
入 門

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／~＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／~＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/sd/
http://www.fujisan.co.jp/sd/

■お問い合わせ
〒162-0846
新宿区市谷左内町21-13
株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180
メール：gdp@gihyo.co.jp

法人などまとめてのご購入については
別途お問い合わせください。

電子版の最新リストは

Gihyo Digital Publishingの

サイトにて確認できます。

https://gihyo.jp/dp

https://gihyo.jp/dp
mailto:gdp@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://gihyo.jp/dev/serial/01/js-foundation

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

https://teratail.com/questions/5278
https://teratail.com/questions/5278
https://teratail.com/questions/899
https://teratail.com/questions/899

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

https://teratail.com/questions/7267
https://teratail.com/questions/7267

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

ED-5 - Software Design

　クラウドインフラ上で大容量のデー
タを効率的に取り扱うためにはストレー
ジの仮想化が不可欠ですが、そのた
めの選択肢の1つとして近年注目を
集めている技術に「Ceph」がありま
す。Cephは一般的なLinuxサーバ
を複数台束ねて、単一のストレージと
して扱うことができるようにする分散スト
レージ技術です。米 Inktank社に
よってオープンソースソフトウェアとして
開発され、2014年に同社を米Red
Hat社が買収したことによって、Red
Hatの傘下に入りました。
　Cephの大きな特徴の1つが、そ
れ単体で「オブジェクトストレージ」、
「ブロックストレージ」、「ファイルシス
テム」の3つの役割を担うことができる
という点です。アプリケーションやクラ
イアントからは、それぞれのサービスイ
ンターフェースを介して、任意の形式
でCephに格納されたデータにアクセ
スできるようになっています。

◉オブジェクトストレージ
　Cephの内部構造は後述するRA
DOSと呼ばれるオブジェクトストアに
なっています。オブジェクトストレージ
として、アプリケーションからCeph内
のオブジェクトにアクセスするには
「LIBRADOS」というライブラリを使
用します。LIBRADOSではC、C++、
Java、Pythonなどの言語がサポート
されています。また、Amazon S3や
OpenStack SwiftのAPIと互換性の
あるRESTインターフェース「RADOS
GW」も備えています。

◉ブロックストレージ
　「RBD（RADOS Block Device）」
と呼ばれるサービスインターフェースを
利用することで、Cephのストレージ
を仮想ブロックデバイスとして利用する
ことができます。シン・プロビジョニン
グ注1によって分散ストレージ上に最適
なサイズのボリュームを割り当てること
が可能で、レプリケーションやスナッ
プショットなどの機能もサポートされて
います。RBDはホストOSや仮想マシ
ンから直接マウントすることができるほ
か、OpenStackをはじめとするクラウ
ド基盤との親和性が高いという強みが
あります。

◉ファイルシステム
　「Ceph FS」というサービスインター
フェースを使うことで、CephをPO
SIX互換のネットワークファイルシステ
ムとして利用することができます。
Linuxのネイティブドライバ（cephfs）
またはFUSEを使ってマウントすること
ができ、Cephの分散ストレージを通
常のファイルシステムと同じ感覚で利
用することが可能です。

　Cephの中核を成しているのは
「RADOS」というしくみです。RAD
OSは“Reliable, Autonomic, Dis
tributed Object Store”の略で、そ
の名のとおり信頼性を確保するための
しくみを持ち、自律的に障害検知やレ
プリケーションを行うことが可能な分散
オブジェクトストアになっています。
CephではすべてのデータがRADOS

に保存されます。
　RADOSはおもに次の3つのコン
ポーネントから構成されます。

• OSD（Object Storage Daemon）
• MON（Monitor Daemon）
• MDS（Meta Data Server）

　OSDはデータをディスクに格納する
ためのデーモンで、データのレプリ
ケーションや障害の検知、障害発生
時のマイグレーションなどを行います。
1つのディスクに対して1つのOSDが
割り当てられ、数万台のディスクによ
る運用にも対応します。MONは
Cephのクラスタマップやクラスタの状
態を管理するデーモンです。MON
はOSDの稼働状況を監視しており、
特定のOSDが停止した場合にはそ
のOSDを使用しないようにクラスタ
マップを更新するなどといった処理を
行います。MDSはファイルシステム
の名前空間を管理するサーバで、
Ceph FSで使用されます。
　オブジェクトの配置の決定には
「CRUSH」と呼ばれるアルゴリズム
が使用されます。CRUSHではオブ
ジェクトの配置を計算のみによって決
定します。そのためメタデータを保持
する必要がなく、スケーラビリティが
高いという特徴を持っています。
　クラウドの普及にともなって、大容
量データを取り扱える分散ストレージ
技術はますます重要性を増しています。
汎用性が高くエンタープライズ級の機
能も備えたCephは、数ある分散スト
レージ技術の中でも極めて有力な選
択肢と言うことができるでしょう。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 78回

Ceph

Ceph
http://ceph.com/

分散ストレージ技術
「Ceph」

Cephの中核を担う
「RADOS」とは

注1） ストレージのボリュームを仮想的に割り当てておき、必要になった分を動的に追加することで、
ストレージの物理容量を無駄なく使えるようにする技術。

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

http://ceph.com/
mailto:sd@gihyo.co.jp

　ひと昔前であれば「通知」というと、
封書で手渡す大切なお知らせか、電
報やハガキで送られてくる大事な要
件を思い浮かべました。ブロードバンド
時代到来前、現在のようにインター
ネット常時接続が当たり前ではなかっ
たWebの黎明期には、PointCastや
Netscape Netcasterといった、プッ
シュ配信形式のサービスがわき起こり
ました。しかし時代が早すぎたのか、
ネットが遅すぎたのか、その当時の
プッシュサービスはもう残っていませ
ん。
　現代では、一個人が多種多様なデ
バイスを使い分け、それぞれに届く「通
知（Push Notification）」を認知し分
け、絶妙に使いこなしています。そのう
え、単なるネット経由の通知だけでな
く、ジオフェンシングと呼ばれる、ある領
域に入ったときに通知が行われるも
の、BLE（Bluetooth Low Energy）技
術を利用したビーコンによる近接通
知など、さまざまな技術が駆使されて
います。
　また、オンラインショップのタイム
セールの通知など、現実世界の通知
の考えが、ネット上にももたらされてき
ています。
　デジタルデバイスの「通知」によっ
て、同時にやり取りするのではない、
非同期のコミュニケーションが促進さ

れています。一方で、多数の通知に
よって集中力がそがれるなどといった
通知による弊害がないわけではありま
せん。「通知」は何かを気付かせてく
れる大切な役目を果たしています。し
かし、頻度が高すぎたり、無駄な通知
は邪魔なものでしかなく、一度嫌にな
ると、あるサービスからの通知をすべて
切ってしまったり、邪魔な通知をする
アプリを削除してしまうことになりかね
ません。
　腕時計型のデジタルデバイスの新
製品が続 と々発売され、スマートフォ
ンだけの通知の世界が腕時計にも広
がります。スマートフォンの場合、光や
音や振動で通知を感じたらスマート
フォンを取り出し、その通知を画面で
読んだり、場合によってはアプリを起
動するところまで時間を使います。あ
げくには、そのままほかのことが気に
なって他のアプリを使い続けることも
あるかもしれません。
　腕時計型の端末の場合、時計で
時間を確認するように、ちらっと見ただ
けで把握できることが重要視されてい
ます。それらの通知は一目瞭然となる
よう、太くて色のコントラストがはっきり
した文字で、2語ぐらいに簡単にまと
め、時間の浪費を抑えます。文字盤に
表示する情報は、プライバシーにも配
慮が必要です。Glanceable（グラン
サブル／チラ見／一目瞭然）が求め

られているわけです。

　通知が必要なサービスを構築する
場合、その通知の頻度や内容はどの
ように考えれば良いでしょう。一見、た
くさん送りつければ、何かしら見てもら
えると考えたり、通知メッセージからの
アプリ起動率で成果を計りがちです。
けれども状況に即した適切な通知を
送らないかぎり、通知は余計なもので
しかありません。
　ユーザがスマートフォンを使っている
時間帯に通知すると、少なくとも見て
もらえると言われています。それらの時
間帯は朝の起床時、通勤時、昼休み
時間、帰宅時、帰宅後、就寝前などで
す。IT系の仕事に携わる人であれば、
いつでも必要な時間スマートフォンを
使えますが、日中、自由にスマートフォ
ンを見たり使えたりしない職種の人も
多くいます。通知のポイントとしては次
の事柄を考慮すると良いでしょう。

●緊急性が高い
●個人的なこと
●その人の状況に合ったときに
●その人の時間に合ったときに
●即時性のあるものを優先的に
●前回送ったときから、適切な時間間
隔をあけて

●情報コンテンツの生成時間が関係
ないもの
●適切な量、適切な文言で（できるだ
け少なく、一瞬で読める量で）
●アプリを起動せず通知の文言だけ
で理解でき、完結できるとなお良い
●送信対象のユーザを分類してお
き、適切なユーザ群にだけ通知を
送る

●長文や電子メールで充分なもの
は、メールで通知したほうが良い

　あからさまに一斉通知されたような
メッセージは、適切ではありません。自
分のために吟味して送られた通知が
知りたいわけです。英単語の勉強の
ように、毎日使ったほうが良いサービ

スであれば、数日間使わなくなった
ユーザを再び呼び戻すときに通知を
使うのも良い方法の1つです。
　また、状況を理解したうえでの通
知、コンテキストアウェアネスも重要な
要素です。最近のスマートフォン環境
ではActivity Recognitionと呼ばれ
る“スマートフォンを持っている人が今
何をしているのか”という状態を知るこ
とができます。歩いているのか、乗り物
に乗っているのかなど、状態を知るこ
とで、次のようなさらに最適な通知が
できるかもしれません。

●あなた向けの新しい情報が公開さ
れた

●何かの事柄を忘れないように通知
してあげる（リマインダ的な通知）

●そのユーザ固有の情報を通知する
●時間が来たこと、日付が来たことを

通知する
●セールの時間が来た、タイムセール

があと何分など「今」現在の情報
●メッセージ系が着信したことやカウ

ント数が増えたことなどを通知する
●順番待ちのあるもの、順番がきたタ

イミングなどの通知

　そのほか、時差や言語設定を考慮
したり、アプリが起動中なのかで通知
方法を変えたり、絵文字を活用した
り、通知音に凝ったり、通知許諾をわ
かりやすく示したりとさまざまな工夫が
必要です。

　スマートフォンや、アプリの世界で
工夫されながら使われている「通知

（Push Notification）」がWebブラ
ウザの世界でも使えるようになってき
ました。それが「Push Notification
Web」のしくみです。
　これを利用すれば、従来アプリでし
かできなかったサービスやアプリ固有
のプッシュ通知を、Webサービスや
Webアプリでも行えるようになるので
す。まだ限られた環境でしか動作しま
せんが、後々、ECサイトでの各種通
知、SNSでの更新やコメント通知、仕
事の予定などがメールではなくPush
Notification Webでお知らせされる
日もそう遠くないことでしょう。
　またデバイス的には、スマートフォン
から腕時計型デバイス、指輪型、眼
鏡型、はたまた近い将来は体内イン
プラントまで、家具や車、衣服などにも
通知のしくみが組み込まれていくこと
でしょう。モバイルコミュニケーション
の未来はスマートフォンアプリではな
く、すべてが「通知」を契機とした非同
期のコミュニケーションとして浸透して
いくことが予想されます。
　そのときに必要なのは、相手のこと
を考え、適切なタイミングで、先読み
し、感情に寄り添い、余計なプレッ
シャーを与えない、優秀な秘書や執事
のような人の思いやりが感じ取れる
通知サービスなのかもしれませんね。
｢

通知の体験のデザイン
デジタル時代の通知

安藤 幸央
EXA Corporation

通知の体験のデザイン

198
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

飲み忘れ防止薬瓶

1GADGET

1996年にプッシュ配信に対応した
スクリーンセーバーを始めた「PointCast」

Facebook Parseのプッシュ配信サービス。
手軽に利用できる

iPhone（Periscope）のプッシュ配信設定。
ユーザが細かく配信設定できる

Smart Wireless
Pill Bottles

Smart Wireless Pill Bottlesは、定期的
に飲む薬の飲み忘れを防止するための通
知機能をもった薬瓶です。定期的に服用
する必要がある薬を飲んだことがある方で
あれば、薬の飲み忘れや、薬を飲んだこと
を忘れて、飲むべきかどうか悩んだことはな
いでしょうか？　AdhereTech社のワイヤ
レス薬瓶は、服用データを収集し、薬を飲
む時間になると、メールやショートメッセー
ジで知らせてくれます。バッテリーは45日
間持つため、薬の購入時に瓶ごと交換し
てもらうことを想定しているそうです。

モーションアラーム

3GADGET

bleep bleepsはさまざまな個所に取り付
けることができるモーションセンサーです。
たとえばお菓子の瓶や冷蔵庫に取り付
けておくことで、フタをあけたり、冷蔵庫の
ドアが開いたら、スマートフォンに通知が
送られます。動かした際にオモチャのモン
スターが叫んだような音がするため、子供
のつまみ食いや、アルコール飲酒を防ぐ
役目を果たします。全6色、カラフルな色
あいのものが50ポンド（約9,000円）で
販売予定です。バッグなどに取り付けて
盗難防止用にも活用できます。

通知ライトつきケース

2GADGET

Lunecaseはスマートフォンと連動して、
メールや電話などの通知状態を知らせる
ロゴ表示のついた、iPhoneケースです。
ハートマーク版やキスマーク版もありま
す。通知があったことを画面を見ずに知
ることができます。ケースとスマートフォン
はネットワーク接続されているのではなく、
昔あった携帯電話向けグッズのように電
磁エネルギーによって光るしくみです。電
池やバッテリー供給は必要ありません。
39.99～49.99ドル。予約受付中です。

通知機能つき指輪

4GADGET

Ringly

Ringlyはアクセサリーとしてもデザインが
選択できる、指輪型デジタルデバイスで
す。スマートフォンのアプリと連動して、5
色のLED通知と、4つの振動パターンを
設定することができます。無骨なデジタル
デバイスではなく、女性が身につけていて
も違和感のない質感豊かな洗練されたデ
ザインです。指輪のサイズは11～16号。
防水加工がなされており、指輪のまま手を
洗うことができるそう。装飾によって195
～260ドルで予約受付中です。同様の機
能を持ったMOTA SMARTRINGという
指輪型製品も予定されています。

bleep bleeps

Lunecase

http://adheretech.com http://bleepbleeps.com

http://www.noloinc.com https://ringly.com

適切な通知のための、
体験のデザイン

未来の通知

https://parse.com/products/push

Periscopeというアプリの通知許可画面。
スムーズに許可が得られるよう、
きちんとした説明と配慮がなされています

Amazon SNS。
Amazonクラウドが提供する
プッシュメッセージングサービス

Swrve。
アプリのキャンペーンと、
プッシュ通知を組み合わせることのできる
プラットフォーム

Urban Airship。
ユーザやアプリの状況に応じて通知する

「コンテキスト」に応じた
細かい配信が可能なプラットフォーム

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Jun. 2015 - 1

http://www.andoh.org/

　ひと昔前であれば「通知」というと、
封書で手渡す大切なお知らせか、電
報やハガキで送られてくる大事な要
件を思い浮かべました。ブロードバンド
時代到来前、現在のようにインター
ネット常時接続が当たり前ではなかっ
たWebの黎明期には、PointCastや
Netscape Netcasterといった、プッ
シュ配信形式のサービスがわき起こり
ました。しかし時代が早すぎたのか、
ネットが遅すぎたのか、その当時の
プッシュサービスはもう残っていませ
ん。
　現代では、一個人が多種多様なデ
バイスを使い分け、それぞれに届く「通
知（Push Notification）」を認知し分
け、絶妙に使いこなしています。そのう
え、単なるネット経由の通知だけでな
く、ジオフェンシングと呼ばれる、ある領
域に入ったときに通知が行われるも
の、BLE（Bluetooth Low Energy）技
術を利用したビーコンによる近接通
知など、さまざまな技術が駆使されて
います。
　また、オンラインショップのタイム
セールの通知など、現実世界の通知
の考えが、ネット上にももたらされてき
ています。
　デジタルデバイスの「通知」によっ
て、同時にやり取りするのではない、
非同期のコミュニケーションが促進さ

れています。一方で、多数の通知に
よって集中力がそがれるなどといった
通知による弊害がないわけではありま
せん。「通知」は何かを気付かせてく
れる大切な役目を果たしています。し
かし、頻度が高すぎたり、無駄な通知
は邪魔なものでしかなく、一度嫌にな
ると、あるサービスからの通知をすべて
切ってしまったり、邪魔な通知をする
アプリを削除してしまうことになりかね
ません。
　腕時計型のデジタルデバイスの新
製品が続 と々発売され、スマートフォ
ンだけの通知の世界が腕時計にも広
がります。スマートフォンの場合、光や
音や振動で通知を感じたらスマート
フォンを取り出し、その通知を画面で
読んだり、場合によってはアプリを起
動するところまで時間を使います。あ
げくには、そのままほかのことが気に
なって他のアプリを使い続けることも
あるかもしれません。
　腕時計型の端末の場合、時計で
時間を確認するように、ちらっと見ただ
けで把握できることが重要視されてい
ます。それらの通知は一目瞭然となる
よう、太くて色のコントラストがはっきり
した文字で、2語ぐらいに簡単にまと
め、時間の浪費を抑えます。文字盤に
表示する情報は、プライバシーにも配
慮が必要です。Glanceable（グラン
サブル／チラ見／一目瞭然）が求め

られているわけです。

　通知が必要なサービスを構築する
場合、その通知の頻度や内容はどの
ように考えれば良いでしょう。一見、た
くさん送りつければ、何かしら見てもら
えると考えたり、通知メッセージからの
アプリ起動率で成果を計りがちです。
けれども状況に即した適切な通知を
送らないかぎり、通知は余計なもので
しかありません。
　ユーザがスマートフォンを使っている
時間帯に通知すると、少なくとも見て
もらえると言われています。それらの時
間帯は朝の起床時、通勤時、昼休み
時間、帰宅時、帰宅後、就寝前などで
す。IT系の仕事に携わる人であれば、
いつでも必要な時間スマートフォンを
使えますが、日中、自由にスマートフォ
ンを見たり使えたりしない職種の人も
多くいます。通知のポイントとしては次
の事柄を考慮すると良いでしょう。

●緊急性が高い
●個人的なこと
●その人の状況に合ったときに
●その人の時間に合ったときに
●即時性のあるものを優先的に
●前回送ったときから、適切な時間間
隔をあけて

●情報コンテンツの生成時間が関係
ないもの
●適切な量、適切な文言で（できるだ
け少なく、一瞬で読める量で）
●アプリを起動せず通知の文言だけ
で理解でき、完結できるとなお良い
●送信対象のユーザを分類してお
き、適切なユーザ群にだけ通知を
送る

●長文や電子メールで充分なもの
は、メールで通知したほうが良い

　あからさまに一斉通知されたような
メッセージは、適切ではありません。自
分のために吟味して送られた通知が
知りたいわけです。英単語の勉強の
ように、毎日使ったほうが良いサービ

スであれば、数日間使わなくなった
ユーザを再び呼び戻すときに通知を
使うのも良い方法の1つです。
　また、状況を理解したうえでの通
知、コンテキストアウェアネスも重要な
要素です。最近のスマートフォン環境
ではActivity Recognitionと呼ばれ
る“スマートフォンを持っている人が今
何をしているのか”という状態を知るこ
とができます。歩いているのか、乗り物
に乗っているのかなど、状態を知るこ
とで、次のようなさらに最適な通知が
できるかもしれません。

●あなた向けの新しい情報が公開さ
れた

●何かの事柄を忘れないように通知
してあげる（リマインダ的な通知）

●そのユーザ固有の情報を通知する
●時間が来たこと、日付が来たことを

通知する
●セールの時間が来た、タイムセール

があと何分など「今」現在の情報
●メッセージ系が着信したことやカウ

ント数が増えたことなどを通知する
●順番待ちのあるもの、順番がきたタ

イミングなどの通知

　そのほか、時差や言語設定を考慮
したり、アプリが起動中なのかで通知
方法を変えたり、絵文字を活用した
り、通知音に凝ったり、通知許諾をわ
かりやすく示したりとさまざまな工夫が
必要です。

　スマートフォンや、アプリの世界で
工夫されながら使われている「通知

（Push Notification）」がWebブラ
ウザの世界でも使えるようになってき
ました。それが「Push Notification
Web」のしくみです。
　これを利用すれば、従来アプリでし
かできなかったサービスやアプリ固有
のプッシュ通知を、Webサービスや
Webアプリでも行えるようになるので
す。まだ限られた環境でしか動作しま
せんが、後々、ECサイトでの各種通
知、SNSでの更新やコメント通知、仕
事の予定などがメールではなくPush
Notification Webでお知らせされる
日もそう遠くないことでしょう。
　またデバイス的には、スマートフォン
から腕時計型デバイス、指輪型、眼
鏡型、はたまた近い将来は体内イン
プラントまで、家具や車、衣服などにも
通知のしくみが組み込まれていくこと
でしょう。モバイルコミュニケーション
の未来はスマートフォンアプリではな
く、すべてが「通知」を契機とした非同
期のコミュニケーションとして浸透して
いくことが予想されます。
　そのときに必要なのは、相手のこと
を考え、適切なタイミングで、先読み
し、感情に寄り添い、余計なプレッ
シャーを与えない、優秀な秘書や執事
のような人の思いやりが感じ取れる
通知サービスなのかもしれませんね。
｢

通知の体験のデザイン
デジタル時代の通知

安藤 幸央
EXA Corporation

通知の体験のデザイン

198
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

飲み忘れ防止薬瓶

1GADGET

1996年にプッシュ配信に対応した
スクリーンセーバーを始めた「PointCast」

Facebook Parseのプッシュ配信サービス。
手軽に利用できる

iPhone（Periscope）のプッシュ配信設定。
ユーザが細かく配信設定できる

Smart Wireless
Pill Bottles

Smart Wireless Pill Bottlesは、定期的
に飲む薬の飲み忘れを防止するための通
知機能をもった薬瓶です。定期的に服用
する必要がある薬を飲んだことがある方で
あれば、薬の飲み忘れや、薬を飲んだこと
を忘れて、飲むべきかどうか悩んだことはな
いでしょうか？　AdhereTech社のワイヤ
レス薬瓶は、服用データを収集し、薬を飲
む時間になると、メールやショートメッセー
ジで知らせてくれます。バッテリーは45日
間持つため、薬の購入時に瓶ごと交換し
てもらうことを想定しているそうです。

モーションアラーム

3GADGET

bleep bleepsはさまざまな個所に取り付
けることができるモーションセンサーです。
たとえばお菓子の瓶や冷蔵庫に取り付
けておくことで、フタをあけたり、冷蔵庫の
ドアが開いたら、スマートフォンに通知が
送られます。動かした際にオモチャのモン
スターが叫んだような音がするため、子供
のつまみ食いや、アルコール飲酒を防ぐ
役目を果たします。全6色、カラフルな色
あいのものが50ポンド（約9,000円）で
販売予定です。バッグなどに取り付けて
盗難防止用にも活用できます。

通知ライトつきケース

2GADGET

Lunecaseはスマートフォンと連動して、
メールや電話などの通知状態を知らせる
ロゴ表示のついた、iPhoneケースです。
ハートマーク版やキスマーク版もありま
す。通知があったことを画面を見ずに知
ることができます。ケースとスマートフォン
はネットワーク接続されているのではなく、
昔あった携帯電話向けグッズのように電
磁エネルギーによって光るしくみです。電
池やバッテリー供給は必要ありません。
39.99～49.99ドル。予約受付中です。

通知機能つき指輪

4GADGET

Ringly

Ringlyはアクセサリーとしてもデザインが
選択できる、指輪型デジタルデバイスで
す。スマートフォンのアプリと連動して、5
色のLED通知と、4つの振動パターンを
設定することができます。無骨なデジタル
デバイスではなく、女性が身につけていて
も違和感のない質感豊かな洗練されたデ
ザインです。指輪のサイズは11～16号。
防水加工がなされており、指輪のまま手を
洗うことができるそう。装飾によって195
～260ドルで予約受付中です。同様の機
能を持ったMOTA SMARTRINGという
指輪型製品も予定されています。

bleep bleeps

Lunecase

http://adheretech.com http://bleepbleeps.com

http://www.noloinc.com https://ringly.com

適切な通知のための、
体験のデザイン

未来の通知

https://parse.com/products/push

Periscopeというアプリの通知許可画面。
スムーズに許可が得られるよう、
きちんとした説明と配慮がなされています

Amazon SNS。
Amazonクラウドが提供する
プッシュメッセージングサービス

Swrve。
アプリのキャンペーンと、
プッシュ通知を組み合わせることのできる
プラットフォーム

Urban Airship。
ユーザやアプリの状況に応じて通知する

「コンテキスト」に応じた
細かい配信が可能なプラットフォーム

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design

https://parse.com/products/push

　ひと昔前であれば「通知」というと、
封書で手渡す大切なお知らせか、電
報やハガキで送られてくる大事な要
件を思い浮かべました。ブロードバンド
時代到来前、現在のようにインター
ネット常時接続が当たり前ではなかっ
たWebの黎明期には、PointCastや
Netscape Netcasterといった、プッ
シュ配信形式のサービスがわき起こり
ました。しかし時代が早すぎたのか、
ネットが遅すぎたのか、その当時の
プッシュサービスはもう残っていませ
ん。
　現代では、一個人が多種多様なデ
バイスを使い分け、それぞれに届く「通
知（Push Notification）」を認知し分
け、絶妙に使いこなしています。そのう
え、単なるネット経由の通知だけでな
く、ジオフェンシングと呼ばれる、ある領
域に入ったときに通知が行われるも
の、BLE（Bluetooth Low Energy）技
術を利用したビーコンによる近接通
知など、さまざまな技術が駆使されて
います。
　また、オンラインショップのタイム
セールの通知など、現実世界の通知
の考えが、ネット上にももたらされてき
ています。
　デジタルデバイスの「通知」によっ
て、同時にやり取りするのではない、
非同期のコミュニケーションが促進さ

れています。一方で、多数の通知に
よって集中力がそがれるなどといった
通知による弊害がないわけではありま
せん。「通知」は何かを気付かせてく
れる大切な役目を果たしています。し
かし、頻度が高すぎたり、無駄な通知
は邪魔なものでしかなく、一度嫌にな
ると、あるサービスからの通知をすべて
切ってしまったり、邪魔な通知をする
アプリを削除してしまうことになりかね
ません。
　腕時計型のデジタルデバイスの新
製品が続 と々発売され、スマートフォ
ンだけの通知の世界が腕時計にも広
がります。スマートフォンの場合、光や
音や振動で通知を感じたらスマート
フォンを取り出し、その通知を画面で
読んだり、場合によってはアプリを起
動するところまで時間を使います。あ
げくには、そのままほかのことが気に
なって他のアプリを使い続けることも
あるかもしれません。
　腕時計型の端末の場合、時計で
時間を確認するように、ちらっと見ただ
けで把握できることが重要視されてい
ます。それらの通知は一目瞭然となる
よう、太くて色のコントラストがはっきり
した文字で、2語ぐらいに簡単にまと
め、時間の浪費を抑えます。文字盤に
表示する情報は、プライバシーにも配
慮が必要です。Glanceable（グラン
サブル／チラ見／一目瞭然）が求め

られているわけです。

　通知が必要なサービスを構築する
場合、その通知の頻度や内容はどの
ように考えれば良いでしょう。一見、た
くさん送りつければ、何かしら見てもら
えると考えたり、通知メッセージからの
アプリ起動率で成果を計りがちです。
けれども状況に即した適切な通知を
送らないかぎり、通知は余計なもので
しかありません。
　ユーザがスマートフォンを使っている
時間帯に通知すると、少なくとも見て
もらえると言われています。それらの時
間帯は朝の起床時、通勤時、昼休み
時間、帰宅時、帰宅後、就寝前などで
す。IT系の仕事に携わる人であれば、
いつでも必要な時間スマートフォンを
使えますが、日中、自由にスマートフォ
ンを見たり使えたりしない職種の人も
多くいます。通知のポイントとしては次
の事柄を考慮すると良いでしょう。

●緊急性が高い
●個人的なこと
●その人の状況に合ったときに
●その人の時間に合ったときに
●即時性のあるものを優先的に
●前回送ったときから、適切な時間間
隔をあけて

●情報コンテンツの生成時間が関係
ないもの
●適切な量、適切な文言で（できるだ
け少なく、一瞬で読める量で）
●アプリを起動せず通知の文言だけ
で理解でき、完結できるとなお良い
●送信対象のユーザを分類してお
き、適切なユーザ群にだけ通知を
送る

●長文や電子メールで充分なもの
は、メールで通知したほうが良い

　あからさまに一斉通知されたような
メッセージは、適切ではありません。自
分のために吟味して送られた通知が
知りたいわけです。英単語の勉強の
ように、毎日使ったほうが良いサービ

スであれば、数日間使わなくなった
ユーザを再び呼び戻すときに通知を
使うのも良い方法の1つです。
　また、状況を理解したうえでの通
知、コンテキストアウェアネスも重要な
要素です。最近のスマートフォン環境
ではActivity Recognitionと呼ばれ
る“スマートフォンを持っている人が今
何をしているのか”という状態を知るこ
とができます。歩いているのか、乗り物
に乗っているのかなど、状態を知るこ
とで、次のようなさらに最適な通知が
できるかもしれません。

●あなた向けの新しい情報が公開さ
れた

●何かの事柄を忘れないように通知
してあげる（リマインダ的な通知）

●そのユーザ固有の情報を通知する
●時間が来たこと、日付が来たことを

通知する
●セールの時間が来た、タイムセール

があと何分など「今」現在の情報
●メッセージ系が着信したことやカウ

ント数が増えたことなどを通知する
●順番待ちのあるもの、順番がきたタ

イミングなどの通知

　そのほか、時差や言語設定を考慮
したり、アプリが起動中なのかで通知
方法を変えたり、絵文字を活用した
り、通知音に凝ったり、通知許諾をわ
かりやすく示したりとさまざまな工夫が
必要です。

　スマートフォンや、アプリの世界で
工夫されながら使われている「通知

（Push Notification）」がWebブラ
ウザの世界でも使えるようになってき
ました。それが「Push Notification
Web」のしくみです。
　これを利用すれば、従来アプリでし
かできなかったサービスやアプリ固有
のプッシュ通知を、Webサービスや
Webアプリでも行えるようになるので
す。まだ限られた環境でしか動作しま
せんが、後々、ECサイトでの各種通
知、SNSでの更新やコメント通知、仕
事の予定などがメールではなくPush
Notification Webでお知らせされる
日もそう遠くないことでしょう。
　またデバイス的には、スマートフォン
から腕時計型デバイス、指輪型、眼
鏡型、はたまた近い将来は体内イン
プラントまで、家具や車、衣服などにも
通知のしくみが組み込まれていくこと
でしょう。モバイルコミュニケーション
の未来はスマートフォンアプリではな
く、すべてが「通知」を契機とした非同
期のコミュニケーションとして浸透して
いくことが予想されます。
　そのときに必要なのは、相手のこと
を考え、適切なタイミングで、先読み
し、感情に寄り添い、余計なプレッ
シャーを与えない、優秀な秘書や執事
のような人の思いやりが感じ取れる
通知サービスなのかもしれませんね。
｢

通知の体験のデザイン
デジタル時代の通知

安藤 幸央
EXA Corporation

通知の体験のデザイン

198
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

飲み忘れ防止薬瓶

1GADGET

1996年にプッシュ配信に対応した
スクリーンセーバーを始めた「PointCast」

Facebook Parseのプッシュ配信サービス。
手軽に利用できる

iPhone（Periscope）のプッシュ配信設定。
ユーザが細かく配信設定できる

Smart Wireless
Pill Bottles

Smart Wireless Pill Bottlesは、定期的
に飲む薬の飲み忘れを防止するための通
知機能をもった薬瓶です。定期的に服用
する必要がある薬を飲んだことがある方で
あれば、薬の飲み忘れや、薬を飲んだこと
を忘れて、飲むべきかどうか悩んだことはな
いでしょうか？　AdhereTech社のワイヤ
レス薬瓶は、服用データを収集し、薬を飲
む時間になると、メールやショートメッセー
ジで知らせてくれます。バッテリーは45日
間持つため、薬の購入時に瓶ごと交換し
てもらうことを想定しているそうです。

モーションアラーム

3GADGET

bleep bleepsはさまざまな個所に取り付
けることができるモーションセンサーです。
たとえばお菓子の瓶や冷蔵庫に取り付
けておくことで、フタをあけたり、冷蔵庫の
ドアが開いたら、スマートフォンに通知が
送られます。動かした際にオモチャのモン
スターが叫んだような音がするため、子供
のつまみ食いや、アルコール飲酒を防ぐ
役目を果たします。全6色、カラフルな色
あいのものが50ポンド（約9,000円）で
販売予定です。バッグなどに取り付けて
盗難防止用にも活用できます。

通知ライトつきケース

2GADGET

Lunecaseはスマートフォンと連動して、
メールや電話などの通知状態を知らせる
ロゴ表示のついた、iPhoneケースです。
ハートマーク版やキスマーク版もありま
す。通知があったことを画面を見ずに知
ることができます。ケースとスマートフォン
はネットワーク接続されているのではなく、
昔あった携帯電話向けグッズのように電
磁エネルギーによって光るしくみです。電
池やバッテリー供給は必要ありません。
39.99～49.99ドル。予約受付中です。

通知機能つき指輪

4GADGET

Ringly

Ringlyはアクセサリーとしてもデザインが
選択できる、指輪型デジタルデバイスで
す。スマートフォンのアプリと連動して、5
色のLED通知と、4つの振動パターンを
設定することができます。無骨なデジタル
デバイスではなく、女性が身につけていて
も違和感のない質感豊かな洗練されたデ
ザインです。指輪のサイズは11～16号。
防水加工がなされており、指輪のまま手を
洗うことができるそう。装飾によって195
～260ドルで予約受付中です。同様の機
能を持ったMOTA SMARTRINGという
指輪型製品も予定されています。

bleep bleeps

Lunecase

http://adheretech.com http://bleepbleeps.com

http://www.noloinc.com https://ringly.com

適切な通知のための、
体験のデザイン

未来の通知

https://parse.com/products/push

Periscopeというアプリの通知許可画面。
スムーズに許可が得られるよう、
きちんとした説明と配慮がなされています

Amazon SNS。
Amazonクラウドが提供する
プッシュメッセージングサービス

Swrve。
アプリのキャンペーンと、
プッシュ通知を組み合わせることのできる
プラットフォーム

Urban Airship。
ユーザやアプリの状況に応じて通知する

「コンテキスト」に応じた
細かい配信が可能なプラットフォーム

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design Jun. 2015 - 3

http://adheretech.com
http://bleepbleeps.com
http://www.noloinc.com
https://ringly.com

4 - Software Design

Diff——ディフ

ディフとは

　ディフ（Diff）とは、2つのものの差分のこと
です。たとえば、ファイル file1.txtをコピーし
て file2.txtという別のファイルを作り、内容を
少し書き換えたとします。このとき「どこをど
のように書き換えたか」に関心が向くのは自然
なことですね。この2つのファイルの違い（削除・
追加・変更）が差分です（図1）。
　差分を得ることを動詞として表現するときは
「d
ディフ

iffを取る」などといいます。この表現はテキ
ストファイルの差分を取るプログラムの名前
diffに由来しているのだと思います。コマン
ド名そのものは英語の“difference”（違い）から
来ているのでしょう。
　「diffを取る」という表現は差分を取ること一
般に使われます。Gitなどのバージョン管理シ

ステムで、2つのバージョンを比較する場合も
「diffを取る」と表現します。図2には、2つのバー
ジョンのdiffを取った例を示します。ここでは
削除が赤、追加が緑で表示されています。

diffと不具合究明

　diffを取ることは非常に重要です。バージョ
ン1からバージョン2になって急に不具合が出
たとします。その場合、バージョン1と2の
diffを取り、差分に注目することで不具合の原
因を探ることができます。不具合の原因は、差
分のどこかに必ずあるからです。
　さらに、不具合を修正してバージョン3を作っ
たとします。そのとき、バージョン2と3の
diffを取ってレビューを行います。その修正で
不具合が確かに直るかを検討するためです。差
分の内容、すなわちdiffの内容は、プログラム
の不具合の原因究明や対策検討に重要な意味を
持つのです。
　diffの内容はもちろん重要ですが、diffの量
だけでも有益な情報が得られることがあります。
普段は毎日に数十行しか差分が発生しない開発

Diff

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 25

file1.txt

削除

file2.txt

追加

変更

 ▼図1　差分のイメージ図

 ▼図2　2つのバージョンのdiff

http://www.hyuki.com/

4 - Software Design Jun. 2015 - 5

作業なのに、ある日に限って数百行という大量
の差分が発生したとしましょう。そこには必ず
「いつもと違うこと」が起きているに違いありま
せん。
　diffの個所からも有益な情報が得られます。
プログラムを構成するファイルが多数あるにも
かかわらず、差分が発生するファイルがいつも
決まっているとします。不具合がいつもそのファ
イルで発生するなら、そのファイルが何か大き
な問題を抱えている可能性が高いことが想像で
きます。コードの品質が低いのかもしれません
し、単純にサイズが大きいのかもしれません。
いずれにしても、diffの個所に注目することで、
問題点が発見できることがあるのです。
　バージョン管理システムGitには、git blame
というコマンドがあります。これは、ソースコー
ドの各行を最終的に編集したのが誰かを表示す
るコマンドで、これを使うと、ソースコードを
現在の状態にした人が誰であるか、行単位で突
き止めることができます。
　git blameは「誰かの責任として非難する」と
いう単語ですから、なかなか物騒なネーミング
ですが、もちろんプログラマを非難するためだ
けに用いられるわけではありません。git blame
を使うと、その行を修正した理由を知りたいと
きに誰に聞けばいいかがわかるのです。プログ
ラムという大きな構造物は、ソースコードの差
分の積み重ねでできているわけですが、git
blameでは積み重ねの最終結果を名前付きで見
ていることになります。
　diffを取るのは、プログラムとは限りません。
昨年、論文の剽

ひょうせつ

窃が話題になったとき、問題の
論文と他人の論文とのdiffが取られ、ネットで
公開されていました。あのときは他人の論文と、
大量の部分が一致している（差分がない）ことが
注目されたわけです。

日常生活とdiff

　プログラミングの世界に限らず、日常生活に
おいても「diffを取る」という行為はよく行われ

ます。たとえば、私たちは毎日の天気予報で「明
日は今日よりも気温が何度高い」という情報を
受け取ります。今日の気温と明日の気温の差分
によって「明日はどのくらいの暑さか」を体感的
に想像するのです。
　いつもと同じ作業をしているにもかかわらず、
今日に限って失敗したり時間が掛かったりした
とき、私たちは自然と「今日はいつもと何が違
うんだろう」と考えます。これは「いつもの状況」
と「今日の状況」のdiffを取っていることになり
ますね。自分の行動に何も差分がなかったら、
原因は自分以外にあるはずです。diffを取るの
は原因究明に役立ちます。
　差分を有効に活用するためには、記録を取る
ときに「diffを取る」ことを意識しておく必要が
あります。バージョン管理システムがdiffを取
ることができるのは、必要な情報をきちんと記
録して管理しているからです。
　「今日の作業はうまくいかなかったけれど、
その原因は何だろう」と考えるとき「いつもの作
業との違い」を知るためには、「いつもの作業は
どのように行っていたか」を適切に記録してお
く必要があるということです。
　普段どおりの「当たり前」の状態を把握してい
なければ、異常な状態がどんなふうに、なぜ異
常なのかを調べることはできません。ですから、
何も問題が発生していないときも記録を取って
おくことが必要なのです。
　「いつもの状態」を把握していれば、いつもと
の違いを早期に発見でき、大きなトラブルを回
避できる可能性もあるでしょう。

◆　◆　◆
　あなたの周りを見回して、「diffを取る」とい
う状況を探しましょう。そこでは、何と何を比
較していますか。わかりやすく差分が表現され
ていますか。また、diffを取ることを意識して
記録を取っているでしょうか。「いつもの状態」
と「現在の状態」の差分によって、トラブルを早
期発見できる場面はないでしょうか。
　ぜひ、探してみてください。｢

25

6 - Software Design

日本の「ものづくり」
バンザイ！

　さて、前回はグダグダ妄想しながら、
Narrative Cameraモドキを作りました。その後、
Software Design編集部様からRaspberry Pi 2

が届きました（写真1）。CPUがクアッドコア
になったり、メモリが増えたり、素晴らしくパ
ワーアップしています。Microsoftさんが
Windows 10をサポートするといっております
（図1）。さらにクアッドコアのCortex-A7です
よ、奥さん。さらにさらにさらに、Raspberry

Pi 2のメモリはなんと！　エルピーダ製です！
2012年に一度、会社更生法を提出したエルピー

ダのメモリを使っていたので心がほんわかしま
した。日本のものづくり万歳です。Raspberry

Pi 2をたくさん買うと日本のものづくりを救
うことになるかもしれません。

Raspberry Pi 2を
試食してみる

　Raspberry Piのスペックを比べてみましょ
う（表1）。
　クアッドコアということで、cpuinfoを見て
みると本当にクアッドコアです。中華タブレッ
トくらいのスペックはありますよね。

pi@raspberrypi ~ $ cat /proc/cpuinfo
実行結果は割愛！

　今まで、ラズパイといえば、小さな
パソコン（PC）だといわれてましたが、
実際に触ってみると、GUI環境では遅
すぎてPCになりませんでした。デフォ
ルトでインストールされているMidori

ブラウザは遅すぎて相変わらず使い物
になりませんでしたが、Firefox（ice

weasel）がインストールできますし、そ
こそこ普通に使えます。

sudo apt-get update
sudo apt-get install iceweasel

おとなラズパイリレーは、Raspberry Piを文字どおり「リレー」し、好奇心旺盛なITエンジニアが電子工作をするという企画
です。前編で構想を練り、後編で実装します。1年を通してどんなデバイスができあがるのか？……今回は、クレイジーワー
クスの村上総裁によるRaspberry Pi 2でオレ的雰囲気メガネを作る！――です。

Writer 村上 福之（むらかみ ふくゆき）　クレイジーワークス総裁

「Raspberry Piでオレ的雰囲気メガネを作る！（後編）」
村上 福之

第8回

 ▼写真1　編集部様から届いたRaspberry Pi 2

6 - Software Design Jun. 2015 - 7

「Raspberry Piでオレ的雰囲気メガネを作る！（後編）」 第8回

　Chromeもインストールできますが、
安定していないので、たまにクラッ
シュします。どちらのブラウザでも、
Facebook、YouTube、Google

Driveなどのような重いサイトはか
なりつらいです。とくにYouTube

は720pで2fpsくらいしか出ません。
Yahoo! JapanやWordpressの程度
なら普通に閲覧できます。正直、
このままのスペックでWindows 10

がどこまで動くのかは、微妙に未
知数な気になってきました。
　しかし、5,000円程度でこんな
パソコンが買えてしまうなんてす
ごい時代ですね。
　ここまでスペックがアップしてい
るとOpenCVが普通に使えるので
はないかと思い、一度、Raspberry

Pi 2上でソースからコンパイルしようとしましたが、
2時間以上かかったので断念しました。しかし、
そんなことをしなくても、apt-getだけで使えます
（図2）。素晴らしい。
　Raspberry Pi B+ではOpenCVは遅くて使え
なかったのですが、Raspberry Pi 2では実用
的な速度になりました。画像処理テストでよく

ある lenna注1の512×512ピクセルの画像の顔
認識で2.3秒くらい。Raspberry Pi標準カメラ
の200万画素だと15秒くらい。200万画素で
15秒かかるのはどうかと思うかもしれませんが、
これでも無印のRaspberry Piの倍速くらいで
す。そこで、オレ的雰囲気メガネを作ることに
しました。

注1） http://en.wikipedia.org/wiki/Lenna

Raspberry Pi Model B+ Raspberry Pi 2 Model B

SoC BCM2835 BCM2836

CPU 700MHz single-core ARM1176JZF-S 900MHz quad-core ARM Cortex-A7

GPU Dual Core VideoCore IV Dual Core VideoCore IV

RAM 512MB 1GB

 ▼表1　性能比較

 ▼図1　Microsoftさんの本気（https://dev.windows.com/en-us/
featured/raspberrypi2support）

sudo apt-get install -y 　libopencv-dev　python-opencv python-numpy python-scipy

 ▼図2　apt-getだけですいすいインストール

https://dev.windows.com/en-us/featured/raspberrypi2support
http://en.wikipedia.org/wiki/Lenna

8 - Software Design

オレ的雰囲気
メガネを作る

　「オレの代わりに雰囲気を読むメガネ」を作り
ます。
　本当の雰囲気メガネ（http://fun-iki.com/）は情
報科学芸術大学院大学が作ったスマホのノーティ

フィケーションレシーバーです（図3）。一方、ぼ
くがここで作るのは、ダメな人向けの雰囲気メ
ガネです。ぼくは雰囲気を読むのが非常に苦手
です。空気の読めないダメな人です。一対一だ
と会話が成り立つのですが、５人以上の人がい
ると本当に会話が成り立たないくらい人間とし
てかなりダメです。もともと、父方がそういう
家系らしく親戚で集まると全員空気を読まない

のでACKを見ないUDP

/IPみたいな会話になり
ます。
　そんなわけで、Open

CVを使って、表情検出
用のカスケードファイル
を食わせて、雰囲気を読
んでくれるメガネを作る
ことにしました。5分ご
とに目の前の人の表情を
OpenCVで取り込み、表
情を解析し、笑っていれ
ば、“smiling”。笑ってな
ければ“not smiling”と話
しかけてくれるようにし
ます（写真2）。
　構造は何も考えず、メ
ガネにカメラとイヤフォン
をつけただけです。笑顔
検出のサンプルはOpenCV

公式のGitHubで見つけま
した注2。
　このソースを読む限り、
カスケードファイル（haar

cascade_smile.xml 注 3）を
渡すと、笑顔を検出する
ようです。

 ▼写真2　こんな具合につないでみたよ

 ▼図3　雰囲気メガネ（http://fun-iki.com/）

注2） https://github.com/Itseez/opencv/blob/master/samples/cpp/smiledetect.cpp
注3） https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_smile.xml

http://fun-iki.com/
http://fun-iki.com/
https://github.com/Itseez/opencv/blob/master/samples/cpp/smiledetect.cpp
https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_smile.xml

8 - Software Design Jun. 2015 - 9

「Raspberry Piでオレ的雰囲気メガネを作る！（後編）」 第8回

　サウンドドライバを入れて、Festival

Voicesをapt-getでインストールしま
す。これだけで“Hello world”と、微
妙な発音で話しかけてくれます。便
利な時代です。

sudo apt-get install alsa-utils
sudo apt-get install mpg321
sudo apt-get install lame
sudo apt-get install festival ｭ
festival-freebsoft-utils
echo "Hello World"| festival --tts

　なんだか、apt-getするだけで、か
なり何でもできてしまうので、楽す
ぎてびっくりです。あとはOpenCV

さんにモグモグさせて、顔認識する
コードを書いて（リスト1）、crontabで走らせると、
ぼちぼちの精度で空気を読んでくれます。

ポストグーグル
グラスの発明

　ただ、そもそもRaspberry Piのカメラは広
角ではないので、かなりちゃんと対象に合わせ
ないと認識してくれません。それでも目の前に

いる人の表情を読み取る助けにはなりますが、
いちいち“smiling”と話しかけてくるので、今
度は会話そのものが聞き取りにくいです。空気
が読めるようになるのは、なかなか難しいとこ
ろです（写真3）。
　しかし、こんなメガネをしていると、空気が読
める、読めない以前の問題かもしれません。ﾟ

import cv2
import commands
import picamera

path='out.jpg'
camera = picamera.PiCamera()
camera.capture(path)
camera.close()

cascade = cv2.CascadeClassifier("haarcascade_smile.xml")
rects = cascade.detectMultiScale(cv2.imread(path), 1.3, 4, cv2.cv.CV_HAAR_SCALE_IMAGE, (20,20))

if len(rects) == 0:
 commands.getoutput('echo "smiling"| festival --tts')
else:
 commands.getoutput('echo "not smiling"| festival --tts')

 ▼リスト1　OpenCVさんに食わせたコード（サンプル）

 ▼写真3　 頭の上に直接通電したRaspberry Piを乗せてはいけません

10 - Software Design

　“ゆちみり”こと前島さんは、PHP

カンファレンス実行委員長として、現

在脚光を浴びていらっしゃいます。

（鎌田）島根出身とのことですが、

地元はどんなところですか？　ちなみ

に私は、水木しげるファンです。

（前島）水木しげるさんの出身は鳥

取県境港ですよ（笑）。よく島根県と

鳥取県は間違われますが、砂丘があ

るのが鳥取で出雲大社があるのが島

根です。島根はとてもゆったりとし

たところです。シジミ漁で有名な宍

道湖の夕日はすごくきれいで、たま

に写真を撮りに行きました。東京は

みんなセカセカしていて、お年寄り

にまで追い抜かれて上京当時はびっ

くりしました（笑）。うちは4人兄弟

なんですが、みんな成人して家を出

ているので親は寂しがっていて、「い

つ帰ってくるんだ？」とよく聞かれ

ます。

“ゆちみり”さんのおっとりとした

雰囲気は育った環境からなのでしょう

か。高専って女性は少ないですよね。

松江高専は当時5つの科があり、

男子生徒が多いのですが、所属した

情報工学科は女子の比率が半分ぐら

いで、共学のような感覚がありまし

た。学んだことは、C++からJava、

PHP、電子回路などですね。卒業研

究は、ECサイトから収集したデー

タから、製品の使いやすさなどの

データを分析してグラフ上に表示す

るものでした。特徴が一目でわかる

仕様にしました。

本格的にPHPを使いだしたのは

いつごろですか？

最初に入った会社で、大手ECサ

イトを運営している会社に出向して

PHPでの開発の経験を積みました。

高専時代よりも、社会に出た現場で

エンジニアとして開花したのではな

いかと思います。大きなきっかけは

勉強会です。PHPの勉強会は毎月開

催されていて、自然とPHPカンファ

レンスの運営スタッフになっていま

した。

PHPカンファレンスの実行委員

長になった経緯を教えてください。

きっかけは、実行委員をしている

ときに、運営について意見を出して

いたことです。しかも一度二度では

なく（笑）。それで「じゃあ来年の実

行委員は“ゆちみり”がやればいいん

じゃないかな」ということになりま

して……。

ありがちなパターンですね（笑）。

でも、女性が実行委員長というのは参

加者にとってもやさしいイメージで良

いと思います。実際に運営するのはた

いへんでしたか？

はい。カンファレンスを盛り上げ

ようと頑張りました。とくに1ヵ月

前ぐらいからの準備がたいへんで、

プログラムを作ったり、ゲストの手

配など仕事は多岐に渡ります。お給

料もらうほうの仕事まで手がまわら

なくなり、少々危険な状況になりま

した。こういうことは、会社の理解

がないとできないですよ。そして終

わったあとは燃え尽き症候群でした。

過去を振り返ると、実行委員長は皆

同様に燃え尽きています（笑）。

お疲れ様でした！　でも無事に成

功してよかったですね。一言でいう

と、PHPの良さはどんなところで

しょうか。

ゲスト：前島 有貴さん第11献

楽天テクノロジーカンファレンスで
まつもとゆきひろ氏と

前島 有貴（まえじま ゆき）さん
島根県出身、松江工業高等専門学校（松江高
専）卒業後、上京して東京のシステム会社に就
職。その後、仲間と共に株式会社クロコスを
設立。その間、PHPエンジニアとして活躍しつ
つ、勉強会などでは運営側にもまわり、2014
年にはPHPカンファレンスの初の女性実行委
員長となる。現在ヤフー株式会社勤務。サイク
リングが趣味。
Twitter ID：@yuchimiri

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

10 - Software Design Jun. 2015 - 11

「手軽さ」ですね。プログラミング

を始める人には向いていると思いま

す。でも私は、広く学ぶことを勧め

ます。PHPが10年先に使われなく

なったときに、ほかの言語がほとん

ど使えないというようではエンジニ

アとしてはダメかなと。

なるほど。それはほかの言語にも

学習意欲があるということですか？

もちろんです。最近はスマホアプ

リの開発に興味があるのでSwiftで

すね。もちろんRubyも勉強してい

ます。「Rubyの父」まつもとゆきひ

ろさんは島根が誇る名誉市民ですか

ら「がんばらなくちゃ」と。先日ご縁

があって、楽天テクノロジーカン

ファレンスでお会いしてお話しさせ

ていただく機会がありました。

おぉ、Ruby信者もうらやむお話

ですね。ところで、かつて在籍されて

いたクロコスと言えば、精鋭のエンジ

ニアが集まっていた印象があります

が、当時、エンジニアとしてどんな勉

強をされていましたか？

一番学びが多かったのはチームの

メンバーにコードレビューでいろい

ろ指摘してもらったことです。共著

で『symfony 1.4によるWebアプリ

ケーション開発』という本も書きま

した。優秀なエンジニア仲間と一緒

に働けることは、エンジニアにとっ

て幸福なことだと思います。

なるほど。成長するには、コード

レビューをする会社がいいと。買収さ

れるまで成長したという点で、どこが

メリットだったと思いますか？

3つあると思います。1つめは、

Facebookが日本に入ってすぐアプ

リ事業を立ち上げたことです。Face

bookのマーケティングアプリとし

ては一番早かったんです。2つめは、

集まったエンジニアが優秀で若かっ

たこと。3つめは、エンジェルこと

小澤隆生さん（現ヤフー執行役員）と

岡元淳さんが助言役としていたこと

ですね。

漫画『王様達のバイキング』のモデ

ルにもなったのですよね。買収の発表

があったとき、どんなリアクションで

したか？

朝、社長から「来月から我々はヤ

フーにいきます」と発表がありまし

た。開発することに夢中になってい

たので、発表を聞いたときはぽかん

としてしまったのですが、思い返せ

ば会社を立ち上げるときに、ゴール

の1つとして買収という形が示され

ていたので、腑に落ちました。

ベンチャーから大企業への転身で

すが、現在の職場でのミッションは何

でしょうか。

今は新規サービスの開発を行って

います。ヤフーに入るとき、自分た

ちのスピード力を買われたことも

あったので、このスピードや勢いを

大事にしています。まだまだ改善点

は多くあるので、1つずつクリアし

ていきたいと思っています。

なるほど。将来はどんな形を描い

ていますか？

海外の新しいサービスや新技術が

産まれる現場に自分が居られたら、

エンジニアとして幸せかも、という

漠然とした憧れがあります。

尊敬している方はいらっしゃいま

すか？

エンジニアとしては、楽天カンファ

レンスでお会いした、Red Hatの岩

尾はるかさんと、サーバーワークス

の小室文さんです。お2人とも英語

がとても上手で、いろんなことをた

くさん知っていて。

お手本となる女性のエンジニアで

すね。ところで恋愛観だとか、好きな

男性のタイプは？

今年はキューピッド運がいいんで

すよ。紹介やアドバイスでカップル

がいくつか成立しています。私の好

みは、いろんな経験をした頼りにな

るタイプです。

おっとり雰囲気、かわいいです。

今日は楽しいお話、どうもありがとう

ございました。ｨ

12 - Software Design12 - Software Design

はじめに

text：坪井 義浩　TSUBOI Yoshihiro　ytsuboi@gmail.com　　　@ytsuboi
協力：㈱スイッチサイエンス　http://www.switch-science.com/

はんだづけカフェなう
最終回

秋葉原発！

　2010年12月号から56回に渡って連載して
きた本連載ですが、今回が最終回です。最後と
いうことで、この5年弱の間にあった趣味の
ハードウェアの世界を振り返っていきたいと思
います。

　この連載のタイトルの由来である「はんだづ
けカフェ」は、相変わらず秋葉原のアーツ千代
田3331の3階にあります。当初は、電子工作
通販をしている会社、スイッチサイエンス社の
オフィス内にあったのですが（写真1）、2011年
5月に同社オフィスの向かい側の部屋に移動し
ました。2013年末に同社のオフィスがアーツ千
代田から新宿区箪

たんすまち

笥町に移転をしたため、現在
は月水金の夕方と土日祝の午後のみ営業をして
います。筆者は、この連載を始めたころは千代
田区に住んでいたので、秋葉原界隈に頻繁に足
を運んでいました。

　A
アルドゥイーノ

rduinoは、8bitマイコンを搭載していて、
C/C++を使って書いたプログラムで手軽にI/O

（入出力）を行うことのできる、とても手軽な
ボードです。Arduinoプロジェクト自体は2005

年に始まりましたので、連載開始時にはすでに
5年経っていました。当初使っていたATmega8

というマイコンと、2015年現在、おもに流通し
ているArduino Uno R3（写真2）で使っている
ATmega328とは、メモリのサイズは違います
が同じシリーズのマイコンを使っていることが
驚きです。マイコンの世界の変化は、パソコン
の世界のCPUの変化と比べるとずいぶんゆっ
くりです。
　Arduinoは、Makerムーブメントの枠を超え、
半導体業界全体にも大きな影響を与えていま
す。最近発表される、半導体評価ボードのソ
ケットの配置の多くに、Arduinoを真似たもの
を見かけます。Arduinoがこれだけメジャーに
なった理由は、けっしてこのソケットの配置で

はんだづけカフェ

Arduino

 ▼写真1　初期の「はんだづけカフェ」 ▼写真2　Arduino Uno

これまでのまとめ

http://www.switch-science.com/

12 - Software Design Jun. 2015 - 13

最終回

12 - Software Design

Raspberry Pi

mbed

 ▼写真3　Raspberry Pi 2 Model B

はないと思う筆者にとっては不思議な現象で
す。しかし、従来、こういったマーケットに関
心を持たなかった半導体メーカーをも巻き込み
始めたのがArduinoのすごいところです。2013

年10月には、大手半導体メーカーのIntelも、
Arduino Certifiedとして、Galileoを発表しまし
た。最近では、Intel Edisonを発表しています。
　そんなArduinoを開発したチームのメンバが
分裂し、係争中であることが最近話題になって
います。もともとのArduinoの開発者5人が設
立したArduino LLCという会社と、開発者の
1人であるGianluca Martino氏が長く経営し
Arduinoの製造と販売を担ってきたArduino

SRLとの間での訴訟合戦です。詳細は、ス
イッチサイエンスのブログ注1に記されていま
す。オープンソースハードウェアという文化を
代表するプロジェクトの1つであるArduino

で、このような争いが起きていることが残念で
なりません。

　低価格でLinuxが動く基板として人気なのが
Raspberry Piです。2012年2月に登場して以
来、約3年間で累計500万台が出荷されるとい
う勢いで普及しました。Linuxが動きますので、
PythonやRuby、Perl、シェルスクリプトなど
さまざまな言語で開発でき、Webデベロッパの
方が気軽にハードウェア操作ができるというこ
とも人気の理由の1つでしょう。今年は、CPU

性能が大きく高まったRaspberry Pi 2 Model

B（写真3）が発売されました。Raspberry Pi

の使い方を解説した本も数多く出版されてい

ます。
　Raspberry Piは、マイコンらしいI/O以外
に、USBが付いていることも便利な理由の1つ
だと言えそうです。カメラやWi-Fiなど、昨今
の高機能なペリフェラル（周辺機器）はたいてい
USBのものが安価で入手性がよく、妥当な性能

注1） http://mag.switch-science.com/2015/04/07/arduino-
v-arduino/

を持っています。また、I/O操作を行うといった
用途のほかに、ハイレゾオーディオの再生装置
として多用されているのを見かけます。
Raspberry Piに高性能なD/Aコンバーターを搭
載した拡張ボードを取り付けて、オーディオ再
生を楽しんでいる方もいらっしゃるようです。

　この連載を書いているうちに、筆者個人的
に、一番大きな変化があったプラットフォーム
がm
エンベッド

bedです。Arduinoで電子工作（マイコン工
作）を再開した筆者ですが、Arduinoではネット
ワークに接続する装置を作りづらかったことか
らmbedを触り始めていました。mbedは、ARM

という半導体の設計図を売っている企業が立ち
上げたプロジェクトで、同社の設計図を買って
いる企業が作った32bitマイコンを搭載してい
ます。32bitマイコンがゆえに、メモリも8bitマ
イコンより大きく、マイコン自身にネットワー
クインターフェースを搭載した製品があります。
　当初はクローズドソースなプロジェクトだっ
たmbedですが、2013年にソースコードが公開
され、オープンソースとなりました。ちょうど
このころmbedプロジェクトの立ち上げメンバ
が来日していて、アテンドしていた筆者は、
Arduinoと同じようにDIP形状（写真4）のマイ
コンをmbedで開発したいというアイデアを話
し、移植プロジェクトを実行するきっかけにし
ました。この連載を始めたころはmbed

LPC1768（写真5）という1機種のみだった
mbedは、今では50機種以上存在する発展具合

これまでのまとめ

http://mag.switch-science.com/2015/04/07/arduino-v-arduino/

14 - Software Design

はんだづけカフェなう
秋葉原発！

です。
　2014年からは、ARM社内でのmbedの扱いも
大きく変わり、展示会でのARMブースやプレ
ゼンにmbedが登場し、大きく取り扱われるよ
うに変化しました。ArduinoやRaspberry Piよ
りも、より製品に近いところでプロトタイピン
グ（試作）できるのがmbedの特徴です。一方
で、C/C++で開発をしなければならないこと
や、日本語での情報量が少ないことから、
ArduinoやRaspberry Piほどの普及にいたっ
ていないのが現状です。

　個々のプラットフォームが有名になっただけ
ではなく、もちろんMakerムーブメント自体
も一般のメディアでも紹介されるようになり、
盛り上がっています。2012年には、ワイアード
誌編集長だったクリス・アンダーソン氏が記し
た『MAKERS－21世紀の産業革命が始まる』
という本が日本でも出版されました。最近で
は、テレビでMaker Faire Tokyoというイベ
ントや、MIT発の市民工房であるFabLabなど、

Makerムーブメント

Makerムーブメントに関する情報が紹介されて
いるのを頻繁に見かけます。
　アメリカではどういうわけか、2014年にホワ
イトハウスでMaker Faireが開かれました。オ
バマ政権は、製造業での雇用創出を公約に掲げ
ているのですが、こういった政策の一環なので
しょう。草の根活動とも言えるMakerムーブ
メントに対し、さまざまな支援策が発表されて
います。たまたま政策と一致するムーブメント
があったとはいえ、草の根活動に対する大々的
な支援策を打ち出せるアメリカという国に凄さ
を感じています。
　Maker Faireはアメリカだけでなく、世界各
地で開かれるようになりました。2014年には
131のMaker Faireが開催されました。筆者の
憧れの場所、マサチューセッツ工科大のキャン
パスでもMaker Faireが開催されるほどです
（写真6）。Maker FaireのWebサイト注2で、開
催地や日時を一覧で見ることができます。この
ページを見ると、世界中ありとあらゆる場所で
Maker Faireが開催されていることに驚かされ
ます。世界中のさまざまな人が、モノを作るこ
とを楽しんでいるようです。
　本誌の読者の多くは「ハッカソン」をご存じで
しょう。ハックとマラソンを組み合わせた造語
で、開発者たちが集まって、アイデアとそれを
実現する技術を競い合うイベントです（写真
7）。このハッカソンも、最近ではとても頻繁

注2） http://makerfaire.com/map/

 ▼写真4　DIP

 ▼写真5　mbed LPC1768
 ▼写真6　MIT Mini Maker Faire

http://makerfaire.com/map/

14 - Software Design Jun. 2015 - 15

最終回

最後に

筆者自身

に開かれるようになりました。ほとんど毎週末
と言ってよい頻度で都内で開催されており、企
業もスポンサーをするようになってきました。
最近では、テレビ局が主催をしたり、Intel、
ARM、Microsoft、KDDI、トヨタ、東芝、楽天
といった会社の名前を見かけます。

　筆者自身や、自身をとりまく環境も変わりま
した。先に記した、mbedの移植を通じて、mbed

に大きく関わることになったのも大きな変化で
す。連載開始当時は、Arduinoを使う、いち
ユーザでしたが、モノを作ったりMaker Faire

に出展をしたりしているうちに、モノを作る人
に、モノを作るための道具を提供するようにな
りました。ここ数年、パスポートに捺

お

されるス
タンプの種類と数、海外とのメールのやりとり
や電話会議の機会が大きく増えています。連載
当初は、はんだづけカフェのユーザでしたが、
名古屋で仲間とともにMaker Lab Nagoya注3

（写真8）も始めました。
　筆者の十代は、ちょうどインターネットが普
及し始めたころで、ネットワークが世界を変え
つつあった時代でした。当時は個人が基板を
作ったり、新しい半導体デバイスを入手するこ
とが難しくもありました。しかし今ではネット
ワークのおかげで、新しい半導体を海外から購
入したり、基板を工場に発注できる世の中にな

注3） http://makerlab.jp

りました。20年前は個人が新しい電子機器を作
るのは不可能に近い状況でしたが、今では大き
な費用負担の必要なく、気軽に開発をできるよ
うになっています。
　ネットワークと言えば、Internet of Things

（モノのインターネット）という単語を頻繁に聞
くようになりました。1999年に初めて使われた
用語だということですが、10年以上のときを経
て、バズワードとして頻繁に使われています。
さまざまなテクノロジがそろってきたことで、
機器から集めた情報を集約して処理したり、逆
に今までネットワークが届いていなかった場所
にもネットワークがリーチできるようになって
きたからでしょう。

　遅筆で飽きっぽい筆者が56回、4年と8ヵ月
もの間連載を続けてくることができたのは、ひ
とえに担当編集の（幕）氏のおかげです。ありが
とうございます。この連載がまさか1年以上続
くとは、筆者は考えてもいませんでした。製作
記事なのか、技術の解説なのか、新しいMaker

ムーブメントの動向を伝えるのか定まらず、読
んで下さっている方を困惑させてきたことかと
思います。本連載は、これでいったん終了しま
すが、あらためてIoT機器を作るための技術解
説を中心にした連載を始めさせていただく予定
です。ご期待ください。ｨ

 ▼写真7　ハッカソンの様子 ▼写真8　Maker Lab Nagoya

これまでのまとめ

http://makerlab.jp

16 - Software Design

02 03

01

04

06

05

07

Present 読者プレゼントのお知らせ

モバイルバッテリー「ISMB-P8700W7」
＆ポケットルータ「WN-TR2K」
ISMB-P8700W7 は北陸新幹線 W7 系が描かれた、開業記念モデル
のモバイルバッテリー（8,700mAh）。microB コネクタでスマフォ
と接続します。WN-TR2K は有線 LAN とつなぐだけで Wi-Fi（「b」、

「g」、「n」）を利用できるバスパワーのポケットルータです。
 提供元 アイ・オー・データ機器　 URL http://www.iodata.jp

シェルプログラミング
実用テクニック
上田 隆一 著、USP 研究所 監修／
B5 変形判、416 ページ／
ISBN ＝ 978-4-7741-7344-3

本誌 2012 年 1 月号〜 2013 年 12 月号で連載した「開眼シェルス
クリプト」の内容を加筆／修正し、1 冊にまとめました。豊富な事
例から複数のコマンドを自在に組み合わせるノウハウを学べます。
 提供元 技術評論社　 URL http://gihyo.jp

「Raspberry Pi B+」＆「Camera module」セット
ARM 搭載、名刺サイズのコンピュータボードです。4 基の USB ポート、40 ピン GPIO コネ
クタ、micro SD ソケットを持ち、さまざまなデバイスと接続して自分だけのガジェットを作
れます。今回は、Raspberry Pi と接続できる、5M ピクセルセンサー搭載のカメラモジュー
ルとセットでのご提供です（ロゴ入りのオリジナルバッグもお付けします）。
 提供元 アールエスコンポーネンツ　 URL http://jp.rs-online.com

『Software Design』をご愛読いただき
ありがとうございます。本誌サイト
http://sd.gihyo.jp/の「読者アンケー
トと資料請求」からアクセスし、アン
ケートにご協力ください。ご希望のプ
レゼント番号をご入力いただいた方に
は抽選でプレゼントを差し上げます。
締め切りは 2015 年 6 月 17 日です。
プレゼントの発送まで日数がかかる場
合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および
発送以外の目的で使用することはありません。アンケー
トのご回答については誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。ご
入力いただいた個人情報は、作業終了後に当社が責任を
持って破棄いたします。なお掲載したプレゼントはモニ
ター製品として提供になる場合があり、当選者には簡単
なレポートをお願いしております（詳細は当選者に直接
ご連絡いたします）。

絵で見てわかる
IoT/ センサの仕組みと活用
㈱ NTT データ　河村 雅人、大塚 紘史、小林 佑輔、
小山 武士、宮崎 智也、石黒 佑樹、小島 康平 著／
A5 判、320 ページ／
ISBN ＝ 978-4-7981-4062-9

IoT をシステム開発で利活用したいエンジニアを対象に、IoT を構成
する技術要素であるデバイス、センサ、通信プロトコルの基礎知識

（MQTT）から、IoT の活用方法までを解説した書籍です。
 提供元 翔泳社　 URL http://www.shoeisha.co.jp

Web エンジニア
の教科書
佐々木 達也、瀬川 雄介、内藤 賢司 著／
A5 判、304 ページ／
ISBN ＝ 978-4-86354-168-9

Web エンジニアとして押さえておきたい技術や知識を、Ruby on
Rails、PHP、NoSQL データベース、フロントエンド、ログの取り
扱い、環境構築の自動化といった分野に渡って解説しています。
 提供元 シーアンドアール研究所　 URL http://www.c-r.com

現代用語の基礎知識
1996 ～ 2015
20 年分特別パック
1948 年創刊の新語事典「現代用語の基礎知識」の最新 20 年分のデー
タを収録した電子辞典（DVD-ROM）。全データを一気に検索でき、
年代による言葉の意味解釈の変遷を色分けして一覧できます。動作
環境は Windows Vista 以降および Mac OS X 10.7 以降。
 提供元 ロゴヴィスタ　 URL http://www.logovista.co.jp

AWK 実践入門

中島 雅弘、富永 浩之、國信 真吾、花川 直己 著／
B5 変形判、416 ページ／
ISBN=978-4-7741-7369-6

AWK は UNIX 初期から使われ続けている、シェル上でのテキスト
処理に非常に有用なツールです。本書は gawk 4 系に対応し、豊富
なサンプルスクリプトを使いながら AWK と正規表現が学べます。
 提供元 技術評論社　 URL http://gihyo.jp

1 名

1 名

1 名

2 名 2 名

2 名 2 名

http://jp.rs-online.com
http://sd.gihyo.jp/
http://www.iodata.jp
http://www.logovista.co.jp
http://www.shoeisha.co.jp
http://www.c-r.com
http://gihyo.jp
http://gihyo.jp

第1章

第2章

　ソフトウェア開発におけるバージョン管理およびリソース管理は、ベストアンサーを探し続ける歴史
でした。古くはCVS（Concurrent Versions System）、使いやすさを求めてSubversion。さらに

Mercurialが分散型バージョン管理システムの可能性をひらき、Linuxの父リーナスが開発したGitに
注目が集まるようになりました。そしてGitとGitHubが、現在は主流になっています。
　そうした状況のなか、そろそろ新人さんも開発現場へ実戦投入！――の時期ではないでしょうか。ソ
フトウェア開発において、今までと一番違うのはチームで仕事をすることです。一番大事なのは、ソフ
トウェアにデグレード（手戻り）を起こさず品質を向上させること。そのために先輩たちは、Gitや

GitHubを活用して仕事をしています。本特集は初心者を対象に、ちょっと扱いが難しいGitとGitHub

をやさしく楽しく解説します。

I t ' s a s e a s y t o l e a r n a s y o u r

基本概念から環境構築、さらに操作方法まで
はじめてのGit 入門…………………………………… P.18
岡本 隆史

リポジトリ作成からCI ツール等との連携まで
GitHub入門…………………………………………………… P.42
大塚 弘記

Illustration by aico

18 - Software Design

・朝光（よあけ）
新卒でタコ足Web㈱に入社してきた
Webプログラマの卵。

・地頭（じとう）
先輩社員。朝光のOJT担当。タコ足
Web㈱に服装規定はない。

・大鷹（おおたか）
朝光の同期。ボーダーシャツが好き
なようだ。

Git導入Before/After

 僕は開発経験が少ない
　新入社員の朝光ちゃん（朝光と書いて「よあけ」
と読むらしいです。ついにキラキラネーム世代
の子が入社してくる時代になったんですね
……）は、先輩の地頭のもと、研修を兼ねて入
社早々、■ーソンのチケット購入システムの開
発に携わることになりました。
　そこに待ち受けていたのは、早々の苦難でした。

 元に戻せないソースコード
　　　： このプログラムさっきまで動いていた

んだけど、変更しているうちに動かな
くなっちゃいました>_<

　　　： だったら、まずは、動いていた状態に
戻したら？

　　　： 戻そうと思うんだけど、どこを変更し
たのか覚えてません（涙）

　　　： 変更する前のファイルのバックアップ
とか取ってないの？

　　　： 取ってません。私、過去と振られた男
は振り返らない主義なんです！

　　　： まぁ、頑張って直してくれ……。

　このあと、終電まで頑張って直してなんとか
乗り越えることができたそうです。

 ● 得られた教訓「朝光メモ」
プログラムが動いたら、まずはそのファイルを保
存しておき、誤った修正をした場合でもその状態
に戻せるようにしておくこと。

 せっかくの編集内容が他人に上書きされて
　さて、このトラブルの5日後、朝光ちゃんは、
同じ新人の大鷹君と一緒にチケット購入機能の
開発をすることになりました。2人で開発を行
うため、ソースコードを共有しながら開発する
必要があります。2人は、ファイルサーバ上でファ
イルを共有しながらソースコードを編集するこ
とにしました。朝光ちゃんはファイルサーバ上
のファイルを直接エディタで編集し、大鷹君は

1-1 新入社員、Gitに出会う

Author 岡本 隆史（おかもと たかし）　イラスト aico

はじめてのGit入門

基本概念から環境構築、
さらに操作方法まで

　はじめてGitを使う方の多くは、何をしたらよいのかわからず戸惑
うでしょう。Gitの機能の多さ、分散型バージョン管理システムゆえ
の抽象度が高いシステム構成など、まさにプロの道具です。本章では、
新入社員の方、はじめてGitを触る方に向けて、その使い方の概要を
解説します。

第 1 章

Git＆GitHub入門
開発現場のはじめの一歩 I t 's as easy to learn as your ABC .

