

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　OpenSSLは、暗号通信のため
のSSLおよびTLSプロトコルを実装
したオープンソースソフトウェアです。
さまざまなOSやプログラミング言語
に対応しており、ソフトウェアに組み
込むライブラリとして利用することが
できるため、幅広い分野で標準的
に利用されています。
　2014年に入って、このOpenSSL
に2つの重大な脆弱性が報告されま
した。1つはTLSのHeartbeat拡
張機能に混入した「Heartbleed」と
呼ばれる脆弱性です。Heartbeat
拡張とは、ネットワークリソース間
で暗号通信のセッション保持時間を
延ばすためのしくみで、OpenSSL
では2012年3月にリリースされた
1.0.1よりサポートされました。しか
しこの実装にメモリの取り扱いに関
する深刻なバグがあり、不適切なリ
クエストを送ることで、本来は参照
することができないサーバのメモリ
の内容を最大で64KBまで読み取る
ことができてしまうことが判明しまし
た。それがHeartbleedです。この
脆弱性を利用することで攻撃者は痕
跡を残すことなくメモリの内容を読
むことができ、場合によっては秘密
鍵などの重大な機密情報が盗まれ、
暗号化そのものが無力化する恐れも
あります。
　Heartbleedの熱が冷めない中、
「CCS Injection Vulnerability」と
呼ばれる新たな脆弱性が報告されま
した。これはOpenSSLのハンドシェ
イク中に不適切な順序でChange

CipherSpecメッセージを挿入するこ
とによって、強度の弱い暗号通信へ
強制変更することができるというも
のです。この結果、適切な強度の
暗号化が行われずに、通信内容や
認証情報などの情報を読み取られた
り改ざんされる恐れがあります。

　OpenSSLのシェアは極めて高い
ことから、これらの脆弱性（とくに
Heartbleed）の発見は IT業界に大
きな衝撃を与えました。HTTPSサ
イトのうちの17.5％が脆弱性を抱え
たままHeartbeat拡張を有効にして
いたという報告もあり、その影響力
がWebの安全性を根底から覆しか
ねないものであることがわかります。
そのため、この衝撃的な発表を受け
て、OpenSSLをフォークした新しい
プロジェクトも発足しました。

LibreSSL
　「LibreSSL」はThe OpenBSD
Projectが立ち上げたプロジェクトで、
OpenBSDで 利 用されてい る
OpenSSLライブラリを置き換えるこ
とを目的としています。同プロジェク
トでは、OpenSSLの問題として古
いシステムをサポートするためにソー
スコードが肥大化・複雑化している
点や、mallocをはじめとするカスタ
ムメモリコールにさまざまな問題を
抱えている点などを挙げています。
またプロジェクトの管理方法にも問
題を抱えており、古いバグが解決さ
れないまま放置されているとも指摘し
ています。
　そこでLibreSSLプロジェクトでは、

OpenSSLのコード削減、メモリ管
理の標準ライブラリへの置き換えや
FIPS規格サポートの廃止、古い
バグの修正などを行い、よりシンプ
ルで安全性の高いセキュリティ基
盤を構築するとのことです。

BoringSSL
　「BoringSSL」はGoogleが立ち
上げたプロジェクトで、その目的はお
もにGoogle内部での利用を想定し
たコードベースの構築にあります。
Googleでは以前からOpenSSLの
コードを検証し、独自に多数のパッ
チを適用して自社のプロダクトに使用
してきましたが、その数が増えるに
したがってパッチを充てる労力だけ
でも大きな負担になっていたとのこと
です。そこでいったん本家の
OpenSSLから離脱して独自のコー
ドベースを築いたうえで、今後
OpenSSLに加えられる変更を取り
込んでいく、というスタイルを選ん
だ結果がBoringSSLというわけで
す。BoringSSLで は、OpenSSL
だけでなくLibreSSLに対する変更
も取り込んで行く方針を明らかにし
ています。

　こうした新しい活動に注目が集ま
る一方で、依然として脆弱性のある
OpenSSLを使い続けているWebサ
イトも多数存在するとのことで、事態
が完全に収束するにはもうしばらく
時間がかかりそうです。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 69回

OpenSSLとその派生プロジェクト

OpenSSL
http://www.openssl.org/

セキュリティ問題に揺れ
る「OpenSSL」

派生プロジェクトの登場

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

http://www.openssl.org/
mailto:sd@gihyo.co.jp

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）
14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／~＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

年間定期購読

 ／~＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

ED - 2

　クラウドサービスの普及にともなっ
て、アプリケーションの実行環境を
丸ごとコンテナ化して管理すること
ができるコンテナ型仮想化ツールの
「Docker注」が人気を集めています。
そんななかで、クラウドの専門家と
して知られるAlex Polviが設立した
CoreOS社が、Docker専用の新し
いOS「CoreOS」をリリースしました。
　CoreOSはLinuxカーネルをベー
スに作成されたディストリビューショ
ンの1つですが、クラウド上で柔軟
にスケールし、さらにインフラの構
築や運用のプロセスそのものを簡略
化することに主眼を置いて設計され
ており、おもに次のような特徴を
持っています。

• 不要な部分を削ぎ落とした小さなコ
ア

• アプリケーションコンテナとして
Dockerを使用

• 安全なアップデート方式
• クラスタリング機能と分散システム
ツールを標準で搭載

　CoreOSの最大の特徴は、アプ
リケーションの実行環境をコンテナ
だけに特化しているという点です。
アプリケーションを実行したい場合
には、通常のOSのように直接イン
ストールして実行するのではなく、
実行環境ごとDockerイメージとし
てコンテナ化しておいて、それを

Dockerエンジンの上で動作させま
す。Docker専用OSと言われる理
由はここにあります。
　OSのコア機能は最低限必要な
パッケージに限定して軽量化されて
いるため、オーバーヘッドが小さく、
少ないリソースで動作させることが
できます。前述のとおり、この部分
にはアプリケーションを追加できな
いことから、管理の手間やセキュリ
ティリスクを低減できるというメリッ
トもあります。
　OS本体が正／副2つのブート可
能なファイルシステムに格納されてい
るというのもCoreOSの大きな特徴
です。OSをアップデートする際には、
まず副のほうのファイルシステムのみ
更新します。それが正常に完了した
ら、更新したほうのファイルシステム
を新たな正として再起動します。もし
このときに問題が発生しても、片方
は元のシステムのままなので簡単に
復旧することができるというわけで
す。正常に起動できたら、正のほう
も更新することでアップデートが完了
します。
　CoreOS本体にアプリケーション
を追加するなどのカスタマイズを行
いたい場合には、CoreOS SDKと
いうツールを利用します。CoreOS
SDKもオープンソースで提供されて
おり、これを使えばそれぞれの用
途や環境に合わせたオリジナルの
CoreOSを作成することが可能です。
　従来のOSでは、OSのコア部分
の管理とアプリケーション実行環境
の管理はセットで考える必要があり
ました。CoreOSの場合は両者が
明確に分離されているため、それぞ

れを個別に管理できる点が大きな強
みと言えます。

　CoreOSのもう1つの特徴は標準
でクラスタリング機能を持っていると
いうことです。CoreOSのクラスタリ
ング機能は「etcd」と呼ばれるツール
によって実現されています。etcdは
システムの環境情報を共有・管理す
るKVS（Key-Value Store）のような
システムです。分散環境における対
故障性に優れており、CoreOSでは
etcdを使ってコンテナの環境情報を
記録することによりクラスタを構築し
ます。クラスタ上ではetcdはマスタ
とフォロワの2つの役割に分かれて
おり、障害が発生した場合に自動で
マスタを入れ替えたり、追加された
ピアを簡単に検出したりといった機
能を備えています。
　クラスタへのデプロイやクラスタ内
のコンテナの起動・停止などといっ
た操作には、「f leet」と呼ばれる分
散システム管理ツールが用意されて
います。f leetではDockerと組み合
わせて利用することで指定した数の
Apacheを立ち上げたり、サービス
を自動でフェイルオーバーさせたりと
いった設定を行うこともできるように
なっています。
　CoreOSは用途が限定された先
鋭的なOSですが、Dockerのメリッ
トを最大限に活かしたい場合には
極めて有効な選択肢と言えるでしょ
う。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 70回

CoreOS

CoreOS
https://coreos.com/

Docker専用OS
「CoreOS」

コンテナに限定されたア
プリケーション実行環境

注）Docker については本連載第67回（2014年7月号）で解説しています。

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

標準でクラスタリング
機能を搭載

https://coreos.com/
mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

［ 　　　　　　　　　 ］

http://sd.gihyo.jp/

■お問い合わせ
〒162-0846
新宿区市谷左内町21-13
株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180
メール：gdp@gihyo.co.jp

法人などまとめてのご購入については
別途お問い合わせください。

電子版の最新リストは

Gihyo Digital Publishingの

サイトにて確認できます。

https://gihyo.jp/dp

https://gihyo.jp/dp

https://gihyo.jp/site/inquiry/dennou

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://aws.amazon.com/jp/powershell/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://docs.aws.amazon.com/ja_jp/AWSEC2/latest/WindowsGuide/UsingConfig_WinAMI.html
http://www.atmarkit.co.jp/ait/articles/1405/22/news131.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-ec2-launch.html#launching-instances

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

https://community.opscode.com/cookbooks/dsc
http://grani.jp/recruit/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

　IDEA（International Design
Excellence Awards）は、米国工業
デザイナー協会による、優れたインダ
ストリアルデザインに与えられる賞で
す。経済活動や生活の質にかかわる
インダストリアルデザインの価値をより
広く伝えることを目的に、1980年に
設立されたデザイン賞です。
　金賞、銀賞、銅賞、学生奨励賞が
協会に所属する24名の現役デザイ
ナーの審査員によって選出されます。
今年は数多くの製品の中から、全23
部門、176作品が受賞しました。サイ

トには2001年以来の受賞作が紹介
されており、時代の変遷を知るのにも
役立ちます。
　たとえば、2001年の金賞には、ク
ラシックカーのような風 貌 の 車

「Chrysler PT Cruiser」や、Virgin
Atlantic航空の座席シートなどが受
賞しています。さらに最近では、製品そ
のものとして形があるわけではない、
デジタルデザインに関しても受賞する
製品が増えてきました。

　賞は一部特殊な医療機器などを除
き、米国で一般に販売されている製
品から選出され、インダストリアルデザ
インの価値を一般の消費者とビジネ
ス界にどれだけ伝えられるかが観点と
なっています。単に製品としての材
質、形状や色あいだけではなく、その
製品がもたらす体験的な価値も重視
されているようです。
　カテゴリは、自動車や交通、製造業
（おもに道具）、デザイン戦略、環境、
キッチン、アウトドア、リサーチ、バス
ルーム、コミュニケーションツール、デ
ジタルデザイン、庭、医療と科学、パッ
ケージ、サービスデザイン、スポーツ、

子供向け、コンピュータ関連、エンター
テインメント、家具、オフィス、アクセサ
リ、社会的影響のあるデザイン、学生
によるデザインに分かれます。複数の
カテゴリにノミネートされている製品も
あります。たとえば、社会的影響のあ
るデザインとしては、赤ちゃん用の救
急セット、ケニアの子供たちに衛生的
な水を提供するプロジェクト、3Dプリ
ンタで作られた医療器具などが受賞
しています。
　また、リサーチ部門としては、消防
士が息をしやすくなるよう工夫された
酸素マスク、医療機器の操作改善、
可搬式医療機器の検討、末期患者
のための病院のデザインが受賞。デ
ザイン戦略部門では、電気自動車の
充電ステーション戦略、学校給食の
デザイン、企業のブランド戦略、Eコ
マース戦略が選ばれるなど、多岐に
渡っています。

　今年のIDEA賞は、部門にかかわら
ずスマートフォンアプリが多く受賞して
いました。

素材選定を手助けするためのデザイ
ナー向けアプリ。“乾きやすい”など状
況に適した素材を選択できる

動画クリップ録画アプリ。動画クリッ
プをつなげて活用できる、動画撮影
の概念を覆すツール

美しいお天気アプリ。誰もが使うが、
革新のなかった分野に美しさと新体
験をもたらしたツール

　
ニュースアプリ。今日のニュースを見
終わったという達成感がある、画面を
斜めに切り取った独特のデザインの
アプリ

　また、スマートフォンを活用した周辺
製品も多く受賞していました。

　

スマートフォンにかぶせて子供用カメ

ラに利用するケース。約20ドル。専用
アプリあり

　

家庭用電源コンセントをネット経由で
ON/OFFコントロールできる電源端
子に。約60ドル

　今後もこのように、ネットの世界を
具現化したアプリと現実世界のモノ
をつなぐサービス、すでに存在するさま
ざまなモノをアプリによってより便利に
拡張していくサービスが浸透していく
と思われます。

　IoT（Internet of Things；モノの
インターネット）を始め、今まで単独で
存在していたさまざまな家電機器や、
道具、家具、製品といったものがネット
の世界とつながってきました。それに
対し、ネット上のサービスも、現実世界
といかに連携したサービスであるかが
重視されるようになってきました。
　また、単に必要だから購入される製
品ばかりではなく、娯楽や楽しみのた
めのモノも増え、その一方で最先端の

テクノロジでなければ解決しない道具
や医療機器なども存在します。ユーザ
インターフェースデザインやサービス
デザインも包括しながら、インダストリ
アルデザインの範囲や意味も大きく
広がってきています。
　IDEAのサービスデザイン部門で
は、薬の飲み方に関する新しい提案
やパッケージデザインが考えられたり、
スポーツ部門でも単体のスポーツグッ
ズだけではなく、スポーツで使う通信
機器や、危険回避のためのデジタル
ツールなど、モノ単体だけではない
サービスが増加しています。
　マーケティングの専門家、セオドア・
レビット博士の書籍で、「ドリルを買っ
た人が欲しかったのはドリルではなく
穴である」という言葉が紹介されてい
ます。この言葉はさまざまな製品に当
てはめることができ、その製品にとって
の「穴」が何なのかを考えることで、価
値ある体験が提供できるのだと考え
ます。
　また、高性能で安価な3Dプリンタ
の登場で、試行錯誤のスピードが速く
なったと言われていますが、人間が5
本指の手で扱う限り、形や操作など
に関する知見は、急に変化するもの
でもありません。モノとして触れる道具
などのデザインでは、プログラム次第
で何でも作れるデジタルなデザインと
異なり、生産可能な形状や生産コス
ト、材質、質感、耐久性、パッケージン
グ、流通、販売、サポートなど、デジタ
ルにはないさまざまな要素を持ちま
す。Webデザインなどのデジタルデザ
インも、本のデザインや印刷、フォン
ト、色使いなど過去の遺産が活かされ
ています。
　インダストリアルデザインが持つ、
バランスや質感、道具に対する習熟
度、動作スピードの大切さといった観
点が、デジタルツールにもおおいに活
かせるのではないかと考えています。
｢

IDEA 2014 にみるガジェットプロダクト
インダストリアルデザインの
世界的アワード

安藤 幸央
EXA Corporation

IDEA 2014 にみるガジェットプロダクト

190
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

iPin Laser Presenter

iPhone用レーザーポインタ
iPinはiPhoneのヘッドフォンコネクタに
接続して利用するレーザーポインタです。
ヘッドフォンコネクタからの給電と、専用
アプリによるON/OFFで、プレゼンテー
ションなどに用いる赤色レーザーポインタ
として利用できます。持ち歩きはiPhone
に刺したままで良いですし、バッテリーの
心配もいりません。パッケージも、どんな
働きをする商品なのか一目でわかり、とて
も好感度の高いものです。一方、iPinを
刺したままでは通話ができませんので、注
意が必要です。

http://ipinlaser.com/ipin/

4GADGET

Square Stand

カード決済端末
Square Standはスマートフォンやタブレッ
ト端末で平易にクレジットカード決済でき
るサービスを提供する専用スタンドです。
導入が簡単なタブレット端末で決済が可
能だといっても、タブレットだけでは実際
の店舗の現場では、狭いレジの領域で
混乱を招きます。旧来のレジ端末風のス
タンドを用意することで、信頼感や現場で
の操作感の向上をもたらした、コスト効果
の高いアイデア商品と言えます。Square
Standは実際にSquare社の社員食堂
で使われ、効果が試されているそうです。

https://squareup.com/stand

2GADGET

Locale Office System

組み合わせ自在の
オフィス家具
ハーマンミラー社製のオフィス家具シリー
ズLocale Office Systemは、グループや
チームといった区分、または仕事の状況
やプロジェクトの進行に応じて、オフィス
家具の配置が変えられる組み合わせ式
の家具シリーズです。活発に意見をかわ
したい状況や、集中して仕事がしたい状
況など、ほどよく開放的で、ほどよく閉鎖
的な、微妙な距離感を考慮した家具の
配置が可能になっています。また規模や
数、形態に応じてさまざまなプランをチョ
イスでき、理想の仕事場、変化に富んだ
職場を素早く構築することができます。

http://www.hermanmiller.com/products/
workspaces/individual-workstations/locale.html

3GADGET

BOOK by FiftyThree

デジタルノートを
リアルなノートに
BOOK by FiftyThreeは、手書き風の仕
上がりが人気のiPad用デジタルペイント
ツールで描いた画像データをアップロード
すると、画像を表紙にプリントアウトした
現物のMoleskineノートを手に入れるこ
とができる安価なサービスです。市販の
Moleskine風の黒い表紙か、カラフル
な印刷でくるんだカスタムカバーか、好き
なほうを選べます。デジタル印刷機HP
Indigoで折りたたみ式の15ページ分が
印刷されます。絵心のある人はプレゼント
にも良さそうです。

https://www.fiftythree.com/book

1GADGET

［H］軽量産業用ロボット「LBR iiwa Robot」
［I］素材選定アプリ「Making of Making」
［J］IDEOが開発した動画クリップ作成アプリ
［K］米国Yahoo!の美しいニュースアプリ
［L］子供用スマートフォンケース
［M］スマートフォンでコントロール可能な電源コンセント

［A］IDEA 2014公式サイト
［B］Teslaの電気自動車用

充電ステーション
［C］消防士用の新型酸素マスク

「DELTAIR」
［D］Hamilton Medicalの可搬用

人工呼吸器
［E］赤ちゃん向け救急セット

「Healthy Baby」
［F］3Dプリンタで作られた

外骨格スーツ
［G］雪山登山用のアタッチメント

「Maglon」

今年の受賞作あれこれ

インダストリアルデザインの
広がり

http://nikemakers.com/

Making of Making Powered
by NIKE MSI

http://www.sparkcamera.com/
Spark Camera

https://mobile.yahoo.com/weather/

Yahoo Weather mobile apps
for iPhone

https://mobile.yahoo.com/newsdigest/
Yahoo News Digest

http://www.leapfrog.com/en-us/store/p/
creativity-camera-protective-case-app/_/
A-prod19234

The LeapFrog
Creativity Camera
Protective Case & App

http://www.belkin.com/us/support-product?
pid=01t80000003JS3FAAW

WeMo Insight Switch

A

E F G

B C D H

L

I J K

M

http://www.idsa.org/awards

http://www.idsa.org/idea-2014-gallery

IDEA 2014公式サイト

23部門の受賞作一覧

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Oct. 2014 - 5

http://www.andoh.org/
http://www.idsa.org/awards
http://www.idsa.org/idea-2014-gallery

　IDEA（International Design
Excellence Awards）は、米国工業
デザイナー協会による、優れたインダ
ストリアルデザインに与えられる賞で
す。経済活動や生活の質にかかわる
インダストリアルデザインの価値をより
広く伝えることを目的に、1980年に
設立されたデザイン賞です。
　金賞、銀賞、銅賞、学生奨励賞が
協会に所属する24名の現役デザイ
ナーの審査員によって選出されます。
今年は数多くの製品の中から、全23
部門、176作品が受賞しました。サイ

トには2001年以来の受賞作が紹介
されており、時代の変遷を知るのにも
役立ちます。
　たとえば、2001年の金賞には、ク
ラシックカーのような風 貌 の 車

「Chrysler PT Cruiser」や、Virgin
Atlantic航空の座席シートなどが受
賞しています。さらに最近では、製品そ
のものとして形があるわけではない、
デジタルデザインに関しても受賞する
製品が増えてきました。

　賞は一部特殊な医療機器などを除
き、米国で一般に販売されている製
品から選出され、インダストリアルデザ
インの価値を一般の消費者とビジネ
ス界にどれだけ伝えられるかが観点と
なっています。単に製品としての材
質、形状や色あいだけではなく、その
製品がもたらす体験的な価値も重視
されているようです。
　カテゴリは、自動車や交通、製造業
（おもに道具）、デザイン戦略、環境、
キッチン、アウトドア、リサーチ、バス
ルーム、コミュニケーションツール、デ
ジタルデザイン、庭、医療と科学、パッ
ケージ、サービスデザイン、スポーツ、

子供向け、コンピュータ関連、エンター
テインメント、家具、オフィス、アクセサ
リ、社会的影響のあるデザイン、学生
によるデザインに分かれます。複数の
カテゴリにノミネートされている製品も
あります。たとえば、社会的影響のあ
るデザインとしては、赤ちゃん用の救
急セット、ケニアの子供たちに衛生的
な水を提供するプロジェクト、3Dプリ
ンタで作られた医療器具などが受賞
しています。
　また、リサーチ部門としては、消防
士が息をしやすくなるよう工夫された
酸素マスク、医療機器の操作改善、
可搬式医療機器の検討、末期患者
のための病院のデザインが受賞。デ
ザイン戦略部門では、電気自動車の
充電ステーション戦略、学校給食の
デザイン、企業のブランド戦略、Eコ
マース戦略が選ばれるなど、多岐に
渡っています。

　今年のIDEA賞は、部門にかかわら
ずスマートフォンアプリが多く受賞して
いました。

素材選定を手助けするためのデザイ
ナー向けアプリ。“乾きやすい”など状
況に適した素材を選択できる

動画クリップ録画アプリ。動画クリッ
プをつなげて活用できる、動画撮影
の概念を覆すツール

美しいお天気アプリ。誰もが使うが、
革新のなかった分野に美しさと新体
験をもたらしたツール

　
ニュースアプリ。今日のニュースを見
終わったという達成感がある、画面を
斜めに切り取った独特のデザインの
アプリ

　また、スマートフォンを活用した周辺
製品も多く受賞していました。

　

スマートフォンにかぶせて子供用カメ

ラに利用するケース。約20ドル。専用
アプリあり

　

家庭用電源コンセントをネット経由で
ON/OFFコントロールできる電源端
子に。約60ドル

　今後もこのように、ネットの世界を
具現化したアプリと現実世界のモノ
をつなぐサービス、すでに存在するさま
ざまなモノをアプリによってより便利に
拡張していくサービスが浸透していく
と思われます。

　IoT（Internet of Things；モノの
インターネット）を始め、今まで単独で
存在していたさまざまな家電機器や、
道具、家具、製品といったものがネット
の世界とつながってきました。それに
対し、ネット上のサービスも、現実世界
といかに連携したサービスであるかが
重視されるようになってきました。
　また、単に必要だから購入される製
品ばかりではなく、娯楽や楽しみのた
めのモノも増え、その一方で最先端の

テクノロジでなければ解決しない道具
や医療機器なども存在します。ユーザ
インターフェースデザインやサービス
デザインも包括しながら、インダストリ
アルデザインの範囲や意味も大きく
広がってきています。
　IDEAのサービスデザイン部門で
は、薬の飲み方に関する新しい提案
やパッケージデザインが考えられたり、
スポーツ部門でも単体のスポーツグッ
ズだけではなく、スポーツで使う通信
機器や、危険回避のためのデジタル
ツールなど、モノ単体だけではない
サービスが増加しています。
　マーケティングの専門家、セオドア・
レビット博士の書籍で、「ドリルを買っ
た人が欲しかったのはドリルではなく
穴である」という言葉が紹介されてい
ます。この言葉はさまざまな製品に当
てはめることができ、その製品にとって
の「穴」が何なのかを考えることで、価
値ある体験が提供できるのだと考え
ます。
　また、高性能で安価な3Dプリンタ
の登場で、試行錯誤のスピードが速く
なったと言われていますが、人間が5
本指の手で扱う限り、形や操作など
に関する知見は、急に変化するもの
でもありません。モノとして触れる道具
などのデザインでは、プログラム次第
で何でも作れるデジタルなデザインと
異なり、生産可能な形状や生産コス
ト、材質、質感、耐久性、パッケージン
グ、流通、販売、サポートなど、デジタ
ルにはないさまざまな要素を持ちま
す。Webデザインなどのデジタルデザ
インも、本のデザインや印刷、フォン
ト、色使いなど過去の遺産が活かされ
ています。
　インダストリアルデザインが持つ、
バランスや質感、道具に対する習熟
度、動作スピードの大切さといった観
点が、デジタルツールにもおおいに活
かせるのではないかと考えています。
｢

IDEA 2014 にみるガジェットプロダクト
インダストリアルデザインの
世界的アワード

安藤 幸央
EXA Corporation

IDEA 2014 にみるガジェットプロダクト

190
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

iPin Laser Presenter

iPhone用レーザーポインタ
iPinはiPhoneのヘッドフォンコネクタに
接続して利用するレーザーポインタです。
ヘッドフォンコネクタからの給電と、専用
アプリによるON/OFFで、プレゼンテー
ションなどに用いる赤色レーザーポインタ
として利用できます。持ち歩きはiPhone
に刺したままで良いですし、バッテリーの
心配もいりません。パッケージも、どんな
働きをする商品なのか一目でわかり、とて
も好感度の高いものです。一方、iPinを
刺したままでは通話ができませんので、注
意が必要です。

http://ipinlaser.com/ipin/

4GADGET

Square Stand

カード決済端末
Square Standはスマートフォンやタブレッ
ト端末で平易にクレジットカード決済でき
るサービスを提供する専用スタンドです。
導入が簡単なタブレット端末で決済が可
能だといっても、タブレットだけでは実際
の店舗の現場では、狭いレジの領域で
混乱を招きます。旧来のレジ端末風のス
タンドを用意することで、信頼感や現場で
の操作感の向上をもたらした、コスト効果
の高いアイデア商品と言えます。Square
Standは実際にSquare社の社員食堂
で使われ、効果が試されているそうです。

https://squareup.com/stand

2GADGET

Locale Office System

組み合わせ自在の
オフィス家具
ハーマンミラー社製のオフィス家具シリー
ズLocale Office Systemは、グループや
チームといった区分、または仕事の状況
やプロジェクトの進行に応じて、オフィス
家具の配置が変えられる組み合わせ式
の家具シリーズです。活発に意見をかわ
したい状況や、集中して仕事がしたい状
況など、ほどよく開放的で、ほどよく閉鎖
的な、微妙な距離感を考慮した家具の
配置が可能になっています。また規模や
数、形態に応じてさまざまなプランをチョ
イスでき、理想の仕事場、変化に富んだ
職場を素早く構築することができます。

http://www.hermanmiller.com/products/
workspaces/individual-workstations/locale.html

3GADGET

BOOK by FiftyThree

デジタルノートを
リアルなノートに
BOOK by FiftyThreeは、手書き風の仕
上がりが人気のiPad用デジタルペイント
ツールで描いた画像データをアップロード
すると、画像を表紙にプリントアウトした
現物のMoleskineノートを手に入れるこ
とができる安価なサービスです。市販の
Moleskine風の黒い表紙か、カラフル
な印刷でくるんだカスタムカバーか、好き
なほうを選べます。デジタル印刷機HP
Indigoで折りたたみ式の15ページ分が
印刷されます。絵心のある人はプレゼント
にも良さそうです。

https://www.fiftythree.com/book

1GADGET

［H］軽量産業用ロボット「LBR iiwa Robot」
［I］素材選定アプリ「Making of Making」
［J］IDEOが開発した動画クリップ作成アプリ
［K］米国Yahoo!の美しいニュースアプリ
［L］子供用スマートフォンケース
［M］スマートフォンでコントロール可能な電源コンセント

［A］IDEA 2014公式サイト
［B］Teslaの電気自動車用

充電ステーション
［C］消防士用の新型酸素マスク

「DELTAIR」
［D］Hamilton Medicalの可搬用

人工呼吸器
［E］赤ちゃん向け救急セット

「Healthy Baby」
［F］3Dプリンタで作られた

外骨格スーツ
［G］雪山登山用のアタッチメント

「Maglon」

今年の受賞作あれこれ

インダストリアルデザインの
広がり

http://nikemakers.com/

Making of Making Powered
by NIKE MSI

http://www.sparkcamera.com/
Spark Camera

https://mobile.yahoo.com/weather/

Yahoo Weather mobile apps
for iPhone

https://mobile.yahoo.com/newsdigest/
Yahoo News Digest

http://www.leapfrog.com/en-us/store/p/
creativity-camera-protective-case-app/_/
A-prod19234

The LeapFrog
Creativity Camera
Protective Case & App

http://www.belkin.com/us/support-product?
pid=01t80000003JS3FAAW

WeMo Insight Switch

A

E F G

B C D H

L

I J K

M

http://www.idsa.org/awards

http://www.idsa.org/idea-2014-gallery

IDEA 2014公式サイト

23部門の受賞作一覧

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 6 - Software Design

http://www.sparkcamera.com/
https://mobile.yahoo.com/weather/
https://mobile.yahoo.com/newsdigest/
http://www.belkin.com/us/support-product?pid=01t80000003JS3FAAW
http://nikemakers.com/
http://www.leapfrog.com/en-us/store/p/creativit-camera-protective-case-app/_/A-prod19234

　IDEA（International Design
Excellence Awards）は、米国工業
デザイナー協会による、優れたインダ
ストリアルデザインに与えられる賞で
す。経済活動や生活の質にかかわる
インダストリアルデザインの価値をより
広く伝えることを目的に、1980年に
設立されたデザイン賞です。
　金賞、銀賞、銅賞、学生奨励賞が
協会に所属する24名の現役デザイ
ナーの審査員によって選出されます。
今年は数多くの製品の中から、全23
部門、176作品が受賞しました。サイ

トには2001年以来の受賞作が紹介
されており、時代の変遷を知るのにも
役立ちます。
　たとえば、2001年の金賞には、ク
ラシックカーのような風 貌 の 車

「Chrysler PT Cruiser」や、Virgin
Atlantic航空の座席シートなどが受
賞しています。さらに最近では、製品そ
のものとして形があるわけではない、
デジタルデザインに関しても受賞する
製品が増えてきました。

　賞は一部特殊な医療機器などを除
き、米国で一般に販売されている製
品から選出され、インダストリアルデザ
インの価値を一般の消費者とビジネ
ス界にどれだけ伝えられるかが観点と
なっています。単に製品としての材
質、形状や色あいだけではなく、その
製品がもたらす体験的な価値も重視
されているようです。
　カテゴリは、自動車や交通、製造業
（おもに道具）、デザイン戦略、環境、
キッチン、アウトドア、リサーチ、バス
ルーム、コミュニケーションツール、デ
ジタルデザイン、庭、医療と科学、パッ
ケージ、サービスデザイン、スポーツ、

子供向け、コンピュータ関連、エンター
テインメント、家具、オフィス、アクセサ
リ、社会的影響のあるデザイン、学生
によるデザインに分かれます。複数の
カテゴリにノミネートされている製品も
あります。たとえば、社会的影響のあ
るデザインとしては、赤ちゃん用の救
急セット、ケニアの子供たちに衛生的
な水を提供するプロジェクト、3Dプリ
ンタで作られた医療器具などが受賞
しています。
　また、リサーチ部門としては、消防
士が息をしやすくなるよう工夫された
酸素マスク、医療機器の操作改善、
可搬式医療機器の検討、末期患者
のための病院のデザインが受賞。デ
ザイン戦略部門では、電気自動車の
充電ステーション戦略、学校給食の
デザイン、企業のブランド戦略、Eコ
マース戦略が選ばれるなど、多岐に
渡っています。

　今年のIDEA賞は、部門にかかわら
ずスマートフォンアプリが多く受賞して
いました。

素材選定を手助けするためのデザイ
ナー向けアプリ。“乾きやすい”など状
況に適した素材を選択できる

動画クリップ録画アプリ。動画クリッ
プをつなげて活用できる、動画撮影
の概念を覆すツール

美しいお天気アプリ。誰もが使うが、
革新のなかった分野に美しさと新体
験をもたらしたツール

　
ニュースアプリ。今日のニュースを見
終わったという達成感がある、画面を
斜めに切り取った独特のデザインの
アプリ

　また、スマートフォンを活用した周辺
製品も多く受賞していました。

　

スマートフォンにかぶせて子供用カメ

ラに利用するケース。約20ドル。専用
アプリあり

　

家庭用電源コンセントをネット経由で
ON/OFFコントロールできる電源端
子に。約60ドル

　今後もこのように、ネットの世界を
具現化したアプリと現実世界のモノ
をつなぐサービス、すでに存在するさま
ざまなモノをアプリによってより便利に
拡張していくサービスが浸透していく
と思われます。

　IoT（Internet of Things；モノの
インターネット）を始め、今まで単独で
存在していたさまざまな家電機器や、
道具、家具、製品といったものがネット
の世界とつながってきました。それに
対し、ネット上のサービスも、現実世界
といかに連携したサービスであるかが
重視されるようになってきました。
　また、単に必要だから購入される製
品ばかりではなく、娯楽や楽しみのた
めのモノも増え、その一方で最先端の

テクノロジでなければ解決しない道具
や医療機器なども存在します。ユーザ
インターフェースデザインやサービス
デザインも包括しながら、インダストリ
アルデザインの範囲や意味も大きく
広がってきています。
　IDEAのサービスデザイン部門で
は、薬の飲み方に関する新しい提案
やパッケージデザインが考えられたり、
スポーツ部門でも単体のスポーツグッ
ズだけではなく、スポーツで使う通信
機器や、危険回避のためのデジタル
ツールなど、モノ単体だけではない
サービスが増加しています。
　マーケティングの専門家、セオドア・
レビット博士の書籍で、「ドリルを買っ
た人が欲しかったのはドリルではなく
穴である」という言葉が紹介されてい
ます。この言葉はさまざまな製品に当
てはめることができ、その製品にとって
の「穴」が何なのかを考えることで、価
値ある体験が提供できるのだと考え
ます。
　また、高性能で安価な3Dプリンタ
の登場で、試行錯誤のスピードが速く
なったと言われていますが、人間が5
本指の手で扱う限り、形や操作など
に関する知見は、急に変化するもの
でもありません。モノとして触れる道具
などのデザインでは、プログラム次第
で何でも作れるデジタルなデザインと
異なり、生産可能な形状や生産コス
ト、材質、質感、耐久性、パッケージン
グ、流通、販売、サポートなど、デジタ
ルにはないさまざまな要素を持ちま
す。Webデザインなどのデジタルデザ
インも、本のデザインや印刷、フォン
ト、色使いなど過去の遺産が活かされ
ています。
　インダストリアルデザインが持つ、
バランスや質感、道具に対する習熟
度、動作スピードの大切さといった観
点が、デジタルツールにもおおいに活
かせるのではないかと考えています。
｢

IDEA 2014 にみるガジェットプロダクト
インダストリアルデザインの
世界的アワード

安藤 幸央
EXA Corporation

IDEA 2014 にみるガジェットプロダクト

190
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

iPin Laser Presenter

iPhone用レーザーポインタ
iPinはiPhoneのヘッドフォンコネクタに
接続して利用するレーザーポインタです。
ヘッドフォンコネクタからの給電と、専用
アプリによるON/OFFで、プレゼンテー
ションなどに用いる赤色レーザーポインタ
として利用できます。持ち歩きはiPhone
に刺したままで良いですし、バッテリーの
心配もいりません。パッケージも、どんな
働きをする商品なのか一目でわかり、とて
も好感度の高いものです。一方、iPinを
刺したままでは通話ができませんので、注
意が必要です。

http://ipinlaser.com/ipin/

4GADGET

Square Stand

カード決済端末
Square Standはスマートフォンやタブレッ
ト端末で平易にクレジットカード決済でき
るサービスを提供する専用スタンドです。
導入が簡単なタブレット端末で決済が可
能だといっても、タブレットだけでは実際
の店舗の現場では、狭いレジの領域で
混乱を招きます。旧来のレジ端末風のス
タンドを用意することで、信頼感や現場で
の操作感の向上をもたらした、コスト効果
の高いアイデア商品と言えます。Square
Standは実際にSquare社の社員食堂
で使われ、効果が試されているそうです。

https://squareup.com/stand

2GADGET

Locale Office System

組み合わせ自在の
オフィス家具
ハーマンミラー社製のオフィス家具シリー
ズLocale Office Systemは、グループや
チームといった区分、または仕事の状況
やプロジェクトの進行に応じて、オフィス
家具の配置が変えられる組み合わせ式
の家具シリーズです。活発に意見をかわ
したい状況や、集中して仕事がしたい状
況など、ほどよく開放的で、ほどよく閉鎖
的な、微妙な距離感を考慮した家具の
配置が可能になっています。また規模や
数、形態に応じてさまざまなプランをチョ
イスでき、理想の仕事場、変化に富んだ
職場を素早く構築することができます。

http://www.hermanmiller.com/products/
workspaces/individual-workstations/locale.html

3GADGET

BOOK by FiftyThree

デジタルノートを
リアルなノートに
BOOK by FiftyThreeは、手書き風の仕
上がりが人気のiPad用デジタルペイント
ツールで描いた画像データをアップロード
すると、画像を表紙にプリントアウトした
現物のMoleskineノートを手に入れるこ
とができる安価なサービスです。市販の
Moleskine風の黒い表紙か、カラフル
な印刷でくるんだカスタムカバーか、好き
なほうを選べます。デジタル印刷機HP
Indigoで折りたたみ式の15ページ分が
印刷されます。絵心のある人はプレゼント
にも良さそうです。

https://www.fiftythree.com/book

1GADGET

［H］軽量産業用ロボット「LBR iiwa Robot」
［I］素材選定アプリ「Making of Making」
［J］IDEOが開発した動画クリップ作成アプリ
［K］米国Yahoo!の美しいニュースアプリ
［L］子供用スマートフォンケース
［M］スマートフォンでコントロール可能な電源コンセント

［A］IDEA 2014公式サイト
［B］Teslaの電気自動車用

充電ステーション
［C］消防士用の新型酸素マスク

「DELTAIR」
［D］Hamilton Medicalの可搬用

人工呼吸器
［E］赤ちゃん向け救急セット

「Healthy Baby」
［F］3Dプリンタで作られた

外骨格スーツ
［G］雪山登山用のアタッチメント

「Maglon」

今年の受賞作あれこれ

インダストリアルデザインの
広がり

http://nikemakers.com/

Making of Making Powered
by NIKE MSI

http://www.sparkcamera.com/
Spark Camera

https://mobile.yahoo.com/weather/

Yahoo Weather mobile apps
for iPhone

https://mobile.yahoo.com/newsdigest/
Yahoo News Digest

http://www.leapfrog.com/en-us/store/p/
creativity-camera-protective-case-app/_/
A-prod19234

The LeapFrog
Creativity Camera
Protective Case & App

http://www.belkin.com/us/support-product?
pid=01t80000003JS3FAAW

WeMo Insight Switch

A

E F G

B C D H

L

I J K

M

http://www.idsa.org/awards

http://www.idsa.org/idea-2014-gallery

IDEA 2014公式サイト

23部門の受賞作一覧

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 6 - Software Design Oct. 2014 - 7

https://www.fiftythree.com/book
http://www.hermanmiller.com/products/workspaces/individual-workstations/locale.html
https://squareup.com/stand
http://ipinlaser.com/ipin/

8 - Software Design

Template——テンプレート

テンプレートとは

　テンプレート（template）とは、定型的な何
かを作り出すための雛

ひながた

形のことです。
　たとえば製図用具のテンプレートは、丸や四
角などのよく使う図形の部分が穴になった薄い
板です。それを使えば同じ大きさ／同じ形の図
形を手軽に描くことができます。
　Webサービスがユーザに送るメールでは、定
型メールを作るテンプレートを使うことがありま
す。ユーザに送る文章のテンプレートをあらかじ
め用意しておき、実際にメールを送るときに一部
を置き換えるのです。メールに書かれる「日付」や
「ユーザの氏名」などが変数（パラメータ）に
なっており、実際にメールを送るときにその
変数を今日の日付や実際のユーザの氏名で
置き換えます（図1）。こうすれば、人間がメー
ルの文章をいちいち書かなくとも、ユーザご
との文章をコンピュータが自動生成できるこ
とになります。
　Webサイトでは、テンプレートエンジン
と呼ばれるソフトウェアを使うことがあり
ます。たとえば、商品カタログを表示する
Webサイトを考えてみましょう。表示され
る商品名の価格や写真がページごとに異なっ
ていても、それらを表示する位置や大きさ
は同じでしょう。そのようなWebサイトでは、

ページの共通な構造を定義し「商品名／価格／
写真」を変数にしたテンプレートを作っておき、
テンプレートエンジンにその変数を実際の中身
と置き換えてもらえば、ページ作成が容易にな
ります。1つのWebサイト内では、文章や画像
のような「中身」がページごとに異なっていても、
「構造」は同じになっていることが多いものです
から、テンプレートエンジンが活躍するのです。
　プログラミング言語のC++には関数やクラス
を作るテンプレートの機能があります。この機能
を使うと、関数やクラスを書くときに、型の部分
を変数（パラメータ）にできるため、字面上は同じ
でも扱う型が異なるようなコードをうまく扱えま
す。変数の部分はコンパイル時に実際の型で置
き換えられますので、同じようなコードを人間が
書く必要がなくなりますし、それに起因するバグ

Template

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 17

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.

テンプレート

Lorem ipsum [] sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et [] magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea [] consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat [] non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.

変数

 ▼図1　テンプレートと変数

http://www.hyuki.com/

8 - Software Design Oct. 2014 - 9

も少なくなります。
　以上、いくつかの例で示したように、テンプ
レートは定型的な何かを作り出すための雛形で
あり、実際の値で置き換えられる変数（パラメー
タ、穴）を持っています。この変数によって、
定型的ではあっても実際に必要なカスタマイズ
ができるのです。

テンプレートの目的

　テンプレートを使う目的は「労力を減らす」こ
とです。定型的なものを繰り返しゼロから作る
のは労力の無駄ですから、テンプレートによっ
て労力を減らそうというのです。ですから、テ
ンプレートを作るには、まず繰り返しを見つけ
ることが大切になってきます。製図でも、定型メー
ルでも、プログラミングでも、「同じことを繰り
返している」と人間が気づいてはじめて「テンプ
レートを使おう」という発想に至るのです。
　さらに、テンプレートでは、どの部分を変数
にするかという設計判断が重要です。どの部分
を変数にするかは、何度も起きる繰り返しの中
にある繰り返していないところを見つける必要
があるからです。
　テンプレートには、2つの極端な設計方法が
あります。1つは、どんな場合にも対処できる
万能テンプレートを1つ用意して変数を非常に
多くする場合（最大限に汎用化）です。そしても
う1つは、個別のケースすべてにテンプレート
をそれぞれ用意して変数を非常に少なくする場
合（最大限に特殊化）です。現実のテンプレート
は、この2つの間にあるわけですが、唯一の正
解はありません。

日常生活とテンプレート

　日常生活には定型作業の繰り返しがたくさん
あり、テンプレートと見なすことができるもの
も少なくありません。会社や学校での毎日の活
動も、あちこちに繰り返しがありますので、テ
ンプレートを使って定型的な扱いが可能なこと
も多いでしょう。発生する繰り返しにうまく対

処するためのテンプレートがあることは効率化
に役立ちます。
　たとえば、ファーストフードの店頭対応はテ
ンプレートの一種です。「いらっしゃいませ」か
ら始まって「顧客の注文の復唱」「料金の受け取
り」「おつりの支払い」「商品の引き渡し」という
一連の流れは、注文内容や料金を変数としたテ
ンプレートと見なすことができるでしょう。テ
ンプレートがうまく設計されていれば、店員の
能力に大きく依存せずに、多くの顧客を効率よ
くさばくことができます。
　テンプレートをうまく使えば労力を削減でき
ますので、効率を重視する場面ではとくに役に
立ちます。また、良いテンプレートは、活動の
パターンやノウハウがその中に込められますの
で、個人の能力によるバラツキを減らすことも
できます。その一方で、テンプレート化を進め
過ぎると柔軟性を欠き、味気なくなることもある
でしょう。いわゆる「マニュアル化の弊害」ですね。
　たとえば、病院で「問診票に自分の症状など
を記入する」のはテンプレートを活用し、効率
的に話を進めるために有効です。その一方で、
医者が患者の悩みを聞く状況ではテンプレート
の活用がそぐわないこともあるでしょう。たと
え、医者の側にはテンプレートがあったとして
も、その存在を患者に感じさせるのが不適切な
場合もあるということです。
　テンプレートの存在を顧客にわざと感じさせ
ることで「私はこの問題を扱い慣れていますよ」
とアピールできる場合もありますが、逆に「機械
的な対応であり、《私》を特別な存在として扱っ
ていない」という印象を与える場合もあるでしょう。

◆　◆　◆
　あなたの周りを見回して、テンプレートを探
してみてください。それにはどんな変数があり
ますか。また、テンプレートで効率化できるよ
うなものはありませんか。さらに、テンプレー
トの存在をわざと見せているサービス、見せな
いように工夫しているサービスはありますか。
　ぜひ考えてみてください。｢

17

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://teratail.com
http://leverages.jp
http://gihyo.jp/dev/serial/01/teratail

14 - Software Design

　こんにちは。今回は日本を飛び出し

て、モンゴルでの対談です。

（鎌田）ブヤンさんは本当に日本語

が上手ですよね。今回、モンゴルの地

で対談できて、とてもうれしいです。

そもそもブヤンさんが日本に興味を

持ったきっかけは、なんでしょうか？

（ブヤン）まだ高校生のころモン

ゴルの先輩が日本に留学していまし

た。ある日、日本で知り合ったケニ

ア人の学友を連れて、僕の地元に遊

びに来たんです。カルチャーショッ

クでした。それがきっかけで自分も

外国の友達をモンゴルに連れてきた

いと憧れを持っていたんです。そし

て、日本にどうしたら留学できるか

学校の先生に相談したところ僕も日

本に留学できることがわかりました。

僕は田舎育ちですが、モンゴルの都

会であるウランバートルの大学に入

学し、一年勉強した後、日本に留学

することを決めました。日本へ渡り、

日本語学校で日本語漬けになったあ

と、佐世保の工業高等専門学校に進

学しました。日本語がある程度わ

かっていても、先生の授業は100％

日本語ですので、ついていくのがた

いへんで、最初の3ヵ月は苦労しま

した。方言もありましたから（笑）。

苦労されたのですね。そもそもモ

ンゴルの日常生活で、日本の文化に触

れたことはありましたか？

モンゴルでは、NHKの番組が普

通に放送されています。その中で、

日本の一日の生活のスタイルを紹介

しているので親近感があります。一

番大きな影響はNHKで放送してい

たロボコンの大会でした。その番組

ではロボットがバスケットボールを

していて、本当におもしろかった。

それが子供のころの憧れで、佐世保

の高専時代では、もちろんロボコン

に参加しました。夢が実現したんで

す。それと、ウランバートル市街で

は、日本からの観光客が多いので、

日本語をよく耳にします。

モンゴルと、ほかの国とを比較し

て感じたことはありますか？

いろんな国に行ってみて、それ

ぞれの国にはいろんな長所があると

思いました。当たり前ですが地球と

いうのは1つしかないじゃないです

か。僕にとってはクラスメートのよ

うなものだと思うんです。そして自

分のクラスメートの特長を活かすべ

きだと思っています。モンゴルの特

徴は人口が少ないですが、土地は広

く大自然があります。モンゴル人は

少ない資源で人生を豊かにする知恵

があります。そしてもっと幸せを感

じる国にしたいと思っています。あ

わただしくはしたくないです。そし

て世界の一員として何かをするべき

だといつも思っています。

視野が広いですね。そのような考

えを持った理由はなんですか。

僕がそう思うのは両親の影響が

強いと思います。僕の家はおもしろ

いんです。父はトラックの仕事をし

ています。僕の子供のころは、まだ

道路が整備されていなかった。車も

普及していないので、たくさん人が

家に出入りしていたんです。いろい

ろなところへ行き、多くの人と出会

うのですが、父は食事を振る舞うの

が趣味なんです。僕は当時、それが

理解できなかった。「家の食べ物をみ

んなにあげちゃうの？」と質問しまし

た。父は「人生は長いものだよ。人は

ゲスト：シルネン ブヤンジャルガルさん第3献

英語も堪能。「本気で国をよくしたい」と語ります。

シルネン ブヤンジャルガルさん
国籍はモンゴル。日本や米国に留学し、
モノづくりエンジニアが社会を変える
と信じて日本に本格渡航し、約10年。
日本大手メーカー勤務を経て、現在は
USP研究所で海外におけるユニケージ
啓蒙活動に尽力中。同時に母国である
モンゴルで高等専門学校設立事業に参
画。シェルを始めとして「C」や「R」な
どのソフトウェアも得意。

㈲ユニバーサル・シェル・
プログラミング研究所

鎌田 広子（かまた ひろこ）
Twitter：@kamapu

14 - Software Design Oct. 2014 - 15

助け合うものなんだよ」と教えてくれ

ました。子供のころは家の物が盗ら

れたみたいで正直よくわかりません

でした。でも今は理解できます。父

の行動とその言葉に感謝しています。

しっかりした生き方を持ったお父

様だったんですね。モンゴルの方は家

族愛が強いですね。

表には出さないけど、皆、家族

はものすごく強いです。親の面倒を

看るとか、兄弟は助け合うとか。親

にお金がないときには、子供がお金

をあげます。貸すということではな

いんです。家族は皆それぞれ自立し

ていますが、心はつながっています。

僕もいつかは家族を作りたい。でも

今は仕事が忙しくてプライベートの

時間が少ないんです。今、仕事以外

で大事にしたいことは、結婚を前提

におつき合いしている彼女を理解す

ることかもしれない。彼女との時間

をもっと作りたいんですね。これも

大事な仕事かな（笑）。

彼女とはアメリカで知り合ったの

ですよね、アメリカの大学ではどんな

ことを学びましたか。

はい。アメリカで学んだことは、

「世界は小さい。地球は大きくない」

ですね。アメリカにはいろんな国の

人が集まって、みんなが自己実現の

ためにお互いを尊重して、真剣に勉

強しているのを目の当たりにするん

です。その姿を見ること自体が最も

勉強になりました。僕は電子・機械

の専攻だったのですが、分野に限ら

ずアメリカの先生の授業では「なぜ

ですか？」という終わり方をしてい

ました。考えさせる教育をしている

んです。また、アメリカは大学と企

業が一体になっています。企業で実

際に仕事をしている方が教えに来る

ということがよくありました。話が

とてもおもしろかったです。

初めて触ったコンピュータは何で

したか。

Intelの386CPUを積んだパソ

コンでした。一番初めは……ゲーム

をしました（笑）。そのあと、「Pas

cal」を学びました。ウランバートル

の大学で「C」を学び、次に「C++」を

勉強しました。オブジェクト指向の

勉強を多くしましたね。lcalc注1のよ

うなプログラムをCで書いたことが

あります。実際にパソコンで動いた

ときには、とてもおもしろいと感じ

ました。これは仕事とは関係なくコ

ンピュータとプログラミングが純

粋におもしろいと思ったいい経験で

した。

今の仕事（ユニケージと学校設立）

は楽しいですか？　日本人や日本の社

会に期待することなどはありますか？

日本発であるユニケージ注2を

もっと海外に展開したいです。今モ

ンゴルで設立している学校では、ユ

注1）	 シェル上で動作する高精度演算コ
マンド。

注2）	 コマンドを組み合わせてシェルス
クリプトで作る手法。

ニケージを2年生の後半から教える

プログラムを考案中です。ビジネス

も一緒に教えることで、効果が高ま

ると思っています。日本に期待する

ことは、日本人はとても力があるの

でその力を信じていろんなことに挑

戦してほしいということです。日本

人には底力があり、スキルもあると

思います。失敗することがあったと

しても能力を信じて挑戦してほしい。

自分は、失敗は忘れるようにします。

そのほうがいい。

モンゴルは国としてまだ成長しま

すか？

もちろん成長します！　経済発

展して多くの国から人が来て、みな

さんの夢を実現し、ハッピーな国に

なります（笑）。今はまだまだ空港で

両替ができないなどの社会インフラ

の課題があります。空港から変わる

と思いますよ！

それは楽しみですね。モンゴルは

相撲文化も盛んですし、日本のIT業

界とも、盛んな技術交流でもっと仲良

くなるといいですよね。今日はどうも

ありがとうございました。ｨ

16 - Software Design16 - Software Design

はじめに

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 48 回

秋葉原発！

　去る8月2日に、IntelのQuark搭載ボード、
GalileoのGen 2が発売されました（写真1）。従
来発売されていた基板と比較すると少しだけ大
きくなったのですが、パッと見は違いがわかり
づらいです。新しくなったGalileoの何が変
わったのか、また、Galileoの魅力について、今
回は紹介していきたいと思います。

　そういえば、Galileoについては、2013年12
月号の第38回などで少し触れた程度で、具体
的に紹介をしていませんでした。Galileoは、

 ▼写真1　Galileo（上）とGalileo Gen 2（下）

 ▼写真2　Quark X1000

Intelが出すArduino Certifiedなボードです。
Arduino Certifiedというのは、Arduinoが提供
するプログラムの名前で、Arduinoが出してい
るIDEでサポートされていなかったCPUを搭
載したボード向けに、Arduinoの基本的な機能
の互換性があることの認定を提供するもので
す。つまり、GalileoはArduinoと一定の互換性
があることが確認されています。実際、Galileo
専用のものですが、Arduino IDEを使って
Galileoで動くスケッチを書き、コンパイルと
転送を行うことができます。
　Galileoには、Intel Quark X1000という低消
費電力プロセッサが搭載されています（写真
2）。このQuark X1000は、32bitのPentium命
令セットという懐かしい仕様ですが、Atomの
1/10程度の低消費電力が特徴です。また、SoC
（System-on-a-Chip）ということで使うために
必要になる周辺回路が少なくなっています。写
真を見ると、PentiumクラスのCPUが載ってい
る基板なのに、真ん中のCPUと、その右の
DDR3メモリ、Ethernetコネクタの左のPHY
（Ethernetの物理層を担当するチップ）くらい

Galileoとは

Intel Galileo Gen 2とRaspberry Pi Model B+

http://www.switch-science.com/

16 - Software Design Oct. 2014 - 17

第 48 回

16 - Software Design

しかx86のマザーボードを構成するチップがあ
りません。
　Galileoのボード自体はLinuxが走るように
なっており、ArduinoのスケッチはLinuxの
ユーザランドで動くアプリケーションにコンパ
イルされます。先ほど記したように、Quark
X1000はPentium命令セットが採用されてい
ますので、i586用のgccがArduino IDEに同梱
されており、このコンパイラでバイナリがビル
ドされます。
　Galileoは従来のArduinoのシールドを搭載
できるようにコネクタが配置されています。
Arduinoといえばたいてい5Vですが、この連
載でも触れているように最近の半導体は3.3V
のものが多くなってきています。Galileoは5V
と3.3Vが切り替えられるようになっており、
とても便利そうです。Linuxが動く、電子工作
やIoT（Internet of Things：モノのインター
ネット）用のボードというと、Raspberry Piが
有名どころです。実際、Raspberry Piと
Galileoの違いについて尋ねられることがよく
あります。Raspberry Piは、ARM11ファミリ
のCPUが搭載されています。このARM11と
いうのは、NASやルータなどの組み込みLinux
機器のCPUによく採用されているCPUコアで
す。一方でGalileoは先述のようにPentium
命令セット、つまりx86アーキテクチャの
ボードです。MicrosoftがWindows Developer
Program for IoTというプログラム注1で、IoT専
用のWindowsをGalileoで実行して、Visual
StudioでWin32環境で開発を行えるしくみを
提供しています。
　Windowsと聞くと、いつも我々が使ってい
るWindows 7や8のようなGUI環境を想像し
てしまうかもしれません。しかし、“for IoT”
とついているように、Galileo用に配布されてい
るWindowsは別の製品です。Windows Server
のServer Coreのように、Windowsのコア部分

注1） https://dev.windows.com/en-us/featured/Windows-
Developer-Program-for-IoT

Gen 2で何が変わった

をGalileoで実行して、GUIはなく、telnetでコ
マンドラインにアクセスすることが可能な
Windowsです。そもそも、Galileoには、Rasp
berry Piのようにディスプレイを接続する端子
はありません。
　先述のようにVisual Studio環境を使うこと
ができ、リモートデバッグができますから、デ
バッグ環境のないArduinoからすると、なかな
かおもしろい環境が手に入ります。筆者はあま
り馴染みがないのですが、日頃Visual Studio
を使って開発している方にはとても親しみやす
い開発環境なのだろうと思います。やはり道具
は馴染みのあるものがよいですからね。

　Gen 2は、基本的には最初のGalileoのイケ
ていなかった点が修正されたような製品です。
　最初のGalileoの最もよくなかった点は、
GPIO（General Purpose Input/Output：汎用入
出力）が低速だということでした。当たり前で
すが、GalileoのCPU、Quark X1000はArduino
のCPUであるATmega328Pの100倍くらい速
いです。しかし、最初のGalileoのGPIOは、
Arduinoより50倍程度遅かったのです。最初
のGalileoはGPIOエクスパンダというチップ
を使ってGPIOを搭載していたため、どうして
も処理が低速になってしまっていました。Gen
2では、このGPIOエクスパンダを経由せずに
Quark X1000のGPIOを直接使うように仕様
変更（図1）がなされたため、このGPIOの速度
問題が解決されています注2。
　Galileoで動いているLinuxにログインする
には、telnetなどのネットワーク越しか、シリ
アルコンソールを使います。このシリアルコン
ソールのシリアル端子が、最初のGalileoでは、
3.5mmミニジャックの形状をしており、なおか
つ、信号レベルがRS-232Cという仕様でした。
ネットワーク機器であれば、RS-232Cという仕

注2） ただし、D7とD8、A0～A5は、Gen 2でもGPIOエクス
パンダ経由です。

Intel Galileo Gen 2とRaspberry Pi Model B+

https://dev.windows.com/en-us/featured/Windows-Developer-Program-for-IoT

18 - Software Design

はんだづけカフェなう
秋葉原発！

様のものが一般的ですが、マイコンボードでは
一般的に5Vや3.3Vの信号電圧のシリアル
（UART）でシリアルコンソールにアクセスしま
す。最初のGalileoのこの仕様が、マイコン
ボードを使っている人たちには不評でした。
Gen 2では、この仕様が改められ、FTDI USB-
シリアル変換アダプタ互換配列のピンヘッダに
なりました（写真3）。信号レベルは3.3Vです
ので、マイコンを使う人であればたいていは
持っているであろう、シリアル変換アダプタを
使ってシリアルコンソールに接続できるように

なります。
　また、Gen 2では、電源の仕様も大きく変更
されました。最初のGalileoでは、5VのACア
ダプタが添付されており、5V専用でした。これ
に対して、Gen 2は、7～15Vという仕様に変
更されました。添付のACアダプタも12Vに
なっています。ここまでは大した違いではない
のですが、Gen 2は、SilvertelのAg9712-Sと
いうPoE（Power Over Ethernet）モジュールを
写真4の部分に取り付けることで、IEEE
802.3afのPoEに対応して受電をさせることが

 ▼写真3　Gen2のシリアルコンソール ▼写真4　PoEモジュールを取り付ける場所

Intel Galileo Board Fab H
May/2014

IOREF Jumper selects 3.3V or 5V
Shield Operation - Provides voltage

level translation on all IO pins

3.3V

5V

VIN (7V to 15V)

1

2

3

4

5

6

7

8

IOREF

P
O

W
ER

RESET

3.3V

5V

GND

GND

10/100
Ethernet RMⅡ

JTAG

ICSP IOREF
(5V or 3.3V)

5V
~IO11/MOSI

GND

SCL

SDA

AREF

GND

IO13/SCK

IO12/MISD
~IO11/MOSI
~IO10/SS
~IO9

IO8

A0

A1

A2

A3

A4

A5

IO7
~IO6
~IO5

IO4
~IO3/TX1 →

IO2/RX1 ←

IO1/TX0 →

IO0/RX0 ←

MISO/IO12

SCK/IO13

RESET

2

4

6 1

2

3

4

5

6

10

9

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

1

3

5

LSPI

25MHz

32.768K
H

z

PCIe
USB1

USB0

SDIO

Client USB

UART1

UART1

GPIO

3

3

4

5

6

6

7

SPI1

I2C

SPI0

GPIO

6-pin FTDI
3.3V TTL cable

header

UART0

C
TS#

TXO

R
XI

R
TS#

G
N

DHost USB
Full size
Type-A

Client
USB

Micro
Type-B

PHY

RTC BAT

DDR3

x8

7V to 15V Brick Power Supply

- And -

Power Over Ethernet support (12V)

DDR3

x8
256 MB

DEDIPROG

Mini-PCIe

Micro SD
Connector

VIN

A
N

A
LO

G
 / D

IG
ITA

L
D

IG
ITA

L (P
M

W
)

 Fast D
igital IO

FLA
SH

Intel® Quark™
X1000

Application
Processor

A
D

C
G

P
IO

 Exp
P

W
M

M
U

X
/SH

IFT
M

U
X

/SH
IFT

M
U

X
/SH

IFT
G

P
IO

 Exp

 ▼図1　Galileo Gen 2のブロック図

18 - Software Design Oct. 2014 - 19

第 48 回

まとめ

Raspberry Pi Model B+

とよいですね。
　以前のRaspberry Piは基板の4辺からコネ
クタがせり出していて、なんだか騒がしかった
のですが、2辺にまとまってかなりスッキリし
ました。また、Type Bは、SDカードを挿すよ
うになっていて、これがとても飛び出ていたの
ですが、Model B+ではmicroSDになり、飛び
出る部分もとても少なくなりました。
　Raspberry Pi Model B+が発表されたとほぼ
同時に、Raspberry Piにアドオンする基板のた
めの「HAT」（Hardware Attached on Top）とい
う規格が発表されました。Raspberry Pi側から
どんな基板がつながっているかわかるようにす
るためのEEPROMの搭載が必須になるなど、
よりユーザが使いやすくなる工夫がなされた
分、設計や製造には一手間増えるのではないか
と思います。Raspberry Piのブログ記事による
と、この仕様は開発業者に強制するものではな
いが、この規格に準拠していないものにHAT
という名称は使えないということです。

　Galileoを触るのが忙しくて、Raspberry Piの
ほうはあまり触っていないので紹介が短くなっ
てしまいすみません。また、この連載でも、
GalileoやRaspberry Piを使って作ったものを
紹介していきたいと思います。ｨ

できます。とてもIoTボードらしくなりました。
　以上の3つからすると、あまり大きな違いで
はないのですが、地味に便利なのがUSBホス
ト端子の仕様変更です。最初のGalileoは、こ
の端子がMicro-Aだったため、USB接続の装置
を接続しようとするとたいていは変換ケーブル
が必要でした。しかし、Gen 2からはスタン
ダードAですので、たいていの機器をそのま
まGalileoに接続できます（写真5）。

　Galileo Gen 2の発売よりも少し前、Raspberry
Piの新型、Model B+も発売されました（写真6）。
こちらはGalileoのGen 2ほどの大きな違いはあ
りませんが、いくつか改良が施されています。
　GPIO端子がModel Bの26ピンから40ピン
に大幅に増えました。といっても、Galileoのよ
うに構成が変更されたわけではないです。従来
の26ピンの部分は変更されていませんので、
従来のRaspberry Pi用の小基板はそのまま接
続できます。
　Model B+では、端子類が整理されました。
USBポートが4つになったり、コンポジット
ビデオ端子がなくなってイヤフォンジャックに
統合されました。このUSBポートの数が増え
たのと同時に、どうやらType Bの泣き所で
あった電源の問題も改善されているようです。
Type Bでは、電力を要するUSB機器を接続す
るとRaspberry Piが不安定になったのですが、
Model B+ではこの問題が起きなくなっている

 ▼写真5　USBレセプタクル

 ▼写真6　Model B+（左）Type B（右）

Intel Galileo Gen 2とRaspberry Pi Model B+

20 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ

SSD370
64GB モデル

ノートパソコンに最適な、軽くてコンパクトな SSD。規格は SATA Ⅱ
6Gb/s、サイズは 2.5 インチで 7mm 厚。最大で毎秒 570MB の読み
出し／ 470MB の書き込み速度を実現できます。「DevSleep モード」
により消費電力を抑え、より短い時間で動作モードに復帰できます。
 提供元 トランセンドジャパン　 URL http://jp.transcend-info.com/

Vim script
テクニックバイブル
Vim script サポーターズ 著／
A5 判、320 ページ／
ISBN ＝ 978-4-7741-6634-6

Vim をより使いこなしたい人を対象とした、Vim script の入門書で
す。既存のプラグインをカスタマイズしたり、新たに作ったりして、
自分だけの Vim エディタにカスタマイズしましょう。
 提供元 技術評論社　 URL http://gihyo.jp/

ブーメラン型のドッキングステーション。
USB3.0 でパソコンと接続し、ほかのインター
フェースを USB 経由で利用できる。インター
フェースは、HDMI ／マイク・スピーカー端
子／ VGA ／ Ethernet ／ 4 つの USB3.0 ty
peA（うち 2 つは 1.5A 出力充電可）です。
 提供元 加賀ハイテック
 URL http://www.j5create.com/jpn/

『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2014 年 10月 17日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

Java8 ではじめる
「ラムダ式」

清水 美樹 著／
A5 判、192 ページ／
ISBN ＝ 978-4-7775-1841-8

Java 8 から追加された「ラムダ式」を学ぶ本。Java の従来の記法と、
ラムダ式で書かれたコードを比較しながら解説しています。ラムダ
式に深く関わる Java 8 からの新 API の紹介もされています。
 提供元 工学社　 URL http://www.kohgakusha.co.jp/

エンジニアのための
フィードバック制御入門
Philipp K. Janert 著／
野原 勉 監訳／星 義克、米元 謙介 訳／
A5 判、344 ページ／
ISBN ＝ 978-4-87311-684-6

ソフトウェアエンジニアに向けて書かれた、「フィードバック制御」の
入門書。Python のシミュレーションコードを使って、フィードバッ
ク原理を、ソフトウェアシステムに活用する方法を解説しています。
 提供元 オライリー・ジャパン　 URL http://www.oreilly.co.jp

超ホーダイ 1 年版
（パッケージ版）

120 本以上のソフトウェアを、自由に選んで使えるサービスです。
パッケージ版には PIN 番号が封入されており、インターネット経由
でソフトウェアをダウンロードできます。1 年間の期限で、新たな製
品のダウンロード、インストール済み製品の起動ができます。
 提供元 ソースネクスト　 URL http://www.sourcenext.com/

Hinemos 統合管理
[実践] 入門
倉田 晃次、澤井 健、幸坂 大輔 著／
B5 変形判、520 ページ／
ISBN ＝ 978-4-7741-6984-2

オープンソースの統合管理システム「Hinemos」の入門書です。想
定される事例に基づいた、実践的な運用方法を学べます。現在
Hinemos の導入を検討されている方にもお勧めです。
 提供元 技術評論社　 URL http://gihyo.jp/

ドッキングステーション
BOOMERANG JUD480

1 名

1 名

2 名

2 名

2 名

2 名 2 名

http://sd.gihyo.jp/
http://www.j5create.com/jpn/
http://jp.transcend-info.com/
http://www.sourcenext.com/
http://www.kohgakusha.co.jp/
http://www.oreilly.co.jp
http://gihyo.jp/
http://gihyo.jp/

第1特集

p.22

p.35

p.46

p.55

復習「総称型」「コレクション」「列挙型」……

Stream APIと組み合わせて活用！

自分に合ったIDEを見つけよう

メモリ不足、無応答、スローダウンに備える

Java 5/6/7の機能にみるリファクタリングの要点

業務アプリケーションにも使えるJava 8のラムダ式

Eclipseだけじゃない！　今どきの統合開発環境

トラブル時に頼りになるJDKの解析ツール

第 章

第 章

1996年に公開されて以来、Javaは今でも機能が追加／改善されています。2014年3月にはJava
SE 8（以下、Java 8）もリリースされました。しかし、ユーザ数の多いプログラミング言語だけあって、
基本的な文法だけでコーディングしている初心者や、昔ながらの機能だけでずっと開発しているベテラン
など、新しい機能を使いこなせていない人もいるかもしれません。本特集では、プログラミング技法、統
合開発環境、トラブルシューティングのそれぞれにおいて、Javaの新しい便利な機能をあらためて整理し
ます。この機会に、「自分はJavaの力を発揮しきれているか」を確認してみてください。

言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？

今ふたたびのJava

大谷 弘喜

池添 明宏

今井 勝信

上妻 宜人

イラスト　高野 涼香

第 章

第 章

22 - Software Design Oct. 2014 - 23

第1特集
言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

総称型

　総称型（ジェネリック型）が導入されたのは
Java 5です。総称型は、Java以外のC++やC#
など、ほかの言語でも利用されているしくみで
す。汎用的なクラスを特定の型に縛るために利
用します。ちょっと難しいので、具体的なコー
ドを見ながら総称型を理解しましょう。
　Java 5以前の環境でListインターフェース
を扱う場合、リスト1のように利用します。
　①でArrayListオブジェクトを作成して、②
で“Hello”と“World”の2つの文字列を追加して
います。このとき、追加した2つの文字列は
Object型として扱われます。③では、②で追
加した文字列のうち、0番目の値をgetメソッ
ドで取得しています。getメソッドの戻り値は
Object型ですので、文字列変数strに代入する
ためにはダウンキャストする必要があります。
　しかし、②で追加するオブジェクトはObject
型ですので、Integer型のオブジェクトなど、
どのようなオブジェクトでも追加できてしまい
ます。②でString型以外の値を追加した場合、
③で IntegerオブジェクトをString型にダウン
キャストして代入しようとすると、実行時に

ClassCastExceptionが発生しエラーになります。
　このように、Listに追加されるオブジェクト
の型と取得する型が実行時にしか判別できない
と、バグのあるコードが顧客先に納入される可
能性もあります。総称型は、汎用的なList型
に入出力できる値を特定の型に縛り、不用意な
値の入出力を抑制するためのしくみです。それ
では、リスト1のコードを総称型を利用して書
き換えてみましょう。
　リスト2の④では、総称型で型引数にString
型を指定してListオブジェクトを作成しています。
型引数とは、総称型に注入する型です。つまり、
Listオブジェクトが扱える型をStringに限定し
ています。⑤では作成した listオブジェクトに
“Hello”と“World”の2つの文字列を追加してい
ます。このときに、list.add(0)のようにString型
以外を指定すると、コンパイル時にエラーが発
生します。⑥で、getメソッドで listのインデッ
クス番号0の位置の値を取得しています。List
<String>が扱う型はString型に限定されるので、
ダウンキャストの必要がなく、安全にリストを
扱えます。
　このように総称型を使うことで、次のような
メリットがあります。

リスト1　Java 5以前のListの使用 ▼

List list = new ArrayList(); ←①
list.add("Hello"); ②
list.add("World");

String str = (String) list.get(0); ←③

リスト2　総称型を利用してListを使用 ▼

List<String> list = new ArrayList<String>(); ←④
list.add("Hello"); ⑤list.add("World");

String str = list.get(0); ←⑥

復習「総称型」「コレクション」「列挙型」……

Java 5/6/7の機能にみる
リファクタリングの要点
業務でずっとJavaを使っていると、古いJDK（Java Development Kit）を使い続けてい
たり、新しく追加された便利な機能を使わずに古いコードのままだったりしませんか？
本章では、Java 5/6/7で追加されたおもな機能を紹介します。日々のコードを見直すきっ
かけにしてみてください。

●アリエル・ネットワーク㈱　大谷 弘喜（おおたに ひろき）

第 章

22 - Software Design Oct. 2014 - 23

・ダウンキャストが必要なく、型安全である
・型の指定を間違えるとコンパイル時にエラー
が発生する

・コレクションで扱う集合などで、扱っている
型を明示できる

総称型によるクラス定義

　リスト2では、既存の総称型インターフェース
であるListを使いましたが、自分で総称型のク
ラスやインターフェースを定義する場合は、リス
ト3のように記述します。クラス名のあとに<>を
記述し、その中に型変数を指定します。型変数
とは、型（クラスやインターフェース）をパラメー
タ化したもので、型を変数のように扱えます。
　型引数は、総称型のクラスやメソッドを利用
するときに型を特定するための名前です。一方、
型変数は、総称型のクラスやメソッドを定義す
るときに利用します。名前が似ているので注意
してください。慣例的に、型変数にはTやEを
使うことが多いです。それぞれTypeやElement
の頭文字に由来します。型変数は2つ以上指定
できます。その場合は、「,」で区切ります。
　2つの値を保持できるPairクラスは、総称型

を使うとリスト4のように書きます。（1）では、
型変数にLとRの2つを指定しています。（2）
と（3）はPairクラスが内部に持つデータです。
2つの変数の型は、型変数で指定したLとRで
す。（4）のPairクラスのコンストラクタでは、
型変数で指定した型の変数を受け取ります。L
とRの具体的な型は、「new Pair<String,
Integer>("foo", 1);」のように、インスタ
ンス化時に決定されます。このように総称型で
は型をパラメータ（変数）のように扱えます。

制限付きパラメータ
　総称型で型変数を定義するときに、リスト4
のように総称型を定義すると、型引数としてプ
リミティブ以外のすべての型を指定することが
できます。しかし、実際に利用するときはある
特定のクラス、またはその派生クラスに限定し
たい場合があります。利用するクラスを限定す
ることで、そのクラスが持つメソッドを実行で
きるようになります。インスタンス化で指定し
たクラス以外の型を指定すると、コンパイル時
にエラーが発生します。
　リスト5のコードは、Pairクラスの型Lを

リスト3　総称型によるクラス定義 ▼

public class クラス名 <型変数> {
 private 型変数 var;
 public void setVar(型変数 var) {
 this.var = var;
 }
 public 型変数 getVar() {
 return this.var;
 }
}

リスト4　総称型によるPairクラス ▼

public class Pair<L, R> { //（1）型LとRを利用することを宣言
 private L l; //（2）型Lの変数宣言
 private R r; //（3）型Rの変数宣言
 public Pair(L l, R r) { //（4）型LとRの2つの変数を引数に初期化
 this.l = l;
 this.r = r;
 }
 public L getLeft() { return l; }
 public R getRight() { return r; }
}

リスト5　extendsで制限を付けたPairクラス ▼

public class Pair<L extends Number, R> { // （5）型LはNumber型の派生クラスに限定
 private L l; // 型Lの変数宣言
 private R r; // 型Rの変数宣言
 public Pair(L l, R r) { // 型LとRの2つの変数を引数に初期化
 this.l = l;
 this.r = r;
 }
 public L getLeft() {
 System.out.println(l.intValue()); // （6）型LのintValueメソッドをコール
 return l;
 }
 pulbic R getRight() { return r; }
}

復習「総称型」「コレクション」「列挙型」……

Java 5/6/7の機能にみるリファクタリングの要点 第 章

24 - Software Design Oct. 2014 - 25

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

Numberクラス、またはその派生クラスに限定
しています。getLeftメソッドをコールすると、
標準出力にNumberクラスの intValueメソッド
を呼び出して出力します。
　（5）では、Lは制限付きパラメータとして型
変数を指定されています。制限付きパラメータ
は「型変数 extends 基底クラス」という構文
になります。基底クラスには、クラスだけでな
くインターフェースも指定できます。制限付き
パラメータの定義では、クラスを定義するとき
とは違い、インターフェースを使用する場合で
も extendsを指定します。（6）では、intValue
メソッドを呼び出しています。変数 lの基底ク
ラスはNumber型です。そのため、Number型
が持つ intValueメソッドを呼び出せます。

