

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

http://sd.gihyo.jp/

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

https://gihyo.jp/site/inquiry/dennou

■お問い合わせ
〒162-0846
新宿区市谷左内町21-13
株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180
メール：gdp@gihyo.co.jp

法人などまとめてのご購入については
別途お問い合わせください。

電子版の最新リストは

Gihyo Digital Publishingの

サイトにて確認できます。

https://gihyo.jp/dp

https://gihyo.jp/dp
mailto:gdp@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://nttcom.github.io/skyway/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 3 - Software Design

　「.NET Framework」は、Micro
softが提供しているアプリケーション
の開発および実行環境です。Win
dowsアプリケーションだけでなく、
Webベースのサービスやアプリケー
ションなどを含めて相互運用できる、
共通的なプラットフォームになることを
目指して設計されているのが特徴で
す。Microsoftは2014年11月 に、
この.NET Frameworkの一部技術を
「.NET Core」のブランド名でオープ
ンソース化し、さらに同社自身でMac
OS XやLinuxもターゲットに含む製
品レベルの実装を提供することを発表
しました。
　2015年に登場する.NET関連技
術は、「.NET 2015」としてブランディ
ングされており、これは.NET Frame
workと.NET Core、そしてこれらを
支える共通基盤から構成されます
（図）。新たにオープンソース化が発
表された.NET Coreには、最新世
代のASP.NETである「ASP.NET 5」
や、タッチセンサーをはじめとするネ
イティブ機能をサポートするための
「.NET Native」などが含まれます。

また、Mac OS X版およびLinux版
のASP.NET 5も提供されます。
　一方でASP.NET 4.6やWPFなど
は引き続き.NET Frameworkとして
は提供されるものの、.NET Coreに
は含まれていません。つまり.NET
Coreは、フル機能の .NET Frame
workを軽量化したサブセットという位
置づけになるようです。

　Microsoftでは、.NET Core以
前にも次世代 JITコンパイラ「Ryu
JIT」やC#/Visual Basicを対象とし
たコンパイラプラットフォーム
「Roslyn」といった基盤技術のオープ
ンソース化を実施してきました。また、
パッケージマネージャの「NuGet」も
オープンソースで開発されており、さ
まざまなライブラリやフレームワークと
容易に連携できるしくみを提供してい
ます。 .NET Coreのオープンソース
化もこれらの流れに沿ったものであり、
その狙いはおもに次の点にあると説明
されています。

• クロスプラットフォームの .NETを
構築する

• より強固なエコシステムを構築し、
活用していく

　前述のように、もともと.NETは
Web技術を中心に相互運用可能な
基盤を構築するという目的で作られた
ものです。したがってクロスプラット
フォーム性は初期の構想から.NET
の中にあったものですが、現実には
公式なサポートはWindowsだけに限
られていました。Monoプロジェクトの
ようなオープンソースの実装も登場し
ていますが、コードベースがまったく
異なるために成果物の相互利用が難
しいという問題があります。そこで、よ
り積極的なオープンソース化に踏み
切ることで閉塞状態を打開し、.NET
のクロスプラットフォーム性をさらに推
進していこうというわけです。
　.NET CoreはGitHubにホストさ
れており、今後は完全にオープンな
形で開発が進められていくことになり
ます。当面の作業としては、ライブラ
リの拡充やWindows以外のプラット
フォームのサポート、.NETコアランタ
イム（CoreCLR）の開発などが挙げ
られています。CoreCLRは.NET
Frameworkに含まれるCLR（共通
言語ランタイム）の軽量なサブセットで、
これも.NET Coreの一部としてオー
プンソースで提供されます。プロジェ
クトの管理は.NET Foundationに
よって行われ、Monoプロジェクトや、
Monoの開発者によって設立された
企業Xamarinなど、外部のコミュニ
ティとも緊密に連携していくとのことで
す。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 76回

.NET Core

｢｢

.NET Foundation
https://www.dotnetfoundation.org/

MSがオープンソース化
する「.NET Core」とは

オープンソース化の狙い

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

共通基盤

.NET Framework

.NET 2015

.NET Core

ランタイム コンパイラ NuGet パッケージ
・次世代 JIT（RyuJIT） ・.NET Compiler Platform

 （Roslyn）
・.NET Core 5ライブラリ

・SIMD ・.NET Framework 4.6 ライブラリ

» ASP.NET 5
» ASP.NET 4.6

» WPF
» Windows Forms

» ASP.NET 5
» .NET Native

» ASP.NET 5 for
 Mac or Linux

▼図　.NET 2015 の構成要素（出典：Microsoft; .NET Framework Blog）

mailto:sd@gihyo.co.jp
https://www.dotnetfoundation.org/

　VR（仮想現実：バーチャルリアリ
ティ）の世界が広がってきています。
ゲーム分野のみならず、アートや工業
用途、映画やミュージックビデオ、アト
ラクションなどのエンターテインメント
分野にまで広がってきています。比較
的安価なVR眼鏡デバイスとして一部
開発者の間でDevelopment Kitが
高評価を得ているOculus VR社が、
Facebookに20億ドルで買収された
ことも話題になりました。Facebookは
未来のコミュニケーション手段として、
VRに可能性を感じているのかもしれ
ません。
　Oculus Riftはスマートフォンで使わ
れている高解像度表示部品をそのま
ま活用するなどしてコストを下げ、一昔
前であれば、巨大で高額な装置を使わ
なければ体験できかった事柄を身近に
しました。さらにGoogle Cardboardや
ハコスコでは、段ボールといった安価
な素材でヘッドマウント部品を作り、ア
プリケーションの実行と表示にはス
マートフォンをそのまま使うという組み
合わせにしたことで、手軽にVRコンテ
ンツを楽しめるようになりました。
　旧来のVR研究者からすると、クオ
リティ面でまだまだ課題もあるかもしれ
ませんが、多くの人たちがVRの世界
に興味を持ち、活用しだすことで、産
業としてのエコシステムがうまく機能し
始めることが重要です。

　また、旧来の立体視コンテンツであ
れば、フレームごとに左右の映像を切
り替えたり、左右の映像を走査線ごと
に切り替えたりと、さまざまな映像
フォーマットが混在していました。しか
しOculus Riftのようなヘッドセットタ
イプの場合、細かい違いはあれど、プ
ラットフォームの違いに大きく左右され
ることなく、コンテンツが流用できるの
も大きな利点です。

立体に見える原理
　立体視ができる要因には、人間が
左右に離れた2つの目を持つ影響に
よる両眼視差と、顔や目が動いたりす
ることで把握する運動視差とがありま
す。大人であれば、多少の個人差は
あれど、左右の目は6cmから7cm、子
供であれば5cmほど離れていると言
われています。一般的な立体視映画

はその目の幅に合った調整がなされ
ています。
　立体視撮影用のカメラなどで、左
右の目に対応するカメラがそれよりも
離れた場合は巨人の目になり、小さく
感じられる映像が撮影できますし、左
右のカメラの幅を狭くとれば、小人が
見たような巨大な立体映像を撮影す
ることができます。

●両眼視差：左右の像の違い
●輻輳：眼球の回転によるもの
●ピント調節：眼のレンズ機能の変
化によるもの

●運動視差：眼（顔）が移動すること
による像の違い

　また単眼でも、次のような要因で立
体感を把握しています。

●ピント調節→鮮鋭度で把握する
●ぼけぐあい・明暗・色差・コントラス
ト・空気感で把握する

●像の大きさ→距離感で把握する
●規則的配置・既知の物体（経験的
要因）・密度・手がかりなどで把握する

●運動視差→前後感を把握する
●遮蔽・重なり具合・陰影・テクスチャ・
心理的要因も関与する

●視野→広がり感で把握する
●画枠効果・空間配置によって把握
する

VR酔い
　VR酔いの一番の原因は、視覚で
体験している移動や振動の状況と、
三半規管が感じている平行状態が
一致しないことにあります。VR酔いは
車酔いと似たような感覚です。状況が
悪いと数時間気持ちが悪い状態が
続くこともあります。VRデバイスの表
示スピードや表示解像度、頭の動き
への追従性など、デバイスの性能に
よるものもありますが、コンテンツの作
り方、体験の作り方にも大きな要因
があります。
　とくに酔いやすい映像としては、映
像全体が時計回り、または逆時計回
りに回転するねじれを持った映像、視
点が上下に振動する映像などです。
頭部の移動や目が追いつかないほど
上下または左右に移動する映像や、
日常生活では体験しないような映像
が目に入ってきた場合などにも酔いや
すい傾向があります。また、普通の映
像ではよくあるカット割りや、シーンが
急に切り替わる映像でもすぐに酔っ
てしまいます。
　一方、前方にまっすぐすごいスピー

ドで進むような映像や、レールや道の
りがわかっていて進行方向が予想で
きる映像は、ある程度速くても見続け
ることが可能です。
　また、インタラクティブな映像ではな
く演出済みの映像が単に再生されて
いるだけの場合も、通常のテレビ映
像などと違いどこを見ていいのかわか
らず、かつ視線を外すこともできない
ため、映像を見ることそのものに違和
感を感じるようになります。時間帯に
よっても体験が異なる場合があるそう
で、夜は酔いにくい、集中すれば酔い
にくい、音の方向で映像を理解した
り、姿勢が安定していると酔いにくい
など、さまざまな要因があるそうです。
　VR酔いを解消する方法を行えば、
ずれてしまった視覚情報と体の平行
感覚をリセットすることができます。
　まずVRデバイスを外した後で、真っ
正面を見て目をつぶり、目をつぶった
まま顔ごとゆっくりと真下を見て、数分
間静止します。その後、下を向いたま
まゆっくりと目をあけると、視覚情報と
平衡感覚のリセットが可能です。個人
差がありますが、酔いがいくらか緩和
されますのでぜひお試しください。

VR空間での操作
　Oculus Riftのように目の前全面が
覆われてしまう場合、操作や演出をど
のようにするかも大きな課題です。
キーボードやマウス、ゲームパッドと
いった従来の入力デバイスは、慣れた
人であればある程度見ないで操作で
きますが、まったく見ないで操作する

のは難しいはずです。たとえば、一度
マウスをつかんで操作してから、手を
ホームポジションに戻してキーボードを
操作する困難さを想像してみてくださ
い。
　それらの解決策の1つとして、モー
ションセンサーや音声認識を利用する
方法があります。たとえば、三次元的に
手の動きを感知できるLeap Motion
を、Oculus Riftと組み合わせてコント
ローラとして活用するための純正専
用アダプタが販売されており、これらと
連動するアプリもいくつか登場してき
ています。
　また、VRの仮想空間の中で何かに
触ったりぶつかったりしても、現実に
は物体の感触はありません。そこで携
帯電話に搭載されているバイブレータ
のような素子が搭載された特殊な手
袋をはめたり、指先に振動素子をつけ
て操作したり、フォースフィードバック
可能なペンを持って操作したり、皮膚
に電流を流したり、空気圧を利用した
りして代替感覚を与える方法が模索
されています。さまざまな工夫がなされ
ていますが、まだ安価に実現できる決
定打的なものはありません。

　Oculus Rift用のアプリとして考えら
れるものは、360度ビデオ、アクション、
アドベンチャー、カジュアルゲーム、教
育、探検、フライト、ホラー、パズル、レー
ス、RPG、射撃、シミュレーションゲー
ム、スポーツ、戦術ゲームなど多岐にわ
たります。Google Cardboardも専用

のアプリが集められ、ポール・マッカー
トニーのライブ版や、ファッション雑誌
との連動コンテンツなど、これからが
期待されるジャンルです。
　日本でも2020年のオリンピック開
催に向けて、自動翻訳やゲームコンテ
ンツ、製造業や建築分野などさまざま
な応用が検討されています。サービス
の進化とともにデバイス自体も、視線
追跡つきの「FOVE」、PlayStation
4と連携するSONYの「Pro jec t
Morpheus」、シースルータイプのメガ
ネなどが一定のジャンルを確立し、火
付け役のOculus Riftもレイテンシー

（遅延）が20ms以下、90Hz以上の
リフレッシュレート、片目だけでも
1,000×1,000クラスの解像度を持
つなど、さらに高性能になった新バー
ジョンの市販が期待されます。
　開発環境に関しても、ゼロからプロ
グラミングしなければいけなかった時
代から、ゲーム開発環境Unityや、3D
Web技術であるWebGLなどを活用
し、平易に製作できる環境が整ってき
ました。
　すでに必要十分な環境が整いつ
つあります。新しいメディアが登場した
際は、必ず最初は旧来のメディアが
持つ特性を継承したものでしかありま
せんが、それから少しずつ新しいメディ
アならではのコンテンツやサービスが
生まれてきます。手軽なVRデバイス
が、新しいメディアとして確立するに
は、もう少し何かブレイクスルーが必
要なのかもしれませんね。｢

お手軽VRメガネの台頭
VRデバイスの普及

安藤 幸央
EXA Corporation

お手軽VRメガネの台頭

196
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

スキー専用VRゴーグル

https://www.indiegogo.com/projects/rideon
-the-first-true-ar-goggles-for-snow-sports/

1GADGET

RideOn

RideOnはスキーゴーグルに映像を重畳さ
せる両目Google Glassタイプの眼鏡です。
クラウドファンディングで資金調達の目標
金額が達成され、現在商品化に向けて作
業中。一般販売される際は899ドルの予
定。地図上で自分や友人の位置を把握し
たり、ゲレンデの様子などを知ることができ
ます。完全にハンズフリーで、ゴーグルの
動きで操作するそうです。同様の製品もあ
りますが、RideOnは位置合わせ用のカメ
ラも搭載されており、見ている風景にぴっ
たりと重ね合わせたガイド表示ができるも
よう。

LGスマホ用VRメガネ

http://www.lg.com/global/g3/

3GADGET

LG VR for G3

LG VR for G3はGoogleの段ボールVR
メガネGoogle Cardboardの設計をベー
スにし、プラスチック成形したVRメガネで
す。Google Play StoreにあるCardbo
ard用のアプリを利用することができま
す。LG G3の購入者には無料でプレゼン
トされる予定とのこと。RoboBliteration、
The Traveler、Sistersという、スマホVR
ゲームが提供されています。段ボール
でできたGoogle Cardboardが壊れてし
まった話をよく聞くので、耐久性のある素
材で長く使えるものは欲しくなるかもしれ
ませんね。

Samsungスマホ用
VRメガネ

http://www.samsung.com/global/
microsite/gearvr/

2GADGET

Samsung Gear VR

Samsung Gear VRは視野角96度、
SamsungのスマートフォンGalaxy Note
4を装着して利用するVR眼鏡です。
AMOLED（2,560×1,440）の液晶が最
大限に活かされます。スマホのカメラから
の入力も60fpsの性能を確保しているそ
うです。Oculus VR社と協力したOculus
VR app storeというアプリからさまざまな
VRアプリが利用できます。199.99ドル
で販売中。スマホは隠れているため、操
作パッド、戻るボタン、ボリュームキーがあ
ります。

こども用VRメガネ

http://www.mattel.com/

4GADGET

Mattel View-Master

Mattel社は、円形カートリッジタイプの番
組フィルムを眼鏡に装着して立体写真を
楽しむオモチャをもつ老舗メーカーです。
Mattel View-Masterはこのオモチャの
コンセプトをそのままに、Googleと協力し
てCardboardの設計をベースに新開発
した子供用のVRオモチャです。元祖
View-Masterは全世界で1億個売れた
オモチャで、デジタル版のView-Master
も爆発的な普及が期待されます。価格は
29.99ドルの予定。番組フィルムは累計
15億本売れたそうで、VRコンテンツの充
実も期待されるところです。

立体に見える原理と
VR酔いしない適切な
コンテンツの作り方

用例と事例に期待

［Livestock］
ニワトリが狭い空間でも
気分よく過ごすためのVRシステム
http://www.secondlivestock.com/

［ELLE: Jacquie Lee Photo Shoot］
ファッション雑誌の撮影現場を
VR映像で体験できるAndroidアプリ

［Mercedes VR］
車のデザインやレースをテーマにした
VR対応Androidアプリ

［SpaceTerror VR］
宇宙空間での探検をVRで楽しむ
Androidアプリ

［War of Words VR］
戦争の悲惨さをVRで体験する
Androidアプリ

［3RD］
天井カメラで
自分を俯瞰するVRシステム
http://www.frameweb.com/news/3rd-by-dus

ふくそう

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Apr. 2015 - 1

http://andoh.org/
http://www.secondlivestock.com/
http://www.frameweb.com/news/3rd-by-dus

　VR（仮想現実：バーチャルリアリ
ティ）の世界が広がってきています。
ゲーム分野のみならず、アートや工業
用途、映画やミュージックビデオ、アト
ラクションなどのエンターテインメント
分野にまで広がってきています。比較
的安価なVR眼鏡デバイスとして一部
開発者の間でDevelopment Kitが
高評価を得ているOculus VR社が、
Facebookに20億ドルで買収された
ことも話題になりました。Facebookは
未来のコミュニケーション手段として、
VRに可能性を感じているのかもしれ
ません。
　Oculus Riftはスマートフォンで使わ
れている高解像度表示部品をそのま
ま活用するなどしてコストを下げ、一昔
前であれば、巨大で高額な装置を使わ
なければ体験できかった事柄を身近に
しました。さらにGoogle Cardboardや
ハコスコでは、段ボールといった安価
な素材でヘッドマウント部品を作り、ア
プリケーションの実行と表示にはス
マートフォンをそのまま使うという組み
合わせにしたことで、手軽にVRコンテ
ンツを楽しめるようになりました。
　旧来のVR研究者からすると、クオ
リティ面でまだまだ課題もあるかもしれ
ませんが、多くの人たちがVRの世界
に興味を持ち、活用しだすことで、産
業としてのエコシステムがうまく機能し
始めることが重要です。

　また、旧来の立体視コンテンツであ
れば、フレームごとに左右の映像を切
り替えたり、左右の映像を走査線ごと
に切り替えたりと、さまざまな映像
フォーマットが混在していました。しか
しOculus Riftのようなヘッドセットタ
イプの場合、細かい違いはあれど、プ
ラットフォームの違いに大きく左右され
ることなく、コンテンツが流用できるの
も大きな利点です。

立体に見える原理
　立体視ができる要因には、人間が
左右に離れた2つの目を持つ影響に
よる両眼視差と、顔や目が動いたりす
ることで把握する運動視差とがありま
す。大人であれば、多少の個人差は
あれど、左右の目は6cmから7cm、子
供であれば5cmほど離れていると言
われています。一般的な立体視映画

はその目の幅に合った調整がなされ
ています。
　立体視撮影用のカメラなどで、左
右の目に対応するカメラがそれよりも
離れた場合は巨人の目になり、小さく
感じられる映像が撮影できますし、左
右のカメラの幅を狭くとれば、小人が
見たような巨大な立体映像を撮影す
ることができます。

●両眼視差：左右の像の違い
●輻輳：眼球の回転によるもの
●ピント調節：眼のレンズ機能の変
化によるもの

●運動視差：眼（顔）が移動すること
による像の違い

　また単眼でも、次のような要因で立
体感を把握しています。

●ピント調節→鮮鋭度で把握する
●ぼけぐあい・明暗・色差・コントラス
ト・空気感で把握する

●像の大きさ→距離感で把握する
●規則的配置・既知の物体（経験的
要因）・密度・手がかりなどで把握する

●運動視差→前後感を把握する
●遮蔽・重なり具合・陰影・テクスチャ・
心理的要因も関与する

●視野→広がり感で把握する
●画枠効果・空間配置によって把握
する

VR酔い
　VR酔いの一番の原因は、視覚で
体験している移動や振動の状況と、
三半規管が感じている平行状態が
一致しないことにあります。VR酔いは
車酔いと似たような感覚です。状況が
悪いと数時間気持ちが悪い状態が
続くこともあります。VRデバイスの表
示スピードや表示解像度、頭の動き
への追従性など、デバイスの性能に
よるものもありますが、コンテンツの作
り方、体験の作り方にも大きな要因
があります。
　とくに酔いやすい映像としては、映
像全体が時計回り、または逆時計回
りに回転するねじれを持った映像、視
点が上下に振動する映像などです。
頭部の移動や目が追いつかないほど
上下または左右に移動する映像や、
日常生活では体験しないような映像
が目に入ってきた場合などにも酔いや
すい傾向があります。また、普通の映
像ではよくあるカット割りや、シーンが
急に切り替わる映像でもすぐに酔っ
てしまいます。
　一方、前方にまっすぐすごいスピー

ドで進むような映像や、レールや道の
りがわかっていて進行方向が予想で
きる映像は、ある程度速くても見続け
ることが可能です。
　また、インタラクティブな映像ではな
く演出済みの映像が単に再生されて
いるだけの場合も、通常のテレビ映
像などと違いどこを見ていいのかわか
らず、かつ視線を外すこともできない
ため、映像を見ることそのものに違和
感を感じるようになります。時間帯に
よっても体験が異なる場合があるそう
で、夜は酔いにくい、集中すれば酔い
にくい、音の方向で映像を理解した
り、姿勢が安定していると酔いにくい
など、さまざまな要因があるそうです。
　VR酔いを解消する方法を行えば、
ずれてしまった視覚情報と体の平行
感覚をリセットすることができます。
　まずVRデバイスを外した後で、真っ
正面を見て目をつぶり、目をつぶった
まま顔ごとゆっくりと真下を見て、数分
間静止します。その後、下を向いたま
まゆっくりと目をあけると、視覚情報と
平衡感覚のリセットが可能です。個人
差がありますが、酔いがいくらか緩和
されますのでぜひお試しください。

VR空間での操作
　Oculus Riftのように目の前全面が
覆われてしまう場合、操作や演出をど
のようにするかも大きな課題です。
キーボードやマウス、ゲームパッドと
いった従来の入力デバイスは、慣れた
人であればある程度見ないで操作で
きますが、まったく見ないで操作する

のは難しいはずです。たとえば、一度
マウスをつかんで操作してから、手を
ホームポジションに戻してキーボードを
操作する困難さを想像してみてくださ
い。
　それらの解決策の1つとして、モー
ションセンサーや音声認識を利用する
方法があります。たとえば、三次元的に
手の動きを感知できるLeap Motion
を、Oculus Riftと組み合わせてコント
ローラとして活用するための純正専
用アダプタが販売されており、これらと
連動するアプリもいくつか登場してき
ています。
　また、VRの仮想空間の中で何かに
触ったりぶつかったりしても、現実に
は物体の感触はありません。そこで携
帯電話に搭載されているバイブレータ
のような素子が搭載された特殊な手
袋をはめたり、指先に振動素子をつけ
て操作したり、フォースフィードバック
可能なペンを持って操作したり、皮膚
に電流を流したり、空気圧を利用した
りして代替感覚を与える方法が模索
されています。さまざまな工夫がなされ
ていますが、まだ安価に実現できる決
定打的なものはありません。

　Oculus Rift用のアプリとして考えら
れるものは、360度ビデオ、アクション、
アドベンチャー、カジュアルゲーム、教
育、探検、フライト、ホラー、パズル、レー
ス、RPG、射撃、シミュレーションゲー
ム、スポーツ、戦術ゲームなど多岐にわ
たります。Google Cardboardも専用

のアプリが集められ、ポール・マッカー
トニーのライブ版や、ファッション雑誌
との連動コンテンツなど、これからが
期待されるジャンルです。
　日本でも2020年のオリンピック開
催に向けて、自動翻訳やゲームコンテ
ンツ、製造業や建築分野などさまざま
な応用が検討されています。サービス
の進化とともにデバイス自体も、視線
追跡つきの「FOVE」、PlayStation
4と連携するSONYの「Pro jec t
Morpheus」、シースルータイプのメガ
ネなどが一定のジャンルを確立し、火
付け役のOculus Riftもレイテンシー

（遅延）が20ms以下、90Hz以上の
リフレッシュレート、片目だけでも
1,000×1,000クラスの解像度を持
つなど、さらに高性能になった新バー
ジョンの市販が期待されます。
　開発環境に関しても、ゼロからプロ
グラミングしなければいけなかった時
代から、ゲーム開発環境Unityや、3D
Web技術であるWebGLなどを活用
し、平易に製作できる環境が整ってき
ました。
　すでに必要十分な環境が整いつ
つあります。新しいメディアが登場した
際は、必ず最初は旧来のメディアが
持つ特性を継承したものでしかありま
せんが、それから少しずつ新しいメディ
アならではのコンテンツやサービスが
生まれてきます。手軽なVRデバイス
が、新しいメディアとして確立するに
は、もう少し何かブレイクスルーが必
要なのかもしれませんね。｢

お手軽VRメガネの台頭
VRデバイスの普及

安藤 幸央
EXA Corporation

お手軽VRメガネの台頭

196
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

スキー専用VRゴーグル

https://www.indiegogo.com/projects/rideon
-the-first-true-ar-goggles-for-snow-sports/

1GADGET

RideOn

RideOnはスキーゴーグルに映像を重畳さ
せる両目Google Glassタイプの眼鏡です。
クラウドファンディングで資金調達の目標
金額が達成され、現在商品化に向けて作
業中。一般販売される際は899ドルの予
定。地図上で自分や友人の位置を把握し
たり、ゲレンデの様子などを知ることができ
ます。完全にハンズフリーで、ゴーグルの
動きで操作するそうです。同様の製品もあ
りますが、RideOnは位置合わせ用のカメ
ラも搭載されており、見ている風景にぴっ
たりと重ね合わせたガイド表示ができるも
よう。

LGスマホ用VRメガネ

http://www.lg.com/global/g3/

3GADGET

LG VR for G3

LG VR for G3はGoogleの段ボールVR
メガネGoogle Cardboardの設計をベー
スにし、プラスチック成形したVRメガネで
す。Google Play StoreにあるCardbo
ard用のアプリを利用することができま
す。LG G3の購入者には無料でプレゼン
トされる予定とのこと。RoboBliteration、
The Traveler、Sistersという、スマホVR
ゲームが提供されています。段ボール
でできたGoogle Cardboardが壊れてし
まった話をよく聞くので、耐久性のある素
材で長く使えるものは欲しくなるかもしれ
ませんね。

Samsungスマホ用
VRメガネ

http://www.samsung.com/global/
microsite/gearvr/

2GADGET

Samsung Gear VR

Samsung Gear VRは視野角96度、
SamsungのスマートフォンGalaxy Note
4を装着して利用するVR眼鏡です。
AMOLED（2,560×1,440）の液晶が最
大限に活かされます。スマホのカメラから
の入力も60fpsの性能を確保しているそ
うです。Oculus VR社と協力したOculus
VR app storeというアプリからさまざまな
VRアプリが利用できます。199.99ドル
で販売中。スマホは隠れているため、操
作パッド、戻るボタン、ボリュームキーがあ
ります。

こども用VRメガネ

http://www.mattel.com/

4GADGET

Mattel View-Master

Mattel社は、円形カートリッジタイプの番
組フィルムを眼鏡に装着して立体写真を
楽しむオモチャをもつ老舗メーカーです。
Mattel View-Masterはこのオモチャの
コンセプトをそのままに、Googleと協力し
てCardboardの設計をベースに新開発
した子供用のVRオモチャです。元祖
View-Masterは全世界で1億個売れた
オモチャで、デジタル版のView-Master
も爆発的な普及が期待されます。価格は
29.99ドルの予定。番組フィルムは累計
15億本売れたそうで、VRコンテンツの充
実も期待されるところです。

立体に見える原理と
VR酔いしない適切な
コンテンツの作り方

用例と事例に期待

［Livestock］
ニワトリが狭い空間でも
気分よく過ごすためのVRシステム
http://www.secondlivestock.com/

［ELLE: Jacquie Lee Photo Shoot］
ファッション雑誌の撮影現場を
VR映像で体験できるAndroidアプリ

［Mercedes VR］
車のデザインやレースをテーマにした
VR対応Androidアプリ

［SpaceTerror VR］
宇宙空間での探検をVRで楽しむ
Androidアプリ

［War of Words VR］
戦争の悲惨さをVRで体験する
Androidアプリ

［3RD］
天井カメラで
自分を俯瞰するVRシステム
http://www.frameweb.com/news/3rd-by-dus

ふくそう

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design

　VR（仮想現実：バーチャルリアリ
ティ）の世界が広がってきています。
ゲーム分野のみならず、アートや工業
用途、映画やミュージックビデオ、アト
ラクションなどのエンターテインメント
分野にまで広がってきています。比較
的安価なVR眼鏡デバイスとして一部
開発者の間でDevelopment Kitが
高評価を得ているOculus VR社が、
Facebookに20億ドルで買収された
ことも話題になりました。Facebookは
未来のコミュニケーション手段として、
VRに可能性を感じているのかもしれ
ません。
　Oculus Riftはスマートフォンで使わ
れている高解像度表示部品をそのま
ま活用するなどしてコストを下げ、一昔
前であれば、巨大で高額な装置を使わ
なければ体験できかった事柄を身近に
しました。さらにGoogle Cardboardや
ハコスコでは、段ボールといった安価
な素材でヘッドマウント部品を作り、ア
プリケーションの実行と表示にはス
マートフォンをそのまま使うという組み
合わせにしたことで、手軽にVRコンテ
ンツを楽しめるようになりました。
　旧来のVR研究者からすると、クオ
リティ面でまだまだ課題もあるかもしれ
ませんが、多くの人たちがVRの世界
に興味を持ち、活用しだすことで、産
業としてのエコシステムがうまく機能し
始めることが重要です。

　また、旧来の立体視コンテンツであ
れば、フレームごとに左右の映像を切
り替えたり、左右の映像を走査線ごと
に切り替えたりと、さまざまな映像
フォーマットが混在していました。しか
しOculus Riftのようなヘッドセットタ
イプの場合、細かい違いはあれど、プ
ラットフォームの違いに大きく左右され
ることなく、コンテンツが流用できるの
も大きな利点です。

立体に見える原理
　立体視ができる要因には、人間が
左右に離れた2つの目を持つ影響に
よる両眼視差と、顔や目が動いたりす
ることで把握する運動視差とがありま
す。大人であれば、多少の個人差は
あれど、左右の目は6cmから7cm、子
供であれば5cmほど離れていると言
われています。一般的な立体視映画

はその目の幅に合った調整がなされ
ています。
　立体視撮影用のカメラなどで、左
右の目に対応するカメラがそれよりも
離れた場合は巨人の目になり、小さく
感じられる映像が撮影できますし、左
右のカメラの幅を狭くとれば、小人が
見たような巨大な立体映像を撮影す
ることができます。

●両眼視差：左右の像の違い
●輻輳：眼球の回転によるもの
●ピント調節：眼のレンズ機能の変
化によるもの

●運動視差：眼（顔）が移動すること
による像の違い

　また単眼でも、次のような要因で立
体感を把握しています。

●ピント調節→鮮鋭度で把握する
●ぼけぐあい・明暗・色差・コントラス
ト・空気感で把握する

●像の大きさ→距離感で把握する
●規則的配置・既知の物体（経験的
要因）・密度・手がかりなどで把握する

●運動視差→前後感を把握する
●遮蔽・重なり具合・陰影・テクスチャ・
心理的要因も関与する

●視野→広がり感で把握する
●画枠効果・空間配置によって把握
する

VR酔い
　VR酔いの一番の原因は、視覚で
体験している移動や振動の状況と、
三半規管が感じている平行状態が
一致しないことにあります。VR酔いは
車酔いと似たような感覚です。状況が
悪いと数時間気持ちが悪い状態が
続くこともあります。VRデバイスの表
示スピードや表示解像度、頭の動き
への追従性など、デバイスの性能に
よるものもありますが、コンテンツの作
り方、体験の作り方にも大きな要因
があります。
　とくに酔いやすい映像としては、映
像全体が時計回り、または逆時計回
りに回転するねじれを持った映像、視
点が上下に振動する映像などです。
頭部の移動や目が追いつかないほど
上下または左右に移動する映像や、
日常生活では体験しないような映像
が目に入ってきた場合などにも酔いや
すい傾向があります。また、普通の映
像ではよくあるカット割りや、シーンが
急に切り替わる映像でもすぐに酔っ
てしまいます。
　一方、前方にまっすぐすごいスピー

ドで進むような映像や、レールや道の
りがわかっていて進行方向が予想で
きる映像は、ある程度速くても見続け
ることが可能です。
　また、インタラクティブな映像ではな
く演出済みの映像が単に再生されて
いるだけの場合も、通常のテレビ映
像などと違いどこを見ていいのかわか
らず、かつ視線を外すこともできない
ため、映像を見ることそのものに違和
感を感じるようになります。時間帯に
よっても体験が異なる場合があるそう
で、夜は酔いにくい、集中すれば酔い
にくい、音の方向で映像を理解した
り、姿勢が安定していると酔いにくい
など、さまざまな要因があるそうです。
　VR酔いを解消する方法を行えば、
ずれてしまった視覚情報と体の平行
感覚をリセットすることができます。
　まずVRデバイスを外した後で、真っ
正面を見て目をつぶり、目をつぶった
まま顔ごとゆっくりと真下を見て、数分
間静止します。その後、下を向いたま
まゆっくりと目をあけると、視覚情報と
平衡感覚のリセットが可能です。個人
差がありますが、酔いがいくらか緩和
されますのでぜひお試しください。

VR空間での操作
　Oculus Riftのように目の前全面が
覆われてしまう場合、操作や演出をど
のようにするかも大きな課題です。
キーボードやマウス、ゲームパッドと
いった従来の入力デバイスは、慣れた
人であればある程度見ないで操作で
きますが、まったく見ないで操作する

のは難しいはずです。たとえば、一度
マウスをつかんで操作してから、手を
ホームポジションに戻してキーボードを
操作する困難さを想像してみてくださ
い。
　それらの解決策の1つとして、モー
ションセンサーや音声認識を利用する
方法があります。たとえば、三次元的に
手の動きを感知できるLeap Motion
を、Oculus Riftと組み合わせてコント
ローラとして活用するための純正専
用アダプタが販売されており、これらと
連動するアプリもいくつか登場してき
ています。
　また、VRの仮想空間の中で何かに
触ったりぶつかったりしても、現実に
は物体の感触はありません。そこで携
帯電話に搭載されているバイブレータ
のような素子が搭載された特殊な手
袋をはめたり、指先に振動素子をつけ
て操作したり、フォースフィードバック
可能なペンを持って操作したり、皮膚
に電流を流したり、空気圧を利用した
りして代替感覚を与える方法が模索
されています。さまざまな工夫がなされ
ていますが、まだ安価に実現できる決
定打的なものはありません。

　Oculus Rift用のアプリとして考えら
れるものは、360度ビデオ、アクション、
アドベンチャー、カジュアルゲーム、教
育、探検、フライト、ホラー、パズル、レー
ス、RPG、射撃、シミュレーションゲー
ム、スポーツ、戦術ゲームなど多岐にわ
たります。Google Cardboardも専用

のアプリが集められ、ポール・マッカー
トニーのライブ版や、ファッション雑誌
との連動コンテンツなど、これからが
期待されるジャンルです。
　日本でも2020年のオリンピック開
催に向けて、自動翻訳やゲームコンテ
ンツ、製造業や建築分野などさまざま
な応用が検討されています。サービス
の進化とともにデバイス自体も、視線
追跡つきの「FOVE」、PlayStation
4と連携するSONYの「Pro jec t
Morpheus」、シースルータイプのメガ
ネなどが一定のジャンルを確立し、火
付け役のOculus Riftもレイテンシー

（遅延）が20ms以下、90Hz以上の
リフレッシュレート、片目だけでも
1,000×1,000クラスの解像度を持
つなど、さらに高性能になった新バー
ジョンの市販が期待されます。
　開発環境に関しても、ゼロからプロ
グラミングしなければいけなかった時
代から、ゲーム開発環境Unityや、3D
Web技術であるWebGLなどを活用
し、平易に製作できる環境が整ってき
ました。
　すでに必要十分な環境が整いつ
つあります。新しいメディアが登場した
際は、必ず最初は旧来のメディアが
持つ特性を継承したものでしかありま
せんが、それから少しずつ新しいメディ
アならではのコンテンツやサービスが
生まれてきます。手軽なVRデバイス
が、新しいメディアとして確立するに
は、もう少し何かブレイクスルーが必
要なのかもしれませんね。｢

お手軽VRメガネの台頭
VRデバイスの普及

安藤 幸央
EXA Corporation

お手軽VRメガネの台頭

196
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

スキー専用VRゴーグル

https://www.indiegogo.com/projects/rideon
-the-first-true-ar-goggles-for-snow-sports/

1GADGET

RideOn

RideOnはスキーゴーグルに映像を重畳さ
せる両目Google Glassタイプの眼鏡です。
クラウドファンディングで資金調達の目標
金額が達成され、現在商品化に向けて作
業中。一般販売される際は899ドルの予
定。地図上で自分や友人の位置を把握し
たり、ゲレンデの様子などを知ることができ
ます。完全にハンズフリーで、ゴーグルの
動きで操作するそうです。同様の製品もあ
りますが、RideOnは位置合わせ用のカメ
ラも搭載されており、見ている風景にぴっ
たりと重ね合わせたガイド表示ができるも
よう。

LGスマホ用VRメガネ

http://www.lg.com/global/g3/

3GADGET

LG VR for G3

LG VR for G3はGoogleの段ボールVR
メガネGoogle Cardboardの設計をベー
スにし、プラスチック成形したVRメガネで
す。Google Play StoreにあるCardbo
ard用のアプリを利用することができま
す。LG G3の購入者には無料でプレゼン
トされる予定とのこと。RoboBliteration、
The Traveler、Sistersという、スマホVR
ゲームが提供されています。段ボール
でできたGoogle Cardboardが壊れてし
まった話をよく聞くので、耐久性のある素
材で長く使えるものは欲しくなるかもしれ
ませんね。

Samsungスマホ用
VRメガネ

http://www.samsung.com/global/
microsite/gearvr/

2GADGET

Samsung Gear VR

Samsung Gear VRは視野角96度、
SamsungのスマートフォンGalaxy Note
4を装着して利用するVR眼鏡です。
AMOLED（2,560×1,440）の液晶が最
大限に活かされます。スマホのカメラから
の入力も60fpsの性能を確保しているそ
うです。Oculus VR社と協力したOculus
VR app storeというアプリからさまざまな
VRアプリが利用できます。199.99ドル
で販売中。スマホは隠れているため、操
作パッド、戻るボタン、ボリュームキーがあ
ります。

こども用VRメガネ

http://www.mattel.com/

4GADGET

Mattel View-Master

Mattel社は、円形カートリッジタイプの番
組フィルムを眼鏡に装着して立体写真を
楽しむオモチャをもつ老舗メーカーです。
Mattel View-Masterはこのオモチャの
コンセプトをそのままに、Googleと協力し
てCardboardの設計をベースに新開発
した子供用のVRオモチャです。元祖
View-Masterは全世界で1億個売れた
オモチャで、デジタル版のView-Master
も爆発的な普及が期待されます。価格は
29.99ドルの予定。番組フィルムは累計
15億本売れたそうで、VRコンテンツの充
実も期待されるところです。

立体に見える原理と
VR酔いしない適切な
コンテンツの作り方

用例と事例に期待

［Livestock］
ニワトリが狭い空間でも
気分よく過ごすためのVRシステム
http://www.secondlivestock.com/

［ELLE: Jacquie Lee Photo Shoot］
ファッション雑誌の撮影現場を
VR映像で体験できるAndroidアプリ

［Mercedes VR］
車のデザインやレースをテーマにした
VR対応Androidアプリ

［SpaceTerror VR］
宇宙空間での探検をVRで楽しむ
Androidアプリ

［War of Words VR］
戦争の悲惨さをVRで体験する
Androidアプリ

［3RD］
天井カメラで
自分を俯瞰するVRシステム
http://www.frameweb.com/news/3rd-by-dus

ふくそう

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design Apr. 2015 - 3

https://www.indiegogo.com/projects/rideon-the-first-true-ar-goggles-for-snow-sports/
http://www.lg.com/global/g3/
http://www.samsung.com/global/microsite/gearvr/
http://www.mattel.com/

4 - Software Design

Brute Force
——ブルートフォース

ブルートフォースとは

　ブルートフォース（Brute Force）とは、力ま
かせで解決するアルゴリズムの総称です。多く
のデータを順番に処理する「しらみつぶし」のこ
とです。英単語の“brute”は「知性ではなく肉体
的な」で“force”は「力」ですから、まさに「力ま
かせ」ですね。
　多くのデータから目的のものを探すときに、「1

個目は目的のものか？」「2個目は目的のものか？」
……と順番に探していくのは「線型サーチ」とい
うアルゴリズムです。線型サーチはブルート
フォースなアルゴリズムの1つです（図1）。これ
はすぐに理解できますし、実装は単純ですが、
劇的に高速なわけではありません。データを前もっ
てソートしておいてバイナリサーチを行ったり、

木構造やハッシュなどのデータ構造を工夫した
りするほうがずっと高速に検索できるでしょう。
　ブルートフォースは単純ですから、その難易
度を使って問題の難易度を表現することがあり
ます。たとえば、暗号解読の難易度を「ブルー
トフォースで解読を試みた場合にはこれだけの
時間がかかる」と表現する場合です。

探索空間

　アルゴリズムというものを「探索空間の中から
目的の解を探索する手法」と見なすと、ブルート
フォースは探索空間を全探索するアルゴリズム
と言えます。探索空間のサイズが小さい場合に
はブルートフォースが有効に効くこともあります。
しかし、コンピュータが取り扱う問題は探索空
間が想像を絶するサイズになる場合もあり、そ
の場合には、ブルートフォースは非現実的なア
ルゴリズムということになります。
　探索空間から解を探索する場合に大事なのは、
探索済みの空間と未探索の空間とを明確に区別
することです。たとえば線型サーチの場合、現
在注目している場所が「探索済み」と「未探索」の

Brute Force

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 23

?

?

?

!

 ▼図1　線型サーチはブルートフォース

?

探索済み 未探索

 ▼図2　探索済みと未探索の境目

http://www.hyuki.com/

4 - Software Design Apr. 2015 - 5

ちょうど境目になっています（図2）。

構造の発見

　ブルートフォースで暗号解読を行う場合、す
べての鍵の可能性が探索空間になります。これ
を鍵空間と呼びます。鍵空間をブルートフォース
で探索する場合、順番に生成した鍵で解読を試
みます。1つの鍵で解読に失敗しても「この鍵で
は解読できない」以上の情報は得られないのが普
通です。これは、強い暗号アルゴリズムの鍵空
間には構造が何もないからです。もしも鍵空間
に構造があったなら、そこが暗号を破る弱点に
なる可能性があります。
　暗号アルゴリズムに限らず、アルゴリズムに
おける工夫は、探索空間が持つパターンや冗長
性あるいは規則性といった構造を発見するとこ
ろから生まれます。発見した構造をもとにして
探索空間を効率よく狭められるからです。構造
が発見できなければ、ブルートフォースで問題
解決にあたるしかありません。

トータルの時間

　アルゴリズムは問題解決の一種ですが、人間
が「頭を使うか、力を使うか」という判断も問題
解決の一種です。
　現実世界では、ブルートフォースがいつも悪
いわけではありません。高速なアルゴリズムが
存在するかどうか不明な場合には、多少遅くて
もブルートフォースなアルゴリズムを使って、
とにかく答えを出したほうが有益かもしれませ
ん。プログラムの開発時間を短くできれば、トー
タルの時間を短縮できる場合があるからです。
　探索空間を複数の独立な部分空間に分割可能
なら、複数のマシンに分担させることができるか
もしれません。個々のマシンがブルートフォース
な探索を行っても、並列性を高めることでトータ
ルの時間を短縮できるでしょう。

日常生活とブルートフォース

　ブルートフォースは力まかせですが、知性を

使っていないわけではありません。線型サーチ
では、探索空間のうち「未探索」な部分は確実に
小さくなっていきます。ですから、解が見つか
るまでの時間を確実に予測できます。その時間
は非現実的かもしれませんけれど。
　こんなひどいアルゴリズムを想像してくださ
い。多くのデータからランダムに1個だけ取り
出し、目的のものかを調べる。違ったらそれを
戻し、またランダムに取り出す。前回と同じも
のを何回も取り出しても気にしない。このアル
ゴリズムでは、解が見つかるまでの時間は確率
的にしか予測できなくなります。これは「力ま
かせ」ではなく「運まかせ」のアルゴリズムとい
うことです。
　「ボゴソート」というアルゴリズムは、データ
をシャッフルしては正しくソートされているか
を確かめるもので、上述した「運まかせ」のアル
ゴリズムです。ボゴソートは、広い探索空間か
らランダムに解候補を取り出していることにな
ります。もちろん、ボゴソートは現実的なソー
トアルゴリズムではなく、教育目的（および
ジョーク目的）で考えられているものです。
　日常生活で、我知らず「運まかせ」の問題解決
を行ってしまうことがあります。探索空間のサ
イズがどれだけあるか考えず、自分が適当に思
いついた解候補を試し、だめなら別の解候補を
探る。やっぱり違うなと思い返して、以前試し
たはずの解候補にまた戻る。そのような問題解
決は「運まかせ」であり、「力まかせ」のブルート
フォースを笑えませんね。

◆　◆　◆
　あなたの周りを見回して、ブルートフォース
による問題解決を行っていないか、探してみま
しょう。その問題に何らかの構造を発見し、ブ
ルートフォースから脱却することはできないで
しょうか。また、人海戦術で、トータルの時間
を短くすることはできないでしょうか。「探索
済み」と「未探索」を分けるという発想が使える
場面はないでしょうか。ぜひ、考えてみてくだ
さい。｢

23

6 - Software Design

Raspberry Pi 2
デビュー

　先月号が発売される直前（2014年 2月）に

Raspberry Pi 2注1が発表されました（写真1）。
従来型のものに比べてCPU性能が格段に向上し、
X11のデスクトップ環境が格段に快適になった
にもかかわらず価格は据え置きなので迷わず
Raspberry Pi 2を購入するのが良いと思われま
す。高速化によって、ますます汎用コンピュー
タとしての使い勝手が向上したといえるでしょう。
　先月号ではRaspberry Piをメディアプレーヤと
して活用する「Gear」というシステムの構想を紹介
しましたが、今回はこの実装について解説します。

コンテンツの再生

　Raspberry Piで動画を再生するのにGPUを
使用するomxplayer注2がよく使われています。
omxplayerはMP3のような音楽ファイルやネッ
トからの動画ストリーミングも再生できるので、
メディアプレーヤとして使う場合はomxplayer

だけ用意しておけば充分でしょう。

$ sudo apt-get install omxplayer

メニュー表示方式の
選択

　Raspberry Piで画面に描画を行うには次の
方法があります。

1. フレームバッファに書き込む
　Raspberry Piでは、ほかの多くのLinuxシ
ステムと同じように、/dev/fb0にデータを書
き込むことによってビットマップ画面を表示で
きます。Raspbianのコンソール画面はこれを
利用して文字を描画しています。

2. GPUでグラフィクスを描画する
　Raspberry PiのCPU/GPUなどを1つのチッ
プ上に登載したBCM2835注3というSoCチップ
上のGPU（VideoCore）がサポートしている

おとなラズパイリレーは、Raspberry Piを文字どおり「リレー」し、好奇心旺盛なITエンジニアが電子工作をするという企画
です。前編で構想を練り、後編で実装します。1年を通してどんなデバイスができあがるのか？……今回は、話題の新刊も
好調な増井先生によるRaspberry Pi B+でGear実装編です。

Writer 増井 俊之（ますい としゆき）　慶應義塾大学　環境情報学部教授

「Raspberry Piをメディアサーバ／プレーヤにしよう（後編）」
増井 俊之

第6回

 ▼写真1　Raspberry Pi 2

注1） http://www.raspberrypi.org/products/raspberry-pi-2-model-b/
注2） http://omxplayer.sconde.net/
注3） http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

http://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://omxplayer.sconde.net/
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

6 - Software Design Apr. 2015 - 7

「Raspberry Piをメディアサーバ／
プレーヤにしよう（後編）」

第6回

OpenGL ES2注4などを使って高速なグラフィ
クス表示が可能です。

　これらの画面データは独立しており、GPU

で描画した画像データを/dev/fd0から読むこ
とはできません。
　これらのハードウェア機能を利用して、次の
ような方法で文字や図形を描画できます。

1. X11を使う
2. フレームバッファに直書きする
3. OpenGL ES2を使う
4. SDL注5を使う

　これらの選択肢がありますが、omxplayerで動
画を表示する場合、GPUベースの描画システム
を使うことができません。つまり、OpenGL ES2

やSDLでメニューを表示できません。また、X11

上の描画システムはomxplayerと共存はできるの
ですが、ブラウザのJavaScriptでは軽快にメニュー
表示ができません。Javaなどを使う場合も同様です。
　幸いGearのメニューはテキストさえ表示でき
ればそれなりに使えるので、今回はターミナルプ
ログラムの fbterm上に表示するテキストでメ
ニュー操作を行うことにします。残念ながら文字
位置を行／桁単位でしか指定できませんし、色
も規定された数種類しか利用できず、現代のコン
ピュータとは思えないメニュー表示になってしま
いますが、今回はとりあえずそれで我慢したいと
思います。ターミナル上のテキスト表示には
ncursesという古典的なライブラリを利用します。

入力装置の選択

　普通のパソコンではキーボードとマウスが標

準的な入力装置として利用されていますが、
Raspberry Piではこれらの装置を普通に使える
ことに加え、ボード上のGPIO（General Purpose

I/O）端子を入出力に利用することができるので、
ちょっとしたスイッチやLEDなどを接続して利
用できます。Gearは2個の単純な入力装置があ
れば実装できるので、GPIOポートにマイクロス
イッチなどを直結して利用することもできます。
たとえば椅子にマイクロスイッチを接続しておい
て、そこからケーブルをGPIO端子に接続すれば、
椅子の回転や傾きでGearの操作ができるという
わけです。その他、各種のMIDIコントローラの
ようなUSB接続の入力装置も利用できます。
　今回はワイヤレスマウスのホイールを入力装置
として使ってみることにします。ワイヤレスマウ
スは数百円で売られていますし、Raspberry Pi

ではX11を使わなくても/dev/input/event0から
マウス操作を取得できるので、ホイールの前方
／後方回転でGear操作を行うことにします注6。

Gearの実装

　入力方法と出力方法が決まったので、
Raspberry Pi上にGearを実装していきます。
すべてをRubyで記述します。

メニュー表示

　デフォルトの起動ターミナルは日本語が表示
できませんしフォントサイズが小さいので、フ
レームバッファを利用したターミナルプログラ
ム fbtermを利用して大きな文字を表示します。

$ sudo apt-get install fbterm
$ fbterm --font-size=50

　ncursesはgemでインストールし、 テキスト

注4） http://ja.wikipedia.org/wiki/OpenGL_ES
注5） http://www.libsdl.org/　https://wiki.libsdl.org/Introduction
注6） ちなみにRaspbianで初期設定されている「pi」というアカウントではomxplayerやマウス入力を問題なく利用できますが、

異なるアカウントで使おうとする場合は/etc/groupの設定を変更したり/dev/vchiqのパーミッションを変更したりする必
要があるので、 メディアサーバとしては「pi」アカウントを利用するのが楽なようです。

http://ja.wikipedia.org/wiki/OpenGL_ES
http://www.libsdl.org/
https://wiki.libsdl.org/Introduction

8 - Software Design

の表示にはncursesで用意されている次の関数
を利用します。

require "curses" # ncursesライブラリ
setpos 10, 2 # 10行目の2桁目にカーソル移動
addstr "abc" # カーソル位置に"abc"表示

タイムアウト処理

　Gearでは、 選択中の項目に子要素が存在する
ときユーザが何も操作を行わなければ、子要素
を自動的に展開してその最初の項目を選択する
ようになっています。このようなタイムアウト処
理はJavaScriptではsetTimeout()で簡単に指定
できますが、Rubyにはタイムアウト関数が用意
されていませんので、ruby-concurrencyという
gemを使うことにします。10秒後に何かを実行
したい場合は次のようにします。明示的にスレッ
ドを起動する必要がないので簡単です。

require 'concurrent'
Concurrent::ScheduledTask.execute 10 do
 do_something # 10秒後に実行される処理
end

コンテンツの記述

　音楽や動画などのコンテンツは内容に従って
階層的に分類しておきます。階層的なデータを
表現する方法はいろいろありますが、ここでは

ltsv注7にインデントを追加した「階層 ltsv」を使
うことにします。たとえばリスト1の記述では、
「YouTube」の「増井俊之」に3個のコンテンツが
含まれていることを表現しています。

マウスホイール操作の取得と
ナビゲーション

　メインルーチンでリスト2のようにしてマウ
ス操作を取得します。
　階層 ltsvで記述したコンテンツ記述ファイル
は最初に木構造に変換しておき、ホイール操作
があるたびにmoveメソッドが呼ばれて選択項
目とメニュー表示が変化し、選択中のコンテン
ツをomxplayerで再生します。

omxplayerによるコンテンツ再生

　階層ltsv内の「file:」で指定されているコンテン
ツを再生するときはリスト3のplayメソッドを
呼び出します。YouTubeの場合はyoutube-dlと

注7） http://ltsv.org/

title:YouTube
 title:増井俊之
 title:Slime<tab>file:http://www.youtube.com/watch?v=Ldyl5UbbSA8
 title:Gyazz<tab>file:http://www.youtube.com/watch?v=RatK2q6SwFA
 title:Dynamic Macro<tab>file:http://www.youtube.com/watch?v=payhPO7Zi4w
title:音楽
 title:John Coltrane
 title:My Favorite Things
 title:My Favorite Things<tab>file:/home/pi/Music/John Coltrane/My Favorite Things/01 My Favorite Things.mp3
 title:Everytime We Say Goodbye<tab>file:/home/pi/Music/John Coltrane/My Favorite Things/02 Everytime We
Say Goodbye.mp3
 title:Summertime<tab>file:/home/pi/Music/John Coltrane/My Favorite Things/03 Summertime.mp3
 title:But Not For Me<tab>file:/home/pi/Music/John Coltrane/My Favorite Things/04 But Not For Me.mp3
title:ムービー
 title:Rocky Horrow Show<tab>file:/home/pi/Movies/RockyHorrowPictureShow.mp4
 title:Planet Earth<tab>file:/home/pi/Movies/PlanetEarthA-1.mp4

 ▼リスト1　階層 ltsvを使用したコンテンツファイル（<tab>はタブ文字）

File.open("/dev/input/event0","rb"){ |f|
 while true do
 s = f.read 16
 (time, type, code, value) = s.unpack "qssi"
 if type == 2 and code == 8 then
 move value
 end
 end
}

 ▼リスト2　メインルーチン抜粋

http://ltsv.org/

8 - Software Design Apr. 2015 - 9

「Raspberry Piをメディアサーバ／
プレーヤにしよう（後編）」

第6回

いうプログラムを使ってストリーミング元URL

を取得してからomxplayerを起動します。

Gearの動き

　Gearを起動すると最初に図1のようなテキ
ストが表示されます。何もせずに1秒待つと図
2のようにメニューが展開されます。マウスホ
イールを回転させると図3のように選択項目が
移動します。ここで1秒待ってメニューを展開
させた後でマウスホイールを回すと図4のよう
に「Planet Earth」を選択することができます。
　メニューの見栄えはパッとしませんが、マウ
スホイールを回すだけでコンテンツを選択して
再生できるメディアプレーヤを作ることができ
ました。ソースコードは全部で150行ぐらいで、
GitHub注8に置いてあります。
　別の工夫によってメニューをもっと格好良くす
ることはできるかもしれませんし、Raspberry Pi

2だとブラウザで問題なくプレーヤを構築できる
かもしれません。いずれにしても、Raspberry Pi

をGearのようなインタフェースでメディアプレー
ヤとして使うことは将来性があるだろうと思って
いますので、ぜひ試していただければと思います。

おまけ

　2月に『スマホに満足してますか？―ユーザ
インタフェースの心理学―』という本を出しま
した（図5）。ユーザインタフェースにかかわる
面白い話をたくさん集めていますので、読んで
みていただければ幸いです。ﾟ

def play(file)
 system "killall omxplayer omxplayer.bin > /dev/null 2> /dev/null"
 if file =~ /^http.*youtube.com/ then
 stream = `youtube-dl -g #{file}`
 system "omxplayer '#{stream.chomp}' > /dev/null &"
 elsif file =~ /^\// then
 system "omxplayer '#{file}' > /dev/null &"
 end
end

 ▼リスト3　コンテンツ再生部分のコード ▼図1　Gearの起動

 ▼図2　メニュー表示 ▼図3　選択画面表示 ▼図4　メニュー展開画面

注8） https://github.com/masui/RasPiGear

 ◀図5　『スマホに満足し
ていますか？』
増井 俊之／光文社
（http://www.amazon.

co.jp/dp/433403845X）

http://www.amazon.co.jp/dp/433403845X
https://github.com/masui/RasPiGear

10 - Software Design

　今回のゲストはIT系イベントなどで

有名な「ひもりん」こと下農さんです。

（鎌田）下農さんは「ひもりん」とし

てIT系のイベントでは人気者ですが、

ひもりんの素顔を知らない方はたくさ

んいると思います。簡単な自己紹介を

お願いできますか？

（下農）私は大阪出身で、両親と

もに数学の高校教師という環境で育

ちました。小学生のころ、山で星空

を見たときから天体には漠然と興味

があり、高校生ぐらいまでには天文

学かロケット関連のどちらかの道に

絞ることを考え、天文系を選んで大

学に進みました。今は地上望遠鏡向

け装置開発、大きなくくりでいうと

宇宙の研究のためのデータを取る装

置の開発を行っています。

お仕事は地上望遠鏡だけなのです

か。宇宙望遠鏡ではないのですね。

天体の観測には大きく分けて2

つあります。地上からか、打ち上げ

系（人工衛星上で作動する宇宙望遠

鏡）からかです。「すばる」のような

規模の大きな望遠鏡は、人工衛星に

載せて打ち上げることができません。

宇宙望遠鏡は地上では見られないガ

ンマ線などを見ることができますが、

地上の望遠鏡は、空の広い領域を見

られるメリットがあります。現在の

仕事は、大学院での天体研究から、

自然にたどり着いた形です。博士論

文はブラックホールのある銀河を観

測して書きました。

Kavli IPMU やお仕事のこと、

ザックリ教えてください。

Kavli IPMUという機関は「Kavli

Institute for the Physics and

Mathematics of the Universe」の

略で、米国のカブリ財団からも寄付

を受けて、数学者と物理学者が連携

して宇宙の研究を行っています。私

の仕事は、天体望遠鏡の開発や天体

の研究はもちろんのこと、一番多い

のは国際チームとのさまざまな調整

です。7ヵ国くらいに分散した研究

機関で協力して装置を作るので、装

置の機械的・ソフトウェア的なイン

ターフェース調整に始まり、開発の

予算をどう割り振るかなど、さまざ

まな問題が日々出てきます。国際連

携ですので、地球の裏側とやりとり

したりするため、朝4時に起きるこ

ともあります。

幅広いですね。天体望遠鏡の最前

線について知りたいのですが、大きさ

とかお値段……やはりお高いんでしょ

うか。

私の担当するプロジェクトは、

ハワイのマウナケア山の山頂にある、

「国立天文台ハワイ観測所すばる望

遠鏡」の特徴でもある主焦点という

ところに設置する、「すばる超広視

野分光器（Prime Focus Spectro

graph＝PFS）」という分光装置を

作っています。すばる望遠鏡が約

400億円、今やっているPFSが約

80億円ですね。最近竣工されて現

在建設中のTMTという望遠鏡は約

1,500億円くらいの予算ですね。

すごい大規模ですね。天体望遠鏡

というのは山頂だけにあるのでしょう

か。また論文はなぜ、ブラックホール

にしたのですか？

星がよく見えるところに天体望

遠鏡は設置されます。山頂などの高

地以外でも、南極は南極高気圧と

いって晴れが多いので、そういった

僻地が多いです。ブラックホールは

未知な世界だから興味を持ち続けて

います。宇宙にはガスがあって……

ガスというのはプラズマなんですよ。

物理学をやっていないとなかなか理

解するのは難しいかもしれません。

元素レベルのことは難しいです

ね。数学が得意とのことですが、数学

ゲスト：下農 淳司さん第9献

向かって左側が「すばる」望遠鏡

下農 淳司（しもの あつし）さん
東京大学 カブリ数物連携宇宙研究機構（Kavli
IPMU）所属。京都大学大学院理学研究科卒
業後、㈱ナノオプトニクス・エナジーを経て現
在のKavli IPMUに所属する。ハワイの国立天
文台すばる望遠鏡、柏のKavli IPMUと、プロ
ジェクトの国際共同研究機関を往復する日々。
IT系イベントなどではユニークな衣装で登場す
ることで有名。阪神ファンで数学を得意とする。
通称ひもりん。Twitter：@himorin

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

10 - Software Design Apr. 2015 - 11

が好きな理由などはありますか？

強いて言えば数学のきれいなと

ころが好きですね。数学は構造を導

き出すという特徴があるんです。平

面って2次元ではないですか。どん

な点でもX軸Y軸で表されると。そ

のように次元をどんどん作って、何

かをきれいに表せる。これは代数や

幾何学であって、データを分解して

構造を作っていくというのがおもし

ろいですし、とにかくきれいなんで

す。数学好きは、まわりに多い気が

します。

仲間といえば、ITエンジニアとも

仲がよいですよね。普段はどんなソフ

トウェアを使っているのでしょうか。

エンジニア同士の横のつながりなど、

考えを教えてください。

IRAFという天文用のシェルを

使ったり、IDLというまた専門のス

クリプト言語を使うこともありまし

たが、最近ではC++とPythonを組

み合わせて使うことが多いですね。

世界の天文仲間と一緒に働いていて

感じることは、皆いろんな発想が

あっておもしろいことなんです。だ

から同じ日本人でもまったく業界が

違うと、どんな驚きがあるのか見て

みたいですし、発想があるのは重要

ですので、日本のITエンジニアがこ

の分野に入ってくることは大歓迎で

す。私自身もデータ解析や装置制御

のためのソフトを書きますので。

仕事以外で、空いた時間で何をし

たいですか？

時間があればSFをもっと読み

たいです。物理学者が書いたハード

SFとかもあって、相対性理論とか

物理がわかっているとおもしろかっ

たりするようなものもありますね。

もし宇宙船で行けるなら、遠くまで

行って実際に天体がどうなっている

かを見たいですね。観測だと平面で

しか見えないですが、実際にどう

なっているかを知りたいです。タイ

ムマシンは想像の世界だと思います

が、宇宙人はいると思います。これ

だけ星があれば、地球だけが奇跡だ

とは思えないですし、生命体がまっ

たくいないというのはありえないと

思います。

お酒はいける口ですよね。好き嫌

いはありますか？

ビールは苦手ですので、ワイン

や日本酒をよく飲みます。嫌いな食

べ物はきゅうりとかのウリ系です。

何でも食べられるのはうらやましい

です。海外出張でのレストランのメ

ニューがフランス語で文字だけだっ

たりすると、嫌いなものが入ってな

いかわからず困るんです。もう、こ

れでいいやと雰囲気で選んでいます

（笑）。メニューの単語をスマホで調

べられればいいのですが、かしこ

まったところに連れて行かれたりす

るとそれはできないので。

好き嫌いがあって、なおかつTPO

に合わせているのですね。なんでも

オッケーで所かまわず明るく振る舞う

方なのかと思っていました。

天文に限らず数学・物理系は

フォーマルというのはあまりないの

ですが、偉い先生方とご一緒するこ

ともあったりしてそういうところだ

と緊張します。逆にITのイベントで

は積極的にいろんな手法で盛り上げ

てますね、コスプレとか……。

おもしろい恰好をしていると、一

緒に写真を撮りたくなりますよね。と

ころで、彼女はいらっしゃるんです

か？

はい。院生時代からつき合って

いる彼女がいます。彼女も衛星を利

用した天体の観測で研究に没頭して

います。天体系は女性の比率が2割

ぐらいで、理系にしては多いほうだ

と思います。ハワイの教授で夫婦と

かいますしね。そういえば学会の

メーリングリストで、夫婦でそろっ

てでは理事には任命できないから注

意してくださいってお触書が出るぐ

らいなんです。

おおお、ひもりんさんって基本的

にオープンですよね。今日は難しいこ

とをたくさん教えてもらいました。あ

りがとうございました。ｦ

12 - Software Design12 - Software Design

Raspberry Pi 2

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 54 回

秋葉原発！

　2月2日に、突然発表されたRaspberry Pi 2

（写真1）をすでにご存じの読者も多いでしょ
う。従来のRaspberry Piには、今となっては
古い感じのするARM11コアのSoCが搭載され
ていました。このため、筆者はあまりRaspberry

Piを使わずにきていたのですが、Cortex-A7の
4コアを搭載となると話が違ってきます。最初
から脱線してしまいますが、このRaspberry

Pi 2の何が変わったのかということを紹介さ
せてください。
　Raspberry Pi 2の一番の変更点は、搭載し
ているSoCの変更です。BroadcomのBCM2836

というチップが採用されました（写真2）。Rasp

berry Pi財団の発表によると、マルチスレッド
の一般的なベンチマークを実行したときのパ
フォーマンスが従来機と比較して6倍になった
そうです。Cortex-Aには、NEONというSIMD

（単一命令複数データ処理）拡張機能が搭載され
ていて、ビデオや画像処理といったマルチメ
ディア処理を高速に行うことができるように

なっています。こういった命令を使うアプリ
ケーションの場合、20倍以上のパフォーマンス
を出せることもあるそうです。メモリも増えま
した。従来のRaspberry Piは、256MBか512

MBのRAMが搭載されていましたが、Rasp

berry Pi 2では1GB搭載されています（写真
3）。従来のRaspberry Piでは、メモリのチッ
プはSoCに重ねて親亀子亀のように搭載され
ていましたが、Raspberry Pi 2では、基板の底
面に搭載されています。これらの変更で、遅
かったRaspberry Piも快適に使うことができ
そうです。
　CPUアーキテクチャが変わったことに伴い、
Raspberry Piに提供されているRaspbianとい
うディストリビューションの新しいバージョン
には、従来のRaspberry Pi向けのkernelと、
Raspberry Pi 2向けのkernelの2種類が含まれ
ています。これらのkernelは、起動時に切り
替えて使用されるようになっています。
　Raspberry Pi Model B+とRaspberry Pi 2

Model Bの形状は同じですが、基板に搭載され
ている部品の配置が変わっています。このた

 ▼写真1　Raspberry Pi 2 Model B ▼写真2　Broadcom BCM2836

6LoWPANしてみよう（中編）

http://www.switch-science.com/

12 - Software Design Apr. 2015 - 13

第 54 回

12 - Software Design

め、一部のケースには、Raspberry Pi 2をうま
く収めることができなくなっていますので、こ
の点は注意が必要です。

　さて、前回6LoWPANのちょっとした実験
をしてみるために、Raspberry Piを使いまし
た。しかし、せっかくパフォーマンスの向上し
たRaspberry Pi 2が登場したのですから、
6LoWPANの実験もRaspberry Pi 2でしてみ
たくなります。しかし、NordicのIoT SDKと
ともに配布されているのは、従来のRaspberry

Pi用のkernelのみです。ここは、新しいRasp

berry Piとkernelで6LoWPANをしてみるた
めにも、Raspberry Piのkernelをビルドしてみ
ることにしましょう。
　kernelのビルド、しかもクロスコンパイルと
なると少々面倒な気がします。筆者は面倒なの
が嫌いですので、何かよい方法はないかと探し
てみたところ、Adafruitが配布している、
Kernel-o-Matic注1というソリューションを見つ
けました。Adafruitは、ニューヨークにある、
オープンソースハードウェアをオンライン販売
している企業です。アダフルートとよく誤読さ
れますが、AdafruitのAdaは、世界初の女性プ
ログラマと言われる、エイダ・ラブレスにちな
んで名付けられています。ですので、エイダフ
ルートが正しい読み方です。

注1） https://learn.adafruit.com/raspberry-pi-kernel-o-
matic/

kernelのビルド

　このKernel-o-Maticは、Linuxの仮想マシン
を立ち上げてビルドするというしかけで、とて
もうまくできていて感動しました。Kernel-o-

Maticを実行するには、VirtualBoxと、Vagrant

という開発環境を手軽にデプロイすることので
きるソフトウェアを用意します。Kernel-o-

Matic本体は、GitHubにありますので、zipでダ
ウンロードするか、git cloneで入手できます。
これらを用意したら、ビルド環境を構築し、ス
タートするために必要なことは、たった1つ、
“vagrant up”とコマンドを実行するだけです。
あとはKernel-o-Maticに入っているVagrant

の設定ファイルによって、仮想マシンのセット
アップと実行が自動的に行われます。
　こうして起動した仮想マシンにログインする
のも簡単です。“vagrant ssh”とコマンドを実行す
るだけで、仮想マシンへのログインができます。
ログインしたところで、仮想環境にadabuild

というRaspberry Pi向けのkernelビルドツー
ルがインストールされていますから、これを

実行します。root権限が必要ですので、“sudo

adabuild”とコマンドを実行します。
　adabuildを実行すると、kernelのビルドに必
要なソースをリポジトリから環境内にクローン
してくれます。クローンを終えると、ビルドす
るkernelの設定を行う画面が出てきます。こ
こでは、6LoWPANをサポートしたkernelをビ
ルドしたいので、“Networking support”の“Net

working options”（図1）と“Bluetooth subsystems

support”の6LoWPAN関連のオプションを有効
にします（図2）。具体的には、図の枠で囲った
部分です。
　選択を終えてExitすると、kernelのビルドが
始まります。先述のとおり、Raspbianには新旧
それぞれのkernelが用意されますので、同じ
ことを再度行う必要があります。
　kernelのビルドを終えると、custom_kernel
_1.????????-1.tar.gzというアーカイブが
Kernel-o-Maticのディレクトリに保存されてい
ます。Adafruitのチュートリアルでは、Adafruit

 ▼写真3　メモリのチップ

6LoWPANしてみよう（中編）

https://learn.adafruit.com/raspberry-pi-kernel-o-matic/

14 - Software Design

はんだづけカフェなう
秋葉原発！

Pi Finderを使って転送する例が記載されてい
ましたが、筆者は面倒でしたのでsftpで
Raspberry Piにアーカイブを転送しました。
　Raspberry Piにログインし、このアーカイ
ブを展開し、中に入っている install.shをroot

権限で実行すれば、今回ビルドしたkernelを
インストールできます。インストールを終えた
ら、Raspberry Piをリブートしてみましょう。
これで、6LoWPAN over BLEをサポートした
kernelで起動できました。

　前回詳しく書けなかった、NordicのIoT SDK

のビルド方法についても説明します。
　今回、ビルドは、KeilのMDK-ARM 5.14注2

注2） http://www.arm.com/ja/products/tools/software-
tools/mdk-arm/index.php

IoT SDKのビルド

を使ってみました（図3）。MDK-ARMは商用の
コンパイラですが、32kBまでのバイナリであれ
ば、ライセンスキーを入力していない無償の
MDK-Liteでビルドできます。MDK Version 5

では、ターゲットとするマイコンの情報を
Legacy Support注3という別のパッケージで提
供しています。Legacy Supportもインストール
しましょう。
　MDK-ARMをインストールしたところで、
IoT SDKのアーカイブに含まれている¥Nordic
¥nrf51¥examples¥iot¥nrf_udp_server¥boards
¥pca10001¥arm¥app_nrf_udp_server_pca
10001.uvprojを開きます。このファイルは
MDK-ARMのプロジェクトファイルです。開
くとDevice Support Checkというエラーのダ

注3） http://www2.keil.com/mdk5/legacy/

 ▼図1　Networking supportのNetworking optionsを有効にする

 ▼図2　Bluetooth subsystems supportの6LoWPAN関連のオプションを有効にする

http://www.arm.com/ja/products/tools/software-tools/mdk-arm/index.php
http://www2.keil.com/mdk5/legacy/

14 - Software Design Apr. 2015 - 15

第 54 回

最後に

イアログ（図4）が表示されますが、とくに問題
なくビルドすることができました。
　ここでビルドしたNordicのIPv6 Stackを
使ったUDP Serverのサンプルの場合、アプリ
ケーションバイナリのサイズが32kB以下です
ので、MDK-Liteでビルドできます。試しに、
lwipというオープンソースのIPスタックを
使った、TCPサーバのサンプルをビルドしてみ
たところ、バイナリのサイズが32kB以上にな
るため、リンカがエラーを出力してビルドでき
ませんでした。
　nRF51822へのビルドしたプログラムの書き
込みは、HRM1017評価キットの場合は添付の
J-Link Liteというアダプタを使って行います
（写真4）。ボードとパソコンを、J-Link Liteで
接続して、MDK-ARMで“LOAD”ボタンをク
リックするだけで書き込みを行うことができま
す。また、前回紹介したSoftDeviceのHEX

ファイルも書き込まなければなりません。Soft

Deviceは、¥Nordic¥nrf51¥components¥softde
vice¥s1xx_iot¥s1xx-iot-prototype2_soft
device.hexですので、このファイルをnRFgo

Studioで開いて書き込みます。

　今回は、開発環境の準備を中心に紹介してき
ました。いろいろと用意しなければならないも
のがありますが、このような手順を踏んで環境

を用意しています。nRF51822のドキュメント
や開発ツールは、従来、Nordicのプロダクト
キーが添付された評価ボードを購入しなければ
入手できませんでした。2月から、これらの情
報はキーやユーザ登録を要することなく、
NodicのWebサイト注4からダウンロードできる
ようになっています。ｦ

注4） http://www.nordicsemi.com/eng/Products/Bluetooth-
Smart-Bluetooth-low-energy/nRF51822

 ▼図3　MDK-ARMでビルドをしたところ

 ▼図4　Device Support Checkエラーのダイアログ

 ▼写真4　HRM1017評価キット

6LoWPANしてみよう（中編）

http://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ

「DATAHOTEL CURRY」
IT インフラ・EC 支援・セキュリティ事業の「テコラス」（旧データ
ホテル）と中目黒の人気店「ウルトラ★チョップ」コラボのレトル
トラムカレー。まろやかなルーとラムが相性抜群で、ライスでもブ
レッドでもおいしく召し上がれます。2 箱ずつ 5 名様の提供です。
 提供元 テコラス　 URL https://techorus.com

みんなの Raspberry Pi 入門
［対応言語：Python］

石井 モルナ、江崎 徳秀 著／
B5 変形判、360 ページ／
ISBN ＝ 978-4-89797-972-4

初心者向けの Raspberry Pi の解説書。使用言語である Python の基
本を教えつつ、それを使った各種デバイスとの接続や制御を解説し
ています。Raspberry Pi Model B+、Python2.x に対応しています。
 提供元 リックテレコム　 URL http://www.ric.co.jp/telecom

iPhone 用置くだけ
チャージャ＆パワーバンクセット
iPhone をワイヤレスに充電できるセット商品です。Lightning コネクタに充電シートを挿し
て充電ボードに置くだけで、ケーブル不要で充電できます。ボードは 4,000mAh のモバイル
バッテリを内蔵し、USB コネクタから給電・ほかのスマホへの充電もできます。シートは
1mm と薄く、その上から iPhone カバーをかけられます。iPhone 5 以降の機種に対応。
 提供元 サンコー　 URL http://www.thanko.co.jp

『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2015 年 4 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

Effective Ruby
Peter J.Jones 著／長尾 高弘 訳／ arton 監修／
B5 変形判、216 ページ／
ISBN ＝ 978-4-7981-3982-1

中〜上級者向けの技術書「Effective」シリーズの最新刊。効率性を
高めるコードを書くための 48 の Ruby プログラミング技法を、論
理値や演算子ひとつひとつの意味も深く考えながら解説しています。
 提供元 翔泳社　 URL http://www.shoeisha.co.jp

Serverspec
宮下 剛輔 著／
A5 判、248 ページ／
ISBN ＝ 978-4-87311-709-6

サーバ環境のテストフレームワーク「Serverspec」の解説書。開発
者自らが執筆しており、内部の構造から開発に至る経緯、開発に関
する哲学など、作者ならではの内容が盛り込まれています。
 提供元 オライリー・ジャパン　 URL http://www.oreilly.co.jp

イミテーション・ゲーム特製クリアファイル
『イミテーション・ゲーム／エニグマと天才数学者の秘密』公開記念
特製クリアファイル（A4 版）です。第二次世界大戦下のイギリス、
天才数学者アラン・チューリングが世界最強の暗号＜エニグマ＞の
解読に挑みます。TOHO シネマズみゆき座ほか全国で公開中です。
 提供元 ギャガ　 URL http://www.gaga.co.jp

事例から学ぶ情報セキュリティ
——基礎と対策と脅威のしくみ
中村 行宏、横田 翔 著／
A5 判、320 ページ／
ISBN ＝ 978-4-7741-7114-2

情報漏えい・サイバー攻撃・脆弱性・マルウェア・フィッシングな
どの事例やしくみを説明し、それぞれの対策方法をまとめた本です。
情報セキュリティの事例アーカイブとしても有用です。
 提供元 技術評論社　 URL http://gihyo.jp

1 名

3 名5 名

2 名 2 名

2 名 2 名

※製品に iPhone は付属しません

© 2014 BBP IMITATION, LLC

http://sd.gihyo.jp/
http://www.thanko.co.jp
https://techorus.com
http://www.gaga.co.jp
http://www.shoeisha.co.jp
http://www.oreilly.co.jp
http://www.ric.co.jp/telecom
http://gihyo.jp

思わぬミスでトラブル発生！　安定稼働しているシステムほど、足下をすくわれたときイタイことにな
り ま す。 そ ん な と き こ そ 達 人 た ち の 技 を 参 考 に 自 分 の 技 術 を 磨 い て み ま せ ん か。 第 1 章 で は、
ネットワーク、サーバ・インフラを舞台に障害発生の原因追及と対処方法を探求します。第 2 章では最近
急速に普及しているクラウド環境でのトラブルシューティングテクニックを紹介します。第 3 章では、少し見
方を変えてソフトウェア開発の現場での障害を俯瞰し、トラブルを未然に防ぐさまざまな考え方を示します。

第1特集

トラブル
　シューティング
 の極意

サーバ・インフラ・ネットワーク編第1章

こんなときどうする !?
ネットワークやサーバのチェックポイント ..361-5 Author 長谷川 猛

サポート観点から見た
トラブル時の情報収集法 ...321-4 Author 野波 圭吾

Web システム障害時における
トラブルシューティングの手順 ...281-3 Author 佐野 裕

SSH でありがちなトラブルとその対策
不都合なくSSHを使えていますか？ ..231-2 Author 清水 勲

設計・運用者が陥りやすい
認識違いや思い込みに起因するトラブル ..181-1 Author 伊勢 幸一

クラウド編第2章

SoftLayer の運用でわかったこと
クラウド環境でとくに必要な複数視点 ...512-3 Author 常田 秀明

低レイヤから行う原因調査
AWS上に構築されたシステムのトラブルに遭ったときに462-2 Author 柳瀬 任章

振り返り・言語化・体系化
MSP直伝のトラブル対策マニュアル ..412-1 Author 馬場 俊彰

ソフトウェア開発編第3章

むやみやたらにデバッグ＋テストしていませんか？
「ソースコード」の指紋からわかるバグの原因 ...653-3 Author 細川 宣啓

悪循環からの脱出
ソフトウェア開発の時短術＋見極め技..613-2 Author 増田 亨

［実例満載］
現場での対応と改善の手段 ...563-1 Author 近藤 正裕

C O N T E N T S

—— 達人に訊く
問題解決のヒント

サーバ・インフラ・ネットワーク、
クラウド環境、ソフトウェア開発

18 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

　障害報告を受けて、サーバ管理者はサーバ
障害の可能性を考え、該当するファイルサー
バにリモートログインしてサーバの状態を確
認します。まず、topコマンドでプロセスの状
態を見ますが、CPU使用量の高いプロセスも
なく、大量にメモリを消費しているプロセス
はありません。次に、sarや iostat、mpstat、
vmstatなどのコマンドを実行してプロセスや
メモリの状態をチェックしても、iowaitプロ
セスやwait run timeプロセスもそれほど多く
なく通常の状態です。

サーバに異常なし

　さてはDoS攻撃かと思ってnetstatを見ても、
アタックされたときに多く発生するSYN_

RECV、WAIT_FIN、LAST_ACK状態のセッ
ションは見当たりません。またNagiosや

Zabbixなどの監視ツールを見ても、ポートの
トラフィック量は正常です。NICの障害かと
考えてシステムログを見ても、とくにエラー
は見当たりません。念のため、同じスイッチ
に接続されているサーバ間で iperfを実行する
と、GbEインターフェースで945 Mbpsの性能
が出ています。ログからファイルシステムも
しくはディスクに問題はないかどうか確認し
ても、とくにディスク I/Oエラーなどの障害
は発生していません。どうみてもサーバの健
康状態は正常に見えます。

ネットワーク経路のチェック

　管理者はどうやら問題はサーバではなくネッ
トワークにあると考えましたが、iperfによるパ
フォーマンスチェックに問題はなかったので、
サーバのネットワークインターフェースではな

EthernetやTCP/IPが、一般的なコンピュータネットワークとして利用されはじめてから30年近く経ちました。
近年、ネットワークトラブルといっても機器障害などのハードウェア的な故障か、外部からのDDoS攻撃、セキュ
リティホールクラックなどが多く、ネットワークトポロジーに関わるフラッディングやブロードキャスト、ブリッ
ジループによるパケットストームが発生することは非常にまれになってきています。
運用においても設定をデプロイするまえにグループ内で必ずクロスチェックやレビューを行っているでしょう。
一般ユーザがネットワークに影響を及ぼすようなアプリケーションをインストールできないような処置を施し
たり、実験的なネットワークを隔離したり、設定ミスやプログラムのバグでネットワーク全体が落ちるというケー
スはほとんどありません。
それでもトラブルは発生していますが、最近耳にする障害の多くは設定ミスやプロトコル上のバグなどではなく、
設計者、運用者による間違った認識や思い込みによる些細な原因で発生しています。

1-1
 Author 伊勢 幸一（いせ こういち）　テコラス技術研究所 所長／ Twitter @ibucho

設計・運用者が陥りやすい

認識違いや思い込みに
起因するトラブル

トラシュー事例（初級編）
「ある特定のファイルサーバに対する通信が不安定で
あり、アプリケーションからサーバ上のファイルをアク
セスすると、時折そのレスポンスが非常に遅くなる」

18 - Software Design Apr. 2015 - 19

サーバ・インフラ・ネットワーク編

1-1 認識違いや思い込みに起因するトラブル 第1章

さそうです。次に疑ったのはネットワークの経
路です。まず各クライアントマシンからサーバ
への到達性を確認するためpingを実行しました。
これもすべてレスポンスがあり、疎通はできて
います。次にtracerouteによってIPネットワー
クの経路を確認しました。クライアントからサー
バへのホップ数は設計どおりになっており、経
路が迂回されていたり特定のリンクに経路が集
中している様子もありません。
　一通りのチェックを実行した結果、サーバに
もネットワークにも問題は見受けられませんで
した。しかしレスポンスが遅いという問題は解
消していないので、どこかに原因があるはずです。
もしかするとツールやコマンドでのヘルスチェッ
クでは検出できない物理的現象の問題かもしれ
ません。誰かがサーバをメンテナンスした際、
ケーブルを折り曲げたり、ポートへの差し込み
が甘かったりしている可能性があります。

サーバラック内部のチェック

　管理者はマシンルームへと向かい、該当す
るサーバが格納されているラックを開け、
RJ45コネクタの差し込み具合をチェックした
り、ケーブルを交換したり、接続ポートを変
えたりしながらサーバを再起動して様子をみ
ます。レスポンスが異常に遅いという障害がいっ
たん解消されますが、数時間後、サーバの反
応が不安定になり再び障害が露見しました。ケー
ブルやポートなどではなく、スイッチ本体に
障害があるのではないかと考え、ネットワー
ク管理者に依頼してスイッチを交換してもら
いました。しかし同じようにいったん障害が
復旧しますが、しばらくするとまた同じ症状
になってしまいます。

違和感の正体

　管理者は原因がわからなくなってしまい、
次に何をチェックするといいのかさえ思いつ
かず、ラックの前後を行ったり来たりしながら、
スイッチやサーバを眺め回すしかありません

でした。ふと、ラック内に設置されているパッ
チパネルを眺めているときのことです。

　「おや？」

　管理者は何か違和感を感じました。それが
何を意味するのかハッキリと考えがまとまり
ませんでしたが、ジロジロとラックの中を見
回し、再びサーバとスイッチを凝視して思わ
ず声をあげます。

　「あっ！」

　そのパッチパネルに、バックボーン側から
接続されているファイバケーブルの色が黄色
だったのです。今では橙、青、緑、ピンクな
ど各メーカーがさまざまな色のマルチモード
ケーブルを提供していますが（写真1）、ケーブ
ルの色が黄色であるということは、それが例
外なくシングルモードケーブルであることを
意味します。しかも、スイッチのアップリン
クポートからパッチパネルへ接続されている
ケーブルの色はオレンジなのです。
　スイッチ側の光ピックアップポートを確認
すると、1000BASE-SXと刻印されており、
本来ならばこのスイッチとバックボーンはマ
ルチモードで接続されるべきでした。障害の

 ▼写真１　シングルモードファイバとマルチモードファ
 イバ（※イメージ）

黄色のファイバーケーブル

20 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

原因はスイッチとバックボーンのファイバモー
ドミスマッチだったのです。
　おそらく機器調達者は、スイッチを設置するラッ
クから集約スイッチまでの距離が1000BASE-

SXの最大有効距離よりもかなり短かったので、
マルチモードで十分だと判断したのでしょう。
しかしファイバ工事担当者は、フロアにまたが
る長距離配線や複数のパッチパネルを介する配
線などを行っているため、とくに念を押されな
い限り、ファイバの敷設はシングルモードファ
イバを手配していたと思われます。つまり原因
は、ネットワーク機器調達の担当者と配線工事
の担当者との間で、情報が正確に伝達していな
かったためだったのです。

思い込みは危険

　このケースの厄介なところは、ファイバモー
ドが異なっていてもある程度の通信は可能で
あり、パフォーマンスが劣化したり、エラー

が頻発したりするのは、接続してから時間が
経過し、かつ高トラフィック負荷が掛けられ
たときに初めて露見するということです。まっ
たく通信できないわけではないので、通常の
トラブルシューティング手法ではなかなか原
因がつかめず、直接マシンルームまで足を運
ばないと原因が特定できません。
　初めて光インターフェースを導入したりファ
イバーを敷設したりするときでは、シングルモー
ドかマルチモードか、マルチモードはSPか
GIか、コネクタ形状はLCかSCかなどを注意
深くチェックするものです。しかし、運用が
長期に渡ると、しだいに繰り返し習慣化して
いる調達や作業など、各人の思い込みのまま
に行ってしまいがちになり、このようなまっ
たく初歩的なミスによる障害に多くの時間を
取られることになってしまいます。そのため、
各人の思い込みではなく、常に作業者間で正
確な情報の確認を行うことが大切です。

　システム管理者が詳細を聞いてみると、サー
ビスの状態を監視する監視サーバを入れ替え
た途端、監視サーバから今までアクセスでき
ていたデータベース（以後DB）サーバへ接続し
ようとしてもタイムアウトしてつながらない
とのことです。
　まずDBサーバにログインし、データベース
プロセスが起動しているかどうか確認しました。
問題ありません。次に監視サーバとDBサーバ
との疎通を確認するためDBサーバから新しい
監視サーバへpingを実行すると正常にレスポ
ンスが返ってきます。
　OSの iptablesとデータベースのセキュリティ
フィルタで監視システムの IPアドレスがブロッ
クされていないかどうかを確認すると、これ
も該当する IPアドレスからのアクセスはすべ

て許可されています。ネットワーク的疎通に
問題があるようには思えません。

データベースのログをチェック

　データベースのログを見ると、監視サーバか
らの接続要求を受け取ってはいますが、接続が
確立されぬままタイムアウトでクローズしてい
ます。そこで、netstatで確認してみるとインター
フェースにいくつものSYN_RECVセッション
がありました。これは監視サーバからのSYN要
求が正常に処理されておらず、OSレベルでも
TCPセッションが確立できていないことを示し
ています。監視サーバからのSYN要求は届い
ているので、問題はDBサーバがSYN_ACKを
返していないか、監視サーバがSYN_ACKに対
するACKを返していないかのどちらかです。

トラシュー事例（上級編）
「監視サーバをリニューアルしたらデータベースサーバ
とつながらなくなってしまった」

20 - Software Design Apr. 2015 - 21

サーバ・インフラ・ネットワーク編

1-1 認識違いや思い込みに起因するトラブル 第1章

　そこで、tcpdumpを使ってDBサーバのネッ
トワークインターフェースをパケットトレー
スすると、DBサーバは監視サーバのSYN要
求にSYN_ACKを返していません。すると
DBインスタンスか、OSのTCP/IPドライバ
のどちらかに問題があると考えられますが、
監視サーバ以外のホストとは問題なくTCPセッ
ションを確立できているので、DBにもOSに
も問題があるとは思えません。監視サーバと
の間に限ってTCPセッションが確立されない
という不可思議な現象です。

問題を切り分けして
原因を特定する

　障害対応は暗礁に乗り上げてしまいましたが、
このままにしておくわけにも行かないので、
管理者は再び障害の切り分け作業を繰り返し
ました。DBサーバから監視サーバにpingをす
ると、問題なくレスポンスが返ってきます。
念のため監視サーバのアカウントをもらい、
監視サーバからDBサーバにpingを実行して
みると、レスポンスが戻ってきません。つま
りpingの送信方向によっては接続の疎通が取
れない状態となっています。
　問題を整理すると、

(1)DBサーバが監視サーバへSYN_ACKを返
していない
(2)DBサーバから監視サーバへの疎通はあるが、
逆方向の疎通はない

ということです。(1)の原因はわかりませんが、
(2)の問題はサーバ間の経路が非対称となって
いて、それが原因なのではないかと想像でき
ます。DBサーバのネットワークインターフェー
スを「netstat -i」で確認するとプライマリとセ
カンダリという2つのインターフェースによっ
てマルチホーム接続をしていました。そこで
DBサーバのセカンダリインターフェースに対
して tcpdumpを実行し、監視サーバから接続
要求を出してみると、DBサーバはたしかにセ
カンダリインターフェースからSYN_ACKを
返しています。しかし、監視サーバではその
SYN_ACKを受け取っていません。
　SYN_ACKがネットワークの途中で消失し
ているのでしょうか？　しかしそれはちょっ
と考えにくい現象です。そこで、監視サーバ
が接続されているスイッチポートをミラーし、
別のサーバをミラーポートに接続して監視サー
バのポートまでSYN_ACKが届いているかど
うかを確認してみると、SYN_ACKはたしか
に監視サーバのポートまで届いています。つ
まり、監視サーバはDBサーバからのSYN_

ACKを受け取っても、OSのTCP/IPレイヤ
で破棄しているのです。
　再び、DBサーバのインターフェースアドレ
スを確認すると、セカンダリインターフェー
スの IPセグメントは監視サーバの IPセグメン
トと同じアドレス空間でした。つまりサーバ
間のネットワークは図1のような状態にあるわ

ルータ

スイッチ

DBサーバ
192.168.1.254

192.168.2.2

192.168.2.254

192.168.1.1
 sdb01

192.168.2.1
監視サーバ

 ▼図1　非対称経路

22 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

けです。
　システム管理者は監視サーバをインストー
ルした担当者に詳しく聞いたところ、監視サー
バはDBサーバのプライマリインターフェース
に紐

ひも

付いたホスト名でサーバへの接続を行っ
ているとのことです。

パケットの追跡

　ここでパケットの流れを追跡してみましょう。
監視サーバはDBサーバへの接続要求をsdb01

というホスト名で行おうとしています。sdb01

はhostsファイルで192.168.1.1/24であり、こ
れはDBサーバのプライマリインターフェース
のアドレスです。したがって sdb01への接続
要求パケットは、監視サーバの192.168.2.2/24

のインターフェースからデフォルトルータの
192.168.2.254に対して送られ、ルータは受け
取ったパケットを192.168.1.254インターフェー
スからDBサーバの192.168.1.1/24へ向けてパ
ケットを転送します。DBサーバは受け取った
パケットを解釈してSYN_RECVモードになり、
SYN_ACKを192.168.2.1/24のセカンダリイン
ターフェースから監視サーバへ送り返します。
なぜなら、監視サーバの IPセグメントはセカ
ンダリと同じなので、プライマリではなくセカ
ンダリから直接配送できるからです。しかし、
監視サーバはそのセカンダリから送られたパケッ
トを破棄しています。

OSアップデートの落とし穴

　再び管理者は監視サーバ担当者にアップデー
トする前と後で何か変更したことはないかを尋
ねると、アプリケーションをアップデートする
前にサーバOSのメジャーバージョンを1つ上
げているとのことです。ここで管理者の脳裏には、
非対称経路におけるセキュリティ問題が浮かび
上がりました。そこで管理者がOSのリリース
ノートを確認すると、新しいOSリリースでは
非対称経路で送られてきたパケットをセキュリ
ティ上の処置として破棄する、となっています。
逆に古いOSリリースでは非対称経路パケット
はデフォルトで受信するという仕様です。結局
原因はネットワークのトポロジーとサーバ運用
とがミスマッチであった（同セグメントリンク
があるにもかかわらず、ルータ経由のホスト名
で接続していた）ことと、監視アプリケーショ
ンのインストールに伴い、OSもアップグレー
ドしたことによるセキュリティ障害でした。
　ネットワークのトポロジ設計と、サーバとア
プリケーションの運用が、連携せずに別々に行
うことによる障害はよく発生します。システム
開発設計と運用設計と運用作業を別々のチーム
で別々に考えるのではなく、これらは「安定した
サービスを継続して提供する」という同じ目的を
実現するための同じチーム内における作業分担
にすぎないという認識が必要なのかもしれません。

　トラブルシューティングは単に机上の理論や
知識だけではなく、実際の環境で起こり得るさ
まざまな原因に対処するための経験や担当者間
の情報伝達、チームワーク、コミュニケーショ
ン力など属人的要素が大きく影響します。筆者
が主宰する学生を対象とした ICTトラブル

シューティングコンテスト注1や、Webシステム
のチューニング技術を競う ISUCON注2など、
現実問題に対処するコンテストやセミナーなど
に積極的に参加し、トラブルシューティング力
を上げることを心がけたいものです。ﾟ

注1） URL http://icttoracon.net/?p=198

注2） URL http://isucon.net/

まとめ

http://icttoracon.net/?p=198
http://isucon.net/

23 - Software Design Apr. 2015 - 23

　SSHでサーバにログインしようとしたとき、
「Permission denied, please try again.」の表示
や、公開鍵認証なのにパスワードを求めら

れてログインできないという事象は、多くの
方が遭遇したことがあるかと思います。この
場合によくある代表的な原因をいくつか挙げ
ます。

鍵のミスマッチ

　sshコマンドの「-i」オプションで指定した秘
密鍵、もしくは ssh-addコマンドで ssh-agent

に登録した秘密鍵（ssh-agentの詳細について
は後述しています）と、サーバに設置してある
公開鍵が一致しない場合はログインすることは
できません。正しい鍵を用意して置き換えるこ
とができれば対処は簡単ですが、鍵を比較しな
いと正しいかどうか判断できません。どの鍵と
一致しているかどうかを確認する方法の1つと
して、それぞれの鍵のフィンガープリントを比
較する方法があります。
　フィンガープリントとは、公開鍵からハッシュ
関数を使って作られるユニークな文字列です。
ssh-keygenコマンドの「-l」オプションを使って、

鍵のフィンガープリントを表示できます。

$ ssh-keygen -l -f key_file
2048 e6:ef:57:c6:20:b6:40:1c:44:cd:cb:ｭ
8f:fc:90:40:5d username@hostname (RSA)

　このコマンドは、複数の鍵を管理している場
合などで、キーペアを確認することに役立ちま
す。万が一、公開鍵を紛失した場合や、何の公
開鍵かがわからなくなってしまった場合は、秘
密鍵から公開鍵を生成することもできます。
ssh-keygenコマンドの「-y」オプションを使うこ
とで、秘密鍵をもとに公開鍵を表示できます（パ
スフレーズが設定されている場合はパスフレー
ズの入力が必要です）。

$ ssh-keygen -y -f secret_key_file
ssh-rsa AAAAB3NzaC1yc2……

パーミッションの問題

　手元の秘密鍵のパーミッションに問題がある
とログインできません。たとえば、秘密鍵ファ
イルのパーミッションが0644の場合、sshコマ
ンド実行時に図1のようなエラーが発生します。

LinuxやBSDなどのサーバを扱う上で欠かせないSSH（Secure SHell）ですが、鍵の管理や認証まわりで多くの
トラブルが起こり得ます。SSHは、サーバのオペレーションだけではなく、Gitなどの開発ツールでの利用、ソー
スコードのデプロイなどでも欠かせないプロトコルとなっており、利用する機会は非常に増えています。
本節では、読者の多くは公開鍵認証方式でのSSHを利用していると想定して、パスワード認証方式ではなく、公
開鍵認証方式を使ったSSHでよくあるトラブルとその対策について触れていきます（SSHの接続元をクライア
ント、接続先をサーバとして解説します）。

1-2
 Author 清水 勲（しみず いさお）　㈱ミクシィ／ Twitter @isaoshimizu

SSHでありがちなトラブルとその対策

不都合なくSSHを
使えていますか？

トラシュー事例１
「ログインできない場合にありがちなこと」

24 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

　秘密鍵のファイルは、所有者のみが読み書
きできるように、パーミッションを0600に設
定しておくことが必要です。

シェルの
スタートアップファイルの問題

　ログイン時に読み込まれるシェルのスター
トアップファイル（$HOME/.bashrcなど）の記
述に問題があるとSSHやSCP（Secure Copy）
ができない場合があります。
　たとえば、接続先のサーバの$HOME/.bashrc

の先頭に別のシェル（たとえば/bin/zshなど）
を起動するように設定していると、SCPがで
きなくなったり、SSH越しのコマンド実行が
できなくなります。SSHでログインはできる
けどSCPができないといった場合には、スター
トアップファイルを疑ってみましょう。

ホスト認証用の公開鍵と
known_hostsの不一致

　初めてサーバに接続すると、サーバが持
つホスト認証用の公開鍵がクライアント側の

$HOME/.ssh/known_hostsへ記録されます。
known_hostsに公開鍵が記録されたままで、サー
バが持つ公開鍵が何らかの原因で変わった場合、
ssh接続時にエラーが発生します（図2）。
　サーバ側のホストキーの再生成や、OSの再
インストール時などによって遭遇することが多
くありますが、そうではない場合は、意図せず
なりすまされた別のサーバに接続しようとして
いる可能性もあるので注意が必要です。前者の
場合は、とくに問題はないため、known_hosts

ファイルから使わなくなった公開鍵を削除する
ことで解決します。削除は ssh-keygenコマン
ドの「-R」オプションを使います。

$ ssh-keygen -R ホスト名
/home/isao.shimizu/.ssh/known_hosts ｭ
updated.
Original contents retained as /home/ｭ
isao.shimizu/.ssh/known_hosts.old

　ここまでは、とくに基本的なログインに関
わるトラブルと対策について解説してきました。

 ▼図1　秘密鍵ファイルのパーミッションに問題がある場合

@@@
@ WARNING: UNPROTECTED PRIVATE KEY FILE! @
@@@
Permissions 0644 for '.ssh/id_rsa' are too open.
It is required that your private key files are NOT accessible by others.
This private key will be ignored.
bad permissions: ignore key: .ssh/id_rsa
Permission denied (publickey).

