケット

ホストA ホストB

あて先MAC 送信MAC
ホストA

送信元IP
ホストA

あて先IP
ホストB

ペイロード

あて先MAC
ホストB

送信MAC 送信元IP
ホストA

あて先IP
ホストB

ペイロード

④ARPにより入手したMACアドレスをあて先MACアドレスに、自分自身のMACアドレスを
　送信元MACアドレスに書き換えて送信する。IPアドレスは変更されない

パケット

ホストA ホストB

パケット

デフォルト
ゲートウェイ
デフォルト
ゲートウェイ

デフォルトゲートウェイ

デフォルトゲートウェイ

図 3 ー 3　デフォルトゲートウェイ

18 - Software Desgin 9月号特別付録

ネット君の今日のポイント

●ルーターはブロードキャストを他のネットワークに
流さない。

●ブロードキャストが届く範囲をブロードキャストド
メインという。

●コンピューターは、異なるネットワークへデータを
転送したい場合、デフォルトゲートウェイに送る。

●そのときはデフォルトゲートウェイに ARP を送信
し、デフォルトゲートウェイの MAC アドレスをあ
て先 MAC アドレスにする。

	 デフォルトゲートウェイにARPして、デフォルトゲートウェイのMAC
アドレスを入手するわけですね。ということはデフォルトゲートウェイの
IPアドレスを知らないといけませんね？

	 うむ。なのでコンピューターにはデフォルトゲートウェイの IP
アドレスをあらかじめ設定しておく。その方法としては、手動で設
定するか、DHCPにより設定するかのどちらかだ。

	 そういえば、DHCPは「IP アドレスの配布」を行う際に、サブネットマ
スクとかも一緒に配布できるという話でしたよね。この時にデフォルト
ゲートウェイの IPアドレスも配布することができるんですね。

	 そうだ。DHCPでは IP アドレス以外に、サブネットマスクやデフォルト
ゲートウェイ、DNSサーバーのアドレスを配布する事が可能になってい
る。そして、デフォルトゲートウェイが設定されていなかった場合、コン
ピューターは別ネットワークにデータを送信できないからな。これは前も
話したな。

	 でした。

	 さて、今回はここまでとしよう。次回もルーターの話をする。

	 了解。3分間ネットワーク基礎講座でした〜♪

3 minutes Networking - 1918 - Software Desgin 9月号特別付録

●ルーティングテーブル

	 さて、ネット君。ルーターはルーティングを行う機器で、コンピューター
のデフォルトゲートウェイになる。そして、ルーターがルーティングを行
うためにはルーティングテーブルを持つ、という話をしたな。

	 ルーティングテーブルから、あて先のネットワークを調べて、次のルーター
を決定するんでしたよね。

	 そうだ。そのルーティングテーブルだが、簡単に言うとあて先ネット
ワークと、中継地点と、メトリックと、あて先への出口が載って
いる表だ。メトリックについてはあとで説明する。（図 4 ー1）

	 以前も話した通り、ルーターはあて先ネットワークを決定する（P9
参照）。いちいち何番ネットワークの何番コンピューターというところま
では考えない。ルーターはあて先ネットワークアドレスとルーティ
ングテーブルを比較して、経路を探し出す。

	 最長一致のルール、でしたよね。そういえば、ルーティングテーブルにあ
て先ネットワークがない場合、どうなるんです？

	 その場合、あて先不明としてデータグラムを破棄する。スイッチ
は、あて先がわからない場合フラッディングするが、ルーターは破棄して
しまう。

● 2 つのルーティング

	 ではネット君、質問だ。ルーターはあて先のネットワークへの最適
な経路をどうやって見つけるのか？　そもそもルーティングテーブ
ルにはあて先への経路が載っているわけだが、どうやって知ったのだ？

ルーティング
4

20 - Software Desgin 9月号特別付録20 - Software Desgin 9月号特別付録

	 え〜〜〜〜っと。

	 ま、ネット君の考えを待っている間に日が暮れてしまうので、先へ行こう。
ルーターは最適な経路を見つけるために、他のネットワークへ
の経路をすべて知る必要がある。

	 比べてみないとどこが最適な経路かわからないわけですから、そうなりま
すよね。

	 そして、知った経路の中から、最適なものを選んでルーティン
グテーブルを作成する。どうやって他のネットワークへのすべての経
路を知るかというと、方法は2種類ある。静的ルーティングと動的ルー
ティングだ。

あて先のネットワーク、次のルーター、メトリック、
送信インターフェースが書かれている

210.81.36.1

221.194.38.0 192.168.1.0

172.36.0.0 91.0.0.0

130.82.10.1

1

2

3

あて先ネットワーク
192.168.1.0
91.0.0.0
172.36.0.0
221.194.38.0

210.81.36.1
210.81.36.1
130.82.10.1
なし

次のルーター メトリック
3
6
2
0

インターフェース
1番
1番
2番
3番

図 4 ー1　ルーティングテーブル

20 - Software Desgin 9月号特別付録 3 minutes Networking - 2120 - Software Desgin 9月号特別付録

第4回　ルーティング

	 静的と動的ですか。IPアドレスの設定にも出てきた言葉ですよね。静的な
設定は「手動で入力する」、動的な設定は「自動で設定される」でしたっけ。

	 うむ、そうだな。「静的」が手動、「動的」が自動の意味だ。まず、静的ルー
ティングは管理者が手動でルートを入力する。「このネットワー
クへは、この経路を使いなさい」とな。

	 ルーターにですか？

	 もちろん、ルーターにだ。だが、静的ルーティングは大きな欠点を持って
いる。迂回路の問題だ。手動で入力した経路が使えなくなってし
まうことが起こりえる。（図 4 ー 2）

	 なるほど。でもこの場合なら、下の経路を使えばいいじゃないですか。

静的ルーティングでは迂回路への切り替えは
手動で行う必要がある

X

Y

1番

2番

3番

あて先
ネットワークA

次ルーター
ルーターX

送信インター
2番

メトリック
1

ネットワーク
A

障害のため、ルーターX経由はネットワークAまで届かないが、静的に書かれた
テーブルがルーターX経由になっているため、ルーターXを経由して送ろうとする。
迂回路であるルーターY経由は使われない。

障害

図 4 ー 2　 静的ルーティングと迂回路

22 - Software Desgin 9月号特別付録22 - Software Desgin 9月号特別付録

	 うむ。確かにその通りだ。だがその場合、管理者が手動で経路を書
き換える必要があるな。だがこの方法では、いつ起こるかわからない
障害が起きたときのために、管理者をルーターの前に張りつかせておく必
要がある。これは大変だ。よって自動化する。

