

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1

　オープンソースのWebブラウザ
「Firefox」を開発しているMozilla
Foundationが、新しい取り組みとし
て開発者向けにチューニングされた
Webブラウザ「Firefox Developer
Edition」をリリースしました。
　Firefoxの誕生10周年に合わせて
公開されたこのブラウザは、Firefox
をベースにWebアプリケーション開
発のための支援ツールを盛り込んだ
特別版です。もともとFirefoxには
標準で開発者向けの機能が含まれて
いるほか、サードパーティ製の拡張
機能も充実しています。Developer
Editionはそこからさらに“開発者向
け”という性質を前面に押し出した
もので、各種アドオンが標準で同梱
されるようになったほか、以前から
付属していた機能も見つけやすい位
置に配置されるようになりました。
　Developer Editionに同梱されて
いるおもな開発支援ツールは次のよ
うなものです。

◉ Valence
Firefox OSやAndroid版Firefox用
のデバッグツールを、他のさまざまな
端末のブラウザに対する動作確認に
も使えるようにするツール。初期の
ターゲットはAndroid版Chromeおよ
び iOS版Safariで、インスペクタや
デバッガ、スタイルエディタなどをブラ
ウザを切り替えることなく利用できる

◉WebIDE
ブラウザ上でWebアプリやFirefox

OSアプリの開発およびデバッグを行う
ことができる統合開発ツール。シミュ
レータ上のデバッグはもちろん、実機
でのデバッグも行える。既存アプリの
コードを開いて編集することも可能

◉レスポンシブデザインビュー
さまざまな画面サイズによるページの
表示をブラウザ本体のウィンドウサイズ
を変えることなく確認できる、レスポン
シブデザインのための支援ツール

◉ページインスペクタ
Webページ内で使われているHTML
およびCSSのコードを効率よく確認し、
さらに文書の構造やレイアウトの調整
もリアルタイムに行うことができるツー
ル

◉Webコンソール
Webページの表示やJavaScriptの
実行に関するログの確認が行えるコン
ソールツール

◉Web Audioエディタ
Web Audio APIを使用する際に作成
されるオーディオコンテキストを調査し、
そのグラフを可視化してリアルタイムに
確認、編集することができるツール

◉ネットワークモニタ
ブラウザとサーバ間の通信内容やリク
エストの詳細などを確認することができ
る通信モニタ

◉スタイルエディタ
Webページで使用されているCSSをリ
アルタイムに確認、編集することがで
きるエディタ

　Firefoxに限らず、主要なブラウ
ザはいずれも従来より何らかの開発
者向け機能を持っています。しかし、
完全に開発者のために設計されたブ
ラウザというのは今までありません
でした。
　アプリのデバッグや互換性確認の
ために複数のブラウザやツールを使
い分けるという従来のスタイルは、
決して効率のいいものとは言えませ
ん。そこで、開発のワークフローを
1ヵ所に集中させ、開発効率を上げ
るという目的でこのDeveloper
Editionは作られました。クラウド
の隆盛やモバイル端末の充実によっ
てWebアプリの重要性がますます高
まる中で、開発者の目線で作られた
ブラウザは大きな存在価値を持つか
もしれません。
　Developer Editionは、従来の
「Aurora」と呼ばれるリリースチャン
ネルに替わって提供されることになっ
ています。Auroraは最新の機能を
取り込んだ早期リリースのための
チャンネルで、ベータ版が公開され
るよりも早く新機能をテストするため
に用意されていました。Developer
Editionでは同じPCにインストール
されている他チャンネルのFirefoxと
は異なる独立したプロファイルが使
用されるため、正式版やベータ版に
干渉することがなく、開発専用に割
り切って使えるようになっています。
｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 74回

Firefox Developer Edition

Firefox Developer Edition
https://www.mozilla.org/ja/firefox/developer/

開発者専用の
Firefox が登場

開発者目線でワークフ
ローの最適化をサポート

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
https://www.mozilla.org/ja/firefox/developer/

http://sd.gihyo.jp/

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）
14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／~＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

年間定期購読

 ／~＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

https://gihyo.jp/site/inquiry/dennou

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.seeds.ne.jp/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

　色見本帳を制作するPANTONE
が、2015年の色としてMarsala（コー
ド番号 #18-1438）を選出しました。
自然で力強い、土のような雰囲気の
あるチョコレートがかったブラウン色
で、赤ワインの色合いも思い浮かびま
す。毛皮や皮製品、チョコレートクッ
キーやレンガの色も想像されます。
　このPANTONEのColor of the
Yearは、毎年終わり頃に次の年の色
が発表されます。さまざまなプロダクトデ
ザインへの着色や印刷に使う色見本
帳を世界的に展開するPANTONE
の、マーケティングや調査などから導
き出された提案色です。
　2014年は“鮮やかな薄紫 #18-
3224 Radiant Orchid”、2013年は

“薄いエメラルドグリーン #17-5641
Emerald”、2012年は“赤に近い鮮や

かなオレンジ #17-1463 Tangerine
Tango”と、振り返ってみるとその年を
印象づける流行の色であったことが
わかります。
　最近では印刷物で見かける色使い
よりも、液晶ディスプレイやスマート
フォンなど、デジタルデバイスで見かけ
る色使いが多くなってきました。もちろ
ん、印刷物やデジタル表現、素材を選
べば、自然界ではなかなか見かけない
色表現も可能です。
　皆さんは引っ越しや梱包などでよく
見かける段ボールが、なぜ今の色な
のか考えたことはあるでしょうか？　も
ちろん漂白しない紙で作れば、コスト
が安くすむ、資源として再利用しやす
いという理由もあります。段ボールの

「色」に注目してみると、一般的な段
ボール色（うす茶色）はほかの色に比
べて心理的に重さを感じにくい色な
のです。

　仮に想像してみてください。引っ越
しの際の段ボールがもし全部「真っ
黒」だったらどうでしょう？　どれもこれ
もが、ずっしりと重いように感じません
か？　また、高級感のある「白い」段
ボールがあったとします。すると、その
中身は高価なコワレモノかもしれない
と想像し、ゆっくりと丁寧に運ぼうと思
いませんか？
　このような色にまつわる話を探す
と、数々の興味深い逸話がみつかり
ます。その由来や理由を深堀りしてい
くと、さらに色の原理や定義などさまざ
まなことを理解できることでしょう。

　スマートフォンアプリの世界は単に
カラフルな見栄えということだけでな
く、「色」をきっかけとしたさまざまなア
プリやサービスが存在します。とくに興
味深いものをいくつか紹介しましょう。

旧来Adobe Kulerと呼ばれていたカ
ラーの組み合わせパターンを取得す
るためのツール。なにか鮮やかなもの
を見つけたときにAdobe Color CC
アプリのカメラを向けると、その画像
の中に含まれる特徴的なカラーを取
り出し、カラーテーマを抽出することが
できる

Twitterが言葉でコミュニケーションす
るツールであるなら、ツブカラは色の組
み合わせでコミュニケーションをするた
めのツール。知人の作ったカラーセッ
トを共有したり、カメラや写真から色の
組み合わせを作って投稿することが
できる

スマートフォンやタブレットから家庭用
ゲーム機まで、手持ちのデジタルデバ
イスを独自色にカラーリングしてくれる
サービス。デジタルデバイスにあまり
色の選択肢がない場合や、製品のカ

ラーバリエーションに好みの色がない
場合などに役立ちそう。蛍光色や夜
光色にも加工してもらえる

Julian Glander氏によるROY G BIV
は、モノの“色”を“音”に変換するアプ
リ。色に応じた1オクターブ分のシンセ
サイザーが画面に現れ、色から想起さ
れる音を楽しむことができる

ColorSyncはチケットアプリPeatixで
用いられている、色の変化による入場
確認方法。紙チケットのもぎりだけで
なくバーコードやQRコードでの入場も
一般的になってきてはいるが、機材が
必要だったり、時間がかかって逆に煩
雑になることも。ColorSyncは1秒ご
とに変化するカラーパターンを見比べ
て、チケット購入済みの人の入場をス
ムーズに行う

　数千人から数万人に一人の割合

で、視覚で見える感覚とそのほかの感
覚が連動している人がいるそうです。
たとえば、文字を見るとそこに色がつ
いているように見えたり、音から色を感
じたり、形から味を感じたりします。これ
を「共感覚」と言います。
　あるいは逆に、色がまったくわからな
い完全な色盲であるアーティストの
ニール・ハービソン氏は、頭部につけ
たカメラで撮影した色を、音で聴くこと
で理解を深めています。
　人が得る情報の9割は視覚からと
言われています（視覚87％、触覚
7％、聴覚3％、嗅覚2％、味覚1％と
言われていますが個人差もあり詳細
は不明です）が、何か1つの感覚で情
報を理解するよりも、複数の感覚から
得た情報を組み合わせたほうが深く
理解できます。視覚だけでなく音と一
緒になることで興奮したり、香りと一
緒になることで記憶と結びついたりす
るので、その重要度は割合だけでは
一概に示せない部分もあります。
　共感覚でなくとも、日常には「色」に
よる表現があふれています。キラキラ
とした金色、ギラギラとした銀色など、

単なる色名だけよりもより鮮やかにイ
メージがわいてくることでしょう。そのほ
かにも、黒幕、黄色い声、青色吐息、
赤の他人、青春、バラ色の人生、と実
際には色がはっきりしない事柄を色で
示すことがあります。「黒幕」という言
葉には、歌舞伎などの芝居で舞台転
換時に用いる黒い幕から、その舞台
を裏で操る人、人目に触れず舞台を
動かすという意味があります。「黒幕」
と聞いただけで多くの人が意味を理
解します。そして、それらの言葉は一般
常識として共通認識があります。
　一方で、国や文化によって色のとら
え方（共通認識）は大きく異なります。
たとえば日本人がリンゴを想像したと
きに、たいてい思い浮かぶのは赤色
のリンゴだと思いますが、フランスでリ
ンゴというと緑色のリンゴが一般的だ
そうです。同じ色でも別のとらえ方があ
ることと、言葉では色を正確に表現し
きれないことがよくわかります。生活や
仕事とは切っても切りはなせない
「色」の話は、とても奥深いものです。
｢

デジタルとカラフル
色の力

安藤 幸央
EXA Corporation

デジタルとカラフル

194
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

色をキャプチャする
ツール

http://www.swatchmate.com

1GADGET

SwatchMate Cube

SwatchMate Cubeは現実世界にある
物体のリアルな色をキャプチャして、その
色をデジタルなデザインに活用できます。
手元のSwatchMate Cubeで取り込ん
だ色はスマートフォンに転送され、数値で
表された色データになります。色を記録す
るなら写真で撮影すれば良いと思うかも
しれませんが、実際は周りの照明や明る
さによって色は異なりますし、カメラの設
定やレンズによっても異なります。Photo
shopのスポイト機能で色を知ることがで
きるように、現実世界の色を正確に知る
ことができるデバイスです。

ディスプレイや
プロジェクタの色調整

http://www.xrite.com/colormunki-display

3GADGET

ColorMunki Display

ColorMunki Displayは色調整用のパ
ターンを表示装置に投影し、その色を計
測することによって、コンピュータで表現
しようとしている色とディスプレイやプロ
ジェクタで投影している画像の色を素早
く合わせるための調整を行うデバイスで
す。カラーキャリブレーションは高額なプ
ロ用ディスプレイでなければ意味がない
と思われているかもしれませんが、最近の
ディスプレイは安価なものでも性能が良
くなっていますので、うまく調整するだけで
無調整のときと比べて圧倒的に正確な
色表現ができるようになります。

デジタルデバイスの
色調整ツール

http://spyder.datacolor.com/
portfolio-view/spyder4elite/

2GADGET

Spyder4Elite

Spyder4Eliteはプロ向けの色調整ツー
ルです。iPadやiPhoneの色調整にも利
用でき、iPhoneで見える色と、制作作業
用コンピュータのディスプレイとの色をそ
ろえることができます。こうしておくと製作
中のディスプレイ表示が正確にiPhone
の画面を再現できるようになるため、出来
上がったものをiPhone実機で表示したと
きに印象が異なったり、出来上がった後
の色調整に時間をかけることがなくなりま
す。人間が気付かずともバックライトなど
が経年劣化していくので、継続的な調整
が必要です。

色再現性の高い
タブレット端末

http://www.dnp-signage.jp/tablet/
original.html

4GADGET

IROMI FGAD

IROMIは大日本印刷による色再現性の
高いタブレット端末です。Android 4.4搭
載で、1.1インチディスプレイのFGADと、
8インチのUY8Aの2機種が用意された
法人向けのタブレット端末です。色補正、
色調整、コントラスト調整の機能に優れ
た機構を持つタブレットであり、おもに美
術館や博物館での解説専用端末として
考えられています。性能そのものは現在
の最新タブレット端末には追いつきませ
んが、高精細でありながらビビッドすぎて
正確ではない色表現よりも、正確な色表
現が求められる現場では重宝します。

色アプリあれこれ

Adobe Color CC
http://www.adobe.com/jp/products/
color.html

色の感覚

PANTONE CAPSUREのカラーコードを
知るためのデジタルカラー計測器

色見本帳。PANTONEが提案する2015年の色
#18-1438（Marsala）

ツブカラ
http://www.tubucolor.net/

colorware
http://www.colorware.com/

ROY G BIV
color synthesizer
http://julianglander.com/ROY-G-BIV/

ColorSync
http://peatix.com/

colorwareで彩色しても
らい、派手な色に変わっ
たiPhone

ROY G BIV color synthesizerでカメラをかざ
して色を取り込んでいる様子

ColorSyncの概念を示したもの。色が同期し
ている人と仲間はずれがわかる

ツブカラに投稿された色
の組み合わせとタイトル

Adobe Color CCでカ
メラ画像からカラーパ
ターンを抽出し（左）、気
に入ったカラーパターン
をライブラリ化して保存
する（右）

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Feb. 2015 - 1

http://andoh.org/

　色見本帳を制作するPANTONE
が、2015年の色としてMarsala（コー
ド番号 #18-1438）を選出しました。
自然で力強い、土のような雰囲気の
あるチョコレートがかったブラウン色
で、赤ワインの色合いも思い浮かびま
す。毛皮や皮製品、チョコレートクッ
キーやレンガの色も想像されます。
　このPANTONEのColor of the
Yearは、毎年終わり頃に次の年の色
が発表されます。さまざまなプロダクトデ
ザインへの着色や印刷に使う色見本
帳を世界的に展開するPANTONE
の、マーケティングや調査などから導
き出された提案色です。
　2014年は“鮮やかな薄紫 #18-
3224 Radiant Orchid”、2013年は

“薄いエメラルドグリーン #17-5641
Emerald”、2012年は“赤に近い鮮や

かなオレンジ #17-1463 Tangerine
Tango”と、振り返ってみるとその年を
印象づける流行の色であったことが
わかります。
　最近では印刷物で見かける色使い
よりも、液晶ディスプレイやスマート
フォンなど、デジタルデバイスで見かけ
る色使いが多くなってきました。もちろ
ん、印刷物やデジタル表現、素材を選
べば、自然界ではなかなか見かけない
色表現も可能です。
　皆さんは引っ越しや梱包などでよく
見かける段ボールが、なぜ今の色な
のか考えたことはあるでしょうか？　も
ちろん漂白しない紙で作れば、コスト
が安くすむ、資源として再利用しやす
いという理由もあります。段ボールの

「色」に注目してみると、一般的な段
ボール色（うす茶色）はほかの色に比
べて心理的に重さを感じにくい色な
のです。

　仮に想像してみてください。引っ越
しの際の段ボールがもし全部「真っ
黒」だったらどうでしょう？　どれもこれ
もが、ずっしりと重いように感じません
か？　また、高級感のある「白い」段
ボールがあったとします。すると、その
中身は高価なコワレモノかもしれない
と想像し、ゆっくりと丁寧に運ぼうと思
いませんか？
　このような色にまつわる話を探す
と、数々の興味深い逸話がみつかり
ます。その由来や理由を深堀りしてい
くと、さらに色の原理や定義などさまざ
まなことを理解できることでしょう。

　スマートフォンアプリの世界は単に
カラフルな見栄えということだけでな
く、「色」をきっかけとしたさまざまなア
プリやサービスが存在します。とくに興
味深いものをいくつか紹介しましょう。

旧来Adobe Kulerと呼ばれていたカ
ラーの組み合わせパターンを取得す
るためのツール。なにか鮮やかなもの
を見つけたときにAdobe Color CC
アプリのカメラを向けると、その画像
の中に含まれる特徴的なカラーを取
り出し、カラーテーマを抽出することが
できる

Twitterが言葉でコミュニケーションす
るツールであるなら、ツブカラは色の組
み合わせでコミュニケーションをするた
めのツール。知人の作ったカラーセッ
トを共有したり、カメラや写真から色の
組み合わせを作って投稿することが
できる

スマートフォンやタブレットから家庭用
ゲーム機まで、手持ちのデジタルデバ
イスを独自色にカラーリングしてくれる
サービス。デジタルデバイスにあまり
色の選択肢がない場合や、製品のカ

ラーバリエーションに好みの色がない
場合などに役立ちそう。蛍光色や夜
光色にも加工してもらえる

Julian Glander氏によるROY G BIV
は、モノの“色”を“音”に変換するアプ
リ。色に応じた1オクターブ分のシンセ
サイザーが画面に現れ、色から想起さ
れる音を楽しむことができる

ColorSyncはチケットアプリPeatixで
用いられている、色の変化による入場
確認方法。紙チケットのもぎりだけで
なくバーコードやQRコードでの入場も
一般的になってきてはいるが、機材が
必要だったり、時間がかかって逆に煩
雑になることも。ColorSyncは1秒ご
とに変化するカラーパターンを見比べ
て、チケット購入済みの人の入場をス
ムーズに行う

　数千人から数万人に一人の割合

で、視覚で見える感覚とそのほかの感
覚が連動している人がいるそうです。
たとえば、文字を見るとそこに色がつ
いているように見えたり、音から色を感
じたり、形から味を感じたりします。これ
を「共感覚」と言います。
　あるいは逆に、色がまったくわからな
い完全な色盲であるアーティストの
ニール・ハービソン氏は、頭部につけ
たカメラで撮影した色を、音で聴くこと
で理解を深めています。
　人が得る情報の9割は視覚からと
言われています（視覚87％、触覚
7％、聴覚3％、嗅覚2％、味覚1％と
言われていますが個人差もあり詳細
は不明です）が、何か1つの感覚で情
報を理解するよりも、複数の感覚から
得た情報を組み合わせたほうが深く
理解できます。視覚だけでなく音と一
緒になることで興奮したり、香りと一
緒になることで記憶と結びついたりす
るので、その重要度は割合だけでは
一概に示せない部分もあります。
　共感覚でなくとも、日常には「色」に
よる表現があふれています。キラキラ
とした金色、ギラギラとした銀色など、

単なる色名だけよりもより鮮やかにイ
メージがわいてくることでしょう。そのほ
かにも、黒幕、黄色い声、青色吐息、
赤の他人、青春、バラ色の人生、と実
際には色がはっきりしない事柄を色で
示すことがあります。「黒幕」という言
葉には、歌舞伎などの芝居で舞台転
換時に用いる黒い幕から、その舞台
を裏で操る人、人目に触れず舞台を
動かすという意味があります。「黒幕」
と聞いただけで多くの人が意味を理
解します。そして、それらの言葉は一般
常識として共通認識があります。
　一方で、国や文化によって色のとら
え方（共通認識）は大きく異なります。
たとえば日本人がリンゴを想像したと
きに、たいてい思い浮かぶのは赤色
のリンゴだと思いますが、フランスでリ
ンゴというと緑色のリンゴが一般的だ
そうです。同じ色でも別のとらえ方があ
ることと、言葉では色を正確に表現し
きれないことがよくわかります。生活や
仕事とは切っても切りはなせない
「色」の話は、とても奥深いものです。
｢

デジタルとカラフル
色の力

安藤 幸央
EXA Corporation

デジタルとカラフル

194
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

色をキャプチャする
ツール

http://www.swatchmate.com

1GADGET

SwatchMate Cube

SwatchMate Cubeは現実世界にある
物体のリアルな色をキャプチャして、その
色をデジタルなデザインに活用できます。
手元のSwatchMate Cubeで取り込ん
だ色はスマートフォンに転送され、数値で
表された色データになります。色を記録す
るなら写真で撮影すれば良いと思うかも
しれませんが、実際は周りの照明や明る
さによって色は異なりますし、カメラの設
定やレンズによっても異なります。Photo
shopのスポイト機能で色を知ることがで
きるように、現実世界の色を正確に知る
ことができるデバイスです。

ディスプレイや
プロジェクタの色調整

http://www.xrite.com/colormunki-display

3GADGET

ColorMunki Display

ColorMunki Displayは色調整用のパ
ターンを表示装置に投影し、その色を計
測することによって、コンピュータで表現
しようとしている色とディスプレイやプロ
ジェクタで投影している画像の色を素早
く合わせるための調整を行うデバイスで
す。カラーキャリブレーションは高額なプ
ロ用ディスプレイでなければ意味がない
と思われているかもしれませんが、最近の
ディスプレイは安価なものでも性能が良
くなっていますので、うまく調整するだけで
無調整のときと比べて圧倒的に正確な
色表現ができるようになります。

デジタルデバイスの
色調整ツール

http://spyder.datacolor.com/
portfolio-view/spyder4elite/

2GADGET

Spyder4Elite

Spyder4Eliteはプロ向けの色調整ツー
ルです。iPadやiPhoneの色調整にも利
用でき、iPhoneで見える色と、制作作業
用コンピュータのディスプレイとの色をそ
ろえることができます。こうしておくと製作
中のディスプレイ表示が正確にiPhone
の画面を再現できるようになるため、出来
上がったものをiPhone実機で表示したと
きに印象が異なったり、出来上がった後
の色調整に時間をかけることがなくなりま
す。人間が気付かずともバックライトなど
が経年劣化していくので、継続的な調整
が必要です。

色再現性の高い
タブレット端末

http://www.dnp-signage.jp/tablet/
original.html

4GADGET

IROMI FGAD

IROMIは大日本印刷による色再現性の
高いタブレット端末です。Android 4.4搭
載で、1.1インチディスプレイのFGADと、
8インチのUY8Aの2機種が用意された
法人向けのタブレット端末です。色補正、
色調整、コントラスト調整の機能に優れ
た機構を持つタブレットであり、おもに美
術館や博物館での解説専用端末として
考えられています。性能そのものは現在
の最新タブレット端末には追いつきませ
んが、高精細でありながらビビッドすぎて
正確ではない色表現よりも、正確な色表
現が求められる現場では重宝します。

色アプリあれこれ

Adobe Color CC
http://www.adobe.com/jp/products/
color.html

色の感覚

PANTONE CAPSUREのカラーコードを
知るためのデジタルカラー計測器

色見本帳。PANTONEが提案する2015年の色
#18-1438（Marsala）

ツブカラ
http://www.tubucolor.net/

colorware
http://www.colorware.com/

ROY G BIV
color synthesizer
http://julianglander.com/ROY-G-BIV/

ColorSync
http://peatix.com/

colorwareで彩色しても
らい、派手な色に変わっ
たiPhone

ROY G BIV color synthesizerでカメラをかざ
して色を取り込んでいる様子

ColorSyncの概念を示したもの。色が同期し
ている人と仲間はずれがわかる

ツブカラに投稿された色
の組み合わせとタイトル

Adobe Color CCでカ
メラ画像からカラーパ
ターンを抽出し（左）、気
に入ったカラーパターン
をライブラリ化して保存
する（右）

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design

http://www.adobe.com/jp/products/color.html
http://julianglander.com/ROY-G-BIV/
http://www.tubucolor.net/
http://peatix.com/
http://www.colorware.com/

　色見本帳を制作するPANTONE
が、2015年の色としてMarsala（コー
ド番号 #18-1438）を選出しました。
自然で力強い、土のような雰囲気の
あるチョコレートがかったブラウン色
で、赤ワインの色合いも思い浮かびま
す。毛皮や皮製品、チョコレートクッ
キーやレンガの色も想像されます。
　このPANTONEのColor of the
Yearは、毎年終わり頃に次の年の色
が発表されます。さまざまなプロダクトデ
ザインへの着色や印刷に使う色見本
帳を世界的に展開するPANTONE
の、マーケティングや調査などから導
き出された提案色です。
　2014年は“鮮やかな薄紫 #18-
3224 Radiant Orchid”、2013年は

“薄いエメラルドグリーン #17-5641
Emerald”、2012年は“赤に近い鮮や

かなオレンジ #17-1463 Tangerine
Tango”と、振り返ってみるとその年を
印象づける流行の色であったことが
わかります。
　最近では印刷物で見かける色使い
よりも、液晶ディスプレイやスマート
フォンなど、デジタルデバイスで見かけ
る色使いが多くなってきました。もちろ
ん、印刷物やデジタル表現、素材を選
べば、自然界ではなかなか見かけない
色表現も可能です。
　皆さんは引っ越しや梱包などでよく
見かける段ボールが、なぜ今の色な
のか考えたことはあるでしょうか？　も
ちろん漂白しない紙で作れば、コスト
が安くすむ、資源として再利用しやす
いという理由もあります。段ボールの

「色」に注目してみると、一般的な段
ボール色（うす茶色）はほかの色に比
べて心理的に重さを感じにくい色な
のです。

　仮に想像してみてください。引っ越
しの際の段ボールがもし全部「真っ
黒」だったらどうでしょう？　どれもこれ
もが、ずっしりと重いように感じません
か？　また、高級感のある「白い」段
ボールがあったとします。すると、その
中身は高価なコワレモノかもしれない
と想像し、ゆっくりと丁寧に運ぼうと思
いませんか？
　このような色にまつわる話を探す
と、数々の興味深い逸話がみつかり
ます。その由来や理由を深堀りしてい
くと、さらに色の原理や定義などさまざ
まなことを理解できることでしょう。

　スマートフォンアプリの世界は単に
カラフルな見栄えということだけでな
く、「色」をきっかけとしたさまざまなア
プリやサービスが存在します。とくに興
味深いものをいくつか紹介しましょう。

旧来Adobe Kulerと呼ばれていたカ
ラーの組み合わせパターンを取得す
るためのツール。なにか鮮やかなもの
を見つけたときにAdobe Color CC
アプリのカメラを向けると、その画像
の中に含まれる特徴的なカラーを取
り出し、カラーテーマを抽出することが
できる

Twitterが言葉でコミュニケーションす
るツールであるなら、ツブカラは色の組
み合わせでコミュニケーションをするた
めのツール。知人の作ったカラーセッ
トを共有したり、カメラや写真から色の
組み合わせを作って投稿することが
できる

スマートフォンやタブレットから家庭用
ゲーム機まで、手持ちのデジタルデバ
イスを独自色にカラーリングしてくれる
サービス。デジタルデバイスにあまり
色の選択肢がない場合や、製品のカ

ラーバリエーションに好みの色がない
場合などに役立ちそう。蛍光色や夜
光色にも加工してもらえる

Julian Glander氏によるROY G BIV
は、モノの“色”を“音”に変換するアプ
リ。色に応じた1オクターブ分のシンセ
サイザーが画面に現れ、色から想起さ
れる音を楽しむことができる

ColorSyncはチケットアプリPeatixで
用いられている、色の変化による入場
確認方法。紙チケットのもぎりだけで
なくバーコードやQRコードでの入場も
一般的になってきてはいるが、機材が
必要だったり、時間がかかって逆に煩
雑になることも。ColorSyncは1秒ご
とに変化するカラーパターンを見比べ
て、チケット購入済みの人の入場をス
ムーズに行う

　数千人から数万人に一人の割合

で、視覚で見える感覚とそのほかの感
覚が連動している人がいるそうです。
たとえば、文字を見るとそこに色がつ
いているように見えたり、音から色を感
じたり、形から味を感じたりします。これ
を「共感覚」と言います。
　あるいは逆に、色がまったくわからな
い完全な色盲であるアーティストの
ニール・ハービソン氏は、頭部につけ
たカメラで撮影した色を、音で聴くこと
で理解を深めています。
　人が得る情報の9割は視覚からと
言われています（視覚87％、触覚
7％、聴覚3％、嗅覚2％、味覚1％と
言われていますが個人差もあり詳細
は不明です）が、何か1つの感覚で情
報を理解するよりも、複数の感覚から
得た情報を組み合わせたほうが深く
理解できます。視覚だけでなく音と一
緒になることで興奮したり、香りと一
緒になることで記憶と結びついたりす
るので、その重要度は割合だけでは
一概に示せない部分もあります。
　共感覚でなくとも、日常には「色」に
よる表現があふれています。キラキラ
とした金色、ギラギラとした銀色など、

単なる色名だけよりもより鮮やかにイ
メージがわいてくることでしょう。そのほ
かにも、黒幕、黄色い声、青色吐息、
赤の他人、青春、バラ色の人生、と実
際には色がはっきりしない事柄を色で
示すことがあります。「黒幕」という言
葉には、歌舞伎などの芝居で舞台転
換時に用いる黒い幕から、その舞台
を裏で操る人、人目に触れず舞台を
動かすという意味があります。「黒幕」
と聞いただけで多くの人が意味を理
解します。そして、それらの言葉は一般
常識として共通認識があります。
　一方で、国や文化によって色のとら
え方（共通認識）は大きく異なります。
たとえば日本人がリンゴを想像したと
きに、たいてい思い浮かぶのは赤色
のリンゴだと思いますが、フランスでリ
ンゴというと緑色のリンゴが一般的だ
そうです。同じ色でも別のとらえ方があ
ることと、言葉では色を正確に表現し
きれないことがよくわかります。生活や
仕事とは切っても切りはなせない
「色」の話は、とても奥深いものです。
｢

デジタルとカラフル
色の力

安藤 幸央
EXA Corporation

デジタルとカラフル

194
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

色をキャプチャする
ツール

http://www.swatchmate.com

1GADGET

SwatchMate Cube

SwatchMate Cubeは現実世界にある
物体のリアルな色をキャプチャして、その
色をデジタルなデザインに活用できます。
手元のSwatchMate Cubeで取り込ん
だ色はスマートフォンに転送され、数値で
表された色データになります。色を記録す
るなら写真で撮影すれば良いと思うかも
しれませんが、実際は周りの照明や明る
さによって色は異なりますし、カメラの設
定やレンズによっても異なります。Photo
shopのスポイト機能で色を知ることがで
きるように、現実世界の色を正確に知る
ことができるデバイスです。

ディスプレイや
プロジェクタの色調整

http://www.xrite.com/colormunki-display

3GADGET

ColorMunki Display

ColorMunki Displayは色調整用のパ
ターンを表示装置に投影し、その色を計
測することによって、コンピュータで表現
しようとしている色とディスプレイやプロ
ジェクタで投影している画像の色を素早
く合わせるための調整を行うデバイスで
す。カラーキャリブレーションは高額なプ
ロ用ディスプレイでなければ意味がない
と思われているかもしれませんが、最近の
ディスプレイは安価なものでも性能が良
くなっていますので、うまく調整するだけで
無調整のときと比べて圧倒的に正確な
色表現ができるようになります。

デジタルデバイスの
色調整ツール

http://spyder.datacolor.com/
portfolio-view/spyder4elite/

2GADGET

Spyder4Elite

Spyder4Eliteはプロ向けの色調整ツー
ルです。iPadやiPhoneの色調整にも利
用でき、iPhoneで見える色と、制作作業
用コンピュータのディスプレイとの色をそ
ろえることができます。こうしておくと製作
中のディスプレイ表示が正確にiPhone
の画面を再現できるようになるため、出来
上がったものをiPhone実機で表示したと
きに印象が異なったり、出来上がった後
の色調整に時間をかけることがなくなりま
す。人間が気付かずともバックライトなど
が経年劣化していくので、継続的な調整
が必要です。

色再現性の高い
タブレット端末

http://www.dnp-signage.jp/tablet/
original.html

4GADGET

IROMI FGAD

IROMIは大日本印刷による色再現性の
高いタブレット端末です。Android 4.4搭
載で、1.1インチディスプレイのFGADと、
8インチのUY8Aの2機種が用意された
法人向けのタブレット端末です。色補正、
色調整、コントラスト調整の機能に優れ
た機構を持つタブレットであり、おもに美
術館や博物館での解説専用端末として
考えられています。性能そのものは現在
の最新タブレット端末には追いつきませ
んが、高精細でありながらビビッドすぎて
正確ではない色表現よりも、正確な色表
現が求められる現場では重宝します。

色アプリあれこれ

Adobe Color CC
http://www.adobe.com/jp/products/
color.html

色の感覚

PANTONE CAPSUREのカラーコードを
知るためのデジタルカラー計測器

色見本帳。PANTONEが提案する2015年の色
#18-1438（Marsala）

ツブカラ
http://www.tubucolor.net/

colorware
http://www.colorware.com/

ROY G BIV
color synthesizer
http://julianglander.com/ROY-G-BIV/

ColorSync
http://peatix.com/

colorwareで彩色しても
らい、派手な色に変わっ
たiPhone

ROY G BIV color synthesizerでカメラをかざ
して色を取り込んでいる様子

ColorSyncの概念を示したもの。色が同期し
ている人と仲間はずれがわかる

ツブカラに投稿された色
の組み合わせとタイトル

Adobe Color CCでカ
メラ画像からカラーパ
ターンを抽出し（左）、気
に入ったカラーパターン
をライブラリ化して保存
する（右）

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design Feb. 2015 - 3

http://www.swatchmate.com
http://www.xrite.com/colormunki-display
http://spyder.datacolor.com/portfolio-view/spyder4elite/
http://www.dnp-signage.jp/tablet/original.html

4 - Software Design

Protocol——プロトコル

プロトコルとは

　プロトコル（Protocol）とは、通信の規約のこ
とです。私たちがWebにアクセスするとき、
WebブラウザとWebサーバはHTTPというプ
ロトコルに従って通信を行います。HTTPは
Hypertext Transfer Protocolの略ですから、
HTTPの‘P’はProtocolの‘P’を表しているこ
とになります。その意味では、HTTPを「HTTP

プロトコル」と呼ぶのはいささか重複した表現
ということになりますね。
　もちろん、HTTPのほかにもプロトコルは数え
切れないほどあります。インターネットで使われ
るプロトコルの名前は、HTTPと同じように末尾
に‘P’の文字を持つものがたくさんあります。
　アプリケーション層では、FTP、IMAP、
DHCP、NTP、POPなど。トランスポート層では、
TCPやUDPなど。ネットワーク層では、IPや
ICMPなどです。
　プロトコルという言葉は、もともと「礼儀作法」
や「条約議定書」を意味しています。複数の主体
が協調して作業を行うとき、手順や約束がきち
んと決められているとスムーズに話が進みます。
　技術用語としてのプロトコルもそれと同じ意味
があります。たとえばHTTPにおいて、Webブ
ラウザとWebサーバは互いに協調して通信を成
立させています。WebブラウザはHTTPという

プロトコルの「クライアント」として、Webサーバ
はHTTPというプロトコルの「サーバ」として動
作します。クライアントとサーバという2つの主
体が協調してHTTPというプロトコルを成立さ
せているのです（図1）。
　インターネットで使われる多くのプロトコルを
定めているのはRFC（Request For Comments）と
呼ばれる多数の文書です。たとえば、HTTP/1.1

はRFC2616という名前で管理されています。

相互運用性

　もしも世界にHTTPクライアントが1種類、
HTTPサーバが1種類しか存在しないなら、
RFCのような文書の形でプロトコルを定める
必要はないかもしれません。通信の規約を作り
たかったら、クライアント側とサーバ側の開発
者同士で相談すれば済むからです。
　しかし、現実はそうではありません。HTTP

ひとつを考えても、そのプロトコルを利用する
実装は無数にあります。ということは、ばらば
らの開発者による実装が互いに通信しあう必要

Protocol

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 21

Hypertext Transfer
Protocol
(HTTP)

HTTPクライアント HTTPサーバ

 ▼図1　HTTPはプロトコルの一種

http://www.hyuki.com/

4 - Software Design Feb. 2015 - 5

があるということになります。これを一般に相

互運用性（interoperability）と言います（図2）。
個々の開発者が個別に相談したのでは、組み合
わせの数が多くなり過ぎて、相互運用性を確保
するのは難しくなります。ですから、RFCの
ように文書の形でプロトコルが規定され、開発
者はそれに従うことが重要となるのです。

ポステルの法則

　インターネットのプロトコルには、ポステルの

法則（Postel's law）や堅牢性の原則（Robustness

Principle）と呼ばれているものがあります。これ
は、J.Postelによるもので、RFC760、RFC791

に書かれています。

In general, an implementation must be
conservative in its sending behavior, and
liberal in its receiving behavior.
〔一般に、実装は、送信時には保守的で、受
信時には先進的でなければならない〕

　この原則は「送信は厳格に、受信は寛容に」の
ように表現される場合もあります。たとえ
RFCのような形でプロトコルが規定されてい
ても、どうしても実装によるゆらぎが生じてし
まうものです。その場合に、自己の実装には合
わないからといってすべてをエラーにしていて
は、安定した通信は難しくなります。もちろん

規約に反している場合にはエラーにするのです
が、違反とは言えない場合にどうするかという
のがポステルの法則です。

　「送信側でいるとき、すなわち自分がデータ
の形式をコントロールできる場合には、できる
だけ厳格に仕様に従うようにする。言い換える
と、受信側が受け取ってくれることに甘えては
いけない。
　受信側でいるとき、すなわちどんな実装から
のデータが送られてくるかわからない場合には、
できるだけ寛容にデータを解釈して受け取る」

　送受信の双方がこの原則に従っていると、仕
様上のグレーゾーンや実装によるゆらぎで相互
運用性が阻害される可能性が低くなるというこ
とになるのです。

日常生活でのプロトコル

　「礼儀作法」はプロトコルのもともとの意味の
1つですから、日常生活にプロトコルが欠かせ
ないのは当然です。しかし、技術用語としての
プロトコルの発想を日常生活に活かせないか考
えてみましょう。
　複数の人間が協調して作業をする場合、お互
いに話し合いで作業を進めることは基本です。
しかし、人数によってはRFCのように明示的
な文書を作成するほうが、作業がスムーズに済
むことは多いでしょうね。
　また、ポステルの法則を日常生活に当てはめ
ると、「人に話すときには丁寧に、人の話を聞

くときには寛容に」と解釈できるでしょう。と
くに、直接面識のない人とSNSなどで対話を
するときには、この法則は役立ちそうです。

◆　◆　◆
　あなたの周りを見回して、複数の人間が協調
して作業する状況はあるでしょうか。どのように
作業を進めるかというプロトコルは文書化されて
いるでしょうか。また、人と対話をするときに、
ポステルの法則が役立つ局面はないでしょうか。
　ぜひ、考えてみてください。｢

21

a X

b Y

c Z

 ▼図2　相互運用性

6 - Software Design

ドローンに求められる
条件とは？

　前回の検討でRaspberry Pi B+とAR.Droneで
メタルギアソリッドシリーズに出てくるサイファー
もどき製作を企画しました。そこで、今回製作
するドローンの具体的な機能を次のようにします。

・自律飛行が可能
・監視用赤外線カメラを搭載
・10分間以上の継続飛行能力

　また、製作では「はんだゴテを使用しない」を
前提条件としました。はんだゴテを使用すると
電子工作力的にハードルが上がってしまい、本
稿の気軽に楽しんでもらいたいという趣旨から
外れてしまうと考えました。そこで「物

ブツ

を買っ
て来て」「ケーブル挿して」「プログラムを入れる」
だけで、誰でも遊べるシンプルさを今回は心が
けました。

自律飛行に向けて

　さて、最初に問題になるのは自律飛行をどのよ
うに実現するかです。屋外ならば、AR.Droneに
GPSを搭載し（写真1）、プログラムでコース指定
を行えば自律飛行が可能です。しかし、都市部の
屋外で、その試験をするのは、風の影響を受けた
り、家屋や人間に対して衝突する可能性が出てき

ます。仮にマニュアル操作するとしても、前方の
カメラだけでは周辺の状態を的確に把握できない
ので障害物確認が困難です。そこで今回の試験
飛行は社内に限定しました。そうするとGPSを
使用できないので、何かほかのセンサーを用いて
衝突を回避しなくてはなりません。イメージ的に
はルンバに近いドローンが目標です。GPSを使わ
ない工夫、この点から改善を行うことにしました。
つまり、ドローンの正面と左右に障害物が近づい
たことをセンサーで検知し、RaspberryPi側で自
動回避をさせる機能の実装です。

センサーの選定

　どのようなセンサーで障害物を検知するのか、
それが最初の問題でした。3cm以上の物体の距
離を検出できるセンサーとして考えられるのは、
超音波、レーザー、赤外線です。今回は超音波

おとなラズパイリレーは、Raspberry Piを文字どおり「リレー」し、好奇心旺盛なITエンジニアが電子工作をするという企画
です。前編で構想を練り、後編で実装します。1年を通してどんなデバイスができあがるのか？……今回は、テコラス㈱ドロー
ン倶楽部によるRaspberry Pi B+ドローン実装編です。

Writer 千葉 久詞（ちば ひさし）、渡邊 崇文（わたなべ たかふみ）　テコラス㈱ドローン倶楽部

「Raspberry Piで空を飛びたい（後編）」
千葉 久詞、渡邊 崇文

第4回

 ▼写真1　GPSモジュールの例

6 - Software Design Feb. 2015 - 7

「Raspberry Piで空を飛びたい（後編）」 第4回

距離センサーにしました。その理由は価格が安
く、しかも単体で販売していたからです。それ
に、レーザーや赤外線は検出媒体が光なので誤
検出も不安だったのです。今回はHC-SR04と
いうモジュール（写真2）を3つ用意しました。
これは、もともとArduino用の超音波センサー
とされていますが、GPIOを使えばRaspberry

Piでも問題なく使うことができるようです。

赤外線カメラの選定

　次に赤外線カメラですが、こちらはあまり迷
うことなくRaspberry Pi純正の赤外線カメラを
選びました。ほかにもUSB接続のカメラなどい
くつか選択肢がありますが、消費電力のほか、
互換性の問題や積載重量の観点からも、あえて
純正品以外にする必要性を感じませんでした。
　今回はPi NoIRを使用しています。通常、赤
外線カメラは単体では暗視装置として機能せず、
別途赤外線照射装置を搭載する必要があります
が、今回の飛行実験ではカメラを積載した状態
での自律飛行の検証を最優先とし、とりあえず
赤外線照射装置の積載を見送りました。

GPIOとは

　GPIOとは汎用入出力装置（General Purpose

Input/Output）の略です。その名のとおり、ソ
フトウェア側である程度柔軟な制御を行えるよ

うになっている汎用的な入出力ポートです。今
回Arduino用として売られているパーツを使用
できたのもこのポートのおかげです。GPIOは
さまざまな用途に用いられていますが、製品ご
とにその仕様はまちまちです。
　Raspberry Piシリーズ内でも仕様が異なり
BからB+へのバージョンアップの際に26本か
ら40本と大幅なポート数増設が施されています。
　実はこれ、端子の1本1本に機能が設定され
ており、Raspberry Piの場合は図1のような構
成となっています。このGPIOと各パーツをジャ
ンパーワイヤ（写真3）と呼ばれるケーブルで接
続することで、各パーツとの連携が取れるよう

 ▼写真2　超音波センサー（HC-SR04） ▼図1　RaspberryPi GPIOの端子機能構成図

 ▼写真3　ジャンパーワイヤケーブル

※Do Not Connect

Pin No
3.3V 1 2 5V

GPIO2 3 4 5V
GPIO3 5 6 GND
GPIO4 7 8 GPIO14

GND 9 10 GPIO15
GPIO17 11 12 GPIO18
GPIO27 13 14 GND
GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24
GPIO10 19 20 GND
GPIO09 21 22 GPIO25
GPIO11 23 24 GPIO8

GND 25 26 GPIO7
DNC 27 8 DNC

GPIO5 29 30 GND
GPIO6 31 32 GPIO12

GPIO13 33 34 GND
Power(+) GND(－) GPIO19 35 36 GPIO16
UART SPI GPIO26 37 38 GPIO20
I2C GPIO GND 39 40 GPIO21

8 - Software Design

になります。今回はHC-SR04側もジャンパー
ワイヤ側もオスの端子なので、（メス：メス）の
ジャンパーワイヤを用意します。

プログラム言語の
選択

　前号でも説明したとおり、公式SDKの言語は
Cで書かれていますが多くのユーザによってさ
まざまなSDKが実装され公開されています。今
回は公式のSDKを使用せず、NodeCopterとい
うNode.js用に実装されたSDKを利用しました。
実は、今回開発メンバー全員がNode.js未経験
者だったのですが、初めての言語でもドローン
の自律飛行制御開発が可能かどうかを試すため
にあえてこれにしました。

その他必要なパーツ

　今回はセンサーモジュールに加え、次のパー
ツを用意しました。

・無線LANアダプタ
（AR.Drone接続用、PC接続用）………… 2個

・ジャンパーワイヤ（メス：メス）
… ………………1つのモジュールにつき4本

製作、試験、
そして問題発生

　実際にパーツを組み上げます――と言っても
この作業はそれほど難しくありません。純正赤
外線カメラモジュールは、挿す場所と方向を間
違えなければ問題は発生しませんし（写真4）、
超音波センサーHC-SR04も同様です。とくに
問題はありません注1。
　センサーに抵抗などの追加部品は使用してい
ません。注意すべき点としてはどのパーツをど
のGPIOのポートに挿したかきちんと覚えてお
くことです。これは後でプログラムからセンサー
の制御を行う際、どのポートに対して操作を行
うか記述する必要があるからです。今回の試験
では自律飛行プログラムの検証のため超音波セ
ンサーをとりあえず1つだけ取り付け、そのセ
ンサーによって障害物が回避できるかどうかを
確認しました（写真5）。
　実際に飛行させてみると、ちゃんとセンサに
よって障害物を検知し、自動的に回避運動をす
ることが確認できました（写真6）。
　しかし、ここで問題が発生します。プログラ
ム確認のため、とりあえずセンサーを1ヵ所に
しか搭載していないため、そのセンサーで障害

注1） ただし、GNDと電源ポートを間違えるとセンサーが壊れるので注意が必要。

 ▼写真4　赤外線カメラモジュールの組み立て ▼写真5　Raspberry Pi B+と超音波センサー

 ▼写真6　ドローン飛行中！ ▼写真7　発泡スチロール製のファンカバーなどに亀裂
　　　　が入った

 ▼写真8　痛々しいありさまの機体

8 - Software Design Feb. 2015 - 9

「Raspberry Piで空を飛びたい（後編）」 第4回

物を検知して回避運動をすると、センサーがな
い方向にある障害物（部屋の壁）に衝突してしま
うのです。飛行テストを繰り返すたび、回避運
動後に壁に衝突して墜落してしまうため、ドロー
ンが傷つき（写真7、写真8）、やがて自律飛行
はおろか離陸後、安定したホバリングもできな
くなったのです。
　これはAR.Droneに標準搭載されているセン
サの姿勢制御系のフィードバック制御プログラ
ムか姿勢制御用センサ自体がおかしくなってい
るのではないかと推測し、現在これらセンサー
の数値を取得するためのプログラムを書いてい
ます。最終的には機体周囲に複数のセンサーを
搭載し、前後左右の障害物を検知して回避運動
ができるようにしていく予定です。

まとめと感想

　数年前であれば高価で手が出なかったドロー
ンが、プログラマブルでかつ低価格になったこ
とは、筆者にとって純粋な驚きと喜びでした。
とくに「ラジコンヘリなんてお金持ちの遊びじゃ
ん」と思っていた方には、この体験をしてほし
いです。今後もさらにOpenCVを利用した画像

認識飛行や、3Gを利用した遠隔操作などにチャ
レンジしたいと思いますが、まずはAR.Drone

に対する知識や飛行経験をもっと増やすべきだ
と考えています。なぜなら一時的にまともに飛
ばせない状態になってしまったときは、何をど
うしていいのか途方に暮れたからです。また、
新たに出たModel A+は、さらに消費電力が下
がるでしょう。
　最後に本稿の執筆にあたり協力してくれた皆
さんに感謝しつつ、今回使用したプログラムを
GitHubに公開します注2。ぜひ皆さんもトライ
してください！ﾟ

注2） https://github.com/senyoltw/ardrone-raspberry-pi

https://github.com/senyoltw/ardrone-raspberry-pi

10 - Software Design

　USP研究所の鎌田広子（かまぷ）と

申します。毎回いろいろなゲストを招

えてほろ酔い気分で対談します。

（鎌田）まず最初に、本誌では知ら

ない方はいないと思いますが、念のた

め御社について簡単にご紹介いただけ

ますか。

（藤崎）ハートビーツはMSP事

業（マネージド・サービス・プロバ

イダの略で、24時間運用保守のサー

ビス）と、ITコンサルティング事業

の2本の柱で会社経営をしています。

昨年には、子会社としてウォルティ（

https://walti.io)という、サーバサイ

ドのセキュリティチェックサービス

の会社を設立しました。

ハートビーツはインフラエンジニ

ア向け勉強会、hbstudyを主催され

ていますよね。

最初はいろんなIT勉強会に参加

していました。　それによって、勉

強会で知り合うエンジニアは増え、

新しい情報を吸収していましたが「な

かなかインフラ担当のエンジニアに

会わないよね」「そういえばインフラ

系のエンジニア向け勉強会ってない

から、俺たちでやろう」ってことに

なったのです。ずっと裏方担当で

黙っていたのですが、言い出しっぺ

は僕です。最近はスタッフも増え、

僕はたまに雑用係をしています（笑）。

学生時代の経験は、今の会社経営

に何か影響を与えていますか？

じつは、地元の医療系の大学志

望だったのですが、東京に出て自分

１人でやろうと思い立ち、そのとき

に進路をIT系に変えることを決めま

した。学費の安い国立で夜間のある

大学を探して、電気通信大学に入学

しました。支援少なく上京したため、

ご飯もろくに食べられない。入学当

時は教材も買えず、やっと買えたの

は3ヵ月後でした。教材の購入はも

とより、生きるため必死にアルバイ

トしなければいけないという状況で

した。そのとき、大学のサークルで

現在、弊社CTOの馬場と知り合っ

たのですが、彼もアルバイト先の仕

事内容に興味を持ってくれて、ちょ

うど人員増員していたので彼も誘っ

て一緒に働いていました。

苦労なさったんですね。まるでド

ラマみたいです。

実は就職する気でいたそのアル

バイト先で、ある日「会社がつぶれ

るかもしれない」という話になった

んです。びっくりしましたよ。普通

に就職活動しても採用されないと

思っていましたし。

　それで「営業をさせてほしい」と手

を挙げました。その営業努力の甲斐

もあって、そこから下がっていた売

り上げが半年後に上向きました。

やっていたことは、いわゆるコンサ

ルティング営業でした。課題の解決

策として、実績がないOSSでも検

討し、検証結果を持って提案に行っ

ていました。余談ですが、最初に仕

事をいただいたのは、今では有名な、

セカイカメラやテレパシーを考えた

井口尊仁さんでした。

　その当時はよく、朝になるまで働

いていました。深夜0:00スタート

の会議があったり（笑）。それから紆

余曲折あり、個人事業を２年間やっ

た後、もう体１つでは足りない、チー

ムが必要だということで会社を設立

することにしました。仕事をしなが

ら学業をするのはたいへんでしたが、

10年かかって卒業しました。

大学生のバイト先で営業すること

になるって、たいへんな経験でした

ね。ところで先日、NAVERの『イケ

メン社長まとめ【厳選】』で藤崎さんが

紹介されていましたが、あれはどなた

の推薦なのでしょうか？

ゲスト：藤崎 正範さん第7献

早朝勉強会を毎週開催している。

藤崎正範（ふじさきまさのり）さん
1978年生まれ。福岡県北九州市出
身。4児の父。㈱ハートビーツおよ
び㈱ウォルティ取締役。電気通信大
学卒業。2005年にハートビーツ設
立。現在社員は56名。社名はオー
プンソースであるハートビートから
語感を変えて名付けた。また2014
年7月、ハートビーツの子会社として
ウォルティを発足した。

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

10 - Software Design Feb. 2015 - 11

まったく不明です（笑）。しかも

ほかの方はイケイケに紹介されてい

ますが、僕は「真面目で誠実そう」と

いう内容でした。今までも、いろい

ろご縁があって、いくつかメディア

には出させてもらいましたが、最近

まではCTOの馬場にメインで出て

もらうようにしていました。技術の

会社ということを社会に認知してい

ただきたいので。実際、社員の割合

は、ほとんどがエンジニアで、営業

はPULL型です。

今までで一番苦労されたことって

何でしょうか。

それはですね……初めてお客さ

んが倒産したときです。しかも大口

顧客だったんです。会社を始めて1

年目、そんなに預金があるわけでも

ない中、会社の口座から毎月数百万

減って行く状態でした。それを打開

するために受けた仕事も、当時は与

信管理が甘く、納品したのに入金が

まったくない。生きた心地がしな

かったですね。なんとか回収し、九

死に一生を得ましたが、うちも倒産

しそうになり、本当にみんなに迷惑

をかけました。一度、預金がほぼな

くなったのですが、その後V字回復

できたので今となっては苦労話と言

えるようになりました。

これもドラマのような話ですね。

そういった依頼会社の調査などはされ

ているんですか？

そうですね、苦い経験のもと、

一般的な与信管理はちゃんとやるよ

うになっています（笑）。ウチの企業

理念でもある「みんな仲良く」「プラ

イドをもって」「変化を楽しむ」に

沿った仕事をするために、仕事の内

容によってはお断りさせていただい

ています。僕らは「堂々と胸を張れ

る仕事をしたいよね」と話をしてい

るんです。

会社経営はたいへんですね。ご家

族も苦労されたのではないですか？

嫁さんは6つ年上の姉さん女房

で、エンジニアの集まりで知り合い

ました。まだ会社を起こす前でした。

その厳しいときに、僕に気づかない

ようにアクセサリを質に入れたり、

いろいろ助けてくれたという恩があ

ります。今でも障害対応などで夜中

に電話が鳴ったとしても、決っして

怒らないです。だから仕事を頑張れ

るし、信頼しています。本当に家族

には感謝しています。

ハートビーツの社風はどんな感じ

ですか？

仕事に厳しく、普段は仲良くと

いう感じですね。仕事中は本当に集

中して仕事をしてくれています。仕

事後に何人かで集まって部活をした

り勉強会をしたりしています。完全

に身内ネタですが、最近開催された

中で僕が参加したのはサバゲ部の役

員殲
せんめつ

滅戦ですね。僕と取締役の前川

が参加して、役員2人vs社員6名で

戦いました。いっぱい殲滅されまし

たが、1度は勝ちましたよ。楽しかっ

たし、またやりたい（笑）。それと、今

年度は多く子供に恵まれる年でもあ

りました。社員の1割程度の家族が

子供を授かりました。僕らができる

ことは限られていますが、仕事を通

じて、みんなが安心して子づくり・子

育てできるようにしていきたいです。

いいですね。ちなみに結婚につい

てはどう思われますか？

僕は九州男児です。いずれは結

婚はするもんだという価値観でし

た。そして、彼女にプロポーズした

のですが、了解してもらえなかった

（笑）。「結婚ってなに？ 婚姻制度と

いうものは法制度で定められたしく

みであって……（長々）」と。僕的に

は自然な流れだと思っていたのです

が、「え？　なんだこれ？」と。理由

は「形に関係なく、お互いの気持ち

が一番大切」ということでした。だ

から「僕たちの間柄を決めるのは制

度ではないよね」と。それこそが恋

愛の真理ですよね。しばらくは彼女

の意見を尊重し一緒に住み、僕の立

場もあるので、真剣に話し合い続け

た結果、２年後の引越しのタイミン

グで籍を入れることになりました。

いいですね、真剣に恋愛結婚。と

ても素敵です。今日はどうもありがと

うございました。ｦ

12 - Software Design12 - Software Design

OLEDバッジ

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 52 回

秋葉原発！

　どういうわけか、筆者はエレクトロニクスを
使ったバッジが好きです。Wyolumの電子ペー
パーを使ったBADGEr_v4（写真1）も気に入っ

 ▼写真1　BADGEr_v4

 ▼表1　用意する部品

 ▼写真2　OLEDバッジ

て真っ先に入手して、Maker Faireで使ったり
しています。そんな筆者ですので、前回（第51

回）で紹介した、「Eagletを使ったOLEDバッ
ジ（写真2）」も気になってしかたありませんで
した。今回は、このOLEDバッジの作り方を
紹介したいと思います。このOLEDバッジは、
はんだづけしなくても簡単に組み立てられます
（表1）。
　ハードウェアの組み立てはとても簡単で、
OLEDディスプレイに付属のケーブルを使い、
Eagletとディスプレイを接続するだけです。
付属のケーブルは少し長過ぎるので、筆者は手
持ちの短いケーブルを使って接続しました。こ
のOLEDを点灯させるコードは、Intelのコミュ
ニティサイト注1に掲載されています。図1の
コードはIntel XDK IoT Edition用のプロジェ
クトファイルで、PNG形式の画像をOLED

ディスプレイに表示します。
　XDKは、IPでEdisonとパソコンの間を接続
してデプロイやデバッグをします。まず、
Edisonのネットワークインターフェースの設
定をしましょう。また、XDKとEdisonを通信
させるには、EdisonにXDKを実行しているホ
ストのIPアドレスを登録し、デーモンを起動

注1） https://communities.intel.com/thread/54599

材料 価格 URL
Intel Edison 7,020円 http://ssci.to/1956
スイッチサイエンス版
Eaglet 3,780円 http://ssci.to/2070

GROVE - I2C OLED
ディスプレイ 2,084円 http://ssci.to/829

Edisonで遊んでみた

http://www.switch-science.com/
https://communities.intel.com/thread/54599
http://ssci.to/1956
http://ssci.to/2070
http://ssci.to/829

12 - Software Design Feb. 2015 - 13

第 52 回

12 - Software Design

 ▼図1　Intel XDK IoT Edition

する必要があります。Edisonにログインして図
2のコマンドを実行しておきましょう。
　パソコンにインストールしたXDKを起動
し、「OPEN AN INTEL XDK PROJECT」を
選択して、先ほどのコミュニティサイトのペー
ジからダウンロードしたXDKプロジェクトを
開きます。DevelopタブのIoT Deviceというメ
ニューでEdisonが選択できますので、選んで
ください。次に、Install/Buildボタンをクリッ
クしたあとにRunボタンをクリックすると、
OLEDディスプレイにIntelロゴが表示されま
す。PNG画像を差し換えるだけでディスプレイ
に表示する内容が変更できますので、とても手
軽に自分のバッジを作ることができます。
　前回紹介したOLEDバッジは、Eagletを加工

LEDバッジ

したFRISKのケースに入れ、バッテリをつない
で動かしていました。胸にとめるために、市販
の名札を分解し、クリップ部分を取り外してケー
スに接着しました。実際に使うには、このよう
にちょっとした工作をする必要があります。
　このGroveのOLEDディスプレイは、3.3～
5Vで動作するので、Eagletに直接接続して動か
すことができます。Groveのモジュールには、
5Vにしか対応していないものもあるので注意
しましょう。

　前回紹介したスイッチサイエンス版Eaglet

を使ったワークショップで、Edisonに接続して
いたのは8×8ドットのマトリクスLEDでし

 ▼図2　Edisonのデーモンを起動する

$ xdk-whitelist --add 192.168.10.100 ←パソコンのIPアドレス
$ systemctl enable xdk-daemon
$ systemctl restart xdk-daemon

Edisonで遊んでみた

14 - Software Design

はんだづけカフェなう
秋葉原発！

た。この連載の第15回でも紹介しましたが、
ドットマトリクスLEDは、ドットひとつひと
つにLEDが入っていて、それが格子状に配線
されています。Eagletに付いているI2CのGrove

コネクタから、LEDの点灯をコントロールする
ために、NXP SemiconductorsのPCA9622とい
うチップを使った基板を作りました。
　PCA9622は、マイコンとI2Cで接続をして、
16チャンネル分LEDの点灯を制御することの
できるチップです。PCA9622は、本来、LED

のマイナス側（カソード）を接続する端子が付い
ていて、マイナス側でスイッチをON/OFFし
てLEDの点滅を制御します。マイナス側のス
イッチは、ローサイドスイッチと呼ばれていま
す。8×8のドットマトリクスLEDには、LED

のプラス側（アノード）とマイナス側（カソード）
がそれぞれ8個ずつ付いています。ドットマト
リクスLEDの点灯を制御するには、プラス側
のスイッチ（ハイサイドスイッチ）も用意しなけ
ればなりません。このミスマッチを解決するた
め、「I2C 8×8 LEDマトリクス基板」では、PCA

9622のマイナス用のスイッチがLEDのプラス
側のスイッチを切り替えられるよう、MOSFET

（電界効果トランジスタ）を使った回路を搭載し
ています。回路図は、スイッチサイエンスの商

Bluetoothを使ってみる

品ページ注2に掲載してもらっているので、
もっと詳しいしくみを知りたい方は参照してみ
てください。
　先ほどのOLEDバッジも、このLEDバッジ
も、ディスプレイ部分には漢字フォントが搭載
されていません。日本語を表示させるには
Edisonにフォントを持たせて、テキストを
ドットにレンダリングしなければなりません。
漢字フォントのデータは組み込み機器にとって
は大きめですが、EdisonのFlashメモリになら
ば楽に搭載できます。先ほどの写真の「つ」は、
Node.jsで書かれたフォントデータを含んだプ
ログラムで表示をしています。
　インテルのワークショップは、XDKを使って
EdisonでこのLEDバッジを光らせるという内
容でした。このワークショップの資料やコード
は近日中にEdison Lab注3で公開される予定と
のことですので、コードに興味がある方はみて
みてください注4。

　Edisonの無線インターフェースには、Wi-Fi

だけでなくBluetoothも搭載されています。今
度はPhysical Web注5のビーコンをEdisonに出
させてみましょう。Physical Webは、Googleの
エンジニアが開発しているプロジェクトで、
BluetoothでURLを広報することで、アプリで
はなくWebを使って機器同士の連携をさせよ
うというものです。たとえば、バス停で次のバ
スの到着を案内する、パーキングメーターや自
販機の支払いを手早く済ませる、といった用途
が例に挙げられています。
　EdisonにインストールされているYocktの
パッケージ管理システムはopkgというもので
す。ビルド済みのパッケージをEdisonにイン

注2） http://ssci.to/2071

注3） http://edison-lab.jp

注4） また、このPCA9622を使った例として、mbed用のコー
ドをNXPの担当者の方が書いてくださいました。サンプ
ルコードは、https://developer.mbed.org/users/nxp_ip/
code/PCA9622_LED8x8_Hello/で公開されています。

注5） http://google.github.io/physical-web/

 ▼写真3　LEDバッジで「つ」を表示している

http://ssci.to/2071
http://edison-lab.jp
https://developer.mbed.org/users/nxp_ip/code/PCA9622_LED8x8_Hello/
https://developer.mbed.org/users/nxp_ip/code/PCA9622_LED8x8_Hello/
http://google.github.io/physical-web/

14 - Software Design Feb. 2015 - 15

第 52 回

ストールできるようにするため、図3のフィー
ドを「/etc/opkg/myfeeds.conf」など適当なファ
イルに書いておきましょう。
　フィードを追加したら、

opkg update
opkg upgrade

とコマンドを実行して、パッケージのデータ
ベースをアップデートしておきます。フィード
の追加を初めて紹介するので記述しましたが、
この作業は都度行う必要はありません。
　次に、今回必要となるパッケージを用意し
て、node-uri-beaconをインストールします（図
4）。node-uri-beaconは、Physical Webのビー
コンを出す、Node.jsで書かれたコードです。
　インストールを終えたら、さっそく試しに動
かしてみましょう（図5）。
　今のところ、Physical Webのビーコンを受信
するには、スマートフォンにアプリをインス
トールしなければなりません。筆者の知る限
り、アプリはAndroid版と iOS版が提供されて
います。スマートフォンにPhysical Webとい
うアプリケーション（図6）をインストールする
と、図7のようにビーコンを検出して、Webサ
イトに誘導してくれます。
　アプリをインストールしなければならないの
が残念ですが、IoT（モノのインターネット）の
1つの実装例を手軽に体験でき
ました。EdisonにはWi-Fiと
Bluetooth、そしてLinuxが搭
載されていますので、センサ
（ノード）から受け取った情報を
クラウドに送るといったゲート
ウェイの役割もさせることがで
きます。もちろん、Edisonにセ
ンサを接続して、Wi-Fiでその
ままインターネットに接続す
る、インテリジェントなノード
の役割をさせることもできま
す。ｦ

 ▼図7　ビーコンを検出したところ

 ▼図6　Physical Webアプリ

 ▼図3　Edisonにビルド済みパッケージをインストールするためのフィード設定

src intel-iotdk http://iotdk.intel.com/repos/1.1/intelgalactic
src all http://iotdk.intel.com/repos/1.1/iotdk/all
src i586 http://iotdk.intel.com/repos/1.1/iotdk/i586
src x86 http://iotdk.intel.com/repos/1.1/iotdk/x86

 ▼図4　node-uri-beaconのインストール

opkg install git
opkg install bluez5-dev
git clone https://github.com/don/node-uri-beacon.git
cd node-uri-beacon/
npm install

 ▼図5　Physical Web発信の実行

rfkill unblock bluetooth // EdisonのBLEを有効に
cd examples
node simpleBeacon.js

Edisonで遊んでみた

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ

ESET ファミリー
セキュリティ
ESET 社のセキュリティ製品の最新版。Java アプリの脆弱性対策機
能や、ボットネット通信の解析・防御を行う機能などが新たに搭載
されています。今回提供するファミリー版では、Windows ／ Mac
／ Android から自由に 5 台分選んで利用できます。
 提供元 キヤノン IT ソリューションズ　 URL http://www.canon-its.co.jp

関数プログラミング
珠玉のアルゴリズムデザイン
Richard Bird 著、山下 伸夫 訳／
A5 判、280 ページ／
ISBN ＝ 978-4-274-05064-0

探索や有向グラフ、パズルなど 30 の問題に対するアルゴリズムを
Haskell で記述。コードに隠された関数型言語ならではの考え方を
読み解きながら、効率の良いプログラムを導く過程を解説します。
 提供元 オーム社　 URL http://www.ohmsha.co.jp

ポータブル HDD
「HD-PNFU3-C」1TB

USB3.0/2.0 で接続する耐衝撃ボディのポータブル HDD。テレビ、レコーダーの録画用
HDD としても使え、ビデオカメラやゲーム機にも接続できます。「おでかけロック」機能に
より、HDD をロックしておけば、ほかのパソコンにつないでもロック状態が維持されデータ
を守れます。対応 OS は、Windows Vista 以降、Mac OS 10.6 以降です。
 提供元 バッファロー　 URL http://buffalo.jp

『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2015 年 2 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

C/C++ セキュアコーディング
第 2 版
Robert C. Seacord 著／
歌代 和正、久保 正樹、椎木 孝斉 訳／
B5 変形判、552 ページ／
ISBN ＝ 978-4-04-891987-6

C/C++ において脆弱性につながるプログラミング上の基本的な問
題について、コードおよび代表的な脆弱性を挙げながら、それらを
回避する方法を解説。安全なプログラムを作る方法を学べます。
 提供元 KADOKAWA　 URL http://www.kadokawa.co.jp

角川インターネット講座 0２
ネットを支えるオープンソース
まつもとゆきひろ 監修／
A5 判、282 ページ／
ISBN ＝ 978-4-04-653882-6

膨大なソフトウェアとそれを開発するプログラマによって支えられ
ているインターネットを、「オープンソース」をキーワードに、まつ
もとゆきひろ氏をはじめ 8 人の著者がやさしく解説します。
 提供元 KADOKAWA　 URL http://www.kadokawa.co.jp

スラリマルチ
メンズセレクト
濃く滑らかな書き味のエマルジョンインクを採用した 4 色のボール
ペン（黒・青・赤・緑）とシャープペンの 5 機能を搭載したペン。
ネクタイやカバンなどのファッションを意識したボディデザインと
なっています。各カラー 1 名様にプレゼント（色は選べません）。
 提供元 ゼブラ　 URL http://www.zebra.co.jp

Android Studio ではじめる
簡単 Android アプリ開発
有山 圭二 著／
B5 変形判、288 ページ／
ISBN ＝ 978-4-7741-6998-9

Android アプリ開発用ソフト「Android Studio」を使った入門書。
プログラムを動かしながらそれを改良しつつアプリ開発を学んでい
きます。対応するバージョンは Android Studio Beta v0.8.14 です。
 提供元 技術評論社　 URL http://gihyo.jp

1 名

5 名3 名

2 名 2 名

2 名 2 名

http://sd.gihyo.jp/
http://buffalo.jp
http://www.canon-its.co.jp
http://www.zebra.co.jp
http://www.kadokawa.co.jp
http://www.kadokawa.co.jp
http://www.ohmsha.co.jp
http://gihyo.jp

あなたの知らない実践技

Linux systemd
入門

使ってよかった！

systemd は従来の SysVinit や Upstart に代わって、Linux のサービスの起動／停止を管理
するしくみです。「起動処理を並列に実行することで起動時間を短縮する」「サービスにかかわる
プロセスを常に監視し、今までよりも柔軟にプロセスのリソースを管理できる」といった改善が
見込めることから、Fedora や Red Hat Enterprise Linux などのディストリビューションで採
用が進んでいます。

systemd を使えるようになるために、本特集では、まず systemd の根本的なしくみや考え方
から説明します。それらの要点を押さえることで、新しいコマンド体系や設定方法、運用の注意
点なども理解しやすくなるでしょう。

サービスを常に見守る新しい管理機能
systemd の世界へようこそ ..18

 Writer 中井 悦司
Part1

効率的な起動処理をいかに実現しているか
systemd のしくみ（理論編）...24

 Writer 中井 悦司
Part 2

移行に向けて動き出した !?
Ubuntu も systemd に変わるのか？52

 Writer 柴田 充也
Part 6

現場で使ってわかった
systemd での運用における注意点41

 Writer 清水 勲
Part 5

さらなる cgroups との統合／ Dockerとの連携へ
systemd の今後 ..38

 Writer 中井 悦司
Part 4

サービスの起動／停止を自在に管理するための
systemd の使い方（実践編） ...30

 Writer 中井 悦司
Part 3

CONTENTS

第1特集

18 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

Linuxの各種ディストリビューションで採用が決定・検討される「systemd」ですが、その採用の是非をUNIX哲
学の観点から考えてみます。後半ではhttpdサービスを例に、従来の管理システムと比較したうえで、systemd
の採用によって解決される課題を解説します。

サービスを常に見守る新しい管理機能
systemdの世界へ
ようこそ

 Writer レッドハット㈱　中井 悦司（なかい えつじ）／ Twitter @enakai00

1
Part

　本特集ではsystemdについて、基礎からじっ
くりと解説を進めていきます。systemdは、
2010年に開発がスタートして、2011年に
Fedora15で正式採用されました。そのあと、
2014年に商用のLinuxディストリビューショ
ンであるRed Hat Enterprise Linux 7（RHEL7）
と、そのクローンであるCentOS7での採用が
決まり、このころから世間での注目を集めるよ
うになりました。UbuntuやDebianなどの主要
なディストリビューションでも、systemdの採
用が検討されています。
　しかしながら、各種ディストリビューション
の開発者やユーザからは、systemdの採用を歓
迎しないという声が聞こえることもあります。
理由は大きく、2つありそうです。
　まず1つめ、systemdはその名前のとおり、
サービス、ロギング、リソース割り当てなどの
システム管理をつかさどるデーモン（System

Daemon）ですが、これまでとはコマンド体系や
設定方法が異なります。そのために、「使い慣
れたコマンドが使えなくなった」「これまで使っ
ていた管理ツール（スクリプト）が動かない」と
いった不満があるようです。
　そして、もうひとつは、UNIX/Linuxにおけ

るシステム管理の根本的な「考え方」にかかわり
ます。これまでのUNIX/Linuxでは、特定の
処理をする小さなツールを組み合わせてシステ
ム管理を実現してきました。たとえば、システ
ム起動時に立ち上がるさまざまなサービスは、
それぞれが独自の「起動スクリプト」を提供しま
す。SysVinitやUpstartなどのツールがこれら
のスクリプトを呼び出すことで、サービス起動
処理が進んでいきます。
　これは、起動スクリプトをカスタマイズする
ことで、サービスの起動処理を自由に変更でき
るなど、システム管理者に大きな自由度を与え
ます。UNIXの創始者の1人と言われるM.D.マ
キロイ氏はかつて、UNIXの哲学として「1つの
ことを行い、またそれをうまくやるプログラム
を書け」と書き残しました。つまり、特定の処
理にフォーカスした小さなツールを用意してお
き、それらをユーザが自由に組み合わせて、必
要な処理を実現していくのがUNIX流のコン
ピュータの使い方というわけです。
　一方systemdの場合は、一見すると考え方が
違うようにも感じられます。systemdという1

つのツールがシステム管理にかかわるさまざま
な処理をまとめて実施することで、より高機能
で統合化されたシステム管理を実現していきま
す。古くからのUNIX/Linux管理者の中には、
これを「UNIXの哲学を否定するもの」として拒

賛否両論？！systemd

18 - Software Design Feb. 2015 - 19

サービスを常に見守る新しい管理機能
systemdの世界へようこそ Part 1

否感を示す人もいるようです。

　それでは、systemdは本当に「UNIXの哲学を
否定する」異端児なのでしょうか？――実際に
はそんなことはありません。「systemd」という
1つの名前のツールではありますが、その内部
では「小さな仕事」をするモジュールが連携して
動作するようになっており、それぞれのモジュー
ルをカスタマイズすることも比較的容易です。
systemdは、まさにUNIXの哲学に基づいて設
計されたツールと言えるでしょう。
　ただし、systemdの特徴の1つに「シェルスク
リプトの利用を徹底的に避ける」という点があ
ります。UNIX/Linuxの世界では、シェルスク
リプトは、さまざまなツール（コマンド）を連携
させて、1つの大きな仕事をするために利用さ
れてきました。とくにシステム起動時のさまざ
まな初期設定、あるいは前述のサービス起動に
おいては、基本的にすべてがシェルスクリプト
で実装されていました。
　しかしながら、systemdのオリジナル開発者
であるLennart Poetteringの考えでは、現代的
なコンピューティング環境において、この方法

にはいくつかのデメリットがあったというので
す。具体的な課題はこのあとで説明しますが、
彼はこれらの課題を解決するために、シェルス
クリプトを使用せずに、C言語で記述されたバ
イナリーモジュールを用意して、これらのモ
ジュールが連携動作するしくみとして、
systemdを実現したのです。
　つまりsystemdは、現代的なコンピューティ
ング環境に対応するために、伝統的な「スクリ
プトベースのしくみ」を捨てて、新たなシステ
ム管理のしくみを一から作りなおしたツールと
考えることができます。systemdに対する「UNIX

の哲学に反する」という声は、実際には、使い
慣れたスクリプトベースのしくみを捨てること
への拒否感から来るものが多いように感じられ
ます注1。

　話が抽象的になってきましたので、ここで
systemdで何が便利になるのか、その具体例を
紹介したいと思います。

注1） Lennartは「Biggest Myths」と題する自身のブログ記事
（ URL http://0pointer.de/blog/projects/the-biggest-
myths.html）で、systemdに対するさまざまな疑問の声に
徹底的に答えています。

systemdが
目指したもの

systemdは
見守っている

　systemdの開発を主導している Lennartは以前、
「PulseAudio」の開発をリードしていました。これは、

OS上の音声入出力を集中管理するサウンドサーバ
の機能を提供するもので、OS上のアプリケーショ
ンは、PulseAudioを経由して音声出力することで、
アプリケーションごとの音量調整や出力先デバイス
の切り替えなどが可能になります。これは、アプリ
ケーションの利用者にはとても便利な機能ですが、
既存のアプリケーションをPulseAudioに対応させ
るうえでは修正が必要な場合もあり、一部の開発者
やユーザからは不満の声もありました。
　本文でも触れたsystemdに対する不満の声は、こ

れに似ている部分があるかもしれません。古いやり
方を捨てて、より洗練されたしくみに移行するには
「やり方を変える苦労」は避けられません。Lennartは、
既存のしくみにとらわれずに、より良いものを一か
ら作り上げる才能があるのかもしれません。
　実際のところsystemdは、設定ファイルの書き方
が違うなど、最初は戸惑う部分もありますが、その
しくみを理解して使い込んでいくと、システム全体
が統一的に管理されている「安心感」を感じるように
なります。ぜひ、本特集で systemdを徹底理解して、
新しい「systemdライフ」を満喫してください。

気分一新でsystemdライフを満喫コラム

http://0pointer.de/blog/projects/the-biggest-myths.html

20 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

従来のサービス管理
～httpdを例に

　前述のように、従来のしくみでは、サービス
を起動する際に専用の起動スクリプトを用意す
る必要がありました。伝統的なLinuxの世界で
は、システムが起動して「PID（プロセス ID）
=1」の最初のプロセスとして initプロセスが起
動すると、システム初期化スクリプト/etc/
rc.d/rc.sysinitを実行したあとに、サービス
起動スクリプト/etc/rc.d/rcを実行します。
このスクリプトがさらに、各サービスの起動ス
クリプトを実行していきます。最後に、システ
ムコンソールからログインを受け付けるための
プロセスを起動して、initプロセスの仕事は一
段落します（図1）。
　このとき initプロセス自身は、スクリプトか
ら起動したサービスのことにはいっさい関知し
ません。たとえば、Red Hat Enterprise Linux

6（RHEL6）で、Webサーバの機能を提供する
httpdサービスを起動すると、起動スクリプト
/etc/init.d/httpdによって、最初に起動した
親プロセスの情報（プロセス ID）が、PIDファ
イル/var/run/httpd/httpd.pidに書き込まれ
ます。このあとは、このテキストファイルの情
報だけをたよりに、サービスの稼働状況を管理
する必要があります（図2）。
　たとえば次のコマンドは、httpdサービスの

稼働状況をチェックしていますが、実際には
PIDファイルに記載された親プロセスが存在
することをチェックしているだけです。ここか
らフォークした子プロセスの情報はわかりませ
ん。

service httpd status
httpd (pid 4956) を実行中...

