

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　パブリッククラウドサービスの先駆
者としてクラウド業界をリードし続けて
いるAmazon Web Services（AWS）
ですが、そのAWSに新たに加わった
サービス「Amazon Aurora」がクラ
ウドデータベースの新しい形を示すも
のとして話題になっています。Ama
zon AuroraはMySQLと互換性が
あるデータベースサービスで、Ama
zon Relational Database Service
（RDS）で選択できるデータベースエ
ンジンの1つとして公開されました。
　Amazon RDSはクラウド環境にお
けるリレーショナルデータベースのセッ
トアップや運用、スケーリングを容易
に行えるようにするWebサービスで、
MySQLやOracle Database、SQL
Server、PostgreSQLといった主要
なデータベースエンジンがサポートさ
れています。Auroraもそれらに並ぶ
選択肢の1つになるわけですが、商
用データベースを代替することを目指
した野心的なサービスでもあります。
　Auroraの強みは、最初からクラウ
ドサービスを前提とした設計になって
いるため、クラウドの能力を最大限に
活用できるという点です。具体的な
特徴としては、次のような項目が挙げ
られます。

◉パフォーマンス
既存のAmazon RDS for MySQLに
比べて5倍のスループットを実現

◉高可用性
データは6重化され、ストレージ側で

分散処理による同時書き込みを行うこ
とで99.99％の可用性を実現している。
自動バックアップ機能や自動復旧機
能を標準で備えており、障害発生時
にも速やかなリカバリが可能

◉安価
データベースそのもののライセンス料
は不要で、利用したストレージ容量分
だけの料金を支払う従量課金制であ
るため、コストの最適化が可能。同
等のパフォーマンスを実現するハイエ
ンドの商用データベースに比べて10
分の1程度の価格で利用できる

◉互換性
MySQL 5.6と互換性を持つように設
計されており、一般的なRDBを使用
している既存サービスを最小限の修
正で移行することができる。とくに
Amazon RDS for MySQLからであ
れば、数クリックの操作でマイグレー
ションが完了する

◉拡張性
ストレージは最小10GBから最大64TB
まで、サービスを停止することなく自
動的に最適なサイズにスケールさせる
ことが可能

　Auroraの信頼性と可用性を担保
しているのは、AWSアベイラビリティ
ゾーン（AZ）を利用した冗長化機能
です。Auroraでは、SQLのリクエス
トを受け付けてトランザクション処理を
実行するデータベースインスタンスと、
データを保持するストレージエンジン

が分離された設計になっています。ス
トレージは自動的に3つのAZに複製
され、さらにそれぞれのAZ内で2つ
のコピーを作成します。書き込み完了
の判断は6本のストレージすべての処
理の終了を待つのではなく、少なくと
も4本の書き込みが完了したら次の処
理に進むという方式が採用されていま
す。これによって信頼性を保ったまま
高い並列度での書き込みを実現でき
るとのことです。
　万が一障害が発生した場合でも、
失われたコピーが2つまでであれば継
続して書き込みが可能で、3つまで失
われたとしても読み込みは継続できる
設計になっているとのことです。さら
に、データの状態を常に監視し、イン
スタンスやディスクの障害を検知した
場合には自動的に復旧処理を行う機
能が備わっています。バックアップは
Amazon S3に対して自動的かつ継
続的に実行されます。前述の分散書
き込みモデルの効果で、バックアップ
の作成中でもデータベースインスタン
スに余分な負荷を与えることはないそ
うです。
　Auroraはエンタープライズレベル
の要求に耐えられるパフォーマンスと
堅牢性を備えながら、クラウドの能力
を最大限に活かす柔軟性や拡張性、
高いコストパフォーマンスを実現した
データベースです。テーブルの容量
の増加に応じて自動でスケールするた
め、ストレージ増設などによるダウンタ
イムをなくした運用が可能で、これは
従来のRDBでは実現が難しいもので
した。クラウド時代のRDBは、この
Auroraの登場によって新しい局面を
迎えるかもしれません。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 73回

Amazon Aurora

AWSの新サービス
「Amazon Aurora」

堅牢性を実現する
アーキテクチャ

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp

http://sd.gihyo.jp/

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）
14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／~＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

年間定期購読

 ／~＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

https://gihyo.jp/site/inquiry/dennou

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

　皆さんはお持ちのスマートフォンを
そのままで持ち歩いていますか？ それ
とも、バンパーやケースに入れて使っ
ていますか？
　スティーブ・ジョブズはケースに入れ
ることを嫌がり、「傷のついたステンレ
スは美しいと思うけどね」と、経年劣化
も美しい変化の1つだととらえていまし
た。
　ケースはファッションや個性を発揮
する場所でもあれば、本体を傷などか
ら守る意味もあり、軍隊仕様のヘビー
デューティーなケースから、水中で利
用できる防水ケース、キャラクタやウ
サギなどの動物の耳がついているよう
な、可愛いけれども持ち歩きづらそうな
ケースまで、多種多様なものが存在し

ます。
　最近では、スマートフォンのヘッド
フォン端子や、mini USBやLightning
端子、カメラ部分などに機能を付加す
るようなグッズが増えてきました。これ
らは大きく分けて次のような種類に分
類できます。

●本来スマートフォンにはなかった機
能を付け加えるもの

●デジタルデバイスの操作画面のた
めにスマートフォンを活用するもの

●機能やしくみを加えることで、本物
志向の何かに近づこうとするもの

●今でもある機能を拡張、拡大、延長
するもの（マクロレンズや追加バッ
テリー）

●端子を本来の目的ではなく単に電
源を取得するためや固定するため

だけに用いるもの

　最近一部で広がりつつあるスマー
トフォンのイヤホン端子に接続する
カードスキャン用のデバイスや、自撮り
用のセルフィー棒なども、手軽に機能
を拡張するデバイスの1つでしょう。

　プラスワン、何か機能を加えること
で、それぞれ単独で存在していたもの
よりも価値を生み出すということがあ
ります。さまざまなデバイスやコンテン
ツなどの中で、まったく新しい、過去に
まるで事例がなかったようなものが生
み出されるのは稀なことで、たいてい
は何かの改変や、新しい組み合わせ

などで新しい価値を生み出す場合が
多いのではないでしょうか？
　新サービスや、新デバイスをブレイ
ンストーミングによって考えるときに、
オズボーンのチェックリスト注1と呼ばれ
る、よく使う9つの考え方があります。

❶転用したら？
今までとは違う分野への適用。本来
の使い方ではない新しい使い道
❷応用したら？
似たもの、似た役目の代わりとして使
うなど
❸変更したら？
色、形、動き、意味など、定番の仕様と
異なるものにする
❹拡大したら？
従来のものよりも大きくしたり、時間
的スケールを大きくする

❺縮小したら？
より小さく軽くしたら、エネルギー効率
など何か省略できないか
❻代用したら？
既存の素材や動力源などを何か代わ
りのもので満たせないか
❼置換したら？
再利用、要素の順序を変更したり、形
を置き換える
❽逆転したら？
回転方向を変えたり、時間的順序を
変える
❾結合したら？
何かと何かを合体させたり、ブレンドさ
せる

　実は世の中にある「新しい」と言わ
れるもののほとんどは、上記9つのど
れか1つ、または複数の考えによって

生まれたものであることがわかると思
います。

　最初のページに掲載したLEATHER
MANのマルチツールのように、ありと
あらゆる機能が一体化し、一見便利
そうに見えるなんでもできる1台より
も、実用的に使うものは状況や場合
に応じてシンプルな機能へとカスタマ
イズしたり、パーソナライズしたりと
いった使い方が適しているのではな
いでしょうか？
　一方で、大工道具のようにある目
的のために専用の道具があり、何か
の目的を完遂するためには状況に応
じた大量の道具が必要という場合も
あり得ます。大工道具にはいくつかの
大きなジャンル分けがあり、さらにそれ

ぞれに細かな変種があります。同じノ
ミという道具でも、サイズや形状、使う
場所や方向、用途によって、基本的
な働きは変わらないまでも道具そのも
のが異なります。
　また、道具を専用に作る職人や、大
工自身が自分の道具を作る場合もあ
ります。同じ道具でも、押して使う用
途、引いて使う用途など、使い方に工
夫がある場合もあります。
　道具と呼ばれるものにはほかにも、
料理道具、手術道具など、コレクショ
ンするだけで楽しいものから、需要は
少なくとも、ある特定の用途には必要
不可欠なものが存在します。道具は
常に手入れをするもので、見栄えより
も使い心地、形態が意味をなし、その
結果機能的で美しいものになってい
るものも存在します。
　スマートフォンやコンピュータは道
具としての基本性能がありつつ、汎
用的に利用でき、ソフトウェアやアプ
リによって、その機能や使い方を変化
させることができます。
　Googleが推し進めるProject Araで
は、スマートフォンのすべてのパーツが
モジュール化します。利用状況に応じ
てカメラモジュールを交換したり、バッ
テリーのサイズを変更したり、端末の
大きさそのものさえも変化します。
　さらにヘッドフォンやスピーカーのよ
うに、エイジングという慣れさせるため
の時間が必要なものもあります。そう
いった、新品のときには使いづらくと
も、時間がたつにつれてなじんでいく
道具もあるでしょう。
　道具に支配されるのではなく、使い
こなすための道具。適切なサイズや
重さ、機能を持ち、身体の延長として
使えるもの。適切な道具は言葉や言
語に関係なく、世界共通で活用でき
るものでしょう。
　さまざまなテクノロジの進化によっ
て、人間の道具も大きく変化する時代
がやってきているのかもしれませんね。
ｯ

プラスワンで価値を増すデジタルガジェット

組み合わせの妙

安藤 幸央
EXA Corporation

プラスワンで価値を増すデジタルガジェット

193
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Relonch Camera

デジタルカメラジャケット
Relonch Cameraは、メモリカードを必要
とせず、iPhoneと接続して利用するスマ
ホケースタイプのデジタルカメラです。
APS-CセンサとF2レンズ級のハイエンド
デジカメとしての機能を持ち、操作や画
面の確認、ファインダーとしての役目は
iPhoneの画面とタッチパネルが果たしま
す。対応するiPhoneは5/5S/6の機種
で、6 Plusには今のところ対応していませ
ん。iPhoneとの接続は無線ではなく、
Lightning端子で行うケースタイプの製
品です。499ドルで予約販売中です。

https://relonch.com

GADGET

Ledge

MacBook用ハンドレスト
LedgeはMacBookの手元に装着する、
丸みを帯びた拡張ハンドレストです。
MacBookのハンドレスト部分は角張って
おり、キーボードを使う姿勢や状況によっ
ては手首に角が頻繁に当たって痛くなる
ことがあると思います。Ledgeは手首に
当たる部分に丸みを帯びた部品を取り
付けることにより、滑らかな使い心地を得
られるものです。スリープランプや赤外線
ポートなどを隠すことなく、通常どおり利用
できます。2014年11月時点ではクラウド
ファンディング、Kickstarterで資金を集
めている段階です。

https://www.kickstarter.com/projects/appliedinc/
ledge-for-macbook-made-in-usa?ref=nav_search

GADGET

MacBook Pro用の
端子ドック

https://www.kickstarter.com/projects/181279175/
bracket-the-macbook-pro-retina-cable-dock

GADGET

MacBook用の
木製キーボード

http://rawbkny.com/products/
macbook-wood-keyboard

1GADGET

25種類の道具が搭載されたLEATHERMAN
のマルチツール。ワイヤーカッター、ナイフ、
ハサミ、のこぎり、やすり、ドライバー、キリ、定
規、栓抜きなどがこれ1つに

iPhoneと組み合わせる工具。リョービの
「Phone Works」。レーザー測量計、湿度
計、拡大鏡、レーザー距離計、方位計、温
度計といった種類がある

プラスワンで、
何か新しい価値を
生み出す方法

これからの価値とは？

BRACKETWOOD KEYBOARD

BRACKETはMacBook Proの各種端子
をまとめてすっきりと扱うことができるケー
ブルドックです。コンピュータの左側にあ
る、電源、ディスプレイポート2系統、USB
ポート、ヘッドフォン端子をまとめてすっき
りと接続することができます。普段は
MacBookを持ち歩いて利用し、帰宅時
や、帰社時には数種類の端子を接続し
て利用する際に、まとめて取り扱えるのが
便利な点です。2014年11月時点ではク
ラウドファンディング、Kickstarterで資金
を集めている段階です。

WOOD KEYBOARDはMacBookのキー
ボードや、Mac用ワイヤレスキーボードに
木片を追加することで、木の質感をもった
キーボードに変更できます。キーボードバッ
クライトの機能も活かしたままでキー入力
を可能にしています。キーを取り付けるた
めの接着剤は着脱可能で、ノリの跡も残
らないそうです。装着作業には30～40
分ほどが必要で、40～45ドル（フルキー
ボード用）で販売中です。刻印は英文字
日本語配列キーボードにも対応していま
す。

Equalizer Case for iPhone 5：
音楽の周波数成分を
表示するLEDイコライザー

Luxi - Light Meter
Attachment For iPhone：
照度計

Binocular Adapter
For iPhone 5：
双眼鏡アダプタ

Nix Color Sensor：
色センサー

PocketPlug：
ケース一体型充電器

taskone：
万能ナイフ

Smartest Thermometer：
体温計

SensePlus-
Smoke & Gas Sensor：
煙検知器

FLIR ONE：
赤外線カメラ

PanoPal：
パノラマ撮影

AromaCase：
20mlの香水を入れられる
ケース

Old-School Calculator
iPhone Case：
電卓搭載ケース

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 注1） 引用元　http://www.mycoted.com/Osborn's_Checklist

2

3

4

Jan. 2015 - 1

http://www.andoh.org/

　皆さんはお持ちのスマートフォンを
そのままで持ち歩いていますか？ それ
とも、バンパーやケースに入れて使っ
ていますか？
　スティーブ・ジョブズはケースに入れ
ることを嫌がり、「傷のついたステンレ
スは美しいと思うけどね」と、経年劣化
も美しい変化の1つだととらえていまし
た。
　ケースはファッションや個性を発揮
する場所でもあれば、本体を傷などか
ら守る意味もあり、軍隊仕様のヘビー
デューティーなケースから、水中で利
用できる防水ケース、キャラクタやウ
サギなどの動物の耳がついているよう
な、可愛いけれども持ち歩きづらそうな
ケースまで、多種多様なものが存在し

ます。
　最近では、スマートフォンのヘッド
フォン端子や、mini USBやLightning
端子、カメラ部分などに機能を付加す
るようなグッズが増えてきました。これ
らは大きく分けて次のような種類に分
類できます。

●本来スマートフォンにはなかった機
能を付け加えるもの

●デジタルデバイスの操作画面のた
めにスマートフォンを活用するもの

●機能やしくみを加えることで、本物
志向の何かに近づこうとするもの

●今でもある機能を拡張、拡大、延長
するもの（マクロレンズや追加バッ
テリー）

●端子を本来の目的ではなく単に電
源を取得するためや固定するため

だけに用いるもの

　最近一部で広がりつつあるスマー
トフォンのイヤホン端子に接続する
カードスキャン用のデバイスや、自撮り
用のセルフィー棒なども、手軽に機能
を拡張するデバイスの1つでしょう。

　プラスワン、何か機能を加えること
で、それぞれ単独で存在していたもの
よりも価値を生み出すということがあ
ります。さまざまなデバイスやコンテン
ツなどの中で、まったく新しい、過去に
まるで事例がなかったようなものが生
み出されるのは稀なことで、たいてい
は何かの改変や、新しい組み合わせ

などで新しい価値を生み出す場合が
多いのではないでしょうか？
　新サービスや、新デバイスをブレイ
ンストーミングによって考えるときに、
オズボーンのチェックリスト注1と呼ばれ
る、よく使う9つの考え方があります。

❶転用したら？
今までとは違う分野への適用。本来
の使い方ではない新しい使い道
❷応用したら？
似たもの、似た役目の代わりとして使
うなど
❸変更したら？
色、形、動き、意味など、定番の仕様と
異なるものにする
❹拡大したら？
従来のものよりも大きくしたり、時間
的スケールを大きくする

❺縮小したら？
より小さく軽くしたら、エネルギー効率
など何か省略できないか
❻代用したら？
既存の素材や動力源などを何か代わ
りのもので満たせないか
❼置換したら？
再利用、要素の順序を変更したり、形
を置き換える
❽逆転したら？
回転方向を変えたり、時間的順序を
変える
❾結合したら？
何かと何かを合体させたり、ブレンドさ
せる

　実は世の中にある「新しい」と言わ
れるもののほとんどは、上記9つのど
れか1つ、または複数の考えによって

生まれたものであることがわかると思
います。

　最初のページに掲載したLEATHER
MANのマルチツールのように、ありと
あらゆる機能が一体化し、一見便利
そうに見えるなんでもできる1台より
も、実用的に使うものは状況や場合
に応じてシンプルな機能へとカスタマ
イズしたり、パーソナライズしたりと
いった使い方が適しているのではな
いでしょうか？
　一方で、大工道具のようにある目
的のために専用の道具があり、何か
の目的を完遂するためには状況に応
じた大量の道具が必要という場合も
あり得ます。大工道具にはいくつかの
大きなジャンル分けがあり、さらにそれ

ぞれに細かな変種があります。同じノ
ミという道具でも、サイズや形状、使う
場所や方向、用途によって、基本的
な働きは変わらないまでも道具そのも
のが異なります。
　また、道具を専用に作る職人や、大
工自身が自分の道具を作る場合もあ
ります。同じ道具でも、押して使う用
途、引いて使う用途など、使い方に工
夫がある場合もあります。
　道具と呼ばれるものにはほかにも、
料理道具、手術道具など、コレクショ
ンするだけで楽しいものから、需要は
少なくとも、ある特定の用途には必要
不可欠なものが存在します。道具は
常に手入れをするもので、見栄えより
も使い心地、形態が意味をなし、その
結果機能的で美しいものになってい
るものも存在します。
　スマートフォンやコンピュータは道
具としての基本性能がありつつ、汎
用的に利用でき、ソフトウェアやアプ
リによって、その機能や使い方を変化
させることができます。
　Googleが推し進めるProject Araで
は、スマートフォンのすべてのパーツが
モジュール化します。利用状況に応じ
てカメラモジュールを交換したり、バッ
テリーのサイズを変更したり、端末の
大きさそのものさえも変化します。
　さらにヘッドフォンやスピーカーのよ
うに、エイジングという慣れさせるため
の時間が必要なものもあります。そう
いった、新品のときには使いづらくと
も、時間がたつにつれてなじんでいく
道具もあるでしょう。
　道具に支配されるのではなく、使い
こなすための道具。適切なサイズや
重さ、機能を持ち、身体の延長として
使えるもの。適切な道具は言葉や言
語に関係なく、世界共通で活用でき
るものでしょう。
　さまざまなテクノロジの進化によっ
て、人間の道具も大きく変化する時代
がやってきているのかもしれませんね。
ｯ

プラスワンで価値を増すデジタルガジェット

組み合わせの妙

安藤 幸央
EXA Corporation

プラスワンで価値を増すデジタルガジェット

193
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Relonch Camera

デジタルカメラジャケット
Relonch Cameraは、メモリカードを必要
とせず、iPhoneと接続して利用するスマ
ホケースタイプのデジタルカメラです。
APS-CセンサとF2レンズ級のハイエンド
デジカメとしての機能を持ち、操作や画
面の確認、ファインダーとしての役目は
iPhoneの画面とタッチパネルが果たしま
す。対応するiPhoneは5/5S/6の機種
で、6 Plusには今のところ対応していませ
ん。iPhoneとの接続は無線ではなく、
Lightning端子で行うケースタイプの製
品です。499ドルで予約販売中です。

https://relonch.com

GADGET

Ledge

MacBook用ハンドレスト
LedgeはMacBookの手元に装着する、
丸みを帯びた拡張ハンドレストです。
MacBookのハンドレスト部分は角張って
おり、キーボードを使う姿勢や状況によっ
ては手首に角が頻繁に当たって痛くなる
ことがあると思います。Ledgeは手首に
当たる部分に丸みを帯びた部品を取り
付けることにより、滑らかな使い心地を得
られるものです。スリープランプや赤外線
ポートなどを隠すことなく、通常どおり利用
できます。2014年11月時点ではクラウド
ファンディング、Kickstarterで資金を集
めている段階です。

https://www.kickstarter.com/projects/appliedinc/
ledge-for-macbook-made-in-usa?ref=nav_search

GADGET

MacBook Pro用の
端子ドック

https://www.kickstarter.com/projects/181279175/
bracket-the-macbook-pro-retina-cable-dock

GADGET

MacBook用の
木製キーボード

http://rawbkny.com/products/
macbook-wood-keyboard

1GADGET

25種類の道具が搭載されたLEATHERMAN
のマルチツール。ワイヤーカッター、ナイフ、
ハサミ、のこぎり、やすり、ドライバー、キリ、定
規、栓抜きなどがこれ1つに

iPhoneと組み合わせる工具。リョービの
「Phone Works」。レーザー測量計、湿度
計、拡大鏡、レーザー距離計、方位計、温
度計といった種類がある

プラスワンで、
何か新しい価値を
生み出す方法

これからの価値とは？

BRACKETWOOD KEYBOARD

BRACKETはMacBook Proの各種端子
をまとめてすっきりと扱うことができるケー
ブルドックです。コンピュータの左側にあ
る、電源、ディスプレイポート2系統、USB
ポート、ヘッドフォン端子をまとめてすっき
りと接続することができます。普段は
MacBookを持ち歩いて利用し、帰宅時
や、帰社時には数種類の端子を接続し
て利用する際に、まとめて取り扱えるのが
便利な点です。2014年11月時点ではク
ラウドファンディング、Kickstarterで資金
を集めている段階です。

WOOD KEYBOARDはMacBookのキー
ボードや、Mac用ワイヤレスキーボードに
木片を追加することで、木の質感をもった
キーボードに変更できます。キーボードバッ
クライトの機能も活かしたままでキー入力
を可能にしています。キーを取り付けるた
めの接着剤は着脱可能で、ノリの跡も残
らないそうです。装着作業には30～40
分ほどが必要で、40～45ドル（フルキー
ボード用）で販売中です。刻印は英文字
日本語配列キーボードにも対応していま
す。

Equalizer Case for iPhone 5：
音楽の周波数成分を
表示するLEDイコライザー

Luxi - Light Meter
Attachment For iPhone：
照度計

Binocular Adapter
For iPhone 5：
双眼鏡アダプタ

Nix Color Sensor：
色センサー

PocketPlug：
ケース一体型充電器

taskone：
万能ナイフ

Smartest Thermometer：
体温計

SensePlus-
Smoke & Gas Sensor：
煙検知器

FLIR ONE：
赤外線カメラ

PanoPal：
パノラマ撮影

AromaCase：
20mlの香水を入れられる
ケース

Old-School Calculator
iPhone Case：
電卓搭載ケース

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 注1） 引用元　http://www.mycoted.com/Osborn's_Checklist

2

3

4

2 - Software Design

http://www.mycoted.com/Osborn's_Checklist

　皆さんはお持ちのスマートフォンを
そのままで持ち歩いていますか？ それ
とも、バンパーやケースに入れて使っ
ていますか？
　スティーブ・ジョブズはケースに入れ
ることを嫌がり、「傷のついたステンレ
スは美しいと思うけどね」と、経年劣化
も美しい変化の1つだととらえていまし
た。
　ケースはファッションや個性を発揮
する場所でもあれば、本体を傷などか
ら守る意味もあり、軍隊仕様のヘビー
デューティーなケースから、水中で利
用できる防水ケース、キャラクタやウ
サギなどの動物の耳がついているよう
な、可愛いけれども持ち歩きづらそうな
ケースまで、多種多様なものが存在し

ます。
　最近では、スマートフォンのヘッド
フォン端子や、mini USBやLightning
端子、カメラ部分などに機能を付加す
るようなグッズが増えてきました。これ
らは大きく分けて次のような種類に分
類できます。

●本来スマートフォンにはなかった機
能を付け加えるもの

●デジタルデバイスの操作画面のた
めにスマートフォンを活用するもの

●機能やしくみを加えることで、本物
志向の何かに近づこうとするもの

●今でもある機能を拡張、拡大、延長
するもの（マクロレンズや追加バッ
テリー）

●端子を本来の目的ではなく単に電
源を取得するためや固定するため

だけに用いるもの

　最近一部で広がりつつあるスマー
トフォンのイヤホン端子に接続する
カードスキャン用のデバイスや、自撮り
用のセルフィー棒なども、手軽に機能
を拡張するデバイスの1つでしょう。

　プラスワン、何か機能を加えること
で、それぞれ単独で存在していたもの
よりも価値を生み出すということがあ
ります。さまざまなデバイスやコンテン
ツなどの中で、まったく新しい、過去に
まるで事例がなかったようなものが生
み出されるのは稀なことで、たいてい
は何かの改変や、新しい組み合わせ

などで新しい価値を生み出す場合が
多いのではないでしょうか？
　新サービスや、新デバイスをブレイ
ンストーミングによって考えるときに、
オズボーンのチェックリスト注1と呼ばれ
る、よく使う9つの考え方があります。

❶転用したら？
今までとは違う分野への適用。本来
の使い方ではない新しい使い道
❷応用したら？
似たもの、似た役目の代わりとして使
うなど
❸変更したら？
色、形、動き、意味など、定番の仕様と
異なるものにする
❹拡大したら？
従来のものよりも大きくしたり、時間
的スケールを大きくする

❺縮小したら？
より小さく軽くしたら、エネルギー効率
など何か省略できないか
❻代用したら？
既存の素材や動力源などを何か代わ
りのもので満たせないか
❼置換したら？
再利用、要素の順序を変更したり、形
を置き換える
❽逆転したら？
回転方向を変えたり、時間的順序を
変える
❾結合したら？
何かと何かを合体させたり、ブレンドさ
せる

　実は世の中にある「新しい」と言わ
れるもののほとんどは、上記9つのど
れか1つ、または複数の考えによって

生まれたものであることがわかると思
います。

　最初のページに掲載したLEATHER
MANのマルチツールのように、ありと
あらゆる機能が一体化し、一見便利
そうに見えるなんでもできる1台より
も、実用的に使うものは状況や場合
に応じてシンプルな機能へとカスタマ
イズしたり、パーソナライズしたりと
いった使い方が適しているのではな
いでしょうか？
　一方で、大工道具のようにある目
的のために専用の道具があり、何か
の目的を完遂するためには状況に応
じた大量の道具が必要という場合も
あり得ます。大工道具にはいくつかの
大きなジャンル分けがあり、さらにそれ

ぞれに細かな変種があります。同じノ
ミという道具でも、サイズや形状、使う
場所や方向、用途によって、基本的
な働きは変わらないまでも道具そのも
のが異なります。
　また、道具を専用に作る職人や、大
工自身が自分の道具を作る場合もあ
ります。同じ道具でも、押して使う用
途、引いて使う用途など、使い方に工
夫がある場合もあります。
　道具と呼ばれるものにはほかにも、
料理道具、手術道具など、コレクショ
ンするだけで楽しいものから、需要は
少なくとも、ある特定の用途には必要
不可欠なものが存在します。道具は
常に手入れをするもので、見栄えより
も使い心地、形態が意味をなし、その
結果機能的で美しいものになってい
るものも存在します。
　スマートフォンやコンピュータは道
具としての基本性能がありつつ、汎
用的に利用でき、ソフトウェアやアプ
リによって、その機能や使い方を変化
させることができます。
　Googleが推し進めるProject Araで
は、スマートフォンのすべてのパーツが
モジュール化します。利用状況に応じ
てカメラモジュールを交換したり、バッ
テリーのサイズを変更したり、端末の
大きさそのものさえも変化します。
　さらにヘッドフォンやスピーカーのよ
うに、エイジングという慣れさせるため
の時間が必要なものもあります。そう
いった、新品のときには使いづらくと
も、時間がたつにつれてなじんでいく
道具もあるでしょう。
　道具に支配されるのではなく、使い
こなすための道具。適切なサイズや
重さ、機能を持ち、身体の延長として
使えるもの。適切な道具は言葉や言
語に関係なく、世界共通で活用でき
るものでしょう。
　さまざまなテクノロジの進化によっ
て、人間の道具も大きく変化する時代
がやってきているのかもしれませんね。
ｯ

プラスワンで価値を増すデジタルガジェット

組み合わせの妙

安藤 幸央
EXA Corporation

プラスワンで価値を増すデジタルガジェット

193
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

Relonch Camera

デジタルカメラジャケット
Relonch Cameraは、メモリカードを必要
とせず、iPhoneと接続して利用するスマ
ホケースタイプのデジタルカメラです。
APS-CセンサとF2レンズ級のハイエンド
デジカメとしての機能を持ち、操作や画
面の確認、ファインダーとしての役目は
iPhoneの画面とタッチパネルが果たしま
す。対応するiPhoneは5/5S/6の機種
で、6 Plusには今のところ対応していませ
ん。iPhoneとの接続は無線ではなく、
Lightning端子で行うケースタイプの製
品です。499ドルで予約販売中です。

https://relonch.com

GADGET

Ledge

MacBook用ハンドレスト
LedgeはMacBookの手元に装着する、
丸みを帯びた拡張ハンドレストです。
MacBookのハンドレスト部分は角張って
おり、キーボードを使う姿勢や状況によっ
ては手首に角が頻繁に当たって痛くなる
ことがあると思います。Ledgeは手首に
当たる部分に丸みを帯びた部品を取り
付けることにより、滑らかな使い心地を得
られるものです。スリープランプや赤外線
ポートなどを隠すことなく、通常どおり利用
できます。2014年11月時点ではクラウド
ファンディング、Kickstarterで資金を集
めている段階です。

https://www.kickstarter.com/projects/appliedinc/
ledge-for-macbook-made-in-usa?ref=nav_search

GADGET

MacBook Pro用の
端子ドック

https://www.kickstarter.com/projects/181279175/
bracket-the-macbook-pro-retina-cable-dock

GADGET

MacBook用の
木製キーボード

http://rawbkny.com/products/
macbook-wood-keyboard

1GADGET

25種類の道具が搭載されたLEATHERMAN
のマルチツール。ワイヤーカッター、ナイフ、
ハサミ、のこぎり、やすり、ドライバー、キリ、定
規、栓抜きなどがこれ1つに

iPhoneと組み合わせる工具。リョービの
「Phone Works」。レーザー測量計、湿度
計、拡大鏡、レーザー距離計、方位計、温
度計といった種類がある

プラスワンで、
何か新しい価値を
生み出す方法

これからの価値とは？

BRACKETWOOD KEYBOARD

BRACKETはMacBook Proの各種端子
をまとめてすっきりと扱うことができるケー
ブルドックです。コンピュータの左側にあ
る、電源、ディスプレイポート2系統、USB
ポート、ヘッドフォン端子をまとめてすっき
りと接続することができます。普段は
MacBookを持ち歩いて利用し、帰宅時
や、帰社時には数種類の端子を接続し
て利用する際に、まとめて取り扱えるのが
便利な点です。2014年11月時点ではク
ラウドファンディング、Kickstarterで資金
を集めている段階です。

WOOD KEYBOARDはMacBookのキー
ボードや、Mac用ワイヤレスキーボードに
木片を追加することで、木の質感をもった
キーボードに変更できます。キーボードバッ
クライトの機能も活かしたままでキー入力
を可能にしています。キーを取り付けるた
めの接着剤は着脱可能で、ノリの跡も残
らないそうです。装着作業には30～40
分ほどが必要で、40～45ドル（フルキー
ボード用）で販売中です。刻印は英文字
日本語配列キーボードにも対応していま
す。

Equalizer Case for iPhone 5：
音楽の周波数成分を
表示するLEDイコライザー

Luxi - Light Meter
Attachment For iPhone：
照度計

Binocular Adapter
For iPhone 5：
双眼鏡アダプタ

Nix Color Sensor：
色センサー

PocketPlug：
ケース一体型充電器

taskone：
万能ナイフ

Smartest Thermometer：
体温計

SensePlus-
Smoke & Gas Sensor：
煙検知器

FLIR ONE：
赤外線カメラ

PanoPal：
パノラマ撮影

AromaCase：
20mlの香水を入れられる
ケース

Old-School Calculator
iPhone Case：
電卓搭載ケース

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 注1） 引用元　http://www.mycoted.com/Osborn's_Checklist

2

3

4

2 - Software Design Jan. 2015 - 3

http://rawbkny.com/products/macbook-wood-keyboard
https://www.kickstarter.com/projects/181279175/bracket-the-macbook-pro-retina-cable-dock
https://www.kickstarter.com/projects/appliendinc/ledge-for-macbook-made-in-usa?ref=nav_search
https://relonch.com

4 - Software Design

Implement——インプリメント

インプリメントとは

　インプリメント（Implement）とは、ソフトウェ
アを実際に作ることです。日本語では「実装する」
と訳されることが多いですね。技術者同士では
そのまま「インプリメントする」と言うこともよ
くありますし、「インプリする」と省略して言う
人もいます。“implement”という単語の語源は
「中を満たす」というラテン語だそうで、おそら
くそこから「定められた枠組みの中身を満たす」
という意味が生まれたのでしょう（図1）。
　インプリメント（実装）はデザイン（設計）と対
比されて用いられることの多い用語です。ソフ
トウェアの開発で「設計はできたから、これから
実装に入ろう」という使い方をしますし、できあ
がったものに対して「設計はいいのだけれど実
装はまずいなあ」と表現することもあります。
　設計とは何か、実装とは何かというのは大き
なテーマなのでこのコラムで書くことは難しい

ですが、簡単に言うなら設計は《どのようなも
のを作るかを明確にすること》で、実装は《実際
に作ること》と言えるでしょうか（図2）。
　物理的なものを作る場合には、設計と実装は
明確に分かれますが、ソフトウェアの場合は実
装して作るものに物理的な実体はありません。
ソフトウェアの「実装」を、製造業の「製造」と同
じようなものとして考えるのは正しくないとい
う意見もありますが、ここでは深入りしません。

設計と実装

　ソフトウェアは複雑なものですから、いきな
り実装を始めて完成まで一気に至るのは難しい
ものです。あまり考えずに実装を始めると、途
中で大きな問題を見つけてしまい、最初からや
りなおしになることもあります。そのため、最
初に設計を行って、解決すべき重要な技術的ポ
イントをチェックしておくことが大事になるで
しょう。
　設計をせずにいきなり実装してしまうと、特
定の環境にべったりと依存したソフトウェアに
なってしまい、将来の拡張性が低くなることも

Implement

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 20

implement

 ▼図1　implementの語源は「中を満たす」

implement

 ▼図2　設計から実装へ

http://www.hyuki.com/

4 - Software Design Jan. 2015 - 5

あります。設計の段階では将来の拡張性を考え
ておき、実装の段階ではそれを現実のコードに
落とし込むことで、拡張性や移植性を高くする
こともできるでしょう。
　開発で、設計と実装を分けて考えると、実装
のしやすさに引きずられて達成すべきゴールが
ねじ曲がるのを防ぐことが期待できます。ソフ
トウェアは、ある程度までできあがってくると
「ほんの少し追加すれば実現可能な新機能」がた
くさん見えてきます。しかし、もともと考えて
いた《どのようなものを作るか》を忘れてしまう
と、余計な機能まで実装してしまう危険性があ
ります。設計と実装を意識的に分けることは、
ゴールを見失わないために重要です。
　ソフトウェアの完成後に問題が生じたときも、
それが実装上の問題なのか、設計上の問題なの
かを分けて考えることは重要です。軽微な問題
ならば実装を修正することで対処できますが、
設計上の問題ならば実装の修正で対処すること
には無理が生じるでしょう。
　設計と実装を分けて考えるためには、抽象度
の高い発想が必要になります。単に「作ればい
いんだろ」と短絡的に考えてはだめです。まず「こ
のようなものを作りたい」と考え、「そのために、
このようにして実現する」と考える。「設計」と「実
装」を分けて考えることは、ものを作る場合でも、
作ったものを改良するときでも、問題を解決す
るときでも重要なことなのです。

日常生活での実装

　ソフトウェアに限らず、日常生活で何かを作
るときにも「設計」と「実装」を分けて考えるのが
有益です。
　たとえば料理。いきなり料理を作り始めるの
ではなく、何を作るかを一通り最後まで考える
のは重要です。最後の段階で必要な食材が切れ
ていることに気づき、ショックを受けた経験が
ある人は多いでしょう。これは、ソフトウェア
の設計段階で、解決すべき重要な技術的ポイン
トをチェックするのに似ています。

　たとえば会社の中でグループを作るとき。た
またまそこにいる人だけでグループを作って活
動を始めるのではなく、何のためにどんなメン
バーが必要かを考えておくことは重要です。達
成したい目的を明確にすることで、現在はそば
にいないメンバーに声を掛けるという発想も生
まれるでしょう。これは、ソフトウェアの拡張
性を考えるということにも似ています。

書籍執筆における実装

　筆者は毎日、本を書く仕事をしています。「本
を書く」という活動でも「設計」と「実装」の段階
を分けて考えることができます。大まかに言え
ば「読者にどんなことを伝える本にしようか」を
考えるのが設計段階であり、「実際にファイル
の中身を文字で埋めていく」のが実装段階と言
えるでしょう。
　書籍の「設計」において大事なのは、自分の手
に負えるテーマになりそうかどうかという見極
めです。「実装」すなわち実際の執筆がかなり進
んでから「このテーマは自分には大き過ぎた」と
なってはたいへんなことだからです。書こうと
している書籍を成り立たせる重要な技術的ポイ
ントのチェックは最重要課題なのです。
　自分が「書きやすい本だけを書いていく」よう
な過ちを犯さないようにすることも大事です。
自分が書きやすい本というのは、実装のことだ
けを考えて作るソフトウェアのようなものです。
完成させたいものは何かという設計をしっかり
しないと、せっかく書き上げても読者に受け入
れられない本になりかねません。
　設計と実装。この2つを分けて考えるのは重
要なことなのです。

◆　◆　◆
　あなたの周りを見回して、「何かを作る」とい
う場面を探してください。そこでは「設計」と「実
装」は分かれているでしょうか。何を作るかを明
確にする設計段階と、どのようにして実現する
かという実装段階は意識されているでしょうか。
　ぜひ、考えてみてください。｢

20

6 - Software Design

Raspberry Piとの
出会い

　2012年に初めてRaspberry Piと出会ったこ
とを今でも覚えています。「この値段で、この
性能で、この消費電力 !?」――これで購入を即
決しました。この出会いの数年前から筆者は自
宅でサーバを24時間稼働させていたのですが、
一番の悩みの種は月々の電気代でした。実家暮
らしだったので「電気代が高すぎる！」と、よく
怒られていました。今でこそ親から怒られるこ
とはありませんが、電気代に怯える日々に変わ
りはありません。そんなRaspberry Piの存在は、
筆者にとってうってつけのものでした。
　しかし、サーバ利用ではなく、Raspberry

Piで電子工作することは、なかなか手をだせ
ずに今に至ります。無精な人間によくある「い
つかやろう」症候群だったのです。

Raspberry Pi B+で
何をしてみようか

　電子工作といえば、なぜそこに抵抗やコンデ
ンサが必要なのか、その原理も理解していませ
んし、フレミングの左手の法則やオームの法則
なんて……何でしたっけそれ？――というよう
な状態です。筆者にとってハードルが異様に高
い電子工作を、1人で始めるにはあまりに心細
い状況でした。そんなときに、当社でドローン

倶楽部という活動が立ち上がりました（i部長の
暗躍があったのかもしれませんが……）。まさ
に渡りに船！――入会を即決しました（写真1）。
　ドローン（Drone）とは無人機を意味します。遠
隔操作または自律制御を用いて、機体を操作する
ものです。その定義によって無人機は陸海空すべ
てに存在します。が、本稿ではUAV（Unmanned

Aerial Vehicle：無人航空機）について説明します。
　UAVには航空機型とヘリコプター型があり

おとなラズパイリレーは、Raspberry Piを文字どおり「リレー」し、ちょい悪ITエンジニアが電子工作をするという企画です。
前編で構想を練り、後編で実装します。1年を通してどんなデバイスができあがるのか？……今回は、データホテルから社
名変更も間もない、テコラス㈱によるRaspberry Piドローン開発です。

Writer 千葉 久詞（ちば ひさし）　テコラス㈱ドローン倶楽部

「Raspberry Piで空を飛びたい（前編）」
千葉 久詞

第3回

 ▼写真1　ドローンを手にした渡邉（左）と千葉（右）

6 - Software Design Jan. 2015 - 7

「Raspberry Piで空を飛びたい（前編）」 第3回

ます。TVのニュースでよく
報道されているせいで軍事用
途のイメージが強く遠い世界
のものであると、どうしても
受け止められがちですが、現
在では民生用のドローンも増
えてきています。ネット上で
は手軽な価格帯での商品がラ
インナップされ、それを購入
すれば家庭でも遊べるように
なりました。個人でもドロー
ンをリモコン操作して遊んだ
り、ドローンにGoPro注1のような広角レンズの
小型カメラを搭載して、従来ならば困難だった
映像を撮影して（多くは鳥瞰的な動画ですね）、
楽しんだりする人が増えてきています。最近で
は、Amazonがマルチローター型ヘリコプター
のドローンを用いたPrime Airという宅配サー
ビスを構想していますし注2、日本でも農業用、
産業用に各社が研究を重ねています。まさにこ
れから成長する可能性のある分野だと言えます。
　今回、我がドローン倶楽部ではAR.Drone2.0注3

というUAVを購入しました。これを操作するには、
PCかスマホといったデバイスが必要です。この
UAVに、Raspberry Piを搭載してドローンを飛
ばすことが、もしもできたら――それは自律制御
されたドローンになるのではないか、と閃いたの
です。これが完成したら、いろいろなイベントに
応用できて面白いかも！――というわけです。そ
こでドローン倶楽部のメンバー有志と自律型ドロー
ンの開発を検討してみることにしました。

AR.Drone2.0
について

　さて、話を少し戻し今回購入したAR.Drone2.0

について話をします。AR.Droneは、フランスの
Parrot社で2010年から発売されているクワッド
ローター（ヘリの羽が4枚ある）のヘリコプター型
ドローンです（図1）。当時から家庭向けに発売さ
れています。今回ドローン倶楽部で購入したの
はそのリニューアル版として2012年から発売さ
れている商品で、世界で実に合計60万個以上の
販売実績あるモデルです。その理由は、ラジコ
ンの部類としては割とリーズナブルな価格である
こと、しかも高性能であることに因ります。その
サイズは、全長51.5×全幅52.5cm、重量455gと
極めて小型です。基本的な飛行性能に加え、
Wi-Fiで50mまで離れて操作できます。さらに
標準でHDカメラを搭載しています。付属してい
るセンサーだけで6種類ありまして、オプション
のGPSセンサーも含めれば、実に7種類ものセ
ンサーに対応できます。航続時間は標準搭載のバッ
テリーならば12分程度です。操作用のアプリケー
ションもデフォルトで付属しています。しかも公
式サイトよりSDKが配布されており、自分で操
作用のプログラムも作成できます。公式のSDK

はC言語でコーディングされていますが、国内
外でさまざまなSDKの開発プロジェクトが進ん

注1） http://jp.gopro.com/
注2） http://www.amazon.com/b?node=8037720011
注3） http://www.parrot.com/jp/products/

 ▼図1　AR.Drone2.0のWebページ

http://jp.gopro.com/
http://www.amazon.com/b?node=8037720011
http://www.parrot.com/jp/products/

8 - Software Design

でいます（図2）。これによりさまざまな媒体と言
語で、AR.Droneのプログラムの開発ができるよ
うになっています。

Raspberry Pi
＋AR.Drone2.0

　AR.Drone2.0は単体で使用しても十分楽しめ
る性能を持っていますが、少し不満点もありま
した。搭載カメラが水平方向に付いているので、
見下ろす形の鳥瞰映像を撮ることができないこ
とです。さらに拡張性に乏しい点も不満でした。
　前述のとおり、AR.Drone2.0の操作にはスマ
ホかPCが必要で、SDKを用いてプログラム
を開発できます。前述のセンサーを状態検知に
使用し、操作にRaspberry Piを適用すれば、
既存の製品よりも、ずっと可能性が広がるはず
です。
　この計画を進めるにあたって、2つの問題点
が浮かび上がりました。1つめは「消費電力量
の問題」です。AR.Drone2.0に標準搭載のバッ
テリー容量は1,000mAh程度です。低消費電力
とはいえ、Raspberry Piを起動して、さらに
安定した電力を供給しつつ、持続的な飛行を維
持することが可能かという問題です。
　2つめは「積載量」の問題です。AR.Drone2.0

は物を積載して、飛ぶようには通常は設計され
ていません。今回、Raspberry Piをはじめとし
て、その他各種パーツを積載した場合の重量が
問題になりそうです（写真2）。果たして、これ
だけの装備を加えた状態で飛行が可能でしょう
か。本稿ではこの2点を事前に検証してみます。

基礎データを
集めよう

　今回購入したドローンは、AR.Drone2.0の中
でもPower Editionと呼ばれる製品です。これ
は同社の従来型の製品と比べて、バッテリー容
量が1,500mAhで、1.5倍に増えています（写真
3）。今回はこのモデルを基準として調査をします。

その1 「消費電力量の問題」

　まず、消費電力量の問題です。AR Droneの
消費電流は、1,500mAhのバッテリーで18分程
度飛行可能なことから推定5,000mA程度だと
推測できます。
　また、オプションパーツのGPSユニットと
Raspberry Piを合わせた消費電流が平常時で
440mA程度と計測できました。搭載する予定
のパーツを接続した段階で、プログラムを動か
しているときに計測してみると、平均して

 ▼図2　ARDRONE openAPI platform
 （http://projects.ardrone.org/）

 ▼写真2　ラズパイを搭載したドローン

http://projects.ardrone.org/

8 - Software Design Jan. 2015 - 9

「Raspberry Piで空を飛びたい（前編）」 第3回

800mAの消費電流という結果が出ました。実
際には、多めに見積もって合計6,000mA消費
するとして、15分前後の継続飛行が可能とい
う試算が出ました。これは、外部バッテリーの
追加が必要になるだろうと予測していた筆者に
とって嬉しい誤算となりました。実は、後で判
明したことですが、今回使用したRaspberry

Pi Model B+は前モデル（Raspberry Pi Model

B)と比べて消費電流量が低くなっていました。
この結果から、追加で外部バッテリーの搭載は
不要になりそうです！

その2 「積載重量の問題」

　次に積載重量について調査を行います。調査
方法はいたって単純です。AR.Drone2.0の中心
部分に適当な重量のおもりを載せてから飛行さ
せてみました。今回は重量の調整のしやすさの
ために280ミリリットルの水の入ったペットボ
トル（300g）をおもりとして使用し、50gずつ水
を減らすことで実験を行いました。その結果、
200gまでならば飛行可能で問題ないことがわ
りました。さらに細かく検証するならば、もう
少し荷重をかけられそうでしたが、あまり積載
量を多くしすぎると、今度は離陸までの動きが
鈍重になってしまい、モーターに負荷が掛かる
恐れがあります。そこで限界を200gまでとし

ました。荷重バランスについては検証していま
せんが、過大に負荷をかけなければAR.Drone

2.0は自動的に飛行制御してくれます。あとは
機体の中心にバランスが良いようにRaspberry

Pi Model B+を設置すれば大丈夫でしょう。

目標は赤外線カメラ
搭載自律ドローン

　今回、AR.Drone2.0を初めて見て感じたこと
は、「ああ、メタルギアソリッドシリーズ注4に
出てくるサイファーにそっくりだな」でした。
本シリーズをプレイした経験がある方はご存じ
かと思いますが、監視カメラを搭載したドロー
ンが空中を決まったコースで監視していき、問
題があった場合は通報します。実は、これは技
術見本として90年代にシコルスキー社が開発
した実在する機体だったのです（写真4）。
　性能は限定的になってしまうかもしれません
が、Raspberry Pi B+とAR.Drone2.0の組み合
わせであれば、この装置が実現可能なのではな
いかと考えていますので、制作目標は「自律飛
行を行いつつ、赤外線カメラで撮影を行うドロー
ンの制作」とします。次号、実際に制作を行い、
動作検証をしていきます。もちろん電子工作初
心者なのでできる範囲で……。ﾟ

注4） http://www.konami.jp/mg25th/truth/

 ▼写真3　ドローンのバッテリーパック

 ◀写真4
シコルスキー社
のサイファー

http://www.konami.jp/mg25th/truth/

10 - Software Design

　USP研究所の鎌田広子（かまぷ）と

申します。本連載が始まり、半年経ち

ました。気軽に飲んでいる気分で読ん

でいただけると嬉しいです。今回は書

店でコンピュータ書を担当されてい

る、書店員の長田絵理子さんにお話を

伺います。

（鎌田）長田さんはITイベントに出

展されていらっしゃることもあります

よね。

（長田）はい。ITイベントでの販

売も大好きです。書店内ではお客様

から質問されない限り話しかけたり

はしませんが、イベント販売の場合

はお客さまとの距離が近いので、と

ても楽しいです。またイベントだと

著者の方がブースに立ち寄ってくだ

さることもあり、それも嬉しいです。

書店員はあこがれだったのです

か？

十代の頃は、海外やアジアの文

化に興味があって、大学ではインド

のことを勉強していました。漠然と、

将来はバリバリのキャリアウーマン

にはならないだろうと思っていまし

た。就職活動は、書店だけではなく、

軍手の工場や出版社など、おもしろ

そうだと思うところしか受けなかっ

たです。軍手の工場は職場がマレー

シアだったりして、そこで働く自分

を想像するのは楽しかったです。

最近の電子書籍の動向はどう思い

ますか？

書店が販売する本は手で触れら

れますが、電子の本はさわれないで

すよね。質感のあるリアルな本は、

人の所有欲を満たしているのだと思

います。本は装丁や内容に至るまで、

編集さんがきちんと内容を見ていま

す。そういったことが本の品質を高

めているのだと思います。ですから

書店として、きれいな本をお客様に

届けられるように努力しています。

また、まだ電子出版をされていない

出版社さんもありますので、品ぞろ

え数は書店のメリットです。

IT書籍の最近の動向や、仕事上

の苦心談、裏話などありますか？

　秋はJava 8系本の売れ行きがい

いです。品揃えを工夫するのはもち

ろんのこと、店頭や電話でお客さま

が必要とされている本探しをお手伝

いしたり、具体的な質問に答えたり

もしています。店頭での苦労と言え

ば、たとえば今年はiPhone 6が出ま

したが、各キャリア2機種分で6種類

の本が出版社ごとに出てくるので、か

なりの種類になりました。そういった

本をいかに陳列するか、などにも気を

遣っています。それと年末期は、年

賀状素材集がたくさん出ますが、実

はその写真素材の中に業界関係者の

家族写真が使われている場合もあっ

て入荷が楽しみだったりもします。

ゲスト：長田 絵理子さん第6献

本を1冊1冊大切にしています。

長田絵理子（おさだえりこ）さん
ジュンク堂池袋本店勤務。コンピュー
タ書フロア担当。普段は書店で接客
する傍ら、ITイベントに積極的に出
店し、エンジニアや著者と自ら交
流する。出版社と全国の書店の人的
ネットワークを駆使して、在庫のな
い本でも探し出す。彼女が作る良書
案内は、編集者の貴重なデータとし
て重宝される。

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

10 - Software Design Jan. 2015 - 11

へぇ、書店と出版社の関係もおも

しろいですね。質問の話が出ましたが、

具体的にどんなことを聞かれますか？

入門書関連では、パソコン教室

などで教えるような、具体的な使い

方が理解したいために来店いただく

方も多く、ピンポイントな質問をさ

れる場合もあります。コンピュータ

書のフロアですから、スタッフもな

るべくご希望の書籍を見つけられる

ようにお手伝いしますが、すべてを

お答えできるわけではないのでお叱

りを受ける場合もあります。IT技術

は広く学ぼうと思うと果てしなくて

棚作りは難しいです。でも、高度な

技術書をお探しのお客様は、どうい

う本が欲しいというのが具体的で、

場所を教えてくださいという場合が

多いです。

なるほど、いろいろ大変ですね。

個性的なお客様も多いのでしょうか？

うちは図書館みたいな雰囲気で、

本を自由に読める椅子があって、そ

こで静かに読んでいる人が多いで

す。そうそう、311の震災の時は、

建物が揺れているのに本を開いたま

まで読んでいるお客さんもいらっ

しゃいました。

地震のとき、店内は大丈夫でした

か？

コンピュータ書棚の場所の揺れ

もひどくて、たくさん本棚から抜け

落ちてしまいました。そのとき、何

よりお客様に安全に退避していただ

くためにがんばって声を出そうとし

たのですが、声が震えてしまったの

をおぼえています。実は震災の前日

は、入籍日だったんです。そのため

遅番出勤で14時から出版社の営業

の方と商談中でした。でも翌日の午

後までには、すべて本を書棚に戻し

てその日のうちに営業再開にしま

した。

そうだったんですか！　そろそ

ろ、ほろ酔い気分になってきたので、

個人的なこともお聞きしたいのです

が、旦那さんはどんな方ですか？

シドニー出身で、今はCookpad

で働くソフトウェアエンジニアです

（英語が流暢な日本人みたい、と言

われます）。ITに関しても教えても

らったり、Googleカレンダで予定

を共有したりして、夫婦生活は楽し

いです。パソコン買い替えの相談を

したら「なぜMacじゃダメなんだ！」

と聞かれました。それ以降、自分も

Macユーザになり、今や家中Mac

だらけです。

ところで旦那さんとはどこでお知

り合いになったんですか？

RubyKaigiにジュンク堂が出店

させていただいていまして、そこで

彼が『インドカレー食べにいかない

カ？』って声かけてくれました。それ

までは、結婚願望はなかったのです

が、彼と会ったとき「結婚したい！」っ

て思いました。

ご馳走様です♡。ところで今回お

誘いするときに、糖質制限されている

とお聞きしましたが……。

彼がダイエットしたいというこ

とで家庭で始めました。ひとまず2ヵ

月間2人で頑張ろうと糖質制限とジ

ム通いをしています。fitbitを下着に

つけて（笑）。iPhoneアプリと連携し

てデータ集計しているのですが、た

まに液晶画面がスマイルで、ニッコ

リ笑ってくれるんですよ。運動は生

活にメリハリが出ていいです。糖質

制限を始める直前に最後に食べたの

はいくらごはんでした。自作のイク

ラ漬けです。

奇遇ですね。私も友人に触発され

て、今年初めてイクラ漬けを作りまし

た。お料理は得意ですか？

料理はストレス発散としても好

きです。肉をじゅ～っっと焼きなが

ら「くそー！」とか。この間は鰯の梅

生姜煮を作りました。あ、お酒も好

きですよ。著者の“きたみりゅうじ”

さんは新刊が出ると、毎回お店に

POPを描きに来てくださるのです

が、その後、きたみさんと出版社の

方と美味しい日本酒を飲みに行った

りもします。

美味しい日本酒いいですね。今日

は楽しいお話、どうもありがとうござ

いました。ｨ

12 - Software Design12 - Software Design

Intel Edison

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 51 回

秋葉原発！

　Intelが10月25日に発売した、Edisonをすで
にご存じの読者もたくさんいらっしゃるでしょ
う（写真1）。Edisonは、この連載でも紹介して
きたGalileoよりもはるかに小さく、SDカード
に近いサイズのx86コンピュータです。Edison

のメインプロセッサは、GalileoのQuarkから

 ▼写真1　Edison

 ▼写真2　Eagretを使ったOLEDバッジ

Atomになりました。
　こんな小型のEdisonですが、1GBのRAMと
4GBのFlash、IEEE 802.11a/b/g/nのWi-Fiと
Bluetooth 4.0＋2.1 EDRといった無線のイン
ターフェース、USBインターフェースに加え、
40個のGPIO（汎用入出力）を備えています。つ
まり、高速ではないものの、Edisonはそれ単体
でコンピュータとして動作できます。Edisonは
小型ながら、このようにたくさんのインター
フェースが搭載されていますので、高密度の
70ピンのコネクタで外部と接続するように作
られています。
　Edisonと同時に、「インテル Edison キット

For Arduino」と「インテル Edison Breakout

ボードキット」も発売されました。For Arduino

のほうは、EdisonのGPIOをArduinoフォーム
ファクタの端子から利用できるようにする拡張
ボードが同梱されています。一方、Breakout

ボードキットは、フリスクより少し大きいサイ
ズで小型な、先述の70ピンのコネクタを利用

しやすいサイズに変換する拡
張ボードが同梱されていま
す。For Arduinoは、Galileo

やArduinoなどのマイコンと
同様に、入出力の電圧を5V

や3.3Vに変換する機能が搭
載されています。Breakout

ボードのほうは、電圧を変換
する機能が搭載されておら
ず、Edisonの入出力電圧であ
る1.8Vのままです。最近は、
入出力電圧1.8Vに対応した

EdisonでIoTしよう

http://www.switch-science.com/

12 - Software Design Jan. 2015 - 13

第 51 回

12 - Software Design

 ▼写真3　SSCI-Eaglet ▼写真4　SSCI-Eagletをフリスクに組み込んだところ

センサなどのチップも出てきていますが、いま
だ主流ではありません。多くのチップの入出力
電圧は3.3Vないしは5Vですので、For Arduino

のほうが手に入れてすぐに使うことができます。
また、ソフトウェア開発環境であるArduino

IDEを使った開発でも、ターゲットとして用意
されているFor Arduinoを使ったほうが調べる
必要のある項目も少なく、快適です。

　先ほどEdison Breakout ボードキットはフリ
スクより少し大きいサイズだと書きましたが、
オフィシャルではないものの、インテル社員の
方が基本設計をした、Eagletというフリスクの
ケースに入るサイズの拡張ボードがあります
（写真2）。このEagletは、電圧を3.3Vに変換
したGroveコネクタ形状のI2C端子が付いてい
ます。また、USBコネクタと加速度センサ、リ
チウムイオンバッテリの充電回路も搭載してい
ます。Eagletは小型ながら、Edisonをバッテリ
で動かして手軽に使える拡張ボードです。そん
な便利なEagletですが、Hackathon参加者だけ
に配布されるなど、入手する手段は限られてい
ます。

　そんなEagletをもとに、筆者はスイッチサ
イエンス版Eaglet（SSCI-Eaglet）というものを
設計しました（写真3）。Eagletのフリスクの

Eaglet

スイッチサイエンス版Eaglet

ケースに入るサイズはそのままで、3.3VのI2C

端子に加えて、SPIやUARTといったほかにも
一般的に使われるインターフェースを追加しま
した（写真4）。また、Groveコネクタにつな
がっているI2Cとは別に、Edisonに搭載されて
いるもう一系統のI2Cも使えるようにしていま
す。この入出力端子は、前回紹介したTessel

のボードが接続できるようなピン配列にしまし
た。使える入出力を増やしたために基板のス
ペースが足りなくなっていますので、皆が使う
とは限らない加速度センサを廃止しました。リ
チウムイオン電池を利用する回路も、Edison

Breakoutボード相当のものにして、より使い
やすくなっています。
　Eagletは、USBからの電力供給か、リチウム
イオン電池からの電力供給で動かすことを前提
に設計されています。リチウムイオン電池で動
かしているときには、USB OTGを使おうとす
るときに必要となる5Vを作り出す回路が搭載
されていないため、EagletではUSB OTGを使
うことができません。
　このスイッチサイエンス版Eagletは、11月23

～24日に開催されたMaker Faire Tokyo 2014

のIntelのワークショップで配布された（写真5、
6）ほか、参加者以外の方でも入手できるように
スイッチサイエンスで量産をして販売していま
す注1。

注1） http://ssci.to/2070

EdisonでIoTしよう

http://ssci.to/2070

14 - Software Design

はんだづけカフェなう
秋葉原発！

　EdisonのOSはYocto（ヤクト）Projectを使
用してビルドされた組み込み用Linuxが採用さ
れています。Arduino IDEで開発したスケッチ
はelfバイナリとして実行されますし、C/C++

のみならず、PythonやNode.jsなどを使った開
発ができます。また、Intelから提供されている
開発環境には、前述のArduino以外にも
XDK注2という環境もあります。Linuxですの
で、Rubyをインストールして使っている人もい
ます。
　Edisonに搭載されているLinuxは、かなり

注2） https://software.intel.com/en-us/html5/xdk-iot

Edisonを手に入れたらやること

Edisonの開発環境

頻繁にアップデートがなされています。Edison

を入手したら、まず、ファームウェアを最新の
もの注3にしましょう。“Edison Yocto complete

image”という圧縮ファイルで最新のファーム
ウェアが配布されています。IntelのWebサイト
では、シリアルコンソールを使ってファーム
ウェアを更新する方法が紹介されています。
が、筆者としては、Remote Network Driver

Interface Specification（RNDIS）を使って
EdisonにSSHでログインしてEdisonの操作を
する方法をお勧めします。この方法は、スイッ
チサイエンスのWiki注4で紹介されています。

　みなさんPythonやJavaScriptを使った開発
をしているようですが、ソフトウェアエンジニ
アとして三流かつオッサンの筆者は、C++で
EdisonのI/Oを操作してみています。開発言語
からEdisonのI/Oを操作するには、libmraa注5

というライブラリを使います。先ほど簡単に
Edisonの開発環境を紹介しましたが、Edisonは

注3） https://communities.intel.com/docs/DOC-23242

注4） http://trac.switch-science.com/Wiki/IntelEdison

注5） https://GitHub.com/intel-iot-devkit/mraa

 ▼写真5　Maker Faire会場でのワークショップの様子

 ▼写真6　Maker Faire会場でのインテルワークショップで発表する筆者（右下）

https://software.intel.com/en-us/html5/xdk-iot
https://communities.intel.com/docs/DOC-23242
http://trac.switch-science.com/wiki/IntelEdison
https://GitHub.com/intel-iot-devkit/mraa

14 - Software Design Jan. 2015 - 15

第 51 回

LinuxマシンとしてのEdison

まとめ

が動くという、Webエンジニアの方でも手軽に
遊んでもらえるおもしろい環境です。入出力電
圧が1.8Vという難点がありますが、これも
Eagletなどで3.3Vに変換すれば、Groveなどを
つなげて、あまりハードウェアの知識がなくて
も何かを作ってみるという経験ができます。ス
イッチサイエンスのWikiにも、Physical Web

のビーコンを作ってみるなど、いろいろなレシ
ピが掲載されています。Raspberry Piよりは高
いですが、もっと気軽にIoTを始めてみること
のできるボードだと思います。ｨ

使う開発環境によって入出力に使うポートの指
定方法が異なります。たとえば、Arduinoでは
D13のポートはEdisonのGP40に接続されて
います。このGP40は、libmraaでは37番に
なっています。このような読み替えが少し面倒
です。
　先ほどのスイッチサイエンス版Eagletには、
D13のポートに接続されたLEDが搭載されて
いますので、LEDを点滅させてみるにはリスト
1のようなコードを書きます。
　ちなみに、同じ処理をJavaScript（Node.js）
で書くとリスト2のようになります。Pythonで
はリスト3のようになります。
　このように、Edisonでは、ご自身が使い慣れ
た言語を使って開発を行うことができます。こ
の点もEdisonの魅力の1つと言えるでしょう。

　EdisonのOSはLinuxですので、小型の
Linuxマシンとして楽しむことができます。た
とえばSambaをインストールすれば、ポケッ
トに入るNASになるでしょうし、httpdをイン
ストールすればWebサーバとなります。VNC

を使うなどして、EdisonでX Window System

を動かしてみた人もいます。サイズの割には
EdisonのLinuxの動きはなかなか良く、ブー
トも待たされません。Raspberry Piよりは相当
に高速に動きます。
　Yoctoのパッケージはあまり豊富とは言えま
せん。このため、EdisonをDebian化して使っ
てる方もいらっしゃいます。ubilinux for

Edison注6というディストリビューションが配布
されていますので、これをEdisonにインス
トールするのも1つの選択肢です。

　Intel EdisonはEagletと組み合わせること
で、お菓子のケースに入る極小サイズでLinux

注6） http://www.emutexlabs.com/ubilinux

 ▼リスト1　LEDを点滅させるコード（C++版）

 ▼リスト2　LEDを点滅させるコード（JavaScript版）

 ▼リスト3　LEDを点滅させるコード（Python版）

#include <mraa.hpp>

int main() {
 mraa::Gpio* led = new mraa::Gpio(37);
 led->dir(mraa::DIR_OUT);
 for (;;) {
 led->write(0);
 usleep(300000);
 led->write(1);
 usleep(300000);
 }
}

var mraa = require('mraa');
var led = new mraa.Gpio(37);
led.dir(mraa.DIR_OUT);
var on = false;

blink();

function blink() {
 led.write(on ? 1 : 0);
 on = !on;
 setTimeout(blink, 300);
}

import mraa
import time

led = mraa.Gpio(37)
led.dir(mraa.DIR_OUT)

while True:
 led.write(0)
 time.sleep(0.3)
 led.write(1)
 time.sleep(0.3)

EdisonでIoTしよう

http://www.emutexlabs.com/ubilinux

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ

裸族の一戸建て SATA6G
※製品にHDD/SSDは付属しません

6Gbps の高速データ転送に対応した、SATA HDD/SSD（25.4mm、
3.5 インチ）専用ケース。工具不要で簡単に組み込むことができます。
PC への接続には USB2.0/3.0、eSATA を使用します。対応 OS は、
Windows Vista/7/8/8.1 および、Mac OS 10.6.8 以上 。
 提供元 センチュリー　 URL http://www.century.co.jp

Git バージョン管理

松島 浩道 著／
A5 判、320 ページ／
ISBN=978-4-7973-8036-1

バージョン管理システム「Git」について、CUI ／ GUI ツールでの
基本操作から実践的な活用法、Git 関連サービスまでを詳しく解説
しています。サブコマンドのリファレンスも載った実用的な 1 冊。
 提供元 SB クリエイティブ　 URL http://www.sbcr.jp

アークタッチ Bluetooth マウス
本体を折り曲げると電源がオンに、平らにするとオフになるマウス。左右対称デザインなので、
OS 上でクリックの左右を入れ替え、左手でも使えます。スクロール部分には、なでた際に感
触と音によるフィードバックがあるタッチセンサ「タッチストリップ」を搭載。接続には
Bluetooth 4.0 ワイヤレスを採用しています。対応 OS は、Windows 8/8.1/RT/RT 8.1。
 提供元 日本マイクロソフト　 URL http://www.microsoft.com/ja-jp

『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2015 年 1月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

Linux による
並行プログラミング入門
猪平 栄一、重松 保弘 著／
B5 判、200 ページ／
ISBN ＝ 978-4-320-12380-9

マルチプロセス／マルチタスク OS 上での並行プログラミングを、C
言語の演習問題を解きながら学べる本。Linux をベースに、シェル
やプロセスといった OS の基礎概念も併せて解説しています。
 提供元 共立出版　 URL http://www.kyoritsu-pub.co.jp

新装改訂版
Linux のブートプロセスをみる
白崎 博生 著／
B5 変形判、312 ページ／
ISBN ＝ 978-4-04-891393-5

ブートローダの起動から init の開始までの「ブートプロセス」を、ソー
スコード（C 言語／アセンブラ）を基に解説した 1 冊。コアなテー
マながら、軽妙な文体でわかりやすく書かれています。
 提供元 KADOKAWA　 URL http://www.kadokawa.co.jp

弥生会計 15
スタンダード
日々の記帳から集計・決算まで、1 本で行える会計ソフト。法人決
算／個人決算（青色／白色申告）や、平成 26 年分の確定申告書の
作 成 も サ ポ ー ト し て い ま す。Windows Vista/7/8/8.1 と 各 種
Windows Server に対応しています。
 提供元 弥生　 URL http://www.yayoi-kk.co.jp

15 時間でわかる
Java 集中講座
宮下 明弘、工藤 雅人、原田 僚 著／
井上 誠一郎 監修／
B5 変形判、416 ページ、DVD1 枚／
ISBN ＝ 978-4-7741-6798-5

短時間で業務レベルの基礎知識を習得することを目指した独習形式
の Java の解説書です。Vmware Player による仮想環境を付属の
DVD-ROM からコピーすることで、すぐに学習を開始できます。
 提供元 技術評論社　 URL http://gihyo.jp

1 名
1 名

2 名 2 名

2 名 2 名

1 名

http://sd.gihyo.jp/
http://www.microsoft.com/ja-jp
http://www.century.co.jp
http://www.yayoi-kk.co.jp
http://www.kyoritsu-pub.co.jp
http://www.kadokawa.co.jp
http://www.sbcr.jp
http://gihyo.jp

使うほどなじむ

「Vim使い」
事始め

プログラマ・インフラエンジニア・
文章書きの心得

第1特集

正直なところ、Vim は最初の敷居が高いエディタです。にもかかわらず、世界中のエンジニアに愛用
され続けています。エンジニアを惹きつけてやまない魅力——その片鱗は、本特集の 2 つのコラム記事
から感じ取ってもらえるはずです。
そして、Vim を常用エディタにできるかどうかは「Vim で快適に仕事ができるか」にかかっています。
2〜 4 章は、その道で日々活用している Vim 使い（Vimmer）から、実務で効果を発揮するポイントを紹
介してもらいます。
“一年の計は元旦にあり”と言います。2015年はVimで書き初めならぬ、エディタ初めはいかがですか？

