

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/sd/
http://www.fujisan.co.jp/sd/

■お問い合わせ
〒162-0846
新宿区市谷左内町21-13
株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180
メール：gdp@gihyo.co.jp

法人などまとめてのご購入については
別途お問い合わせください。

電子版の最新リストは

Gihyo Digital Publishingの

サイトにて確認できます。

https://gihyo.jp/dp

https://gihyo.jp/dp
mailto:gdp@gihyo.co.jp

ED - 1

　現在のインターネットにおける標準
的な通信プロトコルであるHTTP/
1.1が、RFC2616として正式に承認
されたのは1999年のことです。それ
からおよそ16年を経た2015年2月、
次世代の標準となる「HTTP/2」が
標準化団体のIETF（Internet Engi
neering Task Force）によって承認
されました。
　HTTP/2の仕様化は2012年にス
タートしました注1。その背景には、
HTTP/1.1のままでは昨今のWebの
急速な変化に対応しきれなくなったと
いう事情があります。とくに、Webコ
ンテンツの大容量化による通信量の
増加や、Web体験の多様化、クラウ
ドやモバイル端末の普及にともなう常
時接続の一般化などは、1999年当
時に想定されていたレベルをはるかに
上回っています。そこで、通信の最
適化・高速化を目指してGoogleが
提唱した新技術の「SPDY」を皮切り
に、次期HTTPの策定に向けた議
論が一気に加速しました。
　HTTP/2では、HTTP/1.1との
互換性を確保しつつ、通信の高速化
やネットワーク帯域の効率的な利用な
どを実現します。具体的には、おもに
次のようなしくみが導入されました。

• 通信は完全に多重化され、1つの
接続で並列処理ができる

• 通信内容は固定長のバイナリフ
レームにエンコードして扱われる

• サーバプッシュ型の通信がサポート
され、クライアントからのリクエスト

を待たずにレスポンスを送ることが
できる

• ヘッダを圧縮することでオーバー
ヘッドを削減する

　ヘッダの圧縮には、「HPACK」と
呼ばれる新しい圧縮方式が採用され
ました。HPACKはHTTP/2とは独
立して規格化されています。HPACK
ではあらかじめ定義された番号付きの
ヘッダ情報に基づいて番号指定で短
縮を行ったり、前回送信したヘッダと
の差分圧縮を可能にすることなどに
よって、付加する情報の冗長化を防
止します。HPACKによって通信の
オーバーヘッドが縮小され、ページ
の送信の大幅な高速化につながると
のことです。

　Webアプリケーションの開発者の
立場で見た場合、HTTP/2が普及
することで何が変わるのでしょうか。ま
ず前提として、HTTP/2は当初から
HTTP/1.1との互換性に配慮して設
計されているため、既存のライブラリ
やツールがAPIを変更する必要はな
く、それを利用する開発者もアプリ
ケーションのコードを変更する必要が
ありません。つまり既存のWebサイト
やWebアプリケーションはそのまま動
作させられるということです。
　その一方で、HTTP/2の能力を
最大限に活かすためには、新しいしく
みに対応したライブラリの採用やノウ
ハウの蓄積が必要になります。たとえ
ば通信が多重化できるとはいっても、
実際にはHTTP/2の通信のしくみを

よく理解していなければ正しい実装が
できず、かえって通信効率を下げてし
まう可能性があります。サーバプッ
シュ通信でも、新しいWeb体験につ
なげるためには試行錯誤が必要にな
るでしょう。
　もっとも、HTTP/2の火付け役と
なったSPDYには現状で多くのWeb
ブラウザが対応済みであり、すでに
通信の多重化を利用できる環境が
整っていました。サーバプッシュ通信
についても、やはりSPDYでサポート
されていたほか、独自の実装によって
サポートしているWebサーバやフレー
ムワークがありました。つまり、HTTP
/2の目玉となっている新機能は、開
発者にとって決して馴染みが薄いもの
ではないということです。
　なお、本稿執筆時点ではChrome
やFirefox、Internet Explorer 11
などのWebブラウザが正式にHTTP
/2に対応しています。ただし、いず
れもTLSで暗号化された接続でのみ
HTTP/2通信を利用できる実装に
なっています。HTTP/2では仕様上
は暗号化を強制していませんが、
Webブラウザのベンダーとしては独自
のセキュリティポリシーに則って暗号化
との併用を推奨しているのです。
　今後、実際に多くのWebサイトや
サービスにおいてHTTP/1.1から
HTTP/2への切り替えが完了するま
でには、まだしばらくの時間が必要で
しょう。その間に、この新しい仕様を
活用するための勘所をつかみ、次世
代のWebにいち早く対応できるように
することが重要です。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 77回

HTTP/2

IETF HTTP Working Group
https://httpwg.github.io/

HTTPが16年ぶりに
大幅アップデート

Web開発への影響は？

注1）当初の名称は HTTP/2.0 でしたが、後に HTTP/2 に改められました。

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
https://httpwg.github.io/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

　3Dプリンタの話題が各所で聞か
れるようになりました。一過性のブーム
とは違い、さまざまなところで多様に活
用されつつあります。大きなビジネス
展開にはまだまだ課題があるかもしれ
ませんが、技術の発展とノウハウの蓄
積とによって、確実に素晴らしい事例
が出そろってきています。
　読者の皆さんにも、実際に3Dプリ
ンタを購入して楽しんでみたり、工房
的なところで3Dプリントサービスを試
してみたり、オンラインサービスで手軽
にデータをアップロードして3Dプリント
を試したことがある方も増えているの
ではないかと思います。
　最近では3Dプリントの精度の向上
とともに、フルカラーでの彩色、陶器、
金属、貴金属といったさまざまな素材

で制作が可能になってきています。も
ちろんそういった高度な3Dプリントが
可能なプリンタは、家が建つほど高価
ですが、プリントサービスを使えば、大
きさや重さなどに応じた手頃な価格で
3Dプリントが可能です。さらには、砂
糖やチョコレート、パンケーキといった
食べられる素材によるプリントも実験
的に行われています。
　3Dプリントで用いられる三次元ファ
イルフォーマットは、歴史的経緯もあり、
三角形の集合で形状を表現するSTL

（Standard Triangulated Language
/STereoLithography）形式が多い
のですが、これらは形状しか表現でき
ません（一部、独自拡張し、色のデータ
を持たせるSTL表記方法もあり）。現
在は時代のニーズに応え、業界団体
がAMF（Additive Manufacturing

File Format）という、材質や内部構
造も表現できるファイルフォーマットを
策定中です。AMFを活用すると1つ
のオブジェクト内に複数の材質を持
つ物体を表現できるのです。
　現在の3Dプリント技術の進化は
驚くべきもので、実際に動くエンジンを
成形したり、3Dプリンタで出力した外
装をもった電気自動車や建築物、歯
形、臓器模型、さらには宇宙ステー
ション内で特殊なサイズの道具をプリ
ントアウトしたりと、ありとあらゆる分野
に及んでいます。また三次元モデルを
作れなくとも、物体を3Dスキャンした
り、モデルデータを購入したり、スマホ
で撮影して組み合わせて編集したり
と、とても身近になってきていることは
確かです。

　3Dプリントを活用した「作品」と呼
べるアート的な自由な造作が増えてき
ました。古くは2005年頃、frontという
グループが空間に描いたスケッチから
3Dプリント家具を生み出すという

「Sketch Furnitureプロジェクト」の
頃から、3Dプリンタのアート的要素が
期待されるようになりました。3Dプリン
タのアート活用はいくつかの種類に
分かれてとらえることができます。デジ
タルメディアを活用したアートに3Dプ
リンタ技術を取り入れたもの、彫刻な
どの従来のアートの文脈で3Dプリン
トの技術を取り入れた新しい表現、
3Dプリントがなければできなかった新
たなアート表現、といった3種類のア
プローチがあります。

メディアアート系の表現
　David Bowen氏の「Growth Mo
deling Device」は、植物が育つ様子
を写真ではなく、3Dプリンタで出力し
た形状で記録していくというプロジェ
クトです。SHAPES iN PLAYの「inf
Objects」は、食器に音声波形を 3D
プリントで再現。メディア変換を表現
したプロジェクトです。

既存のアート作品の3Dプリント利用
　Benjamin Dillenburger氏による

「Digital Grotesqueプロジェクト」は、
3Dプリントによる建築物の表現で、ど
れだけグロテスクなものが表現できる
か？という挑戦でした。Gilles Azzaro
氏による3Dプリンタ彫刻「Obama
Voice Sculpture」は、オバマ大統領
のスピーチの音声波形を彫刻のよう
な物体に出力したものです。Fung
Kwok Pan氏の「Fluid Vase」は、ミ
ルクのような流体を一輪挿しとして表
現した作品です。

3Dプリントならではの新しい造作
　「Open Toysプロジェクト」では、茄
子や人参、ズッキーニなどに、3Dプリ
ンタで作られた部品を加えることで、
野菜をアート的なオモチャにしてしまう
プロジェクトです。茄子が潜水艦に
なったり、人参のレースカーを作ること
ができます。低温で融解する素材を
使った、子供も安全に使える3Dプリ
ンタも登場してきており、未来の子供
達は、オモチャも自分たち自身で作り
出したり、オモチャを作ることを楽しむ
世代になってくるのかもしれません。
　また、このオモチャのアプローチと
同様に、安価に購入できる組み立て
式の家具と3Dプリンタで作られた部
品を組み合わせることによって、オリジ
ナリティのあるアート的家具を作り出
しています。これらの活動はIKEA
Hackと呼ばれ、作品を紹介し合う専

用のサイトも存在します。

　さまざまな環境が進化し、充実して
きている3Dプリント技術ですが、今後
はさらに周りを取り巻くサービスが充
実してくることが予想されます。たとえ
ば、より平易に三次元形状を作れる
ツールや、ネットワーク経由で三次元
形状を共同制作できるしくみ、適切な
三次元形状を作るためのチェックや
修正、最適化のためのツール、三次
元データの販売や共有などといった、
業界全体のエコシステムが機能し始
めていることが実感されます。
　たとえば、最近3Dプリンタの世界
的大手企業3D Systemsが3Dモデ
ルのクラウドサービスTeamPlatform

（https://www.teamplatform.co
m/）を買収しました。TeamPlatform
は、3Dモデルデータをオンラインド
キュメントとして扱うことができる、3D
モデルデータのためのデータ蓄積プ
ラットフォームです。特徴的なのは、単
なるデータの置き場所ではないことで
す。TeamPlatformは次のような機能
を有しています。

●3Dモデルを作り始めてから完成す
るまでの作業とデータ受け渡しの
流れを考えている

●完成までの各作業をチェックボック

ス、ガントチャートで可視化できる
●3Dモデルに対して三次元空間の
場所を指定し、修正の指摘などの
コメントがつけられる
●3Dモデルデータの履歴管理が充
実しており、過去のデータと比較す
ることができる
●さまざまな形式の3DデータをWeb
上で表示したり、変換したりできる

●Webブラウザ上で動作するWeb
GLの機能で、形状の確認可能な
3Dビューアーの提供

●仕事のパートナーやクライアントを
見つけてコミュニティを形成するこ
とができる
●API提供があり、他ツールや他サー
ビスに組み込める

　チームのメンバー数が無制限で
500MBまでのプランが無料。すべて
の機能が無制限のプランが1人あた
り25ドル／月で運営されています。
　TeamPlatformのような3Dデータ
を作ったり扱ったりするしくみの進化と
ともに、3Dプリンタの技術も速いス
ピードで進化をし続けています。現在
の一般的な3Dプリンタの100倍近く
のスピードでプリントアウトできる革新
的技術も研究されており、近い将来、
紙のプリントのような手軽さで3D形
状を扱える日も近いかもしれません。
｢

アートと3Dプリント
3Dプリンタの普及

安藤 幸央
EXA Corporation

アートと3Dプリント

197
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

3Dプリンタペン

1GADGET

Sketch Furnitureプロジェクトで
造作されたスケッチ家具

Growth Modeling Device infObjects

Digital Grotesque
Obama Voice Sculpture

Open Toys

ボンサイラボが発売予定の子供用3Dプリンタ
「BS TOY」

大量生産品のランプシェードを3Dプリンタで
制作

3Doodler 2.0

3Doodlerは手に持って使うペンタイプの
3Dプリンタです。先端から融けた樹脂が
出てきて、立体的な形状を作り出すことが
できます。3Doodler 2.0は初期バージョン
に比べて先端ノズルの細さが1/4に、ペ
ンの重量が半分の50gに改良されまし
た。樹脂の抽出速度も速くなったため、コ
ツと熟練が必要だった最初のバージョン
よりも扱いやすくなったそうです。周辺機
器として、樹脂の抽出速度を足で操作す
るためのフットペダルも用意されています。
本製品はクラウドファンディング、キックス
ターターの支援ユーザへ発送され、一般
販売は未定です。

3Dプリンタ筐体の
オリジナル携帯電話

3GADGET

OwnFone

OwnFoneは、シンプルな携帯電話の筐
体そのものを3Dプリンタで出力し、オリジ
ナルの携帯電話を作るためのサービスで
す。3Dプリンタの利用例としてよくとりあ
げられる、スマートフォンのオリジナルケー
スを作る時代はもう古いのかもしれませ
ん。通話ボタンなどはさまざまなタイプにカ
スタマイズすることができ、通常の10キー
のある電話のみならず、あらかじめ設定し
た数ヵ所の電話番号にかけるだけの専
用電話的なものも作ることができます。と
くに子供用、高齢者用などに重宝すると
思われます。イギリスの携帯電話会社よ
り7,000円弱で販売の予定で、通話料
はプリペイドでチャージするそうです。

3Dプリンタをパソコンなしで
インターネット接続するデバイス

2GADGET

BeagleBone Black
（TIDEP0007）

BeagleBone Black（TIDEP0007）は
オープンソースの3Dプリンタコントローラ
のリファレンス実装です。3Dプリンタに
接続することで、パソコンの介在なしで、
インターネット対応デバイスとして動かす
ことができます。BeagleBone Blackは
安価なシングルボードコンピュータで、
UbuntuなどのLinuxディストリビューショ
ンやAndroid 4.2が動作するスペックを
持ちます。このボードを3Dプリンタで活用
しようというプロジェクトが進行しています
（http://www.thing-printer.com/
product/replicape/）

持ち運べる
超小型3Dプリンタ

4GADGET

iBox Nano

iBox Nanoは鞄に入れて持ち運べるほど
小型の3Dプリンタです。現在、先行価格
299.99ドルで販売を開始しています。大
きさは85×110×235mmで、片手の上
に載るくらい。重量は1.1Kg、バッテリー
で約10時間駆動し、最大造形サイズは
40×20×90mm。3Dプリンタ機器自身
がWebサーバになっており、Webブラウ
ザでアクセスして設定したり、データを送
り込んだりします。巨大な造形ができる
3Dプリンタもありますが、ほとんどの個人
ユーザは時間やコストの理由で小さなも
のしか作らないそう。

3Dプリンタがもたらす
自由と造作

今後の3Dプリンタに期待
https://www.kickstarter.com/projects/651968834/
ownfone-make-your-own-mobile-phonehttp://the3doodler.com/

http://www.ti.com/tool/tidep0007 http://www.iboxprinters.com

http://www.ikeahackers.net

http://www.dwbowen.com/gmdmovie.html http://shapesinplay.com/en/projects/infobjects

http://www.digital-grotesque.com/ http://www.thingiverse.com/thing:554850/ http://www.ikeahackers.net/
http://www.gillesazzaro.com/pages/en/
bio.html

http://www.bonsailab.asia

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。

複数の椅子デザインを融合した3Dプリント椅子
（FormNation社のChairgenicsプロジェクト）

3Dプリントで装飾が施された鳩時計
（Cuckoo Project）

May 2015 - 1

http://www.andoh.org/

　3Dプリンタの話題が各所で聞か
れるようになりました。一過性のブーム
とは違い、さまざまなところで多様に活
用されつつあります。大きなビジネス
展開にはまだまだ課題があるかもしれ
ませんが、技術の発展とノウハウの蓄
積とによって、確実に素晴らしい事例
が出そろってきています。
　読者の皆さんにも、実際に3Dプリ
ンタを購入して楽しんでみたり、工房
的なところで3Dプリントサービスを試
してみたり、オンラインサービスで手軽
にデータをアップロードして3Dプリント
を試したことがある方も増えているの
ではないかと思います。
　最近では3Dプリントの精度の向上
とともに、フルカラーでの彩色、陶器、
金属、貴金属といったさまざまな素材

で制作が可能になってきています。も
ちろんそういった高度な3Dプリントが
可能なプリンタは、家が建つほど高価
ですが、プリントサービスを使えば、大
きさや重さなどに応じた手頃な価格で
3Dプリントが可能です。さらには、砂
糖やチョコレート、パンケーキといった
食べられる素材によるプリントも実験
的に行われています。
　3Dプリントで用いられる三次元ファ
イルフォーマットは、歴史的経緯もあり、
三角形の集合で形状を表現するSTL

（Standard Triangulated Language
/STereoLithography）形式が多い
のですが、これらは形状しか表現でき
ません（一部、独自拡張し、色のデータ
を持たせるSTL表記方法もあり）。現
在は時代のニーズに応え、業界団体
がAMF（Additive Manufacturing

File Format）という、材質や内部構
造も表現できるファイルフォーマットを
策定中です。AMFを活用すると1つ
のオブジェクト内に複数の材質を持
つ物体を表現できるのです。
　現在の3Dプリント技術の進化は
驚くべきもので、実際に動くエンジンを
成形したり、3Dプリンタで出力した外
装をもった電気自動車や建築物、歯
形、臓器模型、さらには宇宙ステー
ション内で特殊なサイズの道具をプリ
ントアウトしたりと、ありとあらゆる分野
に及んでいます。また三次元モデルを
作れなくとも、物体を3Dスキャンした
り、モデルデータを購入したり、スマホ
で撮影して組み合わせて編集したり
と、とても身近になってきていることは
確かです。

　3Dプリントを活用した「作品」と呼
べるアート的な自由な造作が増えてき
ました。古くは2005年頃、frontという
グループが空間に描いたスケッチから
3Dプリント家具を生み出すという

「Sketch Furnitureプロジェクト」の
頃から、3Dプリンタのアート的要素が
期待されるようになりました。3Dプリン
タのアート活用はいくつかの種類に
分かれてとらえることができます。デジ
タルメディアを活用したアートに3Dプ
リンタ技術を取り入れたもの、彫刻な
どの従来のアートの文脈で3Dプリン
トの技術を取り入れた新しい表現、
3Dプリントがなければできなかった新
たなアート表現、といった3種類のア
プローチがあります。

メディアアート系の表現
　David Bowen氏の「Growth Mo
deling Device」は、植物が育つ様子
を写真ではなく、3Dプリンタで出力し
た形状で記録していくというプロジェ
クトです。SHAPES iN PLAYの「inf
Objects」は、食器に音声波形を 3D
プリントで再現。メディア変換を表現
したプロジェクトです。

既存のアート作品の3Dプリント利用
　Benjamin Dillenburger氏による

「Digital Grotesqueプロジェクト」は、
3Dプリントによる建築物の表現で、ど
れだけグロテスクなものが表現できる
か？という挑戦でした。Gilles Azzaro
氏による3Dプリンタ彫刻「Obama
Voice Sculpture」は、オバマ大統領
のスピーチの音声波形を彫刻のよう
な物体に出力したものです。Fung
Kwok Pan氏の「Fluid Vase」は、ミ
ルクのような流体を一輪挿しとして表
現した作品です。

3Dプリントならではの新しい造作
　「Open Toysプロジェクト」では、茄
子や人参、ズッキーニなどに、3Dプリ
ンタで作られた部品を加えることで、
野菜をアート的なオモチャにしてしまう
プロジェクトです。茄子が潜水艦に
なったり、人参のレースカーを作ること
ができます。低温で融解する素材を
使った、子供も安全に使える3Dプリ
ンタも登場してきており、未来の子供
達は、オモチャも自分たち自身で作り
出したり、オモチャを作ることを楽しむ
世代になってくるのかもしれません。
　また、このオモチャのアプローチと
同様に、安価に購入できる組み立て
式の家具と3Dプリンタで作られた部
品を組み合わせることによって、オリジ
ナリティのあるアート的家具を作り出
しています。これらの活動はIKEA
Hackと呼ばれ、作品を紹介し合う専

用のサイトも存在します。

　さまざまな環境が進化し、充実して
きている3Dプリント技術ですが、今後
はさらに周りを取り巻くサービスが充
実してくることが予想されます。たとえ
ば、より平易に三次元形状を作れる
ツールや、ネットワーク経由で三次元
形状を共同制作できるしくみ、適切な
三次元形状を作るためのチェックや
修正、最適化のためのツール、三次
元データの販売や共有などといった、
業界全体のエコシステムが機能し始
めていることが実感されます。
　たとえば、最近3Dプリンタの世界
的大手企業3D Systemsが3Dモデ
ルのクラウドサービスTeamPlatform

（https://www.teamplatform.co
m/）を買収しました。TeamPlatform
は、3Dモデルデータをオンラインド
キュメントとして扱うことができる、3D
モデルデータのためのデータ蓄積プ
ラットフォームです。特徴的なのは、単
なるデータの置き場所ではないことで
す。TeamPlatformは次のような機能
を有しています。

●3Dモデルを作り始めてから完成す
るまでの作業とデータ受け渡しの
流れを考えている

●完成までの各作業をチェックボック

ス、ガントチャートで可視化できる
●3Dモデルに対して三次元空間の
場所を指定し、修正の指摘などの
コメントがつけられる
●3Dモデルデータの履歴管理が充
実しており、過去のデータと比較す
ることができる
●さまざまな形式の3DデータをWeb
上で表示したり、変換したりできる

●Webブラウザ上で動作するWeb
GLの機能で、形状の確認可能な
3Dビューアーの提供

●仕事のパートナーやクライアントを
見つけてコミュニティを形成するこ
とができる
●API提供があり、他ツールや他サー
ビスに組み込める

　チームのメンバー数が無制限で
500MBまでのプランが無料。すべて
の機能が無制限のプランが1人あた
り25ドル／月で運営されています。
　TeamPlatformのような3Dデータ
を作ったり扱ったりするしくみの進化と
ともに、3Dプリンタの技術も速いス
ピードで進化をし続けています。現在
の一般的な3Dプリンタの100倍近く
のスピードでプリントアウトできる革新
的技術も研究されており、近い将来、
紙のプリントのような手軽さで3D形
状を扱える日も近いかもしれません。
｢

アートと3Dプリント
3Dプリンタの普及

安藤 幸央
EXA Corporation

アートと3Dプリント

197
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

3Dプリンタペン

1GADGET

Sketch Furnitureプロジェクトで
造作されたスケッチ家具

Growth Modeling Device infObjects

Digital Grotesque
Obama Voice Sculpture

Open Toys

ボンサイラボが発売予定の子供用3Dプリンタ
「BS TOY」

大量生産品のランプシェードを3Dプリンタで
制作

3Doodler 2.0

3Doodlerは手に持って使うペンタイプの
3Dプリンタです。先端から融けた樹脂が
出てきて、立体的な形状を作り出すことが
できます。3Doodler 2.0は初期バージョン
に比べて先端ノズルの細さが1/4に、ペ
ンの重量が半分の50gに改良されまし
た。樹脂の抽出速度も速くなったため、コ
ツと熟練が必要だった最初のバージョン
よりも扱いやすくなったそうです。周辺機
器として、樹脂の抽出速度を足で操作す
るためのフットペダルも用意されています。
本製品はクラウドファンディング、キックス
ターターの支援ユーザへ発送され、一般
販売は未定です。

3Dプリンタ筐体の
オリジナル携帯電話

3GADGET

OwnFone

OwnFoneは、シンプルな携帯電話の筐
体そのものを3Dプリンタで出力し、オリジ
ナルの携帯電話を作るためのサービスで
す。3Dプリンタの利用例としてよくとりあ
げられる、スマートフォンのオリジナルケー
スを作る時代はもう古いのかもしれませ
ん。通話ボタンなどはさまざまなタイプにカ
スタマイズすることができ、通常の10キー
のある電話のみならず、あらかじめ設定し
た数ヵ所の電話番号にかけるだけの専
用電話的なものも作ることができます。と
くに子供用、高齢者用などに重宝すると
思われます。イギリスの携帯電話会社よ
り7,000円弱で販売の予定で、通話料
はプリペイドでチャージするそうです。

3Dプリンタをパソコンなしで
インターネット接続するデバイス

2GADGET

BeagleBone Black
（TIDEP0007）

BeagleBone Black（TIDEP0007）は
オープンソースの3Dプリンタコントローラ
のリファレンス実装です。3Dプリンタに
接続することで、パソコンの介在なしで、
インターネット対応デバイスとして動かす
ことができます。BeagleBone Blackは
安価なシングルボードコンピュータで、
UbuntuなどのLinuxディストリビューショ
ンやAndroid 4.2が動作するスペックを
持ちます。このボードを3Dプリンタで活用
しようというプロジェクトが進行しています
（http://www.thing-printer.com/
product/replicape/）

持ち運べる
超小型3Dプリンタ

4GADGET

iBox Nano

iBox Nanoは鞄に入れて持ち運べるほど
小型の3Dプリンタです。現在、先行価格
299.99ドルで販売を開始しています。大
きさは85×110×235mmで、片手の上
に載るくらい。重量は1.1Kg、バッテリー
で約10時間駆動し、最大造形サイズは
40×20×90mm。3Dプリンタ機器自身
がWebサーバになっており、Webブラウ
ザでアクセスして設定したり、データを送
り込んだりします。巨大な造形ができる
3Dプリンタもありますが、ほとんどの個人
ユーザは時間やコストの理由で小さなも
のしか作らないそう。

3Dプリンタがもたらす
自由と造作

今後の3Dプリンタに期待
https://www.kickstarter.com/projects/651968834/
ownfone-make-your-own-mobile-phonehttp://the3doodler.com/

http://www.ti.com/tool/tidep0007 http://www.iboxprinters.com

http://www.ikeahackers.net

http://www.dwbowen.com/gmdmovie.html http://shapesinplay.com/en/projects/infobjects

http://www.digital-grotesque.com/ http://www.thingiverse.com/thing:554850/ http://www.ikeahackers.net/
http://www.gillesazzaro.com/pages/en/
bio.html

http://www.bonsailab.asia

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。

複数の椅子デザインを融合した3Dプリント椅子
（FormNation社のChairgenicsプロジェクト）

3Dプリントで装飾が施された鳩時計
（Cuckoo Project）

2 - Software Design

http://www.ikeahackers.net
https://www.teamplatform.com/
http://shapesinplay.com/en/projects/infobjects
http://www.digital-grotesque.com/
http://www.gillesazzaro.com/pages/en/bio.html
http://www.thingiverse.com/thing:554850/

　3Dプリンタの話題が各所で聞か
れるようになりました。一過性のブーム
とは違い、さまざまなところで多様に活
用されつつあります。大きなビジネス
展開にはまだまだ課題があるかもしれ
ませんが、技術の発展とノウハウの蓄
積とによって、確実に素晴らしい事例
が出そろってきています。
　読者の皆さんにも、実際に3Dプリ
ンタを購入して楽しんでみたり、工房
的なところで3Dプリントサービスを試
してみたり、オンラインサービスで手軽
にデータをアップロードして3Dプリント
を試したことがある方も増えているの
ではないかと思います。
　最近では3Dプリントの精度の向上
とともに、フルカラーでの彩色、陶器、
金属、貴金属といったさまざまな素材

で制作が可能になってきています。も
ちろんそういった高度な3Dプリントが
可能なプリンタは、家が建つほど高価
ですが、プリントサービスを使えば、大
きさや重さなどに応じた手頃な価格で
3Dプリントが可能です。さらには、砂
糖やチョコレート、パンケーキといった
食べられる素材によるプリントも実験
的に行われています。
　3Dプリントで用いられる三次元ファ
イルフォーマットは、歴史的経緯もあり、
三角形の集合で形状を表現するSTL

（Standard Triangulated Language
/STereoLithography）形式が多い
のですが、これらは形状しか表現でき
ません（一部、独自拡張し、色のデータ
を持たせるSTL表記方法もあり）。現
在は時代のニーズに応え、業界団体
がAMF（Additive Manufacturing

File Format）という、材質や内部構
造も表現できるファイルフォーマットを
策定中です。AMFを活用すると1つ
のオブジェクト内に複数の材質を持
つ物体を表現できるのです。
　現在の3Dプリント技術の進化は
驚くべきもので、実際に動くエンジンを
成形したり、3Dプリンタで出力した外
装をもった電気自動車や建築物、歯
形、臓器模型、さらには宇宙ステー
ション内で特殊なサイズの道具をプリ
ントアウトしたりと、ありとあらゆる分野
に及んでいます。また三次元モデルを
作れなくとも、物体を3Dスキャンした
り、モデルデータを購入したり、スマホ
で撮影して組み合わせて編集したり
と、とても身近になってきていることは
確かです。

　3Dプリントを活用した「作品」と呼
べるアート的な自由な造作が増えてき
ました。古くは2005年頃、frontという
グループが空間に描いたスケッチから
3Dプリント家具を生み出すという

「Sketch Furnitureプロジェクト」の
頃から、3Dプリンタのアート的要素が
期待されるようになりました。3Dプリン
タのアート活用はいくつかの種類に
分かれてとらえることができます。デジ
タルメディアを活用したアートに3Dプ
リンタ技術を取り入れたもの、彫刻な
どの従来のアートの文脈で3Dプリン
トの技術を取り入れた新しい表現、
3Dプリントがなければできなかった新
たなアート表現、といった3種類のア
プローチがあります。

メディアアート系の表現
　David Bowen氏の「Growth Mo
deling Device」は、植物が育つ様子
を写真ではなく、3Dプリンタで出力し
た形状で記録していくというプロジェ
クトです。SHAPES iN PLAYの「inf
Objects」は、食器に音声波形を 3D
プリントで再現。メディア変換を表現
したプロジェクトです。

既存のアート作品の3Dプリント利用
　Benjamin Dillenburger氏による

「Digital Grotesqueプロジェクト」は、
3Dプリントによる建築物の表現で、ど
れだけグロテスクなものが表現できる
か？という挑戦でした。Gilles Azzaro
氏による3Dプリンタ彫刻「Obama
Voice Sculpture」は、オバマ大統領
のスピーチの音声波形を彫刻のよう
な物体に出力したものです。Fung
Kwok Pan氏の「Fluid Vase」は、ミ
ルクのような流体を一輪挿しとして表
現した作品です。

3Dプリントならではの新しい造作
　「Open Toysプロジェクト」では、茄
子や人参、ズッキーニなどに、3Dプリ
ンタで作られた部品を加えることで、
野菜をアート的なオモチャにしてしまう
プロジェクトです。茄子が潜水艦に
なったり、人参のレースカーを作ること
ができます。低温で融解する素材を
使った、子供も安全に使える3Dプリ
ンタも登場してきており、未来の子供
達は、オモチャも自分たち自身で作り
出したり、オモチャを作ることを楽しむ
世代になってくるのかもしれません。
　また、このオモチャのアプローチと
同様に、安価に購入できる組み立て
式の家具と3Dプリンタで作られた部
品を組み合わせることによって、オリジ
ナリティのあるアート的家具を作り出
しています。これらの活動はIKEA
Hackと呼ばれ、作品を紹介し合う専

用のサイトも存在します。

　さまざまな環境が進化し、充実して
きている3Dプリント技術ですが、今後
はさらに周りを取り巻くサービスが充
実してくることが予想されます。たとえ
ば、より平易に三次元形状を作れる
ツールや、ネットワーク経由で三次元
形状を共同制作できるしくみ、適切な
三次元形状を作るためのチェックや
修正、最適化のためのツール、三次
元データの販売や共有などといった、
業界全体のエコシステムが機能し始
めていることが実感されます。
　たとえば、最近3Dプリンタの世界
的大手企業3D Systemsが3Dモデ
ルのクラウドサービスTeamPlatform

（https://www.teamplatform.co
m/）を買収しました。TeamPlatform
は、3Dモデルデータをオンラインド
キュメントとして扱うことができる、3D
モデルデータのためのデータ蓄積プ
ラットフォームです。特徴的なのは、単
なるデータの置き場所ではないことで
す。TeamPlatformは次のような機能
を有しています。

●3Dモデルを作り始めてから完成す
るまでの作業とデータ受け渡しの
流れを考えている

●完成までの各作業をチェックボック

ス、ガントチャートで可視化できる
●3Dモデルに対して三次元空間の
場所を指定し、修正の指摘などの
コメントがつけられる
●3Dモデルデータの履歴管理が充
実しており、過去のデータと比較す
ることができる
●さまざまな形式の3DデータをWeb
上で表示したり、変換したりできる

●Webブラウザ上で動作するWeb
GLの機能で、形状の確認可能な
3Dビューアーの提供

●仕事のパートナーやクライアントを
見つけてコミュニティを形成するこ
とができる
●API提供があり、他ツールや他サー
ビスに組み込める

　チームのメンバー数が無制限で
500MBまでのプランが無料。すべて
の機能が無制限のプランが1人あた
り25ドル／月で運営されています。
　TeamPlatformのような3Dデータ
を作ったり扱ったりするしくみの進化と
ともに、3Dプリンタの技術も速いス
ピードで進化をし続けています。現在
の一般的な3Dプリンタの100倍近く
のスピードでプリントアウトできる革新
的技術も研究されており、近い将来、
紙のプリントのような手軽さで3D形
状を扱える日も近いかもしれません。
｢

アートと3Dプリント
3Dプリンタの普及

安藤 幸央
EXA Corporation

アートと3Dプリント

197
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

3Dプリンタペン

1GADGET

Sketch Furnitureプロジェクトで
造作されたスケッチ家具

Growth Modeling Device infObjects

Digital Grotesque
Obama Voice Sculpture

Open Toys

ボンサイラボが発売予定の子供用3Dプリンタ
「BS TOY」

大量生産品のランプシェードを3Dプリンタで
制作

3Doodler 2.0

3Doodlerは手に持って使うペンタイプの
3Dプリンタです。先端から融けた樹脂が
出てきて、立体的な形状を作り出すことが
できます。3Doodler 2.0は初期バージョン
に比べて先端ノズルの細さが1/4に、ペ
ンの重量が半分の50gに改良されまし
た。樹脂の抽出速度も速くなったため、コ
ツと熟練が必要だった最初のバージョン
よりも扱いやすくなったそうです。周辺機
器として、樹脂の抽出速度を足で操作す
るためのフットペダルも用意されています。
本製品はクラウドファンディング、キックス
ターターの支援ユーザへ発送され、一般
販売は未定です。

3Dプリンタ筐体の
オリジナル携帯電話

3GADGET

OwnFone

OwnFoneは、シンプルな携帯電話の筐
体そのものを3Dプリンタで出力し、オリジ
ナルの携帯電話を作るためのサービスで
す。3Dプリンタの利用例としてよくとりあ
げられる、スマートフォンのオリジナルケー
スを作る時代はもう古いのかもしれませ
ん。通話ボタンなどはさまざまなタイプにカ
スタマイズすることができ、通常の10キー
のある電話のみならず、あらかじめ設定し
た数ヵ所の電話番号にかけるだけの専
用電話的なものも作ることができます。と
くに子供用、高齢者用などに重宝すると
思われます。イギリスの携帯電話会社よ
り7,000円弱で販売の予定で、通話料
はプリペイドでチャージするそうです。

3Dプリンタをパソコンなしで
インターネット接続するデバイス

2GADGET

BeagleBone Black
（TIDEP0007）

BeagleBone Black（TIDEP0007）は
オープンソースの3Dプリンタコントローラ
のリファレンス実装です。3Dプリンタに
接続することで、パソコンの介在なしで、
インターネット対応デバイスとして動かす
ことができます。BeagleBone Blackは
安価なシングルボードコンピュータで、
UbuntuなどのLinuxディストリビューショ
ンやAndroid 4.2が動作するスペックを
持ちます。このボードを3Dプリンタで活用
しようというプロジェクトが進行しています
（http://www.thing-printer.com/
product/replicape/）

持ち運べる
超小型3Dプリンタ

4GADGET

iBox Nano

iBox Nanoは鞄に入れて持ち運べるほど
小型の3Dプリンタです。現在、先行価格
299.99ドルで販売を開始しています。大
きさは85×110×235mmで、片手の上
に載るくらい。重量は1.1Kg、バッテリー
で約10時間駆動し、最大造形サイズは
40×20×90mm。3Dプリンタ機器自身
がWebサーバになっており、Webブラウ
ザでアクセスして設定したり、データを送
り込んだりします。巨大な造形ができる
3Dプリンタもありますが、ほとんどの個人
ユーザは時間やコストの理由で小さなも
のしか作らないそう。

3Dプリンタがもたらす
自由と造作

今後の3Dプリンタに期待
https://www.kickstarter.com/projects/651968834/
ownfone-make-your-own-mobile-phonehttp://the3doodler.com/

http://www.ti.com/tool/tidep0007 http://www.iboxprinters.com

http://www.ikeahackers.net

http://www.dwbowen.com/gmdmovie.html http://shapesinplay.com/en/projects/infobjects

http://www.digital-grotesque.com/ http://www.thingiverse.com/thing:554850/ http://www.ikeahackers.net/
http://www.gillesazzaro.com/pages/en/
bio.html

http://www.bonsailab.asia

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。

複数の椅子デザインを融合した3Dプリント椅子
（FormNation社のChairgenicsプロジェクト）

3Dプリントで装飾が施された鳩時計
（Cuckoo Project）

2 - Software Design May 2015 - 3

http://the3doodler.com/
https://www.kickstarter.com/projects/651968834/ownfone-make-your-own-mobile-phone
http://www.ti.com/tool/tidep0007
http://www.thing-printer.com/product/replicape/
http://www.bonsailab.asia
http://iboxprinters.com
http://www.ikeahackers.net/

4 - Software Design

Wrapper——ラッパー

ラッパーとは

　ラッパー（Wrapper）とは、複雑で細かいたく
さんのものを包んで、単純化するもの全般を指
します。英単語で“wrap”（ラップ）というのは「包
む」という動詞で、“wrapper”は「包むもの」と
いう名詞になります。
　プログラミング技術ではときどきラッパーが
登場しますが、分野によって目的は多少異なり
ます。たとえば、HTMLやCSSで細かい構成要
素をまとめて入れる大きな要素に対してコンテ
ナ（container）やラッパー（wrapper）と名前を付け
ることがあります。あるいは、たくさんの関数
（API）を提供しているライブラリをもとにして、
もっと使いやすい少数の関数を提供するものの
ことをラッパーと呼ぶことがあります。具体的な
表現方法は異なりますが、どちらも複雑で細か
いたくさんのものを包むという働きは同じです。
以下では、ライブラリに対するラッパーを使っ
てお話しします。

ラッパーの目的

　そもそも、なぜラッパーが必要なのでしょう
か。それは使いやすさを向上させるためです。
たとえば、たくさんの関数を提供しているライ
ブラリがあったとします。ファイルシステムの
操作であれ、3Dモデルの変換処理であれ、プ

ログラマは、そのライブラリの関数を呼び出し
て、アプリケーション（以下、アプリ）に必要な
機能を実現します。
　たくさんの関数が提供されているライブラリは、
かゆいところまで手が届く細やかな処理ができる
かもしれません。それはメリットです。しかし、
作ろうとしているアプリにそれほど細やかな処理
が不要なら、たくさんの関数が提供されているこ
とは、逆にデメリットになってしまいます。なぜ
なら、アプリに必要な機能を実現するために、ど
の関数を呼べばいいのか、どんなパラメータを
渡せばいいのかを調べる手間がプログラマにか
かってしまうからです。複雑過ぎるライブラリを
アプリが利用するイメージを図1に示します。
　ラッパーが必要になる1つの理由は、この手
間を軽減させるところにあります。すなわち、
それほど細やかな機能を必要としないアプリで
は、そのライブラリに「一皮」かぶせたラッパー
を利用するのです。適切に設計されたラッパー
が提供されれば、アプリを作るプログラマの手
間は大いに軽減するでしょう（図2）。

Wrapper

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 24

ライブラリが
提供する関数群

ライブラリ

アプリケーション

??
?

?
?

 ▼図1　複雑過ぎるライブラリを利用するアプリ

http://www.hyuki.com/

4 - Software Design May 2015 - 5

良いラッパーと悪いラッパー

　良いラッパーは良いライブラリ同様に、きち
んと設計する必要があります。とくに、そのラッ
パーがどのような機能を提供するのかを明確に
しなければなりません。ラッパーとして提供さ
れる関数だけでは機能が完結せず、低レベルの
ライブラリを直接呼び出さなければならないと
したら、ラッパーの意義は薄れてしまうからです。
　ラッパーの必要性を意識するには、ライブラ
リの複雑さを意識する必要があります。そして、
良いラッパーを作るためには、ライブラリがど
のようなユースケースで用いられるかを把握す
る必要があるでしょう。
　プログラミング技術は複雑さとの戦いです。
油断すると、あっというまに関数の数も、パラ
メータの数も増えてしまいます。機能を落とさ
ずに単純化する方法の1つ、それがラッパーと
言えるでしょう。

日常生活とラッパー

　日常生活の中で、ラッパーに類したものが必
要になる局面はあるでしょうか。たくさんの情
報がやりとりされるところにはラッパーを用意
する余地があります。
　たとえば、新規顧客に申込み書類を書いても
らう局面を考えてみましょう。顧客が選択する
オプションがたくさんあると、顧客は記入する

のがいやになりますし、時間もかかります。そ
んなときには、初心者向け、中級者向け、上級
者向けのような「申込みパック」を用意しておき、
それぞれの顧客に向けて適切なオプション設定
がなされた申込み書類を用意しておけば、無駄
な手間を省けます。この「申込みパック」は申込
み書類に対してラッパーを提供していることに
なります。顧客が好むもの、顧客が選択するも
のを適切に集めてひとまとめにし、「これにし
ます」と一言で済むようにしているわけですから。
　小規模な会社や、個人が仕事を請け負うとき、
「委細は要相談」というパターンになることがあり
ます。業務の依頼主が現れたときに相談して仕
事の進め方や料金を相談するという、一見理屈
にあったパターンですが、意外に手間がかかっ
たり、意思疎通に時間がかかったりする場合もあ
るでしょう。
　相談することで細やかな対処ができるけれど
煩雑になるということは、ラッパーを考える価
値がありそうです。つまり、「私どもは普段、こ
のようにしております」というパッケージを前もっ
て作っておき、そこから外れるときに限って相
談するという流れにするのです。料金プランや、
得意分野、提供できるサービス一覧などを整理
して提示することで、自分の進めたい方向に仕
事を持っていき、意思疎通の時間を節約するこ
ともできるでしょう。
　細かい制御ができることが良いとは限りません。
細かい制御と煩雑さとの間のトレードオフを見
極めることが大事なのです。適切なラッパーを
作ることは単純化のために有効です。

◆　◆　◆
　あなたの周りを見回して、細かい制御はでき
るけれど複雑で使いにくいものはないでしょう
か。それに対して、単純化したラッパーを作る
ことはできないでしょうか。
　逆に、単純化しようとしているけれど、実際
のユースケースからずれているために複雑なま
まになっているものはないでしょうか。
　ぜひ、探してみてください。｢

24

ライブラリが
提供する関数群

ライブラリ

ラッパー

アプリケーション

ラッパーが
提供する関数群

 ▼図2　ラッパーを利用するアプリ

6 - Software Design

締め切り直前と未開封の
Raspberry Pi

　締め切りの前日なのに、まだ1文字も書いて
いない。
　Raspberry Piについての記事を4ページほど
書かないといけないのだが、まったく書いてい
ない。おそらく多くのソフトウェアエンジニア
と同じように、Raspberry Piを購入しても何
をしていいのかわからないままほったらかして、
押入れの肥やしになっていたのだ（写真1）。編
集部から、Raspberry Pi B+が1ヵ月前に届け
られてきたのに箱も開けていない……。
　たぶん多くのエンジニアにとって、Raspberry

Piでサクっとできることは、スマホでできてし

まうからだろう。Rapsberyy Piで監視カメラを
作るようなブログ記事は、この世にたくさんあ
るけれど、僕は「それってAndroidや iPhoneで
できるやんけ！」と言ってしまうのだ。僕はもと
もと組込みエンジニアだったのだけど、才能が
なさすぎてWeb系に転進した。だから、組込み
LinuxのGPIOに何かを挿して動かして、ナン
ヤカンヤするという開発は、正直、若いころに
した辛い思い出が多いし、DSPやCCDやさま
ざまなコントローラにつないでも、あまり感動し
ないのだ――そのうえ当時はコードを書くこと
がキライだった。
　そのせいで、メーカー出身なのに、Makerブー
ムに乗る気がしない自分がいる。開発がたいへ
んでコストがかかる割に、Web系ほどスピー
ド感も利益率もない。Makerブームなんてクソ
くらえだと思っている自分がいるし、そんな自
分が嫌いだ。

Raspberry Pi
について

　いまさらRaspberry Piについて書くのも馬
鹿馬鹿しい話だ。Raspberry Piはイギリス発

の教育用と言いながら、日本のソーシャル上で

はオッサンしか出てこないコンピュータだ。ソ
フトウェアはDebian GNU/Linux系のLinuxが
ちゃんと動作するうえに、GPIOがむき出しな

おとなラズパイリレーは、Raspberry Piを文字どおり「リレー」し、好奇心旺盛なITエンジニアが電子工作をするという企画
です。前編で構想を練り、後編で実装します。1年を通してどんなデバイスができあがるのか？……今回は、クレイジーワー
クスの村上総裁によるRaspberry Pi B+でNarrative Clipモドキを作る、の構想編です。

Writer 村上 福之（むらかみ ふくゆき）　㈱クレイジーワークス　総裁

「Raspberry PiでNarrative Clipモドキを作る（前編）」
村上 福之

第7回

 ▼写真1　2台の手つかずのラズパイ……。
　　　　どうしてこうなった。

6 - Software Design May 2015 - 7

「Raspberry PiでNarrative Clipモドキを作る（前編）」 第7回

ので、いろいろなハードウェアに接続して、けっ
こう好きなことができる。また、最近は
Raspberry Pi 2というスマホ並の性能を持つ
ものも発表されて話題をさらった（次回紹介）。
それに加えて、Windows 10も対応表明してい

るので、さらに面白いことになりそうで期待し
たい（しかし、Alpha/MIPS/PowerPC/ARM
系のWindows RTなどなどの非インテル系の

Windowsは、今までいずれも悲運な最期を迎

えてばかりなので、今度こそは世に広まってほ
しいと思う）。
　さらにチュートリアルもかなり充実している。
「教育用コンピュータ」だけあって、子供向けも
多い。一番衝撃的なのは、サンタクロース発見
器注1だ。これを作って、クリスマスイブの寝室

のドアに置くと、赤外線センサーでサンタが来

た瞬間に大音量が鳴るという、子供の夢を自ら

クラッシュさせるトラウマ確実のチュートリア

ルだ。た、確かに子供向けだけど、そのあとの
責任は取れるのかと、小一時間問い詰めたくなる。

意外と子供にはハードル高いし、
ノマドに向かないRaspberry Pi？

　子供向き入門コンピュータと聞くと、オッサ
ン世代は、MSXやぴゅう太を思い出すだろう。
僕も、もともとは『MSX・FAN』（徳間書店）の
投稿少年だった。それらはテレビと電源をつな
げばすぐに動いた。まさに家電感覚でスイッチ
ポンのコンピュータだった。子供でもらくちん
だ。親がコンピュータに無知でも子供だけで遊
べて、自学自習できた。
　一方で、Raspberry Piは、親にも子供にも

ある程度知識がないと厳しい。初期設定でなん
やかんやで有線LANかHDMI接続のディスプ
レイが必要で、多くはそれに加えてUSBキー
ボードと、USBマウスが必要だ。無線LANと

ノートパソコン全盛の時代、親が普通の世界の
人の場合、ルータなんてリビングの端っこに置
かれていて、有線LANなんてなかったりするし、
普通の家だとノートパソコンばっかりで、
USBキーボードやUSBマウスがない家庭が増
えてきたように思う。教育用コンピュータとい
いながら、コンピュータに詳しくない両親がい
る子供が買って自由に遊ぶには、MSXよりは
るかにハードルが高い。無線LANの設定も普
通のLinuxと同じくコンソールで設定するので、
たぶん教育用と言いながらかなり厳しい。
　話がそれちゃうけど、僕と同じMSX世代の
福野さんが、もっとらくちんな IchigoJamとい
う教育用コンピュータ注2を作ったのだけど、そ
の理由がすごくわかった気がする。Raspberry
Piの思想は素晴らしいし、教育用としてすばら
しいけど、ぼくらMSX世代が体験した世界と
かなり違うし、ハードルがかなり高いのだ。
　僕の仕事スタイルも、ノマドに近く、あちこ
ち打ち合わせに行った途中のカフェで開発する
ことも多い。そのため、有線やルータがないと
開発できないRaspberry Piは、どうもめんど
くさかった。一番たいへんなのは家の中。有線
LANが届く場所にディスプレイを移動するの
が難儀だった。教育用という割に手間がかかり
すぎる。

わかんないので、過去に
みんながやったことをやってみる

　正直、締め切りが近いので（笑）、まとめサイト
を縦覧して、過去に世間の方々が作ったものを調
べてみる。――とりあえず、GPIOをつなげば何
か動くのはわかる（写真2）。急いでいたので適当
によくある周辺機器を購入してみた。やはり、もっ
とも多いのがカメラだ。純正のカメラがあって、
これを使えば簡単に撮影ができるので、ほぼセッ

注1） http://www.raspberrypi.org/learning/santa-detector/
注2） http://ichigojam.net/

http://www.raspberrypi.org/learning/santa-detector/
http://ichigojam.net/

8 - Software Design

ト商品に近い。次に多いのがメディアプレーヤ。
前回の増井先生が使ったomxplayerを利用したもの。
最後に、けっこうメジャーだったのがエミュレータ
を使ったゲーム機。Retro Piというイメージファイ
ルが配布されている。これはファミリーコンピュータ、
スーパーファミコン、Sony PlayStation、Game
Boy Advance、Game Boy Color、Game Gear、
MAME、Megadrive、Genesis、PC Engine、
TurboGrafx、はてはIBM-PCやMacintoshまで対
応している。CPUが遅いので実機並の速度が出
るか心配だったが、スーパーファミコンを動作さ
せたところ、普通と変わらないフレームレートが
出た。法的な問題がクリアになればこれで十分楽
しめると思う。

Narrative Clip
モドキを作ってみる

　今回、とくに何も思いつかなかったので、
Narrative Clipモドキを作ってみる。Narrative
Clipとはライフログカメラ（写真3）。30秒ごと
に自動的に写真を撮影する。バッジやブローチ
のように身に付けて、1日の動きを自動的に画像
で記録できる。非常に魅力的な製品だ。毎回、
旅行や忙しいパーティに行くたびに、Narrative
Clipが欲しいなーと思う。しかし、カメラの性
能がヘッポコなうえに、明らかに3日で飽きそう
な機能なのに、円安さまさまのおかげで価格が

日本円で3万円近くする。ネットの情報でも、
Narrative Clipの購入者の評判は素晴らしく、「す
ぐ飽きた」「ぶら下げているだけなのでマトモな
写真がほぼ撮れない」「飽きたので売ります」とい
う人が続出。3万円あればChromebookくらい買
えてしまうのだ。
　しかし、Raspberry Piを無料でもらえたので、
今回はNarrative Clipもどきを作って、いかに
すぐに飽きそうか検証してみる（決して、時間
がないからではない）。

純正カメラが
動かない

　純正のカメラをとりあえず取り付けてみたが
まったく動かない。ネットでググるとRaspberry
Pi B+と純正カメラの相性がどうも悪いようだ。
純正なのに動かない。動く物もあり個体差があ
るようだ。そこで、日経BPのムックについてい
た普通のRaspberry Pi Bにカメラを接続すると
あっさり動作した。次は開発言語だ。Raspberry
Piの開発言語はPythonだ。日本人には人気が
いまいちな言語だが、非常に書きやすい。オッ
サン組込み経験者として、ターゲットマシンでコー
ドを書いて、そのまま実行するという世界がな
んだか気持ちが悪い。それをcronで一定時間で
動作するように設定する。非常に感動したのが、
組込みのプログラミングなんていつもいろいろ

 ▼写真2　とりあえずいろいろ試してみた ▼写真3　Narrative Clip（http://getnarrative.com/）

http://getnarrative.com/

8 - Software Design May 2015 - 9

「Raspberry PiでNarrative Clipモドキを作る（前編）」 第7回

悩みに悩んだり、ハードウェアの初期化コード
だけで、半日掛かったりするけど、Rasberry Pi
はだいたいPythonなので書いたらすぐ動くこと。
かなり頭が悪くても動く。Narrative Clipくらい

だと30分もコードを書かない。
　Raspberry Piは普通にmicro USBの電源で駆
動する。今やAmazonで16,000mAのバッテリー
が3,000円台で買えてしまう時代なので、数日も
つのではないかと思う勢いだ。それを700円の
USBのWi-fiドングルにつないで、手持ちの
WiMaxルータでつなぐ。結果、ものすごい重い

Narrative Clipができあがってしまった。重量の
9割がバッテリーだ（写真 4）。本家Narrative
Clipのように持ち歩けないので、リュックに放り
こんで、カメラ部分だけ外に出してみた。やはり、
世間のNarrative Clipと同じような評判の画像が
たくさん撮れた（写真5）。自動的にTwitterに投
稿するように試してみた。カメラの性能もあるけ
ど、絵は見られたものではない。やはり、カメラ
はちゃんと構えて、タイミングをきっちりしない

と面白いものが撮れないということがわかった。

Raspberry Piでできる
ことは、スマホと同じか

　しかし、Androidなどでいろんなハードウェア
をつなぐとなると、ADK経由の接続で非常に開
発が煩雑だ。また、開発環境も日に日に肥大化
している。Androidは肥大化しすぎてちょっと開
発環境を用意するのに、1時間くらいはダウンロー
ドと設定で時間がかかる（とくに肥大化しすぎた
SDKのダウンロードはどうにかならんのか
……）。Androidや iOSでカメラアプリケーショ
ンを作るのは楽といえば楽だけど、Raspberry
Piほどではない。何より、Raspberry Piは専用
機なので、スマートフォンと違って、複雑な状態
遷移がない、ホームボタンを押されたり、スリー
プに移ったりといったカオスな状態遷移を考える
必要がないのだ。
　Raspberry Piは教育用コンピュータとして、
すばらしいと思う。ﾟ

 ▼写真4　バッテリーがその重量のほとんどを占める　　
　　　　村上総裁版のNarrative Clip

 ▼写真5　ツイートのテスト画面
　　　　（https://twitter.com/pirative0309）

https://twitter.com/pirative0309

10 - Software Design

　今回は日本が誇る『HONDA』の中の

人、多田歩美さんをお迎え致しました。

（鎌田）まずは自己紹介と、今されて

いるお仕事のことを教えてください。

（多田）仕事は、簡単に言うとイン

フラ系の情シスです。本田技研工業

に入社したのは2006年で、すぐに

4ヵ月間、熊本にある工場で研修し

ました。バイク好きなので、そこで

カブの組み立てを経験できたのはう

れしかったです。その後、和光にあ

る研究所のIT部門のCIS技術課とい

う部署に配属となり、2013年まで

はそこにいました。今の仕事内容は、

おもにCAE注1というHPC分野です

注1）	 Computer Aided Engineering
（Aidedは支援という意味。ハイ
エンドなコンピュータ技術を活用
し製造や工程設計の事前検討の支
援を行うこと、またはそのシミュ
レーションツールなど）。

が、科学計算用のサーバなどの機種

選定／管理やクラウド技術の推進を

しています。

多田さんは理系なのでしょうか？

大学時代は何を勉強されていたのです

か？

理系です。早稲田の理工学部で電

気電子情報工学科（当時の学科名）

で、電子回路など幅広く勉強してい

ました。研究では、興味があった中

国語の、言語学習を最適にするため

のアプリケーションを作ることに夢

中になっていました。大学時代の研

究室にもサーバはありましたが、

もっぱらGUIのアプリケーション上

で使っていました。CLIの黒い画面

は正直怖かったのですが、まさか将

来、仕事として触るようになるとは

思ってもいませんでした。バイク好

きだったというのと、企業風土に憧

れて、3年の春にはすでに就職先の

第一候補としてHONDAに行きたい

と思うようになりました。

HONDAが第一志望だったのです

ね。黒い画面怖いですか（笑）。

私が触ったら爆発するかと思いま

したもん（笑）。入社当時、サーバ管

理の担当を任されたときに恐怖を感

じていたら、先輩に「コンピュータ

に“使われる側”になりたいか？　

“使う側”になりたいか？」と言われ

ました。負けず嫌いな私は、まんま

とその言葉に乗せられました（笑）。

インフラに携わるメリットは何で

しょうか？

サーバ管理部署に配属されたとき

は、アカウント管理とかネットワー

ク以外のインフラ全般を見ていまし

た。初めは後ろ向きだったのですが、

次に異動した際、社内リソースに何

かがあっても基盤となるIT技術を理

解していれば問題解決までの時間が

短いと思ったのです。HONDAとい

う恵まれた環境やネームブランドで

すが、私はこれを利用して世界を少

しでも変えたいと思っています。

大学時代に中国語学習のアプリを

作った話がありましたが、英語は得意

ですか？

英語を本格的に勉強し始めたのは

2013年からで、海外事業所とのや

りとりが増えたことがきっかけです。

自分の想いをちゃんと英語で伝えた

り、相手のことを理解したかったの

です。それで短期留学などをして勉

強しました。

JAWSコミュニティイベントや勉

強会によく参加されていますよね。

ゲスト：多田 歩美さん第10献

AWS re:Invent 2014登壇

多田 歩美（ただ あゆみ）さん
本田技研工業㈱勤務。IT本部システム基盤部に
てクラウド技術活用の推進をしている。昨年、
ラスベガスで行われた「AWS re:Invent 2014」に
て唯一の日本人登壇者として『HONDA』におけ
るクラウド上でのHigh Performance Computing

（HPC）利用について発表。世界のクラウド技
術者の注目を集める。くまもん好き。愛車は
HONDA Shadow Slasher。
Twitter：@applebear_ayu

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

10 - Software Design May 2015 - 11

私はけっこう珍しいタイプだと思

います。「AWS re:Invent 2013」の

懇親会で知り合いができてから、積

極的に勉強会に参加するようになり

ました。「情シスは要件出してれば

いいんでしょ」と思われていること

も多く、そこに壁があると思ってい

たので、積極的に外に出るようにし

ています。実際、外に出てみていろ

んな方々と知り合うことができて、

今は楽しくてしょうがないです。昨

年には「AWS Samurai 2014」とい

う賞をいただきました。E-JAWSと

JAWSの両方の勉強会参加や、海外

講演への登壇に挑戦した成果だと思

います。

受賞おめでとうございます。ラス

ベガスで開催された2014年11月の

「AWS re:Invent 2014」で、登壇さ

れたそうですが、その経緯を教えてく

ださい。

きっかけは、私の勘違いから日本

国内で行われる「AWS Summit」に

登壇したことです。最初は、AWS

の仕様改善の要望を伝えるために、

シアトルで行われた会議に協力を

してくださったAWSの中の方から

「（機会があったら）イベントでHPC

についてお話ししてください」とお声

掛けいただいたのです。そのタイミ

ングが、偶然にも「AWS Summit

Tokyo 2014」が開催される直前だっ

たので、てっきり「（そこで）」と勘違

いし、社内調整して進めてしまい、

最終的に登壇することになりました。

それを見た「AWS re:Invent 2014」

にかかわる方から、グローバルコ

ミュニティでも発表してほしいとい

う依頼があり、「日本語で発表した

物でよろしければ」とお返事しまし

た。HPCでのクラウドの利用は未知

の世界だったので、自分が不思議

だったことをわかりやすく説明した

かったのです。英語はもう……前日

まで特訓でしたが。

すごいですね。1万人ぐらい集ま

るイベントで、しかも世界規模です

から。

「AWS re:Invent 2014」の あ と

は、持っているエネルギーすべて放

出した気分で、放心状態でしたよ

（笑）。

ところでそのHPCでのクラウド

の利用って、どんなことをイメージす

ればいいのでしょうか。

たとえば、車やバイクのまわりを

流れる空気抵抗を減らすために空気

の流れを計算するのですが、この計

算の精度を高めようとすると、高速

かつ大規模なコンピュータのリソー

スが必要です。自前でサーバを用意

して使うのと、クラウド上で拡張し

ながら使えるのでは使い勝手が大き

く違います。スケールアウトできる

ことが大きなメリットです。

お休みはどんなふうに過ごしてい

るんですか？

基本的に動いていないとダメなタ

イプで、連休があると遠出します。

熊本まで野球観戦とか。また、料理

が趣味なので、時間があるとお肉と

野菜を使った創作料理などをしてい

ます。そのためキッチンの広い部屋

を借りました。だいたい自分が想定

したとおりの味付けになります。The

理系料理です。

料理ができる女性ってモテそうで

すね。どんな男性のタイプが好きです

か？

理系男子好きです。彼らは理路整

然と説明しますよね。その説明を聞

くのが好きなんですよ♡　父は数学

の教師だったのでその影響もあると

思います。もう他界してしまいまし

たが、お父さんっ子でした。将棋が

得意で、私の「歩美」という名前もそ

こから来ています。

多田さんのエネルギーはお父様譲

りなんでしょうね。ありがとうござい

ました。ｦ

12 - Software Design12 - Software Design

IoTなプロトコル

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
第 55 回

秋葉原発！

　今回のテーマの前編（2015年3月号の第53
回）で、6LoWPANのアプリケーション層のプ
ロトコルとして、MQTT（Message Queuing
Telemetry Transport）とCoAP（Constrained
Application Protocol）という2つの見慣れない
プロトコルを記しました（図1）。この2つのプ
ロトコルを簡単に紹介しましょう。MQTTや
CoAPというのは、IoT（モノのインターネット）
やM2M（Machine to Machine）での通信に使わ
れるプロトコルです。
　図1にはHTTPも記されていますが、マイ
コンでHTTPを扱った経験がある方は、HTTP
ヘッダ、とりわけレスポンスヘッダの大きさを
疎ましく感じたことがあると思います。センサ
の値などの数byte程度のデータを通信すると
いった用途では、HTTPヘッダというのはあま
りにも大き過ぎるのです。HTTPを使って通信
しようとすると、限られているマイコンのメモ
リを大きく通信バッファに割り当てなければい
けない、といったケースが多く見受けられま
す。
　MQTTやCoAPは、HTTPと比較してはるか

に軽量なプロトコルです。たとえばMQTTの
固定ヘッダは2byteのみです。MQTTはTCPコ
ネクションを張りっぱなしにして、このコネク
ションを使って双方向通信を行うプロトコルで
す。MQTTでは、こうしてTCPのハンドシェ
イクのコストを削減しています。また、MQTT
にはQoS（Quality of Service）という概念があ
り、リトライをせず到達が保証されないQoS
0、重複する可能性はあるが少なくとも1回は
届くQoS 1、正確に1回だけ到達するQoS 2と
いったレベルを選択できます。
　MQTTのサーバは、MQTT Brokerと呼ばれ
ます（図2）。Brokerはその名のとおり、メッ
セージの発行元（Publisher）と購読者（Sub
scriber）の仲介をします。オープンソースの
MQTT Brokerの実装としては、Mosquitto注1が
有名です。実は読者のみなさんもMQTTを
使っていらっしゃるかもしれません。というの
も、スマートフォンのFacebook Messengerア
プリは、MQTTを使用しています。MQTTを使
用することでレイテンシの改善や、省電力を実
現しているということです。MQTTで受け取っ
た情報の処理については、本誌2015年の3月
号と4月号の短期連載、「Bluemixで試してみる
IoT入門」で紹介されています。

5. アプリケーション層

4. トランスポート層

3. ネットワーク層

2. データリンク層

1. 物理層

Wi-Fi の例

HTTP

TCP/UDP

IP

Wi-Fi

6LoWPAN の例

HTTP、MQTT、CoAP……

TCP/UDP

IPv6

6LoWPAN

IEEE 802.15.4

 ▼図1　6LoWPANの概念 　CoAPは、UDPの上で動く、HTTP
の簡易版とも言えるプロトコルです。
CoAPのヘッダは4byteで、UDPです
のでTCPのようにハンドシェイクが
なく実装がシンプルです（図3）。

注1） http://mosquitto.org

6LoWPANしてみよう（後編）

http://www.switch-science.com/
http://mosquitto.org

12 - Software Design May 2015 - 13

第 55 回

12 - Software Design

　CoAPはパケットごとにトランザクショ
ンIDを持ちますが、MQTTのようなQoS
はありません。

技術基準適合証明と工事設計認証
MQTT Broker

Subscriber

Subscriber

Subscriber

Publisher

Publisher

Publisher

Publisher

Publisher

 ▼図2　MQTT

クライアント

HTTP

SYN

SYN+ACK

ACK

HTTP Request

HTTP Resopnse

サーバ クライアント

CoAP

CoAP Request

CoAP Resopnse

サーバ

 ▼図3　HTTPとCoAPのシーケンス図

技術基準適合証明 工事設計認証

技術基準適合証明で
100 台申請した場合

1台ごとに異なる番号が付与される 同一機種ならば
何台でも同じ認証番号が付与される

同じ番号異なる番号

工事設計認証で
1機種申請した場合

試験および審査
100 台分について実施する

試験および審査
任意の 1台について実施する

001ABCD
0000001

001-A
00001

 ▼図4　技術基準適合証明と工事設計認証の違い

　少し技適の話もしましょう。「技適なし
スマホ」といった文脈でニュースにもなっ
ていますので、技適、技術基準適合証明の
ことはみなさんおおむねご存じでしょう。
実は、スマホの技適というのは、あまり正
しい表現ではありません。スマホなどの電
波を利用する端末を日本で利用するには、
電波法令で定めている技術基準に適合して
いる必要があります。
　この基準を満たしていることを証明する
方法には、技術基準適合証明と工事設計認
証の2種類があります（図4）。
　技術基準適合証明が機器1台ごとに証明
するのに対し、工事設計認証は機種ごとに
証明を行います。技術基準適合証明は、1
台ごとに異なる証明番号が付与されるのに
対し、工事設計認証は同一機種であれば何
台でも同じ証明番号が付与されます。ス
マートフォンなど大量生産される無線機
は、通常は工事設計認証を受けます。つま
り、スマホが受けている認証は、厳密には
技適ではなく、工事設計認証です。総務省
の文章を見ると、技術基準適合証明および
工事設計認証を併せ、「技適など」と表現さ
れています。
　今回、技適などの話を記したのには理由
があります。前編で記したように、nRF
51822にはRAM容量が16kBのチップと
32kBのチップの2種類があります。MQTT
やCoAPのサンプルプログラムは、RAM容
量32kBのnRF51822を搭載したnRF51-
DK（メーカー型番PCA10028）用に提供さ
れています。
　今回、このnRF51-DKを入手したので
すが、この基板は工事設計認証を受けてい

6LoWPANしてみよう（後編）

14 - Software Design

はんだづけカフェなう
秋葉原発！

ません。つまり、電波法の基準に適合している
かどうかわかりませんので、このまま日本国内
で使用すると、電波法に抵触する可能性が否め
ません。こういった事情で、電波暗室という、
電波を部屋の外からの電磁波の影響を受けず、
また、電磁波を部屋の外に漏らさない実験室を
借用して実験を行うことにしました。

電波暗室

CoAP Client

　無線機器の性能を評価するには、外部の電波
や、部屋の中で反射する電波がノイズになりま
す。こういったノイズを排除するため、電波暗
室は、電波吸収体という素材などを貼り付けて
作ります。この電波吸収体はけっして安くない
素材で、とあるメーカーが公開している「手作
り電波暗室」という資料注2に掲載されている5m
×2.4mの部屋の場合の概算で、約300万円と
いう価格が記されています。このように、電波
暗室を用意するにはとても高価な材料が必要で
すし、それなりに大きな場所も必要ですので、
個人で用意するのは現実的ではありません。
　電波暗室は、電波を使用する機器を開発する
メーカーや、工業試験場といった施設が所有し
ています。工業試験場の電波暗室を使わせてい
ただこうと思い問い合わせをしてみましたが、
2ヵ月先まで予約がいっぱいとのことでした。
今回は、PHS電話機などを開発・販売している、
㈱エイビットの電波暗室を借用し、実験を行わ
せてもらいました（写真1）。
　電波暗室の扉は、外側からのみ開閉できる構
造です。扉が閉まると、外部からの音が遮断さ
れますし、電波吸収体が音をあまり反射しない
ために妙に静かで変な感じがしました（写真
2）。当然ですが、筆者の携帯電話も圏外にな
りました（写真3）。

　今回は、Nordic IoT SDKのCoAP Clientと
いうサンプル（¥Nordic¥nrf51¥examples¥iot
¥ipv6_coap_client¥boards¥pca10028¥arm）
をビルドして、nRF51-DKで動かしてみまし
た。ビルドの手順自体は前回紹介したとおり
です。ビルドが完了すると「_build¥nrf51422
_xxac_s1xx_iot.hex」というファイルができ
あがりますので、これをnRFgo Studioを使っ

注2） http://www.tssj.co.jp/pdf/absorber.pdf

 ▼写真1　電波暗室の外観

 ▼写真2　電波暗室内部

 ▼写真3　携帯電話が圏外に

http://www.tssj.co.jp/pdf/absorber.pdf

14 - Software Design May 2015 - 15

第 55 回

サーバの準備

動かしてみる

まとめ

て書き込みます。nRF51-DKにはJ-Link Lite
相当のチップが搭載されていますので、nRF51-
DKのUSBレセプタクルにケーブルを接続し
て書き込みました。
　先ほど述べたように、CoAPはUDPを使うプ
ロトコルです。CoAP Clientには、接続先のIP
アドレスとポート番号を指定しなければなりま
せん。サーバとなるPythonスクリプトを実行す
るLinuxマシンの上で、ifconfigを実行して、bt0
のIPv6アドレスを確認しておきましょう。サー
バのIPアドレスは、CoAP Clientのmain.cで、
SERVER_IPV6_ADDRESSというマクロで指
定するようになっていましたので、これを書き
換えました。

　CoAPのサーバは、Pythonで書かれたサンプ
ル実装がドキュメントに掲載されていますの
で、これを利用します。サーバとなるPython
スクリプトは、aiocoapというCoAPのプロトコ
ルのライブラリを利用します。aiocoapは
Python 3.4以降を要求しますので、注意してく
ださい。
　今回の実験を行うにあたって、Raspberry Pi
を電波暗室に持ち込むのが面倒だった筆者
は、Ubuntu 14.04.1のVMを作り、MacBookの
VMware Fusionで実行する環境を作りました。
6LoWPANをサポートするkernelは、make
menuconfigで前回紹介したオプションを有効に
してビルドしました。これまでRaspberry Pi
に挿していたBT-Micro 4をMacBookに挿し、
VMware Fusionの設定でBT-Micro 4をVMの
Ubuntuに接続しました。
　このUbuntuでも、bt0インターフェースを起
こす手順はRaspberry Piと同一です。Ubuntu
でCoAP Clientを動かすため、aiocoapを用意
して、図5のような手順でサンプルのスクリプ
トを動かしました。

　nRF51-DKでCoAP Clientを実行したばか
りで、BLEのアドバタイジングをしている段階
では、nRF51-DKのLED1が点滅をしていま
す。ここで、Linux側でbt0インターフェースを
起こし、nRF51-DKとの間でのIPv6接続が確
立できるとLED1は消え、LED2が点灯しまし
た。Ubuntu側でCoAP Serverを起動すると、
CoAPのメッセージがnRF51-DKから送られ
て来て、デバッグメッセージがターミナルに表
示されました。nRF51-DKのButton 1や2を押
すと、CoAPのメッセージが送られ、同様にデ
バッグメッセージが表示されます（写真4）。

　3回に分けて、6LoWPAN over Bluetooth LE
を使って、マイコンとサーバのEnd-to-Endの
IPv6通信の話をしてきました。IoTの世界で
は、マイコンのメモリの大きさや、消費電力、
接続回線の都合でMQTTやCoAPといったプ
ロトコルが使われます。こんな小さなマイコン
モジュールが単体でIPv6通信できることにテ
クノロジの進歩を感じています。ｦ

 ▼図5　サンプルスクリプトを動かす手順

 ▼写真4　実験の様子（写真2の円筒形部分での作業）

git clone https://github.com/chrysn/aiocoap.git
cd aiocoap/
vi coap.py .
python3 coap.py

6LoWPANしてみよう（後編）

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ

テキストエディタ
MIFES 10
テキストファイル、ソースコード（20 種類のプログラム言語に対応）、
HTML、CSV や XML などのデータファイル、バイナリファイルも
編集できる多機能エディタ。「10」ではファイルの構造解析エンジン、
ファイル比較機能、アウトライン機能などが強化されています。
 提供元 メガソフト　 URL http://www.megasoft.co.jp

CentOS 7 実践ガイド
古賀 政純 著／
B5 変形判、320 ページ／
ISBN ＝ 978-4-8443-3753-9

CentOS 7 の運用管理にかかわるシステム管理者を対象に、「7」に
おいて追加・拡張された機能に焦点を当てながら、運用ノウハウを
まとめた 1 冊です。Hadoop 2.0 のシステム構築も紹介しています。
 提供元 インプレス　 URL http://www.impress.co.jp

「Raspberry Pi B+」
＆「Camera module」セット
ARM 搭載、名刺サイズのコンピュータボードです。4 基の USB ポート、40 ピン GPIO コネ
クタ、micro SD ソケットを持ち、さまざまなデバイスと接続して自分だけのガジェットを作
れます。今回は、Raspberry Pi と接続できる、5M ピクセルセンサー搭載のカメラモジュー
ルとセットでのご提供です（ロゴ入りのオリジナルバッグもお付けします）。
 提供元 アールエスコンポーネンツ　 URL http://jp.rs-online.com

『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2015 年 5 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

プログラミング言語 C++
［第 4 版］

ビャーネ・ストラウストラップ 著、柴田 望洋 訳／
B5 変形判、1,360 ページ／
ISBN ＝ 978-4-7973-7595-4

C++ の開発者ストラウストラップ自身による解説書。1,360 ページ
の大ボリュームで、言語の基本からオブジェクト指向のための抽象
化機能まで、すべてを網羅した 1 冊です。C++11 に対応しています。
 提供元 SB クリエイティブ　 URL http://www.sbcr.jp

エバンジェリスト
の仕事術
西脇 資哲 著／
四六判、224 ページ／
ISBN ＝ 978-4-534-05257-5

日本マイクロソフトのエバンジェリストによるワークハック本。エ
バンジェリストという仕事の全貌を明かしながら、プレゼンのテク
ニックやスライドの作り方といった仕事術を紹介しています。
 提供元 日本実業出版社　 URL http://www.njg.co.jp

USB メモリ
Ultima U05（32GB）
USB2.0 対応の Flash メモリです。コネクタ部を本体に収納できる
スライド式筺体を採用し、端子部を傷や汚れから保護します。デー
タのバックアップをするのに便利な機能を備えた Windows 専用ソ
フトウェア「SP Widget」が内蔵されています。容量は 32GB です。
 提供元 シリコンパワー　 URL http://www.silicon-power.com

はじめよう！要件定義
羽生 章洋 著／
四六判、184 ページ／
ISBN ＝ 978-4-7741-7228-6

システムの UI・機能・データを明確にしていく「要件定義」は、顧
客が納得のいくソフトウェアを実現するために必要不可欠。本書で
はその要件定義の知識をポップなイラストとともに解説しています。
 提供元 技術評論社　 URL http://gihyo.jp

1 名

1 名

1 名

1 名 2 名

2 名 2 名

http://sd.gihyo.jp/
http://jp.rs-online.com
http://www.megasoft.co.jp
http://www.silicon-power.com
http://www.sbcr.jp
http://www.njg.co.jp
http://www.impress.co.jp
http://gihyo.jp

Lesson 1
これだけでも応用範囲は限りなく広い
テキスト処理で最初に習得すべき
コマンド10選...18
 Author 上田 隆一

Lesson 2
テキストを自在に加工するために
コマンドを自在に組み合わせる
テクニック...26
 Author 上田 隆一

Lesson 3
シェルでのテキスト処理の幅を広げる
これだけは知っておきたい
AWKの基礎...42
 Author 中島 雅弘／國信 真吾／富永 浩之／花川 直己

Lesson 4
習うより慣れよう！
サンプルをまねてAWKの
実用性を実感..51
 Author 中島 雅弘／國信 真吾／富永 浩之／花川 直己

C O N T E N T S

　そもそもなんでテキスト処理なんて必要なんでしょうか。
　シェルでコマンドを入力すれば、テキストで返事が返ってきます。走っているプログラムがはき出す状況
報告（ログ）もテキストです。Unix/Linuxは、ユーザへの報告をほぼすべてテキストで提供します。これらの
テキストを価値ある情報に変えるために、シェルを扱うエンジニアにはテキストを読む・加工するスキルが
求められるのです。
　本特集では、シェルを扱ううえで必ず役立つテキスト処理の基本を解説します。実例満載ですので、手を
動かして自分のものにしてください。そして現場のエンジニアが実用として使っている、とっておきのテキ
スト処理も披露いただきました。

テキスト処理
ベーシックレッスン
手を動かしてデータを操ろう！

シェル、sed、AWK、grep
第 1特集

grepで検索！
ソースコードを効率的に読む方法.........32
 Author 中井 悦司

Case 1

コマンドを組み立て、
Nginx・MySQLのログを読む..............35
 Author 古川 竜太

Case 2

コマンドラインで
JSONデータを作って利活用.....................38
 Author 波田野 裕一

Case 3

Postfix・Apacheの
ログを抽出して障害原因を特定...............58
 Author 荒井 健祐

Case 4

構造化データを簡単に処理できる
2つのコマンド...61
 Author 水野 源

Case 5

※リストや図中のｭは本来1行のものが折り返されていることを、ｶはエンターキーの入力をそれぞれ表しています。

18 - Software Design

手を動かしてデータを操
ろう
！

Lesson 1
第 1 特 集 テキスト処理ベーシックレッスン

はじめに

　自称シェル芸おじさんこと産技大の上田でご
ざいます。今回の特集はシェル（およびシェル
上でコマンド）を使ったテキスト処理というこ
とで、筆者の顔面に白羽の矢が刺さりました。
　Lesson1、2では「そもそもテキストとはなん
だ」というところから、コマンドの紹介、コマ
ンドを組み合わせるときの方法あれこれの話を
して、最後に、「シェルでコマンドを組み合わ
せるプログラミングとはいったい何であるのか」
に踏み込んで話をしてみたいと思います。初心
者的な内容からベテランの間で論争が起きそう
な話まで駆け足でするので慌ただしいのですが、
ご自身のレベルに合った読み方をしていただけ
れば幸いです。

準備運動

そもそもテキストとは

　テキストとは、最近のUNIX環境を使ってい
る場合はもっぱら「UTF-8のルールで記録され
た文字」であり、テキストファイルとは、「テキ
ストをファイルに保存したもの」です。しかし、
おそらくこう言っただけで通じる人は、全人類
のおよそ数パーセント程度だと思われます。わ
かっている人には少々まわりくどいですが、

ちょっとこの辺から話を始めたいと思います。
　世間一般においては、自分が書いたそこそこ
の分量の文字情報を他人に送るときは、電子メー
ルにPDFやWordやExcelのファイルを添付し
て送るのが一般的です。これらのファイルは、
通常は「テキストファイル」とは呼ばれません。
オフィス製品で読み書きされるファイルには、
文字の大きさ、フォントの種類、文章を右寄せ
するとか左寄せするとか、そういう情報も含ま
れています。このような場合、基本的には各ファ
イルに対応付けられた専用のソフトウェアで読
み書きすることになります。
　一方、テキストファイルは、世間一般では「拡
張子が『.txt』の怪

け

訝
げん

なサムシング」であり、「何
で開いていいのかわからないし、読みにくい」
ものです。不用意に「.txt」のファイルをメール
に添付をすると、なぜか叱られます。
　しかし、本誌読者ならご存じのように、テキ
ストファイルは文字を保存するものとしては最
も簡単で一般的なものです。フォントの情報な
ど余計な情報は混入しておらず、例外を除き、
ただただ文字（「̃」や「@」やスペース、改行など
の記号を含む）が並んでいます。
　図1に筆者のMacのターミナル（Terminal.
app）で表示したテキストファイル/etc/hostsを
示します。cat /etc/hostsと打ち込むと、cat
というコマンドが/etc/hostsを開いて中に書い
てある文字を表示してくれます。/etc/hostsに
は、先頭から「##<改行># Host ……」と文字が

Author 上田 隆一（うえだ りゅういち） 　産業技術大学院大学／USP研究所／USP友の会

Twitter @ryuichiueda

シェルで自在にテキストデータを加工するテクニックの要は「コマンドをつなげ
る」ことですが、Lesson1では、まずテキスト処理で必須の10コマンドの使い
方を説明します。単純な機能のコマンドでも、複数のコマンドを組み合わせる
と用途が広がります。本格的な連携テクニックはLesson2で扱いますが、本稿
でもその一端を垣間見られるはずです。

テキスト処理で最初に
習得すべきコマンド10選

これだけでも応用範囲は限りなく広い

18 - Software Design May 2015 - 19

Lesson

1テキスト処理で最初に
習得すべきコマンド10選

これだけでも応用範囲は限りなく広い

詰めて書いてあるので、catはただ単にそれを
出力しているにすぎません。自分が書いたプロ
グラム中でテキストファイルを読み込んで処理
したいときも、単純に1文字ずつ読み込んでい
けば良いということになります。
　テキストファイルでは、フォントや文字の大
きさを指定できないので応用が利かないと考え
るかもしれません。しかし、CSV（カンマ区切
りデータ）やHTML、XML、JSONのように、
何かしらのルールを決めてテキストで指定を書
くことは可能です。しかもファイルの中身を見
たければ、catで済んでしまいます。また、
UNIX系OSの設定ファイルやログファイルの
多くも、図1の/etc/hostsのようにテキストファ
イルで保存されます。また、端末で次のように
コマンドを打ったときの出力もテキストです。

$ date
2015年 3月 3日 火曜日 17時25分49秒 JST

　ということで、いくらWordやExcel、そし
てExcel方眼紙が便利といえども、プログラマ
の視点から見れば、テキストこそが自由に読み
書きできる共通のフォーマットであると言えま
す。また、特定のアプリケーションの使用を強
制されないということは、マウスの操作など手
作業を要求されることなく、いくらでも自動処

理できるということでもあります。
　そういえばこの前、複数のExcelの表から別
の表へ、プチプチとデータを移動する奴隷仕事
をやりました。筆者がその仕事に入ったときに
はすでにマウスを使ってプチプチやらなければ
ならない状態に陥っており、目も時間も消耗し
てたいへん損をしました。おそらく世間のかな
りの割合の人や企業がそんな腐った情報処理を
している状況ですので、少しでも本特集で救わ
れる人がいたらと涙を流して祈るしだいです。
いや、涙を流しても改善しないので、このよう
にメジャー誌の一番目立つところで吠えている
わけです。わかっている人だけでなく、わかっ
ていない人にもわからせないといけない根が深
い問題ですので、長い長い道のりでしょう。み
なさんも吠えてください。

シェル上でのテキスト処理は特別

　さてLesson1、2では、いろんなテキスト処
理の方法がある中でシェルを使う方法を扱いま
す。シェルとは、端末（MacのTerminal.appの
ような黒い画面ですね）の裏にいて、操作者が
キーボードで打った文字を端末から受け取り、
それを解釈してコマンドなどを呼び出している
ソフトウェアです。
　テキスト処理には、どんなプログラミング言

語を使っても良いのですが、その中で
もシェルによるテキスト処理には特別
な意味があります。まず、システム管
理であろうが原稿書きであろうが、端
末を使う場合、操作の起点はコマンド
で、その出力の大半はテキストです。
そして、その出力を加工しようとすれば、
端末操作に慣れているなら最も手っ取
り早いのはシェルの機能を利用し、パ
イプでコマンドをつなげる方法です。
　たとえば、先ほどの図1の/etc/hosts
から「localhost」と書いてある行だけを見
たいとしましょう。このような場合、図
2のように cat /etc/hostsの出力を

$ cat /etc/hosts
##
Host Database
#
localhost is used to configure the loopback interface
when the system is booting. Do not change this entry.
##
127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost

 ▼図1　/etc/hostsをcatで表示

$ cat /etc/hosts | grep localhost
localhost is used to configure the loopback interface
127.0.0.1 localhost
::1 localhost

 ▼図2　catの出力をgrepに渡して検索する

20 - Software Design

テキスト処理ベーシックレッスン

第 1 特 集 手を動かしてデータを操ろう！

grepという検索を行うコマンドにつなげると、ほ
しい出力が得られます。「｜」の記号は「パイプ」と
いうもので、あとから詳しく説明します。
　このようにシェルは、コマンドとコマンドを
つなげたり、後述するようにコマンドの出力を
ファイルに書き出したりという操作が簡単にで
きるようになっています。通常の言語は、おも
にコマンドに相当する「プロセス」という単位の
中で仕事をするのに対し、シェルはその外側、
つまりプロセス同士を連携させる目的で利用さ
れます。また、ファイル自体もプロセスの外の
ものですので、ファイルを操作するときもシェ
ルで扱うことが自然です。
　テキスト処理という意味では別に小難しいプ
ロセスの話を持ち出す必要はないかもしれませ
ん。しかし、とくに端末を扱っているときはテ
キスト処理の起点となるのはコマンドです。そ
して、その出力から先を自然にさばくには、パ
イプやファイルの読み書きをシェルで一通りで
きることが必要となります。

環境

　本題に入る前に、Lesson1、2で使う環境やシェ
ルを決めておきましょう。UNIX系OSであれ
ばあまり大差はないと言えますが、やはり方言
があるので決めておきます。
　まずOSですが、Linuxを使うことにします。
以後の端末操作については、Ubuntu 14.04上
で行いました。これも図3のようにコマンドで
確認できます。
　これから使うコマンドは最初からインストー
ルされているものがほとんどですが、たとえば
後述のnkfなどは追加でインストールが必要で
す。その場合、図4のようにsudo apt-get in

stall……でコマンドをインストールします。
　次にシェルを選びますが、Linuxで標準のロ
グインシェルになっているbashを使うことに
します。bashについては2014年に大きな脆弱
性が発見されて大騒ぎになりましたが、bash
を今後どうするかは偉い人たちに任せて、我々
はこれを使うこととします。適宜アップデート
をしておけば良いでしょう。

最初に習得すべき
コマンド10選

　まずは初心者の方向けに、テキスト処理でよ
く使うコマンドを10個選んでみました。これ
だけでも、組み合わせることでさまざまな処理
ができます。

cat（ファイルを表示・連結）

　最初に図1でも出てきたcatを扱います。cat
はcatenate（連結する）という単語の頭の3字を
とったものです。ただ、作ったときのもくろみと
は裏腹に、図1のようにファイルを1つだけ表示
するために使われてしまうコマンドでもあります。
　せっかくですから2つ以上のファイルを連結
してみましょう。図5のように、catの後ろに
ファイル名を並べるだけです。/etc/shellsは
あとでも使いますが、使えるシェルのリストが
書いてあるファイルです。
　コマンドには、出力を少し変化させるために「オ
プション」というものを渡すことがあります。たと
えば、図5のcatに-nというオプションを渡すと、
図6のように行番号の付いた出力が得られます。
　このようなオプションは、manというコマン
ドを使って調べられます。端末にman catと打
つと、catの説明文が出てくるはずです。

$ sudo apt-get install nkf
[sudo] password for ueda: ←自分のパスワードを聞かれる
（...略...）
Processing triggers for man-db (2.6.7.1-1) ...
nkf (2.13-1) を設定しています ...