　あるいは、serviceコマンドでサービスを停
止する場合は、PIDファイルに記載された親プ
ロセスを基に、その子プロセスを検索して停止
するという処理が行われます。
　このときに問題になるのが、PIDファイル以
外にサービスをトラッキングする情報が存在し
ないということです。誰かが誤ってPIDファ
イルを削除したり、あるいは悪意を持ってPID

ファイルの内容を書き換えたりすると、もはや
サービスの稼働状況は正しく管理できなくなり
ます。図3のようにPIDファイルを削除すると、
実際にはhttpdサービスは稼働を続けているに
もかかわらず、serviceコマンドでサービスの
状況を確認したり、サービスを停止することが
できなくなります。
　もしくは、PIDファイルに記載された親プロ
セスに障害が発生してプロセスが停止したとし
ます。この場合、残された子プロセスは「Orphan

（みなし子）プロセス」となり、PID=1が新たな

mingetty
prefdmrc.sysinit rc

/etc/init.d/< サービス名 > start

ログイン受付サービス起動

設定に従って
順番に実行

システム初期化

init

 ▼図1　 これまでのスクリプトベースの起動処理

20 - Software Design Feb. 2015 - 21

サービスを常に見守る新しい管理機能
systemdの世界へようこそ Part 1

親プロセスとして設定されます。このような
Orphanプロセスを追跡する方法はもはやあり
ません。親プロセスが停止しているので、
serviceコマンドはサービス全体が停止したも
のと勘違いして、サービスの停止処理に失敗す
るようになり、子プロセスはそのまま残り続け
ます。さらに、子プロセスが残っているために、
httpdサービスを新たに起動することもできな

くなります（図4）。
　このようにサービスにかかわるプロセスが管
理不能になった場合、最後の手段としてよく利
用するのは、プロセス名を指定して、プロセス
を強制停止する方法です。次のようにpkillコ
マンドを使用します。

pkill -9 httpd

　ただしこの方法では、
偶然に「httpd」という文
字列を含む名前のプロ
セスがあると、そちら
も強制停止されてしま
います。httpdサービス
に伴うプロセスがどれ
であるかを正確に把握
する手段がないと、非
常に困ったことになり
ます。

 ▼図3　PIDファイルの削除でサービスが管理不能になる例

rm -f /var/run/httpd/httpd.pid　 ← PIDファイルを削除

service httpd status
httpd は停止しています

service httpd stop
httpd を停止中: [失敗]

PIDファイル

/etc/init.d/httpd start 子プロセスをフォーク

親プロセスを起動

親プロセスの
プロセスIDを記録

httpd

httpd

httpd

…

 ▼図2　 httpdサービスの起動処理

 ▼図4　親プロセスの停止でサービスが管理不能になる例

cat /var/run/httpd/httpd.pid
9063　　　　　　　　　　　　　　　　 親プロセスのPIDを確認して強制停止
kill -9 9063

service httpd status
httpd が停止していますが PID ファイルが残っています

service httpd stop
httpd を停止中: [失敗]

service httpd start
httpd を起動中: httpd: apr_sockaddr_info_get() failed for web01.example.com
(98)Address already in use: make_sock: could not bind to address [::]:80
(98)Address already in use: make_sock: could not bind to address 0.0.0.0:80
no listening sockets available, shutting down
Unable to open logs
 [失敗]

22 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

systemdのサービス管理

　それでは、systemdを採用したRHEL7では、
httpdサービスはどのように管理されるのでしょ
うか？　systemdの環境では、サービスの起動
／停止処理は、専用の設定ファイルに基づいて
systemd自身が直接に管理します。
　図5は、実際にhttpdサービスを起動して状
態を確認した例になります。RHEL6の場合は、
serviceコマンドで状態を確認しても、親プロ

セスのPIDが表示されるだけでしたが、こち
らはまったく違います。子プロセスを含めたす
べてのプロセスの情報、さらにはhttpdデーモ
ンのログ出力までがきちんと把握されているこ
とがわかります。
　図6のように、killコマンドで親プロセスを
強制停止した場合、systemdは親プロセスが
KILLシグナルで停止されたことをきちんと把
握しており、Orphanプロセスとなった子プロ
セスのことも覚えています。このあとは、次の

 ▼図5　systemdによるサービスの状態確認

systemctl start httpd.service
systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: active (running) since 木 2014-11-13 08:25:30 JST; 6s ago
 Main PID: 16338 (httpd)
 Status: "Processing requests..."
 CGroup: /system.slice/httpd.service
 ├─16338 /usr/sbin/httpd -DFOREGROUND
 ├─16339 /usr/sbin/httpd -DFOREGROUND
 ├─16340 /usr/sbin/httpd -DFOREGROUND　 子プロセスを含めたすべてのプロセスを把握している ├─16341 /usr/sbin/httpd -DFOREGROUND
 ├─16342 /usr/sbin/httpd -DFOREGROUND
 └─16343 /usr/sbin/httpd -DFOREGROUND

11月 13 08:25:30 rhel7 httpd[16338]: AH00557: httpd: apr_sockaddr_info_get...l7
11月 13 08:25:30 rhel7 httpd[16338]: AH00558: httpd: Could not reliably de...ge ログ出力も
11月 13 08:25:30 rhel7 systemd[1]: Started The Apache HTTP Server. 把握している
Hint: Some lines were ellipsized, use -l to show in full.

 ▼図6　親プロセスが停止してもサービスの状態は把握可能

kill -9 16338　 ← 親プロセスを強制停止

systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: deactivating (stop-sigterm) (Result: signal) since 木 2014-11-13 08:35:54 JST; ｭ
 1s ago
 Process: 16350 ExecStop=/bin/kill -WINCH ${MAINPID} (code=exited, status=0/SUCCESS)
 Process: 16338 ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND (code=killed, signal=KILL)
 Main PID: 16338 (code=killed, signal=KILL)　　　　　　　　 KILLシグナルで停止したことを知っている↑
 Status: "Total requests: 0; Current requests/sec: 0; Current traffic: 0 B/sec"
 CGroup: /system.slice/httpd.service
 ├─16339 /usr/sbin/httpd -DFOREGROUND
 ├─16340 /usr/sbin/httpd -DFOREGROUND
 ├─16341 /usr/sbin/httpd -DFOREGROUND　 子プロセスが残っていることを把握している
 ├─16342 /usr/sbin/httpd -DFOREGROUND
 └─16343 /usr/sbin/httpd -DFOREGROUND
...（以下省略）...

22 - Software Design Feb. 2015 - 23

サービスを常に見守る新しい管理機能
systemdの世界へようこそ Part 1

コマンドを実行することで残っている子プロセ
スを強制停止することができます。

systemctl kill -s9 httpd.service

　これは、httpdサービスに含まれるプロセス
にKILLシグナル（シグナル番号9）を送信しま
す。このサービスに関係ないプロセスが誤って
停止される恐れはありません。

◆　◆　◆
　このようにsystemdは、サービスの稼働状況
を常に見守っており、システムを健全な状態に
保ちます。サービスが異常停止した際には、サー
ビスを自動的に再起動することもできます。
　これまでのスクリプトベースの世界において
も、さまざまな管理ツールやシェルスクリプト
を組み合わせて、同様のことは実現できたかも
しれません。しかしながら、それではシステム
管理者のスキルや選択したツールによって、管
理方法がバラバラになる恐れがあります。今後
はクラウド上で大量のサーバを起動するような
シーンも増えてきますので「誰もが知っている
共通の方法」で適切な管理を実現することは、
さらに重要になるでしょう。

　それでは最後に、systemdが解決する（解決
を目指す）課題をまとめておきましょう。これ
については、Lennartがsystemdの開発をスター
トした初期のころに書いたブログ記事に詳細が
まとめられています注2。この中でも主要なもの
は、次の4つに要約できます。

システム起動時間を短縮

　従来の環境ではシステム起動処理をシェルス
クリプトで実施していましたが、スクリプト内
のコマンドはシリアルに実行されるために、最

注2） Rethinking PID 1（PID 1を再考する） URL http://0pointer.
de/blog/projects/systemd.html

近のマルチコアCPUの性能を活かしきれませ
んでした。systemdは、これまでスクリプト内
で実施していた処理を個別に分割して、並列実
行することでシステム起動時間を短縮します。

サービスのプロセスを管理

　先ほどの例で紹介したように、これまでは
PIDファイルやプロセス名でサービスに伴う
プロセスを判別しており、問題発生時にサービ
スの状態が制御不能になることがありました。
systemdは、それ自身でサービスにかかわるプ
ロセスをトラッキングして、問題発生時にも適
切に制御を行います。

サービスの実行環境を管理

　これまで、サービスごとのプロセス実行環境
（cgroupsによるリソース割り当てやディレク
トリアクセスのセキュリティ設定など）は、サー
ビス起動処理とは別に設定・管理する必要があ
りました。systemdは、サービスの設定ファイ
ルにこれらの環境設定を含めて、一元管理でき
るようにします。

デバイスの動的変更に対応

　これまでのしくみでは、サービスの自動起動
は、システム起動時のみに行うものでした。し
かしながら、デスクトップや仮想マシン環境で
は、システムの稼働中にデバイスが追加／削除
されることがあり、これに連携してサービスの
起動・停止ができると便利です。systemdは、
各種デバイスを管理対象に加えることで、これ
を実現します。

◆　◆　◆
　systemdは現在も精力的に開発が続けられて
おり、今後もまだその管理機能は強化されてい
くでしょう。このあとのパートでは、上記の課
題を解決するsystemdのしくみをさらに詳しく
解説していきます。ﾟ

systemdが解決する
課題

http://0pointer.de/blog/projects/systemd.html

24 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

systemdにおいては、システム起動時、あらかじめ設定された関係に基づいて「Unit」が起動します。順序関係
のないUnitは並列に動作し、起動時間を短縮しています。本パートではsystemdの起動プロセスの動作原理を
解説するとともに、cgroupsの機能を利用したプロセストラッキングについても述べます。

効率的な起動処理をいかに実現しているか
systemdのしくみ

（理論編）
 Writer レッドハット㈱　中井 悦司（なかい えつじ）／ Twitter @enakai00

2
Part

　本パートでは、systemdが提供する主要な機
能について、その動作原理とともに解説してい
きます。systemdではコマンドや設定ファイル
も変わってはいますが、まだ、それらの詳細に
は踏み込みません。新しいコマンドや設定ファ
イルを使いこなすには、まずsystemdがどのよ
うなしくみ／考え方に基づいて動くのかという
根本を押さえることが大切です。
　Part1でも触れたように、systemdは以前か
らあるSysVinitやUpstartなどのしくみを置き
換えるものになります。以前の環境では、シス
テムが起動すると「PID（プロセス ID）=1」の最
初のプロセスとして「init」プロセスが起動する
と説明しました。一方systemdの環境では、最
初のプロセスとして「systemd」という名前のプ
ロセスが起動し
て、そのあとの
システム起動処
理を継続してい
きます。

　ただし、systemdのすべての機能が、この1

つのプロセスで提供されるわけではありません。
実際には、表1のようなデーモンプロセスが連
携して動作します。最後の dbus-daemonは、
systemdに固有のものではなく、従来からサー
バ上のプロセス連携に使用されていた「メッセー
ジバス機能（D-Bus）」を提供するプロセスです。
systemdではこのD-Busを通じてデーモンが連
携するようになっており、systemdの環境で

は dbus-daemonは必須の機能となります。
systemdの管理コマンドの多くは、その背後で
は、D-Busを通じてsystemdの機能を呼び出し
ています。systemd-hostnamedなど、サーバに
常駐しているわけではなく、D-Busを経由して
呼び出された際に自動的に起動するものもあり
ます。
　このあとは、RHEL7（CentOS7）の環境を前
提として、解説を進めていきます。

systemdの
動作原理を理解

プロセス 説明
systemd systemdの本体となるデーモン
systemd-journald サービスが出力するシステムログを管理
systemd-udevd デバイスの検出や動的変更を管理（従来のudevdの代替）
systemd-logind システムへのログイン処理を管理（デスクトップ環境では、各種

デバイスのデスクトップユーザへの割り当ても管理）
systemd-hostnamed サーバのホスト名を管理
dbus-daemon systemdのメッセージを中継するメッセージバスを提供

 ▼表1　systemdに関連する主要なデーモンプロセス

24 - Software Design Feb. 2015 - 25

効率的な起動処理をいかに実現しているか
systemdのしくみ（理論編） Part 2

　はじめに、systemdの最大の特徴となる、シ
ステム起動プロセスについて解説します。
Part1でも触れたように、systemdではこれま
でシェルスクリプトで実施していたさまざまな
処理を細かく分割しており、これらひとつひと
つの処理の単位を「Unit（ユニット）」と呼びます。
　たとえば、従来の「rc.sysinit」の内部では、
各種デバイスの認識やファイルシステムのチェッ
ク、マウント処理などを行っていますが、これ
らは1つのスクリプトにまとめて書かれている
だけで、実際には独立した処理になります。そ
こでsystemdでは、これらひとつひとつに対し
て対応する処理を行うUnitを用意しています。

serviceコマンドから起動スクリプトを実行し
て立ち上げていたサービスについても、1つの
サービスが1つのUnitとして定義されます（図
1）。

Unitの種類

　Unitにはいくつかの種類があり、Unit名末
尾の拡張子で区別できるようになっています（表
2）。このときUnitの中には、自動作成される
ものがある点に注意してください。それぞれの
Unitには、個別の設定ファイルが付随しますが、
自動作成されるUnitについては事前に設定ファ
イルを用意する必要はありません。

mount
　たとえば、mountタイプのUnitは、ファイル

システムを特定のマウン
トポイントにマウントす
るという処理を行うもの
ですが、これはシステム
起動時に、/etc/fstab
のエントリから自動作成
されます。swapタイプ
のUnitについても同様

システム起動処理を
Unitに分割

拡張子 名称 機能
service サービス サービスを起動
target ターゲット 複数のUnitをグループ化するために使用
mount マウントポイント ファイルシステムをマウント（/etc/fstabから自

動作成）
swap スワップ スワップ領域を有効化（/etc/fstabから自動作成）
device デバイス ディスクデバイスを表す（udevがデバイスを認

識すると自動作成）

 ▼表2　おもなUnitの種類

rc

systemd-remount-fs.service
systemd-udevd.service
 :
 :

dev-hugepages.mount
proc-sys-fs-binfmt_misc.mount
tmp.mount
 :
 :

chronyd.service
crond.service
dbus.service
irqbalance.service
mdmonitor.service
NetworkManager.service
rngd.service
rpcbind.service
rsyslog.service
sshd.service
 :
 :

console-getty.service
systemd-logind.service

sys-devices-pci00...0:00:03.0-virtio0-net-eth0.device
sys-devices-pci00...4.0-virtio1-block-vda-vda1.device
sys-devices-pci00...4.0-virtio1-block-vda-vda2.device
sys-devices-pci00...:00:04.0-virtio1-block-vda.device
dev-dm\x2d1.swap
 :
 :

rc.sysinit

/etc/init.d/< サービス名 > start

mingetty
prefdm

これらすべてが
「Unit」

従来の起動処理

 ▼図1　 起動処理を「Unit」に分解して実行

26 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

です。従来、サーバ上にマウントするファイル
システムやスワップ領域は、/etc/fstabで設
定していましたが、これまでの設定方法と互換
性が保たれています。
　一方、事前に設定ファイルが用意されている
mountタイプのUnitとしては、「tmp.mount」が
あります。これは、tmpfs（メモリを使用した
RAMディスク領域）を/tmpにマウントすると
いうUnitです。デフォルトでは無効化されて
いますが、これを有効化してシステムを再起動
すると、/tmpがRAMディスク領域として用意
されるようになります。Unitの有効化／無効
化は、次のようにsystemctlコマンドで行いま
す（ここで言う有効化／無効化は、システム起
動時にこのUnitを自動起動するかどうかを表
します）。

systemctl enable tmp.mount
systemctl disable tmp.mount

　従来であれば、このような変更も /etc
/fstabを編集して行うところですが、設定ファ
イルに触れずに切り替えられるのは便利です。

service
　そして、従来のサービス起動処理に相当する
のが、serviceタイプのUnitです。それぞれの
サービスごとにUnitの設定ファイルが用意さ
れており、「httpd.service」のようにUnit名がそ
のまま設定ファイルの名前になります。設定ファ
イルの配置場所は、表3のとおりで、システム
デフォルトの設定ファイルは/usr/lib/systemd
/systemの下に用意されています。
　設定を変更する際は、/etc/systemd/system
の下に設定ファイルをコピーしたあとに、これ
を修正します。両方
のディレクトリに同
じ名前の設定ファイ
ルが存在する場合は、
/etc/systemd/system
の方が優先されるよ

うになっており、コピーしたファイルを削除す
れば、簡単にデフォルトの設定に戻すことがで
きます。
　その他には、ディレクトリ /etc/systemd
/system/<Unit名>.dを作成して、その下に拡
張子「.conf」の任意のファイル名で設定ファイ
ルを配置することもできます。これは、既存の
設定ファイルに対する追加の設定項目として取
り扱われます。デフォルトの設定ファイルに対
して、項目を追加するだけであれば、この追加
設定ファイルを使用してもかまいません。

target
　targetタイプは、「何もしない」という特殊な
Unitです。このあとで説明するように、Unit

間の依存関係や順序関係を定義する際に、複数
のUnitをグループ化してまとめるために利用
します。

　systemdが管理するUnit群には、「依存関係」
と「順序関係」の2種類の関係が定義されます。
これらは、独立した定義であることに注意して
ください。

依存関係

　まず、依存関係というのは「Unit Aを起動す
るならUnit Bも起動するべき」という関係です。
このとき、多数のUnitについて、個別に依存
関係を設定するのはたいへんです。そこで、は
じめに targetタイプのUnitで依存関係の骨組
みを作っておき、その他のUnitを targetタイ
プのUnitに紐付ける形をとります。

ディレクトリ 説明
/usr/lib/systemd/system システムデフォルトの設定ファイルを配置（RPMパッ

ケージから提供される設定ファイルはここに入る）
/etc/systemd/system デフォルトから修正した設定ファイルを配置
/var/run/systemd/system 起動中のUnitの一時的な設定変更を保存

 ▼表3　Unit設定ファイルの配置場所

Unitの依存関係と
順序関係

26 - Software Design Feb. 2015 - 27

効率的な起動処理をいかに実現しているか
systemdのしくみ（理論編） Part 2

　少しわかりにくいので、図2の具体例で説明
しましょう。この図では、「A←B」というのは、
「Aを起動するなら、Bも起動するべき（BはA

の前提）」という関係を表しています。
　systemdが起動すると、はじめに「default.

target」というUnitを検索します。このUnitの
設定ファイルは、実際には「multi-user.target」
など、ほかのUnitの設定ファイルへのシンボ
リックリンクとなっており、リンク先のUnit

が起動対象として選定されます。
　続いて、図2の矢印に従って前提となるUnit

を検索してきます。これによって、この環境で
起動するべきすべてのUnitが決定されます。
図の全体像を見るとわかるように、従来の起動
処理の流れが、targetタイプのUnitの依存関
係として再現されていることがわかります。

ランレベルの切り替え
　先に「default.target」は、ほかのUnitへのシ
ンボリックリンクと説明しましたが、このリン
ク先を変更することは、従来のしくみで言うと、
ランレベルを切り替える操作に相当します。た

とえば「graphical.target」には、GUI環境で必
要なサービスのUnitが紐付いていますので、
ここへのシンボリックリンクにすることで、
GUI環境でサーバを起動することが可能にな
ります。
　シンボリックリンクの切り替えには特別なコ
マンドはありません。図3のように、lnコマン
ドでシンボリックリンクを作成します。
　システム稼働中に、一時的にランレベルを切
り替える際は、次のコマンドを使用します。

systemctl isolate multi-user.target

　互換性のために、従来の initコマンド、もし
くは telinitコマンドでの切り替えも可能になっ
ています。次は、どちらも「rescue.target」に切
り替えます。

init 1
telinit 1

　従来の各ランレベルに対応するUnitは、表4
のようになります。

 ▼図3　lnコマンドでシンボリックリンクを作成

ln -sf /usr/lib/systemd/system/graphical.target /etc/systemd/system/default.target

シンボリックリンク

graphical.target

local-fs.target

multi-user.target basic.target sysinit.target

runlevel 5 で
起動するサービス

ファイルシステムの
マウント処理

swap.target
swap 領域の

有効化

runlevel 3 で
起動するサービス

default.target rescue.target

runlevel 1 で
起動するサービス

runlevel に依存せず
起動するサービス

従来の rc.sysinit で
行っていた処理

シンボリックリンク
を切り替える

 ▼図2　 おもなUnitの依存関係

28 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

順序関係

　さて、ここまではUnitの依存関係の説明で
すが、これらは起動するべきUnitを決定して
いるだけで、実際にUnitを起動していく順序
には関係しません。Unitの起動順序については、
これとは別に「順序関係」が定義されています。
これは「Unit Aを起動するなら、事前にUnit B

が起動しているべき」という関係になります。
Unitの設定ファイル内部で「Before=A（この
Unitは、Unit Aの前に起動する）」「After=A（こ
のUnitは、Unit Aのあとに起動する）」のよう
に指定します。
　具体的には図4のように、targetタイプの
Unitを「待ち合わせ場所」として利用します。
たとえば、NetworkManager.serviceなど、ネッ
トワーク環境を準備するUnitは「network.

target」より先に起動して、httpd.serviceなど、
ネットワーク環境を前提とするUnitは「network.

target」よりあとに起動するように設定します。
これにより、Webサーバ機能を提供するhttpd

デーモンが起動する際は、ネットワークの設定
が完了していることが保証されます。
　このとき、すべてのUnitについて順序関係
が定義されるわけではないところがポイントに
なります。systemdは、順序関係を持たない（ど
ちらが先に起動してもかまわない）Unit群につ
いては、並列に起動処理を行います。これによ
り、Unit起動処理の並列度を高めて、システ
ム起動時間の短縮を図ります。

　ここで、Unitの依存関係の設定方法につい
て簡単に説明しておきます。これには2種類の
設定方法があり、1つはUnitの設定ファイル内
の [Unit]セクションに「Wants=」、もしくは
「Requires=」で前提となるUnitを指定します。
これらは、依存関係を固定的に設定する際に使
用します。「Requires」は、前提Unitが起動に
失敗すると、このUnitの起動を取りやめます。
「Wants」は、前提Unitが起動に失敗しても、こ
のUnitの起動処理は継続します。
　そして、もう 1つは、設定ファイル保存

ディレクトリ内にサブディレクトリ「<Unit名>
.wants」、もしくは「<Unit名 >.requires」を作
成して、この中に前提となるUnitの設定ファ
イルへのシンボリックリンクを作成します。こ
れは、先ほど「tmp.mount」の例で触れたUnitの
有効化／無効化を行う際に使用します。
　図5は、httpd.serviceの例になりますが、
Unitの設定ファイル内で依存関係を設定する
target（この例ではmulti-user.target）が指定さ
れており、このUnitを有効化すると、指定
targetの「.wants」ディレクトリにシンボリック
リンクを作成して依存関係を設定します。これ
により、次回にシステムが起動した際はmulti-

user.targetの前提Unitとして、このUnitが起
動します。逆にこのUnitを無効化すると、先
ほどのシンボリックリンクが削除されて依存関
係がなくなります。結果として、次回のシステ
ム起動時はこのUnitは起動対象にはなりません。

Unitの
有効化／無効化

ランレベル Unit
0 poweroff.target
1 rescue.target
2、3、4 multi-user.target
5 graphical.target
6 reboot.target

 ▼表4　 従来の各ランレベルに対
応するUnit

After=network.target

network.target
sshd.service
postfix.service
httpd.service

など
Before=network.target

NetworkManager.service
firewalld.service

など

ネットワーク環境を
使用するUnit ネットワーク環境を

準備するUnit

 ▼図4　 Unitの順序関係の例

28 - Software Design Feb. 2015 - 29

効率的な起動処理をいかに実現しているか
systemdのしくみ（理論編） Part 2

　Part1で見たように、systemdは、サービス
として起動したプロセスをトラッキングしてお
り、どのプロセスがどのサービスに属するかを
常に把握しています。これは、内部的に
cgroupsの機能を利用して実現しています。
cgroups（Controll Groups）はもともと、プロセ
スをいくつかのグループに分類して、グループ
ごとにCPU時間などのリソース配分を制御す
る機能です。systemdはこのcgroupsのプロセ
スをグループ化する機能をうまく活用してます。
　具体的には、新しいサービスを起動する際は、
そのサービス用の（cgroupsにおける）グループ

を 作 成 し
て、最初に
起動する親
プロセスを
このグルー
プに入れて
おきます。
そのあと、
この親プロ
セ ス か ら
フォークし

て生成されたプロセスは、cgroupsの機能により、
自動的に同じグループに入ります。親プロセス
が停止した場合でも、子プロセスは同じグルー
プにとどまります。したがって、systemdは、
このグループに属するプロセスを該当サービス
に関連するプロセスとして、トラッキングでき
るようになります。
　systemdが作成したグループは、図6の
systemd-cglsコマンドで確認できます。サービ
スに対応するグループは、「system.slice」グルー
プの下にUnit名のグループが作成されます。
その他には「user.slice」グループの下に、シス
テムにログインしたユーザが起動したプロセス
を分類するグループが作成されています。ある
いは、systemd-cgtopコマンドを使用すると、
グループ（サービス）ごとのリソース使用率を
topコマンドのようにリアルタイムで表示する
こともできます。

◆　◆　◆
　本パートでは、systemdの基礎となる「Unit」
を中心に、systemdのしくみを解説しました。
Unitという小さな単位の仕事でシステムを管
理しており、serviceタイプのUnitが従来のサー
ビスに対応するという点をまずは押さえておき
ましょう。
　また、systemdは、サービスが出力するログ
メッセージについても、独自に管理をしていま
す。この点については、次のPart3で具体的な
コマンドと併せて解説していきます。ﾟ

cgroupsによる
プロセストラッキング

 ▼図6　systemdが作成したcgroupsのグループ

systemd-cgls
├─1 /usr/lib/systemd/systemd --switched ｭ
-root --system --deserialize 23
├─user.slice
│ └─user-0.slice
│ └─session-36.scope
│ ├─3490 sshd: root@pts/0
│ ├─3495 -bash
│ ├─4082 systemd-cgls
│ └─4083 less
└─system.slice　　 ↓ httpd.service用のグループ
 ├─httpd.service
 │ ├─4047 /usr/sbin/httpd -DFOREGROUND
 │ ├─4048 /usr/sbin/httpd -DFOREGROUND
 │ ├─4049 /usr/sbin/httpd -DFOREGROUND
 │ ├─4050 /usr/sbin/httpd -DFOREGROUND
 │ ├─4051 /usr/sbin/httpd -DFOREGROUND
 │ └─4052 /usr/sbin/httpd -DFOREGROUND
 ...（以下省略）...

 ▼図5　シンボリックリンクによるUnitの有効化／無効化

[Install]
WantedBy=multi-user.target
　　　　　　 ↑ 有効化する際に依存関係を設定するtargetを指定

systemctl enable httpd.service
ln -s '/usr/lib/systemd/system/httpd.service' '/etc/systemd/system/multi-user.ｭ
target.wants/httpd.service'　 ← 有効化すると「.wants」ディレクトリにシンボリックリンクを作成
systemctl disable httpd.service
rm '/etc/systemd/system/multi-user.target.wants/httpd.service'
　　　　　　　　　　　　　　　　 ↑ 無効化するとシンボリックリンクを削除

multi-user.target

httpd.service

/usr/lib/systemd/system/httpd.service

30 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

サービスを起動／停止したり、状態を確認したりするためには、まずはsystemctlなどのコマンド操作を習得す
る必要があります。さらに、Unitの依存／順序関係などを思いどおりに調整するには、Unit設定ファイルの書
き方も知る必要があります。systemdの機能は豊富ですが、まずは本パートで基本操作の要点をつかみましょう。

サービスの起動／停止を自在に管理するための
systemdの使い方

（実践編）
 Writer レッドハット㈱　中井 悦司（なかい えつじ）／ Twitter @enakai00

3
Part

　本パートでは、systemdが提供するコマンド
の使い方を説明します。Part2で解説したUnit

の状態を実際にコマンドで確認しながら、さら
に理解を深めていきましょう。
　systemdの基本は、systemctlコマンドで、こ
れに、さまざまなサブコマンドを付加して実行
します。たとえば、次は、現在の環境で定義さ
れている（設定ファイルが用意されている）すべ
てのUnitを表示します。

systemctl list-unit-files

　デフォルトでは、画面の幅におさまるように、
長いUnit名は省略されることがあります。
Unit名をすべて表示するには、-l（--full）オプ
ションを付けます。また、出力結果は lessコマ
ンドで表示されますが、これが不要な場合は、
--no-pagerオプションを追加します。
　特定のタイプのUnitだけを表示する際は、
-t（--type）オプションにタイプを指定します。
図1は、serviceタイプのUnitだけを表示する
例です。従来の環境で言うと、「chkconfig --list」
でサービス一覧を表示する操作にあたります。
STATEの列の意味は表1のとおりで、「enabl

ed」「disabled」と表示されているものは、次の
ように、自動起動を有効化／無効化することが

systemdの基本操作

 ▼図1　serviceタイプのUnitを一覧表示

systemctl list-unit-files -t service
UNIT FILE STATE
arp-ethers.service disabled
auditd.service enabled
autovt@.service disabled
avahi-daemon.service enabled
brandbot.service static
console-getty.service disabled
console-shell.service disabled
cpupower.service disabled
crond.service enabled
 ...（中略）...
teamd@.service static
tuned.service enabled
wpa_supplicant.service disabled

123 unit files listed.

30 - Software Design Feb. 2015 - 31

サービスの起動／停止を自在に管理するための
systemdの使い方（実践編） Part 3

できます。

systemctl enable httpd.service
systemctl disable httpd.service

　これは、従来の環境であれば、「chkconfig

on/off」で、システム起動時の自動起動をon/

offする操作に相当します。これらのUnitは、
Part2の図5で見たように、有効化した際に依
存関係を設定するtargetが設定ファイル内部で
指定されています。
　手動でサービス（Unit）を起動・停止する際は、
次のコマンドを使用します。それぞれ、サービ
スの起動・停止・再起動・リロード（設定の再
読み込み）を行います。リロードについては、
Unitの設定ファイルにおいてリロード処理の
内容が定義されている必要があります。

systemctl start httpd.service
systemctl stop httpd.service
systemctl restart httpd.service
systemctl reload httpd.service

　特定のサービスの稼動状態は、次のコマンド
で確認します。

systemctl status httpd.service

　出力例については、Part1の図5を参照して
ください。サービスに含まれるプロセスの一覧
や直近のログ出力も併せて表示されています。
ログメッセージが途中で省略されていますが、
-l（--full）オプションを指定するとすべて表示
されます。
　また、Part1でも紹介しましたが、サービス
に含まれるプロセスに、まとめてシグナルを送
信することができます。次のように-sオプショ
ンにシグナル名、もしくは、シグナル番号を指
定します。ここでは、httpd.serviceに含まれる
プロセスをまとめて強制停止しています。

systemctl kill -s9 httpd.service

　最後に、現在起動している（起動しているべき）
Unitの一覧は、次のコマンドで確認できます。

systemctl list-units

　「list-units」を省略して、systemctlコマンド

STATE 説明
enabled システム起動時に自動起動する
disabled システム起動時に自動起動しない
static 自動起動の設定対象外

 ▼表1　Unitの状態

 ▼図2　serviceタイプのUnitの稼働状況を表示

systemctl list-units -t service
UNIT LOAD ACTIVE SUB DESCRIPTION
auditd.service loaded active running Security Auditing Service
avahi-daemon.service loaded active running Avahi mDNS/DNS-SD Stack
crond.service loaded active running Command Scheduler
dbus.service loaded active running D-Bus System Message Bus
firewalld.service loaded active running firewalld - dynamic firewall
getty@tty1.service loaded active running Getty on tty1
httpd.service loaded active running The Apache HTTP Server
iprdump.service loaded active running LSB: Start the ipr dump daemo
iprinit.service loaded active running LSB: Start the ipr init daemo
iprupdate.service loaded active running LSB: Start the iprupdate util
irqbalance.service loaded active running irqbalance daemon
kdump.service loaded failed failed Crash recovery kernel arming
kmod-static-nodes.service loaded active exited Create list of required stati
network.service loaded active exited LSB: Bring up/down networking
NetworkManager.service loaded active running Network Manager
 ...（以下省略）...

32 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

だけを実行しても同じ結果が得られます。-l

（--full）、-t（--type）、--no-pagerなどのオプショ
ンはこれまでと同様です。図2は、serviceタ
イプのUnitについて表示した例ですが、
「ACTIVE」の列が「failed」になっているものは、
何らかの原因で起動に失敗しています。また、
「SUB」の列が「exited」になっているものは、
デーモン（常駐）型のサービスではなく、サービ
ス起動時に特定の処理を実施して終了している
ものです。

　次のコマンドで、device、mount、swapなど
のタイプのUnitを表示すると、サーバに接続
された各種デバイス、マウントポイント、スワッ
プ領域などがUnitとして認識されていること
がわかります。

systemctl list-units -t device -l
systemctl list-units -t mount
systemctl list-units -t swap

　mountタイプのUnit名は、マウントポイント
のパスにおいて、「/」を「-」に置換したものにな
ります。swapタイプでは、スワップデバイス
のファイルパスを同様に置換したものになりま
す。
　これらは、ディレクトリ/usr/lib/systemd/
system-generatorsの下にある、「generator」
と呼ばれるプログラムによって、自動的に作成
されています。generatorは、システム環境に
応じて、動的にUnitの作成や既存Unitの設定
変更を行うもので、表2のようなものがありま
す。自動作成されたUnitの設定ファイルは、ディ
レクトリ/run/systemd/generatorに保存され

ています。
　ちなみに、Linuxでは、システム起動時に実
行したいコマンドはシェルスクリプト/etc/
rc.d/rc.localに書き込んでおくというルール
があります。systemdでは、このスクリプトの
実行は表2の最後にあるrc-local.serviceから実
施します。これは、「/etc/rc.d/rc.local start」
というコマンドを実行するだけのサービスです
が、systemd-rc-local-generatorによって、実
行ファイル「/etc/rc.d/rc.local」が存在する
場合に有効化されます。つまり、systemdの環
境では、デフォルトではrc.localは使用してい
ませんが、必要な際は、rc.localファイルを作
成すると、システム起動時に実行されるように
なっています。

　続いて、サービスのログ管理について説明し
ます。systemdの環境では、各種サービスは
Unitとして起動されますが、systemdは、これ
らUnitのログ出力を収集して、独自のバイナ
リーファイルに保存しています。
　ログの収集元は、プロセスからの標準出力／
標準エラー出力への書き出しとsyslogへの出力、
そして、systemd独自のAPIを使ったログ出力
です。最後の独自APIは、サービスのプログ
ラム自身がsystemd環境を前提として、専用の
システムコールでログを出力する形になりま
す注1。アプリケーションが独自のログファイル
に出力する内容などは、収集されません。
　ロ グ の 収 集・保 管 は、systemd-journald.

serviceとして起動するデーモン（Part2の表1

注1） systemd-develパッケージに含まれるmanページ sd-
journal(3)を参照。

journaldによる
ログ管理

generatorによる
Unitの自動作成

generator 説明
systemd-fstab-generator /etc/fstabを参照して、mountタイプとswapタイプのUnitを作成
systemd-cryptsetup-generator /etc/crypttabを参照して、systemd-cryptsetup@.serviceを作成
systemd-rc-local-generator /etc/rc.d/rc.localが実行可能だと、rc-local.serviceの自動起動を有効化

 ▼表2　おもなgenerator

32 - Software Design Feb. 2015 - 33

サービスの起動／停止を自在に管理するための
systemdの使い方（実践編） Part 3

も参照）が実施しており、通称「journald」と呼
ばれます。journaldは、通常のログメッセージ
のほかに、ログを出力したUnit名などの付加
情報を記録しており、さまざまな条件でログを
検索する機能を提供します。
　ログの検索は、journalctlコマンドで行います。
-l（--full）オプションと --no-pagerオプション
の使い方は、systemctlコマンドと同じです。
また、ログメッセージの中に表示できない文字
があると、その部分は省略されますが、-a（--all）
オプションを指定すると、表示不能文字も省略
せずに出力します。
　journalctlコマンドをオプションなしで実行
すると、既存のログをすべて表示しますが、-u

オプションでUnit名を指定することで、特定
のUnitのログだけを確認することもできます。
図3は、sshd.serviceのログを確認する例にな
ります。また、オプション指定により、jour

naldが独自に追加したメタデータも確認できま
す。たとえば、次は、整形したJSON形式です
べてのメタデータを表示します。

journalctl -o json-pretty

　長くなるので結果は省略しますが、ログを出
力したプロセスの名前など、問題判別にも有用
な情報が含まれています。さらに、-fオプショ
ンを指定すると、tailコマンドの-fオプション
と同様に、新しいログが出力されるのを待ちな
がら、順次表示していきます。ログファイルの
出力状況をリアルタイムに目視確認する際に利
用してください。

　なお、RHEL7のデフォルトでは、journald

が収集したログは、ディレクトリ /run/log/
journalに保存されており、システムを再起動
したタイミングで破棄されるようになっていま
す。再起動後も保存されるようにするには、永
続保存用のディレクトリ/var/log/journalを
作成して、systemd-journald.serviceを再起動
します注2。また、RHEL7の環境では、従来の
システムログ収集ツールであるrsyslogdも稼働
しており、/var/log以下には、通常のシステ
ムログも保存されています。

　それでは、いよいよ、Unitの設定ファイル
の書き方を説明していきます。設定ファイルの
配置場所については、Part2の表3を再確認し
ておいてください。デフォルトの設定ファイル
を書き換える場合は/usr/lib/systemd/system
以下にあるファイルを/etc/systemd/system以
下にコピーしてから編集します。設定ファイル
の名前は、Unit名と同じになります。

依存／順序関係に関する設定

　Unitの設定ファイルは、[Unit]、[Install]など
のセクションに分かれており、[Unit]には、
Unitの依存関係・順序関係など、Unitのタイ
プに依存しない項目を記載します。[Install]には、

注2） ログファイルの容量が保存用ディレクトリ（/var/run/
journal、もしくは、/var/log/journal）の全容量に対し
て10％以上になるか、ファイルシステムの空き容量が
15％以下になると、古いエントリから順に削除されていき
ます。

Unit設定ファイルの
書き方

 ▼図3　sshd.serviceのログを表示

journalctl -u sshd.service
-- Logs begin at 土 2014-11-15 13:14:23 JST, end at 土 2014-11-15 13:20:12 JST.
11月 15 13:14:32 rhel7 systemd[1]: Starting OpenSSH server daemon...
11月 15 13:14:32 rhel7 systemd[1]: Started OpenSSH server daemon.
11月 15 13:14:32 rhel7 sshd[990]: Server listening on 0.0.0.0 port 22.
11月 15 13:14:32 rhel7 sshd[990]: Server listening on :: port 22.
11月 15 13:15:08 rhel7 sshd[1959]: Accepted password for root from 192.168.122.1
11月 15 13:20:12 rhel7 sshd[2008]: Accepted password for root from 192.168.122.1

34 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

Unitの自動起動に関する設定を記載します。
Part2の図5でみたように、自動起動を有効化
する際に依存関係を設定するtargetを記載しま
す。serviceタイプのUnitに固有の設定は、
[Service]セクションに記載します。そのほか
のタイプについても、各タイプに固有のセクショ
ンが用意されています。
　Unitの設定ファイルを変更した場合は、次
のコマンドで変更を反映する必要があるので注
意してください。

systemctl daemon-reload

　[Unit]セクションのおもなオプションは、表
3のとおりです。Part2で説明した、依存関係
（Requires、および、Wants）と順序関係（After、
および、Before）の設定がポイントになります。

RequiresとWantsの違いについては、Part2の
説明を再確認しておいてください。
　リスト1は、SSHデーモンを起動するsshd.

serviceの設定ファイルの抜粋ですが、「syslog.

target」「network.target」「auditd.service」に対
する順序関係が指定されています。依存関係に
ついては、[Install]セクションを使用して、自
動起動の有効化／無効化が設定できるようにし
てあります。自動起動を有効化すると、「Wanted

By」で指定したUnitの前提として起動するよう
になります。複数のUnitに対する依存関係・
順序関係を設定する際は、この例のようにスペー
ス区切りでUnitを並べるか、同じオプション
を複数回指定します。

サービスの起動／停止に関する
設定

　続いて、[Service]セクションに記載する、
serviceタイプに固有のオプションを説明します。
まず、表4は、サービスの起動／停止に関する
オプションです。サービス起動時に実行するコ
マンドを指定するExecStartが基本となります。
システム起動時に自動起動する場合や、「sys

temctl start」で起動した際は、このコマンドが
実行されます。「systemctl stop」で停止する場

合など、サービス停止時に実行するコ
マンドはExecStopに記載しますが、
これは必須ではありません。ExecStop

を省略した場合は、最初に起動した親
プロセスをSIGTERM/SIGKILLで
停止します。
　このとき、サービス停止処理を行っ
た際に、サービスに関連するプロセス
がすべて停止せずに残る場合がありま
す。リスト2の sshd.serviceの例であ

 ▼リスト1　sshd.serviceの設定ファイル（[Unit]と[Install]セクション）

[Unit]
Description=OpenSSH server daemon
After=syslog.target network.target auditd.service　 ← syslog/network/auditdの環境がそろってから起動する

[Install]
WantedBy=multi-user.target　 ← multi-user.targetの前提として有効化する

オプション 説明
Description Unitの説明文
Documentation ドキュメントのURI
Requires/Wants このUnitと同時に有効化が必要なUnit
After このUnitより先に起動するべきUnit
Before このUnitより後に起動するべきUnit

 ▼表3　[Unit]セクションの主要オプション

オプション 説明
ExecStart サービス起動コマンド
ExecReload サービスリロードコマンド
ExecStop サービス停止コマンド
ExecStartPre
/ExecStartPost

サービス起動前後の追加コマンド
（サービスの起動判定には関連しない）

ExecStopPost サービス停止後に実行するコマンド
（サービスが異常停止した際にも実行）

KillMode ExecStop実行後に残ったプロセスの処理方法
EnvironmentFile 環境変数を読み込むファイル

 ▼表4　[Service]セクションの主要オプション（1）

34 - Software Design Feb. 2015 - 35

サービスの起動／停止を自在に管理するための
systemdの使い方（実践編） Part 3

れば、ExecStopの指定がありませんので、新
規のSSH接続を受け付ける親プロセスは停止
しますが、既存のSSHセッションを処理する
子プロセスはそのまま残ります。このような残
プロセスの処理は、KillModeオプションで指
定します（表5）。リスト2の例では、子プロセ
スは停止しないため、既存のSSHセッション
が切れることはありません。

起動完了判定に関するオプション
　サービスの起動については、起動完了を判定
するタイミングに注意が必要です。これは、表
6の「Type」オプションの指定によって変わりま
す。デフォルトの「Type=simple」は、指定コマ
ンドがフォアグラウンドで実行を継続すること
が想定されており、ExecStartで指定したコマ
ンドを実行したら、すぐに起動完了（起動成功）
と判定します。

　一方、デーモンプロセスをバックグラウンド
で起動して、最初のコマンド自体は終了する、
デーモン型のコマンドの場合は、「Type=forking」
を指定します。この場合は、最初のコマンドが
リターンコード0で正常終了した時点で、起動
完了（起動成功）と判定します。このタイプのコ
マンドは、通常、デーモンプロセスのPIDをファ
イルに記録するようになっていますので、
「PIDFile」にそのファイルを指定しておきます。
　さらに、systemdで利用する前提で設計され
たアプリケーションの場合は、「Type=notify」、
もしくは、「Type=dbus」を指定する場合もありま
す。これは、アプリケーション自身が、systemd

のAPI、もしくは、D-BusのAPIを通じて、起
動完了を直接 systemdに通知する形になりま
す注3。
　いずれの場合においても、systemdは、サー
ビスに関連するプロセス群の中で、最初に起動
した「メインプロセス」のプロセス IDを認識し
ており、各種オプションの中で、変数「$MAIN

PID」として参照することができます。リスト
2の例では、ExecReloadでHUPシグナルを送
信するプロセスの指定に使っています。
　そのほかには、一度だけコマンドを実行する
タイプのサービスを表す、「Type=oneshot」が
あります。この場合、最初のコマンドが正常終
了した時点で、サービス自体が終了したものと
認識されます。「RemainAfterExit=yes」を指定
すると、コマンド終了後もサービス自体は起動
したままになります。

注3） systemd-develパッケージに含まれるmanページ sd_
notify(3)を参照。

 ▼リスト2　sshd.serviceの設定ファイル（[Service]セクション）

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen　 ← サービス起動前にホスト鍵を生成する
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID　 ← reload処理は、メインプロセスにHUPシグナルを送る
KillMode=process　 ← サービス終了時に残った子プロセスは放置する
Restart=on-failure
RestartSec=42s

オプション 説明
Type サービスプロセスの起動完了の

判定方法（デフォルトは「simple」）
PIDFile fork型サービスのPIDファイル
BusName D-Bus型サービスのbus接続名
Restart メインプロセス停止時の再起動

の指定（デフォルトは「no」）

 ▼表6　[Service]セクションの主要オプション（2）

設定 説明
KillMode=none 残プロセスはそのまま放置する
KillMode=
process

親プロセスが残っている場合は、
SIGTERM/SIGKILL で停止する。
そのほかの残プロセスは放置する

KillMode=
control-group

グループ内のすべての残プロセス
をSIGTERM/SIGKILLで停止する

 ▼表5　KillModeの設定値

36 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

　サービスのメインプロセスが異常停止した際
に、自動で再起動するかどうかは、「Restart」
オプションで指定します。デフォルトは「no」（再
起動しない）ですので、自動で再起動する際は
「on-failure（異常終了時に再起動）」「always（正
常終了時も再起動）」などを指定します。
　Part1でも少し触れましたが、従来の環境で
あれば、サービスの起動は、デーモン型のコマ
ンドを使用して、PIDファイルを作成するのが
定番でした。しかしながら、PIDファイルに依
存したプロセス管理には問題がありますので、
systemdの環境では、「Type=forking」よりも
「Type=simple/notify/dbus」の使用が推奨され
ています。リスト2の例では、Typeオプショ
ンが指定されていませんので、デフォルトの
「simple」となります。この場合、サービス起動
コマンドは、フォアグラウンドで実行を継続す
る必要がありますので、ExecStartでは、sshd

コマンドに -Dオプションを追加して、このコ
マンド自身がデーモンプロセスとして実行を継
続するようにしています。

セキュリティ保護に関するオプション
　[Service]セクションでは、表7にあるような、
セキュリティ保護のオプションが使用できます。
rootユーザ以外の権限でサービスを起動する際
は、User/Groupオプションを指定します。こ
のとき、「PermissionsStartOnly=yes」を指定す
ると、「ExecStart」で指定したコマンドのみが
指定のユーザ／グループで実行されます。
　そのほかは、サービスに関連するプロセスか
らアクセスできるディレクトリを制限するもの
です。従来は、chrootを用いて、そのサービス

専用のディレクトリ構造を用意することもあり
ましたが、ReadOnlyDirectoriesと Inaccessible

Directoriesのオプションを利用すると、chroot

は行わずに、特定ディレクトリへのアクセスを
制限するなど、柔軟な運用が可能になります。

　ここで、そのほかのちょっと便利な機能を紹
介しておきます。まず、systemdの環境では、サー
バのホスト名もsystemdが管理しており、ホス
ト名の変更は、次のhostnamectlコマンドで行
います。

hostnamectl set-hostname <ホスト名>

　これまでにサービスの有効化／無効化につい
て説明しましたが、disableの代わりに、mask

で無効化することも可能です。この場合は、こ
の後、手動でサービスを起動することもできな
くなります。該当サービスをシステム上で完全
に使用できなくする場合に使います。
　たとえば、RHEL7では、デフォルトでfire

walldによるファイアウォール機能が導入され
ますが、従来の iptablesによるファイアウォー
ルに切り替える場合は、次のような手順になり
ます。

yum -y install iptables-services
systemctl stop firewalld.service
systemctl mask firewalld.service
systemctl enable iptables.service
systemctl start iptables.service

　ここでは、firewalld.serviceをmaskで完全無
効化したあとに、iptabl

es.serviceの有効化と起
動を行っています。
maskで無効化したサー
ビスを再度有効化する
には、次のunmaskを使
用します。

知っておくと
便利な機能

オプション 説明
User/Group プロセスを起動するユーザ／グループ
PrivateTmp このサービス専用の/tmpと/var/tmpを用意する
ReadOnlyDirectories 指定のディレクトリ以下をReadOnlyモードにする
InaccessibleDirectories 指定のディレクトリ以下をアクセス不可にする
RootDirectory 指定のディレクトリにchrootする

 ▼表7　[Service]セクションの主要オプション（3）

36 - Software Design Feb. 2015 - 37

サービスの起動／停止を自在に管理するための
systemdの使い方（実践編） Part 3

systemctl unmask firewalld.service

　そして、Unitの設定ファイルの中には、「getty

@.service」のように、ファイル名に「@」を含ん
だものがあります。これはテンプレート型の設
定ファイルで、この例であれば、「getty@<任意
の文字列>.service」という無数のサービスの設
定ファイルとして機能します。たとえば、次の
コマンドを実行すると、「getty@tty1.service」
「getty@tty2.service」という2つのサービスが有
効化します（「.wants」ディレクトリ内に、「getty

@tty1.service」と「getty@tty2.service」から
「getty@.service」へのシンボリックリンクが作
成されます）。

systemctl enable getty@tty1.service
systemctl enable getty@tty2.service

　「<任意の文字列>」に指定した文字列は、設
定ファイル内部では、特殊変数「%I」として参
照されており、この文字列に応じてサービスの
起動オプションを変更することが可能です。こ
のgetty@.serviceは、複数の仮想TTY端末を
起動するために利用されています。
　最後は、Unitの依存関係と順序関係を確認
するためのコマンドです。Unitの依存関係は、
それぞれの設定ファイルで個別に指定されるた
め、全体像をとらえるのが難しくなります。こ
のような場合は、次のコマンドで、現在の環境
で有効なUnitについて、依存関係をツリー形
式で表示することができます。

systemctl list-dependencies <Unit名>

　これは、指定のUnitが必要とするUnitを表
示するもので、Unitの指定を省略すると、defa

ult.targetが選択されます。依存するUnitが
targetタイプの際は、さらに、それが必要な
Unitを再帰表示します。すべてのUnitを再帰
表示する際は、--allオプションを指定します。
　同様に、順序関係を確認することも可能です。

次は、指定のUnitより先に起動するUnitを表
示します。

systemctl list-dependencies <Unit名> ｭ
--after

　次は、指定のUnitより後に起動するUnitを
表示します。

systemctl list-dependencies <Unit名> ｭ
--before

　「after」と「before」の意味が日本語とは反対
になるので、混乱しないように注意してくださ
い。--allオプションの使用については、先ほ
どと同じです。

　本パートでは、systemdの基本的なコマンド
操作とserviceタイプのUnitの設定ファイルに
ついて説明しました。これらのコマンドや設定
ファイルには、ここでは書ききれないほどの豊
富なオプションが用意されていますが、幸いに
も、systemdは、オンラインマニュアル（manペー
ジ）が非常に充実しています。systemctl、
journalctlなどの基本的なコマンドのmanペー
ジは、必ず読んでおくようにしましょう。
　また、設定ファイルの書き方についても専用
のmanページが用意されており、systemd.

unit(5)（[Unit][Install]セクションの説明）や、sy

stemd.service(5)（[Service]セクションの説明）
なども参考になります。さらに、systemd.direc

tives(7)には、設定ファイルにおけるすべての
オプションの索引が記載されています。既存の
設定ファイルの中で未知のオプションがあった
場合は、ここから検索すると良いでしょう。
　次のPart4では、今後のsystemdの発展とし
て、cgroupsやDockerなど、ほかの機能やア
プリケーションとの連携について解説を行いま
す。ﾟ

まとめ

38 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

systemdとcgroupsとの統合は今後も進められ、やがてはプロセス群のリソース管理もsystemdを通して行
えるようになると考えられています。systemdはDockerなどのコンテナ技術とも相性がよく、Dockerのリソー
ス管理機能の一部はsystemdを利用して実現されています。cgroupsとの統合がさらに進めば、Dockerでの
リソース管理もより柔軟に行えるようになりそうです。

さらなるcgroupsとの統合
／Dockerとの連携へ
systemdの今後

 Writer レッドハット㈱　中井 悦司（なかい えつじ）／ Twitter @enakai00

4
Part

　これまでに見てきたように、systemdは、プ
ロセス管理のしくみを今までとは大きく変えて
いくものです。とくに、1つのサービスに関連
するプロセス群をcgroupsの機能を利用してグ
ループ化する部分は、近代的なLinuxならでは
の管理手法と言えるでしょう。現在、systemd

とcgroupsのさらなる統合が進められており、
cgroupsによるリソース割り当て設定も
systemdを通して実施できるようになりつつあ
ります。
　これまで、cgroupsの設定は、cgroupsを操
作するための特殊ファイルシステム（/cgroup
など）を利用するか、専用のコマンドを使用す

る必要がありました。RHEL7でも、cgroups

を管理するツール（libcgroup-tools）は用意され
ていますが、実は、このようなツールを使用し
なくても、一部の機能については、systemdを
通してcgroupsの設定ができるようになってい
ます。具体的には、serviceタイプのUnitにつ
いて、設定ファイルの [Service]セクションに、
表1のオプションが指定できます。これにより、
このサービスに属するプロセスに対するリソー
ス割り当ての設定が自動的に行われます注1。
　また、図1のように、「systemctl set-property」
で、稼働中のUnitの設定を動的に変更するこ
とも可能です。ここでは、--runtimeオプショ

注1） cgroupsによるリソース割り当てのほかに、CPUアフィニ
ティやniceレベル、プロセススケジューラのポリシーなど
も設定可能です。詳しくは、manページsystemd.exec(5)
を参照してください。

systemdと
cgroupsの統合

オプション 説明
CPUShares CPU時間割り当ての重みを指定（デフォルトは1024）。cgroupsのcpu.sharesに相当
MemoryLimit 使用メモリの上限を指定。cgroupsのmemory.limit_in_bytesに相当。例：“512M”（K、

M、G、Tの単位を使用）
BlockIOWeight ディスク I/Oの重みを10～1000で指定（デフォルトは1000）。cgroupsのblkio.weight

に相当
BlockIODeviceWeight 指定デバイスの I/Oの重みを10～1000で指定（デフォルトは1000）。cgroupsのblkio.

weight_deviceに相当。例：“/dev/sda 500”
BlockIOReadBandwidth 指定デバイスの読み込み速度上限（bytes/sec）を指定。cgroupsのblkio.throttle.read_

bps_deviceに相当。例：“/dev/sda 10M”（K、M、G、Tの単位を使用）
BlockIOWriteBandwidth 指定デバイスの書き込み速度上限（bytes/sec）を指定。cgroupsのblkio.throttle.write_

bps_deviceに相当。例：“/dev/sda 10M”（K、M、G、Tの単位を使用）

 ▼表1　RHEL7のsystemdで利用できるリソース割り当てオプション

38 - Software Design Feb. 2015 - 39

さらなるcgroupsとの統合／Dockerとの連携へ
systemdの今後 Part 4

ンを指定して現在の設定のみを変更しています
が、これを省略すると（ディレクトリ /etc
/systemd/system/<Unit名 >.dの下に）追加項
目の設定ファイルが作成されて、変更が永続化
されます注2。図1の2行目の「systemctl show」
は、稼働中のUnitに設定されたオプションの
値を表示します。ここでは、--propertyオプショ
ンで表示項目を指定していますが、これを省略
すると、すべての項目が表示されます。
　このように、systemdを利用すると、Unitに
対する（cgroupsとしての）グループが自動作成
されるために、cgroupsの設定は非常に簡単に
なります。従来のように、事前にグループを用
意する必要がありません。ただし、cgroupsで
制御可能なリソースは表1以外にもあり、現在
のところ、systemdから設定できる項目は限定
的です。systemdとcgroupsの統合作業は現在

注2） 永続化されない一時的な設定は、ディレクトリ /run
/systemd/systemの下に設定ファイルが作成されます。

も続けられており、今後のバージョンでは、よ
り多くの項目がsystemdを通して設定できるよ
うになるでしょう。
　ちなみに、ちょっとした「裏ワザ」として、
Unitの設定ファイルを書かずに、新たなサー
ビスとして、コマンドを実行する方法がありま
す。図2のように、systemd-runコマンドに続
けてコマンドを指定すると、一時的にservice

タイプのUnitを作成したうえで、該当Unitの
起動コマンドとして指定のコマンドが実行され
ます。
　少し作為的な例ですが、図2では、pingコマ
ンドを実行しています。「systemctl status」で
Unitの状態を表示すると、コマンドの出力が
Unitのログとして記録されていることがわか
ります。このあとは、このUnitに対するリソー
ス割り当てを変更したり、journalctlコマンド
でコマンドの出力を追跡するなどが可能です。
「systemctl stop」でUnitを停止すると、コマン

 ▼図2　新規サービスとしてコマンドを実行

systemd-run ping 8.8.8.8
Running as unit run-13126.service.

systemctl status run-13126.service
run-13126.service - /usr/bin/ping 8.8.8.8
 Loaded: loaded (/run/systemd/system/run-13126.service; static)
 Drop-In: /run/systemd/system/run-13126.service.d
 └─90-Description.conf, 90-ExecStart.conf, 90-RemainAfterExit.conf,
90-SendSIGHUP.conf
 Active: active (running) since 日 2014-11-16 08:21:00 JST; 11s ago
 Main PID: 13127 (ping)
 CGroup: /system.slice/run-13126.service
 └─13127 /usr/bin/ping 8.8.8.8

11月 16 08:21:00 rhel7 systemd[1]: Started /usr/bin/ping 8.8.8.8.
11月 16 08:21:00 rhel7 ping[13127]: PING 8.8.8.8 (8.8.8.8) 56(84) bytes of...a.
11月 16 08:21:00 rhel7 ping[13127]: 64 bytes from 8.8.8.8: icmp_seq=1 ttl=...ms
11月 16 08:21:01 rhel7 ping[13127]: 64 bytes from 8.8.8.8: icmp_seq=2 ttl=...ms
 ...（中略）...
11月 16 08:21:11 rhel7 ping[13127]: 64 bytes from 8.8.8.8: icmp_seq=12 ttl...ms
Hint: Some lines were ellipsized, use -l to show in full.

systemctl stop run-13126.service

 ▼図1　稼働中のUnitの設定を変更する例

systemctl set-property httpd.service CPUShares=512 --runtime
systemctl show httpd.service --property=CPUShares
CPUShares=512

40 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

ドが停止します。子プロセスをフォークするよ
うなコマンドの場合、子プロセスを含めて、す
べてのプロセスをsystemdが確実に停止してく
れます。

　先ほど、systemd-runコマンドを用いると、
特定のコマンドをUnitとして管理できること
を説明しました。このとき、このUnit専用の
cgroups環境が用意されて、cgroupsによるリ
ソース制御が可能になります。つまり、Unit（ア
プリケーション）ごとに独立した実行環境を用
意して、個別にリソースを割り当てるというわ
けですが、これはどこかで聞いた考え方ではな
いでしょうか？――そう。最近流行のコンテナ
技術にほかなりません。
　実は、systemdの考え方は、コンテナ技術と
も相性がよく、RHEL7に標準搭載のコンテナ
管理ツールであるDockerでは、内部的に
systemdと連携して動作するようになっていま
す。Dockerでコンテナを起動すると、そのコ
ンテナに対応するUnitが作成されて、systemd

からは、1つのコンテナが1つのUnitとして認
識されるようになります。
　図3は、DockerでWebサーバのコンテナを
起動した状態で、systemd-cglsコマンドを実行

した例です。「docker-<コンテナ ID>.scope」と
いう名前のUnitが作成されて、このUnit用に
cgroupsのグループが用意されていることがわ
かります。Dockerでは、コンテナ起動時のオ
プションで、コンテナに対するCPUやメモリ
のリソース割り当てを指定することができます
が、これも内部的には、systemdを通して、
cgroupsの設定を行っています。
　現在、Dockerのコマンドからは、ディスク
I/Oの帯域制限などはできませんが、systemd

とcgroupsの連携機能を使用すれば、原理的に
は、それも実現可能になります。systemdや
Dockerは、「プロセス群をグループ化して統合
管理する」という新しい管理手法を提唱してい
ると言えるでしょう。

　本パートでは、cgroupsに焦点を当てて、
systemdのプロセス管理の考え方を捉えなおし
ました。Part1のコラムでも触れたように、
systemdは、「既存のしくみにとらわれずに、
より良いものを一から作り上げる」という革新
的な試みでもあります。cgroupsやDockerと
のより深い統合など、より便利でより高度なプ
ロセス管理の実現に向けた、今後の発展にも注
目していきましょう。ﾟ

Dockerと
systemdの連携

まとめ

 ▼図3　Dockerのコンテナに対応するUnit

systemd-cgls
├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 23
 ...（中略）...
└─system.slice
 ├─docker-a36a184dd78c14233a8791fc255b60a637342b93705aa355370012f338306d9d.scope
 │ ├─1878 /bin/sh /usr/local/bin/init.sh
 │ ├─1922 /usr/sbin/httpd
 │ ├─1924 /usr/sbin/httpd
 │ ├─1925 /usr/sbin/httpd
 │ ├─1926 /usr/sbin/httpd
 │ ├─1927 /usr/sbin/httpd
 │ ├─1928 /usr/sbin/httpd
 │ ├─1929 /usr/sbin/httpd
 │ ├─1930 /usr/sbin/httpd
 │ ├─1931 /bin/bash
 │ └─1932 /usr/sbin/httpd
 ...（以下省略）...

41 - Software Design Feb. 2015 - 41

Linux systemd入門あなたの知らない実践技

使ってよかった！
第1特集

systemdを採用するLinuxディストリビューションが増え、今後本番環境でsystemdを利用することが当たり
前となる時代がやってきます。そんな時代に備えて、systemdを運用するうえで押さえておくべきことや注意
点について解説します。内容は執筆時におけるCentOS 7（一部Red Hat Enterprise Linux 7）にインストール
されたsystemdに基づいています。

現場で使ってわかった
systemdでの
運用における注意点

 Writer ㈱ミクシィ　清水 勲（しみず いさお） Twitter @isaoshimizu

5
Part

各Linuxディストリビューションの
systemd対応

　systemdは、2010年4月にSysVinit代替とし
て発表されました。当時はFedoraとopenSUSE

向けにパッケージが提供され、2010年11月に
リリースされたFedora 14では標準の initシス
テムとして使われるようになりました。
　現在、systemdを採用しているLinuxディス
トリビューションは、Fedora、Red Hat Enter

prise Linux 7、CentOS 7、Arch Linux、
openSUSEが有名どころです。今後、Debian

GNU/LinuxやUbuntuなどでもsystemdの採用
が予定されています。

従来のSysVinitとの比較

　SysVinitとの大きな違いは、起動処理の並
列性が挙げられます。
　SysVinitでは、定義された起動処理を順番
に1つずつ処理をしますが、systemdでは、起
動時の各処理がUnitという単位で管理されて
おり、それぞれのUnitの依存関係と順序関係
が定義されています。これにより、同時に実行
しても問題ない処理と、そうではない処理が区
別されることになり、全体としての処理時間の

短縮につながります。
　また、SysVinitでは、プロセスを起動した
後は、PIDファイルをもとにしてプロセスの起
動状態や停止を行いますが、systemdでは、起
動したサービスの状態、ログ、PIDなどを常に
監視しています。そのため、systemdによる各
プロセスの制御が可能になっています。
systemdは/etc/init.dに置くようなスクリプ
トは必要とせず、Unitファイルと呼ばれる定
義ファイルに設定値を iniファイル形式で十数
行書くだけで、実行コマンドや依存関係や順序
関係などの定義が可能になっています。
　このほかに、OSの init処理以外にもsystemd

がかかわる機能として、cgroupsを利用したプ
ロセスのグルーピングや、Journalと呼ばれる
ログシステムなどがあります。それぞれの機能
については後述しています。

systemctlコマンド

　systemdを扱うにあたって、最も重要で、よ
く使うコマンドの1つにsystemctlコマンドが
あります。systemctlコマンドには、systemdの
各種機能を使うために必要なユニットコマンド
とオプションが多数用意されています。各種サー
ビスの起動・停止・再起動など、よく使う各ユ
ニットコマンドとオプションの使い方などの詳
細は後述します。

systemdを使う前に
知っておきたいこと

42 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

　従来のSysVinitでは、/etc/init.d以下にあ
る起動スクリプトを実行したり、serviceコマ
ンドを使ってサービスの制御を行ってきた方も
多いと思いますが、systemdでは systemctlを
使います。systemctlコマンドに渡す基本的な
ユニットコマンドやオプションを押さえておく
ことがさまざまなサービスの運用に役立ちます。
ユニットコマンドとは、systemctlコマンドの
次に指定するコマンドのことです。ここではい
くつかの代表的なユニットコマンドについて解
説します。

status

　サービスの状態を表示するユニットコマンド
です。たとえばsshdのサービスの状態を確認
します（図1）。
　この実行結果から、sshdがアクティブ状態
で実行中ということがわかります。起動日時や
PID、実行コマンドの情報も併せて表示されて
います。サービスの状態を正しく知る際に非常
に役立ちます。

start、stop、restart、
reload

　systemctlで最も多く使うユニットコマンド
です。サービスの起動、停止、再起動を行うコ
マンドです。たとえば、sshdを起動します。

$ sudo systemctl start sshd.service

　サービスを停止する場合はstop、再起動する
場合はrestartに置き換えてください。reload

の挙動はサービスによって異なりますが、
HUPシグナルを送るか、デーモン側で実装さ
れたreloadを実行するケースが多いです。
　単純に sshdではなく、sshd.serviceとする
のは、systemdにおけるUnit名を正確に記述し
ているためですが、.serviceファイルに限っ
ては.serviceの入力を省略できます。
　従来では、sudo /etc/init.d/<サービス名
>startのように実行してきた場合は、サービ
ス名とstartの位置が逆となり、入力を間違え
やすいので注意が必要です。

enable、disable、is-enabled、
mask、unmask

　OS起動時に指定したサービスを起動させる
かどうかを制御するためにはenable/disable、
mask/unmaskユニットコマンドを使います。

enableと disable、
maskと unmaskは
それぞれセットで
すが、挙動に違い
があります。
　たとえば、ntpd

をOS起動時に実
行させない場合

systemctlコマンドの
基本を押さえる

 ▼図1　systemctlコマンドによるsshdのサービス状態の確認

$ systemctl status sshd.service
sshd.service - OpenSSH server daemon
 Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled)
 Active: active (running) since Tue 2014-12-02 23:20:45 JST; 36min ago
 Main PID: 704 (sshd)
 CGroup: /system.slice/sshd.service
 └─704 /usr/sbin/sshd -D

 ▼図2　ntpd.serviceの確認

$ systemctl status ntpd.service
ntpd.service - Network Time Service
 Loaded: loaded (/usr/lib/systemd/system/ntpd.service; enabled)
 Active: active (running) since Tue 2014-12-02 23:54:08 JST; 3min 38s ago
 Process: 1043 ExecStart=/usr/sbin/ntpd -u ntp:ntp $OPTIONS (code=exited, status=0/SUCCESS)
 Main PID: 1044 (ntpd)
 CGroup: /system.slice/ntpd.service
 └─1044 /usr/sbin/ntpd -u ntp:ntp -g

42 - Software Design Feb. 2015 - 43

現場で使ってわかった
systemdでの運用における注意点 Part 5

は、disableコマンドを使います。

$ sudo systemctl disable ntpd.service

　これによって何が起こるのか、実際のファイ
ルの挙動を見てみます。disableコマンドを実
行する前に、まずntpd.serviceがどこで定義
されているのかを確認します（図2）。
　statusコマンドによって、各種情報が表示さ
れます。ここで/usr/lib/systemd/system/ntpd.
serviceというファイルが存在することが確認で
きます。このファイルの中身を確認します（図3）。
　図3は、ntpdのUnitファイルで、順序関係
やstart時のコマンドなどが定義されているの
がわかります。次にdisableコマンドを実行し
ます。

$ sudo systemctl disable ntpd.service
rm '/etc/systemd/system/multi-user.ｭ
target.wants/ntpd.service'

　/etc/systemd/system/multi-user.target.
wants/ntpd.serviceを削除しているのがわか
ります。実は、この削除されたファイルは、先
に示したUnitファイル /usr/lib/systemd/
system/ntpd.serviceへのシンボリックリンク
になっています。再度、enableするとシンボリッ
クリンクの様子がわかります。

$ sudo systemctl enable ntpd.service
ln -s '/usr/lib/systemd/system/ntpd.ｭ
service' '/etc/systemd/system/ｭ
multi-user.target.wants/ntpd.service'

　enableではシンボリックリンクを作成してい
ます。/etc/systemd/system/multi-user.target.
wantsへシンボリックリンクを作成することで、
OS起動時に実行するようになります。シンボ
リックリンクが張られていたmulti-user.target.
wantsというのは、SysVinitランレベルの3に
相当するUnitです。man systemd.specialで解
説されていますが、SysVinitランレベルと
systemdのUnitとの対応は表1のようになって
います。
　サービスが現在enable状態なのか、disable

状態なのかを知ることができる、is-enabledコ
マンドというものも用意されています。

$ systemctl is-enabled ntpd.service
enabled

　maskはdisableを強化したもので、/dev/null

へのシンボリックリンクを作ることで無効化し
ます。

$ systemctl mask ntpd.service
ln -s '/dev/null' '/etc/systemd/system/ｭ
ntpd.service'

　unmaskはmaskで作られたシンボリックリン
クを削除します。Unitファイルは、/etc/sys
temd/system、/usr/lib/systemd/systemの順
で優先されるため、このようなUnitの無効化を
実現しています。

halt、powero�、reboot、
suspend、hibernate

　systemctlコマンドでOSのシャットダウン、
リブート、サスペンド、ハイバネートができる

SysVinitランレベル systemd Unit
0 poweroff.target
1 rescue.target
2

multi-user.target3
4
5 graphical.target
6 reboot.target

 ▼表1　 SysVinitとsystemdのUnitのランレベル対応

 ▼図3　ntpd.serviceの中身を確認

$ cat /usr/lib/systemd/system/ntpd.service
[Unit]
Description=Network Time Service
After=syslog.target ntpdate.service sntp.service

[Service]
Type=forking
EnvironmentFile=-/etc/sysconfig/ntpd
ExecStart=/usr/sbin/ntpd -u ntp:ntp $OPTIONS
PrivateTmp=true

[Install]
WantedBy=multi-user.target

44 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

ようになりました。これは従来のshutdownコ
マンドや rebootコマンドなどの実体が sys

temctlに置き換わっています。たとえば、
shutdownコマンドの実体を調べるとわかります。

$ ls -l /usr/sbin/shutdown
lrwxrwxrwx. 1 root root 16 Aug 13 18:58 ｭ
/usr/sbin/shutdown -> ../bin/systemctl

　従来のSysVinitではあまり気にする必要が
ありませんでしたが、systemdでは気をつける
べき点、知っておくべき点がいくつかあります。
また、新たに追加された機能やコマンドがあり
ます。それぞれについていくつか紹介します。

systemdを運用するうえで
知っておきたいこと

 ▼図4　systemd-cglsの実行例

$ systemd-cgls
¦-1 /usr/lib/systemd/systemd --switched-root --system --deserialize 23
¦-user.slice
¦ `-user-0.slice
¦ `-session-502.scope
¦ ¦-5527 sshd: root@pts/0
¦ ¦-5529 -bash
¦ ¦-5597 systemd-cgls
¦ `-5598 systemd-cgls
`-system.slice
 ¦-ntpd.service
 ¦ `-1044 /usr/sbin/ntpd -u ntp:ntp -g
 ¦-polkit.service
 ¦ `-537 /usr/lib/polkit-1/polkitd --no-debug
 ¦-auditd.service
 ¦ `-468 /sbin/auditd -n
 ¦-systemd-udevd.service
 ¦ `-383 /usr/lib/systemd/systemd-udevd
 ¦-systemd-journald.service
 ¦ `-368 /usr/lib/systemd/systemd-journald
 ¦-dbus.service
 ¦ `-504 /bin/dbus-daemon --system --address=systemd: --nofork --nopidfile --systemd-activation
 ¦-systemd-logind.service
 ¦ `-503 /usr/lib/systemd/systemd-logind
 ¦-vmtoolsd.service
 ¦ `-502 /usr/bin/vmtoolsd
 ¦-sshd.service
 ¦ `-704 /usr/sbin/sshd -D
 ¦-rsyslog.service
 ¦ `-500 /usr/sbin/rsyslogd -n
 ¦-postfix.service
 ¦ ¦- 769 /usr/libexec/postfix/master -w
 ¦ ¦- 771 qmgr -l -t unix -u
 ¦ `-5476 pickup -l -t unix -u
 ¦-crond.service
 ¦ `-772 /usr/sbin/crond -n
 ¦-NetworkManager.service
 ¦ ¦-495 /usr/sbin/NetworkManager --no-daemon
 ¦ `-570 /sbin/dhclient -d -sf /usr/libexec/nm-dhcp-helper -pf /var/run/dhclient-eno16777984.ｭ
pid -lf /var/lib/NetworkManager/dhclient-89c59842-f083-47ed-af9b-05aff096e1e9-eno16777984.ｭ
lease -cf /var/lib/NetworkManager/dhclient-eno16777984.conf eno16777984
 `-system-getty.slice
 ¦-getty@tty1.service
 ¦ `-513 /sbin/agetty --noclear tty1
 ¦-getty@tty3.service
 ¦ `-511 /sbin/agetty --noclear tty3
 `-getty@tty2.service
 `-510 /sbin/agetty --noclear tty2

44 - Software Design Feb. 2015 - 45

現場で使ってわかった
systemdでの運用における注意点 Part 5

バージョンによる機能差

　systemdのコードは日々活発にコミットされ、
新たな機能や変更、修正が入っています。
GitHub上のsystemdのリポジトリ注1を見ると
その様子がよくわかります。前述のとおり、
systemdを採用しているLinuxディストリビュー
ションはいろいろありますが、それぞれ sys

temdのバージョンが異なる場合があるので注
意が必要です。バージョン差によって、サブコ
マンドやオプションの有無、Unitファイルの
記述の変更がある場合は、とくに要注意です。

manを読む

　systemdのmanは豊富な情報源の1つです。
非常に多くのドキュメントが用意されており、
使い方や運用に役立つ情報が多く書かれていま
す。systemdは変化が激しいソフトウェアのた
め、インターネットで掲載されている情報が古
くて通用しないケースが多々あります。manに
書かれている情報は、まれに誤りもありますが、
わからないことがあったら、まずはmanコマン
ドで調べることで解決することが多くあります。
manのSEE ALSOの項目も併せて読むと理解
が深まります。

Control Groups（cgroups）と
の関係を理解する

　systemdとControl Groups(以下 cgrou

ps）は非常に密接な関係を持っています。
ここではcgroups自体の詳細には触れませ
んが、systemd配下のプロセスは、すべて
cgroupsによってグルーピングがされてい
ます。systemd-cglsコマンドで各プロセ
スのcgroupsの状態を表示します（図4）。
　この実行結果から、user.sliceと sys

tem.sliceという大きなグループが存在す
るのがわかります。user.sliceはユーザ
セッションのグループで、ユーザが起動

注1） https://github.com/systemd/systemd

したプロセスなどが含まれます。system.slice

はシステムサービスがまとめられたグループで
す。どのプロセスがどのグループに属している
かを把握するのに役立ちます。また、あとで解
説するサービスのKillModeの設定にも関係が
あります。cgroupsによるCPUやメモリなど
のリソース制限や、グループ自体の管理などを
行う際にも役立つ情報と言えます。

サービスタイプの
Unitファイルの理解

　systemdを運用するうえで知っておくと便利
なUnitファイルですが、その中でもサービス
タイプのUnitファイルを押さえることが非常
に重要です。ファイルには、依存関係や順序関
係の記述、起動コマンドなどが記述されていま
す（図5）。
　[Unit]ではUnitの説明文、サービスの起動順
序の関係が定義されています。[Service]にはサー
ビスのstartやstopなどの制御を行う際の挙動
について定義されています。[Install]には sys

temctl enableが実行された場合に、どのラン
レベルで自動起動が有効化されるかについて定
義されています。
　運用上よく使う、[Service]以下の項目につい
て解説します。
　EnvironmentFileは、sshd起動時のオプショ
ンを定義する環境設定ファイルです。Exec

 ▼図5　サービスタイプのUnitファイルの中身（sshd.serviceの例）

$ cat /etc/systemd/system/multi-user.target.wants/ｭ
sshd.service
[Unit]
Description=OpenSSH server daemon
After=syslog.target network.target auditd.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target

https://github.com/systemd/systemd

46 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

StartPreは、ExecStartの前に実行されるコ
マンドです。ExecStartは、systemctl startに
よって実行されるコマンドです。これがメイン
プロセスになります。ExecReloadはsystemctl

reloadによっての実行されるコマンドです。
KillModeは、サービス停止時の挙動になりま
すが、詳しくは後述します。Restartは、起動
しているプロセスが予期せずに何らかの原因で
停止した場合の挙動についての定義ですが、そ
れぞれの設定値による挙動について詳しく解説
します。
　Restartで指定されているno-failureは、プ
ロセスが終了コード0以外で停止した場合に自
動的に再起動するという設定値です。何も指定
しない場合はプロセスが停止した場合に何もし
ません（noという指定と同義です）。alwaysを
指定すると常にプロセスが再起動され、on-

successを指定するとon-failureとは逆で、終
了コードが0の場合のみに再起動が行われます。
RestartSecは前述のRestartが行われる前にス
リープする時間です。この時間が経過したあと、
Restartの設定値に基づいてプロセスの再起動
が行われます。
　例として挙げたsshd.serviceにおける予期し
ないプロセス停止時の再起動の挙動をまとめる
と、0以外の終了コードでsshdが停止した場合、
42秒待ってから再度sshdを起動するという流
れになります。

◆　◆　◆
　以上のように、Unitファイルの記述次第で
どのように振る舞うかが大きく変わるため、起
動するサービスのUnitファイルの中身を一通
り確認しておくと、より安全に運用できるかも
しれません。

　systemdを採用したLinuxディストリビュー
ションを運用するにあたって役に立つと思われ
るTIPSをいくつか紹介します。

起動時間の測定
systemd-analyze

　Linuxの起動は、GRUBによってKernelが
ロードされ、initrdがRAMに展開されたあと、
initプログラムとしてsystemdが起動し、各種
サービスが起動する、というのがおおまかな流
れになりますが、それぞれの所要時間を測定す
るコマンド、systemd-analyzeが用意されてい
ます（図6）。
　timeは省略可能なオプションで、それぞれ
の処理にかかった時間が表示されます。blame

オプションをつけて実行すると、実行中のサー
ビスの起動時間が長い順にソートされて表示さ
れます（図7）。
　ほかにも起動時間の視覚化を目的としたplot

オプション（グラフ化されたSVGファイルの出
力）や、dotオプション（GraphViz向けのデータ
出力）なども用意されています。
　各サービスなどの起動時間を取得して、ボト
ルネックとなっているサービスがないかを把握
することで、不要なサービスの発見や、セット
アップ作業の効率化につながるかもしれません。

journalctlによるログの活用

　systemdにはJournalと呼ばれるログシステ
ムが備わっています。これは従来のsyslogに置
き換わるものですが、現在ではsyslog（rsyslogd）
と併用されることもあります。将来はJournal

のみに変更されるかもしれません。RHEL系の
Linuxでは、syslogの参照といえば/var/log/

運用に役立つTIPS

 ▼図6　systemd-analyzeの実行例（timeオプション）

$ systemd-analyze time
Startup finished in 1.407s (kernel) + 1.952s (initrd) + 22.787s (userspace) = 26.147s

46 - Software Design Feb. 2015 - 47

現場で使ってわかった
systemdでの運用における注意点 Part 5

messagesを開くのが通例でしたが、Journalで
は journalctlコマンドを使います。
　journalctlコマンドをオプションを付けずに
そのまま実行すると、古いログから順にすべて
のログを表示します（図8）。デフォルトでは、
ログの実体は/run/log/journalに保存されて
いますが、/run以下は tmpfs（メモリ上）である
ため、OSを再起動すると消失します。この挙
動については/etc/systemd/journald.confに
よって変えることができます。
　journald.confは、初期状態ではすべての設定
項目がコメントアウトされており、デフォルト
値が使われるようになっています。ログの保存
についての設定項目はStorageで、vol

atile、persistent、auto、noneから選ぶこ
とができます。デフォルトは autoで、/
var/log/journalディレクトリがあればロ
グを永続化しますが、ディレクトリがな
ければ/run/log/journal（メモリ上）に保
存されます。volatileは/run/log/journal
（メモリ上）へ、persistentは /var/log/jo
urnralへ保存します。noneを指定すると、
どこにもログを保存しません。journald.

confの各設定項目については、man

journald.confを参照すると詳しい情報が得
られます。
　journald.confの変更内容を反映する場合

は、systemd-journaldを再起動する必要があり
ます。

$ sudo systemctl restart systemd-journald.service

　Journalが利用しているログのサイズが気に
なった場合は、--disk-usageオプションで利
用量を知ることができます。

$ sudo journalctl --disk-usage
Journals take up 18.5M on disk.

timedatectlによる時刻の管理

　systemdの一部の機能として時刻管理のユー

 ▼図8　journalctlの実行例

$ sudo journalctl
-- Logs begin at Tue 2014-12-02 23:20:34 JST, end at Sat 2014-12-06 23:46:19 JST. --
Dec 02 23:20:34 localhost.localdomain systemd-journal[206]: Runtime journal is using 6.1M ｭ
(max 49.3M, leaving 74.0M of free 487.3M, current limit 49.3M).
Dec 02 23:20:34 localhost.localdomain systemd-journal[206]: Runtime journal is using 6.1M ｭ
(max 49.3M, leaving 74.0M of free 487.3M, current limit 49.3M).
Dec 02 23:20:34 localhost.localdomain kernel: Initializing cgroup subsys cpuset
Dec 02 23:20:34 localhost.localdomain kernel: Initializing cgroup subsys cpu
Dec 02 23:20:34 localhost.localdomain kernel: Initializing cgroup subsys cpuacct
Dec 02 23:20:34 localhost.localdomain kernel: Linux version 3.10.0-123.6.3.el7.x86_64 ｭ
(builder@kbuilder.dev.centos.org) (gcc version 4.8.2 20140120 (Red Hat 4.8.2-16) (GCC)) ｭ
#1 SMP Wed Aug 6 21:12:36 UTC 2014
Dec 02 23:20:34 localhost.localdomain kernel: Command line: BOOT_IMAGE=/vmlinuz-3.10.0-ｭ
123.6.3.el7.x86_64 root=UUID=3ad39fe1-7d62-4b67-b1ae-3299efee28e6 ro vconsole.keymap=jp106 ｭ
crashkernel=auto vconsole.font=Lat2-Terminus1 vga=771 rhgb quiet
Dec 02 23:20:34 localhost.localdomain kernel: Disabled fast string operations
Dec 02 23:20:34 localhost.localdomain kernel: e820: BIOS-provided physical RAM map:

 ▼図7　systemd-analyzeの実行例（blameオプション）

$ systemd-analyze blame
 20.013s chrony-wait.service
 4.922s NetworkManager-wait-online.service
 1.204s NetworkManager.service
 907ms systemd-logind.service
 670ms boot.mount
 ...
 17ms systemd-sysctl.service
 17ms rhel-import-state.service
 14ms rhel-autorelabel-mark.service
 11ms systemd-journal-flush.service
 10ms systemd-user-sessions.service
 10ms systemd-random-seed.service
 7ms systemd-udevd.service
 7ms systemd-remount-fs.service
 6ms ntpd.service
 5ms sys-kernel-config.mount
 5ms systemd-tmpfiles-clean.service
 3ms systemd-update-utmp.service

48 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

ティリティ、timedatectlがあります（図9）。こ
れはシステムやハードウェアのクロックを管理
するツールです。従来、タイムゾーンの変更は
/etc/sysconfig/clockの設定値を書き換えた
り、/etc/localtimeへタイムゾーンファイル
を上書きしていましたが、systemdにおいては
timedatectlを使います。
　タイムゾーンをAsia/Tokyoに設定してみます。

$ sudo timedatectl set-timezone Asia/Tokyo

　時刻の手動設定は次のように行います。

$ sudo timedatectl set-time "2014-12-07 ｭ
21:00:00"

localectlによるロケールと
キーマップの設定

　localectlというコマンドを使うことで、ロケー
ルやキーマップの設定ができるようになってい
ます。
　現在のロケール、キーマップの設定の確認を
してみます。

$ localectl
 System Locale: LANG=ja_JP.UTF-8
 VC Keymap: jp106
 X11 Layout: jp

　ロケールをen_US.UTF-8に設定してみます。

$ sudo localectl set-locale LANG=en_ｭ
US.UTF-8

hostnamectlによる
ホスト名の設定

　hostnamectlはホスト名の設定と、それに関
連する設定ができるコマンドです（図10）。

　ホスト名の設定は次のように行います。これ
により/etc/hostnameに書かれているホスト名
も変更されます。

$ hostname
ip-x-x-x-x.ap-northeast-1.compute.ｭ
internal
$ sudo hostnamectl set-hostname host-1234
$ hostname
host-1234

loginctlによるユーザの管理

　loginctlではログインしているユーザのセッ
ションの管理や、ユーザに関連する情報の表示
などができます。
　ログインセッションの確認は次のように行い
ます。

$ loginctl list-sessions
 SESSION UID USER SEAT
 834 0 root

1 sessions listed.