	 自動化？　ということは、ルーターが障害を見つけて、勝手にルートを変
更するようにですか？

	 その通り、それが動的ルーティングだ。ルーターが自動で情報を
交換し合い経路を知る方法だ。

	 なるほど。ルーター同士で情報を交換して経路を知るんですね。

	 そして、すべての経路の中から自動で最適なものを選び、ルー
ティングテーブルを作成する。これが動的ルーティングだ。

	 障害があった場合は、それは最適な経路ではなくなるので、新たな最適経
路にルーティングテーブルを書き換えるんですね。はは〜、うまく考えて
ますね。

	 ただし、弱点も持つ。1つ目は、ルーター同士が情報を交換し合うという
ことは、データを送り合うということだ。つまり、その分の回線の転送を
圧迫する。データ転送に使われる分が減ってしまうのだ。

	 む〜。それは駄目なんじゃないんですか？

	 うむ。正直あまりよくはない。特に低速な回線を使用している場合
には、注意が必要だ。だが、障害によってデータ転送ができなくなる
よりは、こちらの方がまだましなのだよ。さらに、2つ目の弱点として、
交換し合った情報から、最適な経路を計算する必要があるとい
う点だ。その分のルーターの処理能力が必要だ。能力の低いルーターだと、
経路計算に処理能力がとられて、データグラムの転送の処理が遅れてしま
うことがある。

	 それも全然よくないことじゃないですか？

22 - Software Desgin 9月号特別付録 3 minutes Networking - 2322 - Software Desgin 9月号特別付録

第4回　ルーティング

次ルーター
ルーターX
ルーターY

送信ポート
2番
3番

 距離
1
2

あて先
ネットワークA
ネットワークA

ネットワーク内のすべてのルーターが
正しい経路情報を持たないと、あて先へ正しく届かない

X

ネットワークAへ

障害情報

ネットワークAへ

A

Y

Z

1番

1番

2番

2番
3番

3番

ネットワーク
A

あて先
ネットワークA

次ルーター
ルーターX

送信ポート
2番

距離
2

X

ネットワークAへ

障害
情報

ネットワークAへ

A

Y

Z

1番

1番

2番

2番
3番

3番

あて先
ネットワークA
ネットワークA

あて先
ネットワークA
ネットワークA

次ルーター
ルーターX
ルーターY

送信ポート
2番
3番

 距離
1
2

次ルーター
ルーターX
ルーターZ

送信ポート
2番
3番

 距離
2
2

ネットワーク
A

ルーターAはXより障害情
報を入手したため、ルータ
ーY経由に切り替えた。しか
しルーターYはまだ障害情
報をもらっていないためル
ーターX経由のまま。その
ためネットワークAには届
かない

ルーターYにも障害情報が
届くことにより、ルーターY
も経路を切り替え、ルータ
ーZ経由にした。これにより
ネットワークAへ届くように
なる

障害

障害

図 4 ー 3　コンバージェンス

24 - Software Desgin 9月号特別付録

ネット君の今日のポイント

●ルーターはルーティングテーブルを参照し、あて先
へのルートを決定する。

●ルーティングテーブルには、あて先ネットワーク、
次の中継ルーター、距離、送信インターフェースが
記載されている。

●ルーティングテーブルを作るため、ルーターは他
ネットワークへのルートを知る必要がある。

●知る方法は、静的ルーティングと動的ルーティング
がある。

●コンバージェンスである必要がある。

	 そうだな。そして、最後にして最大の弱点は、すべてのルーターが同
一の情報を持つ必要があるという点だ。すべてのルーターが同一の
情報を持っている状態のことをコンバージェンス［Convergence］と
いうが、ネットワークのルーター達はコンバージェンスになってい
る必要がある。（図 4 ー 3）

	 こんばーじぇんす。「ここに障害があるよ」とか「新しいネットワークが
できたよ」とかいう情報を全部のルーターが持ってないとダメってことで
すね。それが「同一の情報」を持つってことですか。ん〜なんか弱点が多
いので、大変ですね。

	 確かにいろいろと面倒な部分が多い。だが、自動で障害を切り離せる
というのはそれだけ重要なのだよ。

	 確かにそうかも。障害を切り離せなかったら、パケットが届かないんです
ものねぇ。

	 というわけで、もうちょっとルーティングについて話そう。ではまた次回。

	 いぇっさー。3分間ネットワーク基礎講座でした〜♪

3 minutes Networking - 2524 - Software Desgin 9月号特別付録

●自律システム

	 前回、ルーターが使うルーティングには2種類あるという話をしたな。ルー
ティングは、静的ルーティングと動的ルーティングの 2つの方法
があるのだった。

	 静的ルーティングは管理者が手動入力。動的ルーティングはルーターが
自動でルートを決定する、と。

	 そうだ。なにか障害が発生した際、迂回路を作るなどの冗長性を維持
するため（*1）、動的ルーティングを使うことが多い。特に大規模ネッ
トワークでは必須と言っていい。

	 障害が発生したら、パケットが届かなくなってしまいますもんね。迂回路
が作れないと困りますよね。

	 うむ。そのためルーターは、動的ルーティングを実現するルーティング
プロトコル［Routing Protocol］が利用できるようになっている。ルー
ティングプロトコルは、近接ルーターとの間でネットワークの情
報を交換し合うためのルールだ。

	 ネットワークの情報を交換し合う？　それでどうするんですか？

	 そして、交換した情報を元にしてルーティングテーブルを変更
する。この 2つが、ルーティングプロトコルの機能だ。

ルーティング
プロトコル

5

（*1） 冗長性　［Redundancy］。余分や重複があること。ネットワークでは予備を持つことで障
害などに対応できることを指す。

26 - Software Desgin 9月号特別付録26 - Software Desgin 9月号特別付録

	 情報を交換して、それによってルーティングテーブルを変更する。なんか
簡単そうなんですけど。

	 そうでもない。これがなかなか奥深い。まず、ルーティングプロトコルを
説明する前に説明しておくことがある。それは自律システム（*2）
［Autonomous System］と呼ばれるものだ。通常は頭文字をとって、
ASと呼ばれる。

	 自律しすてむ？　えーえす？

	 うむ、エーエスと読む。1 つの管理団体によって管理されるネッ
トワークの集合体だ。ルーティングでは、ASは 1つの範囲として扱
われる。インターネットには、あまりに多くのネットワークが存在する。
なので、インターネットでは同じ組織が管理する複数のネットワークを
ASとしてまとめてしまうのだ。