総称型で定義されたクラスの利用
　総称型で定義されたクラスを利用する場合は
リスト6のように記述します。
　先ほどのPairクラスを利用する場合はリス
ト7のようになります。今回はPairクラスで
型引数として、<>内に数値型と文字列型を指
定しています。コンストラクタでは、数値の1
と文字列の fooを指定しています。
　さて、総称型を使ったクラスをインスタンス
化するときに、引数の宣言と実際のコンストラ
クタに型引数を二重に指定するのは煩雑です。
Java 7からは、この手間を低減するためにダイ
ヤモンドオペレータが導入されました。これに
よりインスタンス化するときの型引数を「<>」
のように指定して、実際の型の指定を省略でき
ます。リスト8はダイヤモンドオペレータを利

用してインスタンス化しています。
　今回は型引数が Integer型とString型だけで
したが、指定する型が総称型の場合、このシン
タックスシュガー注1は威力を発揮します。た
とえば、PairがList<String>を保持するオブ
ジェクトをインスタンス化する場合は、リスト
9のようなコードになります。<>の中がかなり
長くなり、可読性が悪いです。
　これをダイヤモンドオペレータを使うと、リ
スト10のようにシンプルになります。Pairオ
ブジェクトの型は、宣言を見ればわかるので、
具体的にどのようにインスタンス化されるか、
プログラマは意識する必要がありません。

メソッドでの利用

　総称型はクラスだけでなく、メソッドに対し
ても利用できます。型宣言は、次のようにメソッ
ドの戻り値の型の直前で指定します。

public <T> T method()

　それでは、具体的にコードを書いてみましょ
う。リスト11は、配列を引数に渡して、その
中央の値を取得するメソッドです。
　⑦の<T>で型変数Tを指定しています。そ
れ以外は通常のクラスでの型変数と同じように
使用します。
　型引数を用いたメソッドの呼び出しは、総称型
のクラスを利用するときよりも簡単です。リスト

注1） 元からある構文をより簡単に読み書きできるようにするために導入された構文。

リスト6　総称型で定義されたクラスを利用 ▼

クラス名<型引数> var = new クラス名<型引数>(引数...);

リスト7　Pairクラスの利用 ▼

Pair<Integer, String> pair = new Pair<Integer, ｭ
String>(1, "foo");

リスト8　ダイヤモンドオペレータの利用 ▼

Pair<Integer, String> pair = new Pair<>(1, "foo");

リスト9　List<String>を保持するPairオブジェクト ▼
のインスタンス化

Pair<List<String>, List<String>> pair = new ｭ
Pair<List<String>, List<String>>();

リスト10　Pairオブジェクトのインスタンス化（ダイ ▼
ヤモンドオペレータ使用）

Pair<List<String>, List<String>> pair = new Pair<>();

24 - Software Design Oct. 2014 - 25

12の⑧では、リスト11で定義したgetMiddleメソッ
ドを呼び出しています。総称型のクラスのときと
は違って、明示的に型引数を指定する必要はあり
ません。メソッドでの型引数は自動で判断されます。
　また、リスト13の⑨のようにメソッドの直
前で型指定を行うことで、明示的に型引数を指
定することもできます。

総称型ではできないこと、
制限的なこと

　総称型はとても便利な機能ですが、次のよう
な制約もあります。

・型引数を使ってインスタンス化できない
・型引数を使ってinstanceofでの型チェック
ができない

・共変でない注2

コレクションAPI

　Java 5以降、コレクションAPIは拡張されて
います。第2章で説明するJava 8でもストリーム
機能のためにコレクションAPIは拡張されてい
ます。ここでは、代表的なコレクションクラスの
ListとSet、Mapの簡単な使用方法を説明します。

List

　複数件の要素を扱う場合、配列を利用するプ
ログラマも多いです。事前に配列のサイズがわ
かっている場合や、配列の途中に要素を挿入／
削除しない場合は、配列での操作で十分です。
しかし、サイズが不定の場合や、要素の挿入や
削除を行う場合は、配列を利用するとコードが
煩雑になります。そのような順序付けされた要
素を扱うためのデータ型が java.util.List型です。
　List型はおもに次の機能を提供します。

・インデックスによる要素へのアクセス
・要素の指定位置への追加／削除

　java.util.Listはインターフェースです。使用
する場合は、java.util.ArrayListや java.util.
LinkedListを使います。実際に要素を扱うア
ルゴリズムによって使用するList型の具象ク
ラスを選択します。
　ArrayListは内部の要素を配列で保持して、
要素の追加時に配列のサイズが不足している場

合は、配列のサイズを自動で拡張します。内部
データを配列で保持するので、配列の途中への
要素の挿入や削除はコストがかかります。一方
で、インデックスを指定した要素のアクセスは
高速に行えます。
　LinkedListはリンクリストの実装です。Array
Listと違い、指定位置への要素の追加／削除が
高速です。ArrayListのように配列の拡張によ
るオーバーヘッドが発生しないため、要素の追
加は常に一定速度になります。一方で、インデッ
クス指定での要素へのアクセスはArrayListよ
り遅くなります。
　それでは、Listを使って要素の追加、取得、
削除を見てみましょう。
　リスト14の①ではArrayListをインスタンス
化しています。②では、listの末尾に要素を追加
しています。③のaddメソッドは、要素の挿入位
置を指定して追加しています。この場合はリスト
の先頭（インデックスが0番目の位置）に、要素を

注2 ） List<Integer>を Integerの基底クラスであるNumberを使ったList<Number>などにキャストできない。

リスト11　中央値を取得するメソッド ▼

public class A {
 public static <T> T getMiddle(T[] args) { ←⑦
 return args[args.length/2];
 }
}

リスト12　総称型を用いたメソッドの呼び出し ▼

String[] array = new String[] {"foo", "bar", "bazz"};
System.out.println(A.getMiddle(array)); ←⑧

リスト13　型指定で総称型を用いたメソッドの呼び出し ▼

String[] array = new String[] {"foo", "bar", "bazz"};
System.out.println(A.<String>getMiddle(array)); ←⑨

復習「総称型」「コレクション」「列挙型」……

Java 5/6/7の機能にみるリファクタリングの要点 第 章

26 - Software Design

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる

追加しています。このため、listのデータは、
「"bar","foo"」になります。④では指定したインデッ
クスの要素を取得しています。この場合は、0番
目の要素を指定しているのでbarが返ります。
Listのインデックスは配列と同様に0から開始し
ます。⑤ではインデックスで指定した位置の要
素を削除しています。この場合はインデックスが
1ですので、リストの末尾のデータを削除してい
ます。結果としてlistのデータは、「"bar"」になり
ます。⑥では、リストの要素数を取得しています。
⑤で要素を削除したので、ここでは1になります。

Set

　Setは重複要素のないデータの集合を扱いま
す。重複要素とは、オブジェクトをequalsメソッ
ドで比較して等価である状態です。List型と違
い、通常、Set型では順番は保持されません。
ただし、java.util.SortedSetを使うとSetに追
加したデータは、ソートされた順番に並び替え
られます。Setが保持するデータに順番にアク
セスする場合は、List型と違いインデックスに
よるアクセスはできません。後述するイテレー
タを使い、集合を順番になめていきます。

　リスト15は2つのSetのオブジェクトを作成して、
それぞれに文字列を追加しています。次に2つの
Setから共通する文字列だけを選別しています。
　リスト15の⑦で文字列型を保持するHashSet
をインスタンス化しています。⑧では、⑦で作成
したオブジェクトに文字列を追加しています。s1
には「"a","b","c","b"」の4つの文字列を追加してい
ますが、Setは重複要素を保持しないため、
「"a","b","c"」の3つの要素だけを保持します。
　⑨では、2つのSetのオブジェクトから、共通
の要素だけを選別してしています。この場合は、
「"a","b","c"」と「"b","c","d"」の2つの集合のうち、共
通するものは"b"と"c"ですので、s1は"b"と"c"を
保持します。
　⑩のcontainsメソッドで、指定した要素が集
合に存在するかを確認しています。"a"という
要素は存在しないので falseが返ります。"b"と
いう要素は存在しているので、trueになります。
　⑪では、イテレータ（後述）を使用してSetの
集合にアクセスしています。

Map

　Mapは、キーに関連付けされた値（データ）の
集合を扱うデータ構造です。Mapにデータを格
納するときに、値に対応するキーを一緒に登録
します。Mapからデータを取得するときは、登
録時に使用したキーを用いて値を取得します。
　Map型の具象クラスには、java.util.HashMap
や java.util.TreeMap、java.util.LinkedHashMap
などがあります。Setと同様に通常はMapも順
序を保持しませんが、LinkedHashMapは順序
を持ちます。
　リスト16はMapにデータを挿入して、取得
しています。⑫では、HashMapをインスタン
ス化しています。HashMapはハッシュテーブ
ルのアルゴリズムを利用したMapの実装です。
ここでは、キーとバリュー、それぞれに文字列
を指定しています。⑬ではputメソッドでマッ
プにデータを格納しています。List型やSet型
と違い、Map型ではデータの追加はaddメソッ

 ▼リスト14　Listの使用例

List<String> list = new ArrayList<>() ←①
list.add("foo"); ←②
list.add(0, "bar"); ←③

String str = list.get(0); ←④
System.out.println(str);

list.remove(1); ←⑤
int size = list.size(); ←⑥
System.out.println(size);

 ▼リスト15　Setの使用例

Set<String> s1 = new HashSet<>();
Set<String> s2 = new HashSet<>();
s1.addAll(Arrays.asList("a", "b", "c", "b"));
s2.addAll(Arrays.asList("b", "c", "d"));

s1.retainAll(s2); ←⑨
System.out.println(s1.contains("a"));
System.out.println(s1.contains("b"));
for (Iterator<String> it = s1.iterator(); it.hasNext();) {
 String str = it.next();
 System.out.println(str);
} ⑪

⑦

⑧

⑩

26 - Software Design Oct. 2014 - 27

ドではなく、putメソッドを使用します。put
の第1引数がキー、第2引数がキーに関連付け
られた値になります。ここでは、キーに英語の
曜日を表す文字列、値には日本語の曜日を表す
文字列を指定して追加しています。
　⑭でgetメソッドでキーに対応付けられた値
を取得しています。キー"Sunday"に対応付け
られた値は "日曜日 "ですので、ここでは「日曜
日」が出力されます。次に、"Someday"に対応
するキーは見つからないので、ここではnullが
返ります。

Java 8のgetOrDefaultメソッド
　たとえば、英文の中の各単語の出現頻度を算
出する場合、単語をキーにその出現頻度を値と
して格納するマップをデータ構造として使用す
ることが多いと思います。その場合、リスト
17注3のようにnullチェックを行ってマップに
出現頻度を保持します。
　⑮でwordに対応する出現頻度を取得します。

⑯ではmap内にデータがまだ存在しない場合は、
countを0で初期化します（⑰）。⑱では、count
をインクリメントして、マップに単語をキーに
出現頻度を格納しています。
　この処理フローは、プログラミングの現場で
はよく見かけます。そこで、Java 8ではgetOr
Defaultメソッドが追加されました（リスト18）。
getOrDefaultメソッドは、指定したキー（key）
が存在すれば、それに関連付けられた値が取得
できます。もし、キーが存在しない場合は、引
数（defaultValue）に指定したデフォルト値が使
用されます。
　それでは、リスト17のコードをgetOrDefaultメ
ソッドを用いて書き換えてみましょう（リスト19）。
　リスト17では4行（⑮、⑯、⑰の処理）に渡っ
ていたコードが、getOrDefaultメソッドを使うこ
とでリスト19の⑲のように1行で簡潔に記述でき
ます。また、処理の流れもより明確になります。

イテレータ

　イテレーションとは、コレクションの要素を
順番にアクセスするしくみです。
　配列の場合は、リスト20のように配列の長

注3 ） リスト17とリスト19では、「拡張 forループ」という書き方で繰り返し処理を書いています。拡張 forループについては後で説明を
行います。ここでは for文の内側の処理に注目してください。

 ▼リスト17　単語の出現頻度をカウント

public Map<String, Integer> getFrequency(String[] ｭ
words) {
 Map<String, Integer> map = new HashMap<>();
 for (String word: words) {
 Integer count = map.get(word); ←⑮
 if (count == null) { ←⑯
 count = 0; ←⑰
 }
 map.put(word, ++count); ←⑱
 }
 return map;
}

 ▼リスト19　単語の出現頻度をカウント（getOrDefault版）

public Map<String, Integer> getFrequency(String[] ｭ
words) {
 Map<String, Integer> map = new HashMap<>();
 for (String word: words) {
 Integer count = map.getOrDefult(word, 0); ←⑲
 map.put(word, ++count);
 }
 return map;
}

 ▼リスト18　getOrDefaultのメソッドシグネチャ

public V getOrDefault(Object key, V defaultValue);

 ▼リスト20　配列による順次アクセス

String[] array = new String[] {"foo", "bar", "bazz"};
for (int index=0; i<array.length; i++) { ←❶
 String str = array[i]; ←❷
 System.out.println(str);
}

 ▼リスト16　Mapの使用例

Map<String, String> map = new HashMap<>(); ←⑫
map.put("Sunday", "日曜日");
map.put("Monday", "月曜日");
map.put("Tuesday", "火曜日");
map.put("Wednesday", "水曜日");
map.put("Thursday", "木曜日");
map.put("Friday", "金曜日");
map.put("Saturday", "土曜日");

System.out.println(map.get("Sunday"));
System.out.println(map.get("Someday"));

⑬

⑭

復習「総称型」「コレクション」「列挙型」……

Java 5/6/7の機能にみるリファクタリングの要点 第 章

28 - Software Design Oct. 2014 - 29

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

さを取得して（❶）、forループの中でインデッ
クスアクセスをします（❷）。
　配列をList型に置き換えても、同じように
インデックスでアクセスできます。リスト21
では、リストのsizeメソッドで要素数を取得し
て（❸）ループを回しています。❹でインデック
スによるアクセスを行っています。
　リストのアルゴリズムの選択によっては、イ
ンデックスアクセスはコストがかかるケースが
あります。ArrayListは内部のデータを配列で
保持しているために、高速にインデックスアク
セスできます。一方、LinkedListを使用すると、
先頭からノードを順番にたどる必要があるため、
末端のノードにアクセスするほど、インデック
スでのアクセスが遅くなります。
　Javaでは java.util.Iteratorを使うことで、要
素の個数を取得せずにデータに順番にアクセス
できます。このとき、コレクションのアルゴリ
ズムに応じて最適化されているため、インデッ
クスでのアクセスのように速度が極端に落ちる
ことはありません。つまり、イテレータはコレ

クションを順番にアクセスするしくみを汎用化
し、実装の詳細を隠蔽して最適化されたアクセ
ス方法を提供します。
　リスト21をイテレータを使って書きなおし
てみましょう（リスト22）。
　❺の listの iteratorメソッドを呼び出すこと
で Iteratorのオブジェクトを取得しています。
このオブジェクトを通して、今後、リストの各
要素にアクセスします。Iteratorオブジェクト
のhasNextメソッドで、現在のイテレータが指
し示している次の要素が存在するか、チェック
しています。次の要素がない場合は、ループか
ら抜けます。
　❻では、イテレータから次の要素を抜き出し
て、イテレータが指し示す要素の位置を次に進
めます。
　リスト15のSetの使用例でもイテレータに
よる順次アクセスを行いました。List型でも
Set型でも Iteratorを使うことで、同じように
各要素に順番にアクセスできます。
　次にMap型の場合はどうでしょうか？　Mapで
は、キーの集合をkeySetメソッドで取得できます。
keySetメソッドはSet型のオブジェクトを返すの
で、このSet型のオブジェクトの iteratorメソッ
ドを呼び出すことでイテレーションできます。
　リスト23の❼のmap.keySet()でキーの集合
を取得し、イテレータを iteratorメソッドを呼
ぶことで取得しています。❽では、nextメソッ
ドを呼び出して、イテレータからキーを取得し
ています。❾でそのキーに対応する値をマップ
から取得しています。
　リスト23では、キーの集合を取得してから、
ループの中でキーに対応する値を取得していま
した。マップをイテレーションする場合は、キー
と値のペアを取得したいことが多いです。その
場合、entrySetメソッドを使うことで、キー
と値のペアを一度に取得できます。
　リスト24の�の entrySetメソッドでは、
Map.EntryインターフェースのSetの集合を返
して、順番にイテレーションします。�では、

リスト21　Listのインデックスによる順次アクセス ▼

List<String> list = Arrays.asList("foo", "bar", "bazz");
for (int index=0; i<list.size(); i++) { ←❸
 String str = list.get(index); ←❹
 System.out.println(str);
}

リスト22　IteratorによるListの順次アクセス ▼

List<String> list = Arrays.asList("foo", "bar", "bazz");
for (Iterator<String> it=list.iterator();
 it.hasNext();) {
 String str = it.next(); ←❻
 System.out.println(str);
}

❺

リスト23　Mapのキーによる順次アクセス ▼

Map<String, String> map = new HashMap<>();
map.put("Sunday", "日曜日");
（"Monday"～"Friday"の部分はリスト16と同じ）
map.put("Saturday", "土曜日");

for (Iterator<String> it=map.keySet().iterator();
 it.hasNext();) {
 String key = it.next(); ←❽
 String value = map.get(key); ←❾
 System.out.println(value);
}

❼

28 - Software Design Oct. 2014 - 29

イテレータからEntryオブジェクトを取得して
います。Entryオブジェクトは各要素のキーと
値を保持しています。�と�で、Entryオブジェ
クトからキーと値を取り出しています。

拡張 forループ

　さて、前項ではイテレータによる順次アクセ
スで、データ構造に依存せずに統一的に扱える
ことがわかりました。しかし、List型やSet型
のイテレーションと違って、Map型のentrySet
によるイテレーションはとても煩雑に見えます。
総称型を使うことで、for文がとても見難くなっ
てしまいました。また、イテレータのnextメソッ
ドの呼び出しも冗長に感じます。
　拡張 forループを使うと、イテレータによる
順次アクセス（インデックスの移動と、次の要
素の有無チェック）を隠蔽してくれて、コード
がスッキリします。リスト25は、リスト24の
Mapのエントリによる順次アクセスを拡張 for
ループにより書き換えたものです。
　呪文のようなコードが消えて、すっきりしま
した。拡張 forループはリスト26のような書式
になります。
　java.util.Iterableインターフェースを実装し
たクラスであれば、拡張 forループを使用して
ループを回せます。リスト25では�のMap.
Entry<String, String>が要素の型、entryが変

数名になります。map.entrySet()でSet型のオ
ブジェクトを返していますが、Setは Iterable
インターフェースを実装しているので、拡張
forループで回せます。
　拡張 forループのほうが、明示的に iterator
を使用するよりコードが簡潔になります。ただ、
iteratorを使う場合、removeメソッドを呼ぶこ
とでループの途中で要素の削除が行えます。し
かし、拡張 forループを使用すると、ループの
途中で要素を削除できません。通常は拡張 for
ループを使って、要素の削除を行いたいケース
だけ、iteratorを明示的に指定して古い forルー
プを使ってください。
　さて、拡張 forループは、Iterableオブジェク
トだけでなく、配列も同様に回すことができます。
リスト27は「配列による順次アクセス」を拡張for
ループで書きなおしたものです。�でIterableオ
ブジェクトの代わりに配列を拡張forループで指
定しています。インデックスによるアクセスと見
比べてみて、拡張forループによるアクセスのほ
うがコードがスッキリしていると思います。

列挙型

　列挙型とは、同じ型の定数の集合を列挙して
1つの型として扱うためのしくみです。

リスト24　Mapのエントリによる順次アクセス ▼

Map<String, String> map = new HashMap<>();
map.put("Sunday", "日曜日");
（"Monday"～"Friday"の部分はリスト16と同じ）
map.put("Saturday", "土曜日");

for (Iterator<Map.Entry<String, String>>
 it=map.entrySet().iterator(); it.hasNext();) {
 Map.Entry<String, String> entry = it.next(); ←�
 String key = entry.getKey(); ←�
 String value = entry.getValue(); ←�
 System.out.println(value);
}

リスト26　拡張 forループの書式 ▼

for (要素の型 変数 : Iterableオブジェクト)

リスト27　配列による順次アクセス（拡張 forループ版） ▼

String[] array = new String[] {"foo", "bar","bazz"};
for (String str: array) { ←�
 System.out.println(str);
}

�

リスト25　Mapのエントリによる順次アクセス（拡 ▼
張 forループ版）

Map<String, String> map = new HashMap<>();
map.put("Sunday", "日曜日");
（"Monday"～"Friday"の部分はリスト16と同じ）
map.put("Saturday", "土曜日");

for (Map.Entry<String, String> entry:
 map.entrySet()) {
 String key = entry.getKey();
 String value = entry.getValue();
 System.out.println(value);
}

�

復習「総称型」「コレクション」「列挙型」……

Java 5/6/7の機能にみるリファクタリングの要点 第 章

30 - Software Design Oct. 2014 - 31

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

基本的な使い方

　列挙型が導入されるJava 5以前では、曜日
を扱うためのしくみはリスト28のように数値
型として記述していました。
　リスト29は、リスト28の定数から曜日を表
す文字列を返すメソッドです。①のメソッドの
宣言では、引数に int型の値をとり、名前を取
得するメソッドであることがわかります。曜日
を数値型として扱っていますが、変数の型に意
味はありません。利用する側は、変数weekday
に指定できる値をドキュメントからしか確認で
きません。また、プログラム上の不具合から事
前に定義した変数の範囲外の値がこのメソッド
に渡される危険もあります。こうした危険は、
プログラムの実行時にしか確認できません。
　列挙型はSUNDAYからSATURDAYまでの
定数の集合を列挙して、Week型として扱えます。

列挙型はリスト30のフォーマットで記述します。
まず、列挙型はenumで記述します。続いて列
挙名を指定します。ブロック内には列挙子を列
挙します。列挙子と列挙子は「,」で区切ります。
最後の列挙子のあとの「,」は、あってもなくて
もかまいません。通常の定数と同様に列挙子も
慣例的に大文字で記述します。
　リスト28のWeekクラスを列挙型を用いて
書くと、リスト31のようになります。
　列挙型を使ってリスト29のgetNameメソッ
ドを書き換えてみましょう。リスト32の②の
ようにメソッドの引数が int型から列挙型Week
になりました。このことで、このメソッドの引
数は曜日を表す列挙型Weekであることがわか
ります。また、ドキュメントやメソッドの実装
を確認しなくても、列挙型Weekが持っている
列挙子がすぐに確認できます。さらに、Week
で定義した値以外を引数に指定できないため、
コンパイル時に値の妥当性チェックが行えます。
　列挙型はリスト32のように値の比較をswitch

リスト28　列挙型以前の定数の定義 ▼

public class Week {
 final public static int SUNDAY=0;
 final public static int MONDAY=1;
 final public static int TUESDAY=2;
 final public static int WEDNESDAY=3;
 final public static int THURSDAY=4;
 final public static int FRIDAY=5;
 final public static int SATURDAY=6;
}

リスト29　列挙型以前の定数の利用 ▼

public String getName(int weekday) { ←①
 switch (weekday) {
 case SUNDAY:
 return "SUNDAY";
 case MONDAY:
 return "MONDAY";
 case TUESDAY:
 return "TUESDAY";
 case WEDNESDAY:
 return "WEDNESDAY";
 case THURSDAY:
 return "THURSDAY";
 case FRIDAY:
 return "FRIDAY";
 case SATURDAY:
 return "SATURDAY";
 default :
 return "";
 }
}

リスト30　列挙型の記述フォーマット ▼

enum 列挙名 {
 列挙子1,
 列挙子2,
 :
}

リスト31　列挙子によるWeek型の定義 ▼

enum Week {
 SUNDAY,
 MONDAY,
 TUESDAY,
 WEDNESDAY,
 THURSDAY,
 FRIDAY,
 SATURDAY
}

リスト32　列挙型でのgetNameメソッド ▼

public String getName(Week weekday) { ←②
 switch (weekday) {
 case SUNDAY:
 return "SUNDAY";
 （MONDAY～FRIDAYの定義はリスト29と同じ）
 case SATURDAY:
 return "SATURDAY";
 }
}¥

30 - Software Design Oct. 2014 - 31

文でできるほか、「if (weekday == Week.
SUNDAY)」のようにif文で真偽比較もできます。

クラスとしてのenum

　C言語の列挙型は定数値の定義しか行えませ
ん。しかし、Javaの列挙型は、java.lang.Enum
クラスを継承したクラスになります。つまり、
Javaの列挙型は定数の定義を列挙する機能だ
けでなく、内部に状態やメソッドなどクラスと
しての特性を併せ持ちます。
　列挙型には、よく使うものとして表1のよう
なメソッドがあります。
　リスト32のgetNameメソッドでは、switch
文により分岐していましたが、列挙型のname
メソッドを使えばリスト33のように簡単に記
述できます。

独自コンストラクタ／メソッドの定義
　たとえば、列挙型で定義している値をデータ
ベースに格納したい場合があります。そのとき
に、列挙子の名前や列挙子の順番ではなく、自
分で定義した名前で保存したいとします。列挙
子Week.SUNDAYの場合は文字列 "SUN"で、
Week.MONDAYの場合は文字列"MON"で保存
するケースです。この場合、リスト33の例の
ように getNameメソッドを別途用意して、
switch文で保存する文字列を設定できますが、
それ以外に列挙子自体にデータベースに保存す
る文字列を持たせることもできます。
　列挙型はコンストラクタとメソッド、内部
フィールドを通常のクラスのように独自に定義
できます。コンストラクタは、列挙子を列挙す
るときに引数と一緒に指定できます。
　リスト34は、"SUN"や"MON"のような短縮

名を列挙型の内部に持たせています。
　まず、④で各列挙子が持つフィールドを定義
しています。ここでは短縮名を保持するabbrを
定義しています。⑤は列挙子のコンストラクタで
す。ここでは引数を1つとり、abbrにセットして
います。このコンストラクタは③で列挙子を列挙
するときに使用され、初期値をセットしています。
独自のコンストラクタやメソッド、フィールドを
定義する場合、列挙子の列挙はenumのブロック
の先頭に書く必要があります。また、最後の列
挙子の末尾に「;」を追加する必要があります。
　⑥は、短縮名を取得するための、独自のメソッ
ドを追加しています。Week.WEDNESDAY.get
Abbr()をコールすれば、引数で初期化した値
"WED"が返ります。このように列挙型は通常の
クラスと同様に、内部に追加の状態を持たせたり、
コンストラクタ、メソッドを定義したりできます。

メソッド 戻り値 説明 例
values 列挙子 [] 列挙子を並べた順番に配列として返す Week.values()
valueOf 列挙子 指定した名前の列挙子を返す Week.valueOf("SUNDAY")
name 文字列 列挙子の名前を返す Week.SUNDAY.name()
toString 文字列 nameメソッドと同じ Week.SUNDAY.toString()
ordinal int 列挙子の順番を返す Week.SUNDAY.ordinal()

表1　よく使う列挙型メソッド ▼

リスト33　getNameメソッドのnameメソッドでの ▼
実装

public String getName(Week weekday) {
 return weekday.name();
}

リスト34　列挙型でのコンストラクタとメソッド ▼

enum Week {
 SUNDAY("SUN"),
 MONDAY("MON"),
 TUESDAY("TUE"),
 WEDNESDAY("WED"),
 THURSDAY("THU"),
 FRIDAY("FRI"),
 SATURDAY("SAT");
 final private String abbr; ←④
 Week(String abbr) { ←⑤
 this.abbr = abbr;
 }

 public String getAbbr() { ←⑥
 return abbr;
 }
 }
}

③

復習「総称型」「コレクション」「列挙型」……

Java 5/6/7の機能にみるリファクタリングの要点 第 章

32 - Software Design Oct. 2014 - 33

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

アノテーション

　アノテーションはJava 5から導入された機
能です。アノテーションは「注釈」という意味で、
パッケージ／クラス／メソッド／フィールド／

変数に対してメタデータ（付加情報）を与えます。

　たとえば、@Overrideというアノテーション
があります。これはインターフェースやクラス
からオーバライドしたメソッドに対して、オー
バーライドしていることを明示するものです。
このアノテーションを付けなくてもプログラム
上の動作は変わりませんが、プログラマがその
メソッドがオーバーライドしていることがわか
りやすくなります。
　これ以外によく使われるケースとして、標準
ライブラリではありませんが、JUnitがあります。
テストケースの各テストメソッドに@Testの
アノテーションを付けることで、そのメソッド
がテスト対象のメソッドとして認識されて実行
されます。JUnit3までは各テストケースはメソッ
ド名が testで始まるという規約がありましたが、
アノテーションによりテストするメソッドを明
示できるようになりました。また、メソッド名
の規約と違い、プログラマにとってもテストメ
ソッドとそれ以外のメソッドが区別しやすくな
ります。
　@Overrideは、プログラマの識別のためのも
のでしたが、JUnitのアノテーションのように
プログラムの実行時に解釈されてプログラムの
動作に影響を与えるものもあります。

標準アノテーション型

　Javaの標準ライブラリはいくつかのアノテー

ションを提供しています。ここでは代表的な3
つのアノテーションについて説明します。

@Override
　@Overrideは、インターフェースやクラスで
オーバーライドしたメソッドに、オーバーライド
していることを明示するために付けます（リスト
35）。通常、EclipseなどのIDEの機能を使って
メソッドをオーバーライドしたり、クラスを作成
したりすると、オーバーライドしたメソッドに対
して自動でこのアノテーションが追加されます。
　また、コンパイル時にそのメソッドが本当に
オーバーライドしたメソッドかのチェックが行
われます。スペルミスなどでメソッドシグネチャ
が一致しない場合は、コンパイル時にエラーに
なるので、実行時に予期しない動作が発生する
ことがなくなります。

@Deprecated
　@Deprecatedは、標準ライブラリのメソッ
ドによく付加されています。メソッドやクラス
が将来廃止予定で互換性維持のために残ってい
る場合、それらが非推奨であることを明示しま
す。このアノテーションが付いているメソッド
を使ったソースコードをコンパイルすると、コ
ンパイル時に非推奨のメソッドを使っている旨
の警告が出ます。特別な事情がない限りは、非
推奨のメソッドは使わないようにして、警告を
取り除いてください。

リスト35　@Overrideをメソッドに付与 ▼

public class MyThread implements Runnable {
 @Override
 public void run() {
 System.out.println("@override");
 }
 }

リスト37　deprecatedMethodの呼び出し側 ▼

public class B {
 public static void main(String... argv) {
 A.deprecatedMethod(); ←②
 }
}

リスト36　@Deprecatedをメソッドに付与 ▼

public class A {
 @Deprecated ←①
 public static void deprecatedMethod() {
 System.out.println("deprecated");
 }
}

32 - Software Design Oct. 2014 - 33

　@Deprecatedはクラスやメソッドに付与で
きます。リスト36はメソッドに付与している
例です。①でdeprecatedMethodメソッドにア
ノテーションを付与しています。
　リスト37はdeprecatedMethodメソッドを利
用しているコードです。②でAクラスのdepre
catedMethodメソッドを呼び出しています。
　呼び出しは問題なく行えますが、javacでコ
ンパイルすると、図1のように警告が出力され
ます。警告どおりにオプションを指定してコン
パイルすると、図2のように詳細な警告が表示
されます。

@SuppressWarnings
　総称型を利用していないリスト38のA.java
のようなコードは、歴史が長いアプリケーショ
ンであればよく見かけます。このコードは、
toListメソッドで文字の配列をListに変換し
ています。
　リスト39はtoListメソッドを利用するコードで
す。toListの戻り値は総称型のList<String>が

利用できることがわかっているので、キャストし
て利用しようとしています。
　このコードをコンパイルすると、図3のよう
な警告が出力されます。警告文にしたがってオ
プションを追加してコンパイルすると図4のよ
うな詳細なメッセージが表示されます。
　Aクラスの toListメソッドも同時に総称型に
対応させるべきですが、外部ライブラリだった
りすると、必ずしも呼び出し先のコードを変更
できるわけではありません。その場合、@
SuppressWarningsを付けることで警告を抑え
ることができます。@SuppressWarningsはメ
ソッドに付けると、メソッド内のすべての警告
を抑制してしまいます。メソッド内のローカル
変数にアノテーションを付けることで、その変
数に対してだけ警告を抑制できます。
　警告は出力を抑制するのではなく、警告が発
生しないようにソースコードを修正することが
大事ですので、抑制する場合は必要最小限の範
囲に限定してください。
　リスト40は@SuppressWarningsで警告を抑

リスト38　総称型を利用していないA.java ▼

import java.util.*;

public class A {
 public static List toList(String[] argv) {
 List l = Arrays.asList(argv);
 return l;
 }
}

リスト39　総称型を使ってA.javaを利用するB.java ▼

import java.util.*;

public class B {
 public static void main(String[] argv) {
 List<String> l = (List<String>)toList(argv);
 for (String s: l) {
 System.out.println(s);
 }
 }
}

図1　コンパイル結果 ▼

$ javac B.java
注意:B.javaは非推奨のAPIを使用またはオーバーライド ｭ
しています。
注意:詳細は、-Xlint:deprecationオプションを指定し ｭ
て再コンパイルしてください。

図2　-Xlint:deprecationオプションを指定して再 ▼
コンパイル

$ javac -Xlint:deprecation B.java
B.java:3: 警告: [deprecation] Aの
deprecatedMethod()は非推奨になりました
 A.deprecatedMethod();
 ^
警告1個

図3　コンパイルによる警告 ▼

$ javac B.java
注意:B.javaの操作は、未チェックまたは安全ではありません。
注意:詳細は、-Xlint:uncheckedオプションを指定して再コ ｭ
ンパイルしてください。

図4　オプション付きでコンパイル ▼

$ javac -Xlint:unchecked B.java
B.java:5: 警告: [unchecked] 無検査キャスト
 List<String> l = (List<String>)A.toList(argv);
 ^
 期待値: List<String>
 検出値: List
警告1個

復習「総称型」「コレクション」「列挙型」……

Java 5/6/7の機能にみるリファクタリングの要点 第 章

34 - Software Design

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

制しています。③では変数 lに対して@Suppress
Warningsを指定しています。@SuppressWarnings
を引数なしで呼び出すとすべての警告を抑制し

ます。引数を指定した場合、指定した引数のタ
イプの警告を抑制します。ここではunchecked（無
検査キャスト）の警告を抑制しています。④の変
数 l2には@SuppressWarningsは付けていません。
　リスト40をコンパイルすると図5のように
なります。コンパイルによる警告は、変数 lへ
の無検査キャストへの警告は③のおかげで抑制
されています。しかし、④の変数 l2に対して
は警告が抑制されずにコンパイラが警告を発し
ています。

終わりに

　駆け足でJava 5からJava 7までに追加され
た気になる機能を紹介しました。これ以外にも、
java.util.concurrentパッケージなど、魅力的な
機能も追加されています。concurrentパッケー
ジは並行処理を行ううえで必須の機能になりま
すので、これを機に触れてみてください。でわ
でわ。ﾟ

リスト40　@SuppressWarningsの利用例 ▼

import java.util.*;

public class B {
 public static void main(String... argv) {
 @SuppressWarnings("unchecked") ←③
 List<String> l
 = (List<String>)A.toList(argv);
 for (String s: l) {
 System.out.println(s);
 }

 List<String> l2
 = (List<String>)A.toList(argv);
 for (String s: l2) {
 System.out.println(s);
 }
 }
}

図5　コンパイル結果 ▼

$ javac -Xlint:unchecked B.java
B.java:11: 警告: [unchecked] 無検査キャスト
 List<String> l2 = (List<String>)A.toList(argv);
 ^
 期待値: List<String>
 検出値: List
警告1個

Javaのコードを簡潔にできる lombokC O L U M N

　lombok（http://projectlombok.org/）というライブラリをご存じでしょうか？　このライブラリは、Javaの冗長な記述
を簡潔に記述するためのしくみを提供しています。その機能の多くがアノテーションを利用しています。たとえば、
Javaのコードでsetterやgetterを記述することが多いです。IDEを利用すれば、それらを自動生成することができます。
しかし、ソースコード上にsetterやgetterのお決まりの記述が並び、可読性がいいとは言えません。lombokでは、ア
ノテーション@Getter/@Setterをフィールドに付加することで、getter/setterをコンパイル時に自動生成します。
　リスト41のようなコードは、lombokを使うとリスト42のように記述できます。
　これだけでgetter/setterがコンパイル時に自動生成できます。また、getter/setterがソースコード内に散在しないので、
フィールドが多い場合、どのフィールドがgetterやsetterを持つのかが変数宣言を見るだけでわかり、メンテナンス性
も向上します。IDEのサポートも進んでいるので、lombokを使用してもシームレスにコンパイルやデバッグができます。
　@Getter/@Setter以外にもコンストラクタの自動生成やイミュータブルなクラスの自動生成など、便利な機能が多く
提供されています。筆者は lombokがなければ Javaのコードを書けない体になってしまいました。ただし、ときどき
lombokは悪い子になってコンパイルできなくなることがあります。その場合は、エラーになった部分だけ以前の書き
方に戻してください。

リスト41　getter/setterを自前で実装 ▼

public class A {
 private String a;
 public void setA(String a) {this.a = a; }
 public String getA() {return a; }
}

リスト42　@Getter/@Setterを適用 ▼

import lombok.*;
public class A {
 @Getter @Setter private String a;
}

④

http://projectlombok.org/

Oct. 2014 - 35

第1特集
言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

　2014年3月にJavaの新しいメジャーバージョ
ンであるJava 8がリリースされました。Java 8
では、ラムダ式を始めとする新しい文法、
Stream APIや新しいDate and Time APIなど
大きな機能が追加されました。これらの機能を
うまく活用すれば、開発効率を向上させたり、
メンテナンス性の高いソフトウェアを開発した
りすることが可能となるでしょう。
　とは言うものの、業務アプリケーションで
Java 8が使えるのなんてまだまだ先だ、なんて
考えている方も多いのではないでしょうか。し
かし、JavaのEnd of Life（EOL）ポリシーでは、
Javaは後続のメジャーリリースから1年後に公
式アップデートが終了します。つまり、Java 7
は2015年4月にはサポート期間が終了してし
まいます（表1）。EOLを迎えたバージョンの
Javaは、不具合やセキュリティホールが見つかっ
てもアップデートが行われません。有償でサポー
トの期間延長もできますが、多くの場合は
Java 8への移行を検討せざるを得ないでしょう。
　しかし、既存のアプリケーションをJava 8にアッ
プデートする際にはコストがかかります。Javaは

後方互換性を重要視しているため、新しい文法や
APIが追加された際にもできるだけ既存のプログ
ラムが動作するように考慮されています。それでも、
数多くの仕様変更が行われているため、よほど規
模の小さいアプリケーションでもない限り、問題
なく動作することはまれでしょう。また、利用し
ているツールやフレームワーク、ライブラリが
Java 8に対応していなければアップデートは困難
になります。もちろん、アップデート後にテスト
を行うコストも必要になります。
　これらのアップデートコスト、セキュリティリ
スク、生産性・メンテナンス性・パフォーマンス
の向上、各種ツールやライブラリの対応状況、業
務アプリケーションのライフサイクルなど、広く
長期的な視点でアップデート計画を立てることが
重要です。
　本記事では、Java 8を導入することでどのよ
うなメリットがあるのかを知ってもらうために、
ラムダ式を中心にJava 8で導入された新機能
を紹介します。

ラムダ式

　まずは、Java 8の目玉機能「ラムダ式」につい
て解説します。ラムダ式とは、式中に名前のな
い関数を定義するための記法のことです。モダ
ンなプログラミング言語の多くは、ラムダ式か
それに準ずるような記法を持っています。Java
へのラムダ式の導入を待ち望んでいた人も多い
ことでしょう。一方でJava以外のプログラミ

業務アプリケーション
におけるJava 8

バージョン リリース サポートの終了
Java 6 2006年12月 2013年2月
Java 7 2011年7月 2015年4月予定
Java 8 2014年3月 2017年3月予定

表1　Javaのサポート期間 ▼

Stream APIと組み合わせて活用！

業務アプリケーションにも使える
Java 8のラムダ式
Java 8でもっとも大きな追加点「ラムダ式」について、文法から具体的な実装方法まで
を説明します。また、ラムダ式を使ってシンプルな記述でコレクションを操作できる
「Stream API」も紹介します。これにより、業務処理の内容が明確なコードが書けるよ
うになります。

●アリエル・ネットワーク㈱　池添 明宏（いけぞえ あきひろ）

第 章

36 - Software Design Oct. 2014 - 37

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

ング言語に馴染みのない方は、特殊な記法にびっ
くりしてしまうかもしれません。しかし、文法
を正しく理解していればそれほど難解な機能で
はありません。
　「式中に関数を定義する記法」とはどういうこ
となのでしょうか？　さっそく簡単なラムダ式
の例（リスト1）を見てみましょう。
　リスト1中に2ヵ所あるx -> x * 2の部分が
ラムダ式です。ラムダ式は、引数のリストと関
数の処理内容をアロー演算子「->」でつないで記
述します。このラムダ式では、Integer型のxと
いう引数を受け取り、それを2倍して返すという
関数を定義しています。（1）ではtwiceという変
数にラムダ式を代入しています。そして（2）では
mapメソッドの引数にラムダ式を渡しています。
　これまでJavaにおいて関数を定義するためには、
必ずなんらかのクラスに属したメソッドとして定
義する必要がありました。しかし、ラムダ式を利
用すると、関数を変数に代入できたり、メソッド
の引数に関数を渡すことができたりします。
　この特徴がどのようなメリットをもたらすの

か、以降で説明していきます。

ラムダ式の使いみち

　Javaでプログラミングをする際には、再利用
するための単位としてメソッドを定義すること
が多いでしょう。しかし、ラムダ式の記法で関
数を定義するケースでは、再利用するための関
数を定義するのではなく、その場限りの使い捨
ての関数として利用するケースが多くなります。
　その場限りの関数を適用できるシーンは数多
くありますが、代表的なケースとしては次のよ
うなものがあります。

・コールバック処理
・並列処理
・処理の移譲
・述語の指定

　この中のコールバック処理を例に挙げて説明
したいと思います。コールバック処理は、
Androidアプリケーションや JavaFXなどの
GUIプログラミングで多用されます。
　たとえば、ボタンを押すとラベルの内容を変更
する処理を記述したい場合、匿名クラス（無名ク
ラス）を利用するとリスト2のように記述できます。
　一方でラムダ式を利用すると、リスト3のよ
うに記述できます。匿名クラスのインスタンス
化やメソッドのオーバーライドの記述がなくな
り、簡潔になっていることがわかります。
　なお、匿名クラスの代わりにラムダ式を利用
すると、記法がシンプルになるだけではなく、
オブジェクトの生成コストが少ないというメリッ
トもあります。ラムダ式が導入された現在、匿
名クラスを利用しなければならないケースはほ
とんどないと言えるでしょう。

基本文法

　　ラムダ式の基本的な文法について解説して
いきます。ラムダ式ではいくつかの省略記法
が用意されているので、どの部分が省略され
ているのか注意して見ていきましょう。

リスト1　ラムダ式のサンプル ▼

import java.util.function.Function;
import java.util.stream.IntStream;

public class LambdaSample {
 public static void main(String[] args) {
 //（1）twiceという変数にラムダ式を代入
 Function<Integer, Integer> twice = x -> x * 2;

 //（2）mapメソッドの引数にラムダ式を渡す
 IntStream.range(0, 10).map(x -> x * 2);
 }
}

リスト2　匿名クラスを利用したコールバック ▼

Label label1 = new Label();
Button button1 = new Button("push");
button1.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent e) {
 label1.setText("Hello, World!");
 }
});

リスト3　ラムダ式を利用したコールバック ▼

Label label1 = new Label();
Button button1 = new Button("push");
button1.setOnAction(e -> label1.setText("Hello, World!"));

36 - Software Design Oct. 2014 - 37

　まずは、もっとも冗長なラムダ式の記述方法
を紹介します。たとえば、2つの整数xとyを
引数に取り、それらの和を返すラムダ式は次の
ように記述できます。

(int x, int y) -> {
 return x + y;
}

　ラムダ式の処理が1行で完結する場合は、次
のように中括弧とreturn文を省略できます。

(int x, int y) -> x + y

　次のように引数の型を省略することもできま
す。コンパイラがラムダ式の適用個所に応じて
引数の型を推論してくれます。

(x, y) -> x + y

　さらに、引数が1つしかない場合は、引数リ
ストを囲む括弧を省略できます。

x -> x * x

　ただし、引数が1つもない場合は、引数リス
トを囲む括弧を省略することはできません。

() -> 123

関数型インターフェース

　これまでの説明で、ラムダ式を利用すると関
数が定義できると説明しました。しかし、
JVMではどのクラスにも所属しない関数を定
義することはできません。そのためラムダ式も、
内部的には「あるインターフェース」を実装した
クラスのインスタンスなのです。
　この「あるインターフェース」のことを関数型
インターフェースと呼びます。それでは、2つ
の整数値を引数に取り、戻り値として整数値を
返すラムダ式を表現するための、関数型インター
フェースを用意してみましょう（リスト4）。
　関数型インターフェースは、このように実装
すべきメソッドを1つだけ持ったインターフェー
スになります。メソッド名は何でもかまいませ

んが、ラムダ式と同じ引数と戻り値を持ってい
る必要があります。また、@FunctionalInterface
アノテーションを付与すると、コンパイル時に
メソッドが1つだけかどうかをチェックしてくれ
ます。@FunctionalInterfaceを省略することは
できますが、ラムダ式に利用する場合はできる
だけ付与しておくべきです。
　この関数型インターフェースを利用すると、
ラムダ式を変数に代入できます。リスト5の例
ではxとyという2つの整数値を引数に取りそ
の和を返すラムダ式を定義し、funcという変数
に代入しています。
　なお、変数に代入しただけではラムダ式の中
の処理は実行されません。ラムダ式を実行する
には、関数型インターフェースに用意されてい
るメソッドを呼び出します。たとえば、リスト
6のように引数に1と2を渡してapplyメソッド
を呼び出すと、ラムダ式が実行されて1と2の
和である3がzに代入されます。
　さて、リスト4の例では関数型インターフェー
スを自作しましたが、Javaの標準ライブラリ
には数十種類の関数型インターフェースが用意
されています。代表的なものとして表2のよう
なものが挙げられます。このほかにも、引数の
数が2つになったBiFunctionやBiConsumer、
プリミティブ型が利用できる IntPredicateや
DoubleSupplierなどが用意されています。
　これらのインターフェースは、おもに java.
util.functionパッケージに属しています。ラム
ダ式を利用した機能を実装したい場合には、ま

リスト4　関数型インターフェースの定義 ▼

@FunctionalInterface
interface BiIntFunction {
 int apply(int x, int y);
}

リスト6　ラムダ式の処理の実行 ▼

int z = func.apply(1, 2);
System.out.println(z);

リスト5　ラムダ式の変数への代入 ▼

BiIntFunction func = (x, y) -> x + y;

Stream APIと組み合わせて活用！

業務アプリケーションにも使えるJava 8のラムダ式 第 章

38 - Software Design Oct. 2014 - 39

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

ず標準で用意されている関数型インターフェー
スが利用できないかどうかを調べ、それが見つ
からないのであれば、関数型インターフェース
を自作すると良いでしょう。

コレクションクラスの
新しいメソッド

　ここからは、いよいよラムダ式の活用方法を
紹介していきます。
　本特集の第1章でコレクションクラスについ
て紹介しました。Java 8では、標準で用意され
ているコレクションクラスに新しいメソッドが
いくつか追加されました。本節では、追加され
たメソッドのうち、ラムダ式を活用したものを
紹介していきます。
　なお、本記事では紹介しませんが、Java 8で
導入されたインターフェースのデフォルト実装と
いう機能により、インターフェースにデフォルト
の実装を持たせることができるようになりました。
このしくみにより、互換性を壊すことなく既存の
インターフェースを拡張することができます。そ
のため、Java 8未満の既存アプリケーションにお
いて、ListインターフェースやMapインターフェー
スを実装した独自クラスを作っていたとしても、
Java 8にアップデートしたときに新しく追加され
たメソッドを実装する必要はありません。

List<E>インターフェースに
追加されたメソッド

　まずは java.util.List<E>インターフェースに
追加されたメソッドを見てみましょう（図1）。
　これらのメソッドはリスト7のように利用で
きます。（1）では、コレクションの中から3で割
り切れる要素をすべて削除しています。（2）では、
コレクションの要素を2倍しています。（3）では、
ラムダ式で指定した比較関数を基にコレクション
の内容を並び替えています。そして（4）では、コ
レクションの内容をすべて画面上に表示していま
す。実行結果は、次のようになります。

20
16
14
10
8
4
2

Map<K, V>インターフェースに
追加されたメソッド

　次に、java.util.Map<K, V>インターフェース
に追加されたメソッドを見てみましょう（図2）。
　まずはreplaceAllと forEachの使い方を紹介
します（リスト8）。
　replaceAllでは、マップのすべての要素のキー
と値がラムダ式の引数として渡ってくるので、
置き換えた値を戻り値として返します。（5）の
例ではすべての要素の値を1.1倍しています。

インターフェース名 引数 戻り値 メソッド
Runnable なし なし run
Consumer<T> T型 なし accept
Function<T, R> T型 R型 apply
Predicate<T> T型 boolean型 test
Supplier<T> なし T型 get

表2　標準で用意されている関数型インターフェース ▼

図1　java.util.List<E>インターフェースに追加され ▼
　　 たメソッド

・boolean removeIf(Predicate<? super E> filter)
 ラムダ式で指定した条件に一致する要素をリストから削除する
・void replaceAll(UnaryOperator<E> operator)
 リストの全要素を、ラムダ式で指定した処理で変換する
・void sort(Comparator<? super E> c)
 ラムダ式で指定した条件でリストの要素を並び替える
・void forEach(Consumer<? super E> action)
 リストの全要素に対して、ラムダ式で指定した処理を適用する

リスト7　List<E>に追加されたメソッドの利用例 ▼

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class ListSample {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<>(Arrays.ｭ
asList(5, 4, 2, 10, 7, 3, 9, 8, 6, 1));
 //（1）3で割り切れる要素は取り除く
 list.removeIf(x -> x % 3 == 0);
 //（2）すべての要素を2倍する
 list.replaceAll(x -> x * 2);
 //（3）リストの内容を降順で並び替える
 list.sort((v1, v2) -> v2 - v1);
 //（4）リストの内容をすべて表示する
 list.forEach(x -> System.out.println(x));
 }
}

38 - Software Design Oct. 2014 - 39

続いて（6）の forEachでは、マップのすべての
要素のキーと値がラムダ式の引数として渡って
くるので、それを画面上に表示しています。実
行結果は次のようになります。

りんごは132円です。
みかんは99円です。
ばななは66円です。

　つぎに compute、computeIfAbsent、compute
IfPresent、mergeを見てみましょう（リスト9）。
　（7）の computeIfAbsentでは、第 1引数で指
定したキーがマップ内に存在しない場合に、第
2引数で指定したラムダ式の戻り値がマップに
登録されます。（8）の computeIfPresentでは、
第1引数で指定したキーがマップ内に存在した
場合に、第2引数で指定したラムダ式にキーと
値が渡ってくるので、値を変更できます。
（9）の computeは、第 1引数で指定した
キーがマップに存在してもしなくても、
第2引数で指定したラムダ式の戻り値が
マップに登録されます。ただし、キーが
存在しない場合にはラムダ式には値が
nullとして渡ってきます。（10）のmerge
では、第1引数で指定したキーが存在し
ない場合には、第2引数で指定した値を
マップに登録します。キーが存在した場
合は、ラムダ式に第2引数で指定した値
と現在登録されている値が渡ってくるの
で、それらの値を利用して新しい値を返
します。実行結果は次のようになります。

りんごは140円です。
ぶどうは200円です。
みかんは100円です。
ばななは30円です。

　ここで紹介したようなListとMapに追加さ
れた新しいメソッドの機能は、いずれも既存の
for文や if文を利用して記述できます。しかし、
ラムダ式を活用することでより簡潔に記述でき

図2　java.util.Map<K, V>インターフェースに追加されたメソッド ▼

・void forEach(BiConsumer<? super K, ? super B> action)
 マップの全要素に対して、ラムダ式で指定した処理を適用する
・void replaceAll(BiFunction<? super K, ? super V, ? extends V> function)
 マップの全要素を、ラムダ式で指定した処理で変換する
・V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)
 指定したキーの要素を、ラムダ式で指定した処理で追加／上書き／削除を行う
・V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction)
 指定したキーの要素が存在しない場合、ラムダ式で指定した処理で追加を行う
・V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)
 指定したキーの要素が存在した場合、ラムダ式で指定した処理で上書きを行う
・V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction)
 指定したキーが存在しない場合は第2引数の値を登録、キーが存在する場合は登録されている値と第2引数の値をラムダ式でマージ
　して登録する

リスト8　Map<K, V>インターフェースに追加された ▼
　　　　 メソッドの利用例（replaceAllとforEach）

Map<String, Integer> fruits = new HashMap<>();
fruits.put("りんご", 120);
fruits.put("みかん", 90);
fruits.put("ばなな", 60);
//（5）果物の値段をすべて10%アップする
fruits.replaceAll((k, v) -> (int) Math.round(v * 1.1));
//（6）マップの内容をすべて表示
fruits.forEach((k, v) -> System.out.printf(
 "%sは%d円です。\n", k, v));

リスト9　Map<K, V>インターフェースに追加されたメソッド ▼
　　　　 の利用例（computeとmergeなど）

Map<String, Integer> fruits = new HashMap<>();
fruits.put("りんご", 120);
fruits.put("みかん", 90);
fruits.put("ばなな", 60);
//（7）ぶどうが存在しなければ200円で追加する
fruits.computeIfAbsent("ぶどう", k -> 200);
//（8）ばななが存在したら値段を半額にする
fruits.computeIfPresent("ばなな", (k, v) -> v / 2);
//（9）りんごが存在したら20円値上げ、存在しなければ130円で追加する
fruits.compute("りんご", (k, v) -> {
 if (v != null) {
 return v + 20;
 } else {
 return 130;
 }
});
//（10）みかんが存在しなければ100円で追加する。存在した場合は現在
の値と100円の大きいほうの値に設定する
fruits.merge("みかん", 100, (v1, v2) -> Math.max(v1, v2));
fruits.forEach((k, v) -> System.out.printf(
 "%sは%d円です。\n", k, v));

Stream APIと組み合わせて活用！

業務アプリケーションにも使えるJava 8のラムダ式 第 章

40 - Software Design Oct. 2014 - 41

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

るようになっています。

Stream API

　前節でコレクションクラスに追加された新し
いメソッドを紹介しました。これらの新しいメソッ
ドを利用することで、ちょっとした処理が簡潔に
記述できるようになりました。しかし、実際の業
務アプリケーションは単純な処理ばかりではなく、
もっと複雑なロジックが必要になるでしょう。
　Java 8では、Stream APIというラムダ式を
活用したコレクション操作用のAPIが追加さ
れました。業務アプリケーションでは、for文
や if文を利用してコレクションの内容を絞り込
んだり、加工したり、グルーピングや集計を行っ
たりすることが多いと思います。Stream API
では for文や if文を利用せずに、よりシンプル
な記述でコレクションの操作を行うことができ
ます。Stream APIは for文や if文を利用した
コードと比較して次のような特徴があります。

・宣言的に記述できるため、コードが簡潔で可
読性が高くなる

・フィルタリングやグルーピングや集計など、標
準で用意されている汎用的な機能を利用できる

・Stream APIを拡張することで、さまざまなデー
タ型に対して汎用的な処理を用意できる

　本記事では3つめのStream APIの拡張につい
ては紹介しませんが、コードの簡潔さや標準で用
意されている機能について順に紹介していきます。
　なおJavaにはFileInputStreamやFileOutput
Streamなどファイル入出力を扱うStreamクラ
スも存在しますが、Stream APIとは無関係で
す。これらの言葉を混同しないように注意しま
しょう。

for文との比較

　まずは、Stream APIを利用するとこれまで
の for文を利用したコードとどのような違いが
出るのかを紹介したいと思います。
　たとえば、コレクションに格納されているデー
タを何らかの条件で抽出し、そのデータを加工
し別のコレクションとして取得するというよう
な処理は、一般的なコーディングでは多く登場
するかと思います。そのような処理を for文を
利用して記述するとリスト10のようになります。
　同じ処理をStream APIを利用して書き換え
てみましょう（リスト11）。
　Stream APIの詳細については後述しますが、
filterメソッドでは、コレクションの要素をラム
ダ式で指定した条件で絞り込み、mapメソッド
ではコレクションの要素をラムダ式で指定した
方法で加工しています。そして、最後のcollect
メソッドで要素をコンテナに登録しています。

　さて、この2つのコードを比較した
場合、可読性はどちらが高いでしょう
か？　もちろん、for文に慣れていて
Stream APIを知らない人にとっては
for文のほうがわかりやすいでしょう。
しかし、filterメソッドは条件抽出であ
り、mapメソッドは加工処理であると
いうことを知っていれば、何をやりた
いのかが明確にわかるコードと言える
のではないでしょうか。
　続いて、2つのコードの構造の違い
に着目してみましょう。
　まず for文を利用したコードの構造

リスト10　for文による記述例 ▼

List<String> names = new ArrayList<>();
for (Employee employee : employees) {
 // 条件による抽出
 if (employee.getDept().equals("開発部")) {
 // データの加工
 String name = employee.getName() + employee.getRole();
 // コンテナへの登録
 names.add(name);
 }
}

リスト11　Stream APIによる記述例 ▼

List<String> names = employees.stream()
 .filter(e -> e.getDept().equals("開発部")) // 条件による抽出
 .map(e -> e.getName() + e.getRole()) // データの加工
 .collect(Collectors.toList()); // コンテナへの登録

40 - Software Design Oct. 2014 - 41

を図示すると図3のようになります。for文の
ブロックの中に初期化や条件抽出の処理が含ま
れており、さらに条件抽出のブロック中に加工
処理などが含まれていることがわかります。
　一方でStream APIによるコードの構造を図
示すると図4のようになります。条件による抽
出、データの加工、コンテナへの登録のブロッ
クが分離されており、データがパイプライン的
に流れていく構造になっているのがわかります。
　このような構造の違いにどのような意味があ
るのでしょうか？　たとえば、これらのコード
にコレクションのソート処理を追加したい場合や、
処理の順番を入れ替えたい場合を考えてみましょ
う。for文によるソースコードの場合は、入り
組んだ構造の中に処理を追加する必要があるで
しょう。一方でStream APIであれば、filterや
mapのメソッドの並びに新しいメソッドを追加
したり順番を入れ替えたりするだけです。
　このようにメンテナンス性の高さもStream
APIの大きな特徴の1つです。

ストリームパイプライン

　Stream APIを理解するためには、3種類の
操作について知らなければなりません。

・ストリームへの変換
・中間操作
・終端操作

　この、ストリームの変換から始まり、中間操
作を経て、終端操作で結果を取得する流れをス

トリームパイプラインと呼びます。ストリーム
パイプラインを図示すると図5のようになります。
　まず既存のコレクションデータをストリームに
変換し、Stream APIで提供されているさまざま
な機能を利用できるようにします。次の中間操
作では、コレクションを条件で絞り込んだり、デー
タを加工したり、具体的なコレクション操作処
理を行います。なお中間操作は、1つのストリー
ムパイプラインの中で複数回呼び出すことがで
きます。そして、最後の終端操作で、具体的な
コレクションや単一の値として結果を取得します。
　なお、前節のリスト7のremoveIfやreplace
Allなどのメソッドでは、コレクションの要素
そのものを変更していましたが、Stream API
ではコレクションの要素そのものは変更せず、

図3　for文を利用した場合のロジックの構造 ▼

条件による抽出

for 文

データの加工

デ
ー
タ
の

初
期
化

デ
ー
タ
の

取
得 コンテナへの

登録

図4　Stream APIの場合のロジックの構造 ▼

データの
取得

条件による
抽出

データの
加工

コンテナへの
登録

図5　ストリームパイプライン ▼

コレクション

結果

中間
操作

中間
操作

中間
操作

コレクション
の要素を 1 つ
ずつ中間操作
に流す

ストリームへの変換

終端操作
を実行

Stream APIと組み合わせて活用！

業務アプリケーションにも使えるJava 8のラムダ式 第 章

42 - Software Design Oct. 2014 - 43

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

変更を加えた新しいコレクションや値を終端操
作で返す仕様となっています。巨大なコレクショ
ンを扱う場合には、メモリの使用量にも気を配
る必要があるでしょう。
　それでは、これらの3つの操作をそれぞれ詳
しく見ていきましょう。

ストリームへの変換

　Stream APIによるコレクションの操作を行う
ためには、まず既存のコレクションをストリーム
に変換する必要があります。ストリームを表現す
るためのクラスには、参照型を扱えるStream<T>
と、プリミティブ型を扱うための IntStream、
LongStream、DoubleStreamなどがあります。
　コレクションとストリームの状態を状態遷移
図としてとらえると、図6のように図示できます。
　コレクションの状態からストリームに変換す
ることによって、条件抽出やデータの加工など
の中間操作が行えるようになります。中間操作
は何度実行してもストリームの状態から変化し

ません。そしてストリームの状態から終端操作
を行うことによって、コレクションや単一の値
を結果として得ることができます。なお、終端
操作の結果としてコレクションを得た場合は、
再度ストリームに変換することもできます。
Stream APIを利用する際には、現在の状態が
ストリームなのかそうでないのかを常に意識し
ておくと良いでしょう。また、いったん終端操
作を実行したストリームに対して、再度終端操
作を実行することはできないので注意しましょう。
　コレクションからストリームに変換する方法
はいくつかあるので、順に見ていきましょう。
　List.streamメソッドを利用すると、List<T>ク
ラスのインスタンスからストリームに変換できます。
また、Stream.ofを利用すると引数で列挙した値
を基に、ストリームを生成できます（リスト12）。
　Arrays.streamを利用すると配列からストリー
ムに変換できます。また、IntStream.rangeを
利用すると指定した範囲の数値のストリームを
得ることができます（リスト13）。
　このほかにもファイルから読み込んだデータ
をストリームに変換するAPIも用意されています。

中間操作

　Stream APIでは、コレクションとストリー
ムの2つの状態を行き来すると説明しました。
コレクションの状態は、これまでのプログラミ
ングで扱ってきた状態なのでとくに問題はない
でしょう。では、ストリームの状態とはどのよ
うなものでしょうか？
　たとえば、リスト14のような中間操作を実行
したストリームのインスンタンス intStreamに
ついて考えてみましょう。この例は、数値のコ
レクションのうち、2で割り切れるものをfilter
メソッドで抽出するという処理になります。
　このコードでは終端操作を行っていないため、
intStreamを取得した時点ではまだフィルタリング
処理は行われていません。すなわち、フィルタリ
ング処理の予約をしたような状態だと言えます。
このintStreamに対して終端操作を実行したとき

図6　ストリームの状態 ▼

コレクション ストリーム

単一の
オブジェクト

ストリームへの変換

終端操作

中間操作

リスト12　ストリームの生成（Stream<T>） ▼

List<Integer> list = Arrays.asList(5, 4, 2, 10, 7,
 3, 9, 8, 6, 1);
// List<T>からストリームに変換
Stream<Integer> stream1 = list.stream();
// 数値の羅列からストリームを生成
Stream<Integer> stream2 = Stream.of(1, 2, 3, 4, 5);

リスト13　ストリームの生成（IntStream） ▼

// 配列からストリームに変換
IntStream stream3 = Arrays.stream(new int[]{1, 2, 3});
// 数値の範囲を指定してストリームを生成
IntStream stream4 = IntStream.range(0, 100);

42 - Software Design Oct. 2014 - 43

に初めて、フィルタリング処理が実行されます。
Stream APIを使ううえでは、この動きを理解して
いないと、思わぬ落とし穴にハマってしまうことで
しょう。このように中間操作が遅延されるしくみに
なっているため、for文で記述したコードと比較し
てもパフォーマンスが悪化しにくくなっています。
　中間操作には、たくさんのメソッドが用意さ
れています。代表的な次の4つを紹介します。

・filter
・map
・distinct
・peek

　filterメソッドはこれまでに何度か登場しまし
たが、ラムダ式で指定した条件に基づいてコレ
クションのデータを絞り込むメソッドです。リス
ト15のコードでは1つめのfilterで値が5以下の
値に絞り込み、2つめのfilterで2
で割り切れる値に絞り込んでいます。
なお、結果を表示するために
forEachという終端操作を利用して
います。実行結果は次のようになり、
filterの条件で正しく絞りこまれ
ていることがわかります。

2
4

　mapメソッドはコレクションの
データを加工するメソッドです。
リスト16の例では、数値のコレク
ションをすべて2乗しています。
　実行結果は次のようになります。

1
4
9
16
25

　コレクションの中から重複した
値を取り除きたい場合はdistinct
メソッドを利用します（リスト
17）。実行結果は次のようになり、
重複した要素が取り除かれている

ことがわかります。

1
2
3
4
6

　Stream APIは、for文を利用したプログラミ
ングに比べるとデバッグがしにくいと感じること
があります。peekメソッドは、ストリームパイプ
ラインを流れているデータをコンソールに表示す
るなど、デバッグ用途に利用できます。
　たとえばfilterメソッドで正しい結果が得ら
れない場合、リスト18のようにfilterの前後に
peekメソッドを差し込むことでフィルタリン
グが成功しているかどうかを確認できます。
　実行結果は次のようになり、filter前には1
と3と5が表示されていたものが、filter後には
1のみが表示されていることがわかります。

リスト15　�lterの利用例 ▼

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
list.stream()
 .filter(x -> x < 5)
 .filter(x -> x % 2 == 0)
 .forEach(x -> System.out.println(x));

リスト14　中間操作 ▼

List<Integer> list = Arrays.asList(5, 4, 2, 10, 7, 3, 9, 8, 6, 1);
Stream<Integer> intStream = list.stream().filter(x -> x % 2 == 0);

リスト16　mapの利用例 ▼

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
list.stream()
 .map(x -> x * x)
 .forEach(x -> System.out.println(x));

リスト17　distinctの利用例 ▼

List<Integer> list = Arrays.asList(1, 1, 2, 3, 3, 3, 4, 4, 6);
list.stream()
 .distinct()
 .forEach(x -> System.out.println(x));

リスト18　peekの利用例 ▼

List<Integer> list = Arrays.asList(1, 3, 5);
list.stream()
 .peek(x -> System.out.printf("before filter: %d\n", x))
 .filter(x -> x < 3)
 .peek(x -> System.out.printf("after filter: %d\n", x))
 .collect(Collectors.toList());

Stream APIと組み合わせて活用！

業務アプリケーションにも使えるJava 8のラムダ式 第 章

44 - Software Design Oct. 2014 - 45

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

before filter: 1
after filter: 1
before filter: 3
before filter: 5

終端操作

　最後に終端操作について解説します。終端操
作は、中間操作で予約した処理をすべて実行し、
最終的な結果としてコレクションや単一の値を
取得するための操作です。
　中間操作と同じく終端操作にも数多くのメソッ
ドが用意されていますが、代表的な次のメソッ
ドについて紹介します。

・forEach
・collect
・allMatch、anyMatch

　なお以降のサンプルでは、リスト19、リス
ト20のような社員情報を表すEmployeeクラス
と、そのコレクションを利用します。
　最初の終端操作として forEachを紹介します。

forEachはコレクションの要素1つずつに対し
て順番にラムダ式で指定した処理を適用します。
リスト21の例では、役職が部長である社員の
名前を順にコンソールに表示しています。
　実行結果は次のようになります。

スミス
ジョーンズ

　続いてcollectメソッドについて解説します。
collectメソッドは汎用的な終端操作で、引数に
Collectorオブジェクトを指定することでさまざ
まな結果を得ることができます。Collectorオブ
ジェクトの取得方法はいくつかありますが、こ
こでは標準で用意されているCollectorsクラス
から取得できる、代表的な次の4つを紹介します。

・Collectors.toList
・Collectors.joining
・Collectors.groupingBy
・Collectors.summarizing

　まず、collectメソッドにCollectors.toList
を指定するとストリームをList<T>のインスタ
ンスに変換できます。Listインターフェースの
streamメソッドと対になるしくみだと理解し
ましょう（リスト22）。
　Collectors.joiningByを指定すると、引数で
指定した区切り文字を利用して連結した文字列
を返します（リスト23）。

リスト19　Employeeクラス ▼

public class Employee {
 private String name;
 private String role;
 private String dept;
 private Integer age;
 public Employee(String name, String role,
 String dept, Integer age) {
 this.name = name;
 this.role = role;
 this.dept = dept;
 this.age = age;
 }
 //getter/setterは省略
}

リスト20　サンプルコード用の社員データ ▼

List<Employee> employees = new ArrayList<>();
employees.add(new Employee(
 "スミス", "部長", "開発部", 54));
employees.add(new Employee(
 "ジョンソン", "平社員", "営業部", 29));
employees.add(new Employee(
 "ウィリアムズ", "課長", "開発部", 41));
employees.add(new Employee(
 "ブラウン", "主任", "開発部", 34));
employees.add(new Employee(
 "ジョーンズ", "部長", "人事部", 52));
employees.add(new Employee(
 "ミラー", "平社員", "マーケティング部", 24));

リスト21　forEachの利用例 ▼

employees.stream()
 .filter(e -> e.getRole().equals("部長"))
 .forEach(e -> System.out.println(e.getName()));

リスト22　collectの利用例（Collectors.toList） ▼

// 結果をListとして取得する
List<String> names = employees.stream()
 .map(e -> e.getName())
 .collect(Collectors.toList());

リスト23　collectの利用例（Collectors.joining） ▼

// 結果をカンマで結合する
String joinedName = employees.stream()
 .map(e -> e.getName())
 .collect(Collectors.joining(","));
System.out.println(joinedName);

44 - Software Design Oct. 2014 - 45

　実行結果は次のようになり、社員
名がカンマで連結されていることが
わかります。

スミス,ジョンソン,ウィリアムズ,ブラウ ｭ
ン,ジョーンズ,ミラー

　Collectors.groupingByを指定する
と、ラムダ式で指定したキーでグルー
ピングしたMapのインスタンスを取
得できます（リスト24）。実行結果は
次のようになり、部署ごとにグルー
ピングされていることがわかります。

マーケティング部
 - ミラー
人事部
 - ジョーンズ
開発部
 - スミス
 - ウィリアムズ
 - ブラウン
営業部
 - ジョンソン

　Collectors.summarizingを指定す
ると、最小値、最大値、平均値など
の集計結果をまとめて取得できます
（リスト25）。実行結果は次のようになります。

社員数: 6
最低年齢: 24
最高年齢: 54
合計年齢: 234
平均年齢: 39.000000

　最後にanyMatchとallMatchを紹介します（リ
スト26）。anyMatchはコレクションの中に1つ
でもラムダ式で指定した条件に当てはまるもの
があれば trueを返します。一方allMatchはコ
レクションの中のすべてがラムダ式で指定した
条件に当てはまれば trueを返します。
　実行するとどちらの条件も trueとなるため、
次のように表示されます。

社員の中に営業部の人が少なくとも1人います
社員は全員22歳以上です

最後に

　本章ではJava 8の新機能であるラムダ式と、
ラムダ式の活用例として、コレクションクラス
の新しいメソッドとStream APIについて解説
しました。これらの機能を利用することで、こ
れまでと比べて効率的にプログラミングできる
ことが、少しでも伝わったでしょうか。なお、
ここで紹介した内容は基本的なものだけで、ラ
ムダ式の活用方法やStream APIの機能はまだ
まだたくさんあります。また、Java 8には
Optionalや新しいDate and Time APIなど便
利な新機能がたくさんあります。Java 8に興味
を持った方はぜひほかの新機能についても調べ
てみてください。本記事が少しでもJava 8導
入の一助となれば幸いです。ﾟ

リスト24　collectの利用例（Collectors.groupingBy） ▼

// 部署ごとにグルーピングする
Map<String, List<Employee>> deptMap = employees.stream()
 .collect(Collectors.groupingBy(e -> e.getDept()));
deptMap.forEach((dept, es) -> {
 System.out.println(dept);
 es.forEach(e -> System.out.printf(" - %s\n", e.getName()));
});

リスト25　collectの利用例（Collectors.summarizing） ▼

// 集計結果を取得する
IntSummaryStatistics summary =
 employees.stream().collect(Collectors.summarizingInt(
 e -> e.getAge()));
System.out.printf("社員数: %d\n", summary.getCount());
System.out.printf("最低年齢: %d\n", summary.getMin());
System.out.printf("最高年齢: %d\n", summary.getMax());
System.out.printf("合計年齢: %d\n", summary.getSum());
System.out.printf("平均年齢: %f\n", summary.getAverage());

リスト26　anyMatch/allMatchの利用例 ▼

if (employees.stream().anyMatch(e -> e.getDept().equals("営業 ｭ
部"))) {
 System.out.println("社員の中に営業部の人が少なくとも1人います");
}
if (employees.stream().allMatch(e -> e.getAge() > 22)) {
 System.out.println("社員は全員22歳以上です");
}

Stream APIと組み合わせて活用！

業務アプリケーションにも使えるJava 8のラムダ式 第 章

46 - Software Design Oct. 2014 - 47

第1特集
言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

はじめに

　Javaの統合開発環境（以下、IDE）として圧倒的
な知名度を誇るEclipseの影に隠れた2つのIDE
――IntelliJ IDEA（以下、IDEA）とNetBeansにつ
いてスポットを当てます。
　中には「EclipseのほかにもJavaのIDEなんて
あったの？」と思う方もいると思いますが、実は
IDEAやNetBeansもEclipseとほぼ同時期に登場
したIDEで、どちらも十分な歴史を持っています
（表1）。最近になってIDEAやNetBeansも多少目
立つようになってきましたが、それは新参だから
ではなく、長年切磋琢磨してきた結果が芽を出し
てきたからだと思います。どのIDEにも、その
IDEを印象づける特徴がありますが、同時にそれ
ぞれが培ってきたしがらみも併せ持ちます。

IntelliJ IDEA

　チェコにある JetBrains社が開発している
IDEで「いんてりじぇい　あいであ」と読みま
す注1、注2。手の行き届いたリファクタリングや
コード補完に定評があり、海外では多くのファ
ンを持ちます。もともとはJava専用のIDEだっ
たのですが、多数の言語をサポートしており、
IDEAをベースとしたJava以外の言語用 IDE

が派生しています。
　オープンソースソフトウェア（以下、OSS）
として無償公開しているCommunity Edition（以
下、CE）とScalaプラグインのおかげで、国内
ではScala用IDEとして注目されるようになり
ました。近年ではGoogleが発表したAndroid
StudioがIDEAベースであることで、さらに注
目を集めています。とても高機能ですが、その
分初心者に優しくありません。また英語版のみ
で日本語化はされていません。
　本章は IDEA CE（v13.1.4）を基準に機能を紹
介していきます注3。

NetBeans

　もともとはチェコの学生たちが開発したIDE
でしたが、紆余曲折を経てOracle社を中心と
したコミュニティによって提供されています注4。
Eclipseや IDEA CEと同じくOSSで無償公開
されています。
　開発にOracle社が関与しているため、Javaの

注1） URL http://www.jetbrains.com/idea
注2） 「いであ」と言いたくなる気持ちはわかります。正しい省略表記は「IntelliJ」ではなく「IDEA」のようです。
注3） 最近の IDEAは、Darculaというダークテーマが特徴になっていますが、印刷のことを考慮して、デフォルトテーマでスクリーンショッ