 ▼図4　コマンドのインストール（nkfをインストールする例）

$ cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04 LTS"

 ▼図3　使用する環境をコマンドで確認

20 - Software Design May 2015 - 21

Lesson

1テキスト処理で最初に
習得すべきコマンド10選

これだけでも応用範囲は限りなく広い

　ところで、この行番号をファイルごとに付けた
いときは、どのようにcatを使えば良いでしょうか？
「そんなことあるかい？」と言われるとあまりケー
スが思い浮かびませんが、実際にテキスト処理を
しようとすると、このようなイレギュラーな場合
に幾度となく遭遇します。さて、正解ですが、図
7のようにfor文で1つずつ処理を行います。
　ここに出てきた forの書き方、その中で使っ
ている変数の使い方についてはインターネット
などほかに説明を譲ります。最初からできなく
てもかまいません。まずはforを使わずにエディ
タで手作業をやって、覚えるモチベーションを
十分蓄えてから爆発させてください。ここで重
要なのは、「細かい用途の違いに応じてコマン
ドの使い方を少しずつ変えるのはちょっとした
プログラミングであり、プログラマとして機転
を利かせる訓練になる」ということです。なに
せコマンドは単機能ですので、組み合わせない
と本当にやりたいことができません。その代わり、
組み合わせに慣れると大概のことはできます。

grep（ファイル内を検索）

　次に紹介するのはgrepです。grep '<検索し
たい文字列>' [ファイル]というように使い

ます。最初は図8–①のようにgrepにファイル
パスを直接渡すのが良いかと思いますが、コマ
ンド操作に慣れてきた多くの人は、図8–②の
書き方をするようになります。「｜」はコマンド
の出力結果を別のコマンドに入力させるための
パイプを表す記号で、この例ではcatの出力結
果をgrepに渡しています。grepはcatの出力
結果の中からbashという文字列を検索します。
　ところで図8では、bashという検索文字列で
grepを使ったところ、rbashと書かれている行も
検索にマッチして出力されました。もう少し絞り
込みたいときは検索文字列に工夫が必要です。図
8と同じ例でbashの行だけを出力させたいときは、

$ cat /etc/shells | grep '/bash'
/bin/bash

と、検索文字列に「/」を足してやれば良いでしょ
う。また、「アルファベットの何か1文字＋
ash」というシェルの名前を出力したければ、正
規表現を使って、

$ cat /etc/shells | grep '/[a-z]ash'
/bin/dash
/bin/bash

$ cat /etc/timezone /etc/shells
Asia/Tokyo ←/etc/timezoneの中身
/etc/shells: valid login shells ←以後、/etc/shellsの中身
/bin/sh
/bin/dash
/bin/bash
/bin/rbash
/usr/bin/tmux
/usr/bin/screen

 ▼図5　catで2つのファイルを開く

$ for f in /etc/timezone /etc/shells ; do cat -n $f ; done
 1 Asia/Tokyo
 1 # /etc/shells: valid login shells
 2 /bin/sh
 3 /bin/dash
 4 /bin/bash
 5 /bin/rbash
 6 /usr/bin/tmux
 7 /usr/bin/screen

 ▼図7　for文でファイルごとに行番号を付ける

↓図5～7で扱った/etc/shells内を検索する
$ grep 'bash' /etc/shells ←①
/bin/bash
/bin/rbash
$ cat /etc/shells | grep 'bash' ←②
/bin/bash
/bin/rbash

 ▼図8　grepの基本的な使い方

$ cat -n /etc/timezone /etc/shells
 1 Asia/Tokyo
 2 # /etc/shells: valid login shells
 3 /bin/sh
 4 /bin/dash
 5 /bin/bash
 6 /bin/rbash
 7 /usr/bin/tmux
 8 /usr/bin/screen

 ▼図6　cat -nで行番号を表示

22 - Software Design

テキスト処理ベーシックレッスン

第 1 特 集 手を動かしてデータを操ろう！

と書くことになります。正規表現は、プログラ
ミングの経験のない人には大きな壁になること
がありますが、必要に迫られるような環境に自
分を置いて少しずつ覚えていけば良いでしょう。
覚えたら必ず良いことがあります。少なくとも
サーバをいじっていてログを読まなければなら
ないときに、grepも正規表現も使えないとか
なり遠回りをするハメになります。
　grepについては由来等々を、『シェルプログラ
ミング実用テクニック』注1に書きましたので、そ
ちらもご参考に。また、grepには、あるディレク
トリの下のファイルをすべて検索する-rオプショ
ンなど、さまざまなオプションがあります。これ
もmanやインターネットで調べると良いでしょう。

head、tail、sort（上からn行・下
からn行を抽出、並び替え）

　さて、さらにコマンドを紹介していくととも
に、組み合わせの例も示していきます。端末を
使ってサーバのログなどを見ていると、行数が
多くて見たいところをピンポイントでなかなか
見られないことがよく起こります。先ほどの
grepで件数を落とすというのが一番先に思い

つく方法ですが、ここではデータを見たい順に
ソートして取り出すということを扱ってみます。
　たとえば、ls -l /etc/と打つと/etc/ディレ
クトリ下のファイルやディレクトリの一覧が見
られますが、このときの順番はファイルの名前
順です。これをファイルの更新日順に表示した
いときは、図9のようにls -ltと打ちます。
　ただ、この出力もザーッと画面を流れていっ
て読めません。このときは図10–①のように
headを使うと良いでしょう。ファイルの下のほ
う（この場合、更新日の古いほう）はtailで出
せますので、これも図10–②に示しておきます。
　図10の場合、lsがソートをしていますが、
もっと汎用的にsortコマンドを使うという方
法があります。たとえば図11は、ls -lの出
力の5列目（ファイルサイズ）でls -lの出力を
ソートして、その出力をさらにtailに通して
下から3行（サイズ大きいほうから3個のファ
イル）を出力しています。sortのオプション
-k5,5nは、5列目（-k5,5で指定）を数字の小さ
い順（-nで指定）でソートしろという意味です。
　もう1つ、行数の大きいデータを端末で眺め
たいときには、lessというコマンドを使う方
法があります。これは説明をほかに譲りますが、
頻繁に使う方法です。

sed（文字列の置換やその他の編集）

　これまで見てきたコマンドはテキストを表示
するだけですが、sedを使うと文字を加工できま
す。図12はsedを使い、/etc/shellsから、コマ

注1） 上田隆一（著）,『シェルプログラミング実用テクニック』,技術評論社 ,2015年5月発売予定 .

$ ls -lt /etc/
合計 760
-rw-r--r-- 1 root root 733 3月 17 11:12 mtab
drwxr-xr-x 2 root root 4096 5月 29 2014 default
drwxr-xr-x 6 root root 4096 5月 29 2014 apt
-rw-r----- 1 root shadow 549 5月 29 2014 gshadow
-rw-r--r-- 1 root root 658 5月 29 2014 group
 （...略...）

 ▼図9　ディレクトリの一覧をファイルの更新日順に表示

↓①「head -n 3」で上3行を表示（-nを付けないと10行出力になる）
$ ls -lt /etc/ | head -n 3
合計 760
-rw-r--r-- 1 root root 733 3月 17 11:12 mtab
drwxr-xr-x 2 root root 4096 5月 29 2014 default
↓②「tail -n 2」で下2行を表示
$ ls -lt /etc/ | tail -n 2
-rw-r--r-- 1 root root 356 1月 2 2012 bindresvport.blacklist
-rw-r--r-- 1 root root 2570 8月 6 2010 locale.alias

 ▼図10　headで lsの出力の先頭だけを表示

22 - Software Design May 2015 - 23

Lesson

1テキスト処理で最初に
習得すべきコマンド10選

これだけでも応用範囲は限りなく広い

ンドの名前（たとえば/bin/shのshの部分）だけ
を取り出した例です。
　ちょっとこの例のsedは難しいのですが、sed
's<delim><置換したい文字列の正規表現><delim>
<置換後の文字列><delim>'で入力された文字列
を置換して出力します。<delim>というのは区切
りの文字のことで、図12の例では「;」を使ってい
ます。置換の命令の先頭にある「s」ですが、これ
はsubstitution（置換）の頭文字です。ほかにはy、
p、dなどを先頭に付けたり最後に付けたりすると、
さまざまな変換ができます。
　これまでの例では、どちらかというとシステ
ムが出力するテキストを処理してきましたが、
sedは人が書いた文章に対しても威力を発揮し

ます。たとえば図13のように、表記揺れのひ
どい3つのテキストファイルを作って修正して
みましょう。ファイルが1つならVimやEmacs
などのエディタで修正すれば良いのですが、こ
の場合はファイルが複数あります。そして、図
13のような1ファイル1行ではなく、もっと大
量の文章が書いてあるファイルだと、手作業で
はたいへんになります。
　さて、修正しましょう。sedには-iというオ
プションがあり、これを使うと上書きでテキス
トを修正してくれます（図14）。-iの後ろに付
けた .bakは、.bakという拡張子を付けて元のファ
イルをバックアップしろということです。また、
引数で指定した置換の命令の後ろに「g（グロー
バル）」とありますが、これは1行で何回でも置
換しろという意味になります。gがないと置換
の回数は1行で1回になります。
　ところで、図14ではsedで処理するファイ
ルを「a.txt b.txt c.txt」といちいち書きましたが、
これは図15のように略記できます。誌面の都
合上、詳しくは説明できませんが、「ブレース

$ ls -l /etc/ | sort -k5,5n | tail -n 3
-rw-r--r-- 1 root root 17978 2月 14 22:13 ld.so.cache
-rw-r--r-- 1 root root 19558 12月 30 2013 services
-rw-r--r-- 1 root root 23922 5月 13 2013 mime.types

 ▼図11　sortでファイルサイズ順に並び替え

$ cat /etc/shells | grep -v '^#' | sed 's;.*/;;'
sh
dash
bash
rbash
tmux
screen

 ▼図12　sedで文字を加工

↓-eの後ろに条件を書いていく
$ sed -i.bak -e 's/[箇カ個]所/ヶ所/g' -e 's/~/～/g' a.txt b.txt c.txt
↓バックアップファイルができていることを確認
$ ls
a.txt a.txt.bak b.txt b.txt.bak c.txt c.txt.bak
↓修正を確認
$ cat a.txt b.txt c.txt
1ヶ所2ヶ所3ヶ所
4～5ヶ所
6～7ヶ所

 ▼図14　sed -eを使って一気に修正

↓「> a.txt」でコマンドの出力がa.txtに書き込まれる（後述）
$ echo 1箇所2カ所3ヶ所 > a.txt
$ echo 4～5個所 > b.txt
$ echo 6~7カ所 > c.txt

 ▼図13　表記が揺れまくっている文章を作成

↓ブレース展開
$ sed -i.bak -e 's/[箇カ個]所/ヶ所/g' -e 's/~/～/g' {a,b,c}.txt
↓ワイルドカード展開
$ sed -i.bak -e 's/[箇カ個]所/ヶ所/g' -e 's/~/～/g' *.txt
$ sed -i.bak -e 's/[箇カ個]所/ヶ所/g' -e 's/~/～/g' [a-c].txt

 ▼図15　ブレース展開、ワイルドカード展開

24 - Software Design

テキスト処理ベーシックレッスン

第 1 特 集 手を動かしてデータを操ろう！

展開」「ワイルドカード展開」「ファイルグロブ」
という言葉でインターネットで検索をかけると
良いでしょう。

uniq、wc（数を数える）

　今度はテキストから何かを集計するという問
題を扱ってみます。ログファイルからsedを駆
使してIPアドレスを抽出したあとという想定で、
図16のようなファイルを例題にやってみます。
　最初に IPアドレスがいくつあるかを数えて
みましょう。図17のようにsortとuniq -cを
使います。uniqは重複する行を除去するコマ
ンドですが、-cというオプションを付けると
このように同じ行が何行あるか数え、1列目に
表示してくれます。uniqの前にsortするのは、
uniqの重複チェックは同じ行が連続すること
を前提にしているからです。
　次にIPアドレスが何種類あるか数えます（図
18）。今度はuniqをオプションなしで使い、そ
の出力をwc -lに入力します。wcは入力された
テキストのバイト数や文字数、行数、単語数等々
を出力するコマンドで、-lは行数を出すオプショ
ンです。図17、18のように、機転を利かせて
少しコマンドの使い方を変えるだけで、さまざ
まなものを数えられます。
　ちょっとwcの小技を書いておくと、日本語
環境の場合、wc -mで日本語の文字数を数えら
れます。字数制限のある文章を提出しろと言わ

れたときに利用すると良いでしょう。図19に
例を示します。

awk（ツブシを効かせる十徳ナイフ）

　スペースやタブ区切りのデータを扱うときに
はawkが便利です。たとえば、図20のように
すると1列目と2列目を入れ替えることができ
ます。awkの引数に渡した{print $2,$1}はプ
ログラムで、「毎行について2列目と1列目を
出力しろ」というコードになっています。
　また、awkはgrepよりややこしい検索にも使
われます。図20を変化させて、個数が2個の
IPアドレスを出力させます（図21）。検索条件
に列を指定できること、検索条件で数値を比較
できることがミソです。
　awkについてはLesson3以降でじっくり取り
組むそうですので、これくらいにしておきます。
「コマンドを組み合わせてもやりたいことがで

$ cat ips
192.168.1.1
192.168.1.11
192.168.1.5
192.168.1.1
192.168.1.5
192.168.1.7

 ▼図16　例題のテキスト

$ cat ips | sort | uniq -c | awk '{print $2,$1}'
192.168.1.1 2
192.168.1.11 1
192.168.1.5 2
192.168.1.7 1

 ▼図20　列の入れ替え

$ cat ips | sort | uniq -c | awk '$1==2{print $2,$1}'
192.168.1.1 2
192.168.1.5 2

 ▼図21　数字を比較して行を抽出

$ cat ips | sort | uniq -c
 2 192.168.1.1
 1 192.168.1.11
 2 192.168.1.5
 1 192.168.1.7

 ▼図17　各 IPアドレスの個数の集計

↓まず重複を除去して……
$ cat ips | sort | uniq
192.168.1.1
192.168.1.11
192.168.1.5
192.168.1.7
↓wc -lで行数を求める
$ cat ips | sort | uniq | wc -l
4

 ▼図18　IPアドレスが何種類あるのかを集計

$ echo あいうえお | wc -m
6 ←最後に改行が入って6文字になるので注意
↓入力から改行をとる方法
$ echo あいうえお | tr -d '¥n' | wc -m
5

 ▼図19　wc -mで文字数をカウント

24 - Software Design May 2015 - 25

Lesson

1テキスト処理で最初に
習得すべきコマンド10選

これだけでも応用範囲は限りなく広い

きないぞ」というときは、awkにプログラムを
書いて渡せるので、なんとかなる場合が大半で
す。PerlやRubyでも同じようなことができま
すので、慣れている場合はそちらを使っても良
いでしょう。

nkf（WindowsやExcelと
仲良くしてやる）

　さて、これまではASCIIやUTF-8のテキスト
データを扱ってきましたが、Linuxの外には別の
形式のテキストもあります。このようなテキスト
を扱うときは、nkfというツールが使えます。
　たとえば、ExcelでCSVを保存してLinuxや
Macのターミナルでいじるとき、そのままcat
すると次のように文字化けします。

$ cat hoge.csv
??????,????,2.71$

　これはExcelで扱われる文字コードがShift
JISだからです。こういうときは理屈抜きにnkf

-wLuxと打っておけば大丈夫です。-w、-Lu、-x
の意味は、それぞれ「UTF-8に変換」、「UNIX
の改行コード（LF）に変換」、「半角カナを全角に
変換しない」です。図22にCSVをスペース区切
りのUTF-8のテキストにする方法を示します。
もちろん、これで済むのはデータ中にカンマの
ない単純なCSVだけですが、ご了承を。awk
'{print}'はデータの最後に改行を入れるための
小技です。
　さて、図22で保存したhogeに変更を加えて、
CSVに戻してやりましょう（図23）。今度は
-sLwxというオプションをnkfに渡します。-sは
Shift JISに変換、-LwはWindowsで使われる改
行コード（CRLF）に変換しろという意味です。
　図23で終わると味気ないので、筆者のMac
にhoge2.csvを持ってきて開くという端末操作
を図24に示しておきます。Windowsの場合は、
ファイルを転送できるツールを見つけてインス
トールして試していただければ。ﾟ

↓とりあえず読めるように変換
$ cat hoge.csv | nkf -wLux
あいう,えお,3.14
かきく,けこ,2.71$
↓最後に改行を入れてtrでカンマをスペースに
$ cat hoge.csv | nkf -wLux | awk '{print}' | tr ',' ' '
あいう えお 3.14
かきく けこ 2.71
$
↓hogeというファイルに保存しておく
$ cat hoge.csv | nkf -wLux | awk '{print}' | tr ',' ' ' > hoge

 ▼図22　CSVを取り込んでスペース区切りにして保存

↓scpでLinux側のファイルを手元のMacにコピー
uedambp:~ ueda$ scp 192.168.1.5:~/hoge2.csv ./
ueda@192.168.1.5's password: ←パスワードを入力
hoge2.csv 100% 34 0.0KB/s 00:00
↓Excelがインストールされていれば、openでExcelが立ち上がる
uedambp:~ ueda$ open hoge2.csv
uedambp:~ ueda$

 ▼図24　Macでhoge2.csvをダウンロードしてExcelに表示

↓変更を加えてカンマ区切りにする
$ cat hoge | sed 's/あい/愛/g' | tr ' ' ','
愛う,えお,3.14
かきく,けこ,2.71
↓Shift JISに変換して保存
$ cat hoge | sed 's/あい/愛/g' | tr ' ' ',' | nkf -sLwx > hoge2.csv

 ▼図23　スペース区切りのデータをExcel用のCSVに変換

26 - Software Design

Lesson 2
第 1 特 集

手を動かしてデータを操
ろう
！

テキスト処理ベーシックレッスン

コマンド・ファイルの
連結方法いろいろ

　さて、Lesson2ではファイルやコマンドを自
由に使いこなすために、シェルの操作について
基本的なものから、変わったものまで雑多に紹
介していきます。

リダイレクト

　まずLesson1の図13、22でも使った「>」から。
これはリダイレクト記号と呼ばれ、Lesson1の
図22では、コマンドの出力をファイルに保存
するときに使いました。普通、コマンドの出力
は画面に出てきますが、この出る口の方向をファ
イルに変えるときにリダイレクトが使われます。
リダイレクトにはほかにも種類がありますが、
これを理解するにはコマンドの入出力について
理解する必要があります。
　コマンドは、今まで単に出力と言ってきた「標
準出力」と、入力を受け付ける「標準入力」、エラー
を出力するための「標準エラー出力」と、3個のデー
タの受け渡し口を持ちます。またこれらの口には、
0（標準入力）、1（標準出力）、2（標準エラー出力）
という番号（ファイル記述子）が割り振られてい
ます。これを知っていると、パイプでコマンド
をつなぐということは、「左側のコマンドの標準
出力（1番）と右側のコマンドの標準入力（0番）を

接続する」ことだとわかります。
　リダイレクトは、パイプと同様、この番号に
対応する入出力（画面やファイル）を切り替える
操作です。Lesson1の図13で次のような操作
が出てきましたが、これはechoの出力をリダ
イレクト（＝向きを変更）して、a.txtに貯める
というものでした。

$ echo 1箇所2カ所3ヶ所 > a.txt
↓実は「>」は「1>」の略記
$ echo 1箇所2カ所3ヶ所 1> a.txt

　図1に、標準入力、標準エラー出力の操作例
も示しておきます。
　ファイル記述子を使うと、出力のつなぎ変え
を自由自在に行えるようになります。次の例は、
rev注1の出したエラーをパイプに通して別の
revで処理させたものです。

Author 上田 隆一（うえだ りゅういち） 　産業技術大学院大学／USP研究所／USP友の会

Twitter @ryuichiueda

コマンドが本当に威力を発揮するのは、コマンド同士を自由に連携させられる
ようになったときです。Lesson2では、標準入出力のしくみを整理したうえで、
さまざまなコマンドの連携手段を紹介します。これらを使いこなせれば、テキ
ストデータから必要な部分を抽出し、書き換え、好みの順に並び替えるといっ
た加工が自在にできるようになります。

コマンドを自在に
組み合わせるテクニック

テキストを自在に加工するために

↓a.txtをrevの標準入力に向ける
$ rev < a.txt
所ヶ3所カ2所箇1
↓「<」は「0<」の略記
$ rev 0< a.txt
所ヶ3所カ2所箇1
↓標準エラー出力の例
$ rev -x < a.txt
rev: 無効なオプション -- 'x' ←エラーが出てくる
（...略...）
↓標準エラー出力は「2>」でファイルにリダイレクトできる
$ rev -x < a.txt 2> hoge

 ▼図1　標準入力と標準エラー出力

注1） 入力された文字列を逆さまにして出力するコマンド。

26 - Software Design May 2015 - 27

Lesson

2コマンドを自在に
組み合わせるテクニック

テキストを自在に加工するために

$ rev -x < a.txt 2>&1 | rev
'x' -- ンョシプオな効無 :ver
（...略...）

　図2に、さらにややこしいリダイレクト操作
の例を示します。lsで、存在するa.txtと存在し
ないz.txtを指定したものです。lsは標準出力に
a.txtのファイル名、標準エラー出力に「z.txtが
ない」というエラーを出力します。図2のリダイ
レクトの例では、エラー出力をパイプに通し、
元の標準出力をファイルに貯めるという操作を
しています。リダイレクト操作は左から読んで
いくと理解できます。まず、2>&1で、2番を今
1番が指している先（パイプ）に向くようにします。
そのあとで、> existで1番がファイルexistに
向きます。
　図3では、図2のリダイレクト操作の順番を
入れ替えてみました。これだと2>&1のときに1
番の向いている先はファイルexistですので、
lsの出力はすべてファイルに入っていきます。

パイプからの入力を示す「-」

　コマンドの多くはファイルを引数にとります
が、ファイルの代わりにパイプの出力を指定し

たいときは、「-」という表記がコマンド側に準
備されていることがほとんどです。たとえば、
Webサーバ（Apache）の吐くログは古いものは
圧縮されて、新しいものは圧縮されていないの
ですが、それをくっつけて出力するときは、次
のように打ちます注2。

$ zcat access.log-20150304.gz | cat - access.log
（ログが次 と々表示される）

　cat - access.logというように「-」がaccess.
logの前にあるので、パイプを伝わってきた古
いログが先に出力され、あとからaccess.logが
出力されます。
　この機能がないと面倒な場合があります。た
とえば、zcatの出力とcatの出力を一緒にして
さらに別のコマンドにパイプで渡すときは、

$ (zcat access.log-20150304.gz ; cat access.ｭ
log) | wc -l
16290

というように「()」でコマンドをまとめるか、次
に紹介するプロセス置換を使わなければなりま
せん。ほかのコマンドでも「-」はたいてい使え
ますので、いろいろ試してみると良いでしょう。

プロセス置換（邪道）

　普通、パイプを使っていると処理は一方
通行ですが、シェルによっては抜け道が用
意されています。たとえばbashだと<()
という記号を使うと、あるコマンドの出力
を別のコマンドに渡すことができます。こ
の機能は「プロセス置換」と呼ばれます。
　使用例を図4に示します（ファイルa.txt
とa.txt.bakはLesson1の図14で出てきた
もの）。diffは2つのファイルを引数にとっ
てファイルの違いを表示するコマンドです
が、図4ではファイル名を書く位置に<()
で囲まれたsedの処理（「所」という文字の

$ ls a.txt z.txt
ls: z.txt にアクセスできません（略） ←標準エラー出力
a.txt ←標準出力
↓2番を1番の向いているほうに向け、その後1番をファイルexistに向ける
$ ls a.txt z.txt 2>&1 > exist | rev
んせまりあはリトクレィデやルイ（略） ←エラーがパイプを通る
$ cat exist
a.txt ←標準出力はファイルへ

 ▼図2　複雑なリダイレクト操作

↓順序を変えると両方の出力がexistに入る
$ ls a.txt z.txt > exist 2>&1
$ cat exist
ls: z.txt にアクセスできません（略）
a.txt
↓両方の出力を1つにまとめたいならbashの場合、このように書ける
$ ls a.txt z.txt &> exist
$ cat exist
ls: z.txt にアクセスできません（略）
a.txt

 ▼図3　リダイレクトの順序を変えると挙動が変わる

注2） zcatは圧縮されたファイルの内容を表示するコマンド。

28 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

後ろに改行を入れる処理）が書かれています。
　プロセス置換の乱用はわけのわからないコー
ドを生む原因になってしまいますが、余計な中
間ファイルを作らないで処理をしたいときなど
に用いると便利です。

パイプからのデータを引数に

 while read
　コマンドを使いこなすようになると、パイプ
から通ってきたデータを別のコマンドに引数と
して渡したいことがちょくちょく出てきます。
簡単に思いつく（しかし、ややこしい）方法は
while read ……というイディオムを使う方法
です。たとえば a.txt、b.txt、c.txtを、それぞ
れ a.txt.bak、b.txt.bak、c.txt.bakと diffする
場合、慣れている人なら図5のようにコマンド
を打ちます。ls ?.txtで「任意の1文字＋ .txt」
のファイルのリストができます。それをwhile
read fで変数 fに順番にセットして、while文
の中でdiff $f $f.bakというように1行ずつ

diffの引数に渡しています。
　図5をちょっと補足すると、whileに渡すデー
タは、1回に渡す分ごとに改行が入っている必
要があります。ls ?.txtの出力は横に並んで1
行で出力されているように見えますが、これは
lsが端末上に表示するときに小細工をしてい
るからで、実際にコマンドにlsの出力が渡る
ときは、次のように改行が入って渡ります。

$ ls ?.txt | cat
a.txt
b.txt
c.txt

　ですから、図5のwhile readは3行のデータを
受け取っています。図5の下の例では、echo ?.txt
でファイルのリストを作っていますが、echoの場
合は表示上もデータ上も改行が入らないので、
tr ' ' '\n'で改行を入れる必要があります。

 xargs
　さて、while readの例は何にでも使えるので

すが、doやdoneなどいろいろ
と書かなければなりません。
xargsを使うともっと簡単にで
きます。図6に、図5と同じ処
理をxargsで行ったものを示し
ます。-I@は、コマンドに引数
を渡すときに、「@」と書いた位
置にパイプから受け取ったデー
タを当てはめろという意味です。
　while readとの使い分けに
関して、xargsはあまりにも切
れ味が鋭いので、mvやrmなど
後戻りできない処理を慎重に
やりたい場合は、while文の中
で処理をechoで出すなどいろ
いろ確認してから実行すると
いうことをやる人がいます。
ただ、処理が走り出してしま
うとどちらを選んでも同じです。
　xargsの使い方をもう少し示

$ diff <(sed 's/所/&¥n/g' a.txt) <(sed 's/所/&¥n/g' a.txt.bak)
1,2c1,2
< 1ヶ所
< 2ヶ所

> 1箇所
> 2カ所
↓プロセス置換を使わないと、ゴミファイルが発生するなど面倒
$ sed 's/所/&¥n/g' a.txt > aa
$ sed 's/所/&¥n/g' a.txt.bak | diff aa -
（...出力は上の例と同じ...）

 ▼図4　di�に2つのsedの出力を渡す

↓まずファイルのリストを作る
$ ls ?.txt
a.txt b.txt c.txt
↓そのままwhileに渡す
$ ls ?.txt | while read f ; do diff $f $f.bak ; done
1c1
< 1ヶ所2ヶ所3ヶ所

> 1箇所2カ所3ヶ所
1c1
（...略...）
↓echoでファイルのリストを作る場合は、改行を入れる必要あり
$ echo ?.txt | tr ' ' '¥n' | while read f ; do diff $f $f.bak ; done
（...出力は上の例と同じ...）

 ▼図5　while readの使い方

28 - Software Design May 2015 - 29

Lesson

2コマンドを自在に
組み合わせるテクニック

テキストを自在に加工するために

します。-I@がなければ、xargsは受け取ったデー
タを適当な個数の引数に変換してコマンドに渡し
ます。図7は、適当なディレクトリにtouchコマ
ンドで空ファイルを100万個作る例です。file.
{1..1000000}で file.1 file.2……file.1000000
という意味になりますが、これをそのままtouch
に渡すと引数が多過ぎて引き取ってくれません。
xargsを使うと、適当な長さで引数をtouchに渡し、
適当な回数だけtouchを呼び出してくれます。
　ちなみに、「適当な長さ」というのは、

$ getconf ARG_MAX
2097152

とやると調べられます。説明はほかに譲ります。
　そして、某シェル芸勉強会で大ブーム（？）の
xargsの使い方を最後に紹介しておきます。
xargsの右に何もコマンドを指定しないと、
echoしてくれます。このときに-nオプション
を指定すると、指定した数ごとにechoされる
ので、図8のようにデータを整列させられます。
　ただし、図9のようにechoのオプションを
書いたデータを渡すという意地悪をすると意図

しない出力になることがあるのでご注意を。

コードを作ってshにぶち込む

　さて、while readとxargsは標準入力からの
データを引数に変換するときに使いましたが、
標準入力からのデータをプログラムに変換する
という荒業も存在します。簡単に例だけを図10
に示しておきます。

データの流れを意識する

　最後に上級者のために議論の火種を放り込ん

$ ls ?.txt | xargs -I@ diff @ @.bak
1c1
< 1ヶ所2ヶ所3ヶ所

（...略...）

 ▼図6　xargsの使い方

↓普通にtouchに渡すと叱られる
$ touch file.{1..1000000}
-bash: /usr/bin/touch: 引数リストが長すぎます
$ echo file.{1..1000000} | xargs touch
$
$ ls -U ←lsにソートさせないで出力させるときは-Uを使う
file.935081
file.947716
file.268148
file.266114
（以下略。飽きたらCtrl＋cで止めましょう）
↓指定した個数分ずつ引数を渡すには-nを使用
$ echo file.{1..1000000} | xargs -n 2 touch
（touchが50万回呼ばれるので当面終わらない）

 ▼図7　xargsの使い方2（適当な個数の引数を渡す）

↓このようなechoの出力が……
$ echo {1..10}
1 2 3 4 5 6 7 8 9 10
↓3列になったり
$ echo {1..10} | xargs -n 3
1 2 3
4 5 6
7 8 9
10
↓4列になったりします
$ echo {1..10} | xargs -n 4
1 2 3 4
5 6 7 8
9 10

 ▼図8　xargsの使い方3（整列）

$ cat hoge
-n 1
-e 2
$ cat hoge | xargs -n 2
12

 ▼図9　-nや -eがechoのオプションになる例注3

注3） @mutz0623さんのLT資料「xargsコマンドの細かい話」より
URL https://docs.google.com/file/d/0B7vwFIP4k87kZmRMVTlsU3ZtV3M/edit

↓次のようにシェルスクリプトを作り……
$ ls ?.txt | awk '{print "diff",$1,$1".bak"}'
diff a.txt a.txt.bak
diff b.txt b.txt.bak
diff c.txt c.txt.bak
↓shに投げる
$ ls ?.txt | awk '{print "diff",$1,$1".bak"}' | sh
1c1
< 1ヶ所2ヶ所3ヶ所

> 1箇所2カ所3ヶ所
（...略...）

 ▼図10　メタプログラミングの例

https://docs.google.com/file/d/0B7vwFIP4k87kZmRMVTlsU3ZtV3M/edit

30 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

でおきます。シェルの操作を駆け足で説明して
きましたが、Lesson1の冒頭で述べたように、こ
れはプログラミングの一種です。ただ、多くのプ
ログラマが慣れ親しんでいる方法とはずいぶん
異なります。果たしていったい我々は何をしてい
るのでしょうか？　いつも筆者は「これはデータ
フロープログラミングだ」だとか「これはソフトウェ
アツールだ」という言い方をしているのですが、
ここではまた別の説明をするために、いわゆる
SICP注4の「2.2.3 Sequences as Conventional In
terfaces」を持ち出します。
　詳しくは本の内容がWebで公開されている
ので、それを読んでいただきたいのですが、こ
こで述べられていることをざっくり言うと、

・違う処理のようでも、やっていることを分解
すると似たような処理が出現する

・その似たような処理ひとつひとつを切り分け、
電気信号を処理する素子のように一方通行
で接続するとコードの見通しと再利用性が
良くなる

ということです。SICPの2.2.3項にはコマン
ドもパイプも出てきませんが、言っていること
はコマンドとパイプです。
　コマンドをパイプでつないだ処理では、基本
的に1行がリストの1つの要素とみなされます。
そのリストがgrepのような「filter（ろ過器）」のコ
マンドや、awkで行う毎行処理のような「transducer
（変換器）」、wcのような「accumulator（累算器）」
を通って、何かしらの結果が出てきます。
　これを通常のプログラミング言語（おもに1
つのプロセスを使うために特化された既存の言
語）で表現するのは結構難しい処理になります。
たとえば

$ cat data
9
10 2
4 8 7
1

という数字が7個書いてあるデータがあるとし
ます。5以上の数字と5未満の数字がそれぞれ
何個あるか求めようとすると、コマンドならば、
図11のような処理が考えられます。これは、
「データの整列・分類・並び替え・数え上げ」と
いう各プリミティブな処理を一方通行につなげ
た処理で、SICPの2.2.3項的な処理です。
　一方、この処理はawkだけでも、図12のよ
うに書けます。ちょっと見にくいのでリスト1
にちゃんとプログラムを書いたものを示します。
コードの詳細は読めなくてもかまいませんが、
for文が出てきて、その中で集計処理が行われ
ていることがわかると思います。
　この for文は、図11の最初のxargs -n 1（各
数字を1行1個に並べ直す）が使えたならもっ
と簡略化できるのですが、これに相当するもの
を採用するとリスト2のようなコードになりま
す。for文が2つ現れてちょっとやり過ぎのよ
うな気もします。少なくともデータの流れが最
初の for文で一度止まるので、「電気信号」の如
く処理できているわけではありません。
　また、リスト2の処理は、もっとたくさんの
データをさばこうとした場合、配列に中間デー
タをいちいち保存することになりメモリが無駄
です。図11の処理もソートでメモリを使うので、
この例では大差ないのですが、やはり普通の言
語を使うとリスト1のような書き方になります。
「信号処理のような処理」を簡単に表現したいの
ならば、やはり標準入出力とパイプを使う方法

注4） H. Abelson and G. J. Sussman,“Structure and Interpretation of Computer Programs (Second edition)”,MIT Press,1996.
URL https://mitpress.mit.edu/sicp/full-text/book/book.html

$ cat data | xargs -n 1 | awk '$1>=5{print "5以上"}$1<5{print "5未満"}' | sort | uniq -c
 4 5以上
 3 5未満

 ▼図11　5以上と5未満の数を集計

https://mitpress.mit.edu/sicp/full-text/book/book.html

30 - Software Design May 2015 - 31

Lesson

2コマンドを自在に
組み合わせるテクニック

テキストを自在に加工するために

が自然かなということになります。また、最近
はCPUのコア数が増えているので、「信号処理
の如く」がだんだん有利になっている点も見逃
せません。このような視点でシェルでのテキス
ト処理を見ると、シェルでのコマンド操作とい
う古風な方法が、実はいまだにユニークな存在
であることを確認できるのではないでしょうか。

終わりに

　Lesson1、2では、シェル（端末）でのテキスト
処理について、はなはだ駆け足ですが、説明を
行いました。世の中にはさまざまなデータがあり、
本稿で扱ったような1行1レコードの単純なリ
ストではない、木構造状のデータも多く存在し
ます。そのようなデータについても、たとえば
図13のfindの出力を見ればわかるように、1行
1レコードのリストにすることは簡単です。「こ
れ冗長で非効率じゃないか？」と思われるかもし
れませんが、あとはコンピュータの馬鹿力とパ
イプの本質的な効率の良さに任せてしまえば、
木構造を扱うプログラムも書かなくて済みます。
　コマンドを使うテキスト処理をやろうとする
と、これまで説明したように少々普通ではない
プログラミングをしなければなりません。しか
し、単に古いとか、コマンドが雑多であるとか、
不統一であるとか、そういう理由で触らないよ

うにしていたのであれば、ちょっと視点を変え
て、使ってみてはいかがでしょうか。

◆　◆　◆
　さて、5月上旬に『シェルプログラミング実
用テクニック』が上梓予定です。これは本誌読
者層のみなさんにコマンドを組み合わせてテキ
スト処理を行うための基礎力を養っていただこ
うと、筆者が書き上げたものです。
　この本、各章で1つ処理の対象を決めてお題
をいくつか提示し、ワンライナーやシェルスク
リプトで解決するという構成になっています。
処理の対象は、文章や設定ファイル、CSV、
Web上のデータなど基本的なものをおさえま
した。が、一方で画像やExcel、Wordファイ
ルの処理にも挑戦しています。雑多にやり散ら
かした感じが出てしまったのが反省点ですが、
ぜひ本書で楽しみながらコマンド操作を覚えて
いただければ幸いです。ﾟ

$ awk '{for(i=1;i<=NF;i++){if($i>=5){a+=1}else{b+=1}}}END{print "5以上",a;print "5未満",b}' data
5以上 4
5未満 3

 ▼図12　5以上と5未満の数を集計（AWKワンライナー）

#!/usr/bin/awk -f

{
 for(i=1;i<=NF;i++){
 if($i>=5) a+=1;
 else b+=1;
 }
}
END{
 print "5以上", a;
 print "5未満", b;
}

 ▼リスト1　5以上と5未満の数を集計（AWKスクリプト）

#!/usr/bin/awk -f

{
 n = 1;
 for(i=1;i<=NF;i++)
 num[n++] = $i;

 for(i=1;i<n;i++)
 if(num[i] >= 5) a++;
 else b++;
}
END{
 print "5以上", a;
 print "5未満", b;
}

 ▼リスト2　5以上と5未満の数を集計（xargs -n 1相
 当の処理をもとの for文から分離）

$ sudo find /etc/ | head -n 5
/etc/
/etc/perl
/etc/perl/Net
/etc/perl/Net/libnet.cfg
/etc/perl/CPAN

 ▼図13　�ndの出力は木構造でもあり、単純なリス
 トでもある

32 - Software Design

第 1 特 集 テキスト処理ベーシックレッスン

データを操ろう
！

手を動かして

カーネルソースを
読むという仕事

　オープンソースにかかわるエンジニアの仕事

というと、まず始めに思い浮かぶものは何でしょ

うか？　開発者として「ソースコードを書く」と

いう仕事を思い浮かべる読者も多いかもしれま

せんが、筆者の場合は「ソースコードを読む」こ

とのほうが多いです。たとえば、Linuxカーネル

のログメッセージについて、その意味を教えて

ほしいという問い合わせを受けて、おもむろにカー

ネルソースを読み始めるという感じです。

　このときに役立つのは、言うまでもなくgrep
コマンドです。特定のメッセージを含む行を多

数のソースファイルからまとめて検索できます。

具体例を用いて、実際に体験してみましょう。

grepコマンドによる探索例

　業務の一部というわけではありませんが、実

際の例として先日、筆者のブログに次のような

内容の質問コメントが寄せられました。

カーネルの起動メッセージにメモリ容量を示

す図1のような行がありました。それぞれの

数値は何を表しているのでしょうか？

　このようなログメッセージの調査には、grep
コマンドがうってつけです。まずは、Linuxカー

ネルのソースコードをGitHubからダウンロード

してきます。ここでは例として、バージョン3.10

のソースコードをチェックアウトしておきます。

$ git clone https://github.com/torvalds/linux
$ cd linux
$ git checkout v3.10

　Linuxカーネルには、多数のソースファイルが

ありますが、grepコマンドでは、-rオプション
を用いるとディレクトリを再帰的にたどりながら、

すべてのファイルをまとめて検索できます。質

問にあったログメッセージの一部を検索キーワー

ドにして、次のコマンドを実行してみます。

$ grep -Hr "Memory: .* available" ./

　これは、カレントディレクトリ「.」を起点とし

てすべてのサブディレクトリを検索します。-H
オプションは、検索にマッチしたファイル名を

表示するオプションです。実際にコマンドを実

行すると、ディレクトリarch以下の複数のファ
イルがマッチします。これは、アーキテクチャ

別のコードが収められたディレクトリですので、

ここではx86アーキテクチャのディレクトリにあ

る図2のファイルに注目します。

Author 中井 悦司（なかい えつじ） 　レッドハット㈱

Twitter @enakai00

grepで検索！
ソースコードを効率的に読む方法

現場で使われるテキスト処理の実際

Memory: 2041336k/2105344k available (2536k kernel code, 55360k reserved, 1751k data, 196k init)

 ▼図1　カーネルの起動メッセージ

C a s e 1

32 - Software Design May 2015 - 33

grepで検索！
ソースコードを効率的に読む方法

現場で使われるテキスト処理の実際 Ca s e

1

　エディタでファイルを開くと、該当部分はリ

スト1のようになっています。1085行目の

printkは、カーネル内部で利用されているカー
ネルメッセージの出力関数です。これで、メッセー

ジの各項目に対応する変数（1,087～1,093行目）

がわかりました。あとは、これら変数の定義部

分を探しだして、それらの意味を調べていきます。

　たとえば、codesizeと datasizeについては、
同じファイルのすぐ上の部分でリスト2のように

定義されています。コンパイラ（リンカ）の知識

がある人なら、「_text」「_etext」「_edata」などは、
カーネルをコンパイルしたバイナリファイル内

部のテキストセクションやデータセクションの

開始・終了位置を表すことに気がつきます。結果、

codesizeは、カーネル内部の実行コード領域の
サイズ、datasizeは、静的データ領域のサイズ
を表すことがわかります。そのほかの調査結果は、

ブログのコメント注1を参照してください。

grepコマンドの応用例

　grepコマンドには、このほかにも覚えておく
とよいオプションがあります（表1）。一度ビルド

処理を行ったディレクトリ内は、ソースファイ

ルとコンパイル済みのバイナリファイルが混じっ

た状態になります。このときgrepコマンドは、
バイナリファイルの中身まで検索してしまいます。

このような際は、-Iオプションを指定して、バ
イナリファイルを検索対象外にします。

　また、テスト用のコードが入ったtestsディレ
クトリがある場合、この中のファイルが大量にマッ

チすることがあります。testsディレクトリ内の

1085 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
1086 "%ldk absent, %ldk reserved, %ldk data, %ldk init)¥n",
1087 nr_free_pages() << (PAGE_SHIFT-10),
1088 max_pfn << (PAGE_SHIFT-10),
1089 codesize >> 10,
1090 absent_pages << (PAGE_SHIFT-10),
1091 reservedpages << (PAGE_SHIFT-10),
1092 datasize >> 10,
1093 initsize >> 10);

 ▼リスト1　arch/x86/mm/init_64.c

1077 codesize = (unsigned long) &_etext - (unsigned long) &_text;
1078 datasize = (unsigned long) &_edata - (unsigned long) &_etext;

 ▼リスト2　arch/x86/mm/init_64.c

注1） 「/proc/meminfoを考える」　 URL http://d.hatena.ne.jp/enakai00/20110906/1315315488

./arch/x86/mm/init_64.c: printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "

 ▼図2　カーネルソース内の該当のファイル

オプション 説明

-r ディレクトリを再帰的に検索する

-H マッチしたファイル名を表示する

-I バイナリファイルを検索対象外にする

-v 検索にマッチしない行を表示する

-E 拡張正規表現を使用する

 ▼表1　grepコマンドの便利なオプション

http://d.hatena.ne.jp/enakai00/20110906/1315315488

34 - Software Design

テキスト処理ベーシックレッスン

第 1 特 集 手を動かしてデータを操ろう！

ファイルを除外したい場合は、次のようにもう

ひとつのgrepコマンドにパイプでつなぎます。

$ grep -Hr "keyword" ./ | grep -v tests

　-vオプションは指定のキーワードを「含まない」
行だけを表示するオプションです。これで、最

初のgrepコマンドが出力するディレクトリ名に
「tests」を含む行を除外しています。厳密には、ディ

レクトリ名以外の部分に「tests」が含まれる場合

も除外されてしまいますが、ほとんどの場合は、

これで用が足ります。

　また、grepコマンドはその名前（Global -

Regular Expression - Print）のとおり、正規表現

（Regular Expression）で検索キーワードを指定し

ます。このとき、-Eオプションを指定すると、「拡
張正規表現」と呼ばれる、より複雑な正規表現が

利用できます。たとえば、「foo」「bar」のどちら

かを含む行を検索する場合は、次のようになり

ます。

$ grep -Hr -E "(foo|bar)" ./

ソースコードにかかわる
便利コマンド

　Linuxのコマンドには、このほかにもソースコー

ドを扱うのに便利なものがたくさんあります。

たとえば、先ほどのリスト1では各行の先頭に行

番号を付けていますが、これはcatコマンドの
-nオプションを利用しています。次のように実
行すると、各行の先頭に行番号を付けてファイ

ルの内容を表示してくれます。

$ cat -n ./arch/x86/mm/init_64.c

　また、運用業務にかかわっていると、数十行

程度の短いスクリプトファイルを何本かまとめ

て作成することがあります。これらのスクリプ

トファイルをバックアップしたい場合、どうす

ればいいのでしょうか？　正式なバックアップは、

tarコマンドで固めて取得するべきですが、作業
ログ的に記録を残す場合、筆者は次のheadコマ
ンドを実行します。

$ head -100 *.sh

　これは、末尾が「.sh」で終わるファイルの先頭

100行を表示するコマンドですが、複数のファイ

ルがある場合、それぞれの出力の前にファイル

名が付与されます。100行以内のファイルであれ

ば、次のようにすべての内容がファイル名とと

もに画面に表示されます。

$ head -100 *.sh
==> script01.sh <==
#!/bin/bash
echo test01

==> script02.sh <==
#!/bin/bash
echo test02

　この出力内容を手元のエディタにコピーすれば、

バックアップは完了です。Windows PCからSSH

端末ツールでログインしているときは、端末ツー

ルの機能で、画面出力をログファイルに書き出

しておいても良いでしょう。

◆　◆　◆

　Linuxカーネルのソースコードを読むというと、

前提知識が必要で難しいように思われるかもし

れませんが、ここで紹介した例のようにログメッ

セージをキーワードにして、該当のメッセージ

出力部分を調べるのは誰でも簡単にできること

です。Linuxカーネルを勉強する手始めとして、

ぜひ興味のあるメッセージを見つけて検索して

みてください。もっと本格的にカーネルソース

を読んでみたいという方は、筆者の書籍も参考

にしてもらえると幸いです注2。ﾟ

注2） 中井悦司（著）, 『プロのためのLinuxシステム・10年効く技術』ー第4章　最後の砦！　カーネルソースを読む , 技術評論社 , 2012.

May 2015 - 35

データを操ろう
！

手を動かして

テキスト処理ベーシックレッスン

はじめに

　最近、ログ解析ツールやプロビジョニングツール、

オーケストレーションツールが注目を集めていま

す。これらのツールの内側では、本コラムで紹介

する、区切り文字を用いたデータの分割・集計や、

コマンドの出力結果を基にして次に実行するコマ

ンドを組み立てるといったような基本的な技法が、

言語は違えど多く用いられています。

　コマンドの内容をひとつひとつしっかり理解

して自分で組み立てることが、これらのツール

を作ったり、中身を読み解いたりすることの手

助けになると思います。もちろん、日々の作業

の自動化・効率化にも寄与するので、しっかり

と理解したうえで、使いこなせるようになると

いいでしょう。

　ここでは、Lesson1～4で紹介しているコマン

ドや awkなどが、MSP（Managed Service Provi

der）の現場ではどのように用いられているかの

実例を、解説を含めながら紹介します。なお、

本コラムで紹介するコマンドは、CentOS6.6にて

動作確認を行っています。

Nginxのログ解析

　まずは、基本であるWebサーバ（Nginx）のロ

グを整形・集計してみます。ログ解析を始める

前には、まずは解析対象のログをしっかり眺め

る必要があります。図1のようなNginxのアクセ

スログを例にして考えてみます。

　最初に、拡張子「.js」「.ico」「.jpg」以外、つまり

HTMLファイルやCSSファイルへのアクセス数を

分単位で集計することを考えてみましょう。そ

のためにはまず、これらの拡張子が付いたファ

tail -n 10 /var/log/nginx/access.log
198.51.100.1 - - [11/Mar/2015:11:31:19 +0900] "GET / HTTP/1.1" 200 17638 "http://example.com/" "-" "-"
198.51.100.1 - - [11/Mar/2015:11:31:19 +0900] "GET / HTTP/1.1" 200 3881 "http://example.com/" "-" "-"
198.51.100.1 - - [11/Mar/2015:11:31:19 +0900] "GET /image.jpg HTTP/1.1" 200 1073 "http://example.com/"
"-" "-"
198.51.100.1 - - [11/Mar/2015:11:32:19 +0900] "GET / HTTP/1.1" 200 1205 "http://example.com/" "-" "-"
203.0.113.1 - - [11/Mar/2015:11:32:29 +0900] "GET /script.js HTTP/1.1" 200 1250 "http://example.com/"
"-" "-"
198.51.100.1 - - [11/Mar/2015:11:32:39 +0900] "GET / HTTP/1.1" 200 23416 "http://example.com/" "-" "-"
198.51.100.1 - - [11/Mar/2015:11:32:41 +0900] "GET /favicon.ico HTTP/1.1" 200 350 "http://example.
com/" "-" "-"
192.168.2.1 - - [11/Mar/2015:11:33:38 +0900] "GET / HTTP/1.1" 200 20552 "http://example.com/" "-" "-"
192.168.2.1 - - [11/Mar/2015:11:34:29 +0900] "GET / HTTP/1.1" 200 23416 "http://example.com/" "-" "-"
192.168.2.1 - - [11/Mar/2015:11:34:29 +0900] "GET /script.js HTTP/1.1" 200 1250 "http://example.com/"
"-" "-"

 ▼図1　Nginxのアクセスログ

Author 吉川 竜太（よしかわ りょうた） 　㈱ハートビーツ

Twitter @rrreeeyyy

コマンドを組み立て、
Nginx・MySQLのログを読む

現場で使われるテキスト処理の実際

C a s e 2

第 1 特 集

36 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

イルへのアクセスを除外する必要があります。

　図1をよく見ると、アクセス対象のパスは両側

がスペースで囲まれていることがわかります。

スペースを区切り文字としてログを眺めてみると、

ちょうど7列目にパスが来ています。そのため、

実行するコマンドは図2のようになります。

　awkのデフォルトでの区切り文字はスペース・

タブであるため、このコマンドは、空白区切りの

7列目が「.js」「.ico」「.jpg」で終わらない行を出力す

る、という意味となります。なお、awkについて

の詳細は、Lesson3、4などを確認してください。

　次に、時刻ごとの集計について考えます。こ

のときに必要なのは、ログの中の「11:32」「11:33」

「11:34」といった部分になります。ログを見ると、

これらの文字列は「:」で囲まれていることがわか

ります。そのため、区切り文字を「:」として考え

るとコマンドを組み立てやすいでしょう。実行

するコマンドとその結果は図3のようになります。

このコマンドは、出力の各行を「:」で区切った結

果の2、3列目を出力します。

　最後に集計を行います。同一の行をカウント

して出力するには、uniqコマンドの-cオプショ
ンを使用します（図4）。

　また、欲しいデータに応じて、さらに出力をソー

トすることもできます。たとえば、前述のコマン

ドの出力結果から、もっともアクセスが多かった

時間が知りたければ、コマンドの末尾にsort -k
1 -nを付けて実行することで実現できます（図5）。
　本節で紹介したコマンドは、MSPの現場で、

Webサーバの負荷増加が発生した場合などにア

クセス数が増えていないかを調査する際に、実

際に用いられています。

MySQLのクエリをkill

　MySQLで長時間実行されているSELECTを含む

クエリを特定してkillする、といったオペレーショ

ンを考えてみます。

　MySQLで実行されているクエリは、図6の１行

目のようなコマンドで確認できます。ここでは、

図6の出力を例にして考えてみます。すべての項

目が「|」という文字区切りで出力されているため、

とても解析しやすいですね。必要な項目である、

クエリの実行時間とクエリの情報は、区切り文字

を「|」とすると、6列目・8列目に来ていることがわ

かります。しかし、区切り文字である「|」を含まな

い項目が最初の列と最後の列にあるため、awkの

列数のカウントが1つずれることに注意しましょう。

　まずは行全体を出力してみて、出力されている

クエリが条件にあっているかを必ず確認します（図

7）。その後、killに必要な IDだけを出力します（図8）。

　最後に、出力された IDを元にして、killを実行

するコマンドを組み立てます。killを実行する前に、

tail -n 10 /var/log/nginx/access.log ｭ
 | awk '$7 !~ /(¥.js|¥.ico|¥.jpg)$/{print $0}'

 ▼図2　空白区切りの7列目が「.js」「.ico」「.jpg」で
　　　終わらない行を出力

tail -n 10 /var/log/nginx/access.log ｭ
 | awk '$7 !~ /(¥.js|¥.ico|¥.jpg)$/{print $0}' ｭ
 | cut -d ':' -f 2,3 ｭ
 | uniq -c
2 11:31
2 11:32
1 11:33
1 11:34

 ▼図4　同一の行をカウントして出力するようコマンドを追加

tail -n 10 /var/log/nginx/access.log ｭ
 | awk '$7 !~ /(¥.js|¥.ico|¥.jpg)$/{print $0}' ｭ
 | cut -d ':' -f 2,3
11:31
11:31
11:32
11:32
11:33
11:34

 ▼図3　出力の各行を「:」で区切った結果の2、3列目を
　　　出力するようコマンドを追加

tail -n 10 /var/log/nginx/access.log ｭ
 | awk '$7 !~ /(¥.js|¥.ico|¥.jpg)$/{print $0}' ｭ
 | cut -d ':' -f 2,3 ｭ
 | uniq -c ｭ
 | sort -k 1 -n

 ▼図5　出力をソートするようコマンドを追加

36 - Software Design May 2015 - 37

コマンドを組み立て、
Nginx・MySQLのログを読む

現場で使われるテキスト処理の実際 Ca s e

2

実際に実行されるコマンドをechoで確認し
てみましょう（図9）。xargsは標準入力から
コマンドを生成し、実行できるコマンドです。

-Iオプションは、行ごとに標準入力を受け
取り、受け取った行を置きかえるための変

数を指定するためのオプションです。

　最後に、echoを外して実行することで、
対象のクエリをkillすることができます（図

10）。また、どのようなコマンドが実行さ

れたかは、xargsの-tオプションで確認
できます。

　本節で説明したコマンドは、実際になん

らかの理由でMySQLのSELECTクエリが長

時間滞留してしまった場合に、障害対応と

してクエリのkillを行う際に実行されるこ

とがあります。なお別解として、MySQLの

クエリを用いて長時間実行されている

SELECT句を出力したり、killすることもできます（図

11）。詳細はここでは説明しませんが、ぜひ自分

で読み解いてみてください。

◆　◆　◆

　MSPの現場で実際に用いられているコマンド

を例に取り、コマンドの組み立て方や、コマン

ドの出力結果を用いたオペレーションの実行を

簡単に紹介しました。ここで紹介したことを覚

えるのではなく、実際に自分で手を動かしてコ

マンドを組み立てることで、文字列のパースや

パイプラインなどの、重要な概念を身につける

ことができるかと思います。ぜひ実際に手を動

かしてみてください。ﾟ

mysqladmin -u root processlist --verbose
+-----+------+-----------+----+---------+------+------------+-----------------------+----------+
| Id | User | Host | db | Command | Time | State | Info | Progress |
+-----+------+-----------+----+---------+------+------------+-----------------------+----------+
984	root	localhost	db	Query	23	User sleep	SELECT SLEEP(60)	0.000
985	root	localhost	db	Query	42	User sleep	SELECT SLEEP(60)	0.000
986	root	localhost	db	Query	48	User sleep	SELECT SLEEP(60)	0.000
993	root	localhost	db	Query	0	init	show full processlist	0.000
+-----+------+-----------+----+---------+------+------------+-----------------------+----------+

 ▼図6　MySQLで実行中のクエリ

クエリIDの確認
echo 'SELECT GROUP_CONCAT(ID) FROM PROCESSLIST WHERE TIME ｭ
 > 30 AND INFO LIKE "SELECT %"' ｭ
 | mysql -u root information_schema -N

クエリのkill
mysqladmin -u root kill $(echo 'SELECT GROUP_CONCAT(ID) FROM PROCESSLIST WHERE TIME ｭ
 > 30 AND INFO LIKE "SELECT %"' ｭ
 | mysql -u root information_schema -N)

 ▼図11　MySQLのクエリを用いて長時間実行されているSELECT句を出力し、killする

mysqladmin -u root processlist --verbose ｭ
 | awk -F '|' '($7 > 30 && $9 ~ /SELECT/){print $0}'

 ▼図7　長時間実行されているSELECT文を特定

mysqladmin -u root processlist --verbose ｭ
 | awk -F '|' '($7 > 30 && $9 ~ /SELECT/){print $2}'

 ▼図8　killに必要な IDだけを出力するように修正

mysqladmin -u root processlist --verbose ｭ
 | awk -F '|' '($7 > 30 && $9 ~ /SELECT/){print $2}' ｭ
 | xargs -I%% echo "mysqladmin -u root kill %%"
mysqladmin -u root kill 985
mysqladmin -u root kill 986

 ▼図9　killを実行するコマンドを組み立て、ひとまずecho

mysqladmin -u root processlist --verbose ｭ
 | awk -F '|' '($7 > 30 && $9 ~ /SELECT/){print $2}' ｭ
 | xargs -t -I%% mysqladmin -u root kill %%

 ▼図10　echoを外してkillを実行

38 - Software Design

第 1 特 集 テキスト処理ベーシックレッスン

データを操ろう
！

手を動かして

はじめに

　JSONは、これまではおもにアプリケーション

エンジニアがWebアプリケーションなどで使う

ものと受け止められていました。しかし昨今、

クラウドサービスの利用が進み、その設定情報

にアクセスしたり、提供されているWeb APIを

利用したりする中で、インフラエンジニアが直

接JSONに触れる機会が急激に増えてきています。

筆者も、AWS（Amazon Web Services）の各サー

ビスをコマンドラインから操作する中で JSONと

の付き合いが深まってきました。

　本記事では、AWSのユーザ会の1つである

JAWS-UG CLIが開催するコマンドラインハンズ

オンでの事例をもとに、コマンドラインから

JSONを扱う基本的な方法や便利なツールについ

て紹介します注1。

JSONデータを作成する

　まず、コマンドラインから JSONのデータを作

成してみましょう。ここではechoコマンドで作
成する方法と、ヒアドキュメントで作成する方

法の2つを紹介します。

echoコマンドで作成する

　次のようなシンプルなJSONデータであれば、

{
 "key":"value"
}

次のようにechoコマンドで十分です。

$ echo '{"key":"value"}' > example-1.json

　作成したexample-1.jsonは次のようなデータ

となります。

{"key":"value"}

　JSONデータを利用するコマンドラインツール

はおおむね1行形式の JSONデータを正常に処理

してくれるようです。必要がある場合は後述の

jqコマンドで整形したうえで使用してください。

ヒアドキュメントで作成する

　作成するJSONデータがある程度複雑な場合や、

すでにフォーマットが決まっている場合はヒア

ドキュメントを利用しましょう。ヒアドキュメ

ントとは、スクリプト本文に、改行や半角空白

などを書いたとおりに埋め込むための方法で、シェ

ルスクリプトでは、次のような書式になります。

コマンド << 終了文字列
ここに、改行や空白を含むテキストを記述する

終了文字列

Author 波田野 裕一（はたの ひろかず） 　運用設計ラボ合同会社　JAWS-UG CLI専門支部

Mail operation@office.operation-lab.co.jp

コマンドラインで
JSONデータを作って利活用

現場で使われるテキスト処理の実際

注1） シェルスクリプトに組み込むことを考慮して、Bシェル系（ashやbash）環境を前提としています。ご了承ください。

C a s e 3

38 - Software Design May 2015 - 39

現場で使われるテキスト処理の実際
コマンドラインで
JSONデータを作って利活用

Ca s e

3

　終了文字列は必ず行頭に記述し、余計な空白

などを入れてはならないことに注意してください。

ヒアドキュメントを使うと便利なケースとして、

メールや設定ファイルなどの定型フォーマット

において、変動する部分に変数を埋め込んで使

用する場合などが挙げられます。

　ここでは、図1のようにヒアドキュメントを利

用し、AWSのAPIで利用するポリシードキュメ

ント（リスト1）をサンプルとして作成してみます。

JSONのデータのチェック

　先ほど作成した JSONデータは、何のチェック

もしていないので、このままでは正しいフォーマッ

トになっているかどうか不明です。コマンドラ

イン用の検証ツール（バリデータ）を利用して、

必ずチェックするようにしましょう。

　ここでは、npm（Node.js用パッケージマネー

ジャ）のパッケージで提供されているjsonlintコ
マンドを使用します。誌面の都合でnpmの導入

は割愛しますが、npm導入後は次のコマンド注2

で簡単に導入できます。

$ sudo npm install -g jsonlint

jsonlintコマンドで検証する

　先ほど作成した JSONデータをjsonlintコマ

注2） -gオプションで、システム全体共有のディレクトリにインストールします。

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::example-bucket/*"
 }
]
}

 ▼リスト1　サンプルデータ（example-2.json）

$ S3_BUCKET_NAME='example-bucket'
$ FILE_POLICY_DOC='example-2.json'
$ cat << EOF > ${FILE_POLICY_DOC}
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::${S3_BUCKE ｭ
T_NAME}/*"
 }
]
}
EOF

 ▼図1　ヒアドキュメントでJSONを作成

$ jsonlint -q broken.json
[Error: Parse error on line 1:
{"key":value}
-------^
Expecting 'STRING', 'NUMBER', 'NULL',ｭ
'TRUE', 'FALSE', '{', '[', got 'undefined']

 ▼図2　jsonlintコマンドのエラー出力

ンドで検証してみましょう。ここでは、パース

された JSON自体の表示を抑制するために次のよ

うに-qオプションを利用します。

$ jsonlint -q example-1.json

　何も返ってこなければバリデートは成功して

います。試しに、

{"key":value}

のような壊れた JSONデータを作成して、同じく

jsonlintでチェックしてみましょう（この例では、
値をダブルクォートで囲み忘れています）。すると、

図2のようにエラーの原因を特定して表示してく

れます。

40 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

JSONデータを活用する

　JSONデータの作成とチェックが完了したので、

次はその活用方法を考えていきましょう。

　2015年3月現在、コマンドラインで JSONデー

タを扱うツールとして最も著名なのはjqでしょう。
公式サイト注3に、「jqは JSONデータのためのsed

のようなものだ（jq is like sed for JSON data）」と書

かれているように、jqコマンドは標準入力から
JSONデータを読み込み、フィルタとして各種処

理をします。

　ここでは、jqコマンドの簡単な利用方法、活
用方法について解説していきます。

jqコマンドのインストール

　jqパッケージは、MacPorts（OS X）、HomeBrew

（OS X）、yum（Linux）、ports（FreeBSD）のいずれ

でも提供されており、簡単に導入注4ができます。

jqでフォーマットを整形する

　一番シンプルなjqコマンドの使い方として、
先ほど作成した1行の JSONデータ（example-1.

json）を整形して表示してみましょう。

$ cat example-1.json | jq .
{
 "key": "value"
}

　jqコマンドでは、JSONデータのルートを「.」で

表現し、「.」のみ指定された場合はJSONデータ全

体が処理の対象となります。

　jqに慣れるために、ちょっと読みづらいJSON

データがある場合はjqで整形してから使用する、
というあたりから使い始めても良いのではない

でしょうか。

jqでデータを抽出する

　整形に慣れたら、次はjqコマンドで特定のキー
の値を抽出してみましょう。

　ここでは、example-1.jsonファイルのkeyの値

をシェル変数に取り込んでみます。jqで通常ど
おりに値を取得するとダブルクォート付きの値

になるため、シェル変数に取り込む場合は図3の

ように-rオプション（raw output）を指定します。

これで、JSONデータから特定ノードの値を取り

出すことができるようになりました。整形と抽

出ができるようになっただけでも、コマンドラ

インからの JSONデータの活用の幅が大幅に広が

るでしょう。

jqで条件に合致する
データを抽出する

　本記事の最後として、jqコマンドを利用して条
件に合致したレコードを取り出す例を紹介します。

たとえば、AWSのコマンドラインツールでグルー

$ VAR_TEST=`cat example-1.json ｭ
 | jq -r .key`; echo ${VAR_TEST}
value

 ▼図3　jqコマンドで特定ノードの値を取り出す

{
 "Group": {
 "GroupName": "admin",
 "GroupId": "AGPAXXXXXXXXXXXXXXXXX"
 },
 "Users": [
 {
 "UserName": "taro",
 "UserId": "AIDAXXXXXXXXXXXXXXXXX"
 },
 {
 "UserName": "jiro",
 "UserId": "AIDAXXXXXXXXXXXXXXXXX"
 }
]
}

 ▼リスト2　サンプルデータ（example-3.json抜粋）

注3） URL http://stedolan.github.io/jq/
注4） UbuntuでのインストールはCase5で説明しています。

http://stedolan.github.io/jq/

40 - Software Design May 2015 - 41

現場で使われるテキスト処理の実際
コマンドラインで
JSONデータを作って利活用

Ca s e

3
プとユーザのJSONデータを取得してみます。

$ IAM_GROUP_NAME='admin'
$ aws iam get-group --group-name ${IAM_GROUｭ
P_NAME} > example-3.json

　そして、リスト2のような JSONデータを取得

したとします。このうち、taroに関する情報を取

得したい場合は、図4のようにjqコマンドを利
用することで簡単に取り出すことができます。

　この例では、まずシェル変数 IAM_USER_

NAMEを--argオプションでjqの内部変数user_

nameとして取り込んでいます。次に、rootノー

ド（.）直下のUsersノード（複数の子ノードが配

列で格納されているため、'Users[]'という形式

で指定しています）から、'UserName'がuser_

name（ここでは taro）と同じものをselect関数

で抽出しています。

　このように、jqで抽出を複数回繰り返すこ
とによりかなり複雑な条件でもデータの抽出

が可能になります。また、jqは今回利用した
select関数のような有用な機能が多数実装さ

れているので、ぜひマニュアルを読んで使いこ

なしてみてください。

◆　◆　◆
　以上、駆け足で紹介してきましたが、シェル

の基本機能（echoコマンドやヒアドキュメント）
を使うことで JSONデータを作成できること、

jsonlintコマンドとjqコマンドを導入するだけ
で JSONデータの検証と利活用が簡単にできるよ

うになることがご理解いただけたと思います。

日常生活で JSONデータを駆使する、そんな新し

い時代のコマンドライン活用方法を考えてみて

はいかがでしょうか。ﾟ

$ IAM_USER_NAME='taro'
$ cat example-3.json ｭ
 | jq --arg user_name ${IAM_USER_NAME}'.Users[] ｭ
 | select(.UserName == $user_name)'
{
 "UserName": "taro",
 "UserId": "AIDAXXXXXXXXXXXXXXXXX"
}

 ▼図4　taroに関する情報を取得

42 - Software Design

Lesson 3
第 1 特 集

手を動かしてデータを操
ろう
！

テキスト処理ベーシックレッスン

いまさらAWK！？

　クラウド環境や複数の技術を組み合わせて実
現するWeb Baseシステムが普及し、システム
の複雑化が進む今日、CLI（コマンドラインイン
ターフェース）やスクリプト言語など、シンプル
なツールを組み合わせて使うUnixの基本哲学に
立ち返り、より迅速、安全に開発・運用・保守
環境を維持できる技術者に注目が集まっています。
こうした環境、ツールの代表であるAWKには、
「プログラミングから実行、テストまでが俊敏に
実施できる軽量性」、「システムの深淵まできめ
細かく操作できること」に価値があります。
　AWKの強力で機敏なテキストストリーム処
理能力は、運用保守を担当するシステム管理者
にとって強力な武器になることは間違いありま
せん。そして、プログラミングを担当するソフ
トウェアエンジニアにとっては、サーバに対す
る作業、プログラムソースやデータの加工にテ
キスト処理ツールであるAWKを活用すること
で、作業の自動化や効率化ができる場面がたく
さんあることでしょう。みなさんも、アジャイ
ルで強力なAWKを見なおしてみませんか。
　なお、AWKの名称が3名の開発者の頭文字か
ら来ていると考えるとすべて大文字表記がふさ
わしそうですが、ここからはもろもろの事情に
よりすべて小文字でawkと表記することにします。
　本稿で使用しているawkは、gawk 3.1.xと、

gawk 4.x.xを対象としています。gawk 4になっ
て追加された機能を使った一部の例は、gawk 3
系では動作しませんので注意してください。また、
掲載しているプログラムは、Linux（CentOS 5.5
64bit）、Mac OS X Yosemite 10.10.2での動作
を確認しています。動作確認されたOS以外でも、
一般的なUnix/Linux系の環境であれば、本稿
の例題は動作すると思います。しかし、文字コー
ドやテキストデータ形式（DOS形式、Unix形式、
Mac形式）などの違いによって、期待の動作と
異なる場合には、扱うプログラム・スクリプト
や対象のデータのテキストタイプ、文字コード
セットを確認してください。

awkの言語仕様

awkの特徴：他の言語とどこが違う？

　C言語やJavaにはないawkの特徴として、awk
は入力列（ストリーム）に対する処理に特化した構
造が挙げられます。
　C言語などでは、プログラム処理が中心で、
プログラムからファイルの読み書きを行います
が、awkは入力列があることを前提として、そ
の入力パターンに対応した処理（アクション）を
実施します。

awkの使い方

　gawkは次のような2とおりの実行方法があ

Author 	中島 雅弘（なかじま まさひろ）	 （株）アーヴァイン・システムズ
	 國信 真吾（くにのぶ しんご）	 （株）アーヴァイン・システムズ

	 富永 浩之（とみなが ひろゆき）	 香川大学
	 花川 直己（はなかわ なおき）	 香川大学

awkは、uniq, sort, grep, sedなどと同様に、テキストストリーム処理ツールと
しての側面と、複雑な処理をこなすプログラミング言語としての2面がある強
力なツールです。本章では、シンプルな例を中心にawkの基本を紹介します。

これだけは知っておきたい
AWKの基礎

シェルでのテキスト処理の幅を広げる

42 - Software Design May 2015 - 43

Lesson

3これだけは知っておきたい
AWKの基礎

シェルでのテキスト処理の幅を広げる

ります。
① gawk 'パターン-アクション' [入力ファイル名
の並び]

② gawk -f プログラムファイル名 [入力ファイル名
の並び]

　①は指定したパターン-アクションを入力ファ
イルに対して実行します注1。たとえば、

gawk '/インド/ {print "インドがあった"}' file1

は、file1の中に「インド」という文字列を含む
行が見つかるたびに「インドがあった」と表示し
ます。なお、パターン-アクションは、複数並
べることもできます。
　②の動作は基本的には①と変わりませんが、
①のパターン-アクションが長い場合や繰り返
し使いたい場合などに、ファイルにその内容を
プログラムとして記述し実行します。
　また、次のように複数の入力ファイルを指定
することもできます。

gawk -f myprog file1 file2 -

　これは、myprogというプログラムファイル
をfile1、file2、標準入力の3つにそれぞれ作用
させます。「-」だけのファイル名は標準入力を
入力として指定したことになり、ファイル名を
1つも記述しない場合にも標準入力からのデー
タが入力列として扱われます注2。

言語の構造

　awkの処理は、与えられた入力列（一
般にはファイル）1行ずつ注3に対して、
プログラムによって指示されたパターン
を含むかどうかを調査し、対象となる行
がパターンを含む場合にはそれに伴うア
クションを実行します。そして、このパ
ターンとアクションの組の集まりが、

awkのプログラムになります。awkのプログラ
ミングを理解するには、これらパターンとアク
ションの記述をそれぞれ習得することが必要で
す。
　図1はawkのプログラムの構造を表したもの
です。それぞれのパターンとアクションの組は、
パターンまたはアクションのどちらかを省略す
ることもできます。
　それでは、パターンとアクションを用いた簡
単なawkプログラムを書いてみましょう。

例：/abc/ { print }

　次のようなファイル「diary.txt」があるとします。

今日は日曜日なので、近所のパチンコ屋
パチンコABCホールで遊んだ。その後同じ
ビルの中にある喫茶店abcで友達と暇を
つぶした。

　このdiary.txtに対して例として書いたスクリプ
トを適用すると、次のような実行結果になります。

$ gawk '/abc/ { print }' diary.txt ｶ
ビルの中にある喫茶店abcで友達と暇を

　このプログラムは、/abc/がパターン部分で、
入力列中にabcという文字列を発見すると、ア
クションとして記述されている部分printによっ
て、文字列abcを含む行を出力しています。
　このパターンとアクションの組による単純な
構造がawkプログラムの基本となります。そし

注1） ①のような短いプログラムを直接端末上に入力して実行する方式をワンライナーと呼びます。
注2） gawkには、このほかにもさまざまなオプションを指定した起動方法があります。詳しい起動方法についてはgawkのマニュアル（$

man gawk）を参照してください。
注3） ここでは入力列を1行ずつ読み込むという表現をとっていますが、awkでは入力レコードの区切りを変更することが可能ですので、

必要なら行以外の入力単位で処理をさせることもできます。

パターン

pattern1 { action1 }

pattern2 { action2 }

アクション

パターン-アクション
の定義1

パターン-アクション
の定義2

 ▼図1　パターンとアクション

44 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

てawkも一般的なプログラム言語と
同様に、繰り返し用いる処理をまと
めてユーザ関数として定義したり、
いくつかの文字列操作関数の機能も
利用できます。これらの関数の呼び
出しについては、後ほど説明するこ
とにしましょう。

入力列の構造：
列と行を巧みに処理しよう

　awkを使いこなすにはプログラム
の構造ばかりでなく、データとして
与えられる入力列の構造についても
理解しておく必要があります。入力
列については、プログラムで利用する側が勝手
に記述できるケースはそれほど多くはないから
です。
　図2は、awkにおける入力列の取り扱い方を
表したものです。awkでは、入力列をレコード
と呼ばれる単位で分割し、さらにフィールドと
呼ばれる単位に分割します。レコードごとにパター
ンのマッチングが行われ、アクションが実行さ
れます。前出の例では、行全体に対してマッチ
ングを行っていましたが、レコードに含まれる
フィールドに対してマッチングを行うこともでき
ます。それでは、レコード、フィールドについ
て詳しく説明していきましょう。

 レコード
　awkの入力列の処理単位をレコードと呼びます。
入力列を区切り文字（レコードセパレータ）ごと
にレコードに分割し、パターンの調査とアクショ
ンの実行を行います。一般的なawkの使用状態
では、区切り文字が改行コードに設定されてい
るため、1行が1レコードに対応します。しかし、
レコードに複数の行を含めたいときなどには、
その区切り文字を変更することもできます。
　awkのプログラム中では、レコードは特殊な
変数$0に格納されます。

 フィールド
　各レコードは、さらに特定の区切り文字
（フィールドセパレータ）によってフィールド
（欄、または列とも言います）に分けられます。
フィールドの区切りは何も指定しなければ1文
字のスペースまたはタブになりますが、必要に
応じて変更することも可能です。
　awkのプログラム中では、分割されたフィー
ルドは、分割された順番にそれぞれ特殊な変数
$1、$2、$3……に格納されます。

◆　◆　◆
　このようにawkは、入力データをフィールド
という論理的なかたまりを作って解釈していま
すので、利用者はデータを表として扱うなど、
フィールドを有効に活用することが可能です。
また、一般の文章データなどのように、フィー
ルドを意識せずにデータを扱うことも容易です。

パターン：
入力列の内容で処理を変える

　awkプログラムの中のパターン部分は、それ
に伴うアクションを選択する式です。省略した
場合には、すべてのレコードに対してアクショ
ンが処理されることになります。

例：{ print $1, $3 }

　この例を次のようなデータを持つ「data.txt」
に適用してみましょう。

$1 $2 $3

$0

フィールド
セパレータ フィールド

レコード

 鈴木 東京都 会社員 ｶ

 山本 千葉県 農業 ｶ

 北村 兵庫県 自営業 ｶ

 森 北海道 会社員 ｶ

 ▼図2　awkにおける入力列の取り扱い

44 - Software Design May 2015 - 45

Lesson

3これだけは知っておきたい
AWKの基礎

シェルでのテキスト処理の幅を広げる

Suzuki 90 85
Tanaka 80 95
Yamada 85 85
Tanaka 70 80
Sasaki 95 90

$ gawk '{ print $1, $3 }' data.txt ｶ
Suzuki 85
Tanaka 95
Yamada 85
Tanaka 80
Sasaki 90

　ここでは、すべてのレコードの第1フィール
ド（$1）と第3フィールド（$3）の内容を出力し
ています。
　これは、いずれもすべてのレコードに対して
照合が行われます。しかし、初期化処理や実行
結果の出力など、一度だけ実行したい処理を記
述したい場合には、次に説明する特殊なパター
ンを使用することで実現できます。

 BEGINとEND
　パターンBEGINは、awkスクリプトにおいて
プログラムの初期化の働きをします。BEGINに
伴うアクションは、入力列が読み込まれる前に
処理されるので、変数を初期化したり、出力レポー
トのヘッダを印字したり、入力列の区切り文字な
どを設定することに用います。
　パターンENDに伴うアクション部は、入力

列がすべて読み終わった後で処理されます。そ
のため、集計結果の出力やレポートのフッタ出
力、その他、後処理のために使用することにな
ります（図3）。
　入力列として複数のファイルを指定した場合
でも、BEGIN、ENDパターンはそれぞれ1度
ずつしか実行されないことに注意してください。

例：BEGIN { print "Name ", "Math" } {
print $1, $3 }

$ gawk 'BEGIN { print "Name ", "Math" } { ｭ
print $1, $3 }' data.txt ｶ
Name Math
Suzuki 85
Tanaka 95
Yamada 85
Tanaka 80
Sasaki 90

 BEGINFILEとENDFILE
　gawk 4.0から利用可能になったパターンです。
BEGINFILEは、ファイルからレコードを読
み込む前に1度だけ実行されます。ENDFILE
は、最後のレコードを読み込んでパターン-ア
クションを実行した後に1度だけ実行されます。
　先に挙げたBEGINとENDパターンは、複数
のファイルを指定した場合でも1度しか実行さ
れませんでしたが、BEGINFILE、ENDFILE
パターンは、それぞれのファイルごとに実行さ
れます（図4）。
　BEGINFILEパターン中では、特殊な変数
FILENAMEに現在処理を行おうとしている
ファイル名が格納されます。BEGINFILEパ
ターンの用途しては、

①指定ファイルが存在するかをチェックする
②指定ファイルの名前（とくに拡張子）によって

処理を変更する

といったものが挙げられます。
　BEGINやENDパターンを用いることでプロ
グラムらしくなってきましたね。さらに、単純
に文字列が含まれるかどうかの照合だけでなく、

各入力行については、それ
ぞれの行に対してBEGIN
とENDパターン以外のも
のを毎回比較して、それに
伴うアクションを実行し
ます。

BEGIN

END

入力ファイル1

入力ファイル2

 ▼図3　BEGINとENDの図

46 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

複雑な条件での照合を行うこともできます。

 比較演算式と論理演算式
　比較演算は、大小同値関係やマッチングにつ
いての演算です。そして、これらの演算をAND
やORなどの論理演算と組み合わせて指定する
ことができます。例として、1番目のフィールド
が「Tanaka」で、2番目のフィールドが80未満の
ものをマッチさせる書き方は次のようになります。

$1 == "Tanaka" && $2 < 80

　これをdata.txtに適用してみましょう。

$ gawk '$1 == "Tanaka" && $2 < 80 { print ｭ
$1, $2 }' data.txt ｶ
Tanaka 70

 正規表現
　強力な表現式である正規表現をパターンとし
て指定できます。たとえば、レコードが「S」か
らはじまるものをマッチさせるには次のように
書きます。

/^S/

　これもdata.txtに適用してみましょう。

$ gawk '/^S/ { print }' data.txt ｶ
Suzuki 90 85
Sasaki 95 90

 パターンの範囲

pattern1, pattern2

というように、「,」で区切って2つのパターンを記
述することで、pattern1が出現してからpattern2
が出現するまでの範囲を選択の対象とすることが
できます。たとえば、「Tanaka」を含むレコード
から「Sasaki」を含むレコードまでを選択するには、

/Tanaka/, /Sasaki/

と書きます。これをdata.txtに適用すると、

$ gawk '/Tanaka/, /Sasaki/ { print }' data.txt ｶ
Tanaka 80 95
Yamada 85 85
Tanaka 70 80
Sasaki 95 90

となります。なお、pattern1の後にpattern2が
出現しない場合は、最後のレコードまでマッチ
します。

 複合パターン
　パターンを複数組み合わせることで、さらに
複雑な条件の指定が可能になります。使用でき
る複合パターンは表1に示すものを用いること
ができ、さらに複合式を複数書き並べることも
可能です。
　ここまで、パターンについて紹介したものを
まとめると表2のようになります。

アクション

　アクションは、一般の言語でのプログラムそ
のものといえる部分です。パターンで選択され
たアクションは、その部分に記述されている出
力や計算などの処理を行います。awkで使用で
きる文を表3にまとめています。アクションが省
略された場合には、パターンに合致したすべて

BEGINとENDパターンは
1度しか実行されません。

BEGINFILE と ENDFILE
パターンは、入力ファイル
ごとにそれぞれ1度ずつ実
行されます。

各入力行については、それ
ぞれの行に対してBEGIN
とENDパターン以外のも
のを毎回比較して、それに
伴うアクションを実行しま
す。

BEGIN

BEGINFILE

ENDFILE

BEGINFILE

ENDFILE

END

入力ファイル1

入力ファイル2

 ▼図4　BEGINFILEとENDFILEの図

46 - Software Design May 2015 - 47

Lesson

3これだけは知っておきたい
AWKの基礎

シェルでのテキスト処理の幅を広げる

のレコードを標準出力へ出力することになります。
　フィールドの値を整形して出力する例は次の
ようになります。

$ gawk '{ printf("%8s : %3d,%3d¥n", $1, $2, ｭ
$3); }' data.txt ｶ
 Suzuki : 90, 85
 Tanaka : 80, 95
 Yamada : 85, 85
 Tanaka : 70, 80
 Sasaki : 95, 90

　また、特定の条件（第2フィールドが80より
大きい）に合致するときのみ整形して出力する
例は次のとおりです。

$ gawk '{ if ($2 > 80) printf("%8s : %3d, ｭ
%3d¥n", $1, $2, $3) }' data.txt ｶ
 Suzuki : 90, 85
 Yamada : 85, 85
 Sasaki : 95, 90

定数

　awkには2つの種類の定数があります。1つ
は数としての定数であり、もう1つは文字列定
数です。数値は、整数、小数点を含む表示、そ
して指数表示による値のどれでも可能です。
　文字列は、連

つら

なった文字をダブルクォーテー
ション「"」で括ったものです。

①"This is a string"
②"日本語の文字列"

　文字列や正規表現の中で、記号「\（バックス
ラッシュ）」によってエスケープされた特殊な意
味を持つ文字があります（表4）。これらの文字
には、printfなどで改行を表す文字としてよく
使われる\nなども含まれています。また、空
の文字列""はNULLと呼ぶことがあります。

パターン 説明
式1 論理演算子 式2 式1と式2を論理式（&& 論理積、 || 論理和）を使った演算によって評価する
!式 式が成立しないときに続くアクションが実行される

パターン1 ? パターン2 : パターン3 パターン1を評価して真になる場合には、パターン2を評価した結果を採用し、パターン1が偽で
あるときには、パターン3を評価した結果によって続くアクションの実行を決定する

 ▼表1　複合パターン

パターン 説明
空のパターン すべての入力行に対してアクションを実行する
/正規表現式 / 正規表現に合致する場合、アクションを実行する
式 式が真である場合、アクションを実行する
BEGINとEND プログラム実行直後と終了直前にアクションを実行する
BEGINFILEとENDFILE ファイルの読み込み前、ファイルの末尾まで読み込んだ後にアクションを実行する
パターン1, パターン2 パターン1が始まってパターン2が出現するまでアクションを実行する
複合パターン
　・式1 論理演算子 式2
　・!式
　・パターン1 ? パターン2 : パターン3

※表1を参照

 ▼表2　awkで使用できるパターン

アクション要素 書式
式 定数、変数、代入、関数呼びだしなど
出力 print 式の並び

printf(書式, 式の並び)
制御 if (式) 文

if (式) 文 else 文
while (式) 文
do 文 while (式)
for (式; 式; 式) 文
for (変数 in 配列) 文
break
continue
next
exit
exit 式
{ 文の並び }

 ▼表3　アクションの中で使用できる文

\a alert文字。通常は［^G］（l＋G）
\b バックスペース［^H］（l＋H）
\f フォームフィード（改ページ）［^L］（l＋L）
\n 改行
\r 復帰
\t タブ［^I］（l＋I）
\v 垂直タブ［^K］（l＋K）
\num 8進コードで表現した文字（numは1桁から3桁の8進数）
\xnum 16進コードで表現した文字（numは1桁か2桁の16進数）
\c 文字cの文字列中で特別な意味を持つ意味を打ち消して、

cそのものとして扱う（例：文字列中に「"」を書き記す
ときは「\"」。「\」そのものは「\\」）

 ▼表4　記号「\」でエスケープされた特殊文字

48 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

変数、型

　awkの変数は使用する前に宣言をする必要は
ありません。また、扱うデータにも変数にも型
の指定をしません。実行時にawkが文脈に応じ
て適切な型として評価してくれるのです。

例：
{ line += 1 }
END { print "total line is", line }

　上の例は、データを1行読み込むたびにline
という変数を1ずつ足しこみ、すべてのデータ
を読み込んだ後にその合計を表示するものです。
lineという変数は、宣言せずに使用できてい
るところに注目してください。
　lineは、整数型もしくはそれと同様な振る舞
いをする数値型の変数として扱われることを意図
しています。また、数値型の変数の初期値がC

言語の局所変数のように不定値ではなく、常に0
に初期化されていることも重要です注4。

配列、多次元配列

　awkにもC言語などで使用できる、同じタイ
プの複数のデータをまとめて扱うために「配列」
が用意されています。配列の添字には、C言語
と同様にarr[1]、arr[2]というように数字に加
えて、arr["apple"]やarr["1 2"]のように、文字
列を用いることができます。
　ただし、添字は内部的にはすべて文字列とし
て扱われるため、arr[1]とarr["1"]は、同じデー
タを参照します。

$ gawk 'BEGIN { a["1"] = 10; a[1] = 20; print ｭ
a["1"], a[1] } ｶ
20 20

　配列の配列といった多次元配列については、
gawk 4.0以前では、次のような記述で多次元
配列を表現していました。

arr[x,y]

　gawk 4.0以降では、次のような記述で多次元
配列を表現することができるようになりました。

arr[x][y]

　なお、前者はあくまでもarr["x,y"]という一
次元配列であり、後者のものとは別物であるこ
とに注意してください。

特別な変数

　awkには、制御やデータの解析のためにいく
つかの組み込み特別変数があります。ここでは、
これらの特別な変数を表5で紹介することにし
ましょう。

文字列操作関数

　次に、とても便利で頻繁に使う関数を紹介し
ます。

注4） なお、文字列型とみるときの初期値は空列""になります。

変数 説明

$1、$2、……、
$n、そして$0

$に続く数字は、現在の入力レコードにおいて
何番目のフィールドであるかを示す。$0は現
在の入力レコード全体を意味する

ARGC コマンドラインの引数の数
ARGV コマンドラインの引数の配列
FILENAME 現行の入力ファイル名が格納される
FNR 現在のファイルのレコード番号が格納される
FS 入力フィールドの区切り文字を定義しておく

変数。区切り文字の指定には正規表現も可能
NF 現レコードのフィールド数が格納される
NR 読み込んだレコード数が格納される。複数ファ

イルを読み込んだ場合はそれらの合計が入る
OFMT 数値のprint文においての出力書式を定義す

る変数。定義しない場合、「%.6g」が既定値
OFS 出力フィールドの区切り文字を定義する変数。

定義しない場合、スペースが既定値
ORS 出力レコードの区切り文字を定義する変数。

定義しない場合、復帰改行が既定値
RS 入力レコードの区切り文字を定義する変数。

定義しない場合、復帰改行が既定値
RSTART 組み込み関数match()で対応した最初の文字

のインデックスが格納される
RLENGTH 組み込み関数match()で対応した文字列の長

さが格納される
SUBSEP 添字区切り文字を定義する変数。定義しない

場合、「¥034」が既定値
IGNORECASE 英字の大文字小文字によって影響される正規

表現の処理に作用する変数
ENVIRON 環境文字列を保持している配列
FPAT
（gawk 4.0以降）

フィールドとして分割したい文字列を正規表
現によって指定するときに使用する変数

 ▼表5　特別な変数

48 - Software Design May 2015 - 49

Lesson

3これだけは知っておきたい
AWKの基礎

シェルでのテキスト処理の幅を広げる

◦index(STRING, TARGET)
　文字列STRING中に、文字列TARGETが存
在する位置を返します。STRING中にTARGET
が存在しなければ、0が戻り値となります。

例1：pos = index("123456789", "1")
→ posの値は1
例2：pos = index("123456789", "234")
→ posの値は2
例3：pos = index("123456789", "7890")
→ posの値は0

