

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／~＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／~＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

技術評論社の本が電子版で読める！
https://gihyo.jp/dp

 GIHYO
 Digital Publishing

 GIHYO
 Digital Publishing

未来の“普通”を，今。

 Gihyo Digital Publishing

 GIHYO
 DIGITAL
 PUBLISHING

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

Dockerエキスパート養成読本
［活用の基礎と実践ノウハウ満載！］
杉山貴章，大瀧隆太，Yugui（Yuki Sonoda），中津川篤司，
前佛雅人，松原豊，米林正明，松本勇気　著　
1,９80円　 EPUB PDF

本書では，Dockerをソフトウェア開発・運用で活用するため
に知っておきたい基礎と実践のための知識をわかりやすくま
とめてお届けします。
https://gihyo.jp/dp/ebook/2015/978-4-7741-7464-8

サーバ／インフラエンジニア　
養成読本 基礎スキル編

EPUB PDF

データサイエンティスト養成読本　
R活用編

EPUB PDF

Pythonエンジニア養成読本
[［いまどきの開発ノウハウ満載！］

EPUB PDF

Laravelエキスパート養成読本
[モダンな開発を実現するPHPフレームワーク！]

EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
mailto:gdp@gihyo.co.jp
https://gihyo.jp/dp/ebook/2015/978-4-7741-7464-8

ED - 1 - Software Design

　「Project Brillo」（以下、Brillo）
は、2015年6月にGoogleが発表し
たIoT（Internet of Things：モノの
インターネット）のための新しいプラット
フォームです。Brilloは、PCやスマー
トフォンだけでなく、家電製品や車載
機器、ひいては家のドアの鍵まで、
あらゆる“モノ”を端末としてセットアッ
プすることができ、これらの端末同士
やクラウドサービスをシームレスに連携
させられるようになります。
　BrilloはAndroid OSをベースとし
て開発され、最小限のスペックでも
動作するように洗練された超小型OS
になるとのことです。おもな特徴として
は次のようなものが挙げられています。

• 要求仕様が最小限で、極めて小
さなデバイスでも動作する

• 幅広いハードウェアおよびプロセッ
サをサポート

• 豊富な接続性やセキュリティ仕様
を備える

• 必要最低限の要素をあらかじめ備
えているため、対応デバイスの開
発が容易

• クラッシュレポートやアップデート
サービスなど、Webコンソールから
アクセス可能な管理機能を備える

　図1はGoogleが発表したBrillo
の基本的な概念図になります。カー
ネルの上にハードウェア抽象化レイヤ
（HAL）がある点はAndroidと同様
で、その上にネットワーク接続とデバ
イス管理のためのレイヤが存在してい

ます。注目すべき点としては、
Brillo単体でWi-FiやBlue
toothによる通信手段を備え
ており、スマートフォンやほか
のデバイスに接続できるよう
になっていることが挙げられ
ます。また、メッシュネット
ワーク規格のThreadもサ
ポートされる予定となっていま
す。一方で、アプリケーショ
ンの実行環境やライブラリは
この中には含まれておらず、
Brilloがあくまでも“モノをネッ
トワーク端末にすること”に特化したプ
ラットフォームであることがわかります。

　Brillo端末と、他のBrillo端末や
スマートフォン、クラウドサービスとのコ
ミュニケーションは、Brilloと同時に
発表された「Weave」と呼ばれる新し
いプロトコルによって行われます。
Weaveは、IoT端末が外部の端末
やサービスとシームレスに接続・連携
するためのスキーマセットを提供します。
WeaveはJSONをベースとしており、
BrilloやAndroidだけでなくiOSや
既存のPC、クラウドサービスなどもサ
ポートしたクロスプラットフォームな通
信レイヤになるとのことです。
　従来のIoTデバイスでは、どのよう
な手段で外部とコミュニケートするか
が大きな課題になっていました。
BrilloとWeaveはその悩みを解決す
るモデルとして注目されています。とく
に、JSONをベースとしていることから
取り扱いが容易で、クラウドサービス
との親和性も極めて高い点が大きな

強みと言えます。
　また、Weaveは家庭用サーモスタッ
トの「Nest」とも互換性があります。
Nestは通信機能や学習機能などを
備えた高機能サーモスタットで、IoT
のハブになり得る存在として注目を集
めていました。GoogleはNestを開発
したNest Labsを2014年に買収して
おり、Brilloへの取り組みはこの
Nest Labsのチームが中心となって
進めているとのことです。したがって、
Brillo/WeaveとNestの親和性が高
いのは必然とも言えます。前触れなく
登場したようにも思えるBrilloですが、
圧倒的なシェアを誇るAndroidや、
すでにIoT分野で実績のあるNestな
どと結びつくことで、かなり現実味の
ある未来が見えてくるのではないでしょ
うか。
　Googleでは、Brilloの開発者向
けプレビューを2015年第3四半期に
もリリースする予定だとしています。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 80回

Project Brillo

Project Brillo
https://developers.google.com/
brillo/

新 IoTプラットフォーム
「Project Brillo」

JSONベースの通信
プロトコル「Weave」

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

通信
Wi-Fi、Bluetooth
など

ハードウェア抽象化レイヤ

カーネル

ハードウェア

デバイス管理
分析、アップデート、
クラッシュレポートなど

▼図1　Brillo のアーキテクチャ（破線部）

https://developers.google.com/brillo/
mailto:sd@gihyo.co.jp

　筆者の出身高校の校訓は「継続
は力なり」でした。高校生の頃はピン
と来ませんでしたが、今なら実感できま
す。1998年末から始まった本連載
「デジタルガジェット」は、一度も休むこ
となく今回で200回となりました。16
年以上、もうすぐ17年目に入ります。
支えていただいた読者の皆さん、編
集部の皆さん、いろいろなデジタルガ
ジェットを生み出し続けている世界中
の皆さんに感謝したいと思います。
　以前、マイクロソフトリサーチでユー
ザインターフェースの研究をしている
ビル・バクストン氏の講演を聞いたと
き、「現在、最新だと思っている技術
は、だいたい20～30年前に創られた
ものである」とのコメントが強く印象に

残っています。タッチパネルも、スマー
トウォッチも、タブレット端末も、VRも、
現在最新技術だと思っているデジタ
ル技術は、最初に登場し、研究開発
され始めたのは、だいたい20年から
30年前だということです。とても納得
するとともに、そう考えると、現在研究
開発中でまだまだ実用化にはほど遠
いと思えるような最新技術が、20年
後、30年後には、ごく普通に多くの人
に使われている可能性を示唆してい
ます。
　1998年、連載第1回目のタイトル
は『Javaの現在と未来̶̶「Java
Demo」って何？』でした。1994年に
初めて一般にお披露目されたプログ
ラミング言語Javaは、現在もAndroid
アプリのプログラミングや、エンタープ

ライズ分野でのサーバサイドの大規
模プログラミングなど、形を変えて活
用されています。
　今から過去を振り返り、20年から
30年ほど生き残っているテクノロジに
は何があるでしょうか？　QWERTY
キーボードでの入力も、変わっていな
いものの1つかもしれません。

●MIDI：電子楽器の演奏データを機
器間でデジタル転送する標準規格

●OpenGL：グラフィックスハードウェ
アをコントロールするためのAPI。
OpenGL ES、WebGLへと派生

●RenderMan：フルCG映画など
の表現力豊かなコンピュータグラ
フィックスを描くためのPixarの技
術／ファイル仕様

●x86アーキテクチャ：CPUの基
本原理、基本構造

●TCP/IPなど：各種ネットワークプ
ロトコル
●HTML：構造化言語としではなく、
Webコンテンツを表現するための
手段としてのHTML

　CG映画「トイ・ストーリー」の制作で
知られるPixarが映画製作に使ってい
るCGソフトウェア「RenderMan」の基
本アルゴリズムは、1987年頃に発表
された論文に由来しています。当時は
縦横512画素程度の画素数の、たっ

た1枚の画像生成に、数億円する最
新のコンピュータでも数時間かかって
いた時代です。その当時からすでに
20年後のコンピュータの性能を予想
し、設計していたそうで、その先見の明
には強い信念が感じられ、将来を見通
す目の確かさに驚くばかりです。そし
て、RenderManは今もCG映画制作
の第一線で活躍し続けているのです。
　今主流の各種プログラミング言語
は20年後、30年後も使われ続けて
いるでしょうか？　そもそもプログラミン
グするという仕事は、30年後も残って
いるのでしょうか？　何十年も生き残

り、今後もしばらくは活用し続けられる
であろう長命のテクノロジには、共通
するポイントがあります。勝手に解釈
すると、それらは次のとおり。

●基本となる仕様が大きすぎず、複
雑すぎず、必要十分な部分のみ規
定されていること

●標準として強固な規定があり、業
界団体または1社によって矛盾が
なく、解釈がぶれない規定がなされ
ていること
●拡張し続ける要素、余地があること
●拡張したものを基本部分に取り入

れるしくみがあること。亜流や枝分
かれが増えない規定があること
●利用すること、使うこと自体は安価
であるか、無料であり、広まる要素
を持つこと
●現在のハードやネット環境に適合
するだけでなく、将来登場するであ
ろう高性能な機器、環境をも想定
していること

　1968年に公開された「2001年宇

て登場したのもこの頃です。そんな時
代に、未来を夢想して、タブレット端末
が必要な世界、活用されている世界
を想像できたことには感嘆しかありま
せん。
　今あるものにイノベーションをもたら
す、想像力の限界を超える、拡げる、引
き延ばすのが空想の世界ではないで
しょうか？ 実際に、最先端のデバイス
やユーザインターフェースを専門で研
究開発している研究者の中にもSF
ファンは多く、未来を想像し、作り出し
ていくためにはSFは不可欠なのです。
｢

200回を振り返る：
SF映画とデジタルガジェット

安藤 幸央
EXA Corporation

200回を振り返る：SF映画とデジタルガジェット
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

200回を振り返る

宙の旅」には、iPadのようなタブレット
端末が出現します。1人1人の宇宙
飛行士が個人のパーソナルな端末と
して、文書を見たり、ビデオ映像を見
たりしています。iPadが発売されたの
は2010年、iPadの登場に少なから
ず影響を与えていると言われているア
ラン・ケイの論文に、Dynabookが登
場するのは1972年のことです。
　1968年というと、現在のようなコン
ピュータは存在せず、設置に巨大な
部屋が必要であった時代です。その1
台の大型コンピュータを大勢で共有
して利用していました。マウスが初め

アルマゲドン

1968年代、主流だった
DEC社製の大型コン

ピュータ「PDP-10」
（撮影：Scott Francis氏、クリ
エイティブコモンズライセンス）

Dynabookのイラスト。このイラストが掲載されてい
る論文の中では、最適な重量が680gと明記されて

おり、初代iPadの重量も680gだったことから、真偽のほ
どはわからないが、強く影響を受けていると考えられてい
る（出典：『A Personal Computer for Children of All
Ages』（Akan C. Key, 1972）より）

●発売元：ウォルト・ディズニー・スタジオ・ジャパン
●価格：2,381円＋税（Blu-ray）
Ⓒ 2015 Disney

スター・トレック テレビ
シリーズに登場した

通信機器（のオモチャ）。フ
タを開けて通信するフリッ
プタイプ（1966年）

約30年後、左の通
信機器を彷彿させる

携帯電話「StarTAC」が
モトローラから登場。日本
でもIDOから発売された

（1996年）

SFから学び取る、
これから20年後も
生き残る技術

「アルマゲドン」「ロスト・イン・
スペース」「トゥルーマン・ショー」
現代の延長線上で少しだけ未来を描い
ている作品の多かった年。

「マイノリティ・リポート」「劇場版カウボーイ・ビバップ」
「リベリオン」「クローン」「メン・イン・ブラック2」
「リターナー」「シモーヌ」「タイムマシン」
2054年を描いたマイノリティ・リポートは綿密な調査のうえ
で未来が描かれている。未来的UIの礎となった作品の年。

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：1,905円＋税（Blu-ray）／発売中
Ⓒ 2013 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

「サンダーバード（実写版）」「エージェント・コーディ2」
「アイ，ロボット」「イノセンス」
実世界におけるデジタルグッズ、現代の技術である程度実
現可能なデジタルグッズに囲まれた作品の年。

トロン：レガシー
●発売元：ウォルト・ディズニー・スタジオ・ジャパン
●価格：2,381円＋税（Blu-ray）
Ⓒ 2015 Disney

「トロン：レガシー」「アイアンマン2」
「インセプション」
テクノロジによって作り上げられた仮想
世界が描かれた年。

スパイキッズ
●発売元：ワーナー・ブラザース・ホームエンターテイメント
●価格／発売日：2,381円＋税（Blu-ray）／
2013年8月7日
Ⓒ 2001 Warner Bros. Entertainment Inc.
All Rights Reserved.

「ミッション・インポッシブル・ゴーストプロトコロル」
「スパイキッズ」「アジャストメント」「宇宙人ポール」
「ミッション: 8ミニッツ」「X-MEN: ファースト・
ジェネレーション」「スーパーエイト」

「カウボーイ＆エイリアン」「タイム」
物理法則から言ってあり得ないことも描
き出していた年。

マトリックス リローデッド
●発売元：ワーナー・ブラザース・ホームエンターテイメント
●価格／発売日：2,381円＋税（初回限定版スペシャル・パッケージ Blu-ray）／2015年3月18日
Ⓒ 2003 Warner Bros. Entertainment Inc. All Rights Reserved.

「マトリックス リローデッド」
「マトリックス レボリューションズ」
「ペイチェック」「ターミネーター3」
仮想世界と現代世界との対比や、記憶
を操作できることなどが描かれた作品な
ど、テクノロジへの恐怖感が描かれた年。

マイノリティ・リポート
●発売元：パラマウント ジャパン
●価格／発売日：1,429円＋税（1枚組）／2007年6月22日発売（発売中）
Ⓒ 2006 by Paramount Pictures. All Rights Reserved. TM,Ⓡ & Ⓒ 2006
by Paramount Pictures. All Rights Reserved.

M：i：III

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：2,381円＋税（Blu-ray）／発売中
Ⓒ 2012 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

アイ，ロボット

アンドリュー NDR114
●発売・販売元：ソニー・ピクチャーズ エンタテインメント
●価格／発売日：1,410円＋税／発売中
Ⓒ 1999 TOUCHSTONE PICTURES. ALL RIGHTS RESERVED.

「アンドリュー NDR114」
「イグジステンズ」「マトリックス」
「スター・ウォーズ エピソード1／
ファントム・メナス」
仮想世界をより具体的に描いたり、擬
人化されたロボットが生活に融け込んで
きた年。

「シックス・デイ」「インビジブル」「ザ・セル」「X-メン」
ハイテクデバイスに囲まれていたり、クローン人間が登場す
るが、現代を描いた年。

「アイランド」「イーオン・フラックス」
「銀河ヒッチハイク・ガイド」「宇宙戦争」
臓器のためのクローニング、延命などに焦点をあてた作品。
現代の延長線上としての未来が描かれた年。

「アイ・アム・レジェンド」「サンシャイン 2057」
「トランスフォーマー」「バイオハザードIII」
地球や人類が滅びる可能性が描かれた年。

「エンダーのゲーム」「パシフィックリム」「アフター
アース」「アイアンマン3」「オブリビオン」「エリジウム」

「ゼロ・グラビティ」「her/世界でひとつの彼女」
テクノロジが極限まで進化したときの地球、人類の有様が
描かれた年。

「イーグル・アイ」「アイアンマン」「ウォーリー」
テクノロジによって、体躯や知能が強化されることが描かれ
た年。

「M：i：III」「007カジノ・ロワイヤル」「スキャナー・
ダークリー」「パプリカ」「ウルトラヴァイオレット」
テクノロジの進化によって、必ずしもバラ色の未来が来ると
いうだけではないことが描かれた年。

「トゥームレイダー」「A.I.」「猿の惑星（リメイク版）」
「ジュラシック・パークIII」
人に作られた知性、人工知能の概念、恐竜のクローニング
と、地球の遠い将来に目が向いた年。 ガーディアンズ・オブ・ギャラクシー

●発売元：ウォルト・ディズニー・スタジオ・ジャパン
●価格：4,000円＋税
Ⓒ 2015 Marvel.

「ガーディアンズ・オブ・ギャラクシー」
「ベイマックス」「ダイバージェント」
「オール・ユー・ニード・イズ・キル」
「インターステラー」
ごく近い近未来を描いているが、地球では
ないどこか並行宇宙の話を描いている年。

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：1,905円＋税（Blu-ray）／発売中
Ⓒ 2013 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

アバター

「アバター」「2012」「スタートレック（リメイク版）」
「第9地区」「月に囚われた男」「サロゲート」
身体と精神とクローン的なものについて描かれた年。

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：1,905円＋税（Blu-ray）／発売中
Ⓒ 2013 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

プロメテウス

「ハンガーゲーム」「アベンジャーズ」「プロメテウス」
「トータルリコール（リメイク版）」「クラウドアトラス」
「アイアン・スカイ」「ジャッジ・ドレッド（リメイク）」
「ルーパー」「メン・イン・ブラック3」
近代と古代の風習が混在した世界が描かれた年。

●発売・販売元：ソニー・ピクチャーズ エンタテインメント
●価格／発売日：5,695円＋税（初回生産限定　Blu-ray）／9月18日発売
Ⓒ 2015 Sony Pictures Digital Productions Inc. All rights reserved.

チャッピー　アンレイテッド・バージョン プレミアムエディション

「ゼロの未来」「エクスマキナ（公開未定）」「チャッピー」
人工知能、人工生命、すぐそこにある、少し怖いディストピア
感のある未来が描かれている年。今年後半はわかりません。

200200200200

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Aug. 2015 - 1

http://www.andoh.org/

　筆者の出身高校の校訓は「継続
は力なり」でした。高校生の頃はピン
と来ませんでしたが、今なら実感できま
す。1998年末から始まった本連載
「デジタルガジェット」は、一度も休むこ
となく今回で200回となりました。16
年以上、もうすぐ17年目に入ります。
支えていただいた読者の皆さん、編
集部の皆さん、いろいろなデジタルガ
ジェットを生み出し続けている世界中
の皆さんに感謝したいと思います。
　以前、マイクロソフトリサーチでユー
ザインターフェースの研究をしている
ビル・バクストン氏の講演を聞いたと
き、「現在、最新だと思っている技術
は、だいたい20～30年前に創られた
ものである」とのコメントが強く印象に

残っています。タッチパネルも、スマー
トウォッチも、タブレット端末も、VRも、
現在最新技術だと思っているデジタ
ル技術は、最初に登場し、研究開発
され始めたのは、だいたい20年から
30年前だということです。とても納得
するとともに、そう考えると、現在研究
開発中でまだまだ実用化にはほど遠
いと思えるような最新技術が、20年
後、30年後には、ごく普通に多くの人
に使われている可能性を示唆してい
ます。
　1998年、連載第1回目のタイトル
は『Javaの現在と未来̶̶「Java
Demo」って何？』でした。1994年に
初めて一般にお披露目されたプログ
ラミング言語Javaは、現在もAndroid
アプリのプログラミングや、エンタープ

ライズ分野でのサーバサイドの大規
模プログラミングなど、形を変えて活
用されています。
　今から過去を振り返り、20年から
30年ほど生き残っているテクノロジに
は何があるでしょうか？　QWERTY
キーボードでの入力も、変わっていな
いものの1つかもしれません。

●MIDI：電子楽器の演奏データを機
器間でデジタル転送する標準規格

●OpenGL：グラフィックスハードウェ
アをコントロールするためのAPI。
OpenGL ES、WebGLへと派生

●RenderMan：フルCG映画など
の表現力豊かなコンピュータグラ
フィックスを描くためのPixarの技
術／ファイル仕様

●x86アーキテクチャ：CPUの基
本原理、基本構造

●TCP/IPなど：各種ネットワークプ
ロトコル
●HTML：構造化言語としではなく、
Webコンテンツを表現するための
手段としてのHTML

　CG映画「トイ・ストーリー」の制作で
知られるPixarが映画製作に使ってい
るCGソフトウェア「RenderMan」の基
本アルゴリズムは、1987年頃に発表
された論文に由来しています。当時は
縦横512画素程度の画素数の、たっ

た1枚の画像生成に、数億円する最
新のコンピュータでも数時間かかって
いた時代です。その当時からすでに
20年後のコンピュータの性能を予想
し、設計していたそうで、その先見の明
には強い信念が感じられ、将来を見通
す目の確かさに驚くばかりです。そし
て、RenderManは今もCG映画制作
の第一線で活躍し続けているのです。
　今主流の各種プログラミング言語
は20年後、30年後も使われ続けて
いるでしょうか？　そもそもプログラミン
グするという仕事は、30年後も残って
いるのでしょうか？　何十年も生き残

り、今後もしばらくは活用し続けられる
であろう長命のテクノロジには、共通
するポイントがあります。勝手に解釈
すると、それらは次のとおり。

●基本となる仕様が大きすぎず、複
雑すぎず、必要十分な部分のみ規
定されていること

●標準として強固な規定があり、業
界団体または1社によって矛盾が
なく、解釈がぶれない規定がなされ
ていること
●拡張し続ける要素、余地があること
●拡張したものを基本部分に取り入

れるしくみがあること。亜流や枝分
かれが増えない規定があること
●利用すること、使うこと自体は安価
であるか、無料であり、広まる要素
を持つこと
●現在のハードやネット環境に適合
するだけでなく、将来登場するであ
ろう高性能な機器、環境をも想定
していること

　1968年に公開された「2001年宇

て登場したのもこの頃です。そんな時
代に、未来を夢想して、タブレット端末
が必要な世界、活用されている世界
を想像できたことには感嘆しかありま
せん。
　今あるものにイノベーションをもたら
す、想像力の限界を超える、拡げる、引
き延ばすのが空想の世界ではないで
しょうか？ 実際に、最先端のデバイス
やユーザインターフェースを専門で研
究開発している研究者の中にもSF
ファンは多く、未来を想像し、作り出し
ていくためにはSFは不可欠なのです。
｢

200回を振り返る：
SF映画とデジタルガジェット

安藤 幸央
EXA Corporation

200回を振り返る：SF映画とデジタルガジェット
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

200回を振り返る

宙の旅」には、iPadのようなタブレット
端末が出現します。1人1人の宇宙
飛行士が個人のパーソナルな端末と
して、文書を見たり、ビデオ映像を見
たりしています。iPadが発売されたの
は2010年、iPadの登場に少なから
ず影響を与えていると言われているア
ラン・ケイの論文に、Dynabookが登
場するのは1972年のことです。
　1968年というと、現在のようなコン
ピュータは存在せず、設置に巨大な
部屋が必要であった時代です。その1
台の大型コンピュータを大勢で共有
して利用していました。マウスが初め

アルマゲドン

1968年代、主流だった
DEC社製の大型コン

ピュータ「PDP-10」
（撮影：Scott Francis氏、クリ
エイティブコモンズライセンス）

Dynabookのイラスト。このイラストが掲載されてい
る論文の中では、最適な重量が680gと明記されて

おり、初代iPadの重量も680gだったことから、真偽のほ
どはわからないが、強く影響を受けていると考えられてい
る（出典：『A Personal Computer for Children of All
Ages』（Akan C. Key, 1972）より）

●発売元：ウォルト・ディズニー・スタジオ・ジャパン
●価格：2,381円＋税（Blu-ray）
Ⓒ 2015 Disney

スター・トレック テレビ
シリーズに登場した

通信機器（のオモチャ）。フ
タを開けて通信するフリッ
プタイプ（1966年）

約30年後、左の通
信機器を彷彿させる

携帯電話「StarTAC」が
モトローラから登場。日本
でもIDOから発売された

（1996年）

SFから学び取る、
これから20年後も
生き残る技術

「アルマゲドン」「ロスト・イン・
スペース」「トゥルーマン・ショー」
現代の延長線上で少しだけ未来を描い
ている作品の多かった年。

「マイノリティ・リポート」「劇場版カウボーイ・ビバップ」
「リベリオン」「クローン」「メン・イン・ブラック2」
「リターナー」「シモーヌ」「タイムマシン」
2054年を描いたマイノリティ・リポートは綿密な調査のうえ
で未来が描かれている。未来的UIの礎となった作品の年。

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：1,905円＋税（Blu-ray）／発売中
Ⓒ 2013 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

「サンダーバード（実写版）」「エージェント・コーディ2」
「アイ，ロボット」「イノセンス」
実世界におけるデジタルグッズ、現代の技術である程度実
現可能なデジタルグッズに囲まれた作品の年。

トロン：レガシー
●発売元：ウォルト・ディズニー・スタジオ・ジャパン
●価格：2,381円＋税（Blu-ray）
Ⓒ 2015 Disney

「トロン：レガシー」「アイアンマン2」
「インセプション」
テクノロジによって作り上げられた仮想
世界が描かれた年。

スパイキッズ
●発売元：ワーナー・ブラザース・ホームエンターテイメント
●価格／発売日：2,381円＋税（Blu-ray）／
2013年8月7日
Ⓒ 2001 Warner Bros. Entertainment Inc.
All Rights Reserved.

「ミッション・インポッシブル・ゴーストプロトコロル」
「スパイキッズ」「アジャストメント」「宇宙人ポール」
「ミッション: 8ミニッツ」「X-MEN: ファースト・
ジェネレーション」「スーパーエイト」

「カウボーイ＆エイリアン」「タイム」
物理法則から言ってあり得ないことも描
き出していた年。

マトリックス リローデッド
●発売元：ワーナー・ブラザース・ホームエンターテイメント
●価格／発売日：2,381円＋税（初回限定版スペシャル・パッケージ Blu-ray）／2015年3月18日
Ⓒ 2003 Warner Bros. Entertainment Inc. All Rights Reserved.

「マトリックス リローデッド」
「マトリックス レボリューションズ」
「ペイチェック」「ターミネーター3」
仮想世界と現代世界との対比や、記憶
を操作できることなどが描かれた作品な
ど、テクノロジへの恐怖感が描かれた年。

マイノリティ・リポート
●発売元：パラマウント ジャパン
●価格／発売日：1,429円＋税（1枚組）／2007年6月22日発売（発売中）
Ⓒ 2006 by Paramount Pictures. All Rights Reserved. TM,Ⓡ & Ⓒ 2006
by Paramount Pictures. All Rights Reserved.

M：i：III

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：2,381円＋税（Blu-ray）／発売中
Ⓒ 2012 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

アイ，ロボット

アンドリュー NDR114
●発売・販売元：ソニー・ピクチャーズ エンタテインメント
●価格／発売日：1,410円＋税／発売中
Ⓒ 1999 TOUCHSTONE PICTURES. ALL RIGHTS RESERVED.

「アンドリュー NDR114」
「イグジステンズ」「マトリックス」
「スター・ウォーズ エピソード1／
ファントム・メナス」
仮想世界をより具体的に描いたり、擬
人化されたロボットが生活に融け込んで
きた年。

「シックス・デイ」「インビジブル」「ザ・セル」「X-メン」
ハイテクデバイスに囲まれていたり、クローン人間が登場す
るが、現代を描いた年。

「アイランド」「イーオン・フラックス」
「銀河ヒッチハイク・ガイド」「宇宙戦争」
臓器のためのクローニング、延命などに焦点をあてた作品。
現代の延長線上としての未来が描かれた年。

「アイ・アム・レジェンド」「サンシャイン 2057」
「トランスフォーマー」「バイオハザードIII」
地球や人類が滅びる可能性が描かれた年。

「エンダーのゲーム」「パシフィックリム」「アフター
アース」「アイアンマン3」「オブリビオン」「エリジウム」

「ゼロ・グラビティ」「her/世界でひとつの彼女」
テクノロジが極限まで進化したときの地球、人類の有様が
描かれた年。

「イーグル・アイ」「アイアンマン」「ウォーリー」
テクノロジによって、体躯や知能が強化されることが描かれ
た年。

「M：i：III」「007カジノ・ロワイヤル」「スキャナー・
ダークリー」「パプリカ」「ウルトラヴァイオレット」
テクノロジの進化によって、必ずしもバラ色の未来が来ると
いうだけではないことが描かれた年。

「トゥームレイダー」「A.I.」「猿の惑星（リメイク版）」
「ジュラシック・パークIII」
人に作られた知性、人工知能の概念、恐竜のクローニング
と、地球の遠い将来に目が向いた年。 ガーディアンズ・オブ・ギャラクシー

●発売元：ウォルト・ディズニー・スタジオ・ジャパン
●価格：4,000円＋税
Ⓒ 2015 Marvel.

「ガーディアンズ・オブ・ギャラクシー」
「ベイマックス」「ダイバージェント」
「オール・ユー・ニード・イズ・キル」
「インターステラー」
ごく近い近未来を描いているが、地球では
ないどこか並行宇宙の話を描いている年。

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：1,905円＋税（Blu-ray）／発売中
Ⓒ 2013 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

アバター

「アバター」「2012」「スタートレック（リメイク版）」
「第9地区」「月に囚われた男」「サロゲート」
身体と精神とクローン的なものについて描かれた年。

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：1,905円＋税（Blu-ray）／発売中
Ⓒ 2013 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

プロメテウス

「ハンガーゲーム」「アベンジャーズ」「プロメテウス」
「トータルリコール（リメイク版）」「クラウドアトラス」
「アイアン・スカイ」「ジャッジ・ドレッド（リメイク）」
「ルーパー」「メン・イン・ブラック3」
近代と古代の風習が混在した世界が描かれた年。

●発売・販売元：ソニー・ピクチャーズ エンタテインメント
●価格／発売日：5,695円＋税（初回生産限定　Blu-ray）／9月18日発売
Ⓒ 2015 Sony Pictures Digital Productions Inc. All rights reserved.

チャッピー　アンレイテッド・バージョン プレミアムエディション

「ゼロの未来」「エクスマキナ（公開未定）」「チャッピー」
人工知能、人工生命、すぐそこにある、少し怖いディストピア
感のある未来が描かれている年。今年後半はわかりません。

200200200200

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design

　筆者の出身高校の校訓は「継続
は力なり」でした。高校生の頃はピン
と来ませんでしたが、今なら実感できま
す。1998年末から始まった本連載
「デジタルガジェット」は、一度も休むこ
となく今回で200回となりました。16
年以上、もうすぐ17年目に入ります。
支えていただいた読者の皆さん、編
集部の皆さん、いろいろなデジタルガ
ジェットを生み出し続けている世界中
の皆さんに感謝したいと思います。
　以前、マイクロソフトリサーチでユー
ザインターフェースの研究をしている
ビル・バクストン氏の講演を聞いたと
き、「現在、最新だと思っている技術
は、だいたい20～30年前に創られた
ものである」とのコメントが強く印象に

残っています。タッチパネルも、スマー
トウォッチも、タブレット端末も、VRも、
現在最新技術だと思っているデジタ
ル技術は、最初に登場し、研究開発
され始めたのは、だいたい20年から
30年前だということです。とても納得
するとともに、そう考えると、現在研究
開発中でまだまだ実用化にはほど遠
いと思えるような最新技術が、20年
後、30年後には、ごく普通に多くの人
に使われている可能性を示唆してい
ます。
　1998年、連載第1回目のタイトル
は『Javaの現在と未来̶̶「Java
Demo」って何？』でした。1994年に
初めて一般にお披露目されたプログ
ラミング言語Javaは、現在もAndroid
アプリのプログラミングや、エンタープ

ライズ分野でのサーバサイドの大規
模プログラミングなど、形を変えて活
用されています。
　今から過去を振り返り、20年から
30年ほど生き残っているテクノロジに
は何があるでしょうか？　QWERTY
キーボードでの入力も、変わっていな
いものの1つかもしれません。

●MIDI：電子楽器の演奏データを機
器間でデジタル転送する標準規格

●OpenGL：グラフィックスハードウェ
アをコントロールするためのAPI。
OpenGL ES、WebGLへと派生

●RenderMan：フルCG映画など
の表現力豊かなコンピュータグラ
フィックスを描くためのPixarの技
術／ファイル仕様

●x86アーキテクチャ：CPUの基
本原理、基本構造

●TCP/IPなど：各種ネットワークプ
ロトコル
●HTML：構造化言語としではなく、
Webコンテンツを表現するための
手段としてのHTML

　CG映画「トイ・ストーリー」の制作で
知られるPixarが映画製作に使ってい
るCGソフトウェア「RenderMan」の基
本アルゴリズムは、1987年頃に発表
された論文に由来しています。当時は
縦横512画素程度の画素数の、たっ

た1枚の画像生成に、数億円する最
新のコンピュータでも数時間かかって
いた時代です。その当時からすでに
20年後のコンピュータの性能を予想
し、設計していたそうで、その先見の明
には強い信念が感じられ、将来を見通
す目の確かさに驚くばかりです。そし
て、RenderManは今もCG映画制作
の第一線で活躍し続けているのです。
　今主流の各種プログラミング言語
は20年後、30年後も使われ続けて
いるでしょうか？　そもそもプログラミン
グするという仕事は、30年後も残って
いるのでしょうか？　何十年も生き残

り、今後もしばらくは活用し続けられる
であろう長命のテクノロジには、共通
するポイントがあります。勝手に解釈
すると、それらは次のとおり。

●基本となる仕様が大きすぎず、複
雑すぎず、必要十分な部分のみ規
定されていること

●標準として強固な規定があり、業
界団体または1社によって矛盾が
なく、解釈がぶれない規定がなされ
ていること
●拡張し続ける要素、余地があること
●拡張したものを基本部分に取り入

れるしくみがあること。亜流や枝分
かれが増えない規定があること
●利用すること、使うこと自体は安価
であるか、無料であり、広まる要素
を持つこと
●現在のハードやネット環境に適合
するだけでなく、将来登場するであ
ろう高性能な機器、環境をも想定
していること

　1968年に公開された「2001年宇

て登場したのもこの頃です。そんな時
代に、未来を夢想して、タブレット端末
が必要な世界、活用されている世界
を想像できたことには感嘆しかありま
せん。
　今あるものにイノベーションをもたら
す、想像力の限界を超える、拡げる、引
き延ばすのが空想の世界ではないで
しょうか？ 実際に、最先端のデバイス
やユーザインターフェースを専門で研
究開発している研究者の中にもSF
ファンは多く、未来を想像し、作り出し
ていくためにはSFは不可欠なのです。
｢

200回を振り返る：
SF映画とデジタルガジェット

安藤 幸央
EXA Corporation

200回を振り返る：SF映画とデジタルガジェット
Volume

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

200回を振り返る

宙の旅」には、iPadのようなタブレット
端末が出現します。1人1人の宇宙
飛行士が個人のパーソナルな端末と
して、文書を見たり、ビデオ映像を見
たりしています。iPadが発売されたの
は2010年、iPadの登場に少なから
ず影響を与えていると言われているア
ラン・ケイの論文に、Dynabookが登
場するのは1972年のことです。
　1968年というと、現在のようなコン
ピュータは存在せず、設置に巨大な
部屋が必要であった時代です。その1
台の大型コンピュータを大勢で共有
して利用していました。マウスが初め

アルマゲドン

1968年代、主流だった
DEC社製の大型コン

ピュータ「PDP-10」
（撮影：Scott Francis氏、クリ
エイティブコモンズライセンス）

Dynabookのイラスト。このイラストが掲載されてい
る論文の中では、最適な重量が680gと明記されて

おり、初代iPadの重量も680gだったことから、真偽のほ
どはわからないが、強く影響を受けていると考えられてい
る（出典：『A Personal Computer for Children of All
Ages』（Akan C. Key, 1972）より）

●発売元：ウォルト・ディズニー・スタジオ・ジャパン
●価格：2,381円＋税（Blu-ray）
Ⓒ 2015 Disney

スター・トレック テレビ
シリーズに登場した

通信機器（のオモチャ）。フ
タを開けて通信するフリッ
プタイプ（1966年）

約30年後、左の通
信機器を彷彿させる

携帯電話「StarTAC」が
モトローラから登場。日本
でもIDOから発売された

（1996年）

SFから学び取る、
これから20年後も
生き残る技術

「アルマゲドン」「ロスト・イン・
スペース」「トゥルーマン・ショー」
現代の延長線上で少しだけ未来を描い
ている作品の多かった年。

「マイノリティ・リポート」「劇場版カウボーイ・ビバップ」
「リベリオン」「クローン」「メン・イン・ブラック2」
「リターナー」「シモーヌ」「タイムマシン」
2054年を描いたマイノリティ・リポートは綿密な調査のうえ
で未来が描かれている。未来的UIの礎となった作品の年。

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：1,905円＋税（Blu-ray）／発売中
Ⓒ 2013 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

「サンダーバード（実写版）」「エージェント・コーディ2」
「アイ，ロボット」「イノセンス」
実世界におけるデジタルグッズ、現代の技術である程度実
現可能なデジタルグッズに囲まれた作品の年。

トロン：レガシー
●発売元：ウォルト・ディズニー・スタジオ・ジャパン
●価格：2,381円＋税（Blu-ray）
Ⓒ 2015 Disney

「トロン：レガシー」「アイアンマン2」
「インセプション」
テクノロジによって作り上げられた仮想
世界が描かれた年。

スパイキッズ
●発売元：ワーナー・ブラザース・ホームエンターテイメント
●価格／発売日：2,381円＋税（Blu-ray）／
2013年8月7日
Ⓒ 2001 Warner Bros. Entertainment Inc.
All Rights Reserved.

「ミッション・インポッシブル・ゴーストプロトコロル」
「スパイキッズ」「アジャストメント」「宇宙人ポール」
「ミッション: 8ミニッツ」「X-MEN: ファースト・
ジェネレーション」「スーパーエイト」

「カウボーイ＆エイリアン」「タイム」
物理法則から言ってあり得ないことも描
き出していた年。

マトリックス リローデッド
●発売元：ワーナー・ブラザース・ホームエンターテイメント
●価格／発売日：2,381円＋税（初回限定版スペシャル・パッケージ Blu-ray）／2015年3月18日
Ⓒ 2003 Warner Bros. Entertainment Inc. All Rights Reserved.

「マトリックス リローデッド」
「マトリックス レボリューションズ」
「ペイチェック」「ターミネーター3」
仮想世界と現代世界との対比や、記憶
を操作できることなどが描かれた作品な
ど、テクノロジへの恐怖感が描かれた年。

マイノリティ・リポート
●発売元：パラマウント ジャパン
●価格／発売日：1,429円＋税（1枚組）／2007年6月22日発売（発売中）
Ⓒ 2006 by Paramount Pictures. All Rights Reserved. TM,Ⓡ & Ⓒ 2006
by Paramount Pictures. All Rights Reserved.

M：i：III

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：2,381円＋税（Blu-ray）／発売中
Ⓒ 2012 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

アイ，ロボット

アンドリュー NDR114
●発売・販売元：ソニー・ピクチャーズ エンタテインメント
●価格／発売日：1,410円＋税／発売中
Ⓒ 1999 TOUCHSTONE PICTURES. ALL RIGHTS RESERVED.

「アンドリュー NDR114」
「イグジステンズ」「マトリックス」
「スター・ウォーズ エピソード1／
ファントム・メナス」
仮想世界をより具体的に描いたり、擬
人化されたロボットが生活に融け込んで
きた年。

「シックス・デイ」「インビジブル」「ザ・セル」「X-メン」
ハイテクデバイスに囲まれていたり、クローン人間が登場す
るが、現代を描いた年。

「アイランド」「イーオン・フラックス」
「銀河ヒッチハイク・ガイド」「宇宙戦争」
臓器のためのクローニング、延命などに焦点をあてた作品。
現代の延長線上としての未来が描かれた年。

「アイ・アム・レジェンド」「サンシャイン 2057」
「トランスフォーマー」「バイオハザードIII」
地球や人類が滅びる可能性が描かれた年。

「エンダーのゲーム」「パシフィックリム」「アフター
アース」「アイアンマン3」「オブリビオン」「エリジウム」

「ゼロ・グラビティ」「her/世界でひとつの彼女」
テクノロジが極限まで進化したときの地球、人類の有様が
描かれた年。

「イーグル・アイ」「アイアンマン」「ウォーリー」
テクノロジによって、体躯や知能が強化されることが描かれ
た年。

「M：i：III」「007カジノ・ロワイヤル」「スキャナー・
ダークリー」「パプリカ」「ウルトラヴァイオレット」
テクノロジの進化によって、必ずしもバラ色の未来が来ると
いうだけではないことが描かれた年。

「トゥームレイダー」「A.I.」「猿の惑星（リメイク版）」
「ジュラシック・パークIII」
人に作られた知性、人工知能の概念、恐竜のクローニング
と、地球の遠い将来に目が向いた年。 ガーディアンズ・オブ・ギャラクシー

●発売元：ウォルト・ディズニー・スタジオ・ジャパン
●価格：4,000円＋税
Ⓒ 2015 Marvel.

「ガーディアンズ・オブ・ギャラクシー」
「ベイマックス」「ダイバージェント」
「オール・ユー・ニード・イズ・キル」
「インターステラー」
ごく近い近未来を描いているが、地球では
ないどこか並行宇宙の話を描いている年。

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：1,905円＋税（Blu-ray）／発売中
Ⓒ 2013 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

アバター

「アバター」「2012」「スタートレック（リメイク版）」
「第9地区」「月に囚われた男」「サロゲート」
身体と精神とクローン的なものについて描かれた年。

●発売元：20世紀フォックス ホーム エンターテイメント ジャパン
●価格／発売日：1,905円＋税（Blu-ray）／発売中
Ⓒ 2013 Twentieth Century Fox Home Entertainment LLC. All Rights Reserved.

プロメテウス

「ハンガーゲーム」「アベンジャーズ」「プロメテウス」
「トータルリコール（リメイク版）」「クラウドアトラス」
「アイアン・スカイ」「ジャッジ・ドレッド（リメイク）」
「ルーパー」「メン・イン・ブラック3」
近代と古代の風習が混在した世界が描かれた年。

●発売・販売元：ソニー・ピクチャーズ エンタテインメント
●価格／発売日：5,695円＋税（初回生産限定　Blu-ray）／9月18日発売
Ⓒ 2015 Sony Pictures Digital Productions Inc. All rights reserved.