　ユーザ情報の表示は次のようになります。

$ loginctl show-user root
UID=0
GID=0
Name=root
Timestamp=Sun 2014-12-07 21:03:40 JST
TimestampMonotonic=423786905670
RuntimePath=/run/user/0
Slice=user-0.slice
State=active
Sessions=834
IdleHint=no
IdleSinceHint=0
IdleSinceHintMonotonic=0

systemdとコンテナ

　systemdには、デバッグやテスト用途のため
の軽量のコンテナを作るコマンド、systemd-

nspawnというものが用意されています。
Dockerのように豊富な機能があるわけではあ
りませんが、手軽にコンテナを作成する方法を
少しだけ紹介します。
　ホームディレクトリ配下のcontainer-test（任

 ▼図9　タイムゾーンリストの表示

$ timedatectl list-timezones
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
...

48 - Software Design Feb. 2015 - 49

現場で使ってわかった
systemdでの運用における注意点 Part 5

意の名前）というディレクトリに、コンテナが
動作する最低限のパッケージをインストールし
ます。これによって、ルートディレクトリツリー
の作成と、コンテナ起動に最低限必要なコマン
ド類がインストールされます。

$ sudo yum install -y --releasever=7 ｭ
--installroot=$HOME/container-test ｭ
--disablerepo='*' --enablerepo=base ｭ
install systemd passwd yum centos-ｭ
release vim-minimal procps-ng

　次に、systemd-nspawnコマンドを使って、
パッケージをインストールしたディレクトリに
chrootした状態でrootユーザのパスワードを
設定します。これによって、コンテナを起動し
た際に要求されるrootのパスワードを入力し
てログインできるようになります（図11）。
　パスワードを設定し、いったんシェルから抜
けたら、今度はコンテナを起動します。3と指
定しているのは、ランレベルを3（マルチユーザ、
非グラフィカルログイン）に設定しているため
です（図12）。
　ログインプロンプトが
表示されたら、ユーザ名
rootと、設定したパス
ワードを入力してログイ
ンできます。コンテナ内
は専用の名前空間によっ
てホストと隔離され、あ
たかも独立したホストの
ように扱うことができま
す。
　以上により、非常に簡
単な手順でコンテナを作
成、起動できました。
systemd-nspawnにはほか
にもさまざまなオプショ
ンが用意されていますが、
詳細はman systemd-nspa

wnで確認してみてくださ
い。

　systemdを運用していくうえで、ハマりやす
いポイントについていくつか紹介します。

サービスが起動しない・
停止しない

　systemdを運用していると、systemctl start/

stopを実行したときに何らかの原因でサービス
が起動／停止しない場面に遭遇することがあり
ます。実行結果のエラー内容から原因がわから
ない場合に確認すべきポイントについていくつ
か挙げておきます。

systemctl statusでサービスの状態を確認
　systemctl status <Unit名>を実行して、
サービスの状態、PIDを確認します。psコマ
ンド、pstreeコマンドなども併用しましょう。

journalctlでログを確認する
　journalctlコマンドをオプション指定せずに

systemdにおける
ハマりポイント

 ▼図10　Amazon EC2上に立てたRed Hat Enterprise Linux 7における実行例

$ hostnamectl
 Static hostname: ip-x-x-x-x.ap-northeast-1.compute.internal
 Icon name: computer
 Chassis: n/a
 Machine ID: 8df22ad8f77c4d84bc36f0456b1fd0d7
 Boot ID: 1e1a7a5888344153b23df0e0a8602302
 Operating System: Red Hat Enterprise Linux Server 7.0 (Maipo)
 CPE OS Name: cpe:/o:redhat:enterprise_linux:7.0:GA:server
 Kernel: Linux 3.10.0-123.8.1.el7.x86_64
 Architecture: x86_64

 ▼図11　systemd-nspawnコマンドによるパッケージインストール

$ sudo systemd-nspawn -D ̃/container-test
Spawning namespace container on /root/container-testｭ
 (console is /dev/pts/1).
Init process in the container running as PID 10537.
-bash-4.2# passwd
Changing password for user root.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
-bash-4.2# exit

50 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

実行すると膨大なログが表示されてしまうため、
journalctl -u Unit名で該当のサービスに限っ
たログを表示して、原因を探ります。

デーモンが出力したログを確認する
　Unitで定義されたデーモン自身が出力した
ログが/var/logなどにあれば、そのログの内
容を確認します。

Unitファイルに問題がないか確認する
　Unitファイルを書き換えた場合などはUnit

ファイルに書かれた各設定値を再確認します。
Unitファイルを書き換えたあとに、systemctl

daemon-reloadを実行したかどうかも確認すべ
きポイントです。daemon-reloadはすべての
Unitファイルを再読み込みして、依存関係を
再構築します。

KillMode

　サービスタイプのUnitファイルには、Kill

Modeという設
定があります。
これはサービス
を停止した際
に、どの単位で
プロセスをKill

するかを定義し
て い ま す。デ
フォルトでは
control-group

という設定値に
な り、こ れ は
サービスが停止
した際に cgro

upsに属するプ
ロセスがすべて
Killされること
になります。
　ほかの設定値
としては none、

processがあります。processを設定すると、
cgroupsに属するプロセスは影響を受けずに、
サービスで定義されたメインプロセスのみが
Killされます。たとえば、sshd.serviceでは、
KillMode=processという設定がされており、
sshdの再起動時などではsshdのプロセスのみ
がKillされるようになっています（sshdから派
生した子プロセスは影響を受けない）。noneを
設定すると、いかなるプロセスもKillしません。
　このKillModeの設定値による挙動の違いを
知らないと、問題の原因究明に時間を要したり、
想定外のプロセスがKillされてしまう大事故を
起こしてしまう可能性があります。それぞれの
設定値の違いについて理解をしておくことが大
事です。

systemctlでできないこと

　systemctlではサービスを制御するユニット
コマンドとして、start、stop、restart、reload

の4つが用意されていますが、これ以外にサー

 ▼図12　systemd-nspawnコマンドによるコンテナの起動

$ sudo systemd-nspawn -bD ̃/container-test 3
The kernel auditing subsystem is known to be incompatible with containers.
Please make sure to turn off auditing with 'audit=0' on the kernel command
line before using systemd-nspawn. Sleeping for 5s...
Spawning namespace container on /root/container-test (console is /dev/pts/1).
Init process in the container running as PID 10577.
systemd 208 running in system mode. (+PAM +LIBWRAP +AUDIT +SELINUX +IMA ｭ
+SYSVINIT +LIBCRYPTSETUP +GCRYPT +ACL +XZ)
Detected virtualization 'systemd-nspawn'.

Welcome to CentOS Linux 7 (Core)!

Initializing machine ID from random generator.
[OK] Reached target Remote File Systems.
[OK] Created slice Root Slice.
[OK] Created slice User and Session Slice.
[OK] Created slice System Slice.
...
[OK] Started Cleanup of Temporary Directories.
[OK] Started Login Service.
[OK] Reached target Multi-User System.

CentOS Linux 7 (Core)
Kernel 3.10.0-123.6.3.el7.x86_64 on an x86_64

container-test login: root
Password:
-bash-4.2#

50 - Software Design Feb. 2015 - 51

現場で使ってわかった
systemdでの運用における注意点 Part 5

ビスを制御するようなユニットコマンドはあり
ません。しかし、従来のSysVinitではスクリ
プト内に自由にコマンドを定義できました。そ
のため、SysVinitスクリプト内で定義された
コマンドによってはsystemctlでは実行できな
いケースがあります。ここでは代表的な例とし
てApache HTTP Server（以下Apache）を取り
上げます。
　SysVinitの環境では、Apacheをインストー
ルすると、起動スクリプトとして/etc/init.
d/httpdが用意され、スクリプト内ではstart、
stop、status、restart、condrestart、try-

restart、force-reload、reload、graceful、
help、configtest、fullstatusといったように数
多くのコマンドが定義されています。たとえば、
Apacheの設定を変更した際、設定の文法や有
効性を確認するためには /etc/init.d/httpd
configtestを実行するのが一般的ですが、sys

temdの環境では systemctlを使って configtest

を行えません。httpd.serviceファイルの中身を
見てみると、configtestに相当するコマンドも
ありません（図13）。

　configtestを行いたい場合は、apachectlを使
います。

$ sudo apachectl configtest
Syntax OK

　以上のように、従来のSysVinitで可能だっ
たことがsystemctlコマンドではできないこと
があります。systemctlでは対応できないコマ
ンドについては、代替となる手法やコマンドに
ついて事前に検証しておくとよいでしょう。

　この章では、systemdを運用するうえで知っ
ておいたほうが良い点、気をつけたほうが良い
点について紹介しました。しかし、systemdは
今後もまだ変化が続いていくものと思われます。
そのため、systemdを採用したLinuxディスト
リビューションのアップデートの際は、sys

temdに大きな変更点がないかどうか確認する
ことがトラブルを防ぐうえで重要です。
systemdを初めて使うときは戸惑うことが多い

かもしれませんが、コマンドと
そのオプション、ディレクトリ
構造や挙動などを正しく理解す
ることで、運用するうえでの問
題の多くは解消することでしょ
う。なんとなくとっつきにくい
印象がありますが、systemdを
採用する動きは多くあるため、
Linuxを使う以上、避けては通
れない道かもしれません。また、
利用するLinuxが systemdを採
用している場合は、併せて使う
ツールやミドルウェアが sys

temdを意識して作られている
かどうか、実際によく検証して
おくことが大事です。ﾟ

まとめ

 ▼図13　httpd.serviceファイルの中にcon�gtestがない

$ cat /usr/lib/systemd/system/httpd.service
[Unit]
Description=The Apache HTTP Server
After=network.target remote-fs.target nss-lookup.target

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/httpd
ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND
ExecReload=/usr/sbin/httpd $OPTIONS -k graceful
ExecStop=/bin/kill -WINCH ${MAINPID}
We want systemd to give httpd some time to finish ｭ
gracefully, but still want
it to kill httpd after TimeoutStopSec if something ｭ
went wrong during the
graceful stop. Normally, Systemd sends SIGTERM signal ｭ
right after the
ExecStop, which would kill httpd. We are sending ｭ
useless SIGCONT here to give
httpd time to finish.
KillSignal=SIGCONT
PrivateTmp=true

[Install]
WantedBy=multi-user.target

52 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

Fedora、RHELだけでなく、Debianでもデフォルトのinitシステムをsystemdにすることが2014年2月に
発表されました。そうなると気になるのが、DebianをベースにしているUbuntuの動向です。すでに一部では
導入が進んでいるようです。やがて来るかもしれない本格的なsystemd移行に備えるべく、Ubuntuのinitシス
テムまわりの現在の状況と、今後の見通しについて解説します。

移行に向けて動き出した!?
Ubuntuもsystemdに
変わるのか？

 Writer Ubuntu Japanese Team　柴田 充也（しばた みつや）

6
Part

　Ubuntu標準の initデーモンといえばUpstart

ですが、実はデスクトップ版は13.04から、サー
バ版は13.10からsystemdも標準でインストー
ルされるようになりました。といっても「PID=1」
としてではなく、あくまでUpstartから起動す
るいくつかのサービスで必要なライブラリの1

つとしてsystemdを利用するという形です。
　これはUbuntu 13.04で部分的に採用された
GNOME 3.8がsystemdに依存するようになっ
たことへの回避策であると同時に、当時メンテ
ナンスされなくなっていたConsoleKit注1を将
来的にsystemd-logindへと移行するための布石
でもありました。その後さまざまな経緯を経た
ものの、Ubuntu 14.04 LTSにいたるまで
Upstartの上でsystemdを利用するという形は
続いています。
　そんなUbuntu 14.04 LTSでは具体的にどの
ような形でsystemdを利用しているのでしょう
か。単体でも起動可能な systemd-udevdと、
systemdが必要になるsystemd-logindのそれぞ
れの起動シーケンスを確認してみましょう。
　Upstartは、systemdのUnitに対応する「Job」

注1） システム上のユーザ情報やログインセッションを追跡する
ためのフレームワーク。

ファイルを/etc/init以下（やオプションや環
境変数などで設定されたほかのディレクトリ）
に配置し、Upstart本体やJobの状態遷移に応
じて発行されるイベントをもとに、ほかのJob

が起動・終了するというしくみになっています。
各Jobの依存関係はJobファイルの冒頭に書か
れている「start on」などのstanza（systemdでい
うところのディレクティブ注2に近い存在）によっ
て判断します。たとえば、あるJobに「start on

started udev」と書いてあれば、udevの Jobの
起動が完了したらこのJobを起動することにな
ります。「start on mounted MOUNTPOINT=

/tmp」と書いてあれば、/tmpがマウントされた
時点でJobを起動します。Jobが独自のイベン
トを定義・発行することも可能ですので、自由
にイベントベースの依存関係を構築できるので
す。
　さて、UbuntuはまずPID=1としてUpstart

本体である/sbin/initを起動します。そのあと、
Jobファイルを読み込んだうえでUpstartのサー
ビス単位である「Job」を起動する準備ができた
ら、startup(7)イベントを発行します。このイ
ベントを受けてJob「mountall」は/procなどの
仮想的なファイルシステムをマウントし、
virtual-filesystems(7)イベントを発行します。

注2） Part3で説明したUnit設定ファイルのオプション（Wants
やRequiresなど）のこと。

Ubuntuと
systemdのこれまで

52 - Software Design Feb. 2015 - 53

移行に向けて動き出した!?
Ubuntuもsystemdに変わるのか？ Part 6

udevの Jobファイルである「/etc/init/udev.
conf」を見ると、この virtual-filesystems(7)イ
ベントを受け取ったら/lib/systemd/systemd-
udevdを実行していることがわかります（図1）。
　systemd-logindを動かすためにはsystemdが
必要です。systemdにはプロセスをグルーピン
グしてリソース管理を行うcgroupとプロセス
間通信の一種であるD-Busが必要です。14.04

では cgroup管理デーモンとしてcgmanagerが
存在し、このデーモンの起動時にsystemdサブ
システムを用意しています。D-Busデーモンは
local-filesystems(7)イベントを受け取ったら起
動します。systemd-logindのJobファイルであ
る「/etc/init/systemd-logind.conf」を見ると、
dbusイベントを受け取ったうえで、/lib/systemd
/systemd-logindを実行していることがわかり
ます（図1）。
　ところでここまでの間でsystemdは起動して
いません。そもそも14.04にはsystemd本体を
提供するパッケージが存在しませんでした。そ
の代わりに利用しているのがsystemdのサービ
スファイル群であるsystemd-servicesパッケー
ジと systemd本体の機能をエミュレートする
systemd-shim注3です。これはsystemdの代わり
にorg.freedesktop.systemd1というシステムバ
スを作成し、logindを含むsystemdのUnitから
の通信を待ち受けるD-Busサービスです。

注3） https://github.com/desrt/systemd-shim/

　UbuntuのベースとなっているDebianでは、
長い議論と開発者による投票の結果、次期リリー
ス「Jessie」のデフォルトの initシステムを
systemdとすることが2014年2月に発表されま
した注4。それを受けてUbuntuのリーダー的存在
であるMark Shuttleworthが「Debianでの議論
と判断を尊重し、Ubuntuもその決定に追随す
べきではないか」という声明を発表していま
す注5。
　しかしながら、Debianはあくまで「デフォル
ト」を systemdにしただけで、インストール時
にsystemdを省くことも可能ですし、インストー
ル後に好きな initシステムに切り替えることも
可能です。それに対して、UpstartとGNOME

に依存しているUbuntuはそこまで柔軟な設定
ができません。
　そこでまずは、そもそもUbuntuの initを
systemdにして起動できるのか、そのために必
要な作業は何かを洗い出すために、Ubuntuの
コア開発者でありDebianの systemdパッケー
ジメンテナーの1人でもあるMartin Pittや、
Upstartのメイン開発者であるJames Huntな
どが協力して調査・改修を行っているのが

注4） https://lists.debian.org/debian-devel-announce/2014/02/
msg00005.html

注5） http://www.markshuttleworth.com/archives/1316

Ubuntuと
systemdのこれから

Upstart（PID=1） mountall udev

cgmanager

dbus

rc-sysinit

systemd-logind

sysV services

hostname

startup

runlevel

*-filesystems

…

 ▼図1　 Upstartの起動シーケンス

https://github.com/desrt/systemd-shim/
https://lists.debian.org/debian-devel-announce/2014/02/msg00005.html
http://www.markshuttleworth.com/archives/1316

54 - Software Design

第1特集

Linux systemd入門あなたの知らない実践技

使ってよかった！

2014年末時点での状態です。
　とくにスマートフォン・タブレット向けの
Ubuntu Touchは、デバイスベンダが提供する
AndroidカーネルにUbuntu独自のパッチを当
てて使用する、UpstartとLXCを用いてAnd

roid関連のサービスを立ち上げながらUbuntu

本体を起動するなど、通常のUbuntuとは異な
る事情によりUpstartのブリッジ機能に強く依
存した実装になっています。そのため移行には
より多くの作業が必要と見込まれています。
　なお14.10以降はsystemd本体もパッケージ
に追加されたため、UbuntuのPID=1をsystemd

に切り替えることは可能になっています。さら
に2014年5月にリリース予定の15.04の開発版
では、より新しいsystemdを用いていろいろな
設定や環境においてUnitの起動が正しく行わ
れるかどうか、ほかに問題が出ていないかどう
かをテストしています。たとえば15.04では、
起動時にカーネルオプションとして「init=/lib/

systemd/systemd」を設定するだけで、とくに
何かをインストールすることなくsystemdを利
用できます。起動後のプロセスツリーを見れば、
systemdがPID=1になっていることもわかるで
しょう（図2）。

　ちなみにデスクトップセッションについては
LightDM注6が利用しているUnity Greeterが内
部でUpstartをセッションモードで起動してい
ます。Unityを含むデスクトップセッションで
使われるサービスはUpstartに依存しているた
め完全にsystemdに移行できているわけではあ
りません（図3）。
　いずれにせよ、次の長期サポート版となる予
定の16.04のリリース（2016年4月）までには、
Upstartからsystemdへの移行の準備が完了し、
本当に移行するのかどうか、Upstartを利用し
ている14.04のユーザはどうするのか、の判断
が行われる見込みです。とくに16.04までには
X Window Systemに代わるディスプレイサー
バであるMirの導入も控えているため、実際に
どうなるかはもう少し経たないと不明な情勢で
す。

　ここまで説明した経緯によって、今後は
Ubuntu運用時も systemdの知識が必要になっ

注6） Ubuntuのログイン画面で採用されているディスプレイマ
ネージャ。

systemd移行への
備え

 ▼図2　 15.04をsystemdで起動したときのプロセスツリー（systemd）

54 - Software Design Feb. 2015 - 55

移行に向けて動き出した!?
Ubuntuもsystemdに変わるのか？ Part 6

てくる可能性は高くなります。とくにUbuntu

の場合は、12.04や14.04から16.04や、より新
しいLTSに移行するタイミングで、Upstartの

JobをsystemdのUnitへと移植
する必要も出てくるでしょう。
　今のところはとくに変換ス
クリプトなどがあるわけでは
なく、手動で移植する必要が
あります。UbuntuのWikiペー
ジ注7にもUpstartユーザのため
に、Upstartと systemdの環境
やコマンドの違い、Jobから
Unitへ変換する際の勘どころ、
デバッグ方法などを実例付き
で掲載しています。RHEL6で
Upstartを利用していた方にも
有用な情報が掲載されていま
すので、自前のサービスを移
植する際は、ぜひ参考にして

ください。ﾟ

注7） https://wiki.ubuntu.com/SystemdForUpstartUsers

 ▼図3　 15.04をsystemdで起動したときのプロセスツリー（LightDM）

https://wiki.ubuntu.com/SystemdForUpstartUsers

56 - Software Design

　30の数学的な問題に対して、関数プログラミ
ングでのアプローチを考える本。Haskellで書い
た単純なプログラム（仕様）を出発点に、式変形
によって意味を保存したまま、より効率の良い
プログラミングへ変換する「運算」を施してい
く課程を解説している。たとえば数独ソルバー
を実装する章では「空のマスに対して入力可能

なすべての選択肢をあてはめ、数独のルールに
有効な盤面を選び出す」という単純な仕様から、
「行・列・箱にすでに入っている数を考慮にいれ、
選択肢を減らしていく」「1つのマスに対しての
入力可能な選択肢を洗い出す」という方針で運
算を行っている。Haskellの文法、数学記号など
の予備知識があればより理解しやすい。

Richard Bird【著】、山下 伸夫【訳】
A5判、280ページ／価格＝4,200円＋税／発行＝オーム社
ISBN＝978-4-274-05064-0

　Android Studioは、2013年5月の「Google I/O」
でプレビュー版が発表され、2014年12月9日に
は「v1.0」がリリースされた。これからAndroid
アプリ開発を始める場合、Android Studio以外
の選択肢はないと言える。本書は、セットアッ
プ方法のほか、「天気予報」「アクションゲーム」
「迷路ゲーム」の各プログラムを実際に組み立て

る順で説明しており、実践に手を動かすことで
理解が深まるだろう。
　なお、本書は刊行当時の「v0.8.14」がベース
になっているが、奥付に記載されたサポートペー
ジから、最新バージョンのインストール方法や
最新プログラムソースがダウンロードできるよ
うになっている。

有山 圭二【著】
B5変形判、288ページ／価格＝2,580円＋税／発行＝技術評論社
ISBN＝978-4-7741-6998-9

　CおよびC++言語において、脆弱性につなが
り得るプログラミング上の基本的な問題を、プ
ログラムリストおよび代表的な脆弱性を挙げな
がら解説し、そのリスクを除去・緩和するための、
効果的・実用的な回避策を工学的に分析してい
る。OpenSSLの脆弱性「Heartbleed」の原因に
もなった、メモリの動的割り当てにおけるバッ

ファオーバーフローについても詳しく述べられ
ている。「実践手法」の章では、コーディングに
おける問題とは別に、セキュリティを向上させ
る開発ライフサイクル、品質管理、検証方法が
紹介されているなど、C/C++ユーザ以外の読者
も「安全なプログラムを作るための指針」を得ら
れる1冊となっている。

Robert C. Seacord【著】、歌代 和正、久保 正樹、椎木 孝斉【訳】
B5変形判、552ページ／価格＝3,800円＋税／発行＝KADOKAWA
ISBN＝978-4-04-891987-6

C/C++セキュアコーディング［第2版］

関数プログラミング　珠玉のアルゴリズムデザイン

　角川インターネット講座全15巻中の第2冊目
となる本書は、まつもとゆきひろ氏の監修。本
誌でもおなじみの法林浩之氏、やまねひでき氏
をはじめとして、そうそうたる執筆メンバーで
ある。内容については、インターネット普及
の歴史を振り返りながら、OSS（Open Source
Software）がどのように受け入れられてきたの

かを軸に各執筆者達が自分の業績と関係がある
テーマについて、初心者にもわかるようにやさ
しく解説するというもの。横断的にOSSを語る
ことができればよいのだが、他章と有機的に連
携することなくバラバラになっているのが惜し
い。とはいえ、まつもと氏の記事はかなり有益
な話が詰まっているので必読と言えよう。

まつもとゆきひろ【監修】
A5判、282ページ／価格＝2,500円＋税／発行＝KADOKAWA
ISBN＝978-4-04-653882-6

角川インターネット講座０２

ネットを支えるオープンソース

Android Studioではじめる

簡単Androidアプリ開発

As-Is

To-Be

なぜ
「運用でカバー」が

ダメなのか

そろそろ、やめませんか？

第2特集

波田野 裕一
第 章1

運用現場の現実
「運用でカバー」の悪影響..61

波田野 裕一
第 章2

運用現場の理想①
「運用でカバー」からの脱却...65

波田野 裕一
第 章3

運用現場の理想②
「任務」と「実績」の明確化で運用の業績を可視化する................72

波田野 裕一
第 章4

運用現場の未来
「運用でカバー」から「運用エンジニアリング」へ81

みやもとくにお
まず最初に現状の認識を
あまり筋の良くない運用現場の現実..58

序 章

小野 成志
「運用でカバー」の科学
ハーメルンの笛吹き男は「運用でカバー」の夢を見るか.......................................85

Column

　本特集では、現場でいろいろな形で負担になる「運用でカバー」について深く考えます。現場で問題
が起きたときに、何気なくカバーしてしまうのは日本ではよくあることです。しかし、それを重ねていくと外
部の人にとって見えにくい、カバーそのものが当たり前の感覚に陥り、正当な評価を得られなくなってし
まいます。
　まずは運用現場で実際に生じているカバーの事例を認識し（序章）、それによってどのような悪影響が
出ているのかを理解し（第1章）、それを回避するために運用設計の見直しや、任務、実績の明確化を
行い（第2、3章）、運用現場の将来について展望します（第4章）。
　本特集を読み、現場を俯瞰してより良い運用の姿について考えてみませんか。

As-Is

To-Be

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

As-Is

To-Be

As-Is

To-Be

58 - Software Design

「運用でカバー」の現実
　筆者に限らず、多くの方々が耳にしたことが
あるであろう「運用でカバー」という言葉。この
言葉から、どのようなシチュエーションが連想
されるでしょうか。本質的に、「～でカバー」と
いう言葉が予期せず出てくるときは、たいてい
の場合、設計当初には想定されていなかったシ
チュエーションに対して「～で対応を行う」とい
う必要があるときだと認識しています。
　システム開発段階で、運用まで熟慮されてい
れば、これは「運用でカバー」ではなく、「運用

設計を行っている」ということになります。しか
し、運用現場のヒアリングを行うわけでもなん
でもなく、設計・開発を行っている段階で、業
務上の詳細が明らかになってくると、たいてい
の場合「開発側」でなんとかする必要が出てき

ます。

運用を行うチーム＝開発を行うチーム

　これは、スタートアップ段階にある企業によ
るシステムに見られる特徴といえます。開発を
行った人が運用も行い、機能追加やバグ改修など
を行うモデルです。運用が属人的になりがちな反
面、開発を行った人が運用に携わるので、各種
対応は迅速に行えます。一方で運用のための文
書整備などは後回しになる傾向が出てきます。

運用を行うチーム＜開発を行うチーム

　開発を行うチームの一部が運用チームとして
も職務を遂行する場合の形態がこれにあたりま
す。この場合、開発を行う段階で運用設計を行

うことが多いですが、開発が難航した場合には、
まず開発を完遂させることに重点を置くことが
求められます。

運用を行うチーム≠開発を行うチーム

　この場合は、運用専門のチームが開発物を引
き継いで動かしていくことになります。運用専
門のチームは、基本的には開発されたものを運
用していく責務を負いますが、運用にあたって
は開発時に作成した運用のための資料をもとに
することになります。

「運用でカバー」の失敗事例
　「運用でカバー」の実態企業やシステムを特定
するまでもなく、多くの場合は「運用でカバー」
は実際の運用要員からみても、運用を行う企業
からみても、いいところが出てきません。
　「実質的に運用でカバー」を実施して失敗した
最悪の事例の1つが、1999年9月30日に茨城県
東海村のJCOウラン加工工場で起きた臨界事故
と言えるでしょう。この事故は、安全性を考慮
した手順を遵守しなかったのが原因という一方
で、実際の運用を行う側が作業をしづらい道具
を使うことが当該手順で定められていた、いわ
ば運用側の利便性を考えない手順による作業を
強いられていたことが遠因とも考えられます。

・高濃度ウラン燃料の加工手順は整備されてい
た

・加工手順は安全性の観点からも正しい内容で
はあったが、必ずしも作業をしやすいものと
はいえなかった

あまり筋の良くない
運用現場の現実

みやもとくにお　 Twitter @wakatono

まず最初に現状の認識を
序 章

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

まず最初に現状の認識
あまり筋の良くない運用現場の現実

As-Is

To-Be

As-Is

To-Be

58 - Software Design Feb. 2015 - 59

・作業現場の工夫により、作業はしやすいもの
の安全性の観点から著しく問題のある手順（裏
マニュアル）が現場に普及していた

・裏マニュアルをさらに翻案した内容での作業
を行っていたところ、臨界事故が発生した

「運用でカバー」が
出てくる背景
　ITシステムを開発する背景は、本来は「業務
効率化」や「ビジネス契機の拡大」を始めとするポ
ジティブなものであるべきです注1。それでもな
お、そのようなポジティブな考え方の真逆であ
る「運用でカバー」という話が出てきます。これ
はいったいなぜなのでしょうか。

共通的なところ

・腕のたつ人が運用チームにいる場合
　業務と技術の両方に長けた運用スペシャリス
トがチームにいる、これは運用業務を確実に回
すにはありがたい反面、当該スペシャリストが
あらゆる要望に応えてしまうため、本来は運用
設計に含まれるべきだった事項（当然運用設計上
考慮されていない事項）についても無事にキャッ
チアップしてしまうところにあるといえます。
これはシステムの安定運用に大きく寄与する反
面、当該スペシャリストが抜けたら運用が回ら
ない（いわゆる属人化）、という話にもなりかね
ません。永続的な運用を実現するのであれば、
属人化するところは極力排除して、役割と手順
を明確にしたうえで当該手順に従った運用を行
える必要があります。

・新規業務の場合
　まったくの新規業務について、入念な事前準
備をもとに「IT化前提に組み立てる」というので
あれば、「運用でカバー」という話は（費用や開発
上の制約がない限りは）あまり入り込む余地があ
りません。入ってきたとしてもその部分は、IT

化を行うことが困難、もしくはIT化に向かない
業務であり、そのような業務が入り込む可能性
があるということを織り込んだ業務設計を行っ
ていればよいだけの話です。

・既存業務のIT化の場合
　しかし世の中、新規業務だらけというわけで
はなく、既存業務をIT化する、もしくはすでに
存在する業務システムを刷新／更改するという
業務のほうが中長期的には多くを占めてきます。
このような場合、まず「現行業務をどのようにし
たいのか？」ということを考える必要が出て来ま
す。
　システムを運用する側ではなく、システム上
に実装されたしくみを用いて業務を遂行する側
を見ると、「極力それまで慣れた環境から離れた
くない」という主張を行うことがあります。これ
は、「インターフェースを変えない」「見た目を
変えない」ということも含みます。場合によって
は「現行の仕様を踏襲する」「現行どおり」という
ような要望に丸められることもあるでしょう。
　「現行の仕様」が、現行システムが作られた時
期の技術背景やノウハウに依るものであり、「シ
ステム更改時に使える技術で果たしてそれがカ
バーできるのか？」という話を勘案しないままに
「現行どおり」という要望が出て来た場合、その
案件はとてもリスキーなものになってきます。
　このような場合、「現行どおり」が「どのような
システムスペックを指すのか？」という部分を明
らかにしてから開発に進まないと、あとで「こん
なはずじゃなかった」という話になります。

「運用はコスト」という
考え方
　運用単体で見ると確かにそうとも言えますが、
「ビジネス上の価値を生み出すシステムの開発は
投資で、運用はコスト」というのは違和感があり
ます。むしろ、「想定運用期間」を設定し、開発
費用に当該運用期間に発生する運用費用を加え、
「開発＋運用」という投資を想定するのがよい筋

序 章

注1） 損をするために IT化するというのは、聞いたことがありま
せん。

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

As-Is

To-Be

60 - Software Design

といえます。
　システムで使われているハードウェアやソフ
トウェアは、すべからく耐用年数があります。
ハードウェアは言うに及ばず、ソフトウェアに
ついてもサポート期限という名の耐用年数があ
ります。「一度作ったから徹底的に長く使い倒
す」という考えもあるかと思いますが、ハード
ウェアやソフトウェアの寿命を想定して運用期
間を設定し、投資のタイミングなどを決定する
感覚で臨むほうが、結果としてよいサイクルを
産みます。

「運用でカバー」を減少させ
るために必要なこと
　「運用でカバー」は、現行業務の分析に加え、
システム更改後の業務スタイルや、新規の業務
スタイルの見通しを立て、専門家を交えた運用
設計を行うことで減少させられます。そのため
に必要なのは、ITの専門家より、むしろ業務を
客観的に見ることができる人です。このような
前提のもと、これまで述べた「これはまずい」を

緩和／解消するための方策を次に挙げます。

・属人化を防ぐ
・開発＋運用の費用を見込んで、妥当と考えら
れる費用計画を策定する

・「現行通り」がどのような仕様なのかを明確に
し、明確になった仕様をどのように運用して
いくかを早期に決めていく

 「聖域なき費用削減」などという話はたまに耳に
しますが、最初から運用も見越した想定予算額
を積み上げているところでこれを言われても、
聖域も何もありません。むしろ「最初から費用計
画を立てて、無理のない運用をできるようにして
いる」という見方をするのがよいといえます。｢

 ●参考文献
JCOウラン加工工場での臨界事故

（失敗知識データベース）
http://www.sozogaku.com/fkd/cf/CC0300
004.html

http://www.sozogaku.com/fkd/cf/CC0300004.html

As-Is

To-Be
第 章1

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の現実
「運用でカバー」の悪影響

As-Is

To-Be

As-Is

To-Be

As-Is

To-Be

As-Is

To-Be

61 - Software Design Feb. 2015 - 61

「運用でカバー」は
運用価値の毀損
　日本中に数多ある運用現場と言われる場所で、
日夜多くの人々が業務やITシステムなどの運用
業務に従事し、安定運用に多大な努力をされて
います。それぞれの運用現場ではさまざまな苦
労や悩みを抱えており、「自分たちだけが苦労し
悩んで」いて、その原因が「自分たちの努力不足」
にあると考えているようです。
　しかし実際に現場の声を聞いてみると、大企
業、中小企業、ベンチャーなどの規模の違い、
社会インフラ、金融、Webサービス企業などの
業種の違いを問わず、国内の運用現場において
は実によく似た悩みを抱えていることがわかっ
てきました。
　そして、運用現場で働く多くの人は「運用でカ
バー」という言葉を聞くとほぼ例外なく苦笑いを
します。程度の差はあれど、「運用でカバー」と
いうものに日々悩まされているのが日本の運用
現場の実情でしょう。

「運用でカバー」とは何か
　日本の運用現場で多用される「運用でカバー」
という言葉は、外部からの要求や期待が持って
いる「想定」や「仕様」と、運用現場で実際に起こ
る「現実」との差分を運用現場の努力で回避し続
ける、という意味合いを強く持っています。こ
の外部からの要求や期待は、もやっとあいまい
なまま渡され、回避努力のコストとリスクは運
用現場が負担していることが多いようです。
　多くの場合「運用でカバー」とは、「もやっと曖

昧な依頼にもかかわらず、運用現場に対して高
度な判断能力と機動的な対処能力を常時求めつ
つ、そのコストとリスクは運用現場に負担させ
る行為」と定義することができるでしょう（図1）。
　つまり、「運用でカバー」を受け入れるという
ことは、工数面においてもリスク面においても
運用業務に大きな影響を及ぼす事象が突発的に
起こる危険性を受け入れることを意味し、高度
に対応できる要員の確保や無形の教育という見
えない業務負荷や人員コストを直接的に負担す
ることを意味します。

なぜ「運用でカバー」が
生まれたか?
　この「運用でカバー」は世界的によく見られる
現象なのでしょうか？　どうもそうではないよ
うです。
　以前、来日したアメリカのエンジニアと「運用
でカバー」について議論をしようとしたことがあ
ります。しかし残念ながらその概念自体を理解
してもらうことが困難でした。彼の言葉による
と、アメリカにおけるオペレーションの考え方
は、次のようなものが一般的だということでし
た。

「運用でカバー」の
悪影響 運用設計ラボ合同会社　波田野 裕一（はたの ひろかず）

　 mail operation@office.operation-lab.co.jp

運用現場の現実
第 章1

 ▼図1　運用でカバー

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

As-Is

To-Be

62 - Software Design

1.人手に頼らない

　基本的にオートメーションを前提に考え、人
手が必要なところについてはジョブディスクリ
プションを明確にしたうえで「具体的な手順書で
指示」するとのことでした。

2.�ローコンテキストを前提としたコ
ミュニケーション

　さまざまな道徳観や教育レベルを持つ人々が

働くアメリカでは、ローコンテキストなコミュニケー
ションを前提として業務を設計するようです。た
とえば、ラック作業を依頼する場合は、データセン
ターの警備員に依頼することを前提に、高度な判
断を要しないドキュメントを作るとのことでした。

3.人材流動性の高さ

　雇用契約解消がいつでもありうることを前提
に業務を設計するとのことでした。これはコス
トに見合わないといつでも解雇がありうる一方
で、「給料に不満があればいつでも退職されてし
まう可能性がある」という両面からの前提となっ
ているようです。

　一方、日本の運用現場は一般的に次の特徴を
持っています。

1.高い士気と教育レベル

　基本的に日本の現場は士気が高く教育レベル
も高いため、もやっと渡されたものでも、よし
なにがんばることができ、融通が利くうえ、けっ
こう無理も利くと認識されています。実際に、
「オートメーション化に工数をかけるより人がや
ればいい」という人が日本のかつての運用現場で
は主流で、その空気が変わりはじめたのは2008

年ごろからではないでしょうか。

2.�日本人同士のハイコンテキストな�
コミュニケーション

　「もやっと渡して、よしなにしてくれる」人員

がそろっている運用現場は、「あの件」とか「で
は、そんな感じでよろしく」という言葉のやりと
りだけで効率的に業務が処理されていきます。

3.人材流動性の低さ

　人材の流動が少ない運用現場では、組織文化
が形成され、さらに高いレベルでのハイコンテ
キストコミュニケーションを可能としている場
合があります。このような組織では、仮に異動
があるときでも「個人間での引き継ぎやOJTの
みで業務を維持できる」ようです。

　このように、アメリカのエンジニアが解説す
る「オペレーション現場」と我々が知っている日
本の「運用現場」はまったく違う特徴を持ってい
ます。我々が「運用」と言っているものが、実は
英語の「オペレーション」と同じ意味ではないか
もしれないのです。
　そして日本の運用現場が持つ、これら3つの
特徴が、「運用でカバー」が生まれる土壌となっ
ていると考えられます。

「運用でカバー」は運用現場に
どのような影響をもたらすか?

業務の複雑化

　「運用でカバー」は、単純に処理できないこと
が理由で正規の運用フローに乗せられないもの
が多いため、まず業務の複雑化を招きます。業
務が少々複雑化しても感謝されているうちは運
用現場も頑張れるのですが、やっかいなことに
当初は感謝していたはずの依頼側がだんだんそ
れを「当たりまえ」のように感じるようになると
いう「感謝の経年劣化」が生じてきます。
　この感謝の経年劣化は「あれをやってくれるな
ら、これもやってくれるだろう」という一種の
「甘えの恒常化」となり、次なる「運用でカバー」
の依頼につながり、さらなる業務の複雑化につ
ながります。

As-Is

To-Be
第 章1

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の現実
「運用でカバー」の悪影響

As-Is

To-Be

62 - Software Design Feb. 2015 - 63

業務の属人化

　「運用でカバー」がもたらした業務の複雑化は、
ドキュメントが整備されないまま特定の個人の
努力に依存するという「業務の属人化」をもたら
します。
　まず、依頼する側がもやっと渡したものを、
依頼された側で適切なドキュメントに落とし込
むことには非常な困難を伴います。
　そのうえ、次々と来る依頼をこなす中で、ド
キュメント作成の工数を確保することもなかな
か認められないのが現実です。仮に理解のある
マネージャが工数を確保したとしても、日本で
は多くの人がドキュメンテーション手法の教育
を受けていないため、工数がかかる割になかな
か品質の高いドキュメントにはならないことも
多いです。それが、ドキュメントが作られない、
もしくは更新されない傾向に拍車を掛けている
のです。
　その結果、運用現場においてドキュメントが
作られない、仮に作られたとしても更新されて
おらず実際に活用できるものになっていないと
いう状態が継続し、業務はその内容を知ってい
る人に依存するといういわゆる「業務の属人化」
が日常化します。
　業務の属人化には「組織内での調整に手間をか
けずにパフォーマンスを上げることができる」と
いうわかりやすいメリットがあるため、次第に
「できる人にお願いする」という形で属人化の拡
大再生産が進んでいきます。

成果の見えない化

　複雑化と属人化が進んだ運用現場では、合理
性よりも個々人の主観が業務に大きく影響する
ようになるため、非合理的業務の日常化をもた
らします。とくに「運用でカバー」においては合
理性よりも依頼側の都合が優先されることが少
なくないため、運用現場の努力だけで非合理性
を回避することが困難という事情もあります。
　このようにして積み上げられていった非合理

的な業務は、あらゆる局面で「隠れ運用コスト」
を生み、雪ダルマ式に運用現場の余力を削って
いきます。「運用でカバー」の乱発により、日本
の運用現場は非常に多忙な場となったのです。
　一方で、「運用でカバー」には明確なゴールや
達成点などの評価軸はありません。その結果、
経営層や外部から「運用はいつも忙しそうだが、
何をやっているのかよくわからない」と言われる
ようになってきました。運用現場側も業務が複
雑で属人化が進んでいるため、「やっている方も
よくわかってないんですよ」とまでは言えないも
のの「なんだかうまく説明できない」状態に陥っ
ています。
　とくに「運用でカバー」により生じた「説明でき
ない業務」は、経営層からは「業務が存在しない」
ことに等しく、運用現場はその点で「何も成果が
認められていない」ことを意味します。その結
果、運用現場は「成果はよくわからないけど、コ
ストだけはかかっているよね」という言葉に直面
することになるわけです。

「運用でカバー」は「運用の見えない化」

　ここまでで見てきたとおり、「運用でカバー」は、
運用業務の複雑化や属人化による「業務の見えな
い化」を引き起こし、「業務の見えない化」はその
業務の「成果の見えない化」につながっています。
　これを一言で表現すると、

「運用でカバー」は、「運用の見えない化」を運用

現場にもたらす

となります。

なぜ「運用でカバー」が
問題なのか?
　では、「運用でカバー」は悪いことなのでしょ
うか?

「運用でカバー」がハッピーだった時代

　かつて「運用でカバー」は、運用現場の価値の

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

64 - Software Design

1つとして肯定的に受け入れられてきました。当
時は会社の予算的にも現場の人的リソース的に
も余裕があり、あえてジョブディスクリプショ
ンを明確にしない「柔軟な」体制を組むことで、
「運用でカバー」により依頼側も運用現場もハッ
ピーになれる時代だったようです。

現在の運用現場が抱える3つの問題点

　近年は企業のコスト体質改善が急務となって
おり、あらゆる企業活動の費用対効果が問われ
るようになってきています。
　運用でカバーによる「運用の見えない化」を強
いられつつ、その業務の費用対効果の説明責任
を求められる、という板挟みに運用現場は苦し
んでいます。「もやっと頼まれた仕事の費用対効
果なんて説明できない」というのが、わかりやす
い今の運用現場の心の声ではないでしょうか。
　さらに、複雑化と属人化が進んだ運用現場は
常に多忙で要員の業務負荷が高く、このヤマを
越えれば楽になるという展望がなかなか見い出
せずにいます。
　「運用でカバー」の積み重ねにより、運用現場
は次のような問題点を抱えることになったと言
えます。

❶高負荷（業務の複雑化）
❷属人的（業務の属人化）
❸見えぬ費用対効果（成果の見えない化）

　実際に、運用現場からは次のようなコメント
をよく聞きます。

・	業務が多岐に渡り、すべてを把握することが
困難になっている

・	ドキュメントが整備されていない。あっても
更新されていない

・	一部の人間にしかできない業務があり、業務
が集中している

・	属人化が進み、ノウハウの継承ができていな
い

・	異動により現場が混乱することが多い

・	業務や現場自体が評価されている実感がない
・	運用作業やトラブルが多く、前向きな改善に
着手する余裕がない

・	ツールが使いにくいが、改修にはコストと期
間が必要なため我慢して使っている

・	サービス設計や導入時の検討漏れや実装が間
に合わないなどの、依頼側のその場しのぎの
影響を直接受ける

・	声の大きいユーザに対して、必要以上のサポー
トを強いられる

・	コスト削減要求が強いが、どう効率化すべき
なのかが見えない

・	業務の設計思想が失われていて、現状を維持
することしかできない

　いかに「運用でカバー」が運用現場に影を落と
しているか実感いただけるのではないでしょう
か。

「運用でカバー」は「運用の価値」を�
毀損する時代

　今日では「困ったら運用でカバー」という言葉
が広く認知されており、街の喫茶店で開発業務
をやっているようなスタートアップ企業の人た
ちの口からも気軽に飛び出しているのが現状で
す。そのような事情で行われる「運用でカバー」
はほぼすべて「マイナスをゼロにするための努
力」に過ぎず、コストの説明が困難なだけでな
く、努力の結果が組織的に評価されにくいとい
う問題があります。
　厳しい言い方になりますが、「運用でカバー」
は「運用の見えない化」をもたらすものであり、
安易に実施すると「運用業務価値の毀損」ひいて
は「評価されない運用現場」を生むことにつなが
ります。
　今日においては、安易な「運用でカバー」は自
分たちの価値を下げる、と考えた方がよいでしょ
う。｢

As-Is

To-Be
第 章2

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の理想①
「運用でカバー」からの脱却

As-Is

To-Be

As-Is

To-Be

65 - Software Design Feb. 2015 - 65

「運用でカバー」
からの脱却 運用設計ラボ合同会社　波田野 裕一（はたの ひろかず）

　 mail operation@office.operation-lab.co.jp

運用現場の理想①

「運用でカバー」脱却の糸口
　「で、どうすんのよ」という声が聞こえてきそ
うです（実際に聞こえてきました）が、何十年も
積み上がってきた「運用でカバー」を覆して理想
的な運用現場を実現することはそう簡単ではあ
りません。
　まず、「運用でカバー」が現在の運用現場にお
けるAsIs（現状）の原因だとすると、それを解消
するためにはToBe（理想）への道を知る必要が
あります。
　第1章では「運用でカバー」とは、次の3つの
要素から成り立っているというお話をしました。

　❶もやっとしたあいまいな依頼
　❷�高度な判断能力と機動的な対処能力を常時

要求
　❸コストとリスクは運用現場負担

　これは、言葉を変えると次のように表現でき
ます。

　❶期待が不明確である
　（依頼する方もよくわかっ
ていない）

　❷やるべきことが不明確
である

　（あらかじめ決まっていな
い）

　❸成果物が不明確である
　（コストがかかり、リスク
があることだけはわかっ
ている）

　そして、これら「運用でカバー」の3要素が、運
用現場に対して次の3つの悪影響を及ぼしてい
ます。

・高負荷
・属人的
・見えぬ費用対効果

　次のような健全な状態を実現することで、運
用現場を理想的な環境にできる可能性があると
いうことになります。

　❶「期待」というインプットが明確である
　❷「任務」というやるべきことが明確である
　❸「実績」というアウトプットが明確である
	 　�（「実績」が「期待」に沿うものであれば「成果」

として認められる）

　一足飛びに理想を実現することは現実的では
ありませんから、できるところから図1のよう
なサイクルを回していくことになるでしょう。

第 章2

「任務」の指針が確定新たな「期待」の醸成

目指す「実績」が確定

1．「期待」の明確化
インプットの見える化

2．「任務」の明確化
やるべきことの見える化

3．「実績」の明確化
アウトプットの見える化

 ▼図1　現実的な運用のアプローチ

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

As-Is

To-Be

66 - Software Design

運用現場への「期待」の
明確化
　では、運用現場への「期待」とはどういうもの
でしょうか?

運用現場を取り巻くステークホルダ

　運用業務には多くのステークホルダが関与し
ています。運用現場にとって最もわかりやすい
ステークホルダは、まず自分たち（運用マネー
ジャや運用チームのメンバ）自身でしょう。運用
業務に日々従事している人たちが、自信と余裕
を持って業務を遂行できていなければ、良い仕
事ができるはずがありません。当然、運用現場
の人たちは大事なステークホルダに位置付けら
れます。
　次に、運用現場に対していろいろな依頼をし
てくるユーザがすぐに思い浮かぶと思います。
この人たちは運用現場にとって、仕事を運んで
きてくれる大事な「顧客」と言える人たちです。
　さらに、業務支援をしてくれる各部門や担当
者、運用現場に関する最終決定権を持つ社長や
役員などの経営層の人たちも重要なステークホ
ルダです。もし定期的に業務監査を受けている
場合は、監査担当者もステークホルダに含まれ
ます。
　このように、運用現場はそれ単体で成り立つ
ことは通常はなく、多くのステークホルダと連
携して事業体として成り立っていることがわか
るかと思います。そして、これら運用業務に関
わる主要なステークホルダは、運用業務に対し
て何らかの成果を期待しています。
　もちろんすべてのステークホルダのすべての
期待を実現することは不可能です。実際には、
各ステークホルダの期待を明確化し、自分たち
のリソースを適切に活用することで優先順位の
高い「期待」を実現していく必要があります。

各ステークホルダの期待は何か?

　では、各ステークホルダは運用現場に対して

どんな「期待」を持っているのでしょうか。運用
現場の業務をサービス提供ととらえると、立場
によっておもに次の3つの視点があることが見
えてきます。

　❶�サービス利用者としての「ユーザ」の視点
（ユーザの期待）

　❷�サービス提供者としての「運用現場」の視点
（運用現場の期待）

　❸�事業継続性の責任を負う「経営者」の視点（経
営者の期待）

 ●ユーザの期待
　サービス利用者である「ユーザ」は、おもに次
の3つの期待を持っています。

・サービスの安定
　ユーザとしてはやはり「使いたいときに使え
る」、「想定どおりのサービスが得られる」ことは
サービスを利用するうえで重要です。不安定な
サービスはすぐにユーザが離れてしまい、立ち
行かなくなるでしょう。事業継続の観点からも、
社会基盤／組織基盤に相応しい安定運用が求め
られる時代になっています。

・サービスの費用対効果
　運用を含むサービスコストを最終的に負担す
るのは、そのサービスのユーザです。ユーザと
しては、コストに見合ったプロフィット（おもに
金銭的な利益）が得られることがそのサービスを
利用する最大の理由となります。とくに、同等
の品質でより安いコストのサービスが次々と生
まれてくる今日では、ユーザ視点での費用対効
果について常に意識を向けておく必要がありま
す。

・サービスのプラスアルファ
　費用対効果だけでサービスが評価された場合、
単純な価格競争に陥りがちです。これでは運用
現場の体力を削り、ひいてはサービス品質の低
下を引き起こし、結果としてユーザの利益に反

As-Is

To-Be
第 章2

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の理想①
「運用でカバー」からの脱却

66 - Software Design Feb. 2015 - 67

する結果になりかねません。価格以外の要素で、
ユーザが当初持っていた期待を越えるベネフィッ
ト（金銭に限らない利点や便益）を提供すること
が、競合組織に対するアドバンテージを示すう
えで重要となります。

 ●運用現場の期待
　サービス提供者である「運用現場」は、おもに
次の3つの期待を持っています。

・サービスの安定
　運用現場にとって、障害やトラブルの多いサー
ビスの面倒を見ることは体力的にも精神的にも
非常に負担になります。とくに365日24時間
サービスが稼動していることがあたりまえに期
待される今日では、運用メンバが夜中に叩き起
こされたり、急遽、夜明け前に出勤するといっ
たことが常態化するのを避けるためにも、サー
ビスの安定は運用現場にとって「体力的精神的に
切実な夢」となっています。

・業務負荷の平準化
　多くの運用現場においては、要員に対する恒
常的な高負荷や属人的な運用などの問題を抱え
つつも、現場の個々人の過大な努力により日々
の運用を維持しているのが現状です。その努力
自体は賞賛されるべきですが、個々人の過大な
努力を前提とした業務の遂行は、新たなサービ
スアイデアの実現や抜本的な業務改善などの本
来運用現場が持っているべきポテンシャルを低
下させてしまいます。それだけでなく、中長期
的には要員の異動や退職を起因とした事業継続
リスクの具現化につながる可能性をはらんでい
ます。
　運用現場にとって、特定の人が頑張り過ぎて
なんとかなっている現状からの脱却は、（ごく一
部の忙しいことが大好きな人を除いて）「体力的
精神的に切実な夢」となっています。

・運用に対する評価の適正化
　運用現場では、運用組織自体とそこで働く個々
人それぞれで「評価」に対する悩みを抱えていま
す。
　まず、運用現場は一般的に「コストセンター」
と認識されていることから、人件費などのコス
トを基軸とした減点方式の組織評価に晒されて
います。自信を持って活動をし、発展していく
ために、「コストカット」を前提とした組織評価
から脱却して、適切な組織利潤に貢献している
ことを示したいと考えている運用現場は多いよ
うです。
　中でも、現場で運用マネージャーと呼ばれる
人たちは、現在の運用リソースで業務パフォー
マンスを向上させることでなんとか現場の評価
を上げられないか、と日々苦心されている話を
よく耳にします。
　また、運用現場で働く人々も「コストセンター」
の要員として組織同様に「頑張っている割に評価
されている実感がない」と感じている人が多いよ
うです。とくに、適切なしくみを実現していて
普段あまりテンパっていない人や「現場の苦労を
なんとか軽減しよう」と工夫している人の評価が
なかなか上がらない一方で、日々トラブルに追
われて泥臭く「忙しそうにしている人」の評価が
高くなりがちなことに違和感を感じているよう
に思います。運用現場が適正な利潤を生む職場
として評価され、その要員が給与や待遇面で適
切に評価されることが、運用現場にとって「経済
的精神的に切実な夢」となっています。

 ●経営者の期待
　事業継続性の責任を負う「経営者」については、
立場は異なりますが、「ユーザ」ととてもよく似
た期待を持っています。
　まず、「サービスの安定」と「サービスのプラス
アルファ」については、「ユーザに自組織が提供
するサービスを選択してもらう」という観点から
ユーザとまったく同じ期待を持っていると言っ
てよいでしょう。

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

68 - Software Design

　一方で、経営者は事業体の長として適切な利
潤をあげる責任を負っているので、「サービスの
費用対効果」についてはユーザとは異なる観点か
ら期待を持っています。具体的には、ユーザは
現在という短期的視点でサービス単体の費用対
効果を見るのに対して、経営者は事業戦略など
の長期的展望や減価償却などを含む長期的な事
業損益を視野に入れながらサービスの費用対効
果を考えています（きちんとした経営者なら考え
ているはずです）。

　このように「運用」に対する「ステークホルダ」
とそれぞれの「期待」を簡単な図にすると図2の
ようになります。

各ステークホルダの期待から見える
「運用現場の理想像」

　ここまで、各ステークホルダがそれぞれに持
つ「運用に対する期待」を持っていることを説明
しました。これらの期待を運用現場の視点から
整理すると、図3のようになります。

ユーザ
運用マネージャー

運用メンバ

経営者

運用への
期待

運用現場の期待

サービスの安定
社会基盤に相応しい安定運用

業務負荷の平準化
うまく業務が回る運用環境

運用に対する評価の適正化
適正な利潤を生む現場と、適切に評価
される要員

経営者・ユーザの期待

サービスの安定
社会基盤に相応しい安定運用

サービスの費用対効果
コストに見合ったプロフィット

サービスのプラスα
期待を超えるベネフィット

 ▼図2　それぞれの立場での運用への期待の違い

運用現場の期待

サービスの安定
社会基盤に相応しい安定運用

業務負荷の平準化
うまく業務が回る運用環境

運用に対する評価の適正化
適正な利潤を生む現場と、適切に評価
される要員

「安定した運用」の実現

「楽な運用」の実現

「稼ぐ運用」の実現

経営者・ユーザの期待

サービスの安定
社会基盤に相応しい安定運用

サービスの費用対効果
コストに見合ったプロフィット

サービスのプラスα
期待を超えるベネフィット

 ▼図3　運用現場の理想像

As-Is

To-Be
第 章2

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の理想①
「運用でカバー」からの脱却

As-Is

To-Be

68 - Software Design Feb. 2015 - 69

・「安定した運用」の実現
　「安定した運用」の実現は、すべてのステーク
ホルダに共通する期待に応えることになります。

・「楽な運用」の実現
　「楽な」と言うと語弊があるかもしれませんが、
「つらくない運用」を実現することは運用組織に
とって切実な期待です。平準化されていない業
務負荷は、事業継続性リスクの要因ともなり得
るため、上記の「安定した運用」の実現に大きな
影響を及ぼします。

・「稼ぐ運用」の実現
　経営者とユーザの期待である「サービスの費用
対効果」と「サービスのプラスアルファ」を重要指
標とし、その評価により「稼ぐ運用」が実現でき
れば、結果的にすべてのステークホルダの期待
を実現することにつながるでしょう。

　大多数の運用現場にとって、「安定し、楽で、
稼げる運用」を実現することが「運用現場の理想
像」と言えるのではないでしょうか。

「運用」とは
サービスデリバリである
　前項で、運用現場における理想は、『「安定し、
楽で、稼げる運用」を実現すること』と説明しま
した。では「運用」とは何でしょうか?

運用ってなんだ?

　実は、「運用」という言葉の概念が人によって
異なることが、運用現場を取り巻く状況を複雑
にし、問題の解決を困難にしています。たとえ
ば、次のような疑問の声を聞くことがあります。

・システムの構成変更やリリース作業は「運用」
なのか?

・ソフトウェアのバグ修正は「運用」なのか?
・「保守」と「運用」は同じなのか、違うのか、違
うなら何が違うのか?

・コストの付けどころに困ったら「運用費」につ
けているけど、それはおかしくないか?