トを撮っています。
注4） URL https://netbeans.org/

IDE 初回リリース時期 最新版（リリース日）

Eclipse 2001年 4.4（2014年6月）

IDEA 2001年 13.1.4（2014年7月）

NetBeans 1999年 8.0（2014年3月）

表1　Javaの主な IDE ▼

自分に合ったIDEを見つけよう

Eclipseだけじゃない！　
今どきの統合開発環境
本章では、Javaの統合開発環境として最近注目されつつある「IntelliJ IDEA」、
「NetBeans」を紹介します。エディタとしての基本機能、デバッガ、バージョン管理シ
ステムとの連携について、Eclipseも合わせた3つの環境の比較を行います。

●日本ユニシス㈱　今井 勝信（いまい まさのぶ）

第 章

http://www.jetbrains.com/idea
https://netbeans.org/

46 - Software Design Oct. 2014 - 47

注5） おサイフに厳しいですが、IDEAの神髄は有償のUEにあります。評価版でも良いので、なるべく IDEA UEに触れてほしいです。
注6） URL http://gihyo.jp/dev/serial/01/android_studio/
注7） 書いていた本人が「Android Studioのフリした IntelliJ IDEA入門」と公言していたくらいですので（笑）

IDEAファミリーの系譜C O L U M N

　Ultimate Edition（以下、UE）注5を頂点にいくつかの言語専用 IDEで構成されています（ほとんどが有償です）。ライ
センス体系が若干わかりづらいこともあってか、製品体系を把握するのが難しいです。図1に IDEAと、その系譜の
IDEの体系をまとめました。基本的な機能はどれも同じなので、ほかの IDEを使っていても本章の内容は通用すると
思います。

「Android Studio最速入門」とのリンクC O L U M N

　2013年5月から2014年3月の間、gihyo.jpに表題の連載をさせていただきました注6。
　タイトルこそ「Android Studio」となっていますが、そのほとんどは IDEAベースの IDE共通の内容になっています注7。
本章で深掘りできない IDEAのさまざまな機能については、この連載を参照してください。

図1　IDEAとその系譜の IDE ▼

※開発中

※これだけはIntelliJ IDEA Ultimate Editionに含まれません

Java SE/ME/EEIntelliJ IDEA Ultimate Edition

IntelliJ IDEA Community Edition

Android

Android

Android

GroovyJava SE JavaFXHTML/XML

GroovyJava SE HTML/XML

JavaFX PHP Ruby/Rails Python/Django Scala

Scala

Kotlin

KotlinPython

Android Studio

Python
PyCharm Community Edition

PHP SQLJavaScriptHTML/XML
PhpStorm

SQLHTML/CSS JavaScriptRuby/Rails RubyMotion
RubyMine

JavaScriptC/C++ HTML/CSSObjective-C
AppCode

SQLHTML/CSS JavaScriptPython/Django

標準機能無償有償 プラグインで追加

PyCharm Professional Edition

SQL
0xDBE

JavaScriptHTML/XML
WebStorm

HTML/CSS JavaScript Groovy/Grails SQL Flex

自分に合ったIDEを見つけよう

Eclipseだけじゃない！　今どきの統合開発環境 第 章

http://gihyo.jp/dev/serial/01/android_studio/

48 - Software Design Oct. 2014 - 49

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

最新技術の追従がもっとも早く、正確です。
Javaの正統派IDEといった趣があり、初心者か
ら上級者まで幅広く受け入れられています。は
じめから日本語化してあるのも特徴の1つです。
　本章では、最新版のNetBeans 8.0を基準に
機能を紹介していきます。

エディタとしての基本機能

　IDEであっても、主な用途はソースコードの
作成になるので、エディタの善し悪しがその
IDEの印象と直結します。コード補完やクイッ
ク修正といった IDEならではの機能は、すべ
ての IDEが備えており、単純な機能比較で優
劣は語れません。
　いずれの IDEも、10年以上世間に揉まれて
いるだけあって、一通りの機能を備えています。
個別の機能、またはいくつかの機能の連携によ
り、それぞれの IDEの書き味が出てきます。
この書き味は、とても感覚的で利用者の感性に
訴えかけます。それが相性となって表れるため、
どのIDEが気に入るかは、その人の感性によっ
てさまざまと言えます注8。

操作体系の特徴

　示し合わせたわけではないのに、どういうわ

けか IDEAとNetBeansの操作体系は似通って
います（表2）。コード補完やクイック修正といっ
た、IDEで最もよく使う編集機能も IDEAと
NetBeansは同じショートカットキーが割り当
てられています。
　ショートカットキーの体系（キーマップ）です
が、表3のように IDEAやNetBeansは、標準
でいくつかのキーマップを用意しているので、
まずは慣れているキーマップにして使い始める
のも良いでしょう。
　個人的な感想になりますが、IDEAのショー
トカットキーは奇抜な組み合わせが多く、「こ
れを覚えるくらいなら、自己流にカスタマイズ
したほうがいいのでは？」と思うほどです（実際、
筆者はそうしています）。
　また、最近のIDEは図2のようなファイラ兼
コマンドラウンチャが提供されています。コマ

注8） すでにお気に入りの IDEやテキストエディタがある人ほど、ほかの環境に切り替えるのは苦痛を伴います。

IDE キーマップ 設定個所

Eclipse デフォルト、Emacs ウィンドウ→設定／一般→キー

IDEA Default、Eclipse、NetBeans、Emacs、Visual Studio、JBuilder Configure→Preferences／Keymap

NetBeans NetBeans、Eclipse、Idea、Emacs ツール→オプション／キーマップ

表3　IDEそれぞれのキーマップ ▼

IDE コード補完 クイック修正

Eclipse l-d l-1またはl-2

IDEA l-d
m-©
（または -©）

NetBeans l-d
m-©
（または -©）

表2　IDEそれぞれのよく使う機能 ▼

図2　IDEごとのコマンドラウンチャの例 ▼

IntellliJ IDEA

Eclipse

NetBeans

48 - Software Design Oct. 2014 - 49

ンド名がうろ覚えでもイイ感じに探してくれる
ので、まずはこの機能のショートカットキーを
覚えるのが良いでしょう（表4）。

重箱の隅をつつこう！　
5大どうでもいい機能

　Eclipseユーザが IDEAやNetBeansに乗り換
えたときに、「この機能はどこにあるんだ？」と
探しては、その結果に不満を言わずにはいられ
ない5大機能です。「たかだかこれくらい……」
と思うかもしれませんが、使いこなすほど、こ
ういう差違が気になるものです（まさに神は細
部に宿る、ですね）。

保存時アクション
　ファイルの保存時にコードフォーマットを実
行する、といったアレです。NetBeansはほぼ
同等の機能を持っています。残念なことに
IDEAにはこの機能がありませんが、SVNや
Gitなどにコミットする直前なら保存時アクショ
ンに近いことができます。

ファイルの保存
　Eclipseはよくあるアプリケーション同様、
利用者が指示しないとファイルを保存しません。
NetBeansもそれに近い振る舞いをしますが、
ビルドや実行などのアクションを行うと、その
時点で未保存のファイルを強制的に保存します。
IDEAは自動保存であるため、そもそも「保存
（Save）」機能がありません注13。

　NetBeansや IDEAの場合は「編集中のファイ
ルを意図的に保存しないでおく」ことができな
いので、これを習慣にしている人にとっては、
とてもストレスフルです。

自動コンパイル
　IDEAもNetBeansも、自動コンパイル機能
を有しています。いずれも、Eclipseのインク
リメンタルビルドを模倣したため、機能が実装
されてから、それほど時間が経っていません。
そのため、この機能が生粋のEclipseユーザに
とって満足がいくものかどうかは評価がわかれ
ると思います。

問題個所の一覧表示
　Eclipseの「問題ビュー」のように、コンパイ

vimプラグインについて
C O L U M N

　「どの IDEにもデフォルトでEmacsのキーマップが
用意されているのに、vimはどうしたんだ？」と憤っ
たvimファンのみなさん、ごきげんよう。はじめに断っ
ておきますが、IDEのEmacsキーマップを「よかった」
というEmacsユーザに会ったことはありません。つ
まりは、そういうことです。
　そうは言っても、vimキーマップがない悔しい気
持ちもわかります。そんなvimユーザのために、ど
の IDEにもvimプラグインがあります。

・Eclipse　→　Vrapper注9

・IDEA　→　IdeaVIM注10

・NetBeans　→　jVi注11

　モードレスエディタが当たり前な IDEにムリヤリ
vimモードを実装してしまうvimユーザの執念たるや、
すさまじいものがありますね。
　ただし、注意事項というか心構えがあります。ど
のvimプラグインも一定以上の完成度なのですが、
vimモドキであることには変わりありません。熱心
なvimユーザほど、この些細な挙動の違いが気にな
るのですが、そこは大らかな心で受け止めてほしい
ものです。vimプラグインを使うために必要な心の
ありようは「寛容さ」です注12。

注9） URL http://vrapper.sourceforge.net/home/
注10） URL http://plugins.jetbrains.com/plugin/164
注11） URL http://jvi.sourceforge.net/
注12） vimに敵うエディタなぞあり得ません。王者の貫禄で、このvimモドキを受け入れてあげてください。
注13） 「名前を付けて保存（Save as）」もなく、唯一「すべて保存（Save All）」だけがあります。

IDE 「何でも検索」の名称 ショートカットキー

Eclipse クイック・アクセス l-3
（または -3）

IDEA Search Everywhere `を2回押す

NetBeans クイック検索 l-i
（または -i）

表4　コマンドラウンチャのショートカットキー ▼

自分に合ったIDEを見つけよう

Eclipseだけじゃない！　今どきの統合開発環境 第 章

http://vrapper.sourceforge.net/home/
http://plugins.jetbrains.com/plugin/164
http://jvi.sourceforge.net/

50 - Software Design Oct. 2014 - 51

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

ルエラーや警告、TODOを常時参照できるか
どうかです。NetBeansには、類似の「アクショ
ン項目ウィンドウ」がありますが、IDEAには、
これに相当するユーザインターフェース（以下、
UI）がありません。

見た目が気に入らない
　「それ、機能じゃない」と思うかもしれません
が、とても大事なことです。おもしろいことに、
Eclipseの見た目が良いという人もいれば、
IDEAやNetBeansの、いかにもJavaでござい
な見た目が良いという人もいます。わかってい
るのは、この両者は相容れられないということ
です。
　せっかく使うなら自分の美意識に合ったIDE
のほうが使っていて気分も良いですが、それを
動かすOSや設定したフォントなど、深みには
まるとキリがないので、ある程度の慎みと自制
心が必要です。

◆◆◆
　Eclipseをほとんど知らず、IDEAばかり使っ

ている筆者には、どれも不満に感じたことはあ
りません。立場が逆になれば、このような不満
を漏らすのは容易に想像ができます。ホント、
慣れって怖いですね。

一番の違いはテストコードを
管理できること

　IDEAやNetBeansを使っていると、「何で
Eclipseにコレがないんだ！」とついつい憤慨し
てしまうのが、この機能です。ちょっと話は飛
躍しますが、ビルドツールMavenの数少ない
功績に、次の2つがあります。

・標準的なディレクトリ構成を決めたこと
・ソースパスやライブラリパスに対するスコー

プを決めたこと

　具体的にいうと、ソースコードはプロダクショ
ンコードとテストコードがあり、それぞれが図3
のような参照関係になるべきだという考え方です。
　この発想はとても理にかなっており広く普及
しましたが、Eclipseは伝統的にソースパスを
プロダクションコードとテストコードに分ける

図3　プロダクションコードとテストコードを別に管理できる ▼

※プロダクションコードからはテストコードを参照できない

プロダクションコード用ソースパス

プロダクションコード用の
ライブラリ

参照方向

テストコード用の
ライブラリ

テストコード用ソースパス

src/java/

xxx.java

src/test/

xxxTest.java

50 - Software Design Oct. 2014 - 51

ことができません。Eclipseしか知らない人は、
一度で良いのでIDEAやNetBeansの「プロダク
ションコードとテストコードは別れていて当然」
という世界を味わってほしいものです。

デバッガ

　テスト駆動開発（TDD）の一派によってはデ
バッガを使うのは屈辱の極みと感じることもあ
るようですが、IDEならではの便利機能である
のも事実です。
　ソースコードにブレークポイントを設定し／
プログラムの実行を止め／変数の値などを確認
しながら／ステップ実行していく、といったデ

バッガの基本機能はどの IDEも備えています。
デバッガに求められるUIも、IDEによって極
端に代わり映えしないので、どれかを使い慣れ
ていれば、ほかの IDEでも多少戸惑うとして
も途方に暮れるほどではないでしょう。
　ただ、デバッガの用語や機能のショートカッ
トキーが微妙に異なるため（表6）、複数の IDE
を使い分けていると地味にイラッとします。

IDEAのデバッガの特徴

　実のところ、これといった特徴はありません。
プログラム実行は、Eclipseと同じような「実行
構成（Run Configuration）」という概念があるた
め、Eclipseユーザから見ても、そう違和感な

細か過ぎて伝わらない、テスト実行の違い
C O L U M N

　テストがらみで1つ小話を。どの IDEも JUnitのテストケースを実行できますが、その実行形式に微妙な違いがあり
ます。それは、JUnitの forkモード注14のことで、IDEごとにデフォルトが表5のように異なります。この違いを知らな
いと、環境によってはテストが動作しなくなるのでご注意を。
　NetBeansが比較的行儀の良い設定なのですが、こちらはさらに「テストクラスの名前が**Test.javaで終わること」
という暗黙のルールがあります注15。

注14） テストを実行する JVMプロセスをどう使い回すか指定します。
注15） Antベースの標準的なNetBeansプロジェクトの場合です。

IDE JUnitの forkモード 変更の可否

Eclipse すべてのテストクラスを同じJava Virtual Machine
（以下、JVM）プロセスで動かす 固定。変更できない

IDEA 同上 テストクラスごと／テストメソッドごとに変更できる

NetBeans テストクラスごとにJVMのプロセスが異なる ビルドスクリプトを直接修正すれば、ほかの forkモード
に変更できる

表5　JUnitの forkモードの実行形式の違い ▼

IDE Eclipse IDEA NetBeans

デバッガ機能の場所 「実行」メニュー 「Run」メニュー 「デバッグ」メニュー

デバッガの機能名

再開 Resume Program 続行
中断 Pause Program 一時停止
終了 Stop デバッガ・セッションを終了
ステップイン Step Into ステップ・イン
選択項目にステップイン Smart Step Into 次のメソッドにステップ・イン
ステップ・オーバー Step Over ステップ・オーバー
ステップ・リターン Step Out ステップ・アウト
指定行まで実行 Run to Cursor カーソルまで実行

表6　IDEそれぞれのデバッガ機能 ▼

自分に合ったIDEを見つけよう

Eclipseだけじゃない！　今どきの統合開発環境 第 章

52 - Software Design Oct. 2014 - 53

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

く受け入れられると思います。
　違和感を覚えるとすれば、そのUIでしょう。
IDEAは、EclipseのビューやNetBeansのウィ
ンドウのような単機能のUIを複数組み合わせ
るのではなく、デバッグに必要な機能は「Debug
ツールウィンドウ」（図4）に集約されています。
EclipseやNetBeansに慣れている人からみると、
この「Debugツールウィンドウ」のレイアウトに

不自由さを感じるのではないでしょうか。

NetBeansのデバッガの特徴

　こちらもデバッガの基本機能に大きな差はあり
ませんが、デバッグする対象に大きな違いがあり
ます。簡単にいうと、テストのデバッグが「テスト
クラスの個別実行」注16でしかできません。
NetBeansのプロジェクトはビルドシステムにAnt
を利用しているため、EclipseやIDEAのように
複数の実行構成を自由に持つことができません。
その延長線上に、このデメリットがあります。
　テストのデバッグがまったくできないというこ
とではないので、この制約を甘んじて受け入れる
しかありません。その代わりと言ってはなんですが、
NetBeansにはMulti-Threaded Debugger（図5）と
いう他のIDEにはない機能を持っています。
　このMulti-Threaded Debuggerは名前が示す
とおり、マルチスレッド処理に向いたデバッグ
機能です。具体的には次のことができます。

①特定のスレッドの処理だけを追跡できる
②指定したスレッドの処理をデバッガから解放

できる
③ステップ実行中に、ほかのスレッドのブレー

クポイントを確認できる
④さらに、そのスレッドに切り替えることができる

　Eclipseや IDEAでもブレークポイントの条
件設定で、特定のスレッドだけを追跡すること

注16） 「デバッグ」メニューの「ファイルのテストをデバッグ」のことです。
注17） Chronon自体は単独の商品なので、別途購入すればEclipseからも使えます。 URL http://chrononsystems.com/

図4　IDEAの「Debugツールウィンドウ」 ▼

時間を巻き戻すデバッガ「Chronon Debugger」
C O L U M N

　有償版の IDEA UEにしか付いていませんが、Chronon Debugger注17という未来を感じさせるデバッガがあります。
このデバッガは、プログラムの実行状況を記録し、あとから再生できます（図6）。
　たとえば、テストプログラムをChrononに記録させておくと、テストに失敗した場所までトレースするだけではなく、
失敗した場所から処理を巻き戻して何度でもトレー
スできます。Chrononを使うことで、デバッガで
ありがちな「ステップ実行が行き過ぎたので、やり
なおし」という凡ミスや、ブレークポイントを慎重
に設置する気苦労から解放されます。

図6　Chrononの巻き戻し（Step Backward）ボタン ▼

図5　NetBeansのMulti-Threaded Debugger ▼

スレッドを切り替えなが
らステップ実行できる

http://chrononsystems.com/

52 - Software Design Oct. 2014 - 53

はできますが、②～④のような手の込んだ操作
はできません。
　筆者の経験上、Multi-Threaded Debuggerは
めったに使う機能ではありませんが、必要になっ
たときはとても頼りになる機能です。

バージョン管理システム
との連携

　最後にバージョン管理システム（以下、VCS）
との連携について紹介します。VCSも数多くあ
りますが、最近とくに注目されているGitを取り
上げます。Gitも含め、IDEが標準でサポートし
ているVCSを表7にまとめました。IDEAだけ
は別途git（またはgit.exe）が必要になります。

ユーザインターフェースの
共通性のなさ

　今まで紹介してきたエディタやデバッガは、
IDEごとに多少の違いはありますが、どれか1
つを知っていればほかの IDEでもなんとなく
使うことができます。しかし、VCSとの連携
については、IDEごとに特徴があり過ぎて、ど
れか1つを知っていても、別のIDEでは何をし
たら良いのかわからず途方に暮れることも珍し
くありません。それほどまで、IDEごとにUI
が異なります。わずかな手がかりとして、IDE
ごとのVCSメニューの場所を表8に示します。

IDEAのVCS連携の特徴

　IDEAのVCS連携では「Changesツールウィ
ンドウ」（図7）を使いこな
せるかどうかがポイントに
なります。ここで作業コ
ピーの操作、リポジトリの
ログの確認といった、ほと
んどの操作を行えます。
　さらに、Git連携中はス
テータスバーに現在のブラ
ンチが表示されます。ここ
もクリック可能で、ブラン

注18） Pleiadesには、SVNプラグインが同梱されています。
注19） Windows版NetBeansはcygwinが必要です。Eclipseもターミナルプラグインを入れることで実現できます（Windows未対応）。

VCS専用クライアントが便利
C O L U M N

　IDEのVCS連携のUIはどれも個性的です。個人的
には、3つの IDEのVCS連携を習熟するくらいなら、
VCS専用のクライアントもしくはコマンドラインの
操作を習得したほうが効果的だと考えています。
　もともと IDEのVCS連携はSVN、Gitといった異な
るVCSに対して統一されたUIを提供しているので、
特定のVCSの機能を十分に発揮するには不向きなと
ころがあります。その分、TortoiseGitやSourceTree
のような特定のVCS（この場合はGit）専用クライアン
トのほうが使い勝手が良いです。
　とくにGitはできることが多彩なので、直接gitコ
マンドを叩いたほうが細かい操作に向きます。ミも
フタもありませんが、IDEAもNetBeansも IDE上に
ターミナルを持っている注19ので、そこからgitコマ
ンドを実行したほうが楽という場面が多々あります。

IDE サポートしているVCS

Eclipse CVS、SVN注18、Git

IDEA CVS、SVN、Git

NetBeans SVN、Git、hg(Mercurial)

表7　IDEが標準でサポートしているVCS ▼

IDE VCS連携メニューの場所

Eclipse コンテキストメニューの「チーム」に集約

IDEA メニューバーの「VCS」メニューに集約

NetBeans メニューバーの「チーム」メニューに集約

表8　IDEごとのVCSメニュー ▼

図7　IDEAの「Changesツールウィンドウ」 ▼

自分に合ったIDEを見つけよう

Eclipseだけじゃない！　今どきの統合開発環境 第 章

54 - Software Design

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

チの作成や切り替えを行えま
す。
　また、IDEAはGitHubに対
して次の操作を行えます。
GitHubへの操作はある程度ま
でIDEAだけで完結するので、
意外と便利に使えています。

❶GitHubのプロジェクトをロー
カルに取ってくる（VCS→
Checkout from Version Control→GitHub）

❷プロジェクトをGitHubに公開する（VCS→
Import into Version Control → Share Project
on GitHub）

❸fork元のプロジェクトの変更をforkしたプロ
ジェクトに取り込む（VCS→Git→Rebase
my GitHub fork）

❹プルリクエストを作成する（VCS→Git→
Create Pull Request）

　❸は、たまにしか使いませんが、よくgitコ
マンドの操作を忘れるのでたいへん重宝してい
ます。それと、ほかのGitHub連携とは毛色が
異なりますが、エディタの選択範囲をGistに
登録することもできます注20。

NetBeansのVCS連携の特徴

　NetBeansも IDEAに負けず劣らず特徴的な
UIを持っています。意外に見落としがちなのは、
エディタのタブ直下にある「履歴」ボタンです（図
8）。これをクリックすると、エディタがそのファ
イルの履歴確認画面に切り替わります。
　リポジトリ全体、もしくは一部の履歴を確認す
るのは若干わかりづらく、「プロジェクトウィン
ドウ」もしくは「Gitリポジトリ・ブラウザ」からコ

ンテキストメニューの「Git→履歴を表示」注21を
実行します。履歴確認画面が「エディタウィンドウ」
上に出てくるのもNetBeansの特徴といえます
（EclipseやIDEAはエディタとは別のUIに表示
します）。

最後に

　かなり駆け足でしたが、IDEAとNetBeans
について紹介しました。自分の引き出しを増や
すためにも、複数の IDEを嗜

たしな

んでおくことは
無駄になりません。ただし、使い込むとなると
話は別です。常用している IDEによほどの不
満がない限り、たいていは隣の芝生でしかない
です。どの IDEもそれなりに不便で、それな
りに便利です。なんだかんだで、馴れている
IDEが最も使いやすいIDEなのです。
　よく見かける「○○と比べたら、□□の△△は
最高」というのは、そのIDEの一側面に過ぎず、
必ずそれに見合ったデメリットがあります注22。
　大事なのは自分の感性に合うかで、他人の評
判なんてアテにはなりません（せいぜい参考程
度です）。興味のわいたIDEは実際に試用して
みて、ご自身の手に馴染むかどうかを感じてみ
てください。ﾟ

注20） コンテキストメニューから「Create Gist...」を実行します。
注21） 「Gitリポジトリ・ブラウザ」からは、直接「履歴を表示」を実行します。
注22） 筆者も IDEAに対する不満は山のようにあるのですが、それを打ち消すほど気に入っているので、気に留めたことはありません。

すべてにおいて万能という IDEは実在しません。

図8　NetBeansのエディタツールバーの「履歴」ボタン ▼

Oct. 2014 - 55

第1特集
言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

はじめに

　プログラミング言語の選定の際、エンタープ
ライズシステムを構築／運用していくうえでの
重要な観点として、言語の使いやすさやライブ
ラリの豊富さだけではなく、トラブル発生時に
迅速に問題を特定して原因の改修が可能かとい
う点があります。
　Javaには、開発キットであるJDK（Java Deve
lopment Kit）にさまざまな解析ツールが同梱さ
れており、トラブル解析に備えた充実した環境
が整っています。本章では、トラブル対応に便
利なJava起動オプションおよび、JDK付属解
析ツールの状況に応じた使い分け方法について
紹介します。

トラブルに備える編

　いざトラブルに遭遇するとJavaプロセス再
起動による復旧を急ぐあまり、「情報がない」「再
現方法が不明」などの理由から原因がお蔵入り
になってしまうケースが数多くあります。
　JDK付属のJava VMである「HotSpot」には、
このような状況に備えて、起動オプションの設
定によりトラブル発生時の解析に必要な情報を
自動的に出力する機能があります。

OutOfMemoryErrorに備える

　Javaの代表的なトラブルとして、生成され

たオブジェクトが格納されるJavaヒープメモ
リの枯渇を示す「OutOfMemoryError」があり
ます。次のエラーメッセージを一度は見たこと
がある方も多いのではないでしょうか。

java.lang.OutOfMemoryError: Java heap space

　OutOfMemoryErrorが発生した場合には、
可能な限り早くJavaプロセスを再起動するこ
とが必要です。ヒープメモリの枯渇は多くの場
合、Javaプロセスを再起動しない限り解消さ
れず、エラー再発の原因となります。また、
OutOfMemoryErrorが発生したスレッドは多
くの場合、エラーハンドリングされずにそのま
ま終了するため、アプリケーションが不定な状
態となります。
　たとえば、Javaシステムでよく使用されるサー
ブレットコンテナ「Tomcat」において、リクエ
スト待ち受けスレッドがOutOfMemoryError
により終了した場合には、プロセス監視では正
常に見えていても、実際には無応答になってい
るなど不定な状態が発生し、サービスに深刻な
影響を与えてしまいます。

GCログの収集と考察
　OutOfMemoryErrorを未然に防ぐために、
負荷テスト時にGC（ガベージコレクション）ロ
グを収集して考察すると、Javaヒープメモリ
枯渇の兆候がないかを確認することができます。
商用運用時にも定常的に収集することで、GC
長期化などのトラブル原因を切り分ける際のヒ

メモリ不足、無応答、スローダウンに備える

トラブル時に頼りになる
JDKの解析ツール
JDK（Java Development Kit）には、アプリケーションのメモリ不足、スローダウンな
どの原因を追究するための解析ツールが豊富に存在します。せっかくJavaで開発して
いるのなら、これらのツールも使いこなし、高品質なアプリケーションを開発したいも
のです。よくあるトラブル事例ごとに、解析に適したツールを紹介していきます。

●NTTコムウェア㈱　上妻 宜人（あげつま のりと）

第 章

56 - Software Design Oct. 2014 - 57

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

ントになります。
　GCログは図1のようにJava起動オプション
に設定を追加すると、図2のような形式で出力
されます。
　GCログは「GCViewer」注1などのツールに読
み込ませて考察します。よくあるトラブル時の
GCViewer表示例を見てみましょう。
　図3のGCログでは、途中までは安定してい
るものの、グラフの右端において急激にJava
ヒープメモリ使用量が増大しています。このよ
うな場合のよくある原因は、DBやファイルか
ら大量のデータをロードしていることです。少
しずつデータを取得するようにアプリケーショ
ンを見直す必要があります。
　図4のじわじわと上昇するGCログもトラブ
ルの傾向が確認できます。このような場合のよ
くある原因は、O/RマッパやHTTPセッショ
ンなどのキャッシュが除々に蓄積し、最終的に
OutOfMemoryErrorに至ることです。キャッ
シュサイズの見直しや、セッションタイムアウ

ト期間の短縮化などの対処が必要となります。

OutOfMemoryError発生時ヒープダンプ
　GCログはあくまで問題の傾向をつかむのみ
で、Javaヒープメモリを大量に消費している
犯人を特定することは困難です。原因解析には
Javaヒープメモリの状態をバイナリ形式で一
括出力したヒープダンプを収集します。
HotSpotにはOutOfMemoryError発生時に自
動的にヒープダンプを出力する機能があり、情
報収集漏れによる原因のお蔵入りを防ぐことが
できます。
　OutOfMemoryError時自動ヒープダンプを
有効化するためには、Java起動オプションに
図5の設定を追加します。
　ヒープダンプの解析はJDK付属ツールの「jhat」
でも可能ですが、「Eclipse Memory Analyzer」注2、
通称「MAT」が直感的な操作で使いやすくお勧め
です。よくあるトラブルとして、Javaの代表的
なO/Rマッパである「Hibernate」を使用して一度

注1） GCViewer　 URL https://github.com/chewiebug/GCViewer
注2） Eclipse Memory Analyzer　 URL http://www.eclipse.org/mat/

図2　GCログ出力例 ▼

2014-07-21T21:31:26.390+0900: ←①
 754.036: [GC (Allocation Failure) ←②
 754.036: [DefNew: 141748K->1962K(157248K), 0.0196019 secs] ←③
 259053K->119266K(506816K), 0.0197680 secs] ←④
[Times: user=0.02 sys=0.00, real=0.02 secs] ←⑤

※上記のログは、実際は1行のログ。今回は、説明のために改行を入れている
①GCが発生した時刻。-XX:+PrintGCDateStampsにより日付形式で出力　②GCが発生した要因
③New領域のヒープ情報。 GC前サイズ->GC後サイズ（最大New領域サイズ）、GC時間
④ヒープ全体の情報。フォーマットはNew領域のログと同じ
⑤GC時間。userはユーザモード時間、sysはカーネルモード時間、realは実際にかかった時間

図1　GCログを収集するJava起動オプション ▼

❶GCログの出力先ファイル名。JDK 8より%pでプロセスID、%tで日時をファイル名に含めることが可能
❷より詳細なGC情報をロギングする　❸GCの発生日時をログに含める
❹GCログファイルのサイズローテーション有効化（JDK 6u34/JDK 7u2から）
❺ローテーション有効時の管理世代数　❻ローテーション契機のファイルサイズ

-Xloggc:/var/log/java/gc_%p_%t.log

-XX:+PrintGCDetails -XX:+PrintGCDateStamps

-XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=5 -XX:GCLogFileSize=10M

❶

❷

❹ ❺ ❻

❸

https://github.com/chewiebug/GCViewer
http://www.eclipse.org/mat/

56 - Software Design Oct. 2014 - 57

に大量のデータをDBからロードした場合のヒー
プダンプを確認してみましょう。
　ヒープダンプファイルを開くときのウィザー
ドでLeak Suspectsを有効にすると、図6のよ
うに、Javaヒープメモリに含まれるオブジェク

トの内訳を円グラフで表示し、ヒープ圧迫の原
因の候補を示します。この場合、Hibernateのセッ
ション情報を保持するSessionImplクラスのサ
イズが大きくなっているため、トラブルにDB
アクセス処理が関連していることがわかります。

注3） FullGCとは、Javaヒープメモリのうち、Old領域を対象とした比較的AP停止時間の長いGC。マシン環境やヒープサイズにも依存
するが、数百ミリ～数秒程度かかる。対照的にNew領域を対象としたScavenge GCは通常数十ミリ程度と短い。

図3　GCViewerの表示例　異常時のGCログ（突出型） ▼

図4　GCViewerの表示例　異常時のGCログ（じわじわ型） ▼

一度FullGCにより未参照のガベー
ジが解放されてグラフが下がるが、
継続的にヒープ使用量は上昇

やがて枯渇し、解放を試みるFullGCの断続発生
を示す黒い塗りつぶしが確認できる。GCによる
停止でAPはほぼ動いていない状態

断続的にJavaヒープ使用量が増加

Javaヒープ使用量を示す線。前半はGCにより
安定的に下がっており、リーク傾向などの異常
は見られない

図5　OutOfMemoryError発生時にヒープダンプを自動出力するJava起動オプション ▼

❶OutOfMemoryError発生時にヒープダンプを自動出力する　❷ヒープダンプの出力先パス

-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/var/log/java
❶ ❷

グラフ終端で直角に急上昇し、ヒープ使用量が
突発的に増加。黒く塗りつぶされている部分は、
増えたヒープを少しでも解放しようと試みて発
生したFullGC注3によるAP停止の発生を示す

メモリ不足、無応答、スローダウンに備える

トラブル時に頼りになるJDKの解析ツール 第 章

58 - Software Design Oct. 2014 - 59

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

限定する対処が考えられます。

トラブルに備える編 まとめ

　ここまで紹介してきたJava起動オプション
をまとめると図8のようになります。Java起動
オプションには、ヒープサイズの設定（-Xms/
-Xmx）以外にも、これだけの多くの便利な機能
が備わっています。ぜひこれらの起動オプショ
ンの組み合わせを参考にしてみてください。

　次にクラスごとのサイズをランキング形式で
表示するヒストグラムを確認します（図7）。ヒ
ストグラムの内容より、char配列による文字デー
タや、DBより抽出したレコードをオブジェク
トにマッピングしたエンティティクラスが、ヒー
プのうちの多くを占めていることがわかります。
　このケースでは、クエリのWHERE条件変更
や、javax.persistence.Query.setMaxResult(int
maxResult)による取得エンティティ数の制限に
より、データを少しずつ取得するように範囲を

図7　ヒストグラム ▼

図8　GCログ収集とヒープダンプ自動出力を指定したJava起動コマンド ▼

java -Xms?g -Xmx?g ←?にはヒープのサイズを数字で指定する
-Xloggc:/var/log/java/gc_%p_%t.log
-XX:+PrintGCDetails -XX:+PrintGCDateStamps
-XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=5 -XX:GCLogFileSize=10M
-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/var/log/java

図6　Leak Suspects ▼

使用中ヒープの半分以上が、Hibernate
のSessionImplにより消費されている

ヒープ大量消費原因の疑い（Suspect）に
ついて、オブジェクトのサイズや関連キー
ワードが示される

char[]で示す文字列配列が多い。
DBから文字列型のデータを大量
に抽出すると、このような傾向
が見られる

50万件ずつ、DBから抽出した
エンティティがヒープに展開さ
れている。Shallow Heapは個々
のオブジェクトのメモリ使用量、
Retained Heapは個々のオブ
ジェクトとその子供を含んだメ
モリ使用量を示す

58 - Software Design Oct. 2014 - 59

トラブル時の初動対応編

　開発時に入念なテストが行われていたとして
も、いざ商用サービスとしてリリースすると思
いがけないトラブルに遭遇してしまうことは、
よくある苦い経験です。ここからは、実際にト
ラブルが発生してしまった際の初動対応として、
JDK付属の解析ツールの使い分け方法を紹介
します。環境を選ばずに使えるコマンドライン
ツールを中心に解説します。

アプリケーションの無応答

　アプリケーションの応答がない場合は、Java
プロセスを再起動する前に必ずスレッドダンプ
を収集しましょう。スレッドダンプとは、その
瞬間に生存していた各スレッドの動作状態およ
びスタックトレースをテキスト形式で出力した
情報です。
　最新のJDK 8ではスレッドダンプの取得方
法が複数あります。いずれもスレッドダンプを

注4） JDK 5の jstackコマンドはSolaris/Linuxのみ対応。Windowsは JDK 6より対応。

取得したいJavaプロセスが起動しているマシ
ンにおいて、表1のコマンドを実行します。以
降のコマンド例の${JAVA_HOME}は、JDKのイ
ンストールディレクトリを示します。
　かねて主流であったシグナル送信によるスレッ
ドダンプ取得は、対象Javaプロセス側のコン
ソールに出力されてしまうため、サーバアプリ
で/dev/nullに標準出力を破棄していた場合、
スレッドダンプが収集できない問題がありまし
たが、jstackおよび jcmdではコマンド実行側
のコンソールに出力されるため便利です。

スレッドダンプの取得例
　よくある無応答の原因として、DBコネクショ
ンプールの枯渇があります。最新仕様のJava
EE 7に準拠したアプリケーションサーバ
「WildFly 8」でコネクションプール枯渇のトラ
ブルを再現させた場合、図9のようなスレッド
ダンプが出力されます。この場合、アプリケー
ションの test.Serviceクラスの31行目でDBコ
ネクションを取得するgetConnectionメソッド

JDKのバージョン コマンドなど
JDK 5未満（Windows） ö＋e

JDK 5未満（UNIX系OS） kill -3 <pid>
JDK 5以降 ${JAVA_HOME}/bin/jstack <pid>注4

JDK 7u4以降 ${JAVA_HOME}/bin/jcmd <pid> Thread.print

表1　スレッドダンプの取得方法 ▼

①アプリケーションのtestConnectionメソッドよりプール済みコネクションを取得。DataSource.getConnection()を実行
②プールが枯渇していたため、時間制限付き解放待ちをLockSupportクラスで行う
③結果的に、現在のスレッド状態はTIMED_WAITING（待ち状態）で停止中

図9　スレッドダンプの出力例 ▼

"default task-4" #119 prio=5 os_prio=31 tid=0x00007fe6ee42b000 nid=0x920b ｭ
 waiting on condition [0x000000011acbc000]
 java.lang.Thread.State: TIMED_WAITING (parking)
 at sun.misc.Unsafe.park(Native Method)
 - parking to wait for <0x00000007810b9db0> (a java.util.concurrent. ｭ
 Semaphore$FairSync)
 at java.util.concurrent.locks.LockSupport.parkNanos
 （...省略...）
 at org.jboss.jca.adapters.jdbc.WrapperDataSource.getConnection
 at test.Service.testConnection(Service.java:31)

WildFly内部のスタック

アプリケーションのスタック

③

①

②

メモリ不足、無応答、スローダウンに備える

トラブル時に頼りになるJDKの解析ツール 第 章

60 - Software Design Oct. 2014 - 61

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

て原因解析します。

HPROFによるプロファイリング
　HPROFを有効化すると、ö＋e

（Windows）／kill -3（UNIX系OS）によるシグ
ナルの受信時、またはJavaプロセスの終了時に、
テキスト形式のプロファイル結果を出力します。
　HPROFプロファイラによるCPUプロファイ
リングを有効にするには、図10の設定をJava
起動オプション追加します。サンプリングによ
るプロファイル（cpu=samples）では、デフォル
トで10ミリ秒間隔でスタック情報を収集し、「あ
るメソッドがスタックに出現した回数÷スタッ
ク収集回数」で各メソッドのCPU使用率を算出
します。スタックの上位4メソッドが計測対象
とされ、ログ上部のTRACEに出力されます。
ログの最後には、各メソッドのCPU使用率が
ランキング形式で表示されます（図11）。
　HPROFの弱点として、スレッドスタックへの
出現回数が多いメソッドをカウントしているシン
プルな構造上、リクエスト受け付け待ちのような
アプリケーションサーバで定常的に動いているメ
ソッドが上位にあがってきてしまい、本当のスロー
ダウンの原因が見えにくいことがあります。
　図11の例では、rank1と2はリクエスト受け
付け待ちの処理で、スローダウンとは関連のな
いものです。rank3にスローダウンのサンプル

を呼び出したところ、処理内部でスレッドがブ
ロックされて、応答がないことを示しています。
　コネクション取得時に長時間ブロックされる
おもな原因はDBコネクションプールの枯渇で
す。対処として、最大プール数の拡大や、長時
間コネクションを拘束する遅いSQLのチュー
ニングが考えられます。

アプリケーションのスローダウン

　スローダウンは再現性がないなど、原因の捕
捉がしにくく、解析が難しいトラブルの1つで
す。よくあるスローダウンの原因は大きく2つ
に分けられ、GC頻度の増加や長時間化などの
GCトラブル、または特定メソッドの処理遅延
です。
　GCトラブルについては前述のとおり、GC
ログを収集してJavaヒープメモリの不足によ
るGC多発が発生していないかを確認します。
特定メソッドの処理遅延の場合、無応答時と同
様にスレッドダンプの収集は有効です。しかし、
遅延しつつも止まることなく動作している状況
では、スレッドダンプからはどのメソッドがス
ローダウンの原因となっているか、わかりにく
いことがあります。
　このような場合には、テスト環境でスローダ
ウンを再現させて JDK付属のプロファイラ
「HPROF」によりCPUプロファイリングを行っ

図11　CPUプロファイリングの出力例 ▼

TRACE 302235:
 test.SlowServlet.slow(SlowServlet.java:47)
 test.SlowServlet.processRequest(SlowServlet.java:27)
 test.SlowServlet.doGet(SlowServlet.java:66)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:687)
 （...省略...）
CPU SAMPLES BEGIN (total = 58116) Sun Aug 3 00:33:39 2014
rank self accum count trace method
 1 85.03% 85.03% 49414 301270 sun.nio.ch.KQueueArrayWrapper.kevent0
 2 6.83% 91.86% 3971 302212 java.net.PlainSocketImpl.socketConnect
 3 2.43% 94.29% 1411 302235 test.SlowServlet.slow

図10　HPROFのCPUプロファイリングを有効にするJava起動オプション ▼

-agentlib:hprof=cpu=samples,file=/var/log/java/hprof_cpu.txt

60 - Software Design Oct. 2014 - 61

クラスを示す test.SlowServlet.slowメソッドが
確認できます。アプリケーションのクラスのう
ち、一番上位に出てきているものを探すのがプ
ロファイル結果を考察するコツです。

Javaヒープメモリの枯渇

　トラブルに備える編でも紹介したJavaヒープメ
モリ枯渇の解析ですが、-XX:+HeapDumpOnOut
OfMemoryErrorの設定を忘れてしまった場合や、
OutOfMemoryErrorには至らないものの徐々に
ヒープが枯渇する状況を解析する場合のために、
コマンド実行による情報収集が可能です。
　Javaヒープメモリの解析には、先ほども紹
介したヒープダンプと、今回紹介するクラスヒ
ストグラムの2つの方法があります。

ヒープダンプの収集
　ヒープダンプ収集対象のJavaプロセスが起
動しているマシンにおいて、表2のコマンドを
実行します。JDK 7u4以降ではどちらも有効
ですが、jcmdのほうがコマンドが直感的な表
記でお勧めです。
　注意したい点として、ヒープダンプの出力中は

注5） JDK 5の jmapコマンドはSolaris/Linuxのみ対応。Windowsは JDK 6より対応。
注6） Macbook AIR MC965（Corei5 1.7GHz）

アプリケーションが停止するため、大きなヒープ
サイズを持つアプリケーションの運用中にヒープ
ダンプを収集すると、サービスに影響を与えてし
まいます。停止時間はJavaヒープメモリの使用
量とマシンスペックに依存します。参考として、
筆者の手元のマシン注6において、3GBのヒープ
ダンプを取得した場合、約30秒停止しました。
　日中帯でアクセスが多い状況など、ヒープダ
ンプ取得による一時停止が許容できない場合は、
比較的動作の軽いクラスヒストグラムにより
Javaヒープメモリ内容の情報を収集します。

クラスヒストグラムの収集
　クラスヒストグラムは、ヒープ使用量の多いク
ラス順に情報をテキスト形式で出力します。収
集時にアプリケーション停止を伴うFullGCが発
生するため、クラスヒストグラムも軽い処理では
ないですが、ヒープダンプに比べると短い停止
時間で情報収集が可能です。クラスヒストグラ
ムの収集は、対象のJavaプロセスが起動してい
るマシンにおいて、表3のコマンドを実行します。
　図12は、先ほどのヒープダンプの例と同様に、
Hibernateで大量のデータを一度にDBから

JDKのバージョン コマンド

JDK 5以降 ${JAVA_HOME}/bin/jmap -histo:live <pid>
JDK 7u4以降 ${JAVA_HOME}/bin/jcmd <pid> GC.class_histogram

表3　クラスヒストグラムの取得方法 ▼

JDKのバージョン コマンド

JDK 5以降注5 ${JAVA_HOME}/bin/jmap -dump:live,format=b,file=<filename> <pid>
JDK 7u4以降 ${JAVA_HOME}/bin/jcmd <pid> GC.heap_dump <filename>

表2　ヒープダンプ取得方法 ▼

図12　クラスヒストグラムの取得例 ▼

 num #instances #bytes class name
--
 1: 702063 29823264 [C
 2: 330000 21120000 org.hibernate.engine.spi.EntityEntry
 3: 456309 18615880 [Ljava.lang.Object;

メモリ不足、無応答、スローダウンに備える

トラブル時に頼りになるJDKの解析ツール 第 章

62 - Software Design Oct. 2014 - 63

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

jcmd

　jcmdはJRockitに含まれていた jrcmdコマン
ドの後継として、JDK 7 update4から導入され
たコマンドライン解析ツールです。表4のよう
に既存のコマンドラインツールは、取得したい
情報に応じてコマンド名が異なりましたが、現
在はほとんどの情報が jcmdによって取得可能
です。jcmdのコマンド一覧は jcmdのヘルプか
ら確認できます。

${JAVA_HOME}/bin/jcmd <pid> help

Java Mission Control/Flight
Recorder

　JRockitに含まれていた強力な解析ツール
「JRockit Mission Control」の特徴を引き継い
だ、「Java Misson Control」および「Java Flight
Recorder」がJDK 7 update40より正式にサポー
トされています。
　いずれのツールもJDKに同梱されていますが、
評価／検証以外を目的とした商用利用には、
Oracle社が提供する有償ライセンス注7が必要
なため注意が必要です。
　Java Mission Controlは、以前よりJDKにバ
ンドルされていたGUI解析ツール「JConsole」
や「Java VisualVM」のように現在のJava VMの
状態をグラフィカルに表示する機能（図13）と、
事前に Java Flight Recorderで収集したプロ
ファイルデータをロードして表示する機能を持
ちます。
　トラブルシューティングにとくに効果的なの

Javaヒープメモリへロードした場合のヒスト
グラムです。MATでヒープダンプを確認した
場合と同じく、[Cが示すchar型の配列が、ヒー
プのうち一番多くを占めていることが確認でき
ます。

トラブル時の初動対応編 まとめ

　ここまで紹介したトラブル発生時の初動対応
方法をまとめます。事前に練習して、いざとい
うときにすぐ情報収集できる準備を整えておき
ましょう。

・無応答の場合は必ずスレッドダンプ
・スローダウン時はGCログとスレッドダンプ
の収集。原因がわからない場合は、テスト
環境で再現させてHPROFによるプロファイ
リング

・Javaヒープメモリ枯渇時は自動ヒープダン
プ出力の有無を確認。出力されていなかっ
た場合は、まずはクラスヒストグラムを収集。
アプリケーションが多少停止しても許容で
きる場合は手動ヒープダンプ

JDK 7/8から導入された
新しい解析ツール

　Oracle社はHotRockitプロジェクトとして、
買収により手中に納めた2つのJava VM実装
「HotSpot」と「JRockit」の統合を段階的に進め
ています。統合に伴い、JDK 7からJDK 8に
かけてJRockitにしかなかった便利な解析ツー
ルが追加されています。

収集情報 既存のJDKツール jcmd（JDK 7u4～）
起動中JavaプロセスID取得 jps jcmd
スレッドダンプ jstack <pid> jcmd <pid> Thread.print
ヒープダンプ jmap -dump:live,format=b,file=<filename> <pid> jcmd <pid> GC.heap_dump <filename>
クラスヒストグラム jmap -histo:live <pid> jcmd <pid> GC.class_histogram
Java起動オプションの確認 jinfo -flags <pid> jcmd <pid> VM.flags

表4　JDK既存ツールとjcmdの対応 ▼

注7） Java SE Advanced、または Java SE Suiteの契約が必要。

62 - Software Design Oct. 2014 - 63

が、後者のフライトレコーダとの組み合わせ機
能です。Java Flight Recorderは、商用運用中
のマシンでの収集に耐え得る低いオーバーヘッ
ドで、CPU使用率などの基本的なマシンリソー
ス情報をはじめ、Javaヒープ情報、スレッド
状態の遷移、実行時間の長いホットメソッド情
報など、さまざまな解析情報を収集します。

Java Flight Recorderの使い方

　Java Flight Recorderは3つのステップで使
用します。

①フライトレコーダの有効化
②フライト記録の開始
③フライト記録のダンプ

①フライトレコーダの有効化
　まずフライトレコーダの有効化ですが、Java

注8） Java Flight Recorder Runtime Guide　 URL http://docs.oracle.com/javase/7/docs/technotes/guides/jfr/toc.html

起動オプションに図14の設定を追加すること
で有効化されます。ただ、これらのオプション
を付与するだけでは、フライトレコーダが使用
可能となるだけであり、実際のプロファイルデー
タの収集は開始されません。

②フライト記録の開始
　次に、フライトデータの収集を開始します。
フライトデータの収集には多くのオプション設
定がありますが、ここでは実際によく使用する
Java起動オプションに設定する方法と、jcmd
コマンドで明示的に収集を開始する2つの方法
を紹介します（図15）。詳細なオプション設定は、
Oracle社が公開しているガイド注8を参照して
ください。
　Java起動オプションに設定した場合は、起
動時よりプロファイル情報を定常的に収集し、
デフォルトで直近15分間のデータをメモリお

よびシステムの一時領域（/
tmpなど）に保持します。オー
バーヘッドも少ないので、将
来的なトラブルに備えてあら
かじめ情報収集する用途に有
効です。
　図15の①で示しているの
は、最大で直近60分間のフ
ライトデータを保持し続ける
場合のJava起動オプション
の例です。
　一方、オーバーヘッドを極
力抑えるために、トラブルの
傾向が見え始めてから明示的
にデータ収集を開始すること
も可能です。フライト記録の
開始と停止には、図15の②
のように、対象のJavaプロセ

図14　Java Flight Recorder有効化のJava起動オプション ▼

-XX:+UnlockCommercialFeatures -XX:+FlightRecorder

図13　Java Mission Control ▼

メモリ不足、無応答、スローダウンに備える

トラブル時に頼りになるJDKの解析ツール 第 章

http://docs.oracle.com/javase/7/docs/technotes/guides/jfr/toc.html

64 - Software Design

第1特集 言語仕様・開発環境・デバッグ機能
あなたはどこまで使いこなせてる？ 今ふたたびのJava

　フライト記録ファイルをサーバから収集し、
解析用のローカルマシンのMission Controlに読
み込ませることで、前述のGCログやHPROF
のプロファイルデータ、ヒープダンプなどの個
別の情報を収集しなくても、統合的な情報を持
つフライト記録1つで原因解析が可能です。

終わりに

　トラブルの現場ではサービス復旧が最優先で
あるため、障害情報収集に与えられる時間はほ
とんどありません。しかし、ここまで解説して
きたように、Javaには事前のオプション設定
によるエラー情報の自動収集や、豊富な解析コ
マンドにより、障害情報を収集できる環境は十
分に整っています。
　ぜひ今回紹介したJava起動オプションや解
析コマンドを練習して、いざというときに実践
できる準備を整えていきましょう。ﾟ

スが起動しているマシンにおいて、次のコマン
ドを実行します。

${JAVA_HOME}/bin/jcmd <pid> JFR.start
${JAVA_HOME}/bin/jcmd <pid> JFR.stop recording ｭ
=<停止対象のレコード番号>

③フライト記録のダンプ
　3つ目のステップがフライト記録のダンプで
す。Java Mission Controlで読み取り可能なフ
ライト記録ファイル（.jfr形式）を出力します。
　ダンプするためには、ダンプ対象のフライト
レコード名、またはレコード番号を指定する必
要があります。収集済みフライト記録の一覧は
jcmd <pid> JFR.checkにより確認できます。
図16は、図15の①のJava起動時よりフライト
記録を開始していた場合の実行例です。レコー
ド名は"HotSpot default"、レコード番号は0で
あることが確認できます。その後、確認したレ
コード番号を指定してダンプしています。

図16　フライト記録の確認とダンプ ▼

フライト記録の確認
${JAVA_HOME}/bin/jcmd <pid> JFR.check
11208:
Recording: recording=0 name="HotSpot default" maxage=1h (running)
フライト記録のダンプ
${JAVA_HOME}/bin/jcmd <pid> JFR.dump recording=0 filename=/var/log/java/my.jfr

図15　Java Flight Recorderの収集設定 ▼

［起動時よりフライト記録を開始する Java 起動オプション（最大 60分間のデータを保持）］
-XX:StartFlightRecording=defaultrecording=true
-XX:FlightRecorderOptions=disk=true,maxage=60m

Java VMの起動時間

Java VMの起動時間

記録開始コマンド
jcmd <pid> JFR.start

記録停止コマンド
jcmd <pid> JFR.stop

起動時から収集
（maxage を超えた分は都度破棄）

フライトデータ保存期間
（start～stop の間）

フライトデータ保存期間
（maxage で指定した最大60分）

①デフォルト起動を有効にして、起動時から常時収集するパターン

②コマンドで指定した期間のみ情報収集するパターン

クラウドが普及し当たり前のものになり、サーバを買う前にインスタンスを買う昨今。ビジネスのス
ピードが上がり、すぐに対応できるクラウドサービスは魅力的ですが、エンジニアとしては隅々まで自
分の理解をめぐらせておきたいものです。ブラックボックスになってしまったシステムはとくにそうで
す。中身を知りたいのが性

さが

といえましょう。本特集は、クラウドだって物理的なサーバがなければ成り
立たないよね！——というスタンスで、x86 サーバの機能を総点検します。ハードウェアとその機能
をしっかりと押さえることで「目利き」になりましょう。前編では、サーバの心臓部であるプロセッサ
とシステムメモリと拡張バスである PCI Express を解説します。次号の後編では、ネットワークとス
トレージを解説する予定です。システムを隅々まで知りたい——エンジニアの知的好奇心と根源的欲求
を満たしましょう！

CONTENT S

PCI Express ..79第3章

システムメモリ ...73第2章

 Writer 長谷川 猛（はせがわ たけし）

プロセッサの見方 ..69第1章

どんな環境でも使える力を培う66第0章

第2特集

x86サーバハードウェア入門

サーバの
目利きになる方法

サーバの
目利きになる方法

前編

オンプレミスを制するものはクラウドを制する

66 - Software Design

オンプレミスを制するものはクラウドを制する

x86サーバハードウェア入門
サーバの目利きになる方法 前編第2特集

　筆者が初めて本誌を手にした1990年代後半、
LinuxやFreeBSDといえばオープンソースで
無償利用できるオペレーティングシステムで、
旧スペックのマシンにこれらのOSをインストー
ルするのがトレンドになっていたころでした。
当時高校生だった筆者も、FreeBSDマシンで
SambaやApache、IMAP、PPPサーバ、そし
て無線LANのブリッジ機能などを持たせ、い
わゆる自宅サーバを運用し始め、その経験は就
職後のサーバの設計、構築、運用業務にも大い
に役立つ経験となりました。
　今ですと、こんなことは自宅にマシンをわざ
わざ置かなくても、月数百円～数千円で利用で
きるVPSやクラウド上のサーバで十分です。
インターネットやサーバは私たちにとって身近
なものとなりましたが、モノを持たずにサーバ
を利用できるようになった今、物理的にサーバ
を構築したり、そのための機材選定を行う機会
は激減したのではないかと思います。幸いにも、
筆者は現在半導体ストレージを扱う立場から、
高負荷なワークロードをオンプレミスで捌く状
況を見ています。本特集では、筆者がこれまで
に見てきた経験を目利きになるための方法とし
てシェアできればと思います。

　コンピュータはプロセッサ、システムメモリ、
そして入出力（I/O）の3つのしくみの組み合わ
せでできています。身近かつシンプルなコン
ピュータの一例として、電卓を考えてみましょ
う（図1）。電卓は、キーボードから入力した数
を計算して、計算結果を画面に表示します。ユー
ザの入力中は、数をメモリ上に記憶しておき、
式が入力された時点で計算し、結果を画面に
表示しています。この場合、入力デバイスはキー
ボード、そして出力デバイスとしてはディス
プレイが存在します。この基本は、現在みな
さんが手許で使われているコンピュータでも、
サーバでも通用する、コンピュータの基本的な
しくみです。
　コンピュータの歴史と、今どきの電子式計算
機、いわゆる電卓の間には深い関係があります。
1971年に日本のビジコン社は、世界初のワン
チップLSIによる電子式計算機LE-120Aを発
売しました。この製品が生まれる過程で造り出
されたLSIこそが、世界初のマイクロプロセッ
サと言われるIntel 4004でした。今私たちが使っ
ているコンピュータは、まさに電卓の延長線上
にあるテクノロジなんですね。

コンピュータの
しくみを振り返る

計算機から始まった
コンピュータ

仮想化技術、そしてクラウド（IaaS）の普及により、コンピュータリソースは仮想化、抽象化された状態で提供さ
れることが一般的になってきています。これはサーバエンジニアやソフトウェアエンジニアにとって、目的のア
プリケーションやビジネスロジックに集中しやすくなった反面、コンピュータのしくみをきちんと理解しなくて
も使えるという状態を生み出しています。本特集では、クラウドコンピューティング時代のエンジニアなら知っ
ておきたいコンピュータの流れとIaaSの下にあるテクノロジ、うっかりオンプレミスでシステムを持たないと
いけなくなったときにも戸惑わずに対応できるようにするための基礎的な知識を紹介したいと思います。

どんな環境でも
使える力を培う

 Writer 長谷川 猛（はせがわ たけし）／ Twitter @hasegaw

第0章

66 - Software Design Oct. 2014 - 67

第0章どんな環境でも使える力を培う

　現代のサーバに話を戻しましょう。サーバと
いってもいろいろなアーキテクチャがあります
が、多くの方が使われているであろう、x86サー

バを前提に話を進めていきたいと思います。写
真1は IBMのRedBooks（情報サイト）で紹介さ
れている、System x3650 M4の内部写真で
す注1。このサーバの場合プロセッサ用スロット
が中央部に2ヵ所あり、そのまわりには合計24
個のメモリソケットがあることがわかります。
また、本体後面にはPCI Express仕様に準拠
したスロットがあり、各種デバイスやインター
フェースを接続できます。これらはライザーに
なっており交換が可能になっています。
　電源ユニットやファン、前面のHDDベイがホッ
トスワップに対応しており、システム停止なし
で障害コンポーネントが交換できる点も、サー
バ機ならではです。写真からは読み取れない部
分ですが、描画能力は控えめながらリモート管
理に対応するビデオ機能や、ホストプロセッサ
で実行されるOSとは独立して動作する管理プ
ロセッサ（BMC：Base Management Controller）
などがある点も特徴的です。

注1） http://www.redbooks.ibm.com/abstracts/tips0850.
html

現代のサーバの構成

液晶画面（Output）

キーボード（Input）

 ▼図1　 電卓の構造を考える

 ▼写真1　 IBM System x3650 M4の内部

PCIe riser
slots

USB hypervisor
hey socket

Hot-swap
power

supplies
Hot-swap
fan packs

Hot-swap
HDD bays

CPU 1

CPU 2

24 DIMM
sockets

Light path diagnostics
panel and optical drive

http://www.redbooks.ibm.com/abstracts/tips0850.html

68 - Software Design

オンプレミスを制するものはクラウドを制する

x86サーバハードウェア入門
サーバの目利きになる方法 前編第2特集

　サーバのハードウェアは、メーカーによりま
すが、各モデルごとにベースユニットと追加（変
更）が可能なパーツのリスト、依存関係などの
情報が記載された資料が用意されており、
PDFのフォーマットで入手できます注2。たとえ
ば、2Uの2プロセッサのサーバを選択し、載
せるプロセッサを選び、DIMMの容量と個数を
決め、必要に応じてネットワークインターフェー
ス、ハードディスクとアレイコントローラを選
び……とサーバの構成を決定していくわけです。
　メーカーによっては、見積もりを出力したり
実際に注文が可能な通販サイト（図2）を提供し
ているベンダ、サーバの構成を検証するための

注2） 日本ヒューレットパッカードが公開しているシステム構成
図（http://h50146.www5.hp.com/products/servers/
proliant/sh_system.html）は、サーバの構成を検討する立
場の人なら見たことがあると思いますが、日本国内向けの
みで海外にはないのだそうです。日本人で良かったですね！

アプリケーションを提供するベンダもあります。
「このパーツはこの組み合わせで大丈夫なのだ
ろうか」と思ったら、想定する構成をこれらに
入力してみるのも1つの手です。

　見積もりサイトや構成検証アプリケーション
でサーバの構成を試していると、特定のメモリ
スロットやPCI Expressスロットを利用する
ためにはプロセッサの増設が必要だったり、ハー
ドディスクの構成によってはコントローラの指
定が必要であるなどの制約にも気づかれるかと
思います。これらは見積もり段階で、ある程度
把握できますが、「1プロセッサの検証機から
グレードアップして本番機は2プロセッサ構成
にしたものの性能が思ったほど出ない」といっ
た経験をされている方も見かけます。次章以降
では、これらの原因や理由、そうなった経緯な
どについて見ていくことにしましょう。ﾟ

サーバの構成を
検討する

サーバ構成にはさまざま
な注意ポイントがある

 ▼図2　 Webサイト上での構成見積もり

http://h50146.www5.hp.com/products/servers/proliant/sh_system.html
http://h50146.www5.hp.com/products/servers/proliant/sh_system.html

コンピュータの心臓部といえばプロセッサです。プロセッサはしばらくの間、おもにクロック周波数の高速化に
より性能を押し上げてきましたが、ここ10年はマルチコア化によりプロセッサあたりの演算性能を稼ぐ方針に
転換しています。x86の歴史を簡単に振り返りながら、これまでの経緯を確認し、イマドキなプロセッサの特性
について考えてみましょう。

プロセッサの見方

 Writer 長谷川 猛（はせがわ たけし）／ Twitter @hasegaw

第1章

69 - Software Design Oct. 2014 - 69

第1章プロセッサの見方

　8086の登場以来、x86系プロセッサは半導
体の製造プロセスの微細化、クロック周波数の
向上、そしてマイクロアーキテクチャのアップ
デートにより、互換性を維持したまま性能を上
げてきました。とくにここ10年ではマルチコ
ア化など大きな変化が生じています。

NetBurstアーキテクチャと
発熱量の限界

　　ちょうど今から10年ほど前、NetBurstアー

キテクチャと総称されるPentium4（2000年～）
では、クロック周波数を引き上げることで性能
を稼ぐ戦略のアーキテクチャが採られており、
現在のプロセッサとほぼ遜色ない3GHz台後半
までたどり着きました。2004年に発表された
Prescott（図1）では、トランジスタ数はついに
1億2500万に達しました。
　しかし、プロセスの微細化が進み、高性能な
プロセッサを作ろうとすると、より小さなスペー
スに多数のトランジスタを押し込むことになり、
発熱が集中することになります。発熱を減らすた
めには、プロセッサの駆動電圧を下げる必要が

x86の系譜と
押さえるポイント

Prescott シングルコア Haswell クアッドコア

内蔵
グラフィックス

コア コア コア コア

ダイサイズの比較（およそ）

 ▼図1　PrescottとHaswell

70 - Software Design

オンプレミスを制するものはクラウドを制する

x86サーバハードウェア入門
サーバの目利きになる方法 前編第2特集

ありますが、Prescottの時代になるとプロセッサ
の稼働電圧を下げても漏れ電流が減らず消費電
力が下がらないという問題が立ちはだかり注1、ク
ロック周波数に頼ってプロセッサの性能を向上さ
せることが技術的に難しくなりました。

　最近では、制御効率がよいトライゲートトラ
ンジスタの採用により漏れ電流を削減できるよ
うになったそうですが、ここ10年はクロック周
波数は無理のない程度に据え置き、マイクロアー
キテクチャの改善によりクロックあたりの処理
性能を向上させたり、プロセッサ内に複数のコ
アを実装して命令実行の並列度を上げたりする
戦略で性能向上を果たしてきました。2013年に

注1） 筆者自身もPrescottの3.4GHzのプロセッサを使用してい
ましたが、消費電力も発熱も非常に多いプロセッサだった
という印象を強く憶えています。また、客先で導入された
Pentium4 3.6GHz搭載のパソコンについてもファン音や
熱に関して評判がよくなかったのを思い出します。

発表されたHaswellのクアッドコアモデル（図1）
では、177平方ミリメートルのダイ上に14億も
のトランジスタが実装されています注2。
　現代のx86プロセッサでは、デスクトップ向
けのプロセッサであれば、4～6、サーバ向け
では12ものコアを搭載しています。基本的に
はコア単体の処理能力も向上し続けていますが、
現在のプロセッサの性能を最大限に活かすため
には、プロセッサ内にある複数のコアをワーク
ロードでうまく使いきることがカギとなります。

　プロセッサの性能は、世代（マイクロアーキ
テクチャの効率）、プロセッサ内のコアの動作
速度、そしてその多重度であるコア数によりトー
タル性能が決まります。
　最近はマルチコアのプロセッサが一般的にな
りました。デスクトップやサーバでは4つ、もし
くはそれ以上搭載しており、プログラムを同時

に複数実行できます。さら
にマルチプロセッサ構成とす
ると、コンピュータで同時に
複数のプロセッサを稼働さ
せることで並列度を増やす
ことができます（図2）。
　実際のところ、クロック
周波数が高いほうがよいか、
コア数が多いかほうがよい
かはアプリケーションに依
存します。アルゴリズムの
都合上、もしくはプログラ
ムの内部的な並列度が低い
ためにコア間の分散が効か
ないようなワークロード向

注2） Intel Reveals New Haswell
Details at ISSCC 2014（http://
w w w. a n a n d t e c h . c o m /
show/7744/intel-reveals-
new-haswell-details-at-isscc-
2014）

時代はマルチコアへ

マルチコアと
マルチプロセッサ

　打ち合わせ中に相手がポロっと口
にしたプロセッサのスペックを確認
したい時、店先でプロセッサの型番
から詳細スペックを知りたい時、ま
た通勤中の暇つぶしに82559のデー
タシート読みたいとき……さまざま
なシチュエーションで願いを叶えて
くれる便利なアプリが Intel ARKアプ
リです。
　ARKとは Intelが提供する同社の製
品データベースであり、Webサイト
からアクセス可能なほか、iOSや
Android向けの「ARKアプリ」が用意さ
れています（図A）。ARKアプリは起動
時に最新のカタログをダウンロード
するほか、ネットワーク接続されて
いない場合でもキャッシュ済みのデー
タを閲覧できます。

Intel TM ARKアプリをインストールしよう！
Co
lum
n

 ▼図A　Intel TM ARKアプリ

http://www.anandtech.com/show/7744/intel-reveals-new-haswell-details-at-isscc-2014

70 - Software Design Oct. 2014 - 71

第1章プロセッサの見方

けでは、コアの動作クロックが高いほうが性能
が伸びたりします。逆にマルチスレッドを意識
して作られていれば、コア数が多いほうが性能
が伸びたりもします。

　クロック周波数が高く、コア数が多いプロセッ
サを選ぶ、といっても、クロック周波数とコア
数の関係は若干ですが反比例の関係にあります。
コア数が多いモデルではクロック周波数が若干
劣り、クロック周波数が高いモデルではコア数
が少ない、といった形のラインナップから、手
許のワークロードに向いたプロセッサを選ぶこ
とになります。図3は、Ivy Bridge EP（Xeon
E5-2600 v2）シリーズにおけるクロック周波数
とコア数の関係です。
　Web 2.0などの利用用途で、同時に多数のア
クセスに対してレスポンスするようなワークロー
ドでは、コア数が多いほうが有利と言われます。

少ないコアを速く動かすよりも、コアが多いモ
デルのほうが、プロセッサが処理できる量は多
い傾向にあるからです。
　直列処理されるバッチジョブが多い場合など、
ワークロードの並列度が確保できず、一部コア
に負荷が偏ってしまうことが予期される場合は、
コア数を必要以上に増やすのではなく、クロッ
ク周波数が高いプロセッサを選んだほうがよい
かもしれません。

　図4、図5はPercona社によるMySQL各種
バージョンのベンチマーク結果注3です。図4で
は、特定のワークロードをさまざまなスレッド
数で実行したときの性能を比較したものです。
このグラフではMySQL 5.1以前（MyISAM）で
は8スレッドを超えるとあまり性能がスケール
していないことが読み取れます。対象的に、現
在主流のInnoDBストレージエンジンでは32ス
レッドの条件時に性能がピークとなっており、
MySQL 5.1単独のときよりも約1.7倍のスルー
プットが向上したことがわかります。次に図5
を見てみましょう。こちらは、先のグラフから
1スレッド（シングルスレッド）時の性能を切り

注3） 引 用 元 : MySQL Performance Blog（http://www.
mysqlperformanceblog.com/2011/10/10/mysql-
versions-shootout/）

多コアモデルと高クロッ
クモデル、どちらを選ぶ？

ミドルウェアもマルチコア
を意識したチューニングへ

キャッシュ
同期

スレッド

コア

マルチコア　シングルプロセッサ

マルチコア　マルチプロセッサ

 ▼図2　マルチコア、マルチプロセッサ

4

GHz

3.5

3

2.5

2

1.5

1

0.5

0
0 2 4 6 8

コア
10 12 14

 ▼図3　 Ivy Bridge EPシリーズにおけるクロック周
波数とコア数の関係

http://www.mysqlperformanceblog.com/2011/10/10/mysql-versions-shootout/

72 - Software Design

オンプレミスを制するものはクラウドを制する

x86サーバハードウェア入門
サーバの目利きになる方法 前編第2特集

出したものとなっています。興味深いことに、
MySQLのバージョンが上がるにつれて、シン
グルスレッドあたりの性能は下がりつつありま
す。このベンチマーク結果から、MySQLはバー
ジョンアップとともに、シングルスレッドスルー
プットよりも、現在主流のマルチコア環境で利

用した場合の総合スループットを高めるように
チューニングが変化していることが伺えます。

　2ソケット以上のサーバモデルでは、サーバ内
のPCI Express拡張ス
ロットやDIMMスロッ
トの利用条件として、
マルチプロセッサ構成
をとる必要があります。
理由については次の章
以降にて述べますが、
搭載するDIMMや拡
張スロットの利用予定
から、想定するプロセッ
サ構成で問題がない
か、忘れずに確認して
ください。ﾟ

性能以外の要件にも
注意

7000

8000

6000

5000

4000

3000

2000

1000

0
2 4 8 16 32 641

MySQL 4.1
MySQL 5.0
MySQL 5.1
MySQL 5.1+InnoDB-plugin
MySQL 5.5
MySQL 5.6.2

engine

Threads

th
ro

ug
hp

ut
, t

ps

sysbench, throughput

 ▼図4　MySQLバージョン間のスループット比較（スレッド合計）

600

500

400

300

200

100

0

Version

th
ro

ug
hp

ut
, t

ps

sysbench, throughput, 1 thread

MySQL 4.1 MySQL 5.0 MySQL 5.1 MySQL 5.1
+InnoDB-plugin

MySQL 5.5 MySQL 5.6.2

 ▼図5　MySQLバージョン間のスループット比較（1スレッド）

システムメモリ（一次記憶）は、コンピュータを構成する要素の中ではプロセッサの次に重要な存在です。実行対
象のプログラムや処理対象のデータは、システムメモリ上に置かれている必要があります。本章では、システム
メモリの位置づけやDIMMの仕様の読み方、メモリの構成を決める際に知っておきたいポイントを説明します。

システムメモリ

 Writer 長谷川 猛（はせがわ たけし）／ Twitter @hasegaw

第2章

73 - Software Design Oct. 2014 - 73

第2章システムメモリ

システムメモリ、レジスタと
キャッシュ

　システムメモリは必要な分のDIMM（Dual
Inline Memory Module）をシステムボードに装
着して利用します。しかし、DIMMの応答速度
はプロセッサからすると１～2桁違い、非常に
低速なため、効率を上げるためにプロセッサ内
のキャッシュ（Cache）が併用されています。
　システムメモリのほかにも、プロセッサには、
ソフトウェアが演算に利用できる記憶素子であ
るレジスタ、またシステムメモリとの速度差を
隠蔽するためのキャッシュメモリを備えています。

　レジスタとは、プロセッサ内に用意されてい
るメモリ部分で、システムメモリの読み書きよ
りも圧倒的に高速であり、プロセッサの状態や
計算途中の値を保持するために利用されます。
レジスタの一部は利用用途があらかじめ決まっ
ていますが、現在のIA32（64bit）では16本の汎
用レジスタ（General Purpose Register）が備わっ
ており、ソフトウェアが自由に利用できます。

メモリの階層構造

　プロセッサの処理スピードからみればDIMM
の応答速度は非常に遅いため、このギャップ
を隠蔽するべく低密度ながら高速にアクセス可
能なSRAM（Static RAM）によるL1、L2、L3
キャッシュが備わっています（図1）。

メモリの基礎知識

L1キャッシュ

L2キャッシュ

コア
レジスタ

L1キャッシュ

L2キャッシュ

コア
レジスタ

L1キャッシュ

L2キャッシュ

コア

・・・

レジスタ

システムメモリ

L1キャッシュ
L2キャッシュ
L3キャッシュ
システムメモリ

32KB/コア
256KB/コア
10～30MB
1GB～

1～2サイクル前後
4サイクル前後
24サイクル前後
50ns～

L3キャッシュ

 ▼図1　メモリの階層構造と応答速度の例

74 - Software Design

オンプレミスを制するものはクラウドを制する

x86サーバハードウェア入門
サーバの目利きになる方法 前編第2特集

　プロセッサは、システムメモリを直接扱うの
ではなく、キャッシュを通して扱うことで高速
に動作します。しかし、キャッシュに載ってい
ないデータへのアクセスが発生すると、システ
ムメモリからキャッシュにロードする間、プロ
グラムの実行が停止してしまいます。
　メモリアロケータやカーネルの開発者注1、プ
ロセッサを利用効率を上げるための本格的な
チューニング作業を行っている方などでなけれ
ば、これらのキャッシュを意識している方はそ
れほど多くないでしょう。しかし、とある調査に
よれば、OLTP（Online Tran saction Processing）
ワークロードの実行の75％はメモリアクセス
中のブロックによるものと示されており、メモ
リアクセスがプロセッサの命令処理時間に大き
な影響を及ぼしていることがわかります注2。

UMAとNUMA

　x86アーキテクチャでも、2007年に発売さ
れたHarpertown（Xeon 5400シリーズ）までは、

注1） 最近、この手の方が本誌の売上に大きな影響を及ぼしてい
るそうで :-)

注2） Memory System Characterization of Commercial
Workloads：http://www.hpl.hp.com/techreports/
Compaq-DEC/WRL-98-9.pdf

対称共有型メモリアクセス（UMA）の構成をとっ
ていました。しかしUMAでは1つのバス上に
複数のプロセッサが存在し、メモリにつながる
バスを取り合うため、プロセッサ数が増えてく
るとうまくスケールしません。
　2008年のNehalem（Xeon 5500シリーズ）から
はNUMA（Non-Uniform Memory Access：図2）
の構成に代わり、現在に到ります。NUMAでは、
各ノード（プロセッサ）がローカルメモリを持ち、
プロセッサ間がインターコネクトで相互接続さ
れた状態となっています。また、ノードＡがノー
ドＢに接続されているメモリにアクセスする必
要がある場合には、間のノードを介して目的の
メモリにアクセスすることができます。
　一般的に、プログラムがアクセスするメモリ
範囲には偏りが生じますので、NUMAの構成
にすることで頻繁に利用されるデータをプロセッ
サの側に置け、高速に処理できるようになりま
した。また、プロセッサを追加することで、よ
り多くのメモリチャンネルを搭載できるという
メリットもあります。
　現在の Intelのプロセッサでは1基あたり12
枚のDIMMを接続でき、数百GBのシステムメ
モリを利用できます。マルチプロセッサ構成で
はプロセッサの数だけ多くのメモリを接続でき

CPU DRAM

PCIe

近いデバイスへ早くアクセスできるが、遠くの
デバイスにはアクセスに時間がかかる

CPUDRAM

PCIe

Non-Uniform Memory Access（NUMA)

どのCPUから見ても同じ時間でアクセスでき
るが、全CPUでバスを共有する

CPUCPU

DRAM

Symmetric Multiprocessing (SMP)