チャッピー　アンレイテッド・バージョン プレミアムエディション

「ゼロの未来」「エクスマキナ（公開未定）」「チャッピー」
人工知能、人工生命、すぐそこにある、少し怖いディストピア
感のある未来が描かれている年。今年後半はわかりません。

200200200200

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design Aug. 2015 - 3

4 - Software Design

Fail-Safe——フェイル・セイフ

フェイル・セイフとは

　フェイル・セイフ（Fail-Safe）とは、システム
が壊れるときには安全側に倒れるようにすると
いう設計方針のことです。
　フェイル・セイフのフェイル（fail）は失敗や故
障という意味で、セイフ（safe）は安全という意
味です。上で「壊れる」と書きましたが、これは
非常に広い意味で使っています。ソフトウェア
であれ、ハードウェアであれ、何らかの原因で
うまく動作しないことはあるものです。これは
いわばシステムが「壊れた」状態です。そのとき、
システムはどんなふうに壊れるのが良いでしょ
うか。安全側に倒れる、すなわち「システムが
壊れても関係者に被害が及ばないようにする」
のが、フェイル・セイフという設計方針なのです。
　たとえば、フェイル・セイフの簡単な例とし
て踏切の遮断機を考えましょう。遮断機が故障
したときに遮断機が上がってしまうなら、電車
が通過しようとしているのに人や車両が線路を
横断してしまう危険性があります。ですから、
遮断機は故障したときには下がったままになっ
ているべきです（図1）。

フェイル・セイフの例

　フェイル・セイフの身近な例に、電気系統の
ブレーカーがあります。家中に張り巡らされて

いる電気系統のどこかでショートが起き、大電
流が流れるという異常事態が起きたとき、ブレー
カーが落ちて電気の供給を止めます。電気が供
給されないのはシステムとしては壊れたわけで
すが、大電流を流し続けていると火事になる危
険性がありますから、電気の供給を止めて、安
全側に倒しているわけですね。
　地震発生時ストーブが消えることや、上から
ものが落ちてきたときに電源スイッチが切れる
ような方向にトグルスイッチの向きを決めるの
も、フェイル・セイフの一種でしょう。
　筆者は学生時代の高電圧実験で、「電源がオ
フになっているとわかっていても、電線に最初
に触れるときには《手の甲》を使うように」と指
導されたのを覚えています。万一電源がオフに
なっていなかった場合《手のひら》の側で電線に
触れると、電流のために筋肉が収縮して電線を
つかんでしまい、自分の意志で離せなくなって

Fail-Safe

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki

図版イラスト●フクモトミホ 27

 ▼図1　壊れた遮断機は下りたままが安全

http://www.hyuki.com/

4 - Software Design Aug. 2015 - 5

しまう危険性があるとのこと。これもまた、フェ
イル・セイフに基づいています。
　電車の運転ではデッドマン装置というしくみ
が使われています。これは、ハンドルを握り続
けていないと、電車が止まってしまうしくみで
す。デッドマン（死者）という名前のとおり、電
車の運転士が死亡したり、気を失ったりした場
合に自動で電車が止まるようにするためです。
これも、フェイル・セイフの一種です。

フェイル・セイフの前提条件

　フェイル・セイフに基づく設計のためには、
大きな前提条件を認める必要があることに注意
してください。それはこのシステムは壊れる可
能性があるという前提条件です。フェイル・セ
イフは「壊れるときには安全側に倒れるように
する」という設計方針ですから、壊れることを
認められないなら、フェイル・セイフの設計を
行うことは絶対にできません。
　すなわち、「この機械は壊れません」や「事故
が起きる可能性はゼロです」という主張はフェ
イル・セイフと相反することになります。

セイフの定義

　フェイル・セイフにおけるセイフ（安全）は、
よく考えると難しい問題です。システムごとに
定義しておく必要があります。
　たとえば、コンピュータが組み込まれた金庫
を想像してみてください。表面にあるボタンで
暗証番号を正しく入力すると金庫は開きますが、
誤った入力では開きません。この金庫が壊れる
ときには、どういう振る舞いをすればフェイル・
セイフと言えるでしょうか（図2）。
　壊れた金庫は、けっして開いてはいけないの
でしょうか。それともすぐに開くべきでしょう
か。けっして開かないとしたら、中のものが盗
まれる心配はありませんが、緊急時の取り出し
ができなくなります。すぐに開いてしまったら、
緊急時の取り出しができますが、中のものが盗
まれてしまう危険性があります。どちらが安全

なのか、一概には言えません。
　「金庫なんだからすぐに開いちゃ困るよ」とい
うのなら、銀行の扉はどうでしょう。火災発生
時に銀行の扉が開かなくなってしまったら、財
産は安全ですが、中にいる人が閉じ込められて
しまう危険性があります。なかなか難しい問題
であることがわかります。

日常生活とフェイル・セイフ

　私たちの日常生活で、フェイル・セイフとい
う発想はどのように役立つでしょうか。
　災害時とは、日常というシステムが壊れた状
況です。家族の間で、災害時の集合場所や連絡
方法を決めておくのは、日常生活をフェイル・
セイフにする方法の1つかもしれません。
　「自分の手帳に自分の住所を書く」のはフェイル・
セイフの観点からどうでしょう。手帳は大切なも
のですから、万一落としたときに自分に連絡が
来るようにと、自分の住所を書くことには意味
があります。しかし、悪意のある人がその手帳
を入手した場合、住所が書いてあったばかりに
大きな被害を受ける危険性があるかもしれません。
何が正しいか、ここには正解はありません。本
人が何を安全と定義するかが大事になります。

◆　◆　◆
　あなたの周りを見回して、「絶対に《これ》は
壊れない」と思っているものはありませんか。
また「万一《これ》が壊れたときには安全側に倒
れるか」を考えてみてください。そのときの「安
全」とはなんでしょうか。
　ぜひ、考えてみてください。｢

27

 ▼図2　壊れた金庫はどうなるべきか

6 - Software Design

前回のおさらい

　「IoTをやってみよう！」企画、前回は、使用す
るパーツを選定し、GPSと携帯回線の動作テス
トを行いました。後半である今回は、いよいよア
プリケーションを開発し、Raspberry Pi（以下、
発信機）から位置情報を送信し、スマートフォン・
タブレットから位置が確認できるようにします。
開発するアプリケーションですが、僕は普段から
Python 3と、WebフレームワークであるDjango

を利用しているので、今回もこちらを利用しました。
　開発アプリケーションは、次の3つです。

・DBに位置情報を収集し、APIを通して位置情報
の登録と取得ができるサーバサイドプログラム

・Raspberry Pi上で動作し、GPSから得た位置
情報をサーバにHTTPで送信するプログラム

・ブラウザ上で動作し、位置情報をサーバサイ
ドから取得して、地図上に表示するシング
ルページプログラム

　ちなみに、この記事のコードはすべて
GitHub注1に公開しています。
　サーバは弊社の IaaSサービスである、「さく
らのクラウド」を利用しました。

サーバサイドの
アプリケーション

データベース

　スーパーママチャリグランプリには、弊社か
らは1台だけでなく、複数台の自転車が出場し
ているので、それらすべての位置情報を管理す
る必要があります。そのため、発信機を管理す
るモデル（テーブル）Transponderと、ある時点
での位置情報を管理するモデルWaypointを用
意しました（リスト1）。

API

　APIは、Raspberry Piから位置情報を登録
するためのAPIと、ブラウザに対して、すべ
ての発信機の位置情報を渡すためのAPIが必
要になります。
　APIは、発信機名、時刻、緯度および経度を
POSTすると位置情報が保存され、GETする
と最新の位置情報を含む発信機の一覧をJSON

がGETで取得できるエンドポイントを用意し
ました。
　発信機の一覧をGETするとリスト2のよう
なレスポンスが返ってきます。

おとなラズパイリレーは、Raspberry Piを文字どおり「リレー」し、好奇心旺盛なITエンジニアが電子工作をするという企画
です。前編で構想を練り、後編で実装します。1年を通してどんなデバイスができあがるのか？……今回は、さくらインター
ネット㈱のホープ、江草さんによるIoT工作です。

Writer 江草 陽太（えぐさ ようた）　さくらインターネット㈱　プラットフォーム事業部 サービス開発チーム
写真撮影：三村 朋広（さくらインターネット㈱　プラットフォーム事業部）

「IoTをやってみよう（後編）」
江草 陽太

第10回

注1） https://github.com/y-egusa/softwaredeisign-rpi-gps

https://github.com/y-egusa/softwaredeisign-rpi-gps

6 - Software Design Aug. 2015 - 7

「IoTをやってみよう（後編）」 第10回

　このとき、注意しないといけないことが1点
あります。緯度経度の表記には、10進法（度）
と60進法（度分）の2種類があります。GPSモ
ジュールは60進法、後ほど利用するGoogle

Maps APIは10進法を利用しているため、ど
こかで変換する必要があります。今回は位置情
報をブラウザに渡す時点で変換をしました。
　発信機の登録などの作業はAPIを用意せず、
Django標準の管理サイトを利用しています。

Raspberry Piの
アプリケーション

　こちらもサーバサイドと同様にPython 3で
実装しました。
　市販されているほとんどのGPSモジュールは、

NMEA 0183という規格に沿った文字情報を一
方的に送信してきます。このプロトコルは、1行
が1つのセンテンスになっており、センテンスに
はGPRMC、GPGGA、GPGSVなど、さまざま
な種類があります。これらの情報には、位置だ
けではなく、受信状態、正確な時刻、受信でき
ている衛星の情報といったさまざまな情報が含
まれています。今回の用途では、時刻と位置情
報だけが必要なので、両方が1つのセンテンス
に含まれているGPRMCだけを利用しました。
　通信状況が悪くなってもシリアルポートから
の読み込みが停止しないように、次のマルチス
レッド構成にしました。

シリアルポートから位置情報を
取得

　pyserialを利用すると、簡単にシリアルポー
トにアクセスできます。Python 3で利用する
ためには、pip3のインストールとpyserialの
インストールが必要です．

$ sudo apt-get install python3-pip
$ sudo pip-3.2 install pyserial

APIでのリクエスト

　HTTPのリクエスト発行は標準ライブラリ

class Transponder(models.Model):
 class Meta:
 verbose_name = verbose_name_plural = "発信機"
 name = models.CharField("名前", max_length=20, unique=True)
 marker = models.ImageField("マーカー", upload_to="uploads/markers", blank=True)
 marker_disabled = models.ImageField("マーカー (無効時)", upload_to="uploads/markers", blank=True)

class Waypoint(models.Model):
 class Meta:
 verbose_name = verbose_name_plural = "位置情報"
 transponder = models.ForeignKey(Transponder)
 created_at = models.DateTimeField("時刻")
 latitude = models.DecimalField("緯度", max_digits=10, decimal_places=5, blank=True, null=True)
 longitude = models.DecimalField("軽度", max_digits=10, decimal_places=5, blank=True, null=True)

 ▼リスト1　ソースコードサンプル（Transponder、Waypoint）

{
 "GPS01": {
 "latitude": 35.69287,
 "longitude": 139.69417833333333,
 "updated_at": "2015-06-22T16:02:52"
 },
 "GPS02": {
 "latitude": 35.694493333333334,
 "longitude": 139.69567333333333,
 "updated_at": "2015-06-22T16:02:53"
 }
}

 ▼リスト2　発信機の位置情報を示すJSON例

8 - Software Design

であるurllibを利用しました。
　先ほどのシリアルポートから位置情
報を受信するスレッドによって、キュー
にパースされた位置情報が入っていま
す。このスレッドではこのキューに溜
まっている位置情報をただひたすら送
信し続けます。

自動起動

　Raspberry Pi上にプログラムを実行するた
めのシェルスクリプトrun.shを設置し、/etc/
rc.localに記載することで、起動後に自動で
実行されるようにしました（リスト3）。

ブラウザ上の
アプリケーション

　jQueryを使って開発しました。Ajaxを使っ
て定期的に位置情報を取得し、Google Maps

APIを利用して地図上にプロットしています。
サーバサイドアプリケーションの一部として含
まれているため、個別のデプロイは不要です。
　Google Maps APIは、利用規約上、認証をか
けたページなどに設置することはできません。

もしも閉じた環境で地図を表示する必要がある

場合には、Leaflet.js注2のような、タイルマップ
を表示するためのライブラリと、OpenStreet

Map注3のような、オープンソースの地図データ
を組み合わせて使うと良いと思います。

org/ 動作試験

　さて、これで必要な準備は終わりました。い
よいよ動作実験です。
　今回は、弊社の東京支社から近くの新宿中央公
園まで散歩しながら試験をしてきました（写真1）。
　東京支社の窓際でバッテリーをRaspberry Pi

につなぎ電源ON！（写真2）しばらくすると、
GPSの衛星捕捉が完了し、地図上に旗が表示さ
れました。これで一安心です。片手にRaspberry

Pi、片手に iPadというあやしい格好（写真3）で

 ▼写真2　オフィスで動作確認 ▼写真1　著者近影

_IP=$(hostname -I) || true
if ["$_IP"]; then
printf "My IP address is %s\n" "$_IP"
fi

/bin/sh /home/pi/softwaredeisign-rpi-gps/rpi/run.sh &

exit 0

 ▼リスト3　/etc/rc.local設定例

注2） http://leafletjs.com/
注3） https://www.openstreetmap.org/

http://leafletjs.com/
https://www.openstreetmap.org/

8 - Software Design Aug. 2015 - 9

「IoTをやってみよう（後編）」 第10回

 ◀写真5　位置もぴったり

 ▼写真6　 ビルの間ではズレることも（新宿警察署前）

 ▼写真3　移動中も気になる…… ▼写真4　都庁前

（笑）、新宿中央公園に向けて出発進行。公園内
をぐるぐる回ってみましたが、大きなズレはほと
んどなく、実際の地図ともピッタリ一致していま
す（写真4、写真5）。これならレースでも充分、
活用できそうです。と、ここまでは大満足の出
来だったのですが、帰り際に通った新宿警察署
前では、位置が大きくズレるという問題も発生（写
真6）。高層ビルが多いところでは、やはり位置
が正確に出ないこともあるようです。とはいえ富
士スピードウェイには障害物もあまりないので、
心配する必要はないでしょう。

今後やりたいこと

　時間の関係上、妥協している点や、実装でき
ていない機能がまだいくつかあります。来年の
1月のスーパーママチャリGPまでに、次の機

能を実装したいと思っています。

1.POSTのAPIのJSON対応（手間の関係上で
きなかったので）

2.最新の位置情報だけでなく、過去の通過地点
も取得可能に！

3.通知機能（発信機に「もう1周！」「交代した
い！」ボタンを付ける）

　これらの機能を実装して、スーパーママチャ
リGPに挑みます !! ﾟ

● 執筆協力

RSコンポーネンツ㈱ Raspberry Piに興味のある方は次
のサイトをチェック！
http://jp.rs-online.com/web/generalDisplay.
html?id=raspberrypi

http://jp.rs-online.com/web/generalDisplay.html?id=raspberrypi

10 - Software Design

（鎌田）鹿野さんはオライリー・

ジャパンでMaker Faire Tokyoの

事務局を担当されているそうですね。

まずはご出身や学生時代のことを教え

ていただけますか。

（鹿野）生まれは宮城県仙台市で、

高校までは仙台に住んでいました。

中学時代は演劇部、高校時代は軽

音部とクイズ研究会に所属していま

した。

いろいろなことをしていたんです

ね。演劇といっても脚本や役者など、

さまざまな役割がありますが、何をさ

れたのですか？

演劇部では演出を担当していまし

た。そのころから全体をプロデュー

スしたり、人を盛り上げることが好

きだったんだと思います。

クイズ研究会というのも意外です。

実は、十うん年前の高校生クイズ

選手権で宮城県代表だったんですよ。

全国大会では、東京のスタジオで早

朝から翌日までぶっ通しで収録が

あって刺激的でした。

大学時代はどんなことをしていま

したか？

編集プロダクションでアルバイト

をしていました。企画を立てたり、

週刊誌の仕事で、著名な方の取材に

立ち会う機会をいただいたり、公務

員宿舎の張り込み取材をしたり……、

いろいろな経験をしました。

しかしまったく技術の影が見えま

せんね……。

そんなことはないですよ。小さな

ころから技術的なものにも憧れが

あって、小学3年生のときにおじい

ちゃんに「MSX2+」を買ってもらっ

たのがこの道に入ったきっかけだっ

たのかもしれません。

MSXですか！　しかも小学校3

年生！

中学のときは、アマチュア無線の

免許も取りましたよ。

男子のようですね。どうして無線

を触ることになったのですか？

もともと海外の人とコミュニケー

ションを取ることに興味があったと

ころに、当時の技術の先生が、アマ

チュア無線を勧めてくれたのです。

中2のときにはアマチュア無線技士

4級免許を取りました。コールサイ

ンは「JL7FCV」です。

しかし鹿野さんは理系ではなく文

系なんですよね。法学部に入って編プ

ロから出版社、IT企業に……現在は

Maker Faireと。一貫性があるよう

でないような。プログラミングのご経

験はあるのですか？

MSXでは、BASICマガジンに掲

載されているコードをそのまま入力

して遊んでいましたが、原理はあま

り理解していませんでした。編集職

につきたくてアスキーに入社したの

ですが、配属が営業だったので、流

通小売業系の業界誌出版社に転職し

て編集の仕事をしばらくしていまし

た。その後、流通系のSIerに転職し

てマーケティングの仕事をしたので

すが、そこでLinuxを触った経験が、

コンピュータの原理を知るきっかけ

だったと思います。

8月1、2日にビッグサイトで開

催される、Maker Faire Tokyoの

お話を聞かせてください。そもそもど

のようなイベントなのでしょうか？

アメリカでオライリー・メディア

が刊行している「Make:」という雑誌

ゲスト：鹿野 恵子さん第13献
鹿野 恵子（かの けいこ）さん
宮城県仙台市出身。早稲田大学法学部卒。学生
時代はバンド活動やアルバイトに夢中になる。大
学卒業後、アスキーに入社。PC書の書籍営業職
に携わる。その後、流通小売業系の出版社、IT企
業などを経て、オライリー・ジャパン Maker Faire
Tokyo事務局で広報、スポンサー担当を務める。

2013年のMaker Faire Bay Areaでの1枚→

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

10 - Software Design Aug. 2015 - 11

が土台にあるイベント注1で、2006

年にスタートしてから、今年で10

周年を迎えた世界最大規模のDIYイ

ベントです。電子工作から3Dプリ

ンタやレーザーカッターなどのデジ

タルファブリケーション、アート、

クラフト、宇宙、乗り物、音楽……

新しいものづくりの道具を使った、

ありとあらゆる作品が展示されてい

ます。現在、世界131ヵ所の国や地

域で開催されていて、78万人以上

が来場しています。日本ではオライ

リー・ジャパンの主催で年に1回東

京で開催していまして、それ以外に

も山口、大垣でMini Maker Faireと

いうイベントも開催されています。

今回の Maker Faire Tokyo は

どのくらいの規模なのですか？

来場者数は1万5千人を見込んで

います。出展者数は約350組です。

混雑が予想されますのでこの記事を

ご覧の来場予定の方には、スムーズ

に入場できるよう前売りチケットを

ぜひご購入いただければと思います。

それと夏真っ盛りなので、熱中症対

策をお忘れなく。

冬場に開催された去年と違って今

年は夏ですものね。見どころを教えて

ください。

目玉の1つは、アメリカのEepy

Birdさんというアーティストさんの

「メントスコークショー」でしょうか。

コーラにメントスを入れると、コー

ラが噴き出すのですが、このショー

では1回に130本のコーラゼロを音

楽に合わせて噴出させます。家族連

れの方に楽しんでいただけるように、

会場のいたるところでお子さんが参

加できるようなワークショップが開

注1）	 現在は、分社化したMaker Media
により刊行。

催されているのもこのイベントの特

徴です。今年はVR（仮想現実）モノ

の展示も多いです。また、ドローン

を飛ばすためのエリアの設置も予定

しています。

楽しそうですね！　Maker Faire

の裏話などはありますか？

イベントの運営もなるべく、自分

たちでできることは、自分たちで

やっているところでしょうか。以前、

東工大で「Make: Tokyo Meeting」

という名称でイベントを実施をして

いたころは、発電機の調達や運用、

机を並べるところまで事務局でやっ

ていたそうです。

どういう方が出展をされているの

ですか？　本誌の読者も出展できるの

でしょうか？

本職でハードウェアや組み込みの

エンジニアをしている人が多いです

が、ソフトウェアエンジニアの方も

もちろん、教師の方、アート活動を

している人など、本当にいろいろな

方が出展されています。ソフトウェ

アエンジニアの出展者さんは、お仕

事以外で趣味として触ることができ

るものを作りたいという気持ちがあ

るようです。技術的には素人のよう

な私からすると、彼・彼女らは魔法

使いのような人たちで、なおかつ来

場する方をおもしろがらせようとす

るサービス精神に溢れた素敵な出展

者さんが多いと思います。

Maker Faireのおもしろさとい

うのはどういうところにあるのでしょ

うか？

多様性の幅広さでしょうか。いた

るところで、見たこともないような、

おもしろいものを作っている人がい

て、それを楽しそうに説明してくれ

る。ものすごく最先端のテクノロジ

を使ったハイセンスな作品から、超

アナログなユーモアのある作品まで、

会場のすべてを1日で見て、理解す

るのは難しいぐらい、いろいろなもの

があります。この『多様性の幅広さ』

言い換えれば『懐の深さ』がMaker

Faireの味わいの1つなのではない

かな、と個人的には思っています。

懐の深さというと、鹿野さんの生

き方と似ているところがあるように思

いますね（笑）。ユニークな生き方、

Maker Faireの見どころポイント、

今日はたくさんのことを教えていただ

きました。ありがとうございまし

た。ｦ

12 - Software Design

　前回は、電圧と電流、抵抗やLEDの話をしま
した。次は、LEDをマイコンで点灯させてみる
ことにしましょう。その前に、部品同士をつな
げる方法を紹介したいと思います。電子機器の
組み立てというと、まず、基板にはんだづけが
連想されると思います。しかし、ちょっと部品
をつなげて実験をするにはブレッドボード（写真
1）を使うのが手軽です。
　ブレッドボードは、はんだづけを行わずに、
電子部品や配線（ジャンパ線）を挿し込むだけで
電子回路を組むことができる道具です。本来は
ソルダーレス・ブレッドボードと呼ぶのが正し
いのですが、たいていは略してブレッドボード
と呼びます。ブレッドボードには、電子部品に
ついているリード線を挿し込むための穴が
2.54mm間隔で空いています。この穴どうしは、
ブレッドボードの内部で決まったルールで電気
的に接続されています（図1）。このルールをう
まく活用することで、ブレッドボードを使って
配線を簡単に行えるようになっています。

ブレッドボード

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

LED点滅の極意（前編）第
二
回

　2.54mmというのは0.1インチです。最近では
少なくなってしまいましたが、リード線などの
長い端子が付いた電子部品の多くは、端子の間
隔が0.1インチの倍数であるためです。こういっ
た長い端子は、基板の穴（スルーホール）に挿し
込んではんだづけをするためのものです（写真
2、3）。この方法はスルーホール実装と呼ばれ
ます。一方、スルーホール実装と比較して基板
のスペースを取らない、表面実装という方法が
近年では一般的で、たいていの電子部品は表面
実装用に作られています。
　表面実装というのは、基板の表面のはんだづ
けをしたい個所にペースト状のはんだを塗り、
その上に部品の端子を置いてはんだづけ注1する
方法です。スルーホール実装用の部品のように
リード線がないため、そのままではブレッドボー
ドに挿し込むことができません。こういった電
子部品をブレッドボードに挿し込めるように変

注1） 表面実装のはんだづけは、リフロー炉と呼ばれるオーブン
で熱を加え、塗ったはんだを融かして行います。

スルーホール実装

 ▼写真1　ブレッドボード ▼図1　ブレッドボードのスルーホールの内部接続

※図中黄色線の部分が内部で結線されています

12 - Software Design Aug. 2015 - 13

LED点滅の極意（前編） 第
二
回

換基板に実装した、Breakout（ブレークアウト）
という製品がいろいろと販売されています（写真
4）。ブレッドボードで電子回路を組むときには、
Breakoutを使ったりスルーホール実装用の部品
を使ったりします。

マイコンボード

　次にLEDを点滅させるために使うマイコン
ボードを選びましょう。今日メジャーなプラッ
トフォームとしては、A

アルドゥイーノ

rduino、m
エンベッド

bed、R
ラ ズ ベ リ ー

aspberry

P
パイ

i（写真5）、E
エ ジ ソ ン

disonなどが挙げられます。
　Raspberry PiやEdisonはLinuxが動きます
から、IPを喋らせるのがとても楽ちんです。ま
た、PythonやPerl、あるいはRubyなどのスク
リプトを走らせられます。本誌読者層には馴染
みやすい環境だとは思いますが、せっかく IoT

的な連載をしていくのですから、こういったリッ
チなマイコン注2ではなく、低消費電力な組み込
みの世界に近い環境を紹介していきたいと思い

注2） これらのボードは世代交代が早いので、本連載の間に型が
変わってしまう可能性が大きいという事情もあります。

ます。
　Arduinoは最もメジャーなプラットフォーム
です。使い始めるのが容易で、メジャーがゆえ
にインターネットにも情報が最も豊富です。し
かし最もメジャーなArduinoであるArduino

Uno（写真6）など、Arduinoは8bitのプロセッサ
が主流で、それ単体でIPを喋らせるのが困難で
す。Arduinoは、TCP/IPのスタックをハード
ウェアとして搭載しているチップを使ってネッ
トワークに接続できるようにすることもできま
すが、少々面倒でもあります。
　mbedは、マイコンの設計図を販売しているイ

マイコンボード

 ▼写真2　スルーホール実装用のLED

 ▼写真4　 ブレークアウトの例（表面実装部品が搭載さ
れている）

 ▼写真5　Raspberry Pi

 ▼写真3　スルーホール実装用の抵抗

 ▼写真6　Arduino Uno

14 - Software Design

ギリスのARMという会社のプロジェクトで、学
生などが同社のARMアーキテクチャのマイコ
ンを利用したプロトタイピングを可能にするた
めに始まったものです。mbedにも複数種のマイ
コンボードがあるのですが、当初から販売され
ているmbed LPC1768（写真7）が最も一般的

で、Ethernetも搭載されています。この連載で
は、当面mbed LPC1768を例に進めたいと思い
ます。

クラウド開発環境

　mbedの特徴の1つに、mbedのプログラムを
開発する環境がクラウドで提供されており、Web

ブラウザを使ってコードの記述からコンパイル
まで行えることが挙げられます。Webブラウザ
でアクセスして書いたコードのコンパイルに成
功すると、マイコンに書き込むためのバイナリ
ファイルのダウンロードが自動的に開始されま
す。一般的には、コンパイルして生成したマイ
コンのバイナリ（実行ファイル）を書き込むには、
各マイコンに応じたアダプタが必要です。mbed

の場合は、ボードに書き込みアダプタの機能も
搭載されており、Webブラウザでダウンロード
したファイルを、USBフラッシュドライブに書
き込むようにドラッグ&ドロップするだけでマ
イコンへの書き込みが完了します。
　つまり、マイコンの開発をするときに一般的
に必要な、コンパイラなどのツールやマイコン
への書き込みを行うツールをmbedの場合は用意
する必要がありません。自分が書いたコードを

含めて開発環境はクラウドに存在するため、Web

ブラウザでmbedのWebサイトにログインする
だけで、どのパソコンからでも、いつも同じ環
境を使うことができます。
　mbedの開発は、今時のWebブラウザとUSB

を使うことができればよいので、開発マシンの
OSを選びません。比較的新しいChromeや
Firefox、あるいはSafariや Internet Explorer

が動けばよいので、WindowsでもOS XでもLinux

でも開発が可能です。

アカウントを作る

　mbedの開発環境を使うため、まずはアカウン
トを作りましょう。https://developer.mbed.
orgにアクセスしてください。
　アカウントを作るには、まずページの右上に
ある「Login or signup」と書かれたボタンをク
リックします（図2）。次の画面で「Signup」と書
かれた紺のボタンをクリックすると、アカウン
ト作成ページに移動できます（図3）。メールア
ドレス、ユーザ名、名前などを聞かれます。ユー
ザを作成すると、ログインした状態になります。
　画面上部に「Platforms」というボタンがありま
すので、ここをクリックします。このページに
はmbedのクラウド開発環境で開発できるボード
が、この記事執筆時点で60種類以上登録されて
います。mbedのクラウド開発環境が対応してい
るボードは、ものすごい勢いで増え続けていま
す。ここでは、一番左上の「mbed LPC1768」を
クリックします。
　mbed LPC1768のページ（図4）には、この
ボードを使うために参考になる情報がいろいろ
と掲載されています。このボードを自分のクラ
ウド開発環境で使えるようにするには、「Add to

your mbed Compiler」というボタンをクリック
してください。なお、その下にある「Buy Now」
というボタンをクリックすると、mbed LPC1768

を売っているオンラインストアの一覧ページを
見ることができます。ボードの入手に困ってい
たら、このページの下のほうにある「Asia

クラウド開発環境
アカウントを作る

 ▼写真7　mbed LPC1768

https://developer.mbed.org
https://developer.mbed.org

14 - Software Design Aug. 2015 - 15

LED点滅の極意（前編） 第
二
回

Pacific」というところを参考にするとよ
いでしょう。

　「Add to your mbed Compiler」をク
リックして自分の環境にmbed LPC1768

が追加されると、ボタンが「Open mbed

Compiler」に変わります。このボタンを
クリックすると、クラウド開発環境が起
動し、サンプルプログラムを環境に追加
するダイアログが開きます（図5）。「OK」
ボタンを押してサンプルプログラムを追加
してみましょう。
　追加した状態では、今回追加をした
「mbed_blinky」というプログラムが選択さ
れています。ここでツールバーにある
「Compile」ボタンをクリックすると、コ
ンパイルが実行され、生成されたバイナ
リのダウンロードが始まります。ダウン
ロード先はWebブラウザの設定によって
決まっているので、Webブラウザでダウ
ンロードしたときにいつも保存される
フォルダを確認してください。「mbed_

blinky_LPC1768.bin」というファイルが
ダウンロードされているはずです。
　mbedをUSBでパソコンに接続すると
き、開発に使うパソコンがWindowsの場
合のみ、USBシリアルのドライバ（https:
//developer.mbed.org/handbook/
SerialPC）をインストールする必要があり
ます。mbed LPC1768をパソコンに接続
し、認識されたドライブにこのファイル
をドラッグ&ドロップしてコピーします。
　コピーが終わったら、mbed LPC1768

についているリセットボタンを押します。
するとボードについているLEDが点滅を
始めます。
　次回は、ブレッドボードを使って、外
付けしたLEDを点滅させてみましょう。
ｦ

コンパイルしてみる

 ▼図2　mbed.org

 ▼図4　mbed LPC1768のページ

 ▼図3　Login or signup画面

 ▼図5　Create new programダイアログ

https://developer.mbed.org/handbook/SerialPC
https://developer.mbed.org/handbook/SerialPC
https://developer.mbed.org/handbook/SerialPC

16 - Software Design

「Raspberry Pi 2 Model B」＆
「Camera module」セット

旧型「Raspberry Pi Model B+」から、速さ最大6倍（クワッド
コアARM Cortex-A7）・メモリ容量2倍（1GB RAM）と格段に
パワーアップしました。さまざまなデバイスと接続して自分だけ
のガジェットが作れます。今回はRaspberry Pi本体と接続でき
る、5Mピクセルセンサー搭載の「カメラモジュール」とセットで
のご提供です（ロゴ入りのペンケースもお付けします）。
提供元 	アールエスコンポーネンツ　http://jp.rs-online.com

1名

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」からア
クセスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2015年8月17日です。プレゼントの
発送まで日数がかかる場合がありますが、ご了承ください。

LinuxCon Japan 2015で 配 ら れ た
Linux FoundationとRed Hatのノベル
ティTシャツです。『Project Atomic』は

“Dockerに最適化されたRHEL”と言われ
る「Atomic Host」の開発プロジェクトで
す。どちらか1枚を提供します。

	 Linux Foundation
	 http://www.linuxfoundation.jp

提供元 	レッドハット
	 https://www.redhat.com/en/global/japan 3名

Linux Foundation／Red Hat

ノベルティTシャツ

Lightningケーブル・コネクタ、USB入力
ポート内蔵で、これ1つでiPhoneに給
電、本体を充電できます。専用アプリ

「JuiceSync」をiPhoneに入れることで、
バッテリー残量、気温、iPhoneとの距離
をモニターできます。容量は3,000mAh。
赤と黒を1名様ずつ提供します。

提供元 	MIPOWジャパン　
	 http://www.mipow.co.jp 2名

iPhone用モバイルバッテリー
Power Tube 3000

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

データ形式に依存しないプログラミング手
法「ジェネリックプログラミング」をテーマ
に、数学の歴史を遡

さかのぼ

る本です。歴史上の数
学的証明・アルゴリズムを、C++11のコー
ドを載せながら解説しています。

提供元 	翔泳社
	 http://www.shoeisha.co.jp

その数式、プログラムできますか？
著：アレクサンダー・A・ステパノフ、
　　ダニエル・E・ローズ

2名

プログラミング言語Scalaについて、そ
の関数型機能に焦点を絞って解説した1
冊。簡潔で短いコード例と豊富な図で、
Scalaにおける関数型機能の使い方を効率
的に学べます。

提供元 	三恵社
	 http://www.sankeisha.com

Scalaファンクショナルデザイン
著：深井 裕二

2名

企画・設計・開発から、保守・管理・評価
まで、ITプロジェクト全体の流れを解説し
ながら、その場面々々で役立つ英語表現を
紹介します。無料でダウンロードできる英
語音声を聴きながら勉強できます。

提供元 	ジャパンタイムズ
	 http://bookclub.japantimes.co.jp

ITプロジェクトの英語
著：塚本 俊、小坂 貴志

2名

読者プレゼント
のお知らせ

「わかりやすいコード」「効率よく機能を追
加できる設計」といった、ゲームプログラ
マはもちろん、それ以外のプログラマにも
求められるコーディング技術を学べます。
サンプルコードはC++11です。

提供元 	技術評論社
	 http://gihyo.jp

ゲームプログラマのためのコーディング技術
著：大圖 衛玄

2名

http://jp.rs-online.com
http://sd.gihyo.jp/
http://www.mipow.co.jp
http://www.linuxfoundation.jp
http://www.shoeisha.co.jp
http://www.sankeisha.com
http://bookclub.japantimes.co.jp
http://gihyo.jp
https://www.redhat.com/en/global/japan

C o n t e n t s

第 1 章 気軽に試してみよう！　今こそLisp入門
● 五味 弘	

P.18

P.34第 2 章 サービス改善への回答　PHPエンジニア、Scalaを学ぶ ！
● 安達 勇太	

第 3 章 機能を最大限にいかすコーディング術
Scalaで始める、型安全な関数型プログラミング
● 伊奈 林太郎	

P.40

第 4 章 数学と物理遊びで垣間見る
定義で記述するHaskellのわかりやすさ
● 上田 隆一	

P.46

第 5 章 Erlang/OTPから生まれたWeb開発指向言語　
Elixir入門
● 力武 健次	

P.52

第 6 章 バグを生みにくい、メンテナンス性の良いプログラムへ　
Pythonで見る関数型言語の本質
● 辻 真吾	

P.58

P.64関数型が好きになる　Clojure入門
● ニコラ・モドリック	

第 7 章

Lispより始めよ、されば救われん！

なぜ関数型プログラミングは
難しいのか？

Lisp、Scala、Haskell、Elixir、
Python、Clojure、
関数型のエッセンスを学習する

第 1特集

　「なぜ関数型プログラミング」は難しいのか。その問いに応えるべく総力特集を組みました。まず原点に
戻るためLispの基礎を解説しました。歴史を振り返りながら、数学の関数との違い、Lispの特徴紹介とそ
の使いこなしをまとめました。
　そして現代です。チャットワーク㈱様では既存のPHPアプリケーションをScalaに移植しました。その
過程で開発者達の間で起きたさまざまな知見を公開します。㈱はてな様では多くのサービスをScalaに直
してきた実績から、小さな部品を組み合わせ大きなプログラムを作っていくためのノウハウを解説いただ
きました。人気のHaskellは数学と物理での利用例をベースに、どのように数式をコード化するのか実例
を紹介します。そしてWeb開発系での本命とも言われるElixirは導入方法から学習方法まで一気に解説！
　Pythonも関数機能をベースにその特徴を紹介します。最後はJava上のLispであるClojureです。ライ
ブコーディングをはじめとして、楽しく今風に関数型を学ぶやり方を公開します。

18 - Software Design

なぜ関数型プログラミングは難しいのか？第1特集

関数型プログラミングとは？
それがなぜ難しいのか？

　Lispを知る前に、まず今回の特集である関
数型プログラミングとは何かを見ていきましょ
う。そして、この関数型プログラミングがなぜ
難しいのか、または難しいと思われているのか
を考えてみます。
　最初に関数とは、y=f (x)のような数学でお
馴染みのものです。この関数の考えをそのまま
プログラミングするのが関数型プログラミング
です。このように考えると関数型プログラミン
グは数学を習った一般の人にとっては特別なも
のではありません。ここで、数学でいう関数と
は、図1のように同じ入力に対して、いつも同
じ結果を返すものです。数学を習った方には、
これは当たり前だと思えるでしょう。

　でも考えてみてください。プログラミングの
世界では、これが当たり前と言えるでしょうか。
たとえば、リスト1のプログラムを考えてみます。
　数学の関数は状態を持たず副作用も生じませ
んが、プログラミングの世界ではリスト1のよ
うに「普通」に状態を持ち、副作用を簡単に生じ
させてしまい、同じ入力でも違う結果が出てし
まいます。これは数学の関数ではありません。
　ここで副作用と書いたため、それ自体が悪い
ように感じたかもしれませんが、プログラミン
グの世界ではグローバル変数や代入文は基本的
な技術であり、強力な武器です。もっと言えば、
プログラム格納方式であるノイマン型コンピュー
タにとっては、根本的な機能です。関数型プロ
グラミングではこの根本的な機能を使いません。
つまりプログラマにとっては今までの副作用を
積極的に使うプログラミングと違うので、難し
く感じるのです。

　ここで少し振り返ってみましょう。今
までのプログラミングは、データ構造と
して配列を多用し、グローバル変数を気
の向くまま使い、繰り返し文でプログラ
ムを制御し、代入文で好きなようにグロー
バル変数や配列の要素の値（プログラム
の状態）を変えて副作用を積極的に使う、
いわゆる俗世のプログラミングでした。

int z = 0; //このグローバル変数で、このプログラムは「状態」を持ってしまう
int f(int x){
 z = z + x; //この代入文で zの値が変わるという「副作用」を与えてしまう
 return z; //この結果、同じ入力に対しても、違う結果を返してしまう
} //これは、もはや数学の「関数」ではない

 ▼リスト1　状態を持ち副作用が生じるプログラム

入力x 出力y関数 f (x)

同じ入力（引数）に
対して

いつも同じ出力（値）
になる（参照透過性）

このためには関数が状態（グローバル変数）を持たず、代入文
などによる副作用がないこと

 ▼図1　数学の関数

Author 五味 弘（ごみ ひろし）　沖電気工業㈱　　 mail gomi@gomi.info　

関数型プログラミングとは何か
今こそLisp入門
気軽に試してみよう！

本章では、関数型プログラミングの源流であるLispの世界に触れ、その基本的な文法やしくみを学びます。決して特殊
なスタイルで閉じた世界のコンピュータプログラミング言語ではないことがわかるでしょう。そして後の言語にいろいろ
な影響を与えてきたこともわかるようになるでしょう。恐れず気軽にLispを試してみましょう。

第 1 章

18 - Software Design Aug. 2015 - 19

なぜ関数型プログラミングは難しいのか？

たとえば、階乗の計算プログ
ラムはリスト2のように書い
ていました。
　この俗世のプログラミング
からグローバル変数禁止や代
入文禁制、副作用禁則の戒律
を堅く守る修行僧のような厳
しいプログラミングの世界に
拉致されてしまうのではないかという恐怖から、
関数型プログラミングはプログラマから恐れら
れているかもしれません。
　また数学では、図2に示すように関数を普通
の値と同じように、関数と演算子の引数（入力）
にでき、さらに関数の結果（出力）にもできる「高
階関数」の考えがあります。
　関数型プログラミングでも同様に関数を普通
のもの（これをファーストクラスオブジェクト
と格好良く呼んでいますが、簡単に言えば、普
通のオブジェクトのこと）として扱えるように
なっています。つまり関数も1や“abc”のよう
な普通のオブジェクトのように、引数やリター
ン値として使えるのです。このように関数型言
語では高階関数があることから、何か高級なこ
とや難しいことをしているように思われている
かもしれません。いつも難しいことを考えてい
る学者のような人がプログラミングしていると
思われているのでしょう。
　でも大丈夫です。Cであれば関数ポインタを
使うことにより、関数を普通の値と同じような
感覚で使えます。Java には昔は匿名クラス、
今はラムダ（lambda）式があり、普通の値とし
て使えます。決して関数型言語だけが高級なこ
とをしているわけではありません。
　そして安心してください。代入文を使わず、

副作用がない清らかな世界だけど、プログラマ
にとって住みにくい世界に拉致することはしま
せん。今回の特集では、関数型プログラミング
をするために、決して、難しいことを考える学
者になるのでもなく、いろいろと禁欲する修行
僧になることを勧めているのではありません。
本特集を読んでもらえれば、関数型プログラミ
ングが楽しみながら組めることになると思います。

関数型プログラミングを
勧めるこれだけの理由

　前の節で関数型プログラミングとはどういう
ものかと、どうして関数型プログラミングが難
しいと思われているのかを紹介しました。ここ
では逆になぜ今、関数型プログラミングをする
のか、そしてなぜ流行っているのかということ
を考えてみます。関数型プログラミングを勧め
るにはこれだけの理由があります。

① 関数型プログラミング向きの
問題がある

　筆者たちは多くの種類の問題に対してプログ
ラミングしていますが、そのなかには従来のプ
ログラミングよりも関数型プログラミングに適
した問題もあります。状態を持たずに再帰的な
構造をしている問題がそうです。たとえば、情
報処理技術者試験によく出てくる探索や整列プ

int fact(int n){
 int ret = 1; //現時点の計算結果の状態を持たせるための変数
 for (int i = 1; i <= n; i++){ //繰り返し文によってプログラムを制御する
 ret *= i; //変数に現時点の計算結果の状態を代入し、retに副作用させる
 }
 return ret;
}

 ▼リスト2　繰り返し文で制御し、状態を持ち、その副作用を利用した階乗のプログラム

入力x=関数g(y) 出力z=関数h(u)関数 z=f (x)

関数 f の入力に関数 g 、関数の出力に関数 h

 ▼図2　高階関数

関数型プログラミングとは何か
今こそLisp入門

気軽に試してみよう！

第 1 章

20 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

ログラムは、再帰プログラミングを使った関数
型プログラミングがぴったりでしょう。将棋プ
ログラムの思考ルーチンで先読みするところも
再帰がぴったりでしょう。

②人間は再帰的思考が向いている

　人間の思考は再帰的に考えることに向いてい
るというのがあります。大きい問題を同形の小
さな問題に分解して考える数学的帰納法が自然
だとするものです。たとえば、年間計画を期別
計画に落とし、月間計画、そして週間計画にす
るというのもそうでしょう。社長から部長へ指
示を出し、部長から課長、課長から社員、そし
て最後に社員が仕事をして、その結果を課長、
部長経由で最後に社長まで連絡するのもたぶん
再帰的でしょう。しかしプログラマ脳では再帰
よりも繰り返しで考えるのが理解しやすいかも
しれませんが。

③並列処理が自然にできる

　状態を持たず副作用がない関数型プログラミ
ングでは、並列処理が自然に行えます。同期処
理や排他処理をする必要がありません。クラウ
ドコンピューティングやビッグデータ処理など
では有効になる技術です。

④動的なプログラミングが
自然にできる

　関数を引数にしたり、リターン値にすること
ができ、関数自身もデータとして扱えるので、
動的に関数を生成したり変更することができま
す。これは動的で柔軟なサービス指向のコン
ピューティングに向いています。

⑤抽象的なプログラミングが
自然にできる

　上記の動的なプログラミングとも相関があり
ますが、抽象的なプログラミングができるとい
うのもあります。抽象的にプログラミングでき
ますので、仕様変更に強いプログラムを作るこ
とができます。さらに状態を持ちませんので、
これからも仕様変更に強い柔軟なプログラミン

グができます。

⑥グローバル変数や副作用を使う機会
が減るのでバグが少なくなる

　グローバル変数や代入文などによる副作用は、
バグの温床になっています。諸悪の根源です。
知らない隙に誰かが勝手にグローバル変数の値
を滅茶苦茶にしていることがあります（多くの
場合は犯人は自分自身ですが）。さらに悪いこ
とに、その愚行を見つけるのは、砂漠の中の砂
粒を見つけるくらいに非常に困難です。関数型
プログラミングではグローバル変数や副作用は
いざ鎌倉というときにしか使いませんから、品
行方正なプログラミングができます。

⑦型推論が行える静的型付け言語では、
コンパイル時にバグが多く取り除ける

　関数型プログラミングの一般的な性質ではあ
りませんが、型推論が行える言語では、コンパ
イル時に型に関する多くのバグが取り除けるメ
リットがあります。

⑧動的型付けで型宣言のわずらわしさ
から解放される

　これも関数型プログラミングの一般的な性質
ではありませんが、プログラマがメモリ管理か
ら解放されたGC（ガーベッジコレクション）の
機能と同様に、動的型付けを行う関数型言語で
は、型宣言のわずらわしさから解放されます。

◆　◆　◆
　上記の理由には、やや我田引水的な点もあり
ましたが、このように多くの関数型プログラミ
ングを勧める利点があります。とくに並列処理
に向いていることや、逆に欠点であった多くの
リソースを使うことが最近のコンピュータの高
機能化によりあまり問題にならなくなったこと
から、関数型プログラミングが今、流行ってき
ています。さらに関数型プログラミングを勧め
る理由は上記のほかに、⑨数学的で何かかっこ
よさそうとか、⑩古いけど何か新しいそうだと
いうものがあります。むしろ、こちらのほうが
受けがいいかもしれません。

20 - Software Design Aug. 2015 - 21

Lispを勧めるには
理由がある

　前の節では関数型プログラミング言語を勧め
る理由を紹介しました。この節では関数型プロ
グラミングの第一歩として、Lispをお勧めし
ています。もちろんLispには関数型プログラ
ミングのための機能があることは当然の理由に
なります。ここではほかの関数型プログラミン
グ言語ではなく、Lispを勧める5つの理由を紹
介します。Lispの基礎は次の節で紹介します
ので、ここではLispの細かいところは気にせ
ずにLispの良いところを覚えてください。

①Lispは覚えることが少ない

　Common Lispのように大きなLisp処理系も
ありますが、一般的にはLispの言語仕様は小
さいので、覚える量が少なくて済みます。まさ
に関数型プログラミングの入門として、最適な
言語です。

②Lispはインタプリタですぐに部分的
に実行できる

　Lispはインタプリタを持っていますので、
コンパイルすることなく、すぐに実行できます。
またJavaのようにすべてを完成させてから実
行する必要はありません。作ったところから実
行できます。たとえば(+ 1 2 3 4)とすれば、
すぐに10が返ります。簡単な電卓としても使
えます。これをJavaで書くと、たいへんな目
にあうでしょう。Javaプログラミングをせず
に電卓を使うことになるでしょう。なお(+ 1
2 3 4)は、1＋2＋3＋4をLisp で書いたもの
で、次の節で説明しますので、ここでは気にし
ないでください。

③Lispには呪文は不要

　Java でいつも必要となる呪文（たとえば
public static void main(String[] args） の
ような呪文）は不要です。Lispはプログラミン
グするために、こんな呪文を覚える必要はあり

ません。実行したいところだけ書けばいいのです。

④Lispには歴史がある

　ほかの関数型言語にはない歴史があります。
このため、Lisper（Lispを信奉し伝道する人）
は多くいます。ほかの関数型言語をやっている
人もきっと元Lisperか隠れLisperです。この
ため、Lispを語り合える仲間が多くいます。
　またGC（ガーベッジコレクション)やラムダ
（Lambda）式などの最近のプログラミング言語
の流行は、Lispから始まっています。

⑤Lispは動的言語である

　Lispは動的型付けをするために、いちいち
型を宣言する必要がありません。簡単で便利な
機能です。そしてこれは数学の関数で型をあま
り宣言せずに使うことにも通じる自然なもので
す。関数はLispのデータとして扱えるために
動的に生成や変更も容易です。
　MLのような型推論をする静的型付けの言語
とLispの動的型付け言語は、いつもどちらが
優れているかという宗教戦争をしています。し
かし後の章で静的型付け言語の紹介もあります
ので、ここでは動的言語の宣伝はこれだけにし
ます。

◆　◆　◆
　大きな声では言えませんが、Lispにはデメリッ
トもあります。①括弧が多くて見にくいとか、
②前置記法が見にくいとか、③動的型付けのた
めに多くのメモリと実行時間が必要だとか、④
その実装が面倒であるとかがあります。でも上
記のメリットを読めばわかるように些細なこと
です。そうですよね、読者の皆様。
　ところでLisp処理系は多くのものが無料で
公開されています。ここでは ISO規格になっ
た ISLispの処理系の1つを紹介します。