　「運用」という言葉の概念が一致していないこ
とで、運用に関わる各ステークホルダー間にお
いて、深刻なコミュニケーションロスが生じて
おり、運用に対する期待についても無視できな
い差異が発生しているのです。

 ●「運用」の定義（仮説）
　「運用現場の理想」を実現するには、その理想
に近づけるために「運用」の定義を明確にしてい
く必要があります。「運用」という言葉自体の歴
史は古く、14世紀中ごろの中国の史書に登場し
たのが最古と言われています。現代の辞書にお
いては、次のように解説されています。

・うまく機能を働かせ用いること。活用（広辞苑
第六版）

・そのものの持つ機能を活かして用いること。
活用（大辞泉）

　「運用」とは「ものを活用すること」なのです注1。
活用する対象を「運用現場（運用組織）のリソー
ス」とし、その目的を運用業務の理想である「ス
テークホルダの期待に応えること」とすると、運
用業務における「運用」という言葉は次のように
定義できると思います。

・運用とは
　運用組織のリソースを活用し、対価や評価を
得ることを目的に、外部に対して、継続的に何
らかのサービスを提供し続けること、を言う。

　この定義では、「サービスを提供し続ける」と
いう文に「サービスの安定」という理想を、「対価
や評価を得ることを目的に」という文に「運用に
対する評価の適正化」という理想を、それぞれ込
めています。

注1） ということは、ものの活用に貢献しない出費を「運用費」と
言ってはいけないはずですね。

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

70 - Software Design

 ●「運用」とは「サービスデリバリ」である
　さらに「外部に対して、(継続的に)何らかの
サービスを提供」するという視点から運用業務を
とらえると、個別の運用業務案件は一般的に次
のフローで行われることに気づきます。

　❶�ユーザや外部組織を起点に、運用組織の窓
口に対してリクエストが行われる

　❷�運用組織の窓口に到着したリクエストは業
務として実体化する

　❸�運用現場のメンバや隣接部署など（内部協調
／支援組織）、外部サービスやベンダなど
（外部支援組織）による処理を経て成果物と
なる

　❹�成果物は、最終的にリクエスト元に対して
デリバリされる

　❺�必要があれば事後処理が行われ、その業務
は終了し消滅する

　この流れは図4のようになります。

　「ユーザに価値を提供する活動」を一般的に
「サービス」と言います。上記の「成果物」を「顧客
に提供する価値」であると考え、その成果物を
ユーザに届けることを「デリバリ」と表現すると、
運用業務における「運用」とはほとんどの場合
「サービスデリバリ」であると考えられます。
　最初にリクエストを投げてくるのがユーザや
外部組織とは限りません。
　たとえば、バックアップ作業などの定時作業
は、あらかじめ決められたバックアップ開始時
刻をトリガーに「バックアップを必要としている
組織からのリクエスト」が定期的に来ているとと
らえることができます。このとき運用現場は
「バックアップがきちんと取れている」という価
値を定期的にリクエスト元の組織に提供してい
ることになります。
　また、ITシステムなどからの障害アラートは、
「システムから障害復旧のリクエスト」が来てい
るととらえることができます。このとき運用現

外部組織

フロントエンド

バックエンド

運用現場

デリバリ リクエスト

ユーザ・外部組織
inbound outbound

窓口

inbound outbound

inboundoutbound

内部協調／支援組織

inbound outbound

運用メンバ

inbound outbound

デリバリリクエスト

デリバリリクエスト デリバリリクエスト

外部支援組織
inbound outbound

 ▼図4　運用業務案件の一般的なフロー

As-Is

To-Be
第 章2

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の理想①
「運用でカバー」からの脱却

70 - Software Design Feb. 2015 - 71

場は「迅速に担当者に障害発生を告知して、障害
対応の初動を早くする」または「迅速にサービス
を復旧させる」という価値をシステムを管理して
いる組織に対して提供していることになります。
　このように、ステークホルダを明確にするこ
とにより、運用現場の作業の多くは「サービスデ
リバリ」であるととらえることが実感できると思
います注2。

「サービスデリバリ」と
とらえることのメリット

　さて、「運用」を「サービスデリバリ」ととらえ
るメリットは何でしょうか?　実は次のような多
大なメリットが考えられます。

　❶「サービス」視点で物事を考えるようになる
　❷「デリバリ」視点で定量評価が可能になる
　❸「デリバリ」視点で専門性を考えるようになる

　詳しく見ていきましょう。

 ● 1.「サービス」視点で物事を考えるようになる
　運用をサービスデリバリととらえると、運用
現場の価値を決めるものは「サービス」と「デリバ
リ」であり、従来重視されてきたツールや運用基
盤などの「道具」は、運用組織の本質的な価値を
決めるものではないことが明確になります。
　これは、とくに従来のシステム運用にありが
ちだった「道具のお守り」というスタンスから、
よりサービスに近い立ち位置に専門性のフォー
カスが移ることを意味します。その結果、運用
組織には「サービスをデリバリする専門集団」つ
まり「利益追求集団」という付加価値が生まれ、
コストセンターという「お荷物」的な立場から脱
却することを可能にするでしょう。

 ● 2.「デリバリ」視点で定量評価が可能になる
　サービスのデリバリには、当然相応のコスト
と時間がかかります。さらにデリバリしたサー
ビスの品質についてユーザは何らかの形で評価
します。つまり、従来は困難だった「運用現場の
定量評価」が、QCD（Quality：品質、Cost：コ
スト、Delivery：納期）という客観的なデータで
評価できるようになることを意味します。
　各ステークホルダから運用への期待がQCDの
いずれにあるのかを明確にし、どうすると自分
たちの評価につながるかを運用現場自身が把握
できるようになります。これは、サービスに対
する運用現場のコミットメントを向上させるだ
けでなく、期待に対する厳然たる実績を示すこ
とを可能にし、各ステークホルダからの期待の
拡大再生産という良いサイクルを生み出すで

しょう。

 ● 3.「デリバリ」視点で専門性を考えるように
なる

　運用現場の人々は長らく「何でも屋さん」とし
て扱われてきたため、「自分たちの専門性が何で
あるか」を体系的に把握する機会を得られずにき
ました。運用をサービスデリバリととらえると、
運用現場に必要な専門性は「サービス」と「デリバ
リ」であることが明確になります。
　その結果、従来重視されてきたツールや運用
基盤など、賞味期限の短い「道具」の知識は「周辺
知識」という位置付けになり、より本質的で賞味
期限の長い専門知識がその運用現場における「コ
アコンピタンス」となります。
　このことは専門スキルの習得ロードマップを
明確にし、運用のプロとしてのキャリア設計に
つながり、運用現場に大きな成長の機会をもた
らすでしょう。｢

注2） 本稿における「サービスデリバリ」は、ITIL v2におけるカテ
ゴリとしての 「サービスデリバリ」とは異なるものです。

As-Is

To-Be

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

As-Is

To-Be

As-Is

To-Be

As-Is

To-Be

72 - Software Design

運用現場の「任務」の明確化
　前章では、運用現場の理想に近づくために必
要な柱の1つである運用現場が「期待」されるも
のを明確にしました。本章では残りの2つ、「任
務」と「実績」について考えます。
　さて、運用現場の「任務」とはどういうもので
しょうか？

運用現場の任務は
「サービスデリバリ」
　運用とはサービスデリバリである、と前章で
解説しました。この定義に従うと、運用現場の
「任務」は「サービスデリバリ」であるということ
になります。
　運用現場の任務を明確にするには、サービス
デリバリの「サービス」と「デリバリ」が何である
かをそれぞれ明確にする必要があります。

サービス内容を明確にする
「サービスカタログ」
　まず、デリバリの対象となる「サービス」の内
容を明確にする必要があります。これには「サー
ビスカタログ注1」と言われるものを作成します。
このサービスカタログには2つ役割があります。

役割1：�運用現場が自分達の�
「サービス」を知る

　1つ目は、運用現場が自分達の提供するサー
ビスを客観的に見られるようにすることです。

　これにより、運用現場内部での認識のブレや
モレを解消し、ミスの少ない効率的なサービス
提供ができるようになります。また、自分達か
ら見て魅力的ではないサービスが、他者から評
価されることはまずありません。自分達が自信
を持ってサービスを提供するためにもサービス
カタログは必要です。

役割2：�ユーザと経営者に�
「サービス」を知ってもらう

　2つ目は、ユーザと経営者に「運用現場は何を
やっているか」を伝え、「どんな期待をすること
ができるのか」を知ってもらうことです。
　サービスはそのユーザにプロフィットを理解
してもらうことが重要です。サービスカタログ
では、そのプロフィットを明確にし、過剰では
ない程度に魅力的な文言にあふれているように
しましょう。これにはプレスリリースのような
外部向け文章が参考になります。
　もし可能ならばサービスの標準QCD（標準品
質、標準価格、標準納期）も明示しておきましょ
う。サービスカタログで定量評価基準を宣言し
ておくことにより、運用現場はユーザと経営者
から定量的に評価されるようになります（過剰な
要求から身を守ることにもつながります）。

サービスカタログの内容

　この「サービスカタログ」には少なくとも次の
項目が必要になります。

・サービスの名称／識別子
・サービスのプロフィット
・サービスの標準QCD

「任務」と「実績」の明確化で
運用の業績を可視化する

運用設計ラボ合同会社　波田野 裕一（はたの ひろかず）　 mail operation@office.operation-lab.co.jp

運用現場の理想②
第 章3

注1） ITILに「サービスカタログ」という概念がありますが、本稿
の「サービスカタログ」と概念は異なります。

As-Is

To-Be
第 章3

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の理想②
「任務」と「実績」の明確化で運用の業績を可視化する

As-Is

To-Be

As-Is

To-Be

72 - Software Design Feb. 2015 - 73

　外部に公開する場合は、次のような項目も必
要になるでしょう。

・サービス責任者
・問い合わせ先
・免責事項

　このカタログに記述するサービスの粒度につ
いては運用現場によって異なりますが、QCDを
決めるにはある程度粒度が細かい必要がある一
方で、ユーザが「細かすぎる」と感じるようだと
見てもらえなくなるので注意が必要でしょう。

サービスカタログは運用現場の�
「ミッションステートメント」

　これから新たにサービスを構築していく場合
は、サービスカタログを基にサービス設計を進
めていきます。すでにサービスを提供している
場合は、従来あるサービスをサービスカタログ
に書き起こしていきます。いずれの場合であっ
ても「サービスカタログ」は、運用現場が提供す
るすべてのサービスに対する運用現場のコミッ
トメントを、運用現場を取り巻くステークホル
ダに示す重要な文書となります。
　運用現場のすべてのリソースと作業は、この
ミッションステートメントとも言うべき「サービ
スカタログ」の内容を実現し、さらにより良いも
のにしていくために使われることになります。

デリバリの実現方法を
明確にする「運用設計」
　ここまでで「サービスデリバリ」のうち「サービ
ス」の部分はサービスカタログで明確になりまし
た。次は、サービスカタログに記載された各
「サービス」について、どのように「デリバリ」し
ていくかを明確にしていく必要があります。

非合理的な運用業務

　第1章で、運用現場に積み上げられていった
非合理的な業務は、あらゆる局面で「隠れ運用コ
スト」を生み、雪ダルマ式に運用現場の余力を

削っていくと説明しました。このような業務を
日常的に行っている運用現場は、次のような特
徴を持っていると考えられます。

・意見や分析が主観的になりがち（主観的）
・論理的な説明がなかなかできない（非論理的）
・実績が感覚値で論じられがち（非科学的）
・やりっぱなしになりがち（非サイクル性）

　これでは運用現場がユーザに提供するプロ
フィットが決まっても、それを安定的に提供し
続けていくことは難しくなってしまいます。

合理的な「サービスデリバリ」の実現

　サービスを安定的にユーザに提供していくに
は、次の視点に基づく「運用業務の枠組み」を構
築し、合理的な「サービスデリバリ」を実現して
いく必要があります。

・客観的な立場からの意見や分析（客観的）
・論理的手法による適切な説明（論理的）
・科学的測定法による適切な見える化（科学的）
・継続的改善の実現（サイクル性）

　ここでは、このような「運用現場に適したサー
ビスデリバリの枠組み（フレームワーク）を作り
込むこと」を「運用設計」と定義します。

運用設計の目的
　運用設計は、合理的な「サービスデリバリ」を
実現することを目的として、運用現場における
業務の枠組みを構築します。このことは、裏を
返すと「運用現場に非合理的な業務運営を持ち込
まないためのしくみ作り」をするとも言えます。
　運用現場に非合理的な業務運営は、運用現場
に次の3つの問題点をもたらしていると第1章
でお話ししました。

①高負荷
②属人的
③見えぬ費用対効果

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

74 - Software Design

　合理的な「サービスデリバリ」を実現するため
の運用設計においては、これらの問題点が発生
しないように、次の3つのしくみ作りをする必
要があります。

①「業務の複雑化」を許さないしくみ

　運用現場の「高負荷」には、質的と量的の2つ
の側面があります。「量的な高負荷」に対しては、
やや安直ですが一時的に要員を増やすことによっ
て短期的には解消できるでしょう。しかし、業
務の複雑さに起因する「質的な高負荷」は容易に
は解決できません。
　運用設計においては、こうした「質的な高負
荷」を招かないために、「業務をシンプルに保つ」
ためのしくみ作りが重要となります。

②�「業務のブラックボックス化」を�
許さないしくみ

　運用現場では、最近「属人化はよろしくない」
という認識が広まりはじめています。しかし、
勢い余って「属人的なのはなんでもダメ」という
風潮も出てきています。
　実際には「属人化」には、次の2つの意味があ
ります。

・本来は属人的になってはいけない領域が「属人
化」している

・特定個人の専門性に期待している領域が「属人
化」している

　問題になるのは前者で、365日24時間稼動が

前提になっている業務において、特定の人が対
応しないと業務の停止が起こりかねないという
場合における属人化を言います。このような状
況は事業継続性リスクを生み出しかねません。
後者はむしろ「個性への期待」と表現するのが妥
当でしょう。
　運用設計においては、こうした「属人化が許さ
れない領域でのブラックボックス化」を招かない
ために、「業務が常に見える」ためのしくみ作り
が重要となります。

③「業務の陳腐化」を許さないしくみ

　運用現場の「費用対効果」について、まず「費
用」と「効果」で性質が異なることを考慮する必要
があります。
　通常「費用」は、何らかの事情がない限り、時
間が経過しても一定のままです。しかし「効果」
は、第1章の「感謝の経年劣化」の例のように時
間の経過とともに減少していくのが普通です。
　運用設計においては、この運用の「効果」を陳
腐化させずに少なくとも「価値を維持する」、可
能であれば「常に価値を生む」ためのしくみ作り
が重要になります。
　これは運用現場単体では非常に難しいことだ
と思います。ほかの組織との連携を前提に、サー
ビスデリバリに関連するあらゆる定量情報、ユー
ザの意見やクレーム情報などの定性情報など「運
用現場が価値を生むための素材」を集めるしくみ
作りをすることが現実的でしょう。
　以上を図にまとめると図1のようになります。

運用現場の期待

サービスの安定
社会基盤に相応しい安定運用

運用設計の目的

①業務の複雑化を許さないしくみ作り

②業務のブラックボックス化を許さない
　しくみ作り

③業務の陳腐化を許さないしくみ作り

業務負荷の平準化
うまく業務が回る運用環境

運用に対する評価の適正化
適正な利潤を生む現場と、適切に評価
される要員

運用現場の現実（問題点）

①高負荷

②属人的

③見えぬ費用対効果

常にシンプル

常に見える

常に価値を生む

 ▼図1　運用現場の3つの問題点をなくすためのしくみ作り

As-Is

To-Be
第 章3

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の理想②
「任務」と「実績」の明確化で運用の業績を可視化する

As-Is

To-Be

74 - Software Design Feb. 2015 - 75

運用設計の概要
　運用設計において、中心となる作業は次の3

つになります。

①作業カタログの作成
②作業フローの明確化
③運用基盤の構築

①作業カタログの作成

　サービスを安定的にユーザに提供するには、
サービスカタログ上の「サービス」ごとに「デリバ
リ」を実現するために必要な作業を洗い出してい
く必要があります。このデリバリに必要な作業
の一覧をここでは「作業カタログ」と言います。
　作業カタログでは、その作業が「属人的」か否
かを判断基準として「定常作業」と「非定常作業」
に分類します。具体的には、特定の個人でなく
てもその作業ができるドキュメントがあるかど
うかが基準になります。新規にサービスを設計
している場合は、最初の段階ではドキュメント
が存在しないので、すべての作業が非定常作業
ということになります（極端な表現ですが、その
ままサービスをローンチするとすべての作業が
「運用でカバー」になってしまいます）。
　ユーザはサービスカタログからリクエストする
サービスを選択し、運用現場はそのサービスをデ
リバリする作業を作業カタログから選択して実施
することになります。運用現場は、ドキュメント
があり、特定の個人でなくても作業ができる「定
常作業」を増やしていくことにより、属人的な「非
定常作業」を減らし、「運用でカバー」を極小化し、
属人的、高負荷からの脱却を図りつつサービスを
安定化させていくことになります。
　最終的には非定常作業は、あくまでも定常作
業でやりきれない部分を、補助的に特定の個人
が行うものに限定されることになります。この
非定常作業は「個人の個性に期待される」付加価
値のある作業もしくは、「運用でカバー」による

非合理的な作業のどちらかになります。

②作業フローの明確化

　次に、作業カタログ上の各作業について、作
業フローを明確化していきます。前述したとお
り、一般的にサービスデリバリは次のようなフ
ローを持ちます。

❶リクエストを受ける
❷処理を行い、成果物を生成する
❸成果物をデリバリする

　これをもう少し詳しく見ると、一般的な作業
フローは次のように表現することができます。

❶Inbound（ユーザからのリクエストを受ける）
❷前処理
❸本処理
❹後処理
❺Outbound（成果物をユーザにデリバリする）

　この作業フローは工場の生産ラインに非常に
よく似たモデルと考えられます。このことは、
作業フローを考えるうえで次のような生産ライ
ンの視点を導入できることを意味します。

・	手戻りに対する違和感……生産ラインは1方
向に流れることが大前提であるため、作業フ
ローの途中で発生する手戻りに対して違和感
を覚えるようになる（業務を効率的合理的に
考えるうえで必要な感覚）

・	QCDによる定量評価……生産ラインにおいて
はQCDによる定量評価が一般的に行われて
いるため、運用作業をQCDで定量評価でき
るようになる（業務の現状を数値的に把握し、
改善効果を客観化するうえで重要）

・	ボトルネックという発想……作業フローの各
工程をQCDで定量評価し、ボトルネックに
なっている工程を分割し、やれることを先に
どんどん進めるように変更することで、作業
を効率化できるようになる

　この3つの視点で実際の作業フローを明確化

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

76 - Software Design

していきましょう。多くの発見があるはずです。
運用現場における作業フローとQCDの関係をま
とめると図2のようになります。
　たとえば、障害復旧の作業フローであれば、
次のような作業フローが考えられます。

❶inbound：サービス障害通知の受信
❷前処理：サービスの状況確認
❸本処理：サービスの復旧作業
❹後処理：サービスの状況確認
❺outbound：サービス復旧の告知

　各工程において手戻りの解消、QCDによる評
価、ボトルネックの解消を行うことにより、作
業フロー自体のスループットやデリバリ品質の
向上につなげることができます。さらに、多く
の定常作業について上記の作業フローに準拠す
る形で見直しをしていくことが、結果的に作業
フローの標準化につながっていきます。
　非定常作業では、このようにきれいな作業フ
ローにならないことが多いでしょう。きれいな
作業フローにできないから非定常作業になって
いるのですから。

③運用基盤の構築

　各作業フローが明確になったら、その作業フ
ローを支える運用基盤を構築する必要がありま
す。一般的に「運用基盤」というとツールやシス
テムをイメージされることが多いと思いますが、
「運用基盤」という言葉は「運用業務を支える基盤
となるもの」すべてを意味します。運用基盤シス

テムがあるだけでは実際の運用業務は回りませ
ん。運用業務に関するドキュメントや、そこで
働く人のスキルがあってはじめて運用基盤シス
テムは意味を持つわけです。
　ここでは、「運用基盤」とは、運用業務（とくに
定常業務）を支える次の3つのリソースの総称を
意味するものと定義します。

・ドキュメント
・スキルセット
・ツール

　とくに“特定の個人でなくてもできる”必要が
ある「定常作業」を支えるうえで、運用基盤は極
めて重要な意味を持ちます。

 ●ドキュメント
　3つの運用基盤の中で「ドキュメント」は最も
重要です。その理由は表1にまとめたとおりで
す。また、ドキュメントにはその内容によって
表2のように賞味期限に違いがあります。やみ
くもに作成するのではなく、賞味期限にあった
作成を心がけるべきでしょう。

 ●スキルセット
　「スキルセット」とは、ドキュメントの内容を
正確に理解し、とくに定常作業を正確かつ確実
に遂行する「スキル」群とその習得に必要な教育
の枠組みのことを言います。この「スキルセッ
ト」は3つの運用基盤の中でドキュメントの次に
重要です。その理由は表3にまとめたとおりで

Quality
品質という価値観

Cost　金額という物性

Delivery　時間という物性

Step1

サービス
工程

Step2

サービス
工程

Step3

サービス
工程

Step4

サービス
工程

Step5

サービス
工程

前処理 本処理 後処理

リ
ク
エ
ス
ト

デ
リ
バ
リ

inbound outbound

 ▼図2　運用現場における作業フローとQCDの関係

As-Is

To-Be
第 章3

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の理想②
「任務」と「実績」の明確化で運用の業績を可視化する

As-Is

To-Be

76 - Software Design Feb. 2015 - 77

す。運用現場において、メンバーに求められる
スキルには表4の3つのスキル領域があります。
　運用業務の内容を正確に明示する「ドキュメン
ト」基盤と、そこで働く人に求められる「スキル
セット」基盤が整備された時点で、運用現場の「任
務」はほぼその全貌が見えてきたはずです。あと
は、この任務を補助する「ツール」基盤を構築す
れば、「運用設計」の主要部分は完了となります。

 ●ツール
　「ツール」とは、ドキュメントとスキルセット
の内容に従い、運用作業の一部を安定化および
効率化する目的で利用するプログラムや道具の
ことを言います。3つの運用基盤の中で「ツール」
は他の2つの基盤と比べてあまり重要度は高く
ありません。これには「ツール」が持つ次の3つ
の「負の側面」が理由となります。

・理由1：「ツールありき」は業務の硬直化を招く
・理由2：�学習コストの発生など、「常にメリッ

トをもたらす」とは限らない
・理由3：短い「ツールのライフサイクル」

　しかし世の中は今、空前の「運用の自動化」大
ブームです。そして、目的と手段を取り違えな

ければ、「ツール」は実際に大きな効果が期待で
きる強力な武器になり得るものです。今後、運
用現場で「ツール」や「自動化」の導入を考える場
合は、1「自動化」は「目的」ではない、2ツール
は「使い捨て」である、3「疎結合」「分散」を意識
する、の3点を意識すると良いでしょう。

　◆　◆　◆
　以上で「運用基盤」の構築が完了しました。最
後に「運用設計」のアウトプットとして、「運用基
盤」を見える化するために「リソースカタログ」を
作成します。

運用現場の潜在力を示す
「リソースカタログ」
　リソースカタログとは、運用現場が利用する
ことのできるリソースを一覧としたものです。
組織は「ヒト・モノ・カネ」という「与えられたリ
ソース」以上の成果を挙げることは一般的にまず
不可能です注2。つまり「リソースカタログ」は、
その運用現場が持つポテンシャル（潜在能力）を
示すことになります。

注2） 精神論的に「がんばればなんとかなる」というのは机上の空
論に過ぎないですし、その精神論でがんばった結果が「運
用でカバー」であり、運用現場の業務の非合理化につなが
っています。

正確な作業内容の確認 ミスやトラブルを防ぎ、「スキルセット」「ツール」を適切に設計する
作業の存在を明示 対外的に示すことで運用作業の価値を維持し、事業継続性を担保する
変化への柔軟な対応の実現 環境変化への対応や業務改善による作業フローの変更をしやすくする。とくに「なぜ

（Why）」そういう作業になっているのかの理由を意識して記録することが大切

 ▼表1　ドキュメントが重要な理由

資産性ドキュメント 運用現場にとって継続的に価値を生み出すドキュメント。手順書や構成図、設計書など
費用性ドキュメント 後で価値をあまり持たなくなるドキュメント。内部的な作業報告書や週報日報など
収益性ドキュメント 運用現場に一時的な収益をもたらすドキュメント。ユーザに納品するものや実績のBefore/

Afterを示すものなど

 ▼表2　ドキュメントの賞味期限

作業品質の
安定化

作業する人によって品質が異なるのを防ぐ

作業負荷の
平準化

負荷の平準化を推し進め、作業できる人を
増やす

教育効果 どのスキルをどうやって伸ばすかを考え、
人材を育てる

 ▼表3　スキルセットが重要な理由

業務スキル
領域

各運用現場で経験量に依存する固有の
知識と技能

技術スキル
領域

その運用現場に依存しない専門技術と
しての知識と技能

基礎スキル
領域

社会人としての一般的な知識と技能

 ▼表4　スキル領域

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

As-Is

To-Be

As-Is

To-Be

78 - Software Design

　実際には、次のような3つのリソースを記述
します。

①情報の部（モノリソース）
②要員の部（ヒトリソース）
③予算の部（カネリソース）

①情報の部（モノリソース）

　運用現場が持っている情報資産をリストアッ
プします。前述した運用現場が保有している3

つの「運用基盤」がそのままここに入ります。

・ドキュメント
・スキルセット
・ツール

　これはISMS（情報セキュリティマネジメント
システム）における情報資産台帳に相当するもの
です（実務におけるISMSに比べると、よりデー
タに近い抽象的な情報資産を管理するものです）。

②要員の部（ヒトリソース）

　スキルセット定義に従い、運用現場の要員を
分類してリストアップします。働く人も運用現
場の大事なリソースです。人事考課に使われる
だけでなく、運用現場が新しいことができる可
能性を考えたり、スキルアップのためにどうい
う教育の枠組みを作るべきかを検討するときに
活用されます。

③予算の部（カネリソース）

　運用現場が持つ金銭的なリソースをリストアッ
プします。この予算が潤沢であれば運用現場の
選択肢は広がります。予算の決裁権限が運用現
場になければここはカラです。もしくは、毎期
運用現場を通過していく人件費の数字だけが積
まれているのかもしれません。

運用現場の「任務」を明確に
するために必要なもの
　ここまでで、運用現場の「任務」を明確にする

ための作業が完了しました。作業の過程で次の
3つのカタログを作成しました。

・サービスカタログ（運用現場のミッションを示
すもの）

・作業カタログ（運用現場の現在の業務遂行能力
を示すもの）

・リソースカタログ（運用現場のポテンシャルを
示すもの）

　3つのカタログがそろうことで、運用現場の
「任務」をサービス面、作業面、リソース面から
それぞれ明確にします。さらに、それぞれのカ
タログは、各ステークホルダが持つ「運用への期
待」に対して、現在どういうステータスであるか
を個別に明示する役割をも担うのです（図3）。

運用現場の「実績」の明確化
　さて、運用現場の「実績」とはどういうもので
しょうか？
　運用現場の「実績」とは、純粋な「運用現場のア
ウトプット」のことを言います。そして、この実
績の中に各ステークホルダの期待に沿うものが
あれば、結果としてそれが「成果」として認めら
れることになります。

実績を「定量評価」する重要性

　従来、運用現場では自分達の評価につながる
定量的な実績データをあまり持っておらず、運
用現場の主観に基づいた「定性的な実績」で自分
達のアウトプットを表現せざるを得ませんでし
た。このことは「運用はいつも忙しそうだが、何
をやっているのかよくわからない」と言われる原
因となり、努力や苦労の割にその実績が「成果」
としてあまり高く評価されない結果につながっ
ています。
　運用現場の「成果」を各ステークホルダが客観
的に評価できるようにするためには、サービス
デリバリの「実績」を定量的に表現する必要があ
ります。ここでは、サービスデリバリの実績を

As-Is

To-Be
第 章3

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の理想②
「任務」と「実績」の明確化で運用の業績を可視化する

As-Is

To-Be

78 - Software Design Feb. 2015 - 79

QCD（Quality、Cost、Delivery）で定量的に表現
する方法について考えていきます。

QCDとは

　QCDとは、おもに生産工学で生産ラインの定
量評価のために使われる概念で、Quality（品質）、
Cost（費用）、Delivery（納期）の3つの評価軸を
指します。
　Costは「金額」、Deliveryは「時間」という、そ
れぞれ誰が見ても同じ「絶対値を持つ基準」で客
観化できる点が特徴です。
　Qualityは「品質基準」という「特定の価値観」に
より評価される点が他の2つの評価軸と異なる
特徴です。品質基準によって「評価者の価値観」
による主観的相対的な品質評価になる場合も、
「評価対象の物性」による客観的絶対的な品質評
価になる場合もあります。
　QCDによる定量評価においては、すぐに絶対
値で実績を記録できるCostかDeliveryのいずれ
かから始めるのが定石となります。誌面の都合
もありますので、ここではDelivery実績の記録
を中心に解説します。

Deliveryの実績を
記録する
　今まで定量的なデータを取る習慣がなかった
場合は、QCDの3つの中で取得が比較的容易な

Deliveryに関する実績データを採取しはじめる
のが良いでしょう。運用現場で取得できる実績
データのうち、開始時刻と完了時刻の差分で表
現できるものはほとんどDeliveryの実績として
扱うことができます。
　Deliveryとして一番イメージしやすいのは、
ユーザのリクエストを受けた時間と実際にデリ
バリーが完了した時間の差分でしょう。人手を
介さないものとして「Webサーバの平均応答時
間」も一種のDeliveryと考えることもできます。

納期の記録

　Delivery実績の記録を始めるにあたって、最
初は納期の実績を取るのがオススメです。作業
カタログの各作業についてリクエスト着信時刻
とデリバリ完了時刻の2つを記録していきます。
　たとえばシステムなどの設定作業については、
ユーザからの最初の依頼が到着した時間が開始
時刻となり、依頼元に対する作業完了通知が送
信された時間が完了時刻となります。この程度
の記録であれば、最初は人手で実施することも
可能でしょう。これをたとえば1ヵ月記録し続
けると、その月の各作業の平均納期を算出でき
るようになります。これは運用現場にとって重
要な「納期の定量実績データ」となります。
　このデータを利用することにより、ユーザか
らの「あの作業はお願いするとどれくらいででき

る？」という問い合わせに対して客
観的データに基づく回答ができる
ようになります。また、「この作
業、3日ぐらいでやってもらえな
いかな？」というリクエストが、定
常作業の範囲のものなのか、「運用
でカバー」しないとできないものな
のかという判断が即時にできるよ
うになります。

工数の記録

　各作業について納期の定量実績
データが取れるようになったら、

運用への
期待サ

ー
ビ
ス
カ
タ
ロ
グ 作

業
カ
タ
ロ
グ

リソースカタログ

ユーザ

運用マネージャー

運用メンバ
経営者

プロフィット

ポテンシャル

パフォーマンス

 ▼図3　運用への期待に対する現場のステータスが明確化

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

As-Is

To-Be

80 - Software Design

次は各作業を行ううえで必要となる運用現場の
工数を取ってみましょう。各作業で行うそれぞ
れの工程について開始時刻、完了時刻を記録し
ていきます。これにより各工程で実際に必要と
なる作業時間が明確になり、作業に拘束される
要員の「工数」を時間という単位で表現できるよ
うになります。
　特定の工程で開始時刻と完了時刻の間が長い
ものは、もしかしたら作業が複雑で手間取って
いるのかもしれません。特定の工程間で前工程
の完了時刻と後工程の開始時刻の間が長いもの
は、もしかしたら前工程の完了後に後工程への
連絡が遅れて放置されているのかもしれません。
同じ工程について人によって工数にばらつきが
あるのであれば、もしかしたらスキルの差が工
数に影響しているのかもしれません。このよう
に作業のボトルネックが見えてきます。
　すべての作業のすべての工程について毎回手
動で記録するのは現実的ではないので、作業で
利用するツールで自動取得するか、各工程で実
際にかかる作業時間を調べて「標準作業時間」を
決めるのが現実的でしょう。

CostとQualityの実績を
記録する

Costの実績を記録する

　Deliveryの実績データが取れるようになった
ことで、ユーザに対するサービスの納期とそれ
にかかわる時間的な工数が見えてきました。
　次はCostの実績データを採取することで、
Deliveryにかかわるコスト構造を明確にしてい
きます。具体的には次の手順を行います。

❶運用現場のコスト構造を明確にするために、
各リソースの時間単価情報を決定し、リソー
スカタログに記載する

❷リソース情報の単価情報と工数情報を基に、
作業カタログの各作業について平均実作業単
価を算出もしくは標準作業単価を決定する

❸各作業のCost（作業単価）の変動を実績として
記録する

　Cost（作業単価）情報は取り扱いに注意が必要
です。この数値は、利用リソースや作業プロセ
スを改善した「結果として（上にも下にも）変動す
る」ものです。「この数値を減らすため」に単価情
報という「金額」や作業工数という「時間」を削減
することは、目的と手段の逆転を生み出し、結
果として運用現場に深刻な歪みをもたらします。

Qualityの実績を記録する

　Qualityは、「品質基準」という「特定の価値観」
によって測定されるものです。
　主観的相対的な品質基準で測定する場合は、
測定者や測定内容の客観化、絶対値化（たとえば
5段階）など、測定結果について「誰が見ても同
じ」ようにしておく必要があります。
　一方の客観的絶対的な品質基準の場合、どの
ような数値を測定対象とするかが重要になりま
す。運用現場で取得できる実績データのうち、
時間と金額以外の「誰が見ても同じ数値」となる
ものはすべて、Qualityの実績データとして扱う
ことができます。
　いずれの品質基準の場合であっても、時系列
で数値比較できるデータとして蓄積しておくこ
とがQuality実績の記録として重要になります。

◆　◆　◆
　ここまで、運用現場の純粋なアウトプットで
ある「実績」をQCDで「どう客観的に表現するか」
について説明してきました。次はこの実績を「成
果」として各ステークホルダに認めてもらわなけ
れば、ここまでがんばった甲斐がありません。
誌面の都合で詳しくは述べられませんが、客観
化された実績を生のデータで見せるのではなく、
個々人の組織での役割と業績の評価基準を定め、
「成果として提示できる状態」にしましょう。｢

As-Is

To-Be
第 章4

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の未来
「運用でカバー」から「運用エンジニアリング」へ

As-Is

To-Be

As-Is

To-Be

As-Is

To-Be

81 - Software Design Feb. 2015 - 81

「運用でカバー」から
「運用エンジニアリング」へ　

運用設計ラボ合同会社　波田野 裕一（はたの ひろかず）　　 mail operation@office.operation-lab.co.jp

運用現場の未来

運用の未来
　「ここまで細かいことをしないとだめなの
か？」と思う方も多いかもしれません。しかし運
用業務への要求は、極めて高度な客観化を前提
としたものに変化し始めています。本記事の最
後のパートとして、エンジニアリング、セキュ
リティ、付加価値の観点から「運用の未来」につ
いて考えていきたいと思います。

「家内制手運用」からエンジニア
リングによる「大量運用時代」へ

問題を根性で解決するな

『問題を根性で解決するのは馬鹿です。
　問題をエンジニアリングで解決するのがエン
ジニアの仕事です。
　「夜中まで／土日も仕事すればなんとかなる」
　というのは馬鹿です。
　そうならないようにエンジニアリングで解決
するのです。』注1

　ちょうど3年前、『「運用でカバー」がなぜダメ
なのか』を簡単に理解してもらえる一言が見つか
らずに悩んでいたころに出会った言葉です。
　運用でカバーは「問題を根性で解決」しようと
する行為です。もしあなたが、ITシステムにか
かわる運用エンジニアであるならば、エンジニ
アリングによって問題を解決していかなくては
なりません。問題を根性で解決する人は、「エン

ジニアリング」をしていないのですから「エンジ
ニア」とは呼べないわけです。

「手運用」から「大量運用」の時代へ

　エンジニアリングの歴史を簡単に振り返って
みましょう。
　18世紀後半に起きた産業革命は、工業の分野
に大きな変革を起こしたため「工業革命」とも呼
ばれています。この工業革命は、熟練した職人
が手仕事によってモノ作りをする「手工業（しゅ
こうぎょう）」が主流だった生産現場を、生産工
学（インダストリアル・エンジニアリング）に基
づいて「一定の品質のモノを効率良く生産」する
「大量生産」の場へと変革させていきました。
　さて現代。1990年代後半から普及し始めたイ
ンターネットは、「情報革命」というべき社会的な
変革を起こし続けています。日本の職場におい
てはITシステムが急速に普及し「業務の電子化」
が一気に進みました。しかし、業務の進め方は、
熟練した担当者が運用でカバーしつつがんばる
「手運用（てうんよう）」が主流となっており、業
務の効率化はいまだ大きな課題となっています。
　工業革命がたどってきた歴史を振り返ってみ
ると、情報革命は今後おそらく運用現場を「一定
の品質のサービスを効率良く提供」する「大量運
用」の場へと変革させていくでしょう。実際に、
いわゆるクラウドと言われるサービスやリモー
トワークという働き方が広く認知され、従来の
仕事のやり方を大きく変えつつあります。今後
の運用現場にとって、これらのサービスを利活
用し、一定の品質のサービスを効率良く提供す
るエンジニアリング手法の存在は重要な意味を
持ってきます。

第 章4

注1） 2012年2月17日にデブサミで僕が話したことの簡単なま
とめ。http://d.hatena.ne.jp/Yoshiori/20120217/132949
1437

http://d.hatena.ne.jp/Yoshiori/20120217/1329491437

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

As-Is

To-Be

82 - Software Design

エンジニアリングとは客観化、構造化

　生産工学においてはその実績を「データに語ら
せること」を重視しています。これはできるだけ
現場の主観にとらわれずに、その現場を客観的
に見るためです。また、生産ラインにおいては
さまざまな原料や工具が複雑に関連して製品を
作り出します。この複雑な関連を、人が理解し
やすい形で表現することを「構造化」と言い、構
造化した表現を「アーキテクチャ」と言います。
　業務の客観化と構造化を意識することがまず
大事になります。これらが「運用現場の効率化」
につながり、結果として「エンジニアリング」へ
と発展していきます。

「セキュアな運用」が
求められる時代
　運用現場におけるエンジニアリングの実践は、
セキュリティの観点からも求められていくよう
になります。「運用でカバー」が日常化している
運用現場では、セキュリティの3大要素である
機密性・完全性・可用性のいずれも客観的に担
保できるはずがないからです。

運用現場におけるセキュリティの乖離

　セキュリティの重要性は、国内の企業におい
ても10年くらい前から認識され、大企業を中心
に、ISMS（情報セキュリティマネジメントシス
テム）の導入など形の上ではセキュリティ対応体
制の整備が進められてきました。しかしその多
くは、各現場の事情が十分には考慮されず、全
社的なセキュリティポリシーを適用するという
「セキュリティが業務を縛る」という形で施行さ
れました。
　さらに、ISMSに基づく監査は、セキュリティ
ポリシーが現場で適切に実施されていることを
確認する「手段」のはずでしたが、早々に「ISMS

監査を通すことが目的」となってしまい、運用現
場にセキュリティポリシーと実運用の乖

かい

離
り

をも
たらしています。ISMSの定義するセキュリティ

ポリシーにすべてしたがっていれば大丈夫と本
気で考えている現場の人、監査の人はほとんど
いないのが現実ではないでしょうか。

客観化されていないものは監査できない

　このことが即「ISMSが悪い」と言い切れるこ
とにはなりません。
　会計監査を例に見ればわかりますが、「監査」
というものは、監査を受ける側が自分たちの業
務を他人が理解できるように客観化してあるこ
と、監査人がその客観化された内容を専門家の
観点から分析できること、が前提になります。
運用現場が自分たちの業務をセキュリティ視点
で客観化ができていないことが、全社統一のセ
キュリティポリシーを適用されてしまう理由の
1つになっています。

セキュリティインシデントの傾向変化

　昨年上半期あたりからセキュリティインシデ
ントの傾向に大きな変化があり、経済的な利益
を狙う攻撃が主流となり、ソフトウェアの脆弱
性が判明した直後に実際の攻撃が発生する「ゼロ
デイ攻撃」も急増しています。攻撃の商業化分業
化も進んでいるとされ、無差別攻撃による被害
範囲の拡大、標的型攻撃による被害金額の高騰
化などが問題となってきています。
　最近は「完璧に守りきることは不可能」という
認識がセキュリティ専門家の間でも広がりつつ
あり、「やられたことにいかに早く気づき、いか
に早く対応し、復旧をさせるか」という「ダメー
ジコントロール」がセキュリティ対応における最
重要課題となっています。

「セキュアな運用」
 == ダメージコントロール

　ダメージコントロールとは、軍事、医療、自動
車分野などで使われている用語です。空母の運
用を例にすると「甲板に爆弾が落ちることは避け
られないし、装甲を強化しても限界がある。爆
弾の直撃を受けて火災が発生しても艦が沈まな

As-Is

To-Be
第 章4

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

運用現場の未来
「運用でカバー」から「運用エンジニアリング」へ

82 - Software Design Feb. 2015 - 83

いためにどうするかを考える」こととなります。
　効果的なダメージコントロールを行うために
は、空母の構造や兵員の能力の正確な理解が必
要です。そのうえで、出火の検知、損壊部位の
特定、ダメージの判定、効果的な消火活動の実
施といった緊急時の対応内容を平時に決めてお
く必要があります。つまり空母とその運用は、
設計時点でダメージコントロールを前提として
いると言えます。
　セキュリティ攻撃は、防御側から反撃できな
い一方的な攻撃です。一発の爆弾で会社が沈ま
ないためには、運用設計の時点でダメージコン
トロールを前提としておく必要があることがご
理解いただけるかと思います。運用現場におけ
る「セキュリティ」は、定常運用の一部と考える
べき時代になったと言えます。
　実際に運用現場でダメージコントロールをす
るには、次の3つの視点が必要となります。

 ●攻撃の入口は外部との接続ポイント
　外部からの攻撃は、必ず外部との接続ポイン
トから行われます。運用現場は、外部とどのよ
うな接続ポイントを持っているかを把握してお
く必要があります。本記事の運用設計では、サー
ビスカタログでユーザとの接続ポイントの概要
を把握し、作業フローやリソースカタログで具
体的なユーザや外部リソースとの接続ポイント
を把握します。
　しかし、外部から直接できる攻撃方法は限ら
れています。実際には、攻撃者は何らかの方法
で組織内部に侵入し、内部から攻撃することで
攻撃効果の最大化を図っています。その侵入経
路をブロックするためにも、外部との接続ポイ
ントの把握は重要になります。

 ●致命傷になるのは内部事故
　一般的に外部に対しては強力な防御で固めら
れていますが、内部に対しては攻撃や偶発事故
に対してとても脆い状態になっています。内部
からの攻撃を効果的に防ぐには、特定の攻撃を

防ぐための防御機構を組み込むよりも、常日頃
から組織内部に偶発事故を防止する機構を実装
しておくことの方が有効です。
　攻撃には流行り廃りがあり、変化が激しいの
で追随していくこと自体が非常に難しいのに対
して、偶発事故の防止については現場がエンジ
ニアリングを重視しているのであれば、十分に
防止が可能となるからです。
　このときに重要なのは、「作業者の保護」を目
的に業務を設計することです。この考え方を実
践するうえで、生産ラインや建設現場における
事故防止設計が参考になります。生産ラインで
は工作機械が暴走したら人命にかかわる事故に
つながります。運用現場では内部事故によって
作業フローが暴走したら、会社という船が沈み、
その船の乗組員である運用現場の人々も巻き込
まれる時代になったのです。

 ●迅速な初動と消火のための運用設計
　最近のセキュリティ攻撃は、その攻撃効果を
最大化するために密かに潜入し、長期に渡って
情報を収集したり、本格的な攻撃の時期まで何
もせずに潜伏する方法が増えています。管理者
を欺くためのしくみも巧妙化しており、組織外
部からの通報によって初めて攻撃が判明するこ
とも増えています。
　適切にダメージコントロールを行うには、あ
らかじめ次のような作業を作業カタログや作業
フロー上で明確にしておき、外部からの通報な
どに即時に対応できるようにしておく必要があ
ります。

　❶�情報の一元化と対応の指揮管制を行うコン
トロールチームの立ち上げ

　❷被害部位の特定やダメージの判定
　❸消火活動

　迅速な初動と消火は、セキュリティインシデ
ントによる被害を最小化し、その組織と運用現
場自身を守ることにつながります。
　運用現場はサービスデリバリのプロとして、

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

As-Is

To-Be

84 - Software Design

エンジニアリング手法を駆使して自分たちの業
務を適切に客観化し、セキュリティなど各分野
の専門家の助言を伴うレビュー（監査）を参考に
し、適切な改善を繰り返すことで、自分たちに
とって仕事をしやすい環境の獲得や、効率的で
セキュアな運用業務の実現をめざしていくこと
になります。

「シェアードサービス」
としての運用現場
　「シェアードサービス」という概念が経営学に
あります。経理・人事や情報システム管理など
の間接業務を本社の一部門もしくは特定の子会
社に集約し、業務をその必要性や効率性の観点
から整理・標準化し、コスト効率のよい社内サー
ビスとして提供する考え方です。従来は「コスト
センター」として扱われていた間接部門につい
て、コスト効率、業務品質やユーザの満足度な
どの向上を図り、部門としての価値をも向上さ
せる取り組みとして注目されています。
　中には独立採算制に移行してサービスを外販
することで、プロフィットセンターに転換する
ことに成功した例もあります。Amazon.comが
自社のインフラ基盤をクラウドサービスとして
外販しているAmazon Web Services（AWS）は、
シェアードサービスの外販化事例として世界で
最も知られているものの1つです。エンジニア
リング志向で効率のよいセキュアな運用業務を
実現する運用現場は、その高品質なサービスを
外販することでプロフィットセンターに転換でき
る可能性があることは常に意識しておきましょう。
　シェアードサービスとして成功するかどうか
は、自分たちの運用業務を次のどちらでとらえ
ているかが重要となってきます。

サービス志向運用（目的が大事）

　「やりたいこと（サービス）」があって、それを
支援するための基盤（プロダクト）を構築して運
用業務を行っている場合、運用現場の視点はサー
ビスに重点が置かれます。
　サービスの上流工程である運用現場の事情を、

下流工程の開発現場が斟
しんしゃく

酌することが必要にな
ります。このときに、運用業務が客観化されて
いなければ、適切な開発は行えません。運用と
開発の関係は、本来あるべきユーザ企業とSIer

の関係に近くなるでしょう。
　運用はサービスの提供に対する売上原価にな
るので、費用対効果の説明がしやすくなります。
また、サービス全体の予算のイニシアチブを運
用現場が持っていれば、経営層がよく口にする
「経営者意識を持った現場」を実現できる可能性
も高くなるでしょう。

プロダクト志向運用（手段が大事）

　自社で開発したプロダクトを提供する手段と
して運用業務が存在する場合、運用現場の視点
はプロダクト中心になります。
　プロダクトの上流工程である開発現場の事情
を、下流工程の運用現場が斟酌することが必要
になります。適切なフィードバックのしくみが
ないと、開発現場は運用現場の苦労に気づかず、
「運用でカバー」が蔓延する可能性があります。
　複数のプロダクト運用を行う運用現場におい
ては、そのアウトプットを提供しているサービ
スへの貢献を示すために、費用を各プロダクト
に直接配賦する必要があります。それをめんど
うくさがって共通配賦にした場合や、直接配賦
してもそのアウトプットが評価されない場合、
運用はコストセンターとして認識されてコスト
カットの対象になるので注意が必要です。
　プロダクト全体における予算のイニシアチブ
がなければ「コストカット感覚を持つこと」を現
場に求めることはできても、「経営者意識を持つ
こと」を求めるのは無理でしょう。

◆◆◆
　IT企業の人々と「運用」の話をすると、プロダ
クト志向運用の視点で話をされているケースが
ほとんどです。サービス志向運用と言われても
ピンと来ないようです。IT企業におけるサービ
ス志向運用の実例としては、先ほどシェアード
サービスの成功事例として紹介したAWSが参
考になるでしょう。｢

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

「運用でカバー」の科学
　ハーメルンの笛吹き男は「運用でカバー」の夢を見るか

As-Is

To-Be

85 - Software Design Feb. 2015 - 85

竹槍では運用をカバーできません
　私は20年以上、小さな大学でインターネットの運
用管理に携わってきました。そして、ここ数年は、同
じ大学でマネジメント側の仕事をするようになって
きています。
　運用管理に携わっていた時代には、上から降って
くる「運用でカバー」という不合理な判断を嘆いてい
たものです。ここで言う「運用でカバー」とは、お金
も用意できないし、要員もいないのに、無理な要求
をなんとかしてしまうことを指します。たとえば、新
しいサービスを提供しろと言うだけで、お金も人も
出ないというような場合に、今あるリソースをごま
かしながら持ち出してこっそり立ち上げるような事
態を指します。それのもたらす結果がどのようなも
のになりそうかは、賢明な読者なら想像がつくでしょ
う。しかし、それで済む場合もありますが、物事に
は限度というものがあります。
　その時代の私は、限度を超えて無理な要求が来る
と「竹槍で爆撃機は撃墜できません」ということにし
ていました。そこでさらに踏み込んで、「それには1
千万円はかかります」と言います。上司は当然嫌な顔
をしながら、「だったら君の言う予算の半分の500万
円ではできないのか」と言うのですが、そこで、すか
さず、私は反論します。「竹槍で撃墜できないだけで
はありませんよ。ここに7千メートルの高度まで撃墜
できる高射砲があったとして、爆撃機が1万メートル
の上空を飛んでいたら、やはりそれは竹槍と同じ効
果しかありません」これが、情報システム部門におけ
る1つの特色だと思っています。つまり運用でカバー
しようとしても解決できない、そういう問題が情報

「運用でカバー」の科学　ハーメルンの笛吹き男は「運用でカバー」の夢を見るか

武蔵学園　小野 成志（おの せいし）

システム部門には存在しています。
　仮にそこまでの話ができたとしても、日本の組織
では、幸せな結果が待っているとは限りません。む
しろ結局お金も人も出ないというオチになることが
多いでしょう。とりわけ新しいサービスではなく、従
来のサービスを改善するといった場合には、「運用で
カバー」する以外に手がないということは情報システ
ム部門の現場では普通です。そんなときに竹槍で「運
用でカバー」が実現できるものでしょうか？

　おそらく、そこには1つの秘密があるように思いま
す。たとえば、ここで、システム上のある問題が発
生したとします。何日経っても、一月経っても、情
報システム部門は、その問題を解決できません。そ
のようなときに、現状のスタッフと代わり映えのし
ないスキルしか持たない要員が投入されたところで、
事態は何も改善しません。これが高射砲が爆撃機ま
で届かないという事態です。
　これでは運用でカバーしろと言っても、できませ
ん。いよいよここまでか、と思う瞬間がやってくる
ように思えます。ところが、そういうときに限って、
ここに優秀な技術者が1人現れて、あれだけ悩んでい
た問題を10分で解決してしまう、情報システム部門
で働いたことのある人なら一度ならず経験したこと
があるはずです。高射砲が爆撃機に到達するとは、そ
ういうことを指します。
　偶然にも「運用でカバー」で乗り切れたのです。し
かしそういう場合、それでよかったということには
なりません。私は、「運用でカバー」する日本の企業
体質も問題だと思いますが、このような優秀な技術
者に対する、周囲の評価も問題があると思います。

Column

Column

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか第2特集

As-Is

To-Be

86 - Software Design

ハーメルンの笛吹き男のジレンマ
　何ヵ月もかかった問題を見事に10分で解決した優
秀な技術者は、現場やその上司からは評価されるで
しょうか？　おそらくそうはならない。そんな簡単
にできるなら何も問題はなかったことになり、深刻
な問題は忘れ去られさえするのです。そして目の前
の問題が解決したばかりに、本来解決しなければな
らない「運用でカバー」してきた問題は、そのまま生
き続けることになるでしょう。
　ただし、優秀な技術者が、優秀であるがゆえにか
えって評価されないという事態だけを見れば、それ
は日本固有の話でも、また現代的な話でさえもあり
ません。グリム童話で有名な「ハーメルンの笛吹き男」
を思い出してみましょう。鼠

そ

害
がい

に悩むハーメルンの
町にやってきた笛吹き男は、その笛で見事にねずみ
を退治します。しかし、ハーメルンの市民は約束の
お金を払おうとしませんでした。復讐として、笛吹
き男は街中の子供たちをその笛で誘い出してどこか
に消えてしまったというお話です。
　このグリム童話では、なぜ市民がお金を払おうと
しなかったかがあいまいに書かれています。しかし
阿部謹也の『ハーメルンの笛吹き男』（2008年筑摩書
房）によれば、16世紀の『チンメルン伯年代記』という
本には、理由が明確に書かれているそうです。「市民
の考えでは、男が何の努力も払わず、費用もかけな
かったにもかかわらず」ねずみを退治してしまったの
で、「報酬は払わなくてもよい」と決定したというの
です。
　自分たちでは何が起こっているかも、どのように
解決してよいかもわからない問題を解決してしまう
ことに対して、その成果をなるべく低く評価し、無
視することにしようという反応は、16世紀の時代の
笛吹き男の寓話から現代の優秀な技術者に至るまで
の共通の反応なのです。
　優秀な技術者が、「運用でカバー」そのものを生む
わけではありません。ただ「運用でカバー」を当たり

前としている職場環境では、優秀な技術者の意義が
評価されないまま「運用でカバー」の片棒を担がされ、
状況をさらに悪化させてしまうのです。

「運用でカバー」が企業の衰退を招く
　情報システム部門を去ってマネジメントをするよ
うになってから、あらためて気がついたのは、「運用
でカバー」は、日本の組織や企業の文化に、かなり深
く根ざした問題でもあるということでした。組織の
中でのコスト最適化のためには、運用でカバーは必
要なことだという認識を多くのマネージャーが持っ
ていたのです。
　たとえば、知り合いの、ある大企業の老練なマネー
ジャーは、ことあるごとに昔ながらの「根性論」で部
下を激励します。要するにそれは何事も運用でカバー
しろということなのです。実際それで、ほぼすべて
の問題が片付く世界というものが、少し前の日本の
企業文化の中には存在していたのでしょう。30年前
に世界でもてはやされた「日本的経営」の文化には、「運
用でカバー」 はうまく組み込まれていたのです。
　しかし今日、その日本的経営にはほころびが見え
はじめ、日本の企業に閉塞感が漂うようになってこ
の方、「運用でカバー」の文化が、日本企業の衰退を
招いているのかもしれないとも思うのです。
　「運用でカバー」は日本的経営の中では、至るとこ
ろに見られる現象かもしれませんが、これが情報シ
ステム部門に適用されると、いっそう深刻な問題に
なるのです。
　情報システム分野は常に技術革新の波を受けてお
り、解決すべき課題が絶え間なくやってきます。運
用は日々極めて厳しい条件の中で行われています。
　同時にそのことは、経営者が問題の理解から遠ざ
かることも意味しています。結果として、情報シス
テム部門は、コストセンターのお荷物という見方さ
え生まれることになり、現場のさらなる疲弊を生む
ことにもなります。「運用でカバー」は情報システム
部門で顕在化し、恒常化し、現場が疲弊するのは、日

As-Is

To-Be

そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか

「運用でカバー」の科学
　ハーメルンの笛吹き男は「運用でカバー」の夢を見るか

As-Is

To-Be

86 - Software Design Feb. 2015 - 87

本の組織の中では、ある意味当然の帰結でもあるの
です。
　しかも情報システム部門には、誰が考えてもわか
るような大きなリスクが存在しています。
　昨今騒がれている、現場の担当者による故意の大
規模な情報漏えい事故のケースを思い浮かべていた
だければわかるように、情報システムの現場の担当
者に高いモラルがなければ、企業の存続にかかわる
ような事故が容易に起こり得るのです。

「運用でカバー」が作り出す不味いパイ
　私はここでもう1つの話を思い出します。ジェラル
ド・ワインバーグの「コンサルタントの秘密」（1990
年共立出版）に出てくる、「ふくろねずみのパイ」の話
です。創業者の作った美味しい「ふくろねずみのパイ」
という商品を、後継者たちは、コストダウンのため
に少ずつ「改良」してゆき、あるとき、美味しさの閾

しきい

値
ち

を踏み越えます。パイはとても食べられない、ま
ずいパイになり、企業も左前になってしまったとい
う話です。今の日本の企業が「運用でカバー」を続け
ていけば、今はまだ大丈夫だといっているうちに、ま
もなくまずいパイばかりを作る日が来るでしょう。
　日本にはたくさんの優れた技術者がいます。彼ら
はハーメルンの笛吹き男のように、見事に課題を片
付けてしまうでしょう。そして、正当な報酬も評価
ももらえない、ということも日常的に経験している
ことになります。その先に、ハーメルンの子供たち
の失踪のような事態は起こるのでしょうか？
　日々革新される技術に取り組み、無理難題を押し
付けられている情報システムの現場の担当者が疲弊
し、そのモラルが低下していくときには、経営者は
深刻なリスクを抱え込んでいるのだということに気
づかなければならないのです。

何をなすべきか
　日本的な経営の中で「運用でカバー」がとりわけ目
立つのは、その経営システムの中に終身雇用制など
とともに「運用でカバー」がたくみに組み込まれてし
まっているからです。しかし、終身雇用制は事実上
過去のものとなっており、それに伴って多くの制度
が見直されているのが今日の段階とすれば、「運用で
カバー」でものごとをすべて片付ける企業の仕組みも
過去のものになるでしょう。放って置いてなくなる
わけではないにしても、そのような個人のスキルに
依存した運用を行う企業は、長期的には衰退して行
くしかないと思われます。
　同時にこの時期こそ、新たな情報システムの運用
の枠組みを作り上げるチャンスでもあるはずです。「運
用でカバー」という問題には歴史的文化的な背景があ
ります。たとえば、品質管理やオペレーションズリ
サーチなどのアプローチも、今からみれば、「運用で
カバー」の解決のために登場したとも言えるかもしれ
ません。オペレーションズリサーチの起源は、どう
したら兵士が各人で行う食事のあとの皿洗いを手早
く済ませるかという問題解決のために登場しました。
ということは、その軍隊では、それまでは、もし兵
士が食器洗いを手早く済まそうと思えば、各人の「運
用でカバー」により解決するしかなかったという状態
にあったはずです。
　情報の隣接学問領域には、我々には未知であって
も実は既知であるようなアプローチも存在している
かもしれません。地味ではあるかもしれませんが、そ
うした「運用でカバー」のための研究をそろそろ考え
てもよい時期にきているようです。｢

Column

88 - Software Design

はじめに

　Intel社のNIC（Network Interface Card）向け
のネットワーク高速化ミドルウェアであるDPDK

（Data Plane Development Kit）がリリースされて
数年が経ちました。Intel社や6WIND社など複
数社が協力して立ち上がったオープンソースプ
ロジェクトであるDPDK.orgも順調にコミュニティ
を形成しています。本稿では、ネットワーク高速
化ミドルウェアであるDPDKについて、より具
体的な利用シーンを考えながら紹介します。

そもそもDPDKは
誰が使うのか？

　ネットワーク高速化ミドルウェアである

DPDKは、誰にとって関心があるものか？――
皆さんも気になるところでしょう。図1は2013

年1月に、筆者がSlideShareに公開したDPDK

の実験手順である「Disruptive IP Networking

with Intel DPDK on Linux」の閲覧状況をマップ
したものです。2014年11月現在で、延べ12,137

Viewsの閲覧数があり、その分布もほぼ全世界
を網羅しました。
　SlideShare閲覧者のジャンルを見てみると、
その多くが国内外の通信事業者、通信機器ベン
ダー、コンピュータ製造ベンダー、ホスティン
グプロバイダー、クラウドプロバイダーなど、
私たちがよく目にする企業名が出てきます。1

年以上前に公開されたかなりマニアックなスラ
イド注1ですが、ここ半年間のアクセスも廃れる
ことなく定期的なアクセスが続いています（図2）。

 ▼図1　Disruptive IP Networking with Intel DPDK on Linux（SlideShare）の閲覧分布

Intel DPDK技術詳解
少し先の未来がわかる超入門解説！

最先端ネットワーク技術

Writer 松本 直人（まつもと なおと）　さくらインターネット研究所　上級研究員 　イラスト（高野 涼香）

注1） おそらく技術リファレンスとして使われているのでしょう。

88 - Software Design Feb. 2015 - 89

　このリストをふまえて、ネットワーク高速化
技術に世の中的な誤解と正しい理解を整理して
みましょう。

ネットワーク高速化のニーズは
どこから？

　図3は、経済産業省がまとめる我が国におけ
る事業者数と世の中一般にあるネットワーク高
速化技術ニーズを独自に整理したものです。
　前述のSlideShare閲覧ログから類推して、
日本国内においてDPDKはキャリア（通信事業
者）やデータセンター、エンタープライズ（大企
業）などが強い関心を持っており、おそらくは
そういった分野の活用がもっとも効果的であろ
うと頭に浮かびます。
　そもそもDPDKを使って 10Gbit/secから
100Gbit/secを超える大規模トラフィックをフ

ルワイヤレート（理論上の最大データ転送速度）
で制御しようという企業がどれだけあるかと言
われれば、もっともな話です。
　少し脱線しますがDPDKの利用シーンを考え
た時、キャリア（通信事業者）が一般企業とは異
質な点を強調しておきたいところです。なぜな
らキャリア（通信事業者）では機種選定を1つとっ
ても異なるカルチャーを持っているからです。
　図4は、キャリア（通信事業者）における機種
選定の考えた方の例を示したものです。私たち
が普段使いしているデスクトップPCやIAサー
バとは異なる品質基準を持ったAdvanced TCA

（Advanced Telecommunication Computing

Architecture）という機器がキャリア（通信事業
者）では好まれる傾向があり、その名のとおり
アーキテクチャ自体もキャリアグレードになっ

150

100

50

0
 2 Jun 16 Jun

Views(閲覧数)

30 Jun 14 Jul 28 Jul 11 Aug 25 Aug 8 Sep 20 Oct6 Oct22 Sep 3 Nov 17 Nov

 ▼図2　Disruptive IP Networking with Intel DPDK on Linux（SlideShare）のアクセス状況（半年間）

小規模事業者334万 大企業 1万
中小企業 51万

DPDKなどで
高速化技術を

必要とする事業者

ちょっぴり

（従業員数：5～20名以下）

DPDKなどで高速化されたキャリアやデータセン
ターのプラットフォームで、そのことを知らずに恩
恵を受けるユーザ層

出典：我が国における事業者数（経済産業省 中小企業・小規模事業者の数）
　　 2012年2月時点
市場分析：さくらインターネット研究所（2014年11月作成）

・キャリア
・データセンター
 ・エンタープライズ

デスクトップPC

IAサーバ ※1

Advanced TCA ※2

※1：Intel Architecture
※2：Advanced Telecommunications

Computing Architecture

 ▼図3　ネットワーク高速化技術に関する誤解と正しい理解 ▼図4　キャリア（通信事業者）にお
　　　ける機種選定の考え方

少し先の未来がわかる超入門解説！Intel DPDK 技術詳解
最先端ネットワーク技術

90 - Software Design

ています。
　つまり、我が国のほとんどのシステムエンジ
ニアやデベロッパーにとってDPDKは、手に
余りある「謎技術」であり、利用シーンがまった
くないという想定もできます。
　しかしながら、本誌読者の中には、少なから
ずそういった分野に携わっている方もいらっしゃ
ると思いますので、このまま続けます（笑）。

フルワイヤレートの
パケット処理性能を求めて

　Linuxなど汎用的なOSのネットワークスタッ
クには、性能限界があることが昔から知られて
います。とくにMTU（Maximum Transmission

Unit：最大データ転送量）サイズが64バイトな
ど比較的小さいパケット処理性能に関しては、
ネットワーク機器の評価を行う際の指標値とし
てよく用いられます。図5は、Linuxにおける
パケット処理性能をPPS（Packet/sec）で示し
たものです。ご覧いただけるようにMTUサイ
ズが256バイト以下の小さいパケット処理にお
いて、10GbEが本来持つワイヤレート性能（理
論値）を出していないことがわかります。
　ここ10年以上、IT業界における分業化が進

んだ結果、こういったネットワーク処理性能を
気に掛けるシステムエンジニアの数も年々減少
しているように感じますが、キャリア（通信事
業者）やデータセンターのシステムエンジニア
では好まれる指標の1つともいえます。

処理性能の限界を超えるには
何をすべきか？

　では、この問題を解決する方法について整理
してみましょう。
　図6注2は、Linuxの標準的なNICで出ていな
かったフル・ワイヤレートの問題を解決するた

標準的なNIC

H/W Offload NICDPDKミドルウェア

ネットワークを高速化したい

今回はこちらのお話

出典：さくらインターネット研究所（2014年11月作成）

Packet/sec

Bytes（MTU）

16,000,000
14,000,000

12,000,000

10,000,000

 8,000,000

 6,000,000

 4,000,000

 2,000,000

0
64 12810GbE-NIC

10GbE Wire-rate

256 512 768 1024 1500 出典：さくらインターネット研究所
（2014年11月作成）

Linux
標準NICドライバ
に超えられない性能限界の壁

 ▼図5　Linuxにおけるパケット処理性能

 ▼図6　フルワイヤレート性能を出すネットワーク高
　　　速化の選択肢

注2） 手段（DPDK）を目的（実装）にしないための重要な整理です。

90 - Software Design Feb. 2015 - 91

めに取り得る策を記述したものです。
　1つはDPDKミドルウェアなどを導入してパ
ケット処理性能を改善するケース、もう1つは
ハードウェアオフロードNIC（H/W Offload

NIC）を導入してパケット処理性能を改善する
ケースが考えられます。
　やや脱線しますが、ネットワーク高速化・パ
ケット処理性能の向上に関してDPDKミドル
ウェアに代表されるOSカーネルバイパス型技
術は、かなりは古くから存在します（図7）。ピ
サ大学のRizzo先生が古くから研究されている
netmapやPF_RINGなどDirect NIC Access型
や、ハードウェアオフロードNICとミドルウェ
アを組み合わせた実装などがこれにあたります。
　DPDKでフル・ワイヤレートのパケット処
理をしたい場合、既存のアプリケーションをコー
ド改修してミドルウェア対応するか、最初から
DPDK対応したソフトウェアパッケージを導
入するか、いずれかの選択が必要になるのです。
あえて強調すれば前述のOSカーネルバイパス
型のミドルウェア導入であれば、ほとんどがこ
のモデルとなります。DPDKコミュニティの
急速な広がりと、IT業界の分業化によって起こっ
た技術断裂により、こういった基本的なことが
浸透せず、図8のような日常が繰り広げられて
いるのが、なんとも悩ましい限りです。

　気を取り直して続けていきましょう。

◆　　◆　　◆

　前述の結論を見て、当然のように「既存のア
プリケーションに手を入れるのは、ちょっと
……」という声も聞こえてくるかと思いますし、
「どんなに優秀でも同じ規格品で構成されたシ
ステムは、どこかに致命的な欠陥を持つことに
なるわ……」と攻殻機動隊の草薙素子さんのコ
メントも脳裏に浮かびます。これをふまえて、
別解を知るべく図9のベンチマーク結果を見て
いきましょう。
　図9は、DPDKとハードウェアオフロード
NIC、標準的なNICをMTUサイズ64バイト

netmap（Mr.Luigi Rizzo） Middleware for Intel NIC（Direct NIC Access）

ntop.org DNA Middleware for Intel NIC（Direct NIC Access）

Intel DPDK Middleware for Intel NIC（Direct NIC Access）

6WINGate Middleware for Intel,Mellanox,and Networking Software package using DPDK

Brocade Vyatta 5600 vRouter Networking Software package for Intel NIC（Direct NIC Access） using DPDK

Myricom Hardware Offload NIC+Middleware Package

SolarFlare OpenOnload Hardware Offload NIC+Middleware Package

Napatech Hardware Offload NIC+Middleware Package

Chelsio Unified Wire Hardware Offload NIC+Middleware Package

 ▼図7　OSカーネルバイパス型ハードウェア／ミドルウェアのベンダーリスト

 ▼図8　DPDKでよくあること

出典：さくらインターネット研究所（2014年11月作成）

少し先の未来がわかる超入門解説！Intel DPDK 技術詳解
最先端ネットワーク技術

92 - Software Design

でベンチマークしたパケット受信性能を示した
結果です。
　このグラフのハードウェアオフロードNIC

（Chelsio社製・Solarflare社製）は付属ドライ
バとコード改修していない既存のアプリケーショ
ン（Linux標準ネットワークスタック）の組み合
わせによって実現されています。DPDKに代
表されるようなミドルウェア導入以外にも、ネッ
トワーク高速化の手段があることを知っておく
と選択の幅も広がります。
　ベンチマーク測定環境は、MACアドレスと
IPアドレスの送信元・宛先が4：1と少ないト
ラフィック・フローですのであくまで参考値と
なりますが、用途によっては悪くない選択肢と
言えます。
　今回は、DPDKの解説ということでハードウェ
アオフロードNICのお話は割愛しますが、選
択の幅を持ちたいシステムエンジニアは、ぜひ
いろいろと試してください。

　続いてDPDKでよくある誤解と正しい理解
について見ていきましょう。

DPDKの誤解と正しい理解

　よくあるDPDKの誤解に「スイッチに置き換
えられる！」というコメントが脳裏に浮かびま
す。そこで実際にできるか考えてみましょう注3。
　図10は、2UのIA（Intel Architecture）サーバ
に4ポート10GbE NICを4枚と2ポート10GbE

NICを 2枚実装したものと、1U 48ポート
10GbEスイッチを比較したものです。実装面積
で見ても2Uで20ポートと1Uで48ポートでは
倍以上の差があることがわかります（この時点で、
もはや話になりませんがあえて続けます）。
　続いてDPDKを使ったIAサーバとスイッチが
持つASICのパケット処理性能について比較して
みましょう（図11）。DPDK Summit2014で発表
されていたDPDKの性能数値によれば、E5-

注3） 本当は考えなくてもわかりますよね？……血の涙。

VS.

10G

10G

10G 10G 10G 10G 10G

10G10G 10G 10G 10G 10G

10G10G 10G 10G 10G 10G

10G 10G 10G 10G
10G 10G 10G 10G
10G 10G 10G 10G

10G

出典：さくらインターネット研究所（2014年11月作成）

2U 10GbE　DPDK Box 20 port 1U 10GbE　Switch 48 port

 ▼図10　IAサーバとスイッチのポート密度比較

Chelsio T580-LP-CR 40GbE H/W Offload NIC

SolarFlare SFC9000 10GbE H/W Offload NIC

Intel DPDK+Intel 82559EB 10GbE NIC

Mellanox ConnectX3 10GbE NIC

Intel X520-DA2 10GbE NIC

Broadcom NetXtreme Ⅱ 10GbE NIC （MTU　64Byte RX：Million packet/sec）

36Mpps

14Mpps

14Mpps

3Mpps

3Mpps

3Mpps

出典：さくらインターネット研究所（2014年11月作成）

 ▼図9　フルワイヤレートのパケット処理性能の比較

92 - Software Design Feb. 2015 - 93

2680v2（2.8GHz）CPU 1コアあたりのパケット処
理性能は最大59Mppsとなっています。指標値が
異なるので単純比較はできませんが、やや乱暴
に比較すると標準的なスイッチ（ARISTA

7150S）が持つASICのパケット処理性能を、
DPDKで実現するには数コアから十数コアを消
費することになります。
　つまり、DPDKを導入したIAサーバをスイッ
チの置き換えにするのは、「とてもモッタイない」
ことがわかります。これらをふまえて、DPDK

の導入シーンを考えると図12のようなシステ
ムモデルが導き出されます。
　1つはネットワークトラフィックの中間に入
るゲートウェイモデル、もう1つはリクエスト
を振り分けるリフレクターモデルです。DPDK

ミドルウェアに対応したDPDKアプリケーショ
ンでは、L2/L3の簡単なパケット処理からロー
トバランサに代表されるようなL4～7の処理

まで多彩な処理形態を最初から想定しています。
DPDKアプリケーションによっては、より多
くのCPU処理性能を要求する場合もあります
ので、単純なL2/L3のパケット処理のような
フルワイヤレートを実現するためには工夫も必
要になってきますが、それでもおおよそこの2

つのモデルに集約されていくことでしょう。つ
まり、DPDKはスイッチの置き換えではなく、
ゲートウェイやリフレクターのようなシステム
にこそ真価を発揮するといえます。

キャリアは
どこを目指しているのか？

　キャリア（通信事業者）のシステムに携わった
ことのあるシステムエンジニアの方であれば目
にされたかと思いますが、キャリア（通信事業者）
のネットワーク基盤は多彩なゲートウェイとシ
グナリングを処理する制御系システムによって
成り立っています。データセンターやエンター

DPDK+E5-2680v2(2.80Ghz)×1core

ARISTA 7150S-24

DPDK+E5-26XXvX(2.80Ghz)×7core

ARISTA 7150S-48

DPDK+E5-26XXvX(2.80Ghz)×18cores

（Million packet/sec）

59Mpps(Vector Rx & Tx / intrinsics)

360Mpps(Ls/L3 pps)

414Mpps(Vector Rx & Tx / intrinsics)

960Mpps(Ls/L3 pps)

1,064Mpps
(Vector Rx & Tx / intrinsics)

出典：さくらインターネット研究所（2014年11月作成）

 ▼図11　DPDKおよびスイッチのパケット処理性能の比較

10/40G 10/40G 10/40G 10/40G

DPDK APP DPDK APP DPDK APP DPDK APP

10/40G 10/40G 10/40G 10/40G

DPDK APP DPDK APP DPDK APP DPDK APP

10/40G 10/40G 10/40G 10/40G

出典：さくらインターネット研究所（2014年11月作成）

10/40Gbit/sec ×4 DPDK Gateway Model 10/40Gbit/sec ×4 DPDK Reflector Model

 ▼図12　DPDKを活用する2つのシステムモデル

少し先の未来がわかる超入門解説！Intel DPDK 技術詳解
最先端ネットワーク技術

94 - Software Design

プライズなどでも、これらは流用できますので、
おそらく同じようなシステムモデルに集約され
ていくことでしょう。
　では、最後に誰でもできるDPDKミドルウェア
の検証方法について、見ていきましょう。内容は
2013年に公開された「Disruptive IP Networking

with Intel DPDK on Linux（SlideShare）」からの
抜粋で少々古いですが、DPDKミドルウェア実
装の雰囲気をつかむという意味でご覧ください。

DPDKミドルウェアを
使ってみる

　現在、DPDKはオープンソースとして提供
されており、ソースコードもダウンロード可能
です注4。DPDKは、LinuxなどOS上に内在す
るネットワークスタックのボトルネックを解消
し、ネットワーク高速化を図るミドルウェアで
す。図13のようにDPDK対応NICを用意し、
DPDK対応ライブラリとDPDK対応アプリケー

ションを導入することでネットワーク高速化を
実現します。
　次にDPDK対応NICの種類について見てい
きましょう（図14）。
　DPDKは Intel社が主導して開発されたとい
うこともあり、Intel社の主要なNICはほとん
ど対応しています。最初は10GbE NICとごく
一部の1GbE NICだけだったのですが、いつ
の間にか1GbEから40GbE NICまで多彩な数
となっています注5。
　サードパーティから提供されるDPDK対応
NICにはEmulex社とMellanox社のドライバも
あるようですが、残念ながらDPDK.orgにある
ソースコードには Intel社のDPDK対応NICし
かリストされていません。
　さらにDPDKミドルウェアの利用イメージ
を具体的にするために、Linuxへの導入手順を
見ていきましょう。今回はDPDK対応NICと
してIntel社の10GbE NICを使っています。今

注4） http://dpdk.org/download
注5） DPDKを1GbE NICでフルワイヤレート性能を引き出すニーズがどれだけあるのか筆者も疑問にはなるところですが、あえてそこ

は突っ込まずに……。

標準的なアプリケーション

Linux標準ライブラリ

Linux標準ドライバ

標準的なNIC

出典：さくらインターネット研究所（2014年11月作成）

カーネルバイパスによる改善

標準的なアプリケーションは動作しない！

ボトルネック

ユーザ空間

Linux、FreeBSDプラットフォーム

カーネル空間

DPDK対応アプリケーション

DPDK対応ライブラリ

DPDK対応NIC

ユーザ空間

Linux、FreeBSDプラットフォーム

カーネル空間

ボトルネック カーネルバイパス

 ▼図13　DPDKミドルウェアの利用シーン

http://dpdk.org/download

94 - Software Design Feb. 2015 - 95

回、本稿で紹介する手順は、筆者によって1年
以上前に試したものです。読者の皆さんの環境
に合わせて適宜読み替えてください。実験環境
の構成は図15のようになります。
　まず最初にLinux上にDPDKが動作する環境
を整えます。ヒュージページ用の領域を設定し、
ダウンロードしてきたDPDKパッケージを展開・
コンパイルします。DPDK対応モジュールが出
来上がったら、システム側に導入します（図16）。
　次に、DPDK対応アプリケーションを作成
します。今回のDPDK対応アプリケーション
では、単純にL3でのIPフォワーディングのみ

を行うシンプルなものとしています。簡単なソー
スコードの変更を見ていただければわかるよう
に、トラフィック生成するシステムの IPアド
レス（10.0.0.11）と受信するシステムの IPアド
レス（10.0.0.22）のペアとそれぞれが接続する
NICの物理ポート（1と0）、さらに送信先の
MACアドレス（90:E2:BA:23:02:9D）をハード
コーディングしています（図17）。
　勘の良いシステムエンジニア・デベロッパー
の方であれば、すぐに気づくと思いますが、
DPDKにはLinux標準ネットワークスタック
がもっているようなARP処理などは最初から

 ▼図15　DPDK実験環境の構成

mkdir /hugepages
vi /etc/fstab
hugetlbfs /hugepages hugetlbfs rw,mode=0777 0 0
mount /hugepages

cd /opt; unzip INTELDPDK.L.1.2.3_3.zip ; cd DPDK
make install T=x86_64-default-linuxapp-gcc
modprobe uio
insmod /opt/dpdktest/DPDK/x86_64-default-linuxapp-gcc/kmod/igb_uio.ko

 ▼図16　DPDK環境を作る

 ▼図14　DPDK対応NICリスト

メーカー 製品名

Intel e1000（82540、82545、82546）
e1000e（82571..82574、82583、ICH8..ICH10、PCH..PCH2）
igb（82575..82576、82580、1210、1211、1350、1354、DH89xx）
ixgb（82598..82599、X540、X550）

Emulex oce（OneConnect OCe14000 family）

Mellanox mlx（ConnectX-3、ConnectX-3Pro）

Paravirtulaization:virtio-net or virtio-net+ uio(QEMU),vmxnet3 or vmxnet3 +uio(VMware
ESXi),memnic

標準で提供

サードパーティから提供

DPDK APP
AMD E-350 1.76GHz /DDR3 8GB
Intel 82599EB 10GbE-NIC/PCI
Express 2.0
10.0.0.2/ 90:E2:BA:23:02:9D

Intel Core i7-3960X CPU@3.30GHz
Intel 82599EB 10GbE-NIC/PCI
Express 3.0
Linux 2.6.32-220.23.1.el6.x86_64

Intel Core i7-3930K CPU@3.20GHz
Intel 82599EB 10GbE-NIC/PCI
Express 2.0
10.0.0.1/ 00:0C:BD:00:E8:1B

出典：さくらインターネット研究所（2014年11月作成）

少し先の未来がわかる超入門解説！Intel DPDK 技術詳解
最先端ネットワーク技術

96 - Software Design

入ってはいません。OSカーネルをバイパスし
てダイレクトにNICのメモリ領域を触るとは、
つまりこういうことなのです。

◆　　◆　　◆

　では、出来上がったDPDK対応アプリケー
ションを起動してみましょう（図18）。
　サンプルコードの起動パラメータに関しては、
DPDKのソースコードを参照してもらうとして、
まずはこのような形で動かすというイメージを
つかんでみてください。DPDK対応アプリケー
ションが10GbE NICの2つのポートを使用し、
作成したアプリケーションのイベントループが
走り出しているのが見えます。
　DPDK対応アプリケーションを起動させただ
けでは負荷試験ができません。続いてトラフィッ
ク生成側と受信側のシステム導入手順について
見ていきましょう。この例ではピサ大学のRizzo

先生が開発されたFreeBSD（picobsd）とnetmap

を用いたパケット生成・受信向けのISOイメージ
を使っています。そのISOイメージ（bin）をダウ
ンロード注6し、Win32 Disk Imagerを使って
USBメモリに書き込み、トラフィック生成・受信

の両方からOSを起動してみてください（図19）。
　これでDPDK対応アプリケーションの実験
環境がすべて整いました。さっそく負荷をかけ
てみましょう。図20は、DPDK対応アプリケー
ションをRizzo先生のトラフィック生成イメー
ジを使って評価した結果です。送信側から細か
いパケットで14.1Mpps（packet/sec）を送信し、
DPDK対応アプリケーションを経由して受信
側で13.6Mppsが観測されているのがわかりま
す。受信側がAMD E-350 1.76GHzという非力
なマシンで均一な評価になっていないのが非常
に残念ですが、Linux標準ネットワークスタッ
クの性能上限が3Mpps付近であるのを考えれば、
DPDK対応アプリケーション導入が十分な性
能改善であったことがわかります。

注6） http://info.iet.unipi.it/~luigi/netmap/

./build/l3fwd -c 0x3 -n 2 -- -p 0x3 --config="(0,0,0),(1,0,1)"
:
done: Port 0 Link Up - speed 10000 Mbps - full-duplex
done: Port 1 Link Up - speed 10000 Mbps - full-duplex
L3FWD: entering main loop on lcore 1
L3FWD: -- lcoreid=1 portid=1 rxqueueid=0
:

 ▼図18　DPDK対応アプリケーションの起動

cd examples/l3fwd
diff main.c.orig main.c
284a285,286
> {IPv4(10,0,0,11), 24, 1},
> {IPv4(10,0,0,22), 24, 0},
478c480
< *((uint64_t *)tmp) = 0x000000c00900 + (dst_port << 24);

> *((uint64_t *)tmp) = 0x9d0223bae290 ; /* MAC Addr 90:E2:BA:23:02:9D */
RTE_SDK=/opt/DPDK make

 ▼図17　DPDK対応アプリケーションのサンプル

 ▼図19　netmap picobsdのUSBメモリ書き込み

http://info.iet.unipi.it/~luigi/netmap/

96 - Software Design Feb. 2015 - 97

　「あれ？　でもなぜトラフィック生成と受信側
は、こんな高い性能を出しているんだ？」と疑問
に思われた方もいらっしゃるかと思います。そ
うです。前述の図7を参照すればわかるように、
トラフィック生成・受信側のシステムは、Rizzo

先生のnetmapによってOSカーネルバイパスし
た状態でトラフィック生成と受信を行っている
のです。
　このように一般的なシステムエンジニアがいま
までに経験したことがない、未体験ゾーンの技
術によってDPDKミドルウェアによるネットワー
ク高速化が図られます。ただ、DPDK対応アプ
リケーションの開発方法を見ればわかると思いま
すが、これらソフトウェアはLinuxのユーザ空間
からある程度、覗き見ることができるのです。

DPDKの性能評価

　図21は、perfコマンドを使ってDPDK対応ア
プリケーションの性能評価を行った結果です。
DPDK対応アプリケーションで、どのファンクショ
ンがもっとも使われているか、ボトルネックはど
こにあるかなど、コマンド結果から確認できます。
　さらに詳しく性能評価を行いたければ、perf

コマンドを使ってDPDK対応アプリケーショ
ンが消費するCPUのクロックサイクルまで確
認できます（図22）。
　これらはネットワーク高速化を考えるシステム
エンジニア・デベロッパーにとっては、とても重
要な情報です。なぜなら、ネットワーク高速化の
パケット処理を考えたとき、DPDKミドルウェア