コラム

1
「とっつきにくい変態エディタ」
だったVim が「私の素敵な相棒」に変わるまで 30

 Writer 伊藤 淳一

コラム

2
Vim の真のチカラを引き出すパラダイムシフト
Vim は編集作業をプログラムにする 56

 Writer MURAOKA Taro

第1章
犬でもわかる !?
Vim 導入＆カスタマイズの超基本18

 Writer 林田 龍一

第2章
IDE 並みの機能を軽快な動作で！
実用 Tips ＆対策［プログラマ編］ 32

 Writer mattn

第3章
運用作業であわてないために
実用 Tips ＆対策［インフラエンジニア編］ 40

 Writer 佐野 裕

第4章
vim-markdown という選択
実用 Tips ＆対策［文書作成編］ 48

 Writer mattn

CONTENTS

　表記注釈　　本特集では、一部キーの入力について次のように表記します。

・半角スペース……ｽ	 ・Ctrlキー……lまたは｣
・Escキー……jまたはｿ	 ・Ctrlキーを押しながらaキーを押す……｣-a

Vimの導入はそれほど難しくありません。本章ではこれからVimを使い始めたい、Vimをちょっ
と使ってみようかなという方を対象に、愛犬家の筆者がVimのインストールから各基本機能の
学び方、設定の基礎まで説明します。

犬でもわかる!?
Vim導入＆カスタマイズの
超基本

 Writer 林田 龍一（はやしだ りゅういち）　 URL https://twitter.com/Linda_pp　 Mail lin90162@gmail.com

第1章

18 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

　Vimの魅力を語りたいのはやまやまですが、
百聞は一見にしかず、早速Vimをインストー
ルしてみましょう。Vimは20年以上前からあ
る有名なエディタですので、各OSやディスト
リビューションでパッケージが用意されており、
簡単にインストールすることができるようになっ
ています注1。

Windows

　WindowsでVimを使うなら、香り屋さんが
提供されている「KaoriYa Vim」がお勧めで
す注2。更新が活発で、便利な追加機能やスクリ
プトが加えられています。
　香り屋さんのサイトから自分の環境に合った
バージョンをダウンロードし、お好きな場所（た
とえば、C:\vim）に展開してください。ファイ
ルパスに空白が含まれるとうまく動かないプラ
グインがあるため、避けることをお勧めします。
　展開したフォルダ内にある vim.exeがCLI

（Command Line Interface）版のVim、gvim.exe

がGUI（Graphical User Interface）版のVimで
す。gvim.exeのショートカットをデスクトップ

注1） 本稿の情報は2014年11月上旬のものです。
注2） http://www.kaoriya.net/software/vim/

に作成しておきましょう。

Mac

　Macではアプリ単体として配布されている
「MacVim KaoriYa」を使う方法と、Mac用パッ
ケージマネージャのHomebrewを使って「Mac

Vim」をインストールする方法とがあります。
デフォルトの状態でも/usr/binにVimは入っ
ていますが、Mac向けにビルドされたものでは
ないのでMacVimをインストールすることをお
勧めします。

MacVim KaoriYa
　MacVim KaoriYaはKaoriYa Vimの便利な
追加機能やスクリプトをMac向けのVim実装
であるMacVimに適用し、MacでKaoriYa Vim

の使い勝手を目指すプロジェクトで、splhack

さんによってメンテナンスされています。次の
URLよりDownloadsタブを選択してダウンロー
ドしてください。

https://code.google.com/p/macvim-kaoriya/

　Macのパッケージになっているため、ダウン
ロードしてきたファイルをダブルクリックする
だけでインストールが完了します。コマンドラ
インから利用するには$PATHに/Applications/
MacVim.app/Contents/MacOSを含め、Vimコマ
ンドで起動します。

インストール
およびセッティング

https://twitter.com/Linda_pp
https://code.google.com/p/macvim-kaoriya/
http://www.kaoriya.net/software/vim/

18 - Software Design Jan. 2015 - 19

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

Homebrew＋MacVim
　MacVim KaoriYaはお手軽ですが、少々バー
ジョンが古かったり、Lua連携などの一部機能
が使えません。そういうときはHomebrewを利
用します。Homebrewには多数のMac向けパッ
ケージがあり、MacVimもHomebrewを用いて
インストールすることができます。Homebrew

をまだインストールしていない人は、次の
URLにある説明に従って、まずはHomebrew

をインストールしましょう。

https://github.com/Homebrew/homebrew/blob/
master/share/doc/homebrew/Installation.md

　完了したらbrewコマンドを使って、図1のよ

　用意されているパッケージを使ったインストール
は簡単ですが、最新のバージョンのVimが使いたい
ときやパッケージで提供されているVimで有効になっ
ていない機能を利用するには、ソースコードから
Vimをビルドする必要があります。ここではUbuntu
でソースからビルドする方法を紹介しますが、他の
ディストリビューションでも同様にしてビルドでき
るはずです。Windowsについては、KaoriYa Vimで
必要になる機能がすでにほぼすべて有効になってい
るため割愛します。
　図Aのようにして、まずはビルドに必要なパッケー
ジと依存パッケージをインストールします。Lua連
携機能を有効にしたい場合は lua5.2 liblua5.2-devも

必要です。
　VimのソースコードはMercurialで管理されてい
るため、図Bのようにソースコードを取得します。
　続いて、ビルド設定を行います（図C）。詳しいビル
ドオプションの一覧は./configure --helpで見る
ことができます。LuaやRuby、Pythonの連携機能を
使いたい場合は--enable-rubyinterp、--enable-
pythoninterp、--enable-luainterpオプションを
それぞれ追加します。
　最後にビルドし、インストールします（図D）。こ
れで/usr/local/bin/vimにVimがインストール
されます。

ソースコードからのビルドコラム

 ▼図A　ビルドに必要なパッケージをインストール

$ sudo apt-get build-dep vim
$ sudo apt-get install libxmu-dev libgtk2.0-dev libxpm-dev mercurial

 ▼図B　Vimソースコードの取得

$ hg clone https://vim.googlecode.com/hg/ vim

 ▼図C　ビルド設定

$ cd vim/
$./configure --with-features=huge --enable-gui=gtk2 --enable-fail-if-missing

 ▼図D　ビルド＆インストール

$ make -j
$ sudo make install

 ▼図1　Homebrewを使ったMacVimのインストール

$ brew install macvim --with-cscope --with-lua --override-system-vim
$ brew linkapps

https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/Installation.md

20 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

うにインストールします。CLI版のVimはvimで、
GUI版のVimはLaunchpadからMacVimを選択
するか、コマンドラインからopen -a MacVimで
起動します。

Ubuntu

　UbuntuではVimのパッケージが標準のパッ
ケージマネージャaptによって提供されています。

　コマンドライン内ではvimで、GUI版はコマ
ンドラインからvim -gで起動できます。

CentOS

　CentOSではVimのパッケージが標準のパッ
ケージマネージャyumによって提供されています。

　これでGUI版がインストールされます。
GUI版を使わない場合は、vim-enhancedパッ
ケージを利用できます。

　Vimのインストールが完了したら、最初に
Vimの各設定ファイルの置き場所を把握してお
きましょう。

・̃/.vimrcまたは̃/.vim/vimrc …設定を書
くためのファイルで、Vim scriptという言語
で書くことができる（Windowsの場合は$HOME
/_vimrcまたは$HOME/vimfiles/vimrc）

・̃/.gvimrcまたは̃/.vim/gvimrc …GUI版
のみで読み込まれる設定ファイル（Windows
の場合は $HOME/_gvimrcまたは $HOME/vim
files/gvimrc）

・̃/.vim …プラグインなどのVim関連のファ
イルを置くためのディレクトリ（Windowsの

場合は$HOME/vimfiles）

　プラグインはVimの機能を拡張するための
スクリプトファイルで、プラグインの設定や
Vim本体の設定を .vimrcで行います。また、
.gvimrcではGUI版のみで読み込みたい設定（た
とえばツールバーの設定）を行います。

　Vimには「vimtutor」というチュートリアルが
付属しています。このチュートリアルがとても
良くできており、Vimの基本操作やVimの独特
なしくみであるモードに慣れることができます。
まずはチュートリアルから始めてみましょう。
　コマンドラインから次のように起動できます。

　コマンドを入力するとVimが立ち上がり、そ
のVimの中でチュートリアルが開きます。
KaoriYa VimではVimを起動した後、:Tutorial
と入力して©キーを押すとチュートリアル
を開始できます。
　Vim内でチュートリアルを読みながら、直接
チュートリアルの文章を編集してVimの各機
能に触れてみましょう。h、j、k、lによるカー
ソル移動やVimの起動／終了といった最も基
本的なことから順番に説明されていきます。
　Vimはモードの存在など、ほかのエディタに
比べて取っ付きにくいところがありますが、
チュートリアルで丁寧に基本操作が説明されて
いるため、ひととおりこなした後は基本的な操
作で困ることはほとんどなくなるはずです。テ
キストの編集（削除、挿入、カーソル移動など）
の重要な操作がたくさん含まれているので、た
まに時間を見つけて操作が身につくまで繰り返
すことをお勧めします。
　最初から最後までかかった時間を記録してお
いて、どれだけ早く正確に編集できるようになっ

$ sudo apt-get install vim

$ sudo yum install vim-X11

$ vimtutor

ファイル構造

Vimチュートリアル
「vimtutor」

20 - Software Design Jan. 2015 - 21

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

たかを見てみるのもおもしろいかもしれません。

　ひととおりチュートリアルを終えたら、早速
Vimを自分好みにカスタマイズしてみましょう。
Vimはファイル構造の節で説明した .vimrc
（Windowsなら _vimrc）に設定を書くことで、
Vimの各種機能の設定を行ったり、拡張したり
することができます。この節ではVimに標準
添付されているデフォルト設定ファイル
vimrc_example.vimから、いくつか例を取り上
げてVimを設定する方法の超基礎を紹介します。
　vimrc_example.vimはVimのインストール先
の中にあるランタイムディレクトリ（Vim実行
時に読み込まれるファイル群が入ったディレク
トリで、Ubuntuなら/usr/share/vim/vim74/）
にあります。

コメントの書式

　まず最初に、設定ファイル内のコメントは"
から行末までです。設定の意味を忘れないよう
に適宜コメントを書いていくことをお勧めしま
す。

オプションを設定する書式

　基本的な各オプションの設定はsetを使って
行えます。

　有効／無効で設定するオプションはset {オ
プション名}で有効に、set no{オプション名}
で無効になります。よって、set nocompatible
はcompatibleを無効にするという意味になり
ます。compatibleはVimとviの互換機能を有

効にするかどうかのオプションです。
　また、set undofileではundofileというオ
プションを有効にしています。undofileは
Vimを終了してもアンドゥ情報が保存され、次
回同じファイルを開いたときにアンドゥを行え
る便利機能です。
　文字列を指定するオプションの場合は、=で
値を指定します。set backspace=indent,eol,
startでは、backspaceオプションに"indent,
eol,start"という値を設定しています。
backspaceはバックスペースキーでの削除の挙
動を決めるためのオプションです。それぞれ
indentは自動挿入されたインデントを超えて
削除できるように、eolは改行を超えて削除で
きるように、startは挿入モード開始位置を超
えて削除できるようになります。

キーマップの書式

　次にキーマップのカスタマイズ方法について
説明します。

　map Q gqはQというキー入力がされたときに、
それをgqというキー入力にマッピングします。
つまり、Qを入力するとgqを入力したのと同じ
扱いになります。gqがさらに別のキー入力にマッ
ピングされていた場合は、それがさらに適用さ
れます。gqがほかにマッピングされていなけ
れば、Vimのデフォルトの機能である“行の整
形機能”が使われます。
　なお、マッピングがどのモードに対して行わ
れるかはマッピング用コマンドの頭1文字で決
まっており、表1のようになっています。
　次にinoremap <C-U> <C-G>u<C-U>について
説明します。
　まず、inoremapについてです。mapでなく
noremap（= no recursive mapping）を使うと再帰
的なマッピングを行いません。再帰的なマッピ
ングと言われてピンとこない場合は、試しに

Vim設定の超基礎

" 行末までコメント

map Q gq
inoremap <C-U> <C-G>u<C-U>

set nocompatible
set backspace=indent,eol,start
set undofile

22 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

Vimを開いて:nmap w wwと入力してみましょ
う。このあとwを押すと一気にファイル末尾ま
でカーソルがジャンプしてしまったはずです。
これはマッピングによってwがwwに置き換えら
れ、置き換えられたwwがさらにまた置き換え
られてしまうためです。これを禁止するのが
noremapで、nnoremap w wwとすると2単語分
しかカーソルが移動しなくなります。
　また、lキーを含むキー入力は<C-文字（表
記には大／小文字の区別なし）>と書きます。
したがって、上記の例は“挿入モードでl＋
uを入力した際に、l＋g→u→l＋uに
マッピングする”という意味になります。再帰
的なマッピングを行わないため、<C-G>u<C-U>
はそれ以上別のマッピングが適用されず、Vim

のデフォルト機能が実行され、undoの変更点
を作った後undoを実行します。.vimrcでは基
本的にこのnoremapを使ってマッピングすると
事故が起きにくいのでお勧めです。なお、この
ほかにも©キーを表す<CR>、pキー
を表す<BS>などがあります。
　マッピングについての詳細は :help key-
mappingで見ることができます。

auto commandの書式

　最後に、auto commandについて説明します。
Vimには特定のタイミングで実行されるイベン
トに対して、任意のコールバックを指定できる
auto commandというしくみがあります。

　この場合では FileType textがイベント、
setlocal textwidth=78がコールバックになり
ます。具体的にはファイルタイプがtextになっ
たとき（.txtなファイルを開いたときなど）に、
textwidthを78に設定しています。textwidth
は指定された文字数で自動的に行を折り返す機
能です。また、setlocalは現在編集しているファ
イルに対するローカルな設定を行います。

　以上、Vimに関する基本的な設定について紹
介しました。これらはすべてVim scriptの機能
の一部なので、本来は変数や制御構文といった
言語機能も存在しますが、最初の時点では本体
の簡単な設定方法を把握していれば十分です。

　では早速設定していきましょう！と言いたい
ところですが、設定を書いているとわからない
ことが次から次へと出てくると思います。まず
はその調べ方について知っておいたほうが良い
でしょう。
　Vimでわからないことがあったとき、Google

で検索するよりも前に試してみるべきことがあ
ります。Vimにはしっかりメンテナンスされて
いる膨大なドキュメントがあり、:helpコマン
ドによってVimの中からドキュメントを調べ
ることができます。

ヘルプの基本的な使い方

　Vim内でヘルプを閲覧するには:helpコマン
ドを使います。では、早速やってみましょう。
Vimを立ち上げて、次のように入力してくだ
さい。

　:helpコマンドのヘルプが表示されたはずで
す。このように:help {検索ワード}でヘルプ

autocmd FileType text setlocal ｭ
textwidth=78

マッピングコマンド マッピングするモード

map ノーマル・ビジュアル・
モーション待ち

imap 挿入
nmap ノーマル
vmap ビジュアル
cmap コマンドライン
omap モーション待ち

 ▼表1　マッピング用コマンドとモードの対応表

※モーション待ち…… dやyなどのオペレータ（後述）直後の範囲
指定用マッピング

:help help

ヘルプの引き方

22 - Software Design Jan. 2015 - 23

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

を検索できます。
　調べている中でわからないオプション名やコ
マンド名、マッピングなどはどんどんヘルプを
引きましょう。ヘルプ中ではWebページのリ
ンクのようにほかの用語へのリンクが貼られて
おり、｣-]でカーソル下のリンクにジャンプで
きます（｣-tで元の場所に戻ってこられます）。
　多くのプラグインのドキュメントもヘルプと
して書かれており、:help {プラグイン名}で
検索できます。プラグインの導入の仕方につい
ては次の節で説明していきます。

項目別ヘルプの引き方

　前節で出てきたundofileという設定値につ
いて、もっと詳しく知りたいと思い、次のコマ
ンドを実行したとしましょう。

　しかし、実際にはundofile()という関数の
ヘルプが表示されてしまいます。これは、オプ
ション undofileと同名の組み込み関数があ
り、:helpは最初に検索にヒットしたヘルプを
表示するためです。このようなときどうすれば
良いでしょうか。
　ヘルプには一定の書式があり、それに従った
検索ワードを用いることで、オプションやコマ
ンド、キーマッピングなど対象を絞ることがで
きます。表2に例をあげます。
　また、キーマッピングについて、lキー
を含んだマッピングはCTRL-{キー}で検索し
ます。たとえば次は、｣-oを検索したい場合

です。

　この場合、“ノーマルモード”の｣-o（カーソ
ル位置の履歴をたどる）が検索されます。
　では、“挿入モード”の｣-o（一時的にノーマル
モードのマッピングを使う機能）をどう検索す
れば良いでしょうか？
　マッピングのモードを指定するには、各モー
ドのプレフィックス（表3）を使います。

　最後に、複数の文字入力でlキーを含む
場合は_を付けてつなげます。たとえば、挿入
モードの｣-x ｣-o（オムニ補完実行注3）は次の
ように検索します。

　なお、この時点ではヘルプページは英語で表
示されており、読むのに少し苦労したかもしれ
ません。後ほどプラグイン導入の節で日本語ヘ
ルプを導入します。

便利なまとめヘルプページ

　残念ながらヘルプには逆引きはありませんが、
情報がまとめられているヘルプがいくつかあり
ます。

注3） カーソル位置の文脈にあわせた補完候補リストが表示される。

:help undofile

:help CTRL-o

:help i_CTRL-o

:help i_CTRL-x_CTRL-o

検索したい種類 検索方法 検索例
オプション ''で囲む :help 'undofile'
コマンド :を頭につける :help :write
組み込み関数 ()を末尾につける :help empty()

 ▼表2　ヘルプの書式例

ノーマル 挿入 ビジュアル コマンドライン
プレフィックス 付けない i v c

 ▼表3　各モードのプレフィックス

24 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

いろんなところから設定を
持ってくる場合の注意点

　ほかの人の.vimrcを参考にするのはとても
有効な設定の書き方ですが、注意点もあります。
　まず、よくわからないまま設定をコピー＆ペー
ストして使うのは避けるべきです。わからない
オプションやコマンド、マッピングなどが出て
きた場合には、前章で説明した方法でヘルプを
確認しましょう。設定の意味がわからないまま
書いてしまうと、Vimの挙動がおかしくなった
場合などにどの部分に問題があるか見当すらつ
かなくなってしまいます。
　また、Vimを使い込んでいる人はVim script

でかなり高度な設定をしている場合があります。
しかし、最初からそういう設定を真似るよりは、
基本的な部分（setによるオプション設定やマッ
ピング、変数による各プラグイン設定など）か
ら始めるほうが無難です。複雑な設定を書いて
しまうと、今後メンテナンスしていくのが大変
になってしまいます。
　多くの人はプラグイン管理用のプラグインを
使って、ほかのプラグインを管理しています。
プラグイン管理プラグインの使い方を先に知っ
ておくことで、ほかの人がどのようなプラグイ
ンを使っているかを知ることができます。プラ
グイン管理プラグインについては次の節で解説
します。

設定ファイルを
バージョン管理する

　Vimの設定ファイルはバージョン管理システ
ムで管理することをお勧めします。設定を書い
ていると、思わぬところでVimの挙動がおか
しくなってしまったり、前の設定に戻したくな
るときがあります。そのようなときに、今まで
の変更履歴を保存していると元の状態に戻した
り、どの時点からVimの挙動がおかしくなっ
たのかを二分探索したりすることができ、非常
に便利です。
　たとえば、Gitを使ってdotfilesというリポ
ジトリで設定ファイルを管理するときは図2の

・:help quickref …クイックリファレンスマ
ニュアル。チートシート的に操作の簡単な
説明が載っている

・:help usr_toc …ユーザが順に読んでいく
ことを想定した、Vimのユーザマニュアルの
目次

・:help reference_toc…Vimのリファレンス
マニュアルの目次。各機能ごとにまとめら
れている

・:help key-mapping…マッピングのコマンド
や書き方などのまとめ

・:help function-list…組み込み関数一覧

　ヘルプを順番に見て.vimrcをいちから書い
ていくのは大変です。代わりに、最初はほかの
人が公開している.vimrcを参考にして、設定
ファイルを書いていく方法がお勧めです。
　GitやGitHubは設定ファイルを管理するの
にも非常に便利なため、.vimrcはほかのさま
ざまなツールの設定ファイルと共に、GitHub

で多く公開されています。慣例的に、dotfiles

という名前のリポジトリを使っている人が多い
ようです。Vimを使っているエンジニアで気に
なる人がいれば、その人のdotfilesリポジトリ
を探してみるのも良いかもしれません。
　また、Lingr（P.28のコラム参照）ではvimrc

読書会という.vimrcを読むイベントが毎週開
催されています。vimrc読書会で読む対象に選
ばれたものを使ってみるのも良いかもしれませ
ん。一覧は次のURLにあります。

http://vim-jp.org/reading-vimrc/archive/
index.html

　Vimに詳しい人の設定を参考にするのは、自
身のVimの設定を行ううえでかなり近道にな
ります。

ほかの人の「.vimrc」を
参考にする

http://vim-jp.org/reading-vimrc/archive/index.html

24 - Software Design Jan. 2015 - 25

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

ようにします。
　シンボリックリンクによって、dotfiles内で
複数ある設定ファイルを管理しつつ、ホームディ
レクトリに設定ファイルを配置します。設定ファ
イル内に公開できない情報などが含まれていな
い場合は、このリポジトリをGitHubで管理し
ておくと、git cloneを使うだけでほかの環境
にもお手軽に設定ファイルを持ってくることが
できます。

オススメのvimrc

　最後に、GitHubで公開されている.vimrcの
うち、設定に対するコメントが丁寧であるなど、
筆者がお勧めするものを紹介します。かなり長
いものもありますが、まずは基本的な設定を行っ
ている個所（setによるオプション設定やマッピ
ングなど）を読んで参考にさせてもらいましょう。

・https://github.com/cohama/.vim/blob/
master/.vimrc

・https://github.com/rhysd/dotfiles/blob/
master/vimrc

・https://github.com/deris/dotfiles/blob/
master/.vimrc

・https://github.com/daisuzu/dotvim/blob/
master/.vimrc

　Vimプラグインは本来は~/.vimディレクト
リ（Windowsなら $HOME/vimfiles）以下に直接
展開しますが、最近では“Vimプラグインを管
理するためのVimプラグイン”を使って管理す
るのが一般的となっています。
　プラグイン管理プラグインはpathogen.vim、
Vundle.vim、vim-plug、neobundle.vimな ど 多
数ありますが、ここでは筆者も利用している
neobundle.vimの使い方を説明していきます。
neobundle.vimの詳しい使い方や最新の情報は
インストール後にヘルプページ（:help ｽ
neobundle）で参照することができます。

基本的な使い方

　gitコマンドが必要なので、Xcode（Mac）や
Git for Windows（Windows）、各種パッケージマ
ネージャ（Linuxなど）でGitをインストールした
後、図3のコマンドでneobundle.vimをローカル
にダウンロードします。Windowsでは~/.vimを
適宜$HOME/vimfilesに読み替えてください。
　次に、Vimでneobundle.vimを利用するため
の最小限の設定を書きます。.vimrcの先頭に
リスト1のように書いてみましょう。この時点
でVimを起動してみてエラーなどが出なければ、
次のステップに進みましょう。

 ▼図2　Gitでdot�lesリポジトリを管理する

$ mkdir ̃/dotfiles
$ cd ̃/dotfiles

... (.vimrcをdotfiles内に書く)

$ git init . && git add .vimrc && git commit -m "first commit"
$ ln -s .vimrc ̃/

 ▼図3　neobundle.vimのダウンロード

$ mkdir -p ̃/.vim/bundle
$ cd ̃/.vim/bundle
$ git clone https://github.com/Shougo/neobundle.vim.git

プラグイン管理
プラグイン

https://github.com/rhysd/dotfiles/blob/master/vimrc
https://github.com/cohama/.vim/blob/master/.vimrc
https://github.com/deris/dotfiles/blob/master/.vimrc
https://github.com/daisuzu/dotvim/blob/master/.vimrc

26 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

　インストールするプラグインの指定には
:NeoBundleコマンドを使います。書き方はリ
スト2のようになります。

　ここで1つ具体例として、ヘルプページを日本
語化するプラグインをインストールしてみましょ
う。Vimのヘルプは有志によって日本語に翻訳

されており、次のリポジトリに置か
れています。

https://github.com/vim-jp/vimdoc
-ja

　これはリスト2の❶の書式ですか
ら、.vimrcに書いたneobundle.vim

の設定（リスト1）のうち、call ｽ
neobundle#end()の1つ前の行に、
リスト3を追記してください。保存
したら一度Vimを終了し、再度起
動しようとすると、インストール
するかどうかの確認メッセージが
表示されます（図4）。
　ここで「y」を選択すると、neo

bundle.vimが自動でGitHubから未
インストールプラグインをダウン
ロードして配置してくれます。また、
起動時の未インストールプラグイ
ンチェック時以外でも:NeoBundle
Installコマンドを使ってインス
トールすることもできます。
　プラグインのインストール自体は
これだけで完了です。次にプラグイ
ンの設定をします。.vimrc内にリス
ト4のように書いてみましょう。
　これにより、日本語ヘルプのほう
が英語ヘルプよりも優先して表示さ
れます。試しに、:help 'undofile'
などを試してみましょう。なお、明
示的にヘルプの言語を指定したいと
きは、リスト4の末尾に @jaや @en
を付けます。
　このようにして、気になったプラ
グインを:NeoBundleコマンドを使っ
て気軽に試してみたり、管理するこ
とができます。各プラグインのアッ

 ▼リスト1 neobundle.vimを使うための設定例（.vimrc）

if has('vim_starting')
 set nocompatible
 set runtimepath+=̃/.vim/bundle/neobundle.vim
endif

call neobundle#begin(expand('̃/.vim/bundle'))

" neobundle.vim自身をneobundle.vimで管理する
NeoBundleFetch 'Shougo/neobundle.vim'

""
" ここにインストールしたいプラグインの設定を書く
" :help neobundle-examples
""

call neobundle#end()

filetype plugin indent on

" プラグインがインストールされているかチェック
NeoBundleCheck

if !has('vim_starting')
 " .vimrcを読み込み直した時のための設定
 call neobundle#call_hook('on_source')
endif

 ▼リスト2 インストールするプラグインの指定方法

❶ https://github.com/{user}/{repo} で公開されているプラグイン
NeoBundle '{user}/{repo}'

❷ http://www.vim.org/scripts/ で公開されているプラグイン名
NeoBundle '{プラグイン名}'

❸ プラグインのリポジトリをgit:// プロトコルで直接指定
NeoBundle 'git://...'

 ▼リスト3 ヘルプの日本語化プラグインのインストール指定（.vimrc）

NeoBundle 'vim-jp/vimdoc-ja'

 ▼リスト4 ヘルプの日本語化プラグインの設定

set helplang=ja,en

 ▼図4　インストールの確認メッセージ

Not installed bundles: ['vimdoc-ja']
Install bundles now?
(y)es, [N]o:

https://github.com/vim-jp/vimdoc-ja

26 - Software Design Jan. 2015 - 27

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

プデートは:NeoBundleUpdate、不要になったプ
ラグインのアンインストールはプラグイン
の:NeoBundleの行を削除した後、:NeoBundle
Clean {プラグイン名}を実行します。

初心者向けお勧めプラグイン

　プラグインはGitHubや vim.orgなどで公開
されています。最近では、VimAwesome注4とい
う、GitHubに公開されている設定ファイルか
ら使われているプラグインを抽出して集計する
Webサービスもあります。この節では、初心
者にお勧めだと思うプラグインを3つほど簡単
にご紹介します。

vim-quickrun
https://github.com/thinca/vim-quickrun
　現在開いているファイルをVim内で直接実
行し、結果を表示できるプラグインです。ちょっ
とした動作の確認やプログラミング勉強中のコー
ド片の実行などを非常に手軽に行えます。この
タイプのプラグインはいくつかありますが、拡
張性の高さや対応言語の多さからvim-quickrun

を一番お勧めします。

seoul256.vim
https://github.com/junegunn/seoul256.vim
　柔らかい色合いで視認性の良いカラースキー
ムです。カラースキームはVim全体の色合い
を決めるもので、人によってかなり好みが出ま
すが、目が疲れにくいと感じるものを選ぶのが
ベストです。ぜひお好みのものを見つけてくだ
さい。

unite.vim
https://github.com/Shougo/unite.vim
　Vim内で「候補のリストを表示して絞り込み
選択して実行する」という一連のインターフェー
スを提供するプラグインです。たとえば、“カ

注4） http://vimawesome.com/

レントディレクトリのファイル一覧から目的の
ファイルを絞り込み検索して開く”といった操
作ができます。もちろんファイルだけでなく、
さまざまなリストを対象にすることができます。
どのようなものがあるかはunite.vimのヘルプ
を参照してください。

　最後に、少し応用的な機能の紹介をします。
　Vimには「ある範囲に対して特定の操作をす
る」という一連の処理を行えるしくみがありま
す。このしくみの基本的な部分だけでも知って
おくと、編集がとても楽になります。このしく
みはどの範囲に対する操作かを示すテキストオ
ブジェクトと、その範囲に対して何をするかを
示すオペレータに分かれており、それぞれマッ
ピングで指定します。
　たとえば、ノーマルモードで単語の上にカー
ソルを移動させてからdiwと入力してみてくだ
さい。カーソル下の単語が削除されたはずです。
これは、オペレータdとテキストオブジェクト
iwから成っています。dは「対象範囲を削除する」
というオペレータで、iwは「カーソル下の単語」
を範囲とするテキストオブジェクトです。
　次に、選択ではなくカーソル下の単語をコピー
したい場合はどうすれば良いでしょうか？　範
囲は変えず、オペレータを「対象範囲をコピー
する」というオペレータであるyに変更し、yiw
とすれば可能です。
　このように、オペレータとテキストオブジェ
クトを自由に組み合わせることでさまざまな
編集を行うことができます。さらに、一連の
操作は.で繰り返すことができます。なお、テ
キストオブジェクトにはiで始まるものとaで
始まるものがあり、対象の「内部」を選択するか、
「全体」を選択するかの違いがあります。iは英
語の“inner”の略、aは英語の“a”と覚えるとわ
かりやすいでしょう。たとえば、iwは“inner

word”、awは“a word”の略です。

オペレータと
テキストオブジェクト

https://github.com/thinca/vim-quickrun
https://github.com/junegunn/seoul256.vim
https://github.com/Shougo/unite.vim
http://vimawesome.com/

28 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

　表4、5にそのほかの代表的なオペレータと
テキストオブジェクトを示します。
　プログラムの文字列中でdi"や、C言語のif
ブロック内でyi{など、いろいろ試してみてく
ださい。慣れてくると、選択したい範囲に対し
てほとんど考えることなく適切なテキストオブ
ジェクトを選べるようになり、リファクタリン

グなどの編集作業がとても速くなります。
　オペレータやテキストオブジェクトの種類
は多数あるため、詳細は :help operatorや
:help text-objectsを参考にしてください。

　Vimの導入方法について基本的なことを駆
け足で紹介しました。最初はモー
ドに慣れず戸惑うかもしれません
が、普段のコーディングにVimを
使って慣れてくると、どんどん効
率的な編集ができるようになって
いくことが体感できるはずです。
この入門記事があなたのコーディ
ングの生産性を上げるきっかけに
なればと思います。ﾟ

● Lingr
http://lingr.com/signup?letmein=vim
　Vimを使っていたり設定しているときにhelpで
調べてもGoogleで検索してもわからないことが出
てきた場合、よく知っている人に聞くのが一番の近
道です。そういった疑問や問題を気軽に相談／共有
する場として、Lingrというチャットサービスを利
用できます。Lingrにはvim-jpというチャットルー
ムがあり、日々Vimに関する雑談や相談などで賑わっ
ています。また、vimrc読書会などのオンラインイ
ベントも開催されています。
　ここにはVimプラグイン開発者などといったVim
を使いこなしている人たちがいて、質問すると丁寧
に教えてくれます。ぜひ気軽に質問してみてくださ
い。筆者もLindanという名前でたまにログインし
ています。

● vim-jp
https://github.com/vim-jp/issues
　GitHub上で日本のVimコミュニティが運営する

vim-jpというorganizationがあります。Vim本体の
挙動でバグを見つけたり、機能の要望がある場合は
vim-jpが管理している issuesというリポジトリが利
用できます。
　上記のリポジトリの issueにバグや要望を登録す
ると、Vimに長年コントリビュートしている一流の
Vimmer達からアドバイスがもらえたり、バグを修
正するパッチを書いてもらえたりします。ここで出
された成果はVim本体に還元されるため、Vim本体
の改善にもつながります。

● 各地もくもく会
　日本各地で、Vimユーザが集まって交流したり、（お
もにVimで）作業をしたりする「もくもく会」が開催
されています。Sapporo.vim、Aizu.vim、TokyoVim、
momonga.vim、nagoya.vim、Osaka.vimなどが不
定期で開催されていますので、お近くにお住まいの
方は参加してみてください。Vimmer達にアドバイ
スをもらったり相談したりできる良い機会になると
思います。

Vimコミュニティについてコラム

オペレータ 操作の説明
c 対象を削除した後、挿入モードに入る（change）
y 対象をyank（コピー）する
> 対象のインデントを深くする
< 対象のインデントを浅くする

 ▼表4　代表的なオペレータ例

テキストオブジェクト 範囲の説明
i"またはa" "..."で囲まれた内部または全体
i(またはa((...)で囲まれた内部または全体
i{またはa{ {...}で囲まれた内部または全体
itまたはat HTMLなどのタグの内部または全体
ipまたはap 段落の内部または全体

 ▼表5　代表的なテキストオブジェクト例

まとめ

http://lingr.com/signup?letmein=vim
https://github.com/vim-jp/issues

28 - Software Design Jan. 2015 - 29

犬でもわかる!?
 Vim導入＆カスタマイズの超基本 第1章

　vimtutorの中で/{文字列}を使って検索する例
が出ていたと思います。これだけでも便利なのです
が、ファイルを編集していると単純な文字列検索で
は不十分なことがあります。たとえば、「num」と
いう変数を検索したいが、「number」という変数に
は検索がヒットしてほしくない場合などが典型例で
しょうか。/による検索では、ほかの多くのテキス
トエディタが実装しているように、正規表現による
パターン検索を行うことができます。

/･w･+ ←任意の1単語を検索
/^･s*$ ←空行を検索
/･(foo･|bar･) ← 'foo'か 'bar'のどちらか

を検索

　正規表現の詳細については:help regexで参照
できます。 一般的な正規表現について説明しよう
とするととても長くなってしまうため、ここでは一
般的な正規表現については紹介していません。正規
表現ってそもそも何？という方は、まずは一般的な
正規表現について調べてみると良いでしょう。

● Vimの正規表現の注意点
　非常に便利な正規表現ですが、Vimの正規表現は
Rubyなどの正規表現と比べてパターンの書き方が
異なっているものがあります。たとえば、Rubyで
1回以上の繰り返しを表すのは+ですが、Vimの正
規表現では･+となります。こういった違いはVim
で正規表現を初めて使うときに戸惑う原因になりま
すので、よく使うものについて表Aにまとめてみま
した。
　表に載っているもののほかにも“否定／肯定先読み”
や“肯定／肯定後読み”などがあります。
　なお、PerlやRubyの正規表現を利用できるよう
になるeregex.vim※というVimプラグインもあるの
で、本文で説明しているプラグインのインストール
方法を参考にしながらインストールしてみるのも良
いかもしれません。

● Vimの正規表現で便利なパターン
　まずは単語の始まりにマッチする･<と単語の終
わりにマッチする･>です。たとえば、前述の「num」
にはマッチさせたいけれど「number」にはマッチさ
せたくない場合などは、/num･>と検索します。こ
うすると、numのすぐ後ろで単語が終了していな
ければならないため、numberにはマッチしなくな
ります。検索対象を絞るのに役立ちます。
　次に、マッチを開始する位置を指定する･zsと
･zeを紹介します。たとえば、「foo_bar」という変
数名の内で、「bar」だけにマッチする正規表現を書
きたいとします。このとき、Rubyなどでは肯定後
読みを用いて(?<=foo_)barなどとすると思いま
すが、Vimではfoo_の後のbarからマッチが始ま
るという意味で、もっとシンプルにfoo_･zsbarと
いうふうに書けます。
　これは、たとえば変数の一部を書き換えたいとき
に非常に便利です。.による繰り返しを利用して1ヵ
所ずつ置換する方法もありますが、ここでは置換用
のコマンド:substituteの省略形:sを使います。
ファイル内を一斉置換するためのコマンドの書式
は:%s/{置換候補パターン}/{置き換え文字列}/
gです。:%s/foo_･zsbar/hoge/gと入力すると、
「foo_bar」の「bar」を「hoge」に置き換えます。この
ほかにも、非空白行頭にマッチしたい場合は
^･s*･zsで書けるなど、･zsや･zeはマッチさせた
い個所の前後のパターンを指定したいときにいろい
ろ役立ちます。ぜひ試してみてください。

Vimの正規表現コラム

Ruby 機能 Vim
+ 1回以上の繰り返し ･+
? 0 or 1回のマッチ ･? または ･=
{n} n回の繰り返し ･{n}
･b 語境界 ･<(単語始まり)、

･>(単語終わり)
(...) グループ化 ･(...･)
(?:...) キャプチャなし

グループ化
･%(...･)

 ▼表A　Vim特有の正規表現例

※https://github.com/othree/eregex.vim

https://github.com/othree/eregex.vim

30 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

「とっつきにくい変態エディタ」だったVimが
「私の素敵な相棒」に変わるまで コラム1

　今はRuby on Railsの開発がメインになってい

る私ですが、前職、前々職はそれぞれ、.NETや

Javaの開発がメインでした。当時はVisual Studio

やEclipseをほぼデフォルトの状態で使っており、

特殊なキーバインドはまったく使っていませんで

した。IDE（統合開発環境）を使わないときはサク

ラエディタをメインのテキストエディタとして使っ

ていました。

　そんな私がVimを使おうと思った理由は2点あ

ります。

　1つめの理由はLinuxサーバにログインすると、

viぐらいしかデフォルトで入っているテキストエ

ディタがなかったためです。自分の業務上、

Linuxサーバを使って作業する機会はそれほど多

くありませんでした。とはいえ、「viが使えない

ために簡単な設定ファイルの編集をするだけで右

往左往してしまうのはちょっと恥ずかしい」とい

う気持ちがありました。

　2つめの理由は「Vimって便利ですよ！」と言い

ながらVimを使いこなす同僚のエンジニアがいた

からです。どこからどう見ても扱いづらい変態エ

ディタであるVimを「便利！」と絶賛する同僚が私

は不思議でなりませんでした。しかし、同僚の言

葉だけでなく、ネット上でも「Vimはすごい」「Vim

最高！」といった声をよく目にしました。なので、

「一度だまされたつもりでVimを使ってみよう。

同僚の言葉が正しいのか、それともやはりただの

変態エディタなのかはじっくり使い込んでから結

論を出そう」と考えました。

　このような理由から私はVimを本格的に使い始

める決心をしました。

　前述のとおり、Vimは私にとって本当にとっつ

きにくい変態エディタでした。ですから、「Vim

を使い始める」イコール「一時的に生産性が落ちる」

ということを覚悟しました。また、「いつものキー

バインドに戻れる」という逃げ道を作ってしまうと、

なかなかVimの学習曲線が上昇しません。そこで、

「テキストを編集するときは絶対にVimしか使わ

ないぞ !!」という「Vim縛り」を自分に課すことにし

ました。

　しかし、それだけでもまだ不十分です。Vimは

インサートモードに入るとほとんど「メモ帳」のよ

うに使えてしまいます。それに頼ってしまうと

Vimを使う利点がなくなってしまうので、チート

シートを手元に用意し（図1）、できるだけノーマ

ルモードとVimコマンドの組み合わせでカーソル

を移動させたり、テキストを編集したりすること

を心がけました。

　こういった練習を毎日繰り返すと、だんだんと

Vimが手に馴染んできます。2～3日もすれば「あ、

ちょっと慣れてきたかも」という実感がわいてき

ました。その感覚がつかめたら最初の大きな壁は

越えたことになります。そこからはどんどん学習

曲線が上がり、Vimを使うことが楽しくなってき

ました。

なんでVimを
使おうと思ったの？

どんなふうにVimを
始めたの？

「とっつきにくい変態エディタ」
だったVimが「私の素敵な
相棒」に変わるまで

 Writer ㈱ソニックガーデン　伊藤 淳一（いとうじゅんいち）　 Twitter @jnchito

コラム

1

30 - Software Design Jan. 2015 - 31

「とっつきにくい変態エディタ」だったVimが
「私の素敵な相棒」に変わるまで コラム1

　はい、Vimはやっぱり便利でした !!

　たとえば、Vimを使えばマウスや十字キーを使

わなくてもカーソルをびゅんびゅんと好きなよう

に移動できます（例：w、e、bやH、M、L）。「この

行やこの単語を削除したい」と思ったときもコマ

ンド一発です（例：dd、dw）。ほかにもカーソル

の下にある数字を増減させる（｣-a、｣-x）など、

「メモ帳系エディタ」にはマネできない操作を実現

できる点もVimの大きな強みです。

　Vimには数多くのコマンドがあり、確かに覚え

るのにはちょっと時間がかかりますが、一度覚え

てしまえば「頭の中にあるやりたいこと」をとても

すばやく実現できるようになります。

　というわけで、このコラムでは私がVimを使お

うと思ったきっかけと、Vimを使い始めたころの

練習方法、それにVimが使えるようになってから

感じているVimの利点について、経験をふまえて

書いてみました。数年前の私と同じように、「Vim

を使いこなしたいがどうすればいいかわからない」

という方の参考になると幸いです。

　なお、Vimの練習方法やVimの便利なコマンド

については、私のブログやQiita記事に詳しく書

いていますので、よかったらそちらも参考にして

みてください。ｦ

・	僕がサクラエディタからVimに乗り換えるまで
	 http://blog.jnito.com/entry/20120101/
1325420213

・	脱初心者を目指すなら知っておきたい便利な
Vimコマンド25選（Vimmerレベル診断付き）

	 http://qiita.com/jnchito/items/
57ffda5712636a9a1e62

で、Vimに対する
結論はどうなったの？

まとめ

 ▼図1　私のチートシート

http://blog.jnito.com/entry/20120101/1325420213
http://qiita.com/jnchito/items/57ffda5712636a9a1e62

Vimにも興味はある、けれどもIDEの便利さはなかなか手放せない。あるいは逆に、Vimを使っ
ているけれどもIDEへのあこがれもある。そんなプログラマの方に向け、本章ではIDEの良さを
Vimに取り込む、プログラマ向けカスタマイズのポイントについて解説します。

IDE並みの機能を軽快な動作で！
実用Tips＆対策
［プログラマ編］

 Writer mattn　 Twitter @mattn_ jp

第2章

32 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

IDE並みの機能を軽快な動作で！
実用Tip＆対策［プログラマ編］ 第2章

　職業であっても趣味であっても、プログラミ
ングをしている人であれば必ずお世話になるの
がテキストエディタです。IDE（統合開発環境）
を使って体系的にプログラミングを学ぶのも楽
しいですが、IDEの多くは起動が遅く、イライ
ラするうちにせっかく思いついたアイデアを失っ
てしまう場合もあります。いったんテキストエ
ディタでプログラミングする快適さを覚えてし
まった人達にとって、テキストエディタは切っ
ても切れない存在になってしまうのです。
　IDEが不便だと言っているのではありません。
IDEの使い心地の良い機能を一度味わってし
まうと、テキストエディタの非力さを感じてし
まうことも多々あります。そしてどうしても同
じ使い勝手を使い慣れたテキストエディタに求
めてしまうのです。Vimmer（Vim使い）も例に
もれず、IDEの操作感を模倣したvimrc（vimの
設定ファイル）やプラグインをよく見かけます。
　一般的な IDEの主な機能は次のようなもの
だと思います。

・入力補完
・GUIの作成
・コンパイラとの協調動作
・デバッガ

・プロジェクトファイルの管理

　ネイティブなGUIの作成はさすがに IDEに
は敵わないのですが、Webアプリケーション
のようにHTMLを書くのであればVimの強力
な編集能力はIDEに勝ることもあるのです。

　最近はGitでソースが管理されることも多く
あります。Vimでも、リポジトリ内のファイル
をプロジェクト管理されたファイルと見立てて
ファイル検索する便利なプラグインがあります。
Unite注1（図1）、CtrlP注2（図2）などが有名です。
　プロジェクトのルートディレクトリを検出す
る方法も指定できるため、リポジトリ内に複数
のプロジェクトが存在し、特定のディレクトリ
配下をプロジェクトと見立てて使う場合にも使
用できます。これらのプラグインはバッファ／
ファイルの検索だけでなく、最近使用したファ
イルやタグ一覧などの絞り込み検索もできます。
　UniteやCtrlPはプログラマブルなインター
フェースを提供しており、いろいろな拡張をユー
ザ側で作ることができます。たとえば、ローカ

注1） URL https://github.com/Shougo/unite.vim

注2） URL https://github.com/kien/ctrlp.vim
CtrlPは現在、次のリポジトリで forkという形で開発が進
められています。

 URL https://github.com/ctrlpvim/ctrlp.vim

IDEとテキストエディタの
いいとこ取りをしたい！

Git対応の強化

https://github.com/Shougo/unite.vim
https://github.com/kien/ctrlp.vim
https://github.com/ctrlpvim/ctrlp.vim

32 - Software Design Jan. 2015 - 33

IDE並みの機能を軽快な動作で！
実用Tip＆対策［プログラマ編］ 第2章

ルでのGitHubのリポジトリ管理を楽にする
ghqをVimから簡単に扱えるようになるUnite/

CtrlP用のプラグインもあります注3。

　Vimには標準で :grepコマンドや :vimgrep
コマンドが用意されていますが、ag（the_

silver_searcher）と連携するag.vim注4を使うこ
とで高速にファイル検索を行うことができます。
　agはスレッド、mmap、正規表現のJITなどを
使って高速にファイルを検索できるプログラム
です。Windowsでも動作しま
す。検索結果はQuickfixウィ
ンドウに表示されるので、一
覧から選択とジャンプが可能
です（図3）。
　また、Vimの :grepコマン
ドは実行に外部プログラムの
grepを使用しますが、grepコ

注3） URL https://github.com/sorah/
unite-ghq

 URL https://github.com/mattn/
ctrlp-ghq

注4） URL https://github.com/rking/ag.
vim

マンドは euc-jpや shift_jis、utf-8など、それ
ぞれ別々のエンコーディングで書かれたファイ
ルを扱うことはできません。そういった場合、
jvgrep注5コマンドを使うことで解決できます。
これもWindowsでも動作します。

　Vimを使ってソースコードを編集する場合に
役立つのがタグジャンプです。Vimプラグイン

注5） URL https://github.com/mattn/jvgrep

 ▼図1　Unite

 ▼図2　CtrlP

ソースファイル検索

タグジャンプ

 ▼図3　agによる検索結果の一覧表示

https://github.com/mattn/jvgrep
https://github.com/sorah/unite-ghq
https://github.com/mattn/ctrlp-ghq
https://github.com/rking/ag.vim

34 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

IDE並みの機能を軽快な動作で！
実用Tip＆対策［プログラマ編］ 第2章

に頼っているユーザの中にはタグジャンプの使
い方を知らないままの人もいますが、言う人に
言わせれば「タグジャンプあってのVim」と言っ
ても良いというほどにVimと tagsファイルは
切っても切れない存在となっています。
　tagsファイルを生成するctags注6は40を越え
るプログラミング言語をサポートしていま
す注7。この40を越えるプログラミング言語のタ
グジャンプを、Vimを使えば同じ操作感で扱え
るのです。
　一般的な使い方はソースツリーのルートディ
レクトリで次のコマンドを実行します。

$ ctags -R

　これで tagsファイルが生成されます。Vimは
tagsオプションで指定したパスリストに tags

ファイルが存在すると、そのファイルを読み込
んでタグジャンプを行います。

:set tags=./tags,tags,../tags

　この例ではカレントディレクトリおよび親ディ
レクトリにある tagsファイルが検索され、参
照されます。また、

:set tags=/lib/**/tags

このように**を用いることで階層をくだって
検索したり、

:set tags=/lib/**2/tags

このように数値を付与することで2階層限定の
検索を行うこともできます。
　タグジャンプはジャンプしたいシンボル上で
｣-]をタイプします。ジャンプリストを戻る

注6） Exuberant Ctags。ソースやヘッダ内にある名前のタグ（イ
ンデックス）ファイルを生成するプログラム。

注7） URL http://ctags.sourceforge.net/languages.html

には｣-tをタイプします。タグが複数存在す
るときは:tag fooのようにコマンドをタイプす
るか、g ｣-]をタイプしてタグを選択できます。
　前述したUniteとCtrlPにも、このタグを扱
える拡張が存在します。

　Vim標準でnetrwというファイルブラウザが
搭載されています。これを画面左側に表示する
ことでIDEのファイルブラウザが実現できます。
　リスト1の例は画面左側にツリー状のファイ
ルブラウザを開き、その右側でファイルを開く
という設定を<leader>e（何も設定していない状
態であれば ･e）というキーに割り当てています。

 ▼リスト1　netrwを開きIDE風に配置する設定

let g:netrw_liststyle = 3
let g:netrw_browse_split = 4
let g:netrw_altv = 1

function! ToggleVExplorer()
 if !exists("t:netrw_bufnr")
 exec '1wincmd w'
 25Vexplore
 let t:netrw_bufnr = bufnr("%")
 return
 endif
 let win = bufwinnr(t:netrw_bufnr)
 if win != -1
 let cur = winnr()
 exe win . 'wincmd w'
 close
 exe cur . 'wincmd w'
 endif
 unlet t:netrw_bufnr
endfunction
map <silent> <leader>e :call ｭ
ToggleVExplorer()<cr><c-w>p

 ▼リスト3　 シンボルブラウザ（taglist）を右に表示す
る設定

let Tlist_Show_One_File = 1
let Tlist_Use_Right_Window = 1
let Tlist_Exit_OnlyWindow = 1
map <silent> <leader>E :TlistToggle<cr>

 ▼リスト2　NERDTreeを使った IDE風配置設定

map <silent> <leader>e :NERDTreeToggle<cr>

ファイルブラウザ

http://ctags.sourceforge.net/languages.html

34 - Software Design Jan. 2015 - 35

IDE並みの機能を軽快な動作で！
実用Tip＆対策［プログラマ編］ 第2章

　また、NERDTreeというファイルブラウザ
を使う場合はリスト2のように設定します。
　NERDTreeはnetrwよりもより高機能でカ
スタマイズ性が高く、キャッシュを使用するこ
とで高速化が図られています。

　前述のタグジャンプを IDEのようにUIから
行いたいのであれば、taglist.vim注8

と tagbar注9の2つがお勧めです。
　ファイルブラウザはリスト1また
は2で左側に表示したので、シンボ
ルブラウザはエディタ画面の右側に
表示してみます（リスト3）。キーは
<leader>Eに割り当てています。こ

注8） URL https://github.com/vim-scripts/taglist.
vim

注9） URL https://github.com/majutsushi/tagbar

れでIDEのような見栄えになりました（図4）。
　あとはCtrlPやUniteなどでファイルを開く
際に、中央のウィンドウで開かれるように、リ
スト4の設定を追加します。ほぼIDEと同じ見
栄えになったのではないでしょうか。

　:makeを実行するとmakeprogというオプショ

 ▼図4　ファイルブラウザを左に、シンボルブラウザを右に表示させたVim

 ▼リスト4　CtrlPでファイルを中央のウィンドウで開く設定

function! CtrlP_OpenAtCenter(action, line)
 let cw = bufwinnr('.')
 for n in range(0, bufnr('$'))
 let bw = bufwinnr(n)
 if bw == cw && buflisted(n)
 exe bw . 'wincmd w'
 break
 endif
 endfor
 call call('ctrlp#acceptfile', [a:action, a:line])
endfunction
let g:ctrlp_open_func = {'files': 'CtrlP_OpenAtCenter'}

シンボルブラウザ ビルド

https://github.com/vim-scripts/taglist.vim
https://github.com/majutsushi/tagbar

36 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

IDE並みの機能を軽快な動作で！
実用Tip＆対策［プログラマ編］ 第2章

ンで指定されたコマンドが実行されます。
Vimにはこの makeprogを言語ごとに切り替え
られる:compilerコマンドが存在します。標準
で59個ものcompilerプラグインが含まれてお
り、コンパイルだけではなくスクリプト言語の
構文チェックを実行することもできます。結果
はQuickfixに出力されるため、エラーの一覧か
ら直したい個所を選んでジャンプできます。
　なお、ファイルの書き込みと同時に:makeを
実行するflymake注10というプラグインもあり
ます。
　また、フルスクラッチからプログラミングす
る際には、現在のバッファを簡単に実行できる
プラグインquickrun注11が便利です。

注10） URL https://github.com/kana/vim-flymake

注11） URL https://github.com/thinca/vim-quickrun

　IDEの中には小ウィンドウ内でコマンドラ
インシェルを実行できるものがありますが、
Vimなら tmuxを使うことで同様の機能を得る
ことができます。Vim本体の機能ではありませ
んが、UNIXでは個別のプログラムを組み合わ
せることで目的の機能を作り上げるのが一般
的です。
　また、vim-dispatch注12というプラグインを使
うことで、Vimでシームレスなコマンドウィン
ドウを実現できます。
　vim-dispatchをインストールすると、:Dis
patchや:Make、:Startといったコマンドが使
えるようになります。外部コマンド名を付与し
て実行することで非同期にコマンドが実行され

注12） URL https://github.com/tpope/vim-dispatch

　誰しもがVimをテキストエディタだと思ってはい
ますが、昨今のVimの進化によりVimを環境として
使おうとする人が増えてきました。作業中はずっと
Vimを起動したままにしておき、ファイル操作やコ
マンド実行などのすべてをVimから行っている人も
いるようです。さらに screenや tmuxを使ってサー
バ上でVimを何日も起動したままにしておくという
人も見かけます。
　こういった使い方はどちらかというとEmacs使
いの人達に多く見られたのですが、昨今のこういっ
た状況を見ると、VimもだんだんEmacs化してきた
なぁと感慨深くなります。彼らはVimをめったに終
了させません。代わりにVimプラグインをとにかく
たくさんインストールします。Vimの起動に数秒か
かるという人もいるようです。
　それに比べて筆者はどちらかというと、shellと
vimを行き来する使い方をします。:wqでVimを終
了して shellを操作したり、Vimから:shellを実行
してシェルを操作したりします。Vimが1秒以内に

起動しないとイライラします。そのためにもプラグ
インはできるだけインストールせず、起動が遅くなっ
てきたら使っていないプラグインを消したり、
vimrcから必要ない設定をどんどん消していきます。
　どちらかというと古い世代なのかもしれませんね。
Vimを起動したままにするという使い方は筆者が知
る限りなかったように思います。
　こういった新しい使い方をする人達によって、未
だ見ぬバグが発見される事例が最近いくつか出てき
ています。我々では気付かないバグです。いろんな
人達によっていろんな使われ方をすることで、バグ
が発見されたり新しい要望が生まれたりします。と
ても良いことだと思います。
　Vimはまだまだ変われるな、そう思ったりもしま
す。バグを見つけた方はぜひ次のURLから issueを
登録してください。私達vim-jpのメンバがお待ち
しております。

https://github.com/vim-jp/issues/issues

あなたは常駐派？　それとも毎回起動派？コラム

コマンドウィンドウ

https://github.com/kana/vim-flymake
https://github.com/thinca/vim-quickrun
https://github.com/tpope/vim-dispatch
https://github.com/vim-jp/issues/issues

36 - Software Design Jan. 2015 - 37

IDE並みの機能を軽快な動作で！
実用Tip＆対策［プログラマ編］ 第2章

ます。:Dispatchコマンドでは出力結果を分割
ウィンドウに表示することもできます注13。たと
えば、実行時間の長いmakeコマンドを実行中
にVimでほかの作業をするといった用途に使
えます。
　VimShellやConqueのようにVim上でインタ
ラクティブシェルを実行できるプラグインがい
くつかありますが、vim-dispatchはインタラク
ティブ性よりもリアルタイム性が優先されてい
ます。インタラクティブシェルを模擬するプラ
グインはVimの内部タイマ（updatetime）を短く
することで実現しているため、あまりシームレ
スとは言えません。
　vim-dispatchはtmuxのほか、iTerm、screen、
Windows上での remote API、X11のWindow

Manager Controlなどを扱うことができ、各プ
ラットフォームで同じ動作となるように実装さ
れています。makeだけでなくgrep、デプロイス
クリプトの実行など、編集のかたわら別のコマ
ンドが実行できるのはとても便利です。

　最近はVimの入力補完もどんどん便利になっ

注13） Vimがtmux上で実行されている場合に限ります。

てきており、IDEに引けを取らない入力補完が
実現できています。Vimは標準でも次にあげる
補完をサポートしています。

・行補完
・キーワード補完
・辞書補完
・シソーラス補完
・参照ファイルを含むキーワード補完
・タグ補完
・ファイル名補完
・定義補完
・マクロ補完
・Vimのコマンドライン補完
・スペル補完

　Vimではプラグラマブルな機能を実装してお
り、次の補完拡張機能を用いることで未対応の
プログラミング言語の入力補完機能を作成する
ことができます。

・ユーザ定義補完
・オムニ補完

　なお、標準では上記で紹介した補完機能は個
別のキーアサインとなりますが、neocomplete注14

注14） URL https://github.com/Shougo/neocomplete.vim

 ▼図5　clang_complete

入力補完

https://github.com/Shougo/neocomplete.vim

38 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

IDE並みの機能を軽快な動作で！
実用Tip＆対策［プログラマ編］ 第2章

に入るとVimがブロックしてしまいますが、
marching.vimは外部プロセスに補完候補の抽出
を依頼した後は非同期に結果を待つことができ
るため、補完を始めた直後でも文字のタイプを
邪魔されることはありません。

Java言語系プログラマ向け

　javacomplete注15を使うことで補完が行えま
す。javacompleteは内部で classファイルをコ
ンパイルし、リフレクションを使って候補を作
り出しています。若干、構文解析が弱いため、
補完が得られるシーンに限りがあります。

Web系プログラマ向け

　HTMLのコーディングであればemmet-vim（旧
zencoding-vim）注16が便利です。CSSセレクタ
に似た構文からHTMLを一気に生成できます。
たとえば html:5>div#content>ul>li*3>a{お
知らせ$}といった式を展開するとリスト5の
HTMLが得られます。
　そのほか、haml、slim注17でもHTMLと同じ
記法で展開できたり、css、less、scss、sass内
での展開入力もサポートしています。

注15） URL http://www.vim.org/scripts/script.php?script_
id=1785

注16） URL https://github.com/mattn/emmet-vim

注17） HTMLのテンプレートエンジン。

というプラグインを入れることで統合的な操作
感を得ることができ、標準のキーアサインを用
いない自動補完を行うことができます。

C言語系プログラマ向け

　入力補完プラグインを入れることでC/C++

のコーディングがかなり捗ります。

clang_complete
https://github.com/Rip-Rip/clang_complete

　C/C++コンパイラであるclangのライブラリ
libclangをバックエンドとして使用しています。
構造体のメンバを補完したり、ネームスペース
内の関数を補完したりできます（図5）。

YouCompleteMe
https://github.com/Valloric/YouCompleteMe

　同じく libclangを使い、バックグラウンド

デーモンと通信することで高速な入力補完を
行います。海外で絶大な人気のあるプラグイ
ンです。

marching.vim
https://github.com/osyo-manga/vim-marching

　バックエンドとして libclangだけでなく、
WandboxというWebサービスを利用すること
ができます。上記2つのプラグインは補完動作

 ▼リスト5　emmet-vimで生成されたHTMLの例

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title></title>
</head>
<body>
 <div id="content">

 お知らせ1
 お知らせ2
 お知らせ3

 </div>
</body>
</html>

言語 プラグイン

C/C++ clang_complete、marching.vim、
YouCompleteMe

Python jedi-vim
Perl perlomni.vim
Ruby RSense
golang gocode
Java javacomplete
JavaScript tern.vim
Clojure neoclojure
C# OmniSharp
HTML emmet-vim

 ▼表1　言語別入力補完プラグイン

https://github.com/Rip-Rip/clang_complete
https://github.com/Valloric/YouCompleteMe
https://github.com/osyo-manga/vim-marching
http://www.vim.org/scripts/script.php?script_id=1785
https://github.com/mattn/emmet-vim

38 - Software Design Jan. 2015 - 39

IDE並みの機能を軽快な動作で！
実用Tip＆対策［プログラマ編］ 第2章

言語別入力補完プラグイン

　各言語の代表的な入力補完プラグインを表1
にまとめました。
　特筆したいのが jedi-vim注18です。Pythonの
入力補完は jedi.vimの一人勝ちと言ってよいで
しょう。内部でPython拡張（if_python）を使い、
Python自身の構文解析を行うことで補完を実
現しています。ファイルを開く関数openの戻
り値を.で補完するとfileオブジェクトのメン
バが補完候補に現れますが、openを実行して
いるわけでもないのに動的言語の型推論がきち
んと行えています。
　なお、Vimで cssを編集する際は、CSS3に
対応したシンタックスプラグインを入れておく
べきです注19。

注18） URL https://github.com/davidhalter/jedi-vim

注19） URL https://github.com/hail2u/vim-css3-syntax

　使い慣れた IDEを逆にVimライクにする方
法も存在します（表2）。拡張可能なIDEやテキ
ストエディタではVim風のキーバインドを提
供しているものもあります。
　多くの拡張はどちらかというと「なんちゃっ
てVimモード」と言わざるを得ませんが、
EmacsのEvilに関してはEvil上の拡張も存在
し、vim-railsをポーティングしたevil-railsや、
vim-surroundをポーティングしたevil-surround

など、多くのVimプラグインがEvil上にポーティ
ングされています（図6）。

　IDEにあこがれを抱きつつ、それでもやっぱ
りVimが好きで使い続ける、そんなあなたも
一手間入れるだけでいつも使っていたVimを
IDEのように変身させることができるのです。
Vimは高度な拡張ができるため、プラグインを
導入したり設定を行うことで自分だけの IDE

を作り上げることができます。ぜひやってみて
ください。ﾟ

IDE/エディタ 拡張
Emacs Evil
Atom vim-mode
Eclipse Vrapper
Visual Studio VsVim
IntelliJ IDEA IdeaVi

 ▼表2　 Vimライクな操作感を実現する IDE／エディ
タ拡張プラグイン

 ▼図6　Evilを使ったVimライクなEmacs

IDEをVimライクに

まとめ

https://github.com/davidhalter/jedi-vim
https://github.com/hail2u/vim-css3-syntax

日頃サーバ運用を行う場面では、必要に迫られて直ちにエディタを開いて操作するという場面
が多いものです。vi系エディタはたいてい、どのUNIX系OSでも必ず標準でインストールされ
ていて、動作が軽く消費ハードウェアリソース量が少ないので、インフラエンジニアの業務特
性に合っていると言えます。本章では、著者が考えるインフラエンジニアのVimとの付き合い
方について述べます。

運用作業であわてないために
実用Tips＆対策

［インフラエンジニア編］
 Writer LINE㈱　佐野 裕（さの ゆたか）　 Twitter @sanonosa

第3章

40 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

運用作業であわてないために
実用Tips＆対策［インフラエンジニア編］ 第3章

　インフラエンジニアがエディタを使う場面と
して、おおよそ次のものが挙げられます。

・設定ファイルを編集する
・バッチやスクリプトを作る
・ログファイルをじっくりみる

　どのサーバやOSであっても、これらの操作
をすばやく行えるVimはインフラエンジニア
の業務特性に合ったエディタと言えます。
　障害対応などの場面において、各種設定ファ
イルを編集するなどの操作が日常的に発生しま
す。その際いちいち検索エンジンなどで操作方
法を検索していては迅速な障害対応が行えませ
ん。お医者さんが医学書を見ながら手術を行え
ないのと同様、インフラエンジニアは最低限操
作感に慣れていなければなりません。Vimの操
作についてはほかの章を参考にしてぜひ練習し
ておきましょう。

　Vimは ̃/.vimrcを書き換えることでさまざま
なカスタマイズを行うことができます。しかし
著者の場合は、日々さまざまなサーバを扱って

いる関係上、カスタマイズされた環境に慣れて
しまうと、カスタマイズされていない環境のサー
バでは即時対応力が落ちるので、カスタマイズ
して使ったほうが明らかに便利な設定があった
としても、あえて標準のままで使うようにして
います。

　Vimの習得は、初級インフラエンジニアにとっ
て負担が大きいと言えます。ただでさえLinux

などのUNIX系OSのCUI操作に慣れていない
のに、そのうえでVimの独特な操作感はます
ます敷居を高くしています。この件について筆
者も過去、いろいろ考えてみたことがあります
が、どうしても慣れてもらうほかに方法がない
ようです。
　初級インフラエンジニアがVimを扱う際に
よく見られる失敗事例を見てみましょう。

場面1 Vimから抜ける方法が
 わからず｣-Zで
 抜けてしまう

　Windows上などで動くエディタであれば、
通常は「ファイル」のドロップダウンリストか
ら「終了」を選ぶとエディタから抜けることが
できます。それに対してVimでは:q!（編集中
のファイルを破棄して抜ける）や:ZZ（編集中の

Vimを使う場面

Vimは
初心者に敷居が高い

カスタマイズは
あえてせず使う

40 - Software Design Jan. 2015 - 41

運用作業であわてないために
実用Tips＆対策［インフラエンジニア編］ 第3章

ファイルを保存して抜ける）などの方法でVim

から抜けることができます。この操作はあら
かじめ知識がないと絶対思いつかない操作と
言えます。
　経験の浅い初心者は、いろいろ試行錯誤をし
ているうちに｣-ZでVimから抜けられる（よう
に見える）ことがわかり、以降Vimを使うたび
に｣-Zで抜けるようになります。ご存じのと
おり｣-Zはプロセスを中断するだけですので、
Vimから抜けたように見えても、実際はプロセ
スが残っています。先輩エンジニアは、初級エ
ンジニアがこういった悪習慣を行っていること
に気づいたら直ちにやめさせなければなりません。

場面2 ほかにVimで編集中の
 ファイルがあるにもかか
 わらずVimで開く

　先ほどの｣-Zの話にもつながる部分があり
ますが、Vimでは、ほかにVimで編集中のファ
イルを編集しようとした場合、図1のような警
告が出ます。初級エンジニアは「意味がわから
ない」「英語なので読めない」「読めても読みた
くない」ため、この警告を無視してファイルを
編集して保存しようとします。しかし当然のこ

とながらいくら保存しようが、あとからもとも
とのファイルを編集中のプロセスが保存したら
内容が上書きされることになります（この警告
が出た場合は、素直にQもしくはAで抜けるの
が安全です）。

♠
　ここで紹介したことは、誰しも一度は同じよ
うな経験をしたことがある話です。ただし、イ
ンフラ運営においてはこれらのミスが致命的な
障害を引き起こす可能性もあるため、単なる笑
い話で済ませないように気をつけましょう。

　次に、インフラ運用の場面で知っておくと便
利なVimの使い方の例を紹介します。

UndoとRedo

　基本的な操作ではありますが、UndoとRedo

は知っておくとたいへん便利です。設定ファイ
ルを書き換える途中でいろいろ試行錯誤すると
きに便利に扱うことができます。
　ここでは実際にUndo/Redoの操作を試して

 ▼図1　Vimで編集中のファイルを別のVimで編集しようとしたときのメッセージ

E325: ATTENTION
Found a swap file by the name ".sample.txt.swp"
 owned by: root dated: Thu Nov 20 14:57:20 2014
 file name: ̃root/sample.txt
 modified: no
 user name: root host name: TESTSVR01
 process ID: 71381 (still running)
While opening file "sample.txt"
 dated: Thu Nov 20 14:57:19 2014

(1) Another program may be editing the same file.
 If this is the case, be careful not to end up with two
 different instances of the same file when making changes.
 Quit, or continue with caution.

(2) An edit session for this file crashed.
 If this is the case, use ":recover" or "vim -r sample.txt"
 to recover the changes (see ":help recovery").
 If you did this already, delete the swap file ".sample.txt.swp"
 to avoid this message.