・OKI ISLisp（http://islisp.org/index-jp.html）

　以降の節では、この ISLispを例にとって、
Lispを紹介していきます。

関数型プログラミングとは何か
今こそLisp入門

気軽に試してみよう！

第 1 章

http://islisp.org/index-jp.html

22 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

CやJavaプログラマでも
わかるLispの基礎

　ここからいよいよLispの心髄を紹介してい
きます。まずこういう言葉があります。「プロ
グラミング言語には2種類ある。この2種類と
はLispとそれ以外の言語である」という言葉で
す。これぐらいLispは、ほかの言語と比較し
て特徴がある言語です。
　最初に前の節で紹介した階乗のプログラムを
再帰プログラムに変更したものを紹介します（リ
スト3）。

（0）再帰プログラミングの考え方とその
コツ

　Lispの説明に入る前に再帰プログラミング

の考え方を紹介します。再帰プログラミングは
図3に示すように、再帰プログラミングする関
数 f(x)を (i)f(x-1)を使って記述し、次に (ii)

ベースになるf(0)を記述します。こうすると、
f(5)を実行すると、(i)を使ってf(4)を呼び出
し、f(4)の中で f(3)を呼び出し、最後には
f(1)の中でf(0)を呼び出し、(ii)を使ってベー
スのf(0)は具体的な値を返します。そのf(0)
の値を f(1)が受け取り f(1)の値が決まり、
f(2)に返されます。最後f(5)の値が返されます。
階乗のときの流れは図3を参照してください。
　この再帰プログラミングは数学的帰納法と同
じ考えになります。この再帰プログラミング（と
数学的帰納法）のコツはずばり「再帰」を見つけ
ることです。この再帰の発見のコツは「同じこ

とをしている」部分を見つけることで
す。階乗であれば、「5の階乗は4の階
乗の結果に5を掛けること」という再
帰を見つけることです。
　これを5の階乗は1×2×3×4×5

のように繰り返しであるという考えは
駄目です。手続き型の考えに毒されて
います。この再帰の考え方に慣れてく
ださい。
　次にリスト3のプログラムをLisp

で書いてみるとリスト4のようになり
ます。リスト4で紹介した最初のLisp

プログラムはどうでしたでしょうか。
このリスト3とリスト4のプログラム
を比較すれば、Lispのだいたいの感
覚はつかめるかと思います。そしてそ
んなに難しくないものだとわかるかと
思います。これで安心して、次から
Lispの特徴を説明できます。

（1）Lisp は1 + 2と書かずに
(+ 1 2)のように書く前置記法

　小学校で算数を習っているときから、
四則演算などの演算子を引数と引数の
間に置く中置記法（代数記法）を使って
います。たとえば、1と2の足し算は

int fact(int n){
 if (n <= 1) return 1; 　 //nが1以下であれば、1を返す
 else return n * fact(n - 1); //nが1より大きければ、再帰呼び出し
} // このプログラムは状態を持たず副作用もない関数プログラム

 ▼リスト3　再帰呼び出しによる階乗のプログラム

(defun fact (n)
 (if (<= n 1)
 1 ; nが1以下であれば、1を返す
 (* n (fact (- n 1))))) ; nが1より大きければ、再帰呼び出し

 ▼リスト4 　Lisp による階乗の計算プログラム

関数 f (x)

関数 f (x-1)を使って
f (x)を記述

関数 f (0)の値を記述

関数 fact(n)

fact (n)= n＊fact(n-1)

ただしn>1

fact (1)=1

階乗 fact(5)→5＊fact(4)→5＊4＊fact(3)→5＊4＊3＊fact(2)→
5＊4＊3＊2＊fact(1)→ 5 ＊ 4 ＊ 3 ＊ 2 ＊ 1 = 120

プログラムの流れ f (5)→ f (4)→ f (3)→ f (2)→ f (1)→ f (0)

 ▼図3　再帰プログラミング

22 - Software Design Aug. 2015 - 23

算数の時代から1＋2と書いていま
した。もちろん、CやJavaもそのよ
うに記述します。一方、関数の表記
は f (x)や siniのように、数学でも
CやJavaでも前置記法です。一方、
Lispでは四則演算のような演算子も
すべて関数になります。演算子がな
く関数だけのLispはすべてこの前
置記法になります。つまりLispで
は 1＋2を (+ 1 2)と表記します。
この表記がほかの言語と一線を画す
ものになります。
　前置記法を採用しているため、演
算子の優先順位を気にする必要はあ
りません。優先順位を制御する(x
+ y) * (z - u)のような括弧も使う必要はあ
りません。逆に言えば、演算子の優先順位は(*
(+ x y) (- z u))のようにプログラマが括弧
で全部書く必要があります。

（2）Lispは型を気にせずにプログラミ
ングできる動的型付け

　リスト4のLispプログラムでは引数宣言(n)
のところで型宣言がないことに気づくと思いま
す。そうなのです。Lispでは処理系が実行時
に動的に型を処理していて、プログラマが気に
する必要はありません。これを動的型付けと呼
んでいます。
　たとえば、リスト4の関数で(fact 5)を実
行するとnの値は整数型の5になり、実行結果
として整数型の120が返り、(fact 5.0)を実行
するとnの値は浮動小数型の5.0になり、120.0

が返ります。つまりLispは内部では型を持っ
ていて、その型に最適なコードになっています
が、それをLisp処理系自身が動的に割り付け
ていますので、プログラマに意識させることは
ありません。この様子を図4に示します。

（3）階乗計算をするための関数や
特殊形式の紹介

　リスト4で使っていたLisp の関数や特殊形
式を紹介します（図5）。

　defunは関数定義のdefine-functionの省略形
になりますが、これ以外の関数はCやJavaプ
ログラマでもすぐに推理できるかと思います。
前置形式に惑わされなければ、Lispはそんな
に掛け離れた言語でもありません。
　上記の関数を使って、たとえばフィボナッチ
数の計算プログラムは

(defun fib (n)
 (if (<= n 1)
 1
 (+ (fib (- n 1)) (fib (- n 2)))))

のようになります。括弧の多さに惑わされない
でください。

（4）Lispの評価と特殊形式quote、
function

　(foo (bar ...) (baz ...))を実行するとき
は、括弧の先頭にあるシンボルfooを関数名と
して、その関数を引数(bar ...) や(baz ...)
とともに実行します。このときにbarやbazの
リストも同様に実行されます。
　Lispではプログラムを実行することを評価
（eval）すると呼んでいます。(+ 1 2)を評価す
ると3になります。また引数を評価せずにその
まま返す特殊形式quoteがあります。(quote (1

動的な代入文

変数n
integer 5

5.0float
どんな型でも動的に代入
できる変数 型を持つデータ

 ▼図4　動的型付け

(defun 関数名 (引数1 引数2 ...) 関数本体 ...) ――関数定義
(if 条件 then節 else節) ――分岐
(* 引数1 引数2 ...) ――乗算（他の四則演算も同様）
(<= 引数1 引数2) ――比較（他の比較も同様）
(関数 引数1 引数2 ...) ――関数呼び出し

 ▼図5　階乗計算をするときに使った関数

関数型プログラミングとは何か
今こそLisp入門

気軽に試してみよう！

第 1 章

24 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

2 3))を評価すると、何もせずに引数(1 2 3)
がそのまま返ります。
　quoteがないと、(1 2 3)は1を関数名とし
て評価することになり、そのような関数はない
というエラーが出ます。また(quote (1 2 3))
の略記法として、'(1 2 3)のように書きます。
このquoteと似ているものにfunctionがあり
ます。これはシンボルの関数を返す特殊形式で、
たとえば(function +)とすれば、関数+の実
体が返ります。また(function +)の略記法と
して、#'+のように書きます。

（5）Lispのデータ型の
　　中心はリスト

　Lispは一般の言語で多用される整
数型、文字や文字列型などももちろ
んありますが、データ型の中心はリ
ストです。Lisp の名前がリストプ
ロセッシング（List processing）から
来ていることからもリスト処理が中
心になっている言語です。ここでは
Lisp特有のデータ型を紹介します。

 （ⅰ） リスト
　リストは複数のデータを要素とし
て1列に並べるデータ型です。リス
トの例としては(1 2 3)や(1 (2 3)
4)、(foo (bar 1 2.0 #\a "abc")
'(1 2 3))があります。また()は要

素がない空リストです。そして重要なことは
Lispのプログラム自身もリストで表現されます。
つまりプログラムもデータと同じ形式で、両者
を区別せずに同等のものとして扱えます。これ
からLispは柔軟な構造と振る舞いを持つ言語に
なります。リストを処理する代表的な関数として、
図6のものがあります。
　図7にリスト(1 2 3) のメモリ上の表現と、
リスト関数c

カ ー

ar、c
クダー

dr, c
コ ン ス

onsの流れを紹介しま
す。図7の1個の箱が1個のデータを表し、2

個の箱の組をセルまたはコンスと呼んでいます。
斜め線が入っている箱がリストの末尾nilを表

・(car リスト) ――「リストの先頭要素を取り出す」

　例.(car '(1 2 3)) → 1

・(cdr リスト)――「リストの先頭以外の残りのリストを取り出す」
　例.(cdr '(1 2 3)) → (2 3)

・ (cons 要素 リスト)――「要素をリストの先頭に加えたリスト
を生成する」

　例.(cons 1 '(2 3)) → (1 2 3), (cons (car list)
(cdr list)) → list
 (cons 3 nil) → (3) → nil
 「nilはリストの末尾を示すシンボル」
 (cons 1 2) → (1 . 2)
 「リストの末尾がnilでないものはドット対と呼ばれる」

・(append リスト ...)――「リストを連結する」
　例.(append '(1 2 3) '(4 5 6)) → (1 2 3 4 5 6)

・(list 要素 ...)――「要素のリストを返す」
　例.(list 1 2 3) → (1 2 3)
　これは (cons 1 (cons 2 (cons 3 nil)))と同じ

・(length リスト)――「リストの長さを返す」
　例.(length '(1 2 3))→3

・ (member 要素 リスト)――「要素がリストの中にあるかどう
かを返す」

　例.(member 2 '(1 2 3)) → (2 3), (member 4 '(1
2 3)) → nilは偽を表すシンボルとしても使われる

 ▼図6　リスト操作の代表的な関数

(1 2 3) のメモリ配置

car

cons

cdr

1

1 (2 3)

2 3

1 2 3

carは左側を取り出し、
cdrは右側を取り出す

consはcarとcdrの逆関数

 ▼図7　リスト関数のcar、cdr、cons

24 - Software Design Aug. 2015 - 25

しています。n
ニル

il はラテン
語の「無」の意味で、ニヒル
な単語です（古語のニヒル
nihilが変化してnilになっ
ています）。
　関数 appendの 2引数版
の関数append2は、リスト5のように再帰プロ
グラミングで実装できます。
　簡単な例(append2 '(1) '(2 3))を頭の中で
想像して、ちゃんと(1 2 3)が生成されること
を確認してみてください。最初は (cons 1
(append2 () '(2 3))となり、次に (cons 1
'(2 3))となり、最終的に(1 2 3)が生成され
ることを確認してみてください。

 （ⅱ） シンボル
　シンボルは図8のように関数や値などを格納
できるもので、Lisp でリストと双対を成すデー
タ型です。たとえば、シンボルに実行中に動的
に関数を代入することもできますので、柔軟な
プログラムが書けます。シンボルが括弧の先頭
にあると関数として扱われ、先頭以外にあると
変数として扱われます。
　また 'abcや (quote abc)とすると、関数や
変数として扱われず、シンボルとして扱われま
す。さらにシンボルはインターン、つまり同じ

名前のシンボルは同じものとして同じアドレス
に配置されています。'abcと'abcを評価した
ものは同じものになります。

 （ⅲ） 真理値と述語関数
　t(真) とnil(偽)で表現します。また約束
として空リスト()とnilは同値です。図9に比
較や等価性を判断する述語関数（真理値を返す
関数）を紹介します。

 （ⅳ） 関数
　関数もデータ型の1つで、ほかのデータ型と
同じように引数やリターン値として使えます。
詳しくは次の (6)を参照してください。

（6）関数プログラミングに使う
関数の紹介

　関数プログラミングで使うLispの関数を紹
介します（図10）。
　(lambda (x) (+ x 1)) は「ラムダ式」と呼
ばれ、これを評価すると、図12に示すような

(defun append2 (list1 list2)
 (if (null list1) ; nullは引数のリストが空のときに真になる関数
 list2
 (cons (car list1) (append2 (cdr list1) list2))))

 ▼リスト5　2引数版のappend

シンボル名

値

関数

…

 ▼図8　シンボルのメモリ配置

・ (eq 引数1 引数2) ――「ものが同じか（アドレスが同じか）どうかを判断する。等しい
ときはt (真)を、違うときはnil(偽)を返す」

　例.(eq 1 1) --> t
 (eq 'abc 'abc) --> t
　　　シンボルは名前が同じときは同じアドレスに同じものとしてインターンされる
 (eq '(1 2 3) '(1 2 3)) --> nil
 内容は同じでもアドレスが違う別物なのでnilになる

・(equal 引数1 引数2) ――「内容が同じかどうかを判断する（深い比較をする）」

 例. (equal '(1 2 3) '(1 2 3)) --> t, (equal 1 1) --> t

・(null リスト) ――「リストが空のときにtを返す」
　例. (null '(1 2 3)) --> nil, (null ()) ---> t

 ▼図9　述語関数の代表的な関数

・ (lambda (引数1 引数2 ...) 関数本体 ...)――「ラムダ式の定義」
・(apply 関数 引数リスト ...)――「関数適用」
・(mapcar 関数 引数リスト ...)――「マップ関数（他のマップ関数も同様）

 ▼図10　関数プログラミングのための関数

関数型プログラミングとは何か
今こそLisp入門

気軽に試してみよう！

第 1 章

26 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

関数（引数はxの1個で、その引数を1つ加算す
る関数）を生成します。lambdaに続くリストが
引数リストになり、この引数の値を使って関数
本体が実行されます。C の関数ポインタや
Javaの匿名クラス、ラムダ式と同じものです。
　そしてこの関数が普通のオブジェクトとして、
どこでも気楽に使えます。(apply (lambda (x)
(+ x 1)) '(10)) を実行すると、10がxに束
縛（xの値として10がセットされる）され、ラム
ダ式の中の(+ x 1) が実行し、11が返ります。
2引数以上のときは、たとえば、(apply #'+ 1
2 3 '(4 5 6)) とすると21が返ります。最後
の引数がリストになるところがポイントです。
　どうでしたでしょうか。ラムダ式はわかりま
したでしょうか。関数型言語の説明でこのラム
ダ式を中心に解説しているものが多いですが、
無理に使うことはありません。関数型プログラ
ミングに慣れてきて、ラムダ式の便利さや必要
性がわかってから使い始めてもまったく問題が

ありません。
　ここで少し難しい話をします。どうしても関
数型プログラミングでは「クロージャ」を出さな
くては格好がつかないのでLispらしく括弧を
付けて、少し触れるようにします。そして、関
数型プログラミングをしているという見栄を張
るためには必要な知識です。でも安心してくだ
さい。クロージャがわからなくても関数型プロ
グラミングはできます。きっぱりと言い切れます。
　クロージャとは関数に「関数定義時」の変数の
値を閉じ込めた「環境」を持ち運ぶことができる
便利なしかけです。実行時でなく関数定義時と
いうのが大事な点です。これはLisp には昔か
らある考えで、Smalltalk のブロック文などに
も導入された便利なしかけです。関数型言語を
作る側から見ると面倒なしかけなのですが。図
11にクロージャの例がありますので見てくだ
さい。これらのクロージャの実装例を図12に
示します。実際の実装では、環境をリストで実

・（i） (lambda (x) (lambda () (+ x x)))
　これは引数 x を入力として、無引数の匿名関数(lambda () (+ x x)) を返す関数です。これを評価すると変数xの値を環境に閉じ込め、
それを無引数の匿名関数の荷物 (環境)として持ち運ぶことができます。

・（ii） (defglobal fun (apply (lambda (x) (lambda () (+ x x))) '(10)))--- 環境((x 10))を生成
　xに10の値を束縛させて適用すると無引数の関数が生成され、それがfunに格納されます。funに格納された関数はxの値が10である環
境((x 10))を持ち歩いています。defglobalはグローバル変数の定義に使います。これについては次の (7)を参照してください。

・（iii） (apply fun ())--- 環境((x 10))を持ち運んで、関数適用
　funには (ii)で生成された無引数の匿名関数が束縛されています。このfunを上記のように無引数で適用すると、持ち運んだ環境からxの
値は10なので、(+ x x) が評価され、20を返します。

 ▼図11　クロージャの生成とその評価

引数リスト

関数本体

環境

…

（引数1 引数2 …）

関数本体のリスト

（（変数1 値1）（変数2 値2） …）

クロージャ
(x)

(+x1)

()

…

(lambda (x) (+x1))

()

(+xx)

((x10))

…

(apply
 (lambda (x)
 (lambda () (+ x x)))
 '(10))

 ▼図12　クロージャのメモリ配置

26 - Software Design Aug. 2015 - 27

装するのは遅いので配列で実装されているでしょ
う。
　マップ関数は関数を引数として実行する高階
関数（今回は2階関数）で、たとえば、次のよう
に実行されます。

(mapcar (lambda (x y) (+ (* x 10) y))
 '(1 2 3) '(4 5 6)) → (14 25 36)

　mapcarのリターン値が(14 25 36) になった
ことから、mapcarの機能を、推理してみてく
ださい。そしてmapcarの便利さを実感してく
ださい。ここで試しに1引数版のmapcar関数

mapcar1を再帰プログラミングしてみます。
mapcar1は関数を引数 lambdaに受け取る高階
関数になります（リスト6）。
　さっそく、この関数を使ってみましょう。
(mapcar1 (lambda (x) (+ x 1)) '(1 2 3))
を評価すれば、(2 3 4)が返ってきます。
　ラムダ式やマップ関数を使えば、いかにも関
数プログラミングぽくなり、きっと見栄を張る
ことができるでしょう。もちろ
ん、実利もありますので、見栄
を張って使ったあとでは、それ
をじっくりと堪能して、自分の
プログラミング技術の1つにし
てください。

（7）Lispの
手続き型機能

　ここでは逆にLispが持つ手
続き型機能を図13に紹介しま
す。つまりLispは純粋な関数
型言語ではなく、手続き型言語
の面も持ちます。これはLisp

の暗黒面でなく実用的な面です。

　手続き型の機能は図13以外にも多数用意さ
れています。これはLisp は修行僧のような純
粋関数型言語でプログラミングをするのではな
く、手続き型のいいところは取り入れている実
用的な関数型言語なのです（自画自賛が30％ほ
ど入っています）。副作用を起こすプログラム
は禁止だとか、代入文はいっさい使わないだと
か、グローバル変数は世界を破滅させるから使
うなという縛りはLispにはありません。

（8）Lisp は柔軟な言語

　今まで紹介してきたように言語は小さく、動
的な型付けがあり、関数を普通のオブジェクト
として扱え、関数はデータと同じリスト構造を
しているなど、非常に柔軟な言語と言えます。
たとえば自分自身を拡張することが容易な言語
になっています。このため、プログラミング言
語に新規の機能を入れる実験にも使われています。
たとえば、オブジェクト指向機能は早期に Lisp

で実装されました。

　(defun mapcar1 (lambda list)
 (if (null list)
 nil
 (cons (apply lambda (list (car list))) ; mapcarはこのようにcarを実行
 (mapcar1 lambda (cdr list)))))

 ▼リスト6　 1引数版の mapcar を再帰プログラム

・(defglobal シンボル 初期値)――「グローバル変数の定義」
　例. (defglobal my-name "GOMI Hiroshi")
　→Lisp のシンボルは - なども使える

・ (for ((ステップ変数 初期値 ステッパ) ...)(終了条件 終了値) 繰り返し...)
――「繰り返し」

　例. (for ((i 0 (+ i 1))) ((> i 10) i))
　→CやJavaのfor(int i = 0; i <= 10; i++){}とほぼ同じ
　繰り返し文には、ほかにもwhileがある
　（Common Lisp の場合は dotimes や dolist、loopマクロがある）

・(setq シンボル 値) ――「代入文」

　例. (setq pi 3.14159) , (setq pi "円周率")→どんな型でも代入できる

 ▼図13　Lisp の手続き型機能

・(let ((引数 初期値) ...) 本体 ...)
――「引数を初期値に束縛して、本体を評価」

　例. (let ((x 10) (y 20)) (+ x y)) → 30
これは (apply (lambda (x y) (+ x y)) ‘(10 20))と同じ結果になる

関数型プログラミングとは何か
今こそLisp入門

気軽に試してみよう！

第 1 章

28 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

　今さらな紹介になりますが、
Lisp は関数型言語です。今ま
で見てきたように関数型を破壊
する関数もありましたが、基本
的には関数型言語です。とくに
car, cdr, cons, eq, atom
（シンボルや数型、文字型、nil
などの値型をアトムと言い、そ
の判断を行う関数） の基本5関
数 と if, quote, lambda,
defunだけを使った「純Lisp」は
純粋な関数型言語です。純Lisp

でない、手続き型操作も含んだ

Lisp もその根底に流れる思想は
関数型言語になっています。
　そのほかにもLispには強力
なマクロ機能があり、Lisp自
身の拡張も容易にできます。以
上がCや Javaと比較しての
Lispの特徴で、これをLispの
基礎として紹介しました。

（10）Lispのサンプル
プログラム

　ここでいくつかのLispのサ
ンプルプログラムを紹介します。

 （ⅰ）「クイックソート」
　最初に情報処理技術者試験に
よく出てくるプログラム「クイッ
クソート」を再帰プログラミン
グしてみます。クイックソートはピボットと呼
ぶ基準値をデータから選び、そのピボットを使っ
て与えられた比較関数で2種類に分けます。2

種類に分けたデータに対して同様にこの操作を
繰り返します。これをデータが1個になるまで
行うことでソートするプログラムです。このプ
ログラムをリスト7に示します。
　どうだったでしょうか。比較関数を引数にす

（9）Lisp は関数型言語

ることにより、昇順でも降順でもほかの順序で
も自由にソートできるところが便利だと感じて
もらえればと思います。
　次にこのクイックソートをピボットで振り分
けるところを繰り返し文にしたハイブリッドな
プログラムで作ってみます（リスト8）。実行結
果はリスト7と同じになります。
　この繰り返し文と再帰のハイブリッドプログ

(defun qsort (lambda list)
 (if (null list)
 list
 ; クイックソートのピボット(基準値)は先頭の値(car list)にする
 (qsort2 lambda (car list) (cdr list) nil nil)))
;; lambda比較関数、pピボット、listデータ、left比較でtrue、
;; rightそうでないもの
(defun qsort2 (lambda p list left right)
 (if (null list)
 (append (qsort lambda left) (cons p (qsort lambda right)))
;; ピボットpよりもlambdaなものをleftに、そうでないものをrightに入れる
 (if (apply lambda (car list) (list p))
 (qsort2 lambda p
 (cdr list) (cons (car list) left) right)
 (qsort2 lambda p
 (cdr list) left (cons (car list) right)))))

 ▼リスト7　「クイックソート」のLispプログラムとその実行

(defun iqsort (lambda list)
 (if (null list)
 list
 (let ((p (car list))
 (left nil)
 (right nil))
 ;; この繰り返し文によってピボットでデータを振り分ける
 ;; Common Lisp では(dolist (n list) ...)になる
 (for ((n (cdr list) (cdr n)))
 ((null n) nil)
 (let ((e (car n)))
 (if (apply lambda e (list p))
 (setq left (cons e left))
 (setq right (cons e right)))))
 ;; 以下は再帰プログラミングにする
 (append (iqsort lambda left)
 (list p)
 (iqsort lambda right)))))

 ▼リスト8　「クイックソート」の繰り返し文と再帰プログラムのハイブリッ
　　　　　ドプログラミング

・実行
ISLisp>(qsort #'< '(3 1 5 2 4))
(1 2 3 4 5)
ISLisp>(qsort #'> '(3 1 5 2 4))
(5 4 3 2 1)

28 - Software Design Aug. 2015 - 29

ラミングはいかがでしょうか。Lispだから再
帰ばかり使う必要はありません。ピボットの振
り分けは繰り返し文のほうがわかりやすいと思
えば、気楽に繰り返し文を使ってください。そ
して再帰が必要なところは再帰を使ってくださ
い。ハイブリッドプログラミングこそ、実用的
な関数型プログラミングです。

 （ⅱ）Lispのサンプルプロ
グラム「ハノイの塔」と「4
本ハノイの塔」

　Lispで書いたハノイの塔のプ
ログラムを例として紹介します。
ハノイの塔は図14のように
fromの柱にあるすべての円盤を
1枚ずつtoの柱へ移動するもの

ですが、そのときに小さな円盤の上に大きな円
盤は置けません。
　このハノイの塔のプログラムをリスト9に紹
介します。このプログラムが理解できたら、次
は4本ハノイの塔を作ってみることにします。
4本ですから、3本よりも世界が滅びるのが早
くなることがわかります（リスト10）。

from other to

円盤

 ▼図14　ハノイの塔

(defun hanoi (n) (hanoi3 n 'from 'to 'other)) ; nは円盤の枚数、fromからtoへ移動させる
(defun hanoi3 (n from to other) ; fromは移動元、toは移動先、otherはワーク用の柱
 (if (= n 1)
 (cons (cons from to) nil) ; 円盤が1枚ならfromからtoへ移動させて終了
 (append ; 円盤が2枚以上のときは
 (hanoi3 (- n 1) from other to) ; 最初にfromからotherへ
 (hanoi3 1 from to other) ; 次にfromからtoへ
 (hanoi3 (- n 1) other to from)))) ; 最後にotherからtoへ移動させる
 ; appendはリストを連結させる関数

 ▼リスト9　「ハノイの塔」のLisp プログラムとその実行

(defun hanoi4 (n from to other1 other2)
 ;; 2枚以内であれば、3本ハノイの塔と同じ
 (if (< n 3)
 (hanoi3 n from to other1)
 (if (= n 3)
 ;; 3枚のときは最初の1枚をother1に移動し、後は円盤2枚の3本ハノイと同じで、
 ;; 最後に最初の1枚をother1からtoへ移動して移動完了
 (append (list (cons from other1)) (hanoi3 2 from to other2) (list (cons other1 to)))
 ;; 4枚以上あるときは、いくつかのアルゴリズムがあるが、ここでは次の
 ;; アルゴリズムにしている。これを解読して、さらに改良してください
 (append (hanoi4 (- n 3) from other1 other2 to)
 (hanoi3 3 from to other2)
 (hanoi4 (- n 3) other1 to other2 from)))))

 ▼リスト10　「4本ハノイの塔」のLisp プログラム

・実行
ISLisp>(hanoi 3) ; 上記のプログラムを実行
 ;; シンボルは大文字でインターン（登録）される
 ;; (cons 1 2)は(1 . 2)のようなドット対と呼ばれるデータになる
((FROM . TO) (FROM . OTHER) (TO . OTHER) (FROM . TO) (OTHER . FROM) (OTHER . TO) (FROM . TO))
 ;; 最初の1手は(FROM . TO)、つまり FROMにある大きさ1の円盤をTOへ移動する
 ;; これを繰り返すと、FROM にあった3枚の円盤がすべてTOへ移動する

関数型プログラミングとは何か
今こそLisp入門

気軽に試してみよう！

第 1 章

30 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

 （ⅲ）Lisp のサンプル
プログラム「エイトク
イーン」

　最後にエイトクイーンの
パズルを解くLispプログ
ラムを紹介します。エイト
クイーンとはチェスのク
イーンの駒をチェス盤に、
ほかのクイーンの利いてい
る位置に置かないようにし
て8個配置するパズルです
（図15を参照）。チェス盤
は8×8のサイズで、クイー
ンは縦と横、斜めに盤の端
まで移動できます。8人の
女王様の機嫌を損ねること
なく、ちゃんとご配置しな
ければなりません。
　リスト11で紹介するプ
ログラムは8人の女王だけ
でなく、n人の女王を配置
できるように拡張したnク
イーンの解法プログラムに
なっています。
　実行結果のリストの要素
（例 .（4 2 7 3 6 8 5 1））が解
の1つになります。要素のリストは女王のy座標
を示していて、それが逆順のx座標に対応するリ
ストとして格納されています。実行結果の最初
の（4 2 7 3 6 8 5 1）が図15に配置した図に相当
します（x座標はリストの先頭が8で最後が1であ
ることに注意してください）。リストの長さが92

個であることから、エイトクイーンでは92通り
の解があることがわかります。
　次に斜めチェックの関数diagonalを繰り返
し文で作ったプログラムidiagonalをリスト
12に示します。nクイーンは基本的なところで
は再帰で作成しますが、それ以外を繰り返し文
で作ったハイブリッドプログラミングにしても

(defun nqueen (n)
 (nqueen2 n 1 nil))

;;; 引数n --- 女王の人数（盤の大きさ）
;;; y --- 配置しようとする女王の縦位置
;;; board --- 盤(縦位置(y座標)を要素とするx座標のリスト(x座標は降順))
;;; 返り値 --- y以上n以下のy座標に配置できる全パターンをリストにして返す
(defun nqueen2 (n y board)
 (if (> y n)
 nil
 ;; (member y board)は横報告に他の女王がいるかどうか
 ;; (diagonal 1 y board)は斜め方向に他の女王がいるかどうか
 ;; 縦方向は女王を1個ずつしか配置しないことでチェック不要
 (if (or (member y board) (diagonal 1 y board))
 (nqueen2 n (+ y 1) board) ; 他の女王がいたときは次のy座標にする
 (append ; 以下の2つのリストを連結する
 ;; yの位置で配置できるパターン
 (if (= (length board) (- n 1))
 (list (cons y board)) ; 最後の女王が配置できたとき
 (nqueen2 n 1 (cons y board))) ; 次の女王を配置する
 ;; y+1からnの位置で配置できるパターン
 (nqueen2 n (+ y 1) board)))))

;;; queenの位置に女王が置けるかどうか
;;; 駒が置けなければTを返す
;;; boardの長さ分のチェックをする
(defun diagonal (x queen board)
 (if (null board)
 nil
 (if (= (abs (- (car board) queen)) x) ; 斜めチェック
 t ; absは絶対値を取る関数(例. (abs -3) ---> 3)
 (diagonal (+ x 1) queen (cdr board)))))

 ▼リスト11　「nクイーン」のLispプログラム

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

 ▼図15　エイトクイーン

・実行
ISLisp>(nqueen 8)
((4 2 7 3 6 8 5 1) (5 2 4 7 3 8 6 1) (3 5 2 8 6 4 7 1) ... (5 7 2
6 3 1 4 8)) ; 92個の配置パターン

30 - Software Design Aug. 2015 - 31

女王様はお怒りにならないでしょう。

Lisp の歴史

　前の節ではLispの基礎を紹介してきました。
その中でCやJavaプログラマでもお馴染みの
ものや、いかにも関数型プログラミングならで
はのものも紹介してきました。ここではLisp

そのものの知識から離れて、Lispの歴史を紹
介していきたいと思います。Lispの誕生から
現在のLisp事情までの歴史になります。これ
は関数型プログラミングの歴史にもなり、基本
を学ぶのに役立つことはもちろん、Lisperと
して見栄を張るのに使えます。

（1）ジョン・マッカーシーによるLisp
の黎明期（1950年代～1960年代）

　Lispを語るには、ジョン・マッカーシーを真っ
先に挙げなければなりません。ジョン・マッカーシー
が1950年代にLispに関する研究を行ったのが
Lispの始まりです。LISP1やLISP1.5が作られ
ました。ちなみに後に続くCommon Lispなどが
大文字でシンボルを規定しているのは、この時代
は大文字しか使えなかった理由によるものです。

（2）Lispの戦国時代（1970年代）

　その後、Lisp はその柔軟で動的な言語であっ
たために、新しいプログラミング言語やそのし
かけを作るのに利用されていました。このため、
1970年代にはLispには多くの方言が出てきて
激しい派閥争いが行われていました。Scheme

もこの時代に生まれました。

（3）Common LispによるLispの統一
（1980年代～1990年代前半）

　1980年代になると人工知能（AI）の研究が流

行し、このための言語として柔軟で動的なLisp

が注目されました。AIマシンとして、Lispマシ
ンも開発されていました。一方、Lispに多くの
方言があるのは不便でしたので、これを統一す
る目的で1980年代から1990年代にかけ、ガイ

L.スティールジュニアが中心となって、Common

LispがANSI規格として制定されました。

（4）新たな戦乱と統一への息吹
（1990年代後半～2000年代前半）

　統一されたかに見えたCommon Lispですが、
Common Lispは巨大な言語仕様になってしま
い、不便さを感じる場面もありました。そこで
Common Lispの核の部分を再構成して、小さ
な共通のLisp処理系を設計するという動きが
日本発として出てきました。伊藤貴康や湯淺太
一らによる日本案をベースに1997年に ISO規
格として承認されました。日本発のプログラミ
ング言語が ISO規格になるのは初めてです。
しかし ISLispは学習目的や実験目的にしてい
ることもあり、普及したとは言い難い面があり、
小さなLisp処理系はその後も多く作られてき
ています。

（5）そして現在のLisp新時代へ

　現在はCPU性能が向上し、メモリが大量に
搭載されてきて、Lispを動作させるための環
境が整っています。そしてクラウドコンピュー
ティングやビッグデータの解析、IoTの進展で
並列コンピューティングの必要性や動的実行が
必須になっています。このため、関数型プログ
ラミングの必要性が高まってきていることもあ
り、Lispの世界もまた脚光を浴びています。
第7章のClojureもその代表的なものです。こ
の状況は後段の章に譲ることにします。

(defun idiagonal (x queen board)
 (block nil ; return-fromでこのblockを抜け出す
 (for ((i x (+ i 1)))
 ((null board) nil) ; nilを返す
 (if (= (abs (- (car board) queen)) i) ; 女王が斜めにいたら
 (return-from nil t) ; tを返す(CやJavaのbreak文に相当)
 (setq board (cdr board))))))

 ▼リスト12　「nクイーン」のプログラムの一部を繰り返し文にする

関数型プログラミングとは何か
今こそLisp入門

気軽に試してみよう！

第 1 章

32 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

Lispを使いこなすにはコツがある
――Lispのメリットとデメリットを考えて

　この節ではLispを使いこなすコツ、そして
関数型プログラミングと付き合うコツを紹介し
ます。Lispと、そして関数型プログラミング
といい付き合いをするようにしてください。

（1）関数型プログラミングと手続き型
プログラミングのいい関係

　純粋な関数型プログラミングを目指すべきで
はありません。過去の莫大な、そして重要な資
産である手続き型プログラミングとのトレード
オフが重要です。教科書的な書き方をすれば、「関
数型プログラミング向きの問題と手続き型プロ
グラミング向きの問題を見極め、どちらにする
かを決めてください」となります。同じような
議論が形式手法でも聞いたことがあるかもしれ
ません。アジャイル開発でも同じ注意を受けた
かもしれません。要するにいいバランスを取る
ことが大事になります。
　このためには何が関数型プログラミング向き
で、関数型プログラミングのメリットはどこで、
デメリットはどこにあるかを理解する必要があ
ります。メリットは「関数型プログラミングを

勧めるこれだけの理由」の節で紹介しましたが、
ここではデメリットとともに紹介します（図
16）。
　結局、関数型プログラミングでは、このメリッ
トを使い、デメリットを使わない戦略が必要に
なりますが、無理をする必要はありません。副
作用を積極的に使ったほうがいい場面では、手
続き型でプログラミングをしてください。

（2）Lispのデメリットに付き合って、
メリットを活かす

　Lispのメリットとデメリットは（1）の関数型
プログラミングのメリットとデメリットと多く
の部分で重なりますが、Lispはすでに紹介し
たように純粋な関数型プログラミング言語では
ありません。多くの手続き型の機能を持ってい
ます。これを利用しない手はありません。両者
をうまく使い分けてください。
　Lisp特有のメリットとデメリットについて
は「Lispを勧めるには理由がある」の節で紹介
したものになりますが、もう一度まとめてみま
す（図17）。
　Lispのメリットは小さくて、直ぐに実行でき、
動的であることです。このメリットを活かせる
かどうかがLispを使うコツになります。デメ

 ▼図16　関数型プログラミングのメリットとデメリット

（1） 問題が再帰プログラミング向きのものが多い
（2） 人間の考え方は再帰プログラミングに向いている
（3） 並列処理に向いている
（4） 動的なプログラミングができる
（5） 抽象的なプログラムが作りやすい
（6） グローバル変数やその副作用によるバグが少なくなる
（7） 型推論ができる（静的言語のとき）
（8） 型宣言をしなくてよい（動的言語のとき）

関数型プログラミングのメリット

（1） 問題が繰り返し向きのものが多い―繰り返しも強力な武器です、使ってください
（2） 副作用（代入文）のようなプログラミングの強力な武器が使えない―使いましょう
（3） 関数型プログラミングはスタックを大量に消費する―現在は気にしなくていいです
（4） 値指向のデバッグ（特定アドレスの値を中心としたデバッグ）が行えない―スタックでデバッグしましょう
（5） 過去の手続き型プログラミングで培った技術が使えない―すべてはスタックです
（6） 手続き型言語では関数型プログラミングができないという思い込みがある―迷信です
（7） 手続き型から関数型へのパラダイムシフトが必要（敷居が高い）―気楽にシフトです

関数型プログラミングのデメリット（と対処法）

32 - Software Design Aug. 2015 - 33

リットはこのメリットが有効である場合はカバー
できるものと信じています。

（3）関数型プログラミングは、「構えて」
使うものではなく、「気楽」に使うもの

　たとえば、関数を通常のデータと同じように
引数や関数のリターン値に使える高階関数は、
前にも書きましたが、これは C では関数ポイ
ンタを使えば、よく似たものができます。
　また、Javaでは過去の匿名クラスや今のラ
ムダ式を使えば、同等のことができます。逆に
Lispでも手続き型言語の機能を多く持ってい
ます。代入文もありますし、グローバル変数も
あります。この意味では手続き型言語でも関数
型プログラミングをでき、その逆に（純粋関数
型言語以外の）関数型言語でも手続き型プログ
ラミングができます。
　関数型プログラミングは構えて使うものでは
なく、気楽に使ってもいいものです。今までの
CやJavaで関数型プログラミングするのもあ
りで、関数型プログラミングを小さく、早く始
めるのが吉です。

◆　◆　◆
　ここまで関数型プログラミングとは何か、な
ぜそれを勧めるのかから始め、関数型プログラ
ミングの第一歩としてのLisp入門を紹介して
きました。途中で代入文を使うなとか、高階関

数やクロージャあたりで面倒で小難しいことが
書いてあったかもしれません。このため、関数
型プログラミングは難しいと思われたかもしれ
ませんが、そんなことは気にせずに気軽に関数
型プログラミングを楽しんでください。「再帰
プログラミングはおいしい、そして副作用は今
まで何気なしに使ってきたけれど、実は不思議
なものだった」ということと、「繰り返し文によ
る制御も悪くない、代入文や副作用は強力な武
器だ」という、2つの相反する考えを自分の中で、
うまく折り合いを付けて、関数型プログラミン
グを楽しんでいってください。このときにLisp

を一番にお勧めします。きっとLispで関数型
プログラミングが楽しく学べることでしょう。
　この後に続くいろいろな関数型言語もきっと
楽しく関数型プログラミングの世界へ導いてく
れることでしょう。Lispについては後の章で
もいろいろな観点で紹介されていますので、ぜ
ひ参考にしてください。またLisp以外の関数
型言語もおいしいことが後の章で紹介されてい
ますので、それも楽しんでください。関数型プ
ログラミングの世界はあなたをお待ちしており
ます。ﾟ

 ▼図17　Lispのメリットとデメリット（克服法込み）

（1） Lispは小さい
（2） Lispはインタプリタですぐに実行できる
（3） Lispには呪文は不要
（4） Lispには歴史がある
（5） Lispは動的言語である

Lispのメリット（関数型プログラミングのメリットは除く）

（1） 括弧が多くて見にくい―インデントと空白で見やすくします
（2） 前置記法が見にくい―慣れです、慣れてしまえば勝ちです
（3） 動的型付けのために多くのメモリと実行時間が必要―最近は問題にならないです
（4） 動的型付けの実装が面倒―使う側はそんなことは知ったことではありません
（5） 型推論によるエラー検出が弱い―それよりも動的型付けのメリットのほうが重要です
（6） Lispには方言が多い―自分の使っているLispが一番えらいのです

Lispのデメリットと克服法

関数型プログラミングとは何か
今こそLisp入門

気軽に試してみよう！

第 1 章

34 - Software Design

なぜ関数型プログラミングは難しいのか？第1特集

チャットワーク、
なぜPHPからScalaへ？

　筆者の勤務するチャットワーク（ChatWork）注1

はPHPで書かれたWebサービスで、約4年間、
増改築を続けてきました。ですが次のような理
由により、これ以上PHPで増改築していくこと
が難しくなってきました。

・メンテナンス面：コードの複雑度が非常に高
くなり、機能の追加をしようとしても予期
せぬバグやリソースの消費を招く

・パフォーマンス面：もともと大規模サービス
を想定したコードやアーキテクチャではな
かったため、ユーザ急増への対応が困難

　そこでチャットワークのアーキテクチャとコー
ドを刷新する方針が決まり、またその際に、言語
やフレームワークについても見直しをしたいとい
うエンジニアの要望もあったため、これらを選定
するための合宿を2泊3日で行いました。そのと
き選考対象になったのが、PHP、Python、Scala

の3つの言語です。エンジニアを3チームに分け、
各チームでチャットワークのAPIを実装し、合宿
終了時に各言語・フレームワークの特徴や、使っ
てみた感想を発表するという流れでした。この合
宿の結果、コンパイル時に型検査される静的型
付き言語で、並行処理ライブラリが整っている
Scalaを採用しようと決まりました。
　本章では、PHPエンジニアだった筆者が実
務を通じて1年間Scalaを学んだ経験をもとに、

Scalaの強力な機能や関数型プログラミングの
考え方について説明し、そしてこれらをどのよ
うにチームで共有してきたのか、その取り組み
を紹介したいと思います。

Scalaって難しい？

Scalaとは

　ScalaはJava仮想マシン上で動作するプログ
ラミング言語であり、大きな特徴として、Java

やPHPのようなオブジェクト指向言語と関数
型言語の両方の特性を持つということが挙げら
れます。筆者がそうだったのですが、「関数型
プログラミング」と聞くと難しそう、というイ
メージが先行してしまうかもしれません。もち
ろん関数型プログラミングの概念を深く学ぼう
とすると時間はかかりますが、難しいことを知
らなくても強力なパターンマッチや失敗の可能
性を表現できる型など、便利な機能を使って楽
しくプログラミングをすることができます。
　ほかにもScalaには次のような特徴があります。

・静的型付き言語
・並行処理
・Javaの資産を利用できる

 静的型付き言語
　静的型付き言語では、変数や関数の引数や戻
り値の型がコンパイラによってあらかじめ検証
されます。よって型に起因する不具合は実行す

Author 安達 勇太（あだち ゆうた） ChatWork㈱　　 Twitter @UAdachi

サービス改善への解答

PHPエンジニア、
Scalaを学ぶ！

チャットベースのコミュニケーションWebサービスを提供するチャットワークでは、1年ほど前から開発言語をPHPか
らScalaに切り替えました。数ある関数型プログラミング言語からなぜScalaを選んだのか、関数型への移行にはどのよ
うな難しさや魅力があったのかをPHPエンジニアの視点で紹介してもらいます。

第 2 章

注1） http://www.chatwork.com/ja/

http://www.chatwork.com/ja/

34 - Software Design Aug. 2015 - 35

るまでもなく、コンパイル時に発見できるので
バグを作り込みにくいです。

 並行処理
　標準ライブラリに、コレクションに対する操
作を並列に実行できる「並列コレクション」とい
うデータ型が用意されています。また、処理を
並列に実行し、その結果を非同期で取得するた
めの「Future」という型も用意されています。
そのほかにも標準ライブラリではありませんが、
アクターモデルを採用した「Akka」という負荷
分散と耐障害性を兼ね備えたスケーラブルな並
行処理のためのライブラリも利用できます。

 Javaの資産を利用できる
　Scalaの実行環境はJava仮想マシンなので、
ScalaからJavaで書かれたプログラムを利用する
ことができます。たとえばAWS（Amazon Web

Services）のSDKはScala版が用意されていませ
んが、Java版のSDKをScalaから利用できます。

PHPとScalaのコードを
比較してみる

　細かいScalaの機能の説明は抜きにして、「文
字列中に含まれる単語数を数える」処理を例に、
PHPで書かれたコード（リスト1）を、Scalaで
書き直すとどのようになるのか（リスト2）イメー
ジをつかんでいただきたいと思います。
　PHPの例も簡潔なコードになるよう
に心がけてみましたが、Scalaの例はと
ても短く書けました。コード量だけでな
く、そもそもスタイルが違うようです。
Scalaの例では小さな関数をつなぎあわ
せているようにも見えます。むしろ筆者
がScalaを始めたばかりのころは、あま
りに簡潔過ぎてこのようなコードはすぐ
に理解できませんでした。
　また、静的型付き言語なのに、引数や
無名関数の型は書かなくて良いのか？と
いう疑問を抱いた方もいるかもしれませ

ん。しかし、後述するScalaの高階関数や関数
リテラル、プレースホルダ構文や型推論を理解
するだけで、すぐに読みやすいコードだと思え
るようになります。
　ところでこの問題、実はPHPのほうが簡単
に書けます。というのもarray_count_values
という関数が用意されていて、それを呼び出す
だけで良いからです。