Chip
set

PCIe

 ▼図2　SMPとNUMA

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-98-9.pdf

74 - Software Design Oct. 2014 - 75

第2章システムメモリ

ますので、4プロセッサのサーバにもなると
TB級のシステムメモリを搭載できます。
　NUMAではプロセッサからアクセスするメ
モリ領域により処理速度が変わるため、プロセッ
サやメモリコントローラの変更だけで実現でき
るデザインではなく、ソフトウェアもNUMA
を意識した動作が求められます。たとえば、オ
ペレーティングシステムにはプロセスが使用す
るデータを特定のノードのメモリに集める、デー
タの近くのノードにプロセスをスケジュールす
るといった工夫が必要となります。また、ソフ
トウェア開発者にとっては、メモリレイアウト
やスレッドのデザインで大きな速度差が出ると
いう課題も同時に生まれました。

メモリの
キャッシュ コヒーレンシ

　あるコアがシステムメモリの内容を書き換え
た際、他のコアにも矛盾なく変更が見えなけれ
ばいけません。しかし、実際のプロセッサの実
装としては、各コアが別々にL1/L2キャッシュ
を持っているため、システムメモリを書き換え

る際には各コアが持つキャッシュメモリと一貫
性を保たなければなりません。これをキャッシュ
コヒーレンシと呼びます。
　現在のx86プロセッサではL1/L2キャッシュ
を各コアごとに持ち、L3キャッシュはプロセッ
サ内のコア間で共有しています。さらに、マル
チプロセッサ環境では、より遠くのコアとも
キャッシュコヒーレンシを保つため、インター
コネクトを通じての通信が発生します。

NUMA構成の実例

　ここでNUMA構成の具体的なサーバ例を見
てみましょう注3（図3）。Hewlett Packardの
ProLiant DL980 G7は最大8プロセッサまで
搭載できます。このシステムでは2プロセッサ
ごとにグループ化されており、さらに4グルー
プが2つのグループにわけられ、疎結合されて
います。

注3） ホワイトペーパー「HP ProLiant DL980 G7でのGaussian09
の評価」: http://h50146.www5.hp.com/products/servers/
proliant/whitepaper/pdfs/WP_DL980_Gaussian09_0307.
pdf

 ▼図3　HP ProLiant DL980 G7のNUMA構成とメモリレイテンシ

http://h50146.www5.hp.com/products/servers/proliant/whitepaper/pdfs/WP_DL980_Gaussian09_0307.pdf

76 - Software Design

オンプレミスを制するものはクラウドを制する

x86サーバハードウェア入門
サーバの目利きになる方法 前編第2特集

　このシステムでは、プロセッサがメモリにア
クセスする際、アクセス先のメモリが、そのプ
ロセッサに接続されたローカルメモリであれば
120nsでアクセスできますが、インターコネク
トを通じてすぐ隣にあるプロセッサのメモリへ
は180nsの時間がかかります。さらに、隣のグ
ループのメモリへは290nsとなっており、ロー
カルメモリと比べると2.4倍も応答速度が遅く
なり、一番遠いメモリへのアクセスには300ns
以上の時間がかかり、ソフトウェアのNUMA
対応の重要性がわかります。
　上記からもわかるとおり、マルチプロセッサ
構成は多コア化ができますがメモリのアクセス
速度の観点ではペナルティにもなり得ます。現
在ではx86プロセッサでも最大12コアまであり、
ひと昔前と比べると並列度が非常に高くなって
いますので、NUMA構成にせずとも要件を満
たせる場合は、まずはシングルプロセッサでの
構成を検討するとよいかと思われます。

DIMMの規格と
選定方法

　現在よく使われるのがDDR3 SDRAMと呼ば
れるメモリモジュールです（写真1）。SDRAM
とは（Synchronous Dynamic Random Access
Memory）を意味します。SDRAMのあと、メ
モリモジュールへのクロックの立ち上がり／立
ち下がり両方で稼働するよう拡張されたDDR
SDRAM（Double Data Rate SDRAM）が登場し
ました。DDR SDRAMは、SDRAMと同じク

ロック周波数でも倍速で動作するため、
SDRAMの2倍のスループットが得られます。
そのあと、DDR2、DDR3、そして最近になり
市場に流通しはじめたDDR4まで、世代ごとに
スループットは倍増してきました。

DIMMの仕様の読み方

　DIMMの規格はPC3-12800やDDR3-1600
などの表記で表され、メモリモジュールのデー
タ転送レートおよび最大スループットを示して
います。PC3-12800と表記されたDIMMの場
合、そのメモリモジュールはDDR3のSDRAM
であり、理論上の最高転送速度は12800MB/s、
つまり12.8GB/sの転送速度であることを示し
ま す。PC2-6400で あ れ ば、そ の DIMMは
DDR2 SDRAM、6.4GB/sとなります。DDR3-
1600といった表記では、DDR3 SDRAMが
1600MHzで駆動していることがわかります。
　サーバに装着するDIMMは、サーバに合わ
せて選ぶ必要があります。DDR、DDR2、DDR3
などはすべて同じ物理形状をしていますが、駆
動電圧が違うなど、仕様に互換性はないため装
着時には注意が必要です。DDR3-1600と
DDR3-1333といった、同じ世代のメモリでも
クロック違いであれば互換性がありますが、動
作クロックはメモリチャンネル上で最も遅い
DIMMのクロックに合わせられます。

RegisteredとUnbu�ered

　DIMMを選定する場合にRegisteredタイプ
とUnbufferedタイプ、もしくはこれらの記載

がないDIMMを見かけることがありま
す。Registeredタイプは、メモリ内部
のアドレス信号とコントロール信号を
内部でバッファリングを行い、信号の
安定化とタイミングの補正をするメモ
リです。
　またUnbufferedタイプは、上記のバッ
ファリング機能に対応していないメモ
リを指します。とくに明記がない場合

 ▼写真1　DDR3 DIMM

76 - Software Design Oct. 2014 - 77

第2章システムメモリ

はUnbufferedのものと考えて、差し支えあり
ません。
　ユーザにとってRegisteredとUnbufferedの最
大の違いは、システムボード側の仕様によって
対応するメモリが違う点です。Registeredメモ
リを必要とするシステムボードではRegistered
タイプのみ利用でき、逆にRegisteredタイプ
に対応しないシステムボードではUnbuffered
タイプのみが利用できます。DIMMを入手する
際には、搭載先のシステムがRegistered対応か、
非対応かを確認しなければなりません。

チャンネルとDIMMの枚数

　Xeon E5プロセッサの場合、3枚までDIMM
を接続できるチャンネルが4本あり、最低 1、
最大12のDIMMを扱えます（図4）。このため
プロセッサあたり 12個のDIMMスロットが
サーバにあることがほとんどです。また、各
チャンネルにDIMMを挿しておくと、インター
リーブアクセスにより、スループットが向上し
ます。
　逆に、同じチャンネル内にDIMMを複数搭

載すると、メモリのクロック（アクセス速度）が
低下します。たとえばDIMM 1333MHzで動作
できるサーバとプロセッサをそろえても、チャ
ンネル内の全3ソケットにDIMMを搭載すると
動作クロックが800MHzに落ちてしまう、といっ
たことが起こります注4。このため、たとえば
4GBのDIMMを12枚挿した場合と、16GBの
DIMMを4枚挿した場合では、スループット的
には後者のほうが高くなります。
　メモリ容量が足りなくなっては本末転倒で
すし、あまり神経質になる部分ではありません
が、常にプロセッサとメモリの帯域で勝負する
科学技術計算のようなワークロードでは、枚数
を最小限に抑えられるか気を付けるとよいでしょ
う。DIMMが処分セールになっていたり、古い
マシンで余っているから、といった安易な理由
で小さな容量のDIMMを大量に搭載すると、
メモリアクセス性能が低下してしまいます。で
きれば容量が大きいDIMMを積んで、一部ス

注4） この仕様については各社のサーバの技術資料などから読
み取るか、サーバベンダや販売会社などから情報を入手
できます。

各12DIMMsまで接続可能

Xeon E5

DDR3

DDR3

DDR3

DDR3

Xeon E5

DDR3

DDR3

DDR3

DDR3

QPI
Interconect

QPI
Interconect

 ▼図4　Xeon E5のメモリチャンネル構成

78 - Software Design

オンプレミスを制するものはクラウドを制する

x86サーバハードウェア入門
サーバの目利きになる方法 前編第2特集

ロットは空けておいたほうが、メモリの動作速
度を保ったまま、あとに増設する余地も得られ
ます。

Swap Insanity

　現在のオペレーティングシステムは、
NUMAの構成を検出してメモリやコアの割り
当てを最適化しようとします。プロセスが必要
とするメモリができるだけノードをまたがない
ように割り当て、またプロセスをスケジュール
する際にはそのノード上のコアを優先的に割り
当てて、リモートノードへのアクセスによるオー
バーヘッドを回避します。
　しかしその代償として、ノード間でメモリの
消費量が偏る、といった状況も発生します。
Linuxの場合、特定ノード上のメモリが足りな
くなった状態でローカルメモリを割り当てよう
とした場合に、そのノードのメモリ上にあるプ
ロセスのイメージをスワップ領域にページアウ
トし空きメモリを強制的に確保することがあり
ます（図5）。
　どちらかと言えばOSの実装上の問題です

が、一見メモリが足りているにもかかわらずペー
ジアウトが発生し、性能が大幅に劣化すること
からシステム性能に大きな影響を与えます。こ
の問題はSwap Insanityとして知られています。
　この問題には、メモリを大量に使用するプロ
セスのメモリ割り当てポリシーをインターリー
ブに設定したり、スワップ対象にならない
HugePageとしたり、OSのNUMA対応を無効化
して対処されることが多いようです。ほかにも
スワップデバイスをなくしたり、vm.swappiness
をゼロに設定しページアウトが発生しにくいよう
にする方法をとることもありますが、できれば避
けたい手段です注5。ﾟ

注5） vm.swappiness=0に設定したサーバでデータベースに
負荷がかかると、メモリ消費が突発的に増えた際にデッ
ドロックし、DBミドルウェアがブロック状態となり、動
作を停止するデータベースサーバを見たことがあります。
カーネルがスワップしようとしているときは何らかの理
由でメモリアロケーションに困っている場合ですので、
スワップをさせないという対応も、新たな問題を生む可
能性があります。

Node0 Node1

ローカルメモリ
の確保ニーズ

ローカルメモリ確保のためページアウト

アロケート済みのメモリ 未アロケートのメモリ

スワップ領域

 ▼図5　Swap Insanity

PCI Expressは2002年7月にPCI-SIGにより規格化された、汎用的なインターフェースです。現在ではパソ
コンやサーバだけでなく、スマートフォンなどのさまざまな組み込み機器のプロセッサでもサポートされており、
ほとんどのコンピュータで利用されています。本章では、PCI Expressの特徴、およびサーバでの構成時の着
目ポイントについて紹介します。

PCI Express

 Writer 長谷川 猛（はせがわ たけし）／ Twitter @hasegaw

第3章

79 - Software Design Oct. 2014 - 79

第3章PCI Express

　PCI Expressが使われるようになったのはこ
こ10年ぐらいで、それ以前は20年以上、ISA
バス（ATバス）やPCIバス、そのほかいくつか
のバス規格が使われてきました。まずは ISA
バスやPCIバスについて振り返り、PCIeの特
徴について見ていくことにしましょう。

　ISAバスは、16bitのパラレル転送によりプ
ロセッサとデバイス群を接続します。ISAバス

では、歴史的理由によりI/Oポートや割り込み
チャネルやDMAチャネルの割り当てがマジック
ナンバーで決まっています。ISAバスの時代は、
ハードウェア構成にあわせてOSにパラメータ
を指定したり、デバイスを追加する場合などに
はほかのデバイスとリソース競合が起きないよ
うにやりくりする、などの苦労がありました注1。

注1） 筆者が1997年に構成したPentium Proベースのマシンで
は、当初、CD-ROMドライブで音楽を再生しているとご
くまれにシステムがクラッシュする問題がありました。調
べてみると ISAのサウンドカードとのリソースの競合が原
因でした。

ISAバス時代

 ▼写真1　PCI、PCI-Xの拡張カード各種

 PCI（5V仕様） PCI -X

 PCI（3.3V仕様） PCI -X（筆者による加工品）

80 - Software Design

オンプレミスを制するものはクラウドを制する

x86サーバハードウェア入門
サーバの目利きになる方法 前編第2特集

なっていましたが、さらにPCIとは独立して
動作クロックを133MHzに引き上げ、バス幅を
64bit化したPCI-Xが出てきました。PCI-Xで
は1.06GB/sの転送速度があり、サーバでは、
RAIDカードやネットワークアダプタなどの負
荷がかかりやすいデバイスでPCI-Xを見かけ
ました。PCIとPCI-Xには互換性があったため、
PCI-Xの拡張カードは物理的干渉がなけれ
ば注2PCIバスに接続でき、逆にPCI-Xバスに
PCIデバイスを接続することもできます。
　PCIまたPCI-Xは、動作クロックの引き上
げおよびバス幅の拡張により転送速度の向上を
図りましたが、のちに登場したPCI Express
により置き換えられていくこととなります。

　PCIeはシリアル転送方式を使用した、PCI
の後継インターフェースです。PCIe 1.0 x1で

は 2.5Gb/s、x16では
40Gb/sの論理転送速
度を持ちます。PCIや
PCI-Xではパラレル転
送を使用しており、多
数の信号線を使って
データを転送しますが、
クロック周波数が上が
れば、配線長の差によ
り信号の到着タイミン
グにズレ（スキュー）が
生じ、回路設計がシビ
アになります。一方
PCIeの場合は、TX（送

注2） ショートなどのリスクが
ありますのでお勧めでき
る方法ではありませんが、
PCI-XカードをPCIバス
に装着する際に物理的に
干渉してしまう場合には、
PCI-Xで追加された端子
部分をカットしてしまう
ことで認識させることも
可能なことがあります。

　1991年に登場したPeripheral Component
Interconnect（PCI）は、登場当時の仕様で動作
クロック33MHz、133MB/sのパラレル転送に
より、それまでより高速な I/Oができました。
性能面以外でも、PCIデバイスにはPCI
configuration Spaceと呼ばれるレジスタがあり、
この情報をもとにBIOSやOSがデバイスのリ
ソース割り当てを自動調整できるようになりま
した。マニュアルでリソースの調整がいらなく
なったのはISAからの大きな前進でした。PCI
のデバイスは、今でも、ひと昔前のコンピュー
タなどで見かけるかと思います（写真1）。

PCIの高速化と拡張規格

　PCIバス時代末期には、66MHz化およびバ
ス幅の拡張により533MB/sでの転送が可能に

2.5Gbps 差動信号 レーン リンク

ポート

ホスト ターゲット

ポート

レーン：2.5Gbps差動信号の送受信ペア
リンク：レーンの集まり
ポート：デバイス内にあるリンクを形成するための送受信グループ

 ▼図1　PCIeのレーン構成

PCI Expressの
しくみ

PCIの登場

80 - Software Design Oct. 2014 - 81

第3章PCI Express

直して元のデータを復元します。このように
高速なレーンを複数束ねることで、これまで
より広帯域でデバイスを接続できるようにな
りました。さらにPCIe 2.0、PCIe 3.0ではレー
ン速度が5.0Gb/s、8.0Gb/sとなり、世代ごと
に2倍の転送速度を実現しています注3。

プロトコルのネゴシエーション

　PCIeにはバージョンやレーン数に
よりいろいろな組み合わせがあります
が、カードの物理形状はすべて統一さ
れており、上位互換性を保っています
（写真2）。たとえば 4レーン仕様の
PCIeカードを16レーンのスロットに
装着すれば論理4レーンで接続されま
すし、PCIe 2.0仕様のカードをPCIe
3.0仕様のスロットに装着すれば、
PCIe 2.0で接続が確立されます。
　逆に、PCIe 3.0仕様のデバイスを
PCIe 2.0仕様のスロットに装着するこ
ともできますし、16レーン仕様の
PCIeカードも、（ホスト側のスロット
形状が許せば）1レーン仕様のPCIeス
ロットに接続することもできます注4。当
然、デバイス側のレーン数よりホスト
側のレーン数が少ない場合や下位規
格でリンクした場合にはデバイスの設
計どおりの性能がでないかもしれませ
ん。

プロセッサ内蔵
PCIeコントローラ

　現在のプロセッサで特徴的な部分
としては、PCI Expressのコントロー
ラをプロセッサ自体が持っている、

注3） PCIe 1.0/2.0では8b/10bのトランスコーディ
ング、PCIe 3.0では128b/130bのトランス
コーディングを使用しており、PCIe 3.0の転
送性能は実質的に2倍となっています。

注4） やはりお勧めできる方法ではありませんが、
ホスト側のPCIe x1に、ビデオカードの接点
部をx16からx1に改造し使用している方もい
らっしゃるようです。

信）とRX（受信）の差動ペア、合計4本の信号線
でホスト（コンピュータ側）とターゲット（デバ
イス側）を接続し、レーンを形成します（図1）。
PCIeの各レーンは信号線の数が少ないため、
転送速度を上げやすいのです。
　データを送信する側は、データを複数レーン
に分散させて送信し、受信する側は、受信した
データをいったんバッファリングし、組み立て

 ▼写真2　4種類のPCIe

 X1

 X4

 X8

 X16

82 - Software Design

オンプレミスを制するものはクラウドを制する

x86サーバハードウェア入門
サーバの目利きになる方法 前編第2特集

ということです。以前のx86では、ノースブリッ
ジ（Northbridge）と呼ばれるチップセット側に
PCIeコントローラ機能がありましたが、
Sandy Bridge以降のプロセッサでは、メモリ
コントローラ同様にPCIeコントローラもプロ

セッサに内蔵されました。
　図2は Ivy Bridgeプロセッサ内のPCIeの構
成です。PCIeデバイスを接続できる数はプロ
セッサにより違いますが、Xeon E3 v2であれ
ば合計20レーンを決められたパターンで分割し、

Port 0
DIM/PCIe

Port 1
（IOU2）

PCIe

Port 2
（IOU0）

PCIe

Port 3
（IOU1）

PCIe

Transaction

Link

Physical

0...3

X4

DMI

X4

Port1a

X8

Port1a

X4

Port1b

X4

Port 2a

X4

Port 2b

X4

Port 2c

X4

Port 2d

Transaction

Link

Physical

Transaction

Link

Physical

0...3 4...70...3 4...7 8...11 12...15

X8

Port 2a

X8

Port 2c

X16

Port 2a

X4

Port 3a

X4

Port 3b

X4

Port 3c

X4

Port 3d

Transaction

Link

Physical

0...3 4...7 8...11 12...15

X8

Port 3a

X8

Port 3c

X16

Port 3a

 ▼図2　Xeon E5（Ivy Bridge）のPCIeコントローラのレーン構成

　昔はパラレル／シリアルポートを通じてコンピュー
タと連携するデバイスを簡単に作れましたので、高
校時代に学校の体育館の照明設備とコンピュータを
接続し、制御するという無茶をやったことがありま
す。ハードウェアは同級生が担当し、ソフトウェア
は筆者が書いて動かしたことがあります。OSの特
権保護すらなくハードウェアを触り放題なころでし
たのでそれほど難しくはありませんでした。また、
ISAバス程度であれば個人でデバイスを設計・実装

された方もいたようです。
　現在では、Arduinoや Raspberry Piなど I/Oポー
トが露出しているマイコンボードを使う選択肢もあ
りますが、x86に何かを接続する場合はUSB-Serial
アダプタを使ったり、AVRやPICなどのマイクロプ
ロセッサを使ったUSBターゲットとして実装すれば、
割と手軽に新しいデバイスを製作、接続できます。
PCIeバスに何かを直接ぶら下げるとすると、FPGA
やPCIeの IPが必要になるでしょう。

バス高度化の功罪
Co
lum
n

82 - Software Design Oct. 2014 - 83

第3章PCI Express

1～3デバイスに接続できます。Xeon E5 v2で
あれば40レーンあり、より多くのデバイスを
接続できます。
　最近のx86プロセッサは、システムに1つ
PCH（Platform Controller Hub）を持ちますが、
PCHとの接続バスも実質的にはPCIeです。こ
のため、E5-2600v2/4600v2シリーズでマルチプ
ロセッサ構成を組む場合、第2プロセッサ以降に
限りさらに4レーン分のPCIeが利用できます。

拡張スロットまでの道のり

　プロセッサから出ている各PCIeインター
フェースは、サーバ後部のPCIeスロットに電
気的に接続されます。実際にはシステムボード
上のRAIDコントローラなどに接続され、拡張
スロットが露出していないこともありますし、
プロセッサからのPCIeインターフェースとス
ロットの間にブリッジLSIが挟まれており、
インターフェース数やPCIeのバージョン、レー
ン数などの仕様がプロセッサ側の仕様と一致し
ていない場合もあり、構成時に注意が必要なポ
イントです注5。またマルチプロセッサ対応サー

注5） I/O帯域幅が重要となるシステムでは、使用するサーバの
構成図を注意深く確認したり、サーバベンダの方にブロッ
ク図などを見せていただいたり、想定した構成で期待どお
りのスループットが出るか検証するなどの確認が必要にな
るでしょう。

バでは、各スロットに対応するプロセッサが装
着されていないと、そのPCIeスロットが動作
しないため注意が必要です。
　具体的な例として IBM社のサーバのシステ
ムガイドを見てみましょう（図3）。このサーバ
の場合、スロット1～3は最初のプロセッサに
接続されていますが、スロット4～6はふたつ
目のプロセッサに接続されているため、利用に
は2プロセッサ構成とライザーの追加が必須条
件となります。ライザーは機器見積りの際にうっ
かり見落としやすいため、注意しましょう注6。

PCI Expressの電力仕様

　拡張カードは電力を消費しますが、必要な電
力は原則としてスロットから供給されます。
PCI Expressの技術仕様（表1）ではx4以上の
スロットは25Wの電力供給が保証されています。
経験上、x86サーバのほとんどのスロットがこ
の仕様に準拠していますが、ごく希

まれ

にこの仕様
を満たさないものを見かけたこともあります。
　消費電力が大きいGPGPU、大型のPCIe Flash

注6） モデルによってはPCIやPCI-XとPCI Expressを変換するブ
リッジチップを搭載したライザーも用意されていることが
あります。特殊なインターフェースカードを必要とする要
件や、ソフトウェアのライセンスがNICのMACアドレス
で認証されるシステムで既存のデバイスを継続使用したい
場合など、手持ちの資産を再利用したい場合に役立ちます。

 ▼図3　PCIeスロットついての説明例（IBM社システムガイドより抜粋）

84 - Software Design

オンプレミスを制するものはクラウドを制する

x86サーバハードウェア入門
サーバの目利きになる方法 前編第2特集

などでは25Wを超える電力を消費する場合があ
ります。この場合は、16レーンフルハイトのスロッ
トから最大75Wの電力供給が仕様で定められて
いるほか、ATX仕様の6ピン／8ピンのプラグ
から追加電力を供給できる場合がありますが、
最終的には基板のデザインに依存します。残念
ながら、具体的な電源仕様はスロットの形状を
みるだけでは判断がつかない場合がほとんどで
すが、各スロットが供給可能なワット数が明記
されている場合もあります（写真3）。PCIeスロッ
トの電源仕様がわからない場合にはサーバベン

ダなどへ仕様を確認してください。

　今回はx86サーバの全体的な構成、プロセッ
サの歴史と特性、DIMM、そしてPCI Express
バスについて説明しました。サーバを構成する
にはまだまだ足りないものが多いですね。ディ
スクなどのストレージやネットワークインター
フェースです。次回の後編では、これらのコンポー
ネントをカバーしていきたいと思います。ﾟ

 ▼写真3　最大消費電力が明記されたPCIeスロット

次回予告

スロットからの最大供給電力　　

スロット形状 x1 x4 /x8 x16

フルハイト 10W/25W（High Power） 25W 25W/75W（グラフィックカード）

ロープロファイル 10W 25W 25W

 ▼表1　PCIeの電力仕様

※引用元資料 PCI Express Card Electromechanical Specification 1.1

x16スロット（最大75W、16レーン）

x8スロット（最大25W、4レーン）

 本システムボードの場合はx4/x8のスロットにもx16より
 大きなカードが装着できる物理形状となっている

Oct. 2014 - 85

　SF作家アシモフの代表作といえば、前回紹介
した「ファウンデーション」シリーズと、今回紹
介する「ロボット」シリーズ。ロボットというと、
日本では鉄人28号からマジンガーZやガンダム
のような、人が操縦する人型機械まで「ロボッ
ト」ですが、「ロボット」という言葉がはじめて登
場したカレル・チャペックの「R.U.R」以来、本
来のロボットは鉄腕アトムやドラえもんのよう
な自律機械と相場が決まっております。まあ、
人型でコクピットがあっても本来のロボットの
定義を満たす「翠星のガルガンティア」チェイン
バーみたいな奴も中にはいますが。
　このとおり、ロボットはアシモフの発明ではあ
りませんが、にも関わらずそれがアシモフの代表
作になったのは、一連の作品を通してロボットの
近代的な定義と意義を与えたからにほかなりませ
ん。それが、SFを読んだことがない人でも一度
は目にしたであろう、ロボット工学三原則。

・�第一条：ロボットは人間に危害を加えてはな
らない。また、その危険を看過することによっ
て、人間に危害を及ぼしてはならない。

・�第二条：ロボットは人間にあたえられた命令
に服従しなければならない。ただし、あたえ
られた命令が、第一条に反する場合は、この
限りでない。

・�第三条：ロボットは、前掲第一条および第二
条に反するおそれのないかぎり、自己をまも
らなければならない。

『鋼鉄都市』
（アイザック・アシモフ／
早川書房）

　人の役に立ち、人を傷つけず、簡単に壊れな
い。ある意味理想の道具の定義にもなっている
のですが、そんな理想の道具を手に入れたとき、
人はどうなるのか？　ロボットという存在を深
く考えることは、人という存在を深く考えるこ
とと同義であることを示したのがアシモフでし
た。
　その「ロボット」シリーズの最高傑作に挙げる
人も少なくない「鋼鉄都市」の世界には、2種類
の人類がいます。地球の「鋼

c a v e o f s t e e l

鉄都市」で暮らす80
億人の地球人と、超光速航法とロボットを擁

よう

し、
宇宙を支配するごく一握りの「宇

s p a c e r s

宙人」。物語は、
スペイサーが地球上で何物かによって殺された
ところからはじまります。捜査を命じられた
ニューヨーク市警の刑事イライジャ・ベイリに
は、1つの条件が課せられます。それはスペイ
サーのロボット、R・ダニール・オリヴォーを
相棒とすること。やがて捜査線上に1人の人「物」
が浮かび上がります。ロボットは三原則に逆らっ
て人を殺すことができるのでしょうか……。
　銀河帝国の興亡とはまるで関係なさそうな話
に見えるのですが、アシモフはファウンデーショ
ンとロボットを後に統合してしまいます。どの
ように統合した、いや、してしまったのか。次
回、アシモフ編最終回をお見逃しなく！

イラスト・題字／aico

 第10回

オーケストレーションツールSerf・Consul入門特別企画

86 - Software Design

オーケストレーションツール
Serf・Consul入門

前佛 雅人（ぜんぶつ まさひと）
 Twitter @zembutsu　 Web http://pocketstudio.jp/log3/author/admin/

前回はオーケストレーションツールとしてシステム全体に一斉に処理を行う「S
サ ー フ

erf」の解説を行いま
した。今回は、サービス単位での検出や監視を通し、オーケストレーションを支援する「C

コ ン サ ル

onsul」に
ついて解説します。

Consul編

が異なるからです。Serfは、エージェントを通
したノード単位でのメンバ管理を行ってきまし
た。対してConsulは、サービス単位での管理が
できるようになります（表1）。
　Consulはノードの単位でのメンバ管理に加え、
ApacheのポートやMySQLデータベースといっ
た、サービス単位での管理ができます。あらか
じめコマンドで規定しておけば、サービスの監
視にも利用できます。さらに、HTTP APIと
DNSのインターフェースを通して、監視結果や
メンバ情報の取得もできます。ただし、Consul
そのものにオーケストレーションツールとして、
何かを実行する機能はありません注5。
　これができると、Serfでは実現できなかった
こと、たとえばHTTPの応答に障害を検知した
場合、ロードバランサの切り離しや復旧が可能
となります。

Consul

Consulとは�
　Consul注1は、Serfと同じくHashicorp社に
よって公開されているツールです。2014年の春
に公開されたばかりです。こちらもGitHub注2を
通して公開されており、IRC注3やメーリングリ
スト注4を通して議論が行われています。Consul
は、Serfの機能を一部取り込んでいるため、ほ
ぼ同じような操作感で扱うことができます。

ConsulとSerfの違い�
　なぜSerfではなくConsulが必要になったの
でしょうか。それは、ノードを見ているレイヤ

特別企画

Serf Consul
目的 サービス検出とオーケストレーション サービス検出と設定
ヘルスチェック 低レベル（ノード死活監視） サービス単位で高度な調整
キーバリューストア なし あり
メンバーシップ ノード単位 サービス単位
Web API なし あり
DNSインターフェース なし あり
アーキテクチャ AP型（一貫性重視、可用性を犠牲） CP型（可用性より一貫性重視）
※参考：Serf vs. Consul（http://www.serfdom.io/intro/vs-consul.html）

 ▼表1　SerfとConsulの比較

注1） 公式サイトはhttp://www.consul.io/です。
注2） https://github.com/hashicorp/consul
注3） #consul（freenode.net）
注4） Consul Google Group: https://groups.google.com/

group/consul-tool
注5） 原稿執筆時点。ロードマップには、将来的にSerfのevent

やqueryの機構を取り入れる予定とあります。

http://pocketstudio.jp/log3/author/admin/
http://www.consul.io/
https://github.com/hashicorp/consul
https://groups.google.com/group/consul-tool
http://www.serfdom.io/intro/vs-consul.html

オーケストレーションツールSerf・Consul入門 オーケストレーションツールSerf・Consul入門

86 - Software Design Oct. 2014 - 87

Consul編

機能�
　Consulには4つの機能があります。

	 1　サービス検出
　ノード上で動作するさまざまなアプリケーショ
ンを、サービスとして定義できます。サービス
の一覧情報はConsulサーバ側で管理します。こ
れらの情報を取得するために、HTTP API、Web
UI、DNSの各インターフェースを備えていま
す。具体的には、Consulノード上で定義を行い
ます（図1）。任意の対象に対して“api”や“mysql”
などの名前を付けることができます。また、サー
ビスはAPIを通して登録することもできます。

	 2　障害検知
　サービスに対するヘルスチェックを、ノード
が定期的に行います。もし、チェックで異常検
出など状況の変化があれば、ただちにサーバへ
情報が伝えられます。障害の発生状況は、各イ

ンターフェースから取得できます。

	 3　キーバリューストア（KVS）
　Consul内部で使用する領域と、ユーザが任意
で利用できるデータ領域があります。HTTP
APIを使えば、純粋なKVSとしてConsulを使
うこともできます。

	 4　�複数のネットワークに対応（マルチデータ
センタ）

　Consulサーバのクラスタは、複数のネット
ワーク（Consulドキュメントではデータセンタ
と表現）にまたがって連携できます。特定のサー
バに対して問い合わせを行ったとき、対象が自
分のネットワーク（Consulのクラスタ）に存在し
なければ、外部のクラスタに問い合わせます。

アーキテクチャ�
	 非中央集権型のクラスタ
　Consulのクラスタは、Serf同様に非中央集権

 ▼図1　Web UI（デモサイト：http://demo.consul.io/ui/）

http://demo.consul.io/ui/

オーケストレーションツールSerf・Consul入門特別企画

88 - Software Design

型のしくみです。“consul”のバイナリ1つで、ク
ライアントとエージェントの役割を持ちます（図
2）。

	 Consulサーバ
　ConsulサーバはSerfにはなかった概念です。
Consulサーバには、次の役割があります。

・Consulノードの情報を記録する
・キーバリューストア（KVS）にデータを格納す

る
・複数のインターフェースからKVSの情報を返

す
・ほかのネットワーク上のConsulサーバと通信

する

　サーバは1台でも起動できますが、可用性を
高めるには3台以上でクラスタを構成する必要
があります。また、次のような技術要素でConsul
は構成されています。

・メッセージング：SWIM、Serf
・リーダー選出：Raft

・セキュリティ：TLS
・データストレージ：UMDP

	 Consulノード
　Consulノードは、Consulサーバの手足のよう
な役割を持ちます。コマンドラインのクライア
ントとして、サーバに対して命令を出したり、
情報を取得できます。また、実際にサービスの
検出や、死活状況の確認を行うのはノードです
（図3）。各々のノードで逐次状況の監視を行い、
変化があれば、ただちにサーバ側に伝えます。
　一般的なクライアント／サーバ型の監視シス
テムは、サーバ側がノードに対してチェックを
行うスタイルが多く見受けられます。一方の
Consulは、実際にチェックを行うのはConsul
ノードです。ノードがcurlやpingなどのコマン
ドを、あるいはSensuプラグインを実行し、そ
の結果をConsulサーバに伝えます。そのため、
ノード単位で細かな監視間隔が設定できるほか、
サーバ側での情報把握が迅速に行えます。一方
で、個々のノードの監視設定が煩雑であるとい
う課題もあります。

TCP 8400

TCP 8400Consulノードは、
Consul サーバの
どこにでも
問い合わせ可能

Consul サーバはほかのネットワーク
上の Consul サーバとも、つながる
ことができます。

RPCプロトコルで通信
・consul CLI
・MsgPack over TCP
ノード状態と、サービス監視を
サーバに伝える役割

consul
server

consul
server

consul
server

HTTP
API WebUI

Consul サーバクラスタ

Consulクラスタ

TCP/UDP
8301

Raftプロトコル

consul
node

consul
node

TCP/UDP
8301

TCP/UDP
8301

TCP 8500

DNS
TCP 8600

 ▼図2　Consulのアーキテクチャ

オーケストレーションツールSerf・Consul入門 オーケストレーションツールSerf・Consul入門

88 - Software Design Oct. 2014 - 89

Consul編

環境構築

動作環境�
　ConsulはSerf同様に、1つのバイナリファイ
ルで実行ができます。エージェント起動時のオ
プションで、Consulのサーバになるかノードに
なるかを選べるほか、コマンドライン用のツー
ルとしても動作します。

	 Linux版（x86_64）のダウンロードと展開
　バイナリはダウンロード用のページ注6から取
得できます。現在のバージョン0.3では、Linux、
Mac OS X、Windowsのバイナリが配付されて
います。次はwgetを用いた展開例です。

$ wget -O 0.3.0_linux_amd64.zip https://ｭ
dl.bintray.com/mitchellh/consul/0.3.0_ｭ
linux_amd64.zip
$ unzip ./0.3.0_linux_amd64.zip
cp ./consul /usr/bin/consul

　ファイルを設置後は、“consul -v”と入力する
ことで、バージョン情報が確認できます。

Web UIのセットアップ�
　ブラウザからサービスの状態を見たり、KVS
の参照／操作を行う場合は、別途セットアップ
を行う必要があります。最新のものは、UI用の
ダウンロードページ注7から取得できます。
　コードの取得と展開は、図4のように行えま
す。
　あとは、Consulサーバ起動時に“-ui-dir”オプ
ションを指定します。

$ consul agent -server [..略..] ｭ
-ui-dir=/opt/consul/dist

　最後に、ブラウザから“http://<ホスト >
:8500/ui/”にアクセスすると、
WebUIの参照／操作ができます。

A B C

A B C D E

クライアント1
（consul node1）

サーバ
（consul server）

D E

クライアント2
（consul node2）

ノードで変化があれば

node1 node2

サーバに状態が
記録される

エージェントが
サーバに情報を伝える

 ▼図3　Consulのサービス検出はノードが主体

注6） http://www.consul.io/downloads.html

注7） http://www.consul.io/downloads_
web_ui.html

 ▼図4　コードの取得と展開

mkdir /opt/consul
$ wget -O 0.3.0_web_ui.zip https://dl.bintray.com/mitchellh/consul/0.3.0_web_ui.zip
$ unzip ./0.3.0_web_ui.zip
mv ./dist /opt/consul/

http://www.consul.io/downloads.html
http://www.consul.io/downloads_web_ui.html

オーケストレーションツールSerf・Consul入門特別企画

90 - Software Design

Consulサーバと
クライアントの起動

Consulサーバ�
　Consulを使うためには、まずConsulサーバを
起動させる必要があります（図5）。
　重要なのは、初回起動するConsulサーバでは
“-bootstrap”オプションを付ける必要があると
いうことです。2台目以降のConsulサーバでク
ラスタを形成する際には、“-server”と“-join”を
使い、1台目のサーバを指定します。なお、Consul
サーバは1台でも稼働できますが、本来の障害
耐性（fault tolerance）を高めるには、3台以上で
クラスタを組む必要があります注8。
　なお、起動すると、次のようなエージェント
の状態が画面に表示されます。

・Node name：ノード名（エージェント固有の
もの）。“-node”フラグで指定可

・Datacenter：データセンタ名。“-dc”フラグ
で指定可

・Server：サーバかクライアント、どちらで動
作しているか

・Client Addr：HTTP・DNS・RPCインター
フェースの情報

Consulノード�
　ノードを起動するオプションは、サーバとほ
ぼ同様です（図6）。“-server”オプションがなけ
れば、ノードとしてクラスタに参加します。
　クラスタ構成後は“consul members”コマンド
を実行することで、サーバやクライアントの一
覧と、死活状況を参照できます（図7）。

HTTPインターフェース

　Consulには複数のインターフェースが実装さ
れています。

HTTP APIを使う�
　Consulの情報はHTTP経由で取得する方法
が、比較的に簡単です。Consulサーバとの通信
はJSON形式でデータのやりとりを行います。
デフォルトではポート8500が、HTTP用のイン
ターフェースです。処理結果は“jq”コマンド注9

を併用すると見やすくなります。
　図8の例は、ノード情報一覧を表示するもの
です。

キーバリューストアの読み書き�
　ConsulのKVSにデータの読み書きを、HTTP
経由で行うことができます（図9）。
　こちらは、キー名称“hello/key”の中に、値
“hello, world!”を格納するものです。“true”と表

示されれば登録に成功
し、“false”であれば登録
失敗です。データを取得
するときは、“base64”を
使ってデコードする必要
があります。

 ▼図5　Consilサーバ起動例

$ consul agent -server -bootstrap -client=192.168.39.5 -dc=local \
 -node=consul1 -data-dir=/tmp/consul -bind=192.168.39.5

 ▼図6　Consulノード起動例

$ consul agent -dc=local -node=consul2 -data-dir=/tmp/consul2 \
 -bind=192.168.39.6 -join=192.168.39.5

 ▼図7　サーバやクライアントの一覧と、死活状況を表示

consul members
Node Address Status Type Build Protocol
consul3 192.168.39.13:8301 alive client 0.3.0 2
consul1 192.168.39.11:8301 alive server 0.3.0 2

注8） 参 考：http://www.consul.io/docs/internals/consensus.
htmlのページ末尾“Deployment Table”

注9） http://stedolan.github.io/
jq/で配付。CentOSでEPEL
リポジトリが利用可能で
あれば、“yum install jq”で
セットアップ可能。

http://www.consul.io/docs/internals/consensus.html
http://stedolan.github.io/jq/

オーケストレーションツールSerf・Consul入門 オーケストレーションツールSerf・Consul入門

90 - Software Design Oct. 2014 - 91

Consul編

さまざまなHTTP API�
　ConsulはRESTfulなHTTP APIを持ち、
ノードやサービスのチェックに関する設定や、
設定変更、削除を行います。現行のAPIのバー
ジョンはv1です。エンドポイントには、次のよ
うな種類があります。

・kv・・・・・・・・・・・・・・・キーバリューストア
・agent・・・・・・・・・・・・エージェント制御
・catalog・・・・・・・・・・ノードやサービス管理
・health・・・・・・・・・・・ヘルスチェックの管理
・status・・・・・・・・・・・Consul のシステム状態

・session・・・・・・・・・・セッション管理やロック
・internal・・・・・・・・・・Consul 内部で使用

	 キーバリューストア（kv）
　“/v1/kv/”に、“GET”、“PUT”、“DELETE”
などのメソッドを使い、キーバリューストアと
してユーザが任意に利用できます。ただし、
“GET”で取得したデータは、そのままでは読め
ません。base64でデコードする必要があります。

	 エージェント（agent）
　ローカルのConsulエージェントと連携するた
めに使用します（表2）。

 ▼図8　ノード情報一覧を表示

$ curl -s http://192.168.39.5:8500/v1/catalog/nodes | jq '.'
[
 {
 "Address": "192.168.39.5",
 "Node": "consul1.pocketstudio.net"
 },
 {
 "Address": "192.168.39.6",
 "Node": "consul2.pocketstudio.net"
 }
]

 ▼図9　HTTP経由でのデータの読み書き

$ curl -XPUT -d `hello, world!' http://192.168.39.5:8500/v1/kv/hello/key
true

 ▼図10　キー名称に値を格納

$ curl -s http://192.168.39.5:8500/v1/kv/hello/key | jq '.[].Value | .' -r | base64 -d
hello, world!

API 動作
/v1/agent/checks ローカルエージェントが管理しているcheckを返す
/v1/agent/services ローカルエージェントが管理しているserviceを返す
/v1/agent/members ローカルserfエージェントが見えているメンバを返す
/v1/agent/join/<address> ローカルエージェントがノードに joinするトリガ
/v1/agent/force-leave/<node> ノードを force remove（強制削除）
/v1/agent/check/register 新しいローカルcheckの登録
/v1/agent/check/pass/<checkID> ローカルテストを通過（passing）したとマーク
/v1/agent/check/warn/<checkID> ローカルテストの警告（warning）をマーク
/v1/agent/check/fail/<checkID> ローカルテストの障害（critical）をマーク
/v1/agent/service/register 新しいローカルserviceの登録
/v1/agent/service/deregister/<serviceID> ローカルserviceの削除

 ▼表2　エージェント

オーケストレーションツールSerf・Consul入門特別企画

92 - Software Design

	 カタログ（catalog）
　nodeやserviceなどに対する監視（checks）の
登録や削除を行います（表3）。

	 ヘルスチェック（health）
 各サービスやノードの状態を確認をします（表
4）。

	 クラスタ状態（status）
 Consulクラスタに関する情報を返します（表5）。

	 セッション（session）
　セッションの作成、破棄、問い合わせに使用
します（表6）。

DNSインターフェース

使い方�
　ConsulサーバはDNSインターフェースを兼
ね備えているため、ホスト名の名前解決を行う
ことができます（図11）。つまり、ホスト名さえ
把握できれば、しくみ的にIPアドレスを知る必
要がなくなります。なお、逆引きを行うことは
できません。
　digを使って名前解決する場合は、“-p”でポー
ト番号8600を指定します。FQDNの形式は、
<consulホスト名>.node.consulになります。デー
タセンタの指定がある場合は、<ホスト名> .
node.<データセンタ名>.consulで名前解決をし
ます。

API 動作
/v1/catalog/register 新しいnode、service、checkの登録
/v1/catalog/datacenters 既知のデータセンタ一覧
/v1/catalog/nodes 指定したデータセンタ上に存在するノード一覧
/v1/catalog/services 指定したデータセンタ上に存在するサービス一覧
/v1/catalog/service/<service> 指定したサービスが存在するノード一覧
/v1/catalog/node/<node> 指定したノード上のサービス一覧

 ▼表3　カタログ

API 動作
/v1/health/node/<node> ノードのヘルス情報を返す
/v1/health/checks/<service> serviceのヘルス情報に関するcheckを返す
/v1/health/service/<service> serviceを持つノードのヘルス情報を返す
/v1/health/state/<state> 指定したstate状態にあるcheckを返す

 ▼表4　ヘルスチェック

API 動作
/v1/session/create 新しいセッションの作成
/v1/session/destroy/<session> 指定したセッションの破棄
/v1/session/info/<session> 指定したセッションに問い合わせ
/v1/session/node/<node> 特定ノードに紐付くセッション一覧
/v1/session/list: アクティブなセッションの一覧

 ▼表6　セッション

API 動作
/v1/status/leader 現在のRaftリーダーを返す
/v1/status/peers 現在のRaftピアの一覧を返す

 ▼表5　クラスタ状態

オーケストレーションツールSerf・Consul入門 オーケストレーションツールSerf・Consul入門

92 - Software Design Oct. 2014 - 93

Consul編

　図12のようにノード情報を確認できます。

DNSインターフェースの使いどころ�
　DNSで返ってくるのは「正常」と認識されてい
るノードの情報です。これのしくみを使えば、

・正常なサービスを提供しているマスタ側サー
バの指定

・サービスを提供しているホスト一覧の取得
・DNSラウンドロビンによる負荷分散

といった応用ができます。ただし、Consulが提
供するのはDNS情報のみです。実際に情報を取
得するプログラムや、受け取った結果を処理す
る「何か」にあたる部分は自分で実装する必要が
あります。

まとめ

　これまで駆け足でSerfとConsulの使い方を
追ってきました。Serf・Consulともに開発途上
であり、これからもさまざまな機能が拡張され
る模様です。どちらも、オーケストレーション
ツールとして、引き続き目が離せません。
　ただ気を付けなくてはいけないのは、これら

のツールが何かを解決してくれるわけではない
ことです。純粋に道具であり、どこで使うかは
自分で考える必要があるのです。
　そして、どちらにも共通しているのは、手軽
なのに高機能な点。本来は複雑であるクラスタ
の同期や処理を、簡単に行える点です。ほかの
ツールと比べると、導入の敷居が低いのではな
いでしょうか。もし、身の回りで使えそうなと
ころがあれば、試していただければと思います。
ｨ

	 参考URL
・SerfとConsulの記事まとめ - Qiita
 URL http://qiita.com/zembutsu/items/aaffab81f9d5b60d

7ecc

・Serf Cheat Sheet 日本語版 - Qiita
 URL http://qiita.com/zembutsu/items/1e2cddd0a424ef7

a4895

・Consul Cheat Sheet 日本語版 - Qiita
 URL http://qiita.com/zembutsu/items/3efb7ebc1d8dba

521d3c

 ▼図11　問い合わせの形式

<タグ>.<サービス名>.<ノード名>.node.<データセンタ名>.consul

※タグおよびサービス名は省略できます。

 ▼図12　実行例

$ dig @192.168.39.5 -p 8600 consul1.node.consul any

; <<>> DiG 9.8.2rc1-RedHat-9.8.2-0.23.rc1.el6_5.1 <<>> @192.168.39.5 -p 8600 consul1.node.ｭ
consul any
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8882
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; WARNING: recursion requested but not available

;; QUESTION SECTION:
;consul1.node.consul. IN ANY

;; ANSWER SECTION:
consul1.node.consul. 0 IN A 192.168.39.5

http://qiita.com/zembutsu/items/aaffab81f9d5b60d7ecc
http://qiita.com/zembutsu/items/1e2cddd0a424ef7a4895
http://qiita.com/zembutsu/items/3efb7ebc1d8dba521d3c

94 - Software Design

SoftLayerを使ってみませんか？ ベアメタルサーバクラウド活用入門

トピックス

　ロンドンに続き、8月にトロントデータセン
ターが開設されました。それに伴いトロントで
も＄500キャンペーンが開催されています。また、
ベアメタルサーバのOS選択で“without OS（OS
なし）”が選べるようになりました。独自のOS
を導入したいユーザは初期のプロビジョニング
時に時間のかかるOSインストール作業時間を
待つ必要がなくなりました（筆者も今度利用し
てみます）。加えて新機能としてAutoScaleの
発表がありました。これで負荷に応じてシステ
ムを自動的に拡張できるようになります。

サーバ構築時に利用したい機能

　SoftLayerでは、CPUやメモリといったリ
ソースを柔軟に構成できるのも特徴となります
が、それ以外にも構築時に便利に使える機能が
あるので、これらの説明をします。
　クラウドではサーバを新規に作成する作業を
「プロビジョニング」と呼んでいますが、この作
業を行う際、同時にユーザは任意の処理を実行
させることができます。これによってサーバを
購入後すぐに目的の機能を利用できます。実際
にはプロビジョニング時に、シェルスクリプトや、
Chef、Puppetなどのサーバ自動構成ツールを

用いることで複雑なシステムを構築できます。
　たとえば、最近話題のOpenStackの「ノード」
を追加したいと考えた場合、ベアメタルサーバ
の起動時に「ノード」を構成するためのChefを
指定します。これで起動直後から「ノード」とし
て利用可能にできます。簡単なところでは、パッ
ケージ管理のデータベースを最新にしておく
（apt-get update）など、処理を指定すること
で作業を簡略化できます。
　SoftLayerでは、このプロビジョニング時に
指定可能なスクリプトを「Provision Script」と
呼びます。またこの機能と合わせて利用すると
便利な「User Metadata」というしくみがありま
す。これはサーバに対して任意の情報を関連づ
けることができます。「Provision Script」から
「User Metadata」の値を利用できますので、ス
クリプトを汎用的に作り、メタデータで固有の
情報を引き渡すような実装が考えられます。
　またLinuxサーバをOSに選択した場合、初
期状態でSSH接続は「rootユーザ」でパスワー
ド認証となっていますが、SSH公開鍵の登録
を自動で実施することも可能です。
　それ以外にもネットワーク系の便利ツールが
あるので併せて紹介します。

SSH Keysの指定

　SoftLayerでは、SSH公開鍵認証を簡単に
使うための機能が用意されています。プロビジョ

SoftLayerを
使ってみませんか？
ベアメタルサーバクラウド活用入門

 Writer 常田 秀明（ときだ ひであき）　日本情報通信㈱　Hideaki_Tokida@NIandC.co.jp　Twitter@tokida

前回では、SoftLayerでトライアルキャンペーンを利用して物理サーバを起動するまでを説明しました。今回は
SoftLayer上で実際にサーバを構築するうえでのヒントやAPIの簡単な説明、そしてネットワークについて2回に
分けて解説します。

IBMがリリースする真打ちクラウド特別企画

第2回　サーバ構築の実際（その1）

94 - Software Design Oct. 2014 - 95

第2回　サーバ構築の実際（その1）

ニング時または「OS Reload」時に指定すること
により rootユーザの公開鍵が指定可能です。
この機能を利用すると自動的に rootユーザ
の.ssh/authorized_keysに追記されている
状態になります。SSH公開鍵認証を利用する
ためには、事前に公開鍵を登録しておく必要が
あります。一度登録すると次回以降も利用でき
るため便利です。今回はUbuntuを使って解説
していきます。手順は次のとおりです。

①利用したい鍵を事前にローカルのPCなどで
作成する。図1ではMacOS上で実行（Linux
は同じ手順。Windowsの場合にはTeraTerm
などを利用）

②管理ポータル上のメニューの［Device］→
［Manage］→［SSH Keys］を選択

③［ADD］ボタンをクリックして登録画面を表
示

④［Key Contents］にローカルのPCで作成した
「test_rsa.pub」の内容を貼り付ける

⑤［Label］に名前を付けておく

　その後、プロビジョニング時に「SSH-KEY」
を選択するフィールドがあるので利用したい鍵

の［Label］を選択します。サーバの起動後は、
管理ポータル上からはSSH公開鍵の変更がで
きないので注意が必要です（通常のLinuxのお
作法で登録することはもちろん可能です）。こ
の段階では、パスワード認証も公開鍵認証もど
ちらも利用可能な状態になっています。

Provision Scriptsと
UserMetaDataの使い方

　プロビジョニングするときに、シェルスクリ
プトを実行できます。SoftLayerではこのスク
リプトを「Provision Scripts」と呼びます。ここ
で指定するスクリプトはSoftLayerがHTTPS
でアクセス可能な場所に置く必要があります。
HTTPからでは実行されずHTTPSのURLだ
けが実行されるので注意が必要です。HTTPS
サーバの準備が難しい場合には、GitHub社の
提供するGistなどのサービスを利用するのが
便利です。SSH公開鍵認証の設定と同様に事
前に登録することも可能ですし、その都度指定
することもできます。
　ここではサンプルとしてリスト1のようなス
クリプトを用意して実行します。このスクリプ
トをGistに登録しておくことで起動時に実行

$ cd .ssh
̃/.ssh$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/hideaki/.ssh/id_rsa): test_rsa 任意の文字
Enter passphrase (empty for no passphrase): パスフレーズを入力
Enter same passphrase again: 再度パスフレーズを入力
Your identification has been saved in test_rsa.
Your public key has been saved in test_rsa.pub.
The key fingerprint is:
92:c7:61:32:6e:99:15:3c:75:5c:be:ff:0b:62:0a:de hideaki@princess.local
The key's randomart image is:
+--[RSA 2048]----+
¦ ¦
¦ o. ... ¦
¦ o +. . ¦
¦ . X . . ¦
¦ B S . ¦
¦ . o . ¦
¦ . o . .¦
¦ . o o . . .¦
¦ . E .o¦
+-----------------+
hideaki@princess:̃/.ssh$ ls -l test_rsa*
-rw------- 1 hideaki staff 1766 8 18 19:19 test_rsa
-rw-r--r-- 1 hideaki staff 404 8 18 19:19 test_rsa.pub

 ▼図1　ssh-keygenの実行例

96 - Software Design

SoftLayerを使ってみませんか？ ベアメタルサーバクラウド活用入門

されます。
　リスト1を解説します。
apt-get-updateを実施
して導入パッケージを最
新化しています。次によ
く使う git、curlを導
入しています。
　そのあとSoftLayerの
CLI（ Command Line

Interface）を利用するた
め、python-softlayer
を導入しています。次に
SSH公開鍵認証を利用
しているので rootのパ
スワードログイン認証を
無効にしておきましょう。
最後に、初期に登録でき
るUserDataの値を取得

#===
bootstrap4Ubuntu.sh on SoftLayer
#===
sudo apt-get update
sudo apt-get upgrade

Install Util
sudo apt-get install git -y
sudo apt-get install curl -y

Install SoftLayer Command line Interface
sudo apt-get install python-pip -y
pip install softlayer

Japanese Locale
sudo apt-get install -y language-pack-ja-base language-pack-ja
update-locale LANG=ja_JP.UTF-8 LANGUAGE="ja_JP:ja"
source /etc/default/locale

Japan TimeZone
cp -p /usr/share/zoneinfo/Asia/Tokyo /etc/localtime
echo "Asia/Tokyo" > /etc/timezone

Please make sure to set SSH-KEY

sed -ri 's/#PermitRootLogin yes/PermitRootLogin yes/g' /etc/ssh/sshd_config
sed -ri 's/#PasswordAuthentication yes/PasswordAuthentication no/g' /etc/ssh/sshd_config
sed -ri 's/#PermitEmptyPasswords no/PermitEmptyPasswords yes/g' /etc/ssh/sshd_config

get User_data
curl -k https://api.service.softlayer.com/rest/v3/SoftLayer_Resource_Metadata/ｭ
getUserMetadata > ̃/userMetadata.txt

 ▼リスト1　スクリプトサンプル例（https://gist.github.com/tokida/5b58831c0d94ce7b25f2）

 backend_ip Primary backend ip address
 backend_mac Backend mac addresses
 datacenter Datacenter name
 datacenter_id Datacenter id
 fqdn Fully qualified domain name
 frontend_mac Frontend mac addresses
 hostname Hostname
 id Id
 ip Primary ip address
 network Details about either the public or private network
 provision_state Provision state
 tags Tags
 user_data User-defined data

……（中略）……

root@provisionTest01:̃# sl metadata network `sl metadata ip`
:...............:...................:
: Name : Value :
:...............:...................:
: mac addresses : 06:5a:94:08:1b:93 :
: router : fcr01.sjc01 :
: vlans : 848 :
: vlan ids : 477454 :
:...............:...................:

 ▼図2　sl metadataコマンドの実行例

https://gist.github.com/tokida/5b58831c0d94ce7b25f2

96 - Software Design Oct. 2014 - 97

第2回　サーバ構築の実際（その1）

して̃/userMetadata.txtに保管しています。
　こうした一連の作業が可能ですので、いろい
ろ組み合わせて構成を実施できることがわかり
ます。実行されるスクリプトは/root/post_
install.KRCpのような形式で保管されている
ため起動後に確認できます。
　SoftLayerの管理コマンドはリスト1のpip
で導入されたことになります。そのほかの導入
についてはSoftLayerのGitHub注1を参照して
ください。CLIを利用するには、あらかじめ認
証されたユーザのIDとAPIキーが必要ですが、
サーバからCLIを利用した場合にはキーの設
定をしなくてもいくつかの値を取得できます（図
2）。コマンドはsl metadataです。
　ここまででプロビジョニング時にスクリプト
を実行して、何らかのソフトウェアを導入する
ことができるようになりました。実際に利用し
てみるともう少し柔軟に変更したい内容が出て
きたりします。その場合はプロビジョニング時
に「変数」として値を渡す手段があります。それ
が「User Metadata」と呼ばれるものです。すこ
し取り扱いが難しいかもしれないのですが、起
動時にさまざまな値を指定できます。ここで記
載した値はそのままの文字列でAPIやCLIか
ら取得できます。
　サーバを図3のように設定して構築した場合、
図4のようにプロビジョニングされたサーバ上

注1） http://softlayer.github.io/softlayer-python/getting-
started/

で「User Metadata」の値をREST
API経由で取得できます。
　とくにフォーマットされるこ
となく、テキストデータとして
取得できるので、この値を何ら
かのプログラミングで処理して
利用することになります注2。

SoftLayer上の便利なツール

　サーバやネットワークに対して便利に使える
ツールなどが用意されています。SoftLayerの
サービスの状況を確認したい際にも便利な情報
となります。

ネットワークステータス確認
（Network Status）

　サーバやネットワークの状態を視覚的に確認
できます。「Local」と「Global」の2種類が用意
されており、それぞれモニターできることが違
います。いずれも、管理ポータル上の「Network」
→「Status」から選択をします。

 Global Network Status
　図5のように、各DataCenterでのネットワー
クの状況がわかります。Bandwidth Graphsか
らは接続されているキャリアのbpsが視覚的に
確認できます。それぞれのDataCenterのつな
がりもこれを見るとわかりますね。Tokyoには
PoP（Points of Presence：接続ポイント）があ
り、Equinix、NTT、Telstraが 10Gで接続し
ているのがわかります。また、SSL/PPTPな
どのステータスもわかります。SSL-VPN接続
などが不安定な場合などは確認してみると問題
の切り分けになります。

注2） SoftLayerにはサーバのOSを初期化する「OS Reload」とい
う便利な機能があります。この「OS Reload」の際に「Script」
は再設定ができるのですが「Provision User Metadata」は、
再指定ができませんので気をつけてください。

$ curl -k https://api.service.softlayer.com/rest/v3/ｭ
SoftLayer_Resource_Metadata/getUserMetadata
"userdata_sample¥nitme:value¥nitem2=value2¥n"

 ▼図4　プロビジョニング実行例

 ▼図3　User Metadataの指定例

http://softlayer.github.io/softlayer-python/getting-started/

98 - Software Design

SoftLayerを使ってみませんか？ ベアメタルサーバクラウド活用入門

 Local Network Status
　「Local」のネットワーク状況は、データセン
ター内部のネットワークの状況を確認できます。
図6の例では、ルータ「fcr01a」→スイッチ
「fas02a.sr01」→スイッチ「fcs24a.sr01」→サー
バ「docker01.niandc.co.jp」となっており、その
ときの状況でアイコンが変わります。全体をサッ
と見たいときにはこちらが便利なのでブックマー
クに登録しておくと良いかもしれません。

 Network Tools

　一般的なNetwork
系のツールを、管理
ポータルから実行で
きます。ブラウザで
確認できるので便利
です。管理ポータル
のメニューから、
［Network Tools］を
選択します。Soft
Layer上のサーバに
ついてはプルダウ
ン・メニューから選
択できます。利用で
きるコマンドは、
Ping、Traceroute、

NSLookup、Whois、CheckDNSで す（図 7 参
照）。

 通信利用量の確認
　通信量は、Privateは無料ですがPublic側は
利用量に対して課金がされます。管理ポータル
の「Network」→「Bandwidth」→「Summary」から
参照できます。図8では各サーバの通信量が確
認できます。この図では「Current Billing
Cycle」の期間を参照しておりdocker02.niandc.
co.jpは640MBほどIn通信をしていることがわ
かります。

 ▼図5　Global Network Status画面

 ▼図6　Local Network Status画面

98 - Software Design Oct. 2014 - 99

第2回　サーバ構築の実際（その1）

コマンドラインとAPIの利用

　APIの豊富さが特長のSoftLayerですが、実
際に利用しようとして筆者はつまづきました。
まず、情報があまり見つかりません。今回は参
考になればと、APIを使うサンプルを作ってみ
ましたので紹介します。APIは「C#、Perl、
PHP、Python、Ruby、VB.net」の言語にライ
ブラリとして実装されています。プロトコルと
しては「SOAP（XML-RPC）」そしてリクエスト
は「REST」により行います。
　SoftLayerで提供されているサービスの多く
は、APIで制御できます。これによりユーザは
プログラミングでインフラストラクチャを操作
することが（流行の「Infrastructure as a Code」
です！）可能となり、既存の管理ポータルで不
足している機能などを作ることもできます。実
際のシステムの運用に入った段階で自動化を進
めたいときなどは、このAPI利用により、よ
り柔軟な対応ができるようになります。

　実際はAPIだ
けでは学習コス
トがかかること
もあり、導入が
厳しい場合には
Python製 CLIも
用意されていま
す（ Windows 、
LinuxおよびMac
OSでも動作）。
　CLIについて
は各サーバで利

用することにより便利な機能もあるため学習し
ておくと損はないかと思います。
　ここでは簡単に利用すために用意されている
コマンドラインインターフェース（以下CLI）の
利用のしかたを紹介したいと思います。次回に
APIのサンプルとしてPHPを利用したサーバ
の状況を確認する例を紹介します。

CLIの導入方法

　まず事前にPythonを導入します。ここでは
Ubuntu 14.04環境を利用します。Windowsで
は先にPython環境を構築した後に導入を行い
ます注3。

Install SoftLayer Command line ｭ
Interface
sudo apt-get install python-pip -y
pip install softlayer

　前節の「Provision Script」で使用していたコ
マンドです。Ubuntu 14.04以降ではapt-get

注3） 「Getting Started」http://softlayer.github.io/softlayer-
python/getting-started/

 ▼図7　Network Tools

 ▼図8　通信利用料確認

http://softlayer.github.io/softlayer-python/getting-started/

100 - Software Design

SoftLayerを使ってみませんか？ ベアメタルサーバクラウド活用入門

install python-softlayerでも導入ができ
ます。CLIを利用するにはいくつかの情報を
CLI側に設定する必要があります。

・API Endpoint
・API認証キー

の2つが必要です。
　まず、API Endpointとは、API呼び出し先
のサーバとなりパブリックネットワーク側、プ
ライベートネットワーク側で用意されています。
　API認証キーは、ユーザ IDに紐づくAPI認
証キーとなります。これは、ポータルのUser
Profileで設定ができます。

①管理ポータルへログインする
②メニューの「Account」からプルダウンで表示

された「Users」を選択する
③表示されている表のなかで、欲しいユーザ名に

対応している「API Key」のセル上の「Generate」
をクリックする

④表示が「View」へと変わると生成完了される
ので、クリックするとAPIキーが表示

　CLIを利用するにあたり、そのつどAPIキー
を入力するのはたいへんですので、“sl
config setup”で設定をします。この設定では、
ユーザIDとそれに紐づく、先ほど入手した「API
認証キー」を入力します。　注4

　図9のような形式で登録ができます。実体は
ログにも記載されていますが̃/.softlayerと
なるため適宜切り替えて使います。slコマン
ドによりサーバの追加、起動停止、またDNS
サービスなどのそのほかのサービスの操作など
を行うことができます。プロビジョニングされ
たサーバの状態を見るのは sl vs detail
<id>で実施できます。
　これらのオプションは多岐にわたり、チケッ
トなどもCLIコマンドでできます。ブラウザ
を起動してログインして、といった繰り返し作
業プロセスを顧みると、チケットをサーバ上で
確認できるのでかなり便利です。

◆　　　◆　　　◆
　少し敷居が高そうなベアメタルサーバですが、

注4） SoftLayer以外の環境で利用する場合には、Publicを選択
しましょう。SoftLayer環境で利用する際にはセキュリティ
や通信面からもPrivateを選択することをお勧めします。

root@provisiontest1:̃# sl config show
:..............:.......................................:
: Name : Value :
:..............:.......................................:
: Username : not set :
: API Key : not set :
: Endpoint URL : https://api.softlayer.com/xmlrpc/v3.1 :
: Timeout : not set :
:..............:.......................................:
root@provisiontest1:̃# sl config setup
Username []: SLのアカウントIDを入力
API Key or Password []: API Keyを入力
Endpoint (public¦private¦custom): private 注4
:..............:..:
: Name : Value :
:..............:..:
: Username : SL29****** :
: API Key : ab2f9**92a92b6 :
: Endpoint URL : https://api.softlayer.com/xmlrpc/v3.1/ :
: Timeout : not set :
:..............:..:
Are you sure you want to write settings to "/root/.softlayer"? [Y/n]: y
Configuration Updated Successfully

 ▼図9　sl config showコマンドの実行

100 - Software Design Oct. 2014 - 101

第2回　サーバ構築の実際（その1）

月課金だけでなく時間課金のモデルもあります。
　従来からの「ベアメタルインスタンス」に加え
今月から「ベアメタル」でも4種類のモデルが時
間課金に対応しました。ぜひパフォーマンスを
試してみてください。

まとめ

　SoftLayerのサービスは常に更新されている
ため、筆者も知らない機能や先日までスクリプ

トなどで頑張っていた機能が、いつの間にか標
準で使えるなど日々新しい発見があったりしま
す。
　今回はサーバの構築時によく利用する機能の
紹介をしました。次号でWebサーバ構築の流
れを紹介します。ﾟ

日本SoftLayerユーザー会（JSLUG）の紹介

　日本 SoftLayerユーザー会は（以降 JSLUG）は、
日本語によるSoftLayerに関する情報発信、共有
を行い、SoftLayerの普及および人材育成に貢献
するために、2014年5月23日に設立されました。
2014年8月20日現在、ユーザー会の運営委員は
12名、メンバーは374名です。
　主な活動を紹介します。

勉強会の開催
　東京では2ヵ月に1回、地方都市では3ヵ月～
半年に1回の程度で、勉強会を開催しています。
5月23日に第1回東京SoftLayer勉強会を開催し
てから、すでに8回もの勉強会を全国各地で開催
しています。勉強会はイベント管理サービス
「connpass注5」で告知されますので、connpass内
のコミュニティのメンバーになれば自動で通知さ
れます（ぜひ登録を！）。

Webでの情報発信
　ユーザー会公式サイト注6でSoftLayerに関連す
る情報を発信しています。勉強会の資料や動画な

COLUMN

 ▼図　日本SoftLayerユーザー会のアイコン

どを公開していますので、定期的に確認すること
をお勧めします。

メーリングリストによるQ＆A
　メーリングリスト（users@jslug.jp）でボランティ
アベースのサポートを行っています。SoftLayer
のサポートサービスは定評があり評価されていま
すが、2014年7月現在は英語のみです。メーリ
ングリストへの参加方法は、次の2つの方法があ
ります。

・ユーザー会Webサイト注7から登録
・users-join@jslug.jpに空メールを送り、admin-

bounces@jslug.jpからのメールに返信

雑誌やメディアへの寄稿
　ユーザー会の運営委員は、1ヵ月に1回のペー
スでどのよう情報を発信するかなどの会合をして
います。最近は運営委員が主体となって雑誌やメ
ディアへの寄稿をしています。

ソーシャルメディアでの活動
　@softlayerjpは、JSLUGの公式Twitterアカウン
トです。ぜひ Followしてください。JSLUG運営
委員のアカウント注8もフォローしてみるといい
かもしれません。

注5） http://softlayer.connpass.com

注6） http://jslug.jp

注7） http://jslug.jp/mailman/listinfo/users

注8） @kkitase、@kimotuki、@urasoko、@tokida、
@MahoTakara、@zembutsu、@yasudatadahiro、
@letrrb、@yuya_lush

http://softlayer.connpass.com
http://jslug.jp
http://jslug.jp/mailman/listinfo/users

102 - Software Design

1Eを調達しました注1。NEC Express5800/R
120d-1Mにはベースに2ポートのイーサネット
ポートがあり、追加で4ポートの拡張ボードを
2枚挿して合計10ポートを装備（写真1）。NEC
Express5800/R120d-1Eはベースに4ポート、
追加で4ポートの拡張ボードを1枚挿しての合
計8ポートです。この8ポートをカテゴリ6の
LANケーブルで直接接続して通信実験を行い
ます（写真2）。使用したオペレーティングシス
テム（以下、OS）はFreeBSD 10.0-RELEASE
です（写真3、表1）。

注1） http://www.nec.co.jp/products/express/

8ポートをまとめて
通信実験 !
　9月号掲載の前編では、複数のNICのポート
をまとめあげて1つの論理チャンネルとして利
用するチーミング、なかでも高速化を目的とし
たリンク・アグリゲーションの手法と、適した
利用例について解説しました。後編の今回は、
リンク・アグリゲーションがどれほど高速化に
貢献するのかを実験で確かめてみます。
　今回、実験用にNEC Express5800シリーズ
のラックマウントサーバ2台、NEC Express
5800/R120d-1MとNEC Express5800/R120d-

記事中、各コマンドのうしろについている括弧書きの数字は、manコマンド
で見ることができるマニュアルに記載されている章番号を表しています。

実力
検証

ネットワークを行き来するデータは増え続け、インフラ担当者には常に高速化が要求されます。より高速な通信機器に交換で
きればよいですが、立ちはだかるのはコストの壁です。そこで以前からある手法、「チーミング」を再考してみましょう。本稿
では前後編に分け、チーミングの手法と特性、そしてどの程度の高速化が見込めるのかを実験によって検証していきます。

後藤 大地（ごとう だいち）　（有）オングス　代表取締役

リンク・アグリゲーションの実力は?後編

NICをまとめて
高速通信!

 ▼写真1　1000BASE-Tのポートが10個搭載された
　　　 NEC Express5800/R120d-1M

▶写真2　2台のNEC Express5800ラック
　　　 マウントサーバを
　　　 1対1でダイレクトに結線

http://www.nec.co.jp/products/express/

Oct. 2014 - 103102 - Software Design

に ifconfig（8）コマンドを実行してもよいでしょ
う。ifconfig（8）コマンドの使い方などは以降で
順次説明します。
　再起動せずに手動でゲートウェイとして動作
させるには、sysctl値のnet.inet.ip.forwarding
を1に設定するといった操作が必要です。興味
がある場合には/etc/rc.d/routingを読んでみ
てください。ここでの説明は割愛します。

MTU値の違いによる
通信速度の違いは?
　前項のリスト1でMTUの値を9000にしてあ
りますが、その理由を説明しましょう。
　LANのように比較的通信が安定しているネッ
トワークでは、MTUの値を引き上げることで
通信性能の向上を実現できることが知られてい
ます。通常、イーサネットのMTU値には1,500
バイトが使われます。現在のネットワーク機器
はこの値よりも大きな値が設定できるようになっ
ています。今回は通信速度を調べたいので、
MTUの変動による通信速度の変化も調べます。
この調査は1本での1対1接続で行います。
　MTUの値を変更するには図1のように
ifconfig（8）コマンドを実行します。2つのホス
トの双方でこの設定を実施します。
　ここで一点、注意が必要です。ポートの
MTUの値を変更したとしても、ホストからホ
ストまで、すべての経路（たとえば送信元ホス

リンク・アグリゲーション
実験のための設定

　ホスト2台を1対1で接続して通信させるた
めに、片方はゲートウェイとして機能する必要
があります。そのうえで8ポートをまとめて扱
えるようにするために、リスト1のような設定
を片方のホストの/etc/rc.confファイルに追加
します（もう一方のホストにはリスト1の1行
目を削除したものを追加します）。
　リンク・アグリゲーションを行うための
lagg（4）インターフェースを作成する前に、「mtu
9000 up」のように個々のポートのMTU注2の値
を設定しているところがポイントです。こうし
ておくことで、作成された lagg（4）インター
フェースにおけるMTU値がここで指定された
ものになります。
　システムを再起動するなどしてこの設定を反
映させます。このあたりの設定はifconf ig（8）
コマンドで行いますので、再起動しないで個別

注2） Maximum Transmission Unitの略。ネットワークにおい
て一度に送ることのできるデータの最大値を示す伝送単位
のこと。各通信機器には各々の特性に応じたMTUが設定
されている。

実力
検証 NICをまとめて高速通信!

リンク・アグリゲーションの実力は?後編

 ▼写真3　計測環境

 ▼表1　テスト環境

ホストA NEC Express5800/R120d-1M
 （Ethernet 10ポートのうち8ポート使用）

ホストB NEC Express5800/R120d-1E
 （Ethernet 8ポート）
OS FreeBSD 10.0-RELEASE

gateway_enable="YES"
cloned_interfaces="lagg0"
ifconfig_bge0="mtu 9000 up"
ifconfig_bge1="mtu 9000 up"
ifconfig_bge2="mtu 9000 up"
ifconfig_bge3="mtu 9000 up"
ifconfig_bge4="mtu 9000 up"
ifconfig_bge5="mtu 9000 up"
ifconfig_bge6="mtu 9000 up"
ifconfig_bge7="mtu 9000 up"
ifconfig_lagg0="laggproto lacp laggportｭ
bge0 laggport bge1 laggport bge2 laggportｭ
bge3 laggport bge4 laggport bge5 laggportｭ
bge6 laggport bge7 192.168.1.1/24 up"

 ▼リスト1　lagg（4）インターフェースを有効にする
　　　　 設定 /etc/rc.confのサンプル
　　　　 （IEEE 802.1AX LACPに対応）

104 - Software Design

トのポート、経路上のスイッチ、経路上のルー
タ、送信先ホストのポート）が設定したMTU
と同じ値に設定されている、またはその値に対
応していなければ、指定したMTU値での通信
はできません。
　対象となる経路が設定したMTU値になって
いるかは図2のようにroute（8）コマンドで確

認します。報告されるMTUの値が指定したも
のになっていれば、設定が有効になっています。
　通信速度の計測には iperf3（benchmarks/
iperf3）を使います（図3）。片方のホストで「iperf
3 -s」、もう片方のホストで「iperf3 -c IPアド
レス」のように実行することで、このホスト間
の通信速度を計測できます（図4、5）。

 ▼図1　ifcon�g（8）でMTUを変更する

 ▼図5　もう一方で iperf3クライアントを起動してサーバとの通信を実施

 ▼図6　iperf3で通信速度を計測したサンプル

 ▼図2　経路のMTUが本当に変更されたのか route（8）コマンドで確認

ifconfig bge0 inet 192.168.1.1 netmask 255.255.255.0 mtu 3000 up

iperf3 -c 192.168.1.2

% iperf3 -c 192.168.1.2
Connecting to host 192.168.1.2, port 5201
［ 4］ local 192.168.1.1 port 25569 connected to 192.168.1.2 port 5201
［ ID］ Interval Transfer Bandwidth
［ 4］ 0.00-1.01 sec 25.6 MBytes 213 Mbits/sec
［ 4］ 1.01-2.01 sec 110 MBytes 919 Mbits/sec
［ 4］ 2.01-3.00 sec 112 MBytes 943 Mbits/sec
［ 4］ 3.00-4.01 sec 113 MBytes 944 Mbits/sec
［ 4］ 4.01-5.01 sec 112 MBytes 941 Mbits/sec
［ 4］ 5.01-6.01 sec 113 MBytes 944 Mbits/sec
［ 4］ 6.01-7.01 sec 112 MBytes 941 Mbits/sec
［ 4］ 7.01-8.01 sec 90.6 MBytes 760 Mbits/sec
［ 4］ 8.01-9.34 sec 94.6 MBytes 596 Mbits/sec
［ 4］ 9.34-10.21 sec 3.75 MBytes 36.3 Mbits/sec
- -
［ ID］ Interval Transfer Bandwidth
［ 4］ 0.00-10.21 sec 886 MBytes 728 Mbits/sec sender ← ここの値です
［ 4］ 0.00-10.21 sec 886 MBytes 728 Mbits/sec receiver ← ここの値です

iperf Done.
%

 ▼図3　通信速度計測用に iperf3をインストール

pkg install iperf3

 ▼図4　どちらか一方で iperf3サーバを起動

iperf3 -s

% route get 192.168.1.2
 route to: 192.168.1.2
destination: 192.168.1.0
 mask: 255.255.255.0
 fib: 0
 interface: bge0
 flags: 〈UP,DONE,PINNED〉 ↓ ここの値に注目
 recvpipe sendpipe ssthresh rtt,msec mtu weight expire
 0 0 0 0 3000 1 0
%

Oct. 2014 - 105104 - Software Design

　実行すると図6のような結果が得られました。
コマンドが出力する最後のほうに通信速度の平
均値が表示されています。この例ですと送信が
728Mbit/秒（91MB/s）、受信が728Mbit/秒（91
MB/s）ということになります。
　MTUの値を 1,500バイト、3,000バイト、
9,000バイトの3つの値に設定して通信速度を
計測した結果、図7のような結果が得られまし
た。MTU値を大きくしたときのほうが通信速
度が高速になっていることがわかります。以降
の実験では、もっとも通信速度が速くなった
MTU値9,000バイトを設定して通信実験を行
います。

LACPで
通信速度向上 !
　それでは話を戻して、IEEE 802.1AX LACP
（Link Aggregation Control Protocol）を指定し
た lagg（4）インターフェースを作成し、それぞ
れ2本から8本まで集約した場合の通信速度の

違いを計測します。ここからの計測は、冒頭の
リスト1で設定した状態で行います。
　IEEE 802.1AX LACPでは通信の単位はそ
れぞれのケーブル単位ですので、集約数を増や
した場合にはそれぞれ接続の並列数も増やして、
全体としての通信速度の向上を計測します。単
一の通信があるといった用途ではなく、常に複
数のコネクションが発生するような通信におけ
る、全体としての通信速度の計測ということに
なります。
　計測結果は図8〜14のとおりです。集約数が
1本から2本に増えた段階では、通信速度がほ

実力
検証 NICをまとめて高速通信!