Swap file ".sample.txt.swp" already exists!
[O]pen Read-Only, (E)dit anyway, (R)ecover, (Q)uit, (A)bort:

知っておくと便利な操作

42 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

運用作業であわてないために
実用Tips＆対策［インフラエンジニア編］ 第3章

みましょう。

①文章の中でpenと入力します（図2）。
②ノーマルモードにして、そこでUndoをしま

す。Undoはuです（図3）。
③ さ ら に Redo を し ま す。Redo は｣-rで す
（図4）。

　直感的な操作方法とは言えないですが、Vim

におけるUndoとRedoの操作は覚えておいて
損はありません。

ウィンドウ分割

　たとえばログファイルを見ながら設定ファイ
ルを編集したいといったようなことがあるとし
ます。この場合いちいちファイルを開いて、閉
じて、また別のファイルを開いて、というよう
なことをやるのではなく、Vim内のウィンドウ
を分割してそれぞれ別のファイルを操作／編集

できます。
　このウィンドウ分割機能の存在自体は知って
いても、実際に使っていないという方も多いと
思います。しかし使い慣れておくと、とくに障
害対応やちょっとしたスクリプト編集などのと
きに少しだけ便利なので、この機会に練習して
おくと良いと思います。
　それでは実際に試してみましょう。まずは
Vimで1つめのファイルを開きます（図5）。

　続いて2つめのファイルを開きながらウィン
ドウを分割します（図6）。

　するとウィンドウが分割され、1つのVim

ウィンドウ中に2つのファイルの内容が現れま
す（図7）。

 ▼図2　penと入力（This is a .はすでに入力されている場合です）

 ▼図3　ノーマルモードにして、uを押してUndoする

 ▼図4　｣-rを押してRedoする

$ vim sample.log

:split sample.conf

42 - Software Design Jan. 2015 - 43

運用作業であわてないために
実用Tips＆対策［インフラエンジニア編］ 第3章

　さらに｣-W +という操作を行うと、操作中
のウィンドウを1行広くできます（図8）。逆は
｣-W -です。

　ウィンドウの移動についてはいろいろなキー
バインドがありますが、一番よく使われるのは
｣-W ｣-Wです。この操作を繰り返すことで求

 ▼図5　sample.logファイルを開く

 ▼図6　:split sample.confと入力（splitはspと省略可能）

44 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

運用作業であわてないために
実用Tips＆対策［インフラエンジニア編］ 第3章

めるウィンドウにフォーカスを移動できます。
　表1にウィンドウの基本的な操作について整
理しましたので参考にしてみてください。

インデントの編集

　設定ファイルを編集している際、きれいにイ
ンデントさせたいときがあります。もちろんカー

 ▼図7　上半分がsample.confで下半分がsample.log

 ▼図8　5行広げた例

44 - Software Design Jan. 2015 - 45

運用作業であわてないために
実用Tips＆対策［インフラエンジニア編］ 第3章

ソルキーとスペースキーを駆使することでイン
デントさせることもできますが、対象の行数が
多いと、その方法は結構手間がかかります。ま
た手作業でインデントさせるとスペースとタブ
が混在する場合があり、あまりきれいに仕上が
らないときがあります。こんなときはビジュア
ルモードを使って複数行を一括でインデントで
きます。
　まずはインデントを行いたいファイルを
Vimで開き、Vでビジュアルラインモードにし
ます（図9）。次にインデントさせたい行をkや
jで選択します（図10）。そして>を押すとイン

 ▼図10　インデントする行を選択する

 ▼図9　ビジュアルラインモード

｣-W ｣-W 次のウィンドウの移動

｣-W k 上のウィンドウに移動

｣-W j 下のウィンドウに移動

｣-W + 操作中のウィンドウを1行広くする

｣-W - 操作中のウィンドウを1行狭くする

:q! 操作中のウィンドウを閉じる

:qa! すべてのウィンドウを閉じる

:w 操作中のウィンドウ内のファイルを
保存する

:ZZ 操作中のウィンドウ内のファイルを
保存して閉じる

 ▼表1　ウィンドウの基本的な操作

46 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

運用作業であわてないために
実用Tips＆対策［インフラエンジニア編］ 第3章

いません。
　次に文字数をカウントしたい範囲を移動キー
を使って指定します（図12）。
　そしてg ｣-gを押すとウィンドウの下部に
文字数だけでなく行数、単語数、そして文字数
（バイト数）が表示されます。図12の例では、
22行中7行選択し、単語数98中62個、文字数
703バイト中422バイトとなっています。

　最後にこういうことを言うのは何ですが、も

デントされます（図11）。<を押すと戻ります。
　この操作はそこそこ直感的ですし、ビジュア
ルモードを使いこなす最初の取っ掛かりとして
活用してみるのも良いと思います。

選択部分の文字数をカウント

　たまに作成しているファイル中の一部分の文
字数をカウントしたいときがあります。こんな
ときにもビジュアルモードが活用できます。
　文字数をカウントしたいファイルをVimで
開き、｣-v（Windowsは｣-q）でビジュアルブ
ロックモードにします。ほかのモードでもかま

 ▼図12　下から2行目に文字数などが表示されている

 ▼図11　インデントされた

まとめ

46 - Software Design Jan. 2015 - 47

運用作業であわてないために
実用Tips＆対策［インフラエンジニア編］ 第3章

し「Vimが好きか」と問われたら、おそらく「と
りわけ好きというほどでもないけれども、ほか
に代替手段もないし、それなりに必要な機能が
そろっているので使っている」と答えると思い
ます。日常的に使うエディタですので好き嫌い
があって当然かと思います。しかしインフラエ
ンジニアにとってVimは避けて通れない必須
ツールですので、使わざるを得ないのであれば
さりげなく使いこなしたいものです。
　Vimは最低限の操作（カーソル移動、ファイ
ル保存、終了）さえ覚えれば、とりあえずは使
えますし、それでも実運用上は多少不便であっ
ても大きな問題はありません。しかしこの手の

ツールは使いこなせば使いこなすほど日々の仕
事が楽になることは明確ですので、積極的に使
いこなしていきましょう。
　とはいえ、Vimの豊富な機能を無理して使い
こなそうと考えなくても良いです。著者が大事
だと考えるのは、日常不便と感じたことが出たら、
それをVimの機能やプラグインで解消できない
かと発想することだと思います。人は新しいこ
とに挑戦するのは面倒に思うものですが、ちょっ
とした不便はちょっとした手間で解消できるも
のです。この機会にぜひVimを活用して日頃の
不便を少しずつでも解消していきましょう。ﾟ

　Vimとは直接関係ないですが、Linuxサーバを運
営する際たまに遭遇するVim操作関連の問題と対処
方法を紹介します。

① rootアカウントでログインしているのに重
　要な設定ファイルが編集できない
　とくに重要なファイルは immutable（ファイルの
変更を許可しない。削除もリネームもできない）属
性がついている可能性があります。

　この場合はchattrコマンドを使って属性を無効に
することでファイルの編集が可能となります。

　ファイルを編集し終えたら元に戻しておきましょう。

②Linuxをシングルユーザモードで起動後に、
　ファイルの編集ができない
　Linuxをシングルユーザモードで起動する際、
/を読み込み専用でマウントしているためファイル
の編集ができません。
　そこで /を読み書きできるようにするために、下
記の要領で再マウントする必要があります。

③日本語ファイルをVimで開くと文字化け
　する
　文字化けの原因にはターミナルソフトの設定、
OSの言語設定、vimの言語設定などさまざまな切
り分けポイントがありますが、Vimの言語設定に絞
ると、日本語ファイルをVimで開くと文字化けする
際は、次のように設定すると解決する可能性があり
ます。

緊急時の対応例コラム

whois
root

vim /etc/hosts
"/etc/hosts" [readonly] 3L, 206C

̃/.vimrcに、自動判別の設定を追加します。ｭ
.vimrcがない場合は作成します。

:set encoding=utf-8
:set fileencodings=utf-8,euc-jp,sjis,ｭ
iso-2022-jp

mount -o remount,rw /

lsattr /etc/hosts
----i--------e- /etc/hosts

chattr -i /etc/hosts

lsattr /etc/hosts
-------------e- /etc/hosts

chattr +i /etc/hosts

lsattr /etc/hosts
----i--------e-- hosts

業務別Vimの使い方、最後のパートは日本語文書の作成編です。インプットメソッドまわりの
Vimの日本語入力は、これまでさまざまな改善がなされてきました。その実装の歴史をふりか
えります。また、VimにおけるMarkdownの文法・シーン別の編集方法とそれを助けるプラグ
インを紹介します。

vim-markdownという選択
実用Tips＆対策
［文書作成編］

 Writer mattn　 Twitter @mattn_ jp

第4章

48 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

vim-markdownという選択
実用Tips＆対策［文書作成編］ 第4章

　Vimはどちらかというとプログラマ向けのテ
キストエディタです。では、文章を書くのに
はどうでしょうか？　プログラミング言語は
英語ベース（1バイト文字）なので英文を書くに
はとても適しています。しかし日本語文章を
書くにいたっては残念ながら、巷の評判は良
いものではありません。文章を書くときだけ
はほかのテキストエディタを使うという方も
チラホラ目にします。本当にVimは日本語入
力に適さないテキストエディタなのでしょう
か？　ご存じのようにVimは拡張できるテキ
ストエディタです。工夫しだいでは日本語の
取り扱いも十分に可能なのです。ただし、Vim

で文章を入力する際にはいくらか知識と準備
が必要です。

　Vimはモードを持ったテキストエディタです。
ノーマルモードに戻る際、ユーザのほぼ全員
がインプットメソッドがオフになっているこ
とを期待しているでしょう。しかし残念ながら、
インプットメソッドが持っている入力モード
をVimから変更することは現状できません。
その結果として、意識せずにjキー（もし
くは｣-[）をタイプすると、Vimは漢字変換モー
ドのままノーマルモードになってしまいます。

　WindowsのGUI版（gvim.exe）の場合は次節
で説明する iminsertというオプションによりこ
の「ノーマルモードでインプットメソッドがオ
ンのままになる」問題を解決できています。
CUI版（vim.exe）の場合は、後述のようにイン
プットメソッドを制御できません。

　Vimの開発を援助している側からこういうこ
とを言うのはとても心苦しいのですが、Vimの
インプットメソッドまわりはお世辞にもよくで
きているとは言えません。Vimはモードを扱う
テキストエディタですが、そのモード切り替え
とインプットメソッドの連携ができていないの
です。なお、インプットメソッドを扱う実装に
は3者の立場を考慮しなければなりません。
　
❶	インプットメソッドをまったく使わない	
（使いたくない）人
❷	挿入モードでは常にオンを期待する人
❸	挿入モードでオン／オフを切り替えたい人

　英語圏の人は❶、日本人は❸にあたります。
ハングルのインプットメソッドを使う人たちが
❷にあたると聞いたことがあります。

Vimの
日本語入力で困る点

Windows上での
日本語入力

Linux上での
日本語入力

48 - Software Design Jan. 2015 - 49

vim-markdownという選択
実用Tips＆対策［文書作成編］ 第4章

　これらをふまえVimには2つの入力機構が実
装されています。1つはインプットメソッド、
もう1つは lmapです。インプットメソッドは
昔で言えばkinput2、現代で言えばanthy、uim、
mozcがそれにあたります。lmapは日本語のか
な入力のようなものと思ってください。
　もう少し説明すると、日本語入力は英字を数
文字タイプしてひらがなを入力し、それを漢字
に変換することで行われます。しかし世界には
英字を数回タイプすることで特殊文字を入力す
る人々もいます。一般的にはdigraphが有名で
すが、Vimではdigraphのほかにマルチバイト
に特化した実装として lmapがあるのです。
　しかしながら lmapは前述のように、かな入
力に値するものであり漢字変換は含まれません。
lmapを使用してひらがなを入力することはで
きますが、それを漢字に変換する方法がないの
です。結果としてVimで日本語入力を行うに
はインプットメソッドを使うほかありません。
Vimのインプットメソッドは❶～❸の要求を
満たすために次のオプションを用意しています。
　
・	imdisable
　インプットメソッドを無効にし、オンにでき
ないようにするオプション

・	iminsert
　インサートモードに入った際にインプットメ
ソッドまたはlmapを切り替えるオプション

・	imsearch
　検索モードに入った際にインプットメソッド
またはlmapを切り替えるオプション

・	imactivatekey
　インプットメソッドをアクティブにするキー
をVimに教えるオプション（Linux GUI向け）

　WindowsのGVimでは imactivatekeyを除く
すべてが期待どおりに動作します。しかしな
がらLinuxのGUI上ではすべて期待どおりに
は動作しません。正確には正しく動作しなく
なりました。インプットメソッドは今では各
GUIコンポーネントの部品の1つとしてレイヤ

状に構築されており、近代ではXIM（X Input

Method）はほとんど使われないものになってし
まいました。
　XIMにはプログラムからインプットメソッド
のオン／オフを切り替えるAPIが存在しました。
しかしgtk_im_moduleなど、UIの入力機構には
現状存在しません。つまり先の4つのオプショ
ンのすべてが正しく動作しなくなったと同時に、
使いにくい状態に逆戻りしてしまいました。
　前述のとおり、インサートモードでインプット
メソッドをオンにしたあと、jキー（｣-[）を
タイプすると、日本人Vimmerであればインプッ
トメソッドがオフとなりノーマルモードに遷移
することを期待してしまいます。
　しかしこれらの理由で、Vimからインプット
メソッドをオフに切り替えることができません。
結果、ノーマルモードでインプットメソッドが
オンのままとなってしまい、たとえば「nn」をタ
イプすると「ん」が入力され、期待しない動作と
なってしまいます。これに痺れを切らしてか、
Linux上のインプットメソッドのいくつかには
jキーを押したときにインプットメソッド
をオフにする、いかにもVimmerのための設定
が用意されている場合もあるので設定しておい
た方が無難です。もちろんjキーでなく
｣-[を使う人は別途設定が必要です。
　このような状況から抜け出そうと、Vimmer

たちはいろいろなハックを行ってきました。

skk.vim

　SKK入力方式を模擬できます。L辞書を使っ
て漢字変換をし、~/.skk-jisyoにユーザ辞書
を保存できるしっかりしたものです。Vimの中
で動作するインプットメソッドですのでsshで
ログインしたサーバ内でも問題なく動作します。
　vim onlineでは開発が止まってしまいました
が、現在は tyruさんのリポジトリ注1で管理さ
れています。

注1） URL https://github.com/tyru/skk.vim

https://github.com/tyru/skk.vim

50 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

vim-markdownという選択
実用Tips＆対策［文書作成編］ 第4章

eskk

　skk.vimに触発され、もっとカスタマイズ性
に優れたSKK入力方式がほしいというVimmer

たちの願いの中、tyruさんが開発を始めたプラ
グインがeskk注2です。skk.vimよりも細かい設
定変更が可能であり、skkserverとも通信でき
るようになっています。

◆◆◆

　なお、Vimのインプットメソッドまわりの状
況が現在どのようになっているのかというと
……実は以前から何も進化していません。これ
はおそらくユーザが現状に慣れてしまい、
jキー（｣-[）のタイプ前にはきちんと、イ
ンプットメソッドをオフにするという習慣がで
きてしまったのが理由だと推測しています。現
に筆者もこの記事をLinux上のVimで書いてい
ますが、文句も言わずにインプットメソッドを
オフにしながらノーマルモードに戻る操作を繰
り返しています。

autofmt

　日本語の扱いで発生する問題はインプットメ
ソッドだけではありません。エンコーディング
に関しては最近はutf-8で決め打ちになりつつ
あるという、とても良い時代になってきました
が、日本語には良くも悪くも禁則処理が存在し
ます。行を折り返した際、次の行が「、」で始ま
らないしくみや設定が必要になります。
　また、ノーマルモードで Jをタイプすると次
の行がカーソル行の行末に連結されますが、英
語圏の仕様により空白が挿入されます。こ

の辺をうまくフォーマットしてくれるのが
autofmt注3です。
　行の折り返しで「、」が行頭に来ることがない
ように、また行連結で空白が入らないように動
作します。

注2） URL https://github.com/tyru/eskk.vim

注3） URL https://github.com/vim-jp/autofmt

　最近のREADMEはMarkdownで書かれてい
ることが多くなりました。ブログのエントリも
Markdownで書くという人も多いようです。
　筆者も仕事や趣味でメモを取るときは
Markdownを使っています。とくにGitHubを
使っているエンジニアであれば、Markdownは
必須スキルと言っていいでしょう。
　先に挙げた日本語まわりの設定を施してい
るならば、VimとMarkdownは実は非常に相性
の良いテキストフォーマットであると言えます。
　Markdownの文法と、そのシーンごとの編
集方法を説明していきます。まずMarkdown

をシンタックスハイライトするために、vim-

markdown注4というプラグインをインストール
しておきます。
　ほかにもVim上でMarkdownをハイライトで
きるプラグインがいくつかありますが、筆者が
知る限りTim Pope作のこのプラグインが一番
よくできていると思います。
　以降、Markdownの文法に対してどのように
Vimを使っていくかを説明します。代表的な
Markdownの文法には次のものがあります。

・	見出し
・	箇条書き／リスト
・	水平線
・	リンク／画像
・	コード／引用
・	表

見出し

　見出しは行の先頭に#を書き、その個数で

段落のレベルを決めます。Vim使いであれば
/^#で検索して見出しを行き来することができ
ます。

注4） URL https://github.com/tpope/vim-markdown

Markdownの入力に
便利なカスタマイズ

https://github.com/tyru/eskk.vim
https://github.com/vim-jp/autofmt
https://github.com/tpope/vim-markdown

50 - Software Design Jan. 2015 - 51

vim-markdownという選択
実用Tips＆対策［文書作成編］ 第4章

箇条書き／リスト

　筆者の経験上、箇条書きの多くはほかの資料
からコピー&ペーストして作成することが多い
ように思います。ペーストされた行を箇条書き
にする場合でもVimであれば簡単です。

aaa
bbb
ccc

　このような行をビジュアルモードにおいて選
択した状態で、

:'<,'>s/^/*ｽ/

を実行すると、行頭が *で置換され、箇条書き
ができあがります。

* aaa
* bbb
* cc

　リストは既存の行に連番を作る必要があり
箇条書きほど簡単ではありません。そこでリ
ストの作成にはマクロ（P.55コラム参照）を使
います。次は一例にすぎませんが、連番付き
の行を作る方法を紹介します。

と入力してください。分解して説明すると、

①	始めに 0i1.ｽｿ0で最初の行の行頭に「1. 」を
足す。この数字が連番の開始番号となる

②	次にqqvfｽyjPで「1. 」の部分をyank（コピー）
し、次行の先頭にペーストする

③	最後に0 ｣-a qで行頭の数字をインクリメ
ントする

　この②と③の操作が「q」というレジスタに格
納されるので、10個の連番付き行を作りたい

のであれば 10@qとタイプすることで既存の行
に連番が作られます。

1. aaa
2. bbb
3. cccc

　マクロはとても便利な機能ですが、慣れてい
ないと結局手動で連番を書く方が早く終わって
しまうこともあります。どうしてもマクロが慣
れない人は、次のようなスクリプトを使って連
番付きの行を作るという方法もあります。

function! s:vnr() range
 let n = 1
 for i in range(a:firstline, a:lastline)
 call setline(i, n . '. ' . getline(i))
 let n += 1
 endfor
endfunction
vnoremap <leader>nr :call <SID>vnr()<cr>

　ビジュアル選択した状態で<leader>nr（何も
設定していない状態であれば ･nr ）をタイプす
ると自動的に連番付きの行が生成されます。
vimrcなどにコピーして使ってください。また、
連番を作るという目的に特化したVimプラグ
インも存在します注5、注6。Markdownだけでなく、
プログラミングにもたいへん便利です。

水平線

　水平線は数種類あるのですが、筆者は ----を
使います。Vim使いであれば 5i-ｿxなどと入力
して一気に作ってしまいましょう。

リンク／画像

　Markdownのリンクは [タイトル](URL)の形
式で記述します。そのままタイプしても良いの
ですが、次のように既存のURLからMarkdown

記法に変換するマッピングをvimrcに書いてお
くと便利かもしれません。

注5） URL https://github.com/deris/vim-rengbang

注6） U R L http://deris.hatenablog.jp/entry/2013/06/16/
 174559

0i1.ｽｿ0q qvfｽyjP0 ｣-a q

マクロ登録開始　レジスタ（a～z）　マクロ登録終了

https://github.com/deris/vim-rengbang
http://deris.hatenablog.jp/entry/2013/06/16/174559

52 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

vim-markdownという選択
実用Tips＆対策［文書作成編］ 第4章

vnoremap <leader>mdu ygvs[]
(<c-r>")<esc>?[]<cr>a

　URLをビジュアルモードで選択した状態で
<leader>mdu（何も設定していない状態であれ
ば ･mdu）をタイプすると

[](http://www.google.com)

　このようなMarkdown記法のリンクが生成さ
れます。[]の中にカーソルが移動するので、
あとはタイトルを書けば完成です。

[Google](http://www.google.com/)

　ちなみに筆者作のemmet-vim注7の最新版では
URLの末尾にカーソルを移動して｣-y aをタ
イプすると、自動でリンク先のタイトルを調べ
てMarkdown記法を生成してくれます。

コード／引用

　Markdownでコードを書くには次のように記
述します。

注7） URL https://github.com/mattn/emmet-vim

　rubyと書かれた部分にはそのコードがどの
プログラミング言語で書かれているのかを表し
ます。GitHubではこのプログラミング言語名
を基にコードのシンタックスハイライトが行わ
れています注8。
　Vimは多くのプログラミング言語のシンタッ
クスハイライトに対応していますが、
Markdownに埋め込まれたコードに対しても色
付けすることができます（図1）。
　vimrcにリスト1を書いておくと、指定した
プログラミング言語の識別が現れると自動で埋
め込みシンタックスハイライトを行ってくれま
す。ここではjs=javascriptのように別名を設
定することもでき、短い表記に省略できます。
　引用は正規表現を用いた置換を使います。引
用行は先頭に>ｽを挿入すればいいので、引用
表記したい部分をビジュアルモードで選択して、

:'<,'>s/^/>ｽ/

とするだけです。簡単ですね。

表

　Markdownの表はASCII文字で書きます。
Markdown専用のプラグインを使ってもよいの

注8） Markdownパーサの中にはこの識別が扱えないものもあ
ります。

 ▼リスト1　シンタックスハイライトの設定

let g:markdown_fenced_languages = [
･ 'coffee',
･ 'css',
･ 'erb=eruby',
･ 'javascript',
･ 'js=javascript',
･ 'json=javascript',
･ 'ruby',
･ 'sass',
･ 'xml',
･]

 ▼図1　マークダウン中のプログラミング言語への
 ハイライト

```ruby
  [1, 2, 3].each do ¦x¦
    puts x
  end
```

https://github.com/mattn/emmet-vim

52 - Software Design Jan. 2015 - 53

vim-markdownという選択
実用Tips＆対策［文書作成編］ 第4章

ですが、筆者はAlignta注9というプラグインを
使ってテーブルを整形しています。
　まず体裁を無視して表を書ききります。

品名¦ 値段
コーラ¦120
ハンバーガー¦200
スマイル¦0

　次に、表部分をビジュアルモードで選択して、

のようにAligntaコマンドを「¦」（パイプ）を指
定して実行すると選択部分が次のように整形さ
れます。

品名 ¦ 値段
コーラ ¦ 120
ハンバーガー ¦ 200
スマイル ¦ 0

　あとは 2行目に罫線を入れて完成です。
19i-ｿのように幅分の -を入力し、交差部分
を | に書き換えます。数値など、右寄せ／左
寄せを行うには罫線部分に :を指定します。

品名 ¦ 値段
------------ ¦----:
コーラ ¦ 120
ハンバーガー ¦ 200
スマイル ¦ 0

　これで、図2のように表示されます。

注9） URL https://github.com/h1mesuke/vim-alignta

　なお、ほかにも整形プラグインはあるのです
が、上記のようなマルチバイト文字が混じった
場合でも正しく整形できるのは筆者が知る限り
Aligntaだけです。

Markdownのプレビュー

　Markdownを書いていると、実際にブラウザ
にレンダリングされた際にどのような見栄えに
なっているか気になってきます。
　Markdownのプレビューを行えるプラグイン
はいろいろあるのですが、筆者はprevimを使っ
ています注10。previmはkannokannoさんによっ
て開発されており

・Webサーバのような外部プログラムが不要
・デフォルトでは Vim の操作感に影響を与え
ない

・見た目のカスタマイズが可能
・リアルタイム編集も可能
・Markdown/reStructuredText/textideに対応

という聞いただけでも便利そうなプラグイ

ンです。ブラウザを自動で開く場合だけopen-

browser注11が必要です。
　使い方は、markdownファイルを開いたあと、
次のコマンドを実行します。

:PrevimOpen

　すると、ブラウザが起動して現在編集中の内
容がプレビューで表示されます（図3）。バッファ
を変更し、保存するたびにプレビューが更新さ
れるようになっています。
　使用するブラウザを変更したい人は次のよう
に変更します（Mac OS XでブラウザをFirefox

に変更する場合）。

注10） URL https://github.com/kannokanno/previm

注11） URL https://github.com/tyru/open-browser.vim

 ▼図2　表への整形

let g:previm_open_cmd = 'open -a Firefox'

:'<,'>Aligntaｽ¦

https://github.com/h1mesuke/vim-alignta
https://github.com/kannokanno/previm
https://github.com/tyru/open-browser.vim

54 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

vim-markdownという選択
実用Tips＆対策［文書作成編］ 第4章

　筆者の場合はファイル名で検索したい場合

が多いので、memolistのフォルダを指定して
CtrlP注13を起動しています（リスト2）。
　また次のMarkdownテンプレートファイルを
~/memo/md.txtとして配置しています。

title: {{_title_}}
date: {{_date_}}
layout: post

　業務中に何か思いついた場合や、気になった
ことなどをすべてMarkdownのメモとして蓄積
していきます。自宅で作業する場合も同じです。
　なぜこんなテンプレートなのか、勘のいい方
は気づいたかと思います。Jekylやmiddleman、
その他多くのブログエンジンがサポートしている
形式なのです。~/memoでjekyllｽnewｽ.とすると
_config.ymlなど、必要なファイルが生成される
ので、あとは _postsディレクトリにメモ記事を
書き溜めていくといった具合です。_postsディ
レクトリをDropboxやbtsyncなどで共有しておく
と便利ですね。
　ちなみに筆者はお手製の jekylクローン、
jedie注14を使っており、高速なmarkdown/html

変換を行っています。
　このほかにもVimを使ってMarkdownを書く
際に便利なプラグインがたくさん存在します。

　Markdownのような文章の入力には難がある
と思われがちなVimですが、やり方しだいでは
とても便利に、かつ強力に編集することができ
ます。筆者が挙げたプラグインや編集方法は、
数ある方法の一部にすぎません。ぜひ自分
に適した自分向けの編集方法を探してみて
ください。ﾟ

注13） URL https://github.com/ctrlpvim/ctrlp.vim

注14） URL https://github.com/mattn/jedie

　またデフォルトの見た目が気に入らない人は
次のようにカスタムCSSを指定します。

let g:previm_disable_default_css = 1
let g:previm_custom_css_path = '/Users ｭ
/mattn/public_html/style.css'

　本記事もこの previm を使いながら執筆しま
したが、とても重宝しました。

　前述のように筆者は業務でメモを取る場

合にMarkdownを使用しています。その際、
memolistというプラグインを使っています注12。

注12） URL https://github.com/glidenote/memolist.vim

メモ取りとしての
Markdown

 ▼リスト2　memolistの設定

nnoremap ,mf :exe "CtrlP" g:memolist_path<cr><f5>
nnoremap ,mc :MemoNew<cr>
nnoremap ,mg :MemoGrep<cr>
let g:memolist_memo_suffix = 'md'
let g:memolist_path = '̃/memo/_posts'
let g:memolist_template_dir_path = '̃/memo'

 ▼図3　previm

まとめ

https://github.com/glidenote/memolist.vim
https://github.com/ctrlpvim/ctrlp.vim
https://github.com/mattn/jedie

54 - Software Design Jan. 2015 - 55

vim-markdownという選択
実用Tips＆対策［文書作成編］ 第4章

　マクロとは一連のキーボードを記録し、再生する
ことで単純な.による繰り返し操作以上の高度な操
作を行える機能です。マクロは「記録開始」「操作」「記
録終了」「再生」で構成されます。
　記録の開始はqとアルファベット文字（a から z）
をタイプして行います。記録の終了はqをタイプし
ます。この間の操作が記録対象の操作となります。
記録を行うと、記録開始でタイプしたアルファベッ
ト文字（たとえばx）が示すレジスタに操作内容が登
録されます。あとは@のあとにレジスタをタイプ （例
では@x）するとマクロが再生されます。また@@を
タイプすると前回再生したマクロが再実行されます。
　マクロは、ほぼすべてのキーボード操作を記録で
きます。マクロ実行中のマークおよびジャンプ、マ
クロ実行中のマクロ記録および再生もできます。ま
たマップされたキーも記録の対象ですので、複雑な
機能をマップしておきマクロと組み合わせることも
できます。undoと.によるやりなおし操作、繰り
返し操作も記録されます。簡単な例を示します。た
とえば以下のテキストがあったとします。

　そして分割されたバッファに次の形式で英単語の
和訳が書かれたテキスト（例はGENE95辞書の一部）
があったとします。

　そして、apple、banana、strawberry のすべてを
和訳に置き換えたいとします。単純にすべての単語
で同じ動作を繰り返しても良いのですが、こういっ
た場面でマクロが活躍します。 ではqqをタイプし
て 「q」レジスタへの記録を開始しましょう。

（1）英単語を消して無名レジスタに放り込む
ノーマルモード中、apple の上でdawをタイプしま

す。これにより apple が削除されると同時に無名レ
ジスタ「"」に apple が格納されます。

（2）辞書バッファに移動して検索する
｣-w kで上部に分割されたバッファに移動、apple
という単語の行を探すためにgg/^｣-r "$<cr>を
タイプします。｣-r "で無名レジスタ「"」を貼り付
けていますので実際には /^apple$ に置き換えら
れます。冒頭では検索単語を1行目から検索するた
めにggをタイプしました。

（3）1行下の最初の単語をyank（コピー）して元のバッ
ファに戻ってpaste
辞書バッファでjをタイプして1行下に移動、 yw
で単語を yank、｣-w pで元のバッファに戻り、P
で paste します。

（4）連続実行するために次の行に移動しておく
jで次の行に移動します。これをしておかないと、
100@qと実行しても同じ行に対して実行されてしま
います。

　ここまでできたらqをタイプして記録を終了しま
す。これで「q」というレジスタには、カーソル上の
単語を和訳し、1行下に移動する操作が格納された
ことになります。 では残りの2行に対しても実行す
るために2@qをタイプします。

　大量に翻訳が必要な場合にとても有用な操作とな
りました。 この説明でわかるとおり、マクロを使
うためには編集前の状態から編集後の状態に変更す
るにはどのキーをタイプしたら良いのかを把握して
おく必要があります。ここがマクロが難しいと思わ
れる由縁でもあります。

マクロの活用方法コラム

apple
banana
strawberry

リンゴ
バナナ
イチゴapple

リンゴ,りんご,リンゴの木

56 - Software Design

第1特集

使うほどなじむ

「Vim使い」事始め
——プログラマ・インフラエンジニア・文章書きの心得 ——

Vimの真のチカラを引き出すパラダイムシフト
Vimは編集作業をプログラムにする コラム2

　Vimとそのほかのテキストエディタや IDEとの

大きな違いを、一言で説明するのは簡単ではあり

ません。しかしあえて挑むのであれば「ロボット

を操縦しているようだ」と言うのが、Vimにおけ

るテキスト編集を説明付けてくれるでしょう。

　ここで言うロボットとは、人間が行うべき作業

を完全に代行してくれる専門用語としてのロボッ

トではなく、ガンダムなどのSF作品にでてくる

ような、人が乗って操縦するロボットをイメージ

しています。土木作業に用いるショベルカーのイ

メージでも良いでしょう。

　この比喩をもう少し具体的に掘り下げてみましょ

う。普通の紙に文字や絵を書くときには、自分の

指でボールペンなどの筆記用具を持ち、とくに意

識せずとも肩から腕、指を連動させて文字を書い

ていることでしょう。これならば非常に直感的で、

自分が書きたいように書けます。これがまさに

Vim以外のエディタを扱うときの感覚です。

　一方、Vimを使う場合には話が違ってきます。

ショベルカーの先端にボールペンを付け、コント

ロールスティックを操作して文字を書くのです。

もしくはロボットハンドにボールペンを持たせ、

そのロボットに指示をして文字を書かせるので

す。突拍子もなく感じるかもしれませんが、長

年Vimを愛用している私にすれば、これがVim

を使っているときの感覚をもっとも良く説明でき

ています。

　さらに大袈裟に言えば、このときの指示内容に

は各アームの角度調整や動作速度の指定、力加減

の設定などの細かな情報、すべてを含んでいます。

これでは慣れないうちは絵はおろか、ひらがな1

文字を書くのにも大変苦労します。それこそが

Vimを使い始めたときに感じる、使いにくさの本

質です。当然、文字を書くという目的だけの行為

としては、しくみが大掛かりなうえにやるべきこ

とが多くて、細か過ぎて、馬鹿げています。

　それでもVimを使うことの意味とはなんでしょ

う。この問いへの答えも、この比喩の中にありま

す。実はこのVimというロボットハンドへの操作・

指示は、すべてプログラムでもあるのです。漢数

字の「十」という文字を書くのに、必要になるはず

の最初の一本の横棒を書くためのプログラムは、

少しパラメータを変えてあげれば、次に書くべき

縦棒にも使えそうです。

　プログラムであるということは、すなわち再利

用可能であることを示し、また自動化できるとい

うことにほかなりません。これは非常に強力な概

念です。日常行うテキスト編集作業が全部、プロ

グラムであり、再利用可能であり、自動化の対象

となりうるのです。

　ですから熟練VimユーザがVimで作業をしてい

るときは、単に文章を書いている・編集している

以上の意味を持っています。それは、ある種のプ

ログラミングです。すなわち文章を書くための、

編集するためのプログラムをライブで書いている

まるでロボットを操縦して
文字を書くかのよう!?

操作すべてがプログラム
である意義とは

 Writer MURAOKA Taro (a.k.a. KoRoN)　 Twitter @kaoriya

コラム

2
Vimの真のチカラを引き出すパラダイムシフト

Vimは編集作業を
プログラムにする

56 - Software Design Jan. 2015 - 57

Vimの真のチカラを引き出すパラダイムシフト
Vimは編集作業をプログラムにする コラム2

のです。しばしばVimがプログラマ向けのエディ

タだと考えられるのは、Vimのこのような性質に

基づきます。

　もしもVimを使ってプログラムを書いているな

らば、それは今風に言うと、プログラムを書くた

めのメタプログラムをしている、というのも過言

ではありません。また、一部の熟練Vimユーザが

Vimを使ってある仕事をしているとき、気が付く

と、その仕事をより効率的にこなすためのVimプ

ラグインを作り始めている、トータルではプラグ

イン作りのほうにより多くの時間をかけてしまっ

た、などということがあるのも、この性質を考え

れば納得できるというものでしょう。

　Vimの機能に話を戻しましょう。

　Vimにおいて「FOO」という文字を入力するため

にタイプすべきiFOOｿは、それ自体がプログラ

ムです。だから、このプログラムの直前に「3回

繰り返す」という意味の「3」を付け加えて、3iFOO
ｿとするだけで、「FOOFOOFOO」と入力できて

しまいます。Vimはモーダルなテキストエディタ

ではありますが、その機能はプログラムとモード

レス＝シームレスなのです。

　ですから熟練Vimユーザは、Vimが「モーダル」

であることを指摘され、批難されてもあまりピン

とは来ません。Vimは、インタラクティブなエディ

タとしてはモーダルですが、プログラマブルなエ

ディタとしてはこのうえなくシームレスだからで

す。そして一般的にはエディタはインタラクティ

ブなモノとの認識があるかもしれませんが、熟練

Vimユーザはプログラマブルなモノとして認識し

ているので、 そもそもの指摘自体が誤っているよ

うに感じられてしまうのです。

　このシームレスにプログラマブルなテキスト編

集ロボット＝Vimを構成する重要な機能には、操

作を記録できるマクロ・レジスタや、制御構造を

添加するVim script、それらをトリガーするキー

マッピングやユーザコマンドやイベントを挙げる

ことができます。これらの機能はとても地味です

が、Vimを効果的に使うつもりであれば早晩避け

ては通れません。

　Vimを使い始めの頃は、とかくシンタックスハ

イライトやウィンドウ分割、それにタブ表示など

の派手でわかりやすい、ほかのエディタにもある

ような機能に目が行くことでしょう。しかし、本

当にVimを使うのであれば、Vimによるテキスト

編集行為自体がプログラミングであるという前提

をふまえて、それに関する前述のような機能を積

極的に学んでみてください。

　話をまとめましょう。

　Vimはシームレスにプログラマブルであること

が、ほかのエディタや IDEとは異なる最大の特徴

です。ゆえにその特徴を活かすことで、Vimを使

う真のチカラが享受できます。そのためには、普

段行うすべての編集作業がプログラムであること

を意識し、どうすれば再利用・自動化できるか常

に考え、それにかかわる機能を利用・実践し続け

ることが、とても重要になってきます。

　ただし、なんでもかんでも再利用・自動化すれ

ば良い、というものでもありません。再利用や自

動化にこだわり過ぎて、膨大な時間を投資したあ

げくに、実質的にメンテ不能なマクロやスクリプ

ト＝独自システムを作りあげてしまう、そんな危

険性があることは常に気に留めましょう。

　この危険性はVimに限りません。プログラミン

グ的な傾向の強いソフトウェアを使う際には、「な

にかのタスクを完了させる」といった具体的な目

標を掲げ、それを達成することがなにより重要で

す。そのうえで、次回以降の類似タスクに向けて、

何を資産として残すべきか、それを考えることこ

そが真の再利用・自動化のメリットです。

　とくに意識しないでも、普段の編集作業をほど

ほどに再利用・自動化できるようになったとき、

そのときこそ熟練Vimユーザになったと、胸を張っ

て言えるでしょう。ﾟ

プログラムと
シームレスなVimの機能

Vimの真のチカラを
得るために

58 - Software Design

　バージョン管理ソフト「Git」の機能につい
て、GUIソフト「SourceTree」での操作も併せて
1つ1つ解説している。Gitの関連サービスとし
て、GitHubを始めSourceForge.JPやBitbucket
を紹介しており、とくにGitHubについては基本
的な使い方から開発スタイル「GitHub Flow」の
紹介まで、ページを多く取って解説がされてい

る。Git環境の構築方法、リポジトリの各種設定
や、代表的なサブコマンドを網羅したコマンド
リファレンスもついており非常に実用的な一冊
である。また、「Gitの内部構造を理解する」で
は「git add」「git commit」を打ったとき内部で
何が起きているかといった内部構造の説明もあ
り、一歩踏み込んだ理解を助けてくれる。

松島 浩道 【著】
A5判、 320ページ／価格＝2,500円＋税／発行＝SBクリエイティブ
ISBN=978-4-7973-8036-1

　実際の新卒向けプログラミング研修をベース
にしたJavaの独習本。文法や周辺技術の解説
に注力した従来の入門書とは異なり、実務に役
立つ「良いプログラム」を書けるようになるた
めの方法、実践的な考え方を身につけるための
内容を中心に、15時間で学べるよう段階的に
扱っている。付属のDVD-ROMに収録されて

いるVmware Playerによる仮想環境（Java 8、
Eclipse 4.4）はEclipseなどの設定がすでに整っ
ており、設定に時間をとられずにすぐ学習に入
ることができる。文法のルールからテスト、リ
ファクタリング、セキュリティの考え方まで一
通りそろった本書を理解すれば、良いエンジニ
ア／プログラマの基礎が身につくことだろう。

宮下 明弘、工藤 雅人、原田 僚【著】／井上 誠一郎【監修】
B5変形判、416ページ、DVD1枚／価格＝2,680円＋税／発行＝技術評論社
ISBN＝978-4-7741-6798-5

　本誌2014年8月号で「Linuxカーネルのしく
みを探る」という特集があったが、その先の
内容を教科書的にしたイメージなのが本書だ。
forkとプロセスについて実験をしながら体験的
に並行処理について学ぶことができる。説明は
Ubuntu上でC言語を用いて行われている。プロ
セス、シェル、ファイル入出力、パイプ、メッセー

ジキュー、プロセス間通信などからスレッドや
より高度な内容についても解説している。体裁
はやさしい入門書というよりは教科書ふうなの
で、とっつきにくいかもしれない。本書のまえ
がきにも「C言語の中級課程のテキスト」「オペ
レーティングシステム」「組込みシステム」の授
業の教科書としての利用を勧めている。

猪平 栄一、重松 保弘【著】
B5判、200ページ／価格＝2,600円+税／発行＝共立出版
ISBN＝978-4-320-12380-9

Linuxによる並行プログラミング入門

デザイナーからプログラマーまで絶対わかる

Gitバージョン管理

　Linuxカーネルにおいて、ブートローダが起
動するところから initが開始するまでの「ブート
プロセス」の処理をソースコードを基に解説し
た1冊。改訂にあたり、対象のLinuxカーネル
を2.4.17/32bit版から3.3.4/64bit版に引き上げ
ている。ソースコードはアセンブラ、C言語で
書かれているので、深く理解するためには事前

の勉強が必要だろう。また、理解を助けるため、
第1章では Intel CPUのアーキテクチャについて
も説明がされている。
　おもな対象読者をカーネルハッカー志望の情
報学生としているが、軽やかな文体で、基礎的
な部分を省くことなく書かれているので、取り
上げているテーマほどハードルは高くない。

白崎 博生【著】
B5変形判、312ページ／価格＝2,800円+税／発行＝KADOKAWA
ISBN＝978-4-04-891393-5

新装改訂版

Linuxのブートプロセスをみる

15時間でわかる

Java集中講座

SI崩壊を乗りきる3つの方法第2特集

ソフトウェア開発の
未来

請負・受託開発は変わるべきか

　日本のシステムインテグレーション（SI）はソフトウェアの受託開発が中心で、「決められ
た仕様に従うだけの開発」「無茶なスケジュール」「多重下請け」など、ITエンジニアにとっ
てはマイナスイメージばかりがつきまとうビジネスモデルです。
　その一方で、今後、金融や公共の分野では大型のシステム開発案件が控えており、SI
の需要は高まると言います。人材不足でさらに過酷な状況になることも予想されます。
　本特集では、厳しいSI業界を乗りきるための3つの道筋を紹介します。受託開発契約そ
のものを見直すか。今の受託開発スタイルの中に活路を見いだすか。いっそのことユーザ
側に立ってみるか。あなたはどの道を選択しますか？

第 章1 ソフトウェア受託開発の
新しいビジネスモデルへの挑戦
木下 史彦

60

なぜ「受注請負型SI」は
なくならないのか第 章2
神林 飛志

71

ユーザ企業の
「一人情シス」という選択肢第 章3

湯本 堅隆

80

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

60 - Software Design

ソフトウェア受託開発の
新しいビジネスモデルへの挑戦

受託開発はITエンジニアの間ではネガティブに語られることの多いビジネスモデルです。その一方
で、国内IT業界で一番多いモデルでもあります。受託開発の課題解決に目を背けていては、ITエ
ンジニアの明るい未来はなさそうです。本章では、受託開発の課題を改善すべく、「価値創造契
約」という新しいビジネスモデルに取り組んだ㈱永和システムマネジメントの事例を紹介します。

木下 史彦（きのした ふみひこ）　㈱永和システムマネジメント
f-kinoshita@esm.co.jp　 URL http://fkino.net

第 章1

はじめに

　「ソフトウェア受託開発」という言葉を聞いて、
読者のみなさんはどんな印象を持たれるでしょ
うか？　3K、デスマーチ、オワコンといったネ
ガティブな印象を持たれる方も多いのではない
かと思います。どうしてこのような印象を持た
れるようになったのでしょうか？

受託開発と自社開発

　ソフトウェア受託開発（以下、受託開発）はユー
ザのシステムを開発会社が依頼を受けて開発し
ます。これに対して、自社開発という形態があ
ります。自社開発とは、自社が販売するパッケー
ジや提供するサービスを自社内で開発する形態
です。
　自社開発では会社間の契約の壁がないため、
プロジェクト開始後も作るものの仕様やスケ
ジュールを柔軟に調整できます。
　それに対して、受託開発では契約行為をする
ために、あらかじめ仕様を合意する必要が出て
きます。そのため、プロジェクト開始後に仕様
やスケジュールの調整が難しく、何が何でも契
約時に決めた仕様どおり、スケジュールどおり

に完成させなければならないという状況に陥り
がちです。それがネガティブな印象の元になっ
ているように思えます。
　また、受託開発はビジネスモデルが労働集約
的であり、エンジニアの稼働率を上げることが
売上向上につながります。逆に言うと、作業環
境の効率化やエンジニアのスキルアップのため
に時間を使うことは短期的には売上減になり、
開発会社はそういったところに投資がしづらい
というのが実状ではないでしょうか。こういっ
たところも、受託開発に魅力がない一因になっ
ていると考えます。
　ネガティブな側面ばかり述べましたが、受託
開発には次のような魅力もあります。

・受託開発では基本的に数ヵ月～数年でプロジェ
クトが変わっていくため、多くの顧客（ユー
ザ）と出会い、人脈を広げることができる

・1つのシステムの運用や特定の技術に縛られ
ることなく、プロジェクトが変わるごとに新
しい技術にチャレンジできる

アジャイル開発から
新しいビジネスモデルへのチャレンジ

　筆者は1998年にソフトウェア業界に入り、さ

http://fkino.net

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ ソフトウェア受託開発の新しいビジネスモデルへの挑戦 第 章1

60 - Software Design Jan. 2015 - 61

まざまな現場を経験してきました。仕様が契約
の範囲内かどうか、言った言わないということ
を繰り返しているうちに、これを続けても「誰も
幸せにならない」と思うようになりました。この
ような誰も幸せにならない開発から脱却したい
という思いを強くし、アジャイル開発への興味
を持ちました。そして、2005年頃から実際にア
ジャイル開発に取り組むようになりました。
　しかし、アジャイル開発だけですべてがうま
くいくようになったかというと、そうではあり
ませんでした。アジャイル開発で解決できた問
題も多くありますが、受託開発の契約やビジネ
スモデルに潜んでいる問題もありました。
　筆者は2010年から管理職として永和システム
マネジメントのアジャイル開発を行うグループ
のグループ長になりましたが、労働集約的でエ
ンジニアの稼働率に依存するビジネスモデルの
限界はますます身近な課題となりました。
　このような背景をふまえ、既存のビジネスモ
デルの延長ではなく、1つ上の段階にジャンプ
するために考えたのが、「価値創造契約」です。

「価値創造契約」の概要
　当社では、2010年11月に「価値創造契約」を
リリースしました。まずはじめに、従来型の受
託開発の契約の問題点と「価値創造契約」の概要
を紹介します。

従来型の受託開発契約の問題点

　ソフトウェア開発の契約形態には大きく分け

て次の2つがあります。

・請負契約
	 あらかじめ定めた成果物を完成することが目
的であり、成果物に対して対価が発生する

・準委任契約
	 知識や労働力といったサービスを提供するこ
とが目的であり、提供したサービスの割合（作
業した時間など）に応じて対価が発生する

　これまでのソフトウェア業界での受託開発に
おける一括請負契約では、納品時にユーザから
開発会社に、システム開発費用を全額支払うと
いうビジネスモデルをとってきました。しかし、
受託開発における一括請負契約は要件定義が完
了してから開発見積もり／契約するというやり
方が当たり前となっており、仕様やスケジュー
ルを固定せざるを得ず、ユーザにアジャイル開
発のメリットを実感いただくのが難しいという
課題がありました。
　一方、準委任契約では発注者側に一方的にリ
スクを押し付ける形となり、発注経験の浅いユー
ザには採用しづらいという課題がありました。

従来型の受託開発契約の創意工夫

　そういった状況の中でも、当社ではさまざま
な契約形態を創意工夫してやってきました。

⿟パターンA　最小限のスコープを約束する請
負契約
　契約段階では大まかな全体像と最小限（絶対必
須）のスコープを約束します（図1）。最小限のス

最小限のスコープ

 ▼図1　最小限のスコープを約束する請負契約

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

62 - Software Design

コープを超える部分は開発開始後に調整可能な
こととします。全体像ははっきりしていないが、
最低限作りたいものははっきりしている場合に
有効です。
　発注者側からは最低限何ができるかがクリア
になるため、発注の決裁を通しやすいというメ
リットがあります。

⿟パターンB　機能ごとの請負契約
　システム全体を0.5～3人月くらいの機能に分
割し、優先度の高いものから契約していきます
（図2）。五月雨式に着手していくため、複数の
契約が同時に走ります。
　この契約をするうえでのポイントは、開発チー
ムの人数をできる限り増減させず、固定の人数
で対応できるように同時並行させる契約のボ
リュームをコントロールしていくことです。

⿟パターンC　短期の請負契約
　1～3ヵ月単位で成果物を規定して契約します
（図3）。全体像ははっきりしていないが、短期
的に作りたいものははっきりしている場合に有
効です。
　この契約をするうえでのポイントは、要件を
先に固定するのではなく、先にタイムボックス
（たとえば3ヵ月）を決めて、その期間に入る要
件を決めていきます。
　単発で終わるケースはほとんどなく、継続が
基本です。

⿟パターンD　短期の準委任契約
　1～3ヵ月単位で準委任契約を締結します（図
4）。たとえ1ヵ月でも成果物を明確に規定する
ことが難しいプロジェクトに有効です。契約期
間を短くすることでユーザのリスクを最小化し
ています。

機能A

機能C

機能D

機能B

 ▼図2　機能ごとの請負契約

1～3ヵ月
請負

 ▼図3　短期の請負契約

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ ソフトウェア受託開発の新しいビジネスモデルへの挑戦 第 章1

62 - Software Design Jan. 2015 - 63

　B2CやB2Bのサービス開発や初期開発が一通
り落ち着き、メンテナンスフェーズに入ったプ
ロジェクトで多く採用されています。随時上がっ
てくるユーザからの要望に応えていくことが可
能です。
　このパターンも、単発で終わるケースはほと
んどなく、継続が基本です。

◆　◆　◆
　いずれの契約形態も実際のプロジェクトに適
用し、うまくいっています。

永和システムマネジメントのビジネスの現状

　図5は契約形態別に見た当社のアジャイル事
業部注1の売上高の比率です。この中で「コンサ
ル／教育」を除いた部分が受託開発の売上です。
　全体の3分の2が準委任契約（前述の「パター
ンD　短期の準委任契約」）になっています。準
委任契約でも、作業場所はお客さま先に常駐で
はなく、お客さまのところに行ったり、自社に

持ち帰ったり、プロジェクトチームの裁量で作
業場所を選択できるようにしています。
　請負契約も15％ありますが、ほとんどが前述
のようなさまざまな契約上の工夫を行い、アジャ
イル開発を適用しています。
　図6は当社のアジャイル事業部が受託開発を
担当しているシステムの種類です。
　8割がB2CないしはB2Bのサービスです。こ
のようなサービス開発はリリースしてみてユー
ザからのフィードバックを得て、継続的にサー
ビスを改良していくスタイルになるため、アジャ
イル開発との相性が良いです。そのため、お客
さまからの相談も多く、ビジネスのボリューム
が大きくなっています。
　図7は営業ルートの比率です。
　現在、アジャイル事業部で開発を担当してい
るプロジェクトの8割がエンジニアのコミュニ
ティの人と人とのつながりでいただいている仕
事です。ほかの2割もコーポレートサイトから
のお問い合わせであったり、プライベートセミ
ナーに参加いただいたのがご縁でお声がけいた
だいたり、他事業部から紹介を受けたりという

1～3ヵ月
準委任

 ▼図4　短期の準委任契約

請負
15％

準委任
66％

価値創造契約
2％

コンサル／教育
17％

 ▼図5　契約形態別売上比率

B2C
49％

B2B
30％

社内システム
17％

学術／研究
4％

 ▼図6　対象システム種類別売上比率

コミュニティ
81％

プライベートセミナー
7％

コーポレート
サイト
6％

社内他事業部
6％

 ▼図7　営業ルート別売上比率

注1） 当社の中でRubyとアジャイル開発手法を用いた受託ソフ
トウェア開発とコンサルティングを専門に担当する組織で
す。

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

64 - Software Design

形で、100％がプル型の営業で案件を取得して
います。
　これらのグラフを見ると、ビジネスは非常に
順調なように見えますし、実際に順調です。し
かし、前述の契約形態（4つの工夫）はあくまで
も既存の労働集約的なビジネスモデルの延長で
あり、稼働率に依存するビジネスモデルの限界
から抜け出すことはできないと考えています。
従来型の受託開発のビジネスモデルから脱却す
るための新しいチャレンジが必要だったのです。
　このように筆者が考えていた折、当社は2010

年に創業30周年を迎えました。創業30周年の
社内イベントとして、「新規ビジネス創生事業」
と名付けられた社内のインキュベーション企画
が実施されることになりました。企画の応募条
件は「『売上』と『コスト』が比例しないビジネスモ
デルであること」。B2C向けのスマートフォン
アプリやB2C向けのパッケージ製品の企画など
が出される中に、筆者は「価値創造契約」を提案
し、採択されました。

「価値創造契約」とは

　「価値創造契約」とは従来型の受託開発のビジ
ネスモデルから脱却し、開発したシステムを初
期費用0円で提供するサービスです。お客さま
にはサービス利用料という形で月々の費用をお
支払いいただきます。
　サービスの価値は納品した瞬間ではなく、お
客さまがサービスを利用しているあいだ継続的

に提供されます。このことから、サービスを利
用している期間に対してサービス利用料をお支
払いいただく形をとっています。
　「価値創造契約」と従来型の契約を比較したも
のが表1です。
　お客さまにとっては、次のようなメリットが
あります。

・初期投資が不要なため、まとまった資金を調
達する必要がない

・一定量の追加開発についてはサービス利用料
の範囲で対応できるため、追加開発のたびに
社内決裁を通して、契約するという面倒な手
続きを踏む必要がない注2

・継続してメンテナンスをし続けるため、短期
的にリプレイスを繰り返すことなく、システ
ムを長く使える

・いつでも解約手数料なしで解約できる（「シス
テムができてみたら思っていたものと違った」
というリスクをユーザ企業が取る必要がない）

・レンタルという形態になるため、ユーザの会
社で資産化する必要がない（バランスシート
の健全化に寄与する）

　「価値創造契約」のより詳細な情報は、Webサ
イト注3を参照ください。

価値創造契約 一括受託 SaaS パッケージ
支払い 月額払い 納品時に一括払い 月額払い 納品時に一括払い、も

しくは、月額払い
カスタマイズ
可能性

オーダーメイド（ユーザご
とにカスタマイズ可能）

オーダーメイド（ユーザご
とにカスタマイズ可能）

可能な場合もあるが、
基本的には難しい

可能な場合もあるが、
基本的には難しい

顧客要望による
機能追加

月額費用の中で対応、追
加費用を払うことで大き
な機能追加も可能

追加費用を払えば可能 基本的に未対応 基本的に未対応

保守／サポート 月額費用の中に保守／サ
ポートも含まれる

別途、保守契約を結ぶ必
要がある

月額費用の中に保守
／サポートも含まれる

別途、保守契約を結
ぶ必要がある

用途／分野 特殊な業務／サービス 特殊な業務／サービス 汎用的な業務／サー
ビス

汎用的な業務／サー
ビス

 ▼表1　「価値創造契約」と従来型契約の比較

注2） サービスチケットというしくみがあり、契約期間中、毎月
一定数のチケットをお客さまに発行します。お客さまは追
加開発の際にチケットを使うことができます。

注3） http://www.esm.co.jp/new-agile-contracts-service.html

http://www.esm.co.jp/new-agile-contracts-service.html

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ ソフトウェア受託開発の新しいビジネスモデルへの挑戦 第 章1

64 - Software Design Jan. 2015 - 65

⿟「価値創造契約」のターゲット
　B2C、B2Bのサービス開発は前述の準委任契
約でうまくいく（お客さまにも満足いただける）
ことはわかっていましたので、これまでアジャ
イル開発のメリットを実感していただくことが
難しかった社内システム（とくに前述の工夫が適
用できないような請負契約を採用していたよう
な受託開発）をターゲットにすることにしました。
　B2C、B2Bのサービス開発ではレベニュー
シェア注4という形態がありますが、社内システ
ムはその性格上、そのシステムによって得られ
たインカムを数値化することが難しいため、シ
ンプルに毎月定額を支払っていただくという契
約形態にしました。

⿟「価値創造契約」の自信と覚悟
　「価値創造契約」の最大の特徴は解約手数料な
しでいつでも解約できる点にあります。このよ
うな契約になっているのには背景があります。
　永和システムマネジメント（以下、文脈によっ
て「私たち」と表記）ではRubyとアジャイル開発
の組み合わせで直近8年間に150近くのプロジェ
クトを実施し、そのうち「使えない」「思ってい
たものと違う」という理由でリプレイスされたも
のは、ほとんどないという自信があります。
　しかし、私たちにお声がけいただいた初めて
のお客さまの提案／コンペに参加する際に、ア
ジャイル開発の実績を示して、「これまでちゃん

とやってきました」「今回もちゃんとやります」
ということをアピールし、お客さまに信じてい
ただこうとしても、どうしても限界がありまし
た。失注したときに、少しでも一緒に開発をや
らせてもらえれば私たちの良さがわかってもら
えるのに、と歯がゆい思いをしたことは一度や
二度ではありません。筆者はこの「ちゃんとやり
ます」ということを契約の形で表現したかったの
です。

⿟「価値創造契約」のポイント
　受託開発において開発を成功させるためには、
発注者と受注者という関係を超えて、お互いが
同じゴールを目指して協力してソフトウェア開
発にあたることが不可欠です。
　図8はIron Triangleと呼ばれるものです。ソ
フトウェア開発ではスコープ、スケジュール、
コストの綱引きになります。発注者が作りたい
もの（スコープ）が増えるとスケジュールやコス
トも増加していきます。逆にコストのキャップ
や決まった納期があると、スコープを一定量以
下に制限しなければなりません。
　アジャイル開発の Iron Triangle（Agie Iron

Triangle、図9）では、従来のIron Triangleより
も、もう少し広い視野でソフトウェア開発をと
らえています。スコープ、スケジュール、コス
トを1つの変数（制約）とみなし、価値、品質、制
約の綱引きであると考えます。つまり、スコー
プ、スケジュール、コストの制約の中で、いか
に価値や品質を高めるかを考えるのです。

注4） 複数企業による共同事業において、得られた利益をあらか
じめ決めておいた配分率で分け合う方式。

スコープ

コスト スケジュール

 ▼図8　Iron Triangle

スコープ

コスト スケジュール
品質

価値

制約

 ▼図9　Agile Iron Triangle

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

66 - Software Design

　価値と言っても人によってとらえ方はさまざ
まです。B2CやB2Bのサービスであれば、アク
セス数やコンバージョン率のようなKPIと呼ば
れるわかりやすい指標を使って効果測定をする
ことができます。
　しかし、「価値創造契約」がターゲットとして
る社内システムとなるとそうもいきません。社
内システムはその性格的に、使ってみて効果を
測定するのではなく、使う前にこのシステムを
使えば業務がどれだけ効率化できるかとか、人
件費がこれだけ削減できるという予測をしたう
えで開発されるものです。よって、社内システ
ムは使いながら効果を高めていくというよりも、
社内業務の変更にも柔軟に対応でき、リプレイ
スの手間がかからず、長く使えるシステムであ
ることが価値のあるシステムなのではないかと
考えました。
　開発期間中に、ユーザから要望された機能を
入れるかどうかという場面で、従来の受託開発
では追加で予算を取っていただくか、ほかの機
能を削るかしか選択肢がありませんでした。「価
値創造契約」では、要望された機能を入れること
によって、ユーザ価値が高くなって、その機能
を入れない場合よりもシステムを長く使っても
らえるのであれば、追加予算を取ることもほか
の機能を削ることもなしに、要望された機能を
作るという選択肢が出てきます。
　「価値創造契約」は私たちにとっても納品して
終わりではなく、ユーザに長く使っていただか
ないと、開発にかかったコストを回収できませ
んので、発注者と受注者が「長く使えるシステ
ム」を作るという共通ゴールを持てる点が最大の
ポイントであると言えます。

「価値創造契約」の現状
　2010年11月の「価値創造契約」のニュースリ
リース後に続けて問い合わせをいただき、合計
3件の案件を受注しました（うち1件はすでに解
約）。

　お客さまからは次の点を褒めていただきまし
た。

・初期費用0円、月払いのサービス利用料、ま
た使用開始後も利用年数によらず解約自由と
いう、クライアント側としてはリスクの少な
いサービス形態

・「納得のいくシステムをできるだけ長く使って
ほしい」という姿勢に共感した

・開発開始までの着手期間が短く、開発の進捗
状況を動くシステムで確認でき、要望の追加
や修正を途中でも受け入れてくれる開発手法
にメリットがある

・サービス利用料に見合う形で開発することが
初めにはっきりしていたため、要望がその枠
内に収まることを確認した時点で、ある程度
安心できた

・できあがったシステムは自社内で使用する以
外に使い道はなく、よく考えると所有してい
ることにあまり意味がない。解約時にデータ
しか残らないが、逆にデータさえあれば次の
システムに移行する場合でも何とかなるだろ
うという思いで割り切ることができた

　このようにお客さまから評価いただけたとこ
ろがある注5反面、実際に「価値創造契約」を提案
したり、サービスを提供したりしていく中で、
さまざまな失敗を経験し、お客さまから厳しい
評価をいただくこともありました。
　また、2010年の「価値創造契約」リリース後は
多くの引き合いをいただきましたが、数ヵ月で
お問い合わせが落ち着いたため、プル型の営業
スタイルをプッシュ型に変更しました。前述し
たように、私たちは基本的にプル型の営業で仕
事をいただいてきたため、プッシュ型の営業と
いうのは慣れない試みでした。2013年から2014

年にかけて産業交流展への出展と約800社への
テレアポを行い、12社とコンタクトを取りまし
た。そのうち、2社から具体的な案件の相談を

注5） http://www.esm.co.jp/new-agile-contracts-ser
vice/576/573.html

http://www.esm.co.jp/new-agile-contracts-service/576/573.html

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ ソフトウェア受託開発の新しいビジネスモデルへの挑戦 第 章1

66 - Software Design Jan. 2015 - 67

受けました。しかし、目立った成果はなく、受
注に至ることができませんでした。このような
状況からさまざまな課題が見えてきました。

「価値創造契約」の問題注6

サービス利用検討段階

①「いつでも解約できます」はメリットにならない
　システム開発プロジェクトの6割は失敗して
いるか何らかの課題を抱えているというレポー
ト（図10）があり、失敗したときに解約できるこ
とはお客さまにとってメリットになると考えま
した。しかし、実際にお客さま（ユーザ企業）と
会って話をすると「失敗する前提でシステム開発
をしない」ため解約はメリットとして社内で説明
できないという声が多く聞かれました。
　解約すれば金銭的な損害は受けないかもしれ
ませんが、再び、別の会社に発注してシステム
を作り直さなければならない事態になることを
軽視していたことが反省点です。
　ユーザ企業の情報システム部や担当者は、た
とえ失敗したとしても失敗を認めることが許さ

れないといった声も聞かれました。

②サービス利用料の設定が高い
　「価値創造契約」は初期費用がかからないこと
がウリの1つです。よって、初期費用を準備で
きないような中小企業がターゲットになってき
ます。しかし、もっとも低価格のプランでもサー
ビス利用料として月々15万円の費用がかかりま
す。これはターゲットユーザ（初期費用の準備で
きないような中小企業）の手に届かないような価
格設定であることがわかりました。
　「初期費用が準備できないような会社はそもそ
もシステム開発なんて考えない。業務システム
の開発は儲かっている会社がすることだ」という
声すらいただいたことがあります。

③怪しいと言われる
　お客さまのメリットとして「初期投資不要」「解
約手数料なし」を強調してきましたが、私たちの
自信と覚悟、それからリスクとそのリスクをど
のように担保しているかを説明してきませんで
した。そのため怪しいサービスという印象を持
たれてしまうことがありました。
　本記事の「『価値創造契約』の自信と覚悟」に書
いたようなことをもっとお客さまに知っていた
だく必要があったのです。
　初期開発コストを当社が回収する前に、途中
解約された場合のリスクヘッジはどのようにし
ているのかと思われるかもしれません。前述の
とおり「価値創造契約」は「新規ビジネス創生事
業」という当社内のインキュベーション企画から
始まったものです。この公募で「価値創造契約」
が採択され、途中解約のリスクヘッジ（担保）と
して、1千万円を獲得しました（会社が1千万円
を用意しました）。

サービス提供開始後

④社内のシステム化方針の変更による解約
　「価値創造契約」で開発したシステムをリリー
スした直後、経営者（CIO）が交代し、「価値創造

注6） これ以降は「XP祭り2014」で発表した失敗事例を再構成し、
紹介します。

 XP祭り2014　http://xpjug.com/xp2014/
 発表資料「俺の価値創造契約」　http://www.slideshare.

net/fkino/ore-no-new-agile-contracts-in-action

注7） 調査資料の出典：The Standish Group International,
Incorporated.“CHAOS MANIFESTO 2013”,p1　http://
www.vers ionone.com/assets/ img/f i les/CHAOS
Manifesto2013.pdf

失敗
18％

成功
39％

Project resolution from
2012 CHAOS research.