18 - Software Design Jun. 2015 - 19

ファイルサーバ上のファイルをいったん自分の
フォルダにコピーして編集しているようです。

　　　： あれ、さっき編集したログイン画面の
ファイルが元に戻っている……誰か編
集した？

　　　： あ、ちょうど僕が編集したファイルを
コピーしたところだよ。

　　　： ちょっとぉ！　私の編集した内容が消
えちゃったじゃないのよ！

　　　： あー、ごめん、ごめん。もう1回編集
しなおしてね。

　　　： どこ編集したか覚えてないよぉ（涙）

 ● 得られた教訓「朝光メモ」
複数人でファイルを編集するときには、編集内容
が不用意に上書きされないようにすること。

 性格が表れるカオスなバックアップ
　さて、ファイルが元に戻せなくなったり、他
人にファイルを上書きされたり、トラブルを経
験した朝光ちゃん、ファイルのバックアップを
取ることにしました。

　　　： 間違った編集や不用意なファイルの上
書きに備えて、ファイルのバックアッ
プが必要ね。ちゃんとバックアップ取っ
ておこ。

　　　： ちょっと、なんかバックアップファイ
ルみたいなのがたくさんあるんだけど、
最新のファイルはどれよ？

index.php
index.php.最新
index.php.20150312
index.php.20150314
index.php.20150319
index.php.作業中

　　　： 「index.php.最新」が最新かな。あれ？
最新でコピーしたあと、index.php.作
業中でバグ修正したんだったけ……。

　　　： お前、絶対自分の部屋汚いだろ。洋服
とか本とか下着とか床に散乱してそう！

　　　：（ギクッ）そ、そんなことないもん！

 ● 得られた教訓「朝光メモ」
バックアップは最新状態がわかるようにとりましょう。

そしてGitの導入へ

　　　： なかなかファイルのバージョン管理に
苦労しているようだね。

　　　： ちょっとずつ工夫はしてみてはいますけ
ど、油断するとファイルを上書きされた
り、上書きされたファイルにまた同じ修
正を反映させたりと、たいへんです>_<

　　　： 実は、Gitを使うとファイルのバージョ
ン管理はもっと簡単にできるんだよ。

　　　： え？　そんなに便利なツールがあるん
ですか？なんでそれをもっと早く言っ
てくれないんですか？

　　　： うん、身をもって苦労したほうが、バー
ジョン管理の必要性を実感できると
思って……。最初から便利な環境を与
えられるより、自分で苦労をしたほう
が問題意識を持つからね。それでツー
ルを使ってもらえば、より深く理解で
きると思うんだよね。

　　　：そんなものですか……。

――入社早々朝光さん、いろいろとカオスなこ
とになってきていますが、これらファイルのバー
ジョン管理の問題は、地頭さんのいうとおり、
Gitを使えば、簡単に解決できます。Gitは、
Linuxカーネルのソースコードの管理のために
開発されたツールですが、Linuxカーネルだけ
でなく、AndroidやRubyをはじめ数多くのプロ
ジェクトで採用されており、バージョン管理を
行うための標準的なツールといっても過言では
ありません。Gitには、次のような特徴があります。

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

20 - Software Design

1.ファイルの状態を簡単に記録できる

　Gitを使えば、ファイルの状態を簡単に記録
でき、記録した状態のファイルにいつでも簡単
に戻すことが可能。ファイルには新しい記録が
どんどん追加されて管理される。したがって古
い記録も残る。そのため記録された状態のファ
イルをいつでも取り出せる

2.ファイルの同時編集が可能

　ファイルを複数の開発者で同時に編集可能。
同時に編集した場合でも、ほかの開発者の編集
で不用意に上書きされ、自分の作業を消失する
ことはない。また、別々の人が編集した変更点を
簡単にマージする機能がある。変更点を、別の
人が編集したファイルに書き写さなくてもよい

3.ファイルのバックアップが不要

　1で言及したが、任意のファイルの状
態を記録可能。いつでも記録したファイ
ルを取り出せるので、日付ごとのバック
アップファイルなどは不要になる。また、
コミットメッセージと呼ばれる編集理由・
内容をメモとして残すことができる。コ
ミットメッセージにより、どのような変

Gitの理解を握る鍵「リポジトリ」

　Gitを理解するには、リポジトリの理解が欠
かせません。リポジトリは、ファイルの状態を
格納するデータベースのようなものです。リポ
ジトリには、ファイルの変更が、変更内容とそ
の変更を補足するメッセージのセットで格納さ
れています。
　リポジトリでは、どのようなファイルも管理で
きますが、Gitはおもにソースコード（HTML、
CSS、PHP、JavaScript、C、Java、など）や画

更がされていったのか把握しやすくなる

――このように、朝光ちゃんが困っていたバージョ
ン管理にまつわるトラブルはGitを使えば解決で
きます。また、Gitリポジトリを簡単に管理でき
るサービスとして、GitHub、BitBucketをはじめ、
数多くのサービスが提供されていたり、Eclipse、
VisualStudioなどのメジャーな開発環境や
DreamweaverのようなWebオーサリングツール
までさまざまな開発環境がGitに対応しています。
Gitさえ覚えておけば、バージョン管理に困るこ
とはないと言っても過言ではないでしょう。
　さて、Gitの重要性について理解できたとこ
ろで、次の節からは実際にGitを体験していき
ましょう。

像ファイル、設定ファイルなどを管理します。ソー
スコードからコンパイルされる生成物、オブジェ
クトファイル（*.o）やコンパイルにより生成された
クラスファイル（*.class）は一般的に管理しません。
ソースコードからコンパイルすればいつでも同じ
ものが得られるので、管理する必要がないからです。
　リポジトリの種類には、ローカルリポジトリ
と共有リポジトリがあります（図1）。
　Git自身には、共有リポジトリやローカルリポ
ジトリの概念はなく、どちらも同じリポジトリと
して扱われますが、本稿では、Gitを利用する流

1-2 	�Gitを使ってみよう
	 ―Gitのしくみからリポジトリへのファイル登録まで

It's as easy to learn as your

20 - Software Design Jun. 2015 - 21

れをわかりやすくするために、共有リポジトリ、
ローカルリポジトリという言葉を使います。
　ローカルリポジトリと共有リポジトリの違い
を一言で説明すると、各開発者のPC上にある
リポジトリがローカルリポジトリで、共有サー
バ上にある各開発者間の変更内容を共有するリ
ポジトリが共有リポジトリです。
　ローカルリポジトリ上のファイルを編集する
ディレクトリ、ファイルのことを「作業コピー」
と呼びます。作業コピーは、エクプローラーや
Finder、あるいはシェルからは普通のディレク
トリ、ファイルに見えます。しかしながら、そ
れらのファイルはGitにより管理されています。
この作業コピー上のファイルの変更をリポジト
リに登録する操作をコミット（commit）、リポ
ジトリ上のある状態のファイルを取り出す操作
をチェックアウト（checkout）と呼びます。
　また、ローカルリポジトリに登録された変更
点（commit）を共有リポジトリへ反映する操作
をpush、共有リポジトリ上の変更点（commit）
をローカルリポジトリへ取り込む操作をプル
（pull）もしくはフェッチ（fetch）と呼びます。

Gitをインストールしてみよう

　では、さっそくGitをインストールしてみましょ
う。ここでは、Windows、Mac OS、Linuxごと
のGitのインストール方法を紹介します。

 Windows
　Gitのサイト（http://git-scm.com/）からGit

をダウンロードしてインストールします。
　インストーラを起動し、ライセンスに同意す
ると、コンポーネントを選択する画面が表示さ
れます（図3）。
　ここでは、Advanced context menu（git-cheetah

plugin）を選択します。コンポーネントを選択す
ると、Gitのパスの設定画面が表示されます（図4）。
　それぞれ、次のような意味を持ちます。

・ ［Use Git from Git Bash only］

　GitをGitで提供しているシェル上だけで利

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

　読者のには、すでにバージョン管理にSubversionを
使っている方がいるかもしれません。Subversionにも
Gitと同様に checkoutや commitといったコマンドが
出てきますが、意味合いが少し違います（図2）。
　Subversionはcommit/checkoutにより共有リポジト
リへ直接変更点を登録したり、ある時点のファイルを
取得しますが、Gitでは、ローカルリポジトリに対する
操作となります。ほかの開発者が登録した共有リポジ
トリ上の変更を取り込んだり、自分の変更点をほかの
開発者と共有するにはpushやpull/fetchが必要となる
点に注意してください。

「SubversionとGitの違い」コ ラ ム

共有
リポジトリ

commit

commit

checkout

checkout

Subversionの操作

共有
リポジトリ

push pull/fetch

Gitの操作

ローカル
リポジトリ

作業
コピー

作業
コピー

 ▼図2　SubversionとGitの違い

共有
リポジトリ

ローカル
リポジトリ

　commit

push

pull・
fetch

作業
コピーcheckout

ローカル
リポジトリ

ローカル
リポジトリ

作業
コピー

作業
コピー

 ▼図1　共有リポジトリとローカルリポジトリ

http://git-scm.com/

22 - Software Design

用する、デフォルトの設定。ほかの環境に影響
を与えないので、基本的には、これを選択する

・ ［Use Git from Windows Command Prompt］

　Windows標準のコマンドプロンプト（CMD）
からGitを利用できるようする

・ ［Use Git and optional Unix tools from the

Windows Command Prompt］

　上記と同じくWindows標準のコマンドプロ
ンプトでGitを利用できるが、findやsortなど
のそのほかのツールも利用できるようにする。
Windows標準のツールがGit付属のツールに置
き換わって実行されるので、注意が必要

　とくにこだわりがなければ、［Use Git from

Git Bash only］を選択し、コマンドプロンプト

に影響を与えないようにしましょう。
　ターミナルエミュレーターとしてP

パ テ ィ

uTTYがす
でにインストールされている場合は、SSHで接続
するプロトコルを選択する画面が表示されます（図

5）。最後に、改行変換のオプションを選択します
（図6）。OSによって改行コードが異なりますが、
Gitには改行コードを自動的に変換するオプショ
ンが提供されています。［Checkout Windows-

style, commit Unix-style line endings］を選択
し、ソースコードをチェックアウトしたときに、
Windowsの改行コード（CR＋LF）に変換し、
コミットするときに、Unixの改行コード (LF)

に変換するように設定します。
　これで、異なるOSでテキストファイルを編
集する場合でも、うまく編集できるようになり
ます。ただし、改行コードの自動変換を行うた
め、この変換がトラブルになるケースも存在し

 ▼図4　Gitのパスの選択画面

 ▼図5　SSHプロトコルの選択画面 ▼図6　改行コードの変換

 ▼図3　コンポーネント選択画面

It's as easy to learn as your

22 - Software Design Jun. 2015 - 23

ます。その場合は、［Checkout as-is, commit

as-is］を選択し、改行コードを変換しないよう
にしてください。なお、Gitをインストールし
たあとで改行コードの変更を無効化するには、
Gitのシェルから、

$ git config --global core.autocrlf false

を実行します。
　Windowsでは、デフォルトの設定で日本語
のファイル名がlsコマンドで正しく表示され
ないため、日本語ファイル名を正しく表示でき
るように設定します。

C:/Program Files (x86)/Git/etc/profile
 64bit版Windowsの場合のパス

に下記の行を追記します。

alias ls='/bin/ls --show-control-chars'

　インストールが完了したら、プログラムメ
ニューのGit BashからGitが使えるシェルを起
動できます。
　Gitで利用されるデフォルトのエディタはvim

ですが、インストールした状態ではSJISの文
字コードでファイルを作成するようになってい
ます。vimを利用するときに文字化けすること
があるので、utf-8を利用するように変更します。
ユーザのホームディレクトリが次の場合、

C:/Users/<ユーザ名>/_vimc

このような_vimrcファイルを作成します。

set fileencoding=utf-8
set fileencodings=utf-8,sjis

　Windowsでは、スタートメニューやスタート
画面から「Git Bash」を選択し、Gitが使えるシェ
ル（コマンドプロンプト）を起動します（図7）。
　また、エクスプローラーからフォルダを右クリッ
クし、メニューから「Git Bash」をクリックすると、
選択したフォルダでシェルを起動できます（図8）。
　なお、Git Bashで日本語を表示すると、図9の
ように文字化けすることがあります。
　文字化けする場合は、Git Bashのウィンドウ上
部のタイトルバーを右クリックしてプロパティを
選択し、フォントのサイズを変えると正しく表示
されます（図10）。

 ▼図10　フォントサイズの設定

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

 ▼図7　スタートメニューのGit Bash ▼図9　Git Bashの日本語の文字化け

 ▼図8　 エクスプローラーからのGit Bashの起動

24 - Software Design

 Mac OS
　Mac OSのYosemite（Mac OS X 10.10）では、
ターミナルからgitコマンドを実行すると、コ
マンドライン・デベロッパ・ツールのインストー
ルを促す画面が表示されます（図11）。ここで
インストールをクリックし、コマンドライン・
デベロッパ・ツールをインストールすると、
Gitが使えるようになります。統合開発環境の
XCodeをインストールしてもGitが使えるよう
になりますので、統合開発環境を利用する方は、
XCodeをインストールするだけでOKです。な
お、コマンドライン・デベロッパ・ツールでイ
ンストールされるGitはバージョン1.9.5にな
ります（2015年4月執筆時点）。最新版を利用
したい場合は、Gitのサイト（http://git-scm.

com/）からパッケージをダウンロードしてイン
ストールすることもできます。

 Linux
　Linuxでは、ディストリビューションで用意さ
れているGitをインストールするだけでOKです。

・Red Hat、CentOS、Fedoraなど

yum install git

・Ubuntu、Debianなど

apt-get update
apt-get install git

Gitの初期設定

　Gitのインストールが完了したら、Gitを利
用するための初期設定を行います。
 ユーザ名・日本語ファイル名の文字化け
防止の設定

　ユーザ名、メールアドレスの設定を行います。

$ git config --global user.name "Takashi Okamoto"
$ git config --global user.email "toraneko@ｭ
example.com"

　ファイル名のパスに日本語が含まれるとデフォ
ルトの状態ではログメッセージなどを表示させ
たときに文字化けするので、正しく表示される
ように設定します。

$ git config --global core.quotepath false

 プロキシの設定
　GitサーバへのアクセスにHTTPプロキシが
必要な場合は、次のようにしてプロキシの設定
を行います。

$ git config --global http.proxy http://<プロ ｭ
キシサーバ名>:<ポート>/

 ▼図11　 Git（コマンドライン・デベロッパ・ツール）のインストール画面

It's as easy to learn as your

http://git-scm.com/
http://git-scm.com/

24 - Software Design Jun. 2015 - 25

　HTTPプロキシ経由でWebにアクセスする
オフィスが多いと思いますが、そのような環境
でGitHubなどの外部のGitリポジトリを利用
する場合は、この設定が必要になるので注意し
てください。

Gitリポジトリの準備

　Gitの準備ができたら、次にリポジトリを用意
します。Gitリポジトリを用意するには、新規に
リポジトリを作成するか、すでに用意されてい
るリポジトリを複製（clone：クローン）します。

 新規リポジトリの作成
　Gitで管理したいファイルを置いているディ
レクトリでGitリポジトリ初期化コマンドを実
行します。

$ git init

 既存リポジトリのclone
　すでに共有リポジトリが用意されている場合
は、そのリポジトリを複製することにより、ロー
カルリポジトリとして取得します。たとえば、
GitHubのリポジトリからcloneする例は次のよ
うになります。

$ git clone https://github.com/okamototk/ ｭ
test.git

　共有リポジトリは、GitHubやGitBucketな
どを利用すると簡単に用意できます。GitHub

を利用して共有リポジトリを作成する方法につ
いては、38ページの「共有リポジトリを作って
みよう」を参照ください。
　次の節では、複数の開発者がリポジトリを同
時に編集した場合の競合について解説していま
すが、競合の解決を試すには、共有リポジトリ
が必要となりますので、できれば、共有リポジ
トリを用意してください。
　リポジトリを作成、もしくは取得できたら、
リポジトリのディレクトリに移動し、ディレク

トリの内容を確認してみましょう。次は作成し
たばかりの空のリポジトリの例です。

$ ls -a
. .. .git

　.gitという名前のフォルダが存在するのが確
認できます。.gitフォルダの下で、Gitの設定情
報やリポジトリの変更内容が管理されます。

新しいファイルの登録

　リポジトリの準備ができたら、さっそくファ
イルをGitで管理してみましょう。
　Gitでは、Gitリポジトリ上で編集するファイ
ルのことを作業コピーと呼びます。作業コピーは、
編集するファイルそのもの（テキストファイル、
ソースコード、画像など）だと思ってください。
　実際にREADME.txtファイルを作成し、リポ
ジトリに登録する手順を見ていきましょう。リ

スト1のようなファイルを作成します。
　ファイルを作成した時点でファイルの状態は、
次のようになっています。

$ ls -a
. .. .git README.txt

　リポジトリにファイルを登録するには、まず、
インデックスと呼ばれるリポジトリへ登録する
内容を一時的に格納する領域に、ファイルを登
録します。次にコミット（commit）によりイン
デックスの内容をリポジトリに登録します。イ
ンデックスへの追加はaddコマンドを、コミッ
トはcommitコマンドを利用します。

$ git add README.txt
$ git commit

　commitコマンドを実行すると、図12のよう
な内容が表示されvi（vim）エディタが起動します。
　Gitでは、ほかの一般的なバージョン管理シ
ステムと同じように、ファイルの変更内容を登

こんにちはGit

 ▼リスト1　README.txt

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

26 - Software Design

録するときにコミットメッセージを記録して変
更内容を登録します。上記のメッセージに表示
されているとおり、#で始まる行は無視される
ので、メッセージを追加した部分だけコミット
メッセージとして登録されます。
　ここでは、iキーを押してインサートモー
ドにして、図13のように「READMEを追加」
と入力して、j:wqと押して登録内容を
保存し終了します。
　これで、ファイルのリポジトリへの登録は完了
です。ファイルを1つ1つ追加するのが面倒な場
合は、addコマンドでフォルダを指定すると、フォ
ルダに含まれるファイルを一括して登録できます。
たとえば、srcフォルダとそのサブフォルダの内
容をリポジトリに登録するには次のようにします。

$ git add src
$ git commit

無視ファイルの設定

　Gitのリポジトリでは、一般的に、ソースコー
ドや画像ファイルなどを管理しますが、ソース
コードをコンパイルした生成物（*.o、*.class、

*.exeなど）や、エディタのバックアップファイ
ル（*̃、*.bakなど）などは、リポジトリで管理は
行いません。リポジトリのトップにあ
る.gitignoreファイルに、無視するファイル
のパターンを登録しておくと、余計なファイル
がリポジトリにcommitされることを防ぐこと
ができます。たとえば、.gitignoreファイルは、
リスト2のように記述します。
　.gitignoreファイルもGitリポジトリに
commitで き ま す。.gitignoreフ ァ イ ル を
commitし、次に紹介する共有リポジトリへpush

すれば、ほかの開発者と.gitignoreの設定を共
有できて便利です。GitHubのWebページ注1に
さまざまな言語や環境のための.gitignoreファ
イルのサンプルがあるので、もっと詳しく知り
たい方は参考にしてみてください。

注1） https://github.com/github/gitignore

*.jar
*~
*#
bin/
*.o
*.obj
*.bak
*.class
*.dll
*.so
*.exe

 ▼リスト2　.gitignore

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch masterv
Changes to be committed:
new file: README.txt
#

 ▼図12　新しいファイルをcommitしたときの出力結果

READMEを追加
Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Changes to be committed:
new file: README.txt
#

 ▼図13　新しいファイルに書き込みを加える

It's as easy to learn as your

https://github.com/github/gitignore

26 - Software Design Jun. 2015 - 27

　登録が完了したら、logコマンドで登録され
た内容を確認してみましょう。

$ git log
commit feb6e178a0321db73da34d57a5801853b6a426ac
Author: Takashi Okamoto <okamototk@example.com>
Date: Sun Mar 22 16:05:44 2015 +0900

 READMEを追加

　Gitでは、リポジトリへ登録された内容を、
各登録ごとにハッシュ値で管理しています。上
記のcommitの行にある「feb6e1....」と書かれた
16進数で表記された数字です。commitと言うと、
このコミットを表すハッシュ値を示すこともあ
ります。commitは、ほかのバージョン管理シ
ステムでは、リビジョンと呼ばれ、数字で表さ
れることもあります。
　showコマンドにより、実際の変更内容を確
認できます。前述のcommitの内容を確認して
みましょう。

$ git show feb6e1
commit feb6e178a0321db73da34d57a5801853b6a426ac
Author: Takashi Okamoto <okamototk@example.com>
Date: Sun Mar 22 16:17:39 2015 +0900

 READMEを追加

diff --git a/README.txt b/README.txt
new file mode 100644
index 0000000..c335f17
--- /dev/null
+++ b/README.txt
@@ -0,0 +1 @@
+こんにちはGit

　コミットメッセージに続き、変更された内容
が表示されました。

+++ b/README.txt
+こんにちはGit

となっているのは、README.txtに「こんにちは
Git」という行が追加されたことを示しています。

編集したファイルの登録

　すでにリポジトリで登録されているファイル
を変更した場合も、同様の手順で変更をリポジ
トリへ登録できます。先ほどcommitしたファ

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

　Gitは標準では、コミットメッセージの編集にvi（vim）を利用するように設定されています。viは操作方法が特殊で慣れな
い人にとっては、若干使いづらいエディタです。慣れたエディタを利用したい場合は、次のように設定します。

$ git config --global core.editor <エディタのパス>

　なお、エディタで日本語を利用する場合は、BOMなしのUTF-8に対応したエディタを利用する必要があります。Windows
標準で用意されているメモ帳（notepad.exe）は、BOMありのUTF-8がデフォルトとなっているため、次のようにコミットメッ
セージの先頭にBOMが混入してGitでコミットログが正しく表示されません。

$ git log
Author: Takashi Okamoto <okamototk@example.com>
Date: Sun Mar 22 16:31:41 2015 +0900

 <U+FEFF>^MREADMEを追加

　ほかのエディタでもデフォルトがUTF-8でないエディタの場合では、単にパスを設定するだけでは文字化けしてしまいます。
TeraPadとサクラエディタの設定例を紹介しておきます。

・TeraPad

$ git config --global core.editor "'C:\Program Files (x86)\TeraPad\TeraPad.exe' //cu8 //el"

・サクラエディタ

$ git config --global core.editor "'C:\Program Files (x86)\sakura\sakura.exe' -CODE=4"

「Gitで利用するエディタを変更する」コ ラ ム

28 - Software Design

イルをリスト3のように変更してみましょう。
　編集したファイルは、次のようにしてリポジ
トリへ登録できます。

$ git add README.txt
$ git commit

　コミットメッセージに「ファイルの編集のテ
スト」と入力して、ファイルを保存してエディ
タを終了すればcommitは完了です。
　git logで確認すると、先ほどの「README.

txtを新規作成」に加えて「ファイルの編集のテ
スト」でメッセージを入力したcommitが追加さ
れているのがわかります。

$ git log
commit 6c51f8d7a62910a8c6gd78a6ff1618e3683a
be63
Author: Takashi Okamoto <okamototk@example.com>
Date: Sun Mar 22 16:05:44 2015 +0900

 ファイルの編集のテスト

commit feb6e178a0321db73da34d57a5801853b6a426ac
Author: Takashi Okamoto <okamototk@example.com>
Date: Sun Mar 22 16:05:44 2015 +0900

 README.txtを新規作成

　開発が進み履歴が増えてくると、もうちょっ
とシンプルに履歴を確認したくなります。
--onelineオプションを付けることにより、
1commit、1行で履歴を表示できます。

$ git log --oneline
6c51f8d7 ファイルの編集のテスト
feb6e178 README.txtを新規作成

ファイルの削除

　リポジトリで管理されたファイルをフォルダか
ら削除してもリポジトリからは削除されません。
リポジトリからファイルを削除するには、git rm
を利用します。

$ git rm README.txt
$ git commit -am "READMEファイルを削除"
[master bb5a04c] READMEファイルを削除
 1 file changed, 5 deletions(-)
 delete mode 100644 README.txt

こんにちはGit

さようならGit

 ▼リスト3　README.txt

　コミットメッセージは自由にテキストを入力できますが、何もルールを作らないとメンバーごとに統一性の取れないメッセージ
となってしまいます。そのため、あらかじめルールを作っておくと良いでしょう。たとえば、次のように記載のルールを決めます。

ログインできない不具合を修正

* データベースからユーザ情報を取得するカラムを誤っていたため修正

　1行目にはgit log --onelineコマンドでログ一覧を表示したときに表示されるので、そのcommitの概要がわかるように
記載します。2行目は空行にし、3行目以降は *を先頭に、箇条書きで詳細な説明を並べます。*で箇条書きにすると、GitHub
やRedmineでコミットログを確認した場合、フォーマットされて表示されます。また、GitHubやRedmineなどでGitリポジ
トリを利用している場合は、チケットや Issue IDを入れることによりコミットメッセージを対応づけることができます。
　たとえば、上記のチケットの IDが2番で登録されたら「ログインできない不具合」を修正した場合、コミットメッセージを

(refs #2)ログインできない不具合を修正

のように (refs #2)と入力することにより、そのcommitを対応づけることができます注A。また、GitHubでは次のようにする
ことでチケットをクローズすることもできます。

(fix #2)ログインできない不具合を修正

　Redmineは参照やクローズを行うためには、別途設定が必要です。興味がある方は調べてみてください。

「コミットメッセージの書き方」コ ラ ム

注A） GitHubでは、正確には refが不要です。

It's as easy to learn as your

28 - Software Design Jun. 2015 - 29

　チームで開発する際には、共有リポジトリで
ファイルを共有しながら開発を進めていきます。
ここでは、チーム開発をするときに必要な共有
リポジトリでのファイルの共有と、ファイルの
編集がほかの開発者と衝突したときの競合の解
決方法を紹介します。

共有リポジトリとローカルリポジトリ

　今まで紹介してきたcommitなどの操作は開
発者のマシン上のローカルリポジトリに対して
の操作となります。チームで開発する場合、こ
れらの変更をチームメンバの間で共有する必要
があります。チームで開発を行う場合は、メン
バ間でソースコードを共有するために共有リポ
ジトリを利用して変更を共有します。ローカル
リポジトリ上の変更を共有リポジトリへ送信す
る操作をプッシュ（push）、共有リポジトリ上の
ほかの開発者の変更を取り込む操作をプル（pull）
と呼びます（図14）。

変更内容の共有リポジトリへの
push

　pushとpullの作業を実際に行いながら共有

リポジトリで変更を共有してみましょう。
　ローカルリポジトリのcommit内容を共有リ
ポジトリへ送信するには、pushコマンドを利
用します。

$ git push

　空の共有リポジトリをcloneして初めてpush

する場合は、次のようにリポジトリの送信先と

1-3 	�チームでGitを使うには
	 ―共有リポジトリを使った共同作業

　ディレクトリを削除する場合は、-rオプショ
ンを付けて次のようにします。たとえば、dir
という名前のディレクトリを削除するには、次
のようにします。

$ git rm -r dir
$ git commit

ファイルの名前変更

　Gitで管理しているファイルの名前を変更し
たい場合は、git mvを利用します。ファイル
の削除と同じく、ディレクトリ上のファイルを
単に名前変更しただけでは、ファイル名を変更
できないので注意してください。

$ git mv README.txt Manual.txt
$ git commit -am "ファイル名を変更"
[master bb5a04c] ファイル名を変更
 1 file changed, 0 insertions(+), 0
deletions(-)
 rename README.txt => Manual.txt (100%)

編集したファイルの変更を
取り消す

　ファイルを編集しているうちに誤って編集して
しまったため、ファイルをリポジトリの最新状態
に戻したくなることがあります。次のように
resetコマンドを利用すると最新状態に戻ります。

$ git reset --hard HEAD

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

共有
リポジトリ

ローカル
リポジトリ

ローカル
リポジトリ

ローカル
リポジトリ

push

pull

 ▼図14　共有リポジトリとpullとpush

30 - Software Design

$ git push
Password for 'https://okamototk@github.com/okamototk/test.git':
To https://okamototk@github.com/okamototk/test.git
 ! [rejected] master -> master (fetch first)
error: failed to push some refs to 'https://okamototk@github.com/okamototk/test.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

 ▼図15　変更のpushが失敗した例

送信するブランチを指定しま
す。

$ git push origin master

　この例では、originリポジ
トリ（clone元のリポジトリ）
へmasterブランチ（Gitで利
用するデフォルトのブランチ）
をpushします。
　なお、pushする際にすで
に他のメンバによって、共有
リポジトリ上に変更がpush

されている場合、図15のよ
うなエラーメッセージとともにpushが失敗し
ます。
　図15ようなエラーが出力された場合、上記メッ
セージの「hint: (e.g., 'git pull ...') before
pushing again.」に書いてあるとおり、共有リポ
ジトリ上の変更をgit pullで取り込んで、ロー
カルリポジトリを共有リポジトリと同期を取った
状態にしてからpushすることにより、正しく実
行できます。具体的には、図16のようにgit
pullを実行したあと、git pushを実行します。

ほかの開発者の変更の取り込み

　ほかの開発者が変更を共有リポジトリへ
pushした場合、その変更をローカルリポジト
リへ取り込む必要があります。取り込むために
はpullもしくは fetchを行います。ここでは、
共有リポジトリへ登録されたほかの開発者の変
更を取り込む方法を紹介します。

 pullと fetch
　共有リポジトリ上のcommitを取り込む方法と
して、pullと fetchの2つの方法があります。
pullは、commitを取り込むときに作業ツリーに
直接変更内容を反映します。つまり、リポジト
リ内のファイルが共有リポジトリ上の最新状態
になります。fetchは、共有リポジトリのcommit

の内容をローカルリポジトリへ取り込むだけで、
ファイルへの反映は行いません（図17）。
　pullを実行するには、次のようにします。

$ git pull --rebase

　fetchにより取り込まれたcommitは、FETCH_
HEADという名前の特別なcommitで取り込まれ
ます。たとえば、fetchを実行して、fetchで取
り込んだ共有リポジトリの変更を確認するには、
次のようにgit diffを実行します。

$ git pull --rebase
remote: Counting objects: 5, done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From https://github.com/okamototk/test.git
 b6c0efd..b3fd453 master -> origin/master
First, rewinding head to replay your work on top of it...
Applying: 他の開発者の変更
$ git push
Password for 'https://okamototk@github.com/okamottok/test.git':
Counting objects: 4, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 275 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To https://okamototk@github.com/okamototk/test.git
 b3fd453..92f4e33 master -> master

 ▼図16　 ローカルリポジトリを共有リポジトリと同期しgit pushを実行

It's as easy to learn as your

30 - Software Design Jun. 2015 - 31

$ git fetch
$ git diff FETCH_HEAD
diff --git a/README.txt b/README.txt
index 14ac5c4..2c97e8b 100644
--- a/README.txt
+++ b/README.txt
@@ -1,3 +1,3 @@
 ■Git特集企画

-本特集は、これからGitを使う人のための面白い入門です。
+本特集は、これからGitを使う人のための真面目な入門です。

　差分を確認したら、マージ（merge）、もしく
はリベース（rebase）により、共有リポジトリの
内容を取り込みます。mergeとrebaseの違いは
次に説明しますが、たとえば、rebaseの場合は、
次のようにします。

$ git rebase FETCH_HEAD

　pullのほうが手順は少ないですが、fetchは変
更内容を手元で確認してからcommitを取り込む
ことができます。pullの場合、思わぬ変更がい
つの間に実行されている可能性があるので、で
きればfetchの利用をお勧めします。

 mergeとrebase
　pull・fetchで取り込んだcommitをローカルリ
ポジトリへ統合する方法として、mergeとrebase

スという2つの方法があります。ローカルリポジ
トリ上で新しいcommitがないときは、どちらも同
じ動作をしますが、リポジトリ上に新しいcommit

がある場合に、mergeとrebaseで共有リポジトリ
上のcommitとローカルリポジトリ上のcommitを
まとめる方法に違いがあります。Git上のcommit

の様子を図18のように表すことがあります。
　丸はファイルの状態を表し、矢印はファイル
が編集されて内容が変わったことと、commit

トを示します。ローカルリポジトリでcommit

を行う限り、commitは直線上に伸びていきま
すが、共有リポジトリにcommitが送信された
場合、共通のファイルの状態を起点（ここではb）
として、共有リポジトリとローカルリポジトリ
で別々にcommitが進み枝分かれした状態にな
ります。

　少しわかりにくいですが、bの状態の共有リ
ポジトリから、朝光さんと大鷹君が同じファイ
ルをclone（もしくは同期）したあと、朝光ちゃ
んがe、fと2度commitを行い、共有リポジト
リへcommitをpushしたあと、大鷹君がc、dと
自分のマシン上のローカルリポジトリで
commitした状態だと思ってください。
　この枝分かれした状態を統合するやり方が
mergeとreabseで異なります。
　mergerは、枝分かれしたcommitはそのまま
にして、merge commitと呼ばれる2つの枝を
統合する特別なcommitを生成して枝分かれを
解消します（図19のg）。
　一方、rebaseは、共有リポジトリ上の

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

共有
リポジトリ

共有
リポジトリ

ローカル
リポジトリ

作業コピー

pull fetch

共有リポジトリの変更
を編集ファイル（作業
コピー）に直接反映

ローカル
リポジトリ

作業コピー

共有リポジトリの変更を
ローカルリポジトリに取り
込むだけ（作業コピーには
変更を反映しない）

 ▼図17　pullとfetchの違い

ローカルリポジトリ上の変更

共有リポジトリ上の変更

a b c d

e f

 ▼図18　commitの表現

ローカルリポジトリ上の変更

共有リポジトリ上の変更

a b c d

e f

g

 ▼図19　merge

32 - Software Design

merge rebase（お勧め）

pull $ git pull $ git pull --rebase

fetch $ git fetch
$ git merge FETCH_HEAD

$ git fetch
$ git rebase FETCH_HEAD

 ▼表1　merge・rebaseの実行コマンド

commitのあとにローカルリポジトリ上のcommit

が並ぶようにコミットを並び替えます（図20）。
　mergeを利用すると、履歴がごちゃごちゃ枝
分かれするので、rebaseのほうが履歴が直線
に並ぶのでわかりやすいというメリットがあり
ます。とくにこだわりがなければリベースを利
用するのが良いでしょう。
　先ほど紹介したpullと fetchを利用して共有
リポジトリの変更をmergeとrebaseするコマ
ンド手順を表1に示します。

競合の解決

　Gitは、複数の編集者が平行して同時にファイ
ルを編集しても、rebaseやmergeで自動的に変
更内容を統合してくれます。しかし、自動で変
更内容をmergeできないことがあります。その状
態を競合もしくはコンフリクトと呼びます。複数
の編集者が同じファイルの同じ行を編集（もしく
は追加、削除）したときは、Gitはどち
らの編集者の変更内容を選択すれば良
いのかわからないので、開発者に変更
内容を確認するように促します。
　たとえば、図21のようにファイル
を朝光ちゃんと大鷹君が編集した例を
示します。
　最初企画書（README.txt）は、「こ
れからGitを使うひとのための入門で
す」と記載された状態で共有リポジト
リに登録されいてました。大鷹くんは、
面白い企画にしたいので、リポジトリ
をcloneしたあと、「面白い入門です」
と変更・commitして共有リポジトリへ
pushしました。
　大鷹くんと並行して、朝光ちゃんは、
cloneしたリポジトリで企画を真面目

なものにしようと企画書を「真面目な入門です」
と変更・commitしました。ここで、変更内容
を pushしようとすると、すでに大鷹くんが
pushした内容が存在するため、図22のように
エラーとなります。
　そこで、共有リポジトリのcommitをローカルリ
ポジトリへ統合します。先ほど紹介したとおり、
統合するには、rebaseとmergeの2つの方法があ
ります。それぞれ手順を見ていきましょう。
　なお、競合を1人で試してみたい場合は、別々
のディレクトリにリポジトリをcloneして、そ

ローカルリポジトリ上の変更

共有リポジトリ上の変更

rebase後

a b c d

a b e c d

e f

f

 ▼図20　rebase

 ▼図21　競合の例

README.txt

編集・
commit

fetch・
rebase

編集・
commit

pull pull

これからGitを使う
ひとのための面白
い入門です

これからGitを使うひ
とのための入門です

これからGitを使うひ
とのための面白い入
門です

コミットメッセージ：
面白い企画に変更 編集した行が

既に変更されて
いるため競合

これからGitを使うひ
とのための入門です

これからGitを使うひ
とのための真面目な
入門です

これからGitを使う
ひとのための入門
です

コミットメッセージ：
真面目な企画に変更

It's as easy to learn as your

32 - Software Design Jun. 2015 - 33

れぞれ別々の人が変更したと見
立てて、変更、commit、pushす
ると競合した状態を作ることが
できます。
　次のように clone時に cloneす
るディレクトリ名を指定すると、
異なるローカルリポジトリとし
てcloneできますので、それぞれ
の リ ポ ジ ト リ で README

.txtの同じ行を変更すれば競合
状態を簡単に作り出すことがで
きます。興味がある方は試して
みてください。

$ git clone https://github.com/okamototk/ ｭ
test.git test-yoake
$ git clone https://github.com/okamototk/ ｭ
test.git test-ootaka

rebaseによる共有リポジトリの
内容の統合

　さて、共有リポジトリ上にcommitが存在する
ので、まず、fetchで共有リポジトリのcommitを
取り込んで、取り込んだ共有リポジトリの
commitの先頭であるFETCH_HEADを指定し
てreabseを実行します（図23）。
　ファイルに競合が存在する場合、

CONFLICT (content): Merge conflict in README.ｭ
txt

のようなメッセージが出てリベース処理が止ま
ります。競合が発生したREADME.txtを確認
してみましょう（リスト4）。
　競合が発生した個所に見慣れない記号

「<<<<<<」、「======」、「>>>>>>」が挿入されてい
るのがわかります。
「======」を挟んで、上下の部分の意味を見てい
きましょう。

 <<<<<<< HEAD
 本特集は、これからGitを使う人のための真面目な入門
です。
 =======

　これは、現在編集しているローカルリポジト
リ（正確にはカレントブランチ）の最新の内容を
表しています。

$ git fetch
$ git rebase FETCH_HEAD
First, rewinding head to replay your work on top of it...
Applying: 面白い企画に変更
Using index info to reconstruct a base tree...
M README.txt
Falling back to patching base and 3-way merge...
Auto-merging README.txt
CONFLICT (content): Merge conflict in README.txt
Failed to merge in the changes.
Patch failed at 0001 面白い企画に変更
The copy of the patch that failed is found in:
 c:/temp/hage1/test2/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git ｭ
rebase --abort".

 ▼図23　rebaseの実行例

$ git push
....
Password for 'https://okamototk@github.com/okamototk/test.git':
To https://okamototk@github.com/okamototk/test.git
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'https://okamototk@github.com/okamototk/test.git'
hint: Updates were rejected because a pushed branch tip is behind its remote
hint: counterpart. If you did not intend to push that branch, you may want to
hint: specify branches to push or set the 'push.default' configuration variable
hint: to 'simple', 'current' or 'upstream' to push only the current branch.

 ▼図22　競合エラーメッセージ表示

 ■Git特集企画

<<<<<<< HEAD
本特集は、これからGitを使う人のための真面目な入門です。
=======
本特集は、これからGitを使う人のための面白い入門です。
>>>>>>> 面白い企画に変更

 ▼リスト4　README.txt

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

34 - Software Design

 =======
 本特集は、これからGitを使う人のための面白い入門です。
 >>>>>>> 面白い企画に変更

　これは、共有リポジトリ上の最新状態を表し
ています。「>>>>>>> 面白い企画に変更」の部
分は、リポジトリの最新のコミットメッセージ
を示しています。
　上記のファイルを編集し、ローカルリポジト
リの内容か共有リポジトリの内容を残します。
たとえば、ローカルリポジトリの内容を残した
い場合は、README.txtファイルを編集し、
次のように余分なテキストを取り除きます。

 ■Git特集企画

 本特集は、これからGitを使う人のための面白い入門です。

　競合を解決したら、次のように解決したファイ
ルをインデックスに追加し、reabseを継続します。

$ git add README.txt
$ git rebase --continue
Applying: 面白い企画に変更

　複数の競合が発生した場合は、競合のメッセー
ジがまた表示されるので、同様にして競合を解
決していきます。競合を解決したファイルを確
認すると、次のようになります。

$ git log --oneline --graph
* 612efa1 面白い企画に変更
* b141c53 真面目な企画に変更
* 8417929 README.txtを追加

　ここでは、--graphオプションを付けて、
commitの並びの様子をグラフで確認しています。
commitが直線上に並んでいますが、次に紹介
するmergeのグラフと比べてみてください。

mergeによる共有リポジトリの
内容の統合

　mergeで編集の競合が発生した場合の解決手
順は、次のようになります。競合は存在する場
合は、merge時に次のようなメッセージが表示
されます。

$ git fetch
$ git merge FETCH_HEAD
Auto-merging README.txt
CONFLICT (content): Merge conflict in README.txt
Automatic merge failed; fix conflicts and ｭ
then commit the result.

　CONFLICTの行のメッセージでREADME.

txtでコンフリクトが発生したことが確認でき
ます。競合が発生したファイルは、rebaseと
同様に競合が発生したマークが挿入され、次の
ようになります。

 ■Git特集企画

<<<<<<< HEAD
本特集は、これからGitを使う人のための真面目な入門です。
=======
本特集は、これからGitを使う人のための面白い入門です。
>>>>>>> FETCH_HEAD

　rebaseの場合は、共有リポジトリ上のコミッ
トメッセージが「>>>>>>」のあとに記載されて
いましたが、マージの場合は、共有リポジトリ
から取得した commitの先頭であるFETCH_

HEADが記載されています。rebaseの場合と
同様にファイルを編集したら、add/commitして、
mergeを終了します。

$ git add README.txt
$ git commit

　commitする際に、エディタには次のような

　ファイルの文字コードがSJISの場合、競合の表示部分が
次のように文字化けすることがあります。

<<<<<<< HEAD
本特集は、これからGitを使う人のための真面目な入門
です。
=======
本特集は、これからGitを使う人のための面白い入門で
す。
>>>>>>> 譛ｬ迚ｹ髮・・縲√％繧

　最終的に競合を解決するときに文字化けした部分は削除
してしまうので、運用上は問題ありませんが、気持ち悪い
場合は、ファイルを保存する文字コードをUTF-8にすれば
文字化けを防ぐことができます。

「競合表示の文字化け」コ ラ ム

It's as easy to learn as your

34 - Software Design Jun. 2015 - 35

　ブランチとは、リポジトリ上のあるバージョ
ンから分岐してファイルを管理する枝（ブラン
チ）のことです。たとえば、あるソフトウェア
のバージョン1.0のソフトウェアをリリースし
たあとに、新機能をたくさん盛り込んだ次にリ
リースするバージョン2.0を開発することになっ
たとします。しかしながら、すでにバージョン
1.0はリリースしているので、2.0の開発とは別
にバージョン1.0のバグ修正の対応をきちんと
管理する必要があります。このようなときには、
図24のようにv1.0をリリースした時点のファ
イルの管理を分け、次のバージョンの開発には
影響しないようにします。
　Gitでは、リポジトリを作成すると、実は、
masterという名前のブランチでバージョンが管
理されています。今まで紹介してきたcommitや
push・pullなどの操作はmaster

のブランチに対しての操作となっ
ていました。masterは通常、最
新版の開発に利用されます。こ
こで、v1.xという名前のブラン
チを作成すれば、バージョン1.x

系列のメンテナンスができます。

ブランチの作成と確認

　では、ブランチを作成してみましょう。ブラン
チを作成するには、次のようにします。

$ git checkout -b new-branch

　ブランチを作成したら、現在作業しているブ
ランチを確認してみましょう。

$ git branch
 master
* new-branch

　ブランチ一覧が表示され、new-branchに*マー
クがついていることから、現在作業しているブ
ランチがnew-branchであることが確認できます。
　なお、Windows版のGitでは、Git Bashのコン
ソールに現在作業中のブランチ名を表示するよう

1-4 	�ブランチとタグ
	 ―作業ごとにバージョンを分けて管理し目印を付ける

ブランチをmergeしたことを示すメッセージが
すでに入力されています。

Merge branch 'master' of https://github.com/
okamototk/test.git

Conflicts:
 README.txt
#
It looks like you may be committing a merge.
If this is not correct, please remove the
file

　そのままファイルを保存、エディタを終了し
てcommitします。git logで履歴を確認すると、

次のようにmergeされていることが確認できます。

$ git log --oneline --graph
* a22531f Merge branch 'master' of https://ｭ
github.com/okamototk/git/test.git
|\
| * b141c53 真面目な企画に変更
* | f4fc266 面白い企画に変更
|/
* 8417929 README.txtを追加

　先ほどのrebasrの場合に比べると、平行し
て編集した内容がいったん枝分かれして、統合
された様子を確認できます。

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

v1.x

master

v1.0

v1.1 v1.2

 ▼図24　ブランチ

36 - Software Design

になっていますが、下記のようにgit checkoutで
ブランチが変わったことを確認できます。

okamototk@MY-PC /c/Users/okamototk/git/test
(master)
$ git checkout -b new-branch
Switched to a new branch 'new-branch'

okamototk@MY-PC /c/Users/okamototk/git/test
(new-branch)

　今までと同じようにcommitを行っていけば、
作成したブランチに commitできます。また、
このブランチでの作業内容はmasterブランチ
には影響を与えません。

ブランチのコミットの
共有リポジトリへの送信

　次にブランチを共有リポジトリで共有してみ
ましょう。新しく作成したブランチでpushを
行っても、次のように何も起こりません。

$ git push
...
Password for 'http://admin@192.168.56.101':
Everything up-to-date

　新しく作成したブランチを初めてpushする
ときは、次のようにブランチを指定してpush

します。

$ git push -u origin new-branch

　2回目以降、もしくは一度pushされたブラン
チをほかのメンバが利用する場合は、下記のよ
うに普通にpushするだけでOKです。

$ git push

　共有リポジトリで共有されたブランチの情報
をローカルリポジトリに取り込むには、pull・
fetch・cloneなどで共有リポジトリの変更を取り
込む操作をするだけでOKです。

ブランチの移動

　現在作業しているブランチから別のブランチ
に移動するときは、git checkoutコマンドを利
用します。たとえば、new-branchで作業中のとき、
masterブランチに戻るには次のようにします。

$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.

　ブランチを移動しようとすると、図25のよ
うにエラーになり失敗することがあります。
　このエラーはcommitされていない変更があ
る場合に発生します。図25のメッセージでは、
README.txtが変更されていますが、commit
されていないことを示しています。次のように
README.txtをcommitすることによって、ブ
ランチを移動できます。

$ git add README.txt
$ git commit
$ git checkout master

　編集内容をcommitしたくない場合は、次の
ようにすることにより、編集内容を最後の
commit状態に戻してブランチを移動できます。

$ git reset --hard HEAD
$ git checkout master

ブランチのmerge

　ブランチの説明を別バージョンの管理の例で
紹介してきましたが、あるまとまった機能開発
やバグ修正などをほかの開発に影響を与えない
ようにブランチを作成して作業を行うことがあ
ります。このようなブランチは作業が完了した
ら最終的にmasterブランチやメンテナンスブラ
ンチに作業内容をmergeする必要があります。

$ git checkout master
error: Your local changes to the following files would be overwritten by checkout:
 README.txt
Please, commit your changes or stash them before you can switch branches.
Aborting

 ▼図25　ブランチ移動時のエラー

It's as easy to learn as your

36 - Software Design Jun. 2015 - 37

mergeを行うには、merge先のブラン
チにgit checkoutコマンドで移動して、
git mergeコマンドでマージしたいブ
ランチを指定します。たとえば、先ほ
ど 作 成 し た new-branchの 内 容 を
masterブランチにmergeするには、次
のようにします。

$ git checkout master
$ git merge new-branch

　masterブランチとnew-branchの変更個所が
重複し、merge時に競合が発生することがあり
ます。基本的には、33ページで紹介した「rebase

による共有リポジトリの内容の統合」の要領で
競合を解決していきますが、ブランチをmerge

した場合は、競合が発生した個所に次のように
ブランチ名が記載されます。

<<<<<<< HEAD
本特集は、これからGitを使う人のための真面目な入門です。
=======
本特集は、これからGitを使う人のための面白い入門です。
>>>>>>> new-branch

タグ

　Gitのcommitはハッシュ値で表されるので、
直感的に扱いにくいものです。v1.1をリリース
したときのソースの状態などをわかりやすくす
るためにタグを付けることができます。タグを
付けるには、タグを付けたいブランチでgit
tagコマンドを利用して付与します。

$ git branch v1.x
$ git tag v1.1

　リポジトリで振られているタグの一覧を確認
するのは、次のようにします。

$ git tag -l
v1.1

　作成したタグを共有リポジトリに保存する場
合は、push時に--tagsオプションを付けます。

$ git push --tags

ブランチの種類

　本節冒頭で、ブランチについてメンテナンスブ
ランチを例に紹介してきました。メンテナンスブ
ランチ以外にも、さまざまな種類のブランチが存
在します。ここでは、よく利用する機能ブランチ
やトピックブランチといったブランチを紹介します。

 機能ブランチ
　機能ブランチは、あるまとまった大きな機能
を実装するときに利用するブランチです（図26）。
　大きな機能変更を行う場合、開発途中で思わ
ぬバグを埋め込んでしまうことがあります。その
バグが、ソフトウェア全体に影響してしまう場合、
バグのせいでほかの開発者の作業も止まってし
まうことがあります。そのようなときに機能ブラ
ンチとして、新機能を開発すれば、ほかの開発
に影響せずに開発を進めることができます。
　機能ブランチで作成した機能は十分テストした
あと、開発ブランチにmergeします。

 トピックブランチ
　機能ブランチと似ていますが、ちょっとした
機能追加やバグ修正を行うなど、機能ブランチ
よりもっと細かい変更を管理するのに利用します。
　機能ブランチと同様に、作業が終わったら開
発ブランチやメンテナンスブランチなどのほか
のブランチにmergeされます。トピックブラン
チは、共有リポジトリにpushされず、ローカ
ルリポジトリで開発者の作業を行うために利用
されることが多いです。

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

ブランチ作成 merge

master

feature/add-user

 ▼図26　機能ブランチ

38 - Software Design

Gitリポジトリを簡単に運用できる
GitBucket

　GitBucketは、Gitのリポジトリサービスとし
て人気のあるGitHubのクローンです。OSSで
開発されており、無償で利用できます。社内
LANにGitHubのようなGitリポジトリを簡単に
手軽に構築できます。GitHubと同じように、
Wikiによる情報整理やチケットによる課題やバ
グの管理、プルリクエストによるソースコード
のレビューも行うことができます。GitHubの詳
細については第2章を参照ください。ここでは、
GitBucketのインストール、ユーザ作成、リポジ
トリの作成方法を簡単に紹介します。

インストール・実行

　GitBucketの実行には、Javaが必要になりま
す。Windows/Mac OSの場合は、Javaのダウ
ンロードサイトからJavaをダウンロードして
インストールします。

https://java.com/ja/download/

　Linuxの場合は、Javaパッケージをインストー
ルします。RHEL/CentOS系では java-1.7.0-

openjdkパッケージ、Debian/Ubuntu系では
default-jreパッケージをインストールします。
　Javaがインストールできたら、GitBucketの
配布サイトからgitbucket.warをダウンロード
し、適当なディレクトリに配置します。

https://github.com/takezoe/gitbucket/releases

　準備ができたら、コマンドプロンプトやシェ
ルからgitbucket.warを配置したディレクトリ
に移動し、javaコマンドに-jarオプションを付
けてgitbucket.warを実行します（図27）。
　正しく動作していれば、http://localhost:8080/

にWebブラウザでアクセスするとGitBucketのロ
グイン画面が表示されます。ログイン画面で管理
者アカウントroot（パスワードroot）でログインし
てみましょう。ログインできれば、図28の画面が
表示されます。

1-5 	�共有リポジトリを作ってみよう
	 ― GitBucketで楽々リポジトリ構築

◆ ◆ ◆

　なお、ブランチ名を付けるときは、ブランチ種
別／ブランチ名という形式でブランチを作成する

と、ブランチの目的・用途が明確になって良いです。
　たとえば、機能ブランチは、feature/xxxと
いう名前で、トピックブランチは、topic/xxx

という名前でブランチを作成します。

C:\Users\okamototk>java -jar gitbucket.war
2015-03-31 16:46:46.168:INFO:oejs.Server:jetty-8.y.z-SNAPSHOT
2015-03-31 16:46:46.199:INFO:oejw.WebInfConfiguration:Extract jar:file:/C:/Users
/okamototk/gitbucket.war!/ to C:\Users\okamototk\.gitbucket\tmp\webapp
2015-03-31 16:46:55.196:INFO:oejw.StandardDescriptorProcessor:NO JSP Support for
 /, did not find org.apache.jasper.servlet.JspServlet
3 31, 2015 4:46:56 午後 grizzled.slf4j.Logger info
情報: The cycle class name from the config: ScalatraBootstrap
3 31, 2015 4:46:56 午後 grizzled.slf4j.Logger info
情報: Initializing life cycle class: ScalatraBootstrap
2015-03-31 16:46:56.639:INFO:oejs.AbstractConnector:Started SelectChannelConnect
or@0.0.0.0:8080

 ▼図27　GitBucketのインストール（gitbucket.warの実行）

It's as easy to learn as your

https://github.com/takezoe/gitbucket/releases
https://java.com/ja/download/

38 - Software Design Jun. 2015 - 39

ユーザとリポジトリの作成

　GitBucketのGitリポジトリはrootユーザで
作成することもできますが、通常はGitBucket

を利用するユーザを作成して、ユーザアカウン
トでリポジトリを作成します。各ユーザのアカ
ウントを作成することにより、ユーザが自由に
リポジトリを作成できるようになっています。ユー
ザを作成して、そのユーザでログインしてリポ
ジトリを作ってみましょう。rootユーザでログ
インした状態で、右上のメニューアイコン、ツー
ルアイコンを順番にクリックします（図29）。
　ユーザ管理の画面になるので、ここで［New

User］を選択します（図30）。
　ユーザ情報入力画面（図31）になるので、ユー
ザ情報を入力して［Create User］ボタンをクリッ
クすれば、ユーザの作成は完了です。
　ユーザを作成し終わったら、rootユーザから
いったんログアウトします。右上のメニューか
ら矢印のアイコンをクリックします（図32）。

リポジトリ作成

　作成したユーザでログインし、画面右にある［New

repository］ボタンをクリックします（図33）。
　リポジトリ情報入力画面（図34）になるので、
リポジトリ名や説明文などを入力します。デフォ
ルトでは、リポジトリをほか
のユーザと共有する設定とな
りますが、［Private］を選択
するとほかのユーザと共有し
ない設定にできます。
　［Create repositry］ボタンを

クリックすれば、リポジトリが作成され、リポジ
トリへアクセスする情報が表示されます（図35）。
　たとえば、okamototkという名前のユーザで
testという名前のリポジトリを作成すると、次
のURLでGitリポジトリにアクセスできるよ
うになります。

$ git clone http://localhost:8080/git/ ｭ
okamototk/test.git

　なお、作成されたリポジトリは、gitbucket

を実行したユーザのホームディレクトリに作成
される「.gitbucket」ディレクトリにあります。
バックアップなどを取得する場合は、.gitbucket

ディレクトリをバックアップするようにすると
良いでしょう。

 ◀図29
 メニューアイコン、
ツールアイコンのクリック

 ▶図30
ユーザ作成

 ▼図31　ユーザ情報入力画面

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

 ▼図28　GitBucketのログイン画面

 ▼図32　ログアウト

 ▼図33　リポジトリ作成

40 - Software Design

 ▼図34　リポジトリ情報入力画面 ▼図35　リポジトリ作成完了画面

a

b

c

a

b

c v1.0 c d

b

a

c

e

d

b

a

c

d’

d

a

b

作業ツリー

commit タグ ブランチ作成 merge rebase

インデックス

pu
sh fe
tc

h

cl
on
e

re
ba

se
/m

er
ge

ad
d

co
m

m
it pu

ll

共有リポジトリ
共有リポジトリは、チームメンバーで共有するリポジトリで、ソー
スコードのメインバージョンが格納されています。cloneでローカ
ルリポジトリに複製し、pull/fetchで変更をローカルリポジトリ
に取り込みます。

基本

リポジトリを作成する
$ git init
もしくは
$ git clone https://github.com/okamototk/test
ユーザ名、メールアドレスを設定する
$ git config user.name “Takashi Okamoto”
$ git config user.email okamototk@example.com
ファイルを管理する
$ git add FILE...
$ git rm FILE...
$ git mv OLD NEW
変更を確認する
$ git status
$ git diff BRANCH_NAME
$ git show 8dc2334
変更をcommitする
$ git add <変更したファイル>
$ git commit
もしくは
$ git commit ‒a
変更を共有リポジトリへ送信する
$ git push

その他

ブランチ・タグに切り替える
$ git checkout FOO
リビジョンにタグを付ける
$ git tag v1.0
タグを公開リポジトリへ反映させる
$ git push --tags
変更履歴を表示する
$ git log
現在の作業を一時保存する
$ git stash

（一時保存）
$ git stash list

（一時保存したリストの確認）
$ git stash show

（一時保存した内容の確認）
$ git stash pop

（一時保存した内容の取り出し）

チーム開発

公開リポジトリ上の変更を取り込む
$ git fetch
$ git log HEAD..FETCH_HEAD

（取り込んだ変更履歴の確認）
$ git diff HEAD..FETCH_HEAD

（取り込んだ変更内容の確認）
$ git rebase FETCH_HEAD

（変更をカレントブランチに取り込む）
もしくは
$ git pull --rebase
変更をmergeする
$ git merge BRANCH_NAME

（コンフリクトした場合、修正後commit）
$ git add <競合したファイル>
$ git commit
変更をrebaseする
$ git rebase BRANCH_NAME
$ git rebase ‒continue
特定のcommitをブランチに取り込む
$ git cherry-pick 8cab345a

（別ブランチの特定のバグ修正や機能変更だけを取り込んで、そ
のほかは取り込みたくないときに利用）

ローカルリポジトリ
作業者のマシン上にあるリポジトリです。ローカルマシンでの作
業内容が保存されます。pushにより共有リポジトリに変更内容を
反映します。

インデックス
ローカルリポジトリへ反映する変更を一時的にためておく場所で
す。インデックスの内容は、commitによりローカルリポジトリへ
反映されます。

作業ツリー
ローカルリポジトリ上にある現在の作業ファイルです。作業ツ
リーの変更点はaddによりインデックスに追加されます。

 ▼図36　Git基本コマンドの使い方

a

b

c

a

b

c v1.0 c d

b

a

c

e

d

b

a

c

d’

d

a

b

作業ツリー

commit タグ ブランチ作成 merge rebase

インデックス

pu
sh fe
tc

h

cl
on
e

re
ba

se
/m

er
ge

ad
d

co
m

m
it pu

ll

共有リポジトリ
共有リポジトリは、チームメンバーで共有するリポジトリで、ソー
スコードのメインバージョンが格納されています。cloneでローカ
ルリポジトリに複製し、pull/fetchで変更をローカルリポジトリ
に取り込みます。

基本

リポジトリを作成する
$ git init
もしくは
$ git clone https://github.com/okamototk/test
ユーザ名、メールアドレスを設定する
$ git config user.name “Takashi Okamoto”
$ git config user.email okamototk@example.com
ファイルを管理する
$ git add FILE...
$ git rm FILE...
$ git mv OLD NEW
変更を確認する
$ git status
$ git diff BRANCH_NAME
$ git show 8dc2334
変更をcommitする
$ git add <変更したファイル>
$ git commit
もしくは
$ git commit ‒a
変更を共有リポジトリへ送信する
$ git push

その他

ブランチ・タグに切り替える
$ git checkout FOO
リビジョンにタグを付ける
$ git tag v1.0
タグを公開リポジトリへ反映させる
$ git push --tags
変更履歴を表示する
$ git log
現在の作業を一時保存する
$ git stash

（一時保存）
$ git stash list

（一時保存したリストの確認）
$ git stash show

（一時保存した内容の確認）
$ git stash pop

（一時保存した内容の取り出し）

チーム開発

公開リポジトリ上の変更を取り込む
$ git fetch
$ git log HEAD..FETCH_HEAD

（取り込んだ変更履歴の確認）
$ git diff HEAD..FETCH_HEAD

（取り込んだ変更内容の確認）
$ git rebase FETCH_HEAD

（変更をカレントブランチに取り込む）
もしくは
$ git pull --rebase
変更をmergeする
$ git merge BRANCH_NAME

（コンフリクトした場合、修正後commit）
$ git add <競合したファイル>
$ git commit
変更をrebaseする
$ git rebase BRANCH_NAME
$ git rebase ‒continue
特定のcommitをブランチに取り込む
$ git cherry-pick 8cab345a

（別ブランチの特定のバグ修正や機能変更だけを取り込んで、そ
のほかは取り込みたくないときに利用）

ローカルリポジトリ
作業者のマシン上にあるリポジトリです。ローカルマシンでの作
業内容が保存されます。pushにより共有リポジトリに変更内容を
反映します。

インデックス
ローカルリポジトリへ反映する変更を一時的にためておく場所で
す。インデックスの内容は、commitによりローカルリポジトリへ
反映されます。

作業ツリー
ローカルリポジトリ上にある現在の作業ファイルです。作業ツ
リーの変更点はaddによりインデックスに追加されます。

It's as easy to learn as your

40 - Software Design Jun. 2015 - 41

　以上、Gitのさわりについて紹介してきました。
おまけとしてGitの基本的なコマンドの使い方
が一目でわかるチートシートを掲載します（図

36）。Gitの使い方に慣れない人は、このチー
トシートを手元においてGitに向き合うのはど
うでしょうか。なお、このチートシートは筆者

の著書『Gitポケットリファレンス』から抜粋し
たものです。Gitには本稿で紹介しきれなかっ
たさまざまなコマンドと使い方があります。本
書では網羅的に解説しています。もっと知りた
い方は、ぜひ『Gitポケットリファレンス』（技
術評論社刊行）を！ﾟ

おわりに

はじめてのGit入門
基本概念から環境構築、さらに操作方法まで

第 1 章

a

b

c

a

b

c v1.0 c d

b

a

c

e

d

b

a

c

d’

d

a

b

作業ツリー

commit タグ ブランチ作成 merge rebase

インデックス

pu
sh fe
tc

h

cl
on
e

re
ba

se
/m

er
ge

ad
d

co
m

m
it pu

ll

共有リポジトリ
共有リポジトリは、チームメンバーで共有するリポジトリで、ソー
スコードのメインバージョンが格納されています。cloneでローカ
ルリポジトリに複製し、pull/fetchで変更をローカルリポジトリ
に取り込みます。

基本

リポジトリを作成する
$ git init
もしくは
$ git clone https://github.com/okamototk/test
ユーザ名、メールアドレスを設定する
$ git config user.name “Takashi Okamoto”
$ git config user.email okamototk@example.com
ファイルを管理する
$ git add FILE...
$ git rm FILE...
$ git mv OLD NEW
変更を確認する
$ git status
$ git diff BRANCH_NAME
$ git show 8dc2334
変更をcommitする
$ git add <変更したファイル>
$ git commit
もしくは
$ git commit ‒a
変更を共有リポジトリへ送信する
$ git push

その他

ブランチ・タグに切り替える
$ git checkout FOO
リビジョンにタグを付ける
$ git tag v1.0
タグを公開リポジトリへ反映させる
$ git push --tags
変更履歴を表示する
$ git log
現在の作業を一時保存する
$ git stash

（一時保存）
$ git stash list

（一時保存したリストの確認）
$ git stash show

（一時保存した内容の確認）
$ git stash pop

（一時保存した内容の取り出し）

チーム開発

公開リポジトリ上の変更を取り込む
$ git fetch
$ git log HEAD..FETCH_HEAD

（取り込んだ変更履歴の確認）
$ git diff HEAD..FETCH_HEAD

（取り込んだ変更内容の確認）
$ git rebase FETCH_HEAD

（変更をカレントブランチに取り込む）
もしくは
$ git pull --rebase
変更をmergeする
$ git merge BRANCH_NAME

（コンフリクトした場合、修正後commit）
$ git add <競合したファイル>
$ git commit
変更をrebaseする
$ git rebase BRANCH_NAME
$ git rebase ‒continue
特定のcommitをブランチに取り込む
$ git cherry-pick 8cab345a

（別ブランチの特定のバグ修正や機能変更だけを取り込んで、そ
のほかは取り込みたくないときに利用）

ローカルリポジトリ
作業者のマシン上にあるリポジトリです。ローカルマシンでの作
業内容が保存されます。pushにより共有リポジトリに変更内容を
反映します。

インデックス
ローカルリポジトリへ反映する変更を一時的にためておく場所で
す。インデックスの内容は、commitによりローカルリポジトリへ
反映されます。

作業ツリー
ローカルリポジトリ上にある現在の作業ファイルです。作業ツ
リーの変更点はaddによりインデックスに追加されます。

a

b

c

a

b

c v1.0 c d

b

a

c

e

d

b

a

c

d’

d

a

b

作業ツリー

commit タグ ブランチ作成 merge rebase

インデックス

pu
sh fe
tc

h

cl
on
e

re
ba

se
/m

er
ge

ad
d

co
m

m
it pu

ll

共有リポジトリ
共有リポジトリは、チームメンバーで共有するリポジトリで、ソー
スコードのメインバージョンが格納されています。cloneでローカ
ルリポジトリに複製し、pull/fetchで変更をローカルリポジトリ
に取り込みます。

基本

リポジトリを作成する
$ git init
もしくは
$ git clone https://github.com/okamototk/test
ユーザ名、メールアドレスを設定する
$ git config user.name “Takashi Okamoto”
$ git config user.email okamototk@example.com
ファイルを管理する
$ git add FILE...
$ git rm FILE...
$ git mv OLD NEW
変更を確認する
$ git status
$ git diff BRANCH_NAME
$ git show 8dc2334
変更をcommitする
$ git add <変更したファイル>
$ git commit
もしくは
$ git commit ‒a
変更を共有リポジトリへ送信する
$ git push

その他

ブランチ・タグに切り替える
$ git checkout FOO
リビジョンにタグを付ける
$ git tag v1.0
タグを公開リポジトリへ反映させる
$ git push --tags
変更履歴を表示する
$ git log
現在の作業を一時保存する
$ git stash

（一時保存）
$ git stash list

（一時保存したリストの確認）
$ git stash show

（一時保存した内容の確認）
$ git stash pop

（一時保存した内容の取り出し）

チーム開発

公開リポジトリ上の変更を取り込む
$ git fetch
$ git log HEAD..FETCH_HEAD

（取り込んだ変更履歴の確認）
$ git diff HEAD..FETCH_HEAD

（取り込んだ変更内容の確認）
$ git rebase FETCH_HEAD

（変更をカレントブランチに取り込む）
もしくは
$ git pull --rebase
変更をmergeする
$ git merge BRANCH_NAME

（コンフリクトした場合、修正後commit）
$ git add <競合したファイル>
$ git commit
変更をrebaseする
$ git rebase BRANCH_NAME
$ git rebase ‒continue
特定のcommitをブランチに取り込む
$ git cherry-pick 8cab345a

（別ブランチの特定のバグ修正や機能変更だけを取り込んで、そ
のほかは取り込みたくないときに利用）

ローカルリポジトリ
作業者のマシン上にあるリポジトリです。ローカルマシンでの作
業内容が保存されます。pushにより共有リポジトリに変更内容を
反映します。

インデックス
ローカルリポジトリへ反映する変更を一時的にためておく場所で
す。インデックスの内容は、commitによりローカルリポジトリへ
反映されます。

作業ツリー
ローカルリポジトリ上にある現在の作業ファイルです。作業ツ
リーの変更点はaddによりインデックスに追加されます。

42 - Software Design

　「G
ギットハブ

itHub」という言葉を最近、耳にすること
はないでしょうか？　本節ではGitHubはどの
ようなものなのか、なぜ世界中の開発者が利用
しているのかを解説します。

GitHubを提供するGitHub社

　GitHubはサンフランシスコに本社を置く
GitHub社によって提供されているサービスで
す。同社が提供しているのはGitHubがメイン
となりますが、「Speaker Deck」注1のようなほ
かのサービスも提供企業を買収して提供してい
たりします。
　GitHubにはOctocatと呼ばれる、タコと猫
を合わせたようなマスコットキャラクターもい
ます（図1）。プログラマ向けのイベントや勉強
会で、このマスコットのステッカーなどを目に
したことのある人は多いのではないでしょうか？
　GitHub Octodex注2では、さまざまなバリエー
ションのOctocatを見ることができます。Git

Hub Shop注3では、Octocatのグッズだけでなく、
GitHubに関連するグッズも購入できます。Git

Hubを気に入った人は、GitHub関連グッズを
身の回りに置いてみてはいかがでしょうか？

　GitHub社の現在の情報は公式ホームページ注4

で確認できます。詳細はそちらをご覧ください。

GitHubの利用状況

　GitHubは2015年3月現在注5で、900万人の
利用者がおり、約2,110万リポジトリがあり、
世界中の開発者が日夜利用しています。
　GitHubとは直接関係はありませんが、2015

年3月12日に「Google Code」のサービス終了の
アナウンス注6がありました。Googleは同サービ
スを終了する理由の1つとして、多くのOSSプ
ロジェクトがGitHubなどへ移行していることを

2-1 GitHubとは？

 ▼図1　Octocat

Author 大塚 弘記（おおつか ひろき）　イラスト aico

GitHub入門

リポジトリ作成からCIツール等
との連携まで

　GitHubは、Gitリポジトリを置く場所をインターネット上で提供するサービスです。バージョン管理の機能に加え、
Pull Requestをはじめとした開発者同士がコミュニケーションしながら開発を行える機能を備えています。本章では、
GitHubの基本的な利用手順とチームでGitHubを利用する流れについて解説します。また、今後のさらなる活用の足がか
りとして、チャットやCIツールなどとの連携事例を紹介します。

第 2 章

注1） プレゼンテーション資料を共有するサービス。https://speakerdeck.com/
注2） https://octodex.github.com/
注3） http://github.myshopify.com/
注4） https://github.com/about
注5） https://github.com/about/press
注6） http://google-opensource.blogspot.jp/2015/03/farewell-to-google-code.html

Git＆GitHub入門
開発現場のはじめの一歩 I t 's as easy to learn as your ABC .

https://speakerdeck.com/
https://octodex.github.com/
http://github.myshopify.com/
https://github.com/about
https://github.com/about/press
http://google-opensource.blogspot.jp/2015/03/farewell-to-google-code.html

42 - Software Design Jun. 2015 - 43

挙げています。Google Codeの移行先として
GitHubを挙げて、移行ツールを提供しました。
　このようなことからも世界中の開発者が
GitHubを利用していることがうかがい知れます。

GitとGitHubの違い

　ここではまずGit注7とGitHub注8の違いにつ
いて解説します。GitとGitHubはまったくの
別物です。本特集ではGitとGitHubとは一貫
して区別して表記します。
　第1章で解説したバージョン管理システムソ
フトウェア「Git」では、リポジトリというデー
タの貯蔵庫にソースコードなどを格納して利用
します。このリポジトリを置く場所をインター
ネット上に提供しているのがGitHubというサー
ビスです。そのため、GitHubで公開されてい
るソフトウェアのソースコードは、すべてGit

で管理されています。よって、Gitについて理
解しておくことは、GitHubを使いこなすうえ
でとても重要なことです。Gitの詳細は第1章
を参照してください。

利用料金

　GitHubは公開リポジトリであれば無料でい
くつも作成できます。非公開のリポジトリを作
成したければ、個人向けの一番安いMicroプラ
ンで月額7ドルを支払うと非公開リポジトリを
5個まで作成できます。会社など複数人で

GitHubを利用するのであれば、Organization

plansを利用してください。詳しくはGitHubの
料金ページ注9を参照してください。
　GitHubは教育機関への支援も積極的であり、
学生であればGitHub Education注10のページか
ら学生であることを申請すればMicroプランに
相当する月額7ドル分を無料で利用させてもら
えます。GitHub Educationのページには、Stu

dent Developer Packと題したソフトウェア開発
を行う際に活用できるクラウドサービスやツー
ルなどの紹介ページがあります。ここでは、「通
常は有料で提供されているが、学生であれば一
部無料で利用できるもの」が紹介されています。
最小限のWebサービスは無料で開発して提供で
きる時代となりました。研究や勉強にも利用で
きるので、これを使わない手はありません。

GitHubを利用している
プロジェクト

　実際にGitHubがどのようなプロジェクトで
利用されているのか、代表的なものを表1にま
とめてみました。みなさんも一度は聞いたこと
や使ったことがあるのではないでしょうか。
　Explore GitHub注11を覗けば、GitHubで人
気のあるプロジェクトや話題のプロジェクトを
見つけられます。驚くようなソフトウェアは一
斉に注目を浴びて、Trending repositories注12

などに顔を出しますので、定期的にチェックす
ればおもしろいものにめぐり逢えると思います。

名前 概要 URL

Ruby on Rails Rubyの代表的なオープンソースWebフレームワーク https://github.com/rails/rails

Bootstrap Twitter社の開発するモダンなUIを提供するフレームワーク https://github.com/twbs/bootstrap

Docker Docker社の開発するアプリケーションコンテナエンジン https://github.com/docker/docker

Fluentd Google Cloud Platformで採用されたログコレクター https://github.com/fluent/fluentd

Go Google社で開発されたプログラミング言語 https://github.com/golang/go

 ▼表1　GitHubを利用しているプロジェクト

GitHub入門
リポジトリ作成からCIツール等との連携まで

第 2 章

注7） http://git-scm.com/
注8） https://github.com/
注9） https://github.com/pricing
注10） https://education.github.com/
注11） https://github.com/explore
注12） https://github.com/trending

https://github.com/rails/rails
https://github.com/twbs/bootstrap
https://github.com/docker/docker
https://github.com/fluent/fluentd
https://github.com/golang/go
http://git-scm.com/
https://github.com/
https://github.com/pricing
https://education.github.com/
https://github.com/explore
https://github.com/trending

44 - Software Design

　また、GitHubを使って今までとはちょっと違っ
た試みをされている、ソフトウェア開発以外の
プロジェクトがいくつかあります。たとえば、ド
イツの法律をGitHubで管理し、変更内容を追え
るようにしているプロジェクト注13があります。
日本では和歌山県がオープンデータ注14として、
県内の避難先情報や道路規制情報などを公開し
ています。
　筆者自身も書籍の原稿を書いていくのに編集
者とともにGitHubを利用するなど、とくにコ
ンピュータ関連の雑誌や書籍の作成にも利用さ
れている事例が多数あります。
　このようにソフトウェア開発だけではなく、
さまざまな場面でGitHubが利用されています。

GitHubが提供するおもな機能

　GitHubには、開発者が良いコードを効率的
にアウトプットするための機能が豊富にありま
す。ここでは、それらの機能の概要を説明して
いきます。

 Gitリポジトリ
　GitHubで提供するGitリポジトリは、基本
的には無料で何個でも作成できます。ですが、
限られた人や自分だけに公開を制限したいよう
なプライベートリポジトリを作成したい場合に
は、毎月7ドルからのプランに応じた金額を支
払うことで利用できます。

 Organization
　通常、個人であれば個人アカウントを使えば
良いのですが、会社で使うような場合には
Organizationアカウントの利用をお勧めします。
アカウントや権限の管理を一括して行える、支
払いを統一できるなどのメリットがあります。

　公開リポジトリしか使わないのであれば無料
でOrganizationアカウントを作成できるので、
勉強会や IT系のコミュニティでソフトウェア
を開発するときには活用してみてはいかがでしょ
うか。

 ビューア
　GitHubはリポジトリに格納されたコードを
閲覧するためのビューア機能を提供しています。
各種言語のシンタックスハイライトにも対応し、
快適にコードを閲覧、検索できるように作られ
ています。
　また、CSVやTSVデータを表形式に表示し
たり注15、画像ファイルの差分を表示したり注16、
3Dファイルをレンダリングして表示したり注17な
ど、データそのものを人間が認識しやすい形で
表示してくれる機能もあります。

 Issue
　Issue機能とは、1つのタスクや問題を1つの
Issueに割り当てて、トラッキングや管理を行
えるようにするための機能です。バグ管理シス
テムのような使い方やチケット駆動開発のチケッ
トのような使い方ができます。GitHubでは後
述するPull Requestが行われた際も、同時に
Issueが1つ発行されます。
　1つの機能変更や修正などに対して1つの
Issueが割り当てられ、論議や修正などはその
Issueを中心として行われます。Issueを見れば
その変更に関することがすべてわかるよう管理
できるのです。
　Gitのコミットメッセージに「#7」のように
Issueの発行 IDを書き加えると、GitHubでは
自動的にIssueからcommitに対してリンクが張
られます。また特定のフォーマットに基づいて

It's as easy to learn as your

注13） https://github.com/bundestag/gesetze
注14） 国や地方公共団体が公開する行政情報などのうち、コンピュータで扱いやすいデータ形式で、かつ二次利用が可能なルールで提供

されるデータ。
注15） https://help.github.com/articles/rendering-csv-and-tsv-data/
注16） https://help.github.com/articles/rendering-and-diffing-images/
注17） https://help.github.com/articles/3d-file-viewer/

https://github.com/bundestag/gesetze
https://help.github.com/articles/rendering-csv-and-tsv-data/
https://help.github.com/articles/rendering-and-diffing-images/
https://help.github.com/articles/3d-file-viewer/

44 - Software Design Jun. 2015 - 45

コミットメッセージを記述すれば、Issueを
Closeすることもできます。非常に便利な機能
ですので、ぜひ実践してください。

 Wiki
　Wiki機能は、いつでも誰でも文章を書き換え
て保存できるため、共同で文章を作成できます。
開発ドキュメントやマニュアルなどの記載に使
われていることが多いです。記法はGFM（GitHub

Flavored Markdown）注18で記述できます。
　WikiページもGitリポジトリとして管理され
ており、改版履歴がしっかり残るので、安心し
て書き換えを行えます。cloneして編集もでき
るため、プログラマがブラウザを立ち上げずに
利用することも可能です。

 Fork
　ForkはGitHub内においてリポジトリを自分
の権限のあるリポジトリとして複製する機能です。
　たとえばRuby on Railsのプロジェクトは、
GitHubでは rails Organizationの railsリポジ
トリですので、GitHubの「rails/rails」で開発さ
れています。このリポジトリへ変更を加える権
限はコミッターにしかありません。それ以外の
人は直接の変更を加えることはできません。こ
のリポジトリのコードに修正を加えたければ、
リポジトリ右上の「Fork」ボタン（図2）を押せば、
同じリポジトリが「ユーザ名/rails」で複製され
ます。複製されたリポジトリは自分のリポジト
リですので、自由に変更できます（図3）。
　バグなどを修正するのであれば、Forkした
自分のリポジトリでコードを修正して、Fork

元のリポジトリに対して修正した内容のPull

requestを作成する形になります。GitHubで公
開されているOSSへの貢献は、多くがこのよ
うな形で行われます。

 Pull Request
　Pull Requestは、あなたがGitHubのリポジ
トリにpushした変更や機能追加をほかの人の
リポジトリに取り込んでもらうための要求を出
す機能です。
　Pull Requestが送信されると、送信先のリポ
ジトリの管理者などは送られてきたPull

Requestの内容や含まれているコードの変更な
どを確認できます。そこでは、Pull Requestや
ソースコードの差分などについてレビューや論
議をするための機能があります。ソースコード
の行単位でコメントを付けたりできるので、プ
ログラマ同士で効率的なコミュニケーションを
取ることができます。

GitHubを使うとチームは
どうなる？

　GitHubを利用するとなると、Pull Request

GitHub入門
リポジトリ作成からCIツール等との連携まで

第 2 章

 ▼図2　Forkボタン

gitgit

git git

GitHub

pullpull

pushpush

Fork

Rails開発者

Pull Request

ユーザ

rails/rails ユーザ名 /rails

 ▼図3　Forkのイメージ図

注18） https://help.github.com/articles/github-flavored-markdown/

https://help.github.com/articles/github-flavored-markdown/

46 - Software Design

を作成してソフトウェアを開発していくスタイ
ルになるかと思います。こうした1つの単純な
ワークフローを中心にGitHubとほかのさまざ
まなツールやサービスを連携させることによっ
て、GitHubを中心としてソフトウェア開発が
可視化されていきます。
　GitHubを利用するだけでも、Pull Request

によりソフトウェアがどのように変化していく
のかが目に見え、差分をレビューしながら開発
していくことが、とてもやりやすくなります。
複数のプロジェクトのリポジトリが更新されて
いく様子をNews Feed（図4）やメールなどさま
ざまな形で知ることができ、情報を追っていく
ことが容易になります。開発者自身が関連して

いる重要な情報はNotificationsでもれなく確認
できます（図5）。
　また、のちほど紹介するチャットサービスや
CIのツールを利用することによって、GitHub

を中心として、Pull Requestへのコメントなど
をほぼリアルタイムに把握することや、自動テ
ストを実施した結果などを労力少なく把握・管
理していくことを、チーム全員ができるように
なります。
　GitHubによってソフトウェアの状態が可視
化されるようになると、チームでソフトウェア
を開発している場合、多くの人の目に触れるこ
とになるので、人の目の数によって質を上げら
れるようになります。また、GitHubが文字ど

おりHubとなってほかのツー
ルやサービスと連携するので、
目の数で質を向上させるだけで
なく、ツールやサービスの恩恵
によってソフトウェアの質が上
がる、開発者の労力が削減され
るなど、多くの恩恵を受けられ
ます。
　本章の後半では、世界中で利
用されているGitHubを開発者
がどのような組み合わせで利用
しているのかについても紹介し
ていきます。読者のみなさんの
開発現場の参考になれば幸いで
す。

まとめ

　本節では「GitHubとは何なの
か？」から始まり、世界中で利
用されている現在の状況、機能
について解説しました。開発者
にとっては見過ごせないサービ
スであることを実感できたので
はないでしょうか？　次節から
GitHubを本格的に利用してい
きます。

 ▼図4　News Feed

 ▼図5　Noti�cationsの画面

It's as easy to learn as your

46 - Software Design Jun. 2015 - 47

　本節では、GitHubを利用するために必要
な事前準備や、コードなどを公開する最低
限の操作について解説します。

利用前の準備

　GitHubのサービスを本格的に利用する前
に最低限の準備の設定を行います。

 アカウントの作成
　さっそく、GitHubのアカウントを作成し
ましょう。GitHubのトップページからアカ
ウントを作成できるようになっています（図
6）。お使いのブラウザでGitHubのトップペー
ジ注19へアクセスしてください。
　❶の「Pick a username」には希望するIDを
英数字で入力してください。これは、あなた
の公開ページのURLである「http://github.

com/○○」の部分としても使われます。その
ほかの項目も画面の指示どおりに入力してく
ださい。
　すべての項目を入力後、❷の「Sign up for

GitHub」をクリックします。入力項目に問
題がなければ、プランの選択画面に遷移し
ます（図7）。とりあえずアカウントを作成す
るだけであれば、❸の無料のFreeプランを
選択してください。有料プランへの変更は
あとからでも実施できます。希望するプラ
ンを選択して❹の「Finish sign up」をクリッ
クすればアカウント作成は終了です。その
あとは作成したアカウントでサインインし
た状態になり、ダッシュボードが表示され
ているはずです（図8）。この状態でサービス
を利用できるようになりました。ログイン
中はページ右上にユーザ名が表示された状
態になります。

2-2 GitHubを利用するための最初の一歩

GitHub入門
リポジトリ作成からCIツール等との連携まで

第 2 章

 ▼図8　ダッシュボードの様子

 ▼図6　GitHubのトップページ

1

2

 ▼図7　プランの選択画面

3

4

注19） https://github.com/

https://github.com/

48 - Software Design

 アイコンの設定
　GitHub上の随所で表示されるアバター（アカ
ウントごとのアイコン）は、GitHubを利用する
うえで必須のものではありません。ですが、コー
ドを書いた人の顔やアイコンが見えたほうが安
心できますし、その人に興味を持つきっかけに
なるかもしれません。人にフォーカスできる
GitHubだからこそ、積極的にアバターを設定
することを推奨します。
　設定する方法は、右上のメニューバーにある
Settingsの歯車アイコンをクリックしてくださ
い（図9）。Settingsの最初のページの「Public

profile」の項目に「Profile picture」があります
（図10）。「Upload new picture」ボタンをクリッ
クして、利用する画像をアップロードして設定
してください。以上の操作で、あなたのアイコ
ンが各所に表示されるようになり、ほかの人か
らも認識しやすくなります。

 SSH Keyの設定
　GitHubでは、作成したリポジトリへのアク

セス認証をSSHの公開鍵認証で行います。公
開鍵認証に必要なSSH Keyの作成と、GitHub

への公開鍵登録を行います。すでに作成してい
る人は既存の鍵を利用および設定してください。
　お手元のCLI環境で図11のように実行して、
SSH Keyを作成します。「your_email@example.

com」の部分はGitHubに登録した自分のメール
アドレスに変えてください。パスフレーズは認
証の際に入力します。覚えやすく、かつ複雑な
ものを推奨します。
　パスフレーズを入力すると、図12のように
出力されます。id_rsaというファイルが秘密鍵
で、id_rsa.pubが公開鍵です。

 公開鍵の登録
　GitHubに公開鍵を登録して、秘密鍵を用い
てGitHubと認証できるようにします。右上の
Settingsボタンを押し、「SSH Keys」のメニュー
を選択してください。「Add SSH key」を押すと、

図13のような入力欄が表示されます。
❺のTitleには適当な鍵の名前を入力
してください。❻のKeyには id_rsa.

pubの内容をコピーして貼り付けま
す。id_rsa.pubの内容は図14のよう
にして参照してください。

 ▼図10　アイコン用の画像の登録

$ ssh-keygen -t rsa -C "your_email@example.com"
Generating public/private rsa key pair.
Enter file in which to save the key
(/Users/your_user_directory/.ssh/id_rsa): ←©キーを押す
Enter passphrase (empty for no passphrase): ←パスフレーズを入力
Enter same passphrase again: ←再度パスフレーズを入力

 ▼図11　公開鍵と秘密鍵の作成

Your identification has been saved in /Users/your_user_directory/.ssh/id_rsa.
Your public key has been saved in /Users/your_user_directory/.ssh/id_rsa.pub.
The key fingerprint is:
フィンガープリント your_email@example.com
The key's randomart image is:
+--[RSA 2048]----+
| .+ + |
| = o O . |
（...略...）

 ▼図12　公開鍵と秘密鍵の作成（実行結果）

 ▼図9　Settingsのアイコンは歯車

「Settings」アイコン

It's as easy to learn as your

48 - Software Design Jun. 2015 - 49

　登録が無事に済めば、登録したメールアドレ
スに公開鍵登録完了のメールが届くはずです。
　以上の設定が終了すれば、手元の秘密鍵を利
用してGitHubとの認証と通信ができるように
なるはずです。実際に動作確認をしてください
（図15）。図16のように表示されれば成功です。
これでリポジトリをpush、pullする際に認証さ
れる公開鍵の設定ができました。

初めての公開リポジトリ

　ここでは、公開リポジトリを作成する流れを
解説します。まず右上のツールバーにある「New

repository」（図17）というアイコンをクリックし
て、リポジトリを新たに作ります。

 Repository name/Description
　リポジトリを新規作成するため
の画面（図18）では、❼の「Reposi

tory name」にリポジトリの名前を
入力します。今回は「hello-github」
と入力してください。❽の「Descri

ption」にリポジトリの説明を設定
できます。必須ではありませんか
ら空白でも大丈夫です。

 Public/Private
　❾で「Public」と「Private」が選

択できるようになっています。今回は「Public」
を選択してください。公開リポジトリとして作
成され、リポジトリの内容はすべて公開されま
す。
　「Private」を選択するとアクセス制限を設定
できる非公開リポジトリを作成できますが、有
料プランの契約が必要となります。

$ ssh -T git@github.com
The authenticity of host 'github.com ｭ
(207.97.227.239)' can't be established.
RSA key fingerprint is フィンガープリント .
Are you sure you want to continue ｭ
connecting (yes/no)? ←yesと入力

 ▼図15　GitHubとの認証の確認

Hi hirocastest! You've successfully ｭ
authenticated, but GitHub does not ｭ
provide shell access.