リンク・アグリゲーションの実力は?後編

 ▼図7　MTUの違いによる通信速度の違い

 ▼図8　2本（1～2並列） ▼図10　4本（1～4並列）

 ▼図9　3本（1～3並列） ▼図11　5本（1～5並列）

1500 90003000
MTU値

91

0

120

80

40

121 124
平均通信速度［MB/s］

121.75

0 0

00

280 400

400160

210 300

300120

140 200

20080

70 100

10040

通信速度［MB/s］ 通信速度［MB/s］

通信速度［MB/s］通信速度［MB/s］

124.00 118.75

1並列

1並列

2並列

2並列 3並列

集約数（通信並列数）

集約数（通信並列数）

集約数（通信並列数）

集約数（通信並列数）

1並列

1並列

2並列

2並列

3並列

3並列

4並列

4並列 5並列

117.375

253.44

369.92

253.44
313.6

120.75

253.44

123.5

253.44

380.16

229.12

106 - Software Design

ぼ2倍になっています。しかしこれが3本、4
本と集約数を増やした場合、本数によって通信
速度の向上の仕方に違いが見られたほか、本数
を増やせば増やすほど、実験ごとに出力される
値にばらつきが現れるようになりました。通信
速度が速いときは理想的な（集約した本数の分
だけ）数値が計測されますが、そうでないとき
は合計で1本分の通信速度しかでない、といっ
た状況が確認されました。本数を増やせばそれ
だけスケールするといった実装ではないことが
わかります。

よりも高い値が計測されるようになり、
12並列ではさらに良い値がでるように
なります。
　集約数を増やすことがそのまま通信速
度の向上につながらないのは、IEEE
802.1AX LACPプロトコルが複数のポー
トをまとめて単一の論理チャンネルとし
て扱えるようにするプロトコルであって、
どのストリームがどのポートを使うと
いった部分までは規定していないところ
に理由があります。
　iperf3は指定された並列数までスト
リームを作成して同時通信を実施します。
この並列通信は、次のソフトウェアの影
響を受けます。

・カーネルのネットワークスタック
・カーネルのプロセス／スレッドスケ
ジューラ

　ネットワークスタックが複数のポート

　さらに別の実験を実施して、これがどういっ
た理由によるものかを調べていきましょう。

並列数の増加と
通信速度の関係
　今度は集約数を4本に固定して、この場合で
通信の並列数を1から12まで変化させてみます。
　結果は図15のようになります。3並列まで
は理想的なスケールを見せますが、それ以上に
なると計測される通信速度にばらつきがでるよ
うになります。11並列を超えたあたりで3並列

 ▼図14　 8本（1～8並列）

 ▼図12　 6本（1～6並列）

 ▼図13　7本（1～6並列）

通信速度［MB/s］

集約数（通信並列数）

集約数（通信並列数）

集約数（通信並列数）

1並列 2並列 3並列 6並列

1並列

1並列

3並列

3並列

5並列

5並列

2並列

2並列

4並列

4並列

6並列

6並列

4並列 7並列5並列 8並列

0

0

0

280

600

800

210

450

600

140

300

400

70

150

200

通信速度［MB/s］

通信速度［MB/s］

122.375

247.04

188.16
168.96

209.92 227.84

123.5

253.44

380.16

501.76

313.6

432.64

119.125

633.6

380.16

775.68

250.88

759.04

500.48 503.04

Oct. 2014 - 107106 - Software Design

に対してスケールしない作りになっていれば、
そもそも通信速度は上がりません。ネットワー
クスタックやスケジューラがマルチコアおよび
複数のポートに対してスケールする作りになっ
ており、かつ、作成したストリームがきれいに
すべてのポートを使うようにあてがわれたとき
には、理想的な通信速度を見せることになりま
す。たとえば、8つあるうちの4つのポートを
使うような状況になった場合、通信速度はどう
やっても4本分までしかでません。集約数が増
えるほど通信速度が不安定になったというのに
はこういった背景があります。
　つまり、このあたりの通信性能はカーネル内
部の実装にも影響を受けますので、どういった
性能を見せるのか、どういった通信の傾向を見
せるのかは、実際に使用するハードウェアとソ
フトウェアの組み合わせで調べるしかないとい

うことになります。
　なお、特定の用途にしか使わないことがわかっ
ているのであれば、lagg（4）インターフェース
を含めカーネルを書き換え、常にすべてのポー
トが使われるように変更するといった方法をと
ることができます。

並列性能とMTUの
関係は?
　リンク・アグリゲーションを行う前に、1本
においてMTUの値を変更させて通信速度の違
いを計測しました。ここでは8本を集約して1
から8並列までストリームを作成した場合に、
MTUの違いでどのように通信速度が変化する
かを計測します。比較対象はMTUの値が1,500
バイトと9,000バイトの2つです。
　結果は図16のようになりました。全体的に

実力
検証 NICをまとめて高速通信!

リンク・アグリゲーションの実力は?後編

 ▼図15　4本（1～12並列）

 ▼図16　8本（1～8並列、MTU：1500）および8本（1～8並列、MTU：9000）

1
並
列
、M

TU

：1500

5
並
列
、M

TU

：1500

1
並
列
、M

TU

：9000

5
並
列
、M

TU

：9000

3
並
列
、M

TU

：1500

7
並
列
、M

TU

：1500

3
並
列
、M

TU

：9000

7
並
列
、M

TU

：9000

2
並
列
、M

TU

：1500

6
並
列
、M

TU

：1500

2
並
列
、M

TU

：9000

6
並
列
、M

TU

：9000

4
並
列
、M

TU

：1500

8
並
列
、M

TU

：1500

4
並
列
、M

TU

：9000

8
並
列
、M

TU

：9000

通信速度［MB/s］

通信速度［MB/s］

集約数（通信並列数）

1並列 5並列 9並列3並列 7並列 11並列2並列 6並列 10並列4並列 8並列 12並列

123.5

305.92 335.36
380.16

293.12

459.52

253.44 254.72
313.6

229.12

376.32

500.48

0

0

480

800

360

600

240

400

120

200

集約数（通信並列数）

117.375
176.64

360.96
250.88293.12

404.48
500.48

775.68

249.6

366.08 380.16

759.04

416.00

119.125

633.6

503.04

108 - Software Design

bge1、bge2が lagg（4）インターフェースに追加
されており、bge0がマスタになっていること
がわかります。
　ここでbge0につながっているLANケーブル
を抜くといった操作を行うと、アクティブなポー
トがbge0からbge2へ移行することを図18の実
行で確認できます。1つの回線が不通になっても、
あと2つが予備として控えているため、そちら
へ切り替えて通信が継続されます。
　試しに2本から8本までのそれぞれで、フェ
イルオーバー目的の lagg（4）インターフェース
を作成して通信速度を計測しました。得られた
結果は表2です。当然ですが、フェイルオーバー
目的の lagg（4）インターフェースでは同時に通信

MTUの値は1,500バイトよりも9,000バイトを
指定したときのほうが高い性能がでていること
がわかります。　

フェイルオーバーと
通信速度
　今回は通信速度を引き上げるという目的で
lagg（4）インターフェースを使っていますが、
通常業務で lagg（4）インターフェースを通信速
度の引き上げに使うということはあまりありま
せん。多くの場合はフェイルオーバーの目的で
使用するでしょう。
　フェイルオーバー目的の場合、lagg（4）イン
ターフェースを作成する段階で「laggproto
lacp」ではなく「laggproto failover」のようにプ
ロトコルを指定します。lagg（4）インターフェー
スはプロトコルとして failover、fec、lacp、
loadbalance、roundrobin、noneを指定するこ
とが可能で、それぞれ異なる動きをみせます。
　フェイルオーバープロトコルが指定された
lagg（4）インターフェースを ifconfig（8）で確認
すると図17のように見えます。ここではbge0、

 ▼図17　lagg（4）インターフェースでフェイルオーバーを設定している場合

 ▼図18　bge0のケーブルを引っこ抜くとbge2が替わりに使われるようになる

% ifconfig lagg0
lagg0: flags=8843〈UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST〉 metric 0 mtu 9000
 options=c019b〈RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4,VLAN_ｭ
HWTSO,LINKSTATE〉
 ether 00:25:5c:3d:a5:6c
 inet6 fe80::225:5cff:fe3d:a56c%lagg0 prefixlen 64 scopeid 0xe
 inet 192.168.1.1 netmask 0xffffff00 broadcast 192.168.1.255
 nd6 options=29〈PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL〉
 media: Ethernet autoselect
 status: active
 laggproto failover lagghash l2,l3,l4
 laggport: bge2 flags=4〈〉
 laggport: bge1 flags=0〈〉
 laggport: bge0 flags=1〈MASTER,ACTIVE〉 ← bge0がマスタで実際にアクティブにもなっている
%

% ifconfig lagg0
 …略…
 laggport: bge2 flags=4〈ACTIVE〉 ← bge2がアクティブになっている
 laggport: bge1 flags=0〈〉
 laggport: bge0 flags=1〈MASTER〉 ← bge0が通信できない状態
%

 ▼表2　lagg（4）フェイルオーバーと通信速度
集約数 通信速度［MB/s］
 　2 123.5
 　3 123.5
 　4 123.5
 　5 123.5
 　6 123.5
 　7 123.5
 　8 123.5

Oct. 2014 - 109108 - Software Design

するのは1本だけですので、通信速度はケーブ
ルの集約数が2本でも8本でもすべて同じです。

ロードバランスと
ラウンドロビン
　前述のとおり、lagg（4）インターフェースで
はフェイルオーバーとLACP以外のプロトコ
ルも指定できます。試しにラウンドロビン、ロー
ドバランス、LACPで8本集約の1～8並列と
いったケースで性能の違いを計測してみました。
　結果は図19です（ラウンドロビンは3集約以
上は機能しなかったので、2本集約までの値を
掲載してあります）。通信速度の向上という目
的では、今回のケースではLACPがもっとも
高い性能が期待できそうです。

実際に試してわかる
エンジニアリング
　リンク・アグリゲーションの機能を使えば総
合的な通信速度を向上させることはできそうだ、
ということは想定できますが、実際にどのよう
な挙動を見せるかは実験してみないとわからな
いところがあります。複数のポートを使うタイ
プの通信はさまざまな影響を受けますし、その
影響はネットワークスタックのみならずハード
ウェアやスケジューラの影響も受けますので、

ソースコードから動きを想像するだけでは推測
できないところがあります。実際に実験して試
してみるのが一番ですので、本記事がその参考
になれば幸いです。
　余談になりますが、複数のケーブルを束ねて
通信速度を引き上げる目的では、現在策定が進
められ、LinuxやFreeBSDで実装が進められ
ている「Multipath TCP」などの技術を挙げるこ
とができます。TCPのエクステンションとし
て実装されているため、既存の環境との互換性
がよいという特徴があります。今回紹介した
lagg（4）インターフェースと同じで、この機能
を利用するためにはソフトウェア側を書き換え
る必要がなく、カーネルが対応すれば透過的に
ソフトウェアはその効果を受けることができる
という特徴もあります。
　Multipath TCPはすでにAppleやCitrixなど
のプロダクトでも実装され使用されてもいます。
今後、インターネットにおける汎用的な通信技
術として普及するかどうかはまだわかりません
が、LinuxやFreeBSDのネットワークスタッ
クがデフォルトでMultipath TCPの機能を持
つようになれば、高速通信やフェイルオーバー
目的でこうした機能が使われていく可能性もあ
るでしょう。s

実力
検証 NICをまとめて高速通信!

リンク・アグリゲーションの実力は?後編

1
並
列
、ラ
ウ
ン
ド
ロ
ビ
ン

3
並
列
、ロ
ー
ド
バ
ラ
ン
ス

7
並
列
、ロ
ー
ド
バ
ラ
ン
ス

3
並
列
、LA

C
P

1
並
列
、ロ
ー
ド
バ
ラ
ン
ス

5
並
列
、ロ
ー
ド
バ
ラ
ン
ス

1
並
列
、LA

C
P

5
並
列
、LA

C
P

7
並
列
、LA

C
P

2
並
列
、ラ
ウ
ン
ド
ロ
ビ
ン

4
並
列
、ロ
ー
ド
バ
ラ
ン
ス

8
並
列
、ロ
ー
ド
バ
ラ
ン
ス

4
並
列
、LA

C
P

2
並
列
、ロ
ー
ド
バ
ラ
ン
ス

6
並
列
、ロ
ー
ド
バ
ラ
ン
ス

2
並
列
、LA

C
P

6
並
列
、LA

C
P

8
並
列
、LA

C
P

通信速度［MB/s］

54 32.375

239.36

604.16

254.72

430.08
483.84

119.125

380.16

633.6

775.68

250.88

500.48

759.04

503.04

253.44

123.5

368.64

0

800

600

400

200

 ▼図19　8本（1～8並列）をラウンドロビン、ロードバランス、LACPで比較

集約数（通信並列数）

110 - Software Design

茶納 佑季（ちゃのう ゆうき）　 NTTデータ 基盤システム事業本部 chanouy@nttdata.co.jp

　10月某日――藤井君は悩んでいました。研修もそ
こそこに、日々雑務や目新しいことに追われながら
業務をこなしてきました。上司に呼ばれた彼は「シ
ステムの運用自動化」の仕事の依頼を受けたのでし
た。

上司「あー、藤井君、ちょっといいかな？　今、我

が社で使っている『勤怠管理システム』の運用を

任せたい」

藤井「システムの運用……ですか？」

上司「そうだ。運用だ。前任の運用管理者が急遽退

職してしまうことになってね。運用手順書も

残っていないし、いろいろ非効率なところもあ

るようだ。これを機に最近流行りの「運用自動

化」を取り入れた見直しも考慮に入れて、効率

的な手順化を頑張ってみてくれ。あぁ、あまり

コストをかけずに頼むよ」

藤井「はい……『勤怠管理システム』の運用を自動化

ですね？……頑張ります！」

藤井「うーん……運用の自動化って言われても何を

どうすればいいんだろう？　その前にシステム

の運用ってどんなことをするんだったかな？　

結構やることが多かった覚えがあるけど、確か

研修でやったなぁ……」

第1回 処理を自動化？　ジョブ管理ってなんだろう？

この物語は、新人SE藤井君がとあるシステムの運用の効率化に取り組み、定時帰りのエンジニア
を目指すものです。昨今流行っている「運用自動化」をキーワードに、全9回の連載で、シェルスク
リプトやcronを用いた基本的なシステムのジョブ管理から、Hinemosという運用管理ツールを使っ
てのジョブ管理・運用効率化を学ぶことができます。 イラスト（高野 涼香）

新人藤井君の受難

藤井君の先輩社員。
華麗に仕事をこなし
定時に颯爽と帰って
いく優秀な女性。

今年SI企業に入社し
た新人SE。上司か
らとある仕事を任さ
れるらしいが……。

軽いノリで仕事を
依頼してくるが、
藤井君の成長を考
えている。

定時先輩上 司藤 井

次回登場！

システムの運用とは？

110 - Software Design Oct. 2014 - 111

第1回　処理を自動化？　ジョブ管理ってなんだろう？

　システムの運用とは、運用対象のシステムが、利
用者にサービスを滞りなく提供できるよう、維持管
理することを言います。
　そのためには、システム運行に必要な処理の実
施、システムに異常が発生した際の検知、ハード
ウェアやソフトウェアの変更管理や資産管理、セ
キュリティの管理など、さまざまなことを行う必要
があります。また、異常が発生し、システムが正常
に利用できなくなった場合（インシデント）の、問い
合わせの対応やそのインシデントの管理も含まれま
す。
　このように、一言で運用と言っても、実施対象や
範囲は多岐にわたります。
　今回の連載では運用自動化に向け、システム運行
に必要な処理の自動化にスポットライトを当てて、
説明していきます。

藤井「やっぱり運用っていろんなことを考えて実施

しないとならないな。でも、自動化って言われ

ても何をどうすればいいんだろう？　今だって

誰かが手動で常時動かしているようにも見えな

いしな……そもそもどうやって動いているん

だ？　まずは『勤怠管理システム』がどんな運用

をしているのかを見てみるか……って運用手順

書残ってないんだった……あ、でも前任者の

「作業ノート」が残っているぞ。ほとんどメモレ

ベルだけど。どれどれ……」

　今回、藤井君が運用を任された『勤怠管理システ

ム』は、日々、社員が出社時間や退社時間、出張先
などの勤怠に関する情報を入力します。入力された
勤怠情報はDB内に蓄積され、その情報をもとに、
給与計算や就業時間のレポートなどを出力します
（図1）。
　『勤怠管理システム』の業務部分（アプリケーショ
ン部分）に加えて、バックアップなどの裏方的な基
盤処理はおおまかに図2のような流れで動いていま
す。

出
力

出
力

出
力

勤怠管理システム

給与管理システム

人事データベース

勤怠時間、
出張先など

勤怠情報

社員情報

就業時間の
レポート等

給与明細

入
力

入
力

▼図1　勤怠管理システムの概要

▼図2　勤怠管理システムの基盤処理の流れ（簡略）

日次

月次
フルバックアップ
フルバックアップ

バックアップファイル転送
バックアップファイル転送

再起動
再起動 プロセス起動確認

メンテナンス

毎時リソース状態取得
リソース状態取得

3:30～　ログ取得
ログローテート ログ取得

23:00～　勤怠情報転送
勤怠情報転送勤怠情報転送準備

過去ディスクバックアップファイル
DBバックアップ削除 APバックアップ削除

1:00～　ディスクバックアップ
DBバックアップ APサーババックアップ

対象システムの概要

112 - Software Design

がジョブとなり、バックアップやログ転送が意図し
た時刻に実行されているか管理することがジョブ管
理となります。このジョブがそれぞれ連携し合い、
正常に動き、綿密に管理されることで、システムが
滞ることなく運用されていきます。

　システムの運用を自動化するためには、これらの
「監視」や「ジョブ管理」を自動化する必要があります。
従来、人が手作業で行っていたことを、システム化
を図ることで、コンピュータに代わりに行ってもら
い、作業の自動化や効率化といったメリットを享受
してきました。
　しかし、システム化のなかに人のオペレーション
は残りました。一例として、監視では、何らかの異
常検知後、人が異常コードを膨大なマニュアルから
検索し、運用管理担当者へ電話するオペレーション
を行っていたり、ジョブ管理では、深夜のジョブ実
行を人の手で行い、ジョブの終了を見届け、エラー
が発生していないかチェックするといったオペレー
ションを行っていたりします。
　システム化のなかに人のオペレーションが残る原
因としては、システム化したことによる新たな作業
の発生であったり、システムの段階的な拡充によ
る、当初は想定されていなかった運用要件の発生な
どさまざまな要因が考えられます。
　このように、システム化のなかの手作業は平然と
残ってきました。さらに最近では、仮想化環境やク
ラウド環境を利用することにより、柔軟な構成変更
などができる難しいシステムが早いサイクルで作る
ことができるようになりました。このような環境に
対する運用は、もはや手作業では限界を迎えつつあ
ります。
　読者のみなさんの中でも、現在このような問題に
直面されている方もいるかもしれませんし、今後、
このような問題に直面する方もいるかもしれません。
　このような問題が顕在化し波及する前に監視や
ジョブ管理の、さらなる自動化や効率化を図ること
が重要なのです。

藤井「なんだ、自動的に動いているじゃないか。安

心した。でもOSは全部Linuxか……ん？　手

書きのコメントだ。何々……？　『cronだけで

動かしていてツライ』『人事異動や監査対応と

いった特別対応があるので注意すること。とく

に四半期や年末年始、年度末は要注意』『祝日や

特 別 対 応 の 日 は 手 動 で 切 り 替 え る こ と 』

えぇーっ！？　手で動かすの！？ていうか祝日

出社なの！？」

藤井「ただでさえ忙しいのに、祝日出社なんてした

くない。これは『運用自動化』を本気で考える必

要があるな。ただ……運用自動化とはいった

い？」

　さて、藤井君も困っていますが、「運用自動化」と
は何なのでしょうか。運用自動化とは、システム維
持管理業務を可能な限り自動化することによって、
システムの運用を効率化することです。
　システムを運用する際、サービスが正常に提供さ
れているか、システムを構成しているハードウェア
やソフトウェアが正常に動いているかといった挙動
の検知を「監視」、システム運行に必要な処理を
「ジョブ」と呼ぶことがあります。今回の連載では、
オープン系システム注1の運用管理の中で、コン
ピュータに実行させる処理単位であり、バッチ処理
やそれを実現するためのスクリプトをジョブと呼ぶ
こととします。また、システム内の複数のサーバで
連携させてジョブを実行させたり、正常確認や異常
対処を行ったりして、ジョブを管理することをジョ
ブ管理と呼ぶこととします。
　たとえば、データのバックアップや、バックアッ
プ処理のログ転送などといった処理のひとつひとつ

注1） オープン系システム……メインフレームなどの汎用機を利用
したシステムではなく、それぞれに役割を持つ複数のサーバ
やネットワーク機器、アプライアンス機器などを組み合わせ
ることにより、1つの業務を達成するシステム。UNIX系サーバ
やWindows・Linuxが稼働する IAサーバが用いられることが
一般的。

運用自動化ってなんだろう

運用自動化の重要性

112 - Software Design Oct. 2014 - 113

第1回　処理を自動化？　ジョブ管理ってなんだろう？

　それぞれの要素の例としては、スケジュール管理
については、平日（月～金）の3:00にジョブを実行す
る、ファイルの作成や変更をきっかけとしてジョブ
を実行する、といった例が挙げられます。ジョブの
状態管理については、単体のジョブやジョブのまと
まりが問題なく実行され、終了するかを確認するこ
とや、仮に異常終了した際には、再実行やリカバ
リーといったアクションを行うことが求められま
す。ジョブ実行履歴の管理については、実行した
ジョブの結果を管理簿やログに記録し、後日確認で
きるようにすることが挙げられます。

藤井「うわぁ……これを手作業でやるのたいへんだ

な……。何かいいツールとか便利なものってな

いのかさらに調査だ！」

　ジョブ管理を行うためには、大きく分けて3つの
方法があります（次ページ）。

藤井「ふむふむ……運用自動化のためには「監視」や

「ジョブ管理」を自動化する必要があるのか！　

作業ノートを読んだ感じでは、ジョブ管理は自

動にできてるところもあるけど、もっと自動化

できるんじゃないかなぁ。ジョブは何をどう

やって管理すればいいのか調査してみよう」

　ジョブを管理するためには、大きく分けて次の要
素を管理する必要があります。

・ジョブ実行のスケジュール管理

・ジョブの状態（実行状態、終了状態）の管理

・ジョブの実行履歴の管理

運用管理のための
ジョブ管理の方法は？

▼表1　ジョブ管理方法のメリット・デメリット

手作業 OS標準機能 ツール

代表例 — cron（Linux）
タスクスケジューラ（Windows）

・ 商用製品
 JP1
 Systemwalker
 WebSAM
 Senju
 A-AUTO
・ OSS
 Hinemos
 JobScheduler

メリット ・ 任意のタイミングでジョブを実行
することができる

・ 運用管理者が現場で実行するため、
不測の事態にすぐ対処できる

・ ジョブをスケジューリングするこ
とで、定時実行できる

・ ジョブとなるスクリプトを作りこ
むことで、たいていのジョブを管
理することができる

・ ジョブをスケジューリングし、業
務カレンダに沿った対応など、例
外的な内容を含めて自動化できる

・ 実行結果の確認を視覚的に行うこ
とができる

・ ひとつのサーバだけではなく、複
数のサーバとの連携や、ジョブと
ジョブの連携が容易に行える

デメリット ・ 運用管理者が現場に常駐している
必要がある

・ スクリプトのログにより実行結果
を確認する必要がある

・ 人員の交代やシステムのリプレイ
スといった際の引継ぎが煩雑とな
り大変

・ cronの場合、実行結果の確認が困難

・ 他システム・他サーバとの連携の
ためにはスクリプトを作り込む必
要がある

・ スクリプトを作り込み維持するス
キルが必要となる

・ 祝日など例外的な日時に対応でき
ない

・ スクリプトの前後の関係性が視覚
的にわからず、全体像を確認する
ことが困難

・ 商用製品の場合、導入のために製
品を購入するため、コストがかか
る

・ 運用管理で使うツールに精通する
必要がある

・ ツールのバージョンアップに対応
する必要がある

ジョブ管理の要素

ジョブ管理の方法

114 - Software Design

ることだし、ツールを使いたいな。とりあえず

着手できるしOSSかな。まぁ、困ったらマ

ニュアルとか公式ページ見ればいいや。英語は

苦手だけど、有償サポートしてくれる日本の会

社もあるみたいだし。ん、このHinemosって

日本製じゃん！　しかもマニュアル類も日本語

だし、公式ページ注2には技術情報とかも書いて

ある！　よしよし、Hinemosを使ってみようか

な。ここまでの経過を上司に報告だ！」

　システム化することで、コスト低減や利便性の向
上を図ってきました。しかし、その中で人の手によ
る運用は残り続けました。
　今回のようにシステム運用を見直し、運用自動化
に取り組むことで作業時間短縮（時短）への第一歩を
踏む出すことができます。

藤井「『勤怠管理システム』の運用自動化についてで

すが、Hinemosを使って自動化してみようと思

います！」

上司「ふむ。よく調べたね。ところで、実際に動い

ているスクリプトのしくみや、今動かしている

cronは理解している？」

藤井「えっ……？」

上司「ま、技術を身に着けるためにも早く手を動か

すんだな」

藤井「は、はいー」（ぴゅーん）

　スクリプト作成は研修で少しかじった程度の藤井
君。スクリプトのしくみはおぼろげにしかわかって
いないようです。はたして、業務で使えるスクリプ
トを理解することはできるのか！？
　次回『「ジョブ管理」の第一歩 シェルスクリプトを
動かそう』｢

To Be Continued...

注2） http://www.hinemos.info/

・手作業

　作成したスクリプトを決まった時間になったら、

手で実行する

・OS標準機能

　 Linuxであれば「cron」、Windowsであれば「タス

クスケジューラ」などを使い、定期的にスクリプ

トを実行する

・ツール

　 商 用 製 品 で あ れ ば「JP1」、「Systemwalker」、

「WebSAM」、オープンソースソフトウェア（OSS）

であれば「Hinemos」などを使い、ジョブ実行だけ

ではなく運用面を考慮しながら自動的に実行する

　それぞれのメリット・デメリットをまとめると、
前ページの表1のようになります。
　もちろん、手作業でも運用は可能です。ただし、
そこには属人化された手法や、体制（ローテーショ
ン）や人件費を考える必要があります。その点、
ツールでは特定の人が持っている運用ノウハウを凝
縮し、ソフトウェアとして提供しています。ツール
を利用することで、人のかかわり度合いを減らし、
運用担当者の負担を下げ、効率的な運用を実現でき
ます。

藤井「調べたら少しずつわかってきたぞ……。今は

手作業とOS標準機能の合わせ技で運用してい

今月の時短ポイント

次回予告

http://www.hinemos.info/

114 - Software Design Oct. 2014 - 115

第1回　処理を自動化？　ジョブ管理ってなんだろう？

　日本の運用管理業界では、JP1（日立製作所）、

Systemwalker（富士通）、WebSAM（日本電気）といっ

たような日本企業の運用管理ツールのシェアが高い

という調査結果があります。この要因については諸

説ありますが、「日本人のジョブへのこだわりが強

い」ということが要因の1つと言えます。日次、月

次、年次、稼働日、非稼働日、平日、休日、祝前日

……など、いろいろな言葉がありますが、日本人の

時間へのこだわりはとても強いものがあります。こ

のこだわりの強さが、ジョブ管理にも表れており、

緻密に時間を計算し、電車の運行表のようなジョブ

を組み上げることが多いのです。これらのような

ニーズに合わせて、日本企業の運用管理ツールは進

化してきました。つまり日本人に合ったソフトウェ

アなのです。

　OSS (Open Source Software／オープンソースソ

フトウェア）はソースコードが公開されたソフトウェ

アです。通常、ソフトウェアのソースコードは非公

開であり、修正や改変のために手を加えることは認

められていません。

　一方OSSは、ソースコードを確認したうえで、修

正や改変を行うことができます。ただし、OSSは著

作権を放棄したソフトウェアではありません。著作

者がライセンスのあり方を設定していて、そのライ

センスに従った使い方のもと扱う必要があります。

　いくつかの有名なライセンスを紹介します。

・GNU GPL（General Public License）

・BSD License

・MIT License

・Apache License

　たとえば今回、藤井君が選ぼうとしている

「Hinemos」はGNU GPL（General Public License）で

公開しており、SourceForge.JPのHinemosプロジェ

クト（http://sourceforge.jp/projects/hinemos/）にて

公開されています。

　また、OSSはフリーソフトではないため、すべて

を無償でダウンロードできるわけではありません。

OSSのOSの1つであるRed Hat Enterprise Linuxは

サブスクリプション形式を採用しており、サブスク

リプション契約を結ぶことでサポートを受けること

やerrataを入手できます。

　
　OSSは商用製品と比べ、「気軽に導入できる」「導

入コストを抑えられる」「ベンダロックインを回避で

きる」といったメリットから採用されることが多く

なってきました。

　しかし、OSSは単一の機能に特化していることが

多く、機能単位で異なるツールの導入が必要となり、

煩雑さが増すといったデメリットもあります。

　たとえば、統合運用管理の場合では一般的に「監

視機能」「ジョブ機能」と別々のツールの導入が必要

となります。表2に有名な運用管理OSSを示します。

　そのなかでもHinemosは監視機能とジョブ機能の

両機能を併せ持つ唯一のOSSです。まさにHinemos

は統合運用管理を実現するためのOSSなのです。

▼表2　運用管理OSS

ツール名 開発国 監視機能 ジョブ機能
Zabbix ラトビア ○ ×
Nagios ― ○ ×
JobScheduler ドイツ × ○
Hinemos 日本 ○ ○

運用管理ツールとOSS

OSSとは？

日本企業（日系ベンダ）の強い運用管理

統合運用管理のためのOSS「Hinemos」

http://sourceforge.jp/projects/hinemos/

116 - Software Design

デプロイしよう！

　第1回は、Heroku toolbeltをインストールし
てCLI（Command line interface）を使ってログイ
ンするステップまでを行いました。今回は、実
際にアプリケーションを作成し、そのアプリケー
ションをHeroku上にデプロイしてみます。前回
を見逃した方は、ぜひ Sign up注 1をして、
Toolbelt注2をインストールしてみてください。
　前回でも触れましたが、Herokuではさまざ
まな言語をサポートしています。本連載では
Ruby on Railsを使用したアプリケーションを例
として話を進めていきますが、読者の方がすで
に開発済みの他言語のアプリケーションをデプ
ロイする場合にも、お使いいただける内容です。

アプリケーションを
用意する

　Ruby on Railsを使用したアプリケーション
ということで、今回はHerokuで提供している
サンプルアプリケーションを使っていきます。
git cloneを用いてコピーします。

$ git clone https://github.com/heroku/ruby-ｭ
rails-sample
$ cd rsuby-rails-sample

　次に、ローカルで動くかどうか確認してみま
しょう。Herokuに上げる前にローカルで動く

ことをしっかり確認することは大切です。

$ bundle
$ bundle exesc rake bootstrap
$ foreman start

　アプリケーションが起動したら、ブラウザで
http://localhost:5000/を開き、正常に動いて
いることを確認しましょう。

Gitでバージョン
管理

　HerokuではデプロイにGitを使用します。
Gitは、ご存じの方も多いかと思いますが、ア
プリケーション開発のお供とも言えるバージョ
ン管理システムです。Herokuではこの、開発
者には馴染み深いGitを用いてアプリケーショ
ンをデプロイすることができます。
　Herokuを使ううえでGitの達人である必要は
ありませんが、これから説明していくような基
本的なところはぜひおさえておきたいところです。

git init

　このコマンドで、まずローカルのリポジトリを
初期化します。git initするだけではとくに何
も起こりませんが、git initを行ったフォルダ直
下に .gitという名前のフォルダができ、そこでこ
れから行われるあらゆる変更を管理していきます。
　今回のサンプルアプリケーションは、すでに
Gitで管理しているリポジトリをcloneしてき

注1） URL https://www.heroku.com
注2） URL https://toolbelt.heroku.com

サポートエンジニアのクラウドワークスタイル

第2回となる今月は、ローカルにあるアプリケーションをHeroku上にデプロイする方
法を解説します。すべての基本となる操作・コマンドを紹介しているので、きちんと
おさえておきましょう。「サンフランシスコだより」では、サンフランシスコの住宅事情
をこっそりお教えします。

第 2回

Heroku　織田 敬子（おだ けいこ）

Herokuにデプロイしてみましょう
最初の一植え

https://www.heroku.com
https://toolbelt.heroku.com

116 - Software Design Oct. 2014 - 117

たので、初期化の必要はありません。

git add

　先に述べたとおり、git initだけではまだ、
空のローカルリポジトリができただけの状態です。
git addコマンドにより、そのファイルをリポ
ジトリに追加する準備ができます。ここで、次
に説明するコミットを行うまでは、実際にリポ
ジトリに追加されていないことに注意してくだ
さい。git add <file/directory>によって任
意のファイル・ディレクトリを追加できますし、
git add .によってフォルダ直下のすべてのファ
イルを追加できます。
　Gitのバージョン管理下に置きたくないファ
イルは、.gitignoreファイルを使用して管理で
きます。
　今回は、すでにファイルがaddされているの
でgit addの必要はありません。もしファイ
ルのどこか（app/views/welcome/index.html.
erbなど）を変更した場合は、それをgit add
しておきましょう。

git commit

　このコマンドにより、変更がローカルリポジ
トリに「コミット」されます。このコミットされ
た単位で、Heroku上にもデプロイができます。
コミットを行う前には、必ずgit statusを使
用して自分がコミットしようとしているファイ
ルの確認をするようにしましょう。-mによっ
てコメントを追加することもできます。
　今回はコミットするものがありませんが、も
し前のステップでファイルに変更を加えていた
場合はコミットしてください。

$ git commit -m 'my first commit'

Heroku上にアプ
リケーションを作成

　Heroku上でアプリケーションを作成するに

は、heroku createコマンドを使用します。
このコマンドによって、Heroku上にアプリケー
ションが作られると同時に、ローカルGitリポ
ジトリにherokuという名前のリモートリポジ
トリが追加されます。ここで、「リポジトリに
はローカルリポジトリとHerokuリポジトリが
ある」ということをしっかり理解してください。
ほかにも、もしGithubなどでソースコードを
管理している場合は、これに加えてGithubに
もリポジトリがあることになります。リモート
リポジトリの一覧はgit remote -vで確認す
ることができます。
　heroku createコマンドではアプリケーショ
ン名を指定することもできます。指定しなかった
場合は、Herokuで適当な名前を付けます。この
アプリケーション名は全世界で早い者勝ちで、ア
プリケーションを作成するとhttp://appname.

herokuapp.comというURLが付与されます。あ
とでheroku renameコマンドを利用して名前を
変更することもできます。

$ heroku create
Creating evening-thicket-3022... done, stack ｭ
is cedar
http://evening-thicket-3022.herokuapp.com/ | ｭ
git@heroku.com:evening-thicket-3022.git
Git remote heroku added

Herokuにデプロイ

　さて、ここまででHerokuへデプロイするロー
カル側、Heroku側の準備が整いました。ここ
でようやく、Herokuにアプリケーションを
pushできます。コマンドはいたって簡単で、
git push heroku masterです。これでロー
カルリポジトリで今までコミットされた分のア
プリケーションがHerokuへデプロイされます。
　ここで、SSHキーの登録がうまく行ってい
ない人はもしかしたら、

Permission denied (publickey).

Herokuにデプロイしてみましょう
最初の一植え

第 2 回

サポートエンジニアのクラウドワークスタイル

118 - Software Design

といったようなエラーが出るかもしれません。
そんな場合は、「Managing Your SSH Keys」注3

という記事に従い、キーの削除・再追加を行っ
てみてください。
　デプロイがうまく行くと、最後に次のような
メッセージが出るはずです。これが出ない場合
は、何かしらのエラーでデプロイが失敗してい
る可能性があるので、デプロイログをよく読ん
でみてください。

$ git push heroku master

Initializing repository, done.
Counting objects: 161, done.

（…中略…）
-----> Compressing... done, 23.1MB
-----> Launching... done, v7
 http://evening-thicket-3022.herokuapp ｭ
.com/deployed to Heroku

To git@heroku.com:evening-thicket-3022.git
 * [new branch] master -> master

　デプロイが確認できたら、heroku openコ
マンドを使って自分のアプリケーションを開い
てみましょう。

git push heroku masterの裏側

　ここでは少しgit push heroku masterの
裏側で何が行われているのかについても説明し
たいと思います。
　リポジトリがpushされたとき、Herokuではそ
の中身を見てどの言語のアプリケーションなのか
を判断します。たとえば、Gemfileが直下にあれ
ばRubyのアプリケーションだと判断し、デフォ
ルトのRubyのbuildpackを走らせます。package.
jsonがあればNode.jsといった具合です。自分の
カスタムのbuildpackをBUILDPACK_URL環
境変数を使用して指定することもできます。
　Rubyのbuildpackでは、Railsアプリケーショ
ンかどうか、バージョンは何かなどを判断し、

それぞれに合わせた処理が走ります。Railsア
プリケーションなら、bundle installをしたあ
とに rake assets:precompileを走らせます。ど
のような処理が走っているのか詳しく知りたい
人は、Buildpackがオープンソースになってい
るのでGithubからコードを見ることができます。
それぞれのリポジトリへのリンクはBuildpack
のページ注4を参照してください。
　Buildpackの処理が終わると、その結果と合
わせて slugと呼ばれるものが作られ、それが
dynoにデプロイされます。

Heroku Button

　さてみなさん、なんとかアプリケーションが
デプロイできたかと思います。Gitやコマンド
ラインに馴染みのない人にはちょっとたいへん
だったのではないでしょうか。また、いくら手
軽にデプロイできるとはいえ「じゃあシンプル
なHello Worldアプリケーションを3分で作っ
てHerokuで公開してみてください」と言われる
と、よほど手が速い人でないと難しいと思いま
す。筆者も、「rails newして……いや、それは
面倒だからsinatraにしようか……」などと迷っ
ている間に3分経ってしまいそうです。
　そこでお勧めなのが、最近リリースされた
Heroku Buttonです。これを使うと、3分どこ
ろか1分でとりあえずHeroku上にアプリケー
ションが作れます。Githubで forkするくらい
の気軽さで、あなたのHerokuアカウント上に
アプリケーションを作ることができます。詳し
い解説はぜひブログ注5をご覧ください。それ
にしてもなぜサンプルのアプリケーション名が
oshizushi（押し鮨）なのでしょうか……。
　今回はここまでです。ちょっと物足りないな、
という方はアプリケーションに変更を加えて

注3） URL https://devcenter.heroku.com/articles/keys
注4） URL https://devcenter.heroku.com/articles/buildpacks
注5） URL https://blog.heroku.com/archives/2014/8/7/heroku-button

https://devcenter.heroku.com/articles/keys
https://devcenter.heroku.com/articles/buildpacks
https://blog.heroku.com/archives/2014/8/7/heroku-button

118 - Software Design Oct. 2014 - 119

pushしてみたり、自分のHeroku Buttonを作っ
てみたりしましょう。

サンフランシスコ
だより

　実は、第1回の記事はサンフランシスコに引っ
越す前に書いていたのですが、引っ越しは無事
終わり、現在はサンフランシスコ生活を楽しん
でいます。サンフランシスコは夏だというのに、
夕方には上着が必要なほど涼しいです。サンフ
ランシスコは西海岸カリフォルニアだから、年
中晴れていてみんな短パン・ショーパンにTシャ
ツ！といった姿を想像されている方も多いかと
思いますが（少なくとも筆者はそうでした）、実
は、年中涼しいです。夏でも気温は高くても
20℃前半で、夜などは寒いときで10℃前半と
なります。昼のおひさまが一番出ているときに
うっかりTシャツ1枚で出かけてしまうと、夕
方には寒さでぶるぶるしてしまうことでしょう。

サンフランシスコの住宅事情

　サンフランシスコは現在、世界中で最も家賃
の高い地域の1つに数えられます。これは、いわ
ゆる「高給取り」であるエンジニアたちが多く住ん
でいることも大きな要因の1つです。サンフラン
シスコに住みたいという人の数が多いので家賃
が上がり、上がってしまっている家賃を「払えて
しまう」高級取りの人たちが多く移り住んできて
……といったようなインフレーションにも思える
現象が発生しています。
　8月に公開された「The San Francisco Rent
Explosion: Part II」注6というブログでは、サン
フランシスコを細かい地域に分けて、それぞれ
の地域での家賃の中央値についての分析がなさ
れています。1年ほど前にこのPart Iを日本で
見ていたときには「またまたそんな、大げさな」

と思っていました。ですが、単身サンフランシ
スコに乗り込んでこの時期にアパートメントハ
ンティングをした筆者からすると、この分析は
「だいたい合ってる」の範囲内なのです。
　たとえば、1人暮らしですとStudio（日本の
ワンルーム／1K）か1BR（日本の1DK／1LDK）
が候補になるかと思いますが、ブログによると
この中央値は、$2,300と$3,120となっていま
す。もちろんこれは単なる中央値ですので、物
件や地域によって、これより低いところも高い
ところもたくさんあります。たとえば、治安が
良かったり交通の便が良い地域では、とても広
いとは言えない7畳ほどの物件が、平気で月
20万円ほどします。ブログの中の一番最初の
地図を見ていただくと、「あれ、でも真ん中の
方にも安価なところがあるじゃない」と思われ
るかもしれないですが、この「Tenderloin」と呼
ばれる地区は誰もが「あそこはやめておきなさ
い」と言うほど治安の悪いところなのです。
　また、気に入った物件を見つけられたとして
も、その後がたいへんです。
　サンフランシスコでは、Craigslist注7などの
情報サイトで物件の情報収集をし、気に入った
ものがあればオープンハウスと呼ばれる内覧会
に行きます。会場には契約書があり、気に入れ
ば契約書に記入して不動産業者、または大家さ
んに渡します。
　このオープンハウス、常にたくさんの人が内
覧に来ており、その人たちの多くがその物件に
応募します。不動産業者はそれぞれの申込書類
を見て、誰を入居させるか決めるのです。
　ちょっとびっくりする内容だったのではない
でしょうか。サンフランシスコへの不満がちょっ
ぴりにじみ出る話だったと思いますが、いいと
ころですのでぜひ遊びに来てください！ﾟ

注6） URL http://priceonomics.com/the-san-francisco-rent-explosion-part-ii/
注7） 広告が収集・分類され、掲載されているWebサイト URL http://www.craigslist.org/about/sites

Herokuにデプロイしてみましょう
最初の一植え

第 2 回

http://priceonomics.com/the-san-francisco-rent-explosion-part-ii/
http://www.craigslist.org/about/sites

120 - Software Design

ISMS認証取得の
きっかけ

　2011年頃から急激に大手企業との取引が増
加し、「セキュリティ体制はどうなっています
か？」と聞かれることが多くなりました。AWS
専業を銘打っていた当社にも「本格的にAWS
を使いはじめたい」というリクエストが急増し
たのですが、当初の筆者たちの予想に反し、大
企業から使い始めるということが起きました―
―クラウドは企業規模に関係なくコンピュータ
を柔軟に利用できますので、中小企業にこそ大
きなメリットがあると思っていた筆者たちは事
業規模の小さい会社がおもな顧客になるだろう
と予想していました――こうした事情もあり、
筆者たちはクラウド時代のセキュリティ、そし
て社内の制度について考えることになったので
す。

ベルリンの壁

　2009年くらいから、セキュリティ対策をや
り過ぎた、もしくは方向を間違えていたために、
そこで働いている方々の生産性が落ちたり、モ
チベーションを失ったりするという様子を目に
する機会が増えてきました。
　よく話を聞いてみると、「会社から支給され
るPC以外使ってはいけない」「会社に入る前に

はチェックがあって、スマホなどは持ち込んで
はいけない」「PCを持ち出したりしてはいけな
い」「アクセスできるサイトには制限を課す」な
どさまざまなルールが定められているようで、
筆者はこれを「情報共産主義」などといって冷や
かしていました。武装は配給制で、ベルリンの
壁があって社内外を自由に行き来できない、と
いうわけです。
　もちろん、セキュリティは大切です。そのた
めの適切な措置も当然必要です。ただ、そのた
めに数千人、数万人の社員を抱える企業が、箸
の上げ下げを含めて細かく指導され、会社の敷
地に入るたびにチェックを受けるさまを見ると、
何とも言えないバランスの悪さを感じざるを得
ませんでした。
　ITというのは道具であり、計算を肩代わり
したり、生産性を高めたり、そういった「得ら
れるもの」があって初めて適切なIT投資といえ
るはずです。ところが情報共産主義を強いてい
る企業では、「守り」一辺倒で「IT投資によって
得られるもの」への注意が欠けているケースが
多く見られたのです。

社内LAN撲滅運動

　筆者たちは、こうした生産性を封じる「負の
セキュリティ対策」を行うのではなく、もっと
前向きな、売上の上がるセキュリティ対策を講

情 報システムとエンジニアの 未 来

第1回目ではモバイルに、第2回ではクラウドに出会ったエピソードをお話させていただきました。モバイルに出
会うことでツールが替わり、そしてクラウドに出会うことでアプリケーションとのつきあい方が変わりました。私
たちはこうした経験を通じて、以前本誌にも寄稿した「社内LAN撲滅運動（2013年3月号）」という取り組みに突き
進むことになります。

 Writer ㈱サーバーワークス　代表取締役　大石 良（おおいし りょう）／ http://blog.serverworks.co.jp/ceo/

第3回　コンシューマライゼーションはベルリンの壁崩壊と同じか？

http://blog.serverworks.co.jp/ceo/

120 - Software Design Oct. 2014 - 121

第3回　コンシューマライゼーションはベルリンの壁崩壊と同じか？

じることにしました。キャッチフレーズは「社
内LAN撲滅運動」です。
　社内LANにサーバを残しておくと、物理的
な対策で相当な手間がかかってしまいます。何
より、社内に置いてあることで「LANだから安
全」という誤った考えを持ってしまうことを懸
念したのです。いつの時代でも、一番深刻な情
報漏洩は社内から起こるものです。
　そして、ひとつひとつシステムの棚卸しをし
ていった結果、「社内LANに残したほうが（ク
ラウド化するよりも）セキュリティレベルが上
がるものは何一つない」と判断するに至りまし
た。サーバとしては2台だけ技術的な理由で社
内に残すことにしましたが、後はすべてクラウ
ド化し、ISMS認証を取得しました注1。
　少し上がることは事実ですので、慎重な計画
のもと、次のステップで実施する予定です。

注1） 詳しくは本誌2013年3月号の「社内LAN撲滅運動」か筆者
のブログ（http://blog.serverworks.co.jp/ceo/?p=328）を
参照ください。

BYOD（Bring Your
Own Device）

　そしてもう1つ、社内LAN撲滅運動とあわ
せて筆者たちが力を入れて取り組んだことがあ
ります。それがBYODです。単にセキュリティ
対策を実現する、という観点では会社支給の携
帯、スマホを社員に配布したほうが都合は良い
のですが、筆者たちのテーマである「売上が向
上するセキュリティ対策」という点で見た場合、
どうしても社員のモチベーションは下げたくあ
りません。iPhoneが使いたいという社員に
Androidを渡してもガッカリされるだけなのは
わかりきった話で、やはり自分で使う端末は自
分で選んだものを使ってもらいたいものです。
料理人がお店から包丁を支給されることはない
のと同じで、プロのエンジニアであれば自分の
道具は自分で選び、自分でチューニングするほ
うがよいと考えたのです。
　もちろん、BYODになれば社員の持ち物に

　金盾という言葉をご存じでしょうか？　グレート・

ファイヤーウォールとも呼ばれている中国の検閲シ

ステムで、中国国内から「天安門事件」などのキーワー

ドで検索ができないようにしているしくみとして知

られています。私は本稿中でベルリンの壁のことを

「社内と社外を隔てる壁」の比喩で用いましたが、金

盾にはベルリンの壁とはちょっと異なる意味がある

ようなのです。

　金盾は、世界で流行っているコミュニケーション

ツール（facebook、twitter、LINE etc.）をことごとく

ブロックしており、中国国内では一部地域を除いて

使えない状況です。ところが、どうもこれが「関税」

として機能しているようなのです。

　日本には、Googleや facebook、twitterなどの米

国で流行しているサービスがすぐに入ってくるため、

なかなか「これからGoogleや facebookを倒すぞ！」

という威勢の良いベンチャーは生まれにくい環境に

あります。ところが中国ではこれらが金盾でブロッ

クされているので、BaiduやWeibo、WeChatのよ

うに、米国ですでに成功しているモデルを中国国内

で再現しやすい環境にあるのです。そして国内で十

分に世界で戦える素地を整えてから、世界に挑戦す

ることができる。つまり「金盾が、国外コミュニケー

ションツールを中国国内に輸入させないための関税」

としても機能しているということなのです。

　私はこのやり方は間違っていると思いますし、自

分が住む国にはこんなものを絶対に導入してほしく

ないと思うものの、このようなやり方でベンチャー

を育てているという国があることも知っておいて損

はないと思います。

「金盾」と「ベルリンの壁」の違いCOLUMN

http://blog.serverworks.co.jp/ceo/?p=328

122 - Software Design

はなりますが、紛失時に会社の情報などが漏れ
ることのないよう、MDMのクライアントを必
ずインストールしてもらうことにしました。

BYOD加速の工夫

　しかし、これだけでは少し足りないものがあ
りました。このルールのままBYODをすると「会
社は得をするが、社員は何も得をしない」とい
う状況になってしまったのです。会社としては、
端末を購入するお金もかからないし、セキュリ
ティ対策も最小限で済むという2つの大きな金
銭的メリットがあるのに対して、社員からすれ
ば「本来会社から支給されてもいいはずの端末
代金を、結果的に個人で負担する」ことになっ
てしまうわけです。
　こうした金銭的負担の不均衡を解消するため、
PCは月3,000円、スマホは月2,000円、モバ
イルルータは月1,500円など、BYODする端末
の種類に合わせて補助金を出すことにしました。
結果として、この取り組みはうまくいき、

BYODによるモチベーションの向上、セキュ
リティレベルの担保といった当初の目的は達成
できているのではないかと思います注2。

コンシューマライゼーション

　ここまでの流れからわかるように、これまで
エンタープライズの世界では相手にされなかっ
たが、一般消費者は好んで使いそうなもの、た
とえば iPhone、Gmail、MacBook Airといった
「消費者向けサービス、製品を使いたい」という
要求を率先して取り込んできました。こうした
動きのことを「コンシューマライゼーション」と
呼びますが、「新しい技術の流れる方向」が変わっ
てきていることは、みなさんも感じることが多
いと思います。
　1990年頃のコンピュータ業界では「ダウンサ
イジング」という、大型で強力なコンピュータ

注2） まだ母数が少ないためデータに裏付けされたわけではあり
ませんが、BYODによって端末の紛失事故も確率的に減る
のではないかと期待しています。誰だって、会社支給の端
末より自分の端末のほうを大切にしますよね？

　筆者たちが、いまだクラウドに移行していない2

台のサーバのうち、1台は IP電話用のSIPサーバです。

もう1台はActiveDirectoryのドメインコントローラ

です。SIPサーバはクラウド化を進めていた2011年

当初に「安心して任せられそうだ」というクラウド

PBXのサービスがなかったためにやむなく残してお

いたのですが、今は複数のサービスが大手通信事業

者から提供されているので、そのサービスを使うこ

とでSIPサーバも廃棄する予定です。

　一方ドメインコントローラは少し配慮が必要です。

AWSでは起動時に(キーを押すことができない

ため、そのままAWSに移行してしまうとDSRM（ディ

レクトリサービス復元モード）が利用できないのです。

もちろん、適切なバックアップなど運用でカバーす

ればドメインコントローラをAWSに移行可能ですが、

難易度が少し上がることは事実ですので、慎重な計

画のもと、次のステップで実施する予定です。

　なお、BYOD化を進めるにあたり、グループポリ

シーの配布はMDM（Model Device Management）側

に任せてしまったため、ActiveDirectoryは ID管理

機構としてのみ利用しています。「それなのに

ActiveDirectoryが必要なのか」という議論もあった

の で す が、純 粋 に IDを 管 理 す る DBと し て

ActiveDirectoryは非常に優れていることに加え、ク

ラウド上で提供されるSSO（Single Sign-On）のサー

ビスもほとんどActiveDirectory対応がされている

ことから、クラウド時代でも ID基盤として

ActiveDirectoryは有益だと考えています。

社内に残った2台のサーバCOLUMN

122 - Software Design Oct. 2014 - 123

第3回　コンシューマライゼーションはベルリンの壁崩壊と同じか？

が一般企業・消費者でも利用できるように「サ
イズを小さくする」ことによってコンピュータ
の普及が図られました。これは「エンタープラ
イズ用途が最先端で、時間差でコンシューマ側
に技術が降りていた」ことを意味します。2000
年頃のJavaも同じ状況です。2000年頃の先端
エンジニアといえば難解なEJB（Enterprise
JavaBeans）をゴリゴリ書く人で、エンタープ
ライズ用途でJavaを適用する事例が最高にクー
ルだったわけです。
　ところが今はこの流れが逆になっています。
Ruby、Python、Scala、Goなど「いかにもエン
タープライズ用途で使われなさそうなコンシュー
マプロダクト向け言語」を使いこなす人がイケ
てるエンジニアですよね？　開発手法でもア
ジャイルやCI（継続的統合）などの考え方は、
おもにコンシューマ向けサービスで十分に使わ
れた後、エンタープライズの世界にもゆっくり
降り始めるという順番で、昔とは明らかに逆に
なっています（図1）。
　おそらく今エンタープライズ開発の現場にい
らっしゃる方が持っている「技術が伸びないか
もしれない」という危機感は、コンシューマ向
け製品・サービスを作っている人たちがどんど
ん技術を伸長しているのに対して、エンタープ
ライズの領域にその取り組みが流れてくる動き
が遅々として進まないことに原因があるのでは
ないかと筆者は考えています。

次回

　次稿では、私たちが「情報民主化」を進めた結
果、社内でどういうことが起きたのか。また、
コンシューマライゼーションの時代に企業向け
SIなどをやっているエンジニアは自分のキャ
リアをどう考えればいいのか、筆者の考えを伝
えたいと思います。ﾟ

㈱サーバーワークス
代表取締役
大石 良（おおいし りょう）

・�昭和48年7月20日新潟市生まれ
・コンピュータとの出会いは10歳の頃
・当時はPC-8001にベーマガのプログラムを
入力する日々

・コンピュータの購入は11歳／SHARP X1
・中2のときに初めてプログラムが書籍に掲載
・高校入学記念にX68000を購入
・大学生のときにパソコン通信開始。本格的
にシェアウェアを販売

・総合商社でインターネットサービスプロバ
イダ事業に携わる

・2000年にECのASPを立ち上げるべく起業

エンタープライズ

大型コンピュータ
Java（EJB）

コンシューマ

コンシューマ

モバイル
開発手法

エンタープライズ

コンシューマライゼーション

 ▼図1　 コンシューマライゼーションの流れの変化

124 - Software Design

検索と置換

　ども、ドメイン取得以降さらにEmacs愛が加
熱したるびきちです。前回は日常的にEmacsを
使ううえで便利な機能を紹介しました。カーソ
ル移動と入力支援はテキストエディタの両輪と
なる機能です。しっかりと押えておきましょう。
　今回取り上げるのは、検索と置換です。前回
でも isearch、正規表現 isearchを取り上げまし
たが、それらはたった1ヵ所が対象です。今回
は、一度に複数個所を編集する方法です。これ
も知っておくと楽しくなってきます。
　この前、興味本意でメモ帳を触ってみました
が、編集機能があまりに貧弱過ぎて発狂しそう
でした（笑）。

置換

　順番が逆になってしまいますが、まずは置換
についてお話していきます。というのは、今回
は検索といっても全検索であり、検索結果を編
集することで実際のファイルに反映させるのが
目的だからです。検索結果を編集する多くの場
合は置換を使うので、最初に置換を知っておく
べきなのです。
　置換は多くの場面で使われます。プログラミ

ングにおけるリファクタリングはもちろんのこ
と、文書作成においても用語を統一したり、デー
タを見やすいレイアウトに整えたりなど、あら
ゆる場面で活躍します。もし、置換を知らなかっ
た場合は1ヵ所1ヵ所 isearchで移動して、元の
文字列を消して新しい文字列に置き換えるとい
う単純作業を何度も繰り返すハメになってしま
います。数ヵ所ならともかく、5ヵ所以上あっ
たらうんざりですよね。
　置換は前方検索、すなわちカーソル位置より
も後で行われます。よって、置換に入る前準備
として置換対象の文字列よりも前にカーソルを
持って行く必要があります。とくにバッファ全
体を置換対象にするときは、M-<でバッファ先
頭に移動しておきます。
　単純な文字列置換はM-%を使います。たとえ
ば、aをAに置き換えるときは、M-% a RET A

RETと操作します。実行すると、「a」が見つかっ
た場所にカーソルが移動し、置換するかどうか
聞いてきます。

Query replacing a with A: (? for help)

　このようにミニバッファに出てくるので、ま
だ使ったことのない方は「?」を押してみましょ
う。*Help*に操作方法が出てきますね。とくに
「y（カーソル位置を置換する）」、「n（カーソル位
置を置換しない）」、「!（すべて置換する）」、「q

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

第6回 検索、置換でピンポイント編集！
長いコード・文章を書いていて間違いに気づいたとき、始めから1つずつ修正するのは骨が折れますよね。そ
んなときは、「occur」、「grep」での全検索、「query-replace」での文字列置換がとても便利です。それら
の発展として、複数のファイルの中身を変更できる「wgrep」も紹介します。

Writer

http://rubikitch.com/

124 - Software Design Oct. 2014 - 125

② 元のバッファにいながら、マッチした行に
ジャンプする

　わかりやすいのは①の方法です。ただoccur
を実行したあと、カレントウィンドウは元のバッ
ファのままで、*Occur*バッファにはありませ
ん。そのため *Occur*のウィンドウを選択する
必要があります。図1の *Occur*ウィンドウの4
行目（目玉焼）にカーソルを移動して　　　 を押
すと、occur-sample.txtの該当行に移動します。
　②の方法はマッチした行に順番に移動する方
法です。言ってみれば、isearchにマッチ行一覧
が付属したようなものです。M-g M-n(next-

error)で次のマッチ行、M-g M-p(previous-

error)で前のマッチ行にカーソルを移動します。
この2つのコマンドはoccur以外にも後述する
M-x grepやコンパイラのエラー行に進むなど
の用途があります。
　2つの方法は場合によって使い分けてくださ
い。特定の行にジャンプしたいのならば、①の
方法が良いです。そのときは *Occur*バッファ
で isearchをするなどして絞り込むことになるで
しょう。対して、すべてのマッチ行を見たいの
ならばウィンドウ選択なしで使える②の方法が
良いです。
　①の方法がわかりやすくて大好きという人が
いると思います。かつての筆者もそうでした。
それならば解決策はいくつかあります。

❶ウィンドウ選択を楽にする
❷ace-jump-modeで見えている*Occur*の行に

ジャンプする

RET

（置換をやめる）」を覚えていれば困りません。
　これは置換するかどうか毎回尋ねてくるので
「query-replace」というコマンド名です。すべて
置換することがわかっている場合は尋ねないほ
うがうれしいですよね。M-%で置換前後の文字
列を入力してから「!」を押せば一気に置換して
くれます。尋ねないバージョンM-x replace-

stringも存在しますが筆者は使っていません。
M-%は尋ねてほしいときとほしくないときの両
方をまかなえるからです。
　置換には正規表現も使えます。M-%の正規表
現版C-M-%（query-replace-regexp）があるので
すが、慣れるまで難しいです。C-M-%というイ
カれたキーバインドもそれを暗示しています。
正規表現を知っていても確実にマッチさせるの
は難しいものがあります。実は筆者も複雑な正
規表現置換は使いきれていません。ですが、御
安心ください。初級者にでもそれと同等のこと
ができる方法があるのです。

バッファ内を
全検索する

　isearchはカーソル位置から見て次の位置を検
索しますが、バッファ全体を検索したいときが
ありますよね。端的に言えばバッファ内grepで
す。特定のキーワードが含まれる行をリストアッ
プするときにものすごく役立ちます。プログラ
ミングでいえば関数定義のリストがほしいとき
がありますよね。
　この場合に手軽に使える標準コマンドが
M-s o(occur)です。実行すると、表示する行の
正規表現を訊いてきます。たとえば、図1の上
の画面に表示されているテキストにおいてM-s

oのあとに「-」を押すと、「-」が含まれている行
が下に表示されます。
　occurの実行後、マッチした行にジャンプで
きます。そのための方法は2つあります。

①*Occur*バッファから、該当行にジャンプす
る

 ▼図1　M-s oの実行例

第6回 検索、置換でピンポイント編集！

126 - Software Design

強力な方法です。isearchは画面外にも検索範囲
が伸びますが、ace-jump-modeは画面内移動に
特化しています。それもカレントウィンドウに
限らず、ほかのウィンドウにも3ストローク以
内で移動できるのです。
　❸も画面内に特化した移動方法で、*Occur*
ウィンドウ内をワンクリックで該当行に移動で
きます。occurの局面においてマウスも強力な
方法ですが、筆者の場合、ace-jump-modeを使っ
てからEmacsでマウスに手を伸ばすことがほと
んどなくなりました。
　図1ではスペースの関係上横幅を取っていな
いので上下にウィンドウが分割されていますが、
最近主流となっているワイド画面でoccurを実
行すれば、左右に分割されます。左右分割され
れば40～60行も画面に表示されます。よって、

*Occur*が画面内に収まるのであれば、ace-
jump-modeで *Occur*のカーソルを移動して
　　 を押せば、元のバッファの該当行にジャ
ンプできます。

最初から*Occur*を選択させる

　❹のように、最初から *Occur*を選択する方
法もあります。このアプローチが好きならば、
M-x occur-and-selectを定義して使ってくだ
さい。ついでにoccurに割り当てられているキー
も置き換えておきます（リスト1）。
　それをさらに推し進めた外部Emacs Lispに
「color-moccur」というのがあります。occurを超
強化したもので、かつての筆者も使っていまし
た。でもcolor-moccurの機能は別の便利な方法
で実現できてしまう今ではもう使っていません。
お好みで。

RET

❸マウスで*Occur*の行をクリックする
❹元からoccurのウィンドウを選択させる

ウィンドウ選択をしやすくする

　❶のウィンドウ選択を楽にするというのは、
C-x oを別のキーに割り当て直すことです。
Emacsで複数のウィンドウを使っていると、本
当に頻繁にC-x oを使います。それならば押し
やすいキーに割り当て直すべきです。筆者は大
昔からC-tに割り当てています。このたった1
行の設定で、ウィンドウ選択が本当にやりやす
くなり、ウィンドウ選択をするほかのコマンド
がいらなくなるくらいです。

(global-set-key (kbd "C-t") 'other-window)

　元のC-tはカーソル直前の2文字を入れ替え
る「transpose-chars」です。このコマンドが好き
という人もいますが、筆者は使っていません。
タイプミスでよくあるのが2つのキーの入れ違
いです。たとえば lsをslとタイプしてしまうと
かです。それに気づいたら即座にC-tを押せば
直ります。元からなじめなかったのもあります
が、何よりローマ字での日本語入力で使えない
のが痛いです。
　「ください」はローマ字入力だとkudasaiです
が、iとaを入れ違いにしてkudasiaになると「く
だしあ」になってしまいます。そこでC-tを押し
ても「くだあし」になってしまいます。C-tを押
すのがクセになっている人にとって、日本語入
力でそれが使えないのはものすごい苦痛です。
ローマ字入力に対応した transpose-charsが待ち
望まれます。それまではC-tはいらない子とい
うのが僕の結論です。それならば頻繁に使うコ
マンドにC-tを譲ってあげるべきだと考えてい
ます。

マウスの代用として
ace-jump-modeが大活躍

　❷のace-jump-modeは前回で紹介しまし
たが、近距離のカーソル移動手段として超

 ▼リスト1　M-x occur-and-selectの定義

(defun occur-and-select (regexp &optional nlines)
 (interactive (occur-read-primary-args))
 (occur regexp nlines)
 (select-window (get-buffer-window "*Occur*"))
 (forward-line 1))
(global-set-key (kbd "M-s o") 'occur-and-select)

るびきち流
Emacs超入門

126 - Software Design Oct. 2014 - 127

が多くなってしまいます。
　このように、カスタマイズはやり過ぎないで
一定のところで止めることが大事です。この線
引きについては経験がものを言います。そして
常に「このカスタマイズをすることによるメリッ
トとコストは何なのか」と自問してください。カ
スタマイズをし過ぎると管理コストが発生しま
す。なにより使用頻度の低いコマンドはそのう
ち忘れてしまいます。
　筆者もかつて猛烈にカスタマイズしまくった
時期がありました。世界有数レベルでカスタマ
イズに没頭していました。間違いなく日本一
Emacsをいじくり回していました。今はかなり
落ち着いていますが、その時期があったからこ
そ、今こうしてあなたにレッスンをお伝えでき
るのです。

grepの結果に
ジャンプする

　ここまでは、単一のバッファに対して検索・
編集を行う内容でした。M-x grepはEmacsの中
でgrepプログラムを動かし、検索結果にジャン
プするものです。これにより、複数のファイル
やディレクトリにまたがる検索もできるように
なります。しかもelispよりもはるかに高速に。
　M-x multi-occurは複数のバッファに対して
occurしますが、あらかじめ検索対象のバッファ
を指定する必要があります。仮にすべてのバッ
ファを検索対象にしたら、遅過ぎて日が暮れま
す。なぜなら、Emacs Lispでgrepの真似事を
しても、しょせんは子供の遊びレベルだからで

occurの結果を
編集する

　occurが提供する機能はこれだけではありま
せん。なんと、*Occur*バッファを編集して元
のバッファに反映させられるのです！　この機
能を実現している外部Emacs Lispプログラムが
昔からありますが、今や標準機能であるのです。
　これを使えば正規表現置換に躊躇する人でも、
単純な文字列置換でそれと同等の処理が行えま
す。正規表現置換は本記事に書ききれないほど
の機能がありますが、高度な正規表現置換が使
われることはめったにありません。なぜならば、
直観的でわかりやすいoccur編集で間に合うか
らです。
　今、図1の状態にあるとします。つまり、occur-
sample.txtでM-x occur -を実行した直後で
す。「-」を「**」に置き換えてみましょう。次の
手順で操作します。

①*Occur*バッファを選択する（C-x o）
②eを押してoccur-edit-modeに入る
③M-% - RET ** RETで置換する

　すると、置換しただけで元のバッファが変更
されます（図2）。M-x occur-and-selectを使
えば①は省略できます。

カスタマイズはほどほどに

　なお、いきなりoccur-edit-modeに入るコマン
ドM-x occur-and-editを定義することはでき
ますが、筆者はやり過ぎだと思います。なぜな
ら、割に合わないからです。M-x occurの目的
は普通にバッファ内grepとして使うことが多く、
occur-edit-modeを使う頻度は多くありません。
それにたった1ストロークでoccur-edit-modeに
入れます。たかが1ストロークを節約するため
に頻度の低いコマンドを定義するのは割に合わ
ないのです。M-x occur-and-editで起動する
となると、M-s o → C-x o → eでoccur-and-
editを起動する場合よりもかえってストローク

 ▼図2　occur編集

第6回 検索、置換でピンポイント編集！

128 - Software Design

　M-x grepの検索結果にアクセスする方法は、
M-x occurとまったく同じです。*grep*バッ
ファで　　　 を押すか、M-g M-n／M-g M-pを
実行するかです。
　M-x grepには、もうひとつ大事な特徴があ
ります。それはほかのプログラムも実行できる
ということです。たとえば、grepの代わりに
gzipされたファイルも検索するzgrepを実行で
きます。オプションを設定する必要があります
が、ソースコード検索に特化した高速grepの
ack/ag/ptを実行させることもできます。grep
そのものではなくてソースコード検索ツール
milkode(gmilk)をも実行できてしまいます。grep
-nH形式、すなわち「ファイル名 :行番号 :」を出
力してくれるプログラムであればなんでも良い
わけです。M-x grepのように外部プログラム
丸投げ方式のEmacsコマンドは高速性だけでな
く柔軟性をも獲得したのです。

grepの結果を編集して
ファイルに反映させる奥義

　M-x occurではoccur-edit-modeで検索結果
を編集できますが、M-x grepでも同じような
ことができないでしょうか？　それを実現する
パッケージがwgrepです。wgrepとはWritable
Grepのことで、*grep*を編集することで元の
ファイルにも反映させていくものです。
　wgrepはMELPAというパッケージ登録所に
登録されているので、パッケージの設定（リスト
2）さえしてしまえばEmacsの中でインストール
できます。

RET

す。Emacs Lispはユーザインターフェースを記
述するのは得意ですが、大量のデータを扱うの
が大の苦手です。おまけにマルチスレッドやマ
ルチコアに対応していないので、現在の高性能
なコンピュータの性能を活かせません。
　対してgrepプログラムは検索のプロです。と
くにGNU grepは爆速で、数GB程度のデータ
なら数秒あれば結果を出力してくれます。フル
Emacs Lispで検索するより何千何万倍も速いで
す。適材適所、餅は餅屋です。
　そこで、検索はgrepプログラムに任せて、表
示および検索結果へのジャンプはEmacs Lispで
書くという役割分担をすることにしました。そ
れならば速度と利便性を両立できます。おまけ
にEmacs Lisp部分の行数も削減できます。M-x

grep以外にもこの方式を採っているEmacsコ
マンドはたくさんあります。
　M-x grepを実行するとミニバッファに「Run

grep (like this): 」というプロンプトと
「grep -nH -e 」などの初期入力が出てきます。
grepのオプションは環境によって異なるのです
が、この調整はM-x grep側がやってくれます。
　大事なのは「-n」、「-H」オプションでそれぞれ
検索結果の行番号、ファイル名を出力すること
です。検索結果にジャンプするためにはこれら
の情報が必要です。「-H」オプションが使えない
場合は、検索ファイルの指定のあとに/dev/

nullなどのヌルデバイスを付加し、強制的に
ファイル名を出力させるようにします。
　あとはいつもどおりgrepプログラムを実行す
るコマンドラインを入力するだけです。つまり
正規表現とファイル名を入力します。もちろん
ほかのオプションを入力してもかまいません。
　M-x grepを実行したら、別ウィンドウの

*grep*バッファに検索結果が出てきます（図3）。
grepを実行するには時間がかかることがあるの
で、grepプログラム実行中でもEmacsの操作が
できます。grepプログラムが出力するたびに

*grep*バッファが更新されます。実行中であっ
ても、現時点での検索結果にアクセスできます。

 ▼図3　grepの実行例

るびきち流
Emacs超入門

128 - Software Design Oct. 2014 - 129

の強みは生きており、任意のgrep -nH形式のプ
ログラムの出力結果を編集してファイルに反映
できます。wgrepはさほど使用頻度が高いわけ
ではありませんが、飛び道具として覚えておい
てください。

終わりに

　今回は置換と全検索を取り上げました。ここ
までの段階で、かなり複雑な編集ができるよう
になったはずです。とくに検索結果を編集する
機能には驚かれたと思います。
　筆者のサイトrubikitch.comではEmacsの情
報発信基地を目指すべく、定番情報や最新情報
を日々更新しています。さらにステップアップ
したい方はメルマガ登録注1お願いします。Happy
Emacsing！ﾟ

M-x package-refresh-contents
M-x package-install wgrep

　そして、wgrepの設定もしておきます。

(require 'wgrep)
(setq wgrep-change-readonly-file t)
(setq wgrep-enable-key "e")

　*grep*バッファでeを押すことで編集可能に
なります。eを選んだのは、occur-edit-modeと
そろえるためです。似たコンセプトのコマンド
のキー割り当てをそろえておくことで、ストレ
スなく使うことができます。
　図3の状態でwgrepを使うには、*grep*バッ
ファにウィンドウを切り替え、eを押します。す
ると、

Press C-x C-s when finished or C-c C-k to
abort changes.