課題あり
（スケジュール遅延、

予算超過、
機能不足など）

43％

 ▼図10　システム開発プロジェクトの成功／失敗の割合注7

http://xpjug.com/xp2014/
http://www.slidshare.net/fkino/ore-no-new-agile-contracts-in-action
http://www.versionone.com/assets/img/files/CHAOSManifesto2013.pdf

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

68 - Software Design

契約」で運用しているシステムをERPに入れ替
える方針となったことにより解約に至ったケー
スがあります。
　お客さまの担当者とは少なくとも3年程度は
運用する前提でスタートし、ユーザ（システムの
実際の利用者）にも高い評価をいただいたのです
が、経営者の交代は想定していませんでした。
解約には「価値創造契約」の規定どおり、手数料
なしで応じました。
　ユーザが満足するものを作れば長く使っても
らえるという考えは、作る側の勝手な思い込み
であることを知らされました。

⑤チケット使用に承認が必要なため、あまり使
われない
　「価値創造契約」では一定量の追加開発につい
てはチケットの範囲で対応できるため、追加開
発のたびに社内決裁を通していただくという面
倒な手続きが必要ないというメリットを挙げて
います。しかし、実際にやってみると、チケッ
トの使用にお客さまの社内決裁が必要となり、
追加開発のために予算を確保する場合と同じフ
ローになるという状況が発生しました。

⑥「最終的な仕様は開発会社が決める」は受け入
れられにくい
　「価値創造契約」では開発スコープをお客さま
と合意したサービス利用料のプランの範囲内に
収めるために、最終的な仕様は開発会社が決め
るとしています。しかし、対象としているシス
テム（お客さまの社内システム）の性質上、お客
さまに判断を仰ぐ場面が多くなっているのが実
状です。仮に開発会社で仕様を判断したとして
も、使いものにならないシステムができあがっ
てしまいます。
　また、仕様は開発会社で決めると言っておき
ながら、知っていて当たり前の業務知識につい
てまったく不勉強でした。知識／勉強不足によ
り、お客さまに確認すべきことが確認できてい
ないことがありました。

⑦お客さまに理解いただけるドキュメントの
不足
　「価値創造契約」で開発したシステムは納品せ
ず、当社の資産になるため、当社の開発者がわか
るレベルの仕様書しか残してきませんでした。開
発中は良かったのですが、運用が始まり、チケッ
トを使ってシステムをより良いものにしていこう
という段階になって、お客さまと共通認識を持
つために必要な情報が不足しました。
　上記と同様の理由で、お客さまが自分たちの
システムとして運用していくために、必要な情
報が不足しました。お客さまは、自分たちの資
産ではない（レンタルのような形態）とはいえ、
システムを運用していく中で発生する課題を、
「自分たちのシステム」として可能な限り自ら解
決して使いこなしていきたいと考えていること
がわかりました。しかし、お客さまに提供でき
るような資料を作っていませんでした。

⑧担当者変更に伴う進め方、考え方の擦り合わ
せの難しさ
　「価値創造契約」はこれまでにない新しい契約
であるため、途中でお客さまのシステム担当者
が交代した場合、新しい担当者から理解を得る
のが難しいです。
　開発時は新しいものが段階的にできていく姿
を見せながらお客さまの要望を取り入れていく
ため、加点法で評価していただけます。しかし、
運用に入ったシステムは障害発生や過去のシス
テムと比較して使いづらくなったなど、減点法
で評価されることが多いです。システムが運用
に入ってからお客さまのシステム担当者が交代
した場合、信頼を得るのが難しいことを実感し
ました。

⑨システム利用料に対する成果を求められる
　「価値創造契約」ではシステムを初期費用0円
で提供し、月々のサービス利用料という形で対
価をいただいています。しかし、エンジニアの
稼働に対する対価を支払うという考え方が抜け

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ ソフトウェア受託開発の新しいビジネスモデルへの挑戦 第 章1

68 - Software Design Jan. 2015 - 69

きらず、システムの運用に入ってから、対価に
対してエンジニアの稼働が少ないという不満を
抱かれるケースがありました。

⑩仕様確定や決裁に時間がかかるとチケットが
失効する
　チケットを使った対応を行う際に、仕様確定
や決裁に時間がかかって開発開始が遅れたこと
によって、チケットが失効したことがありまし
た（チケットの有効期限は1年）。
　大きめの要望が発生したときには、仕様確定
や決裁に時間がかかりチケットが失効する可能
性が出てくるため、お客さまには要望を細かく
区切って段階的な対応をお願いしました。しか
し、段階的な対応を取った場合、受入テストや
移行作業、システムの利用者への説明が何度も
必要になり、お客さまに負担をかけるため、敬
遠されることがありました。

「価値創造契約」の教訓

　このような失敗を通して「価値創造契約」から
多くのことを学びました。課題は大きく次の3

つに分類されます。

（1）ニーズとサービスのミスマッチ
（2）ユーザから新しいサービスへの理解を得る

ことの難しさ
（3）私たちのレベルアップの必要性

　このうち、（1）の「ニーズとサービスのミスマッ
チ」が一番の失敗だったととらえています。当社
のビジネス上の制約（解約されない長く使われる
システムをターゲットとすること）と「価値創造
契約」に魅力を感じるターゲット（スタートアッ
プのような事業）がミスマッチであり、受注につ
ながっていない、つまりスケールしていないと
いうことです。前述のように「価値創造契約」の
売上比率は全体のわずか2％です。
　（2）、（3）については「価値創造契約」に限定し
た話ではないと考えています。これらについて
は、これまでの経験を糧にすでに改善を実施し

ています。
　なお、収益面では受託した3案件のトータル
で黒字になっています（途中解約された案件は赤
字ですが、3案件トータルすると黒字です）。従
来の受託開発の案件と比較しても、遜色のない
利益を上げられるビジネスモデルであることは実
証できたのですが、スケールしないことが課題で
あると言えます。

「価値創造契約」のこれから

サービス自体の見直しとコンセプトを守ること

　「『価値創造契約』の教訓」に記載したとおり、
「価値創造契約」にはニーズとサービスのミス
マッチが発生しています。ニーズを見極め、サー
ビス自体を改良していく必要があります。
　サービスの改良を考えるうえで、「価値創造契
約」は受託開発に対する私たちの姿勢や覚悟を示
しており、「長く使い続けられるシステムを育て
ていくことが、お客さまとサービス提供者であ
る私たち双方にとっての価値であり、そういっ
た価値をお客さまと私たちが共同で創り出して
いく」というコンセプトをぶらさないことが重要
であると考えています。広く売れるよりも、私
たちのやり方に共感していただき、本当にサー
ビスを必要としている人（これまで請負契約を採
用するしかなく、アジャイル開発のメリットを
実感いただけなかったお客さま）に利用いただけ
るサービスにします。
　そして、受託開発でストックビジネス注8を
作っていきたいと思います。稼働率を上げるこ
とでしか売上の向上がない労働集約的なビジネ
スモデルから脱却し、エンジニアがクリエイティ
ブな活動により多くの時間を使えるようにした
いと考えています。

注8） 電気料金、電話の通話料金、Webサービスの月額利用料
などのように、一度作ったしくみを利用して継続的に利益
を得るビジネスモデル。

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

70 - Software Design

サービスづくりよりもファンづくり

　ふりかえってみると、「お客さまに価値を提供
したい」という思いの発端には、「アジャイル開
発で」という手段へのこだわりがありました。開
発をアジャイルにしたい、Rubyを使いたい、ス
トックビジネスを作りたいという自分たちのや
りたいこと、思いからスタートしていました。
「価値創造契約」をマーケットイン注9で確実に売
れるサービスにするというやり方もありますが、
それによって自分たちのやりたいことができな
くなったのでは意味がありません。
　そして、「価値創造契約」のような新しいチャ
レンジをする際には、どんなチーム（開発者だけ
ではなく、お客さまも含めたチーム）で対応する
のかが重要になってきます。したがって、一番
大事なことは自分たちのやり方やコンセプトに
共感してもらえるお客さまと出会うことだと思

います。
　失敗事例を「XP祭り2014」で初めて発表した
とき、「ここまで公表してしまっていいのか」と
いう反応をいただきました。アジャイル事業部
のビジネスは私たちにお声がけいただくお客さ
まの存在に支えられています。「永和システムマ
ネジメントのビジネスの現状」にも記載したよう
に、そのお客さまの8割がエンジニアのコミュ
ニティからのつながりです。「価値創造契約」の
事例や「価値創造契約」を通して得た経験／ノウ
ハウをコミュニティの場で発表することで、支
えていただいているコミュニティの人たちに現
状を報告し、受託開発のこれからを考えるうえ
で議論の種になればという思いで、発表をしま
した。
　今後もこのような事例や経験／ノウハウを発
表していくことで、口コミや人のつながりを広
げ、「価値創造契約」を必要としているお客さま
に出会うことを目指していきます。｢

注9） なによりも顧客ニーズを優先し、そのニーズに応えるため
の製品開発を行うこと。

本書は、新しいAndroidアプリケーション開発用ソフトウェア
“Android Studio”を使った入門書です。
セットアップ方法からエミュレータや実機での実行手順を説明
し、さらに「天気予報」「シューティングゲーム」「迷路ゲーム」
の作り方を、実際に動かせるプログラムを改良しながら作って
いきます。
なお、「Android Studio Beta v0.8.14」をベースに解説して
います。

有山圭二 著
B5変形判／288ページ
定価（本体2,580円＋税）
ISBN 978-4-7741-6998-9

・Androidアプリをはじめて作りたい方
・とにかくAndroidアプリを作って、実際に動作させてみたい方

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ なぜ「受注請負型SI」はなくならないのか 第 章2

なぜ「受注請負型SI」は
なくならないのか

日本のIT業界において、受注請負型SIはなくならない―その理由は、人月商売型のビジネスの悪
循環に陥っているからといえるでしょう。しかし悪循環に依存しながら抜け出せないのが、今のSI
業界です。そんな状況が変化しないならば、いっそのこと撤収すべきか否か。SI屋稼業を貫くた
めの処方を最後に示します。

神林 飛志（かんばやし たかし）　㈱ノーチラス・テクノロジーズ 代表取締役社長

第 章2

71 - Software Design Jan. 2015 - 71

ノーチラス・テクノロジーズ
という会社

　小職の所属するノーチラス・テクノロジーズ
という会社は、実質的な設立から3年を経過し
た独立ベンチャーです。もともとは㈱EC-ONE

のクラウド事業部とウルシステムズ㈱のミドル
ウェア事業部が本体から分離独立し合弁した会
社に、Hadoopなどの分散処理に興味があるメン
バーが参加して出来上がった会社です。現在は、
Hadoop上で業務系のバッチ処理を開発・運用す
るためのAsakusaというフレームワークを開発、
OSS（Open Source Software）として公開し、そ
のサポートライセンス・コンサルティング・イ
ンテグレーションを生

なり

業
わい

としています（図1）。

ミドルウェアを売るという商売とSI

　現在、当社はAsakusaを軸にしたビジネスを
展開していますが、その一方で、前身であるウ
ルシステムズのミドルウェア事業部からの事業
も引き継いで、特定業務向けのミドルウェアの
販売・運用も行っています。結果としてミドル
ウェアの開発・販売を、ウルシステムズ時代か
ら足かけ10年にわたって行ってきました。この
一方で、当社はシステム構築そのものへも強い

“こだわり”をもってビジネスを展開しています。
すなわち、「コア技術を持つためにはシステムの
開発・構築は小なりといえども必ず行う」という
方針です。
　通常、ミドルウェアを専業にしている会社は
システム構築は行いません。これは、何かのは
ずみで過剰にシステム構築を請け負った場合、
会社のリソースが構築の仕事に専有されてしま
い、本業であるミドルウェアの開発が滞ってし
まうからです。

 ▼図1　 Asakusa Framework
（http://www.asakusafw.com/）

http://www.asakusafw.com/

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

72 - Software Design

　当社で、そのようなリスクを背負ってまでSI

を仕事として受けるというのは、大きくは次の
2つの理由からです。

①自分の作っているものは
自分でちゃんと食べる

　ミドルウェアに10年近くかかわった経験から
わかったことは、ユーザやSI屋さんから当社で
販売しているプロダクトへの適切なフィードバッ
クを受けることは、極めて難しいということで
す。もちろん、機能要求やパフォーマンス要求、
バグ報告や使い方への質問はどんどん来ます。
「実際に触っている人間がシステムの構築時点で
なんとなく感じる違和感」は言語化がなかなか困
難な場合が多く、ミドルウェアへのフィードバッ
クとして受け取ることは大きな課題です。しか
し、自社で実際の製品を使って構築をしてみる
と、その製品の隠れた欠点や「微妙な違和感」が
見つかりやすく、対応策を次の製品の機能とし
て取り込んだり、製品の今後の方向性として検
討できます。その意味で自社製品を利用したシ
ステム構築を自分たちのリソースで行うことは、
非常に重要と考えています。

②食べていけることが非常に重要

　エンタープライズでのミドルウェアの販売で
は、長期のサポートを行えるという体制が非常
に大事です。そのミドルウェアが長期にわたり
使えるかどうか？――はユーザ企業がミドル
ウェア製品を選択するときの基準の1つです。こ
のため形はどうであれ、製品としてサポートを
長期間提供し続けるということを、ミドルウェ
アベンダーは行う必要があります。加えて、日
本のエンタープライズ市場は、販売しているソ
フトウェアを使ってもらうためにかかる新規参
入の時間的なコストが非常に高い。これはソフ
トウェアを利用してもらうために、SI屋さんと
ユーザという大きな2種類のステーク・ホルダー
に納得してもらうことが必要なためです。とく
に独立ベンダーのミドルウェアであれば、エン

ドユーザへのシステムの新規導入までは普通に
数年はかかります。つまり日本でミドルウェア
をちゃんと商売にしていくには、立ち上がりに
しろ、そのあとの展開にしろ、かなり時間を稼
ぐ必要があります。
　さらに、仮にうまくビジネスとして立ち上がっ
たとしても、そもそも日本でのミドルウェアの
ビジネスは、DBといったミドルウェアの本流
がグローバルソフトウェアベンダーに席巻され
ているため、どうしてもニッチな部分に限定さ
れがちです。このようにマーケットが狭いうえ
に、ソフトウェアに高い金額を払うというカル
チャーが日本企業にはどうしても薄いため、結
果、日本でのミドルウェアの商売はかなり厳し
いのが現実です。
　ミドルウェアは儲からない――これは日本の
実態でしょう。現にミドルウェア本業だけで食
えている独立ITベンダーは数えるほどです。当
社も例外ではありません。たしかに既存のミド
ルウェアでの商売があったため、純粋にゼロか
らスタートするベンダーよりは圧倒的に有利で
はありました。とはいえ、十分ではありません。
ある程度の糊口をしのぐために、ある程度の構
築の仕事を受ける――ということは選択として
視野に入れて、実際にシステムのコアな部分の
実装は請け負っています。

ただし、SI屋にならないために
歯止めを設けるべき

　SIの仕事は簡単に増えますし、売上を上げる
ことができます。その結果、多くのソフトウェ
アベンダーや有名なWebサービスの会社が、食
うに困ってシステム構築に手を出しました。結
果は、本業のソフトウェアの消滅やサービスの
新規開発ができない状態になってしまっていま
す。ミドルウェアベンダーが構築の仕事をする
ときには、かならず歯止めを設けるべきです。
当社では「規模」と「内容」と「顧客」について、制
限を設けています。
　その制限とは、構築の金額・難易度・見通し

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ なぜ「受注請負型SI」はなくならないのか 第 章2

72 - Software Design Jan. 2015 - 73

については自社で制御できる範囲とすること、
内容はあくまでAsakusaにかかわるものである
こと、お客さんは自社のメンバーにちゃんとし
た敬意を払ってくれる会社であることを、シス
テム構築の仕事を受けるときの目安にしていま
す。また、社内でも常にSIのあるべき姿、自分
たちのかかわり方を常に議論しています。

AsakusaというOSS

　さて、当社が本業として提供しているAsakusa

ですが、Hadoopでの業務系バッチ処理を記述す
るOSSです。これはHadoopのエコシステムの
中では、“SI（System Integration）”を非常に意
識しているという点で、かなり特異な存在になっ
ています。通常、Hadoopのようないわゆるビッ
グデータ系のフレームワークは、SI、とくに大
規模SIはあまり意識していません。データサイ
エンティストなどの少数の人員が分析の道具と
して利用することを想定しているからです。こ
のようなフレームワークと異なり、Asakusaは、
普通の企業の一般的な業務バッチ処理の開発、
すなわちSIの対象となるような業務処理を開発
することを目標とし、SIで必要になる、テスト
機構、開発手法、フール・プルーフを織り込ん
だDSL（Domain Specific Language）を提供して
います。
　なぜAsakusaがSIを意識しているかという
と、これは筆者たち自身の経験やキャリアが深
く影響しています。筆者はもともとユーザ企業
出身で、ITのキャリアのスタートはユーザ企業
でのシステムの内製化から始めました。当時の
IT業界は汎用機からオープン化への移行が進ん
でいる時期で、ちょうどJavaが出始めたころで
した。勤務していたユーザ企業は、大手のSIベ
ンダーに依存する状態で、コストの高止まりの
中、ガバナンスの確保と次世代へのオープン系
への基盤の移行が急務でした。そこでコアシス
テムの内製化を進めつつ、できない部分はベン
ダーのリプレースで対応するという方針で臨み

ました。結果として、ユーザ企業におけるITの
位置づけというものを、内製化・外部委託とし
てSIの両面から再検討するというバランスの難
しい仕事を経験することになりました。

Asakusaの誕生

　このときの筆者の経験がAsakusaの基本思想
に大きく影響しています。Asakusaはユーザが
システムの開発に積極的にかかわるツールとし
ての一面も持っています。「ユーザは基本設計は
可能であれば行ったほうがよい、無理であって
も少なくともレビューは必ず行うべき」という考
え方を採用しています。そのため、Asakusaは、
ユーザとSI屋の接点として設計を重要視し、設
計指向のフレームワークになっています。設計
をちゃんとやらない限り実装ができない、そう
いう性格を持っています。
　次に筆者が参加した企業は、ウルシステムズ
という会社でした。現在はITコンサルティング
会社として運営されていますが、自分が加わっ
たスタート当初は、実態としてはいわゆる「土方
SI屋」でした。徹夜続きのデス・マーチSIもご
多分に漏れず、ガッチリ行っていました。土方
のデスマSIは、かかわるSEの能力を著しく減
衰させ、さらにプロジェクト運用の段取りの悪
さが個々人への負担を倍増させていきます。
Asakusaがテストまわりを充実させていたり、
フール・プルーフのしくみを導入しているのは、
このような経験に基づくものです。可能な限り
現場の負担を減らす、ということを主眼の1つ
にしています。
　なお、ウルシステムズの上場のためには「ソフ
トウェア」が必要だ、ということで、自分たちの
チームが編成され、特定業務向けのミドルウェ
アを開発・販売するということになりました。
これがそもそも今の当社の母体になります。こ
のようなスタート地点を持っているため、参加
メンバーはもれなくSI経験者ということになり
ます。
　たしかに現在の当社は、Asakusaの提供とい

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

74 - Software Design

う点で言えば、一ツールベンダーの立ち位置で
すが、その出自はユーザ・ベンダーの双方の立
場から、とくにSIに深くかかわっています。こ
れが結果として、AsakusaというOSSがSIを
軸に考えたしくみを持ち、それが基本になって
いる背景になっています。

SIビジネスのあり方
　以上、筆者たちの経験をふまえたうえで、現
在のSIが「どういう意味」を持つかということ
を、筆者なりに描いていきます。現状のSIの問
題点、今後の方法、今話題の「新型SI」の課題を
スケッチしていきましょう。

SI市場の現状

　まず現在のSI市場というものを、俯瞰してみ
ましょう。現在のSI市場では、ベンダーが提供
すべき技術の高難度化が進む一方になっていま
す。プログラミング言語や習得すべきフレーム
ワークの多様化・複雑化は止まることを知りま
せん。これはハードウェアが低コストで高いパ
フォーマンスを叩き出し、多少の無理な処理で
も力技で解決してしまっていることも一因です。
結果、一昔前であればパフォーマンスから見る
と非現実的だった、言語・フレームワークも十
分利用に耐えるものとなってしまっています。
これに加え、最近急速に一般化しつつあるクラ
ウド技術はインフラの多様化をもたらし、さら
に分散処理のような、従来であればスーパーコ
ンピュータの技術に分類されるものまで、一般
に利用できるようになっています。結果として、
習得すべきIT技術は拡大化の一途です。
　また、SI市場への良質な人員の供給がボトル
ネックになり、今はさらに顕著になってきてい
ます。現在は、どこのSIプロジェクトでも人手
が足りません。これは、ベンダーサイドが景気
の停滞時に人員採用を絞ったツケです。しかも
稼働率優先で人の移動を優先させた結果が相まっ
て、設計・PM・繊細な部分の実装ができる人

員が、従来にも増して不足しています。マクロ
の視点でみれば、日本全体での若年就労人口の
大幅な減少も、SI市場のような労働集約的な市
場への人員不足に大きな影を落としています。
　これに加えて、ユーザサイドのIT人員への投
資の長年にわたる低減が、ユーザサイドで細か
い要件を決めきれる人材の不足へとつながって
います。ここ10数年の「持たざる経営」のトレン
ドはバックエンドの人員の削減を大きく進めま
した。ユーザ企業での、自社の業務内容を正確
に把握し、システム化要件に落とし込める人材
は姿を消しつつあります。
　この結果として近年の大規模SIの失敗率は、
かなり上がってきています。複雑さが増し、仕
様がわかり、適切な判断をくだせる人間が減少
すれば、これは当然の結果です。大型案件の失
敗をめぐる訴訟が大きく取り上げられるように
なって久しいです注1。実際に、我々のまわりに
見える大型案件も、従来よりも失敗するケース
が多くなっています。

受注請負型SIはなくなるのか？

　このような現状を一見すると、受注請負型SI

はもはや成立しないように見えます。では、こ
のような受注請負型のSIは、今後なくなるので
しょうか？――結論から言うとNOです。受注
請負型のSIは今後、かなりの市場として残るで
しょう。その理由はSI市場でのSI屋サイドと
ユーザサイドの各プレーヤのマーケット維持の
モチベーションが強いこと、要するに「SI屋は
SIが売りたいし欲しいし、ユーザも受注請負型
のSIが欲しい」というに尽きます。
　まずSI屋サイドから見ましょう。IT稼業で
「まず売上を上げる」とするのであれば、人月商
売の営業をすることが圧倒的に近道です。もっ
とも売りづらい業務系ソフトウェアと比較する
と、体感的には人月商売のSIビジネスのほう

注1） 日本 IBMに野村が33億円賠償請求　なぜ訴訟相次ぐ
（http://www.nikkei.com/article/DGXMZO77218190
Y4A910C1000000/）

http://www.nikkei.com/article/DGXMZO77218190Y4A910C1000000/

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ なぜ「受注請負型SI」はなくならないのか 第 章2

74 - Software Design Jan. 2015 - 75

が、営業効率でざっくりと10～50倍は高いで
す。これはSIビジネスのほうがソフトウェアな
どの販売に比べて、価格根拠が説明しやすいと
いうことに尽きます。この機能は5人がかりで
2ヵ月かかります、という説明は、そのソフト
ウェアの価値はだいたい1,000万円ですという
説明よりは、残念ながら圧倒的に説明しやすい。
また、以前はハードウェアも売りやすい商材の
1つではありましたが、値段の下落・ハードウェ
アのコモディティ化・クラウドサービスの登場
もあり、大きな数字を簡単に上げるのはなかな
か難しくなりました。よって現在のところ、数
字が欲しいITベンダーの営業は、人月商売のSI

を仕事として普通に取りにいきます。
◆　◆　◆

　次に、ユーザサイドを見てみましょう。ユー
ザにおいては、「受注請負型SI」は極論すると「い
くら金がかかってもいいから絶対にやってくれ」
というスタンスに近いです。このニーズは非常
に強力です。

なぜユーザは「受注請負型SI」を
必要とするのか

　ユーザが「受注請負型SI」の依存から抜け出せ
ない大きな原因が2つあります。

⿟原因その1「ユーザの意思決定プロセスの問題」
　最終的にユーザサイドでIT投資を決定するの
は情報システム部ではなく、その上位の経営陣
です。ユーザ企業においてはとくにIT案件は、
たいていの場合「大型の投資」になります。その
意思決定はユーザ企業の経営陣が可否を判断す
ることになります。そして、通常その経営陣は
ITの専門家ではありません。
　ユーザ企業の経営陣にとって、多くの場合で
ITは必要悪以外の何者でもありません。一般企
業においては、別にITに投資をしても売上は上
がりません――驚くなかれ、いわゆるWeb系で
も実は同じです。もちろん例外はありますが―
―そんなお金があれば、売上に直結する人員／

設備／プロモーションに投資します。短期で見
れば当たり前のことです。ただITは「業務をま
わす」うえでは必要不可欠なところはあるので、
可能な限り最小限にしたいというのが普通の感
覚です。結果、役員各位はおっしゃられるわけ
です。「それで、結局いくらかかるの？　この金
食い虫は？」……これが普通です。
　さらにユーザ企業の経営陣にとって、ITはブ
ラックボックス以外の何者でもありません。
　まずもって「いや、最近の ITは複雑だからわ
からんよ」「いや？……さすがにITはよくわかり
ませんわ」と言わない経営者には会ったことがあ
りません。実際、自社のシステムの細かいとこ
ろまでわかっている経営者は絶無でしょう。前
述のように最近のIT技術の多層化・複雑化・多
様化は拡大の一方です。IT本業の我々ですら、
すべてを知っているということはありません。
いわんや専門家でもない経営陣にとっても、む
べなるかなです。
　上記の2つを合わせるとどうなるかというと、
非常に簡単で、まともな経営者であれば、こん
な状況では確定しない金額でのIT投資の意思決
定を行うことはできません。
　「いや、だからいくらかかるかはっきりさせ
ろ、こっちも予算があるし、そのうえで削れる
ものは削れ、金は無限にあるわけないでしょ」。
　似たようなことを、情報システムの部長であ
れば、役員会で何度も言われているでしょう。
挙げ句に「プロジェクトが失敗した場合のリスク
は、ベンダーではなくユーザさんにありますよ」
という委任型の請負は完全に却下されます。「請
負・金額確定型」がユーザサイドの「経営陣」に
とっては、絶対に必要なのです。

⿟原因その2「IT人員の不足の補完としてのSI
の役割」
　受注請負型SIは、基本的にいわゆる「丸投げ」
というスタイルになりがちです。なるほど、IT

投資の透明性の確保やITガバナンスの維持、ひ
いては失敗リスクの高いSIをやめるために、丸

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

76 - Software Design

投げをやめて、内製化に進む動きが一部のユー
ザ企業に見られるようになりました。しかし、
うまく行っているところは少数にとどまってい
ます。大きな理由は「人が採用できない」という
ことに尽きます。
　背景は日本のITへの従事者の企業間、とくに
ユーザ企業とITベンダー間の人の移動の少なさ
です。コアな業務システムを構築できる人間が
ユーザ企業に転職したり、またユーザ企業で業
務の設計・運用ができる人間がSI屋に移籍した
りすることは、現状の日本のIT関係者の労働市
場では極めて少数です。これは仮に転職できた
としても、転職後のキャリアパスが、それぞれ
の転職先でまったく考慮されていない、という
ことが大きな理由です。
　ITベンダーからユーザ企業に移った場合、基
本的にはその企業のIT部門に配置されるわけで
すが、そのあとの昇進・出世ルートは基本的に
準備されていません。理由は単純で、普通の企
業においてITは“金をかせぐ花形部署”ではなく
“地味で金ばかり食うバックエンド部署”だから
です。よって出世ルートからは原則外れます。
例外的にエリート的な人員が配置されることも
ありますが、これは出世が約束された人間が「一
応、形だけでもITも知っておけよ」という人事
の配慮で、腰掛で異動されるだけです。このよ
うな部署に“外から”転職してきたところで、昇
進ルートは制限されます。
　逆にユーザからITベンダーに移った場合、や
はりその能力不足が顕著です。ITベンダー稼業
は、やはり基本はSI・システム構築です。した
がって、PM・実装・設計能力がどうしても必
要です。ユーザ企業の情報システム部にいると、
ベンダーへの発注能力は磨かれますが、実装や
設計（とくに詳細設計以降）といった手足を動か
す能力はどうしても磨かれません。したがって、
ITベンダーに移籍したとしても、実働部隊の戦
力になかなかなりません。
　要するに、人員の交流が現実的にはほとんど
行われていないのが現状ですし、このようなそ

れぞれの組織的な問題があるため、今後も交流
する見通しは少ないでしょう。この「人の移動の
少なさ」は、ユーザ企業においては、必要なとき
にITの人員を確保するということも事実上不可
能にしています。
　いや、最近はSI屋からWeb系ユーザ企業へ
の人材の移動がトレンドだろ――という声も聞
こえますが、現実には、業務設計をシステム計
画に落とし込めて、SIのPMやアーキテクチャ
設計ができるうえに、必要な場合は自分の手足
を動かすことを厭わないというコアの人材はまっ
たく動いていません。その証拠に、たいていの
Web系企業の企業運営に必要なバックエンドの
クリティカルなシステムは、内製どころか、SI

屋さんがデスマで作っているのが実態です。Web

系ユーザ企業が採用している、元SIな人材では
開発することはできていません。さらにそもそ
もWeb系企業では転職組に対して、既存SI屋
で準備されている以上の明快なキャリアパスは
準備していません。結果、次々と転職を繰り返
す――いわゆるワンダーフォーゲル化になりま
す。人材の移動は失敗していると言わざる得な
いでしょう。
　現状では「システム構築のプロ」をユーザ企業
が独自に確保することは、非常に困難です。で
はどういう対処があるのか？　ということで、
結局は「SIの丸投げ」という選択をせざるを得ま
せん。これは一種の脱出できない、人員のアウ
トソーシングへのロックインになってしまって
います。

では「受注請負型SI」は
なくならないのか？

　上記のような底堅いユーザニーズと、数字が
欲しい IT企業の営業スタンスが強固にある限
り、SI市場は均衡し、大きなマーケットとして
存在し続けます。我がSIは永遠に不滅なわけで
す。
　しかしながら、前述のように、SIをめぐる環
境は悪化する一方です。このままでは、マーケッ

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ なぜ「受注請負型SI」はなくならないのか 第 章2

76 - Software Design Jan. 2015 - 77

トは存在するが、個々の取引がうまくいかず、
結果としてハードランディングするということ
になりかねません。個々のSIの結果リスクは増
大し、大型案件は常に火を噴くことになるでしょ
う。SI失敗リスクの顕在化の最たるものは、ユー
ザ・ベンダーが相互にいがみ合い、最後は感情
論になってしまう訴訟合戦です。もうその萌芽
はそこかしこで見て取れます。こうなってくる
と、そもそも開発の開始前の契約条項の交渉が
無意味にハードになっていきます。またリスク
回避のためだけの作業やドキュメンテーション
も増大します。SIのオーバーヘッドがさらに上
がります。うまく行かないものが、ますますう
まく行かなくなります。

◆　◆　◆
　さて、では、この「SI」というリスク商品に今
後我々IT屋がどうかかわっていくか？――とい
うことが問題ですが、基本的には次の2つの方
策しかないでしょう。すなわち、やめるか？　
続けるか？です。

いっそのことSIから撤収する

　これは悪くはないアイデアです。そもそもSI

から撤収しても、我々ベンダーサイドは結局、
なんとかなってしまうような気がします。困る
のはむしろユーザサイドでしょう。そもそもユー
ザ事情で成立している側面が強いマーケットで
す。SIマーケットを維持するにはユーザサイド
の働きかけも必要でしょう。そのようなスタン
スがないようであれば、マーケットの崩壊とい
うハードランディングもやむなし、でしょう。
　SIを止めることによるベンダーサイドのデメ
リットは非常にシンプルで、要するに食えなく
なるということです。これは解決案は2つしか
ありません。食う量を減らすか、別に食い扶持
を探すかです。
　SI屋さんの経営陣としては、要するに人を減
らすというリストラが選択肢になります。むろ
ん、別のサービスを見つけて、そちらに人員を
異動させるという方法もあるとは思いますが、

とはいえ、SIの売り上げに代わる数字をたたき
出すサービスというものはなかなか見つけ出せ
ないのが実情です。見つけていたらとっくの昔
にSIから撤退しているでしょう。しかたなくSI

をやっているとはいえ、現実にかかわるSIが訴
訟多数・不採算案件が乱立という状態になれば、
事業的には撤収または事業縮小という形で選択
せざるを得ないでしょう。
　また、実際にSIをやっている人間から見れ
ば、これは転職ということになります。デスマ
確定・いがみあい確定の仕事に人生の時間を費
やす必要はありません。IT以外にもあなたを必
要とする職場はいくらでもあります。多少ネッ
トワーク技術の知識があって、ちょこっとした
SQLが書けて、Excelを手足のごとく使いこな
せるのであれば、どこでも食えます。鬱病にか
かるリスクも減るでしょう。個人的には超お勧
めではあります。

SIでがんばる

　ニーズはある。ただし提供する商品が爆発す
るリスクが高い。ということであれば、やはり
商品を「変えていく」ということは有効な手段だ
と言えるでしょう。「従来型のSIはもはやうま
くいかない。時代は価値創造型契約だ、納品の
ないSIだ」というメッセージとともに、新しい
形のSIの手法が模索・実践されていますが、こ
れらもSIマーケットから見れば、その1つと言
えるでしょう。ただ、私見ですが、このような
“新型SI”（価値創造型契約・納品のないSI）な
方々が完全に見逃している観点は、ユーザの意
思決定プロセスです。「受注請負」という性格が
ユーザニーズそのものの根幹にあるのであれば、
商品を変えても、ユーザのニーズは満たすこと
はないため、結果として普及は困難でしょう。
　仮にこのような“新型SI”をSI市場でちゃんと
成立させるには、受注請負型SI以上に、まずIT

ベンダーの営業が売りやすい商材に仕立て上げ
る必要があることと、ユーザの意思決定プロセ
スを覆すだけのユーザメリットを提供する必要

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

78 - Software Design

があります。現在のところは、そのどちらにも
成功していないように見えます。
　では、「受注請負」がSI商品の必須要件だとし
て、どのようにSIという爆弾商品を、安心安全
商品に変えるか？――ということですが、傍か
ら見ていて、かつまた実際にやっていて次の処
方が有効なようです。

⿟処方その1「困難は分割せよ」
　まずは、マネージメントサイド（とくにPM

や営業の方々）では大規模な案件をできるだけ
細かくし、かつ単純にしていくことが肝要で
しょう。
　SIの失敗リスクの1つは、人員の問題です。
大規模案件でのリスクは人員の不ぞろいから発
生する、さまざまなノイズのコストが大きく
なっていることです。可能な限り、少数精鋭で
臨むという方針をまずは原則とすべきです。受
注請負が原則ですので、アジャイルという形で
はなく、小さいチームでのウォーターフォール
が望ましいでしょう。ただし、できることには
限界があるので、問題を分割して、把握可能な
粒度まで落とすということが基本になると思い
ます。開発の範囲も「ここまでは絶対にでき
る」・「頑張ればできるとは思うがタイムアウト
の可能性が高い」・「何がどうであろうと絶対無
理」にわけて、ユーザと交渉すべきでしょう。

⿟処方その2「シンプルな技術を選ぶ」
　次に検討すべきは技術の問題です。まずは
過度に複雑なアーキテクチャは採用しないと
いうことにつきます。これは技術の新旧の問
題ではありません。過去に習熟した技術でも、
ごてごて新機能やレイヤーが追加され複雑に
なってしまっては、単純なしくみの新技術に
結果として劣るということにはなりがちです。
当たりまえですが、「必要にして十分」なアー
キテクチャ・スタックを検討すべきです。時
代はクラウドという流れもありますが、複雑
怪奇な多層スタックのクラウドを利用するよ

りも、シンプルなベアメタルを採用した方が
吉ということはあります。
　また、実際に動く側のSEサイドですが、ま
ず原則として「大規模SIにはかかわらないほう
がよい」というスタンスを貫くべきです。この業
界を見ていると優秀な人材ほど責任感が強く、
「よしやったるぜ」というリーダーが多いのです
が、それは「逆効果」ということを自覚すべきで
す。営業が不用意に膨らませた案件は、とくに
分割して細かくするということが重要です。無
意味にデカイな……と思ったら、即刻警告を発
すべきです。

⿟処方その3「設計する力こそすべて」
　次に、徹底して設計力を上げるべきです。SI

の案件の失敗の多くは、設計の段階で破綻して
います。「システムは実装したら負け」です。もっ
とも品質の高いコードは、もっとも単純なコー
ドであることは論を待たないでしょう。“実装
しない技術”は“設計する技術”とイコールです。
とにかく動くモノをというアジャイル的な発想
はSIにおいては、まったく効果がありません。
大事ですのでもう一度書きます。

　「まったく役にたちません」

　ぎりぎりまで考えて設計し、机上で不明確な
部分を徹底的につぶすことがSIの失敗リスク
を低減します。何度も設計を事前に見直しても、
実際の実装が始まってみると見落としが発見さ
れるのがSIです。近年のアジャイルブームと、
実装技法の多様化は、無責任なUML至上主義
への反発をテコに、設計軽視の風潮に拍車をか
けました。結果として現場の設計力はどんどん
落ちています。
　よくSIは一品モノの建築にたとえられるこ
とが多いですが、であれば、昔の大工の棟梁が
何をしていたか、参考にすべきでしょう。材木
にノコギリを入れるまえに、徹底してどの木材
をどのように使い、どう組み上げるか、頭の中

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ なぜ「受注請負型SI」はなくならないのか 第 章2

78 - Software Design Jan. 2015 - 79

で何度もシミュレーションをしていたそうです。
すなわち、設計の基本は「制約」の明確化です。
システムの挙動を頭の中で想定し、I/Oとシス
テムの状態を何度もシミュレートすることも十
分な設計です。別段、決まったフォーマットに
書き出す必要はありません。設計とはExcelシー
トを作ることではありません。

おわりに

　最後ですが、まとめとして言いたいのは、「ユー
ザとちゃんと向き合うべき」です。「俺はおまえ
に金を払っているから言うことを聞け」という
ユーザがいたのであれば、即刻、上役・上司に
相談して関係の再検討を迫るべきです。そして
これは最後の手段ではありません。「最初の手

段」です。
　結局のところ、SIマーケットで、我々ベン
ダーができることは、「普通にできるSIを、普
通にできるように準備し、奇をてらわずに普通
に行う」ということに帰着するように見えます。
　まぁ、これが一番難しいのですが。Hadoopの
ような最先端の分散処理屋が言う台詞ではない
のですが、IT屋は目新しいものに無意味に飛び
つき過ぎですよ。
　うろたえる前に足下を見つめ直しましょう。
｢

Hinemosは複数のコンピュータ群を単一のコンピュータのような
イメージで、一元的に運用管理できるオープンソース・ソフトウェア
（OSS）です。
NTTデータから提供されている国産のOSSであり、官公庁や企
業などの導入実績も多いのが特徴です。
本書はNTTデータの有志による執筆で、公式マニュアルでは記
載されていない導入から応用までの詳細な手順や、上級者も対
象とした実践的なHinemosの使い方を解説しています。

倉田晃次、澤井健、幸坂大輔 著
B5変形判／520ページ
定価（本体3,700円＋税）
ISBN 978-4-7741-6984-2

・Hinemosの導入を検討している人
・Hinemosを使いたいが、導入に行き詰まっている人
・Hinemosを徹底的に使いこなしたい人

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

80 - Software Design

ユーザ企業の
「一人情シス」という選択肢

第1、2章では、システム開発／運用を事業とするIT企業の立場からIT業界を見てきました。本章
では視点を変えて、ユーザ企業の情報システム部門（以下、情シス）に所属する著者から、IT業
界の展望やエンジニアの働き方について語ってもらいます。ユーザ側に身を置くと、IT企業側とは
また違うエンジニアとしての役割や存在意義が見えてくるようです。

湯本 堅隆（ゆもと みちたか）　 Twitter @gothedistance

第 章3

はじめに

　2003年に㈱アイ・ティ・フロンティア（現在
は日本タタ・コンサルタンシー・サービシズ㈱）
に新卒で入社し、プログラマ、開発リーダー、プ
ロジェクトマネージャ（PM）、コンサルタントと
いうキャリアを歩み、やむにやまれぬ事情から
中小企業の一人情シスに転身しました、湯本と
申します。インターネットでは「ござ先輩」とい
う呼称でいろいろやらせていただいています。
　周りを見渡しても、受託開発を生業としてい
た会社から転職して、誰もエンジニアがいない
会社で業務システムを内製して運用しているエ
ンジニアは全然いません。特殊な環境ではあり
ますが、一人情シスも結構おもしろいぞという
話をさせていただき、さらにそこで見た景色か
ら今後のIT業界を占っていきます。

SIer時代の疑問

1円も産まないシステムに1,000万円？

　これは筆者がSIerにいたときの話です。とあ
る企業向けの受託開発案件でリーダーを任され

まして、PMの代わりにプロジェクト計画書を
作成していました。「フェーズごとに必要な人員
はどのような人で、人月単価を積み上げてコス
トを出して……」みたいなことをします。その結
果、マスタメンテナンスに毛が生えたようなシ
ステムの見積額が1,000万円近くになりました。
　「これ……別に1,000万円かけて作っても顧客
の売上は1円も産まないな……。高いけど、世
の中そういうもんなのかな」。
　そのときは「金持ちはいるもんだな」くらいの
認識でしたが、1,000万円払わないと手に入ら
ない価値が説明できませんでした。自分で組め
ば1,000万円も払う必要はないという極論がずっ
と頭の中に残りました。システムの価値っていっ
たいなんだろう、と。
　工数をベースに価格を算出することはまった
く問題のない話ではありますが、工数に比例し
てソフトウェアの価値が上がるなんてことはあ
りません。仕様変更で改修する際に、大量の修
正工数を必要とするやっつけ仕事で作られたシ
ステムが、洗練された設計で作られた修正工数
が小さく済むシステムより価値が高いわけがな
いからです。
　技術は進化の一途をたどり、今では小中規模
のシステムならプログラムレスで開発できるよ

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ ユーザ企業の「一人情シス」という選択肢 第 章3

80 - Software Design Jan. 2015 - 81

うな時代になっています。先ほどの例ですと、
1,000万円を100万円にする方法が多く提供され
るようになっています。そのような技術を乗り
こなせれば不必要なお金を使わずに済むけれど、
技術的知見のある人が発注側にいなければソフ
トウェアの値段や価値がどれほどのものかを計
り知ることができません。ソフトウェアの価値
を測る物差しってなんだろうと、漠然とした疑
念を抱き始めました。

言われた仕様に従う虚無感

　ソフトウェアの価値が自分の中でよくわから
なくなってきたと同時に、エンジニアとして最
もつまらない時間を過ごすことになりました。
その1,000万の案件のあと、元請けとして取れ
る仕事がなかったので某大手通信会社のシステ
ム構築の案件に孫請けとして入りました。期間
はだいたい半年です。委任契約ですので基本的
には言われたことを粛々とこなしていれば良い
のですが、自分で仕様を考えることはなく、与
えられた仕様に沿ってコードを書くのが非常に
つまらなかったことを覚えています。
　その仕様も結構な頻度で変わります。設計も
お粗末で、DBからこの値を取ってこいと書い
てあるけれどそれに該当するカラムがない、と
いう有様でした。このような作業を行うだけな
ら確かに委任で十分。言い方は悪いですがバカ
でもできる。でも、何も身につかない。コード
を実装しても誰がどのように使ってくれるかも
わからない。そのような時間を過ごした反動か
らか、コード自体は何も産まないというエンジ
ニアの存在意義を自分で否定するような気持ち
が芽生えました。
　どんなに優れた技術を持ってきても、ゴミか
らはゴミしか作ることができません。腐った仕
様からは腐ったシステムしか生まれません。シ
ステムを構築するIT技術が発展してもシステム
には自浄作用がないのだから、プログラムを活
かすも殺すも仕様がすべてになります。だから
こそ、「きちんとした仕様を策定したい」「自分

ならこうやって組むのにという思いを現実にし
たい」という気持ちが強くなりました。
　当時在職していたSIerで、仕様を決めること
ができる立場の人間はプロジェクトの最高責任
者、PMです。仕様の策定に責任を持つという
ことは、プロジェクト運行のほぼすべてに責任
を持つことに等しい。上流工程が狂ったら下流
工程が破綻するのは言わずもがな。優れたプロ
グラマがいても、そのプログラマ自身が仕様を
決定できないのなら何の意味もない、と前述の
委任案件で強く思っていました。プログラマが
仕様を決定できないのもおかしな話なんですけ
どね……。
　そのときの自分は社会人4～5年目、2007～
2008年ごろです。そのころから今のブログを始
めたのですが、最初のころは「プログラマって言
われたことをやってればいいだけじゃん。いわ
ゆるスーツの人間が産んだカネに文句があるな
ら同じフィールドに立てよ」なんてことを思って
いたことを思い出します。

仕様を決定できても課題は解決できない？

　運良く前職の会社は元請けとしてやれる体力
もあったので、小さな案件でPMをやらせても
らえました。そのときに感じたことは、「動くも
のがない状態で、技術的背景がない発注者の方々
と仕様を決めることがこんなにも難しいものか」
ということ。この仕様で動くかどうかは我々で
判断できるのですが、この仕様が業務上／シス
テム上正しいかどうかの判断が、ユーザにもで
きないことが多くありました。システム屋とク
ライアントの情シスがToBe（あるべき姿）を描
いて、エンドユーザの要望とAsIs（現状の姿）に
照らし合わせてFit & Gap（適合する部分とずれ
ている部分を把握）します。「でも、自分たちの
システムや業務をどうすべきかあいまいなのに、
大丈夫なんだろうか」と不安になりました。
　システムの素人には正しいソフトウェアの仕
様などわかるわけがないから、我々がシステム
の仕様を決める。それはOK。でも、トマトソー

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

82 - Software Design

スのパスタをくれというような大まかな要件し
か示されないのなら、味の違いのような細かな
仕様の違いはわからない。がんばって細かく詰
めていこうとしても枝葉の話ばかりが膨らんで
しまう。
　筆者も決められた仕様をもとにシステムを作
らないといけない立場ですので、スケジュール
の遅延は許されません。最終的には外堀を埋め
るように要件を固めにいき、「これ以外やりませ
ん」と言うしかなくなりました。これでは、「与
えられた課題を解決する最適なシステム」を作る
ことが目的ではなく、「決められた仕様を満たす
システム」を作ることが目的になります。仕様を
決める立場になっても、その仕様が与えられた
課題を解決する最適解なのかどうかは判断でき
ない、というもどかしさが募ってしまいました。

SIerからユーザ企業へ
　コード自体は何も産まないという経験と、仕
様を策定できても間違いが生まれるという経験
が相まって、「いったいなんでこんなすれ違いが
産まれるのか」「課題を解決するソフトウェアを
手に入れることがこんなにも難しいのはなぜな
のか」を考えるようになりました。
　いろいろと考えた結果、このようなすれ違い
が発生する原因の多くは発注者側にある。それ
が筆者の答えでした。
　経営者や発注者（非エンジニア）が理解できる
ITの粒度と、エンジニアが考える ITの粒度は
まったく違います。システムを構築するために
必要なステップはエンジニアのほうがより細か
くイメージ／策定できるから当然のことです。
大きな粒度で正しくモノを語れるのは小さな粒
度で細かく問題を認識できる人間だけです。ど
のような過程を経てシステムが構築されるのか
わからないが故に、正しい仕様が策定できずソ
フトウェアを正しく手に入れることができない。
コードを書いて仕様の策定ができるようになる
には時間もかかりますし、ユーザ企業ではまず

そんな人材はいない。そこが問題の根幹にある
ように感じました。
　ならば、「人材育成の意味も込めて自分たちで
作ればいいじゃないか」「内製すればいいじゃな
いか」と単純に考えました。初めてそう感じたの
は6年ぐらい前ですが、今でもそう感じていま
す。
　「システムの開発にはRFP、見積もり、提案、
要件定義などさまざまな工程を踏む必要がある
ので非常に時間がかかってしまい、業務変革に
求められるスピードに追いつかない」とみなさん
おっしゃいますが、自分でシステムを組めばい
くらでもスピードは出るでしょう。
　自分たちに最適なものがほしい、システムと
一緒にビジネスの進化を成し遂げたい。それが
目的であれば、自分たちで管理するしかない。
管理できないものを改善できるわけがない。丸
投げしたら何も手に入らない。前述の1,000万
円の話に戻りますが、同じお金をかけるならプ
ログラマを直接雇うなりして作りながら考えて
いけば絶対良いシステムができるはず。
　そんな内製への慕情が生まれ始め、「ソフト
ウェアに携わるプロとしての自分自身の進化で
会社の進化を促していけたらいいな～」と考えて
いた矢先に、叔父が営んでいる生活雑貨の輸入
製造卸の会社、㈲エフ・ケーコーポレーション
に入社しました。
　事業規模が拡大してきて手管理が限界に達し
ていたこと、システム活用で成功している同業
他社に刺激を受けたことなどが理由で、筆者を
誘ってくれました。あまりにも何もない環境だっ
たので最初は断ったのですが、何度も誘ってく
れたうえに内製への慕情が滅茶苦茶強かったこ
とも重なり、「失敗してもいいや」と飛び込んで
みました。それが2009年のことです。

一人きりのエンジニアとして
学んだこと

　現職ではコードを書くだけではなく、業務設
計、経営管理、新たなサービス開発などをやっ

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ ユーザ企業の「一人情シス」という選択肢 第 章3

82 - Software Design Jan. 2015 - 83

ています。前述のとおり、弊社のエンジニアは
筆者一人です。ここではエンジニアとして学ん
だことにフォーカスします。一人情シスをやっ
て一番良かったことは、頭から尻尾まで自分で
やれたことです。ふわっとした要望を自分で要
件に落とし込んで、自分で考えて実装して、ユー
ザに使ってもらってフィードバックをもらって
改善する。そうすることで、何が最適な仕様な
のかを常に考える習慣ができ、社内システム構
築は当然のことながら、対外的な開発でも非常
に役に立っています。

仕様決定における落とし穴

　実は仕様を決定するプロセスは、図1のよう
なステップを踏む必要があるものです。
　仕様を決めるとは、「ユーザが言っていること
は何か」→「なぜそんなことを言っているのか」→
「何に困っているのか」→「それをソフトウェアで
解決するためには何が必要なのか」→「最もROI

（Return On Investment：投資利益率）に合う解
決策は何か」ということを順番に詰めていく作業

です。
　多くの方が第1ステップであるユーザの言っ
ていることをそのまま鵜呑みにしてしまい、言っ
ていることの向こう側にあるニーズを確認せず、
間違った要求を実現しようとしてしまいます。
そのような場合によくあるのが「言ったものと違
うぞ」という反応です。ユーザが言っていること
から確実に判断できるのは、やりたいことが満
たされていないということだけ。「とくに根拠は
ないけど、こういう機能があったほうがええん
ちゃうか」というレベルの話も結構ありますの
で、本当にこの人は困っていることがあるのか、
切実な課題があるのかをシビアに判断していき
ましょう。欲しかったものは要求の奥に潜む
「困っていること」に隠れています。
　そして、困っていることを解決する手段は実
装することだけではありません。機能の実装は、
課題解決の一手段でしかありません。実装する
のではなく、ユーザが行っている作業を変えた
ほうが良い場合もあります。また、新たに機能
を実装すれば、ユーザはその機能を使うという

WHAT × HOWを正しく考えられるのはエンジニアだけ！

ユーザの言っていることを聞く

ユーザの言わんとすることを
汲み取る

ユーザの困りごと（課題）を
理解する やりたいことは何か（WHAT）

どうやればできるか（HOW）課題の解決策を考える

最もROIの高い解決策を提示する

●ユーザの言っていることを鵜呑みにしてはダメ
●ユーザ自身も何が本当に困っていることなのかわかっていないこと
が多い

●ユーザが言っていること（WHAT）から、本当に言いたいこと
（WANT）をしっかりと汲み取り、困っていること（NEEDS）は何なの
かまで整理することが必要

上記の3つのプロセスをすっ飛ばすと、「言ったことと違う」というすれ
違いが生じてしまう

●困っている課題は本当にソフトウェアで解決すべきことなのかをまず
考える。そのうえで課題解決に必要な技術と機能を検討する

●複数の解決策が考えられる場合は必ずそれらも検討し、最もROIの
高い解決策は何かをエンジニアが提示する

 ▼図1　仕様を決めるプロセス

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

84 - Software Design

作業が増えます。新機能で得られるメリットよ
りも作業が増えることによるコストのほうが大
きければ、実装しないほうが良いということも
あります。さまざまな手段を検討したうえで、
最もROIに合う解決策を提示することで全体最
適を図る。これが仕様を決めることだと考えて
います。

ユーザを導くのがエンジニアの役目

　仕様を検討し正しく決定するには、最後のROI

に合う解決策の提示までを「エンジニア」が全部
用意する必要があります。経営者／ユーザには
どうしたら良いかという方法がわからないので、
仕様を決めるために最適な選択ができません。
WHATの検討は誰でもできます。しかし、素人
がソフトウェアを作れない以上、HOWを検討
し妥当性を判断できるのは、エンジニアだけで
す。ですので、ユーザの困っている背景を理解
したうえで解決策をエンジニアが用意してあげ
ないと、使い手と作り手の間で仕様を決めるこ
とはできません。
　これが社外の一般顧客相手だと、「ここをあま
り細かく言うと、作業が増えてやぶへびになる」
「いいや、もう投げちゃえ。どうしたら良いです
かね？　決めてもらえます？」とある意味、相手
に判断を投げることもできるのですが、社内だ
と「どうしたら良いかわからないから聞いてるん
だろ。それを考えるのがお前の仕事だろ」と返り
討ちにあいます（笑）。
　ですので、相手に答えを求めるのではなく、
相手が決断できるように導いてあげるという視
点に切り替えました。プロである以上は、素人
の目利きとして先へ先へと導いていきましょう。

高い技術力は必要ない

　求められる技術について、システムを内製し
て自社で使うという前提で話をします。最低限、
自分一人でWebアプリケーションを組む力は必
要になります。自分で考えて自分で実装するわ
けですから、LAMPとHTML/CSSがわかって

いないと一人では何もできません。
　とはいえ、初心者レベルでもいいと思います。
高い技術力が求められるのは、工学的／数学的
な知見がないとモデル化できないような非常に
高度な問題解決に挑戦するときぐらいです。一人
情シスではそのようなケースはまずないので、入
門書を買ってきてトライして動いた、というレベ
ルでも全然問題ありません。しょせんは自分の
会社だけが使うもの。気楽に考えていいです。
　しかし、気楽に作ってしまったものが社内で
広まってしまうと、さまざまな改善要望が寄せ
られることになります。ここからが勝負です。
「動けばいいや」というやっつけ仕事をしますと、
自分が保守運用するので、改修時に自分の首を
絞めることになります。

例外に耐え得る設計のセンス

　業務システムの仕様は単純なものが多いので、
正常系だけならすぐに実装できることが多いで
す。が、問題になるのは例外処理です。正常系
から外れる事態がとても多く起こります。です
ので、技術力というよりも「正常系から外れる
ケースがどれくらいあるのか」を常に考えて、そ
の例外を吸収できる設計にする発想力が求めら
れます。
　実装経験が浅い場合は、正常系のみを動かす
ことで手一杯になります。しかし、業務系シス
テムは手戻りと例外の宝庫です。「注文をもらっ
たけどキャンセルが入った」「このお客さんだけ
単価を別に提示したい」「通常は実棚を在庫数と
して表示したいが、取り置き分の商品に限って
は取り置きの残数を表示したい」「間違えて出荷
したものを差し戻したい」「在庫があることに
なっているけど、実際にはなかったのでこの商
品を自動的に発注に含み入れたい」……。筆者の
ところにはこのような例外対応の依頼がたくさ
んやってきます。
　このような例外に柔軟に対応するためには、
オブジェクト指向型の言語での開発経験と最低
限GoFのデザインパターンは理解している必要

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ ユーザ企業の「一人情シス」という選択肢 第 章3

84 - Software Design Jan. 2015 - 85

があると考えます。その知見がないと、どうす
れば変更に強い設計になるかを考えられず、場
当たり的な対応に終始してしまい、技術的負債
が積み上がってしまうからです。

機能追加はLess is Moreで

　弊社で利用している販売管理システムは筆者
が内製したものですが、このバージョン1.0を
リリースしたのが2012年8月です。それからさ
まざまな機能追加を行ってきました。振り返っ
てみるとシステムに求められる機能というのは
「Less is More」である必要があるようです。
　より少ない労力で、より多くのことをできる
ようにする。複数の作業を1つにまとめたり、あ
る作業を行ったら自動的に次の作業を行ったり、
今までと同じ労力でより多くの顧客の注文を受
けられるようにしたり、そのようなベクトルに
向かわなければなりません。
　使っている方の立場にたてば、「機能追加＝ム
ダな作業の発生」であっては意味がないのです。
システムを使うことで作業が増えてしまっては
本末転倒です。人的資源が乏しい会社だったの
で、「その機能があっても、それを使うために別
の苦労があったら使わないだけだ」とよく言われ
ました。「なかなか無茶を言うな」と思いました
が、振り返ってみると機能の本質を教えてもらっ
たように思います。

技術を極めたいヒトには向かない

　技術を極めたいという方は、ユーザ企業の情
シスに入るべきではありません。ユーザ企業で
コードを書き続ける時間をもらえることは少な
いからです。スクラッチで組むまでもないケー
スも多く注1、実装と言ってもWordPressが使え
ればたいていのことは解決できるでしょう。自
分の周りだけで使うちょっとした便利システム
を実装する機会は山ほどありますが、それ以上
の規模になると難しくなります。自社の売上向

上に貢献するシステムでなければ、継続的に改
善をする理由がないからです。
　その代わり、技術的制約はありません。あな
たの技術的挑戦を邪魔する人はいません。会社
の何かしらの課題解決に寄与するアプリケーショ
ンやサービスを作るのに必要な技術に果敢にト
ライしてください。失敗しても誰にも迷惑はか
かりません。自分たちだけで完結しますから。
今の会社に入ってから、Windows Form、WPF、
Objective-C、Android、HTML5+CSS3などを
覚えました。全部独学ですから限界はあります
けれど、誰にも文句を言われずに新しい技術を
使えるのは楽しいことです。
　要素技術をひたすら極めるという志向の方に
はまったく向いていない環境ですが、平凡かも
しれないけど自分の持っている技術で組織に貢
献して居場所を作って充実した時間を過ごした
い方には、向いている環境です。

一人情シスをやる意味

一人で大丈夫なの？

　筆者がみなさんに聞かれる一番多い質問がこ
れです。「一人って怖いよね」。
　でも、今は一人でもすごく多くのことが達成
できる時代になっています。「一人情シス」がユー
ザ企業の究極のIT活用の形ではないかとすら考
えています。組織論で言えば誰か特定の個人に
依拠するのはNGです。しかし、今はクラウド
技術のおかげで運用作業はほとんど自動化でき
るようになっています。そのしくみをちゃんと
構築して、それを引き継げるようにしていれば
別に誰がやってもいいわけです。
　弊社は規模が小さいので、日々の業務の中で
2人もエンジニアはいらないと感じています。ク
ラウドのおかげで、サーバ運用が本当に楽にな
りました。
　業務システムは筆者一人で内製しましたが、
コードもドキュメントも開発環境も検証環境も、注1） ASP/SaaSで十分な業務もたくさんあります。

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

86 - Software Design

システムに手を入れるために必要な情報と環境
はすべて自社にあります。内製すれば情報や環
境のみならず運用のノウハウが残りますが、外
部に丸投げしたものは何も残りません。内製し
たシステムが会社の経営インフラを支えている
以上、システムの主体性を失うことが最大のリ
スクだということは、経営者も100％同意して
くれています。
　何かを始めるにも政治的制約はほとんどあり
ません。自分で考えて自分で実装することに集
中して取り組んでいることからもわかるように、
かなり自由にやらせてもらっています。実装し
て思うように動かないのは、一人だろうが複数
人だろうが等しく起こることです。
　そのような作業負荷よりも、社内で居場所を
作るまでがきつかったです。自分以外に自分の
やっている仕事の内容がわかる人はいないとい
う状況はとても孤独です。筆者が何を考えてお
りどういう時間が必要だからという説明をして
も、非エンジニアの方には理解されません。自
分の居場所を築くためには、ただ作るだけでは
ダメ。「このシステムがなければこの仕事は取れ
なかった。この事業は展開できなかった」という
レベルの影響力を出さなければ、内製している
意味がありません。それができなければ、筆者
がここにいる意味を失うことにもなります。そ
のプレッシャーとの戦いが、最もハードな部分
でした。

内製化の果実とは

　これは単純で、コストを低く抑えられること
と、ビジネスの外部環境の変化に対応できるス
ピードを得られることです。
　当初、筆者が内製に踏み切った理由は、新た
な事業環境に適合するためにオリジナルで組む
しかなかったからです。やむにやまれず、です。
受注～出荷～売上～請求～回収を自社の都合で
連携できる販売管理システムがどこにもありま
せんでしたし、開発を外注するにしてもべらぼ
うに高くつきました。そんな予算はありません

し、できるまでに半年も待っていられませんで
した。大企業であれば、業務と業務の橋渡しを
行う人の人件費をかけることができます。しか
し、悲しいかな中小零細企業である弊社ではそ
のお金すら捻出するのがはばかられました。
　もう1つの理由は、改善のスピードが必要だっ
たこと。限られた人的資源で社内のほぼすべて
の業務を完結する業務システムを作る必要があっ
たので、改善のスピードが求められました。今
聞いた要望を、最低でも翌日までには実装して
提供するスピードが必要でした。そこで培った
ノウハウがさらにムダを省いた業務設計へと反
映され、同じ労力でより多くのことができるよ
うになっていく好循環が生まれていきます。
　「すべての業務を1つのシステムで完結でき、
かつ改善ができて運用費が安いならそれに勝る
ものはない」というのが、社員の中にエンジニア
がいる会社ならではの経営判断です。
　弊社の販売管理システムの開発費はゼロ（有料
ソフトウェアはいっさい使っていません）、運用
費は月々980円です。そんなシステムが年商数
億円の中小企業の屋台骨を支えています。シス
テムを使うことで顧客からいただいた発注に関
する大部分の事務作業から解放され、注文が増
えても付随する事務作業の量はほとんど変わら
ない状態です。その結果、営業活動や顧客のフォ
ローアップに専念できるようになり、億単位の
売上に貢献しています。
　BtoB、BtoC問わず売上に貢献しているITシ
ステムやサービスがあり、それらを自分たちで
開発／運用するか、もしくはエンジニア経験者
を雇用してさらなる売上向上やサービス向上の
ために改善したい、と考えている会社ならば、
内製化の果実（低コストとスピード）を得ること
ができるでしょう。

一人情シスの醍醐味

　一人情シスの醍醐味は、大きく分けて2つあ
ります。
　1つは、技術をテコに組織を動かせることで

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ ユーザ企業の「一人情シス」という選択肢 第 章3

86 - Software Design Jan. 2015 - 87

す。エンジニアのいない企業に入ってポストを
作ることができれば、あなたは必要不可欠な人
材となります。ブルーオーシャン戦略とでも言
いましょうか。技術は、技術を活用できていな
い環境でこそ最大の効果を発揮しますので。
　はじめは自分の作業が何なのかもわかっても
らえないし、モノができて動いて成果が出るま
でに時間がかかります。しかし、1年経てば自
分の作ったシステム／サービスで多くの仕事が
生まれ組織が動いていること、成果をあげてい
ることを実感できることでしょう。技術をテコ
に会社組織を動かし、改善させてより良い状態
を築く。ある意味、エンジニアの矜

きょう

持
じ

を見せつ
けることにもなります。
　もう1つの醍醐味は、やればやるだけ結果が
出ることです。自社で運用しているものは、「こ
こで終わり」という枠がありません。システムや
会社のITに手を入れたら入れただけ、自分にダ
イレクトに結果が返ってきます。良い結果もあ
れば悪い結果もありますけれど、「○○を解決す
るためにこのITを導入したら△△になった」と
いうフィードバックを得られるのはエンジニア
として勉強になります。
　受託開発でよくある「契約内容さえ満たせてい
ればOK」というような他人行儀な考えは不要で
す。仕様を満たすだけの目的でプロダクトを作
ることはありません。実装段階で気づいたアイ
デアや欠陥を対応しないままにすると、自分で
運用するときに自らの首を絞めます。それがプ
レッシャーなのかもしれませんが、出し惜しみ
せずに自分のベストを出すことで、周りを取り
巻く環境が良くなる。そして、自分に付加価値
をつけていく。おもしろいと思いますよ。

一人情シスとエンジニアのキャリア

　事業会社の内製担当という立ち位置は、多く
の場合素人の集団に放り込まれることになりま
す。どんなエンジニアでも、素人の中にいれば
大先生。IT技術という魔法を正しく使えば、ポ
ストを作ることは難しくありません。世の中の

会社が等しくF1を乗りこなせるヒトを求めてい
るわけではありません。高度な技術は高度な問
題を解くときだけに有効になります。ほとんど
の事業会社は、ITシステムという軽自動車が運
転できるようになりたいけれど免許がないし、
免許を取得できる教習所もないというような状
態です。平たく言えば誰でも活躍できるフィー
ルドがあります。
　ですが、先ほども述べたように、一人情シス
では専門性を磨くことが難しいです。LINEの
ようなトラフィックをさばけるようになりたい
と思っていても、LINEのようなインフラはあ
りません。ありふれたインフラでありふれたコー
ドを書くことになります。筆者は個人的には何
の問題もありませんが、高度な技術的課題を解
決することが望みの方は、重々承知のうえで一
人情シスへの転換を考えてください。

ピラミッドの頂点を目指しますか？

　筆者が好きなエッセイでこんな一文がありま
す。筆者のブログの記事注2でも引用しています。

「私は新しい技術を学ぶことを重視しているが、
新しい技術に没頭するというのは、同じ場所に
居続けるために全力で走っているにすぎない。
どこか別な場所に行こうと思ったら、2倍速く
走らなければならないのだ。それは5年たって
も陳腐化しないようなトピック̶̶人間的側面
とデザイン̶̶について学ぶということだ。」
（Jeff Atwood／青木靖 訳）注3

　この一文が示すことは非常に示唆的です。技
術は陳腐化するのが宿命ですから、常に棚卸し
をして新しい技術を学ばなければエンジニアで
い続けることは難しい。それができたとしても、
プログラミングだけを武器に35歳以降を戦って
いくのはすごくたいへんだし、それができるの
は一握りだけ、というのが筆者の実感です。ピ

注2） h t t p : / / go thed i s t ance .ha t enad i a r y. j p / en t r y /
20100725/1280066810

注3） http://www.aoky.net/articles/jeff_atwood/everything_
you_know_will_be_obsolete_in_five_years.htm

http://gothedistance.hatenadiary.jp/entry/20100725/1280066810
http://www.aoky.net/articles/jeff_atwood/everything_you_know_will_be_obsolete_in_five_years.htm

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？第2特集

88 - Software Design

ラミッドの頂点を目指し続け、そこから落ちな
いように全力で走り続ける。できたらカッコい
い生き方ですが、普通の人にはキツ過ぎます。
　筆者自身、SI業界からもWeb業界からも離れ
てしまったことへの不安はゼロではありません
が、エンジニアの居場所はソフトウェアハウス
やWeb制作会社の現場だけではないことを身を
もって証明できたと思っています。技術的刺激
は少ないかもしれませんが、自分のやっている
ことが会社の事業貢献につながったほうが充実
感を得られるのではないか、と感じています。
なぜなら、確固たる自分の居場所が作れるから
です。弊社の事業は平たく言えば、モノを仕入
れて利益分を上乗せした価格をつけて売るだけ
の商売ですけれど、軌道に乗せるためにはいか
にITの手助けが必要かを感じています。その手
助けをしたら、自分の居場所がそこにできます。
　技術の競争の最前線にい続ける努力をしても、
F1はF1の世界でしか生きられない。F1に乗れ
るヒトも絶対数が決まっている。でも、視野を
広げて見ればF1を必要としない企業も多くあり
ます。「コモディティになったもので十分だから
使い方を教えてくれないか」という感じの会社の
ほうが圧倒的に多いです。必要とされていると

ころで力を発揮すればいいだけです。Webサー
ビスをやっている会社であれ、受託開発の会社
であれ、ユーザ企業であれ、どこでも同じです。

これからの IT業界
　まずは図2の筆者の考える業界予測図をご覧
ください。
　断言しますが、今後のIT業界の成長は鈍化し
ます。理由は単純で、成長ドライバが見当たら
ないからです。ソフトウェアのビジネスは、大
きく分けて3つしかありません。オーダーメイ
ド（受託開発）、買い切り、サブスクリプション
（月額課金）の3つです。伸びるとしたらサブス
クリプションですが、最も金額としては少ない。
最も高額な報酬が得られる受託開発のビジネス
が IT業界の成長ドライバとなっていないうえ
に、買い切りやサブスクリプションといったパッ
ケージのビジネスは受託開発に比べて市場規模
が小さく参入障壁も低いので、業界内での競争
も激しくなります。
　要は共食いが起きてしまいWebサービスの世
界のようにコモディティ化が促進され価格が下
落していき、生き残れる業者が減ります。その

ソフトウェア開発の現場以外で、エンジニアが輝ける場所を探すことが必要！

2014年

受託開発（オーダーメイド）

パッケージ（買い切り）

サブスクリプション（定額課金）

2020年

受託開発（オーダーメイド）

パッケージ（買い切り）

サブスクリプション（定額課金）

縮小

拡大

●クラウドが当たり前の技術になることで、クラウド上でソフトウェアを作ることも当たり前になる。その結果、いかにクラウド上で
サービスを組み合わせて最適解を出すかというビジネスが増える。現在、元気のいい企業にはそういうビジネスをやっていると
ころが多い

●クラウド上でサービスを組み合わせたSIが台頭すると、受託開発のマーケット規模は減少する。受託のマーケットが減少する
ので、ソフトウエア開発で食っていける機会が減っていく

ソフトウェアビジネスは、受
託開発、買い切り、定額
課金の3つのビジネスモ
デルしかない。伸びる可
能性があるのはサブス
クリプションのみ

 ▼図2　クラウドの普及による業界の変化

SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来　請負・受託開発は変わるべきか？ ユーザ企業の「一人情シス」という選択肢 第 章3

88 - Software Design Jan. 2015 - 89

ような状態で業界全体の成長が加速することは、
非常に考えにくい。
　クラウドビジネスの台頭でIT産業の売上額は
UPするかもしれませんが、業界人口は減る可
能性が滅茶苦茶高い、ということです。クラウ
ドが発展したら俺達は死にかけるかもしれない
という記事注4を2011年1月、今から約4年前に
書きました。ITのサプライサイドにとっては、
本当に難しい時代に入ります。クラウドの時代
は、私たち業界にいる人間にとってみれば「多産
多死の時代」と言えると考えています。

ふつーのエンジニアだから
活きるキャリアパス

　そう考えていくと、ソフトウェア開発の現場
以外でエンジニアが輝ける場所が必要になって
くる。それはどこだろうか。そのうちの1つの
答えが、ユーザ企業に転身するというものです。
　「ITシステムを導入したいけど、どうやれば
自社に最適な方法で導入できるのかまったくわ
からない」「山のようにあるソフトウェアから、
どのソフトウェアが自社に最適なのか判断でき
ない」というユーザ企業の悩みは永久不変の課題
です。「車の運転をしたことがないのに車の乗り
方がわかるわけないだろ」という話なのですが、
ソフトウェアの乗り方を教えてくれる教習所は
どこにもありません。
　運転において、車を作る知識は不要ですが、
車を制御する知識は絶対に必要になります。そ
れと同じで、ITシステム導入において、ソフト
ウェアの開発知識は不要ですが、ソフトウェア
を乗りこなす知識は絶対に必要です。乗りこな
すとは、自社の業務や仕事に合わせてソフトウェ
アを最適化させることを意味しています。
　なぜ乗りこなす必要があるか。事業の変化に
伴いシステムに変化を求めるときが必ずやって
くるからです。システムを使って自社のビジネ
スモデルに変革を促したいのであれば、ソフト

ウェアを乗りこなすための知識が必要です。そ
れがなければ、何をどのように変えたらいいの
かがわかりません。
　ですので、ソフトウェア開発を生業としてい
ないユーザ企業にも、ソフトウェアの構造に関
する理解／知見が必要だと考えています。もし
も自分たちの会社を遠くへ運びたいのであれば、
ITシステムを活用する以外の方法はありません。
速く走ることだけなら、マンパワーで可能です。
でも遠くへ行くためには、人に依拠しないしく
みが必要です。
　そのような「しくみ」を構築するために必要な
のは、高度な技術ではありません。何が正しい
のかを真摯に考える姿勢です。どうすれば自分
の周りにいる人たちがITシステムを活用して全
体最適が図れるのか。それを考えるのに必要な
のは執念であって、技術ではありません。
　世の中のソフトウェアが一般化／コモディティ
化しているので、高度なプログラミング技術を
求められるケースがどんどん減っており、普通
のアプリケーションやWebシステムを作る技術
で自社に必要なシステムを作ることができます。
ふつーの技術があれば、ふつーにできます。何
の問題もありません。