 ▼図2　ホスト認証用公開鍵とknown_hostsの不一致時に起きるエラー

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
1a:91:35:c3:58:2a:21:cb:de:72:02:51:37:2d:83:64.
Please contact your system administrator.
Add correct host key in /home/isao.shimizu/.ssh/known_hosts to get rid of this message.
Offending RSA key in /home/isao.shimizu/.ssh/known_hosts:9
RSA host key for 192.168.0.10 has changed and you have requested strict checking.
Host key verification failed.

24 - Software Design Apr. 2015 - 25

サーバ・インフラ・ネットワーク編

1-2 不都合なくSSHを使えていますか？ 第1章

　SSHにはエージェント転送という機能があり、
正しく使いこなせると非常に便利で、SSHに
関わる作業効率が向上するでしょう。しかし、
正しく理解していないと使い方を間違っていた
り、エージェントが機能していなかったりとト
ラブルが多く、便利な機能にもかかわらず結局
使っていないといったことをよく見かけます。
まずは、エージェント転送の基本的な動作につ
いて解説します。
　エージェント転送について理解を深める前に、
SSHにおける公開鍵認証の流れを見てみましょ
う（図3）。

　公開鍵認証方式では、図3のように秘密鍵と
公開鍵を使って認証が行われます。この例では、
クライアントから1台のサーバへ接続するよう
な非常にシンプルな構成ですが、実際の運用
ではサーバからさらに別のサーバへログイン
することが多くあります。いわゆる「踏み台」
となるサーバを経由して、その先にある複数
のサーバへログインするというケースです。
この場合に秘密鍵の置き場所はどのようにす
べきでしょうか。
　秘密鍵を踏み台となるサーバに設置するこ
とで、さらに先のサーバへログインすること

　sshコマンド実行後、ログインに何秒も待た
される場合があります。これはサーバ側の
sshd_configの設定が原因というケースが多く
あります。よくある原因としてはホストの名
前解決によるもので、sshdにはUseDNSとい
う設定値があり、デフォルトでyesが設定され
ています注1。
　この設定が有効の場合、sshでクライアント
からサーバへ接続する際に、接続元のクライ
アントの IPアドレスから逆引きしてホスト名
を取得し、さらに正引きして IPアドレスに戻
して、もとの IPアドレスと同じになるかどう
かをsshdがチェックします。サーバ側のDNS

の設定（たとえば、resolv.conf、hosts、nsswitch.

confなど）が影響して、この名前解決がうまく

注1） 次期バージョンのOpenSSH 6.8でデフォルトがnoにな
る予定。

いかずにタイムアウトを待ってしまう場合に、
ログインが非常に遅くなってしまいます。こ
ういった場合は、UseDNSをnoに設定して問
題を回避できます。
　もう1つ、ログインが遅くなる原因として、
GSSAPIによる認証が有効になっていること
が挙げられます。GSSAPIとは、Generic

Security Standard Application Programming

Interfaceの略で、RFC 2743で定義されてい
る認証方式です。Kerberosと組み合わせて使
われることが多く、シングルサインオンを目
的として使われています。sshd_configには
GSSAPIAuthenticationという設定が用意さ
れており、デフォルトはnoとなっているため、
影響はほとんどないと思われますが、もしyes

になっていてシングルサインオンなどで
GSSAPIを使っていない場合はnoにして無効
にしておきましょう。

トラシュー事例2
「SSHのログインが遅い」

トラシュー事例3
「エージェント転送がうまくいかない」

しかし、SSHをより深く使っていくとさらな
るトラブルに遭遇するかもしれません。次は

少し上級者向けのトラブル事例と対策につい
て解説していきます。

26 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

はできますが、秘密鍵をサーバに置くことは
お勧めできません。万が一、秘密鍵が置いて
あるサーバに誰でもアクセスできてしまうこ
とになってしまい、秘密鍵を奪われた場合、
あらゆるサーバへログインすることが可能に
なるかもしれません。秘密鍵は特別な理由が
ない限りは手元に置きましょう。
　それでは、手元にしかない秘密鍵を使って、
さらに先のサーバへログインするにはどうし
たらよいでしょうか。ここで、エージェント
転送と呼ばれる機能を使います。エージェン
ト転送を使うことで、クライアントから踏み
台となるサーバへログインし、そこからさら

に別のサーバへログインすることができます。
　エージェント転送を使うには、ssh-agentコ
マンドを利用します。ssh-agentを起動すると、
鍵の転送用にUNIXドメインソケットを作成し、
SSH_AUTH_SOCK環境変数にソケットのパ
スを設定します。
　次に、ssh-addコマンドによって秘密鍵をエー
ジェントに追加します。この状態で、sshコマ
ンドを使ってサーバへログインしようとすると、
sshはSSH_AUTH_SOCK環境変数の有無を
チェックして、エージェントに登録されてい
る秘密鍵を使って認証します。このとき、ssh

コマンドでエージェント転送オプションであ

クライアント

秘密鍵

ssh-agent ssh sshd ssh

ssh-add

$HOME/.ssh/id_rsa

サーバ 1

公開鍵
$HOME/.ssh/authorized_keys

sshd

サーバ 2

公開鍵
$HOME/.ssh/authorized_keys

パスフレーズの入力

SSH_AUTH_SOCK
（Unix Domain Socket）

SSH_AUTH_SOCK
（Unix Domain Socket）

SSH_AUTH_SOCK
（Unix Domain Socket）

 ▼図4　SSHエージェント転送の例

クライアント

公開鍵認証

秘密鍵

ssh

$HOME/.ssh/id_rsa

パスフレーズの入力

接続要求

サーバ

公開鍵

sshd

公開鍵で暗号化したメッセージ

秘密鍵で復号化したメッセージ

メッセージが一致したら接続を許可

$HOME/.ssh/authorized_keys

 ▼図3　SSHにおける公開鍵認証

26 - Software Design Apr. 2015 - 27

サーバ・インフラ・ネットワーク編

1-2 不都合なくSSHを使えていますか？ 第1章

　SSHにかかわるコマンドやオプション、設
定ファイル、設定項目は決して少なくありま
せんが、非常によく起きるトラブルに対して
押さえておくべき基本的な点について解説し
ました。もし、すでにSSHに関して何か問題
を抱えている場合は、今回の内容が少しでも
問題の解決につながれば幸いです。
　LinuxやBSDでSSHを使う場合、OpenSSHを
使うことがほとんどだと思いますが、OpenSSH

は現在もバージョンアップが続けられており、
バグフィックスや新機能が多く追加されていま
す。バグによってトラブルが起きている場合は

バージョンアップによって解決するかもしれま
せん。新たなトラブルが起きた場合は、sshや
sshdのデバッグログを出力して動作を確認する
ことや、manコマンドを活用して各種設定項目
の詳細について理解を深めることで解決につな
がることでしょう。ﾟ

まとめ

.ssh/configを有効活用しよう

　sshコマンドを使う際、毎回同じオプションやユー
ザ名、IPアドレスなどを入力するのは無駄が多かっ
たり、オプションの設定漏れなどのトラブルが起
きやすいため、$HOME/.ssh/configという sshコマ
ンドで共通に使われる設定ファイルを用意しましょ
う。設定ファイルには、接続するすべてのサーバ
共通のオプション、サーバごとのオプションを定
義できます。ここではとくに便利だと思われる設
定について触れていきます。
　まずは、ForwardAgent。yesを設定すると「-A」
オプションと同等で、エージェント転送が有効に
なります。次にHost。ホスト単位の設定で、ここ
で定義した名前は sshのホスト名の代替として使う
ことができます。
　たとえば、Host server01と設定した場合は、ssh

server01でログインできます。それ以降の行に書
いた設定はホストに関する設定となり、次のHost
の定義が出現するまで続きます。HostNameはホ
ストの IPアドレスかホスト名を記述、Portはポー
ト番号、Userはログインユーザ名、IdentityFileは
秘密鍵ファイルのパスになります。
　さらにポートフォワードの設定もできます。
LocalForwardで接続先サーバのポートをローカル
に転送することができます。DynamicForwardを
設定すると接続先のサーバをSOCKS Proxyとして
使うことができます。
　.ssh/configで設定できる個別の項目について、
詳細はここでは詳しく述べませんが、このほかに
もいろいろと便利な設定ができます。詳細につい
てはman ssh_configで確認してみましょう。

る「-A」オプションを利用しておくと、接続先
のサーバでUNIXドメインソケットを作成し、
SSH_AUTH_SOCK環境変数をログイン後の
シェルに設定します。こうすることで接続先
のサーバでも手元で起動したssh-agentに保存
された秘密鍵を利用することが可能になりま
す（図4）。

　エージェント転送が期待した動作をしない
場合は、まずはエージェントが正しく起動し
ているか、そしてエージェントに保存されて
いる鍵が何かを確認してみましょう。ssh-add

コマンドの「-l」オプションを使うことで、保
存されているすべての鍵のフィンガープリン
トを確認できます。

28 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

　図1のようなWebシステムにおいて、Web5

サーバだけレスポンスが低いようだという連
絡を受けたとします。この場合、何をどう調
べていけばよいでしょうか？
　前提として、各Webサーバは次のような構
成になっているとします。

・CPU：	4core 1.86 GHz
・RAM：	4GB
・HDD：	SAS 300GB×2（RAID1）
・NIC：	 1Gbps
・OS：	 CentOS6.6 64bit
・Web：	Apache2.4.12

・言語：	PHP5.5.0

　また各ネットワーク機器はアップリンク側、サー
バ側がともに1000BASE-Tのポートを持っており、
いずれもAuto negotiationで設定されているとし
ます。

トラフィック量を見る

　まずはネットワークのトラフィック量を示
すグラフを見てみます。図2にてWeb5サーバ
と正常なサーバとを比較してみると、Web5サー
バは70Mbpsあたりで頭打ちに見えますが、正
常なサーバでは右側のように120Mbps程度ま

ルータ

ロードバランサ（L4スイッチ）

L2 スイッチ

Web1サーバ Web2サーバ Web3サーバ Web4サーバ Web5サーバ

レスポンス低下

 ▼図1　Webシステム構成図

本稿ではWebシステム障害におけるトラブルシューティングの、とある一場面を紹介します。日々発生するト
ラブルの内容と対処方法は千差万別です。あらゆるトラブルに対応できるトラブルシューティング手法という
ものは残念ながら世の中に存在しませんが、どんなトラブルにおいても疑わしい個所を1つずつ潰していくと
いずれ障害原因にたどり着きます。本稿ではそんなトラブルシューティングの現場の雰囲気を簡単に紹介でき
ればと思います。

1-3
 Auther 佐野 裕（さの ゆたか）　LINE㈱／ Twitter @sanonosa

Webシステム障害時における

トラブルシューティング
の手順

トラシュー事例（初級編）
「特定Webサーバだけレスポンス低下」

28 - Software Design Apr. 2015 - 29

サーバ・インフラ・ネットワーク編

1-3 トラブルシューティングの手順 第1章

で使われていることがわかります。

サーバのハードウェアリソース
使用状況を見る

　次に、サーバのハードウェアリソース使用
状況を見てみます。調べ方はいろいろありま
すが、図3のように vmstatコマンドを使って
調べてみることにします。結論から言うとハー
ドウェアリソース的にはまだ十分余裕がある
状況と言えます。

・CPUは、Procsのr（実行キューに入っている
実行待ちプロセス数）がなく、CPU使用率も
idle率が99％、すなわち1％ほどしか使われ
ていないというかなり余裕がある状況

・ディスクI/Oはほとんど発生していない状態
・メモリもかなり余裕がある状況

　メモリは物理容量4GBに対して、未使用メ
モリ量（free）が約25MB、バッファキャッシュ注1

に使用されているメモリ量（buf）が約68MB、
そしてページキャッシュ注2として使用されて
いるメモリ量（キャッシュ）が3,086MBとなり
ます。こう書くと未使用領域がわずか25MB

しか残ってないと思ってしまうかもしれませ

注1） バッファキャッシュとは、OSがブロック I/Oを最適化す
るために用いる領域のこと。

注2） ページキャッシュは、ファイル I/Oを最適化するために
用いる領域のこと。一度HDDから読み込まれたデータ
をメモリ上にキャッシュとして残し、再度読み取り要求
が来たときはキャッシュから応答を返すことでディスク
I/Oの発生を減らしパフォーマンス向上に貢献する。

んが、メモリが足りなくなってきたらOSはバッ
ファキャッシュやページキャッシュからメモ
リを割り当てるため、実際はまだ3GB以上の
メモリが使える状況と読み取ることができます。
　以上のことからハードウェアリソース使用
状況としてはとくに問題ない状況と言えます。

ネットワークまわりを確認する

　L2スイッチのステータス情報を見てみると、
Web5とつながるポートだけが100M Halfと認
識され、それ以外のポートは1,000M Fullと認
識されていました。
　そこでそれぞれの通信モード設定を確認して
みると、Web5サーバだけが100M Full固定で
設定されていたのに対し、それ以外のWebサー
バはAuto negotiationで設定されていることが
わかりました。
　ここで2つの疑問が浮かびます。1つめはなぜ
1,000M Fullではなく100M Full固定で設定さ
れていたのか。2つめはなぜサーバ側は100M

Full固定なのにL2スイッチ側では100M Fullで

メモリは十分空きがある ディスクI/Oはほとんどない CPUはほぼ idle

 ▼図3　ハードウェアリソース使用状況

 ▼図2　トラフィック量のグラフ

Web5サーバ Web5サーバ以外

30 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

はなくHalfで認識されたのか。これらについて
ちょっと考えてみましょう。
　1つめについては、1000BASE-Tはそもそも
Auto negotiationで使うよう規定されているので
1,000M Full固定という設定自体が行えません（試
しにL2スイッチやLinuxなどでネットワークイ
ンターフェースを1,000M Full固定で設定して
みてください。エラーが出て設定できないはず
です）。今回Web5サーバを設定した人は、おそ
らく1,000M Full固定設定をしようとしてうまく
いかず、いろいろ試しているうちに誤って100M

Full固定で設定して安心してしまったものと推
測されます。
　2つめについては、よくありがちな誤解として、
片側が100M Full固定で設定されている場合、
Auto negotiationが設定されている側では自動
的に100Mbps Fullとして認識してくれそうな気
がします。しかし実際は100Mbps Halfで自動設
定されるため通信モードの不一致が発生します。
　図4を見てみましょう。双方がAuto negotiation

で設定されると、お互いがFLP（Fast Link

Pulse）バーストという信号を投げ合って通信
モードを決定します。しかし相手からFLPバー

スト信号が返ってこない場合は、10BASE-T

対応機器が発信するNLP信号（Normal Link

Pulse）や100BASE-TX対応機器が発するアイ
ドル信号を検出することで、10BASE-Tか
100BASE-TXのいずれかと判断されます。た
だしこの場合FullとHalfまでは判断できず、
必ずHalfとなります。
　この結果、なんとか通信はできるものの大量
の通信エラーが発生するだけでなく、帯域が
100M Halfや10M Halfなどに制限されること
になります。このような事象を防ぐためにネッ
トワーク機器とサーバの通信モード設定は
100M固定なら双方100M、Auto negotiationな
ら双方Auto negotiationに一致させる必要があ
ります。
　ということで、今回の場合はサーバ側もAuto

negotiationに設定し直すことで、システムが正
常な状態に戻りました。
　なお蛇足ですが、双方 Auto negotiation に
しても、通信モードが一致しないことがまれに
発生します。この場合はLANケーブル不良を
疑い、新しいものに交換すると直ることが経験
上多いです。

　今度は、Web全体のレスポンスが不安定な
状況を想定してみます。今回はとくにどのサー

バのレスポンスが低下したということはなく、
システム全体でレスポンスが低下していると

Auto negotiation 100M Full 固定

FLP burstの
受信を期待

Auto negotiationでないので
FLP burstは送らない

FLP（Fast Link Pulse）burst 送信

・NLP（Normal Link Pulse）送信 → 10M
・アイドル通信 → 100M
・FLP burst → お互いで通信モード決定

 ▼図4　通信モードが一致しない

トラシュー事例（上級編）
「Web全体のレスポンスが不安定」

30 - Software Design Apr. 2015 - 31

サーバ・インフラ・ネットワーク編

1-3 トラブルシューティングの手順 第1章

します。そこで先ほどの事例を参考にしてL2

スイッチ／全サーバの通信モードを確認して
みましたが、設定がすべてAuto negotiationに
統一されていました。
　今回は特定サーバだけが問題ではなさそう
ですので、ネットワークまわりを疑ってみる
ことにします。

ファイアウォールを確認する

　まずはDDoS（Distributed Denial of Service

Attack）攻撃と呼ばれる、サービス妨害のため
に不特定多数のマシンから大量のパケットが
送信される状況がなかったか確認します。そ
こでファイアウォールのログなどを確認しま
したが、今回はとくにそのような攻撃は受け
た跡はありませんでした。

L2スイッチを確認する

　次にL2スイッチのログを見てみます。ここ
ではバッファが溢れることで通信を一部取り
こぼしていることを示す状況が確認できました。
　一般的なL2スイッチでは、図5のように受
信したフレームをいったんバッファに入れて
から少しずつ転送するしくみを取ります。こ
のバッファが溢れたとなると短時間に大量の
パケットやフレームがスイッチに流入したの
だと推測されます。バッファに収まらないほ

どのフレームを受け取るとそのフレームは破
棄され、結果的に通信が不安定になります。
　PCからスマートフォンの時代変化に伴い、
ものすごく小さいパケットサイズの通信が大
量に発生するようになり、ユーザ数がとくに
多いサービスにおいては、L2スイッチのバッ
ファサイズが足りなくなる状況が見られるよ
うになりました。
　このような場合には、バッファサイズの大
きいL2スイッチに入れ替えるか、もしくは
L2スイッチを増設して負荷を分散することが
有効です。

フレーム

フレーム フレーム

フレーム

フレーム

フレーム

フレーム

フレーム

バッファ

破棄

順次転送

 ▼図5　スイッチのバッファが溢れる

　トラブルシューティングの場面に遭遇した
とき、一度経験したことのあるトラブルであ
れば容易に原因がつかめますが、実際は初め
て遭遇するトラブルに出会う場面も多いでしょ
う。そんなときに必要となるのはあらゆる可
能性を疑って根気強く原因を探すことです。
　無論、現実的にはサービス復旧が最優先され、
まずはリブートすることが求められる場面も
多々あるかと思います。しかしトラブル発生

のたびに原因究明する習慣をつけないと、い
つまで経ってもトラブルシューティング力が
向上しません。もしサービス復旧のためのリブー
トが要求されるのであれば、あとでトラブル
分析ができるように各種ログ、画面イメージ、
そのほか何でもいいので証拠となりそうなも
のを一通り収集してからにしましょう。ﾟ

最後に

32 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

　上記のような問い合わせについて、みなさ
んだったらどのような仮説が考えられるでしょ
うか。筆者が簡単に推測できる内容でも次の
ような要素が考えられます。

・ハードウェア
・アプリケーション
・ユーザによる操作
・カーネルパニック

　このような問い合わせ内容の場合、具体的
に収集することが望ましい情報というのは、
上記の要素だけでもさまざまな種類のログや
コマンド結果が必要となります。また情報収
集は事象が発生している最中の情報収集が最
も有用ですが、今回のような事象ではそれは
望めません。ですから事象発生後に確認でき
る情報からみていきます。
　情報収集の初期段階では、メッセージ、ロ
グは、必ず一度に網羅的に収集することを心
がけてください。これは、時間が経過するに
つれて消失する情報があることや、さまざま
な情報を簡単に確認できることが調査を進め

るうえで非常に有効であるためです。Red Hat

Enterprise Linux（以下、RHEL）では、一度に
幅広い情報を手軽に収集を行うことを実現す
るツールとしてsosreportがあります。

sosreport とは

　sosreportは、RHELの基本的なコマンドの
結果や、サービスのログを収集するツールです。
sosパッケージにて提供されており、ツールそ
のものはPythonで記述され、収集する情報の
種類ごとにスクリプトがわかれています。具
体的なファイル構成については、「rpm -ql
sos」を実行し、確認してみてください。

sosreport の構造

　収集した sosreportは図1のようになってい
ます。一般的に確認することが多いディレク
トリについて紹介しています。この図から、
sosreportがさまざまな情報を収集することがわ
かると思います。

本稿では、トラブルシューティングにおいて適切な情報収集の重要性を具体例から考えます。トラブルシューティ
ングでは、誤った方向を向いて対応を実施しないためにも正しく問題を定義する必要があります。正しく問題
を定義するためには、簡単に言えば「事象」という形のはっきりしないものを手にしているツールを利用し、「そ
の形を明らかにすること」が必要となります。筆者の日常業務であるRHELのサポートに寄せられる実際の問い
合わせを具体例に、どのような情報収集の方法が有用なのかということを紹介します。

1-4
 Auther 野波 圭吾（のは けいご）　レッドハット㈱

サポート観点から見た

トラブル時の
情報収集法

トラシュー事例（初級編）
「XX月YY日に システムが予期せぬ再起動をしました。
原因調査をしてください」

32 - Software Design Apr. 2015 - 33

サーバ・インフラ・ネットワーク編

1-4 トラブル時の情報収集法 第1章

soreportを使って
調査してみよう

　取得したsosreportから、今回の事象につい
て調査をしてみましょう。ここでは、カーネ
ルパニックが発生したという仮説の検証を行
います。以降の本稿で取り上げる実機の情報は、
RHEL6.6のインストールメディアを用いて標
準インストールを行い、kernelのみ2015年2

月10日時点の最新へアップデートした環境に
おいて取得したものとなります。
　まず、kdumpサービスが正常に起動している
環境であるか確認します。サービスの自動起動
設定は、「sos_commands/startup/chkconfig_--
list」から確認できます。図2からkdumpサービ
スが自動起動する設定であることがわかります。
　次に事象が発生した日時の直前のシステム
ログ（messages）から、kdumpサービスが正常

に起動していることを確認します。
　図3から、事象発生当時のシステムでは、
kdumpサービスは正常に起動していたと考えら
れます。kdumpサービスによって今回の事象が
発生していた場合には、vmcore（システム全体
のメモリイメージ）が取得されていることが期
待されます。vmcoreの出力先や、kdumpの挙
動については、/etc/kdump.confにて設定します。
　保存先を指定するpathオプションを確認す
ると図4から保存先は/var/crashに指定されて
いることがわかります。ほかのオプションにつ
いては「man 5 kdump.conf」を参照してみてく
ださい。
　vmcoreが保存されている場合には、その取
得したホスト名と、取得日時でディレクトリが
作成され、そこに、vmcoreならびに vmcore-

dmesg.txtというvmcoreに含まれているkernel

のリングバッファを出力した
も の が 保 存 さ れ ま す。
RHEL6.6に同梱されている
sosパッケージは、/var/crash

配 下 に vmcore-dmesg.txtが

ある場合には、それを収集す
るようにスクリプトが作ら

れていますので、sosreport内

の「var/crash/<hostname>-

<取得日付>」配下のvmcore-

dmesg.txtの内容を確認しま
す。vmcore-dmesg.txtはファ
イルの最後尾に、カーネルパ
ニックが発生した際の内容を
記録していますので、まずそ
ちらを確認するようにしてくだ
さい。今回のケースでは、リス
ト1のような内容が記録され
ています。
　この内容から、今回の予
期せぬ再起動は、カーネル
パニックによってkdumpサー
ビスが動作したことによっ

 ▼図1　sosreportの構造（代表的なもの）

.
├── boot /boot 配下の設定ファイルを収めている
├── etc /etc 配下の設定ファイルを収めている
├── proc /proc ファイルシステム配下から収集した情報を収めている
├── root /root 配下の収集したファイルを収めている
├── sos_commands 各スクリプトで実行したコマンドの実行結果をスクリプトごとに収めている
│ ├── autofs
│ ├── bootloader
│ ├── crontab
├── sys /sys ファイルシステム配下から収集した情報を収めている
└── var /var/ 配下のログなどを収めている
 ├── crash kdumpで取得されたvmcoreのデフォルトの保存先で、vmcore-dmesg.txtを配置している
 └── log 収集した一般的なログを収めている

 ▼図2　chkcon�gの確認結果

$ cat sos_commands/startup/chkconfig_--list ¦grep kdump
kdump 0:off 1:off 2:on 3:on 4:on 5:on 6:off

 ▼図3　kdumpサービスの起動ログ

Feb 11 11:08:12 localhost kdump: kexec: loaded kdump kernel
Feb 11 11:08:12 localhost kdump: started up

 ▼図4　/etc/kdump.confの設定内容

$ cat etc/kdump.conf ¦ grep -v ^# ¦ grep -v ^[[:space:]]*$
path /var/crash
core_collector makedumpfile -c --message-level 1 -d 31

34 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

て発生したことがわかります。
　本節では、情報収集の方法についてRHEL

に塔載されている網羅的な情報収集ツール、

sosreportを利用し、そこから実際の事象につ
いての有用な情報をさまざまな視点から確認で
きることを示しました。このように、1つのツー

ルを利用することで、気軽にさま
ざまな視点の情報を確認できると
いうのは sosreportの大きなメ
リットです。みなさんもトラブル
シューティングの初動にはぜひ、
sosreportを取得してさまざまな
視点から取得された情報から事象
を観察してみてください。

◆◆◆
　ここからは一歩進んだ情報収
集について、具体例から紹介し
ていきたいと思います。

 ▼リスト1　vmcore-dmesg.txtの最後尾の内容

<0>Uhhuh. NMI received for unknown reason 30 on CPU 0.
<0>Do you have a strange power saving mode enabled?
<0>Kernel panic - not syncing: NMI: Not continuing
<4>Pid: 0, comm: swapper Not tainted 2.6.32-504.8.1.el6.x86_64 #1
<4>Call Trace:
<4> <NMI> [<ffffffff815292d6>] ? panic+0xa7/0x16f
<4> [<ffffffff8152dec9>] ? do_nmi+0x329/0x340
<4> [<ffffffff8152d620>] ? nmi+0x20/0x30
<4> [<ffffffff81040f8b>] ? native_safe_halt+0xb/0x10
<4> <<EOE>> [<ffffffff810167ad>] ? default_idle+0x4d/0xb0
<4> [<ffffffff81009fc6>] ? cpu_idle+0xb6/0x110
<4> [<ffffffff8151061a>] ? rest_init+0x7a/0x80
<4> [<ffffffff81c29f8f>] ? start_kernel+0x424/0x430
<4> [<ffffffff81c2933a>] ? x86_64_start_reservations+0x125/0x129
<4> [<ffffffff81c29453>] ? x86_64_start_kernel+0x115/0x124

　過去のパフォーマンス問題について調査し
たい場合には、前提条件として、事象発生前
から継続してパフォーマンスデータを取得し
ていることが必要となります。RHELではそ
のような用途に利用できる、sysstatパッケー
ジを用意しています。
　sysstatパッケージに含まれる sarは、広い
範囲に渡るシステムの稼働情報を取得し記録
します。sysstatサービスが起動している場合
には、デフォルトで10分おきに取得しています。
データは、/var/log/sa配下に保存され、1日

が経過するごとにバイナリ（saXX）をテキスト
（sarXX）に変換しています。
　注意する点としては、バイナリデータはsar

のバージョン間で互換性がないこと、また、
sarは一定期間経過するとファイルがローテー
トしますので、sosreportを利用するなどして
事象発生後、少なくとも1週間以内に取得する
ことが推奨されます。図5は、sarに記録され
ているCPU使用率の例となります。
　このようにsarの情報から過去のシステムの
稼動状況を確認することができます。今回紹

 ▼図5　sarの出力結果（CPU使用率）

 Linux 2.6.32-504.8.1.el6.x86_64 (localhost.localdomain) 2015-02-09 _x86_64_ (1 CPU)

 08:38:45 PM LINUX RESTART

 08:40:01 PM CPU %usr %nice %sys %iowait %steal %irq %soft %guest %idle
 08:50:01 PM all 0.52 0.00 0.09 2.54 0.01 0.00 0.00 0.00 96.84
 08:50:01 PM 0 0.52 0.00 0.09 2.54 0.01 0.00 0.00 0.00 96.84
 09:00:01 PM all 0.02 0.00 0.08 0.50 0.01 0.00 0.00 0.00 99.40
 09:00:01 PM 0 0.02 0.00 0.08 0.50 0.01 0.00 0.00 0.00 99.40
 09:10:01 PM all 0.23 0.00 0.31 1.09 0.03 0.00 0.00 0.00 98.33
 09:10:01 PM 0 0.23 0.00 0.31 1.09 0.03 0.00 0.00 0.00 98.33
(...省略...)

トラシュー事例（上級編①）
「過去のパフォーマンス問題について調査したい」

34 - Software Design Apr. 2015 - 35

サーバ・インフラ・ネットワーク編

1-4 トラブル時の情報収集法 第1章

介したCPU使用率以外にも、メモリ、スワップ、
ディスク、ネットワーク、ロードアベレージ

などの観点から調査できます。詳しくは、「man
1 sar」を参照してください。

トラシュー事例（上級編②）
「システムがハングした」

　このような状況のトラブルシューティング
で有用となる情報は、その事象が発生してい
る最中に取得されたvmcoreとなります。シス
テムハングの場合、ログやシステムの稼働情
報なども正常に取得できていないことが多く、
事象が発生している状況で取得されたvmcore

以外で調査できないためです。
　vmcoreについては、前節で触れたkdumpサー
ビスを利用します。注意する点としては、
kdumpサービスを起動しただけでは、カーネ
ルパニックには対処できますが、システムが
ハングしたという事象には対応できないこと
です。よってほかの方法でシステムがハング
している最中に意図的にカーネルパニックさ
せる必要があります。そのために、表1のカー
ネルパラメータを利用します。
　①～③は、カーネル側で検出できるプロセス
の状態から自動的にパニックさせるパラメータ
です。それぞれ次のような状態を示します。①
のsoft lockupはプロセスがCPUを長時間占有
している状態を指します。②のhung taskは、
プロセスが長時間割り込み不可の待ち状態であ
ることを指します。③のOut of Memoryはメモ
リ枯渇の状態を指します。
　④については、Sysrqファシリティ（特殊なキー

コンビネーション、m＋w＋<command>）
の有効化です。Sysrqファシリティを有効化し
ている場合には、m＋w＋Cにてシス
テムをクラッシュさせることができます。
　⑤～⑦はハードウェアによって、どのNMI

を手動で発行できるかということは異なりま
すので、ハードウェアの実装に従って設定し
てください。
　筆者のお勧めは、④と⑤～⑦の中から利用
できるものを設定することです。理由は、任
意のタイミングで手動でパニックさせられる
ためです。紹介したカーネルパラメータの設
定は、/etc/sysctl.confで行います。
　vmcoreの解析には crashユーティリティを
利用しますが、誌面の関係上、参考文献注1の
紹介に留めます。

◆◆◆
　本稿では、情報収集という観点からトラブ
ルシューティングの際に利用できる手法を紹
介してきました。ここで紹介したパッケージや
設定を必須のものとして、よりよいシステム設
計に役立てていただければと思います。ﾟ

注1） U R L http://people.redhat.com/anderson/crash_
whitepaper/

パラメータ 内容
①kernel.softlockup_panic soft lockup を検出した際にパニックさせる
②kernel.hung_task_panic hung taskを検出した際にパニックさせる
③vm.panic_on_oom Out of Memoryを検出した際にパニックさせる
④kernel.sysrq Sysrqファシリティの有効化
⑤kernel.unknown_nmi_panic ハードウェアからのNMIを検出した際にパニックさせる
⑥kernel.panic_on_unrecovered_nmi ハードウェアからのNMIを検出した際にパニックさせる
⑦kernel.panic_on_io_nmi ハードウェアからのNMIを検出した際にパニックさせる

 ▼表1　カーネルパニックさせるパラメータ

※それぞれ（1：有効、0：無効）

http://people.redhat.com/anderson/crash_whitepaper/

36 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

　筆者はスノーボードを満喫するため、ある
山の旅館に宿泊していました。この旅館には
無料の無線LANサービスがあります（図1）。夜、
無線LANに接続したのですが、アクセスポイ
ントには接続できるものの、インターネット
との通信ができません。「あれ？　なんかおか
しいな？」と思いましたが、使えないものはし

かたがないと思い、深追いはしませんでした注1。
しかし、翌日の朝食時に旅館の支配人に声を
かけられたのをきっかけに、通信を復旧させ
るお手伝いをすることになりました。

注1） 海外のホテルなどでは、まともに通信できることの方が
少ない気がします。余談ですが、本誌2015年3月号第
1特集「カンファレンスネットワークの作り方」はたいへ
んおもしろく、勉強になりました。

突然のネットワーク不通、サーバのパフォーマンス問題……ITインフラエンジニアには日々さまざまな課題が
降りかかってきます。これらの課題に効率的に対処していくには、効率的な切り分け、分析、対処、場合によっ
ては改善策が必要です。本稿では、筆者が経験した比較的シンプルなネットワーク、サーバの障害例を紹介し
ながら、問題解決に向けて押さえておきたいポイントを紹介します。

1-5
 Auther 長谷川 猛（はせがわ たけし）

こんなときどうする !?

ネットワークやサーバの
チェックポイント

トラシュー事例（初級編）
「旅館の無線LANがつながらない！」

ONU

ONU
事務所PC

クレジット
カード
決済機

プリンタ

インターネット
ルータ

1F アクセスポイント
（ブリッジ）

ONU

2F アクセスポイント
（ブリッジ）

公衆 WiFi
アクセスポイント
（設定値不明）

インターネット

 ▼図1　某旅館の当初のネットワーク構成（イメージ図）

ONU = Optical Network Unit
（光回線終端装置）

36 - Software Design Apr. 2015 - 37

サーバ・インフラ・ネットワーク編

1-5 ネットワークやサーバのチェックポイント 第1章

現状を把握する

　この旅館のネットワークは、電話会社の光
回線向けにレンタルされるPPPoE（Point-to-

Point Protocol over Ethernet）が可能なイン
ターネット接続用ルータ、および複数の家庭
向け無線LANアクセスポイントで構成されて
いました。とりあえず、ルータの設定Webペー
ジにログインして再起動したところ、それだ
けでインターネット通信ができるようになっ
たので、しばらく様子を見てもらうことにし
ました。その後、スノーボードを終え、遅め
のランチをとっていたところ、あらためて支
配人から相談を受けました。

　「またインターネットがつながらなくて……
クレジットカードの決済機も使えないんです」

　事務所に入り、Windows端末のコマンドプロ
ンプトからGoogleのDNSサーバ8.8.8.8注2へ
pingを打ってみても返事がありません。朝方に
はちゃんとインターネット通信ができていたの
におかしいなと思い、端末からルータにpingを
打ってみましたが返事がありません。
　Windowsホストマシンで ipconfigコマンドを
実行してみたところ、ルータがあるはずのサブネッ

注2） 個人的に、覚えやすく、少なくとも国内ならインターネッ
トのどこからでも ICMP ECHO REQUESTに応えてくれ
る IPアドレスとして重宝しています。:)

ト、192.168.xxx.0/24とは異なる空間のIPアド
レス／サブネットマスクがホストのネットワーク
インターフェースに設定されていました（図2）。
　まさかと思いながら、Windowsのインター
フェース情報から見つけたDHCPサーバのア
ドレスにpingを打ちながら宿泊者向けの無線
LANアクセスポイントのLANケーブルを抜
くと、そのDHCPサーバの IPアドレスからの
ICMP応答が絶えました。そのあと。Windows

ホストで IPアドレスを取得しなおしてみると、
今度は192.168.zzz.0/24の IPアドレスが……
同じセグメントに、まさかの3つめのDHCP

サーバがあるようです。
　さらにDHCPサーバを探すため、ルータやハ
ブに刺さっているLANケーブルを1本1本抜い
ていくと、やがて意図したとおり192.168.

xxx.0/24の IPアドレスがリースされるように
なり、サービスが復旧しました。どうやら、旅
館内に設置された無線LANアクセスポイント
のほとんどが、自動設定機能によって、DHCP

サーバとして動作していたようです注3。

注3） 小さな旅館ということもあり、家電量販店でよく見かける
家庭用無線LANルータが使われていました。動作モード
切り替えスイッチによりNATルータ／ブリッジモード、も
しくは自動判断が可能なものですが、上位ルータの停止時
に下位ルータのほとんどがブリッジモードからNATルー
タモードに切り替わり、さらに使用していたEthernetポー
トの都合により、DHCPサービスが上位ネットワークに流
れてしまったようです。

ONU
事務所PC

クレジット
カード
決済機

インターネット
ルータ

1F アクセスポイント
（ブリッジ）

2F アクセスポイント
（ブリッジ）

公衆 WiFi
アクセスポイント
（設定値不明）

DHCP OFFER
192.168.2.X/24

DHCP OFFER
192.168.3.X/24

DHCP OFFER
192.168.4.X/24 DHCP REQUEST

ファッ！？

DHCP OFFER
192.168.1.X/24

 ▼図2　ひとつのセグメントに複数のDHCPサーバが……

38 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

すべての機器を再設定し対処

　状況が見えてきたところで、具体的なサービ
ス復旧作業にとりかかります。念のため無線
LANアクセスポイントの設定を初期化・再設
定し注4、すべて再設定および最新ファームウェ
アを適用しました。また、今後の混乱を防ぐた
めに不要な自動設定機能は無効化します。再設
定後のアクセスポイントに接続し、traceroute

コマンドで8.8.8.8までの経路を調べ、意図ど
おりのルートでパケットが送受信できているこ
とも確認できました。今後のために、何につな
がっているかわかるよう各Ethernetケーブル
にタグをつけ、本日時点のネットワーク図を書
いて作業完了です注5。

◆◆◆
　今回筆者が遭遇したシチュエーションは、イ
ンターネットの接続性に関するトラブルとして

注4） 一部老朽化し不安定な機材などもあり、翌日、ルータの
一部交換や追加、セキュリティ対策も行いました。

注5） 設定値の状況共有という意味合いもありますし、私自身
が翌年に訪問したときに必要となるかもしれません……。

は最も単純な類のものですが、実際に小規模の
オフィスで経験しやすいものだと思います。うっ
かり失敗しがちな今どきのパターンとしては、
仮想マシン上で立ち上げたDHCPサービスの
パケットを上位ネットワークに流してしまい、
隣の席の上司のコンピュータがそのDHCPサー
バからアドレスをリースされて通信ができなく
なり大騒ぎになった、なんてこともよくありま
す。ITエンジニアであれば、TCP/IPネットワー
クの最低限のトラブルシューティング手法やコ
マンド（表1）は知っておきたいものです。

　とある日、1通のメールが届きました。筆者
が取り扱った案件で、Flashストレージと
MySQLを組み合わせたのですが、そのシステ
ムでレプリケーションが遅延し、本来の性能
の10％も得られないという内容でした。それ
に加えて、普通にDBを運用していると性能が
出ないのに、同時に読み込みワークロード注6

を実行していると、負荷が増しているにもか
かわらず、データベースの処理性能が10倍近
くに跳ね上がるというのです（図3）。
　そんな不可解な状態だったので、早速、実
機を確認しに伺いました。この問題で使用さ

注6） たとえば、dd if=/dev/fioa of=/dev/null bs=512

れていたMySQLは、レプリケーションのスレー
ブとなっていました。MySQLであればレプリ
ケーションを受けている際に遅延している秒
数が確認できますが、レプリケーションを受
けていると、その遅延秒数が増えていきま
す注7。HDDでのライトバックキャッシュが有
効に動作する状況であれば、下手なFlashメモ
リストレージより最高性能が出ることもあり
ますが、しかしHDDで捌かれたワークロード
がまったくFlashストレージで捌けないという
のは、何か問題がありそうです。
　まずは、ログに何か出力されていないかを確

注7） SHOW SLAVE STATUSで取得できる Seconds_Behind_
Masterの秒数が増えていく状況。

コマンド 説明
ifconfig、
ipconfig（Windows）

ホストのIPアドレス情報などを
表示する

ping 指定した IPアドレスに ICMP
ECHOパケットを送信し、相手
と通信ができるか確認する

traceroute、
tracert（Windows）

指定した IPアドレスへの到達
経路を調査する

netstat -r ルーティング情報を確認する

 ▼表1　TCP/IPネットワークの障害調査のために最低
 限覚えておきたいコマンド集

トラシュー事例（上級編）
「Flashストレージを導入し、遅くなったデータベース」

38 - Software Design Apr. 2015 - 39

サーバ・インフラ・ネットワーク編

1-5 ネットワークやサーバのチェックポイント 第1章

認しました。ログには、ソフトウェアの開発中
のデバッグ情報であったり、もしくはユーザが
そのソフトウェアを利用する際に有益となる情
報が出力されるものですから、問題解決の糸口
が見つかればラッキーです注8。残念ながら、今
回はOSやミドルウェアのログには、解決の糸
口となりそうな内容はありませんでした。
　次に、MySQLのパラメータをひとつひとつ
変更しながら状況が変化するかを確認してい
きました。問題の糸口が何かをつかめるまでは、
地道な作業です。しばらくして、バイナリロ
グの同期書き込みを無効化すると問題が大幅
に改善し、バイナリログの書き込み速度に関
連した問題だと絞り込めました。
　客先での現地調査も一段落し、お客様と相
談して、まずは暫定対処としてバイナリログ
の同期書き込みをオフで利用いただくことに
しました。アプリケーションやミドルウェア
の特性を把握していれば、何が起きているか、
抱えている問題がどのような影響を与える可
能性があるか、どのような暫定対処策がある
かをある程度推測、判断できます。本来であ
ればデータの永続性を保証するために、同期

注8） 逆に、検証や構築、試験を終えたあとには、ログや統計
情報の出力レベルが高く設定され、CPU使用率が高まり、
性能低下が生じているケースがある点も注意が必要です。

書き込みを勧めたいのですが、プライマリデー
タが別にも保存されており、有事の復旧も可
能であると見込み、同期書き込みなしでも最
低限の信頼性を保って運用いただけるのでは、
と判断しました。
　その後、「バイナリログの同期書き込みがな
ぜ想定より遅いのか」に焦点を絞り、検討を始
めました。経験上、先の構成であれば、同期
書き込みを行ったとしても、もっと高い性能
が得られるはずです。MySQLの InnoDBスト
レージエンジンの場合、トランザクションの
永続性を保証するため、ログ書き込みが終わっ
た時点でトランザクションが完了します。こ
のため、バイナリログの同期書き込みが遅延
すれば、それだけトランザクションに必要な
時間が増えることになります（図4）。
　問題の再現方法がわかったため、同様の問
題を再現させるための環境を手元に構築し、
より根本的な原因を調査しました。ftraceでカー
ネル内のブロック I/Oのイベントを調べたと
ころ、特定のLinuxカーネルに、デバイスへ
の I/Oがすぐ開始されない現象が確認されま
した。この場合、数ミリ秒してからカーネル
内のウォッチドッグタイマが発動し、I/Oが遅
れて開始されることがわかりました注9。最終的
には社内のLinuxカーネルメンテナが、ドラ
イバに細工を入れて問題を解消しました。

調査・分析のとっかかりになるポイント集
　最後に、問題の調査・分析にあたり、まず
チェックしたいポイント（ログファイル、コマ
ンド）を紹介します。システムトラブルにあたっ
たが、何を見たらいいかわからない……そん
な場合には、これらのポイントを参考にして
みてください（表2〜4）。ﾟ

注9） 私の場合は偶然にも社内に Linuxカーネルコミッターが
おり、彼らにより問題解決が可能であったことに救われ
ましたが、まわりの同僚や飲み仲間でも、何か困ったと
きに助言、支援し合えるような横のつながりは大事だと
思います。

IoPS

t

Read
Write

一定のワークロード実行中に読み込み
ワークロードを追加すると書き込み性能
が向上してしまう・・・

 ▼図3　問題を示す IOPSグラフ（イメージ）

40 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

注10） URL http://www.brendangregg.com/perf.html

注11） URL http://www.hitachi.co.jp/rd/portal/research/yrl/14/img/itp/kernelvm8th_ftrace.pdf

注12） URL https://www.kernel.org/doc/Documentation/sysrq.txt

アプリ

トランザクション
コミット要求

コミット完了通知
（同期）

コミット完了通知
（非同期）

ストレージエンジン
InnoDB InnoDB

I/O要求

I/O完了通知

InnoDBログ データ領域

同期書き込みは
ディスク書き込み完了後に
応答するため、遅延が生じる

データ領域への反映は
非同期で行われる

非同期書き込みは
ディスク書き込み完了前に
応答するため高速だが、

永続性が保証できない場合がある

トランザクション
所要時間の差

ストレージ書き込みにかかる時間※

※HDD : ～10ms程度
　SSD : 数十us～数ms程度

 ▼図4　ログの同期書き込み

ログファイル 説明
dmesgコマンド 最近、カーネルから出力されたログを確認する
/var/log/messagesファイル カーネルやアプリケーションから出力されたログが出力される
その他 利用しているプログラムのログファイル、統計情報を確認するとよい

 ▼表2　まず最初にチェックしたいログファイル

perf 性能プロファイリングツール。プロセッサがどの処理（関数）に時間を費やしているか、
などを確認できる注10

ftrace、trace-cmd Linuxカーネルのトレース機構と利用するためのツール注11

w＋L 各論理プロセッサで実行中のプロセスのバックトレースを出力注12

 ▼表4　さらに細かな調査で役立つツール（Linux）

コマンド名 説明
sar カーネルのカウンタ情報を時系列に表示する。過去24時間の負荷状況を把握する場合などに便利
top システム上の上位プロセスをモニタリングできる。ソート機能も便利
vmstat メモリやプロセッサ稼働率などをモニタリングできる。ユーザプログラム／カーネルのCPU処理

時間、メモリの利用状況、スワップの発生状況をモニタする場合に便利
iostat ハードディスクやSSDなどのディスク稼働状況をモニタリングできる。性能問題の原因がストレー

ジにあるかを切り分けるために利用する
mpstat 各論理プロセッサの処理状況を確認する
dstat vmstat/iostatに代わるLinuxカーネルのモニタリングツール

 ▼表3　OS側から問題調査を行うための基本コマンド（Linux）

http://www.brendangregg.com/perf.html
http://www.hitachi.co.jp/rd/portal/research/yrl/14/img/itp/kernelvm8th_ftrace.pdf
https://www.kernel.org/doc/Documentation/sysrq.txt

41 - Software Design Apr. 2015 - 41

　まずは簡単なロールプレイをしてみましょう。
このシナリオは弊社の新人研修の卒業試験で
実施しているロールプレイとよく似たもので
す（筆者が勤めるハートビーツは 24時間
365日の有人監視サービスを提供しています）。

　あなたはWebサイト制作会社の新人研
修を修了し、先月からエンジニアチームに
配属されました。
　ある日、先輩たちが全員出払って自分1
人が留守番しているタイミングで営業さん
が駆け寄ってきました。彼曰く「先週納品
した◯◯商事さまから、システムが使えな
いと連絡がきている」とのこと。先輩たち
は山奥で合宿中のため2〜3日連絡が取れ
ない状態です。営業さんもそのことを知っ
ているので、新人と知りつつあなたのとこ
ろに助けを求めてきました。

　こんなとき、どうすべきでしょうか？　弊
社の新人研修ではここからすべて自分で考え
て行動する必要がありますが、今回はHowTo

を含めてシナリオで説明していきます。

①状況を確認する

　まずは今の状況を確認しましょう。重要な
のは2点です。

・先方が認識している問題とは具体的に何か？
・再現方法・発生条件は何か？

　そこで、具体的に何が問題なのか、何をど
のようにしたら、どうなるべきところがどうなっ
ているのかを確認しましょう。たとえば、「サ
イト（https://portal.example.com/）にログイン
したら、パスワードはあっているはずなのに
パスワード間違いと表示される。誰が試して
もそうなる。」というふうに。
　また、営業さんはこのシステム・お客さんに
ついて詳しいはずなので、どのような対処を優
先すべきか確認しましょう。具体的には、ユー
ザへの告知、データの保護、システムの復旧、
再発防止のいずれを優先すべきかを確認します。
　たとえばユーザ告知を優先すべきであれば、
システム復旧よりもメンテナンス画面への切り替
えを最優先で実施すべきです。またデータの保
護や再発防止を優先すべきであれば「とりあえず
再起動」などの対応はしないほうが良いでしょう。

最近では自社で物理サーバを管理することがほとんどなくなりました。クラウドサービスやホスティングサー
ビスは便利な一方、利用者からは見えない・わかりづらい点があります。本章では、前半に初級レベルのトラ
ブルシューティングのキモを、後半ではとくにクラウドやホスティングを利用している場合に発生しがちなや
やこしいトラブル例を紹介します。

2-1
 Author 馬場 俊彰（ばば としあき）　㈱ハートビーツ／ Twitter @netmarkjp

振り返り・言語化・体系化

MSP直伝の
トラブル対策マニュアル

トラシュー事例（初級編）
新人向けチュートリアル

42 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

 ▼図1　管理画面でサーバのコンソール画面を見る

　また社内外のドキュメントや納品物を確認し、
当該システムのドキュメントを集めましょう。
対応を進めるにあたり次の5つの情報が必要に
なると思います。

・	WebサイトのURL
・サーバのIPアドレス
・	サーバ構成
・	ログイン方法、アカウント、パスワード
・	事業者の連絡先、管理画面ログインアカウント、
パスワード（クラウドやホスティングの場合）

　多くの会社では納品物はファイルサーバなど
である程度集約しているでしょうから、そこを
探してみましょう。アカウントやパスワードは
パスワードマネージャに保管されているかもし
れません。ざっと探して見つからない場合は営
業さんにも聞いてみるのと、開き直ってお客さ
んに聞いてみましょう。情報を集めることで次
のアクションとして何をすべきかが見えてきます。

②問題発生個所をおおまかに
　特定する

　情報がそろってきたら問題発生個所を特定
しましょう。最初からピンポイントで特定し
ようとせず、まずは再現させながらおおまか
に特定することに注力しましょう。
　たとえば「Webサイトがブラウザで表示でき
ない」といった場合は、サーバの問題、DNSの
問題、クライアント（接続元）側の問題などい
ろいろなケースが考えられます。
　まずは自分の手元でも問題が再現するか確
認しましょう。再現しない場合は接続元の問
題の可能性が高いと考えられます。またDNS

での名前解決が実施できているか確認しましょ

う。名前解決ができない場合、レコード設定
誤りのようなDNSの問題やドメイン有効期限
切れの可能性が考えられます。
　このように問題個所を特定することを俗に「問
題の切り分け」と呼びます。切り分けの結果、
サーバ側に問題がありそうだとなった場合に
はサーバにログインしましょう。たいていは
sshでログインすることになると思いますが、
Windowsサーバの場合はRemote Desktopを使
うかもしれません。ログインできない場合は
何が・どこが変なのかを考える必要があります。
サーバ側ネットワークの問題が発生している
としたら、同じ問題によりsshができなくなっ
ている可能性があります。
　クラウドやホスティングサービスは、たい
ていブラウザから利用できる管理画面を用意
しています。この管理画面ではサーバの状態
が確認できます。もし然るべきサーバが停止
状態だった場合は、起動することで問題が解
決するかもしれません。
　事業者によっては管理画面でサーバのコン
ソール画面を見られる機能を用意しています。
さくらのクラウドや IDCFクラウド、ニフティ
クラウドにはこの機能があります。
　図1のように画面が見られる場合は見てみま
しょう。コンソール画面を見ることで、ネッ
トワークの問題なのかサーバの問題なのかが
判断できます。
　もし画面に何か意味不明な文字がたくさん
表示されている場合は記録しておきましょう。
スクリーンショットをとるか、スマホのカメ
ラで撮影しておくと良いと思います（図2）。
Kernel Panicという状態になっている場合は
この文字だらけの画面でサーバ全体がハング
アップしているため、電源をOFF/ONして再
起動するしかありません。クラウドやホスティ
ングサービスの管理画面から実施できる場合
は再起動し、問題が再発するかどうか様子を
見ましょう。物理サーバの場合、データセン
タのサービスとしてリモートハンドが用意さ

42 - Software Design Apr. 2015 - 43

クラウド編

2-1 MSP直伝のトラブル対策マニュアル 第2章

れている場合があるので利用しましょう。リモー
トハンドとは電話などで依頼してサーバの電
源ボタンを押してもらうサービスのことです。
対象のサーバを指定し、どのボタンをどのよ
うに押してほしいかを指定し依頼します。たと
えば「◯◯（サーバ名）のDELLのロゴの右側
にある電源マークのボタンを5秒ほど押しっぱ
なしにしてから離す、その後数秒待ってから
同じボタンを軽く1度押す」などと指定します。
　サーバの電源はONだけど画面に何も表示さ
れていない場合は画面が省電力モードになっ
ているかもしれないので、画面をクリックし
てlかkを何度か押してみましょう。
　サーバを再起動するとメモリ上のデータが
消える、データの不整合が発生する、サーバ
が2度と起動しないなど新たな問題が発生する
可能性があります。現状でサーバが利用でき
ていないので、方針が復旧優先の場合は問題
ないのですが、復旧よりもデータ保護や再発
防止を優先したい場合には再起動せず詳しい
エンジニアの判断を待ったほうが良いでしょう。

③ログインできたらデータフロー
　の順に確認

　ログインできたらサーバの状態を確認しま
す（筆者がよく使うLinux（CentOS）を前提に
しています）。
　まずはOS全体の状態を確認します。top、w、
df、free、netstat、vmstatなどを実行し、CPU・
メモリ利用量・SWAP利用量・ディスク空き容
量などを確認します。システムログも忘れずに確
認しましょう。/var/log/messagesなどOS自体
のログにエラーが記録されていないか確認します。
　ディスクに空き容量がなくデータが書き込
めない、メモリ不足によりSWAPを大量に利
用しており応答速度が遅くなっているなどの
場合はこの段階でわかります。ディスクの空
き容量がない場合は古いログファイルの削除や、
大きなファイルの削除などで対応します。ど
のファイルが消してもいいものなのかわかる
場合にのみ対応しましょう。

　SWAPを大量に利用している場合は原因と
なっているプロセスの停止や再起動で対応し
ます。この場合もプロセスを停止してよいか
判断がつく場合にのみ対応しましょう。止め
てはいけない（止めるとあとがたいへんな）バッ
チ処理が動いているかもしれません。
　次に個別のプロセスを確認します。たいて
いのWebシステムでは次の4種類のプロセス
が起動しています。

・	WEB：Apache、Nginx
・	AP：Apache、php-fpm、Unicorn
・	KVS：memcached、MongoDB、Redis
・	DB：MySQL、MariaDB、PostgreSQL

　ただし小規模なWebシステムではWEBと
APは両方Apacheが兼ね、KVSがないことも
あります。また中規模以上のWebシステムで
はDBが別サーバに配置されていることもあり
ます。それぞれの要素の有無や正しい配置場
所は、ドキュメントや監視設定（もしあれば）
を基に判断していきます。
　個別のプロセスが特定できたらデータの流れ
る順番に沿って確認していきましょう。たいて
いのWebシステムではWEB→AP→KVS→

DBという順になります。それぞれの要素ごとに、
ソケットの有無、プロセスの有無、ログ出力内
容の3つを確認します。
　ここまでくると、プロセスの単位まで切り分
けができます。起動していなければならないプ
ロセスが停止している場合には起動しましょう。
うまく起動しない場合にはエラーログファイル

 ▼図2　Kernel Panic

44 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

◆◆◆
　シナリオを振り返って知見をとりまとめま
しょう。実際の対応が終わったあとはかなり
疲れているとは思いますが、振り返り、言語
化し、体系化することで次回以降に活かすこ
とができます。
　今回のシナリオをざっくりまとめると次の
要素がありました。

・まずは落ち着いて状況を確認する
・情報を集める
・対応方針が決め、暫定対応・根本対応でそ
れぞれどうすべきか検討できる

・解明ではなく切り分けに注力する
・データフローの順に見ていく
・勘に頼らずデータとログを見る

　障害対応中はどうしても慌ててしまうため、
冷静なときには普通にできることができない
ものです。このようにあとから体験を振り返り、
要素を言語化、体系化しましょう。振り返り
→言語化→体系化を繰り返すことで自分を律し、
的確な対応ができるようになっていきましょう。

たいていはクラウド事業者が問い合わせ窓口を
設けているので問い合わせてみましょう。
　稼働状況を公開しているサービスもあるので
事前にチェックしておきましょう（図3）。ただし
このような稼働状況ページはサービス全体に
関わる問題しか反映されないことがあります。
また迅速に反映されるとも限りません。
　リアルタイムに情報が欲しい場合は、問い
合わせと並行してTwitterなどで同じように
困っている人がいないかリアルタイム検索し
てみると良いでしょう。

インターネット経路障害

　A社からの利用は問題ないけどB社からの

トラシュー事例（上級編）
ちょっとややこしいトラブルシューティング

を確認し問題の原因を取り除く必要があります。
　それでもわからない場合、復旧優先であれ
ばサーバごと再起動するしかないかもしれま
せん。営業さんとお客さんの了承を取ったう
えで、祈りつつ再起動しましょう。

④動作確認

　対処が完了したら、最後に問題の再現方法
をなぞり、問題が再発していないか確認しましょ
う。再現しなければ見事解消です。お疲れさ
までした。

⑤根本対応

　後日でかまわないので、振り返りと再発防
止をしましょう。ここでは再発防止対応や、
再発時の対応フロー整備などを実施します。
　技術的な再発防止策だけでなく、再発時に
迅速に発見して対処するために情報をとりま
とめておくのも効果的です。筆者の勤めるハー
トビーツが提供する監視一次対応サービスを
導入するのもお勧めです。

　自分のサーバが原因のシステムトラブルは
わかりやすいのですが、クラウド基盤のシス
テムを運用しているとどうにもよくわからない
トラブルが発生することがあります。障害対
応でわかりづらいトラブル例をいくつか挙げ
てみました。

クラウド基盤の障害

　トラブルの原因がクラウド基盤側の場合、い
まいち性能が出ない、いまいち応答が悪い場
合などの症状が出ることがあります。完全にダ
ウンしてしまうとわかりやすいのですが、微妙
におかしくなっている場合にはシステム自体を
いくら調べても原因が掴めないことがあります。

44 - Software Design Apr. 2015 - 45

クラウド編

2-1 MSP直伝のトラブル対策マニュアル 第2章

利用は問題あり、しかしA社もB社もインター
ネット自体の利用は問題ないというケースが
あります。その場合にはインターネット接続
の経路を疑ってみましょう。インターネット
の経路によってトラブルが発生することがあ
ります（実際ありました）。
　問題がある拠点・ない拠点それぞれから
tracerouteを実行することで、どのような経
路をたどっているか、経路のどこで問題が発
生しているか確認できます（図4）。
　ISPより上の経路での問題となると改善が
難しいのですが、事業者に状況と確認結果を
連絡して改善を促しましょう。

連携サービスの障害

　システムには何も異変がないのに急にその
システムの利用者が減ったら、ユーザの導線
を確認してみましょう。
　ソーシャルゲームの入り口になるプラット
フォーム（たいていSNS）側で障害が発生して
いてユーザが流れてこない、認証の連携先で

 ▼図3　AWSの稼働状況ページ
　　　（http://status.aws.amazon.com）

ピンチをチャンスに！

　障害対応をすると自分の力不足を痛感すること
が多いと思います。そんなときこそ成長のチャン
スです。
　初心者を脱する段階で定番の苦手ポイントは以
下に挙げたようなものがありますが、今後もエン
ジニアとしてやっていくためには避けて通れない
ので、苦手意識を捨てて必要なことを学びましょう。

・英語のエラーメッセージを読む
・英語のドキュメントを読む
・Apacheなどミドルウェアのソースコードを読む

・アプリのソースコード（PHP/Ruby/Python）を
読む
・プログラミングする
・ネットワークについて知る
・straceコマンドでプロセスの動きを見る
・システムコールについて知る

　エンジニアなら「難しい→やらない」ではなく「難
しい→コンピュータの力で簡単にする」というアク
ションをし続けたいですね。

 ▼図4　tracerouteを実行

[root@web ̃]$ traceroute -n 192.168.123.1
traceroute to 192.168.123.1 (192.168.123.1), 30 hops max, 60 byte packets
 1 10.0.2.2 0.088 ms 0.067 ms 0.081 ms
 2 192.168.24.24 60.928 ms 60.883 ms 60.802 ms
 3 192.168.24.1 60.727 ms 60.543 ms 60.734 ms
 4 192.168.123.1 61.466 ms 66.463 ms 66.461 ms

障害が発生していてユーザが認証できずシス
テムが利用できないなどのケースがあります。
ユーザの目線で、ユーザと同じ動作を、でき
るだけユーザに近い環境から実施することが
問題の切り分けにつながることがあります。

◆◆◆
　本稿では障害対応の簡単なロールプレイと、
ちょっとややこしい事例を紹介しました。障害
対応は精神的にはプレッシャーがありますが、
論理的に詰めていけば問題個所は特定できます。
諦めず冷静に、落ち着いて対応しましょう。ﾟ

http://status.aws.amazon.com

46 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

問題発覚と環境説明

　AWSでシステムを運用している場合、サー
バ内部のメンテナンスはSSHやRDPといっ
た技術を使ってリモートログインしてから行う
ようになり、オンプレミス環境での電源OFF

／ONなどの物理的な作業はAPIやAWS

Management Consoleから操作するようになり
ました。
　初級編のトラブルは図1のようにWebサー
バ、アプリケーションサーバ（App）、データベー
スサーバ（DB）をAmazon EC2（以下、EC2）を
使って構築したシステムで発生したものを想
定します。ある日、サーバのメンテナンスを
目的としてメンテナンス拠点からログインし
ようとしましたが、ログインできませんでした。
監視サーバは異常を検知しておらず、サービ
スにも影響は出ていないようですが、メンテ
ナンスができなくなったので急遽原因の調査
をすることになりました。

原因調査と対策例

　トラブル対応時にまずやるべきことは、表
示されているエラー、ログ、監視サーバの監

視状況などから現状を把握することです。今
回のケースはサーバにログインすることがで
きない状況ですが、リモートからログインを
試みて失敗したときのエラー内容からも解決
の糸口をつかむことができます。またサーバ内
のログをサーバ外部に転送している場合は、転

AWS

Web

EC2

App

AWSクラウド

メンテナンス拠点

EC2

DB

EC2

監視拠点

ログインNG 監視OK

 ▼図1　初級編の想定システム

Web系から業務系まで、さまざまなシステムがクラウドで構築されるようになりましたが、システムの基盤が
オンプレミスからクラウドに移行しただけで、トラブルや障害がなくなるわけではありません。本稿では、
Amazon Web Services（以下、AWS）上で構築されたシステムに関するトラブルシューティングについて、
実例を交えて解説します。

2-2
 Author 柳瀬 任章（やなせ ひであき）　㈱サーバーワークス／ Twitter @oko_chang

低レイヤから行う原因調査
AWS上に構築されたシステ
ムのトラブルに遭ったときに

トラシュー事例（初級編）
本番環境に突然ログインできなくなった！

46 - Software Design Apr. 2015 - 47

クラウド編

2-2 AWS上に構築されたシステムのトラブルに遭ったときに 第2章

送されたログの内容からも手がかりをつかめま
す。今回の場合、SSHでログインを試みると
次のようなエラーが出力されていました。

ssh: connect to host web.example.com ｭ
port 22: No route to host

　発生しているトラブルの内容から、次のよ
うな仮説を立てることができると思います。

①	名前解決はできているが、メンテナス拠点
からEC2インスタンスの22番ポートにア
クセスができない

②	メンテナス拠点、監視拠点からともにサー
ビスにアクセスできるので、EC2インスタ
ンスがダウンしている可能性は低い

③	メンテナンス拠点からサービスを利用できるた
め、メンテナス拠点からEC2インスタンスへの
ルーティング設定に問題がある可能性は低い

④	監視拠点からはサービスの利用、SSHアク
セスともにできていることから、SSHサー
バのプロセスがダウンしている可能性は低い

　しかし、情報に誤りがあって間違った仮説
を立てている可能性もあります。そのため、
このような仮説が間違っていないことを順序
立てて確認することも大切です。
　トラブル発生時の仮説検証や問題切り分けの
進め方としては、クラウド環境でも低いレイヤ
から行ったほうがわかりやすいように思います。
　オンプレミス環境での物理的障害に近いも
のからチェックを始めます。EC2インスタン
スも仮想サーバを稼働させている物理ホスト
の影響を受けてダウンする場合もありますが、
そのような場合は監視サーバからもアクセス
ができなくなり障害を検知するはずです。
EC2インスタンスが正常に稼働しているか確
認するためには次のような情報をAPIや
Management Consoleでチェックすると判断が
つくかと思います。

・Instance Stateがrunning状態にあること

・System status ckecksがpassed（0）状態で
あること

　また、EC2インスタンスのパブリック IPを
固定化する機能であるElastic IPの状態も
チェックしてみてください。誤ってこれを取
り外してしまうとアクセスができなくなりま
すが、そのような状態であった場合、監視サー
バからもアクセスが失敗するはずですので原
因となっている可能性は低いです。
　EC2インスタンスがダウンしていないこと
が確認できたら、次の確認に移ります。EC2

インスタンスはAmazon VPC（以下、VPC）と
呼ばれるユーザ専用の仮想ネットワーク空間
上で稼働しています。VPCの中ではユーザが
好きなようにルーティング設定ができるように
なっており、VPCから直接インターネットに
アクセスする場合はインターネットゲートウェ
イへ正しくルーティングされている必要があり
ます。ルーティング設定が誤っている場合は
メンテナンス拠点からのSSH以外のプロトコ
ルも通信に失敗するため、この点についても
問題となっている可能性は低いですが、低レ
イヤの確認事項としてチェックしましょう。

設定ミスによって
思わぬトラブルにつながる

　ここまでで物理的、ネットワーク的には問
題がないことが再確認できましたので、さら
に上のレイヤをチェックしましょう。レイヤ3、
レイヤ 4のアクセス制御としてEC2には
Security Groupという機能があります注1。これ
はアクセス元、アクセス先の IPアドレスや、
プロトコル、ポート番号による制御を可能に
します。Security Groupについてチェックし
たいポイントは次の2点となります。

・EC2インスタンスに正しいSecurity Group
が割り当てられているか

注1） その他ネットワークレベルのアクセス制御として
Networks ACLという機能があります。

48 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

・割り当てられているSecurity Groupにメン
テナンス拠点からのアクセスが許可されて
いるか

　この段階で「メンテナンス拠点のアクセス許
可ルールを誤って削除してしまったためトラ
ブルへとつながった」ことがわかりました。

IAMによる権限設定とAWS Config、
Cloud Trailによる追跡

　AWSには IAMという権限管理のサービスも
あります。Security Groupのルール設定は適切
な権限を持つ人にのみ付与して、それ以外の人
は参照のみ可能というように制限することがで
きます。この機能を活用することで、適切な
権限を持つ管理者だけがSecurity Groupのルー
ルを削除可能、ということを実現できます。
　また、AWS Configを利用することでAWSリ

ソースの変更を追跡をすることや、CloudTrail

を利用することでAWSリソースの操作などをロ
グとして保管することも可能となります。トラブル
が発生したときに原因を追う手がかりにもなり
ますので、これらはぜひ有効にしたい機能です。
　AWSに限らずクラウドサービスではAPIが
提供されているものが数多くあります。筆者
が担当しているサービスではAWS SDK for

RubyとRSpecを使ってAWSアカウントのあ
るべき状態をテストコードに定義して、AWS

リソースに意図しない変化が発生した場合に
はテストが失敗するようになっています注2。こ
のような工夫をすることでトラブルの早期発
見と防止につなげられると思います。

注2） サンプルコードを URL https://github.com/serverworks/
aws-specに公開しています。

トラシュー事例（上級編）
参照系のデータベースアクセスが負荷分散されない

問題発覚と環境説明

　AWSのサービスの中にはEC2のようなサー
ビスのほかに、ロードバランサのサービスであ
るElastic Load Balancing（以下、ELB）、リレー
ショナルデータベースのサービスであるAmazon

RDS（以下、RDS）などがあります。これらの
サービスはフルマネージド型のサービスとなっ
ており、可用性が高く、アクセスが増えてくる
と自動的にスケールする機能（ELB）や、1台の
ホストに障害があった場合に自動的に切り替わ
るといった機能（RDS）があります。これらの機
能はたいへん便利なのですが、その特性をきち
んと理解していないと思わぬトラブルに遭遇す
る場合があります。
　次のトラブルは図2のような構成のシステム
で発生しました。Web／アプリケーションサー
バからデータベースの参照は、HAProxyを経
由して2台のRDSリードレプリカに負荷分散

されています。しかしあるときを境に、この
RDSへの負荷分散がある特定のRDSに対して
負荷分散されないという状態になりました。
参照系の負荷分散に失敗していることで参照
クエリが1台のホストに集中してしまい、負荷
が高まっているようでした。
　監視サーバは負荷分散されていないRDSの
障害は検知しておらず、現時点ではサービス
にも大きな影響は出ておりませんでしたが、
影響が出る前に対応をすることになりました。

原因調査と対策例

　初級編のトラブルではメンテナンス拠点か
らサーバへの接続に関する問題でしたが、シ
ステム間の接続に問題があった場合も同じよ
うなステップで対応します。
　今回の場合はHAProxy経由でRDSにアク
セスしている構成となるため、HAProxyが出
力するログ（図3）やMySQLクライアントで

https://github.com/serverworks/aws-spec

48 - Software Design Apr. 2015 - 49

クラウド編

2-2 AWS上に構築されたシステムのトラブルに遭ったときに 第2章

HAProxyを経由してアクセスしてみた結果（図
4）を見てみましょう。
　HAProxyのログは、バックエンドのRDSへ
の接続に失敗していることを示しています。
HAProxyがRDSへの接続に失敗しているため、
そのホストへ参照クエリを分散しないような
状態となっていると推測できます。MySQLク
ライアントを使って、HAProxy経由でRDSに
接続しようとしてもやはり失敗します。
　今回の場合も監視サーバからは障害を検知
していませんが、RDSに何かしらの障害がお
きているのでしょうか？　初級編の場合は低
いレイヤから確認して問題の切り分けをしま
したが、今回の場合はその前に1つステップを
はさみます。前述したとおり、アプリケーショ
ンはHAProxyを経由してRDSに接続をして
いますので、できるだけ構成をシンプルな状

態にするのです。今回の場合、HAProxyを経
由することなく直接RDSに接続すると、監視
サーバからアクセスができるのと同じように
RDSにアクセスができました。
　ここまでの内容をまとめると、HAProxyを
経由した場合だけRDSとの接続に失敗してい
るようですが、具体的な理由まではわかってい
ません。このような場面での切り分け例として、
tcpdumpコマンドなどで通信をキャプチャす
ることが考えられます。
　図5の例はWebサーバ内で tcpdumpコマンド
を実行し、3306ポートへの通信をキャプチャ
した例となります。この中で、ip-10-0-1-76.
ap-northeast-1.compute.internal.mysql
というのはRDSにローカル通信した場合の接
続先であり、そこに通信しようとしていること
がわかります。ここで表示されている接続先と、
RDSのエンドポイントを名前解決した結果を

AWS

Web、App、HAProxy

EC2

Web、App、HAProxy

EC2

Web、App、HAProxy

マスターDB レプリカDB01 レプリカDB02

EC2

AWSクラウド

監視OK

Corporate Data center

M R R

 ▼図2　上級編の想定システム

 ▼図3　HAProxyが出力するログ

Feb 6 16:58:45 localhost haproxy[10512]: Server mysql/read1 is DOWN, reason: Layer4 ｭ
connection problem, info: "Connection refused", check duration: 2ms. 1 active and 0 backup ｭ
servers left. 0 sessions active, 0 requeued, 0 remaining in queue.