	 あて先のASへ届けるルーティングを行い、次にAS内部で各ネットワー
クへ届けるルーティングを行う、という形になる。（図 5 ー1）

複数のネットワークをまとめ、大きな単位でのルーティングを行う

AS内でのルーティングAS内でのルーティング

AS100

AS25311 AS167 AS5100

AS200

ASには識別のためにユニークな
番号がつけられている

AS間でのルーティングAS間でのルーティング

図 5 ー1　AS

26 - Software Desgin 9月号特別付録 3 minutes Networking - 2726 - Software Desgin 9月号特別付録

第5回　ルーティングプロトコル

●ルーティングプロトコルの種類

	 なぜ ASの話をしたかというと。ルーティングプロトコルは大きく分けて
2 種類ある、という説明をしたかったからなのだ。AS 間のルーティ
ング用とAS 内部のルーティング用の2種類だ。それぞれ、EGP
［Exterior Gateway Protocol］、と IGP［Interior Gateway Protocol］
と呼ばれる。

	 2 種類、EGPと IGP、ですね。

	 うむ。ただし、EGP、IGPはあくまでルーティングプロトコルの種類を表
す言葉だ。そういう名前のルーティングプロトコルを使用するわけではな
い。例えば EGPでは、BGPと呼ばれるプロトコルがスタンダードだし、
一方、IGPでは、それぞれのASでそこの管理者がASの状態に合わせて
プロトコルを選ぶ。（図 5 ー 2）

ルーティングを行う規模や動作によって
ルーティングプロトコルは種類がある

種別

EGP

IGP

ルーティングプロトコル

EGP
（Exterior Gateway Protocol）

BGP
（Border Gateway Protocol）

RIP
（Routing Information Protocol）

OSPF
（Open Shortest Path First）

EIGRP
（Enhanced Interior Gateway

Routing Protocol）

IS-IS
（IntermediateSystem to

IntermediateSystem）

動作

ディスタンスベクター

パスベクター

ディスタンスベクター

リンクステート

リンクステート

ハイブリッド

図 5 ー 2　ルーティングプロトコルの種類

（*2） 自律システム　［Autonomous System］。経路ドメイン、経路制御ドメインとも呼ばれる。

28 - Software Desgin 9月号特別付録28 - Software Desgin 9月号特別付録

	 なんすか、この、ディスタンスベクターとか。リンクステートとか？

	 ルーティングプロトコルの動作の方式によって種類があるのだよ。つまり、
プロトコルを使う場所によって、EGPとIGPの2種類に。動作の方式によっ
て、4種類に分けることができる、ということだ。

●ルーティングプロトコルが行うこと

	 では、ルーティングプロトコルはなにをするか、という点を話そう。先ほ
ども言った通り、ルーターは近接するルーター間でネットワーク
の情報を交換し合う。このネットワークとつながっていますよ、あの
ネットワークを知っていますよ、あっちのネットワークは障害でつながり
ませんよ、という情報だな。

	 そして、この情報交換をいつ行うか、どうやって行うか、誰に送
るのか、どのような情報を送るのかということなどをルーティング
プロトコルが決定している。

	 いつ、どうやって、誰に、どんな情報を送るのか、を決定するのがルーティ
ングプロトコル、と。

	 そして、ルーティングプロトコルによって決定された手段により、情報を
交換し合い、コンバージェンスに達するわけだ。（図 5 ー 3）

	 こんばーじぇんす。すべてのルーターが同一の経路情報を持つこ
とでしたっけ（P24参照）。

	 そうだ。前回も出てきた通り、持っている経路情報に食い違いがあると、
正しく届かない可能性があるからな。

	 でしたよね。障害があるとか、新しく追加されたとかの情報をみんなで共
有するんですね。

	 この交換し合ったルート情報を元に、最適な経路をルーティング
テーブルに載せる。これにより、常に最適な経路が使用可能とい
うことになる。

	 なるほど。ルーティングプロトコルによりルーティングテーブルが作られ
る、ということですね。

28 - Software Desgin 9月号特別付録 3 minutes Networking - 2928 - Software Desgin 9月号特別付録

第5回　ルーティングプロトコル

経路の情報をいつ、どうやって、誰に、
どんな情報を送るのかを決定する

ネットワーク
A

ネットワーク
B

ネットワーク
C

ルーターA ルーターB

①ルーターは自分が接しているネットワークをテーブルに保持している

ネットワーク
A
B

次ルーター
-
-

距離
0
0

ネットワーク
C

次ルーター
-

距離
0

ネットワーク
A

ネットワーク
B

ネットワーク
C

ルーターA ルータ－B

②ルーティングプロトコルを使って、持っているネットワークの情報を交換しあう

ネットワーク
A
B

次ルーター
-
-

距離
0
0

ネットワーク
C

次ルーター
-

距離
0

ネットワーク
A

ネットワーク
B

ネットワーク
C

ルーターA ルーターB

③交換した情報を使って、ルーティングテーブルを更新する

距離
0
0
1

距離
1
1
0

ネットワーク
A
B
C

次ルーター
ルーターA
ルーターA

-

ネットワーク
A
B
C

次ルーター
-
-

ルーターB

図 5 ー 3　ルーティングプロトコルが行うこと

30 - Software Desgin 9月号特別付録

ネット君の今日のポイント

●動的ルーティングはルーティングプロトコルで実現
される。

●ルーティングプロトコルは方法と場所によって複数
種類がある。

●ルーティングプロトコルによって、近接ルーター間
でネットワークの情報を交換し合う。

●いつ、どうやって、誰に、なにを送るのかをルーティ
ングプロトコルが決定する。

	 そういうことだ。次回は、ルーティングプロトコルの 1つであるRIP を
例にして、ルーティングプロトコルをもう少し詳しく説明する。

	 了解ッス。3分間ネットワーク基礎講座でした〜♪

「BGP（Border Gateway Protocol）をご存じですか？」

　BGPは、現在使用されているバージョンは 4のため、BGP4 とも書

かれる。AS間のルーティングを担うルーティングプロトコルである。

数十万〜百万と言われるインターネット上のネットワークの経路情報を

やりとりするため、信頼性と大量の情報をやりとりする仕組みを持つ。

また、ポリシーが異なるAS間で使用されるため、パス属性という値に

よって最適経路を決定する柔軟さを持つ。現在では拡大するインター

ネットとそのサービスのため、IPv6 や MPLS への対応（BGP+ や

MBGP）、経路情報の信頼性、障害の検出など様々な拡張が行われている。

3 minutes Networking - 3130 - Software Desgin 9月号特別付録

●メトリック

	 さて、ネット君。ルーティングの話が続いているが。これまで何回か、「最
適な経路」という言葉を使ったが、「最適」とは曖昧な言葉じゃないかね？
「最短」でも「最速」でもなく、「最適」という言葉なのはなぜかね？