 ▼図16　認証時に表示されるメッセージ

GitHub入門
リポジトリ作成からCIツール等との連携まで

第 2 章

$ cat ~/.ssh/id_rsa.pub
ssh-rsa 公開鍵の内容 your_email@example.com

 ▼図14　公開鍵（id_rsa.pub）の内容を表示

 ▼図17　New repository

 ▼図13　Add SSH keyを押すと表示される入力画面

5

6

 ▼図18　New repositoryをクリックしたあとの画面

7

8

9

10

11
12

13

50 - Software Design

 Initialize this repository with a README
　�の「Initialize this repository with a READ

ME」にチェックを入れてください。GitHubの
リポジトリの初期化とREADMEファイルの設
置を自動的に行ってくれるため、作成直後から
このリポジトリをcloneできるようになります。

 Add .gitignore
　�のプルダウンメニューが便利ですので覚え
ておいてください。これは .gitignore注20ファイ
ルを初期化時に作成してくれます。この設定を
しておけば、一般的にGitリポジトリに含めて
バージョン管理しなくても良いファイルをあら
かじめ .gitignoreファイルに記述してくれるの
で、毎回フレームワークに合わせて設定する作
業から解放されます。プルダウンメニューには
主要な言語やフレームワークがあるので、利用
予定のものを選択してください。今回はフレー
ムワークなどは利用しないので選択しません。

 Add a license
　�のプルダウンメニューは、追加するライセ
ンスファイルを選択できます。このリポジトリ

に含めるコードのライセンスを決めている場合
は選択してください。ライセンスの内容が書か
れたLICENSEファイルがリポジトリに作成
されます。このリポジトリに含まれるもののラ
イセンスを表明することになります。
　入力や選択を完了したら、�の「Create repo

sitory」をクリックしてください。これでリポ
ジトリが完成しました。

 リポジトリにアクセス
　「Create repository」をクリックすると、す
でに作成されたリポジトリにアクセスしている
と思います（図19）。次のURLが、今回作成し
たリポジトリのページです。

https://github.com/ユーザ名/hello-github

　現時点からこのリポジトリは公開された状態
になっています。リポジトリに入っているファ
イルはREADME.mdファイルだけです。先ほ
どチェックマークをしたことによって作成され
たファイルです。

 README.md
　README.mdファイルはリポ
ジトリのトップページに自動的に
中身が表示されます。したがって、
このリポジトリに入っているソフ
トウェアの概要、利用するための
手順、ライセンスなどが明記され
ているのが一般的です。Mark

down記法で記述すれば、とても
読みやすくマークアップしてくれ
ます。

リポジトリに変更を
加え、反映する

　ここまでの作業でリポジトリ
を作成できました。通常のソフ
トウェア開発であればこのリポ

 ▼図19　作成されたリポジトリの画面

It's as easy to learn as your

注20） Gitリポジトリでの管理対象外のファイル・ディレクトリを記述するファイルのことです。

50 - Software Design Jun. 2015 - 51

ジトリに対して機能の追加などをしていきます。
ここでは実際にリポジトリを手元の環境に持っ
てきて、変更を加えて、GitHubのリポジトリ
に反映させる一連の流れを解説します。
　Gitの操作を行いますが、Gitを扱える環境
は構築されているものとします。環境の構築の
しかたについては第1章を参照してください。

 リポジトリのURL
　先ほど作成したGitHubのリポジトリのURL

をブラウザで開いてみてください。右のサイド
バーにこのリポジトリを取得するためのURL

が掲載されています（図20）。「SSH」というリ
ンクをクリックするとSSH経由でGitリポジ
トリへアクセスするURLがテキストボックス
に表示されます。「HTTPS」を押すとHTTPS

で参照するためのURLが表示されます。
「Subversion」をクリックするとSubversionで
利用するためのURLが表示されます。
　「SSH」をクリックして、テキストボックス
の右隣にある「Copy to clipboard」をクリックし
てください。URLがClipboardへコピーされま
す。コピーされたURLは

git@github.com:ユーザ名/hello-github.git

となるはずです。これをgit cloneコマンドを
利用して、手元の環境へリポジトリをcloneし
ましょう（図21）。

　現在のディレクトリの直下にhello-github
というディレクトリが作成されました。これが
取得したリポジトリです。中にはREADME.

mdファイルがあることが確認できます。

$ ls
README.md

　ここまでで、GitHubのリモートリポジトリ
をcloneして手元の環境へリポジトリを複製す
ることができました。

 リポジトリに変更を加える
　通常のソフトウェア開発であれば、機能の追
加など、ファイルに変更を加えるのですが今回
はREADME.mdファイルに変更を加えること
とします。
　お使いのエディタでREADME.mdファイル
を開き、リスト1のようにリポジトリの説明を
記載してみてください。
　内容を記述したらファイルを閉じてしまって
かまいません。この変更をcommitするところ
まで実施します（図22）。一連の流れの詳細に
ついては第1章を参照してください。
　以上でリポジトリのファイルに変更を加える
ことができました。通常のソフトウェア開発で
あれば、いくつかのcommitに分けて変更作業
をしていってください。

GitHub入門
リポジトリ作成からCIツール等との連携まで

第 2 章

 ▼図20　SSH clone URL

$ git clone git@github.com:hirocaster/hello-github.git
Cloning into 'hello-github'...
remote: Counting objects: 3, done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (3/3), done.
Checking connectivity... done.

 ▼図21　リポジトリをcloneする

$ git add README.md
$ git commit -m "Add description"
[master f3caacd] Add description
 1 file changed, 2 insertions(+)

 ▼図22　変更をcommitする

hello-github

ソフトウェアデザイン（2015年6月号）を参考にGitHubｭ
の練習をしているリポジトリです。

 ▼リスト1　README.mdファイルの変更例

52 - Software Design

 リポジトリをpushする
　ここまでで手元の環境ではファイルを変更で
きました。ですが、GitHub側のリモートリポジ
トリへは反映されていません。手元のリポジト
リをGitHubのリモートリポジトリに対してpush

することで、変更した内容を反映しましょう。
　pushをするためにはgit pushコマンドを利用
します。何も指定しなければcloneしてきたリポ
ジトリに対して、pushしてくれます（図23）。

　この節では、GitHubを利用した開発フロー
である「GitHub Flow」について解説します。こ
のワークフローはGitHub社が実践していると
てもシンプルなワークフローです注21。筆者自

　git pushの際にSSH Keyのパスフレーズを
聞かれた場合は、入力して認証してください。
このような表示にならず、うまくいかなかった
場合はSSHの鍵まわりの設定や認証まわりを
疑ってください。
　無事にpushできていれば、再度ブラウザで
GitHubにアクセスしてみるとREADME.md

ファイルの内容が更新されていることを確認で
きるかと思います（図24）。リポジトリのcommit

数なども増えているのが同時に確認
できます。
　このように自分が作成したリポジ
トリや書き込み権限があるリポジトリ
に対しては、直接pushできます。直
接pushできない他人のリポジトリに
関しては、ForkしてPull Requestを
投げるなどをします。

まとめ

　本節ではGitHubにアカウントを
作成し、鍵などの最低限の設定をし
ました。秘密鍵についてはリポジト
リの認証に利用されるものですので、
厳重に管理してください。また、
GitHubにリポジトリを作成して、
リポジトリの内容に変更を加え、反
映しました。これでコードなどを公
開する最低限の操作を一通りやって
みた形になります。

身もGitHub Flowを数多くのプロジェクトで
利用しています。
　このワークフローは、デプロイ注22を中心と
したワークフローです。実際の開発の現場では

注21） https://speakerdeck.com/holman/how-github-uses-github-to-build-github
注22） ソースコードを本番環境に配備し稼働させること。

2-3 GitHub Flowを利用した開発の流れ

$ git push
Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 380 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To git@github.com:hirocaster/hello-github.git
 64f6c99..f3caacd master -> master

 ▼図23　リモートリポジトリに変更内容をpushする

 ▼図24　pushしたあとの様子

It's as easy to learn as your

https://speakerdeck.com/holman/how-github-uses-github-to-build-github

52 - Software Design Jun. 2015 - 53

1日に何十回とデプロイを実施します。それを
支えるのは、今回解説するシンプルなワークフ
ローと徹底的に自動化された環境です。シンプ
ルにするためにForkなどの機能は利用しませ
ん。関係する開発者全員を信頼してGitHubの
1つのリポジトリに対して権限を与えます。そ
うすることで、あらゆることに柔軟に対応でき
ます。GitHubを利用するのであれば、ぜひこ
のワークフローを採用してください。
　このワークフローは小さなチームでも、大き
なチームでも効果的に機能します。GitHub社
では、このフローを利用して15～20人が同じ
プロジェクトで作業しているようです注23。筆
者の経験からも、同じプロジェクトで20名程
度ぐらいまでは、このワークフローを利用して
大きな問題が発生したことはありません。

GitHub Flowの流れ

　ワークフローの全体は次のようになります。

1．�masterブランチは常にデプロイできる状態
とする

2．�新しい作業をするときはmasterブランチから
記述的な名前（後述）のブランチを作成する

3．�作成したローカルリポジトリのブランチに
commitする

4．�同名のブランチをGitHubのリポジトリに作
成し、定期的にpushする

5．�助けてほしいときやフィードバックがほしいと
きはPull Requestを作成し、Pull Requestで
やりとりする

6．�ほかの開発者がレビューし、作業終了を確
認したらmasterブランチにマージする

7．�masterブランチへマージしたら、ただちに
デプロイする

　基本的には特定の作業をするブランチを作成
するだけですので、作業を始めてデプロイする

までの過程がとてもシンプルです。これはワー
クフローを実施するまでの学習コストを抑えら
れるという利点があります。それよりも大きな
利点として、シンプルであるからこそ、多くの
開発者がすばやく行えることを可能にします。
そして、小さな変更などにも柔軟に対処できる
ようになります。
　これから上記フローのひとつひとつの項目に
ついて順番を追って解説していきます。

 masterブランチは常にデプロイできる状態
　このワークフローで絶対に守らなければなら
ないルールは「masterブランチは常にデプロイ
できる状態にする」ということです。通常の
Webサービスの場合、数時間ごとに常にデプ
ロイをすれば、大きなバグが複数入り込むこと
はまずありません。小さなバグが入り込むこと
はあるかもしれませんが、該当の commitを
revertする（変更前の状態にする）か、修正され
たコードをcommitするなどして、即座に対応
可能です。このように数分から数時間単位で継
続的にデプロイが実施されるため、リリースと
いう概念がこのワークフローには存在しません。
よって、作業内容を取り消すためにHEADを古い
commitに差し戻す注24ことはありません。
　masterブランチは常にデプロイ可能である
ため、新たにブランチを作成することも常に可
能となります。
　基本的なルールとして、テストが書かれてい
ないコードや、テストを落としてしまうような
コードを絶対にmasterブランチに入れてはい
けません。そのため、継続的インテグレーショ
ンなどのアプローチは必須となります。誌面の
都合上、これについての解説は行いません。

 masterブランチから新ブランチを作成
　新しい作業をするときは、masterブランチ

GitHub入門
リポジトリ作成からCIツール等との連携まで

第 2 章

注23） http://scottchacon.com/2011/08/31/github-flow.html
注24） Gitでいうgit resetコマンドに該当する作業。

http://scottchacon.com/2011/08/31/github-flow.html

54 - Software Design

から新たにブランチを作成します。新機能の追
加でもバグの修正でも、新しくブランチを作る
という作業は変わりません。ブランチ名には記
述的な名前を付けてください。
　記述的な名前とは、そのブランチの特質をそ
のまま正確に表したような名前です。たとえば、

・user-content-cache-key
・submodules-init-task
・redis2-transition

のように、ほかの開発者が何をしているのかを
想像できる具体的な名前が望ましいです。
　これにより、リモートリポジトリのブランチ
名一覧を確認すれば、チームがどんなタスクを
実施しているのかが一目でわかります。また、
何をするべきブランチなのかが明確なため、いっ
たんほかの作業をして戻ってきてもすぐに思い
出せます。GitHubのブランチリストのページ注25

を見れば、それぞれのブランチとmasterブラ
ンチの差分なども容易に確認できます。

 新ブランチにcommitする
　ここまでの状態で、開発者が変更を加えるべ
き新しいブランチが作成できたと思います。そ
して、そのブランチでは何をするかが明確になっ
ているはずです。そのため、トピック以外の作
業のcommitなどはこのブランチにしないよう
にコードに変更を加え、commitしてください。
　ここでポイントなのは、Pull Requestをレ
ビューする開発者のためにも、意図が伝わる
commitの粒度を心がけてください。そのため
にcommitひとつひとつのサイズは小さくする
ことを意識してください。
　たとえば、メソッド1つを追加する作業だけ
でも、追加すべき個所やクラスを特定したあと
に、開発者は次のようなことを日ごろから行っ
ているのではないでしょうか。

・近くのコードのインデントが崩れていたので
適切に修正

・変数の単語の間違いを見つけたので正しい単
語に修正

・今回の作業として追加すべきメソッドを追加

　これらの一連の流れを1つのcommitとする
と1つの差分に3つの意味が含まれてしまうた
め、望ましい commitの粒度とは言えません。
それぞれ3つの commitとして分けたほうが、
それぞれの差分の意図が伝わるはずです。
　このようなポイントを踏まえ、通常の開発ど
おりこのブランチにコードの変更をcommitし
ていってください。

 pushする
　このワークフローではmasterブランチ以外
は作業中のブランチとなるため、気軽に作業中
のブランチをpushできます。ローカルリポジ
トリで作成したブランチと同じ名前のブランチ
で、GitHubのリモートリポジトリに定期的に
pushしてください。
　この際にPull Requestを作成してしまうこ
とを筆者は推奨します。このPull Requestは
まだ作業中であることを表明するために、Pull

Requestのタイトル冒頭に“[WIP]”注26と付ける
ようにしましょう。こうすることにより、ほか
の開発者が誤って作業途中のPull Requestを
マージしてしまうことを防ぎます。これは
GitHub利用者のプラクティスです。
　これにより、コードのバックアップにもなりま
すし、チームの開発者が定期的にコミュニケーショ
ンをする機会を与えられます。ほかの開発者が
何を実施しているのか、助けを必要としていな
いかなど、GitHubのPull Requestとブランチリ
ストのページを利用して全員が確認できます。
　自分が書いたコードをほかの開発者が見られ

It's as easy to learn as your

注25） https://github.com/ユーザ名 /リポジトリ名 /branches
注26） “Work in Progress”の略。

54 - Software Design Jun. 2015 - 55

る状態にし、また積極的にほかの開発者のコー
ドを見る習慣のあるチームになりましょう。コー
ドでコミュニケーションを取れるのは開発者に
許された特権です。この権利を活用しない手は
ありません。

 Requestを使う・活用する
　Pull Requestは、masterブランチにマージし
てほしいときだけに作成するものではありません。
チームで開発を行うのであれば、masterブラン
チへマージするタイミングよりもずっと前から
Pull Requestを作成し、レビューをしてもらう
などして、フィードバックを得ながら開発する
べきです。
　Pull Requestには、差分を閲覧する機能や
コードの行にコメントを入れられる機能があり
ます。これを活用してコミュニケーションをし
てください。また、特定の開発者からフィード
バックやアドバイスを得たいのであれば、コメ
ントの中に「@ユーザ名」と入力すれば、そのユー
ザにNotificationsが飛びます。それに気づいて、
何らかのフィードバックをしてくれるはずです。

 開発者からレビューを受ける
　ブランチでの作業が完了したら、完了したこ
とを表明（“[WIP]”を削除して、完了した旨を
伝えるなど）して、ほかの開発者によるレビュー
を受けてください。ほかの開発者の目を通すこ
とによって、思い込みやミスを防ぐことができ
ます。コードを書いた人以外がレビューしてく
ださい。問題があれば指摘してもらい、修正を
行ってください。もちろん、自動テストは全部
パスしていることが大前提です。
　レビュアはmasterブランチにマージして問題
ないと思うのであれば、その意思を表明しましょ

う。「:+1:」や「:shipit:」などの記法で絵文字を利用
するのもGitHubの文化です（図25）。LGTMと
いう「Looks good to me」の略語をコメントする
ケースもあります。
　複数人の同意を得られたら、適切なタイミン
グでほかの開発者がmasterブランチにマージ
してください。

 マージ後はすぐにデプロイ
　masterブランチにコードがマージされ、自
動テストがすべてパスしたら、ただちにデプロ
イしてください。デプロイして、マージしたコー
ドが問題ないことを確認してください。

まとめ

　GitHubを複数人のチームで利用していく流
れが見えたのではないでしょうか？　GitHub

Flowは非常にシンプルなワークフローですの
で、すぐに理解して実践できると思います。実
践する中でチーム独自のルールを加えていき、
よりチームに最適化されたワークフローへと進
化させてください。
　Pull Request上でのやりとりに慣れれば、今ま
で以上にコードの意図を伝えやすくなり、レビュー
が捗るはずです。Pull Requestをうまく使うこと
がこのワークフローを成功させるポイントです。
あなたの現場のチームでこのワークフローを採用
し、よりGitHubを活用していただければ幸いです。

GitHub入門
リポジトリ作成からCIツール等との連携まで

第 2 章

 ▼図25　+1の絵文字

56 - Software Design

　GitHubを積極的に活用している開発の現場
では、GitHubを利用してPull Requestのスタ
イルで開発することは当たり前になってきてい
ます。このGitHubを利用した開発に対して、
ほかのサービスやツールをどのように組み合わ
せて、何を実現しているのかといったことに各
組織やチームで特色が出てきています。その中
からいくつか紹介したいと思います。これを参
考に、開発の現場で採用できるものがないか、
ご検討ください。
　誌面の都合上、詳細な手順の解説などができ
ません。できる限り、参考になるURLなどを
記載しましたので、実際の導入時にはそちらを

参考にしていただけると幸いです。
　いずれもGitHubのリポジトリの「Settings」
→「Webhook & Services」から連携の設定がで
きます。各種環境を構築後、もしくはサービス
の契約設定後にこの画面からWebhookやSer

viceとの連携を設定します。今回紹介できてい
ないサービスもたくさんあるので、一度目を通
してみることをお勧めします（図26）。

チャットサービスとの連携

　近年、開発のコミュニケーションをチャット
で行う現場が増えてきています。今までメール
を使って行われていたコミュニケーションなど
も、チャットにシフトしてきているのが現状です。
よって、GitHubを含めたチャットサービスの
利用のされ方について解説したいと思います。

 開発と相性の良いチャットサービス
　開発の現場でよく使われるサービスとして
「Slack」注27や「HipChat」注28などが挙げられま
す。これらはAPIが公開されていることやスマー
トフォンから利用できることはもちろんですが、
GitHubをはじめとしたほかのサービスへの連
携が気軽に設定できるように設計されています。
そのため、開発者が何かしようとしたときに、
やりやすい環境が整っているので、よく使われ
ています。

 なぜチャットを利用するのか？
　GitHubと連携するチャットサービスを利用
すれば、「GitHubで新しくPull Requestを作成
した」「コメントをした」「差分をpushした」など
の各種通知を簡単にチャットに流せます（図

2-4 	�GitHubを中心として
利用されるサービス・ツール

 ▼図26　数多くのサービスと連携できる

It's as easy to learn as your

注27） https://slack.com/
注28） https://www.atlassian.com/ja/software/hipchat

https://slack.com/
https://www.atlassian.com/ja/software/hipchat

56 - Software Design Jun. 2015 - 57

27）。これによって、チームメンバー
全員でリアルタイム（もしくは非同期）
に情報を共有できるようになります。
通知から話題を広げて、ちょっとした
コミュニケーションをすることもでき
ます。
　また、スマートフォンに対応した
チャットサービスであれば、外出先で
情報の確認もできますし、急用があれ
ばユーザ間でNotificationを送ること
によってスマートフォンにpush通知を送って
相手を呼び出すことも気軽にできます。
　このスピード感をメールで実現するのは、な
かなか難しいものがあります。そのことからメー
ルやほかのツールで行われていたコミュニケー
ションがチャットに移ってきている組織が増え
ています。

 チャットbot、ChatOps
　各種サービスの通知をチャットサービスに連
携するだけでなく、チャットbotと呼ばれるプ
ログラムをロボットアカウントとしてチャット
に常駐させ、チャット利用者が入力した文字や
サービスの通知に反応して、一定の動作をさせ
るプラクティスがあります。
　SlackやHipChatなど主要なチャットサービ
スに対応しているチャットbotとして、GitHub

社で開発された「Hubot」などが挙げられます。
豊富なプラグインから機能を柔軟に追加するこ
とができます。サーバを用意せずともHeroku

などで動作させられるので、気軽に試してみて
ください注29。
　このようなチャットbotで自動化された運用
オペレーションを実施させることをChatOps

と呼びます。ChatOpsの代表的なオペレーショ
ンとしては、デプロイが挙げられます。チャッ
トで「hubot deploy」といった特定の文字を入力

することにより、チャットbotがデプロイの一
連の処理を実施するのです。
　チャットをトリガーにしてデプロイを実施す
ることにより、チャットにいるメンバー全員に
「いつ、何を、どのバージョンをデプロイした」
といった情報がデプロイ作業と同時に共有でき
るのです。このような操作はチャットで文字入
力さえできれば実現できるので、外出先でスマー
トフォンからのデプロイも可能になります。
　現在のシステムはさまざまなコンポーネント
で構成されているため、システムとして稼働さ
せるまでの手順が複雑になりがちです。こういっ
たチャットに特定の文字を入力するだけの単純
なオペレーションを前提にシステムを構築して
いけば、デプロイ作業は自動化せざるをえませ
ん。これにより、チームに入ったばかりのあま
り慣れていないメンバーでも、気軽に安全にデ
プロイできるようになります。

Pull Requestを起点とした連携

　GitHubをチーム開発に導入すると、Pull

Requestを作成してレビューを繰り返しソフト
ウェアを成長させていくことになります。この
Pull Requestを起点としてさまざまなツールと
連携させることにより、効率的かつ安全にソフ
トウェアに変更を加え続けていけるようになり
ます。そのような例をいくつか解説します。

注29） Qiita「YoemanでHubotを作成してHerokuへデプロイしSlackと連携する」
http://qiita.com/hkusu/items/1dc7db9607ab8cb35150

GitHub入門
リポジトリ作成からCIツール等との連携まで

第 2 章

 ▼図27　SlackにGitHubの内容が通知されている様子

http://qiita.com/hkusu/items/1dc7db9607ab8cb35150

58 - Software Design

 コーディングスタイルチェック
　プログラミング言語のほとんどは、同じ処理
を記述するのにも複数の書き方ができます。そ
こで、可読性を上げるためにある一定のルール
に沿ったコードの書き方を定義したものをコー
ディングスタイルと呼びます。
　ソースコードは書かれることよりも、読まれ
ることのほうがはるかに頻度が多くなります。
そのため、読みにくいコードや変則的な記述の
され方をしたコードは、誤解やバグなどを生じ
させてしまうリスクを抱えています。このリス
クを回避するのがコーディングスタイルを導入
する目的です。プログラマが一定のコーディン
グスタイルに沿って記述することによって、コー
ドの読みやすさを向上させ、長期にわたって一
貫性を保つことができます。
　このような背景から複数人のチームでソフト
ウェアを開発する場合は何らかのコーディング
スタイルに沿ってソースコードの書き方を統一
するのが一般的です。

 代表的なコーディングスタイル
　これはオープンソースの世界でも同じことが言
えます。各種言語やソフトウェアにはコーディン
グスタイルやルールが存在します。有名なところ
だとPythonのPEP8注30、GitHub社で使われて
いるRuby Style Guide注31があります。国内企業
だとクックパッド㈱がRuby注32、Objective-C注33、
Java注34のスタイルガイドを公開しています。

 スタイルチェック
　コードを書くためのルールを厳密に決めても、
人間がコードを書いている限りミスをしてしま
うのはある程度避けられません。GitHubの

Pull Requestをレビューする際に、こういった
ミスを見つけることはできますが、すべてを人
間が検出するのは難しく、この行為自体があま
り効率的ではありません。そこでツールを使っ
て検知するアプローチが存在します。たとえば
RubyではRuboCop注35というツールがよく使
われます。Rubyのソースコードに対して実行
すれば設定された記述ルールに沿っているかど
うかのチェックが行われて、間違っている部分
をCLIやHTMLなどの形式で表示して指摘を
してくれます。
　こういったツールをプログラマ各人の環境で
設定しなくとも、Pull Requestを作成した時点
でソースコードの差分に対してチェックを行い、
違反している個所があればPull Requestにコ
メントを付けてくれるようなサービスが出てき
ました。具体的にはthoughtbot社が提供してい
る「HOUND」注36などです。
　Pull Requestのレビューの一貫としてコー
ディングスタイルのチェックが必ず行われて、
誰もが見える形でコメントとして指摘がされる
ので、スタイルチェックとしては効果的です。
人間の心理的に、指摘されれば直さざるをえな
いでしょうし、マージするほうも指摘されてい
るものをマージしづらいという意識が働きます。
　通常の開発の流れである「Pull Requestを作
成し、レビューして、マージする」の中に、機
械的に誰もが理解しやすく、すぐに直せる形で
組み込むことがポイントです。

 継続的インテグレーション（CI）／自動テスト
　継続的インテグレーションはアジャイルソフト
ウェア開発手法の1つであるエクストリーム・プ
ログラミング（XP）で実施されるプラクティスの

It's as easy to learn as your

注30） http://legacy.python.org/dev/peps/pep-0008/
注31） https://github.com/bbatsov/ruby-style-guide
注32） https://github.com/cookpad/styleguide/blob/master/ruby.ja.md
注33） https://github.com/cookpad/styleguide/blob/master/objective-c.ja.md
注34） https://github.com/cookpad/styleguide/blob/master/java.ja.md
注35） https://github.com/bbatsov/rubocop
注36） https://houndci.com/

http://legacy.python.org/dev/peps/pep-0008/
https://github.com/bbatsov/ruby-style-guide
https://github.com/cookpad/styleguide/blob/master/ruby.ja.md
https://github.com/cookpad/styleguide/blob/master/objective-c.ja.md
https://github.com/cookpad/styleguide/blob/master/java.ja.md
https://github.com/bbatsov/rubocop
https://houndci.com/

58 - Software Design Jun. 2015 - 59

1つです。狭義にはビルド、テスト、インスペクショ
ンなどを継続的に実施することです。
　代表的なツールだと「Jenkins」注37、「Drone」注38

などが挙げられます。JenkinsではGitHub pull

request builder plugin注39などを利用してくださ
い。最近ではこういったCI環境を提供するサー
ビスも増えてきています。代表的なものだと
「Travis CI」注 40、「CircleCI」注 41、「wercker」注 42

などが挙げられます。
　Pull Requestが作成された段階で、CIのツー
ルやサービスによって自動テストを実施し、追
加・変更・削除したコードの差分が既存の機能
を壊していないかをチェックします。これで問
題のあるPull Requestをマージしなくて済む
ようになります。
　CIツールやサービスで実施した自動テスト
の結果などはPull Requestに反映され、ユー
ザに通知することができます（図28、29）。こ
れは連携したCIツールやサービスがGitHubの
APIを通して結果を通知しているためです。
　CIツールと連携させることにより、自動テ
ストの恩恵を継続的に確実に受けることができ
るようになります。Pull Requestのレビューを
する人は、自動テストでカバーされている範囲
には意識を向ける必要がな
くなるため、人間が注目す
べき設計や質の高いレ
ビューに集中していけるよ
うになります。

 カバレッジ
　自動テストを継続的に実
施するのであれば、コード
カバレッジにも注目すべき

です。コードカバレッジとはコード網羅率と呼
ばれることもあり、テストによりソフトウェア
のソースコードがどの程度網羅されているかの
割合を意味する言葉です。基本的にはテストコー
ドでカバーされているソースコードの割合が多
ければ多いほど、自動テストによって不具合を
検知する確率は上がります。
　これをレポートして開発者が見やすい形で提供
するサービスなども登場してきています。代表的
なものだと「Coveralls」注43などのサービスが挙げ
られます。サポートされている言語も徐々に増え
ており、一部の例を挙げるとC/C++、Go、
Haskell、Java、JavaScript、Lua、.Net、Perl、
PHP、Python、Ruby、Scala、Objective-Cなど
広く普及している言語はサポートされています。
オープンソースのプロジェクトによってはこのカ
バレッジ率を表示しているようなプロジェクトも
あります（図30）。
　新しい機能を増やしてカバレッジ率が下がれ
ば、「テストコードを書いてね」とも伝えやすく
なります。また、開発しているソフトウェアに
おいて、自動テストがカバーしているコードの
部分を把握できていると、Pull Requestでのレ
ビュー時に「どこをとくに気をつけて見なけれ

注37） https://jenkins-ci.org/
注38） https://github.com/drone/drone
注39） https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
注40） https://travis-ci.com/
注41） https://circleci.com/
注42） http://wercker.com/
注43） https://coveralls.io/

GitHub入門
リポジトリ作成からCIツール等との連携まで

第 2 章

 ▼図28　テストが成功した様子

 ▼図29　テストが失敗した様子

https://jenkins-ci.org/
https://github.com/drone/drone
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
https://travis-ci.com/
https://circleci.com/
http://wercker.com/
https://coveralls.io/

60 - Software Design

ばならないのか」という判断をするのにとても
役立ちます。また、新たにテストを増やしてい
く際にも、現在の状態を把握することは考慮す
べき内容です。

 デプロイ
　Pull Requestをマージした時点で、自動的に
デプロイをしてしまう考え方もあります。ここ
でも活躍するのはCI関連のツールです。Travis

CIでは「Heroku」注44や「AWS CodeDeploy」など
数多くのサービスと連携できるようになってい
ます注45。CircleCIやwerckerなどでも数多くの
サービスとの連携を実現しています。自前で構
築したければJenkinsや「RUNDECK」注46などを
利用すると構築できます。
　また、特定のコマンドを実施するような設定
もできます。既存システムでデプロイに「Capi

strano」注47などを利用していれば、Capistrano

のデプロイコマンドを設定することによって、
既存システムに組込みやすくなってもいます。
　各種サービスともに特定のブランチがマージ
されたらデプロイすることなども設定できます。
いきなり本番環境で自動的にデプロイする環境
を構築するのではなく、まずは開発している環境
への導入を検討してみてください。development

などの特定のブランチへマージされたら自動的に
デプロイされるしくみを作ってみてはどうでしょ

う。リリース前の確認・テスト・QA

のために毎回デプロイしている作業
を自動化するところから始められます。
　Pull Requestスタイルで開発して
マージのタイミングでデプロイまで
されるようになると、どの環境で何
がデプロイされているのかなどの情
報共有がGitHubに集約されてくる

ので、今まで「どの環境に何をデプロイします」
といったやりとりが減り、確実な記録を残しな
がら進めていけるようになります。チャットシ
ステムとの連携もしていれば、より速やかな情
報共有となるはずです。

 確認するための環境構築の自動化
　Pull Requestをレビューする際に、UIなど
ビジュアライズするためのコードはコードを見
ただけではレビューがやりにくいものです。
Pull Requestにスクリーンショットの画像ファ
イルをドラッグ＆ドロップすれば画像がPull

Requestに挿入できますので、レビューする側
の人間はコードだけのレビューよりもわかりや
すくなります。
　これをさらに発展させたのが、Pull Requestご
とに自動的に確認できる環境を作ってしまうこと
です。Herokuではベータ機能ながらPR apps注48

という機能を提供しています。これはPull

Requestを作成すると、そのブランチの環境を
Heroku側に自動的に作成してくれる機能です。
自動的に作成した環境のURLをPull Requestに
通知してくれるので、Pull RequestからURLを
クリックするだけでブラウザ上での動作確認が可
能になります。詳しくはHerokuのブログ記事
「GitHub Integration: Pull Request Deploys」注 49

を参照してください。

 ▼図30　 CucumberのREADME.mdに表示されているカバレッジ

It's as easy to learn as your

注44） https://www.heroku.com/
注45） http://docs.travis-ci.com/user/deployment/codedeploy/　http://docs.travis-ci.com/user/deployment/heroku/
注46） http://rundeck.org/
注47） http://capistranorb.com/
注48） https://devcenter.heroku.com/articles/github-integration#pr-apps
注49） https://devcenter.heroku.com/articles/github-integration-pull-request-deploys

https://www.heroku.com/
http://docs.travis-ci.com/user/deployment/codedeploy/
http://docs.travis-ci.com/user/deployment/heroku/
http://rundeck.org/
http://capistranorb.com/
https://devcenter.heroku.com/articles/github-integration#pr-apps
https://devcenter.heroku.com/articles/github-integration-pull-request-apps

60 - Software Design Jun. 2015 - 61

　これと似たような機能を自前で構築するのに、
mod_mrubyとDockerを利用して環境を作る
「pool」注50といったツールなどもあります。詳
しくはQiitaで公開されている作者の記事注51を
ご覧ください。
　このようなツールやサービスを組み合わせる
ことにより、開発者も確認しやすく、非開発者
も確認が容易にできる環境を整えられます。

Pull Request駆動で
ライブラリをアップデート

　多くの開発者はライブラリのアップデートは
後回しにしがちです。古いバージョンのライブ
ラリを利用し続けていると、セキュリティ上の
バグを抱えたままだったり、新機能の恩恵を受
けられなかったりします。また、システム全体
の大きなバージョンアップの際には足を引っ張
る原因にもなりかねません。
　Pull Requestスタイルの開発方法をしている
のであれば、ライブラリのアップデート用の
Pull Requestを自動的に作成してもらうという
方法があります。「Tachikoma」注52は、bundler

（Ruby）、carton（Perl）、david（Node.js）、cocoa

pods（Objective-C）、composer（PHP）などのラ
イブラリをアップデートしたPull Requestを自
動的に作成してくれるツールです。
　Pull Requestを作成してくれれば、ここまで
に紹介したCIツールなどによって、システム
のテストは自動的に行えますので、ライブラリ
のアップデートによりシステムが正常に稼働し
ているのか判断できるはずです。開発者はテス
トが無事に通っていることをレビューして、マー
ジするだけです。これだけで最新ライブラリへ
のアップデート対応ができるようになります。
　実際にはライブラリのアップデート内容など
を把握することが必要になるかと思います。し

かし、機械的にアップデートするタイミングを
作成してくれるだけで、確認するライブラリは
都度最小のものになるので確認しやすく、アッ
プデートしやすくなるはずです。
　日々の開発と同じようにPull Requestを作
成してもらい、レビューしてマージするという
形になるだけでもカジュアルにライブラリのアッ
プデートをしていけるようになります。今回紹
介したTachikomaには「Tachikoma.io」注53とい
う非公開リポジトリ向けの有料機能があります。
こちらはTachikomaの環境を構築せずとも
GitHubのリポジトリと連携するだけで利用で
きるので、導入を検討してみてください。

まとめ

　本節では、GitHubのさまざまな機能を中心
としてほかのサービスと連携することにより、
開発者がより快適に開発できるようになるプラ
クティスを数多く紹介しました。GitHub登場
以降、多くのサービスがGitHubとの連携をサ
ポートしています。
　多くのさまざまなサービスの登場によって、
CIやチャットシステムなどの開発環境全般を
自前で構築・保守・運用し続けるのが必ずしも
最適とは言えなくなりました。筆者はいくつか
のサービスを組み合わせて利用し、自分たちが
提供するプロダクトの開発に専念するというの
も賢い選択の1つになってきていると感じてい
ます。
　今回紹介した中で、組織やチームの問題を解
決してくれそうなものがあれば、1つずつ導入
して徐々に変化させていくことをお勧めします。
ﾟ

GitHub入門
リポジトリ作成からCIツール等との連携まで

第 2 章

注50） https://github.com/mookjp/pool
注51） Qiita「mod_mrubyとDockerを使ってプレビュー環境を作成するプロキシサーバを作った」

http://qiita.com/mookjp/items/ed5961589428238d610b
注52） https://github.com/sanemat/tachikoma
注53） http://tachikoma.io/?setLng=ja-JP

https://github.com/mookjp/pool
http://qiita.com/mookjp/items/ed5961589428238d610b
https://github.com/sanemat/tachikoma
http://tachikoma.io/?setLng=ja-JP

62 - Software Design

　Linux/UNIXのシェルで、各種コマンドを組み
合わせてプログラムを作成する方法を解説する。
文章の校正、ログの調査／加工、名簿の管理、
データの集計、ファイルのバックアップ、処理
の自動化、Web APIの利用などの例をもとに「ど
のコマンドをどう組み合わせれば、どんな結果
が得られるか」を次々と示しつつ解説していく。

長いワンライナーでも段階的に説明されるため、
コードを書いていく過程がよくわかる。ベテラ
ンのシェルユーザには、第5章の「大きなデー
タを処理する」がお勧め。ここではCPUを効率
的に使って大量のデータを高速に処理する手法
を紹介している。この内容をもとに、自分の書
くコードを見直してみてはどうだろう。

上田 隆一【著】、USP研究所【監修】
B5変形判、416ページ／価格＝2,980円＋税／発行＝技術評論社
ISBN＝978-4-7741-7344-3

　AWKはシェル上で多彩なテキスト処理を行え
るスクリプト言語で、UNIXの哲学を受け継ぐシ
ンプルさが持ち味。本書はオーム社から出版さ
れていた『awkでプログラミング』を元に、現代
にあわせた内容に改訂した新装版。すぐに使え
るサンプルスクリプトが豊富に掲載され、それ
らを使いながらAWK特有の処理を学ぶことがで

きる。gawkバージョン4で追加された新機能の
例もある。また、強力だが習得しづらい正規表
現についても、処理の流れを図示することで理
解を助けてくれる。本書を参照しながらAWKと
正規表現を組み合わせて使っていくことで、両
ツールを自分の手に馴染んだ道具とし、日々の
仕事で活用できるようになってほしい。

中島 雅弘、富永 浩之、國信 真吾、花川 直己【著】
B5変形判、416ページ／価格＝2,980円＋税／発行＝技術評論社
ISBN=978-4-7741-7369-6

　最近流行りの「IoT」のシステムを開発するに
は3つの要素が必要となる。アプリをつくりイ
ンターネットを通してデータをやりとりさせる
ソフトウェアの知識、デバイスを構成する組込
み系の知識、さらにはセンサから送られてきた
データを分析するための知識だ。本書では、そ
れぞれの分野でとくに押さえておくべき知識を

わかりやすい絵でかいつまんで紹介しており、
IoTについて何から勉強すればいいかわからない
といった人にはお勧めである。基本的に内容は
やさしいが、センシングやデータ分析の章では
数学的な話も扱う。ソースコードやデバイスの
構成図などの掲載はなく、実用というよりは読
み物寄りの1冊となっており、気軽に読める。

㈱NTTデータ　河村 雅人、大塚 紘史、小林 佑輔、小山 武士、宮崎 智也、石黒 佑樹、小島 康平【著】
A5判、 320ページ／価格＝2,680円＋税／発行＝翔泳社
ISBN＝978-4-7981-4062-9

絵で見てわかる IoT/センサの仕組みと活用

シェルプログラミング実用テクニック

　Webアプリ開発に必要となる技術領域、そ
の全体像を知ることができる1冊。最初の章で
Webエンジニアとしての仕事の全体像を述べた
あと、Ruby on Rails、PHP、NoSQL、フロン
トエンド、ログ収集、データ可視化、環境構築
の自動化と、実に幅広い分野を扱う。いずれの
章でも、技術の概要・最新の動向を紹介しつつ、

手元で動かしてみるための手順が説明されてお
り、より記憶に残る現実的な学習が可能だろう。
本の中で、特定の分野でのスペシャリストにな
ることと同じくらい、周辺技術を広く浅く理解
しておくことが大事であると述べられていると
おり、それぞれの分野での勘所をつかむのに適
した構成となっている。

佐々木 達也、瀬川 雄介、内藤 賢司【著】
A5判、304ページ／価格＝2,000円＋税／発行＝シーアンドアール研究所
ISBN＝978-4-86354-168-9

Webエンジニアの教科書

AWK実践入門

本特集では、ディレクトリアクセスプロトコルとして認証システムの核を担う LDAP に
ついて、OpenLDAP を例に、そのしくみや役割を解説します。Samba との連係で使われる
ことが多い LDAPですが、そのほかの用途への応用例なども参考にしてみてください。

※ リストや図中の ｭ は本来 1行のものが折り返されていることを、ｶ は©キーの入力を表します。

OpenLDAP
の教科書

認証システムの定番！

ユーザ／ネットワーク管理の基本と活用例

CONTENTS

運用者向け完全マニュアル Author 鈴木 慶太

OpenLDAP による
LDAP サーバ構築 ..71

第2章

CentOS、OS X、SSH公開鍵認証、 Author 武田 保真、濱野 司
GitHub、IP電話

LDAP クライアントの設定事例集85
第3章

第2特集

ディレクトリサービスの意味と Author 小田切 耕司、武田 保真
経緯から知る

LDAP の用途と設計方針64
第1章

64 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

はじめに

　近年におけるOSの仮想化技術の進歩やクラ
ウドサービスの普及により、少ないハードウェ
ア（H/W）および低コストで多くのサーバを運
用することが可能になってきましたが、OSや
アプリケーションなどに1つ1つユーザやパス
ワード、グループ情報などを設定するのは大
変面倒です。ディレクトリサービスを使うと、
こうした複数サーバやアプリケーションの運
用管理負荷を大幅に下げることが可能です。
また、ディレクトリサービスを使ってサーバ
リソースのアクセス制限をかけることも可能
なので、管理を集中させることでセキュリティ
強度が低下することを防ぐこともできます。
　本特集では、ディレクトリサービスとして
標準技術となっているL

エルダップ

DAPについて基礎か
ら解説していきます。

LDAPとは

　LDAPと は Lightweight Directory Access

Protocolの略語で、HTTP（Hypertext Transfer

Protocol）や FTP（File Transfer Protocol）と
同様の通信プロトコルを指しています。直訳
すると「ディレクトリにアクセスするための軽
量なプロトコル」となりますが、まずはディレ
クトリについて解説しましょう。

ディレクトリとは

　LDAPにおけるディレクトリとはコンピュー
タにおける電話帳や名簿に相当し、コンピュー
タ上のユーザ情報やグループ情報などをネット
ワークで共有するためのサービスがディレクト
リサービスです。これは20世紀にypといわれ
たイエローページやNIS（Network Information

Service）を起源としています。

DAPとは

　このディレクトリサービスにアクセスするた
めの通信プロトコルがDAP（Directory Access

Protocol）ですが、もともとは ITU勧告X.500

モデルをサポートするディレクトリに対する
アクセスを提供するために設計されたものです。
LDAPはX.500のDAPを軽量化したものにな
りますが、LDAPを理解するために、ここで
X.500のDAPについて解説しましょう。

X.500のDAPとは

　X.500は1980年代のTCP/IPネットワーク
が現在ほど普及していなかった時代に策定さ
れたため、通信プロトコルとしてOSI（Open

Systems Interconnection：開放型システム間
相互接続）を想定しており、DAPはOSI各層
の標準プロトコルを使用します。LDAPは
TCP/IPの上に実装されるため、次のROSE、
RTSE、ACSEといった機能を実装する必要

　認証システムの構築に使われることの多いLDAPですが、この通信プロトコルが作られた経緯からどんな用途
に向いているのかをきちんと整理しておきましょう。また、LDAPの設計方針も例を挙げて解説します。

第1章
 Author 小田切 耕司（おだぎり こうじ） Mail odagiri@osstech.co.jp

 Author 武田 保真（たけだ やすま） Mail yasuma@osstech.co.jp
オープンソース・ソリューション・テクノロジ㈱

ディレクトリサービスの意味と経緯から知る

LDAPの用途と
設計方針

64 - Software Design Jun. 2015 - 65

ディレクトリサービスの意味と経緯から知る
LDAPの用途と設計方針 第1章

がなく、その分軽量化されています（図1）。

・ROSE（Remote Operation Service Element）：
遠隔操作サービス要素、処理の依頼と結果
の通知という通信メカニズムを実現するプ
ロトコル要素

・RTSE（Reliable Transfer Service Element）：
高信頼転送サービス要素、通信経路障害な
どによって情報の欠落や重複が起きないよ
うにするプロトコル要素

・ACSE（Association Control Service Element）：
アソシエーション制御サービス要素、コネ
クションの確立、正常開放、異常開放を行
うサービス要素

※これらの機能はTCP/IPの中で実装されているた
めLDAPでは不要となる

　またX.500ではディレクトリサービスを次
のように定義しています。

・DSA（Directory Service Agent）：ディレク
トリ情報を管理する個々のシステム。ディ
レクトリはDSAの集合体として構成される

・DUA（Directory User Agent）：ディレクト
リの利用者に代わってディレクトリへアク
セスする機能（プログラムやコマンド、ライ
ブラリ）

　LDAPでは単純にLDAPサーバとLDAPク
ライアントと呼ぶことが多いですが、DAPで
はDSAやDUAと呼びます。そしてこのDSA

がDUAに対してディレクトリサービスを提供
するためのプロトコルがDAPとなるわけです
（図2）。
　LDAPはLDAPサーバとLDAPクライアン
トの間の通信プロトコルで、検索（search）、
追加（add）、削除（delete）、変更（modify）など
が規定されている程度に過ぎませんが、X.500

ではDAP以外にDSP、DOP、DISPといった
プロトコルが規定されています。

・DSP（Directory System Protocol）：DSA間
で分散協調動作（連鎖や紹介）を行うための
プロトコル

・DOP（Directory Operational binding mana
gement Protocol）：ディレクトリ運用結合
管理プロトコル。DSA間の運用結合の規定
内容や状態の交換に用いられるプロトコル

・DISP（Directory Information Shadowing
Protocol）：DSA間で複製情報を交換するた
めのプロトコル

　つまりLDAPには、この3つのプロトコル
が存在しないことになり、サーバ間のデータ
複製などについての標準となる規定がないこ
とになります。しかしこれらはLDAPでは規
定されていないものの、さまざまなLDAP製
品の独自仕様としては存在しています。よっ
て異なるLDAP製品間でのデータの複製や結
合運用を困難にしていると言えるでしょう。

■ディレクトリのプロトコルスタック ■OSI参照モデル

アプリケーション層

プレゼンテーション層

セッション層

トランスポート層

ネットワーク層

データリンク層

物理層

■LDAPのプロトコルスタック

LDAP

TCP

IP

IEEE802.2など

IEEE802.1など

プレゼンテーション層

DAP DSP DOP

ROSE ACSE RTSE

DISP

セッション層

トランスポート層

第7層

第6層

第5層

第4層

第3層

第2層

第1層

 ▼図1　X.500でのDAPとLDAPのプロトコルスタックの違い

66 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

LDAPの用途とLDAPで
やってはいけないこと

　LDAP（ディレクトリサービス）とDB（デー
タベース）を混同する方は多いですが、LDAP

にはDBと違ってトランザクション機能が完全
に実装されていないため、LDAPに向く用途
と向かない用途があります。気をつけなけれ
ばならないことをいくつか挙げますので、間違っ
た使い方をしないようにしてください。

●�LDAPはコンピュータの管理情報を集約す

るために使う

　コンピュータをユーザが利用するためにパ
スワードや有効期限などの情報を格納するの
は良いが、ユーザを管理するためのカウンタ
などは持つべきではないという考え方です。
永続的なユーザ情報（商品の購入履歴やログイ
ン履歴など）を蓄えるにはRDBのほうが向い
ています（社員DBはRDB、全社認証システム
はLDAPというように）。

●�LDAPは検索重視となっているが、必ずし

もRDBより速いわけではない

　LDAPは、性能が足りなければサーバを追
加すれば良いスケールアウト型負荷分散がや
りやすいように設計されています。しかし、
更新が多いとスケールアウトしにくくなるた

め注意してください。たとえばユーザの統計
情報をLDAPに記録するようなプログラムは
設計してはいけません。

●更新がすぐに反映されるとは限らない

　先に挙げたスケールアウトや負荷分散が容
易なように、更新に関してロック機能を持たず、
トランザクション特性やリアルタイム性を犠
牲にしているためです。ユーザ追加やパスワー
ド変更がすぐに反映されない場合があること
を考慮しましょう。

LDAPv2とLDAPv3の
違い

　LDAPはおもに検索（search）、追加（add）、
削除（delete）、変更（modify）といった簡単に
ディレクトリサービスへアクセスするプロト
コルを提供しています。1995年にLDAPv2と
いうプロトコルがRFC1777で規定され、1997

年にはセキュリティを強化したLDAPv3が
RFC2251で規定されました。LDAPv2から強
化されたLDAPv3の主な機能は次になります。

・認証を安全に行うSASL（Simple Authentication
and Security Layer）への対応

・通信を暗号化するTLS（Transport Layer Se
curity）への対応

・国際化（UNICODE、UTF-8）対応

DSA

DSA

DSA

DAP

ディレクトリ

DUA

DUA

アクセスポイント

DAP

DAP

DAP

DAP
デ
ィ
レ
ク
ト
リ
利
用
者

 ▼図2　DAPのディレクトリの機能モデル

66 - Software Design Jun. 2015 - 67

ディレクトリサービスの意味と経緯から知る
LDAPの用途と設計方針 第1章

OpenLDAPの歴史

　OpenLDAPは、1998年頃から始まったLDAP

のオープンソースの実装で、OpenLDAP

Project注1が開発しています。開発当初はBSD

ライセンスでしたが、現在は同等のOpenLDAP

Public Licenseでリリースされており、Red Hat

やUbuntuなどの主要Linuxディストリビュー
ションに標準で同梱されています。
　OpenLDAPは1990年代はバージョン1系、
2000年からはバージョン2系が開発され、2.0、
2.1、2.2、2.3とバージョンアップしたのち、
2008年に2.4がリリースされました。2015年
4月現在は、2.4.40になっています。すでに2.3

以前のバージョンのサポートは終了しています。
バージョンによる機能の違いは多数ありますが、
大きなものとしてはレプリケーション方式です。
　2.0～2.2：マスタサーバからスレーブサー
バへ更新情報を送るreplog方式が標準ですが、
スレーブの台数が増えると性能が劣化し、不
整合が起きやすくなります。
　2.3：スレーブサーバからマスタサーバへ更
新内容を検索して複製する syncrepl方式が推
奨されます（syncrepl方式は2.2でも使用でき
ますが品質が良くありませんでした）。

注1） http://www.openldap.org

　2.4：replog方式がサポートされなくなり、
syncrepl方式が安定して動作するようになりま
した。2台のマスタサーバを双方向にsyncrepl

で複製しあうミラーモードも利用できます。
冗長化を考えて積極的にミラーモードを使用
することを推奨します。

LDAPの設計

　LDAPはDIT（Directory Information Tree）
と呼ばれるツリー構造のデータ形式で情報を
管理します（図3）。ツリーには、「エントリ」と
呼ばれる単位で情報が登録されます。1つのエ
ントリには、DN（Distinguished Name）と呼ば
れるツリー構造内のエントリの位置を示す識
別子が一意に割り当てられます。1つのエント
リは、「属性（attribute）」と呼ばれるデータで
構成されます。属性は「属性名（attribute name）」
とその値（value）で構成され、さまざまな種類
の情報が属性としてエントリ内に登録されます。
エントリには必ず「objectClass」と呼ばれる属
性が含まれ、objectClassに定義された形式の
属性のみをエントリに含めることができます。
　objectClassはスキーマと呼ばれる形式で
LDAPサーバごとに定義が行われますが、標
準的なスキーマはRFCで定義されています。
さらに、用途に応じて必要なobjectClassや属
性をカスタムスキーマとしてユーザが独自に

エントリの内容

LDAP DIT

dn: uid=yamada,ou=Users,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: inetOrgPerson
objectClass: posixAccount
Uid: yamada
sn: 山田
givenName: 太郎
uidNumber: 2001
gidNumber: 3000
loginShell: /bin/bash
homeDirectory: /home/yamada

dc=example,dc=com 各エントリのdn

ou=Users,dc=example,dc=com

ou=Groups,dc=example,dc=com

uid=yamada,ou=Users,dc=example,dc=com

uid=suzuki,ou=Users,dc=example,dc=com

cn=group1,ou=Groups,dc=example,dc=com

 ▼図3　LDAPのDITとエントリの構成

http://www.openldap.org

68 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

定義することができます（リスト1）。
　たとえば、ユーザ名や名前の情報、メール
アドレスなど、一般的な情報の格納にはRFC

で定義された標準スキーマの属性を利用し、
アプリケーションに必要な属性は独自に定義
するといった使い分けを行います。

LDAPのDIT設計

　LDAPの設計時には、まず最初にDITの設
計を行います。LDAPは一般的にはユーザ管
理や認証に用いられることが多いため、組織構
成に沿ったツリー構造を取りたくなります。し
かし、組織構成に合わせたツリー構造は、いく
つかの理由からLDAPの運用上推奨されません。

①�人事異動や組織再編がLDAPのツリー変更

をもたらす

　組織構成は人事異動や部署の再編などによっ
て変更されるため、ユーザのエントリの位置を
変更したり、部署のツリーの名前を変更したり
といった管理業務が発生します。しかし、ツリー
の位置や名前の変更は特別な操作となっており、
さらにツリー構成の変更はLDAPを利用する
システム側の設定に影響がある可能性もあるた
め、運用中はできるだけ避けるべきです。

②LDAPの検索性能への影響

　LDAPは検索と認証が主な用途ですが、検
索の際には「検索フィルタ」と呼ばれる絞り込
み条件を柔軟に設定することができます。こ
の絞り込み条件は属性の値を対象としており、

属性の値はインデックスを設定することもで
きるため、高速な検索を実現することが可能
です。一方で、ツリー構造に関しては、条件
に一致するツリー配下だけ検索対象とすると
いった使い方ができないため、不必要なツリー
の階層化は検索対象が必要以上に広がるといっ
た弊害が発生します。

　それではどのような方針でDITを設計すべ
きかという点ですが、ツリーの構成は管理単位
に合わせて構成を行います。たとえば、管理者
が1種類で複数の部署の社員を管理したい場合、
1つのツリー内にすべてのユーザを含めてしま
い、部署情報は属性として保存します（図4）。
　たとえば、東京本社と岡山支社がある場合、
東京本社の管理者は全社を管理し、岡山支社
の管理者は岡山支社の社員のみを管理したい
という要件が一般的でしょう。この場合、管
理対象の範囲を考慮して、図5のようなDIT

 ▼リスト1　スキーマの定義例

attributetype (1.3.6.1.1.1.1.4 NAME 'loginShell'
 DESC 'The path to the login shell'
 EQUALITY caseExactIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

objectclass (1.3.6.1.1.1.2.0 NAME 'posixAccount'
 DESC 'Abstraction of an account with POSIX attributes'
 SUP top AUXILIARY
 MUST (cn $ uid $ uidNumber $ gidNumber $ homeDirectory)
 MAY (userPassword $ loginShell $ gecos $ description))

「development」に所属するユーザのみ抽出
（検索フィルタouの値が「development」）

ou=Users,dc=example,dc=com

uid=yamada,ou=Users,dc=example,dc=com
ou: development

uid=suzuki,ou=Users,dc=example,dc=com
ou: sales

uid=tanaka,ou=Users,dc=example,dc=com
ou: development

uid=takeda,ou=Users,dc=example,dc=com
ou: sales

 ▼図4　DIT設計例1

68 - Software Design Jun. 2015 - 69

ディレクトリサービスの意味と経緯から知る
LDAPの用途と設計方針 第1章

設計とすることで、岡山支社の管理者に適切
な範囲の管理権限を委譲することができます。
　また、東日本と西日本で管理者が完全に分
かれている場合には、DITで組織を分割して
構成することが適切です（図6）。

LDAPの複製
（レプリケーション）

　LDAPサーバは1台でも構成できますが、
一般的には冗長化や負荷分散の観点から複数
台で構成します。LDAPサーバに登録されて
いるエントリは、複製（replication）と呼ばれ
るしくみでLDAPサーバ間で共有します。複
製のプロトコルは標準仕様としては定められ
ておらず、LDAP製品ごとの独自の実装になっ
ています。そのため、別々のLDAP製品間で
複製を行うことはできません。
　LDAPサーバを複数台で構成する場合、エ
ントリの更新が可能なサーバをマスター（Mas

ter）、もしくはプロバイダ（Provider）と呼び、
エントリの参照のみが可能なサーバをスレーブ
（Slave）もしくはコンシューマ（Consumer）と
呼びます。一般的なLDAP製品では、複数台
のマスターで構成されるマルチマスター構成
が可能で、さらに用途によっては負荷分散の
ために認証や参照専用のスレーブサーバを加
えるといった構成にできます（図7）。

　OpenLDAPでは、「マスター・スレーブ」、「ミラー
モード」、「N-Wayマルチマスター」、「Delta-

Syncrepl」といった特性の異なる複製方式が提
供されています。

マルチマスター構成時の注意
事項

　LDAPサーバをマルチマスター構成とした
場合、1台のサーバが停止しても他のサーバが
更新・参照を担うことが可能なため、サービ
スの提供には影響を与えません。しかし、正
常時のLDAP更新処理において同一エントリ
に対する連続した書き込みが複数サーバに振
り分けられた場合、データベースのトランザ
クションのようなエントリのロックが行われず、
それぞれのサーバで更新処理が行われるため、
エントリの内容が意図しない結果となる可能
性があります。そのため、マルチマスター構
成とする場合は、ロードバランサなどで更新
対象のサーバが1台に集中するように制御する
ことが必要です。

エントリの複製方式

　LDAPの複製の実装方式としては、①操作
ログによって対象の属性のみを複製する方式と、
②エントリ全体を複製する方式があります。ユー

本社管理者の
管理範囲

dc=example,dc=com

ou=Users

ou=Tokyo

ou=Groups

cn=sales

uid=suzuki

ou=Okayama

uid=takeda

支社管理者の
管理範囲

 ▼図5　DIT設計例2

東日本支社の
管理範囲

dc=example,dc=com

ou=East

ou=Users

uid=suzuki

ou=Groups

cn=sales

ou=West

ou=Users

uid=takeda

ou=Groups

cn=sales

西日本支社の
管理範囲

 ▼図6　DIT設計例3

70 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

ザをグループに登録する処理で違いを説明し
ます。グループのエントリには、そのグルー
プに所属するユーザがメンバーの属性に登録
されます。ほぼ同時刻に、サーバ1でグループ
X（groupX）にユーザA（userA）を登録し、サー
バ2でグループXにユーザB（userB）を登録す
る処理が実行されたとします（図8）。
　①操作ログを送る方式では、グループXに
ユーザを登録したというログを相手サーバに
送り、相手サーバ側でタイムスタンプに従っ
て操作ログの内容を実行するため、それぞれ
のサーバのグループXにユーザAとユーザB

が登録された状態となります。また、1エント
リあたりのサイズが大きく、そのうちの一部
のエントリのみを頻繁に更新するような用途
であれば、複製データの転送量を軽減する効
果も働きます。
　②エントリ全体を複製する方式の場合、ユー
ザAだけが入ったグループXのエントリ全体
の情報がサーバ2に送られ、ユーザBだけが入っ
たグループXのエントリ全体の情報がサーバ1

に送られます。グループXの情報は、より新
しい時刻のエントリ全体の情報が適用される
ため、いずれかのサーバの更新内容は欠落し、

結果としてグループXに登録したはずのユー
ザが登録されていない状況が起き得ることが
あります。
　OpenLDAPで一般的に用いられる「syncrepl」
方式の複製は②のタイプです。OpenLDAPで
①のタイプの複製は「Delta-syncrepl」方式とし
て提供されていますが、マスター・スレーブ
方式での利用が想定されています。また、
OpenDJやORACLE DSEEなどは、①の方式
を採用しています。ﾟ

LDAPマスター
（Provider）

LDAPスレーブ
（Consumer）

ロードバランサ

LDAPマスター
（Provider）

LDAP認証・参照

複製

複製
複製 複製

 ▼図7　LDAPサーバの構成例

① 操作ログによる複製

サーバ1

dn: cn=groupX

dn: cn=groupX
Member: userA

dn: cn=groupX
Member: userA
Member: userB

Add
Member: userA

Add
Member: userB

サーバ2

dn: cn=groupX

dn: cn=groupX
Member: userB

dn: cn=groupX
Member: userA
Member: userB

Add
Member: userB

Add
Member: userA

② エントリ全体の複製

サーバ1

dn: cn=groupX

dn: cn=groupX
Member: userA

dn: cn=groupX
Member: userB

Add
Member: userA

dn: cn=groupX
Member: userB

サーバ2

dn: cn=groupX

dn: cn=groupX
Member: userB

dn: cn=groupX
Member: userB

Add
Member: userB

更新タイム
スタンプの古い
エントリは破棄

エントリ全体を更新

userAの情報が消失

 ▼図8　複製方式の違い

71 - Software Design Jun. 2015 - 71

　OpenLDAPを使ったLDAPサーバの構築を、インストールから詳細に解説します。デフォルトの設定を確認
しながら、データベースの作成、ユーザの登録、外部からの接続を設定していきます。終盤ではGUIツール
「phpLDAPadmin」、レプリケーション、チューニング、ログ確認のハマリどころなど、応用的な話題も扱います。

第2章
 Author 鈴木 慶太（すずき けいた） Mail keita@osstech.co.jp

オープンソース・ソリューション・テクノロジ㈱

運用者向け完全マニュアル

OpenLDAPによる
LDAPサーバ構築

　本章では、CentOS 7（1503注1）を用いた基本
的なLDAPサーバ構築の手順を解説します。

OpenLDAPの
インストールと初期設定

　CentOS 7（1503）でOpenLDAPをインストー
ルする際は、yumコマンドを利用します。実行
するコマンドは次のとおりです。

yum install openldap-servers openldapｭ
-clientsｶ

　なお、CentOS 7（1503）を最小構成でインス
トールした場合、LDAPクライアントがイン
ストールされません。今回はOpenLDAPサー
バのインストールと同時にLDAPクライアン
ト（openldap-clients）パッケージについてもイ
ンストールを行います。
　今回インストールした環境では、Open

LDAP2.4.39-6がインストールされました。

注1） 2015年3月リリース版。

yumコマンドでインストールを行った場合、パッ
ケージは表1の場所に展開されます。
　RHEL 6/CentOS 6のOpenLDAP 2.4から、
設定方法がslapd.confファイルから config

データベースに変更されています。そのため
従来はslapd.confファイルを設定してから
OpenLDAPを起動したのですが、RHEL 6/

CentOS 6以降からは、先にOpenLDAPを起
動してから configデータベースを更新するこ
とでOpenLDAPの設定をするようになりまし
た。そのため パッケージのインストールが完
了したら、systemd注2デーモンの systemctl コ
マンドを利用してOpenLDAPを起動します。

systemctl start slapdｶ

　また、次のコマンドでOS起動時にOpenLDAP

が自動起動する設定を行います。

systemctl enable slapdｶ

注2） CentOS 6以前の initデーモンの代わりにCentOS 7から
採用された。

設定など /etc/openldap/
ライブラリなど /usr/lib64/openldap/　

/usr/libexec/openldap/
コマンドなど /usr/sbin/
マニュアル /usr/share/doc/openldap-servers-(バージョン番号)/

/usr/share/man/man5/
/usr/share/man/man8/

 ▼表1　 OpenLDAP、パッケージ展開先（yumコマンドの場合）

72 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

デフォルトの設定

　OpenLDAPを起動したら、デフォルトの設
定状態を確認しましょう。現在の設定内容は
Simple Authentication and Security Layer

（SASL）のEXTERNAL認証で、configデー
タベースというcn=configをベースとするツ
リーの内容を検索することで確認できます。
　図1のコマンドを実行することで、cn=
config配下に登録されているエントリが表示
されます。出力される内容は、従来のslapd.
confをLDAPのエントリで表現した内容です。
今後設定変更を行う際はcn=configのエントリ
を編集することで、サービスの再起動をせずに、
リアルタイムに設定変更を行うことができま
す注3。cn=configのエントリの変更は、LDAP

クライアントを利用して、LDAPデータベー
スを直接書き換える方法で行います。
　設定内容は/etc/openldap/slapd.dにLDIF

形式でも保存されています。LDIFファイルを
編集しても設定は反映されますが、変更した
設定内容の反映にはLDAPサービスの再起動
が必要です。
　図1の設定内容の表示の際に先頭3行のメッ
セージに表示されているようにSASL認証を
利用しましたが、これはSASLに準拠する認
証方法です。OpenLDAPのSASL機構ではい
くつかの認証方法が用意されており、今回利
用したEXTERNALを含め、表2の方法での
認証が用意されています。
　ldapsearchコマンド実行時の接続では、接
続先URIとしてldapi:///を指定して、Inter

process Communication（IPC）での接続を行っ
ています。IPCとはOS上のプロセス間での直
接通信であり、ldapsearchコマンドのプロセ
スからOpenLDAPサーバのプロセスへと、プ

注3） 一部再起動が必要なパラメータ（拡張モジュールの読み込み、
データベース設定の変更など）もあります。

ロセス間で直接通信を行います。そのため、
slapdを実行しているサーバ以外からは ldapi

で接続できません。OpenLDAP2.4以降では、
管理者としての接続は ldapiでの接続をデフォ
ルトの方法としています注4。
　あらためて、cn=config配下のツリーの内
容を確認します。すべての情報を表示すると、
スキーマの情報が列挙されて見づらいため、
まずはDNのみの表示を行います。図1のコマ
ンドに、表示する属性としてdnを追加し、図
2のように実行します。
　表示されたDNを確認すると、ベースとなる
cn=configに複数のエントリが作成されてい
ることが確認できます。それぞれの設定内容
について確認していきましょう。

注4） ldapi接続を利用することで、IPC接続であることが自明で
あるため、以降では LDAPクライアント実行時の「-Y
EXTERNAL」の記載を省略します。

 ▼図1　 cn=config配下に登録されているエントリを
表示

ldapsearch -LLL -Y EXTERNAL -H ldapi: ｭ
/// -b cn=config dnｶ
SASL/EXTERNAL authentication started
SASL username: gidNumber=0+uidNumber=0, ｭ
cn=peercred,cn=external,cn=auth
SASL SSF: 0
...（略）...