●length(STRING)
　STRINGの長さを返します。全角文字、半角
文字いずれも1文字とカウントされます。

例1：len = length("1234567890")
→ lenの値は10
例2：len = length("あいうえお")
→ lenの値は5

●match(STRING, REGEXP)
　文字列STRING中に、正規表現REGEXPが
現れた位置を返します。見つからなければ0が
返ります。ここでの検索は、最左最長なものが
選ばれ、組み込み特別変数RSTARTにその位
置が、RLENGTHにその長さが設定されます。
見つからなかった場合には、RSTART＝0、
RLENGTH＝－1となります。

例：match("ABCD1234EFGH56789", /[0-9]+/)
→ RSTARTの値は5
→ RLENGTHの値は4

● split(STRING, ARRAY, FIELD_SEPARA
TOR)

　STRINGを区切り文字FIELD_SEPARATOR
に従って配列ARRAYに分割します。もし、
FIELD_SEPARATORが指定されなければ、
組み込み特別変数FSを代わりに指定したものと
みなされます。そして、関数の戻り値は、分割
された数になります。FIELD_SEPARATORに
は正規表現を使うことができます。

例： ハイフン「-」、水平タブ「\t」、コロン「:」を区切り
文字として分割する

split("2015-04-01¥t12:34:56", time, ｭ
"[-¥t:]+")
→ time[1] = 2015
→ time[2] = 04
→ time[3] = 01
→ time[4] = 12
→ time[5] = 34
→ time[6] = 56

● patsplit(STRING, ARRAY, REGULAR_EX
PRESSION)

　gawk 4.0から利用できる関数です。前出の
split関数では、区切り文字を指定しましたが、
patsplit関数では、STRINGからREGULAR_
EXPRESSION（正規表現）に指定したパターン
にマッチする文字列を切り出します。

例： ハイフン「-」、水平タブ「\t」、コロン「:」以外の連

続する文字列で分割する。splitの例との違いは、

正規表現にある「^」による否定
patsplit("2015-04-01¥t12:34:56", time, ｭ
"[^-¥t:]+")
→ time[1] = 2015
→ time[2] = 04
→ time[3] = 01
→ time[4] = 12
→ time[5] = 34
→ time[6] = 56

●sprintf(FORMAT, EXPRESSION1,...)
　書式指定文字列FORMATに従って書式付け
られたEXPRESSION1, ...を文字列として返しま
す。printf()関数が出力をせずに、文字列を返す
ものと考えることができます。C言語のsprintf()
とは引数が異なっていることに注意してください。

例：str = sprintf("%sさんのテストの成績はｭ
%3d点です。¥n", "鈴木", 75)

　この例を、print strで出力すると次のように
なります。

鈴木さんのテストの成績は 75点です。ｶ
ｶ

50 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

● sub(REGEXP, REPLACEMENT_STRING,
TARGET_VARIABLE)

　文字列変数TARGET_VARIABLE中の最初
の正規表現REGEXPをREPLACEMENT_
STRINGに置換し、置換した数を返します。もし、
文字列変数TARGET_VARIABLEが指定されな
ければ、現行レコードが対象となります。もちろん、
文字列のマッチングは最左最長なものが対象にな
ります。置き換える文字列の指定には、特殊文字
「&」を含めることが許されていて、この文字はマッ
チした文字列を意味しています。sub()関数ははじ
めに発見された文字列を、ただ1度だけ置き換え
ますので、戻り値は1か0のどちらかになります。
　たとえば、str = "ABC123ABC"だった場合、

res = sub(/ABC/, "abc", str)

とすると、str、resの値はそれぞれ次のように
なります。

str = "abc123ABC"
res = 1

　また、

sub(/ABC/, "&DEF", str)

とすると、strの値は"ABCDEF123ABC"となり
ます。このようにsub関数を使うと、マッチした
文字列の前後に文字を追加することができます。

● gsub(REGEXP, REPLACEMENT_STRING,
TARGET_VARIABLE)

　文字列変数TARGET_VARIABLE中のすべ
ての正規表現REGEXPをREPLACEMENT_
STRINGに置換し、置換した数を返します。
もし、文字列変数TARGET_VARIABLEが指
定されなければ、現行レコードが対象となりま
す。文字列のマッチングは最左最長なものが対
象です。置き換える文字列の指定には、特殊文
字「&」を含めることが許されていて、この文字
はマッチした文字列を意味しています。
　たとえば、str = "ABC123ABC"だった場合、

res = gsub(/ABC/, "abc", str)

とすると、str、resの値は次のようになります。

str = "abc123abc"
res = 2

　また、

gsub(/ABC/, "&DEF", str)

とすると、strの値は、"ABCDEF123ABCDEF"
となります。

●substr(STRING, P, LENGTH)
　STRINGのP文字目からLENGTH文字分の
部分文字列を返します。LENGTHが指定され
ない場合には、文字列STRINGSの最後までと
なります。

例：str = substr("あいうえお", 2, 3)
→ strの値は"いうえ"

まとめ

　awkの基本的なしくみ、構造を理解していた
だけたでしょうか。インプットストリームの内容
をパターンによって分類し、それに対する処理
を記述することで、複雑なテキスト処理が可能
になります。また、awkの言語構造や関数などは、
C言語やJavaなど広く普及している言語との共
通点がたくさんあります。紙幅の都合で解説で
きませんでしたが、awkにはプログラミングに必
要な、算術演算子、制御構文、ユーザ定義関数
などさまざまなしくみが用意してあります。一
般的なプログラム言語の知識のある方でしたら、
それらのしくみを使ったawkプログラムであっ
ても、動作を容易に理解できることと思います。
　次の章では、具体的なawkプログラム例を紹
介します。ここまでの説明と他のプログラム言
語の知識をベースに、それらのプログラムを楽
しんでみてください。ﾟ

May 2015 - 51

Lesson 4
第 1 特 集

手を動かしてデータを操
ろう
！

テキスト処理ベーシックレッスン

初歩的なスクリプト

　awkの最大の特徴は、ここに挙げるような1
行スクリプトだけでも数多くの処理がこなせる
ことです。1行スクリプトを書く場合には改行
による文の区切りが使えないので、文の連結「;」
や文のブロック「{}」を省略できません。また、
最大限簡潔になるように工夫します。1行スク
リプトを理解し使いこなせるようになれば、本
章の後半で紹介するような複雑なプログラムも
容易に記述できるようになります。

行やフィールドの個数

　前章で紹介したパターンとアクション、そし
て特別な変数などを使って簡単な1行スクリプ
トから実行してみましょう。

【スクリプト1】

{ f += NF } END { print NR, f }
【スクリプト2】

{ c += length } END { print c }
【スクリプト3】

{ print NF, length }

　入力データに対して、スクリプト1は、全体
の行数（NR）とフィールド数（NFを加算）を出
力します。スクリプト2は、全体の文字数（length
を加算。空白文字を含む）を出力します。スク
リプト3は、各行ごとにフィールド数（NF）、

文字数（length。空白文字を含む）を出力します。
　上記スクリプトの実行例を示すために、読み
込ませるデータ「jpn.txt」を次のようなテキスト
として用意します。

はやくち ことば

かえる ぴょこ ぴょこ ３ ぴょこ ぴょこ
あわせて ぴょこ ぴょこ ６ ぴょこ ぴょこ

　スクリプト1～3は次のように実行されます。

スクリプト1の実行例
$ gawk '{f += NF} END {print NR, f}' jpn.txt ｶ
4 14 ←4行 14フィールド

スクリプト2の実行例
$ gawk '{c += length} END {print c}' jpn.txt ｶ
51 ←51文字

スクリプト3の実行例
$ gawk '{print NF, length}' jpn.txt ｶ
2 8 ←1行目：2フィールド 8文字
0 0 ←2行目：0フィールド 0文字
6 21 ←3行目：6フィールド 21文字
6 22 ←4行目：6フィールド 22文字

ある文字列を含む行や
フィールドの個数

　次に、ある文字列を含む行やフィールドがい
くつあるかを調べる書き方です。

【スクリプト1】

/EXP/ { c++ } END { print c }

Author 	中島 雅弘（なかじま まさひろ）	 （株）アーヴァイン・システムズ
	 國信 真吾（くにのぶ しんご）	 （株）アーヴァイン・システムズ

	 富永 浩之（とみなが ひろゆき）	 香川大学
	 花川 直己（はなかわ なおき）	 香川大学

前章で基本を理解したところで、本章ではシンプルなワンライナーから段階的に、
複雑な処理をするスクリプトまでを実例を挙げて、テキストストリーム処理ツー
ルとプログラミング言語の2つのawkの側面を紹介します。awkの俊敏性と強
力さの両方を実感してみてください。

サンプルをまねて
AWKの実用性を実感

習うより慣れよう！

52 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

【スクリプト2】

{ for (i = 1; i <= NF; i++) if (ｭ
$i ~ /EXP/) c++ } END { print c }
【スクリプト3】

{ c=0; for (i = 1; i <= NF; i++) if (ｭ
$i ~ /EXP/) c++; print c }

　入力データに対して、スクリプト1は、正規
表現EXPにマッチする行数を出力します。ス
クリプト2は、正規表現EXPにマッチする全
フィールド数を出力します。スクリプト3は、
各行ごとに正規表現EXPにマッチするフィー
ルド数を出力します。
　先ほどの jpn.txtを前提に、「ぴょこ」という
文字列についてスクリプト1～3を適用すると、
次のような結果が得られます。

スクリプト1の実行例
$ gawk '/ぴょこ/ {c++} END {print c}' jpn.txt ｶ
2 ←2行

スクリプト2の実行例
$ gawk '{for(i=1;i<=NF;i++) if ($i ~ ｭ
/ぴょこ/) c++} END {print c}' jpn.txt ｶ
8 ←8フィールド

スクリプト3の実行例
$ gawk '{c=0; for(i=1;i<=NF;i++) if ($i ~ ｭ
/ぴょこ/) c++; print c}' jpn.txt ｶ
0 ←1行目：0フィールド
0 ←2行目：0フィールド
4 ←3行目：4フィールド
4 ←4行目：4フィールド

フィールドの出現回数

　1行スクリプトからちょっとした処理を加え
て、スクリプトファイル（awkの場合は拡張子
に .awkとつけるとわかりやすいでしょう）にし
てみます。スクリプトファイル（hoge.
awk）を使って入力ファイル（input.
txt）に対して実行させるには、前章
で解説したように次のように書きま
す。

$ gawk -f hoge.awk input.txt ｶ

　では、簡単なスクリプトファイルを作ってみ
ましょう。フィールドの出現回数をカウントす
る item.awkです（リスト1）。
　item.awkは、各フィールドの値となる文字列
の出現回数を求めます。表示は、回数、文字列
の順です。jpn.txtに対する実行結果は次のよう
になります。

$ gawk -f item.awk jpn.txt ｶ
 8 ぴょこ
 1 かえる
 1 ３
 1 あわせて
 1 ことば
 1 はやくち
 1 ６

　item.awkでは、各フィールドを添字とする配
列に加算します。フィールドの大きさは一定し
ていないので、先に出現回数を出力して見やす
くしています。出現回数は、printf()の出力書
式を使って、幅3で右詰めに表示されます。
for文は配列要素で回しているので、awkによっ
ては出力順が例と異なる場合があります。

テキストの大きさ

　続いての例は、テキストの大きさを調べる
wc.awkです（リスト2）。
　wc.awkは、与えられたファイル中の、行数、
単語数、文字数、バイト数（通常の全角文字は
2文字と数える）を数えるスクリプトです。単
語は、組み込み変数FSで区切られたものが1
単語と数えられます。このスクリプトは、複数
のファイルにまたがってカウントでき、すべて
のファイルの合計も求めています。
　入力データとして、jpn.txtに加えて次のよう
なdata.txtも用意します。

フィールドの出現回数
{
 for (i = 1; i <= NF; i++) list[$i]++
}

END {
 for (item in list) printf("%3d %s¥n", list[item], item)
}

 ▼リスト1　item.awk

52 - Software Design May 2015 - 53

Lesson

4サンプルをまねて
AWKの実用性を実感

習うより慣れよう！

A 34 0.5
BB 7 12.4
C 0
D 777 1.23

　実行結果は次のようになります。

$ gawk -f wc.awk jpn.txt data.txt ｶ
4 14 51 jpn.txt
4 11 39 data.txt
8 25 90 total

　出力された数値は左から順に、行数、単語数、
文字数です。文字数は、全角・半角文字いずれ
も1文字としてカウントされます。
　wc.awkでは、各入力ファイルごとに、配列
を用意し、ファイル名を配列の添字としていま

す。計算結果の出力と合計には、ENDパター
ンの処理（入力が終了した後）で行います。表示
されるファイルの順序は連想配列の要素の取り
出し方の実現方法によるので、不定と考えたほ
うが無難です。

Webサーバのログの解析

　最後の例として、少し大きなプログラムを扱っ
てみましょう。
　近年、企業だけでなく、個人でも気軽にサー
バを運用するようになってきました。クラウド
を利用したり、さまざまなWebサービスと連
携することも当たり前になってきています。
　しかし一方で、大量アクセスによるサービス
停止や、クラッカーによる攻撃も問題になって
います。効率的な運用を行い、セキュリティに
も配慮するには、システムの動作を適切に設定
し、ログも確認しておく必要があります。本節
では、そういった作業へのawkの活用を紹介し
ます。

Webサーバのログ

　サーバには、多くのログが残されています。
起動ログや操作ログはもちろんのこと、メール
ログやログイン失敗のログまで残されています。
奇妙な操作や連続したログイン要求は、攻撃の

前準備の可能性があります。それら
があまりに多い場合は、何らかの対
策を行わなければなりません。そこ
で、ログを集計し、そういった危険
を事前に察知できるようにしましょ
う。
　一例としてWebサーバの1つであ
るApache HTTPD（以下、Apache）
を題材にします。Apacheは、さま
ざまなログを出力します。アクセス

テキストの大きさ
{
 c[FILENAME] += length($0)
 w[FILENAME] += NF
 l[FILENAME]++
}

END {
 for (f in c) {
 printf("%d¥t%d¥t%d¥t%s¥n", l[f], w[f], c[f], f)
 tc += c[f]
 tw += w[f]
 tl += l[f]
 }
 printf("%d¥t%d¥t%d¥ttotal¥n", tl, tw, tc)
}

 ▼リスト2　wc.awk

127.0.0.1 - - [22/Oct/2014:20:33:37 +0900] "GET /hoge.htm HTTP/1.1" 404 360 "http://localhost/" ｭ
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101 Firefox/20.0"

 ▼図1　Webサーバのログ（1行のみ抜粋）

フィールド ログ中の文字列 説明

$1 127.0.0.1 クライアントの IPアドレス

$2 - クライアントアイデンティティ

$3 - HTTP認証のユーザ ID

$4 [22/Oct/2014:20:33:37 +0900] リクエスト処理の終了日時

$5 "GET /hoge.htm HTTP/1.1" クライアントのリクエスト内容

$6 404 HTTPのステータスコード

$7 360 クライアントへ送信したオブジェ
クトのサイズ

$8 "http://localhost/" クライアントの参照元サイト

$9 "Mozilla/5.0 … Firefox/20.0" クライアントのブラウザ情報

 ▼表1　ログの各フィールドの意味

54 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

ログやエラーログ、SSLのログなどもあ
ります。ここでは、アクセスログを対象
として、ログ解析を行います。
　さて、ログ解析を行うためには、まず
ログの形式を確認しなければなりません。
Apacheでは、図1のようなデータ形式
で保存されます。もちろん、サーバの設
定によってはこれに限りません。
　表1には、各フィールドの情報の意味
をまとめました。この中から、有用なデー
タを持っていそうなものを集計していき
ます。

Webサーバのログの
分割の概要

　まずは、HTTPのステータス別にロ
グを分解しましょう。これをすることに
よって、成功しているアクセス、失敗し
ているアクセスを分け、目的に応じた集
計を行うことができます。そのための
awkスクリプトがremove_error_access.
awkです（リスト3）。
　なお、FPATはgawk 4系列からの機
能です。FPATを使わない場合、各行
の文字列が複雑になると、正しくフィー
ルドに分割できないことがあります。

 ログの分割のプログラムremove_
error_access.awkの解説

　事前処理（BEGIN部分）では、フィール
ドパターンの指定、出力ファイルの指定、
計測変数の初期化を行います。Apacheの
ログでは、""や、[]で囲まれた文字列が1
フィールド内に登場します。そこで、フィー
ルドそのもののパターンを指定してやり、
""や []で囲まれているものを1フィールド
として認識させてやります。
　本体処理では、$6、すなわち、HTTP
のステータスコード別に集計する関数（後
述）を呼び出しています。パターン -ア
クション部分では、コード別に出力を行っ

##==== 事前処理
BEGIN {
 #---- フィールドパターンの指定
 FPAT="([^]+)|(¥"[^¥"]+¥")|(¥[[^¥[]+[^¥]]+¥])"
 #---- 出力ファイルの指定
 information = "information.tmp" # 情報
 redirection = "redirection.tmp" # リダイレクト
 client_error = "client_error.tmp" # クライアントエラー
 server_error = "server_error.tmp" # サーバエラー
 success = "success.tmp" # 成功

 total = 0 # アクセスの総計
}

#==== 本体処理
{
 count($6, num)
}

##==== パターンマッチによる処理の分岐
##---- 情報コードの処理
$6 ~ /1[0-9]+/ {
 print $0 > information
}

##---- リダイレクションコードの処理
$6 ~ /3[0-9]+/ {
 print $0 > redirection
}

##---- クライアントエラーコードの処理
$6 ~ /4[0-9]+/ {
 print $0 > client_error
}

##---- サーバエラーコードの処理
$6 ~ /5[0-9]+/ {
 print $0 > server_error
}

##---- 成功コードの処理
$6 ~ /2[0-9]+/ {
 print $0 > success
}

##==== 事後処理
END {
 for (i in num) {
 OFS=","
 print i "," num[i]
 }
 print "total," total
}

##==== ステータスコード別の集計
function count(code, array) {
 array[code]+=1
 total+=1
}

 ▼リスト3　remove_error_access.awk

54 - Software Design May 2015 - 55

Lesson

4サンプルをまねて
AWKの実用性を実感

習うより慣れよう！

ています。事前処理で指定したファイルに、行
そのものをリダイレクトで出力します。
　事後処理として、ステータスコード別の集計
結果を表示します。このときCSV形式になる
よう、区切り文字を「,」に変更しています。
　ステータスコード別に集計する関数count()
を定義します。count()は、ステー
タスコードの文字列codeと、格納
用の連想配列arrayを引数として
います。count()では、受け取っ
たステータスコードに対応する
array[code]を1増分しています。
また、総計を示すtotalも1増分し
ています。
　このスクリプトをアクセスログ
データ（例：/var/log/httpd/access
_log）に適用すると、図2のよう
に実行されます。内部で、ステー
タス別にしたファイルへログの内
容を出力しています。また標準出
力には、CSV形式でステータス
別のアクセス数を出力しています。
　プログラムを実行する前（図
2-1）と後（図2-2）とで、ファイル
数が変わったと思います。*.tmpの
ファイルが、remove_error_access.
awkによってステータス別に分割
されたログファイルです。
　さて、これでステータス別にロ
グを分割することができました。
これらのログを利用して、2とお
りの集計を行ってみましょう注1。

クライアント別の集計

　まずは、クライアント別に集計
を行ってみましょう。ここで注意
すべきは、クライアントを格納し

ているフィールドはダブルクオート（"）で括られ
ており、内部にスペースが含まれている可能性
があるという点です。

 クライアント別の集計スクリプトの説明
　スクリプトanalyze_client.awkはとても簡単

$ ls ｶ
analyze_client.awk analyze_hourly.awk remove_error_access.awk
↑1

$ gawk -f remove_error_access.awk /etc/httpd/access_log ｶ
200,147
206,1
301,1
302,1
304,5
400,4
401,8
404,168
405,9
total,344

$ ls ｶ
analyze_client.awk analyze_hourly.awk client_error.tmp
redirection.tmp remove_error_access.awk success.tmp
↑2

 ▼図2　ログの分割プログラムの実行結果

##==== 事前処理
BEGIN {
 FPAT="([^]+)|(¥"[^¥"]+¥")|(¥[[^¥[]+[^¥]]+¥])"
}

##==== 本体処理

{
 freq_of[$9]+=1
}

##==== 事後処理
END {
 OFS = ","
 for (i in freq_of) {
 if (! freq_of[i]) {
 freq_of[i] = 0
 }
 print i, freq_of[i]
 total+= freq_of[i]
 }
 print "total " total
}

 ▼リスト4　analyze_client.awk

注1） 余談ですが、クライアントを格納しているフィールドはその内部にさまざまな情報を持っています。ブラウザの種類やバージョン
以外にも、カーネルの名前やOSのバージョンなども記載されています。興味のある人は、awkスクリプトを作って、どんなOSか
らのアクセスが多いかなども分析してみるのも楽しいですよ。

56 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

です（リスト4）。事前処理として、フィールド
パターンを指定しています。本体処理は、$9、
つまりクライアントのブラウザ情報の連想配列
の要素を1ずつ増分しています。事後処理とし
て、CSV形式での出力を行います。
　このスクリプトを先ほど分割して出力された
success.tmpに適用した結果が図3のようにな
ります。

時間別の集計

　次に、時間別の集計を行います。時間別の集
計も、クライアント別の集計と似
ています。ただ、形式がほかの
フィールドと少し異なる部分に注
意が必要です。

 時間別の集計のプログラムの
説明

　analyze_hourly.awkが処理用ス
クリプトです（リスト5）。事前処
理と事後処理は、クライアント別
の集計と同じです。
　時間を格納しているフィールド
$4ですが、形式は、「[dd/MM/
yyyy:hh:mm:ss +0000]」という形
です。しかし、集計に必要な時間
を示す部分は「hh」部分です。す
なわち、$4をパースしてhhの部
分のみを抽出しなければなりませ

ん。さらに、括りを示す「[]」が必要ないですよね。
　そこで本体処理では、まず「[]」を substr()関
数を利用して削除しています。必要な文字は、
フィールド先頭の「[」と、フィールド末尾の「]」
を除いた部分ですので、2文字目から文字列の
末尾2文字目までを取り出し、$4に再代入し
ています。
　次に、時間の部分をsplit()関数を用いてパー
スし、time[]に格納します。time[]には、次のよ
うにデータが格納されています。

$ gawk -f analyze_client.awk success.tmp ｶ
"Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; WOW64; Trident/6.0)",9
"GoogleBot/2.1",26
"Mozilla/5.0 (iPod; CPU iPhone OS 5_1_1 like Mac OS X) AppleWebKit/534.46 (KHTML, like Gecko) ｭ
Version/5.1 Mobile/9B206 Safari/7534.48.3",1
"Mozilla/5.0 (compatible; DotBot/1.1; http://www.opensiteexplorer.org/dotbot, help@moz.com)",4
"Twitterbot/1.0",1
"Mozilla/5.0 (iPhone; CPU iPhone OS 7_1_1 like Mac OS X) AppleWebKit/537.51.2 (KHTML, like Gecko) ｭ
Version/7.0 Mobile/11D201 Safari/9537.53",4
（...略...）
"Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)",31
"Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko",1
"Mozilla/5.0 (Windows NT 5.1; rv:9.0.1) Gecko/20100101 Firefox/9.0.1",1
total 148

 ▼図3　クライアント別集計の実行結果

##==== 事前処理
BEGIN {
 FPAT="([^]+)|(¥"[^¥"]+¥")|(¥[[^¥[]+[^¥]]+¥])"
 total = 0
}

##==== 本体処理
{
 $4 = substr($4, 2, length($4)-2) # 大括弧始まりを除去
 split($4, time, ":") # $4を分割 1:日付, 2:時, 3:分, 4:秒
 hour = time[2]
 freq_of[hour]++
}

##==== 事後処理
END {
 for (i in freq_of) {
 if (! freq_of[i]) {
 freq_of[i] = 0
 }
 print i "," freq_of[i]
 total += freq_of[i]
 }
 print "total," total
}

 ▼リスト5　analyze_hourly.awk

56 - Software Design May 2015 - 57

Lesson

4サンプルをまねて
AWKの実用性を実感

習うより慣れよう！

配列 格納データ形式

time[1] dd/MM/yyyy

time[2] hh

time[3] mm

time[4] ss +0000

　この配列から必要な部分、今回は time[2]を
利用し、連想配列の参照に使っています。
　また、出力ですが、連想配列の出力は昇順降
順に統一することができません。そこで、Linux
のコマンドであるsortを使ってやることで、時間
別に昇順で出力させています。なお、gawk 4系
列では、END {の次の行で PROCINFO["sorted_
in"] = "@ind_str_asc"と記述しておくと、パイ
プライン処理を使わず、スクリプトのみで整列さ
せることができます。
　このスクリプトをsuccess.tmpに適用した結
果が図4です。
　アクセスログという大量のデータを、これだ
けのスクリプトで処理をすることができました。
また、ログのようにawkが得意とするテキスト
ストリームであれば、他の言語と比較しても効
率的な処理が期待できます。ログを眺める目的
はさまざまだと思いますが、ぜひawkを使って、
楽しいログ観察ライフを過ごしてください。

結びにかえて
書籍のご紹介

　以上、awkの使い方を2章にわたって解説し
てきましたが、いかがでしたでしょうか。本稿は、
書籍『AWK実践入門』（5月下旬発売予定）の内
容から抜粋、編集したものになっています。
　書籍では、CLIに馴染みのない技術者や、し
ばらく距離を置いていた技術者にとっても、
躊
ちゅうちょ

躇なくCLIとスクリプト言語環境が使える
きっかけとなるような章が設けてあります。本
特集で紙幅の都合上紹介できなかった正規表現
は、きちんと学べるように単独の章に詳説し、
強力な連想配列についても、ふんだんに例題を
取り入れ解説しました。
　また、当該書籍は、「awkをはじめて使う人

から、プロのプログラマまで使っていただける」
ことを目指し、次の目的をもって執筆していま
す。

・awkと正規表現のリファレンスとしての活用
・awkプログラミングをサポートするスクリプ
トライブラリ集

・awkを使った問題解決の事例集

　そして、単なるスクリプトの域を越えてプロ
グラミング言語としての可能性をお伝えするた
めに、「ローリングハッシュによる文字列の部
分一致」、「編集距離による文字列の類似度」、「マ
ルコフ情報源によるランダム文字列の生成」、
「JSONを使ったSNSデータ分析」など、アカ
デミックな内容から昨今の技術者が関心を寄せ
ている事例まで取り上げました。
　本稿を読んでawkに興味を持たれた方、スク
リプト言語やアルゴリズムに興味のある方、シ
ステム運用保守の現場で小粋で機敏なツールが
必要な方など、幅広い方々に本稿執筆陣による
この書籍を手にとっていただければ幸いです。
ﾟ

$ gawk -f analyze_hourly.awk success.tmp | sortｶ
00,2
01,6
02,5
03,15
04,7
05,6
06,2
07,5
08,4
09,3
10,7
11,2
12,10
13,3
14,6
15,8
16,13
17,3
18,7
19,6
20,3
21,2
22,18
23,5
total,148

 ▼図4　時間別集計の実行結果

58 - Software Design

第 1 特 集 テキスト処理ベーシックレッスン

データを操ろう
！

手を動かして

はじめに

　さくらインターネットで勤務している、荒井

と申します。現在はおもに、弊社が提供する

VPS、専用サーバの保守や運用、お客様からの技

術的な問い合わせに対して、調査および回答を

行う業務を担当しています。

　今回はPostfixにおけるメールログや、Apache

のアクセスログなど、大量のテキストから障害

原因や傾向を把握するのためのデータ抽出コマ

ンドについて紹介します。

メールログの抽出

　サーバ側でSMTP-AUTHを設定してセキュリ

ティに注意していても、アカウントに対して安

易なパスワードを設定し、第三者がそれらを悪

用することでSPAMメールが大量に送信される、

ということが運用上起こるかもしれません。そ

うした「メールアカウントの不正利用」が疑われ

る場合は、どのようにアプローチを試みるのが

効率的でしょうか。筆者の場合は、接続元 IPア

ドレスと認証アカウントを集計することで、ど

のアカウントが不正利用されているかを判断し

ています。図1はPostfixで認証が成功した際の

メールログの一例です。

　これを図2のawkコマンドを用いて見やすく集
計します。

　コマンドの詳細ですが、awk直後の「//」の間に

は、マッチングをさせたい行に含まれる文字列

を指定します。今回の場合は、sasl_username（認

証アカウント）に紐付く行を抽出します。そのマッ

チングされた行の7つ目と9つ目の要素（図1）を、

さらに「=」を区切り文字としてsplitで分割しま
す。分割された文字列は、一時的にbおよびc配

列に格納されるので、各配列の2つ目の要素（接

続元 IPアドレス、認証アカウント部分）を取り出し、

集計します。最後にsort -k 3でアカウント順に
ソートし、表示順序を整えます。

　図2のような場合、複数国の IPアドレスから単

一のアカウントへ認証をかけていること、認証

回数も jpの IPアドレス以上に他国の IPアドレス

の方が多いことから、不正利用の可能性が疑わ

れます。ただし、複数人で単一のアカウントを

共有している場合もあるため、一概にすべて不

正利用と断定はできません。リソースの状況な

どを鑑みて、利用状況についてお客様へ確認す

るという判断もできるのではないでしょうか。

Author 荒井 健祐（あらい けんすけ） 　㈱さくらインターネット

Mail kensuke.arai1987@gmail.com

Postfix・Apacheの
ログを抽出して障害原因を特定

現場で使われるテキスト処理の実際

Mar 2 13:20:04 server postfix/smtpd[29546]: 8C3252A2419: client=xxxx.ad.jp[xxx.xxx.xx.xx], ｭ
sasl_method=PLAIN, sasl_username=test1@example.com

 ▼図1　Post�xで認証が成功した際のメールログ

認証アカウント（$9）
接続元IPアドレス（$7）

C a s e 4

58 - Software Design May 2015 - 59

現場で使われるテキスト処理の実際
Postfix・Apacheの
ログを抽出して障害原因を特定

Ca s e

4

アクセスログの抽出

　近頃、Webサーバに対してWordPressやShell

shockなどの脆弱性調査を目的とした、海外から

のアクセスが増加しています。ですので、そう

した状況で使える、アクセスログの分析手法を

紹介します。

　Webサーバへのアクセスを見やすくするうえ

でもっとも効率的なのは、時間をフィルターに

して集計する方法です。そこで、アクセスログ

から1時間ごとのアクセス数を集計してみましょ

う。図3はアクセスログの一例となります。ここ

に接続元 IPアドレスというもう1つのフィルター

を加えて表示させると、図4に示すワンライナー

のスクリプトとなります。

　まず for文の繰り返しの範囲ですが、アクセス

ログの4番目の要素から、awkのsubstrを利用し、

1時間ごとを指定します。指定された時間は

${hour}として変数に格納されますので、その分

grepをかけて対象時刻を限定し、接続元 IPアド

レスをカウントする、という流れになっています。

　図4の実行結果を確認すると、xxx.xxx.xxx.251

の IPアドレスからは定期的にほぼ同数のアクセ

awk '/sasl_username/ {split($7, b, /=/); split($9, c, /=/); print b[2],c[2]}'ｭ
 /var/log/maillog | sort | uniq -c | sort -k 3
 1 xxxx.ad.jp[xxx.xxx.xx.xx], test1@example.com
 471 xxxx.cn[xxx.xxx.xx.xx], test1@example.com
 681 xxxx.ru[xxx.xxx.xx.xx], test1@example.com
 1065 xxxx.de[xxx.xxx.xx.xx], test1@example.com
 34 xxxx.cn[xxx.xxx.xx.xx], test1@example.com
 732 xxxx.ru[xxx.xxx.xx.xx], test1@example.com
 354 xxxx.uk[xxx.xxx.xx.xx], test1@example.com
 6 xxxx.ad.jp[xxx.xxx.xx.xx], test2@example.com
 35 xxxx.ad.jp[xxx.xxx.xx.xx], test3@example.com

 ▼図2　awkコマンドでメールログを集計

jpのIPアドレスから認証が1回であるのに
対して、海外からのIPアドレス（複数）か
らtest1のアカウントに対して複数回認証
がかけられている

xx.xxx.xxx.xx - - [04/Mar/2015:09:58:44 +0900] "GET /index.html HTTP/1.1" 200 19 "-" "Mozilla/ｭ
5.0 (Windows NT 6.1; WOW64 rv:36.0) Gecko/20100101 Firefox/36.0"

 ▼図3　Webサーバのアクセスログの表示例

substr(2～14)

アクセス時刻（$4）

for hour in $(awk '{print substr($4,2,14)}' ｭ
 /var/log/httpd/access_log | sort | uniq); ｭ
 do echo -e "¥n${hour}"; grep ${hour} ｭ
 /var/log/httpd/access_log ｭ
 | awk '{print $1}'ｭ
 | sort | uniq -c ｭ
 | sort -nr; done ｭ
01/Mar/2015:03
 45 xxx.xxx.xxx.251

01/Mar/2015:04
 228 xxx.xxx.xxx.251

01/Mar/2015:05
 229 xxx.xxx.xxx.251

01/Mar/2015:06
 229 xxx.xxx.xxx.251

01/Mar/2015:07
 6458 167.114.162.108
 2346 182.118.60.63
 228 xxx.xxx.xxx.251
 173 167.114.162.101
 1 94.102.53.195

01/Mar/2015:08
 228 xxx.xxx.xxx.251

 ▼図4　時間・接続元 IPアドレスをフィルターにしてア
　　　クセスログを集計

ほかの時間帯に比
べ、明らかにアク
セス数が増加して
いる。何をされて
いるかの把握は必
須！

60 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

スを受信しているため、HTTPを利用した何らか

のアプリケーションを利用している、もしくは

クローラーなどで定期的にアクセスしているこ

とが予想されます。しかし7時の段階では複数の

IPアドレスから約9,000回のアクセスがあり、そ

のほかの時間と比較すると飛び抜けて多いため、

この時間帯に何が行われたのかを調査する必要

があります。コマンド中awk部分の「print $1」を

「$7」へ変更し、「どのコンテンツに対してアクセ

スされているか」を確認すれば、スクリプトを使

い回して簡単に調査できるはずです。

　最後に接続元 IPアドレスと国別コードを、図5

のスクリプトで紐付けてみましょう。このスク

リプトのポイントはprintfとgeoiplookupとな
ります。前者はダブルクォートで括った中の記

述フォーマットに合わせて、スペースに続く引

数（今回はそれぞれのコマンドの実行結果）を整

形し、出力させるコマンドになります。後者は

GeoIPパッケージに含まれており、引数で指定さ

れた IPアドレスの国別コードを検索して、結果

を表示させます。検索先がローカルファイル（/

usr/share/GeoIP/以下）となるため、適宜ファイ

ルの更新が必要となる点に注意してください。

　図5の結果と併せて表示結果を参照すると、「何

時にどの程度の回数アクセスがあり、どのコン

テンツにアクセスされ、それがどの国からなのか」

を把握できます。こういった多角的な切り口が

あれば、脆弱性対応やリソース増強など、今後

のサーバ運用方針を検討することができるよう

になるでしょう。

◆　◆　◆

　ログなどの大量のテキストから、障害原因や

傾向把握の調査をする際は、ログ全体の俯
ふか ん

瞰か

ら特定の条件でカテゴライズし、情報を見やす

く抽出することが必要になります。

　今回紹介した例はメールログ、アクセスログ

を題材としていますが、こうしたテキスト処理

を即実行できるようにしておくことで、上述し

た調査や対策の検討にかかる時間を、飛躍的に

短縮することができます。皆さんも独自のコマ

ンドを考え、周囲へ展開し、より良い運用を目

指していただければと思います。ﾟ

for list in $(awk '{print $1}' /var/log/httpd/access_log | sort | uniq); ｭ
 do printf "%-15s¥t%6d¥t%-3s %-s %-s %-s¥n" ${list} ｭ
 $(grep ${list} /var/log/httpd/access_log | wc -l) ｭ
 $(geoiplookup ${list} ｭ
 | awk '/Country/ {print $4,$5,$6,$7}'); ｭ
 done
xxx.xxx.xxx.251 4665 JP, Japan
111.249.115.204 756 TW, Taiwan
113.20.29.219 1 ID, Indonesia
123.151.149.222 231 CN, China
128.61.240.66 1 US, United States
146.148.89.239 46 IP, Address not found
167.114.162.101 273 US, United States
167.114.162.105 1 US, United States
167.114.162.108 6458 US, United States
167.114.162.109 33 US, United States
167.114.162.113 815 US, United States
182.118.60.21 38 CN, China
182.118.60.63 2346 CN, China
xxx.xxx.xxx.233 / JP, Japan

 ▼図5　図4の結果に、さらに接続元 IPアドレスと国別コードを紐づける

下線のあるIPアドレスは図4実行時に記載
のあったもの。アクセス数もほぼ一致して
いるため、海外から一時的にアクセスが増
加していることがわかる

May 2015 - 61

データを操ろう
！

手を動かして

テキスト処理ベーシックレッスン

Author 水野 源（みずの はじめ） 　㈱インフィニットループ

Twitter @mizuno_as

構造化データを簡単に処理できる
2つのコマンド

現場で使われるテキスト処理の実際

構造化されたテキストを
もっと楽に処理しよう

　UNIXの考え方の中に「すべてのデータはテキス

トとして保存せよ」「コマンドはフィルタとして

振る舞え」というものがあります注1。パイプでコ

マンドを組み合わせることで、複雑なテキスト

処理を組み立てられるのは、本特集を読むまで

もなくみなさんよくご存じでしょう。UNIXライ

クなOSには、cut、tr、sed、sortといった、テ
キストを加工、整形するコマンドがたくさんあ

ります。しかし、これらのコマンドは「文字列を

操作する」ことに重点が置かれ、抽象度の高い構

造を持ったデータを処理するのには向きません。

たとえば最近ではWebサービスのAPIを叩き、

結果をXMLやJSONで受け取ることも多いですが、

これをcurlとsedで行うには、少々無理があり
ます注2。そこで、知っておくと役に立つかもし

れない、もう少しリッチなイマドキのフィルタ

コマンドを2つ紹介しましょう。

JSONをパースする「jq」

　jqはコマンドラインから使える、軽量なJSON

パーサです。Ubuntuではjqパッケージとして提
供されていますので、次のように簡単にインストー

ルできます。

$ sudo apt-get install jq

　例として、livedoor天気情報「Weather Hacks」

が提供しているREST API注3から JSONを取得し、

jqを使ってパースしてみましょう。cityパラメー

タに取得したい地域の ID番号を指定して、curl
コマンドでAPI注4を叩きます（図1）。

　jqは入力されたJSONに対し、引数で指定され

たフィルタを適用して結果を出力します。まず「.」
を指定してみましょう（図2）。「.」は何もしないフィ
ルタで、入力されたJSONをそのまま出力します。

ただし出力の際にJSONを整形するため、図2のよ

うにAPIのレスポンスを人間が見やすい形に整え

る用途に利用できます。「.foo」のように、ドット

注1） Mike Gancarz（著）, 芳尾 桂（訳）『UNIXという考え方―その設計思想と哲学』, オーム社 , 2001.

注2） たとえば freenodeにあるsedの IRCチャネルのトピックには「Do NOT try to parse markup (html, xml, etc) with sed!」という一文
があります。

注3） URL http://weather.livedoor.com/weather_hacks/webservice
注4） サービス仕様にあるとおり、非ASCII文字はUnicodeエスケープシーケンスで表されているため、sedを使ってこれをUnicode数

値文字参照に置換したうえで、nkfコマンドの--numchar-inputオプションでUTF-8に変換しています。またここでは後の解説で再
利用しやすいよう、APIのレスポンスをいったん変数に格納し、変数をechoしてパイプでjqに渡しています。

$ WEATHER=$(curl -s "http://weather.livedoor.com/forecast/webservice/json/v1?city=016010"ｭ
 | sed -e 's/¥¥u¥(....¥)/¥&#x¥1;/g' -e 's/¥¥n//g' | nkf --numchar-input -w)

 ▼図1　道央（札幌、千歳、石狩など）の天気を取得する

C a s e 5

第 1 特 集

http://weather.livedoor.com/weather_hacks/webservice

62 - Software Design

第 1 特 集

テキスト処理ベーシックレッスン

手を動かしてデータを操ろう！

に続けて文字列を指定すると、オブジェクトから

指定されたキーを探し、その値を返します。またドッ

トをつなげることで、オブジェクトの階層をたど

れます。配列の要素を取り出す場合は「[0]」のよう
に指定します。ブラケット内のインデックスを省

略した場合は、配列内のすべての要素を返します。

もちろん配列内のオブジェクトに対しても、キー

を指定して要素を取り出すことができます（図3）。

「Weather Hacks」では forecastsという配列に今日

から3日ぶんの天気や気温が含まれているので、

図4のようにすれば3日ぶんの天気を取り出せます。

　ほかにもjqは、文字列を結合したり数値を加
減乗除する演算子、条件に合致するものを抽出

する selectや、配列の全要素に処理を適用する

mapのような関数、さらには if-elseのような制

御構文まで持っています。詳細はとても書きき

れませんので、興味があったらマニュアルに目

を通してみてください注5。

テキストをSQLで操作する「q」

　テキストでデータを表す際、カンマやスペー

スでフィールドを区切った、2次元のテーブルに

することがよくあります。Excelで作成した表を

CSVにエクスポートするのは一般的ですし、

/etc/passwdはユーザ名やログインシェル、ホー

ムディレクトリなどをコロンで区切って記録し

ています。こういったテキストのテーブルに対し、

注5） URL http://stedolan.github.io/jq/　オンラインでフィルタをテストすることもできます。
注6） Python 3.x向けのバイナリは「python3-q-text-as-data」です。

$ echo $WEATHER
{"pinpointLocations":[{"link":"http://weather.livedoor.com/area/forecast/0110000","name":"札幌市"},
（...略...）

$ echo $WEATHER | jq '.'
{
 "pinpointLocations": [
 {
 "link": "http://weather.livedoor.com/area/forecast/0110000",
 "name": "札幌市"
 },
（...略...）

 ▼図2　JSONを整形する

$ echo $WEATHER | jq '.title'
"道央 札幌 の天気"

$ echo $WEATHER | jq '.description.text'
" 千島近海に発達中の低気圧があって、北海道付近はｭ
冬型の気圧配置となっています。この低気圧は次第にｭ
東へ遠ざかり...(略)

 ▼図3　キーを指定して値を抽出する

$ echo $WEATHER | jq '.forecasts[].telop'
"曇り"
"曇のち雪"
"曇り"

 ▼図4　配列内に含まれるキーを指定して、3日ぶんの
　　　天気を取り出す

SQLライクな構文でデータの抽出を可能にする

のがqです。Ubuntu 15.04以降では「python-q-

text-as-data」というパッケージ注6で提供されて

います。Ubuntu 15.04以降の場合は、

$ sudo apt-get install python-q-text-as-data

でインストールできます。また、筆者のPPAで

Ubuntu 14.04向けのバックポートを提供してい

ますので、Ubuntu 14.04の場合は、

$ sudo add-apt-repository ppa:mizuno-as/ｭ
q-text-as-data
$ sudo apt-get update
$ sudo apt-get install python-q-text-as-data

http://stedolan.github.io/jq/

62 - Software Design May 2015 - 63

現場で使われるテキスト処理の実際
構造化データを簡単に処理できる
2つのコマンド

Ca s e

5
としてください。

　qには、引数としてデータを抽出するための
SQLを指定します。「SELECT hoge FROM fuga」

というありふれた形式ですので、RDBMSの利用

経験がある人であれば、一目で理解できるでしょ

う。たとえば表1のような、メニュー名、価格、

カロリーが書かれたCSVファイルがあるとします。

この中からワンコインで食べられるメニューを

抽出し、価格の安い順に並べてみましょう。も

しもシェルスクリプトで書くとすれば、cutで価
格のフィールドを抜き出し、testで大きさを比較、

条件を満たした行だけをテンポラリファイルに

書き出し、最後にsortする必要があるでしょう。
しかしqを使えば図5のように、1行のSQLで期

待した結果を得ることができます注7。

　FROMに「-」を指定すれば、標準入力からデー

タを渡せます。たとえばpsコマンドの出力を集
計し、ユーザごとに使用メモリ量（RSS、VSZ）の

合計をする（図6）、なども簡単です。

◆　◆　◆

　jqもqも非常に強力なコマンドですが、インス
トールされていない環境のほうが多い（むしろ使

えるほうが珍しい）コマンドなのは間違いありま

せん。やはりどんな環境にもある、cut、sort、

tr、sedといったコマンドは避けて通ることはで

きないでしょう。しかし「こんな便利なコマンド

もあるんだ」程度に覚えておくと、いつか役に立

つ日がくるかもしれませんね。ﾟ

A B C
1 メニュー 価格 カロリー
2 牛めし 290 735
3 牛めし野菜セット 440 830
4 牛めし豚汁セット 520 1056
5 牛めしお新香セット 420 823
6 旨辛ネギたま牛めし 390 860
7 おろしポン酢牛めし 390 762
8 キムチ牛めし 390 781
9 プレミアム牛めし 380 737

10 麻婆カレー 430 908
11 オリジナルカレー 330 661
12 オリジナルカレギュウ 500 829
13 オリジナルハンバーグカレー 590 1074
14 キムカル丼 490 822
15 ビビン丼 450 767
16 ネギ塩豚カルビ丼 430 832
17 チキンガーリック定食 630 1029
18 牛焼肉定食 590 935
19 カルビ焼肉定食 630 943
20 豚バラ焼肉定食 550 898
21 スタミナ豚バラ生姜焼定食 590 933
22 肉野菜炒めセット 630 1093
23 デミたまハンバーグ定食 630 1064
24 鉄皿チキングリルセット 640 985
25 鉄皿デミたまハンバーグセット 640 1162
26 鉄皿うまトマハンバーグセット 640 1144

 ▼表1　CSVファイル

$ q -H -t "SELECT メニュー,価格 FROM menu.csv WHERE 価格 <= 500 ORDER BY 価格"
牛めし 290
オリジナルカレー 330
プレミアム牛めし 380
旨辛ネギたま牛めし 390
おろしポン酢牛めし 390
（...略...）

 ▼図5　CSVファイルから、ワンコインで食べられるメニューを価格順にソートして表示する

$ ps aux | q -H "SELECT USER,SUM(RSS),SUM(VSZ) FROM - GROUP BY USER"
postfix 2932 54868
root 36556 659664
syslog 1260 182112
www-data 54400 1028360
（...略...）

 ▼図6　psコマンドの結果を集計して、ユーザごとの使用メモリ量の合計を表示する

注7） -Hオプションはヘッダ行があることを、-tオプションはタブ区切りであることを表しています。

64 - Software Design

　CentOS 7のシステム管理者向け、構築・運用・
保守のノウハウをまとめた1冊。OSの機能ごと
に、基礎知識から実践的な操作方法までを解説
しているほか、コンテナ型仮想化の「Docker」、
並列分散処理の「Hadoop」、分散ストレージ基
盤の「GlusterFS・Ceph」という比較的新しいツー
ルの使い方も扱っている。

　「7」へのバージョンアップではサービス管理
がSystemdに、ファイルシステムがxfsへ変更
され、セキュリティ機能として firewalldが追加
されるなど大きな仕様変更があったが、その変
更点、ハマリどころについて各章で丁寧に述べ
られている。そのため、テスト環境での新機能
の検証などにも適した本だと言える。

古賀 政純【著】
B5変形判、320ページ／定価＝3,000円＋税／発行＝インプレス
ISBN＝978-4-8443-3753-9

　ソフトウェアが遍在化し、あらゆるものがデ
ジタル化、Web化に向かう中で、顧客、そしてユー
ザが満足のいく形で ITシステム／ソフトウェア
を実現することの重要性が今後ますます増して
いくのは間違いない。本書はそのための重要な
キーワード、「要件定義」をわかりやすく解説し
た書籍。書名のとおり、初心者にもわかりやすく、

とっつきやすい内容であり、現場の若手エンジ
ニアが要件定義についてポイントを押さえるた
めに読むもよし、経験豊富なエンジニアがあら
ためておさらいとして読むもよし、という必要
十分な解説になっている。同じテーマのほかの
書籍と比べ、非常にコンパクトなので、息抜き
程度に気軽に読めるのも良い。

羽生 章洋【著】
四六判、184ページ／価格＝1,980円＋税／発行＝技術評論社
ISBN＝978-4-7741-7228-6

　C++の開発者ビャーネ・ストラウストラップ
自身による解説書（C++11対応）。1,360ページ・
全44章と非常に厚い1冊となっているが、各章
の独立性は強く、興味のある章から適宜読める
ように作られている。すべての基本機能・すべ
ての標準ライブラリから、オブジェクト指向・
ジェネリックプログラミングのための抽象化機

能まで、まさにC++のすべてを記した1冊と言
える。制御構造とは何かといったプログラミン
グの基本については極力省かれており、やや上
級者向けの解説書と言える。Visual Studioの無
償化によってC++がより使いやすくなった今、
マシンに近い言語を勉強したいといった人は、
この本を片手に挑戦してみてはどうだろうか。

ビャーネ・ストラウストラップ【著】、柴田 望洋【訳】
B5変形判、1,360ページ／定価＝8,800円＋税／発行＝SBクリエイティブ
ISBN＝978-4-7973-7595-4

プログラミング言語C++［第4版］

CentOS 7実践ガイド

　エバンジェリストと言えば抜きんでた才覚と
技術を持ち合わせた憧れの職位だ。本書は、テ
クノロジの伝導師（エバンジェリスト）として、
その仕事の内幕をかなりオープンに公開してい
る。朝7時から始まる仕事のスケジュール管理
から、何1つモノが置いていない机の上まで、
さらには学生時代からどのように技術を習得し

てきたのか……あたかも技術者の自叙伝のよう
である。その中で多くのエンジニアに欠けてい
る「伝える技術」の重要性をさまざまな観点から
論じている。これはプレゼン技術向上の参考に
なるのではなかろうか。1つ気になるのは、縦
書きの本ゆえか見出しで使われている不等号の
向きが、わかりにくいことである。

西脇 資哲【著】
四六判、224ページ／定価＝1,500円＋税／発行＝日本実業出版社
ISBN＝978-4-534-05257-5

エバンジェリストの仕事術

はじめよう！　要件定義
～ビギナーからベテランまで

第2特集

ファイル共有自由自在

［徹底入門］
最新・Sambaの

教科書
　本誌、2013年2月号にSamba4.0.0の記事が

掲載されました。それから約2年を経て現在の

バージョンは4.2.0になっています。本特集では初

心に返り、超定番のSambaサーバ構築テクニッ

クをすみからすみまで徹底解説します。

　第1章では、Windowsサーバ互換の機能を提

供するオープンソースソフトウェアであるSamba

の基本的な設定について解説します。

　第2章では、Sambaのユーザ管理とファイル

共有の基本的な設定について解説します。

　第3章では、応用編としてActive Directoryへ

の認証連携について解説します。

　ぜひ、皆さんのSamba環境構築にお役立てく

ださい。

 Author たかはしもとのぶ　 mail monyo@monyo.com　 Twitter @damemonyo

　Sambaのインストールと基本設定 P.66

　Sambaのユーザ管理とファイル共有の基本設定 P.76

　Active Directoryとの認証連携 P.85

第 章1
第 章2
第 章3

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

66 - Software Design

Sambaとは

　Sambaは、LinuxやFreeBSD、商用UNIXと
いった各種UNIX系プラットフォーム（以下
Linuxと総称します）上で、ファイルサーバやド
メインコントローラといったWindowsサーバ互
換の機能やWindowsとLinuxとの連携機能を提
供する、主要なオープンソースソフトウェアの
1つです。
　現在でも活発に開発が行われており、ほぼ月
イチのペースでセキュリティやバグ修正版がリ
リースされているほか、次期バージョンの開発
も平行して行われています。記事執筆時点の最
新版は、3月4日にリリースされたSamba 4.2.0

です。
　Sambaの最新情報は、https://samba.org/や
https://wiki.samba.org/から入手できます。

Samba のおもな機能

　最初に、Sambaが提供するおもな機能につい
て簡単に紹介しておきましょう。

ファイルサーバ機能

　Sambaを使用することで、Windowsのファイ
ルサーバ機能を簡単に提供することができます。
図1は、Sambaが動作しているLinuxサーバ（以
下Sambaサーバ）にWindows 7クライアントか
らアクセスした際の画面イメージになります。
このように一般のユーザが普通にアクセスして

いる限り、Windowsサーバとまった
く見分けがつきません。
　実際、数万円で販売されている廉
価なネットワーク対応HDD（NAS）
の多くにはSambaが内蔵されていま
すので、知らないうちにSambaを
使っている方も多いかもしれません。
　ファイルサーバの機能を活用する
ことで、Linuxサーバとの間で気軽
にファイル転送を行うこともできま
す。Linuxサーバとのファイルのや
りとりには、WinSCPなどのツール
やFTPを使うことも多いと思います

Sambaのインストールと
基本設定

 Author たかはしもとのぶ　 mail monyo@monyo.com　 Twitter @damemonyo

第 章1

　本章では、Windowsサーバ互換の機能を提供するオープンソースソフトウェアであるSambaの基本的な設
定について解説します。

 ▼図1　Sambaサーバへのアクセス

https://samba.org/
https://wiki.samba.org/

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Samba のインストールと基本設定第 章1

66 - Software Design May 2015 - 67

が、Sambaを活用すればWindowsクライアント
へのツールのインストールが不要であることに
加え、Linuxサーバ上のファイルを直接編集す
ることもできるので便利なことも多いでしょう。
　SambaサーバのファイルシステムがACL
（Access Control List）に対応している場合は、
Windowsサーバ上のファイルと同様の操作で、
各ファイルのプロパティから「セキュリティ」タ
ブを選択すると表示される図2の画面からアク
セス許可の設定を行うこともできます。
　そのほか、少し複雑な設定が必要ですが、
Windowsサーバの持つ分散ファイルシステム
（DFS）やボリュームシャドウコピー機能といっ
たエンタープライズ向けの機能を提供すること
ができます。また、Windowsサーバと同様にプ
リンタサーバ機能を提供することもできます。

Active Directory連携機能

　Sambaを構成することで、Linuxサーバを
Active Directoryに「参加」させることができま

す。これにより、Sambaが提供するファイル共
有にアクセスする際の認証をActive Directory
のユーザとパスワードで行うことが可能となり
ます。さらにWinbindという機構を用いること
で、図3のようにActive Directoryのユーザや
グループを自動的にLinuxサーバで使用するこ
とも可能になります。
　PAM（Pluggable Authentication Module）を
設定することで、sshなどのSamba以外のサー
ビスの認証をActive Directoryで行うこともで
きます。

ドメインコントローラ機能

　特殊な設定が必要ですが、Active Directory
のドメインコントローラとして機能することも
できます。この機能は2012年12月にリリース
されたSamba 4.0.0から提供されており、認証
統合やグループポリシーを活用したクライアン
ト管理を図4のようにWindowsの管理ツール
（RSAT）から行うことが可能です。

 ▼図2　アクセス許可の設定画面 ▼図4　 RSATに含まれる「Active Directory ユーザーとコン
ピューター」によるActive Directoryの管理

 ▼図3　Windowsドメインのユーザやグループの使用

id W2K8R2AD1\\samba01
uid=10001(W2K8R2AD1\samba01) gid=10000(W2K8R2AD1\domain users) ｭ
groups=10000(W2K8R2AD1\domain users)
getent passwd W2K8R2AD1\\samba01
W2K8R2AD1\samba01:*:10001:10000:samba 01:/home/W2K8R2AD1/samba01:/bin/false

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

68 - Software Design

クライアント機能

　SambaにはLinuxサーバからWindowsサーバ
上のファイル共有にアクセスしてファイルのコ
ピーを行うsmbclientコマンドやWindowsサー
バのリモート管理を可能とするnetコマンドと
いった各種ユーティリティが付属しています。
　smbclientによるファイルコピーの実行例を図
5に示します。これらのユーティリティは自動
で処理を実行することもできますので、業務シ
ステムでWindowsとLinuxとを連携させる際に
も有用です。

ネットワーク機能

　図6のように「ネットワーク」フォルダに
Linuxサーバを表示させるブラウジング機能や、
Microsoftネットワーク特有のWINSサーバや
WINSクライアント機能といった機能も提供し
ています。

ここまでのまとめ

　ここまでSambaの提供する機能につい
て駆け足で解説しました。Sambaは
Windowsサーバ互換の機能を提供するた
め、各機能の詳細についてはWindowsの
情報源も参照してください。

Samba サーバの
インストールと初期設定
　ここからは、Red Hat Enterprise Linux（以下
RHEL）のクローンとしてユーザが多いCentOS
を例に、具体的なSambaのインストールとファ
イルサーバとしての設定について解説していき
ます。なおCentOSは、2014年7月にリリース
された7.0以降とそれより前のバージョンとで、
設定が大きく異なっています。ここでは7.0以
降を中心に両方の設定方法を解説し、併せて
Ubuntu 14.04 LTS（以下Ubuntu）での設定方法
についても簡単に解説します。
　設定方法はGUI、CUIなどいくつかの方法が
ありますが、サーバ用途でインストールする場
合はGUIをインストールしないことも多いので、
ここでは最小インストール状態でも設定可能な
方法を中心に説明します。

 ▼図5　smbclientコマンドの実行例

smbclient //madoka/monyo -U monyo
Enter monyo's password: ← パスワードを入力
Domain=[HOME] OS=[Unix] Server=[Samba 3.5.6]
smb: \> cd Archives
smb: \Archives\> dir
 . D 0 Sun Feb 15 11:40:47 2015
 .. D 0 Mon Mar 2 03:37:18 2015
 pam_ldap.tgz A 163437 Fri Jan 14 08:02:01 2011
 Sharity-Light D 0 Sun Jun 8 13:00:47 2014
 Samba D 0 Wed Feb 11 11:41:20 2015
 rktools.exe A 12337752 Sun Jun 8 11:25:04 2014

 65535 blocks of size 33553920. 45962 blocks available
smb: \Archives\> get rktools.exe
getting file \Archives\rktools.exe of size 12337752 as rktools.exe ｭ
(3051.8 KiloBytes/sec) (average 3051.8 KiloBytes/sec)
smb: \Archives\> quit
#

 ▼図6　ブラウジング機能

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Samba のインストールと基本設定第 章1

68 - Software Design May 2015 - 69

Sambaサーバのインストール

　CentOSなど汎用のLinuxディストリビュー
ションでは、例外なくSambaのパッケージが提
供されています。以降では、パッケージを使用
したSambaのインストールについて解説します。

 ▶パッケージからのSambaインストール
　RHELやCentOSを含むRHEL互換ディスト
リビューション（以下RHEL系）やUbuntuでの
Sambaは複数のパッケージから構成されていま
すが、RHEL系、UbuntuともSambaサーバ本
体の機能はsambaというパッケージによって提
供されています。
　sambaパッケージのインストール状態は次の
ようにして確認できます注1。

rpm -q samba

　sambaパッケージが未インストールの場合は、
次のようにyumコマンドでインストールしま
す注2。

yum install samba

　これらのコマンドによりsambaパッケージの
動作に必要な各種パッケージも自動的にインス
トールされます。

　なお、次章ではsmbpasswdというコマンドを
使用しますが、CentOS 7.0のsambaパッケージ
には含まれていないため、CentOS 7.0では次の
ようにして samba-clientパッケージもインス
トールしておいてください注3。

yum install samba-client

 ▶ファイアウォール設定の変更
　CentOSでは、セキュリティ強化のため各種
セキュリティ設定がデフォルトで有効になって
います。そのままではWindowsマシンから
Sambaサーバにアクセスできませんので設定変
更が必須です。
　まずはファイアウォールの設定を変更して、
Sambaサーバへのアクセスに必要な「137/udp、
138/udp、139/tcp、445/tcp」の4つのポートを
開放します。CentOS 7.0以降ではfirewalldと
いう新しいサービスがファイアウォールの設定
を管理しており、firewall-cmdコマンドで設
定を行います。設定例を図7に示します。
　Sambaサーバへのアクセスに必要なポートは
sambaという名称で定義済みです。--add-
service=sambaを指定することでポートが直ち
に開放されますが、この設定は再起動すると元
に戻ってしまいます。別途--permanentオプ
ションを指定してコマンドを実行することで、
この設定がファイルに保持され、再起動後も設
定が維持されるようになります。
　CentOS 6.Xではlokkitコマンドなどで設定
を行います。設定例を図8に示します注4。

 ▼図7　ファイアウォールの設定変更例（CentOS 7.0）

[root@centos70 ~]# firewall-cmd --add-service=samba
success
[root@centos70 ~]# firewall-cmd --add-service=samba --permanent
success

 ▼図8　ファイアウォールの設定変更例（CentOS 6.X）

[root@centos66 ~]# lokkit --service=samba
[root@centos66 ~]# service iptables restart
iptables: Setting chains to policy ACCEPT: filter [OK]
iptables: Flushing firewall rules: [OK]
iptables: Unloading modules: [OK]
iptables: Applying firewall rules: [OK]

注1） Ubuntuでは「dpkg -l samba」コマンドでインストール状
況を確認できます。

注2） Ubuntuでは、「apt-get install samba」コマンドなどで
sambaパッケージをインストールします。

注3） CentOS 6.X以前やUbuntuで
は、sambaパッケージに smb
passwdコマンドが含まれてい
ますので、samba-client（Ubuntu
では smbclient）パッケージの
インストールは不要です。
Sambaの管理に smbpasswd
コマンドは必須ではないです
が、利便性を考慮し、ここで
はインストールを前提とした
解説を行います。

注4） 筆者が確認した限り、最小イ
ンストール構成では lokkitコマ
ンドの設定をもとに戻すには
/etc/sysconfig/iptablesと /etc
/sysconfig/iptables-config
ファイルを直接修正する必要
がありました。

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

70 - Software Design

　設定は iptablesサービスの再起動後に反映さ
れます。
　CentOS 5.X以前では、コマンドラインで
lokkitコマンドを起動すると図9の画面が表示
されますので、ここから「Customize」ボタンを
押すと表示される図10の画面から設定を行い
ます。
　もちろん、上記以外の方法で設定を行っても
かまいません。またSambaを動作させるうえで
はファイアウォール機能自体を無効にしてもか
まいませんが、セキュリティ上は可能な限り有
効にしておくことを推奨します。
　Ubuntuの場合、ファイアウォールはデフォル
トが無効ですので、とくに設定を行う必要はあ
りません。

 ▶ SELinuxの無効化
　引き続き、SELinuxの設定を変更します。
SELinuxはセキュリティを高める機能としては
非常に有用なのですが、反面熟練者でも適切に
設定して運用するのが難しい機能です。ファイ
アウォールを適切に設定していれば外部からの

アクセスについては必要最低限に絞ることがで
きるため、初心者は、まずはSELinuxを無効化
した状態で設定することをお勧めします。
　リスト1のように/etc/selinux/configファイ
ル中のSELINUX行をdisabledにして再起動す
ることでSELinuxが無効になります。
　Ubuntuの場合、SELinuxはデフォルトで無効
ですので、とくに設定を行う必要はありません。

Sambaの起動と停止

　Sambaはサービスとして動作しますので、サー
バを再起動しなくても起動、停止を行うことが
できます。またサーバ起動の際に自動起動を行
うかどうかも個別に制御できます。
　RHEL系の場合、Sambaをインストールした
だけではSambaは起動しません。またサーバ起
動の際にも自動起動しません。CentOS 7.0での
Sambaの起動／停止は図11のようにコマンドラ
インからsystemctlコマンドを使用して行いま
す。Sambaのサービス名は歴史的経緯で「smb」、
「nmb」ですので注意してください。
　サーバ起動時にSambaを自動起動させる場合
は、図12のように設定します。
　自動起動を止めたい場合は、enableの代わり

 ▼図9　lokkitの起動画面（CentOS 5.X）

 ▼図10　 ファイアウォールの設定変更例（CentOS 5.X
以前）

 ▼リスト1　SELinuxを無効化する設定（CentOS 7.0）

...
disabled - No SELinux policy is loaded.
SELINUX=disabled ← この行を変更する
SELINUXTYPE= can take one of these two values:
...

 ▼図11　 コマンドラインからのSambaの起動と停止
（CentOS 7.0以降）

[root@centos70 ~]# systemctl start smb
[root@centos70 ~]# systemctl start nmb

[root@centos70 ~]# systemctl stop smb
[root@centos70 ~]# systemctl stop nmb

 ▼図12　 サーバ起動時にSambaを自動起動させる
（CentOS 7.0以降）

[root@centos70 ~]# systemctl enable smb
[root@centos70 ~]# systemctl enable nmb

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Samba のインストールと基本設定第 章1

70 - Software Design May 2015 - 71

にdisableを指定してください。
　CentOS 6.X以前でのSambaの起動、停止は、
図13のようにserviceコマンドで行います。
　CentOS 6.X以前でサーバ起動時にSamba
を自動起動させる場合は、図14のように
chkconfigコマンドで設定します。
　自動起動を止めたい場合は、onの代わりにoff
を指定します。
　Ubuntuの場合はインストールが完了した時点
でSambaが自動起動し、サーバ起動時にも自動
起動する設定が有効になります。手動で停止、
起動する設定を図15に示します注5。
　サーバ起動時のSambaの自動起動を無効にす

る場合は、/etc/init配下の smbd.confおよび
nmbd.confを、たとえばsmbd.conf.disableやnmbd.
conf.disableのようにリネームします。
　こうした設定により、Sambaを構成するnmbd
とsmbdという名前のプロセスが起動、停止しま
す注6。psコマンドによるプロセス起動の確認例

「SELinux無効化」の是非についてColumn

　インターネット上で、強固なセキュリティを提供するSELinuxを安易に無効化することへの是非がよく
議論されていますが、それらの議論を意識しつつも、運用の容易性とセキュリティを天秤にかけた結果、
ここではSELinuxを無効化することを推奨することにしました。
　本文で書いたとおりSELinuxの運用は難易度が高く、筆者は熟練者であっても正しく運用することは難
しいと考えています。またベンダの商用ミドルウェアを導入する際には無効化を求められることが多いた
め、社内の業務サーバでは真っ先に無効とされてしまうことが多いと考えていますので、SELinuxを有効
にするケースは実態として少ないと考えているためです。
　ただし、本稿のCentOS 7.0の設定例はSELinuxを有効にした環境で確認しています。またSELinuxを
有効にした環境での注意点についても「注」などの形で補足することで、SELinuxを有効にした環境にも配
慮しました。

 ▼図13　コマンドラインからのSambaの起動と停止（CentOS 6.X以前）

[root@centos 66 ~]# service smb stop
SMB サービスを停止中 [OK]
NMB サービスを停止中 [OK]
[root@centos 66 ~]# service smb start
SMB サービスを起動中 [OK]
NMB サービスを起動中 [OK]

 ▼図14　サーバ起動時にSambaを自動起動させる（CentOS 6.X以前）

[root@centos 66 ~]# chkconfig smb on ← 自動起動の有効化
[root@centos 66 ~]# chkconfig --list smb ← Sambaの起動状態の確認
smb 0:off 1:off 2:on 3:on 4:on 5:on 6:off
 ↑ on になっていることが確認できる

 ▼図15　 コマンドラインからのSambaの起動と停止
（Ubuntu）

root@ubuntu:~# initctl stop smbd
smbd stop/waiting
root@ubuntu:~# initctl stop nmbd
nmbd stop/waiting
root@ubuntu:~# initctl start nmbd
nmbd start/running process 1083
root@ubuntu:~# initctl start smbd
smbd start/running process 1088

注5） Debianや古いバージョンのUbuntuでは、「/etc/init.d/
samba [start|stop]」コマンドで起動、停止を行い、update-
rc.dコマンドでシステム起動時の自動起動の設定を行いま
す。

注6） 設定によってはwinbinddというプロセスやsambaという
プロセスの起動が必要な場合もあります。

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

72 - Software Design

を図16に示します。

Samba の基本設定

　Sambaの設定は、おもにsmb.confファイルで
行います。このファイルのデフォルトのパスは
RHEL系、Ubuntuとも/etc/samba/smb.confに
なります。

smb.confファイルの構造

　smb.confファイルはリスト2のような構造を
しています。
　Sambaでは、smb.confファイルで設定可能な
オプションのことを「パラメータ」と呼び、各パ
ラメータの設定は「（パラメータの）値」と呼びま
す。値にはデフォルト値があり、明示的に設定
されなかった場合は、デフォルト値が設定され

たものとして扱われます。
　[]で囲まれた行から次の[]で囲まれた行まで
の間が1つの「セクション」となり、[]で囲まれ
た文字列（リスト2ではglobalやセクション名1
など）がセクション名となります。セクション名
は基本的に共有名に対応しますが、表1で説明

Samba の脆弱性対応Column

　残念ながら、Sambaも脆弱性と無縁ではありません。本稿の執筆中にもSambaに関する脆弱性が報道
されました。

・CVE-2015-0240: Unexpected code execution in smbd
　https://www.samba.org/samba/security/CVE-2015-0240

　Sambaの本家からは、セキュリティ対応は新規バージョンのリリースという形で行われます。実際、上
記脆弱性に対応してSamba 4.2.0rc5、Samba 4.1.17、Samba 4.0.25、Samba 3.6.25といったバージョ
ンがリリースされました。
　しかしRHEL系やUbuntu系などのディストリビューションでは、基本となるSambaのバージョンは変
えずに該当の脆弱性対策のみを取り込んだパッケージをリリースすることで脆弱性に対応することが多い
ようです。
　通常即日～数日で脆弱性に対応した新しいパッケージのリリースがアナウンスされています。そのため
パッケージ版のSambaを使用している場合は、最新版のパッケージを適用し続けることが、既知の脆弱
性に対処する最善策だと考えてよいでしょう。
　パッケージの更新は、新規インストールと同様に「yum update samba」や「apt-get upgrade samba」コ
マンドで行えます。

 ▼図16　 psコマンドによるSambaの起動確認例
（CentOS 7.0）

[root@centos70 ~]# ps ax | grep mbd
 2511 ? Ss 0:00 /usr/sbin/smbd
 2512 ? S 0:00 /usr/sbin/smbd
 2573 ? Ss 0:00 /usr/sbin/nmbd
 2578 pts/0 R+ 0:00 grep --color=auto mbd

 ▼リスト2　smb.confファイルの構造

[global]
 パラメータ名 = 値
 パラメータ名 = 値
 …

[homes]
 パラメータ名 = 値
 …

[セクション名1]
 パラメータ名 = 値
 …

[セクション名2]
 …

global Samba全体の設定を記述する。特定の
共有には関連付けられていない

homes 各ユーザのホームディレクトリを一括
して共有する際の設定を記述する

printers サーバで定義されているプリンタを一括して共有する際の設定を記述する

 ▼表1　特殊なセクション

https://www.samba.org/samba/security/CVE-2015-0240

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Samba のインストールと基本設定第 章1

72 - Software Design May 2015 - 73

する3つのセクションだけは特殊な意味を持っ
ています。
　パラメータ名の大文字小文字の違いや、パラ
メータ名の前後およびパラメータ名中の空白は
無視されます。たとえばnetbios nameというパ
ラメータ名は、リスト3のどの書式で記述して
も文法上は同義です。
　「#」や「;」から始まる行はコメントとして扱わ
れます。
　RHEL系、Ubuntuともに、デフォルトのsmb.
confは多くのコメントが含まれていて非常に長
大になっていますが、実際に定義されているパ
ラメータはわずかです。
　定義済みのパラメータだけを抽出して表示す
る例を図17に示します。

globalセクションの基本設定

　Samba全体の設定であるglobalセクションに
ついて、実用上、最低限必要な設定について説
明します。

 ▶日本語に関する設定
　日本語ファイル名を正しく扱う上で、リスト
4の設定が必要です。デフォルトのsmb.confに
はこの設定がないので追加してください。
　この設定はsmb.conf自身の文字コードも決定
するため、[global]という行の直下に記述する
ことを推奨します。

・dos charset = CP932
　日本語の環境であることを指定します。

・unix charset = 文字コード
　日本語ファイル名に使いたい文字コードに応
じてUTF-8（デフォルト値）、EUCJP-MS、
CP932のいずれかを指定します。

　既存の環境との互換性などの理由で文字コー
ドとして伝統的なEUCJP-MS（EUC）やCP932
（シフトJIS）を使っている場合は、文字化けが
発生しないように適切な設定を行ってください。

 ▼リスト3　パラメータ名の記述例

 netbios name = sambasv
 net BIOS name = sambasv
 Net B I O S name= sambasv

 ▼リスト4　日本語を使用する設定

[global]
 dos charset = CP932
 unix charset = UTF-8（もしくはEUCJP-MSやCP932）
 …

 ▼図17　smb.confの定義済みパラメータの表示例（CentOS 7.0）

[root@centos70 ~]# cat /etc/samba/smb.conf | egrep -v ^'[[:space:]]*[#;]' |grep -v '^$'
[global]
 workgroup = MYGROUP
 server string = Samba Server Version %v
 log file = /var/log/samba/log.%m
 max log size = 50
 security = user
 passdb backend = tdbsam
 load printers = yes
 cups options = raw
[homes]
 comment = Home Directories
 browseable = no
 writable = yes
[printers]
 comment = All Printers
 path = /var/spool/samba
 browseable = no
 guest ok = no
 writable = no
 printable = yes

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

74 - Software Design

とくに理由がなければデフォルト値のUTF-8の
ままでかまいません（その場合は指定不要です）。

 ▶ネットワーク機能に関する設定
　SambaではWindowsサーバと同様、図6のよ
うに「ネットワーク」上に自身のアイコンを表示
させることができます。以降に関連する設定を
紹介します。

・netbios name = コンピュータ名
　デフォルトでは、サーバのホスト名がコン
ピュータ名としてそのまま「ネットワーク」上で
表示されますが、事情があってホスト名とは異
なる名前を設定したい場合は、このパラメータ
で任意のコンピュータ名を指定してください。

 ▶ Sambaを有効化するネットワークインター
フェースに関する設定

　Sambaのデフォルトでは、接続されているす
べてのネットワークインターフェースでSamba
が有効化されます。特定のインターフェースの
みでSambaを有効化したいという場合は、次の
設定を行います。

・interfaces = インターフェース（インターフェー
ス名・IPアドレス）

　インターフェースとしてはeth0やeth1といっ
たインターフェース名やIPアドレスを指定しま
す。なおSambaの動作に支障が出ないよう、必
ず127.0.0.1をインターフェースに含めてくださ
い。

・bind interfaces only = yes
　interfacesパラメータで指定したインター
フェースのみでSambaを有効化します。

 ▶ログ出力に関する設定
　Sambaのログは/var/log/samba以下に出力さ
れます。ログの詳細度のデフォルトは0で、本
当に重大なログしか出力されません。詳細度を
変更する場合は、次の設定を行います。

・log level = 詳細度（数値）
　運用中は最大でも詳細度を3程度にしておく
ことをお勧めします。一時的にログの詳細度を
変更したい場合は、図18のようにsmbcontrol
コマンドで変更、確認することもできます注7。

smb.confの設定確認

　testparmコマンドを使用することで、smb.
confファイルの文法や、有効になっている設定
を確認できます。
　引数なしでコマンドを起動すると、図19のよ
うにsmb.confファイルで有効になっている設定
を表示するとともに、問題があるとエラーメッ
セージを表示します。
　ここではbrowseaableという存在しないパラ
メータについてのエラーメッセージが表示され
ています。testparmコマンドは、これ以外にも
簡単な文法ミスや矛盾もチェックしてくれます

 ▼図18　ログの詳細度の動的な変更、確認

[root@centos70 ~]# smbcontrol smbd debug 1 ← smbdのログ詳細度を1に設定
[root@centos70 ~]# smbcontrol smbd debuglevel ← smbdのログ詳細度の確認
PID 2451: all:1 tdb:1 printdrivers:1 lanman:1 smb:1 rpc_parse:1 rpc_srv:1 rpc_cli:1 ｭ
passdb:1 sam:1 auth:1 winbind:1 vfs:1 idmap:1 quota:1 acls:1 locking:1 msdfs:1 dmapi:1 ｭ
registry:1 scavenger:1 dns:1 ldb:1
[root@centos70 ~]# smbcontrol smbd debug 0 ← smbdのログ詳細度を0に設定
[root@centos70 ~]# smbcontrol smbd debuglevel ← smbdのログ詳細度の確認
PID 2451: all:0 tdb:0 printdrivers:0 lanman:0 smb:0 rpc_parse:0 rpc_srv:0 rpc_cli:0 ｭ
passdb:0 sam:0 auth:0 winbind:0 vfs:0 idmap:0 quota:0 acls:0 locking:0 msdfs:0 dmapi:0 ｭ
registry:0 scavenger:0 dns:0 ldb:0

注7） ログの詳細度の変更はプロセスごとに行います。Samba
は通常smbd、nmbd、winbinddというプロセスで構成さ
れますので、必要な場合は smbdという個所をnmbdや
winbinddに置き換えてコマンドを実行してください。

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Samba のインストールと基本設定第 章1

74 - Software Design May 2015 - 75

のでsmb.confファイルを修正したらtestparm
コマンドで確認する癖をつけておきましょう。
　testparmコマンドの書式と主なオプションを
表2に示します。

書式：�testparm [-s][-v][smb.confファイルのフ

ルパス]

　図19の実行例では、smb.confの内容を出力す
る前に一度ユーザからの入力待ちとなります。
これを行いたくない場合は-sオプションを指定
します。
　また、デフォルトではデフォルト値のままの
パラメータ行は表示されませんが、-vオプショ
ンを指定することですべてのパラメータ行を表
示させることができます。多くのパラメータを

変更した場合などは、意図したとおりに変更が
行われているかどうかを確認するために、図20
のようにして新旧両smb.confの差分を確認して
みるのもよいでしょう。

まとめ

　ここまででSambaのインストール、起動方法
から、smb.confファイルの設定方法と、Samba
全体の設定を制御するglobalセクションの設定
について簡単に説明しました。
　次章では、引き続きユーザの作成と最低限の
ファイル共有の設定、Windowsクライアントの
接続といった実用的な最低限のファイル共有設
定について説明します。｢

 ▼図19　testparmコマンドの実行例

[root@centos70 ~]# testparm
Load smb config files from /etc/samba/smb.conf
rlimit_max: increasing rlimit_max (1024) to minimum Windows limit (16384)
Unknown parameter encountered: "browseaable"
Ignoring unknown parameter "browseaable"
Processing section "[homes]"
Processing section "[printers]"
Loaded services file OK.
Server role: ROLE_STANDALONE
Press enter to see a dump of your service definitions ← Enterを入力

[global]
 workgroup = MYGROUP
 server string = Samba Server Version %v
 log file = /var/log/samba/log.%m
 max log size = 50
 idmap config * : backend = tdb
 cups options = raw

[homes]
 comment = Home Directories
 read only = No
 browseable = No
（以下略）

 ▼図20　新旧smb.confの差分を確認する

$ testparm -s -v smb.conf.old > smb.conf-testparm.old.txt
$ testparm -s -v smb.conf.new > smb.conf-testparm.new.txt
$ diff -u smb.conf-testparm.old.txt smb.conf-testparm.new.txt

オプション 説明

-s smb.confの内容を表示する前に確
認を求めない

-v

デフォルト値のパラメータもすべ
て表示する（デフォルトの動作は、
デフォルト値以外の値を設定した
パラメータのみを表示する）

smb.confファ
イルのフルパス

解析対象のsmb.confファイル。指
定しない場合はデフォルトのパス
のsmb.confファイルを解析する

 ▼表2　testparmの主なオプション

}不正な（存在しない）パラメータに関する警告

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

76 - Software Design

Sambaユーザの作成と管理

　Sambaサーバにアクセスするには、何らかの
方法で認証を行う必要があります。Sambaは
Active Directoryで認証を行うこともできます
が、ここではSambaサーバ上で独自にユーザを
作成してパスワードを設定する方法を解説しま
す。

SambaユーザとLinuxユーザ

　RHEL系、Ubuntuともに、サーバにログイン
する際にはSSHの公開鍵認証を使用している場
合などをのぞき、通常ユーザ名とパスワードの
入力が必要です。通常ユーザ情報は/etc/passwd
ファイルに、ハッシュ化されたパスワード情報
は/etc/shadowファイルにそれぞれ格納されて
います。
　これらの情報をそのまま活用できればよいの
ですが、Windowsユーザの属性をすべてサポー
トするには/etc/passwdファイルに格納された
情報では不十分です。また、WindowsではLinux
とは異なるアルゴリズムを使ったNTLMハッ
シュという形式のパスワード情報を使用します。
一例として「P@ssw0rd」という文字列をハッ
シュ化した際の文字列を次に示します。

・Linux（MD5ハッシュ）
　6A792mjea$TklBcknsM19NAwjUOkFffkNrz

Sambaのユーザ管理と
ファイル共有の基本設定

 Author たかはしもとのぶ　 mail monyo@monyo.com　 Twitter @damemonyo

第 章2

　本章では、前章に引き続きWindowsサーバ互換の機能を提供するオープンソースソフトウェアであるSamba
のユーザ管理とファイル共有の基本的な設定について解説します。

6J8.qyugha.JEolao/aDjcKFq9SQ.jjNe0C4Jn
2FFl3HhhpBj9phmTeU59F40

・Windows（NTLMハッシュ）
　E19CCF75EE54E06B06A5907AF13CEF42

　このようにハッシュ化した文字列が異なるた
め/etc/shadowファイルの情報も共有できませ
ん。このため、Sambaではサーバ上に存在する
ユーザ（Linuxユーザ）とは別にSambaユーザと
いう独自のユーザが必要です注1。
　ただし、認証されたSambaユーザがサーバ上
のファイルにアクセスする際には、何らかの
Linuxユーザの権限で行う必要があります。そ
のため、Sambaユーザには必ず対応するLinux
ユーザが必要であり、認証成功後にはLinuxユー
ザとの対応付けが行われます。

 ▶Sambaの認証処理
　ここまで説明したSambaユーザとLinuxユー
ザが、実際にWindowsクライアントからSamba
サーバにアクセスする際にどのように動作する
のかを図1に示しました。この図を例に少し動
作を説明します。

①まずは、Windowsユーザ名と、ユーザが入力

注1） Windowsで平文パスワードによる認証を有効にすればこ
の限りではありませんが、セキュリティ上推奨されませ
ん。

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Sambaのユーザ管理とファイル共有の基本設定第 章2

76 - Software Design May 2015 - 77

したパスワードをWindows形式でハッシュ化
したパスワード文字列の情報がSambaサーバ
に送付されます。
② SambaはWindowsユーザと同じ名前の
Sambaユーザを検索し、見つかった場合はパ
スワード文字列を比較します。合致している
場合はSambaユーザとしての認証を成功させ
ます。
③続いてSambaユーザと同じ名前のLinuxユー
ザを/etc/passwdファイルなどから検索し、見
つかった場合はユーザID（UID）情報を取得し
ます。/etc/shadowに格納されているLinux
ユーザのパスワード情報は参照されませんの
で注意してください。
④最終的にUID情報を使ってSambaサーバ上の

各ファイルにアクセスします。ファイルに適
切なパーミッションなどが付与されてない場
合、アクセスは拒否されます。

Sambaユーザの管理

　Sambaユーザの作成や削除といった操作は、
基本的にpdbeditコマンドで行います注2。pdb
editコマンドのおもな引数を表1に示します。

 ▶Sambaユーザの作成
　Sambaユーザを作成するには、「pdbedit -a」
コマンドを使用します。
　Sambaユーザを作成する際には、同名のLinux
ユーザがすでに存在している必要がありますの
で、useraddコマンドなどを用いて事前に作成
しておいてください。なお前述したようにLinux

ユーザのパスワード情報は使
いませんので、パスワードの
設定は不要です。

 ▶Sambaユーザの削除
　Sambaユーザを削除するに
は、「pdbedit -x」コマンドを
使用します。対応するLinux
ユーザは削除されないので、
不要な場合は別途削除してく
ださい。
　Sambaユーザの作成、削除
の実行例を図2に示します。

注2） 以前の Sambaでは同じ目的で
smbpasswdコマンドが提供され
ていました。現在でもこのコマン
ドを使ってユーザの作成、削除を
行うこともできます。

①パスワード情報の送信

Windows
クライアント

Samba サーバ

ユーザ名 ：user1
パスワード ：pass1（Windows 形式）

②Samba ユーザ
　としての認証 user1:pass1（Windows 形式）

user2:pass2（Windows 形式）

Samba の認証データベース

user1:1000
user2:1001

-rw-r--r‒ user1 grp1 file1
-rw-r--r‒ user2 grp2 file2

/etc/passwdファイル

③Linux ユーザの
　UID 取得

user1として認証

UID1000 でアクセス

④ファイルへの
　アクセス

パーミッションのチェック

 ▼図1　Sambaの認証処理

引数 説明
-a | --create <Sambaユーザ名> Sambaユーザの追加
-x | --delete <Sambaユーザ名> Sambaユーザの削除
-t | --password-from-stdin パスワードのバッチ入力
-L | --list Sambaユーザの一覧表示
-w | --smbpasswd-style 古いsmbpasswdファイル形式での一覧表示

 ▼表1　pdbeditコマンドの主な引数

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

78 - Software Design

 ▶Sambaユーザの有効化、無効化
　Sambaユーザを無効化することで、作成済
みのSambaユーザの情報を保持したままログオ
ンを禁止することができます。Sambaユーザの
無効化、有効化はsmbpasswdコマンドで行いま
す注3。
　Sambaユーザmonyoを無効化、有効化する際
の実行例を次に示します。

smbpasswd -d monyo
Disabled user monyo.
smbpasswd -e monyo
Enabled user monyo.