 ▼図20　DPDK対応アプリケーションの実験結果

perf record ./build/l3fwd -c 0x3 -n 2 -- -p 0x3 --config="(0,0,0),(1,0,1)"
perf report
:Events: 94K cycles
49.17% l3fwd l3fwd [.] main_loop
42.14% l3fwd l3fwd [.] ixgbe_recv_pkts
 5.40% l3fwd l3fwd [.] rte_delay_us
 2.86% l3fwd l3fwd [.] ixgbe_xmit_pkts
 0.18% l3fwd l3fwd [.] send_burst
 0.07% l3fwd libc-2.12.so [.] __memset_sse2
 0.03% l3fwd l3fwd [.] ixgbe_poll_eerd_eewr_done
 0.02% l3fwd [kernel.kallsyms] [k] apic_timer_interrupt
 0.02% l3fwd [kernel.kallsyms] [k] tty_write
 0.01% l3fwd [kernel.kallsyms] [k] native_write_msr_safe
 0.01% l3fwd [kernel.kallsyms] [k] _spin_lock
 0.00% l3fwd l3fwd [.] ixgbe_read_eerd_generic
 0.00% l3fwd [kernel.kallsyms] [k] account_user_time
 0.00% l3fwd [kernel.kallsyms] [k] smp_apic_timer_interrupt
 0.00% l3fwd [kernel.kallsyms] [k] scheduler_tick

 ▼図21　DPDK対応アプリケーションの性能評価

RX/TX
[Packet Receiver]
AMD E-350 1.76GHz /DDR3 8GB
Intel 82599EB 10GbE-NIC/PCI
Express 2.0

pkt-gen-i ix1 -f rx
:
main[1257]13573141 pps
:

[Layer 3 Forwarder with Intel
DPDK]
Intel Core i7-3960X CPU@3.30GHz
Intel 82599EB 10GbE-NIC/PCI
Express 3.0
Linux 2.6.32-220.23.1.el6.
x86_64

[Traffic Generator]MTU64Byte
Short Okt.
Intel Core i7-3930K CPU@3.20GHz
Intel 82599EB 10GbE-NIC/PCI
Express 2.0

pkt-gen-i ix1 -f tx -l 64 -d
10.0.0.22
:
main[1231]14118009 pps
: 出典：さくらインターネット研究所（2014年11月作成）

14.1 Mpps TX 13.6Mpps RX

少し先の未来がわかる超入門解説！Intel DPDK 技術詳解
最先端ネットワーク技術

98 - Software Design

を導入したIAサーバでは、すべてのCPUの合計
クロックサイクル以上には性能は出ないからです。
　図23は回線帯域とパケット処理に掛けられ
る1コアあたりのCPUクロックサイクルを示
したものです。
　仮に2.8GHz CPUの1コアだけで、10GbEか
ら100GbEまでの回線でMTU 64バイトなど小
さいサイズのパケット処理をフルワイヤレート
を出そうとすれば、グラフのように数クロック
サイクルで1パケットを処理しなければいけな
い世界が、じつはすぐそこまで来ているのです。
　数クロックサイクルで1パケットを処理する
というのは、やや飛躍しすぎではありますが、
私たちを取り巻くネットワークとコンピューティ
ング環境は、いよいよ新しい局面にまで近づい
ていることがわかります。

おわりに

　駆け足でDPDKと私たちを取り巻くネット
ワーク環境のこれからについてみてきました。

いかがでしょうか？　DPDKミドルウェアは、
一般的な分野で過ごしてきたシステムエンジニ
ア・デベロッパーにとっては、とても取っつき
にくい分野の技術の1つです。しかし、コン
ピュータ性能をCPUクロックサイクルで理解
できる面白い教材でもありますし、手懐けるこ
とができれば、計り知れないアプリケーション
やWebサービスの性能改善が行える心強いツー
ルにもなる可能性を秘めています。
　いまは、まだキャリア（通信事業者）やデータ
センター、ごく一部のエンタープライズ用途の
ような広帯域ネットワークシステムでしか、そ
の真価を発揮できないかもしれません。しかし、
いずれ私たちの手もとでも知らないうちに使っ
ているような時代がくるかもしれません。
　本稿によって、3～5年先を研究している当
研究所の、少し先の未来の技術的な取り組みを
お楽しみいただけたら幸いです。ﾟ

10GbE

40GbE

100GbE

188 ※1

2 ※2

47

※1　Intel E5-268-v2(2.80GHz):2,8000,000,000Hz/14,880,000
packet/sec=188 clock cycles/packet

※2　物理限界：1パケットを2クロックサイクルで処理しろ！

 ▼図23　回線帯域とパケット処理に掛けられる1コアあたりのCPUクロックサイクル

perf rstat ./build/l3fwd -c 0x3 -n 2 -- -p 0x3 --config="(0,0,0),(1,0,1)"
: Performance counter stats for './build/l3fwd -c 0x3 -n 2 -- -p 0x3 --config=(0,0,0),(1,0,1)':
 92805.936402 task-clock # 1.853 CPUs utilized
 133 context-switches # 0.000 M/sec
 13 CPU-migrations # 0.000 M/sec
 1,958 page-faults # 0.000 M/sec
 370,566,087,852 cycles # 3.993 GHz [83.33%]
 102,860,504,930 stalled-cycles-frontend # 27.76% frontend cycles idle [83.33%]
 32,572,874,185 stalled-cycles-backend # 8.79% backend cycles idle [66.67%]
 663,418,320,041 instructions # 1.79 insns per cycle
 # 0.16 stalled cycles per insn [83.33%]
 106,088,555,938 branches # 1143.123 M/sec [83.33%]
 63,608,468 branch-misses # 0.06% of all branches [83.33%]
 50.077399637 seconds time elapsed

 ▼図22　DPDK対応アプリケーションで消費されるCPUクロックサイクル

98 - Software Design Feb. 2015 - 99

　ここ数年、過熱気味になっているDPDK（Data Plane Development kit）ですが、なぜそこまでCPUベンダー
である Intel社が熱心に取り組んでいるか、このコラムで背景を振り返ってみましょう。
　直観的に考えて、パケット処理といえば専用ASICやFPGA、ネットワークプロセッサによる処理がもっと
も効果的だと古くからのシステムエン
ジニアであれば考えます。では、それ
は本当にそうでしょうか？
　図Aは、Intel社が現在保有するNPU
（ネットワークプロセッサ）を使って1パ
ケットを処理するのに必要なクロックサ
イクルを計算したものです。10GbE程度
であれば、納得できる数字になっていま
すが、40～100GbEになるにつれ、現実
離れしたクロックサイクルで1パケットを
処理しなければいけないことがわかります。

　続いて図Bを見てみましょう。これはクロックサイクルあたりのネットワーク処理性能を示したものです。
異なる単位を1つの表にしているため、やや乱暴な数字になってはいますが、ここからネットワークの広帯
域化とパケット処理の物理限界が見えてきます。
　図Bは、最新のパケット処理性能。そして、これもごく最近開発されたDPDKミドルウェアによる成果です。
そして、ここから本題になりますが、Intel社はこの性能を叩き出せるNPU（ネットワークプロセッサ）を保有
していません。Intel社は2007年以降、NPUの開発を行っていない状態で、そしてそのサポート期間は最長で
も7年となっています。今年は2014年。技術的にも今年が分岐点であることがわかります。
　Intel社は最新のCPUで内部に I/O HUBを内蔵し、Integrated I/Oと呼ばれるパケット処理機構もその中に取
り込んでいます。すべてのパケット処理をCPU内部で完結させ、今後も増え続ける広帯域ネットワークのパケッ
ト処理に対応する素地をすでに作り上げてきているのです（図C）。

　一昔前10GbE NICが夢物語であったものが現在普通に使われているように、100GbE NICも私たちが現役で
あるここ10年以内には当たり前のものになっていきます。
　技術革新の分岐点に立つ珍しい時期、新しいもの好きのシステムエンジニアにとっては楽しくてたまらな
い時間とも言えるでしょう。

10GbE

40GbE

100GbE

11

0.45

45 ※1

※1 Intel NPU
IXP435:667,000,000Hz/14,880,000packet/sec=45 clock
cycles/packet

（Clock Cycles/pacekt on Single core）

出典：さくらインターネット研究所（2014年11月作成）

 ▼図A　回線帯域とパケット処理に掛けられるNPUクロックサ
　　　イクル

x86 CPU L2 Cache ※1

x86 DPDK Vector Rx & Tx ※2

Tilera NPU L2 Forwarding ※3

x86 CPU RAM ※1

Linux network stack ※4

※1 QCon San Francisco 2009,Scaling Your Cache $
Caching at Scale /Alex Miller(11/2009)

※2 DPDK Summit 2014,Networking Workloads on Intel
Architecture(9/2014)

※3 2014 Enterprise Tech.Tilera Rescues CPU Cycles
with Network Coprocessors(10/2013)

※4 HCL technologies,Linux Fast Path Using
Application-Specific Fast Path(1/2013)

（Compute cycles/packet）

出典：さくらインターネット研究所（2014年11月作成）

15

47 DPDK
release 1.7

70

200

2,000

 ▼図B　クロックサイクルあたりのネットワーク処理

Intel Xeon #5-2699 v3
(45M Cache,2.30GHz)

Intel Integrated I/O

Intel Corporation.ARK Memu.
出典：さくらインターネット研究所

 （2014年11月作成）

パケット処理をCPU内部の
キャッシュで完結する

Memory
Controller

CPU

Cache

I/O HUB

NIC

 ▼図C　Intel社は最新のCPUの構造

　　 「ネットワークプロセッサとDPDKのアレコレ」

少し先の未来がわかる超入門解説！Intel DPDK 技術詳解
最先端ネットワーク技術

100 - Software Design

特別寄稿●安全な実装の手がかりを探る
自分でソフトウェアをセキュアに作るための基礎知識

クヌース博士が書いた
フローチャート

　たとえ天才的なコンピュータサイエンティス
トでも、教わらなければ最初からうまくはでき
ません。セキュリティ対策も同じであると筆者
は考えています。
　今のプログラマは、構造化されたプログラム
を当たり前のように書きます。しかし『The Art

of Computer Programming』の著者、TeXの作者
として有名なクヌース博士注1でさえ、最初から
整然としたプログラムを書いていたのではあり
ません。構造化プログラミングが提唱される前、
学部生だった当時書いたコンパイラのフロー
チャートに「構造」はなかったことが知られてい
ます（図1）。

ソフトウェアセキュリティ教育
の現状

　ほどんどの読者の皆さんは、ソフトウェアの
セキュリティについて体系的に学んでいないで
しょう。「体系的に学ぶ」とは実践のHow Toで
はなく、基礎と論理に基づいて学ぶことを指し
ます。

注1） http://dl.acm.org/citation.cfm?doid=368481.368507

　ソフトウェア／ITのセキュリティとは何か？
どう対策すべきか？　これら基本を理解してい
ないと対策のしようがありません。クヌース博
士が構造化されたフローチャートを書けなかっ
たように、セキュリティ概念と基礎の理解なし
では、開発者が脆弱性を作ってしまうのは当然
です。開発者が、なぜソフトウェアにセキュリ
ティ脆弱性ができてしまうのか、それを防ぐ方
法を知っていれば防止できます。
　その方法は後述します。まずは2つのソフト
ウェアセキュリティ対策のアプローチを考えま
す。

セキュリティ対策
――2つのアプローチ

　セキュリティ対策には、開発者を「信用する」
「信用しない」の2つのアプローチがあります。

・開発者を信用しない（セキュリティ問題を自
己解決できない）

・開発者を信用する（セキュリティ問題を自己
解決できる）

　これらの前提のうち、どちらが正しく効率的
と決められるモノではありません。時と場合に
より優先順位が変化します。両方とも必要なア
プローチです。

残念ながらソフトウェアには必ずと言ってよいほどセキュリティ脆弱性があります。この
現実から「開発者はセキュリティ問題を自己解決できない」ことを前提とした対策が必要で
あるとわかります。しかし、本当に開発者はセキュリティ問題を自己解決できないのでしょ
うか？――いえ、自己解決は可能です！

自分でソフトウェアをセキュアに作るための基礎知識

自己解決できるのか？
開発者は、セキュリティ問題を

特別寄稿●安全な実装の手がかりを探る

 Writer 大垣 靖男（おおがき やすお）　エレクトロニック･サービス・イニシアチブ㈲

http://dl.acm.org/citation.cfm?doid=368481.368507

100 - Software Design Feb. 2015 - 101

開発者は、セキュリティ問題を自己解決できるのか？

① 開発者はセキュリティ問題を自己
解決できない　

　開発者を信用しない、つまり「開発者はセキュ
リティ問題を自己解決できない」とすると、開
発者は、

・作法を学び、作法のとおりにコードを書くべき
・知識が足りない
・ミスを犯す

として“開発環境”を作らなければなりません。
　開発者がセキュリティ対策を、まったく知ら
なくても安全にプログラムを作れるセキュアな
開発環境があれば理想的です。少しずつこのカ
テゴリーの技術は進歩していますが、現実には
このような開発環境の入手は困難です。
　仮に完璧な「セキュアな開発環境」となるアプ
リケーション開発フレームワークが存在したと
しても、新しいデータベース用のモジュールを
持っていない、HTTP/2プロトコルに対応し
ていない、といった場合には「セキュアな開発
環境」を越えたプログラミングが必要になりま

す。その環境に足りない機能があり、追加する
場合は「セキュアな開発環境」に頼らないプログ
ラミングが欠かせません。そして安全性に責任
を持つのは機能追加を行う開発者にあります。
　不完全でも現在のアプリケーション開発フレー
ムワークは、できるだけセキュリティ対策を意
識しなくても、安全なコードが書けるよう配慮
して作られています。利用しているアプリケー
ション開発フレームワークを安全に利用する方
法／内容を知らなくても、安全な作法を知るだ
けで脆弱性の少ないアプリケーションを作れま
す。
　しかし、アプリケーション開発フレームワー
クだけで完全に安全なアプリケーション作れる
わけではありません。注2

注2） クヌース博士が学部生だった当時は、プログラミングとは
フローチャートを書くことでした。このフローチャートを
書いた当時、タイクストラ博士の構造化プログラミングは
提唱されていません。コンピュータのリソースが非常に小
く構造化などと言ってられないという事情もあったでしょう。

 ▼図1　クヌース博士によるコンパイラのフローチャート注2（http://tjsawyer.com/B205Lang.htmより）

http://tjsawyer.com/B205Lang.htm

102 - Software Design

特別寄稿●安全な実装の手がかりを探る
自分でソフトウェアをセキュアに作るための基礎知識

② 開発者はセキュリティ問題を自己
解決できる

　開発者を信用する、つまり「開発者はセキュ
リティ問題を自己解決できる」とすると、開発
者は、

・脆弱性が発生する原理／本質を知るべき
・原理／本質を知れば自ら対策できる
・新しい脅威にも対応できる

として“教育”しなければなりません。
　開発者がセキュアなソフトウェアを作れるよ
う教育する場合、脆弱性発生の原理、セキュリ
ティ対策の本質を教育しなくてはなりません。
教わればすぐに実践できることでも、教えられ
なければ時間をかけて経験を積み、その中から
自分で原理や本質を理解しなければなりません。
これには非常に長い時間が必要です。しかし開
発者は論理的なプログラムを作ることができる
頭脳を持っています。ならば、その基礎は容易
に習得できるはずです。
　今後、開発フレームワークはますます発達し
ます。それでも、フレームワーク自体の品質を
確認したり、フレームワークの枠を超える開発
が必要になる場合に基礎知識が不要になること
はありません。
　セキュリティ基礎教育は完璧ではありません。
すべての開発者に同じセキュリティの教育を受
けさせることも困難です。仮にすべての開発者
に同じ基礎教育を実施できても、すべての開発
者が同じように理解し、実践できるかどうかは
保証できません。

どちらも必要なアプローチ

　開発者を信用しない、信用する、どちらのア
プローチも不十分です。どちらか一方ではなく、
両方のアプローチが必要です。システムを作る
場合、熟練した開発者であっても、ミスや間違
いがあることを前提に対策すべきです。セキュ
リティ問題を自己解決する基礎知識がない開発
者がいるのであれば、なおさらのことです。
　開発者のセキュリティ知識が不十分な場合、
開発フレームワークを安全に利用する作法を教
えるほうが、短期的には効果が高いでしょう。
しかし駆け出しの開発者に対して、基礎を知り、
自分で考え、確認してからソフトウェアを作り
ましょう、と諭すのでは仕事になりません。
　情報セキュリティは、守る側にとって圧倒的
に不利なルールでセキュリティの奪い合いのゲー
ムが行われます。攻める側は目的の攻撃が実施
できる、たった1つの攻撃経路を見つけるだけ
で勝利します。堅牢なソフトウェア作成には「こ
のAPIを使う」という作法的なプログラミング
教育以外に、ソフトウェア全体として安全なプ
ロダクトを作る基礎教育が欠かせません。

開発者がセキュリティ問題を自己解決
するために必要な知識とスキル

　前置きが長くなってしまいましたが、開発者
がセキュリティ問題を自己解決するために必要
な知識とスキル、それらを次に簡単に紹介しま
す。

 ▼表1　セキュリティ標準と対策集

名前 説明

ISO 27000シリーズ 情報セキュリティを定義しセキュリティ認証の ISMS認証の基礎となって
いる国際標準規格

CWE/SANS TOP 25 Most Dangerous
Software Errors

脆弱性カタログのCWEを管理しているMITRE社（米政府の外郭組織）と
SANS（セキュリティ教育／研究機関）のセキュリティ対策集

OWASP Top 10
多数あるガイドの1つ。OWASP（Open Web Application Security Project）
はカード会社が作った、PCIDSS規格も参照するWebアプリケーションセ
キュリティ対策を啓蒙する組織

102 - Software Design Feb. 2015 - 103

開発者は、セキュリティ問題を自己解決できるのか？

開発者に必要なセキュリティ知識

　これから紹介する概念や定義、セキュリティ
対策はベストプラクティスとして利用されてい
る国際標準、セキュリティ専門家のセキュリティ
対策集をもとにしています（表1）。

セキュリティの基礎知識
　まず必要な知識は「セキュリティ対策とは何
か？」です（図2）。その定義がはっきりすれば、
目的も明確になり、開発者同士のコミュニケー
ションも円滑行えます。
　情報セキュリティの主な目的は、

・機密性（Confidentiality）
・完全性（Integrity）
・可用性（Availability）

の維持です、と聞かれて理解されている方も多
いと思います。知らない方はISMSの書籍など
を参考にしてください。
　ISO 27000は、さまざまな用語を定義して
います。しかし「セキュリティ対策」は用語とし
て定義していません。一般にいう「セキュリティ
対策」に近い用語として「リスク対応」（Risk

Treatment）を定義しています。
　「リスク対応」とはリスクを変化させるプロセ

スと定義され、リスク
を回避／選択／原因除
去／発生頻度を変化／
発生した場合の結果／
共有／知見の取得を行
うプロセスです。
　リスクを低減させる
対策は“リスク緩和策”
（Risk Mitigation）、“リ
スク排除”（Risk Elimi

nation）、“リスク予防”
（Risk Prevention）、
“リスク削減”（Risk Re

duction）と呼ばれるこ
とがある、としています。
　セキュリティ対策を“リスク排除”、“リスク
削減”だけと定義して利用されている方もいま
す。しかし、この定義は狭すぎて情報セキュリ
ティを議論する定義としては不適切です。現実
のセキュリティ対策はリスクマネジメントです。
情報システムを利用する限り、情報システムを
利用するリスクをゼロにすることは不可能です。
　「リスク緩和策」や「リスク削減」をセキュリ
ティ対策ではないと定義すると、ほとんどすべ
てのセキュリティ対策がセキュリティ対策では
ない、となってしまいます。用語の定義が異な
るとコミュニケーションが不可能になります。
ITエンジニアは ISO 27000の定義を常識とし
て利用するべきです。

セキュリティの基本概念とソフトウェア
アーキテクチャ

　エンジニアが必ず知っておくべきセキュリティ
の基本概念があります。次のように3つに分類
してみました。

・信頼境界線：�信用できる領域と信用できない
領域の境界線

 ▼図2　ISO 27000が定義する情報セキュリティ要素

ITセキュリティ

Confidentiality

IntegrityAvailability

機密性 ‒許可した者のみアクセス

完全性 ‒情報・処理が正確・安全可用性 ‒利用者が利用できる

104 - Software Design

特別寄稿●安全な実装の手がかりを探る
自分でソフトウェアをセキュアに作るための基礎知識

・境界防御：�セキュリティ問題が信頼境界線の
中に入らないよう、外に出ないよ
うに防御

・縦深防御：�境界防御に守りきれず侵入を許し
てしまった場合に備えた防御策

　通常、縦深防御（Defense in Depth、Elastic

Defense）は多層防御、多重のセキュリティと
も呼ばれ、複数の境界防御から成り立ちます。

第1の壁が破られても第2、第3の壁で防御す
るイメージです。ネットワークセキュリティを
議論する場合によく利用される概念ですが、ソ
フトウェアセキュリティにも適用できます（図
3）。
　信頼境界線を使った境界防御、縦深防御の概
念図を理解するポイントを示します。

・自分が制御できないモノはすべて信用できない

入力 入力入力入力入力

入力処理 入力処理 入力処理 入力処理 入力処理

処理 処理 処理 処理

処理 処理 処理 処理 処理

出力処理 出力処理 出力処理 出力処理

出力 出力出力出力出力

信頼境界線

出力処理

別システムへ
のアクセス／
重要な処理は
縦深防御

入力バリデーシ
ョンでカバーで
きない部分は縦
深防御

 ▼図3　境界防御と縦深防御（複数の境界防御から成り立つ）

ロジック処理

入力ソース

入力処理

出力処理

出力

入力ソース

入力処理

ロジック処理

出力処理

入力ソース

入力処理

ロジック処理

出力処理

入力ソース

入力処理

ロジック処理

出力処理

出力出力 出力

“入力処理”と“出力処理”でセキュリティ対策

 ▼図4　セキュアなプログラムの基本構造

104 - Software Design Feb. 2015 - 105

開発者は、セキュリティ問題を自己解決できるのか？

・最も外側の境界線の防御を固める
・信頼境界線を超える出入りを防御
・境界線でチェック済みでも危険なモノが含ま
れる場合がある（これらに縦深防御が必須）

　これらのセキュリティの基本概念は、ソフト
ウェアの基本構造にそのまま適用できます（図
4）。
　ほとんどのソフトウェアは入力を受け付け、
何らかの処理を行い、出力する構造を持ってい
ます。境界防御を行う部分は「入力」と「出力」で
す。CWE/SANS TOP 25注3ではソフトウェア
脆弱性で最も危険な物トップ25とその対策を
まとめています。本当に重要なセキュリティ対
策は「怪物的なセキュリティ対策」（Monster Mi

tigation）として紹介しています（表2）。
　「怪物的なセキュリティ対策」の1位、2位に挙
げられている全体的な入力／出力の制御とは、「境
界防御と縦深防御を行うべき」ということです。

最も多い脆弱性――インジェクション
　入力、処理、出力、これら3つのどれにでも、
セキュリティ脆弱性が入り込む可能性がありま
す。統計的に、どこを対策すると効果的かもわ
かっています。
　最も多いセキュリティ脆弱性は「インジェクショ
ン」脆弱性です。CWE/SANS TOP 25の「怪物
的なセキュリティ対策」は多数のCVE番号
（Common Vulnerability and Exposure - 脆弱性
を 一 意 に 識 別 す る 番 号）と CWE（Common

Weakness Enumilation - セキュリティ問題の原
因と対策をまとめた脆弱性カタログ）から、まず
第一に「入力」、次に「出力」を確実に制御するこ
とを求めています。2013年度版OWASP TOP

10（表3）でも一番のWebアプリケーションの脆
弱性はインジェクションだとしています注4。

注3） http://www.sans.org/top25-software-errors/2009/
top25_japanese.pdf

注4） https: / /www.owasp.org/ images/7/79/OWASP_
Top_10_2013_JPN.pdf

　最も多く見られる脆弱性は、インジェクショ
ンです。そして最も効果が高いセキュリティ対
策は「入出力の確実な制御」です。

入力バリデーションはセキュリ
ティ対策の第1位

　ソフトウェアにおける、入力制御のポイント
を次に挙げます。

・最も外側の信頼境界線での入力制御は必須
・可能な限りホワイトリスト方式で厳格にバリ
デーション

・バリデーションエラーは攻撃の可能性がある
エラー

バリデーションは有効度が高い
対策

　セキュリティ専門家は、確実な入力の制御が
最も重要なセキュリティ対策だと考えています。
その理由と効果を、CWE/SANS TOP 25の「怪

 ▼表2　怪物的なセキュリティ対策（コーディング）

順位 対策

1 全体的な入力の制御を確立する

2 全体的な出力の制御を確立する

3 環境をロックダウンする

4 外部コンポーネントは改竄され、コード
は誰もが読めることを前提とする

5 自分で構築せず業界標準のセキュリティ
機能を利用する

 ▼表3　OWASP TOP 10 (2013年度版）

A1 インジェクション

A2 認証とセッション管理の不備

A3 クロスサイトスクリプティング（XSS）

A4 安全でないオブジェクト直接参照

A5 セキュリティ設定のミス

A6 機密データの露出

A7 機能レベルアクセス制御の欠落

A8 クロスサイトリクエストフォージェリ（CSRF）

A9 既知の脆弱性を持つコンポーネントの使用

A10 未検証のリダイレクトとフォーワード

http://www.sans.org/top25-software-errors/2009/top25_japanese.pdf
https://www.owasp.org/images/7/79/OWASP_Top_10_2013_JPN.pdf

106 - Software Design

特別寄稿●安全な実装の手がかりを探る
自分でソフトウェアをセキュアに作るための基礎知識

合、未知のセキュリティ脆弱性に対しても効果
があるセキュリティ対策となります。
　ソフトウェア開発者は、外部からどのような
入力があるのか理解しているはずです。自分が
作っているソフトウェアが何なのか、それを理
解していない開発者はいません。入力制御は、
すべての開発者が確実に実践できるセキュリティ
対策です。
　入力ミスと入力バリデーションの処理は似て
いますが、根本的な部分が異なります。入力ミ
スの場合、ミスを修正するようにエラーメッセー
ジを表示するなど、アプリケーションの実行を
継続します。
　入力バリデーションエラーとは、入力として
有り得ないエラーであり、攻撃である可能性が
高いものです。ソフトウェアは、バリデーショ

物的なセキュリティ対策」で表4として掲載注5

しています。
　入力制御はこれら以外にもヌル文字インジェ
クション（不正なファイルへのアクセス）、改行
文字インジェクション（不正なメール送信、
HTTPキャッシュ汚染／クッキー制御）、セキュ
リティフィルタ回避（アプリケーションファイ
アウォールの検出回避など）、不正な文字エン
コーディング攻撃（SQL／JavaScriptインジェ
クション）など、さまざまな攻撃への対策／緩
和策になります。

脆弱性を防ぐ緩和策
　入力制御の多くは、完全に脆弱性を防ぐ対策
ではなく緩和策です。しかし、多くの致命的な
セキュリティ脆弱性に対して有効です。しかも
入力制御を行う開発者はソフトウェア内の脆弱
性の有無を知らなくても利用できます。つまり、
入力制御にバリデーション（後述）を利用した場

注5） http://cwe.mitre.org/top25/archive/2011/2011_
mitigations.html#MitigationMatrix

 ▼表5　バリデーションとサニタイズ

バリデーション
入力を検証する方法。許可する
入力を定義し、許可しない入力
は拒否

サニタイズ
入力を浄化する方法。許可して
いない入力を定義し、許可しな
い入力は削除

 ▼表4　入力制御の効果

効果 CWE番号と脆弱性の概要

高い CWE-22: 保護されたディレクトリに対する不適切なパス名の制限（パストラバーサル—パスインジェ
クション）

適度 CWE-78: OSコマンドに対する特殊要素の不十分なサニタイズ（OSコマンドインジェクション）

適度 CWE-79: Webページ生成時の不十分なサニタイズ（クロスサイトスクリプティング—JavaScriptイ
ンジェクション）

適度 CWE-89：SQLコマンドに対する不十分なサニタイズ（SQLインジェクション）

適度 CWE-120；入力サイズチェックのないバッファのコピー（クラシックなバッファーオーバーフロー—
マシン語インジェクション）

適度 CWE-131：不正確なバッファサイズの計算（バッファーオーバーフロー—マシン語インジェクション）

高い CWE-134：制御されていないフォーマット文字列（バッファーオーバーフロー—マシン語インジェ
クション）

適度 CWE-190：整数オーバーフローまたは周回（バッファーオーバーフロー—マシン語インジェクション）

適度 CWE-434：制御されていない危険なファイルタイプのアップロード

適度 CWE-601：信頼できないサイトへのリダイレクト（オープンリダイレクト—URLインジェクション）

適度 CWE-676：潜在的に危険な関数の利用（バッファーオーバーフローなど—マシン語インジェクション）

適度 CWE-807：信用できない入力によるセキュリティ的な決定

高い CWE-829：信頼できない制御圏機能の利用

縦深防御 CWE-862：認可の不在

http://cwe.mitre.org/top25/archive/2011/2011_mitigations.html#MitigationMatrix

106 - Software Design Feb. 2015 - 107

開発者は、セキュリティ問題を自己解決できるのか？

ンエラーが発生した場合、処理を停止します。
バリデーションエラーログを記録し、可能であ
れば対象のリモートシステムからの接続をネッ
トワーク的に遮断する、などの対策が必要です。

サニタイズ方式はブラックリスト型

　バリデーションのほかに、入力制御の方法と
してサニタイズ方式もあります（表5）。
　バリデーションは「許可する項目を指定」する
ホワイトリスト方式、サニタイズは「許可しな
い項目を指定」するブラックリスト方式と言え
ます。
　セキュリティ対策では、可能な限りホワイト
リスト方式を利用します。ブラックリスト方式
でセキュリティを維持することは困難だからで
す。

出力制御にかかわるセキュリティ

　テキストインターフェース処理（出力）のポイ
ントを次に挙げます。

・安全なテキスト処理の4原則を理解する（命
令とデータの確実な分離）

・デフォルトで安全な出力を利用する

　2番目に重要なセキュリティ対策は、出力制
御です。ここではテキストインターフェースの
場合を考えます。安全な出力には、出力先の入
力仕様を知る必要があります。安全な出力はエ
スケープ仕様を知ることが近道です。
　安全な出力を行う4原則を次に示します。

1.	エスケープして出力する
2.	安全なAPIを利用する
3.	バリデーションする
4.	文字エンコーディングを厳格に管理する

　これら「安全な出力を行う4原則」を守れば、
確実に安全な出力を行えます。この原則は出力
先の種類を問わず適用できます。
　新しい出力先に取り組む場合、この原則の順
番で安全な出力を調べると効率的です。順序が

異なるのでは？――と感じる方もいるかもしれ
ません。今は「セキュリティ対策の基礎知識」の
話です。どういう出力が安全な出力が安全な出
力となるのか、基礎を理解することが最も重要
な部分です。
　Webアプリケーション開発ではテキストイ
ンターフェースのシステムを多数利用して開発
を行います。Webアプリケーション以外でも
Webコンポーネントを利用したり、テキスト
インターフェースを利用するシステムを用いて
開発することは多いです。

テキストインターフェースの種類
　テキストインターフェースを持つシステムの
例を次に挙げます。

・	Webブラウザ（HTML/CSS/JavaScript/JS�
ONなど）

・	SQLデータベース
・	LDAPデータベース
・	XMLデータ
・	OSコマンド
・	メール

　これらのテキストインターフェースを持つシ
ステムで、確実に安全な出力を知る近道は「テ
キストインターフェースの入力仕様」を知るこ
とです。しっかりした仕様を持つ出力先であれ
ば「確実に安全なテキスト」の書き方が存在しま
す（OSコマンドは例外です）。

テキストインターフェースの特徴
　ソフトウェア開発の視点から次に示します。

・命令、識別子、データの3種類がある
・命令、識別子、データのどれかに問題がある
と誤作動する

SQLの出力
　SQL文の場合を考えます。

108 - Software Design

特別寄稿●安全な実装の手がかりを探る
自分でソフトウェアをセキュアに作るための基礎知識

SELECT name FROM mytable WHERE id = 1234
AND admin = 1;

　これは、次のような意味を持ちます。

命令：SELECT FROM WHERE AND
識別子：name mytable id admin
データ：1234 1

　識別子とデータ、どちらもユーザが指定する
データとも言えます。しかし、区別しないと困
ることが多いので区別します。SQLではクエ
リパラメータ（データ）のエスケープ方式と識別
子のエスケープ方式は異なります。

PostgreSQLのエスケープの例
・	文字リテラルは'で囲み、'は'でエスケー
プ

・	識別子は"で囲み、"は"でエスケープ

　SQLデータを安全に出力するためにはプリ
ペアードクエリAPIを利用できます。しかし、
変数の識別子を安全に利用したい場合は、エス
ケープ処理が必要になります。
　「安全なAPIのみを利用する」だけを教えたり、
習得させたりするのでは不完全です。開発者は、
いつも新しいシステムを作るとは限りません。
プリペアード文のAPIを使わない既存のコー
ドを、メンテナンスする場合もあるでしょう。
プリペアード文をサポートしていてもその文の

性能が悪いため、あえて文字列の組み立てで
SQL文を作らなければならない場合もあります。
　一般にエスケープ処理が必要な場所と使い方
をよく理解すると、ミスをする可能性が少なく
なります。これが基礎的なセキュアコーディン
グ教育では、安全なAPIを知るよりも、安全
にテキストを組み立てるエスケープ方式を知る
ことが重要である理由です。
　安全なテキストの組み立て方を聞いたことが
あっても、テキストインターフェースのデータ
に命令を混ぜない、という本質的な理解がない
場合があります。そうすると、命令が混ざる可
能性があるデータを「ついうっかり出力してし
まう」ことになります。そのようなケースをソー
スコード検査するとよく見かけます。

インジェクション防御策
　インジェクションを防ぐには「命令とデータ
を確実に分離」しなければなりません。そのた
めには、

・テキストインターフェース仕様（エスケープ
仕様）を知りエスケープする

・命令とデータを分離するAPIを利用する

が必要です。このどちらも利用できない場合は、
出力先が誤作動しないようバリデーションします。
　実際にソフトウェアを作る場合は、出力がデフォ
ルトで安全になるような方法を採用すべきです。

コラム

ブラックリスト対策は危険になりやすい？
　経験を積んだ開発者には簡単すぎる問題ですが、この問題を初めて見る方はチャレンジしてみてく
ださい。　

問題：パストラバーサル（CWE-22）は親ディレクトリに移動後に、目的のディレクトリに移動してファ
イルにアクセスします。たとえば、fopen($file)の$file変数に"/path/to/config/../../../etc/
passwd"が設定されると、UNIX系システムのパスワードファイルなどにアクセスします。攻撃に用
いられる"../"を削除するブラックリスト対策が不十分であることを解説しなさい。

　解答は本稿の最後に記載します。

108 - Software Design Feb. 2015 - 109

開発者は、セキュリティ問題を自己解決できるのか？

開発者が出力先がどのように処理するのか理解
していれば、命令とデータを分離する安全な
APIを、正しくしかも確実に使用するでしょう。

文字エンコーディング問題
　最後に出力のセキュリティを考える場合、見
逃されがちな問題は文字エンコーディングです。
文字エンコーディングを使って、分離されてい
る命令とデータのテキスト構造を壊すことが可
能です。文字エンコーディングを出力先に合わ
せて正しく設定し、文字エンコーディングが壊
れていないことを保証しなければなりません。
　テキスト入力であるならば、文字エンコーディ
ングが正しいかソフトウェアへの入出力時にバ
リデーションすると完璧になります。
　PHPならmb_check_encoding関数、Ruby 2.1

なら scrubメソッドが利用できます注6。　紙面
の都合上、可変長テキストインタフェースを持
つシステムのセキュリティ対策のみを紹介しま
した。固定長テキストインターフェース、バイ
ナリインターフェースを持つシステムの場合で
も「命令とデータを確実に分離する」の基本部分
は変わりません。どのような対策が必要か、考
えてみてください。

適切な処理の実装／利用

　処理のポイントを次に挙げます。

・ベストプラクティスを利用する（フレームワー
ク、ライブラリを利用）

・提供された部品、APIは安全な使い方を調べ
て利用する

・利用するコードの仕様／品質を確認する（盲
信しない、とくにドキュメントされてない
部分）

注6） 文字エンコーディングを利用した攻撃が可能になるのは
SJISや ISO-2022エンコーディングだけではありません。
実装によってはUTF-8でも攻撃可能です。ソフトウェアが
利用するライブラリ／クライアントなどの実装を全て確認
するのは非現実的です。バリデーションが最も確実です。

　ソフトウェアの基本アーキテクチャは「入力
→処理→出力」です。「処理」が3番目に重要な
セキュリティ対策になります。
　ソフトウェアにとって「処理」が最も重要であ
り、ここに問題があった場合の被害は大きくな
るのでは？――と考えるかもしれません。確か
に「処理」の部分に間違いがあると被害が甚大に
なることが多いです。
　たとえば、認証に問題がある場合を考えましょ
う。誰でもシステム管理者として認証できる脆
弱性があるとすれば、それが致命的であること
は説明の必要がありません。しかし、セキュリ
ティ脆弱性の統計を見ると圧倒的に入出力のセ
キュリティ問題が多いのが現状です。
　処理のセキュリティは重要です。しかし、幸
いなことにセキュリティが必要な処理は自分で
実装しなくて済むことが多いです。認証、認可、
Webアプリケーションのセッション管理など、
一般に利用される機能はよく検証されたライブ
ラリやフレームワークを利用すれば問題ありま
せん。マニュアルやCWE（Common Weakness

Enumeration）、OWASPなどのサイトを参照
すると、安全な処理方法が解説されています。
ベストプラクティスとされる処理方法を調べれ
ば、ほとんどの場合、安全に処理する方法が見
つかります。

Web上のQ＆Aサイトにご用心

　Q＆Aサイトなどの品質が保証されていない
処理方法を参照することは要注意です。そのよ
うなサイトに掲載されているサンプルコードは、
簡単にするために必要なセキュリティ処理（エ
スケープなど）が省略されている場合がよくあ
ります。SQLやHTMLの場合は安全に処理さ
れていたり、セキュリティについて考慮してい
ない、と明示されていることが比較的多いよう
に感じます。
　しかし、LDAPクエリやXPathクエリなど
のあまり頻繁に利用しないシステムの解説では、
必要なエスケープ処理がまったくないコードを

110 - Software Design

特別寄稿●安全な実装の手がかりを探る
自分でソフトウェアをセキュアに作るための基礎知識

見かけます。このような情報をもとに、コード
を書くのは危険です。出力先の仕様をよく知っ
たうえで利用しましょう。
　たとえば、“ruby ldap authentication”で比較
的上位（筆者の環境では 4位）に表示される
StackOverflowのサンプルコードにはLDAPク
エリで必要なDNエスケープ、Filterエスケー
プAPIは利用されていません（リスト1）。
　このコードで利用されている net ldapモ
ジュール自体は必要なエスケープメソッドを定
義しています注7。
　LDAPクエリが脆弱な場合、LDAPデータ
ベースの中身を自由自在に取得される可能性が
あります。LDAPを利用するライブラリの中
にはSQLのプリペアードクエリのようにプレ
イスホルダを利用し、命令とデータを分離でき
る物もあるかもしれませんが、筆者が知る限り
ありません。標準的なLDAPライブラリには
プリペアードクエリのようなAPIはないので
エスケープしなければなりません。

注7） http://www.rubydoc.info/gems/net-ldap/Net/LDAP/DN
http://www.rubydoc.info/gems/net-ldap/Net/LDAP/
Filter

安全かどうか確かめていますか？
　比較的広く利用されているフレームワークや
ライブラリであっても、確実に安全な処理に必
要なエスケープ処理が省略されている場合も少
くありません。実装上の制限だったり、仕様で
ある場合が多いです。それらが明示的に解説さ
れていないこともあります。
　たとえば、RailsのタグヘルパはHTMLタグ
属性の値はエスケープしますが、属性名の値は
エスケープしません。通常、属性名はシンボル
であるためインジェクションに利用できません。
しかし、文字列も指定可能な仕様となっており、
文字列も使えるから、と外部入力を利用すると
問題になります。このような仕様になっている
ことはコードを確認しないとわかりませんでし
た注8。
　普通とは違う使い方、あまり使われていない
機能を使う場合には、安全に処理されているか
確認する習慣を持ちましょう。第三者が作った
処理の品質を確認する場合も、入出力のセキュ
リティ対策の基礎を理解していることが必要で
す。

注8） Rails4.0リリース時点で確認。

 ▼リスト1　 StackOver�owに掲載されているノンセキュアなサンプルコード（http://stackover�ow.com/
questions/334519/ldap-through-ruby-or-rails）

require 'net/ldap' # gem install net-ldap

def name_for_login(email, password)
 email = email[/\A\w+/].downcase # Throw out the domain, if it was there
 email << "@mycompany.com" # I only check people in my company
 ldap = Net::LDAP.new(
 host: 'ldap.mycompany.com', # Thankfully this is a standard name
 auth: { method: :simple, email: email, password:password }
)
 if ldap.bind
 # Yay, the login credentials were valid!
 # Get the user's full name and return it
 ldap.search(
 base: "OU=Users,OU=Accounts,DC=mycompany,DC=com",
 filter: Net::LDAP::Filter.eq("mail", email),
 attributes: %w[displayName],
 return_result:true
).first.displayName.first
 end
end

http://www.rubydoc.info/gems/net-ldap/Net/LDAP/DN
http://www.rubydoc.info/gems/net-ldap/Net/LDAP/Filter
http://stackoverflow.com/questions/334519/ldap-through-ruby-or-rails

110 - Software Design Feb. 2015 - 111

開発者は、セキュリティ問題を自己解決できるのか？

自己解決のために必要な
スキル

　駆け足で説明したので、不足している部分も
多いですが、セキュアなソフトウェアを自分で
作るための基礎知識を紹介しました。ここから
は、セキュリティ問題を自己解決するために必
要なスキルを紹介します。

コミュニケーション

　セキュリティの議論をすると、議論が噛み合
わないことあるがよくあります。筆者もよくあ
りました。セキュリティ議論が噛み合わない主
な原因を次に挙げます。

・「セキュリティ対策」の用語定義が異なる（ISO
定義 vs. より狭い意味）

・議論をしている対象が異なる（実践論 vs. 基
礎教育論）

　IT技術者であればISO 27000の「リスク対応」
をセキュリティ対策の定義として利用すること
をお勧めします。すでにISMS認証を取得して
いる企業も多く、IT会社以外にも広く利用さ
れているセキュリティ標準であり独自定義の「セ
キュリティ対策」を使うと混乱の原因になりま

す。
　セキュリティ対策は「リスク対応」である、と
する考え方で議論して、噛み合わない場合は「リ
スク対応」のサブセットである「リスク排除」や
「リスク削減」のみの意味で利用していないか確
認すると良いです。多くの場合はセキュリティ
対策を限定的な意味で利用していることが原因
です。
　本稿の冒頭の「セキュリティ対策――2つの
アプローチ」で解説したとおり、実践的なアプ
リケーション開発におけるセキュリティ対策教
育とソフトウェア開発の基礎的なセキュリティ
教育では、その対策の優先順位が異なります。
実践教育では安全なフレームワーク／APIの使
い方の教育が最も重要です。基礎教育では、よ
り広く一般的に利用できて、応用可能な基本概
念と基礎知識が重要です。

基礎知識を応用する能力

　基礎知識を応用する能力を身につけるには、
とにかく自分で考える以外ありません。出力先
の命令とデータが確実に分離できているのか？
――を考え、これを確認すれば自然と身につき
ます。基礎知識を理解し、自分で考えるように
すれば応用能力は自然と身につきます。リスク

コラム

エスケープとは何か？
　エスケープとは文字や文字列が意味を持つインターフェースにおいて、文字以外の意味を持たせたり、
特殊な意味を持つ文字を無効化したりする機能です。筆者はあまり好きではないのですが、エスケー
プをクオーティングと呼ぶこともあります。
　セキュリティ対策のエスケープは特殊な意味を持つ文字や文字列を無効化し、命令とデータを分離
することを指すことが多いです。文字や文字列に別の意味を持たせることもエスケープです。たとえば、
printf関数では\nがラインフィード、\rがキャリッジリターン、\tがタブとして解釈されます。
　エスケープは文字や文字列が意味を持つインターフェースの基本機能です。エスケープは不要で教
える必要がない、とする議論を耳にすることがあります。しかし、エスケープは現在のプログラミン
グ環境では欠かせない基本機能です。それを開発者向けの基礎教育で教えないなら、教育の瑕

か し

疵と言
えます。シェルやXPath 1.0のようにエスケープを定義しないのはインターフェースの不備です。エスケー
プが定義されているのに、APIが提供されていないのは、エスケープなしに命令とデータが分離できる
セキュアなAPIがないことと同じ、設計の不備です。

112 - Software Design

特別寄稿●安全な実装の手がかりを探る
自分でソフトウェアをセキュアに作るための基礎知識

が潜んでいそうなコードを感じ取る能力も付い
てきます。

過去の失敗例から学ぶ

　事例に学ぶことも効果的です。気になる脆弱
性情報があった場合、脆弱性の原因となったコー
ドを参照すると参考になることが多いです。
　インターフェース実装の失敗にも学ぶべき点
があります。

実装に問題があるインターフェースの例
・	シェル：エスケープの定義がない（OS
APIレベルで命令とデータの分離はある）

・	XPath 1.0：エスケープの定義がない（API、
エスケープ、共にない）

・	一部のSQLデータベース：識別子エスケー
プAPIがない、リテラルエスケープもな
い（APIがない）

　UNIX系のシェルスクリプトは変数展開を行
わない'（シングルクオート）を利用したリテラ
ルが定義できます。しかし、SQLのように'
をエスケープする方法が定義されていません。
テキストインターフェースでエスケープ方法を
定義していないのはお粗末です。筆者はこのシェ
ルの仕様は大いに問題がある、と感じています。

XPath 1.0の落とし穴
　この仕様は、なぜかXPath 1.0にも引き継が
れてしまいます。XPath 1.0のリテラルも'か
"で定義できるのですが、シェル同様にエスケー
プが定義されていません。このため、プログラ

ムで任意の文字列を処理しようとする複雑なコー
ドが必要になります（リスト2）。
　一見すると、一体なにをやっているんだ？　
と思えるxpath_escape_string関数は'、"がエ
スケープできないので''、""で囲む文字列に
分割し、XPath関数の concatで連結し、任意
文字列が作れるようにしています。XPath 1.0

の仕様は問題だったのでXPath 2.0では'、"
はPostgreSQLのエスケープと同じく'は'、"
は"でエスケープするよう仕様変更されていま
す。

SQLite3/MySQLの落とし穴
　一部のSQLデータベースは不完全なAPIを
持っています。たとえば、SQLite3/MySQL

は識別子のエスケープ方法は定義されています
が、識別子エスケープAPIがありません。
SQLite3のC APIには文字リテラルエスケー
プAPIと、名前でわかるAPIがありません。
フォーマットされた文字列を出力する sql
ite3_mprint関数がエスケープに利用できるよ
うになっています。PHPではリスト3のよう
にSQLite3::escapeStringメソッドが実装され
ています。
　テキストインターフェースとして文字リテラ
ルがあり、エスケープ方法も定義されているに
もかかわらず、セキュリティにとって重要なエ
スケープAPIがないのは、APIデザインとし
て問題があると考えています。
　データベースの場合、非常に長い期間プログ
ラムがメンテナンスされることが多いです。移

 ▼リスト2　PHPでXPath 1.0の文字リテラルをエスケープする関数（http://blog.ohgaki.net/xpath-query-2）

function xpath_escape_string($input) {
 if (false === strpos($input, "'")) {
 return "'$input'";
 }
 if (false === strpos($input, '"')) {
 return "\"$input\"";
 }
 return "concat('" . strtr($input, array("'" => '\', "\'", \'')) . "')";
}

http://blog.ohgaki.net/xpath-query-2

112 - Software Design Feb. 2015 - 113

開発者は、セキュリティ問題を自己解決できるのか？

行などで、ほかのデータベースのコードを利用
する場合もあります。当たり前に存在すべき
APIは存在すべきです。

まとめ

　開発者は、アプリケーションで発生するほと
んどのセキュリティ問題を自己解決できます。
学部生だったクヌース博士が書いたフローチャー
トのように、構造化せず場当たり的なセキュリ
ティ対策を行っていた方も多いのではないでしょ
うか？　自己解決すべ
きセキュリティ問題の
ほとんどが入出力問題
です。基本を知れば、
開発者ならば入出力問
題を自分で解決できる
ようになります。
　実践と基礎では利用
すべき手法の優先順位
が異なります。実践で
フレームワークやライ
ブラリを開発する場合、
「開発者が間違える／

知らない」を前提に開発し、できる限りデフォ
ルトで安全な処理となるように作るべきです。
　今回はWebアプリケーションの脆弱性とし
て必須であるCSRF（Cross Site Request For

gery）などを解説できませんでした。しかし、
セキュリティの基本を理解していれば簡単に理
解／対策できるはずです。筆者は、CSRFが問
題視される随分以前の2000年頃からCSRF対
策をしていました。基礎から論理的に考えれば
誰でも同じようにできます。｢

コラム

「ブラックリスト対策は危険になりやすい？」
の解答
　単純に"../"を削除した場合、$fileへの攻撃文字列を

"/path/to/config/.../...//.../...//.../...//etc/passwd"とすれば
"/path/to/config/../../../etc/passwd"となります。

　JavaScript／SQLインジェクションなどには、これに類似した攻撃手
法があります。単純に攻撃文字列を指定し削除するだけでは防御を簡
単に破られます。

 ▼リスト3　php-src/ext/sqlite3/sqlite3.c

/* {{{ proto String SQLite3::escapeString(String value)
 Returns a string that has been properly escaped. */
PHP_METHOD(sqlite3, escapeString)
{
 char *sql, *ret;
 int sql_len;

 if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &sql, &sql_len)) {
 return;
 }

 if (sql_len) {
 ret = sqlite3_mprintf("%q", sql);
 if (ret) {
 RETVAL_STRING(ret, 1);
 sqlite3_free(ret);
 }
 } else {
 RETURN_EMPTY_STRING();
 }
}

114 - Software Design

有識者がまじめに議論!?

ユーザに「レルって何ですか？」ときかれて

「Red Hat Enterprise Linuxの略称をレルと申

しまして……」というようなことがよくある。

	そう。ある、ある。

長谷川（以下、 ）　私だって、最初は「アールエ

イチイーエル」と言っていましたよ。これは

ちゃんとレッドハット社の人が言わないと、

だいたいの人は知らないですよ。

	パートナー企業の人からも「レルって何です

か？」と聞かれることがあるから、レッドハッ

トの人間が「レル」と言うことで、その読み方

がじわじわと広がっている可能性はあるね。

 レッドハットは外資系企業なので、社内に外国
の方がいると思うんですが、ネイティブの方は
どういう発音をされているんですか？
	「レル」。人によっては「リール」って発音しま

すね。

	でも、「レル」って英語的に発音が難しいです

ね。まずRは舌を巻かないといけなくて、最

後のLは逆に巻いちゃいけないから。

	レェル、れぇる。難しいよね。確かに。

	サポートメンバーの電話会議なんかだと、み

んな「レル、レル」って言ってるんですが、慣

れていないと「何言ってるんだろ？」ってなり

ますね。

	なる、なる（笑）。

議論に参加いただいた有識者のみなさん

藤田 稜（ふじた りょう）
塾講師を3年、SIerを通算6年経験し、現職のRed Hatに入
社。おもにパートナーを担当するSolution Architectとし
て、RHELを中心としたOSSの普及に努める毎日を送る。

野波 圭吾（のは けいご）
外資系ハードウェアベンダでインフラ構築に携わったあ
と、Red Hatで現職に到る。モットーは、「まずはやってみ
る」。目下、GlusterFSを勉強中。

長谷川 猛（はせがわ たけし）
SIerでの業務を7年間経験したのち、Fusion-io社のセール
スエンジニアとして活動。仮想化技術や ITインフラ技術に
感心を持つ。通称「モツ鍋おじさん」。

疑問の始まりは「レル」

編集 （以下、　　 ）　今回のテーマ「英字のIT用語を
どう読むか」というのは、昔からある話題です
が、新しい用語もいろいろ出てきていますの
で、改めて議論してみたいと思っています。

 以前、本誌連載「.SPECs」でRHELに「レル」と
ふりがなを付けたところ、そう読むのを初めて
知ったという読者がいました。

藤田	（以下、 ）　そうなんですよ。「レル」は意

外と知られていない。

野波	（以下、 ）　私は一般のユーザからのサ

ポートを受け付けているんですが、電話口で

「弊社製品のレルがですね……」って言うと、

取材・文　Software Design編集部

これはなんて読む？　
UNIX用語
読み方指南

ext4、Btrfs、sudo、libなど ITにかかわっていると、英字から成る専門用語が多数出てきます。これらの用語
に対して誰もが一度は「これってどう発音すればいいの？」と疑問に思うもの。そこで今回は、海外の開発者とも
交流経験のある有識者3人に集まってもらい、IT用語（とくにUNIX/Linux関連の用語）の読み方／発音について、
意見を交わしていただきました。また、本記事の最後には、各用語の読み方を一覧に整理しました。普段、自分
が使っている読み方と照らし合わせてみてください。

有識者が

まじめに議論!?

114 - Software Design Feb. 2015 - 115

これはなんて読む？ UNIX用語読み方指南

正解は創設者の発言にあり

 そもそもLinuxをどう発音するのか、という問
題がありますね。インターネットで調べると、
「リナックス」「リヌックス」「ライナックス」と
いった読みがあるようですが。
	「リナックス」「リヌックス」は確かに言う。た

だ、ネイティブスピーカーが「ライナックス」

と言っているのは聞いたことがないな。

	Linusはどう言っているんですか？

	Linusは「リヌックス」って感じで発音するね。

	 ちなみに、Fedoraは「フェドラ」でいいと思う。

フェルトでできた帽子のことをフェドラと言

うんですけど。「フェドラ」は間違いないです。

なぜかと言うと、Fedora Projectのファウン

ダー（創設者）のWarrenたちと直接話していた

ときに、彼らが「フェドラ、フェドラ」と発音

していたので。これは私が保証します。

 CentOSには「セントス」という読みはあるんで
すか？
	レッドハット社内だと「セントス」が多いな。

「セントオーエス」って言わないね。

	私は「セントオーエス」って言っていますね。

 どっちがOKですか？
	ここで勝敗を決めるんですか！？

	決めるわけではないんだけど……（笑）。

 長谷川さんは「セントオーエス」派ですか？

	 そうですね。だって、Centと書いた後に大文

字でOSと書かれているから、素直に読めば

そうなるでしょう。じゃあ、Mac OSを読むと

きに「マコス」って読むのかと……。

	「マコス」！ 読まないね（笑）。確かに「CoreOS

はなんて読むんだ」と言われて、「コレオス」に

はならないもんね。「コアオーエス」と言ってい

るもんね。

	Debianは「デビアン」だね。

	でも、これはDebian自体よりもDebian GNU/

LinuxのGNUをどう読むかのほうが問題注1。

	ああ、そっち！　宗教がかった話になるね。

	Ubuntuは「ウブントゥ」？　「ウブンチュ」？

	「ウブントゥー」って感じで言っていますよね。

	「ウブン・トゥー」。なんか途中で点で区切りそ

うな感じですね。

	そして「トゥー」でまた強める感じですね。そ

こにアクセントがある。

	 「ウ・ブン・トゥー」？

	（PCでインターネットを見ながら）「How To

Pronounce Ubuntu」っていうYouTube（図1）

がある。これはウケル（笑）。

これはなんて読む？　
UNIX用語
読み方指南

 ▼藤田 稜 氏

 ▼野波 圭吾 氏（左）と長谷川 猛 氏（右）

注1） 以前よりエンジニアの間では、GNUを「グヌー」「グニュー」
と発音するのか、あるいはGを発音せずに「ヌー」「ニュー」と
発音するのか（動物のヌーを意味するgnuの場合はgを発音
しないため）、ということがよく話題になる。Wikipediaや
GNU.orgによると、「gnu（ːグヌー）」が正式な発音とされて
いる。

 http://en.wikipedia.org/wiki/GNU
 https://www.gnu.org/pronunciation/pronunciation.html

http://en.wikipedia.org/wiki/GNU
https://www.gnu.org/pronunciation/pronunciation.html

116 - Software Design

有識者がまじめに議論!?

スキューエル」って言う人がいるようですね。

	MySQLを「マイシークル」って言うのも聞くよ

ね。

	海外の人は「マイシークル」です。そもそも

SQLを「エスキューエル」って言わないで、

「シークル」って言う。

	そういう意味で言うと、PostgreSQLは「ポス

トグレシークル」とは言わないよね。

	 もともと向こうの発音のものをカタカナに強

引に落とし込んでいるから無理があるといえ

ば、ある。

	 私がレッドハットにきて、最初にショック

だったのが、Pentiumが聞き取れなかったこ

と。「ペンティアム」じゃないんだよね。聞こ

え方としては「ペニアム」なんだよね。tが聞こ

えないの。

	 あとは、DVD。日本人は「ディー・ブイ・

ディー」って発音するでしょ。ネイティブス

ピーカーは、あれを「ディーヴィディー」って

発音するんだよね。最初、何を言っているの

かわからなくて。コンテキストからして「あ、

DVDだ」と思って。自分の頭のなかでは

「ディー・ブイ・ディー」だと思っているから、

	そのHow To PronounceシリーズにPostgre

SQLもあるよね。

	あれで聴いたら「ポスグレスキューエル」なん

ですよね。

	そう。「ポス（トゥ）グレ・スキューエル」って

感じで発音するね。

	 Wikipediaによると「ぽすとぐれすきゅーえ

る」……らしいです。Sを「エス」って発音せず、

「ス」と読むらしい。だから、MySQLも「マイ

「なんて発音するんだ？」は国際問題コラム

　今回は、仕事で英語とのかかわりが強い外資系 IT
会社での勤務経験のある皆さんに対談をお願いしま
した。野波さんは顧客サポートの経験があり、藤田
さんは海外のエンジニアとの仕事がメインです。長
谷川さんはハードウェアベンダで世界各地の同僚エ
ンジニアと働いてきました。
　「どう発音するのか」というのは世界的な問題かも
しれません。IT立国として有名なインド出身の方々
の英語は、米国のネイティブスピーカーも悩ます問
題で、「インドリッシュ」や「ヒングリッシュ」と呼ば
れています。

　　 以前、カンファレンスで東海岸のネイティブ
スピーカーが発表していて、「Any questions?」って
やったら、インド人が（パっと手をあげて）わーっと
英語でしゃべり始めた。だけど、スピーカーは

「Pardon? Pardon?」ってなっていた。それを見て「よ
かった。わからないのは俺だけじゃないんだ」って
思った。「バリバリのニューヨーク近辺で生まれたや
つも聞き取れないんだ」みたいな。そこにいくと、
イギリス出身の人間は聞き取れるみたい。やっぱり
英語のオリジナルはイギリスだから、イギリス英語
で育った人はだいたいどこの英語でも聞き取れる。
アメリカ人はネイティブスピーカーと言っても、ア
メリカの音になっちゃってるから聞き取れないん
だって。イギリス出身のやつが言ってた。「アメリカ
はアメリカでやっぱりなまっているよ」って。

ということなので、言葉はまさに生き物ですね。日
本語の方言と同様に、英語は英語でも、すべての
人々に通じるわけではないようです。

注2） https://www.youtube.com/watch?v=7fJF5UIS_hE

 ▼図1　YouTubeの「How To Pronounce Ubuntu」注2

https://www.youtube.com/watch?v=7fJF5UIS_hE

116 - Software Design Feb. 2015 - 117

これはなんて読む？ UNIX用語読み方指南

と書かれたハードディスクの写真（図2）を使

い始めて、決定的になった。

	日本だとそういう（創設者が話している）場面

に触れる機会がどうしても少ない。

読み方がわからないときは
manを読め！

	RHELやCentOSでみると、パッケージの名

称でライブラリ（Library）のlibで始まるものが

多いのは当然なんだけど、GNU、GNOMEの

からみでGで始まるものも多いんだよね。あ

と妙に多いのがXで始まるもの。X Window

Systemだけでなくて、Xerces（ザーシス）と

か。Xが最初にくると、一般的には読みにくい

じゃない？

	読みにくいです。むしろ、発音も何もできな

いよね、みたいな。

	私はXANADU（ザナドゥ）注4があったから、X

をザジズゼゾで読んでいいという知識がある。

	xinetdは「ザイネットディー」って言います

か？

	あれは「エックスアイネットディー」だな。

	でもXILINX注5ってあるじゃないですか？　あ

れは「ザイリンクス」って言うから、XIで「ザ

イ」って確かに読むよなあ。

	 ネイティブスピーカーはxinetdをなんて発音

「ディーヴィディー」って音が入ってきても、

ぜんぜん聞きとれない。

 その話はおもしろいですね。
	そういう難しさはあるんだけど、日本語でカ

タカナに落としたとき、もしくはセミナーや

カンファレンスでしゃべるときに、7割か8割

の人が理解してくれる言い方、読み方ってい

うのは、やっぱりあるよね。Linuxを「ライナッ

クス」って言うと、やっぱりピンとこないか

な。

	 プロジェクトやディストリビューションに関

して言えば、そのプロジェクトやソフトウェ

アを作った人がなんて言っているかが基準に

なる。Linuxだったら、Linusが発音している

のが正しいと言えば、正しい。

	Btrfsはどうして「バターエフエス」でいいの

かって言うと、Chris Masonが「バターエフエ

ス」って紹介しているからだよ、って話ですね。

	僕は「バターエフエス」って知ったのはレッド

ハットに入ってからですね。「ビーティーアー

ルエフエス」じゃないんだって。

	最初は「ベターエフエス」とか、「ビーティー

アールエフエス」って読み方もあった。けど今

は、Chris Mason自身が「バターエフエス」っ

て発音している。

	 しかも、彼がプレゼンテーションでBUTTER

 ▼図2　Chris Masonのプレゼンテーション画像注3

注3） http://www.slideshare.net/terrywang/btrfs-by-chris-mason

注4） 1985年に日本ファルコム㈱から発売されたアクションロー
ルプレイングゲーム。

注5） FPGAのメーカー。http://www.xilinx.com/

http://www.xilinux.com/
http://www.slideshare.net/terrywang/btrfs-by-chris-mason

118 - Software Design

有識者がまじめに議論!?

してるかな？　聞いたことがない。

	（PCを見ながら）あ、「OSS用語集Weblio辞

書」注6に「ザイネットディー」って書いてある。

	え、うそ。今までずっと「エックスアイネット

ディー」って読んでた。

	僕もそうですよ。

	ちゃんとFreeBSDプロジェクトのmanペー

ジ注7にも発音方法について書かれてる。

	あ、ほんとだー。「zy-net-d」って書かれてる。

	一応、そちらが正しいことになるんですね。

	結果が出ましたね。

	「エックスアイネットディー」じゃないんだ。

十何年間、間違ってた。

あえて日本語独自の読み方を
することもある

 ファイルシステムもいろいろとわかりにくい用
語があります。ext4とか。
	レッドハット社内だと、ext4は「エクスト

フォー」と言ったりします。

	なんでかって言うと、たぶん長いからだよね。

本当は「フォースエクステンディットファイル

システム（fourth extended file system）」だけ

ど、それを略している。

	extended file systemの「ext」とfourth（4番目）

なので、「エクストフォー」というのは納得で

すけど。でも、ユーザには「イーエックス

ティーフォー」と言っている人のほうが多そう

ですね。

	正直、社内でも意見が割れていて、「イーエッ

クスティーフォー」と言っている人も、「エク

ストフォー」と言っている人もいます。

 ext4の前のext3は「エクストスリー」ですか？
	「エクストスリー」。ext2は「エクストツー」。

	私は「イーエックスティーツー」「イーエックス

ティースリー」ですけれど（笑）。

	セミナーで話すときは、「イーエックスティー

スリー」って言ったあとに、すぐに「サードエ

クステンディット」と補足して言うことが多

い。

	ZFSは？　「ゼット」？　「ズィー」？

	「ズィーエフエス」ですか？

	うちの社内だと「ズィーエフエス」って言われ

ると、Global File Systemの「ジーエフエス

（GFS）」と区別がつかないなあ。

	それはネイティブでも厳しいと思います。

 ZFSを「ゼットエフエス」と言うことはあまり
ないですか？
	いや、日本人には「ゼットエフエス」と言わな

いと通じない。

	うーん、通じないね。

	そもそも日本人はZを「ズィー」と言わない。

逆にネイティブの人に「ゼットエフエス」って

言うと、「おまえ、何言ってんだ？」ってこと

になる。

	「ゼット」っていうのが、日本語化されちゃっ

ている読み方なんだよね。Zを「ゼット」って読

んじゃう回路が頭の中にできてるじゃない？

だから、同じような例で、ネイティブの連中

と話しているときに思わず「エックスハチロク

（x86）」って言っちゃう（笑）。

コマンドの入力を促すときは
アルファベット読みが吉

	シェルも難しいですね。bashは「バッシュ」。

	 「シーシェル（csh）」「ティーシーシェル（tcsh）」

	 でもね、shを「シェル」って発音するかどうか。

注6） http://www.weblio.jp/content/Xinetd?dictCode=OPSYG
注7） http://www.freebsd.org/cgi/man.cgi?query=xinetd&sektio

n=8&manpath=RedHat

http://www.weblio.jp/content/Xinetd?dictCode=OPSYG
http://www.freebsd.org/cgi/man.cgi?query=xinetd&sektion=8&manpath=RedHat

118 - Software Design Feb. 2015 - 119

これはなんて読む？ UNIX用語読み方指南

私はcshは「シーシェ」って言う。tcshは「ティー

シーシェ」。dashだけ「ダッシュ」だなあ。

	私は「シーエスエイチ」「ティーシーエスエイ

チ」……。

　（笑）

	これは意見が分かれたね。なんで分かれるん

だろう？

	私はzshは「ゼッシュ」って言ってます。理由

はわからないですが、自分自身の理解だと

「ゼッシュ」です。

	私の中では「ゼッシェ」。

	藤田さん、今決めてないですか？　本当に普

段からそう読んでます？（笑）

	相手にちゃんと伝えないといけないときは、

あえて「ゼットシェル」って言っちゃう。

	たぶんこれ、フルで言わないと通じないと思

います。

	そもそもこのソフトウェアをどう読むかとい

う問題と、コマンドで打つときにどういうふ

うに説明するかっていうのはまた別の問題。

	そう、確かにね。

	私はどちらかというと、コマンドでタイプし

てほしいときに、どういう言い方をするかっ

て考えます。

	そういう意味だと、ユーザに一番通じやすい

のは、「バッシュ」「シーシェル」「ティーシェ

ル」「ダッシュ」かなあ。

	「ティーシーシェル」じゃなくって、「ティー

シェル」なの？

	 「ティーシェル」って言う方が、結構いらっ

しゃいます。ただ、確かに「ティーシーシェ

ル」という方もいます。たぶんそれが短くなっ

て「ティーシェル」って言っちゃってるんです

けど。

	コマンドだと、たとえば、chrootは……？

	「シーエイチルート」でしょ。

	うそ！　「チェンジルート」でしょ。

	コマンドを打ってほしいから「シーエイチルー

ト」。すでにコマンドを知っている人が相手な

ら「チェンジルート」でもいいと思います。

	あと、気になるのがsu。「スー」？

	あと、「スードゥー（sudo）」？　さらに「スー

ドゥアーズ（sudoers）」？

	「スー」「スードゥー」「スードアーズ」と言った

りします。

	パスワードを設定するときのvipwは、「ブイア

イピーダブリュー」って言うの？

	「ブイアイピーダブリュー」って言いますねえ。

この用語はなんて読む？　
オリジナル読みいろいろ

	Vyatta（ビヤッタ）から派生したVyOSはどう

読む？　みんなTwitterで「ビョース、ビョー

ス」って言っているけど？

	（PCの画面を見せながら）VyOSはこれ（図3）

らしいです。

	 「ヴィワイオーエス」！？

注8） http://www.slideshare.net/higebu/20140727-vyos-users-
meeting-japan-1

 ▼図3　 スライド「VyOS Users Meeting Japan #1
VyOS 概要とデモ」より注8

http://www.slideshare.net/higebu/20140727-vyos-users-meeting-japan-1

120 - Software Design

有識者がまじめに議論!?