SASL機構 認証方法
GSSAPI Kerberos V5による認証方式
DIGEST-MD5 Cyrus SASLによる認証
EXTERNAL X509証明書または IPCによる認証

 ▼表2　 OpenLDAPのSASL機構で用意される認証
方法

 ▼図2　図1に属性「dn」を追加して実行

ldapsearch -LLL -H ldapi:/// -b ｭ
cn=config dnｶ
...（略）...
dn: cn=config
dn: cn=schema,cn=config
dn: cn={0}core,cn=schema,cn=config
dn: olcDatabase={-1}frontend,cn=config
dn: olcDatabase={0}config,cn=config
dn: olcDatabase={1}monitor,cn=config
dn: olcDatabase={2}hdb,cn=config

72 - Software Design Jun. 2015 - 73

運用者向け完全マニュアル
OpenLDAPによるLDAPサーバ構築 第2章

ベースツリー（cn=config）

　cn=config直下のエントリを検索する際は、
サブツリーに含まれる余計な情報を表示しな
いようにするため、検索スコープとして-s base
を指定します（図3）。ベースとなるcn=config
には、起動時のパラメータ、PIDファイル、
TLS証明書ファイル関連のパラメータが設定
されています。

frontendデータベース

　frontendデータベースは、すべてのデータ
ベースで適用する設定を記載するための暗黙
のデータベースです。デフォルトでは何のパ
ラメータも設定されていません（図4）。

configデータベース

　configデータベースはOpenLDAPサーバの
設定を行うためのデータベースです。従来の
グローバルセクションに該当します。デフォ
ルトでは、OpenLDAPをインストールしたサー
バの rootユーザが ldapi接続を行った際に
manage権限を与える設定のみが行われていま
す（図5）。

monitorデータベース

　monitorデータベースはLDAPの動作状況を
確認するためのデータベースです。デフォル
トでは、OpenLDAPをインストールしたサー
バの rootユーザが ldapi接続を行った際に
manage権限を与える設定のみが行われていま
す（図6）。

デフォルトのデータベース

　{2}hdbのデータベース定義が、実際に
LDAPサーバとして利用するツリーの定義で
す。執筆時点でのOSのマニュアルでは
OpenLDAPはデフォルトでBDBを利用となっ
ていますが、実際に確認するとobjectClass:
olcHdbConfigとなっており、デフォルトデー
タベースはHDBであることが確認できます。また、
データベースのDistinguished Name（DN：識
別名）はdc=my-domain,dc=comと指定されて
おり、管理者DNはcn=Manager,dc=my-domain,
dc=comとなっています（図7）。

 ▼図3　ベースツリーを表示

ldapsearch -LLL -H ldapi:/// -b ｭ
cn=config -s baseｶ
...（略）...
olcArgsFile: /var/run/openldap/slapd.args
olcPidFile: /var/run/openldap/slapd.pid
olcTLSCACertificatePath: /etc/openldap/ ｭ
certs
olcTLSCertificateFile: "OpenLDAP Server"
olcTLSCertificateKeyFile: /etc/ ｭ
openldap/certs/password

 ▼図4　frontendデータベースを表示

ldapsearch -LLL -H ldapi:/// -b ｭ
olcDatabase={-1}frontend,cn=configｶ
...（略）...
dn: olcDatabase={-1}frontend,cn=config
objectClass: olcDatabaseConfig
objectClass: olcFrontendConfig
olcDatabase: frontend

 ▼図5　con�gデータベースを表示

ldapsearch -LLL -H ldapi:/// -b ｭ
olcDatabase={0}config,cn=configｶ
...（略）...
dn: olcDatabase={0}config,cn=config
objectClass: olcDatabaseConfig
olcDatabase: {0}config
olcAccess: {0}to * by dn.base= ｭ
"gidNumber=0+uidNumber=0,cn=peercred, ｭ
cn=external,cn=auth" manage by * none

 ▼図6　monitorデータベースを表示

ldapsearch -LLL -H ldapi:/// -b ｭ
olcDatabase={1}monitor,cn=configｶ
...（略）...
dn: olcDatabase={1}monitor,cn=config
objectClass: olcDatabaseConfig
olcDatabase: {1}monitor
olcAccess: {0}to * by dn.base= ｭ
"gidNumber=0+uidNumber=0,cn=peercred, ｭ
cn=external,cn=auth" read by dn. ｭ
base="cn=Manager,dc=my-domain,dc=com" ｭ
read by * none

74 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

データベースの構成

　これまでの設定確認ではdc=my-domain,dc=com
のツリーがデフォルト値として指定されてい
ました。しかし、デフォルトではデータベー
スは作成されておらず、検索すると図8のよう
に現時点ではエントリは何も存在しないと表
示されます。

データベースの作成

　以降では、LDAPサーバとして利用するた
めに実際にデータベースを作成します。まずは、
デフォルトで用意されているデータベース定
義を削除します。データベース定義の削除は
LDAPの動作中に行うことができません。ま
ずは、いったんLDAPを停止させます。

systemctl stop slapdｶ

　LDAPを停止させたら、設定ファイルを削
除します。デフォルトのデータベース定義は
前述のとおりolcDatabase={2}hdb,cn=config
ですので、/etc/openldap/slapd.d/cn=config
以下のolcDatabase={2}hdb.ldif/ファイル
を削除します。

rm /etc/openldap/slapd.d/cn=config/ ｭ
olcDatabase\=\{2\}hdb.ldifｶ

　デフォルトのデータベース設定のLDIFファ
イルを削除したら、LDAPを再起動します。

systemctl start slapdｶ

　データベースの設定追加にはリスト1のLDIF

ファイルを使います。今回はサフィックス名
dc=example,dc=comのツリーを作成します。

　olcAccessでは、このデータベースに対す
るAccess Control List（ACL）を記載します。
olcRootDNで指定したエントリは暗黙的に管
理者権限が付与されますが、エントリは自動
的には作成されません。今回は、OpenLDAP

をインストールしたサーバの rootユーザが、
SASL/EXTERNALで認証した際に、管理者
権限が付与されるよう設定します。また、
subSchemaSubentryと呼ばれるLDAPサーバ
の情報を提供するエントリに誰でもアクセス
可能となるACLを設定します。この設定は3

章のMac OS Xからの接続時に利用されます。
ACLとして設定できる権限の一覧は表3のと
おりです。
　ファイルを同じく/etc/openldap/slapd.
d/cn=config以下に作成したら、ldapaddコ
マンドで設定を書き込みます。

ldapadd -H ldapi:/// -f example_ｭ
com.ldifｶ

 ▼図8　 デフォルトではデータベースは未作成

ldapsearch -LLL -Y EXTERNAL -H ldapi: ｭ
/// -b dc=my-domain,dc=comｶ
...（略）...
No such object (32)

 ▼リスト1　example_com.ldif

dn: olcDatabase=hdb,cn=config
objectClass: olcHdbConfig
olcDatabase: hdb
olcDbDirectory: /var/lib/ldap
olcSuffix: dc=example,dc=com
olcRootDN: cn=Manager,dc=example,dc=com
olcAccess: to * by dn.base="gidNumber= ｭ
0+uidNumber=0,cn=peercred,cn=external, ｭ
cn=auth" manage by * none
olcAccess: to dn.subtree="" by * read

 ▼図7　デフォルトでのツリーの定義を表示

ldapsearch -LLL -H ldapi:/// -b ｭ
olcDatabase={2}hdb,cn=configｶ
...（略）...
dn: olcDatabase={2}hdb,cn=config
objectClass: olcDatabaseConfig
objectClass: olcHdbConfig
olcDatabase: {2}hdb
olcDbDirectory: /var/lib/ldap
olcSuffix: dc=my-domain,dc=com
olcRootDN: cn=Manager,dc=my-domain, ｭ
dc=com
olcDbIndex: objectClass eq,pres
olcDbIndex: ou,cn,mail,surname, ｭ
givenname eq,pres,sub

74 - Software Design Jun. 2015 - 75

運用者向け完全マニュアル
OpenLDAPによるLDAPサーバ構築 第2章

　書き込みが完了したら、現在の設定内容を
確認しましょう（図9）。cn=configの内容を
検索することで、データベース定義が作成さ
れていることが確認できました。今はまだデー
タベースの定義が行われただけですので、次
は実際にデータを投入します。また、{}内に
書かれている番号は任意に指定できます。省
略した場合、{1}以降の開いている番号が利用
されます。olcAccessについても、管理番号
が自動的に採番されます。明示的に指定する
こともできます。

データベースに
エントリを格納

　次は実際にデータベースの基本となるエン
トリのLDIFファイル（リスト2）を作成します。
併せて、ユーザエントリの格納用にUsersと
いう名前で組織を作成します。

　objectClassは作成するエントリがどのよ
うなものであるかを指定します。たとえば、
dcObjectではdcが必須の値となり、データ
ベースのDistinguished Nameであるという意
味を持ちます。そのほかの任意で利用できる
値についても、objectClassによって制限さ
れます。
　また、DNは名前のとおり、エントリの識別
名を表しています。エントリは「,（カンマ）」区
切りの階層で管理されており、Linuxのファイ
ルシステムと同じようなイメージです。個々
のエントリの識別名はエントリが持つ任意の
値を利用できます。今回の場合、ベースDNで
はdcの属性値がエントリの識別名となってい
ますが、o=exmaple.comを識別名に利用する
こともできます注5。
　データベースの作成に併せて、管理者エン
トリも作成します。パスワードを平文のまま
登録すると、平文のままデータベースに記録
されてしまうため、コマンドを使って事前にハッ
シュ化した文字列を取得します。

slappasswdｶ
New password: password パスワード入力
Re-enter new password: password パスワード再入力
{SSHA}JV/oHln8jroLF+lkmOXhv6oxsygmb72f

　今回、パスワードはpasswordで作成します。
なお、生成されるハッシュ値は実行するたび
に変わります。パスワード文字列を生成したら、

注5） ベースDNを o=example.com,dc=comにする場合、cn=
configで行ったolcSuffixの定義を変更する必要があり
ます。

 ▼図9　設定内容を確認

ldapsearch -LLL -H ldapi:/// -b ｭ
cn=configｶ
...（略）...
dn: olcDatabase={2}hdb,cn=config
objectClass: olcHdbConfig
olcDatabase: {2}hdb
olcDbDirectory: /var/lib/ldap
olcSuffix: dc=example,dc=com
olcAccess: {0} to * by dn.base= ｭ
"gidNumber=0+uidNumber=0,cn=peercred, ｭ
cn=external,cn=auth" manage by * none
olcRootDN: cn=Manager,dc=example,dc=com

 ▼リスト2　base.ldif

dn: dc=example,dc=com
dc: example
o: example.com
objectClass: dcObject
objectClass: organization

dn: ou=Users,dc=example,dc=com
ou: Users
objectClass: organizationalUnit

パラメータ 権限

none アクセス権なし（エントリが存在しな
いように見える）

disclose エラーを表示（権限がないエラーが表
示される）

auth disclose＋認証のみ可能
compare auth+比較操作（ldapcompare）が可能
search compare＋検索フィルタの指定が可能
read search＋エントリ内容を表示できる

write read＋エントリを追加・削除・変更
できる

manage ツリーの権限を無視して、エントリを
追加・削除・変更できる

 ▼表3　権限表

76 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

base.ldifにリスト3のように追記します。
　各エントリは空白の1行で区切られる必要が
あります。2行以上の空白はLDIFファイルの
終了を表すため、追記の際はご注意ください。{}
ではハッシュの暗号化形式が記載されます。
SSHA以外にも、SHA、MD5、SMD5、CRYPT、CL
EARTEXTが指定できます。
　作成したLDIFファイルを登録します。次
のコマンドを実行することで、実際にデータ
が書き込まれます。

ldapadd -H ldapi:/// -f base.ldifｶ

　以降は、dc=example,dc=comのデータベー
スへの操作を中心に行います。サーバ上の
LDAPクライアントがデフォルトで参照する
LDAPサーバおよびサーバのベースDNを設
定しておきましょう。LDAPクライアントが
参照するファイルは、/etc/openldap/ldap.
confです。次の内容を追記します。

#vi /etc/openldap/ldap.confｶ
以下を追記
BASE dc=example,dc=com
URI ldapi:///

　これで自動的に接続先のサーバをldapi:///
にし、ベースDNはdc=example,dc=comとし
て動作します。
　それでは、投入されたデータを確認しましょ
う。図10のコマンドを実行します。データを
投入すると、パスワードの欄が::で表記され
ているのがわかります。LDAPのデータベー
ス上は一部の文字を除くASCII文字しか利用
できないため、それ以外の文字が含まれる属
性の値は自動的にBASE64化してLDAPデー
タベースに格納します。BASE64化されてい
る値は、属性名のあとに::を挟んで値が表示
されます。
　ここで、図11のコマンドで、userPassword
の値をBASE64でデコードしてみましょう。
投入したときと同じハッシュ値だったことが
わかります。

外部からの接続設定

　前述の手順で、ユーザ作成のデータベース
と管理者エントリが作成されました。実際にネッ
トワークを経由してLDAPで接続します。
　まずは、エントリに認証のための権限を与
えます。リスト4のように、cn=configを編
集するためのLDIFを作成します。ACLは若
い番号から順番に評価され、最初にマッチし
た権限で動作します。
　breakは、権限の確認を先送りするという
指定です。このACLによって、rootユーザが
SASL/EXTERNAL認証を行った際は、ツリー

 ▼図10　投入されたデータを確認

ldapsearch -LLLｶ
dn: dc=example,dc=com
dc: example
o: example.com
objectClass: dcObject
objectClass: organization

dn: ou=Users,dc=example,dc=com
ou: Users
objectClass: organizationalUnit

dn: cn=Manager,dc=example,dc=com
objectClass: organizationalRole
objectClass: simpleSecurityObject
cn: Manager
userPassword:: e1NTSEF9SlYvb0hsbjhqcm9 ｭ
MRitsa21PWGh2Nm94c3lnbWI3MmY=

 ▼図11　userPasswordの値をBASE64でデコード

$ echo e1NTSEF9SlYvb0hsbjhqcm9MRitsa21PWG
h2Nm94c3lnbWI3MmY= | base64 -dｶ
↑図10のuserPasswordの値
{SSHA}JV/oHln8jroLF+lkmOXhv6oxsygmb72f

 ▼リスト3　リスト2に追記

dn: cn=Manager,dc=example,dc=com
objectClass: organizationalRole
objectClass: simpleSecurityObject
cn: Manager
userPassword: {SSHA}JV/
oHln8jroLF+lkmOXhv6oxsygmb72f
↑パスワード作成時に生成されハッシュ値を入力

76 - Software Design Jun. 2015 - 77

運用者向け完全マニュアル
OpenLDAPによるLDAPサーバ構築 第2章

全体に対して管理者権限で動作します。
　userPasswordの値はauth権限によって、
認証にのみ利用できます。to * by * read
の設定は、誰であってもLDAPの情報を参照
できるという設定です。この設定によって、
認証を行わなくてもLDAP上の情報を参照で
きます。ただし、userPasswordのACLより
もあとに評価されるので、userPasswordは認
証目的以外に利用する場合、常にnoneの権限
で評価されます。認証を行っても、manage権
限を持つユーザ以外からは参照できません。
LDIFファイルを作成したら図12の ldapmodify

コマンドで登録します。
　実際に作成した管理者エントリで認証でき
るか確認します。コマンドは図13のとおりです。
正常に設定が行えていれば、現在の dc=
example,dc=comのエントリ一覧が表示され
ます。

　今までの手順でデータベースの土台はできあ
がったので、次はユーザが、グループのエント

リをデータベースに登録するための準備をします。
　ユーザの氏名など、アルファベットと数字
以外の文字列はUTF-8である必要があります。
Windows上などで作成したファイルでShift-

JISの文字列を渡さないようご注意ください。
　今回、ユーザのオブジェクトクラスは
inetOrgPerson、posixAccountで作成します。
　inetOrgPersonは、RFC2798で定義され
る、組織に所属する人々を表すためのオブジェ
クトクラスです。posixAccountは、RFC2307

で定義される、Network Information Service

（NIS）で表されるユーザアカウントのオブジェ
クトです。そのほか、OpenLDAPにデフォルト
で用意されているスキーマは表4のとおりです。
　なお、デフォルトの状態では、coreスキー
マしか読み込まれていません。inetorgperson
のスキーマを利用できるようにするため、次
のコマンドを実行します。inetorgpersonが
依存しているcosineスキーマについても、同
様に登録します。

ldapadd -f /etc/openldap/schema/ｭ
cosine.ldifｶ
ldapadd -f /etc/openldap/schema/ｭ
inetorgperson.ldifｶ
ldapadd -f /etc/openldap/schema/ｭ
nis.ldifｶ

　コマンドを実行すると、OpenLDAPの
configデータベースが図14のように変更され
ます。現在はcore、cosine、inetorgperson、
nisを読み込んでいることが確認できます。

 ▼図12　acl.ldifの設定を登録

ldapmodify -f acl.ldifｶ
ldapsearch -LLL -b olcDatabase={2} ｭ
hdb,cn=configｶ
dn: olcDatabase={2}hdb,cn=config
...（略）...
olcAccess: {0}to * by dn.base=" ｭ
gidNumber=0+uidNumber=0,cn=peercred, ｭ
cn=external,cn=auth" manage by * break
olcAccess: {1}to attrs=userPassword by ｭ
anonymous auth by * none
olcAccess: {2}to * by * read

 ▼図13　管理者エントリで認証できるか確認

$ ldapsearch -x -D"cn=Manager,ｭ
dc=example,dc=com" -H ldap://ｭ
<LDAPサーバのIPアドレス>/ -Wｶ
Enter LDAP Password: パスワード入力
...（略）...
numResponses: 4
numEntries: 3

 ▼リスト4　acl.ldif

dn: olcDatabase={2}hdb,cn=config
replace: olcAccess
olcAccess: to * by dn.base="gidNumber= ｭ
0+uidNumber=0,cn=peercred,cn=external, ｭ
cn=auth" manage by * break
olcAccess: to attrs=userPassword by ｭ
anonymous auth by * none
olcAccess: to * by * read

ユーザ、グループの
追加

78 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

ldappasswd uid=testuser01,ou=Users, ｭ
dc=example,dc=comｶ
New password: ci2ybJ2x

　任意のパスワードを指定したい場合は-Sオプ
ションを指定してください。指定しない場合、8

文字のランダムなパスワードが自動生成されます。
　LDAPではグループ情報用のobjectClass
も用意されており、UNIXのログインに利用で
きるグループを作成する場合は、リスト6のよ

 ▼リスト5　users.ldif

dn: uid=testuser01,ou=Users,dc=example, ｭ
dc=com
objectClass: inetOrgPerson
objectClass: posixAccount
uid: testuser01
cn: ゆーざー01
sn: テスト
uidNumber: 10001
gidNumber: 10001
homeDirectory: /home/testuser01

dn: uid=testuser02,ou=Users,dc=example, ｭ
dc=com
objectClass: inetOrgPerson
objectClass: posixAccount
uid: testuser02
cn: ゆーざー02
sn: テスト
uidNumber: 10002
gidNumber: 10002
homeDirectory: /home/testuser02

dn: uid=testuser03,ou=Users,dc=example, ｭ
dc=com
objectClass: inetOrgPerson
objectClass: posixAccount
uid: testuser03
cn: ゆーざー03
sn: テスト
uidNumber: 10003
gidNumber: 10003
homeDirectory: /home/testuser03

　次は実際にユーザを登録しましょう。リス
ト5のように作成したuser.ldifを登録しま
す。

ldapadd -f users.ldifｶ

　登録が完了したら、試しに管理者ユーザで
uid=testuser01のユーザ情報を確認します
（図15）。
　表示されたユーザエントリを確認すると、
日本語で登録を行ったcn、snの値が、base64

化されていることが確認できます。実際にこ
のユーザでLDAP接続を行ってみましょう（図
16）。正常に接続できると、認証に成功したエ
ントリのDNが表示されます。
　現時点ではパスワードが設定されていない
ため、次のコマンドでユーザのパスワードリセッ
トを行います。

 ▼図14　OpenLDAPのcon�gデータベースを確認

ldapsearch -LLL -b cn=schema, ｭ
cn=config dnｶ
...（略）...
dn: cn=schema,cn=config
dn: cn={0}core,cn=schema,cn=config
dn: cn={1}cosine,cn=schema,cn=config
dn: cn={2}inetorgperson,cn=schema, ｭ
cn=config
dn: cn={3}nis,cn=schema,cn=config

スキーマ名 内容

collective 集合属性を作成するためのスキーマ
（RFC3671）

corba CORBAオブジェクトを扱うためのス
キーマ（RFC2714）

core
LDAPv3サーバとして必須のオブジェ
クトを定義するスキーマ
（RFC2252/2256）

cosine X.500とCOSINEで定義されるスキー
マ（RFC1274）

duaconf DUA用のスキーマ
dyngroup dyngroupオーバーレイ用のスキーマ

inetorgperson 組織内の人物を示すスキーマ（RFC2798）

java Javaオブジェクト用のスキーマ
（RFC2713）

misc 実験中の機能用のスキーマ

nis NISオブジェクト用のスキーマ
（RFC2307）

openldap サーバ情報を投入するためのスキーマ
pmi X.509用のスキーマ
ppolicy ppolicyオーバーレイ用のスキーマ

 ▼表4　 OpenLDAPにデフォルトで用意されているス
キーマ

ユーザの登録

78 - Software Design Jun. 2015 - 79

運用者向け完全マニュアル
OpenLDAPによるLDAPサーバ構築 第2章

うにLDIFを作成し、次のコマンドで登録します。
今回はグループ用のツリーも同時に作成します。

ldapadd -f groups.ldifｶ

　LDAP上ではグループ情報が存在するだけ
であるため、実際にグループを対象とした操
作などはできませんが、これでtestuser01、
testuser02はgroup01に所属しているとい
う情報を管理できます。

LDAPの
TLS接続有効化

　OpenLDAP では、SSL3.0の後継のSSL3.1

の代わりに制定されたプロトコル「TLS」を使っ
て認証や通信内容を暗号化できます。この
LDAPの暗号化接続を表現するURIとして
ldapsを使います。ldaps接続を有効にする場
合、OpenLDAPのデーモンに指定する環境変
数を次のように変更します。

vi /etc/sysconfig/slapdｶ
SLAPD_URLS="ldapi:/// ldap:///"
↓変更
SLAPD_URLS="ldapi:/// ldap:/// ldaps:///"

　LDAPの場合、ディレクトリサービスとい

う特性上、外部に対して公開することは少な
いため、多くの場合サーバ証明書は自己署名
証明書で問題ありません。
　最近のRHEL/CentOSのOpenLDAPはTL

S接続ライブラリとして、OpenSSLではなく
Mozila NSSを利用しています。そのため、今
回はMozila NSSのコマンドを用いて証明書の
作成を行います。

証明書ストアの作成

　今回のCentOS 7（1503）をインストールした
環境ではデフォルトで証明書ストアが用意さ
れていますが、今回は空の証明書ストアから
作成を行います。証明書ストアのパスワード
はsecretpwdで作成します。
　まず既存の証明書ストアを削除します。

rm /etc/openldap/certs/*ｶ

　続いて、空の新しい証明書ストアを作成し
ます。

certutil -N -d /etc/openldap/certs/ｶ
...（略）...
Enter new password: secretpwd
証明書ストアのパスワードを入力
Re-enter new password: secretpwd
証明書ストアのパスワードを再入力

 ▼リスト6　groups.ldif

dn: ou=Groups,dc=example,dc=com
objectClass: organizationalUnit
ou: Groups

dn: cn=group01,ou=Groups,dc=example,dc= ｭ
com
objectClass: posixGroup
cn: group01
gidNumber: 10001
memberUid: testuser01
memberUid: testuser02

 ▼図16　作成したユーザでLDAP接続を行う

ldapwhoami -x -D uid=testuser01,ou=Users,dc=example,dc=com -H ldap://(LDAPサーバのIP ｭ
アドレス)/ -Wｶ
Enter LDAP Password: パスワード入力
dn:uid=testuser01,ou=Users,dc=example,dc=com

 ▼図15　管理者ユーザで登録したユーザ情報を確認

ldapsearch -LLL uid=testuser01ｶ
...（略）...
dn: uid=testuser01,ou=Users,dc=example, ｭ
dc=com
objectClass: inetOrgPerson
objectClass: posixAccount
uid: testuser01
cn:: 44KG44O844GW44O8MDE=
sn:: 44OG44K544OI
uidNumber: 10001
gidNumber: 10001
homeDirectory: /home/testuser01

80 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

　-dで指定する証明書ストアのパスは、
cn=configの olcTLSCACertificatePathの
パラメータと合わせます。今回はデフォルト
値の/etc/openldap/certsを利用します。
　続いて、証明書ストアにアクセスする際の
パスワード情報を格納するパスワードファイ
ルを作成します。

echo password （証明書ストアのパスワード） > ｭ
/etc/openldap/certs/passwordｶ

　OpenLDAPが参照する証明書ストアのパス
ワードファイルは、olcTLSCACertificateKeyPath
で指定します。今回はデフォルト値の/etc/
openldap/certs/passwordを利用します。
証明書ストアを作成したら、次はサーバ証明
書を作成します。

CA証明書の作成

　最初に自己署名方式のCA証明書を作成しま
す（図17）。各オプションは次の意味を表します。

・-v：有効期間（月数）
・-m：シリアル番号（省略可能）
・-x：自己署名方式のCA証明書の作成
・-t "CT,,"：TLSクライアントとサーバで
このCAが発行した証明書が信頼される

・-k：証明書の形式を指定
・-g：証明書のビット数を指定
・-Z：SHA256（SHA2）形式でハッシュ化

サーバ証明書の作成

　続いて、サーバ証明書を作成します（図18）。
各オプションは次の意味を表します。

・-S：サーバ証明書の作成
・-t "u,u,u"：信頼する証明書の種類
・-c：CA証明書の名称
・-n：サーバ証明書の名称
・-s：サーバ証明書のSubject
・-k：証明書の形式を指定
・-g：証明書のビット数を指定
・-Z：SHA256（SHA2）形式でハッシュ化

　-sオプションには証明書のSubjectを指定
しますが、CNの欄には実際にLDAPサーバ
でアクセスするときのFQDNを入力してくだ
さい。今回は ldap1.example.comで作成します。
　-nで 指 定 す る 名 前 は、cn=configの
olcTLSCertificateFileで指定した名前で
す。デフォルトでは、OpenLDAP Serverとなっ
ています。
　今回作成した証明書一式を、slapdプロセス
から参照できるよう、次のコマンドで ldapユー
ザ、ldapグループの権限を割り当てます。

chown ldap: /etc/openldap/certs/*ｶ
chmod 400 /etc/openldap/certs/*ｶ

　設定が完了したら、OpenLDAPを再起動し
ま す。再 起 動 し た ら、ldapsの 待 ち 受 け
（tcp/636）を行っているか確認します。

 ▼図17　自己署名方式のCA証明書を作成

certutil -S -n "CA certificate" -k rsa -g 4096 -Z SHA256 -s "cn=CAcert" -x -t "CT,,"ｭ
 -m 1000 -v 120 -d /etc/openldap/certs -f /etc/openldap/certs/passwordｶ
"cn=ldap1.example.com" -c "CA certificate" -t "u,u,u" -v 120 -d /etc/openldap/certs -f / ｭ
etc/openldap/certs/password

 ▼図18　サーバ証明書の作成

certutil -S -k rsa -g 4096 -Z SHA256 -n "OpenLDAP Server" -s "cn=ldap1.example.com" -cｭ
"CA certificate" -t "u,u,u" -v 120 -d /etc/openldap/certs -f /etc/openldap/certs/passwordｶ
Continue typing until the progress meter is full: 乱数生成用に適当に文字を入力
Finished. Press enter to continue: Enterを入力

80 - Software Design Jun. 2015 - 81

運用者向け完全マニュアル
OpenLDAPによるLDAPサーバ構築 第2章

systemctl restart slapdｶ
ss -tlｶ
...（略）...
LISTEN 0 128 *:ldaps *:*

　SSL脆弱性（POODLE）に対応するため、
SSL3.0以前のSSL接続を利用できないよう
設定します。設定はcn=configのツリーに対
して行います。リスト7のようにLDIFファイ
ルを作成し、図19のように書き込みます。

OpenLDAPの
レプリケーション

　OpenLDAPのレプリケーションを設定する
際、Configデータベースを利用する場合も以
前のバージョンと同様 syncreplモジュールを
利用します。configデータベースでのロード
す る モ ジ ュー ル の 設 定 は、cn=module,
cn=configのツリーで行います。
　以降の作業は2台のOpenLDAPサーバが必
要です。マスタサーバ、スレーブサーバの2台
を利用します。OpenLDAPのレプリケーショ
ン設定を書き込むため、リスト8のLDIFファ
イルを作成し、図20のように登録します。こ
の作業はマスタ、スレーブの両方のサーバで
必要です。
　読み込むモジュールの設定を変更した際は、
OpenLDAPの再起動が必要となります。次の
コマンドを実行しOpenLDAPを再起動します。

systemctl restart slapdｶ

　次は、syncprovモジュールを利用して、実
際にレプリケーションを行うよう設定します。
この作業はマスタ、スレーブ両方のサーバで
実施します。
　まずは、リスト9のLDIFファイルを作成、
図21のように登録し、データベースで
syncprovモジュールを利用するよう設定しま

 ▼リスト7　SSL.ldif

dn: cn=config
replace:olcTLSProtocolMin
olcTLSProtocolMin: 3.1

 ▼図19　SSL.ldifの設定を登録

ldapmodify -f SSL.ldifｶ
ldapsearch -LLL -s base -b cn=config
dn: cn=configｶ
...（略）...
olcTLSProtocolMin: 3.1

 ▼リスト8　module.ldif

dn: cn=module,cn=config
objectClass: olcModuleList
objectClass: olcConfig
olcModuleload: syncprov
olcModulePath: /usr/lib64/openldap

 ▼図20　module.ldifの設定を登録

ldapadd -f module.ldifｶ
ldapsearch -LLL -bｶ
cn=module{0},cn=config
...（略）...
dn: cn=module{0},cn=config
objectClass: olcModuleList
objectClass: olcConfig
cn: module{0}
olcModulePath: /usr/lib64/openldap
olcModuleload: {0}syncprov

 ▼リスト9　overlay_syncprov.ldif

dn: cn=config
changetype: modify
replace: olcServerID
olcServerID: 1 各サーバで異なる値にする

dn: olcOverlay=syncprov,olcDatabase={2} ｭ
hdb,cn=config
changetype: add
objectClass: olcOverlayConfig
objectClass: olcSyncProvConfig
olcOverlay: syncprov

 ▼図21　overlay_syncprov.ldifの設定を登録

ldapadd -f overlay_syncprov.ldifｶ
ldapsearch -LLL -b cn=config -s baseｶ
...（略）...
olcServerID: 1
ldapsearch -LLL -b olcOverlay={0} ｭ
syncprov,olcDatabase={2}hdb,cn=config
...（略）...
dn: olcOverlay={0}syncprov,olcDatabase= ｭ
{2}hdb,cn=config
objectClass: olcOverlayConfig
objectClass: olcSyncProvConfig
olcOverlay: {0}syncprov

82 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

す。レプリケーションを行う場合は、どのサー
バで更新を行ったのかの情報も必要になるため、
cn=configのツリーにサーバ IDを設定します。
この値は整数を指定でき、レプリケーション
を行うサーバ間で固有の値でなくてはなりま
せん。
　次は実際のレプリケーションの設定を書き
込みます。リスト10のLDIFファイルを作成し、
図22のように登録します。
　olcSyncRepl以降の行は行頭に半角スペー
スが2つ入ることにご注意ください。また、
olcSyncReplのretryでは、リトライ間隔秒
数、リトライ回数、リトライ回数経過後の再
リトライまでの秒数、再リトライの回数を指
定します。正常に設定が行えている場合、上
記の設定を登録すると自動的にレプリケーショ
ンが始まり、データベースが同期されます。

　実際にデータが同期されているか確認する
ため、マスタサーバとスレーブサーバで、
contextCSNの情報を確認します。図23のコ
マンドを実行します。
　contextCSNは、データベースの中で最も新
しいエントリの更新日時の書き込み情報です。
この値を比較して、マスタサーバよりもデー
タが古くなっていないか確認を行います。
　OpenLDAPでは、ミラーモードという動作
モードも用意されており、ミラーモードを利
用することで、Active-Active型の冗長構成を

 ▼図22　 example_com_replication.ldifの設定を
登録

ldapmodify -f example_com_ ｭ
replication.ldifｶ
ldapsearch -LLL -b olcDatabase={2} ｭ
hdb,cn=configｶ
...（略）...
olcSyncrepl: {0}rid=001 ｭ
provider=ldap://<LDAPレプリケーション元 ｭ
サーバのIPアドレス>:389/
bindmethod=simple bind
dn="cn=Manager,dc=example,dc=com" ｭ
credentials=password
type=refreshAndPersist
retry="5 10 30 +"
scope=sub
searchbase="dc=example,dc=com"

 ▼リスト11　example_com_replication.ldif

dn: olcDatabase={2}hdb,cn=config
changetype: modify
replace: olcSyncRepl
olcSyncRepl: rid=001
 provider=ldap://<スレーブサーバのIPアドレｭ
ス>:389/
 bindmethod=simple
 binddn="cn=Manager,dc=example,dc=com"
 credentials=<binddnのパスワード>
 type=refreshAndPersist
 retry="5 10 30 +"
 scope=sub
 searchbase="dc=example,dc=com"

 ▼図24　 example_com_replication.ldifの設定を
マスタサーバに登録

ldapmodify -f example_com_ ｭ
replication.ldifｶ
ldapsearch -LLL -b olcDatabase={2} ｭ
hdb,cn=configｶ
...（略）...
olcSyncrepl: {0}rid=001 provider=ldap: ｭ
//<スレーブサーバのIPアドレス>:389/
bindmethod=simple bind
dn="cn=Manager,dc=example,dc=com" ｭ
credentials=password
type=refreshAndPersist
retry="5 10 30 +"
scope=sub
searchbase="dc=example,dc=com"

 ▼図23　contextCSNの情報を確認

[ldap1] # ldapsearch -s base contextCSNｶ
contextCSN: 2014040265319.3763281Z# ｭ
000000#000#000000
[ldap2] # ldapsearch -s base contextCSNｶ
contextCSN: 2014040265319.3763281Z# ｭ
000000#000#000000

 ▼リスト10　example_com_replication.ldif

dn: olcDatabase={2}hdb,cn=config
changetype: modify
replace: olcSyncRepl
olcSyncRepl: rid=001
 provider=ldap://<マスタサーバのIPアドレｭ
ス>:389/
 bindmethod=simple
 binddn="cn=Manager,dc=example,dc=com"
 credentials=<binddnのパスワード>
 type=refreshAndPersist
 retry="5 10 30 +"
 scope=sub
 searchbase="dc=example,dc=com"

82 - Software Design Jun. 2015 - 83

運用者向け完全マニュアル
OpenLDAPによるLDAPサーバ構築 第2章

とることができます。もし片側のサーバが破
損してしまっても、設定を復旧することで自
動的に最新の状態に保たれます。ミラーモー
ドに設定する際は、スレーブサーバをマスタ -

スレーブ構成にする際と同様のLDIFファイ
ル（リスト11）を作成し、図24のようにマスタ
サーバに登録します。
　マスタ、スレーブの両方にレプリケーショ
ンの設定を記載したら、次はリスト12のファ
イルを作成し、図25のようにミラーモードを
有効にします。これでミラーモードでの設定
は完了です。

OpenLDAPの
チューニング

　OpenLDAPでは、さまざまなバックエンド
DBを利用できます。しかし、BDB/HDBの場

合、デフォルトの設定状態では、データベー
スはデフォルト値で動作しており、大量のデー
タを投入すると動作が安定しません。そのため、
データベースの設定値を用意します。
　検証を行ったバージョンのOpenLDAPでは、
起動中にパラメータを編集できなかったため、
図26のように設定情報のLDIFファイルに直
接設定を書き込みます。図26の各パラメータ
の内容は表5のとおりです。
　それでは設定を確認してみましょう。図27
のコマンドを実行します。

OpenLDAPのログ確
認方法

　OpenLDAPの動作ログは、RHEL 6までは
ファイルに出力して確認を行っていましたが、
CentOS 7（1503）からはsystemdに対応したこ

 ▼リスト12　mirror_mode.ldif

dn: olcDatabase={2}hdb,cn=config
changetype: modify
replace: olcMirrorMode
olcMirrorMode: TRUE

 ▼図26　データベースの設定値を変更

vi /etc/openldap/slapd.d/cn\=config/ ｭ
olcDatabase\=\{2\}hdb.ldifｶ
...（略）...
CRC32 3d69e12f この行を削除
...（略）...

ファイルの末尾に以下を追記
olcDbConfig: set_cachesize 2 0 1
olcDbConfig: set_lg_dir .
olcDbConfig: set_lg_bsize 33554432
olcDbConfig: set_lk_max_objects 3000
olcDbConfig: set_lk_max_locks 3000
olcDbConfig: set_lk_max_lockers 3000
olcDbConfig: set_flags DB_LOG_AUTOREMOVE

 ▼図25　mirror_mode.ldifの設定を登録

ldapmodify -f mirror_mode.ldifｶ
ldapsearch -LLL -b olcDatabase={2}
hdb,cn=configｶ
...（略）...
olcMirrorMode: TRUE

パラメータ 内容

set_cachesize
LDAPがエントリをキャッシュするメモリの容量を指定。左からギガバイト数、バイト数、
メモリの分割数を指定し、図26の場合2GBの領域を1つ確保する。分割数を2にした場合、
つまり2 0 2と指定した場合、1GBの領域を2つ確保

set_lg_dir データベースの操作ログを配置するディレクトリを指定。この場合はデータベースと同
じ場所に保存

set_lg_bsize データベースのログを出力する際のバッファサイズのバイト数を指定。数値が小さいと、
ログの記載漏れが生じる可能性がある

set_lk_max_objects 同期ロックのために利用できるオブジェクト数の最大値を指定
set_lk_max_locks ロックにおいて、利用できるロック数の最大値を指定
set_lk_max_lockers ロックを実行するオブジェクトの最大値を指定

set_flags DBのオプションを指定。DB_LOG_AUTOREMOVEは、不要なログを自動的に削除する指定
となる

 ▼表5　 図26のパラメータ一覧

84 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

とに伴い、ログの確認方法も変化しています。
ログを確認する際は次のコマンドを実行します。

journalctl -u slapdｶ

　ログレベルはデフォルトでstatsに設定さ
れています。OpenLDAPのログレベルで指定
できるのは表6の一覧です。複数のレベルを列
挙することもできます。
　OpenLDAPのログ設定を変更する際は、
cn=configの設定を変更する必要があります。
出力するログレベルを変更する際は、olcLoglevel
のパラメータを指定します。リスト13の
LDIFファイルを作成し、図28のように書き
込みます。
　OpenLDAPのログはデフォルトで、syslog
（local4.*）に出力されます。そのため、
slapdだけ個別のログとして必要な場合は、
現状 syslogの追加インストールが必須となり
ます。
　journaldコマンドでログをファイルに出力
させる場合は、次のとおり設定することで、
journalのすべてのログがuidごとに出力され
るようになります。詳細については、journal
.conf（8）を参照してください。

vi /etc/systemd/journal.confｶ
[Journal]
Storage=persistent
SplitMode=uid

　設定の変更後はOSの再起動が必要です。上
記の設定を行った場合、ログは自動的に /
var/log/journal/以下に保存されます。今
回インストールした環境では、ldapユーザの
UIDは 55だったので、user-55.journalが
OpenLDAPのログの実体となります。次のコ
マンドで確認できます。

journalctl -D /var/log/journal -uｭ
 slapdｶ

ﾟ

ログレベル 内容
any すべてのログを出力
trace 内部の関数呼び出し
args traceよりも細かい内容を表示
conns コネクション管理情報
filter 検索フィルタ処理
config 設定ファイルの処理
ACL アクセス制御リストの処理

stats 接続・LDAP操作・操作結果（推奨・
デフォルト値）

stats2 statsの詳細情報
shell OpenLDAPが行ったシェル操作
parse エントリの解析情報
sync syncreplの処理
none ログレベルに依存しない最低限の出力
- ログを出力しない

 ▼表6　OpenLDAPで指定できるログレベル

 ▼リスト13　log.ldif

dn: cn=config
changetype: modify
replace: olcLoglevel
olcLoglevel: stats

 ▼図28　log.ldifの設定を登録

ldapmodify -f log.ldifｶ
ldapsearch -LLL -b cn=config -s baseｶ
dn: cn=config
objectClass: olcGlobal
cn: config
olcArgsFile: /var/run/openldap/slapd.args
olcPidFile: /var/run/openldap/slapd.pid
olcTLSCACertificatePath: /etc/openldap/ｭ
certs
olcTLSCertificateFile: "OpenLDAP Server"
olcTLSCertificateKeyFile: /etc/openldap/ｭ
certs/password
olcTLSProtocolMin: 3.1
olcLogLevel: stats sync

 ▼図27　データベースの設定を確認

ldapsearch -LLL -b olcDatabase={2} ｭ
hdb,cn=configｶ
...（略）...
olcDbConfig: {0}set_cachesize 2 0 1
olcDbConfig: {1}set_lg_dir .
olcDbConfig: {2}set_lg_bsize 33554432
olcDbConfig: {3}set_lk_max_objects 3000
olcDbConfig: {4}set_lk_max_locks 3000
olcDbConfig: {5}set_lk_max_lockers 3000
olcDbConfig: {6}set_flags DB_LOG_ ｭ
AUTOREMOVE

85 - Software Design Jun. 2015 - 85

CentOS 7の
LDAPクライアント設定

　LDAPに登録されているユーザやグループ
を、CentOS 7のユーザ・グループとして利用
する方法について説明します。
　CentOS 7では、authconfigコマンドを用い
てシステムの認証設定を行います。authconfig
コマンドは「System Security Services Daemon

（SSSD）」による基本的なユーザ管理設定を簡
単に行うことができます。SSSDはLDAPだ
けでなく、Active DirectoryやRed Hatが開発
している IdMサービス（FreeIPA）、Sambaの
Winbindなどのユーザ情報を集中的に扱うこと
ができる認証システムもサポートしています。
　CentOS 5の時代まで、OSのLDAP認証は、
nss-ldapやpam-ldapといったしくみで行いま
したが、現在はSSSDを利用することが推奨
されています。

authconfigによる
LDAP認証設定

　authconfigはコマンドラインとGUIのイン
ターフェースが提供されていますが、GUIを
利用する場合は、authconfig-gtkパッケージの
インストールが必要です。

yum install authconfig-gtkｶ

　OSでLDAP認証を利用するために、nss-

pam-ldapdパッケージが必要です。また依存関
係でpam_krb5パッケージも必要になります。

yum install nss-pam-ldapd pam_krb5ｶ

　デスクトップ画面でauthconfig-gtkを起動し
ます。「ユーザアカウントデータベース」とし
て「LDAP」を選択すると、接続先のLDAPサー
バに関する設定項目が表示されます。本稿で
は同一サーバ上のLDAPサーバのユーザ情報
とパスワードを利用するため、次の値を設定
します（図1）。

　本章では、LDAPサーバを利用してさまざまなクライアントでLDAPを活用するための設定について紹介し
ます。2章に引き続き、OpenLDAPでの構築を前提としています。

第3章
CentOS、OS X、SSH公開鍵認証、GitHub、IP電話

LDAPクライアントの
設定事例集

 Author 武田 保真（たけだ やすま） Mail yasuma@osstech.co.jp
 Author 濱野 司（はまの つかさ） Mail hamano@osstech.co.jp

オープンソース・ソリューション・テクノロジ㈱

 ▼図1　authcon�g-gtkの設定画面

86 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

・	ユーザアカウントの認証
	 LDAP検索ベース	 dc=example,dc=com
	 LDAPサーバ	 ldaps://127.0.0.1

・	認証の設定
	 認証の方法	 LDAPパスワード

　設定項目に「TLSを使用して接続を暗号化す
る」という項目があります。LDAPサーバが
TLS接続に対応している場合、LDAPの389

番ポートに接続した際に、TLSによりクライ
アント・サーバ間の通信を暗号化することが
できます。通信を暗号化していない場合、認
証時にユーザが入力したパスワードが平文で
ネットワーク上を流れますので、運用上は避
けるべきです。
　LDAPサーバとして「ldaps://」で始まる
LDAPS接続を指定した場合、「TLSを使用し
て接続を暗号化する」の設定を有効にしなくて
も通信経路は暗号化されます。いずれにして
もSSSDでLDAPを利用する場合は暗号化通
信が必須です。
　パラメータの入力が完了したら「適用」ボタ
ンを押し、設定を反映します。設定が適切で
あれば、nslcdサービスが起動し、LDAPサー
バからユーザ情報を取得してきます。
　LDAPサーバからユーザ情報が取得できて
いることは、getentコマンドやidコマンドで
確認します（図2、3）。
　LDAPのユーザ情報が正常に確認できたら、
sshコマンドを使ってLDAPのユーザでログ
インできることを確認しましょう（図4）。
　ユーザの認証はPAM経由で行われますが、
正しく設定ができていれば、LDAPに対して
認証要求が行われ、パスワードが一致すれば
ログインに成功します。ただしLDAPに登録
しただけのユーザは、ユーザ情報は存在しま
すが、ホームディレクトリが存在しません。
そのため、ユーザが初めてログインするとき
に自動的にホームディレクトリを作成する設
定を行ってみます。

ホームディレクトリの自動作成

　ホームディレクトリの自動作成機能は、
「oddjob-mkhomedir」パッケージが担います。
システムにインストールされていない場合は
yumコマンドでインストールを行います。

yum install oddjob-mkhomedirｶ

 ▼図2　ユーザ情報の取得の確認（getent）

getent passwdｶ 最初に/etc/passwdのユーザ情報
 LDAPのユーザ情報
testuser01:*:10001:10001:user01:/home/ｭ
testuser01:/bin/bash
testuser02:*:10002:10002:user02:/home/ｭ
testuser02:/bin/bash

 ▼図4　ログインの確認

ssh -l testuser01 localhostｶ
testuser01@localhost's password:
Last failed login: Fri Apr 10 19:46:49 ｭ
JST 2015 from localhost on ssh:notty
Could not chdir to home directory /home/ｭ
testuser01: No such file or directory
-bash-4.2$

 ▼図3　ユーザ情報の取得の確認（id）

id testuser01ｶ
uid=10001(testuser01) gid=10001(group01)ｭ
groups=20001(group01)

 ▼図5　ホームディレクトリの自動作成

86 - Software Design Jun. 2015 - 87

CentOS、OS X、SSH公開鍵認証、GitHub、 IP電話
LDAPクライアントの設定事例集 第3章

　続いて図5のように、authconfig-gtkの「高
度なオプション」にある「利用者の最初のログ
イン時にホームディレクトリーを作成する」を
有効にし、「適用」します。
　この設定は、/etc/pam.d/system-authや/etc
/pam.d/password-authに次の設定内容が追加
されることで有効になっています。

session optional pam_oddjob_ｭ
mkhomedir.so umask=0077

　なお、同等の設定を次のコマンドでも設定
可能です。

authconfig --enablemkhomedir --updateｶ

Mac OS Xの
LDAPクライアント設定

　Mac OS Xは、ユーザ情報や認証をLDAP

で行うことができます。Mac OS XをLDAP

クライアントとして設定するためには、次の
手順で行います。

❶	管理者アカウントで「システム環境設定」の
「ユーザーとグループ」を選択。左下の鍵ア
イコンをクリックし、「ログインオプション」
を変更可能にする

❷	「ログインオプション」の「ネットワークアカ
ウントサーバ」の「接続」をクリック

❸	「ディレクトリユーティリティを開く」をク
リック。左下の鍵アイコンをクリックして
設定変更を有効にしてから、「LDAPv3」を
選択して左下の鉛筆アイコンで編集を開始
する

❹	「新規」ボタンをクリックし、LDAPサーバ
の接続パラメータを表1のように入力し、「続
ける」をクリック

　以上の設定を行うとLDAP接続設定が登録
されます（図6）。

　LDAPマッピングの値として「RFC2307」を
選択し、適切なLDAPのベースDN（例：dc=

example,dc=com）を指定します。
　設定は以上で完了ですが、Mac OS X 10.7

（Lion）以降では、LDAP認証方式として
SASL形式の認証を優先するため、本記事で
紹介したLDAPサーバではLDAP接続に成功
しません。この問題を回避するため、図7のコ
マンドを実行してください。
　それぞれのコマンド行に含まれる「ldapserver.
plist」はLDAP接続設定の「サーバ名または
IPアドレス」に指定した名称を指定します。ま
た、「CRAM-MD5」や「SCRAM-SHA-1」などの部分は、
LDAPサーバが提供するSASL認証方式をそ
れぞれ指定します。
　LDAPサーバが提供するSASL認証方式は、
図8のコマンドで確認することができます。
　以上の設定が完了したら、ディレクトリユー
ティリティの「ディレクトリエディタ」をクリッ
クします。ノードとして「/LDAPv3/ldap01.

example.com」に変更し、表示を「Users」にして、
LDAPに登録されているユーザ情報が表示さ
れることを確認します。

 ▼表1　 Mac OS XでのLDAPサーバの接続パラメー
タ設定

設定項目 内容
サーバ名またはIPアドレス LDAPサーバのホスト名
SSLを使って暗号化 無効
認証に使用 有効
連絡先に使用 必要に応じて

 ▼図6　Mac OS XのLDAP接続設定

88 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

　ユーザ情報が正しく表示されていれば再起
動を行い、Mac OS Xのログイン時にLDAP

に登録されているユーザでログインできるこ
とを確認します。

SSHの公開鍵認証

　OpenSSHサーバは通常、ホームディレクト
リ配下に配置した $HOME/.ssh/authorized_
keysファイルを利用して公開鍵認証を行いま
す。しかし、このような運用ではユーザはサー
バごとに$HOME/.ssh/authorized_keysを配置
し、個別に公開鍵を管理しなければなりません。
OpenSSHサーバは $HOME/.ssh/authorized_
keysファイルではなく、LDAPに格納された
公開鍵を利用して認証を行うことも可能です。
この機能を利用すると、公開鍵をLDAPで集
中管理することができるので、サーバが増え
た場合でもユーザは公開鍵を再配置する必要
はありません。
　ここでは、OpenSSHとOpenLDAPを連携
し公開鍵認証を行う方法を紹介します。

スキーマの追加

　まず、OpenLDAPにSSH用公開鍵を登録す
るためのスキーマを追加します。LDAPにSSH

用公開鍵を格納するにはldapPublicKeyオブ
ジェクトクラスを利用します。このオブジェク
トクラスが定義されているスキーマはopenssh-

ldapパッケージに含まれていますので、まず
はこのパッケージをインストールしましょう。

yum install -y openssh-ldapｶ

　この openssh-ldapパッケージには、公開鍵
を格納するためのスキーマファイル（openssh-
lpk-openldap.schema）とLDAPから公開鍵を
取得するコマンドラインツールが付属してい
ます。しかし、このファイルは古いOpen

LDAPのためのスキーマファイルですので、
まずはこのスキーマファイルをLDIF形式に
変換する必要があります。図9の手順で古い
OpenLDAPのスキーマを新しいLDIF形式に
変換します。
　このスキーマの変換方法はひどく煩雑です。

$ sudo -sｶ
/usr/libexec/PlistBuddy -c "add ':module options:ldap:Denied SASL Methods:' string CRAM-ｭ
MD5" /Library/Preferences/OpenDirectory/Configurations/LDAPv3/ldapserver.plistｶ
/usr/libexec/PlistBuddy -c "add ':module options:ldap:Denied SASL Methods:' string DIGESTｭ
-MD5" /Library/Preferences/OpenDirectory/Configurations/LDAPv3/ldapserver.plistｶ
/usr/libexec/PlistBuddy -c "add ':module options:ldap:Denied SASL Methods:' string SCRAM-ｭ
SHA-1" /Library/Preferences/OpenDirectory/Configurations/LDAPv3/ldapserver.plistｶ

 ▼図7　Mac OS Xの認証方式の設定

echo "include /usr/share/doc/openssh-ldap-6.4p1/openssh-lpk-openldap.schema" > conv.confｶ
mkdir tmpｶ
slapcat -f conv.conf -F tmp -n0 -a "cn={0}openssh-lpk-openldap" \ｶ
 | sed -E '/^(structuralObjectClass|entryUUID|creatorsName|createTimestamp|entryCSN \ｶ
 | modifiersName|modifyTimestamp):/d' \ｶ
 -e 's/{0}//' \ｶ
 > openssh-lpk-openldap.ldifｶ

 ▼図9　古いスキーマファイルをLDIF形式に変換

$ ldapsearch -x -h <LDAPサーバのIPアドレス> -b "" -s base "(objectClass=*)" ｭ
supportedSASLMechanismsｶ

 ▼図8　SASL認証方式の確認方法

88 - Software Design Jun. 2015 - 89

CentOS、OS X、SSH公開鍵認証、GitHub、 IP電話
LDAPクライアントの設定事例集 第3章

もっと簡単に変換できるツールがあってほし
いと思いますが、ないのが現実です。図9の手
順で変換するか、変換済みのLDIFファイル
を次のコマンド実行でダウンロードしてくだ
さい。

wget http://goo.gl/gMZ0yi -O openssh-ｭ
lpk-openldap.ldifｶ

　さらに次のコマンドを実行し、LDIFに変換
されたスキーマをOpenLDAPに追加します。

ldapadd -f openssh-lpk-openldap.ldifｶ

公開鍵の登録

　第2章で追加したテストユーザ（testuser01）
にSSH公開鍵を登録してみましょう。図10の
ようにldapmodifyを実行して、sshPublicKey属
性にSSH公開鍵を登録します。sshPublicKey
属性を利用するためには、同時にldapPublicKey
オブジェクトクラスを追加する必要があります。
　$HOME/.ssh/authorized_keysと同様にSSH

公開鍵は複数登録可能です。

ssh-ldap-helperの設定

　ssh-ldap-helperは、LDAPに格納されて
いるSSH公開鍵を取得するコマンドラインツー
ルです。OpenSSHサーバは認証時にこのコマ
ンドを実行して公開鍵を取得します。
　/etc/ssh/ldap.confに次の設定を記述しま
す。

BASE dc=example,dc=com
URI ldap://localhost/
SSL no

　ここではSSHサーバとOpenLDAPサーバ
が同一ホスト内で動作していることを想定し
ているため、SSLを無効化していますが、異
なるホストで動作している場合はSSLを有効
にしたほうが良いでしょう。
　次のコマンドを実行し、正常にSSH公開鍵
を取得できるか動作確認を行います。

/usr/libexec/openssh/ssh-ldap-helper -s ｭ
testuser01ｶ
ssh-rsa AAAAB3NzaC1yc2EAAAA...

OpenSSHの設定

　最後にOpenSSHサーバ側の設定を行います。
/etc/ssh/sshd_configに次の設定を記述しま
す。

AuthorizedKeysCommand /usr/libexec/ｭ
openssh/ssh-ldap-wrapper

　SSHDサービスを再起動します。

systemctl restart sshdｶ

　AuthorizedKeysCommandはユーザ名を引数に
して指定したプログラムを実行し、標準出力の
結果を公開鍵として扱います。このプログラム
は$HOME/.ssh/authorized_keysと同じフォー
マットで公開鍵を出力する必要があります。
/usr/libexec/openssh/ssh-ldap-wrapper コ
マンドはユーザ名を引数にして ssh-ldap-
helperを実行するラッパースクリプトです。
ssh-ldap-helperはユーザ名を指定する際に
-sオプションが必要であるため、SSHサーバ
の設定にはこのラッパースクリプトを指定し
ます。

ldapmodifyｶ
dn: uid=testuser01,ou=Users,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: ldapPublicKey
-
add: sshPublicKey
sshPublicKey: ssh-rsa AAAAB3NzaC1yc2EAAAA...

 ▼図10　testuser01へのSSH公開鍵登録

90 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

　OpenSSHサーバを再起動すると、LDAP内
の公開鍵を利用して認証できるようになります。
OpenSSHはまずAuthorizedKeysCommandで取
得した公開鍵で認証を行い、失敗した場合は
通常どおり$HOME/.ssh/authorized_keysを利
用します。
　AuthorizedKeysCommandを利用する際は、
SELinuxは無効にしておきましょう。

setenforce 0ｶ

GitHub Enterprise
との連携

　GitHubのプライベートレポジトリでソース
コードを管理する企業が増えていますが、重
要なソフトウェア資産の管理を社外のシステ
ムに依存してしてしまうことに懸念を持つ方
は少なくありません。GitHub Enterprise（以下、
GHE）は、GitHubと同等の機能を社内もしく
はAmazon EC2上で提供するためのアプライ
アンス製品です。
　GHEはGitHubと同様にユーザ登録を行っ
て利用することもできますが、LDAPに格納
されたアカウント情報と連携し、認証を行う
機能を持っています。LDAPのアカウント情

報と連携することで、ユーザやグループ管理、
SSH公開鍵を集中管理することができます。
ここでは、OpenLDAPとGHEを認証連携す
る方法を紹介します。
　GHEのセットアップ画面にはAuthentication

というページ（図11）があり、次の設定項目が
あります。

・	Host
	 今回構築したLDAPサーバのFQDNを指定
します

・	Port
	 389もしくは636を指定します

・	Encryption
	 暗号化方式を指定します

・	Domain search user
	 ユーザ検索を行うDNを指定します（例:
cn=Manager,dc=example,dc=com）

・	Domain search password
	 ユーザ検索を行うパスワードを指定します

・	Administrators group
	 管理者グループを指定します。adminと指
定すれば（cn=admin）というフィルタで検索
を行い、cn=admin,ou=Groups,dc=exampl
e,dc=comグループを参照します。グループ
のオブジェクトクラスはposixGroupや
groupOfNamesに対応しています

・	Domain base
	 ユーザとグループ含むベースDNを指定しま
す。本稿の場合はdc=example,dc=comを
指定します

属性マッピング

　GHEではアカウント情報として、ユーザ
ID、名前、メールアドレス、SSH公開鍵を利

 ▼図11　Authenticationの設定画面（GHE）

90 - Software Design Jun. 2015 - 91

CentOS、OS X、SSH公開鍵認証、GitHub、 IP電話
LDAPクライアントの設定事例集 第3章

用します。ユーザがGHEにログインすると、
ここで設定したLDAP属性がGHEのアカウン
ト情報に反映されます。
　図12の設定画面ではこれらのアカウント情
報を、LDAPに格納されている属性とマッピ
ングを行います。

・	User ID：uid
・	Profile name：cn
・	Emails：mail
・	SSH keys：sshPublicKey

　sshPublicKeyはGitレポジトリにアクセス
するためのSSH公開鍵で、OpenSSHの認証
で利用した属性名と同じです。公開鍵の格納
フォーマットも同じですので、サーバにログ
インするためのSSH鍵とGitレポジトリにア
クセスするためのSSH鍵を共用することがで
きます。

LDAP Syncronization

　設定を適用し、GHEにログインするとLDAP

に格納されているアカウント情報が反映されます。
既定では、LDAPのアカウント情報がGHEに
反映されるのは初回ログインのタイミングのみ
であることに注意してください。Syncronization

の設定を行うことで、定期的にLDAPのアカウ
ント情報とGHEの内部アカウントデータを同期
することができます（図13）。

LDAPで IP電話

　LDAPと連携する IP電話システムを構築し
てみましょう。IP電話システムを構築すると、
スマートフォンやPCに内線番号を割り当て、
無料で通話を行うことができます。しかしこ
の内線番号を管理することは容易ではありま
せん。ここではLDAPで内線番号を管理し、1

ユーザに1つの内線番号を割り振る運用方法を
紹介します。
　ここで構築する IP電話システムは図14の構
成です。Kamailioはオープンソースで公開さ
れているSIPサーバです。Linux上で簡単に

IP電話システムを構築する
ことが可能です。Kamailio

は内線番号や認証情報を各
種データベースに格納する
ことができ、LDAPにも対
応しています。
　SIPクライアントとして
はAndroidは標準機能でSIP

クライアント機能を持って
おり、iOSでもさまざまな
SIPクライアントがアプリ
として提供されています。

LDAPに内線番
号を登録

　ユーザアカウントに内線番
号を割り当てます（図15）。
ここではLDAPのtelephone
Number属性を利用して test

user01に内線番号1を、test

 ▼図12　LDAPとのマッピング設定画面（GHE）

 ▼図13　Syncronizationの設定画面（GHE）

92 - Software Design

第2特集 OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

user02に内線番号2を、testuser03に内線番号
3を割り振ります。

Kamailioのインストール

　Kamailio SIP Serverは公式サイトにRPM

パッケージが公開されています。まずリスト1
の内容で /etc/yum.repos.d/kamailio.repo
ファイルを作成して、yumレポジトリに追加
します。続いて、次のコマンドで kamailioと
kamailioのLDAPモジュールのRPMパッケー
ジをインストールします。

yum install -y kamailio kamailio-ldapｶ

Kamailio SIP Serverの設定

　kamailioは既定でテキスト形式のデータベー
スでアカウントを管理しますが、LDAPで認
証を行うためにはいくつかの設定変更が必要
です。
　まず、認証に利用するLDAPサーバを/etc

/kamailio/ldap.cfgで指定します（リスト2）。
続いて、/etc/kamailio/kamailio-local.cfg
にリスト3の設定を記述します。最後に、
/etc/kamailio/kamailio.cfgをリスト4、5
のように変更します。
　設定が完了したら、kamailioサービスを再
起動します。

systemctl restart kamailioｶ

Androidの設定

　Androidは標準でSIPクライアント機能を
持っています。［設定］－［通話設定］－［アカウ
ント］を選択し、今回構築したSIPアカウント
を追加します（図16）。

[kamailio]
name=RPMs for Kamailio on RHEL 7
type=rpm-md
baseurl=http://rpm.kamailio.org/stable/RHEL_7/
gpgcheck=1
gpgkey=http://rpm.kamailio.org/stable/RHEL_7/repodata/repomd.xml.key
enabled=1

 ▼リスト1　/etc/yum.repos.d/kamailio.repo

[localhost]
ldap_server_url = "ldap://localhost"
ldap_bind_dn = "cn=Manager,dc=example,dc=com"
ldap_bind_password = "上記BIND DNのパスワード"

 ▼リスト2　/etc/kamailio/ldap.cfg

loadmodule "ldap.so"
modparam("ldap", "config_file", "/etc/ｭ
kamailio/ldap.cfg")

 ▼リスト3　 /etc/kamailio/kamailio-local.cfgへの
追加設定

 ＜編集前＞
authentication
route(AUTH);

 ＜編集後＞
authentication
route(LDAPAUTH);

 ▼リスト4　/etc/kamailio/kamailio.cfgの変更

 ▼図14　IP電話のシステム構成

ユーザ検索
認証

OpenLDAP

Android iPhone PC

内線番号：1 内線番号：2 内線番号：3

Kamailio
SIPサーバ

92 - Software Design Jun. 2015 - 93

CentOS、OS X、SSH公開鍵認証、GitHub、 IP電話
LDAPクライアントの設定事例集 第3章

iOSの設定

　iOSは標準でSIPクライアント機能を持っ
ていませんが、アプリとして数多くのSIPク
ライアン卜が提供されています。
　今回はLinphone注1をインストールし、And

roidと通話できることを確認しました。Lin

phoneの設定例は図17のとおりです。ﾟ

注1） https://itunes.apple.com/jp/app/linphone/id360065638

route[LDAPAUTH] {
 if(!(is_present_hf("Authorization") || is_present_hf("Proxy-Authorization"))) {
 auth_challenge("$fd", "1");
 exit;
 }
 ldap_search("ldap://localhost/ou=Users,dc=example,dc=com?
 userPassword?one?(telephoneNumber=$fU)");
 if ($rc<0) {
 sl_send_reply("404", "Not Found.");
 exit;
 }
 ldap_result("userPassword/$avp(password)");
 if (!pv_auth_check("$fd", "$avp(password)", "0", "1")) {
 auth_challenge("$fd", "1");
 exit;
 }
 # LDAPAUTH success
}

 ▼リスト5　/etc/kamailio/kamailio.cfgへの追記

 ▼図16　Androidの設定 ▼図17　Linphoneの設定

ldapmodifyｶ
dn: uid=testuser01,ou=Users,dc=example,dc=com
changetype: modify
add: telephoneNumber
telephoneNumber: 1
ｶ
dn: uid=testuser02,ou=Users,dc=example,dc=com
changetype: modify
add: telephoneNumber
telephoneNumber: 2
ｶ
dn: uid=testuser03,ou=Users,dc=example,dc=com
changetype: modify
add: telephoneNumber
telephoneNumber: 3
^D

 ▼図15　ユーザアカウントへの内線番号の割り当て

https://itunes.apple.com/ja/app/linphone/id360065638

Windows Server 2003サポート切れまであと2ヶ月緊急企画

94 - Software Design

SambaによるAD の機能性

　Active Directory（以下AD）のドメインコント
ローラ（以下DC）は、2012年12月にリリースさ
れたSamba 4.0.0からサポートされています。
　残念ながら、SambaはADの機能を完全にサ
ポートしているわけではないため、環境によっ
ては機能的にSambaへの移行ができない場合が
あります。以降では、SambaがサポートするAD

の機能性、メリットやデメリットについて解説
します。

サポートされる機能の概要

　SambaのDCによってサポートされるADの
機能について、サポート状況を表1に示します。
ポイントは次のとおりです。

・単一ドメイン環境に限定
　本稿執筆時点では、シングルドメイン・シン
グルフォレストという単一ドメイン環境以外の
環境はサポートされていません。外部信頼関係
についても、信頼されることはできますが、信
頼することはできないといった制限があります。

 Author たかはしもとのぶ　 mail monyo@monyo.com　 Twitter @damemonyo

　2015年7月15日のWindows Server 2003（以下Win2003）サポート終了まで、いよいよあと2ヵ月となりまし
た。本誌の読者であれば、これを機会にオープンソースへの移行を目論んでいる方も多いのではないでしょうか。
　そこで本稿では、Win2003で構築されたActive Directoryの移行をテーマに、オープンソースであるSamba
で構築されたActive Directoryの機能性、移行性を検証します。

Windows Server 2003
サポート切れまであと2ヶ月

Sambaによる
Active Directoryの

機能性と移行性を検証する

緊急企画

機能 サポート状況
基本機能

ユーザ、グループ、認証 ◎　サポート
グループポリシー、OU ○　サポート。ただしSambaサーバ自体の設定は制御できない
FSMO、機能レベル ◎　サポート
ADの複製（DRS） ◎　サポート
SYSVOL共有の複製（DFS-R） ×　rsyncなどの別プロダクトで対応が必要
DNSサーバ ○　ADの動作に必要な範囲はサポート

高度な機能、他
サイト △　クライアント向け機能のみサポート
RODC ×　未サポート
スキーマ拡張 △　手動での拡張のみサポート
DCの追加 △　Windows Server 2012以降は未サポート
複数ドメイン ×　未サポート
外部信頼関係 △　信頼されることはできるが、信頼することはできない
ブラウジング機能 ×　未サポート

 ▼表1　SambaがサポートするADの機能

緊急企画SambaによるActive Directoryの機能性と移行性を検証するWindows Server 2003サポート切れまであと2ヶ月

94 - Software Design Jun. 2015 - 95

これらの機能は現在実装中です。

・DC自体の設定を管理できない
　Sambaはグループポリシーやサイトといった
機能によるクライアント設定の管理や制御をサ
ポートしています。しかし、グループポリシー
によるDC設定の管理やアカウントポリシーな
どADの設定の管理はできません。同様にサイ
トによるDC間の複製トポロジの制御もサポー
トされていません。

 ▶単一ドメイン環境での注意点
　単一ドメイン環境であれば、ADの基本機能
はほぼサポートされていますが、次の点につい
ては留意が必要です。

・	Windows Server 2012以降のDCは未サ
ポート

　SambaはWindows Server 2008 R2互換のス
キーマ（バージョン47）をサポートしています。
Windows Server 2012のDCを稼働させるため
にはスキーマを拡張する必要がありますが、現
時点では未サポートです注1。

・SYSVOL共有の複製は未サポート
　WindowsのDC間では、ADに格納される情報
の複製以外に、DFS-R注2もしくはFRS注3とい
う機能によりSYSVOL（システムボリューム）共
有内のファイルの同期が行われます。
　SYSVOL共有内にはグループポリシーの実体
であるファイル群やログオンスクリプトが格納
されているため、ADを機能させるうえで同期
が必須ですが、現時点では未サポートです。
　そのため、何らかの方法でSYSVOL共有内
のファイル同期を実現する必要があります。
SambaのDC間では通常rsyncを使用して同期を

行います。

メリットとデメリット

　SambaのDCはWindowsのDCと完全互換で
はないので、この点は確実にデメリットとなり
ます。一方で少なからずメリットがあることも
事実です。メリットとデメリットについて簡単
に整理してみました。

 ▶メリット
・ライセンス費用が低減できる
　Windowsサーバのサーバライセンス費用に加
え、環境によりますがCALと呼ばれるクライア
ントライセンス費用が低減できます。

・必要とするリソースが少ない
　SambaのDCはメモリ256MB程度、ディスク
2GB程度の環境でも最低限は動作します。

・パッチ適用による影響が少ない
　Linux自体の特性になりますが、パッチ適用
の一環でサービスパック適用のように実質的な
OSバージョンアップを強制され、各所に影響
が発生するようなことがありません。
　またパッケージ間の関連性が低いため、Samba

以外のパッケージのパッチ適用によってSamba

に影響が発生することが少なく、OSの再起動
を要求されるケースもほとんどありません。

・バージョンアップによる移行が比較的容易
　SambaはあくまでLinux上の1サービスとし
て動作していますので、別サーバへの移行や、
Linux自体のバージョンアップの際の移行が
Windowsと比べ、容易です。

 ▶デメリット
・完全互換ではない
　機能面での制約や、それに起因しての運用面
での制約、留意点が存在します。

注1） 厳密にはWindowsのインストーラが行うAPI経由でのス
キーマ拡張をサポートしていないためです。手動でのス
キーマ拡張はサポートしています。

注2） Distributed File System（分散ファイルシステム）Replication。
注3） File Replication Service。ファイル複製サービス。

Windows Server 2003サポート切れまであと2ヶ月緊急企画

96 - Software Design

・商用サポートが受けにくい
　Microsoft社の商用サポートもさることなが
ら、ADに依存したミドルウェアの商用サポー
トも受けられない場合が多いと思います。

・Linuxのサポート期間が短い
　Windowsは最短10年のサポートを提供してい
ますが、Linuxの場合、ディストリビューショ
ンによって差はあるもののWindowsと比較する
とサポート期間は短くなります。
　ただしこの点は、メリットに掲げた移行が比
較的容易である点、サービスパック適用の強制
がない点も勘案したうえで評価する必要がある
と考えています。

・運用に際してLinuxサーバの知識が必要
　言わずもがなですが、Linuxサーバの運用知
識が必要です。

　最終的には、これらのメリット、デメリット
を勘案のうえ、移行の是非を判断してください。

Samba の DC の構築と移行

　本節では、実際に検証を行う方向けに、192.

168.135.20という IPアドレスのWin2003の
DCによって構築されているADDOM1.LOCAL

というADをSambaに移行するケースを例に、
具体的な移行手順を解説します。

　Windows Server 2008 R2以前のADであれ
ば同じ手順で移行できます。

Sambaのインストール

　本稿執筆時点で確認した限り、標準で提供さ
れているSambaパッケージがDCをサポートし
ているLinuxディストリビューションはUbuntu

14.04のみですので注4、ここではUbuntu 14.04

を例に解説します。

 ▶ IPアドレスとDNSの設定変更
　DCのIPアドレスは静的に付与します。また、
名前解決を適切に行うために、DNSサーバとし
て既存のDCを参照させ、DNSサフィックスと
してADのFQDNを設定する必要があります。
/etc/network/interfacesファイルの設定例をリ
スト1に示します。

 ▶ hostsファイルの設定
　DNSの動的更新を正しく機能させるため、
自身のFQDNが自身の IPアドレスに名前解決
されるように設定します。たとえば、自身のホ
スト名がubuntu1404-1の場合、今回の環境で
はリスト2のような設定を行います。

 ▶ Sambaパッケージのインストール
　次のようにしてsambaおよび関連パッケージ
をインストールします。

apt-get install samba dnsutils smbclient

　これにより関連するパッケージも

インストールされ、インストール後
Sambaが自動的に起動します。smb

clientパッケージは必須ではありませ
んが、動作確認などで有用ですので、
ここではインストールする前提で解説

注4） CentOS 7.0でもsamba-dcというパッケージ
が存在するのですが、パッケージの実体は、
現在DC機能はサポートしていない旨が記述
されたテキストファイルのみでした。

 ▼リスト2　hostsファイルの設定例

192.168.135.28 ubuntu1404-1.addom1.local ubuntu1404-1

 ▼リスト1　静的 IPアドレスの設定例

The primary network interface
auto eth0
iface eth0 inet static ← この行を書き換え、移行の行を追加する
 address 192.168.135.28
 netmask 255.255.255.0
 gateway 192.168.135.2

 dns-nameservers 192.168.135.20
 dns-search addom1.local

※ iface eth0 inet auto と
なっている行を書き換え
たうえで以降の行を追加
します。再起動すること
で設定が反映されます。

緊急企画SambaによるActive Directoryの機能性と移行性を検証するWindows Server 2003サポート切れまであと2ヶ月

96 - Software Design Jun. 2015 - 97

します。dnsutilsはDNSの動的更新の際に内部
的に使用しますので必ずインストールしてくだ
さい。

 ▶ ntpのインストール
　ADでは時刻同期が必須です。デフォルトで
はNTP（Network Time Protocol）による時刻同
期が行われますので、NTP以外で時刻同期を行
う場合をのぞき、次のようにしてntpパッケー
ジをインストールします。

apt-get install ntp

ADへの参加

　引き続き、既存のADに対してDCとして参加
します。

 ▶ Sambaの停止
　SambaでDCを構築する場合は、smbd、nmbd

といった既存のプロセスではなく、sambaとい
う専用のプロセスを起動する必要があります。
このため、自動起動している既存のプロセスは
停止させ、自動起動しないようにします。
　まずは次のようにして既存のSambaのプロセ
スを停止させます注5。

initctl stop smbd
smbd stop/waiting
initctl stop nmbd
nmbd stop/waiting

　続いて/etc/init配下のsmbd.confおよびnmbd.

confを、たとえば smbd.conf.disableや nmbd.

conf.disableのようにリネームして、再起動後に
既存のSambaのプロセスが起動しないようにし
ます。さらにSambaの停止後、/etc/sambaにあ
る既存の smb.confを別の名前にリネームして
smb.confが存在しない状態にします。

 ▶時刻同期
　既存のDCと時刻が同期していない場合は、た
とえば次のようにして時刻を同期させます。

net time set -S 192.168.135.20

 ▶ドメイン参加
　いよいよSambaをADのDCとして既存のAD

に参加させます。これには「samba-tool domain
join」というコマンドを使用します。

・書式 : samba-tool domain join ドメインの
FQDN DC -U 参加に使うユーザ名 --realm=
ドメインのFQDN（大文字）注6

　「参加に使うユーザ名」としてはAdministrator

もしくは適切な権限を持つAD上のユーザを指
定します。図1に実行例を示します。
　パスワード入力後、10数秒ほどで参加が完了
するはずです。参加が成功すると、Win2003の
Active Directoryユーザとコンピュータ（以下
ADUC）上のDomain Controllers OU内に図2

注5） 必要に応じて initctl stop winbindを実施してwinbinddも
停止させてください。

注6） これ以外のオプションは「samba-tool domain join --help」
で確認してください。

 ▼図1　既存ADへのSambaのDCとしての参加

samba-tool domain join addom1.local DC -U administrator --realm=ADDOM1.LOCAL
Finding a writeable DC for domain 'addom1.local'
Found DC win2k3r2ent-1.ADDOM1.LOCAL
Password for [WORKGROUP\administrator]: ← パスワードを入力
workgroup is ADDOM1
realm is ADDOM1.LOCAL
checking sAMAccountName
Adding CN=UBUNTU1404-1,OU=Domain Controllers,DC=ADDOM1,DC=LOCAL
 （...中略...）
Setting up secrets database
Joined domain ADDOM1 (SID S-1-5-21-3765940662-1496847615-115565967) as a DC

Windows Server 2003サポート切れまであと2ヶ月緊急企画

98 - Software Design

 ▼リスト3　自動生成されたsmb.confファイル例

Global parameters
[global]
 workgroup = ADDOM1
 realm = ADDOM1.LOCAL
 netbios name = UBUNTU1404-1
 server role = active directory domain controller

[netlogon]
 path = /var/lib/samba/sysvol/addom1.local/scripts
 read only = No

[sysvol]
 path = /var/lib/samba/sysvol
 read only = No

のようにDCのアイコンが表れます。

 ▶ smb.confの設定
　「samba-tool domain join」コマンドを実行す
ると、リスト3のようなsmb.confが自動生成さ
れます。
　SambaをDCとして機能させる場合、大半の
設定は後述する各種コマンドで行いますので、
smb.confの設定はあまり必要ありませんが、外
部のDNSサーバと連携する必要がある場合は、
次の設定を行ってください。

・dns forwarder = <上位DNSサーバのIPア
ドレス>

　内蔵DNSサーバを使用する際に、自身で解決
できなかったクエリを転送する上位のDNSサー
バを指定します。

・interfaces = <インターフェース>注7

・bind interfaces only = yes

SambaによるDCの起動と動作確認

　いよいよSambaによるDCを起動させます。

 ▶ DCの起動
　UbuntuではSambaによるDCはsamba-ad-dc

というサービス名となっています。デフォルト
では自動起動の設定が行われているため、上記
設定後にサーバを再起動するとsambaというプ
ロセスが自動的にいくつか起動します。手動で
の起動例を次に示します。

initctl start samba-ad-dc
samba-ad-dc start/running, process 865

　手動で停止させる場合はstartの代わりにstop

を指定してください注8。

　サーバが複数のインターフェー
スを保持している場合に、特定の
インターフェースでのみサービス
を提供する際に指定します。

注7） インターフェースとしてはeth0やeth1
といったインターフェース名や IPアド
レスを指定します。なおSambaの動作
に支障が出ないよう、必ず127.0.0.1を
インターフェースに含めてください。

注8） 自動起動を抑止する場合は /etc/initにある samba-ad-dc.
confファイルを、たとえば samba-ad-dc.conf.disableの
ようにリネームします。

 ▼図2　DCの参加確認

緊急企画SambaによるActive Directoryの機能性と移行性を検証するWindows Server 2003サポート切れまであと2ヶ月

98 - Software Design Jun. 2015 - 99

 ▶ DCの動作確認
　まずは複製の確認を行います。Win2003上で
ユーザを作成する前後で図3のように「wbinfo
-u」コマンドを実行して、Win2003からSamba

への複製が機能しているか確認してください。
　ついで、次のようにしてSambaサーバ上で作
成したユーザが、Win2003上のADUC上で
Usersコンテナ内に現れていることを確認して
ください。

samba-tool user create samba01 P@ssw0rd
User 'samba01' created successfully

　両方の操作が意図したとおりに動作すれば、
複製は機能していると考えてよいでしょう注9。

 ▶ DNSの情報登録確認
　引き続き、DNSの動的更新が機能しているこ
とを確認します。Win2003上で図4のコマンド
を実行して、Sambaサーバの情報がDNSサー

バに登録されていることを確認してください。
　登録されていない場合は、Sambaサーバ上で
次のコマンドを実行して表示される情報をもと
に、トラブルシューティングを行ってください。

samba_dnsupdate --verbose

　登録がうまく行われていたら、Sambaサーバ
の参照先DNSサーバを、最初に自分自身、つい
でWin2003のDCを参照するように変更しま
しょう。/etc/network/interfacesファイルの該
当個所の設定例をリスト4に示します。

SYSVOL共有の複製とクライアント
からのログオン

　引き続きDCとしての設定を進めます。

 ▶ SYSVOL共有の複製
　前述したとおり、SambaのDCは現在SYSVOL

共有の複製をサポートしていないため、手動で
複製を行う必要があります。
　複製後には「samba-tool ntacl sysvolreset」
コマンドを実行してSYSVOL共有内のファイ
ルのアクセス許可を再設定します注10。

 ▼図3　 wbinfoコマンドによるDCの動作確認

wbinfo -u | grep aduser01

 （Win2003上でaduser01ユーザを作成）

wbinfo -u | grep aduser01
aduser01 ← ユーザが追加されている。

 ▼図4　Win2003上でのDNSの登録確認

C:\>nslookup -q=srv _ldap._tcp.dc._msdcs.addom1.local.
Server: localhost
Address: 127.0.0.1

_ldap._tcp.dc._msdcs.addom1.local SRV service location:
 priority = 0
 weight = 100
 port = 389
 svr hostname = win2k3r2ent-1.addom1.local
_ldap._tcp.dc._msdcs.addom1.local SRV service location:
 priority = 0
 weight = 100
 port = 389
 svr hostname = ubuntu1404-1.addom1.local ← Sambaサーバの情報が登録されている
win2k3r2ent-1.addom1.local internet address = 192.168.135.20
ubuntu1404-1.addom1.local internet address = 192.168.135.28
C:\>

 ← Sambaサーバの情報が登録されて
 　 いる

注9） 複製状況の詳細な確認を行う際には「samba-tool drs
showrepl」コマンドを使用してください。

注10） 何らかの方法でアクセス許可も含めた複製を行うことがで
きれば、このコマンドの実行は不要です。

 ▼リスト4　参照先DNSサーバの設定例

 dns-nameservers 192.168.135.28 192.168.135.20

Windows Server 2003サポート切れまであと2ヶ月緊急企画

100 - Software Design

　リスト5にsmbclientコマンドを使用したスク
リプトの例を示します。
　このスクリプトでは、複製元のDCへの接続
に用いるユーザ名とパスワードを/etc/samba/

dcpassというファイルから取得するように設定
しています注11。このファイルにはリスト6のよ
うにユーザ名とパスワードを記述したうえで、
セキュリティ上所有者をrootに、パーミッショ
ンを600に設定してください。
　複製後、グループポリシーの設定が適切に複
製されていることを確認します。Win2003で
ADUCを起動し、接続先のドメインコントロー
ラとして図5のように「ドメインコントローラに
接続」メニューからUBUNTU1404-1.ADDOM1.