顧問プログラマ

　車の免許を取るときにみなさんがお世話にな
る「教習所の先生」のような立場のエンジニアが、
もっと脚光を浴びても良いと思います。単なる
ITヘルプデスクではなく、仕事を改革し組織の
事業運営に貢献していくために。ソニックガー
デンの倉貫義人さんが「顧問プログラマ」という
言葉を使っていますが、この働き方はもっと増
えてほしいです。ふつーのエンジニアの力が必
要とされている会社で、多くのエンジニアが顧
問として、教習所の先生として、活躍するよう
な事例が増えてほしいな、と顧問プログラマで
ある筆者は強く思います。｢

注4） h t t p : / / go thed i s t ance .ha t enad i a r y. j p / en t r y /
20110112/1294798106

http://gothedistance.hatenadiary.jp/entry/20110112/1294798106

90 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

　皆さん、こんにちは！　James Blakeの「The

Wilhelm Scream」を聴きながら寝たら溺れる夢を
見たEiji James Yoshidaです。前回はpcap-ngの
ファイル形式について具体的に解説したので、
今回は実際にpcap-ngファイルをバイナリエディ
タで読んでみましょう。そして最後はpcapと
pcap-ngのファイル形式の違いを説明します。

　本連載第1回でも説明したように、使用する
ツールは次のとおりです。

・hexedit 4.0
　http://www.hexedit.com/

　インストール方法はお任せしますが、とくに
こだわりがない場合はデフォルトでインストー
ルしてください。
　さらに筆者のブログからarp.pcapng

をダウンロードしてください。

・Eiji James Yoshidaの記録
　http://d.hatena.ne.jp/EijiYoshida/

20140907/1410071296

　ダウンロードが終わったらhexedit

を起動して arp.pcapngをドラッグ&

ドロップすると、ファイルの内容が16進数で
表示されます。
　このままでは解析しずらいので、4バイトで
折り返すように設定を変更します。16進数が
表示されているペインの上で右クリックをして、
［Options］をクリックします。［HexEdit Options］
ウィンドウが表示されたら、右側ペインにある
［Layout］の［Columns:］の値を［4］に変更して、
［OK］ボタンをクリックします（図1）。これで4

バイトで折り返すようになります。
　目指すは某アニメに出てくる飛行石を片手に
「読める！　読めるぞ！」といったキャラみたい
に、皆さんも前号の本連載第2回や本稿を片手
にpcap-ngファイルを読むことです。それでは
始めましょう！

　まずはブロックタイプを特定するために先頭
4バイトの値を確認すると0x0A0D0D0Aなので、
表1から最初のブロックはセクションヘッダ・

 ▼図1　HexEdit Optionsウィンドウ

はじめに

pcap-ngファイルの解析

セクションヘッダ・ブロックの
解析

最終回
 Writer 吉田 英二（Eiji James Yoshida）

　合同会社セキュリティ・プロフェッショナルズ・ネットワーク（http://www.sec-pro.net/）

pcapとpcap-ngの
ファイル形式の違いを知ろう！

JamesのJamesの
セキュリティレッスンセキュリティレッスン
パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★ 短

期集中連載

http://www.sec-pro.net/
http://www.hexedit.com/
http://d.hatena.ne.jp/EijiYoshida/20140907/1410071296

90 - Software Design Jan. 2015 - 91

pcapとpcap-ngのファイル形式の違いを知ろう！ 最終回

ブロックということがわかります。
　前号でも使った図2を参照しながらセクショ
ンヘッダ・ブロックをフィールドに分けると図
3と図4になります。

●	バイトオーダーマジック・フィールドの解析
　バイトオーダーマジック・フィールドは0x1A

2B3C4Dではなく0x4D3C2B1Aと並びが逆に
なっていることから、バイトオーダーがリトル
エンディアンであることがわかります。以降、

ブロックタイプ・フィールド
ブロック全長・フィールド
バイトオーダーマジック・フィールド
バージョン番号・フィールド

セクション長・フィールド
第1オプションコード／
オプション長・フィールド

第1オプション値・フィールド

 ▼図3　arp.pcapngのセクションヘッダ・ブロック（1）

ブロックタイプ ブロック名 説明
0x00000001 インターフェース概要 キャプチャに使用したインターフェースについての情報が記録される
0x00000004 名前解決 DNSの名前解決についての情報が記録される
0x00000005 インターフェース統計情報 キャプチャに使用したインターフェースの統計情報が記録される
0x00000006 拡張パケット キャプチャされた1つのパケットが記録される
0x0A0D0D0A セクションヘッダ セクションについての情報が記録される

 ▼表1　代表的なブロックタイプ

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース統計情報
［可変長］

ブロックタイプ（0x0A0D0D0A）［4バイト］

ブロック全長［4バイト］

バイトオーダーマジック（0x1A2B3C4D）［4バイト］

セクション長［8バイト］

オプションコード［2バイト］ オプション長［2バイト］

バージョン番号（メジャー）［2バイト］ バージョン番号（マイナー）［2バイト］

オプション値［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

…
…

…

 ▼図2　セクションヘッダ・ブロックの構造

第2オプションコード／
オプション長・フィールド

第2オプション値・フィールド

オプション終端コード・フィールド
ブロック全長・フィールド

 ▼図4　arp.pcapngのセクションヘッダ・ブロック（2）

92 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

パケットやOSの名前といったデータを除いて
リトルエンディアンと判断します。

●	ブロック全長・フィールドの解析
　ブロック全長・フィールドは0x00000078で
すので、セクションヘッダ・ブロックの全長は
120バイトということがわかります。

●	バージョン番号・フィールドの解析
　ブロックの中身となるデータが入るフィール
ドです。ブロックタイプによってはブロックボ
ディがさらに複数のフィールドに分かれます。

●	セクション長・フィールドの解析
　セクション長・フィールドは0xFFFFFFFF

FFFFFFFFですので、「スキップしない」が設
定されています。

●	第1オプション部分の解析
　第 1オプションコード・フィールドは 0x

0003ですので、表2からshb_osということが
わかります。
　第1オプション長・フィールドが0x001Cで
すので、この後のオプション値の長さは28バ
イトということがわかります。
　第1オプション値・フィールドには、このセ
クションを作成したOSの名前として「32-bit

Windows 7, build 7600」が記録されています。
バイトオーダーはビッグエンディアンです。

●	第2オプション部分の解析
　第 2オプションコード・フィールドは 0x

0004ですので、表2から shb_userapplという
ことがわかります。
　第2オプション長・フィールドが0x0034で
すので、この後のオプション値の長さは52バ
イトということがわかります。
　第2オプション値・フィールドには、このセ
クションを作成したアプリケーションの名前と
して「Dumpcap 1.10.9 (v1.10.9-0-g6b041ab from

master-1.10)」が記録されています。バイトオー
ダーはビッグエンディアンです。

●	オプション部分の終端
　オプションコード・フィールドとオプション
長・フィールドが両方とも0x0000ですので、
ここがオプション部分の終端になります。

●	セクションヘッダ・ブロックの終端
　このブロックの最後の4バイトがブロック全
長・フィールドの値と同じ0x00000078ですの
で、ここがセクションヘッダ・ブロックの終端
になります。

オプションコード オプション名 説明
0x0002 shb_hardware このセクションを作成したハードウェアについての説明がUTF-8で記録される
0x0003 shb_os このセクションを作成したOSの名前がUTF-8で記録される
0x0004 shb_userappl このセクションを作成したアプリケーションの名前がUTF-8で記録される

 ▼表2　セクションヘッダ・ブロックの代表的なオプションコード

リンクタイプコード リンクタイプ
0x00000001 IEEE 802.3 Ethernet
0x00000009 PPP
0x00000069 IEEE 802.11 Wireless
0x00000071 Linux cooked socket capture （SLL）

 ▼表3　代表的なデータリンクタイプの値

92 - Software Design Jan. 2015 - 93

pcapとpcap-ngのファイル形式の違いを知ろう！ 最終回

　セクションヘッダ・ブロックの次の4バイト
が 0x00000001ですので、表1からインター
フェース概要・ブロックということがわかりま
す。
　図5を参照しながらフィールドに分けると図
6と図7になります。

●	ブロック全長・フィールドの解析
　ブロック全長・フィールドは0x00000094で
すので、インターフェース概要・ブロックの全
長は148バイトということがわかります。

●	データリンクタイプ・フィールドの解析
　データリンクタイプ・フィールドは0x0001

ですので、表3から IEEE 802.3 Ethernetとい
うことがわかります。

インターフェース概要・ブロック
の解析

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース統計情報
［可変長］

ブロックタイプ（0x00000001）［4バイト］

ブロック全長［4バイト］

※キャプチャリミット［4バイト］

オプションコード［2バイト］ オプション長［2バイト］

※データリンクタイプ［2バイト］ 予約（0x0000）［2バイト］

オプション値［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

…
…

…

 ▼図5　インターフェース概要・ブロックの構造

ブロックタイプ・フィールド
ブロック全長・フィールド
データリンクタイプ・フィールド
キャプチャリミット・フィールド
第1オプションコード／
オプション長・フィールド

第1オプション値・フィールド

パディング

 ▼図6　arp.pcapngのインターフェース概要・ブロック（1）
第2オプションコード／
オプション長・フィールド
第2オプション値・フィールド

第3オプション値・フィールド

パディング
第4オプションコード／
オプション長・フィールド

第3オプションコード／
オプション長・フィールド

第4オプション値・フィールド

オプション終端コード・フィールド
ブロック全長・フィールド

 ▼図7　arp.pcapngのインターフェース概要・ブロック（2）

94 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

●	キャプチャリミット・フィールドの解析
　キャプチャリミット・フィールドは0x00

040000ですので、キャプチャするパケットの
最大長は262,144バイトということがわかりま
す。

●	第1オプション部分の解析
　第1オプションコード・フィールドが0x0002で
すので、表4からif_nameということがわかります。
　第1オプション長・フィールドが0x0032ですので、
この後のオプション値の長さは50バイトというこ
とがわかります。
　第1オプション値・フィールドには、キャプチャ
に使用したインターフェースの名前として
「 ¥Device¥NPF_{BC879668-80CC-4E84-

AD7A-F260F5111ADF}」が記録されています。
バイトオーダーはビッグエンディアンです。

●	第2オプション部分の解析
　第2オプションコード・フィールドが0x0009で
すので、表4からif_tsresolということがわかります。
　第2オプション長・フィールドが0x0001ですの
で、この後のオプション値の長さは1バイトとい
うことがわかります。
　第2オプション値・フィールドには、タイムス
タンプの分解能として6つまり106が記録されて
います。

●	第3オプション部分の解析
　第 3オプションコード・フィールドが 0x

000Bですので、表4から if_filterということ
がわかります。
　第3オプション長・フィールドが0x0017で
すので、この後のオプション値の長さは23バ
イトということがわかります。

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース統計情報
［可変長］

ブロックタイプ（0x00000006）［4バイト］

ブロック全長［4バイト］

インターフェースID［4バイト］

※タイムスタンプ（上位部分）［4バイト］

※タイムスタンプ（下位部分）［4バイト］

※キャプチャしたパケットの長さ［4バイト］

※キャプチャしたパケットの元の長さ［4バイト］

オプションコード［2バイト］ オプション長［2バイト］

オプション値［可変長］ パディング［可変長］

※パケットデータ［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

…
…

…

 ▼図8　拡張パケット・ブロックの構造

オプションコード オプション名 説明
0x0002 if_name キャプチャに使用したインターフェースの名前がUTF-8で記録される
0x0009 if_tsresol タイムスタンプの分解能が記録される。デフォルトの値は「6」で106 を表す
0x000b if_filter このインターフェースに設定されたキャプチャフィルタが記録される（先頭

に0x00が追加される）
0x000c if_os このインターフェースがインストールされたOSの名前がUTF-8で記録される

 ▼表4　インターフェース概要・ブロックの代表的なオプションコード

94 - Software Design Jan. 2015 - 95

pcapとpcap-ngのファイル形式の違いを知ろう！ 最終回

　第3オプション値・フィールドには、このイ
ンターフェースに設定されたキャプチャフィル
タとして「arp and host 192.0.2.2」が記録されて
います。バイトオーダーはビッグエンディアン
です。

●	第4オプション部分の解析
　第 4オプションコード・フィールドが 0x

000Cですので、表4から if_osということがわ
かります。
　第4オプション長・フィールドが0x001Cで
すので、この後のオプション値の長さは28バ
イトということがわかります。
　第4オプション値・フィールドには、このイ
ンターフェースがインストールされたOSの名
前として「32-bit Windows 7, build 7600」が記
録されています。バイトオーダーはビッグエン
ディアンです。

●	オプション部分の終端
　オプションコード・フィールドとオプション
長・フィールドが両方とも0x0000ですので、
ここがオプション部分の終端になります。

●	インターフェース概要・ブロックの終端
　このブロックの最後の4バイトがブロック全
長・フィールドの値と同じ0x00000094ですの
で、ここがインターフェース概要・ブロックの
終端になります。

　インターフェース概要・ブロックの次の4バ
イトが0x00000006ですので、表1から拡張パ
ケット・ブロックということがわかります。
　図8を参照しながらフィールドに分けると図
9になります。

●	ブロック全長・フィールドの解析
　ブロック全長・フィールドは0x0000004Cです
ので、拡張パケット・ブロックの全長は76バイト
ということがわかります。

●	インターフェースID・フィールドの解析
　インターフェース ID・フィールドは 0x

00000000ですので、最初のインターフェース
概要・ブロックにある if_nameに記録されたイ
ンターフェースを指しています。

●	タイムスタンプ・フィールドの解析
　タイムスタンプ・フィールドは上位部分の
0x00050274と下位部分の0x2F66EA15を結合
して10進数に変換すると1,410,072,918,288,917

ですので、あとはインターフェース概要・ブロッ
クにあるタイムスタンプの分解能（if_tsresol）
で割るとUNIX時間は1410072918.288917秒
になります。

●キャプチャしたパケットの長さ・	
 フィールドの解析
　キャプチャしたパケットの長さ・フィー
ルドは0x0000002Aですので、パケットデー
タ・フィールドの長さは42バイトというこ
とがわかります。

●キャプチャしたパケットのもとの長さ・
フィールドの解析
　キャプチャしたパケットのもとの長さ・
フィールドも0x0000002Aですので、パケッ
トのもともとの長さも42バイトになります。

拡張パケット・ブロックの解析

ブロックタイプ・フィールド
ブロック全長・フィールド
インターフェースID・フィールド
タイムスタンプ（上位部分）・フィールド
タイムスタンプ（下位部分）・フィールド
キャプチャしたパケットの長さ・フィールド
キャプチャしたパケットのもとの長さ・フィールド

パディング
ブロック全長・フィールド

パケットデータ・フィールド

 ▼図9　arp.pcapngの拡張パケット・ブロック

96 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

●	パケットデータ・フィールドの解析
　パケットデータ・フィールドにはキャプチャ
したパケットが記録されています。バイトオー
ダーはビッグエンディアンです。パケット自体
の解析は省略します。

●	拡張パケット・ブロックの終端
　このブロックの最後の4バイトがブロック全
長・フィールドの値と同じ0x0000004Cですの
で、ここが拡張パケット・ブロックの終端にな
ります。

　拡張パケット・ブロックの次の4バイトが
0x00000005ですので、表1からインターフェー
ス統計情報・ブロックということがわかります。
　図10を参照しながらフィールドに分けると
図11と図12になります。

●	ブロック全長・フィールドの解析
　ブロック全長・フィールドは0x0000006Cです
ので、インターフェース統計情報・ブロックの全
長は108バイトということがわかります。

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース統計情報
［可変長］

ブロックタイプ（0x00000005）［4バイト］

ブロック全長［4バイト］

インターフェースID［4バイト］

タイムスタンプ（上位部分）［4バイト］

タイムスタンプ（下位部分）［4バイト］

オプションコード［2バイト］ オプション長［2バイト］

オプション値［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

…
…

…

 ▼図10　インターフェース統計情報・ブロックの構造

ブロックタイプ・フィールド
ブロック全長・フィールド
インターフェースID・フィールド
タイムスタンプ（上位部分）・
フィールド
タイムスタンプ（下位部分）・
フィールド
第1オプションコード／
オプション長・フィールド
第1オプション値・フィールド

 ▼図11　 arp.pcapngのインターフェース統計情報・
ブロック（1）

第2オプションコード／
オプション長・フィールド
第2オプション値・フィールド
第3オプションコード／
オプション長・フィールド
第3オプション値・フィールド
第4オプションコード／
オプション長・フィールド
第4オプション値・フィールド
第5オプションコード／
オプション長・フィールド
第5オプション値・フィールド

オプション終端コード・フィールド
ブロック全長・フィールド

 ▼図12　 arp.pcapngのインターフェース統計情報・
ブロック（2）

インターフェース統計情報・
ブロックの解析

96 - Software Design Jan. 2015 - 97

pcapとpcap-ngのファイル形式の違いを知ろう！ 最終回

●	インターフェースID・フィールドの解析
　インターフェース ID・フィールドは0x0000

0000なので、最初のインターフェース概要・
ブロックにある if_nameに記録されたインター
フェースを指しています。

●	タイムスタンプ・フィールドの解析
　タイムスタンプ・フィールドは上位部分の
0x00050274と下位部分の0x2F70B551を結合
して10進数に変換すると1,410,072,918,930,769

ですので、あとはインターフェース概要・ブロッ
クにあるタイムスタンプの分解能（if_tsresol）
で割るとUNIX時間は1410072918.930769秒
になります。

●	第1オプション部分の解析
　第 1オプションコード・フィールドが 0x

0001ですので、表5からコメントということ
がわかります。
　第1オプション長・フィールドが0x001Cで
すので、この後のオプション値の長さは28バ
イトということがわかります。
　第1オプション値・フィールドには、コメン
トとして「Counters provided by dumpcap」が記
録されています。バイトオーダーはビッグエン
ディアンです。

●	第2オプション部分の解析
　第 2オプションコード・フィールドが 0x

0002ですので、表6から isb_starttimeという
ことがわかります。
　第2オプション長・フィールドが0x0008で
すので、この後のオプション値の長さは8バイ
トということがわかります。
　第2オプション値・フィールドには、キャプ
チャを開始した時刻（UNIX時間）がタイムスタ
ンプと同じフォーマットで記録されています。
0x000502742F16EFA2は、10進数に変換する
と1,410,072,913,047,458となり、タイムスタ
ンプの分解能（if_tsresol）で割るとUNIX時間
は1410072913.047458秒になります。

●	第3オプション部分の解析
　第 3オプションコード・フィールドが 0x

0003ですので、表6から isb_endtimeというこ
とがわかります。
　第3オプション長・フィールドが0x0008で
すので、この後のオプション値の長さは8バイ
トということがわかります。
　第3オプション値・フィールドには、キャプ
チャを終了した時刻（UNIX時間）がタイムスタ
ンプと同じフォーマットで記録されています。
0x000502742F70B551は、10進数に変換する
と1,410,072,918,930,769となり、タイムスタ
ンプの分解能（if_tsresol）で割るとUNIX時間

オプションコード オプション名 説明
0x0000 オプション終端 オプションフィールドの終端を表す
0x0001 コメント ブロックについてのコメントがUTF-8で記録される

 ▼表5　共通のオプションコード

オプションコード オプション名 説明
0x0002 isb_starttime キャプチャを開始した時刻がUNIX時間で記録される。フォーマットは拡張

パケット・ブロックのタイムスタンプと同じ
0x0003 isb_endtime キャプチャを終了した時刻がUNIX時間で記録される。フォーマットは拡張

パケット・ブロックのタイムスタンプと同じ
0x0004 isb_ifrecv キャプチャ開始後にインターフェースが受信したパケットの数が記録される
0x0005 isb_ifdrop キャプチャ開始後にリソース不足でインターフェースがドロップしたパケッ

トの数が記録される

 ▼表6　インターフェース統計情報・ブロックの代表的なオプションコード

98 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

は1410072918.930769秒になります。

●	第4オプション部分の解析
　第 4オプションコード・フィールドが 0x

0004ですので、表6から isb_ifrecvということ
がわかります。
　第4オプション長・フィールドが0x0008で
すので、この後のオプション値の長さは8バイ
トということがわかります。
　第4オプション値・フィールドには、キャプ
チャ開始後にインターフェースが受信したパケッ
トの数として1が記録されています。

●	第5オプション部分の解析
　第5オプションコード・フィールドが0x00

05ですので、表6から isb_ifdropということが
わかります。
　第5オプション長・フィールドが0x0008で
すので、この後のオプション値の長さは8バイ
トということがわかります。
　第5オプション値・フィールドには、キャプ
チャ開始後にリソース不足でインターフェース
がドロップしたパケットの数として0が記録さ
れています。

●	オプション部分の終端
　オプションコード・フィールドとオプション
長・フィールドが両方とも0x0000ですので、
ここがオプション部分の終端になります。

●	インターフェース統計情報・ブロックの終端
　このブロックの最後の4バイトがブロック全
長・フィールドの値と同じ0x0000006Cですの
で、ここがインターフェース統計情報・ブロッ
クの終端になります。

　pcap-ngファイルの解析は以上です。
　本連載第1回から本稿までの解説でわかるよ
うにpcapとpcap-ngのファイル形式は大きく違
うので、記録できる情報も当然違います。違い
をわかりやすくするために、pcap-ngファイル
形式のうちpcapファイル形式でも同様の情報
が記録できるフィールドについては、名前の頭
に「※」を付けてみました（図2、5、8、10）。明
らかに「※」が付いているフィールドが少ないこ
とがわかります。つまり、pcapファイル形式
よりpcap-ngファイル形式のほうが記録できる
情報は多くなります。
　また、pcap-ngファイル形式はオプション部
分にコメントといった任意の情報が記録できる
ため、pcapファイル形式にはない拡張性があ
ります。
　このような違いによって、pcap-ngファイル
形式ならpcapファイル形式だと記録できない
次のような情報を記録できます。

・キャプチャに使用した環境やインターフェー
スについての情報

・パケットをキャプチャしたインターフェース
のID

・ナノ秒単位のタイムスタンプ（現時点はデフォ
ルトでマイクロ秒単位）

　インシデント対応での使用を考えると、pcap

ファイル形式にインターフェース関連の情報を
記録するフィールドがまったくないのは不安で
す。なぜなら「どのインターフェースでキャプ
チャされたパケットなのか」「どのようなキャ
プチャフィルタがインターフェースに設定され
ていたのか」といった情報がまったく残らない
ので、複数インターフェースを搭載したPCの
場合だとpcapファイル形式では情報不足で困
る場合が考えられるからです。pcap-ngファイ
ル形式では上記のほかにもキャプチャに使用し

pcapとpcap-ngのファイル
形式では何が違うのか

98 - Software Design Jan. 2015 - 99

pcapとpcap-ngのファイル形式の違いを知ろう！ 最終回

たアプリケーションの名前や、インターフェー
スごとのパケットのドロップ数なども記録でき
るので、pcapファイル形式より安心です。

　pcap-ngファイルでの保存を考えたときに大
きな問題となるのは、対応ツールの少なさです。
とくにpcap-ngファイルの読み込みはできるの
に保存はできないというツールは今でも多いで
す。よく使われている tcpdumpも比較的新しい
バージョンであればpcap-ngファイルの読み込
みはできますが、保存は現時点でもできません。
今のところpcap-ngファイルで保存するには
Wiresharkか、Wiresharkに同梱されている
tsharkやdumpcapを使うことになります。

　ツールがpcap-ngファイルの読み込みに対応
していない場合は、pcapファイルに変換する
必要があります。一般的な方法としては
Wiresharkに同梱されているeditcapを使いま
す。次のように editcapのオプションに -F
pcapを設定することで、ファイル形式をpcap-

ngからpcapに変換できます。

　また比較的新しいバージョンの tcpdumpでも
変換できます。

　もちろんpcap-ngのファイル形式にしかない
フィールドの情報をpcapのファイル形式に保
存することはできないので、pcap-ngからpcap

にファイル形式を変換すると記録されている情
報が減ることに注意してください。

　筆者が本連載のようなニッチな内容を、なぜ
書くことにしたのか不思議に思うかもしれませ
んが、セミナーなどで講師をしていると、
「ファイル形式のpcapとpcap-ngって何が違う
の？　どっちがお勧め？」
̶̶みたいな質問をされることはけっこうあり
ます。
　同じ質問を知り合いの技術者数人にしたとこ
ろ、
「違いは知らないけど、とりあえずpcap-ngに
しておけば良いんじゃない？」
といった返事ばかりでしたので、これは今も知
らないまま使っている人が多いのかもしれない
と思い、書くことにしました。
　ちなみに上記質問への筆者の回答は、
「ファイル形式が大きく異なっていて、情報を
記録するフィールドの数はpcap-ngのほうが多
いです。またpcapにはなかったオプションを
付けられるので拡張性も高く、どのインター
フェースでキャプチャされたパケットなのか、
どのようなキャプチャフィルタがインターフェー
スに設定されていたのか、といった情報も
pcap-ngなら記録できます。インシデント対応
での使用を考えると、こういった情報が記録で
きるpcap-ngのほうがお勧めです」
̶̶となります。
　今回で「Jamesのセキュリティレッスン」は最
終回になりますが、いかがでしたでしょうか。
バイナリエディタでキャプチャファイルを読む
という少々面倒なやり方でしたが、これで皆さ
んにはpcapとpcap-ngのファイル形式の違いと
いった知識のほかにも、バイナリエディタでキャ
プチャファイルを作成したり修正したりできる
技術が身についたと思います。
　本連載の内容が少しでも皆さんのお役に立て
ば幸いです。ﾟ

おわりに

pcap-ngファイル対応の
ツールが少ない

ファイル形式をpcap-ngから
pcapに変換

editcap -F pcap file.pcapng file.pcap

tcpdump -r file.pcapng -w file.pcap

100 - Software Design

関数という名の
（定 |変）数

　連載第1回目（もちろん0から数えています注1）
の今回は、前回予告どおり関数型言語としての
Swiftを見ていきます。ところで「関数型言語」
とはいったいなんでしょう。実のところあいま
いな用語ではあるのですが、「最低限文化的な
関数型」の関数は第一級オブジェクトであるこ
とに異議のある読者はあまりいらっしゃらない
と思います。「第一級オブジェクトってなんぞや」
おさらいしてみるとこういう感じでしょうか。

・変数に代入できる
・関数の引数にできる
・関数を返す関数が書ける

　JavaScript、Lua、Perl、Python、PHP、
Rubyといった今日日のスクリプト言語はその
意味において「最低限文化的な関数型言語」の定
義を満たしています。一例としてJavaScript

を見てみましょうか。前回のFizzBuzzを普通

に書くとこんな感じでしょうか（リスト1）。
　見てのとおり、fizzbuzzは変数名で、そこ
に関数を代入しています。Swiftではどうでしょ
うか？　こうかな？

var fizzubzz = func(n:Int)->String {
 if n % 15 == 0 { return "FizzBuzz" }
 if n % 5 == 0 { return "Buzz" }
 if n % 3 == 0 { return "Fizz" }
 return String(n)
}

　いいえ、ちょっと違います。正しくはこうです。

var fizzbuzz = { (n:Int)->String in
 if n % 15 == 0 { return "FizzBuzz" }
 if n % 5 == 0 { return "Buzz" }
 if n % 3 == 0 { return "Fizz" }
 return String(n)
}

　あるいはこうです。

var fizzbuzz:(Int)->String = { n in
 if n % 15 == 0 { return "FizzBuzz" }
 if n % 5 == 0 { return "Buzz" }
 if n % 3 == 0 { return "Fizz" }
 return String(n)
}

　まとめるとこう。

・funcは不要
　→{ 引数 in 定義 }という形をしている

・型指定は必要
　→前者は{型定義付き引数 in 定義}
　→後者は変数名:型 = { 引数名 in 定義 }

注1） 前回は、編集担当が習性的に「0回」を「1回」としてしまったのですが（汗、仕切り直して今回から第1回とします。

var fizzbuzz = function(n) {
 if (n % 15 == 0) { return "FizzBuzz"; }
 if (n % 5 == 0) { return "Buzz"; }
 if (n % 3 == 0) { return "Fizz"; }
 return n;
}
for (var i = 1; i <= 100; i++) {
 console.log(fizzbuzz(i))
}

 ▼リスト1　FizzBuzzの例

書いて覚える 入門Swift
関数型プログラミングを試す1第 回

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

100 - Software Design Jan. 2015 - 101

関数型プログラミングを試す1第 回

　変数指定を{}の外ではなく中でやるあたり、
JavaScriptよりむしろRubyっぽいですね。実
はもっとRubyっぽいことをこれから見ていき
ます。FizzBuzzをちょっと変えて、「1から
100に対応した結果を出力」するのではなく、「1

から100まで入った配列をFizzBuzz変換」する
ことを考えてみましょう。JavaScriptではこう
かな（リスト2）。
　ここで、fizzbuzz()を無名化するとこうな
ります。

var a = range(1, 100).map(function(n) {
 if (n % 15 == 0) { return "FizzBuzz"; }
 if (n % 5 == 0) { return "Buzz"; }
 if (n % 3 == 0) { return "Fizz"; }
 return n;
}))

　動くことは動きますが、()の中に入った
functionはなんとも不格好です。Rubyならど
うでしょうか？

a = (1..100).map { |n|
 if n % 15 == 0 then "FizzBuzz"
 elsif n % 5 == 0 then "Buzz"
 elsif n % 3 == 0 then "Fizz"
 else n.to_s
 end
}
p a

　「メソッドの最後の引数がブロックの場合、()

の外に書いてよい」というルールのおかげでず
いぶんとエレガントです。それではSwiftでは?

var a = (1...100).map { n in
 if n % 15 == 0 { return "FizzBuzz" }
 if n % 5 == 0 { return "Buzz" }
 if n % 3 == 0 { return "Fizz" }
 return String(n)
}
println(a)

　見てのとおり、mapの後の無名関数を()でく
くらなくても動きました。無名関数の引数と戻
り値のほうも指定していません。このあたりは、
Swiftの父の1人であるChris Lattnerもホーム

ページで注2「アイデアを拝借した」と率直に答
えているとおりです。
　しかし、Lattnerが言っていない、拝借され
たアイデアがもう1つあります。コードで見て
みましょう（リスト3）。
　なんと、inが消えてしまいました。その代
わりnがあった位置に$0という未宣言の変数が
存在します。この変数のことをプレイスホルダー
（placeholder)変数というのですが、$0が最初
の引数、$1が次の引数といった具合です。これ、
どう見てもPerl 6のアイデアなんですが……。

{}は全部関数！

　ここで今まで見てきたSwiftのコードの{}を
じーっとよく見てみてください。何か見えてき
ませんか ?　ヒントを1つ。ifの後ろの{}は、
Swiftでは省略不可能です。ifの後ろの条件に
は()がないのに……。
　そう。Swiftでは、意味論的（semantically）
には{}は例外なくブロックで、つまり関数な
のです！

注2） http://nondot.org/sabre/

function range(start, end) { // ないので作る
 var ret = [];
 for (var i = start; i <= end; i++) ret.push(i);
 return ret;
}
var a = range(1, 100).map(fizzbuzz)
console.log(a)

 ▼リスト2　JavaScriptの場合

var a = (1...100).map {
 if $0 % 15 == 0 { return "FizzBuzz" }
 if $0 % 5 == 0 { return "Buzz" }
 if $0 % 3 == 0 { return "Fizz" }
 return String($0)
}
println(a)

 ▼リスト3　Rubyのアイデアを拝借

http://nondot.org/sabre/

102 - Software Design

書いて覚える 入門Swift

　本当かどうか、確かめてみま
しょう。どうやって？――if
を再発明して！（リスト4）
　動いてます（図1）。動いちゃっ
てます。IFは関数で、しかも
中に条件分岐がいっさいないの
に。それにしても、関数 IFは
ずいぶん奇妙きてれつな形をし
ています。ちょっと冗長に書き
直してみましょう（リスト5）。
　きてれつではありますが、
筋は通ってるのがおわかりい
ただけたでしょうか。
　Swiftが「筋を通しやすい」の
は、辞書（dictionary）のリテラ
ルに、Perlによって一般化し
JSONによって不朽の地位を得
た{}を使っていないこともあ
ります。Swiftでは辞書リテラ
ルは[key:value]の形式をとる
ので{}が辞書リテラルなのか
ブロックなのかあいまいにな
ることはありません。{}を見
たら例外なくブロック、つま
り関数リテラルだと言い切ってしまってよい
のです。

では funcは
不要かというと……

　ここまで見てきたとおり、Swiftにおける関
数の本質は{}にあり、func(){}という構文糖
衣は無用の長物に思えます。しかしこれが必要
になるケースが2つほど存在します。
　1つは、再帰関数。先ほどの例のfactも再帰
的に定義されています。ここでもう一度「ふつう」
に書き直してみましょう。

func fact(n:Int)->Int {
 return n <= 1 ? 1 : n * fact(n - 1)
}

　これを、こう書き直してみましょう。

let fact:(Int)->Int = { n in
 return n <= 1 ? 1 : n * fact(n - 1)
}

println(fact(10))

func IF(
 PRED:()->Bool, // 引数なしでBoolを返す関数
 THEN:()->(), // 引数なし、戻り値なしの関数
 ELSE:()->() // 引数なし、戻り値なしの関数
) {
 let dict = [// [Bool:()->()] な辞書
 true:THEN, // true には THEN を
 false:ELSE // false には ELSE を紐付け
]
 let which = dict[PRED()] // PRED()の結果で辞書引き
 which!() // それを実行
}

 ▼リスト5　関数 IFの解説

 ▼図1　ifの再発明

func IF(PRED:()->Bool,THEN:()->(),ELSE:()->()) {
 [true:THEN, false:ELSE][PRED()]!()
}

func fact(n:Int)->Int {
 var ret:Int!
 IF({n <= 1},
 { ret = 1 },
 { ret = n * fact(n - 1)}
)
 return ret
}

println(fact(10))

 ▼リスト4　ifの再発明

102 - Software Design Jan. 2015 - 103

関数型プログラミングを試す1第 回

　一見動きそうですが、こんな感じに怒られて
しまいます。

<EXPR>:9:29: error: variable used within its own
initial value
 return n <= 1 ? 1 : n * fact(n - 1)

　これを防ぐためには、先にvar、つまり変数
として宣言だけしておいたうえで、それに定義
を代入しなければなりません。

var fact:(Int)->Int
fact = { n in
 return n <= 1 ? 1 : n * fact(n - 1)
}

　なんとも冗長であるうえに、これではfactを上
書きできてしまいます。残念ながら（？）、Swift

には（"use strict"されていない）JavaScriptの
arguments.callee()やR言語のRecall()相当の、
自己再帰のための構文はありません。素直にfunc
しましょう。どうしてもという方のために、

func recall<T,R>(f:((T->R),T)->R)->T->R {
 var r:(T->R)!
 r = { n in f(r,n) }
 return r
}
let fact = recall { $1 <= 1 ? $1 : $1 * $0($1-1)
}

という手法も一応紹介だけしておきます。何を
意味するかは、次回のお楽しみということで。
　ただし、ここでfuncが必要になる実例がもう1

つ出てきました。総称関数（Generic Functions）
です。総称関数とは何か？　型も「変数」になって
いる関数です。型が変数とはどういうことか？　
これまた実例で見てみましょう。

func add(x:Int, y:Int)->Int { // 0
 return x + y
}
func add(x:String, y:String)->String { // 1
 return x + y
}
println(add(4, 2)) // 6
println(add("4", "2")) // "42"

　まったく同じ名前、まったく同じ定義の関数
が2つあります。違いはなんでしょうか？　そ
うです。型です。Swiftでは「関数のフルネーム」
は名前と引数の型の組み合わせであり、引数の
型に応じて違う関数が呼ばれています。実にあ
りがたい機能ですが、定義が同じなのに型ごと
に別の関数を定義しなければならないとなると
ずいぶん面倒です。もっとDRY注3な方法はな
いでしょうか?

　そこで総称関数です。

func add<T>(x:T, y:T)->T {
 return x + y
}
add(4, 2) // 6
add("4", "2") // 42

　C++のテンプレートやJavaのジェネリクス
に相当するこの機能は、Swiftにもしっかり実
装されています。add(4, 2)では4と2からTは
Intと推論され、結果add(x:Int, y:Int)->Int
がコンパイラーによって生成され、add(4,2)
ではadd(x:String,y:String)->Intが生成され
るというわけです。
　しかし、こう書くことはできません。

let add:<T>(x, y)->T = { x, y in
 return x + y
}

　なぜそう書けないのか。次回はSwiftにおけ
る総称関数を詳しくみていきます。ﾟ

注3） DRY：Don't repeat yourself.『達人プログラマー』アンドリュー・ハント、デビッド・トーマス（著）、ピアソン・エデュケーション
刊（2000年）を参照のこと。

104 - Software Design

Herokuで
アプリを運用する

　前回までで、Herokuのメイン機能につい

ては一通り解説しました。今回は、実際に
Heroku上にデプロイしたアプリをどうやって
運用していくかについて話していきます。
　本連載を今回から見始める人は、Herokuの
Getting Startedページ注1に行き、自分の好きな
言語で最後のNext Stepまでやってみましょう。
　HerokuはPlatformを提供しているベンダで
すので、なるべく利用者がインフラあたりを意
識しなくてもいいように作られています。しか
し、自分のアプリがどうなっているか、うまく
動いているかどうかは自分でしっかりと監視し
ておきたいところですね。

アプリを
スケールする

　Herokuの大きな利点と言ってもいいのが、
スケールがとても簡単なことです。たとえば、
有名なブログやテレビで取り上げられることで、
アクセスの急激な伸びが期待されるとき、その
期間のみdynoをスケールして対応できます。
しかも、Herokuは使った分のみ料金を支払う
ので、思ったよりアクセスが来なかった場合で
も、すぐにスケールダウンすれば非常に安く上

がります。CLIもしくはダッシュボード（図1）
からスケールができます。

heroku ps:scale web=100

　アプリをスケールする際に陥りがちなミスとし
て、データベースなどのアドオンのプランが、ス
ケールしたdyno数に対応していない場合があり
ます。それぞれのアドオンは、コネクション数や
ストレージなどがプランによって異なりますので、
事前にしっかりと負荷テスト（負荷テスト用のア
ドオンもあります注2）をして、スケールアップし
た場合にもアプリが動くことを確認しましょう。

アドオンを使って
監視する

Loggingアドオン

　たいていのLoggingアドオンには通知機能

がついています。この通知機能を使用し、
HipChatやPagerDutyなどの好きなチャネル

に通知を送るようにしましょう。たとえば、
LogEntriesアドオン注3ではデフォルトで、各

注1） URL https://devcenter.heroku.com/start

注2） Loader.io URL https://addons.heroku.com/loaderio

注3） URL https://addons.heroku.com/logentries

 ▼図1　dynoを100にスケールする

サポートエンジニアのクラウドワークスタイル

今回は、Herokuにデプロイしたアプリを運用するうえで頼りになるTipsを紹介します。
スケールの方法、監視に便利なアドオン、エラーの対処方法など実践的な内容でお送
りします。「サンフランシスコだより」では、前回に引き続きサンフランシスコでのイベ
ント事情をお届けします。

第 5回

Heroku　織田 敬子（おだ けいこ）

用心棒とともに
Herokuでアプリ運用！

https://devcenter.heroku.com/start
https://addons.heroku.com/loaderio
https://addons.heroku.com/logentries

104 - Software Design Jan. 2015 - 105

種Herokuエラーについての通知が有効になっ
ています。頻度によってどう通知するのかなど
を変更できるので、非常に強力です（図2）。

Libratoアドオン

　リクエスト数の推移や平均レスポンス数などは、
Webアプリを管理しているなら、必ず監視してお
きたいメトリクスです。Librato注4はそれだけで
非常に強力なモニタリングツールでHeroku内部
でも多用されていますが、Herokuアドオンで使
うとデフォルトでHerokuのログを読んで、さま
ざまなメトリクスを表示してくれてさらに便利です。
たとえば、Heroku Runtime Metrics（図3）ダッシュ
ボードではそれぞれのdynoの load averageや
memory usageを見ることができます。これには
Heroku Labsの log-runtime-metrics注5を追加す
る必要があるので注意してください。また、
Libratoを使っても各種通知ができます。

Heroku dashboardを
使って監視する

　Herokuの新しいDashboardでは、2個以上の
dynoを走らせているアプリにおいて、「Metrics」
という名前のタブが利用できます（図4）。この
Metricsタブもアドオンに負けず劣らず良い出
来となっており、アプリが今どんな状態で動い
ているのかを確認できます。
　各種エラー、レスポンスタイム、スループット、

CPU/Memory使用量と、最低限カバーすべき
ところはカバーされています。このMetricsも
非常に有用なのですが、データが24時間前ま
でしか遡

さかのぼ

れないなどの制約もあるので、やはり
アドオンと組み合わせて使うのが良いでしょう。
　このようにいろいろな手法で監視をすること
により、適切なタイミングでスケーリングやト
ラブルシュートができるようになります。

Heroku
エラーコード

　Herokuでアプリを運用していると、Heroku

注4） URL https://addons.heroku.com/librato

注5） URL https://devcenter.heroku.com/articles/log-runtime-metrics

 ▼図2　LogEntriesのアラート設定画面 ▼図3　LibratoのHeroku Runtime Metrics画面

 ▼図4　Heroku dashboardのMetricsタブ

Herokuでアプリ運用！ 第 5 回用心棒とともに

https://addons.heroku.com/librato
https://devcenter.heroku.com/articles/log-runtime-metrics

サポートエンジニアのクラウドワークスタイル

106 - Software Design

独自のエラーコード・メッセージを見る機会が
あると思います。各エラーコードについての詳
細はDev Centerのページ注6を参照してくださ
い。ここでは、よく見るエラーコードを2つ取
り上げて解説したいと思います。

H12 - Request timeout

　「H12」は、Herokuのルータがdynoからタイ
ムアウト値である30秒を超えてもレスポンス
を受け取らなかった場合に発生します。「H12」
が発生すると、クライアント側ではHerokuの
エラーページ（もしくは指定されたエラーペー
ジ）が表示されますが、サーバ／dyno側では処
理がそのまま続けられます。もし慢性的に時間
のかかるリクエストがある場合、これに続くリ
クエストもこのリクエストを待ち続けることに
なるので、レスポンスタイムが雪だるま式に増
え続け、アプリがダウンする恐れがあります。
「H12」の対策としては、

・時間のかかるリクエストがないかどうか、ア
プリをチェックすること（New Relicアドオ
ンが役立ちます）

・アプリケーションサーバのworker数（プロセ
ス数）を増やしてリクエストを同時に捌ける
ようにすること

・アプリケーション側注7もしくはアプリケーショ
ンサーバ側注8でタイムアウトを設けて、時
間がかかり過ぎているリクエストをkillして
しまうこと

などが挙げられます。Dev Centerにも「H12」
に関する記事注9があるので、今現在時間のか
かるリクエストがなくとも一度目を通してみる
ことをお勧めします。

R14 - Memory quota exceeded

　Herokuではdynoのサイズによりメモリの上
限が変わります。この決められたメモリの上限
を超えて使用すると、「R14」というエラーがロ
グに吐き出されます。「R14」が発生している場
合はメモリがスワップしている可能性が高く、
これはアプリケーションのパフォーマンスに大
きく影響してきます。「R14」の対策としては、

・dynoのサイズを変更すること
・アプリサーバのworker/thread数を調整する

こと
・アプリでメモリリークがないかを確認すること

が挙げられます。Heroku上ではメモリまわり
のデバッグがローカルに比べて難しいので、ロー
カル環境でも再現可能かチェックしてデバッグ
していくのもいいでしょう。Javaアプリに関
してはDev Centerの記事注10にメモリまわりの
トラブルシュートが載っています。

サンフランシスコ
だより

　なんと！　ここでしつこくオフィスに遊びに
来てねと言っていた甲斐があり、本連載を見て
Herokuに遊びに来てくれた方がいらっしゃいま
した。ありがとうございます。懲りずに言いま
すが、筆者はいつでもwelcomeですのでTwitter

やFacebookなどでpingいただければ対応します。
　日本では冬に向かって寒さも増していると思
いますが、サンフランシスコは年中あまり気温
が変わらないので、夜に自転車に乗っていると
寒いなぁと思うことはありながらも、冬本番と
いう感じではありません。今回はサンフランシ

注6） URL https://devcenter.heroku.com/articles/error-codes

注7） URL https://github.com/heroku/rack-timeout

注8） URL http://unicorn.bogomips.org/Unicorn/Configurator.html#method-i-timeout

注9） URL https://devcenter.heroku.com/articles/request-timeout

注10） URL https://devcenter.heroku.com/articles/java-memory-issues

https://devcenter.heroku.com/articles/error-codes
https://github.com/heroku/rack-timeout
http://unicorn.bogomips.org/Unicorn/Configurator.html#method-i-timeout
https://devcenter.heroku.com/articles/request-timeout
https://devcenter.heroku.com/articles/java-memory-issues

106 - Software Design Jan. 2015 - 107

スコの市民性を交えながら2つのイベントにつ
いて話したいと思います。

サンフランシスコジャイアンツの優勝

　サンフランシスコには陽気な人が多いのです
が、それも筆者がサンフランシスコを好きな理
由の1つです。今年はサンフランシスコジャイ
アンツがワールドシリーズで優勝したため、本
当にお祭り騒ぎで、もうみんなクラクションを
鳴らしながら車を運転、道端では誰も彼もがハ
イタッチ状態でした。筆者の住んでいるミッショ
ンという地区はとくにこういったときに荒れが
ちで（東京で言えば渋谷スクランブル交差点を
イメージしてもらえれば）、2年前に優勝した
ときなどはテンションが上がり過ぎて暴徒と化
したファンたちが市バスを燃やすほどでした。
今年もミッションストリートが歩行者天国状態
となり、たくさんの人が優勝を祝っていました。
　後日優勝パレードが盛大に行われ、筆者はちょ
うど優勝パレードの前日に「DMV」と呼ばれる
アメリカの運転免許センターに行っていたので
すが、職員の方が「明日なんて誰も来ないわ

よ、あー明日なんか急病になって休んじゃいそ
う」と言っていたのが印象的でした。陽気です
よね。パレードは金曜に行われましたが
Herokuでも、とくにジャイアンツファンの社
員はパレードを見に行っていました。
　こんなノリのいい人が多く、エネルギーが溢
れるサンフランシスコですが、土地勘のない人
はこのようなイベントはとくに気を付けてほし
いところです。みんなが浮かれているからこそ
犯罪もまた起きやすく、その日は爆竹の音か銃
声かもわからないような音が夜遅くまで鳴り響
き（発砲も実際に何件かありました）、家の近く
には病院もあるのですが救急車の音も普段より
多く聞こえました。サンフランシスコ在住の友
人のSNSでは、暴徒化したジャイアンツファ
ンに向けて「私たちのサンフランシスコをいじ
めないで」といった書き込みも多数見られました。

ハロウィン

　日本でもハロウィンは年々盛り上がりを見せ
ていて、今年も大盛り上がりだったようですね。
サンフランシスコでも、ハロウィンは楽しむべ
きイベントの1つとなっていて、Herokuでも
ハロウィンパーティーをしました。Herokuだ
けではなくほかの会社でもこういったハロウィ
ンパーティーというのは行われていて、従業員
の子供なども交えてパーティーを行っています。
筆者のルームメートも気合たっぷりで素敵なコ
スチュームを着ていました（写真）。
　ちなみに日本ではあまり子供がトリック・オ
ア・トリートと言って家を回ることは（筆者が
知る限りでは）しないと思うのですが、スティー
ブ・ジョブズの家にトリック・オア・トリート
をしに行くとなかなか豪華なお菓子がもらえた
らしいです。あのあたりにはそれこそ億万長者
がたくさん住んでいるので、筆者も一度は小さ
くなってトリック・オア・トリートをしに行っ
てみたいものです。ﾟ

 ▼写真　ハロウィンパーティー

Herokuでアプリ運用！ 第 5 回用心棒とともに

108 - Software Design

　 NTTデータ 基盤システム事業本部　茶納 佑季（ちゃのう ゆうき）　chanouy@nttdata.co.jp

　今年SI企業に入社した新人SEの藤井君は、社内
の「勤怠管理システム」の運用を上司から任されまし
た。そのシステムを運用するためのシェルスクリプ
トを夜間の不在時にも実行できるよう、cronでのス
ケジュール実行について学びました。そんな折、勤
怠情報が転送されていないというトラブルに見まわ
れ、何とか解決したものの、現在のシェルスクリプ
トとcronによる運用に限界を感じ始めたのでした。

上司「勤怠管理システムのトラブル、どうやら解決

したみたいだな」

藤井「はい……今回は何とか解決しましたが、やっ

ぱり今の状況だとトラブルが起こったとき、

cronの設定を変更したり、いろいろなログを

参照したりしなければならないので、問題の解

析は本当にたいへんですね。しかも依頼のあっ

たWindows Serverと連携するほうはまだ解

決案がなくて……」

上司「そうだな。この先、こんな運用を続けていっ

ても、スケジュールを急遽変更したり、実行結

果をすぐに確認したりするなんて、とてもじゃ

ないが対応できないからな。今動いているシス

テムのしくみや課題もわかったところだし、そ

ろそろ前に言ってたツールを試してみるか？」

藤井「ついにHinemosを使えるんですね！　さっそ

く調べてみます！」

藤井「よし、今の課題を整理して、Hinemosでちゃ

んと課題を解決できるのか調べよう」

藤井「今の課題は大きく2つ。『実行結果はログで確

認しているので、すべてを把握するためには複

数のログを見る必要があること』と『Windows

Serverと連携する必要があること』だな」

藤井「まず1つめはHinemosクライアントっていう

アプリケーションから各処理の実行結果を確認

できるみたいだからクリアかな。2つめはLinux

第4回 Hinemosで構築するジョブシステム！

　cronによる運用自動化の反省をふまえ、いよいよ「Hinemos」を使い始めた藤井君。Hinemosの
基本を学びながら、ジョブの作成、LinuxとWindows Serverが混じった環境でのジョブの実行に
挑戦します。　　　　　　　　　　　　　　　　　　　　　　　　　　　　　イラスト（高野涼香）

前回までのあらすじ

Hinemosってなんだっけ？

藤井君の先輩社員。
華麗に仕事をこなし
定時に颯爽と帰って
いく優秀な女性。

今年SI企業に入社し
た新人SE。運用自
動化のために日々奮
闘中。

軽いノリで仕事を
依頼してくるが、藤
井君の成長を考え
ている。

定時先輩上 司藤 井

Hinemos とは

108 - Software Design Jan. 2015 - 109

第4回　Hinemos で構築するジョブシステム！

に対する処理もWindows Serverに対する処

理も実行できるみたいだし、Hinemosポータル

サイトには『サーバを跨がる一連の処理をジョ

ブネットとして実行』できるって書いてあるか

らクリアできそうだ！」

　さて、Hinemosについておさらいをしましょう。
　Hinemosはオープンソースの統合運用管理ツール
です。今、藤井君が目指している運用業務の自動化
を実現できるもので、システム運行に必要な処理
（＝ジョブ）の自動化や監視の効率化を行えます。
Hinemosでは物理環境に加え、仮想化・クラウド環境
が混在するマルチクラウド環境も単一の操作画面で
管理できます。
　Hinemosは3つのコンポーネントから構成されて
います（図1）。

・運用管理サーバ（Hinemosマネージャ）

　Hinemosの運用管理機能を提供するサーバ。

Hinemosマネージャをインストールし、ジョブ定

義などの各種設定内容を保持したり、実行を指示

したりする。また、その結果をHinemos内部の

データベース（PostgreSQL）に蓄積する

・運用管理端末（Hinemosクライアント）

　運用管理者やオペレータが操作するコンソール端

末。Hinemosクライアントをインストールし、そ

の画面から設定を投入したり、ジョブの実行結果

を確認したりできる

・管理対象（Hinemosエージェント）

　管理対象となる機器。Hinemosエージェントを導

入し、ジョブを実行。なお、監視機能だけを用い

る場合は、大半の監視機能がOS標準のパッケー

ジを利用するためHinemosエージェントを導入し

なくても使用できる

藤井「ふーん。3つのコンポーネントを導入するだけ

でいいのか。よーしHinemosでジョブ管理の

自動化に取り組むぞー！」

定時「おーい、藤井くーん。ついにHinemosを導入

するんですって？」

藤井「あ、定時先輩！　そうなんです。ついに

Hinemosでジョブ管理システムを構築するん

です（キリッ」

定時「（ジョブ管理システム……？）あぁ、ジョブ管

理を自動化するのね。Hinemosのインストール

は簡単で、5分で入れちゃう人もいるみたいね」

藤井「え？　そうなんですか！？」

Hinemosで構築！
ジョブ管理システム！

▼図1　Hinemosの3つのコンポーネント

運用管理端末
（Hinemosクライアント）

運用管理サーバ
（Hinemosマネージャ）

管理対象
（Hinemosエージェント）

設定追加・変更

結果の表示

稼働監視
ジョブ実行指示

ログ・トラップ送信管理DB

110 - Software Design

くれるの注2」

藤井「この機能で簡単に入力できますね！　ところ

で、このリポジトリに登録したノードに

Hinemosエージェントがちゃんと入っている

かどうかってわからないんですか？」

定時「リポジトリパースペクティブの、エージェン

トビューで確認できるわよ」

藤井「あ、本当だ。登録したノードの最終接続時刻

が表示されてる」

定時「Hinemosエージェントを監視するっていう方

法もあるけど、それはまた今度ね」

定時「Hinemosのインストールから、管理対象の登

録、疎通の確認までできたわね」

藤井「はい！　これでHinemosでジョブを管理する

ための準備が整いました！」

　ジョブ管理ツールでは、ジョブの定義や実行はも
ちろん、複数ジョブ間の先行・後続といった流れの
制御やスケジュールに則ったジョブの制御が行えま
す。Hinemosのジョブ機能では、ジョブはジョブユ
ニットという大きなフィールド上に定義します。ま
た、ジョブを実行する方法として、「手動による実
行」「スケジュールによる定期実行」「ファイルの生成
などを検知しての実行」「監視機能と連動した実行」
を行えます。制御についても図2のように多種多様
なジョブの実行条件の制御をすることができます。

藤井「まずはジョブを定義してみます！」

定時「そうね。まずは、ジョブを1つ作成して、手動

実行してみましょう」

　HinemosのジョブやジョブネットはP.111のコラ

注2） Linux環境の場合はsnmpd、Windows環境の場合はSNMP
Serviceが起動している必要があります。ノードの作成など、
各種機能に関する詳細はSourceForge.JPからダウンロードで
きるユーザマニュアル（user.pdf）をご覧ください。

定時「ええ、この前Hinemosが出展されているイベ

ントで見たわ」

　まずはSourceForge.JPのHinemosプロジェクト注1

から必要な資材をダウンロードしましょう。インス
トーラと同じくSourceForgeからダウンロードでき
るインストールマニュアル（install.pdf）に従い、
Hinemosマネージャ、Hinemosエージェント、Hinemos

クライアントをインストールします。

①Hinemosマネージャを運用管理サーバにインス

トール

②Hinemosエージェントを管理対象機器にインス

トール

③Hinemosクライアントを運用管理端末にインス

トール

藤井「ほとんど、『yes』って入力したり『次へ』を選択

したりするだけで入っちゃった！　あとはそれ

ぞれを起動してっと。よし、起動したぞ」

定時「次はHinemosクライアントからHinemosマ

ネージャに接続して、管理対象をHinemosに

登録してみましょう。Hinemosでは、管理対象

を登録するデータベースをリポジトリと呼んで

いるわ」

藤井「はい。ん、管理対象の登録もこのピンク色の

ところにIPアドレスと必要な情報を打ち込むだ

けでいいのか」

定時「ピンク色のところが必須入力項目ね。それと、

管理対象のことをHinemosではノードと言う

わ。あと、Hinemosには『Find By SNMP』っ

ていう機能があってね、リポジトリのノードの

作成・変更ダイアログにIPアドレスを入力して

Findボタンを押すと、ユーザが任意に入力する

必要のある、ファシリティID（管理対象を識別

するためのID）とファシリティ名（管理対象を識

別するための名前）以外は、自動的に設定して

注1） URL http://sourceforge.jp/projects/hinemos/または、
Hinemosポータルサイト URL http://www.hinemos.info/か
らもリンクされています。

Hinemos インストール

Hinemosで
ジョブを動かそう！

ジョブの定義

Hinemos のジョブ機能

http://sourceforge.jp/projects/hinemos/
http://www.hinemos.info/

110 - Software Design Jan. 2015 - 111

第4回　Hinemos で構築するジョブシステム！

ユニットの作成ボタンを押します。ジョブユニット
のジョブID、ジョブ名を設定し、OKボタンを押すこ
とでジョブユニットが作成されます。
　続いて、ジョブを作成します。ジョブユニットを
選択してジョブの作成ボタンを押します。ジョブユ

ムにあるとおりジョブユニットの要素として定義さ
れます。そのため、ジョブ、ジョブネットを作成す
るためには、ジョブユニットを作成する必要があり
ます。ジョブパースペクティブを開き、左側のジョ
ブツリー上で、最上位のジョブを選択して、ジョブ

Hinemosのジョブの基礎

　Hinemosのジョブは大きく、ジョブユニット・

ジョブネット・ジョブから構成されています。

・ジョブユニット
ジョブ階層の最上位要素。すべてのジョブネット

とジョブは、このジョブユニットの要素として設

定する。このため、ジョブを登録する際には、ま

ずジョブユニットを作成する必要がある

・ジョブ

Hinemosジョブ管理における最小の実行単位。管

理対象ノード上で実際に起動するコマンド（シェ

ルスクリプトなど）に相当する。待ち条件には、

時刻と、同階層にあるジョブネットもしくはジョ

ブの終了を条件にできる

・ジョブネット
複数のジョブをひとまとめにして扱うことのでき

る要素。図3のようにジョブネットの中にジョブ

ネットを作ることもできる。よって、ジョブネッ

トはジョブネットとジョブから構成され、複数の

ジョブネットとジョブを登録できる。待ち条件に

は、時刻と、同階層にあるジョブネットもしくは

ジョブの終了を条件にできる

　ジョブユニットやジョブネットを実行すると、そ

のジョブユニットやジョブネットに登録された下位

階層のジョブ（もしくはジョブネット）が実行されま

す。下位階層のすべてのジョブ（もしくはジョブネッ

ト）の実行が終了することがジョブユニットやジョ

ブネットの終了条件となります。

　Hinemosのジョブユニット・ジョブネット・ジョ

ブは、それぞれ終了値と終了状態を持っています。

　終了値は、終了状態によって決定され、どの終了

状態のときに、どの終了値とするのかを設定できま

す。終了値はジョブネットとジョブユニットの終了

状態を決定するために使われるほか、待ち条件にも

使われます。

　終了状態には正常、警告、異常の3つの状態があ

ります。終了状態の決まり方は、ジョブとジョブ

ネット（もしくはジョブユニット）で異なります。

　ジョブの場合、終了状態はジョブ実行時に実行さ

れるコマンドのリターンコードの範囲で決定します

（たとえば、リターンコードが0の場合は「正常」。リ

ターンコードが1～9の場合は「警告」。それ以外は

「異常」のように設定できます）。

　ジョブネットの場合は、そのジョブネットの実行

時に実行されるすべてのジョブ（もしくはジョブネッ

ト）の中で、後続ジョブを持たないジョブ（もしくは

ジョブネット）の終了値の範囲で決定します。

　この終了状態は待ち条件に使えるほか、監視機能

またはメールにて結果を通知できます。

ジョブユニット・ジョブネット・ジョブ 終了状態・終了値

▼図3　ジョブユニットの構成

ジョブ

ジョブ

ジョブネット
ジョブネット

ジョブユニット

ジョブネット

112 - Software Design

を押してジョブを登録してみて」

藤井「さっそく実行してみます！」

定時「ええ。test.logはエージェント側のターミナル

で表示させておきましょうね」

藤井「はい。ええっと、ジョブを実行するためには、

実行したいジョブを選択して、実行ボタンを押

すっと」

tail -f /tmp/test.log
ジョブ1:2014年 12月 18日木曜日 12:31:22 JST

藤井「しっかり動きました！」

定時「やったわね。Hinemosクライアントからも確

認してみて」

藤井「はい！　ジョブ[履歴]ビューを見てみると

……しっかり動いた記録が残っています！　正

常に終了していることもわかります！（図5）」

藤井「簡単に実行できました。確認も簡単です」

定時「よかったわね。次は、この前トラブルのあっ

た処理の連携を試してみましょう。まずは1つ

ニットのジョブID、ジョブ名を設定し、コマンドタ
ブで、スコープの欄に処理の実行先、起動コマンド
に実行するコマンドを入力します（図4）。
定時「起動コマンドには、動かしたいスクリプトや

コマンドを入力するんだけど、今回は、日付を

test.logに出してみましょうか」

藤井「わかりました」

定時「OKボタンを押して確定させたら、登録ボタン

▼図2　Hinemosのジョブ機能の制御

▼図4　ジョブの作成

挑戦！
処理の連携

ジョブを動かそう！

112 - Software Design Jan. 2015 - 113

第4回　Hinemos で構築するジョブシステム！

のサーバで処理を連続して実行させるために図

6のようなジョブを組んでみて」

藤井「わかりました。まずはジョブを編集するため

に、ジョブユニットを編集モードにするんです

ね」

定時「ええ。今回はすべてHinemosクライアント上

で確認するために、標準出力で出してみて。

ジョブ1〜3の内容はほとんど同じでいいから

『ジョブのコピー』をすると楽よ」

藤井「はい！　ジョブ１を右クリックして『コピー』、

ジョブユニットの上で貼り付けっと。……ジョ

ブID、ジョブ名、コマンドを変えてジョブ2、

ジョブ3を作りました」

定時「それじゃ、待ち条件を設定しましょう。ジョ

ブ2を開いて、待ち条件を追加してみて（図7）」

藤井「できました。同じようにジョブ3にも設定しま

した」

定時「ジョブを登録して、ジョブユニットを実際に

動かしてみましょう」

藤井「実行できました！　すべて正常に終了して、

標準入力も表示されています（図8）」

定時「[ノード詳細]ビューにもメッセージとして標

準出力が出ているわね」

藤井「処理を順番に実行するためには待ち条件を考

えればいいんですね。ジョブの流れがわかる図

があるとよくわかります」

定時「そうね。今のは簡単な例だけど、複雑になっ

ていった場合は、マップで示すことが多いし、

わかりやすいわ。Hinemosでは、Hinemosジョ

ブマップオプションを導入することで、マップ

で操作・確認できるわよ」

▼図7　待ち条件の指定

▼図8ジョブの実行結果　

▼図5　ジョブ [履歴]ビュー

　　　　　　 ジョブ 1
対象：Agent_A
コマンド：echo "ジョブ 1を実行しました"

　　　　　　 ジョブ 2
対象：Agent_A
コマンド：echo "ジョブ 2を実行しました"

　　　　　　 ジョブ 3
対象：Agent_A
コマンド：echo "ジョブ 3を実行しました"

▼図6　ジョブの例

メッセージに表示されました

挑戦！
サーバを跨るジョブ実行

114 - Software Design

元管理を実現できます。また、ジョブ
も「スコープ（どこ）」で「実行するコマン
ド（何をする）」を意識すれば簡単に設定
できます。次回からもHinemosのジョ
ブの便利な使い方でさらなる時短を目
指していきましょう！

上司「藤井君、今日は順調そうだね」

藤井「はい！　Hinemosの導入にも、

　　設定にも全然時間がかからなかっ

　　たので今日は定時で帰れそうです」

上司「それはいいね。今までcronで動かしていたけ

ど、それらをHinemosで実現するための残り

項目は何だい？」

藤井「定時実行のためのスケジュールの設定ですね。

それはこれからやるつもりです！」

上司「おお、仕事のスケジュールも立てられるよう

になって何よりだ。移行にむけた事前調査、頑

張ってくれよ。はっはっはー」

　今回、Hinemosによるジョブの手動実行と簡単な制
御を学びました。
　次回は今までcronで実現していた定時実行を、
Hinemosの機能を使って実現し、ジョブの自動化を
さらに進めるようです。次回「便利な機能で運用を
自動化しよう」｢

To Be Continued...