	 え？　いや、あの。最短＝最適だと思ってたんですが。違うんですか？

	 違う。最短な経路が、必ずしも最適な経路は限らない。昔からよく言うだ
ろう、「急がば走れ」と。

	 いや、それはそれであってますけど。それを言うなら、「急がば回れ」でしょ。

	 ああ、それだ。つまりだ。渋滞中の高速道路より、すいている一般道の方
が早いことがあるよな？　山を直接横断する山道よりも、迂回する高速道
路の方が早かったり。

	 あ〜、確かにそういうことってありますよね。でも、どっちを使うかは人
によって違うんじゃないんですか？　早く着く方がいい人もいれば、短い
距離の方がいい人もいたり。

	 そう、「最短」が最適なのか、「最速」が最適なのかを判断する必要がある
わけだな。つまり、「最適」を判断する基準があって、はじめて「最適」
と決定されるというわけだ。この最適な経路を決定する際の判断基
準のことを、メトリック［Metric］という。

	 めとりっく。最適を決めるための値、という意味になるんですかね？

RIP（Routing Information
Protocol）

6

32 - Software Desgin 9月号特別付録32 - Software Desgin 9月号特別付録

	 そうだ。中継するルーターの数や、回線のスピード、混み具合、エラー発
生率などの判断基準からルーティングプロトコルによって決められた値を
計算して、その中で最小の値を持つものを最適な経路とするのだよ。

（図 6 ー1）

● RIP（Routing Information Protocol）

	 さて、実際のルーティングプロトコルの話で、ルーティングプロトコルの
動作をわかってもらおうか。今回説明するのはRIP だ。

	 えっと、前回ではディスタンスベクターとかなんとかいう動作だという説
明でしたよね。

	 そうだ、ディスタンスは「距離」、ベクターは「方向」、つまりディスタン
スベクターとは、距離と方向のことだ。

	 距離と方向？　なんか変な名前ですね。

最適な経路を判断する基準として使われるのがメトリック

メトリックを中継ルーター数（ホップ数）とした場合…

ネットワーク
A

AA

1

ZZZ

32

3

4

BB
1

XX

2

ルーターBまで3ホップ

ルーターBまで4ホップ

最適経路でない経路は
テーブルに載らない

よってルーターX経由の経路が最適経路と判断

ネットワーク
A

次ルーター
ルーターX

　　メトリック
　 3

図 6 ー1　メトリック

32 - Software Desgin 9月号特別付録 3 minutes Networking - 3332 - Software Desgin 9月号特別付録

第6回　RIP（Routing Information Protocol）

	 RIP の動作の中心にあるのが「距離と方向」だから、この名前がついている。
ルーターが他のルーターと交換する情報のことを、RIP ではルーティン
グアップデート［Routing Update］という。

	 るーてぃんぐあっぷでーと？　アップデートって、「更新」ですよね。

	 そうだ。「経路更新情報」とでも言うべきものかな。RIP ではこれを交換
し合う。ではこの情報交換で、どのような情報を交換するかというと、ルー
ティングテーブルをそのまま交換し合う。

	 ルーティングテーブルをそのまま？

	 そのままだ。これを、30 秒に 1 回送る。それにより、ルーティングテー
ブルの新しい情報を交換し合うわけだ。

	 なるほどなるほど。定期的にやり取りすることによって、新しい情報を常
に入手できるわけですね。

	 そして、このアップデートを6 回受け取らなかったら、そのルー
ターにはなんらかの障害が発生したとみなす。この場合、その
ルーターを使うルートを消してしまう。

	 返事がないので、もういないものとみなすわけですね。

	 そういうことだ。次の図が、RIP の動作を説明した図だ。あまり複雑な形
を説明しても長くなるだけなので、3つのルーターで説明しよう。（図 6ー2）

	 はー、ルーティングテーブルの情報を送ってもらって、知らない情報を追
加していく、と。こうやってルーティングテーブルを更新するわけですね。

	 そうだ。そして、RIP はメトリックとしてホップ数を使う。ホップ
数とは、あて先ネットワークまでに通過するルーターの数だ。

	 だから、直接接続されているネットワークのメトリックが 0なんですね。

	 うむ。RIP は簡単に言うと、アップデートを受け取ったら、自分の知ら

34 - Software Desgin 9月号特別付録34 - Software Desgin 9月号特別付録

ルーティングアップデートを交換し、知らない経路情報を入手する

①自分に接続しているネットワークに加え、隣接しているルーターの情報（ルーターAが持つ
　情報はオレンジ、ルーターBが持つ情報が黒、ルーターCが持つ情報が緑）がRIPによりル
　ーティングテーブルに追加される

ネットワーク
172.16.0.0
192.168.1.0
192.168.2.0
172.20.0.0
172.30.0.0

次ルーター

ルーターB
ルーターC

メトリック
0
0
0
1
1

ポート
P3
P2
P1
P2
P1

ネットワーク
192.168.2.0
172.30.0.0
192.168.1.0
172.16.0.0

次ルーター

ルーターA
ルーターA

メトリック
0
0
1
1

ポート
P2
P1
P2
P2

ネットワーク
192.168.1.0
172.20.0.0
192.168.2.0
172.16.0.0

次ルーター

ルーターA
ルーターA

メトリック
0
0
1
1

ポート
P1
P2
P1
P1

192.168.1.0

192.168.
2.0

②さらに次の更新で、先ほど更新された情報がやり取りされる。
　（ルーターBにルーターCの情報が届き、ルーターCにルーターBの情報がAを経由して届
　いている）これでコンバージェンスになる

P3 ネットワーク
172.16.0.0
192.168.1.0
192.168.2.0
172.20.0.0
172.30.0.0

次ルーター

ルーターB
ルーターC

メトリック
0
0
0
1
1

ポート
P3
P2
P1
P2
P1

ネットワーク
192.168.2.0
172.30.0.0
192.168.1.0
172.16.0.0
172.16.20.0

次ルーター

ルーターA
ルーターA
ルーターA

メトリック
0
0
1
1
2

ポート
P2
P1
P2
P2
P2

ネットワーク
192.168.1.0
172.20.0.0
192.168.2.0
172.16.0.0
172.30.0.0

次ルーター

ルーターA
ルーターA
ルーターA

メトリック
0
0
1
1
2

ポート
P1
P2
P1
P1
P1

172.16.0.0

172.20.0.0 172.30.0.0

ルーターA

P2

P2

P2P1

P1

P1

P1

ルーターB ルーターC

192.168.1.0

192.168.
2.0

P3
172.16.0.0

172.20.0.0 172.30.0.0

ルーターA

P2

P2

P2P1

P1

ルーターB ルーターC

図 6 ー 2　RIP の動作 1

34 - Software Desgin 9月号特別付録 3 minutes Networking - 3534 - Software Desgin 9月号特別付録