	 統一したいらしいです。

	そう思ってるのかもしれないけど、みんな

Twitterで「ビョース」って言ってるよね。

	このスライドの中の「みんな気になるVyOSの

読み方」で挙げられている例には、そんなのな

いですよ（笑）。

	話は変わりますが、psコマンドの結果で「ダブ

チャン（WCHAN）」って出てるじゃないです

か？

　（笑）

	わかる、わかる！

	あれは一応、Wait Channelの略なんですけど、

なんか「ダブチャン、ダブチャン」って言って

いるときがある。

	それなら、プログラミング言語で出てくるchar

は「チャア」？　「キャラ」？

	「キャラ」かなあ。「チャア」でも大丈夫。わか

る。

	「キャラ」のほうがピンと来るかなあ。じゃあ、

strは「ストア」？　「ストリ」？

	「エスティーアール」です。

	もしくは「ストリングス」って言っちゃうかも

しれない。

	で、str○○関数っていろいろあるじゃない？	

そうすると、そのときにはなぜか「ストア」っ

て発音する人がいるんだよね。「ストアコピー

（strcpy）」とか。

	 あとは「ストアコンプ（strcmp）」とか「ストアレ

ン（strlen）」。

	 PHPにもC言語のそれらの関数をラップした

ものがあって、PHP界隈の人と話をしている

ときにも、やっぱり「ストアコンプ」とか、「ス

トアレン」って言う人がいる。

	でも、あれってなにも貯めてないですよね。

	そう。ストア（store）してないのよ。

 日本人だけの方言じゃないですか？
	たぶんそうなんだよね。strでストリング（Str

ing）のことってわかるけど、「なんて発音する

のか」って言われると、発音できないんだよ

ね。「エスティーアール」なんだよね、きっと。

	 お互いに通じるからいいんだけど、よくよく

考えたら、おかしな読みってやっぱりある。

まとめ

　今回、IT用語（とくにUNIX用語）の読みを明らか
にするべく、有識者3人に語ってもらいました。そ
の中でわかったのは、読み方（発音）は必ずしも1つ
ではないということ。伝える相手やシチュエーショ
ンによって使い分けるのが良いようです。

読み方（発音）を調べるうえでのポイント

・	 そのソフトウェアやプロジェクトを作った人がど

う発音しているか

・	 manやWikipedia、コミュニティメンバーのスラ

イドなどで示されていないか

相手に伝える際のポイント

・	 日本人が相手のときと、ネイティブスピーカーが

相手のときとで使い分ける（とくに「z」が入る用語

や、略称など）
・ 相手にコマンドなどをタイピングしてもらうような場
合は、アルファベットの綴

つづ

りで言うほうがよい

　今回の議論を踏まえ、次ページの表1にSoftware

Design編集部推奨の読み方一覧を整理しました。ぜ
ひ参考にしてみてください。｢

120 - Software Design Feb. 2015 - 121

これはなんて読む？ UNIX用語読み方指南

 ▼Linux/UNIXディストリビューション
用語 読み方

Linux リナックス、リヌックス
Fedora フェドラ
RHEL レル
CentOS セントオーエス、セントス
Debian デビアン
Ubuntu ウブントゥ
Kubuntu クブントゥ
Xubuntu ズブントゥ
Lubuntu ルブントゥ
openSUSE オープンスーゼ
SLES ※ スレス　※SUSE Linux Enterprise Server

FreeBSD フリービーエスディー

 ▼システム起動、サービス管理
用語 読み方

BIOS バイオス
MBR エムビーアール
LILO リロ
GRUB グラブ
SysVinit シスブイイニット、

シスファイブイニット
Upstart アップスタート
systemd システムディー

 ▼ファイルシステム
用語 読み方

ext4 エクストフォー、
イーエックスティーフォー

Btrfs バターエフエス
XFS エックスエフエス
UFS ユーエフエス
ZFS ゼットエフエス、ズィーエフエス

 ▼デスクトップ環境
用語 読み方

GNOME グノーム、ノーム
KDE ケーディーイー
Xfce エクスエフシーイー
LXDE エルエックスディーイー
Unity ユニティ

 ▼仮想化技術
用語 読み方

KVM ケーヴィーエム
Xen ゼン
BHyVe ビハイブ
Docker ドッカー
QEMU キューエミュ
CoreOS コアオーエス
VyOS ヴィワイオーエス

 ▼パッケージ管理
用語 読み方

dpkg ディーパッケージ
APT アプト
RPM アールピーエム
YUM ヤム
YaST ヤスト
ports ポーツ

 ▼Linuxの主要ディレクトリ
用語 読み方

/ ルート
/bin スラビン
/boot スラブート
/dev スラデブ
/etc スラエトセ
/home スラホーム
/lib スラリブ
/media スラメディア
/mnt スラマウント
/opt スラオプト
/proc スラプロック
/root スラルート
/sbin スラエスビン
/sys スラシス
/tmp スラテンプ
/usr スラユーザ
/var スラバー

 ▼シェル
用語 読み方

bash バッシュ
csh シーシェル
ksh ケーシェル
tcsh ティーシーシェル、ティーシェル
dash ダッシュ
zsh ゼッシュ、ゼットシェル

 ▼コマンド（どう読んでいいか迷いそうなもの）
用語 読み方

chroot チェンジルート、シーエイチルート
cron クーロン
dmesg ディーメッセージ
gunzip ジーアンジップ
ifconfig アイエフコンフィグ
ip6tables アイピーシックステーブルズ
rsync アールシンク
su スー
sudo スードゥー
xargs エックスアーグス

表1　Software Design編集部推奨　UNIX/Linux用語読み方一覧

122 - Software Design

デザインスプリントとは

　本稿で取り上げるデザインスプリント（Design

Sprint）とは、ベンチャー支援を行うGoogleベン
チャーズが提唱する、スタートアップ企業向けの小
規模ワークショップです。短期間でモノ作りをする
ハッカソンなどの一過性のものとは異なり、スター
トアップ企業や企業内の新規事業を正しく導きだ
し、自分たち自身で考え、発展させるための手法と
して考えられています。

The product design sprint:
 a five-day recipe for startups

 URL �http://www.gv.com/lib/the-product-
design-sprint-a-five-day-recipe-for-
startups

　デザインスプリントは、Understand（理解する）、
Diverge（発散する）、Decide（決定する）、Prototype

（試作品を作る）、Validate（立証する）という5つの
フェーズで作業を進めます。デザイン指向の考えを
もとにし、さらに実用的なものに発展させた手法で
す。本来は、実際に街に出て街の人たちにヒアリン
グをしたり、ユーザテストをしたりする5日間にお
よぶ大変なコースですが、内容やテーマによっては
数時間で実施でき、デザインスプリントの良いエッ
センスのみを体験することもできます。
　本稿では筆者がかかわったデザインスプリントの
うち、そのように短時間で行ったものを体験レポー
トを交えて紹介します。

コードが書ける必要もなし。
だれでも参加可能

　新しいAPIの使い方を知る、新しいテクノロジや
ツールの概要を知る、といったようなアイデアソンや
ハッカソンに向くテーマもありますが、デザインスプ
リントはそれとはまた少し違い、限られたメンバーで
極端に難しい目的や課題を見つけ、次のプロダクトや
サービスを考えるようなときに向いたものです。
　デザインスプリントではアイデアの発散と収束を
繰り返し実施するため、新規性が求められるスマー
トフォンアプリやWebサービスのアイデア、ある
いはウェアラブル端末向けのアプリ、家電や車のア
プリなどといった、まだ世の中に浸透していないも
ののアイデアを考えるのにも適した方法です。
　アイデアソンやハッカソンでは、実施期間中の時
間内で完成できそうな、実現が容易で、かつ審査員
にアピールしやすいアイデアが選ばれがちです。ま
た、ハッカソン終了後もそこで作られたものを継続
的に育てていくのは難しい場合がほとんどです。主
催者の意向や参加メンバーも混成していることか
ら、的確に規定しておかなければアイデアや作られ
たものの権利がどこに所属するのかもあいまいにな
りがちです。さらに、慣れたファシリテータがいな
かったり、時間が押し迫ってきた場合には、チーム
内の声の大きな人にひきずられてしまい、アイデア
が良い方向に発散することなく、なんとなく合意形
成がなされてしまうこともあります。
　デザインスプリントでは参加のために特殊なスキ
ルを必要としません。コードを書いたり、（見た目
としての）デザインを描いたりはしませんので、エ
ンジニア、プログラマ、デザイナーに限らず、企画

新しいサービスやアプリケーションをチームで考え出すとき、あるいはスタートアップ企業が事業計画を練る
といったときには、そのプロジェクトにかかわる人たちで会議が行われることでしょう。本稿で紹介する「デ
ザインスプリント」と名付けられた手法は、時間を区切り、発散と収束を繰り返すことでアイデアをより良いも
のに発展させるGoogleらしいアクティブなワークショップスタイルの提案です。

Googleベンチャーズが提唱する
デザインスプリントとは

アイデア創出のためのワークショップ

誌上体験レポート　　　　　　

安藤 幸央（あんどう ゆきお）
EXA Corporation
 Twitter @yukio_andoh
 Web http://www.andoh.org/

Googleベンチャーズが提唱する
デザインスプリントとは

http://www.andoh.org/
http://www.gv.com/lib/the-product-design-sprint-a-five-day-recipe-for-startups

Feb. 2015 - 123

誌
上
体
験
レ
ポ
ー
ト

職、マーケティング職、営業職等々、プロジェクト
にかかわる人すべてが、より良いプロダクトやサー
ビスを考えることのできる時間です。
　デザインスプリント終了後には、単なる意見の集
約ではなく、参加した人々自身の考えの中から、気
づきや深い洞察が得られるようになります。デザイ
ンスプリントに参加した方は、この手法を持ち帰
り、継続的にプロジェクトで活用することもできる
でしょう。

デザインスプリントの準備

　デザインスプリントの実施に際しては、いくつか
配慮や準備が必要です。次にそれらを列挙します。

 ◎実施場所
　広さに余裕のある部屋で、数人で囲むことができ
る机と、立ち上がることが容易なキャスタータイプ
の椅子がある場所が向いています。完璧な場所がな
い場合も、机や椅子の配置を工夫したり、意図的に
皆で立って作業するのも良い方法です。

 ◎スタートが肝心
　デザインスプリント（短距離走）ですからスタート
ダッシュが重要です。最初から重要な話をし始めま
す。可能なかぎり開始時間前に全員がそろっている
ことが理想です。

 ◎ポストイット
　3M純正の強粘着の75mm角の四角いポストイッ
トがお勧めです。一人あたり一束、100枚ほどあれ
ば十分でしょう。ほかの安価なポストイット類似品
の場合は粘着力が弱いものもあるので、別途セロ
テープを用意するなどの注意が必要です。

 ◎黒サインペン
　ポストイットに記入するために使います。少し離
れたところからも文字が読めることが重要です。こ
こでは裏写りしない水性マーカー（紙用マーカー）が
お勧めです。筆者は「ゼブラ 水性マーカー 紙用

マッキー極細」をよく使います。鉛筆と消しゴムで
修正することなく、間違ったら書き直すほうが、ア
イデアが洗練されていきます。

 ◎ホワイトボード
　移動式のホワイトボードか、ポストイットを貼り
付けても良い白い壁がチームに1面必要です。ない
場合は、机の上に模造紙を広げたり、イーゼルパッ
ドで代用できます。皆で同じものを見ながら議論で
きるようにするのがポイントです。

 ◎オヤツ
　お腹がすくと怒りっぽくなったり、頭の回転が遅
くなったりするので、食べ過ぎない程度につまめる
オヤツを用意しましょう。手が汚れないもの、糖分
が補給できるもの、食べるときの音がうるさくない
ものが向いています。脳に必要なブドウ糖のみが補
給できる、昔なつかしいラムネのお菓子もお勧めで
す。飲み物はこぼさないよう、ふたのついたもの、
ペットボトルなどが向いています。

 ◎A4の白い紙をたくさん
　コピー用紙でかまいません。チラシの裏紙などで
はない、新しい紙が向いています。新しい紙のフチ
で手を切らないように気をつけましょう。書きごこ
ちの良い方眼ノートなどでもかまいませんが、気軽
にあつかえる安価な紙で何度も書き直すのがお勧め
です。

 ◎時計
　分針が見やすい時計が、皆が見える位置にあると
良いでしょう。タブレット端末やパソコン画面への
時計表示でもかまいません。残り時間が把握できる
アナログ表記の時計が向いています。

デザインスプリントの進行

　デザインスプリントを実施する際のタイムテーブ
ルを次ページに紹介します。時間はこの限りではな
く、進行状況によって増減してもかまいません。

124 - Software Design

はじめに：60分

30分 目的の概要説明（特殊なデバイス向けの場合は触
る機会を作ります）

20分 チームビルディング（3人、5人といった少なめ
の、できれば意見が半分に分かれない奇数人数

のチームに分割します。初めて同士の場合は自

己紹介。職種は何ですか？　最近インストール

したアプリは何ですか？　といった回答しやす

い設問を用意しておくと自己紹介しやすくなり

ます）

10分 デザインスプリントの概要の説明

分析：30分

10分	 ペルソナについてのチームでの議論1（仮想的
ユーザ像であるペルソナは事前に作っておきます）

20分	 ペルソナが求めている機能について発表

 アイデア検討：30分

10分	 ブレインストーミング（個人作業）
20分	 ブレインストーミング2（チーム内でお互いにア

イデアを紹介し合う）

意思決定：5分

5分	 投票によって案を決定3（皆が自分以外のアイデ
アに1票ずつ投じ、最終的には話し合いで決定）

プロトタイプ作成：50分

10分	 利用シーンを作成（個人作業：使う場面の一瞬一

アイデアを創出のためのワークショップ

Googleベンチャーズが提唱する
デザインスプリントとは

デザインスプリント
の流れ

　皆が見える場所に残り時間がわかりやすいアナロ
グ式の時計を配置し、規定の時間どおりに事を進
め、多少作業が残っていてもうまくまとめて切り上
げ、先に進めるのが得策です。また、皆の疲労度合
いによって途中に休憩時間をはさみます。皆で一斉

に休むというより、「必要に応じてトイレに行って
ください」というような半分休憩、半分は個人個人
の作業を続ける時間のような時間帯をとったほう
が、歩き回ったり、リラックスしつつも考えること
を続ける時間になり、よい案がまとまります。

≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫

最初のペルソナ（仮想的ユーザ像）検討の
様子。ペルソナが必要としていることを
考えます。

個人個人がポストイットに書いたアイデ
アを縦軸「実現したときの価値」、横軸「複
雑さ、実現の難しさ」でプロットします。

プロットした中から良いアイデアを投票
で絞り込みます。この際できるだけ「実現
が難しそうだが、価値の高いアイデア」を
選出するようにします。

個人作業で利用場面を書き出したものを
チームメンバーに説明します。

1

2

3

4

Feb. 2015 - 125

誌
上
体
験
レ
ポ
ー
ト

瞬を切り取って描いてみる。ストーリー性はな

くて良い）

10分	 ディスカッション4（チーム作業：考えたものを
紹介し合い、意見をもらう）

15分	 UXフローの作成（個人作業：ある特定の利用の
流れを考えて紙に描く。すべての事象を網羅す

る必要はない）

15分	 UXフローの決定5（チーム作業：全員の中から
良かったものを選出し、さらにブラッシュアッ

プする）

検証：20分

20分	 1チームあたり1分という短時間でプレゼン
テーションを実施6（事前に発表の練習をしてお

くと良い。発表を聞いて、ほかのチームからの

意見や評価をもらう）

デザインスプリントの
まとめ

　本稿では筆者が何度か参加し、ファシリテーショ
ンも担当したデザインスプリントから、主要部分を
紹介しました。皆さんの関心が高ければ、さらに詳
細な手順を紹介した続編記事掲載のチャンスがある
かもしれません。
　デザインスプリントは100％同じ内容を再現しな
ければいけないわけではありません。本稿を読んで
くださった皆さんも、試行錯誤しながら自分たちで
実施できると思います。
　デザインスプリントの最大のポイントは、個人個
人の作業の時間をしっかりとることと、チームで話
しあう時間のバランスをうまくとることです。そし
て時間を区切り、その時間内で最大限の成果をひね
り出す「短距離走」的な考えで進めることです。その
基本ルールに従えば、細かい進行は自分たちの都合
や、デザインスプリントで得たい成果物・目的に応

じて工夫しながら修正していけば良いと思います。
　筆者が参加したデザインスプリントでも、スプリ
ントの最後のフェーズで本来の手順にはなかった
「アプリにわかりやすい名前をつける」という作業を
追加したことがありました。キャッチーな名前を決
めると、ひと目で目的を伝えることができます。プ
ロジェクトメンバーが同じ意識、同じ方向に向かっ
て考えをまとめ、シンプルで的確に説明できるよう
になり、とても良い効果が生まれました。
　デザインスプリント中は頭がフル回転し、アドレ
ナリンが出て、なにかものすごいことをなし得たよ
うな気分になりますが、本番はデザインスプリント
の完了後です。考え出したアイデアを実装し、使え
るような形にすることこそが重要です。実装が先に
進むにつれ、また完成してからもさまざまな課題に
ぶつかるかもしれませんが、そのたびに短時間でも
良いのでデザインスプリントの短距離走を繰り返せ
ば、大きな目標に到達する日もそう遠いことではな
いでしょう。s

≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫
≫

実際の利用フローを考えます。ここでの
例は、腕時計型端末向けのアプリのアイ
デアを考えているところです。

最後にまとまったアイデアを短時間で紹
介し、皆に批判ではなく、ポジティブな
意見やフィードバックをもらいます。

6

5

126 - Software Design

総称関数の基本

　連載第2回目の今回は、前回予告どおりSwift

における総称関数（Generic Functions）を詳しく
みていきます。が、まず基本をおさらいしてみましょ
う。基本なので最も単純なケースから。最も単純
な関数というと、引数をそのまま返す関数でしょう。
　JavaScriptなら、

function identity(x) {
 return x;
}

　Perlなら、

sub identity {
 shift;
}

　Pythonなら

def identity(x):
 return x

　Ruby なら、

def identity(x):
 x
end

　どれも実質1行。簡
単ですね。
　ところが動的言語に
とってこれほど簡単な
ことが、静的言語に
とっては難しい。これ
をCでやってみようと
すると……。

int int_identity(int x){
 return x;
}
double double_identity(double x){
 return x;
}
char *str_identity_s(char *x){
 return x;
}

　要するに型の数だけ実装が必要になってしま
うのです。中身が同じでも、型が違えば別物で
ある以上、静的言語ではこれが当然でした。総
称関数が登場するまでは。その総称関数で書く
とどうなるのでしょうか？
　こうなります。

func identity<T>(x:T)->T {
 return x
}

　実際に動かして確認してみましょう（図1）。

let i = identity(42)
let d = identity(42.195)
let s = identity("Marathon")

書いて覚える 入門Swift
総称関数!=関数？2第 回

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

 ▼図1　総称関数を動かしてみる

126 - Software Design Feb. 2015 - 127

総称関数!=関数？2第 回

　確かに動いています。
　ここで<T>を取っ払ってみましょう。どうな
りましたか？　Use of undeclared type Tと
いうエラーが出たはずです。これで<T>の役割
がわかりました。「Tは型の名前ではなく型の
変数なので、コンパイル時に適切な型に置き換
えた関数を作ってね」とSwiftにお願いしてい
るわけです。
　ここで問題です。上記の identity(42)の
identityと、identity(42.195)のidentityは
同じものでしょうか？
　コンパイルされたコードを見てみれば（リス
ト1）、明らかです。
　_Tv8identity1までが同じで、後が異なるシ
ンボルが3つ出てきました。プログラマが書い
た1つのコードから、それぞれの型に対応する
関数が3つ生成されたのです。
　さらに、実際にidentityを使用している行

をコメントアウトしてコンパイルしなおすと、
シンボルはこうなります（リスト2）。
　identityは完全に消えてしまいました。こ
のことから、驚くべき結論が得られます。

　総称関数は、関数ではないっ！

　前回私はこう書きました。

「最低限文化的な関数型」の関数は第一級オブ

ジェクト

　・変数に代入できる
　・関数の引数にできる
　・関数を返す関数が書ける

　総称関数は、この条件を満たしていないので
す。
　満たしているのであれば、次のようにも書け
るはずですが、エラーになってしまいます。

% nm identity
0000000100000ee0 T __TF8identity8identityU__FQ_Q_
 U __TFSSCfMSSFT21_builtinStringLiteralBp8byteSizeBw7isASCIIBi1__SS
 U __TFSsa6C_ARGCVSs5Int32
 U __TFSsa6C_ARGVGVSs20UnsafeMutablePointerGS_VSs4Int8__
 U __TMdSS
 U __TMdSd
 U __TMdSi
0000000100001050 S __Tv8identity1dSd
0000000100001048 S __Tv8identity1iSi
0000000100001058 S __Tv8identity1sSS
0000000100000000 T __mh_execute_header
0000000100000f10 T _main
0000000100000e10 t _top_level_code
 U dyld_stub_binder

 ▼リスト1　identityの自分探し

% nm identity
0000000100000f00 T __TF8identity8identityU__FQ_Q_
 U __TFSsa6C_ARGCVSs5Int32
 U __TFSsa6C_ARGVGVSs20UnsafeMutablePointerGS_VSs4Int8__
0000000100000000 T __mh_execute_header
0000000100000f30 T _main
0000000100000ef0 t _top_level_code
 U dyld_stub_binder

 ▼リスト2　identityのシンボル探し

128 - Software Design

書いて覚える 入門Swift

let identity:<T>(T)->T = { x in
 return x
}

　「関数は第1級オブジェクト」ということは、
実体（instance）が存在するということですが、総
称関数に実体はありません。クラスベースのオ
ブジェクト指向言語におけるクラスに似ている
といえば似ています。クラスはオブジェクトを
生成するひな型ではあっても、オブジェクトそ
のものであるとは限らないという点において注1。
　これで、キーワードfuncがいらない子でな
いことが証明されました。定義はできても代入
はできないSwiftの総称関数には欠かせないの
です。

型の型もやはり型

　この総称関数は、「型が静的なのに動的言語
のように書ける」Swiftの特長を実現するのに
欠かせない機能となっています。たとえばsort

を考えてみましょう。

let numbers = [3,2,1,0]
let strings = ["three","two","one","zero"]

let sorted_nums = numbers.sorted { $0 < $1 }
let sorted_strs = strings.sorted { $0 < $1 }

sorted_nums // [0, 1, 2, 3]
sorted_strs // ["one", "three", "two", "zero"]

　この並べ替えを決める関数ブロック、同じ姿を
していますがそれぞれ別物です。前者は
(Int,Int)->Bool、後者は(String,String)->Bool。
なのに同じように書けるのは、配列の方も総称的
（generic）だから。「数値の配列」と「文字列の配列」
はそれぞれ別の型ですが、それぞれの型ごとにコー
ドを書き下ろしているのではなく、総称的な型
Array<T>が1つだけ定義してあって、そこから

Swiftが適宜Array<Int>やArray<String>を生成
しているのです注2。もちろん「配列の配列」も可能で、
その場合の型はArray<Array<T>>となるわけです。

型を型にはめる
プロトコル

　この総称型の「型変数」は、基本的にどんな型
でも受け入れます。しかしそれでは困る状況も
少なくありません。たとえば、次のコードを見
てみましょう。

struct Point {
 var x:Int
 var y:Int
}
var origin = Point(x:0, y:0)
println(origin)

　ここで何がprintlnされるでしょう？　(x:0,
y:0)とか（0, 0）とかとはなりません。Playground

では__lldb_expr_XXX.Point、swiftcでコンパイ
ルされたコードではproto.Pointとかと、あまり
意味のない文字列が出力されます。それもその
はず。Pointは自分がどうプリントされるべきか
を知らないのです。どうやってPoint型にそれを
教えてあげればいいのでしょうか？
　まず、最初のstruct Pointの後ろに:Printable
とつけてみてください。するとSwiftはType
'Point' does not conform to protocol
'Printable'と文句を言ってくるはずです。次に、
Pointの定義の中でvar description:Stringを定
義してみてください。まとめるとこんなふうに。

struct Point:Printable {
 var x:Int
 var y:Int
 var description: String {
 return "Point(x:\(x), y:\(y))"
 }
}
var origin = Point(x:0, y:0)
println(origin)

注1） 動的かつクラスベースのオブジェクト指向言語の場合、クラスはクラスで固有のインスタンスを持っていたりする点がややこしい
　　　ですが。
注2） 配列は非常によく使われるので、Array<T>の代わりに[T]とも表記できます。

128 - Software Design Feb. 2015 - 129

総称関数!=関数？2第 回

　これをコンパイルする
と、確 か に Point(x:0,
y:0)と出てきます。
　Playgroundだと、__ll
db_expr_XXX.Point の マ
マなのですが、これは
Xcodeのバグですね :-p

　この、型に施す制約の
ことを、Swiftではプロ
トコル（protocol）と呼び
ます。「struct Pointは
Printableプロトコルに
準拠している。なぜなら
descriptionプロパティ
を持つからだ」。プロトコルという言葉は本誌
の読者であれば毎号必ず目にしているかと思い
ますが、本来の意味はなんだったでしょうか?

辞書を引くとはじめに「外交儀礼。国際儀礼」と
出てきます。国際会議を上手に進めるには、ど
こで会議をするか、何語で会議をするかといっ
たことを会議の前に決めておかなければなりま
せん。たとえば講話条約を、敵国の首都で敵国
語で進めるとなったら無条件降伏でもないかぎ
り会議に出席する気にもならないでしょう。何
を進めるかは未定でも、どう進めるかが決まっ
ていれば進めることはできるのです。Swiftに
おける「プロトコル」という言葉はその意味にお
いて正しい選択だと思います。
　上記のPointでは、ユーザ定義の型を特定の
プロトコルに準拠する方法を見ましたが、総称
型や総称関数の方で特定のプロトコルに準拠し
た型だけ受け付けるよう指定することも当然で
きます。たとえば辞書、Dictionaryは次のよ
うに定義されています注3。

struct Dictionary<Key:Hashable, Value>

　「辞書の値Valueはどんな型でもOKだけれ

ども、KeyはHashableプロトコルに準拠したも
ののみですよ」ということです。実際、先ほど
のPointを

 var fromto = [origin:origin]

と書くと、Type 'Point' does not conform to
protocol 'Hashable'と文句を言ってきます。
　それでは、PointをHashableプロトコルに準拠
させるにはどうしたらよいでしょうか？　
Printableの時と同様に、var hashValue:Intを定
義すればOKかと思いきや、今度はType 'Point'
does not conform to protocol 'Equatable'と文
句を言ってきます（図2）。Equatable？　要は等号
が定義されていればいいの？
　そうなんです。実は==の再定義も可能なん
ですよ。Swiftならね。

おわりに

　次回はいよいよ私の一番お気に入りのSwift

の機能、ユーザ演算子定義を見ていきます。乞
うご期待！ﾟ

注3） 配列同様、辞書はとてもよく使われる方なので、[Key, Value]という表記も定義されています。

 ▼図2　protocolの実行例

130 - Software Design

　 NTTデータ 基盤システム事業本部　眞野 将徳（まの まさのり）　manoms@nttdata.co.jp

　今年SI企業に入社した新人SEの藤井君は、社内
の「勤怠管理システムの運用」を上司から任されまし
た。試行錯誤の末、シェルスクリプトとcronによる
手作りの運用管理に限界を感じた藤井君は、OSS運
用管理ツール「Hinemos」を使って運用自動化を進め
ていくことにしたのでした。
上司「Hinemosによる運用自動化は現状どこまで進

んでいるんだ？」

藤井「この間は、勤怠管理の運用に使っているサー

バにHinemosをインストールして、これまで

cronで動かしていたバッチ処理用のシェルス

クリプトを、Hinemosのジョブとして実行でき

るように設定しました。このあとはHinemos

でバッチ処理をスケジュール実行できるように

します」

上司「そうかそうか、なかなか順調そうじゃないか。

引き続きよろしく頼むよ」

藤井「はい！　まかせてください！」

藤井「と、いったものの……どうすればいいんだろ

う。マニュアルに書いてあるかな」

定時「自分で調べているのね、感心感心」

藤井「あ、定時先輩！　今日はジョブがスケジュー

ルどおり実行するように設定しようと思って」

定時「定時実行は、ジョブ管理ツールに備わってい

る基本的な機能の1つだからね。Hinemosにも

用意されているわ」

藤井「はい、それで今マニュアルを読んでいるんで

す。HinemosはOSSですがマニュアルが充実

していて、しかも日本語だから調べるのが簡単

ですね……あ、ありました！　スケジュールっ

ていう機能があるみたいですよ」

　ジョブ管理ツールは、前回藤井君がやっていたよ
うに手動でジョブを起動するだけでなく、定時実
行、つまりあらかじめ決めておいた時間に自動で
ジョブを起動するための機能を有しています。
Hinemosではこれを「スケジュール」と呼んでいます。

第5回 便利な機能で運用を自動化しよう

　今回はジョブを定時実行するためのHinemosの機能を学びます。業務の年間計画に合わせ、毎月
決められた日にジョブを実行する、実行結果の通知の受け取り方を細かく設定するなど、勤怠管理
システムの運用開始に向けた最終調整を行います。 イラスト（高野 涼香）

前回までのあらすじ
スケジュール
～ジョブの実行タイミングを制御する

藤井君の先輩社員。
華麗に仕事をこなし
定時に颯爽と帰って
いく優秀な女性。

今年SI企業に入社し
た新人SE。運用自
動化のために日々奮
闘中。

軽いノリで仕事を
依頼してくるが、藤
井君の成長を考え
ている。

定時先輩上 司藤 井

130 - Software Design Feb. 2015 - 131

第5回　便利な機能で運用を自動化しよう

スケジュールの設定は、ジョブパースペクティブの
ジョブ［実行契機］ビューで設定を行います。
藤井「この前、ジョブを作成するときにも利用した

ジョブパースペクティブにあるジョブ［実行契

機］ビューで設定するのか。Hinemosでは、

ジョブの設定に関するビューはジョブパースペ

クティブに、というように、機能ごとに画面

（パースペクティブ）がまとまっていて、とても

わかりやすいです」

定時「そうね。じゃあスケジュールを作成してみま

しょう」

藤井「ジョブ［実行契機］ビューにあるスケジュール

作成というボタンを押すと……あ、ジョブ［ス

ケジュールの作成・変更］というダイアログが出

てきました（図1）」

定時「さっそくこの前作成した日次バッチ用のジョ

ブを定時実行するように設定しましょう」

藤井「実行契機IDと実行契機名を入れて……、ジョ

ブIDの選択は、横の参照ボタンをクリックする

と……ジョブツリーが出ました。この前作った

ジョブネットも表示されていますね。実行した

いのは日次バッチだから、日次バッチ用のジョ

ブネットを選択して……と。あとはカレンダID

というのがありますね。これは何だろう？」

定時「カレンダは任意設定項目みたいだし、ひとま

ずは気にしないでもいいんじゃないかな」

藤井「なら最後はスケジュール設定ですね。毎日特

定の時刻に、毎時○分に、特定の曜日に、そし

て5分間隔など、いろいろ設定できるんですね」

定時「今回設定するのは日次バッチだから毎日22:00

に実行するように設定しましょう」

藤井「はい、今まではcronでシェルスクリプトを実

行するよう設定していたやつですね……できま

した！　スケジュールが設定できたので、あと

はジョブが実行されるのを待つだけです。あー

早く22:00にならないかなー。次にどのジョブ

がいつ実行されるのかわかればいいのに」

定時「ちゃんとわかるわよ。ジョブパースペクティ

ブにジョブ［スケジュール予定］ビューというの

があるでしょ。それを見れば今後実行される予

定のジョブがわかるわ（図2）」

藤井「どれどれ……、今設定した毎日22:00に実行

する予定のジョブが並んでいます。やった、設

定大成功だ！　とっても簡単でしたね」

藤井「次は月次バッチのスケジュールの設定です。

月次バッチは毎月最終日に実行するんですよ

▼図1　スケジュールを設定

▼図2　今後実行されるスケジュールを確認できる

カレンダ
～ジョブの実行日を制御する

132 - Software Design

藤井「そういえば日次バッチ用のスケジュールを作

るときに、カレンダIDを指定するところがあり

ましたね。スケジュールにカレンダを設定する

と、スケジュールの時刻に、カレンダが稼動の

場合にのみスケジュールが動作してジョブが実

行されるんですね」

定時「そうね。だから毎月最終日が稼動で、それ以

外は非稼動のカレンダを用意して、スケジュー

ルにそのカレンダを設定すれば、毎月最終日だ

けジョブが起動するようにできるの」

藤井「なるほど。ほかにもカレンダ機能を使えば、

サーバのメンテナンス日はジョブを動かしたく

ない場合に、メンテナンス日が非稼働日である

カレンダを作成しておくと、直前にスケジュー

ル設定を修正しなくても、前もってジョブが動

かないように設定することができそうですね」

定時「すごいじゃない、そういう使いかたもできる

わね。カレンダは複数のスケジュールで共用で

きるから、カレンダ設定を変更すると複数のス

ケジュールの動作を一括で変更できて便利ね」

藤井「ではさっそくカレンダ詳細に、毎月最終日に

稼動になるように設定してみます。えーと、月

次バッチだから、『年』は毎年、『月』も毎月です

ね。『日』は月の最終日だから……どうやって設

定すればいいんだろう、月の最終日って1月は

31日だし、2月は28日……あー、うるう年もあ

るのか、これは大変そうだぞ……」

定時「それなら、この『前後日』の設定を使ってみた

らどうかしら。『前後日』は上で指定した年月日

の指定をずらした日を、カレンダの判定条件に

することができる機能なの。たとえば『1』なら、

上で設定した年月日の翌日の、『-1』なら前日の、

稼働・非稼働を設定できるの（図3）」

藤井「つまり、毎年毎月1日の1日前、と設定すれば

1日の前日だから、前の月の最終日になるとい

うわけですね」

定時「そのとおりよ。前後日はほかにも、第一日曜

日の翌日、というような指定にも使えるわね」

ね。でもスケジュールには、日付を指定して実

行する設定はないぞ。どうしよう……」

定時「そういうときはカレンダ機能を使うのよ。カ

レンダ機能は、ジョブやスケジュールを実行す

る、実行しないを制御して、特定の日だけジョ

ブを起動するための機能なのよ」

　ジョブの中には毎日実行するものだけでなく、特
定の日にのみ実行したいものもあるでしょう。ジョ
ブ管理ツールでは、そのように業務カレンダなどに
基づいて、ジョブを動作させる稼動日や、動作させ
ない非稼動日を設定するための機能を持つものがあ
ります。Hinemosにも稼動・非稼動を制御する「カレ
ンダ機能」があります。
　カレンダ機能は、カレンダパースペクティブで設
定します。カレンダパースペクティブのカレンダ
［一覧］ビューの作成ボタンでカレンダを作成するこ
とができます。そして、カレンダ設定で詳細に稼
動・非稼動のルールを決めるのがカレンダ詳細設定
です。カレンダ詳細設定では、たとえば毎月18日を
稼動とするというような、規則的なルールを定めま
す。また時間も条件に利用でき、さらに平日の9時
から17時までを稼動とするような設定をすることも
できます。
　カレンダ詳細はリストの上から順番に評価され、
最初にマッチした条件で、稼動・非稼動が決まりま
す。より優先度の高い条件がリストの上になるよう
に設定しましょう。

月末だけの処理を設定しよう

132 - Software Design Feb. 2015 - 133

第5回　便利な機能で運用を自動化しよう

藤井「なるほど。ではでは、月次バッチ用のスケ

ジュールに今作ったカレンダを設定して、先ほ

どのジョブ［スケジュール］予定ビューを確認す

ると、日次バッチ用ジョブは毎日、月次バッチ

用ジョブは毎月最終日のみ実行される予定だと

わかりますね」

定時「おめでとう。日次バッチと月次バッチを

Hinemosで設定することができたわね」

藤井「そういえば、カレンダ詳細の設定画面にカレ

ンダパターンというのがありましたが、あれっ

て何なんでしょうか？　カレンダパースペク

ティブにも、カレンダ［カレンダパターン］

ビューというのがありますが」

定時「これまでのカレンダ詳細の指定方法は、毎月

最終日とか定期的な日程で設定するものだった

でしょ。それに対して、カレンダパターンでは

不規則な日程をベースに稼動・非稼動を指定す

るためのものらしいわ」

藤井「不規則な日程？」

定時「たとえば、祝日って年によって違うでしょ。

ほかにも基本的には営業日は平日だとしても、

年末年始みたいに、すべての平日がそうとは限

らないじゃない。そういった日程のパターンを

指定できるのがカレンダパターンね」

藤井「なるほど。今のところ日次バッチは毎日動か

すようにしていますけど、年末年始には日次

バッチは実行しないことになったら、カレンダ

パターンを使うと便利そうですね」

藤井「たしかに日曜から始まる月なら第一日曜の翌

日は第一月曜ですし、月曜から始まる月なら第

二月曜と、月ごとに違うんですね」

定時「さ、毎年毎月最終日を稼動にするカレンダを

設定したら、確かに毎月最終日だけが稼動に

なっているか確認しましょう」

藤井「カレンダがいつ稼動になっているかなんてど

こで……そういえばこのカレンダパースペク

ティブにカレンダ［月間予定］ビューというのが

ありますね。もしかして、カレンダ［一覧］

ビューでさっき作ったカレンダを選択してみる

と……やっぱり！　カレンダ［月間予定］ビュー

に日付が表示されて、最終日だけ○でほかの日

は×と、カラフルに表示されています（図4）」

定時「○は稼動の日、×は非稼動の日なのね。マ

ニュアルによると、1日の中で稼動と非稼動の時

間帯がある日には△が表示されるらしいわ」

▼図3　稼働・非稼働の条件を設定するためのダイアログ

▼図4　稼働日を簡単に把握できる
（カラーでお見せできないのが残念です！）

134 - Software Design

表示する

・イベント通知

Hinemosクライアントにこれまでの結果の履歴を

含め表示する

・メール通知

任意のメールアドレスに結果をメールする

・ログエスカレーション通知

任意のサーバにsyslogを送信する

・コマンド通知

Hinemosマネージャがインストールされている

サーバで任意のコマンドを実行する

・ジョブ通知

Hinemosに登録されているジョブを実行する

藤井「へー、Hinemosでは、運用画面に表示するこ

とも運用者にメールを送ることも、同じように

設定できるんですね。これなら、たとえばジョ

ブが失敗したらメールを送るようにして、運用

画面には成功を含むすべての結果を残しておけ

ば、異常が発生したときはすぐに気付けて、あ

とから結果を確認することもできますね」

定時「それは良いわね。通知は少なすぎても必要な

情報が出ないし、多過ぎると不要な情報に埋も

れて必要な情報を見逃しちゃうから、必要なも

のだけをバランスよく出すことが重要なのよ」

上司「ついにHinemosへの移行を終えたようだな」

藤井「はい！　無事に各バッチが正常に動いている

ことが確認できてます。cronとシェルスクリプ

トの組み合わせで動かしてた時の苦労が嘘のよ

うです」

上司「よしよし。これからもよろしく頼むよ」

　スケジュールやカレンダを組み合わせることで、
毎日の定時実行や特定の日にだけ実行するように
ジョブを制御でき、効率的に運用することができま
す。また、通知機能を用いることで、重要な情報に

藤井「定時実行するための設定登録も完了したし、

これで放っておいてもツールがジョブを動かし

てくれますね。よかったよかった」

定時「ちょっと待って、ジョブは実行するだけじゃ

なくて結果をチェックすることも大事なのよ。

この前（第3回）、障害が発生してたのに気付け

なくて後始末に苦労したの忘れたの？」

　藤井君は、まだcronでバッチ処理を実行していた
頃に、ジョブが動作していないことに気付かず数日
過ぎたあと、現場から苦情が来て、その対応に四苦
八苦したことを思い出しました。
藤井「ゾゾゾ……、もうあんな思いしたくないです。

でも、正しく実行されているか常に運用画面を

見張ってる必要があるなら、せっかく運用管理

ツールを導入した意味がないですよ」

定時「そうね。そのためにジョブ管理ツールの多く

は、ジョブの実行結果を運用者に知らせるため

の機能が備わっているわ。こういった機能を

Hinemosでは通知機能と呼んでいるのよ」

　Hinemosには次の6つの通知があります。また常
に通知するだけでなく、ジョブの実行失敗など、特
定の結果の場合にのみ通知することもできます。

・ステータス通知

Hinemosクライアントにリアルタイムな結果を
ついに運用開始！

今月の時短ポイント

通知
～ジョブの結果を受け取る

134 - Software Design Feb. 2015 - 135

第5回　便利な機能で運用を自動化しよう

藤井「えっ？」

上司「たとえばバッチ処理の過去の結果をいつまで

も残しておいてもしょうがないし、その辺のメ

ンテナンス方法を調べておいてくれんか。あと

何か起きたときのために設定のバックアップ方

法もよろしく頼むよ」

藤井「わかりました！　やってみます」

　Hinemosによる運用が軌道に乗り始めた藤井君。
しかし、運用への要望はまだまだ尽きることがない
様子。藤井君はよりよい運用のために、Hinemosを使
いこなすことができるのか。
　次回「さて運用開始だ！　でも始まってみると課
題がいっぱい！？」｢

To Be Continued...

すぐに気付くことができます。
　どちらもユーザの操作を必要とせず、自動で動作
するため、運用に必要な作業を自動化し、効率よく
システム運用を継続することができます。

藤井「ジョブ運用をHinemosに移行したおかげで、

手作業でやることが少なくなって、最近は定時

で帰れているな」

上司「藤井君、ちょっといいかな。実は勤怠管理シ

ステムなんだが、Hinemosへの移行も無事に済

んだことだし、メンテナンスのことも考えた方

が良いんじゃないか、という話が出ていてな」

カレンダって
いつ入れ替えればいいの？

　ジョブの稼動・非稼動を決めるためのカレンダの

設定は定期的にメンテナンス（修正）する必要があり

ます。システム構築時に、システム終了までのすべ

ての予定が把握できていて、その後の修正が不要な

場合であればともかく、現実的には、適宜カレンダ

設定は変更されていくことでしょう。そのため、カ

レンダは次のようなタイミングでメンテナンスされ

ることが多いです。

・翌年の営業日の日程が確定した場合

・ジョブの実行条件に影響を与えるようなシステ

ムメンテナンスの日程が決まった場合

・祝日の予定が確定した場合

・そのほか運用が変更される場合

　ちなみに祝日には、ご存じのとおり、天皇誕生日

のように毎年日付が変わらないものや、成人の日の

ように第○月曜（ハッピーマンデー制度）と決められ

たもの、春分の日や秋分の日のように年により異な

るものがあります。祝日は、「国民の祝日に関する法

律（昭和２３年法律第１７８号）」という法律に基づ

いて決められており、この法律が改正されない限り

は祝日の日は変わりません。ただし、春分の日・秋

分の日だけは、前年の2月1日に官報で国立天文台

が発表するまでは確定しないそうです。たとえば

2015年の春分の日・秋分の日は、2014年2月3日

に発表されました（2014年2月1日は土曜で官報が

発行されないため）。今後の祝日の予定は内閣府の

Webサイト注1でも確認できます。

　最近では、上記の法律が改正され2016年から新

たに山の日が追加されるという話や、ハッピーマン

デー制度により月曜に移動した祝日を元の日付に戻

そうという話をニュースで耳にします。祝日変更は

改正された法律の公布から施行まで時間があるため、

前もって知ることができます。

　本編にもあるようにHinemosのカレンダ詳細では

設定の優先順位を付けることができ、ほかの設定に

影響を与えずに設定を追加・変更することができま

すが、対象の日程が近づいてから慌てることのない

よう余裕を持って設定することをお勧めします。

注1） http://www8.cao.go.jp/chosei/shukujitsu/gaiyou.html

次回予告

http://www8.cao.go.jp/chosei/shukujitsu/gaiyou.html

136 - Software Design

深遠なるorg-mode

　ども、るびきちです。今回はEmacs界随一と
も言われるほど多機能なメジャーモードorg-
modeを採り上げます。筆者は2008年から実に
7年間も使っているのですが、それでも全機能
を使いこなせていません。開発は今も活発に行
われていて、まさに広大な世界を作っています。
ただでさえ多機能なのに拡張パッケージも
MELPAに70以上登録されています。最初に
org-modeを使うと、間違いなくあまりの多機能
に圧倒されます。
　広大なorg-modeを真っ向から習得しようとす
ると挫折します。使いこなすコツは、大事な機
能をしっかり押さえたうえで、目的に沿った機
能を見つけ出すことです。本来の目的を忘れて
org-modeを使うことが目的になってはいけませ
ん。org-modeはあくまでも目的に到達するため
の手段です。
　org-modeはEmacs標準添付ですので即使えま
す。拡張子.orgのファイルを開くと自動的に
org-modeになります。普通のテキストファイル
もそのままorg文書として扱えますが、見出し
などはorgの文法に従って書くとHTMLなどの
別フォーマットにきれいに変換できます。変換
をしないのであればすべての文法を覚える必要

はなく、用途に応じて使う文法を限定して使え
ばいいです。たとえば見出しは色が付くし移動
が簡単ですので、見出しだけ使うのもアリです。
　org-modeを使えばたとえば表1のようなこと
ができます。本稿もorg-modeで書いています。
　しかし、全機能を詳しく紹介すると電話帳な
みの本になってしまうので、アウトライン・表
作成・ハイパーリンク・メモ・予定・HTML変
換にターゲットを絞ります。これだけでほとん
どカバーできます。

アウトライン

　org-modeの始まりは、outline-modeを拡張し

アウトラインプロセッサ
ハイパーリンク
インライン画像を表示
表作成
表計算
グラフ作成
簡易データベース
文書内にコードを埋め込
み、実行させる
データ用フォーマット
HTML、XML、LaTeXな
どの文書作成
即座にメモをとる

TODOリスト管理
予定管理
進捗管理
GTDシステム
書籍執筆
ブログ執筆
サイト作成
プロジェクトの計画を
練る
時間計測
スマートフォンと
連携する
RSSを読む

 ▼表1　org-modeでできること

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

第10回 巨大なオーガナイズシステム「org-mode」の世界
Emacsに標準で備わるメジャーモード「org-mode」を紹介します。もとはシンプルなアウトラインプロセッサ
だったものが、今では膨大な機能を持つ1つの世界となっています。その機能群の中から、アウトライン、表
作成、ハイパーリンク、メモ・予定、HTML変換を取り上げて解説します。論文などの長い文章を書くにも、
アイデア出しなどのために短いメモをとるにも非常に役立ちます。

Writer

http://rubikitch.com/

136 - Software Design Feb. 2015 - 137

org-modeのコマンドが使えます。UNIX系OS

では読み込み専用になっている場合があるので、
C-x C-qで編集可能な状態にします。その状態
で見出し操作コマンドを試してみてください。

リスト

　リストは箇条書きをするときに使います。見
出しでもできますが、リストを使えば目次には
なりません。見出しとリストの違いは、HTML

などに変換したときの結果が異なることです。
HTMLでいえば見出しはH1～H6、リストは
UL・OL＆LI要素に相当します。
　行頭を「-」か「+」で始めると番号なしのリスト、
「1.」か「1)」で始めると番号つきリストになりま
す。番号つきリストでC-c C-cを押すと番号を
1から順番に割り振りなおしてくれます。また、
C-c -でリストの形式（-、+、1.、1)）を順番に
変更します。
　リストはインデントすることで入れ子にでき
ます。前の行がリストのとき、見出しと同様の
方法で入力できます。次は見出しをリストにし
たものです。

- H1
 - H2-1
 - H3-1
 - H3-2
 - H2-2

折り畳む

　org-modeの重要な機能として見出し以下の折
り畳み・展開があります（図1）。この機能を使
うことで、長い文書の見通しがよくなります。
見出しのみを表示することで、自然と目次にな
ります。また、下位の見出しや本文を隠すこと

たことです。モンスターのように巨大化したorg-

modeも、基本はアウトラインプロセッサです。
文章を書くときにはアウトラインを決めると書
きやすいですが、ほかの機能もアウトラインが
もとになっているものが多いです。

見出し

　見出しはorg-modeの最も基本になるもので
す。見出しは行頭で1つ以上のアスタリスクと
スペースで始めます。アスタリスクが多ければ
多いほど深い階層になっていきます。

* H1
** H2-1
*** H3-1
*** H3-2
** H2-2

　見出しは人力でアスタリスクとスペースを入
力してもかまいませんが、専用のコマンドが用
意されています。現在の見出しと同じ階層の見
出しを入力するにはM-RET、あるいはC-RETを
使います。これらのコマンドは行頭で実行した
場合は直前行に、行頭以外で実行した場合は「後」
の行に見出しが挿入されます。
　2つの違いは実行後に子見出しを飛び超える
か否かです。M-RETは飛び超えないで直後の行
に、C-RETは飛び超えた先です。上の例でH1の
あとでM-RETを使うとH1の下、C-RETを使うと
H2-2の下になります。
　見出しを入力したあとで M-<left>と M-

<right>で階層を変更します。子見出しを含め
て変更するときはM-S-<left>、M-S-<right>

を使います。

見出し間を移動する

　見出し行から見出し行へジャンプするコマン
ドがいくつか用意されています（表2）。
　ちなみに、それなりの規模のorg文書の例を
見るには、¡＋ nで表示できる「Emacs

NEWS」があります。outline-modeになってい
るのでM-x org-modeで強制的に切り替えれば

C-c C-p 前の見出し行へ
C-c C-n 後の見出し行へ
C-c C-b 同レベルの前の見出し行へ
C-c C-f 同レベルの後の見出し行へ
C-c C-u 1階層上の見出し行へ

 ▼表2　見出し間移動コマンド

第10回 巨大なオーガナイズシステム「org-mode」の世界

138 - Software Design

んが、筆者はRicty 注1というプログラマ向けの
フォントを使っています。見やすく、似た文字
の判別がしやすいだけでなく、全角スペースが
可視化されているのが特徴です。ライセンスの
関係でインストールは面倒ですが、がんばって
導入する価値はあります。導入できたら、フォ
ントファイルを「/.fonts」などに配置して、次の
ようにフォントの設定をします。

(set-face-font 'default "Ricty-15:bold")

　表を作成するには、行頭を「|」で始め、項目を
「|」で区切ります。2行目からはkを押せば
自動的に次の項目へ移動してくれます。kに
はレイアウト調整機能もついているので、項目
がずれても心配いりません。
　境界線は行頭を「|-」で始めてkを押すか、
上の行でC-c -を押します。図2は表の例です。
　org-modeの表は作成が簡単なだけでなく、表
計算機能も備わっています。また、文書中に書
かれたEmacs Lispやほかのプログラミング言語
にデータとして渡して実行させることもできま
す（org-babel）。これらの話題は本稿の範囲を超
えてしまうので触れません。筆者はorg-modeで
家計簿を付けています。

ハイパーリンク

　org-modeにはハイパーリンク機能
が備わっています。画像ファイルへ
のリンクを作成すると、インライン
画像として表示してくれます。ハイ

で、必要な部分のみを表示できます。
　折り畳み機能はリスト1のような仕様です。繰
り返し実行することで表示方法を切り替えられ
るのが特徴です。この書き方自体がネストした
リストになっています。
　従来のoutline-modeでは折り畳み関連のコマ
ンドが無数に定義されているので、とても覚え
きれません。見出し・リストの扱い、折り畳み
方法を知るだけでもorg-modeを使う意味が出て
きます。

表作成

　org-modeには優れた表作成機能があり、見栄
えのいい表を超簡単に作成できます。
　org-modeの表はテキストで表現されているの
で、適切なフォントを使う必要があります。さ
もないと、文字ごとに幅が異なるため、表示が
ずれてしまいます。文字幅がそろっているフォ
ント（等幅フォント）で、かつASCII文字と日本
語文字が1：2であることが条件です。
　条件を満たせばどのフォントでもかまいませ

 ▼図1　上：折り畳み前、下：折り畳み後 ▼図2　等幅フォントできれいな表！

 ▼リスト1　折り畳み機能

- C-i (<TAB>) :: 現在の見出し以下を折り畳む・表示する
 1. 見出し以下を隠す
 2. 下位見出しを表示する
 3. 全体を表示する
 4. 1へ戻る
- C-u C-i (S-<TAB>) :: 文書全体の見出しのみを表示・全部表示
 1. 最上位の見出しのみを表示する
 2. すべての見出しを表示する
 3. 全体を表示する
 4. 1へ戻る

注1） URL https://github.com/yascentur/Ricty

るびきち流
Emacs超入門

https://github.com/yascentur/Ricty

138 - Software Design Feb. 2015 - 139

ファで試してみてください。リンクできるバッ
ファを増やすための拡張パッケージもたくさん
あります。
　ファイルバッファに対してC-u C-c lを使う
と、位置情報を記憶せず、単にそのファイルへ
のリンクになります。

リンクを作成する

　リンク情報を取得したら、org-modeにおいて
C-c C-lでそのリンクを貼り付けます。すると、
リンクとリンクの説明文字列（HTMLでいうA

要素の中身）を尋ねてきます。リンクは先ほど取
得したリンクがデフォルトになります。リンク
の説明もその行の文字列になるので、たいてい
の場合そのまま RET RET でリンクを作成でき
ます。説明文字列を省略すると、リンクそのも
のが表示されます
　URLへのリンクを作成するには、C-c C-lの
あとにURLを入力してください。
　位置情報なしでファイルへのリンクを作成す
るには、C-u C-c C-lを使います。ファイル名
と説明文字列を尋ねてきます。説明文字列は省
略できます。
　リンクを貼り付けると、表示内容と実際の内
容が異なる状況になります。つまり、リンクと
リンクの説明の情報が含まれているのに実際に
はリンクの説明と下線が表示されます。Emacs

にはこのように見た目の内容を変更させる機能
があります。リンクをリンクらしく表示してく
れるのは閲覧するうえではとてもありがたいこ
とですが、リンクを編集する際には困ったこと
になります。そういう場合は、M-x visible-

modeで実際の内容を表示させればよいです。あ
るいは、リンク上でC-c C-lを実行して編集す
ることもできます。

インライン画像

　説明文字列を省略してローカルの画像ファイ
ルへリンクすると、インライン画像として表示
できるようになります。HTMLに変換したとき

パーリンクを作成する方法は、

❶リンク先を取得する
❷リンクを貼り付ける

の2ステップです。ただし、ファイルやURLへ
のリンクを作成するときは、いきなり貼り付け
られます。URL文字列はそのままリンクとみな
されます。
　リンクはC-c C-oでたどります。見出し行で
このコマンドを押すと、見出しに属する本文で
のリンクをたどれます。複数個ある場合は選択
肢が出てきます。

リンク先を取得する

　org-modeのハイパーリンク機能はあらゆる情
報へのリンクを作成できます。その中でも一番
大事なのはファイルへのリンクです。リンクし
たい場所を指定するにはM-x org-store-link

を使います。このコマンドは重要ですのでキー
に割り当てておくべきです。次のようにC-c l

に割り当てることを推奨しています。

(global-set-key (kbd "C-c l")
 'org-store-link)

　ファイルに対してC-c lを実行すると、その
ファイルの現在位置へのリンクが取得されます。
orgファイルへのリンクの場合は、現在の見出
しへリンクされます。それ以外のファイルでは、
現在行の文字列へのリンクになります。
　ファイルは変更され得ることに注意してくだ
さい。行番号や文字のインデックスでリンクを
作成すると、変更されたときにずれてしまいま
す。そのため、デフォルトでは現在行への文字
列にリンクすることで前後の内容の変更に耐え
られるようになっています。その代わり、現在
行の文字列と同じ行が存在したり、現在行が変
更されてしまうと望みの位置にジャンプしてく
れなくなります。
　C-c lはファイル以外にもdiredやヘルプバッ
ファなどにも対応しているので、いろんなバッ

第10回 巨大なオーガナイズシステム「org-mode」の世界

140 - Software Design

パー電子手帳と言えます。
　新しい項目を書き加えるのは M-x org-

capture（C-c cへ設定推奨）で行います。それ
によって書き加えられたメモはターゲットとな
るファイルにひとまとめにされるので、あとで
一覧できます。

メモ・予定を書くための設定

　org-captureを使うには、最低限の設定をして
おく必要があります。
　どのようにメモを書き加えるのかは変数org-

capture-templatesで設定するのですが、この変
数はとても複雑怪奇な代物です。全貌をわかり
やすく説明するのは不可能と言ってもいいので、
次の戦略に基づいた設定を示しておくにとどめ
ます。

・メモにはTODO・予定用、任意のメモの2種
類を用意する

・TODO・予定用には先頭行に「TODO」が付く
・任意のメモには次の情報を付記する
　ー現在時刻（%U）
　－regionがある場合はその内容（%i）
　－ M-x org-capture起動時のファイルへの

リンク（%a）
・%?はテンプレート挿入後のカーソル位置

　予定表（org-agenda）の設定もあらかじめやっ
ておきます。適宜orgフォルダを作っておき、リ
スト2のように設定します。変数org-agenda-

custom-commandsも複雑ですので深入りしない
でおきます。

メモを書き加える

　メモはC-c cを押して、どのメモにするかを
選択します。「t」でTODO・予定、「m」で通常の
メモです。メモの種類を選択したら、org-

capture-templatesで設定されたテンプレートが
展開され、メモ入力しやすい状態になります。
　メモ入力が完了したらC-c C-cで終了します。
ほかの作業中でも滞ることなくメモが取れるよ

もインライン画像になります。これにより
HTML作成が簡単になるだけでなく、grep検索
できるハイパーテキストとしても使えます。画
像付きのメモも作成できるようになります。
　インライン画像を表示するにはC-c C-x C-v

を使います。これはトグルになっているので、
再度実行するとインライン画像が非表示になり
ます。インライン画像の再描画は C-c C-x

C-M-vです。
　常にインライン画像を表示させるには、次の
ように設定します。

(setq org-startup-with-inline-images t)

　ファイルごとに設定することもできます。ファ
イルのどこかに「#+STARTUP: inlineimages」と
いう行を入れれば表示され、「#+STARTUP:

noinlineimages」で非表示になります。

org-modeのロゴ

[[file:org-mode-unicorn-logo.png]]

これを再表示すると図3となります。

メモ・TODOリスト・
予定管理

　org-modeは文書作成にとどまらず、日常生活
を管理することもできます。すばやくメモを取っ
たり、やるべきことや予定を書き加えたり、そ
れらをTODOリスト・予定表という形でまとめ
たりします。筆者は長年、手帳の代わりにorg-

modeを使って一元管理しています。多方面に柔
軟なカスタマイズができるorg-modeは、スー

 ▼図3　インライン画像表示

るびきち流
Emacs超入門

140 - Software Design Feb. 2015 - 141

判断してくれます。整数のみ入力した場合は今
月または来月の日付になり、時刻のみ入力した
場合は今日の時刻になります。`＋<矢印

キー>で、カレンダーで日付を選択できます。
　C-c C-sで日時を入力するとSCHEDULED

と出ますが、これはそのタスクのために実際に
自分が行動する日時を指定します。たとえば
10:00から始まる会議に行く時間が9:30だとした
ら、C-c C-sで行動予定日時9:30を入力します。
　リスト3のようにいろいろな種類のTODOを
入力してみました。

予定を一覧する

　TODOや予定をorgファイルに書き加えるだ
けでは一覧性がなく、見逃してしまいます。そ
こで、M-x org-agenda（C-c aに設定推奨）を
使うと「TODOリスト」や「予定表」という形にし

うに、メモ入力が完了したら元のウィンドウ構
成に戻る親切設計です。C-c C-kでそのメモを
破棄します。

TODOの状態を変更する

　TODO・予定用のメモにはアスタリスクのあ
とにTODOと書かれていますが、それには意味
があります。それはTODOキーワードといって、
あとで紹介するorg-agendaによって「やること
リスト」として表示できるのです。TODOキー
ワードはデフォルトではTODOとDONEの2種
類です。
　TODOリストでそのタスク（TODOキーワー
ド付きのメモ）が完了したらC-c C-tでTODO

からDONEに変更します。繰り返し実行すると、
TODO→DONE→キーワードなしの順で切り替
わります。これはorg-agendaでも使えます。

予定・〆切を設定する

　org-modeでは、メモに日時を書き込めます。
それによってorg-agendaで予定表としてまとめ
て表示できます。日時にはいくつかの種類があ
ります（表3）。inactive日時以外はorg-agendaで
表示されます。
　日時の入力方法はフリーフォーマットで賢く

 ▼リスト2　予定表（org-agenda）の設定

(global-set-key (kbd "C-c c") 'org-capture) (global-set-key (kbd "C-c a") 'org-agenda)
;; org-captureで2種類のメモを扱うようにする
(setq org-capture-templates
 '(("t" "New TODO" entry
 (file+headline "~/org/todo.org" "予定")
 "* TODO %?\n\n")
 ("m" "Memo" entry
 (file+headline "~/org/memo.org" "メモ")
 "* %U%?\n%i\n%a")))
;; org-agendaでaを押したら予定表とTODOリストを表示
(setq org-agenda-custom-commands
 '(("a" "Agenda and TODO"
 ((agenda "")
 (alltodo "")))))
;; org-agendaで扱うファイルは複数可だが、
;; TODO・予定用のファイルのみ指定
(setq org-agenda-files '("~/org/todo.org")) ;; TODOリストに日付つきTODOを表示しない
(setq org-agenda-todo-ignore-with-date t) ;; 今日から予定を表示させる
(setq org-agenda-start-on-weekday nil)

種類 入力方法 説明

active日時 C-c . org-agendaで表示される
日時

inactive日時 C-c ! org-agendaで表示されな
い日時

行動予定日時 C-c C-s そのタスクを行う予定の日
時

〆切日時 C-c C-d 〆切の日時

 ▼表3　日時の種類

第10回 巨大なオーガナイズシステム「org-mode」の世界

142 - Software Design

す。次の1文字は表4のように指定します。と
くにC-c C-e h oで変換結果をブラウザで確認
できるのは便利です。見出しやリストや表がき
れいに整形されているのは一見の価値がありま
す。
　ほかにも多数の形式に変換できますし、拡張
パッケージを導入すればさらにいろいろなこと
ができます。筆者はorg2blogパッケージを使っ
てrubikitch.comを書いています。org-modeの
機能性のおかげで毎日円滑にサイト更新ができ
ています。

◆　◆　◆
　ここまででorg-modeを駆け足で紹介しました
が、全機能からすれば本当に氷山の一角にしか
過ぎません。それでも多目的に活躍できるモー
ドであることはご理解いただけたでしょう。本
稿がきっかけでorg-modeが使いこなせるように
なれば幸いです。
　筆者は毎日Emacsの最新情報を http://
rubikitch.comに書いています。メルマガに登録
していただけると、無制限で個別サポートいた
します。ﾟ

てくれます。これは複数のファイルに分散して
書かれていても、ひとまとめにしてくれるとい
う優れものです。筆者は出先で多くのタスクを
こなす必要があるときにはM-x lpr-bufferで
印刷した紙を持ち歩いています。
　org-agendaを起動するとメニューが現れてく
るので、いろいろなことができることがわかり
ます。ここでは週間予定表とTODOリストを

表示させるのでaを押します。すると「*Org

Agenda*」には図4のように表示されます。org-

agenda上でもorg-modeでの多くのコマンドが
使えます。
　org-agendaはとても深く、カスタマイズ項目
もとても多いので誌面で紹介しきれないのが残
念です。筆者も現在の設定になるまでには長年
の試行錯誤がありました。

他フォーマットに変換

　org-modeで書かれた文書は、org-export機能
によりHTMLやLaTeXなどさまざまな形式に
変換できます。orgフォーマットは読み書きし
やすいので、定められたフォーマットの文書作
成が簡単にできるようになります。
　使い方は、まずC-c C-eで org-exportのメ
ニューを開きます。そして、最初の1文字で変
換形式、次の1文字でどのように変換結果を出
力するかを指定します。
　HTMLへ変換する場合、最初の1文字は「h」で

 ▼リスト3　TODOの例

* 予定
** TODO ○○バグ修正
日付がないTODO。
** TODO [2014-12-10 Wed 10:00]××会議
 SCHEDULED: <2014-12-10 Wed 09:30>
開始時刻とSCHEDULEDを設定。
active日時とSCHEDULEDを併用すると
org-agendaがバグるので注意。
** TODO 原稿
 DEADLINE: <2014-12-12 Fri>
〆切があるTODO。
** <2014-12-09 Tue 12:00>△△イベント開始
active日時によりagendaに表示させる。

 ▼図4　C-c a aでagendaを起動

H 変換結果を隣のウィンドウで表示

h 拡張子を .htmlにしたファイルに書き出して
終了

o .htmlに書き出した後ブラウザで開く

 ▼表4　変換後のHTML出力方法

るびきち流
Emacs超入門

http://rubikitch.com
http://rubikitch.com

143 - Software Design Feb. 2015 - 143

　横浜支部の嶋崎です。今回は自分用に作った
お知らせパネルシステムを紹介します。ソース
をGitHubに公開していますのでダウンロードし
て使ってください注1。

説明用パネルを作る
時間がない！

　展示会へ出す物を製作する時間を確保するの
が精一杯で、説明用のパネルなどを作るまで手
が回らない !!ということがあります。展示物の
完成度を高めるためには仕方ないことと言いた
いのですが、作った物を見てもらうと同時に、ぶ
らっと立ち寄ってくれた方に「この展示はこうい
うものですよ」というのを伝えるものは必要です。
筆者もまさにその状況に陥りました。どうにか
して展示物の説明に見栄えの良いパネルなどを
注1） https://github.com/sato-c/simplekokoku

使いたかったのですが、設置準備は何かとやる
ことも多く忙しいため、手間を減らそうという
ことで今回のAndroid用アプリを作りました。
　お知らせの文章をブラウザで表示するだけな
らばノートPCを使ったほうが簡単です。しか
し、ノートPCにはキーボードがあります。展
示中にずっと説明を出しておきたくてもキーボー
ドに触れてしまうとあまり都合良くありません。
そこで手元にあるワンボードAndroidとディス
プレイを使えないかと考えました（写真1）。ワ
ンボードAndroidにはタッチパネルがありませ
ん。その代わりボードごとに、（多少の違いはあ
るものの）有線LANやACアダプタなどがつい
ています。HDMIなどで外部ディスプレイに出
力できますから、ディスプレイの裏にボードを
貼り付けるなどしておけば、置き場所も困りま
せん。アプリを起動するときだけマウスを一時
的に接続して、アプリを起動したらはずしてし
まえば、操作する手段もありませんので誤操作
の心配が減ります。
　またAndroidのアプリですから、ワンボード
Androidが何かの事情で使えなくなってしまっ
ても、ほかのスマートフォンやタブレットで代
用が可能です。さらにHDMI接続ケーブルがあ
る機種であれば、ディスプレイに接続できるの
でワンボードAndroidと同等ですし、本体は自
分の近くに置いておけます。

G o o g l e A n d r o i d

嶋崎 聡　SHIMAZAKI Satoshi
よこいど／日本Androidの会 横浜支部

 Twitter @sato_c mail motosumi64@gmail.com

モバイルデバイス初のオープンソースプラットフォームとして、エ
ンジニアから高い関心を集めるGoogle Android。いち早くそのノ
ウハウを蓄積したAndroidエンジニアたちが展開するテクニックや
情報を参考にして、大きく開かれたAndroidの世界へふみだそう！

Androidで作る
お知らせパネルシステム

第55回Android
エンジニアから

の

招待状

 ▼写真1　実際に動かした様子

https://github.com/sato-c/simplekokoku

144 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

にmicroSDかeMMCが必要になります。

　NI-R3188はGIADA社が出しているNano

ITX基板です。NanoITXのケースを流用できそ
うでしたが、手元になかったので100円ショッ
プで購入したケースを加工して使いました。本
体とACアダプタは秋葉原で購入、合わせて約
16,000円でした。HDMIケーブルは通常のもの
が使えます。

 ■表示するWebサイトは複数管理したい
　説明Webサイトを1つにするならば、ブラウ
ザでWebサイトを開いてほったらかしておけば
いいのですが、それだけでは味気ないのでURL

を書いたテキストファイル（以下、URLリスト）
を使って、複数のWebサイトを切り替えて表示
できるようにします（リスト1）。
　リスト形式で複数のWebサイトを記述できる
ようにしても、切り替えるタイミングが手動で
は意味がありません。そこで、URLリストには
URLだけでなく、数字を書いてWebサイトを
表示する間隔を指定できるようにしました（リス
ト1-001）。たとえば、「30」と書けば30秒ごと
にWebサイトを切り替えられるといった具合で
す。こうすることで複数のWebサイトを一定の
間隔を空けて順番に表示し、最後まで行ったら

アプリの仕様を決める

　まずは欲しい機能をまとめて、仕様を決めま
した。あまり時間をかけないようにしたかった
ので、付ける機能は必要最小限ということにし
ています。

 ■OSはAndroid 4.x
　ターゲットはODROID-U3とNI-R3188いう
Android基板です注2（写真2、3）。
　ODROID-U3はHardKernel社が販売してい
る小さいワンボードです。OSが更新され続け
ていて、現時点で4.4をベースとした安定版が
リリースされています。国内の販売代理店もあ
るようなのですが、通販で海外から取り寄せま
した。HDMIケーブルと電源ケーブル、送料な
どを合計して97ドルほどでした。本体側の
HDMIとACアダプタの端子が小さい特殊なも
のなので、ケーブルも一緒に購入しています。
これ以外にOSをインストールして動かすため

注2） 「ODROID-U3」
 http://www.hardkernel.com/main/products/prdt_info.

php?g_code=G138745696275
 「NI-R3188」
 http://www.giadatech.com/index.php?act=pShow

&id=48

 ▼写真2　ODROID-U3 ▼写真3　NI-R3188

 ▼リスト1　URLリストの例

001: 30
002: http://sunnyday.hatenablog.jp/entry/2014/09/09/114603
003: http://sunnyday.hatenablog.jp/entry/2014/09/04/170558

http://www.android-group.jp/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138745696275
http://www.giadatech.com/index.php?act=pShow&id=48

144 - Software Design Feb. 2015 - 145

Androidで作るお知らせパネルシステム 第55回

頭に戻ることを繰り返してくれます。これでずっ
とほったらかしておくことができます。

 ■全画面表示
　ブラウザにも全画面表示はありますが、せっ
かくWebViewを使ったアプリを作るのでWeb

サイトだけを表示する形にしました。これには
レイアウトでタイトルバーなどを消すようにす
ればいいだけなので簡単な作業ですみます。

 ■各種バーはトグル表示
　今回の環境では、起動したらアプリを終了さ
せるまで入力は無視して表示を継続させます。
　ただ、このままではアプリの終了は電源を切
るしかありません。そこで、マウスでクリック
したらナビゲーションバーやステータスバーを
表示し、再度クリックしたらバーを消すように
しました。自分以外が操作することはほとんど
ない想定でこのような動作になっています。タッ
チパネルのある端末では対応が必要かもしれま
せん。

プログラムの解説

　仕様が決まったら、次は中身を作っていくこ
とになります。git cloneできる方は、冒頭リン
クを紹介した筆者のソースもあわせて目を通し
てみてください。今回はファイルを読み込んで
記載されているWebサイトを順次表示すればい
いアプリということで、Fragmentは使わずに1

つのActivityだけで対応しています。設定画面
やメニューなどもないものですから、ソースの
構造も簡単になっています。

ファイル周りの対応

　アプリはURLリストに書かれた内容を順番に
アクセスする仕様です。まずはテキストファイ
ルに書かれた内容を読み込んで、配列に展開す
る作業が必要になります。スクリプト言語では、
ファイル名を指定して終わりということが多い

のですが、Javaの場合はもう少し対応が必要で
した。まず、ファイルが存在するかチェックを
行い、ファイルが存在したらScannerクラスで
ArrayListに追加していきます。もう少し複雑
な処理になるかと思いましたが、スクリプト言
語ほどではないにしろ、思っていたよりも楽が
できました。

存在チェック

　URLリストは、Downloadフォルダにurl_list.

txtという名前で置きます。これは、たとえば自
分で書いたファイルをWebサイトに置いておき、
Androidのブラウザでダウンロードするという
使い方も想定したためです。ファイルをダウン
ロードしたフォルダを直接見に行けば、急いで
いるときでもファイルの置いてあるサーバへア
クセスして保存すれば準備できるからです。
　プログラム側からファイルへアクセスするに
は、EnvironmentクラスのgetExternalStorage

PublicDirectoryメソッドを使ってパス名を取得
します。これはマルチユーザ対応などで従来の
SDカードへのパス名を指定する方法ではなく、
環境に応じたパス名を取得するためです。今回
はDownloadフォルダを取得する必要がありま
すので、DIRECTORY_DOWNLOADSを引数
に指定します。取得したパス名にファイル名で
あるurl_list.txtを連結させれば、フルパス名が
できます。これをFileクラスのexistsメソッド
に渡すとファイルが存在するかを確認できます。
　ファイルが存在しなかったときは、アプリの
文字列リソースに登録してあるデフォルトの
URLを読み込んで表示するように対応しまし
た。文字列リソースにしたのはファイルが読め
なかった場合、プログラム内リソースであれば
アクセスが可能だからです。

読み込み

　ファイルが存在していたら、次は読み込みで
す。今回使ったScannerクラスには1文字ずつ
読み込むだけでなく、改行を区切りとして1行

146 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

ずつ読む方法も用意されています。今回のよう
な用途でも簡単に使えました。
　リスト2はテストで利用したコードです。ファ
イル内の1行の区切りは改行（CRLF）になって
います。hasNextメソッドで、Scannerの処理し
ているファイルにデータが残っているかどうか
を調べて、データがあればnextLineメソッドで
現在の位置から1行分データを取り出します（リ
スト2 -003～）。そして、取り出した行をそのま
まLogCatに出力します。テストで動作が確認
できたら、ArrayListに1行ずつ追加していく処
理に変更します（リスト3）。
　実際の処理では、単純にsc.nextLine()で読み
込まれた行をArrayListに追加していくだけで
なく、書式を調べてブラウザで開ける形式か数
値で始まっているかを判定します（リスト3 -007、
011）。URLが正しい形式の文字列になっていれ
ば、Webサイトへのアクセスができずにエラー
になるのをある程度避けられます。事前に
http://www.gihyo.co.jp/のような形になってい
るかを調べるだけで、URLリストを手動管理し
ていても文字の打ち間違いで展示中にエラーが

起きて止まってしまったというアクシデントも
減るからです。
　ここまでの処理でURLリストが読み込めるよ
うになりましたので、次はこのリストに従って
Webサイトを読み込む処理を考えます。

WebViewの操作

　URLリストの処理ができたら、次はWebView

を使って指定されたWebサイトを読み込みます
（リスト4）。読み込みにはWebViewクラスの
loadUrlメソッドを使います。
　ArrayListに登録したURLを loadUrlの引数
に指定すれば、あとはWebView側で読み込んで
表示します。ArrayListから順番にURLを持っ
てくるには、getメソッドに要素番号を指定しま
す。要素番号は変数で管理すればいいでしょう。
　Webサイトの読み込みについてはこれでいい
ですが、今回は読み込みが終わったら、時間待
ちをして次のWebサイトを読み込むようにする
必要があります。Androidでは、UIスレッドを
ほかのスレッドから操作することはできません。
そこで、WebViewでWebサイトの読み込みが
終了したら、時間待ちをして次を読み込むよう
にしました。
　WebViewでは、WebViewClientによってペー
ジの読み込み開始、終了、読み込みエラー時の
処理を設定できます。次の更新を行うのはペー
ジ読み込みが終ってからにしたいので、
onPageFinishedに必要な処理を設定します（リ

 ▼リスト2　Scannerクラスのテスト用コード

001: Scanner sc = new Scanner(fi);
002:
003: while (sc.hasNext()) {
004: String s = sc.nextLine();
005: Log.d("kokoku", s);
006: }

 ▼リスト3　Scannerクラスを使った読み込みの実装部分

001: ArrayList<String> mURLList = new ArrayList<String>();
002: Scanner sc = new Scanner(fi);
003: int mWaitTime = -1;
004:
005: while (sc.hasNext()) {
006: String s = sc.nextLine();
007: if (s.matches("¥¥b[0-9]*")) {
008: if (mWaitTime < 0) {
009: mWaitTime = Integer.parseInt(s);
010: }
011: } else if (s.matches("¥¥b(https?¦ftp¦file)://[-a-zA-Z0-9+&@#/%?=̃_¦!:,.;]*[-a-zA-Z0-9+&@#/%=̃_¦]")) {
012: mURLList.add(s);
013: }
014: }

http://www.android-group.jp/

146 - Software Design Feb. 2015 - 147

Androidで作るお知らせパネルシステム 第55回

スト4 -014～）。
　onPageFinishedが呼び出されるのは読み込
みが終ったときです。ここでUIスレッド用
Handlerへメッセージを送信するのですが、こ
こでは時間待ちも同時に行いたいので send

EmptyMessageDelayedを使っています（リスト
4 -020）。これは、実際にメッセージを送信する
までの待ち時間をミリ秒単位で設定するメソッ
ドです。これを使えば、自分で時間待ちをする
必要がありません。時間については秒で保存し
ていますので引数として渡すときにミリ秒に変
換します。
　Handler内部では、自分あてのメッセージ、こ
の場合は_SITE_LOADという変数に数値を入れ
てあり、この値をメッセージとして受け取ったと
きにWebViewの loadUrlを呼び出します（リスト
4 -004～）。それ以外の値のときは自分では処理
せず、superクラスを呼び出します。この組み合
わせでWebViewへWebサイトが読み込まれたタ
イミングから指定時間後に、次のWebサイトに
切り替わるようにできました。ネットワークの負
荷があってもWebサイトの読み込みを待ってか
ら、次のWebサイトまでの時間待ちをしますの

で、読み込み途中で次のWebサイトを読む時間
が来てしまい、肝心の表示が行われないという
トラブルを回避できます。今回はタイムアウト処
理を付けていませんが、必要に応じて読み込み
中のエラーがあったときに本体側に用意したファ
イルを読みこむなどの処理をWebViewClientに
追加すればいいでしょう。
　このようなWebサイト更新の方法はほかにも
あるかもしれません。ただ今回の方法では、
Handlerにメッセージを送るタイミングも、Hand

lerがメッセージを受けてからWebViewを更新
するまでのタイミングも、あまり意識せずに済
むという意味で楽にできました。最初の更新に
ついても、WebViewに対して loadUrlしてもい
いですし、初期設定が終わった時点でHandler

に対してsendEmptyMessageしても動作します。
　当初の予定では、sleepを使って時間待ちし
て、時間が来たら自分でWebサイトを更新する
形でないとダメだろうかと考えていました。し
かし、そうなると処理の順番を意識しだして、
どんどん複雑になってしまいそうでした。今回
の方法よりもいい方法も他のAPIを使えばでき
るのかもしれません。API更新のタイミング（次

 ▼リスト4　WebViewに設定するWebサイト表示処理

001: private Handler mHandler = new Handler() {
002: 　　@Override
003: 　　public void handleMessage (Message msg) {
004: 　　　　if (msg.what == _SITE_LOAD) {
005: 　　　　　　mWebView.loadUrl(mURLList.get(mURLIndex));
006: 　　　　} else {
007: 　　　　　　super.dispatchMessage(msg);
008: 　　　　}
009: 　　}
010: };
011:
012: WebViewClient mClient = new WebViewClient() {
013: 　　@Override
014: 　　public void onPageFinished (WebView view, String url) {
015: 　　　　if (mURLList != null) {
016: 　　　　　　if (++mURLIndex >= mURLList.size()) {
017: 　　　　　　　　　mURLIndex = 0;
018: 　　　　　　}
019:
020: 　　　　　　mHandler.sendEmptyMessageDelayed(_SITE_LOAD, mWaitTime * 1000);
021: 　　　　}
022: 　　}
023: };

148 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

は5.0 Lollipopでしょうか）でどんなものが増え
ているか、使えるものがないかを調べて対応し
ていこうと考えています。

Handlerの一時停止と再開

　何かの理由でアプリが一時停止したときに、
Handlerへのメッセージが残っていると処理が
できなくなってしまい例外が発生します。そこ
で、onPauseの中にメッセージキューの状況を
調べて、メッセージがあるときは削除する処理
を入れました（リスト5）。mHasMessageはメッ
セージがあるかどうかを保存する変数です。メッ
セージがあれば trueになります。
　なぜ、mHasMessageのような変数が必要にな
るかというと、onPauseと対になるonResume内
でメッセージが中断されたときの処理を行うた
めです。onResumeは起動時のonCreateのあと
でも呼び出されるので、常にメッセージ復帰を
行ってしまうと頼んでもいないのに勝手にメッ
セージをポストしてしまい、例外が発生してし
まうためです。そこで、onPauseを通過したと
きだけonResumeが処理をしてほしいというこ
とで、mHasMessageという変数でメッセージを
削除したかどうかを判定するようにしました（リ
スト6）。これで、何かの都合でこのアプリが
バックグラウンド動作になっても例外は発生し

なくなりました。

ワンボードAndroidの
注意点

　今回はワンボードのAndroidをターゲットに
しました。ワンボードは基板がむきだしのまま
なので、開発中ずっと電源を入れっぱなしにし
ておくのは不安です。そこで、ある程度動くも
のになるまでは取り回しのしやすいスマートフォ
ンで開発しました。
　しばらくして、AMI社から「DuOS-M」という
Windows用Androidエミュレータが発表された
ので、早速使ってみました（次ページコラム参
照）。DuOS-Mは起動も割と速く、同梱の設定
ツールでPCからADB（Android Debug Bridge）
を使って接続することができます。Eclipseから
デバッグが行える環境ができたので、大画面で
の確認も楽になりました。
　こうした環境である程度動いたら、実機ボー
ドでも試すことになります。ODROID-U3には
PCとの接続用にmicroUSB端子があり、これを
使えばPCとの接続は問題ありません。しかし、
NI-R3188にはmicroUSB端子はなかったので、
そのままではPCとつなぐ手段がありませんでし
た。USBでつなげないならば、手元のWebサー
バからapkファイルをインストールという手段
もありましたが、ビルド後のapkを何度もコピー
するのはめんどうでした。なんとかならないか
と考えていたところ、同じようなことで悩んで
いた知人にmicroUSBからUSB Aへ変換する
コネクタの存在を教えてもらいました。これで、
PCからNI-R3188が認識されて、Eclipseを
使ったデバッグ環境が手に入りました。apkを
コピーする手間から解放された瞬間です。
　USBドライバですが、ODROID-U3はGoogle

標準で利用できました。NI-R3188はドライバ

 ▼リスト5　メッセージの削除処理

001: if (mHandler.hasMessages(_SITE_LOAD)) {
002: mHandler.removeMessages(_SITE_LOAD);
003: mHasMessage = true;
004: }

 ▼リスト6　メッセージが中断されたときの例外処理

001: if (mHasMessage) {
002: mHasMessage = false;
003: mWebView.loadUrl(mURLList.get(mURLIndex));
004: }

 ▼リスト7　NI-R3188用android_winusb.inf追加分

; GIADA NI-R3188
%SingleAdbInterface% = USB_Install, USB¥VID_2207&PID_0010
%CompositeAdbInterface% = USB_Install, USB¥VID_2207&PID_0010&MI_01

http://www.android-group.jp/

148 - Software Design Feb. 2015 - 149

Androidで作るお知らせパネルシステム 第55回

用INFファイルにIDを追加してインストールす
れば認識されました（リスト7）。

まとめ

　url_list.txtをWebサーバやDropboxのpublic

フォルダに名前を変えて置いておき、ダウンロー
ド時に名前を変えれば、複数の設定を保存でき
ます。今回のアプリでは表示領域が1画面しか
ないので、お知らせ用HTMLを用意する場合は
ある程度大きな文字で文章と画像を置くなどし

たほうが良いようです。ブログを表示するなら、
タイトルヘッダだけで画面が占領されてしまう
なんてこともあるので気をつけてください。
　今回はネットワークと電源が確保できる前提
でワンボードAndroidにしました。ほかにもタ
ブレット端末とモバイルバッテリーでの対応
もできそうです。今後は外部コントローラや
Chromecastといったデバイスを組み合わせて、
違った使い方を考えたいところです。とくに
Chromecastを使えればいいなと考えています。
｢

嶋崎 聡 （しまざき さとし）　よこいど／日本Androidの会 横浜支部所属

Android単体でできることもいいのですが、最近はもう少し違う環境と組み合わせてなにかやりたいなと思っています。
Android用VR環境もいろいろ出てきていますし、操作用デバイスも対応する話があります。Androidもスマートフォン以外
の端末が出てきているのでいろいろ試していきたいもんです。

　DuOS-Mは、AMI社が発表したWindowsで動作
するAndroidエミュレータです注1。9.99ドルの有料
ソフトですが、従来のSDK付属のエミュレータと
違ってWindowsのハードウェアをAndroidのハー
ドウェアとして利用できたり、AndroidからPCの
フォルダへアクセスできたりします。起動までの
時間も短いため、サポートが続くようならば今後
もデバッグに使いたいと考えています。
　デフォルトの状態では、Windowsのコマンドプ
ロンプトからadb devicesを実行しても認識され
ません。付属の設定ツールを使って次のように設
定を変更すれば、ADBからも認識されてEclipseか
らデバッグできるようになります。
　まず、DuOS-Mをインストールして起動します。
Android環境が起動したら、設定から「DuOS構成
ツール」を選んでDuOS構成ツールを起動します。
ツールが起動したら、図AのようにSystemにある
RootModeにチェックを入れてDuOS-Mを再起動
します。再起動したら、ビルド番号を複数回クリッ
クして開発者向けオプションを有効にします。
「USBデバッギング」を有効にしたら、再度DuOS-M

注1） http://www.amiduos.com/

を再起動して、DuOS-M側の設定は終了です。
　次はPC側でADBを再起動してください。デバ
イスに「emulator-5564」が出てくれば、DuOS-Mが
認識されています。このあとは通常のスマートフォ
ンでの開発と同じように使えます。DuOS-Mを再
起動した場合などは、ADBも再起動しないと認識
されないことがあります。

Column

DuOS-MをADBで認識させる

 ▼図A　DuOS構成ツール

http://www.amiduos.com/

150 - Software Design

現実のシステムセキュリティというのは、システム全体のどこか1ヵ所だけでも弱い部分があると、そ
れ以外のところにいくら労力やお金をかけていようとも、その一番弱い部分が突破口になり安全を保て
なくなります。今回は全体を見渡すことの大切さを議論してみたいと思います。

どこまで水が入るのか

　鎖というものはいくつもの輪がつながってできて
います。その鎖を引っ張って切れたときには、一番
弱い輪から切れているものです。どんなにほかの輪
が頑強であろうとも、1つでも弱い輪が入っていれ
ば意味がありません。このことを英語で「The

Weakest Link」と言います。
　木樽や木桶も同じです。木樽の周りの木の板の一
番低い個所以上には、水は溜まりません。そこから
水が流れ出ていくからです（図1）。よって、最も低
いものに従うようなことを英語では「バレルセオ
リー（Barrel Theory）」と呼びます。調べてみると
日本では「リービッヒの最小律」「ドベネックの桶」と
呼ばれる場合が多いようです。

　システムのセキュリティも同じで、どんなに部分
的にお金をかけたり、手間をかけたりしてセキュリ
ティを高くしたつもりでも、効果はあまりありませ
ん。全体のセキュリティをバランス良く向上しなけ
れば、一番弱いところから攻められてしまいます。

正面攻撃には
強いけれども

　以下のような仮定をしましょう。ここに外部から
SSHでアクセスできる1台のサーバがあります。
パスワード方式での認証は脆弱ですので、電子署名
方式による認証でのみアクセスできるようにしてい
ます。使っている電子署名の鍵の強度は十分です。
　それにもかかわらず、このサーバにSSH経由で
不正ログインが行われました。さて最初に考えるべ
きことは何でしょうか？　筆者なら、クライアント
側にあった秘密鍵（サーバ側にある公開鍵とペアで
使う）が盗まれたことを真っ先に疑います。
　SSHの電子署名方式による認証を行うには、
ツールを使って公開鍵（認証鍵）と秘密鍵（署名鍵）の
ペアを作成します。そして、サーバに公開鍵を、ク
ライアントに秘密鍵をそれぞれ置きます。そうする
ことで、SSHクライアントを使ってクライアントの
マシンからサーバのマシンにパスワードなしでログ
インできます。
　このときの「パスワードなしでログインできる」と
いうのを正確に表現すると、「サーバ側のパスワー
ドによるログイン認証を使わない」という意味です。

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第十七回】

すずきひろのぶ
suzuki.hironobu@gmail.com

バレルセオリー（システムセキュリティの弱点）とは

◆◆図1　一番低い木の板の高さまでしか水は溜まらない

出典：http://en.wikipedia.org/wiki/Liebig's_law_of_the_
minimum

http://en.wikipedia.org/wiki/Liebig's_law_of_the_minimum

Feb. 2015 - 151

クライアント側では秘密鍵を守るために共通鍵暗号
が使われており、そのパスフレーズは必要です。
　パスワードとパスフレーズの違いですが、パス
ワード（Password）は「パス（通過）」させる「ワード
（単語）」で、パスフレーズ（Passphrase）は「パス（通
過）」させる「フレーズ（複数の語からなるまとまり）」
です。たぶん英語圏でパスワードという言葉から連
想される単純な単語という誤解を避けるために、通
常は複数の語から作らなければならないパスフレー
ズという言葉を明示的に使い始めたのではないかと
思います。
　さて、もしパスフレーズを付けていない（暗号化
していない）秘密鍵が入っているファイルが外部に
流出したならば、その秘密鍵をそのまま使ってサー
バにログインできてしまいます。
　UNIXも同じです。ssh-keygenを使って鍵ペアを
作成するときに、パスフレーズを省略することが可
能です。筆者は、「バッチ処理的に遠隔のマシンに
ファイルをコピーするときに、スクリプト内でパス
フレーズを省略した鍵を呼び出して使うと便利」と
いう説明が掲載されたブログを見かけたことがあり
ます。可能ですが、秘密鍵を保護していないリスク
は高いです。

マルウェアによる流出

　さて、先ほどのSSHでの不正ログインの例にて、
みなさんは次の疑問が出てくると思います。まず1

点目は「どうやって秘密鍵が外部に流出するのか」、
2点目は「どうやって接続先サーバの情報を手に入
れるのか」です。
　答えはマルウェアによる流出です。ある種の
SSHクライアントアプリケーションではメニュー
に接続先サーバのリストが出ていて、それを選択す
ると自動的に（パスワードの必要ない電子証明書を
使う認証方式で）接続します。以前は、マウス操作
だけで相手サーバにファイルを送るとか、ファイル
をシェアするとか、あるいはログインするというこ
とができる便利なクライアントアプリケーションが

当たり前でした。今はデフォルトでそのようなこと
はせずパスワード保護をしていますが、それはユー
ザの選択で変更ができます。
　現在のセキュリティ環境において、とくにPCを利
用している一般ユーザがマルウェアに感染するのは、
そんなに珍しいことではありません。ましてや特定
のユーザを狙い撃ちにするターゲット型攻撃（APT

攻撃注1）は現在でも極めて有効な攻撃方法です。
　JPCERT/CCのサイトに「経営者が知っておくべ
きセキュリティリスクと対応について」という報告
書が用意されています注2。これは経営者がAPT攻
撃について、そのリスクを知るための文書です。
　メールで送られたマルウェアを実行してしまった
り、あるいは攻撃コードが埋め込まれているWeb

サーバに誘導されマルウェアに感染してしまったり
して、クライアント上にある情報が外部に流出す
る、というニュースは日常茶飯事です。
　サーバへの正面からの攻撃は十分に対応していて
も、それよりもはるかにセキュリティ対応レベルの
低いPCから、サーバのセキュリティに重要な影響
を与える情報（秘密鍵など）が流出し、そこが起点と
なりサーバに攻撃が加えられるという状況になりま
す（図2）。さらに言えば、キーボードからの入力を

【第十七回】 バレルセオリー（システムセキュリティの弱点）とは

注1）	 Advanced Persistent Threat攻撃に関しての議論は本連載第2回（本誌2013年8月号）で行っています。
注2）	 https://www.jpcert.or.jp/research/aptrisk.html

マルウェアに感染したクライアントから保護していない秘密鍵が盗
まれ、それが利用されサーバにSSHでログインされる

◆◆図2　SSHでサーバに不正侵入されるしくみ

侵入されるサーバ

感染しているクライアント

攻撃者

SSHでログイン

秘密鍵が盗まれる

https://www.jpcert.or.jp/research/aptrisk.html

152 - Software Design

ログに記録する機能をマルウェアに入れておけば、
たとえ秘密鍵がパスワードで守られていたとしても
無意味になってしまいます。
　現在のマルウェアは基本的な既存モジュールを組
み合わせて自動作成できるという、極めて簡単に、
かつ、バリエーションに富んだものを作れるしくみ
が組み入れられています。トレンドマイクロ社によ
れば2014年の第3四半期に2000万種類の新しいマ
ルウェアを検知したとのことです注3。これは驚異
的な数字です。つまり、脆弱性を放置するとか、
ウィルス検知機能のアップデートを怠っていたなど
という場合には極めて危険だということです。ま
た、企業や政府や、あるいは研究所といった組織で
は、ウィルスベンダがまだシグニチャ注4を把握し
ていないような未知のマルウェアがターゲット型攻
撃で送り込まれる可能性が大きいということです。
　このように正面からの防御を迂回してしまう方法
は、存在しているわけです。

クライアントに対する
さまざまな脅威

ターゲット型攻撃

　少しターゲット型攻撃について説明を付け加えた
いと思います。もしターゲット型攻撃がしかけられ
た場合、これはクライアント側（PC側）で対応しき
れるようなものではなく、その何パーセントかは攻
撃が成功するでしょう。その理由の1つは先ほど説
明したように未知のマルウェアには対応できないか
らです。その割合が高いか低いかはわかりませんが
100％防御することはできません。
　組織でデータ流出のプロテクション機能を導入す
る場合、PC側では完全な対応はできないという前
提で検討しなければならないでしょう。しかし、そ
の予算がきちんと手当てできるような組織ならば良
いでしょうが、小規模な組織で予算を確保するのは

たいへんだと思います。
　つい最近、ソニー・ピクチャーズ・エンターテイ
ンメント社がサイバー攻撃を受け、メールや映画が
大量に流出したという事件がありました。これに関
しては筆者は、なぜこのようなことになったのかい
まひとつピンときません。なぜならば、内部から外
部へ大量のデータが勝手に流れ出るようなことを阻
止する、アウトバウンド方向のディテクション（検
知）の機能やファイアウォールに相当するセキュリ
ティ機能を入れていなかったのかという疑問がある
からです。少なくとも深層部にあるテラバイト単位
のデータがアウトバウンド方向に流出するならば、
ひっかかるはずなのですが。この報道に関しては続
報を待ちたいと思います。
　いずれにしても本格的に対処するためには、外部
方向へのデータの流れに対するセキュリティの機能
を必要とします。

暗号化メールのデータを盗む

　広く知られているデータ保護暗号ツールPGP

（Pretty Good Privacy）を開発したフィリップ・ジ
ママンは、よく「PGPには政府のバックドアがある
のではないか」「暗号アルゴリズムにはバックドアが
あるのではないか」という質問を受けるそうです。
なぜなら暗号が絶対的に安全であるとするならば、
政府がそのようなものを使わせるはずがないからだ
そうです。
　OpenPGP仕様であるGNUプロジェクトで作成
されているGnuPG（GNU Privacy Guard）もそうな
のですが、強力な暗号アルゴリズムで暗号化してい
るものを正面切って解こうとするのは、至難の技ど
ころではなく原理的に不可能です。
　サイドチャンネルアタック注5の技術の1つで、暗
号処理を行う際にCPUが使う電力変化を外部から
検知し、その情報をもとに暗号を解読する（正確に
は得た情報から計算して秘密鍵を見つけ出す）技術

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注3）	「Malware creation increasing, Trojans most popular attack」	 	
http://blog.trendmicro.com/malware-creation-increasing-trojans-popular-attack/
“Twenty million new malware strains were created in just the third quarter of this year alone.”