藤井「いいなぁ、使ってみたいなぁ」

定時「そうねぇ……考えておいてあげる。ともかく、

次はジョブ2をAgent_Bで実行するように変

更してみましょう。Agent_BはWindows

Serverだからコマンドプロンプトで実行する

ようにコマンドを書くのよ」

藤井「わかりました。当然ですけど、対象のOSが変

わったら、それに合うように書き換える必要が

ありますね」

定時「えぇ、ちゃんと意識しておきましょうね。

さぁ実行してみましょう」

藤井「実行できました！　これならサーバが複数あ

る環境でWindowsとLinuxが混ざっていても

ジョブの実行が簡単にできます！」

定時「[ジョブ詳細]ビューにも、どのノードでどの

ジョブが実行されたかがわかるようになってい

るから、次からはジョブの結果はHinemosク

ライアントから確認すればOKよ（図9）」

　前回までは各スクリプトの結果の確認はいろいろ
なログに出力させ、確認していました。これからは
Hinemosを導入したことで、Hinemosクライアントに
出力される実行結果を確認するだけでよくなり、一

今月の時短ポイント

次回予告

▼図9　各ビューの連携

$ CMD /C echo ジョブ2を実行しました

115 - Software Design Jan. 2015 - 115

最終回　エンジニアに求められる技術の変化

エンジニアに必須の
スキルとは何か？

　本連載の前半では、今までコンシューマ向け
だと思われていた製品やサービスを積極的に活
用することで、閉塞的だった情報システムを民
主化しようという筆者たちの取り組みを「社内
LAN撲滅運動」などの具体的な取り組みととも
に紹介しました。最終回では、これまでの流れ
から、エンジニアに求められるスキルがどのよ
うに変化するのか、筆者の考えを示します。

その1「T字型の知識」

　本誌2014年12月号で「アンケートシステム
を作ろう」というニーズに対して「Survey

Monkey注1を提案する」という例を示しましたが、
細部を知っているかどうかはとにかく、エンジ
ニアにとって幅広いサービスと技術を薄く広く
知っていることが、とりわけ重要になります。
　本稿でも再三述べているように「作ることが
最悪の選択」になりつつある現在、「作る」とい
う選択肢は「世の中に同じようなものが存在し
ない」か「作ることによって競争優位を確立でき
る」か、いずれかの場合だけ選ばれることにな
るでしょう。そうなると、「世の中に存在する

注1） https://jp.surveymonkey.com/

のか否か」を知っているかどうかは、適切な設
計・実装になるかどうかのキーファクターにな
るわけです。
　「大量にメールを配信してその開封率をチェッ
クしたい」と言われたときに、スゴ腕プログラ
マがゴリゴリ組んだ 1万行のコードより、
SendGrid注2を筆者は信用します。
　ただし、薄く広くという横軸の知識だけでは、
技術者として仕事をしていくことは難しいと思
います。横軸の知識はあくまで「インデックス」
です。そうしたインデックスが必要とされるの
は設計フェーズ、もしくはIT戦略立案のフェー
ズが中心です。エンジニアとしての成功には、
やはり縦軸、つまり「深掘り」された知識が絶対
に欠かせません。
　これまでのエンジニアは「I字型」の知識、つ
まりプログラマならJavaだけ、とか、インフ
ラエンジニアならインフラだけ、といった知識
のストラクチャが中心でした（図1）。これはイ
ンフラとアプリケーションがきれいなブロック
型のアーキテクチャになっていて、インフラと
アプリケーションの連携が限定的であったこと
が原因です。
　ところが、クラウドの世界ではインフラがコー
ドでコントロールできるようになったり、サー
ビスによってはインフラそのものが隠蔽されて

注2） https://sendgrid.kke.co.jp/

情 報システムとエンジニアの 未 来

クラウドの登場によって、情報システムのあり方、そしてエンジニアのキャリアそのものが大きく変わろうとして
います。本連載では、クラウドの登場とそれによって情報システムがどのように変わろうとしているのか、そして
エンジニアのキャリアがそれによってどのように変わろうとしているのか――すでに起こりつつある変化を読み取
ります。皆さんが自分のキャリアを考えるための材料を提供します。

 Writer ㈱サーバーワークス　代表取締役　大石 良（おおいし りょう）／ http://blog.serverworks.co.jp/ceo/

最終回　エンジニアに求められる技術の変化

http://blog.serverworks.co.jp/ceo/
https://jp.surveymonkey.com/
https://sendgrid.kke.co.jp/

116 - Software Design

いたりします。そうなると、インフラとコード
の相互作用を理解することが重要になってきます。
　Apacheの設定をなんとなく知っているだけ
のなんちゃってサーバエンジニアは、Amazon

S3とCloudFrontの組み合わせの前にやること
はありません。
　スクリプト言語でちょろっとバッチ処理が書
けますというなんちゃってプログラマは、
AWS Lambdaを前にして何が起きているのか
理解することすら難しいかもしれません。
　クラウドサービスが進化するにつれ、サービ
スそのものがインフラやアプリケーションの簡
単な仕事をどんどん奪っていきます。そうなる
と、人間のやるべきことは「クラウドサービス
の横連携」か「クラウドサービスによる自動化が
追いつかない領域」のいずれかに絞られてきます。
　筆者が「これからのエンジニアにはT字型の
知識セットが必要だ（図2）」と言っているのは、
こうした理由によります。

部分的コーディング

ライブラリ

フレームワーク

アーキテクチャ

アプリケーション
求
め
ら
れ
る
知
識
・

技
術
の
方
向
性

ミドルウェア

OS

仮想化基盤

ハードウェア

インフラ
求
め
ら
れ
る
知
識
・

技
術
の
方
向
性

アプリ
ケーション

より

インフラ
より

求
め
ら
れ
る
知
識
・
技
術
の
方
向
性

AWS
Exchange

Online

Google Apps

Force.com

Dropbox

Box

Evernote

NetSuite

Heroku SharePoint OnLine

Azure

Salesforce

●サーバの構築
●仮想サーバの運用
●負荷分散の設定
●仮想ネットワーキング
●高度なパフォーマンス

チューニング
●コンプライアンス要求

への適合
●ビッグデータの活用に

よるBI（ビジネス統合）
の実現

●クラウドを利用した
新ビジネスの創出

プロフェッショナルとして
通用する、クラウドサービスの

活用・構築技術

各種クラウドサービスのインデックス

簡単なところから自動化や
クラウドサービスそのものに
よって仕事がなくなっていく！

 ▼図1　 これまでの「I字型」エンジニア知識セット

 ▼図2　 「T字」型の知識セット（AWSの場合）

116 - Software Design Jan. 2015 - 117

最終回　エンジニアに求められる技術の変化

その2「説明能力」

　もうひとつ、クラウドには特有の難しさがあ
ります。それは「意志決定者に、正しく、理解
可能な表現で伝えなくてはいけない」というこ
とです。
　たとえばあなたがSEで、提案先の（それほ
どAWSに明るくない）お客さまがストレージ
の採用を検討しているとして、あなたが「これ
はAmazon S3が適切だ」と考えたとします。そ
のときに、次のいずれの説明が適切でしょうか？

 説明1
 Amazon S3はHTTP（S）でアクセ

スできるオブジェクトストレージで、
99.999999999％の耐久性を誇っています。
ブロックストレージではないことからそ
のままファイルシステムとしてマウント
したりすることはできませんが、Storage

Gatewayを利用することで iSCSIボリュー
ムをS3上に作成することができ、このボ
リュームを仮想サーバからマウントする
ことでNASとしての利用も可能です。

 説明2
 Amazon S3は、容量の制限なく

利用できるクラウド型ストレージです。
書き込まれたファイルは自動的に3ヵ所の
データセンターに複製されますので、非
常に高い堅牢性を保っています。S3その
ままではファイル共有には利用できませ
んが、AWSの別サービスと組み合わせる
ことで、複数人でアクセスするファイル
サーバのように利用することも可能です。

　どちらの説明も、技術的な誤りはありません。
文脈によっては「説明1」が適切なケースもある
でしょう。ですが、ほとんどのケースで「説明2」
のほうが、お客さまが選択しやすく、また正し

く理解してくださるものと思います。
　この問題は非常にやっかいです。AWSは、

どこから買っても、AWSなのです！

　それにもかかわらず、説明する側の説明能力
によって、ユーザに適切な判断がなされるかな
されないかが決まってしまう。本来クラウドを
使うべきところで適切な説明がなされないため
に、クラウド以外の選択肢が選ばれたり、最悪
の「作る」という選択肢が選ばれたりしてしまう。
そうした不幸が起きてしまうわけです。
　技術的に正しいと思っていても、それを理解
可能な形で説明できなければ導入に至らず、設
計や実装がそれに引きずられてしまうというこ
とが起きかねないのです。
　こうした理由で、エンジニアといえども、意
志決定者が理解可能な表現で正しくクラウドの
価値を伝えることがとても重要になってくるの
です。

その3「コーディング能力」

　もはや説明は不要でしょう。インフラもコー
ドで操作する時代です。クラウドの世界では、
コードが書けなければインフラを触れないこと
と同義です。

その4「自制心」

　これは半分冗談ですが（笑）半分は本気です。
クラウド時代のエンジニアは「作りたい」という
エンジニアが持つ根源的な欲求と戦い、自制心
を持ってそれをコントロールしなければいけま
せん。
　筆者たちも、2007年に初めてAWSに出会っ
たとき、「コピーを作りたい！」という衝動に実
は駆られました。まだSimpleDB、S3、EC2

くらいしかありませんでしたから、ベンチャー
キャピタルから相応のお金を集めればコピーが
できるかもしれない、と考えていたのです。
　その後、冷静に分析を進めるにつれ、「これ

118 - Software Design

は壮大な戦略と、とんでもない規模で周到に準
備されたものだ」ということがわかり、「追いつ
く見込みがないものをムリに作るよりも、徹底
して使う側に回ろう」という判断に至りました。
この判断は――少なくとも今の時点では――正
しかったものと考えています。
　この姿勢について、DevLOVE代表の市谷さ
んがとても適切な表現を教えてくれました。そ
れは「OutputよりOutcome」というものです。こ
れまでのエンジニアは作ることが前提でしたから、
当然仕事の結果としてコードやドキュメントな
どのOutputがあったわけです。ところが、前に
例示したSurveyMonkeyの話にOutputはありま
せん。Outputはありませんが、大きなOutcome

（成果）は得られたわけです。
　これが「これからのエンジニアはOutputを出
す欲求と戦う自制心が必要だ」という理屈です。

まとめ

　いかがでしたでしょうか？　全6回で筆者た
ちが経験してきたクラウドとの出会いから、筆
者たち自身がクラウド専業のインテグレータに
なる道筋を伝えるとともに、筆者たちの身に起
きたことを通じて、これからのエンジニアには
どのような技術が求められるのか、どうやって
自分のキャリアを構築していくのか、筆者の考
えを示しました。

　筆者たちは、説明能力・プレゼン能力が、クラウ

ドインテグレータで働くエンジニアとして極めて重

要であるとかなり早い段階から考えていました。そ

のため、セールスだけでなくエンジニアもプレゼン

能力のスキル向上に取り組んでいます。

　その中でもとくに成功している取り組みが「金曜

LT（Lightning Talk）」です。

　これは、社内から2名のエンジニアを選んで、金

曜日の夕方に10分間のプレゼンを行うというもの

です。プレゼンはUstreamで配信されていますので、

当社の大阪や福岡、仙台のメンバーも見ています。

場合によっては大阪からリモートLTを行う場合も

あります。そして、見ているメンバーはSlackで「体

が揺れている」とか「画面を見過ぎている」などのツッ

コミを入れます。終わると投票です。必ず、どちら

か一方に投票しなければいけないルールです。

　この取り組みのポイントは2つあります。1つは「リ

アルタイムにフィードバックする」ということ。まず、

フィードバック自体がとても大切です。それがない

まま100回プレゼンをやるより、フィードバックの

ある10回のプレゼンのほうが確実に上達します。

そしてフィードバックも「後でまとめて」ではなく「リ

アルタイム」がベターです。まとめてフィードバッ

クすると、具体性に欠ける指摘になりがちですが、

リアルタイムのフィードバックですと「このスライ

ドはもっと文字が大きいほうが良い」など、具体的

な指摘になるからです。

　そしてもう1つは「Ustreamで配信している」とい

う点です。USTで流すことになると、お客さまの情

報やプロジェクト固有の情報がプレゼンに入れられ

ません。ですから、技術の話をする場合でも、きち

んと抽象化して、再利用可能なコンテンツにしてプ

レゼンしなくてはいけません。プロジェクト固有の

話のほうが内輪にはウケますが、それでは説明能力

の向上にはつながりません。あえてUST配信するこ

とによって、メタ情報をくみ取る能力の向上につな

げているのです。

　この取り組みの効果は抜群で、最初はプレゼンが

苦手だったエンジニアでも、何回かこれをやれば確

実に上達します。プレゼン能力の向上に関心がある

方は、ぜひ試してみてください。

説明・プレゼン能力を磨くには何が必要かCOLUMN

118 - Software Design Jan. 2015 - 119

最終回　エンジニアに求められる技術の変化

　もちろん、ここで述べたことは1人の意見で
しかありません。私が述べたことを信じるも信
じないも、みなさんの選択しだいです。
　ですが、1つだけ確実に言えることがあります。
それは「この流れは止められない」ということで
す。AWSが毎年ラスベガスで行っているカン
ファレンス re:Inventで、AWS事業のトップ
Andy Jassy氏がこのようなことを言っていま
した。
「クラウドは重力のようなもので、逆らうこと
はできない大きな流れである。それであれば、
私は流れを作るほうに回りたい。そんな想いで
AWSを始めたのだ」
　ほぼすべての大手 ITベンダーがクラウドに
大きなリソースを割いている以上、これからの
イノベーションはクラウドが中心になることは
間違いありません。こうした流れに逆らうので
はなく、積極的に先頭に立ってみませんか？
　それこそが、これからのエンジニアが変化の
激しい業界で生き残るためにベストな生存戦略

㈱サーバーワークス
代表取締役
大石 良（おおいし りょう）

・�昭和48年7月20日新潟市生まれ
・コンピュータとの出会いは10歳の頃・当時
はPC-8001にベーマガのプログラムを入力
する日々

・コンピュータの購入は11歳／SHARP X1
・中2の時に初めてプログラムが書籍に掲載
・高校入学記念にX68000を購入
・大学生の時にパソコン通信開始。本格的にシェ
アウェアを販売

・総合商社でインターネットサービスプロバ
イダー事業に携わる

・2000年にECのASPを立ち上げるべく起業

だと思います。
　一緒にこの波に乗って、自分自身の手で未来
を作っていきましょう！（完）゚

データ分析による継続的改善を目指す組織は、ビッグデータとも呼
ばれる大規模化したログを分析部門に渡すまでのシステム構築
を必要としています。
提供するサービスを改善（分析）するには「ログの収集、データの
保持、可視化（分析）」というサーバ／インフラエンジニアが関わる
工程を外して考えることはできません。
本書では、大規模化したログを効率的に収集できるfluentdをは
じめ、データストア、検索エンジンとして注目を集めている
elasticsearch、これらとセットで使用される可視化ツールの
Kibanaを解説します。

養成読本編集部 編
B5判／164ページ
定価（本体1,980円＋税）
ISBN 978-4-7741-6983-5

サーバエンジニア、インフラエンジニア
（Web系、ITインフラ系）

120 - Software Design

便利なパッケージたち

　ども、るびきちです。今回は日常的に使える
便利なパッケージたちを紹介していきます。
　今ではここで紹介しているパッケージよりも
強力なインターフェースが存在しますが、物事
には順序があります。それを使うにはEmacsの
定番機能を知ってからでも遅くはありません。
もちろん本連載でも取り上げますので、楽しみ
にしていてください。

ファイル・バッファ
切り替え

　本節ではファイルとバッファの切り替えをカ
イゼンするパッケージを紹介します。おもに標
準添付のパッケージですが、知るだけで使い勝
手が劇的によくなります。

ido：バッファ・ファイルを選択して開く

　バッファを切り替えるにはC-x bを使います
が、使い勝手はイマイチです。バッファ名入力
が面倒だからです。確かに昔よりは便利になっ
ています。もともとは先頭一致でしかバッファ
名を選択できませんでしたが、今は部分文字列
が使えます。ただし、バッファ名の先頭が一致
するとそれが優先されます。たとえば、*scratch*
バッファを選択するのに「rat」と入力してt
キーを押せば「*scratch*」と補完されます。しか

し、ratpoisonというバッファがあるときはそれ
で確定されてしまいます。
　C-x C-fでファイルを開く場合もデフォルト
ではファイル名の先頭から入力する必要があり
ます。
　idoはバッファ切り替え・ファイル名入力を
カイゼンします（リスト1、図1）。C-x bやC-x

C-fで入力時に文字列をタイプすると、候補が
C-sとC-rで選択できるようになります。部分
文字列を数文字タイプするだけで数個にしぼれ
てきます。
　また、idoではバッファ・ファイルを連続して
削除する機能もあります。idoではRETキーを
押すことで選択しますが、RETキーの代わりに
C-kを押せばそのバッファ・ファイルを削除し
ます。一連の削除が終わりましたら、C-gを押
してください。もはやC-x kで別なバッファを
削除する必要がなくなります。
　さらに、ido内でC-x C-fを押すと idoをとり
やめてファイルを開くことができます。バッファ
を選択しようとしたけど存在しなかった場合、
C-gでキャンセルすることなく、流れるように

 ▼リスト1　idoの初期設定

(ido-mode 1)
(ido-everywhere 1)

 ▼図1　idoでバッファ選択

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

第9回 すぐに使える！　便利な11のパッケージ
　ファイル・バッファ切り替え編、カーソル移動編、編集編に分けて、それぞれの操作が格段に便利になる
定番パッケージを紹介します。気に入ったモノがあれば、設定してご自分の環境をカスタマイズしてください。

Writer

http://rubikitch.com/

120 - Software Design Jan. 2015 - 121

の略で、カーソル位置のファイル名を認識して、
ファイルを開くときのデフォルトにしてくれま
す。もしカーソル位置がファイル名ならばC-x

C-f RETでそのファイルが開けます（図3）。
　また、URLにも対応していて、同じ方法で
カーソル位置のURLをもブラウザで開けます。
開きたいURLを直接入力することもできます。
　また、ffapはファイルの存在確認にも使えま
す。もしカーソル位置のファイルが存在すると
きはffapのデフォルトになりますが、存在しな
いときはデフォルトにはなりません。存在を確
認したらC-gで中断してください。
　ffapにより、C-x C-fはファイルを開くだけ
でなく、

・URLを開く
・カーソル位置のファイル・URLを開く
・ファイルの存在確認

と多目的に働けるようになりました。ぜひとも
入れておきたい設定です。

recentf-ext：最近使ったファイルを開く

　最近使ったファイルというのは、再び使われ
る可能性が高いです。recentfは、最近開いた

望みのファイルを開けるのです。

bs：手軽にバッファ選択

　C-x C-b（list-buffers）は、バッファ一覧を表
示しますが、そこから選択するにはわざわざそ
のウィンドウにフォーカスする必要があります。
Emacsの初期からあるこのコマンドは、極めて
原始的なインターフェースです。そこで、この
操作性を改善するいくつものパッケージが登場
してきました。
　今回紹介する標準添付のbsもそのひとつです
（図2）。M-x bs-showで起動します。ですが、
元のM-x list-buffersを完全に置き換えるの
で、C-x C-bに割り当ててしまいましょう（リ
スト2）。
　M-x bs-showを起動すると、*buffer-selection*
バッファが適切に調節された高さでポップアッ
プします。おかげさまで、バッファリストの使
用目的に合わせてほどよい操作性を実現してい
ます。バッファリストの目的は大きく分けて3

つです。

・どんなバッファが開かれているかを見る
・バッファを選択する
・バッファを連続して削除する

　バッファリストを閲覧するだけならば、見終
わったらC-gで閉じられます。C-gはもともと
中止を意味するコマンドですので、この割り当
ては直感的です。バッファを選択するのは、普
通にRETキーです。バッファを削除するのはd

を押すだけで、わざわざ質問したりはしません。
　M-x bs-showはもともとファイルと関連付け
られたバッファしか表示しませんが、「C」（大文
字のc）を押してから表示されるミニバッファに
allと入力すれば隠しバッファ以外のすべての
バッファが表示されます。

ffap：C-x C-fに機能を追加する

　ffapは、C-x C-fを強化する標準パッケージ
です（リスト3）。ffapとは「Find File At Point」

 ▼リスト2　C-x C-bを置き換える

(global-set-key (kbd "C-x C-b") 'bs-show)

 ▼図2　M-x bs-show

 ▼リスト3　�apの初期設定

(ffap-bindings)

 ▼図3　C-x C-fで現在位置のファイルがデフォルトに

第9回 すぐに使える！　便利な11のパッケージ

122 - Software Design

max-saved-itemsで制御できますが（リスト4）、
デフォルト値の20は少な過ぎて本領発揮できま
せん。検索することも考えれば100や500など
大きめの値にすればいいです。
　なお、recentf-extはMELPA（リスト5）から
次のようにインストールできます。

M-x package-refresh-contents
M-x package-install recentf-ext

カーソル移動

　カーソル移動を強化するパッケージたちを紹
介します。これらは筆者も現役で使っているも
のばかりです。

point-undo：カーソル位置を戻す

　Emacsを使っていて、迷子になったことはあ
りますか？　つまり、操作ミスによりカーソル
位置が意図しない場所に向かってしまったこと
です。筆者もたまにあります。あわてふためく
前にワンタッチでカーソル位置を戻せたらいい
ですね。そこで拙作point-undoを次のようにイ
ンストールして使ってみてください（リスト6）。

M-x package-refresh-contents
M-x package-install point-undo

　確かに isearchやM-<といった大域移動コマン
ドは自動でマークされるためC-u C-SPCで戻れ
ますが、そうじゃないコマンドもあります。M-x

point-undoは、自動マークとは関係なく働い
てくれます。

ファイルを開きやすくする標準パッケージです。
しかも、最近開いたファイルのリストはファイ
ルに保存され、Emacs再起動時に復元されます。
　ファイルを開くときに、もう長ったらしいフ
ルパスを入力する必要はありません。最近開い
たファイルであれば、C-x C-fを使う必要はな
いのです。
　M-x recentf-open-filesは、最近開いた
ファイル一覧をバッファに表示します（図4）。直
近10個までのファイルならば、そのあとに番号
を押せばそのまま開けます。もし、そこから見
つからなくても isearchを使えばすばやく目的の
ファイルを探し出せます。GUIのダイアログボッ
クスとは違い、Emacsのバッファは検索できる
のがうれしいですね。
　拙作 recentf-extを導入すればさらにパワー
アップします。recentfが扱うのは、厳密には
「最近使ったファイル」ではなく「最近開いたファ
イル」です。Emacsを長時間起動していれば、最
初に開いたファイルに再びアクセスしても、奥
のほうに隠れてしまいます。recentf-extでは、
そのファイルバッファを表示した時点でrecentf

の先頭に持っていくので、「最近使ったファイ
ル」としてアクセスしやすくなります。
　また、オリジナルのrecentfではディレクトリ
（dired）を除外していますが、recentf-extでは
ディレクトリも「最近使ったファイル」として扱
えるようにします。
　どれくらいのファイルを記憶するかはrecentf-

 ▼リスト4　recentfの設定

;; 最近のファイル500個を保存する
(setq recentf-max-saved-items 500)
;; 最近使ったファイルに加えないファイルを
;; 正規表現で指定する
(setq recentf-exclude
 '("/TAGS$" "/var/tmp/"))
(require 'recentf-ext)

 ▼リスト5　パッケージを使うための初期設定

(package-initialize)
(add-to-list 'package-archives '("marmalade" . "http://marmalade-repo.org/packages/"))
(add-to-list 'package-archives '("melpa" . "http://melpa.org/packages/") t)

 ▼図4　M-x recentf-open-files

るびきち流
Emacs超入門

122 - Software Design Jan. 2015 - 123

という足跡情報をすべて記憶しているので、そ
の必要はありません。
　M-x goto-last-changeは、変更履歴という
足跡をたどり、過去の変更個所にカーソルを移
動します。戻り過ぎたときはM-x goto-last-

change-reverseで戻します。
　前項のpoint-undoはすべてのカーソル移動を
追跡しているのに対し、goto-chgは変更個所を
追跡します。よって、編集位置をたどることに
関してはgoto-chgのほうが早く目的の位置に到
達します。両者をうまく使い分けましょう。リ
スト7でM-x point-undoとM-x point-redo

は、それぞれ•とM-<f8>に割り当てていま
す（M-<F8>でOSのコマンドが優先実行される
場合は、適宜設定を変更してください）。

bm：現在位置をハイライト付きで
永続的に記憶させる

　バッファの現在位置を記憶する標準的な手法
はマークとレジスタです。しかし、マークした
位置は目に見えません。レジスタもいまいち操
作性がよくありません。そこでbmを使うと記
憶した行がハイライトされてわかりやすくなり
ます（リスト8）。しかも、Emacsを終了しても
再起動時に記憶した位置を復元できます。筆者
も長らくお世話になっているパッケージです。
　次のようにインストールしましょう。

M-x package-refresh-contents
M-x package-install bm

　また、同じカーソル位置であってもウィンド
ウの表示範囲が異なっていると、別な場所に移
動したような錯覚になります。そこでカーソル
位置だけでなくウィンドウ表示開始位置も記憶
しているので、画面上の見た目も復元されます。
　M-x point-redoはM-x point-undoで戻し
過ぎたカーソル位置を修正できますので、戻し
過ぎてしまっても安心です。リスト6で、それ
ぞれ¶とM-<f7>に割り当てています（M-

<F7>でOSのコマンドが優先実行される場合は、
適宜設定を変更してください）。

goto-chg：編集個所の履歴をたどる

　テキストエディタは、カーソルをいろいろな
場所に移動して書き換えます。よくある挙動と
して、ほかの場所に移動したあと元の位置に戻っ
たり、別な場所を編集してから元の場所を編集
したりします。たとえば文章を書いていて、ふ
と誤字脱字が目について、そこを修正したあと、
再び元の位置に戻って文章の続きを書くといっ
たケースです。そんなときに便利なのがgoto-
chgです（リスト7）。インストール方法は次の
とおりです。

M-x package-refresh-contents
M-x package-install goto-chg

　マークを多用している人ならば、そういうと
きはC-SPCでマークして、C-u C-SPCで戻るで
しょう。しかし、Emacsはどこを書き換えたか

 ▼リスト6　point-undo初期設定

(require 'point-undo)
(global-set-key [f7] 'point-undo)
(global-set-key [M-f7] 'point-redo)

 ▼リスト7　goto-chg初期設定

(require 'goto-chg)
(global-set-key [f8] 'goto-last-change)
(global-set-key [M-f8] 'goto-last-change-reverse)

(setq-default bm-buffer-persistence nil) (setq bm-restore-repository-on-load t) (require 'bm)
(add-hook 'find-file-hook 'bm-buffer-restore) (add-hook 'kill-buffer-hook 'bm-buffer-save)
(add-hook 'after-save-hook 'bm-buffer-save) (add-hook 'after-revert-hook 'bm-buffer-restore)
(add-hook 'vc-before-checkin-hook 'bm-buffer-save) (add-hook 'kill-emacs-hook '(lambda nil
(bm-buffer-save-all)
(bm-repository-save))) (global-set-key (kbd "M-SPC") 'bm-toggle) (global-set-key (kbd "M-[")
'bm-previous) (global-set-key (kbd "M-]") 'bm-next)

 ▼リスト8　bm初期設定

第9回 すぐに使える！　便利な11のパッケージ

124 - Software Design

え、あらゆるメジャーモードに対応しているの
で役立つ機会はとても多いです。

編集

　ここでは基本的な編集コマンドを強化するパッ
ケージを紹介します。

visual-regexp：
正規表現置換を対話的に行う

　正規表現置換は強力な編集機能ですが、扱い
が難しいです。代替案として10月号ではM-x

occurの結果を編集することで正規表現置換と
同等のことができることを紹介しました。置換
される行を絞り込んでから編集するので、安心
できるというメリットもあります。
　visual-regexpはこれとはアプローチを変えま
して、正規表現置換を対話的に行うのが狙いで
す（リスト9）。

M-x package-refresh-contents
M-x package-install visual-regexp

と、インストールします。置換のための正規表
現を組み立てるときに、視覚的なフィードバッ
クがあると劇的に使いやすくなります（図8）。
　標準コマンドのM-x re-builderは対話的に

　使い方は簡単で、M-x bm-toggleでbmを付
けたり解除したりします（図5）。
　M-x bm-previousと M-x bm-nextで bm間
を移動します。基本的にはこれらのコマンドだ
けで便利です。それぞれM-SPC、M-[、M-]に割
り当てています。
　M-x bm-showでカレントバッファでのbm一
覧（図6）、M-x bm-show-allで全バッファでの
bm一覧を表示します。RETキーでその位置に
移動し、qで一覧を閉じます。

imenu：見出し・関数定義にジャンプする

　構造化されたテキストファイルは見出し行を
見るだけで全体像がわかります。見出し行とは、
そのファイルに目次を作るときに載せる行のこ
とです。プログラミング言語の場合は関数（クラ
ス・メソッド）定義、マークアップ言語の場合は
見出しです。
　関数定義に移動したいために関数名を isearch

しようとすると、関数呼び出しなどにも止まっ
てしまいます。そこでM-x imenuを実行すると
バッファの目次を作成し、そこで関数名や見出
しを指定すれば見出し行にすばやくジャンプし
ます（図7）。もちろんTABキーによる補完も効
きます。imenuはEmacs標準コマンドであるう

 ▼図5　現在位置を目に見えるようにマーク

 ▼図6　M-x bm-showでbm一覧

 ▼図7　M-x imenuを実行し候補を一覧表示させる

 ▼リスト9　visual-regexp初期設定

(global-set-key (kbd "M-%") 'vr/query-replace)

 ▼図8　正規表現入力時点でハイライト

るびきち流
Emacs超入門

124 - Software Design Jan. 2015 - 125

ドに相当するkill-ringには、複数の文字列を記
憶できるからです。実際、C-yの直後にM-yを
1回以上押すと、過去に保存したテキストを呼
び起こせます。
　しかし、M-yでは過去にkill-ringに保存した
テキストを一覧できません。過去60個（kill-ring-

max変数で調節可能）ものテキストを記憶できる
のに、もったいないです。そこで、browse-kill-
ringでkill-ringのテキストを一覧・選択できる
ようにしましょう（リスト10）。

M-x package-refresh-contents
M-x package-install browse-kill-ring

でインストールしてから、M-x browse-kill-

ringを実行すると、*Kill Ring*バッファにkill-

ring一覧が表示されていて、pとnで選択できま
す（図10）。RETキーで貼り付け、qで中止です。
一覧はバッファですので、isearchで目的のテキ
ストにすばやく到達できます。リスト10でM-y

を置き換えましょう。ﾟ

正規表現を組み立て、あとの正規表現置換や
Emacs Lispプログラミングに活かすのですが、
visual-regexpはre-builderと置換を合体させた
ものです。リスト9でM-x vr/query-replace

をM-%に割り当てると手軽に正規表現置換の恩
恵を受けられます。

rectangle-mark-mode：
Emacs 24.4の新矩形編集

　Emacs 24.4では矩形編集がとても使いやすく
なりました。C-x SPCは矩形選択コマンドです
（図9）。このあとにC-w、M-w、C-yを使うと、
矩形のカット／コピー&ペーストになります。
もう煩わしい旧来の矩形コマンドを無理して使
う必要はありません。
　C-x SPCを押すタイミングは2とおりありま
す。マーク開始時点かマーク終了時点です。C-x

SPCをC-SPCの代わりに使うと、regionは矩形
方向に広がります。C-SPCでマークしたあとに
regionを設定してC-x SPCを押すと、その間の
矩形を選択してくれます。そのため、使い勝手
はかなり良いです。
　C-x SPCの後でC-oを押すと、その矩形の部
分を空白にしてくれます。C-x r oと同じです。
　C-x SPCのあとでC-tを押すと、矩形の各行
を同じ文字列で置き換えます。とくに横方向が
ゼロの場合、同じ文字列を各行に挿入すること
になります。筆者は旧来のコマンドC-x r tで
多用しています。
　これはEmacs 24.1から使えますが、C-x r N
は各行に番号を付けるコマンドです。C-u C-x

r Nでは開始番号と書式を指定できるので、こ
ちらのほうが便利でしょう。

browse-kill-ring：
kill-ringをフル活用する

　EmacsではC-wでカット、M-wでコピー、C-y
でペーストができます。Emacsでのコピー&ペー
ストは現在のGUIのそれよりもはるかに進化し
ています。なぜなら、Emacsでのクリップボー

 ▼図9　C-x SPCで矩形選択

 ▼図10　kill-ringの履歴を表示

 ▼リスト10　browse-kill-ring初期設定

(global-set-key (kbd "M-y") 'browse-kill-ring)

第9回 すぐに使える！　便利な11のパッケージ

126 - Software Design

ここ数回の本連載ではOpenSSLやbashの脆弱性など緊急性が高く、すぐにでも解決しなければいけな
い目の前の問題を取り上げました。今回はもっと先の、つまり将来課題となるようなテーマとして
Internet of Thingsのセキュリティについて考えます。

Internet of Thingsとは

　Internet of Things（IoT）とは、最近バズワード化
しているきらいがありますが、もともとは「これま
でPCやサーバといったコンピュータ類だけがつな
がっていたインターネットに、多種多様な機能や
サービスを持った機材がつながれていくこと」を意
味します。
　たとえば、世の中にたくさんセンサーを用意し、そ
れをインターネットで接続するのもIoTですし、我々
が普段使っている家電などをインターネットにつなぐ
こともIoTです。あるいは、家庭のガスメータや電力
メータをインターネットにつなぐのもIoTです。
　IoTはインターネットの新しい使い方であり、イン
ターネットの可能性の拡大であり、インターネットの
新しい革命だと言われています。これらについての
論文や報告書、あるいは宣伝は世にあふれています。
　しかし、一歩後ろに引いて見たときに確実に言え
るのは、「これまでインターネットに接続していな
かったものが接続し始めるということは、同時にイ
ンターネットの新しいセキュリティを考えなくては
いけない」ということです。

　筆者がACM（Association for Computing Machi

nery）注1のACM Digital Libraryで“Internet of

Things”で検索してみたところ、3,877件の論文が
ヒットしました。ACMは2012年からはSecurITと
いう国際会議を開催しており、学術系でも本格的に
IoTのセキュリティについての議論が始まっている
様子がうかがえます。

事件は現場で起こって
いる

　IoTという言葉が広まる前から、インターネット
接続の家電はすでに登場していました。そして、や
はりセキュリティ上の問題を抱えていました。
　今から10年前の2004年に、東芝のハードディス
クレコーダRDシリーズに匿名HTTPプロキシサー
バとして使える問題があることがわかりました。実
際に、インターネット側からアクセスできる状態に
していたハードディスクレコーダが踏み台になり、
ブログに大量のスパムコメントが書き込まれるとい
う事件が起こりました注2。これは世界的にみても
初めてのケースで、この報告は後に各国のCSIRT

が参加している団体FIRSTが主催する国際会議で
も発表されました注3。

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第十六回】

すずきひろのぶ
suzuki.hironobu@gmail.com

IoTのセキュリティについて考える

注1）	 世界で最も大きいコンピュータ学会。www.acm.org
注2）	「インターネットセキュリティの歴史 第23回『ハードディスクレコーダを踏み台にしたコメントスパム』」	 	

https://www.jpcert.or.jp/tips/2008/wr084701.html
注3）	 Keisuke Kamata & Masaki Kubo,JPCERT/CC,Japan“Vulnerabilities in Consumer Electrics -- DVD Players, Cell Phones

Attack Your System?”	 	
http://www.first.org/conference/2005/schedule.html

www.acm.org
https://www.jpcert.or.jp/tips/2008/wr084701.html
http://www.first.org/conference/2005/schedule.html

Jan. 2015 - 127

　また、インターネットに接続するタイプの監視カ
メラも、外部から乗っ取られる脆弱性が何度も発見
されています。2012年のことですが、おもにアメリ
カで発売されているIPカメラ（Foscam社製および
Wansview社製）には制御用のWebインターフェー
スに認証を回避できる脆弱性があり、外部からコン
トロールを乗っ取ることができました。すでにお馴
染みの危険度を示すファクタであるCVSS v2の値
も含め、関連する危険度を示す数値はすべて10.0

という最高値をつけられています注4。
　このIP接続可能なカメラをネットワーク的に無
防備な状態、つまり第三者がネットワーク経由で自
由にアクセスできる場所に接続していたならば、簡
単に操作されてしまう、ということです。その第三
者はカメラがとらえる映像を自由に入手できてしま
います。
　映画やテレビで、街角にあるカメラを自由に操れ
る天才ハッカーといった話が出てきますが、実際に
は天才でもなんでもなく、何の才能もいらず、PC

を扱えるスキルさえあれば、同様のことができま
す。インターネット上のあちらこちらの掲示板に懇
切丁寧に書いてある手順どおりにやればいいだけの
レベルです。
　これは海外だから、という話でもありません。日
本国内でも㈱アイ・オー・データ機器製のネットワー
クカメラ「Qwatch（クウォッチ）」シリーズにおいて
認証を回避できる脆弱性が報告されています。こち
らのCVSS v2の値は6.4ですので、警告レベルで
す注5。もし該当の機種をお持ちであれば、ファー
ムウェアを最新版へバージョンアップすることをお
勧めします。詳しくはアイ・オー・データ機器社の

告知ページをご覧ください注6。
　これらはサポートするベンダがはっきりしている
から、まだ良いほうです。問題は、ベンダ名も聞い
たことがない、サポート先もさっぱりわからない、
だけれども価格的に魅力的な格安製品をあちこちの
店頭で見かけることです。もうこうなれば内部で何
をやっているかは誰にもわからず、サポートもされ
ず、完全にお手上げです。

冷蔵庫は無実

　2014年1月、イギリスBBCが「冷蔵庫がイン
ターネット経由で大量のスパムメールを送ってい
た」という報道をしたため注7、「とうとう冷蔵庫まで
もか」ということであちらこちらのニュースサイト
で話題になりました。
　これはProofpoint社から出されたリリースを
ベースとして報道された内容です。そのリリース内
容とは、2013年12月23日から2014年1月6日まで
の期間に10万台のコンシューマ機器からスパム
メールが総計75万通送られていたことを同社が検
知し、分析した結果、その中の1台は冷蔵庫であっ
た、というものです注8。
　ハードディスクレコーダですら匿名HTTPプロ
キシサーバとして使われてしまう時代ですから、冷
蔵庫がスパムメールの踏み台になってしまうのも、
それほど不思議なことではありません。ただ筆者は
その機種に脆弱性があるのに、なぜかその1台だけ
が使われているという不自然さが気になりました。
　後に、Symantec社から冷蔵庫からスパムが送られ
たというのは誤りで、Windows経由の典型的なボッ
トネットであるという分析が公開されました注9。

【第十六回】 IoTのセキュリティについて考える

注4）	 National Cyber Awareness System“Vulnerability Summary for CVE-2012-3002”（2013年1月3日）	 	
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3002

注5）	「JVNDB-2014-000087　アイ・オー・データ機器製の複数のIPカメラにおける認証回避の脆弱性」（2014年8月1日）	 	
http://jvndb.jvn.jp/ja/contents/2014/JVNDB-2014-000087.html

注6）	「ネットワークカメラ「Qwatch（クウォッチ）」シリーズご愛用のお客様へお知らせ」（2014年7月29日）	 	
http://www.iodata.jp/support/information/2014/qwatch/

注7）	“Fridge sends spam emails as attack hits smart gadgets”（2014年1月17日）	 	
http://www.bbc.com/news/technology-25780908

注8）	“Proofpoint Uncovers Internet of Things (IoT) Cyberattack”（2014年1月16日）	 	
http://www.proofpoint.com/about-us/press-releases/01162014.php

注9）	「冷蔵庫によるスパム送信は誤報」（2014年1月27日）	 	
http://www.symantec.com/connect/ja/blogs-334

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3002
http://jvndb.jvn.jp/ja/contents/2014/JVNDB-2014-000087.html
http://www.iodata.jp/support/information/2014/qwatch/
http://www.bbc.com/news/technology-25780908
http://www.proofpoint.com/about-us/press-releases/01162014.php
http://www.symantec.com/connect/ja/blogs-334

128 - Software Design

家庭内の同一ネットワークにあったPCが原因だっ
たわけです。通常、家庭内からのインターネット接
続はいったんNATルータに収容されます。そこか
ら外部のインターネットには1つのIPアドレスを
持つものとして見えますから、もしIPアドレスだ
けを頼りに判断すると、NATルータ以下が1つのも
のと見えてしまいます。

組込みデバイスでの
マルウェア

　以前は、組込みデバイスといえばコスト的に最小
限の資源しか持てなかったためハードウェア資源が
乏しく、スクリプト言語（インタプリタ言語）を処理
系に使ったWebインターフェースを持つのは難し
いことでした。しかし今では、ハードウェア資源が
どんどんと低価格化し、ついこの間までインター
ネットに接続されて動作していたサーバと同じレベ
ルの資源を積んで動作するようになってきていま
す。
　組込みデバイスでもWebインターフェースの処
理系にPHPを搭載しているものも増えているよう
です。そんな状況で、PHPの脆弱性をついてくる
ワームLinux.Darllozが現れています注10。
　これはPHPの持つ複数の脆弱性（CVE-2012-

1823、CVE-2012-2311、CVE-2012-2335、CVE-

2012-2336）をついてくるワームです。組込みデバ
イスではIntelのCPUアーキテクチャ以外にARM、
PPC、MIPSなども使われていますが、Linuxに
PHPさえ搭載されていれば、これらのCPUアーキ
テクチャの違いに関係なく感染します。
　もちろんPHPだからダメだということではなく、
これがRubyであろうとPythonであろうと脆弱性が
あれば同じことになります。これらの抽象度の高い
言語は、プログラマにハードウェアのアーキテク
チャを意識させることなく柔軟なプログラミング表
現を提供するところに、その価値があります。しか
し、その利点にいったんほころびができれば、これ
までのバイナリーコードであったような「CPUが違

えば感染しようがない」という壁がなくなります。
ハードウェアの性能の向上、および低価格化は、い
い意味でも、悪い意味でも大きな影響を与えている
ことがわかります。この方向性は、今後はさらに加
速度的に進むでしょう。

Raspberry Pi

　最近はRaspberry Piのようなカードサイズのコ
ンピュータ・プラットフォームが現れています。
Raspberry Piは、32ビットARMアーキテクチャ
ベースのCPUコアやGPU、その他必要な機能を1

つのチップに収めたBroadcom BCM2835システム
オンチップ（SoC）を使ったカードサイズで動く本格
的なコンピュータです。メモリは256MB、もしく
は512MB、外部記憶装置にはSDカード、100Mbps

Ethernet、HDMIビデオ出力、そしてUSBインター
フェースを持っています。価格は数千円です。
　今でこそ小さく安価なコンピュータシステムにし
か感じませんが、これが20年前だと、ギガ単位容
量の外部記憶装置、512MBの主メモリ、100Mbpsの
ネットワーク・インターフェース、そして解像度が
1920×1200のフルカラーのビデオ出力を持つ最高
級クラスのワークステーション・コンピュータに匹
敵します。
　OSもGNU/LinuxのDebianベース・ディストリ
ビューションであるRaspbianや、同じくGNU/

LinuxのFedoraベース・ディストリビューションの
PIDORAなどが用意されていて、その上には通常
のDebianやFedoraで扱うような各種アプリケー
ションが用意されています。さらにはWolfram

Research社の数式処理システムMathematicaも用
意されているなど、既存のGNU/Linuxシステムと
遜色のない利用が可能です。
　もちろんUNIXベースですので、ユーザの使うデ
スクトップシステムとして使うだけではなく、サー
バマシンとしても申し分なく使えます。I2CやGPIO

といった外部インターフェースも用意されているの

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注10）	 Linux.Darlloz　http://www.symantec.com/ja/jp/security_response/writeup.jsp?docid=2013-112710-1612-99

http://www.symantec.com/ja/jp/security_response/writeup.jsp?docid=2013-112710-1612-99

Jan. 2015 - 129

　そうなったときに、どんな悪意を持った攻撃が起
きるか。これまでのインターネット・セキュリティ
の歴史をふり返って考えてみれば、みなさんだいた
い想像がつくのではないでしょうか。

IoT時代への提案

Windows 95/98時代の教訓

　話は変わりますが、Windows 95/98にはすでに
フォルダをLAN上に公開する機能がありました。
ネットワークの共有設定をする必要がありますが、
とくにパスワードを設定しなくても公開できるの
で、ネットワークにつながっているWindows

95/98のコンピュータと簡単にファイルを共有する
ことができました。
　Windows 2000は最初からネットワーク機能を搭
載してフルに活用できるLAN対応のシステムでし
た。ファイルおよびプリンタ共有のクライアント／
サーバ機能が、デフォルトで利用できるようになっ
ており、Ethernetに接続すれば、そのままLANと
して使えるというたいへん便利なものでした。
　一方で、当時、インターネットにCATVや
ADSL経由で接続する場合、現在のようにNATや
IPマスカレードのルータを介して接続するという
ことはせず、直接、接続するケースが多くありまし
た。CATVやADSLの端末はEthernetの口が1つあ
るタイプで、それは、建物や地域単位のLANに接
続するようなしくみになっていました。
　家庭内でインターネット接続する機材はせいぜい
PCが1台ある程度です。家庭内で複数のコン
ピュータを使っていて、相互にネットワークで接続
し、さらにNAT機能を持ったルータを経由してイ
ンターネットに接続するということも、あまりあり
ませんでした。そのため、たった1台のコンピュー
タのために、わざわざお金を出してNATルータを
購入するといった発想はありませんでした。
　そんな状況で何が起こったかというと、CATV経
由でインターネットに接続すると、隣の家のPCの
フォルダが見えました。もう16～17年前になりま

で、電力消費の少なさと、カードサイズという利点
を活かして組込みシステムやセンサーシステムのプ
ロトタイプや実験のプラットフォームとしても活用
可能です。
　Raspberry Piは将来現れるIoTのプロトタイプ
として、現在一番身近にとらえることができるコン
ピュータシステムです。最近ではIntelでも、Rasp

berry Piより若干大きめのサイズで、32ビット・
デュアルコアAtom CPUをベースにしたSoC、主
記憶に1GB LPDDR3、外部記憶装置に4GB EMMC

を搭載したシステムをアナウンスしています。この
スペックは80年代のスーパーコンピュータレベル
だと言っても、けっして言い過ぎではないでしょ
う。近い将来、このスペックのコンピュータがIoT

として大量に入ってくるわけです。
　さて、Raspberry Piのような低価格のプラット
フォームをIoTのベースシステムとして使っている
実験記事があちらこちらに紹介されており、そのこ
と自体は、さほど珍しいものではなくなっていま
す。
　しかし、筆者には非常に気になることがありま
す。というのも、家庭用ブロードバンドルータの設
定を変更し、外部ネットワーク、つまりインター
ネット経由でパケットが通るようにしたうえで、家
電を制御するRaspberry Piを用意し、そこにアク
セスし、「これがIoTである」といった紹介をしてい
る記事を見つけたからです。ドメイン名でアクセス
するためにダイナミックDNSの利用のしかたまで
説明がありました。しかも、ソフトウェアの品質
は、サンプルかつ実験的なシステムとはいえ、セ
キュリティ的には極めて懸念を抱かざるを得ないも
のです。
　これを実験するならばローカルネットワーク上で
行うべきで、インターネット側からアクセスできる
環境で行うべきではありません。
　IoTデバイスの開発コストが下がると同時に、誰
でも開発ができるようになり、ハードディスクレ
コーダやWebカメラで起こったようなことが、今
度は機材の電力オン／オフといった物理的に負荷を
与えるようなものでも発生するでしょう。

【第十六回】 IoTのセキュリティについて考える

130 - Software Design

すが、筆者の実家のマンションでは、ものの見事に
マンション中のいくつものコンピュータのフォルダ
が見えていました。
　その後、業者側のIPフィルタリング対応以外に
も、複数のコンピュータが接続したり、それ以外の
家電もインターネットに接続したりするようになっ
て、ISPが提供するものも必然的にNATルータへと
変化していったこともあり、前述したようにフラッ
トにインターネットに接続するようなことは一般的
ではなくなっていきました。
　ここから学べることは、極めて簡単です。システ
ムを提供する側もインターネットとは何かを十分に
理解してから作っているわけではなく、「とりあえ
ずやってみよう」というレベルからサービスが始ま
るということです。

◆　◆　◆
　IoT時代は多種多様な機材がインターネットに接
続されるという時代になるわけですが、それだけい
ろいろなベンダがいろいろなものを開発し、提供す
る時代になるはずです。
　そうなると、歴史を振り返れば当面は、新しく現
れるIoTが、どれだけ品質が高いか、セキュリティ
的に安全であるか、はたまた、どれだけサポートが
行われるかということは未知数なわけです。そのこ
とからも、そのシステムの安全性とはべつに安全性
を確保する必要があるということになります。

小さなセキュリティゲートウェイ

　IoTとして入ってくる機材が信用できないわけで
すから、それをネットワーク的に監視するものが必
要となってきます。IDS（Intrusion Detection Sys

tem：侵入検知システム）やIPS（Intrusion Preven

tion System：侵入防止システム）も含めたファイア
ウォールのような機能を家庭内や建物内、あるいは
もっと小さなエリア、たとえば茶の間とか自分の部

屋といったレベルのサイズのネットワークに設置す
る時代がくるかもしれません。
　この節だけ読むと、多くのみなさんは、ファイア
ウォールやIDS/IPSが極めて特殊なシステムで、
性能のいい機材を必要とし、複雑で高価なソフト
ウェアの組み合わせで、さらに設定に特殊な知識を
必要とするものである、と思うかもしれません。
　しかし、私たちは、昔の高性能ワークステーショ
ンの能力を数千円で購入できることをすでに知って
います。そのハードウェアに少し追加し、さらに
オープンソースソフトウェアで構築した簡便なセ
キュリティゲートウェイを付けてあげることも可能
ではないでしょうか。そして、また、このセキュリ
ティゲートウェイもIoTの1つなのではないでしょ
うか。
　現在、筆者は家庭や学校といった身近なIoT環境
でのセキュリティゲートウェイが考えられないもの
かと、Raspberry Piをハードウェア・プラットフォー
ムにしたオープンソースベースのプロトタイプを作
成する共同研究を行っている最中です注11（写真1）。

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注11）	【参考文献】	 	
大野浩之、鈴木裕信、「電子工作愛好者向けセキュリティゲートウェイの構築 第四報：Raspberry Guardianの実証実験へ向けて」、『マ
ルチメディア、分散協調とモバイルシンポジウム2014論文集』、p211-p218、2014年7月		
大野浩之、北口善明、鈴木裕信、「電子工作愛好者向けセキュリティゲートウェイの構築 第三報:構成要素の検討と性能評価」、『情報処理
学会研究報告．マルチメディア通信と分散処理研究会報告』、情報処理学会、2014-07-17、2014年

◆◆写真1　I/Oなどを満載した実験用Raspberry Pi　　　
（写真提供：大野浩之氏）

i2cGPIO（16bit）、フォトカプラ（4bit×2）、UART（絶縁型）、
SPI高速シリアルを搭載済。今後、RTCと電源制御系を追加予定
とのこと。

Jan. 2015 - 131

【第十六回】 IoTのセキュリティについて考える

NFCによる公開鍵交換

　最近では、スマートフォンからIoT機材をコント
ロールするといったものが現れています。通信路は
SSLなどの暗号通信を行っていますが、エンド・
ツー・エンドの認証に関しては、今もってパスワー
ドのものが多いようです。しかし、この連載で何度
も繰り返し説明してきたとおり、現在はパスワード
による認証で安全性を確保できる時代ではなくなっ
ています。
　今はスマートフォンにNFC（近距離無線通信）が
付いていてBluetoothのペアリングをする時代で
す。これをもう一歩発展させれば、NFCで公開鍵を
交換し、お互いを認証するときは、パスワードでは
なくデジタル署名による認証を行うことができるよ
うになるでしょう。こうすれば認証に関して暗号学
的な強さでの安全性が確保できます。
　認証のための鍵を入手しようとすると、実際に家

に入って、クーラーなり、冷蔵庫なり、テレビなり
に触るか、スマートフォンの中身を盗まない限り、
鍵を入手できません。絶対に不可能とは言えません
が、パスワードに比べれば極めて安全になります。
ぜひ、このようなしくみを持ったシステムを開発し
てほしいと思います。

終わりに

　今回は、今現在大きな問題にはなっていないけれ
ども、近い将来必ず大きな問題となってくるIoTの
話題と、それを考察するという内容でした。問題が
起こってから考えるのではなく、一歩先に思いを馳
せなければ、そのときが本当に来てしまったときに
右往左往するか、あるいは問題に目をつぶってしま
うことになるでしょう。そうならないように、今日
（今回）は、明日のことを少し考えてみました。s

OpenSSHは、暗号や認証の技術を使って遠隔地のコンピュータ
と安全に通信するためのソフトウェアです。システムの開発／運
用もクラウド上で行うことが多い昨今、SSHはIT技術者に必須の
技術です。
本書は、OpenSSHクライアント／サーバの基本的な使い方と、
TCPポートフォワード、認証エージェント転送、X11転送、簡易
VPNなどの応用的な使い方を説明します。セキュリティを確保す
るための注意点についても言及します。
OpenSSH-4.2～6.6対応。Red Hat系／Debian系OS両対応。

川本安武 著
A5判／400ページ
定価（本体2,980円＋税）
ISBN 978-4-7741-6807-4

・インフラエンジニア
・ネットワークエンジニア
・運用エンジニア
・Webアプリケーション開発エンジニア
・IaaSなどのクラウドサービスを利用している技術者
・リモートからサーバに接続して作業行う技術者

132 - Software Design

　Android好きが集まるユーザコミュニティ「日
本Androidの会」をご存じでしょうか。すでに6

年におよぶ活動を続けており、参加いただいて
いる方は2万人を超えています。Androidコミュ
ニティ規模としては全世界から見ても稀有な存
在と言われています。この連載も日本Androidの
会のメンバーがリレー執筆を行っており、気づい
たら4年目に突入しました。今回は日本Android

の会の紹介とともに、コミュニティ活動の楽しみ
方や運営について紹介したいと思います。

日本Androidの会とは

　日本Androidの会はコンソーシアムや業界団
体ではなく、Androidをネタにして、好きなこ
とを行い楽しもうというユーザコミュニティで
す。目指しているのは、この楽しみから広がる
Androidの普及を促進することです。
　その活動母体はメーリングリストですが、そ
れ以外にも日本最大級のAndroidの祭典Android

Bazaar and Conference（以下ABC）を年2回の
ペースで開き、毎月東京エリアで開く無料勉強
会はもとより、全国36ヵ所にわたる地方支部で
開催される集いを通した活動を行っています。
　入会するには、会のWebページ 注1でメーリン
グリスト（Googleグループ）にメールアドレスを登
録します。2014年11月27日現在22,080名の方
に登録いただいており、会のイベント告知や案内
注1） http://www.android-group.jp/

を配信しています。また、会員同士のQ&Aをは
じめ、技術の紹介や告知も行われています。
　会で主催するイベント「ABC」は毎回掲げる
テーマに沿って、カンファレンス（セミナー会場）
とバザール（展示会場）の2本柱で行っています。
前回の「ABC 2014 Spring注2」はABCの開催とし
て10回目、5年目の記念イベントだったので、テー
マを「Android REBORN! ～次の5年へのクロス
ポイント」とし、会場の秋葉原ダイビルとUDXに
3,000人を超す方々が来場しました（写真1）。
　このときは、開催の前々日にGoogleのスマー
トウォッチ開発環境「Android Wear SDK」が発表
されるなどのサプライズがあり、皆がこぞって「我
日本一也」とばかりにWearアプリ開発の発表が行
われました。公開から1日ちょっとしかない状態
なのにアプリの展示が多数行われるなど、まさに
最先端を体感し、その熱気と興奮が忘れられない
イベントとなりました。当日の目玉はGoogleから
登壇した、Google Playのエンジニアリング・ディ
レクターChris Yerga（クリス・ヤーガ）さんであ
り、ここでもAndroid Wearの紹介がされるなど、
まさにREBORN（生まれ変わり）するAndroidに
ぴったりなイベントとなりました。偶然のサプラ
イズが開発意欲に火をつけ、それがコミュニティ
の中で飛び火し、多くの方の気持ちをあおり、盛
り上げ、一つのムーブメントとしてイベント会場
でお祭りになる。このような事件が起こるのも、
コミュニティのおもしろいところです。
注2） http://www.android-group.jp/conference/abc2014s/

G o o g l e A n d r o i d

嶋 是一　SHIMA Yoshikazu
NPO法人日本Androidの会 理事長

モバイルデバイス初のオープンソースプラットフォームとして、エ
ンジニアから高い関心を集めるGoogle Android。いち早くそのノ
ウハウを蓄積したAndroidエンジニアたちが展開するテクニックや
情報を参考にして、大きく開かれたAndroidの世界へふみだそう！

日本Androidの会とは
～コミュニティにより広がる
Android創作活動

第54回Android
エンジニアからの

招待状

http://www.android-group.jp/
http://www.android-group.jp/conference/abc2014s/

132 - Software Design Jan. 2015 - 133

日本Androidの会とは ～コミュニティにより広がるAndroid創作活動 第54回

　技術関連だとほかに、「組み込み部」はAndroid

の組み込み開発に特化した活動を行い、「ものづ
くり部」はロボットや新しいAndroidデバイスを
考案試作する活動を行っています。また新しい
活動として「VR部」、そして「ドローン部（仮称）」
などが今後立ち上がる予定です。
　WG以外の取り組みも行っています。一つは
教育の取り組みとして「Tech Institute」という、
アプリ開発者を育てるプログラミングスクール
の実施があります注6。高校生から社会人まで幅広
い層の方が受講されており、最終目標は未経験
者でもアプリをGoogle Playで公開することで
す。これは、㈱角川アスキー総合研究所と、会
場である早稲田大学エクステンションセンター、
そしてサムスン電子ジャパン㈱で運営されてお
り、日本Androidの会として、半年で75回にお
よぶ講義の教材作成や企画協力を行っています。
また、この全9巻にもわたるAndroidアプリの
開発方法や企画手法の書かれた教材は、Creative

Commons注7としてどなたでも見られるように公
開します。この取り組みから、アプリ開発者の
すそのが広がることを期待して活動しています。
　教育分野ではこのほかにも、文化服装学院と
インターンシップの取り組みも行っています。
ファッションデザイナーを多数輩出する国内最
大手の服飾学校ですが、こちら学生のインター
ンシップ先として、日本Androidの会が受け入
れています。目的はAndroid技術と異文化の融
合で、Androidアクセサリ（周辺装置）とファッ

注6） http://techinstitute.jp/

注7） http://creativecommons.jp/licenses/

WGなどの取り組み

　メーリングリストを通じて情報交換するだけで
なく、特定のテーマを掲げてメーリングリストよ
りも少人数で活動するWGや部活動があります。
WGは独自で活動を行い、イベントで活動報告や
成果発表などの出展を行っています。もし自分
の興味と一致するならば、このようなWGグルー
プ活動から入るのがおもしろいでしょう。
　「OBFT（Open Beacon Field Trial）注 3」は、
Bluetooth Low Energyの技術を用いて近接無線
による位置検出を行う技術を用いた、参加者が自
由に使えるフィールドトライアルを実施するグ
ループです。AppleのiOSではiBeaconと呼ばれ
るしくみです。2014年8月には、神奈川県六角橋
商店街でフィールドを設営するため、OBFTメン
バーが商店街にBeaconデバイスを設置し、商店
街としては世界初の取り組みを実現しました（写
真2）。もしビーコンを用いたアイデアがあるのな
らば、この六角橋商店街でお試しください。
　「学生部注4」は大学生が構成メンバーとなり、
活動を通じて知識やスキルの向上など、切磋琢
磨できる場所を提供することを目的に活動を行っ
ています。
　「福祉部注5」は“福祉の世界にもAndroidを”とい
うコンセプトのもと、「福祉」に特化したアプリを
制作することを目的としたグループです。

注3） http://openbeacon.android-group.jp/

注4） http://student.android-group.jp/

注5） http://fukushi.android-group.jp/

 ▼写真1　ABC 2014 Springの様子 ▼写真2　Beaconを設置するOBFTの活動のひとコマ

http://openbeacon.android-group.jp/
http://student.android-group.jp/
http://fukushi.android-group.jp/
http://techinstitute.jp/
http://creativecommons.jp/licenses/

134 - Software Design

Android
エンジニアからの招待状

presented by Japan

Android Group
http://www.android-

group.jp/

ション文化の融合を目指して取り組んでいます。
実際にLEDの点滅をスマートフォンからコント
ロールできるドレスやアクセサリを制作し、卒
業発表として開催したファッションショーで、
それらデバイスの披露がされました（写真3）。

コミュニティを
運営するために

　「自律分散」が日本Androidの会のコミュニ
ティ運営の基本思想です。
　人が集まり活動を行う場合、運営の方針が必
要になります。もし業界団体や標準化を行う団
体であった場合、参加者の利益や思いを実現す
るために発言力を高める必要があります。その
ためには中央集権を行い、トップダウンで活動
するほうが効果的でしょう。しかし、コミュニ
ティ運営は異なります。とくに日本Androidの
会はユーザコミュニティであり、参加している
人たちが楽しむことのほうが、会のプレゼンス
を保つよりも大切なことです。コミュニティ活
動が継続的に盛り上がるためには、「おもしろ
い！」「取り組みたい！」と思った人が、思いど
おり、存分に活動できる環境があることが大切
と考えます。そのためには自分から立ち上がり、
自分から動き始めやすくする必要があります。
　何か行おうとしたときに、毎回中央の組織に
問い合わせ、許可、指示を仰ぐのは、さまざま
な足かせとなります。仰ぐ形で問い合わせても
多くの場合は「何々がだめ、こうやるべき」とし
か返ってきませんので、やる気が削がれ、小さ

い小粋な提案があっても取り組むのが億
おっくう

劫になっ
てしまいます。また、いちいち仰いでいたら時
流に追いつけません。何にしろモバイルの世界
で起こっている技術革新は、1日1日と進化しま
す。問い合わせるよりは、新しいことに取り組
んだほうがよっぽどおもしろいことができます
し、自分のモチベーション向上にもなります。
　そのため支部を立ち上げても、冷たい話かも
しれませんが、日本Androidの会とは別組織と
して動いてもらいます。自分たちで企画して、
自分たちで運営することが、活動の基本原理で
す。新しい支部を作るときは活動したい人がい
れば、すぐに設立することができます。これが
「自律分散」です。日本Androidの会としてのイ
ベントや取り組みのときには、本会注8から一緒
に活動する打診を行い、参画を促すような形で
運営しています。
　中央の組織に問い合わせることは、不必要と
は考えませんが、これを最小にして各個の自由
な活動を広げられる方向にバランスを取りながら
運営しています。

日本Androidの会の
組織

　前述のとおり、日本Androidの会は参加者には
無料で参加いただけるイベントを多く開催してい
ます。これができているのも、スタッフのみなさ
んには（自発的な意味で）ボランティアとして集
まっていただき、そして活動対価も無償で行って
いただいているところに大きく依存しています。
とはいえ、実際には会場の費用もかかれば、イ
ベントでの掲示物やノベルティなどの制作物、工
作セミナーなどでの部品代など、運営費は必ず
かかります。このような運営費は企業などの賛助
会員からの賛助費で賄われています。
　日本Androidの会にはコミュニティ活動とは
別に、特定非営利活動法人日本Androidの会注9

注8） 会社の組織だと本部、とかの呼称になりますが、自律分散
だとそぐわないため、このような呼び方になっています。

注9） http://npo.android-group.jp/

 ▼写真3　 Android技術を融合した作品が発表された
ファッションショー（卒業発表）

http://www.android-group.jp/
http://npo.android-group.jp/

134 - Software Design Jan. 2015 - 135

日本Androidの会とは ～コミュニティにより広がるAndroid創作活動 第54回

というNPO法人があります。こちらはコミュニ
ティの運営を支援・補助するために運営されて
います。賛助会員からの賛助費はNPO法人で受
け取り、コミュニティ活動からの要請に応じて
年間計画を立案し、活動の支援を行う形を取っ
ています。
　コミュニティ活動の計画立案や実際の活動は
「コミュニティ運営委員」で行われており、現在
筆者も含む87名のメンバーが加わっています。
Androidの普及に向けて精力的に最先端の活動
をされている方々であり、運営委員の一定数の
推薦により加わることができます。もし世の中
で行ってみたい普及活動やネタがあるならば、
会の運営に加わっていただけると幸いです。
　このような組織体制は長年の取り組みによって
構築されてきました。当然コミュニティの活動な
ので、内部で揉めて運営が炎上することも多々あ
ります。しかし、それら1つ1つを悩んで考えて解
決し、時には身を切るような思いで、より良いしく
みやルールを組み上げてきたため、なんとか今日
まで運営が継続できているものと思っています。

アンテナを持つ人の
集まり

　気が付けばAndroidが発表されて7年目に入
り、これ自体は新技術とは言えなくなりました。
また、Androidも全世界のスマートフォンの8割
に搭載されており、普及活動の役割は終わった
のではないかと指摘されることもあります。
　しかしスマートフォン以外のAndroidの普及
は、まだまだこれからです。そして、Androidが
新技術でなくなったかというと、そうではなく、
新しい技術はAndroidの周辺で多く起こっていま
す。そういう情報に鋭いアンテナを持ち、興味を
持つことに長けたメンバーが運営委員に数多く
います。そもそも7年前に、モバイルのオープン

OSが登場したことを、アンテナに引っかけて集
まったメンバーです。それがたまたまAndroidで
あっただけで、Androidだけに興味あるわけでは
ないと思っています。しかし、このAndroid登場
のおかげで、そのような方々が一度でも一点に集
まり、コミュニティ活動を行うときにふたたび集
う場所となっている、これが日本Androidの会と
して存在する意義の一つだと思っています。
　おもしろいのが、新しい技術の勉強会やイベ
ントなどに行くと、必ずと言っていいほど日本
Androidの会のメンバーに会うことです。また
そういう人たちと、一緒に将来を予測、体感、
普及していく活動も、筆者にとってとても刺激
的なことです。

12月21日、
ABC 2014 Winter開催！

　本文でも紹介したABCですが、次回は2014

年12月21日（日曜日）に品川駅から徒歩で行け
る東海大学高輪キャンパスで開催します注10。ほ
とんど本誌本号発売と同時になりますが、もし
興味持っていただき、間に合いましたらご来場
ください。今回のテーマは「Android Link to

Next Generation!」です。Android Lバージョン
は、スマートフォンだけでなく、スマートウォッ
チ、テレビ、自動車のOSとしてリリースされ
ました。Androidはまさに前回のABCのテーマ
であったREBORNを行い、異なるプラット
フォームのOSとして次世代のスマートデバイ
スへの橋渡しを行うところです。それを体感す
るのが今回のイベントです。
　このようなイベントをきっかけに、さまざま
なコミュニティ活動に興味を持っていただける
と幸いです。｢

注10） http://abc.android-group.jp/2014w/

嶋 是一 （しま よしかず）　特定非営利活動法人日本Androidの会 理事長

モバイルに関連する技術開発を行うかたわら、モバイル技術の普及活動行に取り組む。KDDIテクノロジーに所属。著書に
『Google Android入門 ~携帯電話開発の新技術 2008』（技術評論社）など。 Mail sim@android-group.jp Twitter @shimay

http://abc.android-group.jp/2014w/

136 - Software Design

Atomic Hostの
Public Betaを開始

　米国時間で2014年11月11日（日本時間：同
12日）に、Red HatはRed Hat Enterprise Linux

（以降、RHEL）Atomic Hostのパブリックベータ
の提供を開始しました。すでにRHEL 7には
Dockerが同梱注1され、利用ができるものの、昨
年来アナウンスされてきた「Dockerに最適化さ
れたRHEL」が初めて公開されたことになります。

　Atomic Host は PROJECT ATOMIC 注 2 を
アップストリームとし、Fedora/CentOSでの
統合・テストを経て企業向けのサポートを提供
する製品です。2015年の早い時期には製品版
（GA：General Availability）としてのサポート
が開始されるものと思われます。

いますぐ始められる
Docker

　Atomic Hostは利便性を考慮して複数の配布

第 9 回 Red Hat Enterprise Linux Atomic Host登場！

注1） RHEL 7のインストーラには含まれないものの、Extrasチャネルを追加することで利用可能。
注2） http://www.projectatomic.io

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

Red Hat Enterprise Linux Atomic Hostは昨今注目を集めているDockerに最
適化されたRed Hat Enterprise Linux 7として開発が進められています。今回
はAtomic Hostの概要と特徴を紹介します。

レッドハット（株）サービス事業統括本部プラットフォームソリューション統括部
ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）

 ▼図1　Atomic Hostの配布形態

http://www.projectatomic.io

136 - Software Design Jan. 2015 - 137

第 9 回Red Hat Enterprise Linux Atomic Host登場！

形態注3をとっています。
　また、Google Compute Engine注4やAmazon

Web Service注5上の評価も可能となっているた
め、Dockerを触ってみようという読者は、ぜ
ひ試用してください。

RHELのサブセットを
最適化

　Atomic Hostを、「Dockerに最適化された
RHEL」と表現しました。より正確には「RHEL

7のサブセットをベースにパッケージングや初
期設定をDocker用に最適化したもの」と言えま
す。パブリックベータではRHEL 7（x86_64）
にも含まれる380程度注6のRPMパッケージで

構成されており、RHELとAtomic Hostは図2
のような関係になっています。
　Atomic Hostを特徴づけている主なソフト
ウェアはDocker/Kubernetes/rpm-ostreeの 3

つです。前二者については、本誌2014年12月
号の第1特集「Dockerを導入する理由」で紹介
されていたのでご存じの読者が多いと思います。
Kubernetesは米Google社が推進しているOSS

プロジェクトであり、Red HatはKubernetes

のAtomic Hostへの採用にあたって米Google

社と協業しています。一方で、rpm-ostreeは
あまり馴染みがないと思いますが、rpm-ostree

こそがAtomic Hostのキモです。このことは
Atomic Hostで利用する主な管理ツールである

注3） Red Hatのアカウントを作成すればダウンロードが可能。
注4） https://access.redhat.com/articles/rhel-atomic-install-gce
注5） https://access.redhat.com/articles/rhel-atomic-install-aws
注6） RHEL 7を“Minimum”でインストールした場合と比較するとRPMパッケージが60程度多い。

 ▼図2　RHELとAtomic Hostの関係

RHEL

OSTree
“trees”

RHEL
Atomic
Host

RHEL
Extras

Kernel

systemd

anaconda

docker

kubernetes

rpm-ostree

SELinux

Network
Manager

Subscription
Manager

カーネル、ドライバ、cgroups、namespace

docker デーモンや他のサービスを起動

ベアメタルへのインストール

コンテナへのセキュリティ、ポリシーを提供

ネットワークの設定

ツリーの更新とコンテナイメージのポータルに接続

コンテナの構築、配布、イメージベースのコンテナ操作

マルチホストのオーケストレーション

Atomic ツリーの作成、Atomic の更新とロールバック

https://access.redhat.com/articles/rhel-atomic-install-gce
https://access.redhat.com/articles/rhel-atomic-install-aws

138 - Software Design

atomicコマンドが図3のとおり、rpm-ostree
コマンドへのシンボリックリンクであることか
らもわかります。

Atomic Hostは
RHELではない

　Atomic Host の Public Beta を Red Hat の
Customer Portal注7からダウンロードしてイン
ストールすると、見た目はRHEL 7と大きな
変化はありません。しかしDockerへの最適化
によって、通常のRHEL 7とは随所で異なっ
ています。

yumが使用できない

　Atomic Hostでは yumコマンドの利用は「禁
止」されています。atomicコマンドを用いて
“tree”のバージョンを確認・更新・ロールバッ
ク注8します（図4）。

ファイルシステム
レイアウトが特殊

　これはロングオプションを付けてlsコマンド
を実行すればわかりますが、/（ルート）以下に
あるディレクトリは/var/や/usr/へのシンボ

sudo atomic status
 VERSION ID OSNAME REFSPEC
* 7.0.0 dcf0c846ff rhel-atomic-host rhel-atomic-host-beta-ostree:rhel-atomic-host/7/ｭ
x86_64/standard
 7.0.1.0 335ae35519 rhel-atomic-host rhel-atomic-host-beta-ostree:rhel-atomic-host/7/ｭ
x86_64/standard

sudo atomic upgrade
Updating from: rhel-atomic-host-beta-ostree:rhel-atomic-host/7/x86_64/standard

496 metadata, 2235 content objects fetched; 109562 KiB transferred in 446 seconds
Copying /etc changes: 10 modified, 4 removed, 37 added
Transaction complete; bootconfig swap: yes deployment count change: 1
Changed:
 docker-1.2.0-1.8.el7.x86_64
 docker-storage-setup-0.0.3-1.el7.noarch
 glib-networking-2.40.1-1.atomic.el7.x86_64
 glib2-2.40.0-1.atomic.el7.x86_64
 kernel-3.10.0-123.9.2.el7.x86_64
 kubernetes-0.4-368.0.git8e1d416.el7.x86_64
 tzdata-2014i-1.el7.noarch
Updates prepared for next boot; run "systemctl reboot" to start a reboot

sudo atomic status
 VERSION ID OSNAME REFSPEC
* 7.0.0 dcf0c846ff rhel-atomic-host rhel-atomic-host-beta-ostree:rhel-atomic-host/7/ｭ
x86_64/standard
 7.0.1.0 335ae35519 rhel-atomic-host rhel-atomic-host-beta-ostree:rhel-atomic-host/7/ｭ
x86_64/standard

sudo atomic rollback

 ▼図4　atomicコマンドの扱い方（バージョン確認・更新・ロールバック）

注7） http://red.ht/14BVxKE
注8） subscription-managerによるCustomer Portalへの登録が必要。

ls -l /usr/bin/atomic
lrwxrwxrwx. 1 root root 10 11月 13 00:36 /usr/bin/atomic -> rpm-ostree