Scalaの実行環境を
用意する

　実際に手を動かしたほうが理解しやすいかと
思いますので、これから紹介するソースコードを
動作させるための環境を用意しておきましょう。
下記の手順に進む前に、OSによらずJavaのイン
ストールが必要ですので、Java SE Development

Kit 8 Downloads注2よりダウンロード後、インス
トールをしてください。
　ここでは、Scalaの対話型評価環境（REPL：
Read Eval Print Loop）を用意します。REPL

では、Scalaのコードが入力単位ごとにJavaの
バイトコードに変換され、対話的なプログラミ
ングができます。スニペットなど、ちょっとし
たコードの動きを確認するときに便利です（2015

年6月1日時点でのScalaの最新安定版は2.11.6

です）。

function wordCount($text) {
 $result = [];
 foreach(explode(" ", $text) as $word) {
 if (array_key_exists($word, $result))
 $result[$word] += 1;
 else
 $result[$word] = 1;
 }
 return $result;
}

 ▼リスト1　文字列中に含まれる単語数を数える（PHP版）

def wordCount(text: String): Map[String, Int] = {
 text.split(" ").groupBy(identity).mapValues(_.size)
}

 ▼リスト2　文字列中に含まれる単語数を数える（Scala版）

サービス改善への解答

PHPエンジニア、Scalaを学ぶ！
第 2 章

注2） http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

36 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

　Scalaの公式Webサイト注3から対応する tgz

ファイルをダウンロードして展開します（本稿
では「C:¥scala-2.11.6」）。展開後、ユーザー定
義環境変数注4に「SCALA_HOME」という環境
変数を新しく追加し、環境変数「PATH」ととも
に次の設定を入力してください。

・SCALA_HOMEの値：C:¥scala-2.11.6
・PATHの値（追加）：%SCALA_HOME%¥bin

OS X

　OS Xをお使いの方は、Homebrew注5を使う
と簡単にインストールできます。

$ brew install scala

REPLの使い方

　REPLという簡単にコードを試せる実行環
境の使い方を説明します。まずはコンソール（コ
マンドプロンプト）を開いて、scalaコマンド
を実行してください。すると次のようなプロン
プトが表示されるはずです。

scala>

　試しに変数を定義してみましょう。

scala> val name = "Software" ｶ
name: String = Software

　変数はvarとvalというキーワードで定義で
きます。valは再代入ができないので、この場
合正確には「変数に代入する」ではなく「値
（value）に束縛する」と呼びます。

 複数行にわたるコードをペーストする
　:pasteと入力すると、ペーストモードへ移行

Windows
します。移行後にコードをペーストし、l

＋Dを押下してペーストモードを終了します。

 終了方法
　:qでREPLを終了し、コンソールに戻るこ
とができます。

scala> :q

PHPエンジニアだった
私たちが感じたScalaの魅力

　Scalaの便利な機能や関数型プログラミング
の考え方について説明をします。その多くが
PHPエンジニアだった筆者にとって新鮮なも
ので、最初はなかなか慣れなかった高階関数や
副作用の概念も紹介していきます。

条件分岐を柔軟に記述できる
パターンマッチ

　まずはモダンな関数型言語に多く見られる、
パターンマッチという機能を紹介します。パター
ンマッチを利用すると、if文やswitch文を使う
よりずっと柔軟に条件分岐を記述できます。こ
こではケースクラスを使ったパターンマッチと
いうものがどのようなものか、ソースコードを
見てイメージしてみましょう（リスト3）。
　最初にUserというトレイトを定義します（リ
スト3：02〜04行目）。Userは passwordとい
う文字列（String）型のメンバを持っています。
そして、そのUserを継承したAdministratorと
Guestという2つのクラスを定義します（07、
08行目）。親のUserトレイトにsealedという
アクセス修飾子を付け加えていますが、これに
よりパターンマッチの際に“すべてのサブクラ
スを網羅できているか”をコンパイラがチェッ
クしてくれるようになります注6。
　また、User型のインスタンスを受け取って
Boolean（真偽値）型を返す loginというメソッド

注3） http://www.scala-lang.org/download/
注4） 「コントロールパネル」－「システムとセキュリティ」－「システム」－「システムの詳細設定」－［詳細設定］－［環境変数］から設定。
注5） http://brew.sh/index_ja.htmlを参照。
注6） sealedはUserトレイトが同一ファイル内からしか継承できないような制約を加えます。

http://www.scala-lang.org/download/
http://brew.sh/index_ja.html

36 - Software Design Aug. 2015 - 37

を定義しました（10〜16行目）。
matchキーワードの前にマッチ対
象の値を記述し、各caseの後ろに
パターン（条件）、そしてその後ろ
に処理を記述するのですが、この
処理結果の値がパターンマッチの
結果となります。
　試しにUser型のインスタンス
をいくつか定義して、loginメソッ
ドに渡してみましょう（図1）。リ
スト3では、

①Administratorクラスのインス
タンスで、かつpasswordが“secret”の場合
にマッチし、trueを返す

②Guestクラスのインスタンスで、任意のパス
ワードにマッチし、trueを返す

③ ①、②以外の場合にfalseを返す

となるようにパターンを記述していて、上から
順に評価され、「=>」の後に記述された式の評価
結果が返り値となります。またアンダースコア
「_」がワイルドカードとして扱われ、任意の条
件にマッチします。
　パターンマッチの力をもう少しご紹介しましょ
う。先ほどの例では、Guestはパスワードを入
力しなくてもログインが可能でした。これを、1

文字以上のパスワードを入力しないとログイン
できないように変更してみましょう。と言っても、
リスト3：13行目のcase Guest(_) => trueの
パターンを次のように書き換えるだけです。

case Guest(password) if password.length > ｭ
0 => true

　パターンの中でpasswordにGuestのパスワー
ドを束縛し、またこのように ifを続けて書くこ
とで追加条件を与えることもできます。これを
パターンガードと呼びます。
　パターンマッチは柔軟な条件分岐を記述する
ことができる機能で、今回紹介したパターンの
書き方以外にもコレクションや正規表現などに

対するパターンを記述することができます。

関数型の機能

　次に、関数型言語としての機能をいくつか紹
介していきます。

 関数を整数や文字列と同じように扱える
　Scalaでは関数を整数型（Int）や文字列型
（String）と同じように、変数に代入したり、関数
の引数に渡したり、関数の戻り値にすることがで
きます。また、整数型や文字列型と同様に、関数
を定義するためのリテラルが用意されています。
試しに関数リテラルを使って簡単な関数を定義し、
値に束縛してみましょう。

01: // traitは、PHPのトレイトやインターフェースのように利用します
02: sealed trait User {
03: val password: String
04: }
05:
06: // ケースクラスは、コンストラクタの引数がクラスのメンバになります
07: case class Administrator(password: String) extends User
08: case class Guest(password: String) extends User
09:
10: def login(user: User): Boolean = {
11: user match {
12: case Administrator("secret") => true ①
13: case Guest(_) => true ②
14: case _ => false ③
15: }
16: }

 ▼リスト3　ケースクラスを使ったパターンマッチの例

scala> val admin = Administrator("secret") ｶ
admin: Administrator = Administrator(secret)

scala> login(admin) ｶ
res0: Boolean = true

scala> val badAdmin = Administrator("invalid") ｶ
badAdmin: Administrator = Administrator(invalid)

scala> login(badAdmin) ｶ
res1: Boolean = false

scala> val guest = Guest("guest") ｶ
guest: Guest = Guest(guest)

scala> login(guest) ｶ
res2: Boolean = true

 ▼図1　リスト3の実行例

サービス改善への解答

PHPエンジニア、Scalaを学ぶ！
第 2 章

38 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

scala> val twice = (n: Int) => n * 2 ｶ
twice: Int => Int = <function1>

scala> twice(2) ｶ 変数に束縛した関数オブジェクト
を呼び出すこともできます

res0: Int = 4

　twice: Int => Int = <function1>の部分は、
Int型の引数を1つ受け取り、Int型の戻り値を
返す関数であることを意味し、この関数を“Int

=> Int”型の関数と呼びます。ということは、
twice変数はval twice: Int => Intのように型
注釈を付けて宣言する必要があるように見えます。
しかしこの例はそうなっていません。というのも、
Scalaコンパイラの型推論によって型注釈を省
略できるからです。もちろん明示的に書くこと
も可能ですが、人間が簡単に推論できる型なら
省略したほうが見た目がすっきりすると思います。

 高階関数
　関数を引数に取ったり、戻り値として返す関
数を高階関数もしくは高階メソッドと呼びます注7。
ここではリスト注8に対する操作の例を紹介します。
　図2の例では、リストの各要素を2倍し、5よ
り大きい要素から構成される新しいリストを返
しています。引数が関数内で一度しか使われな
い場合に限り、引数名を書く代わりにプレース
ホルダ_を使用でき、コードを簡潔に書ける便
利な構文です。プレースホルダ構文を利用する
ことで、引数の名前を考えたり、不適当な名前
の引数や変数に悩まされる時間も減っていきます。
　mapメソッドは、リストの各要素を変換する
高階メソッドで、変換のための関数を引数とし
て受け取り、新しいリストを返します。filter

メソッドは、引数で受け取った条件（この場合
は Int型の引数をとってBoolean型の戻り値を
返す関数）を満たす要素だけで構成される新し

いリストを返す高階メソッドです。

 副作用と参照透過性
　筆者がScalaを勉強し始めた当初は、どうし
てvarではなく再代入のできないvalを使うの
か、またどうしてwhileループやPHPのコレ
クションを反復処理する foreachのようなもの
がScalaにもあるのに、mapやfilterといった
高階関数をつなぎあわせてコードを書くほうが
良いのか理解していませんでした。
　関数やメソッドは与えられた引数をもとに処
理をし、その結果を値として返します。つまり
「値を返すこと」が関数やメソッドの主な仕事で
す。しかし、foreachのような処理結果を返さ
ないメソッドやwhileで書かれた反復処理は、
foreach内の処理結果を foreachの外側へ伝え
るため、またはループの終了条件を満たすため
に、メソッドやループの外側の世界の変数を書
き換える必要があります。そのためプログラマ
は変数の状態を常に意識しながらプログラムを
書く必要があり、これが予期せぬ不具合を作り
こんでしまう原因になりかねません。
　関数やメソッドが主な仕事以外の処理を行い、
その外の世界の状態が変わってしまうことを副
作用と呼びます。副作用の例として次のような
ものが挙げられます。

・変数への再代入
・入出力（標準入出力、ファイルシステム、ネッ

トワーク通信など）
・例外の発生

　また、関数が副作用を持たず、戻り値が引数
によってのみ決まるとき、その関数は参照透過
性があると呼びます。Scalaにおいてはvarや
foreachのような戻り値を返さない関数の利用

を避けるだけでも、無駄な副作用の発生
を防ぐことができます。
　とはいえ、アプリケーション開発では

注7） Scalaではdefを使って定義するものをメソッドと呼び、それ以外を関数と呼びます。
注8） ScalaのList型は単方向リンクの線形リストです。

scala> List(1, 2, 3, 4, 5).map(_ * 2).filter(_ > 5) ｶ
res0: List[Int] = List(6, 8, 10)

 ▼図2　リストを使った高階関数の例

38 - Software Design Aug. 2015 - 39

データの永続化において副作用を完全になくす
ことは難しいと思います。関数型プログラミン
グの設計手法をより深く学び、実践していくこ
とで、避けることができない副作用の影響を局
所化していくことができます。

そのほかのScalaの便利な機能

　本記事では紹介しきれませんが、Scalaにはま
だまだ便利な機能が用意されています。たとえば、
「値が存在しない（nullになる）可能性がある」こと
を表現できるOption型や「処理に失敗する可能
性がある」ことを表現できるTry型やEither型が
用意されています。これらを用いることで宣言
的で読みやすいコードを記述することができます。

どのように
学んでいったのか？

社内や他社との勉強会

　これまで紹介してきたような実務で使えそう
なScalaの機能などを学ぶ良い機会となったの
が、社内やBizReachさんと一緒に開催した勉
強会でした注9。勉強会では事前に課題を用意し、
当日は参加者が持ち寄った解答を順次発表し、
レビューしました。課題自体の難易度を上げて
しまうとアルゴリズムの検討などScalaに関係
ないところで時間を使ってしまうので、「文字
列中の単語数をカウント」、「フィボナッチ数を
計算する関数を実装」、「2分木データ構造を実装」
などのあまり難しくない課題を用意しました。
毎回いろいろな解答が出そろい、パターンマッ
チの使い方や再帰の書き方などを学び、またチー
ム全体で知識を共有できた良い機会でした。

プロジェクトを進めながら
ペアプログラミング

　プロジェクトを進めながらも、ペアプログラ
ミングを通してコレクションの高階メソッドを
覚えたり、効率の良いデバッグ方法や IDEの

使い方も知ることができました。少し行き詰まっ
たら、1人で悩んで時間を無駄にしてしまう前に、
ほかのチームメンバーとペアプログラミングす
る習慣がチームにあると良いかもしれません。

ChatWorkとして変わってきたこと

　PHPからScalaへの移行を始めてそろそろ1

年経ちますが、良い方向に大きく変わってきた
ことがあります。

・型推論や高階関数、柔軟なパターンマッチな
どを使って、簡潔で読みやすいコードになった

・副作用を局所化したり、変数への再代入や可
変コレクションの使用を抑えることでテス
トが書きやすくなった

・型に関する不具合をコンパイル時に発見でき
るようになった

　このような大きな効果があった一方、コード
量が増えていくにつれてコンパイルに時間がか
かったり、Scalaでの開発経験者はPHPと比
べるとまだまだ少ないため、採用活動には苦労
をしています。そこでチャットワークでは
Scalaのことはまだ良くわからないけど、関数
型プログラミングに興味があるエンジニアを積
極的に募集しています注10。

本章のまとめ

　オブジェクト指向同様、関数型プログラミン
グの世界は広くてさまざまな考え方や法則があ
り、本稿ではその一部を紹介しただけです。し
かし最初から難しく考えずに、便利だと思った
ものから使っていけば良いと思います。その点
でScalaは今まで慣れ親しんできたオブジェク
ト指向をベースに、関数型プログラミングのエッ
センスを少しづつ取り入れていくことができる
ので、関数型プログラミングの入門に適した言
語だと感じています。ﾟ

注9） http://c-note.chatwork.com/post/87584062960/bizreach-chatwork-scala
注10） http://recruit.chatwork.com/ja/developer.html

サービス改善への解答

PHPエンジニア、Scalaを学ぶ！
第 2 章

http://c-note.chatwork.com/post/87584062960/bizreach-chatwork-scala
http://recruit.chatwork.com/ja/developer.html

40 - Software Design

なぜ関数型プログラミングは難しいのか？第1特集

Scalaの魅力

　Scalaは Java VM上で動作するアプリケー
ションを書くための言語で、Javaの標準・非
標準のライブラリをそのまま使える、静的型付
けのオブジェクト指向言語です。その一方で、
副作用のない式を基本とした関数型プログラミ
ングを強く推奨し、そのための言語機能も多く
備えています。普段オブジェクト指向プログラ
ミングに慣れ親しんでいれば、オブジェクト指
向の伝統的な書き方をしながら徐々に関数型プ
ログラミングを身につけることができ、関数型
プログラミングの入門言語としては最適と言え
るでしょう。また、動的型付けのスクリプト言
語に精通していれば、静的型付けと聞いて、型
をいちいち書いて面倒だというイメージを持つ
かもしれません。実はまったく逆で、Scalaは
スクリプト言語のように柔軟に書くための工夫
をふんだんにとり揃えています。本稿では、ス
クリプト言語のようになめらかで生産性の高い
コーディングを維持するための工夫にも注意を
払いながら、静的型付けによる型安全性のメリッ
トを最大限に活かす、関数型プログラミングの
ための言語機能を紹介していきます。

インストールとREPLの実行

　Scalaの処理系はオフィシャルサイトからダ
ウンロードしてインストールできます（第2章
参照）。インストール後、scalaコマンドを実

行すると対話型実行環境（REPL）が起動するの
で、本稿のコード例を実際に実行して試せます。
コード例はScala 2.11.6で動作確認しています。

関数型プログラミングの
ための言語機能

　まずは、関数型プログラミングを実現する
Scalaの機能を見ていきましょう。

不変な値と可変な変数の区別

　関数型プログラミングでは、簡単で小さな、
副作用のない部品を組み合わせていくことで、
複雑で大きなプログラムを完成させます。もし
小さな部品に副作用がたくさん出てくると、あ
る部品の動作で生じた副作用が、同じ部品を用
いた別の個所でも影響を及ぼしてしまい、部品
の再利用が困難になります。逆に、副作用なし
にうまく抽象化された良い部品があれば、その
シンプルな組み合わせだけで複雑なことも整然
と実現できるはず、というのが関数型プログラ
ミングの信念といえます。
　非関数型プログラミングでもっとも頻繁に登
場する副作用は、おそらく変数への破壊的代入
でしょう。再利用性の高い部品を作り上げるに
は、破壊的代入をなるべく排除するのが得策で
す。しかし一般的には、破壊的代入がないよう
にプログラマが気をつけるのは難しく、また誰
か別の人が書いたコードに破壊的代入があるか
どうかを確かめるのも簡単ではありません。
　Scalaでは、変数を宣言するときに代入可能
な変数（var）かそうでない（val）かを必ず書か

Author 伊奈 林太郎（いな りんたろう） ㈱はてな　　 Twitter @oarat　　 URL http://d.hatena.ne.jp/tarao/

小さな部品を組み合わせ、大きなプログラムへ

Scalaで始める、型安全な
関数型プログラミング

機能を最大限に活かすコーディング術

関数型プログラミングは「簡単で小さな副作用のない部品」を組み合わせて「複雑で大きなプログラム」を作るという性質上、
部品の再利用・部品ごとの修正が効きやすいという利点があります。本章では、関数型プログラミングをサポートする
Scalaの機能を紹介していきます。手元でひとつずつ試しながら、関数型プログラミングに慣れていきましょう。

第 3 章

http://d.hatena.ne.jp/tarao/

40 - Software Design Aug. 2015 - 41

なければなりません。valは宣言時のみ値を指
定でき、再代入できません。valしか使われて
いなければ破壊的代入のないことが誰の目にも
明らかですので、なるべくvalを使うことが推
奨されています。

val i = 3
i = 5 // コンパイルエラー

var j = 3
j = 5 // OK

　そうはいっても、普段から破壊的代入が当た
り前になっていれば、急にそれなしでコードを
書けと言われても難しいかもしれません。とく
にオブジェクトに対するアクションを、破壊的
代入をしないでどうやって表現するのか疑問に
思うことでしょう。発想の転換は必要ですが、
オブジェクト指向のコードであろうと、副作用
のない形で表現することは可能です。
　たとえば、リスト1は移動可能な2次元座標
点を表すクラスPointをvarを用いて書いた例
です。これをvalのみの形に書き直すとリスト
2のようになります。関数move()では、オブジェ

クトのフィールドに再代入する代わりに変更後
のフィールドを持った新たなオブジェクトを作っ
ています。これでPointクラスからは副作用
がなくなりましたね。おっと、move()の結果
を受けとるptがvarで宣言されていました。
これもvalにしてしまいましょう（リスト3）。
　varで宣言された変数ptに再代入する代わり
に、move()する前の値をval pt1に、move()
後の値をval pt2に束縛しています。インチキ
くさいでしょうか。しかしこれが関数型プログ
ラミングの考え方です。オブジェクトの変化を
副作用によって表現するのではなく、変化の前
の値を残したまま変化の後の値を新たに作って
いきます。

必ず値を返す式

　全体を副作用なく書いていくと、ほかの動作
の結果である新たな値を受けとり続けなくては
なりません。あらゆるメソッドはほかのメソッ
ドの返り値を使って何かを計算し、そして自身
の計算結果の値を返すものです。これはメソッ
ドに限らず、条件分岐やループについても同様
です。Scalaではifやforも値を返します。

val x = if (true) 3 else 5
// => 3
val y = for (i <- 1 to 5) yield(i*i)
// => Vector(1, 4, 9, 16, 25)

不変なデータ構造

　計算結果の値を次々に返し、受けとっていく
やり方をプログラムの隅々まで行き渡らせ、あ
らゆるデータ構造やクラスに対して適用するの
は、容易ではないと思うかもしれません。幸い、
Scalaではよく使うデータ構造については、は

case class Point(var x: Int, var y: Int) {
 def move(dx: Int, dy: Int) {
 x += dx
 y += dy
 }
}

var pt = new Point(10, 20)
println(pt) // Point(10,20)
pt.move(5, 5)
println(pt) // Point(15,25)

 ▼リスト1　副作用のあるクラス

case class Point(val x: Int, val y: Int) {
 def move(dx: Int, dy: Int): Point =
 new Point(x + dx, y + dy)
}

var pt = new Point(10, 20)
println(pt) // Point(10,20)
pt = pt.move(5, 5)
println(pt) // Point(15,25)

 ▼リスト2　副作用のない純粋オブジェクト指向のクラス

val pt1 = new Point(10, 20)
println(pt1) // Point(10,20)
val pt2 = pt1.move(5, 5)
println(pt2) // Point(15,25)

 ▼リスト3　 リスト2を修正、全体を通して副作用をな
くす

小さな部品を組み合わせ、大きなプログラムへ
Scalaで始める、型安全な関数型プログラミング

機能を最大限に活かすコーディング術

第 3 章

42 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

じめから不変なスタイルのものが用意されてい
ています。
　リスト4は不変なスタイルで実装された
List[]とMap[]の使用例です。コレクション
値を更新する::や+といった演算子メソッドは、
更新された新しいコレクション値を返します。
コレクションクラスには要素の参照・更新のた
めのメソッドだけでなく、全体を走査するため
のmap()やfoldLeft()などのメソッドも豊富
に用意されています。
　独自のデータ構造を定義したい場合には自分
でクラスを定義することもできますが、簡単な
構造ならタプルで済む場合も多いでしょう。タ
プルは2つ組や3つ組を表すデータ構造で、組
の要素の型はバラバラでも良く、要素の型や個
数が違えばまったく別の型として扱われるよう
なデータ構造で、また次のように入れ子にもで
きます。タプルのn番目の要素は_nメソッド
で参照できます。

val t = (1, "foo")
val u = (t, (2, "bar", "baz"))
t._1 // => 1
u._2 // => (2, bar, baz)
u._2._3 // => baz

パターンマッチ

　不変な値を作って操作するには、単に値を作っ
たりその内部の要素にアクセスしたりするだけ
でなく、複雑な構造をいったん分解して、中身

を調べていく必要もあります。このときに便利
なのがmatch式によるパターンマッチです。
　リスト5はパターンマッチを使ってList[]中
の任意の同じ値の連続を1つにまとめるメソッド
compress()を実装した例です。まず引数list
に対してmatch式でパターンマッチしていきます。
最初のcaseはlistが2要素以上の場合にマッ
チし、その2要素（aとb）と残りの要素（rest）に
名前を付けて、条件処理や再帰呼び出しの引数
に利用しています。2つめのcaseは要素が1つ
だけだった場合にマッチします。マッチした部
分はとくに使わずにlistをそのまま返せばよい
ので、パターン中では名前を付けずに_としてい
ます。_は任意の構造にマッチするパターンです。
最後のcaseはリストが空だったときにマッチし
ます。Nilのように定数もパターンとして使えます。
　タプルもパターンマッチで分解できます。ま
た、パターンはcaseだけでなく次のように
valの宣言時にも使えます。

val pair = (1, "foo")
val (fst, snd) = pair
fst // => 1
snd // => "foo"

　このようにパターンマッチは構文だけとって
も十分に便利なものですが、パターンマッチが
好まれる特筆すべき理由として「網羅性チェッ
ク」があります。たとえばリスト5の例で最後
のcase Nil => Nilを書き忘れると、Scala

コンパイラは次のような警告を表示します。

val l1 = List(3, 2, 1)
val l2 = 5 :: 4 :: l1
l2.head // => 5
l2(2) // => 3
l1.map { i => i * i }
// => List(9, 4, 1)

val m1 = Map(1 -> "foo", 2 -> "bar")
val m2 = m1 + (3 -> "baz")
m2(2) // => "bar"
m1.keys // => Set(1, 2)

 ▼リスト4　不変なコレクションの使用例

def compress[A](list: List[A]): List[A] =
 list match {
 case a :: b :: rest =>
 if (a == b) compress(a :: rest)
 else a :: compress(b :: rest)
 case _ :: Nil => list
 case Nil => Nil
 }

compress("aaaabccaadeeee".toList)
// => List(a, b, c, a, d, e)

 ▼リスト5　 連続する値をまとめる、パターンマッチ
の利用例

42 - Software Design Aug. 2015 - 43

warning: match may not be exhaustive.
It would fail on the following input: Nil

　分岐の漏れがコンパイル時に検出されるので、
実行時エラーにおびえる必要はなく、安心感が
ありますね。静的型付けするのであれば当然ほ
しい機能をきちんと備えています。

ケースクラス

　より複雑なデータ構造を表現するために
matchで分岐可能な型を自分で定義したいこと
もあるでしょう。そのような型を簡単に定義す
る方法としてケースクラスが用意されています。
たとえば枝（Branch[]）もしくは葉（Leaf[]）か
らなる二分木構造（Tree[]）を定義するにはリ
スト6のようにします。
　Tree[]をsealed traitとして宣言するこ
とによって、Tree[]にはLeaf[]とBranch[]
以外のサブクラスがないことがコンパイラに伝
わり、matchの際の網羅性チェックが働くよう
になります。

Option型

　ここまでで、簡単な部品を使って複雑なもの
を組み立てられそうな手応えが感じられたでしょ
うか。副作用もなく、メソッドは必ず値を返し、
すべての値にきちんと型がついた世界では実行
時エラーが差し挟まる余地はありません。

　とはいえ、現実的なプログラムでは値を返せ
ない状況も発生します。ScalaはJavaとの互換
性のためにnullや例外クラスをサポートして
いますが、少なくともnullに関しては絶対に
使わないほうが良いでしょう。nullを使いつ
つもNullPointerExceptionが発生しないこと
を、注意深く設計された型の性質によって保証
できる状況というのは存在しますが、型安全性
のエキスパートだと公言できるのでもなければ
やめておくべきです。さもなければ、せっかく
の静的型付けも、不変な値で組み上げたきれい
な世界も台無しになってしまいます。
　では値を返せない場合にScalaではどうする
かというと、Option[]型を使います。これは、
なんらかの値があることを表すSome(_)か、
値がないことを表すNoneのいずれかの値をと
る型です。リスト7は最初に見つかった偶数を
返すメソッドfirstEven()の実装例で、返り
値にOption[]型を使っています。
　Option[]型の値を受けとったときは、それ
がSome(_)だったのかNoneだったのかを次の
ようにパターンマッチで調べられます。ここで
もやはり、どちらかのcaseを書き忘れるとコ
ンパイラに警告されます。

firstEven(...) match {
 case Some(n) => println(s"Even: $n")
 case None => println("Not found")
}

　Option[]型の値に依存した計算結果を返す方
法はほかにもあります。まず、getOrElse()を
使うとNoneだったときのデフォルト値を与えるsealed trait Tree[A]

case class Leaf[A](value: A)
 extends Tree[A]
case class Branch[A](left: Tree[A], right: Tree[A])
 extends Tree[A]

def sum(tree: Tree[Int]): Int = tree match {
 case Branch(b1, b2) => sum(b1) + sum(b2)
 case Leaf(v) => v
}

val tree = Branch(
 Branch(Leaf(1), Leaf(2)),
 Branch(Leaf(3), Leaf(4)))
sum(tree) // => 10

 ▼リスト6　ケースクラスによるツリー構造

def firstEven(list: List[Int]): Option[Int] =
 list match {
 case a :: rest =>
 if (a % 2 == 0) Some(a)
 else firstEven(rest)
 case Nil => None
 }

firstEven(List(1 ,2, 3)) // => Some(2)
firstEven(List(1 ,3, 5)) // => None

 ▼リスト7　 最初に見つかった偶数を返す、Option[]
型の例

小さな部品を組み合わせ、大きなプログラムへ
Scalaで始める、型安全な関数型プログラミング

機能を最大限に活かすコーディング術

第 3 章

44 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

ことができます。

firstEven(List(1, 3, 5)).getOrElse(0)
// => 0

　また、map()を使うと、Some(v)だったとき
にはvを使った計算結果をふたたびOption[]
型にして返し、NoneだったときはNoneのまま
返せます。map()に渡した関数の中では、vの
値があったものとして計算を進められます。

firstEven(List(1, 2, 3)).map { v => v * v }
// => Some(4)

firstEven(List(1, 3, 5)).map { v => v * v }
// => None

　もしmap()のような操作を何段も繰り返すな
ら、for式を使うこともできます。リスト8の
sqOddEvenは、リストから奇数と偶数をとり出
してそれぞれ二乗して返します。firstOdd()
とfirstEven()はともにOption[Int]型を返
し、それぞれSome(_)だった場合の値が<-の
左辺の変数に束縛されます。<-の右辺がNone
になった場合はそれ以降の行は計算されず、
for式全体がNoneを返します。
　このようにして、値を返さないことがある処
理をOption[]型で表現し、そのような処理を
組み合わせた複雑な結果もまたOption[]型で
表せます。

Either型

　同様にして、エラーになることがある処理も
例外を使わずに表現できます。Either[]型を使
うと、Left(_)かRight(_)のどちらかの値をと
る型を表現できます。Left(_)でエラーのとき
の情報を、Right(_)で結果の値を表すのが慣例
です。Either[]型のインスタンスはLeft()や
Right()メソッドでも作れますが、ここでは
Option[]型から変換してみましょう（リスト9）。
　toRight()メソッドを呼ぶと、Some(_)だっ
たときには値がRight()に入り、Noneだった
ときには引数で指定された値がLeft()に入っ
たEither[]型が返ります。Either[]型の値
の right()メソッドを指定すると、<-で
Right(_)の値をとり出せるようになります。
途中でエラー（Left(_)）になった場合はfor式
全体の結果がLeft(_)になります。この例の場
合、最終的にeをとり出すところで失敗してエ
ラーが返ったことがわかります。
　常に不変な値を返すスタイルでも、複雑に部
品を組み合わせることが可能となるだけでなく、
エラー時の処理までできることがわかりました。
入門ですのでこのあたりにとどめておきますが、
この先は状態の管理が本質的に必要とされる場
合の方法論なども学んでいくと良いでしょう。

そのほかの言語機能

　ここまでの例でScalaは、静的型付けの割に
はすべての変数宣言に型を書くようなことはせ

def firstOdd(list: List[Int]): Option[Int] =
 list match {
 最初に見つかった奇数を返す実装（略）
 }

def sqOddEven(list: List[Int]): Option[(Int, Int)] =
 for {
 o <- firstOdd(list)
 e <- firstEven(list)
 } yield((o * o, e * e))

sqOddEven(List(1, 2, 3))
// => Some((1,4))

sqOddEven(List(1, 3, 5))
// => None

 ▼リスト8　forによるOption[]型の操作の例

val list = List(1, 3, 5)
for {
 o <- firstOdd(list).toRight {
 "Odd number not found"
 }.right
 e <- firstEven(list).toRight {
 "Even number not found"
 }.right
} yield((o * o, e * e))
// => Left(Even number not found)

 ▼リスト9　forによるEither[]型の操作の例

44 - Software Design Aug. 2015 - 45

ず、非常に柔軟な書き方ができる言語だという
ことが見てとれたかと思います。ほかに、自由
度を上げるのに役立つScalaの機能をいくつか
ピックアップして紹介したいと思います。

　静的型付言語に対してよく挙がる不満として、
書きかけの部分を残したままではコンパイルが
通るかどうかを確かめられないというものがあ
ります。Scalaの場合は、書きかけの部分には
ひとまず???と書いておくことで、それ以外の
部分の型チェックを走らせることができます。

def balanced[A](elements: List[A]): Tree[A] =
 ???

???はどんな型が要求される場所でも型が付く式
で、この式を実行するとNotImplementedError
という例外が発生します。

ブロック

　メソッドの引数型を=> AやA => Bにすると、
{ ... }や{ x => ... }の形でRubyのブロッ
クに似た引数を受けとることができます。正確
には前者は名前呼びで、後者は関数を引数に渡
すことで実現されているものです。

def when[A](cond: Boolean)(block: => A) =
 if (cond) Some(block) else None
when(true) { println("foo") } // foo
when(false) { println("foo") } // 印字なし

　受けとったメソッド内で実際に使うまではブ
ロック内の計算は実行されないので、独自の制
御構文のような使い方もできます。まずは使う
方からなれていき、だんだんと自分でも定義で
きるようになっていきましょう。

文字列補完

　例の一部にも出てきましたがs"..."のよう
に文字列リテラルの前にプレフィックスを付け
ることで、リテラル中に$nameの形で変数名
を指定して、その値を埋め込めます。

val name = "foo"
val value = 3
s"$name is $value" // => foo is 3

　詳しくは説明しませんが、このsに相当するも
のは自分で定義することもでき、変数埋め込み可
能なDSLを自由に定義できるようになっています。

暗黙変換

　implicitという言語機能を用いると、Ruby

のrefineのように、ほかで定義されているクラ
スに対して動作するメソッドを後から付け足して、
特定のスコープだけで有効にできます。たとえ
ば次の例では、組込みのString型にquoteメソッ
ドを付け足すためのMyStringクラスを定義して
います。

class MyString(val s: String) {
 def quote() = "･"" + s + "･""
}
implicit def myString(s: String) =
 new MyString(s)

"foo".quote // => "foo"

　implicitにはそのほかにもさまざまな応用例
があり、Scalaの自由度を上げるのに一番貢献し
ている言語機能とも言えます。

おわりに

　関数型プログラミングの特徴である、不変な
値を次々と計算していくスタイルをScalaで実
現する方法について紹介しました。Scalaにお
ける関数型プログラミングのさらなる高みを目
指すなら、Scalazやshapelessといったライブ
ラリを眺めてみると良いでしょう。
　関数型プログラミングに限らないScalaの言
語機能にも、まだまだ紹介しきれなかったもの
がたくさんあります。とくに、構造的部分型、
動的束縛、動的メソッド呼び出し、マクロなど、
これらすべてをサポートしている言語はなかな
か珍しいので、興味があればScalaのマニアッ
クな機能を試してみると良いでしょう。ﾟ

未実装部分の型付け

小さな部品を組み合わせ、大きなプログラムへ
Scalaで始める、型安全な関数型プログラミング

機能を最大限に活かすコーディング術

第 3 章

46 - Software Design

なぜ関数型プログラミングは難しいのか？第1特集

はじめに
（ちょっとテンション低め）

　この話をいただいたときに「えっ？　また
Haskell？」と思ってしまった、本来はシェル芸
の人、上田です。冒頭であまりネガティブなこ
とを書くのは、依頼を出した方にも責任を背負
わすことになり本来よろしくありません。しか
し、関数型言語界隈は論客が多いこと、筆者が
Haskellでご飯を食べていないどころかコミュ
ニティにも顔を出していないこともあり、引き
受けるにはそれなりに覚悟がいります。しかし、
紛れもなく日常的には使っていますので、ちょっ
と引いた目でHaskellについて考えていること
を書かせていただきます。

難しさの切り分け

　本特集は「なぜ関数型プログラミングは難し
いのか？」ですが、たぶん一言で「難しい」と言っ
たときには、複数の難しさを含んでいます。「何
が難しいか」を列挙して問題を切り分けないと、
ただ漠然とした不安にしかなりません。
　ということで、Haskellについて筆者なりに
「個々の難しさ」を挙げたら次のようになりまし
た。

①	数学的な背景の難しさ
②	試してみようと思った人が数学や物理をあ
まり勉強しなかったゆえに感じる難しさ

③	使い道を見出す難しさ

　①は、やれ圏
けん ろん

論だとか、やれ関
かん しゅ

手だとか、そ
ういう話です。とくにHaskellの場合、ネット
上では常に数学の概念の話が盛り上がっている
「ように見えてしまう」のですが、初心者の人が
Haskellの情報をネットで調べると、そういっ
た盛り上がりに気をとられてしまいます。ブロ
グなどを書いているほうは楽しく自分の関心を
書けばいいのでまったく罪はありませんが、調
べるほうは、まずそのようなバイアスにさらさ
れていることは留意する必要があります。筆者
も研究者ではありますが、そこらへんの話は正
直に申し上げるとサッパリわかりません。いく
ら数学ができても、当該分野の数学をちゃんと
勉強しなければ普通の人とそんなに違いません。
　おそらく、筆者が考えるにもっと厄介な問題
は②のほうです。Haskellを書くのに必要なの
は圏論の知識ではなくて、数列とか関数とか、
中学や高校で習ったり使ったりした数学や物理
の知識かなあと思っています。類書を読んでも、
ある程度の数学の知識が前提になっています。
中にはもしかしたら「わからなくてもいいよー」
的なノリの本もあるかもしれません。しかし、
この特集が「なぜ難しいか」というテーマなので
便乗して断言すると、「わからなくてもいいよー」
はウソです。そんなムシのいい話はありません。
数学における関数というものが一体何なのか、
体に染み付いて理解していないとスラスラ書け
ませんし、それ以前にメリットを感じられるこ
ともないでしょう。
　光明があるとすれば、逆にHaskellを勉強し
出したら数学も勉強できて、数学も好きになる

Author 上田 隆一（うえだ りゅういち） 産業技術大学院大学／USP研究所／USP友の会　　 Twitter @ryuichiueda　

数学と物理遊びで垣間見る

定義で記述する
Haskellのわかりやすさ

純粋関数型プログラミング言語とも言われ、数学的な専門用語を伴って説明されることが多いHaskell。敷居の高いイメー
ジばかりが先行してしまい、ふれることすらためらっていませんか？　まずはシンプルな計算プログラムで、Haskellの
書きやすさを知ることから始めましょう。

第 4 章

46 - Software Design Aug. 2015 - 47

かもしれないということでしょうか。だいたい、
数学が嫌いになった人に聞きたいのですが、嫌
いになった原因というのは、ほかの人について
いけなくなったとか、先生がつまらなかったと
か、外因だったのではないでしょうか？　数学
とか物理とかは本来、「世の中の雑事を紙と鉛
筆（とコンピュータ）でシンプルに扱うにはどう
するか？」ということを考えるためのもので、
物事がこんがらがってよくわからんというスト
レス地獄から解放されるためのものです。のん
びり楽しく勉強していけば、万物がシンプルに
見えるようになります。そしてHaskellも数学
の恩恵を受けており、シンプルに書けます。
　ですので本稿では、Haskellでちょっと数学
遊びと物理遊びをしてみようかと思います。

コードを試す環境

　Haskellのコードのコンパイルには、GHC（略
さない名称は下の出力に）を使います。

$ ghc --version ｶ
The Glorious Glasgow Haskell Compilation ｭ
System, version 7.8.3

　このバージョンのGHCならどの環境でも同
じように動作するはずですが、念のために執筆
で使った環境を書いておくと、計算機とOSは
MacBook Proと OS X Yosemiteで、GHCは
brew（1）を使って次のようにインストールしま
した注1。

$ brew install ghc cabal-install ｶ

　また、本稿執筆にあたり『関数プログラミン
グ実践入門̶̶簡潔で、正しいコードを書くた
めに』（技術評論社刊）を読みました。筆者の薄
い解説でぼんやりHaskellを理解した後は、ぜ
ひ硬派な本書をお読みください。以上、宣伝で
した。

数式を並べるように
プログラミング

　さて本題です。筆者の場合、電卓でもシェル
芸注2でも済まないような計算をしなければな
らないとき、まずHaskellを使おうかという気
になります。なぜかと言うと、考えて紙にメモ
した数式を素直にコーディングしてすぐに試せ
る場合が多いからです。ということで、
Haskellで数式を表現して遊んでみます。
　まず、リスト1のようなコードから話を進め
たいと思います。まだコンパイルは通りません。
　setAとsetBは、整数が5個並んだリストです。
リストは、他の多くの言語で言うところの配列
だと思っても本稿では差し支えありません。数
学に興味がない場合は、「ああ配列が2つある
なあ」で構いません。一応書いておくと、数学
というのは同じ性質を持つものをグループ化し
て、別のグループのものに作用させたらどうな
るかということを考えていく学問なので、数式
を書き始めると、たいていこのように、何かグ
ループ（集合）を定義することから始まります。
　んな難しい話は置いておきましょう。setA
とsetBからリスト順に1つずつ整数を取り出
して足し合わせ、新たにsetCというリストを
作ってみます。リスト2のように2行追加します。
　次ページのようにex1.hsをコンパイルして
実行すると、setCが画面に表示されます。

setA = [1,2,3,4,5]
setB = [6,7,8,9,10]

 ▼リスト1　AとBをリストで実装（ex0.hs）

1: setA = [1,2,3,4,5]
2: setB = [6,7,8,9,10]
3: setC = zipWith (+) setA setB
4: main = print setC

 ▼リスト2　 setAとsetBの各要素を足して作った
setCを表示するコード（ex1.hs）

数学と物理遊びで垣間見る

定義で記述するHaskellのわかりやすさ
第 4 章

注1） インストールにはXcodeがインストールされている必要があります。
注2） 当たり前のように使っていますが、シェル上でのワンライナーのことを筆者がこう呼んでいるだけです。詳しくは『シェルプロ

グラミング実用テクニック』（技術評論社刊）にて。以上、宣伝でした。

48 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

コンパイルはこのように行う
$ ghc ex1.hs ｶ
出力省略。バグがあればエラーが出る
できた実行形式（ex1）を実行
$./ex1 ｶ
[7,9,11,13,15]

　リスト2の3行目だけをもう少し補足してお
くと、zipWithというのは最初から準備されて
いる関数で、3個引数をとります。引数の後ろ
の2つはzipWithで処理したいリスト（つまり
setA、B）で、最初の (+)は、setAと setBの要
素のペア1つずつに行いたい演算（この場合は
足し算）です。

コードを翻訳したらわかること

　さて、ここでちょっと変なことをしてみます。
リスト3のように、リスト2の各行を「人間語（こ
こでは日本語）」に翻訳してみます。
　リスト3で面白いのは、どの行も「～は……
です。」というように、何か言葉の定義をしてい
るように見えることです（最後の4行目だけは「～
は……します。」とも言えますが）。登場する記
号が何であるか、逐一しっかりと定義することは、
論文や数学・物理のテストの答案を書くときに
は大切なことですが、Haskellのコードもこの
ように定義だけで書いていくことができます。
　答案と違ってHaskellのコードはプログラム

として動きます。やりたいことであるmain関
数の処理（4行目）からトップダウンで出発し、
必要な定義を持ちだしては計算を進めていきま
す。ex1.hsでは、mainを完了するために必要
なsetCが確定していないか調べられ、setCを
確定するために必要なsetA、Bと関数が調べら
れ……というふうに動いていきます。
　ところで、定義は順番を変えても変わらない
ので、Haskellのコードはリスト4のように順
番をめちゃくちゃにしても動きます。一応、動
くことを確認しておきましょう。

$ ghc ex1-2.hs ｶ
...（略）...
$./ex1-2 ｶ
[7,9,11,13,15]

　さて、リスト3の「日本語訳」は、リスト5の
ように翻訳してもよいのではないでしょうか？
リスト3の翻訳は恣

し い てき

意的ではないでしょうか？
　しかし、リスト5のように各行を手続きのよ
うに解釈してしまうと、リスト4のような並び
替えを行ったときに変な感じになります。やは
りHaskellのコードは定義であって、手続きで
はないのです。ほかの言語でも関数を書いた順
番が動作に無関係な場合はありますが、
Haskellの場合、手続きが書けないのでこのよ
うな性質が目立ってきます。

　もう1つ、リスト3の翻訳の
例で言っている大事なことは、
Haskellのコードでは、

n = 1
n = 2

というコードがありえないとい
うことです。翻訳すると、

nは1です。
nは2です。

となってしまい、「nは結局1と2

どっちなんや」ということになっ
てしまいます。ありえません。

1: setAはリスト[1,2,3,4,5]です。
2: setBはリスト[6,7,8,9,10]です。
3: setCはsetAとsetBの各要素1つ1つ順に足して作ったリストです。
4: mainはsetCをプリントする関数です。

 ▼リスト3　ex1.hsの「日本語訳」

1: setA = [1,2,3,4,5]
2: setC = zipWith (+) setA setB
3: main = print setC
4: setB = [6,7,8,9,10]

 ▼リスト4　ex1.hsの順序を入れ替えたコード（ex1-2.hs）

1: setAにリスト[1,2,3,4,5]を代入する。
2: setBにリスト[6,7,8,9,10]を代入する。
3: setCにsetAとsetBの各要素1つ1つ順に足して作ったリストを代入する。
4: mainでsetCをプリントする。

 ▼リスト5　ex1.hsの「誤訳」

48 - Software Design Aug. 2015 - 49

無限に続く数列を扱う

　さて、Haskellは「無限に続くリスト」を扱う
ことができます。リスト6のex2.hsはex1.hsを
ちょっと書きなおしたものです。出力は、次の
ようにex1と同じです。

$./ex2 ｶ
[7,9,11,13,15]

　リスト6中の[1..]は[1,2,3,...]と無限に
続くリストのことです。こんなものを実際に作っ
たらメモリがパンクするはずですが、リスト6
の1行目は、「setAは[1..]である」とただ言っ
ているに過ぎないので、パンクはしません。2

行目の[6..]はお察しのとおり[6,7,8,...]と
無限に続くリストですが、これもメモリに展開
されるわけではありません。setCも[1..]と
[6..]の要素を順番に足した無限のリストにな
ります。
　一方、ex2で出力される整数は5個だけですが、
これは4行目のtake 5 setCというのが「setC
の先頭から5個の要素」という意味になるから
です。プログラムは、mainから動き始め、
mainを遂行するにはsetCの先頭5個だけ必要
で、またそのためにはsetAとsetBの先頭5個
だけが必要で……と動きます。ですので、setA
とsetBが無限のリストでも大丈夫です。
　これは結局、setAとsetBで使う要素数を、
setAやsetBを定義するときではなく、実際に
使うときに決めることができるという例です。
この性質も地味と言えば地味なのですが、少な
くとも筆者は数式を書くときに、たとえば「離