 ▶Sambaユーザのパスワード変更
　Sambaユーザのパスワードを変更するには、
smbpasswdコマンドを使用します注4。passwdコ
マンドと同様、rootはユーザ名を指定して任意
のSambaユーザのパスワードを変更できます。
一般ユーザは自分のパスワードだけを変更で
きます。一般ユーザによる実行例を次に示しま
す注5。

$ smbpasswd
Old SMB password: ←現パスワードを入力
New SMB password: ←新パスワードを入力

Retype new SMB password: ←新パスワードを再入力
Password changed for user monyo

　一般ユーザが自身のパスワードを変更する際
は、デフォルトで5byte以上のパスワード入力
が求められますので注意してください注6。
　一般ユーザにLinuxのコマンドラインを使わ
せたくない場合、Windows 7までのクライアン
トであれば、少々面倒ですが、ÌAltÔ+ÌCtrlÔ+ÌDelÔを
押すと表示される画面から「パスワードの変更」
を選択すると表示される図3の画面で表示され
ているユーザ名を「Sambaサーバのコンピュー
タ名¥ユーザ名」に変更のうえ、古いパスワー
ド、新しいパスワードに適切なパスワードを指
定することでパスワードの変更ができます。

 ▼図2　Sambaユーザの作成と削除

useradd -m monyo
pdbedit -a monyo ← Sambaユーザmonyoを作成
new password: ← パスワードの入力
retype new password: ← 再度パスワードの入力
Unix username: monyo
NT username:
Account Flags: [U]
 （...中略...）
Last bad password : 0
Bad password count : 0
Logon hours : FF
pdbedit -x monyo ← Sambaユーザmonyoを削除
userdel -r monyo ← UNIXユーザmonyoを削除。ホームディレクトリも削除する

 ← UNIXユーザmonyoを作成（パスワードは設定不要）。ホームディレクトリも作成する 注7

注7） CentOSの場合 -mオプションを指定しなくてもホームディレクトリは作成されます。

注3） smbpasswdコマンドをインストールしていない場合、
「pdbedit -c」コマンドで行うこともできますが、smb
passwdコマンドの方がより直感的です。

注4） smbpasswdコマンドをインストールしていない場合、
「pdbedit -a」コマンドでユーザを再作成することでパス
ワードの再設定を行います。

注5） 「-s」オプションによりパスワード変更をバッチ処理で行う
こともできます。

注6） この制限は「pdbedit -P "min password length"」コマン
ドで変更できます。

 ▼図3　Windows 7のパスワード変更画面

このユーザ名
を変更します

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Sambaのユーザ管理とファイル共有の基本設定第 章2

78 - Software Design May 2015 - 79

 ▶Sambaユーザの情報確認
　「pdbedit -L」コマンドで作成済みのSamba
ユーザを一覧表示できます。実行例を図4に示
します。
　特定のSambaユーザの詳細情報を表示する場
合は、次のように「pdbedit -v」コマンドに続い
てSambaユーザ名を指定します注8。

pdbedit -v monyo

Windowsクライアントからの
アクセス
　ここまでの設定で、ようやくWindowsクライ
アントからアクセスする準備が整いました。ま
ずは各ユーザのホームディレクトリにアクセス
してみましょう。

ホームディレクトリを共有する

　1章で解説しましたが、homesというセクショ
ンを設定することで、各ユーザのホームディレ
クトリを共有することができます。
　RHEL系では、デフォルトでhomesセクショ

ンが定義されていますので、追加の設定は不要
です。
　Ubuntuの場合、デフォルトではhomesセク
ションが行頭の「;」でコメントアウトされていま
すので、リスト1のように該当部分のコメント
を外したうえ、read only行の設定を修正してか
らsmbdを再起動します。

 ▶ホームディレクトリのセキュリティ強化
　デフォルトの設定では、「サーバ名¥ユーザ
名」形式でホームディレクトリのパスを直接指定
することにより、あるユーザのホームディレク
トリにほかのユーザがアクセスできます。これ
を抑止したい場合は、homesセクションに次の
設定を追加してください。

valid users = %S

　RHEL系、Ubuntuともに、上記設定は smb.
conf中にコメントアウトされた形で記載されて
いますので、コメントを外しておくことをお勧
めします。

 ▼図4　 pdbeditコマンドによる
ユーザ情報の確認

pdbedit -L
monyo:1000:
local1:1001:

注8） 多くの属性情報が表示されますが、本記事での解説は割愛
します。

SELinuxを有効にしている際の注意点Column

　RHEL系でSELinuxを有効にしている場合、SELinuxの設定でホームディレクトリの共有が無効化され
ているため、次のようにしてホームディレクトリの共有を有効化します。

setsebool -P samba_enable_home_dirs on

 ▼リスト1　ホームディレクトリを有効にする設定

…

[homes]
 comment = Home Directories ← コメントを外す
 browseable = no ← コメントを外す

By default, the home directories are exported read-only. Change the
next parameter to 'no' if you want to be able to write to them.
 read only = no ← コメントを外したうえで、yesをnoに変更する

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

80 - Software Design

ホームディレクトリへのアクセス

　設定が完了したら、さっそくWindowsクライ
アントからアクセスしてみましょう。確認用と
して、あらかじめホームディレクトリ直下に何
かファイルを作成しておいてください。
　SambaはWindowsのネットワーク機能をほぼ
すべてサポートしているので、Windowsクライ
アントがサポートするさまざまな方法でのアク
セスができます。あまり馴染みがないという方
は、次のいずれかの方法でアクセスしてみてく
ださい。

・「ネットワーク」フォルダ経由のアクセス
　Windowsのスタートメニューから「ネットワー
ク」を選択すると、図5のようにファイルサーバ
として機能しているコンピュータのアイコンが
表示されます。
　Sambaサーバのアイコンが表示されている場
合は、そのアイコンをクリックしてください。

ただし、適切な設定を行っていても、ネットワー
ク環境によってはアイコンが表示されない場合
もあります。その際はもう1つの方法を使って
ください。

・サーバ名（IPアドレス）を指定してのアクセス
　Windowsのスタートメニューの下部にある「プ
ログラムとファイルの検索」欄、もしくは「ファ
イル名を指定して実行」メニューがある場合はク
リックすると表示されるウインドウで図6のよ
うに「¥¥サーバ名」もしくは「¥¥IPアドレス」と
入力します。
　Windows 8の場合は、ÌWinÔ+ÌXÔキーなどで
「ファイル名を指定して実行」メニューを呼び出
すことで、同様の方法でのアクセスができます。
　いずれの場合も、通常は図7のようにユーザ
名とパスワードを確認する認証ダイアログが表

 ▼図5　「ネットワーク」フォルダ

 ▼図6　Sambaサーバ名の指定

 ▼図7　認証ダイアログ

 ▼図8　共有一覧画面

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Sambaのユーザ管理とファイル共有の基本設定第 章2

80 - Software Design May 2015 - 81

示されますので、作成済みのSambaユーザの
ユーザ名とパスワードを入力してください。認
証に成功すると、図8のように共有一覧の表示
画面が表示され、ユーザ名（図8ではmonyo）の
フォルダが表れます。
　フォルダのアイコンをクリックすると、図9
のようにSambaサーバであるLinux上のファイ
ルやディレクトリ（フォルダ）を参照することが
できるはずです。Windowsの設定を変更して隠
しファイルも表示する設定にすることで注9、
.bashrcなどの設定ファイルも確認できます。

トラブルシューティング

　ここまでの設定を適切に行っていれば、Samba
サーバへのアクセスは問題なくできるはずです
が、設定を見直してもうまくいかない場合は、
以降を参考にしてトラブルシューティングを行っ
てみてください。

①ネットワークの接続性を確認する
　WindowsクライアントからSambaサーバに対
してpingコマンドを実行する、あるいはSamba
以外のサービスにアクセスできるかを確認する
といった方法で、Sambaサーバに対する通信が
可能かどうかを確認してください。
　もしくは、図7の画面が表示されるようであ
れば、少なくともSambaサーバに対する通信は
できています。

②セキュリティ設定を確認する
　アクセスできない原因のかなりのものが、ファ
イアウォールやSELinuxの設定といったセキュ
リティ関連の設定によるものです。一時的でか
まいませんので、SELinuxやファイアウォール
を無効にした状態でのアクセス可否を確認する
ことをお勧めします。
　同じくWindowsクライアントでパーソナル
ファイアウォールを動作させている場合は、一
時的に無効にした状態でのアクセス可否を確認
してみてください。

③Sambaの設定を確認する
　Sambaの設定ミスを切り分けするため、簡単
なsmb.confで設定を確認してみてください。リ
スト2のsmb.confをデフォルトのsmb.confと置
き換えたうえで、Sambaを再起動してみてくだ
さい。
　上記の設定により、/tmpディレクトリが tmp
という名称で共有され、Sambaユーザの設定に
かかわらず誰でも読み取り専用でアクセスでき
るようになりますので注10、smb.confの設定ミス
やパスワードの設定ミスに起因する問題を切り
分けできます。

基本的なファイル共有の設定

　前節でユーザのホームディレクトリの共有に
ついて解説しましたが、もちろんSambaでは
Linuxサーバ上の任意のファイルシステムを共
有できます。

 ▼図9　ホームディレクトリの内部

注9） 「フォルダーオプション」の「表示」から「隠しファイル、隠
しフォルダー、および隠しドライブを表示する」を選択し
ます。

注10） SELinuxが有効な場合は、環境によっては動作しませんの
で、SELinuxは無効にした状態で確認するようにしてくだ
さい。

 ▼リスト2　設定ミス切り分け用のsmb.conf

[global]
 map to guest = bad password
[tmp]
 path = /tmp
 guest ok = yes

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

82 - Software Design

　以降では、グループ内のファイル共有を例に、
ファイルサーバを構築するうえで最低限知って
おいてほしいパラメータや設定について解説し
ます。

ファイル共有の基本設定

 ▶基本的な設定
　簡単なファイル共有の設定例をリスト3に示
します。
　セクション名（リスト3ではshare1）は共有名
を示します。そのほか基本的なパラメータを説
明します。

・path = /var/lib/samba/shares/share1
　このパラメータの設定は、文字通り共有対象
のパス名を示します。Sambaサーバ上に実在す
るパス名である必要があります。また、ファイ

ルの書き込みを許可するためには、前述のパス
のパーミッションを適切に設定する必要があり
ます。動作確認という意味では、次のようにし
てディレクトリを作成のうえ、誰でも書き込み
可能にしておいてください。

mkdir -p /var/lib/samba/shares/share1
chmod 777 /var/lib/samba/shares/share1

・writeable = yes
　作成した共有のデフォルトは読み取り専用で
す。書き込み可能とするためには、この設定が
必要です。このパラメータはread onlyという反
意の別名を持っているため、「read only = no」
の設定を行っても等価です。

複数ユーザ間でファイルを共有する

　リスト3の設定を行っただけでは、あるユー
ザが書き込んだファイルを別のユーザが更新で
きません。これは図10のようにLinux上で作成
したファイルのパーミッションを確認すればわ
かりますが、パーミッション上ほかのユーザか
らの書き込みが許可されていないためです。

 ▼リスト3　基本的なファイル共有の設定例

[share1]
 path = /var/lib/samba/shares/share1
 writeable = yes

SELinuxを有効にしている際の注意点Column

　SELinuxを有効にしている環境では、次のようにpathパラメータで指定するパスに対して、samba_
share_tというラベルを付与する必要があります。

chcon -t samba_share_t /var/lib/samba/shares/share1

　これにより、共有内に新規に作成されるファイルには同様のラベルが付与され、Sambaから参照可能
となります。ただし、Linuxサーバ上で共有外のパスから（コピーではなく）移動されたファイルにはラベ
ルが付与されないため、個別にラベルを付与する必要がある点に留意してください。SELinuxによってア
クセスを拒否されたファイルは、Windowsからフォルダを参照しても表示されません。
　また、/homeや /etcなどサーバ上の既存のディレクトリに対してこのコマンドを実行することは、既
存のラベルが上書きされてしまい、システムの動作に影響を及ぼすことがあるため避けてください。SELinux
を有効にした状態で既存のディレクトリを適切に共有したい場合は、共有を読み取り専用（ro）にするか書
き込み可能（rw）にするかに応じて、次のコマンドのいずれかを実行します。

setsebool -P samba_export_all_ro on（読み取り専用）

setsebool -P samba_export_all_rw on（読み書き可能）

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Sambaのユーザ管理とファイル共有の基本設定第 章2

82 - Software Design May 2015 - 83

　これでは、ユーザmonyoしかファイルに書き
込めません。あるユーザが書き込んだファイル
を別のユーザが更新できるファイル共有を作成
するには少しテクニックが必要です。設定方法
はいくつかありますが、ここでは /var/lib/
samba/shares/share2以下をshare2という名前
で共有し、share2gグループに所属するユーザ
間で互いに書き込み可能とする設定例を紹介し
ます。
　Sambaサーバ上で事前に図11の設定を行って
共有するディレクトリを作成したうえで、smb.
confでリスト4の設定を行います。
　create maskとdirectorty maskパラメータに
より、書き込まれたファイルのパーミッション
が強制的に、グループに書き込み権がある664
や775に設定されます。force groupパラメータに
よりファイルの所有グループが強制的にshare2g
に設定されます。結果として、share2共有内の

ファイルの所有グループはすべてshare2gとな
り、かつグループに書き込み権が設定されるた
め、複数ユーザ間で同じファイルを互いに書き
込み可能な形で共有可能となっています。
　必須ではありませんが、valid usersパラメー
タを設定にすることで、この共有にアクセス可
能なユーザをshareg2グループ所属のユーザに
限定するといったアクセス制御もできます。
　上記設定を行った共有に対してWindowsクラ
イアントからmonyoと local01というユーザでア
クセスしてファイルを書き込んだ状態で、Linux
上でパーミッションを確認した例を図12に示し
ます。
　ファイルのパーミッションが664、所有グルー
プがshare2gになっていることが確認できます。
これにより、ユーザ local01がaaa.txtに書き込
んだり、ユーザmonyoがbbb.txtに書き込んだり
することが可能となっています。

 ▼図10　Linux上でのファイルのパーミッション確認

[root@centos70-2 ~]# ls -l /var/lib/samba/shares/share1/
合計 24
-rwxr--r--. 1 monyo monyo 9 3月 9 11:28 test1.txt
-rwxr--r--. 1 monyo monyo 9 3月 9 11:28 test2.txt

 ▼図11　複数ユーザ間でファイルを書き込み共有する際の事前作業

mkdir -p /var/lib/samba/shares/share2
groupadd share2g
chgrp share2g /var/lib/samba/shares/share2
chmod g+w /var/lib/samba/shares/share2

 ▼図12　Linux上でのファイルのパーミッション確認

[root@centos70-2 ~]# ls -l /var/lib/samba/shares/share2/
合計 4
-rw-rw-r--. 1 monyo share2g 26 3月 11 03:14 aaa.txt
-rw-rw-r--. 1 local01 share2g 6 3月 11 03:14 bbb.txt

 ▼リスト4　複数ユーザ間でファイルを書き込み共有する設定例

[share2]
 path = /var/lib/samba/shares/share2
 writeable = yes
 create mask = 664
 directory mask = 775
 force group = share2g
 valid users = @share2g ← 共有へのアクセスをshare2gグループに限定する設定

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

84 - Software Design

まとめ

　ここまでSambaのインストールから始まり、
ユーザを作成して最低限の実用的なファイル共
有の設定を行い、Windowsクライアントからア
クセスするところまでを解説しました。
　ここまで解説した設定をすべて含んだsmb.
confファイルの例をリスト5に示します。任意
の設定は斜体で示しました。また適宜コメント
を入れています。
　デフォルトのsmb.confファイルをもとに編集
を行った場合は、これ以外にもいくつか設定が
行われていますが、ここまで解説した動作に影

響を与えるような設定はありませんので、その
まま残しておいてかまいません。
　今回は誌面の関係もあり、ファイルサーバと
しては、実用的な最低限の設定を紹介しました
が、Sambaではこれ以外にもACLによる詳細
なアクセス制御や、ゴミ箱機能による削除済ファ
イルの復活、監査機能など多くの機能がサポー
トされています。
　大半の機能はSambaのパラメータやVFSモ
ジュールという拡張機能で実装されていますの
で、興味のある方は、ぜひSambaのマニュアル
ページやインターネット上の情報を探って設定
してみてください。｢

 ▼リスト5　実用的なsmb.conf例

Samba全体の設定
[global]
 ; 文字コード関連設定
 dos charset = CP932
 unix charset = UTF-8

 ; Sambaサーバのコンピュータ名をホスト名以外にする設定
 netbios name = SAMBASV

 ; Sambaが動作するインタフェースを制限する設定
 interfaces = lo0 eth0
 bind interfaces only = yes

 ; ログ出力の詳細度を制御する設定
 log level = 0

ホームディレクトリをファイル共有する設定
[homes]
 comment = Home Directories
 browseable = no
 read only = no
 valid users = %S

簡単なファイル共有の設定例
[share1]
 path = /var/lib/samba/shares/share1
 writeable = yes

複数ユーザに対応したファイル共有の設定例
[share2]
 path = /var/lib/samba/shares/share2
 writeable = yes
 create mask = 664
 directory mask = 775
 force group = share2g
 valid users = @share2g

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Active Directoryとの認証連携第 章3

85 - Software Design May 2015 - 85

Active Directoryへの認証統合

　最近の企業ネットワークでは、Active Direc
tory（以降、AD）によりWindowsサーバにアク
セスする際の認証については一元管理されてい
ることが多いでしょう。Winbind機構を使用す
ることで、Sambaサーバの認証もADに統合す
ることができます。

Winbind機構とは

　Winbind機構とは、ADと連携して動作し、AD

の認証情報をSambaやPAM（Pluggable Authen
tication Module）、NSS（ネームサービススイッ
チ機能）経由で動作する一般のプログラムから
利用可能にするしくみです。これを実現する
ために、Sambaのデーモンであるsmbdやnmbd
に加えてwinbinddというデーモンが起動され
ます。
　2章の図1（P.77）に対比させて、Winbind機構
が有効な環境で、SambaユーザとLinuxユーザ
が、実際にWindowsクライアントからSamba
サーバにアクセスする際にどのように動作する
のかを図1に示しました。

Active Directoryとの
認証連携

 Author たかはしもとのぶ　 mail monyo@monyo.com　 Twitter @damemonyo

第 章3

　本章では、応用編としてActive Directoryへの認証連携について解説します。

①パスワード情報の送信

Windows
クライアント

Samba サーバ

ドメイン
コントローラ

ユーザ名 ：user1
パスワード ：pass1（Windows 形式）

UNIX ユーザ情報を自動生成
（Idmap 機構）

②Samba ユーザ
　としての認証 user1:pass1（Windows 形式）

user2:pass2（Windows 形式）

user1:1000
user2:1001

-rw-r--r‒ user1 grp1 file1
-rw-r--r‒ user2 grp2 file2

③Linux ユーザの
　UID 取得

user1として認証

UID1000 でアクセス

④ファイルへの
　アクセス

パーミッションのチェック

認証要求

認証

Winbind ユーザ情報
連携

 ▼図1　Winbindの動作概念

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

86 - Software Design

①まずは、Windowsユーザ名と、ユーザが入
力したパスワードをWindows形式でハッ
シュ化したパスワード文字列の情報がSamba
サーバに送付されます。
②Sambaはこの情報をADのドメインコント
ローラ（DC）に転送します。DCは認証を行い、
結果をSambaサーバに返却します。
③続いて、Winbind機構は自身の管理下にある
Linuxユーザを検索します。Winbind機構が
生成済のLinuxユーザについてはその情報が
返却されます。未生成の場合、Winbind機構
がLinuxユーザを生成し、その情報が返却さ
れます。
④最終的に生成されたLinuxユーザのUID情報
を使って、Sambaサーバ上の各ファイルに
アクセスします。ファイルに適切なパーミッ
ションなどが付与されてない場合、アクセス
は拒否されます。

　Winbind機構の実体であるwinbinddが、Linux
ユーザを自動生成するため、Sambaサーバ上で
は個別のLinuxユーザを管理する必要がなくな
ります。また、sshや ftpといったほかのプログ
ラムも、PAM、NSS経由でこの認証機能を用
いることができます。
　以降の節では、Winbind機構のインストール
と設定について解説します。なお誌面の制限も
あり、ADの用語や概念についての説明は割愛
しています。

Winbind機構のインストールとAD
ドメインへの参加

　CentOSの場合、Winbindはsamba-winbindと
samba-winbind-clientsというパッケージから構
成されています。samba-winbind-clientsには、
後述するwbinfoコマンドなど、Winbind機構の
管理に必須のコマンドが含まれていますので、
次のように両方のパッケージをインストールし
ます。

yum install samba-winbind ｭ
samba-winbind-clients

　Ubuntuの場合は、winbindパッケージをイン
ストールしてください。
　以降では、centos70-2という名前のCentOS
7.0が動作しているSambaサーバを、IPアドレ
スが192.168.135.20のDCが存在するaddom1.
localというFQDN名のADに参加させる場合を
例に設定を行っていきます。

 ▶①静的 IPアドレスの設定
　ADに参加させるためにはDNSサーバとして
ADのDCを指定する必要があります注1。またあ
らかじめ、AD参加後のFQDNが名前解決可能
な状態に構成しておく必要があります。このた
め、Linuxサーバでは静的IPアドレスの設定が
必要です。CentOS 7.0で静的 IPアドレスを設
定する手順を図2に示します。

 ▼図2　静的 IPアドレスの設定手順

[root@centos70-2 ~]# nmcli d
DEVICE TYPE STATE CONNECTION
ens33 ethernet connected Wired connection 1
lo loopback unmanaged --
[root@centos70-2 ~]# nmcli c modify "Wired connection 1" ipv4.addresses ｭ
"192.168.135.26/24 192.168.135.2" ← 192.168.135.26というIPアドレスを設定し、デフォルトゲートウェイを192.168.135.2に設定
[root@centos70-2 ~]# nmcli c modify "Wired connection 1" ipv4.dns 192.168.135.20 ｭ
ipv4.dns-search addom1.local ← DNSサーバを192.168.135.20に、検索サフィックスをaddom1.localに設定
[root@centos70-2 ~]# nmcli c modify "Wired connection 1" ipv4.method manual
 ↑ 静的IPアドレスを指定
[root@centos70-2 ~]# nmcli c down "Wired connection 1"
[root@centos70-2 ~]# nmcli c up "Wired connection 1"
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/
ActiveConnection/9)

 ← 設定の反映のためにインターフェースを再起動する

注1） AD側で特殊な構成を取っている場合はこの限りではあり
ません。

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Active Directoryとの認証連携第 章3

86 - Software Design May 2015 - 87

　さらにAD参加後に自身の名前解決ができる
よう、/etc/hostsファイルに次のような行を追
加しておきます。

192.168.135.26 centos70-2.addom1.local ｭ
centos70-2

 ▶②時刻の同期
　ADの認証方式であるKerberos認証が機能す
るうえでは、DCとの時刻のずれが常時5分以内
である必要があります。そのため、DCと常時
時刻同期を行うように設定しておきましょう。
NTPを用いてNTPサーバでもあるDCと時刻
同期するのが一般的ですが、次のようにSamba
の一部であるnetコマンドを使用して時刻を同
期することもできます。

net time set -S 192.168.135.20

 ▶③Sambaサーバの停止
　ADへの参加を行う際には、Sambaサーバが
停止している必要があります。1章で解説した
手順に従ってSambaサーバを停止させます。

 ▶④smb.confの設定
　smb.confにリスト1のような設定を行います。
realmパラメータの値は、必ず大文字で指定し
ます。
　CentOSの場合、次のコマンドを実行するこ
とでこの設定を行うこともできます。

authconfig --smbworkgroup=ADDOM1 ｭ
--smbrealm=ADDOM1.LOCAL --update

　authconfigコマンドでsmb.confの設定を行う
と思わぬ結果を招く可能性がありますので、意
図したように変更されているか、必ず確認する
ようにしてください。

　手作業で設定を行う場合、上記のパラメータ
はいずれもデフォルトのsmb.confでコメントア
ウトされた形で記述されていますので、該当個
所のコメントを外して設定すればよいでしょう。
Ubuntuの場合はworkgroupパラメータのみ設定
されていますので、その近辺にまとめてリスト1
の設定を行えばよいでしょう。

 ▶⑤ADへの参加
　ここまでの準備が整ったら、次のように「net
ads join」コマンドを実行してADドメインへ
の参加を行います。

[root@centos70-2 ~]# net ads join -U ｭ
Administrator
Enter Administrator's password:
 ↑ パスワードを入力
Using short domain name -- ADDOM1
Joined 'CENTOS70-2' to dns domain ｭ
'ADDOM1.LOCAL'

　「net ads join」コマンドの「-U」オプションで
Administratorなど、ADにコンピュータを追加
する権限を持ったユーザを指定します。指定し
たユーザのパスワードを入力することでADド
メインへの参加が成功します。
　これにより、図3のようにComputersコンテ
ナにコンピュータアカウントが生成されます注2。
　引き続き、Winbind機構の設定を行っていき
ます。

 ▶⑥NSSの設定
　/etc/nsswitch.confファイルのpasswd、group
行について、リスト2のように「winbind」という
キーワードを追加します。
　CentOSの場合は、次のコマンドを実行する

注2） これ以外の場所に作成したい場合は、createcomputerオ
プションを指定して「net ads join」コマンドを実行します。

 ▼リスト1　smb.confの設定例

[global]
 workgroup = ADDOM1 ← 短いADドメイン名
 realm = ADDOM1.LOCAL ← ADのFQDN名（大文字）
 security = ads

 ▼リスト2　/etc/nsswitch.confの修正例

passwd: files winbind
group: files winbind
 ※winbindというキーワードを追加

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

88 - Software Design

ことで上記設定を行うこともできます。

authconfig --enablewinbind --update

 ▶⑦smb.confの設定
　先ほどのリスト1の設定に加え、globalセク
ションに次のような設定を追加します。

 idmap config * : range = 10000-19999

　このパラメータは、Winbind機構が生成した
Linuxユーザに割り当てるUIDとGIDの範囲を
指定します。authconfigコマンドを使ってリス
ト1の設定を行った場合、上記パラメータはす
でに設定されています。UID、GIDの範囲を変

authconfig --smbidmaprange=20000-ｭ
29999 --update

 ▶⑧Sambaサーバ、Winbind機構の起動と動
作確認

　ここまで設定を行ったら、Sambaのプロセス
を起動します。smbd、nmbdに続き、winbindd
についても忘れずに起動してください。起動し
たらwbinfoコマンドなどを使って動作確認を行
いましょう。CentOS 7.0での実行例を図4に示
します。
　UIDやGIDの値としては、パラメータで設定
した範囲の値が先頭から順に払い出されます。

更したい場合は、次のよう
にしてコマンドを実行して
ください。

 ▼図4　Winbind機構の動作確認

[root@centos70-2 ~]# systemctl start smb
[root@centos70-2 ~]# systemctl start nmb
[root@centos70-2 ~]# systemctl start winbind
[root@centos70-2 ~]# wbinfo -t ← Winbind機構とADとの通信が行われているか
checking the trust secret for domain ADDOM1 via RPC calls succeeded
[root@centos70-2 ~]# wbinfo -u ← ユーザの一覧を列挙する
CENTOS70-2\monyo
CENTOS70-2\root
ADDOM1\administrator
ADDOM1\guest
ADDOM1\support_388945a0
 （...中略...）
ADDOM1\samba03
[root@centos70-2 ~]# id addom1\\administrator ← ユーザのUID、GID情報を表示する
uid=10001(ADDOM1\administrator) gid=10000(ADDOM1\domain users) ｭ
groups=10000(ADDOM1\domain users),10001(ADDOM1\schema admins),10002(ADDOM1\enterprise ｭ
admins),10003(ADDOM1\group policy creator owners),10004(ADDOM1\domain admins)
[root@centos70-2 ~]# wbinfo -g ← グループの一覧を列挙する
ADDOM1\helpservicesgroup
ADDOM1\telnetclients
ADDOM1\domain computers
 （...中略...）

 ▼図3　Active Directoryユーザーとコンピューター上からの確認

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Active Directoryとの認証連携第 章3

88 - Software Design May 2015 - 89

今回の例では10000から順に払い出されます。

 ▶⑨Windowsクライアントからの動作確認
　最後にWindowsクライアントから実際にアク
セスしてみましょう。まずはADDOM1.LOCAL
ドメインに参加しているWindowsクライアント
にADの一般ユーザとしてログオンします。こ
こではsamba01というユーザとしてログオンし
たものとします。
　ログオン後に「¥¥centos70-2」のように入力し
てSambaサーバにアクセスしてみると、サーバ
の/etc/passwdにはユーザsamba01の定義がな
いにもかかわらずアクセスが成功します。ここ
までの設定を順に行っている場合は図5のよう
にホームディレクトリとshare1、share2という
共有が参照できます。
　share1共有に何かファイルを作成してから
Sambaサーバで参照すると、図6のように
Winbind機構が生成したユーザとしてアクセス
していることが確認できます。

Winbind環境下での注意点

　2章までに解説した内容について、Winbindを
有効にした環境特有の注意点を紹介します。

 ▶ADドメインのユーザ、グループによる設定
　P.84のリスト5にある、

 valid users = @share2g

の設定について、share2gの代わりにADDOM1
¥Domain Usersグループを設定するケースを考
えてみます。この場合、次のようにして指定を
行う必要があります。

 valid usrs = @"ADDOM1＼Domain Users"

　空白文字を含んでいる場合、両端を「"」で囲む
必要があります。P.84のリスト5の force group
や、その他のパラメータでも同様です。

 ▶ホームディレクトリの自動作成と共有
　本記事の内容に沿って順番に設定を行った環
境では、図5でホームディレクトリを示すアイ
コンをクリックしても、ユーザのホームディレ
クトリにアクセスできません。これは、ホーム
ディレクトリのパスが /home/ADDOM1/
samba01という実在しないパスになっているた
めです。
　自動生成したユーザごとに手作業でホームディ
レクトリを作成してもよいのですが、それでは
自動生成の意味がなくなってしまいます。
　ホームディレクトリの自動作成を実施する際
には、リスト3のようなスクリプトを作成し注4、
図7のように、共有へのアクセス時にroot権限
で自動実行される「root preexec」パラメータを
設定するのがよいでしょう注5。スクリプトのパ

 ▼図5　Windowsクライアントからのアクセス

 ▼図6　Sambaサーバ上でshare1共有を参照したところ注3

[root@centos70-2 ~]# ls -l /var/lib/samba/shares/share1/
合計 28
-rwxr--r--. 1 ADDOM1\samba01 ADDOM1\domain users 9 3月 9 11:28 テスト.txt

注3） 日本語ファイル名を適切に表示させるためには、dos charset/unix charsetパラメータの設定と仮想端末ソフトウェアの文字コード
関連の設定を適切に行う必要があります。

注4） 後述する「template homedir」パラメータなどでホームディ
レクトリのパスを変更している場合、このスクリプトもそ
れに応じて変更する必要があります。

注5） この他PAMの機能を使用する方法もあり、以前のバージョ
ンでは動作していたのですが、本記事執筆にあたり検証し
たところアクセス権の問題でどうやっても動作させること
ができなかったため、今回は紹介を見送りました。

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

90 - Software Design

スは任意ですが、ここでは /var/lib/samba/
scriptsというパスにsmb_mkhomedirという名
前で置いています。

UIDとGIDのカスタマイズ（Idmap
機構）

　Winbind機構により、ADドメインのユーザや
グループ（以降、単にユーザと記述）に対応する
Linuxユーザが自動生成され、その際にUIDや
GID（以降、単にGIDと記述）も自動的に付与さ
れます。
　Linuxユーザが自動生成されるタイミングは

Sambaサーバごとにバラバラですので、ある
ユーザに対して付与されるUIDも一定しませ
ん注6。つまり、複数のSambaサーバが存在して
いる環境では、同じADドメインのユーザに対
して異なるUIDが割り当てられる可能性があり
ます。
　これは、NFSのようにUIDに依存しているプ
ロトコルにとっては致命的な問題点です。
　UIDの付与を管理するIdmap機構をデフォル
トから変更することで、この問題を解決できま
す。Idmap機構はいくつかありますが、ここで
は単一ドメイン環境前提ですが、設定が簡単な
ridという方式を紹介します。

 ▶ ridの動作原理
　ridというIdmap機構は、ADドメインのユー
ザのSIDに含まれるRIDから計算された値を使
用してUIDを付与します。SIDとはUIDやGID
のように各種オブジェクトを一意に識別する値
で、たとえば、

S-1-5-21-1234995458-293493368-ｭ
1744720997-513

 ▼リスト3　ホームディレクトリを作成するスクリプト例

#!/bin/sh

ドメイン名のディレクトリがなければ作成
if ! [-d /home/${2}]; then
 mkdir -p /home/${2}
 chmod 755 /home/${2}
fi

ホームディレクトリがなければ作成
if ! [-d /home/${2}/${1}]; then
 cp -pr /etc/skel /home/${2}/${1}
 chown -R ${2}\\${1} /home/${2}/${1}
 chmod 700 /home/${2}/${1}
fi

 ▼図7　root preexecパラメータの設定（CentOS）

; valid users = %S
; valid users = MYDOMAIN\%S
 root preexec = /var/lib/samba/scripts/smb_mkhomedir %U %D ← この行を追加

[printers]
 …

SELinux環境での注意点Column

　CentOSのSELinux環境の場合、Sambaから起動するスクリプトは、必ず /var/lib/samba/scriptsとい
うディレクトリ内に配置する必要があります。またこのディレクトリを作成した際には、必ず次のコマン
ドを実行して適切なラベルを付与してください。

restorecon -R -v /var/lib/samba/scripts

　ただし、この設定を行っても、スクリプトが /homeディレクトリ内に書き込むことができないため、リ
スト3のスクリプトは動作しません。その他の方法も試しましたが、筆者が試した限りではSELinuxを有
効にした環境でホームディレクトリ自動作成の設定を手軽に行うのは困難そうです。

注6） Linuxユーザを作成する時点で、使用可能なUIDの中から
最も値の小さいものが付与されます。

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Active Directoryとの認証連携第 章3

90 - Software Design May 2015 - 91

のような長い値となっています。この最後の
「513」の部分が各オブジェクト（ユーザやグルー
プなど）のインスタンスを一意に識別する値で
RIDと呼ばれます。ridでは、この値に一定の数
値を加算した数字をUIDとして使用します。

 ▶ ridの設定例
　設定例をリスト4に示します。
　実は「idmap config * : ……」という設定は、
デフォルトの Idmap機構の設定を意味します。
この設定はSambaが内部的に使用するユーザの
UID付与のために必要ですので、削除してはい
けません。
　ADDOM1ドメインに対する Idmap機構の設
定として、リスト4の下 2行を追加します。
ADDOM1という部分は実際のドメイン名にあ
わせて適宜変更してください。また「range =」

に続く数字は付与するUIDの範囲を決めるもの
ですので、/etc/passwdで定義済のユーザや、既
存のrangeと重複しない範囲であれば自由に設
定できます。
　ここではADDOM1ドメインに対するrangeと
して指定された最小値が20000のため、ridが0
のユーザのUIDは20000、1なら20001、2なら
20002といった具合に機械的に算出されたUID
が付与されます。実行例を図8に示します。
　上記から逆算すると、ユーザADDOM1¥admini
stratorのRIDは500であることがわかります。
　このほか、よく使われるIdmap機構としては
Active Directoryに格納されたUNIX属性の値
を参照するadなどがあります。興味のある方は
コラムを参考に、ぜひ設定に挑戦してみてくだ
さい。

 ▼リスト4　ridの設定例

[global]
 idmap config * : range = 10000-19999 ← デフォルトのIdmap設定（設定済）

 …

 idmap config ADDOM1:backend = rid ← ADDOM1ドメインで使用するIdmap機構
 idmap config ADDOM1:range = 20000-29999 ← 割り当てるUID、GID値の範囲

 ▼図8　実行例

id addom1\\administrator
uid=20500(ADDOM1\administrator) gid=20513(ADDOM1\domain users) groups=20513(ADDOM1\domain ｭ
users),20518(ADDOM1\schema admins),20519(ADDOM1\enterprise admins),20520(ADDOM1\group ｭ
policy creator owners),20512(ADDOM1\domain admins),10007(BUILTIN\users),ｭ
10006(BUILTIN\administrators)

Winbindによる対応付け情報の削除Column

　運用中に Idmap機構を変更した場合でも既存の Idmap機構のデータベースは消去されません。そのた
め、データベースに格納された古い Idmap機構で付与済のUIDは保持され注7、変更後に付与されるUIDか
ら、新しい Idmap機構による付与が開始されます。
　何らかの理由で古い Idmap機構で付与されたUID情報を削除したい場合は、「net cache flush」コマン
ドを使用します。
　ただし、これを行うと、既存ユーザのUIDやGIDが変更になってしまいます。ファイルやディレクトリ
にパーミッションを付与している場合はそれらもすべて変更する必要があるので、UID情報の削除は慎重
に行ってください。

注7） ridのようにUIDやGIDの情報を計算で生成する Idmap機構についても、付与済みのUIDやGIDについてはデータベースに
格納されるため、Idmap機構の変更後も保持されます。

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書第2特集

92 - Software Design

PAMによるSamba以外のプロダク
トの認証統合

　pam_winbindモジュールを使用することで、
Winbind機構が提供する認証機能をPAM経由で
使用することができます。これにより、ssh/
telnet/ftpといったPAMに対応した一般的なプ
ロダクトの認証を、Winbind機構が提供するAD
ユーザの情報を使って行うことが可能となり、
Sambaが動作するLinuxサーバに対する認証が、
完全にActive Directoryに統合されます。
　以降、sshによるログインをADユーザで行う
設定を例に解説します。

 ▶PAMの設定
　まずはpam_winbindモジュールを有効にしま
す。CentOSの場合は次のコマンドで有効化が
できます。

authconfig --enablewinbindauth --update

 ▶シェルの変更
　デフォルト設定の場合、Winbind機構により
自動生成されるLinuxユーザのユーザ情報、グ
ループ情報は図9のようになっています注8。

　デフォルトでは、シェルとして/bin/falseと
いう無効なものが指定され、ホームディレクト
リは「/ドメイン名/ユーザ名」という形式になっ
ています。
　これらのデフォルト値を変更するために
「template shell」や「template homedir」というパ
ラメータが用意されています。たとえば、リス
ト5の設定をglobalセクションに行うことでシェ
ルがbashに、ホームディレクトリのパスがドメ
イン名を含まないものに変更されます。
　CentOSでは図10のようにコマンドで設定す
ることもできます。
　これにより、sshなどでログインする際にAD
ユーザのユーザ名とパスワードで認証する仕様
にできます。次のようにしてpam_mkhomedirモ
ジュールを有効にしている場合は、ホームディ
レクトリの自動作成も行われます。

authconfig --enablemkhomedir --update

　図11にsshでログインした際の実行例を示し
ます。

まとめ

　本章ではActive Directoryとの認証連携につ
注8） Sambaのデフォルトでは、大規模環境におけるパフォー

マンス上の理由で、単に「getent passwd」や「getent
group」コマンドを実行した際にはWinbindが生成した
ユーザやグループが一覧表示されない設定になっていま
す。表示させたい場合は「winbind enum users」および
「winbind enum groups」パラメータをそれぞれyesにして
ください。

 ▼図9　Linuxユーザのユーザ情報

getent passwd addom1\\administrator
ADDOM1\administrator:*:10001:10000:Administrator:/home/ADDOM1/administrator:/bin/false

 ▼図11　sshログインの認証とpam_mkhomedirモジュールによるホームディレクトリの自動作成

$ ssh centos70-2 -l 'ADDOM1＼samba01'
ADDOM1＼samba01@centos70-2's password:
Creating directory '/home/ADDOM1/samba01'.
Last login: Fri Mar 13 02:51:09 2015 from 192.168.135.16

 ▼図10　CentOSでの設定

authconfig --winbindtemplatehomedir=/home/%U --winbindtemplateshell=/bin/bash --update

 ▼リスト5　シェルとホームディレクトリの変更例

 template shell = /bin/bash
 template homedir = /home/%U

ファイル共有自由自在
［徹底入門］最新・Sambaの教科書 　Active Directoryとの認証連携第 章3

92 - Software Design May 2015 - 93

いて解説しました。
　小規模な環境であっても、Active Directory
が存在する環境では認証統合の要望は比較的強
いと思いますので、ぜひ試してください。

　本章で解説した設定を含んだsmb.confの例を
リスト6に示します。適宜コメントを入れてい
ます。これらの設定がSambaサーバ設定の参考
になれば幸いです。｢

 ▼リスト6　Active Directoryとの認証統合の設定例

Samba全体の設定
[global]
 ; Active Directoryドメインへの参加設定
 workgroup = ADDOM1
 realm = ADDOM1.LOCAL
 security = ADS
 ; Winbind機構が自動生成するユーザのシェルとホームディレクトリ設定
 template shell = /bin/bash
 template homedir = /home/%D/%U
 ; デフォルトのIdmap機構の設定
 idmap config * : range = 10000-19999
 ; ADDOM1ドメインのIdmap機構をridにする設定
 idmap config ADDOM1:range = 20000-29999
 idmap config ADDOM1:backend = rid
　 …

Linuxユーザの情報をユーザごとに設定するColumn

　ユーザごとにシェルやホームディレクトリを指定したい場
合は、あらかじめADに値を格納したうえで、リスト7の設
定をglobalセクションに行います。ADへの値の格納には、
図12の「UNIX属性」タブを使うのが簡便です。このタブは
Windows Server 2008 R2以前に存在する「NISサーバ」機能
をインストールし、「NISサーバ」サービスを起動することで
使用できます注9。
　残念ながらWindows Server 2012以降ではこの機能が廃
止されたため、値を格納するには、属性エディタなどで各
ユーザのuidNumber、gidNumber、loginShell、unixHome
Directory属性を直接編集する必要があります。UIDやGIDの
値もADに格納された値を参照させるには、adという Idmap
機構を使用する必要があります。設定例をリスト8に示しま
す。UNIX属性を図12のように指定したユーザの情報を参照
した際の実行例を図13に示します。

 ▼図12　「UNIX属性」タブ

注9） 一度「UNIX属性」タブが使用可能になったら、「NISサーバ」サービ
スは停止してしまってかまいません。

[global]
 idmap config ADDOM1:backend = ad ← ADDOM1ドメインで使用するIdmap機構
 idmap config ADDOM1:range = 20000-29999 ← 割り当てるUID、GID値の範囲
 idmap config ADDOM1:schema_mode = rfc2307

 ▼リスト8　adの設定例

 ▼リスト7　ADに格納した値を参照する設定

 winbind nss info = rfc2307

 ▼図13　Linuxユーザのユーザ情報

getent passwd ADDOM1¥¥aduser01
ADDOM1¥aduser01:*:10000:10000:aduser 01:/home/aduser01:/bin/zsh

94 - Software Design

Kot l in入門
プログラマに優し

い
現実指向JVM言

語
短期集中
連載

開発環境を
準備する

　前回の記事でKotlinの魅力を知っていただ
けたでしょうか。それではコードを実際に書い
て、遊んでみませんか。今回は、Kotlinを実行
する開発環境として次の方法を紹介します。読
者の皆さんの用途に合わせて利用してください。

・Webブラウザで利用できるエディタ
・シンプルなCLIコンパイラ
・IntelliJ IDEA

Webブラウザで利用できる
エディタ

　先に挙げた中でもっとも手軽で簡単な方法が
Webブラウザ上で開発する方法です。JetBrains
が提供するKotlin Web Demoを利用します。Web
ブラウザから次のURLにアクセスしてください。

http://kotlin-demo.jetbrains.com/

　アクセスすると図1のような画面が表示され
ます。
　中央にコードを編集するエリア（＝エディタ）
があり、最初のアクセス時にはHelloWorldコー
ドが入力された状態になっています。ここに入
力されているコードを実行するには画面右側に
ある再生マークの実行ボタンをクリックします。
コードが実行されると、その結果がコンソール
に出力されます。

　エディタはシンタックスハイライト機能はも
ちろんのこと、コードの補完機能まで備えてい
ます。コードの補完機能を有効にするために画
面右側の［Type checking］のところで［Server］
を選択します（図2）。これでコードの補完機能
が有効になりました。試しにエディタに
listOf(1, 2, 3).と入力します。最後の.を忘
れないでください。ここでlキーとd

キーを同時に押してください。するとアクセス
可能なメンバの一覧が表示されます。

開発環境の構築第 2 回

Author 長澤 太郎（ながさわ たろう）　 Twitter @ngsw_taro　 Mail taro.nagasawa@gmail.com

先月号の第1回では導入としてKotlinの概要や特徴について解説しま
した。今回はKotlinで実際に開発を始めるための環境を整える方法を
紹介します。

 ▼図1　Kotlin Web Demo

 ▼図2　コードの補完

http://kotlin-demo.jetbrains.com/

94 - Software Design May 2015 - 95

開発環境の構築第 2 回

シンプルなCLIコンパイラ

　手持ちのマシンの上でコマンドからコンパイ
ルを実行する方法です。皆さんが現在使用され
ている任意のエディタでコーディングできます。
　コンパイラを入手するには次のURLより
Kotlin公式サイトへアクセスしてください。

http://kotlinlang.org/#get-kotlin

　公式サイトへアクセスしたら［Download
compiler］をクリックしてください。Githubのペー
ジが開くので「kotlin-compiler-0.10.195.zip注1」を
クリックしてZIPファイルをダウンロードします。
　ダウンロードしたZIPファイルを展開すると、
kotlincファイル注2としてKotlinソースファイ
ルをコンパイルするためのスクリプトが得られ
ます。皆さんが使用されているPC環境に合わ
せて、ここへのパスを通しましょう。
　コンパイラの準備は以上です。次にコンパイ
ラを使用して、Kotlinソースファイルから
classファイルへコンパイルしてみましょう。
　リスト1の内容を記述したファイルを
HelloWorld.ktとして任意の場所に保存します。
拡張子ktはKotlinのソースファイルのための
拡張子です。
　ターミナルを起動し、カレントディレクトリを
HelloWorld.ktが保存されているディレクトリに
変更します。そして次のようにコマンドを叩きます。

$ kotlinc HelloWorld.kt
$

　行頭の$は便宜上、プロンプトを意味する記号

とします。メッセージが出力されることなく次の
プロンプトが表示されればコンパイル成功です。
lsコマンドなどで同ディレクトリ内にclassファ
イルが作成されているのが確認できます。
　コンパイルで得られたclassファイルを実行す
るにはjavaコマンドを使用します。ただし実行
に際して、Kotlinランタイム（kotlin-runtime.
jar）が必要です。また、実行対象のclassファイ
ルは_DefaultPackage.classです注3。次のよう
にクラスパスを指定してjavaコマンドを実行し
てください注4。Hello, world!と画面に表示され
れば成功です。

$java -cp $KOTLIN_HOME/lib/*:./ _
DefaultPackage
Hello, world!
$

IntelliJ IDEA

　最後に紹介するのはIDE（統合開発環境）であ
る IntelliJ IDEAを使う方法です。この IDEを
ダウンロードするには次のURLへアクセスし
てください。

https://www.jetbrains.com/idea/download/

　無償版であるCommunity Editionをダウン
ロードします。ダウンロードが完了したらお使
いの環境に合わせてインストールしてください。
　IntelliJ IDEAを起動すると図3のような画
面が表示されます。
　まずはKotlinプラグインを導入しましょう。
画面右下の［Configure］→［Plugins］からプラグ
インの設定画面を開きます。
　プラグイン設定画面を開いたら下部にある
［Install JetBrains plugin...］ボタンをクリックし
ます。インストール可能なプラグイン一覧が表示
されるので、検索用テキストフィールドに「kotlin」

注1） 数字部は執筆時現在のバージョンを表しています。
注2） Windowsの場合は同ディレクトリ内のkotlinc.batファイルを使います。
注3） $KOTLIN_HOMEはZIPファイルを展開して得られたkotlincディレクトリのパスです。
注4） 今回はパッケージを定義しなかったのでこのような名前が付きました。

fun main(args: Array<String>) {
 println("Hello, world!")
}

 ▼リスト1　デフォルトパッケージのHelloWorld

http://kotlinlang.org/#get-kotlin
https://www.jetbrains.com/idea/download/

96 - Software Design

プログラ
マに優しい現実指向JVM言語

短期集中連載 Kot l in入門

と入力してプラグインを絞り込みます。Kotlinプ
ラグインを見つけたら右側の［Install plugin］ボタ
ンを押してプラグインをインストールします。プ
ラグインのインストールが完了するとIntelliJ
IDEAの再起動を促されるので再起動します。
そうすると、ふたたび図3のような画面が表示さ
れます。
　次はKotlinプロジェクトを作成して開発を
始めましょう。［Create New Project］をクリッ
クしてプロジェクト新規作成ウィザードを開き
ます。このウィザードの質問に適切に答えてい
き、プロジェクトを作成します。
　途中、Kotlinランタイムの設定をする図4のよ
うな画面があります。［Kotlin runtime］の［Create...］
をクリックし、表示されたダイアログをそのまま
［OK］をクリックするようにしてください。
　プロジェクトを作成し、ウィザードが消えてエ
ディタが表示されたら、Koltinソースファイルを
追加します。srcディレクトリを選択した状態で、
右クリックをし、Kotlinファイルを選んでソース
ファイルを作成します。ファイル名を聞かれるの
で「HelloWorld」としておきましょう。ソースファ
イルを作成するとすぐさまエディタ上に開かれる
のでリスト1の内容を記述します。コンパイル＆
実行するにはメニューバーから［Build］→［Run...］
を選びます。すると実行対象を選択するダイア
ログが表示されるので［_DefaultPackage］を選ん
でクリックします。うまくいけばコンパイルが実

行され図5のように出力結果が表示されます。

まとめ

　今回はKotlinの3つの開発環境とその導入方
法、使い方を紹介しました。
　Webブラウザ上で手軽に利用可能なKotlin
Web Demoはちょっとした実験コードを試すに
はうってつけです。基本的にはIntelliJ IDEAを
使用してKotlinプログラミングを進めていくこと
になると思います。こだわりのエディタがある人
には、シンプルなCLIコンパイラがおすすめです。
　次回はKotlinの基本的な文法／機能を解説
します。Kotlinの興味深い機能である、クロー
ジャやNULL安全、拡張関数などを学習する
ための助走が狙いです。ﾟ

 ▼図3　IntelliJ IDEAの最初の起動

 ▼図5　実行結果

 ▼図4　Kotlinランタイムの設定

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

May 2015 - 97

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

 第1特集
プログラマ・インフラエンジニア・文章書きの心得
Vim使い事始め
 第2特集
SI崩壊を乗りきる3つの方法
ソフトウェア開発の未来
 一般記事
・「ひみつのLinux通信」年末年始スペシャル
　ITエンジニア出世双六
・Jamesのセキュリティレッスン［最終回］

2015年1月号

定価（本体1,220円＋税）

 第1特集

Linux systemd入門
あなたの知らない実践技

 第2特集
そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか？
 一般記事
・Intel DPDK技術詳解
・これはなんて読む？　UNIX用語読み方指南
・Googleベンチャーズが提唱するデザインスプリントとは
ほか

2015年2月号

定価（本体1,220円＋税）

 第1特集

カンファレンスネットワークの
作り方
 第2特集
いまからでも遅くない！
Hadoop超 2 入門
 一般記事
・Cisco VIRLでネットワークシミュレーション
 ［前編］
・Snappy Ubuntu Core

2015年3月号

定価（本体1,220円＋税）

 第1特集

トラブルシューティングの極意
達人に訊く問題解決のヒント

 第2特集

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

 特別付録
・3分間ネットワーク基礎講座［特別篇］

2015年4月号

定価（本体1,300円＋税）

2014年11月号
 第1特集
Docker・Ansible・シェルスクリプト
無理なくはじめる
Infrastructure as Code
 第2特集
オンプレミスもクラウドも縦横無尽
サーバの目利きになる方法［後編］
 一般記事
・8086時代から今を俯瞰する　CPU温故知新
・はてな謹製、サーバ管理ツール　Mackerel入門

定価（本体1,220円＋税）

2014年12月号
 第1特集
急速に普及するコンテナ型仮想環境
Dockerを導入する理由
 第2特集
基礎の基礎から押さえる必須技術
やさしくわかるVPNの教科書
 一般記事
・bashの脆弱性“Shellshock”その影響と対策
・SoftLayerを使ってみませんか？［最終回］
・Jamesのセキュリティレッスン［2］

定価（本体1,220円＋税）

http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.zasshi-online.com/
http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd

98 - Software Design

で学ぶErlang
並行プログラミング

並行プログラミング

　並行プログラミングとは、複数の相互に関連
するプログラムを同時に動かすことです注1。最
近は複数のCPUコア注2を1つの機器の中で使
えるのが一般的です。これらの機器のOSでは、
プログラム（OSプロセス）ごとにCPUコアを
割り当てます。複数のプログラムを違うCPU
コアに割り当てることによって、同時に実行で
きます。多くのアプリケーションでは、同時に
実行する個所をスレッドという部分に分け、そ
れぞれにOSレベルでCPUコアを割り当てる
ことによって、複数のCPUコアで処理を行い
高速化を図っています。それぞれのスレッドは
OSプロセスに属し、メモリやその他の資源を
共有しています。
　しかし、スレッドを使った並行プログラミン
グでは、「情報を共有すること」にまつわる問題

注1） 並行（concurrent）と似た用語に「並列」（parallel）がありま
すが、「並列動作」とは、1つの作業を部分に分けて複数の
処理装置に割り振ることで速度向上を図ることが目的です。
これに対し、「並行」な動作では、2つ以上の相互にやり取
りが発生する作業を、複数の処理装置に分けるだけでなく、
1つの処理装置を時分割して使うなどのやりくりをして処
理します。このやりくりのことをスケジューリングといい
ます。

注2） CPUの多くは、「コア」と呼ばれるプログラムを実行するた
めの部分（制御装置、レジスタ、演算装置など）と、コアが
アクセスするキャッシュなどの記憶装置から成り立ってい
ます。最近のCPUは複数のコアを内蔵し、並行処理や並列
処理で高速化を図るものが一般的になっています。

がしばしば発生します。このような問題を相互
排除問題 [1]といいます。たとえば、同じメモリ
領域に複数のスレッドが読み出しや書き込みを
行う場合、時間的な一貫性を保つことは容易で
はありません（図1）。具体的には、あるスレッ
ドがその領域を読み出している間は書き込みを
禁止し値が変わらないことを保証したり、一方、
あるスレッドが書き込み作業を行っている間は
他のスレッドは作業が終わるまで読み出せない
ようにしなければなりません（図2）。これらを
正確かつ確実に行うのは大変困難です注3。

Erlangの考え方：共有を避ける
「並行指向プログラミング」

　Erlangでは並行プログラミングの安定動作
を図るために、次に説明する「並行指向プログ
ラミング」[2]という考え方を採用しています。
これはスレッドを使ったものとはまったく違う
アプローチです。

・	プログラムを細かなプロセス注4に分割します。
プロセスはErlangの関数として定義でき、
他のプロセスとは一切情報を共有しません。

注3） ソースコードのバージョン管理システムのうち、Sub
versionなど書き込みにロックを使うものでは、同様の問
題が発生します。

注4） 本連載では、以後「プロセス」はErlang言語でのプロセスを
指します。OS上のプロセス（プログラムの実行単位）は「OS
プロセス」と表記します。

この連載ではプログラミング言語Erlangとその並行プログラミングについて紹介していきます。今回は、
Erlangの言語仕様に組み込まれた機能について、どのように並行プログラミングに役立つかを中心に紹介します。

 Author 力武健次技術士事務所 所長 力武 健次（りきたけ けんじ） http://rikitake.jp/

第2回 Erlangのプログラミングスタイル

で学ぶErlang
並行プログラミング

http://rikitake.jp/

98 - Software Design May 2015 - 99

・	プロセス間で情報のやり取り
をする必要がある場合は、メッ
セージとして明示的に送りま
す。送った相手のプロセスが
受け取ったかどうかの確認は
しません。

・	各プロセスには、固有の識別
子（Pid）がついていて、区別
ができます。

・	プロセスの間では、プロセス
終了時に発生する「終了シグ
ナル」、そして2つのプロセ
スの間で終了シグナルを伝え
あうための「リンク」を使って、
プロセスの死活監視を行うことができます。

　この考え方を採用することによって、Erlang
では各プロセスを別々のBEAM（仮想マシン）
で動作させることが可能になりました（図3）。
暗黙の情報共有を避けることにより、複数の
BEAM間であっても、通信さえできればプロ
セスがどのBEAMで動いていても同じように
扱うことができます。

Erlangのサンプルコード

　今回は実際のサンプルコード（リスト1）から
Erlangの動作を見ていくことにします注5。この
サンプルコードはErlangでの基本的な逐次実
行と関数の定義の仕方を示したものです。
　サンプルコードはrgb2huvというモジュール
を定義し、その中に tohuv/1と tohuv/3という
関数を定義するという簡単なものです。このコー
ドの関数は、色のRGB値をHUV値に変換する
という機能を持ちます。
　リスト1の実行結果を示します（図4）。コン
パイル、ロード、関数の実行、値のチェックの

注5） 紙面に限りがあるため、本連載ではErlangの文法に関する
詳細な説明は割愛します。連載第1回（本誌2015年4月号
p.124～129）に、Erlangの詳細を解説した各種参考書を
紹介しています。

仕方をまとめています。

Erlangのモジュール、関数、式

　Erlangでは、並行指向プログラミングを実
現するために、関数型プログラミング [3]の考え
を取り入れています。暗黙の情報共有をせず、

第2回 Erlangのプログラミングスタイル

ここでは並列に処理するた
めの振り分けをする必要が
あり、均等に分けても分岐
した先が詰まっていれば待
たなければならないという
相互排除問題が生じる

並行処理の中に入ったも
のを順番どおりに出すた
めには、振り分ける際に
番号を振って、並べ替え
の際に番号どおりにそろ
える必要が生じる

ここでは並列処理
した結果をまとめ
て1つにする必要
があり、並べ替え
のための相互排除
問題が生じる

3つの道による並列処理

互いに干渉しない場合は、並列
処理で処理性能を上げられる

 ▼図1　並行処理で起こる相互排除問題の例

誰かが書き込もうとし
たときは他の書き込み
を禁止し、かつ書き込
んでいる間の状態は不
定なので読み出しも禁
止する必要がある

誰も書き込んでい
なければ読み出し
は自由にできる

書き込みが終わっ
たら読み出しは自
由にできる

不定A B

B

 ▼図2　 共有資源の読み出し書き込みで起きる相互排
除問題の例

分散したプロセス間の
情報共有はメッセージ
をやりとりすることの
みで行うようにする

メッセージを仮想マシン間でやり
とりできるようにしておけば、プ
ロセスが複数の仮想マシンに分散
しても問題なく処理できる

単一の仮想マシン 仮想マシン1 仮想マシン2

仮想マシン3

 ▼図3　Erlangでの分散環境とプロセス配置

100 - Software Design

で学ぶErlang
並行プログラミング

 ▼リスト1　rgb2huv.erl

 %%% -*- coding: utf-8 -*-
 %%% RGB値をHUV値に変換する関数を定義するモジュールです
 %%% 参考URL: http://en.wikipedia.org/wiki/HSL_and_HSV

 %%% ←行中のパーセントで始まる部分から行の終わりまではコメントです

 %%% モジュール宣言（ファイル名はモジュール名と同じ(rgb2hiv.beam)にします）
 -module(rgb2huv).

 %%% モジュール内のどの関数を外部に見せるかを選択します
 %%% exportの引数は関数のリストを取ります
 %%% リストは大カッコでくくります
 -export([tohuv/1,
 tohuv/3]).

 %%% マクロ定義（モジュール内で関数の外でのみ有効）
 -define(MAXVAL, 255.0).

 %%% 型定義 huv()を3つの浮動小数点数を要素とするタプルとします
 %%% タプルは中カッコでくくります
 -type huv() :: {float(), float(), float()}.

 %%% 関数 zerodiv/2 の定義です
 %%% この関数はexportのリストに入っていないため外部から見えません
 %%% 関数の型定義 zerodiv/2は整数の引数を2つ持ち浮動小数点数を返します
 -spec zerodiv(integer(), integer()) -> float().
 %%% 関数定義はここから始まります
 % パターンマッチングのパターンが変わるごとにセミコロンを使います
 % "_"はどんな引数にもマッチするという意味です
 zerodiv(_, 0) -> 0.0; % ←ここには2番目の引数がゼロであればマッチします
 % すべての変数は「大文字」で始まります
 % 演算子「/」は浮動小数点数を扱います（整数同士の割り算は「div」剰余は「rem」）
 zerodiv(X, Y) -> float(X) / float(Y). % ←マッチしない場合この式に来ます
 %%% 関数定義は式の最後のピリオドで終わります

 %%% 関数 diffdiv/3 の定義です
 -spec diffdiv(integer(), integer(), integer()) -> float().
 diffdiv(X1, X2, Y) -> zerodiv((X1 - X2), Y).

 %%% 関数 tohuv/3 の定義です
 %%% 0～255の間のRGBの整数値をそれぞれ引数に取り
 %%% 返り値は{Hue, Saturation, Value}のタプルで返します
 %%% （0.0 =< Hue < 360.0, 0.0 =< Saturation =< 1.0, 0.0 =< Value =< 1.0）
 -spec tohuv(integer(), integer(), integer()) -> huv().
 tohuv(R, G, B) ->
 % bandはビットAND演算子， borはビットOR演算子です
 % bslはビット左シフトを右側に指定したビット数分行います
 tohuv(((R band 16#ff) bsl 16) bor
 ((G band 16#ff) bsl 8) bor
 (B band 16#ff)).

 %%% 関数 tohuv/1 の定義です
 %%% tohuv/3と同様ですが引数はRGB値を8ビットごとにまとめたものを
 %%% 24ビットの整数として与えます
 %%% 例: HTMLのRGBコード"#88AA55"は"16#88AA55"と与えます
 -spec tohuv(integer()) -> huv().
 %%% 以下どの変数も一度しか代入されていません
 tohuv(C) ->
 % 関数の中での逐次実行は式の最後にカンマを付けて続けます
 % 次の行はビットストリングのパターンマッチです
 <<R:8, G:8, B:8>> = <<C:24>>, % 24bitの整数を8bitごとに分割します
 Max = max(max(R, G), B), % erlang:max/2は大きな値を取るBIF
 Min = min(min(R, G), B), % erlang:min/2は小さな値を取るBIF
 D = Max - Min,
 H1 = 60.0 * (
 % 「case 条件式 of 値1 -> 式1; ... 値n -> 式n end」は

100 - Software Design May 2015 - 101

状態を保持したり入出力をする際もすべて関数
を呼び出して行うというところにその特徴が表
れています。
　Erlangでは、関数が最小の実行単位です。
関数はモジュールに属し、モジュール名、関数
名、そしてアリティ（関数の引数の数）の組み合
わせで示します。たとえばfooというモジュー
ルに属するbarという2つの引数を持っている
関数の場合は "foo:bar/2"と書き、"foo:bar
(first, second)"のようにして呼びます。モ
ジュール内部の関数は関数名だけで参照できま
す。また、BEAMの組み込み関数（BIF）の多
くは "erlang"という名前のモジュールに属し
ており、関数名だけで参照できます。
　モジュール名は単一階層しか持ちません。複
数のモジュールの名前が重なった場合どれが使
われるかは、モジュールに対応する .beamファ
イルをロードする順番で決まります注6。
　関数は式の集まりです。Erlangの関数では、
最後に評価された式の値が必ず呼び出し元に返
ります。このためC言語の return文に相当す
るものはありません。呼び出す側は返った値を
無視することもできるため、実用上困ることは
ありません。
　モジュールは-module（モジュール名）宣言し、
他のモジュールに見せる関数は-export([関数
名/アリティ，...])として宣言します。この

注6） Erlangシェルを呼ぶコマンドerlの-pa/-pzオプションで
指定できます。

第2回 Erlangのプログラミングスタイル

 % 条件式と各値の比較を行って一致すれば対応する式の値を返します
 % 最後の式にはセミコロンをつけず「end」で終わります
 case Max of
 R -> diffdiv(G, B, D) + 6.0;
 G -> diffdiv(B, R, D) + 2.0;
 B -> diffdiv(R, G, D) + 4.0
 end),
 Hue = case H1 >= 360.0 of
 true -> H1 - 360.0;
 false -> H1
 end,
 % 各関数は最後に評価した式の値を返します
 % マクロの参照は「?」を最初につけて行います
 {Hue, zerodiv(D, Max), Max / ?MAXVAL}.

 ▼図4　実行結果

 ソースコードのあるディレクトリをカレントディレクトリにして "erl" コマンドを
 起動してください（注意:コマンドの動作はすべてピリオドを打たないと完結し
 ません）
 Eshell V6.3.1 (abort with ^G)
 ↓コンパイルは「c(モジュール名)」で行います
 1> c(rgb2huv).
 {ok,rgb2huv} ←rgb2huv.beam ファイルが作成されました

 2> l(rgb2huv).←モジュールのロードは「l（モジュール名）」で行います
 {module,rgb2huv}　←rgb2huv.beam ファイルがロードされました

 3> rgb2huv:
　↓モジュール名の後でタブ補完すると定義した関数の一覧が出ます
 module_info/0 module_info/1 tohuv/1　 tohuv/3

　 ↓「16#」を先につけると16進数になります
 4> rgb2huv:tohuv(16#ff00ff).
 {300.0,1.0,1.0}

　 ↓関数の実行結果を変数に代入します。式自体も値を持ちます
 5> T = rgb2huv:tohuv(192,128,64).
 {30.0,0.6666666666666666,0.7529411764705882}

　 ↓変数の値を読み出します
 6> T.
 {30.0,0.6666666666666666,0.7529411764705882}0

　 ↓タプルの要素の値を変数へのパターンマッチングで取り出します
 7> {Hue, Saturation, Value} = T.
 {30.0,0.6666666666666666,0.7529411764705882}

　 ↓取り出した値の一部です
 8> Hue.
 30.0

 9> {30.0, _, _} = T.
 {30.0,0.6666666666666666,0.7529411764705882}
　 ↑タプルへのパターンマッチングが成功した例です

 10> {2.0, _, _} = T.
 ** exception error: no match of right handｭ
 side value {30.0,0.6666666666666666,0.752ｭ
 9411764705882} ←失敗するとマッチできないというエラーが出ます

 11> q(). ←シェルの終了コマンドです

 ▼リスト1の続き

102 - Software Design

で学ぶErlang
並行プログラミング

export宣言に入っていない関数は他のモジュー
ルからは見えません。

Erlangの基本的なデータ型

　基本的なデータ型をまとめて項（term）とい
います。項には次の各データ型が含まれます。

・	整数（桁数制限なし、多倍長演算が可能、16
進数の場合は“16#08ABCD”のように最初
に“16#”をつける）

・	浮動小数点数（C言語のdouble相当）
・	アトム（任意の名前で表現される識別子）注7

・	タプル（項を要素とする固定長の配列）
・	リスト（項を要素とする可変長の配列）
・	ビットストリング（任意のビット長を持つパ
ターン）

・	バイナリ（ビットストリングの拡張、8ビッ
トごとに区切られた任意のビット列）

・	Fun（関数の実体、無名関数に相当）
・	Pid（プロセスの識別子）
・	リファレンス（erlang:make_ref/0で作られ
る参照子）

・	レコード（要素の名前の付いた構造体、実体
はタプルで実装される）

・	マップ（バージョン17.xより使えるキーバ
リュー型テーブル）

・	ポート（外部ファイルやプログラムとの入出
力を示す識別子）

　文字列は「各文字が要素となるリスト」で表現
されます。一方、ネットワークなどを介して外
部とやり取りするデータは、記憶領域の効率や
データの操作性の点から、バイナリとして扱わ
れるのが一般的です。
　既存のデータ型を組み合わせて複合データ型
に名前をつけることもできます（-type）。また、

注7） アトムは原則として小文字で始めます。小文字で始まらな
いアトムはクオート（'）で囲うことが必要です。BEAM内
で保持できるアトムの数には上限（既定値は1048576）が
あり、一度使ったアトムはBEAMの終了まで保持されるた
め、動的にアトムの名前を生成することは推奨しません。

各関数の引数と戻り値の型を宣言することで
（-spec）、コンパイラや外部ツールDialyzerに
よる型チェックもできるようになります

Erlangの変数と単一代入原則

　変数は大文字で始まる文字列で表されます。
変数の有効範囲は関数の中だけで、使うのに宣
言は必要ありません。また、同じ変数に代入で
きるのは1回だけです。値を変えたら、他の名
前の変数に代入しなければなりません。
　Erlangにはデータの参照を提供する言語要
素はありません。変数にデータ構造を代入する
ときは、必ず独立した実体のコピーが作られま
す。実体への参照やポインタだけをコピーし、
実体は共有したままになることはありません。
一例として、代入の意味をJavaScriptと比較
してみます。JavaScriptではオブジェクトを変
数に代入した場合、参照渡しとなるため、新た
な実体は作られません。その結果、代入した実
体を操作すると、代入された側の値も変わって
しまいます（図5）[4]。Erlangではそもそも一度
代入した変数はその値を使うことしかできない
ため、そういうことは起こりません（図6）[4]。
　このような言語仕様によって、Erlangでは
代入する前の状態と代入した後の状態とを厳密
に区別することができます。このような設計の
利点は、何か操作をした後でも、操作前の状態
が保存されているため、すぐに前の状態に戻す
ことができることです。デバッグの際も、関数
を実行している間は変数の中身は変わらないた
め、変数の値の変化を追いかけていく必要があ
りません。

パターンマッチング

　Erlangでは、関数の引数が一定の条件に合っ
ているかどうかのパターンマッチングを行って、
処理の場合分けをします。関数宣言はマッチン
グのパターンごとにセミコロン（;）で終わる節

102 - Software Design May 2015 - 103

に分かれ、最後の節はピリオド（.）で終わります。
引数の内容によって処理を変えられるので、条
件分岐と同様の役割をします。慣れてくると便
利に使える文法要素の1つです注8。

case式

　Erlangの関数内ではすべてが式として評価
され値を持ちます。そのため、条件分岐も「……
の場合であれば……という値を返す」という形
で表現されます。代表的な条件分岐の構文とし
てcase式があります。基本的な形は

case 条件 of
 値1 -> 条件が値1の場合の返り値を示す式
　　　　　　　　　　（をカンマでつないだもの）;
 値2 -> 条件が値2の場合の返り値を示す式
　　　　　　　　　　（をカンマでつないだもの）;
 ……（略）……
 値n -> 条件が値nの場合の返り値を示す式
　　　　　　　　　　（をカンマでつないだもの）
 　　　　% セミコロンが最後にないのに注意
end

となります。それぞれの選択肢が複数の式をカ
ンマでつないだものを含む場合は、最後の式の
値が返されます注9。

ビットストリングとバイナリ

　パターンマッチングと同様に強力なのが、ビッ
トストリングとバイナリです。ビットストリン

注8） Erlangの代入とパターンマッチングは、イコール（=）の左
右を同じ値にするという意味で、本質的に同じ動作です。

注9） case式のほかに if式やガードといった条件判定のための文
法要素もありますが、詳細はここでは割愛します。

グを使うことで、任意のビット数の整数を結合
したり分けたりすることができます。また、パ
ターンマッチングと組み合わせると、ビット列
の特定の部分のパターンによって処理を変えた
りすることもできます。これはネットワークの
プロトコル解析などにとくに有用です。

まとめ

　今回は、プログラミング言語Erlangの言語
仕様と、並行プログラミングを支援する機能に
ついて紹介しました。次回は今回紹介できなかっ
た繰り返し処理、高階関数、Erlangのプロセ
ス間通信、そしてメッセージパッシングを使っ
た分散プログラミングについて紹介します。｢

参考文献
［1］	土井範久、「相互排除問題」、岩波書店、2011

年、ISBN 978-4-0000-5618-2

［2］	 Joe Armstrong, "Concurrency Oriented
Programming in Erlang",November, 9,
2002, http:// l l2.a i .mit .edu/talks/
armstrong.pdf

［3］	住井英二郎、「『関数型言語』に関するFAQ形
式の一般的説明」（http://qiita.com/esumii	
/items/ec589d138e72e22ea97e）

［4］	力武健次、『Erlang/OTP並行プログラミン
グシステムに見る情報システム技術の課題』、
第62回SEA関西プロセス分科会、2015年
2月14日、スライド p.54/p.57（https://
speakerdeck.com/jj1bdx/otpbing-xing-
puroguramingusisutemunijian-ruqing-
bao-sisutemuji-shu-falseke-ti-di-62hui-
seaguan-xi-purosesufen-ke-hui）

第2回 Erlangのプログラミングスタイル

 ▼図6　Erlangでの例 ▼図5　JavaScript（node.js）の例

// var a = {first: 1, second: 2}
// b = a // ポインタのコピーのみ
{ first: 1, second: 2 }
// a.second = 3
3
// b // 名前が違っても要素は共有
{ first: 1, second: 3 }
// b == { first: 1, second: 3 }
false // 何故?

% A1 = {1,2,3}.
{1,2,3}
% B1 = A1.
{1,2,3} % B1はA1の実体のコピー
% A2 = setelement(3,A1,4).
{1,2,4}
% B1 =:= {1,2,3}. % 比較演算
true % 要素ごとの比較をしている
%%% A1, B1, A2 は個々に独立した実体

http://ll2.ai.mit.edu/talks/armstrong.pdf
http://qiita.com/esumii/items/ec589d138e72e22ea97e
https://speakerdeck.com/jj1bdx/otpbing-xing-puroguramingusisutemunijian-ruqing-bao-sisutemuji-shu-falseke-ti-di-62hui-seaguan-xi-purosesufen-ke-hui

104 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

していただけると幸いです。

Wearの音声入力機能

　スマホやタブレット（以降「Handheld」と表記）
向けAndroidでは、今や当たり前のように使わ
れている音声認識機能ですが、Wearでもサポー
トされています。たとえば、Wearが時間を表
示している画面（図1-A注2）で、時計に向かって
「OK Google」と話したのちに、「スカイツリー
を探して」と言うと（図1-B）、Google検索した

注2） この画面はWatch Faceと呼ばれます。アプリ開発者が任
意のWatch Faceを開発することもできます。

はじめに

　前号（4月号）では、Android Wear（以降「Wear」
と表記）アプリ開発のうち、Wear実機での実
行／通知機能について触れました。今回は、
Wearアプリ上での「音声入力機能」をご紹介し
ます注1。続いて、開発したWearアプリを
Google Play上で配信するために必要な手順に
ついても触れます。いずれもWearアプリ開発
において重要なトピックですので、ぜひマスター

注1） 開発環境構築やエミュレータ・実機での実行方法、通知機
能の実装などは、これまでの連載をご参照ください。

Android Wear

アプリ開発入門
第3回 Android Wearアプリで音声入力機能を活用！

～より生活に密着するスマートデバイスの世界～

 ▼図1　時計表示画面での音声入力

 ▼表1　音声コマンド例

5秒後に鳴動するタイマーが設定される
太郎さんへ「後で会おう」というメールが送信される
レインボーブリッジまでのナビゲーションが行われる
歩数計アプリが起動される

（A） （B） （C）

音声コマンド 実行される操作
［タイマー設定］＋「5秒」
［メールを送信］＋「太郎、後で会おう」
［ナビを開始］＋「レインボーブリッジまで連れて行って」
［歩数計を表示］

前半の［...］は音声で入力することも画面から選択することも可能です。後半の「...」は音声で入力します。

iplatform.orgにて情報発信するかたわら、「セカイフォン」などを開発。Droidconなどでのカンファレンス講
演、MWC/CES/IFAでのプロダクト展示、執筆などの活動も実施。NTTソフトウェア株式会社テクニカルプロフェッ
ショナル。現在はAndroid以外のモバイルOSにも取り組み、公私にわたってモバイルアプリの世界に没頭中。

神原 健一（かんばら けんいち ）　　　　 http://blog.iplatform.org　　　　　　@korodroidWeb Twitter

http://blog.iplatform.org

May 2015 - 105104 - Software Design

第3回 Android Wearアプリで音声入力機能を活用！

結果が画面に表示されます（図1-C注3）。この指
示は、音声コマンドと呼ばれています。Google
検索以外にも表1に示すような音声コマンドが
サポートされています。
　このようにちょっとしたことであれば、
Handheldをわざわざ取り出さなくても、Wear
に向かって音声で指示するだけでやりたいこと
を行うことができます。WearはHandheld以上
に画面が小さいということもあり、執筆時点で、
OSの標準機能としてのソフトキーボードは提
供されていません。そのためユーザの入力手段
として、音声を適切に活用することは重要です。

アプリ内での音声入力
　このように便利な音声入力機能ですが、我々
が開発するアプリの中でも活用することができ
ます。たとえば、前号で紹介した通知に対して、

注3） Google検索を行うには、Wear実機とHandheld実機のペ
アリングが行われ、かつHandheldがインターネットに接
続されている必要があります。

アクションとして音声入力機能を追加してみま
しょう（図2）。①音声の入力②入力結果の取得、
の順に解説します。

▶①音声の入力

　①を行うためには、リスト1のコードを記述
します。
　まず音声入力結果を渡すActivityを指定した
Intentを生成します。次に、音声入力機能
（RemoteInput）のインスタンスを生成します。
その際、あとで音声結果取得に必要となる任意
のキー（今回は、EXTRA_VOICE_REPLY）を
指定しています。続いて、音声入力アクション
の生成です。RemoteInputインスタンスを
addRemoteInput（）メソッドにより設定します。
音声入力アクションを通知マネージャに設定す
るために必要となる、ウェアラブル用拡張機能
（WearableExtender）のインスタンスを生成し
ます。そして、ウェアラブル用拡張機能のadd
Action（）メソッドを用いて、音声入力アクショ
ンを設定すれば完了です。「音声入力」ボタンを

 ▼図2　音声入力機能（自由入力）

（1）音声の入力

（2）入力結果の
　 取得

int notificationId = 1010;
final String EXTRA_VOICE_REPLY = "extra_voice_reply";

NotificationCompat.Builder builder = new NotificationCompat.
Builder(this).setSmallIcon(R.drawable.ic_launcher)
 .setContentTitle("音声入力").setContentText("音声で入力します。");
// 音声入力結果を渡すIntentの生成
Intent replyIntent = new Intent(this, MainActivity.class);
PendingIntent pendingIntent = PendingIntent.getActivity(this, 0,
 replyIntent, 0);
// 音声入力機能のインスタンス生成
RemoteInput remoteInput = new RemoteInput.Builder(
 EXTRA_VOICE_REPLY)
 .setLabel("あなたの趣味は何ですか？").build();
// 音声入力のアクション生成
Action replyAction = new Action.Builder(
 android.R.drawable.ic_btn_speak_now, "音声入力", pendingIntent)
 .addRemoteInput(remoteInput).build();
// ウェアラブル用拡張機能のインスタンス生成
NotificationCompat.WearableExtender wearableExtender =
 new NotificationCompat.WearableExtender();
// 音声アクションの設定
NotificationManagerCompat manager =
 NotificationManagerCompat.from(this);
manager.notify(notificationId, builder.extend(
 wearableExtender.addAction(replyAction)).build());

 ▼リスト1　音声入力の処理実行

106 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

タップすると、音声入力を行うための画面が表
示されます。

▶②入力結果の取得

　続いて、②について解説します。ユーザが入
力した音声は、文字列として取得することがで
きます。そのためには、リスト2のコードを記
述します。
　この処理は音声入力結果を受け取るActivity
側で実装します。音声入力の完了後、送信され
る IntentからRemoteInputクラスのgetResults
FromIntent（）メソッドを用いて、結果が含ま
れるBundle型データを取得します。さらに、

その中からキー（EXTRA_VOICE_REPLY）を
指定して値を取得しています。このように音声
入力結果を文字列として取得し、アプリ内の処
理で利用することができます。
　音声入力をユーザに行ってもらうときに、画
面に入力候補を表示することも可能です（図
3-A）。画面に収まらない候補は画面を下にス
クロールすることで表示されます（図3-B）。具
体的には、リスト3とリスト4のコードを記述
します。
　リスト3で、リスト1との差分はaとbです。
まずaで、表示する選択肢をarrays.xml（リス
ト4）から取得し、String配列に格納しています。

// 音声結果が格納されたIntentを用いて処理実行
private CharSequence getMessageText(Intent intent) {
 // 音声入力結果を含むBundleの取得
 Bundle remoteInput = RemoteInput.getResultsFromIntent(intent);
 if (remoteInput != null) {
 // Bundle経由で文字列の取得
 return remoteInput.getCharSequence(EXTRA_VOICE_REPLY);
 }
 return null;
}

NotificationCompat.Builder builder = new NotificationCompat.Builder（
 this）.setSmallIcon（R.drawable.ic_launcher）
 .setContentTitle（"音声入力"）.setContentText（"音声で入力します。"）;

// 音声入力結果を渡すIntentの生成
Intent replyIntent = new Intent（this, MainActivity.class）;
PendingIntent pendingIntent = PendingIntent.getActivity（this, 0, replyIntent, 0）;

String［］ replyChoices = getResources（）.getStringArray（R.array.reply_choices）;

// 音声入力機能のインスタンス生成
RemoteInput remoteInput = new RemoteInput.Builder（EXTRA_VOICE_REPLY）
 .setLabel（"あなたの趣味は何ですか? "）

 .setChoices（replyChoices）.build（）;

// 音声入力のアクション生成
Action replyAction = new Action.Builder（
 android.R.drawable.ic_btn_speak_now, "音声入力", pendingIntent）
 .addRemoteInput（remoteInput）.build（）;
// ウェアラブル用拡張機能のインスタンス生成
NotificationCompat.WearableExtender wearableExtender =
 new NotificationCompat.WearableExtender（）;
// 音声アクションの設定
NotificationManagerCompat manager = NotificationManagerCompat.from（this）;
manager.notify（notificationId, builder.extend（
 wearableExtender.addAction（replyAction））.build（））;

 ▼リスト2　音声入力の結果取得

 ▼リスト3　音声入力機能（選択肢表示）

a

b

May 2015 - 107106 - Software Design

第3回 Android Wearアプリで音声入力機能を活用！

設定しています。このように設定しておけば、「ハ
ロー 開始」としゃべることでアプリを起動する
ことが可能となります。

Google Playでの
アプリ公開

　話題を変えて、Google Playでのアプリ配信
方法について見ていきましょう。アプリ配信の
話に入る前に、ユーザがWear実機にアプリを
インストールする流れを解説します。本稿執筆
時点では、Wear実機にGoogle Playは搭載さ
れていません。そのため、ユーザがWear実機
にアプリを直接インストールすることはできま
せん注4。その代わり、Handheld実機からGoogle
Playを経由して、Wear実機にアプリをインス
トールすることが可能です。
　ただ、この方法を用いてWear向けアプリを
配信するには、「アプリのパッケージング方法」
を工夫する必要があります。具体的には図4に
示すように、Handheldアプリの中に、Wear用
モジュールを同梱させてパッケージングしたも
のをGoogle Playで公開するということを行い
ます。こうしておけば、ユーザがGoolge Play
からHandheld実機にアプリをインストールす
ると、Wear実機にも自動的にWearアプリが
インストールされます。パッケージングは一見
難しそうですが、Android Studio（＋Gradle）
なら簡単にできます。
　パッケージングに関して、2つの重要なポイ

注4） 開発者であれば、adbコマンドなどを用いてアプリを
Wear実機に直接インストールすることは可能です。詳細
は前号をご参照ください。

続いて、bでRemoteInputのインスタンスに
setChoices（）メソッドを用いて設定をしていま
す。これにより、音声入力を実行した際に、こ
れらの候補も画面に一緒に表示されます。候補
内容は音声で入力することも、画面をタップし
て選択することも可能です。

音声を用いたアプリ起動
　Wearアプリ（通知を除く）は、一般的にWear
実機のランチャーからアプリを選択して起動し
ます。その代わりに、「OK Google」のあとに「◯
◯ 開始」という音声コマンドを用いてアプリを
起動できるようにすることも可能です。そのた
めには、WearアプリのAndroidManifest.xmlを
リスト5のとおり設定してください。起動に用
いるアプリ名は、Activityの label属性として

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="reply_choices">
 <item>旅行</item>
 <item>カラオケ</item>
 <item>食事</item>
 </string-array>
</resources>

 ▼リスト4　 arrays.xml

 ▼図3　音声入力機能（選択肢表示）
（A） （B）

〈activity
 android:name=".MainActivity"
 android:label="ハロー" 〉
 〈intent-filter〉
 〈action android:name="android.intent.action.MAIN" /〉
 〈category android:name="android.intent.category.LAUNCHER" /〉
 〈/intent-filter〉
〈/activity〉

 ▼リスト5　音声コマンドでアプリを起動できるようにするためのAndroidManifest.xml設定

108 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

ントを解説します。

▶［ポイント1］Handheld用のビルド定義
ファイル（build.gradle）にて、Wear用モ
ジュールを同梱する宣言

　たとえば、連載第1回で開発した「HelloWear」
アプリのように、Handheld用モジュールと
Wear用モジュールが各1つ含まれるプロジェ
クトを例に説明します。具体的には、Handheld
用のビルド定義ファイル（図5の（1））の内容を、
リスト6に示すようにwearApp project（':
モジュール名'）と定義しておくことで、Hand
held用パッケージングを行うときにモジュー
ル名に指定したWear用モジュール（今回は
“wear”）を同梱できます。正しく設定されてい
るかを必ず確認してください。

▶［ポイント2］Handheld / Wear両方の
build.gradleにて、リリース署名を付与
する宣言

　Google Playでアプリを配信するには、リリー

ス署名の付与が必須となります。具体的には、
Handheld/Wear両方のビルド定義ファイル（図
5の（2））で、リスト7に示すようにリリース署
名に必要な情報の定義（signingConfigsのブロッ
ク）を行い、さらに、releaseビルドを行う際に
リリース署名を実行するための宣言（signing
Configs.releaseConfig）を実施する必要があり
ます。releaseConfigの定義内容は表2を参考に
各自の環境に合わせて設定してください。
　ちなみに、アプリ公開用Keystore（release.
keystore）は、Android Studio（以降「Studio」と
表記）上のメニューから［Build］→［Generate
Signed APK］から生成可能です。さらに、ビ
ルド時にリリース用ビルドが実行されるように
するための設定が必要です。Studio左下から
「Build Variants」を選択し、同ウィンドウ内で
HandheldとWearの両方の Build Variantを
「release」に設定してください（図6）。

　ここまでで事前準備は完了です。Wear用ア
プリを内包したHandheld用アプリをビルドし
てみましょう。Studioのツールバーの中央付
近のリストボックスで「mobile」を選択し（図7）、
緑色の実行ボタンを押してください。どのデバ
イスで実行するかを聞かれますので、Handheld
実機を選択してください。設定に問題がなけれ

ば、Handheld実機でアプリが実行さ
れるはずです。
　少し待つと、Wear実機にもBlue
tooth経由で自動的にWearアプリが
インストールされます。Wear実機で、
ホーム画面をタップ→「開始」→「Hello
Wear」と選択することでアプリを起動
できます（図8）。また、apkは、〈プロ
ジェクトフォルダ〉/mobile/build/out
puts/apkに「mobile-release.apk」とし
て生成されているはずです。Google
Playには、このファイル（Handheld用
モジュール＋Wear用モジュールをま
とめたapk）を登録すればOKです。

dependencies {
 （...略...）
 // wearという名前のモジュールを同梱する宣言
 wearApp project（':wear'）
 （...略...）
}

 ▼リスト6　build.gradleの抜粋（1）

インストール（手動）
インストール（自動）

Google Playに
アップロードする部分

Google Play
Handheld用モジュール

Wear用モジュール

Wear用モジュール

Handheldアプリ

Wearアプリ

 ▼図4　Wearアプリのインストールの流れ

May 2015 - 109108 - Software Design

第3回 Android Wearアプリで音声入力機能を活用！

おわりに

　今回はWearアプリにおける音声入力に加え、
Google Playでの公開方法について解説しまし
た。音声入力を適切に活用することで、Wear
アプリの操作性を向上させ、アプリとしての魅
力を高めることができます。初回から読んでい
ただいている方には、Wearアプリ開発の世界
を少しずつつかんでいただけているのではない
かと思います。
　次回もWearアプリを開発するうえで重要な
トピックを取り上げます。お楽しみに !s

 ▼図6　Build Variants設定

 ▼図7　ビルドモジュールの選択

 ▼表2　releaseCon�gの定義例

アプリ公開用Keystoreのファイルパス
同Keystoreのパスワード
同Keystoreの秘密鍵エイリアス
同Keystoreの秘密鍵パスワード

Value例 内容Key

storeFile

storePassword

keyAlias

keyPassword

file("../release.keystore")

"myPassword"

"myAlias"

"myPassword"

signingConfigs {
 releaseConfig {
 storeFile file（"../release.keystore"）
 storePassword "myPassword"
 keyAlias "myAlias"
 keyPassword "myPassword"
 }
}
buildTypes {
 release {
 （...略...）
 signingConfig signingConfigs.releaseConfig
 }
}

 ▼リスト7　build.gradleの抜粋（2）

 ▼図5　プロジェクトの構成例

（1）、（2）
（2）

ビルド用
スクリプト

Wear用
モジュール

Handheld用
モジュール

▶ 図8　
Wearアプリの
起動

110 - Software Design

を行います。
　死活監視は個々のサーバやネットワーク機器
が停止していないかを監視します。Apacheや
MySQLなどのミドルウェアやアプリケーショ
ンのプロセスが落ちていないかを監視すること
もあります。
　リソース監視はOSやミドルウェアのメトリッ
クの値や変化率が閾

いき

値
ち

を超えていないかを監視
します。
　そのほかにも、ログ監視やServerspec注1を
用いたサーバ構成の監視など、監視の種類は多
岐に渡ります。システムが正常稼働するために
必要なものは何かを考え、適切に監視する必要
があります。

どのように監視するのか

　これらのような監視を実現するためには、ど
のようなしくみが必要でしょうか。
　外形監視と死活監視の場合、監視対象のシス
テムの外からHTTPやICMPなどのネットワー
クプロトコルを用いて、定期的にアクセスする
必要があります。さらに、レスポンスがないも
しくはレスポンスが基準よりも遅い場合は、メー
ルやチャットなどでサーバ管理者に異常を通知
することも必要です。
　リソース監視の場合は、SNMPなどを用い

Mackerelではじめる
サーバ管理

　Mackerelでは、サーバ監視においては外せない基本項目の監視機能が用意されて
いるのはもちろん、ユーザの環境に合わせてさまざまな監視項目を追加できます。
今回は、サーバ監視の基本、ルール設定のためのアイデア、アラートのしくみにつ
いて、筆者が現場の運用で培ってきたノウハウとともに紹介します。

Writer 坪内 佑樹 （つぼうち ゆうき） ㈱はてな
Twitter @y_uuk1

　前回はMackerelを使ったメトリックの可視
化について紹介しました。第3回目となる今回
はMackerelを使ってサーバをどのように監視
したらいいのかについて紹介します。

サーバ監視のいろは

なぜ監視が必要か

　前回紹介したメトリックの可視化（サーバの
状態をグラフ化すること）によって、サーバに
異常が起きていないかを目視で確認できるよう
になりました。一方で、サーバはハードウェア
の故障やトラフィックのバーストなどにより、
人間が寝ている間にも突然障害が発生すること
があります。そういった突然の障害に備えて、
人間がグラフを見ていない間でも異常に気づく
ための監視のしくみが必要です。

何を監視するのか

　サーバの監視には外形監視、死活監視、リソー
ス監視などさまざまな種類があります。
　まず、外形監視はシステム全体に障害が起き
ていないかを監視します。たとえば、Webサ
イト自体が落ちていないかなど、システムを構
築する個々のコンポーネントに依存しない監視