第6回　RIP（Routing Information Protocol）

ないネットワークをテーブルに追加する。その際、アップデー
トを送ってきたルーターを、その先のネットワークへの中継
ルーターに、アップデートを受け取ったインターフェースを、
その先のネットワークへの送信インターフェースにすることを
行う。

	 これで、隣のルーターが知っているネットワークの情報が入手されるわけ
ですね。

	 そうだ。教えてくれたルーターがいる「方向」が、あて先ネットワークへ
の経路となる。

	 さて次は、知っているネットワークの情報をアップデートで教えてもらっ
た場合の例だ。先ほどの例のルーターBとルーターCをつないだ形の例だ。

（図 6 ー 3）

	 メトリックによって経路を比較して、メトリックが小さい方をルーティン
グテーブルに載せる、ですか？

知っている経路の情報を入手した場合、メトリックで判断する

ルーターBとルーターCが直結したことにより、ルーターA経由の経路（メトリック2）より
直接届いた経路（メトリック1）の方がよいため、ルーティングテーブルが更新されている

P3

P3 P3

172.16.0.0
192.168.1.0
192.168.2.0
172.20.0.0
172.30.0.0

次ルーター

ルーターB
ルーターC

メトリック
0
0
0
1
1

ポート
P3
P2
P1
P2
P1

192.168.2.0
172.30.0.0
192.168.1.0
172.16.0.0
172.16.20.0

ネットワーク

ネットワーク 次ルーター

ルーターA
ルーターA
ルーターB

メトリック
0
0
1
1
1

ポート
P2
P1
P2
P2
P3

192.168.1.0
172.20.0.0
192.168.2.0
172.16.0.0
172.30.0.0

ネットワーク 次ルーター

ルーターA
ルーターA
ルーターC

メトリック
0
0
1
1
1

ポート
P1
P2
P1
P1
P3

172.16.0.0

172.20.0.0 172.30.0.0

ルーターA

P2

P2

192.168.1.0 192.168.2.0192.168.2.0

P2P1

P1

P1ルーターB ルーターC

図 33 ー 3　RIP の動作 2

36 - Software Desgin 9月号特別付録

ネット君の今日のポイント

●ホップ数、回線のスピード、混み具合、エラー率な
どが基準となる。

● RIP はディスタンスベクター型ルーティングプロト
コルである。

●ルーティングアップデートという情報を交換する。
●ルーティングテーブルをアップデートとして送る。
● 30 秒に 1 回、アップデートを送る。
● RIP のメトリックはホップ数である。
●アップデートで送られてきたルーティングテーブル

を自分のものと比べて、テーブルを更新する。

	 そうだ。RIP では、すでにテーブルに存在するネットワークにつ
いて、新たな情報がアップデートで来て、新しい経路の方が
メトリックが小さい場合、そちらをテーブルに載せる。新しい
経路の方がメトリックが大きいならば、それは無視する。

	 メトリックという経路を評価する基準は、RIP だとホップ数になる。ホッ
プ数とは、経由するルーターの数のことだから、イメージ的には「距離」
と言ってもいいだろう。

	 教えてもらったルーターがある「方向」、ホップ数という「距離」。だから
距離と方向でディスタンスベクター？

	 そういうことだ。このディスタンスベクターのRIPは簡単でわかりやすい
ルーティングプロトコルとして今回例に出したが、結構古いプロトコルなの
で欠点を持つ。例えば、ホップ数という単純な評価で経路を決定するので、
「経由ルーター数が多いが高速な回線」「経由ルーター数が少ないが低速な
回線」では、低速な回線を選んでしまったり。また、「ルーティングループ」
と呼ばれる経路がループ状になってしまい、あて先まで到達不能になって
しまう現象が発生したり。他にもアップデートに対するセキュリティが全く
ないので、改ざんなどの攻撃に対処できなかったり、だな。これらの問題
のいくつかに対処するために、RIPの新バージョンであるRIP2や、その他
前に名前をあげたOSPFなどの他のルーティングプロトコルが使われる。
ま、これらはRIPに比べるとかなり複雑なので別の本「3分間ルーティン
グ基礎講座」などで勉強してくれたまえ。今回はこれでおしまいとしよう。

3 minutes Networking - 3736 - Software Desgin 9月号特別付録

● ICMP

	 さて、ネット君。ここまで「アドレッシング」と「ルーティング」を説明
してきたわけだ。この 2つは、レイヤー 3の「インターネットワークを実
現する」という役割のために必要不可欠な機能だったわけだ。

	 はい。「アドレッシング」でアドレスのつけ方が決まって、「ルーティング」
であて先までの経路を決定する、でしたよね。

	 よしよし、ちゃんと覚えているな。さて、レイヤー 3のプロトコルとして
は、IP がもちろん最重要であるのは間違いない。だが、レイヤー 3のプ
ロトコルは IP以外にも存在する。

	 そうなんですか？　レイヤー 3は「インターネットワークを実現」するの
が目的で、IPがそれを行うんですよね。他にどんなプロトコルがあるんで
すか？

	 それは ICMP［Internet Control Message Protocol］というプロト
コルだ。

	 あいしーえむぴー。インターネットをコントロールするメッセージのプロ
トコル？

	 そうだな、直訳すればインターネット制御メッセージプロトコル。
役割的に翻訳すると、エラー報告プロトコルってところだな。

	 例えばこんな風に使われる。（図 7 ー1）

	 「送信不能メッセージ」を受け取ったホストはどうするんです？

ICMP
7

38 - Software Desgin 9月号特別付録38 - Software Desgin 9月号特別付録

	 それは個々のアプリケーションによって対応が異なる。このように、ネッ
トワークの制御・管理に使用されるのが ICMPなのだよ。さて、どの
ようなデータをやり取りするかというと、IP データグラムに ICMPメッ
セージを入れる。

	 ICMPメッセージ？　それはいったいどんなものなんですか？

	 ICMP で使われる情報だな。この情報を、IP データグラムのペイロード
（P132 の図参照）に入れる。通常、IP データグラムのペイロードには
TCP セグメントかUDPデータグラムが入るのだが、これらの代わりに
ICMPメッセージを入れて送るのだよ。（図 7 ー 2）

	 IPヘッダー＋ICMPメッセージの形になるわけですね。で、ICMPメッセー
ジはタイプと、コードと……？

	 まぁ、他にも項目はあるが、重要なのは「タイプ」とそれに付随する「コー
ド」になる。タイプは ICMP の種類、コードはその詳細だな。

ネットワークの制御・管理などを行うプロトコル

①ホストAからホストBへIPパケットを送信したが、ルーターはホストBのあるネットワークへ
　の経路を知らなかった

？
A B

IP

②ルーターは宛先へ到達できないことを示す送信不能メッセージをICMPでホストAに
　通知する

？
A B

ICMP

図 7 ー1　ICMP

38 - Software Desgin 9月号特別付録 3 minutes Networking - 3938 - Software Desgin 9月号特別付録