LOCALを選択してSambaで構築したDCに接
続してください。

　グループポリシーの設定がWin2003上と同様
になっていれば、複製は成功です。

 ▶ Windowsクライアントのログオン
　それでは、Windowsクライアントからのログ
オンを試行してみましょう。
　ADの仕様上、特定のDCで認証を行わせるこ
とが難しいので、いろいろ試行する必要があり
ますが、最終的にSamba4のDCで認証が行わ

れ注12、グループポリシーが適切に適用されてい
れば、SambaのDCは正常に機能していると考
えてよいでしょう。

Win2003のDCからの移行

　ここまでの動作確認が成功すればSamba4の
DCは正常動作しています。引き続きWin2003

サーバの降格に向けた作業を行っていきます。

 ▶ FSMOの移行
　FSMO（Flexible Single Master Ope

ration）とは、ドメイン（やフォレスト）
内の特定DCのみが保持する機能の総
称で、5つの機能からなっています。図
6のようにして、FSMOをWin2003か
らSamba4サーバに移管します注13。

 ▼リスト5　SYSVOL共有の複製スクリプト例

#!/bin/sh
SYSVOLDIR=/var/lib/samba/sysvol
DCNAME=win2k3r2ent-1
DOMNAME=addom1.local

net time set -S ${DCNAME}
cd ${SYSVOLDIR}
rm -rf *
smbclient //${DCNAME}/sysvol -A /etc/samba/dcpass ｭ
-D ${DOMNAME} -Tcag - | tar xf -
samba-tool ntacl sysvolreset

 ▼リスト6　ユーザ名とパスワードの記述例

username=Administrator
password=P@ssw0rd

注12） 確認する方法はいくつかありますが、たとえ
ば LOGONSERVER環境変数が「\\Sambaサー
バ名」となっていることを確認するのも1つで
す。

注13） Win2003と同様、transferに失敗する場合は、
seizeオプションにより強制的にFSMOを移行
することもできます。

注11） 1回限りの移行を行う場合は、-Uオプションでコマンドラ
インから直接指定してもかまいません。

 ▼図5　Sambaで構築したDCへの接続

緊急企画SambaによるActive Directoryの機能性と移行性を検証するWindows Server 2003サポート切れまであと2ヶ月

100 - Software Design Jun. 2015 - 101

 ▶時刻同期の設定
　単一ドメイン環境の場合、明示的に設定を変
更しない限り、クライアントはDCに、Windows

のDCはPDCエミュレータと呼ばれるFSMO

を保持するDCに対してNTPによる時刻同期が
自動的に行われ、これによってADドメイン全
体での時刻が同期されます。時刻を外部のNTP

サーバと同期させたい場合は、PDCエミュレー
タの時刻同期先として、外部のNTPサーバを指
定します。
　この環境にSambaのDCを追加する場合は、
SambaをNTPサーバとして機能させてクライ

アントとの時刻同期をサポートさせる必要があ
ります。またDCとなったSambaサーバ同士で
も互いの時刻が同期されるように適宜設定を行っ
てください注15。
　なお、バージョン4.2.6以降のntpdではMicro

soft独自のNTP署名機能をサポートできます。
これには/etc/ntp.confでリスト7の設定を行い
ます。

 ▶ Win2003のDCの降格
　ここまでの設定が完了したら、Win2003の降
格、撤去が可能となります。

　残念ですが、本稿執筆時点のSamba

のADでは、WindowsサーバのDCの降格

に失敗します注16ので、「dcoromo /force

複数台の Samba4 の DCを構築した場合の注意点Column

　複数台のSamba4のDCを構築した場合、すべてのDCでSYSVOL共有の内容が同期している必要があ
ります。リスト5のようなスクリプトで各DCをWin2003のDCと同期させてもかまいませんが、移行後
も見据え、どれか1台のSamba4のDCをマスタとし、それ以外のDCはマスタのDCとSYSVOL共有の内
容を同期させる設定を行うのがよいでしょう注14。
　とくに要件がなければ、マスタとするDCは後述するFSMOを保持するDCとすればよいでしょう。

 ▼図6　FSMOの移管

samba-tool fsmo show ← FSMOを保持しているサーバを確認
InfrastructureMasterRole owner: CN=NTDS Settings,CN=WIN2K3R2ENT-1,CN=Servers,ｭ
CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=ADDOM1,DC=LOCAL
 （...中略...）
samba-tool fsmo transfer --role=all ← すべてのFSMOの転送
FSMO transfer of 'rid' role successful
FSMO transfer of 'pdc' role successful
FSMO transfer of 'naming' role successful
FSMO transfer of 'infrastructure' role successful
FSMO transfer of 'schema' role successful
samba-tool fsmo show ← FSMOを保持しているサーバを再度確認
InfrastructureMasterRole owner: CN=NTDS Settings,CN=UBUNTU1404-1,CN=Servers,ｭ
CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=ADDOM1,DC=LOCAL
 （...後略...）

注14） Samba4のDC間であれば rsyncを使用することで、よりスマートな同期ができます。詳細はSysVol Replication(https://
wiki.samba.org/index.php/SysVol_Replication)を参照してください。

 ▼リスト7　ntp.confの修正

 （...前略...）
restrict -4 default kod notrap nomodify nopeer
noquery mssntp ← mssntpを追加
restrict -6 default kod notrap nomodify nopeer
noquery mssntp ← mssntpを追加
 （...中略...）
Location of the update directory ← 追加する
ntpsigndsocket /var/lib/samba/ntp_signd/ ← 追加する

注15） これ以外の構成で時刻同期を行っている環境では
環境に応じて適切な時刻同期の設定を行ってくだ
さい。

注16） Bug 9429 - Unable to demote Windows Server
（https://bugzilla.samba.org/show_bug.cgi?
id=9429）。DNSサーバの役割をインストールし
ていない場合は正常に降格できるようです。

https://bugzilla.samba.org/show_bug.cgi?id=9429
https://wiki.samba.org/index.php/SysVol_Replication
https://wiki.samba.org/index.php/SysVol_Replication

Windows Server 2003サポート切れまであと2ヶ月緊急企画

102 - Software Design

removal」コマンドでDCを強制降格させてくだ
さい。
　DCの残骸が残ってしまいますが、ADの機能
的には問題ありません。

Samba4のADの運用

　基本的なADの運用については、RSATと呼
ばれるADの管理ツールをWindowsクライアン
トにインストールすることで、通常のADとまっ
たく同様に遂行できます。
　一部の作業はSambaサーバ上でsamba-toolコ
マンドを使用して行うこともできます。
　以下、注意が必要な点について解説します。

 ▶ドメインのアカウントポリシー
　前述したとおり、Samba自身にはグループポ
リシーの設定が反映されないため、Default

Domain Policyのアカウントポリシーの代わり
に「samba-tool domain passwordsettings」コ

マンドで設定を行います。実行例を図7に示し
ます。

 ▶ SYSVOL共有の複製とグループポリシーの設定
　Windowsサーバの環境ではSYSVOL共有の
内容が双方向に複製されるため、どのDCでグ
ループポリシーの更新を行ってもかまいません。
　一方Sambaの場合、SYSVOL共有の複製の
方式を意識する必要があります。たとえば、前
述したマスタ－スレーブ形式の複製を行ってい
る場合、グループポリシーの更新は必ずマスタ
となっているDCに接続して行う必要がありま

す。管理ツールから特定のDCに接続する方法
は図5を参照してください。

 ▶スナップショットによるバックアップ
　WindowsサーバによるDCにも言えることで
すが、スナップショットによるDCのリストア
は、DC間のADの複製に致命的な問題が発生す
るため実施してはいけません注17。
　SambaのDCは簡単に構築できますので、問
題が発生した場合は再構築する運用が簡便です。
逆にいうと、再構築による運用を行うために、
DCにはDC以外の機能を持たせないことを強く
推奨します。

まとめ

　ここまでSamba4がサポートするADの機能と
Win2003からの移行について解説しました。
　単一ドメイン環境であればADとしての機能
についてほぼサポートされているのですが、
SYSVOL共有の複製機能の欠如による制限に
ついてはどうしても意識が必要です。また運用
についても、大半はRSATから行えるものの、
一部samba-toolコマンドによる設定が必要な項
目があり、こちらも完全にWindowsサーバと同
じ管理とまではいかない面もあります。
　一方、Sambaを使用することでコスト面、リ
ソース面などでのメリットを享受することもで
きます。最終的にそれらを勘案のうえ、Samba

への移行実施の判断を行ってください。Samba

への移行を有償で行っているベンダもあります
ので、Sambaへの移行を行いたいが自
分で行うには自信がないという場合は、
そうしたベンダへの依頼も1つの解か
もしれません。｢

注17） ドメインの最後の1台のDCについては、この
限りではありませんが……。

 ▼図7　samba-tool domain passwordsettingsコマンドの実行例

samba-tool domain passwordsettings show
Password informations for domain 'DC=ADDOM1,DC=LOCAL'

Password complexity: on
Store plaintext passwords: off
Password history length: 24
Minimum password length: 7
Minimum password age (days): 1
Maximum password age (days): 42

Jun. 2015 - 103

捨てられない派で、先輩に相談したら「整頓しろ！　整頓されていないものは捨てられる！」と言われて、実践するとちょっとスッキリし
ました。今後、容量が増えたらどんどん貯めちゃってまた捨てられなくなる！って相談したら、「量ではなく、貯める数はそんなに増え
てる？」と。「画像データ、動画ファイル、Officeファイルも時とともに大きくなってるし、人間が処理できると思って置くならば、量の
変動は少ないはず。保存で大事なことは、容量より処理できる数だよ。食べられるものだけ置いときな！」と。まぁ、こういう整頓がで
きる人なら捨てることに悩まないんでしょうね。著者にとって、保存データと積読は終わりなき旅路になりそうです。

く
つ
な
先
生
も
ト
ラ
ン
ク
ル
ー
ム
2
つ
分
の「
薄
い
本
」を
だ
ん
し
ゃ
り
だ
ん
し
ゃ
り
!!

作）くつなりょうすけ
@ryosuke927

その使っていない
仮想マシンの
イメージを
削除すれば？

この設定ファイルの
バックアップなんて
終わった
プロジェクトのだろ？

このサーバラックの
写真だってもう
終わった
プロジェクトだろ？

配線が超キレイに
できたラックなんだから
消すんじゃ

ねーよ！�

こんなにOSの
インストールイメージ

いらない
だろ。

オレのコレクション
なんだから

今のプロジェクト
でも参考にして
いるんで消しちゃ
ダメです！

ほっとけぇ！

一時ファイルを
ホームディレクトリに
並べるっておまえ
大雑把すぎだろ。

この
マニュアルPDFは
もういらなくね？

メール
消しちゃえば？

消せない
思い出だって
あるだろがぁぁぁ！

まだ使ってるぅー。
メーカーのサポートが
終わってダウンロード
ページもないから
残しているの！

大雑把には大雑把
なりの生き方が
あるんじゃぁぁぁ、

もう、
やめてぇぇぇぇ

！！！
あんたには
捨てられない
ものは
ないんかァァァ！

トランクルーム
2つ分あるっ
つーの。

これアカンのです。
テンプレートにして
いるイメージなんで
捨てられません。

触るなぁ！

あ、
やばい。Disk Full

になってる。

断捨離無情第17回

①②

③

④

⑤⑥

104 - Software Design

Kot l in入門
プログラマに優し

い
現実指向JVM言

語
短期集中
連載

定番の
Hello World

　まず紹介するのはHello Worldプログラムで
す。第1回の4月号でも紹介しましたが、もう
一度確認しましょう。
　リスト1は実行されると標準出力に「Hello,

world!」と書き込んで終了するだけのプログラ
ムです。main関数はKotlinプログラムのエン
トリポイントです。main関数はクラスに属さ
ずパッケージ直下に置く必要があります。パッ
ケージ名はJavaと同じようにドメイン名をひっ
くり返してピリオド（.）区切りのスタイルです。
　実際に動かすにはKotlinコンパイラやIntelliJ

IDEA（＋Kotlinプラグイン）などを使用します。
ちょっと試してみたいときにはKotlin Web

Demo注1というWebブラウザ上でKotlinコード
を編集、実行できる環境がお勧めです。

変数の使い方

　今はただ世界に挨拶するだけのプログラムで

すが、挨拶する対象を変数として切り出してみ
ましょう（リスト2）。
　nameという名前の変数に挨拶する相手の名
前を代入しています（好きな名前を代入してく
ださい！）。変数の宣言にはvalキーワードま
たはvarキーワードが必要です。valを使うと
その変数は再代入、すなわち変更が不可能な変
数になります。varを使うと再代入可能な変数
になります。基本的にはvalを使用し、varを
使うのは最小限にとどめておきましょう。
　nameの宣言でStringという型がアノテートさ
れています。nameはString型であることを明示
しているわけです。しかし右辺の"Taro"という
文字列リテラルの存在によって、nameがString（=

文字列）ということは明白であり、型のアノテー
トは冗長に思えます。実際、Kotlinコンパイラ
はこのような場合には型の明示的なアノテート
なしにnameをString型だと推論してくれます。
たとえばval name = "Taro"のように変数定義
ができます。このようなしくみを型推論と呼び
ますが、Kotlinでは変数定義以外のさまざまな

Kotlinを学ぶ第 3 回

Author 長澤 太郎（ながさわ たろう）　 Twitter @ngsw_taro　 Mail taro.nagasawa@gmail.com

注1） Webブラウザで試せる新しい環境がローンチされました（http://try.kotlinlang.org/）。

前回ではKotlinの開発環境構築について解説しました。今回はKotlin
のプログラミング言語としての文法や機能をじっくり紹介していきま
す。

package com.taroid.sample

fun main(args: Array<String>) {
 println("Hello, world!")
}

 ▼リスト1　KotlinでHello World

fun main(args: Array<String>) {
 val name: String = "Taro"
 println("Hello, ${name}!") // => Hello, Taro
}

 ▼リスト2　変数を使う

http://try.kotlinlang.org/

104 - Software Design Jun. 2015 - 105

Kotlinを学ぶ第 3 回

場所でも型推論が働きます。
　さて、挨拶する相手の名前をnameという変数
に代入していることがわかりました。次に挨拶
文を出力するコードです。"Hello, ${name}!"は
Stringテンプレートと呼ばれている機能です。
式を埋め込むことが可能で、その計算結果が反
映された文字列を生成します。今回の場合、
nameの中身が"Taro"なので"Hello, Taro!"とい
う文字列が得られます注2。

コマンドライン引数の使い方

　挨拶する相手の名前を変数に定義しましたが、
今は名前が固定で挨拶プログラムとしては実用的
ではありません。プログラ
ム利用者が名前を指定でき
ると便利そうです。そこで
プログラム実行時に渡され
るコマンドライン引数を使
い ま す。Kotlinの 場 合、
main関数の引数argsにコマ
ンドライン引数が設定され
ています（リスト3）。
　argsは Array<String>か
らもわかるとおり文字列の

配列です。0が配列の最初の要素のインデックス
です。args[0]には複数渡され得るコマンドライ
ン引数の最初の引数が代入されています。コマ
ンドライン引数が指定されずに実行された場合、
リスト3はargs[0]によりクラッシュします。

if式の使い方

　そこで、argsが空の場合は、デフォルトの
名前を使って挨拶するように変更します。状況
によって処理を分岐する構文は、Javaでもお
馴染みの if-elseです（リスト4）。
　isNotEmptyメソッドにより、配列が空でな
いかどうかを調べています。配列が空でない場
合、すなわちisNotEmptyがtrueを返す場合は
ifの後に続くブロックを実行します。それ以
外の場合はelseの後に続くブロックを実行し
ます。Javaにおける if-elseと同様に、リスト4
のように分岐後のブロック内の文が1つの場合
に限り波括弧（{ }）を省略して記述できます。
　Kotlinの if-elseは式です。つまり if-elseは
値を返します。それはちょうどJavaの条件演
算子注3と同じ動きをします。リスト4を書き直
すとリスト5のようになります。

注2） ＋による文字列連結でも同じ結果を得られますがStringテンプレートを使うとどのような文字列が生成されるかが一見してわかり
やすくなります。

注3） (condition) ? a : bと記述する、Javaで唯一の三項演算子です。

fun main(args: Array<String>) {
 val name = args[0]
 println("Hello, ${name}!")
}

 ▼リスト3　コマンドライン引数に指定された名前を使う

fun main(args: Array<String>) {
 if (args.isNotEmpty()) {
 println("Hello, ${args[0]}!")
 } else {
 println("Hello, 名無しさん!")
 }
}

 ▼リスト4　argsが空でないことを確認する

fun main(args: Array<String>) {
 val name = if (args.isNotEmpty()) args[0] else "名無しさん"
 println("Hello, ${name}!")
}

 ▼リスト5　if-elseは式である

fun main(args: Array<String>) {
 for (name in args) {
 println("Hello, ${name}!")
 }
}

 ▼リスト6　argsの各要素に繰り返しHelloする

106 - Software Design

プログラ
マに優しい現実指向JVM言語

短期集中連載 Kot l in入門
forループの使い方

　複数指定されたコマンドライン引数に対し、
すべてにHelloと言いたい場合にはforループ
を使います（リスト6）。
　このように、Kotlinのforは、Javaにおける
「拡張 for文」に似ています。ループカウンタを
増やして行くスタイルのループを、Kotlinの
forはサポートしていません。

Kotlinの
関数の定義の方法

　まずは簡単な関数を定義する例を示します（リ
スト7）。
　リスト7にhelloという名前の関数を定義し
ました。関数を定義するにはfunキーワード、
関数名、引数リストの順に記述します。引数に
は型を明示する必要があります。波括弧で関数
本体を表します。
　関数定義と関数の呼び出し例をリスト8に示

します。"Kotlin"を引数に、helloを呼び出し
ています。

値を返す関数

　引数を取って、なんらかの計算を施し、その
結果を返すような関数を定義してみましょう。
シンプルな足し算を行うだけの関数plusをリ
スト9に定義しました。
　先ほどのhello関数と違うのは、戻り値の型
を指定しているところと、returnキーワード
により値を返しているところです。戻り値の型
は、関数の引数リストの直後にコロン（:）を挟
んで記述します。plus関数の戻り値の型は2つ
のInt型の足し算なのでIntです。returnキー
ワードは関数の値を返すためのキーワードです。
　plus関数は、return文のみにより構成され
ているので、この場合に限りリスト10のよう
に=を使ったシンプルな記述が可能になります。

fun hello(name: String) {
 println("Hello, ${name}!")
}

 ▼リスト7　hello関数

fun hello(name: String) {
 println("Hello, ${name}!")
}

fun main(args: Array<String>) {
 hello("Kotlin") // => Hello, Kotlin!
}

 ▼リスト8　関数呼び出し例

fun plus(a: Int, b: Int): Int {
 return a + b
}

fun main(args: Array<String>) {
 println("2 + 5 = ${plus(2, 5)}")
// => 2 + 5 = 7
}

 ▼リスト9　足し算関数を定義

fun plus(a: Int, b: Int): Int = a + b

 ▼リスト10　単一式関数

// 掛け算
fun times(a: Int, b: Int) = a * b

// 平方
fun square(n: Int): Int = times(n, n)

// 大きい方を返す
fun max(a: Int, b: Int): Int = if (a < b) ｭ
b else a

// 小さい方を返す
fun min(a: Int, b: Int): Int = if (a <= b) ｭ
a else b

// 最大公約数を返す
fun gcd(a: Int, b: Int): Int {
 var x = max(a, b)
 var y = min(a, b)
 while(y != 0) {
 val w = y
 y = x % y
 x = w
 }
 return x
}

 ▼リスト11　関数で遊ぼう

106 - Software Design Jun. 2015 - 107

Kotlinを学ぶ第 3 回

　関数の基本的な使い方は以上です。リスト11の
ように面白い関数を作って遊んでみましょう！注4

デフォルト引数と名前付き引数

　関数の引数にはデフォルト値を設定しておく
ことができます（リスト12）。
　リスト12の hello関数は、Boolean型の ex
clamationという引数を持っていますが、デフォ
ルト値を設定しています。デフォルト値を持っ
た引数（デフォルト引数）は、呼び出しの際に値
の指定を省略できます。省略した場合にはデフォ
ルト値が使われるというわけです（リスト13）。
　また、関数呼び出しの際に引数へ渡す値を名
前指定で渡せます（リスト14）。

再帰呼び出し

　関数が、自分自身を呼び出すことを再帰呼び
出しと言います。再帰呼び出しにより、ループ
を宣言的に記述できるようになります。たとえ
ば、引数のリストの合計値を返す関数を考えま
しょう。まずは通常バージョンです（リスト
15）。
　forによりループを回しています。変数sum
はvarにより宣言されており、繰り返し新しい
値が代入されています。次に再帰呼び出しのバー
ジョンです（リスト16）。
　forも再代入もなくなりました。代わりに
sum関数の定義の中で自分自身を呼び出してい
ます。
　ちなみに、isEmpty、first()、drop(1)は整
数のListであるintsのメソッドです。それぞ
れ、リストが空かどうか、リストの先頭要素、
先頭から1つ分要素を除いた新しいリストを返
します。
　リスト11で定義した最大公約数を求める

fun hello(name: String, exclamation: Boolean = false) {
 val suffix = if (exclamation) "!" else ""
 println("Hello, ${name}${suffix}")
}

 ▼リスト12　デフォルト引数

// 第2引数を省略
hello("Kotlin") // => Hello, Kotlin

// 第2引数を指定
hello("Kotlin", true) // => Hello, Kotlin!

 ▼リスト13　デフォルト引数の関数の使用例

hello(name = "Foo")

// 引数リストの順番に従う必要はない
hello(exclamation = false, name = "Baz")

 ▼リスト14　名前付き引数

fun sum(ints: List<Int>): Int {
 var sum = 0
 for (e in ints) {
 sum += e
 }
 return sum
}

 ▼リスト15　forによるループ

fun sum(ints: List<Int>): Int =
 if da(ints.isEmpty()) 0
 else ints.first() + sum(ints.drop(1))

 ▼リスト16　再帰呼び出しによるループ

fun gcd(a: Int, b: Int): Int {
 val x = max(a, b)
 val y = min(a, b)
 return if (y == 0) x
 else gcd(y, x % y)
}

 ▼リスト17　gcdを再帰関数にする

注4） しれっとwhileが登場していますが、Javaと同様に条件式が trueの間は繰り返し続ける構文です。

108 - Software Design

プログラ
マに優しい現実指向JVM言語

短期集中連載 Kot l in入門
gcd関数を再帰呼び出しを使って実装してみま
しょう（リスト17）。
　varもwhileループも、そして一時変数wも
消せました！　このように再帰呼び出しを使う
とコードがすっきりして読みやすくなることが
多いです。
　再帰呼び出しの欠点は、関数を何回も呼び出
し続けることによるスタックの消費です。何回
も（環境によりますが非常に多くの回数）関数を
呼び続けるとスタックオーバーフローを起こし、
プログラムがクラッシュします。これを回避す
るためにKotlinには末尾呼び出し最適化（tail

call optimization）と呼ばれるしくみが備わって
います。
　末尾呼び出しとは、再帰呼び出しが末尾にあ
るような呼び出しです。たとえばリスト17の
gcd関数は末尾呼び出しを行っています。この
ような再帰関数にtailRecursive注5というアノ
テーションを付けると末尾呼び出し最適化が施
され、スタックを食いつぶさないようなコード
に展開されます（リスト18）。
　最適化が有効になるのはあくまで末尾呼び出
しのみなので、関数によっては再帰の仕方を工
夫する必要があります。

関数オブジェクトと関数型

　Kotlinでは関数をほかの値と同じように変数
に代入したり、引数として関数に渡したり、戻

り値として受け取ったりできます。このように
ほかの値と同様の形になった関数を、便宜的に
関数オブジェクトと呼ぶことにします。実際に
関数を変数に代入する例をリスト19に示します。
　定義されたsucc関数を変数hogeに代入しま
した。ポイントは、関数名の直前に::と記述
することです。::を置くことで関数オブジェ
クトを得ることができるのです。
　関数オブジェクトの関数としての機能を呼び
出すには、関数オブジェクトのinvokeメソッ
ドを使います（リスト20）。
　この機能はよく使うので構文糖衣が提供され
ています。リスト21のように普通の関数呼び
出しに似ています。
　ところで、変数hogeの型を明示していませ
んでしたが、関数オブジェクトの型はどのよう
になるのでしょうか。hogeの宣言を型推論に
頼らないで記述するとリスト22のようになり
ます。
　(Int) -> Intの部分が関数の型です。->を
挟んで左が引数の型リスト、右が戻り値の型を
表現しています。2つの引数を取る関数の型は、
たとえば(Char, Int) -> Stringのようになり
ます。

高階関数

　関数オブジェクトと関数型についてわかった
ので、関数オブジェクトを引数に取る関数につ

tailRecursive fun gcd(a: Int, b: Int): Int {
 val x = max(a, b)
 val y = min(a, b)
 return if (y == 0) x
 else gcd(y, x % y)
}

 ▼リスト18　末尾呼び出し最適化が効くgcd関数

fun succ(n: Int) = n + 1
val hoge = ::succ

 ▼リスト19　関数オブジェクト

val r = hoge.invoke(5)
println(r) // => 6

 ▼リスト20　invokeメソッド

val r = hoge(5)
println(r) // => 6

 ▼リスト21　invoke呼び出しの構文糖衣

val hoge: (Int) -> Int = ::succ

 ▼リスト22　関数オブジェクト

注5） 「tail recursive = 末尾 再帰」という意味です。

108 - Software Design Jun. 2015 - 109

Kotlinを学ぶ第 3 回

いて解説します。関数を引数に取ったり、関数
を返すような関数のことを高階関数（こうかい
かんすう：higher-order function）と呼びます。
簡単な例をリスト23に示します。
　apply関数は引数を2つ取ります。Int型のn
と、(Int) -> Int型（すなわち関数型）のfです。
apply関数の動きとしては、nを引数にfを適
用した結果を返すだけです。では、このapply
関数を使ってみましょう（リスト24）。
　iとして5を、fとしてリスト19で定義した
succ関数の関数オブジェクトを渡しています。
このコードを実行すると「開始」「終了」「6」と各
行に表示されます。
　もう少し複雑で役に立ちそうな
例を見てみましょう。リスト25
で定義したmap関数は、リストの
各要素を変換して新しいリストを
得る関数です。
　関数シグネチャを注意深く見て
みましょう。map関数は2つの引
数を取ります。IntのListである
intsが第1引数で、元となるリス
トです。(Int) -> Int型の fは、
リストの要素に適用される変換ロ
ジックです。そして、戻り値の型
はList<Int>で、これが変換後の
リストとなるわけです。
　次に関数本体です。新しいリス
トが欲しいので、リスト（ここで
は java.util.ArrayList）のイン

スタンスを生成します。生成したリストに
newListという名前を付けておきます。ここで
forループが登場し、intsの各要素に対してルー
プします。各要素はfの引数となり、その適用
の結果得られた値がnewListに追加されていき
ます。こうしてnewListは元のリストの各要素
が変換された値で構成されるリストとなり、
mapの戻り値となります。
　実際にmapを使ってみましょう（リスト26）。
　このように、高階関数の利点は抽象的な部品
であるということです。例に示したmap関数は
リストの各要素を別の値に変換する処理ですが、
変換の詳細には触れていません。変換の詳細は、
引数fに任されているのです。部品が抽象的で
あるということは、コードの再利用をより容易
にすることを意味します。

クロージャ

　定義済みの関数を::により、関数オブジェ
クトに変換する一連の流れを介さずに関数オブ
ジェクトを直接生成することもできます。リス

fun apply(n: Int, f: (Int) -> Int): Int {
 println("開始")
 val r = f(n)
 println("終了")
 return r
}

 ▼リスト23　高階関数の例

fun map(ints: List<Int>, f: (Int) -> Int): List<Int> {
 val newList = java.util.ArrayList<Int>()
 for (e in ints) {
 newList.add(f(e))
 }
 return newList
}

 ▼リスト25　リストの各要素を変換して新しいリストを得るmap関数

// [2, 3, 4]のリストを作る
val src = listOf(2, 3, 4)

// 平方を得る関数を各要素に適用
fun square(n: Int): Int = n * n
println(map(src, ::square)) // => [4, 9, 16]

// 階乗を得る関数を各要素に適用
fun factorial(n: Int): Int =
 if (n == 1) 1
 else n * factorial(n - 1)
println(map(src, ::factorial)) // => [2, 6, 24]

 ▼リスト26　map関数を使う

val got = apply(5, ::succ)
println(got) // => 6

 ▼リスト24　apply関数を使う

110 - Software Design

プログラ
マに優しい現実指向JVM言語

短期集中連載 Kot l in入門

ト27の①と②と③では同じ結果を得られます。
　②や③のように関数オブジェクトを直接生成
するような記法を関数リテラルと呼びます。ほ
かの言語ではラムダ式や無名関数と呼ばれるも
のです。③のような関数リテラルの書式を一般
化すると次のようになります。

{引数リスト -> 関数本体}

　関数リテラルには波括弧が必須であることに
注意してください。また、文脈によっては省略
した記述が可能になります（リスト28）。
　ところで、Kotlinの関数リテラルはクロージャ

（closure）です。つまり、引数に与えられた変
数以外の変数を、コードを記述したときのスコー
プで解決できます。日本語で説明してもわかり
づらいと思うので、コード例を示します。
　今、リスト29に定義したような関数counter
があります。
　この関数は「Intを返す関数」を返します。「Int
を返す関数」を関数Aと呼ぶことにします。関
数Aは{ count++ }のことです。変数countは
関数Aの外で宣言されていますが、関数Aが定
義されている場所でこれを参照、更新すること
ができます。関数Aを呼び出すとcountの値を
返して、countをインクリメントします。
　関数counterの使用例がリスト30です。
　counter()により関数Aを取得しています。
関数A（ここではcounter1などと名前を付けて
います）が呼び出されるたびに、返される値が
増えているのがわかります。

まとめ

　Hello Worldプログラムを通じて、valとvar
による変数宣言とStringテンプレート、コマ
ンドライン引数を学びました。Kotlinの if-else

はJavaのそれとは異なり「式」であり、値を返

// ①
fun succ(n: Int): Int = n + 1
map(list, ::succ)

// ②
map(list, fun(n: Int): Int { return n + 1 })

// ③
map(list, {n: Int -> n + 1})

 ▼リスト27　関数オブジェクトのリテラル表現

// 関数リテラル内で型推論が働く
val foo: (Int) -> Int = {
 n -> n + 1
}

// 引数が1つの場合は暗黙の変数itが使える
val bar: (Int) -> Int = {
 it + 1
}

// 複数の文を持つ関数リテラル
val baz: (Int) -> Int = {
 var sum = 0
 for (e in 1..it) {
 sum += e
 }
 sum
}

// 高階関数に渡す特殊な記法
map(listOf(1, 2, 3)) {
 it + 1
}

 ▼リスト28　関数リテラル 記法

fun counter(): ()->Int {
 var count = 0
 return {
 count++
 }
}

 ▼リスト29　クロージャを返す関数counter

val counter1 = counter()
println(counter1()) // => 0
println(counter1()) // => 1
println(counter1()) // => 2

val counter2 = counter()
println(counter2()) // => 0
println(counter2()) // => 1

 ▼リスト30　呼び出すたびにカウントアップする

110 - Software Design Jun. 2015 - 111

Kotlinを学ぶ第 3 回

します。forループは、Javaの拡張 for文に似
ており、ループカウンタを必要としません。
　後半はKotlinの関数について学びました。関
数の引数にはデフォルト値を設定しておくこと
ができます。また関数呼び出し時に、引数を名
前付きで渡せます。関数は第一級オブジェクト

「インライン関数」

　高階関数は強力なしくみですが、一般に呼び出し
のコストが高い傾向にあります。関数オブジェクト
の生成や呼び出しを伴うことがほとんどだからです。
この問題を解消するためインライン関数というしく
みが導入されています。インライン関数は、引数の
関数リテラルがコンパイル時にインライン展開され
る関数のことです。通常の関数にinlineアノテーショ
ンを付加するだけでインライン関数になります。
　リスト25をインライン関数にするには次のとおり
です。

// inlineアノテーションを付けるだけ
inline fun map(ints: List<Int>, f: (Int) ->ｭ
Int): List<Int> {
 val newList = java.util.ArrayList<Int>()
 for (e in ints) {
 newList.add(f(e))
 }
 return newList
}

Javaは業務システム開発における基盤的な位置づけのプログラ
ミング言語として、広く使われています。1995年の登場以来、現在
では金融系システムでも利用されるほど盤石な技術として利用さ
れるに至っています。技術的には枯れた言語と認識されています
が、長らく使われてきたフレームワークStruts 1もEnd Of Lifeを迎
えた現在、Java SE8のリリース、JavaEE 7の普及などに伴い、転
換期を迎えつつあります。
本ムックでは、業務開発におけるJavaにフォーカスを当て、Javaの
習得が必要な新人エンジニアの方を対象とした技術解説を行っ
ていきます。きしだなおき、のざきひろふみ、

吉田真也、菊田洋一、渡辺修司、
伊賀敏樹 著
B5判／168ページ
定価（本体1,980円＋税）
ISBN 978-4-7741-6931-6

・Javaによる開発に取り組みたい新人・若手エンジニア
・Javaによる開発に携わる、開発経験の浅いエンジニア

であり、関数型の変数に代入できます。その性
質を利用した高階関数と、クロージャを学びま
した。Kotlinの関数はアノテーションを付ける
ことで末尾呼び出し最適化やインライン関数化
が有効になります。
　次回はクラスについて解説します。ﾟ

112 - Software Design

で学ぶErlang
並行プログラミング

繰り返し制御とリスト処理、
高階関数

　複数のデータをまとめて扱うには、そのデー
タの構成要素を各々指定して繰り返し制御をし
ながら処理する必要があります。このような処
理のしかたとして、Erlangでは再帰によるルー
プとリスト処理という2つの方法が使えます。
　ErlangにはCのfor文やwhile文にあたるルー
プを書くための式はありません。その代わりに関
数が自分自身に対する再帰呼び出しを行うことで、
繰り返し制御ができるようになっています。具体
的には、繰り返し制御のそれぞれを関数として
定義し、中間処理結果は明示的に関数の引数と
して渡します。終了条件はパターンマッチングを
使って書くことで簡潔に書けます。また、再帰
呼び出しを関数内にてほかの処理を後に残さな
い形で最後に実行する「末尾再帰」という形を取
れば、関数呼び出しをループと同様に最適化で
きるため、実行効率が損われることもありません。
　一方、繰り返しによって変わる操作対象をリ
ストの要素として列挙し、そのリストに対して
操作を行う関数を定義することによって、ルー
プと同様の結果を得るためのリスト処理ができ
ます注1。Erlang/OTPには listsモジュール [1]に

注1） リストは中にリストを含めることができるため、単純な1
次元の配列に限らず多次元の配列や任意の木構造を表現で
きます。その意味では、ループよりもずっと応用範囲が広
いといえます。

多くのリスト処理関数が定義されており、それ
らを活用することでループを使わずにリスト処
理を簡潔に書けます。これらの関数の多くは、
別の関数を引数に取ります。このように関数を
引数に取る関数を「高階関数」といいます。高階
関数を使うことで、リストの各要素に同じ関数
を適用したり（map）、リストの要素の中で関数
として示された条件に合うものを取り出したり
（filter）、リストの各要素に対し順々に関数を
適用してその結果を返す（fold）などの定型処理
を簡潔に書けます（図1）。mapや filterは並列
処理ができるため、逐次処理のループよりも高
速化が図れます注2。
　リスト1に再帰によるループとリスト処理に
よるコードの例を示します。リスト処理の高階
関数のうち、map関数にあたるものは「リスト
内包表記」という記法で書いています注3 [2]。全
般にリスト処理のほうがコードが短くなってい
ます。
　実行結果の一例を図2に示します。ループと
リスト処理でまったく同じ結果が得られること
がわかります。

注2） リスト関連の並列処理を行うためには、ユーザレベルでの
プログラミングが必要です。一例として、Joe Armstrong
による並列map処理関数pmapについての解説が（http://
e r lang.org/p ipermai l /e r lang-quest ions /2009-
January/041214.html）にあります。

注3） リスト内包表記では、複数のリストを組み合わせたり、リ
ストのあとに条件を書くことでリストの中の要素の一部の
みに関数を適用した結果を得るなど、単純なmap関数に
比べてより高度な演算ができます。同様の構文はPython
やHaskellなどほかの言語にもあります。

この連載ではプログラミング言語Erlangとその並行プログラミングについて紹介していきます。今回は、
Erlangのリスト処理とプロセス間通信、そして新しいリリース17.5と18.0-rc1について紹介します。

 Author 力武健次技術士事務所 所長 力武 健次（りきたけ けんじ） http://rikitake.jp/

第3回 Erlangのリスト処理とプロセス間通信

で学ぶErlang
並行プログラミング

http://rikitake.jp/
http://erlang.org/pipermail/erlang-questions/2009-January/041214.html

112 - Software Design Jun. 2015 - 113

 ▼リスト1　loopmapモジュール ̶ ̶ 再帰によるループとリスト処理の例

-module(loopmap).

-export([loopx2/1, mapx2/1, loopsum/1,
 foldsum/1, loopmod3/1, filtermod3/1]).
 %%% [1..N]のリストの各要素を2倍して
 %%% [2, 4, 6, .. N * 2]とするコードです

 %%% 再帰によるループの例
 %%% このモジュールの中の再帰によるコードは
 %%% すべて末尾再帰として書いています

-spec loopx2(non_neg_integer()) ->
list(non_neg_integer()).
 %%% when はガードといい，定義 when 条件 の形で
 %%% 条件が成立した場合のみ
 %%% パターンマッチングを試行します

 %%% loopx2/1では内部状態を取る変数が2つ必要なため
 %%% loopx2/3へ制御を渡します

loopx2(N) when N >= 0 ->
 loopx2(N, 1, []).

loopx2(0, _, L) ->
 % 結果をリストの左側から積んでいくため
 % 終了時には左右をひっくり返す処理が必要になります
 lists:reverse(L);
loopx2(N, M, L) ->
 % 以下のio:format/2のコメントを外して有効にすると
 % ループの中間結果がわかります
 % io:format("N = ~p, M = ~p, L = ~p~n", [N, M, L]),
 loopx2(N - 1, M + 1, [M * 2 | L]).

-spec mapx2(non_neg_integer()) ->
list(non_neg_integer()).
 %%% mapによるリスト処理の例
 %%% lists:seq/2は[1..N]のリストを生成します
 %%% このリスト内包表記では
 %%% "||"の右側のリストの各要素に対し
 %%% 左側の関数を適用した結果を返します

mapx2(N) ->
 [X * 2 || X <- lists:seq(1, N)].

 %%% 1からNまでの整数の和を返すコードです

-spec loopsum(non_neg_integer()) ->
non_neg_integer().

 %%% 再帰によるループの例

loopsum(N) when N >= 0 ->
 loopsum(N, 0).

loopsum(0, Sum) -> Sum;
loopsum(N, Sum) ->
 % io:format("N = ~p, Sum = ~p~n", [N, Sum]),
 loopsum(N - 1, N + Sum).
 %%% fold演算の1つfoldl（左側へのたたみ込み）により
 %%% [1..N]のリストに対し（0は初期値）
 %%% (((((0 + 1) + 2) + 3) + ...) + N)を計算します

-spec foldsum(non_neg_integer()) ->
non_neg_integer().

foldsum(N) ->
 % 最初の関数がリストの要素とそれまでの計算結果に適用されます
 % 2番目の引数が初期値となります
 % 3番目の引数が計算対象となるリストです
 lists:foldl(fun(X, Sum) ->
X + Sum end, 0, lists:seq(1, N)).

 %%% 1からNまでの整数の中で3で割り切れるものを返すコードです

-spec loopmod3(non_neg_integer()) ->
list(non_neg_integer()).

 %%% 再帰によるループの例

loopmod3(N) when N >= 0 ->
 loopmod3(N, 1, []).

loopmod3(0, _, L) ->
 lists:reverse(L);
loopmod3(N, M, L) ->
 % io:format("N = ~p, M = ~p, L = ~p~n", [N, M, L]),
 case (M rem 3) =:= 0 of
 true -> loopmod3(N - 1, M + 1, [M | ｭ
L]);
 false -> loopmod3(N - 1, M + 1, L)
 end.
 %%% filter関数によって条件に合致するものだけを
 %%% リストとして出力します

-spec filtermod3(non_neg_integer()) ->
list(non_neg_integer()).

filtermod3(N) ->
 % =:= は両辺の型も値も完全に一致していることを示します
 % （浮動小数点数と整数の比較には =:= ではなく == を使います）
 lists:filter(fun(X) -> (X rem 3) =:= 0 ｭ
end, lists:seq(1, N)).

 ▼図1　リスト処理のための高階関数の例

初期値

map filter

mapはリストの各要素に同じ関数を適用する filterはリストの要素の中から条件に合うものを選ぶ

foldは初期値と2つの引数を取る関数をリストに適用して結果を得る

リストがたたみ込まれて
（foldされて）結果となる

右段へ続く↗︎

左段下から続く↙︎

第3回 Erlangのリスト処理とプロセス間通信

114 - Software Design

で学ぶErlang
並行プログラミング

プロセスの作成とプロセス間通信

　前回第2回ではプロセスに基づく並行プログ
ラミングの話をしました。今回は実際にプロセ
スを作ってみることにします。といっても、実
際にはspawn注4という関数を呼べば、プロセス
は作れてしまいます。spawnすることで、ある関
数を実行するプロセスが作られ、それの識別子
Pidが割り当てられ、spawnを呼んだ側に返され
ます。このPidを使って、プロセスを強制終了さ
せたり、現在の状態を判定することもできます。
　プロセス間通信は、メッセージの送受信によっ
て行います（図3）。送信は「Pid ! メッセージの値」
という形の式を評価することで行います。受信は
case式に似たreceive式を使って行います注5。受
信の際receive式ではパターンマッチングを行い
ますが、マッチするパターンがない場合は、メッ
セージは受信したプロセスのメッセージ保管場
所であるメールボックスに残り、次にreceive式
が評価されるとメールボックスの古いメッセージ

注4） このspawnという関数では子プロセスの監視はしません。
これでは不便なので、OTPには子プロセスの管理を行うた
めに、プロセス間の終了状態を伝えるリンクを張るための
spawn_linkやプロセスの死活状態を監視するための
spawn_monitor、これらを一般化したspawn_optなどの
各種関数があります。詳細はerlangモジュールの関連マニュ
アルを参照してください（http://www.erlang.org/doc/
man/erlang.html#spawn-1）。

注5） receive式ではメッセージの到着を待ってパターンマッチ
ングを行いますが、メッセージが来なかったときのタイム
アウト値も設定できるため、一定時間を待つために使うこ
ともできます。詳しくは（http://www.erlang.org/doc/
reference_manual/expressions.html#receive）を参照し
てください。

から再度パターンマッチングが行われます注6。
　リスト2を示します。このカウンタは整数値
を動作中の状態として保持し、1ずつ増減する
という簡単なものです。カウンタのプロセスは、
ほかのプロセスからの処理要求をメッセージで
受信し、返答をメッセージで返します。
　実行結果を図4に示します。各プロセスが起
動中はそれぞれ独立した状態を保持し、外部か
らのメッセージに反応して状態を変えることが
わかります。

17.5と18.0-rc1リリース

　Erlang/OTPは、年に数回新しいバージョンが
リリースされます。とくに春のErlang Factory

SF Bay（コラム参照）のころには、新しいリリース
が出るのが通例になっているように筆者は感じます。
　4月1日には安定版のErlang/OTP 17.5[3]が
リリースされました。リリースノート [4]の情報
では、バグフィックスが主で、17.4からの大き
な機能変更はないようです。インストールは
17.4同様注7に行えます。新規インストールでは、
このバージョンを使うのが良いでしょう。
　一方、3月27日には、次期バージョンの公開

注6） パターンマッチングが行われないメッセージはメールボッ

クスに溜まっていってしまうため、そのまま放置しておく
と速度低下の原因になります。これを防ぐには、想定外の
メッセージが来たときにエラーとして処理するためのコー
ドを書く必要があります。今回のリスト2のコードではこ
の処理をしていません（興味のある読者の方はぜひ自分で
追加してみてください）。

注7） 本連載第1回（本誌2014年4月号P.124～P.129）でインス
トールのしかたの概要を説明しています。

 ▼図2　loopmapモジュールの各関
　　 数の実行例

1> c(loopmap).
{ok,loopmap}
2> loopmap:loopx2(10).
[2,4,6,8,10,12,14,16,18,20]
3> loopmap:mapx2(10).
[2,4,6,8,10,12,14,16,18,20]
4> loopmap:loopsum(11).
66
5> loopmap:foldsum(11).
66
6> loopmap:loopmod3(11).
[3,6,9]
7> loopmap:filtermod3(11).
[3,6,9]

 ▼図3　Erlangのプロセス間通信

プロセスPid1からプロセスPid2へメッセージを送るのは以下のようになる

プロセスPid1の
メールボックス

Pid2 ! {self(), "Message"}
（self()の値はPid1）

receive
{P, R} -> ...
{Pid1, "Message"}プロセス

Pid1

プロセスPid2の
メールボックス

receive式の評価でパターンマッチ
したものがメールボックスから取り
出される

プロセス
Pid2

http://www.erlang.org/doc/man/erlang.html#spawn-1
http://www.erlang.org/doc/reference_manual/expressions.html#receive

114 - Software Design Jun. 2015 - 115

 ▼リスト2　msgcounterモジュール̶̶プロセス間通信によるカウンタの例

-module(msgcounter).

-export([start/0, stop/1, inc/1, dec/1, ｭ
zero/1, val/1]).
 %%% カウンタのプロセスをスタートします
 %%% プロセスのPidを返します
 %%% 各カウンタのプロセスは中にカウンタの値を状態として保持します

-spec start() -> pid().

start() -> spawn(fun counter/0).

 %%% Pidで指定したカウンタのプロセスを終了します

-spec stop(pid()) -> ok.

stop(Pid) -> sendmsg(Pid, stop).

 %%% Pidで指定したカウンタの値を1つ増やします

-spec inc(pid()) -> integer().

inc(Pid) -> sendmsg(Pid, inc).

 %%% Pidで指定したカウンタの値を1つ減らします

-spec dec(pid()) -> integer().

dec(Pid) -> sendmsg(Pid, dec).

 %%% Pidで指定したカウンタの値をゼロ(0)にします

-spec zero(pid()) -> 0.

zero(Pid) -> sendmsg(Pid, zero).

 %%% Pidで指定したカウンタの値を返します

-spec val(pid()) -> integer().

val(Pid) -> sendmsg(Pid, val).
 %%% 各カウンタのプロセスへメッセージを送り
 %%% 返答を受けとるための関数です
 %%% （該当するプロセスがなかった場合はどうなるか試してみてください）

sendmsg(Pid, Req) ->
 % 「Pid ! メッセージの値」という式を評価すると，
 % Pidに対応するプロセスにメッセージが送られます
 % self()は自分自身が動いているプロセスのPidです
 % self()を相手に送ることで相手が誰にメッセージを
 % 返せばいいかがわかります
 Pid ! {self(), Req},
 % receive式でメッセージを受信します
 % receiveの後に列挙されたパターンにマッチしてい
 % れば -> の右側の値を返します
 % case式と似た構文で条件判定が可能です
 receive
 {Pid, Resp} -> Resp
 end.

counter() ->
 counter(0).
%%% 各カウンタのプロセスは起動すると
%%% ループを作ってメッセージを待ちます
%%% 意味のあるメッセージを受信すると
%%% それぞれに応じた値を返して状態を更新します

counter(Count) ->
 receive
 {From, zero} ->
 From ! {self(), 0},
 counter(0);
 {From, inc} ->
 From ! {self(), Count + 1},
 counter(Count + 1);
 {From, dec} ->
 From ! {self(), Count - 1},
 counter(Count - 1);
 {From, val} ->
 From ! {self(), Count},
 counter(Count);
 {From, stop} ->
 From ! {self(), ok},
 % プロセスを終了します
 exit(normal);
 {From, Else} ->
 From ! {self(), {unknown_message,ｭ
Else}},
 counter(Count)
 end.

テスト版18.0-rc1[5]が発表されました。まだア
ルファ版という位置付けで、時刻の取り扱い方
法の変更（後述）、データ型のうちサイズの大き
なマップ（maps）の処理効率向上や、SSL/TLS

関連の脆弱性対応による仕様変更などの機能追
加が行われます。また、今年6月の正式版に向
けてさまざまなバグ修正が行われる予定で
す注8。

注8） 4月11日にパッチリリースとして17.5.1が出ました（http://
e r lang.org /p ipermai l /e r lang-quest ions /2015-
April/084210.html）。sshモジュールに関するバグを修正
しています。このリリースは tar.gzの形式では提供されて
いないため、ソースコードはErlang/OTPのGitHubレポジ
トリから取得する必要があります。具体的なダウンロード
とビルドの仕方についての詳細は（http://qiita.com/jj1bdx/
items/4f7d7b5a53fcec32ab8d）を参照してください。

18.0での時刻取り扱いの変化

　バージョン18.0以降のErlang/OTPでは、大
きな変化として、時刻の取り扱いが変わります [6]。
　Erlang/OTPの仮想マシンBEAMでは、POSIX

時刻に準拠したErlangシステム時刻（Erlang

System Time）と単調増加することを保証した
Erlang単調増加時刻（Erlang Monotonic Time）
の2つの時刻を管理しています。この2つの時
刻の差分値は、17.xまではBEAMの起動時に
設定された状態で固定されていました（ノータ
イムワープモード）。しかし、この動作のもと

右段へ続く↗︎

左段下から続く↙︎

第3回 Erlangのリスト処理とプロセス間通信

http://erlang.org/pipermail/erlang-questions/2015-April/084210.html
http://qiita.com/jj1bdx/items/4f7d7b5a53fcec32ab8d

116 - Software Design

で学ぶErlang
並行プログラミング

では、OSのシステム時刻が過去に戻ったとき、
Erlang単調増加時刻が非常に長い期間にわた
りまったく進まなくなってしまうことがあると
いう重大な問題がありました。
　この動作を修正するために、18.xからは、
BEAM起動後に一度だけ時刻修正をユーザが
行えるシングルタイムワープモードと、BEAM

が2つの時刻の差分値を必要に応じて修正でき
るようにするマルチタイムワープモードが導入
されます。マルチタイムワープモードの導入に
より、Erlang単調増加時刻が進まなくなると
いう状況がなくなり、より正確な時刻をスケー
ラビリティを損わずに提供できます。これらの
モードはBEAM起動時に選択できます。後方
互換性を確保するため、既定値はノータイムワー
プモードのままですが、今後はマルチタイムワー
プモードを使うことが強く推奨されています。
　マルチタイムワープモードでプログラムの動

作を保証するためには、従来から使われてきた
時刻取得関数のerlang:now/0を使うのを止め
る必要があります。このため、erlang:now/0
は非推奨（deprecated）となり、代わりにerlang
:system_time/1などの新しいAPI関数群が提
供されます。このAPI関数群では、経過時間
の測定や物事が起きる順番の前後の判定、ある
いは重複しない名前の生成など、さまざまな目
的に応じた個別の関数を提供しています。

まとめ

　今回はErlangの繰り返し制御とリスト処理、
プロセス間通信、そしてバージョン18.0での時
刻取り扱いの変化について紹介しました。次回
はErlangの基本ライブラリ集であるOTPと、分
散プログラミングについて概要を紹介する予定
です。｢

参考文献
[1] 	 http://erlang.org/doc/man/lists.html
[2] 	 http://erlang.org/doc/programming_examples/list_comprehensions.html
[3] 　http://erlang.org/pipermail/erlang-questions/2015-April/084099.html
[4] 	 http://www.erlang.org/download/otp_src_17.5.readme
[5] 	 http://erlang.org/pipermail/erlang-questions/2015-March/084037.html

 ▼図4　msgcounterモジュールの各関数の実行例

Eshell V6.3.1 (abort with ^G)
1> c(msgcounter).
{ok,msgcounter}
　 ↓1つ目のカウンタP1を起動します
2> P1 = msgcounter:start().
<0.39.0>
　 ↓2つ目のカウンタP2を起動します
3> P2 = msgcounter:start().
<0.41.0>
　 2つのカウンタが独立しているのがわかります
4> msgcounter:inc(P1).1
5> msgcounter:dec(P2).
-1
6> msgcounter:inc(P1).
2
7> msgcounter:val(P2).
-1
 ↓i()は現在BEAMが管理しているプロセスの状態
　　を表示するシェルコマンドです
8> i().
Pid Initial Call Heap Reds Msgs
Registered Current Function Stack
<0.0.0> otp_ring0:start/2 1598 3436 0
init init:loop/1 2
<0.3.0> erlang:apply/2 4185 676922 0
erl_prim_loader erl_prim_loader:loop/3 6
 ……（中略）……

<0.32.0> erlang:apply/2 2586 23246 0
 c:pinfo/1 50
　 P1のカウンタのプロセス
<0.39.0> erlang:apply/2 233 12 0
 msgcounter:counter/1 2
　 P2のカウンタのプロセス
<0.41.0> erlang:apply/2 233 6 0
 msgcounter:counter/1 2
Total 34904 902124 0
 223
ok
 カウンタのプロセスを停止します
9> msgcounter:stop(P1).　ok
10> msgcounter:stop(P2).
ok
11> i().
Pid Initial Call Heap Reds Msgs
Registered Current Function Stack
<0.0.0> otp_ring0:start/2 1598 3436 0
init init:loop/1 2
 ……（中略）……
<0.32.0> erlang:apply/2 2586 43346 0
 c:pinfo/1 50
 カウンタのプロセスは消えています
Total 32839 940931 0
 219
ok

右段へ続く↗︎

左段下から続く↙︎

http://erlang.org/doc/man/lists.html
http://erlang.org/doc/programming_examples/list_comprehensions.html
http://erlang.org/pipermail/erlang-questions/2015-April/084099.html
http://www.erlang.org/download/otp_src_17.5.readme
http://erlang.org/pipermail/erlang-questions/2015-March/084037.html

116 - Software Design Jun. 2015 - 117

Erlang Factory SF Bay 2015

　3月26、27の両日に、米国カリフォルニア州サ
ンフランシスコにて、Erlang Solutions社が主催
するErlang/OTP関連技術のカンファレンスであ
るErlang Factory SF Bay Area 2015[7]が開催
されました。このカンファレンスはスウェーデン
のストックホルムで開かれる同社主催のErlang
User Conference（今年は6月11、12の両日に
開催予定）とともに、世界有数のErlang/OTPや
Elixir言語注9などに関するカンファレンスの1つ
となっています。
　カンファレンスでの発表内容は実践的で高度か
つ多岐にわたるものです。基調講演はアクターモ
デル注10の提唱者であるCarl E. Hewitt氏による

“Actors for Cyberthings”、そしてErlangの開
発者Joe Armstrong、Mike Williams、Robert
Virdingの3氏によるErlangの歴史と今後の課題
を述べた“From WhatsApp to Outer Space”の
2つが行われました。また、毎年の恒例として、
OTP TeamよりErlang/OTPの開発状況と今後
のロードマップに関する発表がありました。
　今年のおもなトピックとしては次のものがあり
ました。

●	 OTP TeamのコンサルタントLukas Larsson
氏によるBEAMでの時刻の取り扱いの変化に
関する発表

●	 OpenXのアーキテクトAnthony Molinaro氏
によるコネクションプールライブラリに関する
実測に基づく詳細な比較結果の発表

●	 ビルドツールRebarの次期バージョンRebar3
の開発状況に関するFred Hébert、Tristan
Sloughter両氏による発表

●	 Elixir言語の作成者José Valim氏による今後
の同言語のロードマップに関する発表

　筆者もこのカンファレンスに2010年から6回
連続で発表者として参加しています（写真1）。
　 今 年 はOTPの 疑 似 乱 数 ラ イ ブ ラ リ で あ る
randomモジュールの実装の諸問題、そしてより
特性の良い疑似乱数ライブラリの開発状況につい
て発表しました [8]。
　このカンファレンスの特徴は、世界中から
Erlang関連のトップクラスのエンジニアや研究
者が集まり、彼等と直にやりとりができることで
す。26日の夜には参加者のディナーパーティが開
かれ、ライトニングトークでの各種発表も行われ
ました。また、会議の前後には各種チュートリア
ルが開かれ、筆者もElixir言語と属性テストツー
ルQuickCheckについて、実戦さながらの熱い
ハンズオンを体験してきました。
　Erlang Factoryで残念なのは、日本から来て
いる方がたいへん少ないことです。サンフランシ
スコは比較的日本からも近いので、来年は日本か
らの参加者が増えることを期待しています。

Column

注9） Elixir言語（http://elixir-lang.org/）はBEAMで動作する
言語の1つで、Erlang/OTPの機能をすべて利用できる
互換性を保ちつつ、メタプログラミング（プログラム
を生成するためのプログラミング）による文法の拡張や、
プログラムの読み書きのしやすさにより重点を置いて
開発されています。

注10） アクターモデルとは、メッセージをやりとりし並行に
動作する「アクター」に基づいて並行処理システムを定
義するものです。Erlangはアクターモデルに基づく実
装の1つとされています。

 ▼写真1　筆者の発表写真（撮影 : Fred Hébert氏）

参考文献（前ページより続き）
[6] 	 "Time and Time Correction in Erlang", Erlang Run-Time System Application (ERTS）User's Guide, Version 7.0, http://

www.erlang.org/documentation/doc-7.0-rc1/erts-7.0/doc/html/time_correction.html
[7]	 http://www.erlang-factory.com/sfbay2015/
[8]	 "XorShift PRNGs on Erlang"，http://qiita.com/jj1bdx/items/f224d617d24121690a86 （日本語での解説記事）

第3回 Erlangのリスト処理とプロセス間通信

http://elixir-lang.org/
http://www.erlang.org/documentation/doc-7.0-rc1/erts-7.0/doc/html/time_correction.html
http://www.erlang-factory.com/sfbay2015/
http://qiita.com/jj1bdx/items/f224d617d24121690a86

118 - Software Design

　前回は「議事録を書こう（前編）」ということで、
プロジェクトの作り方と単独のreStructured

Text（以下、reST）で扱う文法やSphinxの基本
的な使い方を紹介しました。
　今回はその後編です。複数のreSTに関連性
を持たせ、Sphinxで扱う方法を紹介していきま
す。題材は前回に引き続き「議事録」です。
　会議が複数回行われると、当然その分だけ議
事録が増えていきます。本稿では、増えていく
ドキュメントをSphinxで扱う例を紹介します。

　サンプルの議事録プロジェクトのディレクト
リ構造は図1のようになっています。make html
によって変換されたドキュメント類は省略して
います。

今回のテーマ

サンプルプロジェクトの
ディレクトリ構造

　会議が行われ、議事録が作成されるとそれぞ
れのディレクトリに保存されます。新しい会議
が行われた場合は、ディレクトリが追加されて
いきます。

ドキュメントのスタート地点
「マスタードキュメント」

　前編でも触れましたが、Sphinxではどのド
キュメントをプロジェクトの最初のページにす
るかを決める必要があります。このドキュメン
トは「マスタードキュメント」と呼ばれ、プロジェ
クト内で1つ必要になります。sphinx-quickstart

でプロジェクトを作成した場合、conf.pyに
「master_doc='index'」と記述され、index.rst

がマスタードキュメントとして設定されます。
　プロジェクト内にあるreSTは、マスタード
キュメントからたどれる必要があります。たど
れないドキュメントが存在する場合は、Sphinx

はフォーマット変換時に警告を発します。マス
タードキュメントとほかのドキュメントをつな
ぐためには、「toctree」というディレクティブ（後
述）を使用します。

　sphinx-quickstartで生成された index.rst（マ
スタードキュメント）をエディタで開くと「..
toctree::」という記述が見つかります。この
ようなドット（.）2つとコロン（:）2つに挟まれた
記述は、「ディレクティブ」と呼ばれるreSTの
マークアップです。

Sphinxにさまざまな指示
を与えるディレクティブ

Sphinxで始める
 ドキュメント作成術

議事録を書こう（後編）
̶̶複数のreSTに関連性を持たせる

第3回

川本 安武 KAWAMOTO Yasutake　 Twitter @togakushi

Sphinxで始める
 ドキュメント作成術

 ▼図1　ディレクトリ構造

プロジェクトトップ /
 index.rst
 注意事項 .rst
 進捗会議議事録 /
 index.rst
 進捗議事 _YYYY0401.rst
 進捗議事 _YYYY0407.rst
 詳細設計打ち合わせ /
 index.rst
 詳細打ち合わせ _YYYY0402.rst

118 - Software Design Jun. 2015 - 119

　ディレクティブを使うことによって、画像の
差し込みや目次の作成、注釈などをドキュメン
トに追加できます。

Sphinxの中心となる「toctree
ディレクティブ」を理解する

　toctreeは、「toctreeの要素に別のreSTファ
イルを指定」することで、ドキュメントに親子関
係を持たせてツリー構造を作成するディレクティ
ブです。
　前編で、SphinxのreSTには、ドキュメント
間の関係性を持たせるための機能として
「:ref:`foo`」や「:doc:`bar`」という書式があ
ることを紹介しました。これらの書式はWikiの
ページ間リンクのようなものですが、toctree

ディレクティブではマスタードキュメントを頂
点としたツリー構造を作成してドキュメントの
背骨を形成します。
　toctreeディレクティブは、次のように記述し
ます。

　toctreeを含むディレクティブの一般的な書式
については、このあとの「ディレクティブの書式
について」の節を参照してください。
　「ドキュメントのファイル名」は、toctreeを記
述したreSTが保存されているディレクトリか
らの相対パスで、拡張子を含まない形のファイ
ルパスを列挙していきます。なお、Windowsで
はディレクトリの区切り記号が円マーク（¥）で
すが、Sphinxの toctreeディレクティブではス
ラッシュ（/）でディレクトリを区切ります。toc

treeでつないだ子のreSTでさらに下の子（親か
ら見た孫）のreSTをつなぐこともできます。
　図1のサンプルプロジェクトの場合はリスト

1、2、3のように記述します。
　HTML変換時に toctreeの要素に記述された

 toctreeディレクティブの書式
.. toctree::
 :オプション1: 設定値

 ドキュメントのファイル名1（拡張子なし）
 ドキュメントのファイル名2（拡張子なし）

ファイルが順に読み込まれ、「それぞれのドキュ
メントの最上位の見出し」が目次のようにツリー
状に表示されます。
　「maxdepth」は見出しを何階層まで表示させる
かを指定するオプションです（オプションについ
ては次節を参照）。省略した場合はすべての見出
しが表示されます。
　HTMLに変換すると、次ページの図2、3の
ようになります（一部の設定項目はデフォルト値
から変更しています）。

ディレクティブの書式について

　ディレクティブは「ドット（.）2つ+スペース+

ディレクティブ名+コロン（:）2つ」から記述され、
図4（次ページ）のような書式になっています。
　ファイルを読み込むようなディレクティブで

議事録を書こう（後編）
̶̶複数の reSTに関連性を持たせる 第3回

○×事業部 会議 議事録
======================

.. toctree::
 :maxdepth: 2

 注意事項
 進捗会議議事録/index
 詳細設計打ち合わせ/index

 ▼リスト1　toctreeディレクティブの記述例
 （マスタードキュメントの index.rstに記述）

進捗会議議事録
==============

.. toctree::
 :maxdepth: 2

 進捗議事_YYYY0401
 進捗議事_YYYY0407

 ▼リスト2　toctreeディレクティブの記述例
 （進捗会議議事録 /index.rstに記述）

詳細設計打ち合わせ
==================

.. toctree::
 :maxdepth: 2

 詳細打ち合わせ_YYYY0402

 ▼リスト3　toctreeディレクティブの記述例
 （詳細設計打ち合わせ /index.rstに記述）

120 - Software Design

は、最後のコロン（:）のあとに引数としてファイ
ル名が続く場合もあります。オプションを持つ
ものは、ディレクティブ名のすぐ下に記述しま
す。設定値を持たないものや、省略できるもの、
オプション自体が省略できる場合もあります。
ディレクティブで処理させる要素は、オプショ
ンのあとに空行を入れて記述していきます。記
述する要素はインデントされている必要があり
ます。インデントされているブロックはすべて
ディレクティブの要素になります。
　toctreeでは「maxdepth」や「caption」がオプ
ションになり、子としてつなぐreSTのファイ
ルパスを要素に記述しています。toctree以外の
ディレクティブの使い方は、連載の中で利用事
例を示しながら随時説明していきます。

「figure」ディレクティブ

　ドキュメントに画像ファイルを差し込むディ

前編（sample.rst）で
紹介しきれなかった記法

レクティブです。引数に指定するファイル名が
スラッシュ（/）で始まらない相対パスの場合、
reSTファイルがあるディレクトリからの相対
パスになります。絶対パスを指定した場合は、
プロジェクトのトップディレクトリからのパス
になります。指定されたファイルは、ビルドディ
レクトリ（変換されたドキュメントが保存される
ディレクトリ、HTMLの場合は「_build/html/」）
の「_images」にコピーされます。
　ディレクティブの要素の1行目が画像のキャ
プションになります。figureディレクティブの
前にラベルを置き、:ref:`sample-image`と
参照すると、キャプションの文字列に変換され
ます。

　オプションとして、画像サイズを指定する
「width」「height」「scale」などが使えます。
　さらに詳しいfigureディレクティブの説明は
Docutilsのドキュメントを参照してください注1。

フィールドリスト

　コロン（:）で囲まれた任意のテキストは、フィー

注1） http://docutils.sourceforge.net/docs/ref/rst/directives.
html#figure
http://docutils.sphinx-users.jp/docutils/docs/ref/rst/
directives.html#figure

 figureディレクティブの使用例
.. _sample-image: ←ラベル

.. figure:: 画像ファイル.png

 サンプル画像

Sphinxで始める
 ドキュメント作成術

 ▼図2　マスタードキュメントの toctree

 ▼図3　子（進捗会議議事録）の toctree ▼図4　ディレクティブの書式

.. ディレクティブ名 :: 引数
 :オプション 1: 値
 :オプション 2: 値

 要素（内容）
空行

空白3個分（ドット2つ＋空白）

http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure
http://docutils.sphinx-users.jp/docutils/docs/ref/rst/directives.html#figure

120 - Software Design Jun. 2015 - 121

ルドリストと呼ばれる2つのカラムを持った表
になります。ドキュメントに付随する情報など
を記述するために使用します。
　前編のサンプルで使用している議事録では、
先頭付近に「日時」「参加者」の情報を追加してい
ます。

コメント

　ドット（.）2つ＋スペースで始まり、ディレク
ティブやラベルなどではないものはコメントと
して扱われます。インデントされているブロッ
クはすべてコメントになります。コメントは
HTML変換時に無視され、HTMLには出力され
ません。

　Sphinxを使用して議事録の管理を行うと、会
議のたびに議事録を作成し、プロジェクトの所
定のディレクトリに保存してmakeを実行するこ
とになります。このとき、新しく追加される
reSTファイルはどこかの toctreeとつなげる必
要があります。
　toctreeには「glob」というオプションがあり、
ワイルドカードでファイル名を指定できます。
　globオプションを使用すると、条件にマッチ
するファイルがすべてアルファベット順に取り
込まれます。議事録では会議を行った日付をファ
イル名（議事録_20150301.rstなど）にしておけ
ば古い順に並びます。複数のワイルドカードが

 フィールドリストの書式
:フィールド名1: 内容
:フィールド名2: 内容

 コメントの使用例
.. この行はコメント
 ここもコメント

 ここもコメント

ここは本文

管理を楽にする
テクニック

ある場合は、先に取り込まれたファイルは除外
してくれます。
　ある程度の規則性を持たせつつ、存在するファ
イルを最後にすべて読み込ませるというような
使い方ができます。

　アスタリスク（*）1つはスラッシュ（/）以外の
任意の文字列にマッチします。アスタリスク（*）
2つを使用することでスラッシュ（/）にもマッチ
し、再帰的に探索が行えます。

　このほかにも任意の1文字にマッチする「?」、
除外する「!」が使用できます。
　また、toctreeにはこのほかにもすべてのド
キュメントにおいて通し番号を付ける「num
bered」というオプションなどがあります。扱え
るオプションについては公式ドキュメントを参
照してください注2。

　次回は、表の書き方を中心に紹介します。表
組みでまとめたほうが伝わりやすい情報、たと
えばスペックと価格の比較、サーバの一覧と接
続URL、といった情報を表にまとめます。｢

注2） http://sphinx-doc.org/markup/toctree.html
http://docs.sphinx-users.jp/markup/toctree.html

 globオプションを使用したtoctreeの例
.. toctree::
 :maxdepth: 1
 :glob:

 進捗会議/index
 進捗会議/議事録_*
 進捗会議/*
 *

 アスタリスク（*）2つを使用した例
.. toctree::
 :maxdepth: 1
 :glob:

 進捗会議/index
 **

次回予告

議事録を書こう（後編）
̶̶複数の reSTに関連性を持たせる 第3回

http://sphinx-doc.org/markup/toctree.html
http://docs.sphinx-users.jp/markup/toctree.html

122 - Software Design

Sphinxで始める
 ドキュメント作成術

COLUMN

対話式のsphinx-quickstart
　sphinx-quickstartにオプションを付けずに実行
すると、対話モードで動作します（図5）。質問さ
れる内容を表1に挙げます。このうち必ず設定す

る項目は「Project name」「Author name（s）」「Pro
ject version」の 3つだけです。Sphinx1.3以前の
バージョンでは対話モードのみが使用できます。

$ mkdir project-dir ←プロジェクトのディレクトリを作成
$ cd project-dir
$ sphinx-quickstart ←sphinx-quickstartの開始
Welcome to the Sphinx 1.3.1 quickstart utility.
 （...略...）

The project name will occur in several places in the built documentation.
> Project name: ←プロジェクト名の設定
* Please enter some text. ←未設定の場合は再度設定を促される
> Project name: テストプロジェクト ←マルチバイトも指定可能
 （...略...）

Creating file ./conf.py. ←必要なファイルを生成
Creating file ./index.rst.
Creating file ./Makefile.
Creating file ./make.bat.