 ▼図3　atomicコマンドの実体

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

http://red.ht/14BVxKE

138 - Software Design Jan. 2015 - 139

第 9 回Red Hat Enterprise Linux Atomic Host登場！

リックリンクとなっています。Atomic Hostで
は起動の初期段階注9でchrootが行われ、「物理
的なroot」は/sysroot/にマウントされています。
Dockerではそれぞれのコンテナがchrootされ
たファイルシステムを利用するように設定され
ますが、Atomic Hostは根幹からchrootされた
RHELになっていると言えます（図5）。
　また、/sysroot/ostreeへのシンボリックリ
ンクとなっている/ostreeディレクトリには、
boot、deploy、repoというディレクトリがあ
ります（図6）。
　repoディレクトリはGitによってバージョン
管理されており、Atomic Host上に配置される
ファイルの「ソース」となっています。

　deployディレクトリは複数の
バージョンのRHELを格納す
るディレクトリで、deploy/
rhel-atomic-host/deploy/ 以
下はrepo/objects/ディレクト
リ以下にあるファイルへのハー
ドリンクです。たとえば、図7
のようにvmlinuzファイルが i

ノード番号 794291であれば、
repo/objects/以下に同じiノー
ド番号となっているハードリン
ク先を見つけることができます。
　bootディレクトリも同様で、
シンボリックリンクと repo
ディレクトリへのハードリン
クを活用してデータ容量を最
小限に抑えつつ、バージョン

管理を行っています。
　つまり、Atomic HostではRPMパッケージ
ではなくファイルをバージョン管理の粒度とす
るために、特殊なファイルシステムレイアウト
を採用しているのです。したがって、/ostree
ディレクトリを直接手動で編集することは禁止
されています。

tunedによる
パフォーマンスの最適化

　Atomic Hostはパフォーマンス面でもDocker

に最適化されています。RHELではバージョン

6以降、カーネルのパラメータなどを手動で設
定しなくてもtunedのプロファイルによって自
動的にパフォーマンスの最適化が可能です。
Atomic Hostではデフォルトでは図8のように
“atomic-guest”プロファイルが設定されています。

まとめ

　これまで示してきたように、Atomic Hostは

ls -l /
total 18
lrwxrwxrwx. 1 root root 7 Nov 13 00:36 bin -> usr/bin
drwxr-xr-x. 7 root root 1024 Nov 18 21:50 boot
drwxr-xr-x. 20 root root 3220 Nov 18 20:22 dev
drwxr-xr-x. 80 root root 4096 Nov 18 20:22 etc
lrwxrwxrwx. 1 root root 8 Nov 13 00:36 home -> var/home
lrwxrwxrwx. 1 root root 7 Nov 13 00:36 lib -> usr/lib
lrwxrwxrwx. 1 root root 9 Nov 13 00:36 lib64 -> usr/lib64
lrwxrwxrwx. 1 root root 9 Nov 13 00:36 media -> run/media
lrwxrwxrwx. 1 root root 7 Nov 13 00:36 mnt -> var/mnt
lrwxrwxrwx. 1 root root 7 Nov 13 00:36 opt -> var/opt
lrwxrwxrwx. 1 root root 14 Nov 13 00:36 ostree -> sysroot/ostree
dr-xr-xr-x. 286 root root 0 Nov 18 20:22 proc
lrwxrwxrwx. 1 root root 12 Nov 13 00:36 root -> var/roothome
drwxr-xr-x. 27 root root 880 Nov 18 21:38 run
lrwxrwxrwx. 1 root root 8 Nov 13 00:36 sbin -> usr/sbin
lrwxrwxrwx. 1 root root 7 Nov 13 00:36 srv -> var/srv
dr-xr-xr-x. 13 root root 0 Nov 18 20:22 sys
drwxr-xr-x. 11 root root 103 Nov 13 00:33 sysroot
lrwxrwxrwx. 1 root root 11 Nov 13 00:36 tmp -> sysroot/tmp
drwxr-xr-x. 12 root root 4096 Nov 13 00:36 usr
drwxr-xr-x. 24 root root 4096 Nov 13 00:37 var

 ▼図5　Atomic Hostのファイルシステムレイアウト

ls -l /sysroot/ostree/
total 0
lrwxrwxrwx. 1 root root 8 Nov 18 21:50 boot.0 ->ｭ
boot.0.1
drwxr-xr-x. 3 root root 29 Nov 18 21:50 boot.0.1
drwxr-xr-x. 3 root root 29 Nov 13 00:36 deploy
drwxr-xr-x. 7 root root 85 Nov 18 21:50 repo

 ▼図6　/sysroot/ostreeディレクトリの内容

注9） dracutのプラグインによってchrootされている。

140 - Software Design

さまざまな最適化が施されており、Docker専
用の「ホスト」として利用しやすくなっています。
また、Kubernetesによって複数のホストを管
理する機能はGA版で提供が開始される予定と
なっており、さらに利便性が向上するものと思
われます。Red Hatが提供するPaaSである
OpenShiftも次のバージョン 3.0からAtomic

Hostベースとなる予定であり、今後しばらく
は注目する必要がありそうです。
　次回はセットアップが終わったAtomic Host

上で、コンテナを実行する方法について紹介す
る予定です。ﾟ

tuned-adm list
Available profiles:
- atomic-guest
- atomic-host
- balanced
- desktop
- latency-performance
- network-latency
- network-throughput
- powersave
- sap
- throughput-performance
- virtual-guest
- virtual-host
Current active profile: atomic-guest

 ▼図8　Atomic Hostの tunedのプロファイル

ll -i /sysroot/ostree/deploy/rhel-atomic-host/deploy/
335ae3551939b8de8fd6663ec9db834b1d2150fe7a5b9b1017b74c1070006888.0/
boot/vmlinuz-3.10.0-123.8.1.el7.x86_64-
513f2a5e7f1ed9cc4e4fe655a92f187b4324f4f4f569b9d474d683581c34d5c3
794291 -rwxr-xr-x. 2 root root 4904912 Jan 1 1970 /sysroot/ostree/deploy/rhel-atomic-host/
deploy/335ae3551939b8de8fd6663ec9db834b1d2150fe7a5b9b1017b74c1070006888.0/boot/vmlinuz-3.10.0-
123.8.1.el7.x86_64-513f2a5e7f1ed9cc4e4fe655a92f187b4324f4f4f569b9d474d683581c34d5c3

find /sysroot/ostree/repo/ -inum 794291
/sysroot/ostree/repo/objects/2d/8a6c1c05347867fc31fbd998ff88786911d82f2ec38cde0fe48928321772a9.file

 ▼図7　repo/objects/へのハードリンク

LPIC（Linux技術者認定試験）取得希望者の多くは、資格取得
を決めてからの準備期間が限られています。
そこで本書では、LPICレベル1を対象に、「このポイントを押さえて
おけば合格ラインを突破できる」という最重要ポイントを厳選した
解説と演習問題をお届けします。
また、単なる試験対策の知識ではなく、現場で役立つ知識を最短
距離で効率よく学習するには、どのようにすればよいか、仕事をし
ながらゼロから3週間で確実に合格するための学習法を詳解しま
した。さらに、LPIC取得者による合格体験記＋業務での活用レ
ポート、そして2015年に予定される試験改訂情報も掲載しました。

中島能和、矢越昭仁 著
B5判／148ページ
定価（本体1,980円＋税）
ISBN 978-4-7741-6672-8

・LPIC資格（レベル1）を取得したい方
 とくに短期集中で習得したい方
・LPICに興味があり、概要と試験対策を知りたい方
 とくに効率よく学習したい方

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Jan. 2015 - 141

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

2014年9月号
 第1特集
この夏に克服したい2つの壁
C言語のポインタと
オブジェクト指向
 第2特集
止まらないサービスを支えるシステム構築の基礎
クラスタリングの教科書
 一般記事
・SoftLayerを使ってみませんか？
・NICをまとめて高速通信！（前編）
・Serf・Consul入門 特別定価（本体1,300円＋税）

 第1特集

今ふたたびのJava
言語仕様・開発環境・デバッグ機能

 第2特集
オンプレミスを制するものはクラウドを制する
サーバの目利きになる方法［前編］
 一般記事
・�オーケストレーションツールSerf・Consul入門
［Consul編］
・SoftLayerを使ってみませんか？［2］　ほか

2014年10月号

定価（本体1,220円＋税）

 第1特集
［多機能］［高速処理］［高負荷対策］
そろそろNginx移行を考えている
あなたへ
 第2特集
知っているようで知らない
DHCPサーバの教科書
 一般記事
・OpenSSLの脆弱性"Heartbleed”の教訓（前編）
・Webアプリのパフォーマンス改善（最終回） ほか

2014年7月号

定価（本体1,220円＋税）

2014年11月号
 第1特集
Docker・Ansible・シェルスクリプト
無理なくはじめる
Infrastructure as Code
 第2特集
オンプレミスもクラウドも縦横無尽
サーバの目利きになる方法［後編］
 一般記事
・8086時代から今を俯瞰する　CPU温故知新
・はてな謹製、サーバ管理ツール　Mackerel入門

定価（本体1,220円＋税）

2014年12月号
 第1特集
急速に普及するコンテナ型仮想環境
Dockerを導入する理由
 第2特集
基礎の基礎から押さえる必須技術
やさしくわかるVPNの教科書
 一般記事
・bashの脆弱性“Shellshock”その影響と対策
・SoftLayerを使ってみませんか？［最終回］
・Jamesのセキュリティレッスン［2］

定価（本体1,220円＋税）

 第1特集
システムログからWebやDB、ビッグデータの基礎
まで
ログを読む技術
 第2特集
forkを通して考える・試す・コードを読む
Linuxカーネルのしくみを探る
 一般記事
・OpenSSLの脆弱性"Heartbleed”の教訓（後編）
・使ってみよう！ tcpdump

2014年8月号

定価（本体1,220円＋税）

http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

142 - Software Design

お勧め！　10.1-RELEASE

　安定版FreeBSDの最新版にして10系第2回目の
リリースとなる「FreeBSD 10.1-RELEASE」が登
場しました。当初の予定から2週間ほど遅れました
が、2014年11月14日（協定世界時）にプロジェクト
から公開されました。amd64版、arm版、i386版、
ia64版、powerpc版、powerpc64版、sparc64版のイ
ンストールイメージが提供されています。
　10.1-RELEASEからは従来のインストールイ
メージに加えて、UEFI注1対応版のインストールイ
メージの提供が開始された点も注目されます。
UEFI版が提供されているのはamd64版のみです。
現在市場に流通しているラックマウントサーバや
PCは従来のBIOSとUEFIの双方に対応していま
すが、向こう数年でUEFIへの移行が進むものとみ
られます。今後はUEFIを使ったシステムの起動が
デフォルトになっていくでしょう。
　amd64版と i386版に関しては仮想ディスク形式
も提供されています。提供されている仮想ディスク
のフォーマットは次の4種類です。

●● QCOW2（QEMU Copy-on-Write形式）
●● RAW（通常のディスク形式）
●● VHD（Microsoft Hyper-V形式）
●● VMDK（VMware形式）

　クラウドプラットフォーム向けにはAmazon EC2

向けのインスタンスとMicrosoft Azure向けのイン
スタンスが提供されています。FreeBSDプロジェク

注1）	Unified Extensible Firmware Interfaceの略。OSとプラッ
トフォームファームウェア間のソフトウェアインターフェース
を定義する仕様。従来のSystem BIOSを強化している。

トは以前からAmazon EC2向けのインスタンスを
提供してきましたが、これからはMicrosoft Azure

も重要なプラットフォームになる見通しです。Micro

softはFreeBSDをゲストオペレーティングシステ
ムとして正式サポートすることを検討しており、企
業サポートが必要なケースなどで採用しやすいプ
ラットフォームになる可能性がでてきています。
　10.1-RELEASEはこれまでのどのバージョンよ
りもARMのサポートが充実しています。これは
FreeBSDを組込み機器などで利用しているベンダ
からのサポートが積極的なためです。ARMは消費電
力が少ないといった特徴があることから、組込み機
器での活用が進んでいます。そうしたシーンで
FreeBSDが利用されているため、ARMの機能はリ
リースを重ねるごとに充実しています。この傾向は
今後も継続する見通しです。
　すでに前回紹介済みのものもありますが、10.1-

RELEASEは10.0-RELEASEにいくつかの新機能
が取り込まれているほか、SMP（Symmetric Multi

processing）におけるパフォーマンスやスケーラビ
リティ向上が図られています。とくにストレージ関
連の機能が強化されており、ストレージ系で採用し
ている場合にはアップグレード価値の高いバージョ
ンとなっています。

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第15回 ❖FreeBSD 10.1-RELEASEで何が変わったの？【パート2】

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

Jan. 2015 - 143

▶第15回◀
FreeBSD 10.1-RELEASEで何が変わったの？ 【パート2】

　NFSという点でいきますと、NFSデーモンにあ
たりnfsd(8)サーバのバージョンが4.1へアップグ
レードされました。この結果RFC 5661のサポート
が実現しています。細かい変更点になりますけれど
も、mount_nfs(8)ユーティリティで「-o vers=4」と
いったように、使用するバージョンも指定できるよ
うに拡張が実施されています。

GEOMの性能向上

　iXsystemsスポンサードのもとで実施された改良
はGEOMサブシステムにも及んでいます。GEOM

サブシステムはI/Oダイレクトディスパッチがサ
ポートされましたし、スレッド回りの処理が改善し
ています。GEOM RAIDおよびvirtio_blk(4)ドラ
イバ、virtio_scsi(4)ドライバ、xen(4) blkfrontド
ライバにはUnmapped I/Oのサポートも追加されま
した。
　同様の改善はCAMサブシステムにも取り込まれ
ています。10.1-RELEASEのCAMサブシステムは
ロック回りがより細かく実施されるようになったほ
か、ダイレクトディスパッチのサポート、マルチ
キューのサポートなどが実現しています。GEOMサ
ブシステムと組み合わせることで、SMPにおいて従
来よりも性能の向上が期待できます。
　GEOMのほかの特徴としては、いくつかの
GEOMプロバイダでリサイズ系の機能が強化され
た点をあげることができます。従来よりもリサイズ
関連の機能の強化が図られていて、動的にサイズを
変更するといった作業がやりやすくなっています。

LSI MegaRAID SAS
オフィシャルドライバ導入

　LSIのスポンサードのもとでmpr(4)ドライバと
mrsas(4)ドライバが追加された点も注目ポイントで
す。GENERICカーネルに取り込まれています。こ
れらデバイスドライバはラックマウントなどエン
タープライズシーンで採用されるサーバでよく採用
されているもので、LSI Fusion-MPT 3 12Gb SCSI/

SATAコントローラへの対応、LSI MegaRAID SAS

　前回に引き続いて、注目の新機能を紹介していき
ましょう。

IPv4/IPv6、
UDP-Liteに対応

　FreeBSD 10.1-RELEASEのIPv4およびIPv6

スタックには、新しくUDP-Lite（Lightweight

User Datagram Protocol；RFC 3828）サポートが追
加されました。UDP-Liteはインターネットでの動
画や音声の配信を主な目的としたプロトコルです。
UDPと同じようにパケットが到達したかどうかの
確認は実施しません。加えて、データが破損してい
てもそのまま転送を続けるといった特徴がありま
す。動画や音声の場合にはデータの破損よりも再送
で発生する遅延のほうが問題になりますので、動画
や音声の配信に適したプロトコルとされています。

iSCSI/NFS
パフォーマンス向上と新機能

　FreeBSDはストレージシステムのオペレーティ
ングシステムとしての普及が進んでいます。細かい
点になりますけれども、sysctl(8)の値としてkern.
iscsi.fail_on_disconnectionが追加された点
も押さえておきたいところです。これはターゲット
とのコネクションが切れた場合に iSCSIクライア
ントがディスクデバイスをデタッチするのを有効に
するためのフラグです。従来の実装ではコネクショ
ンが回復するまで待機していましたが、この部分の
挙動を制御できるようになりました。この変更は
FreeBSD Foundationのスポンサードのもとで実施
されました。
　10.1-RELEASEには iXsystemsのスポンサード
のもとで実施されたカーネルRPCコードが取り込
まれています。これはNFSサーバの基盤技術とし
て活用される技術で、SMPにおけるパフォーマンス
の向上とスケーラビリティの向上が実現していま
す。iXsystemsはほかにも iSCSI関連のパフォーマ
ンスの改善や新機能の追加にスポンサードしていま
して、その成果物が10.1-RELEASEには取り込ま
れています。

144 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

への対応などが実現しています。これまでFree

BSDではmf i(4)デバイスドライバで対応していま
したが、10.1-RELEASEからはmrsas(4)で代替可
能です。mrsas(4)ドライバを有効にする場合には

/boot/loader.confに「hw.mfi.mrsas_enable=1」の設
定を追加してください。
　なお、今のところmfiutil(8)ユーティリティは
mrsas(4)ドライバでは動作しないので、mrsas(4)で
ユーティリティを使いたい場合にはLSIがリリー
スしているユーティリティを導入するか、または対
応するまでmfi(4)ドライバとmfiutil(8)ユーティリ
ティを使うといった方法が考えられます。10.1-

RELEASEのmf i(4)ドライバはUnmapped I/Oに
対応していますし、MegaRAID Furyカードのサ
ポートも追加されています。実際にどちらのドライ
バを採用するかは、mfi(4)とmrsas(4)の双方で負荷
試験を実施して、より安定しているほうを採用する
のがよいでしょう。

ZFSのデフォルト性能向上

　ZFS回りではsysctl(8)値として「vfs.zfs.zio.
use_uma」がふたたび有効になった点が注目ポイント
です。この値はマルチコアのマシンでメモリを豊富
に搭載している場合にプロセッサの負荷割合を下
げ、さらにZFSのパフォーマンスを向上させるた
めのフラグです。カーネル内メモリを使い切ってし
まう問題が報告されたことで一時無効化されました
が、問題が解決したのでふたたび有効になりまし
た。ZFSを使っているのであれば、この機能を利用
するためだけに10.1-RELEASEにアップデートす
る理由にもなるでしょう。
　10.1-RELEASEには、OpenSolarisから移植され
た libzfsスレッドプールAPIが取り込まれていま
す。このAPIが取り込まれたことで並列ディスク
スキャンが可能になりましたので、特定の負荷状況
で発生するzpool(8)にインポートタイムを改善す
ることができるようになりました。
　また、ZFS ARCハッシュテーブルのデフォルト
サイズが引き上げられた点も、今回のリリースのポ

イントとなっています。この値はloader(8)でも
「vfs.zfs.arc_average_blocksize」の値として調整
できるようになりました。これまでのデフォルト値
は性能を引き出すには値が小さく、とくにキャッ
シュリードでの性能に制限が出ていました。10.1-

RELEASEに引き上げることで性能の改善が期待
できます。

マルチスレッドに対応した
Soft updatesと
新規導入のautofs(5)

　今回のリリースではFFS（Fast File System）に
もアップデートが盛り込まれました。これまでシン
グルスレッド対応だったSoft updatesが、今回から
マルチスレッドに対応しています。このため今後は
FFSのマウントポイントごとにSoft updates機能
が対応することになり、SMPにおける性能向上やス
ケーラビリティの向上などが期待できます。
　また、新しい機能としてautofs(5)が追加された
点も注目ポイントです。これはMac OS XやSolaris

などで使われているautofs(5)とよく似た機能で、
自動マウント機能をサポートします。設定ファイル
にはSun互換のauto_master(5)ファイルが利用で
きます。ユーザランドからはautomount(8)ユー
ティリティを使って制御します。状況に応じた柔軟
なマウント処理を実現できる機能です。

Jail関連の機能強化

　10.1-RELEASEのユーザランドコマンドや設定
ファイルには新しい機能が細かく追加されています
が、とくにJail関連ということでps(1)コマンドと
top(1)コマンドを紹介しておきます。
　ps(1)コマンドには新しく「-J」というオプション
が追加されました。このオプションはJail IDを指
定するもので、特定のJail内部のプロセスだけを表
示するといったことができます。
　同様の機能がtop(1)ユーティリティにも追加さ
れました。こちらはJail IDでもJail名でもフィル
タリングが可能です。また、jail(8)ユーティリ
ティも拡張されまして、ip4.addrや ip6.addrパラ

Jan. 2015 - 145

▶第15回◀
FreeBSD 10.1-RELEASEで何が変わったの？ 【パート2】

メータにおいてcarp(4)インターフェースが指定で
きるようになりました。

ベンダとの連携が進む
FreeBSDプロジェクト

　最近のFreeBSDにはベンダのスポンサードのも
と開発された機能の取り込みが続いています。これ
はFreeBSD FoundationがFreeBSDを活用して
いるベンダとの連携を進めている成果が現れてい
る結果だといえます。FreeBSD Foundationでは
FreeBSDを活用しているベンダとの連携を強めて
ドネーションを求めるとともに、要望を聞き出して
必要になる機能の開発をデベロッパにアサインした
り、コントリビュートされるコードをプロジェクト
側へマージするように勧めるといった活動を進めて
います。
　とくにこの数年は、FreeBSDとZFSをベースと
したNASソリューションの開発が世界中の企業（大
手や中小、ベンチャーに限らず）で活発化している
こともあり、iSCSIやNFSなど、こうした関連機能
の強化が続いています。10.1-RELEASEにはそう
した機能が取り込まれており、プロダクトのベース
オペレーティングシステムとして活用しがいのある
状態になっています。

10.1-RELEASEへの
アップグレード方法

　デフォルトカーネルのままFreeBSDを使ってい
る場合には、FreeBSD Updateの機能を使って
FreeBSD 10.1-RELEASEへアップデートするの

が簡単でしょう。ダウンロードやアップデート時間
を含めても10分前後といったところです。図1の
ように作業します。
　「freebsd-update upgrade -r 10.1」で10.1-

RELEASEに必要になるコンポーネントのダウン
ロードが実施されます。「freebsd-update install」
でダウンロードしてきたコンポーネントのインス
トールを実施します。インストールが完了すると、
いったんシステムを再起動してから再度「freebsd-
update install」を実行するように求められますの
で、指示通りに作業を行います。
　再起動して「freebsd-update install」を実施する
と、Ports Collectionからインストールしたサード
パーティ製のソフトウェアをすべて再構築するよう
に指示がでます。pkgを使っているのであれば、こ
こですべて再インストールするか、アップグレード
の作業を実施しておくとよいでしょう（図2）。
　サードパーティ製ソフトウェアの入れ替えなどを
実施したら、もう一度「freebsd-update install」コ
マンドを実行して、アップグレード作業は完了です
（図3）。
　freebsd-version(1)というのは1つ前のバージョ
ンとなる10.0-RELEASEで導入された新しいコマ
ンドです。FreeBSDはセキュリティパッチの適用な
どでカーネルだけパッチレベルがあがったり、逆に
ユーザランドだけパッチレベルがあがったりするこ
とがあります。freebsd-version(1)はユーザランド
とカーネルのバージョンを個別に表示するためのコ
マンドで、-kでカーネルのバージョンとパッチレベ
ル、-uでユーザランドのバージョンとパッチレベル
を表示させることができます。s

% freebsd-update upgrade -r 10.1
% freebsd-update install
% shutdown -r now
% freebsd-update install

▼▼図1　FreeBSD 10.1-RELEASEへのアップデート作業

% pkg upgrade
% freebsd-update install

▼▼図2　�サードパーティ製ソフトウェアのアップデートなど
の作業も実施しておく

% uname -sr
FreeBSD 10.1-RELEASE
% freebsd-version -k
10.1-RELEASE
% freebsd-version -u
10.1-RELEASE
%

▼▼図3　FreeBSD 10.1-RELEASEへアップグレード完了

146 - Software Design

22 Debian Developer　やまねひでき　henrich@debian.org

FLOSSコミュニティへの
Contributionとは？

コミュニティに
Contributionするには

　以前、読者からいただいたメール注1に「一人
のエンジニア視点から、OSSコミュニティに
対してどういった貢献ができるか？ということ
について取り上げてください」という提案があ
りました。2014年11月号の本連載で「積極的
にDebianにcontributionをして来年のDebConf

の旅費を勝ち取りましょう！」と書いた手前も
ありますので、今回はこのあたりを説明します。
　筆者は、趣味的な立場でコミュニティにかか
わってきたので、業務でOSSとかかわってい
る人とは視点が違うかもしれませんが、1つの
意見として参考にしていただければと思います。

積極的な参加

　よくContribution（Contribute）を「貢献」と訳し
ますが、実際のところ字面の印象から受けるよう
な奉仕的なものではなく、「積極的な参加」程度の
ものだと筆者は考えています。そして、FLOSS

（Free/Libre and Open Source Software）界隈へ
のContributionというのは、大きくいくつかの種
類があるように思います。
　1つは「ソースコード」で貢献するパターンです。
たとえば「このプロダクトを使っていて困ったこ
とがあったが、うまい具合に手元で修正できた

注1） 本連載の感想や要望を編集部へのメール（sd@gihyo.co.jp）、
あるいは、Twitterの@gihyosdや@debianjp宛にお寄せく
ださい。次回以降の内容に反映させていただきます。

からパッチを送る」というパターンです。最近だ
と「おすそ分け」という形で、GitHubによりカジュ
アルに行われるようになってきていますね。別
の理由としては「いちいち手元で修正版を都度メ
ンテしていくのはコストがかかるのでフィード
バックしておこう」というのもあります。
　もう1つは「参加」して貢献するパターンです。
コミュニティやプロジェクトに入り込んで「改
善できるところはないかな？」とプロジェクト
の発展に喜びを求めていくタイプ（個人に多く
見られます）や、「なるべくコミュニティへの関
与を多くして発言力や影響力を大きくしたい」
と参加していくタイプ（多くの企業の場合はこ
れですね）です。筆者の場合は「喜びを求めてい
くタイプ」にあたります注2。
　どのパターンでも、コミュニティというエコ
システムにおいて「すべてをコントロールしよう」
という姿勢（過剰なガバナンス重視）は、傲慢に
見られて関係者の賛同や注視している人間から
の納得を得られにくいので、注意が必要です。
参加するメンバーの納得という「空気感」が重要
な点であり、力ずく（何らかのルールの強制や著
作権／特許）で従わせようとするのは、横暴な
ので嫌われます。

注2） ただ、コミュニティに参加を始めた最初の動機は実はちょっ
と違いました。まだ初心者だった筆者はDebianを使って
いくうえでいろいろと疑問や困ったことがありました。そ
こでメーリングリストで質問を……と思ったときに、「有
名どころの人に良い意味で名前を覚えてもらって、自分が
質問をする際に的確に答えてもらえるようにしよう！」と
考えたのが動機だったのです。翻訳などから始めたのですが、
Debianに関するバックグラウンドの知識や現状の把握も
できたので、一石二鳥でした。

mailto:sd@gihyo.co.jp

146 - Software Design Jan. 2015 - 147

FLOSSコミュニティへの
Contributionとは？ 22

まずは小さなタスクから

　どのパターンでも参加者にとって重要なのは
「小さなタスクを実行して『信頼貯金』を獲得す
ること」です。小さなタスクは失敗しても被害
は小さいですし、既存のコミュニティメンバー
に相談もしやすい（相手も気軽に返答しやすい）
ものです。さまざまな小さなタスクをこなすこ
とで「この人のやろうとすることには意味があ
るから聞いてみよう」という状況を作り出して
いきましょう（RPGでクエストをこなしてレベ
ルアップするみたいな感じですね）。
　初めから大きなタスクに取り掛かろうとする
と、「私がやるから手を出さないで！」とほかの
人の参加をブロックしてしまいContributionと
は真逆な負の影響を与えてしまったり、コミュ
ニティに対する姿勢の論争などに発展して生産
性を落としてしまったりします。また、がんばっ
たけれども失敗したというときには、それまで
の作業が無駄になり、その結果、自身のモチベー
ションがガクッと下がってそれ以上の作業がで

きなくなることも大いにあり得ます。
　パッチを送付する際にも、巨大なパッチをい
きなり送ると、送りつけられる側の人はかなり
の負担を受けることになります。レビューを行
うにも相当の苦労を要するのは、容易に想像が
つくでしょう。あるいは、「こんなにデカイの
見てられないよ」と単にスルーされてしまうこ
とも多くなります。せっかくの作業の成果が取
り込まれないのは悲しいですよね。これを回避
するには小さな1つのタスクを改善するシンプ
ルなパッチを送付するのが良いお作法です。今
風に言えば「すばやく小さなサイクルを回すア
ジャイルな姿勢」が重要だと言えましょうか。

信頼貯金の獲得

　Contributionというやりとりの中で信頼貯金
を獲得するのに重要なのは、押しつけではダメ
だということです。相手が喜ぶことをするのが
重要であって、一方的な押しつけは相手を困ら
せるだけという、このあたりは人と人との「お
付き合い」に似ているのではないでしょうか。

コードを書くのが苦手な人でもプロジェクトに協力できる？COLUMN

「現像」となります。「develop images」だと「画像を
開発する」ではなく「画像を現像する」としなければ
ならないわけです。このようなものは前提知識がな
いと誤訳することが必至でしょう。
　コミュニティでは、業務のようにプロの翻訳者に
頼むわけにもいかず、必ずしもその分野に精通して
いる人が訳すことにはなりません。かと言ってすべ
てをカタカナで済ませるのは日本語訳ではなく「ルー
語訳」になってしまいますね（「グッドなトランスレ
イションをイナフするには？」のように）。
　では、そのドメインの知識がない場合にはどうし
たら良いのでしょうか？　前後の文章／コンテキス
ト／ユーザインターフェースから違和感を推測でき
る「嗅覚」が必要になります。これがないと先の例の
ような致命的なミスを犯すことになります。また、
ミスを防ぐにはほかの人の目を借りる（ピアレビュー
してもらう）ことが有用ですが、これは普段からコ
ミュニティの参加者と十分なコミュニケーションを
行って「信頼貯金を獲得」しておくのが重要です。

　「ドキュメントの翻訳ならコードを書けなくても
大丈夫」と耳にすることがありますが、実際にコミュ
ニティにはそういう人もいるのでしょうか？　答え
は「Yes」です。
　英語から日本語への翻訳では、英語を「適切な日
本語に変換する」ことが重要です（ポイントは「適切
な」です）。これには、英文の意味を理解する能力も
重要ですが、「日本語の文章能力」と「ドメイン（分野
／領域）の知識」も重要になります。
　英文が流暢に読み書きできなくてもかまいません
が、日本語文章の書き方に慣れていないと、いわゆ
る「翻訳口調」の読みづらい直訳にしかなりません。
そんな文章でもないよりはマシですが、こなれた文
章のほうがずっと良いことはおわかりでしょう。
　ドメインの知識については、たとえば IT系のドキュ
メントでは「default」を「デフォルト」あるいは「既定」
と訳すのが通常ですが、金融系の文脈では「債務不
履行」を意味します。「develop」も分野が違うとまっ
たく違った言葉に訳す必要があり、写真の文脈だと

148 - Software Design

　では、「相手が喜ぶこと」ってなんなの？とい
う点ですが、そのコミュニティで「手が回って
いないことを改善してあげること」が多いよう
に思います。単なる指摘もありがたいのですが、
汗をかいてくれるほうがもっとうれしい、とい
うことは理解できるかと思います（汚れている
場所を見つけたとして、「なんで掃除してない
の？」と責め立てる姿勢ではなく、「汚れていた
ところを見つけたから、きれいにしておいたよ」
というほうが良いよね、という話です。いや、
我が家の話でもあるのですが……）。
　しかし、たとえ相手が喜ぶことであったとし
ても、自分がうれしくない／楽しくないのであ
れば単なる「無償奉仕」となり、Contributionの
モチベーションは消耗していく一方です。これ
はまったくフェアではないですし、活動の継続
性も見込めませんので最終的にはお互いにとっ
てデメリットとなります。「相手と自分がとも
に喜びや楽しみを分かち合えるポイントがどこ
にあるのか」を見つけるのが重要です。

Contribution——
Debianの場合

　ここからは、Debianを例にしてもう少し具体
的に説明しましょう。
　まず、Debian開発コミュニティへの参加につ
いて理解をしておくべきポイントは「Debian公式
開発者（DD：Debian Developer）にならなければ
貢献できないわけではない。1ユーザでもCont

ributionはできる」という点です注3。

　公式開発者になるには、ほかの公式開発者か
らの推薦を受けて申請し、メンターの補助のも
とでさまざまな質問や課題が要求され、資格取
得までにそれなりの気力を要するのは確かでは
あるものの注4、Contributionをするのに特別な
資格などは必要ありません。
　たとえば、DebianはBTS注5を介してパッケー
ジその他の問題を収集しており、ここで進捗を
管理／確認し、修正を実施／適用していきます。
こう言うと大げさに聞こえるのですが、実はこ
のBTSへの投稿は「誰でも」行えます。利用可
能なメールアドレスさえあれば良く、別のシス
テムのアカウントを取得する必要もありません。
気になるバグがあれば、追加の情報を投稿した
り、あるいは手元で修正できているのであれば
修正のパッチを投稿したり、とさまざまなこと
が行えます。
　ということで、DebianでBTSを介して自分
で馴染みの深いソフトウェアのバグ報告作業に
参加してみることを検討してみましょう。とは
いえ、「でも、Debianでのバグ報告なんてやり
方がわからないよ」という方が大多数かと思い
ます。知らないことについては敷居が高く思え
るものですので、この場を借りて「Debianでの

で、何から始めればいいのですか？

　「私はこのプロジェクト／コミュニティで何をす
ればいいのか？」というのはプロジェクトに参加し
ようかな、と思った人に共通する疑問のようです。
しかし、このような部分について丁寧なガイダンス
をするプロジェクトやコミュニティは稀

まれ

ですので、
「誰かがいつか自分の望む説明を丁寧にしてくれる
という幻想」は早めに捨ててしまいましょう。ネッ
トワークの遥か彼方の画面の向こうにいる人に対し、

毎回手取り足取り説明することを要求するのは酷な
ものです。Face to Faceで状況を把握できるような
仕事場とは違い、インターネットが主たるコミュニ
ケーションの場である多くのプロジェクトは「来る
者拒まず、去る者追わず」というスタンスであり、
参加者には「何をするのが自分とプロジェクトにとっ
てメリットになるのか？」を自問自答することがス
キルとして最低限要求される、と理解しましょう。

COLUMN

注3） DDは「自由にすべてのパッケージをアップロードできる」
権限とプロジェクト運営での投票権を持っているだけで、
パッケージのメンテナンス自体はDD以外の人（DM：
Debian MaintainerやDDにスポンサーされたパッケー
ジメンテナ）も行っています。

注4） 「Debian公式開発者になるには？」というテーマについ
てはご要望があれば、筆者の実体験から紹介したいと思
います。ぜひ感想をお寄せください。

注5） バグトラッキングシステム。詳細は URL http://bugs.
debian.orgを参照。

http://bugs.debian.org
http://bugs.debian.org

148 - Software Design Jan. 2015 - 149

FLOSSコミュニティへの
Contributionとは？ 22

バグ報告のお作法」をざっと説明いたしましょ
う……というところで誌面が尽きてしまいまし
た。次回は具体例としてこのあたりを説明した
いと思います。お楽しみに。

最近のトピック

　最後にDebian界隈のトピックをいくつか紹
介します。

kFreeBSDは
Debian 8では非公式に

　kFreeBSDはどうも進捗具合がよくないようで、
Debian 8ではテクノロジープレビューでもなく、
非公式リリースという位置づけになるようです。

Debian 9と
Debian 10のコードネーム

　ちょっと気が早いですがDebian 9、そして
Debian 10のコードネームが発表されました。
Debian 9は「Stretch」（映画『Toy Story 3』に出て
くるゴム製の紫色のおもちゃのタコ。）、Debian

10は「Buster」（同じく『Toy Story 3』に登場する
ペットのダックスフント）です。興味のある方は
「ToyStory Strech/Buster」で画像検索などをし
てみてください。

プロジェクトメンバーの
多数の消耗、そして……

　すでに結論が出たはずのsystemdへの移行

……なのですが、いまだに不満の火種がくすぶっ
ています。その結果としてsystemdパッケージメ
ンテナチームから消耗したTollef Fog Heen氏が、
技術委員会からはRuss Allbery氏、Ian Jackson

氏がそれぞれ脱退することを述べています。
　筆者からは「systemd採用のメリット／デメ
リットではなく感情的にsysvinitからsystemd

への移行を拒否する勢力と、争いの火に油を注
ぎたいだけの人が多く、先の3名は自分の言い
たいことだけを言っている人たちへの対処とノ
イズの多さに消耗していった」ように見えます。
メディアなどもこういう諍

いさか

いごとは取り上げや
すく記事として掲載するのですが、それを見て
また自分の意見だけを騒ぎ立てる人がさらに参
加することで、この言い争いが続く要因となっ
ているようです。
　そして非常に残念なことに、前回の本連載で
取り上げた debhelper作者の Joey Hess氏が
Debianプロジェクト自体からの脱退を表明し
ました。「自身が参加したころと空気が変わっ
てしまった」というのが理由だそうですが、た
だただ残念なことです。しかし、無理に引き留
めても、彼とプロジェクトのどちらにも良いこ
とはありません。せめて、彼の行く手に幸があ
らんことを祈りましょう。So Long and Thanks

for all the Fish! ｢

パッチを送るために必要な技術力ってどれくらい？COLUMN

　最初に回答を要約すると「ゼロではだめだけど、
高くなくても別に平気」です。
　正直言って筆者は一からスクラッチで何かを書く
というのは非常に苦手なのですが注6、パッチを作成
することはよくあります。何かのソフトウェアを使っ
ていてバグらしきものを発見した際、挙動から推測
した正しいと思う動作と、誤っている現在の動作、
そして（自分がまったく書くことのない言語で書か
れたものであったとしても）ソースコードを見比べ
て突き合わせていけば、コードに書いてある意図が
ぼんやりと推測できて、たいていミスを見つけられ

るものです注7。そしてミスが見つかればあとはそこ
を1、2行程度だけ変えて直してやるだけで十分で
すので、パッチを書くには「その言語で書ける」とい
うほどの技術力は必要ない、というのが実感です。
筆者はCもC++も Perlも Pythonも Rubyも PHPも
書けませんが、パッチを作ったことはあります。そ
んなものですよ :-)

注6） なんと、基本である「hello, world」レベルもFizzBuzzも
書けません。

注7） 元がひどい出来のソースコードではないことが前提です
が。でも、ソースコードが直に確認できるFLOSSという
のは強みだな、と思うのはこんなときですね。

150 - Software Design

Ubuntu Monthly Report

　本誌2014年11月号の第55回でも少し触れました
が、2014年10月にUbuntuが10周年を迎えました。
Ubuntuは1年に2回、4月と10月にリリースされま
す。これは当初から変更はありません。駆け足では
ありますが、1月号ということで、今回はそれらを振
り返っていきたいと思います。読者の方が最初に
Ubuntuを知ったバージョンはどのあたりなのでしょ
うか？
　なお、バージョンの下の日付はリリース日とサ
ポート終了日です。タイムゾーンはCDT（アメリカ
中部夏時間）です。

（2004/10/20～2006/04/30）

　最初のリリースアナウンスは、Ubuntu創始者で
Canonical社の創業者Mark Shuttleworthが投稿し
ています。Ubuntuの特徴として、

・CDに含まれるソフトウェアはすべてフリーソフトウェア
・100％無料で、今後も有料化はしない
・セキュリティアップデートを18ヵ月間提供
・半年ごとに最新版をリリース
・	サポートするアーキテクチャはx86、AMD64、
	 PowerPC

Ubuntu 10周年

Ubuntu 4.10
Warty Warthog

が挙げられています。また1週間後、すなわち2004

年10月27日にライブCDもリリースされています。
このころはまだライブCDからインストールできま
せんでした。インストールCDから最小限のサーバ
インストールは可能でした。
　また、4.10はXFree86を採用する、最初で最後の
Ubuntuでした。5.04からはX.Orgに移行しています。
今はもうすっかりXFree86なんて聞かなくなったの
で、10年という年月の長さを感じます。

（2005/04/08～2006/10/31）

　5.04では初の公式派生版であるKubuntuが同時に
リリースされました。デフォルトのデスクトップ環
境がGNOMEではなく、KDEのエディションです。
また、ライブCDも同時にリリースされています。
　2005年7月8日にはUbuntu Foundationの設立が
発表されています。同時に、6.04（当時）がLTS（Long

Term Support）としてリリースされる旨の発表もあ
りました。

（2005/10/12～2007/04/13）

　5.10ではインストールCD、ライブCDのほかに
DVDイメージも用意されました。また、派生版とし

Ubuntu 5.04
Hoary Hedgehog

Ubuntu 5.10
Breezy Badger

　やや旧聞に属してしまう話ではありますが、Ubuntuは14.10でリリースから10周年を迎えました。
今回はその歩みを振り返ってみます。

Ubuntuの10年を
振り返る

Ubuntu Monthly Report第57回

Ubuntu Japanese Team
あわしろいくや　ikuya@fruitsbasket.info

150 - Software Design Jan. 2015 - 151

Ubuntuの10年を振り返る 第 57 回

て教育機関向けのEdubuntuも追加されています。
サーバ版が別イメージになったのもこのバージョン
からです。

（2006/06/01～2009/07/14（Desktop）、
～2011/06/01（Server））

　2005年3月20日に、当初リリース予定だった4月
20日から3週間延期して6月1日にリリースすること
が発表されました。それに伴い、バージョンも変更
されています。理由としては7点が挙げられていま
すが、そのうちの1つは日本語を含むアジア諸言語
のサポートです。
　予定どおり6月1日に6.06がリリースされました
が、たくさんの変更点がありました。まずはLTSの
名のとおりサポート期間ですが、サーバ版で5年間、
デスクトップ版で3年間に延長されました。インス
トールイメージも、今日見られるライブCDからイ
ンストールできるものがデフォルトになりました。
以前のテキストモードのインストーラもAlternate

CDとして残されています。
　LTSは、これまでになかったメンテナンスリリー
スもあり、8月には6.06.1が、2008年1月21日には
6.06.2がリリースされています。
　新しい派生版として、Xfceデスクトップ環境を
フィーチャーしたXubuntuも同時にリリースされて
います。採用したXfceのバージョンは4.4 Beta1と
のことです。なお、Xubuntuの正式名称は“Xubuntu

6.06”ではあるのですが、どうも3年間のLTSだっ
たようです注1。

（2006/10/26～2008/04/26）

　6.06のリリースは2ヵ月延びたにもかかわらず、
6.10のリリースは延期なしでした。ということは開
発期間が短かったということであり、大幅な変更は

注1） 8.04のリリースノートに、6.06と7.10からのアップグレード
方法が書かれていました。

Ubuntu 6.06
LTS Dapper Drake

Ubuntu 6.10 Edgy Eft

ありませんでした。

（2007/04/19～2008/10/19）

　このバージョンも割と落ち着いており、大きな変
更点はありません。動画や音楽を再生する際に適切
なコーデックがない場合、自動的に検出してインス
トールするしくみが備えられていますが、それはこ
の7.04から導入されました。デュアルブートにして
あるWindowsから個人データを取得して移行する
ツールも導入されましたが、後に廃止されています。
　派生版として、Ubuntu Studioが追加されました。

（2007/10/18～2009/04/18）

　やはり特段の大きな変化は見られません。Gobuntu

という、完全にオープンなパッケージしか含まない
派生版がリリースされましたが、8.04を最後に消えま
した。リリースアナウンスには“It is recommended

only for experienced Linux enthusiasts.”と書かれて
いますが、そういう人たちはUbuntuではないものを
使用するでしょうし、そのあたりが短命に終わった
理由ではないかと思います。
　日本ではほぼ使われない派生版のMythbuntuも、
このバージョンから登場しています。

（2008/04/21～2011/05/12（Desktop）、
～2013/05/09（Server））

　2回目のLTSは順調にリリースされました。しか
し、KubuntuはLTSではありませんでした。このこ
ろはKDE 3.xから4への移行期で、3年後の見通しが
立っていなかったからだと思われます注2。これまでの
KDE 3.5を採用したKubuntuと、4.0を搭載した
Kubuntu KDE 4 Remixの両方がリリースされたりも

注2） 結果論ではあるものの、TDEという派生版がリリースされたこ
ともあって3年サポートは可能であったように思います。

Ubuntu 7.04
Feisty Fawn

Ubuntu 7.10
Gutsy Gibbon

Ubuntu 8.04
LTS Hardy Heron

152 - Software Design

Ubuntu Monthly Report

しています注3。
　WindowsのパーティションにUbuntuをインス
トールできるWubiも8.04で登場しています。残念
ながら現在はメンテナンスされていませんが。
　やはり8.04も8.04.1から8.04.4までポイントリ
リースが提供されています。
　おそらくこのころから日本でも知名度が上がって
きたのではないでしょうか。壁紙が印象的だったの
も一役買っていたように思います（図1）。

注3） ちなみに筆者は当時KDEユーザであり、ずっとKubuntuを使
用していました。しかしKDE 4.xに移行する気はなかったの
で、Ubuntuユーザになりました。

（2008/10/27～2010/04/30）

　あまり大きな変化がないといえばそうなのですが、
このころからインストールイメージをUSBメモリに書
き出すしくみが導入されています。ということは、CD

ドライブがないPCが増えたということで、ネット
ブックブームのまっただ中であったことが伺えます。
　Kubuntuは完全にKDE 4.xベースだけのものにな
りました。

（2009/04/23～2010/10/23）

　このころからUbuntuは大きく変わっていきます。
まず、Ubuntu Netbook Remix（UNR）というネット
ブック向けの派生版がリリースされました。今から
思えば、このUNRこそがいろんなことのきっかけ
だったように思います。まずはランチャー。ネット
ブックの狭い解像度でも快適に使用できるようにと、
netbook-launcherという専用のランチャーが誕生し
ました。これが後のUnityにつながります。当時か
ら見ても非力なネットブックのために、起動や動作
全般の高速化も図られました。また、UNR用に
LPIAという専用のアーキテクチャを用意したもの
の、結局継続しないことになり、後にアップグレー
ドするためには再インストールが必須になるという
負の面もありました注4。
　9.04といって忘れてはいけないのが、シャープか
らNetWalkerという9.04をプレインストールしたガ
ジェットが発売されていたことです（写真1）。結局2

モデルが発売されただけでラインナップとしては消
滅しましたが、継続していたらきっといろいろとお
もしろいことになっていたでしょうし、いまだに残
念に思います。

注4） 専用のアーキテクチャを用意して最適化などを図る予定だっ
たと聞いたことがありますが、結局そのようなことは行われ
ず放棄されることになり、迷惑に思ったことをよく覚えてい
ます。

Ubuntu 8.10
Intrepid Ibex

Ubuntu 9.04
Jaunty Jackalope図1　Ubuntu 8.04 LTS

写真1　シャープのUbuntu搭載マシン NetWalker

152 - Software Design Jan. 2015 - 153

Ubuntuの10年を振り返る 第 57 回

（2009/10/26～2011/04/30）

　日本のユーザにとって影響が大きかったのはイン
プットメソッドがSCIMからIBusに代わったところ
だとは思うのですが、GRUBがバージョン2になった
り、ext4がデフォルトになったり、ARMに力を入れ
始めるなど、かなり大幅な変更点があります。ほか
にもUbuntu Oneのサービス開始もこのころでした。
リソースを無尽蔵に投入しているように見えるので、
いつかのタイミングでの整理は避けられなかったの
だなと思います。

（2010/04/29～2011/10/29（Netbook and ARM）、
2013/05/09（Desktop）、継続中（Server））

　今から考えても10.04は記憶に残るリリースでし
た。9.04や9.10での変更点が理想的な形で盛り込ま
れていました。とくに起動の速さは、当時触ったこ
とがある人であればよく覚えているのではないで
しょうか。
　10.04は3度目のLTSであり、どちらかといえば
サーバに大きな変更が見られます。後に発展的に解
消するUbuntu Enterprise Cloud（UEC）のほか、
Amazon EC2での動作も謳

うた

われていました。
　LTSではないものの、Ubuntu Netbook Edition注5

もリリースされています。このバージョンから
LPIAサポートがなくなりました。
　同時リリースではなかったものの、派生版として
LxdeをフィーチャーしたLubuntuもリリースされて
います。
　10.04.1から10.04.4までポイントリリースが行わ
れ、とくにサーバは現在でもサポート中ですので、
まだまだいろいろなところで使われているものと思
われます。

注5） 10.04からはRemixではなくEditionと呼ばれるようになりま
した。

Ubuntu 9.10
Karmic Koara

Ubuntu 10.04
LTS Lucid Lynx

（2010/10/10～2012/04/10）

　2010年10月10日にリリースされたのは偶然では
なく、意図的なものです。これにより通常よりも2

週間ほど開発期間が短くなりました。
　特筆すべきは、なんと言ってもNetbook Edition

にUnityが搭載されたことです（図2）。このUnityは
次のバージョンでデフォルトになるので、結果的に
素のGNOMEを採用した最後のバージョンがこの
10.10で、同じルック＆フィールを持つ派生版が登
場するのにはこの後4年ほどの歳月が必要となり

ます。

（2011/04/28～2012/10/28）

　11.04ではデスクトップシェルにUnityを採用し、
Netbook EditionとDesktop Editionが統合されまし
た。厳密にはこのネーミングにも変更があり、
Netbook EditionとDesktop Editionを統合したもの
を“Ubuntu”と呼ぶようになりました。Server Edition

も同じくServerとなりました。ServerでOpenStack

をサポートし始めたのがこのころです。

（2011/10/13～2013/05/09）

　11.10での大きな違いは、ベースとなるGNOME

Ubuntu 10.10
Maverick Meerkat

Ubuntu 11.04
Natty Narwhal

Ubuntu 11.10
Oneiric Ocelot

図2　Ubuntu 10.10 Netbook Edition

154 - Software Design

Ubuntu Monthly Report

のバージョンが2から3に上がったことです。同時
にカーネルのバージョンも3.0になっています。

（2012/04/26～継続中）

　4度目のLTSには大きな変更がありました。デス
クトップ版のサポート期間が5年に延長されました。
ただしCanonicalがサポートしない派生版に関して
は3年のままです。ポイントリリースはカーネルや
X.Orgスタックの更新を伴うものになりました。LTS

まわりのことに関しては、本誌2014年6月号の第2

特集に掲載されているので、気になる方はそちらを
ご覧ください。
　CanonicalがKubuntuのサポートを行うのは、こ
のバージョンまでということになりました。以後も
別の会社に移管して継続中です。
　兎にも角にも、現在もサポートは継続中です。

（2012/10/18～2014/05/26）

　このタイミングで、いろいろと整理が始まりまし
た。どうにかして頑張ってCDサイズに収めていた
インストールイメージはDVDサイズになりました。
Alternate CDも提供されなくなりました。ブートに
はPAE対応CPUが必須となりました。あとはセ
キュアブート対応もこのバージョンからです。

（2013/04/25～2014/01/27）

　通常版のサポート期間が9ヵ月に半減しました。
よって、12.10よりも13.04のほうがサポート期間が
短いということになりました。通常版でのリリース
飛ばしはできないものの、特例で12.10から13.10へ
のアップグレードができるように配慮されました注6。
　新規の派生版として、中国向けのUbuntu Kylinと

注6） その後まもなく14.04へのアップグレードも必須なのですが。

Ubuntu 12.04
LTS Precise Pangolin

Ubuntu 12.10
Quantal Quetzal

Ubuntu 13.04
Raring Ringtail

GNOME ShellをフィーチャーしたUbuntu GNOME

がリリースされています。

（2013/10/17～2014/07/17）

　日本のユーザにとっては、IBusのバージョンが1.5

になって操作感が大幅に変更されたのが印象深いの
ではないでしょうか。現在でも若干混乱が続いてい
ます。
　Ubuntu for Phoneの最初のリリースもありました。

（2014/04/17～継続中）

　本誌2014年6月号の第2特集をお読みください。
特筆すべきこととしては、Ubuntu Oneのサポート終
了が発表されたことでしょう。Ubuntu Oneの同期
サービスで使用されていたサーバのソースコードは
公開されるということでしたが、11月末現在でも公
開されていません。

（2014/10/24～継続中）

　本誌2014年11月号のUbuntu Monthly Report第
55回をお読みください。ただし一点訂正があり、
Ubuntu MATEは結局公式フレーバーにはなりませ
んでした。

　最後に微妙な宣伝ですが、Ubuntu 10周年を記念し
た同人誌を発行しました注7。Ubuntuのインストーラ
やCUPSやUbuntu Studioの歴史などが記載されて
います。同人誌ですので10周年に関係ない記事もあ
ります。｢

注7） http://zapppaaan.freepub.jp/article/105631657.html

Ubuntu 13.10
Saucy Salamander

Ubuntu 14.04
LTS Trusty Tahr

Ubuntu 14.10
Utopic Unicorn

同人誌を出しました

http://zapppaaan.freepub.jp/article/105631657.html

155 - Software Design Jan. 2015 - 155

Linux 3.17の新機能
〜DRM機能とDRM render node〜

第34回第34回
Linux

カーネ
ル

観光ガ
イド

　今月もLinux 3.17の新機能について紹介して
いきます。今月はLinux 3.17でデフォルトで有
効にされるようになったDRM render nodeにつ
いてDRMの機能もまじえながら紹介します。

DRM render node
　Linuxでは、DRM（Direct Rendering Manager）
というフレームワークを用いて、GPUを操作し
画面への描画を行っています。Linux 3.12では、
このDRMの新しいインターフェースとなる
“render node”というものが追加されました。し
かし、この機能はデフォルトでは有効にならず、
kernelの起動パラメータに“drm.rnodes=1”と

あるときにだけ、ユーザランドから見えるよう
になっていました。Linux 3.17では、この“render

node”機能が起動パラメータなしのデフォルト
でも使用できるようになりました。これから
DRMの機能を、昔からのインターフェース、そ
してrender nodeを含めた新しいインターフェー
スという順番に紹介していきます。

DRMの3つの役割
　DRMには大きく分けて3つの役割があります。
1つ目はMode-Setting機能です。これは描画先

行のモニタや、その解像度といったグローバル
な設定の変更を行うものです。2つ目はメモリ
管理機能です。アプリケーションはこの機能を
用いて描画用のバッファを確保します。この領
域のデータを操作することで、画面への描画が
行われます。3つ目は前の2つの機能のための
認証機能です。これについては前の2つを詳し
くみたあとに解説します。

DRMを使った
サンプルコード

　Mode-Settingとメモリ管理について詳しく知
るために、実際にDRMを用いて画面に描画す
るコードを見てみましょう（リスト1）。
　DRMは「/dev/dri/card<カード番号>」ファイ
ルへの ioctlによって実現されています。そのた
め、まずは「/dev/dri/card0」を開きます（リスト
1-①）。このファイルは通常、ownerがrootで、
groupがvideoでパーミッションが660となって
いますが、udevのルールファイル（/lib/udev/

rules.d/70-uaccess.rules）によって“uaccess”と
いうタグが付けられています。その結果rootや
videoグループ以外であっても、画面を見てい
るアクティブなユーザに対して、ACL（Access

Control List）による読み書き権限が与えられる
ようにできています（図1）。

Linux 3.17の新機能
〜DRM機能とDRM render node〜
Text：青田 直大　AOTA Naohiro

第34回第34回

156 - Software Design

Linuxカーネル観光ガイド

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <xf86drm.h>
#include <xf86drmMode.h>
#include <string.h>

struct fbinfo {
 struct drm_mode_create_dumb creq;
 uint32_t fb;
};

uint8_t *createfb(int fd, drmModeConnector *conn, struct fbinfo *fbinfo)　……③
{
 struct drm_mode_create_dumb creq;
 struct drm_mode_destroy_dumb dreq;
 struct drm_mode_map_dumb mreq;

 uint32_t width = conn->modes[0].hdisplay,
 height = conn->modes[0].vdisplay;

 memset(&creq, 0, sizeof(creq));
 creq.width = width;
 creq.height = height;
 creq.bpp = 32;
 if (drmIoctl(fd, DRM_IOCTL_MODE_CREATE_DUMB, &creq))
 return NULL;

 uint32_t pitch, size, handle;
 pitch = creq.pitch;
 size = creq.size;
 handle = creq.handle;
 memcpy(&fbinfo->creq, &creq, sizeof(creq));

 uint32_t fb;
 if (drmModeAddFB(fd, width, height, 24, 32, pitch, handle, &fb))
 goto destroy_dumb;
 fbinfo->fb = fb;

 memset(&mreq, 0, sizeof(mreq));
 mreq.handle = handle;
 if (drmIoctl(fd, DRM_IOCTL_MODE_MAP_DUMB, &mreq))
 goto rmfb;

 uint8_t *buf;
 buf = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, mreq.offset);
 memset(buf, 0, size);
 return buf;

rmfb:
 drmModeRmFB(fd, fb);
destroy_dumb:
 memset(&dreq, 0, sizeof(dreq));
 dreq.handle = handle;
 drmIoctl(fd, DRM_IOCTL_MODE_DESTROY_DUMB, &dreq);
 return NULL;
}

 ▼リスト1　DRMを用いて画面に描画するコード

 （次ページに続く）

156 - Software Design Jan. 2015 - 157

Linux 3.17の新機能
〜DRM機能とDRM render node〜

第34回第34回

void draw(int fd, drmModeConnector *conn)
{
 if (!conn->encoder_id) {
 printf("Encoder not connected\n");
 return;
 }

 drmModeEncoder *enc = drmModeGetEncoder(fd, conn->encoder_id);
 if (!enc->crtc_id) {
 printf("CRTC not connected\n");
 drmModeFreeEncoder(enc);
 return;
 }

 uint32_t crtc = enc->crtc_id;
 drmModeFreeEncoder(enc);

 /* フレームバッファの作成 */
 struct fbinfo info;
 uint8_t *buf = createfb(fd, conn, &info);
 if (buf == NULL) {
 printf("createfb failed\n");
 return;
 }

 /* 元の状態を保存し、フレームバッファの割り当て */
 drmModeCrtc *saved_crtc;
 uint32_t connector = conn->connector_id;
 saved_crtc = drmModeGetCrtc(fd, crtc);　……④
 if (drmModeSetCrtc(fd, crtc, info.fb, 0, 0, &connector, 1, &conn->modes[0]))
 return;

 /* 赤いラインを上から下へ */
 unsigned int x, y;
 uint8_t r = 255, g = 255, b = 255;
 for (y=0; y < info.creq.height; ++y) {
 for (x=0; x < info.creq.width; ++x)
 (uint32_t)&buf[info.creq.pitch * y + x * 4] = (r << 16) | (g << 8) | b;
 usleep(1000);
 }

 /* 元の状態へ */
 drmModeSetCrtc(fd, saved_crtc->crtc_id,
 saved_crtc->buffer_id,
 saved_crtc->x, saved_crtc->y,
 &connector, 1,
 &saved_crtc->mode);
 drmModeFreeCrtc(saved_crtc);

 munmap(buf, info.creq.size);
 drmModeRmFB(fd, info.fb);

 struct drm_mode_destroy_dumb dreq;
 memset(&dreq, 0, sizeof(dreq));
 dreq.handle = info.creq.handle;
 drmIoctl(fd, DRM_IOCTL_MODE_DESTROY_DUMB, &dreq);
}

int main()

（前ページの続き）

 （次ページに続く）

158 - Software Design

Linuxカーネル観光ガイド

　次に ioctl（DRM_IOCTL_MODE_GETRESO

URCES）を用いて、DRMの環境情報を取得し
ます。とはいえ、直接 ioctlを叩くよりも、
libdrmというラッパとなるライブラリがあり、
これを使うのが簡単ですのでこちらを使います。
　libdrmの場合、drmModeGetResources()が対
応する関数となります（リスト1-②）。これによっ
て、「コネクタ」の数といった情報を取得できます。
コネクタというのは、ビデオカードやマシンの

VGAケーブルやHDMIケーブルといったケーブ
ルをつなぐ接続口のことです。drmModeGet

Resources()によって、コネクタの IDも取得で
きます。この IDを drmModeGetConnector()に
指定することで、モニタが接続されているかど
うかといったコネクタの状態や、サポートされ
ている解像度といった各コネクタの情報を取る
ことができます。
　次に描画先であるコネクタ用のエンコーダと

{
 int i;
 /* カードを開く */
 int fd = open("/dev/dri/card0", O_RDWR);　……①

 drmModeConnector *conn;
 /* コネクタ数、コネクタIDの取得 */
 drmModeRes *res = drmModeGetResources(fd);　……②
 for (i = 0; i < res->count_connectors; ++i) {
 conn = drmModeGetConnector(fd, res->connectors[i]);
 printf("connector: %u\n", conn->connector_id);
 /* モニタが接続されているか? */
 if (conn->connection != DRM_MODE_CONNECTED) {
 drmModeFreeConnector(conn);
 continue;
 }
 printf("\tCONNECTED\n");
 int j;
 /* 解像度の列挙 */
 for (j = 0; j < conn->count_modes; ++j)
 printf("\t%ux%u %u\n",
 conn->modes[j].hdisplay, conn->modes[j].vdisplay,
 conn->modes[j].vrefresh);
 draw(fd, conn);
 drmModeFreeConnector(conn);
 break;
 }
 drmModeFreeResources(res);

 close(fd);
 return 0;
}

（前ページの続き）

$ getfacl /dev/dri/card0
getfacl: Removing leading '/' from absolute path names
file: dev/dri/card0
owner: root
group: video
user::rw-
user:naota:rw-
group::rw-
mask::rw-
other::---

 ▼図1　DRIカードデバイスのACLを確認

158 - Software Design Jan. 2015 - 159

Linux 3.17の新機能
〜DRM機能とDRM render node〜

第34回第34回

CRTC（CRTコントローラ）を取得／設定します。
先の説明に進む前にエンコーダとCRTCについ
て解説します。CRTコントローラは、解像度や
リフレッシュレート、フレームバッファを設定
する構造体です。ここで設定されたフレームバッ
ファに描画されたデータは、エンコーダを通し
て変換されコネクタへとつながっています。一
般にシステムには複数のCRTC、複数のエンコー
ダ、複数のコネクタがあります。これらは自由
に組み合わせることができるわけではありません。
図2のように特定のコネクタにしかつながって
いないエンコーダ、特定のCRTCにしかつながっ
ていないエンコーダが存在しています。すなわち、
あるモニタ（コネクタ）に描画したいと思ったら、
そのコネクタにつながるエンコーダと、そのエ
ンコーダにつながるCRTCを検出する必要があ
ります。
　コードでは接続されている最初のコネクタに
対して、draw()関数で、エンコーダとCRTCが
すでに接続されているかどうかを確認しています。
接続されていない場合は、システムのエンコーダ、
CRTCをひとつひとつ調べて接続できるかどう
かを見ていくことになりますが、今回のコード
ではその部分は割愛しています。
　話を元に戻します。次に、createfb()関数のフ
レームバッファの確保へと移ります（リスト1-
③）。この関数の目的は、メモリ領域として読み

書きできるフレームバッファ領域を作ることです。
ま ず、DRM_IOCTL_MODE_CREATE_DUMB

を用いて、幅と高さがモニタと同じサイズの
dumbバッファを作ります。dumbバッファは、
ほとんどのDRMドライバで用いることができ
るシンプルなバッファです。mmapしてCPUか
らのレンダリング用途に用いることはできますが、
GPUからはアクセスできないことが多く、シン
プルな操作向けのバッファです。この ioctlによっ
て、バッファの“pitch”、“size”、“handle”の 3

つがDRMから返されます。pitch（またはstride）
はあるピクセルのデータのアドレスと、その1

つ下のピクセルのデータのアドレスとのバイト
差になります。sizeはバッファ全体のサイズ、
handleは、このdumbバッファの IDということ
になります。
　このhandleを用いて、drmModeAddFB()を呼
び出します。これによってフレームバッファオ
ブジェクトが作成されます。このオブジェクト
が後にCRTCに登録されます。さらにmmap用
に drmIoctl（ DRM_IOCTL_MODE_MAP_

DUMB）を使います。これによってoffsetが取得
でき、それを使ってmmapされたバッファが取
得されます。
　ここまででフレームバッファオブェクト、そ
して 描画用のメモリ領域が作成されました。

まず、drmModeGetCrtc()を使って現在の状態

 ▼図2　エンコーダとCRTC

コネクタ1のモニタを使うにはCRTC1を、
コネクタ3のモニタを使うにはCRTC2を使う必要がある

ビデオカード

フレーム
バッファ CRTC1

エンコーダ1

エンコーダ2

エンコーダ3

コネクタ1

コネクタ2

コネクタ3CRTC2

drmModeSetCrtc（）

160 - Software Design

Linuxカーネル観光ガイド

を保存し（リスト1-④）、drmModeSetCrtc()を
用いてフレームバッファを設定します。これで
メモリ領域を編集することで描画できるように
なりました。コード例では左上から右下へと赤
いラインを描画しています。
　描画が終われば、crtcの状態を戻しさまざま
なデータの解放を行っています。

Mode-Setting と
メモリ管理

　Mode-Setting APIはいわゆるXサーバや
WaylandのcompositorであるWestonが用いる
APIとなります。前項のサンプルコードで言えば、
drmModeSetCrtc()を用いてフレームバッファを
設定した部分、すなわちモニタに描画されるフ
レームバッファが設定される部分だけがMode-

Setting APIの役割となります。このほかにも、
マウスカーソルやスプライトといったハードウェ
アによって合成されるデータの管理も行ってい
ます。
　逆にメモリ管理に相当するのはそのほかの
DRMの呼び出しになります。サンプルで紹介
したシンプルなdumbバッファ以外にも、後述
するようにアプリケーション間でバッファを共
有するGEM（Graphics Execution Manager）な
どのインターフェースもあります。

DRM Masterと認証
　Mode-Settingには1つ重要な制限があります。
もしも、すべてのアプリケーションが好き勝手
にモニタに描画しようとする、すなわち好き勝
手にそれぞれのフレームバッファを設定しよう
とすると、描画が混乱するといった問題だけで
なく、場合によっては不正なブラウザ画面が描
画されるといった問題が起こることも考えられ
ます。そこでDRM Masterというファイルにモ
ニタを扱う権利が占有されるようになっています。
/dev/dri/card0を最初に開いたプロセス（多く
の場合Xサーバ）がDRM Masterとなり、モニ

タ設定を管理します。そのほかのアプリケーショ
ンはDRMのもう1つの機能である認証機能を用
いてDRM Masterプロセスに認証されることで
始めて描画やメモリ管理といったGPUの機能
にアクセスできます。
　DRMでの認証は図3のような流れで行われま
す。まずアプリケーションはdrmGetMagic()を
用いてDRMから一意のマジックナンバーを取
得します。次に、取得したマジックナンバーを
DRM Masterであるプロセスに送ります。DRM

Masterは受け取ったマジックナンバーを用いて
drmAuthMagic()を用いて認証を行います。こう
することで、やっとアプリケーションはバッファ
の取得や共有ができるようになります。
　バッファの共有には、GEM-flinkによる古く
からの共有方法と、DMABUFという共有方法
があります（図4）。GEM-flinkでは、まずバッファ
を共有しようという側が、最初に ioctl（DRM_

IOCTL_GEM_FLINK）を実行します。すると
カーネルがグローバルなハンドラ（name）を返

します。このハンドラのIDを別のプロセスに伝
え、別のプロセスが ioctl（DRM_IOCTL_GEM_

OPEN）を使うと共有されたバッファを取得でき
ます。
　DMABUFによる共有は、基本的にはGEM-

flinkと同じように進むのですが、カーネルから
返されるのがハンドルではなくファイルデスク
リプタであるという点が異なります。ハンドル
はただの32bitの数字ですのでさまざまな方法
でほかのプロセスに知らせることができますが、

 ▼図3　DRMでの認証

AuthMagic（）

App

DRM
Master

DRMCookie

GetMagic（）

Cookie

160 - Software Design Jan. 2015 - 161

Linux 3.17の新機能
〜DRM機能とDRM render node〜

第34回第34回

ファイルデスクリプタの場合はUNIXドメイン
ソケットによる転送を行う必要があります。

render nodeの必要性
　さて、ここまでで以前のDRMのシステムに
ついての解説が終わりました。簡単にまとめると、
1つのDRM Masterプロセスがモニタに対する
描画の管理を行い、ほかのプロセスはDRM

Master認証されることでGPUの機能にアクセ
スし、描画・バッファ共有を行うというモデル
になります。
　しかしながら、現在ではGPUはモニタへの
描画のためだけに使われていません。GPUは、
GPGPUといった計算だけの用途や、モニタへ
の表示を意図しないレンダリングにも使われる