第7回　ICMP

● ICMP の種類

	 さて。ICMPには大きく分けて、2種類のメッセージがある。Query メッ
セージとError メッセージだ。

	 Query は状態を調査するために使用されるメッセージ。Error はその
ままエラーを通知するためのメッセージだ。

	 ははぁ、ICMP は状態の調査にも使用するんですね。さすが Internet
Control のプロトコルですね。

	 うむ。この 2種類に、それぞれ複数のタイプが存在する。それは、先
ほどのメッセージの中の「タイプ」に数字で表されている。タイプは 11
種類（*1）存在する。（図 7 ー 3）

	 1 番とか 2番とか、7番が抜けているのはなにか意味があるんですか？

ICMPで使われる情報をIPで運ぶ

通常のIPパケット

イーサネット
フレーム

イーサネット
フレーム

IPパケット

IPヘッダー ICMPメッセージ

セグメント データ

ICMPパケット

タイプ
1オクテット

コード
1オクテット

チェックサム
2オクテット

オプション
4オクテット

データ
～64オクテット

図 7 ー 2　ICMP メッセージ

（*1）11 種類　最初の ICMP の規定で決められているのが 11 種類だが、拡張として他の種類
を使うこともある。

40 - Software Desgin 9月号特別付録40 - Software Desgin 9月号特別付録

ICMPメッセージにはQueryとErrorの2種類が存在する

種類タイプ
0
3
4
5
8

11

12

13
14
15
16

説明
Echo Reply
Destinaiton Unreachable
Source Quench
Redirect
Echo Request
Time Exceeded

Parameter Problem

Timestamp Request
Timestamp Reply
Information Request
Information Reply

意味
Query
Error
Error
Error
Query
Error

Error

Query
Query
Query
Query

Echo応答
あて先到達不能
転送抑制指示
最適経路通知
要求
時間超過による
パケット破棄
誤ったパラメータ
によるエラー
タイムスタンプ要求
タイムスタンプ応答

（未使用）
（未使用）

図 7 ー 3　ICMP タイプ

	 ふむ。それらはもともと定義されていない番号だ。私が省略したわけでは
ない。この中で頻繁に利用されるのは 0、3、5、8、11 だな。そうだな、
例として 3番 Destination Unreachable はこうなる。（図 7 ー 4）

	 ははぁ、あて先［Destination］へ届かない［Unreachable］、ですね。

● TTL

	 さて、ICMPのその他の代表的なメッセージを説明するが、その前にIPヘッ
ダーの項目の説明をしておこう。

	 えっと、IPヘッダーってことは。IPによってTCPセグメントやUDPデー
タグラムをカプセル化して IPデータグラムにする際に、付加される IPの制
御情報ですよね。IPヘッダーは 20オクテットで、送信元 IPアドレス・あ
て先IPアドレス、IPデータグラムを分割する際に使用するフラグやオフセッ
ト、ヘッダーチェックサムなんかが IPヘッダーに含まれていましたよね。

40 - Software Desgin 9月号特別付録 3 minutes Networking - 4140 - Software Desgin 9月号特別付録

第7回　ICMP

	 うむ。その際に説明しなかった項目で、ICMPと非常に関連がある項目が
あるのだよ。それはTTL［Time To Live］だ。日本語に訳せば「生存
時間」だな。

	 生存時間？　なんの生存時間ですか？

	 IP データグラムのだ。IP データグラムの TTL はルーターを経由
するたびに 1 ずつ減っていき、0 になるとそのデータグラム
は破棄される。まさしく、IPデータグラムの「生存時間」というわけだ。

あて先に届かない理由を通達する

あて先に到達できない場合、ルーターまたはホストがタイプ3
Destination Unreachableを返す
その際、到達できない理由をコードに入れる

A B

ICMP

タイプ
3

コード チェックサム
（checksum）

オプション
なし

データ

コード
0
1
2
3
4

説明
Net Unreachable
Host Unreachable
Protocol Unreachable
Port Unreachable
Fragmentation Needed
and DF Set

意味
ネットワークへ到達不能
ホストへ到達不能
そのプロトコルは使用できない
対象ポートが閉じている
IPパケットを分割したいが、
分割が不可になっている

※他にもコードはある

図 7 ー 4　Destination Unreachable

42 - Software Desgin 9月号特別付録

ネット君の今日のポイント

● エラーメッセージなどを転送するプロトコルが
ICMP。

● ICMP では IP ヘッダー +ICMP メッセージを送信
する。

● ICMP には Query と Error の 2 種類のメッセージ
がある。

●タイプ 3 の ICMP はあて先へ届かないことを通知
する。

	 ルーターを経由するたびに 1ずつ減って、0になったら破棄。死へのカウ
ントダウンですね。でも、なんでそんな項目があるんですか？

	 ルーティングで経路情報にミスが起きる、例えば静的ルーティングで手動
で経路を入力する際に、中継ルーターを間違えてしまうとかだな。本来は
そうすると、あて先へ届かずにどこかへ行ってしまったり、挙句の果てに
同じ場所をぐるぐる回り続けてしまったりすることがある。そうなるとそ
のデータグラムは永遠にネットワーク内を循環し続ける。このようなデー
タグラムは邪魔なだけだ。

	 ふむふむ。ルーティングの方向指示がミスって、あて先に届かなくなるん
ですね。そうなると確かに邪魔になりますね。

	 なので、一定時間が経ったら破棄する。実際は時間ではなく、経由ルーター
数で判断するわけだがな。

	 邪魔になるから、破棄するわけですね。で、実際はどれぐらいルーターを
経由すると破棄されるんですか？

	 Linux では 64、Windows では 128 が多いな。インターネットでは世界
の裏側に送ってもルーターは 30個を越えるぐらいしか経由せずに届くの
で、64とか 128 経由することはあきらかにルーティングを失敗している
のだよ。さて、今回はここまでとしておこう。

	 いぇっさー。3分間ネットワーク基礎講座でした〜♪

3 minutes Networking - 4342 - Software Desgin 9月号特別付録

● Echo

	 さて、前回からレイヤー 3のプロトコルの 1つ、ICMPを説明しているわ
けだ。ICMPエラーを通知したり、通信状態を確認したりするプロトコル
が、ICMPだ。

	 インターネット制御メッセージプロトコル、でしたよね。前回は
Destination Unreachable、あて先到達不能を通知するメッセージの説
明がありました。