とメッセージが出てきます。つまり、*grep*バッ
ファの変更をファイルに反映させたければC-x

C-sを、取り止めたければC-c C-kを押せとい
うことです。
　図4は最初のregexpをREGEXPに置き換え
たところです。ここでC-x C-sを押すと実際の
ファイルに反映されますが、その時点ではファ
イルは保存されていません。反映された部分は
図5の1行目のように色が付きます。occur-
select.elが修正済み状態になっている（モードラ
インの左に「**」と表示されている）ことに注見し
てください。
　wgrepで複数のファイルを変更し、すべての
ファイルを保存するにはC-x sのあとに!を押
してください。
　このようにwgrepは大きな編集をこなせる超
強力なコマンドです。言うまでもなくM-x grep

 ▼図4　wgrep実行例～検索結果を編集

 ▼図5　wgrep実行例～ファイルに反映

 ▼リスト2　パッケージを使うための初期設定

(package-initialize)
(add-to-list 'package-archives '("marmalade" . "http://marmalade-repo.org/packages/"))
(add-to-list 'package-archives '("melpa" . "http://melpa.milkbox.net/packages/") t)

注1） URL http://www.mag2.com/m/0001373

第6回 検索、置換でピンポイント編集！

http://www.mag2.com/m/0001373131.html

130 - Software Design

トピック

　今夏もAWSは新サービスや新機能のリリー
スラッシュでした。本トピックではこれらのう
ち、AWSのDNSマネージドサービスである
Route53の新機能として追加された「ドメイン
名の登録・管理」機能について簡単に取り上げ
ます。
　この新機能はドメインの新規取得、登録情報、
外部レジストラから、もしくは外部レジストラ
への移管を管理できる機能で、取得したドメイ
ンについてはそのままRoute53上で運用できる
ことも特徴となっています注1。
　たとえば、Route53から新規ドメインを取得
すると、Hosted Zoneの作成、Whoisデータベー
スへのName Serverの登録など、従来であれ
ば初期に手動で必要だった作業が自動的に行わ
れるため、ドメインを取得してしばらくすると、
何もしなくてもインターネット上でそのドメイ
ンのNSレコードを引くことができる、という
点は驚きでした。
　AWS CLI 1.3.25以降であれば、route53
domainsコマンドが利用できるようになってい
ます。たとえば利用可能なドメインを探すとき
には、次のコマンドを1発叩けば即座に結果が
わかるので、CLIの便利さを伝えるサンプルと

注1） URL http://aws.typepad.com/aws_japan/2014/08/
route-53-domain-reg-geo-route-price-drop.html

しても使えるのではないでしょうか。

・コマンド実行例：

$ aws --region us-east-1 route53domains ｭ
check-domain-availability --domain-name ｭ
example.com

・結果例（取得できる例）：

{
 "Availability": "AVAILABLE"
}

・結果例（取得できない例）：

{
 "Availability": "UNAVAILABLE"
}

　この新機能追加に伴い、route53domains.us-
east-1.amazonaws.comが新たなエンドポイン
トとして追加されています。AWS CLIでも、
リージョンとしてus-east-1を指定する必要が
あるので注意してください。
　もう1つ、AWS CLIのトピックとして比較
的大きなリリースが8月上旬にありました。第
6回で紹介した emrコマンド（Elastic Map
Reduce）がPreview版から正式版に移行注2しま
した。あわせてAWS CLIのバージョンも1.4.0
とメジャーバージョンアップしています。
　これら新機能にご興味がある方は早速AWS
CLIをアップデートしてみましょう。

注2） U R L h t t p : / / aws . amazon . com/ re l ea seno te s /
8270985098793055

シェルスクリプトではじめる
AWS入門
―AWS APIの活用と実践

Writer　波田野 裕一（はたの ひろかず）／運用設計ラボ　operation@office.operation-lab.co.jp

第7回　AWS APIでのデジタル署名の全体像を明らかにする①

http://aws.typepad.com/aws_japan/2014/08/route-53-domain-reg-geo-route-price-drop.html
http://aws.amazon.com/releasenotes/8270985098793055

130 - Software Design Oct. 2014 - 131

第7回　AWS APIでのデジタル署名の全体像を明らかにする①

・AWS CLIの更新コマンド実行例：

$ sudo pip install -U awscli

　個人的には、あとはCloudFrontが正式版に
なってくれれば、と心待ちにしているところで
す。

今回の流れ

　今回から、数回にわたってAWS APIを直接
操作するために必要なデジタル署名について解
説していきます。
　2014年8月現在、以下の3つのデジタル署名
作成方法が提供されています。

・Signature Version 2
・Signature Version 3
・Signature Version 4

　今回は署名バージョンの概要と、3つの署名
方法の中で最もシンプルなSignature Version
3について実例も含めて解説します。

署名のバージョン

　2014年8月現在の各AWSサービスにおける
推奨署名バージョンは表1のようになっていま
す。
　ほとんどの AWSサービスは Signature
Version 4（以下「v4」）に対応しています。この
v4は3つの署名方法の中で一番複雑な手順に
なっています。
　逆に、v4に対応していないのは、Amazon
Route53（以下「Route53」）、Amazon Elastic
Cloud Computing（以下「EC2」）およびEC2と同
じAPIを利用しているAmazon Virtual Private
Cloud（以下「VPC」）、東京リージョンでは提供
されていないAWS Import/Exportのみとなり
ます。このうちRoute53はSignature Version
3（以下「v3」）のみ対応で、残るEC2（VPC）、

 ▼表1　AWSのサービスと推奨署名バージョン

イ
ン
フ
ラ
ス
ト
ラ
ク
チ
ャ
ー
レ
イ
ヤ

ネットワーキング 推奨署名

Amazon Route 53 v3

Amazon Route 53（Domains） v4

Amazon Virtual Private Cloud（Amazon VPC） v2

Elastic Load Balancing v4

コンピューティング

Amazon Elastic Compute Cloud （Amazon EC2） v2

Auto Scaling v4

ストレージ

Amazon Simple Storage Service（Amazon S3） v4

Amazon Glacier v4

AWS Import/Export v2

AWS Storage Gateway v4

データベース

Amazon DynamoDB v4

Amazon Relational Database Service（Amazon RDS） v4

Amazon ElastiCache v4

Amazon Redshift v4

ア
プ
リ
ケ
ー
シ
ョ
ン
サ
ー
ビ
ス
レ
イ
ヤ

メッセージ

Amazon Simple Notifiction Service（Amazon SNS） v4

Amazon Simple Queue Service（Amazon SQS） v4

メール配信

Amazon Simple Email Service（Amazon SES） v4

ワークフロー

Amazon Simple Workflow（Amazon SWF） v4

メディア変換

Amazon Elastic Transcoder v4

コンテンツ配信

Amazon CloudFront v4

分散処理

Amazon Elastic MapReduce v4

データ連携

AWS Data Pipeline v4

検索

Amazon CloudSearch v4

ストリーミング

Amazon AppStream v4

分析

Amazon Kinesis v4

デ
プ
ロ
イ
・
ア
ド
ミ
ニ
ス
ト
レ
ー
シ
ョ
ン

レ
イ
ヤ

モニタリング

Amazon CloudWatch v4

アイデンティティ & アクセス

AWS Identity and Access Management（IAM） v4

AWS Security Token Service（AWS STS） v4

デプロイ & マネジメント

AWS Elastic Beanstalk v4

AWS CloudFormation v4

AWS OpsWorks v4

AWS CloudTrail v4

AWS Support v4

132 - Software Design

AWS Import/Export は Signature Version 2
（以下「v2」）だけに対応、となっています。

事前準備

　AWS APIに直接アクセスするには、下記の
環境が必要です。これら環境の詳細、および
AWS APIにリクエストを投入して '404 Bad
Request'が返ってきた場合のための検証環境に
ついては、連載第2回「AWS APIの利用方法
と環境の構築」をご参照ください。

AWS認証情報
　シェルスクリプトから利用する認証情報とし
て、リスト1のファイルがあることを前提にし
ています。ご利用の IAMユーザの認証情報に
あわせて作成してください。

コマンド
　今回は次のコマンドを利用します。環境によっ
ては標準でインストールされていない可能性が
ありますので、事前に確認ください。

・opensslコマンド
・base64コマンド

Signature Version 3

　v3は、3つの署名方法のうち最もシンプルな
署名手順となっています。とくにAPIへのリ
クエストデータ本体と署名に必要なデータ（v3
では日付情報）が完全に分離されている点が他
の2つの署名方法との大きな違いとなっており、
手動で実行したときにエラーになりにくいとい
う特徴があります。
　v3の署名付きリクエストデータの作成手順
は図1のとおりです。

手順①リクエストデータの作成

　まず次のようなリクエストデータを作成しま
す。

・リクエストデータ：

GET /2013-04-01/hostedzone HTTP/1.1
Host: route53.amazonaws.com

?maxitems=5

　これは、Route53上に作成されているHosted
Zoneの一覧を取得するリクエストデータです。

 ▼リスト1　~/.aws/default.rc

aws_access_key_id=AKIXXXXXXXXX0EXAMPLE
aws_secret_access_key='xXxxxXXxxXXXX/ｭ
X0XXXXX/xXxXxxXXEXAMPLEKEY'

リクエストデータの作成

サイン文字列の作成

サイン文字列の署名計算

認証ヘッダの追加

API への投入

 ▼図1　 リクエストデータの作成手順

132 - Software Design Oct. 2014 - 133

第7回　AWS APIでのデジタル署名の全体像を明らかにする①

最初の行の、'2013-04-01'はRoute53のAPI
バージョンになります。最新のAPIバージョ
ンについては、各サービスのAPIリファレン
スページのトップ注3に記載があります。
　2行目のHost行には、AWS APIのEndPoint
を記載します。Route53にはEndPointが1つ
しかないので、'route53.amazonaws.com'を記
載しています。今回のサンプルはGETメソッ
ドなのでヘッダー部分はこれですべてとなりま
す（POSTメソッドの場合は、これに加えて
Content-Lengthヘッダが必要になります）。ボ
ディ部分について、今回の例では最大表示件数
の指定のみ記述しています。このリクエストデー
タは、手順④の認証ヘッダの追加のときに必要
になります。

手順②サイン文字列の作成

　次に、サイン文字列（String to Sign）を作成
します。サイン文字列は署名の基となる文字列
群で、v3では日付情報（GMT）のみ利用します。

・入力コマンド：

$ LC_ALL=en
$ TZ="GMT";
$ DATETIME=`date "+%a, %d %b %Y %H:%M:ｭ
%S %Z"`
$ echo ${DATETIME}

・実行結果（例）：

Mon, 18 Aug 2014 03:49:25 GMT

　この日付文字列がv3におけるサイン文字列
すなわち「署名に必要なデータ」となります。デ
ジタル署名においては、最後の行末に不要な改
行などが含まれていると、署名計算が正しくで
きないため、次のように変数の最後にある改行
を削除して一時ファイルに保存するとよいでしょ
う。

注3） APIへのリクエストの詳細はRoute53 APIリファレンスを
参照ください（http://docs.aws.amazon.com/Route53/
latest/APIReference/Welcome.html）。

・OSXの/bin/shの場合（例）：

$ FILE_BEFORE_SIGN="${HOME}/tmp/v3.tmp"
$ echo "${DATETIME}¥c" > ${FILE_BEFORE_ｭ
SIGN}

・�bash、Linux の sh（bash）、FreeBSD の sh
（ash）の場合（例）：

$ FILE_BEFORE_SIGN="${HOME}/tmp/v3.tmp"
$ echo -n "${DATETIME}" > ${FILE_BEFORE_ｭ
SIGN}

　最後の改行が削除されているかどうかは、
echoコマンドでファイルを表示すれば確認で
きます。ファイル内容と次のコマンドプロンプ
トが改行されずに表示されていればOKです。

・ コマンド（プロンプト'sh-4.1$'が表示されて
いる例）：

sh-4.1$ cat ̃/tmp/v3.tmp

・改行が削除されている場合（成功例）：

Mon, 18 Aug 2014 03:49:25 GMTsh-4.1$

・改行が削除されていない場合（失敗例）：

Mon, 18 Aug 2014 03:49:25 GMT
sh-4.1$

手順③サイン文字列の署名計算

　サイン文字列の作成が完了したら、シークレッ
トアクセスキーを利用して署名計算をします。
ここではopensslコマンドを利用し、HMAC-
SHA256で署名計算をします。opensslコマン
ドの出力そのままではバイナリデータとなって
しまうので、Base64エンコードもあわせて行
います。

・入力コマンド：

$ SIGNATURE=`openssl dgst -binary -hmac ｭ
${aws_secret_access_key} -sha256 ${FILE_ｭ
BEFORE_SIGN} ¦ base64`
$ echo "signature: ${SIGNATURE}"

http://docs.aws.amazon.com/Route53/latest/APIReference/Welcome.html

134 - Software Design

・実行結果（例）：

XXp5XlXXXXX9xXXiXqXorXrv8XXfumXwZXXXXbgXｭ
kXw=

　出力結果の文字列がこのリクエストにおける
署名（Signature）となります。

手順④認証ヘッダの追加

　署名の作成が完了したら、手順①で作成した
リクエストデータに、手順②③で作成した情報
をヘッダとして追加します。まず手順②で作成
した日付情報をDateヘッダとして追加します（3
行目）。

・Dateヘッダ情報作成（例）：

$ STR_DATE="Date: ${DATETIME}" && echo ｭ
${STR_DATE}

・Dateヘッダ情報（出力例）：

Date: Mon, 18 Aug 2014 03:49:25 GMT

　次に手順③で作成した署名文字列、AWSアカ
ウントのアクセスキーIDをX-Amzn-Authorization
ヘッダとして追加します（4行目）。

・X-Amzn-Authorizationヘッダ情報作成（例）：

$ STR_X="X-Amzn-Authorization: ｭ
AWS3-HTTPS AWSAccessKeyId=${aws_access_ｭ
key_id},Algorithm=${SIGNATURE_METHOD},ｭ
Signature=${SIGNATURE}" && echo ${STR_X}

・X-Amzn-Authorizationヘッダ情報（出力例）：

X-Amzn-Authorization: AWS3-HTTPS ｭ
AWSAccessKeyId=AKIXXXXXXXXX0EXAMPLE,ｭ
Algorithm=HmacSHA256,Signature=ｭ
XXp5XlXXXXX9xXXiXqXorXrv8XXfumXwZXXXXbgｭ
XkXw=

　上記の2つのヘッダを追加すると、リクエス
トデータは下記のような内容になります。

・リクエストデータ（サンプル）：

GET /2013-04-01/hostedzone HTTP/1.1
Host: route53.amazonaws.com
Date: Mon, 18 Aug 2014 03:49:25 GMT
X-Amzn-Authorization: AWS3-HTTPS ｭ
AWSAccessKeyId=AKIXXXXXXXXX0EXAMPLE,ｭ
Algorithm=HmacSHA256,Signature=XXp5Xlｭ
XXXXX9xXXiXqXorXrv8XXfumXwZXXXXbgXkXw=

?maxitems=5

手順⑤APIへの投入

　AWS APIへのリクエスト投入には、openssl
コマンドをHTTPS（SSL/TLS）クライアント
として利用します。

・入力コマンド：

$ openssl s_client -connect route53.ｭ
amazonaws.com:443

　コマンドを実行すると、次のように入力待ち
になります。

 ……（中略）……
Key-Arg : None
PSK identity: None
PSK identity hint: None
SRP username: None
Start Time: 1408332809
Timeout : 300 (sec)
Verify return code: 20 (unable to get ｭ
local issuer certificate)

　ここに、リクエストデータを貼り付けると、
すぐにAPIからレスポンスがあります（図2、
図3）。
　図2、図3ともに、1行目が 'HTTP/1.1 200
OK'となっていれば、AWS APIへのリクエス
トは正常に処理されています。
　図3の例ではRoute53上に、'example.jp'とい
うHosted Zoneが 1つだけあり、そのHosted
Zone IDは 'ZONXXXXXXXXXX'で、リソー
スレコードセットが3つある、ということが表
示されています注4。

注4） URL http://docs.aws.amazon.com/Route53/latest/
APIReference/requests-rest-authentication.html

http://docs.aws.amazon.com/Route53/latest/APIReference/requests-rest-authentication.html

134 - Software Design Oct. 2014 - 135

第7回　AWS APIでのデジタル署名の全体像を明らかにする①

JAWS-UGへのお誘い

　さて現在、日本におけるAWS利用者の増加
とともに、AWSに関連した勉強会やコミュニ
ティ活動が活発に行われています。
　なかでも、AWSの利用者が有志で運営して
いる JAWS-UG注5（Japan AWS User Group：
「ジョーズ・ユージー」と発音されることが多い
ようです）は、2014年8月現在で48支部を展開
しており、全国各地で活発にコミュニティ活動
を行っています。
　仙台、東京、大阪をはじめとした大都市では
活動の規模も大きく、数百人規模のイベントを
開催し、レベルの高い内容で参加者の満足度も
高いようです。
　2014年7月には、AWS CLIをターゲットと
した専門支部として、「JAWS-UG CLI専門支
部」が設立されました。活動範囲は東京に限ら
注5） URL http://jaws-ug.jp/

れていますが、2014年8月末現在で勉強会が3
回開催されています（筆者も主催者の1人です）。
　ネット上の記事やドキュメントももちろん有
用ですが、AWSを日々使っている人同士なら
ではの情報交換ができるのがリアルの場でのコ
ミュティ活動の醍醐味です。興味が少しでもあ
れば、まずは身近なJAWS-UG支部に参加し
てみてはどうでしょうか。

次回は

　次回は、今回解説したSignature Version 3
の署名付きリクエストデータを作成するシェ
ルスクリプトの紹介とSignature Version 2の
概要について解説する予定です。ﾟ

 ▼図2　Hosted Zoneが存在しない例

HTTP/1.1 200 OK
x-amzn-RequestId: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
Content-Type: text/xml
Content-Length: 197
Date: Mon, 18 Aug 2014 03:49:25 GMT

<?xml version="1.0"?>
<ListHostedZonesResponse xmlns="https://route53.amazonaws.com/doc/2013-04-01/">ｭ
<HostedZones/><IsTruncated>false</IsTruncated><MaxItems>100</MaxItems>ｭ
</ListHostedZonesResponse>

 ▼図3　Hosted Zoneが存在する例

HTTP/1.1 200 OK
x-amzn-RequestId: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
Content-Type: text/xml
Content-Length: 495
Date: Mon, 18 Aug 2014 03:49:25 GMT

<?xml version="1.0"?>
<ListHostedZonesResponse xmlns="https://route53.amazonaws.com/doc/2013-04-ｭ
01/"><HostedZones><HostedZone><Id>/hostedzone/ZONXXXXXXXXXX</Id><Name>example.jp.</Name>ｭ
<CallerReference>RISWorkflow-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</CallerReference><Config>ｭ
<Comment>HostedZone created by Route53 Registrar</Comment></Config><ResourceRecordSetCount>ｭ
3</ResourceRecordSetCount></HostedZone></HostedZones><IsTruncated>false</IsTruncated>ｭ
<MaxItems>100</MaxItems></ListHostedZonesResponse>

http://jaws-ug.jp/

136 - Software Design

bhyveにおける仮想シリアルポートの実装（その3） 第23回

　今回の記事では、引き続きbhyveにおける仮想シ
リアルポートの実装について解説します。

　UARTレジスタの読み込みについてソースコード
の解説を行います（リスト1）。

はじめに UARTエミュレーションのコード

ハイパーバイザの作り方
ちゃんと理解する仮想化技術

浅田 拓也（あさだ たくや）　Twitter @syuu1228

bhyveにおける
仮想シリアルポートの実装（その3）

第23回
Writer

uint8_t
uart_read(struct uart_softc *sc, int offset)
{
 uint8_t iir, intr_reason, reg;

 pthread_mutex_lock(&sc->mtx);

 /*
 * Take care of the special case DLAB accesses first
 */
 if ((sc->lcr & LCR_DLAB) != 0) {
 if (offset == REG_DLL) {
 reg = sc->dll;
 goto done;
 }

 if (offset == REG_DLH) {
 reg = sc->dlh;
 goto done;
 }
 }

 switch (offset) {
 case REG_DATA:
 reg = fifo_getchar(&sc->rxfifo);
 break;
 case REG_IER:
 reg = sc->ier;
 break;
 case REG_IIR:
 iir = (sc->fcr & FCR_ENABLE) ? IIR_FIFO_MASK : 0;

 intr_reason = uart_intr_reason(sc);

 /*

▼リスト1　uart_read

IIRレジスタの読み出し値として現在の割り込み要
因のステートをuart_intr_reasonで構築して返す

DATAレジスタの読み出し値としてfifo_getcharから1文字返す

IERレジスタの読み出し値としてsc->ierの値を返す

DLLレジスタ、DLMレジスタへのアクセスを検出
するためにLCRレジスタのDLABビットをチェック
している。uart_softc構造体のdllメンバ、dlm
メンバの値を読み出し値として返す

次ページへ

136 - Software Design Oct. 2014 - 137

bhyveにおける仮想シリアルポートの実装（その3） 第23回

　UARTへの書き込みの場合、DATAレジスタへの書
き込みをそのままttyへ出力しています。
　一方、UARTからの読み込みはもう少し複雑で、tty

への書き込みをイベントポーリングで監視して、書
き込まれた文字列をRX FIFOにバッファし、DATA
レジスタへの読み込み時にはFIFOから1文字取り出
しています（リスト2）。
　リスト3にttyreadのコードを、リスト4にfifo_
putcharのコードを示します。

ttyデバイスのポーリング

 * Deal with side effects of reading the IIR register
 */
 if (intr_reason == IIR_TXRDY)
 sc->thre_int_pending = false;

 iir ¦= intr_reason;

 reg = iir;
 break;
 case REG_LCR:
 reg = sc->lcr;
 break;
 case REG_MCR:
 reg = sc->mcr;
 break;
 case REG_LSR:
 /* Transmitter is always ready for more data */
 sc->lsr ¦= LSR_TEMT ¦ LSR_THRE;

 /* Check for new receive data */
 if (fifo_numchars(&sc->rxfifo) > 0)
 sc->lsr ¦= LSR_RXRDY;
 else
 sc->lsr &= ̃LSR_RXRDY;

 reg = sc->lsr;

 /* The LSR_OE bit is cleared on LSR read */
 sc->lsr &= ̃LSR_OE;
 break;
 case REG_MSR:
 /*
 * MSR delta bits are cleared on read
 */
 reg = sc->msr;
 sc->msr &= ̃MSR_DELTA_MASK;
 break;
 case REG_SCR:
 reg = sc->scr;
 break;
 default:
 reg = 0xFF;
 break;
 }

done:
 uart_toggle_intr(sc);
 pthread_mutex_unlock(&sc->mtx);

 return (reg);
}

更新されたUARTコントローラのステートを元に、
割り込みをアサートまたはアサート解除する

LCRレジスタの読み出し値としてsc->lcrの値を返す

MSRレジスタの読み出し値としてsc->msrの値を返す

fifo_numcharsを呼び出し、読み出し可能なデータ
があればsc->lsrにデータ着信ビットを立てる。ま
た、常にsc->lsrへ送信可能ビットを立てる。LSR
レジスタの読み出し値としてsc->lsrの値を返す

MCRレジスタの読み出し値としてsc->mcrの値を返す

SCRレジスタの読み出し値としてsc->scrの値を返す

（リスト1のつづき）

138 - Software Design

bhyveにおける仮想シリアルポートの実装（その3） 第23回ハイパーバイザの作り方
ちゃんと理解する仮想化技術

▼リスト2　uart_drain

▼リスト3　ttyread

static void
uart_drain(int fd, enum ev_type ev, void *arg)
{
 struct uart_softc *sc;
 int ch;

 sc = arg;

 assert(fd == sc->tty.fd);
 assert(ev == EVF_READ);

 /*
 * This routine is called in the context of the mevent thread
 * to take out the softc lock to protect against concurrent
 * access from a vCPU i/o exit
 */
 pthread_mutex_lock(&sc->mtx);

 if ((sc->mcr & MCR_LOOPBACK) != 0) {
 (void) ttyread(&sc->tty);
 } else {
 while (fifo_available(&sc->rxfifo) &&
 ((ch = ttyread(&sc->tty)) != -1)) {
 fifo_putchar(&sc->rxfifo, ch);
 }
 uart_toggle_intr(sc);　　
 }

 pthread_mutex_unlock(&sc->mtx);
}

static int
ttyread(struct ttyfd *tf)
{
 char rb;

 if (tty_char_available(tf)) {
 read(tf->fd, &rb, 1);
 return (rb & 0xff);
 } else {
 return (-1);
 }
}

static bool
tty_char_available(struct ttyfd *tf)
{
 fd_set rfds;
 struct timeval tv;

 FD_ZERO(&rfds);
 FD_SET(tf->fd, &rfds);
 tv.tv_sec = 0;
 tv.tv_usec = 0;
 if (select(tf->fd + 1, &rfds, NULL, NULL, &tv) > 0) {
 return (true);
 } else {
 return (false);
 }
}

FIFOに空きがあればttyreadで
ttyデバイスから1文字読み出す

fifo_availableを呼び出しFIFOに空きがあるかチェック

fifo_putcharで1文字FIFOにバッファRX割り込みをアサートする

selectで文字が届くまでブロック

tty_char_availableでttyに読み出し可能な文字があるかチェック

ttyより1文字読み出し

138 - Software Design Oct. 2014 - 139

bhyveにおける仮想シリアルポートの実装（その3） 第23回

▼リスト4　fifo_putchar

static int
fifo_putchar(struct fifo *fifo, uint8_t ch)
{

 if (fifo->num < fifo->size) {
 fifo->buf[fifo->windex] = ch;
 fifo->windex = (fifo->windex + 1) % fifo->size;
 fifo->num++;
 return (0);
 } else
 return (-1);
}

　今回まで3回に渡ってbhyveの仮想シリアルポート
を解説しました。次回は、BIOS・UEFIブートにつ
いて解説します。｢

まとめ

RX FIFOバッファに1文字書き込み

FIFOのインデックス値更新
使用済みバイト数を更新

2Dや3Dなどのコンピュータ画像処理を担うGPU（Graphic
Processing Unit）は性能向上が著しく、その処理能力を活かす
ためのソフトウェア開発が求められています。GPUはCPUと異なり
並列処理機能に秀でており、複雑な図形計算を高速処理できる
からです。
本書はGPUによる並列処理機能を軸に、nVIDIA社のCUDA
（Compute Unified Device Architecture）の利用方法と
OpenGLのプログラミング方法を基礎の基礎から解説します。

乾正知 著
B5変形判／352ページ
定価（本体3,200円＋税）
ISBN 978-4-7741-6304-8

・GPUの並列処理計算機能
・CUDA・OpenGLに興味がある技術者

140 - Software Design

本連載第10回「根深くはびこるDDoS攻撃の脅威」（本誌2014年4月号）の中で取り上げたDNSオープン
リゾルバを悪用したDDoS攻撃が、日本国内でも現実の脅威となってしまいました。今回はDNSオープ
ンリゾルバを使った新しいタイプのDDoS攻撃について取り上げます。

DNSサーバを狙った
DDoS攻撃

　今年に入って、日本国内のISP（Internet Service
Provider）のDNSサーバに対してDDoS攻撃が発生
し、ISPユーザがインターネット接続に支障をきた
す事例がいくつか発生しています注1。今はISPレ
ベルですが注2、潜在的にはもっと大きな脅威と
言ってかまわない問題です。今後、とくに注意深く
経過を見ていく必要があるでしょう。

DDoS攻撃とは何か

　すでに本連載でも過去に取り上げましたが注3、
おさらいとしてDDoSとは何かをもう一度確認しま
しょう。
　DoS（Denial of Service）攻撃とは、攻撃対象のシ
ステムが提供するサービスを不能にさせる攻撃で
す。今回の話題の範囲では、とくに攻撃対象に対し
てシステムの容量を越えるデータを与える、あるい
は要求することによってシステムを麻痺させるもの

を指しています。
　この条件では、攻撃側は相手のシステムを麻痺さ
せるのに十分な能力を持っている必要があります。
そこで、十分な攻撃資源を手に入れるために攻撃元
を複数に分散させるのが、DDoS（Distributed DoS）
攻撃です。
　たとえば、攻撃元が一般家庭のネットワーク回線
で、一方、攻撃先はデータセンターのような圧倒的
なキャパシティを確保している場合、攻撃をしかけ
たとしても、効果的な攻撃となるのは難しいでしょ
う。しかしながら、そのような環境で、かつ少数の
拠点からの攻撃であれば十分に耐えられるもので
あっても、攻撃元が分散し数が増えていけば、いつ
かは力関係は逆転し、耐えられなくなります。

DNSのしくみ

　DNSに対する攻撃について説明する前に、まず、
DNS（Domain Name Server）の役目を説明しましょ
う。DNSは簡単に言うと、ドメイン名とIPアドレ
スとを関連付ける一種の分散データベースです。

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第十四回】

すずきひろのぶ
suzuki.hironobu@gmail.com

注1）	 ・INTERNET Watch「ケイ・オプティコム、DDoS攻撃によるDNSサーバー障害が復旧したと発表」
 http://internet.watch.impress.co.jp/docs/news/20140707_656788.html
	 ・MY J:COM「DNSサーバの障害発生について」
 http://information.myjcom.jp/outage/99.html
	 ・YOMIURI ONLINE「初心者ハッカーも可能、ルーター攻撃多発」
 http://www.yomiuri.co.jp/it/20140801-OYT1T50196.html
注2）	 それでも単独ISPで200万世帯を上回る規模で影響が出ています。
注3）	 DoS/DDoS攻撃に関するより詳しい情報は、本連載第10回「根深くはびこるDDoS攻撃の脅威」（本誌2014年4月号）を参照ください。

現実の脅威となったDNSサーバへのDDoS攻撃

http://internet.watch.impress.co.jp/docs/news/20140707_656788.html
http://information.myjcom.jp/outage/99.html

Oct. 2014 - 141

DNSにドメイン名やホスト名を問い合わせると、
それに対応したIPアドレスを教えてくれます。
　DNSの機能は、インターネット（前身である
ARPANETも含む）が生まれた当初にはありません
でした。DNSのコンセプトを実装したBIND
（Berkeley Internet Name Domain）の誕生は1983年
です。DNSのRFCドキュメントであるRFC1034の
発行が1987年です。このようにDNSのしくみは
1980年代中期に作られたものです。
　ちなみに初期のころは、スタンフォード大学の関
連組織であるStanford Research Instituteが運用し
ていたサーバ上にHOST.TXTというファイルが
あって、そこにアドレスとホスト名の対応が書かれ
ており、そのファイルを各サイトの管理者が ftpで
ダウンロードするといった形で運用していました。
　DNSはクライアントからの問い合わせに対し、
まず自分が知っていれば応答を返します。自分が知
らなければ、上位のDNSに問い合わせます。最終
的には、権威ネームサーバ（Authoritative Name
Server）と呼ばれるDNSサーバに問い合わせます。
　世間では、「Authoritative Name Server」の訳語
を「権威ネームサーバ」としていますが、これは「信
頼できる（authoritative）ネームサーバ」と理解して
ください。なお、JPNICはAuthoritative Name
Serverを「権威DNSサーバ」と呼んでいるので、そ
れに従い、本稿でも権威DNSサーバと呼びます。
　では、ホスト名をDNSに問
い合わせてDNSの情報を確認
するdigコマンドを使って、nic.
ad.jpを確認してみます（図1）。
　筆者はUbuntuを使っていま
す。図1のdigも、その環境で
実行した結果です。また、筆者
のUbuntu上では、lwresdという
DNSのキャッシュサーバを動
かして、DNS応答の効率をあげ
ています。digは、まずローカル
の lwresdにnic.ad.jpを問い合
わせます。もしローカルの
キャッシュに情報がなければ、

上位のDNSに問い合わせなどをします。それでもな
ければ、最終的に権威DNSサーバに問い合わせま
す。
　nic.ad.jpは2つの権威DNSサーバを用意して多
重化しています。最初に問い合わせをしたDNS
サーバが何らかの理由で反応を示さなくても、（タ
イムアウトして）もう片方のDNSサーバに問い合わ
せる運用です。
　教科書的な説明としては、インターネット上の
DNSは、1つのDNSサーバで管理するのではなく、
このような分散化したデータベースとして振る舞う
特徴を持っています。どこかのDNSサーバが故障
しても、影響は極めて局所的な問題にとどまるか、
あるいはバックアップのDNSサーバがあるため影
響は軽微になります。

韓国の1.25大乱

　しかし、現実には運用に依存する部分が非常に大
きいと言えます。たとえば、複数のDNSサーバを
用意していても、同一のネットワークセグメントに
用意してあれば、そのネットワークセグメントへの
接続性が確保できなくなった瞬間にDNSが使えな
くなります。そのDNSに頼っているユーザは、実
質的にインターネットへのアクセスができない状態
になります。

【第十四回】 現実の脅威となったDNSサーバへのDDoS攻撃

% dig nic.ad.jp

; <<>> DiG 9.8.1-P1 <<>> nic.ad.jp
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53418
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:
;nic.ad.jp. IN A

;; ANSWER SECTION:
nic.ad.jp. 3600 IN A 192.41.192.129

;; AUTHORITY SECTION:
nic.ad.jp. 86400 IN NS ns3.nic.ad.jp.
nic.ad.jp. 86400 IN NS ns5.nic.ad.jp.
 （...省略 ...）

◆◆図1　digコマンドでDNSの情報を取得する

142 - Software Design

　2003年1月25日に韓国で発生した大規模イン
ターネット障害が、このケースにあたります注4。
これはSQL Slammerワームが大規模に発生し、そ
のために韓国全体のインターネットが麻痺したと理
解されています。もちろんSQL Slammerワームが
発生しなければこの障害は発生しませんでしたが、
本質的な問題は韓国のDNSの構成と運用が脆弱で
あったという部分です。
　この背景を理解するには、韓国の特殊事情を理解
する必要があります。当時の韓国では、DNSサーバ
はISPが一括して管理するというのが一般的でし
た。DNSは分散データベースであり、複数用意する
ことで性能の確保やリスク分散を行えるという利点
があります。しかし一方で、DNSサーバの数を絞れ
ば、設備コストや運用コストを下げることができま
す。
　なお、誤解がないように付け加えますが、筆者
は、これはトレードオフの関係にあるとは思いませ
ん。なぜならば、ネットワークは動かなければ、そ
もそもの意味をなさないからです。また、インター
ネットがまだ本格的に普及する前の実験的なネット
ワークの段階を経験していれば、「ネットワークと
いうものは、そんなに安定して動くものではない」
ということを、嫌というほど知っているはずです。
それゆえに、そのころを知っている者であれば、イ
ンターネットのシステムでは、多くの部分が多重化
を前提としているのが当たり前だと思っているはず
です注5。
　一方で、インターネットも安定してしまい、障害
が起こることは極めてまれな状況になってくると、
そのような多重化を必要とは考えず、むしろ重複投
資だと考えるようになるのも、そう不思議な論理で
はありません。韓国が極めて速いペースでインター
ネットの整備が進み、日本に比べていち早くイン
ターネット大国と呼ばれるようになったのはご存じ
のとおりですが、いい意味でも悪い意味でも、極め
て効率の良い設備投資をしたからです。

　韓国のISPは少数の大手が寡占しているのが特
徴です。国内ユーザの50％はKT（Korea Telecom）
1社で抱えているほどです。韓国内の多くの企業や
組織は、独自のDNSサーバを運用するようなこと
はせず、ISPのDNSサーバに依存するというのが一
般的でした。
　そして、ISPのDNSサーバはネットワーク的に多
重化されておらず、SQL Slammerの影響が現れる
ようなネットワークセグメントに設置されていまし
た。SQL Slammerによりそのネットワークセグメ
ントでサチュレーション（飽和）が発生してしまい、
ユーザがDNSサーバにアクセスできなくなった瞬
間、韓国全土のインターネットが麻痺した状態に
なったのです（コラム「多重性／多様性を持たない
DNS運用が招いた結果とは」参照）。

DNSオープンリゾルバ

　リゾルバ（resolver）とは、ホスト名からIPアド
レスを引いたり、IPアドレスからホスト名を引いた
りして名前解決をする機能、あるいは、その機能を
提供する機材を指します。オープンリゾルバとは、
誰でも問い合わせできるリゾルバのことです。具体
的には、どのクライアントからの問い合わせにも答
えるDNSサーバ（含むDNSキャッシュサーバ）など
です。
　古き良き時代には、オープンリゾルバの存在に関
して、とくに気にはしていなかったと記憶していま
す。DNSを引くコストのひとつひとつは小さいの
で、「外部から使いたいクライアント（利用者）がい
たら使ってもかまわない」くらいに考えていたと思
います。ですから古い機材でDNSキャッシュ機能
を提供しているものはデフォルトでオープンリゾル
バだったものが多数ありました。
　現実にも、DNSオープンリゾルバ問題が発生する
まで権威DNSサーバとキャッシュDNSサーバを区
別せず1つの外向けDNSサーバで運用しておくと

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注4）	『「セキュリティワーキンググループ」中間報告書（案）』2.4.3 韓国の取り組み
 http://www.soumu.go.jp/main_sosiki/joho_tsusin/policyreports/chousa/soft_kondan/pdf/030715_2_2c.pdf
注5）	 そうであってほしいという願望も含めて。

http://www.soumu.go.jp/main_sosiki/joho_tsusin/policyreports/chousa/soft_kondan/pdf/030715_2_2c.pdf

Oct. 2014 - 143

これまでのDNSオープン
リゾルバ問題

　これまでのDNSオープンリゾルバ問題とは、
オープンリゾルバとなっているDNSサーバに対し
てIPアドレスを偽装した問い合わせパケットを送
り、その応答トラフィックを偽装したIPアドレス
のもとに送りつけるというものでした。この問題は

いうのが当たり前のように行われていました注6。
　現在、GoogleがIPアドレス8.8.8.8、および
8.8.4.4でパブリックアクセスのDNSサーバを提供
する時代ですので、（GoogleのDNSサーバに比べ）
個々の小さなDNSキャッシュが外部のユーザに
サービスを提供する利点を見つけることは難しいで
しょう。少なくとも筆者は思い浮かびません。

【第十四回】 現実の脅威となったDNSサーバへのDDoS攻撃

注6）	 @IT「JANOG 31.5 Interim Meetingレポート　オープンリゾルバ問題、立ちふさがるはデフォルト設定？」
 http://www.atmarkit.co.jp/ait/articles/1305/09/news013.html

　韓国でのSQL Slammerの大規模感染が原因で、
韓国全土に及んだインターネットの混乱ですが、韓
国では発生月日を取って「1.25大乱」と呼ばれます。
　その後にまとめられた韓国官民合同調査団報告で
は、「国内にルートDNSがないために国内のDNSが
過負荷になった」と分析しています。しかし、これは
理解が誤っています。正しくは、「本来のインター
ネットが持つ多重性を無視したDNS運用が招いた結
果である」と理解すべきです。
　本来のDNSサーバ運用のようにDNSサーバが分
散している環境であれば、運悪くいくつかのDNS
サーバがダウンし、局所的な問題が発生したとして
も、全体でみれば生き残ったDNSサーバが存在して
います。パフォーマンスは低くなるとはいえ、国家レ
ベルでインターネットがダウンしてしまうような最悪
の状況は回避できていたでしょう。
　筆者にとって印象深いのは、かつて韓国のネット
ワーク関係者と議論したときの記憶です。筆者は韓
国の技術者から「日本では何台のDNSサーバが運用
されているのか」という質問を受けました。
　日本の場合、ある程度大きな規模の企業や大学で
は、独自にDNSサーバを用意して自サイトのユーザ
に提供しているのが一般的です。筆者は、「数千から
数万の範囲だろうが、日本全体でどれだけのDNS
サーバが運用されているかはわからない」と答えまし
た。韓国の技術者は、訝

いぶか

しげな顔をして「DNSサー
バの数を尋ねているのだ」と再度質問するのですが、
やはり同じように答えるしかなく、結局、話が通じま
せんでした。
　後々に、韓国から詳細な報告書が出てきてはじめ

て、なぜ話が通じなかったのかが理解できました。
当時の韓国内の運用では、DNSサーバはISP単位で
設置するものであり、そんな何千台も国内に存在す
るようなものではなかったのです。1.25大乱は当時の
韓国国内の脆弱なネットワーク運用という特殊な事
情が招いた結果です。ほかの国でもSQL Slammerが
発生したのに、国全体が麻痺するような大規模な問
題に発展しなかったのはこのためです。
　日本のインターネットの歴史は、国内にISPなどが
存在しないときから始まっています。当時はデータを
通す専用線だけが存在していて、その上のインター
ネットで必要なサービス類は、個々のユーザやある
いは研究グループ組織が手弁当で運用するといった
形で発展してきました。初期のインターネット（と、
今日呼ばれるもの）は、機材やソフトウェアも不安定
で、そのためにいろいろな工夫や運用能力を磨いて
いかざるを得ませんでした。当時を思い出しても、
ネットワークの調子が悪く、1日電子メールが届かな
くても、「まあよくあること」くらいの感覚でした。
　そんな感じで、日本のインターネットはゼロからの
手作りであるわけです。その流れがあるため、これ
まで日本では、インターネットが本来持つ多重化や
分散のコンセプトが浸透しており、障害が発生して
も局所化して閉じる傾向がありました。
　しかし、これは古き良き時代のインターネットの名
残であって、今後の耐障害性を保証するものではあり
ません。日本の環境においても、日々発生する新しい
問題を解決しながら、より安全でより強固なインター
ネットのインフラを構築する努力を怠らないようにし
ないといけないのは、言うまでもありません。

◉多重性／多様性を持たないDNS運用が
　招いた結果とは

http://www.atmarkit.co.jp/ait/articles/1305/09/news013.html

144 - Software Design

2006年当時から現在まで継続して問題になってい
ます注7。
　再帰的な問い合わせを行った場合は、応答トラ
フィック量は問い合わせトラフィック量の40～90
倍注8の量に増幅されるというものです。
　これは現状でも十分に脅威であり、また実際に
DDoS攻撃に使われ続けています。2006年から7年
もの月日がたった2013年4月にも、JPCERT/CCは
「DNSの再帰的な問い合わせを使ったDDoS攻撃に
関する注意喚起」を出しています注9。

DNSオープンリゾルバ
による新しい脅威

　最近、オープンリゾルバによる新しい脅威が出て
きました。しくみの全般を指してオープンリゾルバ・
フォワーダーという言い方がされますが、これから
説明する攻撃には、まだ特定の名称はついていない
ようです。筆者は「ランダムホスト名攻撃」と呼んで
いますが、あくまでも仮名称として扱ってください。
　この攻撃はDNSオープンリゾルバを使うDDoS攻
撃の一種ですが、権威DNSサー
バに対して集中して効果的に攻
撃するのが特徴です。
　ステップごとに説明しましょ
う。ドメインexample.comに属
するホストにアクセスさせない
ことを目的とした攻撃シナリオ
を例にします。また、既存の
DNSオープンリゾルバを使う
DDoS攻撃と同じ攻撃プラット
フォームが存在していることを
前提とします。

攻撃のシナリオ
●● Step1：DNSオープンリゾルバに対して、exam●

ple.comドメインに存在しないホスト名を問い合

わせる（図2）
●● Step2：DNSオープンリゾルバは知らないホスト

名なので、（ISPのDNSを経由する形で）exam●

ple.comの権威DNSサーバに問い合わせを行う
●● Step3：example.comの権威DNSサーバは存在

しないホスト名であるとDNSオープンリゾルバ

に応答する

　詳しく見ていきましょう。たとえば、xedheu12e43x.
example.comといった具合に、問い合わせるホスト
名はでたらめにします。ホスト名のパターンを英数
字12文字の組み合わせで作ると、78京パターンを
越えるので事実上無制限です。どんどんホスト名を
変化させてDNSオープンリゾルバにホスト名の問
い合わせを送ります。
　DNSオープンリゾルバは、具体的にはDNSキャッ
シュサーバ相当の機能を持った家庭／SOHO向けブ

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注7）	・警察庁「DNSの再帰的な問い合わせを悪用したDDoS攻撃手法の検証について」
 http://www.cyberpolice.go.jp/detect/pdf/20060711_DNS-DDoS.pdf
	 ・JPCERT/CC「DNSの再帰的な問合せを使ったDDoS攻撃に関する注意喚起」
 http://www.jpcert.or.jp/at/2006/at060004.txt
	 ・㈱日本レジストリサービス「DNSの再帰的な問合せを使ったDDoS攻撃の対策について」
 http://jprs.jp/tech/notice/2006-03-29-dns-cache-server.html
注8）	 40倍というのは、注7の警察庁調べ。90倍というのは、注6のJANOG 31.5 Interim Meetingレポートでの発言。
注9）	・JPCERT/CC「DNSの再帰的な問い合わせを使ったDDoS攻撃に関する注意喚起」
 https://www.jpcert.or.jp/at/2013/at130022.html

◆◆図2　DNSオープンリゾルバにホスト名を大量に問い合わせる

Rxa38xc3xc32.example.com

Rxr38xcxxc32.example.com

Rxr3txc3xc32.example.com

Rxr38xc3xc3e.example.com

Rxr38xc3xcz2.example.com

DNSオープンリゾルバ DNSサーバ
（ISPなど）

権威
DNSサーバ

被害者攻撃者

この問い合わせの流れは、流れだけみると正当な問い合わせと区別がつかない

http://www.cyberpolice.go.jp/detect/pdf/20060711_DNS-DDoS.pdf
http://www.jpcert.or.jp/at/2006/at060004.txt
http://jprs.jp/tech/notice/2006-03-29-dns-cache-server.html
https://www.jpcert.or.jp/at/2013/at130022.html

Oct. 2014 - 145

ロードバンドルータが中心です。攻撃側は、ホスト
名が重複しないようにするので、当然ながらキャッ
シュ中にはそのホスト名DNS情報は存在せず、権威
DNSサーバに対して問い合わせが発生します。
　権威DNSサーバは、存在しないホスト名の問い
合わせに対して応答を返します。多数のDNSオー
プンリゾルバに対して大量の問い合わせを行うこと
によって、権威DNSサーバは応答するために大量
の計算資源が必要となり、DDoS攻撃を受けた状態
になります。また、中継で使われたISPのDNSに
負荷がかかりダウンするようなことが発生すると、
本来は攻撃対象ではなかったISPと、そのユーザ
にも被害が及びます。
　このDDoS攻撃の最大の特徴は、どの攻撃の段階
でもDNSへの問い合わせに使うパケットのIPアド
レスを偽造する必要がないことです。つまり、すべ
ては正常な動作ですので、アウトバンド方向の IP
パケットの送信元アドレスをチェックし、偽造した
IPアドレスをフィルタリングするBCP38のような
対策は現状では役に立ちません。
　攻撃対象となっている権威DNSサーバ側からみ
ると、ISPの正式なDNSサーバから大量に問い合わ
せが来ているように見えます。もし、このトラ
フィックを遮断すると、正式なホスト名の問い合わ
せが来ても応答しない、つまり、自らのサイトがク
ライアントから見えなくなる、ということになりま
す。当然、この対応は取れません。
　さらに、この攻撃をマルウェア感染型DDoS攻撃
と組み合わせて、マルウェアに感染した大量のPC
から攻撃を開始されると、簡単には手に負えないこ
とになるでしょう。しかも、ピンポイントにDNS
サーバに攻撃できるので、ネットワークの帯域を飽
和させる攻撃よりもはるかに少ない攻撃資源で効果
的に影響を与えられるはずです。
　警察庁は2014年7月23日づけで、この攻撃が国
内で発生していることを警告しています注10。また、

DNSキャッシュサーバの機能をオープンリゾルバ
にしたまま出荷している大量のブロードバンドルー
タによって発生している可能性も示唆しています。

現状での対策

　今のところ、被害者側が積極的に取れる防御方法
は、権威DNSサーバの処理能力を増やすことぐら
いです。1台あたりの権威DNSサーバの能力を上げ
たうえで、攻撃に耐えられるまでDNSサーバを多
重化する。つまり、提供するDNSサーバの数を確
保することです。
　自分でDNSサーバ群を構築し運用するノウハウ
がなければ、たとえばAkamai社のFast DNSのサー
ビスなどを使うという選択肢があるでしょう。しか
し、これまでプライマリDNSとセカンダリDNSの2
台で運用する程度で十分だったものが、大規模な
DDoS攻撃に耐え得るほど多重化するようになれば、
設備コスト、運用コストも膨らむという問題が発生
します。その対策費はバカにならないはずです。

◆　◆　◆
　筆者が強く感じているのは、2006年から問題視さ
れていたDNSオープンリゾルバが、現在もまだ日
本国内に大量に残っているという部分です。デフォ
ルトでDNSオープンリゾルバが設定されて出荷さ
れた古いブロードバンドルータも寿命がつき、年々
少なくなっていく傾向にはあるのですが、それでも
いまだに本質的な脅威として懸念するレベルでネッ
トワーク上に散らばっています。
　国内のネットワーク上に残るたくさんのDNS
オープンリゾルバをなくしていくことが、遠回りの
ようで近道ではないかと考えています。
　今後、日本のインターネットのセキュリティに関
係する組織や関係者、運用している組織や関係者を
巻き込んで、より実効性の高い対策を考えいく必要
があります。s

【第十四回】 現実の脅威となったDNSサーバへのDDoS攻撃

注10）・ITPro「DNSサーバーを狙ったDDoS攻撃、オープンリゾルバーを踏み台に」
 http://itpro.nikkeibp.co.jp/atcl/news/14/072500214/
	 ・@police「日本国内のオープン・リゾルバを踏み台としたDDoS攻撃発生に起因すると考えられるパケットの増加について」
 www.npa.go.jp/cyberpolice/detect/pdf/20140723.pdf

http://itpro.nikkeibp.co.jp/atcl/news/14/072500214/
www.npa.go.jp/cyberpolice/detect/pdf/20140723.pdf

146 - Software Design

Androidでも
クラウドを

　Androidが日本の市場に登場して、5年が経過
しようとしています。市民権を得たAndroidは
世界中のユーザに利用されています。国内で言
うと2年縛りの契約から、そろそろ2～3回目の
機種変にぶつかっているユーザが出てきている
ころです。
　ユーザにとって面倒なのは、これまで使って
いた端末の情報（データ）を移行する行為です。
必要なアプリをインストールしたタイミングで、
前の機種で使っていた情報が移ったほうが嬉し
い場面があるでしょう。また、現在使っている
端末内の情報を、PCなど別の端末から見たい
といった要望もよくあるものです。
　Androidの機能単体ではなかなか難しい上記
の問題も、クラウドにつなぐことで解消するこ
とが可能です。昨今、さまざまなクラウドサー
ビスが出てきています。今回はその中でも、と
くに人気のあるDropboxへのアクセス手法を身
につけましょう。

Dropboxが提供する
SDK

　Dropboxでは、Dropbox Developersという開
発者向けのサイトを通じて、Dropboxにアクセ
スするためのSDKを提供しています。

⿠⿠Dropbox Developers
https://www.dropbox.com/developers

　提供されている機能には、簡易アクセスを行
うDrop-insや、同期を行うSync APIなどが提
供されています。Dropbox SDKを利用するに
は、App key（アプリを認証するのに必要な鍵）
の取得を事前に実施する必要があるので、まず
はそこから解説しましょう。

DropboxのApp keyを
取得しよう

　DropboxのApp keyは、App Consoleのサイ
トを通じて取得します。

⿠⿠App Console
�https://www.dropbox.com/developers/apps

　App Consoleのサイトの右上にある「Create
app」から新しいアプリケーションの登録を行う
ことができます。アプリの登録時には、「Drop-
insアプリ」なのか、「Dropbox APIアプリ」なの
かを聞かれます注1。この後解説を行うサンプル
アプリ「DropboxPreview」では、Drop-insの
Chooserという機能を実装しているので、
「Drop-insアプリ」で登録します。もう1つのサ
ンプル「TextSaver」はSync APIを使うので、

注1） 執筆時点（2014年8月10日）では、Drop-ins用のAndroid
向けのSDKは「Chooser」しか提供されていません。「Saver」
については“Coming soon”と記載されていることから、今
後提供を予定しているのでしょう。

G o o g l e A n d r o i d

重村 浩二　SHIGEMURA Koji
日本Androidの会 中国支部長

 Mail k-shigemura@android-group.jp

モバイルデバイス初のオープンソースプラットフォームとして、エ
ンジニアから高い関心を集めるGoogle Android。いち早くそのノ
ウハウを蓄積したAndroidエンジニアたちが展開するテクニックや
情報を参考にして、大きく開かれたAndroidの世界へふみだそう！

Dropbox連携
アプリを作るには

第51回Android
エンジニアから

の

招待状

https://www.dropbox.com/developers
https://www.dropbox.com/developers/apps

146 - Software Design Oct. 2014 - 147

Dropbox連携アプリを作るには 第51回

（Android Studioで利用する場合も、プロジェ
クトをインポートすれば使えます）。Dropbox
ChooserSDKをEclipseにインポートし、新
規に作ったプロジェクトのプロパティから
［Android］－［Library］に、DropboxChooser
SDKを追加することでアプリの開発を行うこと
が可能です。

ファイル選択画面の呼び出しと
結果の取得

　Dropbox上のファイル選択には、リスト1に
あるように、DbxChooserというクラスのイン
スタンスを生成し、launchメソッドでファイル
選択画面を呼び出す必要があります。
　ファイル選択画面の呼び出しには、Dbx
Chooserのインスタンス生成時に引数として、
App Consoleで取得したApp keyを指定する必
要があります。App keyはリスト2にあるよう
に、クラス内のプライベートな定数として定義
すると使いやすいでしょう。launchメソッドの
第2引数で指定しているリクエストコードは、
ファイル選択画面の結果を受け取るためのリク
エストコードとなります。

「Dropbox APIアプリ」での登録が必要です。こ
のように作成するアプリに応じて使い分けます。
登録を行うと取得できるApp key、App secret

（ChooserではApp keyのみ）が、Dropboxにア
クセスするために必要となります。

DropboxPreview
アプリの開発

　それでは、Dropbox上に保存したファイルを
取得するというシンプルな機能を提供する、
Drop-insのChooserから見ていきましょう。
　Dropbox上のファイル操作を行うサンプルア
プリとして、「DropboxPreview」を用意しまし
た。このアプリは画面中央のボタンをクリック
すると現れるファイル選択画面から、選択した
Dropbox上のファイルをプレビューで表示する
機能を有しています。

開発前の事前準備

　Chooserを利用するには、次のサイトから
SDKをダウンロードする必要があります。

⿠⿠Using the Chooser
https://www.dropbox.com/developers/
dropins/chooser/android

　zipファイルの中にはDropboxChooserSDK
のライブラリプロジェクトとサンプルアプリが、
Eclipseのプロジェクトとして用意されています

 ▼リスト1　ファイル選択画面の呼び出し

public void onButtonClick(View v) {
 new DbxChooser(APP_KEY)
 // プレビュー表示するリクエストタイプの設定
 .forResultType(ResultType.PREVIEW_LINK)
 // Chooserの呼び出し
 .launch(this, DBX_REQUEST_CODE);
}

 ▼リスト2　App keyの定義とファイル選択画面呼び出し時のリクエストコード定義

// APIキーの設定 ↓ App Consoleで取得したApp keyを指定してください
private static final String APP_KEY = "XXXXXXXXXXXXXXXXXXXXXXXXXXX";
// Dropboxのファイル選択画面呼び出しを行うときのリクエストコード
private static final int DBX_REQUEST_CODE = 100;

Column

アプリ開発時は実機の用意を
　Dropboxと連携したアプリを作る際の注意点と
して、アプリの実装はエミュレータではできない
点に注意しましょう。DropboxのAndroidアプリ
がインストールされている端末である必要がある
ためです（インストールされていない場合は、
Google Playストアからインストールするように促
されます）。通常のやり方ではエミュレータに
Dropboxをインストールできないので、実機を用
意して開発するようにしましょう。

https://www.dropbox.com/developers/dropins/chooser/android

148 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

　Dropbox上のファイルをプレビュー表示した
い場合には、forResultTypeメソッドにPRE
VIEW_LINKを指定します。PREVIEW_LINK
の指定により、Chooserからはプレビュー表示
のためのURIが返されます。これ以外にも、
DIRECT_LINK（ファイルに直接アクセスする
URI）とFILE_CONTENT（ローカル上でアクセ
スするURI）が用意されています。
　ファイル選択画面の処理結果は、onActivity
Resultメソッドに返却されます（リスト3）。
　ファイル選択画面のリクエストに対する結果
を処理するために、リスト2で定義した定数で
チェックし、resultCodeでファイルが選択され
た（RESULT_OK）かどうかのチェックを事前に
実施しています。複数のActivityを呼び出し、
結果を受け取るアプリに改修していくこともあ
るでしょうから、リクエストコードは必ずチェッ
クするようにしておきましょう。
　プレビューのURIを取得するには、Dbx
Chooser#ResultメソッドにonActivityResultで
渡されてきた Intent（第3引数：data）を渡し、
getLinkメソッドを呼び出すことで実装できま
す。サンプルでは、取得したURIを元にstart
Activityメソッドを呼び出して、プレビュー表
示を行っています。

Chooser利用時の注意点

　簡単に利用できるChooserですが、Android
Support Libraryのバージョン違いに注意しま
しょう。DropboxChooserSDKと新しいプロ
ジェクトのAndroid Support Library間でバー
ジョン違い（差分）となると、コンフリクトが発
生してしまいます。この現象が発生した場合に
は、DropboxChooserSDKの libsディレクトリ
に、新しいプロジェクトからandroid-support-
v4.jarを上書きすることで対処してください。

TextSaverアプリの
開発

　Chooserを用いてシンプルなDropboxからの
ファイル取得方法を学んだ次は、Dropbox上に
アプリのデータを保存する方法を学びましょう。
サンプルとして、「TextSaver」というアプリを
用意しました。「保存！」ボタンをクリックする
ことで、テキスト入力欄に入力したテキストを
Dropbox上に保存するアプリとなります。

開発前の事前準備

　TextSaverの開発でも、Chooserと同様に開
発前の事前準備が必要です。Sync APIを利用
するために、次のサイトからSDKをダウンロー
ドしましょう。

 ▼リスト3　ファイル選択画面の処理結果

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 // リクエストコードのチェック
 if (requestCode == DBX_REQUEST_CODE) {
 // resultCodeがRESULT_OKの（ファイルが選択された）場合に処理実施
 if (resultCode == Activity.RESULT_OK) {
 // プレビューのURIを取得
 Uri uri = new DbxChooser.Result(data).getLink();

 // 指定のURIを呼び出し
 Intent startIntent = new Intent(Intent.ACTION_VIEW, uri);
 startActivity(startIntent);
 }
 } else {
 super.onActivityResult(requestCode, resultCode, data);
 }
}

http://www.android-group.jp/

148 - Software Design Oct. 2014 - 149

Dropbox連携アプリを作るには 第51回

⿠⿠Sync API SDKs
https://www.dropbox.com/developers/sync/
sdks/android

　zipファイルの中にはライブラリとドキュメン
トなどが格納されています。ChooserのSDKは
ライブラリプロジェクトとして提供されていま
すが、Sync APIを利用する場合はSDKに含ま
れる libsディレクトリの中身を、新規作成した
プロジェクトの libsディレクトリ内にコピーす
る必要があります。

AndroidManifestの追記

　コピーが完了したら、続いてAndroidManifest
.xmlへの追記を行いましょう。Dropbox APIで
は「INTERNET」「ACCESS_NETWORK_
STATE」のパーミッション利用を許可する必要

があります（リスト4）。
　あわせて、Dropboxへの認証を得るためのア
クティビティを呼び出す定義を<application>タ
グ内に追加する必要があります（リスト5）。こ
のとき、AuthActivityの Intentフィルタに対し
て設定するandroid:schemeには、"db-"＋ "App
Consoleで取得したApp key"を指定するように
してください。

Dropboxへの接続

　AndroidManifest.xmlへの定義が終わったら、
いよいよDropboxに接続しましょう（誌面の都
合上、画面の実装などについては割愛します）。
Dropboxへの接続は、onCreateメソッド内にリ

スト6にあるような実装を追加します。
　DbxAccountManager#getInstanceメソッドで
インスタンスを取得します。getInstanceメソッ

 ▼リスト4　パーミッションの追加

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 ▼リスト5　Dropbox認証用アクティビティの定義

<activity android:name="com.dropbox.sync.android.DbxAuthActivity" />
<activity
 android:name="com.dropbox.client2.android.AuthActivity"
 android:launchMode="singleTask" >
 <intent-filter> ↓ App Consoleで取得したApp keyを指定
 <data android:scheme="db-XXXXXXXXXXXXXXXXXXXXXXXXXXX" />
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.BROWSABLE" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>
<service
 android:name="com.dropbox.sync.android.DbxSyncService"
 android:enabled="true"
 android:exported="false"
 android:label="Dropbox Sync" />

 ▼リスト6　Dropboxへの接続処理

// Dropboxに接続
mAccountMgr = DbxAccountManager.getInstance(getApplicationContext(),
 APP_KEY, APP_SECRET);
// アカウントにアプリが接続しているかチェック
if (!mAccountMgr.hasLinkedAccount()) {
 // アプリの接続開始
 mAccountMgr.startLink((Activity)this, REQUEST_DROPBOX);
}

https://www.dropbox.com/developers/sync/sdks/android

150 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

ドの第2、第3引数に渡す引数が、App console
で取得したApp keyとApp secretとなります。
その後、hasLinkedAccountメソッドですでに
Dropboxに接続しているかどうかをチェックし、
接続されていなければDbxAccountManager
#startLinkメソッドで接続を行います。
　接続の結果はChooserの流れと同様に、
onActivityResultメソッドに返ってきますので、
そちらで結果を見て、必要な処理を行ってくだ
さい（サンプルではrequestCodeをチェックし、
Dropbox接続の成否をトーストで表示していま
す）。

Dropbox上への
ファイル書き込み処理

　Dropboxに接続できたので、ファイルの保存
を見ていきましょう。Dropboxへのファイル保
存はリスト7にあるように、DbxFileSystemの
インスタンスをDbxFileSystem#forAccountメ
ソッドで取得することから始まります。
　取得できたら、Dropbox上のファイルへのパ

スを示すDbxPathのインスタンスを元にファイ
ルが存在するかしないかをexistsメソッドで
チェックし、存在しなければcreateメソッドで
ファイル生成を、存在する場合はopenメソッド
でファイルを開く処理を行います。
　ファイルへの書き込み処理はwriteStringメソッ
ドを使い、書き込み終了後はfinally句の中でclose
メソッドを呼び出して書き込み処理を終了してい
ます。書き込んだデータは、"ROOT:/アプリ/プ
ロジェクト名 /ファイル名 "に保存されます。

Dropbox上の
ファイル読み込み処理

　Dropbox上のファイル読み込みも、ほとんど
書き込み処理と同じ流れになります（リスト8）。
writeStringメソッドの代わりに、readStringメ
ソッドでテキストを取得します。
　読み込み時の処理で、DbxFileSystemのイン
スタンス取得直後の処理に注目してください。
awaitFirstSyncメソッドは、アプリとDropbox
が初回接続時の同期処理を待つためのメソッド

 ▼リスト7　ファイルの書き込み処理

public void onSaveEvent(View v) {
 DbxPath filePath = new DbxPath(DbxPath.ROOT, DROPBOX_FILENAME);

 try {
 // Dropboxの同期したファイルシステムを生成
 DbxFileSystem dbxFs = DbxFileSystem.forAccount(mAccountMgr.getLinkedAccount());

 // DROPBOX_FILENAMEのファイル存在チェック
 DbxFile dbxFile = null;
 EditText editSaveText = (EditText) findViewById(R.id.editSaveText);
 if (!dbxFs.exists(filePath)) {
 // 存在しない場合、ファイルを生成
 dbxFile = dbxFs.create(filePath);
 } else {
 // 存在した場合、ファイルを開く
 dbxFile = dbxFs.open(filePath);
 }
 try {
 // テキストの保存
 dbxFile.writeString(editSaveText.getText().toString());
 Toast.makeText(this, "テキストを保存しました", Toast.LENGTH_SHORT).show();
 } finally {
 dbxFile.close();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
}

http://www.android-group.jp/

150 - Software Design Oct. 2014 - 151

Dropbox連携アプリを作るには 第51回

です。どのようなケースで必要になるかという
と、アプリを入れてDropbox上にファイルが生
成された後、アプリの削除→再インストールす
るというようなケースで、アプリとDropboxの
初回接続直後にこのメソッドを呼び出していな
いと、すでに存在するファイルからのテキスト
読み込みが画面に反映されないといった動きに
なってしまいます。ぜひ用意したサンプル注2で、
awaitFirstSyncメソッドの呼び出しをコメント
アウトし、動きを確認してみてください。

注2） 今回用意したサンプルプロジェクトは、本誌Webサイトの
サポートページで公開中です。http://gihyo.jp/magazine/
SD/archive/2014/201410/support

まとめ

　早足でしたが、Dropboxからファイルを取得
する方法と、Dropboxにアプリ上のデータを保
存し、読み込む方法を見てきました。今回は取
り上げませんでしたが、Dropbox APIではSync
API以外にも、Datastore APIなどが提供され
ています。
　アプリの情報をクラウドに出すことはセキュ
リティを考えると一長一短の面はあると思いま
すが、より大勢のユーザがより良い利便性を享
受できるようにするためにも、選択肢の1つと
して活用を検討してみてください。｢

重村 浩二 （しげむら こうじ）　日本Androidの会 運営委員 中国支部長

日本Androidの会にて運営委員、中国支部長として毎月山口県・広島県を中心に自作アプリの発表やハッカソン、ハンズオ
ンなどを中心とした勉強会を開催。主な著書に『Android SDKポケットリファレンス』（技術評論社刊）など。
 URL  http://buildbox.net/ Twitter @shige0501

 ▼リスト8　ファイルの読み込み処理

public void readSaveText() {
 DbxPath filePath = new DbxPath(DbxPath.ROOT, DROPBOX_FILENAME);

 try {
 // Dropboxの同期したファイルシステムを生成
 DbxFileSystem dbxFs = DbxFileSystem.forAccount(mAccountMgr.getLinkedAccount());

 // 最初の同期を待つ
 dbxFs.awaitFirstSync();

 // DROPBOX_FILENAMEのファイル存在チェック
 DbxFile dbxFile = null;
 EditText editSaveText = (EditText) findViewById(R.id.editSaveText);
 if (dbxFs.exists(filePath)) {
 // ファイルが存在した場合、テキストを読み込む
 dbxFile = dbxFs.open(filePath);
 try {
 editSaveText.setText(dbxFile.readString());
 } finally {
 dbxFile.close();
 }
 }
 } catch (DbxException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
}

http://gihyo.jp/magazine/SD/archive/2014/201410/support
http://buildbox.net/

152 - Software Design

Satelliteの歴史

　Red Hat Satellite 6のβ版が2014年7月1日に
リリースされました。GA注1まではまだ少し時間
がかかりますが、今回はこのβ版をベースに技術
的な側面からSatelliteを紹介します。なお、旧来
Red Hat Network Satellite Serverが製品呼称で
したが、現在はRed Hat Satelliteに名称が変更
されているため、以降、Satelliteと記述します。
　Red Hatは2000年にRed Hat Network（以降、
RHN）の提供を開始しました。Red Hat Linux 6
（以降、RHL。RHELではありません！）には企
業向けのサポートを提供するRHL 6.2Eという
バージョンがあり、このころにはインターネッ
トを経由したパッケージの配布やバージョン管
理システムの必要性が強く認識され始めていま
した。一方でインターネット接続回線の帯域は
まだまだ貧弱注2だったため、翌2001年には
RPMパッケージをキャッシュして配布するため
のRHN Proxy Serverが提供されました。さら
に一部顧客からの強い要望注3により、RHNをス

タンドアローンとして実現するSatelliteが翌
2002年に提供開始されました。ここに至り現在
のSatelliteの原型がほぼ整ったと言えます。
　2004年に提供開始されたSatellite 3.2では、
プロビジョニングモジュールと呼ばれる機能が
追加されました。ソフトウェアリポジトリだけ
でなく、個々のシステムにRHELをインストー
ルし設定を配布できるようになりました。
　2007年の2月に提供が開始されたSatellite
4.2は管理対象システムとしてRHEL 5をサポー
トし、以降、2010年10月リリースのSatellite
5.4がRHEL 6を、2013年 10月リリースの
Satellite 5.6がRHEL 7をサポートしています。
　企業向けのサポートバージョンであるRHEL
と同時期に提供が開始され歴史が長いSatellite
ですが、日本国内ではバージョン4.xになるま
で一般に販売していなかったため、あまり知名
度が高いとは言えません。しかし、その出自か
らもわかるように、米国を中心に多数のRHL/
RHELサーバを管理する顧客のシステムでは
非常に採用率が高く、管理対象のサーバが数万
台を超える事例や、ニューヨーク証券取引所の

第 6 回 Red Hat Satellite 6で多数のサーバを一元管理

注1） General Availability、一般向けに提供されるバージョン。正式版とも言う。
注2） 国内では2001年頃からADSL（Asymmetric Digital Subscriber Line：非対称デジタル加入者線）が普及し始め、2001年は「ブ

ロードバンド元年」と呼ばれる。当初1.5Mbps程度の帯域だったが、それまでの INS64/128の64Kbps/128Kbpsと比較する
とかなり高速だった。

注3） 要するに「RHNをうちのデータセンタに置きたいから、持ってきて」だった（らしい）。

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

Red Hat Satelliteは十数台以上から数万台規模のシステムを一元管理するためのソ
リューションです。ソフトウェアリポジトリだけではなくさまざまな機能を提供します。
今回はSatelliteの基本を紹介します。

レッドハット（株）グローバルサービス本部プラットフォームソリューション統括部
ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）

152 - Software Design Oct. 2014 - 153

第 6 回Red Hat Satellite 6で多数のサーバを一元管理

ようなミッションクリティカルなシステムでも
採用されています。

完全に書き直された
Satellite 6

　歴史が長い一方で、Satelliteも当初の設計では
現在のコンピューティングに対応しきれない、あ
るいは実装を整理する必要が出てきたのも事実で
す。2008年の6月にSpacewalkというプロジェク
トでオープンソース化注4され、バックエンドのデー
タベースをエンベディッド用のOracle DBから
PostgreSQLにスイッチしたり、SELinuxに対応
したりといった努力は続けられてきましたが、仮
想化やクラウドコンピューティング全盛の時代に
はやはり取り残されている感が否めませんでした。
　そこでSatellite 6では全面的に再設計・再実
装が行われ、最新の技術トレンドを採用しつつ、

古いバージョンのRHELも管理対象とするこ
とが可能な製品として生まれ変わりました。

Satellite 6の実装

　従来のSatelliteはクローズドソースであった
ため、内包する個別の機能にモジュールという
名称が付いていたものの、Satellite全体が1つ
のプロジェクトとしてオープンソース化されまし
た。Satellite 6は当初からオープンソースのプロ
ジェクトを組み合わせることで実装されており、
大まかには図1のような構成になっています。
　Satellite 6の核となっているのはForeman注5

です。Foremanは管理対象が物理・仮想マシ
ンのいずれかを問わず、プロビジョニング、設
定、モニタリングを可能とします。Foreman
はPuppet注6やChef注7を利用できますが、

 ▼図1　Satellite 6の構成要素

Red Hat Content
Delivery Network

Red Hat
Satellite 6 Server

Red Hat
Satellite
Capsule
Server

Integrated Capsule

RPMs

Puppet Master

Puppet Modules

Red Hat
Satellite
Capsule
Server

RPMs

Puppet Master

Puppet Modules

Red Hat
Satellite
Capsule
Server

RPMs

Puppet Master

Puppet Modules

Foreman

Katello

Pulp Candlepin

注4） http://spacewalk.redhat.com/
注5） http://theforeman.org/
注6） http://puppetlabs.com/
注7） http://www.getchef.com/chef/

http://spacewalk.redhat.com/
http://theforeman.org/
http://puppetlabs.com/
http://www.getchef.com/chef/

154 - Software Design

Satellite 6ではPuppetを利用しています。ま
た、ForemanはRed Hatが提供するOpenStack
のディストリビューションであるRed Hat
Enterprise Linux OpenStack Platformのイン
ストーラとしても利用されています。
　Satellite 6のもう1つの核はKatello注8です。
KatelloはRed Hatのサブスクリプションとリ
ポジトリの管理機能を提供するアプリケーショ
ンで、RHNから配布されるコンテンツ注9を
Red Hat CDN注10から取得します。Katelloは
ユーザが定義するさまざまな基準でシステムを
グルーピングし、アプリケーションのライフサ
イクル管理を容易に行える機能も提供します。
　Pulp注11とCandlepin注12はKatelloの機能を
実装しているいわば「本体」で、Pulpがリポジ
トリとコンテンツの管理を、Candlepinがサブ

スクリプションの管理を行います。
　Satelliteを構成するもう1つの要素はRed
Hat Satellite Capsule Serverで す。Satellite
本体にも統合されており、Satelliteのリポジト
リ、DNS、DHCP及びPuppet Masterの設定
のプロキシとして動作します。Capsuleは旧来
のRHN Proxyの機能を拡張したものとも言え、
地理的に離れた拠点に設置することで、スケー
ラビリティやコンテンツ配布のパフォーマンス
を向上できます。

SatelliteとCapsule
サーバの配置

　SatelliteとCapsuleサーバの配置例を2つほ
ど示します。まず、図2は最も基本となる
Satellite 1台での構成を表したものです。

注8） http://www.katello.org/
注9） RPMパッケージや、エラータを含むメタ情報など。
注10） Content Delivery Network。Red Hat CDNはAkamaiを利用しているため、利用しているインターネットプロバイダに

Akamaiのミラーサーバが設定されていれば非常に高速にコンテンツを入手できる。
注11） http://www.pulpproject.org/
注12） http://www.candlepinproject.org/

 ▼図2　Satelliteの基本的な配置

Red Hat Satellite

United States
Boston
Phoenix

San Francisco

United Kingdom

London

Japan

Tokyo

Red Hat Content

Integrated Capsule

Finance，Marketing，Sales

（Boston）
Organizations；

Locations；

Phoenix San Francisco London Tokyo Boston

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

http://www.katello.org/
http://www.pulpproject.org/
http://www.candlepinproject.org/

154 - Software Design Oct. 2014 - 155

第 6 回Red Hat Satellite 6で多数のサーバを一元管理

　各拠点が高速なネットワークで接続されてお
り、管理対象のシステムの台数が少ない場合、
Satelliteが1台でも十分な性能を発揮できます。
また地理的な属性によるグルーピングと、企業
内の組織によるグルーピングを設定することで、
さまざまな基準でシステムを管理できます。
　次に示す図3ではSatellite 1台に加え、4拠
点に1台ずつ計4台のCapsuleサーバを配置し、
スケーラビリティとコンテンツ配信の速度の向
上を図る配置になっています。
　図2の構成例とグルーピングの方法
は変わりませんが、各拠点にCapsule
サーバが存在するため、コンテンツの
配信速度はLANの速度になります。
パッケージの更新に加え、頻繁に仮想
マシン上にRHELをインストールす

る場合、配信するデータ容量が大きくなるため、
この構成が推奨されます。

Satellite 6の
インストール

　Satellite 6のβ版はパブリックベータではない
ため、入手するにはSatelliteのサブスクリプショ
ン契約が必要です。もし試用する場合には評価
版注13を図4のリンクから申請してください。既

注13） https://access.redhat.com/products/red-hat-satellite/beta

 ▼図3　Satellite 1台＋Capsuleサーバ4台による配置

Red Hat Satellite

United States

Red Hat Satellite
Capsule Server A
（Phoenix）

Boston
Phoenix

San Francisco

United Kingdom

London

Japan

Tokyo

Red Hat Content

Finance，Marketing，Sales
Integrated
Capusle

（Boston）

Organizations；

Locations；

Phoenix

Red Hat Satellite
Capsule Server B
（San Francisco）

San Francisco

Red Hat Satellite
Capsule Server C
（London）

London

Red Hat Satellite
Capsule Server D
（Tokyo）

Tokyo

Boston

 ▼図4　評価版の申請用のリンク（”Request Access”）

https://access.redhat.com/products/red-hat-satellite/beta

156 - Software Design

存のあるいは評価用に新規に作成したRed Hat
アカウントにSatelliteのサブスクリプションがエ
ンタイトルされ、インストーラのDVD ISOイメー
ジを入手する、あるいはsubscription-managerで
有効化することでSatelliteのインストールが可
能になります。
　執筆時点におけるSatellite 6のベータ版はバー
ジョン6.0.3であり、RHEL 6.5（for x86_64）を
ベースとしています。Satellite 6をインストール
するには、まずRHEL 6.5を「最低限注14」のパッ
ケージグループでインストールします。
　インストール終了後、Satellite 6のインストー
ルの準備をします。最初にターミナルを起動し
てsubscription-managerコマンドにregisterオ
プションを付与して実行します。

subscription-manager register
ユーザ名: redhat_account
パスワード:
システムは ID で登録されています: df71e1fb-c17c-4cｭ
77-9b22-xxxxxxxxxxxx