ようになっています。こうしたアプリケーショ
ンにとっては、DRM Masterは邪魔な存在となっ
てしまいます。たとえば、GPGPUを行うアプ
リケーションを2つ同時に走らせたいという場合、
今までのモデルではどちらかがDRM Masterと
なり、認証を行ってやる必要がありました。認
証を行うためにはなんらかの方法で2つのプロ
セス間でCookieを渡す必要があり、そのように
プログラムを書かなければいけません。こうし
た場合、結局のところ、実際にはGUI環境を使
わなくても認証のために（無駄に）Xを動かして
おくということが行われていました。
　この問題を解決するために導入されたのが
“render node”です。render nodeでは、/dev/dri/

card0から提供される機能のうち、メモリ管理・
描画に関するものだけを「/dev/dri/render

D128」からアクセスできるようにしています。
render nodeでは認証の必要がなく、そのため
DRM MasterのためのXを動かすことなく
GPGPUのプログラムを動かすといったことが
可能になっています。
　また、render nodeではインターフェースが新
しくされたついでにセキュリティ的に問題のあっ
たGEM-flinkが使えなくなっています。GEM-

flinkによる共有では、一度認証されてしまえば、
32bitの番号だけで自由にほかのプロセスのバッ
ファへのアクセス権を手にできます。そのため、
まったく関係のないプロセスが総当たりによっ
てバッファへ不正アクセスをすることも考えら
れるというわけです。

まとめ
　今月はDRMの機能について、これまでのシ
ステムと、GPGPUアプリケーションをより簡
単に動作させるための機能分割として生まれた
render nodeについて紹介しました。｢

 ▼図4　バッファの共有

バッファ

バッファ

AppA DRM
handle

DRM
handle

バッファ作成

handleを使って
アクセス

AppA DRM
name

flink
（handle）

gem_open
(name)

バッファにグローバルなnameがつく

AppA

AppB

name

handleを
使ってアクセス

162 - Software Design

関与することを嫌がる人がいます。それがフォーキ
ングの一要因になっているという説があるそうです。
　ここで、筆者（榎）からLibreOfficeがOpenOffice.

orgからフォークした経緯を簡単に説明しました。
OpenOffice.orgではボランティア貢献者のパッチは
なかなか取り入れられない一方で（3年間もたなざら
しにされたというケースも聞いたことがあります）、
特定企業のパッチは簡単に取り入れられるなど、貢
献者がフェアに扱われていませんでした。プロジェ
クト発足以来、パッチだけでなくあらゆることでそ
のような状態だったことが、フォークの原因として
考えられる、と紹介しました。
　野田さんからは、「とはいっても企業の貢献も必
要ではないか」という問いかけがあり、これに対し
て筆者は、「LibreOfficeのような大規模なプロジェ
クトでは企業の貢献がなければ活動は難しいが、小
さなプロジェクトではボランティアだけでも成り立
つ可能性もある」という意見を述べました。また、
「企業の貢献は開発などを加速させるので、コミュ
ニティのルールを外れない限りはどのコミュニティ
でも歓迎されるだろう」という話をしました。また、
野田さんからは、「OSSで活躍して有名になりたい、
職を得たいというモチベーションがあるのでは？」
という質問もありましたが、個人的にはそういう方
にはあまり会ったことがないこと、企業に雇われる
ケースは以前に比べると出てきているが、まだまだ
少なそうという印象を述べました。
　最後に野田さんから、「日本でもアメリカの企業の
ようにOSSに貢献することで、開発者の獲得につな
げるなどのモチベーションが高まってくるのではな

　今回は、8月に島根、9月に広島で行った研究会の
模様をお伝えします。

	 ■ディスカッション：オープンソースと企業との

	 	 かかわりについて

	【講師】野田 哲夫（島根大学）、

	 	 榎 真治（日本UNIXユーザ会）

	【日時】2014年8月23日（土）10:15〜10:30

	【場所】松江テルサ 4階 中会議室

　島根大会はオープンソースカンファレンス2014 Shi

maneの1コマとして行い、参加者は約40名でした。
　はじめに野田さんから、研究者の立場からのオー
プンソースソフトウェア（以下、OSS）研究の紹介が
ありました。エリック・レイモンド氏のコードを贈与
する話注1から始まり、最近のアメリカでのキャリア
追跡調査からは、OSSに携わってきた人は起業した
り、Googleなどの大きな企業に雇われたりするケー
スが多いことがわかってきているそうです。贈与す
ることによって、有名になったりキャリアや金銭に
つながったりしているのでは、という話でした。
　また、OSSはフォークによって衰退していくのか、
継続していくのか、という研究も行われているそう
です。オープンイノベーションなど、OSSの成果を使
うだけでなく企業が関与していくという動きがあり
ますが、これに対してコミュニティの中には企業が

島根大会

注1） URL http://cruel.org/freeware/noosphere.html

中国地方転戦記

NO.39
January 2015

日本UNIXユーザ会　http://www.jus.or.jp/
榎 真治　ENOKI Shinji　shinji.enoki@gmail.com
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/
http://cruel.org/freeware/noosphere.html

Jan. 2015 - 163162 - Software Design

いか」という話がありました。
　15分という短い時間の中で、野田さんからOSS

研究をコンパクトにわかりやすく紹介いただき、コ
ミュニティ側の実例と少しつなげる試みができてよ
かったです。一方で、ディスカッションとしては、
これからというところで終わってしまってたいへん
残念でした。このディスカッションの続編をjusのイ
ベントとして実現したいと考えています。

	 ■これからのアプリ開発はIPv6対応で行こう！

	【講師】渡辺 露文（IPv6普及・高度化推進協議会）

	【司会】法林 浩之（日本UNIXユーザ会）

	【日時】2014年9月20日（土）11:00〜11:45

	【会場】サテライトキャンパスひろしま 502会議室

　3年ぶりの開催となった広島大会は、IPv6普及・高
度化推進協議会で調査が進められているアプリケー
ションのIPv6対応をテーマに設定し、同協議会のメ
ンバーである渡辺さんを講師にお迎えしました（写真
1）。参加者は17人でした。
　はじめに、最近はIPv6を利用できる環境が増えて
きていることやIPv4アドレスの枯渇について触れた
あと、もう少しIPv6を知ろうということで仕様の説
明がありました。IPv4とIPv6は互換性がないので、
サーバ側でIPv6に対応しないと、IPv6のみの環境と
は通信できません。また、ネットワークとサーバだ
けがIPv6に対応すれば良いわけではなく、アプリ

ケーションも対応が必要です。たとえばプログラム
の中にIPv4アドレスを直接書いているとIPv6に対
応できないので、ホスト名で指定するように変更す
る必要があります。
　続いて本題であるアプリケーションのIPv6対応に
ついて話がありました。対応の基本方針は「IPv4と
IPv6の両方で動作する」「1つのソースコードで対応
する」の2点です。そして、具体的な対応ポイントを
次の3つに分けて説明しました。

①	IPv4/IPv6両対応のプログラミング言語やOSを使う

	 サーバのホスト名をDNSで名前解決したときに

IPv4アドレスとIPv6アドレスが得られるが、そ

のどちらでも通信できるようにしておく。また、

プログラミングにおいても、IPv4/IPv6の双方に対

応するライブラリやデータ型を使う

②	通信処理をIPv4/IPv6の両方に対応させる

	 サーバ側ではIPv4/IPv6双方の接続を処理できる

ように作る。クライアント側も同様だが、いずれ

かが接続できないときはもう一方に切り替えて接

続するように作る。このフォールバック機能の作

りが悪いと切り替えに失敗したり時間がかかった

りしてしまい、ユーザの利便性を損なってしまう

ので注意が必要

③	データとしてIPアドレスを扱う個所をIPv4/IPv6

の両方に対応させる

	 具体的にはデータの入出力／検索／整列／格納な

どの処理が該当する。IPv4とIPv6ではアドレス

体系や表記が異なるので、両方に対応できるよう

なプログラムにする。PostgreSQLなどIPアドレ

ス型が定義されているソフトウェアではそれを使

い、定義されていない場合は文字列型を使用し、

IPv6アドレスは完全表記に変換して扱う

　最後に渡辺さんから、「IPv6対応は要点を理解すれ
ばけっして難しいものではないので、今日から開発
するアプリケーションはぜひともIPv6に対応してほ
しい」というメッセージがありました。全体的に要点
がわかりやすくまとめられていて、とても良い講演
でした。｢

広島大会

写真1　広島大会の様子

中国地方転戦記 January
2015

164 - Software Design

災害へのIT活用を
考える会議

　ITを活用した復興支援や防災／減災を行ってい
る人たちをつなぐためにスタートしたのが「ITx災
害」コミュニティです。2013年の10月に第1回の会
議を行った後、Facebookグループなどで情報交換な
どを行っていましたが、2014年の10月に第2回目の
会議を行いました。
　第1回目の会議以降、いくつかのプロジェクトが
立ち上がりました。また、東日本大震災以降も雪害
や水害など多くの自然災害が日本を襲っており、そ
れらに対してのITからのかかわりを考える機会も
多くありました。そこで第2回目となる今回は、実
際に動き出そうという意味を込めて、テーマを「つ
ながりx動く」としました。
　今回はこの第2回 ITx災害会議の模様についてお
伝えします。

午前中のショートスピーチ

　会議の午前中は10名の方から「ITx災害コミュニ
ティに期待すること」、「現在進めているプロジェク
トの紹介」、「支援活動を通じて見えてきたこと」な
ど、多岐にわたるテーマでショートスピーチを行っ
ていただきました。Hack For Japanからもスタッフ
の及川がこれまでの経緯と翌週のCode for Japan

Summitの中で行う防災・減災ハッカソンについて
案内をしました。
　登壇された方（敬称略）とその概要は、次のとおり
です。

●●東京大学CSISとしての東日本大震災以降の取
り組み〜地理空間情報と復興・防災・減災
▪▪古橋 大地・瀬戸 寿一　東京大学空間情報科

学研究センター

「東日本大震災以降、地理空間情報がどうやって
世の中の役に立てるかという観点で、復興支援
アーカイブ、NHK震災ビッグデータ、アーバン
データチャレンジなどに取り組んできました。
世の中を今よりももっとよくするために、地理
空間情報を必要とするすべてのコミュニティを
応援します！」

●●情報支援レスキュー隊 IT DARTの活動
▪▪佐藤 大　IT DART

「現地に入って被災地の状況を把握し、後方支援
チームと連携して被災地の外にいる支援を考える
団体が動きやすくなるよう情報発信をしていくの
がIT DART注1の活動の目的です。災害後100時
間の緊急活動の中で被害や避難の状況、支援ニー
ズ、各支援団体の現状などを収集します。」

●●支援者のための情報発信〜平時、災害時の痛み
悲しみを減らすために情報ができること
▪▪小和田 香　IT×災害情報発信チーム

「誰のための情報を届けるかということが大切。
自分たちは支援者のための情報を届けるために
活動を始めました。ITx災害情報発信については
災害時に信頼性あるメディアから情報を収集、発
信します。災害時自治体Twitter調査が2014年9

月のNHK NEWSWEBで紹介されました。各地

注1	 http://itdart.itxsaigai.org/

Hack For Japan
エンジニアだからこそできる復興への一歩

第2回 ITx災害会議レポート第37回
“東日本大震災に対し、自分たちの開発スキルを役立てたい”というエンジニアの声をもとに発足された
「Hack For Japan」。今回は2014年10月に開催された「第2回 ITx災害会議レポート」の模様をお届け
します。

●Hack For Japanスタッフ
　及川 卓也　Takuya Oikawa
　 Twitter @takoratta
　高橋 憲一　TAKAHASHI Kenichi
　 Twitter @ken1_taka
　鎌田 篤慎　KAMATA Shigenori
　 Twitter @4niruddha

http://itdart.itxsaigai.org/

Jan. 2015 - 165

第2回 ITx災害会議レポート第37回

域のキーマンをつなぐこともやっていきたい。」

●●災害時におけるIT支援活動の成果と課題	 ●
〜調布、大島、前橋、広島での事例
▪▪柴田 哲史　災害IT支援ネットワーク

「被災地の災害ボランティアセンターに入って、
Webサイト作成支援などを行ってきました。直
近では広島の災害でも活動しました。公式サイ
トを公開すると問い合わせの電話の数が激減（3

～4割）します。電話の問い合わせ内容はだいた
い決まってるので、FAQの効果が大きい。」

●●大槌における支援活動を通じて感じたこと
▪▪臼澤 良一　遠野まごころネット

「被災地では雇用の喪失、高齢化、コミュニティ
不全、農業漁業の衰退、インフラの不備などの
問題があります。きめ細やかな支援には、他の
地域の事例ではなく現地に入り被災地の声に耳
を傾け、その地域に息づいているものを掘り起
こすことが重要です。」

●●震災対策アプリ「ホイッスル on Android」	 ●
〜小さなコード、大きな成果
▪▪安川 要平　ヤスラボ代表

「震災直後に“ホイッスル on Android”という震災
対策アプリを開発しました。生存確率をあげる
ためにあなたに代わってSOSを発信するアプリ
です。笛はあると良いけどみんな持ってない、
持っているものに笛が付けばというところから
着想し、30行という短いコードで実現しているの
ですが、30万という数のダウンロードがありまし
た。要望はいろいろといただくのですが、シン
プルさを心がけてきました。」

●●災害時に生き残るための知識を共有できるサー
ビス
▪▪中塩 成海　一般社団法人イトナブ石巻 理事

「石巻で被災した実体験から災害時に生き残るた
めの知識を共有できるサービスを開発しました。
災害発生時は少なくとも1週間は自分で生きぬか

なくてはいけない。そのようなサバイバル状態
の災害時に必要な情報を被災前から考えられる
場を提供し、被災時に速やかに共有します。Race

for Resilience注2からスタートしたプロジェクト
で、ネットが止まっても印刷物を提供・拡散する
ようなものを考えていきたい。」

●●すごい災害訓練DECOの紹介
▪▪田口 空一郎　すごい災害訓練DECO

「災害対策には人材育成が最も重要で、自助のた
めのコーチングのしくみで目標に近づけていく
しくみです。311の災害経験をどのように継承し
ていくか、防災教育プログラムの開発を考えて
いたことがきっかけでした。iPadを使った災害対
応訓練などを実践しています。」

●●災害の経験から得た、災害発生時に備えた虎の巻
▪▪津田 恭平　一般社団法人イトナブ石巻 理事

「『まさかここまで津波がくるとは思わなかった』
という実体験から万人が知識を持つことが防波
堤を作ることよりも重要と考え、危険度を認識し
てもらうためにRace for ResilienceでFloodAR

というアプリを開発しました。ARアプリ上のアバ
ターと同じ速度で歩くことで実際の避難にかかる
時間を実感できるようになっています。」

昼飯とアンカンファレンス

　午前中のショートスピーチの後、昼食には「模擬
の炊き出しの体験」としてパックの弁当となめこ汁
が提供されました（写真1）。昼食を担当いただいた
いのは、小林幸生さん（NPO連携福島復興支援セン
ター）です。なめことネギはいわき市産のものを
使っています。
　昼食に入る前に、午後のアンカンファレンスの進
め方が説明されました。参加者は事前に配布された
付箋紙にトピックを記入し、スタッフに手渡します。
それをスタッフが昼食の間に整理します（写真2）。

注2	 2014年2月に行われた世界銀行主催の防災、減災ハッカソ
ン。本連載の9月号でもレポートしています。

166 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

　スタッフによる整理の結果、アンカンファレンス
の時間割は表1のようになりました。

アンカンファレンスまとめ

　午後のアンカンファレンスの成果を紹介します。
　「オープンデータ・官ができること」をテーマにし
た議論では、データを使って災害の経験をどのよう
に伝承していくかを議論しました。著作権やその他
のしがらみを乗り越えていくためにクラウドソーシ
ングを活用し、権利関係に配慮したデータ作成の提
案がされ、また、何をどのようにオープンにしてい
くかといった観点でのデータ形式や運用の必要性を
訴えました。
　「災害時情報発信」の発表は情報発信の観点を誰に
（Who）いつ（When）どんな情報（What）をどうやって
（How）届けるかを軸に議論しました。被災地域とそ
れ以外の地域や受け手の情報感度などの分類を行っ
て、被災地からの生の情報発信が重要になるのでは
ないかという仮説から、情報発信にITの力を使っ
て付加情報を加えていくアイデアが出されました。
　「マイノリティ・ハンディキャップ」をテーマにし
た発表は、日本で被災した外国人や障害を持つ人の
ような要援護者に対して、どのような支援ができる
かを議論しました。そのような要援護者に対する情
報の受発信や、情報を受け取った後の行動に結びつ
けるためのリテラシー格差を埋めるため、予防的な
情報の整理や事前の情報公開を平常時に実施してい
くという施策を発表してくれました。
　「災害ボランティア」の議論の発表では、ボラン
ティアを運営する側としても、被災地外からボラン
ティアにかかわる人々に求められる意識をあらかじ
め明示しておく必要性を訴えました。受け入れ側の
体制構築や継続的にボランティアを集めるために、
わかりやすさと受け入れやすさを事前に用意する視

点が大切と訴えました。
　「連携」をテーマに議論したチームでは、組織間の
連携時に起きる問題について発表してくれました。
災害時に連携すべき組織が、日常における組織間で
の派閥争いの影響を受けてしまうなど、災害発生時
の活動として本質的ではないところで問題が発生す
る可能性があります。これを回避するために、災害
時の協定を事前に結んでおくことなどの事前策を中
心とした議論でした。
　「お金・持続可能性」のテーマでは、災害時の資金
運営のワーキンググループを立ち上げたことを発表
してくれました。教育や予防に対する予算が付きづ
らい、年度決済という構造のため継続的な企業の支
援が得られづらい、人手が不足しがちなどの課題が
あります。これらを解決するため、下支えとなる
ITの技術をきちんと理解してもらい、予算が付い
た活動となるための土台作りを支援するというコ
ミットメントをしてくれました。
　「防災教育」をテーマにした成果発表では、地域ご

◆◆写真1　昼食のお弁当

◆◆写真2　アンカンファレンスの時間割を検討中

13:15〜 IT DART オープンデータ・
官ができること 災害時情報発信 マイノリティ・

ハンディキャップ 災害ボランティア

14:05〜 IT DART 2 連携 お金・持続可能性 防災教育 コミュニティ運営

14:55〜 ツール 産業復興 人材育成

◆◆表1　アンカンファレンス時間割

Jan. 2015 - 167

第2回 ITx災害会議レポート第37回

えました。
　「ツール」のセッションでは情報の集積、その分
析、そして可視化を軸に話し合われ、他の発表でも
挙げられたデータの標準化や緊急時のデータの取り
扱い、システム間連携や可視化を行うためのツール
を事前に準備していくための議論が行われました。
出てきたアイデアとしては、被災者の状況にあわ
せ、状況判断のための材料をレコメンデーションし
ていくしくみ、平時の情報蓄積と災害時の差分を見
るしくみ、などが発表されました。
　以前から活動されている「IT DART」の発表は、
これまでの取り組みの振り返りと今後のアクション
プランの策定をテーマにした議論でした。情報を軸
にした議論から情報の整理や構造化をするためのテ
ンプレート作りのみならず、そのUIとUXまで踏
み込んだものにしなければ本来の目的を実現できな
いという課題意識から、最終的なアクションプラン
としては、情報の整理に向けての活動や支援を行っ
ていくという包括的なものが発表されました。

第2回会議を終えて

　今年で2回目となる「ITx災害」会議でしたが、東
日本大震災をきっかけに始まった各団体の活動も3

年以上経った今、そのほかの災害も視野に入れた幅
広いものとなりつつあります。参加者の多くが共通
した課題を感じていることを知ることができ、良い
機会にもなりました（写真3）。読者の皆さんにとっ
て、この記事が減災、防災という観点から事前にで
きることを平時に考えてみるきっかけとなれば幸い
です。s

との特性に配慮した教育の必要性を説きました。ど
うすれば主体的に防災について市民が考えられるよ
うになるかという視点から、浦安市で防災教育コン
テンツを作った「すごい防災訓練DECO注3」の事例
を紹介。地域の道という道を歩き、その地域特性を
深く理解したうえで災害をシミュレーションするこ
とが大切で、現場の暗黙知をいかに言語化していく
か、地域の人々とのつながりをどう作るかを、活動
の理解と共に各地に拡げていく必要性を訴えました。
　「コミュニティ運営」の成果発表では、誰かがいつ
も必ず居て「集まる・共有する・共感する」ことがで
きる場の用意や、行政任せではなく自分達自身で災
害に備えるためにコミュニティを作り上げていく必
要を訴えました。そうしたコミュニティの質を高め
るためには構成員の理解、また緩いつながりの構築
をしていくことの重要性を挙げています。今後の取
り組みとして、コミュニティをサポートしていく中
で、数％でも芽が出ればその後の活動につながると
いうポジティブな意識付けと、活動の失敗を記録す
ることで持続性のある活動とし、最後は長いお付き
合いを目指すということで締めくくられました。
　「産業復興」をテーマにした議論では、被災地にお
ける産業復興に主眼を置きましたが、その根底には
地方の産業復興という大きな課題を含み、2つに分
けて発表されました。1つが既存産業の復興をプロ
ボノ注4の協力を得ながら実現していく案。もう1つ
がシリコンバレーのような新しい企業が生まれやす
い文化を作っていくために、大学と連携して新規産
業の育成をしていくスキーム作りの案を提案してく
れました。
　「人材育成」ではITに関する教育で、我々Hack

For Japanの活動やこの連載でも何度か紹介してい
るイトナブ石巻の活動なども事例として議論されま
した。その中から、小さくても良いからアウトプッ
トを出すことや、達成するべき目標を可視化するこ
との大切さ、メンターを用意することの重要性を訴

注3	 http://sugoisaigaikunren.org/
注4	 各分野の専門家が職業上持っている知識・スキルや経験を活

かして社会貢献するボランティア活動全般。また、それに参
加する専門家自身。（Wikipediaより）

◆◆写真3　会議を終えての記念撮影

http://sugoisaigaikunren.org/

168 - Software Design

はじめに

　今回は1980年代のパソコン
や家庭用ゲーム機などに用いら
れたPSG（Programmable Sound
Generator）音源についてお話し
ます。

PSG音源
とは

　PSG音源は、複数の基本波形
を合成した音波とノイズ発生装
置を組み合わせたサウンドチッ
プです。PSG音源にはさまざま
なバリエーションがあります
が、一般的にはゼネラルインス
ツルメンツ（GI）のAY-3-8910
および互換品を指すことが多い
ようです。AY-3-8910では矩形
波発声3音とホワイトノイズ1
音の計4音を同時に発声できま
した。GIのライセンスのもとに
製造された互換品としては、ヤ
マハのYM2149やFM音源に含
ま れ て い た YM2203や YM
2608、そして東芝からもMSX
などのパソコンに搭載された
チップなどがあります注1。

注1） FM音源登場以降の互換品チップには
SSG（Software-Controlled Sound
Generator）音源と呼ばれるものがあ
りました。

矩
く け い は

形波

　PSG音源では矩形波が用い
られました。矩形波というのは
図1のようにカクカクした波形
を発生するものです。矩形波で
は音が鳴る／音が止まるという
のがデジタルに表現されます。
ファミコンサウンドと評される
ピコピコ音は矩形波で作られた
きらびやかな音のことを指すこ
とが多いです。PSG音源の独特
のポップな音楽感、アーティス
トでいうとPurfumeやきゃりー
ぱみゅぱみゅさんたちの音楽に
引き継がれていたりもして、
PSG音源は1つのカルチャー
だったんだなあと思ったりもし
ます。

ホワイト
ノイズ

　ホワイトノイズとはノイズと
いう名のとおり雑音のことで
す。当時はホワイトノイズをう
まく扱ってさまざまな効果音が
表現されてきました。代表的な
使われ方としてはドラムやパー
カッションなどの音の代替で
す。生音には到底似つかない音
色でしたが、ツツチャツ ツツ

チャツのようにドラムでたたく
リズムでノイズを鳴らしてみる
と、なんとなくその音がドラ
ムっぽく聞こえたものです。

同時発音数

　すでに記したとおり、PSG音
源は3音程度しか同時発音がで
きませんでした。バンド演奏な
どでは、メロディー、ベース、
和音（3～5音程度）など、3音で
はとても表現できません。ゲー
ム音楽などでは、メロディーと
ベースかサブメロディか和音の
アルペジオを鳴らし、残り1音
をミサイル発射などの効果音に
用いる組み合わせが多かったよ
うに思います。

PSG音源を搭載
していたパソコン

　当時のパソコンは、ビジネス
ユースとパーソナルユースが明
確に区分されておらず、各社か
ら発売されるパソコンもいずれ
かに決めかねる中途半端なス

 ▼図1　矩形波

温故知新
ITむかしばなし

LINE㈱　佐野 裕（さの ゆたか）　Twitter：@sanonosa

PSG音源

第40回

168 - Software Design Jan. 2015 - 169

ペックのものが多かったように
思います。当時パソコンを売る
ためにはゲームの充実が必須条
件でしたが、そのゲームに欠か
せないのが音楽でした。そのた
め、多少なりともパーソナル
ユースを意識したパソコンには
漏れなくPSG音源が搭載され
ていました。
　たとえばPSG音源を搭載し
ていたパソコンとしては、NEC
のPC-6000/8000/8800/9800
シリーズ、富士通のFM7シリー
ズ、そして各社から発売されて
いたパソコンの共通規格 MSX
などがありました。また家庭用
テレビゲームとしても、PSG音
源はセガマスタシステム、メガ
ドライブなど、さまざまな機種
に搭載されていました。
　一方、任天堂 ファミリーコ
ンピュータはPSG音源のよう
に見えますが、実際はPSG音
源を参考にして作られたと思わ
れるCPU内蔵型音源が用いら
れたためPSG音源が用いられ
ていたわけではありません。

MML

　当時よく使われていたBASIC
言語ではMML（Music Macro
Language）と呼ばれる音楽用記
述言語がよく用いられていまし
た。MML言語を使うとBASIC
言語からPSG音源を簡単に鳴
らすことができました。
　Lは音符の長さ（L1は全音
符、L4は4分音符、L8は8分
音符）、CDEFGABはドレミ
ファソラシ、Rは休符の要領で
記載していきます。また和音は

カンマ（,）で区切って記載してい
きます。音楽家が楽譜を見る
だけで頭の中で音楽を鳴らすこ
とができたのと同様に、当時
MML言語を使いこなしていた
人たちは、MML言語で書かれ
たプログラムを見るだけで頭の
中で音楽を奏でることができた
ような気がします。

BGMとして
の利用

　ゲームにはBGMが欠かせま
せんが、音を鳴らしながら画像
出力やキーボードやジョイス
ティックなどの入出力処理を行
うためには割り込み処理を駆使
する必要がありました。BASIC
言語でMMLを使って音楽を鳴
らす場合、CPU処理がMML処
理に奪われてしまいそのほかの
処理ができず、ゲームのBGM
を鳴らせませんでした。そのた
め、機械語などを使って適時割
り込み処理を入れながら音楽を
鳴らす必要がありました。
　PSG音源は、音の出だしや音
の停止をリアルタイムに指示す
る必要があります。現代の開発
環境であればこういった低レベ
ル処理はすべてプログラミング
言語や各種APIに標準機能が用
意されていますので難しくない
ですが、当時はそのレベルまで
自身で開発する必要がありまし
た。開発者はハードウェアに近
いところまで知らないといけな
い時代であったため、自分の書
くプログラムによって直接ハー
ドウェアをコントロールしてい
る実感があり、なかなか楽しい
時代でありました。

FM音源

　その後音色を自由自在に変え
られるFM音源が普及していき
ました。FM音源にはPSG音源
チップも搭載されていたため、
実際はFM音源とPSG音源を
同時に鳴らして音楽を鳴らすこ
とが行われていました。
　余談ですが、FM音源はさま
ざまな波長を組み合わせること
によっていろいろな音色を作る
ことができ、伝説的なシンセサ
イザーであるヤマハのDX7で
用いられたことが有名です。

終わりに

　筆者が幼いころ、PSG音源+
MML言語の組み合わせでずい
ぶん遊んだ想い出があります。
ただいろいろ遊んでいく内に、
MML言語だと楽器奏法的に言
うビブラートやポルタメントな
どといった表現が非常にしづら
く、できたとしてもどうしても
機械的で不自然な感じになるの
が不満でした。この不満がその
後筆者を生楽器演奏の世界に導
き、高校時代に吹奏楽の世界に
飛び込むきっかけとなりまし
た。しかし実際に生楽器を経験
すると、楽器はいくら練習して
もなかなか思ったとおりに鳴っ
てくれないのに対してコン
ピュータはプログラミングした
とおりに鳴ってくれるので、音
楽演奏はむしろコンピュータに
やらせる方が楽だなあと思うよ
うになったりもしました。｢

温故知新 ITむかしばなし
PSG音源

第40回

170 - Software Design

今どきのバージョン管理システムとは？
Stashで実現する快適な開発環境

第　　回3

Catch Up Trends in Engineering

Software Design編集部

迷えるマネージャのための

再入門
プロジェクト
管理ツール

開発の

ボトル
ネック

は

どこだ
？

Jan. 2015 - 171

多くの開発現場で
Gitが使われている理由
ソースコードのバージョン管理を効率化する
ためのツールとして、これまで多くの現場で使
われていたのがApache Subversionです。それ
以前に使われていたCVS（Concurrent Version

System）と同様の操作性を実現しつつ、CVS

が抱えていたさまざまな課題を解決したことで、
Subversionは人気を博しました。
ただ、Subversionにもいくつか難点があり

ます。その中でもとくに大きいのは、複数の拠
点で開発する際のレスポンスの問題でしょう。
Subversionは中央のサーバでソースコードを
集中的に管理するクライアント／サーバ型のモ
デルであるため、サーバから物理的に離れた拠
点でアクセスすると必然的にレスポンスが低下
し、開発効率にも影響が生じてしまいます。ま
た、機密情報であるソースコードに遠隔地から
アクセスするときにはセキュリティのために
VPNサービスなどの閉域網を使うケースが一
般的ですが、利用者数の増加などによって広帯
域化が必要となれば、コストの問題にも直結す
るでしょう。
そこでSubversionの代わりに広まりつつあ
るのが、分散バージョン管理システムである
「Git」です。クライアント／サーバ型のSubversion

とは異なり、Gitは複数の拠点や端末でリポジ
トリ（管理対象となるデータのまとまり）を管理
できる分散型バージョン管理システムの1つで
あり、そのメリットから多くの開発現場ですで
に使われています。

Gitの使い勝手を
大幅に高めるStash
Gitでバージョン管理を行うには、まず全体

のマスタとなる中央リポジトリを構築し、各開
発者はマスタのリポジトリをクローンして自分
のローカルリポジトリを作成します。
端末で実施した修正のコミットやブランチの
作成、タグ付けといった作業は、ローカルリポ
ジトリに対して行います。作業が完了したあと
には「プッシュ」と呼ばれる操作でローカルリポジ
トリの内容を中央のGitリポジトリに反映します。
このように、普段はローカルリポジトリで作

業を行い、作業が完了したときだけGitリポジ
トリにプッシュすればよいため、ネットワーク
のレスポンスを気にせず快適に作業を進められ
るのがGitの特長です。
このGitリポジトリを管理するためのツール

としてアトラシアンから提供されているのが
「Stash」です（図1）。Gitをそのまま利用した場
合、リポジトリやユーザの管理操作をすべてコ
マンドラインから行うことになりますが、
Stashを使えばわざわざコマンドを覚えること
なくWebインターフェース上で各機能を利用
できます。

JIRAやJenkinsとの連携も
サポート
StashのWebインターフェースは多機能で、

バージョンやブランチの比較、ブランチのマー
ジなどの操作を手軽に行えるほか、リポジトリ
内のソースコードを参照するためのソースコー

170 - Software Design Jan. 2015 - 171

第　　回3 　今どきのバージョン管理システムとは？ Stashで実現する快適な開発環境

ドビューアも用意されています。また、実際の
開発現場でのワークフローに合わせて権限設定
ができます。たとえばソースコードに
何らかのバグがあり、ブランチを作成
して修正を行った際に、レビュアーの
承認がなければ作成したブランチをマ
スタにマージできないようにするなど、
さまざまな設定ができます。
業務で利用することを想定した機能

が用意されていることも特長でしょう。
具体的には、ユーザごとにきめ細かく
パーミッションを設定できるほか、リ
ポジトリやプロジェクトの設定につい
て誰がどんな変更をしたのかを監査ロ
グとして記録するといったしくみが用
意されています。これらの機能により、
たとえばオフショア開発で外注先が作成したソー
スコードも集約して管理したいといったニーズ
にも対応できます。
課題管理ツールであるアトラシアンの「JIRA」
との連携も、Stashならではの魅力でしょう（図
2）。両者を連携させれば、JIRAで課題を作成
した際に、その画面からStash側のブランチを
作成してブランチと課題を紐

ひも

づけることができ
ます。ブランチで実施したコードレビューやマー
ジの履歴もJIRAの課題にリンクします。また、
Stash側のコミットとJIRAの課題を結び付け
られるため、どの課題を解決するためのコミッ
トなのかが素早くわかるのも便利です。

CIツールであるJenkinsとの連携も可能で、
StashでのコミットをフックにJenkins側で自

動的にビルドを行うという環境も構築できます。
すでにJenkinsで自動ビルド環境を整えている
企業にとっては、うれしいポイントでしょう。
このほかにも、Stashには生産性向上につな
がる魅力的な機能が多数盛り込まれています。
現状のバージョン管理システムに課題を感じて
いるのであれば、まずはStashの体験版で実際
の機能を試してみてはいかがでしょうか。ﾟ

Stashの無料体験版を提供中：
https://www.ricksoft.jp/product/atlassian/stash

アトラシアン製品のエキスパートであるリックソフトでは、
Webアプリケーションエンジニアやインフラ・ネットワーク
エンジニアを募集中です！社員数25名のうちエンジニアが
17名という、エンジニア中心の会社で活躍してみませんか？

https://www.ricksoft.jp/

図1 WebブラウザでGitリポジトリを管理できる、アトラシアンの「Stash」。左はブランチのパーミッション画面、 ▼
 右はコードレビューの画面

図2 課題管理ツール「JIRA」と連携できることも「Stash」の ▼
 大きな魅力。Stashを操作するとJIRA側の課題の
 ステータスを自動的に変更

https://www.ricksoft.jp/product/atlassian/stash
https://www.ricksoft.jp/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.link.co.jp/
http://app-plat.jp/

176 - Software Design

SD News & Products

　ノベル㈱は11月13日、「SUSE Linux Enterprise
12」の提供を開始した。同製品はエンタープライズ
向 けOSの「SUSE Linux Enterprise Server 12

（SLES12）」を中心とした複数の製品から構成される。
　SLES12では、Linuxカーネルは3.12に、サービス
管理はSystemdに、デフォルトファイルシステムは
Btrfsに、デフォルトDBはMariaDBに更新されている。
また、保守作業などで問題が発生した場合にワンクリッ
クでシステムを丸ごと復元できるフルシステムロール
バック機能や、サービスを中断することなくカーネルを
更新できるライブパッチ機能が搭載された。

　さらなる高可用性を実現するための機能として、仮
想／物理が混在したローカル環境でクラスタリングを
実現する「SUSE Linux Enterprise High Availability
Extension」と、遠距離間でのクラスタリングを実現す
る「Geo Clustering for SUSE Linux Enterprise High
Availability Extension」もリリースされた。
　 同 製 品 のWebサ イ ト（https://www.suse.com/
products/server/download/）からは60日間無料の評価
版をダウンロードできる。

ノベル、
「SUSE Linux Enterprise 12」を提供開始Software

　㈱Skeedは11月27日、大容量・高速データ伝送
ソフトウェア「SilverBullet」をIBMサーバ「Power
Systems」に組み込んだアプライアンス製品の性能・機
能を拡張し、「SilverBullet Powered by LoP」として
発売開始した。
　IBMの開発したプロセッサPOWER8 を搭載した
Power Systemsは、スケールアウトモデルの高性能
マシンであり、同時実行スレッド数が96と、x86サー
バの82倍の処理性能を有している。Skeedが今回発
売開始した「SilverBullet Powered by LoP」は、この
ハードウェアスペックを持つLinuxサーバ「Linux on

Power」に、同社が独自開発した大容量・高速データ伝
送ソフト「SilverBullet」を組み込んだもので、2014年
1月17日に発表したPOWER7搭載モデルのエンハン
ス（性能・機能の拡張）製品として位置付けられる。
　POWER8における、SilverBulletとFTPの転送速
度比較実験では、4GBのファイル転送を50ミリ秒の
RTT（遅延）／パケット損失率1％という近隣アジア諸
国との間でよくみられる回線状況下で行った結果、FTP
に比べ、SilverBulletは約80倍もの高速性を発揮した。

CONTACT ㈱Skeed
URL http://skeed.jp

Skeed、
IBM Power Systemsベースの

「SilverBullet Powered by LoP」を発表
Hardware

CONTACT ノベル㈱
URL http://www.novell.com/ja-jp

　2015年2月3・4日、日本OpenStackユーザ会主催
の第3回OpenStack専門カンファレンス「OpenStack
Days Tokyo 2015」がグランドプリンスホテル高輪（東
京都港区）で開催される。
　OpenStackは、クラウド基盤を構築するためのオー
プンソースソフトウェア。標準的なハードウェア上で、
KVMなどの仮想化ソフトと組み合わせ、IaaSやストレー
ジサービスを構築するための仮想マシンやストレージ、
ネットワークの管理機能などを提供する。
　「OpenStack Days」は、OpenStackの開発コミュ
ニティのメンバー・開発ベンダ・ユーザ企業が一堂に会

するイベント。今回は、「創る、活かす、つなぐ」をテー
マとして、既存のオンプレミス環境とクラウド環境のハ
イブリッド運用に向けた導入・移行のポイント、コミュ
ニティやエコシステムの活用法、OpenStackの今後な
ど、さまざまプログラムが提供される。イベント初日に
は、OpenStackプロジェクトの創始者Mark Collier氏
が来日し、基調講演を行う予定。
　参加費は無料で、下記Webサイトから事前の登録が
必要となる（締め切りは2015年1月27日17時まで）。

CONTACT OpenStack Days
URL http://openstackdays.com

2015年2月3日・4日、
「OpenStack Days Tokyo 2015」開催Event

https://www.suse.com/products/server/download/
http://skeed.jp
https://www.suse.com/products/server/download/
http://www.novell.com/ja-jp
http://openstackdays.com

Jan. 2015 - 177

SD News & Products

　㈱NTTスマートコネクトは、クラウドサービスの利
便性向上に向けて「ハイブリッドクラウド接続サービス

（仮称）」と「スマートスケーリングサービス（仮称）」を
βサービスとして提供することを発表した。
　「ハイブリッドクラウド接続サービス」は、ユーザの
環境にVMware NSXによる仮想ルータを提供し、オン
プレミス環境とクラウド環境をシームレスに接続する
サービス。オンプレミスとパブリッククラウドが混在す
ることで複雑になりがちなシステムを、コントロールパ
ネルにより効率的に統合管理できる。
　「スマートスケーリングサービス」はユーザの利用形
態に合わせ、仮想サーバ・仮想ロードバランサを生成し
ながらシステムリソースの自動拡張や縮退を行えるサー
ビス。同社独自のオートスケールロジックに加え、ユー
ザカスタマイズでの設定が容易にできる。さらに、オー
トスケールで生成される仮想サーバのそれぞれにNSX
の分散ファイアウォールを適用することによってマイク
ロセグメンテーション化し、負荷を高める原因となる仮
想サーバへの不要な通信を遮断できる。
　これらβサービスの提供期間は、2015年2月1日～

3 月 31 日。SI
事業者をおもな
対象として、機
能性や利便性に
ついての評価の
収集、サービス
化における最終
確認を目的とし
ている。
　また同社は、
11月25日よりアニメーション作品「宇宙戦艦ヤマト
2199」を各サービスプロモーションに起用している。
　今後、特設サイトでは、人類滅亡の危機を救うため地
球を再生するコスモリバースシステムを求めてイスカン
ダル星へ向かう「ヤマト計画」と、企業などがICT環境
を「クラウド化」し、地球環境保護に貢献するイメージ
を重ね合わせ、クラウド化による環境負荷の軽減（低消
費電力）やBCP対策などについて紹介する予定。

NTTスマートコネクト㈱
URL http://www.nttsmc.com

CONTACT

NTTスマートコネクト、
「ハイブリッドクラウド接続サービス」「スマートスケーリン
グサービス」をβサービスとして提供開始

Service

テンプレート機能を提供開始

　㈱リンクは11月5日より、「ベアメタル型アプリプラッ
トフォーム」において、テンプレート機能の提供を開始
した。
　「ベアメタル型アプリプラットフォーム」はGUIで物
理サーバの追加・削除・コピーが行えるベアメタルクラ
ウドサービス。今回追加された機能により、保存したイ
メージファイルをテンプレート化し、そこから新規サー
バの作成などができるようになる。
　同サービスではオプションとして「バックアップスト
ア」という機能を提供しており、この機能を利用するこ
とで、現在の物理サーバのデータをイメージファイルと
してバックアップできる。「テンプレート」機能は、こ
のバックアップストアを申し込むことで利用できる新機
能。テンプレート化したデータをもとに、サーバの複製
が可能となるため、ロードバランシング対象としての
サーバ複製などがより容易に行える。テンプレートから
作成元となったサーバをリストアすることはもちろんの
こと、別サーバへのリストアも行える。
　さらに、このテンプレートは、作成元のサーバを解約

した場合でもバックアップストア上に保存されるため、
無駄なコストをかけずにテンプレートを保存し続けるこ
とができる。

仮想サーバの機能を強化
　また同サービスは、11月26日より仮想化機能の強
化を行っている。その第一弾として、リソース（CPU、
メモリ）の変更が、サーバ作成後も行えるようになった。
これによりCPUは1コア単位から、メモリは0.5GB単
位から変更することが可能となり、運用するサービスの
拡大に応じて仮想サーバのスケールアップが手軽にでき
るようになる。新たに追加料金などが発生することなく、
運用開始後のサーバのリソース変更ができるため、より
柔軟な運用が実現できる。
　今後も、HA（High Availability）やVM（Virtual
Machine）のバックアップ、V2V（Virtual to Virtual）
／V2P（Virtual to Physical）／P2V（Physical to
Virtual）のサーバ移行など、機能を拡充していく予定。

㈱リンク
URL http://www.link.co.jp

CONTACT

リンク、
「ベアメタル型アプリプラットフォーム」において
テンプレート機能の提供、仮想化機能の強化開始

Service

▲特設サイトのイメージ

http://www.nttsmc.com
http://www.link.co.jp

178 - Software Design

SD News & Products

　アールエスコンポーネンツ㈱は、米国Adapteva社
と販売代理店契約を締結し、同社が開発／生産する名刺
サイズのスパコンボード「Parallella board（パラレラ・
ボード」（以下「Parallella」）を11月7日より、販売を
開始した。
　Parallellaは16個の演算コアで並列処理プログラミ
ングが行える小型スーパーコンピュータボード。制御用
SoCのXilinx社製「Zynq Z7000」（デュアルコアARM
とFPGAを内蔵）と演算用アクセラレータ「Epiphany
III 16 core」の2チップを名刺サイズの基板に搭載して
いる。
　安価でコンパクトながら、UbuntuなどのLinux OS
を通じて、高速な並列処理プログラミングが行える。物
理シミュレーション、ビッグデータの解析、教育用プラッ
トフォーム、組込み機器の高速演算エンジンなど、幅広
い用途で活用できるほか、複数のボードを連結拡張して
より高速な並列処理アプリケーションを実現することも
可能。
　同製品は3機種を展開しており、Micro HDMIポート
／Micro USB 2.0ポート／GPIOを搭載しない「サー

バー版」（13,500円）と、サーバー版にMicro HDMIポー
ト／Micro USB 2.0ポート／24 GPIOポートを搭載し
た「デスクトップコンピューター版」（16,600円）と、
さらに48 GPIOポートとより上位のSoCを搭載した「組
込み版」（26,700円）が存在する（価格はすべて税別）。
　いずれも同社オンラインサイト「RSオンライン」

（http://jp.rs-online.com）にて購入できる。

アールエスコンポーネンツ㈱
URL http://rs-components.jp

CONTACT

アールエスコンポーネンツ、
名刺サイズのスパコン「Parallella board」を発売Hardware

　11月2日、代々木ゼミナール（以下、代ゼミ）本部校
の代ゼミタワー（東京都渋谷区）にて、「ロボットは東大
に入れるか2014～東ロボくん、代ゼミ模試に挑戦～成
果報告会」が行われた。
　「ロボットは東大に入れるか」は、国立情報学研究所
が中心となって2011年に発足されたプロジェクト。
2016年度までに大学入試センター試験で高得点をマー
クすること、また2021年度に東京大学入試を突破する
ことを目標に研究活動が進められている。プロジェクト
の主体となる人口知能「東ロボくん」は、受験科目ごと
の「解答器」で構成されており、科目・問題種によって
異なる手法を使い分ける。それぞれの解答器は専門家で
編成された別々のチームが開発を行っている。
　今回東ロボくんが受験したのは、代ゼミセンター模試
および東大プレ（記述式：数学）。発表会では、それぞ
れの科目の解答器を開発したメンバによるシステムの説
明・成績報告とともに、代ゼミ講師による成績の講評も
行われた。成績結果は表のとおり、科目によっては受
験生平均を上回る／引けを取らない点数を出している。
2013年に同科目で受けた際よりも全体的に成績が向上

しているとのこと。
　開発メンバから
は「単語の定義か
ら理解させたい」

（英語）、「誤答の傾
向も人間に似せて
いきたい」（世・日・
政）といった意見
が出た。一方、代
ゼミの講師陣から
は「暗記が得意」「一
般常識に疎い」「図
をよく見よう」な
どの講評がされた。
　現時点では、東ロボくんが問題を問題として認識する
ための形式表現（XML、MathML、注釈付イラスト）に
直すというプロセスを間に入れているが、今後は自然言
語のまま入力に与えるよう実装する動きもあるという。

ロボットは東大に入れるか
URL http://21robot.org

CONTACT

ロボットは東大に入れるか2014
～東ロボくん、代ゼミ模試に挑戦～成果報告会Report

▼成績表
代ゼミセンター模試

教科 東ロボくん 受験生平均

数学Ⅰ A（100） 40 47.1
数学Ⅱ B（100） 55 50.4
物理（100） 31 31.7
英語（200） 95 93.1
国語（150） 69 60.2
世界史 B（100） 52 40.8
日本史 B（100） 44 47.2
政治経済（100） 17 38.1
合計（950） 403 408.6

代ゼミ東大プレ（数学）
教科 東ロボくん 受験生平均

理系選択（120） 36 26.8
文系選択（80） 32 25.9

※括弧内の数字は満点

▲Parallella board

http://jp.rs-online.com
http://rs-components.jp
http://21robot.org

Jan. 2015 - 179

SD News & Products

　グレープシティ㈱は11月27日、エッサム本社ビル
（東京都千代田区）にて「Forguncy使い方セミナー」を
開催した。
　「Forguncy」は、グレープシティ開発のソフトウェア
製品。Microsoft Excelと同様の操作でWebアプリケー
ション（以下、アプリ）を簡単に開発できる。
　セミナー前半の＜基本編＞では、同社の八巻雄哉氏が
Forguncyの基本的な操作をデモを交えて紹介した。
　Forguncyのインストーラは、開発ツールとWebサー
バ（運用環境）の2種類がある。開発ツールでアプリを
開発し、Forguncy専用Webサーバに発行する。その
Forguncy専用Webサーバ上でユーザがアプリを使用
するという流れだ。
　開発するアプリひとつひとつにDBが内蔵されており、
ユーザ管理機能も持っている。専用Webサーバには複
数のアプリケーションを発行でき、同様にアプリごとに
DBを持つことができるとのこと。
　「Forguncy開発ツール」を使えば、Excelの画面と同
じような見た目や操作でアプリを開発できる。開発ツー
ルにはテスト用のForguncy専用Webサーバが内蔵さ

れているので、デバッグ実行が可能となる。
　既存のExcelファイルをForguncyにインポートす
ると、レイアウトだけでなく、数式やセルの書式設定
もインポートされる。Forguncyの開発環境で発行して
Forguncy専用Webサーバで開くと、Webアプリになっ
ても書式や数式が反映され、Webページ上で値を変え
ると、数式が適用され、値も変わる。
　後半の＜実践編＞では、簡単なサンプルアプリ「見積
書発行システム」をゼロから作る過程が解説された。こ
れは、請求書一覧から会社名を選択すると、その会社の
請求書一覧が表示され、新たに請求書を作成することも
できるというもの。参加者は、その場で実際に手を動か
して、アプリ作成を体験した。
　また、セミナーではForguncyの開発チームメンバに
直接質問する時間が設けられた。評価版をダウンロード
したものの使い方がよくわからないといった質問や、自
分でアプリを作ってみたがデータの連結がうまくいかな
いといった質問が出た。

グレープシティ㈱
URL http://www.grapecity.com

CONTACT

グレープシティ、
「Forguncy使い方セミナー」を開催Report

　㈱IDCフロンティアは、ベアメタルサーバのライン
ナップに国内で初めてフュージョンアイオー社の高速
Flashストレージ「ioMemory PX600」を搭載したサー
バを追加し、11月10日よりサービスの提供を開始した。
　また、併せてクラウドコンピューティングサービス

「IDCFクラウド」でも、同型のサーバを用いたハードウェ
ア専有のハイパフォーマンス仮想マシンタイプを11月
19日から提供開始している。
　これにより、ユーザはデータの読み書き両方に高い
I/O性能を持つ2つのサービスを、クラウドやハウジン
グなどと自由に組み合わせて使うことができ、大量の
データ処理をより高速に行うことが可能となる。クラウ
ドサービスの特長は次のとおり。

¡¡既存Flashストレージ搭載タイプと比較しI/O性能が
約5割向上
¡¡月額固定または上限付き従量課金を利用形態に応じ
選択可能
¡¡ IDCFクラウドハードウェア専有タイプはポータルで
サーバをワンタッチで作成可能

¡¡高いI/O性能を持ちながら月額10万円を下回るハー
ドウェア専有タイプも登場予定

㈱ IDCフロンティア
URL http://www.idcf.jp

CONTACT

IDCフロンティア、
「ioMemory PX600」を搭載した、ベアメタルサーバおよ
びクラウドサービスを提供開始

Service

▼ベアメタルサーバの利用プラン（税別）
プラン 高速 IO1000
CPU Xeon 8 コア ×2

ディスク 292GB ／ハードウェア RAID10
Flash ストレージ ioMemory PX600 1000GB MLC

メモリ（GB） 32 64 128 192
初期費用 0 円
月額料金 158,000 円 163,000 円 173,000 円 183,000 円

▼IDCFクラウドの利用プラン（税別）
プラン HighIO 5XL128 ハードウェア専有タイプ
CPU 40 コア

Flash ストレージ ioMemory PX600 1000GB MLC
メモリ（GB） 128

従量料金（時間） 370 円
月額上限料金 179,300 円

http://www.grapecity.com
http://www.idcf.jp

180 - Software Design

は
●
ち
ゅ
う
を
超
え
ろ
!

め
ざ
せ
リ
ア
充
!

こ
れ
で
無
事
に
年
越
し
シ
ュ
ミ
レ
ー
シ
ョ
ン
!

じ
ゃ
な
く
っ
て
シ
ミ
ュ
レ
ー
シ
ョ
ン
だ
ぞ
!

作）くつなりょうすけ　@ryosuke927

そこのあなた！
そのままじゃ
干からびちゃいますよ。
外に出ましょう。

いざ！
リア充の世界へ！
サイコロがない人は、

「shuf -i 1-6 -n 1」
でプレイしましょう。

いつも部屋にいる
外に出ろ、って
オレは毎日会社に出掛け
てるんだけどなぁ。

情報処理技術者試験に合格した。

会社についたらPCが
ブートしない（いや〜ん）。

Linuxのマスコットが現れた。
「俺の名前を言ってみろ!!」

言えなかったら2回休み

スマホのバッテリーが消
き

耗れた。
ラップトップPCのバッテリーもあがった。
僕も燃え尽きた……。

ICカードの残高不足で改札を通れず。
財布も忘れてスタートに戻る。

等幅フォントの
ほうが好みと
気がついた。

3分でブートメディアが
見つからなければ
1回休み。

え？

う

狙っていた女の子に「SNSに投稿しすぎて
ウザい」とブロックされた。

合コンでSNSの使い方を
説明したら、「日本語で教えて」
と言われた。

気軽に投げたツイートが
炎上していた。

収めようとしたサーバーラックの
奥行きが足りなかった。

炎上経験者以外は
2回休み。

あるWebサービスの
脆弱性を報告したら、
＄1,000もらえた！

（出た数／2）のHDDが
RAID 0設定で壊れる。
HDDが2個以上ならば
4つ戻る。

「まとめ」が
バンバン立ち
上がってる…

「リツイート」と「お気に入り」の違いを、
15文字で説明できなければ1回休み。

地方のOSC（オープン
ソースカンファレンス）
に参加する。
プチ旅行気分！

どこにいても圏外（ここは何処？）。

1日15回以上、SNSに
書き込みしてたら
1回休み（暇人だな）。

あ

180 - Software Design Jan. 2015 - 181

I
T
エ
ン
ジ
ニ
ア
の
出
世
は
恋
愛
フ
ラ
グ
に
あ
り
!

ど
ん
な
デ
ス
マ
ー
チ
も
ラ
ブ
コ
メ
要
素
が
あ
れ
ば
乗
り
切
れ
る
!

年 末 年 始 　 　 ス ペ シ ャ ル

客先の受付嬢がタイプだった。

障害調査で見るべきログを
間違えて怒られる。腹筋50回！ GimpとInkscapeで

イラストを描く方法を
教えたら、おだてられた。

インフルエンザと
ノロウィルスの訪問を
続けて受ける。

彼女が看病
してくれた。

流行りがDockerになっていて、やっとこさ
環境を作ったVagrantのありがたみが
ドッカーに行ってしまった。

「恋愛フラグ」が立って
ない人は、オカンに
看病される。

はい、おかゆ
（参鶏湯じゃ
ないわよ）。

いいから、
1回休め。
あんた絶対に
ドMでしょ！

夜間作業中、スマホから投稿した
ネタが深夜ラジオで読まれる（実話）。

狙っていた女の子が、Fedora
使いだった（しかも、rawhide）。

好きなコマンドは、
xargs(1)で
同じだった。

♪雪だるまを作ろう〜。
　れりごー！

ハロウィンの余興でcURL
おじさんのコスプレをしたら
意外と好評だった。
来年もやろうっと。

オタサーの姫に
好かれて地雷を踏む。
2回休み。

打てる！
打てるぞ！！

HHK無刻印キーボードを
使いこなせるように
なっていた。

USBメモリスティックを
紛失して反省文を書く。
腕立て50回！

「恋愛フラグ」が立ってなかった人は、
Startに戻って人生やり直し！

下手なことをネットに書き込んでマサカリを食らう。
上手いこと言えないならば、1回休み。

「恋愛フラグ」が
立った！

う

お

182 - Software Design

　インフラストラクチャの構成管理を

コードで自動化する「Infrastructure as

Code」。その手法を、Webアプリケー
ション開発の定番構成「LAMP」を題材に、
仮想化ソフト・シェルスクリプト・クラウド
サービスを通して学ぶ特集でした。

今一番興味のある内容でとても参考にな
りました。プログラマブルなインフラ。
パラダイムシフトが起こっているのを実
感します。

神奈川県／ jacoさん

LAMP環境の歴史も含めてとてもわか
りやすい記事だと思います。

東京都／ tekitoizmさん

設定変更を繰り返すうちに何を直したの
かわからなくなることはよくある。コー
ド管理することで履歴管理したり冪

べきとうせい

等性
が担保されたりするのはたいへん便利だ
と思った。

岩手県／隼さん

設定や変更履歴が確認しやすくな
る、同じ設定ファイルを使えば誰

でも同じ環境が組めるなど、インフラを
コードで自動化する利点は多いです。特
集では「Infrastructure as Code」を実現

する複数の方法を紹介したので、気に
なったものがあればぜひ試してみてくだ
さい。

　物理的なサーバマシンに立ち返り、学
習する前後編の特集。後編となる今回は
ネットワーク機器の選定基準、主要なスト
レージの紹介、サーバの管理機能の3章
立てで、サーバまわりの重要な知識を取
り上げました。

ハードウェアの記事は少ないので、たい
へんありがたいです。

東京都／山下さん

サーバをどのように選べばいいか、判断
の1つになる感じだった。

静岡県／ももんがさん

実務経験をたくさん積まないと得られな
いような選定ポイントが簡潔にまとめら
れており、とても参考になった。

千葉県／若山さん

実際にサーバマシンを調達する立
場にある人にとっては、非常に実

用的な記事になったかと思います。そう
でない人には、自分たちが利用している
／開発しているシステムがどのような物

理的資源の上で動いているかといった、
貴重な知識を得られたのではないでしょ
うか。

　Intel 8008 CPUから最新のCPUに至
るまで、命令セットやレジスタ構成など、
ソフトウェアからみたCPUの発展の歴史
を振り返りました。

より深い技術的理解の助けになると思
う。

東京都／Hlさん

ハードウェア寄りの歴史を振り返る記事
は1つの節目として興味をそそります。
CPUは Intelだけではありませんし、な
かなかお目にかかれるものではありませ
んが、IBMのハードウェアやOSなどには
感心するところが多く、記事として出て
くることを期待しています。

熊本県／鈴木さん

CPUの進化にはめざましいものが
あり、専門外の人間には何が起

こっているかわかりづらいものがありま
す。しかし、その発展の歴史を1からた
どることで、今後どのような方向へと進
んでいくのかが見えてくるのではないで
しょうか。

ネットのニュースサイトで、ハードウェア製品のスタートアップ記事をよく見かけ
ます。折り畳みバイクや骨のない傘、飼い猫用の回し車などなんでもありで、そ
のアイデアにはいつも驚かされます。プロジェクトの多くは「kickstarter」など
のクラウドファンディングを支援する企業を通して資金調達を行っており、アイ
デアの良さ、実現の可能性をいかにプレゼンできるかが成功への鍵となります。

ハードウェアスタートアップの魅力

2014年11月号について、たくさんのお便りをありがとうございました！

第1特集　無理なくはじめる
Infrastructure as Code

第2特集
サーバの目利きになる方法［後編］

一般記事
CPU温故知新

Jan. 2015 - 183

　「はてなブログ」で有名な㈱はてなが、
自社ツールを基に開発したサーバ管理
ツール「Mackerel」を紹介しました。さま
ざまな外部ツールと連携してシステムを
監視できるのが特徴です。

この分野には明るくなかったので、わか
りやすく書かれていて助かりました。

宮城県／オミオさん

サーバ管理もソフトウェアの1ジャンル
になったと思います。
奈良県／捨てられないが役に立たないさん

何十、何百台ものサーバの状況
を、外部のツールと連携しながら

わかりやすいグラフで管理できるツール。
非常に注目度が高いようです。ちなみに、

Mackerel＝鯖（サバ）というのはご存じで
したでしょうか？

　ネットワークを流れるデータのかたまり
「パケット」を解析するためのソフト
「Wireshark」。その最新バージョン1.8.0

で導入された新しいファイル形式「pcap-

ng」を紹介する短期連載です。第1回で
は既存のファイル形式「pcap」の構造を細
かく見ていきました。

キャプチャを解析しなくちゃ。
愛知県／ｋｍさん

テレビやレコーダーをはじめさまざまな
家電製品がネットにつながるようになっ
てきました。これらの機器のセキュリ
ティ対策について知りたいです。

千葉県／澤下さん

今月号「セキュリティ実践の基本定
石（P.126～）」では、IoTのセキュリ

ティについて詳しく解説しています。ぜひ
ご覧ください。

海外で電子版を定期購読しています。
技術的な雑誌を毎月、日本語で読める
というのは、海外にいる技術者／研究者
としてはとてもありがたいです。スマホ
で移動中にも読める、そんな時代の恩
恵も受けている感じですけれども。

神奈川県／quazmaさん

場所を問わず発売後すぐに読め
るのは、電子書籍の利点ですね。

本誌は2014年5月から毎月、紙媒体と
同時にPDF版を販売しており、そちらで
読まれている方も多いようです。

犬は良いですね。むささびもかわいい
です。亀もかわいいです。

愛知県／かっとびめんど～さん

2015年度の表紙は何がいいで
しょうか？　読者アンケートにてご

意見お待ちしております！

pcapしか使ったことがなかったため、
おもしろかった。

東京都／匿名希望さん

ネットワークでは毎日すさまじい数
のパケットがやりとりされていま

す。そのひとつひとつはけっして単純な
作りではなく、層状の複雑な構造をして
います。その構造を意識しながら
「Wireshark」を使って、実際にパケットの
中身をみてみましょう。

　SoftLayerの使い方講座、連載3回目
となる今回は実際にサーバを構築するう
えでのTipsや、SSL、ファイアウォール、
ロードバランサなどのネットワークの構成
方法を紹介しました。

クラウドサービスの技術が学習できるの
でいい。

長崎県／Splictさん

この記事のサンプルコード例に付箋紙が
貼ってありました。あとで打ち込んでみ
るつもりだったようです。

千葉県／Tayuさん

SoftLayerについて、実践的な内
容を扱いました。設定を通じて、

クラウドサービスでどんなことが実現でき
るかを知ることができ、サーバやネット
ワークの基礎的な勉強にもなるでしょう。
本誌を片手にぜひチャレンジしてみてくだ
さい。

11月号のプレゼント当選者は、次の皆さまです
①ジュエリーボックス

東京都　海野秋男様
②USB 3.0 Flashメモリ「Extream」

宮城県　赤畑慶幸様
北海道　　杉木恵様

③揉まれる肩・首スッキリピロー
千葉県　卯木輝彦様

④無敵の天才たち
神奈川県　丸山貴之様
東京都　中澤直也様

⑤Amazon Web services入門
広島県　藪兼智英様
神奈川県　塚越厚英様

⑤アカマイ～知られざるインターネットの巨人
神奈川県　赤羽永寿様
千葉県　平井幸三様

⑥内部構造から学ぶPostgreSQL設計・運用計画の
鉄則

千葉県　今井英敏様
愛知県　権田裕昭様

一般記事
Mackerel入門

一般記事
Jamesのセキュリティレッスン［1］

一般記事
SoftLayerを使ってみませんか？［3］

フリートーク

表紙について

Software Design
2015年1月号

発行日
2015年1月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2015年2月号
定価（本体1,220円＋税）

176ページ

February 2015
1月17日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2015 技術評論社

●今年の売れ行きベスト3は、5月号TCP/IPネット

ワーク図解、8月号ログを読む技術、9月号のポイン

タとオブジェクト指向（付録付き）でした。これらはお

かげさまで完売です。そして現在発売中の「インフラ

エンジニア教本」は再編集した厚さ2cmのMegaMix

ムックですが、続編も予定しています。（本）

●本誌ではVimを特集したが、自身ではWZ8と

CotEditor2.0を使っている。指が慣れるという意

味では、さんざんTurbo-Cで使っていたダイヤモン

ドカーソルが懐かしい。Ctrl+Cがコピーになってし

まい、しばらく慣れなかったのは遠い思い出。今は

CotEditorでRubyスクリプトを書くのが楽しみ。（幕）

●この編集後記を書いている今、あと1時間後に

「はやぶさ2」が打ち上げられようとしています。

戻ってくるのは6年後の2020年。そのときに自分の

成長に胸を張れるか。壮大な夢のあるミッションにあ

やかって、6年後の自分のイメージを考えてみようと

思います。無事の帰還を祈ります！（キ）

●事後報告ですが、Letters from Readersで掲載し

てきた「エンジニアの能率を高める一品」は前号で

いったん終了となりました。これまでの全33製品にお

けるマイベスト3は、ゆびトング付き菓子ボウル（2014

年9月号）、ブックストッパー（2013年8月号）、ルル

ドマッサージクッション（2012年8月号）です。（よし）

●人生で初めて、電動歯ブラシを使って歯を磨きまし

た。あまり手を動かす必要がないので腕が疲れにくく、

普通の歯ブラシを使ったときよりも歯がツルツルになり

ます（気のせい？）。ただ、思った以上に振動が強いん

ですよね。振動に慣れていなかった最初の数回は、な

ぜか頭痛に悩まされました。（な）

●先日無事結婚式を終えることができました。諸事情

により準備期間が長かったので、慌ただしくならない

ようにと思っていましたが、直前でないとできないこ

ともあり、結局お休みをいただきました。おかげさま

で当日は幸せな気分で過ごせました。ただ現実に戻る

と家の中は大混乱。今度は大掃除に励みます。（ま）

S D S t a f f R o o m

［第1特集］ 使ってよかった！

systemd入門
あなたの知らない実践技
　RHELをはじめとしたLinuxディストリビューションで導入されて久しいsystemd。
エンジニアにとって頭の切り替えが必要なこの機能体系を、基礎から学び現場で活
かす方法を紹介します。

［第2特集］ ユーザ側も開発側もWin-Win

そろそろやめませんか？　運用でカバー
押しつけ型開発の終焉
■UNIX用語読み方講座

sudo、 lib、awk、ext3、Btrfs……
ちゃんと声に出して読めますか？

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
「シェルスクリプトではじめるAWS 入門」（第10回）は都合によりお休みさせていただきます。
「ハイパーバイザの作り方」はしばらくの間お休みさせていただきます。

184 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2015年1月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 「Vim使い」事始め
	・第1章：Vim導入＆カスタマイズの超基本......林田 龍一
	・第2章：実用Tips＆対策［プログラマ編］......mattn
	・第3章：実用Tips＆対策［インフラエンジニア編］......佐野 裕
	・第4章：実用Tips＆対策［文書作成編］......mattn
	・コラム1：「とっつきにくい変態エディタ」だったVimが「私の素敵な相棒」に変わるまで......伊藤 淳一
	・コラム2：Vimは編集作業をプログラムにする......MURAOKA Taro

	■第2特集 ソフトウェア開発の未来
	・第1章：ソフトウェア受託開発の新しいビジネスモデルへの挑戦......木下 史彦
	・第2章：なぜ「受注請負型SI」はなくならないのか......神林 飛志
	・第3章：ユーザ企業の「一人情シス」という選択肢......湯本 堅隆

	■一般記事
	・Jamesのセキュリティレッスン【最終回】pcapとpcap-ngのファイル形式の違いを知ろう！......吉田 英二
	・くつなりょうすけ「ひみつのLinux通信」年末年始スペシャルITエンジニア出世双六......くつなりょうすけ

	■Catch up trends in engineering
	・迷えるマネージャのためのプロジェクト管理ツール再入門【3】今どきのバージョン管理システムとは？　Stashで実現する快適な開発環境......Software Design編集部

	■Catch up new technology
	・クラウド時代だからこそベアメタルをオススメする理由【最終回】リンクが話す、ベアメタルにこだわった理由......Software Design編集部

	■連載：Column
	・digital gadget【193】プラスワンで価値を増すデジタルガジェット......安藤 幸央
	・結城浩の再発見の発想法【20】Implement......結城 浩
	・おとなラズパイリレー【3】Raspberry Piで空を飛びたい（前編）......千葉 久詞
	・軽酔対談　かまぷの部屋【6】ゲスト：長田絵理子さん......鎌田 広子
	・秋葉原発！はんだづけカフェなう【51】EdisonでIoTしよう......坪井 義浩
	・Hack For Japan〜エンジニアだからこそできる復興への一歩【37】第2回 ITx災害会議レポート......及川 卓也、高橋 憲一、鎌田 篤慎
	・温故知新 ITむかしばなし【40】PSG音源......佐野　裕

	■連載：Development
	・書いて覚えるSwift入門【1】関数型プログラミングを試す......小飼 弾
	・Heroku女子の開発日記【5】用心棒とともに　Herokuでアプリ運用！......織田 敬子
	・Hinemosで学ぶジョブ管理超入門【4】Hinemosで構築するジョブシステム！......茶納 佑季
	・サーバーワークスの瑞雲吉兆仕事術【最終回】エンジニアに求められる技術の変化......大石 良
	・るびきち流Emacs超入門【9】すぐに使える！便利な11のパッケージ......るびきち
	・セキュリティ実践の基本定石【16】IoTのセキュリティについて考える......すずきひろのぶ
	・Androidエンジニアからの招待状【54】日本Androidの会とは〜コミュニティにより広がるAndroid創作活動......嶋 是一

	■連載：OS/Network
	・RHELを極める・使いこなすヒント .SPECS【9】Red Hat Enterprise Linux Atomic Host登場！......藤田 稜
	・Be familiar with FreeBSD~チャーリー・ルートからの手紙【15】FreeBSD 10.1-RELEASEで何が変わったの？【パート2】......後藤 大地
	・Debian Hot Topics【22】FLOSSコミュニティへのContributionとは？......やまねひでき
	・Ubuntu Monthly Report【57】Ubuntuの10年を振り返る......あわしろいくや
	・Linuxカーネル観光ガイド【34】Linux 3.17の新機能〜DRM機能とDRM render node〜......青田 直大
	・Monthly News from jus【39】中国地方転戦記......榎 真治、法林 浩之

	■アラカルト
	・ITエンジニア必須の最新用語解説【73】Amazon Aurora......杉山 貴章
	・Hosting Department【105】
	・読者プレゼントのお知らせ
	・SD BOOK FORUM
	・SD NEWS & PRODUCTS
	・バックナンバーのお知らせ
	・Letters From Readers
	・年間定期購読のご案内
	・次号のお知らせ