第3回 運用しながら育てる
サーバ監視のルール

注1） URL http://serverspec.org

http://serverspec.org

110 - Software Design May 2015 - 111

てOSやミドルウェアのメトリックを定期的に
収集し、収集したメトリックとあらかじめ設定
した閾値を比較して、異常があれば外形監視と
死活監視同様にサーバ管理者に通知します。
　実際にこのようなサーバ監視を始めようとす
ると、自分で一からしくみを作るのはたいへん
ですので、NagiosやZabbixなどのOSSを用い
て監視システムを構築することが多いでしょう。
しかし、実際に監視システムのためのサーバを
自分で構築し、運用するのは多くの苦労を伴い
ます。とくにしっかりした監視を行う場合は、
監視システム自体に障害が起きたときのために、
監視システムの監視システムが必要なこともあ
るでしょう。そこで、MackerelのようなSaaS
（Software as a Service）として提供されている
サービスを利用すると、監視システムの構築と
運用の手間を劇的に減らせます。

Mackerelにおける
監視とアラート

　Mackerelでは執筆時点（2015年3月）で死活
監視の一部とリソース監視をサポートしていま
す。Mackerelの監視機能を利用するには、監
視ルールの設定、アラートの確認および通知の
設定が必要となります。設定方法について、詳
しくは本連載の第1回目（3月号）の記事または
Mackerelのヘルプドキュメント注2を参照して
ください。

死活監視

　Mackerelでは死活監視のうち「ホストの疎通

確認」をサポートしています。図1のように「ホ
ストの疎通監視」はデフォルトで設定されます。
　第1回で説明したように、SaaSというサー
ビスの性質上、MackerelはPush型アーキテク
チャを採用しています。しかし、実際の監視対
象サーバはプライベートネットワークに置かれ
ていることが多いでしょう。したがって、
MackerelのサーバからユーザのサーバへPing
を送ることは現実的ではありません。そこで
Mackerelでは、mackerel-agentが1分おきにメ
トリックを送信していることに着目し、メトリッ
ク送信を5分以上受信できなければ当該ホスト
との疎通がなくなったと判断し、アラートを生
成します。

リソース監視

　mackerel-agentを用いたホストメトリックの
収集と可視化については、4月号の第2回で紹
介しました。Mackerelでは収集した各メトリッ
クについて、閾値を設定できます。
　すべてのメトリックを監視すべきかといえば
そうではなく、監視すべきメトリックとそうで
ないメトリックを見分けることが重要です。一
般に監視しておくと良いメトリックを次に挙げ
てみました（括弧内はMackerel上でのメトリッ
ク名を表しています）。

・CPU利用率（CPU %）
・メモリ使用率（Memory %）
・スワップ使用率（Swap %）
・ファイルシステム使用率（Filesystem %）

注2） URL http://help-ja.mackerel.io

第 3 回
運用しながら育てるサーバ監視のルール

 ▼図1　ホストの疎通確認

http://help-ja.mackerel.io

112 - Software Design

 Mackerelではじめるサーバ管理

　これらのメトリックはMackerelでは図2の
ように優先的に表示されるようになっています。
とりあえず最低限の監視を設定しておきたいと
きは、これらのメトリックについて閾値を設定
すると良いでしょう。
　これらのOSが提供するメトリック以外に、
ミドルウェアが提供するメトリックを監視する
ことも有用です。OSのリソース消費が顕著に
なる前に、問題に気づけることもあります。ミ
ドルウェアのメトリックを監視するためには、
前回紹介したようにmackerel-agentのプラグイ
ンを用いて、メトリックを投稿する必要があり
ます。詳しくは、公式プラグイン集のヘルプ注3

を参照してください。
　公式プラグインを用いたメトリックのうち、
筆者が監視すると有用だと考えるメトリックの

一部を表1にリストアップしてみます。
　システム規模の成長に応じて変化するメトリッ
クは閾値を設定しづらいですが、接続エラー数
などのエラー系のメトリックは比較的閾値を設
定しやすい項目です。即対応が必要な場合も多
いため、監視しておいて損はないでしょう。
　しかし、できればエラーが発生する前にシ
ステムの異常の兆候を知りたいものです。
MySQLの場合、接続上限数があらかじめ決まっ
ていますので、接続上限数を確認しておき、接
続上限数のうちたとえば90％の閾値を設定す
ることにより、エラー発生前にアラートを発生
させることができます。MySQLの接続上限数
は次のようなクエリで確認できます。

mysql> show global variables like ｭ
'max_connections';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_connections | 10000 |
+-----------------+-------+

　ここで紹介した監視項目はほんの一部です。
管理対象のサーバやミドルウェアの特性に合わ
せて、何を監視すべきかを考えることが求めら
れます。

注3） URL http://help-ja.mackerel.io/entry/howto/mackerel-agent-plugins

 ▼図2　基本メトリックの監視項目

MySQLの接続エラー数
（custom.mysql.connections.Aborted_connects）

MySQLのレプリケーション遅延
（custom.mysql.seconds_behind_master.Seconds_Behind_Master）

MySQLのテーブルロック数
（custom.mysql.table_locks.Table_locks_waited）

InnoDBの行ロック数
（custom.mysql.innodb_row_lock_waits.Innodb_row_lock_waits）

Redisの接続エラー数
（custom.redis.connections.rejected_connections）

Nginxのアイドル状態のコネクション数
（custom.nginx.queue.Waiting）

JVMのフルGC時間の割合
（custom.jvm.nettyserver.gc_time_percentage.FGCT）

 ▼表1　お勧めの監視対象メトリック

http://help-ja.mackerel.io/entry/howto/mackerel-agent-plugins

112 - Software Design May 2015 - 113

　前回、Fluentdを用いたサービスメトリック
の活用について紹介しました。Mackerelでは
図3のようにサービスメトリックにも監視ルー
ルを設定できます。
　たとえば、Fluentdとリバースプロキシのア
クセスログを組み合わせてレスポンスタイム情
報を投稿することにより、レスポンスタイムの
平均値、90パーセンタイル値、99パーセンタ
イル値などの項目を監視できます。レスポンス
タイム情報の投稿方法については、公式サイト
の記事「fluentdでサービスメトリックを投稿す
る」注4を参照してください。サービスメトリッ
クによりあらゆるメトリックの監視が可能にな
り、クラウドサービスの金銭的コストの監視な
ど、これまで監視していないまたは監視しづら
かったメトリックを監視できます。サーバ特有
のメトリック以外にも、どのような項目を監視
できるかを考えるとおもしろいと思います。

　閾値を設定するといっても、どのような基準
で閾値を設定すれば良いのでしょうか。
　筆者は、アラートは必ず実際に対応するもの

3 3 3 3 3 3 3 3 3

だけに限定すべきだと考えています。「このア
ラートは無視して良い」「あのアラートは対応
しなければならない」などの暗黙の対応ルール
ができてしまうのはよくありません。したがっ
て、本当にシステムの稼働に問題があると判断
できる閾値を設定する必要があります。すでに
稼働しているシステムであれば、ピーク時間帯
のトラフィックに耐えられるように設計されて
いるはずですので、ピーク時間における各メト
リック値が閾値決定の参考になると思います。
Mackerelでは執筆時点で最大2年分のメトリッ
クを保存できますので、筆者の場合図4のよう
に直近数ヵ月のシステム成長を確認しつつ、図
5のように直近1週間のグラフでピーク時の値
を確認して、閾値を決定することが多いです。

監視ルール設定の考え方サービスメトリックの監視

第 3 回
運用しながら育てるサーバ監視のルール

注4） URL http://help-ja.mackerel.io/entry/advanced/fluentd

 ▼図3　サービスメトリックの監視ルール設定 ▼図4　直近数ヵ月のDBサーバのロードアベレージのグラフ

 ▼図5　直近1週間のDBサーバのロードアベレージのグラフ

http://help-ja.mackerel.io/entry/advanced/fluentd

114 - Software Design

 Mackerelではじめるサーバ管理

　とはいえ、とくに新規構築のシステムの場合、
今後の負荷状況が予想しづらいため最初から適
切な閾値を設定するのは難しいものです。筆者
の場合、システムの障害を見逃すことがないよ
うに最初は厳しめの閾値を設定し、負荷状況を
見つつ条件を緩くしていき、徐々に最適な閾値
に収束させていくというようなステップを踏む
こともあります。
　このようなステップを踏む場合、監視ルールの
設定が気軽に行えることが重要です。Mackerel
はユーザインターフェースにこだわって開発して
いますので、すばやく閾値の変更ができるように
なっています。
　また、アラートには必ず対応するといっても、
即時対応が必要な場合と後日対応で問題がない
場合があるでしょう。Mackerelではほかのサー
バ監視ツール同様Warning条件とCritical条件
を個別に設定できます。即時対応が必要なレベ
ルの閾値をCritical条件に設定し、後日対応で十
分なレベルの閾値をWarning条件に設定すると
いうような使い方ができます。
　さらに、監視ルールの設定をサーバごとに変
えたいという場合もあるでしょう。Mackerel
では、監視ルールをロール単位で設定できます。
逆に、このロールだけルールから除外したいと
いった場合、図6のように「除外条件」を設定す

ることもできます。CIサーバ（継続的インテグ
レーションを実行するサーバ）などの一時的に
負荷がバーストするようなロールを列挙して条
件を緩くすることや、「除外条件」によりそれら
のロールを監視しないといったこともできます。

お勧めの監視設定フロー

　最後に、筆者お勧めの監視設定フローを紹介
します。

❶すべてのサーバに対してCPU使用率、メモ
リ使用率、スワップ使用率、ファイルシス
テム使用率の監視ルールを設定する

❷各種エラー系のメトリックの監視ルールを設
定しておく

❸いったん様子を見て、特定のロールだけ頻繁
にアラートが来るようなら除外条件で無視
するか、別途当該ロール用の監視ルールを
作成する

❹障害が発生したときに、特徴的な値の変化を
したメトリックについて監視ルールを作成
する。同じ障害を早めに検知できるように、
回帰的に監視ルールを育てる

　いきなり最適な監視ルールを考えるのではな
く、問題が起きたらルールを調整していき、シ
ステムの変化に合わせて監視を育てていくこと
が重要だと考えています。

　今回は、サーバ監視の基本の説明と、Macke
relにおける監視とアラートを紹介しました。
サーバ監視は一定の決まりにしたがっていれば
良いというわけではなく、自分たちの運用して
いるシステムや所属している組織の特性に合わ
せて、何を監視するのか、どのような基準でア
ラートを発生させれば良いかを常に考える必要
があります。
　次回は、Mackerelとさまざまな外部ツール
との連携方法について紹介する予定です。ﾟ

まとめ

 ▼図6　除外条件

115 - Software Design May 2015 - 115

遺産の継承（その２）5第 回

　前回に引き続き、SwiftからCやObjective-C
の遺産を今回も活用します。前回はおもにC――
厳密にはlibc ――の機能をSwiftから使うにはど
うしたらよいかを見ていきましたが、今回は
Objective-C、つまりフレームワークをどう活用し
ていくかを見ていくことにしましょう。

import
（Cocoa｜UIKit）

　Objective-CではCにおけるlibcに相当するの
が、OS XではCocoa、iOSではUIKitです。ただ
しlibcよりできることははるかに多彩です。たと
えば、あるURLにアクセスしてそのコンテンツ
を表示するというのは、Webすらなかった時代に
作られたlibcでは簡単には書けませんが、Cocoa
やUIKitであればわずかこれだけです（リスト1）。
　なんと、NSString()という文字列を初期化

するAPIに適切なパラメータを渡すだけで、
ソケットを初期化し、HTTPプロトコルでサー
バにアクセスし、その内容をGETしてくれるわ
けです。あまりに楽なので、スクリプト言語で
プログラミングしているような感覚です（図1）。
　この場合URLのコンテンツはテキストです

書いて覚える 入門Swift
遺産の継承（その２）5第 回

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

 ▼図1　リスト1の実行結果

import Cocoa // OS X の場合。iOS ならUIKit
let url = "http://example.com/"
var enc = NSUTF8StringEncoding
var err:NSError?
if let content = NSString(
 contentsOfURL: NSURL(string:url)!,
 usedEncoding:&enc,
 error:&err
) {
 println(content)
} else {
 println(err)
}

 ▼リスト1　CocoaやUIKitのサンプル

116 - Software Design

が、JSONをパースする機能すら基本装
備しています（リスト2）。
　しかしパースしたJSONから特定のア
イテムを抜き取りたいとなると、かなり
面倒なことになります（リスト3）。
　JSONをサポートする多くの言語で
json["ItemAttributes"]["Author"]と一度
に書けるところを、まずlet item = json
["ItemAttributes"] as? NSDictionary で
itemを取り出し、さらにlet author =
item["Author"] as? NSStringとNSString
を取り出しという具合に、型が静的である
というSwiftの特徴がアダとなってしまっ
ています。どうにかして json["Item
Attributes"]["Author"]と書く方法はない
でしょうか？　さらに可能ならJavaScriptのよう
にjson.ItemAttributes.Authorと書けないので
しょうか？

ラッパーのススメ

　その試みがSwiftyJSON注1であり、拙作の

Swift-JSON注2です。たとえばSwift-JSONな
らリスト3のコードは

let author = JSON(url:"http://api.dan.co.jp/
asin/4534045220.json")["ItemAttributes"]["Author"].
asString

と1行で済んでしまいます。さらにスキーマを
classとして実装すれば、リスト4のようにす

注1） https://github.com/SwiftyJSON/SwiftyJSON
注2） https://github.com/dankogai/swift-json

import Cocoa
let url = "http://api.dan.co.jp/asin/4534045220.json"
var enc = NSUTF8StringEncoding
var err:NSError?
if let content = NSString(
 contentsOfURL: NSURL(string:url)!,
 usedEncoding:&enc,
 error:&err
) {
 if let json = NSJSONSerialization.JSONObjectWithData(
 content.dataUsingEncoding(enc)!,
 options: nil, error: &err) {
 println(json)
 } else {
 println(err)
 }
} else {
 println(err)
}

 ▼リスト2　JSONのパース機能を備えている

import Cocoa
let url = "http://api.dan.co.jp/asin/4534045220.json"
var enc = NSUTF8StringEncoding
var err:NSError?
if let content = NSString(contentsOfURL: NSURL(string:url)!, usedEncoding:&enc, error:&err) {
 if let json:AnyObject = NSJSONSerialization.JSONObjectWithData(
 content.dataUsingEncoding(enc)!,
 options: nil, error: &err) {
 if let item = json["ItemAttributes"] as? NSDictionary {
 if let author = item["Author"] as? NSString {
 println(author)
 }
 }
 } else {
 println(err)
 }
} else {
 println(err)
}

 ▼リスト3　JSONから特定のアイテムを抜き出す

書いて覚える 入門Swift

https://github.com/SwiftyJSON/SwiftyJSON
https://github.com/dankogai/swift-json

May 2015 - 117116 - Software Design

遺産の継承（その２）5第 回

ら書けます。
　SwiftyJSONやSwift-JSONはこれをどのよう
に実現しているのでしょうか？　ソースコード
全体を読んでいただければ一目瞭然なのですが、
SwifyJSONは 1,163行、Swift-JSONは 432行
で紙幅にとても収まりません（本原稿執筆現在で）。
ここではSwift-JSONのキモだけ解説します。
　Swift-JSONのインスタンス変数は、たった
1つです。

public class JSON {
 private let _value:AnyObject
 //
}

これに対し、subscriptは2種類定義されてい
ます（リスト5、リスト6）。

　つまり、json[0]のように添え字がIntであ
ればインスタンス変数を NSArrayとみなし、
json["name"]のように添え字がStringであれ
ばNSDictionaryとみなして、その要素から新
たなJSONオブジェクトを生成しているわけです。
そして要素が存在しない場合は、NSErrorから
JSONオブジェクトを生成し、インスタンス変数
がNSErrorの場合はそのまま自分自身を返すこ
とで、HaskellのEitherが一度Nothingになれ
ばずっとNothingであるように、最初に発生し
たエラーが引き継がれるというわけです。
　このようなラッパーは同等の機能をフルスク
ラッチでSwiftで書くよりずっと簡単に書けま
すし、書くことによってSwiftとObjective-C
の連携がどのようになされているかを体得する

こともできます。読者の皆さんも、
これぞというものがあったらぜひ
書いて、GitHubなどで公開して
みてください。

AnyObjectと
Anyの違い

　Swift の AnyObject は、Obj
ective-Cにおけるidに相当します。
id同様なんでも入りますが、適切
に使うにはisで適切な型を判定し
たり、asで適切な型に変換したり
しなければなりません。
　また、CocoaやUIKitなど、Obj
ective-C由来のフレームワークを
importしておく必要もあります（図
2）。

import Cocoa
var ao:AnyObject
ao = "assign"
// ao += " any value" // error
ao = (ao as String) + " any value"
ao = 40
// ao += 2 // error
ao = (ao as Int) + 2

 public subscript(idx:Int) -> JSON {
 switch _value {
 case let err as NSError:
 return self
 case let ary as NSArray:
 if 0 <= idx && idx < ary.count {
 return JSON(ary[idx])
 }
 return JSON(NSError(
 domain:"JSONErrorDomain", code:404, userInfo:[
 NSLocalizedDescriptionKey:
 "[\(idx)] is out of range"
]))
 default:
 return JSON(NSError(
 domain:"JSONErrorDomain", code:500, userInfo:[
 NSLocalizedDescriptionKey: "not an array"
]))
 }
 }

 ▼リスト5　subscript(idx:Int)

class ASIN : JSON {
 override init(_ obj:AnyObject){ super.init(obj) }
 override init(_ json:JSON) { super.init(json) }
 var ItemAttributes: ASIN { return ASIN(self["ItemAttributes"]) }
 var Author: String { return self["Author"].asString! }
}

let author = ASIN(url:"http://api.dan.co.jp/asin/4534045220.json").
ItemAttributes.Author

 ▼リスト4　ラッパーの使用例

118 - Software Design

書いて覚える 入門Swift

　ところがSwiftにはAnyObjectとは別にAny
という型も存在します。前述のAnyObjectを
Anyに変えてもそのまま動いてしまいますし、
import Cocoaをコメントアウトしてもそのま
ま動いてしまいます（図3）。
　なぜ、Swiftには「なんでもありな型」が2つ
も存在するのでしょう？
　sizeof()で双方の型を見てみると、面白い
ことがわかります。64bitプラットフォームで
はsizeof(AnyObject)は8なのに対し、sizeof

(Any)は 32。AnyObjectは 1ワード、Anyは 4
ワードです。賢明な読者であれば、この時点で
予想がつくでしょう。AnyObjectは参照、つま
りclassであるのに対し、Anyは実値、つまり
structなのです。
　さらに「禁断の組込み関数」、unsafeBitCast
を使ってAnyがどうなっているのかを見てみま
しょう（リスト7、図4）。
　なんのことはない。4ワードのうち頭から本
来の値を詰め込んだうえで、最後の1ワードに

「型 ID」が入っているだけのです。
Swift の Struct は、Int や
Doubleが1ワード、関数が2ワー
ド、StringやArrayやDictionary
が3ワードなので、Anyの中にす
べて納まります。
　これに対し、AnyObjectの正体は、
Objective-Cで書けば id *、オブ
ジェクトへのポインタで、型情報は
Anyのように値そのものの一部では
なくその参照先に格納されています。
　それではAnyはどこで使われて
いるかというと、Xcodeの内部で
す。Xcodeは現在書かれているコー
ドにあわせて振る舞いを変えます
が、この振る舞いを受け取る関数
は当然ありとあらゆる型を受け取
れなければなりません。Swiftに
はreflect()という関数がありま
すが、これがAnyを活用している
関数の1つで、これを用いると内
観（introspect）するためのコード
を自作することもできます。
　しかしそうでもない限り、Any
を使うケースはほとんどないでしょ
う。以前紹介したようにSwiftに
は総称関数とプロトコルがあるの
で、静的型の特長を活かすために
もAnyの使用は避けるべきです。

 public subscript(key:String)->JSON {
 switch _value {
 case let err as NSError:
 return self
 case let dic as NSDictionary:
 if let val:AnyObject = dic[key] { return JSON(val) }
 return JSON(NSError(
 domain:"JSONErrorDomain", code:404, userInfo:[
 NSLocalizedDescriptionKey:
 "[\"\(key)\"] not found"
]))
 default:
 return JSON(NSError(
 domain:"JSONErrorDomain", code:500, userInfo:[
 NSLocalizedDescriptionKey: "not an object"
]))
 }
 }

 ▼リスト6　subscript(key:String)

 ▼図2　AnyObjectの実行例

 ▼図3　Anyの実行例

118 - Software Design May 2015 - 119

遺産の継承（その２）5第 回

まとめると次のようになるでしょう。

・AnyObject は、Objective-C で 書
かれたフレームワークの連携に
おいてのみ使う

・Anyは使わない
 （複数の型を受け付けるコードには、

総称関数とプロトコルを用いる）

続きは次号

　今回はSwiftからObjective-Cの
フレームワークを用いる例として
Swift-JSONを紹介し、AnyObject
とAnyの違いを垣間見ました。次回
はXcodeでCおよびObjective-Cの
コードとSwiftのコードを同一のプ
ロジェクトで連携する例を見ていく
ことにします。ﾟ

import Cocoa
let s = "Swift"
var a:Any
a = s
var aq = unsafeBitCast(a, (UInt,UInt,UInt,UInt).self)
var sq = unsafeBitCast(s, (UInt,UInt,UInt).self)
let i = 42
a = i
aq = unsafeBitCast(a, (UInt,UInt,UInt,UInt).self)
var a1 = unsafeBitCast((42,0,0,aq.3), Any.self)
a as Int == a1 as Int

 ▼リスト7　unsafeBitCastでAnyの動きを調べる

 ▼図4　リスト7の実行例

OpenSSHは、暗号や認証の技術を使って遠隔地のコンピュータ
と安全に通信するためのソフトウェアです。システムの開発／運
用もクラウド上で行うことが多い昨今、SSHはIT技術者に必須の
技術です。
本書は、OpenSSHクライアント／サーバの基本的な使い方と、
TCPポートフォワード、認証エージェント転送、X11転送、簡易
VPNなどの応用的な使い方を説明します。セキュリティを確保す
るための注意点についても言及します。
OpenSSH-4.2～6.6対応。Red Hat系／Debian系OS両対応。

川本安武 著
A5判／400ページ
定価（本体2,980円＋税）
ISBN 978-4-7741-6807-4

・インフラエンジニア
・ネットワークエンジニア
・運用エンジニア
・Webアプリケーション開発エンジニア
・IaaSなどのクラウドサービスを利用している技術者
・リモートからサーバに接続して作業行う技術者

120 - Software Design

　前回は誌面の都合もあり、インストール手順
の紹介まででした。今回からは、実際の例を踏
まえて reStructuredText（以下、reST）の文法
やSphinxの基本的な使い方、ハマりどころを紹
介していきます。
　今回の記事で取り扱うドキュメントは「議事
録」です。議事録は、議題にあがったテーマ（タ
イトル）、開催日時や場所、参加者といったド
キュメントに付随する情報があり、内容が箇条
書きになることが多いため、reSTの文法を学ぶ
題材として非常に適しています。また、日常的
に会議や打ち合わせなどで議事録を作成する機
会も多く、Sphinxでドキュメントを作成する
きっかけにできます。社内に提出する議事録の
フォーマットが細かく決まっておらず、テキス
トで提出するような場合であれば、変換前の
reSTをそのまま提出できるのではないのでしょ
うか。
　Sphinxで変換できるフォーマットで一番使い

議事録を題材に
reSTを学ぶ意義

勝手の良いHTMLを対象に、reSTの基本、Sphinx
の基本を前後編の2回に分けて説明します。な
お、本稿で扱うSphinxのバージョンは1.3です。

　Sphinxでドキュメントを作成するためには、
まず「プロジェクト」を作る必要があります。プ
ロジェクトの作成はコマンドラインからの作業
になるので、Windowsの場合はコマンドプロン
プト、MacやLinuxの場合は仮想端末（ターミナ
ルなど）を起動させます。
　プロジェクトとは、いくつかの設定ファイル
などが配置された、ドキュメントを保存す
るための専用ディレクトリです。配置するファ
イルなどは、Sphinxに含まれる「sphinx-quick
start」というコマンドで作成します。
　Sphinx1.3から非対話モードオプション（-q）
が追加され、必要最低限の設定だけを指定して
プロジェクトを作成できます（図1）。必須のオ
プションは、プロジェクト名を指定する-p、ド
キュメントの製作者（Author name（s））を指定す

「プロジェクト」の作成

Sphinxで始める
 ドキュメント作成術

議事録を書こう（前編）
̶̶reSTの書き方、HTML変換の基本

第2回

川本 安武 KAWAMOTO Yasutake　 Twitter @togakushi

Sphinxで始める
 ドキュメント作成術

$ sphinx-quickstart -q -p project_name -a kawamoto -v 1.0 project_dir
Creating file project_dir/conf.py.
Creating file project_dir/index.rst.
Creating file project_dir/Makefile.
Creating file project_dir/make.bat.

Finished: An initial directory structure has been created.
 （... 以下略 ...）

 ▼図1　sphinx-quickstart（非対話モード）の実行例

120 - Software Design May 2015 - 121

る-a、プロジェクトのバージョンを指定する-v
の3つです注1。
　プロジェクトは引数で指定されたディレクト
リに作成されます。指定されたディレクトリが
存在しない場合は、ディレクトリが作成されま
す。省略されている場合はカレントディレクト
リとなります。プロジェクトを作成するディレ
クトリは空である必要があります注2。
　これでプロジェクトが完成します。

　sphinx-quickstartの実行が完了すると、設定
ファイルとひな形の index.rstが生成されます（図

2）。さっそくこの index.rstをHTMLに変換し
てみましょう。
　フォーマット変換にはmakeコマンドを利用し
ます。利用している環境にmakeコマンドがなけ

注1） Sphinx1.3の非対話モードのオプションに日本語を指定す
るとエラーになる不具合があります。この問題は1.3.1で修
正されています。

注2） Sphinx1.3.1で sphinx-quickstartが生成するファイル、
ディレクトリが存在する場合のみプロジェクトの作成がエ
ラーとなるように修正されました（それ以外のファイル、ディ
レクトリがあってもエラーにはなりません）。

最初の「make html」

れば、yumやapt-getなどでインストールしてく
ださい。Windows環境の場合は、sphinx-quick
start実行時に生成されるバッチファイル（make.
bat）を利用します。
　フォーマット変換もコマンドラインからの作
業になります。まずカレントディレクトリをプ
ロジェクトのルートディレクトリ（Makefileや
make.batが存在するディレクトリ）に移動させ
ます。ルートディレクトリで「make html」を実
行すると、reSTがHTMLに変換されます（図3、

4）。このときの画面には、進捗状況や警告など
が表示されます。警告はreSTの書式に合って
いない場合などに発生します。
　Sphinxはフォーマット変換を行う際、最初に
すべてのreSTファイルを読み込みます。読み
込まれたreSTファイルは可能な限り変換が行
われますが、警告となった部分はreSTに記述
したテキストがそのまま出力されたり、該当個
所が抜け落ちたりします。エラーとなった場合
は変換処理が中断されます。
　図4ではメニューなどが英語表記ですが、こ
れは設定で日本語に変更できます（後述）。

議事録を書こう（前編）
̶̶reSTの書き方、HTML変換の基本 第2回

 ▼図2　生成されるファイルとディレクトリ

project_dir/
 _build/
 _static/
 _templates/
 conf.py
 index.rst
 make.bat
 Makefile

$ make html
sphinx-build -b html -d _build/doctrees . _build/html
Running Sphinx v1.3
making output directory...
 （...中略...）
build succeeded.

Build finished. The HTML pages are in _build/html.

 ▼図3　make実行の様子

 ▼図4　変換されたHTML（Firefoxで表示）

122 - Software Design

補足

　実際のフォーマット変換は、Sphinxに含まれ
る「sphinx-build」というプログラムで行われま
す。sphinx-buildには、変換元のreSTファイル
が保存されているディレクトリ、出力先のディ
レクトリを指定する必要があるのですが、これ
らのディレクトリはプロジェクト内で変わるこ
とはありません。出力先のディレクトリなどは、
プロジェクト作成時に決まるので sphinx-
quickstart実行時にMakefile、make.batに埋め
込まれます。利用者はsphinx-buildに必要なオ
プションを意識せずに「make html」と実行する
だけで、フォーマット変換が行えます。

　sphinx-quickstartで設定したものはすべて
「conf.py」というファイルに記述されています。
内容を確認すると「設定項目 = 設定値」のよう
に並んでいることがわかります。conf.pyは、拡
張子からもわかるようにPythonで記述されたも
のです。マルチバイトを含む設定値は「u'日本
語'」のようにクォートの前に「u」を付ける必要
があります。「u」を指定していない場合、文字化
けの原因となります。
　設定できる内容は公式ドキュメント注3にまと

注3） http://sphinx-doc.org/config.html
http://docs.sphinx-users.jp/config.html

設定を変更する

まっていますので、そちらを参照してください。
　先ほど変換した図4のHTMLはメニューなど
が英語になっていましたので、試しにこれらを
日本語になるよう設定を変更してみましょう。
　メニューなどを日本語に変更するには、conf.
pyの65行目にある「language」を設定します。デ
フォルトでは設定値が省略されており、「en」と
同じになっています。languageを「ja」と変更す
ることで、日本語に変更できます。

　conf.pyの変更を反映させるために、再度make
htmlを実行します。すると図5のようなHTML
に変換されます。
　英語、日本語のほかに、ドイツ語やベトナム
語など38言語に対応しています。設定できる値
は公式ドキュメント注4を参照してください。

　ここからは、実際に議事録をreSTで書いて
SphinxでHTMLに変換していきます。サンプ
ルの議事録はリスト1のものを使います。
　リスト1で使用されているreSTの書式につい
て、使用頻度の高いものから順に説明します。
　reSTを保存するテキストファイルのエンコー
ドは、一般的にUTF-8で記述します。そのほか
のエンコードで記述する場合は、conf.pyの
「source_encoding」を変更してください。
　リスト1のreSTはSphinxで変換すると、図

6のようなHTMLになります。

ドキュメントのスタート地点を
作成する

　Sphinxでは、どのドキュメントをプロジェク

注4） http://sphinx-doc.org/config.html#options-for-interna
tionalization

 http://docs.sphinx-users.jp/config.html#options-for-
internationalization

 変更前
 language = None
 変更後
 language = 'ja'

議事録を書こう

Sphinxで始める
 ドキュメント作成術

 ▼図5　日本語に変更されたHTML（Firefoxで表示）

http://sphinx-doc.org/config.html
http://docs.sphinx-users.jp/config.html
http://sphinx-doc.org/config.html#options-for-internationalization
http://docs.sphinx-users.jp/config.html#options-for-internationalization

122 - Software Design May 2015 - 123

トの最初のページにするかを決める必要
があります。このドキュメントを「マス
タードキュメント」と呼びます。sphinx-
quickstartのデフォルトの設定値は
「index」となっており、この名前のひな
形ファイル（index.rst）が生成されます。
　プロジェクト内に複数のreSTがある
場合は、マスタードキュメントからたど
れる必要があります。マスタードキュメ
ントと複数のreSTをつなぐ方法は次回
で紹介します。

議事録を書こう（前編）
̶̶reSTの書き方、HTML変換の基本 第2回

.. _meeting-0630:

===============================
Sphinxサイト ミーティング 6/30
===============================
:日時: 2000/06/30 10:00 - 12:00
:参加者:
 shimizukawa, tk0miya, usaturn, r_rudi

進捗状況について
=================
まず進捗状況の共有を行いました。
前回ミーティング :ref:`meeting-0513` からの進捗確認。

* サイト概要: 未着手
* Sphinの紹介: 大まかに完了。 *肉付けと見直しが必要*
* インストールページ: **完了**

.. 公式ドキュメント翻訳については省略

検討課題

1. Sphinxの紹介で、以下の絵のような、Sphinxの全体像を
 表すイメージ図が必要

 .. figure:: sphinx-flow.png
 :width: 400

 入力から出力までの全体像、名称

2. sphinx-doc.org_ の紹介とリンクを追加しよう

3. `進捗状況について`_ で確認したような進捗を自動的に
 確認する方法

議事録に補足があればbitbucketの
`ここ <https://bitbucket.org/user/path>`__ でコメントを
付けてください。

.. _sphinx-doc.org: http://sphinx-doc.org/

 ▼リスト1　sample.rst

 ▼図6　sample.html

①

①

①

③
③

④

⑨

⑨

⑧

⑦

⑥

②

②

⑤

124 - Software Design

します（警告されますがドキュメントは正しく変
換され、見出しも正常に付きます）。
　見出しに使用する記号は、「=」や「-」、「+」や
「#」などの記号が使用できます。同じreSTファ
イル内で使用している見出しの付け方を変える
と、自動的にレベルが1段下がります。一度使っ
た記号は、同じreST内では常に同じ見出しレ
ベルになります。reSTでは見出しとして使用で
きるすべてのパターンを許容しますが、変換す
るフォーマットによっては見出しレベルに上限
があるので注意してください。
　見出しに使用する記号がどのレベルの見出し
になるかは、1つのファイル内で出現した順番
で決まります。このため、ある記号がどのレベ
ルになるかはファイルごとに決まります。プロ
ジェクト内で使用する見出しの記号は統一して
おいたほうが、混乱が少なくて済みます。
　見出しに使用できる記号については公式ドキュ
メント注5を参照してください。
　議事録を書く場合、会議名をレベル1に、ア
ジェンダをレベル2に、さらに細かく分けるな
らレベル3以上を使用すると良いでしょう。

箇条書きをする（リスト）

　reSTでは「*」、「-」、「+」の記号が箇条書きに
なります（リスト1−②）。記号のあとにスペー
スを1つ挟んで文章を記述します。

　番号付き箇条書きは、使用する番号の種類の
後にピリオドを付けてスペースを挟みます。使
用できる番号の種類は、アラビア数字（「1.」）、

注5） http://docutils.sourceforge.net/docs/ref/rst/restruc
turedtext.html#id1

 http://docutils.sphinx-users.jp/docutils/docs/ref/rst/
restructuredtext.html#id2

 箇条書きの記述例
 * レベル1-1
 * レベル1-2

 * レベル2

 * レベル1-3

reSTのインデントと段落

　reSTではインデントが重要な意味を持ってい
ます。連続する同じ高さのインデントは、1つ
のブロックとして扱われ、空行を1行以上入れ
ると段落が分かれます。インデントの高さを変
える場合は、次のインデントとの間に1行以上
の空行を開ける必要があります。
　段落と行の扱いは、変換先のフォーマットに
依存します。HTMLの場合、段落はpタグで囲
まれ、改行は無視され1行にまとめられます。

見出しを付ける（セクション）

　ドキュメントには必ず見出しを付ける必要が
あり、最初の見出しはページのタイトルになり
ます。見出しは、見出しにしたいテキストの前
後の行、または後の行だけに同じ記号で線を引
けば、その行が見出しとなります（リスト1−

①）。

　見出しにするテキストは1行で書く必要があ
り、使用する記号はそのテキストの長さ以上の
数が必要です。日本語などのマルチバイト文字
では1文字あたり2個の記号が必要になります。
見出しに使用する記号がテキストより短い場合
はSphinxがフォーマット変換する際に警告を発

 reSTの記述
 文章1
 文章2

 文章3
 変換後のHTML
 <p>文章1 文章2</p>
 <p>文章3</p>

 見出しの記述例
 レベル1の見出し
 ===============

 レベル2の見出し

 レベル1の見出し
 ===============

Sphinxで始める
 ドキュメント作成術

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#id1
http://docutils.sphinx-users.jp/docutils/docs/ref/rst/restructuredtext.html#id2

124 - Software Design May 2015 - 125

ローマ数字（「I.」「i.」）、アルファベット（「A.」
「a.」）の3種類です。
　箇条書きを入れ子にするには、インデントの
高さを変える必要があります（図7）。
　入れ子になった箇条書きのインデントの高さ
は、親の箇条書きの文章の先頭と同じ高さに合
わせる必要があります。
　番号付き箇条書きの記号を「#.」にすると、直
前に使用された同じ種類の番号が連番で自動的
に振られます。最初の「#.」は「1.」と同じ意味を
持ち、「5.」の後の「#.」は「6.」と同じ意味です。
　記号は混ぜて使用することもできますが、同
じレベルで異なる記号が使用されている個所で
段落が別れてしまいます。

文字の修飾
（インラインマークアップ）

　文字を特定の記号で挟むと太字や斜体などの
修飾ができます（リスト1−③）。

・アスタリスク1つ：強調（斜体）
　記述例）*テキスト*

・アスタリスク2つ：強い強調（太字）
　記述例）**テキスト**

・バッククォート：コードサンプル（固定長）
　記述例）̀`テキスト``

　また、次のような制限があります。

・入れ子にできない（固定長を太字にできない）
・記号で挟まれた中のテキストの最初、最後に
スペースを入れられない

・周囲のテキストとは、テキスト以外の文字（ス
ペース、カッコなど）で区切る必要がある

画像の差し込み
（「figure」ディレクティブ）

　ドキュメントに画像ファイルを差し込むには
「figure」というディレクティブを使用します（リ

スト1−④）。ディレクティブの詳細については、
次回に説明します。今回は画像を差し込むには
次のように書くとだけ覚えておいてください。

ドキュメントのリンク

　同じファイル内の見出しには、次のようにし
てリンクを張ることができます（リスト1−⑤）。

　バッククォートで囲み、最後にアンダースコ
アを付け加えます。文字の修飾の制限と同じく、
周囲のテキストと区切って記述する必要があり
ます。該当する見出しが存在しない場合は、バッ
ククォートとアンダースコアがそのまま表示さ
れます（リンクにはなりますが、参照先がありま
せん）。
　また、ドキュメント間（異なるreSTファイル）
へのリンクはラベルを使います。「ドット（.）2つ
＋スペース＋アンダースコア（_）＋ラベル名＋コ
ロン（:）」として定義します（リスト1−⑥）。見
出しの直前でラベルを定義すると、ラベル参照
時に見出しの内容で表示されます。見出しが変
更された場合は、make htmlを実行したときに
置き換えられます。

 figureディレクティブの記述例
 .. figure:: 画像ファイル名

 `見出し`_

 ラベルの定義
 .. _ラベル名:

議事録を書こう（前編）
̶̶reSTの書き方、HTML変換の基本 第2回

 ▼図7　箇条書きを入れ子にするときのルール

* 箇条書きレベル 1-1

 * 箇条書きレベル 2-1
 * 箇条書きレベル 2-2

* 箇条書きレベル 1-2

ベースラインが空白2個分なのは「* 」の場合。
「1. 」の場合は空白3個。「10. 」の場合は空白4個となる。
そのため、“空白2個”のように固定数で考えるとハマること
がある。

空行

箇条書きレベル2のベースライン

空白2個分

126 - Software Design

　ラベルを使用したリンクは同じドキュメント
内でも使用できます。存在しないラベルを参照
した場合、フォーマット変換時に警告になりま
す。HTMLには指定したラベル名（または表示
するテキスト）がそのまま表示されます。
　使用するラベルは、プロジェクト内で重複が
あってはなりません。
　ラベルを使用せず、ファイルパスを指定して
別のreSTにリンクすることもできます。リン
クに表示するテキストが指定されていない場合
は、リンク先のreSTの最初の見出しが表示さ
れます。

ハイパーリンク

　reST内に記述されているURLやメールアド
レスは、HTMLでは自動的にリンクになります。
表示させるテキストを変更する場合は、次のよ
うにして指定します（リスト1−⑧）。

　「ユーザ会」がhttp://sphinx-users.jp/へのリ

 ラベルの参照（2通り）
 :ref:`ラベル名` ←リスト1−⑦
 :ref:`表示するテキスト <ラベル名>`

 別のドキュメントへのリンク（2通り）
 :doc:`リンク先reSTのファイルパス`
 :doc:`表示するテキスト <リンク先reSTのｭ
ファイルパス（拡張子なし）>`

 表示するテキストを変更する
 `ユーザ会 <http://sphinx-users.jp/>`__

ンクとして表示されます。最後にあるアンダー
スコア（2つ）を忘れないようにしてください。
　ハイパーリンクターゲットにもラベルを付け
ることができます（リスト1−⑨）。ラベルの定
義は次のように1行で記述します。

　参照は定義したラベル名の後にアンダースコ
アを付けるだけになります。ラベルの定義は同
じファイルの中であれば記述する個所に決まり
はありません。

◆　◆　◆
　次回は、今回紹介しきれなかった書式の解説
と、複数のreSTファイルを扱うプロジェクト
の作り方について紹介します。｢

 ラベルの定義
 .. _ラベル名: ターゲットのURL
 ラベルを使用したハイパーリンクの記述例
 .. _Sphinx-users.jp: http://sphinx-users.jp/
 ラベルの参照
 Sphinx-users.jp_

Sphinxで始める
 ドキュメント作成術

定義と参照
　ラベルやハイパーリンクターゲットなど、
別の場所で定義するものはアンダースコア
が前に付きます。定義されたものを文中で
参照する場合、アンダースコアが後に付き
ます。
　参照で使用するテキストが英数字と一部
の記号のみで構成されている場合、バック
クォートを省略できます。

COLUMN

reStructuredText
　reSTはロールとディレクティブを拡張可能なた
め、Sphinxはそのしくみを利用して拡張ロール、
ディレクティブを提供しています（ロールとディレ
クティブについては次回以降で紹介します）。追加
されている拡張の多くはSphinxがドキュメントを

管理するためのものです。reSTのマークアップの
基本は、docutilsのドキュメント注Aも参考になり
ます。

COLUMN

注A） http://docutils.sourceforge.net/rst.html
http://docutils.sphinx-users.jp/

http://sphinx-users.jp/
http://docutils.sourceforge.net/rst.html
http://docutils.sphinx-users.jp/

May 2015 - 127

前回は、Gnu Privacy Guard（GnuPG、GPG）プロジェクトやOpenPGP仕様がどのような経緯で作られ、
インターネットやOSSの世界でどのような役割を果たしているのかを説明しました。今回は、OpenPGP
の実装の1つ「gnupg」の使い方を説明するとともに、公開鍵の認証手続きに潜んでいる課題についても
取り上げます。

gnupg

　gnupg（gpg）はOpenPGP仕様に基づいた暗号ツー
ルです。なお、ここでの具体的な説明は、Ubuntu
14.04 LTS上で提供し動作しているgpg 1.4.16をベー
スに行います（図1）。今回は最初の一歩を踏み出すた
めの使い方と電子メールで使う範囲で説明します。

共通鍵暗号

　まずは実際に使ってみましょう。ファイルfoo.
txtを共通鍵暗号で暗号化してみます。“-c”オプ
ションを指定すると共通鍵暗号で暗号化できます。

$ cat foo.txt ←ファイルの内容を表示
This is a text file for Software Design.

$ gpg -c foo.txt ←暗号化する
Enter passphrase: ←パスフレーズを入力

　パスフレーズの入力は2度求められます。入力す
るとfoo.txt.gpgが作成されます。これはバイナリ形
式のサイファーテキスト（暗号文）です（図2の①）。
“-a”オプションを加えるとバイナリをアスキーアー
マー（Ascii Armor）と呼ぶアスキーコードのテキス
トフォーマット（正確にはCRC24が付加されている
radix-64）に変換してくれます（図2の②）。
　なお、gpg2のデフォルトではピン入力画面が現れ
て入力を要求します。GNOME環境では図3のよう
なウィンドウが現れます。サーバのようなテキスト
環境だとこのようなウィンドウ環境がインストール
されていないので、図4のようなエラーが発生する
場合があります。
　この場合、アスキー文字だけの画面環境（curses）

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第二十回】

すずきひろのぶ
suzuki.hironobu@gmail.com

GnuPGを通して暗号技術を理解する（後編）

$ gpg --version
gpg (GnuPG) 1.4.16
Copyright (C) 2013 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Home: ̃/.gnupg
Supported algorithms:
Pubkey: RSA, RSA-E, RSA-S, ELG-E, DSA
Cipher: IDEA, 3DES, CAST5, BLOWFISH, AES, AES192, AES256, TWOFISH,
 CAMELLIA128, CAMELLIA192, CAMELLIA256
Hash: MD5, SHA1, RIPEMD160, SHA256, SHA384, SHA512, SHA224
Compression: Uncompressed, ZIP, ZLIB, BZIP2

◆◆図1　gpgのバージョンなどの情報

128 - Software Design

のインターフェースを使うことで解決
できます。

$ export PINENTRY_BINARY=/usr/bin/ ｭ
pinentry-curses

公開鍵暗号

鍵ペアを生成する

　gpgで公開鍵暗号を使うために、自分
の公開鍵と秘密鍵のペアを生成します（図5）。鍵生
成のためにシステムのエントロピーを消費します（コ
ラム参照）。
　これで公開鍵と秘密鍵ができました。デフォルト
では ̃/.gnupgの下に必要なファイルが作成されます
（図6）。公開鍵はpubring.gpgに入っており、秘密
鍵はsecring.gpgに入っています。trustdb.gpgは相
手の公開鍵の信頼度が入っています。random_seed
は内部での乱数生成に使用されます。
　ちなみに、gpgで鍵を生成するときに入力する名
前や電子メールのアドレスは、あくまでもユーザが

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

◆◆図3　パスフレーズのエントリー・ウィンドウ

/usr/bin/pinentry: line 22: xprop: command not found
Please install pinentry-gui

◆◆図4　パスフレーズの入力でウィンドウ環境がない場合の ◆
　　　エラー

　エントロピーとは乱雑さのことで、これは疑似乱
数生成に必要な情報です。鍵を生成する際にシステ
ムからのエントロピーの供給が少ないと、エントロ
ピーの供給を待つので公開鍵と秘密鍵の生成に時間
がかかります。システムのエントロピーは、ハード
ディスクへのアクセスやネットワークへのアクセスに
よる割り込みが供給源になっています。
　“Not enough random bytes available. the OS
a chance to collect more entropy! ”というメッセー
ジが現れた場合、デスクトップ環境ならキーボード
やマウスを操作したり、ブラウザでネットサーフィン
をしたりしてみてください。
　サーバなどでデスクトップ環境がない場合、ハー
ドディスクへのアクセスでエントロピーを増やせま

す。図Aのように大量のファイルにアクセスしてみ
てください。
　利用しているハードウェアが乱数生成器（Intelの
Ivy BridgeアーキテクチャのCPUなど）を持ってお
り、ハードウェア乱数生成デバイス/dev/hwrngがあ
る場合には、rngdコマンドも非常に有効です。
　ネット上に、rngd -f -r /dev/urandomとすると
gpgの鍵生成が早く終了すると書いているブログが
ありました。これは、/dev/randomからのエントロ
ピーをシード（種）にして生成した疑似乱数系列を、
再度フィードバックしているだけですので、タコが自
分の足を食べるようなものです。確かに鍵の生成は
速くなりますが、本来必要なエントロピーを十分確
保しているわけではないことを理解してください。

◉gpgにエントロピーを供給する方法

$ find /var/ /usr/share/ /lib -type f -print0 ¦ xargs -0 sha256sum > /dev/null

◆◆図A　大量ファイルアクセスによりエントロピーを増やす一例

$ ls -l foo.txt*
-rw-rw-r-- 1 hironobu hironobu 41 Feb 16 18:08 foo.txt
-rw-r--r-- 1 hironobu hironobu 238 Feb 16 18:10 foo.txt.asc ←②
-rw-r--r-- 1 hironobu hironobu 117 Feb 16 18:12 foo.txt.gpg ←①

$ cat foo.txt.asc ←アスキー化されたサイファーテキストの内容を表示
-----BEGIN PGP MESSAGE-----
Version: GnuPG v1

jA0EBwMCZtejYCT+izBg0mQB5Y+WJxAm/9G19XBXRrzzsLjib33h9nVb3uOwarHp
lhwdtZNO02E7BjsGvKgoSBniXKfq9EDKjsSBjrDHKZF48hh9bl2HVeQvdkbyiAll
yA8LCnODScU54oxtksKIFNWsfabF
=TdVU
-----END PGP MESSAGE-----

◆◆図2　gpgで暗号化したサイファーテキスト

May 2015 - 129

成できます（図7）。入力できる任意の文字列にすぎません。ですので、
自分の名前をいっさい出さない偽名でもあっても生

【第二十回】 GnuPGを通して暗号技術を理解する（後編）

$ gpg --gen-key
gpg (GnuPG) 1.4.12; Copyright (C) 2012 Free Software Foundation, Inc.
 （...略 ...）
gpg: directory `/home/hironobu/.gnupg' created
gpg: new configuration file `/home/hironobu/.gnupg/gpg.conf' created
gpg: WARNING: options in `/home/hironobu/.gnupg/gpg.conf' are not yet active during this run
gpg: keyring `/home/hironobu/.gnupg/secring.gpg' created
gpg: keyring `/home/hironobu/.gnupg/pubring.gpg' created
Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? 1 ← RSAを選択
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 2048 ← RSAの鍵長ビット数を入力
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 0 ←鍵は無期限に使えるようにした
Key does not expire at all
Is this correct? (y/N) y ←確認

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Hironobu SUZUKI ←自分の名前を入力
Email address: suzuki.hironobu@gmail.com ←自分のメールアドレスを入力
Comment: Author of Step by Step Security ←コメントを入力
You selected this USER-ID:
 "Hironobu SUZUKI (Author of Step by Step Security) <suzuki.hironobu@gmail.com>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O ←確認して OKの Oを入力
You need a Passphrase to protect your secret key.
Enter passphrase: ←パスフレーズを入力

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
 （...略 ...）

gpg: /home/hironobu/.gnupg/trustdb.gpg: trustdb created
gpg: key 8FE36F99 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
pub 2048R/8FE36F99 2015-02-19
 Key fingerprint = 426B C482 DA1A 57E9 4CF9 F85A 8E5D 3758 8FE3 6F99
uid Hironobu SUZUKI (Author of Step by Step Security) <suzuki.hironobu@gmail.com>
sub 2048R/47A7E3D7 2015-02-19

◆◆図5　公開鍵と秘密鍵のペアを生成する手順

130 - Software Design

ボブはアリスに
公開鍵を渡す

　前編で取り上げたボブとアリスの例で考えてみま
しょう。ボブは公開鍵と秘密鍵を生成したなら、自
分の公開鍵を取り出しアリスに送ります。図8は公
開鍵のIDを指定して取り出す方法です。“--armor”
はアスキーコードで出力するためのオプションです。
　ボブから電子メールや鍵ファイルのダウンロード
など何かの手段で公開鍵を受け取ったアリスは、ま
だgpgで自分の鍵などを作っていなくても、ボブの
公開鍵を取り入れることができます（図9）。

アリスはボブに秘密の情報を
送ろうとするが……

　アリスはalicemessage.txtというファイルを作
り、その内容をボブの公開鍵でサイファーテキスト
に変換するとします（図10）。オプション“-ea”は、
“--encrypt”と“--armor”を一緒に指定した省略形も
の、つまり暗号化し、出力をアスキーコード化する
という指定になります。オプション“-r”は、“--reci
pient”の省略形で受信者の指定をします。ここでは
名前ではなく鍵IDを直接指定しています。
　すると「ボブの鍵としているものが、本当にボブ

の鍵であるかの保証がまだされていない」
という警告メッセージが出てきます。
　この時点では、この鍵がボブの鍵かど
うかまだ保証はありません。途中でボブ
の鍵とすり替えた別の鍵、あるいは誰か
が最初からボブのふりをして送ってきた
鍵かもしれません。まだ確認がとれてい
ない以上、この鍵は使うべきではありま
せん。では、どうすべきなのでしょうか。

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

$ gpg --export --armor 0x707B7C34
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1

mQENBFTmGB0BCADQfd9cZpdL81TcaWcKaRwTKmUkw+pimDCaubq6CO7tTO8r4f+m
 （...略 ...）
nZw4ZZi1FXIQyddbeiSMFr+EiC861+3abfgtI+qM/u0yc4saU4vDYkZdseKHac5N
JVatV1ymDjM=
=V3dE
-----END PGP PUBLIC KEY BLOCK-----

◆◆図8　ボブは生成した公開鍵を取り出す

$ gpg --import publickey.asc
gpg: directory `/home/alice/.gnupg' created
gpg: new configuration file `/home/alice/.gnupg/gpg.conf' created
gpg: WARNING: options in `/home/alice/.gnupg/gpg.conf' are not yet active during this run
gpg: keyring `/home/alice/.gnupg/secring.gpg' created
gpg: keyring `/home/alice/.gnupg/pubring.gpg' created
gpg: /home/alice/.gnupg/trustdb.gpg: trustdb created
gpg: key 707B7C34: public key "Bob Smith" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

◆◆図9　アリスの環境で、初めてgpgを使ってボブの公開鍵を取り入れる

pub 2048R/707B7C34 2015-02-19
 Key fingerprint = 34A3 06E9 3AAE A6C8 D7F8 6DA2 C606 31E6 707B 7C34
uid Bob Smith ←偽名で生成された
sub 2048R/052FC614 2015-02-19

◆◆図7　偽名（Bob Smith）で生成した例（gpg --gen-keyを実行したときのメッセージ）

$ cd ̃/.gnupg
$ ls -al
total 40
drwx------ 2 hironobu hironobu 4096 Feb 20 00:39 .
drwxr-xr-x 33 hironobu hironobu 4096 Feb 20 00:32 ..
-rw------- 1 hironobu hironobu 9188 Feb 20 00:32 gpg.conf
-rw------- 1 hironobu hironobu 1236 Feb 20 00:39 pubring.gpg
-rw------- 1 hironobu hironobu 1236 Feb 20 00:39 pubring.gpg̃
-rw------- 1 hironobu hironobu 600 Feb 20 00:39 random_seed
-rw------- 1 hironobu hironobu 2613 Feb 20 00:39 secring.gpg
-rw------- 1 hironobu hironobu 1280 Feb 20 00:39 trustdb.gpg

◆◆図6　~/.gnupg下に作成されたファイル

May 2015 - 131

【第二十回】 GnuPGを通して暗号技術を理解する（後編）

公開鍵の認証は実は考え方が難しい

　ボブとアリスが長年にわたる付き合いをしていて
お互いを深く知っているなら、ボブがなりすましか
どうか、あらためて確認する必要もないかと思われ
ます。また、お互いのことをあまり知らなくても、
公的に確認できる写真つきの証明書（パスポートや
運転免許証）で確認できるでしょう。お互いを確認
し、主キー（Primary Key）のハッシュ値（Finger
print）を確認しあうことで、公開鍵の認証としま
す。双方向で直接確認しあえば、この方法が最も保
証する度合いが高いと言えます。
　名刺などに載せておいて交換するのも1つの手か
もしれませんが、お互いを確実に確認しあうよりも
信頼性は低くなります。人が人を確認するというの
は、人間の錯誤による誤りの可能性が必ず入ってき
ます。だまそうと巧みにしかけられれば、人は簡単
にだまされてしまいます。お互いに知っている同士
が直接会って確認しあう方法ですら、最初から準備
万端でだまそうとすれば、だませるでしょう。
　ボブとアリスは直接会わずに、権威のある認証局
が2人をそれぞれ認証し、ボブもアリスもその認証
局を信じる。この方法は基本的には、公的な証明書
を使ってお互いを認証しあうのと同じぐらいに信頼
できるでしょう。しかし、認証局自体が信頼できな
い場合、この方法も確実とは言えません。実際に、
SSLの認証局自体が不正アクセスを受けて証明書
の信頼性が保てないという事例や、認証局がだまさ
れて不正な証明書を発行した事例もあります。

　PGP（OpenPGP）はWeb of Trustと呼ぶ、簡単
に言えば「友達の友達は友達である」という認証方法
を採っているという説明があります。これは1992
年にZimmermannが書いたpgpバージョン 2.0のマ
ニュアルの中に出てきた考え方です。しかし、筆者
は、このWeb of Trustが先述したほかの方法より、
ずっと信頼性が低い、あるいは、逆にだまされやす
い方法だと指摘したいと思います。
　アリスとマルロイがお互いを認証したとしても、
アリスはマルロイのことを本当に信頼して認証した
のではなく、儀礼的に認証しただけかもしれませ
ん。なぜならば、お互いが会って認証する方法は技
術的な認証ではなく、人間関係もかかわってくる極
めてソーシャルなものだからです。ボブやアリスが
どんな状況で認証したかという情報がないままマル
ロイを認証してしまっては、彼が何者なのかまった
くわかりません。これはアリスだけではなく、キャ
サリンがマルロイを認証する場合も本質的には同じ
です。
　筆者も昔は「Web of Trustの考え方も有効である
かもしれない」と考えていた時期がありました。し
かし現在では、Web of Trustという方法に明確な根
拠はないにもかかわらず、有効であると思われてい
ることに危惧を覚えます。あくまでも、自分が自分
の責任において相手を直接認証するのが基本であ
り、認証局を使うのは次善の策と考えてください。

ボブは電子署名付きデータを送る

　ボブの公開鍵がすでにボブのものであると認証さ

$ cat alicemessage.txt ←ファイルの内容を表示
This is a secret message from Alice.
$ gpg -ea -r 0x707B7C34 alicemessage.txt ←暗号化する
gpg: 052FC614: There is no assurance this key belongs to the named user

pub 2048R/052FC614 2015-02-19 Bob Smith
 Primary key fingerprint: 34A3 06E9 3AAE A6C8 D7F8 6DA2 C606 31E6 707B 7C34
 Subkey fingerprint: 6DB6 4772 692E 8701 EB16 9A30 F25D C523 052F C614

It is NOT certain that the key belongs to the person named ←警告メッセージ
in the user ID. If you *really* know what you are doing,
you may answer the next question with yes.

Use this key anyway? (y/N)

◆◆図10　アリスはボブの公開鍵でファイルを暗号化する

132 - Software Design

れているとします。その前提において、ボブがデー
タに電子署名を付ければ、アリスはデータが改ざん
されているのか否かを確認することができます。
　たぶん説明のしかたによる行き違いなのでしょう
が、「電子署名があれば改ざんできない」ということ
で、「電子署名の付いたデータは常に100％有効に
使えるものである」と思われる方がいます。
　正確には、「データが改ざんされていることがわ
かる」あるいは「データが正規のものではないことが
わかる」ので、「データを捨てることができる」とい
うことを意味します。データが改ざんされてしまっ
た場合、改ざん前の元のデータがない限り永久に正
しいデータは失われてしまいます。その代わりだま
されることはありません。
　さて、ボブのデータ（bobtext.txt）にボブの署名を
付けてアリスに送る準備をしましょう（図11）。オ
プション“-u”は“--local-user”の省略形で、ここで
はボブの鍵0x707B7C34を使うことを明示してい
ます。もし明示しない場合、デフォルトのユーザ鍵

が使われます。“-sa”は“--sign”と“--armor”の両方
の省略形の組み合わせです。電子署名を付け、出力
をアスキー化します。
　本文をアスキー化し、電子署名部分を切り分けた
いときは、“--clear-sign”を使います。これはメー
ルへの添付やWebサイトに掲載するときなどに使
われます。ただし注意してほしいのですが、イン
ターネット上で日本語文字コードを扱っている場合、
電子署名を行ったときの文字コードと、送付された
ときの文字コードと、電子署名の検証を行ったとき
の文字コードが必ずしも一致しないことがよくあり
ます。その点を考慮したうえでご利用ください。
　さて、アリスはbobtext.txt.ascを受け取り、ボブ
によって電子署名がされているかどうかを確認しま
す（図12）。
　図12では、アリスはまだボブの公開鍵を信頼し
ていないので、自分のキーサイン（公開鍵に対する
署名）を付けていません。キーサインは相手の公開
鍵に対して認証した、という意味合いを持ちます。

アリスはすでに秘密鍵を生成して持っ
ているとします。その状態で、ボブの
公開鍵にアリスの電子署名を付けるに
は“--sign-key”を使います（図13）。
　以降、ボブの電子署名の確認は図14
のようになります。

SHA1問題

　ところで、gpg 1.4.12ではデフォルト
のハッシュ関数がSHA1になっていま
す。しかし、今日において大手ベンダ
はSSL証明書などのSHA1のサポート
を終了していっている最中です。たと
えば、Googleは2014年9月以降、Google

$ gpg < bobtext.txt.asc
I'm a boy.
gpg: Signature made Fri 20 Feb 2015 04:54:14 AM JST using RSA key ID 707B7C34
gpg: Good signature from "Bob Smith" ←ボブの署名を確認できた
 ↓ただし、ボブの公開鍵が認証されていない旨の警告メッセージが出る
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 34A3 06E9 3AAE A6C8 D7F8 6DA2 C606 31E6 707B 7C34

◆◆図12　アリスはボブの電子署名を検証する（初回）

$ cat bobtext.txt ←ファイルの内容を表示
I'm a boy.

$ gpg -u 0x707B7C34 -sa bobtext.txt ←ボブの鍵で電子署名を付ける
You need a passphrase to unlock the secret key for
user: "Bob Smith"
2048-bit RSA key, ID 707B7C34, created 2015-02-19

$ cat bobtext.txt.asc ←サイファーテキストの内容を表示
-----BEGIN PGP MESSAGE-----
Version: GnuPG v1.4.12 (GNU/Linux)

owEBTAGz/pANAwACAcYGMeZwe3w0AawcYgtib2J0ZXh0LnR4dFTmP2ZJJ20gYSBi
 （...略 ...）
vUHiXxR6jyH3UMByYkcxwoPdrcEl6cDo0nv6Pgww78AJgnMmbbRnrPWpi3GHY446
0li/
=YWQA
-----END PGP MESSAGE-----

◆◆図11　ボブはファイルに電子署名を付ける

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

May 2015 - 133

Chromeに使われているSSLの証明書からSHA1は
使っていません。
　gpgでSHA1を回避したい場合、̃/.gnupg/gpg.
confにリスト1の記述を加えてください。これで
SHA256がデフォルトで使われるようになります。

ボブが何者かはわからないけれど

　アリスはボブのことを知らない（直接会ったこと
はない）とします。最初にボブから公開鍵が送られ
てきているので、その後の一連のボブから送られて
くるデータが一貫してボブからのものであること
は、電子署名を使えばわかります。途中で偽ボブか
らデータが送られてきても、正しい電子署名を付け
られないので、見破ることができます。
　これでアリスとボブは安全にやりとりができます
が、前提条件があります。最初、ボブとアリスの関
係は誰も知らず、かつボブがアリスに初めてコンタ
クトするタイミングを知らないという前提です。そ
の前提があるならば、途中でボブのふりをしてアリ
スに偽データ送ることはできなくなります。
　たとえば、匿名の相手と電子メールをやりとりし
ているとき、やりとりしている相手が同じ相手なの

か、いつの間にか別人がなりすましているのかは、
確認のとりようがありません。相手が別のメールア
ドレスに変更した場合はなおさらです。しかし、上
記の方法を使うならば、匿名でも電子メールの相手
が同一であることを確認することができます。
　ただし、最初からボブとアリスの関係を知ってい
て監視していた場合は、中間者攻撃を行いアリスに
偽ボブの公開鍵を渡すことができてしまうので、こ
の方法は成り立ちません。

すべての人たちの
ための技術GPG

　2回に渡りGPGとPGPの話題を取り上げました。
使う使わないにかかわらず、このような技術の概要
を理解し一度は試しておくというのは重要かと思い
ます。このような情報セキュリティを支えるツール
がフリーソフトウェアという形で提供されていること
はさらに重要です。なぜならば、プライバシー保護
や情報セキュリティのためのツールは、コンピュー
タやネットワークを使う人たちすべてに提供されな
ければならないからです。その意味においてGPGの
存在はたいへん重要な意味を持っています。s

$ gpg --sign-key 0x707B7C34
pub 2048R/707B7C34 created: 2015-02-19 expires: never usage: SC
 trust: unknown validity: unknown
sub 2048R/052FC614 created: 2015-02-19 expires: never usage: E
[unknown] (1). Bob Smith
 （...略 ...）
Really sign? (y/N) y

◆◆図13　アリスはボブの公開鍵に自分の署名を付ける

$ gpg --verify bobtext.txt.asc
gpg: Signature made Fri 20 Feb 2015 04:54:14 AM JST using RSA key ID 707B7C34
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 1 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: depth: 1 valid: 1 signed: 0 trust: 1-, 0q, 0n, 0m, 0f, 0u
gpg: Good signature from "Bob Smith"
 ↑公開鍵が認証されていない旨の警告メッセージは出ない

◆◆図14　アリスはボブの電子署名を検証する（署名後）

personal-digest-preferences SHA256
cert-digest-algo SHA256
default-preference-list SHA512 SHA384 SHA256 SHA224 AES256 AES192 AES CAST5 ZLIB BZIP2 ZIP Uncompressed

◆◆リスト1　SHA256をデフォルトで使用する設定（~/.gnupg/gpg.conf）

【第二十回】 GnuPGを通して暗号技術を理解する（後編）

134 - Software Design

　 NTTデータ 基盤システム事業本部　眞野 将徳（まの まさのり） manoms@nttdata.co.jp

　社内の「勤怠管理システムの運用」を上司から任さ
れた新人SEの藤井君。オープンソースソフトウェ
アの運用管理ツール「Hinemos」を使い、さまざまな
困難に立ち向かいながら、運用自動化を進めてきま
した。そんなある日、藤井君はより良い運用のため
に必要なことに気がついたようです。

藤井「すみません、定時先輩。勤怠管理システムの

運用について相談があるんですが……」

定時「どうしたの？」

藤井「Hinemosに移行してから、勤怠管理システム

で必要なバッチ処理が自動で行われるように

なって、トラブルの発生もずいぶんと少なくな

りましたよね」

定時「そうね、やっぱり手作業には限界があるから、

ツールを使うと、定型的な作業をミスなく効率

よく作業できるわね」

藤井「はい。もしバッチ処理が失敗しても、ジョブ

の異常終了を判定してメールで通知できるの

で、異常が発生したことに気づけるのも便利で

す」

定時「なら、ほかに何が気になるの？」

藤井「ちゃんとジョブが起動したり、終了したりし

てくれる場合に通知されるのでいいのですが、

もしジョブが起動されなかったり、終了しない

場合には気づけないな、と思いまして」

上司「ほう、いいところに気づいたな。聞いた話だ

と、ほかのシステムの運用でバッチ処理が予定

どおり終わらない、というのが問題になったこ

とがあったらしいぞ」

藤井「やっぱりそういうことがあるんですね。その

ときはどんな状況だったんですか」

上司「どうやら運用当初は問題なく処理できていた

ようなんだが、途中で実行する処理の増加や利

用者の増加に伴って処理対象の量も増加して

いったらしい。さらに、そこではほかのジョブ

も同時平行で動いていて、そちらの動作状況の

第8回 さらに高度にジョブを運用しよう

　運用自動化との格闘の日々もいよいよ大詰め。今回はジョブが時間どおりにきちんと起動・終了
したかを判定・通知し、次の処理へつなげる「開始遅延」「終了遅延」について学びます。また、サー
バ上でのジョブの同時実行数を制御する機能についても学び、よりトラブルに強いシステムを目指
します。ラストでは藤井君に新たな展開も……。 イラスト（高野 涼香）

前回までのあらすじ

ジョブの遅延を判定する

藤井君の先輩社員。
華麗に仕事をこなし
定時に颯爽と帰って
いく優秀な女性。

今年SI企業に入社し
た新人SE。運用自
動化のために日々奮
闘中。

軽いノリで仕事を
依頼してくるが、藤
井君の成長を考え
ている。

定時先輩上 司藤 井

134 - Software Design May 2015 - 135

第8回　さらに高度にジョブを運用しよう

影響も受けやすかったようだな」

藤井「それはたいへんですね。勤怠管理システムも

社員数が増えたら当然処理する対象人数が増え

るので、対策を打っておいたほうが良さそうで

す」

上司「とくに、処理に時間がかかっていることに気

づけないことが一番の問題だったようだな。前

の処理が終わらないせいで、想定以上に大量の

処理が同時に動作することになり、最終的にリ

ソースが枯渇してしまったらしい。異常終了の

アラートが上がるまでそのことに気づかず、そ

のあとのリカバリがたいへんだったようだ。

もっとも、そこはツールを使わずにcronでス

クリプトを定期実行していたらしいがな」

藤井「手作業か……、以前の勤怠管理システムの運

用と一緒ですね。でも今は運用管理ツールを

使っているので何か対処ができると思います」

上司「よろしく頼んだぞ、定時さんもサポートして

あげてくれ」

　

藤井「とは言ったものの、本当にそんな機能あるの

かな」

定時「運用管理ツールなら、ジョブが正常に動作し

ているか知る機能が用意されていることが多い

わ。調べてみたら？」

藤井「うーん、そういえばまだジョブの設定ダイア

ログで使っていない設定があったような……。

そうそうこれこれ、開始遅延だ。名前からして

もそれっぽい気がするし、マニュアルも調べて

みよう」

　開始遅延は、ジョブやジョブネットの起動が、想
定よりも遅れた場合に通知やジョブの状態変更を行
うことができる機能です。遅延の判定には、次の条
件を設定できます。

・指定した時刻（例：23:00など）になっても特定の

ジョブが開始しない場合

・ジョブセッション開始後（スケジュールなどでジョ

ブ全体が実行されてから）、○分後までにジョブ

が開始しない場合

　遅延と判定された場合は、該当のジョブを「保留」
状態や「スキップ」状態にできます（本連載2015年4
月号「第7回」で説明）。
　開始遅延はジョブやジョブネットに対して設定で
きます。ジョブに開始遅延を設定する場合は、ジョ
ブ［ジョブの作成・変更］ダイアログの開始遅延タブ
で設定します（図1）。
　開始遅延タブの開始遅延チェックボックスに
チェックを入れると、該当のジョブの開始遅延判定
が有効になります。判定対象一覧では、先述した時

▼図1　ジョブの開始が遅延していることを判定する

開始遅延と終了遅延

136 - Software Design

い場合

・ジョブセッションが開始してから○分後までに特

定のジョブが終了しない場合

・特定のジョブが開始してから○分後までにその

ジョブが終了しない場合

　終了遅延もジョブ［ジョブの作成・変更］ダイアロ
グで設定します。ジョブ［ジョブの作成・変更］ダイ
アログの終了遅延タブに、開始遅延同様、遅延と判
定する条件と判定時の動作を指定します。終了遅延
と判定された際には、ジョブの実行状態を中断状態
にするほか、コマンドタブで設定できる「停止コマ
ンド」を実行できます。
藤井「なるほど、開始が遅延していることの判定だ

けじゃなくて、終了が遅延していることの判定

もできるのか。さっきの話だと、ほかのシステ

ムでは終了しなかったことが問題だったってこ

とだし、今回は終了遅延を設定しますね」

定時「いいわね。Hinemosではジョブ起動時に実行

されるコマンドである『起動コマンド』と、ユー

ザが手動で停止操作をする場合に実行されるコ

マンドである『停止コマンド』があるのよね。終

了遅延の操作でも停止コマンドの実行を指定で

きるみたいだから、停止コマンドに、作業の切

り戻しや必要なリカバリ処理ができるコマンド

を指定しておけば、終了遅延が発生した場合、

端末に駆けつけなくてもHinemosが自動で対

処しておいてくれるわね」

藤井「よし、これでジョブの実行が遅れてた場合で

も自動で対処できるようになって安心ですね」

定時「待って。たしかさっきの話だと複数のジョブ

が想定以上に同時実行されると、対象サーバで

動作するジョブ同士が影響を受けやすいって話

よね」

藤井「はい」

定時「ならサーバ上で実行されるジョブの数を制限

しておいたほうが、より安心じゃないかしら」

刻とジョブセッション開始後の時刻を指定できま
す。両方の条件を設定した場合には、条件同士の関
係にANDかORを選択でき、両方の条件を満たした
場合や片方の条件のみを満たした場合に、ジョブの
開始が遅延していると判定できます。開始遅延と判
定された場合には、通知によりユーザに開始遅延が
発生したことを知らせるほか、ジョブの状態をス
キップ状態や保留状態にして、そのあとのジョブの
動作を変更できます。
藤井「遅延と判定された場合には通知をしてユーザ

に知らせることができるんですね。さっきの話

だと、まず気づくことが重要ってことでしたの

で、これは助かりますね」

定時「そうね。それに、遅延が発生した場合のジョ

ブの状態変化に『保留』を設定することによっ

て、ユーザが『保留解除』操作を行うまで、その

ジョブは実行されずに待機させることができる

わ。予期しない事態でジョブに遅れが発生して

いる場合、その原因を取り除くまでジョブを一

時的に止めておいて、原因を解消してから再開

できるわね」

藤井「確かに遅れの発生の原因を解消しないでジョ

ブの実行を進めても、正常に処理が進まないか

もしれないですもんね」

定時「そして『スキップ』を設定すれば、遅延が発生

したらジョブを実行せずに終了させることがで

きるわ」

藤井「開始遅延でスキップする場合には、終了値を

設定できるんですね。後続のジョブの待ち条件

にこの終了値を設定しておけば、開始遅延が発

生した際に、本来行う処理の代わりに、遅延が

発生した場合のリカバリ処理を実行できます

ね」

定時「そうね、Hinemosにはほかにも終了遅延とい

うのもあるのよ。こちらも調べてみましょ」

　開始遅延と同様に、次の条件でジョブの終了が遅
延していることの判定もHinemosでは行うことがで
きます。

・指定した時刻になっても特定のジョブが終了しな

多重実行制御でジョブの
同時実行数をコントロール

136 - Software Design May 2015 - 137

第8回　さらに高度にジョブを運用しよう

設定できるノードプロパティの「ジョブ多重度」で設
定します。デフォルトでは「0」が設定されており、
「0」の場合は上限なしとなります。同時実行数の制
限をしたい場合は「1」以上の値に設定します。
藤井「システムチェックなど、単一のジョブを繰り

返し実行している場合なら、上限を越えた分は

実行せずに終了させてしまうのもありだと思い

ますが、勤怠管理システムの場合は、どれも

ちゃんと実行してほしいものばかりなので『待

機』を選ぼうと思います」

定時「そうね、それがいいんじゃないかしら。待機

状態が続いて実行が遅れたら先に設定していた

開始遅延、終了遅延と組み合わせることもでき

るからね」

藤井「はい、これで正常時の各サーバ間の連携や、

スケジューリングしての定時実行、異常時の自

動リカバリ処理と通知機能、それに異常となる

前に遅延が発生していないか確認、とジョブの

運用に必要な設定をすべて行うことができまし

た。これで勤怠管理システムの運用自動化がで

きたといって良いんじゃないでしょうか」

定時「そうね、よくやったわ。そういえば、この前

(第7回のコラム)話してたレポーティングオプ

ション。これを使うとこんな風（図3）に実行し

たジョブを一覧にできるのよ」

藤井「すごい！便利ですね、これ」

藤井「確かに、できるならやっておいたほうが良さ

そうですが……」

定時「もちろんできるわよ。Hinemosでは各ノード

ごとに同時に実行するジョブの数を制限できる

の。上限数を越えて実行しようとした分は、ほ

かのジョブが終了するまで待機させたり、実行

せずに終了できるのよ」

　ジョブ管理ツールには、ジョブの同時実行数を制
御する機能を有するものがあります。Hinemosにもそ
の機能があり、ノードで実行されるジョブの数を制
御できます。ジョブの同時実行数の制御は、ジョブ
［ジョブの作成・変更］ダイアログの多重度タブで設
定します（図2）。
　「多重度が上限に達したときの挙動」の「通知」に
チェックを入れると、ノードで同時に実行している
ジョブ数が、設定した上限に達したときに通知に
よってユーザに知らせることができます。また、操
作では「待機」と「終了」を選択できます。「待機」はほ
かのジョブが終了して同時実行している数が減るま
で、待機します。「終了」は上限を越えたジョブにつ
いては実行せずにそのまま終了します。
　なお、ノードごとのジョブの同時実行数の上限
は、リポジトリ［ノードの作成・変更］ダイアログで

▼図2　ジョブの同時実行数が上限に達した際に
　　　　処理するための設定

▼図3　レポーティングオプションではジョブの運行状況をわかりやす
　　　　く表示できます

138 - Software Design

　それからしばらくしたある日、藤井君は上司に呼
ばれました。
上司「藤井君、ちょっといいかな」

藤井「はい、なんでしょう」

上司「ついに勤怠管理システムの運用自動化をやり

遂げたようだね」

藤井「はい……、といってもツールを導入しただけ

でほとんどHinemosの機能を使っただけなん

ですけどね」

上司「何言ってるんだ。最初シェルスクリプトと

cronの組み合わせで動いていたのを、属人性

を排除して効率化するためにツールを導入した

いと言ったのはほかでもない藤井君じゃない

か。よくやり遂げてくれたね」

藤井「はい、ありがとうございます！」

上司「勤怠管理システムの運用で、ほかに何かする

ことはあるのかね」

藤井「ジョブ運用についてはもう、追加で設定した

ほうがいいところはないと思います。ただ、

せっかくHinemosにはジョブ機能だけでなく、

監視機能もついているので、サーバの死活監視

やリソースの監視をすれば、もっとより良い運

用になるのではないかと思っています」

上司「そうか、まだまだ勤怠管理システムに必要な

ことがあるんだな」

藤井「はい、でもそれがどうしたんですか」

上司「実は社内でクラウド環境でのシステム運用に

人手が必要になってるようでな。藤井君は以前

からクラウドに興味があると話していたことだ

し、そちらのプロジェクトに参画してみたらど

うかと思っているんだ。そうすると、勤怠管理

システムの運用にも手が回りにくくなるから、

ほかの人に引継ぎが必要だと思ってな」

藤井「なるほど、勤怠管理システムはツールを導入

したことによって引き継ぎも簡単になっていま

す。ちょっと寂しいですけれど僕もクラウドに

は興味ありますし、できればそっちの仕事を

やってみたいです。それにクラウド環境の運用

でも、これまでに身につけてきたジョブ運用の

知識と経験を活用できるかもしれません」

上司「よしわかった。勤怠管理システムの運用の後

任者はおいおい決めることにして、まずは運用

の引き継ぎができるように準備をしてくれ」

藤井「はい！」

　開始遅延、終了遅延を活用することにより、ジョ
ブの実行が想定よりも遅れていることに気づけ、自
動で対処できます。実際にトラブルが発生してから
対処するのではなく、トラブルの予兆を検知し対処
することによって、その対応時間を短くし、システ
ムの運用に与える影響も最小限に抑えることができ
ます。

　急遽クラウド環境の運用チームへの参画が決まっ
た藤井君。これまでの勤怠管理システムの運用を振
り返って引き継ぎの準備を進めます。さらにクラウ
ド環境でのジョブ運用についても調べてみるようで
す。藤井君の活躍はまだまだ続きそうです。
　次回「これで引き継ぎもらくらく！　Hinemosによ
るジョブ運用のおさらい」｢ To Be Continued...