Finished: An initial directory structure has been created.
 （...略...）

 ▼図5　対話モードでのsphinx-quickstartの実行例

質問内容（英文） 設定する内容 デフォルト値（省略時）

Root path for the documentation [.]: プロジェクトのトップディレクトリ
を指定

sphinx-quickstartを
実行したディレクトリ

Separate source and build directories (y/
n) [n]:

reSTを保存する場所とフォーマッ
ト変換されたファイルを別の場所に
保存するかを選択

同じ場所（変換された
ファイルは「_build」に
保存）

Name prefix for templates and static dir
[_]:

テンプレートと静的コンテンツ（画
像など）が保存されるディレクトリ
に付けるプレフィックスを指定

アンダースコア（_）

Project name: プロジェクトの名前を指定 省略不可（必須）
Author name(s): ドキュメントの著者を指定 省略不可（必須）
Project version: プロジェクトのバージョンを指定 省略不可（必須）
Project release []: プロジェクトのリリース番号を指定 バージョンと同じ
Project language [en]: プロジェクトで使用する言語を指定 英語

Source file suffix [.rst]: reSTが記述されているファイルの
拡張子を指定 .rst

Name of your master document (without
suffix) [index]:

最初に参照されるドキュメント（マ
スタードキュメント）の名前を指定 index

Do you want to use the epub builder (y/n)
[n]: EPUB変換を使用するかを指定 使用しない

autodoc: automatically insert docstrings
from modules (y/n) [n]:

autodoc（Sphinx拡張）を使用する
かを指定 使用しない

doctest: automatically test code snippets
in doctest blocks (y/n) [n]:

doctest（Sphinx拡張）を使用するか
を指定 使用しない

 ▼表1　sphinx-quickstart（対話モード）で設定する内容（Sphinx1.3）

122 - Software Design Jun. 2015 - 123

議事録を書こう（後編）
̶̶複数の reSTに関連性を持たせる 第3回

intersphinx: link between Sphinx
documentation of different projects (y/n)
[n]:

intersphinx（Sphinx拡張）を使用す
るかを指定 使用しない

todo: write "todo" entries that can be
shown or hidden on build (y/n) [n]:

todo（Sphinx拡張）を使用するかを
指定 使用しない

coverage: checks for documentation
coverage (y/n) [n]:

coverage（Sphinx拡張）を使用する
かを指定 使用しない

pngmath: include math, rendered as PNG
images (y/n) [n]:

pngmath（Sphinx拡張）を使用する
かを指定 使用しない

mathjax: include math, rendered in the
browser by MathJax (y/n) [n]:

mathjax（Sphinx拡張）を使用する
かを指定 使用しない

ifconfig: conditional inclusion of content
based on config values (y/n) [n]:

ifconfig（Sphinx拡張）を使用するか
を指定 使用しない

viewcode: include links to the source
code of documented Python objects (y/n)
[n]:

viewcode（Sphinx拡張）を使用する
かを指定 使用しない

Create Makefile? (y/n) [y]: makeで使用するMakefileを作成す
るかを指定 作成する

Create Windows command file? (y/n) [y]: Windows環境で使用するmake.bat
を作成するかを指定 作成する

 ▼表1　つづき

124 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

いるデータをHandheldアプリ経由でサーバから
取得するという方式は依然として重要です。
　今回は、WearアプリとHandheldアプリ間で
の「データ通信機能」を解説します（図1）。

Wearの
データ通信機能

　WearとHandheld間の「データ送受信」につい
て詳しく見ていきましょう。Wear向けのデー
タ通信には、代表的なものとして表1に示す2

つがあります注1。
　Data APIは、HandheldとWearの間で共有
したいデータ（テキストや画像など）がある場合
に用います。パスを指定して、そこにKey-

Value（キー・バリュー）形式でデータを格納・
共有するというイメージです（図2）。Handheld

とWearの間で、データを同期させたい場合に
用います。
　Message APIは、Handheld→Wear、もしく
は、Wear→Handheldというように単方向の
データ通信を行いたい場合に用います（図3）。
　HandheldとWear間でデータをやり取りする
サンプルアプリ（図4）を用いて、これらAPIの
詳細を解説していきます。このアプリには、
Handheldアプリ側でテキストボックスに値を

注1） これら2つ以外にも、Nodeが接続されたり外れたりとい
う接続状態を監視するためのNodeApi（https://developer.
android.com/reference/com/google/android/gms/
wearable/NodeApi.html）というクラスも存在します。

Wearの
パワー不足を補う手段

　前号（5月号）では、Android Wear（以降「Wear」
と表記）アプリ開発のうち、音声入力機能／アプ
リ公開のためのパッケージング方法について触
れました。Wearではスマホやタブレット（以降
「Handheld」と表記）とまったく連携しないスタン
ドアロン型のアプリを動作させることもできます。
ただ、Wear上で重い処理をさせると、バッテリー
持ちを悪くするという問題を引き起こしてしま
います。そこでバッテリー持ちを良くするために、
重い処理はHandheldアプリ側で行い、Wearア
プリ側ではその結果を表示するのみに留めると
いった対策を検討する必要があります。
　また本稿執筆中に、Wi-Fiを搭載している
Wear実機であれば、Handheldを経由すること
なくWi-Fiネットワークに直接接続できる機能
が発表されました。とはいえ、Wearアプリが用

Android Wear

アプリ開発入門
第4回 Wearアプリでデータ通信機能を活用！

～より生活に密着する
スマートデバイスの世

界～

 ▼図1　Wear/Handheld間のデータ通信

データ通信

Handheld実機 Wear実機

iplatform.orgにて情報発信するかたわら、「セカイフォン」などを開発。Droidconなどでのカンファレンス講
演、MWC/CES/IFAでのプロダクト展示、執筆などの活動も実施。NTTソフトウェア株式会社テクニカルプロフェッ
ショナル。現在はAndroid以外のモバイルOSにも取り組み、公私にわたってモバイルアプリの世界に没頭中。

神原 健一（かんばら けんいち ）　　　　 http://blog.iplatform.org　　　　　　@korodroidWeb Twitter

http://blog.iplatform.org
https://developer.android.com/reference/com/google/android/gms/wearable/NodeApi.html

Jun. 2015 - 125124 - Software Design

第4回 Wearアプリでデータ通信機能を活用！

入力後、「送信」ボタンを押すと、その内容を
Wearアプリ側に送信し、トースト注2として表
示するという機能を持たせます。

Data APIを
用いたデータ通信

データ送信側の処理
　今回は、データ送信処理をHandheldアプリ
側で実装します。Data APIを用いてデータを

注2） 画面上に現れる通知画面（Toast）のことです。

送信するステップは次のようになります。

①AndroidManifest.xmlでの宣言
②GoogleApiClientによる通信コネクション確立
③DataApiを用いたデータ送信

　ステップの詳細を順に見ていきましょう。

▶①AndroidManifest.xmlでの宣言

　Data APIの利用には、Google Play Services

に含まれる機能が必要となります。そのための
宣言をAndroidManifest.xmlで行います。リ
スト1のとおり、<application>～</applicati
on>内に、<meta-data />の定義を行ってくだ
さい。

▶②GoogleApiClientによる
　　通信コネクション確立

　Data APIの呼び出しを行うには、事前に
GoogleApiClientのインスタンスを生成し、
Data APIによるデータ通信を可能とするため
の接続処理を行う必要があります。リスト2の
コードを記述します。
　ActivityのonCreate（）メソッド内で、Google

ApiClientのインスタンスを生成しています。
また、接続成功、中断を監視するリスナーを

 ▼図2　Data API

 ▼図4　サンプルアプリ

 ▼図3　Message API

 ▼表1　Wear/Handheld間のデータ通信方法

HandheldとWearの間でデータを同期するためのAPI

HandheldとWearの間で単方向のメッセージを送受信するためのAPI

データ通信方式 関連クラス 概要
Data API

Message API

DataApi（注A）

MessageApi（注B）

注A）http://developer.android.com/reference/com/google/android/gms/wearable/DataApi.html
注B）http://developer.android.com/reference/com/google/android/gms/wearable/MessageApi.html

Data API Message API

●Path
●Data
 （Key/Value）

テキストボックスに
入力した内容

●Path
●Message

Handheld実機 Handheld実機Wear実機 Wear実機

http://developer.android.com/reference/com/google/android/gms/wearable/DataApi.html
http://developer.android.com/reference/com/google/android/gms/wearable/MessageApi.html

126 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

addConnectionCallbacks（）メソッドで、接続失
敗を監視するリスナーをaddOnConnectionFailed

Listener（）メソッドで登録しています。これに

より、接続成功時はonConnected（）メソッド、
接続中断時はonConnectionSuspended（）メソッ
ド、接続失敗時はonConnectionFailed（）メソッ

〈application ...〉
 〈meta-data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" /〉
 〈...〉
〈/application〉

public class MainActivity extends ActionCompatActivity implements GoogleApiClient.ｭ
ConnectionCallbacks, GoogleApiClient.OnConnectionFailedListener{

 private GoogleApiClient mGoogleApiClient = null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mGoogleApiClient = new GoogleApiClient
 .Builder(this)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .addApi(Wearable.API)
 .build();
 }

 @Override
 protected void onResume() {
 super.onResume();
 mGoogleApiClient.connect();
 }

 @Override
 protected void onPause() {
 super.onPause();
 if (mGoogleApiClient != null && mGoogleApiClient.isConnected()) {
 mGoogleApiClient.disconnect();
 }
 }

 @Override
 public void onConnected(Bundle bundle) {
 Log.i(TAG, "onConnected");
 }

 @Override
 public void onConnectionSuspended(int i) {
 Log.i(TAG, "onConnectionSuspended");
 }

 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 Log.i(TAG, "onConnectionFailed");
 }
}

 ▼リスト1　AndroidManifest.xmlでの宣言

 ▼リスト2　GoogleApiClientの接続処理

Jun. 2015 - 127126 - Software Design

第4回 Wearアプリでデータ通信機能を活用！

ドがコールバックされます。
　さらに、Activityがフォアグラウンドに移行
したタイミングで接続処理を行うために、on

Resume（）メソッド内でmGoogleApiClient.conn

ect（）を呼び出しています。また、バックグラ
ウンド移行時に切断処理を行うために、on

Pause（）メソッド内でmGoogleApiClient.disco

nnect（）を呼び出しています。ここまでで下準
備は完了です。

▶③Data APIを用いたデータ送信

　通信コネクションが確立されると（onConne

cted（）が呼び出されて以降）、Data APIを用い
たデータ通信が可能となります。リスト3のコー
ドを記述します。
　「送信」ボタンが押されたときの処理を send

DataByDataApi（）メソッドとして定義してい
ます。同メソッド内の処理については、表2を
参照ください。

データ受信側の処理
　続いて、Wearアプリ側で実装するデータ受
信処理を解説します。Data APIを用いてデー
タを受信するステップは、次のようになります。

①AndroidManifest.xmlでの宣言
②GoogleApiClientによる通信コネクション確立
③DataApiを用いたデータ受信

　①、②については、データ送信側の処理と同
じです。説明は省略します。
　③については、データの更新や削除が行われ
たタイミングで、接続している側にそれを通知

@Override
public void onClick(View v) {
 switch (v.getId()) {
 case R.id.sendButton:
 sendDataByDataApi(editText.getText().toString());
 break;
 }
}

/**
 * テキストを送信します。
 *
 * @param text テキスト
 */
private void sendDataByDataApi(String text) {
 PutDataMapRequest putDataMapReq = PutDataMapRequest.create("/data_comm"); ←表2 (a)
 putDataMapReq.getDataMap().putString("key_data", text); ←表2 (b)
 PutDataRequest putDataReq = putDataMapReq.asPutDataRequest(); ←表2 (c)
 Wearable.DataApi.putDataItem(mGoogleApiClient, putDataReq); ←表2 (d)
}

 ▼リスト3　Data APIを用いたデータ送信処理

 ▼表2　Data APIを用いたデータ送信処理の解説
リスト3内参照 概要

（a）

（b）

（c）

（d）

PutDataMapRequestのインスタンスを生成し、データを格納するパスを指定します。
パスは“/”から始まる値を指定します
PutDataMapRequest.getDataMap（）により、値を格納するためのマップを取得します。
さらに、そのマップにputString（）メソッドを用いて、キーとバリュー（今回はテキストボック
スの入力内容）を設定しています
PutDataMapRequestのインスタンスに対して、asPutDataRequest（）呼び出しにより、
PutDataRequestのインスタンスを取得します
GoogleApiClientとPutDataRequestのインスタンスを用いてDataApi.putDataItem（）
を呼び出すことで、データが送信されます

128 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

するしくみが提供されています。同通知を受け
取る方法として、次の2つの方法があります。

・Activityでリスナーを登録する
・WearableListenerServiceを用いる

　前者は、フォアグラウンド状態にあるActivity

で利用できます。DataApi.DataListenerとい
うデータ更新を監視するリスナーを登録してお
くアプローチです。後者は、Serviceで利用で
きます。WearableListenerServiceを継承した
Serviceを作っておくことで、イベント受信時
にデータを取得できるというしくみです。こち
らの場合は、Activityがフォアグラウンドにい
ない場合でもデータを取得できるというメリッ

トがあります。

▶Activityでリスナーを
　登録する方法を用いた実装

　まず、前者のActivityでリスナーを登録する
方法を用いた実装を紹介します。リスト4のコー
ドを記述します。接続完了時（onConnected（））
にリスナーを登録し、Activityのバックグラウ
ンドへの移行時（onPause（））にリスナーを解除
しています。
　同リスナーを登録しておくことでData API

により共有するデータの内容が更新されると、
リスト5のように、onDataChanged（）メソッド
が呼び出されます。その中で送信時に指定した

パスとキーを用いて、バリューを
取得します。さらに、その内容を
トーストとして表示しています。
また、onDataChanged（）メソッド
はデータ内容に変化があった場合
にのみ呼び出されることにも注意
してください。テキストボックス
の値を変更することなく、「送信」
ボタンを押下した場合は、onData

Changed（）メソッドは呼び出され
ません。

@Override
public void onConnected(Bundle bundle) {
 Log.i(TAG, "onConnected");
 Wearable.DataApi.addListener(mGoogleApiClient, this);
}

@Override
protected void onPause() {
 super.onPause();
 if (mGoogleApiClient != null
 && mGoogleApiClient.isConnected()) {
 Wearable.DataApi.removeListener(
 mGoogleApiClient, this);
 mGoogleApiClient.disconnect();
 }
}

@Override
public void onDataChanged(DataEventBuffer dataEvents) {
 for (DataEvent event : dataEvents) {
 if (event.getType() == DataEvent.TYPE_CHANGED) {
 DataItem item = event.getDataItem();
 if (item.getUri().getPath().equals("/data_comm")) {
 final DataMap dataMap = DataMapItem.fromDataItem(item).getDataMap();
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(getApplicationContext(),
 dataMap.getString("key_data"), Toast.LENGTH_SHORT).show();
 }
 });
 }
 } else if (event.getType() == DataEvent.TYPE_DELETED) {
 }
 }
}

 ▼リスト4　データ受信のためのリスナー設定

 ▼リスト5　Data APIを用いたデータ受信処理（Activity）

Jun. 2015 - 129128 - Software Design

第4回 Wearアプリでデータ通信機能を活用！

▶WearableListenerServiceを用いた実装

　次に、後者のWearableListenerServiceを用
いた実装を紹介します。同Serviceと Intent

Filterの宣言を、AndroidManifest.xmlで行い
ます。リスト6のとおり、<application>～</
application>内に定義してください。
　WearableListenerServiceを継承したクラス
を作成し、同クラスのonDataChanged（）メソッ
ドをオーバーライドすることで、リスト7のよ
うにデータ更新時の処理を実装することができ
ます。Activityでのデータ取得の場合と同様に、
送信時に指定したパスとキーを用いてバリュー
を取得できます。その内容をトーストとして表
示しています。
　また、画像のように大きなバイナリデータを
送信する場合は、Assetというクラスを用いる

のが適切です。Data APIを用いて送信するデー
タサイズには、上限100KBという制限が設け
られています。Assetを用いることで、この制
限を回避することができます。詳しい使用方法
については公式の開発者向けドキュメント注3を
参照ください。
　続いて、同じ機能を持つアプリをMessage

APIを用いて実装する手順を解説します。

Message APIを
用いたデータ通信

データ送信側の処理
　データ送信処理をHandheld用アプリ側で実
装します。Message APIを用いてデータを送

注3） Transferring Assets URL https://developer.android.com/
training/wearables/data-layer/assets.html

〈application ...〉
 〈service android:name=".DataListenerService"〉
 〈intent-filter〉
 〈action android:name="com.google.android.gms.wearable.BIND_LISTENER" /〉
 〈/intent-filter〉
 〈/service〉
 〈...〉
〈/application〉

public class DataListenerService extends WearableListenerService {

 @Override
 public void onCreate() {
 super.onCreate();
 }

 @Override
 public void onDataChanged(DataEventBuffer dataEvents) {
 for (DataEvent event : dataEvents) {
 if (event.getType() == DataEvent.TYPE_CHANGED) {
 DataItem item = event.getDataItem();
 if (item.getUri().getPath().equals("/data_comm")) {
 final DataMap dataMap = DataMapItem.fromDataItem(item).getDataMap();
 Toast.makeText(getApplicationContext(), dataMap.getString("key_data"),
 Toast.LENGTH_SHORT).show();
 }
 } else if (event.getType() == DataEvent.TYPE_DELETED) {
 }
 }
 }
}

 ▼リスト6　AndroidManifest.xmlでの宣言

 ▼リスト7　Data APIを用いたデータ受信処理（Service）

https://developer.android.com/training/wearables/data-layer/assets.html

130 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

信するステップは、次のとおりです。

①AndroidManifest.xmlでの宣言
②GoogleApiClientによる通信コネクション確立
③MessageApiを用いたデータ送信

　①、②はData APIと同じです。同様の実装
を行ってください。

▶③Message APIを用いたデータ送信

　データ通信のための接続処理が完了すると
（onConnected（）が呼び出されて以降）、Message

 APIを用いたデータ通信が可能となります。
リスト8のコードを記述します。「送信」ボタン
が押されたときに、実行する処理を send

DataByMessageApi（）メソッドとして定義して
います。同メソッド内の処理については、表3
を参照ください。

データ受信側の処理
　続いて、Wearアプリ側で実装するデータ受

信処理を解説します。Message APIを用いて
データを受信するステップは、次のようになり
ます。

①AndroidManifest.xmlでの宣言
②GoogleApiClientによる通信コネクション確立
③MessageApiを用いたデータ受信

　①、②については、Data APIの処理とまっ
たく同じです。③についても、Data APIの場
合と同様に、データを受信したタイミングで、
接続している側にそれを通知するしくみが提供
されています。
　同通知を受け取る方法にも、「Activityでリ
スナーを登録する」、「WearableListenerService

を用いる」の2つが提供されています。使い方
もData APIと基本的に同じです。前者は、フォ
アグラウンド状態にあるActivityで利用するた
めのもので、MessageApi.MessageListenerと
いうリスナーを登録しておくアプローチです。
後者は、WearableListenerServiceを継承した

@Override
public void onClick(View v) {
 switch (v.getId()) {
 case R.id.sendButton:
 sendDataByMessageApi(
 editText.getText().toString());
 break;
 }
}

/**
 * テキストを送信します。
 *
 * @param text テキスト
 */
private void sendDataByMessageApi(final String text) {
 new Thread(new Runnable() { ←表3 (a)
 @Override
 public void run() {
 NodeApi.GetConnectedNodesResult nodes =Wearable.NodeApi.getConnectedNodes(
 mGoogleApiClient).await(); ←表3 (b)
 for(Node node : nodes.getNodes()) { ←表3 (c)
 Wearable.MessageApi.sendMessage(mGoogleApiClient, node.getId(),
 "/data_comm2", text.getBytes());
 }
 }
 }).start();
}

 ▼リスト8　Message APIを用いたデータ送信処理

Jun. 2015 - 131130 - Software Design

第4回 Wearアプリでデータ通信機能を活用！

Serviceを作っておき、データ更新のイベント
を取得します。

▶Activityでリスナーを
　登録する方法を用いた実装

　まず、前者の実装についてです。リスト9の
コードを記述します。接続完了時（onConnect

ed（））にリスナーを登録し、Activityのバック
グラウンドへの移行時（onPause（））にリスナー
を解除しています。
　同リスナーを登録しておくことでMessage

APIによりデータを受信すると、onMessage

Received（）メソッドが呼び出され、Message

Event（変数名は、messageEventとします）が引
数として渡されます。messageEvent.getData（）
を呼び出すことで値を取得できます。

▶WearableListenerServiceを用いた実装

　続いて、後者の実装についてです。Android

Manifest.xmlの宣言についてはData APIの場
合と同じです。リスト6の内容を参考に定義し

てください。
　Serviceクラスの実装は、WearableListener

Serviceを継承させ、同クラスの onMessage

Received（）メソッドをオーバーライドし、デー
タ受信時の処理を実装できます。そのとき、
onMessageReceived（）メソッドが呼び出され、
MessageEventが引数として渡されます。あと
は、getData（）メソッドにより値を取得すると
いう流れです。

おわりに

　Wearアプリ開発の世界を少しずつつかんで
いただけているでしょうか ?　今回は、Wear

アプリにおけるデータ通信機能について解説し
ました。
　同機能は、WearアプリをHandheldアプリと
連携させたり、Handheld経由でサーバとデー
タをやり取りするときに必要となります。ウェ
アラブルデバイスは、スマホやタブレット以上
にバッテリー持ちに配慮する必要があります。

HandheldアプリとWearアプリの
それぞれで適切な機能を実現し、
さらに、データ通信機能を活用す
れば、ユーザに好まれるアプリに
することができます。
　次回もWearアプリを開発する
うえで重要なトピックを取り上げ
説明します。お楽しみに ! s

 ▼表3　Message APIを用いたデータ送信処理の解説

リスト8
内参照

概要

（a）
（b）

（c）

以降の処理を実行するためのスレッドを起動します
接続済のノード一覧を取得します
接続済のノードに対して、GoogleApiClientのインタンス、
ノードID、パス、データを用いて、MessageApi.send
Message（）を呼び出すことで、データが送信されます

@Override
public void onConnected(Bundle bundle){
 Log.i(TAG,"onConnected");
 Wearable.MessageApi.addListener(mGoogleApiClient,this);
}

@Override
protected void onPause(){
 super.onPause();
 if(mGoogleApiClient!=null && mGoogleApiClient.isConnected()){
 Wearable.MessageApi.removeListener(mGoogleApiClient,this);
 mGoogleApiClient.disconnect();
 }
}

 ▼リスト9　データ受信のためのリスナー設定

132 - Software Design

　本稿で紹介していないAPIについては、ヘ
ルプ注3を参照してください。

ホスト関連API

　今回はAPIの中でも、ホスト関連のAPIに
ついて解説していきます。

ホスト一覧を取得

　まずはMackerelに登録されているホスト一
覧を取得してみましょう。APIのエンドポイン
トは次になります。

GET /api/v0/hosts.json

　このAPIでは、次に挙げるクエリパラメー
タでホストを絞り込めます。何も指定されてい
ない場合は、全ホストが返却されます。

・service…… サービス名

Mackerelではじめる
サーバ管理

　Mackerelでは、各種外部ツールと連携するためのAPIが用意されています。今回
はホスト関連のAPIに絞り、前半でその概要を説明します。さらに後半では、端末
多重化SSH接続ツール「tmux-cssh」、デプロイツール「Capistrano」との連携方法を
解説します。

Writer 田中 慎司 （たなか しんじ） ㈱はてな
Twitter @stanaka

MackerelのAPI

　前回までにMackerel注1の基本的な使い方か
ら監視設定まで一通り紹介してきました。第4

回目となる今回は、MackerelのAPIを利用し
て各種ツールとの連携を行う、一歩進んだ使い
方を紹介します。
　Mackerelと外部のツールを連携させるために
は、MackerelのAPIを利用します。Mackerel

のAPIはすべて httpsのGET、PUT、または
POSTによるリクエストとなっています。APIを
利用することで、Mackerelが持つホストやメト

リックに関する情報を検索、取得したり、更新し
たりできます。mackerel-agentもこのAPIを利
用しており、今後とも機能拡充していく予定です。
　MackerelのAPIは執筆時点（2015年4月）で
は表1のような機能を持っています。これらの
API共通のルールとして、次の2つがあります。

・POST時のボディ、およびGET・POST両方
とも成功時の出力はJSON（application/json）

・X-Api-Keyヘッダに対象とするホストやサー
ビスが所属するオーガニゼーションのAPI
キー注2を設定することが必要

第4回 Mackerel APIで
便利な外部ツールと連携

ホスト関連

ホストの一覧

ホスト情報の登録

ホスト情報の取得
ホスト情報の更新
ホストのステータスの更新
ホストの退役

メトリック
関連

メトリックの投稿
メトリックの最新値の取得
サービスメトリックの投稿

 ▼表1　MackerelのAPIが持つ機能

注1） URL https://mackerel.io
注2） ダッシュボード（ URL https://mackerel.io/my/dashboard）

右側の「Detail」をクリックした先のページから取得可能。 注3） URL http://help-ja.mackerel.io/entry/spec/api/v0

https://mackerel.io
https://mackerel.io/my/dashboard
http://help-ja.mackerel.io/entry/spec/api/v0

132 - Software Design Jun. 2015 - 133

・role………… サービス内のロール名。複数指
定可能（結果は各ロールに所属するホスト群
の和集合となる）。serviceが指定されてい
ない場合は無効。

・name………… ホスト名
・status……… ホストのステータスを絞り込む。
複数指定可能。デフォルトは workingと
standby。

　
　応答は次のようなJSONで返却されます。

{
 "hosts": [<host>, <host>, …]
}

　では、実際にAPIを curlコマンドで叩いて
みましょう（図1）。APIキーを「-H」オプション
で指定しています。jq注4はJSONを整形する
ためのツールです。Mackerel APIのように、
JSONを返り値とする場合に見やすく整形した
り、フィルタしたりできて便利です。

ホスト情報の取得

　個々のホスト情報を取得するために、APIを
利用します。そのためには対象ホストのホスト
ID（hostId）を知っておく必要があります。

GET /api/v0/hosts/<hostId>

　応答は次のようになります。

{
 "host": <host>
}

ホストのステータスの更新

　ホストステータスの更新をするには次のAPI

を利用します。

POST /api/v0/hosts/<hostId>/status

　POSTのボディは次のようになります。

{
 "status": <hostStatus>
}

　hostStatusは"standby"、"working"、"main
tenance"、"poweroff"のいずれかを指定します。
成功した場合の応答は次になります。

{
 "success": true
}

　失敗した場合は、ステータスコードで原因が
わかります。

・404：hostIdに対応するホストが見つからな
　　 い

・400：JSONのフォーマットが不正である

ホストの退役

　登録したホストを退役状態にするには次の
APIを利用します。

POST /api/v0/hosts/<hostId>/retire

　POSTのボディには空のJSONを指定します。

{}

　成功したときの応答は次のJSONとなります。

{
 "success": true
}

　失敗した場合は、ステータスコードで原因が
わかります（前述の、ホストのステータス更新
のAPIと同じ仕様です）。

ホスト関連APIを
利用した連携

　Mackerelのホスト関連APIを利用した、い
くつかのツール連携例を紹介します。

第 4 回
Mackerel APIで便利な外部ツールと連携

% curl "https://mackerel.io/api/v0/hosts.json" -H "X-Api-Key: <APIKEY>" | jq .

 ▼図1　MackerelのAPIを叩く

注4） URL http://stedolan.github.io/jq

http://stedolan.github.io/jq

134 - Software Design

 Mackerelではじめるサーバ管理

　同じ役割を持った複数の
サーバにまとめてsshログイ
ンしたいといったことは、
Webサービスなどを運営し

ているとよくある話です。
tmux-cssh注5を使うと、tmux

の機能を利用して複数のホス
トにまとめてsshログインで
きます。
　ホストの指定は、コマンド
引数として、ホスト名を複数並べることで行い
ます。Mackerelのホスト一覧取得APIから特
定のサービス・ロールのホストを取得するには
図2のようにします。jqコマンドに適切に引数
を指定することでホスト名のみを抽出できます。
そして、図2の出力が tmux-csshの引数となる
ように指定します（図3）。
　このようにすることで図4のように複数のホス
トにまとめてsshログインできます。Mackerel

のサービスとロールを適切に設定することでホ
ストが入れ替わっていっても動的に追従されます。

Capistranoとの連携

　Mackerelに登録しているホストの情報を、
Capistrano注6のデプロイ対象ホストとして利用
します。ここではRubyのMackerel APIライブ
ラリであるmackerel-client注7を利用します。
mackerel-clientを使うことで簡単にMackerel

APIにアクセスできます。

 ● Capistranoを準備
　bundleでインストールできるようにGemfile

に次のコードを追記します。sourceはすでに指
定してある場合は、追記する必要はありません。

source 'https://rubygems.org'
gem 'capistrano'
gem 'mackerel-client'

　追記したらbundleでgemをインストールし
ます。

% bundle install

　そして、次のようにCapistrano用のファイ
ルを自動作成します。

% bundle exec cap install
mkdir -p config/deploy
create config/deploy.rb
create config/deploy/staging.rb
create config/deploy/production.rb
mkdir -p lib/capistrano/tasks
create Capfile
Capified

tmux-csshとの連携

 ▼図4　Mackerelとtmux-csshの連携

% curl 'https://mackerel.io/api/v0/hosts.json?service=<SERVICE>&host=<HOST>'ｭ
 -H 'X-Api-Key: <APIKEY>' | jq -a -M -r ".hosts[].name"

 ▼図2　特定のサービス・ロールのホストを取得する

% tmux-cssh `curl 'https://mackerel.io/api/v0/hosts.json?service=<SERVICE>&host=<HOST>'ｭ
 -H 'X-Api-Key: <APIKEY>' | jq -a -M -r ".hosts[].name"`

 ▼図3　図2の出力を引数にして、tmux-csshを実行

注5） URL https://github.com/dennishafemann/tmux-cssh
注6） URL http://capistranorb.com
注7） URL http://rubygems.org/gems/mackerel-client

https://github.com/dennishafemann/tmux-cssh
http://capistranorb.com
http://rubygems.org/gems/mackerel-client

134 - Software Design Jun. 2015 - 135

 ●Mackerel APIを利用
　まずMackerel APIを利用してホスト一覧を
取得するコードをconfig/deploy.rbに追記しま
す（リスト1）。SERVICE_NAMEにはMackerelに
登録しているサービスの名前を指定します。
USER_NAMEには各サーバにsshログインするた
めのユーザ名を指定します。
　Capistranoのロールとしては、Mackerelでサー
ビスに所属しているホスト群を指定できます。
このとき、ステータスがworkingまたはstandby
になっているホストが一覧できます。また、ホ
ストのIPアドレスはエージェントが収集したも
のが使用されます。
　config/deploy/staging.rb、config/deploy/

production.rbに、次に挙げるCapistranoのロー
ル定義を書きます。

set :service, SERVICE_NAME 必要に応じて
role :app, host_ip_addrs(:app)
role :db, host_ip_addrs(:db)

　host_ip_addrsの引数にMackerelのロール
を指定します。もしStaging環境とProduction

環境でサービスを分けている場合、:service
を指定することもできます。
　config/deploy.rbに戻って、リスト2のよう
にタスクを定義します。このタスクを実行する
と図5のような結果となります。

　本稿では、Mackerelを各種ツールと連携さ
せるためのAPIと連携例を紹介しました。今
回はホスト関連APIだけを対象としましたが、
メトリック関連のAPIでもさまざまなな連携
ができます。MackerelのAPIを利用すること
で幅広い応用ができますので、ぜひ試してみて
ください。ﾟ

まとめ

第 4 回
Mackerel APIで便利な外部ツールと連携

require 'mackerel/client'

set :mackerel_api_key, MACKEREL_API_KEY
set :service, SERVICE_NAME
set :username, USER_NAME

@client = Mackerel::Client.new(mackerel_api_key: fetch(:mackerel_api_key))

def host_ip_addrs(role)
 hosts = @client.get_hosts(service: fetch(:service), roles: fetch(:role)).select do |host|
 host.status === 'standby' || host.status === 'working'
 end.map do |host|
 interface = host.interfaces.find { |i| /^eth/ === i['name'] }
 interface['ipAddress'] if interface
 end.select {|ipaddr| ipaddr != nil }.map do |ipaddr|
 "#{fetch(:username)}@#{ipaddr}"
 end
end

 ▼リスト1　ホスト一覧を取得するコード（con�g/deploy.rb）

task :uptime do
 on roles(:all), in: :parallel do |host|
 uptime = capture(:uptime)
 puts "#{host.hostname} reports: #{uptime}"
 end
end

 ▼リスト2　タスクを定義（con�g/deploy.rb）

bundle exec cap staging uptime
DEBUG [fff3f379] Running /usr/bin/env uptime as stanaka@xx.xx.xx.xx
DEBUG [fff3f379] Command: /usr/bin/env uptime
DEBUG [fff3f379] 19:37:07 up 48 days, 11:55, 0 users, load average: 0.00, 0.04, 0.05
DEBUG [fff3f379] Finished in 2.740 seconds with exit status 0 (successful).
128.199.198.7 reports: 19:37:07 up 48 days, 11:55, 0 users, load average: 0.00, 0.04, 0.05

 ▼図5　定義したタスクを実行

136 - Software Design

　 NTTデータ 基盤システム事業本部　山本 未希（やまもと みき）

　社内の「勤怠管理システムの運用」を上司から任さ
れた2年目SEの藤井君。オープンソースソフト
ウェアの運用管理ツール「Hinemos」を使い、さまざ
まな困難に立ち向かいながら、運用自動化を進めて
きました。そんなある日、クラウド環境の運用チー
ムへの参画が急遽決まり、引き継ぎの準備をするこ
とになったのです。

定時「どう？　引き継ぎの準備はうまくいってる？」

藤井「あ、定時先輩、お疲れさまです！　今まで、

運用自動化ってなんだろうってところから始

まって、シェルスクリプトの書き方、cron、

Hinemosの使い方といろいろ学んできました

けど……後任の人はほかの運用管理製品を使っ

たことがあるそうなので、勤怠管理システムの

設計書・運用手順書と一緒に、Hinemosでどん

なことができるのかってところを伝えたいと

思って整理してたんです」

定時「なるほど。Hinemosはマニュアルも充実して

るけど、要点をまとめたものもあったら引き継

ぎも安心ね」

藤井「はい！　それで自分のおさらいも兼ねてこん

な感じで作ってみたんですけど、どうでしょう

か（図1）？」

定時「どれどれ……うん、なかなかよく書けてるわ

ね。これなら後任者も安心ね」

藤井「ありがとうございます！　この9ヵ月で学んだ

ことをなるべく盛り込んだつもりです」

藤井「実はジョブの遷移図作成がちょっと不安だっ

たんですが、このあいだ遂にHinemosジョブ

マップオプションが導入できたので、Hinemos

クライアントの画面を見ながら、簡単に遷移図

も書けそうなんです」

最終回 これで引き継ぎもらくらく！ Hinemosによるジョブ運用のおさらい

　藤井君の運用自動化への道のりも遂にゴールへ。後任者にバトンを渡すべく、システムの引き継
ぎ資料を作りました。そして、Hinemosの監視機能、クラウドでの運用についても定時先輩に学び、
次の現場へ向かう準備を始めたのでした。 イラスト（高野 涼香）

前回までのあらすじ

Hinemosの運用管理で
できること

藤井君の先輩社員。
華麗に仕事をこなし
定時に颯爽と帰って
いく優秀な女性。

昨年SI企業に入社し
た2年目SE。運用自
動化のために日々奮
闘中。

軽いノリで仕事を
依頼してくるが、藤
井君の成長を考え
ている。

定時先輩上 司藤 井

ジョブ管理で運用自動化
ジョブマップオプション

136 - Software Design Jun. 2015 - 137

最終回　これで引き継ぎもらくらく！ Hinemos によるジョブ運用のおさらい

『Hinemos引き継ぎメモ』

「Hinemosの構成」

Hinemosを構成する3つのコンポーネントは重要です。最初に必ず押さえておきましょう。

・Hinemosマネージャ（運用管理サーバ）：Hinemosの運用管理機能を提供するサーバです。ジョブ定

義などの各種設定内容を保持し、ジョブの実行を指示します。また、その結果をHinemos内部のデータベー

ス（PostgreSQL）に蓄積します。

・Hinemosクライアント（運用管理端末）：運用管理者やオペレータが操作するコンソール端末です。

この画面から設定を投入したり、ジョブの実行結果を確認したりできます。

・Hinemosエージェント（管理対象）：管理対象となる機器です。ジョブを実行する役割を担いますが、

監視機能だけを用いる場合は、大半の監視機能がOS標準のパッケージを利用するためHinemosエージェント

を導入しなくても使用できます。

「使い始めのポイント」

Hinemosでは監視機能を使うにも、ジョブ機能を使うにも、まず最初にリポジトリ管理機能で管理対象をノー

ドとして登録することからスタートします。Hinemosでは同じスコープに割り当てられている複数のノードに

対して、一括でジョブの実行ができるので、スコープをうまく活用するのもHinemosジョブ管理の秘訣です。

・ノード：管理対象のサーバやNW機器のことをノードと言います。

・スコープ：複数のノードをグループ化したものをスコープと言います。

「ジョブの設定」

Hinemosでは、ジョブユニット・ジョブネット・ジョブを組み合わせてジョブを組んでいきます。実行する処

理を指定するジョブの設定では、細かい要件に合うようさまざまな設定項目がありますが、まず最初は下記の

要点を押さえておきましょう。

・起動コマンド：ジョブの実態となるコマンドやシェルスクリプト／プログラムを指定します。

・待ち条件：前のジョブの実行結果を基に、ジョブを実行する契機を指定します。たとえば、前のジョブが

正常に終了した場合のみ実行するといった指定や複数条件を契機とした実行もできます。

そのほか、複雑なジョブを構成するには下記の機能も活用すると便利です。

・スキップ：特定のジョブだけ飛ばして後続のジョブはそのまま実行できます。

・保留：特定のジョブまできたらいったん実行を止めておくことができます。

・開始遅延：ジョブやジョブネットの起動が、想定どおり開始しない場合に通知やジョブの状態変更を行う

ことができます。

・終了遅延：ジョブやジョブネットの起動が、想定どおり終了しない場合に通知やジョブの状態変更を行う

ことができます。

▼図1　藤井君作、Hinemosの引き継ぎ資料

138 - Software Design

定時「そういえば藤井君、本当はジョブの管理だけ

じゃなくって、Hinemosの監視機能を使ってリ

ソースの監視とかもしたいって言ってたけど、

後任者にそこは伝えなくていいの？」

藤井「そうなんです。本当は監視機能を使って、

サーバの監視もしっかりやりたいんですが、機

能とかもあんまり調べきれてなくって……」

定時「ふっふっふ、やっぱりね。そうじゃないかと

思ってたんだけど、よかったら少しだけ監視機

「ジョブの実行契機」

ジョブを実行する契機には、手動実行、スケジュール実行、監視結果をもとにした実行、ファイルの作成／変

更／削除を契機とした実行がありますが、運用管理の自動化でよく使うのはスケジュール実行です。このスケ

ジュール実行にカレンダを組み合わせることで、実行の稼働日／非稼働日も指定できます。

・スケジュール：Linuxのcronのようなイメージで、毎時、毎分や指定した曜日にジョブを自動実行できます。

・カレンダ：名前のとおりカレンダの画面で日付・時間ごとに稼働／非稼働を設定できます。たとえばカレ

ンダを使えば、平日のみ稼働日とする、といった指定も簡単に実現できます。

「ジョブの実行結果を知るには」

ジョブが失敗したときなど、ジョブの実行結果を知るにはHinemosの通知という機能を使います。

通知の方法は全部で6種類あるので、用途に合った通知を選んで活用しましょう。

・ステータス通知：Hinemosクライアントにリアルタイムに結果を表示します。

・イベント通知：Hinemosクライアントにこれまでの結果の履歴を含め表示します。

・メール通知：任意のメールアドレスに結果をメールします。

・ログエスカレーション通知：任意のサーバにsyslogを送信します。

・コマンド通知：Hinemosマネージャがインストールされているサーバで任意のコマンドを実行します。

・ジョブ通知：Hinemosに登録されているジョブを実行します。

「ジョブの運用ポイント」

運用を始めたら、Hinemosの定期的なメンテナンスも必要です。メンテナンスには、Hinemosで用意されている

メンテナンス機能やメンテナンススクリプトをうまく活用しましょう。

・メンテナンス機能：ジョブ実行履歴や監視（イベント）履歴を指定したスケジュールに沿って削除できます。

・メンテナンススクリプト：Hinemosマネージャのメンテナンス作業に必要なシェルスクリプトです。デー

タベース内から不要なデータ（保持する必要のなくなったログ情報など）を削除するhinemos_delete.shなど

があります。

定時「Hinemosジョブマップオプションって、ジョ

ブの設定を2次元マップで編集できたり、ジョ

ブの実行遷移もマップ形式で見られる優れもの

よね。ようやく導入の許可がおりたのね！」

藤井「そうなんです！　引き継ぎのときだけじゃな

くて、今ジョブがどこまで進んでいるかもすぐ

に把握できるから、本当なら最初から導入でき

たら良かったんですけど……まぁ、Hinemos

ジョブマップオプションは運用を始めてからも

あとから導入できるって聞いていたので、あき

らめずに説得して良かったです！」

▼図1のつづき

実は監視機能や性能機能も

138 - Software Design Jun. 2015 - 139

最終回　これで引き継ぎもらくらく！ Hinemos によるジョブ運用のおさらい

定時「そう、これが性能機能よ。この機能を使えば、

普段の運用時もそうだけど、たとえば障害が

あったときもHinemosクライアント上でCPU

使用率の高騰やサーバの応答時間の遅れを手軽

にグラフで確認できるから便利ね」

藤井「そうですね。監視機能と性能機能、これも引

き継ぎのときにしっかり伝えることにしま

す！」

　Hinemosの監視機能には、全部で14種類の監視項
目があります（表1）。定時先輩の説明にもありまし
たが、監視の要件としてよく登場するような内容は
もともと監視項目として13種類用意がありますが、
そのほかの特別な要件についても、「カスタム監視」
を使うことで監視できるようになっています。

藤井「勤怠管理システムはオンプレミスの環境で運

用してましたけど、今度の異動先ではAWSと

かのクラウドサービスにあるシステムを運用す

るみたいなんです。楽しみではあるんですけ

ど、今までとは何が違うのかがよくわからなく

て……」

定時「そうねぇ……そもそもクラウドサービスを使

うメリットって柔軟にリソースを変更できるっ

てところよね。たとえばECサイトで繁忙期だ

けWebサーバを増やしたいときに、オンプレ

だとすぐにサーバ調達するのは難しいけど、ク

ラウドならすぐに増やせるわ。繁忙期が終わっ

たらすぐにサーバ数を減らすこともできるし、

負荷がかかっているかをチェックしてサーバ数

を自動で増やすこともできるから、費用の面で

も人件費の面でも、コスト削減には最適ね」

藤井「なるほど。ジョブを大量に実行するときだけ

サーバ数を増やしたいっていうときなんかも活

躍しそうですね！　でもそうなると、Hinemos

側でも柔軟なリソース変更に対応しなきゃいけ

ないですよね？」

定時「そうなるわね。たしかHinemosだとAWSと

かAzure、Cloudn に対応したクラウド管理オ

能のことを教えてあげようか？」

藤井「えっいいんですか？　ありがとうございま

す！」

定時「いいわよ。Hinemosの監視機能には、全部で

14種類の監視項目があるんだけど、たとえば

CPU使用率の監視だったら『リソース監視』と

か、OSのシステムログに出力されたメッセージ

を監視するには『システムログ監視』っていう名

前になってるの」

藤井「なるほど、監視項目の名前がそのまま監視で

きる項目を表していてわかりやすいですね」

定時「そうね。あとは1つだけ特徴的な監視機能が

『カスタム監視』ね。このカスタム監視では、

ユーザが作成したスクリプトやプログラム、コ

マンドなんかを定期的に実行して、その結果を

監視できるの。だから、たとえばほかの13種

類の監視項目では実現できない監視項目があっ

ても、このカスタム監視を使えばほかの監視項

目と一緒に監視結果を管理できて、結果を通知

することもできるのよ。ちなみに通知の方法は

ジョブ機能の場合と一緒だから使いやすいわ

ね」

藤井「なるほど、カスタム監視なんていうのもある

ん で す ね！　 こ れ が あ れ ば …… た と え ば

PostgreSQLのテーブルサイズとかも監視でき

るってことですよね？」

定時「そのとおり！　Hinemosも内部データベース

でPostgreSQLを使っているけど、カスタム

監視を使えば、LDBサイズとかインデックスサ

イズとか、それぞれのキャッシュヒット率なん

かも監視できるのよ。あとはPING監視とかリ

ソース監視とか、いわゆる数値を監視できる監

視項目には収集っていう設定ができるんだけ

ど、これを設定しておくと、監視結果の数値を

収集しておくことができるの。蓄積したデータ

はHinemosクライアント上でグラフとして見

れたり、csv形式でダウンロードできるのよ」

藤井「あ、もしかしてそれが性能機能ですか？　最

初にHinemosを調べてたとき、そんな機能を

見たような……」

クラウド環境での運用管理

140 - Software Design

プションっていう製品で、クラウドの構成を自

動で追尾して監視やジョブを継続できる機能を

提供してたはずよ。Standard版は無償でダウ

ンロードできたから、よかったら試してみると

いいかもしれないわね」

藤井「そんなオプション製品があるんですね！　し

かも無償なんていいですね。さっそく試してみ

ます！」

定時「頑張ってね！　あとは、有償のEnterprise版

ではクラウドサービス利用料金の管理ができる

みたいだから、これも押さえておくとよさそう

ね。クラウドの場合は、構成が柔軟に変更でき

る分、費用も従量課金になっているから、たと

えばお客様に提供するシステムだったりする

と、しっかり課金状況も把握しておくことが重

要なの」

藤井「知らぬ間にすごい金額になっていたらたいへ

んですもんね。クラウドの運用管理、なんとな

くイメージがつかめてきました」

定時「それは良かったわ。ちなみにHinemosはクラ

ウド環境の運用管理に力を入れているみたい

で、1台のHinemosマネージャでオンプレミス

の環境とパブリッククラウドの環境両方を一元

管理できるみたいだから、今後いろんな環境を

運用しなきゃいけないときに強い味方になりそ

うね」

藤井「両方の環境を一緒に管理できるのはすごいで

すね！　重要なデータはオンプレミスに置きた

いっていうお客様もいるだろうし、両方の環境

を使うことって多そうだから、異動しても

Hinemosが大活躍しそうです！」

　Hinemosのジョブ機能に加え、今回は監視機能や
性能機能、異動先で必要となるクラウド環境での運
用イメージも掴みました。システム運用管理には、
ジョブを使った業務処理の自動化に加え、システム
を構成するサーバやNW機器の状況を常に監視して
おき、何か障害がおこったらすぐに通知できるしく
みを作っておくことも重要なのです。また昨今運用
対象の環境はオンプレミス、プライベートクラウ
ド、パブリッククラウドと多様化しているので、各
環境に柔軟に対応できる運用が必要となります。

上司「藤井君、引き継ぎの準備はもう終わったか

な？」

今月の時短ポイント

▼表1　Hinemosの監視機能における監視項目一覧、監視項目概要

PING監視 対象機器へのping応答の有無により死活状態を監視

プロセス監視 起動しているプロセス数から状態を監視

リソース監視 対象機器のリソース情報を取得してその状態を監視

サービス・ポート監視 特定のサービス・ポートについて、応答有無や応答時間から状態を監視

Windowsサービス監視 Windowsサービスの状態を監視

Hinemosエージェント監視 Hinemosエージェントの死活状態を監視

HTTP監視 Webサーバの応答有無や応答時間、HTTPレスポンスの内容から状態を監視

SQL監視 DBサーバの応答有無や応答時間、SQLレスポンスの内容から状態を監視

SNMPTRAP監視 対象機器からSNMPTRAPを受信することで、対象機器の状態を把握

システムログ監視 各種OSのシステムログに出力されたメッセージを監視

ログファイル監視 特定のログファイルに出力されたメッセージを監視

Windowsイベント監視 Windowsイベントログに出力されたメッセージを監視

SNMP監視 汎用的なプロトコルSNMPの応答の内容を監視

カスタム監視 ユーザ定義のコマンド／スクリプトの実行結果を監視

まとめ

140 - Software Design Jun. 2015 - 141

最終回　これで引き継ぎもらくらく！ Hinemos によるジョブ運用のおさらい

藤井「はい！　定時先輩にも協力していただいて、

ジョブの管理だけじゃなくって、監視や性能管

理についてもまとめられそうです！」

上司「そうか。これなら心残りだった運用改善もス

ムーズに進められそうだな」

藤井「そうですね。あと、クラウド環境の運用にも

今までの知識が活用できそうなので、異動先で

もHinemosを使ってどんどん運用を改善して

いきます！」

上司「はっはっは、頼もしいな。ここ9ヵ月で運用に

ついてだいぶん詳しくなったからな。異動先で

も大活躍してくれよ」

藤井「はい、頑張ります！」

　勤怠管理システムの運用自動化をついにやり遂げ
た藤井君。異動先では今まで知らなかったクラウド

の知識も必要になってきますが、Hinemosで学んだ運
用管理の知識を活かして、クラウド環境の運用も頑
張れ、藤井君！｢ Fin

Hinemosをさらに強化するオプション製品

　Hinemosの本体機能を使うためのパッケージ、ド

キュメントはSourceForge.JPで無償公開されていま

すが、今まで紹介してきたとおり、有償のオプショ

ン製品を活用することで、さらに柔軟な運用管理が

できるようになります。ここでは、Hinemosのオプ

ション製品にどのようなものがあるのか、一挙に紹

介します。

・Hinemosクラウド管理オプション
クラウド環境のシステム構成の自動追尾・反映や、

用途に応じた課金状態の見える化やアラート出力

が実現できます。

・HinemosVM管理オプション

VMのシステム構成の自動追尾・反映や、電源

ON・OFFなどの操作が簡単に実現できます。

・Hinemosレポーティングオプション

Hinemosで蓄積したデータから簡単に定型レポー

トが作成できます。

・Hinemosジョブマップオプション
ジョブ編集画面やジョブの実行遷移を二次元マッ

プとしてグラフィカルに操作・確認できます。

・Hinemosノードマップオプション
イベントやスコープといった監視の結果を二次元

マップとしてグラフィカルに操作・確認できます。

・Hinemos Utilityオプション
監視やジョブ設定の一括インポート・エクスポー

トや、エクスポートした設定の変更をExcelで簡

単に実現できます。

・Hinemos HAオプション
運用管理サーバであるHinemosマネージャの冗長

化が実現できます。

142 - Software Design

トピック

　AWSが毎年世界各地で開催するクラウドカ
ンファレンス「AWS Summit」が、今年もサンフ
ランシスコを皮切りにはじまりました。 今年の
日本での開催は6月2日、3日の2日間で、参加
登録の開始告知から数時間後には技術系トラッ
クのほとんどが満員になる、など引き続きエン
ジニア層からの注目の高さが際立っているよう
に感じました。
　サンフランシスコ会期中の4月9日に、AWS

Lambdaの正式提供開始、AWS Configの東京
リージョン提供開始など、昨年秋の reInvent

2014で発表された新サービスのアップデートが
公開されました。今後、世界各地での開催を経て、
順次新サービス拡充のアナウンスが行なわれて
いくと考えられます。とくにAWS Lambdaの
東京リージョンでの提供開始を心待ちにしてい
る人は多いのではないでしょうか（筆者もその1

人です）。

今回の流れ

　第7回から、AWS APIを直接操作するため
に必要な3種類のディジタル署名について解説
してきました。最終回となる今回は、前回解説
したSignature Version 4の（以下「v4」）手順を
シェルスクリプト化したときのサンプルとその

実行例について解説します。
　まず、POSTメソッドでのサンプルと実行
例を紹介し、GETメソッドでの改修方法、ブ
ラウザで実行する場合のサンプルを紹介してい
きたいと思います。

シェルスクリプト
（Signature Version 4：POST）
　前回解説したSignature Version 4の署名付
きリクエストデータの作成手順をシェルスクリ
プトにするとリスト1のようになります。
　このスクリプトでも、Signature Version 3

やSignature Version 2のときと同様に、認証
情報についてデフォルトで ̃/.aws/default.rcを
参照しますが、cオプションで別の認証ファイ
ルを指定することができるようになっています。

IAMユーザの一覧を
取得してみる

　前回の手順で利用した IAMユーザの一覧を取
得するリクエストデータ（"Action=ListUsers"）
を list-users.txtとして保存します。

Action=ListUsers

　aws-v4-post-iam.shで署名付きリクエスト
データに変換してみましょう。コマンドは次の
ようになります。

$./aws-v4-post-iam.sh list-users.txt

シェルスクリプトではじめる
AWS入門
―AWS APIの活用と実践

Writer　波田野 裕一（はたの ひろかず）／運用設計ラボ　operation@office.operation-lab.co.jp

最終回　AWS APIでのデジタル署名の全体像を明らかにする⑥

142 - Software Design Jun. 2015 - 143

最終回　AWS APIでのデジタル署名の全体像を明らかにする⑥

 ▼リスト1　aws-v4-post-iam.sh

#!/bin/sh

FILE_AUTH=""
while getopts c: option; do
 case $option in
 c)
 FILE_AUTH=${OPTARG}
 esac
done
shift `expr ${OPTIND} - 1`

get parameter
if ["${1}x" = 'x']; then
 echo "Usage: $0 file-request"
 exit 2
fi

FILE_REQ=$1

define files
DIR_TMP="${HOME}/tmp/aws-v4-post"
if [! -e ${DIR_TMP}]; then mkdir -p ｭ
${DIR_TMP}; fi
FILE_TMP_REQ="${DIR_TMP}/request.tmp"
FILE_TMP_PAYLOAD="${DIR_TMP}/payload.tmp"
FILE_TMP_CAN="${DIR_TMP}/canonical_form.
tmp"
FILE_TMP_HEAD="${DIR_TMP}/canonical_ｭ
headers.tmp"
FILE_TMP_S2S="${DIR_TMP}/s2s.tmp"
FILE_OUTPUT="${DIR_TMP}/output.txt"

#######################################
Prepare:
#######################################

prepare-1: datetime
DATE_ORIGIN=`LC_ALL=C date -u +%Y%m%d`
#readonly DATE_ORIGIN='20110909'
TIME_ORIGIN=`LC_ALL=C date -u +%H%M%S`
#readonly TIME_ORIGIN='233600'

prepare-2: get auth config
if ["${FILE_AUTH}x" = "x"];then
 . ${HOME}/.aws/default.rc
else
 . ${FILE_AUTH}
fi

##
Task1: Make Canonical Request
##

API version (IAM)
API_VERSION='2010-05-08'

create query string
cp ${FILE_REQ} ${FILE_TMP_REQ}
echo Version=${API_VERSION} >> ${FILE_ｭ
TMP_REQ}
REQUEST_STRING=`

 ▼リスト1　aws-v4-post-iam.sh（続き1）

 cat ${FILE_TMP_REQ} ¦¥
 sort ¦¥
 sed -e 's¦ ¦%20¦g' ¦¥
 sed -e 's¦(¦%28¦g' ¦¥
 sed -e 's¦)¦%29¦g' ¦¥
 sed -e 's¦¥*¦%2A¦g' ¦¥
 sed -e 's¦+¦%2B¦g' ¦¥
 sed -e 's¦/¦%2F¦g' ¦¥
 sed -e 's¦:¦%3A¦g' ¦¥
 sed -e 's¦ ¦+¦g' ¦¥
 sed 's/^/¥&/' ¦¥
 sed '1s/^¥&//' ¦¥
 tr -d '¥n'`

Canonical Request (base)
HTTP_METHOD='POST' # method
CANONICAL_URI='/' # http method
CANONICAL_QSTRING=""

cat << EOF > ${FILE_TMP_CAN}
${HTTP_METHOD}
${CANONICAL_URI}
${CANONICAL_QSTRING}
EOF

Signed Headers
SIGNED_HEADERS='content-type;host;x-amz-ｭ
date'

Canonical Headers (AuthHead)"
API_HOST='iam.amazonaws.com'
X_AMZ_DATE="${DATE_ORIGIN}T${TIME_ｭ
ORIGIN}Z"

cat << EOF > ${FILE_TMP_HEAD}
content-type:application/x-www-form-urｭ
lencoded; charset=utf-8
host:${API_HOST}
x-amz-date:${X_AMZ_DATE}
EOF

Payload Hash
PAYLOAD="${REQUEST_STRING}"
echo "${PAYLOAD}" ¦ tr -d '¥n' > ${FILEｭ
_TMP_PAYLOAD}
PAYLOAD_HASH=`
 openssl dgst -sha256 ${FILE_TMP_ｭ
PAYLOAD} ¥
 ¦ sed 's/^.*= //'
`

Canonical Request (fix)"
cat ${FILE_TMP_HEAD} >> ${FILE_TMP_CAN}
echo "" >> ${FILE_TMP_CAN}
echo "${SIGNED_HEADERS}" >> ${FILE_TMP_ｭ
CAN}
echo ${PAYLOAD_HASH} ¦ tr -d '¥n' >> ｭ
${FILE_TMP_CAN}

Canonical Request Hash
REQUEST_HASH=`

右段へ続く → 次ページ左段へ続く→

144 - Software Design

 ▼リスト1　aws-v4-post-iam.sh（続き2）

 openssl dgst -sha256 ${FILE_TMP_CAN} ¥
 ¦ sed 's/^.*= //'
`

##
Task2: String to Sign
##

credentials scope
AWS_REGION='us-east-1'
AWS_SERVICE='iam'
REQUEST_MODE='aws4_request'

CREDENT_SCOPE="${DATE_ORIGIN}/${AWS_ｭ
REGION}
/${AWS_SERVICE}/${REQUEST_MODE}"

String to Sign
X_AMZ_ALGORITHM='AWS4-HMAC-SHA256'

cat << EOF > ${FILE_TMP_S2S}
${X_AMZ_ALGORITHM}
${DATE_ORIGIN}T${TIME_ORIGIN}Z
${CREDENT_SCOPE}
EOF

echo ${REQUEST_HASH} ¦ tr -d '¥n' >> ｭ
${FILE_TMP_S2S}

##
Task3: Calcurate Signature
##

K_SECRET = Your AWS Secret Access Key
K_SECRET=$(for x in $(echo "AWS4${aws_ｭ
secret_access_key}" ¦ grep -o '.');ｭ
do printf "%2X" ¥"$x; done;)

K_DATE = HMAC("AWS4" + K_SECRET, DATEｭ
_ORIGIN)
K_DATE=`
 echo "${DATE_ORIGIN}" ¥
 ¦ tr -d '¥n' ¥
 ¦ openssl dgst -mac HMAC -macopt ｭ
"hexkey:${K_SECRET}" -sha256 ¥
 ¦ sed 's/^.*= //'
`

K_REGION = HMAC(K_DATE, REGION_ORIGIN)
K_REGION=`
 echo "${AWS_REGION}" ¥
 ¦ tr -d '¥n' ¥
 ¦ openssl dgst -mac HMAC -macopt ｭ
"hexkey:${K_DATE}" -sha256 ¥
 ¦ sed 's/^.*= //'
`

K_SERVICE = HMAC(K_REGION, SERVICE)
K_SERVICE=`
 echo "${AWS_SERVICE}" ¥

 ▼リスト1　aws-v4-post-iam.sh（続き3）

 ¦ tr -d '¥n' ¥
 ¦ openssl dgst -mac HMAC -macopt ｭ
"hexkey:${K_REGION}" -sha256 ¥
 ¦ sed 's/^.*= //'
`

K_SIGNING = HMAC(K_SERVICE, "aws4_ｭ
request")
K_SIGNING=`
 echo "${REQUEST_MODE}" ¥
 ¦ tr -d '¥n' ¥
 ¦ openssl dgst -mac HMAC -macopt ｭ
"hexkey:${K_SERVICE}" -sha256 ¥
 ¦ sed 's/^.*= //'
`

Signature
SIGNATURE_HEX=`
 openssl dgst -mac HMAC -macopt "hexkeyｭ
:${K_SIGNING}" -hex -sha256 ${FILE_TMP_ｭ
S2S} ¥
 ¦ sed 's/^.* //'
`

###
Task4: Build Request
###

Auth Header
AUTH_HEADER="${X_AMZ_ALGORITHM} ｭ
Credential=${aws_access_key_id}/ｭ
${CREDENT_SCOPE}, SignedHeaders=${SIGNEDｭ
_HEADERS}, Signature=${SIGNATURE_HEX}"

Request Data
CONTENT_LENGTH=$(expr $(echo ${REQUEST_ｭ
STRING}¦ wc -c) - 1)

cat << EOF > ${FILE_OUTPUT}
${HTTP_METHOD} https://${API_HOST}/ｭ
${CANONICAL_QSTRING} HTTP/1.1
Authorization: ${AUTH_HEADER}
EOF

cat ${FILE_TMP_HEAD} >> ${FILE_OUTPUT}
echo "content-length:${CONTENT_LENGTH}" ｭ
>> ${FILE_OUTPUT}
echo "" >> ${FILE_OUTPUT}
echo "${REQUEST_STRING}" >> ${FILE_ｭ
OUTPUT}

cat ${FILE_OUTPUT}

右段へ続く →

144 - Software Design Jun. 2015 - 145

最終回　AWS APIでのデジタル署名の全体像を明らかにする⑥

　Signature Version 4の署名付きのPOSTリ
クエストデータが出力されます（図1）。
　データは生のHTTPリクエストデータです。
opensslコマンドを立ち上げて貼り付けてみま
しょう。コマンドは次のようになります。

$ API_HOST='iam.amazonaws.com'
$ openssl s_client -connect ${API_
HOST}:443
 (略)
 Timeout : 300 (sec)
 Verify return code: 20 (unable to ｭ
get local issuer certificate)
　 入力待ち（ここに署名付きリクエストデータを貼り付け、
　 2回©キーを押す）

　図2のようなXMLが表示されるはずです。
この例では、IAMユーザが1つだけ存在してい
ることがわかります。

IAMユーザの情報を
取得してみる

　先ほどはActionだけの例でしたが、もう少
し複雑な例として、特定の IAMユーザの情報
をGetUserアクションで取得してみましょう。
GetUserアクションでは、UserNameが必須パ
ラメータとなっています（http://docs.aws.ama

zon.com/IAM/latest/APIReference/API_

GetUser.html）。次のように、意図的にソート
順を換えてリクエストデータ（get-user.txt）を
作成してみます。

UserName=admin
Action=GetUser

　作成したリクエストデータを、aws-v4-post-

iam.shで署名付きのリクエストデータに変換し
ます。コマンドは次のようになります。

 ▼図1　Signature Version 4の署名付きのPOSTリクエストデータ（その1）

POST https://iam.amazonaws.com/ HTTP/1.1
authorization:AWS4-HMAC-SHA256 Credential=AKIAXXXXXXXXXXXXXXXX/20150401/us-east-1/iam/ｭ
aws4_request, SignedHeaders=content-type;host;x-amz-date, Signature=bd906b442a67c4d79118588ｭ
df5041acfe640adf6fb490106491eb46773a5babc
content-type:application/x-www-form-urlencoded; charset=utf-8
host:iam.amazonaws.com
x-amz-date:20150401T013306Z
content-length:35

Action=ListUsers&Version=2010-05-08

 ▼図2　opensslの実行による出力結果（その1）

v<ListUsersResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">
 <ListUsersResult>
 <Users>
 <member>
 <UserId>AIDAXXXXXXXXXXXXXXXXX</UserId>
 <Path>/</Path>
 <UserName>admin</UserName>
 <Arn>arn:aws:iam::XXXXXXXXXXXX:user/admin</Arn>
 <CreateDate>2015-04-06T12:04:00Z</CreateDate>
 </member>
 </Users>
 <IsTruncated>false</IsTruncated>
 </ListUsersResult>
 <ResponseMetadata>
 <RequestId>xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx</RequestId>
 </ResponseMetadata>
</ListUsersResponse>

146 - Software Design

$./aws-v4-post-iam.sh get-user.txt

　Signature Version 4の署名付きのPOSTリ
クエストデータが出力されます（図3）。
　先ほどと同様にopensslコマンドを立ち上げ
て貼り付けてみましょう。その結果は図4のよ
うになります。IAMユーザの情報を取得でき
たことが確認できるはずです。

シェルスクリプト
（Signature Version 4: GET版）
　opensslコマンドで直接GETメソッドを実行
する場合は、リスト1について次の改修を行う
ことで実現できます。

・HTTPメソッドをGETメソッドに変更

・リクエスト内容はペイロード（リクエストボ
ディ）ではなく、正規リクエスト文字列（リ
クエストヘッダ）に格納する。

・署名ヘッダや正規ヘッダに'content-type'は
不要

・リクエストヘッダにcontent-lengthヘッダは
不要

・リクエストボディも不要

　実際のGETリクエストデータは図5のよう
なものになります。一方、ブラウザ用のGET

リクエストデータを作成したい場合は、v4で
はハッシュ計算に認証ヘッダが含まれるため、
リクエストデータの作成に少し工夫が必要です。
具体的には、すべての認証ヘッダを含めた正規
リクエストを作成し、そのハッシュ値をもとに

 ▼図3　Signature Version 4の署名付きのPOSTリクエストデータ（その2）

POST https://iam.amazonaws.com/ HTTP/1.1
authorization:AWS4-HMAC-SHA256 Credential=AKIAXXXXXXXXXXXXXXXX/20150401/us-east-1/iam/ｭ
aws4_request, SignedHeaders=content-type;host;x-amz-date, Signature=710ebdf27619d8926500cｭ
9290876a828bf5dbe4a6c305e6ad7222a80b5468abc
content-type:application/x-www-form-urlencoded; charset=utf-8
host:iam.amazonaws.com
x-amz-date:20150401T035405Z
content-length:66

Action=GetUser&UserName=admin&Version=2010-05-08

 ▼図4　opensslの実行による出力結果（その2）

HTTP/1.1 200 OK
x-amzn-RequestId: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
Content-Type: text/xml
Content-Length: 495
Date: Sun, 12 Apr 2015 01:04:54 GMT

<GetUserResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">
 <GetUserResult>
 <User>
 <UserId>AIDAXXXXXXXXXXXXXXXX</UserId>
 <Path>/</Path>
 <UserName>admin</UserName>
 <Arn>arn:aws:iam::XXXXXXXXXXXX:user/admin</Arn>
 <CreateDate>2015-04-01T12:04:00Z</CreateDate>
 </User>
 </GetUserResult>
 <ResponseMetadata>
 <RequestId>xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx</RequestId>
 </ResponseMetadata>
</GetUserResponse>

146 - Software Design Jun. 2015 - 147

最終回　AWS APIでのデジタル署名の全体像を明らかにする⑥

署名計算をします。しかし、紙幅が尽きました
ので筆者のWebページ注1に掲載する予定です。
ぜひ、参照ください。

おわりに

　約1年間12回にわたって、AWSが提供する
APIの全体像、APIに直接リクエストを行な
うための基礎的な知識について紹介してきまし
た。

注1） http://aws.opelab.jp/sd-api/index.html

　CloudTrail、Cognito、Lambda、Configなど、
本連載中にも重要な新サービスが次々と登場し
てきました。今後もAWSからは多くの新サー
ビスが提供され、新しいAPIが提供されてい
くでしょう。そのときに低レベルで確認する手
段を持つことは、かつての telnetコマンドなど
と同様にエンジニアの身を助けるうえで重要な
こととなっていくと筆者は考えています。ふと
疑問が浮かんだときに、直接自分の手で確認す
る、本連載がそのときの一助となれば幸いです。
機会があればまたお会いしましょう。ﾟ

 ▼図5　GETリクエストデータ

GET https://iam.amazonaws.com/?Action=ListUsers&Version=2010-05-08 HTTP/1.1
Authorization: AWS4-HMAC-SHA256 Credential=AKIAXXXXXXXXXXXXXXXX/20150401/us-east-1/iam/ｭ
aws4_request, SignedHeaders=host;x-amz-date, Signature=4b993cf8d08650697e66940a08f25fdc304ｭ
fc3813f7a8ab0bd2314a182ab0abc
host:iam.amazonaws.com
x-amz-date:20150401T023257Z

OpenSSHは、暗号や認証の技術を使って遠隔地のコンピュータ
と安全に通信するためのソフトウェアです。システムの開発／運
用もクラウド上で行うことが多い昨今、SSHはIT技術者に必須の
技術です。
本書は、OpenSSHクライアント／サーバの基本的な使い方と、
TCPポートフォワード、認証エージェント転送、X11転送、簡易
VPNなどの応用的な使い方を説明します。セキュリティを確保す
るための注意点についても言及します。
OpenSSH-4.2～6.6対応。Red Hat系／Debian系OS両対応。

川本安武 著
A5判／400ページ
定価（本体2,980円＋税）
ISBN 978-4-7741-6807-4

・インフラエンジニア
・ネットワークエンジニア
・運用エンジニア
・Webアプリケーション開発エンジニア
・IaaSなどのクラウドサービスを利用している技術者
・リモートからサーバに接続して作業行う技術者

http://aws.opelab.jp/sd-api/index.html

148 - Software Design

2015年1月8日にSSL/TLSにまた大きな脆弱性が発見されました。世間で「FREAK攻撃」と呼ばれてい
るものです。この脆弱性は、技術的ミスというより政治的な理由により作り込まれたと言っても過言で
はありません。今回はFREAK攻撃の事象、影響、対策を解説するとともに、脆弱性が作りこまれた歴
史的背景も説明します。

またもやSSLに脆弱性!?

　2015年1月8日に公開されたCVE-2015-0204（いわ
ゆる「FREAK攻撃」）は、SSL/TLSの後方互換性に脆
弱性があり、この脆弱性を突かれることで本来安全
なはずの暗号通信の内容が解読されてしまう危険性
があります。この問題のもともとの原因は実に歴史
的に根深いところにあります。忘れていた過去が追
いかけてくるような、そんな脆弱性でした。
　今回の脆弱性は、OpenSSLに限らず複数
の大手ベンダが提供しているSSL/TLS実
装にも影響がありました。約1年前の2014

年4月に発覚したOpenSSLのHeartBeat

の脆弱性注1を彷彿させることとなり、また
もや「インターネットの安全性に大きくか
かわるSSL/TLSに問題があった」という
認識で大きな話題、かつ大きな問題になり
ました。

CVE-2015-0204

　まず、NISTのNational Vulnerability Data

base（NVD）を確認してみましょう。CVE-

2015-0204の初版は2015年1月8日に発行されてい
ます（図1）注2。
　「SSLクライアントで利用されるOpenSSLの
s3_clnt.cに含まれるssl3_get_key_exchange関数
は、遠隔のSSLサーバに接続する際にRSA（標準
の強度の鍵を使う方式）からEXPORT_RSA（すで
に安全ではない強度の鍵を使う方式）にダウング
レードする」というものです。
　OpenSSLのクライアントをだますことで、安全

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第二一回】

すずきひろのぶ
suzuki.hironobu@gmail.com

米国暗号輸出規制が生んだ負の遺産「FREAK攻撃」

◆◆図1　FREAKの情報が掲載されているNVD

（https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0204）

注1）	 本誌2014年7月号、8月号「OpenSSLの脆弱性“HeartBleed”の教訓」を参照。
注2）	 JVNでの報告は次のURLを参照。国内に関係するベンダ情報が掲載されている。
 http://jvndb.jvn.jp/ja/contents/2015/JVNDB-2015-001009.html

https://web.nvd.nist.gov/view/vuln/detail?vulnID=CVE-2015-0204
http://jvndb.jvn.jp/ja/contents/2015/JVNDB-2015-001009.html

Jun. 2015 - 149

【第二一回】 米国暗号輸出規制が生んだ負の遺産「FREAK攻撃」

ではない強度の暗号通信が発生し、内容を盗聴でき
る可能性が出てきます。
　影響を受けるOpenSSLのバージョンは次のとお
りです。

●● 0.9.8zd未満
●● 1.0.0p未満の1.0.0
●● 1.0.1k未満の1.0.1

　影響度を示す値のCVSS v2の基本スコアは4.3

（最高10.0）で、中程度という判断がされています。
ところが“Exploitability Subscore（攻撃に利用する
可能性）”というサブスコアは8.6と高い値を示して
います。
　Exploitability Subscoreの高さは、OpenSSLの
サーバへの侵入といった直接的な危険性ではなく、
この脆弱性をなんらかの攻撃に用いると高い危険性
がある、ということを意味します。
　このEXPORT_RSAの問題は2014年10月22日
にフランスの研究所INRIAのPROSECCOチーム
の研究者Karthikeyan Bhargavan氏によって発見さ
れました。しかし、この脆弱性は当初、OpenSSL

の脆弱性として危険度が高い（つまり攻撃側に有用
である）という認識はなかったようです。後に、こ
の脆弱性を使って攻撃する現実的な方法が提示さ
れ、2015年3月19日に発行したOpenSSL Security

Advisoryでは、以前付けた危険度を見直し、“Low”
から“High”に変更しました（図2）。

AppleやMicrosoft
にも波及

　OpenSSLはオープンソースのSSL/TLS

実装ですが、AppleやMicrosoftといった別の
実装でも同じ問題が発生しました。

●● Apple：CVE-2015-1067

　Apple iOS 8.2未満、OS X 10.10.2以下、
Apple TV 7.1未満のバージョンで利用してい
るTLS実装にEXPORT_RSAにダウング
レードする問題があり、FREAK攻撃が可能
になっています。

●●Microsoft：CVE-2015-1637

　Microsoft Schannel（Secure Channel）にも同様
に、TLS実装にEXPORT_RSAにダウングレード
する問題があり、FREAK攻撃が可能になっていま
す。影響のあるバージョンは次のとおりです。

●●Windows Server 2003 SP2
●●Windows Vista SP2
●●Windows Server 2008 SP2およびR2 SP1
●●Windows 7 SP1
●●Windows 8
●●Windows 8.1
●●Windows Server 2012 GoldおよびR2
●●Windows RT Goldおよび8.1

　OpenSSLはAndroidで使われていますし、iOSは

Apple iPhoneで使われていますから、結果として
今のスマートフォンのほとんどが影響を受けていま
す。OpenSSLはCisco製品にもOracle Solarisにも
影響を与えています。このように、我々が身の回り
で使っているPC、サーバ、スマートフォンに大き
な影響があります。

EXPORT_RSAとは何か

　EXPORT_RSAは、通信の保護に使う公開鍵暗

（https://www.openssl.org/news/secadv_20150319.txt）

◆◆図2　2015年3月19日のOpenSSL Security Advisoryの該◆
　　 当部分を抜粋

https://www.openssl.org/news/secadv_20150319.txt

150 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

号RSAの鍵の長さが512bitに限定されているもの
です。これは昔、米暗号輸出規制時代に使われてい
たものです。この歴史的背景に関してはのちほど説
明します。SSL/TLSには暗号スイート（cipher

suite）と呼ばれる、鍵交換の暗号アルゴリズム、認
証のためのアルゴリズム、通信時の暗号化の共通鍵
暗号アルゴリズム、そして（暗号学的）ハッシュ関数
の組み合わせが定義されています。暗号で通信する
ときは、そのスイートを選んで使います。スイート
名の先頭がEXPで始まっているものが米暗号輸出
規制をクリアするためのものです（図3）。
　図3によると、鍵交換の暗号アルゴリズム（Kx）
はディフィー・ヘルマン（DH）方式とRSA方式で、
いずれも512bitです。そして、通信時の共通鍵暗
号アルゴリズム（Enc）はDES、RC2、RC4の3つで、
いずれも40bitです。なお、ハッシュ関数（Mac）は
米暗号輸出規制に含まれませんが、今日において
MD5は安全ではありませんし、SHA1も非推奨に
なっています。
　512bitのRSA鍵の因数分解自体はすでに1999年
に成功しています。このときは因数分解の計算に
6ヵ月を費やし、使った計算時間は約8,000MIPS年
でした。世界各地の暗号を研究しているグループが
計算資源をもちより計算していました。現在もこの
研究は続いています。
　ちなみに2007年までRSA Labo社が主催した
RSA Factoring Challengeという桁数の大きいRSA

を因数分解していくという競争があり、出題されて
いるRSAの鍵を解くと鍵のサイズに合わせた賞金
がもらえました。
　1999年の成功から16年経って、RSA 512bitの因

数分解はどうなっているのでしょうか。ペンシルバ
ニア大学Nadia Heninger教授が公開している
Amazon EC2上で動作する数体ふるい法による因数
分解プラットフォームCADO-NFS注3を使えば、時
間にして7.5時間、金額にして104ドル程度で可能
だそうです。ちなみにこれは知人の専門家に教えて
もらいました。
　もう1つ重要な点なのですが、40bitのDES、RC4

（RC4は128bitも）、RC2のいずれも今日の計算機環
境においては、そんなに時間がかからず破られてし
まうということです。ただし、RSA 512bitを因数
分解して秘密鍵を見つけるほうが104ドルと画期的
に安いのと、あとで説明しますが、一度秘密鍵を見
つけるとしばらく使えるので、そちらが中心になる
でしょう。

中間者攻撃シナリオ

　FREAK攻撃における中間者攻撃（Man-in-the-

Middle Attack）のシナリオは次のようなものです
（図4）。

①クライアント側（Alice）はRSA 2048bitの鍵を使う

ようにサーバ側（Bob）に指示する

②中間者（Mallory）はAliceの指示をEXPORT_RSA

（512bit）を使うようにすり替える。このとき、Alice

の指示には電子署名が付いていないので、Bobは

本当にAliceからの指示かどうかを確認できない

③BobはAliceの指示どおりにEXPORT_RSAを使う

ことにして、それをAliceに伝える。そのときは

Bobの電子署名を付けている

% openssl ciphers -v ¦ grep EXP-

EXP-EDH-RSA-DES-CBC-SHA SSLv3 Kx=DH(512) Au=RSA Enc=DES(40) Mac=SHA1 export
EXP-EDH-DSS-DES-CBC-SHA SSLv3 Kx=DH(512) Au=DSS Enc=DES(40) Mac=SHA1 export
EXP-DES-CBC-SHA SSLv3 Kx=RSA(512) Au=RSA Enc=DES(40) Mac=SHA1 export
EXP-RC2-CBC-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC2(40) Mac=MD5 export
EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export

◆◆図3　米暗号輸出規制をクリアするための暗号スイート

注3）	 Amazon EC2上で動作する数体ふるい法による因数分解プラットフォームCADO-NFS
 https://www.cis.upenn.edu/̃nadiah/projects/faas/

https://www.cis.upenn.edu/%CC%83nadiah/projects/faas/

Jun. 2015 - 151

【第二一回】 米国暗号輸出規制が生んだ負の遺産「FREAK攻撃」

PORT_RSAを使っても、最初から交換した共通鍵
暗号の鍵が攻撃者に入手されてしまいます。これで
は暗号通信の意味はありません。

影響

　サーバ側もクライアント側も後方互換性のEX

PORT_RSAを有効にしている場合、この問題は発
生します。先ほど説明したとおり、CVE-2015-0204

の脆弱性が発見される前までは、クライアント側の
Webブラウザが使っているSSL/TLSは、ほぼす
べてが影響を受けていました。
　サーバ側ではEXPORT_RSAを有効にしている
サイト、無効にしているサイトの両方が存在してい
ます。freakattack.com注4は、Webサイトの人気度を
計測しているサイトAlexaから上位10,000サイトを
選び、その中でEXPORT_RSAが有効になってい
るサイトがいくつあるかを計測しています。2015年
3月10日時点では340サイト、率にして3.4％のサ
イトがEXPORT_RSAの脆弱性を持っていました。

対策

　クライアント側に関しては各ベンダよりアップ
デートが配布されていると思いますので、それに
従ってください。ただし、すでにサポートされてい
ないスマートフォン端末やアプリ、もちろんサポー
ト外になったPCのソフトウェアでも、同様の問題
を抱えています。そのような端末ではSSL/TLS

を必要とする通信は推奨できません。
　サーバ側はアップデートもそうですが、それ以
外にもすでに安全ではない暗号はコンフィギュ
レーションで回避してください。Apacheについて
は、 The Apache Software Foundationのサイトの
説明注5が参考になると思います。
　コンフィギュレーションが正しく動作しているか
は、SSLLABSのサービスを使えば確認できます。

④AliceはBobから電子署名付きで届いたEXPORT_

RSAを使う内容を信じてEXPORT_RSAを使う

⑤MalloryはEXPORT_RSAで使われている短い鍵を

因数分解しRSAの秘密鍵を取り出す

⑥AliceとBobはEXPORT_RSAで共通鍵暗号の鍵を

交換する

　⑥でEXPORT_RSAを使って通信本体を暗号化
するDES/RC2/RC4の40bitの共通鍵暗号の鍵（正
確には鍵交換をするためのパラメータ）を送るわけ
ですが、その鍵は、⑤でRSAの秘密鍵を入手した
Malloryに解読され共通鍵暗号の鍵を入手されてし
まいます。
　EXPORT_RSAで使う512bitのRSA鍵は使われ
るときに一時的に生成されます。しかし、接続が発
生するたびに新しいものを生成するのは効率が悪い
ので、いったん作られるとある程度の期間、それを
キャッシュして使っています。どのようにキャッ
シュするかはサーバの種類によりますが、たとえば
Apacheのmod_sslではEXPORT_RSAが一度作ら
れると、Apacheが止まるまでその鍵が有効になって
いるようです。
　よって、いったんEXPORT_RSAでRSAの秘密
鍵が盗まれてしまえば、別のセッションでEX

◆◆図4　FREAK攻撃における中間者攻撃

Alice Bob

⑥RSA 512bit

④RSA 512bit

①RSA 2048bit
②RSA 512bit

③RSA 512bit

⑤RSA の秘密鍵を入手

⑥RSA 512bit

Mallory

注4）	 https://freakattack.com/
注5）	 Cipher Suites and Enforcing Strong Security　http://httpd.apache.org/docs/trunk/ssl/ssl_howto.html

https://freakattack.com/
http://httpd.apache.org/docs/trunk/ssl/ssl_howto.html

152 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

図5は実際にEXPORT_RSAの問題を持っている
サイトをSSLLABSのサービスでチェックしたも
のです。このサイトはEXPORT_RSAの問題だけ
ではなく、すでに必要な暗号の強度が保てないうえ
にRFC7465で忌避されているRC4も利用していま
す。これではSSL/TLSを使っていても安全性を
保てません。このような状況にならないよう、サー
バを運用するにあたりSSL/TLSの安全性につい
て十分な理解を求めます。

歴史的背景と考察

　以前、本連載で取り上げたスノーデン事件の背景
や、PGPの背景の説明でも述べましたが注6、第二次
世界大戦以降、長い間、米国の国家安全保障の考え
方では、暗号および暗号解読技術は核技術に匹敵す
るような高度な兵器技術の範

はんちゅう

疇に入っていました。
　そのためインターネット技術が台頭してきてもま
だ、暗号には厳しい輸出規制がかけられていまし
た。Netscape WebブラウザのSSLは、公開鍵暗号
のRSAの鍵の長さを512bitに限定して輸出規制に
従いました。一方、PGPについては、最後はソース

コードを印刷した本にして海外に
広めるという方法を採りました。
このような状況は2000年まで続き
ました。1999年に512bitのRSA鍵
の因数分解が成功していなかった
ら、もう少しこの規制は長く続い
たかもしれません。

暗号輸出規制は
なくなったものの……

　一方で、安全性を犠牲にするこ
とで規制をかけるアプローチには
当然ながら限界が出てきます。イ
ンターネット時代になって、また
計算能力が上がってきて、より強
力で安全な暗号アルゴリズムが必