　次に、Satellite が含まれるプール注15を見つ
けるため、subscription-managerコマンドに
listオプションを付与して実行します。

subscription-manager list --available --all
+---+
 利用可能なサブスクリプション
+---+
サブスクリプション名: Red Hat Employee ｭ
Subscription
提供: Red Hat Enterprise Linuxｭ
Server HTB
<< snip >>
 Red Hat Satellite 6 Betaｭ
<< snip >>
プール ID: 8a85f98442cef1c70142fc22xｭ
xxxxxxx

　Red Hat Satellite 6 Betaを含むプール IDが
わかったので、このプールIDを用いてシステム
にサブスクリプションを割り当てます。もし同じ
プールIDに“Red Hat Software Collections”が含
まれていなければ、同様の手順でプールIDを検
索し、サブスクリプションを割り当てます。

subscription-manager attach --pool=8a85f98442ｭ
cef1c70142fc22xxxxxxxx
サブスクリプションが正しく割り当てられました:Red Hatｭ
Satellite Employee Subscription

　リポジトリをすべて無効に設定したあと、
Satellite 6で必要となるリポジトリだけを有効
にします。

subscription-manager repos --disable "*"
subscription-manager repos --enable rhel-6-ｭ
server-rpms --enable rhel-server-rhscl-6-rpmsｭ
--enable rhel-server-6-satellite-6-beta-rpms

　これでSatellite 6をインストールするための
準備が整いました。yumコマンドでKatelloを
インストール注16しましょう。

yum -y install katello

　Katelloのインストール終了後、katello-
installerを実行します（図5）。
　これでSatellite 6のインストールは完了です。
　執筆時点では katello-installerはファイア
ウォールの設定はしないため、iptablesコマン
ドで設定されているルールを確認したあと、適
切な位置にルールを追加します（図6）。
　ではFirefoxでアクセスしてみましょう。イ
ンストール完了後に表示されたURLにアクセ
スすると図7の画面が表示され、ユーザ名：
admin、パスワード：changemeでログインでき

注14） 日本語のインストーラでは「最低限」、英語では“Minimal”。この指定をすると@coreと@server-policyというパッケージグルー
プだけがインストールされる。“@”（アットマーク）はRPMパッケージを複数まとめたグループの表記の方法で、Linuxの自
動インストールのしくみであるkickstartや、インストール後に /root/anaconda-ks.cfgというファイルの“%packages”セク
ションの指定でも用いられる。

注15） subscription-managerによる証明書ベースの管理下では、複数のRPMパッケージから構成される「チャネル」、複数のチャ
ネルから構成される「プール」というようにヒエラルキーが構成され、複数のプールが「サブスクリプション」にひもづけられる。

注16） 相当数のRPMパッケージをダウンロードするため、インストールに長時間かかることがあります。

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

156 - Software Design Oct. 2014 - 157

第 6 回Red Hat Satellite 6で多数のサーバを一元管理

るはずです。

次回は

　今回はSatelliteのインストールまでを紹介
しましたが、まだコンテンツもシステムも登録
されていないため、このままではとくに何もで
きません。次回はSatelliteへのコンテンツの
導入とシステムの登録について紹介します。
ﾟ

katello-installer
Installing Done [100%] [..........................
.........]
 Success!
 * Katello is running at https://sat.rio.st
 Default credentials are 'admin:changeme'
 * Capsule is running at https://sat.rio.st:9090
 * To install additional capsule on separate machine continue by running:"

 capsule-certs-generate --capsule-fqdn "$CAPSULE" --certs-tar "~/$CAPSULE-certs.tar"

 The full log is at /var/log/katello-installer/katello-installer.log

 ▼図5　katello-installerの実行

iptables -L INPUT
target prot opt source destination
ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED
ACCEPT icmp -- anywhere anywhere
ACCEPT all -- anywhere anywhere
ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:ssh
REJECT all -- anywhere anywhere reject-with icmp-host-prohibited

iptables -I INPUT 5 -p tcp -m state --state NEW -m tcp --dport 443 -j ACCEPT
iptables -I INPUT 6 -p tcp -m state --state NEW -m tcp --dport 9090 -j ACCEPT
iptables -L INPUT
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED
ACCEPT icmp -- anywhere anywhere
ACCEPT all -- anywhere anywhere
ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:ssh
ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:https
ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:websm
REJECT all -- anywhere anywhere reject-with icmp-host-prohibited

service iptables save

 ▼図6　iptablesで確認後、ルールを追加

 ▼図7　Satelliteのログイン画面

158 - Software Design

コンテナ型仮想化 Jail

　FreeBSDにはコンテナ型（あるいはコンパートメ
ント型、セパレート型）といったように呼ばれること
がある仮想化機能が用意されています。オペレー
ティングシステム（以下、OS）が提供しているさまざ
まなリソースを「区切る」ことで、あたかも複数のOS
が動作しているかのように「見せかける」機能です。
　最近はDockerと呼ばれる管理ソフトウェアに人
気がありますが、Dockerが利用することになる根底
の技術がJailです。Linuxでのcgroupsに相当しま
す。こうした技術はホスティングサーバとして使わ
れることが多かったFreeBSDにおいては早い時期
に登場しました。KVMやXenといったタイプの仮
想化技術と比較して、動作がきわめて軽量で高速と
いう特徴があります。

Jailの使いどころ

　Jailが使われるのはおもに2つのシーンです。1つ
はアプリケーションをホストのOSとは隔離した空
間で動作させることでセキュリティを確保したい場
合、もう1つはユーザに対してroot権限を与える必
要がある場合です。
　UNIX系のOSには基本的に“root”と“それ以外の
ユーザ”という区別しかありません。root以外のユー
ザにrootが持っている機能を使わせるようにする
のはしくみ上困難なところがあります。Jailはこう
した問題に対する1つの答えとなるもので、空間を
区切ることでその閉じ込められた空間の中であれば
限定的なrootの機能を使っても問題がないように
しています。

Jailの考え方のベースと
なったchroot(8)

　Jailを使ってみる前に、Jailのモデルとなったよ
うな機能であるchroot(8)を見てみましょう。図1
のように、ちょっとしたコマンドとそれを実行する
のに必要になるライブラリ、デバイスファイルをマ

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第12回 ❖ コンテナ型仮想化 jail(8) 〜リソースを隔離して使うしくみ〜

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

% pwd
/Users/daichi/j
% tree $(pwd)
/Users/daichi/j
├── bin
│ ├── ps
│ ├── sh
│ └── tree
├── dev
│ └── null
├── lib
│ ├── libc.so.7
│ ├── libedit.so.7
│ ├── libkvm.so.6
│ ├── libm.so.5
│ └── libncurses.so.8
└── libexec
 └── ld-elf.so.1

4 directories, 10 files
%

▼▼図1　ミニマムなシェル環境を用意

Oct. 2014 - 159

▶第12回◀
コンテナ型仮想化 jail(8) 〜リソースを隔離して使うしくみ〜

きにログインしたユーザが見える領域を、ユーザの
ホームディレクトリ以下に限定したいという目的で開
発されました。当時はセキュリティについては考慮し
ていませんし、実装には結構抜け穴もありました。
　chroot(8)の機能はファイルシステムという空間
を「隔離」または「分離」する機能といえます。この機
能をファイルシステムのみならず、さまざまなリ
ソースや空間についても適用すればOS全体を「仮
想化」したように振る舞わせることができる。Jailは
こうした発想に基づいて開発されています。
　試しに、chroot(8)環境下においてps(1)コマンド
を実行してみましょう。図5のように、ホストで実
行するのと同じ結果が見えます。chroot(8)が隔離し
ているのはファイルシステム空間だけで、それ以外
はホストと共通です。

ウントした領域を用意したとします。
　詳しい説明は省きますが、/dev/nullだけが存在す
るようなデバイスファイルを作成するには図2のよ
うにコマンドを実行します。この作業はrootユー
ザで実施してください。
　環境が用意できたら、図3のようにchroot(8)コ
マンドをrootユーザで実行します。プロンプトが
同じなのでわかりにくいですが、4行目のプロンプ
トはすでにchroot(8)環境下に入っています。
　この状態でpwd (1)コマンドを実行してカレント
ディレクトリのパスを表示させると「/」と返ってき
ます（図4）。もともとのパスは「/Users/daichi/j」で
したが、chroot(8)したことで「/Users/daichi/j」が
「/」に置き換わりました。
　この機能はもともとは、FTPサーバを立ち上げたと

pwd
/
tree $(pwd)
/
¦-- bin
¦ ¦-- sh
¦ `-- tree
¦-- lib
¦ ¦-- libc.so.7
¦ ¦-- libedit.so.7
¦ `-- libncurses.so.8
`-- libexec
 `-- ld-elf.so.1

3 directories, 6 files
#

▼▼図4　�用意したミニマム環境にしかアクセスでき
なくなっている

chroot /Users/daichi/j /bin/sh
Cannot read termcap database;
using dumb terminal settings.
#

▼▼図3　chroot(8)で/Users/daichi/jをルートディレクトリへ変更

mount -t devfs devfs /Users/daichi/j/dev
devfs -m /Users/daichi/j/dev rule apply hide
devfs -m /Users/daichi/j/dev rule apply path null unhide

▼▼図2　null(4)しかないデバイスファイルの作り方

ps
 PID TT STAT TIME COMMAND
1041 v0 Is+ 0:00.00 /usr/libexec/getty Pc ttyv0
1042 v1 Is+ 0:00.00 /usr/libexec/getty Pc ttyv1
1043 v2 Is+ 0:00.00 /usr/libexec/getty Pc ttyv2
1044 v3 Is+ 0:00.00 /usr/libexec/getty Pc ttyv3
1045 v4 Is+ 0:00.00 /usr/libexec/getty Pc ttyv4
1046 v5 Is+ 0:00.00 /usr/libexec/getty Pc ttyv5
1047 v6 Is+ 0:00.00 /usr/libexec/getty Pc ttyv6
1048 v7 Is+ 0:00.00 /usr/libexec/getty Pc ttyv7
1581 1 S 0:00.01 su -l -l
1582 1 S 0:00.00 -su (sh)
1583 1 S 0:00.00 /bin/sh
1584 1 R+ 0:00.00 ps
#

▼▼図5　ps(1)コマンドでシステム全体のプロセスが見える

160 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

使ってみようJail

　Jailを使ってみましょう。jail(8)コマンドがJail
を作成したり削除したりするための制御コマンドで
す。作成されたJail環境はjls(8)コマンドで確認で
きます。Jail環境が1つもなければ図6のような表示
が返ってきます。
　先ほど作成した/Users/daichi/jを指定してJail
環境を構築します。図7のコマンドで「/Users/
daichi/j」を「/」としたJail環境を作成し、その環境

下の/bin/shを実行する、という意味になります。
環境下での/bin/shということは、ホストから見れ
ば「/Users/daichi/j/bin/sh」が実行されるというこ
とになります。
　プロンプトはすでに作成したJail環境下に入って
います。pwd(1)を実行すれば自分のいる場所が「/」
になったことがわかります（図8）。
　chroot(8)との大きな違いは、この環境はプロセ
ス空間も隔離されているということです。図9のよ
うにps(1)コマンドを実行すると、Jailの中で動作し
ているプロセスのみが表示され、ホスト側のプロセ

スを見ることはできなくなります
（図5と比べてみてください）。
　ホスト側のターミナルから jls(8)
コマンドを実行すると、図10のよ
うにJail環境が1つ作成されたこ
とを確認できます。JailはJIDと呼
ばれる番号でアクセスできるほか、
ホスト名を指定すればその名前で
アクセスすることもできます。
　Jail環境ではroot権限で動作す

jls
 JID IP Address Hostname Path
#

▼▼図6　Jail環境がないときのjls(8)コマンドの出力結果

jail -c path=/Users/daichi/j command=/bin/sh
Cannot read termcap database;
using dumb terminal settings.
#

▼▼図7　Jail環境の作成とその環境内部でのシェルの実行

pwd
/
tree $(pwd)
/
¦-- bin
¦ ¦-- ps
¦ ¦-- sh
¦ `-- tree
¦-- dev
¦ `-- null
¦-- lib
¦ ¦-- libc.so.7
¦ ¦-- libedit.so.7
¦ ¦-- libkvm.so.6
¦ ¦-- libm.so.5
¦ `-- libncurses.so.8
`-- libexec
 `-- ld-elf.so.1

4 directories, 10 files
#

▼▼図8　�指定したディレクトリがルートディレクトリに置き
換わる p.s.	 こんなところに	

	 注意しよう
　FreeBSDカーネルはさまざまな機能をJailに対応

させていますが、いくつかの機能は対応していないの

で注意が必要です。

　まず、ファイルシステムクォータはJailに対応して

いません。クォータはユーザIDとグループIDを

チェックして動作するだけの機能なので、それぞれの

Jail環境で同じユーザIDを使っていると、ファイル

システム全体でクォータがかかります。そのため、あ

るJail環境で容量を使い切ると、ほかのJail環境でも

それ以上ストレージを利用できなくなります。

　またファイルシステムの特性上、Jail環境下にある

ディレクトリをホスト側がmv(1)してJail環境外の

ディレクトリに移動させると、Jail環境の制限をはず

れてアクセスできるようになってしまいます。Jail環

境下にあるディレクトリはmv(1)しないほうがよい

といえます。

Oct. 2014 - 161

▶第12回◀
コンテナ型仮想化 jail(8) 〜リソースを隔離して使うしくみ〜

るといっても、ホストと比べるとその機能は限定さ
れています。sysctl(8)の値もホストとJail環境と
では異なります。たとえば、security.jail.jailedとい
う変数は自分がJail環境の中にいるのか外にいるの
か判断するために使われるので、ホストとJailとで
異なる値が返ってきます（図11、12）。
　Jail環境下ではホストに影響を与えるような機能
も動作しません。Jail環境で図13のように
shutdown(8)コマンドを実行しても、メッセージは
表示されますが何も起こりません。

　ユーザは1つのホストにいくつもJail環境を作成
できますし、Jail環境の中でさらにJail環境を作成
することもできます。Jail環境下ではファイルシス
テムのマウントやローソケットへのアクセスなども
デフォルトで禁止されていますが、これらは jail(8)
コマンドの引数で利用を許可することもできますの
で、必要に応じてさまざまな環境を構築できます。
　次回はJailにFreeBSDを構築してみましょう。s

% jls
 JID IP Address Hostname Path
 1 - /Users/daichi/j
%

▼▼図10　ホストから作成したJail環境を確認

ps auxww
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
0 2065 0.0 0.0 16988 2280 1 SJ 9:18AM 0:00.02 /bin/sh
0 2072 0.0 0.0 16588 1808 1 R+J 9:19AM 0:00.00 ps auxww
#

▼▼図9　Jail環境ではホスト側のプロセスを見ることはできない

% sysctl security.jail.jailed
security.jail.jailed: 0
%

▼▼図11　ホストでのsecurity.jail.jailedは0

shutdown -p now
Shutdown NOW!
shutdown: [pid 92026]
#
System shutdown time has arrived

#

▼▼図13　�Jail環境ではshutdown(8)コマンドのようにホ
ストに影響を与えるコマンドは実行できない

sysctl security.jail.jailed
security.jail.jailed: 1
#

▼▼図12　Jailでのsecurity.jail.jailedは1

p.s.	 ちょっとした	
	 開発の歴史
　jail(8)コマンドが導入されたのはFreeBSD 4.0が

最初です。Jailの機能はリリースごとに拡張を続け、

さまざまなリソースを分離できるようになりました。

FreeBSD 8.0ではJailの中にJailを作成するといっ

たことが可能になり、FreeBSD 9.1以降はシステム

の設定ファイルとしてJailの設定が記述できるように

なりました。

　JailはもともとFreeBSDデベロッパであるPoul-

Henning Kamp氏がR&D Associates向けに開発し

た機能です。その後、さまざまなデベロッパによって

機能の拡張が続き、FreeBSDを特徴付ける機能の1

つになりました。

162 - Software Design

19 Debian Developer　やまねひでき　henrich@debian.org

RHELとの比較第2弾
「yum/apt徹底比較」

Debian8“Jessie”の
開発進捗

Jessieのカーネルバージョン

　Debian8“Jessie”のリリースに向けて、徐々
に体制が固まってきています。Linuxカーネル
パッケージのメンテナBen Hutchingsさんに
よって、Jessieのカーネルは3.16をベースにす
ることが発表されました。
　時期的に一番良いバージョンであることと、
3.16のサポートはLTSではないものの、
Ubuntuでも採用するという見通しから、その
後のメンテナンスも容易であろうことが述べら
れています。3.16で不足する機能やモジュール
については、相談すれば追加なども可能である

4 4 4 4 4

こと注1も付記されていますので、気になるとこ
ろがある方は3.16を使ってみて早めに相談す
るのが良いでしょう。

デフォルトデスクトップの行方

　さて、Debianの「デフォルト」デスクトップは、
「1枚目のCD/DVDに収める」というサイズ上の
問題から、現在は、gitリポジトリ上ではXfceが
選ばれるようになっています。これをそろそろ
再考しよう、ということで「Reverting to GNOME
for jessie's default desktop」（GNOMEのデフォ
ルトデスクトップ環境への復帰）というスレッド

注1） 当然、ケースバイケースですのでその点はご留意を。

が盛り上がっています。
　おもな議論は、「GNOMEのサイズの大きさは、
開発途上国のユーザがダウンロードする際につ
らい」、「なぜCD/DVDのサイズにこだわるの？
今はUSBメモリがあるじゃないか」、「Xfceは機
能不足」、「GNOME3のインターフェースはあま
り初心者向きではない」あたりのトピックでしょ
うか。
　デフォルトデスクトップ環境はインストーラ
で別のデスクトップ環境に選択を変更すれば良
いだけですので、個人的には「そこまで大きな
影響があるものでもないのでは……」という気
がしますが、多くの人にとっては関心を寄せる
ことなのでしょう。この号が発売されるころに
は結論が出ているとは思いますが、debian-
develメーリングリストの行方を見守ってみた
いと思います。

arm64およびppc64elアー
キテクチャの追加

　Debianの公式ミラーに新規にarm64および
ppc64elアーキテクチャが追加されることがア
ナウンスされました注2。
　64bit ARMのarm64アーキテクチャはわかる
として、ppc64elというのは聞き慣れない人も多
いでしょう。IBMが開発したCPUに「Power」
シリーズというものがあり、その中の1つがppc
アーキテクチャ（＝PowerPC）です。その最新の
CPU「Power8」がDebian/Ubuntuでいうppc64el

注2） URL https://lists.debian.org/debian-mirrors-announce
/2014/08/msg00000.html

https://lists.debian.org/debian-mirrors-announce/2014/08/msg00000.html

162 - Software Design Oct. 2014 - 163

RHELとの比較第2弾
「yum/apt徹底比較」 19

アーキテクチャとなります。
　このPower8を採用したIBMのPower Systems
を、Ubuntuを開発するCanonical社が、Red Hat
社とSUSEに続いて、サポートする形になりま
した注3。大量のVMを動かす基盤としてPower
Systemsを使い、その上でCanonical社のJuju
などのオーケストレーションソフトウェアを使
えば、大量のサーバデプロイメントを簡易に実
施できる̶̶そのようなことを売りにするもの
と推測されます。
　また IBMは「OpenPOWER Foundation」とい
うコミュニティを2013年に設立し、多くの企
業と連携して開発を進めているようで、Google

でもPower8を採用したマザーボードを開発し
たことが表明されています注4。サーバ分野での
ポテンシャルを持ったアーキテクチャと言える
でしょう。

yum/apt徹底比較

　前回、簡単にyum/aptの違いについて触れま
したが、より詳細に比較をしましょう（表1）。

yumがaptより優れている点は？

　どうしても筆者やその知り合いにはapt派が
多くなってしまうのですが、「yumがaptより

 ▼表1　yum/aptのおもな操作とオプション

おもな操作 yum（RHEL） apt（Debian）

リポジトリの追加と
削除

yum-config-manager --add-repo
=<repository>

/etc/apt/souces.list
（または /etc/apt/souces.list.d以下）を直接編集
（後述）

パッケージデータベー
スの更新

なし
（強制更新であればyum makecache） apt-get update

パッケージ自体の更
新

yum update
（yum upgradeも似た動作） apt-get upgrade

パッケージ情報の参
照 yum info <package> apt-cache show <package>
パッケージの
インストール yum install <package> apt-get install <package>
特定バージョンのイ
ンストール yum install <package>-<version> apt-get install <package>=<version>

（例：apt-get install sl=3.03-17）特定バージョンへの
アップグレード

yum update-to <package>-<version>
（例：yum update-to 3.03-15.fc20）

特定バージョンに固
定 なし apt-mark hold <package> <version>
パッケージ群の
インストール

yum groupinstall <group>
（yum groups install <group>） ※1 tasksel install <task>

ファイルの検索 yum whatprovides <file> ※2 apt-file search <file>
（apt-fileパッケージが必要）

語句を元に関連
パッケージの検索 yum search <keyword> apt-cache search <keyword>
パッケージ一覧の表
示 yum list apt list

パッケージの削除 yum remove <package>
（あるいはyum erase <package>） apt-get remove <package>

パッケージファイルの
取得 yumdownloader <package> apt-get download <package>
パッケージのソースの
取得 yumdownloader --source <package> apt-get source <package>

※1　RHEL6までは「groupinstall」、RHEL7からは「groups install」です。
※2　apt-fileと比べると、「yum whatprovides」ではファイルについてパスを含めて指定しなければならない点がちょっと面倒な印象です。

注3） ですので、ppc64elサポート関連のバグレポートは
Canonical関係者が投稿しているものがほとんどです。

注4） URL http://goo.gl/4yB6ph 参照。ただ、大量に採用して
いるのかどうかまでは触れられていません。

http://goo.gl/4yB6ph

164 - Software Design

優れている点は何か？」と聞いたところ、「ロー
カルのrpmパッケージファイルを、yumでその
ままインストールできる」注5という点が挙げら
れました。
　確かにaptにはそのような機能はないので、「#
dpkg -i foobar_1.0-1.all_deb」などとdpkg
コマンドを併用しなければなりません。パッケー
ジといえばaptしか知らない人にはちょっと不
親切ですね。
　筆者がyumを調べていて感心したのが「トラ
ンザクション機能」です。図1のようにするこ
とで、インストール／アンインストールを取り

消すことができます注6。
　Debianの場合、パッケージマネージャーの
動作記録としてdpkgのログが/var/log/dpkg.
logに、そしてaptのログが/var/log/apt/history.
logなどに残ってはいますが、残念ながらこれ
らを元にしてのundoやrollbackはできません。

yumで付加情報を元に
細やかなアップデート

　また、yumの場合には、パッケージの更新に
ついてそれぞれ「バグ修正（Bugfix）」「セキュリ
ティ修正（Security）」「機能拡張（Enhancement）」
のいずれかの情報が付加されています。加えて「ど
のBugzilla IDを修正するものか」「どのSecurity
Advisory／どのCVEに対応したセキュリティ
修正なのか」「重要度がどの程度なのか」などの

 ▼図3　yumにおける細かな条件指定によるパッケージ更新

$ sudo yum --security update ←セキュリティアップデート関連だけ更新
$ sudo yum --security update-minimal kernel* ←カーネル周りのセキュリティアップデートのみ摘要
$ sudo yum update --cve CVE-2014-0195 ←特定のCVEに対応するパッケージのみ更新※

$ sudo yum update --advisory RHSA-2014:0679 ←特定のSecurity Advisoryに対応するパッケージのみ更新

 ▼図2　yumのパッケージ更新ごとに付けられている付加情報（区分）

$ yum updateinfo
読み込んだプラグイン:langpacks, refresh-packagekit, upgrade-helper, verify
Updates Information Summary: available
 7 Security notice(s)
 30 Bugfix notice(s) 各区分についてそれぞれの

アップデート数が表示される 8 Enhancement notice(s)
updateinfo summary done

$ yum updateinfo list
読み込んだプラグイン:langpacks, refresh-packagekit, upgrade-helper, verify
FEDORA-2014-8033 bugfix NetworkManager-1:0.9.9.0-41.git20131003.fc20.x86_64
FEDORA-2014-8033 bugfix NetworkManager-glib-1:0.9.9.0-41.git20131003.fc20.x86_64
FEDORA-2014-7193 enhancement audit-2.3.7-1.fc20.x86_64
FEDORA-2014-7193 enhancement audit-libs-2.3.7-1.fc20.x86_64
FEDORA-2014-7193 enhancement audit-libs-python-2.3.7-1.fc20.x86_64
FEDORA-2014-7992 security file-5.19-1.fc20.x86_64
FEDORA-2014-7992 security file-libs-5.19-1.fc20.x86_64
 ↑どの区分かが表示される
 （...省略...）
updateinfo list done

※　RHELでは動いたけど、Fedora20だと動かなかったり……このあたり深追いはできていません。

注5） 「$ sudo yum install http://example.com/hoge.rpm」と
いうように、リモートにあるRPMパッケージもインストー
ル可能だそう。テストのときには便利ですね。

注6） このトランザクション機能は便利……ですが、パッケージの
アップデートについては、ダウングレードに失敗して役に立
たないこともしばしばあります。

 rawhide（Debianでいうところのunstable）で大量にアップ
デートをしたが、それをキャンセルしたい……という用途に
は不向きです。

 ▼図1　yumのトランザクション機能

$ yum history rollback <transaction id>
$ yum history undo <transaction id>

164 - Software Design Oct. 2014 - 165

RHELとの比較第2弾
「yum/apt徹底比較」 19

追加情報もあります（図2）。
　これらを利用して、セキュリティ修正だけ／
一定の重要度以上の修正だけ／特定のバグに関
する修正だけを適用できるのが好ましい、とい
う方もいらっしゃるでしょう。オプションを見
ると、セキュリティ修正フラグが立っているも
の／セキュリティ修正の重大さ／Bugzillaの
ID／CVE／アドバイザリ名などでの指定が可
能となっているようです（図3）。
　残念ながらaptでは、Debianパッケージにこ
こまで細かな付加情報がないので、このような
ハンドリングは難しいですね（逆に言えばメタ
情報として追加するようにすれば、対応できる
ということでもあります）。

aptも頑張れ

　ここまで読んでくると、筆者がまるでyum派
のように見えるかもしれませんが、使い慣れて
いるのはもちろんaptのほうです。私的な視点
ではaptが頑張ってほしいところは、

¡	リポジトリを手軽に有効／無効にできるよ
うにする

¡	差分パッケージの取扱いができるようにして、
パッケージのダウンロード時間を減らす注7

¡	プラグイン機構で機能を追加できるように
する注8

¡	トランザクションをサポートして、undo/
rollback機能を追加する

あたりでしょうか。逆にaptのほうが優れてい
るな、と感じる点は次のとおりです。

¡	インストール時などの高速な動作（重要！）
¡	オプションがシンプル
¡	「Recommends（推奨）」パッケージの導入が
可能（無効にすることもできる）

¡	上記に加え「Suggests（提案）」パッケージの
情報がある

¡	（メタ）データが破損して修復作業が必要に
なることが、yumと比較して少ない

apt/yum比較総評

　筆者の感想ですが、yumは後発だけあって多
彩なオプションがあり、使いこなしを考えると
今回取り上げたように良いところも多いです。
　ですが、パッケージインストールの際に、細
かくオプションを指定する場面もそう多くはあ
りません。日常的な利用ではアップデートやイ
ンストールだけを把握していれば良く、そこま
での違いは感じられないかもしれません。｢

注7） yumだとdelta RPMの取扱いをPrestoプラグインで実現
していますが、ダウンロード後に差分からパッケージを
生成する処理が発生するので、ディスクが遅いとそれは
それで時間がかかります。この点はPrestoプラグインで
も「高速な回線で低速なマシンを使うときは無効にしたほ
うが速い」と触れられています。

注8） 「yum search yum-plugin」とすればさまざまなプラグイ
ンが見つかります。

Debianにもyumをインストールできます

　実はDebianにもyumパッケージが存在していて
「apt-get install yum」でインストールが可能で
す……が、インストールできるだけ

4 4

です。初期状態
では全然設定が整っていませんし（何もリポジトリ
が設定されていない）、そもそもaptのパッケージデー
タベースと互換性もなく、連携もしていません。

　何も考えずにyumでパッケージを入れたら、apt
で入れてある既存のファイルを上書きしてしまって
システムを壊すだけのオチになります。
　ちなみにcreaterepoパッケージもありますので、
Debianで rpmファイルを元にRHEL/CentOS用リポ
ジトリを作成して提供することが可能です。

COLUMN

「apt」コマンド

　Debian/Ubuntuユーザにはお馴染みのapt-getコ
マンドですが、aptバージョン1.0のリリースととも
に、シンプルなaptコマンドが追加されました。
　機能はapt-getの一部を抜粋したものですが、「進
捗ステータスが表示される」「出力がカラフルになっ
ている」などユーザが馴染みやすくなっています。

COLUMN

はじめに

　2度目の登場となりましたプラットフォーム
コンサルタント菅原です。今回もよろしくおつ
き合いください。今回は「オープンソースソフト
ウェアを開発するということ」というテーマを設
定してみました。本連載の第1回から藤田も書
いておりますように、Red Hatは「オープンソー
スカンパニー」を標榜しております。それこそ水
や空気のように日々オープンソースどっぷりの
生活を送っているわけですが、なぜオープンソー
スなのか、ということを少し掘り下げて考えて
いきたいと思います。

なぜオープンソース
なのか

　フリーソフトウェア・オープンソースソフト
ウェア（以下Free/Libre and Open Source
Softwareを略したFLOSSと記します）黎明期
には、著作権を意味する「copyright」をもじった
「copyleft」という概念や、ソフトウェアを無償
で公開することなどの理由でFLOSS推進者達
が「ソフトウェア共産主義者」などと呼ばれたこ

とがあったりしたことなどから、FLOSS推進
はイデオロギーの一種、IT業界でよく言う「宗
教」の1つのように見られることもよくあるよう
に思います。しかし、Red Hatを始めとして、
FLOSSをビジネスとして商業的に成功を収め
ている会社がいくつもあることを見ても、この
見方は（完全な誤りではなかったとしても）かな
り偏った、穿った見方のように思われます。あ
るいは、FLOSSが成功することにより既得権
益が侵される？――と恐れた勢力による意図的
なレッテル貼りだったのかもしれません。
　少なくとも、筆者がFLOSSを生

なりわい

業として選
んでいるのは宗教的信念やイデオロギーではな
く現実的な利点によるものであり、社会の趨

すうせい

勢
として今後FLOSSが――プロプライエタリソ
フトウェアを完全に駆逐することはないかもし
れませんが――ソフトウェア開発モデルの主流
となっていくだろうと予測しているからです。
筆者の予測の正誤はともかくとして、私企業が
ビジネスを継続して発展させていくためには利
潤を無視できないという大前提に立ったうえで、
多くの企業がFLOSSを自社システムに採用し
開発にも参画、さらには自社製品をFLOSSと
して公開までしているわけですから、FLOSS
が企業の利潤に対しプラスの効果を持っている
のは間違いないところだと感じています。
　では、現実的な利点としてどのようなものが
あるか、代表的なものをいくつか示したいと思
います。

FLOSSの利点

ユーザのIT統制強化に有益

　ソースコードなど内部原理が未公開であるプ
ロプライエタリソフトウェアにおいては、製品
の利用上何か不都合があったときのサポートは
必然的にベンダ任せとせざるを得ません。
FLOSSでは当然ながらソースコードが公開さ
れていますから、Red Hatのようなベンダに問

恵比寿通信
レッドハット

菅原 健
SUGAWARA Ken

レッドハット （株） グローバルサービス本部
プロフェッショナルサービス部
プラットフォームシニアコンサルタント

オープンソースソフトウェア
を開発するということ

第 回25

166 - Software Design

い合わせを行うのと平行して自己調査ができま
す。仮に自らソースコードを調査してバグの該
当個所を特定できないまでも、似た現象に対す
る修正がアップストリームに提案あるいはコミッ
トされていないかメーリングリストなどを検索
するなど、自らできる調査の幅がプロプライエ
タリ製品よりも幅広くなっています。
　このように、公開されている情報を有効に活
用してユーザ自ら調査を行うことにより、何か
ら何までベンダ任せでおんぶにだっこのベンダ
依存体質を改め、ひいてはIT統制の強化に利用
しているユーザ企業がすでに数年前から現れて
きています。

開発と利用の継続性が高い

　プロプライエタリ製品は、開発元がビジネス
上の理由で開発をやめてしまったり倒産してし
まったりすると、そのユーザは多くの場合利用
の継続は困難となります。まあ、今あるバイナ
リをそのまま使い続ければいいのでは、という
考え方もありますが、ハードウェアが新しくな
るとOSもバージョンアップする必要があり、そ
の影響でアプリケーションが動かなくなったり、
延命には限界があるのが普通です。
　ところが、FLOSSの場合は開発元が開発を
やめても最悪倒産して存在しなくなったとして
も、FLOSSライセンスの下で公開されたソー
スコードは残りますので、それを利用して元の
開発元とは違う別の誰かが開発を継続していく
ことができます。その気になれば、ユーザ企業
が開発を引き継ぎ新たなOS環境への対応など
を継続していくことだってできます。
　また、これはある起業家のブログを読んで知っ
たことです。その方の場合は前に興した企業が
倒産してしまったのですが、そこで開発してい
たソフトウェアをFLOSSライセンスで公開し
ていたため、そのあとの開発を自ら継続できた、
というケースもあるそうです。プロプライエタ
リとしていたならば、会社が倒産した時点でソ
フトウェアは資産として管財人の管理下に入り、

自ら開発した製品であったとしても勝手に開発
を継続することはできなかったでしょう。

組織を超えた開発規模

　FLOSSとして成功しているソフトウェアは
ほとんどの場合、単一の組織の枠を超えた大き
な開発者コミュニティによって支えられていま
す。た と え ば Linux kernelで す が、The
Linux Foundationが公開している最新の情報注

1によれば、組織としてのRed Hatの貢献は
10.2％に過ぎません。非常に大雑把な言い方で
すが、現在のLinux kernelの開発速度をRed
Hat単体で維持しようとすると、今の10倍の数
の開発者を雇い入れる必要があることになりま
す。逆に言えば、単一の企業にとってはプロプ
ライエタリな開発モデルと同じコストでより大
規模かつ速い開発ペースを実現できるのがオー
プンソース化の魅力だということになります。
　プロプライエタリソフトウェアの場合は基本
的に1社だけで開発を進めるわけですから、製
品規模や開発ペースを上げようとすれば必然的
に開発者数も増えて開発コストが増大し、それ
が製品価格に跳ね返ってくるわけですね。

FLOSSのリスク

　逆にオープンソース開発モデルには特有のリ
スクもあります。リスクも正しく理解しないと
リスクと利益を比較して採否を決定できません。
こちらも代表的なものを示します。

成果を独占できない

　当然ながらソースコードを公開するわけです
から誰も成果物（＝ソフトウェア）を独占的に利
用することはできません。トレードシークレッ
トにかかわるアルゴリズムをFLOSSとして実

注1） "Linux Kernel Development - How Fast It is Going, Who
is Doing It, What They are Doing, and Who is
Sponsoring It", The Linux Foundation, September
2013, Jonathan Corbet, Greg Kroah-Hartman, and
Amanda McPherson

恵比寿通信レッドハット 第 回25
オープンソースソフトウェアを

開発するということ

166 - Software Design Oct. 2014 - 167

装することは自殺行為に等しい場合もあり得ま
すからFLOSS開発へ参画する場合は相応の検
討が必要です。

開発ロードマップ

　とくに活発な開発者コミュニティが存在する
場合に、多くの開発者からさまざまな貢献があ
りますので、開発の道筋を1社が決めることは
困難となります。これは、1社だけの思惑で将
来のロードマップが描きにくくなることを示し
ます。この特性はユーザからみれば利点となり
得ますが、開発者としてはプロジェクトが制御
不能になり得るリスク要因として検討しておく
必要があります。

安易なオープンソース
化に対する疑問

　と、ここまでFLOSSの特徴を見てきたわけ
ですが、自社開発したソフトウェアのFLOSS
化もしくは初めからFLOSSとして自社開発を
決定する際に重要なのは、リスクベネフィット
分析の結果、潜在リスクよりもFLOSS化の利
益のほうが大きいとの評価が出せることです。
ところが、世の中には上記のような利点をまっ
たく活用できていないか、活用していたとして
も非常に薄弱な「FLOSS」が見られます。とく
に3つめの利点には活発な開発者コミュニティ
の醸成が不可欠ですので必ずしも達成できるも
のではないのですが、もはや初めから開発加速
効果の達成をあきらめているとしか思えない
「FLOSS」があります。
　それはどんなものかというと、名前だけオー
プンなFLOSS、つまり、既存のFLOSSライ
センスもしくはその派生形ライセンスのもとで
ソースコードが公開されている「だけ」の
FLOSSです（上で「FLOSS」とカギ括弧つきに
しているのは名前だけのFLOSSだからという
意味を込めたものです）。とくにソースコードが
tarボールなどでダウンロード可能になっている
だけで、GitHubで公開されているわけでもパッ

チの送り先も示されていないような類のものを
見ると、この開発者はいったいどういう目的で
このソフトウェアをFLOSSにしたのだろうか、
と不思議になります。まさにFLOSS開発モデ
ルの利益とリスクを比較検討することなく、「初
めにFLOSS化ありき」で公開されているのでは
ないか、と勘ぐりたくなるものがあるのです。
　個人の趣味の産物ならまだしも、企業が投資
して開発するFLOSSについては、その企業自
身のビジネスにプラスになるという評価のうえ
で開発が行われ、活発な開発者コミュニティが
醸成されて誰もが開発のスケールメリットを享
受できるようなプロジェクトが増えてくること
を切に願うものです。

　さて、話変わってゆる～い話題です。
　実は当社には自転車乗りがけっこういます。
SNSなどで見ても ITクラスタと自転車クラス
タがかなり被るのはよく知られていますので意
外でもなんでもないのですが、レースなどのイ
ベントにチームとして出場したりはしていませ
んので、外から見てあまり目立っていないと思
います。何せチームの母体となる日本の社員数
という意味では、ほかの大手IT企業様とは比較
にならない少なさですし、残念ながら会社公認
の部活動を行うには至っていないという点も大
きいかと思います。
　しかし、US本社のほうでプロモーションと
してRed Hatロゴ入りジャージを作った実績が
あって一定数以上の発注をすれば日本からでも
買えることがわかり、ついに去年の秋にRed Hat
ジャージを共同購入しました !̶̶というわけ
で、去年からレース会場にもRed Hatジャージ
が、細々と少人数ではありますが出没しており
ます。もしどこかでRed Hatジャージを見かけ
たらきっとそれは恵比寿の誰かですので、気軽
に声をかけてくださいね。ﾟ

レッドハットの
自転車クラスタ

恵比寿通信レッドハット 第 回25
オープンソースソフトウェアを

開発するということ

168 - Software Design

Oct. 2014 - 169

　Vimに組み込まれたスクリプト言語「Vim
script」について、基本、使用例から、実践的な
テクニック、プラグインの作成・公開の手順ま
でを解説している。「Hello World」の表示から説
明されており、初心者にも優しい。第5章では「保
存時に自動的に行末の空白スペースを削除する
プラグインの作成」をケーススタディとして取

り上げており、ほかの章の基本事項をおさえた
うえで、自分だけのプラグイン作成の参考にし
てほしい。第6章では、addやdeleteをはじめ、
よく使われる組込み関数が網羅的に紹介されて
おり、辞書的に使うこともできる。自分のVim
環境をカスタマイズする目線で読むと良いだろ
う。なお本書は、Vim7.4に対応している。

Vim scriptサポーターズ 【著】
A5判、320ページ／価格＝2,580円＋税／発行＝技術評論社
ISBN＝978-4-7741-6634-6

　「ひねもす」は「終日」という意味で、Hinemos
はNTTデータが提供しているオープンソースソ
フトウェアである。近年の ITシステムはオープ
ン化、仮想化、クラウド化など複雑化してきて
いる。Hinemosは、複数のコンピュータ群を単
一のコンピュータのようなイメージで、一元的
に運用管理できるのが特徴だ。本書では、その

中でも重要な「監視」「性能管理」「ジョブ管理」
などの項目ついて解説している。機能や使い方
については公式ドキュメントもあるが、本書
は、Hinemosにおける設計の考え方、設定方法
について、より具体的に想定される事例に基づ
いて記載している。また、Hinemos技術者認定
プログラムのテキストとしても利用できる。

倉田 晃次、澤井 健、幸坂 大輔 【著】
B5変形判、520ページ／価格＝3,700円+税／発行＝技術評論社
ISBN＝978-4-7741-6984-2

　今年3月にリリースされた「Java 8」の「ラム
ダ式」を学ぶ本。ラムダ式の基礎から、データ
のソートを行うComparatorインターフェース
や、Swing・JavaFXのイベント実装にラムダ式
を活用する例といった、実践的な内容を扱って
いる。Javaの従来の記法と、ラムダ式で書かれ
たコードを比較しながら解説しており、また、

なぜラムダ式がJavaに導入されたのかの考察も
されている。ラムダ式がどんな個所に適用でき
るのか、適用するとどのようなコードになるの
か、勘所をおさえながら学べるだろう。Java 8
から追加された、コレクションを扱う「Stream
API」についても、ラムダ式を引数に使って効率
的にデータを処理する方法が紹介されている。

清水 美樹 【著】
A5判、192ページ／価格＝2,300円+税／発行＝工学社
ISBN＝978-4-7775-1841-8

Java8ではじめる「ラムダ式」

Vim scriptテクニックバイブル
Vim使いの魔法の杖

　フィードバック制御とは、「システムの実際の
挙動とその望ましい挙動を常に比較しつつ動作
させる」ための方法である。産業界ではよく使
われるが、ソフトウェアエンジニアには疎遠な
この理論について、原理から実装、ソフトウェ
アシステムへの活用、応用的な理論までを扱っ
た本である。キャッシュの最適サイズ、サーバ

数の調整、メモリ消費の制御のようなソフトウェ
ア技術に関する課題に対して、フィードバック
制御を応用するケーススタディを、Pythonによ
るシミュレーションコードを載せながら解説し
ている。内容はかなり専門的で、微積分や偏差
など、数学的知識を前提に解説しているので、
事前の勉強は必要となるだろう。

Philipp K. Janert 【著】 ／野原 勉 【監訳】 ／星 義克、米元 謙介 【訳】
A5判、344ページ／価格＝3,200円+税／発行＝オライリー・ジャパン
ISBN＝978-4-87311-684-6

エンジニアのための

フィードバック制御入門

Hinemos 統合管理［実践］入門

170 - Software Design

Ubuntu Monthly Report

　UbuntuにはPPAという優れたしくみがあります。
PPAはPersonal Package Archiveの略で、その名
のとおり個人向けのパッケージリポジトリです。一
定の条件を満たせば誰でも任意のパッケージをアッ
プロードできます注1。とはいえ、PPAにアップロード
するということは公開するということであり、中に
は公開したくないパッケージもあるでしょう。また、
十分な速度が出るインターネット環境がない場合は
PPAへのアップロードもダウンロードも待ち時間が
長くなります。それに、PPAにアップロードできる
のはソースパッケージやバイナリパッケージも含め
て2GBまでですが、それよりもっとたくさんのパッ
ケージをアップロードしたいということもあるで
しょう。
　そういった場合には、今回紹介するmini-builddを

注1） もちろんライセンスなどの制限はありますので、なんでもと
いうことではありませんが。

パッケージの配布環境
使用すると便利です。Webアプリなので設定方法は
難しくないのですが、設定項目が多くて戸惑うこと
はあるかもしれません。ひとつひとつ確実に行いま
しょう。

　今回は仮想環境にUbuntu 14.04 LTS Serverをイ
ンストールしました。ホスト名は“UbuntuTrusty
Buildd”です。mini-builddのパッケージはUbuntu
14.04にもありますが、古いので新しいものを使用
します。とはいえ、なぜかPPAのビルドに失敗して
しまうので、ちょっと長いですが14.10のパッケー
ジをダウンロードします（図1）。

　まずはWebブラウザを起動します。avahi-daemon
が動作している場合、mini-builddが動作している
Ubuntuのホスト名に .localをつけると簡単にアクセ

インストール

ログイン

今回は、ローカルにパッケージのビルド環境と配付環境を整え、実際にパッケージをインストールす
るところまでを紹介します。

mini-builddで
パッケージのビルド＆
配布環境を構築する

Ubuntu Monthly Report第54回

Ubuntu Japanese Team
あわしろいくや　ikuya@fruitsbasket.info

$ wget http://jp.archive.ubuntu.com/ubuntu/pool/universe/m/mini-buildd/mini-buildd-common_1.0.3_all.ｭ
deb http://jp.archive.ubuntu.com/ubuntu/pool/universe/m/mini-buildd/mini-buildd_1.0.3_all.deb http:ｭ
//jp.archive.ubuntu.com/ubuntu/pool/universe/m/mini-buildd/python-mini-buildd_1.0.3_all.deb
$ sudo apt-get install mini-buildd
$ sudo dpkg -i mini-buildd-common_1.0.3_all.deb mini-buildd_1.0.3_all.deb python-mini-buildd_1.0.3ｭ
_all.deb

図1　mini-builddのインストール

※もしダウンロードできない時は、1.0.3を1.0.4や1.0.5などに変えてみてください。
※インストールの際にadminのパスワードを入力する必要があります。
※最後にhavegedパッケージをインストールしてください。

170 - Software Design Oct. 2014 - 171

mini-builddでパッケージのビルド＆配布環境を構築する 第 54 回

スできます。たとえば、

http://ubuntutrustybuildd.local:8066/

のような感じです注2。
　右上に“logged off”というリンクがありますが、こ
れをクリックするとログインのユーザ名とパスワー
ドを入力できます。ユーザ名は“admin”で、パス
ワードは先ほど決定したものです。赤字で“User
admin”となっていれば、ログインができていること
になります。

　いよいよ設定に移ります。まずは左上の“Confi
gure”をクリックしてください。“Site administra
tion”に移動しました（図2）。“Mini_Buildd”、“Auth”、
“Registration”という大項目がありますが、今回は
“Mini_Buildd”しか設定しません。“Mini_Buildd”も
5つの項目にわかれていますが、上4つしか設定しま
せん。では、細かくみていきましょう。

Daemon

　“Daemon”には“Daemon”という項目しかありませ
ん。“Change”をクリックしてページを変遷し、
“Daemon”の下にある、ホスト名から始まるリンクを
クリックします。“Change daemon”というページに遷
移するので、“Archive idエンティティ”の“Identity”
と“Hostname”と“Email address”を変更します。
“Identity”はこのままでもかまいませんが、短いほう
が楽です。今回は“trusty”とします。“Hostname”は、
前述のとおりavahi-daemonをインストールしている
のでホスト名に .localを付けたものにします。すなわ
ち今回は“UbuntuTrustyBuildd.local”です。“Email
address”はご自分のメールアドレスにしてください。
あとの変更は任意です。一番下までスクロールし、
“save”をクリックしてください。
　項目の左端にチェックを入れるところがあります
ので、ここにチェックを入れて“Prepare”をクリッ

注2） avahiでは、ホスト名に大文字小文字の区別はありません。

設定

クしてください。するとステータスが黄色になりま
すので、もう一度チェックを入れて“Check”をク
リックしてください。最後にもう一度チェックを入
れて“Activate”をクリックすると作業が完了します。
この操作は今後よく出てきます。あとは“Home →
Mini_buildd → Daemon”の“Mini_buildd”をクリック
して戻ってください。

Sources

　“Sources”は“Archives”と“Sources”を設定します。
“Archives”はまず“local”をクリックしてください。次
に“Changes”をクリックし、もしあれば“/”と“cdrom”
を削除します。それぞれクリックすると左下に
“Delete”が表示されるのでこれをクリックし、“Yes,
I'm sure”をクリックします。
　“Source”は“Ubuntu”をクリックします。次に
“Change”をクリックして画面遷移し、“Ubuntu 'trusty'
from 'None'”の行にチェックを入れ、“Prepare”→
チェック→“Check”→チェック→“Active”でアクティブ
にします。これで完了なので前の画面に戻ってくだ
さい。

Repositories

　“Repositories”は4つ全部の設定が必要です。ま
ず、“Layouts”の“Defaults”をクリックします。次に
“Distributions”の“Defaults”をクリックします。さ

図2　設定前

172 - Software Design

Ubuntu Monthly Report

らに“Repositories”の“Sandbox”をクリックします。
最後に、“Changes”をクリックして画面遷移し、
“Ubuntu 'trusty' from 'None'”の行にチェックを入
れ、“Prepare”→チェック→“Check”→チェック→
“Active”でアクティブにします。これで完了なので
前の画面に戻ってください。
　“Uploaders”の“Change”をクリックし、さらに
“'admin' may upload to '' with key ': '”をクリックし
てください。ここでソースパッケージのアップロー
ドに使用するGPGキーを指定します。GPGキーの
作成方法は省略します。“Prepare”→チェック→
“Check”→チェック→“Active”でアクティブにし
ます。これで完了なので最初の画面に戻ってくだ
さい。

Chroots

　“Chroots”で設定するのは“Dir Chroots”だけです

が、ちょっとトリッキーなことを行いますので注意
してください。まずは“Dir chroots”の“Defaults”を
クリックします。次に“Changes”をクリックします。
画面を遷移すると2行表示されているはずなので、
どちらにもチェックを入れて“Prepare”をクリックし
ます。Chrootsの設定はパッケージのダウンロードを
行うため、少々時間がかかります。完了したら、こ
こでいったんWebブラウザから離れて端末に移動し
てください。
　この2つのファイル（図3）の中身を、それぞれ図4
のように変更してください。
　2つのファイルとも変更が終わったら、Webブラウ
ザに戻り、2行ともにチェックを入れて“Check”をク
リックしてください。これも終了するまで時間がか
かります。最後にまた2行ともチェックを入れて、
“Active”をクリックしてください。これで設定は完
了です（図5）。

　左上のmini-builddアイコンをクリックすると、
トップページに戻ります。戻ると、そのアイコンの
すぐ右下に“Start”があるので、これをクリックして
デーモンを起動してください。続けて“Keyring
packages”をクリックします。何度か再読み込みして
いると、パッケージのビルドが終わったことがわか
ります。これで準備が整いました。

　パッケージのアップロードはLAN内からであれば
どこから行ってもいいのですが、今回はmini-buildd
が動いている環境をそのまま使用します。アップ
ロードするパッケージは何でもいいのですが、今回
はSylpheedにします。次のコマンドを入力して、環
境を整えてください。

キーリングを作成する

パッケージのアップロード

/var/lib/mini-buildd/var/chroots/trusty/amd64/source/etc/apt/sources.list
/var/lib/mini-buildd/var/chroots/trusty/i386/source/etc/apt/sources.list

図3　編集するファイル

deb http://jp.archive.ubuntu.com/ubuntu trusty main

deb http://jp.archive.ubuntu.com/ubuntu trusty mainｭ
 universe

図4　変更内容

図5　設定完了後

172 - Software Design Oct. 2014 - 173

mini-builddでパッケージのビルド＆配布環境を構築する 第 54 回

$ sudo apt-get install ubuntu-dev-tools
$ pull-lp-source sylpheed
$ cd sylpheed-(バージョン)
$ dch -i

　Changelogの編集画面になりますが、図6のよう
にします。
　まず1行目、今回はSylpheedのバージョンが
“3.4.1-1ubuntu2”でした。その後ろに“̃test1404+1”を
追加してください。その次は“trusty-test-unstable”で
す。これらは、作成されたkeyringの“Distribution”
と“Version”を見ると、そうしなければいけないこと
がわかります。3行目の変更点は任意にしてください。
5行目の名前とメールアドレスは、署名するGPGの
ものと一致している必要があります。
　Changelogの保存が完了したら、次のコマンドを
実行してください。

$ cd ../
$ dpkg-buildpackage -S -sa

　これでGPGのパスフレーズを聞かれるので、入
力します。
　ソースパッケージの作成は完了したので、次に
アップロードに必要な設定を行います。次のコマン
ドを実行してください。

$ mini-buildd-tool (mini-builddサーバーのｭ
ホスト名):8066 getdputconf >>~/.dput.cf

　もし“mini-buildd-tool”が見つからない場合は、
“python-mini-buildd”パッケージをインストールして
ください。 mini-builddサーバのホスト名は、今回の
例では“ubuntutrustybuildd.local”です。
　では、ソースパッケージをアップロードします。
次のコマンドを実行してください。

$ dput mini-buildd-trusty sylpheed_3.4.1-ｭ
1ubuntu2~test1404+1_source.changes

　“dput”はコマンドですが、引数の“mini-buildd-
trusty”は、“mini-buildd-(最初に入力したIdentity)”
というルールがあります。よくわからない場合は
̃/.dput.cfの1行目にありますのでそれを参考にして
ください。

　パッケージのインストールは別のUbuntu 14.04で
行います。aptラインはトップページの“Overview”→
“(Show)”をクリック→ “trusty-test-unstable”の行を
クリックすると表示されます。今回の例では図7の
とおりです。次に、図8のコマンドを実行すると
パッケージがインストールされます。｢

パッケージのインストール

sylpheed (3.4.1-1ubuntu2~test1404+1) trusty-test-unstable; urgency=medium

 * Upload to mini-buildd.

 -- Awashiro Ikuya <ikuya@fruitsbasket.info> Sat, 16 Aug 2014 16:11:18 +0900

図6　Changelogの編集例

$ sudo bash -c 'echo "deb http://UbuntuTrustyBuildd.local:8066/repositories/test/ trusty-test-unstable ｭ
main multiverse restricted universe" >/etc/apt/sources.list.d/tmp.list'
$ sudo apt-get update
$ sudo apt-get --allow-unauthenticated install trusty-archive-keyring
$ sudo rm -rf /etc/apt/sources.list.d/tmp.list
$ cd /etc/apt/sources.list.d/
$ sudo ln -s /usr/share/mini-buildd/sources.list.d/trusty_trusty_test_unstable.list .
$ x-mac-japanese apt-get update
$ sudo apt-get install -t trusty-test-unstable sylpheed

図8　パッケージのインストール

$ deb http://UbuntuTrustyBuildd.local:8066/repositories/test/ trusty-test-unstable main multiverse ｭ
restricted universe

図7　今回のAPTライン

174 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

　8月3日にLinux 3.16がリリースされ、その
バグを修正したLinux 3.16.1も8月14日にリ
リースされています。さらに、Linux 3.17-rc1
もすでにリリースされていて、Linux 3.17に入
る機能がすでにでそろってきています。
　今月は残りのLinux 3.15の機能として、おも
にFUSEの更新を紹介します。

FUSEとは
　まずは、新しくwritebackサポートが行われ
たFUSEについて見ていきます。FUSEとは
“Filesystem in Userspace”の略称で、その名の
とおりファイルシステムをユーザランドで実装
できるようにするフレームワークです。一般に
Linuxのファイルシステムはカーネルの中で実
装されていますが、カーネルの中でファイルシ
ステムを実装するのにはいくつかの制限がつい
てしまいます。たとえば、カーネルの開発言語
であるC言語を使わなければいけないことや、
既存のユーザランドで動作するライブラリを使
用できないことが挙げられます。この問題を解
決するのがFUSEです。FUSEを使うことでファ
イルシステムをユーザランドで実装できるよう
になります。ユーザランド上で実装を書くこと
ができるので、さまざまな言語で自分の好きな

ファイルシステムを実現できますし、万が一バ
グが起きてもカーネルが止まってしまうことは
なくなるので比較的安全な開発が可能になります。
Wikipediaにリストされている例注1の中では、
ssh接続先のファイルシステムをNFSライクに、
自分の手元にあるようにmountできるsshfsや、
WindowsのファイルシステムであるNTFSを
mountするNTFS-3Gなどが有名でしょうか。
変わったものではGmail上にメールとしてデー
タを保存するGmailFSや、Nagiosで監視して
いるマシンの監視項目とその値をファイルシス
テムとして読むことができるNagiosFSといっ
たものまで実装されています。

FUSEのしくみ
　FUSEはカーネル側の実装である fuse.koと
ユーザランドのプログラムとが/dev/fuseを通
じてデータをやりとりすることで実現されてい
ます。ユーザがFUSEのファイルシステムが
mountされているディレクトリ下に操作を行う
とそのことがユーザランドのプログラムに通知
されるので、プログラムはそのリクエストを処
理して、その結果をカーネルに返します。そして、

注1） http://en.Wikipedia.org/Wiki/Filesystem_in_User
space#Example_uses

Linux 3.15の機能
FUSEとサスペンドからの
復帰の高速化
Text：青田 直大　AOTA Naohiro

第31回第31回

http://en.Wikipedia.org/wiki/Filesystem_in_Userspace#Example_uses

174 - Software Design Oct. 2014 - 175

Linux 3.15の機能
FUSEとサスペンドからの復帰の高速化

第31回第31回

カーネルから元のユーザへとその結果が転送さ
れていきます。
　たとえば fusedirにFUSEをmountしている
としましょう。“ls fusedir/foo”というコマンド
を実行すると、lsがシステムコールstatを発行
します。カーネルがシステムコールに対応す
fuse.ko内の関数を呼び出し、FUSEはstatであ
れば“LOOKUP”というメッセージの IDと、そ
の引数であるファイル名の“foo”をプログラムに
通知します。FUSEのプログラムはこれに対して、
ファイル“foo”の inode番号やパーミッション、
リンク数といったデータを返します。fuse.koは
そのデータを適宜変換して、“ls”に“fusedir/
foo”のstat情報が返されます。
　通常FUSEのプログラムは libfuseを用いて
実装します（図1）。この libfuseが /dev/fuseと
の通信を実現するので、プログラムは statや
readやwriteといったそれぞれのファイルシス
テムの処理を行う関数を登録し、カーネルから
のメッセージを待つイベントループを実行する
関数を呼び出すだけで、通信内容を知らずにプ
ログラムを実装できます。
　しかし、今回は/dev/fuseを使ったプログラ
ムとカーネルとのやりとりを詳しく見るために、
あえて libfuseを使わずに簡単なファイルシステ
ムを実装してみましょう（リスト1）。今回の実
装ではmountしたディレクトリの直下のファイ
ルを“ls -l”で参照し、ファイルを読み込むと“test
data”が3行出力され、書き込みができるだけの
ファイルシステムを作ってみます。

FUSE：初期化
　FUSEのプログラムが実行されるとまずは
mountを行わなければいけません。nmountオプ
ションには/dev/fuseを開いているファイルデ
スクリプタ番号を指定する必要があるので、
/dev/fuseを開いて、そのほかのmountオプショ
ンをつけてmount()を呼び出します（リスト1 ❶）。
mountのソース部分はとくに解釈されません。

また、typeの部分を“fuse”としていますが、“fuse.
sshfs”のように“.”のあとに、より詳しいtypeを
指定することもできます。
　mountのあとは、まずINITメッセージを受信
し、その返信から行います。カーネルからのメッ
セージは/dev/fuseを開き、mountオプションに
指定したファイルデスクリプタから読み込むこ
とで受信できます（リスト1 ❷）。読み込まれた
データには、まず先頭にすべての種類のメッセー
ジに共通で先頭にstruct fuse_in_headerのデー
タが入っています。ここには次のデータが入っ
ています。

◦	メッセージ長
◦	オペコード
◦	メッセージ番号
◦	ノードID
◦	ユーザID・グループID
◦	プロセスID

　オペコードはFUSE_LOOKUPなどファイル
システムの操作の種類を示し、ノード IDは
inode番号と同じようなファイル識別のための番
号で、ファイルシステムのディレクトリの場合、
1となっています。ユーザID・グループID・プ
ロセスIDがファイルシステムの操作を行ったユー
ザ・グループ・プロセスを示すために使われます。
　INITメッセージの場合には、このヘッダのあ
とにカーネル側のFUSE実装のバージョン番号
や、有効な機能などを示すフラグなどのデータ
が入ったstruct fuse_init_inのデータが続いて

 ▼図1　libfuseを用いたFUSEの動作

ls foo

FUSE

libfuse

glibc

fuse.koVFS

ls

glibc

/dev/fuseシステムコール

176 - Software Design

Linuxカーネル観光ガイド

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/fuse.h>
#include <sys/mount.h>
#include <string.h>
#include <unistd.h>

#define SIZE 132*1024
#define DATA "test data¥ntest data¥ntest data¥n"
#define min(a, b) (((a)<(b))?a:b)

void reply(int fd, int unique, int error, void* data, int len)
{
 char buf[SIZE];
 struct fuse_out_header out;
 out.unique = unique;
 out.error = error;
 out.len = sizeof(out) + len;

 memcpy(buf, &out, sizeof(out));
 if (len != 0)
 memcpy(buf + sizeof(out), data, len);
 write(fd, buf, out.len);
}

int main()
{
 // open /dev/fuse
 int fd = open("/dev/fuse", O_RDWR);

 // ❶ mount
 char tmp[128];
 snprintf(tmp, sizeof(tmp), "fd=%i,rootmode=40000,user_id=0,group_id=0", fd);
 mount("", "/home/naota/fusemount", "fuse", MS_NOSUID ¦ MS_NODEV, tmp);

 struct fuse_in_header *in;
 char buf[SIZE];
 size_t n;

 // ❷ init
 n = read(fd, &buf, SIZE);
 in = (struct fuse_in_header*)&buf;
 printf("unique: %llu, opcode: %i, nodeid: %lu, insize: %zu, pid: %u¥n",
 (unsigned long long) in->unique, in->opcode,
 (unsigned long) in->nodeid, n, in->pid);
 struct fuse_init_in *init_arg = (struct fuse_init_in*)((void*)&buf + sizeof(struct fuse_in_ ｭ
header));
 printf("INIT: %u.%u¥n", init_arg->major, init_arg->minor);

 // ❸ init reply
 struct fuse_init_out outarg;
 memset(&outarg, 0, sizeof(outarg));
 outarg.major = FUSE_KERNEL_VERSION;
 outarg.minor = FUSE_KERNEL_MINOR_VERSION;
 outarg.max_write = outarg.max_readahead = 0x20000;
 //outarg.flags = FUSE_WRITEBACK_CACHE;
 //outarg.flags = FUSE_BIG_WRITES;
 reply(fd, in->unique, 0, &outarg, sizeof(outarg));

 while(1) {
 n = read(fd, &buf, SIZE);
 in = (struct fuse_in_header*)&buf;
 printf("unique: %llu, opcode: %i, nodeid: %lu, insize: %zu, pid: %u¥n",
 (unsigned long long) in->unique, in->opcode,
 (unsigned long) in->nodeid, n, in->pid);
 switch(in->opcode) {
 case FUSE_LOOKUP:
 {

 ▼リスト1　fuse.c FUSEを使った簡単なファイルシステム実装

176 - Software Design Oct. 2014 - 177

Linux 3.15の機能
FUSEとサスペンドからの復帰の高速化

第31回第31回

 char *name = buf + sizeof(struct fuse_in_header);
 printf("lookup: %s¥n", name);
 struct fuse_entry_out e;
 memset(&e, 0, sizeof(e));
 e.nodeid = e.attr.ino = 2;
 e.attr_valid = e.entry_valid = 1;
 e.attr.mode = S_IFREG ¦ 0644;
 e.attr.nlink = 1;
 e.attr.size = strlen(DATA);
 reply(fd, in->unique, 0, &e, sizeof(e));
 }
 break;
 case FUSE_OPEN:
 {
 struct fuse_open_out o;
 memset(&o, 0, sizeof(o));
 reply(fd, in->unique, 0, &o, sizeof(o));
 }
 break;
 case FUSE_READ:
 {
 struct fuse_read_in *rin = (struct fuse_read_in*)((void*)buf + sizeof(struct fuse_in_ ｭ
header));
 if(rin->offset < strlen(DATA)) {
 char *d = strdup(DATA);
 reply(fd, in->unique, 0, d + rin->offset, min(strlen(DATA)-rin->offset, rin->size));
 } else {
 reply(fd, in->unique, 0, NULL, 0);
 }
 }
 break;
 case FUSE_GETATTR:
 case FUSE_SETATTR:
 {
 struct fuse_attr_out a;
 memset(&a, 0, sizeof(a));
 a.attr_valid = 1;
 a.attr.mode = S_IFREG ¦ 0644;
 a.attr.nlink = 1;
 a.attr.size = strlen(DATA);
 reply(fd, in->unique, 0, &a, sizeof(a));
 }
 break;
 case FUSE_WRITE:
 {
 struct fuse_write_in *w = (struct fuse_write_in*)((void*)buf + sizeof(struct fuse_in_ ｭ
header));
 struct fuse_write_out wout;
 int offset = sizeof(struct fuse_in_header)+sizeof(struct fuse_write_in);
 buf[offset+w->size] = '¥0'; buf[offset+10] = '¥0';
 printf("write(%d): %s¥n", w->size, buf+offset);
 memset(&wout, 0, sizeof(wout));
 wout.size = w->size;
 usleep(1000000UL * w->size / 131072);
 reply(fd, in->unique, 0, &wout, sizeof(wout));
 }
 break;
 case FUSE_RELEASE:
 reply(fd, in->unique, 0, NULL, 0);
 break;
 default:
 // その他の操作には実装されていないというエラーを返す
 reply(fd, in->unique, -ENOSYS, NULL, 0);
 }
 }

 close(fd);
 return 0;
}

178 - Software Design

Linuxカーネル観光ガイド

います。今回のコードではとりあえずバージョ
ン番号を表示しているだけでとくに使いません。
INITメッセージを受け取ると、受け取ったこと
をfuse.koへと返信する必要があります。返信用
に今回はreply関数を作っています。返信は受
信のときと同様に、/dev/fuseを開いたファイル
デスクリプタへの書き込みで行います。書き込
まれるデータにも、読み込み時と同様にヘッダ
としてstruct fuse_out_headerを必ず付けます。
ここにはメッセージ長とエラー番号（成功の場合
は0）とメッセージ番号を指定します。ヘッダの
あとにメッセージの種類に対応したデータを付
けます。INITの場合、struct fuse_init_outのデー
タを入力します。ここでフラグの設定をするこ
とでプログラムが対応している拡張が有効とな
ります。今回はバージョン情報と書き込みサイ
ズとreadaheadのサイズだけを指定しておきま
す（リスト1 ❸）。

FUSE：
各操作への対応

　初期化が終われば、あとはループを行いfuse.
koから/dev/fuseを通して読みとったリクエス
トに対応していくコードが続きます。ここでは
LOOKUP、OPEN、GETATTR、SETATTR、
READ、WRITE、RELEASEだけに対応する
コードを書き、ほかの操作については -ENO
SYSをエラー番号に指定した返信を行い、実装
されていないことをファイルシステム操作を行っ
た側に通知しています。
　各操作について見ていきましょう。LOOKUP
は前述したようにファイルが存在するかどうか
を調べる操作です。引数としてファイル名その
ものがヘッダのあとに入っています。指定され
たファイルのパーミッションなどの情報を
struct fuse_entry_outに設定して返信します。
今回はどんな名前であろうと、inode番号が2の
通常ファイルであるという現実的にはおかしな
返答を行います。OPENはフラグとファイルハ
ンドルの情報が入ったstruct fuse_release_inの

データを送ってきますが、今回はそれらを完全
に無視してゼロ埋めstruct fuse_open_outを返
しています。
　READではstruct fuse_read_inにファイルハ
ンドルや読み取り位置とサイズなどの情報が入っ
てきます。指定されたオフセットとサイズに合
わせて、ファイルデータをヘッダのあとに付け
て返信しています。GETATTRとSETATTR
の場合はLOOKUPと同様にパーミッションな
どの情報をstruct fuse_attr_outに設定して返信
します。ノードIDが1の場合はディレクトリと
して、それ以外の場合にはLOOKUP同様に通
常ファイルとしての返信を行っています。本来
はSETATTRの場合には、struct fuse_setattr_
inに設定すべき属性情報が入ってくるのですが
今回は完全に無視してしまいます。
　WRITEではstruct fuse_write_inに書き込み
位置やサイズなどのデータが入り、さらにその
あとに書き込みデータが入ってきます。書き込
みを行い、struct fuse_write_outに書き込んだ
サイズを設定して返答します。今回の実装では、
書き込まれたデータとサイズとを表示し、それ
以外は何もせずにあたかもすべて書き込まれた
かのような返答を行います。さらに、今回は
usleep()を入れて書き込みが呼び出されるたび
に128KBあたり1秒かかるような設定にしてい
ます。RELEASEはclose()に対応する操作です。
単純に成功の返信を行います。

FUSE:実行例
　このプログラムをコンパイルしroot権限で実
行することでプログラム中に記載されているディ
レクトリにこのプログラムによるファイルシス
テムがmountされます。この後図2のように ls
やcatといったコマンドを実行してみると、プロ
グラムから図3のような出力が得られます。プ
ログラムで設定したパーミッションやファイル
サイズといった情報が出ていること、ファイル
の中身が読み取れることがわかります。さらに

178 - Software Design Oct. 2014 - 179

Linux 3.15の機能
FUSEとサスペンドからの復帰の高速化

第31回第31回

ディレクトリを“ls”すると、実装していないオ
ペコード=27（READDIR）のメッセージが来て
いることがわかります。ここで-ENOSYSを返
しているので、“ls”も“Function not implemented”
というエラーを出力しています。

FUSE：
writebackサポート

　さて、ここで適当なサイズのファイルを作り、
cpコマンドを使ってファイルをこのファイルシ
ステム下にコピーすると4KBごとにWRITEが
呼び出されます。これまでFUSEの書き込みは
writethroughに実現されていました。すなわち
WRITEのたびに、これが完了しFUSEのプロ
グラムが返信するまでwrite()を行った側は待た

されてしまいます。つまり、今回WRITEのた
びにスリープしているので、たとえば1,280KB
のデータをコピーするのに10秒間cpが終了し
ないことになります。今回はてきとうなFUSE
実装ですが、現実的にもネットワークを使った
FUSE実装の場合にも同様の問題が起きること
があります。
　この問題に対処する1つ目の方法はより大き
なバッファを使うことです。INIT時にFUSE_
BIG_WRITESをフラグに指定すると、4KB以
上最大128KBのバッファでWRITEが行われる
ようになります。これによってWRITEが呼び
出される回数は減少します。もう1つの方法が
Linux 3.15で実装されたwritebackキャッシュ
を使う方法です。INIT時にFUSE_WRITE

$ sudo ls -l fusemount/{foo,bar}
-rw-r--r-- 1 root root 30 Jan 1 1970 fusemount/bar
-rw-r--r-- 1 root root 30 Jan 1 1970 fusemount/foo
$ sudo cat fusemount/foo
test data
test data
test data
$ sudo ls -l fusemount
ls: cannot open directory fusemount: Function not implemented

 ▼図2　FUSE上での操作例

$ gcc fuse.c; sudo ./a.out; sudo umount fusemount
（INITの部分）
unique: 1, opcode: 26, nodeid: 0, insize: 56, pid: 0
INIT: 7.23

（ls -l fusemount/fooに対応）
unique: 2, opcode: 1, nodeid: 1, insize: 44, pid: 3730
lookup: foo
unique: 3, opcode: 22, nodeid: 2, insize: 72, pid: 3730

（ls -l fusemount/barに対応）
unique: 4, opcode: 1, nodeid: 1, insize: 44, pid: 3730
lookup: bar

（cat fusemount/fooに対応）
unique: 5, opcode: 1, nodeid: 1, insize: 44, pid: 3774
lookup: foo
unique: 6, opcode: 14, nodeid: 2, insize: 48, pid: 3774
unique: 7, opcode: 15, nodeid: 2, insize: 80, pid: 3774
unique: 8, opcode: 3, nodeid: 2, insize: 56, pid: 3774
unique: 9, opcode: 25, nodeid: 2, insize: 64, pid: 3774
unique: 10, opcode: 18, nodeid: 2, insize: 64, pid: 0

（ls -l fusemountに対応）
unique: 11, opcode: 3, nodeid: 1, insize: 56, pid: 3986
unique: 12, opcode: 27, nodeid: 1, insize: 48, pid: 3986
unique: 13, opcode: 27, nodeid: 1, insize: 48, pid: 3986

 ▼図3　プログラムの出力

180 - Software Design

Linuxカーネル観光ガイド

BACK_CACHEをフラグに設定することで、デ
フォルトのwritethroughのキャッシュポリシー
からwritebackのキャッシュポリシーへ切り替
わります。これでwriteを行っている側が待た
されることはなくなり、速くなることが期待さ
れます。
　では、writebackとwritethroughとで1,280KB
のファイルをコピーしてみましょう（図4）。
writethroughの場合は10回の呼び出しが行われ
毎回1秒待機するのでどのcpも10秒かかってい
ます。一方で、writebackの場合にはwriteが待
たされるかどうかはシステムのメモリ管理ルー
チンが判断することになり、ばらつきが大きくなっ
ています。また、FUSEプログラムのwriteで
の出力を見ていると、writethroughでは書き込
みサイズが毎回128KBであったのに対して、よ
り小さいサイズで呼び出されていることもある
ことがわかります。
　今回の実験ではいまひとつの結果になってい
ますが、FUSEでの書き込みパフォーマンス向
上が期待されます。sshfsなどにも実装されると
いいですね。

サスペンドからの
復帰の高速化

　Linux 3.15での最後の機能紹介はサスペンド
からの復帰の高速化です。これまでサスペンド
からの復帰時には、ディスクに復帰コマンドを
送り、ディスクが復帰して返答してくるまで待
ち続けていました。待っている間はカーネルは
何も作業をしていないので、この時間は無駄に
なっています。そこでLinux 3.15ではコマンド
を送ってから即時にほかの作業を行い、復帰後
の作業は返答が来てから行われるように変更さ
れました。この変更によってサスペンドからの
復帰が速くなっています。01.orgにパッチ前、パッ
チ後の復帰を比較するグラフがあるのでぜひそ
れも見てみてください注2。

まとめ
　今回はLinux 3.15の最後の機能紹介として、
FUSEとサスペンドからの復帰の高速化につい
ての紹介を行いました。次回はLinux 3.16と
Linux 3.17について扱います。｢

注2） https://01.org/suspendresume/blogs/tebrandt/2013/
hard-disk-resume-optimization-simpler-approach

（writethroughの場合）
$ echo 3 ¦sudo tee /proc/sys/vm/drop_caches; for x in `seq 1 5`;do time sudo cp testdata2 ｭ
fusemount2/foo;done
3
sudo cp testdata2 fusemount2/foo 0.00s user 0.01s system 0% cpu 10.044 total
sudo cp testdata2 fusemount2/foo 0.00s user 0.01s system 0% cpu 10.032 total
sudo cp testdata2 fusemount2/foo 0.00s user 0.00s system 0% cpu 10.062 total
sudo cp testdata2 fusemount2/foo 0.00s user 0.12s system 1% cpu 10.311 total
sudo cp testdata2 fusemount2/foo 0.00s user 0.01s system 0% cpu 10.227 total

（writebackの場合）
$ echo 3 ¦sudo tee /proc/sys/vm/drop_caches; for x in `seq 1 5`;do time sudo cp testdata2 ｭ
fusemount2/foo;done
3
sudo cp testdata2 fusemount2/foo 0.00s user 0.01s system 0% cpu 9.704 total
sudo cp testdata2 fusemount2/foo 0.00s user 0.01s system 0% cpu 14.071 total
sudo cp testdata2 fusemount2/foo 0.00s user 0.01s system 0% cpu 9.013 total
sudo cp testdata2 fusemount2/foo 0.00s user 0.01s system 0% cpu 11.003 total
sudo cp testdata2 fusemount2/foo 0.00s user 0.01s system 0% cpu 9.062 total