 ▼図4　MySQLクライアントでHAProxyを経由してアクセス（失敗）

$ mysql -u root -p -h 127.0.0.1 -P 3306
Enter password:
ERROR 2013 (HY000): Lost connection to MySQL server at 'reading initial communication ｭ
packet', system error: 0

50 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

比較してみましょう。
　エンドポイントを名前解決した結果（図6）が、
HAProxyが接続しようとしていたものと異な
る結果となりました。HAProxyが特定のリー
ドレプリカに接続ができていない問題は、こ
れが原因で間違いないようです。HAProxyは
起動時に設定ファイルで指定された接続先を
名前解決して、結果をキャッシュするようになっ
ています。RDSは稼働するホストに障害が発
生した場合にホストの自動交換機能で、ハー
ドウェアが自動的に交換されますが、そのと
き内部的にローカル IPアドレスが変更されて
しまうのです。
　このようなミスマッチで通信に影響が出る
場合もありますので、クラウドや使用してい
るアプリケーションの特徴を理解して設計す
る必要があります。
　今回の構成ではRDS側のローカル IPアドレ
スが変更される可能性が考慮されておりませ

んでしたが、RDSのローカル IPアドレスが変
更されるようなイベントが発生した場合に、
HAProxyを再起動して名前解決をしなおすよ
うなしくみが必要となります。

◆◆◆
　この章ではクラウド環境におけるトラブル
対応について、AWSを例にして解説しました。
IaaS系のクラウドサービスはさまざまありま
すが、サービスごとにそれぞれ特徴が違って
きますので、それらを理解して使いこなす必
要があります。また、クラウドではバックアッ
プから新しいサーバをすばやく用意すること
もできます。こういった特徴を活かして、新
しいサーバを使ってサービスの復旧を優先す
るという考え方も大切になります。
　トラブルシューティングをする場合の基本的な
方針はオンプレミスでもクラウドでもあまり大
きな差はありませんので、しっかりと基礎技術
を身につけることが大切になると思います。ﾟ

 ▼図5　tcpdumpコマンドを実行し、3306ポートへの通信をキャプチャ

$ sudo tcpdump dst port 3306
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
15:04:59.745944 IP ip-10-0-0-21.ap-northeast-1.compute.internal.34921 > ip-10-0-1-76.ｭ
ap-northeast-1.compute.internal.mysql: Flags [S], seq 188805037, win 17922, options [mss ｭ
8961,sackOK,TS val 265836392 ecr 0,nop,wscale 7], length 0

 ▼図6　RDSの接続先をdigコマンドで名前解決

$ dig rds-slave02.a1b2c3d4f5g6.ap-northeast-1.rds.amazonaws.com any

; <<>> DiG 9.9.4-RedHat-9.9.4-14.el7_0.1 <<>> rds-slave02.a1b2c3d4f5g6.ap-northeast-1.rds.ｭ
amazonaws.com.com any
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 413
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;rds-slave02.a1b2c3d4f5g6.ap-northeast-1.rds.amazonaws.com. IN ANY

;; ANSWER SECTION:
rds-slave02.a1b2c3d4f5g6.ap-northeast-1.rds.amazonaws.com. 5 IN A 10.0.1.32

;; Query time: 4 msec
;; SERVER: 10.0.0.2#53(10.0.0.2)
;; WHEN: 月 2月 09 16:12:13 JST 2015
;; MSG SIZE rcvd: 107

51 - Software Design Apr. 2015 - 51

　これからクラウドコンピューティングを学
ぼうとしてる人にとってクラウドコンピュー
ティング環境と仮想化環境とでは何が違うのか、
という点は疑問を持たれる人が多いかと思い
ます。普段使っていても、意識しないとその
差は表面的には見えないと思います。

新人「先輩、何も問題がないのに
アクセスできません！」

　あるとき、とあるサーバでパフォーマンス
の問題が発生しました。そのシステムはWeb

システムで、従来のオンプレミスで構築する
ように、負荷分散装置（Load Balancer）を経由
して、Webサーバにアクセスされるように設
計されています。アクセス数が増えることを
想定してサーバのCPUやメモリを見積もり、
運用中はモニタリングをしていました。とこ
ろが、ユーザからシステムにつながらないと
いう問い合わせが多数ありました。実際にSE

がWebサーバを確認してもやはりその時間に
つながらないと通知が来ていますが、Webサー
バ側にはゆるいアクセスしかない状況です。
またHTTPサーバを調べてみても、リクエス
トに対して正常に応答しているログしか見つ
けることができませんでした。

見えるところと見えないところ

　さてクラウド上のサーバを利用していると
忘れがちですが、クラウドサービスの多くは「パ
フォーマンス」や「トランザクション」などの指
標で契約を行うことが多くあります。クラウ
ドとオンプレミスの違いとして「最大のパフォー
マンス」を常に利用者が享受できるわけではな
いということがあります。同じ仮想化のしく
みとしても、オンプレミスの場合にはリソー
スをすべてユーザが自由に利用できます。また、
クライアントからサーバに至るまでのさまざ
まな経路を調査することもできます。ところ
がクラウドの場合にはユーザから見えるのは
提供されるリソースだけになります。今回のケー
スではエンジニアが調べられる範囲は非常に
狭く、Webサーバしか実際には調べることが
できません。

問題に立ち返ってみましょう

　今回のケースは「システム的なトラブルはな
いのに利用者にサービスを提供できていない」
という事象にあたります。クラウドは「共有サー
ビス」ですのでパフォーマンスが安定しないと

クラウドネイティブが生まれてこようとしている時代です。サーバを実際に見たことがないという人も増えてく
るかと思います。しかしながら、世の中からサーバやケーブルがなくなったわけでもありません。クラウドとい
う抽象化されたサービスになりOSがどのような環境で動作しているか見えにくくなっていますが、クラウド企
業のデータセンタの中では確かにサーバが存在しています。

2-3
 Author 常田 秀明（ときだ ひであき）　日本情報通信㈱／ Mail Hideaki_Tokida@NIandC.co.jp

SoftLayerの運用でわかったこと

クラウド環境でとくに必要な
複数視点

トラシュー事例（初級編）
システム面からだけでは解決できないトラブル

52 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

いう話がよく出たりしますが、早合点をして
はいけません。実は今回のトラブルの原因は、
「負荷分散装置を『低リソース』で契約していた
こと」だったのです。筆者が勤める会社でも、
昨年から利用しているパブリッククラウドの
SoftLayerではLoad Balancerが「同時接続数」
で契約されます。つまりどんなにWebサーバ
のリソースを強化して分散させても、そもそ
も契約上の制約で処理ができないとうオチで
した（図1）。今回の新人君へは、

　「まず環境をキチンと理解する必要があるよ。
とくにクラウドの場合にはどのようなサービ
スとして利用しているか最初に把握したほう
がいい。それと障害分析もブラックボックス
になりがちなのでサポートセンターとは密に
連絡を取るほうがいいよ。通信できない、ケー
ブル挿せよっていうレベルの話を見落としが
ちだからね」

とアドバイスしたいと思います。

クラウド時代の
トラブルシューティングの基礎

　クラウドとは高度に抽象化された世界で実
現されています。システムの基本となるネッ
トワーク、ストレージそしてコンピュートノー

ドすべてが仮想化されて動いています。これ
はオンプレミスで仮想化環境を作っても同じ
ことが言えます。クラウドサービスを利用す
ると、この抽象化がどのように実装されてい
るか利用者からはまったく見えないため「見え
ている」範囲で問題を解決していく必要があり
ます（図2）。
　実際には、オンプレミスでも原因を追跡す
るのは本当に難しい問題です。また、いかにオー
プンに見えるクラウドでも実際のハードウェ
アレベルまで行くと実装は非公開です。クラ
ウドというのは実はプロプライエタリな環境
であったりします。したがってトラブルが発
生した際には、まず「クラウドサービス側で問
題が発生していないか、原因はどこにあると
推測できるのか」をサポートに確認してみるこ
とをお勧めします。

基礎的な知識が想像力を産む

　たとえばクラウドサービスの基盤側で障害
が発生していたとします。その情報はすばや
くユーザに提供されると良いのですが、実際
には提供されるとしても少し遅れて通知され
ると思います。その期間ユーザには何が起こっ
ているでしょうか？　もしかしたら顧客に提

Webサーバ

監視負荷分散装置ユーザ

Webサーバ

正常
異常

契約上の上限が
定義

正常

正常

正常

 ▼図1　初級編のトラブルの概要

52 - Software Design Apr. 2015 - 53

クラウド編

2-3 クラウド環境でとくに必要な複数視点 第2章

供しているWebサービスが利用できない状態
になっているかもしれません。場合によって
は保守用のネットワークが利用できず開発者
が困っているかもしれません。
　これらの「症状」を利用者が認識してからト
ラブルシューティングをしていくことになり
ます。オンプレミスで構築され、すべてが把
握されている状態と違い、原因や影響範囲を
クラウド事業者が連絡してくれない場合には、
その「症状」から何が問題であるかを紐

ひも

解いて
いく必要があります。まずはユーザが管理で

きる範囲の対象で「エラー」や「警告」が出てい
ないかをチェックしたり、前日との変更点を
調査したりしていきます。しかしながら、問
題の原因はどうもアプリケーションでもOSで
もなさそうだとなり、今回のようにそれ以外
の個所で発生しているようだとわかるケース
があります。
　クラウドサービスは、一見どのように動いて
いるかわからない場合でも実際に「雲」であるこ
とはなく、何らかの技術で作られたシステムな
のです。突然にパケットが別の場所にワープす

ることはないので、オンプ
レミス環境でこれまで得た
知見を活用して該当個所を
推測していくことが重要で
す。クラウドになったので
インフラの知識が不要にな
るわけではなく、逆にどの
ような仮想化技術が使われ
ているのだろうと想像力を
働かせて利用していく必要
があります。むしろ見えな
いからこそ、基礎をしっか
り理解しておく必要があり
ます。

OSを通して透けて見える
範囲で想像できる

IaaSの場合には
この範囲までがブ
ラックボックスサービスによってポー

タル上からログなどを
確認可能

OS

データ

アプリケーション

ランタイム

コンピュート（仮想）

コンピュート（物理）

la
aS
提
供
ポ
ー
タ
ル

ストレージ

ネットワーク

データセンタ

回線設備

 ▼図2　クラウドサービスの見え方

　筆者がよく取り扱っている IBM SoftLayer

では昨年末に東京データセンタが利用可能に
なりました。SoftLayerでは標準で端末からの
SSL-VPN接続が利用できるのですが、接続
先のPOPアドレスが「新データセンタ設立工事」
のために変更になっていました。実際にはメー
ルなどで通知があるにせよ、利用者としては
すべてをチェックしているわけもなく「接続障
害」と認識してしまう」というケースがけっこ
う多いので、問題が発生した際には「IaaS」と

してのサービスがどのようなコンディション
なのかをチェックするというのが大事な初動
であると思います。

「正常」という状態を把握せよ

　トラブルシューティングを行うためには情報
が多いに越したことがありません。また「正常」
である状態とはどのような状態なのかを正しく
把握しておくことが大切です。IaaSではAPI

を経由してさまざまな情報を取得することがで

トラシュー事例（上級編）
トラブル発生時の初動を考える

54 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

きます。とくにAWSではCloudWatchという
非常に優れた監視サービスが提供されています。
また、SoftLayerの場合にはAPI経由で各種モ
ニタリング情報にアクセスすることができます。
これらの情報から利用者はこれまでと同様に（一
部はこれまで以上に）独自の監視システムを構
築することができます（図3）。
　こういったサービスを利用して日々状況を把
握しておくことが、問題が発生したときに「正
しい異常」であるかを確認する手助けになります。
加えて、実際の利用者のネットワークからの監
視もお勧めします。たとえばクラウドサービス
と、自社がネットワークで常時接続している場
合にはサービス（たとえば、HTTPのResponse

からの監視）を利用者の立場から監視すること
で初動を適切に行うことができるようになりま
す。従来のプロセスである「起動／停止」レベル
の監視はクラウドの環境内部から実施しますが、
ユーザのネットワークからは応答時間やスルー
プットなどの、システムが提供するサービスレ
ベルでの測定をしていきたいものです。

適切な判断を決めておく

　サービス事業者は障害が発生したときに、「確
実」に障害となっていないと「問題ない」と回答
してくるケースが多い
と思います。したがっ
て利用者としては、起
こっている問題がクラ
ウドにあることを証明
することが重要になり
ますが、いずれにして
もオンプレミスで自社
のエンジニアが対応す
ることと違い、自分た
ちの望むペースでは問
題は解消されないケー
スがあります。また原
因についても明確には
連絡されないことも

多々あります。したがって、なかなか実現す
るのは難しいですが「停止しても良い作り」に
しておくことが一番重要になってきます。運
用の現場としては、障害解決を優先させるのか、
現状復帰を優先させるのかをあらかじめ業務
レベルに応じて定義しておくことが必要です。
　クラウドのシステムの障害対応の基本は「ブ
ラックボックス」なものに対しての出入りをき
ちんと認識し、その中で何が起こっているか
を把握することです。そしてクラウドサービ
スは「時間」などの品質面が甘いため、トラブ
ル発生時には復旧優先での対応をしたほうが
望ましいと考えます。仮に、「ルータを再起動
すれば直る」障害が発生した場合でも、実際に
は「いつ」実施されるのか不明です。そういっ
た意味でも障害が発生している中でそのシス
テムを業務上どのように動かしていけばよい
かという議論はしておくべきでしょう。

これからのインフラ設計

　クラウドを利用した運用が始まってきてい
ますが利用部門がこれまでと同程度の品質を
求めてしまい余剰な構成になっているケース
もあります。クラウドを利用するにあたり運
用レベルなどの見直しも行うことで、トラブ

独自のシステムを
構築可能

APIなどで
取得が可能

OS

データ

アプリケーション

ランタイム

コンピュート（仮想）

コンピュート（物理）

ストレージ

ネットワーク

データセンタ

回線設備

laaS提供
監視機能

これまでオンプレミスでは監視
していないレベルの監視を実施
（ユーザのAPI利用レベルでの
監視が可能）

 ▼図3　クラウドでの監視のしくみ

54 - Software Design Apr. 2015 - 55

クラウド編

2-3 クラウド環境でとくに必要な複数視点 第2章

ル発生時の負荷を減らしていくことが可能に
なってくると思います。難しいケースが多い
ですが、やはり「構築」する段階でどのように
システムをデザインするかは非常に大切になっ
てきます。これまでフォールトトレランスを
実現するために高価なハードウェアで二重化
などを実現してきたかと思います。これから
はもっと、ソフトウェアレベルでどのように
障害に耐えられる設計を行えるか、というこ
とになっていくのではないでしょうか。最後
に「運用でカバー」せずにシステム・デザイン
の段階で運用上の問題や課題をきちんと網羅
したインフラ設計が必要になってきます。ま
たインフラについては「壊れても大丈夫」な環
境を目標としてデザインを作っていきたいで
すね。

◆◆◆
　ここまでクラウドサービスを利用する観点
から書いてきましたが本当の意味でトラブル
が発生したときに最初にすべきことは何でしょ
うか。自分が IT担当者の場合でも、サーバを
保守するエンジニアの場合でも、サービスを
提供しているプログラマの場合でも、一番最
初にしなければいけないことは唯ひとつです。
それは、「問題を正確に把握しましょう」とい
うことです。

　長年 IT業界でいろいろなシステムの運用に
携わってきてとくに感じるのは、誰が一番最
初に障害を認識したかによって、そのあとの
動きが非常に変わってくるということです。
とくに、「動かない」「遅い」などのキーワード
は「主語」「述語」などを明確にしていく必要が
あります。
　最近あったトラブルでは、「クラウドにサー
バをマイグレーションしているが動作が遅い」
という問題が報告されました。この連絡を受
けたサービス担当者は、利用者がSSL-VPN

経由で利用していたこともあり「インターネッ
ト接続が遅い」ということだと思い込んでしまっ
たのです。実際にはこれは、アプリケーショ
ンのコーディングの問題であったのですが、
初動で基盤上の問題であると報告され実際に
速度を測定したりと、かなりの工数をかけて
トラブル対応した結果「問題はない」という報
告をした経緯がありました。このようにトラ
ブル自体が何であるかを正しく報告者と合意
して確認しないと、結果的に大きく遠回りを
することになったりします。

「問題は正確に理解しましょう」

　そうすれば確実に一歩ずつ問題の原因にた
どり着くことができます。ﾟ

大量のメールからわかったこと

　先日、とあるお客様のサーバからシステム停止
（Pingが疎通しない）のイベントが来たので対応し
てほしい旨の連絡を受けました。しかし管理コンソー
ルでもとくにエラーはなく、アプリケーション上
にも問題が見受けられませんでした。
　筆者の会社では複数顧客システムを保守してい
るのですが、このとき通知メールを確認すると数
千通のメールの海。1つのアカウントでは単一に見
える障害も、複数アカウントを所有しているとク
ラウド基盤上でなんらかの障害が発生しているの
では？ーと推測できるような状況に遭遇すること

があります。そしてありがちですが、このような
状況ではサポートも問い合わせが増え、確実でな
いことは回答をもらえないケースが多いです。大
局的に物事を見るのは難しいですが、ある程度こ
の手の問題は織り込み済みで対応していかないと
いけません。とは言え、クラウドのサービスの多く
はメールベースの通知が多いのでたいへんな状況
になります。このときも普段の業務のメールはまっ
たく見れないほどでした。何か良いソリューション
が欲しいですね。

トラブルシューティングの極意
達人に訊く問題解決のヒント

56 - Software Design

第1特集

障害発生時にすべきこととは

　ソフトウェア開発においてバグや作業ミス
によるトラブルはつきものです。トラブルに
遭遇したときは焦ってしまいがちですが、ま
ず落ち着くこと。浮足立っているとよけいに
事態を悪化させてしまいかねません。そして
何より誠意を持って対応するというのが大切
です。関係各所に連絡を取り、回避策があれ
ば暫定的に適用していただき、データが壊れ
ている場合、直せるものは直し、ダメなら業
務側での再作成をお願いする。そのうえで、
できるだけ早期にバグフィクス版をリリース、
システムを復旧させなければなりません。

［事例1］
納品先で固まるプログラム

　新人のころ、周辺機器からシリアルポート
経由でデータを受信し処理するプログラムを
作成する仕事をしました。納品日、お客様の
環境にインストールして動かしたところ、プ
ログラムがハングアップして応答しなくなっ
てしまいました。
　会社の開発マシンでは問題なく動いていた

ので非常に焦りました。お客様にお詫びして
検収を延ばしてもらい、会社に引き返して必
死にプログラムを見直しました。すると、デー
タ受信処理で固定バイトずつデータを読み出
しており、指定バイト数のデータが読み取れ
なかった場合の考慮がないことに気づきました。
そこで、読み出しのたびにバイト数を保持して、
指定バイト数に達したらデータを処理注1する
ように修正しました（図1）。
　お客様と同一機種のマシンがなかったので、
バグフィクスの確証は持てなかったのですが、
翌朝一番に訪問して動作を確認し、無事検収
いただくことができました。経験が浅い筆者
には入力待ちによるブロッキングの可能性を
想像できていませんでした。
　開発環境と実行環境の差でプログラムが動
作しないというのはよくあります。サーバサ
イドのプログラムでは、本番機（あるいは本番
機相当のステージング環境）でリハーサルを行
うのは常識になっていますが、特定のマシン
がターゲットの場合、開発時に調達するか、

注1） バッファリングという処理です。

トラブルへの対応には多くの困難が伴います。プロダクション機の情報が取得できず原因追及に着手できない、
発生条件が特定できない、予想もしない個所のコードに問題がある、などなど。くだらないミスが原因であるこ
とがほとんどですが、設計時の考慮不足・知識不足によりもたらされるものもあります。
本稿では、筆者がこれまで体験したトラブルからいくつか「何が起こったのか」「どう対応したのか」を具体的に紹
介し、考察します。

3-1
 Author 近藤 正裕（こんどう まさひろ）／ Twitter @kondoumh

［実例満載］

現場での対応と
改善の手段

トラブルと真正面から向き合う＋調べる

56 - Software Design Apr. 2015 - 57

ソフトウェア開発編

3-1 現場での対応と改善の手段 第3章

お客様に借りるなどして検証機会を設けたい
ものです。

［事例2］
起動しない Web App Server

　筆者がかかわっていた業務アプリ開発現場
での話です。Webアプリケーションサーバが
起動途中にクラッシュしてしまうという現象
が何日も解決できず、プロダクション機の構
築担当チームが途方に暮れていました。筆者
ら開発者も支援に入りましたが、はじめて使
用するプロダクトというのもあってログを見
ても原因がわかりません。スケジュール的に
待てない状況だったので、プロダクト製造元
のトラブルシュート専門技術者が召喚され、
クラッシュ時のメモリダンプを解析しました。
それでも原因特定できません。そこで、あら
ためて全員でパラメータシート注2と設定ファ
イルの項目をひとつひとつ見比べていったと
ころ、ある設定値が間違っていることに気づ

注2） 同時接続数やトランザクション量などから推奨されるサー
バの設定値を記した表。

きました。ケアレスミスによる大幅な時間ロ
スでした（図2）。そして、製品を疑うよりもま
ずは自分たちのミスを疑えという典型事例で
もありました。

［事例3］
終わらない移行作業で負け試合

　とあるバッチ処理を新方式に移行する作業を
していました。メインフレームから送られてき
た固定長の販売データをRDBに格納します。

PC デバイス

固定サイズごとに読み取り

データ

128byte 128byte 128byte

デバイスの送信が遅延した場合、一度
の読み取りの指定サイズに達しないた
めハングアップしてしまう

128byte 128byte

読み取りサイズを可変とし、固定バッ
ファ単位の処理を追加することでハン
グアップをなくした

128byte 128byte

ハングア
ップ

 ▼図1　納品先で固まるプログラムをどのように直したか

時間がない！
プロダクト

知らない！

作業ミス？ 製品のバグ？

 ▼図2　製品よりも、自分たちを疑え！

トラブルシューティングの極意
達人に訊く問題解決のヒント

58 - Software Design

第1特集
新規開発したバッチプログラムを新規プロダク
ション機にデプロイし、数ヵ月分の販売データ
を投入、作業が完了したらお客様がデータを確
認しリリース判定をします。金曜日の晩から作
業を開始、土曜日にデータ確認、日曜日は予備
日です。失敗したらリリースを延期して翌週末
に再チャレンジ。思ったより処理時間がかかり、
土曜昼過ぎまでかかって半分ぐらいのデータを
ローディング。お客様も週末返上で確認してい
ます。最後の数ヵ月分の数字が合わないと、土
曜の夕方に連絡が。土曜の泊まりを覚悟します。
プログラムを見直し、数ヵ月分を再ローディン
グ、日曜の昼に再確認してもらいましたが、ま
だ合わない個所がありました。もうこの週の移
行は無理なのですが、日曜深夜までデータ調査
とプログラム修正・データローディングを繰り
返し、月曜朝3日ぶりに自宅にたどり着きました。
翌週末も泊り込みでようやく移行終了（図3）。
　なぜ、このような負け試合になってしまっ
たのでしょうか。じつは、筆者らはお客様が
見ている最終の帳票を見ていませんでした。
お客様には作業手順、データ処理方式を提示
し事前合意していたのですが、最終結果をど
のようなビューで見るのかという確認はして
いなかったのです。結局、日次処理の計算式
にいくつかの仕様齟

そ ご

齬があったのですが、お

客様から指摘を受ける機会のないまま、設計・
実装・移行が進んでいたのです。
　処理方式だけでなく、エンドユーザが確認す
るアウトプットを開発者も確認できるように調
整することは重要です。そうしないと隠れた仕
様に気づかないまま進むリスクがあります。
　旧システムと新システムの出力の差異はよ
くトラブルになります。旧システムの実装を
確認せずに進めると、端数処理や計算式の違
いが大幅な差異となることが多いのです。

［事例4］
突如、激遅になったOLAP

　業務システムに負荷をかけず、自由自在にデー
タを取り出し意思決定をすることができる便
利なOLAPシステム。業務データの形式が変
更されると、当然OLAPのデータ形式も変更
する必要があります。ある商品のコード体系
が数字から英数字に変更になりました。そこで、
OLAP側の定義も追従して修正、データの取
り込みを終え、変更作業終了しました（図4）。
　翌日から、OLAPから結果が返ってこない
というクレームがユーザから続々と。これま
で長くても数十秒で取得できていた問い合わ
せ結果が、数分から数十分待ってやっと返っ
てくる状態です。業務が止まってしまうので、
本番機は修正前の状態に戻し、ステージング

頑張る！ 順調！ えっ！？ ダメぽ・・・

ループ（エンドレス）

グタ～

金 土 日 月

 ▼図3　移行作業はループする（過労はどんどん蓄積する）

58 - Software Design Apr. 2015 - 59

ソフトウェア開発編

3-1 現場での対応と改善の手段 第3章

環境で性能を調査。OLAP製品の仕様書やマ
ニュアルを見てもコード体系とパフォーマン
スの記載はなく、メーカに問い合わせても数
字→英数字のコード変更で遅くなることはあ
り得ないとのこと。データの再ローディング
とかパーティション見直しなど、いろいろやっ
ても復旧せず。そのOLAP製品を提案したの
は我々だったので、製品開発担当者を召喚し
てもらいました。件

くだん

の担当者は「その修正で遅
くなるはずがない。元から遅かったんじゃな
いのか」などと驚愕の発言をして、その場を凍
りつかせ、お客様の逆鱗に触れてしまいまし

た（ホントに人間性を疑います）。我々は針の
筵
むしろ

のような状況で調査を続行。試しに変更さ
れたコードのデータをソートして投入してみ
たところ、これまで通りの応答時間で結果が返っ
てくるではありませんか。2日かかってようや
く解決、新鮮なデータでOLAPを使ってもら
えるようになりました。
　製品選定、方式検討のときには見えていな
いことはたくさんあります。アンドキュメンテッ
ドな製品の仕様、ふるまいに泣かされること
もあるのです。

毎日最新データで
更新

業務システムデータ OLAP多次元キューブ

変更前 変更後

売上情報

価格地域

商品
コード日付

応
答
時
間

激増キューブ内の商品コードに
よるインデックスが数値型
から文字型（英数字）に
変わると……

 ▼図4　なぜか激遅になったOLAP

ソフトウェアのテストこそ切り札か？
　　　　　　　　　——製造工程で品質を作り込め！

難易度が高い
保守フェーズの仕事

　ソフトウェアの保守フェーズになると開発
チームが縮退し、属人的な知識は霧散します。
残った保守メンバーは担当したことのない個
所のコードを修正し、やったことのない作業
を実施することになります。開発時に十分な
ドキュメントが整備されコードが共有されて

いれば、迅速に障害対応できデグレードも防
げるでしょう。しかし、現実にはスケジュー
ルに追われ十分な知識伝搬ができていないケー
スがほとんどです。時間に追われて書かれたコー
ドはバグを含んでいたり、修正が難しい形になっ
ていることがままあります。保守チームは少
ない人数で膨大なコードに立ち向かい手探り
で修正しなければなりません。業務が止まる

トラブルシューティングの極意
達人に訊く問題解決のヒント

60 - Software Design

第1特集
ような障害ならなおさら余裕はありません。
保守というのはある意味で新規開発よりも難
易度が高く厳しい作業です。
　カットオーバー後に目を覆いたくなるような
障害が頻発し、保守メンバーが日々の対応に消
耗していく地獄のような現場はいくつも存在し
ます。このような事態にいたる要因はいくつも
ありますが、典型的なものをあげてみましょう。

仕様レス
　何が正しい仕様かわからない。ユーザがバグ
と言っているけどプログラムのロジックをどう
修正すべきかわからない。仕様はコードに表現
されているという考えもありますが、コードに
は実装都合のロジックも入ります。ドキュメン
トが多すぎるのも考えものですが、保守のため
に必要な仕様書は整備されているべきです。

コードが汚くて複雑
　forや ifが深く深くネストした、長い長い巻
物のようなメソッド、ローカル変数に何度も再
代入を行う……そんなコードを平気で書けるプ
ログラマ……を大量に雇って何十万行ものコー
ドを納品する開発ベンダー。オブジェクト指向
とか、ドメインモデルとか、いやこれからは関
数型だとか……それ以前の構造化すらできない
人たちが寄ってたかって作り上げたプロダクト
コードからはもはや腐臭しかしません。

データモデルがいけてない
　業務システムは、データのライフサイクルや
整合性が命です。項目のまとまりや状態遷移を
塾考してデータモデルを構築していないとソー
スコードの複雑化を招き、保守不能に陥ります。
　CRUD情報もドキュメントとして整備して
おきましょう。データがどの画面の処理で更
新されているのか全然わからない……と思っ
たら、夜間バッチでしれっと更新されていた
……こういうのは気づくのに時間がかかります。

実行時の情報が少ない
　キー項目など常識的に考えて必要なログを
出力していない、どこかで例外を握りつぶし
ているなど。障害調査上深刻な障壁となります。

アーキテクチャ違反
　そもそもアーキテクチャがないっていうケー
スもままありますが……。アーキテクチャ、コー
ディング規約の遵守というのは、規模が大きく
なるほど効いてきます。大量のコードの森を
彷
さまよ

徨う保守メンバーにとってこれらは大切な地
図なのです。業務ロジックがプレゼンテーショ
ン層に大量に書かれている、変数名が意味不明
……そんなコードで動いているシステムはいく
らでもあります。「動けばいいじゃん」という考
えの人はプロダクトコードを書いてはいけません。

おわりに

　ソフトウェア開発では、発生したバグをつ
ぶすだけでなく再発防止が求められます。原
因分析、作業手順見直し、ログの見直し、プ
ログラム構造の見直し、インシデント管理ツー
ル注3への登録などが必要となるでしょう。
　トラブル発生後の対応はもちろん大切ですが、
発生リスクをコントロールすることの方が効果
大です。ソフトウェアの複雑性を軽減するため
のモジュール化、モジュール間の依存関係の単
純化、複雑な対象を分割して統治すること。こ
れを日々の開発・保守で実践していくことでリ
スクが軽減され、迅速な対応が可能になります。
　ソフトウェアの要件が高度化し開発スピード
が求められる昨今、テストフェーズで品質を担保
するという考え方から、製造工程で品質を作り
込むというマインドに切り替えるべきなのです。
　本稿はケースの羅列になった感がありますが、
これからソフトウェア開発・保守をしていくみなさ
んにとって少しでも参考になれば幸いです。ﾟ

注3） ユーザがソフトウェア使えない状態を早期解決するため
の運用管理を支援するツール。

61 - Software Design Apr. 2015 - 61

仕事を遅らせる
やっかいなコード

　ソフトウェアにバグはつきものです。今ま
でずっと動いていたプログラムが、なぜかエラー
を起こすようになった。完成したと思ってい
たプログラムが、不具合を指摘されて修正し
なければならなくなった。こういう想定外の
事態が、開発をジワジワと遅らせます。
　多くの不具合は、該当個所のコードを見直
せば、簡単に直せる類

たぐい

のものです。ちょっと
した勘違いや見落としに起因するバグは、発
見さえできれば、調査も修正も容易です。
　やっかいなのは、なぜ正しく動作しないの
かコードを読んでもパッと見にはわからない
バグです。あるいは、簡単に修正できると思っ
ても、実際に修正してみると思わぬ副作用に
悩まされるバグがあります。スケジュール遅
れの危険な兆候です。
　こういうやっかいな不具合を引き起こすプ
ログラムには、次の特徴があります。

・メソッドが長い
・if文やfor文が入り組んでいる

・変数への代入を繰り返している

　こういうわかりにくいコードのまま、バグ
と格闘するのは無謀な戦いです。数時間がんばっ
ても、状況を悪化させるばかりです。数時間
のロスを何回か繰り返せば、予定したスケジュー
ルはいとも簡単に崩壊します。スケジュール
がタイトになればなるほど、つまらないバグ
が増えて、簡単に直せる修正でもミスを繰り
返し、仕事が加速度的に増えていきます。悪
循環です。

泥沼に入り込む前にすること

　長く複雑なコードを相手に格闘するのは、泥
沼に入り込む道です。避けなければいけません。
　読んでも意味がわからないコード、どこで何
が起きているかわかりにくいコードは、修正に
取りかかる前に、まず、コードを整理します。
　とっちらかった部屋の中をあっちこっちひっ
かきまわして探し回るよりは、部屋を整理して
から探したほうが、探し物は簡単に見つかりま
す。経験的には、入り組んだコードは、コード
を整理するだけで、問題が解決することが多い

期日までに約束した内容を実現することは、仕事の基本です。しかし、予定どおりにすんなりと進まないのが
ソフトウェア開発の難しいところです。ソフトウェア開発を予定どおりに進めるためには、見積りや進捗管理
の技法を工夫することも大切です。しかし、実際にソフトウェアを作っているのは、管理者ではなく、現場の
開発者です。開発者自身が、日々の開発活動の中で発生する、ちょっとしたトラブルをうまく切り抜けること
ができるか、泥沼にはまり込むかが、開発全体の進捗を大きく左右します。トラブルはつきものです。そのト
ラブルに正しく対処して、泥沼に入り込まない技を身につけることが一人前の開発者になるということです。

3-2
 Author 増田 亨（ますだ とおる）　ギルドワークス㈱

悪循環からの脱出

ソフトウェア開発の
時短術＋見極め技

ソフトウェア開発は時間との戦い

トラブルシューティングの極意
達人に訊く問題解決のヒント

62 - Software Design

第1特集
ものです。コード整理の途中で、それも早い段
階で解決策が見つかることがほとんどです。
　次の4つのコード整理のテクニックは効果絶
大です。

・段落に分ける（空白行を追加する）
・説明用の変数を導入する
・説明用のメソッドを導入する
・ガード節で条件分岐を単純化する

　もっとも簡単なコード整理は、コードの意
味的な切れ目に改行を1つ追加して、コードの
かたまりを「段落」に分けることです。
　頭の中で、追いかけているロジックの切れ
目を「段落」として目に見えるようにするだけで、
コードの構造がわかりやすくなります。
　変数を使いまわして代入を繰り返していたら、
用途ごとに別の変数を宣言します。それぞれ
の変数に「目的（意味）」を表す変数名をつけます。
冗長なようですが、こうやって用途ごとに別
の変数を作って、意味のある名前をつけるこ
とで、ロジックがわかりやすくなります。また、
用途ごとに別の変数を使うほうが、思わぬ副
作用が減って、コードが安定します。
　段落に分け、説明用の変数を導入すると、コー
ドのまとまりを別のメソッド（下請けメソッド）
に切りだしやすくなります。メソッドは「目的
（意味）」を説明する名前をつけます。こうやっ
て「説明用のメソッド」を導入すると、もとの
ロジックの詳細が隠ぺいされ、大きな処理の
流れがはっきりしてきます。また、「説明用メ
ソッド」は、再利用できる場合があります。重
複していたコードをひとつのメソッドに一元
化できれば、同じ修正をあちこちでやる必要
がなくなりコードの変更が楽で安全になります。

複雑な if文を分解整理する技

　複雑な if文は、やっかいなバグの温床です。
if文を整理するコツは、まずは、説明用メソッ
ドの導入です。条件の判断式、条件ごとの処
理内容を、メソッド単位にまとめて、詳細を

隠ぺいします。
　処理の詳細をメソッドで隠ぺいすると複雑な
if文の分岐の構造がはっきりしてきます。
　if文の多くは、例外条件の判定と例外的な処
理です。多くの場合、例外ケースは、早い段階
で判定し、その場でリターンできます。例外条
件を最初に判定し、早期にリターンするこの方
法を「ガード節」と呼びます。複雑な if文を整理
するときに絶大な効果を発揮します（リスト1）。

基本はコード整理

　やっかいなバグと戦う前に、4つのコード整
理のテクニックを使って、わかりにくいコー
ドを整理してみましょう。
　急がばまわれです。段落に分け、説明用の
変数や説明用のメソッドを導入し、if文を単純
化するだけで、多くの問題がすんなりと解決
します。
　複雑なコードのままで格闘するのは、状況
をますます悪化させます。「時間」という貴重
な資源を浪費します。わかりにくいコードと
格闘する「時間」の浪費が、ソフトウェア開発
のスケジュールを致命的に遅らせます。限ら
れた時間で問題を解決するために、まずやる
べきことは、わかりにくく入り組んだコード
を整理して、単純でわかりやすいコードに書
き換えることです。

 ▼リスト1　if-elseを早期リターンで書き換える

//if-elseを使った分岐処理

if(正常条件) {
 正常時の処理();
} else {
 例外時の処理()
}

//早期リターンを使った、if文の単純化

if(例外条件) {
 例外時の処理();
 return ;
}

正常処理();

62 - Software Design Apr. 2015 - 63

ソフトウェア開発編

3-2 ソフトウェア開発の時短術＋見極め技 第3章

上級者が陥りやすい「ワナ」

技術チャレンジの是非

　経験を積み、技術力に自信がついてくると、
バグや不具合をより高いレベルで解決したく
なります。あちこちに重複した似たようなコー
ドをリファクタリングして、きれいに除去し
たり、不必要に複雑化した分岐を多態やデザ
インパターンを使ってすっきりさせたくなり
ます。
　既存のフレームワークではうまくいかない
部分を独自に拡張したり、パターン化できる
退屈な作業は自動化したくなります。
　技術者として、正しい姿勢です。しかし、
その方向が、目の前にあるトラブルを解決す
る最善の選択肢とは限りません。とくに「一定
時間」で解決することが要求される状況では、
技術的なチャレンジには、泥沼にはまり込む
危険が常につきまといます。

より良くしたい「幻想」のワナ

　技術的にチャレンジしたくなるトラブルは、
巧妙に仕組まれた「ワナ」です。そこにはまり
込むつもりがなくても、気がつくと何時間もチャ
レンジして、結局、解決ができないまま時間
切れ、という恐ろしい「ワナ」です。
　なかでも特別に怖い「ワナ」は「もう少しで、
できそうだ」「ここだけ解決すれば、一挙に解
決する」という、すばらしいゴールが近くに見
える「幻想」です。
　私自身、何度もこの「幻想」の「ワナ」にはまっ
て痛い目にあってきました。技術的なチャレ
ンジは、一種の麻薬です。やっているときは
時間を忘れて集中できますが、気がつくと、
貴重な開発時間をまる1日つぶしていたり、一
晩徹夜して、翌日の作業の効率を大幅に落と
したりしたことが何度もあります。

時間を見極めていますか？

　技術者としてそのチャレンジをやめる必要
はありません。しかし、一定時間内に結果を
出さなければいけないソフトウェア開発で、
ましてや想定外のトラブルの解消のために、
消費して良い時間は限られています。
　プロの開発者としてやるべきことは、チャ
レンジする「時間」の限度を設定して、それを
超えたチャレンジはやらないことです。
　短時間で確実にトラブルを解消できる方法
がわかっているなら、技術的に泥臭いやり方
であっても、そのやり方でいったんはトラブ
ルを解消しておくことが最優先です。
　その解決策を確保したうえで、より良い解
決策へのチャレンジに使ってもよい時間を逆
算します。その時間内でのみ、チャレンジを
行います。１時間と決めたら、きっちり１時
間だけ技術チャレンジをします。

引き返す勇気と受け入れる力

　チャレンジに当たって、泥沼に陥らないため
に、2つのことをいつも自分に言い聞かせます。
　第一は、頂上の直前で「引き返す勇気」です。
許された時間を使ってしまったら、「もうちょっ
とでできる」とどんなに思っても、そこでチャ
レンジをストップしなければいけません。「引
き返す勇気」が、泥沼化を防ぎ「幻想」のワナか
ら抜け出すために、絶対に必要です。
　第二に、「中途半端」を受け入れることです。
ソフトウェア開発は、すべて「道半ば」（中途）
であり、いつも「半端」（未完成）なのです。限
られた時間では、コードをきれいにできる範
囲は限られています。そのときに「すべて直す」
か「まったく直さない」か、という二者択一が
良い判断とは限りません。「許された時間内で、
できるところまでは改善しておく」ことも有力

トラブルシューティングの極意
達人に訊く問題解決のヒント

64 - Software Design

第1特集
な選択肢です。結果は「中途半端」かもしれま
せん。しかし、なにもしないよりは、状況が
改善するなら、その時間の中で、できる範囲
のところまではやるべきです。
　上級者として腕の見せどころは、いわゆる
技術力ではなく、「頂上の直前」でも引き返せ
る決断力であり、「中途半端」であるが、ここ
まではやっておいたほうが全体としては改善
する、という俯瞰的な判断力なのです。

浅い解決・深い解決

　トラブルを解決したときに「動いた」「ああよ
かった」でおしまいにすると、成長の機会を失
います。それが「浅い解決」なのか「深い解決」
なのか、自問してみましょう。
　「浅い解決」とは、「なぜそうなるかはわから
ないが、いちおう解決した」とか「そのやり方し

か思いつかなかった」という解決です。
　「深い解決」とは「しくみ」や「原理」をきちん
と理解し、「そうかわかった」と納得できた解
決です。また、複数の選択肢をいろいろな角
度から検討し、トレードオフに迷いながら選
んだ解決策です。
　トラブルシューティングは時間との戦いです。
いつも「深い解決」ができるわけではありません。
しかし「浅い解決」であることを自覚しておくと、
後から、なにかのきっかけで「深い解決」に出
会える機会が増えます。逆に「動いたよかった」
で済ませている限り「深い解決」との出会いは
起きません。
　問題を解決した後で、それが「浅い解決」か「深
い解決」か、自問してみることを習慣にすると、
技術者として成長の機会が確実に増えるもの
なのです。ﾟ

視野を広げるほど仕事は「楽」になる

　画面仕様書に「電話番号」が「必須」と書かれてい
ます。Validationフレームワークを使えば、簡単に
実装できそうです。
　では、なぜ「必須」なのでしょうか？
　答えは仕様書の中にはありません。「注文」を配
送する時に、配送業者が不在時の連絡先に使いた
いのかもしれません。「注文」を受け付けたのは良
いが、在庫がなく出荷が遅れても良いか、それと
もキャンセルするか、顧客と連絡を取りたいのか
もしれません。
　仕様上の「必須」を、このように、仕事のやり方
や業務ニーズから理解することで、ソフトウェア
開発の仕事は驚くほど「楽」になります。
　まず、つまらない手戻りや追加作業が減ります。
機能要件や画面仕様書は、業務の関心事や業務ルー
ルを、現実世界よりも、そうとう単純化したもの
です。また、残念ながら、誤記やヌケモレも多く、
あちこちで整合性がとれていないことが現実です。
　そして、その仕様の不備が、結果的に、開発者
の手戻り作業や想定外の追加作業に直結します。
　開発者が、機能要件や画面仕様書の背景にある、
実際の仕事のやり方まで視野を広げて理解するよ
うになると、仕様書の不備が早期に発見できたり、
合理的な補完が自然にできるようになります。そ

の結果、手戻り作業が起きにくくなります。
　また、利用者や業務の専門家とのコミュニケーショ
ンがやりやすくなり、ちょっとした会話をするだ
けで、大きな勘違いを早期に発見し、設計の大幅
なやり直しを予防できます。業務のやり方や業務
の関心事に視野を広げることが、トラブルを予防
します。
　業務知識以外にも視野を広げる対象があります。
大勢で仕事を分担している場合、他のメンバーや
他のチームのやっていることまで視野を広げてお
くと、自分が見落としていること、勘違いしてい
ることを発見する機会が増えます
　トラブルを事前に防ぎ、余計な仕事をやらなく
て済むようにするには、今までよりは、ちょっと
だけ視野を広げることです。
　ちょっと視野を広げたら、さらにもうちょっと
視野を広げる。そうやって視野を広げ続けていくと、
自分の専門分野の理解も深まります。別の文脈や
見方から、自分の専門分野を見直すことができる
ようになると、いままでは気がつかなかったレベ
ルで、その分野が理解できるようになります。
　広げながら掘り下げる。掘り下げながら広げる。
これを続けることが、技術者として成長する極意
です。

65 - Software Design Apr. 2015 - 65

全網羅テストのムダ

　テストをしらみつぶしですると、安心感や
自信につながるので、そこに目的と理由があ
るかもしれません。しかし、これらのアプロー
チは一見合理的に見えて、実は投入対効果（＝
投資効率）の観点で非常に無駄が多いのです。
　ソフトウェア開発における障害は、そもそ
もソースコードに起因します。ならば、全コー
ドを目視検査すれば良いのか？̶̶それでは
元の木

も く あ み

阿弥です。スマートな方法は、バグが
発生する原因を「ソースコードの位置」と「バグ
の種類」から特定することです。これならば、
短時間で原因追及ができます。いわば「トラブ
ルを狙い撃つ」技術です。

兆候を読み取る技術とは

　テストケースは少ないに越したことはありま
せん。従来どおりのテスト手法や製品領域が
あることも否定しませんが、テストケースにあ
らかじめ「偏り」を持たせることで、重点的に
テスト実施すべき場所か否かといった「加減」
ができるようになります。それが兆候を読み

取る技術です。これを「Fingerprint Detection

（指紋検出）」テクニックといいます。

ソースコードの兆候を観察し
誤りを予測する

　まず、3つの兆候検知方法を次に挙げます。

・［方法1］コードの外形
　（兆候が現れている対象を選ぶ）
・［方法2］コードのデータ
　（各種コードメトリクスからのアプローチ）
・［方法3］内部の兆候検知
　（NGワード／一発でおかしい記述の検出）

　端的に言えば、これらは「特異点を見つけ出
す」方法です。実はトラブルシュートや問題判
別手順に共通な考え方があります。それは、
できるだけ「考えられる可能性を排除する」こ
とです。つまり探索／調査範囲を小さくする
手順です。その位置と種類の検出を最優先課
題とする思考方法です。実際には希望的観測
や認知バイアスが存在するので簡単にはいき
ません。ですが「段階的に可能性を排除する思考」
で、問題判別を迅速に行い被害を最小化でき
るようになります。

一般的な開発シーンで、静的解析ツールを利用して文法的な誤りを検出するアプローチがあります。さらに全
網羅テスト（考え得る組み合わせを全数テストすること）なども一般的に行われています。また、トラブルが発生
した場合に「全員総掛かり」で、しかもすべてのコードを1本目から「しらみつぶし」に読破して「確認する！」——
といった場面が少なくありません。果たしてそれは効率的な仕事でしょうか？
本稿ではトラブルの原因をコードの中に追求します。

3-3
 Author 細川 宣啓（ほそかわ のぶひろ）

むやみやたらにデバッグ＋テストしていませんか？

「ソースコード」の指紋
からわかるバグの原因

ソースコードの傾向に見る誤りの予測（初級編）

66 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

［方法1］コードの外形で兆候検知

　ソースコードのファイル群から、目視で問題の
あるファイルを狙い撃つには、決定的なポイント
があります。前述のように特異点を見つけるこ
とです。もちろんファイルをひとつひとつ開くよ
うな手間をかけません。次の方法を行います。

最終更新日付が怪しい
　最後に更新された（更新日付が最新の）ファ
イルを選びます。とくにトラブルが発生した
場合などは、トラブルが発生した前後の日付
が対象ファイルです。

ファイル名の長さが怪しい
　クラス／ソース名を確認し、そのシステムの
命名規約から逸脱しているものを優先的に選び
出します。名前や長さが異なるものは、リリー
ス後に追加された可能性があります。つまり、
開発当初のルールを踏襲していないので、機能
が不整合を起こしている可能性があります。

ハイフン付きは怪しい
　JavaやC言語では「ハイフン」がファイル名
にあるものを選びます（図1）。これは（特別な
命名規約がない限り）ベテランに多い傾向です。
汎用機言語（COBOLやPL/I）の名残りです。
変数名やファイル名にハイフンを使うのは開
発者の「手癖」です。ハイフンによる命名規約
が悪いのではなく、他コード群と比べてわず
かに人の癖が見える特徴です。

一番サイズが大きいものが怪しい
　サイズが大きいコードは、複雑度が高い可
能性があります。一般的にコード行数と IF分
岐条件には相関があり、高い相関係数を示し
ます。行数が多いコードは、IF文のような分
岐文を多く含んでいます。つまり「全部テスト
しきれていない」可能性が高いのです。

［方法2］データからの兆候検知
（各種コードメトリクスからのアプローチ）

　次に各種の定量数値（コードメトリクス）を
取得し、そのデータから対象を選ぶ方法です。

NGワードの含有率（トラブル誘発因子の検出）
　NGワードとは、コードの中に通常では記述
されない表現・単語です。NGワードの含有数
や含有率（＝NGワード数÷コード行数）などが
高い数値を示しているものを選びます。たと
えば、「要検討」「要確認」「TODO」「TBD」など
が、コード中にコメントとして残っている場
合があります。これは開発時に仕様書を、そ
のままソースにコピー&ペーストした形跡を
示唆しています。未確定仕様があれば、関連
する単語がソースコードに残る場合があります。
もちろん保守・改変時にもこれらの記述が増
える可能性は高く、頻繁に改変を行っているコー
ドに頻出して現れます。

コメント比率の確認（欠陥混入の間接メトリクス）
　ソースコード全行数に対する「空行」および「コ
メントだけの行」の割合です。このメトリクス
から、システムや製品の経年劣化状況を確認

・TryCatch 文を疑う
・関数長
・長いメソッド

以下はすべてJavaの例

COBOL風

CALC-DATE-URU.java

・NullPointer 評価の正当性
・メモリ処理
・例外処理

C/C++風

Date_Leap_Year.java

・newやsyncronizedキャスト

Java風

LeapYear.Java

 ▼図1　ハイフン付きは怪しい。手癖が原因？

66 - Software Design Apr. 2015 - 67

ソフトウェア開発編

3-3 「ソースコード」の指紋からわかるバグの原因 第3章

できます（図2）。とくに、誤りの予測という観
点では、一般的には次のような傾向があります。

・コメント率が高いコードは、頻繁に改変され
た可能性が高い（ブロックコメントアウトに
よる履歴保存＝コメント率が高くなるため）

・頻繁に改変されたコードは、テストが不足
している可能性が高い（十分な回帰テスト工
数を投資しているか疑問）

・頻繁に改変されたコードは、誤修正欠陥の
混入確率が高い（複数人数でテストするため）

・急場で作ったコードはコメント率が低い可
能性がある

・業務アプリケーションや制御のコードでは
ない、移行ユーティリティやテストコードは、
コメント率が低い場合がある

　これらの理由から、コメント率の極端に高
いものと低いもの（例：コメント率90％やコメ
ント率5％以下）をサンプリング抽出します。

IFとELSEの比率（設計欠陥の間接メトリクス）
　いわゆる分岐の片抜け、例外設計、信頼性設
計などの確認です。IFとELSEなど、対になら
なくてはならないキーワードを数えます。これ
で内容を推察します。たとえばELSEの個数

X軸：プログラムID（LOC降順）
Y軸：コメント率
※1ドットがファイル1本を表します。

80.0％

70.0％

60.0％

50.0％

40.0％

30.0％

20.0％

10.0％

0.0％
ProgramID#（LOC Desc）

of

 C
om

m
en

tR
at

e

 ▼図2　コメント率で怪しいものを発見

X軸：IFの数
Y軸：ELSEの数
※ 1ドットが1プログラムを表します。

0

10

20 40 60 80 100 120

20

30

40

50

60

70

#of IF

①②

of

 E
LS

E ①や②はIFが数十～100以上のコー
ドには、ELSEが0～10以下というも
のもあります。これは仕様書にもともと
ELSEが書かれていない影響もありま
すが、プログラマ側がELSE／その他の
処理について意識する必要があります
。とくにテストケース設計時にELSE
やレコード０件、Null値などの異常テ
ストケースの設計を見落とす可能性が
高いため、テストケース設計基準につ
いても併せて見直しが必要です。

 ▼図3　IFとELSEペアの一般的傾向

68 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

を IFの個数で割ります。そうすると、ELSE

がゼロのものや、極端に IFブロックだけ記載
しているコードが浮かび上がってきます（図3）。
逆に IFとELSEがすべてのコードで 1対 1、
つまり同数の場合は、何らかのコードジェネレー
タを使っている可能性があります（図4）。
　もちろんC言語におけるK＆R表記を標準

とする場合など、標準化ルールやガイドにも
関係しますが、一般的にELSE記述は設計段
階での「例外略記／例外考慮不足」に最も影響
を受ける数値です。これらの数値によって対
象を絞り込むと効率よく設計欠陥を検出でき
るようになります（1本に IFが1,000個ある「お
かしい」コードも、言うまでもなく対象です）。

X軸：IFの数
Y軸：ELSEの数
※1ドットがファイル1本を表します。

IF

E
LS
E

 ▼図4　IFとELSEの対応について（自動生成の例）

［方法3］内部の兆候検知
（特異記述の検出）

　「コード開けたら1行目からいきなり読むな」
はコードリーディングの鉄則です。何らかの
兆候を示しているソースコードを見つけたら、
エディタ上でも検査対象を絞り込みましょう。

バグのキスマークを探せ！
　例外処理ブロックが存在し、エラーを捕捉
するところまではできていても、実は例外処
理が空、すべてコメントアウトされている個
所も少なくありません。

・例1

 } catch (Exception e) {
 }

・例2

 } catch (Exception e) {}

　これを「例外処理の握りつぶし」と言います。
これは例外設計が不十分であることを示唆し
ます。これを発見するには、次の正規表現を
使います。

 {}または{\s+}

　Javaならば、“catch (Exception e) {}”
のように例外未実装の個所を特定します。該
当個所があれば、それは例外処理が未実装です。
機能追加を依頼しましょう（たとえばデバッグ
コードを挟むだけでも、ログを吐かせる一文
だけでも！）。

ソースコードリーディング技術による
バグの見つけ方（上級編）

68 - Software Design Apr. 2015 - 69

ソフトウェア開発編

3-3 「ソースコード」の指紋からわかるバグの原因 第3章

　この「{}」は、見た目が唇の形に似ていること
から、俗にキスマークと呼ばれます。一般的
に頻出する欠陥・バグの類

たぐい

です（図5）。色恋に
かまけて「大切なことを忘れる」という意味で
はありません。

セミコロンだけの行を探せ！
　一般的なオープンソースの静的解析ツール
（例：JavaであればFindbugsなど）を用いて品
質検査を行った場合、「例外処理ブロックが空
です（empty catch block）」といった指摘が出る
ことがあります。
　前述のキスマーク未実装などは、これに該
当します。ところが、開発途中のコード（とく
に初期開発や、例外処理実装失敗に起因するコー

ド更改などの場合）には、「ブロックの内部に
セミコロンを挿入」してツールを黙らせること
があります（リスト1）。
　つまり、セミコロンが挿入されることで「命
令行が存在する＝空ではない状態にする」とい
う方法です。これも、

 ^(\s+¦\t+);

といった正規表現で簡単に検出できます
　これは「悪質な手抜き」の1つです。意図的に
ツール指摘を回避することは、本来のツールの
意味を無に帰すばかりでなく、後続工程や将来
のデバッグを極めて困難にする可能性が高いか
らです（図6）。
　筆者は、このキーワードが出たソースコー

ドについて、全行をチェックしま
す。ほかにも実装誤りやツール指
摘回避が行われていないか徹底的
に目視検査をします。

「はず／かも」チェック
　これは「はず」「かも」というNG

ワードを、全コードに対してgrep
コマンド実行をします。これら表

・エラー処理を書いている時間がない
・コードの中身をチェックされない
・チェックツールが検出しない
・チェックツール使ってないから「通し！」
・プロトタイプだからいいだろうという欺瞞
・「丸投げに丸投げで答える」

どこで食い止めるべきか？

＜誘発因子＞

プロトタイプ
＜誘発因子＞

仕様が不足

＜過失因子＞

・できるところから着手
・進捗を最優先

＜過失因子＞

大きな迷惑は
かからないハズ

＜欠陥＞

例外処理抜け

＜現象（実害）＞

アプリ落ち

品質チェックされない
＜増幅因子＞

厳しい時間制約
＜増幅因子＞

進捗最優先
“後続テスト”で指摘された時対処する心理

ぎ　まん

 ▼図5　キスマークの原因（多くの場合「時間制約」が原因）

 ▼リスト1　セミコロンだけの行があるぞ！

} else {
 try {
 //log.debug("REMOVE_SESSION--->" + paramString);
 // その他操作の場合、Sessionに値があれば削除する
 this.session.remove(paramString);
 } catch (Exception e) {
　　　;　 ←これ何？！
 }
}

70 - Software Design

第1特集 トラブルシューティングの極意
達人に訊く問題解決のヒント

現が含まれるコードは、必ず目視対象として
重点検査します。とくに次の場合に有効です。

・期待値と異なる
・機能更改後
・保守後

　原理は簡単です。ソースコードの特定のブロッ
ク文の中に「はず」「かも」という日本語キーワー
ドを探すと、
　
　「ここには制御が到達しないはず」
　「今後変更されるかもしれない」
　「暫定対応」

といった開発者の「未確定」「自信がない」こと
を示すコメントが出てきます。この前後コー
ドは必ず確認しなくてはいけません（ヒドいも
のになると「苦肉の策」というコメントにも遭
遇します）。これらの記述に関しては、もちろ
ん該当個所を詳細に分析し、暫定対応を恒久
化する必要はありますが、それ以上に、当該「未
確定」個所の混入理由を分析することで得た教
訓を再発防止に使いましょう。

おわりに

　コードが示す兆候の利用とその対策・効果は、
必ずしもすべてのプロジェクト・プログラム
に適用できるものではないかもしれません。
しかし、本稿のアプローチで、完全網羅にこ
だわった人海戦術のムダなテスト実施を避け
ることができ、デバッグ速度を圧倒的に向上
させることができます。
　筆者は、さまざまな技法や手法を（工数をか
けて）大量に実施し、網羅的にテストでバグを
出す手法をあまり好みません。大量テストの
実施が目的でない限り、テストケースは少な
いに越したことはないはずです。国内市場は
開発量が飽和点を迎え、産業としての保守・
維持が主要課題になっています。トラブルを未
然に防ぐ品質エンジニアの育成が急務です。全
部テストしきれないほど複雑さが増加し、いわ
ゆる「手が付けられない状態」を打破するために
は、このようなメトリクスを駆使する「センス」
を持った「品質エンジニア」が求められています。
本稿を起点に目指してみませんか！ﾟ

・空のまま納品すると「静的解析ツール」が「例外
　処理が空である」という指摘をあげてくる
　・未実装だと思われるので、とりあえず「処理」と
　してセミコロンを記入して黙らせる
　・例外処理がないのに処理アリに見せるので悪質
・パスカバレッジツールなども当該行を「通った」
　ことだけ確認する
　・最悪「実務上で例外処理発生させて“落ちる”」
　事故を引き起こす

＜誘発因子＞

静的解析ツールのみによる
品質管理

＜過失因子＞

とりあえず「ツールを黙らせて納品する」

＜欠陥＞

例外処理抜け

＜現象（実害）＞

アプリ落ち

厳しい納期
＜増幅因子＞

発注側に
受入検査技術が不足

＜増幅因子＞

品質チェックされない
＜増幅因子＞

例外の実装標準がない／
知らない

＜増幅因子＞

複雑な調達関係
＜増幅因子＞

再発予防しにくい

 ▼図6　「例外の握りつぶし」または「怠慢」

ネットワークを支える本物のインフラを学ぶ

［最新］
DNSの教科書

第2特集

DNSとは何か？

DNSの原理と動作を知る

BINDとNSD/UnboundによるDNSサーバの構築

DNSをとりまく状況と将来への展望

藤原 和典 P.72

藤原 和典 P.76

野口 昇二 P.83

藤原 和典 P.99

第 章1

第 章2

第 章3

第 章4

　私たちがインターネットを利用する際、URLを指定してアクセスできるの
は、DNS（Domain Name System）のおかげです。DNSはドメイン名とIP
アドレスの対応関係を管理しており、URLなどに含まれるドメイン名をIPアド
レスに変換（名前解決）する役割を担っています。
　一般のユーザはまず意識することのないシステムですが、Webやネット
ワークに携わるエンジニアはそういうわけにはいきません。DNSで正しく効
率よく名前解決するためには、きちんとしくみを理解し、正しい手順と設定
内容でDNSサーバを構築しなければならないからです。
　この機会に、インターネットを支えるDNSの歴史、原理、構築手順、最新
情報を一気通貫で学びましょう。

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

72 - Software Design

HOSTS.TXT方式による
名前管理
　現在のインターネットは、1981年に規定され
たRFC 791「インターネットプロトコル（IP）」か
ら始まっています。インターネットでは、各ノー
ドに32ビット（IPv4）または128ビット（IPv6）
の IPアドレスを割り当て、そのIPアドレスを
用いて通信を行います。
　しかし、IPアドレスは192.0.2.251や2001:

0db8:0001:beef:0123:4567:89ab:cdefというよ
うな番号（10進数または16進数）の羅列です。番
号だけで相手を識別することは煩わしく、覚え
にくいうえに、わかりにくいという問題があり
ます。そこで、インターネットの初期から「ホス

ト名」という概念が考えられ、/etc/hostsなどの
ファイルにホスト名とIPアドレスの対応表を書
いておき、利用者が入力したホスト名をプログ
ラムが IPアドレスに変換してIPでの通信を行
うというしくみが考えられました（図1）。これ
が「HOSTS.TXT方式」です。現在でも多くの
OSに/etc/hostsに相当するファイルが存在し
ています（Windowsにも、%WINDIR%\System

32\drivers\etc\hostsが存在します）。
　ホスト名とIPアドレスについて、利用者全員
が1つの対応表を共有すると、全員が同じホス
ト名を使えるようになり、利便性が向上します。
そこで、インターネット全体で1つのHOSTS.

TXTのマスタファイルを共有することが行われ
ました。HOSTS.TXTのマスタファイルは、
SRI-NIC（Stanford Research Institute's Net

work Information Center）で 管
理され、Anonymous FTPで公開
されていました（RFC 810、952）。
　HOSTS.TXTファイルへの変
更、修正、コメント、質問はすべ
て「HOSTMASTER@SRI-NIC」
へのメールでした。“hosts.txt

archive”といったキーワードで検
索すると、過去のHOSTS.TXT

を閲覧できます。1985年3月22

日版のHOSTS.TXTは1,680行、
1,325ホスト、100ゲートウェイ
のようです（リスト1）。

DNSとは何か？
藤原 和典（ふじわら かずのり）

㈱日本レジストリサービス（JPRS） 技術研究部

/etc/hosts
203.0.113.1 server1

203.0.113.1 の
ポート23 に接続する

server1

[203.0.113.1]

PC

telnet が /etc/hostsを
 参照して名前解決し、

server1→203.0.113.1
を得る

203.0.113.1 は覚えにくい。server1 は覚えやすいので、
「telnet server1」のように接続先を名前で指定したい

server1 に telnetしたい

 ▼図1　/etc/hostsによる名前解決

第 章1

DNS（Domain Name System）は、インターネットにおいて必須となる基盤技術の1つです。
DNSの目的は、その名のとおりインターネットでドメイン名を使えるようにするものですが、本
章では、まずその基本となる概要とドメイン名の歴史について説明します。

第 章1
［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ DNSとは何か

72 - Software Design Apr. 2015 - 73

 ▼リスト1　1985年3月22日版のHOSTS.TXT（一部抜粋）

; DoD Internet Host Table
; 22-Mar-85
; Version number 436
; Changes, corrections, comments or questions to ｭ
(HOSTMASTER@SRI-NIC)

 ネットワーク情報（NET : IPアドレス : ネットワーク名 :）
NET : 10.0.0.0 : ARPANET :
NET : 26.0.0.0 : MILNET :

 ルータ情報（GATEWAY : IPアドレス : 公式名と別名 : マシンタイプ : OS : プロトコルリスト :）
GATEWAY : 10.5.0.5, 26.2.0.49 : BBN-MILNET-GW,MILBBN,BBN-MILNET-GWY : LSI-11/23 : MOS : IP/GW,GW/PRIME :

 ホスト情報（HOST : IPアドレス : 公式名と別名 : マシンタイプ : OS : プロトコルリスト :）
HOST : 10.0.0.1 : UCLA-TEST : VAX-11/750 : LOCUS : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.0.0.6 : MIT-MULTICS,MULTICS : HONEYWELL-DPS-8/70M : MULTICS : ｭ
TCP/TELNET,TCP/SMTP,TCP/FTP,TCP/FINGER,TCP/ECHO,TCP/DISCARD,ICMP :
HOST : 10.2.0.78, 128.32.0.10 : UCB-VAX,BERKELEY,UCBVAX : VAX-11/750 : UNIX : ｭ
TCP/TELNET,TCP/FTP,TCP/SMTP,UDP :
HOST : 10.3.1.11 : STANFORD ::: TCP/SMTP :
HOST : 26.0.0.73, 10.0.0.51 : SRI-NIC,NIC : DEC-2060 : TOPS20 : ｭ
TCP/TELNET,TCP/SMTP,TCP/TIME,TCP/FTP,TCP/ECHO,ICMP :

　当時のHOSTS.TXTには、SRI-NICやUCB-

VAX、MULTICSといった、昔のネットワーク
の教科書や文書などに出てくる有名なホスト名
が並んでいます。

DNSの誕生
　しかし、インターネット全体の情報を1つの
テキストファイルで管理することには無理があ
ります。また、すべての組織にHOSTS.TXT全
体を配布し、最新に保つことも困難です。
　インターネット上の全ノード数が1,000程度
だった時代にはSRI-NICで運用できていたよう
ですが、課題もありました。当初からインター
ネット研究に参加する組織の増加が見込まれて
おり、予算年度の変わり目などには、多くの組
織が一斉に接続変更を行う可能性がありました。
新規ホスト名を決めるたびにSRI-NICにメール
を送り、名前が競合しないことを確認して登録
することには大きな手間がかかります。また、
すべての名前が平面的に管理されているため、
わかりやすくイメージしやすい名前は競合しや
すいという問題もあります。
　現在であれば、comドメイン名のように集中

管理で1億以上の名前（ラベル）を管理すること
もできますが、当時は資源管理にお金を使うと
いう概念がまだなく、SRI-NICが大規模な登録
システムを開発・運用するということは考えに
くい時代でした。
　単純なホスト名をインターネット全体で使用
すると、競合のない唯一のホスト名を決めなく
てはいけないという問題が発生します。ノード
を1つ追加するにも、SRI-NICに問い合わせる
必要があります。こうした事情から、すべての
ホスト名をSRI-NICで集中管理することには限
界があると、早くから考えられていました。
　そこで、インターネットの父と呼ばれる故Jon

Postel氏が、Paul Mockapetris氏に汎用的な名
前システムの設計を依頼してできたものが、1983
年11月にRFC 882、RFC 883として標準化さ
れ、1987年11月にRFC 1034、RFC 1035とし
て改定された「DNS」です。

階層構造を持った「ドメイン名」

　DNSでは、階層的なドメイン名という考え方
が導入されました。各組織にユニークな（互いに
異なる）識別子を割り当てておき、それに各組織
で決めたラベルを組み合わせれば、組み合わせ
たホスト名はすべての組織でユニークなものに
なるという考え方です。
　ドメイン名はルートを起点として、63文字以
下のラベルをドットで連結したものです。ドメ
イン名空間は、ルートを根とし、ルートの子ノー
ドにラベルが1つのトップレベルドメイン名
（TLD）、TLDの子ノードに一般組織のドメイ

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

74 - Software Design

ン名などが存在する木構造となっており、ラベ
ルごとに階層を作るドメイン名空間を構成しま
す（図2）。ドメイン名では、子側のラベルを左
側に連結します。
　最初に組織のドメイン名を考えるとき、組織
種別ごとにトップレベルドメインを作り、グルー
プ化することが考えられました。そして、政府
機関にgov、教育機関にedu、営利組織にcom、
米軍組織にmil、その他の組織にorg、ネット
ワークにnetという区分が考えられ、1985年に
運用が開始されました（RFC 920）。それぞれの
TLDごとに組織種別のラベルを管理し、その下
に、組織ごとのユニークなラベルを付けること
になります。
　また、旧ARPANETからの移行用TLDとし
てarpaも作られました。arpaは後に、IPアド
レスからドメイン名を検索するDNS逆引きや電
話番号に対応するサービスを検索するENUM

（Telephone Number Mapping）などのTLDに転
用され、Address and Routing Parameter Area

として再定義されました（RFC 3172）。
　DNSでは、組織ごとにユニークなドメイン名
を決める必要がありますが、前述したとおり

1990年までは SRI-NIC（のちにDDN NIC、
Defense Data Network Information Center）に
名前を登録するという形で、一意性を担保して
いました。1990年代以降はgov、edu、mil以外
のTLDは商業的なしくみに移行し、TLDの運
用組織（レジストリ）にドメイン名を登録すると
いうしくみに変化していきました。
　米国以外の組織がインターネットへ接続する
ときに国や地域別にドメイン名を管理するとい
う考え方が提案され、国別TLD（country-code

TLD、ccTLD）が生まれました。ccTLDには
ISO 3166が定める2文字コードを使用します。

管理を分散し、全体として1つの
系を作る

　HOSTS.TXT方式ではすべてのホスト名が平
面であり、1ヵ所で集中してホスト名を管理す
る必要がありました。それに対しドメイン名は、
ルート、TLD、各組織ドメイン名、各組織のホ
スト名といった階層的な構造を持ちます。さら
に、DNSではドメイン名の階層ごとに階層以下
の管理主体を変更することができます。
　ルートは1つですが、ルートから委任された
TLDごとに別々の組織が以下のドメイン名を管

理することができます。現在で
は、comとnetは米国ベリサイ
ン社、jpは日本レジストリサー
ビス（JPRS）というように、
TLDごとにレジストリと呼ば
れる管理組織が運用していま
す。TLD以下の各組織のドメ
イン名は、各組織が管理します。
　名前から情報を検索する場合
には、ルートからドメイン名空
間をたどり、最終的に情報を持
つサーバに問い合わせます。こ
れを「名前解決」と呼びます。
　組織のドメイン名、たとえば
gihyo.jpと jprs.co.jpはそれぞ
れ独立・自律的に動作していま

gihyo.jp www.example.jp www.jprs.co.jp

トップレベル
（第一階層）

セカンドレベル
（第二階層）

サードレベル
（第三階層）

（第四階層）

ホスト名

gihyo.jp
ゾーン

example.jp
ゾーン

jprs.co.jp
ゾーン

jpゾーン

ルートゾーン
ルート

com net org jp

gihyo example co

www

www

jprs

 ▼図2　ドメイン名空間とゾーン

第 章1
［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ DNSとは何か

74 - Software Design Apr. 2015 - 75

す。このように階層化することで、それぞれの
ゾーンのトラブルが、他者に影響を与えないよ
うにできます。たとえば、jpでは jp以外のTLD

の動作に関係なく、ルート、jp、各組織の権威
DNSサーバが動作していれば、それらの名前解
決は動作します。
　このように、DNSでは階層・組織ごとに管
理・運用主体を変更し、全体として1つの巨大
なデータベースを形成しています。

円滑な運用を実現する「委任」という
しくみ

　DNSでは、階層ごとに管理主体を変更するこ
とができ、それを「委任（delegation）」と呼びま
す。委任された単位は「ゾーン（Zone）」と呼び、
そのゾーンについては委任された組織が自由に
書き換える権限を持ちます。おもな委任点は、
ルート、TLD、一般組織のドメイン名などです
（図2）。
　委任は、柔軟で確実な、階層的に分散した分
散管理を実現するしくみです。階層的に管理す
るしくみは、大きな組織と比較するとわかりや
すいでしょう。会社組織などでは、組織が小さ
いうちは代表者がすべての業務を把握すること
ができますが、組織が大きくなると部や課など
の組織を作り、管理能力のある人に部や課の運
営を任せることとなります。インターネットで
も会社組織などと同じような階層的な管理が行
われているわけです。
　組織の階層分割と管理権限のあり方は必ずし
も一致するものではありません。DNSでも同じ
で、すべての階層で管理権限を委任しているわ
けではなく、複数階層にまたがる権限の分割も
あります。
　ドメイン名の起点はルートですが、ルートか
らの委任情報は ICANN（Internet Corporation

for Assigned Names and Numbers）という組織
の IANA（Internet Assigned Numbers Auth

ority）機能が管理し、ルートDNSサーバの運用
を委託されている各組織にルートゾーンを配布

しています。ルートDNSサーバは、IANAが作
成したルートゾーン情報をそのまま提供します。
TLD運用組織は、TLDの情報を IANAに登録
します。
　TLD運用組織は、TLDに登録するドメイン
名に独自のポリシーを適用します。たとえば、
JPドメイン名の場合は連絡先に日本の住所を要
求しますし、govの場合は登録可能な組織が米
国の政府機関に限定されています。また、この
ような制約を設けず、基本的に誰でも登録可能
なTLDもあります。

インターネットにとって
DNSはとても重要
　インターネットではほとんどの場合、ドメイ
ン名を用いてさまざまなサービスにアクセスし
ます。メールアドレスの“@”のあとはドメイン
名です。また、「Webブラウザにドメイン名を
入力したことはなく、検索エンジンやポータル
サイトしか用いない」という方もいらっしゃると
思いますが、ポータルサイトや検索エンジンの
情報はドメイン名で設定されており、検索エン
ジンも、ドメイン名を用いたURLを返します。
とくに、HTTPSの場合、サーバ証明書はドメ
イン名に対して発行されますので内部的には必
ずドメイン名とDNSを用います。
　IPアドレスを直接使うのではなくドメイン名
を使う理由は、IPアドレスよりもドメイン名の
ほうが、抽象度が高いこと、ドメイン名の一部
を見ることで組織の情報がわかることなどが挙
げられます。また、管理上の理由でサーバのIP

アドレスを変更した場合でも、名前からIPアド
レスへの変換という形にしておくと、IPアドレ
スの変更後も同じドメイン名で同じサービスに
アクセスさせることができます。
　こうして、現在ではわかりやすいドメイン名
の使用が広まり、DNSが円滑に動作しないとイ
ンターネットの利用に致命的な影響を及ぼす状
況となってきています。そのため、DNSを正し
く設定し、運用することは極めて重要です。｢

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

第 章2

76 - Software Design

DNSの構成要素と
それぞれの役割
　DNSでは、委任する側を「親（parent）」と呼び、
委任される側を「子（child）」と呼びます。DNSに
は、大きく分けて情報を提供する機能と名前を
解決する機能の2つがあります。名前に関する
情報を提供する機能は、権威DNSサーバが提供
します。また、名前を解決する機能は「リゾル
バー（resolver）」と呼び、クライアントアプリ
ケーションの名前解決ライブラリに相当するス
タブリゾルバー（stub resolver）と、名前解決
サービスを提供するフルリゾルバー（full

resolver）に分けられます。スタブリゾルバーと

フルリゾルバーの間に問い合わせ・応答を中継
するフォワーダー（DNSプロキシ）が入ることが
あります。
　権威DNSサーバはゾーンの情報を保持し、そ
の範囲のドメイン名空間の管理権限を持ちます。
権威DNSサーバはフルリゾルバーからの問い合
わせに応答し、管理権限を持つ情報と委任情報
を提供する役目を持ちます。それぞれのゾーン
ごとに権威DNSサーバを運用し、ルートDNS

サーバ、TLD DNSサーバ、一般組織の権威
DNSサーバなどが存在します。
　フルリゾルバーはルートDNSサーバの情報を
事前に保持しており、スタブリゾルバーからの
検索要求をもとに、ルートDNSサーバから順に
ドメイン名空間の木構造を探索することで名前
解決を行い、結果をスタブリゾルバーに返しま
す。図1を用いて名前解決の手順を示します。
　エンドユーザがWebブラウザなどにドメイン
名を入力すると、次のように名前解決が行われ
ます。

①アプリケーションから名前解決要求を受け取っ
たスタブリゾルバーは、フルリゾルバーに
DNS問い合わせを送る

②フルリゾルバーはルートDNSサーバの情報を
事前に設定されているため、スタブリゾルバー
からの問い合わせと同じ内容をルートDNS
サーバに問い合わせる

第1章で述べたとおり、DNSでは各階層の権威DNSサーバがそれぞれのデータベースを用意
し、フルリゾルバーが名前解決という処理で階層をたどりながら検索を行います。フルリゾル
バーでは名前解決のコストを下げるために、キャッシュを活用したりもします。本章ではそれらの
しくみを詳しく解説します。

DNSの原理と動作を知る

藤原 和典（ふじわら かずのり）
㈱日本レジストリサービス（JPRS） 技術研究部

ルート
②

① ⑧

③
④

⑤

⑥
⑦

TLD
フルリゾルバー
＋キャッシュ

スタブリゾルバー

各組織

権威DNSサーバ

 ▼図1　名前解決の流れ

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ DNSの原理と動作を知る

第 章2

76 - Software Design Apr. 2015 - 77

③ルートDNSサーバはTLDへの委任情報だけ
を知っているため、委任情報を返す

④フルリゾルバーはルートDNSサーバから得た
委任情報に従い、スタブリゾルバーからの問
い合わせと同じ内容をTLD DNSサーバに問
い合わせる

⑤TLD DNSサーバは組織ドメイン名の委任情
報だけを知っているため、委任情報を返す

⑥フルリゾルバーはTLD DNSサーバから得た
委任情報に従い、スタブリゾルバーからの問
い合わせと同じ内容を組織のDNSサーバに
問い合わせる

⑦組織のDNSサーバは、問い合わせに対応する
応答をフルリゾルバーに返す

⑧フルリゾルバーは名前解決ができたことを判
定し、スタブリゾルバーにその結果を返す

　こうしてアプリケーションは、IPアドレスな
どの情報を得ることができます。
　フルリゾルバーの名前解決はコストの高い作
業であり時間もかかるため、検索途中の情報と
検索結果をキャッシュ（cache）に保持し、以降の
処理に使用してクライアントからの問い合わせ
への応答時間を減らすと同時に、権威DNSサー

バへの問い合わせの数を減らします。このキャッ
シュ機能に着目し、フルリゾルバーを「キャッ
シュDNSサーバ」と呼ぶことがありますが、
DNSの仕様を定義しているRFC 1034/1035に
はそのような記載はありません。
　RFC 1035では「recursive server」や「full re

solver」と書かれ、RFC 1123では「full-service

resolver」と書かれているので、短い「フルリゾ
ルバー」を用いるのが良いでしょう。本稿でも一
貫して「フルリゾルバー」を使用します。

DNSの動作に関する
ポイント
　フルリゾルバーと権威DNSサーバは、サービ
ス用のポートとしていずれもDNS専用の53を
用いており、UDPまたはTCPで通信を行いま
す。流れるデータはバイナリで、DNSヘッダと
問い合わせ情報、検索結果から成ります。DNS

ヘッダの詳細を図2に示します。問い合わせ情
報はドメイン名、タイプ、クラスで構成されま
す。検索結果は後述するリソースレコード（RR）
の形式で、応答、委任情報、付加情報の3つの
セクションで構成されます。各セクションに含
まれるRR数がDNSヘッダに記載されます。

0 1 2 3 4 5 6 7 8

ID

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

QR OPCODE AA TC RD RA Z AD CD RCODE

9 10 11 12 13 14 15

ID： DNSのトランザクションID、問い合わせ時にランダムに
生成し、応答パケットにコピー

QR： 問い合わせが0、応答が1
OPCODE： 問い合わせの種類を指定する。0が通常の問い合わせ、

4がNOTIFY、5がUPDATE
AA： 管理権限を持つ応答であることを示す
TC： パケット長制限などで応答が切り詰められたことを示す
RD： 名前解決を要求するビット。0は権威DNSサーバへの問

い合わせで、1はフルリゾルバーへの問い合わせ

RA： 名前解決が可能であることを示す
Z： 将来のために予約（常に0）
AD： DNSSEC検証が成功したことを示す
CD： DNSSEC検証の抑制
RCODE： 応答コード
QDCOUNT： 問い合わせ（QUESTION）セクションの数で、常に1
ANCOUNT： 応答（ANSWER）セクションのRR数
NSCOUNT： 委任情報（AUTHORITY）セクションのRR数
ARCOUNT： 付加情報（ADDITIONAL）セクションのRR数

［bit］

 ▼図2　DNSヘッダフォーマット

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

78 - Software Design

再帰問い合わせと非再帰問い合わせ

　ここで、スタブリゾルバーからフルリゾルバー
への通信①と、フルリゾルバーから権威DNS

サーバへの通信②④⑥のプロトコルは基本的に
は同じ形をしていますが、フラグフィールドの
1ビットが違うという点に注意してください。
　DNSプロトコルは、DNSヘッダと、その後
に続くデータでできていますが、そのうちのRD

ビットが0であるものがフルリゾルバーから権
威DNSサーバへの問い合わせ（non-recursive

queries：非再帰問い合わせ）で、RDビットが1

であるものがスタブリゾルバーからフルリゾル
バーへの問い合わせ（recursive queries：再帰問
い合わせ）です。
　RDビットが0の問い合わせの場合は、権威
DNSサーバが持つデータをそのまま答えるとい
う動作になります。またRDビットが1の問い合
わせの場合は、ルートから名前空間の委任をた
どって名前解決を行うか、またはその結果であ
るキャッシュの情報を参照するということにな
ります。

問い合わせと応答

　ここで、権威DNSサーバの応答を考えます。
応答は少なくとも次の6種類があります。

・問い合わせに対応する値が存在する場合。こ
れを「エラーなし応答・値あり」とする

・問い合わせに対応する値が存在しない空の場
合で、ドメイン名は存在するけれども問い合
わせたタイプに値が存在しない場合。これを

「エラーなし応答・値なし」とする
・問い合わせたドメイン名が存在しない場合。

これを「名前不存在応答」とする
・問い合わせたドメイン名がそのサーバが管理

するドメイン名の子孫で、委任がある場合は
委任情報を返す。これを「委任応答」と呼ぶ

・問い合わせた名前が別名であった場合には、
CNAMEリソースレコードで正式名を返す。

これを「別名応答」と呼ぶ。別名応答を受け取っ
たフルリゾルバーは、正式名で名前解決をや
りなおすことになる

・問い合わせたドメイン名がその権威DNSサー
バの管理する範囲ではない場合には「管理範
囲外」というエラー状態になる。権威DNS
サーバは無応答、拒否、管理範囲内と考えら
れる権威DNSサーバへの案内を返すなどの
動作を行う

　フルリゾルバーの応答は「エラーなし応答・値
あり」、「エラーなし応答・値なし」、「名前不存
在応答」、「アクセス制限による応答拒否」、「ア
クセス制限による無応答」、「なんらかの名前解
決の失敗」に分類できます。

キャッシュという諸刃の剣

　フルリゾルバーのキャッシュには、名前解決
の負荷や時間を短縮するという美点がある一方、
ドメイン名と値の対応付けの迅速な変更ができ
なくなるという弱点があります。この問題に対
しては、データベースのエントリにキャッシュ
可能な時間（Time To Live、TTL）を設定するこ
とになっており、短時間で変更する場合には短
いTTLを指定します。
　また、キャッシュに何らかの情報を注入し、
汚染するという攻撃を考える人が昔から存在し
ます。キャッシュに悪意がある情報を注入する
と、キャッシュが保持されている間、フルリゾ
ルバーはその情報に基づいて応答してしまうの
で、問題となります。この攻撃手法を「キャッ
シュ汚染攻撃」と呼びます。

権威DNSサーバの概要
　第1章で述べたとおり、ゾーンは委任によっ
て作られます。委任されたドメイン名を管理す
るということは、委任により作成されたゾーン
を管理するということです。

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ DNSの原理と動作を知る

第 章2

78 - Software Design Apr. 2015 - 79

オーソリティ（権威）とは何か

　ゾーンの管理権限は、親から委任されること
で発生します。ゾーン内の情報は、親からの委
任に基づいた管理権限により、基本的には子が
管理権限を持つ情報です。権威DNSサーバが自
身の保持しているゾーンの情報を応答する場合
は、管理権限を持つ応答としてAAビットが1の
応答を返すことができます。
　ただし、委任されたゾーン中にさらなる子孫
への委任がある場合、応答される委任情報は管
理権限を持つ応答ではないため、AAビットが0

の応答となることに注意してください。
　フルリゾルバーは、ルートから委任情報を用
いてゾーンをたどることにより名前解決を行い
ますが、その過程で得た情報のうち管理権限を
持つ応答の情報だけをスタブリゾルバーに返し
て良いことになっています。委任情報は、名前
空間の管理権限を委任するというだけの情報で
あり、スタブリゾルバーにそのまま返して良い
情報ではありません。そのため、親ゾーンが保
持する委任情報と同じ情報を管理権限のある情
報として、子ゾーン内にも保持しておく必要が
あります。親ゾーンが保持する委任情報と委任
先である子ゾーンが保持する管理権限のある情
報が異なる場合でも多くの場合は名前解決でき
ますが、問題が起きる場合があり得ます。
　自分でドメイン名、たとえばexample.jpを登
録して自分で管理する場合、「example.jpのゾー
ン情報を作る」、「作ったゾーン情報を公開する
example.jpの権威DNSサーバを動作させる」、
「親ゾーンである jpゾーンにexample.jpへの委
任情報を記述する」という手順が必要になります
（詳細は第3章で解説します）。

DNSに登録される情報

　DNSは、ドメイン名、タイプ、クラスをキー
とするデータベースで、タイプごとに決められ
た形式の値を保持します。キーと値の組をリソー
スレコード（RR）と呼びます。キーのうち、ドメ

イン名をリソースレコードの所有者名と呼びま
す。
　また、1つのキーに対して異なる値を持つ複
数のリソースレコードを設定でき、それらの集
合をリソースレコードセット（RRSet）と呼びま
す。
　タイプには、IPv4アドレスを保持するAや、
IPv6アドレスを保持するAAAA、メールサーバ
情報を保持するMX、委任情報を示すNS、ゾー
ンの管理情報を保持するSOA、別名変換の正式
名を保持するCNAMEなどがあります。それぞ
れのタイプのリソースレコードをAリソースレ
コードやAAAAリソースレコードと呼びます。
　インターネットではクラスとしてINが用いら
れ、そのほかのクラスは使用されません。以下
の説明では、クラスを省略します。
　DNSプロトコルでは、リソースレコードはバ
イナリで伝達されますが、設定ファイルなどに
表記するためにテキスト表現が規定されていま
す。リソースレコードごとに、所有者名、TTL、
クラス、タイプ、値を1行で書きますが、複数
行で書くこともできます。

所有者名 TTL クラス タイプ リソースレコードｭ
データ

　TTLは32ビットの正の整数で、キャッシュ
して良い最大時間をリソースレコードごとに秒
数で示したものです。テキスト表現では、所有
者名、TTL、クラスを省略でき、省略した場合
は、TTLはゾーンファイルに$TTLで指定した
値、所有者名は1つ前のリソースレコードと同
じもの、クラスはINであると仮定されます。
　ドメイン名の最後に“.”があると絶対ドメイン
名と呼ばれ、完全なドメイン名を示します。逆
に、最後の“.”を省略したものは相対ドメイン名
と呼ばれ、文脈によってドメイン名が補われま
す。なお、絶対ドメイン名を意味する用語とし
てFQDN（Fully Qualified Domain Name：完全
修飾ドメイン名）が使われることがありますが、
FQDNは本来「TLDまでのすべてのラベルを含

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

80 - Software Design

むドメイン名」という意味であり、最後に“.”が
あるかどうかは明確に定義されないため、不適
切です。
　IPv4アドレスを保持するAリソースレコード
は、次のように記述します。

ドメイン名 TTL IN A IPv4アドレス（ドット表記）
例：www.example.jp. 600 A 192.0.2.1

　IPv6アドレスを保持するAAAAリソースレ
コードは、次のように記述します。

ドメイン名 TTL IN AAAA IPv6アドレス
例：www.example.jp. AAAA 2001:db8::1

　委任情報を保持するNSは、次のように記述
します。

ドメイン名 TTL IN NS ネームサーバホスト名
例：example.jp. 3600 NS ns.example.com.

実際の委任情報

　インターネットには、ドメイン名空間そのも
のを示すルートゾーンが存在します。
　共通の親ドメイン名を持つドメイン名の集合
を別のゾーンとして分離する行為である委任は、
親側のゾーンに、委任するゾーン名のNSリソー
スレコードを書くことで作成されます。NSリ
ソースレコードの値は、委任先の権威DNSサー
バのホスト名（ネームサーバホスト名）です。
　1つのゾーンを複数の権威DNSサーバに委任
することができるため、委任を示すNSリソー
スレコードは複数の同じ種類のリソースレコー
ドの集合であるリソースレコードセットとなり
ます。ルートDNSサーバにはTLDへの委任情
報を記述しますので、jpへの委任は、次のよう
に保持しています。

jp. 172800 IN NS a.dns.jp.
jp. 172800 IN NS b.dns.jp.
jp. 172800 IN NS c.dns.jp.
jp. 172800 IN NS d.dns.jp.
jp. 172800 IN NS e.dns.jp.
jp. 172800 IN NS f.dns.jp.

jp. 172800 IN NS g.dns.jp.

　ところで、委任先のネームサーバホスト名
a.dns.jp.の情報を調べるにも“jp.”の情報を知ら
ないといけないということは、鶏と卵の関係に
相当し、循環しています。そのため、これだけ
の情報では名前解決ができません。そこで、こ
の情報に追加してa.dns.jp.などのIPアドレス情
報を添付したものを保持・応答します。

a.dns.jp. 172800 IN A 203.119.1.1
b.dns.jp. 172800 IN A 202.12.30.131
c.dns.jp. 172800 IN A 156.154.100.5
d.dns.jp. 172800 IN A 210.138.175.244
e.dns.jp. 172800 IN A 192.50.43.53
f.dns.jp. 172800 IN A 150.100.6.8
g.dns.jp. 172800 IN A 203.119.40.1
a.dns.jp. 172800 IN AAAA 2001:dc4::1
b.dns.jp. 172800 IN AAAA 2001:dc2::1
c.dns.jp. 172800 IN AAAA 2001:502:ad09::5
d.dns.jp. 172800 IN AAAA 2001:240::53
e.dns.jp. 172800 IN AAAA 2001:200:c000::35
f.dns.jp. 172800 IN AAAA 2001:2f8:0:100::153

　この情報が添付されていることで、フルリゾ
ルバーは jpの委任情報を受け取るとJP DNS

サーバのIPアドレスを知ることができ、次の問
い合わせをJP DNSサーバに送信できます。こ
のように、委任情報のネームサーバホスト名が
委任先の子ノードである場合を、内部名（in-

bailiwick）のネームサーバホスト名と言います。
　また、この際に添付されるネームサーバホス
ト名の IPアドレス情報（A RRまたはAAAA

RR）を「グルー（glue）」と呼びます。
　また、委任情報のネームサーバホスト名が委
任先ドメイン名の親ノードから見た子孫ノード
にあたる場合も、グルーに相当する情報を添付
することができます。
　たとえば、com TLDのネームサーバホスト名
はa.gtld-servers.net.などでありcomの子ノード
ではありませんが、a.gtld-servers.net.はcomの
親ゾーンであるルートの子ノードですので、ルー
トサーバはグルーに相当する情報を追加するこ
とができます。そのため、ルートDNSサーバに
comドメイン名を問い合わせた応答は、次のよ

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ DNSの原理と動作を知る

第 章2

80 - Software Design Apr. 2015 - 81

うになります。

com. 172800 IN NS a.gtld-servers.net.
 （略）
com. 172800 IN NS m.gtld-servers.net.
a.gtld-servers.net. 172800 IN A 192.5.6.30
 （略）
m.gtld-servers.net. 172800 IN A 192.55.83.30
a.gtld-servers.net. 172800 IN AAAA ｭ
2001:503:a83e::2:30

　このような、委任先ドメイン名の親ノードか
ら見た子孫ノードにあたるネームサーバホスト
名のことも内部名と分類する場合があります。
　また、委任先ネームサーバホスト名が親ゾー
ンの子ノードでない場合を、外部名のネームサー
バホスト名と言います。外部名のネームサーバ
ホスト名の例を、次に示します。

jprs.info. 86400 IN NS redirect2.jprs.jp.
jprs.info. 86400 IN NS redirect1.jprs.jp.

　外部名であるネームサーバホスト名は、委任
情報にそのIPアドレス情報が添付できません。
このため、フルリゾルバーはネームサーバホス
ト名のIPアドレス情報を別途名前解決する必要
があります。そのため、先ほどの jprs.info.とい
うドメイン名の場合、info TLDの権威DNSサー
バから jprs.info.の委任情報を得ると、そのネー
ムサーバホスト名の IPアドレス情報を得るた
め、ルートから redirect1.jprs.jp、redirect2.

jprs.jpのタイプAとタイプAAAAの名前解決を
始めます。
　最近のフルリゾルバーの実装では名前解決の
時間を最小化するため、複数の外部名ネームサー
バホスト名のタイプA、タイプAAAAの問い合
わせを同時に開始します。そのため、前述の
jprs.infoの場合、4つの名前解決を同時に開始
します。そのときに jpの委任情報がキャッシュ
に存在していない場合、ルートDNSサーバに4

つの問い合わせパケットを同時に送ることにな
ります。このように、外部名のネームサーバホ
スト名の使用は名前解決のコストと権威DNS

サーバへの負荷を増やします。

　一般のドメイン名登録者は、TLD運用組織
（レジストリ）にドメイン名と委任情報を登録し
ます。TLDの権威DNSサーバは、登録者のド
メイン名への委任情報を保持します。
　たとえば、example.comゾーンのネームサー
バホスト名が内部名のns.example.comである場
合、グルーとしてns.example.comのAリソース
レコードとAAAAリソースレコードを委任情報
に追加できます。具体的には、ns.example.com

の IPv4アドレスが192.0.2.1の場合、comゾー
ンに次の情報が記述されます。

example.com. IN NS ns.example.com.
ns.example.com. IN A 192.0.2.1

　example.comゾーンのネームサーバホスト名
が外部名のns.example.jpである場合、comの子
孫ではないためグルーを追加できず、

example.com. IN NS ns.example.jp.