要な時代になってきました。しかし、米政府は暗号
技術のコントロールを手放そうとしたくありませ
ん。そこで出てきたのが「クリッパー計画」です。
　クリッパー計画は、国家が暗号の鍵を管理し、必
要に応じてその鍵を使えるというのが基本的な考え
方です。クリッパー計画はのちにキーエスクロー方
式という第三者が鍵を預かるという方式としてア
ピールするようになりましたが、国家がすべての暗
号の鍵にアクセスできるという本質はなんら変わっ
ていません。
　このようなしくみは、管理している鍵が漏れれば
インターネット全体の安全性がカタストロフィ（破
局的）といっていいレベルで一気に崩壊する危険性
を持つ極めてリスクの高いものです。それをコント
ロールするには、非現実的なレベルで管理すること
になります。
　このことに関しては1999年に『インターネットマ
ガジン』誌上で筆者がすでに指摘しています。この
記事はインターネット上にpdfで公開されているの
でぜひご覧ください注7。
　2015年のインターネットの世界に住んでいる私
たちは、スノーデン事件やWikiLeaksにあるよう

注6）	 本誌2014年5月号の本連載「スノーデン事件が意味するもの」、本誌2015年4、5月号の本連載「GnuPGを通して暗号技術を理解する」。
注7）	 インターネットマガジン 1999年9月号「時代遅れなキーエスクロー　政府による暗号システム介入はあるか」
 http://i.impressrd.jp/files/images/bn/pdf/im199909-326-kisei.pdf

◆◆図5　SSLLABSでサイトのSSLの安全性をチェックできる

（https://www.ssllabs.com）

http://i.impressrd.jp/files/images/bn/pdf/im199909-326-kisei.pdf

Jun. 2015 - 153

【第二一回】 米国暗号輸出規制が生んだ負の遺産「FREAK攻撃」

に、高い秘密レベルの国家安全保障に関する情報で
さえ大量に流出することを目の当たりにしていま
す。毎日のようにソフトウェアの脆弱性に悩まさ
れ、完全なソフトウェアなど理想の世界にしか存在
しないことを、身をもって経験しています。キーエ
スクローのようなしくみは（絶対という言葉を使っ
て問題ないレベルで）絶対的に失敗することが見え
ています。キーエスクローがインターネットに組み
入れられず、本当に良かったと思います。

米国暗号輸出規制時代の亡霊？

　そして今回、もう存在を忘れてしまっていたくら
いに古い米暗号輸出規制に合わせるためのしくみ
が、突然、脆弱性として我々の前に現れました。あ
る人は亡霊と言いましたが、筆者は、蛇足という言
葉の由来注8を思い出しました。
　昔、中国で地面に蛇を一番に描き上げた者が酒を
飲むことができるという競争をしました。一番に描

き上げた者が、ほかの人がまだまだ蛇を描くのに時
間がかかりそうなのを見て、自慢げにこう言いまし
た。「俺はさらに蛇の足を描くことができるぞ」。そ
して足を書きました……。
　CVE-2015-0204の原因となったEXPORT_RSA

は、本来まったく必要のない機能なのに安全性の観
点や技術といったこととは無縁の理由から加えられ
ました。そして、不必要になったあとも15年も漫
然と残っていて、最後はこのような形で影響の大き
い脆弱性として現れたという、よくよく考えてみれ
ば実に理不尽とも言える脆弱性だったと言えるで
しょう。
　読者の皆さんはすでにアップデートして修正は終
わっていることと思いますが、今後もアップデート
できない端末やきちんと管理しないサーバは残り続
けると思います。米国暗号輸出規制による負の遺産
はまだまだ長くインターネットに残ることになるで
しょう。s

注8）	 http://ja.wikibooks.org/wiki/高等学校古文/散文・説話/戦国策

http://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E5%8F%A4%E6%96%87/%E6%95%A3%E6%96%87%E3%83%BB%E8%AA%AC%E8%A9%B1/%E6%88%A6%E5%9B%BD%E7%AD%96

154 - Software Design

ちょっと影が薄い
標準コマンドたち

　ども、るびきちです。前回はキーに割り当て
られた標準コマンドの全体像を示しました。今
回もちょっと地味な標準コマンドに光を当てて
いきます。意外な発見があるかもしれません。

マーク関係

　Emacsにおいてマークは超基本的な機能です。
C-SPCでマーク、M-wでコピー、C-wでカット、
C-yでペーストというのが基本です。C-y直後
にM-yを押せば過去のコピー履歴（kill-ring）に
置き換えます。ここではいわゆる普通のコピー
&ペースト以外の機能を紹介します。

◆マークの履歴をたどる
　現在のEmacsでは、C-SPCでマークしてカー
ソルを移動させると、マーク・カーソル間
（region）はハイライトされます。そして、たま
にカーソルとマークを入れ替えたいことがあり
ます。それにはC-x C-x（exchange-point-and-

mark）あるいはC-u C-SPCを使います。
　実は過去にマークした場所はすべてmark-ring

という変数に記憶されています。C-u C-SPCを
繰り返せば、過去のマークをどんどん遡

さかのぼ

れます。
このことは、regionを作成する用途以外にも一
時的に場所を記憶するためにマークを活用でき

ることを意味します。この目的ではハイライト
は不要ですのでC-SPC C-SPCでハイライトなし
でマークしてください。C-u C-SPCでその場所
に戻れます。もちろん、bm.elを使ってもいいで
す（2015年1月号の本連載で紹介）。
　とはいえ、マークを遡るのにC-u C-SPC C-u

C-SPC……と繰り返すのは面倒です。そこで、
次の設定を加えればC-u C-SPC C-SPC……と
C-SPC連打で遡れるようになって便利です。

(setq set-mark-command-repeat-pop t)

　マークを遡れるC-u C-SPCに対し、C-x C-x
は単にマークとカーソル位置を入れ替えるだけ
のコマンドです。
　明示的に行うマーク以外にも、コマンド実行
後に自動的にマークされる“暗黙のマーク”もあ
ります。isearchや M-<（beginning-of-buffer）、
M->（end-of-buffer）、C-M-a（beginning-of-

defun）、C-M-e（end-of-defun）など、長距離を移
動するコマンドは暗黙のマークが自動的になさ
れます。このおかげで isearchで遠い場所に移動
してもC-u C-SPCを押せば一瞬で元の場所に戻
れるようになります。
　プログラミングにおいてライブラリをrequire

したいときは暗黙のマークを使うといいです。
M-<やC-r requireでrequireの羅列に移動し、
新たにrequire文を書き加え、C-u C-SPCで元
の場所に戻る、という操作ができます。

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

第14回 地味だけどあなどれない標準コマンドたち
　前回に引き続き、設定ファイルは極力いじらず、Emacsに標準で備わっているコマンドを見ていきます。
マーク関係、情報取得、表示設定といった場面で、知っていると役立つ技を紹介していきます。標準状態
で何ができるかを把握することは、設定ファイルを編集するときにも必ず役立ちます。

Writer

http://rubikitch.com/

154 - Software Design Jun. 2015 - 155

キーボードマクロ

　キーボードマクロは一連のキー操作を記憶し、
あとで何度でも呼び出せるようにする機能です。
同じ操作を繰り返す場合において確実に手早く
処理させられます。Emacsのコマンドをたくさ
ん知っていれば知っているほどキーボードマク
ロでできることが増えていきます。
　キーボードマクロはプログラミングと異なり、
実際にコマンドを実行しながら定義するのでわ
かりやすいです。繰り返し処理の1回目でキー
ボードマクロを定義し、以後はキーボードマク
ロを呼び出せばいいです。
　キーボードマクロは#で定義を開始し、
$で定義を終了します。キーボードマクロ実
行も$を使います。
　キーボードマクロで繰り返し処理を効率的に
行うコツは、定義終了時点、次の繰り返し開始
位置に移動することです。そうすることで繰り
返し回数が少ない場合に$を連打するだけで
次々と実行できるようになります。繰り返し回
数が多い場合には3つの実行方法があります。

・C-u <回数> <f4>で回数を指定
・C-u 0 <f4>でエラー（バッファ末尾など）が
出るまで繰り返し

・C-x C-k rでregion各行に対しマクロを実行

　文字列の長さが異なる場合は単語、S式単位
の移動や isearchを使ってください。
　キーボードマクロを複数個同時に使いたいな
らばcentimacroパッケージが便利です。筆者の
サイト注1で紹介しています。

情報取得コマンド

　バッファやregion、現在位置の情報を表示す
るコマンドがいくつかあります。

◆グローバルマーク
　“暗黙のマーク”を含め、マークし、かつ別の
バッファに切り替えた際には通常のmark-ring

以外に、global-mark-ringにも記憶されます。こ
れは、マークしたバッファの履歴をたどれるこ
とを意味します。
　前述のset-mark-command-repeat-popを設定
していればC-x C-SPC C-SPC……で次々とバッ
ファを切り替えられます。ただ、少し挙動が理
解しづらいので筆者は使っていません。

◆単語やS式、バッファ全体をマークする
　regionを作るためには基本的にはC-SPCで
マークしてからカーソルを移動させます。しか
し、Emacsが認識する単語とS式については一
発でマークするコマンドが用意されていま

す。それぞれM-@（mark-word）、C-M-SPC（mark-

sexp）です。また、連続して使えば次々と単語や
S式のregionを広げていきます。C-SPC M-f、
C-M-fと比べると1ストローク差ですが、かな
り便利に感じます。
　C-x h（mark-whole-buffer）はバッファ全体を
マークし、カーソルをバッファの先頭に移動し
ます。使用頻度は多くないですが、regionを渡
すコマンドに対してバッファ全体を渡したいと
きには便利です。

◆矩形regionモード
　Emacs 24.4では矩形regionが導入され、矩形
のコピー&ペーストがとても使いやすくなりま
した。C-x SPCのあとにC-w、M-w、C-yを使う
と、矩形のコピー&ペーストになります。もう
煩わしい旧来の矩形コマンドを無理して使う必
要はありません。
　C-x SPCを押すタイミングは2つ、マーク開
始時点かマーク終了時点です。C-x SPCをC-SPC

の代わりに使うと、regionは矩形方向に広がり
ます。C-SPCでマークしたあとにregionを設定
してC-x SPCを押すと、その間の矩形を選択し
てくれるため、使い勝手はかなり良いです。 注1） URL http://rubikitch.com/2015/03/31/centimacro/

第14回 地味だけどあなどれない標準コマンドたち

http://rubikitch.com/2015/03/31/centimacro/

156 - Software Design

ファの77％に位置します。行頭ですので桁は0

です。
　C-u C-x =はそれに加え、文字の詳しい情報
やフォント、テキストプロパティ、オーバーレ
イの情報も表示します。表示関係のデバッグで
も重宝するコマンドです。

表示関係

　カーソル位置の変更、ウィンドウ・フォント
のリサイズ、特定行を隠すなどの表示系のコマ
ンドたちです。

◆カーソルの画面内での位置
　C-l（recenter-top-bottom）は、もともとカー
ソル位置を画面中央に持っていくコマンドです
が、現在では拡張されています。C-lを連続的
に実行することで画面上部、画面下部に表示さ
せられます（図1）。

◆ウィンドウの大きさを自動調整
　C-x +（balance-windows）は、ウィンドウのサ
イズをそろえるコマンドです。C-x 2やC-x 3

◆region・バッファの単語数、行数、
文字数を表示する
　M-=（count-words-region）は名前とは
うらはらに、regionの単語数だけでなく
行数と文字数も表示します。
　C-u M-=はバッファ全体が対象になり
ます。エコーエリアに「Buffer has 102

lines, 1073 words, and 3639 chara

cters.」などと表示されます。

◆ページ（バッファ）の行数、現在行を表
示する
　Emacsには「ページ」という概念があり
ます。ページとは改ページ文字（^L）で
区切られた区間です。改ページ文字が含
まれない場合はバッファ全体で1ページ
となります。改ページ文字はC-q C-l

で入力できます。
　C-x l（count-lines-page）は現在のページの行
数、およびページ先頭からの行数、末尾への行
数を表示します。エコーエリアに「Page has 104

lines (68 + 37)」などと表示されます。この場合、
ページ先頭から68行目、末尾まで37行の計104

行ということです。末尾までの行数には現在行
もカウントされ、現在行がだぶって数えられる
ので合計行数が1行異なります。
　改ページ文字が含まれない場合はバッファ全
体が対象になるので、現在行がバッファのどれ
くらいに位置するかがわかります。

◆カーソル位置の情報を得る
　C-x =（what-cursor-position）は現在のカーソ
ル位置の文字についての情報（文字コード・コー
ドポイント）、バッファ内での位置、バッファサ
イズ、現在桁を表示します。行頭の「#」で実行
するとエコーエリアに「Char: # (35, #o43, #x23)

point=3151 of 4077 (77％) column=0」などと表
示されます。「#」という文字の文字コードは十
進数で35、8進数で43、16進数で23です。バッ
ファサイズが4,077で現在位置が3,151、バッ

①初期位置

　④さらにC-lで画面下部

②C-lで画面中央

③さらにC-lで画面上部

 ▼図1　カーソルの位置調整

るびきち流
Emacs超入門

156 - Software Design Jun. 2015 - 157

深く見るときはC-3 C-x $などとします。行隠
しを解除するには引数なしのC-x $を使います。
　ここで注意していただきたいのは、C-x $は
あくまでも行頭のスペースの数のみで判断して
いることです。改行を含む文字列リテラルの2

行目以降はC-1 C-x $しても表示されます。
　なお、数引数ではなくて現在の桁を基準に“選
択的な表示”を使うにはMELPAに登録されて
いるcn-outlineパッケージを使います。

そのほか地味なコマンドたち

　使用頻度こそ低いものの、知っておくと便利
な標準機能を紹介します。

で画面分割をすると現在のウィンドウを半分に
するので大きさが不釣合いになりますが、この
コマンドで幅や高さがそろいます。
　C-x -（shrink-window-if-larger-than-buffer）
もウィンドウの高さを調整します。バッファの
内容よりもウィンドウが大きくて余白がある場
合は、バッファの内容すべてがすっぽり収まる
ようにウィンドウを縮めます。余白が多過ぎて
画面がもったいないと思ったら使ってください
（図2～図4）。

◆フォントの大きさを変更する
　C-x C-0、C-x C-+、C-x C--（どれも text-

scale-adjust）は、カレントバッファのフォント
の大きさを変更するモードに入ります。以後、+
で大きく、-で小さく、0で元の大きさに戻りま
す。それら以外のキーを押すと大きさ変更モー
ドは解除され、元の挙動に戻ります。フォント
の大きさが不適切で画面が見づらい場合に使っ
てみてください。

◆字下げしている行を隠す
　バッファの内容の一部を隠せることはorg-

modeの回（2015年2月号）で見ましたね。org-

modeでは見出しと本文の関係性が定義されてい
て、本文や子見出しを隠せるのでした。実はこ
のような構文的な要素ではなく、もっと原始的
な基準で行を隠す標準コマンドが存在します。
　C-x $（set-selective-display）は数引数で指定
した以上インデントしている行を隠します。こ
のコマンドを使えば、プログラムのアウトライ
ンを簡単に概観できます。メジャーモードの機
能を知らなくても、プログラムの全体像がわか
ります。たとえば、メジャーモードとしてサポー
トされていないプログラミング言語や設定ファ
イルであっても、インデントさえしてあれば使
えるということです（図5、図6）。
　たとえばインデントされていない行のみ、す
なわち1桁目から始まるトップレベルの式・文
を表示するにはC-1 C-x $とします。もう少し

 ▼図3　C-x +で均等な大きさに！

 ▼図2　不揃いなウィンドウも

 ▼図4　C-x -でウィンドウの余白を除去！

第14回 地味だけどあなどれない標準コマンドたち

158 - Software Design

えば「word」のwの位置にカーソルがあるときに
M-cを押せば「Word」になりますが、dのあとに
カーソルがあるときは変化しません。oの位置
ならば「wOrd」になります。
　C-x C-u、C-x C-l、M-x capitalize-

regionはそれらのregion版です。C-x C-cは
Emacs終了コマンドですので、capitalize-region
はキーに割り当てられていません。
　これらのコマンドにはクセがあります。文字
入力してから変換するには、単語先頭に戻るか
負引数を付ける必要があります。たとえば直前
の単語を大文字化するにはM-b M-uあるいは
M-- M-uと操作する必要があります。直前3単
語ならばM-- M-3 M-uです。あるいは、「ここ
から変換するよ」という意味でC-SPCでマーク
し、あとでC-x C-uと操作する方法もあります。
　筆者はそれがあまりにも我慢できなかったの
で、2009年に sequential-commandというパッ
ケージを作成し、M-u、M-l、M-cをデフォルト
で直前の単語に作用するように置き換えていま
す。連続的に使った場合はもっと前の単語に作
用するようになっています。MELPAに登録

してあるので「M-x package-install sequential-

command」を実行後、「(sequential-command-set

up-keys)」と設定を加えれば使えます。M-uの場
合、次のような挙動となります。

　もはやC-x C-uなどを使うことはなくなりま
した。

this is a pen.
　　 　⬇.のあとにカーソルを置いてM-u

this is a PEN.
　　　 ⬇M-u

this is A PEN.
　　　 ⬇M-u

this IS A PEN.
　　　 ⬇M-u

THIS IS A PEN.

◆制御文字を入力する
　前述の改ページ文字の入力のように、C-qは
次にタイプする文字をそのまま入力します。こ
れには表示文字以外の制御文字も含まれます。
たとえばタブを入力するときはC-q TABあるい
はC-q C-iと操作します。あまりないですが
C-aを文字として入力する場合はC-q C-aと操
作します。すると別な色で「^A」と表示されます。
　ミニバッファに改行を入力するときはC-q

C-jと操作します。たとえばM-%で改行を含む
文字列に置換しようとするときにはこの知識が
必要となります。

◆大文字小文字変換
　大文字化・小文字化・キャピタライズ（単語の
先頭文字を大文字、そのあとを小文字にする）の
コマンドもそろっています。それぞれ、単語・
regionに対応しています。
　M-uは単語を大文字化、M-lは小文字化、M-c
はキャピタライズします。これらのコマンドで
注意する必要があるのは、カーソル位置から単
語の境界までが適用範囲であることです。たと

 ▼図5　元の表示

 ▼図6　C-1 C-x $で概観表示

るびきち流
Emacs超入門

158 - Software Design Jun. 2015 - 159

　いかがだったでしょうか？　パッケージ全盛
時代でつい外部パッケージに目が行ってしまい
がちな今日このごろですが、あえて標準コマン
ドに立ち帰ってみました。意外な発見がありま
したでしょうか？　今回取り上げたコマンドを
表にまとめました。
　筆者は「日刊Emacs」以外にもEmacs病院兼メ

キー 挙動
コピー&ペーストの基本

C-SPC マークする
M-w コピー
C-w カット
C-y ペースト
M-y 過去のコピー履歴に置き換え

マーク間の移動
C-x C-x カーソルとマークを入れ替え
C-u C-SPC 過去にマークした位置に移動

C-x C-SPC
過去にマークしたバッファへ切
り替え

暗黙のマークをする長距離移動コマンド
C-s インクリメンタルサーチ
C-r インクリメンタルサーチ
M-< バッファ先頭へ移動
M-> バッファ末尾へ移動
C-M-a 関数定義の先頭へ移動
C-M-e 関数定義の末尾へ移動

単位ごとのマーク
M-@ 単語をマーク

C-M-SPC S式をマーク
C-x h バッファ全体をマーク

矩形region
C-x SPC 矩形regionモードへの移行

キーボードマクロ
定義開始
$ 定義終了・実行

C-x C-k r 各行で実行
C-u <回数> <f4> 指定した回数だけ実行

C-u 0 <f4> エラーが出るまで繰り返し実行

 ▼表　コマンド表

キー 挙動
情報取得コマンド

M-=
regionの行数、単語数、文字数
を表示

C-u M-=
バッファの行数、単語数、文字
数を表示

C-x l ページの行数を表示

C-x =
現在位置の文字、位置、バッフ
ァサイズ、現在行の表示

C-u C-x =
別バッファによる、より詳細な
表示
表示関係

C-l
カーソル表示位置を画面中央・
上部・下部に移動

C-x +
ウィンドウのサイズを均等にそ
ろえる

C-x -
余白をなくすようウィンドウの
高さを調節

C-x C-0 フォントの大きさを変更する。
それぞれの初期動作は「元に戻
す」「大きくする」「小さくする」

C-x C-+

C-x C--

C-<数> C-x $
その「数」よりインデントしてい
る行を隠す

C-x $ 隠された行を表示する
制御文字を入力

C-q 次に入力する文字を直接入力
C-q C-i タブを入力
C-q C-j ミニバッファで改行を入力

大文字小文字変換
M-u 単語を大文字化
M-l 単語を小文字化
M-c 単語をキャピタライズ

C-x C-u regionを大文字化
C-x C-l regionを小文字化

regionをキャピタライズ

ルマガのサービスを運営しています。Emacsに
関すること関しないこと、わかる範囲でなんで
もお答えします。「こんなパッケージ知らない？」
「挙動がおかしいからなんとかしてよ！」はもち
ろんのこと、自作elispプログラムの添削もしま
す。集中力を上げるなどのライフハック・マイ
ンド系も得意としています。登録はこちら。
➡http://www.mag2.com/m/0001373131.
htmlﾟ

まとめ

第14回 地味だけどあなどれない標準コマンドたち

http://www.mag2.com/m/0001373131.html

160 - Software Design

ShowNetが示す
ネットワークの近未来

への移行が進む中で見え隠れしてきた次のよう
な課題があります。

◦障害（災害）やコスト面のリスク
◦既存オンプレミスとクラウド環境の併用
◦複数クラウドの異なる機能の組み合わせ

　マルチクラウドによりサーバ間の連携が広域
分散化する中、インターネット上を往来する
East-West通信量注2は、無視できない大きさに
なってきています。これらの通信を支えるネッ
トワークは、厳格な要件を満たさなければなり
ません。従来、サーバやネットワークアプライ
アンスは同じ場所に設置され、L2スイッチ経
由で通信されていました。もともとローカルで
やりとりされるような通信であるため、当然な
がらセキュアで、かつ堅牢である必要がありま
す。すでに、一部のクラウド事業者が顧客向け
にプライベート接続の商用サービスをはじめて
います。しかし、真に広域分散化されたマルチ
クラウドを安定的に実現できる環境は、十分に
整備されているとは言いがたい状況です。その
ため、このような要件に耐えうるインタークラ
ウド技術の確立が求められています注3。

注2） クライアントとサーバ間の通信が上下方向であることにな
ぞらえてNorth-Southトラフィック、サーバ同士の通信が
横方向であることからEast-Westトラフィックと呼ばれま
す。

注3） インタークラウドはデータレプリケーション、フェイルオー
バ、負荷分散、リソース監視など、クラウド間で連携を図
る機構も含めて目的を達するものですが、今回の説明では
ネットワークの部分にフォーカスします。

ShowNet
クラウドASの概要

　前回までに、ShowNetのバックボーンネッ
トワークは、キャリアAS注1（AS290）とクラウ
ドAS（AS131154）の大きく2つに分けて構築
されていることを紹介しました。クラウドAS

では、データセンターやクラウド、サーバ分野
における新しいコンセプト、あるいは最先端の
テクノロジーを元に設計されています。
　昨年は、VXLANの相互接続検証とクラウド
間相互接続検証（以下、インタークラウド）を実
施しました。今年はこの2分野に加えて、デー
タセンターオートメーションのテーマを盛り込
む予定です。本稿では、この3分野への取り組
みについて紹介します。

一般的になってきた
マルチクラウド

　インタークラウドは、直訳すると「クラウド
間接続」になります。その本来の目的は、複数
のクラウドを併用したり、クラウドと外部シス
テムを連携させる利用形態である「マルチクラ
ウド」の実現です。それを支える技術の総称が
インタークラウドです。
　最近では、当たり前のようにマルチクラウド
が活用されていますが、その背景にはクラウド
注1） AS：Autonomous System

インターネット技術とビジネスが出会う国内最大のイベント「Interop
Tokyo」。ほかでは類を見ないその最大の特徴である“ShowNet”は、会
場全体に構築される最先端の技術を駆使したネットワーク環境です。こ
の連載では2015年6月の開催に向けて動き始めたShowNetについて紹
介していきます。3回目の今回は、ShowNetにおけるデータセンター、
クラウド技術に関する相互接続検証の内容をお伝えします。

第3回 Beyond the
InterCloud

ShowNet が示す
ネットワークの近未来

ohkubo@interop-tokyo.net
http://www.interop.jp

大久保 修一（おおくぼ しゅういち）
さくらインターネット（株）

Mail

Writer

URL

http://www.interop.jp

Jun. 2015 - 161160 - Software Design

Beyond the
InterCloud

第3回

昨年のShowNetでの
検証内容

　このような課題意識のもと、昨年は商用クラ
ウド3社と学術クラウドを幕張メッセ内に構築
したShowNetで相互接続し、実用性の検証を
行いました。商用クラウド側は、足回りとして
BBIXの回線を使用し、IDCフロンティア、ビッ
トアイル、さくらインターネット、3社のIaaS

基盤を接続しました。
　BBIXは通常のインターネットエクスチェン
ジであるため、クラウドのネットワークには直
接接続することはできません。そこで、VX

LANゲートウェイを用いて、クラウド上のテ
ナントネットワークを同一の識別子にマッピン
グすることで、オーバーレイによるL2接続を
実現しました。加えて、通信のセキュリティを
担保するため、VXLANのパケットをさらに
IPsecで暗号化しました。物理構成を図1に示
します。
　学術クラウド側は、JGN-X注4上に構築され
たRISEのネットワーク基盤を用いて、Open

flowによるパス制御を行い、北は北海道から南
は沖縄まで、合計12拠点を結ぶ仮想マシン
注4） http://www.jgn.nict.go.jp/

ファームを構築しました。
　この環境を活用し、ディザスタリカバリ、お
よびクラウドをまたいだ負荷分散のデモンスト
レーションを行いました。具体的には Interop

TokyoのWebサイト（http://www.interop.jp）を
GSLB（Global Server Load Balancing）により、
各サイトに誘導するという内容です。結果、マ
ルチクラウドの有用性を確認できました。

Beyond the
InterCloud

　今年はインタークラウドの概念を発展させた
“Multi Cloud Fabric”というコンセプトでネッ
トワーク構築を行う予定です。昨年はクラウド
間の接続のみにフォーカスしていましたが、本
来それだけでは不十分です。クラウド利用者や
モバイル、オンプレミスや固定網なども対象と
した、オープンな閉域網接続のためのネットワー
クを目指します（図2）。
　具体的には、ShowNetクラウドAS（AS

131154）側に IP-VPNを導入します。この中に
テナントごとに閉じたルーティングインスタン
ス（VRF）を作成し、クラウド事業者などと相
互接続を行います。
　こちらにはすでに通信キャリアなどで実績の

 ▼図1　昨年のインタークラウド検証構成（商用クラウド側）

インターネットエクスチェンジ（BBIX）

古河電気工業
FITELnet FX1

A10ネットワークス
Thunder 3030S

VXLAN Gateway
unicast mode

タグVLAN（IEEE 802.1Q）で接続

IDCフロンティア、ビットアイル
さくらインターネット、幕張ShowNetの
計4拠点を同構成で接続

VXLANにより
ユーザネットワーク間をL2接続

セキュアな
L3到達性を確保

MPSA：Multi-point Security Association

IPsec L3VPN/MPSA

10Gbps

10Gbps

10Gbps

L2スイッチ L2スイッチ

商用クラウドの
L2ネットワーク

商用クラウドの
L2ネットワーク

http://www.jgn.nict.go.jp/
http://www.interop.jp

162 - Software Design

ShowNetが示す
ネットワークの近未来

あるMPLSやMP-BGPなどのプロトコルを用
いる予定です。それ自体は新しいものではあり
ませんが、各事業者が持っているまったく異な
る構成のネットワークを、統一したしくみで相
互接続できるかどうか、商用サービスに移行し
ても運用上問題ないかどうかを確認します。

続・VXLAN
相互接続検証

　2つ目のテーマである、VXLANについて簡
単に紹介します。VXLANは、Virtual eXten

sible Local Area Networkの略で、2014年夏、
RFC7348として標準化（Informational）されま
した。おもにデータセンター内におけるマルチ
テナントL2ネットワークの規模拡張性向上を
目指した技術です。
　これまでデータセンター内では、L2スイッ
チを用いてVLANによるネットワークが多く
組まれていました。しかしながら、仮想化やク
ラウドにより、ネットワークおよびサービスの
集約化、高密度化が進み、テナント識別子（VLAN

ID）の不足、物理ネットワーク自体の複雑化、
運用の煩雑さといった課題が生じています。
VXLANの導入によってこれらの解消が期待さ
れます。

　具体的には、VLAN IDは約4,000であるの
に対し、VXLANの識別子であるVNI（VXLAN

Network Identifier）は約1,600万まで拡張され
ます。また、VXLANはIPネットワーク上でオー
バレイとして動作するため、広域化、冗長化、
障害切り分けの面から有利とされています。加
えて、エンドノードのMACアドレスは、VX

LAN終端ノード（VTEP：VXLAN Tunnel End

point）のみで学習するため、物理ネットワーク
の負担（テーブルサイズなど）が軽減されます。
　昨年のShowNetでは、VTEP間の通信にマ
ルチキャストを用いる機器とユニキャストを用
いる機器群に分けて相互接続検証を行いました
（表1）。MTU、MACアドレスの学習方法、フラッ
ディング方式、VLANとVNIの変換などに関
して、実装上の細かな違いが確認され、相互接
続を行ううえでの注意点を抽出することができ
ました。結果的には、各機器のパラメータ調整
によりVXLANの接続性を確認できました。
　2015年のShowNetでは、引き続き相互接続
検証を実施予定です。VXLANはカプセル化す
ることによってオーバーヘッドが発生するため、
サービス網に展開した際、その負荷に対する影
響は十分に考慮しなければなりません。昨年は
相互接続を中心に検証を実施しましたが、今年

Multi Cloud Fabric

 ▼図2　Multi Cloud Fabricの概念

インターネット

クラウドA
クラウドB

キャリア網 ISP モバイル

コンテンツ
プロバイダ

固定網

オフィス
オンプレミスDC

Jun. 2015 - 163162 - Software Design

Beyond the
InterCloud

第3回

は実際のShowNet内のサービ
ス通信が流れる個所に適用し、
運用上の注意点なども洗い出
したいと考えています。
　また、最近各メーカーにて
実装が進んでいる、VXLAN

を直接ルーティング可能な技
術「VXLANルーティング」も
取り入れたいと考えています。
　VXLANを導入することで、
テナントごとの閉じた仮想ネッ
トワークを容易に作成できるようになりました。
しかし、そのネットワークをインターネットや
閉域網などの外部ネットワークと接続するには、
一度レイヤ3デバイスが理解できるVLANに
変換しなければなりませんでした。VXLANルー
ティングにはそのような制限がなく、物理ネッ
トワークとVXLANの円滑な相互接続の実現が
期待されます。

データセンター
オートメーション

　3つ目はデータセンターの自動化に関するテー
マです。アプリケーションデベロッパの世界で
は、構築やデプロイ作業の自動化が当たり前
になっています。1年半ほど前から Immutable

Infrastructureや Blue-Green Deploymentと
いったキーワードが出現し、日頃耳にする機会
も多いのではないでしょうか。クラウドや仮想
化技術を活用することで、サーバファームの使
い捨てが可能となりました。この性質を活用し、
アプリケーションは常に新たな環境にデプロイ
し、切り替えながら運用する考え方です。
　この概念は、SDN化の流れに相まって、ネッ
トワークの世界にも浸透しています。従来、ネッ
トワーク機器はCLIでの設定が一般的でした。
人間にはわかりやすい一方、プログラムからの
制御には向いていません。よりプログラマブル
にするために、各メーカーがさまざまなAPI

を公開し始めました。その最たる例がホワイト

ボックススイッチです。
　ベアメタルスイッチとも呼ばれ、その名のと
おりOSが載っていない状態のハードウェアの
みが提供されます。ハードウェアの仕様はオー
プンなため、利用者は好みのネットワークOS

をインストールし、稼働させることが可能です。
現状では、大規模なコンテンツ事業者が導入を
進めており、出荷量が急激に伸びています。
　ホワイトボックススイッチ上で動作するネッ
トワークOSは、商用サポートがあるものとオー
プンソースベースのものが出てきています。い
ずれも標準化されたONIE（Open Network

Install Environment）ブートローダーから起動
できるようになっています。用途が変わったと
きには、サーバと同様の感覚でネットワーク
OSを入れ替えることが可能です。
　今年のShowNetでは、これらのしくみを活
用しつつ、OpenStackやVMwareなどのクラウ
ドオーケストレータと連携し、データセンター
インフラであるサーバ、ネットワーク、ストレー
ジなどの統一的なオートメーションに取り組む
予定です。

次回予告

　次号はセキュリティ担当メンバーによる今年
の取り組みについて紹介させていただく予定で
す。ぜひご期待ください。s

ジュニパーネットワークス

 EX9204

 QFX5100

シスコシステムズ

 Nexus 9396

VXLAN装置 Nexus 1000v

 ファーウェイ NE40E

 A10ネットワークス Thunder 3030S

 ヴイエムウェア VMware NSX

測定装置
 東陽テクニカ Spirent TestCenter

 イクシアコミュニケーションズ XM2 IxNetwork

 ▼表1　昨年のVXLAN相互接続検証の参加企業と機器

装置の種類 参加企業 機器名

164 - Software Design

カーネルトレース機能
「DTrace」

　オペレーティングシステム（OS）の中核となるソ
フトウェア「カーネル」にはさまざまな機能が実装さ
れています。プロセス管理、割り込み処理、デバイ
スドライバ、タイミング処理、プロセスおよびス
レッドスケジューリング、マルチプロセッサスケ
ジューリング、セキュリティ機能、仮想メモリシス
テム、メモリ管理、I/O管理、ファイルシステム、
プロセス間通信、ネットワークサブシステム……挙
げていけば切りがないわけですが、こうしたシステ
ムの開発およびデバッグに欠かせない機能に「カー
ネルトレース機能」があります。
　FreeBSDはKTraceと呼ばれる機能を使ってシ
ステムコールのトレース機能を提供しています。こ
れもカーネルトレース機能の1つです。ktrace(1)で
システムコールのロギングを開始し、kdump(1)で記
録したシステムコールログを人間が読める状態のテ
キストとして表示させ、解析に利用するというしく
みです。truss(1)コマンドでも同じことができます。
　しかし、どんどん多機能化し大きくなるカーネル
を効率よく解析するには、システムコールのみなら
ず、さまざまなポイントにトレースポイントをもう
けられる、もっと包括的で強力なカーネルトレース
機能が必要です。これを実現したのがDTraceです。
　DTraceはもともとSolaris向けに開発された技
術です。FreeBSDではFreeBSD 8にこの技術が導
入され、FreeBSD 10からはデフォルトの機能とし
て有効化されました。FreeBSD 10.1-RELEASEに
は61,214個のトレースポイントが用意され（dtrace

プロバイダも含めるのであれば61,217個）、カーネ
ルの挙動をさまざまな視点でモニタリングしたり分

析することができるようになっています。DTrace

はMac OS Xにも実装されています。
　DTraceはカーネルデベロッパのみならず、Free

BSDユーザにとっても魅力的な機能です。とくに
なにかしらの問題が発生したときの調査ツールとし
て、パフォーマンスを引き上げたい場合の分析ツー
ルとして、とても強力なツールだからです。今回
は、このDTraceの機能を紹介します。

とりあえず動かしてみよう

　まずはDTraceを実行してみましょう。図1のよう
なコマンドをrootユーザで実行します。すると、図
1の2行目からのような出力が延々と出続けるのでは
ないかと思います。これはカーネルが動作し、
DTraceのトレースポイントに到達するごとにその旨
を表示するというものです。カーネル内部でどのよ
うに処理が進んでいるのかがこの出力を見るだけで
わかります。何もしていないように見えて、カーネ
ルはめまぐるしい速度でいろんなことをしています。
　先ほどのコマンドでは「:::」という文字列が指定さ
れていますが、これはプローブ（Probe）と呼ばれるも
のです。トレースポイントを指定するものが、プロー
ブだと考えておけばよいと思います。プローブは「:」

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第20回 ❖カーネルの動きをトレースしてみる【導入編】

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

Jun. 2015 - 165

▶第20回◀
カーネルの動きをトレースしてみる【導入編】

で区切られた4つの指定から構成されています。詳細
に指定するほど、絞られた結果が表示されるようにな
ります。たとえば図2のようにコマンドを実行すると、
write(2)システムコールに入った段階だけがトレース
ポイントとして使われるようになります。
　さらに条件の絞り込みを指定したり、表示する内容
を指定することもできます。図3や図4のように
dtrace(1)コマンドを実行すれば、write(2)システム
コールの出力をsh(1)から実行されたものに限定する
ことができるほか、write(2)システムコールに渡され
たサイズも出力させることができます。
　DTraceの機能は強力で、本当にさまざまなこと
ができます。使い方の詳細については紙幅の都合で
述べきれませんが、Brendan Mauro氏およびJim

Gregg氏が執筆した『DTrace: Dynamic Tracing in

Oracle Solaris, Mac OS X and FreeBSD注1』という
書籍がたいへん参考になります。必要な情報は、ほ
とんどこの解説書で得ることができると思います。

どんなトレースポイントが
あるの?

　FreeBSD 10.1には6万を超えるトレースポイン
ト（プローブ）が用意されています。どんなプローブ

% dtrace -n :::
dtrace: description ':::' matched 61124 ｭ
probes
CPU ID FUNCTION:NAME
 4 45290 smp_rendezvous_cpus:entry
 4 25018 spinlock_enter:entry
 4 29559 critical_enter:entry
 4 29560 critical_enter:return
 4 40249 ipi_selected:entry
 4 35801 lapic_ipi_vectored:entry
 4 35802 lapic_ipi_vectored:return
 4 35801 lapic_ipi_vectored:entry
 4 35802 lapic_ipi_vectored:return
（...略 ...）

▼▼図1　�rootユーザでdtrace(1)を実行し、カーネル内部
の動きを表示させる

% dtrace -n syscall::write:entry
dtrace: description 'syscall::write:entryｭ
' matched 2 probes
CPU ID FUNCTION:NAME
 5 59179 write:entry
 0 59179 write:entry
 5 59179 write:entry
 0 59179 write:entry
 5 59179 write:entry
 5 59179 write:entry
 0 59179 write:entry
 3 59179 write:entry
 3 59179 write:entry
 3 59179 write:entry
（...略 ...）

▼▼図2　もうちょっと絞り込んだプローブを指定

% sudo dtrace -n 'syscall::write:entry /execname == "sh"/ {printf("write size %d", arg2);}'
dtrace: description 'syscall::write:entry ' matched 2 probes
CPU ID FUNCTION:NAME
 5 59179 write:entry write size 1
 2 59179 write:entry write size 1
 2 59179 write:entry write size 1
 2 59179 write:entry write size 2
 2 59179 write:entry write size 1
 2 59179 write:entry write size 2
 2 59179 write:entry write size 1
 2 59179 write:entry write size 1
 2 59179 write:entry write size 1
（...略 ...）

▼▼図4　ほかの端末でshを起動して操作すると、dtrace(1)を実行した端末にトレースポイントに到達したことを示す出力が出てくる

% dtrace -n 'syscall::write:entry /execname == "sh"/ {printf("write size %d", arg2);}'
dtrace: description 'syscall::write:entry ' matched 2 probes

▼▼図3　shから実行されたwrite(2)システムコールのみを表示する

注1	 ISBN-13：978-0132091510

166 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

ユーザにとっては、最初は理解しにくいものだと思
います。dtrace(1)で指定するこの文字列は「D言語
（D-language）」と呼ばれているもので注2、その構造
はAWKによく似ています。AWKは基本的に「<パ
ターン> <アクション> <パターン> <アクション>

……」のように記述し、パターンに一致した行はそ
の次のアクションが実行されるという構造になって
います。
　D言語も基本的にこれと同じです。パターンの代
わりにプローブを指定しますので、「<プローブ> <

アクション> <プローブ> <アクション> ……」のよ
うに記述します。D言語にはプローブをさらに絞り
込むためのプレディケート（Predicate）という指定
があるので、「<プローブ> <プレディケート> <ア
クション> <プローブ> <プレディケート> <アク

が用意されているかは図5のようにdtrace (1)コマ
ンドに-lオプションを指定することで表示させら
れます。
　図6のようにtail(1)で出力の最後だけ表示させて
みると、プローブとして61,217個が登録されている
ことがわかります。wc(1)による行数カウントと1つず
れているのは、1行ヘッダが含まれているためです。
　プローブの数は増え続けています。より詳細に分
析を実施できるように、今後もプローブの数は増え
続けるでしょう。grep(1)で興味ある機能などに限定
して表示させるなどしてプローブを探してみると、
いろいろな発見もあると思います。

dtrace(1)で指定する
プローブのフォーマット

　dtrace (1)に指定するソースコードは手続き型や
オブジェクト指向のプログラミング言語になれた

% sudo dtrace -l ¦ head
 ID PROVIDER MODULE FUNCTION NAME
 1 dtrace BEGIN
 2 dtrace END
 3 dtrace ERROR
 4 fbt kernel camstatusentrycomp entry
 5 fbt kernel camstatusentrycomp return
 6 fbt kernel cam_compat_handle_0x17 entry
 7 fbt kernel cam_compat_handle_0x17 return
 8 fbt kernel cam_periph_done entry
 9 fbt kernel camperiphdone entry
%

▼▼図5　dtrace -lでトレースポイント（プローブ）の一覧を表示させることができる

% dtrace -l ¦ tail
61208 dtmalloc LED malloc
61209 dtmalloc LED free
61210 dtmalloc kbdmux malloc
61211 dtmalloc kbdmux free
61212 dtmalloc isofs_node malloc
61213 dtmalloc isofs_node free
61214 dtmalloc isofs_mount malloc
61215 dtmalloc isofs_mount free
61216 profile profile-1000hz
61217 profile tick-1sec
% dtrace -l ¦ wc -l
 61218
%

▼▼図6　FreeBSD 10.1で登録されているプローブは61,217個

注2	 プログラミング言語としてのD言語とは別物です。DTrace
で使用されるスクリプトがこのように呼ばれています。

Jun. 2015 - 167

▶第20回◀
カーネルの動きをトレースしてみる【導入編】

ション> ……」といった書き方もできます。整理す
ると表1のような指定をするようになります。
　表1中の語句にはそれぞれ次のような意味があり
ます。

●● Provider.......何に関する情報を提供するかの指定
●●Module.........ソフトウェアモジュール（kernelなど）
●● Function.......関数や機能
●● Predicate.....プローブのフィルタとして機能
●● Action...........�プローブが一致したときに実行され

るアクション

　FreeBSDでは表2のようなプロバイダが提供さ
れています。表には掲載してありませんが、AWK

のBEGINやENDのようなプロバイダ（dtrace）もあ
ります。
　どのようにプローブを指定するのかを意味から推
測するのは難しいかもしれません。ある程度チート
シートや便利なD言語集のようなものがあるので、
それをベースに書き換えたりしながら使っていくと
いうほうが現実的なところでしょう。このあたりは
次回に取り上げたいと思います。

DTraceがパフォーマンスに与
える影響は？

　DTraceは便利な機能ですが、デフォルトの状態
では無効化されています。それはDTraceの機能が
とても重たいからです。DTraceの機能を使ってい
る間にtop(1)などでシステム負荷を表示させてみて
ほしいのですが、CPUの負荷がとても高い状態に
なっていることが確認できると思います。DTrace

はあくまでも分析や解析を実施したいときに使用す
る機能であって、日々の運用の中でロギングといっ
たような目的で使用する機能ではないわけです。
　DTraceのみならず、カーネルデバッグ機能もデ
フォルトでは有効になっていません。カーネルデ
バッグに関してはカーネルの再構築が必要ですの
で、DTraceを使うよりも敷居が高いといえるかも
しれません。カーネルデバッグがデフォルトで無効
になっているのは、性能の問題というよりもセキュ
リティの問題といえます。
　デフォルト設定というのはうまいこと考えられた
バランスの結果です。便利な機能はだいたいトレー
ドオフで何らかの対価を消費しています。万能だか
らといってむやみに使うのではなく、適材適所で使
用することがバランスのよい扱い方と言えます。

一歩先行くユーザになるために

　ユーザであっても利用しがいのあるDTraceです
が、たしかにこの機能を使いこなすにはカーネルに
関する知識や、少なくともシステムコールやC言語
のソースコードに関する知識が必要になるのは間違
いないところです。
　逆に、D言語でこういった書き方をすればこう
いった情報が得られる、というところから、カーネ
ルの内部の構造を勉強していくというやり方も、あ
ながち悪くないと思います。あと何回か、具体的な
サンプルを挙げながら便利な使い方を紹介していく
予定です。DTraceは開発者やユーザの考え方を抜
本的に変えかねない強力な機能です。ぜひこの機能
について知ってください。s

プローブの指定フォーマット

Provider:Module:Function:Name /Predicate/ {Action}

Provider:Module:Function:Name {Action}

Provider:Module:Function:Name

▼▼表1　プローブのフォーマットの典型例

▼▼表2　提供されているプロバイダ

プロバイダ名 意味

fbt 関数バウンダリトレース

io ブロック入出力プローブ

lockstat ロック操作用プローブ

profile パフォーマンスプロファイリングプローブ

mac_framework 強制アクセス制御プローブ

nfscl NFSクライアント向けプローブ

sched プロセスおよびスレッドスケジューラ向け
プローブ

sctp SCTPネットワークプロトコル

sdt 静的に定義されたトレース

syscall システムコールプローブ

vfs ファイルシステム操作プローブ

168 - Software Design

27 Debian Developer　やまねひでき　henrich@debian.org

「bits from DPL」から読み解く
Debianの今後

Debian 8がリリース！
だが……

　さて、4月25日にDebian 8“Jessie”がリリー
スされたということで、本連載でもその概要を！
……といきたいところですが、ゴールデンウィー
ク進行という事情もあり、次回以降の紹介とさ
せてください注1。

興味深いTodoリスト

　Debianプロジェクトでは、ほぼ毎月「bits from

DPL」（Debianプロジェクトリーダーからの一
言）というタイトルで開発者向けのアナウンス
メールが流されています。Lucas Nussbaum氏
から久々の「bits……」が送付されたのですが、
そこに現在のToDoリストが付記されていたの
で今回はそれを取り上げます。事務的な事柄が
多いですが、現在、Debianが検討している事
柄について大まかに知るには良い資料です。

インフラ関連の構想

①	“Free access to public Clouds for Debian
development”（Debian開発に利用可能なパ
ブリッククラウドへのアクセス）

②	“Debian PPA”
③	“binary-throw-away uploads”
	 （「binary-throw-away」アップロード）

という項目が挙げられています。
　①ですが、現在のDebianの開発では、開発
者が個人で利用可能なインフラに頼っている部
分が大きいですが、ここに来てOpenStackベー
スでのクラウドインフラを整えようという動き
があるようで、筆者としては期待しています。
　②の“Debian PPA”は読んで字のごとくで、
Ubuntuではお馴染みのPPA注2をDebianでも
採用しようという話です。Debianでは開発者
とメンテナ限定になるとは思いますが、公式リ
ポジトリと分離したPPAを持てることで、よ
りアグレッシブなパッケージ更新などが可能に
なるのではと考えているようです。
　③は、Debianパッケージをアップロードする
際に、開発者がアップロードしたビルド済みの
バイナリは破棄するしくみのことです。
　通常、Debianパッケージをリポジトリにアッ
プロードする際には「パッケージのソース」と「ビ
ルド済みのパッケージ」をセットにしてアップロー
ドします。この「ビルド済みのパッケージ」（多く
はamd64アーキテクチャ）はリポジトリにコピー
されて、ビルドされていないアーキテクチャに
ついてはbuilddと呼ばれるビルドサーバ群によっ
てソースからビルドが実施され、それぞれ利用
者に提供される……という流れになっています。
　これに対し、「開発者のローカル環境に依存
してビルドされているバイナリは捨て去って、
再度ビルドサーバでビルドしてやるほうがより

注2） Personal Package Archivesの略。各個人の独自リポジト
リを持てるようにするサービス。注1） 本稿の締め切りは、4月上旬なのです……お察しください。

168 - Software Design Jun. 2015 - 169

「bits from DPL」から読み解く
Debianの今後 27

クリーンなバイナリができるだろう」というのが
「binary-throw-away」アップロードです注3。この
話は数年前から議論されていますが、ここに来
て再度取り上げられているのは、前号の本連載
で取り上げた「reproducible builds」を達成する
ことと関連してくるからですね。興味のある方
はhttp://deb.li/3NPszを参照してください。

寄付や支出に関するアクション

④	“rework donations web page”
	 （寄付ページの再構成）
⑤	“work with SPI to enable donations via
paypal”（PayPal経由の寄付ができるよう、
SPI注4と協力する）

⑥	“look at donations using cryptocurrencies”
（Bitcoinのような暗号通貨を使った寄付につ
いて検討する）

⑦	“rationalize Debian's approach to dona	
tions, hardware donations, partners and
sponsors”（金銭やハードウェアの寄贈、パー
トナーやスポンサーへのDebianによる交渉
の合理化）

⑧	“more coordinated fundraising”
	 （よりfundraising注5を手がける）

などの項目が挙げられています。
　これまで大々的には寄付を募っていなかった
Debianプロジェクトですが、一般ユーザがよ
り気軽に寄付ができるよう、ほかの組織を見習っ
てページの再構成やPaypalやBitcoinなどの利
用を検討しているのですね。ほかにも、ハード
ウェアの寄付や企業スポンサーについても、ど
のような形で合理的に対応できるかなどを模索

しているようです。これらが実現した暁には、
読者のみなさん方から雨のように寄付が降り注
ぐことでしょう。より多くの資金や機材などの
リソースがDebianで利用できるようになって、
さらなる成果があがることを期待しましょう。
　一方で“work with SPI to improve tracking of

incomes and expenses”（SPIと共同して収入／支
出の管理を改善する）、“improve reimbursement

procedures”（旅費などの返金手続きの改善）など
の項目も挙がっています。Debianプロジェクト
のようにフルタイムで事務の人間が置けない組織
では人手のなさが問題となる支出面での作業見
直しを併せて実施していくようです。

商標など法的な課題

⑨	“define a policy for the handling of debi	
an.* domain names”（debian.*ドメインの扱
いについてのポリシーを定める）

⑩	“maintain authoritative list of DFSG-free
licenses”（DFSGライセンスの正式な一覧
の作成／維持）

⑪	“copyright assignment / license enfor	
cement for Debian”（Debianへの著作権の
譲渡、ライセンスの強制適用について）

　Debianはdebian.org以外にもdebian.netドメ
インを保持しています。プロジェクト内部では
「debian.orgは公式にDebianプロジェクトが運
用しているもので、debian.netの方は開発者が
個人的に実験サービスなどを走らせる非公式な
もの」というコンセンサスがあります。ただ、
これが組織外にも広く周知されているとは言い
難い状態ですし、そのポリシーを謳った解説の
ページなども存在していませんので、⑨でこの
あたりをより明確にしていくのでしょう。その
ほかにもDebianの名前を使ったさまざまなド
メインが存在しますが、これにどのような基準
で接しているのかということも含めて検討する
形になるかと思います。

注3） ちなみに「ソースだけをアップロード」にしないのは「この
ソースからきちんとバイナリパッケージが生成できますよ」
という印として見なされているからです。

注4） Software Public Interestの略。Debianプロジェクトの法
的主体を担う米国の団体。Debian以外にも Jenkins、
LibreOffice、PostgreSQL、Arch Linuxなど多数のプロジェ
クトを支援しています。 URL http://spi-inc.org/

注5） 募金活動のことですが、単なる資金集めではなく「寄付し
た同額を企業スポンサーからも寄付される」しくみである
「マッチングギフト」などひと捻りしたものもあります。

http://spi-inc.org/
http://deb.li/3NPsz

170 - Software Design

　⑩について、DebianではDFSG注6に合致し
たライセンスについて、OSI注7の「OSS認定ラ
イセンス一覧」注8のようなわかりやすいページ
は存在していません。これを作成／維持してい
こうというアイデアのようです。
　⑪は、これまでDebianへのContributionに
はCLA注9などもなく緩やかな運用がされてい
ましたが、これを見直そうという話でしょうか。
　著作権が譲渡されて一元管理されていると、
ライセンスの変更などが容易になるという利点
があります（管理組織によってはその逆でリス
クにもなりますが注10）。また、パッチごとにラ
イセンスが違うと、特定のパッチ間でライセン
スの非互換性が発生するなど面倒なことになる
可能性があります。さらに、提供ライセンスが
明示されていないと論争が起きた際に地雷とな
り得る可能性も捨てきれません。このあたりを
整理しておこうという考えのようです。

ほかの組織との関係、
プロジェクトの立ち位置

⑫	“decide if we should join OIN”
	 （OIN注11へ参加するかどうか）
⑬	“FSF recognition as a free distro (WIP:
non-free.org;)” （FSFの自由なディストリ
ビューションとして認定）

⑭	“create webpage with list of trusted orga	
nizations + pointer to evaluation criteria”
（信頼関係にある組織一覧のページ作成と評
価基準の指針）

　⑫のOINとは IBM、Novell、Red Hat、Sony

によって設立された企業コンソーシアムです。
その目的は、LinuxおよびLinuxに関連するシ
ステムやアプリケーションに関する特許について、
特許権を主張しないことに同意した企業／個人
に対し、同組織が買収した特許をロイヤルティー・
フリーでライセンスすることにあります（いわゆ
る「パテント・プール」です）。
　これによって、OINに参加した企業間で特許
権についての巨額の訴訟を避け、特許権を主張
する企業からお互いを守り、Linuxとその周辺
のソフトウェア開発をより促進していこうとい
う狙いですね。OIN参加で特許訴訟からは逃れ
やすくなりますが、一方でソフトウェア特許を
認めるともみなされるでしょうから、Debian

のような「自由」を重んじる組織の場合はどうす
るかは悩ましいところです。興味のある方は
http://deb.li/FTcEを参照してください。
　⑬についてですが、GNUプロジェクトの「自
由なGNU/Linuxディストリビューション」のペー
ジ注12には、実はDebianは含まれていません。
意外かもしれませんが、FSF側の意見としては

「しかし、Debianは、不自由なソフトウェアの
リポジトリも提供しています。プロジェクトに
よれば、このソフトウェアは『Debianシステム
の一部ではない』とされていますが、リポジト
リはたくさんのプロジェクトのメイン・サーバ
にホストされています。そして、人々はDebian
のオンライン・パッケージ・データベースを閲
覧し、これらの不自由なパッケージについて簡
単に知ることができます。“contrib”リポジトリ
もあります。パッケージは自由ですが、別に配
布されているプロプライエタリなプログラムを
ロードするようなものが存在します。これもま
たDebianのmainの配布から十分に分離されて
いません。以前のDebianのリリースは不自由
なブロブ注13をカーネルLinuxとともに含んで
います。2011年2月のDebian 6.0（squeeze）を

注6） Debian Free Software Guidelinesの略。Debianが「フリー
ソフトウェアである」と考える基準。

注7） Open Source Initiativeの略。
注8） URL http://opensource.org/licenses/alphabetical
注9） Contribution License Agreementの略。
注10） 企業などによってはプロプライエタリな商用ライセンス

とのデュアルライセンスを維持するために、コミュニティ
からのパッチの適用に際してこのような著作権譲渡を必
須とするところも存在しています。これは、企業の選択
によっては、プロプライエタリライセンス一択に切り替
えられてしまう可能性も秘めています。

注11） Open Invention Network
 URL https://www.openinventionnetwork.com/

注12） URL https://www.gnu.org/distros/free-distros.html
注13） ブロブ（blob）は「塊」の意味で、ここではバイナリデータ

のことを指します。

http://opensource.org/licenses/alphabetical
https://www.openinventionnetwork.com/
https://www.gnu.org/distros/free-distros.html
http://deb.li/FTcE

170 - Software Design Jun. 2015 - 171

「bits from DPL」から読み解く
Debianの今後 27

もって、これらのブロブはメイン・ディストリ
ビューションから外され、別のパッケージとな
り、不自由リポジトリに置かれました。しかし、
問題は一部残っています。インストーラはこの
不自由なファームウェアのファイルを（インス
トールされる）マシンの周辺機器のために推奨
する場合があります」

とあり、不十分であると考えているようです。
　このうちnon-freeコンポーネントの扱いにつ
いては完全に分離して、別ドメイン「non-free.

org」に移管する（図1）のが良いのではないか、
という検討をしているのですね。分離によって、
「リポジトリはたくさんのプロジェクトのメイ
ン・サーバにホストされている」状況からは脱
することになります（実際にそうするとなると、
開発のインフラストラクチャ構成をどうするの
かなどの課題がありますが）。
　これは好ましいことだと思うのですが、筆者
としては「conritbの分離」や「インストーラが
ファームウェアを推奨しないようにする」とい
うのは、ユーザの利便性をまったく無視するこ
とになるので、話が別ではないかと思います。
また、non-freeをただ「隔離」して見えないよう
にするだけでは、良い方向には進まないと考え
ています。どのような制限があって、誰に向かっ
てこのような制限を撤廃するように訴えればい
いのかを明示して、mainコンポーネントへ統
合できるように働きかけるべきでしょう。
　そのほかにも“look at fedora ambassador pro

gram”（Fedoraアンバサダープログラム注14を参

照する）という項目があります。Fedoraプロジェ
クトで行われている、「プロジェクトメンバーを
『ambassador（親善大使）』として、その地域の各
種イベントにプロジェクト代表として派遣する」
「プロジェクトに関する正しい理解を広める役割
の人を置く」ということをDebianプロジェクト
でも行ってみてはどうか、という試みのようです。
日本だとDebian JPメンバーが期せずしてこの
役割を果たしていますね。

その他

　“package for dvd playing library. was reviewed

by ftpmasters (C: sent for review to SFLC)”
（DVD再生ライブラリ（ftpmaster注15レビュー
済み）、SFLC注16にレビュー依頼を送付済み）
という項目がありました。
　DVD再生ライブラリ（libdvdcss）などの配布
についてGoサインを出す方向のようですが、
日本ではそのようなプログラムの利用について
は著作権法第二条二十で禁じられており「三年
以下の懲役もしくは三百万円以下の罰金、また
はその両方」が科せられることになっています。
配布についても、不正競争防止法第二条十一で
禁止されていることから、ミラーサーバの運用
は難しくなることが容易に予想がつきます。現
在のところは筆者からプロジェクトリーダーの
Neil McGovern氏に問い合わせをした段階で、
今後の動向が注視されます。

◆　◆　◆
　ほかにもhttps://wiki.debian.org/Teams/DPL/

Ideasにさまざまなアイデアが一覧にされていま
すので、一度覗いてみてください。Debianに興

味のある方であれば眺めているだ
けでも飽きないと思いますよ。｢ ▼図1　http://www.non-free.org/

注15） Debianのリポジトリ管理者チームのこ
と。パッケージの新規登録については、
ftpmasterがライセンスをレビューし
てOKかどうかを判断している。

注16） Software Freedom Law Center は フ
リーソフトウェア開発者／団体に法的
なアドバイスや訴訟のサポートをする
団体。

注14） URL https://fedoraproject.org/wiki/Ambassadors

https://fedoraproject.org/wiki/Ambassadors
https://wiki.debian.org/Teams/DPL/Ideas
http://www.non-free.org/
https://wiki.debian.org/Teams/DPL/Ideas

172 - Software Design

Ubuntu Monthly Report

Ubuntu 15.04概要

　Ubuntu 15.04は4月23日にリリースされまし
た注1。コードネームはVivid Vervetで、「鮮烈なベル
ベッドモンキー」といったところです。果たして、
コードネームのとおりに鮮烈なリリースになったの
でしょうか。
　15.04は奇数年のリリースであり、サポート期間
は9ヵ月です。

systemd

　特筆すべき変更点は、なんと言ってもinitデーモ
ンがsystemdになったことでしょう。systemdに関し
ては本誌2015年2月号の第1特集に詳しいので、そ
ちらを参照ください。この変更に伴う問題はほとん
ど発生しなかったといっていいほどスムーズなもの
でした。唯一例外と言えるのは、Kubuntuのデスク
トップマネージャーであるSDDMが自動起動しない
という問題がありました。とはいえ、それはUbuntu

のアーカイブにあるパッケージに関してのことであ
り、自分で initスクリプトを書いていたとか、upstart

注1） なお、お察しのこととは存じますが、この原稿はリリース前
に執筆しています。しかも大人の事情で普段より締め切りが
早いので、リリースの段階で変更される可能性は若干ながら
あります。

の jobファイルを書いていたとか、そういう場合に
は対処する必要があるのはいうまでもありません。
その場合、gihyo.jpに掲載されている姉妹連載
『Ubuntu Weekly Recipe』第358回注2が参考になりま
す。来年リリースされるUbuntu 16.04 LTSに備え、
今からsystemdに慣れておく必要がありそうです注3。
　ではupstartは削除されてしまったのかというと、
そんなことはありません。端末からpsコマンドを実
行してもわかりますが、ユーザセッション起動のた
めに残されています。具体的には、インプットメ
ソッドはこの方式を使用しています。
　もちろん従来どおりupstartを使用することもでき
ます。その方法はWiki注4にまとまっているのです
が、少なくともUbuntuやそのフレーバーを使用して
いる場合にはお勧めできません。しかし、自分で派
生版を作成する場合、そこまでいかなくても細かく
パッケージを選択してインストールしており、どう
してもsystemdが使いたくない場合には取り得る選
択肢となるでしょう。

Ubuntu MATE

　今回から新しくUbuntu MATEが公式のフレー

注2） http://gihyo.jp/admin/serial/01/ubuntu-recipe/0358

注3） ほかならぬ筆者がそうなのですが。upstartの jobファイルは書
きやすかったので助かっていました。

注4） https://wiki.ubuntu.com/SystemdForUpstartUsers

今回は4月23日にリリースされたUbuntu 15.04とそのフレーバーに関する情報をお知らせします。

Ubuntu 15.04
オーバービュー

Ubuntu Monthly Report第62回

Ubuntu Japanese Team　あわしろいくや　ikuya@fruitsbasket.info

http://gihyo.jp/admin/serial/01/ubuntu-recipe/0358
https://wiki.ubuntu.com/SystemdForUpstartUsers

172 - Software Design Jun. 2015 - 173

Ubuntu 15.04オーバービュー 第 62 回

バーに追加されました注5。詳しくは後述します。

Debianからのパッケージの取り込み

　Debian GNU/Linux 8.0（Jessie）は4月25日にリ
リースされるという発表がありましたので、本誌が
発売されるころにはリリースされているでしょう。
ということは、15.04の開発サイクルではDebianの
アーカイブはフリーズ状態だったということで、積
極的に新しいパッケージが使用できるという事態に
はなっていません。とはいえ、それはあくまで
universeリポジトリにあるパッケージに関してのこ
とであり、mainにあるパッケージ、あるいはフレー
バーで採用しているパッケージに関しては新しく
なっています。

ベースパッケージのバージョン

　カーネルは3.19、X.Orgスタックは1.17、GCCは
4.9.2、Qt5は5.4.1、GTK+は3.14.1をそれぞれ採用
しています。

extras.ubuntu.comリポジトリの削除

　最近ほとんど使われることがなかったextras.

ubuntu.comリポジトリが削除されました。14.10から
アップグレードする場合もとくに気にする必要はあ
りません。

Ubuntu

　UbuntuはUnity 7が継続されており、バージョン
は7.3.2です注6。ちなみに14.10では7.3.1でした。こ
のバージョンのとおり、細かな修正が加えられてい
ます。Unityの特徴の1つですが、［ファイル］や［編
集］などのメニューが画面上部に表示されています。
これは［システム設定］-［外観］-［挙動］-［ウィンドウ
のメニューを表示］を［ウィンドウのタイトルバーの
中］にすると各ウィンドウに表示できます。開発中に

注5） 今さらではあるのですが、第55回の14.10紹介でUbuntu
MATEが公式フレーバーになったと書きましたが、誤りでし
た。この場を借りてお詫びします。

注6） もっとも、リリースまでにさらにバージョンが上がる可能性
はあります。

はこれがデフォルトになっていたものの、ギリギリ
で以前の挙動（画面の上部に表示）に戻りました。も
し気になる場合は設定を変更してください。
　デフォルトでインストールされるパッケージは絵
文字フォント（ttf-ancient-fonts-symbola）が追加され
たというくらいの変更点しかありませんが、Mozcで
絵文字変換できるようになるので、これはこれで便
利です。
　あと特筆すべきは、12.10以来長らくバージョンが
据え置かれてきたGNOME端末が3.14.2にアップ
デートされました。変更点は多いのですが、Unicode

の「東アジアの文字幅」（East Asian Width）にある曖
昧（Ambiguous）幅の文字をどのように扱うかのオプ
ションが追加されました。［編集］-［プロファイルの
設定］-［互換性］タブの［曖昧幅の文字］で変更できま
す。ここは［全角］（原文ではWide）にしておくと、文
字が重ならなくなる場面が多くなるでしょう。これ
で都合が悪い場合は、［半角］（原文ではNarrow）にし
たプロファイルを作成しておけばいいでしょう。
　GNOME 2.xのルック＆フィールが好みであるも
のの、Ubuntu MATEだとUbuntuと乖

かいり

離し過ぎてい
てそぐわないという場合注7には、GNOME Flashback

という選択肢もあります（図1）。gnome-session-

flashbackパッケージをインストールし、ログイン時
に歯車アイコンをクリックして“GNOME Flashback

注7） MATEはアプリケーションを含めてまるごとGNOME 2.xを
フォークしていますが、GNOME Flashbackはあくまでセッ
ションに関連する部分だけですので、構成しているパッケー
ジの数が段違いに少ないです。

図1　GNOME 2.xにしか見えないGNOME Flashback

174 - Software Design

Ubuntu Monthly Report

（Metacity）”をクリックすると、GNOME Flashback

セッションでログインできます。GNOME Flashback

はGNOME Fallbackからフォークした正当な
GNOME 2.xの進化形で、GTK+ 3へのポーティン

グが行われるなど、積極的に開発が進められてい

ます。

Kubuntu

　Kubuntu 15.04はKDE Framework 5.9.0、KDE

Plasma 5.2.2、KDE Applications 14.12.3を採用して
います。14.10以前はKDEのバージョンは4.xだった
わけですが、15.04からは5.xになった、ということ
です。とはいえ、リリースモデルが以前とは違うの
で、一概にKDE 5.xになった、ということはできな

くなっています。大雑把に解説すると、KDE Frame

workはライブラリ、KDE Plasmaはデスクトップ、
KDE Applicationsはアプリケーションで、現在はそ
の3つを別々にリリースしています。たしかにライ
ブラリが新しくなったからといって即座にそれをア
プリケーションにも反映できるわけではないので、
別々にリリースするのは合理的といえます。
　そもそもツールキット（Qt）のバージョンからして
違うので、4.xとは大きな違いがあります。いろいろ
と遊んでみると楽しいのではないでしょうか注8。
　KDE Plasma 5にはユニークな機能があります（図
2）。通常デスクトップは“デスクトップ”というフォ
ルダを割り当てているのですが、KDE Plasma 5では
これを“デスクトップ”以外に変更できます。たしか
に最近のデスクトップ環境であればxdg-user-dirs注9

のしくみを使用すればできますが、GUIから任意で
変更できるのは筆者が知る限りこれだけです。もと
もと“デスクトップ”フォルダを変更しようという発
想がなかったので注10、とても新鮮でした注11。

Xubuntu

　Xubuntuで採用しているデスクトップ環境のXfce

は、2012年4月にリリースされた4.10以降久しく
バージョンアップを行っていませんでしたが、本年
2月に4.12がリリースされ、Xubuntuでもこの15.04

でXfce 4.12にアップデートしています（図3）。とは
いえ、Xubuntuは4.12の開発版を長らく採用してい
たので、新鮮な変更点はとくにありません。14.10

ユーザはリリース後3ヵ月以内に15.04にアップグ
レードする必要があるのでXfce 4.12を必然的に使
用することになりますが、14.04ユーザはそうでもあ
りません。というわけで、14.04を使用したままXfce

を4.12にしたいという場合は、PPA注12を使用すると

注8） ただしメニューはほとんど翻訳されていないため、凝ったこ
とをしようとするとそれなりの英語力が求められます。

注9） http://freedesktop.org/Wiki/Software/xdg-user-dirs/

注10） “デスクトップ”というカナ表記を“Desktop”という英語表記
に変更するのはやりますが。

注11） 後に登場するLXQTにも同様の機能がありましたが。
注12） https://launchpad.net/~xubuntu-dev/+archive/ubuntu/

xfce-4.12?field.series_filter=trusty

図2　 Kubuntu 15.04ではデスクトップのフォルダを変
更できる

図3　 Xfceのコンポーネントの1つ、xfce4-panelのバー
ジョンを確認すると、たしかに4.12になっている

http://freedesktop.org/wiki/Software/xdg-user-dirs/
https://launchpad.net/~xubuntu-dev/+archive/ubuntu/xfce-4.12?field.series_filter=trusty

174 - Software Design Jun. 2015 - 175

Ubuntu 15.04オーバービュー 第 62 回

いいでしょう。事前に問題がないか、仮想環境で試
してみるのをお勧めします。
　Xubuntu 15.04の変更点があまり多くないのは
Xfceのバージョンアップに伴うものだけではありま
せん。目立つ変更点は、デスクトップマネージャー
であるLightDMの設定を変更するツールが追加され
たことと、画面のロックを［設定］-［電源管理］-
［Securty］で行うようになり、専用のツール（light-

locker-settings）を使用しなくなったことくらいと
いっていいでしょう。ほかにも利便性を向上する変
更点はあります。

Lubuntu

　Lubuntuで採用しているデスクトップ環境の
LXDEは現在メンテナンスモードに入っており、開
発を活発に行うというフェーズにはありません。そ
の分後継であるLXQTというデスクトップ環境の開
発を活発に行っているのですが、現在もなお
Lubuntuで採用するにはいたっていません。という
わけで、必然的に14.10とあまり変わりがない、と
いうことになります。
　Lubuntuの特徴として、Ubuntuの公式フレーバー
としては唯一CDサイズに収まるインストールイ
メージを維持しています。しかし、この容量の削減
の一環でfonts-droidほかいくつかのパッケージが削
除されました。これにより日本語を表示できるフォ
ントがなくなったので、ライブイメージからインス
トールする場合は英語で行うか、やはり公式フレー
バーで唯一維持しているAlternativeイメージ注13か
らインストールする必要があります。Lubuntuを使用
するということは、おおむねメモリが512MB以下の
環境と思われるので、いずれにせよライブイメージ
（Ubiquity）からインストールするにはかなり厳しい
です。というわけで、あまり大きな制限とも言えな
いでしょう注14。

注13） https://help.ubuntu.com/community/Lubuntu/Alternate_
ISO

注14） メモリが1GB以上あるのであればXubuntuのほうがお勧めで
す。もっとも、個人の好みもあるのでなんとも言えませんが。

　15.04 Beta2のリリースノート注15を見てみると、
systemdは使用していないという記述があるのです
が、筆者が調べた限りではsystemdになっていまし
た。しかしこれはあくまで4月上旬現在のことであ
り、リリースまでにはupstartに戻っているのかもし
れませんが、そのようにする方法があるとも思えな
いので注16、そのまま行くのではないかと思いま
す注17。
　LubuntuでLXQTを試すこともできます（図4）。
PPA注18でパッケージが公開されているのですが、
これはあくまで開発版のスナップショットがアップ
ロードされるPPAですので、不具合にあたる確率
が高くなっています。それを覚悟のうえで挑戦して
ください。

Ubuntu GNOME

　Ubuntu GNOME 15.04に 関し て は、Ubuntu

Weekly Recipe 第369回注19に詳しく書きましたので
そちらを参照してください。かいつまんで解説する
と、GNOMEのコンポーネントはUbuntu GNOMEほ

注15） https://wiki.ubuntu.com/VividVervet/Beta2/Lubuntu

注16） upstartにするためにはめたパッケージを削除しなければいけ
ないのですが、公式フレーバーがこれを許容するとはちょっ
と思えないのです。

注17） Wikiですので誰でも書き換えられるとはいえ、いたずらとも
思えないので真偽が伺えません。

注18） https://launchpad.net/~lubuntu-dev/+archive/ubuntu/
lubuntu-daily?field.series_filter=vivid

注19） http://gihyo.jp/admin/serial/01/ubuntu-recipe/0369

図4　 開発中のLXQT4。これを見る限りだと旧来のデスク
トップという感じがする

https://wiki.ubuntu.com/Vivid/Vervet/Beta2/Lubuntu
https://launchpad.net/~lubuntu-dev/+archive/ubuntu/lubuntu-daily?field.series_filter=vivid
http://gihyo.jp/admin/serial/01/ubuntu-recipe/0369
https://help.ubuntu.com/community/Lubuntu/Alternate_ISO

176 - Software Design

Ubuntu Monthly Report

か（少なくともUnity 7のうちは）Ubuntuでも使用し
ているので、Ubuntu GNOMEの都合でバージョン
アップができないものもあります。そのような理由
でGNOMEのコンポーネントのバージョンが不ぞろ
いであることが多いのですが、15.04では極力
GNOME 3.14にそろえるようになっています。もち
ろん全部ではありませんが、これまでを考えるとず
いぶんと統一され、ほかのGNOMEを採用した
Linuxディストリビューションと肩を並べられると
ころまで行ったのではないでしょうか。それ以外に
はあまり大きな変更はありません。Ubuntu GNOME

の最初のバージョンは13.04だったのですが、2年を
経てそれなりに落ち着いてきたということなので
しょう。もちろんGNOME自体にも左右されている
のですが。
　新しいディスプレイサーバであるWaylandを簡単
に使用できるよう、新たにgnome-session-wayland

というパッケージが追加されました。プロプライエ
タリなドライバを使用しないなど限られた環境では
ありますが、このパッケージをインストールして
セッションを選択すると（図5）、WaylandでGNOME

を使用できます。あくまで実験用ではありますが、
試してみるのもまたおもしろいです。

Ubuntu MATE

　前述のとおり15.04から公式フレーバーの仲間入

りとなったわけですが、14.04も14.10も15.04も
MATEのバージョンは1.8であり、そこだけを見る
とあまり大きな違いはありません注20。もちろんバグ
の修正が進んでいるなどの違いはあります。Ubuntu

MATE 14.04と15.04を比較すると注21、Compizほか
追加されているものがいくつかあります。詳しくは
後述します。
　あらためてUbuntu MATEの特徴を紹介すると、
デスクトップ環境にGNOME 2からフォークした
M
マ テ

ATEを採用しています。インストールされている
パッケージはMATEのもののほか、Ubuntuでも採用
しているLibreOffice/Firefox/Thunderbirdもあり、
LubuntuやXubuntuといったいわゆる軽量指向では
なく、Ubuntuの代替となるものです。［システム］-

［設定］-［ルック＆フィール］-［MATE Tweak］にある

MATE Tweakは簡単な操作でMATEを協力にカス
タマイズできます（図6）。
　ウィンドウマネージャーをMacro（MATE）と
Compizから選択でき、ログアウト＆再ログインの必
要がなく、即座に反映されます。そのほか、パネル
のレイアウトもWindows風やPlankというDockを
採用したものに変更できます。“cloudtop”というメタ
パッケージとタスクが提供されており（図7）、その

注20） なお、本誌が発売されているころはMATE 1.10がリリースさ
れているはずです。

注21） Ubuntu MATEは14.10よりも14.04のほうが開発が進んで
いるので、比較の対象とします。このあたりはオフィシャル
ではないUbuntuフレーバーらしさでもあり、わかりにくさ
でもあります。

図5　 gnome-session-waylandをインストール後、
GDMで“GNOME on Wayland”を選択する

図6　 MATE Tweakで“Panel Layout”を“Eleven”にす
ると、下にDockが表示される

176 - Software Design Jun. 2015 - 177

Ubuntu 15.04オーバービュー 第 62 回

名のとおりクラウド上でデスクトップを使用する
パッケージに厳選されています。とはいえ、デスク
トップと大きな違いがあるわけではなく、Compizや
直接ハードウェアを制御するアプリケーション（CD/

DVDライティングソフトなど）や音楽再生の
Rhythmboxなどが削除され、別途追加されている
パッケージはありません。VPSやクラウド上で
Ubuntuフレーバーを使用したい場合の選択肢として
考えてみてください。

Ubuntu Server/Snappy
Ubuntu Core/Ubuntu Touch
　残念ながら執筆段階では特別にお知らせすること
はないため、今回は省略します。9ヵ月しかサポート
しないServerを使う人はたぶんいないのでいいと思
うのですが、Snappy Ubuntu CoreやUbuntu Touch

は楽しみにしている人も多いでしょう。今後何かお
知らせすべきことがあったら、この連載でお届けで
きればと思います。具体的な発表はないものの、
Snappy Ubuntu CoreもUbuntu Touchも15.04のリ
リース日からそう遠くなくリリースされることで
しょう。とくにUbuntu Touchはすでにいくつかこ
れを採用したUbuntu Phoneが販売されており、ま
た今後も発売されるものと思われるので、完成度が
上がっています。
　Ubuntu Desktop Nextは15.04のリリースサイクル
でもリリースされない見込みですが、Ubuntu Touch

の開発が進むのと同時に完成度が上がっているの

で、そろそろ試してもいいころかもしれません。

インプットメソッド

　Fcitxを使用している場合でも、［システム設定］-
［テキスト入力］の［入力ソース］でfcitx-mozcやfcitx-

anthyといった入力メソッドの変更ができるようにな
りました（図8）。Ubuntuの中国向け公式フレーバー
ではFcitxが以前よりデフォルトでしたが、Ubuntu

でも中国語（簡体字／繁体字）でインストールした場
合はFcitxがデフォルトになるよう変更が加わりま
した。残念ながら日本語ではIBusがデフォルトのま
まとなりましたが、15.10では中国語以外でもFcitx

がデフォルトになる予定です。Kubuntuユーザに

はfcitxとfcitx-mozcとkde-config-fcitxをインス
トールし、Fcitxを使用することを強く強くお勧めし
ます（図9）。｢

図7　 Ubuntu Minimalからインストールすると、
“Ubuntu MATE Cloudtop”というタスクがある

図8　［入力ソース］でFcitxの入力メソッドを設定できる

図9　 kde-con�g-fctxをインストールすると、KDEと統
合したUIでFcitxの設定ができる

178 - Software Design

「新しい」CPUアーキ
テクチャのサポートを追加

　「新しい」と、あえて括弧書きにしているのは
追加されたのが純然たるCPUアーキテクチャ
ではなく、米 IBM社のCPUであるPOWER 8

のリトル・エンディアンモードに対応したため
です。従来、RHEL 7は x86_64/ppc64/s390x

の3つの64ビットCPUに対応していました。
RHEL 7.1ではPOWER 8のリトル・エンディ
アンモード用のバイナリおよびインストーラを
新たに追加し、ppc64le（Little Endian）という
CPUアーキテクチャコードがRPMパッケージ
に付加注1されることになりました。RHEL 7.1

ではPOWER 7/8のビッグ・エンディアンに
対応したバージョン（ppc64）と、POWER 8の
リトル・エンディアンに対応したバージョン
（ppc64le）が用意され、Intel Architectureとの
移植性を高めることに寄与することになります。
　かつては alphaや sparc、ia64注2、AMD 64

が登場した直後に一瞬だけ登場した ia32e注3と

いったさまざまなCPUアーキテクチャコード
が存在したものの、年々その数を減らしてきた
ので、Red Hatが提供するLinuxとしては久々
のCPUアーキテクチャコードの追加というこ
とになります。
　この変更に関連してpp4c64leバージョンで
はデフォルトのブートローダがGRUB 2とな
りました。従来はyaboot注4が用いられており
ppc64leでも利用できますがオプション扱いと
なっています。

インストーラUIの改良

　Linuxカーネルのダンプ機能であるkdumpの
設定は、インストール終了後の初回起動時にだ
け起動するfirstbootサービスで行ってきまし
たが、RHEL 7.1ではインストーラであるana

condaで行えるようになりました。
　また手動パーティション設定の画面レイアウ
トが整理され注5、キーボードショートカットに
よる操作性も向上しました（図1）。kickstartや

第12回 Red Hat Enterprise Linux 7.1リリース

注1） たとえばkernelは、kernel-3.10.0-229.el7.ppc64le.rpmとなる。
注2） 米 Intel社と米HP社が共同開発した Itanium/Itanium 2を指す。
注3） 直後に“x86_64”に変更されたため、“ia32e”というアーキテクチャコードが付くRPMパッケージは数個しか存在しない。
注4） Yet Another Boot loaderの略とされている。もともとは米Apple社／米 IBM社／米Motorola社連合のCPU/PowerPCで採

用されたOpen Firmwareに対応するブートローダでPOWERでも長らく利用されてきた。
注5） インストール手順を順に実行していくウィザード形式から、必要な個所だけを変更するモジュール形式（ハブ＆スポーク）に

変更された直後から、手動パーティショニング設定の画面レイアウトはFedoraで試行錯誤が続いていた。

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

2014年6月の7.0リリースから9ヵ月の間隔をおいて、2015年3月5日にRed Hat
Enterprise Linux 7.1がリリースされました。今回のリリースでは「新しい」CPUアー
キテクチャの対応を含む多くの機能追加や変更が行われています。

Writer レッドハット（株）サービス事業統括本部
プラットフォームソリューション統括部ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）

178 - Software Design Jun. 2015 - 179

第 12 回Red Hat Enterprise Linux 7.1リリース

chef/puppetなどを利用する場合にはあまり重
要ではありませんが、細かなGUIの変更が積
み重なると大きな改善につながります。

LVM Cacheを追加

　筆者の私見であることをお断りしたうえであ
えて断言しますが、現在はストレージおよびメ
モリの劇的な変化の過渡期にあります。前者は
SSDをはじめとするNANDフラッシュメモリ
ベースのストレージが「補助記憶装置」として普
及しはじめたこと、後者は不揮発性メモリが「主
記憶装置」として実用化の前段階にあることを
指します。2008年末に筆者が購入したSSDは
Gバイト単価が約1,000円注6でしたが執筆時点
では40円台にまで下がっており、6年ほどで
25分の1程度になりました。SSDの登場直後
には考えられなかったことですが、HDDを構
成に含めないサーバも購入時の選択肢として検
討されるようになりました。
　一方で性能と大データ容量の両方が要件に含

まれる場合、現時点ではSSDとHDDを混載す
る必要がありますが、アクセス頻度やファイルの
容量に応じてそれらのメディアを使い分ける注7

のはシステムの運用を煩雑にするのであまり好ま
しいことではありません。
　そこでLVMの同一のVG（ボリュームグルー
プ）に含まれるPV（物理ボリューム）のメディ
アのうち、高速にアクセスできるものをキャッ
シュとして用いてトータルの性能を向上させよ
うというのがLVM Cacheという機能注8です。
LVMでは柔軟なボリューム構成が特長なので、
既存注9あるいは新規を問わず、システムに
SSDを追加することで性能向上を図ることが
できます。
　手順を簡単に紹介しましょう。詳細は lvm

cache(7)を参照してください（図2）。
　SSDに物理パーティションを設定し、pv

createコマンドでPV（物理ボリューム）を作成
したあと、vgcreateコマンドでほかのPVと一
緒にVGにまとめるか、vgextendコマンドで既
存のVGに追加します。

注6） 80GB品で約8万円。某誌でのベンチマーク用に購入してその性能に感激し、筆者が所有するシステムはサーバも含め2010
年にはすべての起動ディスクをSSD/NANDフラッシュメモリに切り替えた。

注7） ストレージ製品にはメディアを混載すると、アクセス頻度などの統計値をベースにファイルの配置を自動で最適化するもの
がある。

注8） 同様の機能としてbcacheやdm-cacheがある。
注9） もちろんOSとしてRHEL 7.1にアップデートしてあることが前提。

 ▼図1　RHEL 7.0（左）と7.1（右）のパーティション設定画面

180 - Software Design

　次に lvcreateコマンドで2つのLV（論理ボ
リューム）を作成します。一方はメタデータの、
他方は実データの格納用の領域になります。

lvcreate -L 1G -n lv_cache_meta vg_main /dev/ ｭ
sdc1
 Logical volume "lv_cache_meta" created
lvcreate -L 239G -n lv_cache vg_main /dev/ ｭ
sdc1
 Logical volume "lv_cache" created

　さらに lvconvertコマンドで、2つのLVを
“cache-pool”にまとめます（図3）。次に“cache-

pool”を高速化する対象のLVにアタッチしま
す（図4）。

　大容量のシーケンシャルアクセスではHDD

の性能限界がLVM Cacheを設定したLVの性
能限界となりますが、ランダムアクセスでは透
過的にSSDが用いられるため、性能が向上す
ることが期待できます。

まとめ

　本連載を2回にわたり休載したのは1ヵ月間の
Sabbatical注10を取得させていただいたためです。
実はRed HatにはSabbaticalの制度はないので、
勤続10年注11を機に有給休暇をまとめて取得さ

せてもらったのです
が、それでも十分に
ありがたいことです
し、良い職場注12だ
なと認識を新たにし
ました。その間は英
会話とフィットネス
ジムに通う毎日を過
ごしたので、それな
りに「研究休暇」を満
喫できました。ﾟ

注10） 「研究休暇」のことで本来は大学教授などの職にある人が対象。
注11） Red Hatに転職した2005年4月はRHEL 4がリリースされた直後だったので、4つのメジャーリリースを見てきたことに。
注12） 休暇中にフォローしてもらった同僚および休載を快諾いただいた編集長に感謝。

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

lvconvert --type cache-pool --poolmetadata vg_main/lv_cache_meta vg_main/lv_cache
 Logical volume "lvol0" created
 Converted vg_main/lv_cache to cache pool.