散時刻 t = 1, 2, 3, ...があって……」というよう
に無限に続く数列を定義することはまったく珍
しくないので、それをそのまま書けて嬉しいと
いうことになります。
　さらに、『関数プログラミング実践入門』にも
書いてありますが、ex2.hsの1、2行目を、

setA = 1 : map (+1) setA
setB = 6 : map (+1) setB

とひねくれた書き方をしても同じ出力が得られ
ます。ただ、これは変態向けのお題ということ
で、初心者の方は華麗にスルーしていただけれ
ばと。
　次も初心者はスルーで結構ですが、もうちょっ
と数学をこじらすと、リスト7のようなコード
も書けます。複利の計算です。xが元本、yが
利子（ここでは年利のつもり）です。
　なぜそうなるかを理解する必要はありません
が、setF x yは [x,x*(1.0+y),x(1.0+y)^2,x(
1.0+y)^3,...]という、無限に数式の入ったリ
ストになります。2行目で元本千円、年利1％
と指定し、最初の5要素（0年目、1年目、...、4

年目）を出力するという指示をしているので、
出力は、

$./ex3 ｶ
[1000.0,1010.0,1020.1,1030.301,1040.60401]

となります。

物理の計算

　今度は物理をやってみます。と言ってもそん
なに難しい話ではなく、物を落としたら何秒後
にどれだけ下に落ちているか、数値計算してみ
るだけです。
　図1に想定する実験環境を示します。求めた
いのは t秒後の位置xです。この問題を紙と鉛
筆で解くと、 と答えが出てしまいま
すが、もっと難しい問題の場合は、このように
素直に答えが出てこないことがあります。こう

1: setA = [1..]
2: setB = [6..]
3: setC = zipWith (+) setA setB
4: main = print (take 5 setC)

 ▼リスト6　無限に続くリストを使う（ex2.hs）

setF x y = x : map (* (1.0+y)) (setF x y)
main = print $ take 5 (setF 1000 0.01)

 ▼リスト7　数式のリストを作る（ex3.hs）

数学と物理遊びで垣間見る

定義で記述するHaskellのわかりやすさ
第 4 章

50 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

いう場合は、少しずつ時間を進めてコマ送りの
ように物体を動かして計算する方法がとられま
す。これからやるのは、こういう方法のうちで
一番単純な「オイラー法」というものです。
　で、Haskellでどう解いていくかというとこ
ろですが、先ほどの集合の演算と同様、単に定
義を書いていけばよいということになります。
リスト8は、実際に動くコードです。1行目が
重力加速度gの定義、2行目がコマ送りの時間
間隔です。この例では1マイクロ秒とかなり細
かく動かしています。3行目は、「速度＝重力
加速度×時間」という事実を表しています。数
式で書くとv(t) = gtといったところですが、
Haskellだとシェルのコマンドと同様、関数（こ
の場合はv）の引数（この場合はt）に括弧をつけ
る必要がないので、v t = g * tという書き方
になります。
　次の5～7行目は、速度v(t)を使ってx(t)を定
義した関数です。この式には場合分けがあって、
6、7行目は| <条件> = <条件に対応する式>
という書き方になっています。6行目は tがゼロ
より進んだときの式で、右辺は“dt秒前の位置
から速度v(t)でdt秒だけ位置を動かす”という
式になっており、7行目は“ゼロ秒以前の物体の

位置は x=0”という
意味になっています。
　ちなみに、たとえ
ば7行目までの式を
論文用に真面目に数
式で書くと、図2の

ような書き方になります。
　whereはHaskellにもあるので、実はリスト
8の式はリスト9のようにも書けます。条件を
先に書かなければならなかったり、括弧が数式
と違ったり、Tが書けなかったりしますが、
図2とリスト9の類似性は筆者にとってはただ
ただ単純に嬉しいものです。Haskellを初めて
いじったときの感動が今、よみがえりました（大
げさ）。
　しかし逆に言えば、数式を書かない人にはピ
ンと来ないわけで、「なんでこんな書き方する
んだろう？」ということになります。ただ、そ
ういう人もHaskellを勉強してから数学の教科
書を開けば感動できますので、とくに数学をやっ
てこなかったからといって、自分で自分を門前

 ▼図1　実験環境

1: g = 9.8
2: dt = 0.000001
3: v t = g * t
4:
5: x t
6: | t > 0.0 = x (t - dt) + (v t) * dt
7: | otherwise = 0.0
8:
9: main = print (x 5.0)

 ▼リスト8　 図1の問題を数値計算で解くコード（ex4.
hs）

 ▼図2　数式表現

50 - Software Design Aug. 2015 - 51

払いする必要はありません。
　さて本題に戻ります。これまでのコードの説
明で図1の世界は説明し尽くしました。あとは
やりたいことを書くだけで、それがリスト8の9

行目やリスト9の6行目の「5秒後に物体がどこ
にあるか出力する」というmain関数です。これ
を指定しておくと、あとはHaskellの処理系が1

～7行目の定義を駆使して答えを求めてくれます。
　動かしてみましょう。ちゃんと か
ら得られる解（122.5）に近い値が得られていま
す。dtの値を大きくしていくと少しずつ122.5

から誤差が大きくなっていくので、試してみて
いただければと。

$./ex4 ｶ
122.50002448674475

終わりに

　さて、6ページでHaskellについてお伝えし
てきました。筆者からは、「Haskellの背景にあ
る数学は必ずしも理解しなくてもよいけど、
Haskellで書いて楽だと思えるようになるには、
ある程度数学も一緒に勉強しないといけない」
とお伝えしておきます。
　また、面白いことに本稿では型どころかモ
ジュールの importの話すら一切出てこず、ほ
ぼミニマムなコードで済みましたが、Haskell

が持っているミニマムな機能というのが数字の
計算であることを暗に示しているのかもしれま
せん。文法の説明を求めて読まれた方には懺

ざん げ

悔
しておきます。
　ところで、冒頭に挙げた問題③について何も

述べていませんでした。とりあえず本稿のよう
に数学や物理、金融や統計の問題を解くのがま
ず1つです（ただし連立方程式を書いたら勝手
に解いてくれるわけではありませんが）。また、
Yaccのような補助ツールなしでパーサが簡潔
に書けてしまえるというのもHaskellの超強力
な機能です。簡潔になるのは「数字というのは
◯◯である。」「配列というのは◯◯である。」と
いうような文法の記述方法が、定義を並べて記
述するHaskellのような言語と相性が良いから
です。
　Haskellの用途についてはこんなところにし
ておきます。Haskellの学習のためには、本稿
のように計算用途から入っていくのはよい入り
口かと考えています。
　最後に、「なぜ関数型プログラミングは難し
いのか？」を思惟中、余計なことを考えてしまっ
たのでここに書くことをお許しください。考え
たことというのは、もし言語を2つ以上覚えよ
うとすれば、プログラミング対象になる雑多な
物事の知識もバランス良く知っていないと使い
分けができず無意味、ということです。物事の
知識というのは、このWebサービスは裏でこ
んな業務フローを持っていそうとか、この物理
の問題はこう解くとか、化学反応はこう進むと
か、そういうことです。何か作るときは言語以
前に製作物の構造を把握することが大切です。
　一方、残念なことに、やたら特定の言語や「関
数型」などの概念に固執した人たちがネット上
での不毛な喧嘩を起こしています。起点となる
人たちはたいてい、何を作るかという話抜きに、
ライブラリなどの貢献者への敬意抜きに、実世
界で抜いたことのない刀の自慢をしています。
　我々がプログラムする対象は常に実世界、もっ
と言えば日常にあると、筆者は考えます。日常
のロジックに興味を向けることもおそらく、関
数型に限らずプログラミングや言語というもの
を難しく考え過ぎず、やたら神話化、神格化し
ない訓練になるのかなと、考えています。ﾟ

1: x t
2: | t > 0.0 = x (t - dt) + (v t) * dt
3: | otherwise = 0.0
4: where g = 9.8 ; dt = 0.000001 ; v tｭ
 = g * t
5:
6: main = print (x 5.0)

 ▼リスト9　リスト8の別の書き方（ex4-2.hs）

数学と物理遊びで垣間見る

定義で記述するHaskellのわかりやすさ
第 4 章

52 - Software Design

なぜ関数型プログラミングは難しいのか？第1特集

Elixirの歴史

　Elixirは、ブラジルのWebコンサルティング
企業Platformatecのリード開発者かつ共同創設
者のJose Valim氏が2012年に開発を始めたプ
ログラミング言語です。彼は2010年にRuby on

Railsのコアチームに加わり、Railsの書籍［1］も出
版しています。そのせいかElixirのコミュニティ
でアクティブに活動している人達には、Railsの
経験者が多いように筆者には感じられます。
　Valim氏がElixirを作ったのは、2010年に並
行処理の問題を解決するのに苦労して、ほかの
プログラミング・パラダイムを探していたときに、
Erlangを調べ始めたことにさかのぼります［2］。
彼はBEAMのしくみを追求しつつ、同時に学ん
でいた他のパラダイムなども参考にして、2012

年1月にPlatformatec社内でBEAM上で動く言
語としてElixirの最初の原案を説明するに至り
ました。さっそく会社の同意を得て、Elixirの開
発に社内で100％の時間を割くようになりました。
　Elixir開発当初は言語がどうなっていくかにつ
いては不安な側面もありましたが、その後各出版
社から参考書（後述）が出るに至り、Platformatec

の人達もElixirへの（創設者の時間と技術力を注
ぎ込んだ）投資が正しかったという確信を得たよ
うです。Elixirはその後2014年9月18日にv1.0

をリリースし［3］、2015年6月の本稿執筆時点では
v1.0.5が最新の安定版 (Stable)となっています。

Elixirのプログラミング言語
としての特徴

　Elixirの文法はErlangのそれとは大きく異
なり、一見すると他のスクリプト言語と同じよ
うに見えます。リスト1にサンプルコードを示
します。このサンプルコードではRgb2hsvとい
うElixirのモジュールにRgb2hsv.tohsv/1とい
う関数を定義して、RGBとHSVの色コードの
変換を行うものです注2。

Elixirの利点

　筆者はErlangに比べ、Elixirは次の点でプ
ログラミングの自由度をより高めた言語だと感
じています。

 省略記法
　各種の省略記法を使えるようにすることで、
文法の厳格さよりも書きやすさを重視しています。
たとえば関数を複数作用させる際のパイプ演算
子|>は、Elixirならではのものといえるでしょう。

 再代入可能
　Erlangの並行プログラミングを目的とした、
パターンマッチング、軽量プロセスへの分割と

注1） Elixirは英語では「エリクサー」と読みます。他の欧州言語では「エリクシア」あるいは「エリクシル」に近い発音になります。もとも
と飲み薬、その中でも「秘薬」を指す言葉ですので、混同を避けるためにハッシュタグなどでは「#elixirlang」と書かれることが一
般的です。

注2） このサンプルコードは、筆者の本誌2015年5月号での連載記事「Erlangで学ぶ並行プログラミング」第2回に示したものを書き
換えています。興味のある方は比較してみてください。

Author 力武 健次（りきたけ けんじ）　力武健次技術士事務所 所長　　 URL http://rikitake.jp/

その現在と未来
Elixir入門
Erlang/OTPから生まれたWeb開発指向言語

Elixir注1は、Erlang/OTPとその仮想マシンBEAMの上で動く、読みやすさを考慮してデータや処理の流れに注力できる
ことを目指しているプログラミング言語です。この記事ではErlang/OTPと比較しながらElixirの現在の状況を紹介し、
今後について考察します。

第 5 章

http://rikitake.jp/

52 - Software Design Aug. 2015 - 53

なぜ関数型プログラミングは難しいのか？

RGBからHSVへの色コードの変換を行います
参考URL: https://en.wikipedia.org/wiki/HSL_and_HSV
Elixirでは複数のモジュールを1つのファイルで定義できます
モジュール名をファイル名と一致させる必要もありません
structは名前のついたmapの一種で，モジュールごとに定義します
struct HSVを定義します
defmodule HSV do
各メンバーの名前を定義します
 defstruct hue: 0.0, saturation: 0.0, value: 0.0
end
struct RGBを定義します
defmodule RGB do
 defstruct red: 0, green: 0, blue: 0
end
Rgb2hsvモジュールを定義します
defmodule Rgb2hsv do
ビット演算のためのBitwiseモジュールをインポートします
 import Bitwise
キーワードdefpはモジュール内だけで使える関数を定義します
do:のあとの式が関数の定義となります
ElixirにはErlangと違い定数値のマクロがないため関数としてい
ます
 defp maxvalue, do: 255.0
Erlang同様のパターンマッチングが使えます
 defp zerodiv(_, 0), do: 0.0
 defp zerodiv(x, y), do: x / y
 defp diffdiv(x1, x2, y), do: zerodiv((x1 - x2), y)
キーワードdefはモジュール外から見える関数を定義します
%「struct名」{}でstructそのもの
struct を代入した 変数.「メンバー名」で各メンバーの値が使え
ます
複数行の関数はdo - endのブロックで定義します
 def tohsv(rgb = %RGB{}) do
|>はパイプ演算子といい
複数の関数を作用させるときの表記を容易にします

 ▼リスト1　rgb2hsv.ex

v1 |> func(v2, ...) は func(v1, v2...)と同値です
同様に v1 |> f1(v11, v12) |> f2(v21, v22, v23)は
f2(f1(v1, v11, v12), v21, v22, v23)と同値です
 tohsv((rgb.red |> band(0xff) |> bsl(16))
 |> bor(rgb.green |> band(0xff) |>ｭ
bsl(8))
 |> bor(rgb.blue |> band(0xff)))
 end
Erlang同様に引数の型によるパターンマッチも使えます
 def tohsv(c) when is_integer(c) do
Erlangのビットストリングと同様です
 << r::unsigned-integer-size(8),
 g::unsigned-integer-size(8),
 b::unsigned-integer-size(8) >> =
 << c::unsigned-integer-size(24) >>
次の行のコメントを外すと上記の式の内容を出力できます
IO.inspect ["r:", r, "g:", g, "b:", b, "c:", c]
 maxval = r |> max(g)|> max(b)
 minval = r |> min(g)|> min(b)
 d = maxval - minval
case式もErlangと同様ですが
ElixirではErlangと違い再代入を既定動作として許すため
以下の場合は比較対象の変数の前に
「^」を付けて再代入を許さないことが必要です
 h = 60.0 *
 case maxval do
 ^r -> diffdiv(g, b, d) + 6.0
 ^g -> diffdiv(b, r, d) + 2.0
 ^b -> diffdiv(r, g, d) + 4.0
 end
if式もErlangと同様ですがガードの制限がありません
 hueval = if h >= 360.0, do: h - 360.0, else: h
ここではstruct HSVで返しています
 %HSV{hue: hueval,
 saturation: zerodiv(d, maxval),
 value: maxval / maxvalue()}
 end
end

それぞれの状態の分離、データの共有を極力最
小限にする各種のしくみ、メッセージパッシン
グ、関数による非破壊操作などの特徴はすべて
維持しています。ただし、変数はErlangと違い、
既定動作としては再代入可能になっています。
これによって起き得る問題を防ぐために、変数
参照の際再代入を禁止するためのピン演算子^
が用意されています［4］。サンプルコードでは
case式でピン演算子を使っています。

 Erlangを越える新機能
　Erlangでは実現が容易でなかった各種機能を
言語ライブラリとして備えています。例として
遅延評価のためのStream、キーバリュー型デー

タ構造のmaps（Erlang/OTP 17以降にも同様の
機能があります）、mapsを応用した名前の付け
られるデータ構造であるStructなどがあります。

 メタプログラミング
　ErlangにはないLispスタイルのマクロによ
るメタプログラミングを使えるようにすること
で、言語の拡張が容易です。

Elixirの実行方法

　Elixirで書かれたプログラムはコンパイル用
のelixircコマンドでコンパイルするか、シェル
であるiexコマンドのスクリプトとして実行する
ことができます。サンプルコードの実行例を図1

その現在と未来
Elixir入門

Erlang/OTPから生まれたWeb開発指向言語

第 5 章

54 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

に示します。Erlangと同様にシェルから関数を
評価することで各種の作業を行うことができます。
　Elixirのソースコードからコンパイルされた
結果はErlang/OTPと互換の.beamファイルと
なるため、Erlang/OTPとElixirを組み合わせ
てプログラムを書いたりライブラリを相互に使
うこともできます（図2）注3。

Elixirのインストール

　Elixirを動かすにはErlang/OTP 17以降の
インストールが必要です注4。Elixir自身のイン
ストールについてはElixirのWebページ注5に
一通り説明があります。

Elixirのシェルでサンプルソースをコンパイルしよう
ソースコードのあるディレクトリからiexコマンドで起動する
Erlang/OTP 17 [erts-6.4] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll:false] [dtrace]

Interactive Elixir (1.0.4) - press Ctrl+C to exit (type h() ENTER for help)
ソースコード（拡張子は.ex）をコンパイルする
iex(1)> c("rgb2hsv.ex")
これらの警告はすでにある.beamファイルが上書きされるという以上の意味はない
rgb2hsv.ex:6: warning: redefining module HSV
rgb2hsv.ex:11: warning: redefining module RGB
rgb2hsv.ex:15: warning: redefining module Rgb2hsv
[Rgb2hsv, RGB, HSV] ←これら3つのモジュールが定義された
さっそくRgb2hsv内の関数を実行してみる
iex(2)> Rgb2hsv.tohsv(0x775534)
%HSV{hue: 29.55223880597015, saturation: 0.5630252100840336, value: 0.4666666666666667}
struct RGBを渡しても問題なく実行できる
各メンバーはキーワードで指定するので順番は自由
iex(3)> Rgb2hsv.tohsv(%RGB{red: 100, blue: 100, green: 200})
%HSV{hue: 120.0, saturation: 0.5, value: 0.7843137254901961}
RGBの16進値で再度計算
iex(4)> Rgb2hsv.tohsv(0x64C864)
%HSV{hue: 120.0, saturation: 0.5, value: 0.7843137254901961}
iex(5)> ここでCtrl-Cを押すとErlangシェルからブレークする
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
ここで を押すとabortして停止させるa

 ▼図1　Elixirの実行

Erlang仮想マシン BEAM

.beamオブジェクト
ファイル

Erlang シェル（erl）

Elixir シェル（iex）

Erlang/OTPとElixirのオブジェクトファイルは
同じ形式かつ同一の仮想マシンで動作し
相互にモジュールの中の関数を利用できる

Elixirのソースコード（elixircでコンパイル）Erlang/OTPのソースコード（erlcでコンパイル）

x.ex y.exa.erl b.erl

 ▼図2　Elixir実行環境の構造

注3） Elixirでは関数は「モジュール名 .モジュール内関数名 /引数の数」と表記します。サンプルコードにあるRgb2hsv.tohsv/1は実際には
Elixir.Rgb2hsv.beamというオブジェクトファイルでコンパイルされ、Erlangとの名前の衝突を防ぐようになっています。

注4） Erlang/OTPのインストールの詳細については、本誌2015年4月号の連載記事「Erlangで学ぶ並行プログラミング」第1回を参照し
てください。

注5） http://elixir-lang.org/install.html

http://elixir-lang.org/install.html

54 - Software Design Aug. 2015 - 55

　最新版のリリースキットはGitHub内のレポ
ジトリ注6から得ることができます。ここから

Precompiled.zipというErlang/OTPでコンパ
イル済みのアーカイブをダウンロードして展開
すれば、既存のErlang/OTPの環境上でElixir

を試すことができます。ソースコードを展開し、
makeでビルドすることもできます。
　もっとも、主要なOSでは定番のElixirイン
ストールの方法がすでに確立されているので、
そちらを使うのが賢明でしょう。以下、最新安
定版について、インストール方法を各種OS別
に説明します。

FreeBSD

　Portsあるいはパッケージの lang/elixirをイ
ンストールするのが早道です。具体的な方法は
次のとおりです。この際Erlang/OTP（lang/

erlang）は必要であれば依存関係に基づく必須
パッケージとしてインストールされます注7。

・portmasterを使ったPortsからのビルドとイ
ンストール

cd /usr/ports && umask 0022 && portmasterｭ
lang/elixir

・pkgコマンドによるパッケージインストール

pkg install lang/elixir

Mac OS X

　HomeBrew（http://brew.sh/）の Elixir と
Erlang/OTPの両バイナリパッケージ（bottle）を
使うのが早道でしょう。Mac OS X 10.10.x

（Yosemite）であれば、

brew install elixir

だけでインストールができます。

Linux各種ディストリビューション

　UbuntuやDebianの場合、Erlang Solutions

の配布するErlang/OTPのバイナリパッケージ
との組み合わせが推奨されています注8。具体的
な方法は次のとおりです。

パッケージを加える
wget http://packages.erlang-solutions.com/ｭ
erlang-solutions_1.0_all.deb
sudo dpkg -i erlang-solutions_1.0_all.deb
パッケージライブラリを更新してインストール
sudo apt-get update
sudo apt-get install elixir

　そのほかのディストリビューションについて
は、前述のelixir-lang.orgにあるインストール
説明ページに紹介されています。

Windows

　Windowsには専用のインストーラが提供され
ており、ダウンロードして実行するだけで
Erlang/OTPのインストールも含めて作業を完
了することができます注9。この際、Windowsの
Erlang/OTPのバイナリには32ビット／64ビッ
トの2つのバージョンがあるため、インストー
ル中に選択が必要です。また、Elixirの各種実
行プログラムに対して、環境変数PATHを設定
し実行できるようにする必要があります注10。

Elixirの開発環境

　Elixirのプログラムをエディタで編集するに
は vimであれば vim-elixir［5］、Emacsであれば
emacs-elixir［6］というプラグインが有用です。

注6） https://github.com/elixir-lang/elixir/releases/
注7） Elixirは実行環境としてUTF-8のロケールを前提としています。そのため FreeBSDの locale設定によっては“Please ensure your

locale is set to UTF-8”というエラーメッセージが出ることがあります。この場合は起動時の環境変数LANGをen_US.UTF-8に設
定するなどの方法で、UTF-8を使うロケールの選択を行ってください。

注8） Linuxの各種ディストリビューションにあるErlang/OTPのパッケージでは、一通り必要なライブラリやモジュールを揃えるのが容
易ではないという歴史的事情があります。

注9） http://s3.hex.pm/elixir-websetup.exe
注10） 具体的にはPATHに"C:¥Program Files¥erl6.4¥bin;C:¥Program Files(x86)¥Elixir¥bin"などの内容を追加する必要があります。

Windows各種エディションの環境変数PATHの編集については（https://github.com/uzulla/how_to_setup_path_on_windows）に
一通り日本語でまとめられています。

その現在と未来
Elixir入門

Erlang/OTPから生まれたWeb開発指向言語

第 5 章

http://brew.sh/
https://github.com/elixir-lang/elixir/releases/
http://s3.hex.pm/elixir-websetup.exe
https://github.com/uzulla/how_to_setup_path_on_windows

56 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

これらプラグインでは予約語などのハイライト
が可能です。emacs-elixirのほうはEmacsバッ
ファ内での iexの実行やコードのコンパイルの
機能も備えています。
　Elixirはビルド環境としてMixというツール
を標準で備えており、開発プロジェクトごとの
ディレクトリ管理などを行うことができます。
また、Hex（http://hex.pm/）というパッケージ
マネージャもMixから使うことができます。
　HexはElixirのみならずErlangまでサポー
トしており、Erlang/OTPの環境からも使えま
す。Hexはユーザ登録を行うことで、各ユーザ
が作成したElixirやErlang/OTPの各種ライブ
ラリを登録できるため、最近ではElixirだけで
なくErlang/OTPの開発環境としても注目され
ています。
　Elixirにはそのほかにもユニットテストのフ
レームワークExUnitや各種デバッグログの管
理を行うためのLogger、また外部のデータベー
スとのやり取りを行うためのライブラリEcto［7］

など、一通りの開発やテストのための環境はそ
ろっていると言えるでしょう。

Elixirはどこで
使われているのか

　ElixirはErlang/OTP同様のオブジェクト
ファイルを出力する言語処理系ですから、
Erlang/OTPに比べ遜色のない性能が得られる
ことは想像に難くありません。一例として、
Webアプリケーションの世界では、並行処理
に強いという特徴を活かしたWebフレームワー
クPhoenix注11が注目されています。
　すでにErlang/OTPは組み込みの世界にも進
出しており、Elixirも同様に応用されつつあり
ます。一例としてLego Mindstorms EV33の制
御事例［8］や、Rose PointNavigation Systemsに

よる航法システムへの応用［9］などがあります。

Elixirの参考情報

　Elixirの入門ドキュメントとして、 Getting

Started注12は通読しておくと後々役立ちます注13。
また、公式のドキュメントはWebページ（http://

elixir-lang.org/docs.html）の下に一通りそろって
います注14。
　書籍では次の2冊が役立つかと思います。

・Dave Thomas ，"Programming Elixir :
Functional"，Pragmatic Bookshelf，2014，
ISBN-13:978-1-93778-558-1

　Pragmatic Bookshelfの創設者の 1人Dave

ThomasがElixirに惚れ込んだ結果が1冊の書
籍になったという感じの本です。Erlang/OTP

同様の並行プログラミングを含めて、プログラ
ミング例も豊富で、Elixirでできることが一と
おり網羅されています。

・Simon St. Laurent，J. David Eisenberg，
"Introducing Elixir" ，O'Reilly Media ，
2014，ISBN-13:978-1-4493-6999-6

　こちらは比較的薄め（210ページ）の入門書です
が、ElixirやErlangの未経験者を前提に書かれ
ていますので、Elixirがどんなものなのかを知る
には役立つでしょう。著者のうちSt. Laurent氏
は、“Introducing Erlang”というErlang/OTPの
入門書も書いていて、安心して読めます。

Elixirのコミュニティ

　Elixirの関連情報は http://elixir-lang.org/

に一通りまとめられています。アクティブなメー
リングリストとしては、一般的な質疑応答のた

注11） http://www.phoenixframework.org
注12） http://elixir-lang.org/getting-started/introduction.html
注13） OSC北海道2015のniku氏による発表「プログラミング言語 Elixir」のスライド（http://slide.rabbit-shocker.org/authors/niku/

osc15do-elixir/）で日本語による概要の解説がなされています。
注14） 日本語への非公式な翻訳もあります（http://ns.maqcsa.org/elixir/docs/v1.1.0-dev/）。

http://www.phoenixframework.org
http://elixir-lang.org/getting-started/introduction.html
http://slide.rabbit-shocker.org/authors/niku/osc15do-elixir/
http://elixir-lang.org/
http://ns.maqcsa.org/elixir/docs/v1.1.0-dev/
http://slide.rabbit-shocker.org/authors/niku/osc15do-elixir/

56 - Software Design Aug. 2015 - 57

めのelixir-talkとElixir言語自身の開発者のた
めのelixir-coreの2つが運営されています注15。
　Elixirのコミュニティは独自性を保ちつつ、
Erlang/OTPのコミュニティと相互に連携して
活動しています。現在のElixirがErlang/OTP

のライブラリや言語のしくみをフル活用してい
ることから考えれば、これは当然の帰結といえ
るかもしれません。Erlang/OTPのイベントで
もElixir関連の発表は増えていますし、Elixir

に特化したElixirConf注16というカンファレン
スも開かれています。
　日本では札幌で毎週木曜日に開かれている
Sapporo.beam（サッポロビーム　http://sapporo-

beam.github.io）が息の長いコミュニティとして知ら
れています（オンラインでの参加もできます）。その
他の日本語によるElixir関連のコミュニティ情報と
しては、高橋 敬祐氏による『パーフェクト“Elixir

情報収集”』［10］が大変よくまとめられています。
　Erlang/OTPのコミュニティでもElixirの功
績は高く評価されており、Valim氏は先日6月
11、12日の両日にスウェーデンのストックホ
ル ム で 開 か れ た Erlang User's Conference

2015で、毎年Erlang関連コミュニティに最も
貢献した人に与えられるErlang User of the

Yearの受賞者となりました［11］。

今後のElixirの方向性

　本記事では割愛しましたが、Elixirでは関数
の引数の型によるポリモーフィズムを実現した
Protocols［12］、関数型言語のmapやfilterなど
定型的な逐次処理を実装したEnumモジュール
など、Erlang/OTPにはない抽象化の試みが取
り入れられています。
　Valim氏自身はv1.1以降について、パイプ演算
子とStreamによる非同期実行を組み合わせてパイ
プライン型の並列処理を目指すStream.async()や、
負荷分散用のプロセス間ルーティング機能を持つ
GenRouterなど、より並行／並列処理を重視した
方向性の開発を目指すと今年4月のErlangConf

EUのキーノートにて発表しています［13］。

おわりに

　この記事ではElixirの歴史、プログラミング
言語としての特徴、インストールの方法、参考
情報、そして今後の方向性について紹介しまし
た。Elixirは今後もErlang/OTPと良い関係を
保ちながら独自の方向性を持って発展していく
であろうと個人的には確信しており、今後が楽
しみです。ﾟ

注15） どちらもGoogle Groups上でelixir-lang-talk/elixir-lang-coreという名前のフォーラムとして運営されています。
注16） ElixirConfは2014年7月は米国テキサス州オースティンで、そして2015年は4月にポーランドのクラクフ（Krakow）にて開催され

ました。

参考文献
［1］ Jose Valim，"Crafting Rails 4 Applications: Expert Practices for Everyday Rails Development"，Pragmatic Bookshelf，

2013，ISBN-13: 978-1-93778-555-0
［2］ Hugo Barauna，"A little bit of Elixir’s history"，"Introducing Elixir Radar: the weekly email newsletter about Elixir"，

Platformatec Blog，January 28，2015，http://blog.plataformatec.com.br/2015/01/introducing-elixir-radar-the-weekly-
email-newsletter-about-elixir/

［3］ http://elixir-lang.org/blog/2014/09/18/elixir-v1-0-0-released/
［4］ http://stackoverflow.com/questions/27971357/what-is-the-pin-operator-for-and-are-elixir-variables-mutable
［5］ https://github.com/elixir-lang/vim-elixir
［6］ https://github.com/elixir-lang/emacs-elixir
［7］ https://github.com/elixir-lang/ecto
［8］ http://www.elixirconf.eu/elixirconf2015/torben-hoffmann
［9］ http://blog.plataformatec.com.br/2015/06/elixir-in-production-interview-garth-hitches/
［10］ http://www.slideshare.net/keithseahus/elixir-48878894
［11］ https://twitter.com/FrancescoC/status/609401964200378368
［12］ http://www.erlang-factory.com/static/upload/media/1434458082784816joseelixireuc.pdf
［13］ http://www.elixirconf.eu/static/upload/media/1438466794841215423elixirelixirconf.pdf

その現在と未来
Elixir入門

Erlang/OTPから生まれたWeb開発指向言語

第 5 章

http://stackoverflow.com/questions/27971357/what-is-the-pin-operator-for-and-are-elisir-variables-mutable
http://blog.plataformatec.com.br/2015/01/introducing-elixir-radar-the-weekly-email-newsletter-about-elixir/
http://blog.plataformatec.com.br/2015/01/introducing-elixir-radar-the-weekly-email-newsletter-about-elixir/
http://elixir-lang.org/blog/2014/09/18/elixir-v1-0-0-released/
https://github.com/elixir-lang/vim-elixir
http://blog.plataformatec.com/br/2015/06/elixir-in-production-interview-garth-hitches/
https://github.com/elixir-lang/emacs-elixir
https://github.com/elixir-lang/ecto
http://www.elixirconf.eu/elixirconf2015/torben-hoffmann
http://www.slideshare.net/keithseahus/elixir-48878894
https://twitter.com/FrancescoC/status/609401964200378368
http://www.erlang-factory.com/static/upload/media/1434458082784816joseelixireuc.pdf
http://www.elixirconf.eu/static/upload/media/1438466794841215423elixirelixirconf.pdf

58 - Software Design

なぜ関数型プログラミングは難しいのか？第1特集

はじめに

　関数型言語について調べると、コードのメン
テナンス性が高い、バグが入り込む余地が少な
い、などといった特徴が挙げられているのをよ
く目にします。本稿では、関数型言語のメリッ
トとして語られるこうした特徴を、Pythonを
使って実際に体験してみようと思います。
　Pythonの作者Guido氏は、それほど関数型
から影響を受けているとは思っていない模様で
すが、Pythonには関数型言語の特徴がいくつ
も内蔵されています注1。前半では、Pythonが持っ
ている関数の機能を紹介し、純粋な関数型言語
との違いについても考えます。後半は、プログ
ラムを関数型の思想に従って書くとどうなるか、
またPythonの持つ高度な関数の機能が、そう
した場面でどのように役立つかを見ていこうと
思います。環境は、Python3.4を利用します。

Pythonにおける
関数の機能

　まずは、Pythonの関数の書き方と呼び出し
方を念のため復習しておきます。引数を2乗し
て返す関数は次のように定義します。

def f(x):
 return x**2

>>> f(2)
4

　Pythonでは、関数はファーストクラスオブ
ジェクトですので、関数の引数にできます。た
とえば、リストの要素すべてにこの関数を適用
したいときは、組込み関数のmapが便利です。
次のように書けば、リストのすべての要素が2

乗された新しいリストが得られます。

>>> list(map(f, [2,3,4]))
[4, 9, 16]

　mapは1つめの引数に関数をとり、2つめの
引数にとったリストの各要素にこの関数を適用
した結果を返します。Python2までは結果がリ
ストで返ってきましたが、Python3から
iterableな（要素を1つずつ返せる）map型が戻
り値になりました。上の例ではわかりやすいよ
うに、リスト表示にしています。

無名関数

　lambdaを使えば、無名関数を作ることがで
きます。引数を1つとって、それを2乗して返
す無名関数は次のようにして作れます。

>>> lambda x:x**2

　コロンの左側が引数、右側が戻り値になりま
す。これをこのままmap関数の引数にできるの
で、短い関数に名前を付けるのが面倒なときに
は便利です。

>>> list(map(lambda x:x**2, [2,3,4]))
[4, 9, 16]

Author 辻 真吾（つじ しんご）　　 mail shingo.tsuji@gmail.com　

マルチパラダイム言語で肩慣らし

Pythonで見る
関数型言語の本質

バグを生みにくい、メンテンス性の良いプログラムへ

Pythonは、関数型の機能も持ち合わせたマルチパラダイム言語です。本章ではそのPythonを使って、関数型的な書き
方とはどんなものか、その利点はどこにあるのかを解説していきます。注目されているとは言ってもなかなかハードルが
高い関数型言語。慣れている言語を使って、まずは関数型の勘所を学びましょう。

第 6 章

注1） Guido van Rossum氏のブログ http://python-history.blogspot.jp/2009/04/origins-of-pythons-functional-features.html

http://python-history.blogspot.jp/2009/04/origins-of-pythons-functional-features.html

58 - Software Design Aug. 2015 - 59

なぜ関数型プログラミングは難しいのか？

�lter

　filter関数を使うと、リストの中から条件に
合うものだけを選んで取り出すときなどに便利
です。0から9までの整数から、偶数だけを取
り出すには次のような1行を書きます。

>>> list(filter(lambda x:x%2==0, range(10)))
[0, 2, 4, 6, 8]

　filter関数の1つめの引数には関数を渡します。
この関数がTrueを返せばその要素は残り、
Falseなら取り除かれるというしくみです。

reduce

　map、filterとセットで語られることが多
いreduce関数は、Python3からfunctoolsモ
ジュールに移動しました。reduceは、引数に
とったリストの要素を左から順番に2つ1組で
処理していきます。リストの合計を返してくれ
る組込み関数sumと同じ動きをするコードを、
reduceを使って書くと次のようになります。

>>> sum([1,2,3])
6
>>> import functools
>>> functools.reduce(lambda x,y:x+y, [1,2,3])
6

　lambdaで作った無名関数を1つめの引数に
しています。まずxに1が、yに2が代入されて、
3が返ります。次に、返ってきた3がxに、残っ
たほうの3がyになって、最後は6になるわけ
です。
　演算子を関数として提供してくれている
operatorモジュールがあります。足し算をし
てくれるoperator.addをreduceの第一引数
にしても先の例と同じ結果が得られます。

>>> import operator
>>> operator.add(1,2)
3
>>> functools.reduce(operator.add, [1,2,3])
6

リスト内包表記

　Pythonのリスト内包表記を使うと、コード
を簡潔に書くことができますし、関数型言語の
考え方に慣れるための良いきっかけにもなるで
しょう。

>>> nums = [2,3,4]
>>> [x**2 for x in nums]
[4, 9, 16]

　リストの各要素を2乗した新しいリストを、
リスト内包表記ではこのように書けます。最初
は少しわかりにくいかもしれませんが、慣れて
くるとコードを短く書けるので便利です。
　先ほどfilterを使って、0から9までの整
数から偶数を選び出しました。これもリスト内
包表記を使って書くことができます。

>>> [x for x in range(10) if x%2==0]
[0, 2, 4, 6, 8]

　2で割った余りが0になる数、つまり偶数だ
けが新しいリストの要素として返されます。
　自然数の3つの組が、直角三角形の三辺になっ
ているとき、それらをピタゴラス数と呼びます。
1から10までの自然数で、ピタゴラス数にな
るものを、リスト内包表記で探してみましょう。
組み合わせの羅列を得るのに、intertools.
combinationsを使います。例として、1、2、
3から2つを選ぶすべての組み合わせを探すに
は次のように書きます。

>>> import itertools
>>> list(itertools.combinations([1,2,3],2))
[(1, 2), (1, 3), (2, 3)]

結果は3通りで、それぞれの要素はタプル型に
なっています。
　本題に戻りましょう。ピタゴラス数は3つの
数の組み合わせですので、リスト1のようなコー
ドで表現できます。まず、range(1,11)で定
義された1から10までの整数のリストから、3

つの数を選ぶすべての組み合わせを計算します。
リスト内包表記の if文で、これらが三平方の定

マルチパラダイム言語で肩慣らし
Pythonで見る関数型言語の本質
バグを生みにくい、メンテンス性の良いプログラムへ

第 6 章

60 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

理を満たすという条件を書いてやれば良いわけ
です。

関数型言語の本質を探る

　関数を引数にとれる関数があることや、無名
関数などを利用して簡潔なコードが書けるとい
うことだけが、関数型言語の本質ではありませ
ん。これらの特徴を活かしてコーディングのス
タイルを変えることで、メンテナンス性が良く、
バグを生みにくいプログラムを作れるようにな
るはずです。そこでここからは、Pythonを使っ
て関数型言語の本質を探ってみようと思います。

ユーザ登録処理

　イメージをつかみやすいように、例として
Webブラウザからメールアドレスとパスワー
ドを受け取って、ユーザ登録処理をするサーバ
サイドのプログラムを想定します。次のような
処理の流れで、ユーザの新規登録をすることに

しましょう。

❶受け取ったデータのチェック
❷ユーザがすでにデータベースに存在するかの
確認

❸データベースへの書き込み

　途中でエラーが発生した場合は、そのあとの
処理をスキップするために、例外を送出して終
了します。
　受け取ったデータがdataという辞書型に格
納されているとすると、リスト2のようなコー
ドが書けそうです。　細かいことはさておき、
リスト2の一連の流れを今度は関数型言語っぽ
く書いてみることにしましょう。

関数型言語の考え方

　関数型言語の基本的な考え方は、処理をいく
つかの関数に分けて、これをデータに対して順々
に適用するというものです。多くのプログラミ
ング言語では、普通に関数が使われていますの

>>> [v for v in itertools.combinations(range(1,11),3) if v[0]**2 + v[1]**2 == v[2]**2]
[(3, 4, 5), (6, 8, 10)]

 ▼リスト1　ピタゴラス数を表現

再帰にみる関数型言語

　関数を定義する際に再帰を使えるプログラミン
グ言語は多く、もちろんPythonでもできます。再
帰の例でよく引き合いに出される自然数の階乗（そ
の数から順に1までを掛け合わせた数）を求める関
数factorialは、次のように書くことができます。

def factorial(n):
 if n == 0: return 1
 return n * factorial(n-1)

　引数が0のときは1を返し、それ以外のときは引
数から1を引いて、再び自分自身を呼び出すとい
う書き方です。最初にこうした再帰の定義を見ると、
少しわかりにくいと感じる方もいるかもしれません。

関数型言語であるHaskellでは、パターンマッチと
いう機能を使って次のように書けます注A。

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)

　引数が0で呼ばれた場合とそれ以外の場合を、
同じ書き方で並べられるため、わかりやすさが増
していると思います。
　しかし、どちらも関数としての完成度を上げる
ためには、負の数が与えられときの対応を考える
必要があります。再帰は便利な反面、バグを簡単
に潜ませてしまう怖さもあります。

コ
ラ ム

注A） 参考：大川 徳之 , 『関数プログラミング実践入門』, 技術評論社 , 2014

60 - Software Design Aug. 2015 - 61

で、これ自体は新しい考え方では
ありません。ここで重要なことは、
“関数を互いに接続できるように
しておく”ということです。つま
り、いくつかの関数の引数と戻り
値を、同じ形にするのです。そう
することで、ある関数の戻り値を
引数に、別の関数を呼び出せます。
これによって、処理の流れを、関
数の連続的な呼び出しとして記述
できます。
　処理の途中でエラーが発生する
可能性がありますので、これをデー
タとして保持するように、関数の
引数になるデータを設計しましょ
う。先ほどのメールアドレスとパ
スワードの辞書に、エラー情報保
持のためのリストを加え、これら
をタプルにしたものを用意します。
リスト3のコードは、関数型言語っ
ぽく書いたPythonのコードにほ
かなりませんが、関数型言語の本
質が少し見えてくると思います。
　それぞれの関数は、データを受
け取って、同じくデータを返しま
す。ですから、一連の処理は関数
の連続的な呼び出しで書くことが
できます。データの形は要素が2

つのタプルです。途中でエラーが
起きたとき、そのエラーメッセー
ジをタプルの2つめの要素である
リストに格納するしくみになって
います注2。関数は、もし引数のデー
タにエラーメッセージが入っていれば、それ以
上処理ができないと判断し、引数をそのまま返
します。例外が送出され、そのあとの処理をス
キップするというしくみを、関数の組み合わせ
で実現しているのです。

仕様変更への対応

　さてここで、特定のドメインのE-mailアド
レスを持っているユーザ（例ではGmail）を新規
登録できないようにしてほしいという仕様変更

import dbm
data = {'e-mail':'xxx@gmail.com', 'passwd':'pekepon3'}

受け取ったデータのチェック
if data['e-mail'].find('@') < 0:
 raise ValueError('E-mailアドレスが不正です。')
if len(data['passwd']) < 8:
 raise ValueError('パスワードは8文字以上にしてください。')

すでにユーザが存在するかのチェック
with dbm.open('user_data','c') as db:
 if data['e-mail'] in db:
 raise LookupError('すでに存在するユーザです。')

データベースへの書き込み処理
with dbm.open('user_data','c') as db:
 db[data['e-mail']] = data['passwd']

 ▼リスト2　ユーザ登録処理のプログラム

import dbm
data_t = ({'e-mail':'xxx@gmail.com', 'passwd':'pekepon3'}, [])

def validate(data):
 if data[1]: return data
 # 受け取ったデータのチェック
 if data[0]['e-mail'].find('@') < 0:
 data[1].append('E-mailアドレスが不正です。')
 if len(data[0]['passwd']) < 8:
 data[1].append('パスワードは8文字以上にしてください。')
 return data

def check_user(data):
 if data[1]: return data
 # すでにユーザが存在するかのチェック
 with dbm.open('user_data','c') as db:
 if data[0]['e-mail'] in db:
 data[1].append('すでに存在するユーザです。')
 return data

def register(data):
 if data[1]: return data
 # データベースへの書き込み処理
 with dbm.open('user_data','c') as db:
 db[data[0]['e-mail']] = data[0]['passwd']
 return data

register(check_user(validate(data_t)))
print(data_t[1]) #エラーの表示

 ▼リスト3　“関数型的に書いた”ユーザ登録処理のプログラム

注2） このように引数のデータを書き換える処理は、このコードが関数型的ではない点です。

マルチパラダイム言語で肩慣らし
Pythonで見る関数型言語の本質
バグを生みにくい、メンテンス性の良いプログラムへ

第 6 章

62 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

の要請があったとします。関数型言語
の考え方に準拠すると、1つ関数を追
加して、途中の処理にこれを組み込め
ば、この変更が完了します（リスト4）。
　ほかの関数を変更することなく、途
中にvalidate_domainを追加できま
した。これは、引数と戻り値の形が同
じになっているために得られる大きな
恩恵です。

関数のデコレータ

　関数型言語っぽくコードを書いてい
ると、Pythonの関数型言語としての
機能を、より利用できることに気がつ
きます。一連のユーザ登録処理に使われている
関数は、引数として受け取ったデータにエラー
メッセージが入っていれば、何も処理をせずそ
のまま引数を返すという動作を必ず行います。
同じ処理をいくつもの違う場所に書いているの
で、これはあまり良くありません。そこで、こ
の共通の処理を切り出して、1ヵ所にまとめる
ことにしましょう。
　これを実現するのが、「デコレータ」という機
能です。デコレータは、関数を引数にとって、
何らかの処理を追加した新しい関数を返します。
関数の入れ子や、クロージャといった関数型言
語に見られる特徴が利用されています。実際に
は、リスト5のような関数を作ります。
　check_dataが引数にとる関数が、実際にデー
タを処理する関数です。内部で定義されている
innerの引数dataは、check_dataが受け取
る関数funcの引数です。ここにエラーメッセー
ジが入っていればそのままdataを返し、エラー
メッセージが入っていなければ引数にとった関
数で処理を続けるコードを書きます。デコレー
タには、シンタックスシュガー（構文糖衣）が用
意されているので、次の2つの方法で記述でき

ます。

・定義済みの関数をデコレートする

validate = check_data(validate)

・関数を定義するときにデコレートする

@check_data
def validate(data):
 ...