	 うむ、タイプ 3だな。今回はタイプ 0、8、11の 3種類を説明する。まず
Echo、タイプ 0と 8の話をしよう。

	 えこー？　エコーっていうと、あれですか。反響音というか、こだまとい
うか。

	 そうだ、あとは山彦だな。ともかく、その「Echo」、タイプ 0のエコー
応答［Echo Reply］とタイプ 8のエコー要求［Echo Request］だ。

	 「要求」と「応答」…。なにを「要求」して、なにを「応答」するんですか？

	 なにを、と言われても困るな。エコーを要求して、エコーを応答するんだ。
つまり送信側はエコー要求を送り、それを受け取ったコン
ピューターはエコー応答を返すというしくみだ。（図 8 ー1）

	 ははぁ。まさしく、「エコー」なんですね。要求すると、返答する。「やっほー」
といえば「やっほー」と帰ってくる。

	 そうだ。たったコレだけのしくみだ。

Echo と
Time Exceeded

8

44 - Software Desgin 9月号特別付録44 - Software Desgin 9月号特別付録

	 はぁ。これ、なんかの役に立つんですか？

	 この「Echo」のしくみを利用したもので、pingという任意のあて先
へエコー要求を送りつけるソフトウェアがある。このソフトウェア
はネットワーク管理者御用達。このコマンドを使わない管理者
はいないとまで断言できるシロモノだ。

	 任意のあて先へエコー要求を送りつける？　エコー要求を送りつけると、
それを受け取ったあて先はエコー応答を返してきますよね。

	 その通り。エコー要求を受け取ったあて先は、エコー応答を返してくる。
その結果、エコー要求を送った送信元はエコー応答を受け取ることになる。
これはつまり、エコーの要求と応答がやり取りされる、つまり送信元と
あて先間でデータが送受信されるという意味だ。

	 あ〜、なるほど。ICMPパケットが送信元とあて先の間を行き来できるんで
すね。もしエコー要求を送って、エコー応答が返ってこなかったら、それは
行きか帰りのどちらかに問題があってやり取りできない、ってことですよね。

エコー要求を受信すると、エコー応答を送り返す

①ホストAからホストBへ、Echo Request（エコー要求）を送信すると…

A B

Echo
要求

②受信したホストBは送信元（ホストA）へEcho Reply（エコー応答）を送り返す

A B

Echo
応答

図 8 ー1　Echo Request と Echo Reply

44 - Software Desgin 9月号特別付録 3 minutes Networking - 4544 - Software Desgin 9月号特別付録

第8回　EchoとTime Exceeded

	 そうだ。さらに、エコーの要求と応答にかかる時間を計ることにより、ネッ
トワークの状態を調べることもできる。他にも分割不可にして、
データサイズを変えることにより回線のMTUを調べることができたりも
する。ネットワークの基本的な状態を確認する、非常に有益なソフトウェ
アということだな。

● Time Exceeded

	 次はタイプ 11の Time Exceeded メッセージだな。これは、「時間超過に
よるパケット破棄」とでもいうメッセージだ。

	 「時間超過」ってなんです？

	 「時間超過」は、前回説明したTTL が関係している（P217 参照）。
	 TTL が切れたパケットは破棄される。このとき、破棄したことを通知

するメッセージが Time Exceededだ。（図 8 ー 2）

	 なるほど。TTLという生存時間が切れたから、Time Exceeded で「時間
超過」なんですね。

	 そういうことだ。このタイプ 11を使ったネットワークのチェック用のソ
フトウェアがある tracerouteというソフトウェアだ。Windows で
は、「tracert」、Linux では「traceroute」というコマンド（シェ
ル）という形で実装されているな。ただ、普通に使用すると結構時間がか
かるので、タイムアウト時間を短めにとったりしたほうがいいかな。

	 とれーするーと？　ルートをたどる？

	 うむ、その通りあて先までのルートを教えてくれるソフトウェ
アだ。正確には、あて先に届くまでに経由するルーターを教えて
くれる。（図 8 ー 3）

	 ははぁ。あて先に届くまでに、どのルーターを通っていくか、を教えてく
れるんですね。意図的にエラーメッセージをもらい、それを表にしていく
んですね。うまくできてるなぁ。

46 - Software Desgin 9月号特別付録46 - Software Desgin 9月号特別付録

TTLが切れてデータグラムが破棄されると、
破棄したルーターはTime Exceededを送信する

①TTLはルーターを経由する度に1ずつ減り、0になると…

A

TTL=5

B

TTL=4 TTL=3

Ｂあて

TTL=2TTL=2

TTL=0 TTL=1

②データグラムは破棄され、破棄したルーターは送信元にTime Exceededを送り返す

A

B

ICMP
時間超過

Ｂあて

図 8 ー 2　Time Exceeded

	 うむ。これによりどのルートをたどっていったかがわかるわけだ。
これらの ping や traceroute は非常に便利なコマンドであるし、使って
手に入った情報も非常に有益だ。

	 ですね。ping ならあて先に届くかどうか確認できますし、traceroute は
途中のどういう経路を通っていくかを調べることができますよね。

	 だが、これらの情報は、クラッカー［Cracker］（*1）の攻撃にも役に
立つ、ということも事実だ。

	 くらっかーの攻撃……？　悪用されるってことですか？

（*1）クラッカー　システムのセキュリティを破り、 不正にコンピューターに侵入して悪意のある
行動を行う人のこと。一般的にはハッカー［Hacker］と混同されている。

46 - Software Desgin 9月号特別付録 3 minutes Networking - 4746 - Software Desgin 9月号特別付録

第8回　EchoとTime Exceeded

あて先まで経由するルーターを調べることができる

①TTL=1であて先へパケットを送ると、1つ目のルーターでTime Exceededが返ってくる

Ｂあて

ICMP
時間超過

TTL=1

A B
ルーターA ルーターB ルーターC

②次はTTL=2であて先へパケットを送り、2つ目のルーターでTime Exceededが返ってくる

Ｂあて

ICMP
時間超過

TTL=2

A B
ルーターA ルーターB ルーターC

④あて先までデータが届き、応答パケットを受信したら、いままでTime Exceededを
　送り返してきたルーターを表示する。それがあて先までの経由ルーターの一覧になる