ジョブ運用は続くよどこまでも

今月の時短ポイント

次回予告

138 - Software Design May 2015 - 139

第8回　さらに高度にジョブを運用しよう

ファイル作成を契機に
ジョブを起動する

　これまでの連載では、おもにスケジュール実行し

たジョブについて扱ってきましたが、Hinemosでは、

ジョブを実行する契機として、次の4つがあります。

・Hinemosクライアントで実行ボタンをクリック

して手動で実行する

・あらかじめ決めておいたスケジュールの時刻が

来たら自動で実行する

・特定の監視結果が得られた場合に自動で実行す

る

・特定のサーバに特定のファイルが作成されたら

自動で実行する

　本コラムでは、最後の「特定のサーバに特定のファ

イルが作成されたら自動で実行する方法」について

紹介します。

　この機能をHinemosではファイルチェックと呼ん

でいます。ファイルチェックを作成するためには

ジョブパースペクティブのジョブ［実行契機］ビュー

で作成します。このビューの「ファイルチェック作

成」ボタンをクリックすると、ジョブ［ファイル

チェックの作成・変更］ダイアログが開くので、こ

ちらで設定を行います（図4）。

　基本的には第5回（2015年2月号）で紹介した、

ジョブスケジュールを作成する手順とほとんど同じ

で、実行するジョブと実行するタイミングを設定す

れば完了です。実行契機 IDにはスケジュールとファ

イルチェックでユニークな IDを設定します。ジョブ

IDには、このファイルチェックで実行したいジョブ

やジョブネットを指定します。そして、ファイル

チェック設定で具体的に、どのサーバの、どのファ

イルが、どのようになったときにジョブを実行する

かを設定します。チェックするサーバは「スコープ」

で設定します。またチェックするファイルはディレ

クトリとファイル名を入力します。ファイル名には

正規表現が使えるので、たとえば末尾にその日の日

付が入るファイル（masterdb_data.20150418など）

をチェックできます。

　そしてジョブを実行する条件についてはファイル

の作成だけでなく削除や変更（タイムスタンプ変更

とファイルサイズ変更の2種類）を指定でき、柔軟に

ジョブの実行条件を設定できます。

　この機能を使うことによって、たとえばほかのシ

ステムから送信されたマスタデータを、別のシステ

ムに投入する、といったシステム間連携をシンプル

に設定でき、複雑な処理を簡単に行うことができま

す。

▼図4　ファイルチェックの設定例

140 - Software Design

トピック

　前回のトピックでも紹介した国内最大級の
AWSユーザイベント「JAWS DAYS 2015」に
参加してきました。当日は過去最多の1,000人
超の方々が実際に会場に足を運び、7つのトラッ
クから興味のあるセッションを思い思いに聴講
していました。JAWS DAYSの面白いところは、
見本市のようにすべてのトラックが1つの大会
場の中で同時並行して行われるので、興味しだ
いでつまみ喰いのように聞けるところでしょう。
　今年のJAWS DAYSの大きな特徴の1つは、
昨年10月に発表された Intel Edisonの実機と
AWSのサービスを組み合わせた可視化や機械
学習のハンズオンが行われたことでしょう。定
員の数倍にもなるキャンセル待ちが発生し、
AWSユーザがいかに IoTに注目しているかが
感じられただけでなく、当日は参加者のみなさ
んが熱心に聴講し手を動かしている光景がとて
も印象的でした。今後は、AWSコミュニティ
の中でもIoTを意識した活動が加速していくの
ではないでしょうか。

今回の流れ

　第7回から、AWS APIを直接操作するため
に必要な次の3種類のディジタル署名について
解説しています。前回の第10回までで、3つの

署名方法のうちSignature Version 2、Signature
Version 3についてそれぞれの概要と実例を解
説しました。
　今回から、最新かつ最も複雑な署名方法であ
るSignature Version 4（以下「v4」）の概要につ
いて解説をします。

Signature Version 4の作成手順

　v4の署名付きリクエストデータの作成手順
は図1のとおりです。
　v4は、署名作成の過程でリクエストデータ
本体を組み込むため、操作対象のサービスによっ
て処理が大幅に異なります。たとえば、Dyna
moDBでは投入するJSONデータが署名対象に
含まれ、S3では操作対象のオブジェクトのエ
ンコードデータが必要になります。本記事では、
比較的シンプルな操作である IAMユーザの一
覧を取得するリクエストを作成します。
　最近、署名方法の公式ドキュメントの日本語

シェルスクリプトではじめる
AWS入門
―AWS APIの活用と実践

Writer　波田野 裕一（はたの ひろかず）／運用設計ラボ　operation@office.operation-lab.co.jp

第11回　AWS APIでのデジタル署名の全体像を明らかにする⑤

正規リクエストの作成

署名文字列の作成

署名の計算

署名付きリクエストの作成

API への投入

 ▼図1　 リクエストデータ作成手順

140 - Software Design May 2015 - 141

第11回　AWS APIでのデジタル署名の全体像を明らかにする⑤

版が公開されました注1。本記事では、このサン
プルを例にコマンドラインでの署名方法を解説
し、最後にopensslコマンドで実環境へ実際に
投入したいと思います注2。

準備

　最初に、サンプル用の日時情報と認証情報を
変数に取り込みましょう。

日時情報の取得

　v4では日付情報と時間情報が署名を行うう
えで重要な意味を持っています。初回は、サン
プルデータを作成するために次の情報を利用し
ます。以降、黒地の行ではコマンドのサンプル
を示します。

DATE='20110909'
TIME='233600'

　実環境へのリクエストに対して署名を行う場
合は、次のコマンドでそれぞれ取得してくださ
い。

DATE=`LC_ALL=C date -u +%Y%m%d`
TIME=`LC_ALL=C date -u +%H%M%S`

認証情報の取得

　次に、AWS APIへの認証情報を変数に取り
込みます。サンプルデータに対する認証情報は
次になります。

aws_access_key_id=AKIDEXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/ｭ
K7MDENG+bPxRfiCYEXAMPLEKEY

　準備は以上で完了です注3。これ以降はサンプ

注1） URL http://docs.aws.amazon.com/general/latest/gr/
sigv4-signed-request-examples.html

注2） opensslコマンドは1.x系列の最新版を使用してください。
注3） 現在のAWS APIテストスイートでは、おおむねこの認証情

報が使われているようです。実環境へのリクエストに対し
て署名を行う場合は、2015年3月号の第9回「3.事前準備」
を参照して実環境の認証情報を変数に格納してください。

ルデータと実環境を問わず同じ手順で作業を進
めていくことになります。

タスク1［正規リクエストを作成
し、ハッシュ値を得る］
　最初の作業として、正規リクエスト（Canonical
Request）を作成し、そのハッシュ値を取得し
ます。正規リクエストは次の要素から成り立ち
ます。

・HTTPリクエストメソッド（GET/POST/PUT/
DELETE）

・正規URI
・正規リクエスト文字列
・正規ヘッダ
・（空行）
・署名ヘッダ
・ペイロードのハッシュ値

APIのバージョン、
リクエスト内容の決定

　正規リクエストを作成する前段階として、利
用するAPIのバージョンとリクエスト内容を決
定します。2015年3月現在、IAMの最新バージョ
ンは '2010-05-08'です。

API_VERSION='2010-05-08'

　リクエスト内容として、ListUserアクショ
ンをパラメータなしで指定します。

API_PARAM="Action=ListUsers"

　最後にAPIバージョンとリクエスト内容を
結合すると、APIに対するリクエスト情報が完
成します。このときに、'&'区切りで昇順にソー
トされている必要があるので注意してください。

REQUEST_STRING="${API_PARAM}&ｭ
Version=${API_VERSION}" && echo ｭ
$REQUEST_STRING

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

142 - Software Design

　結果は次のようになります（以降グレー地で
入力結果を示します）。

Action=ListUsers&Version=2010-05-08

署名アルゴリズムの指定

　次に、AWS APIへのリクエストに対する署
名アルゴリズムを決めておきましょう。これは、
各種ハッシュ値の取得や署名の際に同じものを
指定する必要があります。ここでは、現時点で
最も一般的なSHA-256を指定しておきます。

X_AMZ_ALGORITHM='AWS4-HMAC-SHA256'

　以降、この手順でopensslコマンドを利用す
るときに、署名アルゴリズムとして“-sha256”
オプションを指定することになります。

HTTPリクエストメソッド、正規
URI、正規リクエスト文字列の決定

　今回は、HTTPリクエストメソッドとして
POSTを利用します。

HTTP_METHOD='POST'

　IAMのAPIはクエリ形式で実装されている
ため、正規URI（Canonical URI）は“/”になり
ます。REST形式のAPIの場合は操作対象の
リソースを指定します。

CANONICAL_URI='/'

　APIに対するリクエスト情報は、正規リクエ
スト文字列（Canonical QueryString）もしくは
後に説明するペイロード（payload）のどちらか
で指定します。
　今回のPOSTメソッドの場合は、リクエス
ト情報はペイロードで指定するため、正規リク
エスト文字列は空になります。

CANONICAL_QSTRING=""

　以上の3つの情報を元に、最初の正規リクエ
ストを作成します。

cat << EOF > canonical_form.tmp
${HTTP_METHOD}
${CANONICAL_URI}
${CANONICAL_QSTRING}
EOF

cat canonical_form.tmp

POST
/
（空行）

署名ヘッダの作成

　次に署名ヘッダ（Signed Headers）を作成し
ます。ここには、リクエストの署名に利用する
ヘッダ（まだ作成していないauthorizationヘッ
ダ以外）すべての名称を記述します。 なお、
POSTによるリクエストで必要になるcontent-
lengthヘッダは署名ヘッダには含みません。
　必要となるヘッダは、操作対象のAPIやリ
クエスト内容によって異なりますが、今回の
IAMでのListUsersアクションでは、下記の3
つのヘッダを利用します。

・content-type
・host
・x-amz-date

　次のように変数に格納してください。このと
きに、“;”区切りで昇順にソートされている必
要があるので注意してください。

SIGNED_HEADERS='content-type;host;x-amz-ｭ
date'
echo "SIGNED_HEADERS: ${SIGNED_HEADERS}"

SIGNED_HEADERS: content-type;host;x-amz-ｭ
date

正規ヘッダの作成

　署名ヘッダの記載順に各ヘッダを実際に記述

142 - Software Design May 2015 - 143

第11回　AWS APIでのデジタル署名の全体像を明らかにする⑤

し、正規ヘッダ（CanonicalHeaders）を作成しま
す。hostにはAPIのエンドポイントを指定し
ます。IAMの場合はグローバルで1つしかない
'iam.amazonaws.com'を指定します。

API_HOST='iam.amazonaws.com'

　x-amz-dataには、冒頭で取得したDATEと
TIMEを使用して ISO8601基本形式で表現し
た日時情報を指定します。

X_AMZ_DATE="${DATE}T${TIME}Z"

　content-typeには、'application/x-www-form
-urlencoded; charset=utf-8'を指定します。各
ヘッダの内容が確定したら、正規ヘッダをファ
イルに出力します。ヘッダが昇順にソートされ
ている必要があるので注意してください。

cat << EOF > canonical_headers.tmp
content-type:application/x-www-form-ｭ
urlencoded; charset=utf-8
host:${API_HOST}
x-amz-date:${X_AMZ_DATE}
EOF

cat canonical_headers.tmp

content-type:application/x-www-form-ｭ
urlencoded; charset=utf-8
host:iam.amazonaws.com
x-amz-date:20110909T233600Z

ペイロードのハッシュ値取得

　正規リクエストの6要素のうち最後の要素と
なるペイロードのハッシュ値を取得します。

echo "${REQUEST_STRING}" ¦ tr -d '¥n' > ｭ
payload.tmp
PAYLOAD_HASH=`
 openssl dgst -sha256 payload.tmp ¥
 ¦ sed 's/^.*= //'
`
echo "PAYLOAD_HASH: ${PAYLOAD_HASH}"
rm payload.tmp

PAYLOAD_HASH: b6359072c78d70ebee1e81adcbｭ
ab4f01bf2c23245fa365ef83fe8f1f955085e2

　正規リクエスト文字列のところで説明しまし
たが、POSTメソッドの場合はペイロードに
リクエスト情報が入るため、その内容によりハッ
シュ値も異なります（GETメソッドの場合はペ
イロードは空になるため、ペイロードのハッシュ
値は常に同じです）。

正規リクエストの完成

　6つの要素が出そろったので、これらを次の
ように結合して正規リクエストを完成させます。

cat canonical_headers.tmp >> canonical_ｭ
form.tmp
echo "" >> canonical_form.tmp
echo "${SIGNED_HEADERS}" >> canonical_ｭ
form.tmp
echo ${PAYLOAD_HASH} ¦ tr -d '¥n' >> ｭ
canonical_form.tmp

cat canonical_form.tmp

POST
/

content-type:application/x-www-form-ｭ
urlencoded; charset=utf-8
host:iam.amazonaws.com
x-amz-date:20110909T233600Z

content-type;host;x-amz-date
b6359072c78d70ebee1e81adcbab4f01bf2cｭ
23245fa365ef83fe8f1f955085e2

正規リクエストのハッシュ値取得

　正規リクエストが完成したら、そのハッシュ
を取得します。

REQUEST_HASH=`
 openssl dgst -sha256 canonical_form.ｭ
tmp ¥
 ¦ sed 's/^.*= //'
`
echo "REQUEST_HASH: ${REQUEST_HASH}"

REQUEST_HASH: 3511de7e95d28ecd39e9513b64ｭ
2aee07e54f4941150d8df8bf94b328ef7e55e2

144 - Software Design

　サンプル用の日時情報と認証情報を使用した
場合、前述のREQUEST_HASHと同じハッシュ
値が取得できるはずです。 AWS API側では、
このハッシュを復号化してそのリクエストを解
読することにより、適切なレスポンスを返しま
す。正規リクエストのハッシュが取得できた時
点で、正規リクエスト自体は不要になるので
canonical_form.tmpは削除して問題ありません。

rm canonical_form.tmp

タスク2［署名文字列の作成］

　正規リクエストのハッシュが取得できたら、
次にそれを利用して署名文字列（String to
Sign）を作成します。署名文字列は、メッセー
ジ認証符号において必要な「秘密鍵」と「メッセー
ジ」のうちの「メッセージ」となるもので、次の
4項目で構成されています。

・署名アルゴリズム（定義済）
・日時情報（定義済）
・認証情報スコープ
・正規リクエストのハッシュ（定義済）

　署名文字列に必要な4項目のうち3項目はす
でに定義済なので、次は「認証情報スコープ」を
作成していきます。

認証情報スコープの作成

　認証情報スコープ（Credential Scope）には次
の4項目が含まれます。

・リクエスト日付（定義済）
・リージョン
・サービス識別子
・スコープの終了文字列

　未定義の3項目について定義していきます。
今回、リージョンには IAMのエンドポイント
のある 'us-east-1'を指定します。

AWS_REGION='us-east-1'

　サービス識別子は、IAMの場合は 'iam'を指
定します。

AWS_SERVICE='iam'

　スコープの終了文字列には、v4を意味する
'aws4_request'を指定します。

SCOPE_TERM='aws4_request'

　これらを次のように結合して、認証情報スコー
プを定義します。

CREDENT_SCOPE="${DATE}/${AWS_ｭ
REGION}/${AWS_SERVICE}/${SCOPE_TERM}"
echo "CREDENT_SCOPE: ${CREDENT_SCOPE}"

CREDENT_SCOPE: 220110909/us-east-1/iam/ｭ
aws4_request

署名文字列の作成

　ここまでで必要な項目がすべてそろったので、
これらを次のように結合して署名文字列を完成
させます。

cat << EOF > s2s.tmp
${X_AMZ_ALGORITHM}
${X_AMZ_DATE}
${CREDENT_SCOPE}
EOF

echo ${REQUEST_HASH} ¦ tr -d '¥n' >> ｭ
s2s.tmp

cat s2s.tmp

AWS4-HMAC-SHA256
20110909T233600Z
20110909/us-east-1/iam/aws4_request
3511de7e95d28ecd39e9513b642aee07e54f4941ｭ
150d8df8bf94b328ef7e55e2

144 - Software Design May 2015 - 145

第11回　AWS APIでのデジタル署名の全体像を明らかにする⑤

タスク3［署名の計算］

　メッセージ認証符号において必要な「秘密鍵」
と「メッセージ」のうち、「メッセージ」は完成し
たので、次は「秘密鍵」を作成していきます。
v4では、リクエストごとに、日付を含む複数
の情報 (認証情報スコープの4項目）とAWSの
シークレットアクセスキーを利用して4重に署
名を繰り返すことで比較的強度の高い「秘密鍵」
を作成しています。

秘密鍵の作成①［AWSシークレッ
トアクセスキーのHEX変換］

　まず最初に、opensslで扱えるようにAWS
シークレットアクセスキーを16進数形式に変
換します。

K_SECRET=$(for x in $(echo "AWS4${aws_ｭ
secret_access_key}" ¦ grep -o '.');do ｭ
printf "%2X" ¥"$x; done;)
echo "K_SECRET: ${K_SECRET}"

K_SECRET: 41575334774A616C725855746E4645ｭ
4D492F4B374D44454E472B625078526669435945ｭ
58414D504C454B4559

秘密鍵の作成②［日付情報に署名］

　日付情報に対してAWSシークレットアクセ
スキーで署名し、最初の秘密鍵を作成します。

K_DATE=`
 echo "${DATE}" ¥
 ¦ tr -d '¥n' ¥
 ¦ openssl dgst -mac HMAC -macopt ｭ
"hexkey:${K_SECRET}" -sha256 ¥
 ¦ sed 's/^.*= //'
`
echo "K_DATE: ${K_DATE}"

K_DATE a83ed188be5f4b074d7f66349f5077fbcｭ
df797bf3471fb9d5f32730f936d41a5

秘密鍵の作成③
［リージョン情報に署名］

　最初の秘密鍵でリージョン情報に対して署名
し、2番めの秘密鍵を作成します。

K_REGION=`
 echo "${AWS_REGION}" ¥
 ¦ tr -d '¥n' ¥
 ¦ openssl dgst -mac HMAC -macopt ｭ
"hexkey:${K_DATE}" -sha256 ¥
 ¦ sed 's/^.*= //'
`
echo "K_REGION: ${K_REGION}"

K_REGION 957b5875f33834a85374b750011dc2dｭ
6f0e1d6896eeb891d36a73c711961ad6e

秘密鍵の作成④
［サービス識別子に署名］

　2番めの秘密鍵でサービス識別子に対して署
名し、3番めの秘密鍵を作成します。

K_SERVICE=`
 echo "${AWS_SERVICE}" ¥
 ¦ tr -d '¥n' ¥
 ¦ openssl dgst -mac HMAC -macopt ｭ
"hexkey:${K_REGION}" -sha256 ¥
 ¦ sed 's/^.*= //'
`
echo "K_SERVICE: ${K_SERVICE}"

K_SERVICE 0116249d060bff83faa1a627e85a4cｭ
6f83ce50d89c334765878dcf76e28bfc6e

秘密鍵の作成⑤
最終「秘密鍵」の作成

　3番めの秘密鍵でスコープの終了文字列に対
して署名し、最終的な秘密鍵を作成します。

K_SIGNING=`
 echo "${SCOPE_TERM}" ¥
 ¦ tr -d '¥n' ¥
 ¦ openssl dgst -mac HMAC -macopt ｭ
"hexkey:${K_SERVICE}" -sha256 ¥
 ¦ sed 's/^.*= //'
`
echo "K_SIGNING: ${K_SIGNING}"

K_SIGNING 98f1d889fec4f4421adc522bab0ce1ｭ
f82e6929c262ed15e5a94c90efd1e3b0e7

署名

　ここまでで、メッセージ認証符号において必
要な「秘密鍵」（K_SIGNING）と「メッセージ」
（署名文字列）の両方の作成が完了しました・署
名文字列に対して秘密鍵（K_SIGNING）で署名

146 - Software Design

することで、最終的な署名を取得できます。

SIGNATURE_HEX=`
 openssl dgst -mac HMAC -macopt ｭ
"hexkey:${K_SIGNING}" -hex -sha256 s2s.ｭ
tmp ¥
 ¦ sed 's/^.* //'
`
echo "Signature: ${SIGNATURE_HEX}"

ced6826de92d2bdeed8f846f0bf508e8559e98e4ｭ
b0199114b84c54174deb456c

　これが、今回のリクエストで必要となる署名
の最終版となります。署名が完了した時点で、
署名文字列は不要になるのでs2s.tmpは削除し
て問題ありません。

rm s2s.tmp

タスク4
［署名付きリクエストの完成］

　署名が完成したら、最後に署名付きリクエス
トを作成します。POSTメソッドの場合は次
が必要になります。

・リクエスト行
・認証ヘッダ
・content-length
・正規ヘッダ（定義済）
・（空行）
・ペイロード（定義済）

リクエスト行の組み立て

　まず、HTTPリクエストの1行目（リクエス
ト行）を、以下のコマンドで組み立てます。

HTTP_REQUEST="${HTTP_METHOD} ｭ
https://${API_HOST}/${CANONICAL_ｭ
QSTRING} HTTP/1.1" && echo "HTTP ｭ
REQUEST: ${HTTP_REQUEST}"

HTTP REQUEST: POST https://iam.ｭ
amazonaws.com/ HTTP/1.1

認証ヘッダの組み立て

　次に、認証ヘッダを次のコマンドで組み立て
ます。

AUTH_HEADER="${X_AMZ_ALGORITHM} ｭ
Credential=${aws_access_key_ｭ
id}/${CREDENT_SCOPE}, ｭ
SignedHeaders=${SIGNED_HEADERS}, ｭ
Signature=${SIGNATURE_HEX}"

echo "AUTH_HEADER: ${AUTH_HEADER}"

AUTH_HEADER: AWS4-HMAC-SHA256 ｭ
Credential=AKIDEXAMPLE/20110909/us-ｭ
east-1/iam/aws4_request, ｭ
SignedHeaders=content-type;host;x-amz-ｭ
date, Signature=ced6826de92d2bdeed8f846fｭ
0bf508e8559e98e4b0199114b84c54174deb456c

content-lengthの取得

　POSTメソッドではペイロードの content-
length（メッセージ本体のバイト数）の値が必要
となるので、ペイロードの長さを調べて変数に
格納しておきます。

CONTENT_LENGTH=`echo ${REQUEST_STRING}¦ ｭ
tr -d '¥n' ¦ wc -c`
echo "CONTENT_LENGTH: ${CONTENT_LENGTH}"

CONTENT_LENGTH: 35

署名付きリクエストの完成

　これで必要な項目がすべてそろったので、図
2のように結合して署名付きリクエストを完成
させます。図3が出力結果です。
　図3に出力されたこのoutput.txtが、最終的
な署名付きリクエストメッセージになります。
サンプル用の日時情報と認証情報を使用した場
合、手順どおりに進めることができていればまっ
たく同じ内容になるはずです。正規ヘッダ

146 - Software Design May 2015 - 147

第11回　AWS APIでのデジタル署名の全体像を明らかにする⑤

canonical_headers.tmpはもう不要なので、削
除して問題ありません。

rm canonical_headers.tmp

実際にリクエストを
作成してみよう

　サンプルデータで動作確認ができたら、実際
にAWS APIに投入できるリクエストを作成し
てみましょう。本記事の「準備」のステップに戻
り、実際の日時情報と認証情報を指定します。
続いて、タスク1～4を実行し、その結果得ら
れた署名付きリクエストを図4のとおり
opensslコマンドでAWS APIに投入します。
　図5のように IAMユーザの一覧が表示され
ればリクエストは成功です。

次回は

　次回は、今回解説したSignature Version 4
の署名付きリクエストデータを作成するシェル
スクリプトのサンプルを紹介する予定です。
ﾟ

 ▼図2　コマンド例（署名付きリクエストのファイル結合）

cat << EOF > output.txt
${HTTP_REQUEST}
authorization:${AUTH_HEADER}
EOF

cat canonical_headers.tmp >> output.txt
echo "content-length:${CONTENT_LENGTH}" ｭ
>> output.txt
echo "" >> output.txt
echo "${REQUEST_STRING}" >> output.txt

cat output.txt

 ▼図4　リクエストコマンドの例

openssl s_client -connect ${API_HOST}:443

 ……（略）……
 Timeout : 300 (sec)
 Verify return code: 20 (unable to ｭ
get local issuer certificate)
　 入力待ち（ここに署名付きリクエストデータを貼り付け、
　 2回©キーを押す）

 ▼図3　ファイルの結合結果

POST https://iam.amazonaws.com/ HTTP/1.1
authorization:AWS4-HMAC-SHA256 ｭ
Credential=AKIDEXAMPLE/20110909/us-ｭ
east-1/iam/aws4_request, ｭ
SignedHeaders=content-type;host;x-amz-ｭ
date, Signature=ced6826de92d2bdeed8f846fｭ
0bf508e8559e98e4b0199114b84c54174deb456c
content-type:application/x-www-form-ｭ
urlencoded; charset=utf-8
host:iam.amazonaws.com
x-amz-date:20110909T233600Z
content-length:35

Action=ListUsers&Version=2010-05-08

 ▼図5　リクエストの成功例

HTTP/1.1 200 OK
x-amzn-RequestId: 8c950f6e-ce9e-11e4-ｭ
8522-0facd9acae23
Content-Type: text/xml
Content-Length: 3297
Date: Fri, 20 Mar 2015 01:15:08 GMT

<ListUsersResponse xmlns="https://iam.ｭ
amazonaws.com/doc/2010-05-08/">
 <ListUsersResult>
 <Users>
 <member>
 <UserId>AIDAXXXXXXXXXXXXXXXXX</ｭ
UserId>
 <Path>/</Path>
 <UserName>admin</UserName>
 <Arn>arn:aws:iam::XXXXXXXXXXXX:ｭ
user/admin</Arn>
 <CreateDate>2015-03-19:41:29Z</ｭ
CreateDate>
 </member>
 </Users>
 <IsTruncated>false</IsTruncated>
 </ListUsersResult>
 <ResponseMetadata>
 <RequestId>8c950f6e-fe9e-11e4-8522-ｭ
0facd9acae23</RequestId>
 </ResponseMetadata>
</ListUsersResponse>

148 - Software Design

今こそ
基本に立ち帰ろう

　ども、るびきちです。本連載も先月号で1年
になり、まさに1周したような感じです。最初
の数回はEmacsを使ったことのない人を対象に、
Emacsの基礎概念をゆっくりと紹介しました。
そのあとはddskkによるOS非依存の日本語入力
を紹介したことで、複数のOSを使う人でも
Emacsは有用だと示しました。続けて、さまざ
まなカーソル移動、入力支援、検索・置換とい
うテキストエディタとしてのEmacsの使い方を
紹介しました。dired、eshellというOS非依存
のファイラとシェルも紹介しました。Emacs上
のワープロ・スーパー電子手帳であるorg-mode
についても軽く触れました。
　そして、先月号と先々月号の2回に分けて、
Emacsの諸機能を統合するhelmという超強力な
パッケージを紹介しました。helmを使いこなす
ことで、あなたのEmacsはかなり使いやすく
なったことでしょう。
　今回はあえて初心に帰り、キーに割り当てら
れた標準コマンドに焦点を当ててみます。今回
が初めての読者はもちろんのこと、ベテランユー

ザも今一度、標準機能を見直してみてはいかが
でしょうか。最近導入された機能は意外と知ら
れていないものです。

キーに割り当てられた
コマンドを見てみよう

　Emacsはデフォルトの状態で無数のコマンド
がキーに割り当てられています。<f1> bを実行
すれば、キーに割り当てられたすべてのコマン
ドを見られます。しかし、それはカスタマイズ
された状態での表示ですので、デフォルトの設
定ではありません。
　そこで、端末からemacs -Qで立ち上げたあ
とで同じコマンドを実行すればデフォルトの状
態がわかります。あるいはeshellでリスト1を
実行しても良いです。このコマンドは、デフォ
ルトの状態のEmacsをバッチモードで起動し、
<f1> b（describe-bindings）を実行、表示された
内容を標準出力に出力して終了します。この出
力は約1,000行にもおよびます。これだけ多く
のコマンドが標準状態で割り当てられているの
は驚きです。Emacsを使って20年になる筆者
も、すべてのコマンドを使いこなせているわけ
ではありません。

 ▼リスト1　eshellからデフォルトのキー割り当てを確認

emacs -batch -f describe-bindings -eval '(with-current-buffer "*Help*" (princ (buffer-string)))'

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

第13回 標準コマンドから改めて見るEmacs
　パッケージをインストールして、init.elにバリバリと設定を加えていき、Emacsをカスタマイズしていく本連
載ですが、今回は趣旨を変えて標準コマンドを見ていきます。デフォルトではどんなコマンドがあるのかを把
握し、プレフィックスキー・引数によるコマンドの成り立ちを知ることで、より深くEmacsを理解できます。

Writer

http://rubikitch.com/

148 - Software Design May 2015 - 149

は使用頻度の低いコマンドも含まれていますが、
そういうのは無理に覚える必要はありません。

プレフィクスキー

　それでは、もっと深く見ていきましょう。
Emacsにはプレフィクスキーが用意されており、
2ストローク以上のキーにコマンドが割り当て
られます。そのおかげで多くのコマンドをキー
に割り当てられます。出力から抜き取り吟味し
た結果、表1のとおり、多くのプレフィクスキー
が見つかりました。

各プレフィクスキー

　それではおもなプレフィクスキーを見ていき
ましょう。

1ストロークのキー

　Emacsで頻繁に使われるコマンドは1スト
ロークのキーに割り当てられています。
　とくにl＋英字は基本的なコマンドばか
りなのでしっかりおさえておきましょう。とは
いえ、すべてが使用頻度の高いコマンドという
訳ではありません。C-tは文字の順序が入れ替
わったタイプミスを修正してくれるのですが、
日本語のローマ字入力では使えないので無理に
使う必要はありません。C-qは制御文字や改行
文字を入力するときに使うものですが、筆者は
めったに使いません。C-zはEmacsのフレーム
をサスペンドしますが、Emacsひきこもり生活
をしていればまったく使いません。
　困ったらC-gやC-/を押すことは絶対に覚え
てください。Emacsユーザはパニックになって
はいけません。C-gでコマンドを取り消し、C-/
でバッファへの変更を取り消します。たまにC-g

で取り消されず、Emacsが固まってしまうこと
もありますが、それはEmacs本体かLispレベル
のバグですのであきらめて再起動しましょう。
　特殊キーの代わりにlを使うと指を動か
す距離が短くなります。kの代わりにC-i、
RETの代わりにC-m、jの代わりにC-[が
使えます。
　Metaキー（m）＋英字のコマンドには、だ
いたいl＋英字の補助的なコマンドが多い
です。作用対象が文字→単語、行→センテンス
に変わったりします。おもしろいことに、M-p

とM-nには何もキーが割り当てられていません。
これらはメジャーモードが自由に割り当てられ
るようにわざと空けられています。名前を指定
してコマンドを実行するM-xが重要なのは言う
までもないです。
　Metaキー＋記号文字には多くのコマンドが割
り当てられています。たとえば、M-!でシェル
コマンド実行、M-%で置換などがあります。と
くにM-/のdabbrevはタイプミス撲滅・タイプ
数節約のためには多用しておきたいです。中に

C-c 汎用プレフィクスキー
ESC Metaキー、C-[と同じ
C-x 標準プレフィクスキー
C-x C-k キーボードマクロ関係
C-x RET エンコーディング関係

C-x ESC
C-x ESC ESC（repeat-complex-comm
and）のみ

C-x 4 other-window関係
C-x 5 other-frame関係
C-x 6 2C（two-columns）関係
C-x 8 アクセント文字などを入力する
C-x a abbrev関係
C-x a i abbrev関係
C-x n ナローイング関係
C-x r レジスタ・矩形関係
C-x v VC（バージョン管理）関係
C-h ヘルプ
C-h 4 C-h 4 i（info-other-window）のみ
M-s 検索関係
M-s h ハイライト関係
M-o facemenu関係
M-g カーソル移動関係

M-ESC
ESC ESC ESC（keyboard-escape-quit）
のみ

<f1> C-hと同じ
<f1> 4 C-h 4と同じ
<f2> C-x 6と同じ

 ▼表1　プレフィクスキー

第13回 標準コマンドから改めて見るEmacs

150 - Software Design

　プレフィクスキーC-x vはバージョン管理シ
ステム関連のコマンド担当です。C-x v vでファ
イル登録・コミット、C-x v =でdiff、C-x v l
でログを表示します。ほかにもたくさんのコマ
ンドがありますが、通常使用ではこの3つがあ
れば事足ります。
　プレフィクスキーC-x RET（C-x C-m）はバッ
ファやファイルのエンコーディング（coding
system）関連のコマンド担当です。バッファの
エンコーディングを変更して保存するにはC-x

C-m fで設定します。Emacsがエンコーディン
グを誤認識したときはC-x C-m rで明示的に指
定してファイルを開き直します。この2つを知っ
ていれば十分です。

モードコマンド・ユーザ割り当てのC-c

　C-cは汎用的なプレフィクスキーです。C-c

をプレフィクスキーとする割り当て方はキーバ
インドの規約で決まっています。
　まず、C-c＋英文字はユーザが自由に割り当
てられる領域になっています。elispプログラム
ではそれらにコマンドを割り当ててはいけない
という厳密な決まりがあります。メジャーモー
ドで使うのは論外ですが、実際には一部の外部
パッケージによるマイナーモードでは使われて
いることもあります。よって、規約に違反して
いるマイナーモードがなければ、安心して好き
なコマンドを割り当てられます。
　C-c＋コントロール文字、数字、{、}、<、
>、:、;はメジャーモードが使うように予約さ
れています。ほとんどのメジャーモードはC-c

＋C-英文字に割り当てれば間に合います。
　プレフィクスキーのあとでもEmacsのキーの
意味が継承されています。たとえばC-c C-pや
C-c C-bで前の要素に、C-c C-nやC-c C-fで
次の要素に移動するコマンドが割り当てられて
いることがしばしば見られます。
　特定のメジャーモードに付随するマイナーモー
ド（たとえばorg-modeに対するorg-capture-
mode）は、org-modeの元のキーバインドを上書

標準コマンドへの入口のC-x

　C-xは常に使える標準コマンドのためのプレ
フィクスキーです。
　C-x＋1文字にも重要なコマンドが勢ぞろい
しています。たとえばC-x C-s（保存）やC-x

C-f（ファイルオープン）やC-x b（バッファ切り
替え）などは真っ先に覚える必要があります。
　Emacsにはデフォルトで1,000ものコマンド
が割り当てられているため、C-xから始まる2～
3ストロークのプレフィクスキーもあったりし
ます。それらにはおおむね同じカテゴリのコマ
ンドが割り当てられています。
　たとえばC-x 4をプレフィクスキーとするコ
マンドは、other-window系列のコマンドであり、
隣のウィンドウに表示するものばかりです。し
かも普通のC-x系のコマンドから類推できる
キーですので覚えやすいです。C-x 4 bはC-x

bの、C-x 4 C-fはC-x C-fのother-window版
です。ウィンドウが分割されていないときは分
割します。
　プレフィクスキーC-x 5はother-frame系列
のコマンドで、別フレームで表示するものばか
りです。C-x 4と同じくC-x 5 bはC-x b、C-x
5 C-fはC-x C-fに対応しています。
　プレフィクスキーC-x nはナローイング
（narrowing）関連のコマンド担当です。ナローイ
ングとは、編集領域をバッファの一部に制限し、
範囲外を一時的に見えなくする機能です。C-x

n nでregionをナローイングし、C-x n wでナ
ローイングを解除します。ナローイングのコマ
ンドはほかにも用意されています。
　プレフィクスキーC-x rはレジスタ（register）、
矩形（rectangle）関連のコマンド担当です。それ
ぞれ働きは異なりますが、どちらも頭文字がR
ですので共通のプレフィクスキーになっていま
す。どちらも説明すると長くなるので割愛しま
す。ほかに置き場所がないのか、なぜかブック
マーク関連のコマンドもC-x rをプレフィクス
キーにしています。

るびきち流
Emacs超入門

150 - Software Design May 2015 - 151

char）するコマンドも追加されました。
　外部プログラムとの橋渡しをするのもEmacs
の重要な役割です。M-x compile、M-x grep、
M-x executable-interpretはそれぞれ外部
プログラムをEmacsのバッファで実行します。
外部プログラム実行後に、M-g M-n（next-error）
とM-g M-p（previous-error）を使うと、ウィン
ドウを選択することなく実行結果が指し示す行
にジャンプします。M-g M-nは大昔からC-x `

にも割り当てられています。また、これらのコ
マンドは elispによるバッファ内検索である
M-s o（occur）にも対応しています。
　M-gにはこれくらいしかコマンドが割り当て
られていないので、余っている部分にはユーザ
が好きなようにコマンドを割り当てれば良いで
す。

検索、そして新天地のM-s

　M-sはEmacs23から導入された検索系プレ
フィクスキーです。比較的新しいので知名度は
あまり高くないかもしれません。M-x occurは
M-s oに割り当てられています。
　M-s w（isearch-forward-word）で単語の
isearchができます。旧来ではC-u C-s \bと正
規表現を使う必要がありましたが、Emacs24.4
からはシンボル isearchができるようになりまし
た。とくにコーディングの際には現在位置のシ
ンボルを検索することが多いです。従来の
isearchの欠点は短い文字列を isearchしたとき、
その文字列を含む長い文字列にもマッチする点
です。そこでシンボル isearchを使うと、そのシ
ンボルそのものに対してのみマッチします。た
とえばsetqに対してシンボル isearchを使うと、
setqにはマッチしますが、setq-localにはマッ
チしません。シンボル isearchはM-s .（isearch-
forward-symbol-at-point）でできます。旧来では
C-u C-s _< C-wと操作する必要があり、と

きするために、わざとC-c C-cなどにコマンド
を割り当てていたりします。なぜなら、マイナー
モードはメジャーモードより優先するからです。
　C-cのあとにここで述べた以外の記号文字を
置くコマンドは、マイナーモードのために用意
されています。とはいえ、メジャーモードで使
うことは禁じられていません。実際org-modeの
ような巨大メジャーモードではC-c 'などにコ
マンドが割り当てられています。

ヘルプの<f1> （C-h）

　<f1>とC-hは、ヘルプのためのプレフィクス
キーになっています。関数や変数の説明を見た
り infoを読んだりEmacsの変更履歴を見たりで
きます。ヘルプコマンドはとても多いので、こ
れらのキーを2度押すことでヘルプメニューが
出てきます。
　コマンドを正確に覚えていれば<f1>は1回で
かまいません。たとえば<f1> <f1>のあとにa
を押すとaproposが起動しますが、<f1> aでも
同じことができます。aproposとは、スペース
区切りの正規表現にマッチするシンボル（コマン
ド、関数、変数、フェイス）を探すコマンドで
す。
　実用の観点ではC-hはヘルプではなく1文字
後退にすると良いです。delete-backward-char
に割り当てるか（リスト2）、OSレベルでq

のキーコードを発行させると良いです。とくに
後者はEmacsの外でもC-hで1文字後退してく
れるようになってとても快適です。

カーソル移動補助のM-g

　M-gはEmacs22から導入されたカーソル移動
系プレフィクスキーです。M-g M-gで指定した
行番号に移動（goto-line）します。Emacs24.3か
らはM-g C-iで指定した桁に移動（move-to-
column）し、M-g cで指定した位置に移動（goto-

 ▼リスト2　C-hを1文字後退に割り当てる

(global-set-key (kbd "C-h") 'delete-backward-char)

第13回 標準コマンドから改めて見るEmacs

152 - Software Design

のみを指定した場合、4が指定されたことにな
ります。よって、C-u 4 C-fなんて操作する必
要はなく、C-u C-fでいいのです。「4」は絶妙
な数で、C-fを3回押すのはともかく、4回押す
のはだるいと感じる人間の心理を表しているよ
うです。かといってC-4 C-fは左手人差指を上
下する必要があり、打ちづらいです。そこで
ちょっと前に行きたいと思ったときに、サッと
C-u C-fを打つのです。筆者は3回押すのも面
倒ですのでC-3 C-fやC-3 C-bも多用していま
す。
　C-uを何度も押すと4の累乗が指定されます。
C-u C-u C-fで16文字進みますし、C-u C-u

C-u C-fで64文字進みます。筆者は特定の文字
のみの行を作成するのに、しばしばC-u C-u

C-u =やC-u C-u C-u #を使っています。
　数やハイフンをたくさん入力するにはC-u

<繰り返す数> C-u <文字>と、操作します。
lを押しっぱなしでC-5 C-u 5とすると、5
が5つ入力できます。このようにC-uは数引数
の終わりも意味します。

前置引数

　C-uは数を指定するだけではなく、コマンド
の挙動を変更する場合にも用いられます。たと
えば、M-!はシェルコマンドを実行するコマン
ドですが、何も付けずに実行すると別ウィンド
ウに結果が表示されます。C-u M-!とした場合、
実行結果がカーソル位置に貼り付けられます。
　亜種であるM-|は regionを標準入力として
シェルコマンドを実行します。C-u M-|とした
場合、regionの内容をシェルコマンドの出力に
置き換えます。たとえば各行を逆順にする場合、
M-x reverse-regionというコマンドを知らな
くて、tacシェルコマンドを知っているならば、
C-u M-| tacと実行できます。行のソートも
EmacsのコマンドよりもC-u M-|でsortシェル
コマンドを使うほうがより細かな指定ができま
す。
　これらは挙動の変更程度の違いですが、C-SPC

ても面倒でした。
　M-s hはバッファ自動色付け（hi-lock）機能の
ためのプレフィクスキーです。M-s h .（high
light-symbol-at-point）は現在のシンボルをすべ
て色付けします。M-s h l（highlight-lines-match
ing-regexp）は正規表現にマッチする行をすべて
色付けします。M-s h u（unhighlight-regexp）
で、色付けを解除します。
　M-sも割り当てられているコマンドが少ない
ので、ユーザは安全にコマンドを割り当てられ
ます。とくにM-s M-英字にはいっさい割り当
てられていないのは、押しやすいキーを求めて
いる人には絶好のチャンスです。

数引数・前置引数

　数引数・前置引数は地味ながらも基本的な
Emacsの機能ですが、まだ話していませんでし
た。数引数・前置引数とは一言で言えばコマン
ドの前に指定するC-uのことです。

数引数

　一部のコマンドにC-uを前置したとき、その
コマンドの挙動が変わります。C-uが「数引数」
と言われるのは、多くの編集コマンドや文字を
その数だけ繰り返すからです。たとえばC-fの
代わりにC-u 4 C-fを実行すると、4文字進み
ます。C-bやC-pやC-nに対しても同様です。負
の数を指定した場合は逆の挙動をします。たと
えばC-u - 3 C-fで3文字戻ります。
　ただ、このように数字や負号を指定するため
にlを離すと操作しづらいですね。そこで、
lを押しながらでも数を指定できるように
なっています。C-u 4 C-fはC-u C-4 C-fと
操作できます。
　実はlやMetaキー、あるいはその両方を
押しながら数を指定したときは、直前のC-uを
省略できます。C-u C-4 C-fはC-4 C-fと、C-u
4 M-fはM-4 M-fとなります。
　数引数を取るコマンドで数を指定せずにC-u

るびきち流
Emacs超入門

152 - Software Design May 2015 - 153

終わりに

　いかがだったでしょうか？　パッケージ全盛
時代でつい外部パッケージに目が行ってしまい
がちな今日このごろですが、あえて標準コマン
ドに立ち帰ってみました。意外な発見がありま
したでしょうか？
　筆者は「日刊Emacs」以外にもEmacs病院兼メ
ルマガのサービスを運営しています。Emacsに
関すること関しないこと、わかる範囲でなんで
もお答えします。「こんなパッケージ知らない？」
「挙動がおかしいからなんとかしてよ！」はもち
ろんのこと、自作elispプログラムの添削もしま
す。集中力を上げるなどのライフハック・マイ
ンド系も得意としています。登録はこちら。
➡ http://www.mag2.com/m/0001373131.

html ﾟ

の前にC-uを置くと、まるっきり別の挙動をし
ます。カーソル位置をマークするのではなくて、
過去のマークへジャンプするのです。
　これらのケースではC-uに「数」という意味は
なくなり、ただ置かれたかどうかがチェックさ
れます。その場合は数引数ではなく「前置引数」
と言われます。数引数は前置引数の特別な場合
ともいえます。中にはC-uが押された数によっ
て挙動が変化するコマンドも存在します。
　このように、C-uを使うことで複数の機能を1
つのコマンドにまとめられます。普段C-uを使
わないコマンドに対してC-uを付けたときの挙
動を追加すれば、限られたキーバインド資源を
有効活用できます。それを行うパッケージが
mykie.elで、筆者のサイトで紹介しています 注1。

注1） URL http://rubikitch.com/2014/11/09/mykie

注目の職種として脚光を浴びたデータサイエンティストですが、実
際には多くの企業や組織で人材が不足しており、これにはいくつ
かの原因が考えられます。生まれて間もない職種のため、ビジネス
データ分析に関する知見が溜まっていないことや絶対的な人数
が少なく育成される環境が整っていないことなどが挙げられます。
本書は、データサイエンティストを目指す方に向けて、データ分析
ソフトウェアとして一定の地位を得たＲの活用方法を解説していき
ます。集計処理、時系列分析、インフラの知識など現役のデータ
サイエンティストにも有用な情報が満載です！

養成読本編集部 編
B5判／164ページ
定価（本体1,980円＋税）
ISBN 978-4-7741-7057-2

・Rユーザ
・データサイエンティスト

第13回 標準コマンドから改めて見るEmacs

http://rubikitch.com/2014/11/09/mykie
http://www.mag2.com/m/0001373131.html

154 - Software Design

ShowNetが示す
ネットワークの近未来

社様のデモに使われるネットワークや来場者様
にネットワーク接続を提供しており、サービス
という面でもShowNetが運用されています。
　そのため、ShowNetではデモなどの要望に
応じたさまざまなサービスを提供しています。
（表1）。そのため、通信キャリアや ISP、構内
のネットワークという具合にインターネットの
世界を模していき、エンド・ツー・エンドでの
接続性を担保するネットワークを構築します。
加えてサービスとして運用するため冗長性や運
用性を考慮した、柔軟なネットワーク設計が求
められています。今回は、ネットワーク設計が
どのようにされているのかと、今年の取り組み
について紹介します。

ShowNet設計のココロ

　ShowNetでは、ネットワーク構成を、「エク
スターナル」、「バックボーン」、「お客様収容」、
「データセンタ」などのブロックに分けて設計を
していきます。それぞれのブロックでは現在運
用されているもの、現状の問題点を提起するも
の、これから活用されるべき通信・運用技術な
どを考慮して実際の構成に落とし込まれていき
ます。
　たとえば、読者の皆さんに一番身近である「お
客様収容」の部分では、数年前まではスイッチ
のスタッキング技術が安定しておらず、スイッ

　Interop TokyoのShowNetは、インターネッ
トの世界を模してつくられています。その中で、
最先端の装置のお披露目や、インターオペラビ
リィ（相互運用性）の実験などを実施しています。
それらがフォーカスされていてあまりご存じな
い方もいらっしゃるかと思いますが、実は出展

インターネット技術とビジネスが出会う国内最大のイベント「Interop
Tokyo」。ほかでは類を見ないその最大の特徴である“ShowNet”は、会場全体に
構築される最先端の技術を駆使したネットワーク環境です。この連載では2015
年6月の開催に向けて動き始めたShowNetについて紹介していきます。2回目の
今回は、次回の設計計画の一部をお伝えしながら、ShowNetで培ってきたネッ
トワーク設計方法のノウハウを披露いたします。

第2回 ネットワーク設計方法と
今年の取り組み

ShowNet が示す
ネットワークの近未来

taka@interop-tokyo.net
http://www.interop.jp

upa@haeena.net
渡邊 貴之（わたなべ たかゆき）
ジュニパーネットワークス（株）

中村 遼（なかむら りょう）
東京大学

Mail

Mail

Writer

Writer

URL

 ▼表1　ShowNetが提供するネットワークサービス

●802.11ac/n/aなどによる出展社、
●来場者向けのサービス

無線インターネットサービス

●100Mbps/1Gpsイーサネット
　（100Base-TX/1000Base-T）
●10Gbpsイーサネット（10G Base-LR）
　※上記接続の際の IPアドレスのオプション
　　IPv4 Private
　　IPv4 Global
　　IPv6 Global
　　IPv4/v6デュアルスタック

ShowNetが提供するネットワークサービス

●VLAN接続
●UTP、光ファイバケーブルによる接続

出展ブース間ネットワーク

例： ●リアルタイムで攻撃への対策を行う
 デモンストレーション

 ●認証の可視化と高性能を示す
 デモンストレーション

 ● SNMPによるShowNet機器データ
 取得によるデモンストレーション

カスタムオーダー／出展ブースデモ支援サービス

http://www.interop.jp

May 2015 - 155154 - Software Design

ネットワーク設計方法と
今年の取り組み

第2回

チを束ねて仮想化し1台として利用することが
難しく、挑戦的な取り組みでした。しかし肥大
化するエッジスイッチに対して、ネットワーク
運用者は、OSの管理、コンフィグの管理、スイッ
チの管理など管理コストの削減が急務となって
います。そこで、スタッキング技術の啓蒙を行
うと共に実際に運用構築を実施し、その検証結
果を各メーカーの方々と共有してきました。そ
の結果、徐々に各社のスタッキング技術は改善、
進化し、実運用に耐えうる技術となりました。
　このように各ブロックにおいてそれぞれ冗長
性、運用性、技術的な挑戦を考慮しながら設計
を実施し、ブロック間の接続でもさらに冗長性、
運用性を考慮したうえでShowNet全体のネッ
トワークを構成していきます。

今年のネットワーク設計と
注目技術

　今年のL2/L3では、とくにエクスターナル
におけるセキュリティ技術に焦点を当てていま
す。近年ではDDoSが非常に猛威を振るってい
ます。エクスターナルブロックではBGP flow
specという技術を使用し、DDoSを軽減する取
り組みを実施していきます。
　通常、ルータのルーティングテーブルは IP
のセグメント情報を元に作成されます。これま
ではBGPのNexthopをNullに向けた経路を広
報することでDDoS対策としてきましたが、こ
れでは正常なトラフィックもすべて遮断されて
しまうという問題点がありました。そこで、
Flow情報を広報することでソースアドレスや
L4のポート情報なども対象に加え、より柔軟
に特定のトラフィックを遮断できるようにしま
す。
　しかし単にFlow情報といっても、もともと
ルータにはそのような機能はありません。その
ためBGPの拡張やルータの実装が必要になり
ます。今年のShowNetでは、これらの拡張の
実運用に挑戦し、より安全なインターネットの
環境を目指していきます。

　また、BGPでのRPKI注1にも取り組んでい
きます。こちらは経路そのものの信頼性の向上
を図っています。特定のネットワークアドレス
をどの機関が保有しているのかを、AS（Auto
nomous System）と紐付けて証明書でやりとり
をするものです。このRPKIによって自ASが
広報しているアドレスの他人による乗っ取りを
防止できます。

大規模イベントネットワーク
ならではの構築ノウハウ

　ShowNetは、ネットワーク疎通性の提供や
最新技術の実証実験という側面に加えて、大規
模イベントネットワーク特有の側面があります。
こうした2つの性質を持つShowNetを構築す
るための数々のノウハウは、安定した接続性を
提供しつつ多種多様な実験を内包するShow
Netを“さまざまな背景を持つ多くのエンジニ
アが、2週間で構築し、そして壊す”というイ
ベントネットワークとしての性質から生まれた
ものです。ここでは、そういったShowNet特
有のノウハウから特徴的なものをいくつか紹介
します。

短期決戦を戦い抜くための
必需品“トポロジ図”

　ShowNetでは、5月末から約2週間弱という
短期間ですべての構築と実験を行います。その
中でも、いわゆるバックボーンネットワークは、
出展社様への接続性提供はもちろん、さまざま
な実験に必要な、ShowNetの背骨として真っ
先に構築されます。
　図1に2013年のトポロジ図から、バックボー
ントポロジの一部を紹介します。短期決戦であ
るShowNetの構築現場では、“構築に必要な情
報はこのトポロジ図を見ればすべてわかる”と
いう状態にもっていくことがとても大切です。
実際のネットワークの運用現場でもそうですが、

注1） Resource Public Key Infrastructure；IPアドレスやAS番
号リソースに関して、正しい所有者が誰なのかを証明する
ための認証基盤。

156 - Software Design

ShowNetが示す
ネットワークの近未来
必要な資料が複数の個所に散逸すると、各資料
の更新への追従や、そもそも必要な情報を探す
のに時間がかかってしまいます。構築期間の限
られているShowNetにおいて、構築に携わる
すべてのメンバーに必要な情報を齟

そ

齬
ご

なく1つ
の資料で共有するために生まれたのが、このト
ポロジ図です。

トポロジ図を用いた
具体的な情報管理と設定

　このトポロジ図に、たとえばルータ間のリン
クのインターフェース情報とIPアドレス、ルー
プバックアドレスなどの情報を埋め込むための
工夫をShowNetでは、「装置 ID」と「リンク ID」
と呼んでいます。
　図1のトポロジ図の中で、丸にクロスした矢
印アイコンがレイヤー3のルータを示していま
す。各ルータのすぐ近くに、点線で丸く囲われ
た「.X」という数字が装置 IDです。この装置 ID
は、ShowNetバックボーンでOSPF注2に参加
するすべての装置に割り当てられています。た
とえば、図左上のasr9kの装置 IDは3、右上の
ax86rの装置IDは4、になります。次に、各ルー
タ間のリンクの真ん中にある3桁の数字がリン
ク IDを示しています。asr9kとax86rの間のリ
ンク IDは101、asr9kとax6708sの間のリンク
IDは105です。ここから、各ルータのOSPF

注2） Open Shortest Path First；組織内で使われる動的経路制
御プロトコルの1つであり、ルータ間で経路を動的に学習
するのに用いられる。

に必要な情報を取り出すことができます。
　まず各装置のループバックアドレスを、
「45.0.0.装置 ID/32」というルールで生成しま
す注3。たとえば、図1中のasr9kには45.0.0.3、
ax86rには45.0.0.4というループバックアドレ
スを設定すればよいことがわかります。このルー
ルのために、ShowNetでは毎年45.0.0.0/24の
アドレス空間をループバックアドレス用のレン
ジとして割り当てています。
　次に、リンク IDから各ルータ間のOSPF用
リンクの IPアドレスを生成します。リンク ID
XYZのリンクには、OSPF用として、VLAN
ID「XYZ」、ネットワークアドレス「45.0.X.（YZ
×4）/30」というルールでネットワークを作り
ます。たとえば、asr9kとax6708s間のリンク
IDは105なので、VLAN ID 105、ネットワー
クアドレスは45.0.1.20（05×4）/30となります。
リンク IDから生成されるネットワークアドレ
スは/30なので使えるIPアドレスは2つ、リン
ク IDが105の場合は45.0.1.20/30で45.0.1.21
と45.0.1.22が使えます。どちらのアドレスを
どちらの装置につけるか決定するために、Show
Netでは“装置 IDが若番のほうに小さいアドレ
スをつける”というルールを決めています。
　これによって、asr9kとax6708s間のOSPF
用ネットワークは、VLAN ID 105でasr9k側
が45.0.1.21/30、ax6708s側が45.0.1.22/30、

注3） ShowNetは45.0.0.0/15というアドレスブロックを持っ
ています。

※ http://interop.jp/2013/shownet/
point.html#topology から完全なト
ポロジ図をダウンロードできます

 ▼図1　2013年のトポロジ図からバックボーンの一部

http://interop.jp/2013/shownet/point.html#topology

May 2015 - 157156 - Software Design

ネットワーク設計方法と
今年の取り組み

第2回

ということがトポロジ図から読み取れます。こ
のようなルールでリンク IDを利用するため、
リンク IDは 100番（VLAN ID 100、45.0.1.0/
30）から163番（VLAN ID 163、45.0.1.252/30）
までの64個が使えます。ここ数年は、64個の
リンク IDでは足りない場合もあるため、リン
クID 200番台（45.0.2.0/30から45.0.2.252/30）
と300番台までの128個を加え、最大192個の
リンクIDを用途に応じて使い分けています。
　また、トポロジ図上のリンク IDの右上にあ
る数字は、OSPFのコストを表しています。
OSPFのHello intervalやDead interval、認証
といった設定情報は、毎年ShowNet全体で共
通として事前に値を決めています。
　以上のルールで、トポロジ図から各ルータ間
のOSPF用ネットワークの情報を読み取るこ
とができました。この装置 IDとリンク IDのよ
うに、ほかに必要な情報もトポロジ図から読み
取ることができます。たとえば物理接続に必要
な情報ですが、まずリンクを示す線から物理線
の速度がわかります。そして、装置に向かう三
角形の色からファイバーがシングルモードかマ
ルチモードか、また三角形から続いて表記して
ある数字からその装置のインターフェース番号
がわかります。リンクID 105のリンクはasr9k
側は10Gigabit Ethernetの0/0/0/1番ポート、
ax6708s側は同じく10Gigabit Ethernetの1/1
番ポートです。
　ここまでわかれば、構築現場でこのトポロジ
図だけをたよりに、装置に光ファイバーを接続
し、VLANインターフェースを作り、IPアド
レスを設定し、OSPFの設定をすることができ
ます。

奥深きShowNetのトポロジ図

　このようにShowNetでは、大規模イベント
ネットワーク構築という短期決戦を乗り越える
ためにさまざまな工夫を行っています。装置
IDとリンク IDのほかにも、たとえばトポロジ
図からリンク・アグリゲーションの設定や装置

間スタックの設定、果ては光タップの接続や仮
想ルータなど、さまざまな情報を読み取ること
ができます。
　このShowNetの工夫の結晶とも言えるトポ
ロジ図は、長年ShowNetに携わってきた多く
のエンジニアによって洗練されてきました。
ShowNetのブログでその経緯を見ることがで
きます注4。こちらの動画注5では、1994年から
2013年までのトポロジの変遷を見ることがで
きます。
　2015年も、さまざまな組織から参加する多
くのエンジニアと、20年という時間の中で培っ
てきたさまざまなノウハウによって、多くの実
証実験やデモンストレーションと、安定したネッ
トワーク疎通性の提供を目指しています。現在、
本番に向けて鋭意準備中です。2015年6月は、
実際に稼働するShowNetとともに、幕張メッ
セにて皆様のご来場をお待ちしております。

次回予告

　次号はデータセンター、クラウド担当メンバー
による今年の取り組みについて紹介させていた
だく予定です。ぜひご期待ください。｢

注4） http://www.f2ff. jp/interop/2013/noc/-shownet-
topology-map1.php

注5） https://www.youtube.com/watch? v=aAshcnSSOGQ

▶詳細情報・各種お申し込みはコチラ
　http://www.interop.jp

COLUMN

　入場料5,000円が無料になる展示会事前登録の受
付を開始いたしました。また、基調講演、カンファ
レンスなども登録受付を開始しております。
　日本の IT市場の成長とともに歩み続けてきた
Interopならではの展示、コンファレンスそして
ShowNetを通じて、最先端の技術トレンドと最新
の製品・サービスをご確認ください。

Interop Tokyo 2015
展示会・各種セミナー事前登録
スタートしました

http://www.f2ff.jp/interop/2013/noc/-shownet-topology-map1.php
https://www.youtube.com/watch?v=aAshcnSSOGQ
http://www.interop.jp

158 - Software Design

ファイルの削除にも性能の差

　ファイルを活用したシステム構築を行う場合、
ファイルの作成のみならず、ファイルの削除にかか
る時間が性能を左右することがあります。たとえば
何かしらのモニタリングシステムから上がってくる
データを秒ごとにファイルに落とし込む実装にして
あれば、1年間で31,536,000個ほどのファイルがで
きることになります。対象となるモニタ機材が増え
れば、1年間で作成されることになるファイルの数
は数億個の桁になってきます。
　ファイルシステムごとに削除の方法は異なりま
す。UFS系のファイルシステムの場合、メタデータ
である i-nodeの書き換え、または削除、ディレク
トリのアップデート、データブロックの解放といっ
た処理が行われます。メタデータの書き換えのみな
らず、使用していたデータブロックが解放されたこ
とをすべてのデータブロック分書き込みます。この
ため、削除するファイルサイズが大きくなればなる
ほど、削除に時間がかかります。
　ZFSの削除はUFSとは異なります。UFSの削除
処理よりもZFSの削除処理のほうが複雑ですが、
素のUFSよりも高速です。ZFSはUFSのように
データブロックが解放されたことをすべてのデータ
ブロックに対して実施するといったことはしません
ので、削除するファイルのサイズが大きくなっても
UFSのようには処理時間が増えません。
　しかし、UFSはSoft updatesの機能を有効化する
と性能が一気に変わります。削除特性はUFSのま
まですが、処理速度が一気に高速になります。削除
するファイルのサイズが小さい場合、削除処理は
ZFSよりも高速になります。ただし、ファイルサ

イズが大きくなってくると、ZFSのほうが高速で
す。

大量のファイルを削除する
ベンチマーク

　作成するファイルを1万個から90万個まで1万単
位で増やしながら、削除にかかる時間がどのように
変化するかを調査します。前回注1ベンチマークソ
フトを作りましたので、それをベースに書き換えた
ベンチマークソフト（bench1.c）を使います（p.160の
リスト1注2）。
　調査するファイルシステムはUFS2（Soft updates
機能有効）、UFS2（Soft updates機能無効）、ZFSの
3つとします。

ファイルサイズと削除時間を
比較するベンチマーク

　さらに今回は、削除するファイルのサイズが変
わった場合、削除性能にどのような違いが現れるか
を調べます。こちらも先ほどのベンチマークのソー
スコードをベースに、新しく書き換えたベンチマー

注1	 本誌2015年4月号 第18回のリスト1。
注2	 C言語がわからない、またはC言語が苦手だという方はコメ

ントで処理を追ってみてください。

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第19回 ❖安定動作につながるディレクトリの知識（その3）

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

May 2015 - 159

▶第19回◀
安定動作につながるディレクトリの知識（その3）

処理が低速になるので、さらにファイル数が増える
とUFS2とZFSの性能は逆転するものと考えられ
ます注3。

ファイルサイズと
削除時間

　次に、bench2の実行結果を図3に示します。
　UFS2ではファイルのサイズが大きくなると削除
にかかる時間も増えています。Soft updatesの有無
で性能は大きく違いますが、それでもZFSよりも
高速になるのはファイルサイズが小さいときだけで
す（図4）。
　逆にファイルサイズが大きくなっても、そこまで
性能に違いが現れないのがZFSです。ただし、
ZFSはファイルサイズが16MBを超えると一気に
性能が劣化しています。これはARC（ZFSの
キャッシュ）を超えてディスクアクセスが頻発する

注3	 本誌2015年4月号 第18回のベンチマーク結果も考慮した
うえでの予想です。

クソフト（bench2.c）を使います（p.161のリスト2）。

大量のファイル削除

　bench1の実行結果が図1になります。スケール
をかえてUFS2（Soft updates機能有効）とZFSの
グラフを見やすくしたのが図2です。
　1万個から90万個までファイルを削除する時間
を計測すると、UFS2（Soft updates機能無効）はリ
ニアに削除時間が増える傾向を示しました。また図
2から、UFS2（Soft updates機能有効）は65万個を
超えたあたりでいっきに性能が悪化し、ふたたびリ
ニアに処理時間が増えています。今回は詳しく調査
していませんが、Soft updates関連の実装で何らか
の閾
しきいち

値を超えたものと考えられます。
　ZFSはSoft updatesの有効になったUFS2より
は遅いですが、UFS2とは逆にファイルの数が一定
数を超えた段階で処理が高速になる瞬間がありま
す。UFS2ではこれ以上ファイルが増えると一気に

▼▼図1　bench1実行結果

90
［万個］

101 20 30 40 50 60 70 80
0

100

200

300

400

50

150

250

350

450

500
［×106 マイクロ秒］

UFS2（Soft updates 機能無効）

UFS2（Soft updates 機能有効）

ZFS

▼▼図2　�bench1実行結果（UFS（Soft updates機能有効）
とZFSのみ）

101 20 30 40 50 60 70 80
0

10

20

30

40

45

5

15

25

35

［×106 マイクロ秒］

UFS2（Soft updates 機能有効）

ZFS

［万個］
90

▼▼図3　bench2実行結果

［KB］
2560 512 1024 2048 8192 163844096 32768 65536

0

10

20

30

40

45

5

15

25

35

［×106 マイクロ秒］

UFS2（Soft updates 機能無効）

UFS2（Soft updates 機能有効）

ZFS

▼▼図4　bench2実行結果（16MBまで）

［KB］
2560 512 1024 2048 8192 163844096

0

0.2

0.6

1.4

1.6

1.2

1.0

0.4

0.8

［×106 マイクロ秒］

UFS2（Soft updates 機能無効）

UFS2（Soft updates 機能有効）

ZFS

160 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

ようになったためだとみられます。メモリ容量を増
やすとこの上限はあがり、逆にメモリサイズを減ら
すと、もっと早い段階でこうした挙動を見せるもの
とみられます。

#include <sys/stat.h>
#include <sys/time.h>
#include <sys/dirent.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <err.h>
#include <sysexits.h>

int
main(int argc, char *argv[])
{
 struct timeval tv1, tv2;
 char buf[MAXNAMLEN + 1];
 int i, j, fd;

 for (j = 10000; j <= 900000; j += 10000) {
 /* ファイルを作成するディレクトリを作成 */
 mkdir("test", 0755);
 /* 作成したディレクトリへ移動 */
 chdir("test");
 /* ファイルを作成 */
 for (i = 1; i <= j; i++) {
 /* ファイル名を用意 */
 snprintf(buf, MAXNAMLEN, "%010d", i);
 /* ファイルを作成 */
 fd = open(buf, O_CREAT, 0644);
 if (fd == -1)
 err(EX__BASE, "%s", buf);
 close(fd);
 }
 /* 作成したディレクトリから抜ける */
 chdir("..");
 /* マイクロ秒単位で現在時刻を取得 */
 gettimeofday(&tv1, NULL);
 /* ディレクトリごと作成したファイルを削除 */
 if (0 == fork())
 execl("/bin/rm", "/bin/rm", "-r", "test", NULL);
 else
 wait(NULL);
 /* マイクロ秒単位で現在時刻を取得 */
 gettimeofday(&tv2, NULL);
 /* 時刻の差分を出力 (マイクロ秒単位) */
 printf("%s,%ld¥n", buf,
 (tv2.tv_sec - tv1.tv_sec) * 1000 * 1000 +
 (tv2.tv_usec - tv1.tv_usec));
 }
}

▼▼リスト1　ベンチマーク1：bench1.c

まとめ

　このようにファイルシステムごとに削除の特性が
違いますし、同じファイルシステ
ムでも機能の有無で性能に大きな
差がでること、同じファイルシス
テムでもキャッシュなどの閾値を
超えると一気に性能が劣化するこ
と、などがわかります。
　どういった使い方をすればどの
ような特性を示すか、UFSであれ
ばある程度推測はできますが、
ZFSになってくると、これはも
はや実際に使用する環境でデモ環
境を構築して調査するほうがよい
と思います。実機でも仮想環境で
もよいのですが、実際に使用する
環境で、実際の想定に近い状態で
試してみることが大切です。
　今回示したようなベンチマーク
の結果は、条件を変えると性能が
突然劣化するポイントといったも
のが単一のベンチマークのときよ
りも早く現れることがあります。
たとえば別の処理でカーネルが使
用できるメモリ容量が少なくなっ
ていれば、それだけキャッシュに
回せるサイズも小さくなり、より
早い段階でキャッシュを使い切っ
た後の遅い動作が現れることにな
ります。このあたりはオペレー
ティングシステムのバージョンが
変わっただけでも出ますので注意
が必要です。
　また、最近のマシンは何十もス
レッド（論理コア）を搭載していま
すので、これまで発現しなかった
バグがより新しいマシンでは発現
するといった現象も出始めていま

May 2015 - 161

▶第19回◀
安定動作につながるディレクトリの知識（その3）

す。カーネルの内部は常にマル
チプロセッサ対応を進めていま
すので、最新版になるほど性能
が発揮できる反面、こうした新
しい問題（デッドロックなど）が
出ることがあります。
　大切なのは「実際の実機」で「実
際の状況」で試験することです。
　ファイルの効率のよい活用は、
システムを効率よく動作させる
要です。みなさんも実際の環境
で試してみてください。s

#include <sys/stat.h>
#include <sys/time.h>
#include <sys/dirent.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <err.h>
#include <sysexits.h>

int
main(int argc, char *argv[])
{
 struct timeval tv1, tv2;
 const int size[] = {
 0, 256, 512, 1024, 2048, 4096, 8192,
 16384, 32768, 65536
 };
 const int len = sizeof(size) / sizeof(int);
 char buf[MAXNAMLEN + 1];
 FILE *fp;
 int i, j, k, l;

 for (j = 0; j < len; j++) {
 /* ファイルを作成するディレクトリを作成 */
 mkdir("test", 0755);
 /* 作成したディレクトリへ移動 */
 chdir("test");
 /* ファイルを作成 */
 for (i = 1; i <= 1000; i++) {
 /* ファイル名を用意 */
 snprintf(buf, MAXNAMLEN, "%010d", i);
 /* ファイルを作成 */
 fp = fopen(buf, "w");
 if (fp == NULL)
 err(EX__BASE, "%s", buf);
 /* 中身を書込 */
 for (k = 0, l = size[j] * 1024; k < l; k++)
 fputc('c', fp);
 fclose(fp);
 }
 /* 作成したディレクトリから抜ける */
 chdir("..");
 /* マイクロ秒単位で現在時刻を取得 */
 gettimeofday(&tv1, NULL);
 /* ディレクトリごと作成したファイルを削除 */
 if (0 == fork())
 execl("/bin/rm", "/bin/rm", "-r", "test", NULL);
 else
 wait(NULL);
 /* マイクロ秒単位で現在時刻を取得 */
 gettimeofday(&tv2, NULL);
 /* 時刻の差分を出力 (マイクロ秒単位) */
 printf("%d,%ld¥n", size[j],
 (tv2.tv_sec - tv1.tv_sec) * 1000 * 1000 +
 (tv2.tv_usec - tv1.tv_usec));
 }
}

▼▼リスト2　ベンチマーク2：bench2.c

大量にファイルが
ある場合の削除：
ZFSデータセット
を削除という方法

column

　ディレクトリ構造が複雑で数
十万から数億といった数のファ
イルが存在するようなディレク
トリを削除しようとした場合、
削除にかかる時間は数十分から
数時間といったスケールになる
ことがあります。
　このような場合、削除対象を
ZFSのデータセットの上で展開
し、ディレクトリを削除する代
わりにデータセットを削除する
という方法があります。数秒で
処理が終わりますので、こちら
のほうがよほど高速です。UFSで
あればファイルを展開する場所
を1つのマウントポイントとし
ておき、削除する代わりにアン
マウントumount(8)とフォー
マットnewfs(8)するという方法
もあります。

162 - Software Design

26 Debian Developer　やまねひでき　henrich@debian.org

Debian 8開発の最新動向と
そのほかのトピック

Debian 8は4月25日が
リリースターゲット

　リリースチームのNiels Thykier氏により
「Debian 8“Jessie”を4月25日にリリースする」
と案内が行われました。注意点として「testing
からの自動削除ツールは動作し続けている」こ
と（つまり、RCバグがある場合はそのままで
は削除されるので修正が必要）、RCバグの修
正は4月18日までに実施する必要があること、
期限を過ぎた場合は「pu（proposed updates）」タ
グでrelease.debian.org擬似パッケージに対し
diffを付けてバグ報告してStableリリースチー
ムにコンタクトをとってほしいことが挙げられ
ています。

「reproducible build」への
取り組み

　OSSの良いところとして、誰もがソースコー
ドを確認できるという点は多くの人がうなずく
ところでしょう。これにより、バックドアなど
の悪意あるコードが含められていないかという
監査が、そうでない場合よりも容易になるとい
う利点があります注1。
　しかし、Debianなどの多くのディストリ
ビューションでは、ユーザに対してソースコー

注1） 「比較して容易になる」だけであって、監査そのものは容易
であるわけでもなく、多くの人的なコストが必要になるこ
とは留意してください。OSSであれば安全、というのは短
絡的な考えで幻想にすぎません（その逆もしかり、です）。

ドからビルド済みの「バイナリパッケージ」を提
供しています。ここで「本当に、提供されてい
るバイナリは開示しているソースコードから生
成されているのか？」という疑問が出てきます。
実はソースコードをビルドしてみるとわかるの
ですが、ビルド環境によっては毎回違うバイナ
リが生成されてしまうことも稀

まれ

ではありません。
　これに対して「同じソースコードであれば、
必ず同じバイナリが生成できるようにしよう」
という取り組み「reproducible build」が行われ
ました。これを担保することで、アップロード
権限を持つ開発者のシステムに侵入して悪意の
ある細工を施したバイナリをアップロードさせ
るような「標的型」攻撃のモチベーションを下げ
るなどが期待されています。また、地理的に独
立および管理者権限が独立した複数のマシンを
所有しているような場合には、必ず同一のバイ
ナリが生成されることから、どのシステムに侵
入されてバイナリに細工を施されているのかな
どが比較によって容易に検査できるというメリッ
トもあります。
　「reproducible build」の実際の作業としては

①	パッケージ生成プログラム「sbuild」のラッ
パー「srebuild」注2を作り、全パッケージが保
存されているsnapshot.debian.orgから毎回
同じビルド環境を生成できるようにする

②	タイムスタンプ、ロケール、ホスト名など
の変化についてはVMや「libfaketime」を使う

注2） URL https://wiki.debian.org/ReproducibleBuilds

https://wiki.debian.org/ReproducibleBuilds

162 - Software Design May 2015 - 163

Debian 8開発の最新動向と
そのほかのトピック 26

ことで担保する
③	2度ビルドを実施して生成されるバイナリが
同一であることを確認する

④	Jenkinsを使ってmainアーカイブについて
随時処理を実施する

という形で行われました。
　この結果、83.5％のソースパッケージについ
て、reproducible buildが可能であることが確
認されました。費用対効果の点からは企業では
採用されそうにない注3、学術的な研究からのア
プローチですが、このような取り組みが実際に
行われるのがコミュニティディストリビューショ
ンのおもしろいところですね。

cdn.debian.netの
運用終了

　近年はAWSのSA（ソリューションアーキテ
クト）として活躍しているDebian開発者の荒木
靖宏氏によって作成／運用されていた cdn.
debian.netの終了が、debian-develメーリング
リストで宣言されました。
　今後、cdn.debian.netへの接続は、別実装で
あるhttp.debian.netへリダイレクトされること
になります注4。
　cdn.debian.netも http.debian.netも特定のリ
ポジトリを指定して利用するのが不便な人向け
のサービスで、とくに地理的に移動が頻繁な人
や、パッケージの初期設定で極端に遅いサーバ
に接続しないようにする場合に、非常に有効で
す（逆にそうでない人には、あまりメリットは
ありません注5）。

注3） ほかのディストリビューション、たとえばRHELでは採用
しないだろうと思います。RHELにはいわゆるクローンで
あるCentOSがありますが、RHELとは完全にバイナリ互
換性があるとは保証していないですし、保証できるような
しくみを入れてしまうとRHELの位置づけとメリットが揺
らいでしまうのではないでしょうか（邪推ですかね？）。

注4） この変更を行った際、作業の余波でftp.jp.debian.orgの名
前解決が一時期不安定になるという問題が起こりました。
このような異常が起きた場合は、可能な限り公開メーリン
グリストでお知らせください。

注5） たとえば、筆者が接続テストを行った際には、期待される
日本ではなく、韓国のミラーサーバに接続されました。

最新Chrome/Chromiumが
使えなくなる？

　バージョン39以降のChrome/Chromiumに
「SECCOMP_FILTER_FLAG_TSYNCをサポー
トするLinuxカーネル3.17以降（あるいは以前
のバージョンに対してパッチを適用したもの）
を利用する注6」という変更が元Canonical社、
現Google社（かつDebian開発者）のKees Cook
氏によって導入されました。
　SECCOMP_FILTER_FLAG_TSYNCを含む
seccomp2というセキュリティ機構がLinuxカー
ネルに導入されたのは3.5からで、「どのシス
テムコールを実行できる／できないを設定でき
る」機能をユーザランドのライブラリである
libseccomp2パッケージと連携して実現します
（そしてSECCOMP_FILTER_FLAG_TSYNC
は最近入った拡張です）。もともとChrome/
Chromiumのプロセスの一部をサンドボックス
化したいという要求からLinuxカーネルに取り
入れられた、という経緯があり、Chrome/Ch
romiumがこの機能を活用していこうとするの
は、自然なことではあります。
　当然、ユーザからはリリース間近のDebian 8
“Jessie”で対応の希望が出てきましたが、Linux
カーネルパッケージのメンテナであるBen Hut
chings氏の答えは、「Sounds like another good
reason to not use Google spyware.（Googleのス
パイウェアを使わないほうがいい理由がまた増
えたみたいだね）」と、にべもないものでした。
　また、「Adobe Flash player for Linuxの最新
版が使えるのはChromeだけ」という別のユー
ザからの投稿に対しては、別のカーネルパッケー
ジのメンテナの1人Maximillian Attems氏が「使
わないほうがいい理由が、もう1つ増えたね」
とこれまたすげなく答える場面も（そしてどう
やら両者とも、この時点でまだパッチの中身は
見ていないようです）。

注6） オプションを無効にしてビルドと動作ができるのかどうか
などは、ちょっと確認できていません。

164 - Software Design

　自由なソフトウェアではないChromeと
Flash以外には大きなメリットが見いだせない
変更を、リリース終盤のこの時期にLinuxカー
ネルという影響が大きいパッケージに導入する
のは、メンテナにとってとても受け入れられな
い変更であろうことは容易に想像がつきます。
そのため、このような方向での対応は自然で、
タイミングが悪いとしか言いようがないですね
（まぁそうは言っても、もうちょっと言い方が
あるだろう、とは筆者は感じましたが）。また、
たとえパッケージメンテナがOKと言ってもリ
リースチームが拒否する可能性が高いです。
　ただ、該当の issue注7については「seccomp-
bpf注8をサポートしているにもかかわらず
SECCOMP_FILTER_FLAG_TSYNCが有効
になっていない場合は、この問題が発現する可
能性があるのではないか」、「いや、TSYNCが
無効になっているLinuxカーネルであっても問
題なく動作するはずだ。Chromeのdevチャン
ネルのビルドでも問題なく動いている注9」など
と情報が錯綜しています。実際、筆者の環境で
は、多少挙動が怪しい機能拡張もあるものの

注7） URL https://code.google.com/p/chromium/issues/
detail?id=401655

注8） seccomp2の特徴である、BPF（Berkeley Packet Filter）を
システムコールに利用する機能のこと。Chrome/Chromi
umのほかにはOpenSSHやvsftpdがサポートしています。

注9） ChromeはDebianでのstable/testing/unstableのように、
stable/beta/dev（unstable）/canaryという形でリリースが
分かれています。devチャンネルで動くということは、
Debianで言えばunstableでは問題がないということで、
stableで問題が起こるのはかなり奇妙です。おそらくは
Linux上のChromeにおける普遍的な問題ではなく、ユー
ザの環境にかなり依存する事象ではないでしょうか。

Chromeは問題なく動作しており、検証のため
に導入したChrome beta（バージョン42）、Ch
rome dev（バージョン43）でも、Chromiumのバ
グレポートでクラッシュするという話が出てい
た機能拡張のインストールも問題ありませんで
した。
　実際に自分の環境でセキュリティ機構がどの
ような状態になっていてChrome/Chromiumが
動作しているのかについては、アドレスバーに
「chrome://sandbox/」と打ち込むことで確認が
できます（図1）。
　より新しいカーネルが必要となった場合に、
ユーザがとれる現実的な対応としては、今後リ
リースされるであろう testing/unstableの
Linuxカーネルパッケージを導入することでしょ
うか注10。あるいは、自身でカーネルをビルドし
てみる、というのもありかもしれません。
　Chromiumについては、また別の話で「可能
であれば変更を戻すパッチを精査して当てるつ
もりである」とChromiumパッケージメンテナ
のMichael Gilbert氏が述べています。

技術委員会の新メンバーと
プロジェクトリーダー選挙

　systemdの問題の余波もあり退任した3名の
技術委員会の穴を埋めるため、Sam Hartman氏、

注10） 本誌2014年5月号の本連載にて、stableを使いながら
testing/unstableのパッケージを導入する方法を記載して
いますので、バックナンバーを見ることができる方は参考
にしてみてください。

 ▼図1　chrome://sandbox/で現在の状態を確認する（左からstabel/beta/dev）

https://code.google.com/p/chromium/issues/detail?id=401655

164 - Software Design May 2015 - 165

Debian 8開発の最新動向と
そのほかのトピック 26

Tollef Fog Heen氏、Didier Raboud氏の3名が
新たに指名されました。毎度こじれた問題ばか
りを持ち込まれて解決と決定を要求される技術
委員会はタフな仕事ではありますが、へこたれ
ずに活動を続けてもらいたいものです。
　そして本稿執筆時には、次のプロジェクトリー
ダーを決める選挙が行われています。今回は
Mehdi Dogguy 氏、Gergely Nagy 氏、Neil
McGovern氏の3名が出馬しました。3名とも
プロジェクト内でさまざまなチームや役割を歴
任しており、誰が当選してもおかしくはないよ
うに思えます。
　本誌が発売されるころには選挙結果が出てい
ますが、新たなプロジェクトリーダーには大き
なビジョンを持つだけではなく、日々の時間を
割いて細かな実務をこなせるかどうか、当選後
の動きに期待したいと思います。

ディストリビューターの立場と
フリーではないライセンス

　DebianでPHP関係のパッケージをメンテナ
ンスしているLior Kaplan氏のブログ注11によ
ると、これまでDebianではnon-freeとなって
いたPHPのJSON実装が、PHP 7注12では、喜
ばしいことに freeな実装に置き換えられたそ
うです。
　Lior氏の次のコメントは、Debianのような
ディストリビューションとしての立場をよく示
していると筆者は思います。

For many the PHP JSON extension license
might look like a storm in a teacup, but for
many Linux distributions the bits of the free
software licenses are very important.
（多くの人にとって、PHP JSONエクステンショ
ンのライセンスの件は単なる空騒ぎにすぎない
ように見えるかもしれないが、多くのLinuxディ

注11） URL https://liorkaplan.wordpress.com/2015/03/13/
php7-replaces-non-free-json-extension/

注12） 内部機構の大改造を目標にして失敗したPHP 6はスキップ
されて、PHP 5の次は7になります。

ストリビューションにとってフリーソフトウェ
アライセンスはとても重要なことなんだ）

　PHP 5でのJSONの何が問題だったのかと
いうと、JSONライセンス注13を採用した実装
であったということに尽きます。これは、一見
単なるMITライセンスに見えるのですが、「The
Software shall be used for Good, not Evil.」と
いう一文が差し込まれています。これは解釈が
非常に厄介で「何を持ってEvilというのか」と
いう線引きは人によって千差万別であり注14、ディ
ストリビューションベンダは、配布に際して無
用な法的リスクを負うことになります。
　Debianではそのような実装を別ライセンス
の実装に置き換えたり、削除したりしています
（結果、場合によっては性能の劣化や利用不可
能な機能が出てきます）。
　得てしてユーザ側は、「利便性が高ければそ
れでいいじゃないか」、「不便なのは嫌だ」とい
う姿勢を取り、ディストリビューターを非難し
がちです（面倒なのは誰しも嫌ですからね）。
　ただ、Debianのようなコミュニティディス
トリビューションにおいては、Debianの理想
とする「自由なOS」を実現することを主目的に
して活動が行われていることを留意していただ
きたいな、と筆者は考えます。理想と現実のバ
ランスを取りながら活動する中で「判断」が行わ
れていることは、それなりに尊重していただき
たいものです（そして、Debianの配布するパッ
ケージで不十分な場合は、自身でソースコード
を取得してカスタマイズしたバイナリを利用で
きるという自由がOSSの利用者にはある、と
いうことも覚えておいてください）。｢

注13） URL http://www.json.org/license.html

注14） 思考実験になりますが、酒蔵の宣伝サイトでPHP 5ベース
のCMSを動かしていたら、アルコールを忌避するある種
の宗教や信条にとっては「たいへん邪悪な行為」と映り、ラ
イセンス違反とみなされるかもしれませんね。こんな例は
いくつもあります。

https://liorkaplan.wordpress.com/2015/03/13/php7-replaces-non-free-json-extension/
http://www.json.org/license.html

166 - Software Design

Ubuntu Monthly Report

　住宅や企業が密集する場所では無線LANのSSID
がたくさん見つかる、という事態は誰しもが体験さ
れていることだと思います。たくさんSSIDが見つ
かるということは、それだけ電波が出ているという
ことであり、思ったよりも速度が出ない、というこ
ともまたよくある話です。経験上、大部分は2.4GHz
帯を使用しているものと思われます。
　一方、5GHz帯を使用するIEEE 802.11acに対応し
たルータ／アクセスポイントが登場してからしばらく
経ち、リーズナブルな価格で手に入るようになりま

昨今の無線LAN事情
した。そうであればルータ／アクセスポイントを買い
換えたら速度の問題は一件落着といけばいいのです
が、ノートPCや一部のデスクトップPCに搭載され
ている無線LAN機能が5GHz帯に対応しているかど
うかはまた別の話です。最近発売されたPCであれ
ば安価なものでも対応していますが、数年前までは
高価なモデルでないと非対応ということがざらでし
た。そういった場合、USB無線LANアダプタを購入
すればいいのですが、Linuxでは原則としてカーネル
で対応している必要があり、非対応の場合はドライ
バ（カーネルモジュール）をビルドする必要がありま
す。どれが認識してどれが認識しないのか、認識し
ない場合はどうすればいいのかは誰しもが試行錯誤

しています。というわけで、今回適当に7
つほど見繕って実際に動作するか確認して
みました。表1が型番とlsusb注1の結果で
す。結論からいえば、すべて動作しました。
　なお、今回検証したのはUbuntu 14.04
/14.04.1のカーネル3.13で す。Ubuntu
12.04.5でも同じカーネルを使用しているの
で、同じ結果が期待できます注2。14.04.2
/14.10のカーネルは3.16であり、また違っ

注1） USB接続デバイスを表示するコマンドです。
注2） このあたりはUbuntuのHWE/HESというしくみ

に依存してます。本誌2014年6月号の第2特集
で詳しく解説しているので、そちらをご参照くだ
さい。

今回は5GHz帯に対応したUSB無線LANアダプターを7つ検証したので、そのレポートです。

Ubuntu 14.04で
使用できるUSB無線LAN
アダプター7選

Ubuntu Monthly Report第61回

Ubuntu Japanese Team　あわしろいくや　ikuya@fruitsbasket.info

メーカー 型番 lsusbの結果
ロジテック／エレコム LAN-W450ANU2E※1 0789:016b
ロジテック／エレコム LAN-W300AN/U2※ 0789:0170
NECアクセステクニカ／
NECプラットフォームズ

AtermWL450NU-AG※3 0409:02f2

プラネックス GW-900D※4 2019:ab30
プラネックス GW-450S※5 2019:ab32
プラネックス GW-450D※6 2019:ab31
ロジテック／エレコム WDC-433SU2MBK※7 7392:b711
※1 http://www.logitec.co.jp/products/lan/lanw450anu2e/index.php
※2 http://www.logitec.co.jp/products/wlan/lanw300anu2/
※3 http://121ware.com/product/atermstation/product/warpstar/wl450nu-ag/
※4 http://www.planex.co.jp/products/gw-900d/
※5 http://www.planex.co.jp/products/gw-450s/
※6 http://www.planex.co.jp/products/gw-450d/
※7 http://www2.elecom.co.jp/products/WDC-433SU2MBK.html

表1　今回取り上げるUSB無線LANアダプタ

http://www.logitec.co.jp/products/lan/lanw450anu2e/index.php
http://www.planex.co.jp/products/gw-900d/
http://www.logitec.co.jp/products/wlan/lanw300anu2
http://121ware.com/product/atermstation/product/warpstar/wl450nu-ag/
http://www.planex.co.jp/products/gw-450s/
http://www.planex.co.jp/products/gw-450d/
http://www2.elecom.co.jp/products/WDC-433SU2MBK.html

166 - Software Design May 2015 - 167

Ubuntu 14.04で使用できるUSB無線LANアダプター7選 第 61 回

た結果になる可能性があります。では、個別にみて
いきましょう。

　とにかく簡単に済ませたい、という場合はこれ一
択です。現在は流通在庫のみですので探すのに苦労
するかもしれませんが注3、その苦労さえなんとかして
購入できれば挿すだけで認識し、すぐに使えるよう
になるという手軽さです。価格も在庫処分価格か、
安価で購入できる場合もあります。筆者は1,080円
で購入しました。短いながらもUSB延長ケーブルが
添付されているのもまたうれしいです注4。
　チップはMediaTek/Ralink RT3573でした。同じ
ものを使用している場合は、同じく挿しただけで認
識するかもしれません。

　こちらも挿すだけで認識し、使用できるようにな
ります。ただ、LAN-W450ANU2Eよりもさらに入手
性に難があるのではないかと思います。
　チップはMediaTek/Ralink RT3572でした。すな
わちLAN-W450ANU2Eと1番違いであり、同じド
ライバで動作しているものと思われます。

　こちらは現在使用しているルータ（Aterm WR950
0N）の添付品です。チップはMediaTek/Ralink
RT3573ですが、残念ながらIDが登録されておら
ず、自動的には認識しません。IDが登録されている

注3） もちろんインターネットでは在庫がある限り簡単に買えます
が、店頭で買うのは厳しいかもしれません。

注4） 今どき100円ショップでも買えますが。

LAN-W450ANU2E

LAN-W300AN/U2

AtermWL450NU-AG

かどうかは、次のコマンドを実行すればわかります。
何も表示されなければ、非対応ということです。

$ modinfo rt2800usb ¦ grep 0409p02f2

　とはいえ、実際に使用するカーネルモジュールと
ベンダーIDがわかっている必要があるので、なかな
か難易度が高いです。WikiDevi注5に記載がある場合
は簡単にわかりますので、一度参照してみるといい
でしょう。
　必要な情報がそろえば認識させる方法はわりと簡
単で、まずは次のコマンドでカーネルモジュールを
読み込みます。

$ sudo modprobe rt2800usb

　続いて、IDを登録します。

$ sudo bash -c "echo 0409 02f2 > /sys/bus/ｭ
usb/drivers/rt2800usb/new_id"

　接続すれば使用できるようになります。これだと
起動するたびにコマンドを実行する必要があります。
自動的に接続できるようにするには、図1のコマン
ドを実行します。
　動作するとはいえ高価ですし、新たに購入するべ
きかどうかはよく考える必要があるように思います。

　USB 3.0対応というのが珍しいので購入してみま
したが、自動的には認識しませんでした。ドライバ
自体がカーネルにないので、自前で準備する必要が
あります。とはいえかなり簡単ですし、一度インス
トールしてしまえば安定して動作します。価格も手
ごろでありお勧めではあるのですが、大きいので差

注5） https://wikidevi.com/wiki/Main_Page

GW-900D

図1　自動的に接続するようにする

$ sudo bash -c "echo rt2800usb > /etc/modules-load.d/WL450NU-AG.conf"
$ sudo bash -c "echo install rt2800usb /sbin/modprobe --ignore-install rt2800usb?; /bin/echo '0409 ｭ
02f2' ?> /sys/bus/usb/drivers/rt2800usb/new_id > /etc/modprobe.d/WL450NU-AG.conf"

https://wikidevi.com/wiki/Main_Page

168 - Software Design

Ubuntu Monthly Report

し込むUSBポートを考慮しなくてはいけないかもし
れません。
　ドライバは独自に改良したものをいくつかのWeb
サイトで配布しているようですが、今回はGitHubに
あるgnab/rtl8812au注6を使用することにします。ま
ずは右側のペインにある“Download ZIP”をクリック
し、ソースコードをダウンロードしてください。以
後、ホームフォルダの直下にあるDownloadsフォル
ダにダウンロードしたものとして解説します。つい
でに、左にある“commits”の前の数字を記憶してお
いてください。これはコミットの回数です。
　ダウンロードが終わったら、端末を起動し、次の
コマンドを実行してください。

$ cd ̃/Downloads
$ unzip rtl8812au-master.zip

　実行すると“rtl8812au-master”というフォルダが
作成されているはずです。今回は“master”だと不都
合ですので、これをバージョン相当に変更します。
バージョンは何でもいいのですが、わかりやすくコ
ミットの回数とします。今回は“30 commits”だった
ので、Revision 30、すなわちr30とします。

$ mv rtl8812au-master rtl8812au-r30
$ cd rtl8812au-r30

　普通にUbuntuをインストールした場合は、コンパ
イラ（gcc）もカーネルヘッダもインストールされてい
るはずですので、いきなりmakeを実行します。

$ make

　コンパイルが無事に終わると、“8812au.ko”という
ファイルがフォルダの直下にできているはずです。
これが今回使用するカーネルモジュールです。引き
続きこれを読み込んでみましょう。

$ sudo insmod 8812au.ko

　とくにエラーが表示されない場合は、読み込みが
できています。あとはGW-900DをUSBポートに接

注6） https://github.com/gnab/rtl8812au

続すれば認識し、普通に使えるようになるでしょう。
Network Managerから確認してみてください。
　このままだと起動するたびにコマンドを実行する
必要があり、またカーネルのアップデートがあった
場合は再コンパイルが必要になります。とても面倒
ですので、DKMS（Dynamic Kernel Module Support）
というしくみを使うようにします。まずはdkmsパッ
ケージをインストールします。

$ sudo apt-get install dkms

　続いてソースコードを/usr/srcにコピーします。
その前にコンパイルしたファイルを削除し、カーネ
ルモジュールをアンロードします。

$ make clean
$ sudo rmmod 8812au
$ cd ../
$ sudo cp -r rtl8812au-r30 /usr/src

　これで/usr/src/rtl8812au-r30/というフォルダ
が作成されました。この直下にdkms.confを作成し
ます。

$ cd /usr/src/rtl8812au-r30/
$ sudo editor dkms.conf

　内容は図2のとおりです。
　気をつけるべきは、PACKAGE_VERSION変数で
しょう。“30 commits”でない場合は、適宜修正して
ください。
　あとはDKMSで使えるようにするため、登録しま
す。次のコマンドを実行してください。「-m」でフォ
ルダ名（パッケージ名）を、「-v」でバージョンを指定
します。

$ sudo dkms add -m rtl8812au -v r30
$ sudo dkms build -m rtl8812au -v r30
$ sudo dkms install -m rtl8812au -v r30

　ドライバがアップデートされた場合など、DKMS
の登録を解除したい場合は、事前に次のコマンドを
実行してください。

$ sudo dkms uninstall -m rtl8812au -v r30
$ sudo dkms remove rtl8812au/r30 --all

https://github.com/gnab/rtl8812au

168 - Software Design May 2015 - 169

Ubuntu 14.04で使用できるUSB無線LANアダプター7選 第 61 回

　アップデートする場合は、このあとソースコード
のダウンロードから行ってください。

　搭載チップはRealtek RTL8811AUで、Realtek
RTL8821AUを採用するGW-900Dとまったく同じ
方法で使用できるようになります。小さいぶん速度
が落ちるのは否めないので、速度よりも大きさを重
視する場合はこちらを選択するといいでしょう。

　これも自動では認識せず、ドライバのインストー
ルが必要です。チップはMediaTek MT7610Uです。
やはりドライバもいくつかのWebサイトで公開され
ていますが、今回はsanrath / MediaTek_mt7610u_
STA_driver_Linux 64bit注7からダウンロードしま
す。左の“ダウンロード”をクリックし、右に表示さ
れる“Download Repository”をクリックしてくださ

注7） https://bitbucket.org/sanrath/mediatek_mt7610u_sta_
driver_linux-64bit/overview

GW-450S

GW-450D

い。すると“sanrath-mediatek_mt7610u_sta_driver_
linux-64bit-116843043b1b.zip”のようなファイル名
でダウンロードされます。また、“コミット”をクリッ
クしてコミットの回数を数えておいてください。これ
をバージョンとして使用します。今回は7とします。
以降、ホームフォルダの直下にある“Downloads”フォ
ルダにダウンロードしたものとして解説します。ダ
ウンロードが完了したら、端末を起動して図3のコ
マンドを実行してください。
　ひとまずファームウェア（というか、設定ファイ
ル）をコピーします。

$ sudo mkdir -p /etc/Wireless/RT2870STA
$ sudo cp RT2870STA.dat /etc/Wireless/RT2870STA

　ベンダーIDを登録するため、ソースコードを変更
します。

$ editor common/rtusb_dev_id.c

　38行目から、リスト1のようになっています。
　これをリスト2のように変更します。冒頭の空白
はタブです。
　保存後、makeを実行します。

図2　dkms.confの内容

PACKAGE_NAME="rtl8812au"
PACKAGE_VERSION="r30"
CLEAN="make clean"
BUILT_MODULE_LOCATION[0]="./"
BUILT_MODULE_NAME[0]="8812au"
MAKE[0]="cd ${dkms_tree}/${PACKAGE_NAME}-${PACKAGE_VERSION}; make KVER=${kernelver}"
DEST_MODULE_LOCATION[0]="/updates/dkms"
AUTOINSTALL="yes"

図3　ダウンロードしたファイルを解凍する

$ cd ̃/Downloads
$ unzip sanrath-mediatek_mt7610u_sta_driver_linux-64bit-116843043b1b.zip
$ mv sanrath-mediatek_mt7610u_sta_driver_linux-64bit-116843043b1b mt7610u_sta_driver_linux-r7
$ cd mt7610u_sta_driver_linux-r7

リスト1　common/rtusb_dev_id.cの38行目からの内容

#ifdef MT76x0
 {USB_DEVICE(0x148F,0x7610)}, /* MT7610U */
 {USB_DEVICE(0x13B1,0x003E)}, /* MT7610U */
 {USB_DEVICE_AND_INTERFACE_INFO(0x0E8D, 0x7630, 0xff, 0x2, 0xff)}, /* MT7630U */
 {USB_DEVICE_AND_INTERFACE_INFO(0x0E8D, 0x7650, 0xff, 0x2, 0xff)}, /* MT7650U */
#endif

https://bitbucket.org/sanrath/mediatek_mt7610u_sta_driver_linux-64bit/overview

170 - Software Design

Ubuntu Monthly Report

$ make

　makeが終了すると、os/linux/mt7610u_sta.koがで
きています。これが今回使用するカーネルモジュー
ルです。次のコマンドで読み込んでみましょう。