という情報のみが登録されます。
　この場合、フルリゾルバーは外部名の委任情
報を受け取った時点でexample.comの名前解決
を中断し、ns.example.jpの名前解決を行う必要
があります。
　一般のドメイン名登録者は、自ドメイン名の
ゾーンの情報を管理し、その中に自組織のホス
ト名からIPアドレスへの対応やメールサーバな
どの情報を登録します。また、ゾーン内に、親
ゾーンに登録した委任情報と同じNSリソース
レコード、ネームサーバホストの情報（A RR、
AAAA RR）とゾーンの管理情報（SOA RR）を管
理権限のある情報として記述する必要がありま
す。このように、委任の親側と子側の双方にNS

リソースレコードとネームサーバホスト名のA、
AAAAリソースレコードを書く必要があるとい
う点は、DNSの設計上の弱点と言えます。

フルリゾルバーの概要
　フルリゾルバーは、スタブリゾルバーからRD

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

82 - Software Design

ビットがセットされた問い合わせを受け取り、
権威DNSサーバに問い合わせを送って名前解決
をする機能を持ちます。フルリゾルバーには
キャッシュ機能があり、名前解決の途中経過の
情報と解決結果を保存します。
　フルリゾルバーは名前解決にあたり、最初の
手がかりとする権威DNSサーバの情報を知って
いる必要があります。この情報は「ヒント情報」
と呼ばれ、ルートDNSサーバの一覧が指定され
ます。
　フルリゾルバーには指定できるパラメータが
複数あります。たとえば、キャッシュ領域のサ
イズに関して、実装によっては標準でメモリを
必要なだけ使うもの（BIND 9）や、最小限の領域
しか使わないもの（Unbound）があることから、
フルリゾルバーを動作させる機器の資源と問い
合わせの量に合わせた、最適なキャッシュサイ
ズの指定が必要になる場合があります注1。
　次に、必ず存在するパラメータとして、名前
解決要求を受け付けるスタブリゾルバーの指定
があります。IPアドレスの範囲で指定すること
が多いのですが、ほかの指定方法もあります。
範囲を指定した場合、名前解決要求を受け入れ
るスタブリゾルバー以外からの問い合わせには、
応答拒否を返すか無応答となります。
　基本的には、この2種類のパラメータに注意
するだけで、フルリゾルバーを動作させること
ができます。
　フルリゾルバーのユーザ数が少なく問い合わ
せの頻度が少ない場合には、一度動かすと放置
しておいても問題がないケースが多くあります。
ところが、問い合わせの頻度が大きくなるに従
い、フルリゾルバーの負荷が上がります。その
ため、先々の分析のために入出力パケット数な
どを収集したり、プロセスの負荷を収集したり
しておくほうが良いでしょう。また、フルリゾ
ルバーは負荷が上がり過ぎると、名前解決エラー

注1） デフォルト設定のUnboundでは、負荷がかかった場合に
キャッシュメモリが不足し、ルートDNSサーバなどに本来
必要のない余計なクエリを送信する可能性があります。

を返すようになることがあります。また、権威
DNSサーバの設定が間違っている場合などにも
名前解決エラーを返すことがあります。そのよ
うな場合には、キャッシュの内容をダンプして
調べることができます。

オープンリゾルバーにならないために

　フルリゾルバーで、利用可能なスタブリゾル
バーのサービス範囲の指定を間違うと、第三者
からの問い合わせにも名前解決をするようになっ
てしまう可能性があります。このようなフルリ
ゾルバーのことを「オープンリゾルバー」と呼び
ます。
　DNSは主としてトランスポート層プロトコル
にUDPを使いますが、UDPの特徴としてIPパ
ケットの送信元アドレスの詐称に弱いことが挙
げられます。
　ここで、DNSサーバを用いて、ある IPアド
レスにパケットを送る攻撃を考えてみます。送
信元アドレスを攻撃先アドレスとした問い合わ
せを任意のDNSサーバに送ると、何らかの応答
をDNSサーバから攻撃先アドレスに返します。
　問い合わせを送るDNSサーバをフルリゾル
バーとし、問い合わせの内容を大きな応答が戻
るもの、たとえば名前をルート“.”タイプをNS

とします。そうすると、60バイト程度の送信元
を詐称した問い合わせで512バイト以上の攻撃
パケットを第三者のDNSサーバから送りつける
ことができます。これがDNS反射攻撃です。
　フルリゾルバーでこのDNS反射攻撃を防ぐに
は、利用可能なスタブリゾルバーのアクセス制
限を行うことです。オープンリゾルバーは攻撃
の加害者となり得るため、オープンリゾルバー
の状態にしないことが重要です。
　なお、Google Public DNSなど、インターネッ
ト全域からの名前解決要求を受け取るオープン
リゾルバーのサービスがいくつかありますが、
それらにはDNS反射攻撃の踏み台にならないよ
うなしくみが導入されているはずです。｢

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ BINDとNSD/UnboundによるDNSサーバの構築

第 章3

83 - Software Design Apr. 2015 - 83

DNSサーバ構築の基礎

2種類の「DNSサーバ」

　「DNSサーバを構築しよう」と言ったとき、あ
なたは何を構築するとイメージするでしょうか。
一口にDNSサーバと言っても、人によっても、
文脈によっても、イメージするものが異なるは
ずです。
　第2章「DNSの原理と動作を知る」で説明した
ように、DNSには情報を提供する機能と名前を
解決する機能があります。情報を提供する機能
は権威DNSサーバが担当し、名前を解決する機
能はフルリゾルバー（キャッシュDNSサーバ）が
担当します（表1）。
　権威DNSサーバは設定したドメイン名情報
（ゾーン情報）を管理するサーバです。ドメイン
名の木構造の構成要素の1つとして、問い合わ
せに応答します。一方、フルリゾルバーはクラ
イアントからの名前解決要求を受け付け、木構

造で構成された権威DNSサーバ群をたどり、
ゾーン情報に基づいた名前解決を図ります。

構築するDNSサーバに注意

　権威DNSサーバとフルリゾルバーが提供すべ
き機能を区別し、それぞれの動作原理を理解する
ことはとても重要です。しくみの理解を深めるた
め、本稿では、権威DNSサーバとフルリゾルバー
の両機能を順を追って別々に構築していきます。
さらに、権威DNSサーバの構築では、ドメイン
名の登録から実際にドメイン名を利用するまで
の流れと構築の手順を併せて説明します。
　今回の説明で用いるシステム構成を図1に示
します。

DNSサーバの構築とその順序

　今回の説明では、権威DNSサーバとして
BINDとNSD、フルリゾルバーとしてBINDと
Unboundの各ソフトウェアを使用します。これ
らのソフトウェアを採用した理由は、次のとお
りです。

第 章3
BINDとNSD/Unboundによる

DNSサーバの構築
野口 昇二（のぐち しょうじ）

㈱日本レジストリサービス（JPRS） 技術企画室

本章では、DNSサーバの構築について例を示しながら説明します。最初にDNSサーバの機能
について簡単に振り返り、次に実際の構築方法を説明します。今回は、ドメイン名とDNSの関
係を理解して、さらに試行もできるよう、DNSサーバの構築方法だけではなく、ドメイン名の
登録やネームサーバ設定などの順序にも配慮しています。

フルリゾルバー 権威DNSサーバ
機能 階層構造をたどり、ドメイン名を検索する 階層構造を構成し、ドメイン名を管理する

サービス対象 ISPや組織などの利用者（DNSクライアントや
DNSプロキシ）

インターネット上のフルリゾルバー

サービス提供範囲 通常は ISP内や組織内に限定 インターネット全体
参考：
ほかの呼称例

キャッシュDNSサーバ、DNSキャッシュサー
バ、参照サーバなど

DNSコンテンツサーバ、権威サーバ、ゾーンサー
バなど

 ▼表1　2種類のDNSサーバ

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

84 - Software Design

・オープンソースソフトウェアである
・開発元注1が権威DNSサーバとフルリゾルバー
の両機能を開発している

・開発元が現在も開発・メンテナンスを継続し
ている

・DNSSEC・IPv6に対応している

　今回は最初にフルリゾルバーの構築、続いて
権威DNSサーバの構築を行います。この順序で
構築を行う理由は、権威DNSサーバの動作確認
を行うためにはフルリゾルバー機能が必要にな
るためです。また、ここでは著名なLinuxディ
ストリビューションの1つであるCentOS 7.0を
用いて、実際の手順を紹介します。

フルリゾルバーの構築

BINDによるフルリゾルバーの構築
（VPS-Aホスト）

●● BINDのインストール
　CentOS 7.0においてBINDはパッケージとし
て提供されているため、yumコマンドでインス
トールします。なお、本稿での
コマンドプロンプト表記は、#

がroot（スーパーユーザ）権限、
$が一般ユーザ権限での実行で
あることとします。

yum install bind

　原稿執筆時点でインストールされるBINDの
バージョンは9.9.4です。なお、何らかの理由で
パッケージ以外のバージョンを使用したい場合
には、開発元のISCからBINDのソースを入手・
コンパイルし、インストールします。DNSSEC

に対応したBINDをこの手順でインストールす
る場合、事前にOpenSSLのインストールが必
要です。図2にその実行例を示しておきます。

●● named.confファイルの編集と確認
　BINDをフルリゾルバーとして動作させるた
め、BINDの設定ファイルnamed.confファイル
を編集します。

vi /etc/named.conf

　編集後のnamed.confファイルの内容をリスト
1に示します。フルリゾルバーとしてBINDを
動作させる際に、とくに注意が必要な設定項目
に★印を付けています。ここでは、外部からの
問い合わせに対しては応答を拒否するように、
localhost注2からの問い合わせだけを許可してい

BIND

203.178.129.29 53

BIND

127.0.0.1 53

VPS-A

権威 DNSサーバ

フルリゾルバー

NSD

203.178.129.30 53

Unbound

127.0.0.1 53

VPS-B

インターネット権威DNSサーバ

フルリゾルバー

 ▼図1　システム構成図

注1） BINDは 米 国 の 非 営 利 法 人 ISC
（Internet Systems Consortium, Inc.）、
NSDおよびUnboundはオランダの
非営利法人 NLnet Labs（Stichting
NLnet Labs）が開発元です。

注2） BINDの設定ファイルにおける localhostは、いわゆるルー
プバックアドレスだけではなく、そのホスト上に存在する
他の IPアドレスも対象に含まれます。

 ▼図2　DNSSEC対応のBINDをインストールする場合

yum install openssl openssl-devel ←yumコマンドでOpenSSLをインストール
$ wget http://ftp.isc.org/isc/bind9/9.10.2/bind-9.10.2.tar.gz
$ tar zxvf bind-9.10.2.tar.gz
$ cd bind-9.10.2
$./configure --disable-symtable
$ make
make install

 ←CentOS 7.0においてPerlが標準でインストールされていないため、symtableを無効化
 　（Backtraceのためのsymbol tableが使用できなくなるが、DNSサーバの機能には影響
 　しない）

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ BINDとNSD/UnboundによるDNSサーバの構築

第 章3

84 - Software Design Apr. 2015 - 85

ます。これは、フルリゾルバーをオープンリゾ
ルバー注3として動作させないために必須の設定
です。これらの設定に誤りがないかを必ず確認
してください。
　named.confファイルの編集後、記述内容を確
認するためにnamed-checkconfコマンドを実
行します。実行結果にエラーが含まれていなけ
れば編集は完了です。

named-checkconf -z
zone localhost.localdomain/IN: loaded ｭ
serial 0

zone localhost/IN: loaded serial 0
zone 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ｭ
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.arpa/ｭ
IN: loaded serial 0
zone 1.0.0.127.in-addr.arpa/IN: loaded ｭ
serial 0
zone 0.in-addr.arpa/IN: loaded serial 0

●●フルリゾルバーの起動と確認 - BIND
　BINDを起動します。

systemctl start named.service

　ループバックアドレス（127.0.0.1および ::1）の
TCPおよびUDPの53番ポートと、TCPの953

番ポート（namedプロセスの制御用ポート）上で
namedプロセスが起動しているか、ssコマンド

注3） オープンリゾルバーとなっていた場合、DNS反射攻撃など
に悪用される危険性があります。技術解説：「DNS Reflector
Attacks（DNSリフレクター攻撃）」について　http://jprs.
jp/tech/notice/2013-04-18-reflector-attacks.html

 ▼リスト1　/etc/named.confファイルの設定内容

// optionsステートメント
options {
 listen-on port 53 { 127.0.0.1; }; ←namedをIPv4アドレス127.0.0.1、53番ポート上で動作
 listen-on-v6 port 53 { ::1; }; ←namedをIPv6アドレス::1、53番ポート上で動作
 directory "/var/named"; ←namedのルートディレクトリを指定
 dump-file "/var/named/data/cache_dump.db"; ←namedがクラッシュした際のダンプファイルの保存先を指定
 statistics-file "/var/named/data/named_stats.txt"; ←rndc statsコマンドの出力ファイルを指定
 memstatistics-file "/var/named/data/named_mem_stats.txt";

★ allow-query { localhost; }; ←localhostからの問い合わせのみを許可
★ allow-query-cache { localhost; }; ←localhostからのみ、キャッシュされた内容の返却を許可
★ recursion yes; ←フルリゾルバー機能を有効化
★ allow-recursion { localhost; }; ←フルリゾルバー機能の提供を許可する問い合わせ元IPアドレスを指定
 dnssec-validation auto; ←DNSSECによる検証・トラストアンカーの自動更新を有効化
 managed-keys-directory "/var/named/dynamic"; ←トラストアンカーの自動更新機能で使用するディレクトリを指定
 pid-file "/run/named/named.pid"; ←namedプロセスのプロセスIDを記録するファイルを指定
 session-keyfile "/run/named/session.key";
};

// ログ情報に関する設定
logging {
 channel default_debug {
 file "data/named.run"; ←ファイル"/var/named/data/named.run"へメッセージを記録
 severity dynamic;
 };
};

// ルートヒントに関する設定

zone "." IN {
 type hint;
 file "named.ca";
};

include "/etc/named.rfc1912.zones";

include "/etc/named.root.key"; ←DNSSECの検証を行ううえで必要となるルートゾーンのKSK公開鍵が記述されたファイル

 ←namedのメモリ使用量の統計データを出力する
 　ファイルを指定

 ←ダイナミックアップデートのための鍵ファイルを指定
 　（CentOS 7.0ではデフォルトで作成される）

 ←RFC 1912 4.1項で示されたゾーン（localhost、127.0、255、0）
 　およびそれに対応するIPv6のゾーンが記述されたファイル

 ↓ルートヒントとして用いるルートゾーンの権威DNSサーバのネームサーバ名およびIPアドレスとして
 　/var/named/named.caの内容を参照せよ、という内容を記述

http://jprs.jp/tech/notice/2013-04-18-reflector-attacks.html

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

86 - Software Design

を使って確認します（図3）。
　続いて、rndcユーティリティ注4のstatusコ
マンドを使用してnamedプロセスの状態を確認
します。

rndc status
version: 9.9.4-RedHat-9.9.4-14.el7_0.1 ｭ
<id:8f9657aa>
 （略）
server is up and running ←サービスが起動中

　statusコマンドの実行結果として表示された
“server is up and running”というメッセージで、
namedプロセスによるサービスが実行中である
ことがわかります。
　namedプロセスがフルリゾルバーとして機能
しているかどうかを確認するために、digコマ

ンド注5を用いて名前解決の動作確認を行います
（図4）。
　digコマンドの1つ目の引数では、問い合わ
せ先のフルリゾルバーのIPアドレスまたはホス
ト名を指定しています（IPアドレスまたはホス
ト名の直前に@を付与します）。2つ目の引数で
は、名前解決を行いたいホスト名やドメイン名
を指定しています。3つ目の引数では検索対象
がAリソースレコード（IPv4アドレス情報）であ
ることを指定しています。
　digコマンドの応答内容が正しく、flagsに“rd

（Recursion Desired）”および“ra（Recursion

Available）”が含まれていれば（図4-①）、フルリ
ゾルバーとして正常に動作しています。

Unboundによるフルリゾルバーの
構築（VPS-Bホスト）

●● Unboundのインストール
　CentOS 7.0においてUnboundはパッケージ
として提供されていますので、yumコマンドで
インストールします。unboundパッケージをイ
ンストールするためには ldns、libeventおよび
unbound-libsパッケージをあらかじめインス
トールしておく必要があります。

yum install ldns libevent unbound-libs
yum install unbound

　原稿執筆時点で、イン
ストールされるUnbound

のバージョンは1.4.20で
す。なお、何らかの理由
でパッケージ以外のバー
ジョンを使用したい場合
は、開発元のNLnet Labs

からUnboundのソースを

注4） rndcユーティリティは、ローカルホストおよびリモート
ホストからnamedプロセスを制御するためのコマンドラ
インツールです。

 ▼図3　BIND（フルリゾルバー）の起動確認

$ ss -l -t -n ←TCPポートの確認
State Recv-Q Send-Q Local Address:Port （略）
LISTEN 0 128 127.0.0.1:953
LISTEN 0 10 127.0.0.1:53
LISTEN 0 128 ::1:953
LISTEN 0 10 ::1:53
$ ss -l -u -n ←UDPポートの確認
State Recv-Q Send-Q Local Address:Port （略）
UNCONN 0 0 127.0.0.1:53
UNCONN 0 0 ::1:53

 ▼図4　フルリゾルバー機能の確認（BIND）

$ dig @127.0.0.1 gihyo.jp A
 （略）
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38385
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2 ←①

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;gihyo.jp. IN A

;; ANSWER SECTION:
gihyo.jp. 86400 IN A 49.212.34.191

;; AUTHORITY SECTION:
gihyo.jp. 86400 IN NS mail0.gihyo.co.jp.
gihyo.jp. 86400 IN NS dns3.odn.ne.jp.

;; ADDITIONAL SECTION:
mail0.gihyo.co.jp. 86400 IN A 219.101.198.3
 （略）

注5） digコマンドはBINDの開発
元の ISCが提供する、DNS
サーバの状況を調査するた
めのツールです。CentOS
7.0でdigを使用するには
bind-utilsパッケージのイ
ンストールが必要です。

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ BINDとNSD/UnboundによるDNSサーバの構築

第 章3

86 - Software Design Apr. 2015 - 87

 ▼リスト2　/etc/unbound/unbound.confの設定内容

// フルリゾルバーサーバに関する設定
server:
 directory: "/etc/unbound" ←unboundプロセスのルートディレクトリを指定
 username: "unbound" ←unboundプロセスの所有者としてunboundを指定
 chroot: "" ←chroot機能を無効化。有効とする場合はそのルートディレクトリを指定
 pidfile: "/var/run/unbound/unbound.pid" ←unboundプロセスのプロセスIDを記録するファイル
 interface: 127.0.0.1 ←unboundプロセスをIPv4アドレス127.0.0.1上で動作
 interface: ::1 ←unboundプロセスをIPv6アドレス::1上で動作
★ access-control: 127.0.0.0/8 allow ←問い合わせを許可するIPv4アドレス127.0.0.0/8を指定
★ access-control: ::1 allow ←問い合わせを許可するIPv6アドレス::1を指定

// リモート制御に関する設定
remote-control:
 control-enable: yes ←unbound-controlユーティリティによる制御を有効化

入手し、コンパイル・インストールします。こ
の手順でUnboundをインストールする場合、事
前にExpatのインストールが必要です。図5に
その実行例を示しておきます。

●● unbound.confファイルの編集と確認
　Unboundをフルリゾルバーとして動作させる
ため 、Unboundの設定ファイルであるunbound.

confファイルを編集します。

vi /etc/unbound/unbound.conf

　編集後のunbound.confファイルの設定内容
をリスト2に示します。フルリゾルバーとして

Unboundを動作させる際に、とくに注意が必要
となる設定に★印を付けています。ここでは、
外部からの問い合わせに対してはその応答を拒
否するように、ローカルループバックアドレス
からの問い合わせのみを許可しています。
　unbound.confファイルの編集後、記述内容を
確認するためにunbound-checkconfコマンド
を実行します。実行結果にエラーが含まれてい
なければ編集は完了です。

unbound-checkconf
unbound-checkconf: no errors in /etc/ｭ
unbound/unbound.conf

●●フルリゾルバーの起動と確認 - Unbound
　Unboundを起動します。

systemctl start unbound.service

　ループバックアドレス（127.0.0.1および ::1）の
TCPおよびUDPの 53番ポートと、TCPの
8953番ポート（リモート制御用ポート）上に
unboundプロセスが起動しているか、ssコマン
ドを使って確認します（図6）。
　続いて、unbound-controlユーティリティ注6の
statusコマンドを使用してunboundプロセスの
状態を確認します。

unbound-control status
version: 1.4.20
 （略）
unbound (pid XXXXX) is running...
 ↑サービスが起動中

注6） unbound-controlユーティリティは、ローカルホストおよ
びリモートホストからunboundプロセスを制御するため
のコマンドラインツールです。

 ▼図5　 Unboundをパッケージ以外のバージョンで
インストールする場合

yum install expat expat-devel

$ wget http://unbound.nlnetlabs.nl/downloads/ｭ
unbound-1.5.2.tar.gz
$ tar zxvf unbound-1.5.2.tar.gz
$ cd unbound-1.5.2
$./configure
$ make
make install

 ←yumコマンドで
 　Expatをインストール

 ▼図6　Unbound（フルリゾルバー）の起動確認

$ ss -l -t -n ←TCPポートの確認
State Recv-Q Send-Q Local Address:Port （略）
LISTEN 0 5 127.0.0.1:8953
LISTEN 0 5 127.0.0.1:53
LISTEN 0 5 ::1:8953
LISTEN 0 5 ::1:53
$ ss -l -u -n ←UDPポートの確認
State Recv-Q Send-Q Local Address:Port （略）
UNCONN 0 0 127.0.0.1:53
UNCONN 0 0 ::1:53

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

88 - Software Design

　statusコマンドの実行結果として表示された
“unbound (pid XXXXX) is running...”という
メッセージで、unboundプロセスによるサービ
スが実行中であることがわかります。
　unboundプロセスがフルリゾルバーとして機
能しているかどうかを確認するために、BIND

におけるdigコマンドと同等の機能を提供する
drillコマンド注7を用いて名前解決の動作確認
を行います（図7）。
　drillコマンドの1つ目の引数では、問い合
わせ先のフルリゾルバーのIPアドレスまたはホ
スト名を指定しています（IPアドレスまたはホ
スト名の直前に@を付与します）。2つ目の引数
では、名前解決を行いたいホスト名やドメイン
名を指定しています。3つ目の引数では検索対
象の情報はAリソースレコード（IPv4アドレス
情報）であることを指定しています。

　drillコマンドの応答内容が正しく、flagsに
“rd（Recursion Desired）”および“ra（Recursion

Available）”が含まれていれば（図7-①）、フルリ
ゾルバーとして正常に動作しています。

●●フルリゾルバーの/etc/resolv.confへの設定
　BINDやUnboundで構築したフルリゾルバー
を使って名前解決を実施するには、/etc/resolv.

confファイルを設定する必要があります。/etc/

resolv.confファイル内のnameserverエントリー
にフルリゾルバーの IPアドレス設定すること
で、前述のdigおよびdrillコマンドで引数と
して指定した@127.0.0.1を毎回指定する必要
がなくなります。
　CentOS 7.0において/etc/resolv.confファイ
ルはNetworkManagerによって自動生成されま
す。このため、直接/etc/resolv.confを編集して
もOSやNetworkManagerなどの再起動時に編
集前の状態に戻ってしまいます。これを避ける
ため、nmtuiコマンドまたはnmcliコマンドを

使用してフルリゾル
バーの設定を変更しま
す。図8はnmcliコマ
ンドを使用した設定変
更の実行例です。

注7） drillコマンドはUnboundの開発元のNLnet Labsが提供す
るDNSの情報取得ツールです。CentOS 7.0で使用するに
は、ldnsパッケージのインストールが必要です。

 ▼図7　フルリゾルバー機能の確認（Unbound）

$ drill @127.0.0.1 gihyo.jp A
;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 60515
;; flags: qr rd ra ; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0 ←①
;; QUESTION SECTION:
;; gihyo.jp. IN A

;; ANSWER SECTION:
gihyo.jp. 77398 IN A 49.212.34.191

;; AUTHORITY SECTION:
gihyo.jp. 77398 IN NS dns3.odn.ne.jp.
gihyo.jp. 77398 IN NS mail0.gihyo.co.jp.

;; ADDITIONAL SECTION:
 （略）

 ▼図8　フルリゾルバーの /etc/resolv.confへの設定方法

nmcli connection modify ens160 ipv4.dns "127.0.0.1"
$ cat /etc/sysconfig/network-scripts/ifcfg-ens160
 （略）
DNS1="127.0.0.1" ←設定ファイルにフルリゾルバーのIPアドレスが反映される
 （略）
nmcli connection down ens160 ←デバイスを停止
nmcli connection up ens160 ←デバイスを起動し、設定変更を反映させる
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ｭ
ActiveConnection/2)
$ cat /etc/resolv.conf
Generated by NetworkManager
nameserver 127.0.0.1 ←今回構築したフルリゾルバーのIPアドレスが設定される

 ←今回構築したフルリゾルバーのIPアドレスを指定する。ここ
 　でのネットワークインターフェースのデバイス名はens160

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ BINDとNSD/UnboundによるDNSサーバの構築

第 章3

88 - Software Design Apr. 2015 - 89

権威DNSサーバの構築
　ここでは、設定するためのドメイン名を新規
登録し、権威DNSサーバを構築・設定した後に
レジストリからの委任を設定することで、登録
したドメイン名を利用できるようにするまでの
流れを簡単に説明します。続いて、権威DNS

サーバソフトウェアであるBINDおよびNSDを
使用して、その構築手順を説明します。

ドメイン名が利用できるまで

　ドメイン名の登録からドメイン名がインター
ネットで利用できるまでの流れを次に示します。

①ドメイン名の登録
利用したいドメイン名をレジストリに登録し
ます。今回の例では、dnsstudy.jpというドメ
イン名を登録しています。
②ゾーンファイルの設計と作成
新規登録したドメイン名のゾーンを設計し、
ゾーン情報として作成します。
③ 権威DNSサーバの構築とゾーン情報の読み込み
作成したゾーン情報を構築した権威DNSサー
バへ読み込ませ、フルリゾルバーからの問い
合わせに応答できるようにします。
④ ネームサーバホスト情報の登録とネームサー
バ設定

構築した権威DNSサーバをドメイン名の木構
造に参加させるため、親ゾーンの登録に必要
な各種設定を行います。

　以降、これらの手順について詳細に説明して
いきます。

●●ドメイン名の登録とゾーンファイルの作成
　ドメイン名の登録代行業者注8が提供する手段
（Webやメールなど）を使用して、ドメイン名を
新規に登録します。ドメイン名の登録が完了し
たら、続いてゾーンの設計を行います。今回の
ゾーンの設計内容を表2に示します。
　表内で記述したマスターとスレーブという単
語について説明します。権威DNSサーバを複数
用意する場合、管理するゾーン情報は同一であ
る必要があります。DNSにはゾーン情報を複製
する機能があり、複製元をマスター、複製先を
スレーブと呼びます。つまり、オリジナルのゾー
ン情報を管理する側が「マスター（master）」で、
自身ではオリジナルのゾーン情報を管理せず、
マスターからゾーン情報の複製を受け取って動
作する側が「スレーブ（slave）」です。どの形態で
権威DNSサーバを運用するかによって設定方法
が異なりますので、構築時にこれらを混同しな
いように意識してください注9。
　この設計内容に基づいて作成したゾーン情報
がリスト3の「dnsstudy.jpゾーン」です。

 ▼リスト3　dnsstudy.jpゾーン

$TTL 86400

@ IN SOA ns1.dnsstudy.jp. root.dnsstudy.jp. (
 2015021401 ; シリアル番号（バージョン）
 3600 ; ゾーンのリフレッシュ間隔（秒）
 900 ; ゾーンのリフレッシュのリトライ間隔（秒）
 1814400 ; ゾーンの有効期間（秒）
 900) ; ネガティブキャッシュの維持期間（秒）
;
 IN NS ns1.dnsstudy.jp.
 IN NS ns2.dnsstudy.jp.
ns1 IN A 203.178.129.29
ns2 IN A 203.178.129.30
www IN A 203.178.129.29

 ←各リソースレコードの有効期間の初期値を指定する。
 　ここでは1日（86400秒）に設定

ドメイン名 dnsstudy.jp
権威DNSサーバ（マスター）ns1.dnsstudy.jp 203.178.129.29
権威DNSサーバ（スレーブ）ns2.dnsstudy.jp 203.178.129.30
Webサーバ www.dnsstudy.jp 203.178.129.29

 ▼表2　dnsstudy.jpドメイン名のゾーン設計

注8） ここでは JPRSが提供するドメイ
ン 名 登 録 管 理 サ ー ビ ス
（JPDirect）のWeb画面を例示と
して使用しています。

注9） 名前解決の過程においてはマス
ターとスレーブの区別はなく、
同等に扱われます。「マスターだ
から重要、スレーブだから重要
ではない（サービスレベルを落と
しても良い）」ということでは決
してありません。

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

90 - Software Design

　SOAはStart of Authorityに由来し、管理権限
を持つゾーンの開始を意味します。冒頭の@は
ドメイン名（正確にはゾーン）である“dnsstudy.

jp”に置き換わります。続くINは the Internetを
意味します。以降、ns1.dnsstudy.jp.は権威
DNSサーバ（マスター）のホスト名、root.
dnsstudy.jp.はdnsstudy.jp.ゾーンの管理者
の連絡先（root@dnsstudy.jpの@を.に置き換え
た文字列）を示します。
　NSはName Serverに由来し、ゾーンを管理す
る権威DNSサーバ（マスターおよびスレーブ）の
ネームサーバホスト名注10を指定するリソースレ
コードです。
　AはAddressに由来し、ホスト名とそのIPv4

アドレス（AAAAリソースレコードの場合は
IPv6アドレス）を指定します。NSリソースレコー
ドで指定したネームサーバホスト名だけではな
く、たとえばwwwといったWebサーバのホスト
名のリソースレコードなども指定できます。
　なお、Aリソースレコードなどでホスト名を
指定する際、そのホスト名の末尾に「.（ピリオ
ド）」を付与しない場合には、SOAリソースレ
コードの@のドメイン名が展開されます。つま

り“www”という表記は“www.dnsstudy.jp.”と解
釈されます。一方、ホスト名の末尾に「.」を付
与した場合（“ns1.dnsstudy.jp.”など）、そのホス
ト名は絶対ドメイン名で記述されたとみなされ、
このような補完はされません。

●●権威DNSサーバの構築とゾーン情報の●
読み込み

　権威DNSサーバの構築とゾーン情報の読み込
みの詳細手順は、後述の「BINDによる権威DNS

サーバの構築」「NSDによる権威DNSサーバの
構築」で説明します。ここで理解していただきた
いのは、権威DNSサーバに対して作成した新し
いゾーン情報を読み込ませた後に、（次の手順で
ある）親ゾーン（レジストリ）からの委任（ネーム
サーバ設定）を実施するという点です。
　ネームサーバ設定を実施すると、dnsstudy.jp

ゾーンはルートゾーンを頂点とする木構造の構
成要素の1つとして登録されます。権威DNS

サーバに対して適切なゾーン情報を設定してい
ない状態でこの手続きを実施してしまうと、権
威DNSサーバが無応答もしくは不適切な応答を
クライアントに返すことになりかねません。こ
のような不安定な状態を発生させないよう、適
切な手順を踏む必要があります。
　このタイミングでは、構築した権威DNSサー

バが単独で機能している
かを確認します。digコ
マンドを用いて名前解決
の動作確認を行います
（図9）。
　digコマンドの1つ目
の引数では、問い合わせ
先の権威DNSサーバの
IPアドレスまたはホスト
名を指定しています（IP

アドレスまたはホスト名
の直前に@を付与しま
す）。2つ目の引数では、
名前解決したいホスト名

 ▼図9　名前解決の動作確認

$ dig @203.178.129.29 www.dnsstudy.jp A +norec
 （略）
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29712
;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 3 ←①

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.dnsstudy.jp. IN A

;; ANSWER SECTION:
www.dnsstudy.jp. 86400 IN A 203.178.129.29

;; AUTHORITY SECTION:
dnsstudy.jp. 86400 IN NS ns1.dnsstudy.jp.
dnsstudy.jp. 86400 IN NS ns2.dnsstudy.jp.

;; ADDITIONAL SECTION:
ns1.dnsstudy.jp. 86400 IN A 203.178.129.29
ns2.dnsstudy.jp. 86400 IN A 203.178.129.30
 （略）

注10） ネームサーバホスト名は、名前解決時の効率の向上やセキ
ュリティ上の理由などから、内部名（当該ドメイン名に所
属する名前）を使用することが推奨されています。

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ BINDとNSD/UnboundによるDNSサーバの構築

第 章3

90 - Software Design Apr. 2015 - 91

やドメイン名を指定しています。3つ目の引数
では検索対象の情報がAリソースレコード（IPv4

アドレス情報）であることを指定しています。4

つ目の引数では、RD（Recursion Desired）ビッ
トをクリアすることを指定しています。問い合
わせ先が権威DNSサーバの場合、RDビットを
クリアする必要があることに注意してください。
　digコマンドの応答内容が正しく、flagsに“aa

（Authoritative Answer）”が含まれていれば（図
9-①）、権威DNSサーバとして正常に動作して
います。

●●ネームサーバホスト情報の登録と●
ネームサーバ設定

　権威DNSサーバへのゾーン情報の設定が終
わったら、ドメイン名の登録代行業者が提供す
る手段を使用して、ネームサーバホスト情報を
登録します。ネームサーバホスト情報とは、ネー
ムサーバホスト名とそれに対応するIPv4アドレ
ス／IPv6アドレスの組み合わせです。
　図10にその登録画面の例を示します。画面内
のホスト名がNSリソースレコード、IPアドレ
スがAリソースレコード（AAAAリソースレコー
ド）にそれぞれ対応します。今回は、ネームサー
バホスト情報を 2件（ns1.dnsstudy.jpと ns2.

dnsstudy.jp）登録します。
　ネームサーバホスト情報の登録の完了後、ネー
ムサーバ設定を行います（図11）。ネームサーバ
設定とは、ドメイン名とネームサーバホスト情

報とをひも付け、その情報をそのゾーンの委任
情報として親ゾーン（レジストリ）に設定するこ
とをいいます。ネームサーバ設定が行われない
ままでは、インターネット上に存在するフルリ
ゾルバーはdnsstudy.jpゾーンの名前解決を行う
ことができません。ネームサーバ設定を行うこ
とにより、フルリゾルバーがdnsstudy.jpゾーン
の名前解決を行う際、dnsstudy.jpの権威DNS

サーバにたどり着けるようになります。
　このように、ネームサーバ設定を正しく行う
ことはDNS全体の安定動作にとって、非常に重
要な項目の1つです。

●●親ゾーン（jpゾーン）からの応答結果の確認
　まず、ネームサーバ設定前の、dnsstudy.jpゾー
ンに関する親ゾーン（jpゾーン）からの応答結果
を確認します（図12）。ネームサーバ設定前です
ので、statusはNXDOMAIN（そのドメイン名

 ▼図12　ネームサーバ設定前の jpゾーンへの応答結果

$ dig @a.dns.jp dnsstudy.jp NS +norec
 （略）
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 45641 ←①
;; flags: qr aa; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;dnsstudy.jp. IN NS

;; AUTHORITY SECTION: ←②
jp. 900 IN SOA z.dns.jp. root.dns.jp. 1423558804 3600 900 1814400 900
 （略）

 ▼図10　 ネームサーバホスト情報の
登録画面

 ▼図11　ネームサーバの設定画面

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

92 - Software Design

は存在しない）であり（図12-①）、Authorityセ
クションにはdnsstudy.jpゾーンのネームサーバ
ホスト名（NSリソースレコード）は含まれず、jp

ゾーンのSOAリソースレコードのみが応答結果
に含まれています（図12-②）。
　続いて、ネームサーバ設定後の jpゾーンから
の応答結果を確認します（図13）。statusが
NOERROR（図13-①）に変わり、dnsstudy.jp

ゾーンのネームサーバホスト名（NSリソースレ
コード）が2件、Authorityセクションに存在し
ています（図13-②）。さらに、Additionalセク
ションにはネームサーバホスト名（NSリソース

レコード）に対応するAリソースレコード（グ
ルー）が含まれていることがわかります（図13-
③）。これらの応答結果は、dnsstudy.jpゾーン
で設定されるNSとAの各リソースレコードと
も合致しています。

●●フルリゾルバーからの応答結果の確認
　動作確認のため、フルリゾルバーに対して
www.dnsstudy.jpホストの名前解決を行います
（図14）。
　digコマンドの応答内容に正しい値のAリ
ソースレコードが表示され（図14-①）、flagsに
“rd（Recursion Desired）”および“ra（Recursion

Available）”が含まれてい
ます（図14-②）。このこと
から、フルリゾルバーが
ルートゾーン→ jpゾーン
→dnsstudy.jpゾーンの順
番で各権威DNSサーバへ
問い合わせを行うことで、
最終的にwww.dnsstudy.jp

ホストの名前解決ができた
ことがわかります。

 ▼図13　ネームサーバ設定後の jpゾーンへの応答結果

$ dig @a.dns.jp dnsstudy.jp NS +norec
 （略）
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 27933 ←①
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADDITIONAL: 3

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;dnsstudy.jp. IN NS

;; AUTHORITY SECTION:
dnsstudy.jp. 86400 IN NS ns1.dnsstudy.jp. ←②
dnsstudy.jp. 86400 IN NS ns2.dnsstudy.jp. ←②

;; ADDITIONAL SECTION:
ns1.dnsstudy.jp. 86400 IN A 203.178.129.29 ←③
ns2.dnsstudy.jp. 86400 IN A 203.178.129.30 ←③
 （略）

 ▼図14　名前解決の動作確認

$ dig @127.0.0.1 www.dnsstudy.jp A
 （略）
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 23760
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 3 ←②

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.dnsstudy.jp. IN A

;; ANSWER SECTION:
www.dnsstudy.jp. 86400 IN A 203.178.129.29 ←①

;; AUTHORITY SECTION:
dnsstudy.jp. 86400 IN NS ns1.dnsstudy.jp.
dnsstudy.jp. 86400 IN NS ns2.dnsstudy.jp.

;; ADDITIONAL SECTION:
ns2.dnsstudy.jp. 86400 IN A 203.178.129.30
ns1.dnsstudy.jp. 86400 IN A 203.178.129.29
 （略）

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ BINDとNSD/UnboundによるDNSサーバの構築

第 章3

92 - Software Design Apr. 2015 - 93

BINDによる権威DNSサーバの
構築（VPS-Aホスト）

　BINDは、権威DNSサーバとフルリゾルバー
の両機能を1つのサーバ（namedプロセス）で提
供することができます。しかし、兼用による影
響やセキュリティ上のリスクなどを考慮した場
合、両機能を共有することは好ましくなく、開
発元のISCにおいても両機能を分離することを
推奨注11しています。また、DNS反射攻撃や
キャッシュ汚染攻撃のリスクを軽減する観点か
らも、分離が推奨されます。
　以上のような理由から、今回のBINDによる
フルリゾルバーおよび権威DNSサーバの構築に
おいても、機能ごとに分離させることを前提と
した設定を紹介します。具体的には、同一ホス
ト上でフルリゾルバーと権威DNSサーバを異な
るnamedプロセスで起動させます。

●● BINDのインストール
　前述の「BINDによるフルリゾルバーの構築」
のインストール手順に従って、インストールを
実施してください。

●●ゾーンファイルの格納
　前述のdnsstudy.jpゾーン（リスト3）をファイ
ル名「dnsstudy.jp.zone」として/var/namedディ
レクトリに格納します（図15-①）。あわせて、
namedプロセス（ユーザnamedで起動）がゾーン
ファイルを読み込める適切なパーミッションで
あるかも確認します。

●●権威DNSサーバ（マスター）としての設定と
確認

　BINDを権威DNSサーバ（マスター）として動

作させるためにBINDの設定ファイルを編集し
ます。ファイル名をフルリゾルバーが使用する
設定ファイル名（named.conf）と重複しないよう、
権威DNSサーバ向けに「named_auth.conf」とい
うファイル名で作成します。

vi /etc/named_auth.conf

　編集後のnamed_auth.confファイルの内容を
リスト4に示します。BINDを権威DNSサーバ
として動作させる際に、とくに注意が必要とな
る設定に★印を付けています。フルリゾルバー
としての機能は無効にし、外部からのすべての
問い合わせに対して応答するように設定するこ
とがポイントです。また、フルリゾルバーの
namedプロセスが生成するファイルやリモート
制御で使用するポート番号が重複しないように
もしています。
　named_auth.confファイルの編集後、記述内容
を確認するためにnamed-checkconfコマンド
を実行します。実行結果にエラーが含まれてい
なければ編集は完了です。

named-checkconf -z /etc/named_auth.conf
zone dnsstudy.jp/IN: loaded serial ｭ
2015021401

●●権威DNSサーバ（スレーブ）としての設定と
確認

　BINDを権威DNSサーバ（スレーブ）として動
作させる場合の手順について、前述のマスター
としての設定を基準に、差分のみを説明します。
　dnsstudy.jpゾーンに関する設定をリスト5の
内容に置き換えます。その後、named-check
confコマンドを実行して、実行結果にエラーが
含まれていないことを確認してください。

 ▼図15　dnsstudy.jp.zoneファイルを格納

ls -l /var/named/
 （略）
-rw-r-----. 1 root named 628 Feb 14 02:14 dnsstudy.jp.zone ←①
 （略）

注11） http://ftp.isc.org/isc/pubs/tn/isc-
tn-2002-2.html

http://ftp.isc.org/isc/pubs/tn/isc-tn-2002-2.html

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

94 - Software Design

●●権威DNSサーバの起動と確認 - BIND
　BINDを起動します。読み込む対象の設定ファ
イルは先ほど編集したnamed_auth.confファイ
ルを指定します。

named -u named -c /etc/named_auth.conf

　グローバル IPアドレス（203.178.129.29）の
TCPおよびUDPの 53番ポートと、TCPの
10953番ポート上でnamedプロセスが起動して

 ▼リスト4　/etc/named_auth.confファイルの設定（マスター）

options {
★ listen-on port 53 { 203.178.129.29; };
 listen-on-v6 { none; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump_auth.db";
 statistics-file "/var/named/data/named_stats_auth.txt";
 memstatistics-file "/var/named/data/named_mem_stats_auth.txt";
★ allow-query { any; }; ←すべて（any）のIPアドレスからの問い合わせを許可
★ allow-query-cache { none; }; ←いかなるIPアドレスからも、キャッシュ内容の応答を拒否
★ recursion no; ←フルリゾルバー機能を無効化
★ allow-recursion { none; }; ←いかなるIPアドレスからも、フルリゾルバー機能の提供を拒否
 pid-file "/run/named/named_auth.pid";
 session-keyfile "/run/named/session_auth.key";
};

// ログ情報に関する設定
logging {
 channel default_debug {
 file "data/named_auth.run";
 severity dynamic;
 };
};

// リモート制御に関する設定

controls {
 inet 127.0.0.1 port 10953 allow { localhost; };
 inet ::1 port 10953 allow { localhost; };
};

// ルートヒントに関する設定
zone "." IN {
 type hint;
 file "named.ca";
};

// dnsstudy.jpゾーンに関する設定（マスター）
zone "dnsstudy.jp" IN {
 type master; ←権威DNSサーバをマスターとして動作させる
 file "dnsstudy.jp.zone"; ←ゾーンファイル名を指定
 notify explicit; ←ゾーン情報が変更された場合、also-notifyで指定されたIPアドレスに変更を通知
 also-notify { 203.178.129.30; }; ←ゾーン変更通知（NOTIFY）を通知する（＝スレーブ）IPアドレスを指定
 allow-transfer { 203.178.129.30; }; ←ゾーン転送の要求元（＝スレーブ）のIPアドレスを指定
};

 ←namedをIPv4アドレス203.178.129.29、53番ポート上で動作させる。外部
 　からの問い合わせに応答するためグローバルIPアドレスを指定

 ↓この例ではフルリゾルバーのnamedプロセスが使用するリモート制御用のポート番号（953）と重複するため、異なるポート番号（10953）で
 　起動するように指定

 ▼リスト5　/etc/named_auth.confファイルの設定（スレーブ）の差分

zone "dnsstudy.jp" IN {
 type slave;
 masters { 203.178.129.30; }; ←dnsstudy.jpゾーンのマスター（ここではNSD側を指定）のIPアドレスを指定
 file "slaves/dnsstudy.jp.zone";
 notify no; ←ゾーン変更通知（NOTIFY）を非送信。“no”でもNOTIFYの受信には影響なし
};

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ BINDとNSD/UnboundによるDNSサーバの構築

第 章3

94 - Software Design Apr. 2015 - 95

いるか、ssコマンドを使って確認します（図16）。
　続いて、rndcユーティリティのstatusコマ
ンドを使用してnamedプロセスの状態を確認し
ます。引数にポート番号（10953）を指定し忘れ
るとフルリゾルバー側のnamedプロセス状態を
確認することになるので、注意してください。

rndc -p 10953 status
version: 9.9.4-RedHat-9.9.4-14.el7_0.1 ｭ
<id:8f9657aa>
 （略）
server is up and running ←サービスが起動中

　statusコマンドの実行結果として表示された
“server is up and running”というメッセージで、
namedプロセスによるサービスが実行中である
ことがわかります。さらに、namedプロセスが
dnsstudy.jpゾーンを読み込み、権威DNSサー
バとして機能しているかを確認するために、dig
コマンドを用いて名前解決の動作確認を行いま
す。

$ dig @203.178.129.29 www.dnsstudy.jp A ｭ
+norec

　digコマンドの引数および実行結果の詳細は
前述の「権威DNSサーバの構築とゾーン情報の
読み込み」にある図9とその説明を参照ください。

●●外部からの権威DNSサーバへのアクセス●
許可設定

　CentOS 7.0ではデフォルトのファイアウォー

ルとしてfirewalldが採用・設定されています。
初期設定では、ポート番号53への外部からのア
クセスはブロックされているため、firewall-
cmdコマンドを使用してブロックを解除してお
く必要があります。

firewall-cmd --list-all
 ↑現在の設定を確認
public (default, active)
 interfaces: ens160
 sources:
 services: dhcpv6-client ssh
 ↑dnsがサービスに登録されていない
 （略）
firewall-cmd --add-service=dns ｭ
--zone=public
 ↑dnsをサービスとして追加
firewall-cmd --list-all
 ↑変更内容を確認
public (default, active)
 interfaces: ens160
 sources:
 services: dhcpv6-client dns ssh
 ↑dnsがサービスに追加された
 （略）

　以上でBINDによる権威DNSサーバの構築は
完了です。

NSDによる権威DNSサーバの構築
（VPS-Bホスト）

●● NSDのインストール
　CentOS 7.0においては残念ながらNSDの
パッケージは提供されていません。このため、
開発元のNLnet LabsからNSDのソースを入手
し、コンパイル・インストールします。次にそ
の実行例を示します。

groupadd -r nsd ←グループnsdを追加
useradd -r -g nsd -d /etc/nsd -s ｭ
/sbin/nologin -c "nsd daemon account" nsd
 ↑ユーザnsdを追加
$ wget http://www.nlnetlabs.nl/ｭ
downloads/nsd/nsd-4.1.1.tar.gz
$ tar zxvf nsd-4.1.1.tar.gz
$ cd nsd-4.1.1
$./configure --with-user=nsd
$ make
make install
chown nsd:nsd /var/db/nsd
 ↑/var/db/nsdディレクトリの所有者をnsdに変更

 ▼図16　BIND（権威DNSサーバ）の起動確認

$ ss -l -t -n ←TCPポートの確認
State Recv-Q Send-Q Local Address:Port （略）
LISTEN 0 128 127.0.0.1:10953
LISTEN 0 10 203.178.129.29:53
LISTEN 0 10 127.0.0.1:53
LISTEN 0 128 ::1:953
LISTEN 0 128 ::1:10953
LISTEN 0 10 ::1:53
$ ss -l -u -n ←UDPポートの確認
State Recv-Q Send-Q Local Address:Port （略）
UNCONN 0 0 203.178.129.29:53
UNCONN 0 0 127.0.0.1:53
UNCONN 0 0 ::1:53

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

96 - Software Design

●●権威DNSサーバ（スレーブ）としての設定と
確認

　NSDを権威DNSサーバ（スレーブ）として動
作させるために、NSDの設定ファイルである
nsd.confファイルを編集します。

vi /etc/nsd.conf

　編集後のnsd.confファイルの設定内容をリス
ト6に示します。とくに注意が必要となる設定
に★印を付けています。
　nsd.confファイルの編集後、記述内容を確認
するためにnsd-checkconfコマンドを実行し
ます。実行結果にエラーが含まれていなければ
編集は完了です。

/usr/local/sbin/nsd-checkconf /etc/ｭ
nsd/nsd.conf

　続いて、nsd-controlユーティリティからnsd

プロセスを制御可能とするために、nsd-con
trol-setupコマンドを実行して、鍵の生成な
どの初期化を行います。

/usr/local/sbin/nsd-control-setup -d ｭ
/etc/nsd
setup in directory /etc/nsd
generating nsd_server.key
 （略）

generating nsd_control.key
 （略）
create nsd_server.pem (self signed ｭ
certificate)
create nsd_control.pem (signed client ｭ
certificate)
 （略）
Setup success. Certificates created. ｭ
Enable in nsd.conf file to use

●●権威DNSサーバ（マスター）としての設定と
確認

　NSDを権威DNSサーバ（マスター）として動
作させる場合の手順について、前述のスレーブ
としての設定を基準に、差分のみを説明します。
　前述のdnsstudy.jpゾーン（リスト3）をファイ
ル名「dnsstudy.jp.zone」として /etc/nsdディレ
クトリに格納します。あわせて、nsdプロセス
（ユーザnsdで起動）にゾーンファイル読み込み
のためのアクセス権限があるかも確認（図17-①）
してください。
　続いて、/etc/nsd.confファイル内のdnsstudy.

jpゾーンに関する設定をリスト7の内容に置き
換えます。その後、nsd-checkconfコマンドを
実行して、実行結果にエラーが含まれていない
ことを確認してください。

●●権威DNSサーバの起動と確認 - NSD
　NSDを起動します。

 ▼リスト6　/etc/nsd.confファイルの設定（スレーブ）

// 権威DNSサーバに関する設定
server:
★ ip-address: 203.178.129.30

 username: nsd ←nsdプロセスの所有者としてnsdを指定
 chroot: "" ←chroot機能を無効化。有効とする場合はそのルートディレクトリを指定
 zonesdir: "/etc/nsd" ←ゾーンファイル格納場所のルートディレクトリを指定
 pidfile: "/var/run/nsd.pid" ←nsdプロセスのプロセスIDを記録するファイルを指定

// リモート制御に関する設定
remote-control:
 control-enable: yes ←nsd-controlユーティリティによる制御を有効化

// ゾーンに関する設定(スレーブ)
zone:
 name: dnsstudy.jp ←ゾーン名を指定
 zonefile: dnsstudy.jp.slave.zone

 allow-notify: 203.178.129.29 NOKEY ←ゾーン変更通知元（＝マスター）のIPアドレスを指定
 request-xfr: 203.178.129.29 NOKEY ←ゾーン転送の要求先（＝マスター）のIPアドレスを指定

 ←nsdプロセスをIPv4アドレス203.178.129.30上で動作させる。外部
 　からの問い合わせに応答するためグローバルIPアドレスを指定

 ←ゾーンファイル名を指定。スレーブとして動作する場合、このファイルを
 　明示的に格納する必要はない

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ BINDとNSD/UnboundによるDNSサーバの構築

第 章3

96 - Software Design Apr. 2015 - 97

/usr/local/sbin/nsd

　グローバル IPアドレス（203.178.129.30）の
TCPおよびUDPの 53番ポートと、TCPの
8952番ポート（リモート制御用ポート）上でnsd

プロセスが起動しているか、ssコマンドを使っ
て確認します（図18）。
　続いて、nsd-controlユーティリティのstatus
コマンドを使用してnsdプロセスの状態を確認
します。

/usr/local/sbin/nsd-control status
version: 4.1.1
verbosity: 0
echo $?
0

　statusコマンドの実行ステータスが0であれ
ば、nsdプロセスによるサービスが開始してい

ます。nsdプロセスがdnsstudy.jpゾーンを読み
込み、権威DNSサーバとして機能しているかを
確認するために、drillコマンドを用いて名前
解決の動作確認を行います（図19）。
　drillコマンドの1つ目の引数では、問い合
わせ先の権威DNSサーバのIPアドレスまたは
ホスト名を指定しています（IPアドレスまたは
ホスト名の直前に@を付与します）。2つ目の引
数では、名前解決を行いたいホスト名やドメイ
ン名を指定しています。3つ目の引数では検索
対象の情報がAリソースレコード（IPv4アドレ
ス情報）であることを指定しています。4つ目と
5つ目の引数ではRD（Recursion Desired）ビッ

 ▼リスト7　/etc/nsd.confファイルの設定（マスター）の差分

zone:
 name: dnsstudy.jp ←ゾーン名を指定
 zonefile: dnsstudy.jp.zone ←ゾーンファイル名を指定
 notify: 203.178.129.29 NOKEY ←ゾーン変更通知の送信先（＝スレーブ。ここではBIND側を指定）のIPアドレスを指定
 provide-xfr: 203.178.129.29 NOKEY ←ゾーン転送の要求元（＝スレーブ）のIPアドレスを指定

 ▼図17　dnsstudy.jp.zoneファイルを格納

$ ls -l /etc/nsd/
-rw-r--r--. 1 root root 628 Feb 14 02:14 ｭ
dnsstudy.jp.zone ←①
 （略）

 ▼図18　NSD（権威DNSサーバ）の起動確認

$ ss -l -t -n ←TCPポートの確認
State Recv-Q Send-Q Local Address:Port （略）
LISTEN 0 128 203.178.129.30:53
LISTEN 0 16 127.0.0.1:8952
LISTEN 0 16 ::1:8952
$ ss -l -u -n ←UDPポートの確認
State Recv-Q Send-Q Local Address:Port （略）
UNCONN 0 0 203.178.129.30:53
UNCONN 0 0 127.0.0.1:53
UNCONN 0 0 ::1:53

 ▼図19　名前解決の動作確認

$ drill @203.178.129.30 www.dnsstudy.jp A -o rd
;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 16564
;; flags: qr aa ; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2 ←①
;; QUESTION SECTION:
;; www.dnsstudy.jp. IN A

;; ANSWER SECTION:
www.dnsstudy.jp. 86400 IN A 203.178.129.29

;; AUTHORITY SECTION:
dnsstudy.jp. 86400 IN NS ns1.dnsstudy.jp.
dnsstudy.jp. 86400 IN NS ns2.dnsstudy.jp.

;; ADDITIONAL SECTION:
ns1.dnsstudy.jp. 86400 IN A 203.178.129.29
ns2.dnsstudy.jp. 86400 IN A 203.178.129.30
 （略）

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

98 - Software Design

　今回紹介したBIND、NSD、Unbound、そして他
の著名な各DNSサーバソフトウェアの比較表を表A
に示します。
　BINDはDNSプロトコルのリファレンス実装とい
う位置づけで開発されており注12、DNSサーバソフ
トウェアを選択する際には候補からは外せないソフ
トウェアであると言えます。ただし、機能の豊富さ
を起因とする実装の複雑さや、権威DNSサーバとフ
ルリゾルバーを1つのプログラムで兼用していると
いう設計上の理由から、しばしば致命的な脆弱性が
発見されることがあります。一方、NSDとUnbound
は、それぞれ権威DNSサーバとフルリゾルバーに特
化した簡潔な実装であり、BINDと比較して致命的
な脆弱性の発見数は少ない傾向にあります。また、
NSDはルートDNSサーバでの稼動実績があります。

DNSサーバソフトウェアの選択
　「DNSサーバソフトウェアの実装といえばBINDで
ある。ゆえに無条件にそれを採用する」という時代
は過ぎ去りました。今回紹介した BIND、NSD、
Unbound以外にも、PowerDNS権威サーバ（Authori
tative Server）、PowerDNS Recursor、Knot DNS
など、選択可能なDNSサーバソフトウェアはほかに
もあります。
　DNSサーバソフトウェアの選択に際しては、提供
される機能は必要十分であるか？といった機能面か
らの評価とともに、セキュリティやパフォーマンス
などの非機能面からの評価が必要となるでしょう。
特定のソフトウェア実装に固執することなく、さま
ざまな実装を実際に使ってみることで、適切な評価
が行えるようになりたいものです。

トをクリアすることを指定しています。問い合
わせ先が権威DNSサーバの場合、RDビットを
クリアする必要があることに注意してください。
　drillコマンドの応答内容が正しく、flagsに
“aa（Authoritative Answer）”が含まれていれば
（図19-①）、権威DNSサーバとして正常に動作
しています。

●●外部からの権威DNSサーバへのアクセス●
許可設定

　設定方法は前述の「BINDによる権威DNS

サーバの構築」と同じですので、そちらを参照し
てください。
　以上でBINDとNSD/UnboundによるDNS

サーバの構築作業は完了です。｢

DNSサーバソフトウェアの比較
C o l u m n

BIND NSD Unbound PowerDNS
権威サーバ

PowerDNS
Recursor Knot DNS

開発元 ISC NLnet Labs PowerDNS.COM BV CZ.NIC Labs

最新バージョン 9.10.2 4.1.1 1.5.2 3.4.3 3.7.1 1.6.2

権威DNSサーバ機能の提供 ○ ○ － ○ － ○
フルリゾルバー機能の提供 ○ － ○ － ○ －
DNSSEC対応 ○ ○ ○ ○ × ○
提供機能数 過多 必要最小限 必要十分 多い 多い 多い

OS /ディストリビューション標準採用 豊富 － CentOS 7
FreeBSD 10 － － －

脆弱性の発生頻度
（CVE識別番号の西暦別件数） 2010年 9 0 1 0 0 0

2011年 6 0 3 0 0 0

2012年 8 2 1 1 1 0

2013年 4 0 0 0 0 0

2014年 5 0 1 0 2 1

 ▼表A　DNSサーバソフトウェアの比較（2015年3月2日現在）

注12） ISCの公式ページ https://www.isc.org/downloads/bind/ に「It is a reference implementation of those protocols」と記載さ
れています。

https://www.isc.org/downloads/bind/

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ DNSをとりまく状況と将来への展望

第 章4

99 - Software Design Apr. 2015 - 99

第 章4
DNSをとりまく状況と
将来への展望

藤原 和典（ふじわら かずのり）
㈱日本レジストリサービス（JPRS） 技術研究部

1980年代に開発されたDNSは、インターネットの重要な基盤技術の1つとして30年以上に渡
り使われ続けてきました。多種多様なサービスを支える技術でもあることから、最近では、
DNSの暗号機能、認証機能を強化し、より安全な通信基盤として利用しようという動きがあ
ります。

DNS応答を検証可能にする
DNSSEC
　DNSをはじめ古くからあるインターネット基
盤技術は、セキュリティやプライバシーへの配
慮が十分ではなく、今やインターネットの弱点
の1つとなっています。そのような状況から、
DNSにおいて公開鍵暗号を用いた検証を実現す
るためのセキュリティ拡張「DNSSEC（DNS

Security Extensions）」が開発されました。
　DNSSECを用いることで、DNS応答につい
て「本当に通信相手が登録したデータであること
（データ出自の認証：Data origin authentication）」
と「通信途中でのデータ書き換えやデータの一部
損失がないこと（データの完全性：Data integ

rity）」を検証できます。
　DNSSECの開発は1990年代から始められ、
2010年にルートにおける運用が開始されまし
た。翌2011年には jpやcomをはじめとする多く
のTLDにもDNSSECが導入されています。そ
の後、2012年に始まった新gTLDプログラムで
はレジストリにおけるDNSSECへの対応が必
須とされるなど、DNSSECの普及に向けた活動
が進められています。

安全な通信基盤としての
DNS活用
　暗号通信には、SSH、OpenPGPや、公開鍵

暗号基盤（PKI）を用いたTLS（HTTPS）、S/

MIME注1などが使用されます。暗号通信を始め
るためには、通信相手の属性を知る必要があり
ます。そこで、サーバ証明書やOpenPGPの公
開鍵をDNSで配布しようという動きがあります。
　これらは、DNSSECをDNSに適用すること
で、そのドメイン名（ゾーン）の情報を安全に配
布できるようになるという点に着目しています。
以下、DNSでこれらの情報を扱うために最近開
発された、いくつかのリソースレコードの概要
について説明します。

SSHFPリソースレコード

　暗号技術では、安全な公開鍵の配布手段が必
須です。たとえば、SSH（Secure Shell）では、
初めて接続するホストの場合、ユーザ認証の前
にサーバの指紋（フィンガープリント：Fingerprint）
を表示し、ユーザがそれを確認することで接続
の安全性を確保します。しかしながら、この場
合には表示されたフィンガープリントが正しいも
のかどうかを人が別途確認する必要があります。
　そこで、SSHのフィンガープリントを自動的
に取得するための仕様がRFC 4225として標準
化されました。その仕様では、SSHのフィン
ガープリントをSSHFPリソースレコードとし

注1） Secure/Multipurpose Internet Mail Extensionsの略称。電
子メールのMIMEデータの暗号化および電子署名に関する
規格。公開鍵暗号基盤（PKI）の個人証明書を用いることで、
メッセージの機密性、出自の認証、完全性を担保する。

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

第2特集

100 - Software Design

て格納します。OpenSSHは、SSHFPリソース
レコードをサポートしています。

TLSAリソースレコード

　公開鍵暗号基盤（PKI）で用いる証明書を、
DNSを用いて配布可能にするための仕様がRFC

6698として標準化されています。TLSAリソー
スレコードとして定義された仕様を使うと、Web

サーバやSMTPサーバで用いる証明書の情報を
記述できます。
　この方法は、既存のPKI認証局モデルと併用
可能です。さらに、自己署名した証明書（いわゆ
る「オレオレ証明書」）の情報をTLSAリソース
レコードに載せることで、DNSSECを用いた
PKI認証局モデルとは異なる認証モデルも検討
されています。
　TLSAリソースレコードをWebブラウザで検
証する場合、現在ではまだ第三者が作成したプ
ラグイン／アドオンを用いる必要があります。
現在、Firefox、Chrome、Opera、Safariのプ
ラグイン／アドオンが公開されています。
　主要なメール配送プログラムの1つ、Postfix

はTLSAリソースレコードに対応しています。

OPENPGPKEYリソースレコード

　OpenPGPでは、個人の公開鍵を安全に配布
する必要があります。従来は、直接会って相互
に署名しあったり、鍵サーバにある情報を信用
するという方法で公開鍵の交換を行っていまし
た。しかし、この方法は面倒、もしくはインセ
キュアであり、自動化したいという要望は以前
からありました。
　そこで、DNSにOPENPGPKEYリソースレ
コードを定義し、OpenPGPの個人公開鍵を配
布するための標準化作業が IETFにて進められ
ています。このしくみを用いることで、Open

PGPで暗号化したメールを送る際、DNS問い
合わせにより送信相手のOpenPGP公開鍵を得
ることができ、容易に暗号メール（送信先のユー
ザのみ復号可能）を送れます。S/MIMEでも、同

様の方法が検討されています。

送信元認証、迷惑メール
対策におけるDNS利用
　DNSは、電子メールの送信元認証（Sender

Authentication）注2や迷惑メール（spam）対策にお
いても重要な役割を担っています。広く用いら
れている送信元認証技術であるSPF（Sender

Policy Framework）では、電子メール送信者の
ドメイン名ごとの送信元IPアドレスの情報を、
TXTリソースレコードに記述して公開します。
また、送信者認証技術であるDKIM（DomainKeys

Identified Mail）では、電子メール送信者の公開
鍵の情報をTXTリソースレコードに記述します。
　また、spam対策に用いられるブラックリス
ト・ホワイトリストの公開にもDNSが用いられ
ており、DNSBL/DNSWLとして、RFC 5782

にその仕様が記述されています。

DNSの今後
　このように、DNSSECによるデータの保護を
前提とし、DNSを安全な通信基盤として用いよ
うとする動きが広がっています。
　また、2013年に発生したスノーデン事件以降、
政府などによる通信の大規模モニタリング
（Pervasive Monitoring）に対抗するため、IETF

ではインターネット上のすべての通信プロトコ
ルにおける秘匿性の実現、具体的には通信の暗
号化を実現するための作業が進められていると
いう点にも注目すべきでしょう。
　インターネットをより安全なものとするため
のさまざまな取り組みが各所で進められていま
すが、それらの実現のためにはDNSの安定運用
が欠かせません。本特集が、これからDNSを学
ぼうとする初学技術者、あらためてDNSを理解
しようとするエンジニアの方々のための一助と
なることを望みます。｢

注2） 受信したメッセージが正当な送信元からのものであること
を検証するための技術。

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Apr. 2015 - 101

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

 第1特集
プログラマ・インフラエンジニア・文章書きの心得
Vim使い事始め
 第2特集
SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来
 一般記事
・「ひみつのLinux通信」年末年始スペシャル
　ITエンジニア出世双六
・Jamesのセキュリティレッスン［最終回］

2015年1月号

定価（本体1,220円＋税）

 第1特集

Linux systemd入門
あなたの知らない実践技

 第2特集
そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか？
 一般記事
・Intel DPDK技術詳解
・これはなんて読む？　UNIX用語読み方指南
・Googleベンチャーズが提唱するデザインスプリントとは
ほか

2015年2月号

定価（本体1,220円＋税）

 第1特集

カンファレンスネットワークの
作り方
 第2特集
いまからでも遅くない！
Hadoop超 2 入門
 一般記事
・Cisco VIRLでネットワークシミュレーション
 ［前編］
・Snappy Ubuntu Core

2015年3月号

定価（本体1,220円＋税）

 第1特集

今ふたたびのJava
言語仕様・開発環境・デバッグ機能

 第2特集
オンプレミスを制するものはクラウドを制する
サーバの目利きになる方法［前編］
 一般記事
・�オーケストレーションツールSerf・Consul入門
［Consul編］
・SoftLayerを使ってみませんか？［2］　ほか

2014年10月号

定価（本体1,220円＋税）

2014年11月号
 第1特集
Docker・Ansible・シェルスクリプト
無理なくはじめる
Infrastructure as Code
 第2特集
オンプレミスもクラウドも縦横無尽
サーバの目利きになる方法［後編］
 一般記事
・8086時代から今を俯瞰する　CPU温故知新
・はてな謹製、サーバ管理ツール　Mackerel入門

定価（本体1,220円＋税）

2014年12月号
 第1特集
急速に普及するコンテナ型仮想環境
Dockerを導入する理由
 第2特集
基礎の基礎から押さえる必須技術
やさしくわかるVPNの教科書
 一般記事
・bashの脆弱性“Shellshock”その影響と対策
・SoftLayerを使ってみませんか？［最終回］
・Jamesのセキュリティレッスン［2］

定価（本体1,220円＋税）

http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

102 - Software Design

Kot l in入門
プログラマに優し

い
現実指向JVM言

語
短期集中
連載

Kotlinとは

　K
コト リ ン

otlinというプログラミング言語をご存じで
すか？
　IntelliJ IDEAなどのIDE（Integrated Develo

pment Environment：統合開発環境）で有名な
JetBrains注1が中心となって開発が進められて
いる新しいプログラミング言語です。2011年
夏に発表され、現在Apache 2.0ライセンスのも
と、OSS（Open Source Software）として開発
環境とそのソースコードが公開されています注2。
　Kotlinで 書 か れ た コ ー ド は JVM（Java

Virtual Machine：Java仮想マシン）で動作す
るJavaバイトコード（おなじみのclassファイ
ル）へコンパイルされます。このようなプログ
ラミング言語をJVM言語と呼ぶことがありま
す。ScalaやGroovyもKotlinと同じくJVM言
語の1つです。さらにJavaScriptへのコンパ
イルもサポートしているaltJSの1つでもあり
ます。Androidアプリの開発もサポートしてい
ます。
　Kotlinは型推論やラムダ式、トレイトなど
のモダンな文法、機能を持った静的型付けの
本格的なオブジェクト指向言語です。Javaよ
りも簡潔で安全なコードを書けることが特徴

です。執筆時現在のバージョンは0.10.195で、
目下開発途中にあります。

なぜ Kotlin
なのか

　世の中には、すでに数えきれないほどプログ
ラミング言語が存在します。その中からなぜ
Kotlinを選ぶのか、これについて言及します。
　まず言えることは、JVM言語であるという
ことです。Javaは世界中で使われている非常
に人気の高い言語です。1995年の登場以来、
多くのコードが書かれ、多くのシステムが運用
されてきました。Javaは今も進化を続けており、
昨年3月にJava SE 8がリリースされたのは記
憶に新しいです。しかし、その反面で後方互換
性を維持するために記述の冗長さや型安全の問
題は改善されにくい現状にあります。そこで
JVM言語の登場です。Javaの抱える問題から
解放されてプログラミングできるだけではなく、
高い信頼と性能を持ったJVM上で動くこと、
Javaによって記述された既存のライブラリ／
フレームワークなどの資産を活用できるなどの
メリットも併せ持っています。
　JVM言語だけでもその数は非常に多いです。
有名なものでは、ScalaやGroovyが真っ先に
思い浮かびますね。このような競合がある中で

Kotlinを勧める理由第 1 回

Author 長澤 太郎（ながさわ たろう）　 Twitter @ngsw_taro　 Mail taro.nagasawa@gmail.com

注1） https://www.jetbrains.com/

注2） https://github.com/JetBrains/kotlin

今月からプログラマに優しい現実指向 JVM言語 Kotlinを紹介します。
最終的なゴールとしてはKotlinを使ったAndroidアプリケーション開
発を解説します。今回は導入として、Kotlinの概要や特徴について説
明します。

新連載

https://www.jetbrains.com/
https://github.com/JetBrains/kotlin

102 - Software Design Apr. 2015 - 103

Kotlinを勧める理由第 1 回

JetBrainsは、次のようなKotlinの設計ゴール
を定めています注3。

・Java互換
・少なくともJavaと同等のコンパイル速度
・Javaよりも安全：nullポインタの逆参照注4

のようなありふれた落とし穴のための静的
チェックなど

・Javaよりも簡潔：型変数の推論、高階関数（ク
ロージャ）、拡張関数、ミックスインや第一
級デリゲーションなどをサポート

・Scalaよりもシンプルな方法で、表現力を実
用的なレベルに維持する

　特徴的なのは、nullポインタの逆参照、すな
わちNullPointerExceptionが起こり得ないよ
うなしくみ（NULL安全）が言語機能として提供
されているところです。その他にもミスを未
然に防いでくれる機能があり、Javaよりもつ
まらないバグを生みにくい言語となっています。
安全に重きを置くとコードが複雑になるので
はないか、という心配があるかと思いますが、
その点もKotlinでは考慮されています。これ
らのような特徴に加え、Javaから離れすぎな
い文法による学習コストの小ささから、実際
の業務での利用に適しているのではないかと
筆者は考えています。

Kotlinの特徴

　簡潔、安全、JavaバイトコードとJavaScript

へコンパイル可能、静的型付け、オブジェクト
指向、クロージャ……。これらはKotlinを説
明する常套句に過ぎません。ですが、どれも
Kotlinの特徴を端的に表している重要な言葉で
す。簡単なコードを交えて1つずつ紹介してい
きます。

簡潔であること

　Kotlinはコード自体のシンプルさはもとより、
文法すなわち記述ルールも簡潔です。コードが
簡潔であることでキーを叩く回数が少なくなり
誤りが混入しづらいだけでなく、可読性が増し
メンテナンスのコスト低減を期待できます。そ
して文法が簡潔であることで学習コストが小さ
く、プログラマのレベルの違いから引き起こさ
れるコードのばらつきを、小さく抑えることが
で き ま す。リ ス ト1は 毎 度 お な じ み の
HelloWorldをKotlinで記述したコードです。
　CLIの黒い画面から挨拶文が表示されるだけ
のプログラムですが、Kotilnの特徴がうかがえ
ます。まずはトップレベルに関数を定義できる
ことがわかります。funキーワードが関数定義の
ために必要なキーワードです。そしてmainとい
う名前で、Array<String>型の引数を取る関数
がKotlinプログラムのエントリポイントです。
変数の型を、変数名の後に置くのもJavaとは異
なる点です。
　表示するメッセージを変数messageに代入し
ています。Kotlinではvalキーワードなどを使っ
て変数を宣言します。messageはString型です
が、それは右辺から推論できるので明示する必
要はありません。
　printlnは引数の値を標準出力に書き出す関
数です。;（セミコロン）を置いて文の終端を明

package sample

fun main(args: Array<String>) {
 val message = "Hello, world!"
 println(message)
}

 ▼リスト1　KotlinでHelloWorld

注3） http://kotlinlang.org/docs/reference/faq.html#why-a-new-language

注4） dereferenceのこと。

http://kotlinlang.org/docs/reference/faq.html#why-a-new-language

104 - Software Design

プログラ
マに優しい現実指向JVM言語

短期集中連載 Kot l in入門
示する必要はありません。同じ行に続けて文を
書く場合には;で区切る必要があります。

安全であること

　前述のとおり、KotlinはJavaと比べて安全
です。型やnullの扱いが厳格です。たとえば
Kotlinではキャストやnullの逆参照による実
行時例外が起こることは非常にまれです。
　Kotlinではnullが代入され得る変数と、さ
れ得ない変数を区別します。リスト2注5は、b
へnullを代入しようとしている個所でコンパ
イルエラーとなります。通常の型（ここでは
String）の変数へnullは代入できないのです。
　少し変更を加えたリスト3はコンパイルに成
功します。変数とdの型がString?になっていま
す。
　このような?が末尾に付く型の変数はnull
を代入可能です。しかし、その変数が参照す
るオブジェクトのメンバへのアクセスに制限
が伴います。NullPointerExceptionを防ぎ
NULL安全を貫くためです。NULL安全については、
次回以降で説明します。

JavaバイトコードとJavaScript
へコンパイル可能であること

　すでに紹介したようにKotlinはJVM言語で
あり、コンパイラはJavaバイトコードを出力
します。KotlinコードからJavaコードを呼び
出せるだけではなく、その逆、つまりJavaコー
ドからKotlinコードを呼び出すこともできます。

リスト4はJavaの標準ライブラリをKotlinコー
ドから呼び出して、テキストファイルの内容を
表示する例です。
　また、コンパイラはKotlinコードを入力と
して受け取り、JavaScriptコードを出力できま
す。ご希望とあればバックエンドとフロントエ
ンド双方でKotlinを使った開発を行えます。

静的型付けであること

　Kotlinはコンパイラ言語です。これは単にイ
ンタプリタ言語よりも実行速度が速いことを意
味するだけではありません。コンパイラは、コ
ンパイル時にソースコードの誤りを発見し、実
行可能コードを生成しないので、プログラマは
バグを早い段階で発見でき、安全なプログラム
を作れます。

オブジェクト指向であること

　Kotlinはクラスベースのオブジェクト指向言
語です。Javaのように、定義されたクラスか
らインスタンスを生成できます。リスト5はク
ラスを定義し、そのインスタンスを生成するよ
うなシンプルな例です。すでにオブジェクト指
向言語を習得されている人は馴染みやすい文法
だと感じるでしょう。
　KotlinにはJavaと異なりプリミティブ型は

val a: String = "Kotlin" // OK
val b: String = null // NG!!

 ▼リスト2　通常の型の変数にはnullを代入できない

val c: String? = "Kotlin" // OK
val d: String? = null // OK

 ▼リスト3　？付きの型の変数にはnullを代入できる

import java.nio.file.Files
import java.nio.file.Paths

fun main(args: Array<String>) {
 val path = Paths.get("/memo.txt")
 val lines = Files.readAllLines(path)
 for (line in lines) {
 println(line)
 }
}

 ▼リスト4　Java標準ライブラリをKotlinから使う

注5） コードの説明上、main関数が不要な場合は省略します。

104 - Software Design Apr. 2015 - 105

Kotlinを勧める理由第 1 回

なく、すべてがオブジェクトです。また、プ
ロパティやトレイト、オブジェクト宣言など
Javaにはない便利な機能が提供されています。

クロージャの例

　Kotlinには第一級オブジェクトとしての関
数があります。つまり関数をほかの値と同じ
ように関数の引数として渡したり、戻り値と
して受け取ったりできます。これにより、よ
り粒度の小さい単位で関数の再利用が可能に
なり、抽象的なプログラミングが可能になりま
す。これがKotlinの簡潔さを、実現しているし
くみの1つです。

　Kotlinの標準ライブラリが提供するコレク
ション操作APIの例をリスト6に示します。
　また、関数はクロージャ（closure注6）でもあ
ります。クロージャとは、内部で参照する以
外の変数を外部から取り込んでいる関数のこ
とです。コードを交えて説明したほうが理解
しやすいと思いますので、クロージャの詳細
説明は次回以降に譲ります。

まとめ

　今回はKotlinの紹介として、概要と特徴、
簡単な文法を取り上げました。Kotlinは
JetBrains発のオープンソースJVM言語です。
その機能や文法は簡潔さと安全性を兼ね備え
ています。オブジェクト指向、クロージャ、
型安全など、モダンな言語にはあってほしい
機能はひととおり備えています。とくにNULL
安全はユニークな機構です。
　次回は開発環境の準備と、プログラミング
の例としてFizzBuzzを行います。ﾟ

注6） 「締め切り」のように直訳される英単語です。

// Userクラスの定義
class User {
 // プロパティ
 var id: Long = 0
 var name: String = ""

 // メソッドのオーバライド
 override fun toString(): String {
 return "name=" + name
 }
}

fun main(args: Array<String>) {
 // Userインスタンス生成
 // newのようなキーワードは不要
 val user = User()
 user.id = 12345
 user.name = "Taro"
 println(user.toString()) // => ｭ
name=Taro
}

 ▼リスト5　Userクラスのインスタンスを生成して使う

// 整数のリストを生成
val list = listOf(3, 5, 2, 7, 4)
println(list) // => [3, 5, 2, 7, 4]

// 各要素を2倍にしたリストを生成
val twice = list.map { e -> e * 2 }
println(twice) // => [6, 10, 4, 14, 8]

// 偶数の要素のみにフィルタリングしたリストを生成
val even = list.filter { e -> e % 2 == 0 }
println(even) // => [2, 4]

 ▼リスト6　関数を引数として渡してリストを操作する

106 - Software Design

Step1
VIRLを動かすための準備

　VIRL Personal Editionでは、同時にCisco

製のOSが15ノードまで動作します。価格は、
1年間で$199.99です。後編では、筆者が実際
にライセンスを購入し、インストールした体験
をもとに、VIRLの使い方を解説していきます。

なぜ手元のサーバを使うのか？
 ̶̶クラウドではダメなのか

　本記事は、VIRLを動かすサーバを手元に持
つという前提で書いています。データセンタに
置いたVIRLサーバをクラウド的に利用する形
態では、前編で解説したFLATやSNATによ
る実機接続が事実上使用できないからです。利
用形態によっては、実機なしで純粋にVIRLサー
バとノードが使えれば十分かもしれません。し
かし、現時点ではまだまだVIRLのノードの挙
動や、サポートされている機能が実機と異なる
ことが多く、本格的なシミュレーションを実行
するためには、実機との併用が欠かせません。

VIRLサーバはかなり重い

　VIRLサーバの中で動作するノードは、それ
ぞれが1つのOSに相当します。IOSvは比較的

軽いのですが、XRvやNX-OSv、CSR1000v

を快適に利用するには、それなりのサーバリソー
スが必要です。VIRL Personal Editionの上限
である15ノードを同時に稼動させるためには、
VIRLサーバのCPU、メモリ、ストレージの
それぞれに、十分な能力と容量を持たせる必要
があります。
　筆者の経験では、まずボトルネックになるの
がストレージです。HDDを使用すると、複数の
ノードを起動した場合にI/Oが追いつかず、ノー
ドが正常に起動できないことがあります。これ
はストレージをSSDに変更すると劇的に改善し
ます。というより、VIRLを使うのであれば「SSD

は必須」です。15ノードであれば、ストレージ
の容量は100GB程度で問題ありません。
　次にネックになるのがメモリです。公式には
8GBが最低ラインとなっています。VIRLのノー
ド以外に、VIRLサーバそのものがメモリを消
費するので、8GB未満では正直かなり苦しい
です。また、たとえばXRvは、ノード1つあた
り3GBが必要だとされているので、15ノード
がすべてXRvだとすると、単純計算で45GB

のメモリを消費することになります。
　筆者が試した限りでは、同じ種類とバージョ
ンのノードを複数動作させる場合、メモリの重

Cisco VIRLでネットワークの
シミュレーション

手軽に仮想化技術を実践

——自在に設計・試行・性能評価可能な革新技術

——自在に設計・試行・性能評価可能な革新技術

Cisco VIRLは、コンピュータネットワークを手軽に仮想的に構築できるソフトウェアです。先月号の前編
ではVIRLの概要を紹介しました。後編では、個人ユーザ向けのVIRL Personal Editionをもとに、実際に
インストールしてシミュレーションを動作させるまでの過程を解説します。VIRLを動作させるx86サーバ
の構成の留意点や、インストールの勘所、本格的なシミュレーションを実行する方法を説明します。

 Writer 山下 薫（やました かおる）　kaoru@cisco.com　http://lansw-book.net/VIRL/　

特別
企画

（後編）

Cisco VIRLで
ネットワークの
シミュレーション

手軽に仮想化技術を実践

http://lansw-book.net/VIRL/

106 - Software Design Apr. 2015 - 107

構成例 手間 物理NIC 5本 オーバーヘッド 外部接続

VMware ESXi 楽 不要 あり 物理NICがあれば可能

VMware Player やや楽 不要 あり 難しい

VMware Workstation
またはVMware Fusion Pro 楽 不要 あり 物理NICがあれば可能

ベアメタル（ISO） 楽ではない 必要（回避策あり） なし 物理NICがあれば可能

 ▼表1　VIRLのインストール形態と留意点

複排除が効果を発揮します。具体的には、配布
されているVIRLサーバに含まれているUbuntu

では、KSM（Kernel Samepage Merging）が有効
になっており、複数のノードが持っている同じ
内容のメモリページを1つにまとめ、メモリ消
費を少なくします。しかし、KSMは動作が遅
いので、UKSM注1を導入したカーネルを構築
して入れ替えると、より速く重複排除を実行で
きます。いずれにせよ、今後VIRLノードのソ
フトウェアが更新されていくと、必要なメモリ
容量も増大する可能性が高いので、メモリには
余裕を持たせてください。
　CPUは、コア数が多ければ多いほど、快適
にシミュレーションが実行できます。公式には
最低でCPUコア注2が2つ、できれば4つ以上あ
ることが望ましいとされています。ただし、ハ
イパースレッディング（HT）はVIRLサーバと
の相性が悪い場合があり、かえって遅くなるこ
ともあります。もしBIOSでHTを無効にでき
るのであれば、HTが有効な場合と無効な場合
のノードの起動時間などを計測して、ご自身の
サーバで最適な設定を確認してみてください。
　どの程度新しいCPUが必要かについては、
少なくとも仮想化支援機能として Intel VT-x/

EPTかAMD-V/RVIが必須です。筆者は試し
に Intel Core 2 Duo（Merom）でVIRLサーバを
動かすことができましたが、実用性を考えると、
デスクトップかモバイル向けではSandy Bridge

世代以降のCPUが望ましいと思います。Intel

注1） Ultra KSM（http://kerneldedup.org/en/）
注2） 公式のドキュメントには明記されていませんが、HTとの

相性が悪い場合があるので、CPUコアは物理コアで数えた
ほうが良いようです。仮想化ソフトウェアを使う場合は、
十分な数のvCPUを割り当ててください。

Xeonであれば、Nehalem世代以降があれば大
丈夫です注3。

VIRLのインストール形態

　VIRLは、大別すると次の3種類でインストー
ルできます。

1.	Windows PCやMac上のVM
2.	VMware ESXi上のVM
3.	x86サーバやPCに直接（ベアメタル/ISO）注4

　本稿執筆時点では、VIRLのライセンスを購
入する際に、上記の3つのいずれかを選択しま
す注5。それぞれのインストール形態の特徴と留
意点を、表1にまとめます。
　繰り返しになりますが、いずれの形態でも、
ストレージ（ディスクまたはデータストア）とし
てはSSDが必須だと考えてください。
　また、ベアメタル（ISO）以外の形態では、ハ
イパーバイザの上でVIRLサーバが稼動し、さ
らにその中のKVM上でVIRLのノードが動作
することになります（前編の図4参照）。これは、
仮想マシンの入れ子であり、「ネステッド
（Nested）注6」と呼ばれます。
　筆者がテストした限りでは、まったく同じハー

注3） 筆者は次に説明するベアメタルで動作確認をしています。
それ以外の場合は、古い世代のCPUではVIRLが動作しな
い場合があるようです。

注4） ISOイメージをライブDVDとして起動し、物理サーバのス
トレージにVIRLをインストールします。新規にVMを作成
してインストールすることも可能ですが、この記事では解
説しません。

注5） コミュニティに問い合わせてみたところ、後から変更する
ことも可能との回答がありましたが、実際に別の形態のパッ
ケージを選択してダウンロードできるかは、確認できてい
ません。

注6） VirtualBoxはNestedをサポートしていないため、VIRLと
併用できません。

http://kerneldedup.org/en/

108 - Software Design

ドウェアでネステッドとベアメタルでのVIRL

の性能を比較したところ、30％程度の差があ
りました。これはすべての場合に当てはまるわ
けではないと思われますが、VIRLを動作させ
るx86サーバ（PC）の性能が低い場合は、専用
のサーバを確保しベアメタルで使用することを
お勧めします。
　VIRLサーバには、VM Maestroからのアクセ
スと、外部接続用などのために合計で5つの
NICが必要です。これはベアメタルでのインストー
ルの場合に、1つのハードルになります。x86サー
バであれば5つの物理NICをもともと持ってい
たり、増設は容易だと思います。デスクトップ
PCでも、拡張スロットがあれば多くの場合増設
ができます。ノートPCでは、物理NICが1ポー
トしかない機種が多いため、そのままではベア
メタルでの利用はできません。そのため、ハー
ドウェアの種類を問わず、物理NICがなくても
ダミーのNICをソフトウェア的に設定して代用
できます。また、ベアメタルではUbuntuを直接
動かすので、Ubuntuが認識するNICであれば、
USB NICを使って、本当に必要な外部接続用
のNICだけは物理的に用意することもできます。
VIRLサーバでは、サーバ用NICしか耐えられ
ないような負荷がかかることはないので、USB

NICでも差しつかえありません。

Step2
VIRLのインストール

　Step2では、実際にVIRLをインストールす
る手順の概要を解説します。本稿執筆時の
VIRLの最新バージョンは「0.9.17」ですが、
VIRLは頻繁にアップグレードされ、バージョ
ンがどんどん新しくなっています。そこで、こ
の記事では今後バージョンが変わっても変更さ
れる可能性が低いと思われる基本的な内容を紹
介します注7。まず、VIRLのインストールは、次

注7） 具体的なインストール手順については、英語のドキュメント
（http://virl.cisco.com/）を参照し、ぜひ目を通してください。

の8つのステップに分かれます。

①ライセンスを購入
②ライセンスキーを受け取る
③VIRLパッケージのダウンロード
④OVAファイルをデプロイまたはISOファイ
ルからインストール

⑤VIRLサーバを起動
⑥ライセンスキーを投入（アクティベーション）
⑦VIRLサーバからVM Maestroをダウンロー
ドし、インストール

⑧VM Maestroの設定

　VIRLのインストールには、インターネット
接続が必須です。Proxyサーバ経由でもかまい
ません。ライセンスサーバと定期的に通信する
ため、インストール後も接続できるようにして
ください。また、NTPによる時刻合わせも必
要です。
　VIRLをインストールしたり実際に使用する
際には、GUIであるVM Maestro以外に、Web

ブラウザやsshを経由してVIRLサーバにアク
セスします。その際に使うユーザ名とパスワー
ドを、図1にまとめます。
　また、Step1でも説明したように、VIRLサー
バを動作させるには5つのNICが必要です。図
1には、この5つのNICの割り当ても記載して
あります。eth0はVIRLサーバへアクセスする
ために用いられ、DHCPかスタティックでIPv4

アドレスを割り当てます。eth1、eth2、eth3は
外部接続のために使います。eth4は、将来サポー
ト予定のクラスタリングのために予約されてい
るのですが、このインターフェースが存在し
IPv4アドレスが割り当てられていないと、
VIRLサーバが正常に動作しないので気をつけ
てください。
　ベアメタル（ISO）インストールで、どうして
も物理NICが5つ用意できない場合は、ダミー
のNICをソフトウェア的に設定することで代
用できます。これはVIRLサーバで公式にサポー
トされているはずなのですが、筆者が試した限

Cisco VIRLでネットワークの
シミュレーション

手軽に仮想化技術を実践

——自在に設計・試行・性能評価可能な革新技術

http://virl.cisco.com/

108 - Software Design Apr. 2015 - 109

りでは、まだうまく動きません。そこで、公式
なものではありませんが、実際にダミーのNIC

を設定する代替手順を紹介します注8。
　たとえば、物理NICが2つの場合は、次の3

つのファイルを編集し、VIRLサーバを再起動
してください。

1.	/etc/modules にdummyという行を追加
2.	/etc/modprobe.d/dummy.conf を 作 成 し、
options dummy numdummies=3を書き込む

3.	/etc/network/interfaces を、リスト1に従っ
て書き換える

　ただし、eth0の IPv4アドレスをDHCPで取
得するよう設定していると、上記の方法でもエ
ラーになります。eth0をスタティックに変更
してください。
　また、これはNIC の数が多い場合にありが
ちなことですが、もしeth0などが「p1p1」といっ
た名前になってしまった場合は、次の操作をし
てからUbuntuを再起動してください。

1. /etc/default/grub の GRUB_CMDLINE_
LINUX_DEFAULT に “biosdevname=0”を
追加

2. sudo update-grub2

　VIRLサーバはOpenStackをベースにした、

注8） かなり強引な方法ですので、あくまで参考としてください。

複雑なソフトウェアパッケージです。このため、
正常に動作するまでに、さまざまな方法で動作
確認や回復操作が必要な場合があります。具体
的な方法については、ドキュメント注9や、コミュ
ニティの投稿をご覧ください。

注9） http://virl.cisco.com/

 ▼図1　VIRLサーバのNICとアクセス

Unityデスクトップ

sshクライアント

Webブラウザ

VM Maestro
（GUIクライアント）

ユーザ名：virl

パスワード：VIRL

ユーザ名：guest

パスワード：guest

ユーザ名：uwmadmin

パスワード：password

eth1

eth2

eth3

eth4

VIRL
サーバ

eth0

FLAT
（レイヤ 2）
外部接続

SNAT
（レイヤ 3）
外部接続

（予約）

 ▼リスト1　/etc/network/interfaces の例（抜粋）

#auto eth2
#iface eth2 inet static
address 172.16.2.254/24
netmask 255.255.255.0
post-up ip link set eth2 promisc on
auto dummy0
iface dummy0 inet manual
 pre-up ip link set dev dummy0 name eth2
 pre-up ifconfig eth2 172.16.2.254/24 up
 post-up ip link set eth2 promisc on
#auto eth3
#iface eth3 inet static
address 172.16.3.254/24
netmask 255.255.255.0
auto dummy1
iface dummy1 inet manual
 pre-up ip link set dev dummy1 name eth3
 pre-up ifconfig eth3 172.16.3.254/24 up
#auto eth4
#iface eth4 inet static
address 172.16.10.250
netmask 255.255.255.0
mtu 1500
post-up ip link set eth4 promisc on
auto dummy2
iface dummy2 inet manual
 pre-up ip link set dev dummy2 name eth4
 pre-up ifconfig eth4 172.16.10.250/24 up
 pre-up ifconfig eth4 mtu 1500
 post-up ip link set eth4 promisc on

http://virl.cisco.com/

110 - Software Design

　VIRLサーバが正常に動くようになったら、
VM Maestroをダウンロードしてインストール
します。たとえば、VIRLサーバのeth0に割り
当てられているIPv4アドレスが192.168.74.130

であれば、次のURLからダウンロードできます。

http://192.168.74.130/download/

　Windows用のVM Maestroのインストーラは
2種類ありますが、JRE（JVM）が32ビットな
ら32ビット版をお使いください。
　VM Maestroが正常に起動できたら、VIRL

サーバへの接続のための設定をします。図2が、
VIRLサーバへWebサービスを用いてアクセス
するための設定ダイアログです。

　デフォルトのユーザ名とパスワードは、いず
れも「guest」です。4つのWebサービスがすべ
て緑色で“Compatible”と表示されれば、正しく
動いています。
　次に、これは必須ではありませんが、ノード
のシリアルコンソールにアクセスするための外
部ターミナルを設定します。この例では、
Tera Term 4.85を用いています（図3）。

Step3
VIRLを使ってみよう

　VIRLを用いたシミュレーションは、「トポロ
ジー（Topology）」を作成することから始まります。
トポロジーとは、VIRLサーバの内部で互いに

接続してネットワークを構成する
ノードの集まりです。図4は、前
編の図1のネットワークを「SD1.

virl」という名前のトポロジーとし
て作成し、XRvとNX-OSv間を接
続した直後の状態です。
　VM Maestroに は、「Design」と
「Simulation」の2つのモードがあり
ます。トポロジーの編集は、図4
右上の［Design］モードに切り替え
て実行します。［Design］モードは、
ノードの種類を選んで置いていく
［Select］と、ノード間を接続する
［Connect］の2つのツールに分かれ
ます。「Connect］ツールでノード間
を接続すると、各ノードの未使用
のインターフェースが自動的に割
り当てられます。何番目にどんな
名前のインターフェースが割り当
てられるのかを、表2にまとめます。
　VIRLサーバとVM Maestroで
は、各ノードの1番目のインター
フェースは、管理用として扱われ
ます。管理用インターフェースは、
VM Maestroの画面には直接表示
されません。このため、［Connect］

Cisco VIRLでネットワークの
シミュレーション

手軽に仮想化技術を実践

——自在に設計・試行・性能評価可能な革新技術

 ▼図2　VM Maestroの設定1

 ▼図3　VM Maestroの設定2

110 - Software Design Apr. 2015 - 111

ツールの対象になるのは、2番目以降のインター
フェースです。図4の例では、XRvは先にIOSv

に2番目のインターフェース（Gi0/0/0/0）で接
続されているので、3番目のGi0/0/0/1が用い
られています。また、NX-OSvではやはり2番
目のインターフェース（e2/1）がIOSvにつながっ
ているので、3番目のインターフェースである
e2/2が割り当てられます。
　トポロジーの編集が終わり、ファイルを保存
したら、VM Maestroの右上の［Simulation］を
クリックしてモードを切り替えます。現時点の
VM Maestroではビジュアルがまったく同じで
まぎらわしいのですが、［Simulation］のすぐ左
に表示されているのとそっくりな、緑色の丸い
再生ボタン（Launch Simulation）がメニュー左

側にあります。このボタンをクリックすると、
トポロジーに含まれている各ノードが実際に生
成され、起動します。
　VIRLサーバとVM Maestroは、同じトポロ
ジーを複数同時に起動できるよう作られていま
す。このため、作成したトポロジーを実際に動
作させたものを、「シミュレーション」として区
別しています。それぞれのシミュレーションに
含まれている各ノードの状態は、VM Maestro

の右側の［Simulations］というペインの中に表
示されます。ノードが［ACTIVE］になったら、
［Simulations］の中のノードを右クリックして、
シリアルコンソールにアクセスできます。各ノー
ドの初期パスワードは、表3のとおりです。
　では、シミュレーションを終了したり、投入
したコンフィグを次回のために保存するに
はどうすれば良いのでしょうか。VM

Maestroでは、シミュレーションに必要な
情報を .virl で終わる名前のXMLファイル
にまとめて記録します。図5が、シミュレー
ションの起動時と、コンフィグの保存の際
に .virlファイルがどう使われるのかの動作
イメージです。
　.virlファイルには、各ノードの属性（名前、
種類、バージョンなど）とコンフィグが格
納されています。また、ノード間の接続情
報も併せてXMLで書き込まれています。
　シミュレーション開始時には、まずVM

Maestroがそのトポロジーに対応する .virl

ファイルを読み取り、必要なノードを生成
します。さらに、起動してきたノードにコ
ンフィグを自動的に流し込みます。実機の
場合は、電源を切ってそのまま置いておき、
あとで電源を入れて元の状態に戻すことが

 ▼図4　トポロジーの編集

ノードの種類 1番目 2番目 3番目 4番目

IOSv GigabitEthernet0/0 GigabitEthernet0/1 GigabitEthernet0/2 GigabitEthernet0/3

CSR1000v GigabitEthernet1 GigabitEthernet2 GigabitEthernet3 GigabitEthernet4

XRv MgmtEth0/0/CPU0/0 GigabitEthernet0/0/0/0 GigabitEthernet0/0/0/1 GigabitEthernet0/0/0/2

NX-OSv mgmt0 Ethernet2/1 Ethernet2/2 Ethernet2/3

 ▼表2　インターフェース番号の割り当て

112 - Software Design

できます。VIRLの場合には、いったんシミュ
レーションを終了すると、含まれている各ノー
ドも消去されます。実機で電源を切ることに対
応する操作はなく、必ずすべて片付けてしまう
ようなイメージです。なので、「copy run

start」や「write memory」を実行しても、保存先
ごと消滅してしまいます。
　これでは、コンフィグした結果が失われるの
で、「Extract」によって各ノードのコンフィグ
を吸い上げ、.virlファイルに書き戻すことがで
きます。Extractしてからシミュレーションを
終了すれば、次回の起動時には最後にExtract

した時点のコンフィグが自動的に投入されます。
　実際に、動作中のシミュレーションのコンフィ
グを保存（Extract）して、トポロジーを停止す
る際は、図6のメニューを使ってください。
［Simulations］ペインの中のシミュレーション
名を選び、右クリックします。
　別の方法でシミュレーションを終了し、オプ
ションとして終了直前にExtractすることもで

きます。しかし、Extractがうまく動作しなかっ
たり、途中で止まってしまう場合がありますの
で、図6のメニューからExtractを直接実行し、
大丈夫なことを確認してからシミュレーション
を終了したほうが安全です。なお、本稿執筆時
点では、Extractを実行する前に、すべてのシ
リアルコンソールを閉じる必要があります。

Step4
VIRLを使いこなすには

外部接続（FLAT）の実際

　VIRLでシミュレーションしているノードを、VIRL

サーバの外部にある機器やネットワークにレイ
ヤ2で接続するには、「FLAT」を使います（図7）。
　使い方は簡単で、VM Maestroの上で、ノー
ドをFLATのアイコンに接続します。すると、
図7の下側のように、VIRLサーバの内部にあ
るブリッジとeth1を経由して、外部に出られ
るようになります。