ホストBまでの経由ルーター表

A B
ルーターA ルーターB ルーターC

③以後、TTLを1ずつ増やしていき、あて先までパケットを届ける

Ｂあて

ICMP
時間超過

Ｂあて

応答
パケット

TTL=3

TTL=4

A B
ルーターA ルーターB ルーターC

ルーターA ルーターB ルーターC ホストB

図 8 ー 3　traceroute

48 - Software Desgin 9月号特別付録

ネット君の今日のポイント

● ICMP タイプ 8 と 0 はエコー要求とエコー応答。
●エコー要求を受け取ったコンピューターは、エコー

応答を返す。
●エコー要求に対し、エコー応答が返ってくれば、そ

の相手とはデータの送受信が可能なことを示す。
●エコー要求は ping を使って実行できる。
● TTL によりパケットを破棄したルーターは、送信

元に Time Exceeded を送り返す。
● Time Exceeded を使い、あて先までのルートを調

べるコマンドが traceroute。

	 そうだ。なので、ルーターの管理者は、ICMP の運用に注意す
る必要がある。特に traceroute で使われるTime Exceeded は注意が
必要だな。

	 traceroute により、途中のルーターの IPアドレスを調べることができる。
ルーターの IP アドレスがわかると、そこに攻撃をしかけることができる。
ルーターが攻撃によりおかしくなってしまうと、ネットワークの広範囲に
影響がでてしまうのだよ。

	 あぁ、ルーターはネットワークの最重要機器、でしたっけ。そこが攻撃さ
れると困りますよねぇ。

	 その通りだ。さて、今回はここらでおしまいにしよう。

「筆者からのメッセージ」
　ネットワークエンジニアは、時代の変化とともに覚えなければいけな
いことが増えていく傾向にあります。今ですと、クラウド、仮想化、
SDNなどがありますが、今後またあらたに増えていくことでしょう。
ですが、そういう新しい技術を追っかけるためには、しっかりとした足
元、基礎知識が重要だと思います。わかっているつもりでも、また勉強
し直すと別の発見があるかもしれませんよ。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2014年9月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 C言語のポインタとオブジェクト指向
	・第1部：C言語ポインタの克服編
	・その1：ポインタの理解と活用......近藤 正裕
	・その2：メモリとポインタの関係......岩尾 はるか
	・その3：アドレスに見るポインタの動作......小山 哲志
	・その4：ポインタはどんなときに役立つのか......前橋 和弥
	・その5：ナンカ分カラナイケドで生きていけるポインタ入門......村上 福之
	・その6：ポインタの魅力と危険性......田中 邦裕

	・第2部：オブジェクト指向の克服編
	・その1：Javaでオブジェクト指向を知るための3つの基礎練習......増田 亨
	・その2：急がず・慌てず自然なペースでオブジェクト指向を学ぼう！......山本 裕介
	・その3：社会慣習としてのオブジェクト指向プログラミング......柏野 雄太
	・その4：組込エンジニアのためのオブジェクト指向......星野 香保子
	・その5：Android開発でオブジェクト指向プログラミングするとは......江川 崇
	・その6：オブジェクト指向はまぼろしか？......きしだ なおき
	・その7：SmallTalkこそオブジェクト指向の手がかり......トム・エンゲルバーグ／長谷川 裕一

	■第2特集 クラスタリングの教科書
	・第1章：クラスタシステムのしくみ......田村 晋
	・第2章：データセンターにおけるクラスタリングの実際......大久保 修一
	・第3章：データベースのクラスタ構成とミラーリング方式......梶山 隆輔

	■一般記事
	・SoftLayerを使ってみませんか？......常田 秀明、北瀬 公彦
	・［実力検証］NICをまとめて高速通信！【前編】……後藤 大地
	・オーケストレーションツールSerf・Consul入門【Serf編】......前佛 雅人

	■Catch up new technology
	・クラウド時代だからこそベアメタルをオススメする理由【2】ベンチマークに見る仮想化のオーバーヘッド......編集部

	■連載：Column
	・digital gadget【189】Google I/O 2014で出会ったデジタルガジェットたち......安藤 幸央
	・結城浩の再発見の発想法【16】Scalability......結城 浩
	・enchant 〜創造力を刺激する魔法〜【最終回】新たなる挑戦......清水 亮
	・軽酔対談　かまぷの部屋【2】ゲスト：永淵 恭子さん......鎌田 広子
	・秋葉原発！　はんだづけカフェなう【47】続・BLEで遊んでみよう......坪井 義浩
	・SDでSF【9】『ファウンデーション——銀河帝国興亡史<1>』......小飼 弾
	・Hack For Japan〜エンジニアだからこそできる復興への一歩【33】Race for Resilienceハッカソン......及川 卓也、関 治之、高橋 憲一
	・温故知新 ITむかしばなし【37】画面表示あれこれ......たけおかしょうぞう
	・ひみつのLinux通信【9】パスワード管理......くつなりょうすけ

	■連載：Development
	・Heroku女子の開発日記【新連載】Heroku事始め......織田 敬子
	・サーバーワークスの瑞雲吉兆仕事術【2】Google Apps 、SalesforceそしてAWS......大石 良
	・思考をカタチにするエディタの使い方 るびきち流Emacs超入門【5】カーソル移動と入力支援でスピードアップ！......るびきち
	・シェルスクリプトではじめるAWS 入門【6】AWS利用環境の構築（補足：Billing関連IAMユーザの作成）......波田野 裕一
	・ハイパーバイザの作り方【22】bhyveにおける仮想シリアルポートの実装（その2）......浅田 拓也
	・セキュリティ実践の基本定石【13】動的メモリアロケーションの落とし穴......すずきひろのぶ
	・Androidエンジニアからの招待状【50】省電力なアプリ開発のために知っておきたいこと......神山 剛

	■連載：OS/Network
	・Red Hat Enterprise Linuxを極める・使いこなすヒント .SPECS【5】Red Hat Enterprise Linux 7とDockerに触れてみよう......藤田 稜
	・Be familiar with FreeBSD~チャーリー・ルートからの手紙【11】FreeBSD 10.0新機能紹介 〜iSCSIストレージの作りかた〜......後藤 大地
	・Debian Hot Topics【18】設定ファイルの読み方・書き方でわかるLinuxのしくみ（Debian編）......やまねひでき
	・レッドハット恵比寿通信【24】Upstream First！......岩尾 はるか
	・Ubuntu Monthly Report【53】LibreOffice 4.3の新機能......あわしろいくや
	・Linuxカーネル観光ガイド【30】Linux 3.15の新機能fallocate、cross rename、VMA cache......青田 直大
	・Monthly News from jus【35】同日開催！ 大阪vs札幌！......法林 浩之、内山 千晶

	■アラカルト
	・ITエンジニア必須の最新用語解説【69】OpenSSLとその派生プロジェクト......杉山 貴章
	・Hosting Department【101】
	・読者プレゼントのお知らせ
	・SD BOOK FORUM
	・バックナンバーのお知らせ
	・SD NEWS & PRODUCTS
	・年間定期購読のご案内
	・Letters From Readers
	・次号のお知らせ

	特別付録
	3分間ネットワーク基礎講座【特別編】......網野 衛二