合成関数

　Haskellでは、ドット（.）演算子を使って関数
を合成できるので便利ですが、Pythonのコー
ドで関数を連続的に呼ぶ場合、括弧が増えてし
まって不格好です（リスト4の最終行など）。こ
れは、reduceを使って見栄えを少し変えられ
ます（リスト6）。
　reduce関数は、3つめの引数に初期値をと
ることができます。最初の引数としてdata_t
を与え、以降はリストになった関数が連続的に
適用されていきます。もちろん、リストの先頭
の要素をdata_tにしてもかまいませんが、関
数だけからなるリストのほうがスッキリしてい

def check_data(func):
 # エラーがあれば処理をスキップするデコレータ
 def inner(data):
 if data[1]: return data
 return func(data)
 return inner

 ▼リスト5　デコレータの例

functools.reduce(lambda x,f:f(x), [validate, validate_domain, check_user, register], data_t)

 ▼リスト6　reduceを使って関数を連続的に呼ぶ

リスト3に追加
def validate_domain(data):
 if data[1]: return data
 if data[0]['e-mail'].endswith('@gmail.com'):
 data[1].append('Gmailは登録できません。')
 return data

リスト3の処理の実行部分を変更
register(check_user(validate_domain(validate(data_t))))

 ▼リスト4　リスト3を“関数型的に”仕様変更

62 - Software Design Aug. 2015 - 63

てきれいです。

なぜ関数型言語は
わかりにくいのか？

　関数型言語は、現在主流の考え方になってい
るオブジェクト指向とは思考が完全にひっくり
返っています。このことが関数型言語をわかり
にくいものにしていることは否めません。デー
タと関数が一体になったオブジェクトを設計し、
その状態を次々に変化させていくのがオブジェ
クト指向だとすると、データと関数を分離して、
関数の組み合わせで世界を記述するのが関数型
言語の特徴だと言えそうです。この考え方は、
大規模なデータにさまざまな方法論でアプロー

チして、結果を導き出そうとする、昨今のデー
タサイエンスやデータマイニングには向いてい
るかもしれません。また、リリースしたあとも
ニーズの変化にすばやく対応する必要がある
Webサービスなどでも、関数型言語の特徴が
活きてくるでしょう。
　一方で、Haskellのような純粋な関数型言語
にはいろいろと制約が多いのも事実です。この
制約が、メンテナンス性の良さを生んでいます
が、パラダイムを突然変えるのは難しいのもの
です。Pythonはマルチパラダイム言語ですので、
Pythonを使って、これまでのスタイルでプロ
グラミングをしつつ、来たるべき関数型言語時
代に備えるというのが良いかもしれません。ﾟ

for文じゃダメなんですか？

　Haskellなどの関数型言語では、変数への値の再
代入ができません。これは最初に聞くと、何を言っ
ているかわからないほど強烈な制約です。この制約
があると、次のような for文を書くことができません。

v = [1,2,3]
for i in range(len(v))
 # iに毎回代入している
 v[i] += 2
 # リストの要素を変更している

　この for文は次のようにmap関数で書き換えられ
ますし、mapを使うと必然的に新しいリストを返
すことになるので、引数のリストを変更する処理
もなくなります。

map(lambda x:x+2, v)

　たとえば、インタラクティブシェルであれこれ試
しながらデータを処理するコードを書いているとき
など、引数のデータが変更されなければ、1つ前の
処理に簡単に戻ることができるので便利です。その
一方、新しく作ったリストの分だけメモリが必要で
す。ただこれは、最近のコンピュータの性能を考え
ると、あまり気にしなくても良いのかもしれません。
　for文を使わず、map関数で書くようになると、
Pythonのコードを書いているときにも恩恵がありま
す。Pythonには、サブプロセスを生成して手軽に
並列処理を実行できる、multiprocessingモジュー
ルがあります（リストA）。ここでは、Poolの引数に

生成するサブプロセスの数を指定しています。こ
こで出てくるmap関数は、組込みのmap関数の並列
処理版ですので、使い方はほとんど同じです。最
近のPCはいくつかのCPUコアを持っていることが
多いので、func関数の中である程度重い処理をす
るときは、並列化の効果が出ます注B。
　変数への再代入ができないという制約が、map
関数という発想につながり、この考え方が並列処
理と相性が良いことがわかりました。関数型言語
の考え方自体は、何十年も前からあるのに、なぜ
最近注目されているのか？という疑問があります。
これに対しては「これまで貴重だったCPUやメモ
リが余り始めた」というのが、答えになると思いま
す。最近はメモリの容量を考えながらコードを書
くことはほとんどありません。また、CPUのクロッ
ク周波数は限界が見えつつあるので、コア数を増
やす方向にシフトしています。こうした時代背景
と関数型言語の特性が、ぴったり合ったと言える
かもしれません。

コ
ラ ム

注B） この例のような簡単なコードでは、並列化をするためのオーバーヘッドのほうが大きいので、普通に for文を書いたほうが高速です。

dimport multiprocessing

def func(x):
 return x+2

if __name__ == '__main__':
 with multiprocessing.Pool(4) as pool:
 pool.map(func, range(1000))

 ▼リストA　multiprocessingモジュール

マルチパラダイム言語で肩慣らし
Pythonで見る関数型言語の本質
バグを生みにくい、メンテンス性の良いプログラムへ

第 6 章

64 - Software Design

なぜ関数型プログラミングは難しいのか？第1特集

関数型プログラミングの
威力

関数型プログラミングとの出会い

History is the version of past events that
people have decided to agree upon.――
Napoleon Bonaparte

　もう15年前の話です。大学時代に筆者が受け
ていたWebセキュリティの講義の中でもっとも
記憶に残っているのは、FEAL-4注1というアル
ゴリズムの説明でした。授業の目的はその暗号
をクラックすること。もちろんインターネットは
ほとんどない時代ですので、stackoverflow.com

はありません。学生は皆、Javaでちょっと汚いコー
ドを書いて頑張ってました。筆者は、友達2人
でブルートフォースするプログラムを書きました。
同級生全員からデスクトップPCを借り、まるで
手作りApache Sparkみたいに処理を分割して、
CPUを100％フル稼働します。その結果1週間
でクラックできました。先生に意気揚々と報告
すると、「1週間もかかったの？　遅いわ！　
Haskellでやり直して！」
――ん？　Haskell？　こういうものですね。

import Data.Char (digitToInt)
luhn = (0 ==) . (`mod` 10) . sum . mapｭ
(uncurry (+) . (`divMod` 10)) .
 zipWith (*) (cycle [1,2]) . mapｭ
digitToInt . reverse

　今までJavaかCしか知らなかったので、読
めるわけも書けるわけもありません。しかし、
1日かけて書き直しました。そして実行してみ
ると、たった1台のデスクトップPCでクラッ
クは1時間でできました。「嘘！」ではありませ
ん。この処理速度を体験した筆者が、皆さんに
伝えたいのは次の3点です。

・やはりHaskellはスゴイ！（第4章を参照）
・正しいツールを使えば、作業が速くなる
・作業が速くなると残業しなくても大丈夫！

ところ変わって2010年東京

　日本に来た筆者は、某大手企業のプロジェク
トに参加していました。まもなくカットオーバー
（go live）する ITシステムが、計算能力が貧弱
でレポート出力できないということがわかりま
した。そこでワークアラウンドを探し始めたの
ですが――計算システムなのに、そもそも計算
レポートができないのは、どうなのかなと思い
ながら――「外で作りましょう！」と提案してみ
ました。その計算システムから1MBのXMLド
キュメントをとりあえずメッセージキューへ飛
ばして、筆者の開発した小さいアプリケーショ
ンで読み込みます。threadをたくさんspawnし
て、XMLをパースして計算するしくみです。
その結果、チャート機能付き、おまけにリアル
タイムアップデートするシステムができました。
そのプロジェクトにかかったのは3週間です。

注1） FEAL（the Fast Data Encipherment Algorithm）　https://ja.wikipedia.org/wiki/FEAL

Author ニコラ・モドリック（Nicolas Modrzyk）　　 mail hellonico@gmail.com

短期集中トレーニング
Clojure入門
関数型が好きになる

JavaVM上で動くLisp環境であるClojureは、ScalaやHaskellと同様にとても強力です。本稿で、ライブコーディング
しながらClojureの魅力を存分に体験してみてはどうでしょうか。
筆者が惚れ込んでいる、さまざまな機能をやさしく解説してみました。ぜひトライしてください。

第 7 章

https://ja.wikipedia.org/wiki/FEAL

64 - Software Design Aug. 2015 - 65

なぜ関数型プログラミングは難しいのか？

Clojureの習得に2週間、実物を作
るのに1週間。コードは2,000行以
下でした。
　ご存じのとおりJavaでxpathを使
うとしたらリスト1のようになります。
　本章で紹介するClojureならば、

(prn (map
 #(-> % :attrs :title)
 ($x "//book" "file.xml")))

　そう。あえて3行で書いてみまし
たが、それでも短いですね。筆者が
関数型言語で気に入っている機能は
おもに次のようになります。

・コーディング量が少なくて、慣れ
れば基本的に何がどこにあるか、
すぐわかる

・短いうえに一度動いたら壊れない。5年前書
いたコードはまだキレイに動いている

・関数型プログラミング版のレゴのように小さい
ファンクションを書いて、どんどんブロックを
集めて作っていく。同じファンクションをずっ
と使えるので、コア部分がわかりやすくて楽

・関数型プログラミングだからこそ、オブジェ
クトプログラミングよりも、コアなファン
クションにコンピューティングリソースを
簡単にかつ効率的に使うことができる

Clojureの魅力

5分間でClojure環境を作りあげる

　いろいろ設定するのを楽しんでる人も世の中
には多いと思いますが、ここでは最小限にしま
す。本記事ではLight Table注2というエディタ
を紹介します。まずはLight Tableをダウンロー
ドして実行します（図1）。新しいファイル（l

＋N、 ＋N）を作成します（図2）。

　エディタ部分に書くと、その場でライブコー
ディングできます。個人的には Intellijの
Cursive注3を常用していますが、何かコードを
試したいときにはLight Tableです。この章で
はできる限りプラグインとほかのライブラリを
使わないことを前提に執筆していますので、
Light Tableで楽しんでください。いつどこで
でも、すぐに何かを作れることがClojureの魅
力の1つですね？

 ▼図1　Light Tableをダウンロードし、実行してみる

 ▼図2　新規ファイルを作成しコードを書く

注2） http://lighttable.com/
注3） https://cursiveclojure.com/userguide/

DocumentBuilder builder =
DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();
Document doc =
builder
 .parse(new File("file.xml"));
XPathFactory factory =
XPathFactory.newInstance();
XPath xpath = factory.newXPath();

String location = "/test/t1/text/text()";
System.out.println(xpath.evaluate(location, doc));

location = "//t1/t2[2]/text()";
NodeList entries = (NodeList) xpath.evaluate(
 location, doc, XPathConstants.NODESET);
for(int i = 0; i < entries.getLength(); i++) {
 System.out.println(entries.item(i).getNodeValue());
}

 ▼リスト1　Javaで書いた場合の例

短期集中トレーニング
Clojure入門
関数型が好きになる

第 7 章

http://lighttable.com/
https://cursiveclojure.com/userguide/

66 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

Clojureができること

　コードを書く準備できたところで「Clojureで
何ができるの」と思いませんか？　筆者にとっ
てのClojureとは、次のようなものです。

・ライブ開発
・関数合成
・Mocking
・lazyness
・reducers
・コードはデータ、データはコード
・簡単なデータストラクチャ
・destructuring（分配束縛）
・Mapのキーで多型
・ウォッチャーズ（コードのスパイ)
・core.async

　このリストは少し多いかもしれませんが、そ
れだけClojureが使いたくなる、戻りたくなく
なる、語りたくなる理由が多いのです。

ライブ開発
（ライブコーディング）

　昨年、Apple社がSwift言語とPlaygroundを
アナウンスしたときに、「やっとか！」と思いま
した。Clojure使いならば、すでにライブ開発
は当たり前です。
　Light Tableに次のコード書いて、

(+ 1 1)

　l＋©（もしくは ＋©）
を入力すると、その行のコードが実行され、結
果が表示されます。たとえばFactorial関数を書
くとしましょう。ご存じのとおり、Factorial関
数は引数 -1の階乗である整数を返します。
Pseudoコードにすると、

　ここをClojureの関数に変えてみましょう。

(defn factorial [n]
 (if (= n 0)
 1
 (* n (factorial (dec n)))))

　そしてその関数を実行すると（l＋©）、

(factorial 10)
; リザルト
3628800

　この場ですぐ結果が出るのは感動します。11、
12……いろいろ試して、20を超えたら……、

java.lang.ArithmeticException: integer overflow

　確かに叔母風呂（オーバーフロー）しました。

(defn factorial [n]
 (if (= n 1)
 1
 (*' n (factorial (dec n)))))

　'（ちょん）を付けると、「ちょん」と動きます。
この'は必要なとき自動的にBigIntegerしてく
れる魔法です。

(factorial 21)
; リザルト
51090942171709440000N

　もうここまでくれば、読者の方も感覚的にわ
かってきたと思いますが、ライブ開発はこんな
感じです。ライブで開発、修正もそのままでで
きます。「ん？　ちょっと待って、ただの関数
を更新しただけでしょう？　何が特別？」
　これは楽しい旅のスタート地点です。Fact

orial関数ではあまり驚かないかもしれませんが、
たとえばその関数で音楽のループを出せば、リ
アルタイムで更新できます。音源の変更も可能
です。グラフィック関数の場合は、drawメソッ
ド更新すると画面がグラフィカルオブジェクト
に変わります（図3）。
　ちょっと試してみたいと思ったら、Clojure

プロジェクトのサイトをご覧ください。

・Quil（http://quil.info/）
・Overtone（http://overtone.github.io/）

http://quil.info/
http://overtone.github.io/

66 - Software Design Aug. 2015 - 67

　デザインに合わせるのもいいですが、音楽ラ
イブのようにClojureとOvertone経由でまさに
ライブコーディングできます。

関数合成

　Design Patternをしつこく使いたいJavaやCの
プログラマは大勢いると思います。先日も、ある
会社のコードを修正しようしたのですが、Visitor

パターンだらけで疲れていましました。「コードを
追加するために既存のコードを壊さないといけない」
のは非効率です。筆者の意見としてDesign

Patternだらけの言語は、やはりその言語自体が
あまり使いやすくないってことです。コードの目
的とDesign Patternが混ざってしまい、読めなく
なります。FactoryでFactoryを書いたことがあ
る方、いらっしゃいますか？　やめましょう。
　ClojureはLisp一族なので関数合成ができま
す。たとえばArrayの変数、それぞれに2をか
け算したい場合、倍にする関数を作れば1つの
変数でArrayでも使えるようになります。

(defn bai-ni-suru [n]
 (* 2 n))

(bai-ni-suru 2)
; 4
(bai-ni-suru 4)
; 8

　同じメソッドをそのままシーケンスにも使え
ます。

(map bai-ni-suru [1 2 3 4])
; (2 4 6 8)

　mapは 1つのスレッドだけ実行しますが、
pmapを使うとマルチスレッドにできます。

(pmap bai-ni-suru [1 2 3 4 5])
; 結果は同じですが、速いはず

　さらに、[1 2 3 4 5]を自動的に作成もでき

ます。1から6以下までのシーケンスを作るに
はrangeを使います。

(range 1 6)
; (1 2 3 4 5)

　さらに似た関数を使うとなれば、Currying

が使えます。Curryingは複数のパラメータを
指定して、新しい関数を作ることができます。
たとえばrangeという関数で、常に1からのス
タートを指定するには、次のように書きます。

(def one-up-to
 (partial range 1))

(one-up-to 10)
; (1 2 3 4 5 6 7 8 9)

Mocking（モッキング）

　テストの際など、直接テストに関係する関数
の結果を指定したいときに、モッキングという
やり方もよく使います注4。他言語だとフレーム
ワークが必要になり、場合によっては、そのフ
レームワークとほかのフレームワークとが相性
が悪く、時間の無駄！――と思うときもありま

 ▼図3　QuilとClojureを組み合わせて、グラフィッ
　　　クカルなデザインやアニメーションを作るこ
　　　ともできる

注4） http://www.codeproject.com/Articles/30381/Introduction-to-Mocking、http://spock-framework-reference-documentation-
ja.readthedocs.org/ja/latest/interaction_based_testing.html

短期集中トレーニング
Clojure入門
関数型が好きになる

第 7 章

http://www.codeproject.com/Articles/30381/Introduction-to-Mocking
http://spock-framework-reference-documentation-ja.readthedocs.org/ja/latest/interaction_based_testing.html
http://spock-framework-reference-documentation-ja.readthedocs.org/ja/latest/interaction_based_testing.html

68 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

す（うん、よくある！　今まさにクライアント
先で奮闘中）。それは置いておいて、ここで
Clojureの優秀なポイントを1つ紹介します。
モッキングフレームワークは使わず、関数の合
成の影響でモッキングする方法です。
　たとえば、作ったone-up-toの関数を期間限
定！として、違う関数にしたい場合です。そこ
でwith-redefsを使います。そうすると、その
with-redefsのシーケンスの中だけで違う関数
になるように指定できます。

(with-redefs
 [one-up-to (partial range -10)]
 (one-up-to 10))
; (-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 ｭ
4 5 6 7 8 9)

　先ほどの結果と違います。でもまあ、この使
い方はいつもはletと使わないって言われるかも。

(let
 [one-up-to (partial range -10)]
 (one-up-to 10))
; (-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 ｭ
4 5 6 7 8 9)

　確かにそう。ですが、こうやって書くとわか
りやすくなります。

(defn compute [n]
 (apply +
 (one-up-to n)))

(compute 10)
; 45

　compute関数はone-up-toのシーケンスの変
数を、それぞれ足して結果を出します。with-
redefsをもう一度使ってみようとすると、

(with-redefs
 [one-up-to (partial range -10)]
 (compute 10))
;　-10
(compute 10)
; 45

　そうそう。それだよ！　compute関数の結果
が変わりますが、with-redefsのシーケンスの
中でだけです。なので簡単にモッキングできるし、

細かく指定されたコードだけをテストできます。
こんなことできたらLazyになりそうです！

I'm Lazy.
「Lazyは良いことです！」

　rangeもpartialもLazy関数と呼ばれていま
す。これはなぜか？　Light Tableで開発する
とすぐに結果が表示されますね。なぜなら、そ
の結果が表示しようとしてるprint関数を読ん
で、Light Tableが表示してくれます。だから、
その結果を表示しない限り、計算しません。そ
れがLazynessです。
　iterate関数で説明するのが一番わかりやす
いでしょう。iterateは変数パラメータが2つ
あります。

(iterate f x)
; (f (f (f x))) ... 永遠

と永遠に続きますが待ちたくないので、少しず
つ表示したいものだけを、表示させたい場合は
take関数へ。先ほど作ったone-up-to関数を利
用してみましょう。

(take 3 (one-up-to 10))
; (1 2 3)

　下記のコードは期間期限！なので実行する前
に考えてみましょう。

(iterate inc 1)

　このコードに新しいシーケンスを作成します。
ただ、このシーケンスに終わりはありません。永
遠に続きます。表示させたくても永遠に止まらな
いので、最初の5つの変数だけを表示させましょう。

(take 5 (iterate inc 1))
; (1 2 3 4 5)

　先ほどのbai-ni-suru関数も、もちろん使え
ます。

(take 10 (iterate bai-ni-suru 1))
; (1 2 4 8 16 32 64 128 256 512)

68 - Software Design Aug. 2015 - 69

　もうお気づきかと思いますが、基本的に関数
合成を使った場合、制限はありません。次の
Clojureコードを必ずエディタに入力して、結
果を確認してください。

(take 10
 (filter #(< 1000 %)
 (iterate bai-ni-suru 1)))
; ...

　関数が変数と同じ扱いになります。データが
流れて、いくつかの更新にいくつかアプライし
て、最後のデータを返すという流れになります。
すべてデータからの観点です。この記事の1つ
のセクションでコード isデータについて説明を
しますが、その前に語っておきたい僕の友達
「Reduce」ちゃんです！

レデュース
（Reduce、Reducersなど）
　レデュースは少し古い技法です。3年前の古
い記事注5があります。コレクションの関数は
基本的に変化するものです。しかし、今まで使っ
ていた関数はすべてシングルスレッドです。
map、filterなどの関数には、簡単に実行でき
るようにこのreducersのネームスペース（名前
空間）があります。ネームスペースは宇宙とは
関係ないものですが、単に関係するClojureコー
ドと合体させるものです。一般的な使い方は、
1ファイル＝1ネームスペースです。reducers
ネームスペースにはreducersに関連する関数
が集まっています。ネームスペースを現在
使われているところで用いるとき、こんな
呼び出し方をします。

(require '[clojure.core.reducers :as r])
; nil

　requireを使うとprefixをつけられるの
で、ここで「r」にしてみましょう。最後の
サンプルのシーケンスの変数を1つ1つ足

していきたい場合、「reduce +」を使います。

(reduce + (take 10
 (filter #(< 1000 %)
 (iterate bai-ni-suru 1))))
; 1047552

　この呼び出し方であれば、スレッド1つだけ
で並列処理はまったくありません。今はもう
2015年です。CPUコアもたくさんありますの
で楽しみましょう！

(r/reduce +'
 (take 10
 (filter #(< 1000 %)
 (iterate bai-ni-suru 1)))))
; 1047552

　integer overflowが出ているので、'の処理を
使いましょう。

(defn bai-ni-suru [n]
 (*' 2 n))

　そして、あらためてreduceにすると、

(r/reduce +' (take 1e5 (filter #(< 1000 %)ｭ
(iterate bai-ni-suru 1))))

　htopで見ると、コアが一生懸命頑張ってく
れるのが見てとれます（図4）。
　どんなデータ処理でもClojureの単純なコー
ドで並列実行できます。MapReduce、Hadoop

のセットアップをしなくても済む人生は素晴ら
しい！（笑）

注5） http://clojure.com/blog/2012/05/15/anatomy-of-reducer.html

 ▼図4　htopコマンドでCPUの状態を見る

短期集中トレーニング
Clojure入門
関数型が好きになる

第 7 章

http://clojure.com/blog/2012/05/15/anatomy-of-reducer.html

70 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

　このreduceの処理を次のステップに持ってい
くTesser注6という素晴らしいライブラリがあ
ります。Tesserとparkour注7を使うと、簡単で
素晴らしいHadoopのジョブが書けてデプロイ
もできます。特別なコードでもなく定型として、
今回紹介したコードをベースにすぐ書けます。

コードはデータ、
データがコード

　Clojureのコードはデータです――ん？　ど
ういう意味？　頭もデータですか？　頭はデー
タですよ！……ただこの記事は哲学論文ではな
いので、Clojure観点で進めます。前の節で書
いたコードは、

(+ 1 1)

でしたよね？　何かがコードをパースして処理し
てますね。read-string関数を使ってみましょう。

(read-string "(+ 1 1)")
; (+ 1 1)

　あら、楽しくない結果です。ちょっと待って！
そのまま戻されたっていうのは……そう、
Abstract Syntax Treeは、そのまま表示され
るし、そのまま編集できます。ちなみにコード
を実行する関数はevalです。

(eval
 (read-string "(+ 1 1)"))
; 2

　wow。Evaluation注8は最高ですね！　ところ
でREPL、Read、Eval、Print、Loopはそういう
意味では単純なことしかやっていません。
Quoteのスペシャルフォーム使うとevalの実行
を停止できます。

'(+ 1 1)
; (+ 1 1)
(quote (+ 1 1))
; (+ 1 1)

Macro

　Macroはコードの順番と形を管理できる
Lispの機能で、それはClojureにもあります。
Macroを使ってコードの処理順番を変えること
ができます。Macroを書いて、evalを呼ぶ前に、
コードをデータとして編集できます。自然界の
言葉に言い換えると「木の枝」を整理できます。
　たとえば、f1とf2という2つの関数を時間
差で呼びます（f2を先に呼んでからf1を呼ぶ）
この場合のMacroの書き方は、

(defmacro junban-kaeru [f1 f2]
 `(do
 ~f2
 ~f1))

　`の部分は印刷の関係で読みづらいかもしれ
ませんが、これは「コード書きます！」という意
味です。~はここでコピぺしてください。~f1
の部分はこの位置にf1のコードをそのまま入
れます。
　Macroexpandを使えば、これらがどういうコー
ドになるのか確認できます。今書いたjunban-
kaeru Macroのコードを確認できます。

(macroexpand-1
 '(junban-kaeru
 (println "ichi")
 (println "ni")))
; (do (println "ni") (println "ichi"))

　実行すると、

(junban-kaeru
 (println "ichi")
 (println "ni"))

; consoleをチェックするところですね?

　いつも使われてるとしたら短いのも書けますし、
そのままClojureのコードの形も変えられるよう

注6） https://github.com/aphyr/tesser
注7） https://github.com/damballa/parkour
注8） http://clojure.org/evaluation

https://github.com/aphyr/tesser
https://github.com/damballa/parkour
http://clojure.org/evaluation

70 - Software Design Aug. 2015 - 71

になります。

(defmacro $ [f1 f2]
 `(do
 ~f2
 ~f1))

($
 (println "ni")
 (println "ichi"))

　こういうふうに簡単にDSL（Domain Specific

Language）を書けるので参考になるかと思いま
す。Clojureが出たときに testフレームワーク
がそのまま含まれていて、clojure.testのネー
ムスペースを読むとよいでしょう。

Destructuring
（デストラクチャリング）

　次に、デストラクチャリングを紹介します。
現在でも使う人は少ないかもしれませんが、筆
者としては、この機能がまれにとても便利なと
きもあります。
　aisatsuという関数を書いてみましょう。

(defn aisatsu [namae]
 (println "おい、 " namae))

(aisatsu "竹田さん")
; おい、竹田さん

　defnはそのネームスペースの中で関数の登
録のようなことができます。ネームスペースよ
り小さいコードの部分に登録したい場合はlet
が使えます。

(let [aisatsu-suru (fn [namae]
(println"おい、 " namae))]
 (aisatsu-suru "竹田さん"))

　letのシーケンスの中でだけaisatsu-suruが
使えます。なぜ、あらためてletの話をするの
かというと、destructuringの話をするうえで
一番わかりやすいのです。
　先ほど書いたrangeとtakeのサンプルコー
ドでは、

(take 2 (range 5)) ; (0 1)

その結果を簡単に変数にするのがdestructuring

です。

(let [[a b] (take 2 (range 5))]
 (println a)
 (println b))
; コンソールには...
; 0
; 1

　その上に、新しいシーケンスも作れます。

(let [[a b & c] (take 5 (range 10))]
 (println c))
; (2 3 4)

　筆者は、これがかわいいと思うので、ここに
書きます。次のコードをぱっと見ると、永遠に
続きそうな処理に見えますが、我々はLazyな
ので必要なことしかしません。

(let [[x & xs] (range)]
[x (take 10 xs)])

　これで、ちゃんと処理が終わりますし、結果
はこうです。

[0 (1 2 3 4 5 6 7 8 9 10)]

　さらに、mapにも使えます（どんどん面白く
なってるって思わない？）。

(let [{a :a} {:a 1 :b 2 :c 3}]
 (println a))
; コンソールには1

　どういうことでしょうか？　{a :a}はインプッ
トされたマップのキー:aのバリューを指定できます。
インプットされたMapは{:a 1 :b 2 :c 3}なので、
そのMapのキー:aのバリューは1になります。
　こういうMapのdestructuringはClojurescript

の世界でもけっこう使われていますので、覚え
ておきましょう。

Mapのキーで
ディスパッチ

　Mapの処理を毎回やらないといけないですね。
Mapのキーで処理できてしまうこともClojure

の1つの機能です。defmultiを用いて、処理を

短期集中トレーニング
Clojure入門
関数型が好きになる

第 7 章

72 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

準備します。

; メソッド名を定義する
(defmulti nomu :kuni)

; キーによってインプリメントする
(defmethod nomu ::french [p]
 (str (p :name) "はワインを飲みます"))
(defmethod nomu ::japanese [p]
 (str (p :name) "は日本酒を飲みます"))

; キーのバリューが存在しない場合
(defmethod nomu :default [p]
 (str (p :name) "は飲めません"))

　そして、multimethodを試してみましょう。

(nomu {:kuni ::french :name "Nico"})
; "Nicoはワインを飲みます"

(nomu {:kuni ::japanese :name "Abe-san"})
; "Abe-sanは日本酒を飲みます"

(nomu {:kuni ::american :name "Chris"})
; "Chrisは飲めません"

　よく見ると、defmultiの kuniは関数です。
そう、キーワードは関数としても使われます。

Immutable
（イミュータブル）

　Clojureの大事な機能があります。Immutable

です。使っている変数を変えることは簡単には
できません。bai-ni-suruをもう一度使いたい
ので再掲します。

; ちょん付きのバージョン2
(defn bai-ni-suru [n]
 (*' 2 n))

; 呼ぶと
(map bai-ni-suru [1 2 3])
; (2 4 6)

　(2 4 6)は完全に新しいシーケンスです。
Immutableなので、普通の let,def...で作っ
た変数は変えることはできません。新しいもの
になります。

(def bai-ni-shitai [1 2 3])
(map bai-ni-suru bai-ni-shitai)
; (2 4 6)

　倍にしたいものは倍にできますが、それはそ
れで残ります。変えたい場合は、atomかrefを
使います。指定されたもののバリューを変えた
ければ、トランザクションを使わなければなり
ません。

(def aratamete-bai-ni-shitai
 (atom [1 2 3]))

@aratamete-bai-ni-shitai
; atomを読みたいときに、deref、もしくは@を使う
; [1 2 3])

　変数を更新（swap!）したいか、再設定（reset!）
したい場合、トランザクションを実行して、ア
トミックな結果を出せます。

(swap! aratamete-bai-ni-shitai
 (partial map bai-ni-suru))
; (2 4 6)

; atomのバリューがちゃんと変えたのは確認
@aratamete-bai-ni-shitai
; (2 4 6)

; 再設定
; (reset! aratamete-bai-ni-shitai [1 2 3])
; [1 2 3]

　同時に呼ぼうとしても、swap!もreset!もト
ランザクションロックを裏側に使っていますの
で、Multithreadな処理でも壊れません。

トランザクションに
Watchers

　Watchersは怪しいものではありません。
Watchersは指定されたatomにトランザクショ
ンが起きるときに呼ぶものです。callbackに
近いかもしれません。
　Watcherを作成したい場合、add-watchで進
みます。

(add-watch aratamete-bai-ni-shitai :watcher
 (fn [key atom old-state new-state]
 (prn "-- Atom Changed --")
 (prn "key" key)
 (prn "atom" atom)
 (prn "old-state" old-state)
 (prn "new-state" new-state)))

　作ったら、aratamete-bai-ni-shitaiを更新す

72 - Software Design Aug. 2015 - 73

る直前、このWatcherが呼び出されています。
　Light Tableはその場ですぐに実行できるので、
もう1回コードを呼びたい場合、書かなくても再
現できます。swap!のところを戻して、何回も実
行してみましょう。

 (swap! aratamete-bai-ni-shitai (partialｭ
map bai-ni-suru))

　1回目に呼ぶとコンソールには、

orenoclojure.clj:
"-- Atom Changed --"
orenoclojure.clj:
"key" :watcher
orenoclojure.clj:
"atom" #<Atom@334d4108: (16 32 48)>
orenoclojure.clj:
"old-state" (8 16 24)
orenoclojure.clj:
"new-state" (16 32 48)
orenoclojure.clj:

　連続で2回目には、

"-- Atom Changed --"
orenoclojure.clj:
"key" :watcher
orenoclojure.clj:
"atom" #<Atom@334d4108: (32 64 96)>
orenoclojure.clj:
"old-state" (16 32 48)
orenoclojure.clj:
"new-state" (32 64 96)

　3回目はおまけに自分でやってください。せっ
かくMultithread機能をたくさん見たので、最
後にcore.asyncを少し紹介します。

Leiningen＆Pomegranate

　あれ？　core.asyncの話をするって言ったのに、
ここにはLeiningen注9という動物が……確かに、
Leiningenを話すつもりは、今日はありません。
Leiningenはビルドツールなので、話が始まると
どこで話をやめるのかたいへん面倒です。が、
Light Tableの裏ではLeiningenが動いています
ので新しいDependencyを追加したいときに
Leiningenの設定ファイルをいじるのが一番楽。

とりあえずね。USER_HOMEのフォルダの下に、
こんなファイルをつくりましょう。

; ~/.lein/profiles.clj
; %USER%/.lein/profiles.clj
; 中身は
{:user
 {:dependencies
[[com.cemerick/pomegranate "0.3.0"]]}}

　この設定ファイルにdependencyとプラグイ
ンも管理できるし、ほかのJava Machineの設
定も可能です。とりあえず今日はPomegranate

を使えるようにします。Pomegranateとはラン
タイムのときに新しいdependencyのダウンロー
ドを管理してくれるライブラリです。
　Light Tableのコマンドパネルを呼び出して、
今裏で動いてるREPLを切断しましょう（図5、
図6）。
　設定ファイルを直してからLight Table エ
ディタのところでl＋©を入力し、新
しいライブ環境を作りましょう。すべてうまく
いくと、こんなコードが実行できます。

 ▼図5　Light Tableの設定パネル

 ▼図6　Light TableでREPLを切断

注9） http://leiningen.org/

短期集中トレーニング
Clojure入門
関数型が好きになる

第 7 章

http://leiningen.org/

74 - Software Design

なぜ関数型プログラミングは難しいのか？

第1特集

(use
 '[cemerick.pomegranate :only (add-
dependencies)])

　単にadd-dependenciesというpomegranateの
メソッドをインポートしています。

core.async

　先の設定変更のおかげで単純にcore.async
のダウンロードができます。

(add-dependencies
 :coordinates
 '[[org.clojure/core.async
"0.1.346.0-17112a-alpha"]])

　さっそくcore.asyncをrequireしましょう。

(require '[clojure.core.async :refer :all])

　もう、我慢できません。core.asyncの紹介
ができるまでにこんな長い説明になりましたが、
もういいよ。使おう！　core.asyncは並列実
行できるコードを書けるだけではなく、コード
はいつもの関数のような使い方になります。
core.asyncの基本はチャネルで始まります。
チャネルを作るためにはchanを呼びます。

(def a-channel (chan))

　chanが完全に元気そうですので、ちょっと
挨拶してみましょう。>!!を使うとチャネルに
メッセージを送れます。

(>!! a-channel "Hello, chan!")
; true

　a-channelniにメッセージ”hello,chan!”を
入れました。処理したいときに<!!を使います。

(<!! a-channel)
; "Hello, chan!"

　処理が終わったときにchanを無効にするには、

close!
; これはコードではない
(close! a-channel) ; nil
; これはコードです。

　close!を呼んだらchanが使えなくなります
ので注意してください。core.asyncの thread

の関数使うと、単純な thread、そしてバックグ
ラウンド処理ができます。
(thread
 (dotimes [i 10]
 (println (str "Hello" i))))
; コンソールにはいろいろなHelloがプリントされたで
しょう

　thread間の通信能力はchanからきています。
次のコードはバックグラウンドスレッドを
spawnして、メインスレッドに届いてくるいく
つかのchanからのメッセージをprintします。

(let [c (chan)]
 (thread (dotimes [i 10] (>!! c "hello2\ｭ
n")))
 (print (<!! c))
 (print (<!! c))
 (close! c))

　Voila！　synchronize、とか、リソースの
ロックとかいろいろ書かなくても済みます。き
れいな開発ができます、コードも読みやすくな
ります（よっしゃー！たくさん使いましょう）。

明るい未来

　core.asyncを含めて、本章で勉強したパータ
ンのほとんどすべてをClojurescriptでも使えま
す。Clojureコードを JavaScriptのVM上で実
行できるのがClojurescriptです。フロントエン
ドもバックエンドもその間も、EDN注10ですべ
て同じ形になります。より統合的に、楽に開発
できるので、ビジネス価値があるところだけに
集中できるようになります。Clojurescriptをもっ
と紹介したいのですが紙幅が尽きました。また
の機会をお楽しみに！　アビエント！ﾟ

注10） https://github.com/edn-format/edn

https://github.com/edn-format/edn

安全な通信を確保する
SSL/TLSの教科書

インターネットの通信セキュリティを
確保するしくみをマスターしよう！

インターネットの安全性と暗号技術	
	 島岡 政基	 P.76

SSL/TLSと暗号スイートを理解しよう	
	 島岡 政基・伊藤 忠彦・国井 裕樹	 P.82

脆弱性の分析から見えてくる安全なTLSサーバ設定	
	 神田 雅透・林 達也	 P.95

TLSを取り巻く環境、そしてTLSの今後について	
（TLS 1.3、HTTP/2）	
	 林 達也	 P.106

第 章1

第 章2

第 章3

Appendix

第2特集

　スノーデン事件、POODLE事件など、インター
ネット上のセキュリティ意識が高まりを見せてい
る昨今、本特集ではその基礎技術であるSSL/TLS
について解説を行います。
　第1章では、現在のインターネットの安全性に
関し、通信内容の盗聴、データの改ざん、なりす
ましなどがないように、どのような暗号化や認証
などが行われているのかを解説します。
　第2章では、SSL/TLSによる暗号通信の流れと、
その暗号化技術（暗号スイート）のアルゴリズム、
SSL/TLSのバージョンによる違いについて詳しく
解説します。
　第3章では、過去に起こった実際の事件やTLS
の脆弱性を例にとり、安全な通信を確保するため
のTLSサーバの設定方法について解説します。
　Appendixでは、TLSの今後の話としてTLS 1.3
とHTTP/2の概要を紹介します。

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

76 - Software Design

脅かされるインターネットの
安全
　暗号技術は情報通信基盤の中に溶け込んで広
く普及してきました。しかしここ数年でその暗
号技術に対する攻撃や脅威が盛んに話題に上る
ようになりました。インターネットで安全な通
信を実現するには暗号技術は欠かせない存在で
あり、その典型例の1つにSSL/TLSがありま
す。筆者の所属するセコム（株）IS研究所では、
SSL/TLSを始めとする認証技術と、その要素
技術である暗号技術について研究しており、サー
バ証明書を発行する認証局の最上位であるルー
ト認証局の構築運用にも長く携わってきました。
このため本章や第3章で述べる状況はとても残
念に感じるとともに、この状況を打破すべく少
しでも仲間を増やせればと思い、今回、筆を執
らせていただきました。
　本章では、暗号技術が安全な通信をどのよう
に実現するのか俯瞰し、続く第2章でその具体
的な実装であるSSL/TLSについて解説したあ
とで、第3章で我々が直面している問題と、そ
の対策について整理していきたいと思います。

広域監視問題と暗号解読

　エドワード・スノーデン氏が暴露した米国
NSA（国家安全保障局）によるインターネットや
電話網に対する大規模かつ高度な盗聴事件、い
わゆるPRISM事件は、広域監視問題として世
界に大きな衝撃を与えました。いくつか理由は
ありますが、その1つには、「今まで安全とされ
ていた暗号通信ですら、一部解読可能な状態で

収集されていた」という点があります。
　もともとインターネットでは、そこに流れる
データの多くは平文で、通信データを傍受でき
るものであれば盗聴は容易とされてきました。
このためクレジットカード番号やパスワードの
ような機微な情報をインターネット上でやりと
りする場合には、盗聴困難な暗号通信を用いる
べきだと言われてきたわけですが、スノーデン
氏の暴露によって「暗号通信であっても、国家規
模の情報収集に対しては秘匿できない」という脅
威が明らかになったのです。
　こうした状況で着目を浴び始めたのがPFS

（Perfect Forward Secrecy）という概念です。詳
しいしくみは第2章で解説しますが、暗号通信
に用いる鍵を使い捨てにすることで、仮に暗号
鍵を盗まれても盗聴できる期間をごくわずかに
限定するものです。
　PFSの概念は昔からあったものの実装が普及
していませんでした。しかしPRISM事件を契
機に実装の普及が進み、2015年6月の時点で世
界の約2/3のサイトが何らかの形でPFSに対応
しています。しかし一方で、十分な形でPFSに
対応できているサイトはたかだか1/3程度にと
どまっており、期待するとおりにPFSが使われ
るにはまだ時間がかかりそうな状況です（コラム
「SSL定点観測サイト SSL Pulse」参照）。

SSL/TLSプロトコルに対する一連の
脆弱性や攻撃

　2011年後半から、SSL/TLSに対する脆弱性
報告や攻撃手法の発見が盛んになってきました
が、その中でも典型的かつ大きな影響を及ぼし

インターネットの
安全性と暗号技術

 Author セコム㈱IS研究所　島岡 政基（しまおか まさき）

第 章1

第 章1安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ インターネットの安全性と暗号技術

76 - Software Design Aug. 2015 - 77

た一例としてBEASTとPOODLEが挙げられ
ます。これらの攻撃については第3章で触れま
すが、いずれもバッファオーバーフローやコー
ドインジェクションのような一般的なソフトウェ
ア実装の脆弱性とは大分異なり、暗号技術の実
装上の脆弱性を突く、言わばSSL/TLSプロト
コルや暗号スイートに対する攻撃と言えます。
　したがってパッチによる対処だけでは不十分
で、SSL/TLSプロトコルのバージョンアップ
や暗号スイートの変更などによる対処が必要と
なります。
　しかしながら、BEASTおよびPOODLEで
は、発見当時広く利用されていた暗号スイート
やプロトコルバージョンが対象だったため、こ
れらの利用を避けようとすると選択肢がかなり
限定的になってしまうという課題がありました。
さらには、どのクライアント環境でどのような
暗号スイートを利用可能か、対応可能なプロト
コルバージョンは何か、といった情報がベンダ
から十分に開示されておらず、対策した場合の
影響が十分に見積もれない、といった課題も浮
き彫りになりました。

暗号スイートを理解しよう

　広域監視問題についてはPFSを導入すればよ
く、またその実装も普及が進んでいます。しか
し、正しく設定できていないサイトも多く、混
乱が見受けられます。またSSL/TLSに利用さ
れている暗号技術に対する本格的な攻撃は、暗
号スイートの正しい理解なしには対策が難しい
こともわかってきました。実はPFSの設定は、
暗号スイートに大きく依存しており、したがっ
ていずれの問題も暗号スイートに帰結します。
　暗号スイートを、暗号技術の理解なしに適切
に設定することは難しく、このため今まであま
り注目されることがありませんでした。しかし
昨今のこうした事情により、これからの時代に
安全な通信を実現するには、暗号スイートの適
切な設定が必要になってきました。
　そこで、今回の記事では安全な通信の典型的

な実装技術であるTLSと、そこで利用される暗
号スイートについて正しい理解を深めていきま
しょう。正しい知識を持って運用すれば安全な
通信は十分に実現できます。少しでも安全な通
信をインターネット上に増やしていきましょう。

安全な通信の3大要件

　暗号通信という言葉がよく用いられますが、
インターネット上での（とくにWebサイトとの）
暗号通信は、単に通信を暗号化するだけでは実
現できないケースの方が多いでしょう。これは、
通信相手が必ずしも事前に特定できないことと、
インターネットのしくみ上、途中で第三者が通
信を盗聴・改ざんできるリスクを伴っているこ
とに起因します。
　本来私たちがインターネット上で実現したい
と思っている暗号通信は、単なる通信の暗号化
と区別するために「安全な通信（Secure Com

munication）」と呼ばれ、これを実現する通信プ
ロトコルはセキュリティプロトコルと呼ばれま
す。この安全な通信は、以下の3要件を満たす
ことで実現されます。

　・通信内容が盗聴されないこと（秘匿）
　・�通信内容が不正利用されていないこと（改ざ
ん検知）

　・通信相手が偽物でないこと（認証）

　これらはそれぞれ通信のCIA（Confiden

tiality：機密性、Integrity：完全性、Authen

ticity：真正性）に対応します。
　本節では、これら3種類の要件について簡単
に解説していきます。

秘匿

　オンラインのショッピングサイトで買い物を
するためにクレジットカード番号を入力したり、
SNSなどのWebサービスにログインするため
のパスワードを入力する場面はみなさんも経験
があると思いますが、ここで送信する内容がも

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

78 - Software Design

し第三者に盗聴されたらどうなるでしょうか。
自分になり代わって勝手に買い物をされたり、
記事を投稿されたりしてしまうかもしれません。
そこで盗聴されても内容が読めないように通信
内容を暗号化することが必要になってきます。
　一般には、受信者だけが復号できる何らかの
方法を用いて、送信者が送信内容を暗号化して
送信することによって暗号通信が実現されます。
この「何らかの方法」を実現するのが暗号技術で、
アルファベット表からn文字分ずらすような換
字式暗号は、古くローマ時代から使われていま
した。
　もちろん情報処理技術の発達した現代では、
換字式暗号のような単純な方式ではすぐに解読
されてしまいますから、もっと数学的に高度で
複雑な暗号技術が使われるようになってきてい
ます。この暗号方式の種類については第2章で
解説します。

認証

　暗号通信によって盗聴対策ができても、自分
が通信している、クレジットカードやパスワー
ドを送信しようとしている相手が偽物だったら
たいへんです。そこで、相手が本当に自分の通
信しようとしている相手かどうかを確認する必