Cisco VIRLでネットワークの
シミュレーション

手軽に仮想化技術を実践

——自在に設計・試行・性能評価可能な革新技術

ユーザ名 パスワード

IOSv （なし） cisco

CSR1000v （なし） cisco

XRv cisco cisco

NX-OSv admin admin

jumphost guest guest

 ▼表3　ノードの初期パスワード

 ▼図5　.virlファイルとコンフィグの取り扱い

ノードを起動し
コンフィグを流し込む

・各ノードのコンフィグ
・ノード間の接続情報
・ノードの属性　等を格納

Extract
VM Maestro

（GUIクライアント）

IOSv

XRv

NX-OSv
（Titanium）

.virl
ファイル

 ▼図6　コンフィグの保存とトポロジーの停止

112 - Software Design Apr. 2015 - 113

管理インターフェースとjumphost

　Step3では、VIRLの各ノードへのアクセス
に、telnet経由の仮想シリアルコンソールを用
いる方法を解説しました。VIRLでは、各ノー
ドの管理インターフェースは自動的に、1つの
ブリッジ（管理用ネットワーク注10）につなぎこ
まれます。また、「jumphost」という名前の
Ubuntuサーバが自動的に作られ、eth0が同じ

注10） 英語のドキュメントでは、「OOB（Out-Of-Band）」と記述
されていることが多いです。

く管理用ネットワークに接続されます（図8）。
　jumphostのeth1は、先に説明したFLATに
つながっています。そこで、eth0とeth1にそ
れぞれ IPアドレスが振られていれば、
jumphostを経由して、外部からVIRLサーバ内
の各ノードへアクセスすることができます注11。

自動コンフィグ生成（ANK）

　VIRLには、AutoNetKit（ANK）をCiscoが拡
張したものが組み込まれています。ANKは、各
ノードのコンフィグを、パラメータをもとに自動
生成するものです。
　ANKは、シミュレーションを開始する前に、
図9のようにVM Maestroのメニューから［Build

Initial Configurations］を選択すると動作します。
対象のノードがルータやスイッチであれば、各イ
ンターフェースに自動的にIPv4アドレスが振られ、
OSPFv2やBGPのコンフィグが生成されます。

VIRLソフトウェアの重さ対策

　Step1ですでに述べましたが、VIRLサーバ
とノードは相当重いソフトウェアです。VIRL

がシミュレーションの対象にしている実機の中

注11） ただし、jumphost関連の機能はまだ使えるようになった
ばかりで、想定どおりに動かない場合や、今後変更される
可能性があります。本稿締め切り直前にリリースされた
VIRL 0.9.17では、jumphostがデフォルトでLXCに変更
されました。

 ▼図7　外部接続（FLAT）

flat-1 iosv-1

VIRLサーバ

外部

V

FLATeth1

 ▼図8　管理インターフェースとjumphost

管理用
ネットワーク

ルータ
IOS

ルータ
IOS-XR スイッチ

NX-OS

Gi 0/0

mgmt0

eth0MgmtEth

jump
host

 ▼図9　ANKによる自動コンフィグ生成

114 - Software Design

でも、大型の機種のコントロールプレーンは、
1台がx86サーバ並みの性能を持っています。
このため、これらのネットワーク機器に対応す
るVIRLのノードを複数動作させ、本格的なシ
ミュレーションを実行するには、正攻法では相
当なスペックのx86サーバが必要になります。
　そこで、次のような工夫をすることで、ノー
ドが起動できないなどのエラーを回避したり、
同じスペックのサーバでもより快適にシミュレー
ションを実行できるようになります。

1.	ストレージ→SSD
2.	CPU負荷→時間差起動
3.	メモリ消費→重複排除

　1.は繰り返し書いたことですが、SSDは必須
です。SATA SSDの場合でも、3Gbpsと6Gbps

では明らかにノードの起動時間などに差が出ます。
また、SSDの性能の違いが、VIRLサーバを使っ
ているときの体感速度やレスポンスに現れます。
2.と3.については、このあと解説します。

ノードの時間差（手動）起動

　VIRLで普通にトポロジーをスタートさせると、
含まれているすべてのノードが同時に起動します。
XRv、CSR1000v、NX-OSvは、とくに起動時の
ディスクとCPUへの負荷が高いため、サーバの能
力が不足し、ノードの内部でタイムアウトが発生
するなどして正常に起動できないことがあります。
これを防ぐために、各ノードをあとから順次手動
で起動するよう設定できます。具体的には、ノー
ドの属性のうち図10の項目にチェックを入れます。

メモリ重複排除

　1台のVIRLサーバ上で、複数のまったく同
じ種類とバージョンのノードが動作する際には、
同じ内容のメモリページが多数現れます。この
ため、Step1で紹介したUKSMによって、高

速に重複排除を実行し、メモリの消費を抑える
ことができます。　ただしVIRLは、重複排除
によるメモリの節約を認識しないので、/etc/

virl/common.cfg に次の行を追加して、オーバー
コミットを許容するよう設定します。

[host]
ram_overcommit = 10

　重複排除のためには、同じ内容のメモリペー
ジを検出してマージする時間が必要ですので、
先に説明した時間差起動の併用が有効です。ま
た、各ノードの起動直後は重複排除が効いてい
ても、コンフィグや使い方によっては、メモリ
ページの内容に相違が発生して重複排除の効果
が下がります。最悪の場合は、VIRLサーバ全
体がメモリ不足に陥ってクラッシュに至る可能
性もありますので、UKSMを用いる場合は、
残りメモリや重複排除されたメモリページ数な
どを適宜確認してください。

VIRLのための補助ツール

　VIRLはまだまだ発展途上のソフトウェアで
すので、本格的にネットワークのシミュレーショ
ンを実行する場合に必要な細かい機能を補うツー
ルが、別途提供されています注12。たとえば、次
のような補助ツールがあります。

・シリアルコンソールの一覧を表示する
・パケットキャプチャ
・ノードのインターフェースを意図的に落とす／
戻す

終わりに
　̶ ̶VIRLの今後

VIRL Personal EditionとCML

　VIRL Personal Editionでは、困ったときのサ
ポートは、Web上のコミュニティが頼りです。ま

注12） https://github.com/VIRL-Open/virl-utils

Cisco VIRLでネットワークの
シミュレーション

手軽に仮想化技術を実践

——自在に設計・試行・性能評価可能な革新技術

 ▼図10　ノードを手動起動に変更する

https://github.com/VIRL-Open/virl-utils

114 - Software Design Apr. 2015 - 115

た、同時に動かせるノード数の上限は、15で固
定されています。そこで、本格的なサポートが
必要な場合や、ノード数の多いシミュレーショ
ンを実行するために、CML（Cisco Modeling

Labs）という製品が用意されています。

他の種類のノード

　この記事ではCisco製のネットワーク機器の
OSに対応するノードである、IOSv、CSR

1000v、XRv、NX-OSvを紹介しました。実際
にVM Maestroを起動すると、ノードの選択肢
にはそれら以外のものがあります。
　たとえば、「Server」は jumphostとは別の、
UbuntuのVMです。ユーザ名とパスワードは
先に説明したANKで定義します。デフォルト
では、ユーザ名とパスワードはいずれも「cisco」
になります。
　また、Catalystスイッチに対応するIOSvL2

は、OSイメージがVIRLのパッケージにまだ
含まれていません。開発は進んでいるので、
近い内にVIRL上で利用可能になる見込みです。
　VIRLに含まれているノードは、今後の
VIRLパッケージのアップデートに伴って、
新しいバージョンのものに順次変更されてい
きます。しかし、実網に合わせて古いバージョ
ンを使用する必要があったり、アップグレー
ド時の影響を調べるために、古いものと新し
いものを併用する場合があります。このために、
まだ実績は多くはありませんが、図1に示し
たWebブラウザ経由のインターフェースを用
いて、VIRLサーバに複数のバージョンのOS

を登録することができます。また、VM

Maestroで各ノードの属性としてOSのバー
ジョンを明示的に指定することで、バージョ
ンを使い分けられます。
　さらに、VIRLに内蔵されているKVMの上
で動作するVMであれば、Ciscoが提供するも
の以外のノードを登録することもできます。

さらに本格的な利用へ

　VIRLはまだまだ新しいソフトウェアで、
実機との相違点があります。しかし、現時点
のVIRLでも、ネットワークが想定どおり動
かない場合に、解決までの所要時間を短くで
きるのではないかと、筆者は考えています。
　1つの使い方が、シミュレーション全体の
スナップショットとクローンを作ることです。
複雑なネットワークでは、1台の機器の設定
を少し変更するだけで、挙動が大きく変わる
ことがあります。実機の場合、設定変更と戻
しを繰り返すことが可能な場合でも、なぜ挙
動が異なるのかを診断するのはたいへんです。
しかし、もしVIRL上で挙動の違いが再現で
きるのであれば、設定変更前のトポロジーと、
変更後のトポロジーを同時に動かして、何が
原因なのかを並行して調べることができます。
　もう1つのより本格的な使い方は、自力で
トラブルシュートできない場合での利用です。
想定外の動作がVIRL上で起きてしまった際に、
すべてのノードの設定をExtractして、.virl

ファイル（XML）に保存します。この .virlファ
イルをエキスパートに送って、ほかのVIRL

サーバの上でトポロジーを起動してもらえれば、
想定外の動作を再現して、代わりに診断して
もらうことができます。これは、実機を用い
る場合に比べてはるかに容易です。
　さらに、Ubuntuサーバなど他の構成要素も
一緒に取り扱えるようになれば、アプリケー
ションも併せた、より実際のシステムに近い
構成において、VIRLによる設計の確認やト
ラブルシュートが可能になるでしょう。
　VIRLの最新情報は、http://lansw-book.

net/VIRL/ に掲載していきますので、参照し
てください。｢

http://lansw-book.net/VIRL/
http://lansw-book.net/VIRL/

116 - Software Design

実際のデバイスを使った
IoTアプリ

　前編では、センサーデバイスをシミュレート
した IoTセンサーを利用して IoTアプリ開発を
体験してみました。
　IoT Foundationでは、さまざまなデバイス
との接続方法とサンプルプログラムをレシピと
して提供しています。今回はそのレシピの中か
らBeagleBone BlackとSensorTagを例にとり、
実際のデバイスからデータを取得しBluemix上
のIoTアプリでそのデータを利用する方法を解
説していきます。

IoTアプリのシナリオ

　本記事で開発する IoTアプリは図1に示すよ
うなシナリオを想定しています。下部にあるの
は、ある工場で動いているポンプですが、これ
はときどき故障して異常な振動を発します。故
障したときにはすぐに作業員が現場に行って修
理作業をしなければならないため、振動を検知
したときにすぐにそれを知らせるようなしくみ
が必要です。このようなしくみを実現するシス
テムは、Bluemix上のIoTアプリとIoT Foundation

に接続するデバイスを利用することで、簡単に

開発できます。
　まず、SensorTagというセンサー（図1中左下）
でポンプの振動を検知し、BeagleBone Black（図

1 中左上）というデバイスを経由して、IoT

Foundationにデータをパブリッシュします。
次に、Bluemix上の IoTアプリでそれをサブス
クライブして、異常があったときに作業員の携
帯電話にSMSを送信するという流れです。
　実際に、このIoTアプリの開発にチャレンジ
してみましょう。

デバイス構成

使用するデバイス

　今回のIoTアプリ開発で利用するデバイスは
BeagleBone Blackというシングルボードコン
ピュータです。同じくシングルボードコンピュー
タである Raspberry Piと同様、手のひらに乗
るLinuxマシンで、IoTのデバイスとして利用
しやすいため、最近注目を集めています。シン
グルボードコンピュータとは、文字どおり1枚
の基板から構成されるコンピュータですが、
Arduinoのような“マイコン”と呼ばれるものと
は異なり、汎用的なOSを搭載しています。機

IoT入門Bluemixで
ためしてみる IoT入門短期
集中連載
Bluemixで
ためしてみる
実践、モノのインターネット
 Writer 宮田 裕樹（みやた ゆうき）　日本アイ・ビー・エム㈱

後編

IBMが提供する、高速・手軽にアプリを開発・デプロイできるPaaSサービス「Bluemix」を紹介する短期連載。
後編では、実際のセンサーデバイスを使ってIoTアプリ開発を学びます。機械の異常な振動を検知すると携帯電
話に警告メッセージがSMSとして送信されるというしくみのアプリを作っていきます。

BluemixのIoTアプリにデバイスをつないでみよう

116 - Software Design Apr. 2015 - 117

械の中の組み込みコンピュータとして特定用途
に利用されることが多いようです。今回利用す
るBeagleBone Black（Rev.C）の仕様は公式サイ
ト注1をご覧ください。
　BeagleBone Blackに接続するセンサーとし
てはTexas Instruments SensorTag（CC2541）

を利用します。SensorTagは、温度センサー・
湿度センサー・圧力センサー・加速度計・ジャ
イロスコープ・磁力計の6つのセンサーを内蔵
しています。これらのデータを逐次取得し、
Bluetoothを経由して転送できるようになって
います。

デバイス構成の手順

　まずBeagleBone Blackを構成して、基本的
な動きを確認してみましょう。次の手順で構成
していきます。

❶USBでPCに接続する

　BeagleBone BlackをUSB経由でPCと接続
すると、リムーバブルディスクとして認識され
ます。

注1） URL http://beagleboard.org/BLACK

❷ドライバを導入する

　ディスク内のSTART.htmをブラウザで開く
と、Getting Startedの画面が表示されます。
「Step2：Install drivers」にあるOS別のUSB

ドライバを選択し、導入します。

❸ネットワークデバイスとしてアクセスする

　ドライバ導入が完了すると、BeagleBone

Blackにネットワーク接続できるようになりま
す。SSHターミナルを利用して、デフォルト
IPアドレスである192.168.7.2に接続します
（ユーザ：root、パスワード：rootでログイン
できます）。ここまでの構成で、Debianベース
のLinux BeagleBoneにアクセスできるので、
通常のLinuxマシンとして動かせます。

❹USBドングルを接続する

　BeagleBone Blackを IoTアプリのデバイス
として活用するために、インターネット／
MQTTアクセスのためのWi-FiとSensorTag

接続のためのBluetoothの構成をします。まず
USBハブを接続し、そこにWi-Fiドングルと
Bluetooth4.0対応のBluetoothドングルを接続
します。

後編 BluemixのIoTアプリにデバイスをつないでみよう

IoT Foundation

MQTT：パブリッシュ MQTT：サブスクライブ

ジャイロ
（振動）

MQTT サーバ

ポンプ 作業員

IoT ボイラープレート

……流れるデータ

BeagleBone Black

SensorTag

Node-RED Cloudant

Bluemix

 ▼図1　IoTアプリのシナリオ

http://beagleboard.org/BLACK

118 - Software Design

　BeagleBone Blackを再起動後、PC上で lsusb

コマンドを打ち、図2のように確認できれば認
識成功です。ここで、Device 003がWi-Fiド
ングル（ここでは、BUFFALOのWLI-UC-

GNM2を使用）、Device 004がBluetoothドン
グル（ここでは、BUFFALOのBSBT4D09BK

を使用）に該当します。

❺Wi-Fi接続を構成する

　アクセスポイントに対するWi-Fi接続を設定
します。PCで図3のように実行して設定ファ
イルを生成します。次のような設定ファイル
（wpa_supplicant.conf）が作成されます。

network={
 ssid="SSID"
 #psk="パスワード"
 psk=暗号化されたパスワード
}

　この設定ファイルを編集し、アクセスポイン
トの認証方式の情報をリスト1のように追記し
ます。これは、WPA2認証方式の例となって
います。
　最後に、Wi-Fi接続が自動的に行われるよう
に、/etc/network/interfacesにリスト2の

行を追加します。BeagleBone Blackを再起動
したあと ifconfig wlan0コマンドを実行し、IP

アドレスが正しく取得できていれば成功です。
　ここまでの構成で、BeagleBone Blackに
Bluetooth経由でSensorTagを接続し、Wi-Fi

経由でインターネットに接続する準備が整いま
した。

IoT Foundationにつないでみよう

　IoT Foundationに接続するための手順を説
明していきます。

①サンプルプログラムを準備する

　まず、IoT Foundationが提供するBeagle Bone

Black用のサンプルプログラムを取得し、構成
します。BeagleBone Blackに接続したSSHター
ミナルで、

$ git clone http://github.com/ibm- ｭ
messaging/iot-beaglebone

のように実行し、サンプルプログラムを入手し
ます。次に、

$ cd iot-beaglebone/samples/nodejs
$./setup.sh

のように実行します。ここでは、SensorTagと
の接続や IoT FoundationとのMQTT接続に必

IoT入門Bluemixで
ためしてみる

 ▼図2　lsusbコマンド実行結果

Bus 001 Device 003: ID 0411:01ee BUFFALO INC. (formerly MelCo., Inc.) WLI-UC-GNM2 Wireless ｭ
LAN Adapter [Ralink RT3070]
Bus 001 Device 004: ID 0a12:0001 Cambridge Silicon Radio, Ltd Bluetooth Dongle (HCI mode)

 ▼図3　Wi-Fi接続のための設定ファイルを生成

$ cd /etc/wpa_supplicant
$ wpa_passphrase "SSID" "パスワード" > /etc/wpa_supplicant/wpa_supplicant.conf

 ▼リスト1　アクセスポイントの認証方式を追記

network={
 ssid="SSID"
 key_mgmt=WPA-PSK
 proto=WPA WPA2
 pairwise=CCMP TKIP
 group=CCMP TKIP
 #psk="パスワード"
 psk="暗号化されたパスワード"
}

 ▼リスト2　Wi-Fi接続の自動化

Wi-Fi Example
auto wlan0
iface wlan0 inet dhcp
 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

118 - Software Design Apr. 2015 - 119

要なパッケージ群の導入が行われます。

②サンプルプログラムを実行する

　それでは、サンプルプログラムを実行してみ
ましょう。まずSensorTagのサイドボタンを
押し、LEDの点滅を確認します。次にSSHター
ミナルで、

$ cd iot-beaglebone/samples/nodejs
$ node iot_sensortag.js

のようにNode.jsのサンプルプログラムを実行
します。このプログラムは、IoT Foundation

にMQTTプロトコルで接続し、SensorTagの
6つのセンサーからデータを取得、1秒間隔で
そのデータを IoT Foundationにパブリッシュ
するという動作を繰り返します。サンプルプロ
グラムを起動後、図4のように出力されれば成
功です（うまくいかない場合、SensorTagのサ
イドボタンを押してプログラムを実行しなおす
と、正しく接続する場合があります）。デー

タ送信ごとにBeagleBone Black上のLED3

（Ethernetポートに一番近いLED）が点滅する
のを確認できます。

③�IoT Foundationへのパブリッシュを確認する

　それでは、IoT Foundationにデータが正し
くパブリッシュされているかを確認してみましょ
う。ブラウザで、IoT FoundationのBeagleBone/

SensorTag用のレシピのURL注2に接続します。

注2） U R L https: / /developer. ibm.com/iot/recipes/t i -
beaglebone-sensortag

Visualizeの 入 力 欄 に BeagleBone Blackの
MACアドレスを入力し、右の「Visualize Your

Data」ボタンをクリックします（MACアドレス
は図4の最初に表示されています）。
　画面上に、SensorTagの6つのセンサーから
の14のデータがグラフ表示されます（図5）。
SensorTagの温度センサーを手で温めてみると
温度のグラフが、振動させてみると加速度計や
ジャイロスコープのグラフがそれぞれ変化する
ことを確認してみてください。グラフが正しく
反応していれば、手元のSensorTagのデータ
がBluetooth経由でBeagleBone Blackに送信
され、BeagleBone BlackからMQTTプロトコ
ルで IoT Foundationにパブリッシュされて、
リアルタイムにグラフ表示されているというこ
とになります。

アプリ開発

　ここまでで、図 1の左下のセンサーから
BeagleBone Blackを経由して、中央の IoT

Foundationにパブリッシュするところまでの
流れができました。次は IoT Foundationのト
ピックをサブスクライブして利用するような
IoTアプリの開発を行います。この部分は前編
で説明した内容を応用していきますので、3月

後編 BluemixのIoTアプリにデバイスをつないでみよう

 ▼図4　サンプルプログラム実行結果

MAC address = d0:39:72:40:e5:1a
MQTT clientId = d:quickstart:iotsample-ti-ｭ
bbst:d0397240e51a
sensortag connect
discoverServicesAndCharacteristics
MQTT Connected
readDeviceName
 device name = TI BLE Sensor Tag

:
enableBarometricPressure
enableGyroscope

 ▼図5　IoT Foundationのグラフ

https://developer.ibm.com/iot/recipes/ti-beaglebone-sensortag

120 - Software Design

号を適宜参照してください。

❶IoTボイラープレートからアプリを作成する

　前編と同様、Bluemixのカタログから
Internet of Thingsのボイラープレートを選択
し、作成を指示します。1分足らずで、IoTア
プリの実行に必要なNode.jsとCloudantが作成
されます。Bluemixダッシュボード上に作成さ
れた IoTアプリケーションのアイコンの「URL

を開く」ボタンをクリックすると、IoTアプリ
のフローエディタであるNode-REDの初期画
面が開きます。以降、Node-RED上でIoTのフ
ローを組み立てていきます。完成形は図16の
ようになります。

❷�IoT Foundationのトピックをサブスクライ

ブする

　今回も、Node-REDのキャンバス内に最初に
表示されるサンプルのフローは削除して1から
作成します（部品を選択しÏで削除可能）。
　IoT Foundationのトピックのサブスクライ
ブは ibmiotコンポーネントによって実行します。
左のパレットの inputカテゴリから ibmiotを選
択し、キャンバスにドラッグ&ドロップします。
これをダブルクリックし、図6のように入力し
ま す。Device Idに は、BeagleBone Blackの
MACアドレス（図4の1行目）からコロンを抜
いて英字を小文字にした文字列を入力します。

❸�IoT Foundationからの

データを確認する

　IoT Foundationから、デー
タが正しくサブスクライブ
できているかどうかを確認
しましょう。パレットの
outputカテゴリからdebug

をドラッグ&ドロップし、
❷で作成した「IoT Foun

dation」ノードからワイヤ
リングします。右上の

Deployボタンをクリックし、Bluemixにデプ
ロイします。図7の右側フレームのdebugタブ
内のようにデータが表示されれば成功です。ま
た、キャンバス上のdebugノードの右のレバー
をクリックするとログの有効／無効をスイッチ
できます。
　debugタブ内のメッセージを見ると、
SensorTagの各センサーから渡されるデータの
変数名と取得した値を確認できます。今回は、
振動データとしてジャイロスコープのZ軸デー
タであるgyroZを利用することにします。

❹データをサンプリングする

　IoT Foundationからのデータは1秒に1回の
割合で送信されますが、ここでは5秒に1回に
制限することにします。パレットの functionカ
テゴリのdelayをドラッグ&ドロップし「IoT

Foundation」ノードからワイヤリングします。
キャンバス上のdelayノードをダブルクリック
し、図8のように編集します。

IoT入門Bluemixで
ためしてみる

 ▼図6　「IoT Foundation」ノードの編集

 ▼図7　IoT Foundationサブスクライブの確認

120 - Software Design Apr. 2015 - 121

❺振動データを取得する

　IoT Foundationからのデータはdというオブ
ジェクトで渡されてきますので、ここから振動
データ gyroZを取り出します。パレットの
functionカテゴリから functionをドラッグ&ド
ロップし、「サンプリング」ノードからワイヤリ
ングします。キャンバス上の functionノードを
ダブルクリックし、図9・リスト3のように編
集します。

❻振動データの条件分けをする

　次に、取得した振動データの条件分けを行い
ます。ここでは、-10～10°/secの範囲内であ
れば「安全」、それ以外を「要点検」として定義す
るものとします。
　パレットの functionカテゴリの switchをド
ラッグ&ドロップし、❺で作成した「振動デー
タの取得」ノードからワイヤリングします。
switchノードをダブルクリックし、図10のよ
うに編集します。

❼安全の場合の処理

　安全（-10～10°/sec）の場合のメッセージ出
力を定義します。パレットの functionカテゴリ
から functionをドラッグ&ドロップし、❻で作
成した「振動データの条件分け」ノードの真ん中

4 4 4

の出力からワイヤリングします。functionノー
ドをダブルクリックし、図11・リスト4のよ
うに編集します。

❽要点検の場合の処理

　同様にして、要点検の場合のメッセージ出力
を定義します。パレットの functionカテゴリか
ら functionをドラッグ&ドロップし、「振動デー
タの条件分け」ノードの上側

4 4

と下側
4 4

両方の出力
からワイヤリングします。functionノードをダ

後編 BluemixのIoTアプリにデバイスをつないでみよう

 ▼図8　「サンプリング」ノードの編集

 ▼図9　「振動データの取得」ノードの編集

 ▼リスト3　Function欄の入力（振動データの取得）

return {payload:msg.payload.d.gyroZ};

 ▼図10　「振動データの条件分け」ノードの編集

 ▼図11　「安全」ノードの編集

 ▼リスト4　Function欄の入力（「安全」ノードの編集）

var d = new Date();
msg.payload = msg.payload + "°/sです。ｭ
安全です。 :"
+ d.toString();
return msg;

122 - Software Design

ブルクリックし、図12・リスト5のように編
集します。

❾メッセージをdebugに出力する

　最後にdebugノードを配置し、出力を確認し
てみましょう。パレットのoutputカテゴリか
らdebugをドラッグ&ドロップし、「安全」ノー
ドと「要点検」ノードの両方からワイヤリングし
ます。これでフローは完成したので右上の
deployボタンをクリックしてBluemixにデプロ
イします。
　SensorTagを静止した状態では「安全です。」
というメッセージが、SensorTagを振動させて
-10～10°/secの範囲を超えると「要点検！！」
というメッセージがdebugタブに出力されるこ
とが確認できるはずです（図13）。

SMSを送ってみよう

　前回は、高温になったことをTwitterでつぶ
やいて知らせましたが、今回はポンプの異常を
ケータイにSMS送信して知らせるようにして
みます。これには、Twilioという電話／メッセー
ジングサービスを利用します。Node-REDは
Twilioのインターフェースを持っているので、
SMS送信のような拡張も簡単に行うことがで
きます。
　まず、Twilioにアカウントを登録します。
TwilioのURL注3からサインアップし、トライ
アルアカウントの登録を行うことができます。
現時点でSMSを送信できるTwilio電話番号は
米国の番号に限ります。サインアップ手続きの
途中でTwilio電話番号として+81で始まる日
本の電話番号が表示されますが、必ずこの画面
で「電話番号を手に入れましょう」をクリックし、
+1で始まる米国の電話番号を入手するように
してください。登録完了後にTwilioにログイ
ンすると、Account SIDとAuth Tokenが表示
されるので、メモしておいてください。
　次に、Node-REDにおいてTwilioへのSMS

送信を追加します。パレットのoutputカテゴ
リから twilioをドラッグ&ドロップし、「要点検」
ノードからワイヤリングします。「twilio」ノー
ドをダブルクリックし、Serviceで、「External

注3） URL http://twilio.kddi-web.com

IoT入門Bluemixで
ためしてみる

 ▼図13　debugへのメッセージ出力

 ▼図12　「要点検」ノードの編集

 ▼リスト5　Function欄の入力（「要点検」ノードの編集）

var d = new Date();
msg.payload = msg.payload + "°/sです。ｭ
要点検！！ :"
+ d.toString();
return msg;

http://twilio.kddi-web.com

122 - Software Design Apr. 2015 - 123

Service」を選択したあと、「Twilio」覧の右の鉛
筆アイコンをクリックします。図14のように
入力し、Addボタンをクリックします。ここで、
Account SID、From、Tokenに は、Twilio登
録で取得したAccount SID、Twilio電話番号、
Auth Tokenをそれぞれ入力します。
　続けて、図15のように入力します。SMS to

には、SMS送信先のケータイの番号を入力し
ます（+81に続けて、ケータイ番号の最初の0

を除いた番号を付加した番号です。検証済みの
電話番号である必要があるので、トライアル中
はTwilio登録時に検証したケータイ番号を使
用してください）。
　これでフローは完成したので（図16）、再び
Deployボタンをクリックし、Bluemixにデプ
ロイします。
　SensorTagを振動させてみて、-10～10°/

secの範囲を超えたときに、ケータイに「要点
検！！」というSMSメッセージが送信されるこ
とを確認してください（図17）。これにより、
ポンプの振動を検知し、異常が発生したときに
作業員のケータイにSMSメッセージを送信す
るしくみを実現するIoTアプリが完成しました。

終わりに

　当連載では、Bluemixによる IoTアプリ開発
と IoT Foundationへの実際のデバイスの接続
方法を学びました。Twitterや携帯電話への送
信も簡単にできるため、モノから得た情報を必
要な人にタイムリーに伝えるようなシステムの
開発をすぐに試してみることができます。
　IoT Foundationのサイト注 4には、Beagle

Bone Blackのほかにもさまざまなデバイス

のレシピが載っています。Bluemixと IoT

Foundationと、それにつながるさまざまなデ
バイスを使って、みなさんのアイデアを実現し
てみてはいかがでしょうか。｢

注4） URL https://developer.ibm.com/iot

後編 BluemixのIoTアプリにデバイスをつないでみよう

 ▼図15　Twilioノードの編集2

 ▼図14　Twilioノードの編集1

 ▼図16　完成した IoTフロー

 ▼図17　 ケータイに送られたSMSメッセージ

https://developer.ibm.com/iot

124 - Software Design

で学ぶErlang
並行プログラミング

Erlangの歴史と由来

　Erlang注1（アーラン）は、スウェーデンの
Ericsson（エリクソン）という会社のComputer

Science Laboratoryにて、1985年より同社の
電話交換機AXEの開発言語として設計が始め
られました。それまでの開発言語であった
PLEXは、分散システムに対応できず、動作
するプロセッサそのものが独自設計であった
ため、汎用性を欠くという問題があったため
です [1]。
　ErlangはPLEXの持つ

・	多数の小さなプロセスが並行動作できる
・	メモリリークを起こさずに動的なデータ構
造を扱える

・	一度ロードしたモジュールをシステムを止
めずに更新できる

・	何らかの理由でシステムが止まっても再起
動できる

という特徴を維持しながら、PLEXでは実現
できなかった、汎用のプロセッサで動き、複数
のホストやCPUが協調動作する分散システム

注1） 日本では「アーラン」という読み方が確立しているためこの
ように書きましたが、英語など他の言語ではむしろカナ文
字で書くと「エアラング」に近い発音をします。

を構成することを目的に開発されました。
　Erlangは10年の開発期間の後に、1995年に
Ericssonの新型交換機への投入が決定し、
1998年にはAXD301というGPRS注2交換機へ
の採用が決まります。しかし、その直後に
Ericsson内部で「Erlang使用禁止令」が出るな
ど、必ずしも同社の中での立場は確立したもの
とはいえなかったようです。このことの影響か
どうかはわかりませんが、その直後にErlang

はオープンソース化されました。もしErlang

がOSSになっていなければ、一介の独自言語
としてその生命を終えていたかもしれません。
　現在Erlangは、Linux、FreeBSD、Windows

など各種OS、またIA32やIA64、ARMといっ
た各種CPUで動作する汎用の言語となりまし
た。そしてEricssonが開発した各種ライブラ
リやフレームワークの集合体であるOTPと共
に「Erlang/OTP」という名前で配布されていま
す注3。
　なお、Erlangという名前の由来は、デンマー
クの数学者で通信トラフィック工学や待ち行列
理論を確立したAgner Krarup Erlang（1878～
1929）から取られたというのが通説ですが、実

注2） General Packet Radio Service: 欧州等で普及し今も多く
の国々で動いている携帯電話のGSM方式で動作するデー
タ通信サービスです。

注3） Erlang/OTPに関する公式な情報提供WebサイトのURLは
http://www.erlang.org/ です。

Webサービスやメッセージングなど大量のコネクションを効率よくさばくことのできるシステムを作れるプロ
グラミング言語Erlangが注目を浴びています。この連載では、Erlangとその標準ライブラリOTPによる並行
プログラミングについて紹介していきます。

 Author 力武健次技術士事務所 所長 力武 健次（りきたけ けんじ） http://rikitake.jp/

第1回 Erlang/OTPとは

で学ぶErlang
並行プログラミング

新連載

http://rikitake.jp/
http://www.erlang.org/

124 - Software Design Apr. 2015 - 125

はERicsson LANGuageだからだという説もあ
ります。

Erlangに向くシステムと応用例

　Erlang/OTPは、もともと大量のコネクショ
ンをさばくために開発されたため、Webサービ
スやメッセージングシステムに向いています。
実サービスでの応用例には、次のものがあります。

・	メッセージングサービスWhatsAppでは、Er	
lang/OTPとFreeBSDの組み合わせにチュー
ニングを施し、毎秒7千万メッセージをさば
いています [2]。

・	メッセージングサービスLINEでは、独自開発
のAPIゲートウェイサーバ“LEGY”で、Erlang
を使っています [3]。

・	ドワンゴでは、モバイル向け生放送配信シ
ステムのうち、コーデック変換以外の部分
をErlangで実装したとの報告があります [4]。

　Erlang/OTPで設計されたオープンソースア
プリケーションの例には、次のものがあります。

・	Basho Technologiesによる高い対障害性を
持つ分散データベースRiakとRiak CS[5][6][7]注4

・	汎用HTTP/HTTPSサーバYaws [8]

・	Jabber/XMPPサーバejabberd [9]

注4） 筆者は 2013年 2月 1日から 2013年 9月 30日まで、
Basho Technologiesの日本法人であるBashoジャパン株
式会社に在籍していました。

Erlangでのプログラミング

　Erlangのコードは仮想マシンであるBEAM

上で動きます。コードは関数の集まりで、各関
数はBEAM上のプロセス注5として並行動作し
ます（図1）。関数の集まりはモジュールとして
扱え、各関数は「モジュール名：関数名（引数の
列）」という形で呼び出すことができます（例：
lists:seq(1,10)）。ErlangにはCの main()の
ような「プログラム起動時に呼び出される既定
の関数」はありません。実際のサーバなどでは、
主たるモジュール内の関数を直接起動すること
でプログラムを実行します。
　Erlang/OTPにはプログラミングのための基
本的なライブラリはひととおりそろっており、
筆者の個人的な考えでは十分汎用プログラミン
グに耐えると考えます。しかし、計算量の多い
数値演算処理などは、BEAMという仮想マシ
ンが介在する以上、不得手であるのも事実です。
幸い、Erlang/OTPにはほかの言語で書かれた
モジュールを呼び出したり、ほかのプログラム
とメッセージをやり取りするしくみがあるため、
本来得意とする「大量のメッセージをさばく」処
理をErlangで書き、他は別の言語に任せる、
といったこともできます。

注5） Erlangでの「プロセス」は、一般のOSの「軽量プロセス」あ
るいは「スレッド」に相当する起動時に負荷のかからない軽
いプロセスを指します。本連載では両者を混同しないよう、
必要な場所では適宜「Erlangプロセス」「OSプロセス」とい
う用語を使って区別します。

第1回 Erlang/OTPとは

ソースコード オブジェクトコード
（モジュール）

ソースコードをコンパイルしてモジュールを作る ホスト上の実行環境

複数のモジュールを
ロードして実行
複数のモジュールを
ロードして実行

OS

BEAM（仮想マシン）

c.erl

b.erl

a.erl

c.beam

b.beam

a.beam

 ▼図1　Erlangの実行環境

126 - Software Design

で学ぶErlang
並行プログラミング

　実際のプログラミングと実行は、次の手順に
従って行います。

・	Erlangのソースコード（.erl/.hrlファイル）を
エディタで書く

・	ソースコードをコンパイルし、.beamで終わ
る名前のモジュール別実行ファイルにする

・	BEAMを起動し、モジュール別実行ファイ
ルをロードして実行する

　ソースコードをエディタで書くときは、シン
タックスハイライティングやインデントなどを
サポートした専用のプラグインやマクロがあり
ますので、それらを使うと良いでしょう。一般
的にはEmacsやVimが使われるようです。
　Emacsを使う場合は、Erlang/OTPの配布物
にelispファイルが含まれている（erlang.el注6）
ので、それらをインストールすれば快適にコー
ディングできます。Vimの場合は、本稿執筆時

注6） Erlang/OTPのソースコードキットのディレクトリ lib/
tools/emacs/ の下に一式そろっています。

の最新版7.4にはvim-erlang注7が標準で含まれ
ているため、追加のプラグインなしで作業を始
められます。筆者はEmacsもVimも両方プロ
グラミングには使いますが、どちらでもコーディ
ングの作業に大差はないと思っています。なお、
タブの設定はスペースで4文字分にするのが実
用的かと思います。
　ErlangコーディングのためのEmacsの設定
例はリスト1のようになります。Vimの場合は、
リスト2のようになります。

Erlang/OTPのインストール

　Erlangのコードを実行するためには、Erlang/

OTPのインストールが必要です。インストー
ルには次の言語とライブラリ、コマンドが必要
です。

・	Cコンパイラ (gcc/clang)

注7） https://github.com/vim-erlang/vim-erlang-runtime/ に
リポジトリがあります。

 ▼リスト1　筆者の~/.emacs.d/init.elより関連部分を抜粋

; インストールしたErlang/OTPの場所に合わせる
(setq erlang-root-dir "/home/kenji/otp/17.4.1/")
; インストールしたErlang/OTPの実行ファイルの場所に合わせる
(add-to-list 'exec-path "/home/kenji/otp/17.4.1/bin/")
; erlang.elの起動に必要
; erlang.elのディレクトリをload-pathに別途加える必要がある
(require 'erlang-start)
;; タブは4スペースに解釈
(setq-default indent-tabs-mode nil)
(setq default-tab-width 4)
;; custom-set-variablesの設定より引用
(custom-set-variables
 ;; Erlang関連のみ
 '(safe-local-variable-values (quote ((erlang-indent-level . 4))))
)

 ▼リスト2　筆者の~/.vimrcの設定より抜粋

" 特にErlangに特化した設定はありません
" 次の各ファイルごとのmodelineに相当する設定です
" vim: set ts=4 sw=4 ss=4 et :
set tabstop=4
set shiftwidth=4
set softtabstop=4
set expandtab

https://github.com/vim-erlang/vim-erlang-runtime/

126 - Software Design Apr. 2015 - 127

・	GNU autoconf
・	GNU flex
・	GNU m4
・	GNU Make
・	install
・	ncurses
・	OpenSSL
・	Perl 5.x
・	sed
・	termcap あるいは termlib

　そのほかのオプションとして、次のライブラ
リなどはあったほうがいいでしょう。

・	Java SDK（JDK）（jinterfaceライブラリを使
う場合）

・	wxWidgets（グラフィックスを使う場合）
・	OS Xの場合はXcode

ダウンロードサイト

　現在 Erlang/OTP の配布キットは

http://erlang.org/download.html

の下から入手できます。
　日本では次の有志によるミラーサイトから入
手可能です。

http://erlang-users.jp/

OS別のインストールの方法

　以下、最新版のバージョン17.4注8について、
各種OS別に説明します。

 FreeBSDでのErlang/OTPのインストール
　FreeBSDではPortsあるいはパッケージの

注8） 17.4には2015年2月3日に17.4.1というパッチが出てお
り、Erlang/OTPのGitHubレポジトリのタグ「OTP-17.4.1」
から入手可能です。FreeBSDやOS Xではすでに17.4.1に
対応しています。また、16以前のメジャーバージョンは
「R16B03」などの、独自の命名規則を採用していますが、
本連載ではバージョン17以降を主に扱うことにします。

lang/erlangをビルド／インストールするのが
早道です。また、Erlang/OTPの必要な各種パッ
ケージのために、lang/erlang-runtime17（バー
ジョン17.xの場合）など、Erlangのバージョン
ごとのランタイムが用意されています。次のコ
マンドを使ってください。

・	portmasterを使ったPortsからのビルドとイ
ンストール

cd /usr/ports && umask 0022 && ｭ
portmaster lang/erlang

・	pkgコマンドによるパッケージインストール

pkg install lang/erlang

 OS X (Mac）でのインストール
　OS Xでは、HomeBrew（http://brew.sh/）の
バイナリパッケージ bottleとして提供されて
いるのをインストールするのが楽です。OS X

10.10（Yosemite）の場合、HomeBrewをインス
トールしてあれば

brew install erlang

だけでインストールできます。

 Linux（Ubuntu/Debian/CentOS）での
 インストール
　Linuxの各種ディストリビューションでは独
自にErlang/OTPのパッケージを作っています
が、必要なライブラリやモジュールをそろえる
のが大変なため、筆者はErlang Solutions注9の
配っているパッケージをまずインストールする
ことをお勧めします。たとえばUbuntuの場合
は次のとおりになります [10]。

注9） 英国ロンドンに本拠地を持つErlang/OTPのコンサルティ
ングや教育などのビジネスを行っている会社です。世界各
地でErlang FactoryやErlang UserConferenceなどのカン
ファレンスを行うと同時に、コミュニティの運用やユーザ
間の標準化活動などに力を入れています。

第1回 Erlang/OTPとは

http://erlang.org/download.html
http://erlang-users.jp/

128 - Software Design

で学ぶErlang
並行プログラミング

 パッケージを加える
wget http://packages.erlang-solutions.ｭ
com/erlang-solutions_1.0_all.deb
sudo dpkg -i erlang-solutions_1.0_all.ｭ
deb
 Ubuntuのコードネームは適宜変更
deb http://packages.erlang-solutions.ｭ
com/ubuntu trusty contrib
 パッケージ用の認証鍵を取得する
wget http://packages.erlang-solutions.ｭ
com/ubuntu/erlang_solutions.asc
sudo apt-key add erlang_solutions.asc
 パッケージライブラリを更新してインストール
sudo apt-get update
sudo apt-get install erlang

 Windowsでのインストール
　Windowsでは32/64ビットの実行形式のイ
ンストールファイルが用意されており、それを
実行して展開することでインストールができま
す。64ビット用バージョン17.4の場合はotp_

win64_17.4.exeというファイル名になっていま
す。この実行形式ファイルを前述の配布キット
のダウンロードサイトより入手して実行してく
ださい。

Erlang shellの実行

　インストールが終わると、対話型実行環境
であるErlang shellが使えるようになります。

Linux/FreeBSD/OS Xでは、図2に示すよう
に“erl”というコマンドを使います（Windows

の場合はインストール後に出てきたアイコンを
クリックすると、独自のキャラクタユーザイン
ターフェース環境を含んだwerl.exeというプロ
グラムが実行され、同じように表示されます）。
　図2はMac OS Xでの実行例です。シェルを
呼び出して関数を1つ実行してシェルから抜け
るという単純なものです。実際のプログラミン
グではこの作業を繰り返すことになります。

Erlang/OTPの参考書

　Erlang/OTPの参考書としては、日本語では
次の2冊をお勧めします。

・	Joe Armstrong（著）、榊原 一矢（訳）
 『プログラミングErlang』、オーム社、2008
年、ISBN-13：9784274067143

　後述する“Programming Erlang”の第 1版の
日本語訳です。筆者は2008年にこの本に出会っ
て、Erlangの勉強を始めました。Erlangや
OTPの基本的な考え方が網羅されており、最
初の一歩を踏み出すには最適の本と思います。

 ▼図2　Mac OS XでのErlang shellの実行例

sh-3.2$ erl
Erlang/OTP 17 [erts-6.3.1] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-
poll:false] [dtrace]

Eshell V6.3.1 (abort with ^G)
1> calendar:local_time().　 ←このようにして関数を起動する
{{2015,2,10},{15,8,54}}　 ← 現在の日時を表示している
2>　 ← ここでコントロールG (^G）を押すと、シェルが中断する
User switch command
 --> ?　 ← ヘルプが出る （複数のジョブやシェルに接続できる）
 c [nn] - connect to job
 i [nn] - interrupt job
 k [nn] - kill job
 j - list all jobs
 s [shell] - start local shell
 r [node [shell]] - start remote shell
 q - quit erlang
 ? ¦ h - this message
 --> q　 ← 抜けるときは、q で抜ける
sh-3.2$

128 - Software Design Apr. 2015 - 129

・	Fred Hebert（著）、山口 能迪（訳）
 『すごいErlangゆかいに学ぼう！』、オーム社、
2014年、ISBN-13：9784274069123

　
　後述する“Learn You Some Erlang for Great

Good!”の日本語訳です。この本はErlang/OTP

を分散システムの構築に使ううえで陥りやすい
問題とその解決策について、実際の例を多数挙
げて解説しています。ある程度Erlang/OTPの
練習をしたうえで読むには最適の本です。なお、
無償のオンライン版がhttp://www.ymotongpoo.

com/works/lyse-ja/に公開されています。
　Erlang/OTPも他の言語同様、一次情報は英
語のものが大部分です。次に英語で読むべき本
を3冊挙げておきます。

・	Joe Armstrong, "Programming Erlang (2nd
Edition)", Pragmatic Bookshelf, 2013,
ISBN-13: 9781937785536

　前述の『プログラミングErlang』の原著です。
第2版では、バージョン17で加えられた機能や、
プログラミングに必要なイディオムなど、大幅
に追加修正されています。

・	Fred Hebert, "Learn You Some Erlang for
Great Good!", No Starch Press, 2013,
ISBN-13: 9781593274351

　前述の『すごいErlangゆかいに学ぼう！』の
原著です。こちらもオンライン版が http://

learnyousomeerlang.com/に無償提供されてい
ます。

・	Francesco Cesarini, Simon Thompson,
"Erlang Programming", O'Reilly, 2009,
ISBN-13: 9780596518189

　この書籍はErlangの基本的な内容に加え、
OTPで用意された各種サーバを書くためのし
くみや、デバッグの仕方について詳細に解説し
ています。仕事をするうえで読んでおくと役立
つ1冊です。

　Erlang/OTPの言語仕様に関するリファレン
スマニュアルや各種ドキュメントは、次の
URLで示すサイトにまとめられています注10。

http://erlang.org/doc/

まとめ

　今回は、Erlang/OTPの歴史、応用例、イン
ストールの仕方、参考書などについて紹介しま
した。次回はErlangの言語仕様や、プログラ
ミングに必要な機能について紹介します。｢

参考文献
[1]	 Mark Williams, "The True story about

why we invented Erlang and A few
things you don't want to tell your
Manager", Erlang Factory London
2011, February 26, 2011, https://ww	
w.erlang-factory.com/upload/presenta	
tions/416/MikeWilliams.pdf

[2]	 "The WhatsApp Architecture Facebook
Bought For $19 Billion", http://highsca	
lability.com/blog/2014/2/26/the-what	
sapp-architecture-facebook-bought-for-
19-billion.html

[3]	 LINE Engineers' Blog, "Adopting SPDY
in Line ? Part 1: An Overview", http://d	
evelopers.linecorp.com/blog/?p=2381

[4]	 太田 健@ドワンゴ, 「なぜERLANGにした
のか」, 歌舞伎.tech#3 「Real World Erlang	
/OTP」, 2014-03-07, http://sile.github.
io/slide/kbkz_tech_03/#/

[5]	 http://www.basho.com/riak/
[6]	 http://www.basho.com/riak-cloud-

storage/
[7]	 上西 康太, 「分散データベース『未来工房』」,

本誌2013年7月号〜2014年5月号
[8]	 http://yaws.hyber.org/
[9]	 http://www.ejabberd.im/
[10]	https://www.erlang-solutions.com/

downloads/download-erlang-otp#tabs-
ubuntu

注10） このサイトの内容は、Erlang/OTPの配布サイトからダウ
ンロードすることもできます。17.4に対応したものは
otp_doc_html_17.4.tar.gz というファイル名で配布され
ています。筆者は作業用のコンピュータに展開しておき、
オンラインマニュアルとして使っています。

第1回 Erlang/OTPとは

http://erlang.org/doc/
http://www.ymotongpoo.com/works/lyse-ja/
http://www.ymotongpoo.com/works/lyse-ja/
https://www.erlang-factory.com/upload/presentations/416/MikeWilliams.pdf
http://highscalability.com/blog/2014/2/26/the-whatsapp-architecture-facebook-bought-for-19-billion.html
http://developers.linecorp.com/blog/?p=2381
http://sile.github.io/slide/kbkz_tech_03/#/
http://www.basho.com/riak/
http://www.basho.com/riak-cloud-storage/
http://yaws.hyber.org/
http://www.ejabberd.im/
https://www.erlang-solutions.com/downloads/download-erlang-otp#tabs-ubuntu
http://learnyousomeerlang.com/
http://learnyousomeerlang.com/

130 - Software Design Apr. 2015 - 131

　今回より「Sphinx」というドキュメンテーショ
ンツールについて、複数回に分けて紹介してい
きます。Sphinxは多くのエンジニアにとって生
産性を上げられる良いツールですので、ぜひ一
度触ってみてください。
　本連載は、おもに次のような方に向けて書い
ていますが、すでにSphinxを利用されている方
でも新たな発見があると思います。

・名前は聞いたことがあるけど、どんな場面で
使えるのかわからない

・ほかの人がどんなところで使っているのか知
りたい

　今回は「Sphinxとは何か」「どんなものができ
るのか」「動かすためには何が必要か」を紹介し
ます。次回からは、実際に利用されている方々
からの利用事例をもとに、記述方法やコツなど
を紹介していきます。

　Sphinxは、Pythonで作成されたドキュメン
テーションビルダーです。reStructuredText（以
下、reST）と呼ばれるマークアップ言語で記述
したテキストファイルをHTMLやPDFなどの
形式に変換できます（図1）。たとえば、リスト

1の reSTは図 2〜4のようなHTML、PDF、
EPUBに変換されます。
　また、Sphinxには拡張機能（Sphinx拡張）があ
り、変換形式の追加、テーマの追加、マークアッ

Sphinxとは

プの追加などが行えます。拡張機能ついては次
回以降で紹介します。
　もともとSphinxはPythonのドキュメントを
書くために生まれてきたツールですが、さまざ
まな要望や改良が重ねられ、汎用的に使えるよ
うになっています。Python製のツールのドキュ
メントはSphinxで作成されたものが多いです
が、最近ではPython以外の言語で書かれたツー
ルのドキュメントでも利用されています。有名
なところでは、Chef、AWS（の一部のドキュメ
ント）、CakePHPなどがあります。

Sphinxと既存ツールとの比較

　Sphinxとほかのドキュメント作成ツールを比
べると、次のような特徴の違いがみられます。

Wiki ■
　辞書のような使い方に優れたドキュメンテー
ションツールです。複数人数でドキュメントを
まとめる場合によく使われます。どのページか
らどのような順番で読んでも良いようなドキュ
メントを書くのに向いています。1つのドキュ
メントにいくつものドキュメントを複雑に関連
付けられるのも特徴の1つです。

Microsoft Word ■
　GUIと校正指摘に優れたドキュメンテーショ
ンツールです。専用のアプリケーション上でド
キュメントを作成します。上から順番に読んで
いく取り扱い説明書など、あらかじめ何がどこ

Sphinxで始める
 ドキュメント作成術

テキストファイルからHTML、PDF、
EPUBドキュメントを作れるツール第1回

川本 安武 （かわもと やすたけ）　 Twitter @togakushi

Sphinxで始める
 ドキュメント作成術

130 - Software Design Apr. 2015 - 131

に記述されるかが決まっているドキュメントを
書くのに向いています。作成の途中で大きく構
造を変えることはあまり得意としません。

Sphinx ■
　Wikiのようにテキストで編集しますが、Web

ブラウザ上では編集できません。Sphinxで、
Wikiと同じくらい複雑なドキュメント間の関連
付けを持たせようとするとたいへんですが、必

テキストファイルからHTML、PDF、
EPUBドキュメントを作れるツール 第1回

リスト1　reST形式で書いたテキストファイル ▼
===============================
Sphinxサイト ミーティング 6/30
===============================
:日時: 2000/06/30 10:00 - 12:00
:参加者:
 shimizukawa, tk0miya, usaturn, r_rudi

進捗状況について
=================
まず進捗状況の共有を行いました。
前回ミーティング :ref:`meeting-0513` からｭ
の進捗確認。

* サイト概要: 未着手
* Sphinの紹介: 大まかに完了。 *肉付けと見直ｭ
しが必要*
* インストールページ: **完了**

.. 公式ドキュメント翻訳については省略

検討課題

1. Sphinxの紹介で、以下の絵のような、Sphinxｭ
の全体像を
 表すイメージ図が必要

 .. figure:: sphinx-flow.png
 :width: 400
 （..以下略..）

HTML

Sphinx原稿

reST
記法

PDF

EPUB

①好きなエディタで
　原稿を書く

②読込

③変換 ④生成

図1　Sphinxによるドキュメント変換のイメージ ▼ 図2　HTMLに変換した様子 ▼

図3　PDFに変換した様子 ▼

図4　EPUBに変換した様子 ▼

132 - Software Design Apr. 2015 - 133

要最低限の関連付け、前後のドキュメントとの
関連付けを自動で行ってくれます。また、Word

と同様に上から順に読んでいくようなドキュメ
ントを作成するのに向いていますが、構造を変
化させることも柔軟に対応でき、ドキュメント
の分割、結合、入れ替えを容易に行えます。プ
ログラムのリファレンスなどと相性が良く、リ
ポジトリ上でソースコードなどと一緒に管理す
るのに向いています。

　どんなツールもそうですが、向いている使い
方と向いていない使い方があります。合わない
ところで無理に使っても誰も幸せになれません。
Sphinxのイマイチなところを補強する方法は
多々ありますが、凝り過ぎると環境を維持する
コストが高くなるのでほどほどにしましょう。

イイところ

好みのエディタやブラウザを使える ■
　お気に入りのテキストエディタはあります
か？　Sphinxではそれを使ってドキュメントを
書くことができます。お気に入りのWebブラウ
ザはありますか？　Sphinxで変換したドキュメ
ントはそれを使って閲覧できます。作成したド
キュメントの管理もお気に入りの手法が利用で
きます。Pythonが動く必要があることを除けば、

Sphinxのイイところ
／イマイチなところ

何も環境を変える必要はありません。
　シンプルがゆえにいろいろなやり方が入り込
む余地があります。Gitなどのバージョン管理
ツールとも相性が良いのもSphinxの強みです。

自動レイアウト ■
　Sphinxはレイアウトをすべて自動で行ってく
れます。フォントサイズや見出しなどの書式指
定、ドキュメント間のリンク（クロスリファレン
ス）の変更も変換時に自動的に追従してくれま
す。ドキュメントを書くときにレイアウトが切
り離されているので、reSTを書くときは内容だ
けに集中することができます。

reSTの可読性の高さ ■
　reSTは「テキストでも読みやすい」ことを主眼
において仕様策定されているため、変換する前
でも非常に高い可読性があります。テキストで
メモを取る習慣がある人は、少しだけ手間をか
けてメモを reSTふうに仕立てれば、すぐに
Sphinxで変換できます。

イマイチなところ

できあがりのイメージがつかみにくい ■
　Sphinxに限ったことではないのですが、Wiki

に代表されるようなテキストベースで記述し別
の形式に変換するドキュメンテーションツール
は、ツールに慣れるまでは、自分が書いたドキュ

Sphinxで始める
 ドキュメント作成術

Sphinx-Users.jpについて
　Sphinxの情報を集めるのであれば、ユーザ会の
Webサイトが参考になります。ユーザ会は国内に
散らばっているSphinx関連情報を集めて、Webサ
イト、イベント、メーリングリストやTwitterのハッ
シュタグを通じて情報を発信しています。
　また、ユーザ会では Sphinxを使っている人や
Sphinxを開発している人、Sphinxとは関係なくド
キュメントを翻訳している人などが参加する翻訳
ハッカソンを毎月開催しています。おもに東京都

内での活動になりますが、どなたでも参加できる
ので気軽に参加してみてください。

・ユーザ会サイト：http://sphinx-users.jp/
・メーリングリスト登録：http://www.python.jp/

mailman/listinfo/sphinx-users
・イベント告知：http://sphinxjp.connpass.com/
・Twitterアカウント：@sphinxjp
・ハッシュタグ：#sphinxjp

COLUMN

http://sphinx-users.jp/
http://www.python.jp/mailman/listinfo/sphinx-users
http://sphinxjp.connpass.com/

132 - Software Design Apr. 2015 - 133

メントがどのように表示されるのかがわかりま
せん。SphinxはWikiとは異なり、ドキュメン
トを保存しただけでは変換は行われません。変
換を行うには、コマンドラインから変換対象の
フォーマットを指定してコマンドを実行する必
要があります。どのように表示されるかがすぐ
に確認できないので、Sphinxに不慣れな状態で
ドキュメントを書くのは不安かもしれません。

動作させるためにはPythonが必要 ■
　これはSphinxがPythonで書かれている以上、
しかたがないことです。もしかすると、Windows

の環境だけで使う場合は、Sphinx以外の部分で
苦労するかもしれません。しかし、これはPython

さえ動けばどのような環境でも動かせることを
意味しています。

レイアウトを変更するには出力フォーマッ ■
トの知識が必要

　ドキュメントはあらかじめ（ほぼ）決まったレ
イアウトで出力されます。Sphinxを使えば、見
出しの大きさ、フォントの種類などの書式指定
やドキュメントの体裁を気にすることから解放
されます。しかし、この自動で出力されるレイ
アウトを変更しようと思うと、少し骨の折れる
作業になります。この作業は変換によって出力
されるフォーマットの知識も必要になります。

「表」が苦手 ■
　テキストで書くドキュメンテーションツール

全般に言えることですが、プレーンテキストは
テーブルを表現するのが苦手です。Sphinxはこ
の苦手な部分をサポートするために、CSVファ
イルを取り込む方法や、リスト形式で並べた項
目を表として表現する書き方を用意しています。

　実際にreSTで書き、SphinxでHTMLに変換
したものが数多くWebで公開されています。ま
た、Sphinxを利用して書かれた書籍もあります。
「どのようなアウトプットが得られるのか」を知
るのに参考になると思いますので、いくつか紹
介します。
　SphinxのHTMLテーマには「ソースの表示」
「このソースを見る」などのリンクが存在します。
設定で非表示にもできますが、多くの場合では
変換される前のreSTを見られます。どのよう
なマークアップをすれば、どう表示されるのか
をチェックできるので活用してみてください。

Sphinx公式リファレンスマニュアル ■ 注1

　SphinxのリファレンスマニュアルはSphinx

で作成されています。ユーザ会ではそのリファ
レンスを翻訳したものを公開しています（図5）。

Sphinx-Users.jp公式サイト ■
　ユーザ会の公式サイトはオリジナルのテンプ
レートを使用したSphinxで作成されています
（図6）。サイトの更新はユーザ会のメンバーが
reSTをリポジトリにコミットすることで行わ
れています。このあたりのしかけは、次回以降
に紹介していきます。

Python公式ドキュメント ■ 注2

　Sphinxの製作者が「このドキュメントを作る

注1） 公式リファレンス：http://sphinx-doc.org/
 翻訳リファレンス：http://docs.sphinx-users.jp/

注2） 公式ドキュメント：https://docs.python.org/
 配布先：https://code.google.com/p/python-doc-ja/down

loads/list

どんなドキュメントが
できるのか

テキストファイルからHTML、PDF、
EPUBドキュメントを作れるツール 第1回

図5　 Sphinx公式リファレンスマニュアル（日本語訳） ▼

http://sphinx-doc.org/
http://docs.sphinx-users.jp/
https://docs.python.org/
https://code.google.com/p/python-doc-ja/downloads/list

134 - Software Design Apr. 2015 - 135

Sphinxで作成されています（図9）。Python以外
の言語を使用するツールでもSphinxを利用して
いる例になります。

Read the Docs ■ 注4

　reSTのドキュメントをHTMLに変換してホ
スティングするサイトです。さまざまなリポジ
トリからドキュメントを取り込めます。HTML

の変換にはSphinxが使われています。

『入門Ansible』 ■ 注5

　構成管理ツール「Ansible」の入門書（電子書籍）
です。この本はSphinxの機能だけを使って書い
てあります。作成方法は次回以降に著者の若山
史郎さんから紹介していただく予定です。

Sphinxアドベントカレンダー2012 ■ 注6

　ユーザ会のイベントとして、2012年にアドベ
ントカレンダーを行っています。25日分の記事

注4） https://readthedocs.org/

注5） http://www.amazon.co.jp/dp/B00MALTGDY

注6） http://sphinx-users.jp/event/20121200_sphinx-advent-
calendar/index.html

ためにSphinxを作った」と言うだけあり、非常
に充実して読みやすいドキュメントになってい
ます。変に凝った記述などがいっさいなく、大
量のドキュメントをまとめあげる良い例だと思
います。日本Pythonユーザ会によって日本語に
翻訳されたPython2.7のドキュメントは、HTML

形式のほかにEPUBやPDFのフォーマットで
もダウンロードできます。
　図7、8はPython2.7のドキュメントですが、
どちらも同じreSTから変換されています。

Chef Docs ■ 注3

　構成管理ツール「Chef」のドキュメントも

注3） http://docs.chef.io/

Sphinxで始める
 ドキュメント作成術

図7　Python公式ドキュメント（PDF） ▼

図8　Python公式ドキュメント（EPUB） ▼
図9　Chef Docs ▼

◀図10
『Sphinxをはじめよう』

図6　Sphinx-Users.jp公式サイト ▼

http://docs.chef.io/
https://readthedocs.org/
http://www.amazon.co.jp/dp/B00MALTGDY
http://sphinx-users.jp/event/20121200_sphinx-advent-calendar/index.html

134 - Software Design Apr. 2015 - 135

がEPUB形式とMobi形式で公開されており、
Kindleなどの端末で見られます。

『Sphinxをはじめよう』 ■ 注7

　ユーザ会の有志によって執筆された電子書籍
です（図10）。Sphinxを使って執筆されています。

その他 ■
　実はこの連載の原稿もreSTで書いてSphinx

を使って推敲や体裁のチェックを行っています。
出版社によっては決められたフォーマットで入
稿する必要があるかもしれませんが、本連載の
担当編集者は加工していないreSTと変換した
HTMLをセットで受け入れてくれます。
　ユーザ会ではSphinxの利用事例として、さら
に多くのサイトや書籍を紹介しています注8。

　Sphinxを動かすには、Python2.6以上が動く
環境が必要です。Sphinxの最新版は、安定版が
1.2.3、ベータ版が 1.3.b2です（2015年 2月現
在）。この号が発売になるころにはSphinx-1.3

がリリースされる予定です。
　Pythonのパッケージ管理システム（pip）を使
えば、簡単にインストールできます。古いバー
ジョンが必要になることはありませんので、最
新版を入れることをお勧めします。新しいバー
ジョンではマルチバイト（おもに日本語）の機能
強化が行われています。

Mac OS X、各種Linux

　Macや各種Linuxでは最初からPythonが使え
ることが多いです。お使いのディストリビュー
ションによってはSphinxがパッケージで提供さ
れているかもしれませんので、一度チェックを
してみてください。

注7） 清水川貴之、小宮健、山田剛、若山史郎 著、オライリー・
ジャパン刊、2013年9月発行、フォーマット：EPUB、Mobi

注8） http://sphinx-users.jp/example.html

動作環境別
簡易インストール手順

　Sphinxのパッケージが提供されていない場合
は、pipを使ってインストールします。pipはパッ
ケージの依存関係を解決し、必要なものをそろ
えてくれます。

　ユーザ会ではインストール手順を詳しく紹介
しています注9。ぜひ、そちらもご参照ください。

Windows

　Windows上でSphinxを動かすには、まず
Pythonが動作する環境を作る必要がありま
す注10。Pythonを入れ、pipの導入が済めば、あ
とはLinuxなどと同様の手順でインストールが
行えます。Python2.7.9からインストーラにpip

が含まれるようになったので、新規インストー
ルする場合は2.7.9以降をお勧めします。
　ユーザ会ではWindows向けのインストール手
順も詳しく紹介しています注11。

スタンドアロン版 ■
　Windows環境へのインストールを簡略化する
ため、必要なパッケージをすべて1つにまとめ
たスタンドアロン版が用意されています。Python

などの必要なパッケージのインストールをすべ
て行ってくれます。詳細は配布ページのインス
トール手順を参照してください注12。

◆　◆　◆
　今回は誌面の都合もあり、インストールまで
となります。次回は利用事例として議事録の作
成を取り上げます。議事録はテキストで書かれ、
内容も箇条書きであることが多いドキュメント
です。議事録を作成しながら、reSTの基本的な
文法、Sphinxの基本的な作法を紹介します。｢

注9） http://sphinx-users.jp/gettingstarted/install_unix.html

注10） Windows版のPythonでは、インストールパスに空白が含
まれたり、日本語が含まれたりしていると、一部の機能が
正しく動作しません。インストールパスには気をつける必
要があります。

注11） http://sphinx-users.jp/gettingstarted/install_windows.html

注12） http://sphinx-users.jp/gettingstarted/install_windows_
standalone.html

pip install sphinx

テキストファイルからHTML、PDF、
EPUBドキュメントを作れるツール 第1回

http://sphinx-users.jp/gettingstarted/install_unix.html
http://sphinx-users.jp/example.html
http://sphinx-users.jp/gettingstarted/install_windows.html
http://sphinx-users.jp/gettingstarted/install_windows_standalone.html

136 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

adb接続（有線方式）
　有線方式は、開発用PCとWear実機をUSB

ケーブルで直接つないでadb接続する方法です
（図1）。この方法を使えるものにも、Wear実
機に直接ケーブルをさせる機種（Sony Smart

Watch 3など）と、クレードル経由でWear実
機と接続する機種（LG G Watchなど）がありま
す。なお、adb接続を行うにはWear実機上で
USBデバッグの許可設定を有効にしておく必
要があります。具体的には、図2のとおり、
Wear実機で［設定］→［開発者向けオプション］
から「ADBデバッグ」項目をタップすればOK

はじめに

　前回（3月号）では、Android Wear（以降「Wear」
と表記）アプリ開発に関する基本的な事項（Wear

の概要／開発環境構築／簡単なアプリの開発／
エミュレータでの実行）について触れました。
今回は最初に、WearアプリをWear実機にイ
ンストールして実行する方法をご紹介しま
す注1。続いて、Wearアプリで最も重要と言っ
ても過言ではない「通知機能（Notification）」を
取り上げます。いずれもWearアプリを開発す
るうえで必須の内容ですので、しっかりつかん
でいただけると幸いです。

実機での実行

　前回開発したWear向けアプリ「HelloWear」
を実機にインストール・実行する方法について
説明します。Wear実機は複数のメーカーから
発売され、スペックにもバリエーションが出て
きています。アプリのインストールに関係する
adb接続の方法も機種によって異なります。表
1に示すとおり、有線方式と無線方式の2種類
があります。

注1） 開発環境構築やエミュレータでの実行方法については前回
の記事をご参照ください。

Android Wear

アプリ開発入門
第2回 Android Wearアプリで通知機能を活用！

～より生活に密着するスマートデバイスの世界～

 ▼図1　有線でのadb接続

 ▼表1　実機ごとのadb接続方式

Sony SmartWatch 3

LG G Watch R

LG G Watch

Samsung Gear Live

Moto 360

開発用PC

USB
ケーブル

Wear実機

○
○
○
○
─

○
○
○
○
○

Wear実機 有線方式
（USB）

無線方式
（Bluetooth）

iplatform.orgにて情報発信するかたわら、「セカイフォン」などを開発。Droidconなどでのカンファレンス講
演、MWC/CES/IFAでのプロダクト展示、執筆などの活動も実施。NTTソフトウェア株式会社テクニカルプロフェッ
ショナル。現在はAndroid以外のモバイルOSにも取り組み、公私にわたってモバイルアプリの世界に没頭中。

神原 健一（かんばら けんいち ）　　　　 http://blog.iplatform.org　　　　　　@korodroidWeb Twitter

http://blog.iplatform.org

Apr. 2015 - 137136 - Software Design

第2回 Android Wearアプリで通知機能を活用！

バも必要ですので、導入しておいてください。

adb接続（無線方式）

　無線方式は、Bluetoothを用いてadb接続す
る方法です（図3）。具体的には、開発用PCと
Handheld実機注2をUSBケーブルで接続し、さ
らに、Handheld実機を経由して開発用PCと
Wear実機をBluetoothで接続するというアプ
ローチです。そのためには、Handheld実機側
でBluetoothのONとUSBデバッグの有効化、
Wear実機側でUSBデバッグとBluetoothデ
バッグの両方を有効化しておく必要があります。
Wear実機のBluetoothデバッグ設定は、図4
を参考に設定してください。

注2） 「Handheld」はスマホおよびタブレットの総称です。

　次に、Handheldで必要な設定を解説してお
きます。Android Wearコンパニオン注3アプリ
を起動し、同アプリの右上にある設定アイコン
を選択（図5）。その後「Bluetooth経由のデバッ
グ」を有効化します（図6）。これにより、同項
目の表示が図7のようになることを確認します。
　さらに、開発用PCのコンソールなどから図
8を実行します。Handheldの画面に「Wearの
デバッグを許可しますか ?」というダイアログ
が表示されたら、OKを選択してください。こ
れにより、アプリ内の表示が図9に変化すれば、
開発用PCとWear実機をadb接続できる状態
になっています。

注3） Handheld実機とWear実機を連携動作させるためのアプ
リです。Google Playで「Android Wear」と検索し、イン
ストールできます。

です。開発者オプションが表示さ
れていない場合は、［設定］→［端
末情報］から「ビルド番号」を7回
タップすることで表示できます。
また、開発用PCがWindowsの場
合はWear実機用のUSBドライ

 ▼図3　無線でのadb接続

 ▼図4
Wear実機のBluetooth
デバッグ設定

 ▼図5
Handheld実機での
デバッグ設定（1）

 ▼図6
Handheld実機での
デバッグ設定（2）

 ▼図2　Wear実機の
　　 USBデバッグ設定

開発用PC

USB
ケーブル Bluetooth

Wear実機Handheld実機

138 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

ずです（写真1）。このようにWearアプリも、
Handheldアプリと同様に実機にインストール
して実行することができます注4。

Wearの通知機能

　話題を変えて、Wearの通知機能について詳
しく見ていきましょう。交通情報やメール受信
などのイベントが発生すると、Handheld上に
通知として表示されます。Wearがあれば、そ
の情報はWear上にも表示されます（図12）。
Handheldをポケットから取り出すことなく、
通知情報を確認することが可能となります（図
13）。
　このように、Wearアプリではユーザが必要
な情報を適切なタイミングで、自動的に提供す
ることが重要です。

簡単な通知の表示

　まずは、図14のような簡単な通知を表示し
てみましょう。通知は、Handheld、Wearのい
ずれからも生成することができます。一般的に
はHandheldで受信したイベントを通知として
生成し、Wearに表示する場合が多いでしょう。
そのため今回はHandheldで通知を作成します。
Handheld向けモジュール内で、リスト1のコー

注4） 開発したWearアプリをGoogle Playで配信するには、ビ
ルドする際にもうひと工夫必要です。詳細は今後の記事で
解説予定です。

実機でのアプリ実行例
　前回の号で開発したWear用アプリ「Hello

Wear」を実機にインストールしてみましょう。
Android Studioのツールバーの中央付近のリ
ストボックスで「wear」を選択し（図10）、緑色
の実行ボタンを押してください。どのデバイス
で実行するかを聞かれますので、図11のよう
にWear実機を選択してください。環境が正常
動作していれば、実機でアプリが実行されるは

 ▼図7　Bluetooth経由のデバッグ状態（1）

 ▼図9　Bluetooth経由のデバッグ状態（2）

 ▼図10　アプリの実行（1）

 ▼図11　アプリの実行（2） ▼写真1　アプリの実行（3）

 ▼図8　開発用PCからのadbコマンドでWear実機へ接続

>adb forward tcp:4444 localabstract:/adb-hub
>adb connect localhost:4444

Apr. 2015 - 139138 - Software Design

第2回 Android Wearアプリで通知機能を活用！

ドを記述すればOKです。
　最初に通知生成用ビルダー（Notification

Compat.Builderクラス）のインスタンスを生成
し、アイコン・タイトル・本文を設定します。
次に通知マネージャ（NotificationManager

Compatクラス）のインスタンスを生成します。
さらに、通知生成用ビルダーのbuild()メソッ
ドで通知を生成し、さらに、通知マネージャの
notify()メソッドを呼び出すことで通知が発行
されます。同通知は最初にHandheldで表示され、
その後、Wearでも自動的に表示されるという
流れです。
　また、NotificationCompat.Builder/Notification

ManagerCompatクラス（Compatが付いたクラ

ス）を使っていることにも着目してください。
これらのクラスは、AndroidのSupport Library

（Googleの互換性維持のためのパッケージ）で
提供されています。Notification.Builder、Noti

ficationManagerなど互換性パッケージに含ま
れないクラスを使ってしまうと、Wear関連の
機能が動作しない原因になり得るので注意して
ください。
　通知は1つだけでなく、複数発行することも
可能です。ただ、同じアプリから複数の通知を
むやみに発行するとWearが通知であふれ、ユー
ザビリティを損ねてしまう可能性があります。
十分に注意してください。詳細は省略しますが、
図15のように複数の通知を集約させることも

 ▼図12　通知情報の例 ▼図14　通知表示

 ▼図15　通知の集約
 ▼図13　HandheldとWear間の情報の流れ

Wear実機Handheld実機

// 通知IDの定義
int notificationId = 1000;
// 通知生成用ビルダーのインスタンス生成
NotificationCompat.Builder builder = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.ic_restaurant)
 .setContentTitle("Bar Mobile")
 .setContentText("洋食／卵料理");
// 通知マネージャのインスタンス生成
NotificationManagerCompat manager = NotificationManagerCompat.from(this);
// 通知の発行
manager.notify(notificationId, builder.build());

 ▼リスト1　シンプルな通知表示の実装

140 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

ンツのリッチ化）、長文表示（詳細情報表示）さ
せるといったカスタマイズも可能です。通知に
は、Styleという通知をリッチにするしくみが
提供されています。Styleには、Big Picture（画
像の表示）やBig Text（長いテキストの表示）な
どが提供されています。まずは通知に背景画像
を設定してみましょう（図16）。リスト2のコー
ドを記述します。
　差分となるのは、リスト2のaです。Style

として、BigPictureStyleを利用しています。
最初に同Styleのインスタンスを生成します。
さらに、bigPicture()メソッドを呼び出し、背
景に設定する画像を指定しています。その後、
通知生成用ビルダのインスタンスにsetStyle()

メソッドを用いて、生成したスタイルを適用し
ています。
　続いて、長文を含む通知を作ってみましょう

できます注5。必要に応じて適用を検討してくだ
さい。

通知のカスタマイズ
　先ほどの例では、通知として短いテキストを
表示しただけでしたが、背景画像設定（コンテ

注5） Stacking Notifications；https://developer.android.com/
training/wearables/notifications/stacks.html

 ▼図16　
通知のカスタマイズ
（背景画像）

 ▼図17　
通知のカスタマイズ
（長文）

NotificationCompat.Builder builder = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.ic_restaurant)
 .setContentTitle("Bar Mobile")
 .setContentText("洋食／卵料理");

NotificationCompat.BigPictureStyle style = new NotificationCompat.BigPictureStyle(
 builder);
style.bigPicture(BitmapFactory.decodeResource(getResources(),
 R.drawable.food));
builder.setStyle(style);

NotificationManagerCompat manager = NotificationManagerCompat.from(this);
manager.notify(MY_NOTIFICATION_ID, builder.build());

NotificationCompat.Builder builder = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.mail_small)
 .setContentTitle("Kenからのお知らせ");

NotificationCompat.BigTextStyle style = new NotificationCompat.BigTextStyle(
 builder);
 style.bigText("ご無沙汰しています。新しい開発者イベントの件で、ご連絡しました。
 今週の金曜日に新宿で開催します。");
 builder.setStyle(style);

NotificationManagerCompat manager = NotificationManagerCompat.from(this);
manager.notify(MY_NOTIFICATION_ID, builder.build());

 ▼リスト2　リッチな通知の実装（背景画像）

 ▼リスト3　詳細な通知の実装（長文）

a

b

https://developer.android.com/training/wearables/notifications/stacks.html

Apr. 2015 - 141140 - Software Design

第2回 Android Wearアプリで通知機能を活用！

（図17）。リスト3のコードを記述します。基
本的な流れは、先ほどの例と同じです。差分と
なるのはbです。Styleとして、BigTextStyle

を利用しています。最初に同Styleのインスタ
ンスを生成します。さらに、bigText()メソッ
ドを呼び出し、設定する長文のテキストを指定
しています。その後、通知生成用ビルダのイン
スタンスにsetStyle()メソッドを用いて、生成
したスタイルを適用しています。

通知へのアクション追加

　これまでに紹介した通知は、テキストや画像
を用いて、あくまで情報を表示しているだけで
した。Wearアプリでは通知を表示するだけで
なく、ボタンを追加し、その押下によりユーザ
に何らかのアクションを実行させることも可能
です。
　図14の状態から左にスワイプすると、電話
発信するためのボタン（図18）が表示されるよ
うに実装を変更してみましょう。リスト4のコー
ドを記述します。
　注目すべきは、リスト4のc dの2ヵ所です。
cで電話発信（ダイヤル画面表示）を行うアク
ションを暗黙的インテントとして生成し、ペン
ディングインテントにラッピングしています。
次にdで、通知生成用ビルダーのインスタンス

にaddAction()メソッドを用いて、ボタン画像、
ボタンラベル、ペンディングインテントを設定
しています。この実装により、Wearで表示さ
れる通知をスワイプして表示されるボタンをタッ
プすると、Handheldで電話発信画面が表示さ
れるようになります。

おわりに

　今回は、Wearアプリの実機での実行に加え、
Wearアプリにおける通知について解説しまし
た。冒頭でも述べましたが、通知はWearの世
界で最も重要な要素の1つです。この機能を適
切に活用すれば、ユーザにとって便利と感じて
もらえるアプリを開発できるはずです。
　次回もWearアプリを開発するうえで重要な
トピックを取り上げます。毎回読んでいただく
ことで、Wearアプリ開発の世界を少しずつつ
かんでいただけるはずです。お楽しみに！s

 ▼図18　通知表示へのアクション追加

Intent i = new Intent(Intent.ACTION_DIAL, Uri.parse("tel:0123456789"));
i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
PendingIntent pi = PendingIntent.getActivity(this, 0, i,
 PendingIntent.FLAG_UPDATE_CURRENT);

NotificationCompat.Builder builder = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.ic_restaurant)
 .setContentTitle("Bar Mobile")
 .setContentText("洋食／卵料理")

 .addAction(android.R.drawable.sym_action_call,
 "電話発信", pi);

NotificationManagerCompat manager = NotificationManagerCompat.from(this);
manager.notify(notificationId, builder.build());

 ▼リスト4　通知アクションの実装

c

d

142 - Software Design

ります。Mackerelではその数値のことをメト
リックと呼んでいます。そしてそれらの傾向を
つかむために可視化を行い、異常値があれば通
知するしくみが必要です。Mackerelはそのた
めのグラフ機能とアラート機能を備えています。

　人間であれば体重、心拍数、血圧、体温など
を定期的に測定することでその人の健康状態を
観察できることは想像できるでしょう。

Mackerelではじめる
サーバ管理

　Mackerelではミドルウェアのためのプラグインがすでに多数用意されているので、
サーバ管理初心者にもお勧めです。今回は、そもそもサーバの何を監視すればいい
のかという疑問に答えつつ、Nginxの各種メトリック、さらにステータスコードご
とのリクエスト数をグラフとして可視化してみます。

Writer 松木 雅幸 （まつき まさゆき） ㈱はてな
Twitter @songmu

　前回は駆け足でMackerelの基本的な導入方
法を説明しました。今回は実際のサーバの監視
にあたって必要なことを考えながら、もう少し
踏み込んだMackerelの活用方法を説明してい
きたいと思います。

サーバ監視とメトリック

　サーバを監視するにあたり、まずサーバの状
態を継続的に測定し、収集することが必要にな

どのメトリックを測定するか

第2回 グラフで見るサーバ、
ミドルウェアのメトリック

 ▼図1　VPSの標準メトリックのグラフ

142 - Software Design Apr. 2015 - 143

　しかし、サーバ監視のためのメトリックと言
われても、何を測定すれば良いのでしょうか？
　サーバを監視するうえで基本的なメトリック
項目は次のようなものが挙げられます。

・ロードアベレージ
・CPU使用率
・メモリ使用量
・ディスクI/O、ディスク使用量／率
・ネットワーク転送量

　これらのものを自力で、抜けなく、正確に収
集し続けるのは案外難しいことです。Mackerel

ではmackerel-agentを動かせば自動的にこれ
らメトリックを測定・収集し、可視化してくれ
ます。図1は実際に筆者が使っているVPSの
標準メトリックのグラフ一覧です。
　また、サービス・ロール設定を行うことで、ロー
ルに属したホストすべてのメトリックを1つの
グラフで見ることができます。図2はロールが
backend（アプリケーションサーバ）のメモリ使
用量を、積み上げで表示したグラフです。
　Linuxサーバで、より細かいメトリックを取
得したい場合はmackerel-plugin-linuxを併せて
使用すると良いでしょう。割り込みやコンテキ
ストスイッチ、forkの数、swap状況、ディス
ク応答時間、ネットワークコネクション数など
を収集できます。

サーバ特有の
メトリックを測定

　前節で取り上げたメトリックは、あくまで必
要最低限の汎用的な項目です。実際にサーバを
運用していく段階になると、サーバの用途ごと
に異なるメトリックを取得する必要が出てきま
す。そのために、Mackerelはプラグイン機構
を用意しています。
　また新しいミドルウェアを導入した際に、そ
れらに対してどのようなメトリックを収集すれ
ばいいのか、わからないことがあるかもしれま
せん。そのサポートのために、Mackerelは公
式プラグイン集を提供しています。公式プラグ
イン集は現状、表1のものを用意しています。

mackerel-agent-pluginsを導入する

　ではmackerel-agent-pluginsを導入してみま
しょう。前回の手順どおりMackerelのパッケー
ジリポジトリの設定が終わっていれば、aptや
yumを利用して簡単に導入ができます。

Debian/Ubuntu
% apt-get install mackerel-agent-plugins
Redhat/CentOS
% yum install mackerel-agent-plugins

　試しに1つ設定してみましょう。ここでは

第 2 回
グラフで見るサーバ、ミドルウェアのメトリック

 ▼図2　backendロールのメモリ使用量

AWS EC2
CPU Credit

MongoDB

MySQL

AWS ELB Nginx

AWS RDS PHP-APC

Apache2 Plack

Elasticsearch PostgreSQL

HAProxy Redis

JVM SNMP

Linux procs Squid

memcached Varnish

 ▼表1　公式プラグイン

144 - Software Design

 Mackerelではじめるサーバ管理

Nginxの例を取り上げます。まず、mackerel-

agent.conf（デフォルトでは、/etc/mackerel-
agent/下に配置）に次の記述を追加します。

[plugin.metrics.nginx]
command = "/usr/local/bin/mackerel-plugin-ｭ
nginx -port 80"

　nginxプラグインは、Nginxのngx_http_stub_

status_module注1の機能を利用しているため、
nginx.confに次のような設定も必要です。

 location /nginx_status {
 stub_status on;
 access_log off;
 allow 127.0.0.1;
 deny all;
 }

　mackerel-agentをrestart、Nginxをreloadす
れば図3のようなNginxに関する各種メトリッ
クの取得を行うことができます。
　ngx_http_stub_status_moduleを有効にするた
めにはNginxのビルドオプションに --wit
h-http_stub_status_moduleが 必 要 で す。
nginx -Vビルドオプションを確認できるので、
うまくメトリック値が取得できない場合はオプショ

ンが有効になっているか確認してみてください。
　実はMackerelのプラグインはそれぞれ単な
るコマンドラインツールです。独自のプラグイ
ンを書くこともできますし、言語も必ずしも
Goである必要はありません。独自のプラグイ
ンを書く方法は次回以降で取り上げますが、公
式ヘルプにも説明注2がありますので興味があ
る方はごらんください。

サーバに依存しない
メトリックを収集

　Mackerelを使ってサーバのさまざまなメト
リックを収集し、グラフ化できることがわかり
ました。しかし、サービス全体を監視していく
中で必要なメトリックは必ずしも単一のサーバ
に紐づくとは限りません。たとえばアクティブ
ユーザ数や売り上げなどを可視化して監視した
いということもあるでしょう。
　Mackerelはそういったメトリックを収集す
るためのしくみとして、サービスメトリックと
いう機能を提供しています。サービスメトリッ
クはREST APIで値の投稿を行います。図4
はcurlを利用した例です。
　APIに対して name(メトリックのキー名)、

 ▼図3　Nginxのグラフ（左から順に現在の接続数、接続状況、総リクエスト・接続数のグラフ）

% curl https://mackerel.io/api/v0/services/<Your Service>/tsdb ･
 -H 'X-Api-Key: <Your API Key>' -H 'Content-Type: application/json' ･
 -X POST -d '[{"name": "Sample.foo", "time": '$(date +%s)', "value": 30}]'

 ▼図4　curlでサービスメトリックを投稿

注1） URL http://nginx.org/en/docs/http/ngx_http_stub_status_module.html
注2） URL http://help-ja.mackerel.io/entry/advanced/custom-metrics

http://nginx.org/en/docs/http/ngx_http_stub_status_module.html
http://help-ja.mackerel.io/entry/advanced/custom-metrics

144 - Software Design Apr. 2015 - 145

time(エポック秒)、value(メトリックの数値)

の3つのキーが格納されたオブジェクトの配列
を投稿できるようになっています。ホストメト
リックは1分間隔の取得が前提となっています
が、サービスメトリックは任意の間隔で投稿で
きます。

�uent-plugin-mackerelを利用する

　サービスメトリックの投稿は単純なREST

APIですのでcronなどで定期的に値を投稿し
て も 良 い の で す が、fluent-plugin-

mackerelを利用する方法もあります。
fluentdを使うことにより、fluentdの既存
のplugin資産を利用して集計処理を行っ
たり、バッファリング処理や投稿エラー
時の再送処理をfluentdに任せることがで
きます。
　ここでは、Nginxのアクセスログから
ステータスコードごとのリクエスト数を
サービスメトリックに投稿します。図5
のようなステータスコード別にリクエス
ト数がカウントされたグラフを作ってみ
ましょう。

　まずNginxからアクセスログをLTSV形式
で出力するようにします。nginx.confにリスト
1の記述を追加します。
　またステータスコードごとにリクエストを数
えるため、fluent-plugin-datacounterを利用しま
す。fluent-plugin-mackerelと併せてgem install

しましょう。

% gem install fluent-plugin-mackerel fluent-
plugin-datacounter

第 2 回
グラフで見るサーバ、ミドルウェアのメトリック

log_format ltsv "time:$time_local"
 "･thost:$remote_addr"
 "･tforwardedfor:$http_x_forwarded_for"
 "･treq:$request"
 "･tstatus:$status"
 "･tsize:$body_bytes_sent"
 "･treferer:$http_referer"
 "･tua:$http_user_agent"
 "･treqtime:$request_time"
 "･tcache:$upstream_http_x_cache"
 "･truntime:$upstream_http_x_runtime"
 "･tvhost:$host";

access_log /var/log/nginx/access.log ltsv;

 ▼リスト1　nginx.confの設定

 ▼図5　Nginx、ステータスコードごとのリクエスト数

146 - Software Design

 Mackerelではじめるサーバ管理

　そしてNginxのアクセスログを読み込んで集
計し、Mackerelへの投稿を行うfluentdの設定
（リスト2）を用意します。
　これによりグラフが描画されるようになりま
すが、初期状態では折れ線グラフになっていま
す。グラフの設定をグラフ右上のギアマークか
ら行うことができ、積み重ねグラフに変更でき
ます。これで冒頭に示したようなグラフを描画
することができました。

　今回取り上げたmackerel-agent注3やmackerel-

agent-plugins注4はOSSとしてGitHub上で公開
しており、pull requestも受け付けています。
　オープンソースにしている一番大きな理由と
しては、これらが実際に動くのがユーザの環境
ということですので、ソースを開示する必
要があると考えたからです。そして、ソー
スを公開するのであれば、外部からパッチ
などを受け付ける体制を整えたほうが良い
だろうということで、コミュニケーション
を取りやすいGitHub上でホスト注5してい
ます。
　また、近年 github-services注6や travis-

cookbooks注7など、実際のプロダクション
コードの一部をオープンソースにして、ユー
ザからのpull requestを受け付けるサービ
スも増えてきています。そちらのほうが、
使うユーザにとっても運営側にとってもす
ばやく対応ができて便利なことも多く、一
緒にサービスを作っている感覚も持てるた
め、そういう動きは増えてほしいと個人的
に思います。おかげさまでmackerel-agent

も pluginsも、多くの pull requestを社外から
いただいています。本連載をお読みのみなさん
からのpull requestもお待ちしています。

◆◆◆
　今回は、おもに各種メトリックを収集して、
グラフ化する方法を紹介しました。グラフを定
期的に眺めて傾向を掴んだり、異変やその徴候
に早めに気づけるようになると良いでしょう。
　メトリックを収集できるようになったので、
次は異常値を検出した際のアラート設定をした
くなるでしょう。Mackerelにはもちろんその
機能がありますが、どのような基準で閾値設定
を行えば良いのか悩むことも多いのではないか
と思います。それらの悩みを解決するために、
次回は実際のサーバ運用を例に取り、メトリッ
クの収集や監視項目設定についての実践的な内
容を取り上げます。ﾟ

Mackerelと
オープンソース

LTSV形式のログファイルを読み込む
<source>
 type tail
 format ltsv
 time_format %d/%b/%Y:%H:%M:%S %z
 path /var/log/nginx/access.log
 pos_file /var/log/nginx/access_log.pos
 tag access.nginx
</source>

fluent-plugin-datacounterでステータスコード別に集計する
<match access.nginx>
 type datacounter
 count_interval 1m
 count_key status
 aggregate all
 tag nginx.status
 pattern1 2xx ^2･d･d$
 pattern2 3xx ^3･d･d$
 pattern3 4xx ^4･d･d$
 pattern4 5xx ^5･d･d$
</match>

fluent-plugin-mackerelによりサービスメトリックを投稿する
<match nginx.status.**>
 type mackerel
 api_key <Your API Key>
 service <Your Service>
 remove_prefix
 metrics_name access_num.${out_key}
 out_keys 2xx_count,3xx_count,4xx_count,5xx_count
</match>

 ▼リスト2　�uentdの設定

注3） URL https://github.com/mackerelio/mackerel-
 agent

注4） URL https://github.com/mackerelio/mackerel-
 agent-plugins

注5） URL https://github.com/mackerelio
注6） URL https://github.com/github/github-services
注7） URL h t tps : / /g i thub.com/t rav i s -c i / t rav i s -

 cookbooks

https://github.com/mackerelio/mackerel-agent
https://github.com/mackerelio/mackerel-agent-plugins
https://github.com/mackerelio
https://github.com/github/github-services
https://github.com/travis-ci/travis-cookbooks

147 - Software Design Apr. 2015 - 147

遺産の継承4第 回

　今回も前回の予告どおり、SwiftからCや
Objective-Cの遺産を活用します。

巨人の肩への乗り方

　本題に入る前に、今までの言語はどうやって
過去の――おもにCの――遺産を活用してきた
のかを振り返ってみましょう。「以前の言語で
できたことを、新しい言語でもできるようにす
る」にあたっては、次の4とおりの方法が考え
られます。