注4）	 コンピュータウィルスのコード内の特徴的な一連の文字列および数値。ウィルスを検知／識別するために用いられる。
注5）	 暗号装置の動作状況を外部からさまざまな物理的手段で観察することにより、装置内部の秘密情報を取得しようとする攻撃方法。

http://blog.trendmicro.com/malware-creation-increasing-trojans-popular-attack/

Feb. 2015 - 153

ルゴリズムを使おうとも、ファイルやメッセージを
もとに戻すこともできます。ユーザが読むようなも
のであれば、データそのものを送らずともユーザが
暗号化メールを復号してディスプレイに表示してい
る、そのダンプを取得し外部に流出させれば、情報
は盗めます。

ヒューマンエラーにつけ込む

　バレルセオリーで最も低い板は、とりもなおさず
人間です。システムのリソースを大きく3つに分け
る場合、ハードウェアリソース、ソフトウェアリ
ソース、そしてヒューマンリソースの3つに分類す
ることができます。この中で、最も脆弱性を持つの
はヒューマンリソースの部分です。
　システムの侵入などを繰り返していて、のちに
FBIに逮捕されたケビン・ミトニックとその周辺の
人たちの得意技は、技術的なアプローチではなく、
人から言葉たくみにパスワードを聞き出すといった
「詐欺」のテクニックでした。そのグループは、その
詐欺のテクニックをソーシャルエンジニアリング
（社会工学）などと大層な名前をつけて呼んでいまし
た。のちに、ミトニックの本を翻訳した岩谷宏氏は
「欺
ぎじゅつ

術」という秀逸な言葉を作り、当てはめました。
　これが20年前ならば、サーバ管理者に電話をか
けて言葉たくみにパスワードを聞き出す、といった
人とのコミュニケーションが必要だったと思いま
す。それには人と上手に話すといった、ある意味、
高度なスキルが求められます。もちろん、そのアプ
ローチは現在でも有効でしょう。

フィッシング

　しかし、今はもっと簡単な方法があります。それ
はフィッシング注7です。
　ユーザに「緊急：弊社のWebサービスからパス
ワードが流出した可能性があります。貼付URLか
らログインし、至急確認してください」という内容
のメールを送り、URLの先には偽のWebサイトを

があります。古いGnuPGのバージョンでは、計算
する際の変化をPCのファンの音で検知し、秘密鍵
を見つけ出すという、知らない人が見たら魔法のよ
うなことができました。ちなみに実装の計算部分を
改良したため、このようなことは最新版のGnuPG

ではできません。
　盗もうと思えば、もっと簡単に盗むことも可能で
す。それは、使っているPCにそっとマルウェアを
インストールすることです。そして、画面のダンプ
やキー入力を記録し、暗号化されているデータを秘
密鍵も含めどこかのサーバに送るなり、あとから回
収するなりすれば良いのです。
　必要なマルウェアを用意し、こっそりとPCにア
クセスしてインストールするような行為は素人には
難しいですが、法執行機関が行うならば、そんなに
難しいことではありません。
　実際に、ドイツのChaos Computer Clubは、2011

年10月にドイツ政府によるものと思われるバックド
ア型トロイの木馬を発見したと発表しています注6。
　R2D2と呼ばれるこのマルウェアはチャットに使
うアプリケーションのキー入力をロギングする能力
だけではなく、スクリーンショットの記録、Skype

通話を録音し、これらのデータを外部のサーバに送
るなど、かなり多様な能力があるという報告がなさ
れています。
　ドイツでは司法捜査の一環として通話を盗聴する
のは合法であり、その際にマルウェアを利用するこ
とも許されている環境ですが、それは厳密には電話
による通話でのみ許されています。そのため、コン
ピュータ上ではVoIP（ここではSkype）の音声しか
録音できないとの報道がなされています。
　いずれにしても、外部からネットワークを経由し
て感染させるのではなく、なんらかのタイミングで
利用しているPCに物理的にアクセスし、強制的に
マルウェアをインストールするというスパイ映画さ
ながらの状況があるようです。
　このような方法を使えば、どんなに安全な暗号ア

【第十七回】 バレルセオリー（システムセキュリティの弱点）とは

注6）	「政府によるものとおぼしきバックドアを発見（「R2D2ケース」）」	 	
http://blog.f-secure.jp/archives/50632062.html

注7）	 フィッシングに関しての詳しい議論は本連載第8回（本誌2014年2月号）で行っています。

http://blog.f-secure.jp/archives/50632062.html

154 - Software Design

用意します。URLの先には本来のサービスのデザイ
ンと似たサイトがあり、最初には「緊急：至急ログ
インをしていただき、お客様宛のメッセージをご確
認ください」と書いて、ゆっくりと画面を確認させ
ないようにユーザを急かせます。ユーザがユーザ名
とパスワードを入れて送信ボタンを押すと、今度は
本来のWebサイトにジャンプさせます。そのタイ
ミングでユーザ名とパスワードが盗み取られます。
　「HTTPSでの認証を行うのだから、誤ったサイ
トに接続してもユーザはわかるだろう」と思うかも
しれません。しかし、筆者もそうですが、ブラウザ
のURLのところの変化をいちいち細かくは見てい
ません。しかも、最近のWebサイトのURLは1社
1つのドメイン名ではなく、サービスごとに新しい
ドメイン名を獲得していたりします。ドメイン名を
見て正しいドメインなのか否かを判断できる自信
は、少なくとも筆者にはありません。
　フィッシングはこれまで銀行や通販、あるいは
カード会社などおもに直接的経済的利益を得られる
Webサイトを対象にしたものがほとんどです。

　フィッシング対策協議会のWebサイトには過去
6ヵ月の事例が公開されており（図3）、それより古
いものも年度別にアーカイブされています。この事
例には実際に使われたメールの文面なども公開され
ているので参考にすると良いでしょう。

ケーススタディ

　これまで本連載で何度も説明してきたように、セ
キュリティの問題はごく身近な問題であり誰にでも
起こり得るものです。それは本誌を発行している技
術評論社も例外ではありません。2014年12月6日、
技術評論社のWebサイト「gihyo.jp」が第三者からの
不正アクセスにより改ざんされてしまいました。
　技術評論社が利用している「さくらのVPS」のコ
ントロールパネルにアクセスするためのアカウント
とパスワードが第三者に渡ってしまったため、サー
バのOSを入れ替えられ、さらにそのサーバから第
三者サイトへリダイレクトするように設定されてし
まいました注9。

　これはある意味、よく考えら
れたフィッシングと攻撃です。ま
ず攻撃者が「さくらのレンタル
サーバ」上にフィッシングページ
を作成します。このフィッシング
ページはさくらインターネットの
共有SSLを利用しているため、
形式的にはドメイン名がsakura.

ne.jpを持つ正しいSSLサイトで
す。しかも、ホスト名がコンソー
ルへアクセスするときのホスト名
によく似ています。
　これまでフィッシングサイトに
だまされないための手段として、
「SSL接続であることを確認する
こと」「URLを確認すること」が推
奨されてきました。しかしながら、

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

注8）	 https://www.antiphishing.jp/news/database/
注9）	 改ざんの経過は次のURLに詳しく説明されています。	 	

「弊社ホームページ改ざんに関するお詫びとご報告」 http://gihyo.jp/news/info/2014/12/0801?page=1

◆◆図3　フィッシング対策協議会Webサイト注8

本画面は2014年12月14日時点のもの。事例一覧の行頭の日付は更新日、文末は最初の告
知日

https://www.antiphishing.jp/news/database/
http://gihyo.jp/news/info/2014/12/0801?page=1

Feb. 2015 - 155

【第十七回】 バレルセオリー（システムセキュリティの弱点）とは

本連載でも以前指摘したよう
に攻撃者が正式にSSLを取得
してしまうこともあるでしょ
うし、あるいは、すでにSSL

を用意しているWebサイトを
乗っ取ることもあるでしょう。
ですから、SSLということだけ
では安心できないのです。
　ましてや、今回の場合、さ
くらインターネットが運営す
るSSLサーバ上にフィッシ
ングサイトが作られていますから、SSLは正しく、
URLもドメインだけ見ると正しいと思い込むのも
無理はないような気がします。もちろん正式なサイ
トへのアクセスですので、ブラウザが持っている
フィッシングサイトのチェックもたぶん意味がない
でしょう。攻撃者は確実にそれを狙ってプラット
フォームを選んだのだと思います。
　Webサイトの管理者はパスワードの問題だと気
がついたあとに、パスワードを変更しようとしま
す。しかし、「さくらのVPS」にログインするには、
通常のユーザアカウントを使用する方法と、アカウ
ントを利用しているIPアドレスで代用する方法の
2つがあり（図4）、そこで混乱したようです。
　筆者も「さくらのVPS」のユーザなのですが、こ
れは気になっていました。ユーザアカウントの場合
はランダムといっていい文字列です。問題は、ユー
ザアカウントの代わりにIPアドレスを代用する方
法です。攻撃者は特定のIPアドレスはわかってい
ますから、あとはパスワードを探す労力だけで済み
ます。筆者にはなぜIPアドレスでの方法を用意し
ているのかよくわかりませんでした。
　Webサーバの安全性は、ファイアウォール、各
種セキュリティ設定、高度な暗号化通信などではな
く、数文字～十数文字のパスワードにかかっていま

す。しかも、その文字の並びを盗む方法はいくらで
も考えられ、Webサーバの安全性のレベルはそこで
止まってしまいます。
　ちなみに筆者は、重要なWebサイトへのアクセ
スは必ず事前に登録しておいたブックマーク経由で
進み、ログインにパスワード認証が必要なサイトで
は、パスワードはWebブラウザに登録して自分で
はいっさい覚えないようにしています。そのパス
ワードも英数字からなるランダムな12文字以上の
パスワードで、かつ各々のサイトのパスワードは重
複しないようにしているので、覚えようとも思いま
せんし、覚えろと言われても覚えられません。
　ちなみにパスワード生成も図5のようなシェルス
クリプトを自分で作って利用しています。

最後に

　木桶のすでに高いところの板をさらに高くしたと
ころで、水は板が一番低いところから流れ出てしま
います。セキュリティも同じです。全体を見渡し、
バランスの良いセキュリティ対策を行うことではじ
めて効率のよいセキュリティ投資ができます。それ
を念頭におきながらセキュリティ対策を考えていき
ましょう。s

推定に手間がかかる英数字ランダムのアカウント（会員ID）と、すぐにわかってしまうIPアドレス
の2つのログイン方法が用意されている

◆◆図4　「さくらのVPS」のログイン画面

#!/bin/sh
dd if=/dev/urandom count=1 2>1 ¦ base64 ¦ head -5 ¦ tail -1 ¦ cut -b 10-21

◆◆図5　パスワード生成シェルスクリプト

156 - Software Design

RHEL 7と
Atomic Hostの配置

　前回説明したようにAtomic Hostは「Dockerに
最適化されたRHEL 7」です。すでに本誌の
Dockerに関する記事注1に触れている読者諸氏は
ご存じのように、Dockerはあくまで単一のホス
ト上でコンテナのライフサイクルを管理するもの
であり、そのコンテナを複数のホスト上で稼働
させ管理するにはオーケストレーションツールが
必要注2です。Kubernetesではコンテナの生成を
Masterと呼ぶホストで行い、それをMinionと呼
ぶホストで動作させる構成注3を取ります（図1）。
　Kubernetes Masterは、通常の、つまり「Atomic

Hostではない」RHEL 7にDockerとKubernetes

を追加インストールして構築します。一方で、
前回「Atomic Hostの配布形態は利便性を考慮し
て複数の形態がある」と説明しましたが、仮想
マシンイメージも配布しているのは、Atomic

Hostをベアメタルに配置する方法だけでなく、
ハイパーバイザ型仮想化のゲストとして実行す
れば、すぐに利用が可能にするためです。
　このことから見ても「コンテナ型仮想化は従来
のハイパーバイザ型仮想化と排他の関係にある」
という言説が当たっておらず、むしろ要求に応じ
てさまざまなプラットフォーム上でKubernetes

Minionとなる仮想マシンを起動し、さらに要求
に応じてコンテナを起動する、という利用法が主

第10回 Red Hat Enterprise Linux Atomic Host登場！（Kubernetes編）

注1） 2014年12月号第1特集の草間氏によるKubernetesの解説はAtomic Hostの理解に必須。
注2） Kubernetes以外にもDockerのオーケストレーションの実装はあり、Docker Inc.自身がMachine/Swarm/Composeという

コンポーネントを組み合わせる実装の開発を開始した。
注3） RHEV（oVirt）にたとえるとMasterがRHEV Manager、MinionがRHEV Hypervisorに相当。

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

Red Hat Enterprise Linux Atomic Hostは昨今注目を集めているDockerに最適化され
たRed Hat Enterprise Linux 7として開発が進められています。今回はAtomic Hostの
利用方法としてKubernetesとの組み合わせを紹介します。

Writer レッドハット（株）グローバルサービス本部プラットフォームソリューション統括部
ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）

 ▼図1　MasterとMinionの関係

Kubernetes Master
（RHEL 7+Docker+Kubernetes）

Kubernetes Minion
（Atomic Host）

Kubernetes Minion
（Atomic Host）

Kubernetes Minion
（Atomic Host）

156 - Software Design Feb. 2015 - 157

第 10 回Red Hat Enterprise Linux Atomic Host登場！（Kubernetes編）

流になっていくことが見て取れます（図2）。

Kubernetes Master
（RHEL 7）のインストール
　では、RHEL 7とAtomic Hostを利用して実
際にKubernetes Master/Minionを構築し、Doc

kerコンテナをビルドし、実行してみましょう。
次の手順ではインストールするマシンとして物
理・仮想を問いません。手元に用意しやすい環
境を選んでください。
　最初に行うのは、Kubernetes Masterの構築
です。RHEL 7を“Minimum”パッケージグルー
プでインストールし、subscription- managerで
有効なサブスクリプションをアタッチしておき
ます。Kubernetes Masterを構築するには4つ
のリポジトリを有効にする必要があります（図3）。
　適切なリポジトリが付与されれば、docker

とkubernetesパッケージ、および依存関係の
あるRPMパッケージをyumコマンドでインス
トールできます（図4）。

Kubernetes Minion
（Atomic Host）のインストール
　前回の記事を参考に、Atomic Hostのインス
トーラあるいはゲストイメージをダウンロード
し、インストールあるいは仮想化ゲストとして
起動します。起動後ログインし、subscription-

managerに“--auto-attach”オプションを付けて
実行することで、自動的にAtomic Hostとして
適切なリポジトリに紐付けされます（図5）。
　前回説明したように、Atomic Hostではyumコ
マンドの利用は禁止されていることに注意してく

ださい。atomicコマンドで最新の状態に更新すれ
ばAtomic Hostのインストールは完了です（図6）。

Kubernetesを起動する

　Kubernetes Master/Minion双方でKubernetes

を起動するため、Master/Minionのすべてで次
の作業を行います。

①Master/Minionのホスト名を解決できる必要が
あるので、DNSを適切に設定するか、/etc/
hostsファイルにMaster/Minionすべてを登録
しておきます。ここではMasterをmaster.
example.com、Minion を minion.example.

 ▼図2　Atomic Hostはさまざまなプラットフォーム上で稼働する

Kubernetes Minion（Atomic Host）

Baremetal RHEV vSphere AWS / GCE

subscription-manager repos --disable=*
subscription-manager repos ｭ
--enable=rhel-7-server-rpms ｭ
--enable=rhel-7-server-extras-rpms ｭ
--enable=rhel-7-server-optional-rpms ｭ
--enable=rhel-atomic-host-beta-rpms

 ▼図3　Kubernetes Masterの構築に必要なリポジトリ

yum update
yum install docker kubernetes
systemctl start docker
systemctl enable docker
reboot

 ▼図4　docker/kubernetesパッケージのインストール
　　　と有効化

atomic upgrade
reboot

 ▼図6　atomicコマンドによる更新

subscription-manager register --auto-attach

 ▼図5　subscription-managerによるAtomic Hostの登録

158 - Software Design

comとします
②ホスト名が解決できたら、etcd注4の場所と
ポート番号を指定するため、Kubernetes（/
etc/kubernetes/config）の設定ファイルを
編集します（図7）

　次にKubernetes Masterで次の作業を行います。

①APIサーバの設定ファイル（/etc/kubernetes/
apiserver）を編集します（図8）

②ファイアウォールを停止し、Kubernetesを
起動します（図9）

　さらにKubernetes Minionで次の作業を行い
ます。

①kubeletの設定ファイル（/etc/kubernetes/
kubelet）を編集します（図10）

②Docker/Kubernetesを起動します（図11）

　Kubernetesの動作確認をMasterで行います。
　以上で、RHEL 7とAtomic Hostの組み合わ
せでのKubernetes環境の構築ができました。

まとめ

　dockerfileを用いたDockerコンテナの設定や、
KubernetesのPodの作成については本誌2014年
12月号などを参照いただくこととし、RHEL 7お
よびAtomic Host固有の設定などを中心に解説し
ました。まだまだDocker関連の技術動向は流動
的ですが、今後はハイパーバイザ型仮想化と合わ
せて利用することで急速な普及が進むと思われま
すので、しばらくは目が離せないと思われます。
次回はFedora 21の話題を中心に紹介します。ﾟ

注4） 設定ファイルの置かれる /etcを分散キーバリューストアで保持するため、“etc distributed”という名称になっている。

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

KUBE_ETCD_SERVERS="--etcd_servers=http://master.example.com:4001"

 ▼図7　/etc/kubernetes/con�gファイルの変更個所

KUBE_API_ADDRESS="--address=0.0.0.0" # 127.0.0.1から変更
KUBE_MASTER="--master=master.example.com:8080"
KUBELET_ADDRESSES="--machines=minion.example.com"

 ▼図8　/etc/kubernetes/apiserverファイルの変更個所

systemctl stop firewalld
systemctl disable firewalld
for srv in etcd kube-apiserver kube-controller-manager kube-scheduler; do
 systemctl restart $srv;
 systemctl enable $srv;
 systemctl status $srv;
done

 ▼図9　�rewalldの停止とKubernetesの起動

KUBELET_ADDRESS="--address=0.0.0.0" # 127.0.0.1から変更
KUBELET_HOSTNAME="--hostname_override=minion.example.com"

 ▼図10　/etc/kubernetes/kubeletファイルの変更個所

for srv in docker kube-proxy kubelet; do
 systemctl restart $srv;
 systemctl enable $srv;
 systemctl status $srv;
done

 ▼図11　Docker/Kubernetesの起動

kubectl get minions

 ▼図12　Kubernetesの動作確認

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Feb. 2015 - 159

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

2014年9月号
 第1特集
この夏に克服したい2つの壁
C言語のポインタと
オブジェクト指向
 第2特集
止まらないサービスを支えるシステム構築の基礎
クラスタリングの教科書
 一般記事
・SoftLayerを使ってみませんか？
・NICをまとめて高速通信！（前編）
・Serf・Consul入門 特別定価（本体1,300円＋税）

 第1特集
プログラマ・インフラエンジニア・文章書きの心得
Vim使い事始め
 第2特集
SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来
 一般記事
・「ひみつのLinux通信」年末年始スペシャル
　ITエンジニア出世双六
・Jamesのセキュリティレッスン［最終回］

2015年1月号

定価（本体1,220円＋税）

 第1特集

今ふたたびのJava
言語仕様・開発環境・デバッグ機能

 第2特集
オンプレミスを制するものはクラウドを制する
サーバの目利きになる方法［前編］
 一般記事
・�オーケストレーションツールSerf・Consul入門
［Consul編］
・SoftLayerを使ってみませんか？［2］　ほか

2014年10月号

定価（本体1,220円＋税）

2014年11月号
 第1特集
Docker・Ansible・シェルスクリプト
無理なくはじめる
Infrastructure as Code
 第2特集
オンプレミスもクラウドも縦横無尽
サーバの目利きになる方法［後編］
 一般記事
・8086時代から今を俯瞰する　CPU温故知新
・はてな謹製、サーバ管理ツール　Mackerel入門

定価（本体1,220円＋税）

 第1特集
システムログからWebやDB、ビッグデータの基礎
まで
ログを読む技術
 第2特集
forkを通して考える・試す・コードを読む
Linuxカーネルのしくみを探る
 一般記事
・OpenSSLの脆弱性"Heartbleed”の教訓（後編）
・使ってみよう！ tcpdump

2014年8月号

定価（本体1,220円＋税）

2014年12月号
 第1特集
急速に普及するコンテナ型仮想環境
Dockerを導入する理由
 第2特集
基礎の基礎から押さえる必須技術
やさしくわかるVPNの教科書
 一般記事
・bashの脆弱性“Shellshock”その影響と対策
・SoftLayerを使ってみませんか？［最終回］
・Jamesのセキュリティレッスン［2］

定価（本体1,220円＋税）

http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

160 - Software Design

WhatsAppのCEOから
100万ドル超えの大口寄付

　2014年末、FreeBSD Foundationから「Updated!

- FreeBSD Foundation Announces Generous

Donation and Fundraising Milestone注1」というアナ
ウンスがありました。個人から100万ドル（約1億

1千万円）を超える寄付があったというものです。
FreeBSD Foundation（以降、Foundationと省略）は
2014年の予算目標を100万ドルとしていましたの
で、1つの寄付でそれをまかなったことになります。
　この寄付はWhatsAppの共同設立者にして同社の
CEOであるJan Koum氏から贈られたものでした。
Foundationは15年間ほど募金を受け付けています
が、単一のドネーションでは今回の金額がもっとも
大きいものだったそうです。
　今回の寄付は個人から実施されたことや金額の大
きさもさることながら、その寄付の理由が注目され
ます。Jan Koum氏は現在はWhatsAppのCEOとい
う成功した立場にありますが、彼はもともと裕福な
家庭で育ったわけではないそうです。
　1990年代、Koum氏は公団住宅に住み、あまり裕
福とはいえない生活を送っていました。彼は1990

年代後半から熱心なFreeBSDユーザだったそうで
すが、情熱やアイデアを形にするための大切なソフ
トウェア、それがFreeBSDだったといいます。彼
はFreeBSDのエンジニアであるという理由で
Yahoo!へ就職します。これがきっかけで成功を収
めるようになり、2009年のWhatsApp設立に至りま
す。アメリカンドリームの体現者というわけです。
もちろんKoum氏の努力や情熱があればこそです

注1 http://freebsdfoundation.blogspot.jp/2014/11/free
bsd-foundation-announces-generous.html

が、FreeBSDが1つのきっかけだったことは間違い
ないのでしょう。
　Koum氏は自分の体験を振り返り、自分と同じよ
うなチャンスを今の子供達にも与えたい、それを実
現するにはFoundationへ寄付することでその活動
を支援するとともに、自分からアナウンスすること
でFoundationの活動に注目してほしい、ほかのみ
んなにも支援してほしい、という願いがあるといい
ます。
　金額の大小こそあれ、個人でFoundationへ寄付
している方は同じような理由で寄付をしているよう
に思います。情熱や愛情、好きなものへの支援の気
持ち、そういったものがFoundationへの寄付とい
う形になり、そこからFreeBSDプロジェクトへの
支援が行われているのでしょう。

経済を推進する企業が
Foundationへ寄付する理由

　ここまでのお話であれば美談で終わるところです
が、今回はこのひとつ先、「企業とFreeBSDプロ
ジェクト」、「大学や研究機関とFreeBSDプロジェ
クト」というところに踏み込んでお話をしたいと思
います。それは個々人の活動だけではなく。「産」
「学」「個」のつながりが、今のFreeBSDの発展の礎

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第16回 ❖FreeBSD発展の礎〜プロジェクトと人、そしてお金の話

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

http://freebsdfoundation.blogspot.jp/2014/11/freebsd-foundation-announces-generous.html

Feb. 2015 - 161

▶第16回◀
FreeBSD発展の礎〜プロジェクトと人、そしてお金の話

　このように企業がFoundationに寄付をするのに
は、企業として営利を目的としたロジックが存在し
ています。逆に言えば、こういったロジックを実践
できる企業は、それだけ戦略的に事業を進めている
ということが言えるでしょう。FreeBSDを活用した
い企業と、FreeBSDプロジェクトを支援したい
Foundationとの目的が合致すると寄付という形に
なるわけです。そこには両者両得、ウィン＝ウィン
の関係ができあがっています。

広がる企業と人、
プロジェクトの結びつき

　FreeBSD 1.0がリリースされたのはもう21年以
上も前の話になりますが、当時はISPでの利用と
いう面がもっとも広くFreeBSDが商用利用された
シーンでした。企業内のネットワークインフラや
エッジサーバ、ファイルサーバの構築などに使われ
たのもこの頃です。
　当時FreeBSDの開発者だったエンジニアは、現
在では企業のCEOやCTOを務める立場になる年齢
になりました。現在のFreeBSDはNASストレー
ジ、ネットワークアプライアンス、ゲームコンソー
ル、家電製品、組込み機器、スマートフォンやモバ
イルデバイス、Apple製品、ケーブル、ソフトウェ
アアプライアンスなど、さまざまな製品やサービス
の基盤実装として使われています。そのシーンは大
きく変わりました。
　プロジェクトの重要な人物達が20年を超えて
FreeBSDと付き合い続けて知ったことは、こうし
た活動を推進していくのに重要なのは、情熱だけで
はなく「資本」を活用することだということです。
「腹が減っては戦ができぬ」ということわざのとお
り、情熱を支えるにはまず飯が食える状態を維持で
きないと困ります。とくに5年くらい前からだと思
いますが、*BSDの国際会議でビジネスに関する話
題が扱われることが増えてきたようです。Founda

tionも積極的にFreeBSDに興味がある、または活
用しているベンダとの連携を進め、企業との結びつ
きを強化する取り組みを行っています。
　これは20年前には考えにくいことだったと思い

となっているからです。
　Foundationに1万ドル以上の寄付をしている大半
は企業です。2014年であればJan Koum氏は個人に
なりますが、企業としてはCryptography Research、
NetApp、ARM、Google、LineRate、Juniper

Networks、Netgate、Norse、Tarsnap、VMwareか
ら1万ドル超えの寄付がありました。ちなみに
WhatsAppは2013年には企業としてFoundationへ
寄付を行っています。
　日本の企業はこうしたオープンソースプロジェク
トへ寄付するという習慣が希薄なところがあります
ので、なぜこうした大手企業がオープンソースプロ
ジェクトへ寄付するのか理解しがたい空気があるよ
うに思います。いくつか理由はありますが、これは
善意で行っているというよりも、次のような企業と
しての明確な理由があって実施されています。

●● FreeBSDをアプライアンスにしろソフトウェア

アプライアンスにしろ、自社プロダクトやサービ

スで使っている。このためFreeBSDの開発は常

に活発であり続け、このソフトウェア開発がシー

ンとして上がり続けることを望んでいる
●● FreeBSDの、とくにカーネルを書き換え自社の

プロダクトやサービスで活用している場合、Free●

BSDプロジェクトが開発するカーネルのソース

コードと、自社で保持している変更部分をマージ

し続けるのは開発費用がかかる。このため、自社

の強みとなるコードは自社で保持し続けながら

も、公開してもよいソースコードや基本機能に関

してはFreeBSDプロジェクトへ公開して取り込

んでもらいたい
●● FreeBSDに特定の機能を実装してほしいが（たと

えばカーネル内iSCSIがほしいとか、PCI Express

のホットスワップを実装してほしいとか）、自社で

エンジニアを雇用して開発するには最終的にかか

る経費が高いものになる。Foundationにスポン

サードすることで、FreeBSDプロジェクトの腕の

あるエンジニアに開発してもらったほうが結果的

に安く上がる

162 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

ます。*BSDのユーザやエンジニアが集まれば、ど
のソフトはよい、どの実装はクソだなどといった
ディスり合いが始まったように思いますが、現在で
は世界の経営状況なども踏まえて議論が行われるよ
うになりました。プロジェクトの参加者そのものが
FreeBSDとともに成長しているということなので
しょう。
　FreeBSDプロジェクトが発足した21年前、プロ
ジェクトは企業との連携という面ではまだ成熟して
いなかったように思います。20年間を超えるさまざ
まな活動の末に、企業との連携を進める基盤ができ
てきたように思います。企業側もFreeBSDプロ
ジェクトと連携を取りたい場合、どこに連絡をとれ
ばわからなかったところがありますが、現在では企
業とプロジェクト、Foundationを支える人々がそれ
ぞれにつながりを持ち、以前よりも連携を取りやす
い土壌ができあがりつつあります。

大学や研究機関から
最新の技術を

　そしてもうひとつ重要なのが、大学などの研究機
関とFreeBSDプロジェクトのかかわり合いです。
FreeBSDの源流となっている「BSD」がもともと大
学で開発されてきたこともあって、もともと研究機
関の関係者は*BSDを使う傾向がありました。現
在、FreeBSDプロジェクトのコミッターには大学の
先生もいます。自分のところで研究開発した成果物
をカンファレンスで発表するとともに、FreeBSDへ
のバックポートが実施されています。
　さまざまな部分に大学や研究機関で取り組まれた
研究開発の結果がマージされているので、1つを取
り出して説明をするのは面倒なのですが、中でもケ
ンブリッジ大学で取り組まれたセキュリティ機能に
関する取り組み「Capsicum」は注目に値するもので
しょう。
　Capsicumは種類としてはケーパビリティと呼ば
れるセキュリティ機能およびサンドボックス技術の
実装系になります。ケーパビリティは多かれ少なか
れ、主要なオペレーティングシステムで実装されて
います。Capsicumは他のケーパビリティの実装系と

比較して「実際的」であり「現実的」であるという特徴
があります。Capsicumはケーパビリティを実装する
にあたり、既存のカーネルと最大限に親和性が高
く、簡単で、明瞭で、学習コストがわずかで、使い
やすく、広く適用できるものを模索しました。この
結果、開発者がこの新しいセキュリティ機能を使う
ために求められる学習は関数を2つほど知れば良い
というものでした。
　こうしたセキュリティ機能を実装できたのは、研
究開発に携わった研究者がFreeBSDのカーネルエ
ンジニアでもあり、カーネルの中身をよく知ってい
たからというところがあります。一部の機能しか把
握していないと、その範囲内で何かを実現しようと
しますが、カーネルの中身が見渡せているなら、そ
の視点からの研究開発が可能です。
　このようにプロジェクトと研究機関が完全に分離
するのではなく、プロジェクトの人間でもあり、大
学の研究者でもあるといったポジションにあること
で、優れた研究開発が実現しています。大学の研究
で *BSDプロジェクトにかかわった方は、その後も

*BSDコミュニティで活動を続ける傾向も見られま
す。お互いに関係を持つことで、相互に優れた結果
を生んでいます。

プロジェクトを支える
個々人の実力、エンジニア達

　FreeBSDはソフトウェアです。移りゆくハード
ウェアに対応し、常に最新の機能と安定性を提供し
続けるにはソフトウェアを書き換え続ける必要があ
ります。バグがあればそれを修正し、性能がでなけ
れば設計を含めて抜本的な作り替えも必要になりま
す。こうしたことを実施するエンジニアが必要です。
　カーネル全域に渡って中身を理解しているエンジ
ニアの数はそう多くはありませんが、ある一定水準
に到達したエンジニアであれば、ソースコードを読
むことで未知のサブシステムであっても対応は可能
です。ハードウェアなどの変遷に伴って内部のデー
タ構造や実装なども変わりますので、時代ごとに対
応をしていく必要があります。
　こうした開発の主体となる「エンジニア」ですが、

Feb. 2015 - 163

▶第16回◀
FreeBSD発展の礎〜プロジェクトと人、そしてお金の話

FreeBSDの開発に専念するには資本が必要です。
FreeBSDコミッタの多くは平日は仕事をして、週
末にFreeBSDの開発を楽しむといった方が多いよ
うに思いますが、FreeBSDを活用しているベンダ
が直接雇用することでフルタイムで仕事をしている
方も結構いらっしゃいます。企業との結びつきを強
めることは、FreeBSDを開発するエンジニアの活
動を支援することにもつながります。直接雇用が進
めばフルタイムで開発に没頭できるエンジニアが増
えますし、Foudationが扱える資本が増えれば、そ
の分開発プロジェクトに支援金を投資することがで
きます。
　エンジニアは常にスキルアップを求められます
が、そうした機会になっているのが、AsiaBSDCon

などをはじめとした、世界中で開催されている

*BSD国際会議やデベロッパサミットなどです。
Foundationへ募金することで、こうしたカンファ
レンスの開催を支援したり、カンファレンスに参加
するエンジニアを支援することができます。そうし
た活動は結果的に「FreeBSD」そのものを開発する
エンジニアを増やす、エンジニアのスキルアップに
つながる、という支援になります。

人、企業、研究開発
〜活動の結果としての成果物〜

　オープンソースの主なソフトウェアスタックの開
発は海外にコミュニティのベースがあることが多い
ため、日本のユーザは海外でリリースされるソフト
ウェアを導入して利用する、といった形態になれて
いるように思います。しかし、実際には開発する人
たちがいて、その人たちの活動の結果としてソフト
ウェアがあります。
　英語を母国語とする方達はあまり「言語の壁」とい
うものを深刻に感じていないように思いますけど
も、日本人にとって「英語」を使うのはかなりの「ス
トレス」であり、英語でコミュニケーションを取る
のは実際問題として「不可能に近い」というエンジニ
アの方も少なくないでしょう。とくにリアルタイム
での会話や電話となるとかなりの壁があります。
　日本はこの点で特殊な市場です。一国としてはか

なりの規模の市場を持っているため、国内だけでも
仕事が回る業種が少なくありません。「言語の壁」は
世界と商売をするという点ではマイナスポイントで
すが、世界の攻勢から内需を守るという意味ではバ
リアでもあります。一長一短といった見方もできる
と思います。
　とはいえ、いざFreeBSDにかかわる支援をした
いとか、Foundationへ仕事の相談をしたいとなる
と、やっぱり英語の壁が企業や個人の前に立ちはだ
かります。日本のこうした特殊な事情を考慮し、
FreeBSD Foundationの日本支店のように活動する
組織が昨年法人登記しました。特定非営利活動促進
法にもとづく特定非営利活動法人「BSD Research

（BSDR）注2」 です。
　BSDRは日本語でのやり取りが可能な中立性の
高い組織ですし、日本におけるFreeBSD Founda

tionの役割を担うことが期待されています。英語は
ちょっと、という場合には、BSDRとのやり取りを
ご検討することをお勧めします。手前味噌ですが弊
社オングスにお話をいただいても似たような対応が
可能です :)

企業活動とFreeBSD

　大規模寄付がありましたので、今回は話の内容を
お金を中心にして行ってみました。ネットサーフィ
ンをしていると無限に新しいソフトウェアがリリー
スされているような気分になってきますけれども、
実際にはそれを作る人がいて、その人の生活を支え
る仕事があって、そしてインターネットを通じた
個々人や組織との連携があって、その結果としてソ
フトウェアがリリースされていますね。
　ソフトウェアの話となると、どうしてもその使い
方であるとか性能がどの程度なのかや、技術的な説
明、ライセンス、実例といった部分が紹介されるこ
とがほとんどです。たまにはこうして経済も含めた
背後のしくみに想いを巡らせてみるのもおもしろい
ものです。s

注2	 https://www.bsdresearch.org/

https://www.bsdresearch.org/

164 - Software Design

23 Debian Developer　やまねひでき　henrich@debian.org

Debian BTSで
バグを検索／報告する方法

Debian BTSの特色

　ソフトウェアの開発を行っていてBTS（Bug

Tracking System）、あるいはITS（Issue Tracker

System）を社内で使っている方は多いのではない
でしょうか。開発の過程で起こるさまざまな課題
を漏れなく管理／対処するのに適したツールで
あるBTSは、メールやExcelベースでの管理と
比べると非常に扱いやすく、一度使うともはや手
放せないものです。
　主だったプロダクトだとRedmine、Trac、
Mantis、商用のJIRAやBacklog、あるいはGHE

（GitHub Enterprise）などが思いつきます。FL

OSS（Free/Libre and Open Source Software）
の開発だと、古くから利用している大規模なと
ころではBugzillaやLaunchpad、GitHubなど
の利用が多いでしょうか。
　BTSは、ブラウザを開いてバグのステータ
スを確認したり、追加コメントを書き込んだり、
ステータスを変更したり、アサインす
る人を適切に割り当てなおしたりとリ
リースするための課題を管理するため
に日々大活躍します。
　DebianでもBTSは開発の要となって
いますが、先に挙げたいずれのソフト
ウェアも使わず、「debbugs」という独自
のBTSを利用しています注1。前述の

BTS/ITSは共通して「ブラウザベースでの管理」
なのですが、debbugsは（残念ながら）違います。
閲覧自体はブラウザで行いますが、バグ報告や
バグのステータス変更はメールで行うという
「メールベースでの管理」が特色になっています。
　「なんでそんな作りなの？」という疑問を持た
れるのはもっともです。しかし、debbugsがリ
リースされた20年近く前にはマシンリソース
も限られていたため、そういう設計にも意味が
あった……のではないでしょうか注2。

ブラウザを使ってバグを検索し
てみる

　初めてDebian BTSのページを見た方は、バ
グの検索の仕方などに戸惑われるのではないか
と思います。ここでは直接URLを入力して探す
方法を説明します。バグ報告の対象パッケージ
がわかっていれば、ブラウザでURLに「http://

bugs.debian.org/package」を指定すれば閲覧がで

 ▼図1　Debian BTSで「mikutter」を検索

注1） Debian以外ではGNUなどが利用しています。
 URL http://debbugs.gnu.org/

注2） たぶん低負荷でバッチ処理がやりやすい、といった理由
と思われます。もし、現代風の形にDebian BTSを作り変
えることができたら、ヒーローになれると思いますよ :-)

http://debbugs.gnu.org/
http://bugs.debian.org/package
http://bugs.debian.org/package

164 - Software Design Feb. 2015 - 165

Debian BTSで
バグを検索／報告する方法 23

きますので、まずは試しに検索してみてください。
自分がよく使っているパッケージのバグ報告を眺
めるところから始めると良いでしょう。たとえば、
mikutterパッケージであれば、「http://bugs.deb

ian.org/mikutter」になります（図1）。

不適切なバグ報告を仕分け直し
てみる——コマンドメール

　バグを閲覧していると、たまに「これって割り
当て先が違う」「重要度が高過ぎる」「適切なタグ
が抜けている」というバグ報告を見ることがあり
ます。こんな場合はバグのステータスを修正しま
しょう（適切なステータス割り当ては重要です！）
　たとえば、バグ番号000000を見たところ、
報告先として割り当てられているパッケージが
hogefugaというパッケージのほうが適切で重
要度も普通（normal）である、という場合はリス
ト1のような「コマンドメール」を送ることでス
テータス修正ができます。とっかかりがないと
意味不明に見えるかもしれませんが、よく説明

を読んでみると、さほど難しいことはやってい
ないのがわかるかと思います。リスト1では重
要度に normalを指定していますが、Debian

BTSで使える重要度には表1のようなものが
あります。

追加バグ報告をしてみる

　たとえば、あるバグについて開発元（upstream）
やDebian以外のディストリビューションでは修
正されていることを知っているのであれば、そ
の情報をシェアすることは大きなContribution

となります。馴染みのDebian関係者がいるのな
ら、TwitterやFacebookなどのメディアで教え
るというのもありですが、教えてもらった誰か
が最終的にBTSに報告を上げないと、なかなか
修正の実現には至りません。
　では、修正を取り込んでもらうために、Debian

BTSへ追加情報の報告をしてみましょう。パッ
ケージ名「foobar」のバグ番号000000のレポート

 ▼表1　重要度（severity）注3の一覧

severity名 対象となるバグ内容
critical 関係のないソフトウェアやシステム全体、データを破壊するバグ。あるいはインストールし

ただけでセキュリティホールが生じるバグなど。これを指定することはまれ
（例：筆者はdjbdnsのDNS Cache汚染バグで指定した）

grave パッケージがまったく使えない、あるいはセキュリティ脆弱性があるなどの場合
serious Debianポリシー注4に違反するバグ。具体的にはパッケージがソースからビルドできないバグ

（FTBFS注5）など
important パッケージの重要な機能が使えない問題がある（まったく使えない、という場合はgraveを指定）
normal とくに指定がない場合はこのseverityになる
minor 些細な内容で、一部のユーザに軽微な影響がある
wishlist バグではなく、要望。機能追加や翻訳などがこれにあたる

注3） どれだけsevere（シビア）なのか、という情報です。
注4） パッケージはこのようなルールに従って作成しましょう、というDebian内でのお約束。確認したい場合はWebかdebian-policyパッ

ケージをインストールする。また、パッケージチェッカ「lintian」はこのポリシーに従ってチェックを実施する。
注5） Fails To Build From Sourceの略。Debianでは、このソースパッケージからバイナリパッケージがビルドできないバグは、リリース

前にすべて修正することになっています。二昔前ぐらいのRed Hat Linuxなどでは、specファイルからパッケージがビルドできない、
というのがそれなりにあったので、それと比較して「Debianのパッケージ品質は高い（問題なくビルドができるという意味で）」など
と言われたこともあります。現在はFedoraでもmockやkojiの利用が進み、だいぶ問題が少なくなっているようです。

 ▼リスト1　ステータス変更のコマンドメール

To: control@bugs.debian.org
Subject:

reassign 000000 hogefuga
severity 000000 normal
thanks

空でかまわない
「reassign <バグ番号> <パッケージ名>」で割り当てを変更

severity（重要度）の指定を「normal」に変更

thanksはコマンドの終わりを示す

既存のレポートに対してステータス変更などのコマンドを
実行する場合は、「control@bugs.debian.org」へメールする

http://bugs.debian.org/mikutter
http://bugs.debian.org/mikutter

166 - Software Design

に対して「開発元のリポジトリではすでに修正さ
れているよ」という追加報告とステータスの追加
変更をBTSで行う場合はリスト2のような感じ
になるでしょうか。ここでは2つのタグを使用
していますが、Debian BTSで使えるタグには
表2のようなものがあります。
　Debian BTSは日本人以外も多く利用してい
るので、バグ報告は英語で登録する必要があり
ます。とはいえ、この程度のBroken Englishで
かまいません。拙い英文ですが、言わんとする
ことは伝わりますよね？注6

　ここでは単にリポジトリの該当コミットを示し

て終わりというのもありですが、必要な変更をパッ
ケージに適用しやすいようにパッチの状態にして
添付しておくと、メンテナの好感度が上がって修
正が適用されやすくなります。なぜかというと、パッ
ケージで採用しているバージョンのソースコード
とupstreamのリポジトリに乖

かいり

離が少ない場合は
あまり手間でもないのですが、大きな差異がある
場合はパッケージ側で細かな調整をしないとい
けないのです注7。パッケージメンテナも人の子、

 ▼リスト2　追加バグ報告のコマンドメール

To: 000000@bugs.debian.org
Subject: foobar: wrong configure.ac has already been fixed in upstream

control: tags -1 +fixed-upstream +patch

Hi,

This FTBFS with bug in configure.ac has already fixed in upstream subversion
repository. For detail, see https://svn.example.co.jp/viewvc/foobar

Patch attached, could you check and consider to apply it, please?
Thanks.

--
Regards,
Kenji Fujikido <njslyr@example.com>

既存のレポートにコメントを追加したい場合は、
「<バグ番号>@bugs.debian.org」へメールする

とくにフォーマットは決まっていないが
「<パッケージ名>: 概要」という形にすると親切

コメントの追加とともにステータス変更などのコマンド実行も行う場合は、「control:」行にバグの状態
を操作するコマンドを記述する。ここではfixed-upstream（開発元では直っている）とpatch（パッチを
添付）というタグをバグ番号「-1」（Toで指定したバグ番号を意味する）に対して付加する、という意味

訳：configure.acファイルにバグがあってFTBFS（ソースからパッケージをビルドできない）バグ
となるこの問題は、すでに開発元のSubversionリポジトリでは修正されています。詳細はURL
を参照してください。パッチを添付したので、確認して適用を検討してもらえますか？

以下、単に署名。patchファイルを添付

 ▼表2　おもなタグの一覧

タグ名 概要 意味
patch パッチを添付 パッチを添付してあり、その内容を参照してほしい
l10n localization（多言語化）の略 翻訳や多言語化の問題。ほとんどが翻訳ファイルの同梱願い

moreinfo 情報不足 バグレポートの確認に必要な情報が含まれていない。「情報が
これだけじゃ原因を特定できない！」というときに使う

unreproducible 再現不能 報告された問題が再現できない

wontfix 直す予定なし 報告内容は一応確認できたが、諸々の事情からパッケージで直
す予定はない（メンテナが付ける）

upstream 開発元も同様の問題 開発元でもパッケージと同じ問題が発生しているので、Debian
パッケージ側の問題ではないが……という場合

fixed-upstream 開発元では修正されている すでに開発元で修正されているので、バージョン更新か修正差
分を取得してほしい

注7） そういう意味ではDebianのパッケージも放置せずに新しい
バージョンに追随していかないとパッケージ側でいちいち
調整をしなくてはいけないという、一種の「技術的負債」が
膨らむ、という表現もできます。どれだけの負債があるかは、
apt-get source packageなどとしてパッケージのソースを
取得し、debian/patchesディレクトリにどれだけDebianパッ
ケージ側で当てているパッチがあるか、そしてパッチが
Debian固有の変更かどうかを見ればわかります。

注6） とはいえ、バグ報告などはどう書いていいのか、と悩ま
れるかもしれません。お勧めは「それらしいほかの報告を
コピペ」です。先人は偉大です！

166 - Software Design Feb. 2015 - 167

Debian BTSで
バグを検索／報告する方法 23

面倒な作業を報告者側で済ませてもらえると更
新作業のやる気も起こるものです注8。

新規のバグ報告は
「reportbug」で

　ここまでは既存のバグ報告の修正や、追加情
報の報告の仕方を取り上げてきました。では、
自分が見つけたバグを報告したい場合ですが、
専用ツールの「reportbug」があります。名前の
とおりバグの「報告」のみに特化していて、対話
形式で処理できます。その使い方は？という点
は、また次回に説明します。

security.debian.orgが
日本にも

　Debian安定版向けのセキュリティアップデート
は、通常のミラーサーバとは別に複数のsecurity.

debian.orgサーバで提供されています。
　このたび、さくらインターネット様のご厚意
によりサーバのホスティングをしていただける
ことになり、日本にもsecurity.debian.orgサー
バが設置されました注10。これでアップデートの
たびに「セキュリティのアップデートが遅いー！」
といった悲鳴が聞かれなくなることでしょう。
ご尽力いただいた関係者の方々に深く深く感謝
致します。
　また、これはアジア初のsecurity.debian.org

サーバであり、日本以外のアジア圏のユーザに
とっても快適な環境が実現したということでも、
意義深いですね注11。｢

英語力はどの程度必要なのでしょう？

　Debianのような世界をまたいだFLOSSプロジェ
クトでは、当然のことながら英語が共通語となりま
す。そこでみなさんが気になるのは「どの程度の英
語ができればいいの？」ということではないでしょ
うか。たとえば、「コミュニティのメーリングリス
トを読んで理解できる程度の英語力なら問題ないの
か？」「英語で話せなくても、読み書きできるなら
大丈夫？」などなど……。
　まず、明らかにしておきたいのが、技術英語と日
常会話の英語は別物だということです。日常会話が
たどたどしいレベルでも、バグ報告では問題ありま
せん。日常会話では人によってイントネーションや
アクセントが違う英語を聞き取って即座に返答する
必要があるのに対し、バグ報告では考える時間をじっ
くりとって、何度も文章を推敲できるからです。辞
書を引く、翻訳サイトで試しに訳してみるといった
こともでき、難易度は格段に低いです。
　英語の理解度については、メーリングリストのや
りとりが理解できるならまったく問題はないでしょ
う。ほかのバグレポートに軽く目を通して、重複の
有無の確認や、類似のレポートの内容把握ができれ
ばクリア、です。

　筆者は、学生時代には英語が不得意で平均点も取
れないような成績でした。苦手になったキッカケと
して、中学1年の授業で英語教師に発音を笑われた
のを今でも覚えています。大学受験まで英語は平均
点以下という状態で、就職してからも仕事で英語を
使う機会もまったくなく（職場の外国人エンジニア
の方々はみなさん日本語が非常に達者ですので）、
TOEICやTOEFLも受けたことがありません。初めて
海外に行ったのは30歳を過ぎてからです。
　こんな筆者ですが、今までバグレポートで英文に
関して怒られた経験は「一度も」ありません。ただの
一度も、です。そもそも、FLOSS関連プロジェクト
では英語ネイティブ以外の人も多く参加しているの
で、英語はBrokenなのが当たり前という（開き直り
の）認識でいます注9。ですので、恐れずにまずは「伝
えようとしてみる」ことが重要だと思いますが、い
かがでしょう？

COLUMN

注9） 「プロジェクトで中心になってバリバリやっていくぜ！」
というのであれば、話は別でしょう。また「参加の入口
だけどやはり英語で躊躇する」という人はぜひ「酷い英語
をもっとお願いします」（ URL http://gihyo.jp/lifestyle/
column/01/language/2010/0419）を読んでみてくださ
い。

注8） 実際、筆者がバグ報告の掃除を行うときは「patch」タグが
付いているものだと処理する確率が上がります。

注10） 複数存在する security.debian.orgサーバの1つがさくら
インターネット様にホスティングされていますので、利
用にあたってとくに追加設定は必要ありません。

注11） 筆者はコーディネイト作業をさせていただきました。こ
の辺の苦労話はイベントなどで語られるでしょう。

http://gihyo.jp/lifestyle/column/01/language/2010/0419
http://gihyo.jp/lifestyle/column/01/language/2010/0419

168 - Software Design

Ubuntu Monthly Report

　本連載でも何度かUbuntuのインストールイメー
ジ（兼ライブイメージ）を作成するubuntu-defaults-

builderの紹介をしました。直近だと2014年7月号
の第51回でも紹介しています。14.04のubuntu-

defaults-builderではあくまでUbuntuのビルドしか
できませんでしたが、14.10からはUbuntu以外のフ
レーバーもビルドできるようになりましたので、今
回はその方法を紹介します。
　同時に、ubuntu-defaults-imageはビルド時にPPA

を指定し、そこにあるパッケージを取得できるので
すが、14.04までは1つまでしか指定できませんでし
た。しかし、14.10からは複数のPPAを有効にして
ビルドができるようになったので、その方法も紹介
します。
　ただし、すべてのUbuntuフレーバーがビルドで
きるわけではありません。今回成功したのはUbuntu

GNOMEとKubuntuのみでした。Xubuntuはビルドは
できて起動もするものの、ログインできませんでし
た。Lubuntuはビルドできませんでした。Ubuntu

Studioはビルドの対象に入っていないようでした。

　インストールイメージをビルドする環境を整えま

Ubuntuフレーバーの
イメージのビルド

準備

す。今回は実機注1にUbuntu 14.10をインストールし
ました注2。仮想マシンのゲストでもいいですし、LXC

やDockerに用意してもいいかもしれませんが、ビル
ドするOSにインストールするパッケージはさほど
多くないので、実機でもいいでしょう注3。インストー
ルイメージの作成でボトルネックになるのは、なん
といってもディスクI/Oです。というわけで、HDD

よりもSSDのほうが高速にビルドできます。CPUも
高速のほうがいいに越したことはありません。イン
ストールイメージの作成は通常試行錯誤を伴うもの
であり、一発で完了するということはほぼありませ
ん注4。ビルドを中断して途中からということもなく、
必ず最初からになります注5。ということは、高速な
ディスクI/OとCPUがあると、イメージの完成に至
るまでの時間が短縮されるということになります。
　今回はUbuntu 14.10日本語Remixで使用されてい
るubuntu-defaults-jaパッケージを流用するので、

注1） ちなみに第49回で使用した、AMD APUを搭載したPCです。
注2） 14.10インストール後は必ず最新の状態にアップデートして

ください。リリース時点で提供されているubuntu-defaults-
builderにはバグがあり、イメージは作成できるものの起動し
ません。

注3） そもそもの問題として、実機にUbuntu 14.10をインストー
ルしていいのか、14.04の方がいいのではないかという話はあ
りますが、それはそれで。

注4） インストールイメージに含まれるパッケージはその時点で最
新のものであり、セキュリティの修正などがあった場合はイ
メージそのものを更新したほうがいい場合もあります。そう
いった単純なケースでは、とくに試行錯誤の必要はないで
しょう。

注5） ただしダウンロードしたパッケージはキャッシュされるので、
一度ビルドすればすべてのダウンロードをやりなおすことは
ないです。

　今回は、Ubuntuの各種フレーバーもビルドできるようになったubuntu-defaults-builderの解説を
します。

Ubuntuフレーバーの
イメージをビルドする

Ubuntu Monthly Report第58回

Ubuntu Japanese Team
あわしろいくや　ikuya@fruitsbasket.info

168 - Software Design Feb. 2015 - 169

Ubuntuフレーバーのイメージをビルドする 第 58 回

Ubuntu Japanese Teamのリポジトリを有効にしま
す。ubuntu-defaults-jaはubuntu-defaults-imageで作
成するイメージのひな形を含んでいます。図1のコ
マンドを実行してください。
　続いて必要なパッケージをインストールします。

$ sudo apt-get install debhelper ubuntu-ｭ
defaults-builder

　作業フォルダを作成します。今回はHOMEフォル
ダの直下にします。

$ mkdir ubuntu-defaults-builder
$ cd ubuntu-defaults-builder

　ubuntu-defautls-jaパッケージのソースをダウン
ロードします。

$ apt-get source ubuntu-defaults-ja

　このubuntu-defaults-jaパッケージをいろいろと変
更し、作成するインストールイメージのカスタマイ
ズを行います。

　まずはUbuntuのイメージをビルドしてみます。こ
れは正常にビルドができるかの確認のためです。
ubuntu-defaults-jaはとくに変更する必要がないの
で、そのままパッケージを作成します。

$ cd ubuntu-defaults-ja-14.10/
$ dpkg-buildpackage -r -uc -b

　本来はdebian/changelogなどを変更したほうがい
いのですが、今回はとくに公開などを目標とするわ
けではないので省略します。これで1つ上のフォル

Ubuntuのイメージ作成

ダにubuntu-defaults-ja_14.10-(バージョン)_all.deb

が作成されました。続いてイメージを作成します。
図2のコマンドを実行してください。
　というわけで、実際にイメージをビルドするコマ
ンドはubuntu-defaults-imageです。オプションは見
たままですので、とくに解説の必要はないかと思い
ます。筆者の環境では、必要なパッケージがダウン
ロードされた状態でもビルドに16分強かかりまし
た。無事に完走したら、カレントフォルダに“livecd.

ubuntu.iso”というファイルができているはずです注6。
次にubuntu-defaults-imageコマンドを実行すると、
“livecd.ubuntu.iso”など作成したファイルをすべて削
除してしまうので、必要であれば別のフォルダにコ
ピーしてください注7。

　では、いよいよフレーバーの作成に移ります。ま
ずはKubuntuです。Kubuntuもデフォルトのインプッ
トメソッドはIBusですが、KDEではFcitxの方がい
いので、日本語Remix相当にするのは意味がありま
す。しかもFcitxではKDEの設定UIを使用できる
ので、このパッケージを追加するとよりいいです。
というわけで、ubuntu-defaults-jaパッケージをカス
タマイズします。まずはフォルダに移動します。

$ cd ubuntu-defaults-ja-14.10/

注6） これ以外にもいくつかのファイルができています。
注7） ちなみに筆者は isoというフォルダを作成し、そこにコピーし

ました。

Kubuntuのイメージの作成

$ wget -q https://www.ubuntulinux.jp/ubuntu-ja-archive-keyring.gpg -O- ¦ sudo apt-key add -
$ wget -q https://www.ubuntulinux.jp/ubuntu-jp-ppa-keyring.gpg -O- ¦ sudo apt-key add -
$ sudo wget https://www.ubuntulinux.jp/sources.list.d/utopic.list -O /etc/apt/sources.list.d/ubuntu-ｭ
ja.list
$ sudo apt-get update

図1　Ubuntu Japanese Teamのリポジトリを有効にする

$ cd ../
$ ubuntu-defaults-image --locale ja_JP --package ./ubuntu-defaults-ja_14.10-(バージョン)_all.deb ｭ
--flavor ubuntu --components main,restricted,universe --mirror http://jp.archive.ubuntu.com/ubuntu ｭ
--ppa japaneseteam/ppa

図2　ubuntu-defaults-imageの実行

170 - Software Design

Ubuntu Monthly Report

　直下にdepends.txtがあるので、これの一番下に
“kde-config-fcitx”追加します。同時に、“language-

pack-gnome-ja”を削除します。編集したら保存し、
パッケージを作成します。

$ dpkg-buildpackage -r -uc -b

　そしてイメージをビルドします（図3）。
　見てのとおり、flavorオプションを変更しただけで
す。VirtualBoxをインストールし、作成した livecd.

kubuntu.isoから起動すると、最初に表示されるメ
ニューはUbuntuですが、起動するとKubuntuです。
表示が乱れる場合は、ホストキー注8＋!キーを押
したあと、ホストキー＋'キーを押してください。
右下のキーボードアイコンを右クリックし、［設定］
をクリックすると［入力メソッド-KDE設定モジュー
ル］が起動します（図4）。これだけを見ても、IBusよ
りもFcitxのほうがKDE向きであることがわかりま
す注9。

　続いてUbuntu GNOMEのイメージを作成してみ
ましょう。こちらはKubuntuとは逆にFcitxではな
くIBusのほうがいいので、Fcitx関連パッケージをイ
ンストールしないようにします。

$ cd ubuntu-defaults-ja-14.10/

注8） デフォルトでは右lキーです。VirtualBoxマネージャーの
［ファイル］-［環境設定］-［入力］タブ-［仮想マシン］の［ホスト
キーの組み合わせ］で確認してください。

注9） ちなみに、ほかにはないFcitxのスキンをインストールする機
能もあります。

Ubuntu GNOMEの
イメージの作成

　depends.txtからfcitxで始まる4つのパッケージを
削除します。“kde-config-fcitx”を追加している場合も
削除してください。そしてパッケージを作成します。

$ dpkg-buildpackage -r -uc -b

　あとはイメージをビルドするだけです（図5）。
　これで ibus-mozcがインストールされたUbuntu

GNOMEのイメージが作成されました（図6）。

　Ubuntu GNOMEはさまざまな事情からコンポー
ネント注10のバージョンがバラバラです。おおむね
3.12ではあるのですが、たとえばgeditは3.10.4、
gnome-terminalは3.6.2です。ただしPPA注11ではよ
り新しいバージョンのコンポーネントを配布してい

注10） Ubuntuでは、コンポーネントとパッケージはほぼ同じ意味
です。

注11） https://launchpad.net/~gnome3-team/+archive/ubuntu/
gnome3

［応用例］Ubuntu GNOMEの
Ubuntu 3.12化

$ cd ../
$ ubuntu-defaults-image --locale ja_JP --package ./ubuntu-defaults-ja_14.10-(バージョン)_all.deb ｭ
--flavor kubuntu --components main,restricted,universe --mirror http://jp.archive.ubuntu.com/ubuntu ｭ
--ppa japaneseteam/ppa

図3　Kubuntuのイメージをビルドする

図4　 FcitxのKDE用設定UI。スキンがインストールできるなど
高機能です

$ cd ../
$ ubuntu-defaults-image --locale ja_JP --package ./ubuntu-defaults-ja_14.10-(バージョン)_all.deb ｭ
--flavor ubuntu-gnome --components main,restricted,universe --mirror http://jp.archive.ubuntu.com/ｭ
ubuntu --ppa japaneseteam/ppa

図5　Ubuntu GNOMEのイメージをビルドする

https://launchpad.net/~gnome3-team/+archive/ubuntu/gnome3

170 - Software Design Feb. 2015 - 171

Ubuntuフレーバーのイメージをビルドする 第 58 回

ますので、このPPAを有効にしたUbuntu GNOME

を作成します。ubuntu-defaults-jaは『Ubuntu GNOME

のイメージの作成』で使用したものを再利用します。
よって図7のコマンドでイメージをビルドしてくだ

さい。
　前述のとおり、14.10からppaオプションを複数指
定できるようになったので、こういうことができる
ようになりました。作成したイメージから起動し、
geditとgnome-terminalが新しいバージョンになって
いるか確認してみましょう。

　ubuntu-defaults-imageではUbuntuのリリースを
指定できます。換言すれば、14.10だけではなく
14.04もビルドできます。ということは14.04でも複
数のPPAを指定してイメージを作成できるというこ
とで、いろいろと応用が効きます。今回は具体的に、
LibreOfficeを4.3.xにした14.04をビルドしてみま
す注12。14.10とは別のフォルダでビルドしたほうがい
いため、そのように作業します（図8）。
　本来はubuntu-defaults-jaのパッケージをそのま
ま使用すればいいのですが、今後さらにカスタマイ
ズすることを考えてソースからビルドしています。
ビルドが完了したらそのイメージから起動し、

注12） ちなみに14.04のLibreOfficeは4.2.xです。

［応用例］Ubuntu 14.04の
LibreOfficeを4.3にする

LibreOfficeのバージョンが上がっていることを確認
してください（図9）。ｦ

図6　［入力ソース］を見ると、Mozcがインストールされてい
　 ることが確認できます

$ ubuntu-defaults-image --locale ja_JP --package ./ubuntu-defaults-ja_14.10-0(バージョン)_all.deb ｭ
--flavor ubuntu-gnome --components main,restricted,uiverse --mirror http://jp.archive.ubuntu.com/ｭ
ubuntu --ppa japaneseteam/ppa --ppa gnome3-team/gnome3

図7　PPAを有効にしたUbuntu GNOMEのビルド

$ mkdir trusty
$ cd trusty
$ sudo apt-get install devscripts
$ dget -u http://archive.ubuntulinux.jp/ubuntu/pool/main/u/ubuntu-defaults-ja/ubuntu-defaults-ｭ
ja_14.04-0ubuntu1̃ja6.dsc
$ cd ubuntu-defaults-ja-14..04
$ dpkg-buildpackage -r -uc -b
$ cd ../
$ ubuntu-defaults-image --locale ja_JP --package ./ubuntu-defaults-ja_14.04-(バージョン)_all.deb ｭ
--flavor ubuntu --components main,restricted,universe --mirror http://jp.archive.ubuntu.com/ubuntu ｭ
--release trusty --ppa japaneseteam/ppa --ppa libreoffice/libreoffice-4-3

図8　LibreO�ceを4.3.xにした14.04をビルドする

図9　14.04のLibreO�ceを4.3.3にできました

172 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

　今月は、Linux 3.17で紹介する最後の機能

として、seccompについて解説します。さらに
seccompの裏側で動作するBPFというカーネル
内で動作するプログラムのLinux 3.18、3.19で
の更新についても解説していきます。また、
Linux 3.18から追加された新しいカーネル設定
機能についても紹介します。

seccompとはなにか
　“seccomp”とは“secure computing”のための機
能です。Linuxにおいては、多くのプログラム
はそのソースが公開されていますが、中にはバ
イナリしか提供されていないプログラムもあり
ます。これらのプログラムは、システムコール
を通してファイルのコピーやTCP/IP通信な

どさまざまな処理をシステムに対して行うこ

とができます。そこで考えられたのが“secure
computing (seccomp)mode”です。このモードに
なったプロセスは、システムコールの実行を制
限されます。これによって、比較的安全にプロ
グラムを実行できます。
　seccompは初めLinux 2.6.23で導入されまし
た。seccomp modeへの移行は“prctl(PR_SET_
SECCOMP, SECCOMP_MODE_STRICT)”によって行わ

れます。このとき導入されたseccomp modeはシ
ンプルなものです。seccomp modeに入ったプロ
セスが read、write、_exit、sigreturn以外のシ
ステムコールを呼び出すと、そのプロセスには
SIGKILLが送られてプロセスが終了するよう
になります。事前に必要なファイルだけをopen

しておくことで、prctl後のプロセスはそのほか
のファイルに影響をおよぼすことができなくな
るというわけです。たとえばリスト1のプログ

Linux 3.17から3.19の
BPF関連の変更
seccompとtinyconfig
Text：青田 直大　AOTA Naohiro

第35回第35回

#include <linux/seccomp.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
int main()
{
 prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT);

 char *hello = "hello¥n";
 write(1, hello, strlen(hello));

 int fd = open("foo");
 write(1, hello, strlen(hello));
 char *data = "fooooooo";
 write(fd, data, strlen(data));
 close(fd);
 return 0;
}

 ▼リスト1　seccompのテストプログラム

172 - Software Design Feb. 2015 - 173

Linux 3.17から3.19のBPF関連の変更
seccompとtinyconfig

第35回第35回

ラムであれば、1回目の標準出力への“hello”の
書き込みは成功しhelloと出力されますが、ファ
イル“foo”のopenは失敗しプログラムはkillさ
れます。
　その後、Linux 3.5においてseccompはより細
かい設定ができるように拡張されました。こち
らの機能は“prctl(PR_SET_SECCOMP, SECCOMP_
MODE_FILTER,filter)”として使用します。filter
にはBPF（Berkeley Packet Filter）のフィルタを

指定します。BPFはその名のとおり、もともと
はパケットフィルタリングに使われるフィルタで
す。パケットのデータを取得し、数値計算・bit

演算・比較などを行って、パケットを通すか落
とすかを決めることができる簡単な仮想マシン
語になっています。これをシステムコールに使
うことで、システムコールの番号や、引数といっ
た条件からシステムコールを許可・拒絶するフィ
ルタを作ることができます。