要があります。この確認する行為のことを認証
と言います。
　通信相手が知っている相手であれば、あらか
じめ秘密の合言葉（ヒラケゴマなど）をお互いに
決めておくことも可能かもしれません。しかし
インターネットにおける通信相手は、初めて訪
れるWebサイトであることも少なくありません
から、こうした秘密の合言葉を事前に決めてお
くことも容易ではありません。
　そこで、秘密の合言葉とは別の方法を使って
相手を認証する必要があります。暗号方式の一
種である公開鍵暗号方式によって、お互いに秘
密の合言葉を事前に決めておかなくてもこれが
可能になりました。今回取り上げるSSL/TLS

でも公開鍵暗号方式に基づいた電子証明書（公開
鍵証明書）を用いて認証を行います。公開鍵暗号
を使った認証のしくみは少しややこしいので第
2章で詳しく解説します。興味のある方はそち
らも合わせてご覧ください。

改ざん検知

　「通信内容を秘匿できていれば、そもそも改ざ
んできないだろう！　少なくとも復号できる形
で改ざんすることはできないはずだ！」と思って
いる方、残念、80点です。送信したい情報を丸
ごと暗号化していれば確かに改ざんできないの

ですが、実際の通信では情報は一定の
サイズのパケットに分割されて送信さ
れます。SSL/TLSでは、暗号化はパ
ケットを対象として行うので、たとえ
個々のパケットが暗号化されていても、
場合によっては図1のようにパケット
の並べ替えをするだけで復号したとき
に異なる情報に変わってしまう場合が
あります。
　また、通信においては再送攻撃とい
うものがあります。TCP/IPの特性上、
通信中は定型的な情報が何度もやりと
りされることになりますから、たとえ
その内容が暗号化されていても、再送

番号 平文
01 今月の面接順序：
02 高橋、長谷川、遠
03 藤、趙、山田、佐
04 藤、高木、森、後
05 藤、坂本、五十嵐

番号 平文
01 今月の面接順序：
02 高橋、長谷川、遠
03 藤、高木、森、後
04 藤、趙、山田、佐
05 藤、坂本、五十嵐

番号 暗号文
01 a2 4c bb 72 26 a0

.. .. 95 ba 14 e4 5d c8
02 7d 07 7d 7e 33 6d

.. .. da bc f7 1d 12 2e
03 5f 0b ce 8f 60 20

.. .. d7 a5 62 c7 8c ec
04 86 87 13 03 af e6

.. .. 70 ba 2d 70 cb 87
05 3e 66 b5 6d 6f 9c

.. .. 51 56 96 1c 35 4f

番号 暗号文
01 a2 4c bb 72 26 a0

.. .. 95 ba 14 e4 5d c8
02 7d 07 7d 7e 33 6d

.. .. da bc f7 1d 12 2e
03 86 87 13 03 af e6

.. .. 70 ba 2d 70 cb 87
04 5f 0b ce 8f 60 20

.. .. d7 a5 62 c7 8c ec
05 3e 66 b5 6d 6f 9c

.. .. 51 56 96 1c 35 4f

暗号化 復号

シーケンス
番号を改竄

パケットを順序を
入れ替えて送信

 ▼図1　暗号パケットの並べ替え攻撃のイメージ

第 章1安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ インターネットの安全性と暗号技術

78 - Software Design Aug. 2015 - 79

攻撃など第三者に不正に再利用されてしまう可
能性があります。そこで受信者は、今受信した
パケットがたしかに今さっき送信者が送信しよ
うとしたパケットなのか、あるいは送信者が過
去に誰かに送信したパケットを第三者が再送し
ているだけなのか、区別できる必要があります。
　このように、安全な通信における改ざん検知
では、上で述べた並べ替え攻撃や再送攻撃など、
パケットの不正な利用についても対策する必要
があります。この改ざん検知技術として、MAC

（メッセージ認証符号；Message Authentication

Code）というものがあります。正確にはMACは
それ自身で並べ替え攻撃や再送攻撃を防ぐもの
ではありませんが、ハッシュアルゴリズムとい
う暗号技術を使用して、これを実現しています
（詳しくは後述します）。いずれにしても、送信
者がパケットにMACをつけて送信し、また受

信者は受信したMACを検証することによって、
パケットが改変されたり再送されたものではな
いことを確認することができます。

安全な通信を実現する
暗号技術
　安全な通信を実現するには、認証と暗号化、
改ざん検知（MAC）が必要であることは前節で述
べました。本節では、これを実現する暗号技術
について説明します。

暗号方式：共通鍵暗号と公開鍵暗号

　この3つの要件を実現する要素技術が暗号技
術です。暗号技術は、暗号鍵の特徴によって共
通鍵暗号、公開鍵暗号に大別されます。
　共通鍵暗号は、事前にお互いに暗号・復号に
必要な秘密の情報（つまり暗号鍵）を共有してお

　SSL Pulse注1（図2）は、SSL/TLSに対する攻撃が激化したことを受
けて、2012年に有志が立ち上げたサイトで、世界の主要なWebサ
イト約20万件のSSL実装状況について毎月調査を行い、そのレポー
トを公開しています。SSL Pulseが観測している項目として、たと
えば次のようなものがあります。

　・SSL/TLSプロトコルバージョンのサポート状況
　・HeartbleedやBEASTなど主要な脆弱性対応状況
　・PFSやSPDYなど主要な技術のサポート状況

　きちんとツボを押さえた項目（しかも新しく影響の大きな脆弱性が
発見されるとすばやく調査項目に追加してくれます！）を調査してい
ることに加え、レポートページも最近流行りのいわゆるダッシュボー
ド風で一覧性も高いので、ぜひ一度アクセスしてご覧になってみて
ください。サイト管理者の方は、PFS導入などにあたって経営層へ
の説明資料としても役立つかもしれません。

SSL定点観測サイト SSL PulseColumn

注1） https://www.trustworthyinternet.org/ssl-pulse/

 ▼図2　SSL Pulseのレポートページ

https://www.trustworthyinternet.org/ssl-pulse/

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

80 - Software Design

いて、これを用いて暗号化・復号を行うもので
す（図3）。秘密の情報ですので、事前に共有す
る際に共有する相手を間違えてはいけません。
また共有した両者は暗号鍵が不要になるまでは
大事に保管しておかなければいけません。これ
は少数で利用するうちはよいですが、多数の相
手と同時ないし並行して利用することになると
煩雑になってくることは容易に想像できるかと
思います。いろいろ面倒そうにも聞こえますが、
次に述べる公開鍵暗号と比べるとしくみが複雑
でない分、処理速度がかなり速いです。
　一方の公開鍵暗号は、送信者が暗号化を行う
ための公開鍵と、受信者が復号を行う私有鍵を
組み合わせて利用します（図4）。暗号化を行う
公開鍵は文字どおり秘密にする必要がないので、
共通鍵と比べて不特定の送信者と事前に共有す

ることも容易です。秘密にする必要があるのは
復号に必要な私有鍵だけで、これは送信者など
他人と共有する必要がありません。つまり、暗
号鍵の管理という点では公開鍵暗号に利があり
ます。その代わり共通鍵暗号と比較すると暗号
化（アルゴリズムによっては復号）処理に時間が
かかります。Webサイトの認証については、事
前に秘密情報を共有することなく実現できる公
開鍵暗号が向いていることは先に述べました。

鍵交換による公開鍵暗号から
共通鍵暗号へのスイッチ

　暗号技術には、公開鍵暗号と共通鍵暗号の2

種類があることがわかりました。一方で、安全
な通信に必要なのは、認証と秘匿（暗号化）と
MACです。
　Webサイトの認証には、公開鍵暗号が向いて
います。これは初めて訪問するサイトと事前に
暗号鍵を共有することは難しいですが、公開鍵
を公開することはそれほど難しくないからです。
厳密に言うと、公開している公開鍵の真正性を
確認する必要がありますが、これは信頼する第
三者機関である認証局からの証明書発行によっ
て解決します。詳しくは第2章で解説します。
　次に秘匿と改ざん検知ですが、これは認証で
きたWebサイトとの通信において、通信パケッ
トを暗号化するとともにMACを生成・付与す
ることによって実現します。パケットごとに暗
号化やMACの生成・付与を行うには、十分な
処理速度が求められるため、ここは共通鍵暗号
を使いたいところです。そこで登場するのが鍵
交換です。鍵交換は、共通鍵暗号を事前共有な
しに必要時にその場で共有する方法で、公開鍵
暗号のしくみを使って実現されます。つまり公
開鍵暗号があれば、共通鍵暗号をその短所なし
に活用できるわけです。

MACとハッシュアルゴリズム

　メッセージ認証符号（MAC）は、ハッシュアル
ゴリズムという暗号技術を用いて生成されます。

暗号化
処理

復号
処理

平文 暗号アルゴリズム

事前共有と
機密管理が必要

暗号文

共
通
鍵

共
通
鍵

 ▼図3　共通鍵暗号の概念

暗号化
処理

復号
処理

平文 暗号アルゴリズム

事前共有が容易
機密管理が不要 共有不要

暗号文

公
開
鍵

私
有
鍵

 ▼図4　公開鍵暗号の概念

第 章1安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ インターネットの安全性と暗号技術

80 - Software Design Aug. 2015 - 81

このハッシュアルゴリズムとは、任意の長さの
データを入力として固定長のデータを出力する
もので、出力されたデータはハッシュ値と呼ば
れます。ハッシュアルゴリズムには、2つの性
質が求められます。1点目は一方向性で、ハッ
シュ値から元のデータを復元できない性質です。
2点目は耐衝突性で、どのデータから得られた
ハッシュ値も重複しない性質です。どちらも完
全に満たすことは論理的に不可能ですが、十分
な高い確度でこれらの性質を満たすものは暗号
学的ハッシュアルゴリズム（以下、単にハッシュ
アルゴリズム）と呼ばれます。ハッシュアルゴリ
ズムは共通鍵暗号よりもさらに軽量に処理でき
ます。
　これらを整理すると、図5に示すように、

a）公開鍵暗号を用いた認証と鍵交換
b）�共通鍵による暗号化とハッシュアルゴリズム
によるMACの生成・検証

という2段階で処理されることになります。
　a）は、処理機会が通信開始時などに限られる
ため、公開鍵暗号で処理に若干時間がかかると
してもトータルでの性能には影響しにくいです。
　b）は、通信確立後は常時処理されるため、処
理速度の速い共通鍵暗号やハッシュアルゴリズ
ムを用いて処理します。
　このように、認証から改ざん検知までの安全
な通信のための一連の要件が公開鍵暗号と共通
鍵暗号（とハッシュアルゴリズム）を組み合わせ
てとても合理的に設計されており、SSL/TLS

ではそれぞれハンドシェイクプロトコル、レコー
ドプロトコルとして実装されています（詳しくは
2章で解説します）。
　とはいえ何事も準備は必要で、Webサイトは
事前に公開鍵と私有鍵を用意しておく必要があ
ります。一般にはこれは認証局からのサーバ証
明書発行という形で実現されます。｢

ハンドシェイク
プロトコル

レコード
プロトコル

MAC生成

MAC検証

MAC生成

MAC検証

公開鍵
証明書 鍵ペア

認証

鍵交換

共通鍵共通鍵

暗号通信

 ▼図5　公開鍵暗号と共通鍵暗号の役割分担

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

82 - Software Design

SSLとTLS

　SSL（Secure Socket Layer）は、1995年ごろ
にNetscape Communications社（以下、Netscape

社）によって開発されました。1995年ごろとし
たのは、最初の仕様のはずのSSL 1.0は非公開
で、SSL 2.0が1995年に公開されたからです。
しかしすぐに脆弱性が発見され、翌1996年には
SSL 3.0が公開されました。その後、このSSL

3.0は IETF（コラム「IETF」参照）で1999年に
TLS（Transport Layer Security）1.0として標
準化されました。このあたりの歴史的な話は、
本章の後半で詳しく解説します。
　なお、本章以降ではTLS 1.2をベースに解説
をしていきますので、SSL/TLSという表記は
両者を包括して言及するときのみとし、基本的
には単にTLSと表記することにします。
　BEASTやPOODLEなどSSL/TLSプロト
コルに対する一連の攻撃は、単に脆弱性に対し
てパッチを当てればよいという話ではなく、暗
号スイート（暗号の組み合わせ、後述）を適切に
選択する必要性があることをあらためて認識さ
せる事象となりました。しかし暗号スイートの

適切な選択、とくにこのような高度な暗号技術
への攻撃に対して適宜対応する形で選択するこ
とは、暗号スイートを適切に理解していないと
できません。また昨今の多様な攻撃手法の登場
に対してどの暗号スイートを選択すべきか、と
いうのは暗号技術者の間でさえ議論が分かれる
ところでもあります。これについては第3章で
あらためて述べます。
　それに先立って本章では、この暗号スイート
について少しでも理解を深めていただけるよう
に、暗号スイートの扱いにフォーカスを絞る形
でTLS 1.2を解説していきます。
　したがって、これからTLSプロトコルを実装
してみようという方向けの逐次解説になってい
ないこと、また典型的なサーバ認証のシーケン
スに限った解説になることを、ご了承ください。
　クライアント認証のシーケンスも含め逐次解
説については、章末に参考文献を示しておきま
す。残念ながら発行時期が古いままのものも一
部ありますが、まとまった資料としてはとても
参考になります。実装してみたい方やクライア
ント認証での暗号スイートの扱いに関心のある
方は、本記事と併せて目を通して（そしてぜひ手
を動かして）みてください。

SSL/TLSと
暗号スイートを
理解しよう

 Author セコム㈱IS研究所　島岡 政基（しまおか まさき）、伊藤 忠彦（いとう ただひこ）、国井 裕樹（くにい ひろき）

第 章2

　IETF（Internet Engineering Task Force；インターネット技術タスクフォース）はインターネット技術の
標準化を推進する団体です。公式ドキュメントとしてRFC（Request For Comments）を無償で公開し、TLS
をはじめ多くの技術を標準化してきました。参加者は実装者に近い立場の人が多いのが特徴で、PRISM事件
などタイムリーな話題を扱うことでも有名です。

IETFColumn

第 章2安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ SSL/TLSと暗号スイートを理解しよう

82 - Software Design Aug. 2015 - 83

プロトコルの概要と
通信の流れ

プロトコルの特徴

　TLSなどのセキュリティプロトコルを用いな
い一般的なTCP通信では、図1のペイロード部
分であるアプリケーションデータは平文でやり
とりされます。そのため通信情報を閲覧できる
人であれば、誰でもアプリケーションデータの
盗聴ができてしまいます。また、通信経路上の
中継者は、容易にヘッダ情報やアプリケーショ
ンデータの書き換えが可能であり、通信相手の
変更や通信内容の改ざんができます。インター
ネットの通信では、中継者は必ずしも善人とは
限りません。しかし、TLSを使うことで、盗
聴・なりすまし・改ざん（不正利用）を防ぐこと
ができます。
　TLSは、OSI参照モデル7階層のうち、セッ
ション層（第5層）に位置するセキュリティプロ
トコルとなり、第1章で述べた3つの要件であ
るデータの秘匿・データの改ざん検知・サーバ
（場合によりクライアント）認証を、TCP通信に
おいて提供します。また、UDP通信に対し前述
3要件を実現するプロトコルとしては、DTLS

（Datagram TLS）がRFC 6347として公開され
ています。

　TLSの利点としてアプリケーションプロトコ
ル独立である、という点が挙げられます。典型
的なアプリケーションプロトコルはもちろん
HTTPですが、メールの通信プロトコルである

POP3や IMAP、またディレクトリプロトコル
のLDAPなどさまざまなアプリケーションプロ
トコルと組み合わせることができます。このた
め、アプリケーション開発者はTLSを利用する
ことで、アプリケーションごとに前述3要件を
実装する必要がなくなり、アプリケーション機
能の開発に専念できるようになります。
　次節で詳しく解説しますが、TLSは共通鍵暗
号アルゴリズム、公開鍵暗号アルゴリズム、鍵
交換アルゴリズム、ハッシュアルゴリズムなど
実に多様な暗号技術によって構成されており、
それぞれにおいて各種アルゴリズムに対応でき
る拡張性の高い設計になっています。

プロトコルの概要

　TLSのプロトコルは、レコードプロトコルと
ハンドシェイクプロトコルに大別されます。ハ
ンドシェイクプロトコルでセキュア通信に必要
な準備を行い、セキュア通信確立後はレコード
プロトコルを用いてアプリケーションデータを
送受信します。

●●ハンドシェイクプロトコル
　ここでは、ハンドシェイクの中で暗号スイー
トがどのように使われるのか、図2に基づいて
解説します。

・ClientHello：
　TLS通信は、クライアントからサーバに対す
る通信要求によって開始されます。このときに
クライアントは、自分が利用可能なTLSのプロ

トコルバージョンや暗号
スイートの優先度つきリ
ストを同時に送信します。

・ServerHello：
　ClientHelloを受信し
たサーバは、クライアン
トから提示されたプロト
コルバージョンや暗号ス

アプリケーションデータ

TLS暗号化データ

TLS暗号化データTCPヘッダIPヘッダ

アプリケーションにより
生成されるデータ

TLS暗号化後の
データ

TCP・IP 通信で
流れるデータ

 ▼図1　TLSによる暗号化

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

84 - Software Design

イートのリストに基づいて、サーバが利用可能
な範囲で最も最新のプロトコルバージョン、最
も優先度の高い暗号スイートを返信します。

・Certificate：
　続いてサーバは、自身のサーバ証明書をクラ
イアントに送信します注1。必要に応じてサーバ
証明書を発行した上位認証局の証明書なども一
緒に送信できます。このサーバ証明書は、クラ
イアントが接続先サーバの真正性を確認したり、
そのあとの鍵交換に必要なパラメータを参照す
るために利用します。送信する証明書や、そこ
に含まれる鍵交換パラメータなどは、当然先に
ServerHelloで送信した暗号スイートに対応し
ている必要があります。

・ServerKeyExchange：
　続いてサーバは、鍵交換に必要なパラメータ
を送信できます。前述のCertificateで送信し
た証明書によって事足りる場合は、このフロー
を省略できます。送信するパラメータの内容は、

ServerHelloで選択した暗号スイートに含まれ
る鍵交換アルゴリズムによって異なります。

・ServerHelloDone：
　CertificateまたはServerKeyExchangeの送
信に成功すると注2、サーバ側からハンドシェイ
クに必要な情報はすべて送信できたことになる
ので、その意思表示としてServerHelloDoneを
返します。

・ClientKeyExchange：
　ServerHelloDoneの受信に成功すると、クラ
イアントは鍵交換に必要な情報をサーバ側から
すべて受け取ったことになります。クライアン
トはServerHelloで返された鍵交換アルゴリズ
ムとCertificateまたはServerKeyExchangeの
内容に基づいて、クライアント側の鍵交換パラ
メータを生成し、サーバに送信します。

・ChangeCipherSpec：
　レコードプロトコルに用いる暗号スイートを

SSL/TLS 通信しようよ
僕が話せるプロトコルバージョン

と暗号スイートは□□だよ

鍵交換するには
このパラメータを使ってね

これからのセキュア通信には
今渡した情報を使ってね

SSL/TLS 通信できるよ
君と話せる最新のプロトコル
バージョンは◯◯、一番優先

度の高い暗号スイートは△△だよ

僕の証明書はこれだよ
検証に使うかもしれない
証明書も一緒に送るよ

鍵交換するには
このパラメータを使ってね

僕からの情報は以上です
後は君からの情報を待ってるよ！

（1）ClientHello

（6） ClientKeyExchange

（7）[ChangeCipherSpec]

（10） Application Data（10） Application Data

（8）Finished

破線矢印は任意（文脈依存）

（2）ServerHello

（3）Certificate

（4）ServerKeyExchange

（5）ServerHelloDone

（9）Finished

 ▼図2　TLSの典型的なシーケンス

注1） ServerHelloDoneで指定する暗号スイートによっては
Certificateを省略できる（つまりサーバ認証を行わない）
場合があります。ただし、およそ一般的な事例ではないの
で本記事では省略します。

注2） これはあくまで典型的なサーバ認証の話で、クライアント
認証や再認証など、ほかのシーケンスではServerHello
Doneを送信するための条件は異なります。詳しくはRFC
5246などでご確認ください。

第 章2安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ SSL/TLSと暗号スイートを理解しよう

84 - Software Design Aug. 2015 - 85

変更する通知です注3。この通知は、ここまでの
ハンドシェイクプロトコルで決定した暗号スイー
トとその鍵交換パラメータが、以降のレコード
プロトコルに適用されることを意味します。

・Finished：
　ChangeCipherSpecまで送信すれば注4、クライ
アント側から送信すべきハンドシェイクに必要
な情報はすべて送信できたことになるので、そ
の意思表示としてFinishedを返します。

●●レコードプロトコル
　ハンドシェイクが終わると、レコードプロト
コルを用いて、アプリケーションデータを暗号
化し、送受信できるようになります。アプリケー
ションデータは再送攻撃や並べ替え攻撃を受け
ないよう、後述する図7に示すようにシーケン
ス番号を含むTCPヘッダとともにMACタグを
計算します注5。その後アプリケーションデータ

とMACタグ、必要に応じてパディングがハン
ドシェイクから得られた共通鍵をもとに暗号化
されます。

暗号スイートとその構成

　図3はTLSハンドシェイクで提示される「暗
号スイート」の一例です。TLSではこのように、
鍵交換、公開鍵暗号技術、共通鍵暗号、暗号利
用モード、MACを組み合わせることで、安全な
通信を実現しています。また、図3のように、各
技術区分から1つずつ選んでひとまとめにした
ものは暗号スイートと呼ばれます。IETFでは多
くの暗号スイートを定義しており、その数は300

件を超えます（これらについては後述します）。
　ハンドシェイクプロトコルでは、サーバとク
ライアントは、お互いが利用可能な暗号スイー
トのリストを提示、参照し、利用するスイート
を決定します。とくにサーバのデフォルト設定
では、多様な実装環境に対応するため、多くの

　暗号技術は古くから軍事技術として利用されており、現代においても軍事技術の一種としてみなされてい
ます。米国においても、古くはCOCOM注6、現在はワッセナーアレンジメント注7で暗号技術の輸出が規制
されています 。インターネットの普及とともに、暗号技術も民間に行き渡り、規制も大幅に緩和され、形骸
化していますが、規制がなくなったわけではありません注8。
　こうした歴史的背景から、一部の暗号アプリケーションには、規制対象国への輸出用の、弱い暗号を利用
させるしくみが残っています。TLSにおいても、export-gradeと呼ばれる「弱い」暗号アルゴリズムを利用す
るしくみが存在します。しかし、近年export-gradeを狙った攻撃が頻発していることもあり、IETFでも
export-gradeを排除する方向に進んでいます。

暗号技術は軍事技術？Column

TLS_DH_RSA_with_AES128_CBC_SHA

鍵交換 公開鍵

ハンドシェイクプロトコル

MAC共通鍵暗号と暗号利用モード

レコードプロトコル

技術区分

利用局面

 ▼図3　暗号スイートとその構成

注3） ChangeCipherSpecは、厳密に
はハンドシェイクプロトコル
ではなくレコードプロトコル
なのですが、ハンドシェイク
においても流用されます。

注4） これも同様にサーバ認証に
限った話で、ほかのシーケン
スにおける終了条件はそれぞ
れ異なります。詳しくはRFC
5246などでご確認ください。

注5） 後述するGCMモードなど一部
の暗号利用モードでは、これ
以外の実装方法もあり得ます。

注6） Coordinating Committee for Export Control（対共産圏輸出統制委員会）の略。
注7） 通常兵器の輸出管理に関する、国際的な申し合わせ。
注8） 実際に2014年には、Wind River Systems社が、政府向けの高度な暗号ソフトウェアを特定の国に許可なく輸出したとして、

米国商務省から制裁金を言い渡されています。

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

86 - Software Design

暗号スイートに対応する傾向にあります。たと
えば、OpenSSL 1.0.2c＋Apache 2.4.12では、
初期設定で97件の暗号スイートを提示します。
　その中には、古い暗号スイートや、十分に安
全でない暗号スイートもあります。攻撃者はよ
り「弱い」暗号スイートを狙うことが予想される
ため、安全でない暗号スイートは提示しないよ
うにすべきでしょう。ところが、300種類以上
の中から適切なスイートのリストを選ぶことは、
容易ではありません。
　本章では、各技術区分の概観を解説したあと、
各技術区分の主要なアルゴリズムを紹介します。
そして、第3章で、適切な暗号スイートの選び
方について解説します。

利用される暗号技術の解説

　TLSの通信は多くの暗号技術を組み合わせて
行いますが、本節では、認証アルゴリズム、鍵
交換アルゴリズム、共通鍵暗号アルゴリズムと
利用モード、MACアルゴリズム、の4つの技術
区分に分けて解説します。

●●認証アルゴリズムと公開鍵暗号
　クライアントがサーバと安全な通信を実現す
るには、通信相手が意図するサーバかどうか、
つまり第三者によるなりすましや意図しないサー
バでないことを確認すること（認証）が必要とな
ります。TLSにおいては、認証方法の典型例と
して公開鍵暗号に基づいたサーバ認証が挙げら
れます。これは公開鍵暗号に基づく電子署名の
しくみを応用したものですので、まず電子署名
のしくみについて解説します。
　電子署名は、図4に示すようにちょうど公開
鍵暗号の公開鍵と私有鍵の役割を入れ替える形
で実現されるもので、RSA、DSSやECDSAな
どがあります。あるデータに署名できるのは私
有鍵を持つ署名者のみで、一方でその署名が正
しい（改ざんされていない）ことは公開鍵があれ
ば誰でも検証できます。
　認証では、クライアントがnonceと呼ばれる

乱数を生成してサーバに送信し、サーバがこれ
に私有鍵で署名して返します。クライアントは
サーバ証明書から取得した公開鍵でこの署名を
検証し、検証に成功すれば、今通信している相
手がサーバ証明書に記載されたサーバと同一だ
と判断します（すなわちサーバの認証に成功した
とみなします）。
　ところでサーバが送付する証明書が偽物でな
いとの保証はありません。通信のしくみ上、中
間者攻撃（図5下部）の可能性は排除できません。
中間者攻撃を防ぐには、図5に示すように、今
通信している相手が差し出す証明書を無闇に信
用するのではなく、偽物に対して証明書を発行
することのないような認証局をクライアントが
あらかじめ信頼しておくことによって対策でき
ます。具体的には、ハンドシェイクにおける
Certificateで送られてきたサーバ証明書が信頼
している認証局の公開鍵で検証できれば、その
サーバは、なりすましなどではない、意図した
サーバであるとみなすことができます。
　このクライアントからあらかじめ信頼された
認証局はパブリック認証局とも呼ばれ、みなさ
んが使っているOSやブラウザなどに数百近い
パブリック認証局があらかじめインストールさ
れています。暗号技術の危殆化、私有鍵の漏え
い、攻撃者による認証局の不正利用などが起き
ない限り、これらのサーバ証明書を安心して使
うことができます注9。

署名
処理

検証
処理

平文 署名アルゴリズム

署名

私
有
鍵

公
開
鍵

 ▼図4　電子署名の概念

注9） ちなみに最近ではsuperfishやWERDLODなどのように認
証局ではなくブラウザそのものを改ざんして、不正な認証
局を勝手に信頼させる手法も出てきました。

第 章2安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ SSL/TLSと暗号スイートを理解しよう

86 - Software Design Aug. 2015 - 87

●●鍵交換アルゴリズム
　鍵交換アルゴリズムは大きく、鍵配送型のア
ルゴリズムと、DH（Diffie-Hellman）型のアルゴ
リズムに分けられます。
　鍵配送型は、送信者が共通鍵を作り、暗号化
して受信者に送る方式です。
　DH型鍵交換は、サーバとクライアントがお
互いの秘密を持ち寄り、共同して鍵を計算する
方式です。DH型鍵交換でクライアントとサー
バは、図6のように、秘密の情報（私有鍵のXc

又はXs）と公開鍵（Yc又はYs）を持ち、自分の私
有鍵と相手の公開鍵と事前に共有した公開情報
を合わせることで、同じ鍵を共有できます。本
章では、DH鍵交換における秘密情報を「DH私

有鍵」、事前共有した公開情報と公開鍵Yc又は
Ysを合わせて「DH公開鍵」と呼びます。
　DH型の鍵共有には、DH公開鍵を電子証明書
に記載するDH鍵交換と、都度違うDH公開鍵を
使うDHE鍵交換があります。また、DH（E）鍵
交換を、楕円曲線上の性質を利用して行う方式
はECDH（E）鍵交換と呼ばれます。各方式の詳
細については、後述します。

●●共通鍵暗号
　共通鍵暗号の利用では、第1章の図3で示し
たように送信者と受信者が同一の鍵（共通鍵）を
利用します。送信者は、共通鍵を利用し、送信
メッセージを暗号化することで暗号文を作成・

の証明書は
これです（嘘）

と通信してる
つもり

と通信してる
つもり

パブリック認証局証明書を
あらかじめ配布

サーバ証明書
を発行

パブリック
認証局

認証局の公開鍵で
検証できないぞ？ の証明書は

これです

 ▼図5　中間者攻撃対策としての認証局

私有鍵 Xs
公開鍵 Ys

私有鍵 Xc
公開鍵 Yc

公開情報、 Yc、Xs から
鍵を計算

公開情報、 Ys、Xc から
鍵を計算

クライアント サーバ
Ys

Yc

同じ鍵を共有できる

公開情報
（事前に共有）

 ▼図6　DH鍵型交換

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

88 - Software Design

送信します。受信者は共通鍵を利用し、受け取っ
た暗号文を元のメッセージに復号します。
　共通鍵暗号は、ブロック暗号とストリーム暗
号に分けることができます。ブロック暗号では、
暗号化を行ううえでパディングや暗号利用モー
ドが必要なため、ここではそのしくみについて
解説します。
　ブロック暗号では決まったbit数（ブロック長）
のメッセージを入力として受け取り、決まった
bit数の暗号文を出力します。そのため、ブロッ
ク暗号で暗号化するときは、入力（図7③）をブ
ロック長の倍数にしなければいけません。アプ
リケーションデータは必ずしもブロック長の倍
数とならないため、パディング（詰め物）を行い

ます（図7）。具体的には、次節で述べるMACを
付与したあと、ブロック長の倍数になるまで、
決まった手順で埋めます。
　なお、ストリーム暗号は1bitごとに暗号化す
るため、パディングや暗号利用モードの指定が
必要ありません。

●●（共通鍵暗号の）暗号利用モード
　ブロック暗号では、何も工夫せずに各ブロッ
クを同一の鍵で暗号化すると、同じ入力に対応
する暗号文が同じものになってしまい、復号ま
ではできなくても鍵や元の平文などの一部の情
報を予測しやすくなってしまう問題があります。
アプリケーションデータに含まれるHTTPヘッ
ダなどはこうした攻撃に悪用される可能性があ

ります。
　そこで、同一の入力・同一の
鍵であっても、異なる暗号文に
なるようないくつかの暗号利用
モードというものが作られまし
た。その種類については後述し
ます。

●● MACアルゴリズム
　MACアルゴリズムは、メッ
セージの改ざんを検知するため
に使われます。ここでは、HMAC

に絞り解説します。HMACは内
部的に図8のようなしくみで、
ハッシュアルゴリズムと共通鍵
を使い、MACタグを計算する方
式です。利用する共通鍵1およ
び2は、ハンドシェイク時に共
有するパラメータから決まった
手順で計算されます。 そのた
め、サーバもクライアントも、
これらの鍵は管理する必要があ
りません。

　TLSでのMACタグは、図7
の②のように、ヘッダ（HDR）、

アプリケーションデータ ①

②

③

④

アプリケーションデータ

MAC計算

暗号化+暗号利用モード

アプリケーションデータ

暗号化データREC
HDR

MACタグ パディング

SQNHDR

 ▼図7　ブロック暗号による暗号化とMAC

図 7の②から

図 7の③へ

アプリケーションデータ

メッセージ

ハッシュ関数

ハッシュ関数

共通鍵１

中間ハッシュ共通鍵 2

MACタグ

SQNHDR

HMAC

 ▼図8　HMAC

第 章2安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ SSL/TLSと暗号スイートを理解しよう

88 - Software Design Aug. 2015 - 89

シーケンス番号（SQN）、アプリケーションデー
タを合わせてHMACの入力メッセージとするこ
とで計算されます。
　暗号スイートにおけるHMACアルゴリズムの
指定は、ハッシュアルゴリズムの名前を指定す
ることにより行うことができます。各種ハッシュ
アルゴリズムの詳細については、後述します。

主要なアルゴリズムの特徴

　デフォルトの暗号スイート（のリスト）は相互
接続性を重視するあまり、安全でない暗号アル
ゴリズムも含まれていることもあると「暗号ス
イートとその構成」冒頭で指摘しました。これを
安全性にも配慮したリストにするにも、暗号ス
イートが多過ぎて、適切なスイートを選択する
のが難しいという課題があります。TLSでは表
1に挙げられているアルゴリズムが記載されて
いますが、各暗号スイートの特徴を理解するた
め、本節では、これらのアルゴリズムのうち主
要なアルゴリズムとその特徴を解説します。

●●認証アルゴリズム
　認証アルゴリズムに、RSA、DSS、ECDSA

などと書かれていた場合は、それらの公開鍵暗
号アルゴリズムを利用し、認証を行います。サー
バの証明書に記述されている公開鍵（またはDH

公開鍵）の種類により、使える認証アルゴリズム
が異なる点は注意が必要です。

●●鍵交換アルゴリズム
　表1に示す鍵交換アルゴリズムの記載なしに
TLS_RSA_*と暗号スイートに書いてあった場
合、クライアントは乱数を作り、サーバの公開
鍵で暗号化し、送信します。両者はその乱数か
ら共通鍵を作成します。ここで、公開鍵暗号は
暗号化の用途で利用されます。
　DH_*と書いてあった場合、クライアントと
サーバはDiffie-Hellman鍵交換アルゴリズムを
利用し、共通鍵を生成します。ここで、サーバ
の電子証明書に記載されているDH公開鍵が鍵
交換に利用されます（DH公開鍵が電子証明書に
記述されていなければ、利用することはできませ
ん）。サーバが証明書を変更しない限り、利用さ
れるDH公開鍵は常に同じものとなります。
　DHE_*と書いてあった場合、クライアントと
サーバはEphemeral Diffie-Hellman（DHE）鍵交
換アルゴリズムを利用し、共通鍵を生成します。
単なるDHアルゴリズムと異なり、サーバはDH

公開鍵とDH私有鍵を（使い捨てにし）鍵交換の
たびに新たに作りなおします。そして、サーバ
の電子証明書に記載されている公開鍵に対応す
る私有鍵を利用し、DH公開鍵に署名を行いま
す。サーバの証明書に記載されている公開鍵が
RSAの場合はDHE_RSA、DSSの場合はDHE_

DSSとなります。DHEでは私有鍵と公開鍵を
使い捨てにすることで、Perfect Forward

Secrecyという性質（「PFS」の節で後述）を持た
せることができ、サーバ証明書の私有鍵が漏え
いしたときの脅威を低減できます。

鍵交換 認証 共通鍵暗号と暗号利用モード MAC
ECDH RSA{|-PSK} AES_(128|256)_(CBC|GCM|CCM) SHA
ECDHE DSS 3DES_EDE(|_CBC) SHA-256
DH ECDSA DES_CBC SHA-384
DHE KEB5 RC4_(40|128) MD5
SRP PSK CAMELLIA_(128|256)_CBC NULL
NULL anon IDEA_CBC
DH_anon_export NULL ARIA_256_(CBC|GCM)

RSA_EXPORT SEED(CBC)
DSS_EXPORT RC2_CBC_40
KBR5_EXPORT NULL

 ▼表1　TLS 1.2の暗号スイートがサポートするアルゴリズム

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

90 - Software Design

　ECDH_RSAは、DH_RSAと似ていますが、
サーバの証明書に、DH公開鍵の代わりにECDH

公開鍵が記述されています。
　ECDH_ECDSAはDH_DSSと似ていますが、
DH鍵交換のみでなく、電子証明書の検証にも
楕円曲線を使うアルゴリズムです。
　ECDHE_*は、ECDH_*に似ていますが、
DHE_*と同じように、EphemeralなDiffie-

Hellman型鍵交換を行い、ECDH公開鍵を使い
捨てにするアルゴリズムです。
　*DHE_*鍵交換において、鍵交換に利用する
DH公開鍵が短い（弱い）ために、他の暗号鍵に比
べ、DH公開鍵だけが大幅に弱くなることが問題
になることがあります。多くのアルゴリズム
（*DH_*）では、認証局が責任を持って発行した
電子証明書に記載されているDH公開鍵が使われ
るため、「弱い」鍵を使ってしまう問題は起こり
にくいです。しかしながら、DHE、ECDHEで
は、使う鍵にとくに制約がなく、実装により鍵
の長さが異なります。つまり、実装によっては、
弱い（鍵の長さが短い）DH鍵が生成されてしまう
ため、注意が必要となります注10。

●●共通鍵暗号
　AESは、現在最も広く使われている共通鍵暗
号アルゴリズムです。ブロック長（入出力）は
128bit、鍵は128bitと256bitから選ぶことがで
きます。ブロック暗号アルゴリズムですので、
暗号利用モードを指定して使う必要があります。
　DESは、1970年代から利用されているブロッ
ク暗号アルゴリズムです。ブロック長は64bit、
鍵は56bitとなります。現在においてDESで暗
号化された文章は容易に解読できるためTLS

1.0以降では利用できません。
　3DESは、異なる鍵を利用したDESの処理を
3回行います。3DESのブロック長は64bit、鍵
は 168bit（3key-3DES）または 112bit（2key-

3DES）となります。2keyと3keyの暗号の強さ
の比較については、コラム「ビットセキュリティ」
をご参照ください。現在において3DESの安全
性は随分低下していますが、TLSで選択できま
す。暗号利用モードを指定して使う必要があり
ます。
　RC4は、ストリーム暗号アルゴリズムの一種
です。ストリーム暗号では、ブロック長の制約
なく暗号化できます。RC4では128bitの暗号鍵
を使用します。3DES同様、十分な安全性は確
保できませんが、最新のTLS 1.2でも選択でき
ます注11。

●●暗号利用モード
　暗号利用モードには多くの種類がありますが、
本節では広く使われているCBCモードと、TLS

1.2で新たに実装されたGCM、CCMモードを解
説します。近年、暗号利用モードのしくみを利
用した攻撃が多数発見されましたが、これらの
攻撃の詳細については第3章で解説します。
　CBCモードは、前のブロックを暗号化した出
力を、次に暗号化するブロックの文字列とXOR

し、その値を暗号関数の入力とする暗号アルゴリ
ズムです。CBCモードでは暗号化処理の並列化
ができない反面、復号処理の並列化は容易です。
　GCMモード、CCMモードは、暗号化機能と
改ざん防止機能を統合する暗号利用モードで

す注12。GCM、CCMモードを利用すると、MAC

アルゴリズムを使わずに改ざんを防げます。
GCM、CCMモードはTLS 1.2で実装されたア
ルゴリズムですので、TLS 1.1以下では利用で
きません。また、GCMは暗号化・復号ともに並
列化が可能です。

●● MACアルゴリズム
　本節では、HMAC内部で呼び出されるハッ
シュアルゴリズムについて解説します。

注10） たとえばDHE_RSAでは、DH公開鍵、DH私有鍵の生成方
法は実装依存です。そのため、セキュリティ強度（コラム
「ビットセキュリティ」参照）を確認するためには、実装ま
で調べる必要があります。

注11） ただし、これはRFC 5246での仕様であり、その後TLS 1.0
からRC4の使用を禁止するRFC 7465が発行されています。

注12） これらの暗号利用モードを利用する共通鍵暗号アルゴリズ
ムは、とくにAEAD (Authenticated Encryption with
Associated Data)と呼ばれます。

第 章2安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ SSL/TLSと暗号スイートを理解しよう

90 - Software Design Aug. 2015 - 91

　ハッシュアルゴリズムは、電子署名やMAC

計算に利用され、どんな長さの文字列を入力し
ても、決まった長さの文字列（ハッシュ値）を出
力する関数です。また、少しでも入力データが
異なればハッシュ値は大きく変わり、特定のハッ
シュ値を出力するように入力データを調整する
ことは難しいです。このような性質を利用して、
MACアルゴリズムでは暗号化データの改ざんを
検知しています。
　代表的なハッシュアルゴリズムには、MD5、
SHA-1、SHA-2（SHA-256など）などがあります。
　MACアルゴリズムにMD5を指定すると、
HMACでハッシュアルゴリズムのMD5を呼び
出します。MD5は128bitの出力を持つMACア
ルゴリズムです。古く弱いアルゴリズムですの
で、利用するべきではありません。
　SHAと指定すると、SHA-1をHMACで呼び
出すことを示しており、160bitの出力を持つ
MACアルゴリズムです。SHA-2に比べ強度の
面で劣ります。
　SHA-256、SHA-384と指定すると、各ハッ
シュアルゴリズムをHMACで呼び出すことを示し
ています。各数字は、出力bit数を表しています。

PFS

　多くの暗号方式は、私有鍵が漏れないように
運用することが求められます。しかしながら、
管理ミスや、NSAなどによる諜報活動、内外か
らの攻撃などにより、私有鍵が実際に漏えいし
た例もあり、そのリスクは無視できません。DHE

またはECDHE以外のTLS通信では、私有鍵が
漏れた場合は、（いくつかの前提は必要ですがた
とえばPRISM事件のように通信パケットがキャ
プチャされていると）原理的に過去の暗号通信が
復号可能となります。
　私有鍵が漏えいする状況においても、以前の
暗号通信を保護できるしくみを持つことをPFS

（Perfect Forward Secrecy）と呼びます。
　PFSの大まかなアイデアは「DH私有鍵（とDH

公開鍵）を使い捨てにしてしまおう」というもので
す。秘密もメモリ上から破棄してしまえば漏えい
することはなく、証明書の私有鍵から暗号化用の
共通鍵を復元することもできなくなります。つま
り、通信パケットをすべてキャプチャされている
状況で私有鍵が漏えいしても、その暗号通信の
内容が解読されることはありません。
　DHEおよびECDHEでは、図9のようにDH

私有鍵を使い捨てにすることで、仮に電子証明
書の私有鍵が漏えいしても、暗号化用の共通鍵
が計算できないようなしくみを実現しています。
　注意が必要なのは、本章の「認証アルゴリズム
と公開鍵暗号」のところで解説したように、サー
バ証明書の形式によっては、使えないアルゴリ
ズムがある点です。

SSL/TLSのバージョン

各バージョンの差分や策定経緯

　ここまで多くのアルゴリズムや、それを組み
合わせた暗号スイートについて紹介してきまし
たが、SSL/TLSがどのような歴史的経緯をふ
まえてアップデートされていったかを見ていき
たいと思います。

・SSL 1.0
　冒頭でも触れましたが、SSLはNetscape 社が

PFSでない

電子証明書の
各種公開鍵
（と私有鍵）

共通鍵

PFS

電子証明書の
各種公開鍵
（と秘密鍵）

破棄

共通鍵 使い捨て
DH私有鍵

 ▼図9　PFS

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

92 - Software Design

Secure Socket Layerとして1994年に設計しま
した。初期バージョンの1.0では秘匿用にRC4

での暗号化を用いましたが、メッセージの整合
性をCRC（Cyclic Redundancy Check）でしか
担保していないため、メッセージの改ざんが可
能なものでした。社内でのレビュー時にこのよ
うな脆弱性がいくつか発見されたため、SSL 1.0

が実装されることはありませんでした。

・SSL 2.0
　SSL 1.0での脆弱性を修正し、Netscape 社は
SSL 2.0を1994年後期に発表しました。メッ
セージの改ざん防止にハッシュアルゴリズム
（MD5）が導入され、1995年には「The SSL

Protocol」として IETFに投稿されました注13。

Netscape社はこの時SSLの特許を米国で取得
していますが、これを無償で解放しています。
　残念ながらSSL 2.0にも、いくつかの脆弱性
が存在していました。ハンドシェイクの改ざん
検知を行っていないことが原因となり、中間者
がハンドシェイクを改ざんし、輸出グレードの
暗号スイートを強制的に選択させる脆弱性など
がありました注14。
　また当初は安全だと思われていたMD5もその
後危殆化し、安全性が低下してしまいました。
　このような事実がありながら、つい最近まで、

　本章で多くの共通鍵暗号、公開鍵暗号、MAC、鍵交換アルゴリズムを紹介してきました。基本的に同じ
暗号アルゴリズムであれば、鍵が長いほど安全になります。しかしながら、異なるアルゴリズムでは、単純
に鍵の長さだけで安全性を比較できません注15。たとえば、3DESを168bitの鍵で利用するより、AESを
128bitの鍵で利用した方が安全ですし、AESを128bitの鍵で利用するのと同じ程度の安全性を、RSAで実
現するためには、3,072bitの鍵が必要となります。
　そこで、各種アルゴリズムがどの程度の「強度」を持っているかを判断する指標として、ビットセキュリティ
という概念があります。表2は代表的な暗号アルゴリズムと、それらのビットセキュリティの一覧です。暗
号通信を攻撃する人間は、一番強度が低い場所を狙うことが予想されます。そのため、すべての区分で一定

（たとえば128）以上のビットセキュリティを持つことが推奨されます。

ビットセキュリティColumn

注13） SSL2.0はその後RFCにはならず、草稿である Internet
Draftのまま終わりました。

注14） この結果、ビットセキュリティの低い暗号が使われ攻撃者
の暗号解読が容易になってしまいます。

注15） ハッシュアルゴリズムは、HMACを利用した場合の強度であり、電子証明書で利用する場合は、強度が大幅に下がります（具
体的には、SHA-1は電子証明書で利用する場合はビットセキュリティが80まで下がるため、利用は推奨されません）。