1. 新しい言語で一から書き直す
2. 今までどおり過去の言語で書く
3. 過去の言語の仕様を拡張した言語で書く
4. 過去の資産へのインターフェースを設ける

　1.の「新しい言語で一から書き直す」というの
は、言語デザイナが最も犯しやすい過

あやま

ちなのか
もしれません。確かに新しい言語であれば、今
まで書きにくかったプログラムが書きやすくな
るかもしれません。しかし、そのために今まで
培ってきたプログラムを書き直すには、プログ
ラム資産があまりに膨大です。趣味グラマーな
ら車輪の再発明もまた楽しいものですが、そう
でないほとんどのプログラマにとって、すでに
あるプログラムまで一から書き直せというのは、
全財産を捨てて出家せよというのに等しい暴言
であり、「じゃあ来世で」という返事が返ってく
ること請け合いです。この例で成功と呼べる例
は、Javaぐらいでしょうか。しかしうまくいっ
た最大の理由がどう見ても「Cとクリソツな構文」

ということ自体、このやり方がいかにうまくい
かないかの証左だと筆者は感じます。
　2.の「今までどおり過去の言語で書く」という
のはある意味で新言語の否定でもあるのですが、
1.よりははるかに人気があるオプションです。
過去の遺産に関して失うものは何もないのです
から。C言語はその代表格で、数

あま た

多のOS、そ
して数多の新言語もCで実装されているのは皆
さんご存じのとおりです。しかし過去の遺産に
関して失うものがないというのは、負の遺産に
関しても同様であり、新言語であれば1行で書
けるものを丸々1ページ使って書かねばならな
いのもなんとも痛い話です。
　3.の「過去の言語の仕様を拡張した言語で書く」
というのは、冷戦とバブルが崩壊する前までは
最も人気があったオプションかもしれません。
Objective-CもC++もこれに該当します（どちら
も1983年生まれ）。2.同様、失うものは何もなく、
それでいて新機能を得るという点でこの方法は
一見理想的にも思えますが、しかし負の遺産を
も継承してしまうというのは、実は2.と共通し
ています。JavaをはじめとするC非互換のオブ
ジェクト指向言語であればobject.method()と
直感的に書けるところを[object method]と書
かねばならなかったり、演算子オーバーロード
はできても新演算子を定義したり優先順位を変
更できなかったりするのは、そうしてしまうと
Cでなくなってしまうから。そのC自体、まだ
進化がゆっくりではあっても止まっておらず、
C99が登場した結果、C++がもはやC上位互換
とは言えなくなってしまったことを考えれば、

書いて覚える 入門Swift
遺産の継承4第 回

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

148 - Software Design

一見理想的なこの方法が2.と同様の困難を
抱えていることも理解できます。
　4.の「過去の資産へのインターフェース
を設ける」というのは、今までの試行錯誤
を繰り返してたどり着いた境地とも言えま
す。先鞭を付けたのはPerl 5でしょうか。
XSというインターフェースを通して、
Perl自体をC言語で拡張できるようにし
たのです。このしくみは、新言語の仕様を
旧言語にしばられることなく旧言語の資産
を活用できるという点で画期的であり、
PythonやRubyをはじめ、その後（普及と
いう意味で）成功した言語のほとんどがこ
の手法を採用しています。そのPerl 5は
一方でPerl 4という旧言語に対しては3.のア
プローチをとっていて、おかげで $object.
method()注 1で は な く $object->method()と
C++と同様の「1文字余計な」表記を強いられた
のは歴史の皮肉ではありますが。
　Swiftもまた、4.のアプローチを採用するこ
とで、“Objective-C without C”、つまりCの
負の遺産の解消に成功しました。

import Framework

　前口上はこれくらいにして、実際に過去の遺
産を活用してみましょう。というか読者の皆さ
んは、すでに知らない間に活用しているのです。
　たとえば、新規のPlaygroundを作成すると、
空ではなく次のようなコードがあらかじめ挿入
されています。

// Playground - noun: a place where people can play

import Cocoa

var str = "Hello, playground"

　このコードの尻に、sqrt(2.0)と入れてみま

しょう。期待どおり1.4142135623731と右に答
えが表示されたはずです。
　この状態で、import Cocoaの行注2をコメン
トアウトしてみましょう。どうなりましたか？
　図1のように、Use of unresolved identifier
'sqrt'、「sqrtなんて識別子なんて知らん」とい
うエラーが出ました。そうなのです。「生の」
Swiftには、平方根すら定義されていないのです。
　どうやら、ソフトウェア資産はObjective-C

の場合と同様importするべきもののようです。

俺の Swiftにポインタ
があるはずがない

　importを使うことで、CやObjective-Cで書
かれたライブラリの関数にアクセスできそうだ
ということはこれでわかりました。
　しかしそれらの関数の多くは、引数や戻り値
がポインタです。Javaなどと同様、ポインタ
がないはずのSwiftでこれらにアクセスするに
はどうしたらよいのでしょうか？
　Swiftでは、一種の「詭弁」でこの問題をクリ
アしています（図2）。「ポインタがなければ、
構造体を食えばいいじゃない！」。

 ▼図1　Swiftには平方根の定義がない？

 ▼図2　『Using Swift with Cocoa and Objective-C』より抜粋
　　　（https://itunes.apple.com/jp/book/using-swift-
　　　cocoa-objective/id888894773?l=en&mt=11）

注1） .は文字列連結演算子として使用済みだった。
注2） PlatformにOS Xを指定した場合。iOSを指定した場合はimport UIKitになる。

http://itunes.apple.com/jp/book/using-swift-cocoa-objective/id888894773?l=en&mt=11

148 - Software Design Apr. 2015 - 149

遺産の継承4第 回

　ポインタそのものではなく、ポイ
ンタにアクセスするための構造体を
用意する。このアイデアはRust言語
から拝借されたようです。しかし

T *でなくてUnsafePointer<T>とは
なんとも長ったらしい。これはむし
ろ改悪なのではないか？
　そうならないことは、実際にCで
ポインタを駆使したプログラムを移
植してみればわかります。たとえば、
標準入力をそのまま標準出力に垂れ流すプログ
ラムを考えてみましょう。cat未満なので
kittenといったところでしょうか。Cで書くと
こんな感じですか。

#include <stdio.h>
#define BUFSIZE 4096
int main() {
 char buf[BUFSIZE];
 while(fgets(buf, BUFSIZE - 1, stdin) != NULL){
 fputs(buf, stdout);
 }
 return 0;
}

　これをSwiftで書き直すとどうなるか？

import Darwin // or Foundation
let bufsize = 4096
var buf = [Int8]()
buf.reserveCapacity(bufsize)
while fgets(&buf, Int32(bufsize - 1), stdin) != nil
{
 fputs(&buf, stdout)
}

　ほとんど変わりません。変わったのは、

・Swiftの配列は動的なので、初期化してから
拡張している

・Swiftでは中身が書き換わる引数には必ず&を
付けることになっているので、bufではなく
&buf

・SwiftはCより型にうるさいので、Int32()を
付けている

ぐらいで、あとはそのまま。int main(){ /*...*/ }
が不要な分、むしろコンパクトになってさえいます。

UnsafePointer<T>のような型宣言はいっさい出て
きません。そして型を知りたければ、識別子を
o＋クリックすれば図3のようにXcodeが教
えてくれますし、型の不整合はその場でXcodeが
指摘してくれます。
　さらにありがたいのは、Cの構造体がそのま
まSwiftの構造体として使えること。次は
ARGV[1]で指定したファイルの最終更新日（time）
を表示するSwiftコードの例ですが、statに注
目してください。構造体そのもののみならず、
構造体の中の構造体にもそのままアクセスでき
ています。

import Darwin
if C_ARGC > 1 {
 let cfilename = C_ARGV[1]
 var st = stat()
 if lstat(cfilename, &st) == 0 {
 var mtime = st.st_mtimespec.tv_sec
 let filename = String.fromCString(cfilename)!
 let when = String.fromCString(ctime(&mtime))!
 print("\(filename): \(when)")
 } else {
 perror(cfilename)
 }
}

続きは次号

　SwiftによるCライブラリへのアクセスを紹
介したところで今回は紙幅が尽きてしまいまし
た。次回はObjective-Cへの連携を見ていくこ
とにしましょう。ﾟ

 ▼図3　o＋クリックでXcodeが教えてくれる

150 - Software Design

　 NTTデータ 基盤システム事業本部　茶納 佑季（ちゃのう ゆうき） chanouy@nttdata.co.jp

　社内の「勤怠管理システムの運用」を上司から任さ
れた、今年SI企業に入社した新人SEの藤井君。四
苦八苦しながらも、オープンソースソフトウェアの
運用管理ツール「Hinemos」を使い、運用自動化を着
実に進めていました。前回で将来を見据えたメンテ
ナンスの重要性を学んだ藤井君のもとに、今回新た
な依頼が舞い込むのでした。

上司「Hinemosでの運用に変えて順調みたいだな、

藤井君。順調なところ悪いんだが、実はほかの

部署からまたジョブの設定を変えたいという依

頼が来ているんだ」

藤井「どんなふうに変えたいんでしょうか？」

上司「依頼内容としては、『特定のジョブだけ飛ばし

て後続のジョブはそのまま実行』させたり、

『ジョブネット中の特定のジョブでいったん実

行を停止』したりしたいということらしいんだ」

藤井「飛ばしたり、いったん止めたり……ですか？」

藤井「うーん……『特定のジョブだけ飛ばして後続の

ジョブはそのまま実行』かぁ」

定時「勤怠情報をシステムAとシステムBの機器に

送っているけど、今度メンテナンスのため、シ

ステムAを1週間ほど止めるらしいわね。その

間、システムAの機器への勤怠情報転送ジョブ

は飛ばしてほしいってことみたいね」

藤井「わぁ！　定時先輩いつからそこに！？」

定時「うふふ、秘密。ジョブの流れを図で書くとこ

んな感じね（図1）」

第7回 飛ばして、留めて。自在にジョブを扱おう

　Hinemosでジョブ管理を学ぶ連載も終盤戦。ジョブのしくみ、Hinemosへの理解が進んできた
藤井君が今回取り組むのは、ジョブの実行制御です。各種条件を設定し、「スキップ」「保留」などの
しくみを駆使することで、柔軟なシステムの運用が可能になります。 イラスト（高野 涼香）

前回までのあらすじ ス キ ッ プ で ジ ョ ブ を 飛 ば そ
う！

藤井君の先輩社員。
華麗に仕事をこなし
定時に颯爽と帰って
いく優秀な女性。

今年SI企業に入社し
た新人SE。運用自
動化のために日々奮
闘中。

軽いノリで仕事を
依頼してくるが、藤
井君の成長を考え
ている。

定時先輩上 司藤 井

▼図1　期待されるジョブの流れ

勤怠情報抽出 クロージング

システムAへ転送

システムBへ転送

システムメンテ
のためのスキップ

150 - Software Design Apr. 2015 - 151

第7回　飛ばして、留めて。自在にジョブを扱おう

藤井「そうなんです！　スキップスキップ……あ！

そういえばジョブを作るときに制御タブでス

キップっていう単語を見た覚えがあるぞ！」

　Hinemosではジョブを単純に実行するだけでなく、
いろいろと制御ができます（表1）。
　まず、1つめの課題である「特定のジョブだけ飛ば
して後続のジョブはそのまま実行」を実現するため
には「スキップ」を用います。ジョブをあらかじめス
キップするように登録する場合は、ジョブ（ジョブ
ネット）の作成・変更ダイアログから「制御タブ」を選
択し、スキップのチェックボックスにチェックを入
れ、終了状態と終了値を入力します（図2）。すると、
このジョブはコマンドが実行されずに、入力した終
了状態と終了値で終了します。
　また、一連のジョブネットの実行中に待機状態の
ジョブをスキップさせるためにはジョブ［履歴］
ビューから実行中のジョブセッションを選択しま
す。続いて、ジョブ［ジョブ詳細］ビューでスキップ
させる待機中のジョブを選択し、停止ボタンを押し
て、ジョブ［停止］ダイアログの制御で停止［スキッ
プ］とし、OKを押します。これによりジョブをス
キップできます。なお、このときの終了状態と終了
値は図2でスキップを設定する際に入力したものが
反映されます。
藤井「実際にジョブをスキップしてみましたが、

ちゃんと実行されずにぴょんと跳んでるみたい

ですね（図3）」

定時「そうね。クライアントでジョブ［詳細］ビュー

でスキップしたジョブを選択すると、ジョブ

［ノード詳細］ビューのノードが待機状態となっ

ていて、実行されていないのがわかるわね」

藤井「次は『ジョブネット中の特定のジョブでいった

ん実行を停止』ですね」

定時「そうね。これは『保留』を使うわ」

藤井「う～ん……これって具体的にはどういうとき

に使うんですか？」

定時「開発時の動作確認で先行ジョブがしっかり動

くか確認するときに使うわね。あとはスケ

ジュールに組み込めない外的要因がある場合と

かね」

藤井「外的要因ですか？」

定時「たとえばジョブAは先行ジョブが完了してか

ら動かすんだけど、先行ジョブの完了をお客様

に確認いただいてからじゃないとジョブAを実

行できない、みたいなときね。目視での完了確

認連絡は連絡時間がまちまちだったり、お客様

からのGOがいただけなかったりするから、

ジョブAで待って手動で実行しないといけない

のよ」

藤井「そういうのもあるのかぁ」

　ジョブをあらかじめ保留するように登録する場合
は、「スキップ」の手順と同じように、ジョブ（ジョブ
ネット）の作成・変更ダイアログから「制御タブ」を選
択し、保留のチェックボックスにチェックを入れま
す。すると、このジョブは実行可能となっても、実

保留でジョブを留めよう！

▼図2　制御タブ

▼表1　Hinemosでできるジョブの制御

スキップ 特定のジョブを飛ばす

保留 特定のジョブを留める

開始遅延 ジョブの開始の遅れを検知し、通知やジョブの状態遷移
（強制停止など）を行う

終了遅延 ジョブの終了の遅れを検知し、通知やジョブの状態遷移
（強制停止など）を行う

多重度 1エージェントあたりのジョブの同時実行
上限数を制御

優先度 ノードごとに優先度を設定し、優先度の高い
ノードからジョブを実行するように制御

152 - Software Design

　スキップや保留によるジョブの制御を活用するこ
とで、既存のジョブを大幅に変更することなく、
ジョブの流れに対する細かい要望に簡単に対応でき
ます。Hinemosの機能を駆使して時間をかけずに、要
望に応えたより良い運用を実現しましょう！

定時「今日はサクサクとできたわね、偉い偉い。」

藤井「ありがとうございます！　そういえば先輩、

Hinemosって監視もできるんですよね？」

定時「うん、統合管理ツールだからね。システムの

監視も始めるの？」

藤井「ゆくゆくは、と思っているんですが、その前

にまだ自動化できてない個所があると思ってい

まして。たとえば、今はジョブが時間どおりに

終わっているからいいですけど、今後時間どお

りに終わらなかったらまた困ってしまうなと」

定時「確かにそうね」

藤井「Hinemosで監視もできるなら、ジョブの終了

が遅れていたりしたら検知してメールで通知し

たり、ジョブをスキップしたりして自動化でき

るかな、と」

行されず、後続のジョブも実行されません。
　また、一連のジョブネットが実行中に、待機状態
のジョブを保留させるためにはジョブ［履歴］ビュー
から実行中のジョブセッションを選択します。続い
て、ジョブ［ジョブ詳細］ビューで保留させる待機中
のジョブを選択し、停止ボタンを押して、ジョブ
［停止］ダイアログの制御で停止［保留］とし、OKを押
します。これによりジョブを保留できます。
藤井「保留にするとジョブの実行状態は保留中に

なって、ジョブセッションはずっと実行中のま

まになるんですね（図4）」

定時「ええ。状態を変えるには、ジョブセッション

をジョブ［履歴］ビューから停止させるか、保留

中のジョブをジョブ［ジョブ詳細］ビューから保

留解除する必要があるわ（図5）」

今月の時短ポイント

▼図3　スキップ実行例（［ジョブ詳細］ビューと［ノード詳細］ビューを抜粋）

▼図5　保留解除

次回予告

152 - Software Design Apr. 2015 - 153

第7回　飛ばして、留めて。自在にジョブを扱おう

Hinemos Tips

上司「ほう、大事なところに気がついたな」

藤井／定時「わぁ！　いつからそこにいらしたんで

すか！？」

上司「はっはっは、秘密だよ。では、これから運用

で起こり得る問題に先んじて、対策を打っても

らおうかな。まぁ、今日はもう定時だからね、

早く帰りなさい」

　Hinemosを使い始めどんどん運用知識を身につけ
ている藤井君は、運用に対する問題意識も持ち始め
たようです。次回は、Hinemosのジョブ機能を使っ
て、より高度な運用自動化に取り組むようです。
次回「さらに高度にジョブを運用してみよう」 ｢

To Be Continued...

　Hinemosでのジョブの状態遷移の全体像は次ペー

ジの図6のようになります（ユーザマニュアルにも同

様の図があります）。ジョブは前提条件が満たされ実

行可能な状態となるとまず待機状態となり、そこか

ら状態が変化していきます。

　Hinemosではジョブの実行結果をHinemosクラ

イアントで確認できますが、Hinemosレポーティン

グオプション注1を使うと実際の実行状態・時間をガ

ントチャート形式でレポートとして出力できます。

　日々の運用も大切な業務ですが、安心して動いて

いる状況をレポートとして報告したり、リソースや

ジョブの実行結果を可視化したレポートを基に分析

し、リソースなどの再構成を行ったりすることも大

切です（次ページ図7）。このようなHinemosの機能

を拡張するオプションを使ってさらなる運用の効率

化を目指せます。

ジョブの状態遷移

ジョブの実行レポート

注1） HinemosレポーティングオプションはHinemosパート
ナー企業より提供されています。

 URL http://www.hinemos.info/option/reporting

▼図4　保留実行例（ジョブマップオプションを適用した場合、ジョブマップ［履歴］ビューの一部を抜粋）

http://www.hinemos.info/option/reporting

154 - Software Design

コマンド停止

終了

変更済

保留

待機

スキップ

中断

実行中

停止処理中

起動失敗

終了
（条件未達成）

終了
（カレンダ）

終了
（終了遅延）

終了
（開始遅延）

終了
（スキップ）

開
始

停止［保留解除］

条件を満たしたら
自動遷移

起動失敗時に
自動遷移

ジョブ実行後
自動遷移

停止［保留］

停止［スキップ］ 停止［スキップ解除］

開始［即時］
開始［即時］

開始［即時］

開始［即時］

開始［即時］

開始［即時］

開始［即時］

開始［即時］

開始［即時］

停止［中断］ 停止［中断解除］

停止［コマンド］

停止
［終了値の変更］

停止
［終了値の変更］

停止［強制］

自動遷移

自動遷移

開始遅延を検知した場合、自動遷移

終了遅延を検知した場合、自動遷移

カレンダを満たさなかった場合、自動遷移

実行条件を満たさなかった場合、自動遷移

▼図6　ジョブのステータス遷移図

▼図7　ジョブの実行結果や監視結果のレポート例

Apr. 2015 - 155

「Gnu Privacy Guard（GnuPG）」はインターネットやOSSを支える重要な暗号化ソフトウェアです。
最近、そのソフトウェアの開発プロジェクトが危機的状況にあると話題になりました。そこで、前
後編の2回に分けてGnuPGを扱います。まず今回は、メールやデータを暗号技術により保護する考
え方と、GnuPGの歴史および最近の話題を取り上げます。

まずは暗号技術について

　まず、本題に入る前に暗号技術について確認した
いと思います。データに対して次の性質を与えるた
めには暗号技術は非常に有効な手段です。

●●秘匿性
●●完全性
●●認証性

●●秘匿性
　そのデータ自身を第三者に知られないようにする
ことです。データを秘密にするために、たとえば、
オペレーティングシステムのアクセス制御を利用し
て第三者にアクセスさせないという対策が考えられ
ますが、いったんそのアクセス制御が破られてしま
えば、そのデータはその瞬間に無防備になります。
　しかし、データに処理を行って意味のないデータ
内容に変換し、正しい手順で変換処理を行わない限
り、データの内容はもとの意味あるものにならない
ならば、たとえデータ自身が外部に漏れたとしても
データ内容の秘匿性を保持することができます。
　データに処理を行い変換し、もとの内容を隠すこ

とを「暗号化（Encryption）」と言い、正当な方法でも
とに戻すことを「復号（Decryption）」と言います。正
当ではない方法、つまり第三者が暗号文の内容を読
み取ろうとすることを「解読」、もしくは「アタック
（attack）」と言います。
　もとのデータを「平文」注1もしくは「プレインテキ
スト（Plaintext）」と呼び、平文を暗号化処理を行っ
たデータを「暗号文」もしくは「サイファーテキスト
（Chipertext）」と呼びます注2。

●●完全性
　データが完全であること（Integrity）を確認できる
ことです。デジタルデータは、そのデータの中身が
改ざん（Manipulate）されていても、あるいは欠損し
ていても、データ自身でそのデータがもとのデータ
と同じであるかどうかを区別できません。そこで、
もとのデータと同じであることを保証するために、
電子署名（Digital Signature）やメッセージ認証コー
ド（MAC：Message Authentication Code）などの処
理を行います。これによりデータが完全であること
を保証します。

●●認証性
　他人にデータをまるごと別のものとすり替えられ

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第十九回】

すずきひろのぶ
suzuki.hironobu@gmail.com

GnuPGを通して暗号技術を理解する（前編）

注1）	 平文の読み方は「ひらぶん」「へいぶん」どちらでもかまいません。
注2）	 本稿では、「平文」あるいは「プレインテキスト」という呼び方と、「暗号文」あるいは「サイファーテキスト」という呼び方を、それぞれの説

明に合わせて混在させて使用しています。

156 - Software Design

てしまっては（データ自体は完全性を保たれている
ので）、正しいデータであるのかどうか区別ができ
ません。そこで、データの送り主が正当な相手であ
ることを保証する認証（Authenticate）の情報を付加
するために、電子署名やメッセージ認証コードなど
の処理を行います。これにより、データの送り主が
正しいことを保証します。

◆　◆　◆
　完全性と認証性については、通常はこの2つの性質
を同時に使います。それにより、第三者にデータが
操作／改ざんされていないことが、確認できます。

共通鍵暗号方式

　共通鍵暗号方式は、「プレインテキストをサイ
ファーテキストに変換する処理」と「サイファーテキ
ストをプレインテキストに変換する処理」とで、同

じ鍵を使う暗号方式です（図1）。
　なお本稿では、日本で一般的に使われる共通鍵暗
号という用語を用いますが、英語では「Common

Key Cryptography（共通鍵暗号）」よりも「Symmetric

Key Cryptography（対称鍵暗号方式）」という用語の
ほうが一般的です。

公開鍵暗号方式

　「公開鍵暗号方式（Public Key Cryptography）」は、
秘密鍵と公開鍵の組み合わせが用意され、公開鍵に
よりプレインテキストからサイファーテキストに変
換し、秘密鍵によりサイファーテキストからプレイ
ンテキストに変換する方式です（図2）。

アリスとボブの物語

　アリス（Alice）とボブ（Bob）との間で秘密のデー
タをやり取りするとしましょう。アリスがサイ
ファーテキストを作成し、ボブに送るとします注3。
　このとき、共通鍵暗号方式では、アリスもボブも
同じ鍵を使わなくてはいけないので、ボブがアリス
に鍵を渡すか、あるいはアリスがボブに鍵を渡すか
をしなければなりません。問題はどうやってアリス
とボブは安全に鍵を渡すかです。直接アリスとボブ
が会ったうえで交換できるならば、（ほかの問題に
は目をつぶっても）どうにか安全に鍵を交換できる
かもしれません。
　アリスとボブがネットワークだけでやりとりする
という条件で、しかも、常にその電子メールは第三
者のマルロイに監視されているとしましょう（図
3）。アリスがボブに通信をしている途中でマルロ
イがその通信を盗聴（Wiretapping）しているかもし
れません。あるいはアリスとボブは直接、通信して
いるつもりでも、実はマルロイがなりすまして両者
を中継する中間者攻撃（Man-in-the-middleattack）
をしているかもしれません。いずれにしろ、アリス
とボブは、マルロイが途中で通信を盗んでいること
は知ることができない状況にあるとします。そうな

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

◆◆図1　共通鍵暗号方式

プレインテキストとサイファーテキストの
各々への変換には同じ鍵を使う

01011101010010

10001010110101

01010010101111

01101010010110

0101110101

0101010101

1010001111

1101010011

共通鍵

◆◆図2　公開鍵暗号方式

公開鍵でプレインテキストからサイファーテキストに変換し、
その公開鍵のペアである秘密鍵でサイファーテキストから

プレインテキストに変換する

公開鍵と
秘密鍵のペア

01011101010010

10001010110101

01010010101111

01101010010110

0101110101

0101010101

1010001111

1101010011

公開鍵

秘密鍵

注3）	 通信シナリオを説明するとき、発信者A、受信者Bはアリス（Alice）とボブ（Bob）という名前を使うのが通例です。また、悪意の第三者は
マルロイ（Mallory）またはマレット（Mallet）という名前を使います。これはMalicious attacker（悪意の攻撃者）やMan-in-the-middle
attacker（中間攻撃者）がMから始まるため、Mで始まる名前が使われるのが通例です。

Apr. 2015 - 157

Philip Zimmermann（フィリップ・ジママン）氏注4が
pgp（Pretty Good Privacy）という暗号ツールを作
成しました。共通鍵暗号、公開鍵暗号、電子署名と
いったデータを保護するための機能がワンセット
入った暗号ツールです。
　当時、Zimmermann氏は核兵器廃絶運動をしてい
ました。とある運動家がFBIにより不法にコン
ピュータを押収され、後に、コンピュータの中に
あった特定の個人情報がFBIに使われた可能性が

ると鍵は必ずマルロイに知られてしまいます。
　公開鍵暗号方式を使うとアリスに公開鍵を渡し、
その公開鍵を使って作成されたサイファーテキスト
を（唯一秘密鍵を持っている）ボブに送れば、マルロ
イは情報を盗めません。
　しかし、ここでもまだ問題があります。マルロイ
が中間攻撃者であった場合、ボブからアリスに送ら
れた公開鍵が、マルロイによってすり替えられる恐
れがあります（図4）。アリスは、ボブから送られて
きた公開鍵が本当にボブのものであるかどうかを確
認しなければなりません。その確認ができたあと、
初めて安全に公開鍵を使うことができます。
　公開鍵の確認の方法に関しては、次回の後編で説
明するとして、まずここでは「公開鍵暗号方式では、
公開鍵とそれに対応する秘密鍵を用意し、アリスが
ボブの公開鍵を使い、ボブが自分だけが持っている
秘密鍵を使うことで、マルロイからの攻撃を防御で
きる」ということを押さえておいてください。

GNU Privacy Guard

　GNU Privacy Guard（GnuPG、GPG）は、暗号技
術によりデータの安全性を高め、個人のプライバ
シーを保護するためのソフト
ウェアを提供することを目的と
した、自由なソフトウェアを作
るプロジェクトです。名前から
見てわかるようにGNUプロ
ジェクトの1つとして進められ
ています。OpenPGP仕様の暗号
ツールgnupgを中心とした一連
の暗号ソフトウェアを提供して
います。

PGP

　gnupgを説明する前に、まず
そこに至るまでの歴史を振り
返ってみましょう。1991年に

【第十九回】 GnuPGを通して暗号技術を理解する（前編）

◆◆図3　マルロイが常に監視している

マルロイはアリスとボブの通信路を盗聴している、
あるいはアリスとボブはマルロイを経由して通信をしている

Alice Bob

Mallory

共通鍵 共通鍵

共通鍵

注4）	 Zimmermannの最後はnが2つ付きます。呼び方は「ジマーマン」「ジンマーマン」「ジママン」など、世の中ではいろいろな表記がされてい
ますが、本人に確認したところ「ジママン」が一番近かったので、それを使います。

◆◆図4　中間攻撃者により公開鍵がすり替えられる

01011101010010

10001010110101

01010010101111

01101010010110

01011101010010

10001010110101

01010010101111

01101010010110

公開鍵暗号方式でも、アリスの持つ公開鍵がマルロイによってすり替えられていれば、
マルロイはテキストの内容を見ることができる

Alice Bob

Mallory

ボブの秘密鍵に対応する
公開鍵はマルロイが盗み持つ

アリスに送られた公開鍵は
マルロイの秘密鍵に対応するものに

すり替えられている

0101110101

0101010101

1010001111

1101010011

公開鍵（正）

秘密鍵（正）公開鍵（偽）

秘密鍵（偽）

158 - Software Design

あると気づきました。そこで、データ保護をするた
めの暗号ツールの必要性を感じ、作成に取りかかっ
たのでした。
　pgpバージョン1では、共通鍵暗号にはBass-O-

MaticというZimermann氏が考案したアルゴリズ
ム、公開鍵暗号にはRSAを使っていました。バー
ジョン2から共通鍵暗号にはIDEAが採用されまし
た。IDEAは暗号学の権威でもあるチューリッヒ工
科大学教授James Massey氏と、大学院生として在
籍していたXuejia Lai氏（来学嘉 現・上海交通大学
教授）が、1991年に発表したアルゴリズムです。
IDEAはブロック長が64ビット、鍵長が128ビット
で、当時の標準暗号であったDESよりも強力で、
学術的な意味においても十分に信頼がおける暗号で
した。
　1991年当時、米国内から暗号を持ち出すのは、
共通鍵暗号は鍵長40bit以下、公開鍵暗号（RSA方
式）は鍵長512bit以下のものしか許されていません
でした。pgpに関して言うと、IDEAは鍵長128ビッ
トですし、RSAは鍵長は512ビット以上の鍵を生成
できるため輸出規制に違反します。
　Zimmermann氏はver 1.0や2.0を友人に渡しまし
た。それらは友人らの手により、ローカルなBBS

などにアップロードされていました。どのルートか
らかは不明ですがインターネット経由でpgp 2.3a

が広まりました。2.3aは国内ではRSAのパテント
（特許）の問題があり、海外への流出は、当然ながら
米国輸出規制の問題を引き起こします。
　海外に流出したソースコードからブランチした
pgp 2.6ui、pgp 2.62ui、pgp 2.64uiなどが暗号規制
のない欧州で開発されます。
　一方、米国内では1995年に、pgp 2.6.2のソース
コードがMIT Press（マサチューセッツ工科大学出版
局）から出版されます。ソースコードをまるごとOCR

で読めるフォーマットにして印刷／製本しているの
で、本をバラバラにしてOCR機器にかければ、ソー
スコードに戻り、そのままコンパイルができます。
　本には輸出規制がないため、これでpgp 2.6.2が
本として海外でも入手可能になりました。コンパイ
ルすれば米国内で使われているpgp 2.6.2がそのま

ま手に入ります。これで欧州のブランチバージョン
と米国内のバージョンとの不一致がなくなりまし
た。ヨーロッパでpgp 2.6.2をベースにアップデー
トされたpgp 2.6.2g、および2.6.3iの配布が始まり
ます。バージョンもそろったことで、このころから
pgpは暗号ツールとして安定して使えるようになり
ました。1996年には、RFC 1991としてPGPの交
換フォーマットの仕様が発行されます。

●● RFC 1991 PGP Message Exchange Formats

(96)

OpenPGP

　1997年からIETF（Internet Engineering Task

Force）のOpenPGPワーキンググループが始まり、
1998年に暗号機能の仕様を明確にしたOpenPGP

（RFC 2440）が発行されました。それからほぼ10

年後にRFC 4880として改訂されます。ちなみに、
2440のちょうど2倍になっているのは偶然です。

●● RFC 2440 OpenPGP Message Format (obsolete)

(96)
●● FC 4880 OpenPGP Message Format (07)
●● RFC 5581 The Camellia Cipher in OpenPGP (09)
●● RFC 6637 Elliptic Curve Cryptography (ECC) in

OpenPGP (12)

　現在、OpenPGPにEdDSAを導入するための議論
が始まっています。

●● draft-koch-eddsa-for-openpgp-01 EdDSA for

OpenPGP

　OpenPGPには日本からの貢献もあります。NTT

で開発された共通鍵暗号アルゴリズムである
Camelliaや、現在、議論が始まっているエドワー
ズ曲線電子署名アルゴリズムEdDSAにはg新部裕
（ぐにゅーべゆたか）氏がかかわっています。
　これらのRFCによって、それまでpgpという形
で1つの実装しかなかったものが、暗号技術のルー
ツの標準化であるOpenPGPという規格の形になっ
ていきました。その実装の1つがgnupgです。次回

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

Apr. 2015 - 159

【第十九回】 GnuPGを通して暗号技術を理解する（前編）

の後編では、そのgnupgの使い方など実践的な解説
を行います。

gnupgはオープンソース
の認証基盤

　実は、gnupgは一般ユーザが利用するよりも、
オープンソースの世界において欠かすことのできな
い認証基盤です。GNU/Linuxの各種ディストリ
ビューションがアップデートを行うとき、配布され
ているファイルが改ざんされていないことを保証す
る認証基盤に、gnupgが利用されています。また
ソースコードという形で配布されるとき、そのコー
ドの完全性を保証するときにもgnupgは使われてい
ます。つまり、gnupgが存在していなければ、オー
プンソースというしくみの安全性を保つこと自体が
難しいと言えます。
　このように縁の下の力持ち的な形で、gnupgは
オープンソースの世界を支えています。

GnuPGプロジェクトが
危機的状況!?

　2015年2月5日、ProPublicaというオンラインメ
ディア上でJulia Angwin記者が書いた“The World's

Email Encryption Software Relies on One Guy,

Who is Going Broke”という記事が出ました注5。
　この記事の内容をざっくり言えば、「世界中の
ジャーナリストやEdward Snowden（エドワード・ス
ノーデン）氏も使っているgnupgは、Werner Koch

（ヴェルナー・コッホ）氏が1人で背負って開発して
きており、そのKoch氏が破産寸前にまで追い込ま
れている」というものでした。その書きぶりが
ちょっと刺激的だったので、TwitterやFacebookと
いったSNSでちょっとした話題になりました。
　筆者の知っている範囲で、少し補足を加えたいと
思います。筆者は1999年にKoch氏が来日した際の
コーディネーションを担当し、また、翌年2000年

にオランダのユトレヒトのSurfnetで開催された
PGP Keyserver関係者のみが集まった会議で友好
を深め、それからこれまでフリーソフトウェア運動
の仲間としての付き合いがあります。
　pgpのオリジナル開発者Philip Zimmermann氏も
筆者がヨーロッパ版pgp 2.6系列の日本語化などを
していた関係もあり、1994年からの付き合いがあ
り、こちらもまた来日の際のコーディネーションな
どをしていました。ちょうど、どちらにも同じぐら
いの距離感の立ち位置にいます。
　2011～2013年前半ぐらいはGnuPGプロジェク
トがファンド的にうまく回っておらず、プロジェク
トがあまり良くない状態になっていたのはそのとお
りです。しかし、2013年末にはクラウドファンディ
ングサイトGoteo.orgからのファンドのバックアッ
プが受けられるようになり、2014年にはファンド的
には十分とは言えないまでも、改善しつつありまし
た。ですから、記事と筆者の認識には微妙なずれが
あります。
　また、GnuPGプロジェクトのWebサイト注6を見
てもらえばわかるのですが、2011年からは、コアメ
ンバーに日本からg新部裕氏が加わり、2012年から
はJussi Kivilinna氏が加わり、必ずしもKoch氏の
みだったわけではありません。
　とはいえ、開発費が集まれば、それだけ常勤のプ
ログラマを雇用できるなど、さらに活発にGnuPG

プロジェクトが推進できるのは、言うまでもありま
せん。この記事のおかげで、2015年に入ってから2

月20日までの短い間に、世界中の個人や団体から
193,547ユーロ（約2,600万円）もの資金が寄付され、
また、Facebookは年間5万ドルの安定的な資金供与
を約束するなどファイナンス的にたいへん改善され
ることになりました。
　日本からもさらに何らかの形でGnuPGプロジェ
クトに貢献し、ICT社会の安全性をより高めていけ
るような活動が推進できればと思います。s

注5）	 オリジナル記事：ProPublica“The World's Email Encryption Software Relies on One Guy, Who is Going Broke”　http://www.
propublica.org/article/the-worlds-email-encryption-software-relies-on-one-guy-who-is-going-broke

	 日本での同記事の紹介：GIGAZINE「世界のメールの暗号化はたった一人の男に依存しており、開発資金はゼロになってしまっているとい
う衝撃の事実が判明」　http://gigazine.net/news/20150206-world-email-encryption-one-guy/

注6）	 The People behind GnuPG　https://www.gnupg.org/people/index.html

http://www.propublica.org/article/the-worlds-email-encryption-software-relies-on-one-guy-who-is-going-broke
http://gigazine.net/news/20150206-world-email-encryption-one-guy/
https://gnupg.org/people/index.html

160 - Software Design

もっと深く
helmを知ろう

　ども、るびきちです。先月のhelmの記事はい
かがだったでしょうか？　helmは従来のEmacs

のあり方を根底から覆し、しかもあまりにも多
くの機能があるためとても1回では説明しきれ
ません。それどころか、すべてのhelmコマン
ド、helmのカスタマイズ、helmコマンド作成方
法、新しいアクションの追加、情報源の作成な
ど全貌を解説するには1冊の本になってしまい
ます。そこで今回は、すぐに使えるhelmコマン
ドをいろいろ見ていきたいと思います。

helmの強力な
バッファ検索

　前回M-x helm-miniを解説しましたが、実
はスペースの関係で解説しきれない部分があり
ました。とはいえ、本節で解説するバッファ検
索機能を知らなくても実用的に使えますので、
あえて今回にまわすことにいたしました。
　helmは情報源によって専用の検索機能を持た
せることができます。このもっとも顕著な例が
バッファ選択です。helmのバッファ選択は、通
常の絞り込み検索だけでなく、メジャーモード、
バッファの内容、ディレクトリ名でも絞り込め
ます（図1）。これらすべてを組み合わせられる
のがすごいところです。

　M-x ibufferという多機能な標準添付のバッ
ファリストがあります。ibufferには、条件に
よってリストするバッファを絞り込むフィルタ
機能があるのですが、やはりhelmの前には霞ん
で見えてしまいます。それではhelm-miniを起
動して、バッファ検索をひとつひとつ見てみま
しょう。

メジャーモードで絞る

　検索語に「*」を前置することで、メジャーモー
ドで絞り込めます。*orgと入力するとorg-mode

のバッファが羅列します。
　「,」で区切れば2つ以上のメジャーモードの
OR検索になります。*org,eshellでorg-mode

とeshellとなります。
　メジャーモードの前に「!」を前置すれば、そ
れ以外となります。*!lisp,!org,!rubyで
lisp-mode、org-mode、ruby-mode以外からの検
索になります。

 ▼図1　 メジャーモードに lisp、バッファ名に�lesが含
まれるバッファ

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

第12回 Emacsに革命を起こすパッケージ「helm」（後編）
　先月号から特集しているhelmは、Emacsに対して「操作対象の絞り込み→選択→アクションの適用」とい
う新しい操作を与えるパッケージです。今回はhelmの便利なコマンドを続 と々紹介していきます。ファイル・
バッファ検索、kill-ringやレジスタに対する操作を超強化できます！

Writer

http://rubikitch.com/

160 - Software Design Apr. 2015 - 161

よく使われるファイルをあらかじめ登録します。
しかし、よく使われるファイルは最近開いたファ
イルになっているので、登録不要なrecentfに比
べると霞んでしまいます。recentf-extはrequire

するだけで「最近開いたファイル」を「最近使った
ファイル」にパワーアップさせるパッケージで
す。バッファを表示した時点でrecentfのトップ
に持っていきます。recentf-ext.elはMELPA（リ
スト1）に登録されているので、次のようにイン
ストールします。

M-x package-refresh-contents
M-x package-install recentf-ext

　locateはUNIX系OSで使われるファイル名
データベースです。updatedbでファイル名を
ファイルリストに集め、locateでマッチしたファ
イルを取り出します。当然ファイル名の集合は
変化するので、cronなどで定期的にupdatedbで
更新しておく必要があります。なおWindowsで
はesコマンドが使われます。
　M-x helm-for-filesで使われる情報源は変
数helm-for-files-preferred-listでカスタマイズ
できます（リスト2）。もしブックマークを愛用
しているのであれば、ブックマークを設定する
情報源helm-source-bookmark-setを加えておく
と快適になります（図2）。

バッファの内容で絞る

　検索語に「@」を前置すれば、バッファに検索
語が含まれるものをリストします。M-x multi-

occurに似ていますが、“一度でもマッチしてい
るかどうか”を検査しているだけですので遅くは
なりません。
　まずは@patternでpatternを含むバッファを
見つけ、それが目的のバッファであるならば、
のちほど紹介するhelm-swoopであらためて検索
すればよいです。

ディレクトリ名で絞る

　検索語に「/」を前置すれば、そのバッファに
結び付けられたファイル名のディレクトリ部分
にマッチします。これはファイルの情報源と相
性が良いです。M-x helm-miniで/emacsと入
力すればemacsディレクトリ内のファイルバッ
ファと、/emacsが含まれる最近開いたファイル
を表示します。

helm-miniより強力に
ファイルを検索する

　M-x helm-miniにはその兄貴分のM-x he

lm-for-filesが存在します。これは、バッ
ファ・最近開いたファイルに加えて、ブックマー
ク・ファイルキャッシュ・カレントディレクト
リ・locateの情報源を持ちます。
　ブックマークはEmacsの標準機能で、C-x r

mでファイルの特定の位置に対して名前を付け
て保存します。そして、C-x r jでジャンプ、
C-x r lで一覧します。ファイル名とは別の名
前が付けられます。M-x helm-for-filesは
C-x r jとC-x r lの機能を含み、それ以外に
もブックマークの削除や名前の変更ができます。
　ファイルキャッシュもEmacsの標準機能で、

 ▼リスト1　パッケージを使うための初期設定

(package-initialize)
(add-to-list 'package-archives '("marmalade" . "http://marmalade-repo.org/packages/"))
(add-to-list 'package-archives '("melpa" . "http://melpa.milkbox.net/packages/") t)

 ▼図2　 M-x helm-for-filesでブックマークを設定

第12回 Emacsに革命を起こすパッケージ「helm」（後編）

162 - Software Design

とインストールし、init.elに設定を書き加えて
ください（リスト3）。ここでHEREと書かれた部
分は環境に合わせて書き換えてください。その
あとにhelm-migemo.elをインストールします。

M-x package-install helm-migemo

　ただ、helm開発者は日本語に明るくないので
設定しないと動作してくれません（リスト4）。
　また、helmの情報源の多くはデフォルトでは
Migemoが有効になっていません。有効にする
には次の例のようにpushを使ってください。

; 情報源の定義元をrequire
(require 'helm-w3m)
(push '(migemo) helm-source-w3m-bookmarks)

バッファ内を
絞り込み検索する

　helmの絞り込み検索はとても強力ですので、
バッファ中から目的の行を見つけ出すのにも向
いています。M-x helm-occurはまさにその目
的です（図3）。Migemoを有効にした状態では複
数の文字列を入力することで、簡単に絞り込み
検索できます。
　さらに該当行をハイライトしたり、カーソル
位置のシンボルを検索させたりなど、より使い
やすくしたものがhelm-swoop.elです。とくにシ
ンボル検索はプログラミングにおいて欠かせな
い機能です。筆者の一番好きなパッケージの1

つですのでサイト注2でも詳しく解説しています。

Migemo検索する

　一部のhelmの情報源には、Migemoに対応し
ているものがあります。Migemoとは2014年9

月号で紹介したように、ローマ字で日本語文字
列を検索するすばらしいプログラムです。たと
えば「nihongo」で「日本語」が、「ugoKu」で「動く」
がヒットします。そのためにはまずmigemoパッ
ケージとcmigemoをインストールします。
　Debian系列のGNU/Linuxならば両者とも
パッケージ化されているのでインストールは簡
単です。「sudo apt-get install cmigemo migemo-

el」を実行するだけで、初期設定までしてくれ
て、そのまま使えます。
　パッケージ化されていない場合はcmigemoと
migemo.elは別個にインストールし、初期設定
も行う必要があります。Macは「brew install

cmigemo」で、WindowsはKaoriya氏のサイト注1

からcmigemoのバイナリを取ってきます。
　migemo.elはMELPAから、

M-x package-install migemo

 ▼リスト2　helm-for-�lesを快適に使う設定

;; 最近のファイル500個を保存する
(setq recentf-max-saved-items 500)
;; 最近使ったファイルに加えないファイルを
;; 正規表現で指定する
(setq recentf-exclude
 '("/TAGS$" "/var/tmp/"))
;; recentfをディレクトリにも拡張したうえに、
;; 「最近開いたファイル」を「最近使ったファイル」
;; に進化させる
(require 'recentf-ext)
(setq helm-for-files-preferred-list
 '(helm-source-buffers-list
 helm-source-recentf
 helm-source-bookmarks
 helm-source-file-cache
 helm-source-files-in-current-dir
 ;; 必要とあれば
 helm-source-bookmark-set
 helm-source-locate))

 ▼リスト3　migemo.elからcmigemoを使う初期設定

(when (locate-library "migemo")
 ; HERE cmigemoバイナリ
 (setq migemo-command "/usr/local/bin/cmigemo")
 (setq migemo-options '("-q" "--emacs"))
 ; HERE Migemo辞書
 (setq migemo-dictionary "/usr/local/share/ｭ
migemo/utf-8/migemo-dict")
 (setq migemo-user-dictionary nil)
 (setq migemo-regex-dictionary nil)
 (setq migemo-coding-system 'utf-8-unix)
 (load-library "migemo")
 (migemo-init))

注1） URL http://www.kaoriya.net/software/cmigemo

るびきち流
Emacs超入門

http://www.kaoriya.net/software/cmigemo

162 - Software Design Apr. 2015 - 163

ると次のように元のコマンドを置き換えたほう
がよいです。

(global-set-key (kbd "M-y")
 'helm-show-kill-ring)

　これはほかのhelm化された標準コマンドにつ
いても言えます。

レジスタを一覧し、取り出す

　M-x helm-registerはレジスタに保存され
た内容を一覧します（図5）。レジスタは、本連
載ではまだ採り上げていませんが、1つの文字
に対して文字列、バッファの位置、数値、ウィ
ンドウ構成、フレームセットを記憶させる標準
機能です。複数の文字列を記憶させて貼り付け
るためにはkill-ringでは（helm化しないと）M-y
を連打する必要があって面倒ですが、レジスタ
に記憶させればスムーズに取り出せます。とは
いえレジスタ操作コマンド自体が3ストローク
のキーに割り当てられており、そのうえでレジ

　ほかにもたくさんのhelmコマンドが用意され
ています。

過去のkill-ringを一覧し、取り出す

　M-x helm-show-kill-ringは過去の kill-

ringを一覧し、そこから選択して貼り付けます。
後述するレジスタを使わなくても、コピーした
い内容を次々にkill-ringに放り込んで、M-yで
貼り付けられるようになります（図4）。1月号で
はbrowse-kill-ring.elを紹介しましたが、絞り
込み検索できる点でこちらが優位です。
　M-yを違和感なく置き換えられるように、C-y
直後に実行した場合は別の内容に置き換えます。
　なお、M-x helm-show-kill-ringはC-x c

M-yに割り当てられていますが、実用面を考え

 ▼リスト4　helm-migemoのための設定

(require 'helm-migemo)
;;; この修正が必要
(eval-after-load "helm-migemo"
 '(defun helm-compile-source--candidates-in-buffer (source)
 (helm-aif (assoc 'candidates-in-buffer source)
 (append source
 `((candidates
 . ,(or (cdr it)
 (lambda ()
 ;; Do not use `source' because other plugins
 ;; (such as helm-migemo) may change it
 (helm-candidates-in-buffer (helm-get-current-source)))))
 (volatile) (match identity)))
 source)))

注2） URL http://rubikitch.com/2014/12/25/helm-swoop

 ▼図3　M-x helm-occur（Migemo有効） ▼図4　M-yでkill-ring一覧

その他の
helmコマンド

第12回 Emacsに革命を起こすパッケージ「helm」（後編）

http://rubikitch.com/2014/12/25/helm-swoop

164 - Software Design

る場合は見つけてくれません。たとえば、メディ
アプレーヤが欲しくてmediaと入力してもemms

（Emacs Multi Media System）にマッチしませ
ん。それに対処するためには、リスト5の設定
を加えます（図6）。

helmからInfoを読む

　Emacsには伝統的にInfo形式のドキュメント
が使われています。Info形式はツリー構造を成
したドキュメントで、検索やインデックスやハ
イパーリンクなど基本的な機能が整っています。
通常Infoを読むには<f1> + i（info）のあとにd

を押してわざわざ読みたいドキュメントを探す
必要があるのですが、helmではあらかじめInfo

の目次を作成し、すぐに目的のページまで到達
できるようにしてくれます。
　helmから Infoを読むには 2とおりの方法

があります。M-x helm-info-at-pointとM-x

helm-info系列のコマンドです。前者はカーソ
ル位置のシンボルをInfoで引きます（図7）。デ
フォルトではelisp、cl、eieio、info名を串刺し
検索します。後者はhelm-info-(文書名)のコ
マンドがたくさん定義されていて、見たい info

の名前を直接コマンドで指定します。たとえば
wgetの Infoが見たければ M-x helm-info-

wgetを実行します（図8）。

スタの文字も指定する必要があるので、1回の
レジスタ操作コマンドを実行するのに4ストロー
クも必要になってしまいます。おまけにレジス
タに記憶した内容に応じてコマンドを使い分け
る必要もあります。そのため使いづらいと敬遠
されてしまい、より使いやすいインターフェー
スを好む人が多くなってしまいました。
　レジスタに記憶させる内容の多くはリージョ
ンです。C-x r s（あるいはC-x r x）でリージョ
ンをレジスタに登録し、C-x r iでその内容を
貼り付けます。そして、M-x helm-register

でレジスタの内容を一覧し、貼り付けます。も
ちろん、文字列以外を記憶した場合はそれに応
じたアクションを実行します。
　レジスタ関連は使いやすいキーにさえ割り当
て直せば便利ですので、これを機に使ってみて
ください。

パッケージを管理する

　M-x helm-list-elisp-packages は M-x

list-packagesのhelmインターフェースです。
つまり、このコマンドを使ってパッケージのイ
ンストール・アップグレードや削除が行えます。
　しかし、このままではパッケージ名でしか絞
り込めないため「こんなパッケージないかな」と
パッケージを検索しても、検索語が説明文にあ

 ▼リスト5　説明文も検索候補とする設定

(require 'helm-elisp-package)
(let ((it (helm-make-source "list packages" 'helm-list-el-package-source)))
 (setq helm-source-list-el-package (delq (assq 'match-part it) it)))

 ▼図5　レジスタを絞り込み検索！ ▼図6　 説明文も検索できるよう改良した
M-x helm-list-elisp-packages

るびきち流
Emacs超入門

164 - Software Design Apr. 2015 - 165

ンが行えます。

シンボル名を検索する

　M-x helm-aproposはシンボル名をhelmで検
索し、関数・変数などの説明を表示したり、定
義にジャンプしたりします（図11）。フェイス注3

にも対応していて、そこからカスタマイズもで
きます。ただし、実行時に毎回シンボルをかき
集めるため、開くまで数秒かかるという欠点が
あります。ﾟ

フォントを切り替え、プレビューする

　M-x helm-select-xfont は X Window

Systemのフォントを絞り込み検索します。アク
ションはフォント名をコピーする（デフォルト）
ことと、そのフォントに設定することです。
　このコマンドが秀逸なのはC-z（persistent-

action）にて、フォントをプレビューできること
です（図9）。C-zを押したらそのフォントに切り
替わり、そのまま2秒待つか何かキーを押した
ら元のフォントに戻ります。この機能を使い、
お好きなフォントを見つけてみてください。

findを実行し、
サブディレクトリ以下のファイルを開く

　UNIX系OS限定になりますが、M-x helm-

findはfindプログラムを実行して、サブディレ
クトリ以下のファイルを開きます（図10）。深い
サブディレクトリのファイルを開いたり、多く
のファイルがあるディレクトリ内のファイルを
開くのに便利です。もちろんhelmコマンドです
ので、ファイルを開く以外のさまざまなアクショ

 ▼図8　M-x helm-info-wgetを実行

 ▼図7　 M-x helm-info-at-pointでカーソル位置の
シンボルをinfoで調べる

 ▼図9　 M-x helm-select-xfontで絞り込み検索し
C-zでフォントのプレビュー

 ▼図10　 M-x helm-findでサブディレクトリ以下を一
気に検索！

 ▼図11　 M-x helm-aproposであらゆるシンボルを検
索！

注3） Emacsのテキスト表示に関する属性。

第12回 Emacsに革命を起こすパッケージ「helm」（後編）

166 - Software Design

はじめに

　今回はDeep learningとAndroidの組み合わ
せを紹介します。Androidアプリケーションの
開発方法やDeep learning関連のアルゴリズムの
解説については、インターネット上にたくさん
の資料が公開されています。Deep learningの解
説は少しだけにして、公開されているサンプル
を通してAndroidとDeep learningをつなぐ方法
の一部を紹介します。
　1つの完成されたシステムを紹介するわけで
はないので、具体的なシステム構成を紹介する
ことはできませんが、Androidアプリケーショ
ンの開発者の皆さんがDeep learningを組み込み
たいと思った際、実装方式を考えるための一助
になればと思っています。

Deep learningとは

　Deep learningは注目を集めているのでご存じ
の方も多いでしょう。Deep learningは機械学習
と呼ばれる分野に属します。機械学習は人工知
能の一分野から発展してきました。機械学習で
は、コンピュータの動き方をプログラミングで
実現するのではなく、データを使った学習によ
り実現することを目指しています。機械学習を
利用することで、文字認識・音声認識・物体認
識などの人間が行うような判別・推測の処理を

ソフトウェアで実現することができます。この
機械学習において、注目を集めている領域が
Deep learningになります。さまざまな分野で高
い認識率を達成したことで注目を集めました。
創薬化合物の予測で高い精度を実現したことは
大きな話題となり、IT系のニュースで見た方も
多いのではないでしょうか。

Deep learningの特徴

　Deep learningはどのような点が特徴なので
しょうか。一般的な機械学習では精度を高くす
るため、人手を使って学習するためのデータ（学
習データ）を用意します。問題と答え（入力と出
力）をセットにしたデータをたくさん用意して、
コンピュータに多くの判断基準を与えます。こ
の点はDeep learningも同じです。ただ、従来の
機械学習では、学習データをソフトウェアが処
理する場合に、特徴を人間が抽出していました。
　たとえば、車を判別するためには、ボンネッ
ト、タイヤ、バンパーなどの情報が学習データ
である画像のどこに相当するのかを指定しなけ
ればなりません。指定された範囲を切り出し、
識別するための特徴として利用します。これら
の特徴を大量のデータに付与するには膨大なコ
ストが必要です。
　Deep learningでは、この特徴抽出をソフト
ウェアに肩代わりさせる点が革新的でした（次の
フローで、［B］だけではなく［A］も行うことが
Deep learningの特徴）。

G o o g l e A n d r o i d

 Writer takagig
日本Androidの会 神戸支部

 Twitter @takagig

モバイルデバイス初のオープンソースプラットフォームとして、エ
ンジニアから高い関心を集めるGoogle Android。いち早くそのノ
ウハウを蓄積したAndroidエンジニアたちが展開するテクニックや
情報を参考にして、大きく開かれたAndroidの世界へふみだそう！

AndroidとDeep
learningの組み合わせ

第56回Android
エンジニアから

の

招待状

166 - Software Design Apr. 2015 - 167

AndroidとDeep learningの組み合わせ 第56回

る処理の精度向上に使えるのではないでしょう
か。
　その中でも、多様な植物の写真を分類する
『Plant Recognition』の論文はおもしろいと感じ
ました。自然のなかを散策中に「この植物はなん
だろう？」と思ったときにスマートフォンで撮影
すると、それが何の植物かを教えてくれるアプ
リケーションがあれば、これまでと違った楽し
み方ができるのではないでしょうか。

⿠⿠『iOSと機械学習』
 URL 	http://d.hatena.ne.jp/shu223/2014121⿠
2/1418300463

⿠⿠『Plant Recognition』
 URL  �https://www.academia.edu/7826778/
Plant_Recognition_Bringing_Deep_Lear⿠
ning_to_iOS

　GoogleやMicrosoftなどの企業は、画像検索
サービスや音声認識ソフトウェアを提供してい
るため、実際にDeep learningを活用しているよ
うです。しかし、一般企業での活用例はあまり
知られていません。ソフトウェアを動かしてみ
るにも一苦労ありますし、精度を高くするため
のノウハウも数多くあると聞きます。テスト利
用ではなく、実利用されるシステムに適用する
場合には、かなりの検証および開発コストを見
込んでおく必要があるのではないでしょうか。

サンプルアプリの紹介

　今回はDeep learningを使った画像認識のサン
プルをいくつか紹介したいと思います。サンプ
ルは次の環境で操作しています。

⿠⿠PC：MacBook（OS X Yosemite 10.10.1）
⿠⿠Android：Nexus S（4.1.2）

Androidのサンプル

　DeepBeliefSDK注1のサンプルを動かしてみま
注1） https://github.com/jetpacapp/DeepBeliefSDK

学習データ→［A］特徴抽出→特徴データ→［B］学

習→学習結果（モデル）

　Deep learningに関する詳しい解説は、次の資
料を参考にしてみてください。

⿠⿠『ディープラーニング』
 URL  �http://www.vision.is.tohoku.ac.jp/
files/9313/6601/7876/CVIM_tutorial_
deep_learning.pdf

Deep learningを提供する
ソフトウェア

　では、Deep learningをはじめてみたい、と
思ったときにどんなソフトウェアを使えば良い
でしょうか。この分野には多くのソフトウェア
が公開されていますが、広く利用されているの
は、「Caffe」や「Pylearn2」ではないでしょうか。
この両者は、インターネット上にも非常に多く
の情報があります。また、HadoopやSparkで動
作する「Deeplearning4j」と呼ばれるソフトウェ
アも公開されています。
　スマートフォン向けには、「DeepBeliefSDK」
を使うことができます。現在、Deep learningに
注目が集まっており、オープンソース中心に多
くのプロダクトが開発されている状態です。ソ
フトウェアの比較に関しては、次のスライドを
参考にしてみてください。

⿠⿠『実践ディープラーニング』
 URL  �http://www.slideshare.net/yurieoka37/
ss-28152060

Deep learningの使いどころ

　音声による対話や画像の識別などを組み込ん
だAndroidアプリケーションは数多くあると思
います。Deep learningを使うことで、これらの
認識処理の精度を向上させることができます。
次に挙げる記事には iOSの例が書かれています
が、Androidでも同じようなことが実現できる
と思って良いでしょう。基本的には従来からあ

http://www.vision.is.tohoku.ac.jp/files/9313/6601/7876/CVIM_tutorial_deep_learning.pdf
http://d.hatena.ne.jp/shu223/20141212/1418300463
https://www.academia.edu/7826778/Plant_Recognition_Bringing_Deep_Learning_to_iOS
http://www.slideshare.net/yurieoka37/ss-28152060
https://github.com/jetpacapp/DeepBeliefSDK

168 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

しょう。Deep learningは分野の総称なので、実
現するための方法論やアルゴリズムは数多くあり
ます。DeepBeliefSDKは、convolutional neural

networkと呼ばれる方式により実現されています。
　DeepBeliefSDKのサンプルはAndroidで動か
すことができます。GitHubのサイトから「Down

load ZIP」でソースコードを取得しましょう。ZIP

ファイルを展開すると、examplesフォルダがあ
り、この中にあるAndroidExampleフォルダがサ

ンプルになります。Android向
けの開発環境（Android Stu

dioやEclipse）でプロジェクト
を作成して、AndroidExample

フォルダの中身をコピーしま
しょう。このプロジェクトを端
末にインストールすると「Ca

meraExample」というアイコン
がホーム画面に作成されます。
このアプリケーションを起動
すると「なんでも認識アプリ
ケーション」が動きます（図1）。
　このサンプルはカメラを起
動して物体を認識するだけな
ので、CamTestActivity.java

とPreview.javaの2ファイル
で構成されています。Cam

TestActivity.javaがメインの
実装となります。
　Deep learningによる認識処
理はC++で作成されたライブ
ラリになるため、JNA（Java

Native Access注2）を利用する
ことになります。まず、Java

Interfaceのインポートを行い
ます（リスト1）。
　次に、認識オブジェクトの
初期化を行います（リスト2）。
サンプルでは標準で用意され
ている学習結果を使っていま
すが、オリジナルの学習結果

を利用することもできます。
　次に、認識オブジェクトに認識対象の画像をセッ
トします（リスト3）。サンプルではカメラ画像をイ
ンプットに使っています。
　リスト4がメインとなる判別処理になります。
jpcnn_classify_imageメソッドで画像に写ってい
る対象物の判別を行っています。
　最後に認識オブジェクトを解放します（リスト
注2） https://github.com/twall/jna

 ▼図1　DeepBeliefSDKのサンプルによるキーボードの認識

 ▼リスト1　import宣言

import com.jetpac.deepbelief.DeepBelief.JPCNNLibrary;

 ▼リスト2　認識オブジェクトの読み込み

AssetManager am = ctx.getAssets();
String baseFileName = "jetpac.ntwk";
String dataDir = ctx.getFilesDir().getAbsolutePath();
String networkFile = dataDir + "/" + baseFileName;
copyAsset(am, baseFileName, networkFile);
networkHandle = JPCNNLibrary.INSTANCE.jpcnn_create_network(networkFile);
Bitmap lenaBitmap = getBitmapFromAsset("lena.png");
classifyBitmap(lenaBitmap);

 ▼リスト3　画像の読み込み

final int width = bitmap.getWidth();
final int height = bitmap.getHeight();
final int pixelCount = (width * height);
final int bytesPerPixel = 4;
final int byteCount = (pixelCount * bytesPerPixel);
ByteBuffer buffer = ByteBuffer.allocate(byteCount);
bitmap.copyPixelsToBuffer(buffer);
byte[] pixels = buffer.array();
Pointer imageHandle = JPCNNLibrary.INSTANCE.jpcnn_create_image_buffer_

from_uint8_data(pixels, width, height, 4, (4 * width), 0, 0);

http://www.android-group.jp/
https://github.com/twall/jna

168 - Software Design Apr. 2015 - 169

AndroidとDeep learningの組み合わせ 第56回

5）。
　いかがだった
でしょうか。Deep

learningによる画
像の学習結果が組
み込まれており、
ゴルフボールやパ
ソコンなどの一般
的なものは認識で
きます。もちろん、
サンプルアプリ
ケーションなので
改善の余地はある
と思いますが、さまざまな認識
結果には驚かされます。
　筆者の周囲では、OpenCVと
Deep learningを組み合わせて物
体認識をしている人がいました。
この場合、パソコン上で学習処
理を行ったうえで、学習結果の
モデルをAndroidアプリケーションに組み込む
ことになります。これらの処理についても、機
会があればとりあげてみたいと思います。

カメラ画像の取り扱い

　Deep learningの学習処理は非常に重い処理で
あるため、現在の一般的なモバイル端末のスペッ
クを考えた場合、前述のサンプルのようにパソ
コンで学習させた結果をアプリケーションに組
み込むことになります。基本的に認識処理の部
分はライブラリに任せることになるでしょう。
Androidアプリケーションとしては、利用者向
けのインターフェースの部分を作らなければな
りません。ここでは画像認識アプリを作るとき
に、カメラのプレビューを使う以外の方法を紹
介したいと思います。

 ■クライアントアプリによるカメラの呼び出し
　カメラの撮影画像を使う場合、アプリケーショ
ンからカメラを起動して撮影した結果を使うこ

とになります。撮影した結果を端末上の認識処
理に渡しても構いませんし、サーバ側へ送信し
て、サーバ上で認識処理を実行させても良いで
しょう。カメラを起動するサンプルコードはリ
スト6になります。保存パスを指定しておくと
ファイル管理の処理が楽になります。

 ■Webブラウザによるカメラの呼び出し
　HTML5を使うことでブラウザから端末上のカ
メラを起動することもできます。リスト7では、
カメラを起動して撮影すると同時にサーバ側へ
アップロードしています。この場合は、認識処理
はサーバ側で実行することを想定しています。

　以上、カメラ画像を取得する方法を2つ紹介し
ました。この場合、サーバ側での認識処理には、
次節で紹介するCaffeなどを利用できます。

Ca�eのサンプル

　ここまでは、Deep learningのサンプルやカメ

 ▼リスト4　画像の判別

PointerByReference predictionsValuesRef = new PointerByReference();
IntByReference predictionsLengthRef = new IntByReference();
PointerByReference predictionsNamesRef = new PointerByReference();
IntByReference predictionsNamesLengthRef = new IntByReference();
long startT = System.currentTimeMillis();
JPCNNLibrary.INSTANCE.jpcnn_classify_image(
 networkHandle,
 imageHandle,
 0,
 0,
 predictionsValuesRef,
 predictionsLengthRef,
 predictionsNamesRef,
 predictionsNamesLengthRef);
long stopT = System.currentTimeMillis();
float duration = (float)(stopT-startT) / 1000.0f;
System.err.println("jpcnn_classify_image() took " + duration + " seconds.");

 ▼リスト5　認識オブジェクトの解放

JPCNNLibrary.INSTANCE.jpcnn_destroy_image_buffer(imageHandle);

 ▼リスト6　カメラの起動（クライアント）

Intent intent = new Intent();
intent.setAction(MediaStore.ACTION_IMAGE_CAPTURE);
intent.putExtra(MediaStore.EXTRA_OUTPUT, <保存バス>);
super.startActivityForResult(intent, REQUEST_CODE);

170 - Software Design

Android
エンジニアから

の招待状
presented by Japan

Android Group
http://www.android-

group.jp/

ラで撮影した画像を使う方法
を紹介しました。もう少し
Deep learningを知りたい方
のために、Caffeのサンプルを
動かしてみましょう。
　筆者がCaffeの環境構築に
取り組んだところ、いくつか
のエラーに遭遇してしまい苦
労しました。しかし次のブロ
グによると、計算処理にGPU

を使わなければ、MacPortsを
使って簡単に環境構築できる
ことがわかりました。環境構
築の手順は図2のコマンドを
実行するだけです（図3。あま
りに簡単で拍手をしてしまい
ました）。

⿠⿠『MacPortsでCaffe』
 URL  �http://d.hatena.ne.jp/h⿠
jym_u/20150215/14⿠
24010115

　それでは、Deep learningの
サンプルを動かしてみたいと
思います。MacPortsで導入
した後、作業用フォルダに移
動してください。そこで図4
のコマンドを発行します。こ
れはMNISTと呼ばれるサン
プルです。MNISTは国立標
準技術研究所が用意している
データです。手書き数字を表
す70,000枚の小さな画像が集
められており、画像認識アル
ゴリズムのベンチマークに使
われています。このサンプル
は「Caffeで手書き数字がどれ
ぐらい認識できるようになる
のか？」という例になります。
　図5の結果のように、約15

 ▼リスト7　カメラ起動（Web）

<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>サンプル</title>
</head>
<body>
 <div id="dropzone">
 <form action="/demo/upload" method="post"
 enctype="multipart/form-data">
 <input type="file" accept="image/*" capture>
 <canvas></canvas>
 </form>
 </div>
 <script type="text/javascript">
 var input = document.querySelector('input[type=file]');
 input.onchange = function() {
 var file = input.files[0];
 upload(file);
 drawOnCanvas(file);
 displayAsImage(file);
 };

 function upload(file) {
 var form = new FormData(), xhr = new XMLHttpRequest();
 form.append('image', file);
 xhr.open('post', '/demo/upload', true);
 xhr.send(form);
 }

 function drawOnCanvas(file) {
 var reader = new FileReader();
 reader.onload = function(e) {
 var dataURL = e.target.result;
 var c = document.querySelector('canvas');
 var ctx = c.getContext('2d');
 var img = new Image();
 img.onload = function() {
 c.width = img.width;
 c.height = img.height;
 ctx.drawImage(img, 0, 0);
 };
 img.src = dataURL;
 };
 reader.readAsDataURL(file);
 }

 function displayAsImage(file) {
 var imgURL = URL.createObjectURL(file)
 var img = document.createElement('img');
 img.onload = function() {
 URL.revokeObjectURL(imgURL);
 };
 img.src = imgURL;
 document.body.appendChild(img);
 }
 </script>
</body>
</html>

http://www.android-group.jp/
http://d.hatena.ne.jp/hjym_u/20150215/1424010115

170 - Software Design Apr. 2015 - 171

AndroidとDeep learningの組み合わせ 第56回

分で、0.1程度だった精度が0.99まで上昇して
います（最大値は1）。
　もっとCaffeを使ってみたい場合、公式サイト
や次のブログが参考になると思います。

⿠⿠『Caffe公式サイト』
 URL  http://caffe.berkeleyvision.org/
⿠⿠『Caffeで手軽に画像分類』
 URL  �http://techblog.yahoo.co.jp/programmin⿠
g/caffe-intro/

⿠⿠『CaffeでDeep learning つまづきやすいとこ
ろを中心に』
 URL  �http://qiita.com/uchihashi_k/items/83⿠
33f80529bb3498e32f

終わりに

　今回はAndroidとDeep learningの組み合わ
せを知るため、Deep learningの概要やAndroid

における画像処理のサンプルをいくつか紹介し
ました。断片的なサンプルではありますが、Deep

learningを組み込みたいと思ったときに少しで
も役に立てれば幸いです。Androidを搭載した
デバイスがまわりにあふれている中、Deep

learningを取り込んだ精度の高い認識アプリケー
ションは多くの人に使われることでしょう。
　Android界隈で活動されているエンジニアの
皆さんに「Deep learningを触ってみたいな」と
思っていただければ執筆した甲斐があったかな
と思います。｢

 ▼図2　環境構築（Mac OS X）

$ sudo port selfupdate
$ sudo port install caffe

 ▼図3　環境構築実行結果

To try examples, copy /opt/local/libexec/caffe and run commands.
This port is for CPU-only. Do not forget to train on CPU, not on GPU.

 ▼図4　MNISTサンプルの実行

$ cp -r /opt/local/libexec/caffe .
$ cd caffe
$./data/mnist/get_mnist.sh　 （1）mnistデータのダウンロード
$ vi examples/mnist/lenet_solver.prototxt　 （2）CPUだけで計算する設定を行う
 Shift＋Gで最終行へ移動して「GPU」を「CPU」に変更後、保存してviを閉じる
$./examples/mnist/train_lenet.sh　 （3）Deep learningの実行

 ▼図5　学習過程のログ

I0217 04:03:12.190228 2051851008 net.cpp:67] Creating Layer mnist
I0217 04:03:12.190251 2051851008 net.cpp:356] mnist -> data
I0217 04:03:12.190276 2051851008 net.cpp:356] mnist -> label
I0217 04:03:12.190294 2051851008 net.cpp:96] Setting up mnist
I0217 04:03:12.191217 2051851008 data_layer.cpp:68] Opening lmdb examples/mnist/mnist_test_lmdb
 …略…
I0217 04:03:12.201859 2051851008 solver.cpp:264] Iteration 0, Testing net (#0)
I0217 04:03:16.201004 2051851008 solver.cpp:315] Test net output #0: accuracy = 0.1054　 （1）初回の認識精度
I0217 04:03:16.201061 2051851008 solver.cpp:315] Test net output #1: loss = 2.30283 (* 1 = 2.30283 loss)
 …略…
I0217 04:18:27.498118 2051851008 solver.cpp:264] Iteration 10000, Testing net (#0)
I0217 04:18:32.736218 2051851008 solver.cpp:315] Test net output #0: accuracy = 0.9913　 （2）最終的な認識精度
I0217 04:18:32.736277 2051851008 solver.cpp:315] Test net output #1: loss = 0.0284776 (* 1 = 0.0284776 loss)
I0217 04:18:32.736301 2051851008 solver.cpp:251] Optimization Done.
I0217 04:18:32.736783 2051851008 caffe.cpp:121] Optimization Done.

http://caffe.berkeleyvision.org/
http://techblog.yahoo.co.jp/programming/caffe-intro/
http://qiita.com/uchihashi_k/items/8333f80529bb3498e32f

172 - Software Design

ShowNetが示す
ネットワークの近未来
新連載

クの構築手法と、それを支える安定した強固な
コアネットワークの構築法を具現化するという
思いを込めて取り組みました。

2014年度の
取り組み事例の紹介

　ここからは、前述のテーマ設定のもとでShow

Net 2014で実施した活動について紹介します。
今回は、ShowNetが網羅する数多くの分野の
中からネットワーク、データセンター／クラウ
ド、セキュリティの3つについて紹介します。

1 ネットワーク

　ShowNetのネットワークは毎年インターネッ
トの世界全体を模して構築・運用しています。
実際のインターネットの世界はAS（Autonomous

System）と呼ばれる各組織が保有・運用する自
律したネットワークがたくさん存在し、それら
が相互につながることで世界中がつながってい
ます。従来ShowNetでは1つのASの世界を模
写してきましたが、2014年は2つのASを使っ
てインターネットの世界を模写した設計をしま
した。
　1つ目のASは「キャリアAS」として通信事業
者、ISP（Internet Service Provider）の世界を
想定しながら最新のテクノロジを取り入れ、運
用や管理などのネットワークの実運用を含めた
ネットワークとしました。そして会場内の出展

3年がかりでインターネットを
見直すShowNetの構想

　Interop Tokyo 2013で20回目の節目を経て、
NOC（Network Operation Center）チーム全体
でShowNet 2014を検討した際に、たとえば、
増え続けるクラウドデバイスやアプリケーショ
ンからの要求の増加への対応をどうしていくべ
きか？　仮想化だらけで複雑化した運用性と堅
牢性が損なわれたネットワークになってしまう
のか？　あるいはスケールする経路技術の登場
やシンプルかつ堅牢なネットワークとなってい
くのか？　など、現在のインターネットが抱え
る課題が挙げられました。
　ここでNOC全員が漠然と感じたことは「果た
して、今の設計や運用方法で10年後も安定的
なインターネットサービスを提供できるのだろ
うか？」というものでした。そこで、3年かけ
てインターネットの設計方法、運用方法を再構
築しようということになり、グランドテーマと
して“Scratch & Re-Build the Internet”を設定
しました。
　Phase 1となる2014年のサブテーマは“tough

core, soft edge, for future apps”でした。NFV

（Network Function Virtualization）、SFC（Ser

vice Function Chainning）、InterCloudなど、ま
だ見ぬ未来のアプリケーションからのあらゆる
要望に応えられるような柔軟なエッジネットワー

インターネット技術とビジネスが出会う国内最大のイベント「Interop Tokyo」。
ほかでは類を見ないその最大の特徴である“ShowNet”は、会場全体に構築される
最先端の技術を駆使したネットワーク環境です。この連載では2015年6月の開催
に向けて動き始めたShowNetについて紹介していきます。初回となる今回は、昨
年から始めた3年がかりの取り組みについて読者の皆さんと共有したいと思います。

第1回 3年構想で進める
インターネットの再構築

ShowNet が示す
ネットワークの近未来

新連載

　　　櫨山 寛章（はぜやま ひろあき）
奈良先端科学技術大学院大学
　　　大嶋 康彰（おおしま やすあき）
㈱ナノオプト・メディア
　　　 http://www.interop.jp

Writer

Writer

URL

Apr. 2015 - 173172 - Software Design

3年構想で進める
インターネットの再構築

第1回

ブース、来場者へのネットワーク接続性の提供
を行いました。実際のネットワークにはStack

ing、Virtual Chassis、Multi Chassis LAGな
ど仮想化技術が使用されましたが、とくに注目
すべき取り組みとしては、世界初となるフル
100Gファイアウォール・CGN（Carrier Grade

NAT）の実装が挙げられます。従来通信事業者
の中の伝送装置やルータなどで使われていたも
のが、アプリケーション層までに対応した真の
100Gネットワーク環境を構築しました。
　2つ目のASは「クラウドAS」として、NFV

による柔軟な仮想ネットワークの提供を意識し、
今回構築した2つのASをまたがって、IaaSや
PaaSなどの仮想インフラの提供といったユー
ザが求める機能やサービス提供を実施しました。

2 データセンター／クラウド

　ShowNetではバックボーンネットワークに
加えて、昨今インターネットの世界で重要な役
割を持つデータセンターやクラウド事業者も意
識した取り組みが行われています。2014年の
注目ポイントとしては、とりわけ次のⓐ、ⓑの
2つがあります。

●ⓐVXLANの相互接続検証
　データセンター事業者でテナントを識別する
ために使われるVLAN IDは最大4,095個まで
しかないため、空間不足の課題があります。
ShowNetでは、従来のVLANに比べて大きな
識別空間をもつVXLANに注目し、相互接続検
証を実施しました。昨年の6月時点ではドラフ
ト段階の実装を用いて、マルチベンダ環境にお
ける相互運用性の検証を行いました。

●ⓑインタークラウドサービスの実現に向けて
　BCP（Business Continuity Planning）やコス
ト削減、またはトラフィック分散などの目的に
合わせ、複数のクラウド事業者を組み合わせて
利用したいという市場からの要求が増加してい
ます。その一方で、実現に向けてはAPIの共
通化をはじめ課題があります。2014年はクラ
ウド間のプライベートコネクトに焦点をあて、
実際の商用クラウド間、学術クラウド間におけ
る相互接続検証を実施しました（図1）。
　商用クラウド間では、VXLANとIPsec mesh

tunnelによるプライベートコネクトを実施し、
クラウドをまたいだ負荷分散のデモンストレー

大手町

さくらインターネット

 ▼図1　インタークラウドサービスの実現に向けて

ShowNet External

OpenFlow Switch

VXLAN Gateway &
 IPsec mesh tunnel

ビットアイル

RISE
仮想マシンファーム北陸StarBED

JGN-X

IDCフロンティア

VXLAN & IPsec mesh tunnelによるプライベートコネクト

OpenFlowで制御するVLAN Path Switchingによるプライベートコネクト

商用クラウド

学術クラウド

全体構成

インターネット

大手町、札幌、沖縄、
大阪、名古屋ほか
計12拠点

幕張ShowNet

174 - Software Design

ShowNetが示す
ネットワークの近未来
新連載

ションを行いました。学術クラウドでは、Open

Flowを用いたVLAN Path Switchingによるプ
ライベートコネクトのデモを実施しました。

3 セキュリティ

　DDoS、標的型攻撃などサイバー攻撃の急激
な増加と高度化により多くの企業が被害を受け
ています。我々はインターネットセキュリティ
対策の提案として、①DDoS対策としてFlow

モニタリングとBGPルーティングを組み合わ
せて正しいトラフィックのみを転送する攻撃緩
和技術の実装、②多層防御として次世代ファイ
アウォール、IPS、サンドボックスなどの異な
るテクノロジで階層的に制御する考えによるセ
キュリティ対策の実装（図2）、③そして多層
防御で実装した複数の技術や製品を相関的に管
理していくためのSIEM（Security Information

& Event Management）を導入したセキュリティ
対応策を提案しました。
　このほかにもShowNetでは、数多くの分野
で特色のある活動をしています。前回の活動の
詳細は、ShowNet NOCチームの公式ブログ
「ネットワークのゲンバ注1」にて活動報告書を公

注1） http://www.f2ff.jp/interop/2014/noc/shownet-2014.
php

●目的ごとの製品カテゴリ
・ファイアウォール
・次世代ファイアウォール
・IPS/IDS
・サンドボックス

●基本は検知のみ。検知後はインシデント
　レスポンスの運用で対応

●構成
・昨年同様、ShowNetはサービスインフラであ
るため、次の対応を実施
　̶ スイッチ・ルータ、CGNからミラーポート

またはTAPでLayer1アグリゲーションにト
ラフィックをコピー

　̶ Layer1アグリゲーションから各セキュリティ
機器へトラフィックをコピー　

　̶ 各セキュリティ機器はトラフィックを解析

開していますので、ぜひ一度ご覧ください。

ShowNet 2015：
Scratch & Re-Build the
Internet - Phase 2に向けて

　2014年10月からShowNet 2015に向けての
活動がスタートしました。ShowNet 2015は
Phase 2としてPhase 1でのトライアルに加え
て新しい取り組みが追加されていきます。本稿
の執筆段階では、コントリビュータの皆様を交
えた説明会（ShowNet meeting）も2回目が終わ
り、ShowNet 2015で取り組む課題（案）も見
えてきました。すべての課題がShowNet 2015

で実現されるわけではありませんが、NOCチー
ムが考える2015年の相互接続技術やネットワー
クデザインの課題を簡単に紹介します。

1 バックボーンネットワーク技術

　今年のデザインは、2014年と同様に「2つの
AS」を幕張に構築します。また、ShowNetで
は例年 IPv4、IPv6のデュアルスタックのサー
ビスを提供していますが、これまではRA

（Router Advertisement）を単に広報するとい
う、IPv4に依存したサービス形態でした。今
年は IPv4サービスの継続と IPv6導入を両立す
る「マルチプレーン」を採用してコアルータ、コ

 ▼図2　多層防御

Layer1
アグリゲーション

AV/AS
Proxy

IPS/IDS

Sandbox Sandbox
Mail Srv

Mail Srv

IPS/IDS

ルータ

L3 Switch

L2 Switch

ファイア
ウォール

ファイア
ウォール

インターネット ShowNet

TAP

http://www.f2ff.jp/interop/2014/noc/shownet-2014.php

Apr. 2015 - 175174 - Software Design

3年構想で進める
インターネットの再構築

第1回

アスイッチを集約しながら、IPv4・IPv6の両
方で独立して同質のサービスが提供できるネッ
トワーク設計を目指しています。 NFV/SDN

に関しては、コアネットワークの一部をSDN

化する取り組みにもチャレンジする予定です。
相互接続としてはRPKI（Resouce PKI）による
広報経路の認証や、BGP Flowspecを用いた
DDoS攻撃緩和などネットワークの信頼性向上
に寄与する技術に取り組む予定です。

2 サーバ／クラウド技術

　ハードウェアとしては高密度・広帯域化の
進むアグリゲーションルータ・ToR（Top of

Rack）スイッチをコアにロードバランサなどの
機器をone armed構成で配置し、ToRスイッチ
配下に高密度・大容量のサーバとストレージを
配置するというシンプルな構成を考えています。
そのうえで、仮想アプライアンス、コンテナと
いった仮想化技術を用いて各種サービスサーバ
を構築していく予定です。
　また、OpenStack対応ソリューションやWhite

box switchや汎用APIを使ったネットワーク
オーケストレーションにも挑戦できればと考え
ています。クラウド技術に関しては、「インター
クラウド」をさらに推し進めて、「クラウド、オ
ンプレ環境、モバイル環境を結ぶオープンな規
格での柔軟な閉域網」を構築できないかと考え
ています。

3 セキュリティ

　大規模巧妙化するDDoS攻撃への対策として、
広域に渡る攻撃緩和、複数の手法を組み合わせ
た緩和（BGP Flowspec／SDN連携／専用装置）
に挑戦する予定です。多層防御は実装段階から
運用フェーズに押し進め、複数のセキュリティ
アプライアンス（次世代ファイアウォール／
IPS／サンドボックスなど）を運用する際の課
題を見極めたいと考えています。
　また、SIEM/MSS（Managed Security Servi

ce）によるネットワークログ分析では、マルウェ

ア感染端末の特定に注力し、万一端末が感染し
ている場合でも被害を拡大させないことを目指
します。そのほか、ネットワークフォレンジッ
クによる証跡・証拠保全と詳細解析、ライブネッ
トの可視化によるセキュリティオペレーション
の補助など、さまざまなセキュリティデザイン
の課題に対してShowNet流でチャレンジして
いきます。

4 そのほか

　そのほかに、「公共空間における無線Trans

portのあり方と、そのデザイン」、「SDN時代
の運用監視方法」、「IoT（Internet of Things）
の具体例」などのテーマにも取り組んでいく予
定です。

次回予告

　次回以降、ShowNet 2015に向けてのより具
体的な取り組みについて紹介していきます。次
回はネットワーク担当チームメンバーによる
ShowNetでのバックボーンのデザインとアド
レス割り当てなど実運用におけるノウハウなど
をテーマに紹介させていただく予定です。ぜひ
ご期待ください。s

　STM（ShowNet Team Member）と は、ShowNetの
構築・運用・トラブルシューティングを担うボランティ
アメンバーの総称です。STMは、ShowNetを“ゼロ”
から作り、運用し、そして“ゼロ”に戻すために必要不
可欠な作業を、NOCメンバーのもとで行います。
　日々の活動の中では経験し得ない、ネットワークの
構築にまつわるさまざまな事象、たとえば最新の技術
に触れ、幅広いレイヤの機器や運用技術を実体験し、
そこからさまざまな知識の習得やほかのメンバーとの
交流ができ、刺激的な体験が重ねられることでしょう。
ネットワーク業界のスペシャリストが集う場に、あな
たも参加してみませんか ?　詳細は Interop Tokyo公
式ページよりご確認ください。

http://www.interop.jp
　　　　　　https://www.facebook.com/interop.shownet
　　　　 @ShowNet_NOCTeamTwitter
公式Facebook

4月11日（土） STM募集説明会開催
参加者募集中：3月29日（日）締切

COLUMN

http://www.interop.jp
https://www.facebook.com/interop.shownet

176 - Software Design

前回のおさらい

　前回は、ディレクトリの構造を知るために lsも
どきを自作し、これによってUFSが「1ディレクト
リあたりのファイルが増えるほど、動作は遅くなる
構造」であることを見てもらいました。そのうえで、
このディレクトリの限界を突破するための手段の1

つとして「DIRHASH」機能について解説しました。
　今回はその続きとして、UFSの限界を突破するため
のもう1つの手段を紹介することから始めましょう。

もう1つのアプローチZFS

　もう1つのアプローチが、そもそも利用するファ
イルシステムを変更するというものです。FreeBSD

ではZFSが最良の代替候補です。ZFSはUFSとは
設計思想そのものが異なっているため、UFSが抱え
るディレクトリアクセスの上限といったものを持っ
ていません。大量の変数ファイルを使用するケース
では、UFSよりもZFSのほうが長期的に見てファ
イル数の上限や性能劣化といったリスクの発生が低
いともいえます。
　UFSと比較したZFSの懸念点は、高速に動作す
るためには大量のメモリが必要であること、メモリ
を使い切るとシステムが動作しなくなること、メモ
リを充分に確保したとしても、Soft updatesが有効
になったUFS2よりはほとんどの場合で速度が遅い
こと、などです。構造上、Soft updatesが有効に
なったUFS2の安定性と高速さはZFSでは到達で
きないものです。どちらのファイルシステムを採用
するかは性能のみならず運用なども含めて総合的に
判断する必要があります。

ディレクトリあたりの
上限を知る

　ディレクトリあたりのファイル数の上限を知るに
は、実際に作成してその性能がどのように変化する
か、それを計測する方法が有効です。これにはいく
つかの理由があります。

●●閾
しきい

値はリソース（メモリ量）などによって動的に

変動する
●●システムリソースによって現れる結果が異なる
●●カーネルのバージョンが変わると挙動が変化する
●●同じ環境でも使い方次第で結果が変化する

　過去に得た経験は新しい環境やバージョンが変わ
るとまったく役に立たなくなることがあります。利
用するごとに計測してその状況での性能を検出する
必要があります。
　ここではディレクトリエントリへのアクセスが
ファイル数の上昇にしたがってどのように性能劣化
するかを調べるために、ファイルを作成する時間の
みを計測するベンチマークを実施することにしま
す。ディレクトリにエントリを追加する操作、いわ
ゆる新しくファイルを作成する操作はマイクロ秒や
ナノ秒オーダになってきますので、リスト1のよう

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第18回 ❖安定動作につながるディレクトリの知識（その2）

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

Apr. 2015 - 177

▶第18回◀
安定動作につながるディレクトリの知識（その2）

ばベンチマークを同時に10動作させたり100動作
させたりすると、UFS2はもっと早期の段階で性能
の劣化がはじまります。逆に、vfs.ufs.dirhash_

maxmemの値を引き上げると980,000個を超えても
性能の劣化が発生しません。DIRHASHの中に収
まっている限り、常にO（1）注1の優れた性能を発揮
します。

注1	 O記法（ランダウ記法）。O（1）は処理データが増えても性能が
変わらないことを意味している。

にC言語でベンチマークを用意して計測し
ます。
　リスト1では次の環境／操作をしています。

●●プラットフォーム：	 ●

FreeBSD 10.1-RELEASE
●●ファイルシステム：	 ●

UFS2＋Soft updates＋Journal、ZFS 28
●●環境：	 ●

VPS（仮想CPU 4コア、主記憶メモリ

4GB、ストレージ100GB）
●●ベンチマーク：	 ●

0000000000から0999999999まで100

万個ファイルを作成しながらファイルの作

成にかかる時間を計測（マイクロ秒オーダ）

　UFS2の場合で、このファイル名のファ
イルが100万個作成されるとディレクトリ
のサイズは20MBほどになります。すべて
キャッシュに載る程度のサイズですので、
このベンチマークはCPUバウンダリになっ
ています。実際、ベンチマークの実施中に
top(1)や iostat(8)でプロセッサおよびディス
クI/Oを計測してみましたが、ディスクI/O

はほとんど発生していないことがわかりま
した。
　この条件でベンチマークを実施すると、
図1、2のような結果が得られました。UFS2

はファイル数が980,000個を超えたあたり
で急激に性能が劣化します。DIRHASHの対
象からはずれるためだと推測されます。一
方、ZFSは980,000個を超えても性能にはほ
とんど差が見られませんでした。
　UFS2の性能が悪化する前（980,000個よりも前）
のデータをUFS2とZFSで比較すると図3のよう
になります。UFS2のほうが常に高速に動作します
し、性能のばらつきもあまり見られません。一方、
ZFSは常にUFSよりも遅く、さらにばらつきが大
きくなっています。
　これは単一のディレクトリで、しかも同時に1つ
しかベンチマークを実行していませんので、たとえ

#include <sys/stat.h>
#include <sys/time.h>
#include <sys/dirent.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <err.h>
#include <sysexits.h>

int
main(int argc, char *argv[])
{
 struct timeval tv1, tv2;
 char buf[MAXNAMLEN + 1];
 int i, fd;
 /* ファイルを作成するディレクトリを作成 */
 mkdir("test", 0755);
 /* 作成したディレクトリへ移動 */
 chdir("test");

 /* 0から 999,999までファイルを作成 */
 for (i = 0; i < 1000000; i++) {
 /* ファイル名を用意 */
 snprintf(buf, MAXNAMLEN, "%010d", i);

 /* マイクロ秒単位で現在時刻を取得 */
 gettimeofday(&tv1, NULL);

 /* ファイルを作成 */
 fd = open(buf, O_CREAT, 0644);
 if (fd == -1)
 err(EX__BASE, "%s", buf);
 close(fd);