$ sudo insmod os/linux/mt7610u_sta.ko

　あとは実際に接続し、動作を確認してみます。う
まく動作しない場合は、dmesgコマンドで確認してみ
てください。問題がなければ、DKMSを使用するよ
うにします（図4）。dkmsパッケージをインストールし
てない場合は、事前にインストールしてください。
　dkms.confの内容はリスト3のとおりです。
　DKMSに追加します（図5）。

　ドライバをアップデートする場合は、事前に
DKMSの設定を削除してください（図6）。

　すでにお気づきかもしれませんが、GW-450Dと完
全に同じ方法で動作するようになります。さらにカ
ンのいい方はお察しのことと存じますが、実はお勧
め順になっています。すでにお持ちの場合はさてお
き、新規に購入する場合はMT7610U搭載モデルよ
りもRT3572/RT3573搭載モデルのほうがお勧めで
す。けっこう長い時間使用しましたが、前者よりも
後者のほうが圧倒的に安定していました注8。｢

注8） smbのアクセスだけがおかしかったので、環境依存の可能性
はありますが。

WDC-433SU2MBK

リスト2　変更後

#ifdef MT76x0
 {USB_DEVICE(0x148F,0x7610)}, /* MT7610U */
 {USB_DEVICE(0x13B1,0x003E)}, /* MT7610U */
 {USB_DEVICE(0x2019,0xAB31)}, /* Planex GW-450D */　　　　 ←この行を追加
 {USB_DEVICE(0x7392,0xB711)}, /* Elecom WDC-433SU2MBK */　←この行を追加
 {USB_DEVICE_AND_INTERFACE_INFO(0x0E8D, 0x7630, 0xff, 0x2, 0xff)}, /* MT7630U */
 {USB_DEVICE_AND_INTERFACE_INFO(0x0E8D, 0x7650, 0xff, 0x2, 0xff)}, /* MT7650U */
#endif

リスト3　dkms.confの内容

PACKAGE_NAME="mt7610u_sta_driver_linux"
PACKAGE_VERSION="r7"
CLEAN="make clean"
BUILT_MODULE_LOCATION[0]="os/linux/"
BUILT_MODULE_NAME[0]="mt7610u_sta"
MAKE[0]="cd ${dkms_tree}/${PACKAGE_NAME}-${PACKAGE_VERSION}; make LINUX_SRC=${kernel_source_dir} ¥
LINUX_SRC_MODULE=/lib/modules/${kernelver}/kernel/drivers/net/wireless/"
DEST_MODULE_LOCATION[0]="/updates/dkms"
AUTOINSTALL="yes"

図5　DKMSへの追加

$ sudo dkms add -m mt7610u_sta_driver_linux -v r7
$ sudo dkms build -m mt7610u_sta_driver_linux -v r7
$ sudo dkms install -m mt7610u_sta_driver_linux -v r7

図6　DKMS設定の削除例

$ sudo dkms uninstall -m mt7610u_sta_driver_linux -v r7
$ sudo dkms remove mt7610u_sta_driver_linux/r7 --all

図4　DKMSの設定の前処理

$ sudo rmmod mt7610u_sta
$ make clean
$ cd ../
$ sudo cp -r mt7610u_sta_driver_linux-r7 /usr/src
$ cd /usr/src/mt7610u_sta_driver_linux-r7
$ sudo editor dkms.conf

171 - Software Design May 2015 - 171

Linux 3.19の新機能
Intel MPX機能のカーネル側対応

第38回第38回
Linux

カーネ
ル

観光ガ
イド

　前号で「Linux 3.20の開発が続いています
……」と書きましたが、その後、Linus氏が
Google+で行った投票注1によってLinux 3.20は
Linux 4.0と改名されることになりました。
　Google+の投票で選んだことからわかるとおり、
2.6.Xから3.Xになったときのように4.Xへの移
行も「大きな機能の変化」によるものではありま
せん。2.6.X時代は2.6.39までリリースされてか
ら3.0へと移行しましたが、3.Xは3.19までで終
わりを告げたことになります。この調子で今後
もX.0からX.19までがリリースされ、(X+1).0に
移行するという流れとなるのでしょうか。今か
ら4年後のバージョンが楽しみです。
　さて、今回からはLinux 3.19に入った機能を
紹介していきます。今回取り上げるのは、CPU
側でバッファオーバーフローを検知する Intel
MPX機能のカーネル側対応部分です。

不正なメモリアクセス
への対策

　昔から、バッファオーバーフロー（またはアン
ダーフロー）は大きな問題となっています。想定
された範囲外へのメモリアクセスによって、プ
ログラムが落ちるなどのバグが発生したり、場

注1） https://plus.google.com/+LinusTorvalds/posts/jmtzzLiiejc

合によっては権限昇格を可能にするなどセキュ
リティ上の問題が発生することもあります。安
全なコードにするために、メモリアクセスがバッ
ファの範囲内であるかを確認しなければならない、
とは長く言われていますが、人間のすることで
すからどうしてもバグが発生してしまうという
のが現状です。
　この問題への対策として、mudflapやAddress
Sanitizerといったソフトウェアによるメモリ検
査ツールが開発されています。これらのツールは、
コンパイラの助けを借りて、すべてのメモリア
クセスの前に範囲チェックのコードを挿入する
ことで、その機能を実現しています。
　AddressSanitizerの場合どうなるかを見てみ
ましょう。リスト1のようなプログラムをAddress
Sanitizerありとなしでコンパイル（「-fsani
tize=address」を使って有効にします）し、ポイ
ンタをdereferenceしている関数 foo()の部分が
どのように変化するかを見てみましょう。
　AddressSanitizerを有効にした場合の、元の
コードに対応する部分は0x1f、0x25の行です（図
1）。その前にはアドレスを検査するコードが、
そして後ろにはエラー処理を行うコードがそれ
ぞれ挿入されています。実行してみると
AddressSanitizerなしでは、とくにエラーもな
く実行されていたプログラムが、Address

Linux 3.19の新機能
Intel MPX機能のカーネル側対応

Text：青田 直大　AOTA Naohiro

第38回第38回

https://plus.google.com/+LinusTorvalds/posts/jmtzzLiiejc

172 - Software Design

Linuxカーネル観光ガイド

Sanitizerありの場合は図2のようにどこで不正
なアクセスが起きたかといった情報が出力され、
プログラムの実行が中断されています。

Intel MPX
　Intel MPXは、このAddressSanitizerのよう
な機能をハードウェアで実現するものです。ハー
ドウェアを使うことでソフトウェアの実装より
も低いオーバーヘッドでアドレスの検査が行わ
れると期待されます。
　それでは、Intel MPXを試してみましょう。
MPXは、2015年出荷予定のSkylakeアーキテ
クチャから搭載される機能であり、現在MPX
が動くCPUは流通していません。
　そこでIntel Software Development Emulator
（SDE）を使用して、MPXをエミュレーション
して実行してみます。また、MPX用のコードを
コンパイラに挿入してもうらためには、MPXに
対応したgcc、binutilsが必要となります。さら
にMPXのライブラリも必要です。Intel SDEの

サイト注2から、これらのバイナリをダウンロー
ドできます。
　先ほどと同じコードをMPX対応のgccでコン
パイルし、SDEで実行します。コンパイルオプ
ションは図3のようになります。実行してみる

注2） https://software.intel.com/en-us/articles/intel-software-
development-emulator

void foo(int *x)
{
 *x = 0x1234;
}

int *bar()
{
 static int a;
 return &a;
}

int main()
{
 int a[16];
 int b[16];
 foo(a);
 foo(a+16);
 return 0;
}

 ▼リスト1　不正なアドレスにアクセスするプログラム

 ▼図1　AddressSanitizer によるプログラムの変化

0000000000000000 <foo>:
 0: c7 07 34 12 00 00 movl $0x1234,(%rdi)
 6: c3 retq

 ⿠AddressSanitizer を無効にした場合

0000000000000000 <foo>:
 0: 48 89 f8 mov %rdi,%rax # アドレスの検査
 3: 48 c1 e8 03 shr $0x3,%rax
 7: 0f b6 80 00 80 ff 7f movzbl 0x7fff8000(%rax),%eax
 e: 84 c0 test %al,%al
 10: 74 0d je 1f <foo+0x1f>
 12: 48 89 fa mov %rdi,%rdx
 15: 83 e2 07 and $0x7,%edx
 18: 83 c2 03 add $0x3,%edx
 1b: 38 c2 cmp %al,%dl
 1d: 7d 07 jge 26 <foo+0x26>
 1f: c7 07 34 12 00 00 movl $0x1234,(%rdi) # 元のコード
 25: c3 retq
 26: 50 push %rax # エラー処理
 27: e8 00 00 00 00 callq 2c <_GLOBAL__sub_I_00099_0_foo+0x1c>
 28: R_X86_64_PC32 __asan_report_store4-0x4

 ⿠AddressSanitizer を有効にした場合

https://software.intel.com/en-us/articles/intel-software-development-emulator

172 - Software Design May 2015 - 173

Linux 3.19の新機能
Intel MPX機能のカーネル側対応

第38回第38回

と（AddressSanitizerよりはわかりにくいですが）
たしかに範囲外へのアクセスを検出しているよ
うです。

boundsレジスタと
境界チェック

　では、MPX対応のgccでコンパイルしたとき

$ gcc -O0 -fsanitize=address asan.c
$./a.out
===
==10558==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7ffe4d550ef0 at pc ｭ
0x400889 bp 0x7ffe4d550e60 sp 0x7ffe4d550e50
WRITE of size 4 at 0x7ffe4d550ef0 thread T0
 #0 0x400888 in foo (/home/naota/src/sd/a.out+0x400888)
 #1 0x400934 in main (/home/naota/src/sd/a.out+0x400934)
 #2 0x7f01e64b7f9f in __libc_start_main (/lib64/libc.so.6+0x1ff9f)
 #3 0x400778 (/home/naota/src/sd/a.out+0x400778)

Address 0x7ffe4d550ef0 is located in stack of thread T0 at offset 96 in frame
 #0 0x4008a4 in main (/home/naota/src/sd/a.out+0x4008a4)

 This frame has 1 object(s):
 [32, 96) 'b' <== Memory access at offset 96 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism ｭ
or swapcontext
 (longjmp and C++ exceptions *are* supported)
SUMMARY: AddressSanitizer: stack-buffer-overflow ??:0 foo
Shadow bytes around the buggy address:
 0x100049aa2180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x100049aa2190: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x100049aa21a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x100049aa21b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x100049aa21c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x100049aa21d0: 00 00 f1 f1 f1 f1 00 00 00 00 00 00 00 00[f3]f3
 0x100049aa21e0: f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x100049aa21f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x100049aa2200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x100049aa2210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x100049aa2220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):
 Addressable: 00
 Partially addressable: 01 02 03 04 05 06 07
 Heap left redzone: fa
 Heap right redzone: fb
 Freed heap region: fd
 Stack left redzone: f1
 Stack mid redzone: f2
 Stack right redzone: f3
 Stack partial redzone: f4
 Stack after return: f5
 Stack use after scope: f8
 Global redzone: f9
 Global init order: f6
 Poisoned by user: f7
 Contiguous container OOB:fc
 ASan internal: fe
==10558==ABORTING

 ▼図2　AddressSanitizerの出力

174 - Software Design

Linuxカーネル観光ガイド

のアセンブラを見てみましょう。図4の4005e0、
4005e6の行が元のコードに対応しています。そ
の上の2行がアドレスの検査を行っている部分
です。“bndcl”、“bndcu”という命令および“%bnd0”
というレジスタが登場しています。また、よく
見ると元のコードに対応した部分にも“bnd
retq”とbndのprefixが付いています。これらは
MPXの拡張になります。
　まず“%bnd0”を見てみましょう（図5）。これは
boundsレジスタという128bitのレジスタで、上
位64bitにアクセス可能なアドレスの上限を、
下位64bitにアクセス可能なアドレスの下限を
設定して使います。
　boundsレジスタはBND0からBND3の4つが
存在しています。これらboundsレジスタを使っ
てアクセスするアドレスの検査を行うのが
“bndcl”および“bndcu”命令です。“bndcl”は指
定したアドレス（ここでは“int *x”のアドレス）
がboundsレジスタに設定された下限以上である

かを、“bndcu”は同じく指定したアドレス（intが
4byteなのでint *xのアドレス+3）が、上限以
下であるかを確認する命令です。すなわち、こ
こではどこかで設定された boundレジスタ
BND0のアクセス可能領域内に“int *x”のアド
レスが入っているかどうかを確認しています。
アクセス可能範囲でなかった場合には例外が発
生し、（対応していなければ）SEGVでプロセス
が終了することになります。
　では、BND0はどこで設定されているのでしょ
うか。呼び出し元のmain()を見てみましょう。
図4の4005e8の行 から4005e1の行が bounds
レジスタを設定している部分です。いろいろと
命令が実行されていますが、“bndmk”がBND1
に値を設定している部分です。 ここでは“%rdi”
のアドレスから“%rdi+%rax”の範囲をアクセス可
能と設定しています。%rdiには“int a[16]”の
先頭アドレスが設定され、%raxには“0x3f”（＝
4（intのサイズ）×16－1）が設定されています。

バイナリの展開
$ cd ~/mpxtest
$ tar xf 2014-02-13-mpx-runtime-external-lin.tar.bz2
$ tar xf gcc_install_5.0.0-mpx-r214719.tar.gz
$ tar xf binutils-gdb_install_2.24.51.20140422.tar.gz
$ tar xf sde-external-7.15.0-2015-01-11-lin.tar.bz2
環境変数を設定
$ export MPX_BINUTILS=$HOME/mpxtest/binutils-gdb_install_2.24.51.20140422/bin
$ export MPX_RUNLIB=$HOME/mpxtest/2014-02-13-mpx-runtime-external-lin
$ export GCC=$HOME/mpxtest/gcc_install_5.0.0-mpx-r214719/bin/gcc
$ export SDE=$HOME/mpxtest/sde-external-7.15.0-2015-01-11-lin/sde
コンパイル
$ $GCC -fcheck-pointer-bounds -mmpx -L$MPX_RUNLIB -B$MPX_BINUTILS -lmpx-runtime64 -Wl,ｭ
-rpath,$MPX_RUNLIB -O2 mpx.c
実行
$ CHKP_RT_PRINT_SUMMARY=yes CHKP_RT_MODE=stop $SDE -mpx-mode -- ./a.out
Bound violation detected,status 0x1 at 0x4005b9

MPX run time summary:
number of BRs: 1.
size of allocated L1: 2147483648B
total size of allocated L2 entries: 0B

Used environment variables:
CHKP_RT_MODE = stop
CHKP_RT_PRINT_SUMMARY = yes

 ▼図3　MPXを使ったコードの実行

174 - Software Design May 2015 - 175

Linux 3.19の新機能
Intel MPX機能のカーネル側対応

第38回第38回

すなわち、“int a[16]”全体をアクセス可能と
BND1に設定している、ということになります。
そして4005e1の行ではBND1で構成したアク
セス範囲をBND0へとコピーしています。
　同様にbar()のようにポインタを返す関数の
場合も、4005c8の行のようにBND0を使ってポ
インタの範囲を返していることを見ることがで
きます。

bound table
　このようにMPX対応のコードではboundsレ

ジスタを使って引数や戻り値のポインタの範囲
が渡されていきます。では、boundsレジスタの
数である4つ以上のポインタ引数がある場合は
どうするのでしょうか。その場合に使われるのが、
bound tableです。bound tableは指定したアド
レスに対応するアドレス範囲は保存するデータ
構造です。
　bound tableは、図6のようにページテーブル
と似た構造を持っています。boundtableの最上
部であるbound directoryのアドレスはBND
CFGUレジスタ（userland用）またはBNDCFGS
レジスタ（kernel用）に設定されています。64bit

 ▼図5　BND0の動作

アドレスの上限BND0 アドレスの下限

bndmkにより設定される

＊（a＋16）

＊a
a［16］

範囲チェック
（bndul）に失敗

00000000004005c8 <bar>:
 4005c8: 66 0f 1a 05 70 05 20 bndmov 0x200570(%rip),%bnd0 # 600b40 <__chkp_bounds_of_a.2361>
 4005cf: 00
 4005d0: b8 00 0c 60 00 mov $0x600c00,%eax
 4005d5: f2 c3 bnd retq

00000000004005d7 <foo>:
 4005d7: f3 0f 1a 07 bndcl (%rdi),%bnd0
 4005db: f2 0f 1a 47 03 bndcu 0x3(%rdi),%bnd0
 4005e0: c7 07 34 12 00 00 movl $0x1234,(%rdi) # 元のコード
 4005e6: f2 c3 bnd retq

00000000004005e8 <main>:
 4005e8: 48 83 ec 58 sub $0x58,%rsp # bound レジスタの設定
 4005ec: 48 8d 7c 24 10 lea 0x10(%rsp),%rdi
 4005f1: b8 3f 00 00 00 mov $0x3f,%eax
 4005f6: f3 0f 1b 0c 07 bndmk (%rdi,%rax,1),%bnd1
 4005fb: 66 0f 1a c1 bndmov %bnd1,%bnd0
 4005ff: 66 0f 1b 0c 24 bndmov %bnd1,(%rsp)
 400604: f2 e8 cd ff ff ff bnd callq 4005d7 <foo> # foo();
 40060a: 66 0f 1a 04 24 bndmov (%rsp),%bnd0
 40060f: 48 8d 7c 24 50 lea 0x50(%rsp),%rdi
 400614: f2 e8 bd ff ff ff bnd callq 4005d7 <foo> # foo(a+16)
 40061a: b8 00 00 00 00 mov $0x0,%eax
 40061f: 48 83 c4 58 add $0x58,%rsp
 400623: f2 c3 bnd retq

 ▼図4　MPX版のコード

176 - Software Design

Linuxカーネル観光ガイド

環境の場合、bound directoryの各エントリは
64bit（＝8byte）であり、上位61bitがそのエント
リに対応するbound tableのアドレスを指し、最
下位bitがそのdirectory entryが有効かどうか
を示しています。directory entryの indexは28
bitですのでbound directoryの大きさは228×8
＝231byte＝2GBとなります。bound tableの各
エントリはアクセス可能なアドレス範囲の上限、
下限、その範囲に対応するポインタの値、そし
て予約領域がそれぞれ8byteで合計32byteの大
きさになっています。この indexは17bitで管理
されるので、1つのbound tableの大きさは217×
32byte＝222byte＝4MBとなります。
　プログラムは“bndldx”と“bndstx”を使うこと
で、bound tableにアクセスします（リスト2）。
たとえば、保存はbaz2の4005e0で行われてい
ます（図7）。BND0に設定したアドレス範囲（＝
aのアクセス可能範囲）、0x600d40（＝p[0]のア
ドレス）、%rax（＝p[0]の値＝aのアドレス）が登
録されます。読み込み時も、これらの情報を
“bndldx”の引数として使い、boundレジスタへ
の読み込みを行っています（4005adと4005f3の
行）。

カーネルにおける
Intel MPXの対応

　ここまでの話はどれもuserland内で完結する
話でした。では、Linux 3.19の Intel MPX対応
とはどのようなものでしょうか。カーネル側の
MPX対応はおもに2点、例外発生時のシグナル
ハンドラへの情報通知と、カーネルによるbound
tableの管理になります。
　前述したように、アドレス範囲の検査に失敗
すると例外が発生します。これまでのシグナル
ハンドラ通知では、どこで例外が発生したのか
まではわかりますが、どのアドレス範囲から外
れたのかを知ることができません。そこでこの
通知情報を拡張し、アドレス範囲をuserlandか
らとれるようにしています。
　もう1つの機能は bound tableの管理です。
bound tableでは1MB分のアドレスに関する情
報を管理するのに4MBのメモリを使用します。
さらにbounddirectoryのサイズが2GBですので、
たとえば1GB分の仮想アドレス空間を管理する
bound tableを事前に作ろうとすると1GB×4＋
2GB＝6GBのアドレス空間が必要となってしま
います。使うかどうかもわからないbound table
を持っているのは無駄ですのでオンデマンドに

 ▼図6　bound tableのしくみ

1234567

BNDCFGU/BNDCFGS

0x1234567 ＊ 8

ポインタのアドレス
89AB0

1

ポインタの値 予約領域
アドレス下限 アドレス上限

0

Bound Directory

Bound Table

0x89AB0 ＊ 32

　　

176 - Software Design May 2015 - 177

Linux 3.19の新機能
Intel MPX機能のカーネル側対応

第38回第38回

bound tableを作ることが望まれます。“bndstx”
が bound tableに登録を行うとき、対応する
bound directoryentryのvalid bitが立っていな
ければ、例外が発生します。カーネルはこの例
外を拾い、新しいbound table用の領域を確保し、
bound table entryの値を適切に設定します。

まとめ
　今回はLinux 3.19で導入されたIntel MPX機
能のカーネル対応について紹介しました。MPX
のオーバヘッドがどのぐらいなのかはまだ分か
りませんが、Skylakeが出てくるのが楽しみに
なりますね。｢

int baz1(int *a, int *b, int *c, int *d, int *e)
{
 if (*a == *b && *c == *d && *d == *e)
 return 0;
 return 1;
}

int *p[16];
void baz2()
{
 static int a[16];
 p[0] = a;
}

void f()
{
 p[0][16] = 0x1234;
}

 ▼リスト2　 bound tableが使われるコードの例
（Cのソースコード）

00000000004005a6 <f>:
 4005a6: 48 8b 05 93 07 20 00 mov 0x200793(%rip),%rax # 600d40 <p>
 4005ad: 0f 1a 04 05 40 0d 60 bndldx 0x600d40(,%rax,1),%bnd0 # bound table から読み込み
 4005b4: 00
 4005b5: f3 0f 1a 40 40 bndcl 0x40(%rax),%bnd0
 4005ba: f2 0f 1a 40 43 bndcu 0x43(%rax),%bnd0
 4005bf: c7 40 40 34 12 00 00 movl $0x1234,0x40(%rax)
 4005c6: f2 c3 bnd retq

00000000004005c8 <baz2>:
 4005c8: 48 c7 05 6d 07 20 00 movq $0x600cc0,0x20076d(%rip) # 600d40 <p>
 4005cf: c0 0c 60 00
 4005d3: b8 c0 0c 60 00 mov $0x600cc0,%eax
 4005d8: 66 0f 1a 05 50 06 20 bndmov 0x200650(%rip),%bnd0 # 600c30 <__chkp_boundsｭ
_of_a.2372>
 4005df: 00
 4005e0: 0f 1b 04 05 40 0d 60 bndstx %bnd0,0x600d40(,%rax,1) # bound table への保存
 4005e7: 00
 4005e8: f2 c3 bnd retq

00000000004005ea <baz1>:
 4005ea: 4d 89 c1 mov %r8,%r9
 4005ed: 66 0f 1b 5c 24 e8 bndmov %bnd3,-0x18(%rsp) # BND3退避
 4005f3: 42 0f 1a 1c 04 bndldx (%rsp,%r8,1),%bnd3 # (%r8)用のアクセス範囲をロード

…

 400621: 66 0f 1a 54 24 e8 bndmov -0x18(%rsp),%bnd2 # 退避した元のBND3をBND2にロード
 400627: f3 0f 1a 11 bndcl (%rcx),%bnd2
 40062b: f2 0f 1a 51 03 bndcu 0x3(%rcx),%bnd2
 400630: 3b 11 cmp (%rcx),%edx
 400632: f2 75 14 bnd jne 400649 <baz1+0x5f>
 400635: f3 41 0f 1a 18 bndcl (%r8),%bnd3
 40063a: f2 41 0f 1a 58 03 bndcu 0x3(%r8),%bnd3
 400640: 41 3b 10 cmp (%r8),%edx

…

 ▼図7　bound tableが使われるコードの例（アセンブラ）

178 - Software Design

現などを活用したプログラミングテクニックを、サ
ンプルプログラムとともに解説しました。
　後半は、同日に東京で行われていたシェル芸勉強
会（USP友の会主催）のUstream配信をスクリーンに
映し、斉藤博文さん（日本GNU AWKユーザー会）に
解説していただきながら、勉強会で出題された問題
の解答プログラムを考えました。解法は必ずしも1
つとは限らないので、参加者からの回答の良し悪し
を吟味するディスカッションも行いました。
　夜は鹿野温泉山紫苑に移動しての合宿です。参加
者一同でカニ鍋を囲みながら、シェルやUNIXの話
で親睦を深めました。雪の中で入る露天風呂も気持
ち良かったです。

■本編2日目

　翌日は再び鳥取環境大学に舞台を移し、午前中は
斉藤博文さんによる上級シェル芸講座を行いました。
初日と同様に講師から問題が出され、各自でプログ
ラムを考えたあとに、講師から解答例と関連テク
ニックの解説がなされるという構成で進行しました。
問題もバラエティに富んでいて、ファイルの移動や

　2014年12月に鳥取で行ったワークショップと、
2015年2月の浜松での研究会の模様をお伝えします。

	 ■シェルスクリプトワークショップ

	【日時】2014年12月13日（土）〜12月14日（日）

	【場所】鳥取環境大学

　jusは毎年1回ぐらいのペースでワークショップを
開催しています。今回はUSP友の会との共催で、
シェルスクリプトを勉強するワークショップを行い
ました。参加者は講師を含めて15人でした（写真1）。

■初心者講習会

　初日の午前中は、オプションプログラムとして
シェルスクリプトの初心者講習会を行いました。講
師はjus幹事の齊藤明紀さん（鳥取環境大学）です。前
半は、起動形態、シェル変数、ワイルドカード、
クォート、標準入出力、パイプラインなどの概念と
主要な構文を紹介し、後半はいくつかの例題を挙げ、
それを処理するシェルスクリプトを、頻出コマンド
を紹介しながら解説しました。

■本編初日

　初日の午後からがワークショップの本編です。前
半は今泉光之さん（USP友の会）による「仕事で使え
るシェルスクリプト」という講座でした。POSIXの話
に始まり、シェル変数のオプションを使ったデバッ
グ、変数展開のあれこれ、さらにコマンドや正規表

シェルスクリプトワークショップ

写真1　シェルスクリプトワークショップの様子

各地の名産も密かな楽しみ!? プログラミング勉強会の旅

NO.43
May 2015

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/

May 2015 - 179178 - Software Design

編集といったよく使いそうなものから、住所を縦書
きにしてTrueTypeフォントに変換するというマニ
アックなものまでありました。
　午後は再び今泉さんが講師を務め、「シェルスクリ
プトを極める」というセッションを行いました。ファ
イルディスクリプタを活用したプログラミング、eval
を利用して変数を配列のように扱うテクニック、排
他処理、exを用いたファイルの行操作などの技法が紹
介されました。exの実体はviですので、viの編集操作
コマンドがそのまま使えます。最後に、初日の宿題
として出す予定だった問題や、これまでの課題を発
展させた問題を参加者に課し、各自で解答プログラ
ムを考えるうちに終了時間となりました。
　久しぶりにシェルのプログラミングに触れ、あらた
めてその奥深さを知ることができました。また、参加
者にも詳しい方が多く、随時コメントをくださったお
かげで、参考になる知見も多く得られました。

	 ■IPv6対応アプリの作り方

	【講師】渡辺 露文（IPv6普及・高度化推進協議会）

	【司会】法林 浩之（日本UNIXユーザ会）

	【日時】2015年2月11日（水／祝）16:45〜17:00

	【場所】浜松市市民協働センター

　2年ぶりに訪れた浜松での研究会は、IPv6普及・高
度化推進協議会の渡辺さんを講師に迎え、IPv6対応
アプリの作り方について話をしていただきました。
参加者は35人でした。

■ここがヘンだよ！そのコード

　はじめに、「ここがヘンだよ！そのコード」と題し
て、IPアドレスがソースコードにハードコーディン
グされているプログラムを例示し、「こういうイケて
ないコードを書かないようにしてほしい」という話が
ありました。書籍などに掲載されているサンプル
コードにもこのような事例が散見されるそうです。
　対応策としては、ソースコードにおいてはホスト

名をFQDN（Fully Qualified Domain Name）で指定し、
DNS（Domain Name System）を利用してIPアドレス
を得ます。こうすればIPv4でもIPv6でも同一のプ
ログラムが使えます。

■いまどきのIPv6を知ろう！

　次に「いまどきのIPv6を知ろう！」と題して、IPv6
の現状を解説されました。最近のOSはどれもデ
フォルトでIPv6が利用可能です。インターネット回
線もIPv6対応が進んでいて、とくにフレッツ光ネク
ストが普及するとIPv6普及率も急激に増加する見込
みです。IPv4とIPv6はアドレス体系も異なり、互換
性がありません。IPv4アドレスはすでに枯渇してお
り、今後はCGN（Carrier Grade NAT）による接続が
増えるため、セッション数や速度において品質の低
下が予想されます。
　さらに、2015年1月に発生したglibcの脆弱性につ
いてもIPv6対応の観点からコメントがありました。
問題となったgethostbyname関数はIPv6に登場に
伴ってあまり利用されなくなっており、IPv6をサ
ポートしているgetaddrinfo関数を使っていれば問題
は起きないそうです。

■さあ、アプリケーションをIPv6に対応させよう！

　最後に「さあ、アプリケーションをIPv6に対応さ
せよう！」と題して、IPv6への対応方針などが紹介さ
れました。IPv4/IPv6両方で動作するプログラムを1
つのソースコードで実現するのが基本方針です。対
応における要点は、IPv4/IPv6両対応のプログラミン
グ言語と実行環境を使うこと、通信処理を両方に対
応させること、データとしてIPアドレスを扱う部分
を両対応にすることです。「けっして難しいことでは
なく、ちょっとした注意を払えば実現できるので、
今後開発するアプリケーションはぜひIPv6に対応し
てほしい」と講演を締めくくりました。
　今回の発表資料はWeb注1でも公開されています。
参考にしてください。｢

注1） URL http://www.slideshare.net/v6app/osc2015-hamanako

jus研究会　浜松大会

各地の名産も密かな楽しみ!? プログラミング勉強会の旅 May
2015

http://www.slideshare.net/v6app/osc2015-hamanako

180 - Software Design

連載始まって以来の
異色回？

　いままで震災復興へのITでの取り組みを紹介し
てきた本連載ですが、今回は今までで一番の異色
回！　萌えキャラ「渚の妖精ぎばさちゃん」について
の紹介をします（イラスト1）。

♥渚の妖精ぎばさちゃん公式サイト

　http://gibasachan.com

　ぎばさちゃんはアカモクという海藻をモチーフに
した萌えキャラです。「なぜ萌えキャラ？」と思う方
も多いでしょう。実はこの連載でも二度ほど登場し
てるんです。
　普段はTwitterを活躍の中心としているぎばさ
ちゃん（TwitterID：gibasachan）。今日はTwitterを
飛び出てSoftware Design誌上に遊びに来てもらい
ましょう！
　では、ぎばさちゃん自己紹介お願いします！

★★★★★★

ぎばさちゃんってどんな娘？

　はいっ！　わたし、赤
あかもく

杢ぎばさです！

　髪の毛はアカモク、カバンにはヒトデ、萌える瞳は天使

の炎！　人呼んで渚の妖精ぎばさちゃん！　海藻アカモク

の販売促進キャラクターです！　毎日Twitterでアカモク

のことや塩竈のことをつぶやいています！　最近では「飯

テロ」も人気なんですよ。

　身長は152cm、体重はヒミツです！　ヒントをあげる

とアカモク43kg分です。体重わかります？

　髪の毛はふだんは赤いんですが、感情のたかぶりによる

体温上昇で髪が緑色になります！　アカモクに火を通した

時と同じ！　これがッ！　銀
ギバサボイルドフェノメノン

波藻湯通現象ですッ！

　そして、必殺技はサルガッソーホールド！　髪の毛のア

カモクを利用して首肩肘膝のすべてを極める技！　これで

CQC（近接格闘）が多い日も安心です。当然必殺なので必

ずころ(ry

ぎばさちゃんが生まれるまで

　……物騒なことを言い始めたので再度バトンをこ
ちらに（笑）。

★★★★★★
　ぎばさちゃんは以前のこの連載でも取り上げた
「島ソン」で生まれました。「島ソン」は東日本大震災
で大きな被害を受けた宮城県塩竈市の離島浦戸諸島
を舞台としたハッカソン。島の課題解決がテーマで
した。
　この中でテーマとしてあがったものの中にアカモ
クがあり、Twitter BotやFacebookページと並んで
進行したのがこのアカモクの萌えキャラプロジェク
ト「渚の妖精ぎばさちゃん」なのです！

Hack For Japan
エンジニアだからこそできる復興への一歩

地元を盛り上げる萌えキャラ
「渚の妖精ぎばさちゃん」

第41回
塩竃の離島、浦戸諸島も津波による大きな被害を受けた場所です。この離島を舞台
に行われたハッカソンで、地域振興のために生まれたのはなんと萌えキャラ。しか
もモチーフは海藻。この大胆なギャップ萌えキャラクターに、ラブアローシュート！

●Hack For Japanスタッフ
　小泉 勝志郎　Katsushiro Koizumi
　 Twitter @koi_zoom1

◆◆イラスト1　ぎばさちゃん（等身大とSD）

http://gibasachan.com

May 2015 - 181

地元を盛り上げる萌えキャラ
「渚の妖精ぎばさちゃん」第41回

　しかし、そもそもなぜアカモクなの
でしょうか？

●●アカモクとは？
　アカモクは写真1にあるように枝分
かれした房状の海藻です。これを湯通
しして叩いて刻むとメカブのように強
力な粘りが出ます。これをご飯にかけ
たり、味噌汁に入れたりして食しま
す。磯の香りとヌルヌルネバネバと
シャキシャキが共存する食感がおいし
い逸品です。
　写真1の上のように茹でる前は赤茶色……モノク
ロですね……んん、まあ赤茶色なのですが、茹でた
あとは下のように鮮やかな（涙）緑色になります。ぎ
ばさちゃんの髪の毛の設定はここから来ています。
　今まではアカモクというと、ぎばさちゃんのサル
ガッソーホールドのごとく船のスクリューに絡みつ
くためかなり嫌がられる存在でもありました。しか
し、近年栄養価の高さから注目が集まってきたこと
で塩竈でも「シーフーズあかま」さんを中心にアカモ
クを特産品として売り出そうという動きが出てきて
います。
　ところで、この記事を読んでいる皆さんでアカモ
クをご存じの方はどのくらいいらっしゃいますか？
塩竈でこれからブランド化していきたいと思われて
いるアカモク。残念ながら知名度はいまだ高くあり
ません。そこでぎばさちゃんを入り口にアカモクを
いろいろな人に知ってもらおうと、ぎばさちゃんは
活躍しているのです。
　震災復興も時が流れることでフェーズが変わり、
災害への対応の色合いよりも地域振興の色合いが強
くなってきています。地域を振興するにはまず人に
来てもらうこと。そして、来てもらいたくなるため
にも、美味しいものを紹介すること。ぜひぎばさ
ちゃんのTwitterを見てください。いつも何かおい
しそうなものを食べているはずです。塩竈に、東北
に、遊びに来てもらうため、日夜「飯テロ」に励んで
いるのです！　おいしいものを食べるための屁理屈
という説は却下します（笑）。

●●コンセプトからイラストへ
　キャラクターを作るにはまずコンセプトから。ぎ
ばさちゃんの場合はこんな経緯です。
　アカモクは秋田県では「ぎばさ」という名前で以前
から食べられていました！

●●「つばさ」という女の子がいるなら「ぎばさちゃん」

もありでしょ！
●●高杢（たかもく）という苗字があるなら、赤杢（あ

かもく）という苗字も良いよね！

ということで、名前は「赤杢ぎばさ」に。

●●アカモクはネバネバした海藻なので、「粘る」と

「ぎばさ」を合わせてさらに「ネバーギブアップ」

とかけた決め台詞として「ねばぎば」！
●●ネバネバを特徴にも出そうということで、「涙が

ネバネバ」というコンセプトも追加
●●アカモクは火を通すと赤っぽい色から緑へ変わる

ので、髪の毛の色がテンションで変わるように！

　キャラクターの特徴もこうして決まりました！
　しかし、萌えキャラなのにメンバーの誰も絵が描
けません……。ここでは、クラウドワークスを使う
ことで、なんとコンペ形式で募集ができました。
　涙がネバネバとか、こんなコンセプトで「本当に
可愛くなるのかよ？（苦笑）」とコンセプトを作った
人間も思うものでしたが、コンペには30件以上の
デザインが寄せられ、上がってきたイラストはとて
も可愛らしく、絵描きさんの凄さを思い知るもので

◆◆写真1　アカモク ◆◆イラスト2　ぎばさちゃん涙姿

182 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

した！　キャラクターデザインには白飯ザリガニさ
んのものを採用。現在もTwitterを中心にぎばさ
ちゃんは活躍中です。「ネバネバな涙」もご覧のとお
り（イラスト2）可愛い感じに仕上がりました！　
ちょっと昭和のアニメ風味ですね。

なぜ萌えキャラ？

　なぜ“萌えキャラ”であって“ゆるキャラ”ではない
のか？　最大の違いは「ファンによる拡散効果」で
す。Twitterで好きなキャラの絵を描いている方っ
てよく見かけますよね？　ああいった感じでの拡散
が行われやすいのです。
　また、基本的に人型なので、ゆるキャラと違い
「ストーリーを作りやすい」のも大きなポイント。マ
ンガにしてもらいやすいということです。
　ゆるキャラは萌えキャラよりも対象は広く取れま
すが、「ふなっしー」や「くまモン」のように大ヒット
するキャラは一部。萌えキャラはファンのつきやす
さとファンによる拡散で、ゆるキャラよりも宣伝効
果が高くできると考えています。実際にTwitter上

ではファンの皆さんからぎばさんちゃんのイラスト
が寄せられています。「#ぎばさちゃん」でTwitter
を検索してみてください！

●●ぎばさちゃんのライセンス
　ぎばさちゃんは積極的に二次創作（ファンによる
イラストなどの創作）を推奨しています。アカモク
の製品のパッケージと震災復興イベントには個人・
法人を問わず無償で使用可能です。また、個人によ
るスマートフォンアプリの開発を促進したいため、
かなりゆるいライセンス形態としています。詳細は
サイトのガイドラインをご覧ください。

♥渚の妖精ぎばさちゃんガイドライン
http://gibasachan.com/guideline

●●ぎばさちゃんには3Dモデルも
　スマートフォンアプリ、とくにゲームアプリを作
りやすくするために、ぎばさちゃんには3Dモデル
データもあります（写真2）。

♥ダウンロードリンク
https://github.com/koizoom1/gibasachan3D/

　この3Dモデルデータはヒューマンアカデミー仙
台校の授業の中で作成されました。制作を担当した
のは仙台校ゲーム科グラフィック専攻の学生・萩原
佳央瑠さん（2年）、小林悠さん（2年）、新沼伊緒奈
さん（2年）ら3名。
　この3Dモデルを作るために三面図も用意しまし
た（イラスト3）。背面の情報もあるのでフィギュア
などの立体物を作るのに役立ちますし、イラストを
描く際にも役に立ちます。
　ところでこの3Dモデル、Blenderで読み込むとバ
グって、首から足が直接生えている仄暗い水の底か
ら這い出たようなおぞましいクリーチャーになってし
まいます。ちゃんとした形にするための手順が現在有
志によって公開中です。しかし、このおぞましさが逆
にクリエイターの創作魂を呼び起こし、H.P.ラヴクラ
フトのクトゥルフ神話になぞらえ「神話生物ぎばさ」
（イラスト4）と呼ばれ、ニコニコ動画にはこの神話生

◆◆写真2　ぎばさちゃん3D

◆◆イラスト3　ぎばさちゃん三面図

http://gibasachan.com/guideline
https://github.com/koizoom1/gibasachan3D/

May 2015 - 183

地元を盛り上げる萌えキャラ
「渚の妖精ぎばさちゃん」第41回

ています。
　各地に存在する萌えキャラ。このアプリがそれぞ
れの地域の萌えキャラ版が出て各地域のまちあるき
に使われ振興に役立つ。そんな未来になればと思っ
ています。

♥以下のリンクで公開します（リリース後）
　https://github.com/koizoom1/gibasachanStamp/

最後に

　ぜひ、ぎばさちゃんのTwitterをフォローしてく
ださい。アカモクの情報はもちろんのこと、塩竈の
情報、そして東北のおいしいところ情報も入ってき
て、東北に、塩竈に、遊びに来たくなること請け合
いです！　震災復興へねばぎば！s

物が踊る動画まで上がっています！

♥【MMD】神話アイドルぎばさちゃん☆涙のルルイエ
　ライブ【ねばぎば！】

　http://www.nicovideo.jp/watch/sm25341827

　こういった3Dモデルのための設定が応用され、
ファンの手による羊毛フェルト人形まで生まれてい
ます！（写真3）

ぎばさちゃんアプリも！

　この本の読者の皆さんの多くがそうであるよう
に、筆者もIT系の技術者です。その技術があるな
ら使わねば！ということで、ぎばさちゃんの iOS
アプリを作成いたしました。その名も「渚の妖精ぎ
ばさちゃん 塩竈クエスト」。ぎばさちゃんを主人公
にしたスタンプラリーアプリです（図1）。アプリを
起動すると、ぎばさちゃんが涙ながらに塩竈
の行きたいスポットを教えてくれます（図2）。

●●まちあるきで使いたい！
　ぎばさちゃんが生まれることになった「島
ソン」を開催したコミュニティ「Code for
Shiogama」は現在隔月ペースで塩竈の“まち
あるき”を行っています。この“まちあるき”
で行ったスポットをチェックポイントとして
アプリに登録してあります。
　そして、これからはこのアプリを使ってま
ちあるきを行うことで、ナビを簡易にし、さ
らに新しく見つけたスポットを足すというサ
イクルを回していきたいところです。

●●オープンソースで公開します！
　このアプリはオールSwiftで作っていて、
リリース後、オープンソースで公開します。
画像ファイルとチェックポイントのCSVを
差し替えるだけで「各地域版」を作ることがで
きる形にします。チェックポイントデータは
クラウド上に置いたほうが更新も楽なのです
が、今回は初学者が簡単に「各地域版」を作れ
るようにという配慮から、あえてCSVとし

◆◆イラスト4　神話生物ぎばさ ◆◆図1　�ぎばさちゃん 塩
竈クエスト

◆◆写真3　�ぎばさちゃん羊毛フェル
ト人形

◆◆図2　�地図にはチェックポイ
ントがアカモクで表示

http://www.nicovideo.jp/watch/sm25341827
https://github.com/koizoom1/gibasachanStamp/

184 - Software Design

はじめに

　筆者が大学生のとき、後輩に
「なんでアセンブラでは、足し
たり引いたりする計算と、それ
を代入する命令がほとんどなの
にいろんなことができてしまう
のですか？」と聞かれたことが
あります。たしかにアセンブラ
の命令を見てみると、単体で複
雑なことができるものはほとん
どありません。そんな中でも特
殊なのがbit演算ですが、昔は
非常に使用頻度が高い命令だっ
たのです。今回はVRAM（Video
RAM）とbit演算についてお話
します。

パソコンで
ゲーム

　1980年ごろに発売されてい
たパソコンには、8bit CPUで
ある、Z80注1やMOS 6502注2、
MC6809注3などが搭載され、画
面の解像度は640×200（もしく
は400）ドットと今から比べるとと
ても粗いものでした。
　今のようにインターネットに

注1） NECのPC-8001やPC-8801、シャー
プのMZ-80シリーズなどに搭載。

注2） Apple IIなどに搭載。
注3） FM-8/7などに搭載。

接続することもなかった時代、
パソコンの楽しみといえばゲー
ムをすることで、テンキーの
2468で画面に表示された
自キャラクタを移動させ、ス
ペースキーでミサイル発射した
りするものが多く出回っていま
した。BASICで書かれたゲー
ムも多くありましたが、速度重
視のゲームではもっぱら機械語
が多く使われており、雑誌に掲
載された16進数のダンプリス
トを何人かで手分けして入力し
て、それをテープレコーダで記
録するといったことが日常茶飯
事だったのです。

VRAM

　この8bit CPUが管理できる
メモリ領域は64KBしかなく注4、
すべてのプログラムやデータを
この中で処理していたのです
（図1）。このメモリ領域には
VRAMと呼ばれる部分があり、
そこにデータを書き込むと画面
に文字やグラフィックが表示さ
れるというしくみになっていま
した。
　当時、一番多くのパソコンで
注4） プログラムの実行位置を示すPC（プ

ログラムカウンタ）レジスタが16bit
なので、その範囲内でした。

使われていたZ80は、CPUの
クロックサイクルが2.5MHzで
した。現在のCPUは2.5GHz以
上のものがほとんどですから、
当時から比べると1,000倍以上
の速度差（命令サイクルや高速
化技術があるので実際はもっ
と速い）があります。
　試しにグラフィック画面を消
去するだけのプログラムを見て
みましょう（リスト1）。
　HLレジスタの示す場所にAレ
ジスタを代入して0にするLD命
令が7サイクル、HLレジスタの
インクリメントに6サイクル、
DJNZというカウンタ付きループ
命令が13サイクルかかるので、
1byteを0にするのに26サイク
ル注5かかります。1画面が640×
200ドットとすると、640bit=80
byteが200行分なので80byte
×200で16KB。これがRGBの
3画面分ですので16 KB×3画
面で48KB。消去にかかる時間
は48KB×26≒1.25Mサイクル
で、2.5MHzのCPUでは0.5秒
となります注6。これでは消して
注5） 本当に最速にするならブロック転送

命令のLDIRを使い、21サイクルで
可能ですが、説明の都合上、ループ
を作っています。

注6） 昔のアセンブラプログラマは、どの
命令が何サイクルかかるか計算しな
がら少しでも速く動くようにプログ
ラムを組んでいたのです。

温故知新
ITむかしばなし

Software Design編集部

VRAMとbit演算

第43回

184 - Software Design May 2015 - 185

いるのが丸見えになってしまう
ので、書き終わるまで表示を消
しておくことも多かったで
す注7。
　このような速度でしたから、
グラフィックのスクロールも遅
く、多くの機種では文字の画面
表示にはキャラクタVRAMと
呼ばれる、書き込むと対応する
ASCIIコードの文字が画面に表
示されるしくみと重ね合わせて
使われていました。

ゲームキャラクタ
などの中間色

　このころのグラフィックは中
間色がなく、1ドットにつき
RGBの組み合わせの7色しか出
せませんでした。そのため、ゲー
ムキャラクタ（以降キャラクタ）
などをデザインするときには、
「緑黄緑黄緑黄緑黄」とドットを
並べて黄緑色を作ったり、「桃
黄桃黄桃黄桃黄」注8として肌色
に近い色を作ったりしていまし
た。横方向に1byte（＝8ドット）
のデータを2個並べ、下方向に
16個並べて（これで16×16ドッ

注7） またDMA（Direct Memory Access）
というメモリ読み出しとビデオ表示
がかち合う方式だったため、画面の
書き換えの隙間（垂直ブランキング期
間）に収まるようタイミングを合わせ
ることもあり、さらに遅くなってい
ました。

注8） 便宜的にマゼンタを桃と表記してい
ます。

トのキャラクタができる）、先の
中間色の並びを1ドットずらし
たりして、なるべくきれいなも
のになるような工夫が必要で
した。
　キャラクタの移動も1byte（8
ドット）単位で、動きも粗いも
のでした。キャラクタの重なり
などはbit演算のOR（論理和）を
使ってしまうと、白っぽくなっ
て見分けがつかなくなるので、
XOR（排他的論理和）がよく使わ
れていました。
　リスト1ではAレジスタを0
にするためにXOR Aを実行して
いますが、Aレジスタに何が入っ
ていてもXOR演算をすると0に
なり、LD A,0は7サイクル、XOR
Aは4サイクルと圧倒的に速
かったため、その後のアセンブ
ラでも同様のテクニックがよく
使われています。

背景と
キャラクタ

　背景が真っ黒ならば、そこに
キャラクタのデータを書き込め
ばよいのですが、バックに模様
などがあるとそうはいきませ
ん。キャラクタを描画させるた
めにはキャラクタの存在する範
囲が1になっているbit列を作
るためにRGBの3プレーン分
のデータをORしたものを作っ

ておき（いわゆる抜型ですね）、
それでキャラクタを描く前に、
その範囲の背景データを保存し
ておき、背景データと型を反転
したデータと AND（論理積）を
とって背景のキャラクタを載せ
る部分を真っ黒にしておいてか
らキャラクタデータをORして合
成することによって、やっと1つ
のキャラクタを表示できました。
　その後、パレットという技術
で各bitに中間色を割り当てら
れたり、スプライトと呼ばれる
キャラクタの描画作業をハード
的に重ね合わせてくれるものが
できたため、こういったbit演
算はあまり使われなくなってし
まいました。

省メモリのため
のbit演算

　TrueかFalseかの値を記録す
るためだけなら、1bitで済みま
す。つまり1byteあれば8つの
論理値を扱うことができます。
フラグなどの状態をセット／リ
セットするために、ANDとOR、
特定のbitを反転させるために
XOR、そのbitの状態を取り出す
ためにBITというbitテスト命
令があったりと、今では考えら
れないほどメモリを大切にする
時代でもありました。｢

 ▼リスト1　80byte分0を書き込むプログラム ▼図1　PC-8801のメモリマップ（簡略）

 LD B,80 Bレジスタ（カウンタ）に80をセット
 LD HL,C000H VRAMの開始をC000H（Hは16進数の表記）と仮定
 XOR A Aレジスタを0にする
L0: LD (HL),A HLレジスタで示された場所を0にする
 INC HL HLレジスタを+1する
 DJNZ L0 Bレジスタを-1し、0でなかったらL0にジャンプ

※ Z80にはCPUが直接扱える8bitのA、B、H、Lなどのレジスタがあっ
た。HとLレジスタはつなげて16bitとして使え、メモリ上のアドレ
スを指すために使われた。

0000H

N88BASIC
ROM

RAM
領域 VRAM

Blue
16KB

VRAM
Red
16KB

VRAM
Green
16KB

8000H

C000H

FFFFH

温故知新 ITむかしばなし
VRAMとbit演算

第43回

186 - Software Design186 - Software Design

SUUMOスマホサイトの開発裏話①
開発リードタイム短縮に向けアジャイルに取り組む第　　回6

Catch Up Trends in Engineering

Software Design編集部

迷えるマネージャのための

再入門
プロジェクト
管理ツール

開発の

ボトル
ネック

は

どこだ
？

開発チームを悩ませた
「不確実性」に対しての対応
̶̶SUUMOのスマホサイトの開発チームでは、
アジャイルを採り入れていると伺いました。そ
もそも、どういった背景からアジャイルに取り
組むことになったのでしょうか。

吉田氏　不動産情報サイト市場は競争が激しく、
常にスピード感を持ってWebサイトを改善し、
使い勝手を高めることが求められています。し
かし当時のSUUMOは、新機能の追加などを
起案してからリリースするまでの期間、いわゆ
る開発リードタイムが非常に長かったのです。

そこで何が問題
なのか話し合っ
たところ、「不確
実性に対しての
検証コストが大
きい」「ステーク
ホルダーが多い」
「合意形成まで
の時間がかかる」
といった問題が
浮かび上がって
きました。これ
らによって開発
スピードが低下

している。このような課題を可視化したのが始
まりでした。
　本来は、開発スピードを引き上げ、品質も高
めれば、Webサイトに訪れるカスタマーも、
物件情報を提供していただいているクライアン
トもハッピーになり、それが事業の成長につな
がるはずです。それに向けて何をすべきかを考
えたとき、開発サイクルを短縮したり、もう少
し小さいチームで開発を進めたりしたほうがい
いのではないかと気づいたんです。そのときに
初めて、アジャイル開発やスクラムといったキー
ワードが出てきました。
山下氏　とくに不確実性については、スマート
フォンサイトは環境の変化も激しく、またPC
サイトで培ってきたナレッジも展開しづらいた
め、何がカスタマーに良いのかを検証するため
に高速にトライ＆エラーを繰り返していく必要
がありましたが、何が正解かわからないものに
対しての検証や合意形成に時間を要していては
競合サービスから取り残されていってしまうの
ではないかという危機感もありました。
吉田氏　高速にトライ＆エラーを繰り返すため
にはスモールサイクルやスモールチームを実現
する必要がありますが、実現するためのポイン
トになると考えたのは、「文化」「プロセス」「体
制」、そして「基盤」です。文化は、常に挑戦す
る環境や風土の醸成、そしてカスタマーファー
ストの徹底です。プロセスは変化に柔軟に対応

 ▼図　SUUMOスマホ用サイト
（http://smp.suumo.jp/）

新築・中古のマンション、戸建ての情報や賃貸情報など、不動産情報や住宅情報を簡単に検索できる、
リクルート住まいカンパニーが運営するサービスが「SUUMO」です。そのスマートフォン向けサイト
では、アジャイル開発の手法を採り入れています。その背景について、開発チームに所属する吉田拓真
氏と山下芳生氏にお話を伺っていきます。

http://smp.suumo.jp/

186 - Software Design May 2015 - 187

第　　回6 　SUUMOスマホサイトの開発裏話① 開発リードタイム短縮に向けアジャイルに取り組む

186 - Software Design

できる開発手法の確立、そして高速なPDCA
を回せる開発プロセスの構築を指しています。
体制はスモールチームにつながるところで、目
標に一丸となって向かっていける体制を目指し
ました。ただし、開発サイクルを短縮する中で
も、今までどおりの品質は担保しなければなり
ません。それを支えるのが基盤の部分で、自動
化のしくみを採り入れるなどで開発プロセスを
効率的に回す。この4つを軸にアジャイル開発
を進めようとしたんです。

情報共有基盤がなく
チームごとにツールが乱立
̶̶実際にスクラム開発を採り入れるのはたい
へんだったと思います。その壁をどのように乗
り越えたのでしょうか。

山下氏　まずは、スマートフォンサイトの一部
の領域でスクラム開発を試すことから始めまし
た。実はそのとき、どの程度の規模でどういっ
たシステムなら適用できるのか、はっきりわか
らなかったのです。実際に試してみるとやはり
効果があったので、次はもう少し大きな規模で
検証するというように、見えていない部分を少
しずつつぶしながら広げていきました。

̶̶アジャイルに取り組む前、エンジニア間で
の情報共有はどのように行われていたのでしょ
うか。

山下氏　基本はメールですが、全体で統一され
たツールはなく、乱立していた状態でした。一
部でMantisが使われていたり、別のところは
Backlogを使っていたりという状況です。それ
と、当時は縦割りの組織になっていて、開発チー
ムと制作チームでそれぞれ異なるBacklogを
使っていたこともありました。
吉田氏　驚いたのは、あるところでSubversion
が使われていて、その内容を共有するために手
動でBacklogにアップロードするといったこと

が行われていて、ツールを使うことで逆に効率
が悪くなってしまう部分もありました。
山下氏　コミュニケーションのコストもすごく
て、打ち合わせが週次で行われていて、1つの
ことを聞くのに1週間待たなきゃいけない。新
しく開発に人が来たりメンバーが入れ替わった
りしたときも、情報がまとまっていないので1
から全部説明しなければならない。
吉田氏　そこでコミュニケーション基盤や開発基
盤を標準化し、開発生産性を上げようということ
で「JIRA」や「Confluence」「Stash」「HipChat」と
いったアトラシアンのツールを導入することに
したんです。アトラシアンを選んだ理由として
大きかったのは、強力なツール間連携によって、
「企画」「開発」「運用」といったすべてのプロセ
スに適用可能だったことです。

開発リードタイムを短縮することを目的にア
ジャイルに取り組んだSUUMOの開発チーム
において、コミュニケーション基盤、開発基盤
として採用されたのがJIRAをはじめとするア
トラシアン製品でした。次回は、これらのツー
ルをどのように活用しているのかを伺っていき
ます。ﾟ

リックソフトのWebサイトでは、各アトラシアン製品の体験
版を提供しているほか、アトラシアン製品専用のコミュニティ
も運営しています。JIRAやConfluenceなどのアトラシアン
製品に興味を持ったら、まずはアクセスしてみましょう。

https://www.ricksoft.jp/

 ▼写真　山下芳生氏（左）と吉田拓真氏（右）

https://www.ricksoft.jp/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

https://github.com/nghialv/Hakuba
https://github.com/nghialv/Hakuba

192 - Software Design

SD News & Products

　イントラリンクス合同会社は3月14日、社内外の関
係者とのプロジェクトコラボレーションに利用できるク
ラウドベースのツール「Intralinks VIA」を提供開始した。
　Intralinks VIAでは、ユーザが立ち上げたワークス
ペースに、ドキュメントをアップロードしたり、ほかの
ユーザを招待したりできる。招待されたユーザはアクセ
スが許可されたフォルダ、ワークスペースのみにアクセ
スできる。また、スマートフォンやタブレットからでも
すばやくワークスペースにアクセスが可能。
　本ツールの大きな特徴に「UNshare」機能がある。従
来のコラボレーションツールでは“共有”することが重

視されてきたが、今日の企業間のプロジェクトでは共有
すると同時に情報を“コントロール”することが求めら
れている。パートナー契約の終了、プロジェクト完了、
人事異動などのイベントが起きれば、それまで認めてい
たアクセスを禁じ、ドキュメントがダウンロードされて
いればそれを取り戻す必要がある。「UNshare」により、
ワークスペースで共有された機密文書から特定のユーザ
のアクセス権限を剥奪することで、すでにダウンロード
されたファイルのアクセスを遮断できる。

イントラリンクス合同会社、
コラボレーションツール「Intralinks VIA」を提供開始Service

　グレープシティ㈱は、ASP.NETアプリ開発用、表
計算グリッドコンポーネント「SPREAD for ASP.NET
8.0J」および入力支援コントロールセット「InputMan
for ASP.NET 8.0J」を3月4日から販売している。
　SPREAD for ASP.NETはWebアプリにおけるデー
タの一覧画面や集計機能を実装するExcelライクな表
計算データグリッドコンポーネント。一方、InputMan
for ASP.NETは細やかな書式や入力制御を行い、エン
ドユーザの快適で正確な入力を支援するコントロール
セットとなっている。
　今回の新バージョンでは、タブレット、クラウドと

いった運用環境への対応に注力したとのこと。対応ブ
ラウザはInternet Explorerに加え、ChromeとSafari
for iOSを新たにサポートしたうえ、タッチデバイスで
の快適な操作性を強化している。運用サーバについては、
Microsoft AzureやAmazon EC2といったクラウド仮
想マシンを新たにサポートする。さらに、2製品の機能
面での連携も強化されている。
　1開発ライセンス価格はSPREADが172,800円、
InputManが129,600 円（ともに税込）。

CONTACT グレープシティ㈱
URL http://www.grapecity.com

グレープシティ、
「SPREAD for ASP.NET 8.0J」、
「InputMan for ASP.NET 8.0J」を発売

Software

CONTACT イントラリンクス合同会社
URL https://www.intralinks.com

　㈱リンクは、同社のサービス「ベアメタル型アプリプ
ラットフォーム」において、3月25日より高速フラッシュ
ストレージ「ioMemory」搭載モデルの提供を開始した。
　同サービスは、ほかのユーザとリソースを共有しない
物理サーバ型のクラウドサービス。そのため、パブリッ
ククラウドと比べCPU性能やネットワーク性能が安定
しており、パフォーマンスがより重要視されるような場
合でも安心して運用できる。一方、近年のスマートフォ
ンアプリ・ゲームなどは、CMやSNSとの連携によっ
てアクセス数が短期間で膨大となり、物理サーバで運用
している事業者であっても、恒常的にストレージI/Oが

ボトルネックになるケースが多い。
　同サービスではそのような課題を解決するため、既存
のioDrive2を搭載したモデルに加え、今回、サンディ
スク社が提供するFusion ioMemory SX300を搭載し
たモデルを提供開始することとなった。ioMemoryは、
ioDrive2に比べて高いトランザクション性能を持ち、
読み書き混合の処理に最適化されているため、負荷の高
いデータベース用途で、より効果を発揮する。価格は、
初期費用0円、月額129,800円（日額では5,200円）。

CONTACT ㈱リンク
URL http://www.link.co.jp

リンク、
「ベアメタル型アプリプラットフォーム」で
ioMemory搭載モデルを提供開始

Service

https://www.intralinks.com
http://www.grapecity.com
http://www.link.co.jp

May 2015 - 193

SD News & Products

　石川県金沢市に本社を置く㈱アイ・オー・データ機器
は、北陸新幹線の開業を記念し、コラボレーション商品
を発売した。さらに同社の注力製品の販売促進を同時に
展開している。その製品群の中から、編集部に届いた「ポ
ケドラCloud」の製品レビューをさせていただいた。
　本製品は、インターネットを利用してスマートフォン
やタブレット、パソコンのデータを保存・再生できるパー
ソナルクラウドストレー
ジ。今回はPC（Windows 8）
からポケドラに画像を保存
し、タブレット（Nexus 7）
で閲覧してみる。

①初期設定
　LANケーブルで製品と
ルータを接続し、ACアダ
プタをつないで起動させる。本体の初期設定はとくに必
要ない。スマートフォン・タブレットとの接続には専用
アプリ「Remote Link Files」が用意されている。同製
品に付属されているカードのQRコードを読み取ること
で簡単にインストールと接続
機器の登録ができた。

②PCからデータを保存
　同じネットワークのPCか
らは、エクスプローラーなど
で「¥¥hls-<製品のMacアド
レス>」を指定し、アクセス
できる。ローカルでのファイ

ル操作と同じように、画像ファイルをドラッグ&ドロッ
プで保存できた。

③タブレットから画像を閲覧
　Wi-Fiに接続したタブレットでアプリ「Remote Link
Files」を起動し、リストから①で設定した接続機器を選
び、②で保存した画像を選択、無事にアクセスできた。

　本製品はアプリを使ってス
マートフォン・タブレットから
簡単にでアップロードでき、外
出先で撮った写真を家族と共有
するなど、幅広い使い方ができ
る。
　今回のレビューで使用したの
は500GBモデル（16,500円）。
ラインナップとしてはほかに、
1.0TB（22,100円）と2.0TB

（28,800円）がある。

アイ・オー・データ機器、
「ポケドラCloud」編集部製品レビューReport

CONTACT ㈱アイ・オー・データ機器
URL http://www.iodata.jp

　㈱センチュリーは、ウィルスやカビ、菌、ニオイを除
去するUSB駆動タイプのポータブル除菌消臭機「エアー
サクセス」シリーズを発売した。使う場所を選ばないコ
ンパクトなサイズ、フィルタレスによる手入れの簡単さ
といった“手軽さ”が売りの製品となっている。
　本製品の特徴としては、次のようなものがある。

¡¡国際特許を取得したイオン発生技術「Maltiplex Ring
Dischargerテクノロジ」を採用
¡¡イオンと低濃度オゾンによる高い除菌消臭性能
¡¡ファンを使わない静音設計

　ラインナップは次の4商品（すべて税込）。

¡¡本体のみ（2,980円）
¡¡乾電池ユニット付属

（3,480円）
¡¡車用電源プラグ付属

（3,780円）
¡¡AC電源ユニット付属

（3,980円）

CONTACT ㈱センチュリー
URL http://www.century.co.jp

センチュリー、
ポータブル除菌消臭機「エアーサクセス」発売Hardware

▲コンパクトな本体

▲PCから画像ファイルを保存

▲閲覧成功！

▲アプリを起動し ▲リストから機器を選ぶ ▲フォルダにアクセス

▲PCのUSBポートから給電

http://www.century.co.jp
http://www.iodata.jp

194 - Software Design

SD News & Products

　米フルーク・ネットワークス社の日本法人である㈱
TFFフルーク社は3月23日、ネットワークテスター

「LinkSprinter」シリーズを発売した。
　同シリーズは、軽量ポケットサイズ（大きさが110.7
×40.6×32.5mm、バッテリーを含む重さが113〜
116g）の筐体が特徴で、次のような測定を行える。

①PoE（Power over Ethernet）
接続先ポートの電話機、監視カメラ、アクセスポイ
ントに電力を確実に供給できるかをチェック

②スイッチへのリンク
CDP/LLDP/EDPのプロトコルを使い、接続スイッチ
の名前、モデル、スロット、ポート、VLANを表示

③DHCP接続
DHCPサーバが稼動状態にあり、応答するかどうか
を確認する。IPアドレスをリクエストしてサブネッ
ト情報を取得し、デフォルトゲートウェイとDNSサー
バを特定

④ゲートウェイ接続
Ping試験により、ゲートウェイ／ルータのアドレス

および到達性を検証
⑤インターネット接続

クラウドへの接続性や内部ネットワークサービスへ
の到達性を確認して、DNSルックアップおよびアプ
リケーションポートの接続性を検証

　また、測定時に何も操作する必要のないゼロタッチ機
能により、専門知識のないユーザでも利用できる。　
　LinkSprinter 200と300はWi-Fiアクセスポイント
を搭載し、スマートフォンとの連携稼動や「Link-Live
クラド・サービス」へのテス
トデータの自動保存が行える。
　LinkSprinter 100（24,500
円 ）、LinkSprinter 200

（36,600円 ）、LinkSprinter
300（48,800円）の3製品（い
ずれも税別価格）がラインナッ
プされている。

㈱TFFフルーク社
URL http://jp.flukenetworks.com

CONTACT

フルーク･ネットワークス、
ポケットサイズのネットワークテスター

「LinkSprinter」シリーズを発売
Hardware

　2月1日、名刺サイズのワンボードPC「Raspberry
Pi」の新バージョン「Raspberry Pi 2 Model B」がアー
ルエスコンポーネンツ㈱から発売された。
　Raspberry Pi 2 Model Bは、シングルコアベースの
前モデルから最大で6倍もの速度アップと、飛躍的な性
能向上が実現された。新しいクアッドコアCortex-A7
プロセッサに加え、1GBものRAMメモリを搭載。オ
ペレーティングシステムカーネルは、最新のARM
Cortex-A7テクノロジを活用できるようにアップグ
レードされ、新しいバージョン1.4のNOOBSソフトウェ
アを利用できる。なお、ハードウェアおよびソフトウェ
アの後方互換性は、Raspberry Pi 1 Model A+/B+と

の間で維持されていると
のこと。
　また、発売の翌日には
Microsoftが こ のRasp
berry Pi 2にWindows
10 を無償提供すると発
表したことで話題になっ
た。これまでMicrosoft

はインテルの開発ボード「Galileo」向けに開発環境を提
供してきたが、新たにRaspberry Piも支援対象となり
Windows 10を含む開発環境が無償で提供される。

　本製品は下記の、アールエスコンポーネンツ㈱のオン
ラインストアなどから入手できる。

RSオンライン
URL http://jp.rs-online.com

CONTACT

アールエスコンポーネンツ、
「Raspberry Pi 2 Model B」を発売Hardware

▲Raspberry Pi 2 Model B

▲LinkSprinter 300

▼おもな仕様

CPU
Broadcom BCM2836 900MHz ARM Cortex-A7 クアッドコ
アプロセッサ

GPU VideoCore IV デュアルコア GPU

メモリ 1GB LPDDR2 SDRAM
ストレージ MicroSD カードソケット
USB ポート USB2.0×4
ビデオ HD 1,080p ビデオ出力
オーディオ ステレオ 3.5mm 4 極オーディオ
ネットワーク 10/100BaseT RJ45Ethernet ソケット
HDMI 出力 HDMI1.3/1.4 ビデオ、オーディオ

その他コネクタ
15 極 MPI CSI-2 コネクタ
15 極ディスプレイシリアルインターフェースコネクタ
GPIO およびシリアルバス用の 40 ピンヘッダ

電源 +5V@2A、microUSB ソケット経由
寸法 86×56×20mm

http://jp.flukenetworks.com
http://jp.rs-online.com

May 2015 - 195

SD News & Products

　エクセルソフト㈱は、SolarWinds社のネットワーク
監視ソフトウェアの最新版「Network Performance
Monitor v11.5」を3月18日より販売している。
　本製品は、ネットワーク上のルータなど、さまざまな
デバイスのパフォーマンスに関する問題が発生する前に
検知・診断・解析するWindows Server用ネットワー
ク監視ソフトウェア。直観的で使いやすい管理画面で、
インストール後1時間以内で展開され、ネットワークの
監視を開始できる。最新バージョンの「v11.5」では、ネッ
トワーク内の帯域幅やメモリの利用量、ディスクの残り
スペースなどのリソースを測定し、閾

しきいち

値を超えるキャパ

シティの消耗があった場合にはアラートによって通知す
る。また、デバイスのキャパシティやその消費量のピー
ク時と平均を計測し、リソースが
枯渇するまでを予測、キャパシティ
が不足しそうな場合にもアラート
する（たとえば、WAN内のディス
クスペースが20日後に枯渇する場
合など）。製品のラインナップと価
格は右の表のとおり。

エクセルソフト、
「Network Performance Monitor v11.5」を販売開始Service

　3月27日、「オペレーションカンファレンス 2015
Spring」が日本MSP協会の主催で開催された。
　本カンファレンスは、インターネットインフラの運用
やマネージドサービスプロバイダ（MSP）に対する考え、
クラウドサービスの出現による情報基盤の設計・構築・
運用の変化、運用サービス市場の今後についてなど、運
用にかかわるさまざまな動向や各ステークホルダーの思
惑思考などを共有し、議論することで健全な運用を目指
すことを趣旨としている。セミナーでは運用を円滑に進
めるための具体的な方法論やツールの紹介などの実践的
な技術情報が示された。カンファレンスを締めくくるパ

ネルディスカッションでは、MSPの将来についてユー
ザ企業側、運用企業側の立場からそれぞれ活発な意見が
提示された。プライベー
ト／パブリッククラウ
ド混在環境での運用の
あり方など課題は多く、
その変化に対応しなが
らMSPの価値を向上さ
せていくという。

CONTACT 日本MSP協会
URL http://mspj.jp

「オペレーションカンファレンス 2015 Spring」開催Report

CONTACT エクセルソフト㈱
URL https://www.xlsoft.com

　ティントリジャパン合同会社は3月5日、仮想化なら
びにクラウド環境のスマートストレージ製品において、
Microsoft Hyper-Vによる仮想化環境を新たにサポー
トしたことを発表した。
　今回のサポート追加により、ティントリ社は主要な
3つのハイパーバイザであるVMware vSphere、Red
Hat Enterprise Virtualization、Microsoft Hyper-V
のすべてをサポートし、混在した環境において同一レベ
ルのデータ管理・保護、仮想マシンの見える化を実現す
る。Hyper-Vをサポートすることによりティントリ社
の製品は新たに、次のような特徴を持つことになる。

¡¡NFS、SMB 3.0に対応し、複数のハイパーバイ
ザによるさまざまなワークロードを単一のTintri
VMstore上で稼働させることができる
¡¡Hyper-V ManagerならびにSystem Center Virtual
Machine Managerとネイティブに連携し、データ
保護を仮想マシン単位で行える
¡¡Hyper-V上で稼働するCitrix XenDesktopならびに
XenApp VDIをサポートする

CONTACT ティントリジャパン合同会社
URL http://tintri.co.jp/

ティントリジャパン、
Microsoft Hyper-Vによる仮想化環境を新たにサポートHardware

▼ラインナップ
製品名 価格（税抜）
SL-100 237,800 円

SL-250 587,300 円
SL-500 1,097,200 円
SL-2000 2,264,900 円
SL-X 4,297,800 円

▲パネルディスカッションの様子

https://www.xlsoft.com
http://mspj.jp
http://tintri.co.jp/

196 - Software Design

SD News & Products

　メラノックステクノロジーズ社は、3月31日、日本
国内で同社の100GB/s EDR InfiniBand製品のサンプ
ル出荷の開始を発表した。
　同社が今回サンプル出荷を行う製品は、SB7700、
SB7790スイッチならびにConnectX-4アダプタ。
2014年11月に発表した業界最先端のConnectX-4
100GB/s EDR InfiniBandアダプタは、片方向通信で
100GB/s、双方向通信で195GB/sのInfiniBandスルー
プット、610ナノ秒の低アプリケーションレイテンシ、
毎秒1億4,950メッセージもの転送レートを実現する。
　SB7700（マネジネント機能内蔵）、SB7790（外

部マネジメント）は、Switch-IB（メラノックスが提
供する第7世代のスイッチシリコン）を使用して開発
されたEDR InfiniBandスイッチで、100GB/s EDR
InfiniBand 36ポートを装備し、1Uという省スペース
設計でありながら、7.2TB/sというノンブロッキングス
イッチング性能、90ナノ秒のポート間レイテンシとい
う驚異的なパフォーマンスを実現している。100GB/s
InfiniBandによって、HPC、クラウド、機械学習など
に最適な高レベルのパフォーマンスを実現できる。

メラノックステクノロジーズ、
EDR InfiniBand製品のサンプル製品を出荷Hardware

CONTACT メラノックステクノロジーズ社
URL http://www.mellanox.com

　4月1日、一般社団法人コンピュータソフトウェア協
会から「U-22プログラミング・コンテスト2015」の詳
細が発表された。
　本コンテストは、1980年より経済産業省の主催によ
り、優れた才能を持ったイノベイティブなIT人材の発
掘と育成、単にプログラムのできる人材ではなく、アイ
デアに富んだソフトウェア開発に取り組む人材の発掘を
目的として開催されてきた。2014年からは民間のIT企
業から構成された「U-22プログラミング・コンテスト
実行委員会」が主催し、一般社団法人コンピュータソフ
トウェア協会が運営事務局となっている。今年はサイボ
ウズ㈱の代表取締役社長・青野慶久氏を実行委員長とし、

「進め！　未知なる創造力　若きプログラマが進む新た
な道！」というキャッチフレーズのもと開催される。
　コンテストに応募できるのは、日本国内に居住する

1993年4月2日以降に
生まれた者。作品のジャ
ンルは問わないが、未
発表または2014年9月
1日以降に発表したオ
リジナルのコンピュー
タプログラミング作品
であることという条件
がある。応募作品の審
査に対しては「プロダク
ト」「テクノロジ」「ア
イデア」の3つの評価カ
テゴリを基に審査され、
総合的に優れた作品、

各評価カテゴリで優れた作品に各賞が与えられる。昨年
のコンテストでは、Ruby向けのインタラクティブなグ
ラフを簡単に製作できるソフトウェア「Nyaplot」、容
易に並列処理を記述できるプログラミング言語「Copal」
などが表彰された。審査委員としては、慶応義塾大学の
夏野剛氏、まつもとひろゆき氏などが名前を連ね、次に
挙げる賞が用意されている。

¡¡経済産業大臣賞（副賞：10万円）
¡¡経済産業省商務情報政策局長賞（副賞：5万円）
¡¡CSAJ会長賞（副賞：5万円）
¡¡各スポンサー企業賞（豪華商品）

　受賞者に対しては、上記の各賞とともに提供される副
賞のほか、希望によりスポンサー企業へのインターン
シップへの参加権利などの特典が付加される。
　コンテストの大まかな流れは次のとおり。

　詳しい募集要領は下記のアドレスから確認できる。

「U-22プログラミング・コンテスト2015」開催決定Event

U-22プログラミング・コンテスト2015
URL http://www.u22procon.com

CONTACT

▼コンテストのスケジュール
応募受付期間 7 月 1 日〜 8 月 17 日
事前審査・1 次審査 8 月 18 日〜 9 月中旬

1 次審査結果通知 9 月中旬
最終審査プレゼンテーション資料締切 9 月 25 日
最終審査会（受賞者によるプレゼンテーション） 10 月 4 日
情報化月間記念式典

（経済産業大臣賞・商務情報政策局長賞の表彰）
10 月 5 日

入選作品展示（CEATEC JAPAN 2015） 10 月 7 日〜 10 日

▲ポスター

http://www.mellanox.com
http://www.u22procon.com

May 2015 - 197

皆さんのところにも新人さん、来ましたか？　今年はピチピチで元気なのが大漁ですよね！　新人がその後に死んだ魚の目にならないよう、
ちゃんと見守ってあげてください。作者が新人のときは、秋葉原のベンチャー企業で、何を聞いても「man見ろ、man。なんで infoと
READMEも見ないんだ」という返事だけが来て大変勉強になったのを覚えてます。なぜか入社1ヵ月でノースカロライナへ単身出張とかも
しましたね。変わった会社でしたが、まわりに素晴らしい先輩がいたからこそ……オレ、全然素晴らしく育ってないな……。あー、えっ
と……新人を見守る立場の私達も、新人だったころの好奇心や向上心を忘れないよう日々精進していきたいものですね♪（最後棒読み）

本
当
は
、
学
生
時
代
か
ら
I
●
A
未
踏
プ
ロ
ジ
ェ
ク
ト
の
恐
る
べ
き
新
人
が
配
属
さ
れ
て
、

戦
々
恐
々
の
く
つ
な
先
生
に
マ
ジ
励
ま
し
の
言
葉
を
!

作）くつなりょうすけ
@ryosuke927

親分
てえへんだ！

親分
てえへんだ！

どうした!?

どうした
おまえも
騒 し々い！

もうけなげで
けなげで……

情報
リテラシーが！

「てえへん
（底辺）」
だ!!!

言うなー
っ!!

1文字ずつ
消してやがり
ます！

新人が寝ぼけて
コマンドラインに
ずーっと「A」を
押してたようで……

c＋Uでカーソル前
の文字が全部消えるの
を教えてやれよ。

新人に客先
サーバメンテを
任せるために

SSH鍵を
よこせ、
と言ったん
ですよ。

そしたら、
秘密鍵を送って
きやがりましたよ。

鍵ペア
作り直させ
ろよ。

お前も最初は
秘密鍵送って
きたじゃねーか。

新人教育もてぇへんだぁ第16回

①

③

⑤

⑦

④

⑥

⑧

②

198 - Software Design

　「YAPC」「LL Diver」でインターネット接
続環境を提供した、有志の技術者集団
「CONBU」。そのメンバーの方々に、会
場ネットワーク・無線LANのしくみ、構築
の裏側、運用時のトラブル対策など、現
場ならではのノウハウをお聞きしました。

大多数が集まる場所のネットワーク構築
の裏方がよくわかり、勉強になりまし
た。

兵庫県／コメットさん

大きな会場でのネットワーク設営につい
て知る機会はあまりないので、良かっ
た。

東京都／吉岡さん

苦労の一端とプロの一面が見られて参考
になりました。

神奈川県／齋藤さん

podcastで活躍をお聞きしていた
CONBUの実践ノウハウが詰め込まれて
いて、とても興味深く読みました。
YAPCまで大規模なネットワークを扱う
ことはないと思いますが、今後業務にも
生かせそうです。

埼玉県／犬棟梁さん

当たり前のように使えるWi-Fi環
境も、エンジニアがそれぞれの会

場の特性に合わせて試行錯誤しながら構
築していることを知ると、ガラッと見方が
変わりますね。そういった裏方の事情を
知ることができてよかったという声が多く
寄せられました。

　並列分散処理を実現するソフトウェア
「Hadoop」。第1章ではHadoopの概要・
基礎知識を、第2章ではHdoopのインス
トール方法からApache Hive・Tezを使っ
た分散処理の実践を解説しました。

Hadoopの基本について勉強する機会
が少なかったのでいいタイミングでし
た。

長崎県／ romeosheartさん

グリッドコンピューティングと言われてい
た頃から分散処理嫌いで、気づいたら
Hadoopが全然わからなくなっていたの
で、概説の入門編助かりました。

神奈川県／吉田さん

Hadoopは以前使って、環境を使いこ
なすのが難しいなぁと感じてからウォッチ
していませんでしたが、新しいしくみが
増えてるんですね。記事を読んでまた試

してみたくなりました。今回のTezのよ
うに、新しく追加された技術を記事にし
てもらえると参考になるので、今後もお
願いします。

千葉県／今井さん

8TB HDDの話題があったが、今後容量
は拡大し高速性がより求められるように
なるのは必然なので、こういった技術が
ないと対応できないと思う。

岩手県／隼さん

ビッグデータなどと併せて語られ
ることが多いHadoopは、Tezなど

実用的なフレームワークの登場によって
盛り上がりを見せています。並列処理と
聞くと敷居が高い技術というイメージで
すが、アンケートを見ると「なかなか手が
出なかったがこれを機に」という方が多い
ようです。

　IBMが提供する「Bluemix」を使いなが
らIoT（モノのインターネット）について学
ぶ前後編の連載。ブラウザさえあればと
いう手軽さで、MQTTプロトコルを使った

IoTアプリを開発する手順を学びました。

自分も実践してみたいです。
神奈川県／眞　泰志さん

3月10日に、AppleがノートPCの新製品を発表しましたね。今回はAirもProも
付かない「MacBook」。1kgを切る極薄の本体にRetinaディスプレイ搭載と非
常にワクワクする仕様ですが、ひとつだけのUSBポートや性能の面で少し頼り
ないCPUなど、ネットでは不安な声も見られます。背面のロゴが光らなくて失望
した！という声もありましたが、これは重要なことなのでしょうか？

賛否両論？　新MacBook発売！

2015年3月号について、たくさんのお便りをありがとうございました！

第1特集　カンファレンス
ネットワークの作り方

第2特集　Hadoop超2入門

短期集中連載　Bluemixで
ためしてみるIoT入門［前編］

May 2015 - 199

う～ん、ちょっとやってみたくなりました
ね。

徳島県／ききさん

試してみたくなります……IoTは電子工
作ゴコロをくすぐりますね……。

神奈川県／くまーーーさん

IoTと聞くと少しバズワード気味で
すが、センサーデバイスからデー

タを受け取り、サーバで処理を行って、
クライアントにアクションを起こすという
具体的なケースを学ぶことで印象が変
わった方も多いのではないでしょうか。気
軽さが売りのひとつであるBluemixには、
食指が動いたという方も多いようです。

　前後編に分けて、Cisco社製のネット
ワーク仮想化ソフト「Cisco VIRL」を紹介
する短期連載です。前編では、ネット
ワーク機器全般の話題から、VIRLの概要・
アーキテクチャの詳細までを扱いました。

メジャーなわりに公開資料が少ない印象
なのでムズい。

神奈川県／まーく２さん

ネットワークのシミュレーションが15年
前にあれば、当時の苦労はなかったの
に。
奈良県／CPUは10個以上持っているさん

にDockerをサポートするというだけでは
なく、自前でコンテナ技術を実装してい
ます。ユーザ側としては、勉強するもの
がますます増えてしまいますね。

　Firefox OS搭載のスマートフォン
「Fx0」。海外ではいくつかの端末がすで
にリリースされていましたが、日本でもつ
いに発売されました。細部までこだわっ
たハードウェア、既存のWeb技術をソフ
トウェア開発に応用できるOSの環境な
ど、ほかとは違う「Fx0」を紹介しました。

Fx0気になっています！
東京都／n0tsさん

「Fx0」なんて読むんだろう……。
愛知県／ｋｍさん

Firefoxを手伝うのは卒業してしまった
んですが……記事としてはおもしろく読
みました。

千葉県／Tayuさん

興味を持っているという声が多く
寄せられました。HTML5/CSS/

JavaScriptというお馴染みの技術でスマ
ホアプリを開発できるので、Webエンジニ
アにとってもすそ野の広いガジェットと
なっています。ちなみに読み方は「エフ
エックスゼロ」です。

難しかったです。
神奈川県／あらさん

ソフトウェア、実行環境、コン
ピュータリソースと、仮想化は IT

のあらゆる分野に広がっています。ハー
ドウェアを用意せずに本番を想定したネッ
トワークの運用を試せるというのは、ネッ
トワークの学習用途などにも期待できそ
うなソフトですね。

　Ubuntu向けに開発された、コンテ

ナ型仮想化環境を実現する「Snappy

Ubuntu Core」。Dockerのホストとして
も、また単体でも各種アプリの隔離環境
を実現するものとして利用できます。記
事ではコンテナ型仮想化の説明から入り、
実際にSnappyを起動して基本コマンドの
確認、アプリの開発などを体験しました。

現在のトレンドですね。
東京都／山下さん

普段、RedHat系ばかり触っているので、
こういった機会にDebian系のOSに慣
れるのもいいかなと思います。

愛知県／NGC2068さん

各種Linuxディストリビューション
が、続々とコンテナ型仮想化技術

を取り入れています。それらの多くは単

3月号のプレゼント当選者は、次の皆さまです

※本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡ください（プレゼント応募後に住所が
変更されている場合など、お届けできないことがあります）。2ヵ月以上ご連絡がない場合は、再抽選させていただくことがあります。

①テレビ用高音質スピーカー「Olasonic TW-D6TV」
群馬県　並木正直様

②モバイルバッテリーチャージャ「ZM-MB350-W」
東京都　安田幸彦様

③SoftLayerノベルティ手帳
大阪府　澤下夏実様
熊本県　　鈴木浩様
埼玉県　小堀大介様

④詳解Swift
福岡県　石内博子様
石川県　荒田真一様

⑤Webエンジニアが知っておきたいインフラの基本
東京都　野﨑啓太様
埼玉県　片野敬勇様

⑥Python言語によるプログラミングイントロダクション
和歌山県　兼行大将様
福岡県　田代海霞様

⑦MariaDB＆MySQL全機能バイブル
京都府　前場英二様
埼玉県　橿山公一様

一般記事　「Fx0」が開発者に
お勧めなワケ

一般記事　Cisco VIRLでネット
ワークのシミュレーション［前編］

一般記事
Snappy Ubuntu Core

mailto:sd@gihyo.co.jp

Software Design
2015年5月号

発行日
2015年5月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2015年6月号
定価（本体1,220円＋税）

192ページ

June 2015
5月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2015 技術評論社

●今年度の表紙のテーマは野生動物です。デザイ

ナーさんから提示されたもののうち、虎のりりしい顔

に惹かれ、これに決めました。そして春から新入社

員の皆さんに向けての小冊子特別付録です。とにか

くWebのしくみを押さえておこうというのが目的で

す。 IT業界はとにかく勉強しつづけないとね！（本）

●連載にアカモクギバサなるキャラが……。えっ、三

陸で一番旨い海藻は生マツモでしょ。日本は海藻の種

類が豊富で季節毎に美味を提供してくれる。北陸で旨

い海藻はツルモ。それと2月頃の岩場で採れる海藻を

いしるで食べる海藻しゃぶしゃぶの旨いこと！　黒もず

くも捨てがたい。（異論受け付けます海藻フリーク幕）

●毎日持ち歩ける高倍率ズーム付きコンデジが2万

円くらいで欲しい！　変わりモノ好きな私はQX10に決

めかけていたんですが、本誌3月号カンファレンス

NW構築の記事を読んで一転。イベント会場での無

線LAN接続の難しさを知り、WX350にしました。で

も分離・合体は男のロマンだった……（キ）

●先日某国立大学の前を通ったら、入学式が行われ

ていました。ついこの前、センター試験や二次試験

をやっていたと思ったら、もう入学。内定が出てから

約1年後にやっと入社する就職活動とはずいぶん違

うと感じました。正直、1年前に内定をもらったって、

入社の頃にはモチベーション下がっていそう。（よし）

●最近、ポテトサラダにハマっています。ジャガイ

モ（メークイン派）を茹でたら皮付きのまま潰して、

たっぷりのマヨネーズと和える。ソーセージときゅうり

を小さく切って混ぜ込んだら、黒胡椒をふって完成！

ビールによく合います。きゅうりはしっかりと水抜きを

するのが今日のポイントですね。（な）

●近所に有名なお花見スポットがあり、初めて友人を

招いてお花見をしました。場所取りの競争が激しく、

朝5時でも一番乗りではなかったようです。前日、春

の嵐に見舞われたので桜が残っているか心配でした

が、十分な量が残っていて綺麗でした。でも場所取り

係は色々大変なので、来年は見物だけにします。（ま）

S D S t a f f R o o m

［第1特集］ 新人さん歓迎特集

Git＆GitHubのABC
——開発現場のはじめの一歩
そろそろ新人さんも現場へ実戦投入！——の時期ではないでしょうか。ソフトウェア
開発において、一番大事なのは、ソフトウェアにデグレ（手戻り）を起こさず品質を
向上させること。そのために先輩たちは、GitやGitHubを活用して仕事をしていま
す。本特集は初心者を対象に、ちょっと扱いが難しいGitとGitHubをやさしく解説
します。

［第2特集］ 認証システムの定番

［入門］OpenLDAPの教科書
——ユーザ／ネットワーク管理の基礎を固める

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

■2015年4月号　
　●第1特集1-1　p.21　図1中のルータの右下の IPアドレス
　　［誤］192.168.2.2 ［正］192.168.2.254
　●第1特集2-2　p.46　　
　　［誤］㈱サーバワークス ［正］㈱サーバーワークス

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

休載のお知らせ
「RHELを極める・使いこなすヒント .SPECｓ（第12回）」は都合によりお休みさせていただきます。

200 - Software Design

mailto:sd@gihyo.co.jp

3 minutes Networking - 1

●インターネットとWWW

	 3分間HTTP&メールプロトコル基礎講座！！

	 どんどんぱふぱふ♪

	 さて、今回はインターネットの主役、Webとメールを中心にアプリケーシ
ョンのプロトコルを説明していく講座だ。これで、ネット君をもうすこしま
しなネットワークエンジニアに育成するのが目的だ。

	 『3分間DNS基礎講座』（当社刊）に引き続き育成なんですね、よかった。

	 まぁ、そろそろそれぐらいできてもらわんと、教える側としても立場がない。
さて、今回最初に話すのは、World Wide Webだ。略してWWW、
もしくは単純にWebとも呼ぶな。

	 わーるどわいどうぇぶ。インターネットですね。

	 あーうん。確かにそう誤解している人もいるな。だが、「インターネット≠
WWW」だ。インターネットとはネットワークそのものを指すからな。とも
かく、まず君が想像しているWWWとはどんなものかを聞いておこう、ネ
ット君？　

	 え〜っと、あれですよね、「ホームページを見る」ことができる？　そうだ、
「ホームぺージ閲覧サービス」ですよ。

1

World Wide Web

2 - Software Design 5月号特別付録

	 まぁ、大きくは間違ってはいないが、曖
あいまい

昧すぎるな。ホームページを見る
ことができれば、それはWWWなのかね？　では、公開されているホーム
ページをFTPでダウンロードしてきて閲覧しても、それはWWWなのかね？

	 う、う〜ん。そういわれれば……FTPでダウンロードしたのを見るのは「ホ
ームページ」じゃないですよね。

	 WWWとは何か、を説明する前に用語の説明をしたほうがよさそうだな。
まず、「ホームページ」という曖

あいまい

昧な言葉を使うのはやめたまえ。「ホームペ
ージ」とは本来「ブラウザのホームボタンを押したときに表示されるページ」
または「一連のWebページ群の入り口にあたるページ」のことを指す。

	 え？　そうなんですか？　じゃあ普通に使われる「ホームページ」を指す言
葉はなんですか？　

	 一般的には「Webサイト」と呼ぶな。ただ、ホームページという言葉は結構
広範囲に使われているから、「Webページ」を指す場合もあるけどな（図1-1）。

一連のWebページの集合がWebサイト≠ホームページ

http://gihyo.jp/のWebページ

ブラウザのホームボタン
ページ群全体＝Webサイト

検索エンジン
GoGoo!!