 ▼図4　writebackの実験

https://01.org/suspendresume/blogs/tebrandt/2013/hard-disk-resume-optimization-simpler-approach

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Oct. 2014 - 181

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

2014年9月号
 第1特集
この夏に克服したい2つの壁
C言語のポインタと
オブジェクト指向
 第2特集
止まらないサービスを支えるシステム構築の基礎
クラスタリングの教科書
 一般記事
・SoftLayerを使ってみませんか？
・NICをまとめて高速通信！（前編）
・Serf・Consul入門 特別定価（本体1,300円＋税）

 第1特集
設定ファイルの読み方・書き方でわかる
Linuxのしくみ
 第2特集
Windows XPからの乗り換えにいかが？
Ubuntu 14.04 "Trusty Tahr"過酷な
環境でも信頼できるLTSバージョン
 一般記事
・Google Glassアプリ開発事情
・OpenTSDB（前編） ほか

2014年6月号

定価（本体1,220円＋税）

 第1特集
<Java/JavaScript/PHP>言語別で考える
なぜMVCモデルは
誤解されるのか？
 第2特集
ネットワークエンジニア養成
ロードバランサの教科書
 一般記事
・さらに踏み込む、Mac OS Xと仮想デスクトップ #2
・SIMのしくみ

2014年4月号

定価（本体1,219円＋税）

 第1特集
［多機能］［高速処理］［高負荷対策］
そろそろNginx移行を考えている
あなたへ
 第2特集
知っているようで知らない
DHCPサーバの教科書
 一般記事
・OpenSSLの脆弱性"Heartbleed”の教訓（前編）
・Webアプリのパフォーマンス改善（最終回） ほか

2014年7月号

定価（本体1,220円＋税）

2014年5月号
 第1特集
ネットワーク・ビギナー向け基礎講座

「ポート」と「ソケット」がわかれば
TCP/IPネットワークがわかる！
 第2特集

UNIX必須コマンドトレーニング
rmコマンドからcadaverまで基本を押さえる

 一般記事
・Rettyのサービス拡大を支えた「たたき上げ」DevOps
・Webアプリのパフォーマンス改善 ほか

定価（本体1,220円＋税）

 第1特集
システムログからWebやDB、ビッグデータの基礎
まで
ログを読む技術
 第2特集
forkを通して考える・試す・コードを読む
Linuxカーネルのしくみを探る
 一般記事
・OpenSSLの脆弱性"Heartbleed”の教訓（後編）
・使ってみよう！ tcpdump

2014年8月号

定価（本体1,220円＋税）

http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

182 - Software Design

基礎的事項として、4つのポイントを解説しました。
　最初のポイントは、アプリケーション開発におけ
るIPv6対応です。IPv4とIPv6の共存期間は当面続く
と予想されており、その間はIPv4とIPv6の双方の
環境で動作するシステムが求められます。単一の
ソースコードで両方の通信環境に対応しなければな
りません。また、IPv4かIPv6かを意識させないため
に、FQDN（Fully Qualified Domain Name）でサーバ
を識別し、IPアドレスでホストやユーザを識別しな
いことが重要となってきます。
　2つ目のポイントは、プログラミング言語と実行
環境のIPv6対応です。とくに名前解決機構（正引き
／逆引き）がIPv6アドレスを適切に扱えること、IPv6
で通信できることが重要になります。このあたりは
プロダクトによってサポート状況に差異があるのが
実情です。開発するアプリケーションの提供機能を
考慮して、利用するプログラミング言語やプロダク
トごとに個別に判断する必要があるでしょう。
　3つ目のポイントは、通信処理のIPv6対応です。
IPv4/IPv6両方で通信するということは、そのいず
れかで通信できない状況を想定する必要があります。
また、クライアントとサーバがともに複数のIPアド
レスを持つことも意味します。それぞれどのアドレ
スが使用されるかはWebアプリ側では予測できない
ため、特定のアドレスを想定したシステムを構成す
るべきではありません。
　4つ目のポイントは、IPv6アドレスをデータとして
扱う場合に、表記のゆらぎを防止するために、完全
表記もしくはRFC5952（推奨表記）を利用するという
ことです。これらが問題になるケースとして、デー

　今回は、7月に名古屋と福岡で行った研究会の報告
をお送りします。

	 ■IPv6時代のWebアプリケーション&

	 　プラットフォーム2014

	【講師】波田野 裕一（日本UNIXユーザ会）

	【日時】2014年7月4日（金）16:25〜17:10

	【会場】名古屋国際センター4F展示室

　名古屋大会は筆者（波田野）が講師となり、Webア
プリケーション（以下、Webアプリ）のIPv6対応の基
本的なポイント、クラウドやVPSなどでのIPv6利
用について解説しました。参加者は42名でした。
　はじめに、IPv6を取り巻く環境について説明をし
ました。2011年前半に、アジア太平洋地域のIPv4ア
ドレスの在庫が枯渇してから3年が経過し、通信事
業者やISP各社のIPv6対応サービスが拡大してきて
います。一方で今年の6月に、北アメリカのARIN
と南アメリカのLACNICが相次いでIPv4アドレス
の事実上の枯渇宣言をしており、IPv4アドレスは事
実上枯渇したと言って良い状況です。
　このようなIPv6環境の普及およびIPv4アドレス
の枯渇により、「IPv4のみ」の運用から「IPv4とIPv6
の共存期」に移行する時期にきています。Webアプリ
については、上記の状況をふまえて「IPv6を意識し
なければいけない個所」「IPv4との違い」の2点を意識
していく必要があります。
　続いて、IPv6に対応したWebアプリ開発に必要な

名古屋大会

インターネットの今後について考えた2連戦

NO.36
October 2014

日本UNIXユーザ会　http://www.jus.or.jp/
波田野 裕一　HATANO Hirokazu　tcsh@tcsh.csh.sh
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/

Oct. 2014 - 183182 - Software Design

タベースへの格納、ログ出力、WebフォームへのIP
アドレス入力、IPv6アドレスの検索や整列の場合な
どが挙げられます。
　最後に、IPv6対応プラットフォームの国内での状
況について解説しました。2013年半

なか

ばからVPS
（Virtual Private Server）でIPv6ネイティブの接続を
提供するサービスが増えてきており、個人でもIPv6
対応サーバを構築することが容易になってきている
ことをお伝えしました。
　参加者42名のうち、日常的にIPv6を利用してい
る方は1名だけで、まだまだこれからの技術だと認
識している方が多かったようです。一方で熱心に聴
講している方が多く、IPv6時代が近いことを感じて
いただけたかな、というのが講演後の印象でした。

	 ■APRICOT-APANにみる世界の

	 　インターネット事情

	【講師】谷崎 文義（NTT西日本）、

	 	 法林 浩之（日本UNIXユーザ会）

	【日時】2014年7月12日（土）15:00〜15:45

	【会場】福岡工業大学 B棟 B45教室

　福岡大会はFuture Syncというイベントの中で開催
しました。内容は、来年早春に福岡で開催される
APRICOT-APANの紹介と最近のインターネット事
情の解説です。講師はAPRICOT-APANの会場ネッ
トワーク担当の谷崎さんと筆者（法林）の2名でした。
　講演は、APRICOT-APANの開催概要から説明し
ました。APRICOTもAPANもアジア太平洋地域の
インターネット技術を扱う国際会議です。APRICOT
がおもに管理／運用分野の集まりであるのに対して、
APANは学術研究分野の集まりです。両イベントと
もそれぞれ年1～2回の会合を持っていますが、同時
に開催されるのは4年ぶりで、さらに日本での同時
開催は初となります。
　次に、世界のインターネットがどのように管理さ
れているかのしくみを説明し、続いてAPRICOT-

APAN 2015のスケジュールを紹介しました。2月24
日（火）～28日（土）はAPRICOT Workshopsで、ハン
ズオン形式で学習するセッションが行われます。翌
週の3月2日（月）～5日（木）がAPRICOT 2015と
APAN 39で、これがいわば本編です。基調講演、カ
ンファレンス、チュートリアルなど50以上のセッ
ションが行われ、両イベント合わせて1000人程度が
参加します。最終日の3月6日（金）はAPNICが抱え
る課題を話し合うAPNIC Member Meetingで、これ
のみ参加費が無料です。
　APRICOT Workshopsで行うハンズオンのテーマ
は、BGP、MPLS、ネットワーク管理などが多いで
す。一方、カンファレンスではセキュリティやIPv6
への移行などがよく出る話題ですが、最近はそれら
に加えてインターネットガバナンスに関連したセッ
ションが多く実施されています。
　インターネットのルール策定に関する議論では、
参加資格を問わないオープン性、参加者の立案によ
るボトムアップ、意思決定の過程が公開される透明
性が尊重されてきました。しかし、これは電話を中
心とした電気通信の世界とは正反対の考え方であり、
インターネットにも厳格な管理や秩序を求める人た
ちが出てきています。このような状況が、インター
ネットの意思決定のしくみを議論するガバナンス関
連の話題がさかんになっている理由であり、今後の
インターネットの方向性を考えるうえで避けては通
れない重要な話題であることをとくに強調しました。
　最後にAPRICOT-APANの参加方法と、国内で行
われる関連イベントとしてInternet Week、JPNIC
オープンポリシーミーティング、JANOGなどを紹介
して講演を締めくくりました。
　今回、Future Syncに参加したことで、オープン
ソースカンファレンスとは異なる客層にも話を聴い
てもらえたのはとても有意義でした。とくにイン
ターネットガバナンスの話題は、ネットワーク管理
／運用分野ではよく知られていますが、ほかの分野
の人はおそらく初めて聞く話だったと予想されま
す。今後もこのような機会を見つけて啓蒙活動を
行っていきたいと思います。｢

福岡大会

インターネットの今後について考えた2連戦 October
2014

184 - Software Design

福島のITコミュニティが
一丸となって開催

　今回は本連載第14回（2013年2月号）でも紹介さ
せていただいた「ITスキルアップコミュニティ エフ
スタ !!注1」が、2014年7月12日から13日にかけて開催
した福島県内最大のITイベント「エフサミ注2」のレ
ポートをお送りします。エフスタ !!は原発問題を抱
える福島県は郡山から、ITによって福島県を盛り上
げ、県外の人達にも楽しんでもらいつつ福島の今を
知ってもらうための活動を精力的に続けています。
　福島県は明治9年に3つの県が統合されてできた
大きな県で、浜通り、中通り、会津といった3つの
縦断された地域で成り立っています。そうした背景
もあり、3つの地域に存在するITコミュニティも震
災以前はそれほど連携はありませんでした。それが
震災を契機に徐々につながりはじめ、連載第31回
（2014年7月号）で紹介した震災後3年を振り返った
イベントのとおり、会津、中通り、浜通りの開発者
達がつながり、協力し合い、今回の「エフサミ」の開
催となりました。

イベントの様子

　エフサミは土曜日と日曜日の2日間に分けて、い
くつかのトラック構成でさまざまなセッションが催
されました（写真1）。
　Hack For Japanスタッフでもある及川卓也による
基調講演でスタートした初日は、5つのトラック＋子
供向けのワークショップトラックで構成されました。
　「Fukushima」トラックはこれからのITを知って

注1	 http://www.efsta.com/
注2	 http://summit.efsta.com/2014/

もらうことをテーマとし、後述の「Fab蔵
くら
注3」の紹介

や、Kinect2に代表されるモーションセンサーの活
用、福島県でのセンサー活用の紹介がメインとなる
セッション構成でした。
　「Koriyama」はITの面白さを知り、強い興味を
持ってもらうためのトラックで、セキュリティの裏
側を詳しく解説するものから、Webや感情のデザイ
ン、ゲームを遊ぶ側から作る側へといった中身の濃
い話が中心でした。
　「Aizu」トラックは福島県の地元企業や学生、コ
ミュニティメンバーによる発表が中心で、福島から
IT活動を発信することのおもしろさ、やりがいを
伝えてくれました。
　「Iwaki」トラックの目玉である自由参加なライト
ニングトークでは、エフスタメンバーのほかにも精
力的に活動している熱い人達の話が聞け、「Kura」ト
ラックではAWSやAzureといったプラットフォー
ムのエヴァンジェリストが実際に手取り足取り教え
てくれるハンズオンスタイルで、来場者が最新のク
ラウド環境での開発を学べました。
　2日目はYahoo!やGoogle、Microsoftといった企業
による講演や「福島のITで日本を元気に！」をテーマ

注3	 http://www.fabkura.org/

Hack For Japan
エンジニアだからこそできる復興への一歩

エフサミ2014レポート第34回
“東日本大震災に対し、自分たちの開発スキルを役立てたい”というエンジニアの声をもとに発足された
「Hack For Japan」。今回は福島県で行われたITイベント 「エフサミ」の報告です。

●Hack For Japanスタッフ
　及川 卓也　Takuya Oikawa
　 Twitter @takoratta
　鎌田 篤慎　KAMATA Shigenori
　 Twitter @4niruddha

◆◆写真1　会場の様子

http://www.fabkura.org/
http://www.efsta.com/
http://summit.efsta.com/2014/

Oct. 2014 - 185

エフサミ2014レポート第34回

にしたアイデアソン、また、
GoogleやMicrosoftによる
ハンズオンのワークショッ
プが中心となりました。
　両日共に開催された
「Mirai」トラックでは、未
来の希望である子供達に
ITの面白さを知ってもら
うために、デジタル絵本のワークショップや描いた
絵をゲームに登場させたり、モーションセンサーを
使った遊びを行うセッションがあり、子供達にも大
好評でした（写真2）。そうした盛況な様子が話題と
なり、テレビ局からの取材も入りました。子供達の
様子や各セッションの様子などとあわせ、代表の大
久保仁さんへのインタビューなどが収録され、イベ
ント開催中に放送されました。
　また、今回のイベントでは会場でコーヒーが振る
舞われたり（写真3）、似顔絵コーナーを設ける（写
真4）など、幅広い層の参加者が楽しめる空間作り
がされていました。ほかにも登壇者の気さくな一面
を知ってもらおうという企画のラジオ番組風対談も
実施され、オンラインで生放送されるなど、勉強会
を中心としたITコミュニティのイベントの中でも、
これほどまで細部にわたり企画され、盛りだくさん
で楽しめるイベントはなかなかないと思います。

セッションの紹介

　行われたセッションの主なものを紹介します。

基調講演「ITから福島、東北、日本の
未来を考える」

　基調講演ではHack For Japanスタッフの及川が
インターネットの誕生から今までを振り返りまし
た。TCP/IPのデザインの根幹にあるSlow Startを
紹介し、私たち一般の考え方にも“Think Big, Start
Small, Scale Fast”という考えを適用しようと呼び
かけました。

インターネットの世界で
働くことについて

　2日目の大手インターネット企業が講演する

「Fukushima」トラックでは、Hack For Japanスタッ
フでもあり、普段はYahoo! JAPANに勤務してい
る鎌田篤慎から、インターネットの世界で働くこと
についての話を中心に、Yahoo! JAPANの紹介もし
ました。
　今回のエフサミではITを学ぶ学生の参加者が多
かったことから、学生達にIT業界で働くことに興
味を持ってもらうように心がけ、鎌田自身のイン
ターネット企業に転職するまでの経緯から、未知の
領域に挑むインターネット企業の仕事内容をさまざ
まな角度から比較をしてみました。そして世界のト
レンドを紹介し、未来を担う学生にIT業界で働く
ことの意味と、さらなる可能性を秘めた仕事である

◆◆写真2　Miraiトラックで遊ぶ子供達

◆◆写真3　屋上のカフェの様子

◆◆写真4　似顔絵コーナーの様子

186 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

ことを繰り返し伝えました。

福島や復興に関係するもの

　エフサミは、福島のコミュニティによって福島で
開催されたイベントということもあり、福島や復興
に関連するセッションがいくつか行われました。

●●Fab蔵のすべて
　Hack For JapanスタッフでもあるGClueの佐々
木陽さんは現在、会津若松市に「Fab蔵」という
Internet of Things（IoT）の時代に向けたモノづくり
を支援する施設を立ち上げています。このセッショ
ンでは、IoTの現状と今後の説明やFab蔵の紹介が
行われました。
　会津若松ということもあり、Fab蔵は使われなく
なった本物の蔵を再利用しており、紹介された写真
で見るだけですが、非常に雰囲気があります。この
ようなユニークな施設にレーザーカッターや3Dプ
リンタなど必要な機器が常設されており、すぐにア
イデアを試してみることができます。
　Fab蔵では定期的なワークショップを行い、コ
ミュニティとしての知識の底上げを図るとともに、
ハッカソンや長めのハッカソン（Longハッカソンと
名づけています）、ハードウェアを中心としたイベ
ントであるガジェットソンなどを企画しています。
市外からの参加も歓迎のようですので、興味のある
人はぜひとも参加を検討してみてください。

●●福島のITで日本を元気に！ in 浜通り
　Aizuトラックでは、浜通り、中通り、会津の3
地域から発表がありました。
　まず、浜通りからは、いわき情報技術研究会注4

理事長の高山文雄さんと南相馬 ITコンソーシアム
監事である南相馬市議の但野謙介さんからお話があ
りました。ご存じのとおり、原発事故の影響もあ
り、厳しい状況にある浜通りです。たとえば、いわ
き明星大学では科学技術学部の募集を停止し、今後
は2学部体制（薬学部と教養学部）となるなど、事態

注4	 https://sites.google.com/site/iwakiit/home

は深刻です。
　いわき情報技術研究会は震災発生直後の2011年
5月に発足し、月1回の研究会を開催しています。
また、南相馬ITコンソーシアムも地域の産業復興
を担う人材の育成を目指して発足しました。実績と
して、南相馬発のアプリをすでにいくつもリリース
しています。
　いずれも復旧から復興に至る中で、人口減少など
地方の課題に取り組む手段としての ITに活路を見
出しています。

●●福島のITで日本を元気に！ in 中通り
　Aizuトラックの2つ目はエフスタ !!SENDAIの八
巻雄哉さんの司会で、㈱エフコムの斉藤広二さん、
林容崇さん、㈱福島情報処理センターの大和田洋介
さん、㈱会津ラボの稲澤麻弓さん、㈱ネクストの藤
原裕也氏さん、Studioisaacの清水俊之介さんという
地方と首都圏のエンジニアがそれぞれの立場でのエ
ンジニアライフを語る、ちょっと変わったセッショ
ンでした。
　地方と都市部という違いだけでなく、企業とフ
リーランスなどの異なる立場による考えの違いもあ
り、会場含めて有意義な議論がされました。多くの
学生も参加していましたが、何をやりたいのかビ
ジョンを明確にすべきという登壇者からのメッセー
ジは彼らにも響いたのではないでしょうか。

●●福島のITで日本を元気に！ in 会津
　CODE for AIZU注5は会津地域のIT企業・団体・
行政の有志や学生などが中心となり、地域の抱える
さまざまな課題を解決する方法を考え、アプリケー
ションやWebサービスとして開発・提供する草の根
的なコミュニティです。このセッションでは、
CODE for AIZUで活躍する3名が登壇しました。
　藤井靖史さんからは自らの持つスキルを使って地
域に貢献できるCODE for AIZUについての説明が
ありました。活動内容として、市役所やベンチャー
企業との連携、Code for Japan注6や他のCode for X

注5	 http://aizu.io/
注6	 http://code4japan.org/

https://sites.google.com/site/iwakiit/home
http://aizu.io/
http://code4japan.org/

Oct. 2014 - 187

エフサミ2014レポート第34回

たのですが、午後からは雨も小降りになり、屋外と
いうこともあって、和気あいあいとした雰囲気で開
催されました。
　参加者は4～6人のチームに分かれ、スマート
フォンアプリケーションを考えました。前半でアイ
デアを議論し、後半はペーパープロトタイプを行い
ます（写真5）。最初は知らない人同士であっても、
議論をしているうちに立派なチームメートになって
いく。そんなことを体験できるアイデアソンでし
た。次回はこのアイデアソンの名前である「青空ソ
ン」のとおり、青空の下で行ってみたいと、そんな
ことを思わせる一日となりました。

まとめ

　以上、エフスタが行ったエフサミ2014の2日間
の模様をお伝えしました。Hack For Japanスタッフ
がコンタクトをした際には、まだ小規模で、あくま
でも中通りの勉強会コミュニティであったエフスタ
が、福島の3地域のみならず東京をはじめとする関
東のエンジニアや東北地方のエンジニアを巻き込む
までの規模になったのも、エフスタスタッフをはじ
めとする関係者の努力の賜物でしょう（写真6）。
　とくに、今回のエフサミは学生が多く参加してい
たり、子供が楽しめる仕掛けがされているなど、首
都圏のイベントでも参考にすべき点が多くあったよ
うに思います。Hack For Japanとして、これからも
継続して応援をしていきたいと考えています。
　エフスタスタッフの方々、お疲れ様でした。s

との地域連携などの紹介がされました。
　前田諭志さんからはオープンデータによる地域エ
コシステム構築が紹介されました。オープンデータ
として提供されるデータはData for Citizen注7で整
備されているそうです。
　徳納弘和さんからは実際にオープンデータを使っ
たデモがを紹介されました。開発の際に、課題発
見、要求把握、オープンデータとしてのデータの存
在を検討することが重要と話されていました。

●● ITで地方を元気に！ コミュニティリーダートーク！
　「ITで地方を元気に！」は東北と北海道のコミュ
ニティリーダーによるトークセッションです。登壇
したのは、北海道を中心に活動するLOCAL注8の八
巻正行さん、仙台を中心に活動する東北デベロッ
パーズコミュニティ（TDC）注9の小泉勝志郎さん、
この連載でも何度か取り上げたことのあるイトナブ
石巻注10の古山隆幸さん、そしてエフスタ代表の大
久保仁さんとエフスタ東京の代表である影山哲也さ
んです。ファシリテータであるエフスタの浅井渉さ
んからの質問に登壇者が答える形でセッションは進
みました。笑いを交えて、各コミュニティリーダー
の思いが伝わる大変熱いセッションでした。

●●アイデアソン
　2日目には、会場外でアイデアソンも開催されま
した。最初は小雨がぱらつくあいにくの空模様だっ

注7	 http://www.data4citizen.jp/
注8	 http://www.local.or.jp/
注9	 http://tohoku-dev.jp/
注10	 http://itnav.jp/

◆◆写真5　青空ソンの様子 ◆◆写真6　エフサミ終了後の集合写真

http://www.data4citizen.jp/
http://www.local.or.jp/
http://tohoku-dev.jp/
http://itnav.jp/

188 - Software Design

Excelでのプロジェクト管理からの脱却第　　回1

Catch Up Trends in Engineering

Software Design編集部

迷えるマネージャのための

再入門
プロジェクト
管理ツール

もう

表計算ソフトに

頼らない

Oct. 2014 - 189

どのファイルが最新？ Excelに
よるプロジェクト管理の問題点
ソフトウェア開発などのプロジェクトをス

ムーズに進めるためには、作業内容やスケジュー
ル、解決すべき課題などを適切に管理すること
が重要になります。この目的を達成するために、
従来使われてきたのがMicrosoftの表計算ソフ
トであるExcelです。たとえば作業内容とその
スケジュールをまとめる工程管理では、左側の
列に作業内容を記載し、その右側に横棒で作業
の進捗状況を表すガントチャートを作成するケー
スが多いでしょう。対応すべき課題は、横軸に

「項番」「課題の内容」「優先度」「対応状況」といっ
た項目を並べ、縦軸に個々の課題を並べる表を
作成して管理するのが一般的です。
Excelは極めて柔軟性の高い表計算ソフトで

あり、上記のようなガントチャートや課題管理
表の作成にも十分に対応できます。しかし、そ
もそもExcelはプロジェクト管理に特化したツー
ルではなく、管理作業を効率化するという観点
ではけっして使い勝手がよいとは言えません。
たとえば複数のメンバがいるプロジェクトに
おいて、Excelで作成したガントチャートのファ
イルをサーバ上で共有し、それぞれのメンバが
そのファイルを更新することで進捗状況を管理

するとしましょう。Excelでは、1
人がファイルを開いていると、ほか
の人は内容を更新できず、ファイル
を開いている人が作業を終えるまで
待たなければなりません。とくにチー
ム規模が拡大すると、いつまでたっ
ても更新できないといった状況が発
生してしまいます。
このような事態を避けるため、プ
ロジェクト内のチームごとにファイ
ルを分け、適当なタイミングでマー
ジするという方法が採られることも
あります。ただ、この方法はそもそ
もめんどうなうえ、操作を誤ると一
部の内容が先祖返りするといったこ

図1　 アトラシアンが開発したプロジェクト管理ツールである ▼
 「JIRA」。Webアプリケーションとして動作し、各ユーザは
 Webブラウザを使ってアクセスする

プロジェクトの工程管理や課題管理において、古来（？）から使われ続けているのがExcelです。ただ
Excelでのプロジェクト管理にはさまざまな課題があり、管理効率という意味ではけっしてベストな選
択肢ではありません。この連載では、こうした課題を解決できる「プロジェクト管理ツール」について解
説していきます。第1回は、アトラシアンが開発・提供し、リックソフトが販売・サポートするJIRA（図
1）を紹介します。

新連
載

188 - Software Design Oct. 2014 - 189

第　　回1 　Excelでのプロジェクト管理からの脱却

とも起こりえます。
同じ内容のファイルが多数存在し、どれが最
新か判断できないということもよくあります。
たとえば、ファイルサーバ上に「課題管理表 .xlsx」
「課題管理表 -140901.xlsx」「課題管理表 -最
新 .xlsx」「課題管理表-コピー.xlsx」といったファ
イルが並んでいるような状況です。これでは、
どのファイルが最新で、新たな課題をどれに登
録すべきか頭を悩ませることになるでしょう。

マネージャの負担を大幅に軽減
するプロジェクト管理ツール
このような課題を解決するために、多くのプ

ロジェクトで利用され始めているのが「プロジェ
クト管理ツール」です。複数のユーザが同時に
利用できるサーバアプリケーションで、さまざ
まな情報を一元的に管理することにより、
Excelベースでのプロジェクト管理の問題を解
決し、さらに多くのメリットをプロジェクトメ
ンバにもたらします。
それでは、プロジェクト管理ツールを利用す

ることで、実際にどのようなメリットがあるの
でしょうか。提供されている機能はプロダクト
によって異なりますが、多くのプロジェクト管
理ツールで共通しているのがタスクや課題を「チ
ケット」と呼ばれる単位で管理するしくみです。
このチケットの使い方を具体的に見ていきま
しょう。作業すべきタスク、あるいは解決すべ
き課題が発生したら、まずチケットを作成し、
タスクや課題の内容と優先度、担当者、開始日
や期日などを設定します。さらに各々のチケッ
トにはステータスがあり、作業開始時には「作
業中」、終了すれば「作業完了」などとステータ
スを変更します。このチケットの一覧を見れば、
現状で発生しているタスクや課題とその担当者、
現在の状況などを把握できるというわけです。
さらに多くのプロジェクト管理ツールでは、

タスクや課題の管理だけでなく、チケットごと
のコメント欄やファイル共有スペースなど、メ
ンバ間の情報共有ツールとして使うための機能

も提供しています。
メンバ間のコミュニケーションにプロジェク
ト管理ツールを利用するメリットとして、コメ
ント欄に投稿した内容、あるいはアップロード
したファイルをプロジェクトメンバ全員で共有
できることが挙げられるでしょう。多くのプロ
ジェクトでは、このようなコミュニケーション
のためにメーリングリストが使われていますが、
プロジェクト単位のメーリングリストでは細か
なタスクや課題を議論するには不向きで、個人
対個人でのやりとりになりがちです。そうする
と情報が分散することになり、たとえば新たに
参加したメンバにこれまでの経緯を説明すると
いう場面で、過去のメールを洗い出して資料を
作るなどといった苦労をすることになりかねま
せん。その点、プロジェクト管理ツール上でコ
ミュニケーションを行っていれば、誰でも議論
の内容を把握でき、あとから参加したメンバも
これまでの経緯を追うことができます。
ステータスを見ることでプロジェクトメンバ

の作業状況をチェックできることもメリットで
す。もちろん一般的な工程管理表でも各メンバ
の作業内容を捕捉できますが、プロジェクトが
複雑になったり、メンバが増えたりすると更新
頻度が週1回程度になり、現状を正しく把握す
ることが困難になります。プロジェクト管理ツー
ルを使えば、各メンバがチケットのステータス
を適切に更新することで、今何をやっているのか、
これまでどの程度のチケットを処理しているの
か、たまっているチケットはどれくらいあるの
かなどをいつでも確認できるというわけです。

アトラシアンのJIRAでプロジェ
クト管理ツールを体験
プロジェクト管理ツールは現在数多く出回っ
ており、アトラシアンの「JIRA」やオープンソー
スの「Redmine」、ヌーラボがサービスとして提
供している「Backlog」などがあります。中でも、
オープンソースのApacheプロジェクトなどで
活用されていることからとくに注目されている

190 - Software Design

再入門プロジェクト管理ツール
迷えるマネージャのためのもう

表計算ソフトに
頼らない

Oct. 2014 - 191

のが JIRAです。実際、シスコシステムズや
salesforce.com、Adobe、LinkedInなどさまざま
な企業で活用されているほか、日本においても
ANAシステムズやインターネットイニシアティ
ブ（IIJ）などがJIRAを採用しています。以降で
は、このJIRAを利用して、プロジェクト管理
ツールの使い勝手をチェックしていきましょう。
JIRAでプロジェクト管理を行うには、まず「プ

ロジェクト」を作成します。タスクや課題は、
このプロジェクトにチケットを紐

ひも

付けて管理す
るという形です。JIRAではいくつかのプロジェ
クトタイプ（テンプレート）があり、「簡単な課
題トラッキング」「プロジェクト管理」「アジャ
イル かんばん」「アジャイル スクラム」などが
あらかじめ用意されています（図2）。
このプロジェクトの配下には、さらに「コン

ポーネント」と「バージョン」という課題を分類
するための項目があります（図3）。たとえばコ
ンポーネントであれば「サーバ」「データベース」
「ユーザインターフェース」など、バージョンは
「1.0」「2.0」といった形で設定します。これで課
題を作成する際、どのコンポーネントの課題な

のか、どのバージョンで対応するの
かを設定できるというわけです。
ここまで設定したら、実際にタス
クや課題を登録してみましょう。画
面上部にある「作成」をクリックする
と、課題の作成画面に遷移します（図
4）。ここでプロジェクトと課題タ
イプを選んで進むと、タスクや課題
の詳細を作成する画面が現れます。
ここでタスクの内容や優先度、期限、
担当者などを指定します。
この画面には、先ほど設定したコ
ンポーネントやバージョンを指定す
る項目もあります。バージョンは「影
響バージョン」と「修正バージョン」
の2つに別れており、たとえばバグ
修正をタスクとして登録する場合で
あれば、そのバグが影響するバージョ

ンを「影響バージョン」に、そのバグを修正する
バージョンを「修正バージョン」として登録すれ
ばよいでしょう。
登録した課題のページを開くと、設定した内

容を確認できます（図5）。上部にある「処理開始」
ボタンを押すとステータスが「進行中」に切り替
わり、「完了」をクリックすればステータスも「完
了」になります。「コメント」ボタンもあり、そ
のプロジェクトのメンバがその課題に対するメッ
セージを投稿することも可能です。

ダッシュボードや高度な検索な
ど多彩な機能を提供
JIRAの大きな特長として、こうして登録し

たタスクや課題をさまざまな観点から管理でき
ることが挙げられます。JIRAへのログイン直
後に表示される「ダッシュボード」には「ガジェッ
ト」を追加でき、課題をさまざまな形で表示で
きます。標準で用意されているガジェットには、
作成済みの課題と解決済みの課題の数をグラフ
表示する「作成済み vs 解決済みグラフ」や、課
題を解決するのにかかった時間をグラフ化する

図2　 実際にJIRAでプロジェクトを作成しているところ。複数のプ ▼
 ロジェクトタイプがあり、目的に応じて選択できる

図3　 プロジェクト配下にバージョンを作成した。作成したタスク ▼
 や課題は、これらのバージョンに紐付けて管理できる

190 - Software Design Oct. 2014 - 191

第　　回1 　Excelでのプロジェクト管理からの脱却

「解決時間」、担当者として自分が割
り当てられている課題をリスト表示
する「自分の担当課題」などがあり、
これらのガジェットを組み合わせて
オリジナルのダッシュボードが作れ
ます。
プロジェクト単位でのサマリーを

表示したり、レポートを作成したり
するための機能も用意されています。
レポートの種類にはバージョンや
ユーザごとの作業負荷を表示する
「バージョン作業負荷レポート」や
「ユーザ作業負荷レポート」、指定し
た項目におけるプロジェクト全体の
課題の割合を円グラフで表示する「円
グラフレポート」などがあり、プロ
ジェクトマネージャはさまざまな角
度からプロジェクトの状態を把握で
きるようになっています（図6）。
高度な検索機能やフィルタ機能が
提供されていることも、JIRAの大
きな特長です。JIRAには「JQL（JIRA
Query Language）」と呼ばれる専用
のクエリ言語があり、さまざまな条
件を設定して課題を検索できるほか、
その検索内容をフィルタとして使う
こともできます。また、作成したフィ
ルタをダッシュボードのガジェット
から利用できるのも便利でしょう。
ほかにもJIRAには便利な機能が多
数盛り込まれており、プロジェクト
管理におけるさまざまな課題を解決
できます。Excelによるプロジェク
ト管理に限界を感じているのであれ
ば、まずはJIRAを試してみましょう。
なおリックソフトでは、JIRAのデ
モ環境や体験版を提供しています。
ぜひアクセスしてみてください。ﾟ

JIRA体験版：
https://www.ricksoft.jp/product/atlassian/jira

アトラシアン製品のエキスパートであるリックソフトでは、
Webアプリケーションエンジニアやインフラ・ネットワーク
エンジニアを募集中です！ 従業員数25名のうちエンジニア
が17名という、エンジニア中心の会社で活躍してみませんか？

https://www.ricksoft.jp/

図4　 タスク登録画面では、要約や優先度、期限、影響バージョン、 ▼
 担当者などを登録することが可能

図5　 実際に登録した課題を表示したところ。ステータスを切り替 ▼
 えることで、このタスクに対する作業状況を明示できる。「コ
 メント」ボタンでメッセージも残せる

図6　 登録されているタスクや課題の数を、担当者別やバージョ ▼
 ン別、解決状況別などの形で集計し、グラフ化できる

https://www.ricksoft.jp/product/atlassian/jira
https://www.ricksoft.jp/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.link.co.jp/
http://app-plat.jp/

195 - Software Design Oct. 2014 - 195

夜間作業・ランチ後などの睡魔とアツいバトルのお供に、Linuxに用意されている数えきれないほどのコマンドを使った知的な遊びをす
るをのはいかがでしょうか。ここでご提案する遊びの1つが「片手入力コマンド古今東西」でございます。コマンドを入力しまくりの読者
諸氏はスラスラと出てくることでしょう。「あれ？　こういうコマンドを打ったことがあるような」とmanで調べてみたら元カノと入力し
たコマンドで甘く切ない思い出もあわせてよみがえ……なワケないな。別の遊びで「コマンドしりとり」もあります。よーし、「a」から始
めるよー。at tac cut tail lpr rev vmstat top ps strace ed df free……続きはみなさんでやってください。

食
欲
の
秋
を
迎
え
撃
つ
た
め
に
、毎
晩
の
ラ
ー
メ
ン
二
郎
を
欠
か
さ
な
い
く
つ
な
先
生
に
、愛ツ

イ
ー
ト
と
か
メ
ー
ル
と
か

の
ム
チ
を
!

作）くつなりょうすけ
@ryosuke927

①②

cat！

pkill！date！strace！ tree！

nohup！

wget！

tar！nl！ atq！

これで
どうや！

ぐぅ
……

な……
なんや
てぇぇぇ！

あいつら
何してんだ？

「片手で打てるコマンド
古今東西」ですって。
仕事するように指導して
ください。今すぐに！

……

③

⑤

⑨⑩⑪

⑫⑬

⑥⑦⑧

④

コマンド古今東西第10回

ファイルの内容
を連結して標準
出力する。

ディレクトリの中
身を木構造のよ
うに表示する。

システムの時刻
の表示／設定
を行う。

プロセスを起動して、
システムコールをト
レースする。

プロセス名パターン
にマッチするプロセ
スにシグナルを送
信する。

ハングアップシグ
ナルの影響を受け
ずにコマンドを実
行する。

非対話式ネット
ワークダウン
ローダ

多くのファイルを
1つのアーカイブ
に保存・復元する。

ファイルに行番
号を付与する。

実行されていない
コマンドジョブ
キューを表示する。

196 - Software Design

SD News & Products

　8月23日、お台場の日本科学未来館（東京江東区）で
2014年のLightweight Language（以下、LL）イベン
ト「LL Diver（昼の部）」が開催された。LLイベントは
2003年に始まり、今年で12回目。毎年イベントの名
称が変わり、今年は「12年の間に『どうやって仕事で使
うか』から『現場投入されているLLをどうよく扱うか』
まで状況が大きく変わったLLを深掘りしたい」という
思いから、LL Diverという名称になった。主催は、日
本UNIXユーザ会を中心とした団体「LLイベント実行委
員会」。法林浩之氏がメインの司会を務めた。会場では、

LLに関する講演・セッ
ションが開催された
ほか、オライリー・
ジャパンやユニバー
サル・シェル・プロ
グラミング研究所な
どが物販や見本誌展
示を行った。

エディタ対決（仮）
　Emacs、Vim、Atom、Sublime Textの4つのエディ
タについて、それぞれの愛好者4人（吉田昌平氏、
kaoriya氏、mizchi氏、平出弥彦氏）が壇上に登り、パ
ネルディスカッションを行った。
　ディスカッション開始前、会場の観客に対して、仕事
で使用しているエディタについてのアンケートが出さ
れ、「Vim→Emacs→Atom→Sublime Text」の順に
人気だという結果が出た。壇上のスピーカーによると、
昔は、「Emacsは若い人に、Vimは若くない人に人気が
ある」印象だったが、今はまったく逆だという。Emacs
か、Vimか、どちらのエディタが優れているかという話
題では、カスタマブルなEmacs、そのまま使えるVim
という構図で、意見が交わされた。
　新興のAtom、Sublime Textについては、日本語の
扱いにまだまだ難があるが、Atomの、手軽にライブラ
リをインストールできる「apm」、Sublime Textの、す
ばやくファイルを探せる「Goto Anything」などが紹介
されるなど、伝統的な2つのエディタに負けない魅力が

感じられた。
　「これからのエ
ディタ」という話
題に話が移ると、
統合開発環境の普
及により、コード
を書くのにエディ
タを使う機会は減
るのではないか、

というやや悲観的な意見も出たが、それに対して、開発
言語ごとのプラグイン（Javaのjava.vimやGo言語の
gocodeなど）も充実してきており、コーディングする
環境としてはまだまだ価値がある、といった意見も出さ
れた。

bashでCMS作った上田だけどなんか質問ある？
　USP友の会会長の上田隆一氏は、司会役の法林浩之
氏とともに、シェルスクリプトについてのトークショー
を行った。
　上田氏はシェルスクリプトで開発を行うようになった
経緯について、「できるだけ速く作り上げたい、を追求
していった結果、シェルにたどり着いた」と語った。また、
シェルで開発を続けるモチベーションについて質問され
た際は、「シェルを普及させたいという気持ちでやって
いる」と答えた。7月に発売された、上田氏が執筆した

『フルスクラッチから1日でCMSを作る　シェルスクリ
プト高速開発手法入門』（KADOKAWA）の紹介では、「話
をもらった時点ではどのような人が買うのだろうと不安
だったが、予想外に多く売れて驚いている」と語った。

毎年恒例「夜の部」
　昼の部終了後、会場は東京カルチャーカルチャーに移
り、ソフトウェア開発者が目撃したひどい設計のプロ
グラムを紹介し合う「この設計がひどい2014」、使っ
ているプログラミ
ング言語のダメな
ところを語り合う

「帰ってきただめ
自慢」の2つのイ
ベントが行われ、
お酒を交えながら
の歯に衣着せぬ
トークが繰り広げ
られた。

LL Diver、開催Report

LL Diver公式ページ
URL http://ll.jus.or.jp/2014/

CONTACT

▲USP友の会会長　上田隆一氏 ▲日本UNIXユーザ会幹事
　法林浩之氏

▲夜の部「この設計がひどい2014」

▲エディタ対決（仮）

▲IT系専門書の物販、見本誌展示

http://ll.jus.or.jp/2014/

Oct. 2014 - 197

SD News & Products

　8月1日および2日、京都リサーチパークにおい
て、「オープンソースカンファレンス2014 Kansai@
Kyoto」（以下OSC京都）が開催された。京都でのオー
プンソースカンファレンス開催は今年で8回目。オープ
ンソースにかかわるさまざまな企業・団体が、ブースの
出展とセミナーを行った。

LilyPad研究会@ノートルダム
　OSC京都の運営にも携わった京都ノートルダム女子
大学の学生数名を中心とした「LilyPad研究会@ノート
ルダム」のブースでは、マイコンLilyPadと、日本語プ
ログラミング環境PENを使った「エプロンコンピュー
タ」が展示された。このエプロンコンピュータには温度
センサーを使った相性診断の機能が実装されており、エ
プロンのポケット越しに2人の人間がセンサーを触ると
温度が感知され、相性を診断できる。
　開発に参加した女子大生はいずれも文科系の学部所属
で、プログラミングは初心者。エプロンコンピュータ

の開発は2014年6月ご
ろから始まり、大学の試
験期間と重なったことも
あってなかなか開発に時
間がとれなかったそうだ
が、楽しんでプログラミ
ングの勉強と開発ができ
たとのことだ。

Ubuntu Japanese Team
　イベント2日目、Ubuntu Japanese Teamの長南浩
氏がセミナーを行った。最初に、10月23日にリリース
される「Ubuntu 14.10（Utopic Unicorn）」を紹介した。
Utopic Unicornは9ヵ月間のサポート期間ということ
で、LTSよりも期間が短いことに注意する必要がある。
　現行の「Ubuntu 14.04（Trusty Tahr）」について
は、Japanese Remixの日本語環境が強化されたこ
と、アプリケーションのメニューをグローバルメニュー
に表示できるようになったことが紹介された。また、

利 用 に あ た っ て のTipsと
して、非公式のリポジトリ

「パーソナル・パッケージ・
アーカイブ（PPA）」を紹介
し、これによって、エディタ

「Atom」のインストールや、
「Ambiance & Radiance
Colors Version」でデスク
トップのカスタマイズが可能
になると語った。

日本アイ・ビー・エム

　IaaS（Infrastructure as a Service）製品である
「SoftLayer」について、日本アイ・ビー・エム㈱の2名
のスピーカーがセミナーを行った。
　北瀬公彦氏はSoftLayerについて、①グローバルな
高速ネットワーク、②物理サーバと仮想サーバの柔軟な
コントロール、③豊富なAPIという点で、ほかのクラ
ウド製品と比べて優位性があると語った。とくに①に
ついては、㈱データホテルの事例を取り上げて説明し
た。同社は日本と韓国にデータセンターを持ち、そのほ
かのアジア・北米・欧州でのサービスにはSoftLayer
を利用している。また、今年2014年には、日本にも
SoftLayerのデータセンターが開設される予定だ。
　 ま た、 高 良 真 穂 氏 はSoftLayerが、Parallels、
VMware、Dockerといった複数の仮想化システム、
Evault、Chef、Vyattaといったさまざまなサービ
スと連携できることを説明した。最後には、マイコン
Raspberry PiにSoftLayerのAPIをインストールし、
カメラの映像をオブジェクトストレージへ自動的に保
存する自作の監視カメラを紹介し、会場を驚かせた。
　

イベントフィナーレ
　2日目最後のセミナープログラムとして、計9組によ
るライトニングトークが行われた。
　2014年4月に鹿児島で発足したLinuxやPC UNIX、
OSS関連の勉強会「鹿児島らぐ」や、同じく今年4月
から活動を始めた、コンピュータの原理に関する京都
での勉強会「MyCom Cafe
Kyoto」など、小規模ながら
も魅力的な団体の発表が目を
引いた。
　閉会式では、OSC京都実
行委員長である京都ノートル
ダム女子大学の吉田智子氏が
閉会式に集まった大勢の出展
者・来場者に向けて、感謝の
意と閉会の挨拶を述べた。

オープンソースカンファレンス2014
Kansai@Kyoto、開催Report

オープンソースカンファレンス2014 Kansai@Kyoto
URL http://www.ospn.jp/osc2014-kyoto/

CONTACT

▲エプロンコンピュータ

▲日本アイ・ビー・エム 高良真穂氏

▲Ubuntu Japanese Team
　長南浩氏

▲京都ノートルダム女子大学
　吉田智子氏

▲日本アイ・ビー・エム 北瀬公彦氏

http://www.ospn.jp/osc2014-kyoto/

198 - Software Design

SD News & Products

　パラレルス㈱は、Mac上でWindowsを実行でき
る仮想化ソフトウェア「Parallels Desktop 10 for
Mac」を8月26日に発売した（既存ユーザ向けのアッ
プグレード版は8月20日から）。
　「Parallels Desktop for Mac」シリーズはMac用
の仮想化ソフトウェア。Mac上で、Windowsをはじめ、
OS X、各種Linux OSなどの仮想マシン（以下、VM）
を同時に起動できる。最新版ではおもに、次のように
性能が向上した。

¡¡次期のOS XであるYosemiteを含むAppleの最新
OSへの対応
¡¡DockのVMアイコンにファイルをドラッグ&ドロッ
プすることでWindowsアプリケーションを簡単に
開けるなど、操作性が向上
¡¡CPUは16スレッド、RAMは64GBまでサポート
¡¡仮想マシンがMacのディスク領域を必要な容量だけ
使用
¡¡VMのメモリ使用率の低減やバッテリー持続時間の
延長など、全体的なパフォーマンスの向上

　8月20日に行われた当製品の発表会では、同社の
クロスプラットフォームソリューションズ担当プロダ
クトマネージャのカート・シュマッカー氏が製品のデ
モを行った。氏は、持参した2年前発売のMacBook
AirにYosemiteを イ ン ス ト ー ル し、 そ の う え で
Windows 7、8、OS X LionのVMを同時に稼働させ、
ることで製品のパフォーマンスをアピールした。
　価格は、8,500円（税込み）、アップグレード版は
5,300円（税込み）となっている。

パラレルス㈱
URL http://www.parallels.com

CONTACT

パラレルス、
「Parallels Desktop 10 for Mac」を発表Software

リンク、エーティーワークス、
Trimコマンドに対応したSSD RAIDマシンの提供を開始Service

　㈱リンクと㈱エーティーワークスが共同で展開して
いるホスティングサービス「at+link」は、9月10日か
ら、専用サーバサービスのオリジナルマシンATシリー
ズにおいて、SSDをRAID構成で搭載した「AT02-G2

（SSDタイプ）」の提供を開始した。
　AT02-G2（SSDタイプ）は、障害耐性・可用性が要
求されるデータベースサーバや、高い信頼性が必要な
アプリケーションサーバなどの用途に適している。ま
た、RAID構成でありながらTrimコマンド（OSから
SSDに対し、あらかじめ削除を行うデータ領域を通
知するコマンド）
に対応しており、
SSDの残り容量
が少ない状態で
使用した場合で
も、高速な読み
書きを実現でき
る。
　記憶媒体とし
てFlashメ モ リ

を採用したSSDは、ランダムアクセス時の読み書き性
能がHDDなどの磁気ディスクと比べて高速な点を特
長としており、at+linkでは2009年6月からSSDを
搭載したサーバを提供している。「SSDを障害耐性・
可用性の高い構成で利用したい」というユーザ企業か
らの要望に応えて、今回、SSDをRAID構成としたモ
デルを提供するに至ったとのこと。

▲パラレルス㈱　カート・シュマッカー氏

　　　　▲AT02-G2（SSDタイプ）

▼AT02-G2（SSDタイプ）詳細

CPU Xeon E3-1230 v3 (1.8GHz)

ストレージ
標準：SSD 120GB×2 (RAID 1)
最大：SSD 240GB×2 (RAID 1)

メモリ 標準：4GB
最大：16GB

OS CentOS 6（x64）
初期費用 168,000 円

月間利用料
19,000 円〜

（2 台目以降は 14,000 円〜）

㈱リンク
URL http://www.link.co.jp/

CONTACT
㈱エーティーワークス
URL http://www.atworks.co.jp/

http://www.parallels.com
http://www.link.co.jp/
http://www.atworks.co.jp/

Oct. 2014 - 199

SD News & Products

㈱アックス
URL http://www.axe-inc.co.jp/

CONTACT
わさらぼ合同会社
URL http://wasa-labo.com/

　特定非営利活動法人エルピーアイジャパン（以下、
LPI-Japan）は、「HTML5プロフェッショナル認定試験
レベル2」を9月24日に配信開始する。
　試験は、HTML5、CSS3、JavaScriptなど、最新の
マークアップ言語に関する技術力と知識を、LPI-Japan
が公平かつ厳正に、中立的な立場で認定する認定資格
である。2014年1月から配信している「レベル1」は、
HTML5の技術やメリットを活かした、静的コンテン
ツを構築する実力を認定するための試験。出題範囲は
HTML5の要素やCSSを中心に設計されている。今回
配信開始される「レベル2」は、HTML5を活用した動的

なWebアプリケーションを設計・作成する実力を認定
することを目的としている。おもに、JavaScript言語や、
HTML5で利用できる主要なJavaScript APIなどの知
識とスキルが問われる内容となっている（詳しい試験範
囲はhttp://html5exam.jp/outline/objectives_lv2.htmlを
参照）。
　受験料は15,000円、試験方式はコンピュータベース
トテスト（団体受験用にペーパーテストも実施される）。

CONTACT 特定非営利活動法人 エルピーアイジャパン
URL http://www.lpi.or.jp/

LPI-Japan、
「HTML5プロフェッショナル認定試験レベル2」を
配信開始

Topic

アックス、
わさらぼの「Synthesijer」をサポート

　㈱アックスは、FPGA（Field-Programmable Gate
Array：製造後でも回路の書き換えができる集積回路）
開発マーケットに向けて、わさらぼ合同会社が開発した
抽象度の高い高位合成処理系「Synthesijer」をサポー
トすることを発表した。
　Synthesijerは、プログラミング言語Javaで書かれ
たプログラムをFPGAの論理回路に変換できるツール。
ソフトウェアとして書かれたアルゴリズムから、FPGA
上の専用ハードウェアを合成できる。Javaを用いるこ
とで、VHDL（回路設計用のハードウェア記述言語）で
は記述が難しいとされる、変数が多用されたアルゴリズ

ムを容易に記述できる。
　アックスは、自社のハードウェア・コンサルティング、
ソフトウェア技術、オープンソースサポート体制により、

「Synthesijer」をサポートするとのこと。わさらぼは、
Synthesijerを通じて「ソフトウェアとハードウェアの
垣根を越えて目的に合致したシステムを手軽に開発でき
るようにすること」を大きな目的としている。

Software

　8月5日、トレンドマイクロ㈱の総合サーバセキュリ
ティ対策製品「Trend Micro Deep Security」をリモー
トで運用、監視するサービスを、㈱日立システムズが提
供開始することが発表された。
　ユーザのITシステム上にあるセキュリティデバイス

（ファイアウォール、IPSなど）をSecurity Operation
Center（以下、SOC）からリモートで運用、監視する
日立システムズのサービス「SHIELDセキュリティデバ
イス監視サービス」の対象に、同セキュリティ対策製品
を追加する形での提供となる。
　サーバ上のOSやアプリケーションの脆弱性を突く

攻撃パケットを検知・防御する「Trend Micro Deep
Security」を日立システムズのSOCからリモートで運
用、監視することで、分散されたITシステムにおいても、
セキュリティ対策として均一的なポリシーの適用が可能
となり、分散したITシステムでも、ホスト型で強固な
セキュリティを保つことができる。

日立システムズ、トレンドマイクロ、
「Trend Micro Deep Security」の監視サービスを
提供開始

Service

㈱日立システムズ
URL http://www.hitachi-systems.com/

CONTACT
トレンドマイクロ㈱
URL http://www.trendmicro.co.jp/

http://www.hitachi-systems.com/
http://www.trendmicro.co.jp/
http://html5exam.jp/outline/objectives_lv2.html
http://www.lpi.or.jp/
http://www.axe-inc.co.jp/
http://wasa-labo.com/

200 - Software Design

SD News & Products

CONTACT CommVault Systems Japan㈱
URL http://www.commvault.jp/

　Bluetooth Special Interest Group（以下、BSIG）
は8月22日、品川の東京コンファレンスセンターで
Bluetoothの最新動向に関する発表を行った。発表会で
は、全世界におけるBluetoothのブランド戦略を担当す
るBSIGのエリット・クローター氏を始め、BSIGのメ
ンバ企業のスピーカーが登壇した。
　BSIGのクローター氏は、Bluetooth Low Energy（以
下、BLE）に対応した機器「Bluetooth Smart」の普及

について、ウェアラブル端末に
適した低消費電力がカギになっ
たと語った。とくに、家庭内の
家電製品をネットワークにつな
ぎ、自動制御を行う「スマート
ホーム」の分野でのBluetooth
Smartの成長率は、2013年か
ら2014年までで232％増と見
込んでいる。

Nordic Semiconductor ASAの山崎光男氏
　同社カントリー・マネージャの山崎氏は、システム・

オン・チップデバイス「nRF51 IC」を紹介した。この
デバイスでは、Bluetooth Smartや、2.4GHzの独自プ
ロトコル、ANTプロトコルを同時に動作させることが
できる。また、アプリケーションのコードは、プロトコル・
スタックから独立した形でコンパイル／リンクされるた
め、アプリケーションの修正がスタックに影響を与えな
い。それにより、安全で迅速な開発ができるとのこと。

シーエスアール㈱の篠崎泰宏氏
　同社開発の独自技術「CSRmesh」は、Bluetooth機
器を相互接続し、1台のBluetoothハブから、そのネッ
トワーク上のすべての端末を操作できるというもの。
FAEディレクターの篠崎氏は、CSRmeshを活用して
建物の中の照明機器を1つのスマートフォンで操作する
内容のデモビデオを見せた。

Bluetooth Special Interest Group、
Bluetooth最新動向～Bluetooth Smartの普及Report

　8月26日、CommVault System社は、統合データ
管理プラットフォーム「Simpana」について、クラウド
データ自動管理機能を備えた新しいソリューションセッ
トをリリースすることを発表した。
　Simpanaは、バックアップ・アーカイブ・レプリケー
ション・ストレージリソース管理・全文検索などの機能
を、単一プラットフォームで行えるソフトウェア。
　今回リリースされるソリューションセットはAmazon
Web Services、Microsoft Azureを新たにサポートし、
堅牢なクラウドレポーティングや、セルフサービスプロ
ビジョニング、リカバリ、ソフトウェアスナップショッ
ト、仮想マシンのリソース管理といった機能が利用でき
る。これら新しいSimpanaソリューションセットは、
日本では2014年10月1日から利用できる。ソリュー
ションセットのラインナップは次のとおり。

¡¡Simpana for VM Backup, Recovery and Cloud
Management

　対応するすべてのプラットフォームに対して、単一の
インターフェースで、自身のVMプロビジョニング、管

理、バックアップ、リカバリ、リタイヤメント、アーカ
イブ操作を行える

¡¡Simpana for IntelliSnap Recovery
　アプリケーション整合のあるハードウェアスナップ
ショット、レプリケーション、リカバリを統合／合理化
できる

¡¡Simpana for Endpoint Data Protection
　効率的にデバイスをバックアップし、セキュアなアク
セスやセルフサービス検索機能を提供することにより、
モバイルワークフォースの保護と有効活用を実現できる

¡¡Simpana for Email Archive
　Microsoft Office 365、Outlook、Exchange、IBM
Lotus Noteをサポートし、オンプレミス／クラウド環
境で、デプロイできる

CommVault Systems Japan、
データ管理プラットフォーム「Simpana」新ソリューション
セットを発表

Software

▲BSIG　Errett Kroeter氏
Bluetooth Special Interest Group
URL https://www.bluetooth.org

CONTACT
Nordic Semiconductor ASA
URL http://www.nordicsemi.com/

シーエスアール㈱
URL http://www.csr.com/

https://www.bluetooth.org
http://www.nordicsemi.com/
http://www.csr.com/
http://www.commvault.jp/

Oct. 2014 - 201

SD News & Products

　8月14日、メカトラックス㈱は、小型コンピュータボー
ド「Raspberry Pi」と簡単に接続できる携帯電話無線網

（3G）通信モジュール「3GPI」を発売した。
　本製品は、Raspberry Pi（typeB、B+推奨）に接
続でき、電源を供給する機能も備えている3G通信モ
ジュール搭載基板。低価格のデータ通信専用SIMなどで
の利用を想定している。同梱されるSDカード内に、ア
クセスポイント設定や通信不調時の自動リセット機能
などが、Linux環境（raspbian）とともに構築されてお
り、3G通信モジュールの使用に慣れていない人でも、
HTTPプロトコルなどを用いて簡単にM2M（Machine-

to-Machine）機器な
どの開発ができる。
　先行リリースの限
定20台 は す で に 完
売。今後の発売時期
は未定だが、価格は3
万円程度を想定して
いるとのこと。

メカトラックス、
Raspberry Piと接続できる3G通信モジュール「3GPI」を
発売

Hardware

メカトラックス㈱
URL http://www.mechatrax.com/

CONTACT

　　　　　　▲3GPI

　㈱日経BP社は、Microsoft Windows Server 2003
（以降、WS2003）のサポート終了が2015年7月15日（日
本時間）に迫る中、「2020年へのITパラダイムシフト
〜さらばWindows Server 2003〜」と題したセミナー
イベントを開催した（東京：8月26日／大阪：8月28日）。
　特別協賛の日本マイクロソフトとインテル、そして
移行をサポートするベンダー各社による本セミナーは、
WS2003が稼働している企業に対してサポートが終了
することによって発生するリスクを周知することと、移
行に際しての選択肢を提供することが主な目的。
　マイクロソフトの調査によれば、2014年6月末時

点で国内で稼働しているWS2003の台数は約30万台。
移行はオンプレミスだけではなくホスティングやクラウ
ドを視野に入れ、「適材適所で組み合わせて全体を最適
化する」というのがほぼ統一の見解として語られていた。
早急に（1）既存環境の棚卸し（2）移行先の選択（3）予
算とスケジュールの確認を進めることを呼びかけた。
　詳細な情報は、Windows Server 2003移行ポータ
ルサイト（http://aka.ms/ws03mig）を参照。

CONTACT 主催　ITpro
URL http://itpro.nikkeibp.co.jp/

日経BP社、
ITpro EXPO Special in Summer 2014

「2020年への ITパラダイムシフト～さらばWindows
Server 2003～」開催

Report

2014年10月3日、
「Design Solution Forum 2014」開催

　2014年10月3日、新横浜国際ホテル（神奈川県）
において、設計者主体のセミナーイベント「Design
Solution Forum 2014」が開催される。
　本イベントは、「エンジニア同士のさまざまな情報共
有を目指し、個人のスキルアップやキャリアアップ、
業務におけるエンジニアリングの改善・効率化、新た
なビジネスの創出・育成につながる、『人』と『技術情
報』の交流の場を創出すること」が目的。「Design」、

「Verification」、「Software」、「FPGA」といったキー
ワードを基に、設計現場のエンジニアがプログラムを企
画し、デザイン事例と技術トレンドの紹介を中心にセッ

ションを行う。イベントの最初に行われる基調講演では、
「IoT、次世代移動通信5Gの動向とエレクトロニクスの
展望」と題して、㈱NTTドコモの二方敏之氏が登壇す
る予定。
　入場は無料だが、Web（http://www.dsforum.jp/
registration.html）での登録が必要となる。

Event

Design Solution Forum 2014実行委員会
URL http://www.dsforum.jp/

CONTACT
一般社団法人日本エレクトロニクスショー協会
URL http://www.jesa.or.jp/

http://www.mechatrax.com/
http://aka.ms/ws03mig
http://itpro.nikkeibp.co.jp/
http://www.dsforum.jp/registration.html
http://www.dsforum.jp/registration.html
http://www.dsforum.jp/
http://www.jesa.or.jp/

202 - Software Design

第1特集
ログを読む技術

　システムログ、アクセスログ、クエリロ
グ、エラーログなど、システムを日々運
用していると、ログが蓄積されていきま
すが、放っておいては宝の持ち腐れで
す。本章ではログを分析・利用すること
で、管理・運用の効率を上げる方法を解
説しました。

この少ないページ数でここまで幅広くカ
バーできているのは驚き。ログの由来
であったり、anacronの情報であったり、
知らないtipsがたくさんあった。

東京都／藤田さん

前回アンケートで「ログまわりについて
書いてほしい」と書いたら、特集された
のでうれしかったです。とても助かりま
した。

長野県／金井さん

オープン系のエンジニアではないが、ア
プリケーション側からの解析に役立つと
感じた。

東京都／Shimizusさん

第5章は、ログをCLIで分析するときに
参考になる例が多くて楽しんで読めまし
た。また、FluentdとMongoDBの連
携も試してみたくなりました。このよう

に、通常の業務で使っているノウハウが
あると参考になるため、ぜひまた特集し
てほしいです。

千葉県／今井さん

自作PCでWheezy（Debian 7）をイン
ストールして使っているのですが、起動
時にエラーがゾロゾロと出ます。ATA、
すなわちドライブのエラーのようなので
すが、一瞬で流れていくので、よくわか
りません。起動時のログを読めるように
なると、解決策が見つかるかもしれませ
んが、まだそこまで到達していません。
この特集を参考にして、何とか解決した
いです。

愛知県／ｋｍさん

Webalizerやtailコマンドなど、実
際の現場で使われているログの読

み方は貴重な情報でしたね。エラーが出
ていないからといって読んでいなかった
ログをいざ見てみると、改善できる部分
を発見できるかもしれません。

第2特集
Linuxカーネルのしくみを探る

　Linuxシステムを構築・運用するときに、

OSの核となる「カーネル」の中身につい
て知っておけばいろいろと役立つことが
あるでしょう。カーネルの機能のうち、
「プロセス管理」に注目して、そのしくみ

を解説しました。

裏側のしくみを知る機会が得られてとて
もよかった。自分で調べるにも時間が限
られていたりするので。

東京都／大塚さん

Linuxカーネルの中身についてプロセス
やスレッドがどのように働いているのか
順序だてて書かれていてよかった。
LinuxだけでなくほかのOSにおける
カーネルでも同じように動いているのだ
ろうか。

北海道／村橋さん

入門編としてよかった。もっと周辺の知
識もちりばめてもよかった。

大阪府／ドモチェフスキーさん

普段使っているシステムの内部が
どうなっているか、何が起きてい

るかを知ることは大切です。時間に余裕
があるときなど、カーネルのソースコード
を一から眺めてみるのもいいかもしれま
せんね。

一般記事　OpenSSLの脆弱性
“Heartbleed”の教訓（後編）

　C言語で書かれたOpenSSLのソース
コードを見ながら、Heartbeat Buffer

Overreadの脆弱性がどのように実装され

「LL Diver」「YAPC」「PyCon」「RubyKaigi」など、8～9月にかけて言語系の
イベントが続きました。取材でイベントへ行くと、いろいろな国の人たち、若い
人からそうでない人まで、プログラミング技術について真剣に議論している様子
がみられます。仕事の延長としてだけではなく、生活の一部として取り組んでい
るからこそ、真剣になれるのだろう、と思いました。

言語系イベントが熱い！！

2014年8月号について、たくさんのお便りをありがとうございました！

Oct. 2014 - 203

たかを説明しました。

報道されてから、ずっと気になっていま
した。

大阪府／牧さん

メモリに読み込まれてバイナリで解析さ
れてしまう弱点は困りますね。

千葉県／Tayuさん

心電図と記事がマッチしていた。
福島県／ライヘンさん

単純な実装ミスが世界規模の大
問題になった「Heartbleed」。世の

中ではRubyやPerlなどのスクリプト言語
が流行っていますが、これを機にC言語
でメモリの扱い方について勉強を始めて
みるのはいかがでしょうか。

自宅などでサーバを運用していると、自
分がLinuxやサーバについて何でも知っ
ているかのような錯覚を起こす。しか
し、こういった専門書を読むことで自分
を現実に引き戻すことができます。あら
ためて、自分がOSの数％しか利用して
いないことに気づかされ、無知を恥じな
がら学習する毎日です。

福島県／SonneTagebuchさん

弊誌ではさまざまな経歴を持った
著者の方に記事をお願いしていま

す。OSひとつをとっても、仮想化やカー
ネルの中身など、さまざまな観点から書
かれた記事を載せていますので、幅広い
知識が得られると思います。

一般記事
使ってみよう！tcpdump

　手軽に使えるコマンド「tcpdump」を
使って、ネットワークを流れるデータを出
力し、分析していきました。

その系統のソフトウェアはWireShark

しかまともに使ったことがないので、あ
らためて使ってみようと思いました。

神奈川県／miffさん

パケットレベルでの説明だったので非常
に参考になった。

大阪府／てんぷるさん

パケットのデータを、各プロトコル
のフォーマットに照らし合わせて見

ることで、ネットワークの流れを具体的に
イメージできたのではないでしょうか。

8月号のプレゼント当選者は、次の皆さまです
①Microsoft All-in-One Media Keyboard 東京都　室井武雄様
②OTG USBメモリ Mobile X20 ...大阪府　宮嵜一臣様

★その他のプレゼントの当選
者の発表は、発送をもって
代えさせていただきます。
ご了承ください。

フリートーク

　iPad Airなどの9.7インチサイズのタブレット端末は、画面が大き
くて見やすいのですが、片手で扱うには少々重たくて持ちにくいで
す。長時間、画面の縁をつかんで持っていると指が疲れてきます。
　そんな場合には、タブレット端末用のハンドストラップ「Tablet

Strap 360 by HELO Strap」を使うと、端末を手のひらの上に置くよ
うな状態で持てるので指が痛くなりません。ストラップでしっかり固
定されているため、落とす心配も少なくなります。たとえば、電車
の車内では、軽く人とぶつかったり、急ブレーキで体勢が崩れたり
しますが、そんなシーンでも容易には落とさないので安心です。
　ストラップを手にはめたまま、端末を360度回転させることもでき
ます（写真1）。素手で端末を持っている場合、縦から横に持ちかえ
るときは、両手で持ちかえなければいけませんが、本ストラップを
付けていると、指を添えて押すだけで縦横の向きを変えられるの
で、外出時に限らず室内でタブレット端末を使うときでも、本製品
の有用性を実感できます。本製品は9.7インチサイズ以上であれ
ば、iPad以外のタブレット端末でも使用できます。ただ、いくら便利
でも「歩きスマホ」ならぬ「歩きタブレット」はやめましょうね。

エンジニアの能率を高める一品
仕事の能率を高める道具は、ソフトウェアやスマートフォンのようなデジタルなものだけではありません。
このコーナーではエンジニアの能率アップ心をくすぐるアナログな文具、雑貨、小物を紹介していきます。

Tablet Strap 360 by HELO Strap
4,500円（税別）　スペックコンピュータ／http://spec-computer.co.jp/

写真1▶︎
ストラップを付
けたままで、
縦横の向きを
変えられる

http://spec-computer.co.jp/

Software Design
2014年10月号

発行日
2014年10月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2014年11月号
定価（本体1,220円＋税）

176ページ

November 2014
10月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2014 技術評論社

●今年の夏は80年代ロックを聴くことが多かった。

Duran DuranからスピンアウトのThe Power Station

のデジタルリマスターを買ったりした。当時はテー

プだったので音が悪かったのがよくわかった。今聴く

と、音の繊細さや当時のこだわりがわかってテクノロ

ジーに感謝した。（本）

●2000年に作成した仕事用のExcel VBAのプログラ

ムを改良した。14年前に、自分はこんな（無駄のた

くさんある）プログラムを書いていたのだなぁと実感。

ついでにバグも発見。最近はRubyでスクリプトを書

く案件もあり、頭の体操にいいなと思いつつ、久々

に夢の中でデバッグを実施した。（幕）

●夏休みは家族で千葉のマザー牧場に行ってきま

した。園内にコテージタイプの宿泊施設があって、

ちょっとした別荘気分。台所もあってみんなで夕食を

作ったり、畳の部屋でゴロゴロしたりと、かなりくつ

ろげました。外では牛の乳搾りをしたり、子ヒツジを

愛でたり、広い原っぱでゴロゴロしたり……（キ）

● Java特集では、コードばかりの誌面に少しかわい

い要素を加えたいと思い、イラストレータさんに女の

子の絵を描いてもらいました。そこにデザイナーさん

のセンスが加わり、想像以上に「萌えー」な誌面にな

りました。出来は大いに満足ですが、「萌え」は容易

に制御できるものではないな、と感じました。（よし）

●大阪で7月から8月にかけて開催された「レゴブ

ロックで作った世界遺産展」に行って来ました。ピサ

の斜塔や自由の女神像、金閣寺などがすべてレゴで

作られ会場中に展示されており、その再現度たるや、

本当にお見事でした。子供時代はレゴに熱中してい

たこともあり、レゴ熱が再燃しそうです！（な）

●にわか家庭菜園は難しかった。生き残ったキュウリ

の苗は結局変な虫がついて枯れ、オクラは元気だけ

れども実ができる気配はなし。豆苗と分葱は収穫で

きたけれども、一回限り……。水をあげてれば大丈

夫だろうと簡単に考えていたけど、きちんと勉強しな

いと収穫まではたどり着かないみたいです。（ま）

S D S t a f f R o o m

［第1特集］ 新技術動向に追いつけ！

LAMP環境再点検
昔のままの環境で大丈夫？
［第2特集］ x86サーバの性能を見抜く

サーバの目利きになる方法［後編］
ネットワークとストレージを極める

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

■2014年9月号　
　●目次②「SoftLayerを使ってみませんか？」
　　［誤］常田 秀樹 ［正］常田 秀明
　●連載「ITエンジニア必須の最新用語解説」(第69回)　P. ED-1
　　2014年8月号に掲載した第68回の記事を再掲載してしまいました。今号に第69回の記事を掲載しております。
　　また9月号のサポートWebサイト（http://gihyo.jp/magazine/SD/archive/2014/201409/support）から記事PDF
　　もダウンロード可能です。
　●連載「思考をカタチにするエディタの使い方　るびきち流Emacs超入門」(第5回)　P.122 [リスト1]
　　正しいコードは、「3行目にある(package-initialize)を1行目に移動させたもの」となります。
　　詳しくは9月号のサポートWebサイトでご確認ください。

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

休載のお知らせ
　「温故知新　ITむかしばなし」（第38回）は、著者急病のためお休みさせていただきます。

204 - Software Design

mailto:sd@gihyo.co.jp
http://gihyo.jp/magazine/SD/archive/2014/201409/support

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2014年10月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 今ふたたびのJava
	・第1章：Java 5/6/7の機能にみるリファクタリングの要点......大谷 弘喜
	・第2章：業務アプリケーションにも使えるJava 8のラムダ式......池添 明宏
	・第3章：Eclipseだけじゃない！　今どきの統合開発環境......今井 勝信
	・第4章：トラブル時に頼りになるJDKの解析ツール......上妻 宜人

	■第2特集 サーバの目利きになる方法（前編）......長谷川 猛
	・第0章：どんな環境でも使える力を培う
	・第1章：プロセッサの見方
	・第2章：システムメモリ
	・第3章：PCI Express

	■一般記事
	・AWS＋Windows環境における大規模ソーシャルゲーム開発／運用の実際【最終回】......吉崎 生
	・オーケストレーションツールSerf・Consul入門【Consul編】......前佛 雅人
	・SoftLayerを使ってみませんか？【2】サーバ構築の実際（その1）......常田 秀明
	・［実力検証］NICをまとめて高速通信！【後編】リンク・アグリゲーションの実力は？......後藤 大地

	■Reveal the New Web Service
	・エンジニア向けQ&Aサイト「teratail」を作ったワケ......Software Design編集部

	■Catch up trends in engineering
	・迷えるマネージャのためのプロジェクト管理ツール再入門【新連載】Excelでのプロジェクト管理からの脱却......Software Design編集部

	■Catch up new technology
	・クラウド時代だからこそベアメタルをオススメする理由【3】ベアメタルクラウドの使い勝手を検証する......Software Design編集部

	■連載：Column
	・digital gadget【190】IDEA2014にみるガジェットプロダクト......安藤 幸央
	・結城浩の再発見の発想法【17】Template......結城 浩
	・軽酔対談　かまぷの部屋【3】ゲスト：シルネン　ブヤンジャルガルさん......鎌田 広子
	・秋葉原発！　はんだづけカフェなう【48】Intel Galileo Gen 2とRaspberry Pi Model B+......坪井 義浩
	・SDでSF【10】『鋼鉄都市』......小飼 弾
	・Hack For Japan～エンジニアだからこそできる復興への一歩【34】エフサミ2014レポート......及川 卓也、鎌田 篤慎
	・ひみつのLinux通信【10】コマンド古今東西......くつなりょうすけ

	■連載：Development
	・Hinemosで学ぶジョブ管理超入門【新連載】処理を自動化？　ジョブ管理ってなんだろう？......茶納 佑季
	・Heroku女子の開発日記【2】最初の一植え Herokuにデプロイしてみましょう......織田 敬子
	・サーバーワークスの瑞雲吉兆仕事術【3】コンシューマライゼーションはベルリンの壁崩壊と同じか？......大石 良
	・るびきち流Emacs超入門【6】検索、置換でピンポイント編集！......るびきち
	・シェルスクリプトではじめるAWS 入門【7】AWS APIでのデジタル署名の全体像を明らかにする(1)......波田野 裕一
	・ハイパーバイザの作り方【23】bhyveにおける仮想シリアルポートの実装（その3）......浅田 拓也
	・セキュリティ実践の基本定石【14】現実の脅威となったDNSサーバへのDDoS攻撃......すずきひろのぶ
	・Androidエンジニアからの招待状【51】Dropbox連携アプリを作るには......重村 浩二

	■連載：OS/Network
	・RHELを極める・使いこなすヒント .SPECS【6】Red Hat Satellite 6で多数のサーバを一元管理......藤田 稜
	・Be familiar with FreeBSD~チャーリー・ルートからの手紙【12】コンテナ型仮想化 jail(8) ～リソースを隔離して使うしくみ～......後藤 大地
	・Debian Hot Topics【19】RHELとの比較第2弾「yum/apt徹底比較」......やまねひでき
	・レッドハット恵比寿通信【25】オープンソースソフトウェアを開発するということ......菅原 健
	・Ubuntu Monthly Report【54】mini-builddでパッケージのビルド＆配布環境を構築する......あわしろいくや
	・Linuxカーネル観光ガイド【31】Linux 3.15の機能～FUSEとサスペンドからの復帰の高速化......青田 直大
	・Monthly News from jus【36】インターネットの今後について考えた2連戦......波田野 裕一、法林 浩之

	■アラカルト
	・ITエンジニア必須の最新用語解説【69】OpenSSLとその派生プロジェクト......杉山 貴章
	・ITエンジニア必須の最新用語解説【70】CoreOS......杉山 貴章
	・Hosting Department【102】
	・読者プレゼントのお知らせ
	・SD BOOK FORUM
	・SD NEWS & PRODUCTS
	・年間定期購読のご案内
	・Letters From Readers
	・バックナンバーのお知らせ
	・次号のお知らせ