 /* マイクロ秒単位で現在時刻を取得 */
 gettimeofday(&tv2, NULL);

 /* 時刻の差分を出力 (マイクロ秒単位) */
 printf("%s,%ld¥n", buf,
 (tv2.tv_sec - tv1.tv_sec) * 1000 * 1000 +
 (tv2.tv_usec - tv1.tv_usec));
 }
}

▼▼リスト1　ファイル新規作成の速度を調べるベンチマーク（benchmark.c）

178 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

といったシステム構築が考えられます。また、メモ
リが豊富にあるならデータはすべてZFS上に配置
するといった運用も考えられます。ともかく、実際
に運用する環境で実際にベンチマークを取って調べ

　こうした結果を踏まえ、たとえばUFS2を採用す
る場合には1ディレクトリあたりの変数ファイルの
個数を50万個に制限し、それ以上の値は別のディ
レクトリを作成してそちらに配置するようにする、

▼▼図3　UFS2（■）とZFS（◆）を同じスケールで比較した場合

▼▼図2　ZFSのベンチマーク結果

▼▼図1　UFS2のベンチマーク結果

Apr. 2015 - 179

▶第18回◀
安定動作につながるディレクトリの知識（その2）

ることが大切です。

特性を知り限界をみきわめよう

　「何もしていないのにいきなり性能が劣化した」と
いった報告は珍しくないのですが、ソフトウェアは
記述されているとおりにしか動けませんので、それ

はたまたま劣化したというよりも、「なるべくして
そうなった」、と考えるほうが自然といえます。
　ちなみに今回はファイルの作成のみにフィー
チャーしていますが、大量に作成したファイルを一
斉に削除するといったことになってくると、また話
は違ったものになってきます。このあたりは次回で
紹介したいと思います。s

　今回作成したようなベンチマークの結果を保存す
る場合、同じファイルシステムにデータを書き込ん
でしまうと、その書き込みが性能に影響するという
問題があります。こうした問題を回避する方法はい
くつか考えられますが、1つはメモリファイルシステ
ムなど、結果を書き込む領域を用意してあげる方法
があります。図Aのようにmdconfig(8)コマンドで
メモリディスクの領域を確保し、フォーマットして
マウントすれば利用できます。
　用意したメモリファイルシステムが不要になった

ら、図Bのように操作することで削除できます。
　もっと簡単な方法として、dd(1)を使って結果をす
べてバッファリングして処理が終わってからディス
クに書き込むようにする方法があります（図C）。
dd(1)ではbs=でブロックサイズを指定できます。
このサイズを出力結果よりも大きなサイズにすれば、
すべての結果をいったんメモリにバッファリングし
ておくことができます。図Cの例ですと1,024×
1,024×20ですので、20MBのバッファリング領域
を用意していることになります。

メモリファイルシステムやメモリバッファリングの活用

% mdconfig -a -t malloc -s 100M
md0
% newfs /dev/md0
/dev/md0: 100.0MB (204800 sectors) block size 32768, fragment size 4096
 using 4 cylinder groups of 25.03MB, 801 blks, 3328 inodes.
super-block backups (for fsck_ffs -b #) at:
 192, 51456, 102720, 153984
% mount /dev/md0 /mnt
% df
Filesystem Size Used Avail Capacity Mounted on
/dev/vtbd0p2 39G 3.1G 33G 9% /
devfs 1.0K 1.0K 0B 100% /dev
z/home 54G 2.8G 51G 5% /usr/home
/dev/md0 96M 8.0K 89M 0% /mnt
%

▼▼図A　メモリファイルシステムの作成方法

% umount /mnt
% mdconfig -d -u 0

▼▼図B　メモリファイルシステムとメモリディスクの削除

% ./benchmark ¦ dd bs=1024x1024x20 > out

▼▼図C　dd(1)でメモリバッファリング

column

180 - Software Design

25 Debian Developer　やまねひでき　henrich@debian.org
Groongaプロジェクト　林 健太郎（はやし けんたろう）　hayashi@clear-code.com

upstream開発者が語る
「Debian公式入りへの道」

バグ潰しに追われる日々

　Debian 8の開発は本稿執筆時、佳境を迎え
ております。時々筆者の管理パッケージにも
RCバグが登録されて、仕事を優先するか、原
稿を書くか、バグ潰しをするか、妻の機嫌を取
るか……と冷や汗を書いています。どれも重要
ですので悩むところですね。

ディストリビューション開発と
upstream

　ディストリビューションの開発は、各ソフト
ウェアのupstream（開発元）からソースコード
を取得して、それをパッケージメンテナがほか
のソフトウェアや既存のパッケージングポリシー
とうまく組み合わせていく作業なのですが、ま
れにupstreamの開発者がディストリビューショ
ンでのパッケージメンテナを兼ねることがあり
ます。そのソフトウェア自体を
知り尽くしている upstreamの
人がメンテナンスするので、ディ
ストリビューションとしては
願ったりかなったりです。
　今回は、「Groonga（ぐるんが）」

プロジェクトの林健太郎さんに、Debianにパッ
ケージを投入した体験を語っていただきます。

upstream活動者から見たDebian
——Groongaの場合 （林 健太郎）

　Groongaはオープンソースのカラムストア機
能付き全文検索エンジンです（図1）。Groonga

を使うと全文検索機能付き高性能アプリケーショ
ンを開発することができます。Debianプロジェ
クトなどのディストリビューションベンダから
見ると、いわゆる「upstream」と呼ばれるソフ
トウェアの開発元の1つです。
　Groongaでは、各種ディストリビューション
向けにパッケージを用意して、Webサイトで
インストール手順を案内しています注2。そのた
めに、独自にリポジトリを構築して提供してい
ます注3。
　一昨年（2013年）の11月29日に開催された
「全文検索エンジンGroongaを囲む夕べ4」注4と

 ▼図1　Groongaの公式サイト注1

注1） URL http://groonga.org/ja/
注2） URL http://groonga.org/ja/docs/

install.html
注3） URL http://packages.groonga.org
注4） URL https://atnd.org/events/43461

http://groonga.org/ja/
http://groonga.org/ja/docs/install.html
http://packages.groonga.org
https://atnd.org/events/43461

180 - Software Design Apr. 2015 - 181

upstream開発者が語る
「Debian公式入りへの道」 25

いうイベントの懇親会で、Debian開発者（以下、
DD注5）のやまねさんとお話する機会がありま
した。「このまま独自リポジトリでパッケージ
の提供を続けてもいいけれども、Debian公式
に入っていればインストールしやすいし……」
ということで相談したところ、やまねさんから
「わからないところはサポートしますよ」という
ありがたい一言をいただきました。そこで、現
状のGroongaのパッケージについてコメントを
もらうところからGroongaをDebianプロジェ
クトでリリースできるようにする作業は始まり
ました。

どんな作業をしたのか

　GroongaをDebian公式リポジトリに入れる
ためには、次のような作業をしました。

Debian BTSへITPとして登録
　ITPというのは（Intent To Package）の略で、
「Debianにパッケージを入れるための作業をし
ますよ」ということを宣言するものです。ITP

として起票することで、ほかの人と作業がかぶ
らないようにしました。現在、作業が進行中の
パッケージについては、https://www.debian.

org/devel/wnpp/being_packagedから参照する
ことができます。
　Debian BTSがメールベースになっているの
に慣れていなくて、ちょっととまどったのを覚
えています注6。

Debianポリシーに合致するように修正
　Groongaは独自のリポジトリを用意して、
apt-lineを登録しておけば、apt-get install
でdebパッケージをインストールできるように
していました。とはいえ、debパッケージがあ
ることと、そのdebパッケージがDebianのポ

リシーに合致しているかというのはまた別の話
です。そのあたりをすり合わせるための修正作
業が必要でした。その際にはよくhttps://linti

an.debian.org/を参照したり、警告メッセージ
を検索したり、ほかのパッケージではどうやっ
ているのかを調べたりしました。
　Lintian注7のエラーをもとにしてパッケージ
の修正を試みる際に、「ほかはどうしているん
だろう」と疑問に思ったときは、Debian Code

Search注8を利用するのがお勧めです。パッケー
ジのソースコードをdebianディレクトリ以下
も含めて横断検索できるので捗ります注9。
debianディレクトリ以下だけを検索したいとい
うことが多かったので、コマンドラインから使
えるシンプルなラッパーを作ってみたりもしま
した。dcs-debian注10というもので、gemとし
て公開しています。興味があれば使ってみてく
ださい。

パッケージをmentorsにアップロードする
　適切な権限を持っていないと、パッケージを
公式リポジトリへアップロードすることはでき
ません。いったん別のところにアップロードす
るのが慣例です。そのためのサイトが、men

tors.debian.net注11です（図2）。うっかりDebian

公式のUploadQueueにパッケージをあげてし
まい注12、消せなくなって ftpmaster注13に削除
依頼をしたのを覚えています。

注5） Debian Developerの略。パッケージをDebianのリポジ
トリにアップロードできるのがDeveloperで、そのステー
タスになるためには審査を受ける必要があります。

注6） Debian BTS（Debianのバグ追跡システム）の特徴につい
ては本連載第23回（本誌2015年2月号）を参照ください。

注7） Debianでのパッケージングポリシーに合っているかを
チェックするツール。

注8） URL http://codesearch.debian.net/
注9） ただし、「どのようにしているか」はわかっても、「なぜそ

のようにしているか」まではDebian力がないとわからな
いことも多いです。そのため、各々のパッケージの実情
に合わせて修正するには、別途調べないといけないこと
もあります。

注10） URL http://rubygems.org/gems/dcs-debian
注11） ちなみに、mentorsはDebianの公式サービスという位置

づけではなく、バイナリパッケージの配布もしていません。
これはライセンスチェックをする前のソフトウェアを配
布することに関する法的な責務をどうするか、という絡
みからこのような状態になっています。

注12） パッケージのアップロードにはdputを使いますが、うっか
りデフォルト設定のままアップロードしてしまいました。
本来は、mentors.debian.netで案内されているように .
dput.confの設定をしてからdputを使う必要があります。

注13） Debianのリポジトリ管理チームのことです。メンバーに
ついては、 URL https://ftp-master.debian.orgを参照。

https://www.debian.org/devel/wnpp/being_packaged
https://www.debian.org/devel/wnpp/being_packaged
http://codesearch.debian.net/
http://rubygems.org/gems/dcs-debian
https://ftp-master.debian.org

182 - Software Design

パッケージをDDにレビューしてもらう
　DDによるパッケージのレビューをしてもら
いました。指摘事項があれば修正して、再度
mentorsへとアップロードするというサイクル
を何度も繰り返しました。
　ここで指摘してもらったものは、upstream

にも随時反映するようにしていました。

DDにNew queueへ
	アップロードしてもらう

　DDによるチェックで「問題なし」ということに
なると、New queue注14と呼ばれる新規パッケー
ジの審査待ちに入ります。Groongaは新規パッケー
ジだったので、ftpmasterによる審査が必要でした。

ftpmasterに公式リポジトリへ
	アップロードしてもらう

　数ヵ月後に ftpmasterによる審査があり注15、
合格すれば晴れてDebian公式リポジトリへと
入ります。Groongaも2014年10月にようやく
Debian公式入りしました。

Debian公式入りで
苦労したところ

　Groongaの場合、すでにdebパッケージにす
るしくみ自体は用意してあったので、debパッ
ケージ化という点では苦労することはありませ
んでした。
　また、パッケージのレビューをお願いするス
ポンサーもやまねさんにやってもらえたので、
スポンサー探しという点も苦労することはあり
ませんでした。
　たいへんだったのは、既存のパッケージを
Debianのポリシーに合うように手直しする部
分でした。とくにライセンス周りを厳密に調べ
あげて記述する部分です。結局、Groongaの場
合は、Debian公式入りするまでにおよそ1年ほ
ど（これには審査待ちや修正作業をがんばれな
かった空白期間を含めているので、実作業の時
間とはかなり異なります）かかりました。
　New queueで審査待ちをしていて、いざ
ftpmasterによる審査で問題点ありとしてリジェ
クトされると、またやりなおしになります。そ
の間、Groongaはほぼ毎月肉の日（29日）に新
しいバージョンがリリースされているので、そ
れに追従する必要もありました。とはいえ、ポ

DD によるアップロード

New queue

Debian 公式リポジトリ

upstream 開発者
（兼パッケージメンテナ）

Debian Developer

ftpmaster によるチェック

ftpmaster によるアップロード

mentors.debian.net

 ▼図2　Debian公式リポジトリに入るまでの流れ

注14） URL https://ftp-master.debian.org/new.html
注15） 後述しますが、この審査の進捗が不透明で、数ヵ月間待つ

こともあれば、1日で入ってしまうこともあるなど、
ftpmasterのワークロードの具合によってかなり差があります。

https://ftp-master.debian.org/new.html

182 - Software Design Apr. 2015 - 183

upstream開発者が語る
「Debian公式入りへの道」 25

リシーに合うようにする修正をupstreamにも
反映して、よりDebianらしいパッケージにす
ることができたのはメリットでもありました。

Debianへの要望

New queueの審査待ちの短縮
　GroongaをDebian公式に入れる作業を通じ
て、「改善の余地あり」と感じたのはNew queue

の審査待ちです注16。
　New queueを見ていると、リリース前など
ftpmasterが奮起する場合を除いては、パッケー
ジがアップロードされてから3ヵ月程度を審査
待ちに見込んでおく必要があるようです。
　審査待ちが数ヵ月となると、Lintian自体の
バージョンアップによりチェックが強化され、
その結果リジェクトされるということが起こり
得ます。
　つまり、New queueにアップロードした時点
では問題なかったのに、ftpmasterによるチェッ
クの時点ではエラーになるということがあり得
るというわけです。これは悲しい話で、実際に
Groongaの場合、初回のリジェクトはそのケー
スでした。1回で審査にパスできるようにきち
んとパッケージ化できていれば、気にならない
のかもしれません。
　もちろん人的リソースは有限ですので、すぐ
に実現できることと、できないことがあります。
その中でうまい落としどころが見つかると、
Debian入りをめざしている人にとってはうれ
しいのではないでしょうか。

まとめとして伝えたいこと

　「Groongaを普通の人がより簡単にインストー
ルできるようにしたい」という思いがようやく
実を結び、Debianの公式リポジトリに入れる
ことができました。
　Groongaはunstableに入ったばかりですが、

その過程でよりDebianのポリシーに準拠した
パッケージへ修正することができました。これ
は、以前のままのパッケージの提供形態を続け
ていたらできなかったことです。もちろんそれ
らDebian側での修正は、Groongaプロジェク
ト側へ還元しています。
　これにより、Groongaプロジェクトで提供し
ているDebian WheezyのパッケージやUbuntu

のパッケージ注17についても改善することがで
きました。より良いdebパッケージにするため
のフィードバックをもらえる、という理由だけ
でも、Debian入りをめざす価値はあるのでは
ないでしょうか。公式入りすることで広く使っ
てもらえるようになるかもしれません。

Debian公式入りを
めざしませんか？

　いかがでしたでしょうか。
　ディストリビューション側からすると、既存
のソースコード（や経緯）を熟知している
upstreamの開発者にパッケージをメンテして
もらえるのは、たいへんありがたいことです。
しかし実際には、upstream側はDebianでの事
情／お作法／手順などがわからないことから、
ディストリビューションでのパッケージ開発に
加わらずに、独自リポジトリを構築するだけに
閉じてしまいがちです。しかし、適切な手続き
を踏めばupstreamとディストリビューション
のお互いにとってメリットがあることを、今回
のGroongaの例を通じて感じ取っていただけれ
ば幸いです。
　同様に広く使われているソフトウェアを
Debianに投入したい、スポンサーがほしい、パッ
ケージのレビューをしてもらいたい、という相
談はDebian JPのメーリングリスト注18で受け
付けますのでお気軽にどうぞ。｢

注16） 同じことを筆者も思っていて、2014年のDebian Conference
のライトニングトークで取り上げてみました（やまね）。

 URL http://goo.gl/1ngqX9 参照。

注17） Debian Wheezy向けのパッケージをベースにPPA（ URL

https://launchpad.net/~groonga/+archive/ubuntu/ppa）
として公開している。

注18） debian-devel@debian.or.jp

http://goo.gl/1ngqX9
https://launchpad.net/~groonga/+archive/ubuntu/ppa
mailto:debian-devel@debian.or.jp

184 - Software Design

Ubuntu Monthly Report

　パッケージを採用していないLinuxディストリ
ビューションもあるので一概には言えませんが、多
くの場合、パッケージはLinuxディストリビューショ
ンの最小単位です。換言すれば、たくさんのパッ
ケージが集まってLinuxディストリビューションが
構成されています。Debianではそれぞれのパッケー
ジに、個人ないしチームのパッケージメンテナがい
ます。Ubuntuでは、実態はさておき、大きくmainと
universeで分かれています。universeのメンテナは
Masters of the Universe（MOTU）と呼ばれています。
mainのメンテナはUbuntu Core Development Team

で、MOTUとはまた違った権限を持っています注1。す
なわち、DebianとUbuntuではパッケージメンテナン
スの考え方がまったく違うということです注2。
　一方、開発元（アップストリーム）がDebianパッ
ケージ注3を提供し、Ubuntuで使用できるようにして
いることもあります。具体的には、The Document

注1） mainはCanonicalが面倒を見て、セキュリティフィックスや
アップデートを提供しますが、universeはそうではない、とい
う事情からもこれがわかります。しかし、universeであっても
Canonical社員がメンテナンスしているパッケージ（具体的に
はChromiumなど）もあり、単純には切り分けできません。

注2） とはいえ、実のところUbuntuにも個々のパッケージをメン
テナンスするしくみもあるので、話はややこしくなります。

注3） ここでいうところのDebianパッケージとは、Debian用のパッ
ケージではなく、パッケージフォーマットを指しています。

パッケージってなんだろう
Foundation（TDF）はLibreOfficeのLinux用バイナリ
を、RPMとDebianパッケージで配布しています。言
うまでもなく、UbuntuをインストールするとLibre

Officeも一緒にインストールされ、これはTDFが配
布しているものではありません。
　ユーザからみた場合、開発元が提供しているパッ
ケージがあればそちらを使えばいいのではないかと
思いがちですが、必ずしもそうとは言えません。そ
のような話を、ownCloudのパッケージを例にして解
説していきます。

　ownCloud注4は以前本連載でも取り上げたことがあ
りますし、そもそも著名ですのでご存じかとは思い
ますが、念のため解説しておきます。端的に言って
しまえばDropbox注5や今は亡きUbuntu One File

Service注6などのファイル同期サービスを、自前で用
意できるサーバです。PHPで書かれており、Apache

やNginxなどのWebサーバで動作します。バックエ
ンドにはデータベースも必要で、MySQL/Postgre

SQL/SQLiteから選択できます。原則としてはクラ

注4） https://owncloud.org/

注5） https://www.dropbox.com/ja/

注6） http://blog.canonical.com/2014/04/02/shutting-down-
ubuntu-one-file-services/

ownCloudとは

　開発者が用意するパッケージと、Ubuntu/Debianが用意するパッケージの2つのパッケージが存在
する場合があります。どうしてそのようなことになっているのでしょうか。どういう違いがあるので
しょうか。どちらを選択すればいいのでしょうか。ownCloudのパッケージを例にとって、メンテナン
スの方針の違いを解説します。

ownCloudに学ぶ、
パッケージのメンテナンス

Ubuntu Monthly Report第60回

Ubuntu Japanese Team
あわしろいくや　ikuya@fruitsbasket.info

https://owncloud.org/
https://www.dropbox.com/ja/
http://blog.canonical.com/2014/04/02/shutting-down-ubuntu-one-file-services/

184 - Software Design Apr. 2015 - 185

ownCloudに学ぶ、パッケージのメンテナンス 第 60 回

イアントアプリケーションを使用し、ローカルと
ファイルを同期します。同時にGoogle Driveのよう
に、PDFのプレビューやファイルの編集もできます。
また、WebDAVでの接続もでき、クライアントも
Webブラウザもない場合でもファイルにアクセスで
きます。詳しい機能解説は、また別の機会にしたい
と考えています。
　ownCloudは開発元がDebianパッケージなど各種
Linuxディストリビューションに対応したパッケー
ジを配布しています注7。openSUSEのopenSUSE

Build Service（OBS）というサービスを使用していま
す。UbuntuでいうところのPPA（Personal Package

Archives）みたいなもの、と考えるとわかりやすいで
す。PPAはUbuntuだけですが、OBSはさまざまな
Linuxディストリビューションに対応しているのが
特徴です。

　DebianにはownCloudのパッケージがあります。
具体的には2015年2月上旬現在Debianの安定版は
7.8（Wheezy）ですが注8、テスト版（Jessie）と不安定版
（Sid）にあります。ownCloudを動作させるためには
たくさんのライブラリが必要ですが、これらも合わ
せてメンテナンスされています。もちろん開発元が
提供しているパッケージとの違いはありますが、詳
細は後述します。

　UbuntuにはownCloudのパッケージはありません。
14.04（Trusty）には6.0.1がありましたが、これはセ
キュリティホールがあるバージョンで、開発元によ
り削除するべきという意見が出されました注9。
Ubuntuではリリースしたバージョンではパッケージ

注7） http://software.opensuse.org/download/package?project
=isv:ownCloud:community&package=owncloud

注8） 本誌が発売されるまでに8.0がリリースされているかもしれ
ません。

注9） h t t p s : / / b u g s . l a u n c h p a d . n e t / u b u n t u / + s o u rc e /
owncloud/+bug/1384355

ownCloudのDebianでの
対応

ownCloudのUbuntuでの
対応

の削除ができない注10という理由で、空のパッケージ
に置き換わるという対処がされました。すなわち、
アップデートするとownCloudの動作に必要なファ
イルがすべて削除されます。14.10や15.04（開発版）
では、削除あるいはDebianからインポートされない
よう処理されています。もちろんメンテナンスする
人がいるのであればよかったのですが、誰もいない
のであればやむを得ない措置だと思います。では
UbuntuはownCloudに消極的なのかというとそうい
うこともなく、Snappy Ubuntu CoreではownCloud

が使用できることをアピールしています注11。当然こ
れは開発元が提供しているパッケージを採用してい
ます。
　一方PPAで筆者が14.04用のパッケージを提供し
ています注12。Debianのパッケージを持ってきている
だけですが、必要なライブラリが増えているので、
何が必要なのか、必要な場合は14.04のリポジトリ
にあるかどうか、ない場合、あるいはあってもバー
ジョンが古い場合はPPAにアップロードするという
作業を行っています注13。

　Debianのリポジトリ注14は大きくmain、contrib、
non-freeの3つに分類されています。Debianフリー

ソフトウェアガイドライン（Debian Free Software

Guideline、略してDFSG）に準拠している場合は
main、それ自身はmainに位置づけられるものの、
DFSGに準拠しない他のパッケージ（ライブラリな
ど）に依存する場合はcontrib、DFSGに準拠しない

注10） 果たしてこれは本当なのでしょうか。Sun Microsystemsが
Oracleに買収され、Java仮想マシンのポリシーが変更された
ときは3ヵ月後にばっさりパッケージが削除されたのですが。

注11） https://insights.ubuntu.com/2015/01/20/ubuntu-core-on-
internet-things/

注12） https://launchpad.net/~ikuya-fruitsbasket/+archive/
ubuntu/owncloud

注13） マイナーバージョンアップ版ですら使用するライブラリが増
えており、正直メンテンスするのはすごくたいへんで、かな
りの時間を使っています。しかし、実際に使用しているため
今さらやめることができません。筆者はownCloudのすべて
の機能を使用しているわけではないので、中にはうまく動作
しないこともあるかもしれませんが、対応はできません。そ
ういうわけで、あまりお勧めはしません。

注14） Debian用語ではディストリビューション。

ポリシーによるパッケージの
違い

http://software.opensuse.org/download/package?project=isv:ownCloud:community&package=owncloud
http://bugs.launchpad.net/ubuntu/+source/owncloud/+bug/1384355
https://insights.ubuntu.com/2015/01/20/ubuntu-core-on-internet-things/
https://launchpad.net/~ikuya-fruitsbasket/+archive/ubuntu/owncloud

186 - Software Design

Ubuntu Monthly Report

ものの、再配布が認められている場合はnon-freeと
いう使い分けがされています。mainはUbuntuが意味
するmainとは意味合いが違うことにお気をつけくだ
さい。
　DebianのリポジトリにあるownCloudはmainに分
類されています。しかし、バージョンにdfsgという
文字が見られます。原則としてDebianでは開発元が
提供したソースコードのアーカイブ注15をそのまま使
用していますが、アーカイブの中にDFSGに準拠し
ないファイルが含まれており、削除しても動作に問
題ない場合はアーカイブからそれらのファイルを削
除してmainで提供します。dfsgという文字列があっ
た場合、このアーカイブの改変が行われてたことを
示しています。すなわち、開発元が提供したアーカ
イブをそのままDebianのリポジトリにアップロード
することはできないということです。開発元が提供
するパッケージにはそのような配慮は行われないた
め、まずはそこから違ってくるということです。
　また、リリース時期にも違いがあります。開発元
が提供するパッケージはほとんどのケースでソース
コードのリリースと同じタイミングでリリースされま
すが、DebianやUbuntuのリポジトリではそういうわ
けにもいきません。メンテナが作業する時間は必要
ですし注16、Debianでは新規パッケージの場合、ある
いは生成されるパッケージの名前が変更された場合
は、ftpmasterと呼ばれる別の開発者によるチェック
を受ける必要があります。これは当然手作業で行わ
れるため、それなりの時間がかかります。Ubuntuの
場合は、まずDebianのリポジトリに入れたあとに同
期を取ってUbuntuに持ってくることを推奨している
ため、さらに時間がかかるようになります注17。ユー
ザが実際に使用できるようになるまでの時間ももち
ろん考えなくてはいけませんが、backportsリポジト
リやUbuntuの場合はPPAなどを利用して、即座に
ユーザの手元に届くようにするしくみもあります。

注15） GitHubの普及により、アーカイブ (tarボールなど)でリリー
スされることも減ってきてはいるのですが。具体的にはMozc
もそうです。

注16） ちなみにownCloudのメンテナはすごく仕事が早いです。
注17） あくまで推奨であり、Ubuntuのリポジトリにしか入れないと

いうこともできます。

　前置きが長くなりましたが、いよいよ本題です。
Debian SidにあるownCloudのパッケージを手元

にダウンロードし、違いを確認していきましょう。
なお、執筆段階でのownCloudのバージョンは7.0.4

です。
　まずはダウンロード展開に必要なパッケージをイ
ンストールします。

$ sudo apt-get install ubuntu-dev-tools

　次に、適当なフォルダに移動してソースをダウン
ロードします。

$ pull-debian-source -m http://ｭ
ftp.jp.debian.org/debian owncloud sid

　伸張したフォルダに移動します。

$ cd owncloud-7.0.4+dfsg/

　確認すると、debianというフォルダがあることがわ
かります。Debianパッケージに必要なファイルはす
べてここにありますので、移動します。

$ cd debian

　たくさんのファイルがありますが、ここで重要な
のはREADME.DebianとREADME.sourceです。前
者からみていきましょう。どれもこれも重要なこと
が書かれていますが、冒頭の“Security support”に
は、「ownCloud 7のサポートはテスト版、すなわち
次の安定版のJessieのサポートが継続している最中
に終了してしまうので、その後のセキュリティサ
ポートはベストエフォートで提供するものの、場合
によってはパッケージを削除することもあるので、
新しい安定版注18に移行してください」と書かれてい
ます。開発元が提供する場合はメジャーバージョン
アップ注19があった場合はそちらを使用することにな
るので、このあたりのことはあまり気にしない、と

注18） コードネームはZurgと決定しています。
注19） 今回想定しているのは8以降です。

パッケージの違いを見る

186 - Software Design Apr. 2015 - 187

ownCloudに学ぶ、パッケージのメンテナンス 第 60 回

いうことになります。なるべく変化を少なくして使
い続けたいという場合はDebianのリポジトリにある
ownCloudを使うべきですが、それもいつまでできる
のかはわからない、ということを示唆しています。
　“App Store”はさらに重要で、「owncloud-apps

パッケージでいくつか提供しており、App Store機能
自体は無効にしているので有効にしないでください」
と書かれています。App Storeはその名から推測でき
るようにプラグインを提供するしくみですが、中に
はセキュアではないものも含まれているかもしれま
せんし、そもそもパッケージでは管理できなくなっ
てしまいます。そのような理由から無効にしている
とも書かれています。これも開発元が提供している
ものとの大きな違いになります。README.sourceは
ソースアーカイブをどこをどのように変更している
のかが書かれています。
　ここからわかることは、ownCloudの機能をフル活
用したい場合は開発元が提供しているOBSのパッ
ケージを、可能な限り動作に変更を加えず、安定的
に運用したい場合はDebianで提供しているパッケー
ジを使用すればよさそうです注20。UbuntuでDebian

のリポジトリにあるownCloudを使用する場合は、
前述のとおり筆者のPPAを使用するか、LXCや
DockerでDebianのインスタンスを用意する、とい
う手も使えます。確実に時代はそちらに流れている
のは、今さら言うまでもないでしょう。
　ユーザからみると「apt-get update;apt-get
upgrade」だけで済ませていますが、メンテナはこん
なことに気を配っており、場合によって賢く使い分
けるといいということが、少しでも理解いただけれ
ば幸いです。

　最後にクライアントアプリケーションについても
触れておくと、サーバとの同期にはcsyncを使用し
ています注21。すなわち、この手のアプリケーション

注20） 筆者は言うまでもなく後者を魅力的に感じているので、自前
でPPAを用意しているのです。正直OBSのパッケージを安定
的に運用できる気はしません。

注21） 現在開発は、ほぼ停止しているようです。

クライアント

によくあるサーバとクライアントのバージョンが同
期していなくてはならないという制限はありません。
もちろんクライアントのバージョンが新しい方がメ
リットはありますので、可能な限り新しくしたほう
がいいでしょう。
　クライアントのパッケージもやはりオフィシャル
とDebian由来の両方が存在します。サーバとは違っ
てUbuntuのアーカイブから削除されたりはしていな
いので、普通にaptからインストールできます。た
だしUbuntu 14.04でのバージョンは（パッケージ名
はowncloud-client）は1.5.0と、今となってはあまり
に古過ぎます。前述の筆者のPPAには、2月下旬現
在で1.6.4のパッケージが存在します。ちなみに最新
版は1.7.1であり、開発元のリポジトリからはインス
トールできますが、2月下旬現在Ubuntu/Debianでは
インストールできるようにはなっていません。これ
は前述のftpmasterの確認待ちになっているからで
す注22。1.7.0からは同期するフォルダを選択する機能
が追加されており（図1）、Ubuntu 15.04に間に合えば
メリットがあるように思えますが、なかなか道のり
は遠いです。よってクライアントは開発元のものを
使用する、というのもいい選択肢でしょう。臨機

応変にリポジトリを選択できるのもまたメリットで
す。｢

注22） ちなみにキューに入ってから3ヵ月ほどが経過しています。

図1　 ownCloudクライアント1.7以降に追加された同期フォルダ
の選択機能

188 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

　2月9日にLinux 3.19がリリースされ、Linux

3.20の開発が始まっています。ですが、本連載
ではもう少しLinux 3.18での新機能について見
ていきます。今回は、データセンタでの使用にター
ゲットを絞ったTCP実装であるDCTCPと、
UDPを使ったトンネリング実装である foo-

over-UDP、そしてファイルシステム関連の変
更も紹介します。

データセンタでの
通信パターン

　DCTCPはData Center TCPの意味で、デー
タセンタ内の通信を改善することを目的とした
TCP実装です。 この新しいTCP実装がどうい
うものであるかを見るために、まずここで想定
されている「データセンタ内の通信」がどのよう
なものかを見ていきましょう。

　ここでは「データセンタ内の通信」として、大
規模なWebアプリケーションでの通信が想定さ
れています。ここでいう大規模なWebアプリケー
ションの例としては、Webの検索やレコメンデー
ションシステムが想定されます。これらのシス
テムは図1のようなツリー上の構造を用いて、
大規模なデータを高速に処理しています。ツリー
の根にあたるマシンAが検索文字列などのリク
エストを受け取り、配下のBやCにクエリを送
ります。マシンB、Cはさらに配下のマシン群
にクエリを送ります。配下のマシン（worker）は
それぞれ担当するデータ領域からクエリに沿っ
て検索を行い、結果をマシンBやCに返します。
マシンB、Cは、返ってきた結果を集約してマ
シンAに送り、ここでAがふたたびBやCから
の結果を集約して、ユーザへと検索結果が返っ
ていきます。
　迅速なWebページのレスポンスを実現するこ
とを考えると、この検索にかけられる時間はそ
う長くはありません。全体としては230ミリ秒
から300ミリ秒、末端のマシンにいたっては10

ミリ秒から100ミリ秒のデッドラインが設定さ
れます。このデッドライン以内にレスポンスが
返ってこなければ、そのマシンが担当するはず
だった結果は失われ、その分検索結果は不正確
なものとなってしまいます。また、これらのク

Linux 3.18での新機能
DCTCPとfoo-over-UDP

Text：青田 直大　AOTA Naohiro

第37回第37回

 ▼図1　大規模なWebアプリケーションの例

worker #0

worker #1

worker #2

worker #3

B

C
A

クエリ
発行・集約

クエリ
発行・集約

188 - Software Design Apr. 2015 - 189

Linux 3.18での新機能
DCTCPとfoo-over-UDP

第37回第37回

エリのサイズはworkerへの送信側が1.6KB、
workerからの応答が1.6から2KBとなっていま
す。すなわち、これらクエリはサイズは小さい
ものの、低レイテンシであることが重要な通信
ということができます。
　こうしたデータセンタでは、Webアプリケー
ションの役割を実現するクエリの通信とは別に
「バックグラウンド」の通信も流れています。バッ
クグラウンドの通信には、workerの状態を確認
するコントロール用の短いメッセージ通信（50KB

から1MB）と、各workerが保持し検索するデー
タを更新するための大きな更新用通信（1MBか
ら50MB）の2種類があります。 コントロール用
通信はクエリの通信と同様に低レイテンシであ
ることが求められ、一方でデータ更新用の通信
には更新時間を短くするため高いスループット
が求められています。
　まとめるとデータセンタでは次の3種類の通
信が行われているということになります。

◦	低レイテンシが求められるクエリ通信
◦	低レイテンシが求められるコントロール通信
◦	高スループットが求められるデータ更新用通信

データセンタ内通信で
の問題点

　それではこのような通信が行われるデータセ
ンタではどのような問題が発生しているのかを
見ていきましょう（図2）。
　1つめの問題点は“Incast”と呼ばれています（図
2上）。先ほど紹介したようなクエリを一度に大
量のworkerに投げ、しかもすぐに応答すること
が求められるという状況では、マシンBやCの
ようにworkerからデータを受け取り集約する役
割のマシンには短時間に非常に多くのパケット
が流れこむことになります。すると、スイッチ
のパケットバッファがいっぱいになってしまい、
パケットロスが発生することになります。
　パケットロスが発生した場合、2つの方法の
いずかれで失われたパケットを再送することに

なります。1つめの方法は単純にタイムアウト
を待つ方法です。パケットを送ってから、ある
程度の時間が経ってもACKが返ってこなかっ
た場合に再送処理を行います。 もう1つの方法
はFast retransmit（高速再転送）という方法です。
1つめの方法のタイムアウトは一般に十分に長
い時間に設定されています。そのときまでパケッ
トが失われたどうか待つのは非効率的です。そ
こでFast Retransmitでは、送信側はタイムア
ウトを待たずにとりあえずパケットを送り続け
るという動作を行います。パケットロスが起き
た場合、受信側は欠けているパケットを検出し、
その直前の最後に受け取ったパケットのACK

を返します。送信側は同じパケットへのACKが
繰り返されているのを検出し、パケットロスが
発生したことを認識して、失われたパケットか
ら再送を行います。こちらではタイムアウトよ
りも速くパケットロスに気がつくことができ、
より効率的な通信を実現できます。
　しかしながら、クエリの応答パケットはサイ
ズが小さく、パケット数は2程度にとどまります。
そのため失われるパケットの後続にあたるパケッ
トがないので、高速再転送はここでは使うこと
ができません。そうすると、パケットの再送は
タイムアウトまで待つことになり、それはすな
わちクエリへの応答がタイムアウト以降になっ

 ▼図2　incastとQueue buildup

packet

キュー

packet packet packet

worker #0

worker #1

worker #2

worker #3

A

packet

packet

packet

packet

incast： 多数のworkerから同時にパケットが流れ込み
　　　 パケットロスが発生

BIG PACKET

キュー

packetA

Queue buildup：大きなフローにより短いフローも
　　　　　　　 レイテンシが悪化

190 - Software Design

Linuxカーネル観光ガイド

てしまうことを意味します。結局のところ、
incastによるパケットロスはそのままデッドラ
インに間に合わないことを意味し、検索結果の
悪化をもたらすことになります。
　2つめの問題点は“Queue buildup” と呼ばれ
ています（図2下）。 バックグラウンドの通信の
ように、長く大きな通信は、スループットを向
上するためにスイッチのバッファをできるだけ
多く使おうとします。すると、この通信がバッファ
の多くを占有することになります。ここに同時
にクエリの通信が流れているので、クエリの通
信が使えるバッファの量は少なく、より incast

の問題が起こりやすくなります。 さらに、パケッ
トロスが起こらなかったとしても、バックグラ
ウンドの通信によりキューが長くなり、大きな
パケットが送りだされるまでクエリのような小
さな通信が待たされ、レイテンシが悪化すると
いう問題が発生します。
　さらには、コモディティのスイッチではすべ
てのポートに共通のメモリ領域をバッファリン
グに使用しています。すなわち、どこかのポー
トで大きくバッファを使用する通信があれば、
ほかのすべてのポートで流れる通信にもその影
響がおよびパケットロスが発生するという問題
も起きてしまいます。
　これまで incastに対しては、アプリケーショ
ンに改変を加えることである程度の対策ができ
ました。たとえば、 クエリ応答のサイズを減ら
すあるいはランダムな時間ディレイ（遅延）をい
れるという対策をとっています。ディレイをい

れることで、一度に入ってくるパケットの量を
減らすことができます。しかし、この方法では
多くのパケットに無駄なディレイを入れてしま
うことになりますし、Queue buildupによるレイ
テンシは解決できません。

ECNとは
　こうした問題を解決し、バーストに耐え、ク
エリは低レイテンシ、バックグラウンドの大き
なフローは高スループットを実現するため、
DCTCPではECNというしくみを拡張した輻

ふくそう

輳
制御を実装しています。まずは、このECNにつ
いて見ていきましょう（図3）。
　ECNとはExplicit Congestion Notificationの
略で、TCPの拡張機能であり輻輳制御に用いら
れています。一般に用いられている輻輳制御ア
ルゴリズムでは、輻輳の存在をパケットロスに
よって検知します。この方法には、失われたパケッ
トを再送することによる転送量の増加、レイテ
ンシの増加という欠点があります。ECNでは輻
輳が発生していることをパケットに「マークをつ
ける」ことで通知します。この方法であれば、パ
ケットロスなしに輻輳を検出し、ウィンドウサ
イズを調整できるという利点があります。
　ECNを使うTCP/IP通信では送信側はパケッ
トにECT（ECN Capable Transport）マークをつ
けて送信を行います。ECNに対応したルータは、
そのECTマークを見て、輻輳が発生しそうな場
合にはCE（Congestion Encountered）マークをつ
けます。受信側はCEの付いたパケットを見つ
けると、それ以降はECE（ECN-Echo）bitの立っ
たACKを送信側に返します。この時点で送信
側に「輻輳が発生しそうだ」ということが伝わる
ので、送信側は適宜ウィンドウサイズを小さく（一
般的な実装の場合は半分にする）します。送信
側はCWR（Congestion WindowReduced）bitを
立てて、ウィンドウサイズを小さくしたことを
受信側に通知し、ここで受信側はACKにECE

bitを立てるのをやめます。

 ▼図3　ECNの構造

送信ホスト スイッチ

ECT=1
CE=1

2. CEマークを追加

3. ECEマークをつける

ECT=1

ECE=1

1. パケット送信

受信ホスト

4. 混雑しているようだ。
 　ウィンドウを
 　小さくしよう

混雑している

190 - Software Design Apr. 2015 - 191

Linux 3.18での新機能
DCTCPとfoo-over-UDP

第37回第37回

DCTCP
　ECNは以上のように、輻輳が存在するかどう
かを通知し、それによってウィンドウを半分に
する輻輳制御方法です。DCTCPは、このECN

マークを用いて「どの程度輻輳しているか」を検
出し、その割合に応じてより滑らかにウィンド
ウサイズの調整を行う方法となります。
　DCTCPが普通のTCPと違うのは次の3個所
になります。

◦	スイッチのECNマーキング
◦	受信側のECEマーキング
◦	送信側のウィンドウサイズ調整

　まず、スイッチのECNマーキングはシンプル
に行われます。パケット到着時にキューの長さ
があるパラメータKよりも長くなっていると、
そのパケットにはECNマークが付けられます。
　次に、受信側のECEマーキングについて見
てみましょう。通常のECNでは「輻輳が存在」
することを送信側に伝えることが重要ですので、
ウィンドウサイズが減少するまでECEマークを
つけたACKを送ることができます。 しかし、
DCTCPの場合は「輻輳の度合」を通知したいの
で、何度もECEを送ると「輻輳の度合」の計測
が間違ってしまいます。 そこで受信側では1つ
のECNに対して1つのECEを返すという挙動
をとります。
　最後に肝心のウィンドウサイズの調整を見て
みましょう。DCTCPでは、ウィンドウサイズ
分のデータを送るごとに、ECNマークされたパ
ケットの割合の推定値αを次のように更新します。

α = (1 - g) x α + g x F

　ここで、Fは今回のウィンドウ分でマークさ
れていたパケットの割合であり、gは0 < g < 1

の重み付けパラメータとなっています。αは0

から1の値をとり、スイッチが混雑しキューの
長さがKを超える期間が長いほど1に近づき、

 逆に空いていれば0に近い値をとります。
　前述したように、一般のTCP実装ではECE

を受け取るとウィンドウサイズを半分にしますが、
DCTCPではこのαを用いて次のようにウィン
ドウサイズcwndを調整します。

cwnd = cwnd x (1 - α/2)

　すなわち、αが0に近くスイッチが空いていれ
ばウィンドウサイズはほとんど変わらず、 αが1

に近く混雑しているような状況ではウィンドウサ
イズを半分程度まで落とすということになります。
　これらのしくみにより、DCTCPではスイッ
チでのキューのサイズがKを超えたところで少
しずつウィンドウサイズが減少されるようにな
ります。これによって、バッファの使用量がK

によって抑えられ、キューによるレイテンシの
悪化を防ぎ、またバースト時用のバッファを確
保できます。また、ECNを使って実際にパケッ
トが落ちる前に混雑状況を通知することで、
incastのような一度に大量のパケットが流れる
場合でも適宜調整を行って、パケットを落とさ
ずに通信を行うことができるようになります。

foo-over-UDP
　次に紹介するのはUDPを使ったトンネリング
である foo-over-UDPです。これを使うと、
UDPのパケットのデータ部分にIPパケットが
カプセル化されます（図4）。UDPを通信路に使
うことで、NICによるUDPの最適化により高い
性能を出せることが期待されるようです。
　受信側は次のコマンドでUDPの待ち受けポー
トを設定します。

ip fou add port 5555 ipproto 4

　送信側は次のコマンドで接続先を設定します。

ip link add name tun1 type ipip ¥
 remote 192.168.100.1 local 192.168.100.ｭ
254 ttl 225 ¥
 encap fou encap-sport auto encap-dport ｭ
5555

192 - Software Design

Linuxカーネル観光ガイド

　少し無理矢理ですが、foo-over-udpを使用し
ている様子を見てみましょう。図4のように仮
想マシンを作ります。通常の通信経路は
192.168.100/24で、トンネルを192.168.2.1と
192.168.2.2とで作ります。たとえばVM側では
図5のようなコマンドを使い、ホスト側ではIP

アドレスなどを逆にして設定を行います。

　ホストでHTTPサーバを作り、VMから
“http://192.168.2.1/fou”にアクセスした様子を
Wiresharkで見てみると、TCPの送受信の前後
に、ポート5555へのUDP送受信が行われてい
るのを確認できます（図6）。
　ここで、たとえば18番のUDPパケットのデー
タ部分（黒マスク部分）を見てみると、0x38から
0x3fに送受信のIPアドレス192.168.2.2が入っ
ていたり、HTTPのリクエストが見えたりと、
IPパケットがそのまま入っているのを見ること
ができます（図7）。

F2FS：効率的な
データベースジャーナリング

　F2FSは、フラッシュに特化したファイルシ
ステムレイアウトや、ファイル拡張子を使って
マルチメディアファイルの配置場所を最適化す
るなどAndroidに特化した機能を持つファイル
システムです（図8）。そのF2FSにLinux 3.18

では、また新しくAndroid特化を思わせる機能
が導入されました。
　Android上で動作するさまざまなアプリはデー
タベースSQLiteを使いデータを保存しています。

データ更新時に、データベースファイルに直接
書き込みを行った場合、OSまたはアプリケーショ
ンがエラーで終了した場合に、データベースの
一貫性が壊れてしまうことがあります。この障
害を防止するため、SQLiteはジャーナルファイ
ルを使用します。WAL（Write-Ahead-Logging）
という方式の場合、データベースへの更新内容
を先にジャーナルファイルに書き、それがディ
スクまで反映されたことを確認したうえで、デー
タベースファイルへの更新を開始します。これ

ip fou add port 5555 ipproto 4
ip link add name tun1 type ipip ¥
 remote 192.168.100.1 local 192.168.100.254 ttl 225 ¥
 encap fou encap-sport auto encap-dport 5555
ip addr add dev tun1 192.168.2.2 peer 192.168.2.1/32
ip link set tun1 up
ip route add 192.168.2.0/24 via 192.168.2.1 dev tun1 onlink

 ▼図5　VM側の設定

 ▼図4　foo-over-UDPによるカプセル化の様子

UDP
TCP
パケット

TCP
パケット ホスト

192.168.100.1

192.168.2.1

UDP
TCP
パケット

TCP
パケット

VM

192.168.100.254

192.168.2.2

トンネル経由で送信

パケットの
取り出し

UDPで
カプセル化

 ▼図6　Wiresharkでのトレース

 ▼図7　パケットのバイナリダンプ

192 - Software Design Apr. 2015 - 193

Linux 3.18での新機能
DCTCPとfoo-over-UDP

第37回第37回

により、データベースファイルの更新中に障害
があっても、ジャーナルファイルから更新内容
を書き戻すことができます。この方法で安全に
データベースを更新できますが、同じ内容をディ
スクに2度書き込むことになります。そこで
F2FSはatomic writeとvolatile writeという機
能を追加して、この問題に対処しています。
　atomic writeは指定した範囲の書き込みが
atomicになることをF2FSが保証する機能です。

開いたファイルに対して、ioctl（F2FS_IOC_

START_ATOMIC_WRITE）を実行するとその
ファイルは atomicfileとなり、それ以後 ioctl

（F2FS_IOC_COMMIT_ATOMIC_WRITE）が
呼ばれるまでの書き込みがatomicに行われます。
　volatile writeは、指定したファイルへの書き
込みをファイルがcloseされるまで、ディスクに
反映しないようにする機能です。ioctl（F2FS_

IOC_START_VOLATILE_WRITE）が実行さ
れると、そのファイルはvolatile fileとなり、そ
のファイルへの書き込みはメモリ上のpage

cacheにだけ反映されるようになります。
　これらの操作を組み合わせて使うことで、ディ
スクへの書き込みは一度で、かつ安全にデータ
ベースの更新を行うことができるようになります。
実際にどのように書き込みを行うか、それぞれ
のタイミングでOS、アプリが落ちた場合にど
のようになるかを見ていきましょう。
　データベースの更新は、ジャーナルファイル
をvolatile fileにして、更新内容を書き込むこと
から始まります。volatile fileであることから、
書き込みはメモリだけに反映されています。書
き込みが完了するまでの間は、ジャーナルが不
完全ですので、この段階での障害は考える必要
がありません。
　ジャーナルへの書き込みが完了すると、
atomic writeを有効にしてデータベースへの更
新の反映を開始します。書き込みが完了するま
での間にアプリが落ちた場合どうなるでしょうか。
この場合、プロセスの終了によって、ジャーナ
ルファイルが閉じられます。それによってメモ

リ上にあったデータはディスクへと反映されます。
そのあと、アプリが再度起動するとディスクに
書かれたジャーナルからデータベースを復旧で
きます。OSが落ちた場合はどうなるでしょうか。
その場合、ジャーナルがディスクに反映される
タイミングはありません。しかし、データベー
スファイルがatomicに更新されているのでここ
で落ちてもデータベースファイルの一貫性に影
響はありません。
　データベースへの書き込みが終われば、ioctl

（F2FS_IOC_COMMIT_ATOMIC_WRITE）を
発行します。 それが終われば、ジャーナルファ
イルをクリアして、ジャーナルをcloseします。
それによってpagecache上にあったデータもクリ
アされます。ここまでの作業がすべてうまくいっ
た場合、はじめに紹介したようにジャーナルの更
新はメモリだけで行われ、データベースへの書き
込みだけがディスク上で行われることになります。

overlayfs
　Linux 3.18では、このほかにも以前にも紹介
したoverlayfsがマージされています。これは複
数のファイルシステムを重ね合わせて1つのファ
イルシステムかのように見せる機能です。
LiveCDなど書き込めない読み込み専用のディ
スクの上に、書き込み可能なUSBメモリ上のファ
イルシステムを重ねて書き込み可能なLiveCD

システムを作ることができます。さらに、最近

ではCoreOSでもbtrfsからoverlayfsに移行す
るなど話題となっています。｢

 ▼図8　F2FSファイルシステムの動作

ジャーナルへの
書き込み DBに反映

通常の書き込み
（アプリ／OSが落ちた場合）

不完全なジャーナル
書き込み前に戻る

ジャーナルからの復旧

F2FS拡張の書き込み
（アプリが落ちた場合）

不完全なジャーナル
書き込み前に戻る

ジャーナルからの復旧

F2FS拡張の書き込み
（OSが落ちた場合）

ジャーナルは存在しない
書き込み前に戻る

ジャーナルは消えるが、
atomicにより一貫性は
保護される

194 - Software Design

・セキュリティキャンプ

・SECCON CTF

・Hardening Project

　セキュリティ人材の育成には、育成される人の自
主性が重要で、「押しつける」ような教育では効果が
薄いと言います。法制度や倫理的な理由から本番環
境では行いにくいセキュリティ関連の実践について、
ゲーム的な要素を取り入れ、個々の工夫がその戦果
に取り込まれやすくなるようなやり方をされている
とのことでした。公的な機関を巻き込むことで、世
の中や社内に、プロジェクトに参加する意義を理解
してもらいやすくしているほか、セキュリティには
経営的な判断も必要になることを、経営層の人に認
識してもらう努力も行われているそうです。
　パネルディスカッションでは、「人材不足が懸念さ
れる中で、何でもできるスーパーマンを求めるので
はなく、適材適所で分担することを前提に全体のレ
ベルの底上げを図るのが現実的ではないか」という意
見が出ました。
　続いて、会場には実際にセキュリティエンジニア
として現場で働いている人が多かったことから、10

年後も生き残るにはどうするか、ということが話題
になりました。「セキュリティの専門能力だけでは生
き残るのは難しい。問題発見能力や問題解決能力な
ど自身の能力のほかに、専門能力を持つ知り合いを
たくさん知っていて、実際に相談できるようなフレ
ンドキューレーションみたいな関係を広く持ってい
ることが重要になるだろう」という意見に参加者の多
くが頷いていました。セキュリティの今後を考える

　JPNIC主催のInternet Weekが2014年11月に開催
されました。今回もjusは後援団体として参加し、プ
ログラムの企画や告知などの協力を行いました。
　今回のInternet Weekのテーマは「あらためて“みん
なの”インターネットを考えよう」です。これは、セ
キュリティ関連の問題が数多く噴出したことや、イ
ンターネットガバナンスに関する議論が活発化した
ことを受けて設定されたものです。このテーマに
沿って4日間で42本のプログラムが実施され、2,650

人の参加者を集めました。いずれも開催地が東京に
移った2007年以降では最大級の規模です。

	 ■Internet Week 2014

	【日時】2014年11月18日（火）〜11月21日（金）

	【場所】富士ソフトアキバプラザ

　以下、実施したプログラムの中から、jus幹事が企
画にかかわったいくつかのセッションについて、内
容を紹介します。

■本当に身につくセキュリティの学び方

　情報セキュリティ人材不足、という言葉をさまざ
まな場所で耳にするようになりました。この問題を
解決するため、近年は従来の教育とは異なる「面倒く
さくない」「楽しく学ぶ」セキュリティ教育が実践され
ています。本セッションでは、次のプロジェクトの
紹介と、セキュリティ人材に関するパネルディス
カッションが行われました。

Internet Week

セキュリティとクラウドの新潮流に触れたInternet Week

NO.42
April 2015

日本UNIXユーザ会　http://www.jus.or.jp/
波田野 裕一　HATANO Hirokazu　tcsh@tcsh.csh.sh
高野 光弘　TAKANO Mitsuhiro　takano32@jus.or.jp

http://www.jus.or.jp/

Apr. 2015 - 195194 - Software Design

うえで、とても示唆に富むセッションだったと感じ
ました。

■CSIRT時代のSOCとのつき合い方

　2014年は大規模なセキュリティインシデントが
新聞やテレビを賑わせた年でした。そんな状況の
中、各企業のCSIRT（Computer Security Incident

Response Team）や、セキュリティ専門業者が提供
するSOC（Security Operation Center）サービスの
重要性が増していると言われています。本セッショ
ンでは、そのCSIRTとSOCのあり方について議論
が行われました。
　まず、インシデントレスポンス自体の傾向として、
従来は「守る」ことに主眼が置かれていたものが、攻
撃手法の高度化や攻撃自体のビジネス化に伴い「守り
きることは不可能」という認識がセキュリティ専門家
の間で広がりつつあるとのことでした。今後は、「や
られること」を前提に、いかにダメージを極小化する
かという「ダメージコントロール」がセキュリティイ
ンシデント対応の主眼になるそうです。そのような
状況下で、SOC、CISRTそれぞれから見たインシデ
ントレスポンスについて解説が行われ、今後はどの
ように相互に連携して、検知や終息の早期化を図る
かということが議論されました。
　それぞれにビジネス観点や環境の制約がある中で、
各機関が活動していくにはなかなか難しいことも多
いようです。しかし、それを乗り越えて、より良い
関係をどう築いていくか、それをどのように世の中
に広めていくかなど、今後の発展にとても期待が持
てるセッションでした。

■Dockerが変えるクラウドインフラ新潮流

　このセッションは、前半はDockerの概要について
の説明、後半は具体的なデモなどを交えた発表とい
う2部構成で実施されました。
　前半は、荒井康宏さん（一般社団法人クラウド利用
促進機構）から、Dockerが注目されている理由やメ
リット、Dockerを中心としたクラウドインフラの動
向について説明が行われました。まず、Dockerがコ

ンテナ技術としてどのような位置にあるのかを説明
されたあとに、Dockerの特徴とメリット、そして
Dockerを用いたシステムを設計するときの注意点な
どについて触れていただきました。
　コンテナをイメージとして管理できることが、
Dockerの大きな技術的特徴です。Dockerは、AUFS

（Another Unionfs）注1を利用したデータの差分管理な
どの技術により、従来の技術よりもイメージという
大きいデータを効率よく扱えていると言います。ま
た、LXC（Linux Containers）注2をベースとした技術で
あるため、システムと密接な部分のパフォーマンス
についても、従来の仮想化技術基盤より優れている
場面が多いとのことです。
　後半は、前佛雅人さん（クリエーションライン㈱）
がDockerのセットアップから基本的な使い方までの
デモを行い、実際にDockerがどのようなシーンで優
れたツールとして機能するのかを説明していただき
ました。
　Dockerを利用するメリットとしては、環境を
Dockerのイメージとして作成したり、Dockerのイ
メージを作成する手順をDockerfileとして固定化し
たり、それをLXCベースのプラットフォームで動作
させたりすることで、さまざまな実行環境の差異を
吸収できることが挙げられます。こういったメリッ
トをふまえて、運用の際に必要な一連のDockerの操
作について説明が行われました。具体的には、docker
run、docker attach、docker images、docker commitな
どのDockerのコマンドを用いて、イメージの作成や
状態の確認などの操作をデモしていただきました。
　前後半に分けて行われたセッションですが、前半
ではDockerがどのようなものであるのかという概要
を知ることができ、後半ではDockerを実際に使った
ときにどのような挙動でそのメリットを享受できる
のかといったことを理解できました。それぞれ
Dockerの入門に良いセッションでした。｢

注1） 複数のファイルシステムを束ねて、仮想的に1つのファイル
システムに見せることのできるファイルシステム。

注2） 1つのOS上に複数の隔離された環境（コンテナ）を構築できる
仮想化ソフトウェア。

セキュリティとクラウドの新潮流に触れたInternet Week April
2015

196 - Software Design

　みなさま、こんにちは。Hack for Japanスタッフ
の関です。筆者は2013年6月に「Code for Japan

（コード・フォー・ジャパン）」という名前の団体を
立ち上げ、そちらでも活動しています。Code for

Japanは、筆者がHack for Japanで活動する中で生
まれたさまざまな気付きを、さらに多くの人々に組
織的に広めていくために立ち上げました（写真1）。
Code for Japanは、国内で「シビックテック」関係の
活動を推進するためのコミュニティです。本稿で
は、日本におけるシビックテックの現状についてお
伝えしたいと思います。

そもそも、
シビックテックとは？

　シビックテックとはどのような概念なのでしょう
か。文字どおりに訳せば、シビック＝市民のための、
テック＝テクノロジですが、市民による、市民のた
めの、市民によるテクノロジ活用といったような意
味合いを持っています。わかりやすく言えば、地域
の課題を住民参画とテクノロジ活用によって解決し
ようという活動で、欧米を中心に拡大しています。
　ナイト財団によるレポート、「The

Emergence of Civic Tech: Investments

in a Growing Field December 2013注1」
によると、シビックテックの定義は幅広
く、公共データへのアクセスや透明化、
住民が保有する資産やツールのP2Pで
のシェア、公共サービスや施設を改善す
るためのクラウドファンディング、地縁

注1	 http://www.slideshare.net/knightfoun
 dation/knight-civictech

に根ざしたコミュニティやフォーラム、社会的な講
座や市民との関係性向上など、多岐にわたります
（図1）。
　また、International Data Corporation（IDC）が最
近出したレポート「Civic Tech Fuels U.S. State

and Local Government Transformation注2」による
と、米国のシビックテック領域への投資は2015年
で約64億ドルになるとされており、2013年から
2018年の投資額は、従来のIT領域への投資に比べ
ると14倍早く成長するとも書かれています。
　日本でも、オープンデータの推進とも呼応するよ
うな形で、少しずつシビックテックに関連する活動
やスタートアップが出てくるようになりました。

シビックテックが
注目される理由

　では、なぜシビックテックが近年注目されてきて
いるのでしょうか。それにはいくつかの理由があり
ます。筆者の整理では、1オープンデータ運動

注2	 http://www.accela.com/images/resources/whitepaper/
idc-civic-tech-report.pdf

Hack For Japan
エンジニアだからこそできる復興への一歩

日本のシビックテックの現状について第40回
地域の課題を住民参画とテクノロジの活用によって解決する。おおまかに言うと、
このような活動がシビックテックです。欧米で始まった動きですが、日本でも少し
ずつ、そういった活動が目に見えるようになってきました。

●Hack For Japanスタッフ
　関 治之　Hal Seki
　 Twitter @hal_sk

◆◆写真1　Code for Japanのコミュニティ

http://www.accela.com/images/resources/whitepaper/idc-civic-tech-report.pdf
http://www.slideshare.net/knightfoundation/knight-civictech

Apr. 2015 - 197

日本のシビックテックの現状について第40回

2 ICTの普及 3スマートフォンの普及の3つが大
きく影響していると思います。
　まず1についてですが、オープンデータとは、
政府や自治体の持つデータを2次利用可能なオープ
ンライセンス（パブリックドメインやCC-BYライ
センス）で公開することで、透明性の向上や経済発
展、行政への市民参画のために使ってもらおうとい
う動きのことです。米国や英国ではすでにさまざま
なデータが公開されており、とくに米国でオバマ大
統領が就任してからは、政府のデータは特別な理由
がなければ原則公開という、「オープン・バイ・デ
フォルト」の考え方が導入されました。データが自
由に利用できるようになることで、前述したシビッ
クテックの領域に関する図1にあるような、これま
でにはなかったサービスが続々と生まれています。
　そして、2のICTの普及についてですが、Web技
術が発展し、計算機の処理能力も飛躍的に向上した
結果、さまざまなデータを組み合わせたり、現実世
界の情報を拾い上げて政策判断に活かすといったこ
とができるようになりました。たとえば、統計デー
タをビジュアライズしてわかりやすく表現すること
により、感覚的なものや有力者の意見だけではな
く、データを元にした意思決定がしやすくなったの
です。これにより、住民が行政に参加しやすくなり
ました。具体例としては、選挙の際に議員が過去ど
のような法案に賛成してきたかといったデータを参
照することで、耳障りの良い選挙公約などに惑わさ
れない判断ができることになります。
　最後に3のスマートフォンの普及です。スマー
トフォンが普及したことにより、多くの人が隙間時
間を使って行政とコミュニケーションをすることが
できるようになりました。これまでは、タウンミー
ティングなどの場や選挙のタイミングでしか、政策
立案や自治体の活動に意見を言うことはできません
でした。これでは、忙しい人は参加できません。今
ではスマートフォンを使うことで、自分の好きな時
間、好きなタイミングで行政とのコミュニケーショ
ンができるのです。
　たとえば、米国の多くの都市で採用されている
SeeClickFixというサービスは、近所で見かけた町

の不具合を、スマートフォンを使って簡単に投稿が
できるサービスです。道路にヒビが入っていたとし
て、住民がその道路の写真を撮影し、市に対して位
置情報付きでレポートを送信することができるよう
になっています。同様のサービスは多くの市で導入
されています。日本でも、昨年から千葉市が「ちば
レポ」というしくみを始めていますし、FixMyStreet.

jpというWebサイトでも同様の機能を提供してい
ます。

日本政府の動き

　今日本は、少子高齢化が急速に進み、地方の経済
も落ち込みが進んでいるところも多い状況です。と
くに「超高齢社会」とも言われる状況は深刻で、総務
省が発表した2013年9月15日時点の推計人口注3に
よると、今現在日本の人口の4人に1人が高齢者
（65歳以上）であり、2035年（平成47年）には3人に
1人が高齢者になると予測されています。単純に考
えても、税金を払う側の人が減り、年金を受給し、
公共サービスを比較的多く必要とする人が増えるこ
ととなり、現役世代には相当な負担が求められるこ
とになります。そのような状況で社会のしくみを継
続していくためには、行政機能の相当な効率化が必
要となってきます。
　しかしながら、これまでの行政のやり方には限界
があります。お金がないのであれば、知恵を出すし

注3	 http://www.stat.go.jp/data/topics/topi721.htm

◆◆図1　シビックテックの領域

http://www.stat.go.jp/data/topics/topi721.htm

198 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

かありません。「行政についてはお上にお任せ」して
おく時代は終わったのです。皆が知恵を出し合っ
て、地域ごとに課題を解決していく「市民参画」がま
すます重要になってきます。国民に開かれた政府を
作り、市民参画や協働を進めていく考え方は「オー
プンガバメント」と呼ばれています。そのような中
で、シビックテックを活用しようという機運が徐々
にですが高まってきています。
　日本政府はオープンデータを進めていくという姿
勢を打ち出しています。平成25年6月14日、政府
は日本を5年の間に世界最高水準のIT国家とする
という「世界最先端IT国家創造宣言」を発表しまし
た。その中では、目指すべき社会・姿を実現するた
めの取り組みとして、「オープンデータ・ビッグデー
タの活用の推進によって革新的な新産業・新サービ
スの創出と全産業の成長を促進する社会の実現を行
う」とあります。この戦略に基づき、オープンデー
タ公開の流れが進んでいます。2014年10月1日には
政府のデータカタログサイトである、data.go.jp注4の
運用が正式に開始され、さまざまなデータセットが
公開されています。
　また、自治体の中でも先進的な所はオープンデー
タ公開に積極的に取り組み始めており、福井県鯖江
市、千葉県千葉市、神奈川県横浜市、静岡県、北海
道室蘭市などの地域がさまざまなデータセットを公
開しています。

日本の推進コミュニティ

　このような政府の動きに対し、いくつかのコミュ
ニティが市民側の動きを牽引しています。オープン
ナレッジファウンデーションジャパン（Open Know

ledge Foundation Japan。以下、OKFJ注5）はオープ
ンデータの推進を積極的に行なってきました。オー
プンナレッジ（Open Knowledge）は英国の、主に
オープンデータの普及啓発に関する活動を行う組織
の日本コミュニティで、筆者もメンバーになってい
ます。海外のオープンデータに関する情報を日本語

注4	 http://data.go.jp/
注5	 http://okfn.jp

で発信するほか、政府や自治体に対してオープン
データの重要性をアピールする活動や、毎年2月に
行われる世界規模のオープンデータのお祭り、
「International Open Data Day」の日本の取りまとめ
などの活動も行っています。
　Code for Japanも、日本のオープンガバメントを
推進する立場で活動をしています。「ともに考え、
ともにつくる」というスローガンを掲げ、住民自身
が自分事として地域の課題を捉え、自ら手を動かす
ためのテクノロジ活用を行っています。大きく2つ
の活動があり、1つは各地のCode forコミュニティ
の支援である「ブリゲイド支援」活動、もう1つは、
自治体向けの高度IT人材派遣サービスである「フェ
ローシッププログラム」です。現在、21の地域の
Code forコミュニティを支援し、福島県浪江町に2

名のフェローを派遣。コーポレートフェローシップ
という企業から自治体への人材派遣プログラムも開
始しました。

シビックテックの事例

　事例を2つだけ紹介します。

●●5374.jp
　Code for Kanazawaが開発した、ゴミ収集日と種
類がわかるWebアプリケーションです（図2）。複雑
なゴミ収集日をシンプルなユーザインターフェース
で表現することで、便利に使えるようになっていま
す。オープンソースで公開されていて、50以上の地
域で市民の手により開発されています。

●●さっぽろ保育園マップ
　Code for Sapporoの、さっぽろパパマママップ
チームが開発したアプリケーションです注6（図3）。
子どもを「どこに」あずければいいんだろう？……こ
れは小さなお子さんがいるお父さんやお母さんを長
年悩ませてきた問題です。「おうちの近く？　勤め
先の近く？　退勤時間に間に合う？　じじばばも行

注6	 http://www.codeforsapporo.org/papamama/

http://data.go.jp/
http://okfn.jp
http://www.codeforsapporo.org/papamama/

Apr. 2015 - 199

日本のシビックテックの現状について第40回

　たとえばGitHubを使ってIssueの共有がされた
り、Pull Requestを通じてこの流れが加速したりと
いった部分こそが、テクノロジの強みだと思うので
す注7。その文化がエンジニアだけでなくもっと多く
の人に伝播していく。これこそ筆者がシビックテッ
クに一番ワクワクする部分であり、震災時のHack

for Japanのコミュニティからも学んだことです。
　今は過渡期なので、「GitHubなんか普通の人は使
わないよ」とか、「お年寄りはスマートフォンを使わ
ないよ」といった話はでてきます。でも、10年、20

年といったスパンで見ていけば、このようなオープ
ンソース的な考え方が一般の人たちのなかでも普通
になる世の中が作れるのではないでしょうか。
　Code for JapanはCode for Americaとパート
ナーシップを結んでいますが、概念や理念をある程
度共有している部分があるからこそ、我々はCode

for Americaから学べるし、Code for Americaも
Code for Japanから学ぶことができます。「試行錯
誤をオープンにして、学びあっていこう」という、
Co-Learningが、これからの地域課題解決をスケー
ルさせていくのだと信じています。
　Code for Japanは草の根の活動で、誰でも参加で
きるコミュニティです。これを読んで興味を持って
くださった方、ぜひCode for Japanのコミュニ
ティにご参加ください。s

●● Code for Japan
　http://code4japan.org/
　https://www.facebook.com/codeforjapan

注7	 和歌山県がGitHubにてデータを公開
	 https://github.com/wakayama-pref-org

ける？」それぞれの家庭のたくさんの事情を考えて、
子どもの預け先を選ぶことはとても大変です。お父
さんやお母さんの負担を少しでも軽くしたい。1人
でも多くの子どもにより良い保育環境を届けたい。
そんな思いから生まれたアプリケーションです。こ
ちらもGitHubでソースコードが公開されています。

シビックテックの本質

　2つのアプリケーションを紹介しましたが、各地
のCode forコミュニティでは、アプリケーション
を作ることだけを目的としているわけではありませ
ん。アイデアソンやハッカソン、マッピングパー
ティといったワークショップを自治体や市民と一緒
に開催しています。ITというのはあくまで手段であ
り、「課題の発見」と「当事者による主体的な取り組
み」なしには地域課題は解決しません。筆者は、
コードを書くことやテクノロジ活用といった“How”
ではなく、エンジニアリング的な思考と、オープン
ソースコミュニティ文化の強みこそが、Code forの
コアコンピタンスだと思っています。
　何か課題を見つけ、何かの手段を使って解決す
る。課題を解く際には、エンジニアの美徳の1つで
ある「怠惰」の特性を生かす（楽をするためなら努力
を厭

いと

わないといった性格）。そして、何か作ったな
らオープンに共有し、車輪の再発明をなるべく少な
くする。共有されたものを改良したら、それをメイ
ンのコードに返す。そこからコミュニティが生ま
れ、コードだけでなく、課題や解決のアイデアも含
めて共有されていく。そしていつしかプロプライエ
タリな製品を凌

りょうが

駕する。

◆◆図2　5374.jp ◆◆図3　さっぽろ保育園マップ

http://code4japan.org/
https://www.facebook.com/codeforjapan
https://github.com/wakayama-pref-org

200 - Software Design

課題は開発プロジェクトだけにあるんじゃない！
こんなところでも使えるJIRA応用テクニック

第　　回5

Catch Up Trends in Engineering

Software Design編集部

迷えるマネージャのための

再入門
プロジェクト
管理ツール

開発の

ボトル
ネック

は

どこだ
？

Apr. 2015 - 201

　課題は開発プロジェクトだけにあるんじゃない！ こんなところでも使えるJIRA応用テクニック

開発プロジェクト以外でも
活用できる課題管理ツール
情報システム部門の業務は、システムやイン

フラの運用、IT環境に関する問い合わせに対
応するヘルプデスク業務、セキュリティ対策の
実施など、多岐にわたります。これらの業務を
円滑に進めるうえでチーム内での課題／ナレッ
ジの共有は欠かせません。
たとえばインフラに障害が発生したとき、そ

の内容や対応状況、担当者などが“可視化”され
ていれば、迅速に対応すべきものが放置されて
いたり、担当者が欠勤したときに誰も引き継げ
ないなどのミスやトラブルを防げます。
さらに、課題をどのように解決したのかを記

録しておけば、同様の課題にスムーズに対応で
きるようになります。とくにヘル
プデスクやインフラのトラブル対
応では同じような課題が何度も生
じることが珍しくないため、ナレッ
ジを蓄積することで業務効率を大
きく高められます。
そこでぜひ活用したいのが、シ
ステム開発の現場で課題管理やタ
スク管理に使われている課題管理
ツールです。こうしたツールは課
題やそのステータスをきめ細かく
管理できるほか、解決に至ったプ
ロセスを詳細に記述できる項目も

備えているため、IT環境の運用で発生する日々
の課題を適切に管理できます。

業務に合わせて柔軟に
カスタマイズし効率アップ
課題管理の方法の1つに、かんばん方式があ

ります。かんばん方式とは、作業とその進行状
況を可視化するためのしくみです。現在ある作
業や、それぞれの作業の状態が一目で把握でき
るため、課題を放置するなどのミスを防げます。
課題管理ツールを使えば、離れた場所にいる人

ともかんばん方式で課題を共有できます。また、
過去に解決した課題を履歴として残したり、ナレッ
ジを蓄積して活用につなげたりすることが可能です。
このようなツールの例としては、アトラシアンの課
題管理ツールである「JIRA」と、かんばん方式によ

図1　 JIRA Agileに用意されているかんばん方式のインターフェース ▼
を利用すれば、それぞれの課題の状況を一目で把握できる

課題管理ツールを活用できるのは開発プロジェクトだけだと考えていませんか？ 実はそれ以外にも、
さまざまな部門で課題管理やナレッジの共有に活用できます。ここでは、そうした応用例を紹介してい
きます。

200 - Software Design Apr. 2015 - 201

第　　回5 　課題は開発プロジェクトだけにあるんじゃない！ こんなところでも使えるJIRA応用テクニック

るプロセス管理に対応したアドオン
の「JIRA Agile」の組み合わせがあ
ります（図1）。
ヘルプデスクでの利用であれば、

JIRAのアドオンである「JIRA Service

Desk」も便利でしょう（図2）。シン
プルでわかりやすく、利用者に優
しい問い合わせインターフェース
が特徴です。入力された問い合わ
せを自動的に課題として登録する
のはもちろん、事前に定義した
SLA（何時間以内に一次対応を行う、
など）の管理やレポーティング機能
などを備えており、ヘルプデスク
業務の効率化に有効です。
他システムとの連携やカスタマ
イズが容易であることも、JIRA

などの課題管理ツールを利用する
メリットです。具体的な例として、
何らかのシステムで障害が発生し
た際に、課題管理システムでその
アラートを取り込み、そのシステ
ムの担当者に自動的にメールで通
知するしくみなどが考えられます
（図3）。さらにカスタマイズ次第
では、状況に応じて送信先を変え
ることもでき、たとえば緊急時には担当者だけ
でなく上長にまでメールを送信できるようにす
るなど、さまざまな活用法があります。

IT企業以外でも！
さまざまな業界で活躍するJIRA
情報システム部門以外でも、課題やナレッジ

を共有する必要があれば、課題管理ツールの活
用を検討してみましょう。たとえば、ある製造
業の企業では、顧客からの問い合わせをJIRA

で管理しています。何らかの問い合わせを受け
付けると、まずJIRAを使ってチケットを起票
します。個々の問い合わせのステータスは「一
次対応」「対応中」「対応完了」といった分類で管

理し、他部門との情報共有にも活かしています。
このように、課題管理ツールはさまざまな用途
に利用できる柔軟性を備えています。チームでの
課題共有やナレッジの蓄積、タスク管理が必要な
状況で、Excelでの運用や既存のグループウェア
に限界を感じているのであれば、課題管理ツール
の活用を検討してみてはいかがでしょうか。ﾟ

JIRA Agileの体験版のダウンロードはこちらから
https://www.ricksoft.jp/product/atlassian/jira

リックソフトは、アトラシアン製品の導入／サポートに関す
るエキスパート企業です。アトラシアン製品の販売で国内売
上No.1の実績を持ち、アトラシアンのパートナー企業として
最も頼れる存在です。

https://www.ricksoft.jp/

図3　 イベントやワークフローに応じてメールでの通知を送信できる、 ▼
便利な JIRAのアドオンが「Email This Issue」。このほかにも
JIRAには課題管理に活用できる便利なアドオンが多数提供され
ている

図2　 JIRA Service Deskを利用すれば、シンプルなWebインター ▼
フェースで問い合わせを受け付け、そのままチケットとして登
録できる。SLAの管理にも利用できる

https://www.ricksoft.jp/product/atlassian/jira
https://www.ricksoft.jp/

202 - Software Design

SD News & Products

　メガソフト㈱は、テキストエディタMIFESシリーズ
の最新版「MIFES 10」を発表した。ダウンロード版は3
月3日から、パッケージ版は3月20日から販売する。
　MIFESはテキスト、ソースコード（20種類のプログ
ラム言語に対応）、HTML、CSVやXMLなどのデータファ
イル、バイナリファイルも編集できる多機能エディタ。
　バージョン10での新機能を次にいくつか挙げる。

¡¡構造解析エンジンの搭載
¡¡アウトラインをリストウィンドウに表示
¡¡ファイル比較機能の向上

¡¡単語補完機能、閉じ括弧の自動補完機能

　1ライセンス（2台分）あたりの価格は、パッケージ
版は14,000円、ダウンロード版は12,000円。現在メ
ガソフトオンラインショップ（http://eshop.megasoft.
co.jp）で行われている「MIFESカムバックキャンペーン」
では、「MIFESクイズ」に正解すると、お得なキャンペー
ン価格（パッケージ版：9,800円／ダウンロード版：
9,000円。いずれも税別）にて製品を購入できる。

メガソフト、
Windows用テキストエディタ「MIFES 10」発売Software

　ITプロフェッショナル認定機関としてLPIC、OSS-DB
技術者認定試験、HTML5プロフェッショナル認定試験
を実施する特定非営利活動法人エルピーアイジャパン

（以下、LPI-Japan）は、㈱ネオジャパンの「LPI-Japan
ビジネスパートナー制度」加入を発表した。
　ビジネスパートナー制度では、LPI-Japanが開催す
る各種セミナーにおいての企業名の露出や、パートナー
企業主催セミナーへの集客協力などが行われる。
　ネオジャパンは数多くの企業・学校・病院・官公庁な
どで幅広く利用されているコミュニケーション支援パッ
ケージソフトウェア「desknet's NEO」をはじめとする、

さまざまなソフトウェアなどを開発・提供している。同
社ではLinux、PostgreSQLをはじめとするOSSや、
次世代 Web 標準技術「HTML5」の活用を推進しており、
同社の提供する「desknet's NEO」などの製品で採用し
ている。同社は制度加入を機に、「LPIC」や「OSS-DB
技術者認定試験」を技術者教育や認定の取得支援として
積極的に取り入れることにより、より一層高いスキルを
持つエンジニアを育成し、事業の強化を目指すとのこと。

CONTACT エルピーアイジャパン
URL http://www.lpi.or.jp

エルピーアイジャパン、
ネオジャパンのLPI-Japanビジネスパートナー制度加入
を発表

Topic

CONTACT メガソフト㈱
URL http://www.megasoft.co.jp

　グレープシティ㈱は、帳票開発ツールActiveReports
for .NETの新バージョン「ActiveReports for .NET
9.0J」を2月25日に発売した。
　ActiveReports for .NETは、Visual Studio上で帳
票アプリを開発できる.NET Frameworkコンポーネン
トで、外観デザインの設定からデータ接続、印刷およ
びPDF出力設定まで、帳票開発に必要なあらゆる機能
を備えている。新バージョン9.0Jでは専用のHTML5
ビューアが収録され、Internet Explorerでの閲覧に加
えてChromeとSafari for iOSでの閲覧も新たにサポー
トし、タブレットを含めた幅広いブラウザ、デバイスで

利用できる。運用サーバも物理サーバに加えて、新たに
Microsoft AzureやAmazon EC2といったクラウド仮
想マシンもサポートし、柔軟な運用形態を選択できる。
レポートデザインについては、複数データソースを使用
し自由にレイアウトできる「RDLレポート」が追加され、
閲覧性に優れたダッシュボードなどのレポート作成に
も対応した。1開発ライセンス価格はProfessionalが
302,400円、機能を限定したStandardが172,800 円
となっている（ともに8％税込）。

CONTACT グレープシティ㈱
URL http://www.grapecity.com

グレープシティ、
帳票開発ツール「ActiveReports for .NET 9.0J」発売Software

http://eshop.megasoft.co.jp
http://www.megasoft.co.jp
http://eshop.megasoft.co.jp
http://www.lpi.or.jp
http://www.grapecity.com

Apr. 2015 - 203

SD News & Products

　2月21日、スマートニュース㈱の新オフィス（東京
都渋谷区）にて、「実戦でのScala～6つの事例から知
るScalaの勘所～」が行われた（主催：㈱ヌーラボ）。イ
ベントでは、関数型言語Scalaを現場で使う6社からエ
ンジニアが集まりセッションが行われた。

ビズリーチの新サービスを
Scalaで作ってみた

　会員制転職サイトなどを展開
する㈱ビズリーチからは竹添
直樹氏が登壇し、求人検索の新
サービスの開発について話し
た。同サービスはソフトウェア
アーキテクチャとして「マイクロサービス」を採用して
いる。これは「疎結合な小サービスの集合としてシステ
ムを構築する」というもので、独立した開発・保守ができ、
耐障害性が向上するといった利点がある。このマイクロ
サービスの実現には並列処理に強みがあるScalaが非常
に適しているという。システムを小さな部品に分ける以
上、Web APIでのやりとりが多発するマイクロサービ
スだが、同サービスではScala製非同期処理のインター
フェースであるFutureを使う
ことで、複数のAPI呼び出しを
並列に処理できている。

2社でのScala開発経験
に基づいてそれぞれの
事例を比較してみる

　複数の現場でScalaでの開発

にかかわった㈱はてなの粕谷大輔氏が登壇した。氏の前
職ではJavaがメインに使われており、そこからScala
へと移行した。移行初期はJava的な書き方が中心だっ
たが、次第に各メンバが関数プログラミングを身につけ
ていき、コードがシンプルに変わったという。一方、現
職のはてなはPerlプログラマが多かったのだが、チー
ムでのScalaへの移行はスムーズで、初期から関数型
的な書き方に統一できたようだ。ScalaはJavaの資
産を再利用できる利点を持っているが、氏の印象では
Java→Scalaよりも、LL言語→Scalaの場合のほう
が移行に関して敷居が低いのではと感じているようだ。

とあるScala伝道師の
過去と現在

　ChatWork㈱の加藤潤一氏
は、前職、前々職の開発現場
でScala導入を支援し、現在
は企業向けコミュニケーショ
ンツール「ChatWork」の開発
に携わっている。同ツールの旧バージョンはいわゆる

「犠牲的アーキテクチャ」だったため移行の必要があり、
PHP→Scala+DDD（ドメイン駆動設計）の移行に踏
み切った。Scala採用の理由として、「宣言的に書ける」

「動的型付け言語からの移行成功事例がある」「AWSの
Java SDKを利用できる」などの点を挙げた。Scalaプ
ログラマ育成のため、加藤氏は社内外でのScala勉強会
を精力的に催しているとのこと。

　㈱リンクは、物理サーバの追加・削除・コピーを管理
コントロールパネルから操作できるベアメタルクラウド
サービス「ベアメタル型アプリプラットフォーム」にお
いて、2月18日よりファイアウォール機能の提供を開
始した。
　ベアメタル型アプリプラットフォームは、ほかのユー
ザとリソースを共有しない「物理サーバ型クラウドサー
ビス」である。利用者のサーバはすべてローカルIPアド
レスで接続されており、ユーザごとに割り当てられた
ゲートウェイ機器経由で外部と接続するしくみとなって
いるため、セキュリティ面でも安心して利用できる。し

かし、昨今多発する情報漏えい事件などにより、より高
いセキュリティを求めるユーザも増えていることから
今回、コントロールパネルから手軽にファイアウォー
ル機能を利用できるようシステムを改修し、すべての
ユーザに対して無償で提供することとなった。このファ
イアウォールは、パケットフィルタリング型で、TCP/
UDP/ICMPに対応している。ユーザはコントロールパ
ネルからポリシーの追加・削除、有効・無効などの切り
替え操作が行え、より柔軟かつ手軽な運用が実現できる。

CONTACT ㈱リンク
URL http://www.link.co.jp

リンク、
ベアメタル型アプリプラットフォームで
ファイアウォール機能の無償提供を開始

Service

Report

CONTACT 「実戦でのScala」発表スライドなど
URL https://jissenscala.doorkeeper.jp/events/19660

実戦でのScala～6つの事例から知るScalaの勘所～
イベントレポート

▲ChatWork㈱ 加藤 潤一氏

▲㈱はてな 粕谷 大輔氏

▲㈱ビズリーチ 竹添 直樹氏

http://www.link.co.jp
https://jissenscala.doorkeeper.jp/events/19660

204 - Software Design

　本誌でもよく取り上げているワンボードの
Linuxマシン「Raspberry Pi」による電子工作の
ための入門書。使用言語としてPythonを取り上
げ、言語の解説にもページを多く割いているの
が本書の特徴である。Raspberry Pi（Model B+

対応）についてはOS（Raspbian）のインストー
ルから、Python（2.x対応）についてはHello

worldの表示といった、基本の基本から説明を
始めており、電子工作初心者、Python初心者に
やさしいつくりである。電子工作の章では、い
きなり難しいものを作るのではなく、必要な部
品・工具を紹介したあと、簡単なセンサーの制
御に始まり、カメラやモーターとの接続方法ま
で対応している。

石井 モルナ、江崎 徳秀【著】
B5変形判、360ページ／価格＝2,700円＋税／発行＝リックテレコム
ISBN＝978-4-89797-972-4

　昨今の個人情報漏えい事件や IoT機器の普及
に伴って、情報セキュリティの脅威はさらに身
近なものになっている。
　本書は具体的な脅威や脆弱性を例に、そのし
くみや対策がシステム利用者の視点でまとめら
れている。Webシステムの脆弱性やフィッシン
グだけなく、スマートフォンを標的にしたマル

ウェア事例やATMでのスキミング事例など取り
扱う対象は広い。
　筆者らは外資系セキュリティベンダに籍を置
き、システムの診断やアドバイスなどの傍ら、
日々、世界中の情報を収集しているという。情
報セキュリティの事例アーカイブとして持って
おくのもよいだろう。

中村 行宏、横田 翔【著】
A5判、320ページ／価格＝2,480円＋税／発行＝技術評論社
ISBN＝978-4-7741-7114-2

　本書はRubyの文法を一通り学んだ人が、よ
りRubyらしいプログラミングをするために知っ
ておきたいことや、気をつけなければならなこ
とを解説している。全8章（Rubyに身体を慣
らす／クラス、オブジェクト、モジュール／コ
レクション／例外／メタプログラミング／テス
ティング／ツールとライブラリ／メモリ管理と

パフォーマンス）から成り、その中で48項目の
Rubyの作法とも言うべきプログラミングテク
ニックをわかりやすく解説している。うろ覚え
だったり、思い違いしていたことも多く発見で
き、項目ごとに「なるほど」と思わせる。すでに
バリバリRubyをお使いの方にも、役立つ項目
がちりばめられているのではないだろうか。

Peter J.Jones【著】／長尾 高弘【訳】／arton【監修】
B5変形判、216ページ／価格＝3,200円＋税／発行＝翔泳社
ISBN＝978-4-7981-3982-1

Effective Ruby

みんなのRaspberry Pi入門
［対応言語：Python］

　サーバの状態をコードで自動的にテストする
ためのRuby製ツール「Severspec」の解説書。
開発者自身によって書かれており、未ドキュメ
ント化の機能やソースコードレベルで拡張する
方法など開発者自身にしか書けない内容が盛り
込まれている。著者によると、Severspecの本
質は「テスト駆動によってインフラコードの開

発やリファクタリングを促進する」ことであり、
ChefやPuppetなどの構成管理ツールと併用し
て、インフラの構築を簡単に・ミスなく・気持
ちよく行うために開発したという。内容として
は基本的な使い方を中心に説明されており、テ
ストコードを書くときに必要なRubyやRspec
の記法などは前提の知識として持っておきたい。

宮下 剛輔【著】
A5判、248ページ／価格＝2,800円+税／発行＝オライリー・ジャパン
ISBN＝978-4-87311-709-6

Serverspec

Software Design plusシリーズ

事例から学ぶ情報セキュリティ̶̶基礎と対策と脅威のしくみ

あ

Apr. 2015 - 205

「子供に使われないために」 「いつかはオレも老害」

3歳のムスメがスマホをいじって画像を投稿してました。油断できない。お子様のいる家庭ではPCを使うのにも気を遣いますね。PCか
ら離れる際はスクリーンロックの代わりにa+Úで仮想端末に移動するのが手軽です。子供は華やかなGUIが見られないと動いてない
と認識してくれるようです。子供の成長と同じようにOSS界隈も流れが速く、名称変更程度なら軽いほうで商用化されて不自由になったり、
買収されて今後の継続利用が心配という事例も発生しています。このような流れを把握するためにも、エンジニアとしてはなるべく最新
情報に触れていたいですね。最新情報なら手に取っているSDを毎月購読することが一番手っ取り早いですよ。（ステマ）

花
粉
症
な
の
に
花
粉
の
季
節
に
マ
ラ
ソ
ン
大
会
に
出
て
し
ま
う
Mマ

ゾ

な
く
つ
な
先
生
に
愛
の
ムツ

イ
ー
ト
と
か
メ
ー
ル
と
か

チ
を
送
ろ
う
!

作）くつなりょうすけ
@ryosuke927

①①

②②

③③

④④

第15回

お。
Net-
Saintか？

お。
Etherealか。

お。
Gaimか。
仕事しろよw。

オレもそのうち「ifconfigで
　IPアドレスを見ていた
 頃の人」とか言われる
 のかな……。

Nagios
ですよ。

え？

え？

え。

Pidignですよ。
仕事して
いますよ。

Wiresharkですよ。
盗聴ツールとして
人気のw。

コマンドラインに
しとくと、たいした
ことのできない
もんだな。

すでに
遅し

ちゃんと
勉強しよう
っと……。

らめぇぇぇぇっ

うわぁぁぁぁぁ
ぁぁぁぁぁぁ！

Net-Saint：ホストサービス管理
アプリケーション、Nagiosの旧名。

Ethereal：パケットキャプチャ、
Wiresharkの旧名。

Gaim：インスタントメッセンジャー、
Pidignの旧名。

あ

あ

あ？

206 - Software Design

　systemdは、従来の initに代わるサー
ビス管理システムで、いくつかのLinux

ディストリビューションで採用が決定して
います。特集では、systemdの概要・しく
みに加え、実際の運用におけるTipsを紹
介しました。また、Ubuntuでの採用につ
いても論じました。

いろいろなディストリビューションについ
て取り上げられていて参考になりまし
た。

大阪府／出玉のタマさん

Linuxの新動向をうまくとらえていたと
感じます。

熊本県／鈴木さん

CentOS7を使用する機会があり、気に
なっていたところでこの特集でしたので
参考になりました。

愛知県／kwkmさん

今もっともsystemdに管理してもらいた
いのは……自分だ！　立ち上がりはちょ
～遅いし、ダウンは早い！

埼玉県／南雲さん

「initがどうやら新しくなる」という
ことは知っていても、systemdの中

身について知っている人はまだまだ少な
いようです。systemdは initの単なる代替
に収まるものではなく、流行りのコンテ
ナ技術も見越した画期的なシステムで
す。

　システムの不備を、運用担当者が現場
でその都度の対応をするのが、いわゆる
「運用でカバー」。特集では、運用でカ
バーがもたらす悪影響、理想的な運用現
場について紹介したあと、これからの運
用はどうあるべきなのか、開発担当との
関係はどうなっていくのかを論じました。

運用でカバーは、銀の弾丸ではない。
大阪府／オブジェクト脳192さん

「一時的に運用でカバー」のつもりが、
恒久的になってしまったことも多々あり
ます……。

神奈川県／ewiad420さん

実務経験からも感じるところがありまし
た。

徳島県／ゆーあさん

心あたりがある、問題意識を持っ
ている、という読者からの声が多

くありました。章末の、ハーメルンの笛

吹き男を引き合いに出したコラムも反響
が大きかったです。「運用でカバー」を極
力しないようにするためには、開発と運
用、両者の意識変革が必要です。

　DPDKは Intel社のNIC向けネットワー
ク高速化のミドルウェアです。汎用の
サーバ上で動作し、ゲートウェイやリフレ
クターとしての利用が想定されています。
記事ではその概要を説明したあと、実際
にDPDKをインストールして性能評価を
行いました。

今回の購入目的の1つでしたが、概論に
とどまっていたため、追加の特集を希望
します。

東京都／dannaさん

まったく知らないことだったため、とて
も興味深い。ぜひ連載としてこのような
ことを記事化してほしい。

東京都／blackbirdさん

少し自分には難解だった。
広島県／Akiaさん

最新の ITにめざといSD読者でも、

DPDKについてはまったくの初見
だという方が多かったようです。今はまだ

Windows 10の概要が発表され、日本語対応のテクニカルプレビュー版がリリー
スされましたね。.NETのオープンソース化やVisual Studioの無償化、さらには
VR（バーチャル・リアルリティ）への注力など、最近のMicrosoftは何かが違うぞ
とワクワクしています。Linuxユーザの読者が多いSoftware Designですが、
注目されている方も多いのではないでしょうか。

Windiws 10、今年中に発売か！?