WEBページ

ブラウザのホームボタンを押すと
表示されるページ＝ホームページ

ページ群（Webサイト）の入り口となるページ
＝ホームページ

雑誌のページ

WEBページ

書籍のページ

WEBページ

社長挨拶

WEBページ

IR情報

WEBページ

商品ページ

WEBページ

会社案内

WEBページ

index.html

WEBページ

お問い合わせ

図1-1　ホームページとWebサイト

第1回　World Wide Web

3 minutes Networking - 3

	 ははぁ、WebサイトとWebページ、ですね。Webページがまとまって、1
つのWebサイトを作る、と。

	 そういうことだ。さて話は戻って、WWWとは何か、という話だが。そう
だな、ハイパーリンクによる広域情報共有システムというのが、
私の解答だ。（*1）

	 ハイパーリンクによる広域情報共有システム？　ハイパーリンクってなん
ですか？　あと、広域情報システムってどういうことですか？　

	 ハイパーリンクについては後で話すとして、WWWはおもにインターネット
を使った「広い範囲で」、Webサイトに書かれた「情報を」、公開したり見た
りすることにより「共有するシステム」、ということだな。

	 ふむふむ、確かにホームページ、じゃなかったWebサイトを見るのは、
Webページに書かれた情報を共有していると言えますね。

	 そうだろう？　そして、このWWWを構成する3つの中核技術が、データの
記述方法であるHTML、データの位置情報であるURI、データの転送方
法HTTPだ。

	 HyperText Markup Language、Uniform Resource Identifier、
Hyper Text Transfer Protocolですか？　

	 そうだ。つまりWWWとは「HTML」によって書かれた文書を「URI」によっ
て特定し「HTTP」でやりとりする「ハイパーリンク」によってつながれた「情
報共有システム」、ということだな。

	 HTML、URI、HTTP。そしてハイパーリンクですね。これらによって情報
の共有が行われるのがWWWだと。

●ハイパーリンクとハイパーテキスト

	 ではまず、「ハイパーリンク」とHTMLについて話そう。「ハイパーリンク」は
「ハイパーテキスト」を相互に結びつけるもので、まぁ、そうだな日本語
に直すと「参照」なんだけどな。

（*1）ハイパーリンク［Hyperlink］

4 - Software Design 5月号特別付録

	 「参照」って言っちゃうと、なんかかっちょよさが薄れますね。んで、ハイ
パーテキストってなんですか？　それを相互に結びつける？　

	 ハイパーテキストはハイパーリンクが可能な「ハイパー」な文書、だ。つま
り通常の文書（テキスト）では不可能な、他の文書や画像・動画など
を「参照」し埋め込んだり連結したりできる文書、ということだな	
 （図1-2）。

他文書やファイルを参照（ハイパーリンク）できる
ハイパーテキスト

テキストファイル
テキストファイル

テキストファイル
ハイパーテキスト

埋め込み

参照

参照

画像ファイル

画像

音声ファイル

音声

通常のテキストは独立して存在しており、別のファイルや画像・音声ファイルを
見るためには別個の「ファイルを開く」動作が必要

ハイパーテキストは、
別のファイルを埋め込んだり
他のファイルへの移動（リンク）
を入れたりできる

ハイパーテキストを読み込み、ハイパーリンクを利用するには専用の閲覧ソフト
が必要（WWWで使われるHTMLの場合のブラウザなど）

画像

画像

音声

無関係

図1-2　ハイパーリンク

第1回　World Wide Web

3 minutes Networking - 5

	 あー、あれですか。ホームぺー……じゃなくてWebページで使われてる「リ
ンク」とか「ジャンプ」とか。あと画像を貼ったり？　

	 そうだ。どれも普通のテキストでは不可能だ。これを行うことができる文
書が「ハイパーテキスト」。WWWでは、ハイパーテキスト記述言語で
あるHTMLで記述されたハイパーテキストが使われている。

	 HyperText Markup LanguageでHTML。ハイパーテキスト、マークア
ップ、言語。あれ？　マークアップってなんですか？　

	 普通のテキストというのは、単なる文字の羅
られつ

列でしかない。タブや改行程
度のことはできるがな。これに文章の「見栄え」や「構造」を付け加える命令
である「タグ」を付けたものが、マークアップ言語だ（図1-3）。

	 ははぁ、タグ。え〜っと、あれですか？　Webページを作る時に使う＜p＞
とか＜h1＞とか？　

	 そう、それだ。それにより単なる文章だけだったテキストに、「意味」を付
けることができる。段落、見出し、強調などだな。つまりHTMLとは「ハイ
パーリンク」を持つ「ハイパーテキスト」で、「マークアップ」可能な文章を
作成する言語、ってことだ。

	 なるほど。ハイパーテキストとマークアップ、ですね。で、WWWではこ
れを使っている、と。

	 うむ。ハイパーリンクを持つハイパーテキストを使うことにより、「情報の
連結」が可能になるわけだ。WWWを使っていてリンクができないことなん
て考えられないだろう？　ハイパーテキストによるハイパーリンクは、
WWWの中核とも言えるだろう。

	 確かにリンクがないと不便ですよね。そうかぁ、情報の連結かぁ。

	 情報を連結することにより、簡単に「情報の共有」が可能になる
わけだな。さて、今回はここまでとしよう。

	 あいあい。3分間HTTP&メールプロトコル基礎講座でした〜♪

6 - Software Design 5月号特別付録

ネット君の今日のポイント

●��WWWは広域情報共有システム。
●�URI、HTML、HTTPの3つの基幹技術によりWWW
は構成される。
●�HTMLはハイパーリンクを持つハイパーテキストを
マークアップで記述する言語。
●�ハイパーリンクにより容易に情報の共有が可能になっ
ている。

文書の構造や見栄えなどをタグ付け（マークアップ）できる

3分間WWW基礎講座
第1回
WWWとはなにか
WWWとは広域情報
共有システムであり情
報を共有できる。
ハイパーリンクを持つ
ハイパーテキストを使
用することにより情報
の連結ができる。

3分間WWW基礎講座
第1回

WWWとはなにか

WWWとは広域情報共
有システムであり情報
を共有できる。

ハイパーリンクを持つ
ハイパーテキスト
を使用することにより情
報の連結ができる。

①タグを使ってマークアップ（指定）する

②タブや改行以外なにもなく
　単に文章が羅列されているだけ ③文章としての構造や見栄えなどが付けられた文章となる

<タイトル>
3分間WWW基礎講座
</タイトル>
<見出し>
第1回
WWWとはなにか
</見出し>
<段落>
WWWとは広域情報
共有システムであり情
報を共有できる。
</段落>
<段落>
ハイパーリンクを持つ
<強調>ハイパーテキ
スト</強調>を使用す
ることにより情報の連
結ができる。
</段落>

マークアップ言語で
書かれたテキスト

通常のテキスト

マークアップ言語を閲覧する
専用ソフトで見た場合

図1-3　マークアップ言語

3 minutes Networking - 7

●URI

	 さてさて、WWWには3つの基幹技術があった。HTML、HTTP、URIだ。
今回はこのURIについて話す。Uniform Resource Identifier、でURIだな。

	 ゆーあーるあい？　あの、博士、URLってのはホームページ……じゃなく
てWebページ関係で聞いたことがあるんですが、それとは違うんですか？

	 URL、Uniform Resource Locatorのことだな？　

	 そうです、それです。IdentifierとLocatorしか違わないじゃないですか？
関係あるんですか？　

	 もちろんある。順番的に言えば、URLが最初にできた。そのあと、この概
念を拡張して標準たるURIができた、というわけだ。

	 ん〜っと、最初にURLがあって。URLを拡張してURIができる。……標準？
URIは標準なんですか？　URLは標準じゃない？　

	 じゃないな。URLは正式には「非公式な名前」として扱おう、って話になっ
ている。標準はあくまでもURIだ。さて、URIとは何かという話をしてなか
ったな。URIはリソースを示す統一的な識別子だ。

	 統一的な（Uniform）、リソース（Resource）、識別子（Identifier）。そのま
んまじゃないですか、もうちょっと詳しく教えてください。

	 リソース、つまりモノだ。文書だったり、画像だったり、本だったり、電話
番号だったりなんでもいい。そのリソースの書き方を定めたものが
URIだ。書き方はスキームとリソースからなる（図2-1）。

2

URI

8 - Software Design 5月号特別付録

	 「リソースの意味」と「リソースそのものの記述」？　これって何に使うんで
すか？

	 うむ、これを使って「リソースの場所」を示したり、「リソースの名前」を示
したりする。

	 たとえば、http://www.3min.jp/index.htmlならば「httpで取得できる
www.3min.jpサーバにあるindex.html」という「場所」を意味するし、
urn：ietf：rfc3989ならば、「IETFによって管理されているRFC3989文書」
という「名前」を示す。これらを同じ形式で書こうって決めたのがURIって
ことだな。

	 ……博士、そのhttp://www.3min.jp/index.html ってURLですよね？	
それを今ではURIって呼ぶってことですか？　

リソースを示すための統一的な書き方

http: //gihyo.jp/tcp/wwwmail.html
gihyo.jpにあるtcpフォルダ内のwwwmail.htmlファイル

ftp: //filestorege.com/inter/rensyu.doc
filestorage.comにあるinterフォルダ内のrensyu.docファイル

urn: ietf:rfc3989
ietfによって管理されているRFC3989文書

urn: isbn:978-4-7741-3863-3
isbnコード978-4-7741-3863-3で示される書籍

スキーム リソース

そのリソースの意味を説明する
http：やftp:などはリソースの処理方法、
urn:はリソース自体の番号を示すことを
表す

リソースそのものを記述。スキームによって、書き
方と意味が異なる。http:やftp:がスキームならリ
ソースの場所を示す。urn:ならばリソース自体の
番号を示す

図2-1　URIとURL

3 minutes Networking - 9

第2回　URI

	 そうだなぁ、もともとURLが先にあったということはさっき話したが、URL
の書き方をもっと全般的に使おうと新しく定義しなおしたのがURI、だな。
おかげで使える範囲がぐっと広がった。それで、かつてURLと呼ばれてい
た書き方もこの新しい定義の中に入ってしまっている（図2-2）。

	 なるほど。URIに含まれちゃったので、使わないようにしようってことで「非
公式」ってわけですね。でもそれだったら廃止しちゃえばいいのに。

	 たぶんURLという用語が定着してしまっているので、いまさら廃止ってわ
けにもいかないんだろう。ともかく、リソースを記述するものがURI、と覚
えておきたまえ。

	 はい。それで、URIはWWWではどう使うんですか？　

URLは現在では非公式
URIのうちhttp:などがスキームのもの

リソースを示す識別子
URI

urn:

以前はURLと
呼ばれていたURI

URNには、URNで示されるリ
ソースの番号の意味を示す
「名前空間」というものがある

http:

ftp:

tel:

mailto:

fax:
isbn:

classid:

tv:

ietf:

publicid:

service:

go:

図2-2　URIとURL

10 - Software Design 5月号特別付録

●WWWで使われるURI

	 うむ、WWWではリソースの場所を記述するためにURIを使用す
る。主にスキームとしてhttp：を使うURIが使われるな。ほかにも	
 ftp：やmailto：、携帯電話のWebページではtel：などのスキームも使わ	
 れているな。

	 P9の図でhttp：やftp：はリソースの処理方法を示すってありましたけど。
どういう意味です？

	 そうだな。http：やftp：がスキームの場合、後ろのリソース部にはリ
ソースのWWWでの場所を記述する。つまりスキームと併せて、そ
の場所にあるリソースをスキームのプロトコルで処理するとい	
 う意味だ、と考えておけばいい。WWWでの一般的なURIの記述は図のとおり	
 になる（図2-3）。

	 んんん？　ユーザ名：パスワード？　ポート番号？　そんなの記述しまし
たっけ？　Webサイトを見るときに、打ち込んだことないですよ？

一般的にはhttp:がスキームで、サーバドメイン名、
リソースへのパスなどから構成される

http: // ユーザ名：パスワード ＠ サーバドメイン名 ： ポート番号 / リソースへのパス

リソースがあるサーバのドメイン名
IPアドレスでもOK

サーバへログインするための
アカウント情報（省略可能）

サーバ上にあるリソースへのパス/フォ
ルダ名/フォルダ名/ファイル名のように
スラッシュで区切り、フォルダとファイル
を指定できる

スキームで示された処理方法（一般的に
はhttp）を待ち受けているポート番号。
Well-Knownポートなら省略も可能

スキーム
一般的にはhttp:

図2-3　WWWでのURI

3 minutes Networking - 11

第2回　URI

	 WWWは情報共有システムとして、「誰でも見られる」ことが前提となって
いる。そのため、本来なら「他のコンピュータの情報を取得する」ために必
要な「ログイン」を省略している。その結果、ユーザ名とパスワードは通
常書かなくてもよく、省略できる。（*1）

	 そうか、本来なら「ログイン」しなきゃダメなんだけど、それが省略されて
いるってことなんですね。まぁ、会員制でもない限り、いちいちユーザ名と
パスワードは必要ないですよね。あと、ポート番号は？　

	 本来ならポート番号を付けるのが正式だ。だが、httpはWell-Knownポー
トとして80番を使用できるので、80番を宛先とする場合は省略できる。

	 なるほどなるほど。Well-Knownポートについては『3分間ネットワーク基
礎講座』や『3分間DNS基礎講座』を読むといいですよね。

	 露骨な宣伝ありがとう。さて、ポート番号のうしろには、スラッシュのあと
に要求したリソースの、そのサーバ上での場所を記述する。

	 でも博士、いちいち書かない場合もありますよね。技術評論社のサイトは
http://gihyo.jp/ って書かれていることが多いし、博士のサイトだって
http://www5e.biglobe.ne.jp/~aji/だから、リソースが書いてないです
よ？

	 うむ。その場合は要求を受け取ったWebサーバのアプリケーションが、自
動的にリソース名、通常はファイル名だが、それをくっつける。ここでの
ポイントは、最後にスラッシュがあるかないか、だ。

	 最後にスラッシュ？　たとえば「http://www5e.biglobe.ne.jp/~aji/」と
「http://www5e.biglobe.ne.jp/~aji」みたいにですか？　

	 うむ。その場合、動作が異なる。スラッシュがないとファイル名とみなし
てしまうのだ（図2-4）。

（*1）省略している　実際はログインを行わないわけではなく、「匿名ログイン」を行っている。
詳しくは（『3分間HTTP&メールプロトコル基礎講座』（当社刊）P99参照）。

12 - Software Design 5月号特別付録

	 へー、最後にスラッシュがないと、ファイル名とみなしてしまい、そのファ
イルがなければ最後にスラッシュをくっつけるんですね。

	 そうだ。このあたりの詳しい動作の違いは先で説明しよう（P28参照）。今
回はここまでとしておこう。

	 はい。3分間HTTP&メールプロトコル基礎講座でした〜♪

ネット君の今日のポイント

●�URIはリソースを記述する書き方。
●WWWではhttp：などのスキームのURIが使われる。
●WWWのURIでサーバ名、リソースの場所を指定する。

最後にスラッシュがあるのとないのとでは動作が異なる

gihyo.jpサーバの場合 ……リソース名が省略されたら
index.htmlに対する要求とみなす

要求のURI サーバが認識するURI サーバの動作

http://gihyo.jp/

http://gihyo.jp

http://gihyo.jp/index.html

http://gihyo.jp/index.html

index.htmlを追加する

スラッシュとindex.htmlを
追加する

サーバドメイン名の後ろのスラッシュがなくても、自動的にスラッシュを追加する

要求のURI サーバが認識するURI サーバの動作

http://gihyo.jp/tcpip/

http://gihyo.jp/tcpip

http://gihyo.jp/tcpip/index.html

http:/gihyo.jp/tcpip

index.htmlを追加する

tcpipファイルを探す

リソースのパスの最後にスラッシュがないと、ファイル名とみなし、そのファイルを探す。
もしそのファイルがない場合は、スラッシュをつける（P29参照）

図2-4　リソースの最後のスラッシュ

3 minutes Networking - 13

●HTTP

	 さて、WWWを構成する基幹技術のうち、HTMLとURIを説明した。今回か
らはHTTP、HyperText Transfer Protocolを説明する。

	 ハイパーテキストであるHTMLと、その場所を特定するURIですね。で、
HTTPがそれの転送？　

	 そう、HTTPはハイパーテキストの要求と転送を行うプロトコル
だ。最初に、HTTPのバージョンについて説明しておこう。HTTPのバージ
ョンは「メジャーバージョン.マイナーバージョン」の書き方で記述され、
0.9、1.0、1.1がある。まずWWWが開発された1989年に作られた最初の
HTTP0.9があり、これを1996年に標準規格化したHTTP1.0がある。

	 へぇ、規格化までにずいぶん時間がたってるんですね。1.1はいつですか？

	 HTTP1.1はHTTP1.0を拡張したもので、HTTP1.0の1年後の1997年に規
格化されている。現在は1.1が主流だ。ただし、WWWで使われるソフ
トは最低でも1.0に対応しなければいけない。WWWで使われるソフトとい
うのは、要求を出すクライアントと、要求を受け取り応答を返すサーバソ
フトだな。

	 あれですね、ブラウザですね！！（*1）

	 そうだな。一般的にはブラウザだな。他にも、検索サイトが使うロボット
などもある。これらをまとめて、ユーザーエージェント（UA）と呼ぶ。
一方のサーバソフトはWebサーバアプリケーションと呼ばれること
が多い。その基本的な動作はこうなる（図3-1）（*2）（*3）。

3

HTTPの動作

14 - Software Design 5月号特別付録

	 えっと、まずURIのドメイン名をDNSで名前解決して、その後Webサーバ
アプリケーションへ「リクエスト」を送る。Webサーバアプリケーション側
は「レスポンス」を返すわけですね。DNSについては前著『3分間DNS基礎
講座』（当社刊）で詳しいですよね。

	 露骨な宣伝を何度も入れてくれてありがとう。ともかく、そのとおり。ポ
イントとしては、「ホームページを見る」とよく言うが、実際にはサーバに
あるファイルを「見て」いるわけではない、というところだな。

	 え？　「見て」るんじゃないとすると、どうしてるんですか？　

	 実際は「ダウンロードして、キャッシュに保存する」のだよ。それをUAで「開
いて」「見て」いるのだ。単純に「見る」というとサーバ上にあるものを直接
開いているというイメージがあるが、実際は「ダウンロードしている」とい
うことだな。

	 キャッシュってあれですね、一時的に保存する場所のことですよね。そっか、
そこに一時保存してから見ているんですね。

	 うむ。キャッシュについてはまた先で出てくるので覚えておいてくれ（P43
参照）。そしてもう1つのポイントは、1つのWebページを閲覧するのには通
常、複数のリクエストとレスポンスを行う、ということだな（図3-2）。

	 えっと、HTMLファイルを受け取ったらそこに書かれている内容を見て、
画像などが必要だったらそれを別個に要求する？　

	 そうだ。よく文字だけ表示されて、後で画像が出てくることがあるが、そ
れはHTMLファイルの取得、HTMLファイルの解析、画像タグの発見、画
像の要求と応答、という手順を踏んでいるからだ。

	 だから画像だけ後で遅れて出てくることがあるんですね、なるほど納得です。

（*1）ブラウザ［Browser］　正確にはWebブラウザ。画像ファイルの閲覧（画像ブラウザ）やフ
ァイルを見るためのブラウザ（ファイルブラウザ）もある

（*2）ロボット［Robot］　自動でWWWを巡回し、検索可能な情報を集めるソフトウェア。エー
ジェント［Agent］とも呼ばれる。

（*3）ユーザーエージェント［User Agent］

第3回　HTTPの動作

3 minutes Networking - 15

クライアントのUAからのリクエストに対し、
サーバのWebサーバアプリケーションがレスポンスを返す

①ユーザがUAに対し、要求するリソースのURIを入力する
URI http://www.3min.jp/index.html

www.3min.jpの名前解決
問い合わせと応答

ユーザ UA Webサーバ
アプリケーション

index.html

www.3min.jp

②UAはURIのサーバドメイン名の名前解決を行う

ユーザ UA Webサーバ
アプリケーション

index.html

www.3min.jp

DNS（ネーム）サーバ

③UAはサーバあてにURIのリソースのリクエスト（要求）を送信する
URI http://www.3min.jp/index.html

ユーザ UA Webサーバ
アプリケーション

index.html

www.3min.jp

④Webサーバアプリケーションはリクエストを受け取り、要求されたURIの
リソースをレスポンスとして送り返す

ユーザ UA Webサーバ
アプリケーション

index.html

www.3min.jp

⑤UAは受け取ったリソースをキャッシュとして保存し、その後画面に表示する

ユーザ
UA Webサーバ

アプリケーション

index.html

www.3min.jp
キャッシュ

リクエスト
メッセージ

レスポンス
メッセージ

表示

図3-1　UAとWebサーバアプリケーション

16 - Software Design 5月号特別付録

●HTTPメッセージ

	 さて、実際のリクエストとレスポンスの内容について説明していこう。まず
覚えておいてほしいのが、HTTPは文字ベースのリクエストとレスポ
ンスを行うということだ。それと改行が意味を持っていることも覚	
 えておいてくれ。

	 文字ベースってどういう意味ですか？　あと、改行が意味を持つって当た
り前のことのような気がしますけど？　

レスポンスで取得したWebページに画像ファイルの
指定があった場合、それを別個にリクエストする

ユーザ
UA

Webサーバ
アプリケーション

index.html

img.jpg

キャッシュ

画像の指定

先ほど取得したindex.htmlファイル

先ほど取得したindex.htmlファイル

ユーザ
UA

Webサーバ
アプリケーション

index.html

img.jpg

キャッシュ

指定されたURIに対し
リクエストを送る

リクエスト
メッセージ

①

②

レスポンス
メッセージ

図3-2　Webページの閲覧

第3回　HTTPの動作

3 minutes Networking - 17

	 文字ベースというのは、リクエストやレスポンスが文字でのみ制御される、
ということだ。DNSみたいに、ビットが0か1かで動作が決まる、などとい
うことがなく、すべて文字情報でやりとりされる。改行については、まぁ
後でわかる（P18参照）。

	 そういえば、DNSではフラグがあって、そこのビットによってやりとりの
内容が決まっていましたよね。詳しくは『3分間……。

	 それはもういい。ともかく、リクエストとレスポンスの制御情報は文字で
書かれるということがわかればいい。さて、リクエストとレスポンス、ま
とめてHTTPメッセージと呼ぶが、この構成は「ヘッダ」＋「ボディ」の形を
とる（図3-3）。

	 ヘッダとボディ。ヘッダはさらに、「開始行」と「メッセージヘッダ」があって、
その後ろにボディ。……この間には改行コードが入る？　

HTTPメッセージは開始行、メッセージヘッダ、
ボディから構成される

開始行やメッセージヘッダは1行で表す

メッセージヘッダは
複数ある

改行だけの行があるとヘッダの終了

ヘッダ
（制御情報）

ボディ
（リソースなど
のデータ）

開始行 <改行>

<改行>

メッセージヘッダ <改行>

メッセージヘッダ <改行>

メッセージヘッダ <改行>

ボディ
（メッセージボディ・エンティティボディ）

…
開始行やメッセ
ージヘッダは改
行で区切り

図3-3　HTTPメッセージ

18 - Software Design 5月号特別付録

	 そうだ。HTTPのヘッダでは、改行コードにより区切りが行われる。
さっき改行が意味を持つといったのはこのことだ。

	 なるほど。改行があると、開始行の終わりだとわかるし、改行が2つ続くと
ヘッダの終了がわかるんですね。で、このメッセージヘッダは複数あるん
ですか？　

	 うむ。開始行と複数のメッセージヘッダで「HTTPヘッダ」が構成される、
ということだ。メッセージヘッダはHTTP1.1では最低1つは必ず必要だ。そ
れ以上は必要に応じて付けることになる（P32参照）。

	 ヘッダがいつくかある、と。ちなみにボディには何が入るんですか？　

	 うむ、レスポンスの場合はわかるだろう？　HTMLファイルや画像ファイ
ルなど、リクエストによって要求されたファイルのデータが入ることになる。
リクエストの場合は、「ボディなし」か、Webページを見るために必要なデ
ータを入れることになる。

	 Webページを見るために必要なデータって、URIとかですか？　

	 いや、URIは開始行にある。この場合の必要なデータというのは、例えば掲
示板などに書き込んだり、オンラインショッピングで商品を選択したりした
場合に、サーバに送るデータのことだな。こういう情報が必要ならボディ
に入れるし、必要ないならボディなしになる。では、今回はここまで。

	 はいな。3分間HTTP&メールプロトコル基礎講座でした〜♪

ネット君の今日のポイント

●�HTTPではUAとWebサーバアプリケーションでデー
タのやりとりをする。
●�HTTPでやりとりするHTTPメッセージにはリクエ
ストとレスポンスがある。
●�HTTPメッセージは開始行、メッセージヘッダ、ボ
ディからなる。

3 minutes Networking - 19

●メソッド

	 さて、HTTPでやりとりされるメッセージにはリクエストとレスポンスがあ
り、それの構造を理解できたと思う。

	 はい。開始行、メッセージヘッダ、ボディから構成されているんですよね。

	 今回はリクエストの開始行である、リクエスト行について説明しよう。
リクエスト行には3つの情報が書かれている。メソッド、リクエスト
URI、HTTPバージョンだ。この3つは空白文字で区切られる。	
 最後に改行があって、リクエスト行は終了となる。（*1）

	 URIとHTTPバージョンはわかりますけど、メソッドって何ですか？　

	 そうだな、「リクエストの内容」とでも覚えてもらうといい。つまり、リク
エストで何を要求したかということだ。

	 ん〜、WWWなんですから、リクエストで要求するのは、Webページや画
像なんじゃないですか？　

	 もちろんそれが多いが、それだけではない。メソッドには8種類とその拡張
がいくつかあり、それぞれWebサーバに要求する項目が異なる。詳しくは先
で説明するので（P43参照）、ここでは簡単に説明しておこう。まずGET。
これは先ほどネット君が言ったとおり、リソースの転送を要求するも
のだ。これはHTTP0.9、つまり最初のHTTPから存在する基本のメソッド
だな（図4-1）。

4

HTTPリクエスト

（*1）リクエスト行［Request-Line］、メソッド［Method］

20 - Software Design 5月号特別付録

リクエスト行は メソッド、リクエストURI、
HTTPバージョンから構成される

HTTPリクエストメッセージ

開始行（リクエスト行）

代表的なメソッド

対応バージョン 意味メソッド

リクエスト行の構成
メソッド <空白> リクエストURI <空白> HTTPバージョン <改行>

<改行>

メッセージヘッダ

メッセージヘッダ

ボディ
（メッセージボディ・エンティティボディ）

HTTP0.9～

HTTP1.0～

HTTP1.0～

HTTP1.0～

HTTP1.0～

HTTP1.1～

HTTP1.1～

HTTP1.1～

HTTP1.1（WebDav）～

リソースの取得の要求

リソースの取得の要求（ヘッダのみ）

データの送信と処理の要求

ファイルの転送

ファイルの消去

メソッドやオプションの確認

経由するサーバのトレース

中継サーバのトンネリング

ファイルのプロパティ取得

GET

HEAD

POST

PUT

DELETE

OPTION

TRACE

CONNECT

PROPFIND

図4-1　リクエスト行とメソッド

第4回　HTTPリクエスト

3 minutes Networking - 21

	 リソースの要求ですから、HTMLファイルや画像ファイルを要求して、送
ってもらうっていうリクエストってことですよね。というか、これ以外のリ
クエストってのが思いつかないんですが？

	 その他の代表的なメソッドとしては、POSTがある。POSTは掲示板など
でデータを送信する際に使用される。つまり、POSTする、「投稿する」
ために使われるメソッドだな。CGIなどにデータを送る時に使う。（*2）

	 そういえば、掲示板に書き込むことを「投稿」って言ったりしますね。で、
CGIってなんですか？

	 CGIは動的ページ、つまりこちらの入力に合わせてページを新しく作成する
ためのしくみだ。掲示板はこちらが入力した内容によって、表示されるペ
ージの内容が変わるだろう？　つまり、こちらの入力によってページの内
容が新たに作られているわけだ。このような動的ページを作るしくみが、
CGIと呼ばれている。

	 言われてみればそうですね。掲示板とかって、事前に用意してあったWeb
ページを表示しているわけじゃないですもんね。

	 このように、「そのリクエストがどのような内容か」を決めるのがメソッド、
ということだな（図4-2）。

●リクエストURI

	 リクエスト行に、メソッドの次に書かれているのがリクエストURIだ。これ
はリクエストするリソースを指定するためのものだ。これの書き方だが、
まず相対URIを記述するのが一般的だ。

	 URIは、前回出てきたリソースの識別子ですよね。相対URIの記述が一般的？
相対URI？　一般的ってことは他の書き方もあるってことですか？

	 まぁまぁ、いくつも質問するな。まず、相対URIだが、これはホームディ
レクトリから見たリソースの場所だ。ホームディレクトリとはWeb	
 サーバアプリケーションが指定した、そのWebサーバでの一番上のディレ	
 クトリ（フォルダ）のことだ。

（*2）CGI［Common Gateway Interface］　動的ページを作成するためのプログラムを呼
び出すしくみ。

22 - Software Design 5月号特別付録

	 サーバで一番上のフォルダというと、WindowsならCドライブ、Linuxなら	
/（ルート）ですか？　

	 いや、Webサーバアプリケーションにとっての一番上だ。なので、どこで
もいい。すべてのリソースはこのホームディレクトリの下に配置されること
になる。このホームディレクトリから見た場所を、リクエストURIに記述す
る。これが相対URIだ。相対URIは必ずスラッシュから始まる（図4-3）。

	 ははぁ、/text/index.htmlだとすると、ホームディレクトリの下にある
textフォルダの中のindex.htmlって意味になるわけですね。

	 そういうことだ。これが、相対パスによって表記されるリクエストURIだ。
これが通常の記述になるが、例外として、絶対URIを記述する場合が
ある。これはプロキシサーバ経由でのリクエストを行う場合に使用
する。

情報を取得するGET、送信するPOST

GETメソッド　リクエストURIに記述されたリソースを取得する

ユーザ
UA Webサーバ

アプリケーション

index.html

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

リクエスト行 GET http://www.3min.jp/index.html HTTP/1.1

URI入力

POSTメソッド　ユーザが入力した情報を「投稿」する

ユーザ
UA Webサーバ

アプリケーション

bbs.cgi

www.3min.jp

レスポンス
メッセージ

入力した
情報

リクエスト
メッセージ

リクエスト行 POST http://www.3min.jp/bbs.cgi HTTP/1.1

URIと情報の
入力

受け取った情報の処理結果

図4-2　GET、POSTメソッド

第4回　HTTPリクエスト

3 minutes Networking - 23

	 絶対URI？　プロキシサーバ？　なんですかそれ？　

	 プロキシサーバについてはあとで詳しく説明するが（『3分間HTTP&メール
プロトコル基礎講座』P78参照）、簡単に言えばHTTPメッセージを中継す
るサーバのことだ。プロキシサーバを使用する場合は、絶対URIを記述し
なければならない。絶対URIはhttp://から始まるURIで、WWWでの
リソースの場所を示す。

	 ふむふむ。相対URIが「ホームディレクトリからの場所」を指すのに対し、
絶対URIは「WWW上で配置されている場所」を指すわけですね。プロキシ
サーバが中継する場合は絶対URIが必要、と。

ホームディレクトリからみたリソースの場所を示す相対URI

サーバの実際のフォルダの配置 サーバのWebサーバアプリケーション
にとってのフォルダの配置

www.3min.jp www.3min.jp

/ home net /

bin text

var www img net

text

http.html

WWWで公開したいフォルダ

ホームディレクトリに
設定したフォルダが
一番上に

img gazou.jpg

index.html

http.htmlhttp.html

index.html

gazou.jpg

ホームディレクトリに設定

公開したいフォルダは
ホームディレクトリの
下にある設定になる

リクエスト行 GET /text/index.html HTTP/1.1

図4-3　相対URIによるリクエストURI

24 - Software Design 5月号特別付録

	 そういうことだ。リクエストURIには他にも記述法があるが、かなり特殊な
ので省略する。さて、メソッド、リクエストURIの次はHTTPバージョンだな。
これはUAが使用できるHTTPのバージョンを示す。

	 HTTPのバージョンってことは、0.9とか1.0、1.1を送るってことですか？

	 そうだな。記述方法は「HTTP/1.1」のように、HTTPスラッシュバージョン
で記述する。クライアントが使用できるHTTPのバージョンを示すことで、
使用する機能が決まるわけだ。

	 んん？　ってことは、HTTPのバージョンが違うと、使用できる機能が違う
ということですか？　

	 そうだ。サーバ側は自身が使用できるバージョンと、要求のバーションを
比較して、使用するバージョンを決定するわけだな。どちらも1.1なら1.1
の機能を使うし、どちらかが1.0だったなら1.0の機能でやりとりする。

	 なるほど。

	 というわけで、リクエスト行については理解したかな？　これがリクエスト
でもっとも大事と言っていい部分なのでしっかり覚えておくように。ではま
た次回。

	 いぇっさー。3分間HTTP&メールプロトコル基礎講座でした〜♪

ネット君の今日のポイント

●�リクエスト行にはメソッド、リクエストURI、HTTP
バージョンが書かれている。
●�メソッドはリクエストの内容を決定している。
●�リクエストURIはリソースの場所を指定している。

3 minutes Networking - 25

●ステータスコード

	 さて、ネット君。HTTPメッセージは、リクエスト、レスポンスのどちらも、
開始行、メッセージヘッダ、ボディから成り立っているという話はしたな
（P17参照）。

	 はい。で、前回リクエストの開始行、リクエスト行の説明をしましたよね。
リクエスト行はメソッド、リクエストURI、HTTPバージョンからなるって。

	 うむうむ。メソッドはリクエストの内容を、リクエストURIは要求するリソ
ースを、HTTPバージョンはクライアントが使用しているHTTPのバージョ
ンを示したわけだ。

	 で、今回はレスポンスの開始行、ステータス行の説明をしよう。（*1）

	 あれ？　リクエストの開始行の次だから、順番的に言えばメッセージヘッ
ダの説明じゃないんですか？　

	 メッセージヘッダはレスポンスにもあるから、後でまとめて、な。ともかく、
ステータス行はHTTPバージョン、ステータスコード、応答フレ
ーズからなる。リクエスト行と同じく空白文字で区切られる。そして	
 最後に改行があって、ステータス行は終了となる。

	 あー、空白で区切ることと、最後に改行があるのはリクエストと変わらな
いんですね。それで、最初がHTTPバージョン？　

	 うむ。これはサーバが使用できるHTTPバージョンを示す。記述
はリクエストと同じようにHTTPスラッシュバージョンで記述する。リクエ
ストにもHTTPバージョンがあって、そちらはUAが使用しているHTTPの
バージョンだったな？

5

HTTPレスポンス

（*1）ステータス行［States-Line］

26 - Software Design 5月号特別付録

	 そうでした。ってことは、UAが使ってるHTTPバージョンをリクエストで
送り、サーバが使用しているHTTPのバージョンをレスポンスで送る？

	 そうだな。それにより、やりとりで使用されるHTTPのバージョンがわかる
わけだ。そして、次がステータスコードと応答フレーズ。これはレスポン
スの意味を説明するためのものだ。ステータスコードは3桁の数字で、ど	
 のようなレスポンスかということを示す値だ（図5-1）。

	 ふむふむ、ステータスコードの100の桁の番号で、大雑把なレスポンスの意
味がわかるってことですか。

	 そういうことだ。そして、ステータスコードに対応したものが応答フレー
ズだ。これはステータスコードの意味を記述したものだ。

●代表的なステータスコード

	 さて、ステータスコードだが、40種類近くあり、さらに拡張も行われてい
るのでさすがにすべて説明はできない。よって、ここでは代表的なステー
タスコードを説明していこう。まず、「200 OK」だ。これはもっとも一般的
なステータスコードだろうな。「200 OK」は、リクエストが正常であり、
正しく受け入れられたことを示す。よって、レスポンスにはメソッド	
 に応じたボディが付け加えられる。

	 つまり「OK」だから、「正常に応答した」って意味でいいんでしょうか？

	 そうだな。リクエストのリクエストURIのリソースに対し、メソッドで示し
た処理を正常に行った、ということだ。

	 次が「301 Moved Permanently」。
	 これは、リクエストURIで指定したリソースが「移動している」ことを示す。

そして300番台のステータスコードだから、さらに次のリクエストを要求す
るステータスコードであるということがわかる。つまり「要求したリソース
は移動したので、移動先のURIを要求してください」というレスポンスだ。

	 ははぁ、ずいぶんと親切なレスポンスなんですね。移動したから存在しな
いよ、って言うだけが普通かな、と思うのに、移動先までわざわざ教えて
くれるなんて。

第5回　HTTPレスポンス

3 minutes Networking - 27

レスポンスの意味を説明する3桁の数値がステータスコード
それに対する説明文が応答フレーズ

HTTPレスポンスメッセージのステータス行

ステータスコードの100の桁の意味

HTTPバージョン <空白> ステータスコード <空白> 応答フレーズ <改行>

ステータスコード

1xx

2xx

3xx

4xx

5xx

代表的なステータスコードと応答フレーズ

説明

200

202

205

301

304

400

401

403

404

405

500

501

505

正常にリクエストを受け付けた

正常にリソースを作成した

正常にリクエストを受け付けたが、応答するリソースなし

リソースは移動している

リソースは更新されていない

開始行、メッセージヘッダの構文にミスがあり受け取れない

リソースには認証が必要であり、認証されていない

コマンドは正常だが、サーバがその実行を拒否した

リソースは存在しない

そのメソッドの実行は許可されない

サーバ内部のエラー

コマンドを実行する機能が存在しない

リクエストの実行に必要なHTTPバージョンに対応していない

ステータス
コード

応答フレーズ

OK

Created

Not Content

OK

Bad Request

Unauthorized

Forbidden

Not Found

Movement
Permanently

Method Not
Allowed
Internal

Server Error
Not

Implemented
HTTP Version
Not Supported

説明

正しいコマンドを受け付けて処理中である

正しいコマンドを受け付けて処理を完了した

正しいコマンドを受け付けて、次に別のコマンドを要求する

誤ったコマンドを受け付けた。再送を望む

サーバの状態により、コマンドの受け付けが不可能

意味

肯定先行

肯定完了

肯定中間

一時否定完了

否定完了

図5-1　ステータスコードと応答フレーズ

28 - Software Design 5月号特別付録

	 いや、ネット君の言う通り、それが普通だ。通常は場所が変更されたリソ
ースにリクエストが来たら「見つからない」と返す。では、この304 Moved
Permanentlyは何に使われるかというと、リクエストURIの最後のス
ラッシュがない場合に使われる（図5-2）。

	 あ、前に説明してた「最後にスラッシュがない場合」の動作ですね（P12参
照）。最後にスラッシュがないと、ファイル名とみなしてしまい、そのファ
イルがないと最後にスラッシュをくっつけるって言ってたけど、こういう動
作をするんだ。

リクエストURIの最後のスラッシュがない場合、
304となり、正しいURIで再度リクエストを送る

①リクエストURIのリソースへのパスにスラッシュがない場合、304となる

ユーザ

UA Webサーバ
アプリケーション

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

リクエスト行 GET /net HTTP/1.1

URI入力

HTTP/1.1 304 Moved permanently
Location：/net/

スラッシュつきの正しいURIをLocationメッセージヘッダで通知する

index.html

netフォルダ

②通知された正しいリクエストURIで再度リクエストを送信する

ユーザ

UA Webサーバ
アプリケーション

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

リクエスト行 GET /net/ HTTP/1.1

index.html

netフォルダ

HTTP/1.1 200 OK

図5-2　304 Moved Permanently

第5回　HTTPレスポンス

3 minutes Networking - 29

	 そうだ。最後のスラッシュがない場合、2回リクエストを送る場
合があるってことだ。正直言って、無駄でしかないとも言える。

	 次は、「401 Unauthorized」。認証失敗を示すエラーだ。

	 認証？　認証って言うと、ユーザ名とパスワードのアカウントを示して、「自
分が正しいユーザであることを示す」んですよね。

	 そうだ、それによりページを見る権利があることを示すわけだな。WWW
では通常は認証は行わないが、会員制ページなどでは認証を行いたい場合
がある。その場合に使用するのが401 Unauthorizedだ。

	 詳しくは「認証」のところで話そう（『3分間HTTP&メールプロトコル基礎講
座』P97参照）。次は「404 Not Found」。これはちょくちょく見かけること
があるかもしれん。リクエストURIで指定したリソースが存在しないという
ステータスコードだ。

	 あー、もしかして「Webページが見つかりません」ってやつですか？　

	 うむ。ブラウザによって表示が違う場合もあるが、ネット君が言っている
それだ。指定したリソースが存在しないというエラーだな。リクエストURI
を間違えた、リソースが移動した・消されたなどで起きる。

	 そして、最後に説明するのが「500 Internal Server Error」だ。

	 サーバ内部（Internal）エラー？　それは見たことがないなぁ。500番台だ
から、サーバ側で実行できない？

	 このエラーは人によっては嫌というほど見るエラーなのだがな。ネット君
の言う通り、リクエストは正常だが、Webサーバアプリケーション側の事
情でエラーになった場合に送るステータスコードだ。一番よくある原因と
しては、CGIで使っているプログラムにミスがあって、プログラムが正常に
動作しない場合だな（図5-3）。

	 CGIの動的ページを作るプログラムにミスがある、と。それって見る側から
したらどうしようもなくないですか？　

	 うむ、実はどうしようもない。そういう場合は、Webサイトを作った人に
連絡するしかないな。さて、メジャーなステータスコードは説明した。今
回はこれぐらいにしておこう。

	 あいあい。3分間HTTP&メールプロトコル基礎講座でした〜♪

30 - Software Design 5月号特別付録

ネット君の今日のポイント

●�ステータス行にはHTTPバージョン、ステータスコー
ド、応答フレーズが書かれている。
●�ステータスコードは100の桁でそのコードの意味が
わかる。
●応答フレーズはステータスコードの説明文。

ステータスコード400・500番台のレスポンスは
何らかのエラーであり、コードによって識別できる

404 Not Found

ユーザ

UA

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

リクエスト行 GET /net/ HTTP/1.1

URI入力

HTTP/1.1 404 Not Found

HTTP/1.1 500 Internal Server Error

500 Internal Server Error

ユーザ

UA Webサーバ

アプリケーション

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

リクエスト行 POST /net/bbs.cgi HTTP/1.1

bbs.cgi

Webサーバ

アプリケーション

netフォルダ

リクエストURIのリソースがない

正常動作しないプログラム

netフォルダ

図5-3　400・500番台のステータスコード

3 minutes Networking - 31

●メッセージヘッダの役割

	 さて、HTTPメッセージは、開始行、メッセージヘッダ、ボディから構成さ
れているという話をした。それで、前々回、前回で開始行を説明したな。

	 はい。リクエストのリクエスト行、レスポンスのステータス行ですね。

	 うむ、そうだ。そしてその次に続くのが、メッセージヘッダだ。まずメッセ
ージヘッダの役割だが、メッセージヘッダがない場合のことを考えてみよ
う。メッセージヘッダがない場合、開始行とボディだけになるな。ボディ
はやりとりするデータそのものだから、HTTPのやりとりの制御は開始行だ
けで受け持つことになる。

	 そうなりますね。で、開始行に書かれているものと言えば、リクエスト行
だとメソッドとリクエストURIとHTTPバージョン。ステータス行だと、
HTTPバージョンとステータスコード、応答フレーズ。

	 HTTPバージョンを抜くと、実質「要求するリソースとその扱い」をリクエ
ストとして送り、「その結果」をレスポンスで送り返すことになる。さすが
に制御情報としては少ないとは思わないかね？　

	 う〜ん、少ないっていえばそうですけど、これだけでも大丈夫な気がしま
すけど？　

	 まぁ、確かに最初に作られたHTTP0.9にはメッセージヘッダはなかったが、
これだけでも動いていた。だが、HTTPで処理することが増えるにつれ、
UAとサーバ間でもう少し情報をやりとりしたい、と考えたわけだ。そこで
HTTPのやりとりに情報を付加する役割でメッセージヘッダ
を付けるようになった、というわけだ。

6

メッセージヘッダの
種類と役割

32 - Software Design 5月号特別付録

	 ん〜、どんな情報を付けるようになったんですか？　

	 たとえば、リソースの更新日、データ量、使用しているメディア、UAの種類、
認証、中継などだな。確かにこれらの情報がなくても、純粋なリソースの
やりとりには問題ないとはいえる。だが、HTTPが拡張され、さまざまなデ
ータを運んだり、細かいやりとりの制御を行ったりするにはこれらのメッセ
ージヘッダが必要になった、ということだ。

	 ははぁ。なんかかっちょよくいえば、WWWがインターネットの主役になっ
たのは、HTTPが拡張されてさまざまなことができるようになったからです
よね。その背景としてメッセージヘッダの導入があった、って感じですか？

	 なかなかうまいこと言うな。ともかく、メッセージヘッダを付けることによ
り、HTTPのやりとりで様々なことができるようになった、と覚えておくと
いい。どのようなことができて、どのようなメッセージヘッダが使われるか、
という点についてはまた先で説明する（P37参照）。

●メッセージヘッダの種類

	 さて、では実際にメッセージヘッダの説明をしていく。まずメッセージヘッ
ダの記述からだな。メッセージヘッダは「ヘッダ名：内容 改行」で1つ
のメッセージヘッダを構成する。改行がメッセージヘッダの区切りであるこ
とを忘れないように。このメッセージヘッダを必要な数だけ開始行の後ろに
入れ、最後にもう一度改行コードを入れる。この改行がメッセージ
ヘッダ群の終了を示し、その後ろがボディであることがわかる（図6-1）。

	 ふむふむ。メッセージヘッダは、必要な数だけ入れるんですね。開始行、
メッセージヘッダ、メッセージヘッダ、……、ボディって形ですね。で、区
切りに改行を入れる。

	 そういうことだ。さて、このメッセージヘッダはだいたい50種類弱ぐらい存
在する。さすがにこれを全部説明はできないので、代表的なものだけ説明し
ていくが、まずこのメッセージヘッダの分類について話そう。メッセージヘ
ッダの分類には2種類ある。まず、中継された場合の扱いによる分類だ。

	 中継？　そう言えば前にプロキシサーバが中継するとかなんとか話してい
ましたよね。絶対URIと相対URIのところで（P23参照）。

第6回　メッセージヘッダの種類と役割

3 minutes Networking - 33

	 うむ、よく覚えていた。プロキシサーバは、HTTPのリクエストとレスポン
スを中継するサーバだ。詳しくは先の回で説明するが（『3分間HTTP&メー
ルプロトコル基礎講座』P78参照）、このプロキシサーバで中継される場合
に、メッセージヘッダをどう扱うか、という話だ。これはメッセージヘッ
ダによって異なり、エンドツーエンドかホップバイホップのどちら
かになる（*1）（図6-2）。

	 ん〜っと、中継する場合も変わらないヘッダと、中継されたら変更されたり、
なくなったりするヘッダがある、ってことですね。それで、もう1つの分類は？

	 もう1つは、メッセージヘッダの内容による分類だ。これには一般、
要求、応答、エンティティの4種類が存在する。まず「一般」メッセー	
 ジヘッダだが、これはリクエスト・レスポンスの両方で使用されるメッセ	
 ージヘッダだ。代表例としてはキープアライブで使用するConnectionな	
 どがあるな。

メッセージヘッダ名、コロン、ヘッダ内容、
改行の形で必要な数だけ記述する

開始行

メッセージヘッダ名 ： ヘッダ内容 <改行>

メッセージヘッダ名 ： ヘッダ内容 ， ヘッダ内容 ， … <改行>

<改行>

メッセージヘッダ

メッセージヘッダ

ボディ
（メッセージボディ・エンティティボディ）

カンマで区切って複数の内容を記述することも可能

図6-1　メッセージヘッダの記述

（*1）エンドツーエンドとホップバイホップ［End-to-End］［Hop-by-Hop］

34 - Software Design 5月号特別付録

中継されても変更されないヘッダがエンドツーエンド、
変更されるヘッダがホップバイホップ

エンドツーエンドのメッセージヘッダは、中継サーバがあったとしても
変更されない

プロキシサーバ www.3min.jp
リクエスト
メッセージ

Hostメッセージヘッダはエンドツーエンドのメッセージヘッダ

GET / HTTP/1.1
Host : www.3min.jp

プロキシサーバ www.3min.jp
リクエスト
メッセージ

GET / HTTP/1.1
Host : www.3min.jp

プロキシサーバで中継されても
変更はされない

ホップバイホップのメッセージヘッダは、中継サーバで変更されたり、
中継サーバだけで使用されたりする

プロキシサーバ www.3min.jp
リクエスト
メッセージ

Proxy-Authorizationメッセージヘッダはホップバイホップのメッセージヘッダ

GET / HTTP/1.1
Proxy-Authorization: Basic abcd1234wxyz=

プロキシサーバ www.3min.jp
リクエスト
メッセージ

GET / HTTP/1.1

プロキシサーバで使用されるメッセージ
ヘッダのため、プロキシサーバからサー
バへのリクエストには付かない

図6-2　エンドツーエンドとホップバイホップ

第6回　メッセージヘッダの種類と役割

3 minutes Networking - 35

	 ふむー。そうすると、「要求」メッセージヘッダはリクエストだけで使用し、
「応答」メッセージヘッダはレスポンスだけで使用するということですか？

	 そのとおり。要求メッセージヘッダはUAの情報や、リクエストの内容の補
助情報などを送る。一方の応答メッセージヘッダはサーバの情報、認証、
リソースの補助情報などだ。「エンティティ」メッセージヘッダは、ボディに
あるリソースの長さや使われているメディアなどだ（図6-3）。

	 うぇー、かなりいっぱいありますね。これ全部覚えなきゃだめなんですか？

	 いや、この中でもさらに代表的ないくつかのメッセージヘッダを説明する
ので、それを覚えてくれればいい。あと、下の表に挙げたメッセージヘッ
ダはRFCで定義されているものだけだ。UAやWebサーバアプリケーショ
ンを作るベンダーが、独自にメッセージヘッダを定義して使用してもいい。
ただし、もちろんUAやサーバの両方でその独自ヘッダを使用できる場合じ
ゃないと使用しても意味がないがな。（*2）

メッセージヘッダの内容によって、
一般、要求、応答、エンティティがある

Cache-Control

Connection

Data

Pragma

Trailer

Upgrade

Via

Warning

一般 要求

Accept

Accpet-Charset

Authorization

Expect

From

Host

If-Match

IF-None-Match

Accept-
Language

Accept-
Encoding

If-Range

Max-Forwards

Range

Referer

TE

User-Agent

Proxy-
Authorization

If-Unmodified-
Sicne

If-Modified-
Since

応答

Accept-Ranges

Age

ETag

Location

Retry-After

Server

Vary

WWW-
Authenticate

Proxy-
Authenticate

エンティティ

Allow

Content-Length

Content-MD5

Content-Range

Content-Type

Expires

Last-Modified

Content-
Location

Content-
Language

Content-
Encoding

Transfer-
Encoding

図6-3　メッセージヘッダの種類

36 - Software Design 5月号特別付録

	 へぇ、そういう独自に作られたヘッダって存在するんですか？　

	 もちろんある。たとえば、ネットスケープ社が定義したCookieヘッダ
などがそうだ。これは独自メッセージヘッダなのに事実上の標準として利
用されている。詳しくはまた後で話そう（『3分間HTTP&メールプロトコル
基礎講座』 当社刊 P69参照）。ともかく、メッセージヘッダの役割と種類は
理解したかね？（*3）

	 HTTPのやりとりに付加する情報で、これによりHTTPでいろいろなやりと
りが可能になったんですよね。で、中継や内容によって分類されるよ、と。

	 よしよし。次回は代表的なメッセージヘッダについて説明する。ではまた
次回。

	 了解っす。3分間HTTP&メールプロトコル基礎講座でした〜♪

ネット君の今日のポイント

●�リクエスト・レスポンスで開始行の後ろにメッセー
ジヘッダを必要数入れる。

●�メッセージヘッダはHTTPのやりとりに付加する情報。
●�中継の際に変更されるホップバイホップと変更され
ないエンドツーエンドがある。

●�その内容に応じて、一般、要求、応答、エンティティ
に分類される。

（*2）RFC［Request For Comment］　IETF［the Internet Engineering Task Force］
が発行する技術文書で事実上のインターネット標準となる。

（*3）ネットスケープ社　正確にはネットスケープコミュニケーションズ社［Netscape
Communications Corporation］。ブラウザのNetscapeNavigatorなどを開発した。現在は
買収されて存在しない。

3 minutes Networking - 37

●代表的なメッセージヘッダ

	 前回、HTTPメッセージのメッセージヘッダについて説明したな。HTTPの
やりとりに付加する情報として、メッセージヘッダを付ける、という話だった。

	 でした。開始行のうしろに付けるんですよね。開始行、メッセージヘッダ×n
個、ボディって感じで。

	 そういうことだ。では今回は、代表的なメッセージヘッダを説明していこう。
先の回で細かく説明するメッセージヘッダは、ここでは省いて説明する。

	 まず、HTTP1.1のリクエストで唯一必須のメッセージヘッダ
である、Hostだ。Hostは要求ヘッダのエンドツーエンドメッセージヘッ
ダだ。

	 Hostはリクエストを送るサーバのドメイン名とポート番号を
示す値だ。なお、ポート番号がWell-Knownの80番の場合はポート番号を	
 省略できる。また、リクエストのリクエストURIが相対パスの場合、この	
 Hostに書かれているサーバのリソースと判断される。

	 ん、んんん？　サーバのドメイン名？　でも博士、HTTPリクエストって中継
される場合を除けば、そのサーバに送られるんですよね？　たとえば、http:	
//gihyo.jp/ならgihyo.jpに。リクエストを送るサーバにリクエストを送っ
ているのに、どうしてさらにそのサーバ名をリクエストに含めるんですか？

	 それはもっともな疑問だ。これはHTTP1.1から拡張されたバーチャルホス
ト機能のために必要なのだ。バーチャルホスト機能については先の回で	
 説明する（『3分間HTTP&メールプロトコル基礎講座』P115参照）。逆に言えば、	
 HTTP1.1でなくHTTP1.0を使うならばこのHostは必要ない。

	 さて次のメッセージヘッダだが、「User-Agent」。要求ヘッダのエンドツー	
 エンドメッセージヘッダだ。これはUAの種類をサーバに通知するために使	
 用する。

7

メッセージヘッダ

38 - Software Design 5月号特別付録

	 へー、たとえば、Internet Explorerだったり、FireFoxだったり、
Opera、Chromeだったり、そういうUAの種類を伝えるってことですね。
これ、何の役に立つんです？　

	 リクエストしてきたUAをサーバ側で判断し、表示させるページを変える時な
どに使用する。たとえば、UAの種類としてはネット君が例に挙げたパソコン
用のブラウザもあるし、携帯電話などモバイル用のUAもある。パソコンでの
アクセスと携帯電話でのアクセスでページを変えたい場合、とかだな（図7-1）。

	 あー、URIが同じWebサイトでも、パソコンで見た場合とケータイで見た場
合でページが違うのって、User-Agentで判別してたんですか。知らなかった。

	 他にも携帯電話の場合、そのキャリアが使用するIPアドレスが決まってい
るから、送信元IPアドレスを見て切り替える方式もある。

	 さて、次のメッセージヘッダにいこう。「Referer」。要求ヘッダのエンドツー
エンドメッセージヘッダだ。これはリクエストURIの参照元のページのURIだ。

	 参照元？　リクエストURIを参照した元……、え〜っと、リクエストURIは
見たいページだから、それを参照した元のURI？　

User-AgentはUAの種類を伝えるメッセージヘッダで
これにより表示させるページを変えたりできる

GET / HTTP/1.1
User-Agent:PC=Browser

GET / HTTP/1.1
User-Agent:Mobile=Browser

www.3min.jp

振り分けプログラムが書かれた
ページ

PC用のページ

モバイル用のページ

リクエスト
メッセージ

リクエスト
メッセージ

このページに最初にアクセスするように
なっており、User-Agentに書かれた内
容によって、レスポンスのページを変える

図7-1　User-Agentによるページの切り替え

第7回　メッセージヘッダ

3 minutes Networking - 39

	 リクエストURIにハイパーリンクしたページのURIってことだ
な。つまり簡単に言えば「リンク元」だ。ちなみにホントはReferrerなのだが、
なぜかRefererになっている。Refererによって、そのページへどこからハ
イパーリンクされてきたかという情報を集めることができる（図7-2）。

	 あれですか？　Webサイトの「アクセス解析ツール」とかで確認できる「リ
ンク元」「アクセス元」ってやつですか。そうか、あのツールはこのReferer
から情報を得てるんだ。

	 うむ、実はそうだ。ただしRefererはリンクされた場合にのみ付けられるの
で、直接URIを入力した場合や、ショートカット（ブックマーク）から選ん
だ場合はRefererは付けられない。

	 次は「Content-Length」。これはエンティティヘッダのエンドツーエンド
メッセージヘッダだ。エンティティヘッダなので、リクエスト、レスポンス
どちらでも使われる。ボディのデータ長を示すメッセージヘッダだな。

	 リクエストとレスポンスのどちらでも使う、ボディのデータ長。レスポンス
はリクエストURIのリソースの長さですけど、リクエストの場合はどうなる
んです？

	 リクエストのメソッドがPOSTの場合、「投稿」するデータがボディに入って
いる。その長さを示している。

	 次は2つまとめて説明しよう。要求ヘッダの「Accept」と応答ヘッダの
「Content-type」だ。これはどちらもエンドツーエンドメッセージヘッダだ。

	 この2つはリソースのメディアタイプを示すメッセージヘッダだ。
Acceptは要求するリソースの、Content-typeは応答するリソースのメデ
ィアタイプを示す。

	 メディアタイプってなんですか？　媒体タイプ……なんの媒体ですか？　

	 メディアタイプはリソースの中身が何であるかを示すものだ。たと
えば、テキストファイル、画像ファイル、音声ファイル、動画ファイルなど
など、リソースがどのタイプであるかを指定する。メディアタイプは「タイ
プ/サブタイプ」の形で記述される。

	 UAはAcceptで利用可能なメディアタイプをサーバに通知し、サーバはレ
スポンスに入れたリソースのメディアタイプをContent-typeで指定する、
という形になる。

40 - Software Design 5月号特別付録

	 へー。じゃあ、たとえば、UAがAcceptで送ったメディアタイプと、サー
バがレスポンスできるリソースのメディアタイプが違ったらどうするんで
すか？

	 その場合は、406 Not Acceptableというステータスコードで、利用でき
ないことを通知する。あぁ、そうそう、Content-typeはレスポン
スでの必須ヘッダになる。ただし、ボディにリソースが入っていないな	
 らば、付けなくてもいい（図7-3）。

Refererには、そのリソースの参照元である、
元のリンクページのURIが入る

①最初にwww.3min.jpのindex.htmlを取得した

②www.3min.jpのindex.htmlページにはwww.tcpip.jpのhttp.htmlへの
　ハイパーリンクがあり、それをクリックして、www.tcp.jp/http.htmlを取得する

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

index.html

www.3min.jpの
index.html

www.tcpip.jp

http.html

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

www.3min.jpの
index.html

www.tcpip.jp

GET /http.html HTTP/1.1
Referer:http://www.3min.jp/index.html

index.html

http.html

リンクをクリック

図7-2　Refererによるリンク元の確認

第7回　メッセージヘッダ

3 minutes Networking - 41

使用できるリソースの種類をAccept、
Content-Typeで指定する

代表的なメディアタイプ

種類

*（アスタリスク）

text

image

audio

video

application

/（すべてのメディアタイプ）

タイプ タイプの意味

すべて

音声ファイル

動画ファイル

アプリケーションで
使われるファイル

テキスト
ファイル

text/html(HTMLファイル）、
text/plain（テキストファイル）など

image/jpeg（JPEGファイル）、
image/png（PNGファイル）など

audio/midi（MIDIファイル）、
audio/x-wav（WAVファイル）など

video/mpeg（MPEGファイル）、
video/x-msvideo（AVIファイル）

application/zip(ZIPファイル）、application/
pdf（PDFファイル）、application/xhtml+xml
(XHTMLファイル）など

画像ファイル

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

index.html

GET /　HTTP/1.1　　Accept : text/html , text/plain

HTTP/1.1 200 OK　　Content-Type : text/html

Acceptで通知されたメディアタイプがサーバに存在しない場合などでは、
406　Not Acceptableを返す

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

index.html

GET /　HTTP/1.1　　Accept : image/jpeg

HTTP/1.1 406　Not　Acceptable

サーバにはimage/jpeg
のリソースはない

UAは処理可能なメディアタイプをAcceptメッセージヘッダで通知し、使用するサ
ーバはそれに応じてメディアタイプをContent-Typeに入れてレスポンスを返す

図7-3　メディアタイプ

42 - Software Design 5月号特別付録

	 ふむふむ、つまりリクエストには「Host」、レスポンスには「Content-type」
が必須ってことでいいんでしょうか。

	 そうだな、それでいい。さて、ほかにもメッセージヘッダはあるが、今回
はこれぐらいにしておこう。

	 はいなー。3分間HTTP&メールプロトコル基礎講座でした〜♪

ネット君の今日のポイント

●��Hostヘッダはリクエストに必須。
●�Content-typeはレスポンスには必須で、応答する
リソースのメディアタイプを示す。

3 minutes Networking - 43

●キャッシュと条件付きGET

	 ここまでのところで、HTTPメッセージの説明をしてきたわけだ。HTTPメ
ッセージは、開始行、メッセージヘッダ、ボディから構成される。開始行、
メッセージヘッダの中身と役割についてはすでに説明した。今回は、もう
一度リクエストの開始行について説明する。

	 リクエストの開始行？　リクエスト行ですか？　えっと、メソッド、リクエ
ストURI、HTTPバージョンでしたよね。

	 うむ。その中で、メソッドは簡単にしか説明していなかった。なので、もう
ちょっと細かく説明しよう。まず、基本となるGETだ。

	 GETは、リクエストURIで指定されたリソースの転送を要求するためのメソ
ッドでしたよね。ぶっちゃければ、そのリソースを取得する？　

	 その通り。リクエストURIで指定されたリソース、つまりファイルだな。
HTMLファイル、画像ファイルなどのファイルをサーバから転送してもら
う、つまり取得するというメソッドだ。まぁ、GETを単純に説明するとこ
れだけなんだが……。

	 なんだが？　含みを持たせますね、もちろんまだあるんですよね？

	 うむ。その前に、以前話したことを思い出してもらおう。Webページを「見
る」とは、「ファイルをダウンロード」して見ることだ、という話をしたと思
う（P14参照）。UAを持つ機器、つまりクライアントは、このファイルを保
存しておくことができる。これをキャッシュという。

8

GETメソッド

44 - Software Design 5月号特別付録

	 はいはい、HTTPの動作のところでそんな話が出てましたよね。んー、キャ
ッシュとして「保存」しておくんですか？　見終わったら消してしまえばい
いのに。

	 うむ。純粋に見るだけなら、確かに見終わったら消せばいい。だが、キャ
ッシュとして保存しておくことにより、同じページをもう一度閲覧す
る際にはキャッシュされているファイルを見ることができる。そ	
 れにより、もう一度ファイルを取りに行く手間が省けるわけだな（図8-1）。

	 なるほど、一度キャッシュとして保存してあるページを、もう一度見る場
合には、キャッシュから見る、と。確かにそうすれば同じページをまたサ
ーバからGETする手間が省けますね。

	 ただし、キャッシュにも問題がある。それは「同じページを見る場合、サー
バにあるページが更新されているいないにかかわらず、キャッシュのペー
ジを見てしまう場合がある」という点だ。つまり、サーバにあるページが更
新され新しくなっていても、キャッシュに残っている古いページを見てしま
うことがある、ということだな。

UAはHTTPのやりとりと応答時間を減らすため、
取得したリソースをキャッシュとして保存する

①ユーザの入力により、www.3min.jpのindex.htmlをGETにより取得した

ユーザ

UA Webサーバアプリケーション

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

GET / HTTP/1.1

URI入力

表示 取得したリソースを保存する index.html

キャッシュ

②同じリソースを再度ユーザが入力すると、キャッシュされているリソースを使用する

ユーザ

UA Webサーバアプリケーション

www.3min.jp

URI入力

表示 index.html

キャッシュ

図8-1　キャッシュ

第8回　GETメソッド

3 minutes Networking - 45

	 ははぁ、それは確かに困りますね。下手をするといつまでたっても古い情
報の載っているページを見てしまって勘違いしたりするとか、ありえそうで
すよね。

	 うむ。そこでこれを解決する方法が用意されている。まず1つ目、そのペ
ージのキャッシュの有無を制御するCache-Controlメッセー
ジヘッダによって、クライアント側のキャッシュを制御する方法だ。これ	
 は特に頻繁に更新される、たとえばCGIを使った掲示板のような動的ページ	
 などで使われる方法だ。

	 制御ってどんな制御ですか？　

	 「このページはキャッシュしてはいけません」「このページはxxxxのxx時ま
でキャッシュされます」、のようにキャッシュさせないか、キャッシュの有
効期限を切ってしまうという制御だ。

	 なるほどなるほど。クライアント側で「キャッシュをどのように持つか」を
サーバ側がCache-Controlを使って決めることができるんですね。

	 そしてもう1つの方法が条件付きGETだ。これにはIf-Modified-
Sinceメッセージヘッダを使う（図8-2）。

	 ははぁ、「もし今のキャッシュの更新日付よりも新しいならば」GETする、
ってことで「条件付きGET」というわけですね。

	 そういうことだ。キャッシュを使うことにより転送量が減るという利点があ
るが、その欠点もちゃんと対策しているってことだな。

●部分的GET

	 もう1つ、GETの中でも特徴的なGETを説明しよう。それは部分的GET
と呼ばれるGETだ。

	 たとえば、大きなファイルなどをGETで取得するとして、ちゃんと最後ま
で取得できればよいが、途中でエラーが発生してしまったとする。そうす
るとHTTPの接続が切れてしまい、もう一度やり直しになる。

	 ん〜、とくに大きいファイルだと厳しいですね、やり直しって。

46 - Software Design 5月号特別付録

Cache-Controlによりサーバ側からキャッシュをコントロールできる。
If-Modified-Sinceにより更新していた場合のみ取得する

Webサーバ
アプリケーション

サーバのリソースがIf-Modified-Since以降更新されていなければ、
304 Not Modifiedをレスポンスとして返す。この場合、リソースはつけない

UA

www.3min.jp

index.html

キャッシュ

HTTP/1.1
304 Not Modified

更新日時
2009/12/1

更新日時
2009/12/1

レスポンス
メッセージ

Webサーバ
アプリケーション

サーバのリソースがIf-Modified-Since以降更新されていた場合、
200 OKとともにリソースをボディにいれて返す

UA

www.3min.jp

index.html

キャッシュ

HTTP/1.1 200 OK

更新日時
2009/12/1

更新日時
2009/12/2

レスポンス
メッセージ

Webサーバアプリケーション

条件付きGETを使う場合、リクエストにIf-Modified-Sinceメッセージヘッダを入れる
If-Modified-Sinceにはキャッシュされているリソースの更新日時を入れておく

UA

www.3min.jp
リクエスト
メッセージ

index.html

キャッシュ

掲示板のような頻繁に更新されるリソースの場合、UAにキャッシュさせない
ようにするため、Cache-Controlで制御することができる

UA Webサーバ
アプリケーション

www.3min.jp

レスポンス
メッセージ

リクエスト
メッセージ

POST /bbs.cgi HTTP/1.1

キャッシュ
されない

bbs.cgi

キャッシュ

HTTP/1.1 200 OK
Cache-Control：no-cache

GET / HTTP/1.1　IF-Modified-Since ： Thu , 1 Dec 2009

更新日時
2009/12/1

図8-2　 Cache-ControlとIf-Modified-Since

第8回　GETメソッド

3 minutes Networking - 47

	 そういう場合に使うのが、部分的GETだ。ファイル全体のサイズはContents-
Lengthでサーバ側から通知されているから、途中でエラーなどが発生した
場合、不足分のサイズがわかる。そこでRangeメッセージヘッダを
使い、途中からファイルを取得することができる（図8-3）。

	 ははぁ、なるほど。たとえばデータが1000バイトだったとして、500バイ
ト受信済みでエラーにより止まってしまったら、次は501バイトからって要
求できるんですね。

UA

キャッシュ

リソースの途中のバイトから要求することができる

Webサーバ
アプリケーション

①GETによりリソースを取得したが、途中で通信障害などにより、リソースの
　一部のみを取得したにとどまった

www.3min.jp

3000バイト

index.html

GET / HTTP/1.1

Range：2001-

HTTP1.1 200 OK

Content-Range：bytes 2001-2999/3000

②Rangeメッセージヘッダを使用し、リソースの残りのみを取得することができる

レスポンス

メッセージ

GET / HTTP/1.1
リクエスト
メッセージ

2000バイト目
までしか取得で
きなかった

2001バイト目からを
取得する部分GET

UA

キャッシュ

Webサーバアプリケーション

www.3min.jp

3000バイト
index.html

レスポンス
メッセージ

リクエスト
メッセージ

HTTP1.1 200 OK
Content-Length：3000

2001バイト目から最後ま
での範囲を送信したことを
Content-Rangeで示す

図8-3　部分的GET

48 - Software Design 5月号特別付録

	 そういうことだ。UAでこの部分的GETができる場合、「レジューム機能」付
きとか言われているな。レジューム、つまり「再開」ができるってことだ。

	 他にも「ダウンロード支援ツール」と呼ばれるWWWでファイルのダウンロ
ードを高速・簡単に使えるソフトウェアでは、この部分的GETをうまく使
っているものもある。つまり、最初から全部をGETするのではなく、ファ
イルを分割して、複数の部分的GETを同時に行い、スピードアップを行う
形だ。（*1）

	 んんっと、たとえば1000バイトのデータで、0バイト目から、250バイト目
から、500バイト目から、750バイト目から、っていう4つの要求を同時に
出すってことですか？

	 うむ、それだ。なかなかうまく考えているよな。そうすればかなりスピー
ドアップになるからな。ただ、接続数が増えるからサーバ側には嫌われて
いるけどな。

	 まぁ、確かにサーバ側から見れば1つのアクセスですむのに、4倍のアクセ
スがきてることになるから、嫌がられるのもしょうがない、かな？

	 うむ、そういうことだ。では今回はここまで。また次回。

	 はい。3分間HTTP&メールプロトコル基礎講座でした〜♪

ネット君の今日のポイント

●��リソースの取得を行うメソッドがGET。
●��クライアントのキャッシュを制御するためにCache-
Controlを使う。
●��条件付きGETを使うことで、更新されたファイルを
取得できる。
●��部分的GETを使うことで、必要な範囲のデータだけ
を取得できる。

（*1）レジューム［Resume］

3 minutes Networking - 49

●HEAD

	 さて、前回はもっとも基本的なメソッドであるGETの説明をした。「リクエ
ストURIで指定されたリソースの転送を要求する」というメソッドだな。

	 はい、でした。それで、「条件付きGET」や「部分的GET」っていうテクニッ
クもありましたよね。

	 んー、まぁ、テクニックというか、なんというか。
	 それはともかく、今回はその他の代表的なメソッドを説明していこう。まず、

HEADだな。HEADはGETと同じ動作をするが、HEADに対するレス
ポンスにはボディがないのが特徴だ。

	 GETと同じってことは、「リクエストURIで指定されたリソースの転送を要
求」と同じってことですよね。でも、レスポンスにボディがないってことは、
転送するリソースがないってことだから、意味ないんじゃないですか？　

	 まぁ、確かにそう思えるのも無理はない。ただ、ボディがないだけで、ス
テータス行やメッセージヘッダはちゃんとレスポンスに含まれる。つまり、
HEADはステータス行やメッセージヘッダの確認を行うためのメソ
ッドってことだな（図9-1）。

	 HEADを使うと、リクエストURIに指定されたリソースに対し、どのような
ステータス行やメッセージヘッダが返ってくるかを確かめることができる。
たとえばLast-Modifiedメッセージヘッダがある。これはリソースの最終
更新日を含むエンティティヘッダだが、これがあると何がわかる？　

	 そのリソース、つまりファイルの最終更新日がわかるんですよね？　ってこ
とは、あー、そのファイルが更新されたかどうかを確認できる？

9

HEAD、POST

50 - Software Design 5月号特別付録

	 そうだ。クライアントが現時点で保存しているファイルよりも、新しいフ
ァイルがサーバにあるかどうか、レスポンスのLast-Modifiedメッセージ
ヘッダを見れば確認できる。よって、これをHEADで取得する。確認だけ
したいので、GETではなくてHEADを使うわけだな。

	 でも博士。前回の条件付きGETを使えばいいじゃないですか？　そうすれ
ば更新されていれば新しいファイルを転送する、更新されていなければ転
送されない。まるく収まりますよ？　

	 確かにそうだ。だが、たとえば「更新の確認だけを行う」ツールがある。「巡
回エージェント」と呼ばれるが、そういうツールはこのHEADを使うわけだ。
実際に、更新があった場合にそれを取得するか否かはユーザの役割で、こ
のツールは確認だけを行う。こういう時はHEADのほうが使いやすい。

HEADではリソースが返ってこないこと以外はGETと
全く同じため、更新の確認や接続のテストなどに使用される

キャッシュ

Webサーバアプリケーション

①HEADメソッドによりリソースを要求すると
www.3min.jp

index.html

index.html

HEAD / HTTP/1.1

リクエスト
メッセージ

UA

UA

キャッシュ

Webサーバアプリケーション

②リソースがない以外、GETと全く同じ開始行、メッセージヘッダが返ってくる
www.3min.jp

レスポンス
メッセージ

GET時と全く同じヘッダ

リソースはなし

HTTP/1.1 200 OK
Content-Length：2000
Content-type:text/html

Last-Modified: Thu, 1 Dec 2009

図9-1　 HEADによる更新の確認

第9回　HEAD、POST

3 minutes Networking - 51

	 あー、なるほど。そういうツールならば確かにHEADのほうがいいかもしれ
ませんね。

●POST

	 さて、次のメソッドを説明しよう。POSTだ。以前は「投稿」を行うメソッ
ドと説明したな（P22参照）。より正確に言えば、ボディを送信しリク
エストURIに書かれたリソースに処理させることを要求するメ	
 ソッドだ。

	 リソースに処理させることを要求するメソッド。受け取ったサーバはどうす
るんですか？　

	 それはそのリソース次第だな。掲示板なら受け取ったデータを追加して、
新たな掲示板の画面を生成するだろう。GETとの違いはPOSTはリソー
スの取得が目的ではないというところだな。よって、レスポンスには	
 必ずしもボディが必要とは限らない。

	 そうなんですか？　でも、掲示板とかだと送った「書き込みデータ」が反映
された新しいファイルが返ってくるんじゃないですか？　

	 まぁ、普通はリクエストURIに指定されたリソースが、受け取ったデータを
処理した結果をボディに入れてレスポンスとして返す場合が多い。

	 あとは、そうだな。HTMLではGETとPOSTをどのように使い分けているか、
ということを説明しておこう。HTMLで、ユーザが入力するための「ボタン」
や「テキストフィールド」などの総称を「フォーム」と呼ぶ。このフォームの
中に、ユーザが入力したデータを送信するURIを決定する項目と、その際に
GETを使うかPOSTを使うか決める項目がある。

	 あれ？　データを送るならPOSTじゃないんですか？　

	 いや、GETでもできる。その場合は、リクエストURIの中にデータを含める
のだ。クエリストリングと呼ばれる方法だ（*1）（図9-2）。

	 この方法だと、送信するデータがリクエストURIに含まれてしまうので、セ
キュリティ的にもいろいろと問題がある。たとえば、GETにクエリストリ
ングを付けて送信し、その結果の画面を受け取ったとする。そしてそのペ
ージから他のページにリンクがあり、それをクリックした場合、Refererに
「元ページのURI」としてクエリストリング付きのURIが残ってしまう。

52 - Software Design 5月号特別付録

POSTはボディにフォームのデータを入れる
GETはリクエストURIにクエリストリングとして付加する

POSTを使った場合

ユーザ
bbs.cgi

www.3min.jp
入力した
情報

リクエスト
メッセージ

POST /bbs.cgi HTTP/1.1

フォームに
入力

フォームに入力したデータ
はボディとして送信される

GETを使った場合

ユーザ
bbs.cgi

www.3min.jp
リクエスト
メッセージ

GET /bbs.cgi?NAME=EIJI+AMINO&MAIL=EIJI@3MIN.JP&DEVICE=PC HTTP/1.1

フォームに
入力

フォームに入力したデータ
はリクエストURIの後ろに
くっつけて送信される
＝クエリストリング

HTMLでの記述

データの送信に使用するメソッド
GET または　POST

対象となるリクエストURI

HTMLによる入力フォーム

入力するデータ
＝送信されるデータ
（テキスト2つ、ラジオボタン1つ）

名 前
メールアドレス
周 辺 機 器

：
：
： パソコン 携帯 送信

図9-2　GETとPOSTの違い

第9回　HEAD、POST

3 minutes Networking - 53

	 ん〜、ダメじゃないですか。POSTならそういうことないですよね？　だっ
たらPOST一択でいいような気がしますけど。

	 そう考えるのも無理はない。だが、違う側面から考えてみよう。クエリス
トリングにデータがある、ということは「そのクエリストリング（データ）付
きのURI」を使えば誰でも同じデータを送信できる、ということになるよな。

	 んっと、そうなりますね。クエリストリング付きのURIがあれば、誰でも同
じデータを送信できて、誰でも同じ結果を取得することができます。

	 そうだ。送ったデータによって、表示される画面が変更するページがある
としよう。この変更されたページを、誰かほかの人にも伝えたいと思ったと
する。この場合、そのページに同じデータを送ることが必要だ。そこで、
GETによるクエリストリング付きURIを使う。このクエリストリング付き
URIをその人に教えれば、その人は同じ変更されたページを取得できる。た
とえば、検索エンジンの検索結果をほかの人に伝えたい、などだな（図9-3）。

	 あぁ、なるほど。確かにその方法なら、検索エンジンの検索結果を教える
ことができますね。

	 うむ、これをできるようにするため、ほとんどの検索エンジンはクエリスト
リングでデータを取得している。POSTでは、このようなことはできないか
らな。さて、だいたいWWWの、とくにHTTPの基本は説明し終わったわけ
だが、どうだ？

	 開始行とメッセージヘッダとボディですね！！

	 それだけだと、HTTPメッセージの説明だけみたいじゃないか。まぁ、確か
にその説明を中心に行ってきたわけだが。HTTPは基本的なところはそれほ
ど難しくはない。ネット君の言うとおり、開始行とメッセージヘッダの内容
が中心で、それによりどのようにリソースをやりとりしているか、というだ
けだからな。

	 はい。これで僕もHTTPマスターですね、完璧です。

（*1）クエリストリング［Query-String］　リクエストURIのうしろにつなげて記入される投稿
データ。Stringは文字列の意味。

54 - Software Design 5月号特別付録

	 ……基本的な、と言ったはずだがな？　『3分間HTTP&メールプロトコル基
礎講座』（当社刊）のほうでは、これらのHTTPの基礎を踏まえたうえで、
HTTPの応用的な話をしていこう。WWWは現在のインターネットの主役。
できることも、考えなければいけないことも多くある。調子に乗るのは、も
っとあとにしておけ。では今回はここまで。

	 了解です……。3分間HTTP&メールプロトコル基礎講座でした〜♪

ネット君の今日のポイント

●��HEADはレスポンスの開始行とメッセージヘッダの
みを取得する。
●��POSTはUAからデータを送信し、リクエストURIの
リソースに処理させる。

クエリストリング付きのURIを伝えることにより
同じ結果を入手することができる

GET/bbs.cgi？NAME＝EIJI+AMINO＆MAIL＝EIJI@3MIN.JP＆DEVICE＝PC HTTP/1.1

同じデータによる
処理結果なので
同じ内容となる

ユーザ1

ユーザ2

フォームに
入力

フォームから
入力ではなく
クエリストリング付URIを入力

URLを通知

www.3min.jp

bbs.cgi

リクエストメッセージ

リクエストメッセージ

レスポンス
メッセージ

レスポンス
メッセージ

図9-3　クエリストリングを伝える

3 minutes Networking - 55

①

●WWW
　−ハイパーリンクによって結びつけられた広域情報共有システム
●3つの基幹技術から成る
　−HTML（HyperText Markup Language）
　　・ハイパーリンクを持つハイパーテキストの記述言語
　−URI（Uniform Resource Identifier）
　　・�統一リソース記述子。WWWでは主にリソースの場所を�

 記述するのに使用する
　−HTTP（HyperText Transfer Protocol）
　　・WWWでのリソース転送用プロトコル
　　・汎用性が高く、現在では多くのものを転送できる

56 - Software Design 5月号特別付録

②

●HTTPメッセージ
　−開始行
　　・�リクエスト行…リクエストの内容。メソッドと要求リソー�

 スのURIがある
　−メソッド…GET（取得要求）、POST（データ処理要求）など
　　・�ステータス行…レスポンスの状態。レスポンスの状態コー�

 ドがある
　−メッセージヘッダ
　　・HTTPによる情報のやりとりに使用する付加情報
　−メッセージボディ
　　・�リクエストの場合は、GETならばなし、POSTなら処理に�

 使うデータを入れる
　　・�レスポンスの場合は、要求されたリソースや処理結果の�

デ ータが入る

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2015年5月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 テキスト処理ベーシックレッスン
	Lesson1：テキスト処理で最初に習得すべきコマンド10選......上田 隆一
	Lesson2：コマンドを自在に組み合わせるテクニック......上田 隆一
	Lesson3：これだけは知っておきたいAWKの基礎......中島 雅弘、國信 真吾、富永 浩之、花川 直己
	Lesson4：サンプルをまねてAWKの実用性を実感......中島 雅弘、國信 真吾、富永 浩之、花川 直己
	Case1：grepで検索！　ソースコードを効率的に読む方法......中井 悦司
	Case2：コマンドを組み立て、Nginx・MySQLのログを読む......吉川 竜太
	Case3：コマンドラインでJSONデータを作って利活用......波田野 裕一
	Case4：Postfix・Apacheのログを抽出して障害原因を特定......荒井 健祐
	Case5：構造化データを簡単に処理できる2つのコマンド......水野 源

	■第2特集 ［徹底入門］最新・Sambaの教科書......たかはしもとのぶ
	第1章：Sambaのインストールと基本設定
	第2章：Sambaのユーザ管理とファイル共有の基本設定
	第3章：Active Directoryとの認証連携

	■短期連載
	Kotlin入門【2】開発環境の構築......長澤 太郎

	■Catch up trends in engineering
	迷えるマネージャのためのプロジェクト管理ツール再入門【6】SUUMOスマホサイトの開発裏話1 開発リードタイム短縮に向けアジャイルに取り組む......SD編集部

	■Inside View
	ベスト＆ブライテストエンジニア——未踏の技術で未来を拓く！【3】主力の「Amebaアプリ」をネイティブ化！......SD編集部

	■連載：Column
	digital gadget【197】アートと3Dプリント......安藤 幸央
	結城浩の再発見の発想法【24】Wrapper......結城 浩
	おとなラズパイリレー【7】Raspberry PiでNarrative Clipモドキを作る（前編）......村上 福之
	軽酔対談　かまぷの部屋【10】ゲスト：多田 歩美さん......鎌田 広子
	秋葉原発！　はんだづけカフェなう【55】6LoWPANしてみよう（後編）......坪井 義浩
	Hack For Japan〜エンジニアだからこそできる復興への一歩【41】地元を盛り上げる萌えキャラ「渚の妖精ぎばさちゃん」......小泉 勝志郎
	温故知新 ITむかしばなし【43】VRAMとbit演算......SD編集部
	ひみつのLinux通信【16】新人教育もてぇへんだぁ......くつなりょうすけ

	■連載：Development
	Erlangで学ぶ並行プログラミング【2】Erlangのプログラミングスタイル......力武 健次
	Android Wearアプリ開発入門【3】Android Wearアプリで音声入力機能を活用！......神原 健一
	Mackerelではじめるサーバ管理【3】運用しながら育てるサーバ監視のルール......坪内 佑樹
	書いて覚えるSwift入門【5】遺産の継承（その2）......小飼 弾
	Sphinxで始めるドキュメント作成術【2】議事録を書こう（前編）——reSTの書き方、HTML変換の基本......川本 安武
	セキュリティ実践の基本定石【20】GnuPGを通して暗号技術を理解する（後編）......すずきひろのぶ
	Hinemosで学ぶジョブ管理超入門【8】さらに高度にジョブを管理しよう......眞野 将徳
	シェルスクリプトではじめるAWS 入門【11】AWS APIでのデジタル署名の全体像を明らかにする5......波田野 裕一
	るびきち流Emacs超入門【13】標準コマンドから改めて見るEmacs......るびきち

	■連載：OS/Network
	ShowNetが示すネットワークの近未来【2】ネットワーク設計方法と今年の取り組み......中村 遼、渡邊 貴之
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【19】安定動作につながるディレクトリの知識（その3）......後藤 大地
	Debian Hot Topics【26】Debian 8開発の最新動向とそのほかのトピック......やまねひでき
	Ubuntu Monthly Report【61】Ubuntu 14.04で使用できるUSB無線LANアダプター7選......あわしろいくや
	Linuxカーネル観光ガイド【38】Linux 3.19の新機能〜Intel MPX機能のカーネル側対応......青田 直大
	Monthly News from jus【43】各地の名産も密かな楽しみ!? プログラミング勉強会の旅......法林 浩之

	■アラカルト
	ITエンジニア必須の最新用語解説【77】HTTP/2......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK FORUM
	バックナンバーのお知らせ
	年間定期購読のご案内
	SD NEWS & PRODUCTS
	Letters from Readers
	次号のお知らせ

	■特別付録
	3分間HTTP&メールプロトコル基礎講座【特別編】......網野 衛二