 ▼図3　lvconvertで2つのLV（論理ボリューム）をまとめる

lvconvert --type cache --cachepool vg_main/lv_cache vg_main/lv_root
 vg_main/lv_root is now cached.

 ▼図4　LV（論理ボリューム）に“cache-pool”をアタッチ

 ▼図2　 man 7 lvmcacheにはLVM Cacheの設定の詳細な手順が含まれる

181 - Software Design Jun. 2015 - 181

Linux 3.19の新機能
Intel MPX機能のカーネル側対応

第39回第39回
Linux

カーネ
ル

観光ガ
イド

して、地図を表示するといったことが行われて
います。これらのアプリやサービスはそれぞれ
別のプロセスで実行されているので、当然メモ
リ空間は分離されています。アプリのコード上
では、あたかも通常の関数の呼び出しのように
見えていますが、その裏ではアプリのプロセス
とサービスが動作するプロセスとの間でのIPC

（プロセス間通信）が行われています。このIPC

として裏方で動作しているのが、Android Binder

です。
　Linuxには、すでにpipeやsocketなどさまざ
まなIPCの手段が存在します。そうしたIPCで
はなく、わざわざ新しいIPCシステムを実装し
たのはなぜでしょうか。その理由は、Android

における「オブジェクト指向のOSサービス」を
サポートすることにあります。すなわちBinder

は、複数のプロセスで動作するオブジェクト間
の呼び出しや参照関係を、うまく取り扱えるよ
うに設計されています。では、具体的にどのよ
うな機能が実装されているのかを、Binderのカー
ネルインターフェースを直接使うアプリケーショ
ンを書いてみることで見ていきましょう。

シンプルな
関数呼び出し

　まずは簡単な関数を呼び出し、その結果を受

　4月12日にLinux 4.0がリリースされ、Linux

4.1に向けた新機能のコミットが始まっています。
4.0でもLive Patchingなどおもしろそうな機能
はありますが、本連載ではもう少し3.19での新
機能について見ていきます。

Androidのドライバ
　AndroidもLinuxをベースとしたOSです。
Androidの機能を実現するために、Linuxカー
ネルにもさまざまな変更が加えられています。
そういった機能がstaging driver（開発途中のド
ライバ）としてLinuxカーネル本体にも追加され
ています。Linux 3.19では、その中のBinderと
いうドライバがAndroidのドライバの中では初
めてstagingを卒業しました。今回はこのAnd

roid Binderについて詳しくみていきます。

Androidの
IPCシステム

　Androidではさまざまなアプリやサービスが
動作し、それらが協同してさまざまな機能を提
供しています。たとえば、あるアプリがバーコー
ド読み込み用のアプリを起動し、読み込まれた
バーコード番号をもとに商品の検索を行ったり、
あるいは位置情報のサービスから現在地を取得

Linux3.19の新機能
〜IPCの裏方で動作するAndroid Binder

Text：青田 直大　AOTA Naohiro

第39回第39回

182 - Software Design

Linuxカーネル観光ガイド

け取るコードを書いてみましょう。binder-

client-add.c（リスト1）は、加算を行うリモート
の関数を“1”と“2”を引数として呼び出し、その
結果を（要するに“1+2”の結果を）表示するだけ
のプログラムです。binder_open()、binder_call()

はbinder.c（リスト2）で定義される関数です。
　binder_open()はBinderのインターフェースと
なる/dev/binderを開き、その上にmmap()を行
いメモリ領域を確保しています。のちほど紹介
しますが、この領域はプロセス間の関数呼び出
しにおける引数を保管しておくために使われます。

・	/dev/binder のファイルデスクリプタ
・	呼び出し先オブジェクトのハンドル
・	呼び出し先オブジェクトの「関数識別コード」
・	引数用の構造体
・	返り値用の構造体

　ここではハンドルには0を指定しています。“ハ
ンドル0”は常に、システムに1つだけ存在する
“Context Manager”というオブジェクトを参照
しています。引数用の構造体は、“data”がデー
タバッファを指し、そこに引数である“1”と“2”
とが保管されています。object_offsetsについて
は後述します。同様に返り値用の構造体にも、デー
タバッファとサイズが指定されています。
　binder_call()の中を見ていきましょう（図1）。
Binderでは“binder_write_read”という構造体を
用いて通信を行います。この構造体の“write_

buffer”に、BC_TRANSACTIONのようなコマ
ンド番号とそれぞれの番号に対応する引数デー
タからなるコマンド列を書き、“ioctl(BINDER_

WRITE_READ)”を実行すると、コマンド列がカー

#include <stdio.h>
#include <unistd.h>
#include <linux/android/binder.h>
#include "binder.h"

struct add_args {
 uint32_t a;
 uint32_t b;
} __attribute__((packed));
struct add_result {
 uint32_t result;
} __attribute__((packed));

int main()
{
 int fd = binder_open();
 if (fd < 0)
 return 1;

 struct add_args aargs = {1, 2};
 struct add_result result;
 struct binder_args args;
 struct binder_reply reply;

 args.data = &aargs;
 args.data_size = sizeof(aargs);
 args.object_offsets = NULL;
 args.offsets_size = 0;
 reply.data = &result;
 reply.size = sizeof(result);
 if (binder_call(fd, 0, CODE_ADD, &args, &reply))
 return 1;
 printf("result: %d¥n", result.result);

 close(fd);
 return 0;
}

 ▼リスト1　binder-client-add.c

 ▼図1　関数呼び出しと返り値のメッセージ

ContextManager

　　
アプリケーション

プロセス

　　

0
1
2

ハンドル
テーブル

1 2

/dev/binder

BC_TRANSACTION

buffer

handle = 0(Context Manager)
code = CODE_ADD

BR_TRANSACTION

buffer

handle = 0(Context Manager)
code = CODE_ADD

関数呼び出しのメッセージ

binder_call(fd, 0, CODE_ADD,
 &args, &reply)

引数バッファ

ContextManager

　　
アプリケーション

プロセス

　　

0
1
2

ハンドル
テーブル

2

/dev/binder

BR_NODE

BR_REPLY
BR_TRANSACTION_DONE

handle = 0(Context Manager)
code = CODE_ADD

BC_FREE_BUFFER

BC_REPLY
引数バッファアドレス

buffer

返り値のメッセージ

返り値バッファ

buffer

182 - Software Design Jun. 2015 - 183

Linux 3.19の新機能
Intel MPX機能のカーネル側対応

第39回第39回

ネルを通して処理され、対応する結果のコマン
ド列が“read_buffer”に書かれて返ってきます。
　今回のプログラムの場合、一度目のWRITE_

READでBC_TRANSACTIONコマンドと“bin

der_transaction_data”構造体を使い、関数のコー
ド番号、引数を渡しています。このときカーネ
ルが“binder_open()”でmmapした領域から、引
数データ保管用のバッファを確保しています。
その結果として、“read_buffer”に何も書かれてい
ないときに必ず書かれるBC_NOOPと、tran

sactionが処理されたことを示すBC_TRAN

SACTIONとが読み込まれます。そして“Context

Manager”が transactionを処理（すなわち関数

のコード、引数を受け取り、結果を返す）すると、
BR_REPLYコマンドで結果が返ってきます。
こ の 引 数 は 送 信 側 と 同 じ く、binder_

transaction_data構造体となっています。返答
を受け取ると引数用に確保されたバッファはも
う不必要となるので、“free_buffer()”関数（省略）
からBC_FREE_BUFFERコマンドを用いて
バッファの解放を行います。
　では次に“Context Manager”のコードである
binder-cm.c（リスト3）を見てみましょう。こち
らではbinder_open()のあとに“ioctl(BINDER_

SET_CONTEXT_MGR)”を呼び出し、自分自
身を“Context Manager”として登録しています。

int binder_open()
{
 int fd = open("/dev/binder", O_RDWR);
 if (fd < 0) {
 perror("open");
 return fd;
 }
 mmap(NULL, buf_size, PROT_READ, MAP_PRIVATE, ｭ
fd, 0);
 return fd;
}

int binder_call(int fd, __u32 handle, __u32 code,
 struct binder_args *args, struct binder_replyｭ
*reply)
{
 uint32_t writebuf[32];
 uint32_t readbuf[32];
 struct binder_write_read bwr;
 memset(writebuf, 0, sizeof(writebuf));
 memset(readbuf, 0, sizeof(readbuf));
 memset(&bwr, 0, sizeof(bwr));
 bwr.write_buffer = (binder_uintptr_t) writebuf;
 bwr.read_buffer = (binder_uintptr_t) readbuf;

 // Send a transaction
 struct binder_transaction_data *txn;
 bwr.read_size = sizeof(readbuf);
 bwr.write_size = sizeof(uint32_t) + sizeof(*txn);
 writebuf[0] = BC_TRANSACTION;
 txn = (struct binder_transaction_data *) ｭ
(writebuf+1);
 memset(txn, 0, sizeof(*txn));

 txn->target.handle = handle;
 txn->code = code;
 txn->data.ptr.buffer = (binder_uintptr_t) ｭ
args->data;
 txn->data_size = args->data_size;
 txn->data.ptr.offsets = (binder_uintptr_t) ｭ
args->object_offsets;
 txn->offsets_size = args->offsets_size;

 uintptr_t ptr = 0, end;
 for(;;) {
 if (ioctl(fd, BINDER_WRITE_READ, &bwr) < 0) {

 perror("ioctl(BINDER_WRITE_READ)");
 return 1;
 }

 if (ptr == 0)
 ptr = bwr.read_buffer;
 end = bwr.read_buffer + bwr.read_consumed;

 while(ptr < end) {
 uint32_t cmd = *(uint32_t *) ptr;
 ptr += sizeof(cmd);

 switch(cmd) {
 case BR_NOOP:
 printf("noop¥n");
 break;
 case BR_TRANSACTION_COMPLETE:
 printf("transaction complete¥n");
 break;
 case BR_REPLY: {
 // parse reply transaction
 if ((end - ptr) < sizeof(*txn)) {
 fprintf(stderr, "Small transaction data¥n");
 return 1;
 }
 txn = (struct binder_transaction_data *) ptr;
 memcpy(reply->data, (void*)txn->data.ptr.ｭ
buffer, reply->size);

 // free buffer
 if (free_buffer(fd, (binder_uintptr_t) ｭ
txn->data.ptr.buffer) < 0) {
 fprintf(stderr, "Free buffer failed¥n");
 return 1;
 }
 return 0;
 }; break;
 default:
 fprintf(stderr, "Unknown command: %d¥n", cmd);
 return 1;
 }
 }
 }
 return 0;
}

 ▼リスト2　binder.c（抜粋）

184 - Software Design

Linuxカーネル観光ガイド

これでBinderを使うプロセスは、“ハンドル0”
を使って、このbinder-smにコマンドを送信でき
るようになります。その後binder-cmはbinder_

loop()関数を呼び出し、ほかのプロセスからの
BC_TRANSACTIONコマンドを待つループに
入ります。このとき、BC_ENTER_LOOPER

を用いてコマンドループに入ったことを通知し
ておく必要があります。BC_TRANSACTION

による関数コードおよび引数はfunc()に渡されて、
返り値の設定が行われています。

オブジェクトの管理
　これまで紹介した範囲では、“Context Mana

ger”にハンドル0でアクセスできる、という部
分以外はオブジェクト指向らしきところは見ら
れません。さらに言えば、“Context Manager”
以外のオブジェクトにアクセスするための方法
も出てきていません。ということで、次の例で
は“Context Manager”以外のサービスを登録す
るコードを通してBinderのオブジェクトの管理
機能について見てみましょう。
　サービス側からみていきます。binder-service.c

（リスト4）はサービスを行うコマンドループに

入る前に、Context Managerの“CODE_PUT_

SERVICE”を呼び出してサービス登録を行って
います（図2）。binder_call()のデータとしてflat_

binder_obbbject構造体の形式でオブジェクトの
データを書き、そのデータが書かれている位置
をoffsetsに設定することでBinderのtransaction

でオブジェクトを送信できます。Binderのドラ
イバはこのデータを解析し、ハンドルを用いて
通信相手がオブジェクトを参照できるようにし
ています。
　ここでは“pargs.service_obj.binder = 0xdead

beaf”としてオブジェクトの識別子を設定し、そ
の次の行でcookieを設定しています。 ここでは
シンプルなコードのため識別子に適当な値を使っ
ていますが、C++で書かれたAndroidのライブ
ラリの場合クラスオブジェクトのポインタを使っ

int func(struct binder_transaction_data *txn,ｭ
struct binder_reply *reply)
{
 switch(txn->code) {
 case CODE_ADD: {
 struct add_args *data;
 struct add_result *r;
 data = (struct add_args*)txn->data.ptr.buffer;
 r = malloc(sizeof(*r));
 printf("ADD(%d, %d)¥n", data->a, data->b);
 r->result = data->a + data->b;
 reply->data = r;
 reply->size = sizeof(*r);
 }; break;
 }
 return 0;
}

int main()
{
 int fd = binder_open();
 if (fd < 0)
 return 1;

 if (ioctl(fd, BINDER_SET_CONTEXT_MGR) == -1) {
 perror("ioctl(BINDER_SET_CONTEXT_MGR)");
 return 1;
 }
 printf("became context manager¥n");

 if (binder_loop(fd, func)) {
 perror("binder loop");
 return 1;
 }

 close(fd);
 return 0;
}

 ▼リスト3　binder-cm.c（抜粋）

int main()
{
 int fd = binder_open();

 struct put_args pargs;
 memset(&pargs, 0, sizeof(pargs));
 pargs.service_obj.type = BINDER_TYPE_BINDER;
 pargs.service_obj.binder = 0xdeadbeaf;
 pargs.service_obj.cookie = 42;
 size_t object_offsets[1] = {0};

 struct binder_args args;
 struct binder_reply reply;
 args.data = &pargs;
 args.data_size = sizeof(pargs);
 args.object_offsets = object_offsets;
 args.offsets_size = sizeof(object_offsets);
 memset(&reply, 0, sizeof(reply));
 if (binder_call(fd, 0, CODE_PUT_SERVICE, &args,
&reply))
 return 1;
 printf("service registered¥n");

 if (binder_loop(fd, func)) {
 perror("binder loop");
 }

 close(fd);
 return 0;
}

 ▼リスト4　binder-service.c（抜粋）

オブジェクトデータ

オブジェクトデータの参照

184 - Software Design Jun. 2015 - 185

Linux 3.19の新機能
Intel MPX機能のカーネル側対応

第39回第39回

じて、オブジェクトがほかのプロセスから参照
できるようにする、参照カウントを行う、解放
時の通知を行うといった機能が入っており、こ
ういった機能を使って複数のプロセスにおける
オブジェクトの協同動作を実現しています。

まとめ
　今月はAndroidの根幹であり、プロセスをま
たがったオブジェクト間の動作を可能にする
IPCシステムであるBinderについて紹介しまし
た。｢

ているようです。Binderドライバは
このデータを解析して、通信先のプ
ロセスで未使用のハンドルを（たと
えばハンドル1）をこのオブジェクト
に割り当てます。
　Context Managerは与えられたハ
ンドルを記憶し、BC_ACQUIREコ
マンドを用いてオブジェクトへの参
照を獲得します注1。さらに、BC_

REQUEST_DEATH_NOTIFI

CATIONコマンドを使うことで、サー
ビス側のプロセスが終了するので、
オブジェクトが消えた場合に通知を受け取る設
定を行います。あとは、サービスを使うクライ
アントが“CODE_GET_SERVICE”を送ってき
たときに登録されたサービスのオブジェクトを
返します（リスト5）。これでクライアントはハン
ドルを使って、サービスに対する通信を行うこ
とができるようになります。
　Binderを特徴付けているのは、このオブジェ
クト管理機構にあるといってよいでしょう。
pipeやsocketでは通信内容にカーネルが触れる
ことはありませんが、Binderでは通信内容に応

注1） 本来のAndroidのContext Managerではサービス名との
関連付けを行っていますが、ここでは説明を簡単にするため、
ただ1つのサービスをput/getするようにしています。

 ▼図2　オブジェクトの送信

ContextManager

　　

0
1
2

ハンドル
テーブル

サービスプロセス

　　

0
1
2

ハンドル
テーブル

BC_TRACSACTION

0

buffer
offsets

handle = 0(Context Manager)
code = CODE_PUT_SERVICE

flat_binder_obbbject

type = BINDER_TYPE_BINDER
binder = Oxdeadbeaf
cookie = 42

Object
Oxdeadbeaf

オブジェクトの送信

オブジェクトの
offsetを指定

Binderが
参照を作成

 switch(txn->code) {
 case CODE_PUT_SERVICE:
 service_handle = ((struct flat_binder_object*)(txn->data.ptr.buffer))->handle;
 printf("Service handle: %d¥n", service_handle);
 memset(reply, 0, sizeof(*reply));
 binder_acquire(fd, service_handle);
 binder_link_to_death(fd, service_handle);
 break;
 case CODE_GET_SERVICE: {
 struct flat_binder_object *obj = malloc(sizeof(struct flat_binder_object));
 memset(obj, 0, sizeof(*obj));
 obj->type = BINDER_TYPE_HANDLE;
 obj->handle = service_handle;
 obj->cookie = 0;
 printf("Giving service handle: %d¥n", service_handle);
 reply->data = obj;
 reply->data_size = sizeof(*obj);
 size_t *object_offsets = malloc(sizeof(size_t));
 reply->offsets = object_offsets;
 reply->offsets_size = sizeof(*object_offsets);
 }; break;
 }

 ▼リスト5　Context Managerオブジェクト送受信部分

186 - Software Design

は未開社会における贈与経済が成立するSmall

Worldである」と言われてきました。贈与という言葉
は、開発者が各自の書いたコードを公開する（つまり
コミュニティに寄贈する）ところから来ています。
　しかし、その後の研究により、少なくとも米国で
はOSS開発の動機は贈与から費用便益へと移行して
いることがわかりました。とくにOSS開発者のキャ
リアを追跡調査した結果、著名な開発者やコミュニ
ティのリーダーが、企業に雇用されてOSS開発に携
わったり、起業してビジネス的に成功していたりす
る事例が多いというデータが出ています。
　これに対する日本の状況として、2008年に行った
開発者実態調査の結果が提示されました。それによ
ると、日本人がOSS開発にかかわる意識としては知
的好奇心によるところが大きく、収入を得るために
かかわっている人が少ないことや、OSS開発に割い
ている時間が業務時間内も業務時間外も同じぐらい
の長さである（図1）など、7年前のデータですが日本
ではOSS開発がビジネスに結びついていないことを
示すものでした。

　今回は、2月に東京で行った研究会の模様をお届
けします（写真1）。内容は2014年8月の島根大会で
行った島根大学の野田先生と jus幹事の榎さんによ
る対談の再演です（写真2）。前回は持ち時間が15

分で全然足りなかったので、今回は45分で実施し
ました。

	 ■コミュニティのモチベーションについて

	【講師】野田 哲夫（島根大学）、

	 	 榎 真治（日本UNIXユーザ会）

	【日時】2015年2月27日（金）16:15〜17:00

	【会場】明星大学 日野キャンパス26号館102教室

■OSS開発のモチベーション研究

　はじめに野田先生から、OSS開発のモチベーショ
ンに関する研究の流れが紹介されました。この研究
は十数年前から始まり、初期は「OSSコミュニティ

写真1　jus研究会東京大会の様子 写真2　野田哲夫先生（左）と榎真治氏（右）

jus研究会東京大会

米国と日本、OSSに対する意識の違い

NO.44
June 2015

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/

Jun. 2015 - 187186 - Software Design

■コミュニティの組織論

　この後、野田先生と榎さんによるディスカッショ
ンに入りました。榎さんがLibreOfficeのコミュニ
ティで活動していることから、コミュニティの組織
論や、企業とコミュニティのかかわり方についての
話が中心となりました。
　まず野田先生からは、米国ではOSS開発のモチ
ベーション研究は一段落し、現在はコミュニティ運
営の成功や失敗についての研究に移行しているとい
う話がありました。そのうえで、コミュニティもコ
アメンバー／開発者／ユーザからなる組織であり、
組織論的な観点からの運営技術が求められるという
コメントがありました。
　これに対して榎さんは、LibreOfficeコミュニティ
はOpenOfficeコミュニティから分化したものだが、
両者の組織形態は大きく異なっていたという体験談
を紹介しました。具体的には、OpenOffice時代はSun

Microsystems社（後にOracle社に吸収合併される）が
コミュニティをコントロールしていましたが、開発
者の意見やコードが採り入れられない事例が多かっ
たことから、LibreOfficeはコミュニティ主導となり、
企業がコントロールできないように組織したそうで
す。その結果、意思決定の速度が上がり、民主的に
なったとのことです。

■OSS開発と企業のかかわり方

　次に野田先生から、OSS開発と企業のかかわり方

についての問題提起がありました。前述のとおり、
米国ではOSS開発は企業がかかわるものであるとい
う意識が主流になっています。それを裏付けるデー
タとして、Linuxカーネルのコード変更に対する貢献
度データを紹介されました。それによると企業エン
ジニアによる貢献が全体の7割ぐらいを占め、組織
別では米国の大企業が上位を占めました。つまり、
OSS開発はビッグビジネスにおける競争優位を確保
するための手段になっているということです。
　これに対する日本の状況として、OSS活用と開発
貢献の相関関係データが提示されましたが、それに
よると日本ではOSSの活用は盛んなものの、開発で
も貢献度が高いのはRubyなどのプログラミング言語
系ぐらいで、ほかの分野では開発には全然貢献して
いないという結果が出ました。このため海外では、
日本はOSSにタダ乗りしているという批判があるよ
うです。
　これに対して榎さんは、日本ではお金を払ってま
でOSSを利用したいという人が少なく、ビジネスが
大規模化しないのが原因ではないかという意見を述
べました。榎さん自身もLibreOfficeのサポートビジ
ネスに携わっていて、最近は自治体における
LibreOfficeの利用事例が増えていると言います。た
だ、自治体は企業ほど大規模なユーザではないので、
急激なビジネス規模の拡大にはつながっていないそ
うです。
　野田先生も、日本におけるOSS利用の動機はおも
にコスト削減にあるため、ユーザから金が出てこな
いのではないかという見解を示されました。

◆　◆　◆
　このようなディスカッションを繰り広げるうちに
あっという間に45分を使い切ってしまい、セッショ
ンは終了となりました。日本からのOSSへの貢献に
関して、ユーザの心に起因する問題が多々あることが
わかり、とても考えさせられるセッションでした。｢

70％
60％
50％
40％
30％
20％
10％
0％

0% 20% 40% 60% 80% 100%

業
務
外
O
S
S
開
発
時
間
割
合

業務時間内OSS開発割合

データ数 相関係数 t値 P値（両側） t（0.975） 95％下限 95％上限
業務時間内 13 0.904772 7.045809 2.14E-05 2.200986 0.7057479 0.971466

図1　「オープンソースソフトウェア開発者実態調査」
オープンソース開発時間割合の業務時間内と業務時間外の相関注1

注1） 出典：野田哲夫、丹生晃隆「オープンソース・ソフトウェアの
開発モチベーションと労働時間に関する考察」、『経済科学論
集』第35号、p87-88、 URL http://ir.lib.shimane-u.ac.jp/
metadata/7034

米国と日本、OSSに対する意識の違い June
2015

http://ir.lib.shimane-u.ac.jp/metadata/7034

188 - Software Design

ハッカソン概要

　2月21、22日に会津若松市にてハードウェアを
ハックするHack For Town 2015 in Aizu注1が開催
されました。Hack For Townは「最先端テクノロジ
を用いて新しい街を創造するハッカソンイベント」
という趣旨で、昨年、会津若松市で始まり、2回目
の日光市での開催を経て3回目となります。
　今回のHack For Town 2015 in Aizuのテーマは
「オープンソースハード×オープンデータ」でした。
オープンソースハードはFab蔵

くら

（後述）で開発されて
いるセンサー・デバイス類やArduino、Raspberry

Pi、そのほかSDKやAPIが公開されているオープ
ンなハードウェアのことです。またオープンデータ
は、会津若松市が運営しているデータ基盤「DATA

for CITIZEN注2」に登録されている市のデータや、
社団法人リンクデータが運営している「Link

Data注3」の会津若松市のデータなどの公開されてい
るデータのことです。これらを組み合わせたアプリ
やWebサービスをつくるというのが今回の目標と
されました（写真1）。

Fab蔵で開発された
ハードウェアやデバイス

　Fab蔵注4とは会津若松市にできたものづくり支援
Labで、定期的にワークショップやハッカソンなどを
開催しており、Hack For Japanスタッフでもある佐々

注1	 http://www.hack4town.org/2015/aizu/
注2	 http://www.data4citizen.jp/
注3	 http://linkdata.org/
注4	 http://www.fabkura.org/

木が運営しています。今回のハッカソンで利用される
ハードウェアには、このFab蔵で自作した次のような
数多くのハードウェアが提供されました。

●● 8bit cube：フルカラーLEDのキューブ
●● Smart Meter：コンセントの電力が計れるスマー

トメーター
●● e-Health Platform：IEEE11073準拠のオープン

ソース医療センサー群。心電図や脈拍、血圧な

どが取れるのでヘルスケア分野でのサービスが

つくれる。回路図などを公開している
●● Physical Web Watch：Physical Webフォーマッ

トのBeaconを腕時計にしたもの。Beaconは通

常、据え置きで使われるが、腕時計にすることで

Beaconの電波を発しながら歩ける
●● Open LED Board：手作りのLED
●● Aka Beacon Monster：450mの電波を発信でき

るibeacon
●●自作ibeacon

　Fab蔵には3Dプリンタ、レーザーカッター、電
子回路をつくるようなプリンタなどに加え、約
4,000点の部品、工具などなど、ものづくりに必要
なツールがそろっています。ハッカソンの期間中は
24時間解放されていたので、たとえばレーザー
カッターを使って、ハッカソンで開発するサービス
に必要なものづくりまで手がけてしまうといったこ
とも可能でした。
　上記のハードウェア以外にも、ibeaconを常設して
いる場所が、神明通りと呼ばれる商店街を中心にし
て、FM会津やホテルのロビー、公共施設など会津
若松市内に5ヵ所あります。これら ibeaconの情報

Hack For Japan
エンジニアだからこそできる復興への一歩

街をハックする
◦Hack For Town 2015 in Aizu開催

第42回

昨年に引き続き街をハックするイベントが会津若松市にて開催されました。今回の
テーマは「オープンソースハード×オープンデータ」。ハッカソンだけでなく食べて、
観る楽しみも堪能できるイベントでした。その詳細をご紹介します。

●Hack For Japanスタッフ
　佐伯 幸治　saeki koji
　 Twitter @widesilverz
　佐々木 陽　sasaki akira
　 Twitter @gclue_akira

http://www.hack4town.org/2015/aizu/
http://www.data4citizen.jp/
http://linkdata.org/
http://www.fabkura.org/

Jun. 2015 - 189

街をハックする
◦Hack For Town 2015 in Aizu開催第42回

は会津若松市オープンデータ活用実証事業の一環と
して「DATA for CITIZEN」にて公開されています
ので、常設の ibeaconを利用したアプリやWebサー
ビスの開発もできる環境が整っています。450mの
電波が飛ぶ ibeacon「Aka Beacon Monster」が今回の
ハッカソンのために神明通りの中央付近に設置され
ていたこともあり、「Aka Beacon Monster（広いエ
リア）」と「常設の ibeacon（狭いエリア）」とを組み合
わせたサービス設計も可能となっていました。

プロジェクトの発表

　今回のハッカソンでは次のようなプロジェクトが
成果として発表されました注5。

●●「防水beacon開発とお祭り案内」
　日光で行われる千人行列を想定した ibeaconを
使ったプロジェクト。遠方（450m圏内）から行列が
近づいてくると「Aka Beacon Monster」が見学者に
行列が近づいてきたことを案内し、行列が見学者に
近いところまで来ると付近に設置されたLEDディ
スプレイに行列に関する文字情報が表示されるとい
うもの。ibeaconは常設で外に置かれるため防水対策
が必要という観点から、アクリルを使用した防水カ
バーもFab蔵で自作。防水パッキンを閉める専用工
具も作成しました。

●●「Hack 2 Rhythm」
　ibeaconへのチェックイン情報を元に音楽を生成。
ドライブレコーダーのように動画も撮影し、観光し
ながら自動でプロモーションビデオ（PV）が生成さ
れるというプロジェクト。観光スポットにばらまい
た ibeaconにドラムやベース、ギターなどのパート
を割り当てて、ibeaconにチェックインするごとに音
が重なっていくというもの。歩くルートによって生
成される音楽が変わるため、結果として会津若松市
の観光スポットPVが数多く作られ、音を通じて新

注5	 各プロジェクトの資料はブログにてご覧いただけます。
	 http://blog.hack4.jp/2015/04/hack-for-town-2015-

in-aizu.html

しい観光の付加価値を生み出し、会津若松市に注目
を集めることを目標としています注6。

●●「Weather Report Box」
　Fab蔵の自作ハードウェアである8bit Cubeを
ハック。会津若松市の天気（晴れ・曇り・雨・雪）を
ドット絵で表示させるというもの。今後は時間や気
圧、気温なども加えて表示させていきたいとのこと
でした。

●●「ibeaconとGPSによる旅提案」
　「観光に来たものの、どのスポットを見るか決め
ていない」、「見たいスポットはまわってしまったけ
れど、まだ時間があるのでほかのスポットを見た
い」といった旅行者をターゲットとしたアプリ。現
在地から行ける観光スポットを詳細に案内せず、あ
えて写真のみでレーダー表示させることで宝探しの

注6	 イメージ動画（YouTube）　https://www.youtube.com/wa
tch?v=0DSLUtJuYX8&feature=youtu.be

◆◆写真1　ハッカソンの様子

https://www.youtube.com/watch?v=0DSLUtJuYX8&feature=youtu.be
http://blog.hack4.jp/2015/04/hack-for-town-2015-in-aizu.html

190 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

ような楽しみを入れ込んでいます。観光スポットの
情報は「DATA for CITIZEN」から持ってきており、
オープンデータを活用。写真投稿機能も想定されて
います。このプロジェクトを開発したのは仙台の方
で「仙台の街中で開催されるジャズフェスに向けて
使えるものに仕上げていきたい」と語っています。

●●「デジタルサバゲーで街をハックしよう！」
　サバゲーによる新しいエクササイズを提供するプ
ロジェクト。エンジニアの運動不足を改善したいと
いうのが開発のきっかけ。発表では、Bluetoothで
通信を飛ばすことで敵方へのアタリとする構想や、
段ボール製のBLE（Bluetooth Low Energy）モ
ジュールが搭載されたエアガンを模したものが披露
されました。また、アプリはGoogleマップを使っ
て自分と敵の位置が ibeaconを通過すると表示され
るという使い方を想定しており、おおよその位置が
把握できるように、一瞬だけマップで表示させるこ
とで運動を促すというのがエクササイズにつながっ
ています。

●●「オープンストリートもぐら叩き」
　防災学習GISゲームとして提案されたプロジェ
クト。災害が起きたときに、どこで起きているの
か、どこに避難すべきか、場所がわからないと避難
できないことから考えられたものです。発表では
オープンストリートマップを利用して会津若松市内
のマップを読み込み、市内の公共施設で火災が発生
したと想定して、マップ内の火を消していくという
ゲーム要素を盛り込んだ内容が発表されました。
次々に起こる火災をゲーム感覚で消火していくうち
に、会津若松市内の土地勘が養われることを目標と
しています。

●●「Dynamic Trip」
　事前に情報を調べることなく、突発的な旅の体験
を提供するアプリとして提案されたプロジェクトで
す。たとえば出張で東京に行ったときに、現在地に
近い観光スポットを紹介することでちょっとした旅
行を楽しめるようなサービスを想定。時間、位置情

報、レコメンドされた現地イベントなどを掛け合わ
せて提供して、自分なりの予定外の旅をつくりだす
というものです。

●●「ファミコンで街をハック」
　「古いデバイスをハックして ibeaconをつなげる」
というプロジェクト。今回は思い出のデバイスとし
てファミコンをハックしました。ファミコンをモバ
イル化してゲームで遊んでいる人間ごと台車で運
び、街で ibeacon情報を受信するという、ほかとは
一線を画す内容でした。ibeaconの情報を受け取りな
がらアイテムを集めるという自作のファミコンゲー
ムも作成しました。

◆　◆　◆
　これらのプロジェクトから審査委員による審査が
行われ、会津若松市長賞として「Hack 2 Rhythm」、
ゴールドスポンサーとして協賛いただいた㈱リク
ルートジョブズからタウンワーク賞として「オープ
ンストリートもぐら叩き」、Fab蔵賞として「ファミ
コンで街をハック」、会津大学賞として「Weather

Report Box」、Hack For Japan賞として「Dynamic

Trip」がそれぞれ賞を受賞。賞品もいただきまし
た。また残念ながら受賞できなかったチームも会津
若松市産の野菜をいただき、結果としてすべての
チームが賞品を得ていました。

ハッカソン以外の
イベントも！

　今回のハッカソンでは昨年に引き続きイベントが
盛りだくさんに用意されていました。1日目の昼食
は「ソースカツ丼祭り」。会津若松市の有名グルメで
あるソースカツ丼を楽しむイベントです。ガイド
ブックを参考に市内に多数ある飲食店から好みの
ソースカツ丼を食べにいくというもの。参加者には
1,000円分（！）のチケット代が振る舞われました。
大きさや味付けなどで何パターンもあるとのこと
で、チームごとに思い思いのお店でソースカツ丼を
楽しんでいました。
　1日目の夕方には、会津若松市の協賛で特別招待
券を用意していただいた「鶴ヶ城プロジェクション

Jun. 2015 - 191

街をハックする
◦Hack For Town 2015 in Aizu開催第42回

スカツ丼などの食べる楽しみを設けました。今回の
テーマはオープンソースハード。昨今の流れとして
ハードウェアがオープン化されていることもあり、
手作りのハードとオープンデータを組み合わせて、
インターネットだけで完結していたサービスをハー
ドを絡めて、リアルとうまく連携したアプローチを
していきたい」（スタッフ佐々木）ということから開
催されたハッカソンでした注8。
　テーマは都度変わっていきますが、街中に繰り出
して試すというハッカソン形態は今後も続く予定で
す。次回はまだ未定ですが、機会がありましたらぜ
ひ参加してみてください。またFab蔵では随時、も
のづくりに関するイベントが開催されていますの
で、興味ある方はそちらもご参加ください。s

注8	 イベントの模様はtogetterにまとめられています。http://
togetter.com/li/798354

マッピング」の鑑賞も開催されました。このイベン
トは、震災からの復興の願いと前進の思いを込めて
催された期間限定のもので、テレビドラマ『あま
ちゃん』の音楽で有名な大友良英さんなどが作家と
して参加されています。赤べこをテーマにしたお話
が鶴ヶ城の壁面に映し出され、見事な演出を堪能し
ました。
　2日目の昼食は「蕎麦祭り」です。名人による蕎麦
が振る舞われました。蕎麦はもちろん手打ちで、薬
味は天然のわさび。薬用ニンジン、シイタケ、饅
頭、クレソンかき揚げ、野菜ミックス天、ニシンな
ど会津名産品も含めた天ぷらが用意されており、豪
勢な昼食をいただきました。
　こうしたイベントだけでなく、ハッカソン会場か
ら徒歩圏内に鶴ヶ城をはじめとしたいくつもの観光
スポットが存在しますので、ハッカソンの途中に街
に繰り出して観光を楽しむことができるのも今回の
ハッカソンの特色と言えるでしょう。

最後に

　今回のハッカソンでも昨年に引き続き多くの方々
の協力をいただき開催されています。まずはメン
ター・審査員として参加いただきましたエンジニア
の安藤真衣子さん。安藤さんはMashup Awards 10

にて「無人IoTラジオ　Requestone（リクエストー
ン）注7」で最優秀賞を受賞されており、2日間にわ
たって各グループの具体的な実装部分やサービス内
容についてアドバイスをいただきました。次に会津
若松市役所の方々。事前準備から会場手配・設営、
鶴ヶ城プロジェクションマッピング、ソースカツ
丼・蕎麦祭りといったところでご協力いただきまし
た。またご多忙の中、室井照平・会津若松市長、岡
嶐一・会津大学学長には、審査員として参加いただ
きました。ありがとうございました。
　「昨年は ibeaconを街中に設置して実際に街中で
自分で作ったアプリやソフトを試せる場をつくり、
なおかつお祭りの感じも出したいので、蕎麦やソー

注7	 http://mashupaward.jp/awards/10/result

　福島では6月30日まで「ふくしまデスティネー
ションキャンペーン」という観光キャンペーンを実
施中です。これは『地元観光関係者と自治体が、JR
グループをはじめ全国の旅行会社などと連携して
おこなう国内最大級の観光キャンペーンです。期
間中、福島県内ではさまざまなメニューをご用意
して、全国からの観光客の皆さまをお迎えしま
す。』（ホームページより）というものです注A。また、
6月以降は観光客の宿泊費を補助する事業もスター
ト予定とのこと注B。福島観光のチャンスです！

お得＆注目の
福島観光キャンペーン！

Column

注A　http://dc-fukushima.jp/index.html
注B　https://www.minpo.jp/news/detail/2015040521966

◆◆
天
守
閣
再
建
50
周
年
を
迎
え
る
鶴
ヶ
城

http://togetter.com/li/798354
http://mashupaward.jp/awards/10/result
http://dc-fukushima.jp/index.html
https://www.minpo.jp/news/detail/2015040521966

192 - Software Design192 - Software Design

SUUMOスマホサイトの開発裏話②
プロジェクト管理にアトラシアン製品を活用第　　回7

Catch Up Trends in Engineering

Software Design編集部

迷えるマネージャのための

再入門
プロジェクト
管理ツール

開発の

ボトル
ネック

は

どこだ
？

スクラム開発への取り組みで
得られた大きな効果
̶̶実際にスクラムに取り組んだことで、どう
いった改善効果があったのでしょうか。
　
吉田氏　大きかったのは、コミュニケーション
の質が向上したことです。メンバー同士を近距
離に配置することで、基本的なコミュニケーショ
ンがとりやすくなっただけでなく、コラボレー
ションが生まれたことも大きな変化です。たと
えば開発を進めているとき、デザイナー側から

“これはこうしたほうがいい”といった形で意見
が出てくるようになりました。このようにスク
ラムを導入することで、これまでの開発よりも、
より活発なコミュニケーションが生まれました。
また、短いサイクルでリリースが行われフィー
ドバックも都度得られるため、不確実性が高い
案件においてもチャレンジしやくすなったとい

う効果もありました。

̶̶SUUMOスマホサイトでは、すべてのプロ
ジェクトでスクラム開発を採り入れているので
しょうか。

吉田氏　プロジェクトの内容に応じてウォーター
フォールとスクラムを使い分けています。実際
にスクラムを検証したとき、ウォーターフォー
ルの案件すべてに適用できるような“銀の弾丸”
的な開発手法ではないことがわかったからです。
先ほどお話したように、コミュニケーションや
コラボレーションの面ではスクラムにメリット
がありますが、課題と解決策が明確な案件に関
しては、今までの手法でやったほうが安定して
進められることも見えてきました。それで、プ
ロジェクトの性質に応じて、ウォーターフォー
ルとスクラムを使い分けることにしたのです。

̶̶具体的に、どのようにウォー
ターフォールとスクラムを使い分
けているのでしょうか。

吉田氏　課題や顧客ターゲットが
明確で、不確実性が低いものにつ
いてはウォーターフォールで開発
します。逆に不確実性が高いもの、
あるいはリファクタリングや環境
整備といったプロダクトの改善を

 ▼写真　山下芳生氏（左）と吉田拓真氏（右）

不動産情報や住宅情報を簡単に検索できるサービスである「SUUMO」の開発に携わるのが、リクルー
ト住まいカンパニーの吉田拓真氏と山下芳生氏（写真）です。前回に引き続き、お2人に同社におけるア
ジャイル開発の取り組み、そしてアトラシアン製品の利用方法などについてお話を聞きました。

192 - Software Design Jun. 2015 - 193

第　　回7 　SUUMOスマホサイトの開発裏話② プロジェクト管理にアトラシアン製品を活用

192 - Software Design

目的とするものはスクラムで開発します（図1）。
山下氏　それともう1つ工夫があって、異なる
開発プロセスを同時に効率的に推進できるよう
に、開発基盤の整備やアーキテクチャ・品質担
保を「アーキ・基盤整備チーム」が行っています。

JIRAのワークフローを
積極的に活用
̶̶課題管理に「JIRA」を使われているとのこ
とですが、実際に便利だと感じるのはどういっ
た点でしょうか。

吉田氏　以前は課題管理にExcelや複数のツー
ルを使っていて統一されていませんでしたが、
今はJIRAで統一でき、打ち合わせはJIRAの画
面を見ながら行っています。複数条件での絞り
込みなど、強力なフィルタリング機能があり、
ある協力会社に対応していただいている課題だ
けを絞り込んで表示できるなど、非常に使い勝
手がいいですね。
山下氏　スクラム開発では、「JIRA Agile」を使っ
ています。カンバンで進捗状況を把握したり、
それぞれのスプリントにおけるプロダクトバッ
クログの管理といった部分です。ワークフロー
も活用しています。便利なのは、開発プロセス

ごとにワークフローを変えられるところです。
ウォーターフォールで使うのは、原則となるV
字モデルのワークフローですが、スクラム開発
では独自のワークフローを構築し、個別に最適
化を行っています。
　ウォーターフォールにおいては、チケットの
入力項目をカスタマイズしてウォーターフォー
ル特有の項目を追加しました（図2）。たとえば
見積りや実績工数をチケットに入力できるよう
になっていて、独自のツールを使って予実管理
を行っています。
吉田氏　スクラム開発では、ワークフローのト
ランジション部分を工夫しました（図3）。たと
えば「IN PROGRESS」から「IN REVIEW」にな

 ▼図1　 案件種別による開発手法の使い分け。不確実
性が大きいものはアジャイル（スクラム）、小さ
いものはウォーターフォールと使い分けている

小大不確実性

手法

体制

例：

案
件
種
別 UI/UX磨き込み

新機能
保守案件、
大規模案件

ウォーターフォールアジャイル型

スクラムチーム
（内製）

アーキ・基盤整備チーム
（内製）

既存保守チーム
（外部パートナー）

 ▼図2　 ウォーターフォール開発における課題の項目。独自に項目を追加し、予実管理を行えるようにした。
JIRAであれば、このようなカスタマイズを自由に行える

194 - Software Design

再入門プロジェクト管理ツール
迷えるマネージャのための開発の

ボトルネック
は

どこだ？

るタイミングはTrigger機能を利用し、Stash
でPull-Requestした時点で自動的にステータ
スを変えるようにしています。さらに最近では、

「WATING FOR UAT」になるとQAチームに自
動でアサインするように設定しています。
　こうすることで、手作業を最小限にし、開発
やテストといったクリエイティブな作業に、よ
り多くの時間を割けるようになっています。

Stashを選んだ理由と
運用面のポイント
̶̶今のお話にも出てきましたが、ソースコー
ド管理ツールとしてStashを採用されています
が、ほかに比較したツールはあったのでしょうか。

山下氏　Stashを導入する際、「GitHub Enter
prise」と「GitLab」も検討しました。いくつかの
観点がありますが、コスト面でメリットがあっ
たこと、そしてツール連携のしやすさなどの点
から最終的にStashを選択しています。

̶̶実際にStashを導入した際、使い方や運用
面などで戸惑われたことがあれば教えてください。

山下氏　既存のSVN環境からGitへの移行でい
ろいろと苦労しました。まずSVNで管理して
いるリポジトリをすべてGit化することになり
ますが、移行対象のリポジトリだけでなく、そ
のリポジトリに関連するツール、たとえば開発
環境やリリースを行うシェルスクリプトなども
併せて作り替える必要があったためです。
　開発ルール周りも苦労した点です。SVNと
は異なり、分散型バージョン管理のメリットを
最大限活用するためにブランチモデルを設計す
るなど、新しい開発ルールを作成しなければな
りませんでした。また、承認権限や命名規則、
コミットルールの整備など、細かなルールも併
せて考える必要があります。このように、
Stashを使うことよりも、Stashをどう使って
いくのかの検討に時間がかかりました。
吉田氏　開発メンバーの知識レベルをそろえる
ところも時間がかかった点です。全体で30〜
40人規模なので、Gitの最低限の使い方といっ
た知識レベルを合わせるのにも時間がかかって
います。このあたりについては、それぞれのチー
ムの開発リーダーに協力してもらいながら徐々
に進めました。

 ▼図3　 スクラムで開発を行う際のワークフロー。項目自体はウォーターフォールのものと大きな違いはないが、
トランジションの設定に工夫が盛り込まれている

194 - Software Design Jun. 2015 - 195

第　　回7 　SUUMOスマホサイトの開発裏話② プロジェクト管理にアトラシアン製品を活用

山下氏　苦労したのはどちらかというとGitの
部分で、Stashそのものの使い方で困ったこと
はほとんどありません。ここがStashの優秀な
ポイントだと思いますが、git-flowをはじめと
する一般的なワークフローにデフォルトで対応
しているため、開発ルールさえ決めてしまえば、
あとはそのまま使うだけでいい。このようにシ
ンプルな設計になっているので助かっています。

Access-Key認証で
セキュリティを確保
̶̶実際にStashを導入して、便利だと感じた
点はどういったところでしょうか。

山下氏　Access-Key認証と呼ばれる、リポジ
トリごとに設定できる公開鍵暗号方式の認証方
法は重宝しています。リクルート住まいカンパ

ニーにはセキュリティ面で非常に厳しいルール
があり、自動リリースやCI連携をセキュアに
実現する必要がありました。Access-Key認証
を利用すれば、それをシンプルに実現できるの
はいいですね。

プロジェクトを効率的に進めるため、リクルー
ト住まいカンパニーではJIRAやStashを積極
的に活用しています。とくにワークフローの積
極的な利用は大いに参考になるのではないでしょ
うか。次回はConfluenceとHipChatの利用方法、
そしてCIツールも含めた開発環境についてお
話を聞いていきます。ﾟ

リックソフトのWebサイトでは、各アトラシアン製品の体験
版を提供しているほか、アトラシアン製品専用のコミュニティ
も運営しています。JIRAやConfluenceなどのアトラシアン
製品に興味を持ったら、まずはアクセスしてみましょう。

http://www.ricksoft.jp/

JIRAにはプロジェクトの流れを定義し、進捗の
管理や作業を効率化できる「ワークフロー」の機能が
組み込まれています。標準でいくつかのワークフロー
が組み込まれているので、それをそのまま利用する
ことも可能ですが、ユーザ自身でも簡単にワークフ
ローを作成できます。また、それぞれのステータス

（進行中／レビュー／開発中など）を作成できること
に加え、ステータスが遷移する条件をトランジショ
ンとして設定、その際に担当者も変更するなど、高
度なワークフローを設定できることもポイントです。
自社の開発プロセスに合わせ、独自にワークフロー
を設定すると便利でしょう。

柔軟に設定できるJIRAのワークフロー

 ▼図4　 JIRAのワークフロー画面。GUIでワークフローを操作できるため、ステータス
の遷移を直感的に把握できる

http://www.ricksoft.jp/

196 - Software Design

SD News & Products

　4月9日、日本マイクロソフト㈱はWindows Server
2003のサポート終了が2015年7月15日（日本時間）
に迫ったことを受け、これに関する記者説明会を行った。
　「Windows Server 2003」は日本国内ではいまだに
14万台稼働中と、移行の進みが遅い（2015年3月末の
時点）。同社は、企業にサーバの移行を促す「待ったなし、
Windows Server 2003」キャンペーンを全国で展開し
ており、サポート終了までに14万台→5万台への削減
を目標にしていると発表した。
　説明会では、現在Windows Server 2003を利用し
ている企業に対して行った、移行に関する調査報告もな

された。約8割の企業が移行を実施中・計画中とのこと
だが、2割は未定とのこと。移行を実施しない理由とし
て、セキュリティソフトの導入、仮想環境への移行な
ど、社内運用の工夫で十分といった回答が多く見受けら
れた。また、現在稼働中の14万台の用途について、社
内のファイルサーバがもっとも多いとのことだった。調
査結果に対して同社は、セキュリティリスクへの認識不
足だと指摘し、引き続き注意を喚起していくとのこと。
▶︎移行情報ポータルサイト：http://aka.ms/ws03mig

Windows Server 2003、サポート終了まであと2ヵ月Software

　Repro㈱は4月22日より、iOSアプリ向けの分析ツー
ル「Repro（リプロ）」の正式版を提供開始する。
　「Repro」はファンネルやリテンション分析などの従
来からあるアナリティクス機能に加え、実際のユーザの
アプリ内での行動をリアルタイムに動画で分析し、デー
タを提供する。アプリ提供者は、Reproを利⽤するこ
とで従来のアナリティクスツールではわからなかった実
際のユーザ⾏動に基づき、アプリの課題発⾒や改善方法
の検討が⾏えるようになる。なお、いずれの機能でも
Reproが収集するのはタップ情報や画面遷移情報など、
アプリ改善に必要な操作情報であり、ユーザが許可しな

い通信情報や個⼈情報は取得しないとのこと。2014年
5月のベータ版の提供開始以来、さまざまなジャンルに
おける数百のアプリで利⽤されている。2015年に取得
されたユーザ⾏動の動画数はすでに2014年の4倍を超
えており、急速な成⻑を実現しているツールだ。
　今回提供を開始する「Repro」正式版は、分析や動
画によるユーザ⾏動観察のための機能追加を随時⾏い、
海外展開を視野に入れ英語にも対応している。なお、
Androidアプリ向けにもベータ版を提供する予定。

CONTACT Repro㈱
URL https://repro.io

Repro、
iOSアプリ向けのアナリティクスツール「Repro」
正式版の提供を開始

Software

CONTACT 日本マイクロソフト㈱
URL http://www.microsoft.com/ja-jp

　リバーベッドテクノロジー㈱は4月23日、IT機器や
OSなど複雑に構成されたハイブリッドな環境において
統合的なパフォーマンス管理を可能にする「Riverbed
SteelCentral Portal」を発表した。同社CTOハンサン・
ベイ氏も来日し、同社製品の紹介を行った。
　今日、企業におけるIT環境は複雑なものになってお
り、何か障害が発生したときに原因を特定するのが困難
になっている。専門のツールを導入していても、機能ご
とに縦割りにしか管理できず、結果として担当者間で責
任転嫁をしてしまい解決にならないことが多いという。
　本製品はこうした事態になる前に、システムのどこ

で問題が発生しているのか
常にモニターし、一目瞭然
にわかるように開発された。
さらにIT部門だけでなく、
ビジネス担当者でも視覚的
に原因が理解できるような
工夫がされており、より迅
速な問題解決が可能になる
という。

CONTACT リバーベッドテクノロジー㈱
URL http://jp.riverbed.com

リバーベッドテクノロジー、
Riverbed SteelCentral Portalを発表Software

▲米リバーベッド バイスプレジデント
　ハンサン・ベイ氏

http://aka.ms/ws03mig
http://www.microsoft.com/ja-jp
https://repro.io
http://jp.riverbed.com

Jun. 2015 - 197

SD News & Products

　さくらインターネット㈱は、CPUとメモリを自在に
組み合わせて使えるクラウドサービス「さくらのクラウ
ド」において、従来の石狩リージョンに続き、東京のデー
タセンターに設置された「東京リージョン」を4月15日
に提供開始した。
　東京リージョンでは、1時間8円の手軽に使える1コ
ア1GBプランから、強力な計算リソースとしても活用
できる20コア224GBプランまで、石狩リージョンの
2倍以上となる94種類のサーバプランが用意される。
新たに、「2コアー1GB」といった、メモリよりもCPU
コア数が大きくなるプランも取りそろえられ、メモリよ

りもCPUパワーを重視するような計算処理用途などに
利用しやすい。
　また、この「東京リージョン」は、従来の石狩リージョ
ンと同時に接続することもできる。石狩の第1ゾーンと
第2ゾーンは設備・システムが完全に独立しているため、
ゾーン間で冗長化を実現できたが、東京リージョンも含
んだ構成にすることで、地理的に離れた場所で同一のシ
ステムを運用できるようになり、より堅牢な冗長システ
ムを構えることができる。

CONTACT さくらインターネット㈱
URL http://www.sakura.ad.jp

さくらインターネット、
さくらのクラウド「東京リージョン」を提供開始Service

　メカトラックス㈱は4月23日、Raspberry Pi（以下、
RP）に手軽に間欠動作や死活監視機能を実装できる電
源管理モジュール「slee-Pi」を発売した。
　本製品はRPの「Model B+」または「2 Model B」
にスタックできる電源管理基板。RTC（Real Time
Clock）内蔵マイコンを搭載し、通常動作時においては
I2Cバス経由でRPに接続されたRTCとして機能し、ユー
ザが設定したスケジュールでRP本体への電源供給、遮
断が可能となる。また、常時動作を必要とするアプリに
対して、システムの死活監視機能を提供すると同時に、
RP本体の死活監視や電源電圧の監視なども行える。RP

単体ではOSのシャットダウン後も通電されたままだが、
slee-Piにより電源を遮断でき、待機時の消費電力を抑
えられる。またコールドブートも可能なので、スケジュー
リングされた間欠動作を実現
できる。価格は11,800円（税
別）で、商品には電源ハーネ
スが付属。同社のオンライン
ショップ（http://mtx.theshop.
jp）などから入手できる。

CONTACT メカトラックス㈱
URL http://www.mechatrax.com

メカトラックス、
Raspberry Piの電源管理モジュール「slee-Pi」を発売Hardware

▲slee-Pi

　エクセルソフト㈱は4月16日、パブリッククラウド
ストレージのファイルを暗号化し安全なファイル交換を
実現するPKWARE社の「Viivo」を販売開始した。
　Viivo は、Dropbox、box、Google Dr ive、
OneDriveなどのパブリッククラウドストレージに保
存・共有する機密情報を含むようなファイルを暗号化し
て保護し、さらにファイルに対するアクセス権限もコン
トロールできるソフトウェア。また、管理コンソールか
らは企業内のユーザがクラウドストレージサービスを使
用してどのようにデータを共有しているかといった利用
状況を確認できる。本ソフトでは、クラウドのプロバイ

ダにファイルを同期する前に、データを圧縮、公開鍵暗
号方式を使用してファイルを暗号化する。ほかの暗号化
方式のアプローチとは異なり、クラウドプロバイダの
ワークフローに従って暗号化の処理を行う。
　動作環境は、Windows 7、8／Mac OS 10.7、10.8
／iOS 6.0以降／Android 4.0以降。価格は「Viivo
Pro」が9,750円、「Viivo for Business」が19,500円。
ともに年間費用（1ユーザライセンス）となっており、
税抜価格。

CONTACT エクセルソフト㈱
URL http://www.xlsoft.com

エクセルソフト、
クラウドストレージ向けファイル暗号化ツール「Viivo」を
販売開始

Software

http://mtx.theshop.jp
http://www.mechatrax.com
http://www.xlsoft.com
http://www.sakura.ad.jp

198 - Software Design

　開発・運用の現場でよく起こるトラブル
を、どのように解決すればいいのか、未
然に防ぐにはどうすればいいのか。「サー
バ・インフラ・ネットワーク編」「クラウド編」
「ソフトウェア開発編」に分けて、それぞれ
の分野の達人にトラブルシューティングに
関するノウハウを訊きました。

参考になります。
大阪府／きよさん

思い込みはだめだよねぇって印象。
東京都／ tekitoizmさん

トラブル時に時間をかけて苦労してでも
自力で解決できれば対応力が身につきま
すが、自力では解決できないときもあり
ます。何か変だなと思ったときに相談で
きる人がいれば、その場ですぐ解決する
こともあります。自分の育成に必要だと
考えるか、時間の無駄と考えるかさまざ
まだと思います。

大阪府／牧さん

昔聞いた話ですが、トラブル発生時に来
社して機械に触るだけで直る優秀なSE

がいたらしい。さらに優秀なSEはその
人と電話で話すだけで直ったらしい。そ
の上の神SEはその人の名前を出しただ

けで直ったらしい。
滋賀県／田中さん

トラブルとそれに対する解決策・回
避策が具体的に書かれていたのが

良かった、という声が多く寄せられまし
た。自身が実際に経験したトラブルと重
ね合わせて読まれた人も多いようです。IT

系のトラブルは原因がつかみづらいこと
が多いので、実用的な知識がものを言い
ますね。

　DNS（Domain Name System）はイン
ターネットにおいて、なくてはならないし
くみの1つ。1、2章でDNSの概要、原理・
動作を紹介し、3章でDNSサーバの構築
を解説したあと、4章ではセキュリティの面
からDNSを再考しました。

普段何気なく設定しているDNSなので、
よくわかった。

静岡県／ももんがさん

BIND以外もあるなんて知りませんでし
た。

千葉県／竹田さん

考えてみればよく知らない機能。
千葉県／カズーさん

当たり前過ぎて、あまり顧
かえり

みるこ
とがないDNSという技術。毎日利

用している技術ではあっても中身につい
てはよく知らないという人が多いでしょ
う。良い復習になった、最新の動向を知
れた、初めて知ることがあったなどの意
見が寄せられました。

　2010年発行の『［改訂新版］3分間ネッ
トワーク基礎講座』の一部を再編集した、
特別付録の小冊子。大学生の「ネット君」
の素朴な疑問に「インター博士」が答える
形で、初歩の初歩からTCP/IPネットワー
クを解説しました。

こういう付録はうれしいです。
千葉県／匿名希望さん

とてもわかりやすい。再確認できて良
い。

東京都／blackbirdさん

わかりやすくて良かったです。DBやプロ
グラム言語などシリーズ化してほしいで
す。

大阪府／オブジェクト脳192さん

初心者向けに、細かい説明を省か
ず解説した内容のため、ベテラン

IT系の勉強会、行かれたことはありますか？　おもに IT企業に勤めるエンジニア
たちが集まり、もくもくと課題をこなしたり発表をし合ったりする、小～中規模の
イベントです。最近はイベント数が増えに増え、ほぼ毎日どこかしらで開催され
ています。企業・個人主催にかかわらず、会の終わりにはたいてい懇親会が開か
れてお酒とおつまみが振る舞われますが、実はこれ目当ての方も多いのでは？

IT系勉強会の世界

2015年4月号について、たくさんのお便りをありがとうございました！

第1特集
トラブルシューティングの極意

第2特集　［最新］DNSの教科書

特別付録　3分間ネットワーク
基礎講座［特別編］

Jun. 2015 - 199

が知識の再確認をするのにももってこい
ですね。普段の業務や実用的な学習を優
先して、基礎の理解を後回しにしてしまっ
ている人には、ぜひ読んでもらいたい内
容でした。

　Java仮想マシン上で動作するオブジェ
クト指向言語「Kotlin」についての短期連
載。簡潔な文法を持ち、型安全なプログ
ラムを書きやすいという特徴があります。
第1回ではKotlinの概要を、言語の持つ
得意分野に触れながら紹介しました。

まさかのKotlin連載。すばらしいです。
石川県／かっぱ大王さん

Androidのアプリ開発などで注目され
つつある言語で、気になっていたところ
だったので興味深く拝読いたしました。

宮城県／オミオさん

JavaとJavaScriptは基盤として十分な
実績があるので、その両方に対応でき
るKotlinはおもしろい言語ですね。

大阪府／出玉のタマさん

4月号から始まった本連載ですが、

Kotlinという言語への注目度は非
常に高く、今後の連載に期待されている

事。後編では実際のセンサーデバイスを
使って、ポンプの異常動作を感知し、作
業員の携帯電話に通知するというシナリ
オのもと、実践的な IoTを学びました。

まだ具体的な使い方は思いついていな
いが、Raspberry Piで何か試してみた
いとは思っているので参考になる。

北海道／村橋さん

入門的な良い記事だと思います。
熊本県／鈴木さん

記事で紹介したBeagleBone Bla

ckといった安価なデバイスが続々
と発売されるなど、IoTを実現するための
環境が整いつつあります。Bluemixは手軽
さが売りのツールですので、この機にIoT

を始めてみてはいかがでしょうか。

セキュリティ関連の記事をもっと取り上
げていただけるとうれしいです。

東京都／ぷりんさん

昨年から、セキュリティに関する
記事を増やしてほしいという声が

毎月多く寄せられます。2014年の脆弱性
大量発覚が影響しているのでしょうか。

読者の方が多いようです。「Androidのア
プリ開発に使いたい」という声が目立ちま
した。

　前後編に分けて、Cisco社製のネット
ワーク仮想化ソフト「Cisco VIRL」を紹介
する記事です。後編では、個人ユーザ向
けの製品「VIRL Personal Edition」を使っ
て、インストールからシミュレーションの
動作までを扱いました。

試してみようと思った。
東京都／ raihennさん

手軽というところが魅力である。
長崎県／蛸倉健さん

構想中のネットワークの動作確認
をしようという場面で、実機をす

べて用意することに比べればCisco VIRL

は格段に手軽な手段です。個人環境で使
うにはややハードルが高い製品ですが、
企業で今後導入していくということはある
かもしれません。

　IBMのPaaS「Bluemix」を使いながらIoT

（モノのインターネット）について学ぶ記

4月号のプレゼント当選者は、次の皆さまです

※本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡ください（プレゼント応募後に住所が
変更されている場合など、お届けできないことがあります）。2ヵ月以上ご連絡がない場合は、再抽選させていただくことがあります。

① iPhone用置くだけチャージャ＆パワーバンクセット
東京都　田上歩様

②DATAHOTEL CURRY
神奈川県　福田和真様
福岡県　田代勝久様
東京都　新屋賢一様
千葉県　佐藤法子様
千葉県　卯木輝彦様

③イミテーション・ゲーム特製クリアファイル
京都府　　宮地慧様

④Effective Ruby
東京都　深田耕司様
埼玉県　宮地康彦様

⑤Serverspec
福岡県　松岡政司様
東京都　　古矢満様

⑥みんなのRaspberry Pi入門［対応言語：Python］
京都府　石井琢悟様
大分県　野原祐輔様

⑦事例から学ぶ情報セキュリティ--基礎と対策と脅威の
しくみ

長野県　村松伸一様
神奈川県　石田靖博様

短期集中連載　Bluemixで試
してみるIoT入門［後編］

フリートーク

短期集中連載　Kotlin入門［1］

一般記事　Cisco VIRLでネッ
トワークシミュレーション［後編］

mailto:sd@gihyo.co.jp

Software Design
2015年6月号

発行日
2015年6月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［FAX］
03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

［E-mail］
sd@gihyo.co.jp

2015年7月号
定価（本体1,220円＋税）

192ページ

July 2015
6月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2015 技術評論社

●花粉症のため処方されたザイザルは非常によく効い

た。おかげでスッキリ過ごせた。ということで黄金と

は名ばかりのGW進行が終わったあとは、お盆進行が

待ち構えているのだった。休む（？）ために前倒しスケ

ジュールになる業界の慣例だけど、印刷機も高性能に

なっているのだからなんとかならんのかね。（本）

●この文章を書いている当日、Apple Watchが発売

された。FacebookのTL上に写真が多くアップされ

た。ガジェットものは衝動買いをしてしまうことも多

いのだが、今回は見送り。「飛べ！ジャイアントロボ」

の時代がやっと来たか。「流星号！応答せよ！」ももうす

ぐか。あとはサイコミュ……（幕）

●息子の男子校の学園祭がありました。後夜祭まで

一般の人に公開しているのですが、ラストのバンド演

奏は、上半身ハダカ！　ヘッドバンギング！　同年代の

子たちはノリノリでしたが、おそらく親御さんたちの

大部分はポカーン（笑）。もちろん私も後者ですが、

若いってスゴイ。いやー、もうついていけん！（キ）

●本誌の読者プレゼントに応募するにはgihyo.jpで

アカウント登録が必要なのですが、住所などが正し

く登録されていないと、当選しても送付できません。

そのような方々がたまにいます。「毎回応募している

のに、全然当たらない……」という方は、一度、登

録内容を確認をしてみてください。（よし）

●USJに行ってきました。期間限定のイベントが開

催中で人気アニメなどのアトラクションが追加されて

いた分、人が多かったです。一番おもしろかったのは

「ハリー・ポッター」！　アトラクションもさることなが

ら、エリア全体が物語の世界観を再現していて、ま

るで映画の中に迷い込んだようでした。（な）

●一週間ほど実家に帰る機会があり、色々やりたい

ことを思い浮かべていたのですが、週末はお天気が

いいからと洗濯をしに帰ったりで、結局やれたことは

わんこたちと遊ぶことだけ。ただ席に着けば何もしな

いでも毎食ご飯が出てくるのを久しぶりに体験し、母

親の味とありがたみを実感した日々でした。（ま）

S D S t a f f R o o m

［第1特集］ あなたにもできる！

ログを読む技術［セキュリティ編］
～攻撃の足跡はこんなふうに残っている～
　すべてのセキュリティ対策はログ分析にあり。自分たちで始められるセキュリティログ分
析技術を解説します。さらにSOC（Security Operation Center）で培われたログの中か
ら攻撃の形跡を見つけるノウハウや、より本格的な分析（audit logの見方）を紹介します。
これらを押さえておけば未知の攻撃やDDoS攻撃への対応も万全！

［第2特集］ ターミナルマルチプレクサ

黒い画面（tmux）の使い方
プロになるためのターミナル活用術
　ターミナル、それはコンピュータと対話するための窓。マウス操作のGUIでは得られな
いダイレクトレスポンスがプロ意識を高めます。Web開発、ソフトウェア開発、運用管理
などさまざまな事例をもとにターミナルマルチプレクサの使いこなしを紹介します。

［特別企画］エンジニアとして突きぬけたい！

スペシャリストになる方法
※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
「温故知新 ITむかしばなし」（第44回）、「書いて覚えるSwift入門」（第6回）は都合によりお休みさせていただきます。

200 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2015年6月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 楽しく始めるGit & GitHub入門
	第1章：はじめてのGit入門......岡本 隆史
	1-1：新入社員、Gitに出会う
	1-2：Gitを使ってみよう--Gitのしくみからリポジトリへのファイル登録まで
	1-3：チームでGitを使うには--共有リポジトリを使った共同作業
	1-4：ブランチとタグ--作業ごとにバージョンを分けて管理し目印を付ける
	1-5：共有リポジトリを作ってみよう--GitBucketで楽々リポジトリ構築

	第2章：GitHub入門......大塚 弘記
	2-1：GitHubとは？
	2-2：GitHubを利用するための最初の一歩
	2-3：GitHub Flowを利用した開発の流れ
	2-4：GitHubを中心として利用されるサービス・ツール

	■第2特集 OpenLDAPの教科書
	第1章：LDAPの用途と設計方針......小田切 耕司、武田 保真
	第2章：OpenLDAPによるLDAPサーバ構築......鈴木 慶太
	第3章：LDAPクライアントの設定事例集......武田 保真、濱野 司

	■緊急企画
	SambaによるActive Directoryの機能性と移行性を検証する......たかはしもとのぶ

	■短期連載
	Kotlin入門【3】Kotlinを学ぶ......長澤 太郎

	■Catch up trends in engineering
	迷えるマネージャのためのプロジェクト管理ツール再入門【7】SUUMOスマホサイトの開発裏話2 プロジェクト管理にアトラシアン製品を活用......SD編集部

	■連載：Column
	digital gadget【198】通知の体験のデザイン......安藤 幸央
	結城浩の再発見の発想法【25】Diff......結城 浩
	大人らずぱいリレー【8】Raspberry Piでオレ的雰囲気メガネを作る！（後編）......村上 福之
	軽酔対談　かまぷの部屋【11】ゲスト：前島 有貴さん......鎌田 広子
	秋葉原発！はんだづけカフェなう【最終回】これまでのまとめ......坪井 義浩
	ひみつのLinux通信【17】断捨離無情......くつなりょうすけ
	Hack For Japan〜エンジニアだからこそできる復興への一歩【42】街をハックする--Hack For Town 2015 in Aizu開催......佐伯 幸治、佐々木 陽

	■連載：Development
	Erlangで学ぶ並行プログラミング【3】Erlangのリスト処理とプロセス間通信......力武 健次
	Sphinxで始めるドキュメント作成術【3】議事録を書こう（後編）--複数のreSTに関連性を持たせる......川本 安武
	Android Wearアプリ開発入門【4】Wearアプリでデータ通信機能を活用！......神原 健一
	Mackerelではじめるサーバ管理【4】Mackerel APIで便利な外部ツールと連携......田中 慎司
	Hinemosで学ぶジョブ管理超入門【最終回】これで引き継ぎもらくらく！　Hinemosによるジョブ運用のおさらい……山本 未希
	シェルスクリプトではじめるAWS入門【最終回】AWS APIでのデジタル署名の全体像を明らかにする6......波田野 裕一
	セキュリティ実践の基本定石【21】米国暗号輸出規制が生んだ負の遺産「FREAK攻撃」......すずきひろのぶ
	るびきち流Emacs超入門【14】地味だけどあなどれない標準コマンドたち......るびきち

	■連載：OS/Network
	ShowNetが示すネットワークの近未来【3】Beyond the InterCloud......大久保 修一
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【20】カーネルの動きをトレースしてみる【導入編】......後藤 大地
	Debian Hot Topics【27】「bits from DPL」から読み解くDebianの今後......やまねひでき
	Ubuntu Monthly Report【62】Ubuntu 15.04オーバービュー......あわしろいくや
	RHELを極める・使いこなすヒント .SPECS【12】Red Hat Enterprise Linux 7.1リリース......藤田 稜
	Linuxカーネル観光ガイド【39】Linux 3.19の新機能〜IPCの裏方で動作するAndroid Binder......青田 直大
	Monthly News from jus【44】米国と日本、OSSに対する意識の違い......法林 浩之

	■アラカルト
	開発者が教えるteratailの活用法......SD編集部
	ITエンジニア必須の最新用語解説【78】Ceph......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK FORUM
	SD NEWS & PRODUCTS
	年間定期購読のご案内
	Letters from Readers
	次号のお知らせ