2015年2月号について、たくさんのお便りをありがとうございました！

第1特集
Linux systemd実践入門

第2特集　なぜ「運用でカバー」が
ダメなのか？

一般記事
Intel DPDK技術詳解

Apr. 2015 - 207

極エンタープライズなものではあります
が、オープンソースということもあり、今
後の発展に期待したいですね。

　とくにソフトウェアの開発者に向けて書
かれたセキュリティ記事。ソフトウェアに
セキュリティ問題を作りこまないために、
どんなアプローチが必要なのか、どんな
知識・スキルを身に付ければ良いのか、具
体的にはどんなコーディングをすれば良
いのかを論じました。

自分で作った穴は、自分自身の「癖」の
中に紛れ込むので、耳に痛い記事でし
た。

神奈川県／dedeさん

セキュリティ問題について興味深い解説
でおもしろかった。

長崎県／痛む人さん

セキュリティに興味はあるが、どうして
よいのかわからなかったので非常にクリ
アになった。

東京都／清水さん

個々のソフトウェアに対してセキュ
リティを考える前に、基本概念や

脆弱性の類型など、セキュリティ全般に
ついて再考することは非常に大事です。

コミュニティで独特の読み方があるとは
思いますが、「どこでも通じる」に越したこ
とはありませんね。

　デザインスプリントは、難しい目的や課
題について、限られたメンバーでステップ
ごとに時間を区切って話し合い、アイデア
を洗練させていく手法です。記事では著
者が実際にそのデザインスプリントを体
験レポートしました。

短期決戦でアイデアをぶつけあうのはお
もしろそうだと思った。

北海道／村橋さん

今後こういうのが流行るのかも……新人
研修向け？

千葉県／安藤さん

アイデア創出の参考にさせていただきま
す。

京都府／クラウドの達人さん

デザインスプリントは特殊なスキ
ルを要求されるわけではなく、さ

まざまな立場の人が一緒になってすぐに
始められます。読者からの声にあるとお
り、新人研修にも利用できそうなワーク
ショップですね。

基礎部分を盤石にすることで、さまざま
なケースに対応できます。

　Linuxの各種ディストリビューションや

UNIX系コマンドなど、海外産の IT用語は
日本語としてどう読むのか迷ってしまいま
す。本記事では、外資系企業での仕事
経験もある御三方が集まり、IT用語をどう
読めばいいのかを議論しました。

間違えると恥ずいので、めっちゃいい企
画！

熊本県／佐伯さん

同じコマンドでもいろいろな読み方があ
ることを再認識しました。manで調べら
れることを初めて知りました。

東京都／binaさん

今まではなんとなくで発音していました
が、開発者の発音や正式名称を考慮し
て読み方を考えるという考え方に、なる
ほどなーと思いました。

愛知県／ginさん

「読み方に正解はない」というのが
議論のまとめではありますが、man

を読むこと、開発者の発音を聞くことな
ど、正解に近づくためのアプローチはい
くつかあるようです。それぞれの企業、

2月号のプレゼント当選者は、次の皆さまです

※本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡ください（プレゼント応募後に住所が
変更されている場合など、お届けできないことがあります）。2ヵ月以上ご連絡がない場合は、再抽選させていただくことがあります。

①ポータブル HDD 「HD-PNFU3-C」１TB
兵庫県　安芸てつ子様

②ESETファミリーセキュリティ
宮城県　伊勢雅博様
福岡県　松岡政司様
京都府　坂本亘様

③スラリマルチ メンズセレクト
神奈川県　齋藤仁史様
東京都　岡部皓一様

神奈川県　尾崎俊一郎様
東京都　宮田泰男様

神奈川県　吉田哲一郎様

④C/C++セキュアコーディング 第2版
奈良県　神園栄夫様
滋賀県　松下誠司様

⑤角川インターネット講座02 ネットを支えるオープン
ソース

京都府　山本正様
千葉県　山口隆史様

⑥関数プログラミング 珠玉のアルゴリズムデザイン
埼玉県　沖元謙治様
東京都　山本祐輔様

⑦Android Studioではじめる簡単Androidアプリ
開発

栃木県　小泉輝明様
埼玉県　北村和彦様

一般記事　開発者は、セキュリ
ティ問題を自己解決できるのか？

一般記事　これはなんて読む？　
UNIX用語読み方指南 一般記事　Googleベンチャーズ

が提唱するデザインスプリントとは

Software Design
2015年4月号

発行日
2015年4月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2015年5月号
定価（本体1,300円＋税）

208ページ

May 2015
4月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2015 技術評論社

●未踏の大地が育む樹林。春の新たな命の芽吹きと

ともに吹き出される黄金の微粉末。季節風に乗り拡

散されるそれは、免疫を刺激して視界と呼吸器の機

能を奪う戦略兵器か。黄煙にむせる。薬で渇く。そ

れを人は自然からの復讐と嘯
うそぶ

く。次回「黄金週間進

行」。名ばかりの進行はスケジュールではない。（本）

●kindleコミックを200冊以上購入していた。最近

では、87CLOCKERSや王様達のバイキング、スティー

ブス、パーツのぱ、ハルロック、SEなど、 ITを題材

に使うものが増えてきていて楽しい。子供の頃は床

屋で散髪前に週刊誌をまとめ読みしていたなとか思い

出す。便利な世の中になったものだ。（長老幕）

●ガンダムTHE ORIGINの予告映像を見たアラフォー

男子に衝撃が走る！　高速にカットインしてくる赤いモ

ビルスーツのバトルと仮面の男の独り言。若かりし頃

のランバ・ラルや変な髪型のキシリア（？）も気になる

けど、なんと言っても幼少キャスバルの声。こ、こ

の感覚は……田神悠宇……か？（キ）

●先日、文房具店での出来事。ペンの替芯が売り切

れていたので、店員に在庫の有無を尋ねたところ、

そっけなく「売り場にないなら、ないです」。私は一

瞬、失望。が、次の瞬間「けど、たぶんあっちのロ

フト（LoFt）にありますよ」と店員。別の店を紹介され

るとは意外な展開。なかなか気の利く奴め。（よし）

●今年はデジモンアドベンチャー無印やエヴァンゲリ

オンなど、昔好きだった作品が続々とBlu-ray Box化

されます。高画質・高音質であのシーンをもう一度

見られる！と、ファンとしてはうれしいのですが、軒並

み4,5万越えの価格設定は財政的に厳しいものがあり

ます。買うんですけどね。（な）

●週末の吉祥寺は人が多く、新しくお店ができても

長い行列で、落ち着いてから行こうと思って忘れて

いることがしばしば。たまたま母親からもらったドー

ナツは、気になっていた北欧発の日本初上陸店のも

の。あまり甘すぎず、サクッとした食感で美味しかっ

た。今度はショコラかアイスを食べたいな。（ま）

S D S t a f f R o o m

［第1特集］ 基本の基本

テキスト処理ベーシックレッスン
——文字コードと正規表現、ちゃんと押さえてみよう！
　ITエンジニアにとって、テキストファイルは単に文章を書くものだけでなく、
サーバの設定ファイルや、アプリケーションの定義ファイルなどなど、日々の仕
事に意味を与える重要な存在です。文字コードの問題、UNIXコマンドとシェル
でテキストファイルを加工、正規表現とsed、awkの活用といった基礎の基礎を
学び、エンジニアとしてテキスト処理に強くなる方法を紹介します！

［第2特集］ ファイル共有自由自在

［徹底入門］Sambaの教科書
　超定番のSambaサーバ構築テクニックを、すみからすみまで徹底解説します！

［2号連続　特別付録］3分間ネットワーク基礎講座［Webサーバ編］
　当社のベストセラーの３分間ネットワーク基礎講座シリーズから『３分間HTTP&メールプロトコル基礎講座』の
うち、「第1章　ウェブサーバのしくみ解説」をまるごと小冊子に特別編集しました。Web業界、IT業界に入っ
てくる新人の方の研修のおともにぜひ！

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
「RHELを極める・使いこなすヒント .SPECｓ（第12回）」「シェルスクリプトではじめるAWS入門（第11回）」「温故知新 ITむ
かしばなし（第43回）」は都合によりお休みさせていただきます。

208 - Software Design

mailto:sd@gihyo.co.jp

3 minutes Networking - 1

●レイヤー4の役割

 さてさて、『改訂新版 3分間ネットワーク基礎講座』の第 4章でレイヤー
1から 3までの役割とその動きについて説明してきたわけだ。レイヤー 1
は電気的な「ケーブルがつながっている相手への信号の伝達」、レイヤー
2が「信号のやり取りができる」状態で「セグメント内でどのようにデー
タをやり取りするか」だったな。

 はい、でした。そしてレイヤー 3が「セグメント＝ネットワーク“間”で
どのようにデータをやり取りするか」でしたよね。IP アドレスだったり、
ルーティングだったり。

 そうだったな。つまり「とあるコンピューターからとあるコンピューター
へデータを転送する」ために必要なことは、レイヤー 1～ 3までの役割、
ということだ。IPアドレスであて先を指定して、ルーティングにより道筋
を決定する。

 そして、ケーブルがつながっている相手へのやり取りを決めて、ケーブル
に信号を流す、ですね。そうすればデータがあて先に届くことになりますよ。

 「あて先のコンピューターへデータを届ける」のはレイヤー 1～ 3という
ことだな。そして、今回から説明するレイヤー 4から上のレイヤーでは、
「データを運ぶ」という直接的な動作は行わない、ということになる。

 じゃあ、レイヤー 4から上は何を行うんですか？

 レイヤー 4から上が行うのは届ける・届いたデータに対して必要
な処理を行うということだ。「データを届ける」のはレイヤー 3までの
役割だからな。届ける前と届いたあとに、データ通信のために必要な処理
を行う。

レイヤー4の
役割と概要

1

2 - Software Design 4月号特別付録

 データ通信のために必要な処理？　それってなんですか？

 レイヤー 4の場合は、「信頼性の高い（エラーの少ない）伝送を行う」た
めの処理になる。つまり、レイヤー3までのレイヤーでは、あて
先そのものが存在しなかった、データが途中で消失した、エ
ラーにより壊れたなどといったトラブルを気にしない。

 そ、そういうものなんですか。つまり、レイヤー 3まででは届かなかった
り、届いてもデータが壊れていたりすることがある？

 そういうことだな。そこで、レイヤー 4がエラー回復を行う。これがレ
イヤー 4の役割の 1つ、ということになる（図1ー1）。

届かなかった場合に送り直すことでエラーをなかったことにする

①データを受信したら、送信元に受信したことを通知する（確認応答）
　それにより、送信元はあて先がデータを受け取ったことを確認できる

確認応答

A B

データ

データ

②途中でエラーなどによりデータがなくなったりした場合などで確認応答が返ってこない
　場合、送り直すことでエラーを回復する

確認応答待ち…

確認応答

A B

データ
エラー

確認応答がこないので再送

図1ー1　エラー回復

3 minutes Networking - 3

第1回　レイヤー4の役割と概要

 エラー回復、ですか。え～っと、エラーが起きたり、データが届かなかっ
た場合はもう 1回送り直してもらうんですね。あと「役割の 1つ」ってこ
とは、他にもあるんですか？

 もちろんある。信頼性の高い通信を行うために、エラーを回復し、さらに
通信の状態を確認する。これをフロー制御と呼ばれる方式で行う。

 例えば、英語を同時通訳しようとして、聴いた言葉を翻訳するわけだが。
翻訳が間に合わないことがあるよな。つまり、処理能力を上回った情
報を送られた場合、それを処理しきれず破棄してしまうこと
がある。

 届いたのに、処理しきれなかったでは意味がないですよね。

 なので、それを防ぐ。処理しきれないデータがあふれ出てしまうのを防ぐ、
ということだ。「あふれる」ことをオーバーフロー［Over Flow］と呼ぶ。
このオーバーフローを防ぐから「フロー制御」と呼ぶ（図1ー2）。

●アプリケーションの識別

 では引き続き、レイヤー 4で行うことを説明しよう。ネット君、データ通
信を行ってデータをやり取りするのは何かね？

 え？　それはコンピューターとコンピューターでしょ？

 本当にそうかね？　では、1台のコンピューターで、電子メールとホーム
ページの閲覧を同時に行った場合のことを考えてみよう。データは、どち
らも同じコンピューターに届くな。それはどこで区別するのかね？

 う～ん、IP アドレスやMACアドレスは「あて先のコンピューター」を決
定するだけですよね。どれが電子メールのデータなのか、ホームページの
データなのかまでは、わからないですよね。

 うむ。通信でデータをやり取りするコンピューターのソフトウェアのこと
をアプリケーション［Application］と呼ぶが、実はデータをやり取
りするのはアプリケーションなのだ。

4 - Software Design 4月号特別付録

届いた時の待機場所にデータがあふれ（フロー）るのを防ぐ

①あて先にデータを送ると、あて先はデータを受け取り、それを一時的に溜めておく
　そして、準備ができしだい処理していく

A B

データ

②処理が遅れたり、送信スピードや間隔が早い場合、どんどん溜まってしまい
　ついには溜めることができなくなり、破棄してしまう。これをオーバーフローと呼ぶ

A B

データ

処理

③それを防ぐため、受信側は確認応答の際に、溜めておけるデータ量を送信元に通知して、
　送信量を加減してもらったり、送信を一時中止してもらう

A B

データ

データ

データ

データ

データ
データ

データ

処理

一時データ
待機場所

待機場所が満タンなので
破棄

（オーバーフロー）

待機場所の
空き2つ分

待機場所の
空きなし

あと2つ
送信できる

空きがないので
送信中止

空き容量：2
確認応答

A B

空き容量：0
確認応答

データ
データ

データ

図 1ー2　フロー制御

3 minutes Networking - 5

第1回　レイヤー4の役割と概要

どのアプリケーションが送受信するのかを決定する番号

アプリケーション ポート

2000

3000

4000

メーラー ブラウザーあて
（2000番あて）

アプリケーションは（内部的に）ポートに
よって通信機能と接続されている。その
ポートにつけられた番号を使って、どのア
プリケーションあてか判別する

FTP
クライアント

ブラウザー

図 1ー3　ポート番号

 なるほど。コンピューターの中にあるアプリケーションが、データを送っ
たり受け取ったりするってことですね。

 そういうことだ。よって、どのアプリケーションが送信したデータなのか、
どのアプリケーションが受信するデータなのかを決定するために、ポー
ト番号［Port Number］というものがつけられる（図1ー3）。

 ポート？　港とか、港湾とか？

 港湾というか、データが出入りする港だな。つまり、データを出し入れす
る仮想の差込口と思えばいい。各アプリケーションにはこれがつけられて
おり、そこへデータを送る、と考えるのがわかりやすいだろう。コンピュー
ターまで届いたデータは、このポート番号を元に、そのデータが使用され
るアプリケーションに渡される。

6 - Software Design 4月号特別付録

ネット君の今日のポイント

●レイヤー 4は、信頼性の高い伝送を行う。
●確認応答・フロー制御を行い、信頼性の高いデータ
転送を行う。
●どのアプリケーションに届けるかを判別するため、
ポート番号を使う。
●レイヤー 4は TCP と UDP の 2 つのプロトコルが
あり、どちらか一方を使ってデータ転送を行う。

●TCPとUDP

 さてさて。レイヤー 4ではこれらの「通信に必要なこと」を行うわけだが、
TCP/IP で実際にこれらの制御を行うのが TCP［Transmission
Contorol Protocol］とUDP［User Datagram Protocol］の 2つの
プロトコルだ。

 この 2つのプロトコルは、通信にあたってどちらか一方が使われる。
なぜなら、TCPとUDPは役割が違うからだ。

 役割が違う？　でもどちらもレイヤー 4のプロトコルですよね？　今まで
説明してきたことをするためのプロトコルなんじゃないですか？

 もちろんそうだ。この 2つのプロトコル、TCPと UDPはそれぞれが持つ
利点と欠点が裏表になっている。よって、送信するデータの中身や状況に
よって、どちらかを使うのだ。

 TCPの利点がUDPの弱点で、TCPの弱点がUDPの利点ということです
か？

 そうだな、そう考えるとわかりやすいだろう。それぞれのプロトコルの利
点を見て、どちらを使うかを選択するのだよ。まぁ、詳しくは先の講釈と
言うやつだ。では、次回からは、TCPの話をしよう。

 了解です。3分間ネットワーク基礎講座でした～♪

3 minutes Networking - 7

●コネクション

 さて、前回はレイヤー 4の役割について説明した。レイヤー 3までの役割
で、データをコンピューターに届けることができた。そこで「届ける・届
いたデータに対して必要な処理を行う」のがレイヤー 4以上の役割だ。

 え～っと、レイヤー 4では「エラー回復」とか「フロー制御」、「アプリケー
ションの識別」などを行うんでしたよね。で、それを行うプロトコルが
TCPと UDPだと。

 そういうことだ。そして今回は、TCPのコネクション［Connection］
の話をする。レイヤー 3まででコンピューター間でのデータのやり取りは
できた。そこで、TCPでは、アプリケーション間のデータのやり取りを
行う。この、アプリケーション間のやり取りを行うデータの道のことを
コネクションという。

 データの道？　それはレイヤー 3のルーティングで出てきた「経路」とは
違うんですか？

 うむ、違う。TCPで作られる通信路は仮想的な通信路と呼ばれる。事
前に専用の通信路を確保しておくことによって、確実にデータを届けるの
だよ。

 レイヤー 3までの役割で、あて先のコンピューターまではデータが届ける
ことができる。だが、もしかすると相手が存在していないかもしれない。
あるいは、相手は存在しているが、相手の受信の準備が整っていないかも
しれない。はたまた、受信はできるが、忙しくてデータを処理しきれない
かもしれない。などなど「コンピューターまでデータが届く」ことと「デー
タを確実にやり取りすること」は別問題なのだよ。

コネクションと
セグメント

2

8 - Software Design 4月号特別付録8 - Software Design 4月号特別付録

 「確実にやり取りする」……。それが重要なんですね？　レイヤー 3まで
の役割なら「コンピューターに届く」。でもそれが「確実」かどうかはわ
からない？

 そういうことだ。なので、データ転送を始める前に事前に確認の
やり取りを行っておく。それにより、相手に確実に伝わること
を確認するわけだ。

 ははぁ。電話の「もしもし？」みたいなものですか。「もしもし」「はいはい」
「今、大丈夫？」「いいよー」みたいにやり取りしておけば大丈夫、みたいな？

 あぁ、それはなかなかいい考え方かもしれん。「もしもし」で、通信が確
実にできる＝通信路がつながった、ことを確認するわけだ。これにより実
際にケーブルがどうつながって、どこのルーターを通ってあて先まで届く
のかは関係なく、つまり「実際の」「通信路」ではなく、送信側とあて先
の間に「仮想的な」「通信路」ができていると考える。この仮想的な通信
路を作り出すことを、コネクションの確立と言う。

 「コネクションを確立」する……。あて先との間でちゃんとデータがやり
取りできることが保証された道がある、と考えるわけなんですね。

 そういうことだ。では、どうやってコネクションを確立するか、の話の前
にTCPヘッダーの説明をしよう。TCPヘッダーの大きさは、基本的
に20オクテットと覚えておけばいい。TCPヘッダーの 6ビットの制
御ビット（フラグ）は、そのTCPのデータの意味を表している（図2ー1）。

●コネクションの確立

 まず、コネクションを確立するためには相手がデータ転送を許可して
くれないと駄目なのだ。

 よって、確実なデータ転送を行う通信路を確保するため、相手にデー
タ転送の許可要求を出す。

 それで、要求を受けた相手は、それに対する許可を送信元に知らせ
る。これで、データが相手に正しく伝わることが確認できた。つ
まり、通信路が確保されたことになる。

3 minutes Networking - 9

第2回　コネクションとセグメント

 「準備 OK。いつでもどうぞ。」って返事するわけですね。お願いに対し、
返事が届いたってことですから、相手に届くことがわかる、と。

 そして、今度は反対にあて先側が送信元にデータ転送許可要求を
出す。それに対し、送信元もデータ転送許可を送る。これで双方向の通
信路が確保されたわけだ。

 送信元からあて先へデータの転送要求を出して、それの許可をもらう。そ
れと同時にあて先から送信元へデータの転送要求を送る？

 データを相手に送るためには、相手にデータを送ることを伝え、それの準
備をしてもらうことが必要だ。「データ転送要求」→「許可」という流れ
だな。例えば、AとBがあった場合、「AからBへ転送要求」で「Bから
Aへ許可」という形になる。

 だがこれだけではBからAへデータを送ることができない。なぜならA
のデータの受信準備ができているかわからないからだ。つまり、A→Bの
片側通行になってしまうわけだな。

ポート番号、シーケンス番号、フラグなど20オクテット

送信元ポート番号（16ビット）

データオフセット
（4ビット）

予約
（6ビット）

フラグ
（6ビット）

シーケンス番号（32ビット）

確認応答番号（32ビット）

あて先ポート番号（16ビット）

チェックサム（16ビット） 緊急ポインター（16ビット）

ウィンドウ（16ビット）

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

ACK …相手の通信の応答であることを示す
SYN …相手への接続要求であることを示す
FIN …接続を終了することを示す

それぞれが1ビット。通常は0

図2ー1　TCPヘッダー

10 - Software Design 4月号特別付録10 - Software Design 4月号特別付録

 あれ？　でもBからAに「データ転送要求に対する許可」を送ってます
よね。Aはそれを受信してるわけですから、「データの受信準備」はでき
てるんじゃないですか？

 いやいや、Bが送った「データ転送要求に対する許可」はあくまでAの「デー
タ転送要求」に対する返事であって、Bが「データを送った」という扱い
ではないのだよ。なので、BからAに対する「データ転送要求」を送る必
要がある。

 これで、TCPは「双方向」なデータのやり取りができるコネクションを
確立するということだ。AからBに「データ送るけど準備いい？」と送る。
それに対しBからAに対して「準備OK。そっちはどう？」と送る。

 そうすると、AからBに「準備OK」と返す、ですか。

。 うむ、そうなる。このコネクションの確立では、今説明したように 3回の
やり取りを行うので、3方向（3way）の握手（Handshake）、スリーウェ
イハンドシェイクと呼ばれる（図2ー2）。

●セグメントの分割

 そして、TCPはアプリケーションから渡されたデータ（メッセージ）を、
セグメントにカプセル化する（P55参照）。

 カプセル化する際に、1つのデータをMSS［Max Segment Size］（*1）
に分割する。つまり、1つのデータが複数のセグメントになるわけだ。そ
してそれぞれのセグメントに番号をつける。これをシーケンス
番号と呼ぶ（図2ー3）。

 シーケンス番号……、そういえば TCPヘッダーにそんな項目がありまし
たよね。

 そうだ。このシーケンス番号は「セグメントに含まれているデータの先頭
オクテットにつけられた番号」という意味になる。これを使ってなにを行
うかと言えば……それは次回ということにしよう。

 了解。3分間ネットワーク基礎講座でした～♪

（*1）MSS　平均的なイーサネットの場合、最大データサイズは1500オクテット。ここから、
IPヘッダー（20オクテット）、TCPヘッダー（20オクテット）を引いて、1460オクテット。
これが平均的なMSSとなる。

3 minutes Networking - 11

第2回　コネクションとセグメント

3回のデータのやり取りで双方向の通信路を確立する

コネクション確立要求
（TCPヘッダーのSYNのビットが1にしてある）CLOSED

SYN_SENT

ESTABLISHED

LISTEN

SYN_RCV

ESTABLISHED

ESTABLISHED

FIN_WAIT1

FIN_WAIT2

TIME_WAIT

CLOSED

ESTABLISHED

CLOSE_WAIT

LAST_ACK

CLOSED

SYN

コネクション確立応答＋確立要求
（TCPヘッダーのSYNとACKのビットが1にしてある）

CLOSEDになるとコネクションが切断

TCPコネクションの接続状態
双方がESTABLISHEDになるとコネクション確立

コネクション確立応答

ACK

ACK

ACK

ACK
＋
SYN

FIN
＋
ACK

FIN
＋
ACK

1回目

3回目

2回目

図2ー2　スリーウェイハンドシェイク

12 - Software Design 4月号特別付録

ネット君の今日のポイント

● TCPでのデータ転送には、コネクションの確立が
必要。
●コネクションは、仮想的なデータの通り道である。
●コネクションの確立はスリーウェイハンドシェイク
で行う。
●大きいデータは分割してMSSに分割して転送する。
●転送されるデータには順番に番号がつけられる。

MSSのサイズにデータを分割し、
その先頭番号をシーケンス番号とする

送信するデータ（3000バイト）

送信するデータに任意の番号（この図では1番）から順番に
1オクテット（8ビット）ごとの番号を順に割り振る

送信するデータの先頭から番号をつけ、送信するセグメントの
先頭の番号をシーケンス番号とする

シーケンス番号＝1 シーケンス番号＝1001 シーケンス番号＝2001

1 2 3 4 … 1 1
0 0 …
0 0
1 2

2 2
0 0 …
0 0
1 2

MSSのサイズ（この場合1000バイト）に分割MSSのサイズ（この場合1000オクテット）に分割

図2ー3　MSSとセグメント

3 minutes Networking - 13

 ●エラー回復

 さて、前回は TCPのコネクションについて説明した。コネクションを確
立することによって、2つのコンピューターで「確実にやり取りする通信路」
ができたわけだ。

 スリーウェイハンドシェイク、でしたよね。「通信するよ」「いいよ、こっ
ちからもするよ」「いいよ」、っていうやり取りで、双方向にやり取りでき
る「通信路」を作る、でしたっけ。

 そうだ。そして今回も、TCPの話だ。前回の最後でシーケンス番号が出
てきたな。TCPではこれを使ってエラー回復をする。まず、セグメン
トを受信したら、受信したことを送信元に伝える。これを確認
応答と呼ぶ。

 確認応答。送る側の「データだよ」に対し、「受け取ったよ」と返すわけ
ですね。

 そうだ。ここでのポイントが、TCPヘッダーのシーケンス番号と確認応
答番号だ。データの送信時には「シーケンス番号」が、確認応答には「確
認応答番号」が重要な値となる。

 シーケンス番号って、データの先頭からの番号でしたっけ。確認応答番号っ
ていうのはなんですか？

 シーケンス番号は送るデータの先頭オクテット番号。確認応
答番号は次に送ってほしいデータの先頭オクテット番号にな
る。シーケンス番号によって、そのセグメントが送るデータ全体のどの部
分に相当するかがわかる。さらに、確認応答番号によって、次に送ってほ
しいデータの番号を通知することになる。

ウィンドウ制御
3

14 - Software Design 4月号特別付録14 - Software Design 4月号特別付録

 ただ、「受け取りましたよ」ではなく。次にもらう予定のデータの番
号まで伝えるんですね。

 うむ。「受け取りました」ではなく、「次に何番からのデータをください」
と返ってくる。

 それによって、受信側がどのデータまで受け取ったかがわかる。
ものすごく「確実」だろ？

 ははぁ、確かに。確認応答番号が 100 番だったら、「次に送ってほしいの
は 100 番」ってことで、99番までは受信したって意味になりますね。確
実ですね。

 この「何番までのデータを受け取りました」は、特にフロー制御で重
要だ。エラーが発生してデータが相手に届かなかったり、確認応答が届か
なかったりした際は、再送を行う（図3ー1）。

 なるほど。エラー回復、ですね。エラーがあった場合、それで復旧するわ
けですね。ちなみに、一定時間待つってのはどのぐらい待つんですか？

 これはRTT［Round Trip Time］という値から判断する。RTTは、こ
れまで送ったデータに対し、確認応答が返ってくるまでにかかった時間か
ら算出する。

 はぁ。なんか論理的におかしいような。確認応答が返ってくるのにかかっ
た時間から算出って、いきなり返ってこなかったらどうするんですか？

 うむ。初期値を約３秒にしておき、その後確認応答が返ってくるのにか
かった時間から動的に変更する。

 3 秒なら 3秒でいいじゃないですか。

 確かにそうだが、回線のスピード、例えば64Kbpsでの 3秒と、100Mbps
での 3秒は同じ 3秒での意味合いが違うだろう？　早い回線なら 3秒も
待たなくても、データの損失・確認応答の損失に気がつくわけだ。「今ま
で最低でも 500μ秒で返ってきてたのに、おかしい」というようにな。

 なるほど。遅い回線で 3秒待つのは普通でも、早い回線で 3秒も待ったら
おかしいと思いますよね。

3 minutes Networking - 15

第3回　ウィンドウ制御

●ウィンドウ制御

 しかしだ。この「セグメント送信→確認応答」という流れだが、これは手
間がかかりすぎる。

 実際はもうちょっと効率のよい送り方をしないと、時間だけがかかりす
ぎてしまう。そこで、「セグメント送信 → 確認応答」という流れは一緒だ
が、「複数のセグメント転送 → 確認応答」という形にする。そうす
れば、時間的にだいぶん効率がよくなる（図3ー2）。

確認応答により、再送を行いエラーを回復する

次に受信する(予定)のシーケンス番号

送信データ3000オクテット
MSS1000

エラー発生

エラーが発生したとみなし再送

確認応答を一定時間待つ

シーケンス番号：1

シーケンス番号：1001

シーケンス番号：2001

シーケンス番号：2001

確認応答番号：1001

確認応答番号：2001

図 3ー1　確認応答とエラー回復

16 - Software Design 4月号特別付録16 - Software Design 4月号特別付録

 え？　でもそれだと、「確実・正確」のうたい文句がおかしくなってしま
いませんか？　一気に送ったはいいけど、あとになって届かなかったこと
がわかってしまう、とか。

 うむ、その可能性はある。そこで、「確実・正確」に、かつ効率よく送る
ためにTCPはフロー制御の 1つであるウィンドウ制御を行う。ウィン
ドウ制御ではまず、受け取ったデータを一時的に保管しておくための
バッファー［Buffer］がある。

 バッファー、一時的に受信したデータを保管しておく場所、ですね。そう
いえば、前の回でその一時保管場所にデータが入りきらないって話があり
ましたね。

連続してセグメントを送ることにより、効率のよい転送を行う

セグメント3つ セグメント6つ
1つのセグメントに対し確認応答を
受け取るまで次のセグメントを送らない

ある一定数のセグメントを連続して送り
確認応答を受け取る

図3ー2　効率のよい転送

3 minutes Networking - 17

第3回　ウィンドウ制御

バッファーサイズを伝えることにより、
送信できるデータ量を知らせる

シーケンス番号1

シーケンス番号1001

シーケンス番号2001

確認応答1001
ウィンドウサイズ2000

確認応答1001
ウィンドウサイズ1000

確認応答3001
ウィンドウサイズ3000

バッファー量2000

バッファー量1000

バッファー量0
データ処理実行

バッファー量3000

確認応答4001
ウィンドウサイズ2000

確認応答5001
ウィンドウサイズ1000

確認応答6001
ウィンドウサイズ1000

バッファー量2000

バッファー量1000

バッファー量0
データ処理実行

バッファー量1000

バッファー量1000

バッファー量0
データ処理実行
バッファー量2000

バッファー量0
データ処理実行

バッファー量3000

MSS1000オクテット バッファー量3000オクテット

ウィンドウサイズに合わせ
1セグメント分だけ送る

ウィンドウサイズに合わせ
2セグメント分だけ送る

シーケンス番号3001

シーケンス番号4001

シーケンス番号5001

シーケンス番号7001

シーケンス番号8001
確認応答8001
ウィンドウサイズ1000

確認応答9001
ウィンドウサイズ3000

シーケンス番号6001

確認応答7001
ウィンドウサイズ2000

図 3ー3　ウィンドウ制御

18 - Software Design 4月号特別付録

ネット君の今日のポイント

●確認応答を送る際には、確認応答番号に次に受け取
る（予定の）データの先頭番号を入れる。
●転送エラーが発生した際には、今送ったものと同じ
ものを送る。
● TCPはウィンドウ制御というしくみで、バッファー
フローを防ぐ。
●相手のバッファーサイズ＝ウィンドウサイズを確か
めつつ送受信を行う。
●ウィンドウサイズの分までは確認応答を受信しなく
ても一度に送れる。

 そうだ。TCPではこのデータのあふれ（オーバーフロー）を防がなけれ
ばならない。データの損失だからな。なので、相手に自分がどれだけの
バッファー量を持つかを教える必要がある。

 これをウィンドウサイズという。つまり、ウィンドウサイズを相手に
教えることで、ウィンドウサイズまでのデータは一度に送って
もオーバーフローしないということがわかるわけだ。つまり、ウィン
ドウサイズとは確認応答を待たずに送ることのできるデータ量と
いうことになる（図3ー3）。

 ははぁ。バッファーをフローさせないように、相手のバッファー量を確認
しつつ送るんですね。このバッファー量をウィンドウサイズと呼ぶ、と。

 そうだ。ウィンドウサイズにより相手に自分のバッファー量を伝えて、「確
実」に受信できる量のデータだけを送受信する、これをウィンドウ制
御と呼ぶ。

 ここらへんが TCPの基本的な動作になるから、よく覚えておくように。
ではまた次回。

 らじゃー。3分間ネットワーク基礎講座でした～♪

3 minutes Networking - 19

●アプリケーション間通信

 TCP の話を前回、前々回で説明してきた。TCPはスリーウェイハンドシェ
イクによるコネクション、エラー回復、フロー制御などを行っているわけ
だ。

 でした。TCPはこれらにより「確実・正確」にデータを送ることができ
るようになるわけですね。で、今回の話はなんですか？

 今回は「アプリケーションの識別」について話をしよう。ネット君、前の
回で話したことを思い出すために質問だが。データ通信はなにがなにとす
るものだ？

 え～っと、アプリケーションとアプリケーションです！！

 そうだった（P3参照）。パソコンでブラウザーソフト、メーラーソフトな
ど通信するアプリケーションを複数使っている場合、どっちのアプリケー
ション向けのデータなのかを識別しなければならない。

 そこで、ポート番号というものを使って、それぞれのデータがどのア
プリケーションから送信されたか・どのアプリケーションあ
てかを決定する。

 ポート番号。そういえば、TCPヘッダーに「あて先ポート番号」「送信元ポー
ト番号」という項目がありましたね（図 2-1 参照）。

 そうだ。各コンピューターの内部には通信データを流すための架空
の差込口があると思いたまえ。そして、各アプリケーションはその
中の1つを選んでデータの送受信口とする（図4ー1）。

ポート番号
4

20 - Software Design 4月号特別付録20 - Software Design 4月号特別付録

 え～っと。アプリケーションと、TCP/IP 通信機能をつなぐ道ってことで
すか？

 そうだな、その考えでもいい。このポートは 16 ビット分つまり 65,536
個あって、それぞれに0から番号が振られている。通信中のアプリケーショ
ンは、それぞれこのポートと接続している。このポートにつけられたポー
ト番号により、データを渡すアプリケーションを特定するとい
うわけだ。

 なるほど。IPアドレスとは別に、アプリケーション別の番号があるわけで
すね。それがポート番号、と。

データをやり取りするための、
アプリケーションにつながる仮想の差込口

ブラウザー、メーラー
どっちに渡す？

宛先IPアドレス：A

コンピューター内部コンピューター内部

ポート

A

IPアドレスやMACアドレスだけではアプリケーションを識別できない

アプリケーションと通信機能をつなげる仮想の差込口＝ポート番号

ブラウザー

メーラー
？

通信
アプリケーション

TCP/IP通信機能

NIC

図 4ー1　ポートの概念図

3 minutes Networking - 21

第4回　ポート番号

 実際にどうやってデータを送受信するかというと。IPアドレスとポート番
号を使って、「どのコンピューターの、どのアプリケーション」
を識別するのだ（図4ー2）。

 ははぁ。IPアドレスとポート番号はワンセットってことですか。ところで
博士。アプリケーションによって、使用するポート番号って決まっている
んですか？

 うむ、いい質問だ。まず知っておいてほしいのは、あて先ポート番号
がわからないと、データは送れないという点だ。受け取るアプ
リケーションがポートと接続していなければ、データは届か
ないのだよ。

 そりゃそうですね。じゃ、どうやってデータを渡したいアプリケーション
のポート番号を知るんですか？

 うむ。知る方法はない。なので、よく使われるサーバーアプリケー
ション［Server Application］は、事前に決められた番号
を使うことによって、サービスを提供できるようにしている。

 サーバーアプリケーションってなんですか？

 なんらかのサービスを提供するアプリケーションのことだ。ホームページ
の公開をしたり、ファイルを持っていてファイル転送をしたり、メールの
転送をしたりするアプリケーションのことだな。一般的にはこれらのサー
バーアプリケーションに「要求」することで、ホームページを見たり、メー
ルを送ったりする。

 ふむふむ、ホームページを見たい場合は、そのサーバーアプリケーション
あてにデータを送ればいいんですね。で、そのサーバーアプリケーション
に事前に決められた番号がある？

 そうだ。この番号のことをウェルノウンポート［Well Known
Port］といい、65,536 個のポート番号のうち、1～1023番まで
がこれにあたる。サービスを提供したいサーバーは、これらの番号をアプ
リケーションに割り当てているわけだ。そうすれば、送信元はこの決めら
れたポートにデータを送る。例えば、Web ページを見たいと思ったら、
80番ポートに送ればいいわけだ（図4ー3）。

 もし、そのウェルノウンポートあてに送って駄目だった場合、そのサーバー
はそのサービスを提供していない、ということになる。

22 - Software Design 4月号特別付録22 - Software Design 4月号特別付録

どのアプリケーションから、どのアプリケーションあてかを決める

アプリ アプリ49152

相手が使用しているポート番号 49152以上で任意のポート番号

80A B

アプリA

アプリ

49152

アプリB 49153

80

A

B

アプリ80C

データ
あて先
ポート

80

送信元
ポート

49152

あて先
IP

B

送信元
IP

A

入れ替わる

データ
送信元
IP

B

あて先
IP

A

送信元
ポート

80

あて先
ポート

49152

データ
送信元
IP

B

あて先
IP

A

送信元
ポート

80

あて先
ポート

49152

データ
送信元
IP

C

あて先
IP

A

送信元
ポート

80

あて先
ポート

49153

あて先のポート番号が異なるので、複数のデータを受け取ったとしても、
データを渡すアプリケーションを明確に区別できる

図4ー2　ポート番号を使ったやり取り

3 minutes Networking - 23

第4回　ポート番号

サービスを提供したいアプリケーションが
使用する1～1023番までのポート

ポート番号 アプリケーション

20

21

23

25

53

67

68

69

80

110

161

162

443

520

FTPデータ

FTPコントロール

TELNET

SMTP

DNS

DHCPサーバー

DHCPクライアント

ポート番号 アプリケーション

TFTP

HTTP

POP3

SNMPリクエスト

SNMPトラップ

HTTPS

RIP

図 4ー3　ウェルノウンポート番号

 じゃあ、反対に送信元のポート番号はどうやって決まるんですか？

 ポート番号のうち、1023 番以下は、先ほど説明したようにウェルノウン

ポートなので使ってはいけないことになっている。そして、1024 ～
49151 番まではレジスタードポートと呼ばれ、あらかじめ登録されてい
るポート番号だ。これらは、決められたアプリケーションと結び付けられ
ている。送信する側のアプリケーションはこれ以外、49152 ～ 65535 番
までの番号のうち、好きなものを使う。

 好きなもの、と言われましても。なにか条件はないんですか？

 条件は、他のアプリケーションが使っている番号は使ってはいけない、と
いうことだな。それからポイントとなるのは、これらの分類はあくまでも
「そうすべき」という分類であって強制ではない、ということだ。

24 - Software Design 4月号特別付録

ネット君の今日のポイント

●どのアプリケーションのデータかをポート番号で識
別する。
●ポートとアプリケーションを接続する機能をソケッ
トという。
●よく使われるサービスはウェルノウンポートを使
う。
●送信元は 49152 番以降の重複していない好きな番
号を使う。

 強制じゃないってことは……ウェルノウンポートの 53番を送信する側の
アプリケーションが使ったり、ホームページの閲覧を 80 番じゃなくて、
49152 番で行ったりしてもいい、ってことですか？

 その通り。好きな番号を使ってもいい。ただし、サーバーアプリケーショ
ンは先ほども説明したように、今現在アプリケーションが使っているポー
ト番号を伝える方法がないから、ウェルノウンポートのように「事前に決
めた番号」を使っていないと、要求する側が困ることになるがな。

 例えばホームページを閲覧したいな、と思ったとして。ホームページの閲
覧をしているサーバーアプリケーションがウェルノウンポートの 80番を
使っているなら、そこあてに送ればよいと。でも、ウェルノウンポート以
外を使っていたら……。

 それを伝える方法がない。なので、ネットワークとは別の方法、例えば口
伝えとか、メールで伝えるとかしないとダメだ、ということになる。まぁ、
なのでそういう面倒なことをしたくないならばウェルノウンポートを使う
べきだし、ウェルノウンポートを送信側が使うことはしない方がよい。

 さて、次回はレイヤー 4プロトコルのもう 1つ、UDPについて説明しよう。
ではまた次回。

 了解。3分間ネットワーク基礎講座でした～♪

3 minutes Networking - 25

●TCPの弱点

 前の回で少し話したように、TCP/IP ではレイヤー 4に 2つのプロトコル
が存在する。TCPと UDP だ。TCP は正確・確実がうたい文句のプロト
コルだったな。

 でした。TCPはコネクションとか、フロー制御とかを使って、確実にデー
タを送信するプロトコルでしたよね。

 今回はもう 1つのプロトコル、UDPの説明をしよう。しかし、UDPにつ
いて説明する前に、TCPの弱点について話しておいた方がよいだろう。

 TCPの弱点は、その正確・確実がアダになって生まれる。正確・確実
にデータをやり取りするために、TCPはなにをしているんだった？

 え～っと。スリーウェイハンドシェイクに、エラー回復に、フロー制御で
すよね。

 そうだ。どれをとっても面倒くさいだろう？　特に、確認応答の待ち
時間が致命的だ。なにをしようにも、一定時間待つことになるからな（図
5ー1）。

 確かにそうですけど。でも、しょうがないじゃないですか。正確に、確実
に送るために必要なんでしょ？

 確かに。だが、TCPが転送効率の低下を引き起こす原因になりうる、と
いうことだ。

 転送効率が低下？　確認応答という正確・確実を記すためのしくみが、待
ち時間を必要としてしまって、その分送れるデータ量が減ってしまうなん
て皮肉な結果ですね。

UDP
5

26 - Software Design 4月号特別付録26 - Software Design 4月号特別付録

●なにもしないUDP

 こうした TCPの弱点は、翻ってUDPの利点となる。どういうことかと
言えば、まず、UDPヘッダーを見てもらおう（図5ー2）。

 えっと。これだけですか？　ポート番号以外、何もないじゃないですか。

 なにもないな。TCPにはあった、シーケンス番号も確認応答番号も、ウィ
ンドウサイズも、制御ビットもない（P9 参照）。ネット君、これらの
TCPのヘッダー部分はなにをするためにあった？

どんなにウィンドウサイズを大きくしても、
確認応答を受け取るまでの時間が必要となる

確認応答が必要 確認応答が必要ない
ウィンドウサイズを大きくしても確認応答を
受け取るまでの時間がどうしても必要

確認応答を待つ時間が必要ないため
連続してデータを送れる

図5ー1　確認応答を待つための時間

3 minutes Networking - 27

第5回　UDP

 え～。シーケンス番号と確認応答番号は、TCPでのやり取りに。ウィン
ドウサイズは、ウィンドウ制御に。SYNとか ACKとかの制御ビットは、
スリーウェイハンドシェイクにも必要ですよね。

 そうだ。シーケンス番号やら、確認応答番号やらは、TCPの特徴である
正確・確実を実現するために必要な部分だったよな。つまり、それらを持
たないUDPはなにもしないプロトコルなのだよ。

 確認応答や、フロー制御をしないってことですか？　ってことは、UDP
は正確・確実ではないってことですよね。それって、なんかいい加減
なプロトコルって感じですけど。意味あるんですか？

 意味はある。TCPの利点である「正確・確実」は、UDPの弱点である「正
確でない・確実でない」ということになる。では逆に、先ほどの TCPの
弱点の原因はなんだった？

 TCP の弱点の原因？　確認応答にかかる時間でしたよね。そのせいで効
率が悪い、とも。

ポート番号以外はこれといった項目が存在しない

UDPヘッダー ペイロード（デ－タ）

UDPデータグラム

送信元ポート番号
（16ビット）

あて先ポート番号
（16ビット）

ペイロードサイズ
（16ビット）

チェックサム
（16ビット）

図5ー2　UDPヘッダー

28 - Software Design 4月号特別付録28 - Software Design 4月号特別付録

 うむ。その一方でUDPはなにもしない。つまり確認応答にかかる時間な
どないということだ。これはなにを示す？

 つまり、TCP の弱点がないってことですよね。転送効率が下がらない、
ということですか？

 よし。それが、UDPの利点にして最大の特徴だ。そのUDPの特徴
から導き出される答えは、UDPは高速である。これだ。

●UDPの使い道

 UDP ではその高速性、つまり効率が高いところを生かして、高速性や
リアルタイムなやり取りが必要なアプリケーション、例えば、
VoIP［Voice over IP］や、動画のストリーミング配信（*1）などがこ
れに当たるが、そういうものに使われる。

 なるほどなるほど。音声電話で届かなかったから再送しました、とか言わ
れても困っちゃいますよね。

 そうだろう。そして、ブロードキャストが必要なアプリケーショ
ンもUDPを使う。TCPではスリーウェイハンドシェイクによりコネク
ションを確立するな。

 しますね。コネクションを確立して、あて先との間で通信路を作るんです
よね。

 なので TCPでは同時に複数に送信するブロードキャストのような通信が
非常に難しい。相手を全員知っていなければならないし、それぞれに対し
てコネクションを確立しようとすると、送受信が多くなる上、それぞれに
使うバッファーを用意しなければならない。

 ふむふむ。全員に通信するためには、全員とコネクションを確立しなけれ
ばならないんですね（図5ー3）。

（*1）VoIP、ストリーミング配信　VoIP は「インターネット電話」と呼ばれる音声をインターネッ
ト技術で送る技術。ストリーミング配信は、データをストリーム［Stream］（流れるように連続
的に継続的に）で配信すること。多くの場合、ダウンロードしながら同時に再生することを指す。

3 minutes Networking - 29

第5回　UDP

TCPは相手がわからないと送信できないため、
ブロードキャストができない

TCPでブロードキャストを行う場合

スリーウェイハンドシェイク

Aとの通信用バッファー

Bとの通信用バッファー

Cとの通信用バッファー

A

B

C

それぞれに対し
コネクションを確立

UDPでのブロードキャストを行う場合

A

B

C

全員あてに送信
それ以外の制御を行わない

Aとの通信用バッファー

Bとの通信用バッファー

Cとの通信用バッファー

A

B

C

それぞれに対しセグメントを
送信し、確認応答をもらい
ウィンドウ制御を行う

Aあて

Cあて

全員あて

Bあて

・送信するデータが1つですむため帯域の消費が少ない
・送受信側でのバッファーの保持も必要ないため負荷が小さい
・相手のアドレスが不明でも送信できる（TCPはコネクション・確認応答のためにアドレスが
特定できないと送信できない）

図5ー3　TCPとUDPのブロードキャスト

30 - Software Design 4月号特別付録

ネット君の今日のポイント

● TCPは信頼性の代わりに、転送効率を犠牲にする
ことがある。
● UDPは制御を何もしない、コネクションを設定し
ない。
●UDPを使うアプリケーションには、高速性やリア
ルタイムなやり取りが必要なもの、ブロードキャス
トが必要なものなどがある。

 しかし、UDPなら可能だ。制御をしないからな。特に相手がいるかどう
かもわからないDHCPなどは、コネクションの取りようがない。なので、
UDPを使うわけだな。

 DHCP っていうと、DHCP Discover ですか。あれってDHCPサーバを
探し出すものですからね。相手がいるかどうか、確かにわからないや。

 そうだろう。つまりTCPの弱点である「転送効率の低下」や「ブロードキャ
ストを使えない」という弱点が、UDPでは「転送効率が低下しない」「ブロー
ドキャストが使える」という利点になっているわけだな。

 ふむふむ、よって「高速性がいる場合」とか「ブロードキャストがいる場合」
はUDPを使う、逆に「正確・確実がいる場合」は TCPを使う、という
ことですね？

 そういうことになる。TCPと UDPは裏表、どっちのプロトコルの利点を
使うかということになるわけだ。TCPと UDPのそれぞれの利点と欠点を
ちゃんと把握しておくように。では今回はここまでとしよう。

 了解。3分間ネットワーク基礎講座でした～♪

3 minutes Networking - 31

●プライベート IPアドレス

　 前回までで、レイヤー 4の 2つのプロトコルの説明と、ポート番号につい
ての説明をしたわけだ。レイヤー 4では TCPと UDPという 2つのプロ
トコルがあり、ポート番号によりアプリケーションの識別を行う。

 TCP は「正確・確実」、UDPは「高速・ブロードキャスト」のプロトコ
ルでしたね。TCPと UDPは裏表の関係にあるプロトコルですね。

　
 うむ、そうなるな。では今回は IP アドレスについての話だ。通常、IP ア

ドレスは ICANNが管理している。ユニーク性を維持するためにだ。この
ような IPアドレスは、グローバル IPアドレスと呼ばれる。その一方
で、IPアドレスにはインターネットにつながないという条件で、自由に使
えるアドレスがある。

 インターネットにつながないという条件？　自由に使えるアドレス？　普
通は ICANNに管理されているから、勝手につけちゃいけないんですよね。
他と被らないようにするために。

 そうだ。だが、それは「インターネットで重複しない」ようにするためで、
別にインターネットにつながないならば、そんなルールに従う必要はない
わけだ。ICANNはそんなネットワークのために、自由に使っていいアド
レスを用意している。これをプライベート IPアドレスと呼ぶ（図6ー
1）。

 クラスAで 1つ。クラスBで 16コ。クラスCで 256 コのネットワーク
ですか。

ネットワークアドレス
変換

6

32 - Software Design 4月号特別付録32 - Software Design 4月号特別付録

 うむ。インターネットに接続せずに TCP/IP を使う場合は、この IP アド
レスを利用すればよい。一方、インターネットでのデータ通信には、グロー
バル IPアドレスを使用する。

 だが、実はこれには大きな問題がある。インターネットに接続する台数が
あまりにも多すぎて、グローバル IPアドレスが不足している、と
いう問題だ。

 そうなんですか？　でも、IP アドレスって 32ビットだから、2の 32乗、
4,294,967,296個あるんですよね。それでも足りないんですか？

 うむ、その 42億 9496 万 7296 個でも足りないのだ。特に、企業や学校
が使うクラスBアドレスがもっとも不足している。クラスCの 254 個で
は足りないし、クラスAの 16,777,214 個では多すぎるからだ。

 ははぁ。確かに 1つの会社や学校で 1000 台ぐらいあってもおかしくない
ですからね。1人に 1台とか割り当てたらクラスCの 254 個では足りな
いですよね。

インターネットに接続しない
ネットワークのために使用できるIPアドレス

クラスA プライベートIPアドレス
IPアドレス10.0.0.0

00001010 xxxxxxxx xxxxxxxx xxxxxxxx

クラスB プライベートIPアドレス
IPアドレス172.16.0.0～172.31.0.0

10101100 0001xxxx xxxxxxxx xxxxxxxx

クラスC プライベートIPアドレス
IPアドレス192.168.0.0～192.168.255.0

11000000 10101000 xxxxxxxx xxxxxxxx

図 6ー1　プライベート IPアドレス

3 minutes Networking - 33

第6回　ネットワークアドレス変換

 そうなる。よって IP アドレスは不足することになってしまう。この IP ア
ドレスの枯渇問題の対策の 1つが、クラスレスアドレッシングだ。他にも、
IPv6 という、新しい IP のしくみもある。だが、もっとも手軽かつ有効な
手段として使用されているのが、ネットワークアドレス変換
［Network Address Translation］だ。

●ネットワークアドレス変換

 ネットワークアドレス変換。頭文字をとって、NATと呼ばれる。例えば、
インターネットに接続したい 500 台のコンピューターがあるネットワー
クがある。さて、ネット君。君がネットワーク管理者ならどうする？

 どうすると言われましても。インターネットに接続したいコンピューター
が 500 台あるんですから、500 台分のグローバル IP アドレスが必要です
よね。

 だが、先ほども話したように IP アドレスは枯渇している。そうおいそれ
と 500 個もグローバル IP アドレスは手に入らない。普通、プロバイダー
から割り当てられると 16個ぐらいかな。

 16 個じゃ全然足りないですよ……。

 というわけで、NATの出番だ。まず、内部ネットワークにはプライ
ベート IPアドレスを割り振る。プライベート IP アドレスを割り振
る理由は、内部ネットワーク内でTCP/IP を使った通信をするた
めだ。TCP/IP通信をするためにはIPアドレスが必要なので、インターネッ
トとやり取りする必要がなくても、IPアドレスを割り振る必要がある。

 そしてNATによって、内部ネットワークで割り振ったプライベート IPア
ドレスをグローバル IPアドレスに変換する（図6ー2）。

 はー。インターネットに出ていくときはグローバル IP アドレスに付け替
えるんですね。まさしくアドレス変換ですね。

 だが、このNATにも弱点がある。それは同時接続数の問題だ（図6ー
3）。

 変換するグローバル IPアドレスが足りない？

34 - Software Design 4月号特別付録34 - Software Design 4月号特別付録

インターネット

インターネット

プライベートIPアドレスをグローバルIPアドレスに変換する

192.168.0.1
（プライベートIPアドレス）

200.100.10.1～15
（ICANNによって割り当てられた

グローバルIPアドレス）

1.0.0.1
（グローバルIPアドレス）

送信元IPアドレス
192.168.0.1

あて先IPアドレス
1.0.0.1

データ

①内部ネットワーク(プライベートIPアドレスで割り振られている）からインターネット（グロ
ーバルIPアドレスが必要）へ送信する。ルーターにはICANNと下部組織により、組織用に
グローバルIPアドレス（200.100.10.1～15）が与えられている

192.168.0.1 200.100.10.1～15 1.0.0.1

送信元IPアドレス
192.168.0.1

あて先IPアドレス
192.168.0.1

データ

④パケットを受け取ったルーターはNATテーブルに従い、あて先IPアドレスをプライベート
IPアドレスに書き換え、内部ネットワークに送信する。NATテーブルは一定時間後にクリア

192.168.0.1

192.168.0.1←→200.100.10.5
NATテーブル

200.100.10.1～15 1.0.0.1

送信元IPアドレス
200.100.10.5

あて先IPアドレス
1.0.0.1

データ

②ルーターはNATを行い、送信元IPアドレスのプライベートIPアドレスをグローバルIPアド
レスに書き換えてインターネットのあて先へ送る。この書き換えは記憶される
　（NATテーブルに記録）

192.168.0.1

192.168.0.1←→200.100.10.5
NATテーブル

192.168.0.1←→200.100.10.5
NATテーブル

200.100.10.1～15 1.0.0.1

送信元IPアドレス
1.0.0.1

あて先IPアドレス
200.100.10.5

データ

③受け取ったインターネットにあるサーバーは、応答する。この際のあて先はもちろん変換
後のグローバルIPアドレスである

図6ー2　ネットワークアドレス変換

3 minutes Networking - 35

第6回　ネットワークアドレス変換

 そうだ。保有するグローバル IP アドレス数以上のホストは、
インターネットに同時に接続することができない。つまりプラ
イベート IPアドレスとグローバル IPアドレスは 1対 1で対応していなけ
ればならないのだよ。

 あら～。それはちょっと不便ですね。どうせ変換するんだから、同じグロー
バル IPアドレスを割り振ってしまってはどうです？

 ふむ。では 192.168.0.1 と 192.168.0.2 を 200.100.10.1 に変換したと
する。さて、質問だ。サーバから返ってきた 200.100.10.1 あてのパケッ
トはどちらのホストあてのものだ？

 え？　……、あぅ～。

 わかったようだな。NATで変換されるアドレスはユニークである
必要がある。

グローバルIPアドレスの数だけしか同時接続ができない

NATテーブル

192.168.0.1 1.0.0.1

グローバルIPアドレスが3つしかない場合

192.168.0.1←→200.100.10.1
192.168.0.2←→200.100.10.2
192.168.0.3←→200.100.10.3
192.168.0.4←→ 　　　？？？

192.168.0.2

192.168.0.3

192.168.0.2

192.168.0.3

192.168.0.4

200.100.10.1～3200.100.10.1～3

3つとも使用している状態で4台目の分のパケットが届いても
変換するグローバルIPアドレスがないため、変換できない

インターネット

図6ー3　ネットワークアドレス変換の弱点

36 - Software Design 4月号特別付録

ネット君の今日のポイント

●プライベート IP アドレスではインターネットに接
続できない。
●グローバル IPアドレスは不足気味である。
●プライベート IP アドレスとグローバル IP アドレス
を変換するのがNAT。
●保有するグローバル IP アドレス以上のホストは同
時接続できない。

 ということは、博士。同時に接続したいホスト数分だけグローバル IP ア
ドレスが必要ってことですか？　結局、たくさんのグローバル IP アドレ
スが必要ってことには変わりないじゃないですか。

 500 台のホストが同時にインターネットへ接続したかったら 500 個のグ
ローバル IPアドレスが必要ってことですか？

 そうなるな。確かにその通りなのだが、例えば同時にインターネットへ接
続するホストの台数があまり多くないときには十分これで役に立つのだ
よ。

 そう言われればそうですけど……何か納得いきません。

 そうだな。今時、グローバル IPアドレスが足りないからと言って、インター
ネットに接続できないようだと業務に差し障りがあるところも多かろう。
自由にインターネットに接続し、さらにグローバル IP アドレスを消費し
ないようにするためには別の手立てが必要になる。

 それは、NATを発展させたNAPTだ。それは次回としておこう。
今回はここまで。

 はい。3分間ネットワーク基礎講座でした～♪

3 minutes Networking - 37

●NAPT

 さて、前回はIPアドレスについての説明で、NATについて話をしたわけだ。
NATは内部ネットワークで使うプライベートIPアドレスと、インターネッ
トで使うグローバル IPアドレスを変換する技術だ。

 はい。それでインターネットで枯渇している IP アドレスを使わないで、
インターネットにデータを送ることができる、でしたっけ。でも……。

 そうだ。グローバル IP アドレス対プライベート IP アドレスは、1：1で
なければならない。これではもし同時接続を望むホストが多い場合、結局
多くのグローバル IPアドレスが必要になってしまう。

 同時にインターネットに接続したいプライベート IPアドレスが 10個ある
ならば、グローバル IPアドレスも 10個必要ってことですよね。

 そういうことだ。そこで登場するのがNAPT［Network Address
Port Translation］だ。この NAPT の最大の特徴は、1つのグロー
バル IPアドレスで複数台が接続可能ということだ。

 1 つのグローバル IP アドレスで、複数台がインターネット接続可？　そ
れはすごいです。グローバル IPアドレスが少なくっても大丈夫ですね。

 うむうむ。そうだろう。このNAPTでは、IP アドレスだけでなく、ポー
ト番号も変換することによって、複数台接続を可能としている（図7ー1）。

 ポート番号ごと変換？　図 7-1 の例で言えば、同じ 1.0.0.1 あてのパケッ
トでも、送信元ポート番号が 6001 なら送信元は 192.168.0.1。6002 な
ら 192.168.0.2 とわかりますからね。

NAPT
7

38 - Software Design 4月号特別付録38 - Software Design 4月号特別付録

ポート番号も変換することで、複数台の同時接続を可能にする

192.168.0.1 200.100.10.1～15 1.0.0.1

送信元IPアドレス
192.168.0.1

送信元ポート
1024

あて先IPアドレス
1.0.0.1

あて先ポート
80

データ

①NAPTはNAT同様IPアドレスを変換するが、IPアドレスの変換の際に、ポート番号も変換
し、その対応をNATテーブルに記載する

送信元IPアドレス
200.100.10.5

送信元ポート
6001

あて先IPアドレス
1.0.0.1

あて先ポート
80

データ

192.168.0.2 192.168.0.1：1024←→200.100.10.5：6001
192.168.0.2：1025←→200.100.10.5：6002

NATテーブル

送信元IPアドレス
192.168.0.2

送信元ポート
1025

あて先IPアドレス
1.0.0.1

あて先ポート
80

データ

送信元IPアドレス
200.100.10.5

送信元ポート
6002

あて先IPアドレス
1.0.0.1

あて先ポート
80

データ

192.168.0.1 200.100.10.1～15 1.0.0.1

送信元IPアドレス
1.0.0.1

送信元ポート
80

あて先IPアドレス
200.100.10.5

あて先ポート
6001

データ

②応答の場合、IPアドレスとポート番号をNATテーブルで確認し、IPアドレス、ポート番号を
変換する

送信元IPアドレス
1.0.0.1

送信元ポート
80

あて先IPアドレス
192.168.0.1

あて先ポート
1024

データ

192.168.0.2 192.168.0.1：1024←→200.100.10.5：6001
192.168.0.2：1025←→200.100.10.5：6002

NATテーブル

送信元IPアドレス
1.0.0.1

送信元ポート
80

あて先IPアドレス
200.100.10.5

あて先ポート
6002

データ

送信元IPアドレス
1.0.0.1

送信元ポート
80

あて先IPアドレス
192.168.0.2

あて先ポート
1025

データ

インターネット

図7ー1　NAPT

3 minutes Networking - 39

第7回　NAPT

インターネット

NATテーブルにない変換は変換されないため
内部ネットワークに流れない

192.168.0.1 200.100.10.1～15 1.0.0.1

送信元IPアドレス
1.0.0.1

送信元ポート
1024

あて先IPアドレス
200.100.10.5

あて先ポート
80

データ

192.168.0.2

192.168.0.1：1024←→200.100.10.5：6001
192.168.0.1：1025←→200.100.10.5：6002

NATテーブル

NATテーブルにないポートがあて先の場合
変換されないため、内部ネットワークには侵入できない

図7ー2　NAPTの利点

 そういうことだ。つまりポート番号という情報を追加することにより、1
つのグローバル IP アドレスで、接続している複数の機器を区別できるよ
うにしたわけだ。

 IP アドレスとポート番号をセットにして、区別できるようにしたわけです
ね。うまいこと考えますねぇ。

 NAPTは上記のような動きをするのだが、これのおかげで他にも利点があ
る。セキュリティ面での効果だ（図7ー2）。

 変換されていないポート番号あてなので、プライベート IP アドレスに変
換されず、内部ネットワークにデータが流れない、と。じゃあ、もし偶然
あて先ポート番号が 6001 番か 6002 番だった場合は？

 それはさすがに防げない。見た目は正しいパケットだからな。

40 - Software Design 4月号特別付録40 - Software Design 4月号特別付録

●静的NAPT

 一方で、そのセキュリティが NAPT の欠点にもなっている。それは、
LAN内部に外部に公開したいサーバーがある場合だ。

 LAN内部に外部に公開したいサーバーがある場合？　例えばホームペー
ジを公開するサーバーがあるとかですか？

 そうだ。さっきのセキュリティを思い出してもらえばいいのだが、外部に
公開したいサーバーがネットワーク内にあった場合。例えばホームページ
（Web）サーバーがあった場合だな。外部からは 80番ポートあてにパケッ
トが届くわけだ。そうなるとどうなる？

 そうなると……、NAPTテーブルにある変換しか行わないから…。入って
これない？

 そうだ。NAPT テーブルは、変換したアドレスの対応を記憶する。
NAPTテーブルに記憶されていないものは、LAN内部に入
らない。

 なるほど。セキュリティに役立つ部分が、逆に必要なものまで破棄しちゃ
うんですね。

 そうだ。これでは結局外部からのアクセスができず、インターネットへ公
開できないことになる。この解決策は…。NAPTテーブルに記憶されてさ
えいれば、LAN内部に入れるのだから、NAPTテーブルにあらか
じめ変換を記憶させておけばいい。

 あぁ、なるほど…。って、それはアリなんですか？

 もちろん。通常のNAPT が、自動的にポート番号を変換するのに対して
こちらは手動で変換を入力しておく。これを静的NAPTと呼ぶ。

3 minutes Networking - 41

第7回　NAPT

● NAPTの欠点

 実は NAPT にはもう 1 つ弱点がある。例えば、FTP［File Transfer
Protocol］だ。

 FTP ？　FTPって、Webページをサーバー上に置くときに使うプロトコ
ルで、ファイルをアップロードしたり、ダウンロードしたりするときに使
うんですよね、なにが欠点なんです？

 FTP では、IP ヘッダーにあて先と送信元の IP アドレス、TCPヘッダー
にあて先と送信元のポート番号がもちろん使われる。そして、さらにデー
タ部分にも送信元の IPアドレスとポート番号が記述されるの
だよ。

 はぁ。そうなんですか。それになにか問題が？

インターネット

データ部分に書かれているアドレスは変換されないため、
FTPはつながらなくなる

192.168.0.1 1.0.0.1200.100.10.1～15

送信元IPアドレス
192.168.0.1

送信元ポート
1024

PORT
192.168.0.1:4001

あて先IPアドレス
1.0.0.1

あて先ポート
80

送信元IPアドレス
200.100.10.5

送信元ポート
6001

PORT
192.168.0.1:4001

あて先IPアドレス
1.0.0.1

あて先ポート
80

FTPではデータの中に自分のIPアドレスとポート番号を送信することが必要である

192.168.0.1：1024←→200.100.10.5：6001

NATテーブル

NAPTではIPヘッダー以外の部分は変換されないため、プライベートIPアドレスのままになってしまう

図7ー3　FTPとNAPT

42 - Software Design 4月号特別付録

ネット君の今日のポイント

● IP アドレスとポート番号を両方変換するのが
NAPT。
●同じグローバル IP アドレスでも異なるポート番号
を使うので、複数台が同じグローバル IP アドレス
で接続できる。
● NAPTを使うと、セキュリティにも役に立つ。
● LAN内に公開したいサーバーがある場合は、静的
NAPTを使う。
●データ部分に IP アドレスが入るアプリケーション
には、個別で対応する。

 このデータ部分にある IP アドレスとポート番号を使って FTPは通信を行
うわけだが、これがプライベート IP アドレスのままだと、インターネッ
トからプライベート IP アドレスあてにデータを送ることになってしまい、
データが送れなくなってしまう。よって、FTPでのデータ転送は不可能と、
こうなるわけだ（図7ー3）。

 不可能って……。じゃあNAPTがあると FTPは使えない、ということで
すか。それは結構困りますよね。

 そうだな。FTPと同じようにデータ部分にも送信元の IPアドレス
とポート番号が記述されるものはすべからくダメということになる。
このようなプロトコルは、残念ながらNAPTだけではどうにもならない。
NAPTを行う機器が個別に対応しているというのが実情だ。

 う～ん。機器次第ってことなんですね。買うときに、FTPに対応している
かどうかチェックする必要がありますね。

 NAPTを行うのは多くがルーターだから、対応のルーターを買う必要があ
る。FTPは多くのルーターで大丈夫だが、他のプロトコルはなかなか難し
い。では、また次回としよう。

 はい。3分間ネットワーク基礎講座でした～♪

3 minutes Networking - 43

●レイヤー5セッション

 さて、この章ではレイヤー 4と NAT/NAPTを説明してきたわけだ。今回
は残りのレイヤー 5、6、7を説明しよう。ではネット君、レイヤー 4ま
でを簡潔に説明してくれたまえ。

 レイヤー 1で「ケーブルに信号を伝え」、レイヤー 2で「ネットワーク内
でのデータのやり取り」を、レイヤー 3で「ネットワーク間でのデータの
やり取り」をするんでしたよね。それによってデータがあて先のコンピュー
ターまで届くので……。

 レイヤー 4で「どのように確実にデータを届けるかのしくみ」と「アプリ
ケーションの識別」を行う、だな。さて、残りのレイヤー 5 ～ 7 は、
TCP/IP モデルでは 1つのレイヤーとして扱われている。

 そうでしたね。「アプリケーション層」、でしたよね。HTTPとか、FTPと
かのプロトコルでした。

 そうだな。レイヤー 5・6・7 は、TCP/IP の場合まとめて1つのプ
ロトコルとして実装されていることが多い。いうならば、HTTPなど
は 1つのプロトコルでレイヤー 5・6・7の役割を行っている、と考えれ
ばいい。

 では、それぞれのレイヤーの役割を説明していこう。まず、レイヤー 5だ。
レイヤー 5はセッション層と呼ばれる。ネット君、セッション［Session］
の意味は？

 え～っと。バンドのセッションの「セッション」ですかね。え～っと……
辞書によると「話し合い」「打ち合わせ」「会議」「学期」だそうです。

レイヤー5～7
8

44 - Software Design 4月号特別付録44 - Software Design 4月号特別付録

 うむ。話し合いだ。つまりアプリケーション間の話し合いの管理
がセッション層の役割だ。

 これには、セッションというものをまず理解してもらうところからいこう。
例えば FTPは、2つのコネクションを使ってファイルのやり取りを行う。
2つのコネクションによって、ユーザ認証から始まって、ディレクトリの
情報、ファイル交換、交換後のディレクトリの情報、そしてまたファイル
交換……と必要な分のファイル交換が行われるわけだ（図8ー1）。

 ははぁ、FTPについて詳しくは『3分間DNS基礎講座』が詳しいですよね。

 うむ、宣伝ありがとう。つまり、2つのコネクションで、「パスワードを
送る」「データ転送の準備をする」などの「言葉」をやり取りしているわ
けだ。この言葉をやり取りすることにより、ファイルの転送をするという
「会話」を成立させている、ということになる。

アプリケーション間の「言葉」を「会話」として管理する

Ｆ
Ｔ
Ｐ
セ
ッ
シ
ョ
ン

ユーザーIDとパスワード

制御コネクション

制御コネクション

制御コネクション

データ転送
コネクション

データ転送
コネクション

データ転送タイプの設定

データ転送の準備

ファイル一覧の要求

ファイル一覧の転送

データ転送タイプの設定

データ転送の準備

ファイルのアップ/ダウンロード

終了処理

図8ー1　セッション

3 minutes Networking - 45

第8回　レイヤー5～7

 ん～っと、データ 1つのやり取りという「言葉」を繰り返して、「会話」
をする、ということですか。この会話の管理をするのがセッション層のや
り取り、ということですね。……でも、管理ってなにをするんですか？

 簡単に言えば、会話として成立するように制御を行う。これをダイアロ
グ制御［Dialog Control］という（図8ー2）。

 「今度はこっちが喋る番」・「聞く番」とかを決めたりするわけですね。そ
うすれば「会話」として成り立ちますね。

●レイヤー6 プレゼンテーション

 次はレイヤー 6 プレゼンテーション層だ。TCP/IP にはさまざまなアプリ
ケーションが存在しているが、そのそれぞれの目的にあったデータ形式が
ある。

 アプリケーションの目的にあったデータ形式っていうと……文字とか、画
像とか、動画とか、音声とかですか。

データのやり取りをセッションとして成立するように管理する

会話（セッション）として成立している

話題A

返答Bに
ついての
返答C

話題Aに
ついての
返答B

返答Cを
踏まえた
上での
話題C

（1）

会話（セッション）として成立していない

話題A

話題C

話題Aに
ついての
返答B
？

（2）

図8ー2　ダイアログ制御

46 - Software Design 4月号特別付録46 - Software Design 4月号特別付録

 そうだ。例えば文字で考えてみよう。文字は、ASCII というデータ形式が
もっとも一般的だ。一方、IBM汎用機で使われている EBCDIC（*1）と
いうデータ形式もある。例えば数字の「1」をビットで表すと、ASCII で
は「0110001」、EBCDIC では「11110001」になる。

 うぅ？　全然違いますね。ビットの並びも違うし、それにASCII は 7ビッ
トだけど、EBCDIC は 8ビットだし。

 うむ。よって、ASCII を使うコンピューターと、EBCDICを使うコンピュー
ター間では文字が送れなくなってしまう。そこで、このレイヤー6で
変換する。それによりハードウェアやOSによる差異をなくし
たデータ交換が可能になる（図8ー3）。

（*1）ASCII、EBCDIC　［American Standard Code for Information Interchange］
［Extended Binary Coded Decimal Interchange Code］
ASCII、読みは「アスキー」。この国際規格の ISO-646、ISO-8859が標準的。
EBCDICは拡張2進化10進数交換符号。読みは「エビシディック」。

コンピューター間でのデータの型の違いを変換によってなくす

テキストデータとして
ASCIIを使用しているコンピューター

ASCII→ネットワーク
転送用コードに変換

ネットワーク転送用コード

ネットワーク転送用コード
→EBCDICに変換

テキストデータとして
EBCDICを使用しているコンピューター

レイヤー7

レイヤー6

レイヤー5～1

ASCIIのデータ EBCDICのデータ

図 8ー3　文字の変更

3 minutes Networking - 47

第8回　レイヤー5～7

 なるほどなるほど。いったんネットワークで転送するコードに変換して、
それを受信側で自分が使っている文字のビットに変換する、と。確かにこ
れなら機器の違いが関係なくなりますね。

 他にもレイヤー6では、圧縮や暗号化を行うこともできる。このように、
アプリケーションから乖離したデータ形式による転送のために
変換を行うのが、レイヤー 6の役割だ。

●レイヤー7 アプリケーション

 さて、最後のレイヤーがレイヤー 7のアプリケーション層だ。今までのレ
イヤーは上に他のレイヤーがいて、上のレイヤーのために働いていたが、
レイヤー 7は上にアプリケーションしかいない。

 ははぁ。ということは、レイヤー 7は上位のレイヤーのためではなく、ア
プリケーションのために働くレイヤーってことになるんですか？

 ほほぅ。なかなか察しがいいな。その通りだ。つまり、アプリケーション
の目的に応じてネットワークサービスを提供するレイヤーというこ
とになる。レイヤー 7には、それぞれの目的に応じたプロトコルが
用意されている（図8ー4）。

 ってことは、アプリケーションがそれぞれの目的に応じて、使うプロトコ
ルを決めてるんですね。ホームページの閲覧ならHTTP、ファイル転送な
ら FTPとか。

 そういうことだ。それぞれのプロトコルにより、やり取りするデータの形
や手順などが決められている。アプリケーションにとって、ネットワーク
への入り口になるわけだな。

 なるほど。それぞれのプロトコルの詳細は「3分間DNS基礎講座」や「3
分間HTTP＆メールプロトコル基礎講座」が詳しくていいですよね。

 うむうむ、またまた宣伝ありがとう。ともかくだ、レイヤー 5・6・7に
より「データのやり取りの管理」「データの型」「ネットワークサービス」
が決まる、ということになるわけだな。

 これですべてのレイヤーがでそろったわけですね。

48 - Software Design 4月号特別付録

ネット君の今日のポイント

● TCP/IP ではレイヤー 5・6・7はまとめて 1つの
プロトコルに実装されている。
●レイヤー 5はセッションの管理を行う。
●レイヤー 6はデータの変換、圧縮、暗号化を行う。
●レイヤー 7はユーザアプリケーションにネットワー
クサービスを提供する。

アプリケーションの目的に応じて使用するプロトコルが決まる

Webサイトの閲覧サービス
（WWWサービス）

ファイル転送
サービス

メール転送
サービス

TCP/UDP
IP

イーサネット

ブラウザー FTPクライアント メールクライアント

HTTP FTP SMTP

サービス

レイヤー7

レイヤー4～1

アプリケーション
ソフト

ネットワークの利用

ネ
ッ
ト
ワ
ー
ク

図8ー4　ネットワークサービス

 そうだな。では次回はすべてのレイヤーの役割を復習しよう。では、今回
はここまで。

 はい。3分間ネットワーク基礎講座でした～♪

3 minutes Networking - 49

●OSI 参照モデル

 さて、レイヤー 1～ 7までのすべて説明が終わったということで、もう一
度基本に立ち返ることにしよう。まず、OSI モデルの特徴を言ってみたま
え。

 え～っと。7つのレイヤーに分かれていて、それぞれは独立し
ている、と。

 そうだ。よって各レイヤーは独立して考えることができるわけだ
な。もう一度、簡単に各層の役割を説明しよう。

●レイヤーの機能

 以前から話している通り、各レイヤーはその下のレイヤーの都合
はまったく考えない。よく「ネットワークって難しい」という声を聞
くが、そういう人はなんでもかんでもごっちゃに考えていることが多いか
らだ。

 ははぁ。「手紙を便箋に書く」と「郵便局員が仕分けする」というまった
く違うことも同じレベルで考える、というやつですね。

 うむ。必ず順序と機能を前提に、分けて考えることが必要だ。よくある
例としては「ケーブルはつながってるのに、データが届かない！！」とい
う叫びだな。

 「物理的にケーブルがつながっている」のと「データのやり取りができる」
ことは別だってことですよね。

OSI 参照モデルと
まとめ

9

50 - Software Design 4月号特別付録

 そうだ。「信号のやり取り」という機能と「データのやり取り」という機
能は別物で、それぞれの機能をちゃんと実現していないと正しくデータの
やり取りができない、ということがわかっていないと起きうるわけだ。

 なるほど。信号が伝わるとしても、データがうまく届くとは限らない。と
いうことですね。

 さて、上位層から順番におさらいだ。まず、レイヤー 5～ 7だな（図9ー1）。

 レイヤー 5～ 7は、レイヤー4以下の機能でアプリケーション
別に届いたデータを処理するんでしたっけ？

 うむ。レイヤー5～7は実際に相手にデータを届ける役割はない。レイヤー
5～ 7はレイヤー 4以下が行う処理によって、アプリケーションに届いた・
届けるデータに対しての処理を行うだけだ、ということだな。

サービスやデータの形式、セッションの管理などを行う

アプリケーション

プレゼンテーション

セッション

トランスポート

ネットワーク

データリンク

物理

アプリケーション

プレゼンテーション

セッション

トランスポート

ネットワーク

データリンク

物理

ネットワークサービス

データ形式

セッション

図9ー1　レイヤー5～7

3 minutes Networking - 51

第9回　OSI参照モデルとまとめ

 レイヤー 7がネットワークサービスを実施。レイヤー 6がデータ
の形式を変換する。レイヤー 5がセッションを管理するでしたよ
ね。

 うむ。これらはTCP/IP では同一のプロトコルで処理されている。そして
次がレイヤー 4だな（図9ー2）。

 レイヤー 4といえば、TCP・UDPですよね。「正確・確実」なTCPと、「高
速」なUDP。

 レイヤー4はレイヤー3以下の機能でコンピューターに届くデー
タに対して信頼性の高いデータ通信をレイヤー 5に提供する。アプ
リケーションを識別し、それぞれに対して信頼性のある・なしを提供
するわけだ。

 通信アプリケーションの識別、ってポート番号ですよね。で、TCPか
UDPのどちらかを使うことによって、信頼性のある・なしを決定する、っ
と。

アプリケーションの識別、信頼性の有無を決定する

アプリケーション

プレゼンテーション

セッション

トランスポート

ネットワーク

データリンク

物理

アプリケーション

プレゼンテーション

セッション

トランスポート

ネットワーク

データリンク

物理

信頼性の保証

コネクション
フロー制御
ポート番号

図9ー2　レイヤー4

52 - Software Design 4月号特別付録

 その下のレイヤー 3は、レイヤー2以下の機能でケーブルに接続
された機器間のデータ通信を使って、異なるネットワーク間の
接続をレイヤー 4に提供する（図9ー3）。

 インターネットワークッスね、博士。

 そういうことだな。現在のTCP/IP ネットワークでの中核と言ってもいい
レイヤーだな。レイヤー 3では異なるネットワーク間でのデータ転送、つ
まりインターネットワークを実現することが役割だ。

 IP アドレスとか、ルーティングとかですね。

 うむ。レイヤー 4はレイヤー 3によって異なるネットワーク間でもデータ
転送ができるようになるし、逆にレイヤー 3はレイヤー 2のネットワーク
内での機器のデータ転送を使って、ネットワーク間の接続を行う（図9ー4）。

アドレッシングとルーティングにより
インターネットワークを実現する

アプリケーション

プレゼンテーション

セッション

トランスポート

ネットワーク

データリンク

物理

アプリケーション

プレゼンテーション

セッション

トランスポート

ネットワーク

データリンク

物理

インターネットワーク

アドレッシング・ルーティング

図9ー3　レイヤー3

3 minutes Networking - 53

第9回　OSI参照モデルとまとめ

 レイヤー 2は、レイヤー1の機能での電気的なデータの受け渡
しを使って異なる機器のデータのやり取りをレイヤー3に提供する。

 レイヤー 2といえば、イーサネットですよね。

 実際はイーサネットはレイヤー 1とレイヤー 2の統合した範囲を規定して
いるが、まぁ、そうだな。レイヤー 2は直接的なデータ転送を行うレ
イヤーだな。実際のデータの受け渡しと制御を担当する。

 制御っていうと、CSMA/CDですか？

 うむ。レイヤー 1の電気信号の流れを衝突が発生しないよう効率的
に運用し、レイヤー 3にネットワーク内のデータ転送を提供する。

 電気信号は単に流れるだけですからねぇ。

ケーブルと信号によるデータの伝達と
ネットワーク内の機器によるデータ転送

アプリケーション

プレゼンテーション

セッション

トランスポート

ネットワーク

データリンク

物理

アプリケーション

プレゼンテーション

セッション

トランスポート

ネットワーク

データリンク

物理

ネットワーク内の通信

電気・信号

図9ー4　レイヤー1～2

54 - Software Design 9月号特別付録54 - Software Design 4月号特別付録

ネット君の今日のポイント

●各レイヤーは上位レイヤーにサービスを提供する。
●各レイヤーは独立しており、他のレイヤーに影響を
及ぼさない。

 一方、レイヤー 1は電気と信号を担当する。つまりケーブルと信
号をレイヤー 2に提供する。

 結局、本当にデータを流すのはレイヤー 1ってことですね。

 そういうことだ。データを電気信号にして相手に送る、というよりもやは
り信号を流すが正解だな。

 流す、ですか。確かに「送る」よりは「流す」かもしれませんね。

 うむ。さて、まとめとして今回の説明は上位レイヤーに提供する機能
というものに重点を置いてみた。つまり、下のレイヤーは上のレイヤーに
機能を提供して、データ転送を行う環境を作り上げていくわけだ。そして
最終的にレイヤー 7がアプリケーションにネットワークサービス
そのものを提供する、という形になる。

 手紙通信でいうところの、「郵便配達人」→「郵便局」→「ポスト」→「封
筒」→「手紙の中身」という感じですよね。最終的に手紙を使った「意思
疎通」ができるようになる、と。

 そういうことだ。さて、これで全部おしまい、と。

 はい、お疲れした博士。3分間ネットワーク基礎講座でした～、またみん
などこかで会おうね～♪

3 minutes Networking - 55

●データ通信
－リソースの共有を行うために、データをやり取りする
－ハードウェアとしてコンピューター、インターフェース、
通信媒体がある

●OSI 参照モデル
－通信の手順と段階の「設計図」
－それぞれのレイヤーにプロトコルが用意されている
－レイヤーのプロトコルを順番に実行していくことでデー
タ通信が可能になる

データ通信のハードウェアとソフトウェア
データを送受信するコンピューター

データを通信媒体向けに変換・もしくは
その逆を行う

リソースの共有のため必要となるデータ

データを運ぶ媒体。ポイントツーポイントや
マルチアクセスのような形態がある

I NT INT
データ

第7層 アプリケーション層 ユーザーにネットワークサービス
を提供する

内容表現第6層 プレゼンテーション層 データの形式を決定する

第5層 セッション層 データのやり取りの順序などを
管理する

第4層 信頼性の高い（エラーの少ない）
伝送を行う 伝 送 物

トランスポート層

第3層 ネットワーク層 伝送ルートやあて先の決定を行う

第2層 データリンク層 隣接機器へのデータの伝送を
制御する 伝　　送

第1層 物理層 電気・機械的な部分の伝送を行う

①

56 - Software Design 4月号特別付録

●レイヤー 1
－通信媒体で接続されているコンピューター間で信号をや
り取りする
・通信媒体の形状、使用する信号、インターフェースの形状
やジャック

・ハブを使用することでケーブルの分岐を作り、多くのコン
ピューター間でのやり取りを可能とする

●レイヤー 2
－ハブ・スイッチで接続されているコンピューター間で信号
をやり取りするための手順
・MACアドレスにより、あて先を指定する
・CSMA/CDまたはスイッチを使用した全二重イーサネッ
トにより衝突を防ぎ、あて先までフレームを届ける

レイヤー1で決めていること

レイヤー2で決めていること（イーサネット）

ケーブルのジャックとインターフェース側の
差し込み口の形
ビットを信号に変換する方法など

信号のつくり、形

ケーブルの材質や構造など
分岐であるハブの動作

I NT INT
データ

CSMA/CDにより
衝突をなるべく防ぐ

MACアドレスにより、あて先だけが
 フレームを受信する

スイッチを使うことで衝突をなくし
全二重を可能にする

②

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2015年4月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 トラブルシューティングの極意
	第1章：サーバ・インフラ・ネットワーク編
	1-1：認識違いや思い込みに起因するトラブル......伊勢 幸一
	1-2：不都合なくSSHを使えていますか？......清水 勲
	1-3：トラブルシューティングの手順......佐野 裕
	1-4：トラブル時の情報収集法......野波 圭吾
	1-5：ネットワークやサーバのチェックポイント......長谷川 猛

	第2章：クラウド編
	2-1：MSP直伝のトラブル対策マニュアル......馬場 俊彰
	2-2：AWS上に構築されたシステムのトラブルに遭ったとき......柳瀬 任章
	2-3：クラウド環境でとくに必要な複数視点......常田 秀明

	第3章：ソフトウェア開発編
	3-1：現場での対応と改善の手段......近藤 正裕
	3-2：ソフトウェア開発の時短術＋見極め技......増田 亨
	3-3：「ソースコード」の指紋からわかるバグの原因......細川 宣啓

	■第2特集 ［最新］DNSの教科書
	第1章：DNSとは何か？......藤原 和典
	第2章：DNSの原理と動作を知る......藤原 和典
	第3章：BINDとNSD/UnboundによるDNSサーバの構築......野口 昇二
	第4章：DNSをとりまく状況と将来への展望......藤原 和典

	■短期集中連載
	Kotlin入門【新連載】......長澤 太郎
	BluemixでためしてみるIoT入門【後編】......宮田 裕樹

	■一般記事
	Cisco VIRLでネットワークのシミュレーション【後編】......山下 薫

	■Catch up new technology
	HTML5とWebRTCの価値と可能性......SD編集部

	■Catch up trends in engineering
	迷えるマネージャのためのプロジェクト管理ツール再入門【5】......SD編集部

	■連載：Column
	digital gadget【196】お手軽VRメガネの台頭......安藤 幸央
	結城浩の再発見の発想法【23】Brute Force......結城 浩
	おとなラズパイリレー【6】Raspberry Piをメディアサーバ／プレーヤにしよう（後編）......増井 俊之
	軽酔対談　かまぷの部屋【9】ゲスト：下農 淳司さん......鎌田 広子
	秋葉原発！はんだづけカフェなう【54】6LoWPANしてみよう（中編）......坪井 義浩
	Hack For Japan〜エンジニアだからこそできる復興への一歩【40】日本のシビックテックの現状について......関 治之
	ひみつのLinux通信【15】「いつかはオレも老害」／「子供に使われないために」......くつなりょうすけ

	■連載：Development
	Erlangで学ぶ並行プログラミング【新連載】Erlang/OTPとは......力武 健次
	Sphinxで始めるドキュメント作成術【新連載】テキストファイルからHTML、PDF、EPUBドキュメントを作れるツール......川本 安武
	Android Wearアプリ開発入門【2】Android Wearアプリで通知機能を活用！......神原 健一
	Mackerelではじめるサーバ管理【2】グラフで見るサーバ、ミドルウェアのメトリック......松木 雅幸
	書いて覚えるSwift入門【4】遺産の継承......小飼 弾
	Hinemosで学ぶジョブ管理超入門【7】飛ばして、留めて。自在にジョブを扱おう......茶納 佑季
	セキュリティ実践の基本定石【19】GnuPGを通して暗号技術を理解する（前編）......すずきひろのぶ
	るびきち流Emacs超入門【12】Emacsに革命を起こすパッケージ「helm」（後編）......るびきち
	Androidエンジニアからの招待状【56】AndroidとDeep learningの組み合わせ......takagig

	■連載：OS/Network
	ShowNetが示すネットワークの近未来【新連載】3年構想で進めるインターネットの再構築......櫨山 寛章、大嶋 康彰
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【18】安定動作につながるディレクトリの知識（その2）......後藤 大地
	Debian Hot Topics【25】upstream開発者が語る「Debian公式入りへの道」......やまねひでき、　林 健太郎
	Ubuntu Monthly Report【60】ownCloudに学ぶ、パッケージのメンテナンス......あわしろいくや
	Linuxカーネル観光ガイド【37】Linux 3.18での新機能〜DCTCPとfoo-over-UDP......青田 直大
	Monthly News from jus【42】セキュリティとクラウドの新潮流に触れたInternet Week......波田野 裕一、高野 光弘

	■アラカルト
	ITエンジニア必須の最新用語解説【76】.NET Core......杉山 貴章
	読者プレゼントのお知らせ
	バックナンバーのお知らせ
	SD NEWS & PRODUCTS
	SD BOOK FORUM
	Letters from Readers
	次号のお知らせ
	年間定期購読のご案内

	■特別付録
	3分間ネットワーク基礎講座【特別編】......網野 衛二