 （次ページに続く）

#include <linux/seccomp.h>
#include <linux/filter.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <seccomp.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>

int main()
{
 char msg[] = "Test message¥n¥n";
 scmp_filter_ctx ctx = seccomp_init(SCMP_ACT_KILL);　……❶

 seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit_group), 0);　……❷
 seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(write), 3,　……❸
 SCMP_A0(SCMP_CMP_EQ, 1),
 SCMP_A1(SCMP_CMP_EQ, msg),
 SCMP_A2(SCMP_CMP_LE, strlen(msg))
);

 // seccomp_load(ctx);
 struct stat stat;
 struct sock_fprog bpf;
 int fd = open("bpf.dump", O_RDWR ¦ O_CREAT ¦ O_TRUNC, 0600);
 seccomp_export_bpf(ctx, fd);　……❹
 lseek(fd, 0, SEEK_SET);
 fstat(fd, &stat);
 bpf.len = stat.st_size / sizeof(struct sock_filter);
 bpf.filter = malloc(stat.st_size);
 int n = read(fd, bpf.filter, stat.st_size);
 close(fd);

 prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);　……❺
 prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bpf);
 free(bpf.filter);

 write(1, msg, strlen(msg));　……❻
 write(1, msg, strlen(msg) - 1);
 write(1, msg, strlen(msg) + 128); /* 失敗 */

 seccomp_release(ctx);
 return 0;
}

 ▼リスト2　BPFを構成し、ロードするプログラム

174 - Software Design

Linuxカーネル観光ガイド

　たとえば libseccompを使い、リスト2のよう
にBPFを構成し、ロードできます。ここでは標
準出力 (1)への書き込みを制限付きで許可し、ま
たexitも許可するようにしています。
　詳しく見ていきましょう。まずseccomp_init()
で、seccompのデフォルトの動作を指定し、フィ
ルタの構造体を作ります（リスト2の❶）。ここ
ではSCMP_ACT_KILLを指定し、プロセスがkill

されるようにしています。
　次に許可するルールをseccomp_rule_add()を
使って追加していきます。リスト2の❷では、
単純にシステムコールの番号を使ってマッチし、
許可しています。一方、リスト2の❸のwrite
システムコールでは、より細かいルールを追加
しています。SCMP_A0からSCMP_A2はそれぞれ
システムコールの引数の1番目から3番目を検
査するためのマクロです。ここでは、1番目の
引数が1であり標準出力であること、2番目の引
数の書き込みバッファがmsgであること、そし
て3番目の引数がmsgのバッファ長以下である
ことを確認してシステムコールの許可を出すよ
うなルールにしています。これで範囲外のバッ
ファが書き込まれることを防ぐことができると
いうことになります。
　ルールの読み込みは、libseccompを用いる場
合seccomp_load()によって簡単に行うことがで
きますが、ここでは明示的にprctlを使うため
にちょっとまわりくどい方法をとっています。

まずリスト2の❹の“seccomp_export_bpf(ctx,
fd)”で、“bpf.dump”ファイルにlibseccompによっ
てBPFのバイトコードにコンパイルされたルー
ルをダンプしています。次に“bpf.dump”を読ん
でbpf構造体にデータを入れて、prctlを呼び出
しています（リスト2の❺）。フィルタを設定す
る場合は“prctl(PR_SET_NO_NEW_PRIVS, 1, 0,
0, 0)”を事前に呼び出す必要があることに注意
してください。
　そのあと、write()を行うと（リスト2の❻）バッ
ファ内の書き込みである上2つは成功しますが、
3つ目は失敗しkillされることがわかります。
　ダンプされたBPFバイトコードをもう少し詳
しく見てみましょう。BPFは2byteのオペコード、
それぞれ1byteの trueのときのジャンプ先と
falseのときのジャンプ先、4byteの多目的フィー
ルドの合計8byteを1つの命令とする命令列と
なっています。バイナリのままではわかりにく
いので、リスト3のPythonスクリプトでbpf_
dbgが読み取れる形式にBPFのバイナリを変換
し（リスト3）、Linuxカーネル付属ツールの
bpf_dbgを使ってディスアセンブルします（図1）。

#!/usr/bin/python3
from struct import unpack_from

bytecodes = []
with open("bpf.dump", "rb") as f:
 while True:
 buf = f.read(8)
 if len(buf) != 8: break
 x = unpack_from("<HBBI", buf)
 bytecodes.append(x)

print("%d," % len(bytecodes), end="")
for x in bytecodes:
 print("%d %d %d %d," % x, end="")
print("")

 ▼リスト3　bpf_dbgが読み取れる形式に変換

$ cd linux/tools/net
$ make
$./bpf_dbg
> load bpf 20,32 0 0 4,(略)
> disassemble
l0: ld [4]
l1: jeq #0xc000003e, l2, l19
l2: ld [0]
l3: jge #0x40000000, l19, l4
l4: jeq #0xe7, l18, l5
l5: jeq #0x1, l6, l19
l6: ld [20]
l7: jeq #0, l8, l19
l8: ld [16]
l9: jeq #0x1, l10, l19
l10: ld [28]
l11: jeq #0x7fff, l12, l19
l12: ld [24]
l13: jeq #0x382eb580, l14, l19
l14: ld [36]
l15: jge #0, l16, l18
l16: ld [32]
l17: jgt #0xe, l19, l18
l18: ret #0x7fff0000
l19: ret #0

 ▼図1　BPFバイトコードのディスアセンブル

174 - Software Design Feb. 2015 - 175

Linux 3.17から3.19のBPF関連の変更
seccompとtinyconfig

第35回第35回

　ディスアセンブルされたコードを見ていきま
しょう。まずl18、l19の“ret”に注目します。
#0x7fff0000はSECCOMP_RET_ALLOWの値、#0は
SECCOMP_RET_KILLの値であり、つまりl18に来
ればシステムコールを許可し、l19に来れば拒
絶しkillするということです。残りの部分は条
件判別し、l18かl19にジャンプするという形

で許可・拒絶を決めているということになり

ます。
　では、上に戻って順番に見ていきましょう。
“ld[4]”は struct seccomp_dataの4byte目から
4byteである“arch”の値を読み込んでいます。
seccomp filterではシステムコールの名前ではな
く、アーキテクチャごとに異なるシステムコー
ルの番号を用いてマッチしています。そのため、
まず最初に対応していないアーキテクチャを拒
絶しなければ、誤ったシステムコールを通す可
能性があります。l1ではl0で読みとったアーキ
テクチャ番号が0xc000003eであれば、l2にジャ
ンプ、そうでなければl19にジャンプするコー
ドが書かれています。この番号はAUDIT_ARCH_
X86_64の値になります。
　同様にして、l2からl5ではシステムコール番
号がexit_group（0xe7）か、write（0x1）かをチェッ
クしています。l3の0x40000000はx32システム
コールでないかのチェックになっています。そ
のあとも同様に、l6からl9でwriteの第1引数
が1であるか（4byteずつの比較になっています）、
l10からl13で第2引数がmsgのアドレスである
か、l14からl17で第3引数がmsgのバッファ長
以下であるかを確認しているということになり
ます。

他スレッドへの
seccompの適用

　このように設定することで、プログラムが実
行できるシステムコールを細かく制御できる
seccompですが、1つ難点がありました。設定
されたseccompはexecなどを行っても子プロセ
ス／スレッドに引き継がれるのですが、これだ

けでは十分にセキュリティポリシーを設定でき
ないケースがあります。たとえば、ライブラリ
が事前に作ったスレッドに対してはseccompを
適用できません。こうしたケースに対応するため、
自分と同じスレッドグループのほかのスレッド
にseccompを適用するためのフラグがLinux 3.17

では追加されています。
　先ほど見たように、seccompフィルタを適用
するには“prctl(PR_SET_SECCOMP, SECCOMP_MODE_
FILTER, &bpf)”が使われていました。これを見
るとわかるように、全スレッドで同じseccomp

を使うようにするためのフラグを追加する余地
がありません。そこで新しくseccompというシ
ステムコールが追加され、スレッド間で
seccompを適用する場合には、こちらのシステ
ムコールを使って“seccomp(SECCOMP_SET_MODE_
FILTER, SECCOMP_FILTER_FLAG_TSYNC,
filter)”と呼び出すようになっています。

eBPF
　このままBPFの変更を追っていきましょう。
Linux 3.18ではBPFの拡張版であるeBPFおよ
び、eBPFプログラムをカーネル内にロードす
るbpfシステムコールが導入されました（図2）。
　eBPFによる拡張機能の1つは、カーネル内
のヘルパ関数を呼び出せることです。これを用
いてeBPFのもう1つの機能である「マップ」の
読み書きが実現されています。マップはユーザ
ランド・eBPFプログラムの双方から読み書き
できる簡単なキーバリューストアです。これを
用いて、宛先ごとのパケット量の計測・表示といっ
たプログラムを実現できます。
　次にbpfシステムコールについて見ていきま
しょう。bpfシステムコールはマップの作成、マッ
プの読み書き、マップの削除、eBPFプログラ
ムのロードといったさまざまな機能を実現する
システムコールです。第1引数には実行する機
能を示すフラグを、第2引数には機能ごとに異
なるデータを渡すための構造体のポインタを、

176 - Software Design

Linuxカーネル観光ガイド

第3引数には第2引数の構造体のサイズを指定
します。
　これまでのBPFでは、先ほど見たように
“prctl(PR_SET_SECCOMP,SECCOMP_MODE_FILTER,
&bpf)”を使う、あるいはパケットフィルタリン
グの場合には“setsockopt(sock, SOL_SOCKET,
SO_ATTACH_FILTER, &bpf,sizeof(bpf))”を使う
というように、各プロセスソケットに対して
BPFプログラムを適用していました。
　一方でbpfシステムコール自体では、BPFプ
ログラムのロードが行われるだけでソケットや
プロセスとの関連付けは行われません。
bpf(BPF_PROG_LOAD)システムコールでBPGプ
ログラムを読み込ませると、ファイルデスクリ
プタが返ってきます。このファイルデスクリプ
タを使って、ソケットやトレースポイントとの
関連付けを行い、たとえばパケットが受信され
たときやシステムコールの呼び出し時、ファイ
ルシステムの読み書き時などさまざまなイベン
トをフックして指定したプログラムを動作させ
ることができます。
　とはいえ、今はまだLinux 3.19でBPFをソ
ケットに結びつける“setsockopt(sock, SOL_
SOCKET, SO_ATTACH_BPF, &prog_fd, sizeof
(prog_fd))”が追加されているだけで、トレー
スポイントなどへの割り当ては予定段階にとど

まっています。
　また、eBPFの作者はより複雑なプログラム
をeBPFで実現するためにLLVMのバックエン
ドを作っているようです注1。これを使うことで、
BPFプログラムをCで記述できます。ループを
使うことができないなどの制約はあるものの、
カーネルモジュールを書く感覚でBPFプログラ
ムを作成できるようになるというわけです。

新たなカーネル設定機
能：tinyconfig

　最後に、Linux 3.18から新たに追加された
tinyconfigについて紹介します。Linuxカーネル
には1万を超える数の設定項目があり、さまざ
まな機能やドライバのオンオフを切り替えるこ
とができます。これらの設定項目には依存関係
を書くこともできます。
　もしもある機能Aが別の機能Bを使っていた
として、Aの設定項目の部分にBへの依存を記
述していない場合に機能Aだけを有効にすると、
カーネルのビルドに失敗してしまいます。こう
した問題を見つけ出すために“make allnocofig”
が使われています。 カーネルのソースディレク

注1） https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/co
mmit/?id=922a5696e2d8f104916ba9875dee1bf4
8f574522

 ▼図2　BPFとeBPF

AppA BPF
1. プログラムの作成

AppA

socketsocket process

BPF

BPF

eBPFBPF/seccomp

trace
event

許可／拒否マップ
の読み書き

許可／拒否

2. プログラムの作成

1. マップの作成
　（bpf syscall）

3. プログラムのロード
　（fdが返る）

Map
kernel

4. BPFの割り当て

2. ソケットやプロセスに
　BPF割り当て
　（setsockopt、
　 prctl、seccomp）

https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/commit/?id=922a5696e2d8f104916ba9875dee1bf48f574522

176 - Software Design Feb. 2015 - 177

Linux 3.17から3.19のBPF関連の変更
seccompとtinyconfig

第35回第35回

トリで“make allnoconfig”を行うと、可能な限り
有効になっている設定項目が少ない設定が生成
されます。たとえば、ここから自分が開発して
いる機能をオンにして、うまく動作するかどう
かを確認することで、依存する機能の見落とし
がないかどうかを確認できます。
　設定項目が「小さく」なるとその分多くの機能
が無効になり、基本的にはカーネルのサイズも
小さくなります。しかし、“make allnoconfig”は
とにかく設定を小さくすることを目的とした設
定機能であるために、サイズ最適化のコンパイ
ラオプション（"-Os"）をつける設定項目や、カー
ネルの圧縮、関数のインライン化といった設定
項目についても無効としてしまいます。そのため、
最小の設定項目のカーネルは、最小のサイズの
カーネルとはなっていません。そこで追加され
たのが“make tinyconfig”です。これは“make allno

config”を基本としつつ、前述の設定項目を有効
にした設定を生成します。
　さらにLinux 3.18ではカーネルを小さくする
ための変更がいくつか加えられています。たと

えば、これまで外すことのできなかった
madvie、fadvieといったシステムコールを設定
で外せるようにする変更や、/proc/cpuinfoの
flagsで見ることができるCPUの機能名のテー
ブルを設定で削除できるようにする変更、さら
には /proc自体を使わない場合にも /proc/

cpuinfoに相当するコードがビルドされていたの
で、これを削除するパッチも入っています注2。

まとめ
　今月はBPFに焦点を当てて、Linux 3.17から
3.19までのBPF関連の変更をおもに紹介しま
した。カーネルのさまざまな部分にフックをか
けて、複雑なプログラムを動かせるというのは
なかなかおもしろそうな機能です。LLVMの部
分、フックをかける部分が早くマージされると
いいですね。｢

注2） このパッチではカーネルサイズを645byte削減できるよう
です。

OpenSSHは、暗号や認証の技術を使って遠隔地のコンピュータ
と安全に通信するためのソフトウェアです。システムの開発／運
用もクラウド上で行うことが多い昨今、SSHはIT技術者に必須の
技術です。
本書は、OpenSSHクライアント／サーバの基本的な使い方と、
TCPポートフォワード、認証エージェント転送、X11転送、簡易
VPNなどの応用的な使い方を説明します。セキュリティを確保す
るための注意点についても言及します。
OpenSSH-4.2～6.6対応。Red Hat系／Debian系OS両対応。

川本安武 著
A5判／400ページ
定価（本体2,980円＋税）
ISBN 978-4-7741-6807-4

・インフラエンジニア
・ネットワークエンジニア
・運用エンジニア
・Webアプリケーション開発エンジニア
・IaaSなどのクラウドサービスを利用している技術者
・リモートからサーバに接続して作業行う技術者

178 - Software Design

見が出るぐらい集客が良く、また部屋がガラス張り
のため外からも様子が見えて好感触でした。

■ブース展示／ショーケース企画／ステージ

　今回はブース展示の部屋をデザインギャラリーの
みとしたため、出展数は42件と微減しました。しか
し、京都女子大学電子アクセサリー工房のような手
作り感満載の展示と、GitHub社のような世界規模の
サービスの展示が同時に行われるという、当イベン
トならではの振れ幅の広い展示は相変わらずでした。
　一方、デザインショーケースでは既存の枠に当て
はまらない企画として、「関西オープンCTF2014」
「Scratch/Raspberry Pi指導者向け展示と紹介および
指導者研修」「オープンハードカンファレンス 2014

Kansai」の3件を実施しました。このうちScratch関
連の企画は阿部さんの基調講演と連動したもので、
子供へのプログラミング教育を実践される方々が多
数参加されました。
　ステージ企画は24件を実施し、幅広い分野から集
まった出演者がMC陣とトークショーを繰り広げま
した。加えて、当日限定でライトニングトークも募
集し、こちらにも5件の参加がありました。

■懇親会

　KOFでは最重要行事に位置づけられる懇親会は、
11月7日の夜にITM棟6階のPIER6にて開催しまし
た。137人の参加者が集まり、恒例の持ち込みベル
ギービールや日本酒などを飲みながら楽しいひとと
きを過ごしました。

◆　◆　◆

　今回は2014年11月に大阪で行われた関西オープ
ンフォーラム（KOF）と、その中で開催したjus研究
会の模様をお伝えします。

	 ■関西オープンフォーラム2014

	【日時】2014年11月7日（金）13:00〜18:00、

	 	 11月8日（土）11:00〜18:00

	【場所】大阪南港ATC ITM棟10階

　KOFは13年目を迎える関西ITコミュニティ界の
一大イベントで、今回も約1,500人の参加者を集め
ました。プログラムの中から一部を紹介します。詳
しくはKOF2014のWebサイト注1をご覧ください。

■基調講演／セミナー

　基調講演は、塚本昌彦さん（神戸大学）による「ウェ
アラブルがついにやってきた」と、阿部和広さん（青
山学院大学／津田塾大学）による「こどもたちが本物
のコンピューターを持つ意味」の2件を行いました。
とくに塚本先生は10年以上にわたりウェアラブルデ
バイスを身につけて行動していることで知られてお
り、その経験をふまえて最近のウェアラブル機器の
動向や今後の展望を語ってくださいました。
　参加団体の企画によるセミナーは26件が行われま
した。今回は新たな試みとしてデザインショーケー
スという小部屋をセミナーに使用したのですが、立

関西オープンフォーラム

注1） URL http://k-of.jp/2014/

人口密度が高い！ 内容も濃い！ 関西オープンフォーラム

NO.40
February 2015

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/
http://k-of.jp/2014/

Feb. 2015 - 179178 - Software Design

　今回は昨年まで使用していた9階を使うのをやめ
て、ほとんどの行事を10階に集約したのですが、そ
のためか会場の人口密度が高くなり、盛況になった
感じがしました。10階での開催は4年目ですが、よう
やくこの会場を使いこなせるようになってきたよう
です。2015年のKOFもここで開催します。会期は11

月6～7日（金、土）を予定しています。

	 ■Erlang/OTPに見る

	 	 オープンソースのダイナミズム

	【講師】力武 健次（力武健次技術士事務所）

	【日時】2014年11月8日（土）16:00〜16:50

	【会場】大阪南港ATC ITM棟10階 多目的ルーム

　jus研究会は、力武さんを講師にお迎えし、Erlang

やOTPをオープンソース化したことで何が起きたか
を話していただきました。参加者は28人でした。

■Erlangの概要

　Erlangはネットワークサーバ用のDSLとして開発
されたプログラミング言語です。並行処理に特化し
ている、速さよりも信頼性を追求するなどの特徴が
あり、高負荷大規模システムでの利用に向いていま
す。OTP（Open Telecom Platform）はErlangのライ
ブラリ集です。代表的な利用事例としては、LINEの
メッセージサーバやニコニコ生放送などがあります。
　Erlangの開発は1985年に始まりました。Prologを
もとに設計されたようです。エリクソンの電話交換
機用言語として作られたため、無停止でのソフト
ウェア交換、大規模な並行処理、許容応答時間の上
限を守る、などの要求に応えるものとなっています。
約10年後、実際に交換機にも実装されたのですが、
ここでなぜかエリクソン内部でErlangの使用が禁止
されたため、それまでの成果を公開する形で1998年
にオープンソース化されました。その後は開発チー
ムの独立や運用支援／教育会社の誕生を経て、現在
はGitHubベースで開発が続いています。

■Erlangコミュニティについて

　力武さんから見たErlang/OTPコミュニティの印
象は、地味ですがゆったりした大人の集まりで、広
範な知識と経験を持つ人が多く、新人にも優しいそ
うです。情報交換媒体としては、メーリングリスト、
Twitterのハッシュタグ、GitHubがよく利用されてい
ます。ミーティングも世界各地で開催されていて、
日本国内でも時折勉強会が行われているようです。
　Erlangコミュニティの課題を探るにあたり、力武
さんはerlang-questions MLにてアンケートを実施
し、回答を抜粋して紹介しました。コミュニティの
印象は、小さい、親切、友好的ですが、ほかの言語
にはあまり関心がないようです。Erlangエコシステ
ムの新陳代謝を保つために必要なものとして、パッ
ケージシステムや統一リポジトリの確立、初級者向
けドキュメントの充実などの意見が出ました。ソフ
トウェア配布については、GitHubでの配布は好評で
すが、GitHub版とリリース版が乖離しているという
問題が出ています。今後Erlang/OTPはどう進化す
べきかについては、統合開発環境の提供など簡単に
使えるようにすることや、エリクソンからのさらな
る独立などのコメントがありました。

■オープンソース化についての考察

　最後に力武さんの考察が提示されました。オープ
ンソース化によるErlangの変化については、「Git

Hubへの移行により若いユーザが増え、コミュニ
ティ色が強くなった。Erlang/OTPはもうエリクソン
だけのものではないという印象」だそうです。オープ
ンソースのダイナミズムに関しては、「実用性やビジ
ネスで使えることは必須だが、開発や普及活動を企
業だけで引っ張っていくのは限界がある。それ以上
に発展させていくためには、大規模システムへの適
用だけでなく、小規模な応用や趣味的な応用も推進
する必要がある」との見解を示しました。
　企業が主導して開発が進められるソフトウェアは
数多くありますが、それらが直面する問題や利点も
含めて、わかりやすくまとめて解説していただき、
有意義なセッションであったと思います。｢

jus研究会大阪大会

人口密度が高い！ 内容も濃い！ 関西オープンフォーラム February
2015

180 - Software Design

防災・減災ハッカソン

　2014年10月12日にCode for Japan Summitの併催
イベントとして「防災・減災ハッカソン」が開催されま
した（写真1）。場所は東京大学駒場リサーチキャンパ
スとなり、久しぶりの東京でのハッカソンです。なお
サテライトとして会津若松会場も開設されました。
　今回のハッカソンでは、防災・減災のテーマに
沿った多様なアイデアが見られ、目的の明確なプロ
ジェクトが出そろったのが印象的でした。ハッカソ
ン終了後も継続しているプロジェクトも見られます
ので、興味をお持ちの方はFacebookのグループ
ページ注1に参加してください。それではプロジェ
クトを紹介していきます。なお当日の動画や資料の
リンク先もお伝えしておきます注2。

注1	 防災・減災ハッカソンのFacebookグループ（アイデアやプ
ロジェクトが見られます）
https://www.facebook.com/groups/bosai4jp/

注2	 発表資料一覧
https://drive.google.com/folderview?id=0B-ctWmY9M6
PjZVN4NF93a29tX1k&usp=sharing
当日の動画（発表）
https://www.youtube.com/watch?v=pT0mbwRUqDc#t=1223

自治体公式Twitterアカウントの
数値をインフォグラフィック化

　防災情報を発信している自治体のTwitterアカウ
ントがどれだけあるかをインフォグラフィックでま
とめました。たとえば「全国1741市区町村の
Twitterアカウント導入率は約28％」（図1）、「防災
情報を発信している都道府県の公式Twitterアカウ
ントは34自治体」といったものです。これらの数字
は、ITで災害に対して何ができるかを考え、実践す
る試みを模索している「ITx災害コミュニティ注3」の
調査結果注4によるものをベースとしています。
　なおインフォグラフィックについては、後日公開す
る予定です。さらにWeb上でインタラクティブに見
られるコンテンツを用意することや調査結果データを
オープンに公開することも検討されていますので、報
告できるようになりましたらお知らせします。

注3	 http://www.itxsaigai.org/
注4	 ITx災害 情報発信チーム 調査結果ブログ

http://blog.itxsaigai.org/post/96331302504/
twitter-2014

Hack For Japan
エンジニアだからこそできる復興への一歩

多様なプロジェクトが見られた
防災・減災ハッカソン！

第38回
東日本大震災に対し、自分たちの開発スキルを役立てたいというエンジニアの声をもとに発足された

「Hack For Japan」。今回はCode for Japan Summitの併催イベントとして開催した防災・減災ハッカ
ソンをレポートします。また関連コラムとして「Code for Japan Summit」、「イベント開催ガイド」につ
いてもお届けしますので、ぜひご一読ください！

●Hack For Japanスタッフ
　及川 卓也　Takuya Oikawa
　 Twitter @takoratta
　鎌田 篤慎　KAMATA Shigenori
　 Twitter @4niruddha
　佐伯 幸治　SAEKI Koji
　 Twitter @widesilverz

◆◆図1　インフォグラフィック

◆◆写真1　アイデアを出し合う参加者たち

https://www.facebook.com/groups/bosai4jp/
https://drive.google.com/folderview?id=0B-ctWmY9M6PjZVN4NF93a29tX1k&usp=sharing
https://www.youtube.com/watch?v=pT0mbwRUqDc#t=1223
http://www.itxsaigai.org/
http://blog.itxsaigai.org/post/96331302504/twitter-2014

Feb. 2015 - 181

多様なプロジェクトが見られた
防災・減災ハッカソン！第38回

情報収集・整理・発信・再利用

　複数の参加者から情報収集・再利用・発信のアイ
デアが持ち上がったことから、それらのスキームを
まとめ、4つのチームで分担してプロジェクトとし
ました（図2）。

1 公的情報に関するプロジェクト
　このプロジェクトは2つあり、1つは地方自治体の
WebとTwitterから更新された情報をスプレッド
シートに落とし込むツールを開発。このツールを使
うことで、どのような更新があったかを後から一覧
で追えるようになります。もう1つは「災害情報収
集」というTwitterアカウントを作成して、このア
カウントがフォローしているアカウントのツイート
をGoogleのBigQueryに収集。BigQueryに集めた情
報をハッシュタグなどで検索して情報の再利用を図
ることが可能となります。

2 �さまざまな情報に関するプロジェクト　　　　
（ゆるふわ情報収集システム）
　公的な情報だけでなく、災害時に役立ちそうなあ
らゆるツイートを集めてマップに表示。表示された

情報に対してボランティアで情報支援したい方が、
追加情報を書き込めるシステムを検討しました。た
とえば「江東区木場の公民館で給水中」といったツ
イートを捕捉し、江東区木場や公民館といった住
所・ランドマークなどの言語を抽出してマップに表
示します。前述のプロジェクトとは違い、公的な情
報以外の情報も扱うことから「ゆるふわ情報収集シ
ステム」と呼ばれています。

3 �災害用マルチクライアントポストの　　　　　
プロジェクト（UNIポスト）

　FacebookやTwitter、地域密着型なども合わせて
SNSは複数存在し、情報が分散しやすい状況があ
ります。また標準化の問題としてデータが統一され
ておらず、ユーザが災害情報を投稿する際には、決
められたハッシュタグを使ってつぶやくといった
ルール化も図られていません。そこでさまざまな
SNSに誰でも簡単に内容を入力して投稿できるア
プリを作成。SNSに投稿された画像や位置情報を自
動的に取得して、災害情報ポータルサイトにまとめ
ていくことも想定しています。アプリ名のUNI（ウ
ニ）ポストはunifyポストが由来です。

収　集

簡単災害情報発信
クライアント

UNI ポスト
（地域コネクトクライアント）

公的・公式に発信される情報
（対象限定・形式明確）

個人が発信する情報
（対象未定・形式個別）

公的組織が発信する情報
（対象限定・形式個別）

発　信 再利用

SNS
地域 SNS、TW、FBなど

必要な人に必要な情報を提供
パーソナライズ・つながり地域・

ソーシャルグラフなど

災害情報ポータル（仮）

防災・減災ハッカソン

整　理

災害情報フィルタリング
サーバ

災害データキュレーター

災害情報DB
（上村フォーマット）

情報の信頼性・価値
を維持するしくみ

オープンデータとして
再利用するしくみ

災害情報利用サービス

ゆるふわ情報収集システム

地域“公”情報収集システム

◆◆図2　スキームの全体像

182 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

災害時の連絡先チェックリスト

備えあれば憂いなし／俺の電話帳：パーソナルイエ
ローページ
　避難場所、保険会社、マンション管理人、親・友
人・親戚など、災害が起こった際に必要となる連絡
先のチェックリストを用意。平時にそのチェックリ
ストを埋めていくことで、どこまで備えているかを
確認できるツールです（図3）。災害時にはこのリス
トを使って、慌てずに連絡をすることができます注5。

注5	 （開発中サイト）http://sonae.hack4.jp/
https://github.com/orenodennwacho/orenodenwacho

災害時の位置情報投稿

HereNow 位置情報＜生存＞共有アプリ
　参加者の被災体験から考えられた位置情報投稿ア
プリ。震災時においてもネットワークは20～30分
程度つながっていたことから、限られた時間を活用
して位置情報を投稿、場所を知らせます（写真2、
図4）。「アプリを起動してワンタップでツイート」、
「ツイートするときにだけネットワークを使う」、
「投稿内容はあえて編集不可とする」、「ウィジェッ
トからも1タップで利用可能」といった災害を想定
したシンプルさを徹底したアプリです。現在は
Androidアプリが公開されており注6、誰でもダウン
ロードできます。また iOS、Webからでも利用可能
となるように開発が進められています。

過去の災害を学びに

Today
　過去の今日の日付でどんな災害が起こったかを表
示してツイートします。参照元はウィキペディアの
災害情報ページです。過去どのような災害があった
のかを学ぶことで、来るべき災害への対策を考える
こともできます。

大学生向け防災・減災まとめ
：行政及び大学への提案

　サテライト会場である会津若松からは、大学生を

注6	 https://play.google.com/store/apps/details?id=jp.
itnav.herenow

◆◆図3　ハッカソンで作ったサイトトップ

◆◆写真2　HereNowの仕様イメージ

◆◆図5　問題点をまとめた当日の資料

◆◆図4　アプリのTweet例

http://sonae.hack4.jp/
https://github.com/orenodennwacho/orenodenwacho
https://play.google.com/store/apps/details?id=jp.itnav.herenow

Feb. 2015 - 183

多様なプロジェクトが見られた
防災・減災ハッカソン！第38回

提案していく予定です。

【行政への提案】
会津大学への出張防災教室／オープンデータを促進さ

せて会津大学向けシビックハックをサポートしてもら

い防災アプリを開発／会津大学の学生がつくった防災

アプリを市で認定することで、開発するモチベーショ

ンに貢献してもらう／各国語の防災情報の発信

【大学への提案】
学生が住んでいる地域を考慮して大学関係者・在校生

向けに防災教育／留学生向けの各国語防災マニュアル

を作成／大学が避難所になるケースもあるので施設概

要・キャパシティ・備蓄などの情報を開示／311で放

射線のスクリーニングを会津大学で実施したが、職員

メインとした防災・減災に関する提案がなされまし
た（図5）。
　当日のハッカソンでの調査では「大学生は県外か
ら来る人も多く土地勘がない」、「大学の中のコミュ
ニティに限られてしまっている」、「自転車が主な移
動手段で行動範囲が狭い」、「一人暮らしの場合、安
否確認が困難」、「震災時、会津大学ではメールサー
バが止まり、学生のメールアドレスに連絡をする際
に時間がかかった」、「留学生も多い」、「会津大学生
の多くは避難所を知らない」、「会津若松市のサイト
では市民に向けた防災情報はあるが、大学生に最適
化された情報も欲しい」、「会津大学のサイトには防
災情報がない（福島大学にはまとまった情報が掲載
されている）」といったことが問題とされました。そ
こで次のような内容をまとめ、今後、行政と大学へ

　皆さんは、「Code for Japan」という団体があるの
をご存じでしょうか？　Hack For Japanに似た名
前ですが、市民が主体となり、技術を活用して地域課
題の解決に取り組むコミュニティがこのCode for
Japanです。2013年の11月に正式に非営利団体とし
て発足しました。代表理事はHack For Japanのス
タッフでもある関治之さんです。
　Code for Japanには技術者を一定期間自治体に
派遣するフェローシップというプログラムがあり、本
年、その第一弾として福島県浪江町でのフェローシッ
プが開始されました。また、地域でCode for Japan
の活動に賛同して活動を行っているコミュニティをブ
リゲイド（Brigade）と呼びますが、本原稿執筆時点で
すでに21（掲載準備中が19）の地域でこのブリゲイド
が立ち上がっています。
　Code for Japan Summit 2014は、このCode
for Japanの最初の日本でのカンファレンスです。10
月10日から12日まで、六本木にあるグーグル㈱のオ
フィス（10日のプレイベント）と東京大学駒場リサー
チキャンパス（11日と12日）で行われました。先ほど
説明したブリゲイドやフェローシップを行っている浪
江町の関係者、自治体や政府関係者、シビックテック

と呼ぶ技術を用いた市民活動に興味を持つ技術者やデ
ザイナーなどが広く集まりました。
　東京大学駒場リサーチキャンパスでの初日にあたる
11日は、コアデイとして午前中はオープニングトーク
やキーノート、パートナートークが行われ、午後には
各部屋ごとにあかかじめ決められたテーマでのセッ
ションが行われました。トークやセッションの一覧は
Summitのサイト注Aに掲載されています。また、12日
はアンカンファレンス形式で、参加者でトピックを決
めて活発な議論が交わされました。
　Code for Japanは発足してまだ1年ですが、すで
に多くの地域で活発に活動を開始しています。皆さん
の地域にも、もしかしたらすでにブリゲイドが立ち上
がっているかもしれません。ぜひともこの機会に参加
を考えてみてください。

◆Code for Japan
http://code4japan.org/

◆Code for Japanブリゲイド
http://code4japan.org/brigade/

Code for Japan Summit 2014についてColumn

注A　http://summit.code4japan.org/?page_id=7

http://code4japan.org/
http://code4japan.org/brigade/
http://summit.code4japan.org/?page_id=7

184 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

　Hack For Japanではこれまで東日本大震災に端
を発する復興支援活動やそれにつながる活動、また今
回のような防災や減災につながる活動として、ITを活
用したさまざまなアイデアソンやハッカソンを実施し
てきました。イベントの時間内で動くサービスを作る
もの、復興支援に役立つものを普及させるためのイベ
ント、コミュニティを作るためのイベントなどに携
わった3年以上に渡る活動経験が、こうしたITを活
用した何かしらの支援活動を行う際の参考になればと
の思いからこれらの活動を類型化し、「Hack For
Japanイベント開催ガイド注B」として公開しました。
　このガイドで解説しているイベントは震災復興とい
う状況下の活動を元に作成していることもあり、ITの
知識が必要とされるものだけではありません。ITの知
識は持たないが何かしらの課題に関する知見、たとえ
ば震災復興で言えば、被災地で活動される現地の方と
いったITに明るくない方たちも参加できることを意
識して作られています。
　我々はこれまでの経験から、何かのシステムを開発
することばかりが重要なのではなく、緩やかにつなが
るコミュニティを作り、育成していくことの重要性を
認識しています。それは将来、また別の大きな災害が

起きることを想定しているからです。2011年3月11
日の震災発生時点ではすべてが手探りの状態から始
め、はじめて顔を合わせる開発者達同士が力を発揮す
るには、あまりにも時間が限られていたという苦い経
験があります。そのためにも本稿で紹介したような防
災・減災ハッカソンといったイベントを定期的に開催
することで、緩やかにつながるコミュニティを作るこ
とを目指しています。
　また、そうした活動に限らず、普通にハッカソンを
開催してみたい人にとっても運営の勘所や事前に必要
な準備、当日の運用の流れなどがつかめるものになっ
ています。このガイドはクリエイティブ・コモンズで
公開されていますので、独自でカスタマイズもしてい
ただけます。読者の皆さんがイベントを開催する際の
参考になれば幸いです。
　我々は多くの開発者達がこのイベント開催ガイドを
元に各地でアイデアソンやハッカソンのようなイベン
トを開催し、その地域に根ざした緩やかにつながるコ
ミュニティが少しでも増えることを願っています。

イベント開催ガイドのご紹介Column

注B　https://github.com/hack4jp/hack4jp-event-guide

が転勤で変わるとそういった非常時のケーススタディ

が蓄積されにくいので、災害が起こったときのために

ケーススタディを公開／安否確認ツールの開発（この

ツールだけでは使われない可能性もあるので、時間割

アプリなどと組み合わせて常時使えるものに）／学生

の防災・減災ハッカソン支援

　当日は、留学生に向けた防災情報の英語ページ、
会津大学周辺の避難所マップをGoogleマップで公
開するといった実際のプロジェクトも発表されまし
た。また、大学生に対する防災・減災については会
津大学だけの問題ではないことから、全国の各大学
に展開できるように、必要な情報の洗い出しをして
いくことも考えています。

　以上、防災・減災ハッカソンのレポートをお届け
しました。ここで紹介したプロジェクトのブラッ
シュアップも兼ねて、今後あらためてハッカソンな
どが開催できればと考えています。今回参加できな
かった方も次の機会にはぜひご参加ください。当日
ご参加いただいた皆様、共催としてご協力いただき
ましたCode for Japan、東京大学空間情報科学研究
センターに感謝いたします。関連資料のリンクもま
とめておきます注7。s

注7	 Togetterまとめ「Code for Japan Summit 2014アンカン
ファレンス #cfjsummit」
http://togetter.com/li/730920?page=1
「防災・減災ハッカソン」これは凄いと大感動（参加者のブログ）
http://blogs.itmedia.co.jp/itsolutionjuku/2014/10/
post-f1bf.html

http://togetter.com/li/730920?page=1
http://blogs.itmedia.co.jp/itsolutionjuku/2014/10/post-f1bf.html
https://github.com/hack4jp/hack4jp-event-guide

186 - Software Design

はじめに

　今やスマートフォンやタブ
レット全盛になり、ソフトウェ
アキーボードやフリックで入力
するのが当たり前になっていま
す。Bluetoothのキーボードを
使えば入力は楽にできますが、
持ち運びが不便だったり、出先
で立ったまま使えないなど不便
なところもあります。昔はキー
ボード付きのモバイルが多かっ
たと嘆く方も多いのでは。そこ
で今回は筆者が2000年頃から
使っていたキーボード付きの
PDA（携帯情報端末）やモバイ
ルPCについて振り返ります。

Zaurus
MI-E1

　Zaurus（ザウルス）はシャー
プから発売されていたPDAで
す。1993年に電子手帳の進化形
として発売され、スタイラスと
いうプラスチックのペンで、画面
をタッチしたり文字を書いたりす
ることで入力でき注1、スケジュー

注1） 当時のPDAは抵抗膜方式タッチパネ
ルが一般的であったため、スムーズ
にドラッグ操作するためには指では
なくスタイラスでの操作が必要だっ
た。

ル管理やメモ、電子辞書などを内
蔵していて軽くて小さく、持ち運
びに便利なものでした。
　2000年の年末にハードウェ
アキーボード付きのMI-E1が発
売されました（写真1）。画面下
部分によく使うボタンが配置さ
れており、そこを下にスライド
させると小さなキーボードが出
現し、スタイラスで入力するよ
りも素早く入力できました。ま
たMP3の再生や、解像度は低
いながらもMPEG4再生ができ
たりと、今や当たり前になって
いますが、当時は音楽や映像を
持ち歩ける時代が来たと予感さ
せるものでした。

CLIE PEG-
NX70V

　シャープとは別に、ソニーか
らは米国のPalm社のPalm OS

上で動作するPDAのCLIEシ
リーズが発売されていました。
Palm OSの入力はGraffitiとい
う手書き文字認識で、英文字の
筆記体（一部特殊）を書くことに
よって入力する画期的なもので
した。CLIEのシリーズは2000
年から発売されていましたが、
2002年に購入したのがPEG-
NX70Vでした（写真2）。縦長の
フリップタイプの筐体で、タッ
チパネル液晶部分が180度回転
するために、液晶画面だけでも、
開いてキーボードが使える状態
でも、使うことができました。
キーボード入力ができるため
Graffitiよりも入力が楽で、よ
くメモに使っていました。また、

 ▼写真1　Zaurus MI-E1

 ▼写真2　CLIE PEG-NX70V

温故知新
ITむかしばなし

Software Design 編集部

懐かしの
キーボード搭載モバイル

第41回

186 - Software Design Feb. 2015 - 187

31万画素のカメラを内蔵し、動
画録画も可能など、当時として
は最先端を持ち歩いている感じ
が強いものでした。筆者はこれ
に別売りのGPSインターフェー
スを付けてナビとしても利用し
ていました。

VAIO type U
VGN-UX50

　ソニーからはノートパソコン
であるVAIOシリーズも発売さ
れていました。PDAは便利な
ものの、やはりできることが限
られます。その点、それまでの
VAIOはWindowsが動くので便
利だったのですが、持ち歩くに
は大きいものでした。しかし、
2006年5月に発売されたVAIO
type U VGN-UX50は小さく、
そのギミックのような特徴に心
が躍りました（写真3）。Windows
XPが動作し、1,024×600ドッ
トの画面、Wi-Fi内蔵、キーボー
ドがスライドで出現し、グリッ
プしやすく右手の親指でマウ
スカーソルの移動ができ、キー
ボード入力も楽にできるといっ
た優れものでした。当然、Win
dows XPのアプリケーションが
利用でき、漢字入力も自由に選
べたので、かなり実用的でした。

また指紋認証（これでスクロー
ルもできた）や131万画素のカ
メラと自分撮り用の31万画素
のカメラが付いているなど、機
能も満載でした。

WILLCOM
W-ZERO3[es]

　この2006年頃は、徐々に高
機能携帯電話が出現していた
時期でもあります。当時はデー
タ通信ではまだPHSの存在感
がありました。2006年7月に
WILLCOM注2から発売された
のがシャープ製のW-ZERO3
[es]でした（写真4）。
　PHSでありながら、横向きに
して本体をスライドさせると
キーボードが出てくるという不
思議な形で、131万画素のカメ
ラも付いていて、スパイ映画に
出てきそうな感じでした。OS
はWindows Mobile 5でOpera
やATOKを使うことができま
した。データ通信ができたので、
出先でPOP/SMTPのメールは
使えましたが、PHSだったので、
電車などの走行中は、通信が途
切れてしまうのは不便でした。

注2） WILLCOMの前身はDDIポケットで
す。その後、イー・アクセスを経て、
現在ではY!Mobileとなっています。

EMOBILE
EM・ONE

　2007年4月、W-ZERO3に飽
き足らず、EMOBILEから発売
されたPDAのEM・ONEを衝
動買いしてしまいました（写真
5）。OSはW-ZERO3と同様に
Windows Mobile 5です。画期
的だったのがデータ通信速度が
3.6Mbpsと高速だったことと、
ワンセグのテレビが受信できた
ことです。しかし音声通話の機
能はありませんでした。また、
W-ZERO3と同様、横向きで下
にスライドさせるとキーボード
が出現し、右にスライドさせる
とマウス移動ボタンやカーソル
が出現するというところも魅力
的でした。

おわりに

　現在、スマートフォンでは海
外勢におされていますが、かつ
ては日本のメーカーも素晴らし
い個性的なモバイル端末を作っ
てきたのだと、強く感じました。
今でも実機を触ると、キーボー
ドのクリック感やギミック的な
動作に感動を覚えます。｢

 ▼写真3　VAIO VGN-UX50 ▼写真4　W-ZERO3[es] ▼写真5　EM・ONE

温故知新 ITむかしばなし
懐かしのキーボード搭載モバイル

第41回

188 - Software Design

各開発拠点のソースコードを管理
gumiのゲーム開発を支えるStash

第　　回4

Catch Up Trends in Engineering

Software Design編集部

迷えるマネージャのための

再入門
プロジェクト
管理ツール

開発の

ボトル
ネック

は

どこだ
？

Feb. 2015 - 189

バージョン管理システムに
gumiが求めた要件
――バージョン管理ツールとしてStashを導入
されたということですが、それ以前は何を使わ
れていたのでしょうか。

本間氏　Stashを導入する前に使っていたのは
GitHub Enterpriseです。ただ、運用面でいく
つかの課題がありました。gumiではほぼすべ
てのサーバをAmazon Web Services（AWS）で
運用していますが、当時のGitHub Enterprise
はAWSに未対応でした。そのため、保証外を
承知で国内の別のクラウドサービスで運用して
いましたが、ソフトウェアのアップデートやバッ
クアップに失敗するなど、いくつかのトラブル
がありました。またライセンス費用の負担も大
きいことから、別のバージョン管理システムへ

の移行を検討
することにし
ました。
　新しいバー
ジョン管理シ
ステムの選定
においては、
まずアカウン
ト管理をシン
プルにしたい

という要件がありました。GitHub Enterprise
を導入した当時はエンジニアを中心に使ってい
ましたが、その後ディレクターやデザイナーと
いった非エンジニアのユーザが増え、海外拠点
のユーザもいます。こうしたユーザを1人ずつ
登録して運用する形は破綻をきたしていたので、
シンプルにアカウント管理ができるものを探し
ました。また、社外のエンジニアが利用できる
ように、リポジトリの操作に対する権限を柔軟
に設定できることも要件でした。これらを満た
すのがStashだったのです。

――オープンソースのものではなく、商用プロ
ダクトを選択したことには何か理由があったの
でしょうか。

本間氏　バージョン管理システムは開発の根幹
を支えるツールなので、やはり安定しているプロ
ダクトを使い
たいという思
いがまずあり
ます。オープ
ンソースとし
て提供されて
いるバージョ
ン管理システ
ムの中には、
さまざまなミ

写真1 本間知教氏 ▼ 写真2 清水佑吾氏 ▼

「ドラゴンジェネシス ─ 聖戦の絆 ─」や「青春姫 SCHOOL PRINCESS」など、多数のモバイルオンライ
ンゲームを提供している㈱gumi（以下gumi）は、先月号で紹介したアトラシアンの「Stash」をバージョ
ン管理システムとして導入しました。Stashを導入した背景や選定の理由などについて、同社の本間知
教氏（写真1）と清水佑吾氏（写真2）にお話を伺いました。

188 - Software Design Feb. 2015 - 189

第　　回4 　各開発拠点のソースコードを管理 gumiのゲーム開発を支えるStash

ドルウェアをインストールする必要があるものや、
バージョンが細かく指定されているものがありま
す。トータルでの整合性を誰が検証して担保す
るのかと考えたとき、内部のリソースを費やして
対応するよりも、商用のサポートを受けたほうが
安心できます。このような考えで検討を行い、最
終的に選択したのがStashでした。

Crowdを利用してシングル
サインオン環境を実現
――Stashの導入時、トラブルなどはなかった
のでしょうか。

本間氏　私たちのリポジトリが極めて大きいこ
ともあり、当初はパフォーマンス面で問題が生
じました。しかしアトラシアンのパートナーで
あるリックソフトの支援を受け、問題解決に向
けて実際にいろいろと検証していただいたので
とても助かりました。

――現状のStashの利用状況を教えてください。

本間氏　ユーザ数は600を超えています。ア
カウント管理には、アトラシアンのシングルサ
インオン製品である「Crowd（クラウド）」を利用
しています。CrowdにはGoogle Appsに接続
するためのプラグインがあるので、ヨーロッパ
やシンガポール、韓国の拠点も含めてGoogle
Appsと連携しています。Stashを導入した当

初は海外アカウントは連
携させていませんでした
が、現在は海外からも
Google Apps の ア カ ウ
ントでStashにアクセス
できるように移行してい
る最中です。

――GitHub Enterprise

からStashへ移行したこ
とで、エンジニアの方々

に戸惑いなどはなかったのでしょうか。

清水氏　導入当初は性能面で問題が発生しまし
たが、それ以外はとくに問題はありませんでし
た。開発フローの面においても、必要な機能は
ほぼすべてそろっていることを確認していたの
で、問題はなかったですね。

――実際にStashを使って便利だと感じるのは、
どういった部分でしょうか。

清水氏　権限管理を細かく設定できるのはやっ
ぱり便利ですね。MasterやDevelopなどのブ
ランチが汚れると一大事なので、たとえば入社
したばかりのエンジニアにはそれらのブランチ
に対するプッシュ権限を与えないように設定で
きます。人数が増えてくると、どうしてもブラ
ンチ管理は難しくなりますが、そのあたりの権
限を柔軟にコントロールできるのがStashのメ
リットだと感じています（図1）。

――本日はありがとうございました。ﾟ

Stashの無料体験版を提供中：
https://www.ricksoft.jp/product/atlassian/stash

リックソフトは、アトラシアン製品の導入／サポートに関す
るエキスパート企業です。アトラシアン製品の販売で国内売
上No.1の実績を持ち、アトラシアンのパートナー企業として
最も頼れる存在です。

https://www.ricksoft.jp/

図1　Stashのブランチ権限管理画面 ▼

https://www.ricksoft.jp/product/atlassian/stash
https://www.ricksoft.jp/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

194 - Software Design

SD News & Products

　標的型攻撃対策に特化した技術・サービスを提供する
米Lastline社は2014年12月10日、日本法人として
Lastline合同会社を設立したと発表した。
　米Lastlineは10年以上の研究開発成果を基に次世
代サンドボックス技術を製品化し、APT（Advanced
Persistent Threat）を含む標的型攻撃およびゼロデイ
攻撃に特化したマルウェア防御ソリューションを提供し
ている。サービスとしての「Lastline」は、クラウド上
の高精度サンドボックスでマルウェアの動作を確認して
検知する。これはマルウェアが実行するあらゆるCPU
命令を監視することで、ステルス型マルウェアも検知で

きる次世代サンドボックス
となっている。
　Lastline合同会社の代表
者としては、米Lastline社
のカントリーマネージャ伊
藤一彦氏が就任。日本市場
における販売・サポート体
制を強化し、3年内に全世
界の10％の売上を目指す。

CONTACT Lastline, Inc.
URL http://www.lastline.com

米Lastline社、
日本法人を設立Report

　㈱リンクは、物理サーバの追加・削除・コピーがGUI
で操作できるベアメタルクラウドサービス「ベアメタル
型アプリプラットフォーム」において、2014年12月
18日より、インテル社製のPCIe SSDを半年間無料で
提供するキャンペーンを行っている。
　同サービスでは、開始当初より提供をしている
ioDrive2搭載モデルに加え、先日よりPCIe SSD DC
P3700およびDC P3600シリーズを搭載したモデル
の提供を行っている。これらのモデルをより多くのユー
ザに利用してもらうため、本キャンペーンを開始した。
Webサービスやスマホアプリ・ゲーム事業者など、高

いI/O性能が要求されるシステムを運用中のユーザは、
本キャンペーンを利用することによって、PCIe SSDを
搭載した高スペックなマシンを低コストで利用できる。

リンク、
新規ユーザを対象としたインテル社製「PCIe SSD」
無料提供キャンペーンを実施中

Service

CONTACT ㈱リンク
URL http://www.link.co.jp

▼キャンペーン概要
名称 インテル PCIe SSD 無料提供キャンペーン
台数 10 台限定
期間 2015 年 1 月 30 日（金）申し込み受付分まで
応募要件 PCIe SSD モデル含めて 2 台以上を新規で申し込むこと
注意事項 1.2TB モデルは対象外

　キヤノンITソリューションズ㈱は、ESETセキュリ
ティソフトウェアシリーズのWindows向け製品の新
バージョンを2014年12月18日より提供開始した。
　ESET社は、ネットワークやアプリケーションの脆弱
性を防御する技術やウィルス検出技術、難読化された
ウィルスの振る舞いを検出する技術など、さまざまな角
度のアプローチによる多重防御を実装してきている。
　今回発表した「ESET Smart Security V8.0」「ESET
NOD32 アンチウイルス V8.0」ではそうしたウィルス
検出機能に加え、2つの大きな強化が施された。
　1つめは「エクスプロイトブロッカー」の対象範囲の

拡大。この機能は、Webブラウザやメールソフトなど
の脆弱性を突いた攻撃を防御するものだが、今回の強化
でJavaの脆弱性にも対応した。
　2つめは、新機能「ボットネットプロテクション」の
追加。パーソナルファイアウォール機能を利用して通信
を解析し、リモートからのアクセスを検知してボットを
検出する。さらに多重防御を行い、不正サーバへ送信し
ようとする不審なアドレスを検知して遮断することで、
標的型攻撃を防ぐことができる。

CONTACT キヤノンITソリューションズ㈱
URL http://www.canon-its.co.jp

キヤノン ITソリューションズ、
ESETセキュリティソフトウェアシリーズの新バージョンを
発売

Software

▲発表を行う米Lastline社CEO
　Jens Andreassen氏

http://www.lastline.com
http://www.link.co.jp
http://www.canon-its.co.jp

Feb. 2015 - 195

SD News & Products

　2014年12月5日、ブロケードコミュニケーション
ズシステムズ㈱は、2015年～2016年に向けての戦略
発表会を、同社CEO（最高経営責任者）のロイド・カー
ニー氏自らが登壇して行った。
　SAN（Storage Area Network）で順調な売上げを
達成してきた同社は、今後はSDN（Software Defined
Network）/NFV（Network Function Virtualization）
におけるリーダーシップを確立し、ハードウェアからソ
フトウェアへの展開を図る。既存のスイッチやルータな
どのネットワークハードウェアはわずか数年で機能が陳
腐化してしまうが、同社が推進するx86アークテクチャ

ベースでかつオープンなSDN/NFV技術ならば、動き
の速い市場の変化にも対応できるという。「The New
IP」とは、このようにソフトウェアベースでネットワー
クを再構築する戦略で、物理的な制約を超えて新しいビ
ジネスを作り出すことにある。一方、日本国内ではデー
タセンター・クラウド事業者でのイーサネット・ファブ
リック（Brocade VDX）がトップシェアを達成し、今
後はパートナーとのエコシステムをより成長させていく
という。

CONTACT ブロケードコミュニケーションズシステムズ㈱
URL http://www.brocadejapan.com

ブロケードコミュニケーションズシステムズ、
「The New IP」時代におけるブロケードのビジョンと戦略Report

　グレープシティ㈱は、.NET帳票開発コンポーネント
の新バージョン「ActiveReports for .NET 9.0J」、な
らびに ASP.NET用のコンポーネント2製品の新バー
ジョン「SPREAD for ASP.NET 8.0J」、「InputMan
for ASP.NET 8.0J」を2015年2月下旬より順次発売
する。
　ActiveReports for .NET 9.0Jではレイヤ機能や
Excel出力の精度向上といった要望の多い機能を追加
した。さらに、Professionalエディション限定の機
能として、ActiveReportsで作成した帳票ファイルを
サーバへアップロードし、管理・運用できるサーバ製品

「ActiveReports Server」や、マルチブラウザに対応し
たHTML5ビューアを提供する。
　SPREAD for ASP.NET 8.0JおよびInputMan for
ASP.NET 8.0Jはこれまで以上に、両製品の連携を強
める。同じアプリケーション内で併用すれば、操作性や
デザインが統一された、より使いやすい業務アプリケー
ションを開発できる。また、両製品ともマルチブラウザ
に対応することでiPadなどのタブレット利用もサポー
トする。

グレープシティ、
「ActiveReports」など3製品の新バージョンを
2015年2月より発売

Software

CONTACT グレープシティ㈱
URL http://www.grapecity.com

　日本セーフネット㈱は2014年12月16日、ソフト
ウェア収益改善ソリューション「Sentinel」ファミリー
におけるパッケージ商品向けライセンス管理製品の新版

「Sentinel License Development Kit（LDK）7.3」を
発表した（2015年1月提供開始。価格はオープン）。
　Sentinelファミリーは、自社で開発したソフトウェ
ア資産を守り、健全なライフサイクルを行うことで収
益を最大化するためのサービスおよびソフトウェア群。
Sentinel LDKは「ソフトウェアの不正利用および知的
財産の保護」「ソフトウェアカタログ管理」「ライセンシ
ング業務の集約、自動化」「エンドユーザライセンス管

理ツール」「ライセンスされたソフトウェアの詳細な追
跡とレポーティング」などが行える。
　これまではWindows、Mac OS X、Linuxのアプ
リケーション用として提供されていたが、新版では
Androidアプリ（ARMベース）にも対応した。Android
をOSとする組込み機器向けのアプリ開発時にも、同製
品を適用することでライセンス管理による不正利用の防
止や、リバースエンジニアリングを防ぐ暗号化処理が行
え、自社の資産を守ることができるとしている。

CONTACT 日本セーフネット㈱
URL http://jp.safenet-inc.com

日本セーフネット、
自社ソフトをリバースエンジニアリングやハッキングから守る

「Sentinel LDK 7.3」を発表。Androidアプリに対応
Software

http://www.brocadejapan.com
http://www.grapecity.com
http://jp.safenet-inc.com

196 - Software Design

SD News & Products

　㈱サードウェーブデジノスは、同社が販売するタブ
レット製品「Diginnos」に、新たに8、8.9、10.1イン
チの液晶ディスプレイを搭載した３モデルのラインナッ
プを追加し、2014年12月18日より「ドスパラ」各
店舗およびドスパラ通販サイト（http://www.dospara.
co.jp）にて受注を開始した。

8インチモデル「Diginnos DG-D08IWB 32GB」

　既存モデル「Diginnos DG-D08IWB」の、ストレージ
容量を16GBから32GBに倍増したモデル。容量増加
により「Microsoft Office Home & Business 2013」
のプレインストールも選択できるようになった。
　また、セキュリティソフトウェア「マカフィーインター
ネットセキュリティ12ヵ月版」が標準でプレインストー
ルされている。販売価格は23,130円（税別）。

8.9インチモデル「Diginnos DG-D09IW」、
10.1インチモデル「Diginnos DG-D10IW2」

　ともに、WUXGA（1,920×1,200）の高解像度液晶
を搭載したモデル。ストレージには32GBのeMMCを
採用。また、生体認証やID・パスワード管理機能など
を備えるセキュリティソフト「マカフィーリブセーフ
12ヵ月版」が標準でプレインストールされている。
　販売価格は8.9インチモデルが27,760円（税別）、
10.1インチモデルが37,980円（税別）。

㈱サードウェーブデジノス
URL http://www.diginnos.co.jp

CONTACT

サードウェーブデジノス、
Windows 8.1搭載タブレットPCに8、8.9、10.1インチ
の新ラインナップを追加

Hardware

　アールエスコンポーネンツ㈱は、「Raspberry Pi」の
新モデル「Raspberry Pi Model A+」の販売を2014
年12月19日より開始した。
　「Raspberry Pi」は、英国のRaspberry Pi財団が、
世界中の学生やIT愛好家のプログラミング学習を支援
するために開発した、名刺サイズのARMプロセッサ搭
載シングルボードコンピュータ。Linuxで動作させる
ことができ、Pythonのほか多様な言語でプログラミン
グできる。2012年3月の販売開始以来、世界累計販売

数300万台を突破し、エンジニアから教育関係者まで、
幅広い分野で活用されている。
　新発売の「Raspberry Pi Model A+」は、2014年7
月に発売した「Model B+」からメモリとUSBを削減す
ることで、さらなる小型化／薄型化／低消費電力／低価
格を実現した製品。65×56mmのコンパクトなボード
に256MB RAMとUSB2.0のポート1つを内蔵してい
る。さらに「Model B+」と同じ仕様の40ピンGPIOを
搭載しており、HAT（Hardware Attached on Top）
対応ボードと接続することで簡単に機能拡張が行える。
また、「Model B+」と同じ電源アーキテクチャを採用し
たことで、より少ない消費電力で動作する。
　用途としては、組込み機器、マルチメディア機器、産
業機器の制御などの試作開発が想定されている。
　「Raspberry Pi Model A+」は、以下の同社オンライ
ンサイトから購入できる。価格は2,620円（税別）。

■RSオンライン：http://jp.rs-online.com

アールエスコンポーネンツ㈱
URL http://rs-components.jp

CONTACT

アールエスコンポーネンツ、
Raspberry Piの新モデル「Model A+」を発売Hardware

▲10.1インチモデル「Diginnos DG-D10IW2」
　※画像はイメージ、画面はハメコミ合成です

▲Raspberry Pi Model A+

http://www.dospara.co.jp
http://www.dospara.co.jp
http://www.diginnos.co.jp
http://jp.rs-online.com
http://rs-components.jp

Feb. 2015 - 197

20年ぐらい前、UNIXワークステーションのGUIでは3ボタンマウスを使っていました。ターミナルやアプリケーション上で文字列を右ク
リックしてなぞり、真ん中クリックするとその文字列を貼り付けられます。2ボタンマウスを使う場合は、右と左クリックを同時にする
ことで真ん中ボタンの役割をする3ボタンエミュレーションというのが使われています。これがマウスの品質によってタイミングが合わ
ないコトがあるのでちょっと高価な3ボタンマウスを購入したものです。最近はホイールマウスが一般的で、ホイールをクリックすれば
真ん中ボタンになります。ホント良い世の中になりましたね。あー、オッサンホイホイな記事になりましたね。

ホ
ッ
ト
ロ
ー
ド
よ
り
も
フ
ァ
ン
ロ
ー
ド
だ
っ
た
黒
歴
史
を
封
印
す
る
の
は
あ
な
た
〜
〜
!

※
本
作
品
は
紡
●
先
生
の
著
作
と
は
ま
っ
た
く
関
係
あ
り
ま
せ
ん
。

作）くつなりょうすけ
@ryosuke927

瞬
まばた

きもせずに第13回

ごめんなさい。
寝オチしていました。
昨晩深夜アニメを
観ていたので、寝不足に
　　　 なっています。

なんだ？
変な夢でも
見たか？

あいつも
寝ぼけている
感じだな。

ああ、さよか。
寝ていた分、
仕事を進めなきゃ。

ヤバイ夢を見た。
目の動きがマウスの
クリックになる夢だった。

瞬
まばた

きするたびにターミナルにペースト
されちゃって、もー大変！！！
コマンド打つどころじゃないのよ！！！

①②

③

④⑤

⑦⑧

⑥

198 - Software Design

　2014年最も注目されたと言える技術、
コンテナ型仮想環境「Docker」の特集記
事です。Dockerが生まれた背景、コンテ
ナ技術の歴史といった基本を説明すると
ともに、NginxやKubernetesと組み合わ
せた実践例を紹介しました。

Dockerについては聞いたことがあるが
中身を知らなかったので参考になった。

愛知県／川上さん

仮想化技術はもはや無視できない技術。
千葉県／まよえる中堅さん

最近よく聞くDockerですが、使ったこ
とがなかったので参考になりました。機
会があれば使いたいですね。

京都府／クラウドマンさん

時機を得た内容でよい。
広島県／津森さん

基礎技術の確認ができた。
愛知県／鳥居さん

Dockerは急に現れたまったく新し
い技術と思われがちですが、

「cgroups」や「chroot」などDockerを支
える個々の技術にはそれぞれ歴史があり

ます。どのような目的で、どのように作ら
れたのかといった基礎知識を知ることで、
システムの全体像をつかめたのではない
でしょうか。

　公衆回線を経由してプライベートネッ

トワークを構築する「Virtual Private

Network」を基礎から解説する記事。
オープンソースのVPNソフトウェア「Soft

Ether VPN」を取り上げ、構築方法とアー
キテクチャ、そして「VPN Gate」という応
用事例を解説しました。

以前はVPN構築の仕事がときどきあっ
たので復習になりました。SoftEtherも
使ったことがあり、また使ってみようと
思っています。

長崎県／ romeosheartさん

普段使用している技術の基礎と新しいト
ピックが記載されていてよかった。

東京都／matioさん

VPNについて再確認できた。たいへん
良い記事。

東京都／blackbirdさん

VPNについての自分の知識を再確
認できたという声が多く寄せられ

ました。専用線と比較すると、接続性・セ
キュリティの面で工夫が必要になるVPN

ですが、コストは格段に安く上がります。
現実的に専用線を使うことは難しいでしょ
うから、VPN構築のノウハウは身につけて
おきたいものです。

　連載「セキュリティ実践の基本定石」の
特別編として、2014年9月に発表された

GNU bashの脆弱性「Shellshock」につい
て解説しました。シェルの基本機能にま
で立ち返り、脆弱性の内容、影響とその
対策について論じました。

インフラチームがすぐに対応していて
「たいへんな事態になっているな」と思っ
ていたので、きっと特集されるだろうと
待っていた。よく理解できた。

東京都／binaさん

bashのようなごく基本的で、枯れたよ
うなソフトウェアにおいて今回のような
問題が発表されるとは非常に衝撃的でし
た。今後もこのような記事が“掲載され
ないこと”を願いたいですね。

北海道／村橋さん

アンケートに回答していただい

た読者の中には、実際にこの

2014年の IT業界では、Windows XPのサポート終了、「Heartbleed」
「Shellshock」を始めとした大きな脆弱性の発覚などで、比較的慌ただしい1年
を送られた人も多いのではないでしょうか。Software Designでは、たとえ大き
なインシデントが起こっても対処できるようなノウハウを提供していきたいと考え
ています。起きないに越したことはないですけどね。

2015年の抱負「頼りになるSD」に！

2014年12月号について、たくさんのお便りをありがとうございました！

第1特集　
Dockerを導入する理由

第2特集
やさしくわかるVPNの教科書

一般記事　bashの脆弱性
“Shellshock”その影響と対策

Feb. 2015 - 199

「Shellshock」の対応に追われた人もいた
ようです。記事内では、SELinuxなどのセ
キュリティ対策を常にかけておくことが大
事だと結んでおり、できるだけ後手の対
応に回らないよう普段からの準備が必要
です。

　パケット解析ソフト「Wireshark」に新し
く導入されたファイル形式「pcap-ng」を
紹介する短期連載の第2回。pcapを解説
した第1回と同じ要領で、「pcap-ng」の
ファイル構造を1つずつ丁寧に見ていき
ました。

セキュリティ関連の記事は大歓迎。
三重県／嶋田さん

知らない分野の記事で勉強になりまし
た。

神奈川県／眞 泰志さん

近年のネットワーク技術の重要性に沿っ
ていて良い。

東京都／osamuiさん

Wiresharkの新しいファイル形式
「pcap-ng」では、記録できる情報

量の増加、新たなオプションの追加と
いった改善があります。1月号掲載の最終
回では、実際のpcap-ngのバイナリデー
タを見ながらそれらの特徴、「pcap」との
違いについて説明しました。12月号の話
題はその準備となる内容でした。

「書いて覚えるSwift入門」、とても楽
しみにしています。

神奈川県／ewiad420さん

2015年はプログラミング寄りの記
事を増やす予定です！　楽しみにお

待ちください。

サーバを中心とした技術論だけでなく、
サーバ技術をいかにしてスマートフォン
と連携させるかなど、クライアントサイ
ドの話題も取り上げてほしい。

東京都／杉原さん

スマートフォン・タブレット周辺の技
術について知りたいという声が多

く寄せらました。ウェアラブルの普及によ
り、今後さらにインターネットに接続する
端末が増えることが予想されています。
サーバ側・クライアント側、両方の対策が
必要になりますね。

今回初めてノートPCのマザーボード交
換を体験しました。バッテリやHDDのよ
うに使用中の感触から事前に予備を準備
して自分で交換できるものではなかった
ためメーカー修理になりました。サポー
トの大切さを再認識しました。

大阪府／牧さん

年末などの忙しい時期に限って、
パソコンが壊れることってよくあり

ますよね。「マーフィーの法則」というやつ
でしょうか……。

　SoftLayerの使い方講座。最終回では、

SoftLayerの大きな特徴である「ベアメタ
ルサーバ」について、仮想サーバと比べ
た利点・概要・利用手順・具体的な構築方
法を解説しました。

いろいろ工夫ができるんですね。
大阪府／出玉のタマさん

先日 IBMのクラウドセミナーに参加した
ところだったので、興味深く読みまし
た。

広島県／宮阪さん

仮想サーバと同じ使い勝手で物理
的なサーバを専有できるSoft

Layerのベアメタルサーバ。パフォーマン
ス、セキュリティ、オンプレミスサーバと
の親和性を考えると、非常に良い選択肢
と言えます。IBMはデータセンタを次々に
開設しており、今後もSoftLayerには期待
したいですね。

　小飼弾氏が執筆する「書いて覚える

Swift入門」が始まりました。言語仕様の
解説を始めとして、「関数型言語とは何
か」といった言語論も展開していく予定
の、内容の濃い連載となっています。

今月号は「Swift 連載」に惹かれての購
入です。

神奈川県／TYYさん

12月号のプレゼント当選者は、次の皆さまです
①Wi-Fiホームルータ PA-WG1800HP2

岐阜県　三輪茂司様
②Parallels Desktop 10 for Mac

福島県　仲野誠様
③USBホストアダプタ SCR-SDH04

香川県　大澤和宏様
④プロフェッショナルのための実践Heroku入門

沖縄県　新城努様
埼玉県　橿山公一様

⑤プログラミング言語温故知新 人工言語の継承を学ぶ
大阪府　歌川秀人様

神奈川県　福田和真様
⑤Python文法詳解

愛知県　遠藤恭様
大阪府　田村拓哉様

⑥OpenSSH [実践]入門
神奈川県　蜂巣悌史様
静岡県　横田敏一様

一般記事
Jamesのセキュリティレッスン［2］

一般記事　SoftLayerを
使ってみませんか？［最終回］

連載

フリートーク

Software Design
2015年2月号

発行日
2015年2月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2015年3月号
定価（本体1,220円＋税）

176ページ

March 2015
2月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2015 技術評論社

●何度目かのループする年末進行。この死の行進は、

たとえ消えゆく紙メディアと蔑まされようとも変わらな

い。いや変えてはならないオールドスクール版元の意

気込み。牙を持たぬ編集者は、生きていかれぬ浮き世

のCGM。炎上もやむなし。次回「ゴールデンウィーク

進行」花粉症を超えて先にあるものは、いかに。（本）

●電池式の人感センサー式LEDライトを自宅のあちこ

ちにつけている。玄関外に5個（防滴仕様）と、家内の

各部屋と廊下に合計10個ついているけれど、普通じゃ

ないんだろうなぁ。玄関には防災用品や寝袋が、ベッド

には靴やメガネが吊り下げてあるし、Last10Secondも

常に起動してるし……。（防災厨 幕）

●冬休みに向けて自分へのご褒美を思案中。 iPadも

欲しいけど、Winタブも安くなった。いや、Gear VR

＆Galaxy Note 4用にお金を貯めておくか？　そんな

ふうに悩んでいたらenchantMOONが3.0にVerUp！

手書きコマンドが自作できるおかげで使い勝手がさら

に良くなって、ちょっと新機種気分。（キ）

●なぜ毎年12月になると早々に鏡餅を売り出すので

しょう？　年越しの1ヵ月前に鏡餅を買う人なんてい

るのでしょうか。同時期におせちの具材も売っていま

す（もう作るの !?）。この調子なら、豆まき用の豆も1

月上旬には売り始めるはず。けれど、その時期に豆

を買う人っていったい何をするつもりなの？（よし）

●このあいだ、小さいころからの親友が地元関西か

ら東京に遊びに来てくれました。互いの趣味や身の

上など話していると、なんだか懐かしい気持ちになっ

たり、ひさしぶりに心から笑ったりで充実した時間に

なりました。わけあって彼は失職中なのですが、再

就職にとても意欲的！　自分も気合が入りました。（な）

●年末進行の忙しい中、親戚の幼児から胃腸炎をうつ

され休みをいただいてしまいました。そのおかげで症

状は軽く済みましたが、ちょうど入稿と見本誌を発送

する日と重なり、多方面に迷惑をかけてしまいました。

特に冬場は自分の免疫も落ちているので、体調が悪

い人がいる場所には近寄らないようにします。（ま）

S D S t a f f R o o m

［第1特集］ YAPC、LL Diverの縁の下の力持ち！

カンファレンスネットワークの作り方
——CONBUの実践仕事術
■第1章　イベントネットワークの構築とは何か？
■第2章　Wi-Fiネットワーク構築術——譜面台の秘密
■第3章　LL DiverとYAPC 2014の事例——爆発的に増えるユーザに耐える
■第4章　YAPC 2015の課題——最大規模の未踏領域へ！

［第2特集］ いまからでも遅くない！

Hadoop 超 2入門
——今年こそ分散コンピューティングを極めたい
［一般記事］
■第1弾　シスコの隠し球「VIRL」大研究
■第2弾　難しい技術を簡単に！　IBM Bluemix「PaaSで IoT実験」
■第3弾　Ubuntu Core

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
「Heroku女子の開発日記」（第6回）、「シェルスクリプトではじめるAWS 入門」（第10回）は都合によりお休みさせていた
だきます。
「ハイパーバイザの作り方」はしばらくの間お休みさせていただきます。

200 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2015年2月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 Linux systemd入門
	・Part1：systemdの世界へようこそ......中井 悦司
	・Part2：systemdのしくみ（理論編）......中井 悦司
	・Part3：systemdの使い方（実践編）......中井 悦司
	・Part4：systemdの今後......中井 悦司
	・Part5：systemdでの運用における注意点......清水 勲
	・Part6：Ubuntuもsystemdに変わるのか？......柴田 充也

	■第2特集 なぜ「運用でカバー」がダメなのか
	・序章：あまり筋の良くない運用現場の現実......みやもとくにお
	・第1章：「運用でカバー」の悪影響......波田野 裕一
	・第2章：「運用でカバー」からの脱却.......波田野 裕一
	・第3章：「任務」と「実績」の明確化で運用の業績を可視化する.......波田野 裕一
	・第4章：「運用でカバー」から「運用のエンジニアリング」へ......波田野 裕一
	・コラム：ハーメルンの笛吹き男は「運用でカバー」の夢を見るか......小野 成志

	■特別寄稿
	・開発者は、セキュリティ問題を自己解決できるのか？......大垣 靖男

	■一般記事
	・Intel DPDK技術詳解......松本 直人
	・これはなんて読む？　UNIX用語読み方指南......Software Design編集部
	・Googleベンチャーズが提唱するデザインスプリントとは......安藤 幸央

	■Catch up trends in engineering
	・迷えるマネージャのためのプロジェクト管理ツール再入門【4】各開発拠点のソースコードを管理　gumiのゲーム開発を支えるStash......Software Design編集部

	■Inside View
	・ベスト＆ブライテストエンジニア——未踏の技術で未来を拓く！【2】リアルタイムメッセージ共有を実現する社内SaaS基盤......Software Design編集部

	■連載：Column
	・digital gadget【194】デジタルとカラフル......安藤 幸央
	・結城浩の再発見の発想法【21】Protocol......結城 浩
	・おとなラズパイリレー【4】Raspberry Piで空を飛びたい（後編）......千葉 久詞、渡邊 崇文
	・軽酔対談　かまぷの部屋【7】ゲスト：藤崎 正範さん......鎌田 広子
	・秋葉原発！　はんだづけカフェなう【52】Edisonで遊んでみた......坪井 義浩
	・Hack For Japan〜エンジニアだからこそできる復興への一歩【38】多様なプロジェクトが見られた防災・減災ハッカソン！......及川 卓也、鎌田 篤慎、佐伯 幸治
	・温故知新 ITむかしばなし【41】懐かしのキーボード搭載モバイル......Software Design編集部
	・ひみつのLinux通信【13】瞬きもせずに......くつなりょうすけ

	■連載：Development
	・書いて覚えるSwift入門【2】総称関数!=関数？......小飼 弾
	・Hinemosで学ぶジョブ管理超入門【5】便利な機能で運用を自動化しよう......眞野 将徳
	・るびきち流Emacs超入門【10】巨大なオーガナイズシステム「org-mode」の世界......るびきち
	・Androidエンジニアからの招待状【55】Androidで作るお知らせパネルシステム......嶋崎 聡
	・セキュリティ実践の基本定石【17】バレルセオリー（システムセキュリティの弱点）とは......すずきひろのぶ

	■連載：OS/Network
	・RHELを極める・使いこなすヒント .SPECS【10】Red Hat Enterprise Linux Atomic Host登場！（Kubernetes編）......藤田 稜
	・Be familiar with FreeBSD〜チャーリー・ルートからの手紙【16】FreeBSD発展の礎〜プロジェクトと人、そしてお金の話......後藤 大地
	・Debian Hot Topics【23】Debian BTSでバグを検索／報告する方法......やまねひでき
	・Ubuntu Monthly Report【58】Ubuntuフレーバーのイメージをビルドする......あわしろいくや
	・Linuxカーネル観光ガイド【35】Linux 3.17から3.19のBPF関連の変更〜seccompとtinyconfig......青田 直大
	・Monthly News from jus【40】人口密度が高い！ 内容も濃い！ 関西オープンフォーラム......法林 浩之

	■アラカルト
	・ITエンジニア必須の最新用語解説【74】Firefox Developer Edition......杉山 貴章
	・Hosting Department【106】
	・読者プレゼントのお知らせ
	・SD BOOK FORUM
	・SD NEWS & PRODUCTS
	・Letters from Readers
	・次号のお知らせ
	・バックナンバーのお知らせ
	・年間定期購読のご案内