セキュリティ強度 80 112 128 それ以上の強度

ハンド
シェイク

認証 RSA1024
ECDSA160

RSA2048
ECDSA224

RSA3072
ECDSA256

RSA4096など
ECDSA384など

署名検証時の
ハッシュ
(参考情報)

SHA-1 SHA-224 SHA-256 SHA-384、
SHA-512など

鍵交換

1024bitの
DH公開鍵

2048bitの
DH公開鍵

3072bitの
DH公開鍵

より長い
DH公開鍵

160bitの
DH私有鍵

224bitの
DH私有鍵

256bitの
DH私有鍵

より長い
DH私有鍵

レコード
秘匿 3DES(2key) 3DES(3key) AES128 AES256

改ざん検知 SHA-1（HMAC） SHA-1（HMAC）
SHA-256（HMAC）

使用期限について すでに非推奨 2030年まで 2031年以降の利用

 ▼表2　各セキュリティ強度に対応した暗号アルゴリズム（NIST SP800-57_part1_ rev3より）

第 章2安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ SSL/TLSと暗号スイートを理解しよう

92 - Software Design Aug. 2015 - 93

暗に安全ではないとわかりつつもSSL 2.0は使
用されてきましたが、2011年にはついにIETF

からRFC 6176「Prohibiting Secure Sockets

Layer (SSL) Version 2.0」が公開され、SSL

2.0の使用は禁止されました。

・SSL 3.0
　1995年にSSL 2.0の脆弱性を修正した、SSL

3.0がNetscape社からリリースされました。機能
も拡張され、証明書については中間認証局にも
対応するなど、さまざまな改良が施されました。
また著名な暗号研究者であるTaher Elgamalら
を迎えセキュリティをより堅牢なものとしました。
　すでに実装され広まっていたSSL 2.0と混在
することとなるため互換性を持たせ、ハンドシェ
イクの際にSSL 3.0で通信するかSSL 2.0で通
信するかを決定するしくみが導入されました。
しかし、この互換性を悪用してクライアントが
SSL 3.0で通信を開始するためのハンドシェイ
クClientHelloを改ざんできる脆弱性が存在しま
した。中間者によってClientHelloがSSL 2.0に
ダウングレードさせて開始するように改ざんさ

れると、サーバはSSL 2.0で通信を開始します。
クライアントもサーバの応答がSSL 2.0を指定
しているため、これを受容し、低いセキュリティ
で通信を行ってしまう問題がありました。
　これを回避するため各ブラウザはSSL 3.0が
普及したタイミングでSSL 2.0をデフォルトで
無効化する対策を施しました。それにともなっ
て、これまでSSL 2.0しかサポートしていな
かったサーバもSSL 3.0で接続できるように
アップデートされていきました。
　SSL 3.0は公表されてから20年近く多くのブ
ラウザ／サーバでサポートされていましたが、
2014年に脆弱性（POODLE）が報告され、SSL

3.0をサポート外とする動きが急増していま

す注16（図10）。

・TLS 1.0
　これまでNetscape社から公開されていた
SSLでしたが、世界中で広く利用されているこ
とから、IETFでの標準化も開始されました。そ
うして 1999年に IETFから公開されたのが
注16） 2015年6月に SSL 3.0を廃止するRFC 7568「Deprecat

ing Secure Sockets Layer Version 3.0」が発行されました。

2
0
1
5
年
6
月

2
0
1
5
年
5
月

2
0
1
5
年
4
月

2
0
1
5
年
3
月

2
0
1
5
年
2
月

2
0
1
5
年
1
月

2
0
1
4
年
12
月

2
0
1
4
年
11
月

2
0
1
4
年
10
月

2
0
1
4
年
9
月

2
0
1
4
年
8
月

2
0
1
4
年
7
月

2
0
1
4
年
6
月

2
0
1
4
年
5
月

2
0
1
4
年
4
月

2
0
1
4
年
3
月

2
0
1
4
年
2
月

2
0
1
4
年
1
月

2
0
1
3
年
12
月

2
0
1
3
年
11
月

2
0
1
3
年
10
月

2
0
1
3
年
9
月

2
0
1
3
年
8
月

2
0
1
3
年
7
月

2
0
1
3
年
6
月

2
0
1
3
年
5
月

2
0
1
3
年
4
月

2
0
1
3
年
3
月

2
0
1
3
年
2
月

2
0
1
3
年
1
月

2
0
1
2
年
12
月

2
0
1
2
年
11
月

2
0
1
2
年
10
月

2
0
1
2
年
9
月

2
0
1
2
年
8
月

2
0
1
2
年
7
月

2
0
1
2
年
6
月

2
0
1
2
年
5
月

2
0
1
2
年
4
月

0

10

20

30

40

50

60

70

80

90

100

SSL 2.0

SSL 3.0

TLS 1.0

TLS 1.1

TLS 1.2

 ▼図10　サーバ側のSSLサポートシェア注17

注17） SSL Pulseが公開しているデータに基づいています。

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

94 - Software Design

RFC 2246 Transport Layer Security（TLS）
のバージョン1.0です。
　SSLから名称が変更されましたが、SSL 3.0

をもとに策定されているため両者に大きな差は
ありません。差分としてはセキュリティ向上の
ための更新が施されていたり、一部鍵交換アル
ゴリズムや暗号アルゴリズムの実装がSSL 3.0

では任意だったものがTLS 1.0では必須になっ
たことがあげられます。
　TLS 1.0以降では前述のPOODLEの脆弱性
に対応できることもあり、現在ではSSL 3.0か
らTLS 1.0（さらにそれ以降のバージョン）への
移行が大きく進められています。ただしTLS

1.0はあくまで仕様上安全であるというもので、
実装の問題でPOODLEの脆弱性を含むものも
存在することに注意が必要です注18。

・TLS 1.1
　TLS 1.0のセキュリティを向上させるアップ
デートとして2006年に IETFからRFC 4346

TLS 1.1が公開されました。
　大きな変更としては以前のバージョンで問題
が指摘されていたCBCモードの改善や、エラー
処理・警告処理を解読のヒントにする攻撃者へ
の対策などです注19。
　また現在、さまざまな暗号製品で広く使われ
ているAESはこのTLS 1.1からRFCに組み込
まれました（TLS 1.0には2002年にAESが追加
されています）。

・TLS 1.2
　本原稿執筆時点で最新のバージョンである
TLS 1.2は 2008年に IETFからRFC 5246と
して公開されました。当然ながら全バージョン
でセキュリティは一番高く、ハッシュアルゴリ
ズムのSHA-256や暗号利用モードGCM、CCM

といった新しい技術や、さまざまなセキュリティ

対策が取り入れられています。

・TLS 1.3
　TLSの次期標準として1.3が IETFで提案・
検討されています。この規格については本特集
のAppendixを参照してください。

互換性のメリット・デメリット

　ここまでSSL/TLSの各バージョンについて
解説してきましたが、SSL/TLSは相互接続性
を確保するため後方互換性を持つように設計さ
れています。仮に互換性がない場合、TLS 1.2

に対応しているサーバとSSL 3.0に対応してい
るクライアントではバージョンが異なるため通
信ができません。しかしここでサーバの実装が
SSL 3.0にも対応していれば、ハンドシェイク
のClientHelloを受けてSSL 3.0で通信を開始
できます。これによりユーザはSSL/TLSの
バージョンを気にせずに通信ができます。
　とはいえSSL 3.0の解説にもあったように、
古いバージョン、とくにSSL 2.0、SSL 3.0で
の通信にはリスクも存在します。本来ならば最
新バージョンであるTLS 1.2ですべての通信が
行われるのが望ましいのですが、2000年前後に
SSL 3.0までが実装され、アップデート機能を
持たないクライアント製品が未だに使われてい
ます。これらの製品を無視してサーバ側がSSL

3.0での通信を一方的に禁止した場合、ユーザは
突然接続ができなくなってしまいます。この問
題を解決するためには製品をすべて新しいもの
に交換するほかなく、SSL/TLSの大きな課題
となっています。ｦ

【参考文献】

・�『マスタリングTCP/IP SSL/TLS編』
　Eric Rescorla著、オーム社、2003年
・�『PKI関連技術情報』、http://www.ipa.go.jp/
security/pki/index.html、IPA

・�『自堕落な技術者の日記』
　http://blog.livedoor.jp/k_urushima/

注18） たとえばプロトコルバージョンとしてはTLS 1.0を返すも
のの、ほかの実装はSSL 3.0のまま、というものがありま
した。

注19） BEASTやPOODLEの脆弱性ではこういった情報が暗号解
読の手がかりとされています。

http://www.ipa.go.jp/security/pki/index.html
http://blog.livedoor.jp/k_urushima/
http://www.ipa.go.jp/security/pki/index.html

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

95 - Software Design Aug. 2015 - 95

はじめに

　TLSは、インターネット上のセキュリティプ
ロトコルの1つというだけでなく、もはやビジ
ネスには必要不可欠なツールです。それほど重
要なTLSですが、ここ数年、「TLSに対する致
命的な脆弱性」と報じられる攻撃が頻繁に発生し
ています。
　そこで、本章前半では、致命的な脆弱性と報
じられた攻撃がどのような脆弱性を使って実際
の攻撃につながったのかを解説します。また、
後半では、こういった攻撃に対する耐性を高め、
TLSを安全に利用するためにサーバ設定で対処
できることについて紹介します。

事件を振り返ろう●
——TLSに潜む脆弱性

脆弱性にはどのようなものがあるか

　一言に脆弱性と言っても、その内容や発生場
所はさまざまです。たとえば、TLSはセキュリ
ティプロトコルの1つですので、ほかのセキュ

リティプロトコルと同様、次の3つの脆弱性は
すぐに思い当たるでしょう。

・暗号解読
・秘密鍵（私有鍵やセッション鍵注2）の漏えい
・実装脆弱性

　次は、TLSに特化した脆弱性です。TLSの
特徴は相互接続を重視していることであり、事
前に面識がないサーバとブラウザであっても、
両者がその場でハンドシェイクを行うことで暗
号通信できるようなしくみにしています。この
ことは、逆の見方をすれば、次のような脆弱性
を想定する必要があります。

・中間者攻撃
・ブラウザのマルウェア感染
・フィッシングサイト誘導
・サーバ証明書不正利用

そもそも何が問題だったのか

　ここでは、TLSの致命的な脆弱性と呼ばれる
ものの正体を見てみましょう。先の脆弱性の分
類と照らし合わせると、表1のようになります。

OpenSSL
Heartbleed

　2014年 4月に発覚した
Heartbleedは、RFC 6520注3

脆弱性の分析から●
見えてくる●
安全なTLSサーバ設定

 Author NTT セキュアプラットフォーム研究所　神田 雅透（かんだ まさゆき）
 Author ㈱レピダム　林 達也（はやし たつや）注1

第 章3

脆弱性／事件 分類
OpenSSL Heartbleed 実装脆弱性
BEAST攻撃、POODLE攻撃など マルウェア感染＋中間者攻撃
CCS Injection 実装脆弱性＋中間者攻撃
FREAK攻撃、Logjam攻撃など 暗号解読＋中間者攻撃
スノーデン事件、台湾国民電子証明書事件 秘密鍵の漏えい
MD5証明書偽造攻撃 暗号解読＋実装脆弱性

Diginotar事件 サーバ証明書不正利用
＋フィッシングサイト誘導

 ▼表1　最近のTLSの脆弱性／事件に対する分類

注1） 本章の執筆は、「OpenSSL CCS
Injection」の項が林達也氏、そ
れ以外の節・項は神田雅透氏に
よるものです（編注）。

注2） 鍵交換でサーバとブラウザが共
有する共通鍵のこと。

注3） https://tools.ietf.org/html/
rfc6520

https://tools.ietf.org/html/rfc6520

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

96 - Software Design

で規定されたTLS 1.2の拡張機能Heartbeatを
実装したOpenSSLの実装脆弱性を利用した攻
撃注4です。TLSそのものに対する攻撃ではない
にもかかわらず、TLSサーバを構築する際によ
く使われるOpenSSLに問題があったため、TLS

の脆弱性とか暗号ソフトウェアの脆弱性との見
出しがついたニュースが流れたりもしました。
　この攻撃を引き起こした脆弱性は極めて単純
なものです。具体的には、RFC 6520では

・サーバはHeartbeatMessageのペイロードに
書かれたデータをそのままフルコピーしてブ
ラウザに送り返す

・ブラウザとサーバが送り合うデータ（Heart
beatMessage）は最大でも16.4KBを超えて
はいけない

・ペイロードの長さがあまりにも大きい場合には、
サーバはリクエストを破棄しなければならない

と決められていたにもかかわらず、OpenSSLで
のHeartbeat実装においてメモリサイズのチェッ
ク文がまったく入っていませんでした。
　このため、ペイロードの長さが64KBと書か
れており、かつペイロードには短いデータXし
か書かれていないブラウザからのHeartbeat

Messageに対しても、サーバはデータXを含む
64KB分のメモリデータをペイロードにフルコ
ピーしてブラウザに送り返してしまいました。
　結果として、返信すべきデータXに隣接する
メモリデータにパスワードやクレジットカード
番号などがたまたま含まれていると、それらが
漏えいしたことになります。
　Heartbleed攻撃に対する影響を見るうえで問
題となったのが、

・HeartbeatMessageの長さがRFC仕様違反で
あることを除けば、通常のHeartbeat通信と
変わらないため、不正が行われていることを注4） http://heartbleed.com/

　TLSサーバ運用上、もっとも重要なデータとしてサーバの私有鍵があります。私有鍵が漏えいすれば、も
はやTLSの安全性を確保することはできません。そのため、最悪ケースとして「私有鍵自体が漏えいした可能
性」を考慮した対策が求められました。具体的には、

①運用中のサーバ証明書の失効
②新しい私有鍵の生成
③②の私有鍵に対する新しいサーバ証明書の取得・設定

を行う必要がありました。
　ところが、英Netcraft社の調査結果注5によれば、Heartbleed
の公表後1ヵ月間で43％のサーバ証明書が更新されましたが、
①〜③の3つの対策すべてを正しく実施した（図1のAの部分）
のは14％に過ぎませんでした。
　一方、サーバ証明書を更新しているにもかかわらず、運用中
のサーバ証明書を失効させなかった（①を実施しなかった）ケー
スが23％（図1のAとBを除いた部分）ありました。もっと悪い
ことに、運用中のサーバ証明書を失効させたにもかかわらず、
漏えいした可能性がある同じ私有鍵をそのまま再利用してサー
バ証明書を取得したケース（②を実施しなかった）が全体の5％（図1のBの部分）もあったそうです。
　これらの対策ミスは、「Heartbleedの事後対策としてサーバ証明書を更新」するという指示が、文字どお
り「サーバ証明書を更新」するという作業指示として受け取られ、本来の「漏えいした可能性がある私有鍵を
失効」させるという指示が伝わらなかったケースと言えましょう。

続きがある、 Heartbleedの余震Column

証明書の再発行（43％）

証明書の失効（20％）

同じ私有鍵で証明書を再発行（7％）

AA
B

 ▼図1　英Netcraft社の調査結果より

注5） http://news.netcraft.com/archives/2014/05/09/keys-left-unchanged-in-many-heartbleed-replacement-certificates.html

http://heartbleed.com/
http://news.netcraft.com/archives/2014/05/09/keys-left-unchanged-in-many-heartbleed-replacement-certificates.html

第 章3安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ 脆弱性の分析から見えてくる安全なTLSサーバ設定

96 - Software Design Aug. 2015 - 97

サーバは検知しづらく、ログに攻撃の痕跡が
残っていなかった

・2年以上も未発見だった
・意図せず偶然持っていかれたデータなので漏

えいした内容の特定が困難

といった点にあります。そのため、被害の全容
を把握できず、重要なデータが漏えいしたとの
前提で対策することが必要となりました。

BEAST攻撃／POODLE攻撃

　BEAST攻撃注6やPOODLE攻撃注7は、共通
鍵暗号であるブロック暗号で長いメッセージの
暗号化を行うCBCモードを利用したときの脆弱
性をついた攻撃です。
　攻撃方法の原理は、次の条件

・攻撃対象のブラウザにマルウェアを感染させる
などにより、攻撃者がブラウザからサイトAに任
意のメッセージを同じセッション鍵で暗号化さ
せたうえで大量に送信できる状態にある

・攻撃者は、ブラウザからサイトAに送るメッ
セージの中身を自由に加工できる

・攻撃者は、ブラウザからサイトAに送る暗号
化されたパケットをすべて傍受できる

がそろったときに、約256回のトライ＆エラー

で、攻撃者は暗号化された情報の中身を1バイ
トずつ知ることができ、それを繰り返すことで
情報全体がわかるようになるというものです。
ここでのポイントは、「攻撃者がセッション鍵を
知らなくても暗号化された情報の中身を知るこ
とはできる」ということにあります。
　これらの攻撃では、約256回のトライ＆エラー
で1バイトの情報を求めることを繰り返してい
くことから、サイズは小さいが効果が大きい情
報が攻撃対象としてふさわしいと言えます。た
とえば、効果的な攻撃対象としてまず考えられ
るのは、ログイン状態などを記録してサイトと
ブラウザとの間で一定時間共有する暗号化され
たCookie（セッションID）の中身です。
　これらの攻撃でユーザUのCookieを攻撃者が
得ることに成功すると、Cookieのしくみから
ユーザUの ID／パスワードを知らなくても、
ユーザUになりすましてそのサイトAに不正ア
クセスできます。

●● SSL 3.0には致命的なPOODLE攻撃
　POODLE攻撃は、SSL 3.0でブロック暗号を
CBCモードで利用する場合のパディングチェッ
クの仕様上の脆弱性をついた攻撃です。
　具体的には、SSL 3.0ではパディングの最終
1バイト分だけをチェックして正しければメッ
セージ全体が正しいと判断する仕様であるため、
攻撃者が作った偽メッセージであっても1/256

　POODLE攻撃の反響が落ち着き始めたころ、POODLE againということで「TLS 1.xでもPOODLE攻撃
が可能」との情報が公開されました。
　しかし、注意しなければならないのは、SSL 3.0へのPOODLE攻撃は仕様上の脆弱性であるのに対し、TLS
1.xへのPOODLE againは実装上の脆弱性に起因していることです。具体的には、TLS 1.xでのパディング
チェックのしくみが、仕様上はパディングの全データをチェックすべきところを、SSL 3.0と同じ最終1バ
イト分しか行っていない製品が数多く見つかり、TLS 1.xを使っていてもPOODLE攻撃と同じ手法が使えて
しまったことが原因でした。
　本来の仕様どおりに実装されていれば、SSL 3.0の場合とは違って、攻撃者が作った偽メッセージをサー
バが受理する確率は極めて小さく（具体的には2a分の1。aはパディング長を表す）、POODLE攻撃は成功し
なかったでしょう。

POODLE againColumn

注6） Thai Duong, Juliano Rizzo, "BEAST - Here Come The ✚ Ninjas"
注7） https://www.openssl.org/~bodo/ssl-poodle.pdf

https://www.openssl.org/~bodo/ssl-poodle.pdf

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

98 - Software Design

の確率で正しいものとしてサーバが受理してし
まう脆弱性を利用しています。
　簡単に攻撃方法の概要を示すと、図2のよう
に、暗号文全体の最後のCnを攻撃者が求めたい
1バイトの情報（P3の最下位1バイト）を含む場
所にある暗号文C3に置き換えて送信させます。
　このような改変を行った暗号文は、ほとんど
の場合、復号するとパディング値が正規のもの
と異なるためサーバで棄却されます。しかし、
たまたま最終1バイトの復号結果が正規のパディ
ング値と同じ値になった場合には、いったんサー
バが暗号文を受理しますので、攻撃者には「暗号
文が受理された＝CnをC3に置き換えた復号結
果の最終1バイトが正規のパディング値と同じ」
ことがわかってしまいます。これらの情報から、
攻撃者は暗号解読することなく、P3の最下位1

バイトの値を計算で求めることができます。

OpenSSL CCS Injection

　ChangeCipherSpec（以下CCS） Injection脆弱
性は、2014年6月に発見されたOpenSSL実装

固有の脆弱性です（“Early CCS Attack”などと
呼ばれることもあります）注8。
　これは、OpenSSLのChangeCipherSpecメッ
セージの処理に欠陥があり、中間者攻撃と組み
合わせることで暗号通信の情報が漏えいする可
能性があるというものです。
　ChangeCipherSpecメッセージは名前のとお
り暗号（Cipher）スイートを変えることを指す
メッセージです。中間者（攻撃者）が通信に割り
込んで不適切なCCSを挿入すると、OpenSSL

は適切な検証をせずそのCCSを受理してしまい
ハンドシェイクが不適切に行われて、弱い暗号
鍵を使った暗号通信を開始させることができま
す。その結果、中間者が通信を完全に解読でき
る状態になってしまいます。
　結果的に、修正前のバージョンのOpenSSL

を使用していた環境でのWebの閲覧、電子メー
ルの送受信、VPNといったソフトウェアでは保
護されていた通信内容や認証情報などを詐取・

…復号処理

…暗号処理

…XOR 演算

マルウェアに感染させて、攻撃者に都合よくデータを加工
（求めたい情報がブロックの最終バイトにくるようにするなど）

求めたい情報

求めたい
情報

SSL 3.0 の場合、最終バイトのパ
ディングが正しければ、サーバは暗
号文を受理
棄却されたらやり直し（平均 256 回
に 1 回暗号文が受理される可能性）

最終ブロックを
求めたいメッセージを
含むブロックに置き
変えてサーバに送信

IV
平文

暗号文
 （置換前）

攻撃者が入手
できる暗号文

ENC

* * * * * * *
* * * * * * *

7 * * * * * * * 7

77777777

ENC ENC ENC

DEC DEC

DEC

ENC

求めたいメッセージ（＝Cookie）

P1

C1 C2

C2

C3

暗号文を
受理Cn-1

P2

P3

P4P3

ENC ENC ENC

C3

Cn

Pn-2 Pn-1 Pn（=Padding）

★

★

★

 ▼図2　POODLE攻撃の概要

注8） http://ccsinjection.lepidum.co.jp/ja.html

http://ccsinjection.lepidum.co.jp/ja.html

第 章3安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ 脆弱性の分析から見えてくる安全なTLSサーバ設定

98 - Software Design Aug. 2015 - 99

改ざんされる危険性がありました。中間者攻撃
が必須であるためHeartbleedほどの危険性はな
いものの、標的型攻撃での危険性が高いと思わ
れました（中間者攻撃の実際の危険性に関しては
議論がありますが、公衆無線LAN／Wi-Fiが現
実的な攻撃手段になり得ると思われます）。
　この脆弱性は、Heartbleed脆弱性の発見を受
けて、TLSプロトコルの仕様から、状態が複雑
な個所を推測して発見されたもので、筆者の所
属する㈱レピダムで発見し、OpenSSL Project

やCERT/CC、JPCERT/CCなどの協力を得て
公開に至りました。この脆弱性は、OpenSSLの
最初のリリースから存在し、16年間発見される
ことはありませんでした。細かい発見の経緯や
背景に関しては、弊社のブログやスライド注9を
参照してください。

FREAK攻撃／Logjam攻撃

　FREAK攻撃注10は、中間者攻撃に分類される
中でもとくにダウングレード攻撃と呼ばれる攻
撃手法の一種です。攻撃者はハンドシェイクの
処理に割り込み「RSAを利用する輸出規制対象
の暗号スイート（RSA_EXPORT）」に強制的に
ダウングレードさせます。
　RSA_EXPORTは、2000年前後まで続いて
いた輸出規制に対応するためのもので、あえて
暗号強度を弱める処理を行います。具体的には、
たとえサーバ証明書で鍵長2,048bitのRSAを
使ってセッション鍵を交換するように記載され
ていても、強制的に暗号強度を大きく弱めた鍵
長512bitのRSAを利用してセッション鍵を交換
するように制御します。もしRSAが解読できれ
ばセッション鍵を取り出すことができるため、
当該TLS通信を復号することが可能です。
　発見者によれば、鍵長512bitのRSAはAma

zon EC2で100ドル出せば12時間以内に解読で

きると主張しています。実際、鍵長768bitのRS

Aの解読事例が2010年に発表されていることを
考慮すれば、鍵長512bitのRSAが簡単に解読さ
れたとしてもおかしくはありません。
　Logjam攻撃注11もほぼ同様の攻撃手法であり、
RSA_EXPORTの代わりに「DHE_EXPORT」
に強制的にダウングレードさせます。DHE_

EXPORTも輸出規制に対応するためのもので
あり、鍵長512bitのDHを使ってセッション鍵
を交換します。RSAとDHは同じ鍵長であれば
ほぼ同じ安全性であると考えられていますので、
鍵長512bitのDHEも簡単に解読されると考え
て良いでしょう。

秘密鍵の漏えい

　秘密鍵（私有鍵やセッション鍵）が漏えいする
原因としては、プログラムなどの実装ミスや秘
密鍵の運用・管理ミス、サイバー攻撃やウィル
ス感染によるものなど、暗号解読以外が原因と
なっている場合のほうが圧倒的に多いです。
　たとえば、2013年6月、エドワード・スノー
デン氏が英文紙Guardianに、米国政府が世界中
の数万の標的を対象に電話記録やインターネッ
ト利用を極秘裏に監視していたことを暴露しま
した。実際にどのようなことが行われていたか
は不明な点が多いですが、仮にサーバの私有鍵
やセッション鍵が米国政府に提供されていれば、
暗号化している意味がありません。
　また、台湾国民電子証明書のように実装上の
問題がある場合にも私有鍵の漏えいが起こりえ
ます。実際に、200万人以上の台湾国民の電子
証明書を調べたところ、私有鍵の生成方法に問
題があることが見つかりました。その結果、184

個の私有鍵が算出できることがわかりました注12。

MD5証明書偽造攻撃

　安全性が低下したハッシュ関数MD5の脆弱性
注9） http://ccsinjection.lepidum.co.jp/blog/2014-06-05/

CCS-Injection/index.html
 https://speakerdeck.com/lef/purotokorufalsexing-shi-

jian-zheng-tocui-ruo-xing-fa-jian-falsexian-shi-case-of-
ccs-injection

注10） https://freakattack.com/

注11） https://weakdh.org/
注12） http://crypto.2013.rump.cr.yp.to/55e2988c4ed3c9f63

5c9a4c3f52fa0b1.pdf

http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection/index.html
https://weakdh.org/
https://speakerdeck.com/lef/purotokorufalsexing-shi-jian-zheng-tocui-ruo-xing-fa-jian-falsexian-shi-case-of-ccs-injection
https://freakattack.com/
http://crypto.2013.rump.cr.yp.to/55e2988c4ed3c9f635c9a4c3f52fa0b1.pdf

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

100 - Software Design

を悪用して、実際に偽認証局のCA証明書を偽
造する攻撃で、2008年末のChaos Communica

tion Congressで発表されました注13。
　この偽認証局のCA証明書は、ブラウザでの
証明書検証ロジックのわずかな脆弱性をついて、
本物の認証局が発行した正規のCA証明書であ
るとブラウザが判断するように作られていまし
た（図3）。このため、偽認証局が発行した偽サー
バ証明書でも、ブラウザは最終的に正しいサー
バ証明書であると誤認証してしまうことを実際
に示しました。
　幸運だったのは、この発表が脆弱なハッシュ
関数MD5を使った偽CA証明書が実際に偽造で
き、PKIの中で有効に機能してしまうことを証
明するために行われた実験であったため、実害
が生じることはなかったことです。実際、この
発表を契機に多くの認証局がMD5を使うCA証

明書やサーバ証明書の発行を取りやめました。

DigiNotar事件

　DigiNotar社はパブリックルート認証局とし
ておもにオランダ国内を市場として証明書を発
行していましたが、2011年6月に同社の認証局
システムがComodo hackerと名乗る人物に不正
侵入され、1ヵ月以上に渡る遠隔操作により少
なくとも531枚ものサーバ証明書が不正発行さ
れたことが判明しました。そのうち、少なくと
も 344枚には、Google、Microsoft、Mozilla、
Skypeなど有名なドメイン名が使われ、またイ
スラエル諜報特務局、英国MI6、米国CIAといっ
た諜報機関のドメインも含まれていました。
　この事件が単なる不正侵入事件にとどまらな
かったのは、

・Comodo hackerは約半年前に、別の認証局
Comodo社でも偽サーバ証明書を不正発行さ
せる攻撃に成功していた（この事件が発端で注13） http://www.win.tue.nl/hashclash/rogue-ca/

攻撃者が予測して設定する情報
上位認証局が決定する情報

バージョン
シリアル番号
発行者情報
有効期限
主体者情報
主体者公開鍵情報

拡張フィールドa

拡張フィールドb
署名

拡張フィールドb
署名

バージョン
シリアル番号
発行者情報
有効期限

①攻撃者は、シリアル番号と有効期限について認証局に申請した際に付与されるであろう値を予測したうえで、偽造証明書情報（バージョ
ン～拡張フィールドa）とダミー情報（バージョン～主体者公開鍵情報）を作成する。このとき、偽造証明書情報とダミー情報のそれ
ぞれをMD5でハッシュ化した値が一致（衝突）するように双方のデータ（偽造証明書情報の「拡張フィールドa」とダミー情報の「主
体者公開鍵情報」に入るデータ）を操作して作成する

②攻撃者は、①で作成したダミー情報の「主体者情報と主体者公開鍵情報」を使って、上位認証局に申請するCSR（証明書発行要
求）を用意する

③攻撃者は、②のCSRで上位認証局に証明書を申請する
④上位認証局は、署名を付与した証明書を発行する。このとき、「バージョン～主体者公開鍵情報」をMD5でハッシュ化した値に対し
て署名を生成する。なお、①で予測したとおりのシリアル番号と有効期限が付与されると、証明書の「バージョン～主体者公開鍵情報」
をMD5でハッシュ化した値は、①で作成した偽造証明書情報をハッシュ化した値と一致してしまう
⑤攻撃者は、①の偽造証明書情報のあとに、④の証明書に付与された拡張フィールドbと署名を付ける。これで偽造証明書が完成する

①偽造証明書
バージョン
シリアル番号
発行者情報
有効期限

主体者公開鍵情報

主体者情報

主体者公開鍵情報

主体者情報

①ダミー情報

③申請

②
C
S
R

④正規の証明書
攻撃者 上位認証局

⑤署名と拡張フィールドを付ける

MD5で
ハッシュ値が
一致

衝突が起こる
ようにデータを
操作

ブラウザが無視する領域
（データが操作されていてもチェックされない）

 ▼図3　偽造証明書の作成方法

http://www.win.tue.nl/hashclash/rogue-ca/

第 章3安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ 脆弱性の分析から見えてくる安全なTLSサーバ設定

100 - Software Design Aug. 2015 - 101

Comodo hackerとの名がついた）
・Comodo hackerはイラン在住の人物であるこ

とを名乗っており、実際にDigiNotarから不
正発行されたサーバ証明書がイラン政府機関

（体制側）などによる盗聴行為に利用された可
能性があった

・Microsoftなどの主要ブラウザベンダによっ
て、初めてこのような事件を理由に（セキュ
リティパッチの緊急発行という形で）ルート
証明書の失効が行われた

・DigiNotarが信用を失って破産した

など具体的かつ深刻な実害が発生したことです。

サーバを守るために●
考えるべきこと
　これまでに7つの事例を紹介しましたが、一
言に脆弱性と言っても種類がまったく違うこと
がおわかりいただけたのではないかと思います。
紹介した以外のものを含めた最近のTLSへの攻
撃事例をまとめたものがRFC 7457注14として公
開されています。
　それでは、ここからは自らがTLSサーバを構
築し、運用する場合に何に気をつけるべきかを
考えましょう。
　まず、TLSの利用有無にかかわらず、サーバ
を運用する以上、実装脆弱性に対する最新の対
策（とりわけセキュリティ対策）を講じることは
必要不可欠です。そのうえで、TLSサーバ特有
の観点として、サーバの私有鍵の正しい運用・
管理も必要となります。その際、意図しない私
有鍵の漏えいが発生したときの対処方法や影響
範囲の局所化を考慮した事前対策（PFSなど）を
併せて検討しておくことが望まれます。
　さらに、脆弱性の中には、TLSのしくみ上、
サーバ構築者側では対策が取りにくいものがあ
ります。とくにTLSは事前に面識がないブラウ
ザからの接続要求でも受け付け、その場でハン

ドシェイクを行うことで暗号通信できるしくみ
であることから、「ブラウザが信頼できる状態か
どうかをサーバ側では正確に判断できない」とい
うことを前提にしておく必要があります。
　このことから、サーバ構築時には「中間者攻撃
を受けるリスク」と「ブラウザがマルウェアに感
染しているリスク」についてはあらかじめ織り込
んでおき、これらの事象が発生したとしても、
それに伴う悪影響をサーバ側でできる限りブロッ
クする設定をしておくことが大切です。
　また、フィッシングサイトへ誘導する偽サイ
トが構築されないようにするには、自らのサイ
トの身分証明をはっきりさせ、ブラウザ利用者
に誤認させないことが重要です。そのため、サー
バ証明書は正しく生成しなければなりません。

SSL/TLS暗号設定●
ガイドライン
　サーバ設定に関するもう1つの重要な視点は、
TLSは相互接続性の確保を優先しながら20年
間使われ続けてきたプロトコルであり、安全性
のレベルがまったく異なる設定が数多く含まれ
ているという点です。その理由は、プロトコル
の脆弱性に対応するため、何度かバージョンアッ
プが行われている影響で、製品の違いによって
サポートしているプロトコルバージョンや暗号
スイートなどが異なることにあります。さらに、
基本的には後方互換を持つように実装・設定さ
れています。
　しかし、その結果、それらの設定の中には、
安全性上の要求条件同士、あるいは実際の実装
環境と矛盾するケースすら出てくるようになり
ました。たとえば、

・RSAとDHEのどちらを使うべきか
　実装率や利用可能な鍵長を考えればRSAのほ

うが良いが、秘密鍵漏えい時の事前対策とし
てはDHEのほうが良い

・ブロック暗号とストリーム暗号（RC4）のどち
らを使うべきか

注14） https://tools.ietf.org/html/rfc7457

https://tools.ietf.org/html/rfc7457

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

102 - Software Design

　暗号アルゴリズムとしては、RC4は脆弱であ
り、Triple DESのほうがはるかに安全であ
る。しかし、POODLE攻撃に対しては、マル
ウェア感染のリスクを考慮すると、RC4より
Triple DESのほうがリスクが高いとも言える

といったことがあります。
　そこで、TLSでの設定を考える際には、安全
性と相互接続性の確保のバランス論を抜きに語
ることはできません。もっとも、どの程度の安
全性と相互接続性の確保が必要かは、最終的に
サーバ構築者が判断することになります。
　その際、参考になるのが、IPAから公開され
た「SSL/TLS暗号設定ガイドライン」注15です。
本ガイドラインには、サーバ構築者が、安全性
と相互接続性の確保についてどのような考え方
をしたら良いか、またそれを実現するためにど
のようなサーバ設定をすべきかについてまとめ
ています。CRYPTREC注16の運用ガイドライン
WGによって取りまとめられました。
　以降では、本ガイドラインの概要を簡単に紹
介します。詳細については、ガイドライン本体
をご覧ください。

どんな設定を考えるべきか

　本ガイドラインでは、安全性と相互接続性の
バランスを表2の3種類の設定基準に分けたう
えで、各々の設定基準に応じて「プロトコルバー
ジョン」「サーバ証明書」「暗号スイート」の3つ
の要求設定が取りまとめられています。

　このうち、現状では、高セキュリティ型は「と
りわけ高い安全性を必要とするケースであって、
一般的な利用形態で使うことは想定していない」
としていることから、一般的な利用形態として
の「推奨セキュリティ型」、もしくは安全性より
も相互接続性の確保を優先させた「セキュリティ
例外型」のどちらかを選ぶことになると思われま
すので、ここでは推奨セキュリティ型とセキュ
リティ例外型のみを取り上げることにします。

●●推奨セキュリティ型
　推奨セキュリティ型は、現時点での安全性と
相互接続性の確保をバランスさせてTLS通信を
行うための標準的な設定基準としており、次の
利用形態などが代表例とされています。

・金融サービスや電子商取引サービス、多様な
個人情報の入力を必須とするサービスなどを
提供する場合

・既存システムとの相互接続を考慮することな
く、新規に社内システムを構築する場合

　この設定が正しく行われていれば、実装脆弱
性以外の脆弱性が見つかったとしてもサーバ運
用上の影響を受けるリスクはかなり低減できる
でしょう。たとえばPOODLE攻撃、CCS Injec

tion攻撃、FREAK攻撃、Logjam攻撃などのい
ずれからも影響を受けることはありません。

●●セキュリティ例外型
　セキュリティ例外型は、脆弱なプロトコルバー
ジョンや暗号が使われるリスクを受容したうえ
で、安全性よりも相互接続性に対する要求をや
むなく優先させてTLS通信を行う場合に、許容
し得る最低限度の設定基準です。とくに、シス

注15） http://www.ipa.go.jp/security/vuln/ssl_crypt_config.html
注16） Cryptography Research and Evaluation Committeesの

略。電子政府推奨暗号の安全性を評価・監視し、暗号技術
の適切な実装法・運用法を調査・検討するプロジェクト。
http://www.cryptrec.go.jp/

設定基準 安全性 相互接続性

高セキュリティ型 標準的な水準を大きく上回る高い安全性水準
を達成

最新のPC・ブラウザなどでなければ接続で
きない可能性が高い

推奨セキュリティ型 標準的な安全性水準を実現 一部の古い機器を除き、ほぼ接続できる

セキュリティ例外型 短期的な利用を前提に、許容可能な最低限の
安全性水準を満たす ほぼすべての機器が接続できる

 ▼表2　設定基準の種類

http://www.ipa.go.jp/security/vuln/ssl_crypt_config.html
http://www.cryptrec.go.jp/

第 章3安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ 脆弱性の分析から見えてくる安全なTLSサーバ設定

102 - Software Design Aug. 2015 - 103

テムなどの制約上、SSL 3.0の利用を全面禁止
することの影響は無視できず、安全性上のリス
クを受容してでもSSL 3.0を継続利用せざるを
得ないと判断される場合にのみ採用するのが望
ましいとしています。
　なお、推奨セキュリティ型への早期移行を前
提として暫定的に利用継続するケースを想定し
ていることから、近いうちにSSL 3.0を利用不
可に設定するように変更される可能性がありま
す。IETFでRC4の利用を禁止するRFC注17が
発行されたり、ブラウザベンダがSSL 3.0を利
用不可にする設定変更を行ったりするなどの対
策が進められています。

具体的な要求設定

●●プロトコルバージョン
　基本的に、プロトコルバージョンがあとにな
るほど、以前の攻撃に対する対策が盛り込まれ
るため、より安全性が高くなります。一方、相
互接続性も確保する観点から、多くの場合、古
いプロトコルバージョンも利用できるように実
装・設定されています。
　したがって、プロトコルバージョンの選択順
位を正しく設定しておかないと、予想外のプロ
トコルバージョンでTLS通信を始めてしまう恐
れがあります。とくに中間者攻撃でのダウング
レード攻撃で悪用される恐れがあります。

　そこで本ガイドラインでは、表3のようなプ
ロトコルバージョンの要求設定になっています。
　本来的にはTLS 1.2が使える状態にするのが
一番いいわけですが、利用している製品によっ
てはTLS 1.2やTLS 1.1をサポートしていない
場合もあります。パターン1だけではTLS 1.2

をサポートしていない製品を利用している場合、
TLS 1.2をサポートしている製品に交換する必
要性が生じますので、推奨セキュリティ型に準
拠させること自体を断念する恐れがあります。
一方、脆弱なSSL 3.0を利用不可にすることは
設定変更だけで実現可能ですので、製品を交換
するよりははるかに簡単に対応できるはずです。
そのため、TLS 1.2やTLS 1.1をサポートして
いない製品を利用している場合の推奨セキュリ
ティ型の要求設定として、パターン2、パター
ン3が用意されています。
　なお、推奨セキュリティ型とセキュリティ例
外型の差はSSL 3.0の利用可否の部分のみです。

●●サーバ証明書
　サーバ証明書は、「①ブラウザに対して正しい
サーバであることを確認する手段を提供するこ
と」と「②TLS通信を行うために必要なサーバの
公開鍵情報をブラウザに正しく伝えること」の2

つの役割を持っています。その目的を実現する
ため、本ガイドラインでは、表4のようなサー
バ証明書の要求設定になっています。
　なお、推奨セキュリティ型では、認証局の署

名アルゴリズムでSHA-256の利用を
必須としているため、SHA-256が扱
えないブラウザではサーバ証明書の
検証ができず、警告表示が出るか当
該サーバとの接続が不能となります。
一方、セキュリティ例外型では、
SHA-1の利用も許容しているため、
過去のシステムとの相互接続性は高
くなっています。ただ、最新のブラ
ウザではSHA-1を使うサーバ証明書
に対して警告表示を出すように変

注17） https://tools.ietf.org/html/rfc7465

推奨セキュリティ型
パターン TLS 1.2 TLS 1.1 TLS 1.0 SSL 3.0 SSL 2.0

1 ◎ ○ ○ × ×
2 － ◎ ○ × ×
3 － － ◎ × ×

セキュリティ例外型
パターン TLS 1.2 TLS 1.1 TLS 1.0 SSL 3.0 SSL 2.0

1 ◎ ○ ○ ○ ×
2 － ◎ ○ ○ ×
3 － － ◎ ○ ×

○：設定有効（◎：優先するのが望ましい）　×：設定無効化　　－：実装なし

 ▼表3　プロトコルバージョンの要求設定

https://tools.ietf.org/html/rfc7465

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

104 - Software Design

わってきていることに注意が必要です。
　このほかにガイドラインには、両者に共通の
要求設定として、「サーバ証明書の発行・更新時
の鍵情報の生成」に関する項目と「ブラウザでの
警告表示の回避」に関する項目があります。

●●暗号スイート
　TLS通信においては、ハンドシェイク時に暗
号スイートが選択され、その選択された暗号ス
イートに記載の鍵交換、署名、暗号化、ハッシュ
関数によりTLSにおける各種処理が行われま
す。つまり、TLSにおける安全性にとって、暗
号スイートをどのように設定するかが最も重要
なファクタになります。とくに、暗号スイート
の優先順位の上位から順にサーバとブラウザの
両者が扱える暗号スイートを見つけていくのが
一般的であるため、暗号スイートの選択のみな
らず、優先順位の設定も重要です。
　そこで、本ガイドラインでは、暗号スイート
の選択および優先順位の付け方の基準として、
次の方針を採用しています。

推奨セキュリティ型
次の条件を満たす暗号スイートを選定する
・CRYPTREC暗号リスト注18に掲載されてい
るアルゴリズムのみで構成

・暗号化として128bit安全性以上を有する
・DSAを含まない
・ECDHE、ECDH、ECDSAを利用するか否か
は十分な検討のうえで決めることが望ましい

次の条件に従い、暗号スイートの優先順位を付
ける
・通常の利用形態において、128bit安全性が
あれば十分な安全性を確保できることから
128bit安全性を優先する

・鍵交換に関しては、PFSの特性の有無と実装
状況に鑑み、DHE/ECDHE、次いでRSA、
ECDHの順番での優先順位とする

セキュリティ例外型
基本的には、推奨セキュリティ型の方針を踏襲
する。そのうえで、セキュリティ例外型ではSSL
3.0を容認することから、利用可能な暗号スイー
トとしてRC4とTriple DESを含む暗号スイー
トを最後に追加する。なお、本来的にはRC4は
SSL 3.0に限定して利用すべきであるが、TLS
1.0以上のプロトコルバージョンでRC4の利用
を不可にする設定を行うことが難しいため、TLS
1.0以上であってもRC4が使われる可能性が排
除できないことにも注意がいる

　これらの基準によって決められた要求設定が
表5になります。表5では、グループ内の暗号
スイートの優先順位は任意とする一方、グルー
プ間の優先順位は、A、B、C、……の順番で設

注18） http://www.cryptrec.go.jp/images/cryptrec_ciphers_
list_2013.pdf

設定基準 サーバ証明書の暗号アルゴリズムと鍵長

推奨セキュリ
ティ型

サーバ証明書の公開鍵情報（Subject Public Key Info）のアルゴリズムと鍵長は、次のいずれかを必
須とする
・RSAで鍵長は2,048bit以上
・楕円曲線暗号で鍵長256bit以上

認証局の署名アルゴリズム（Certificate Signature Algorithm）と鍵長は、次のいずれかを必須とする
・RSA署名とSHA-256の組み合わせで鍵長2,048bit以上
・ECDSAとSHA-256の組み合わせで鍵長256bit以上

セキュリティ
例外型

サーバ証明書の公開鍵情報（Subject Public Key Info）のアルゴリズムと鍵長は、次を必須とする
・RSAで鍵長は2,048bit以上

認証局の署名アルゴリズム（Certificate Signature Algorithm）と鍵長は、次のいずれかを必須とす
る。組み合わせとしてはSHA-256のほうが望ましいが、状況によってはSHA-1を選んでも良い
・RSA署名とSHA-256の組み合わせで鍵長2,048bit以上
・RSA署名とSHA-1の組み合わせで鍵長2,048bit以上

 ▼表4　サーバ証明書の要求設定

http://www.cryptrec.go.jp/images/cryptrec_ciphers_list_2013.pdf

第 章3安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！ 脆弱性の分析から見えてくる安全なTLSサーバ設定

104 - Software Design Aug. 2015 - 105

定することを求めています。たとえば、

・鍵交換DHE、署名RSA、モードGCM、ハッ
シュ関数SHA-256での鍵長128bitのAES
とCamelliaなら、どちらもグループAの暗号
スイートになるので、AESとCamelliaのど
ちらを優先するかは任意

・署名RSA、暗号化（鍵長128bit）AES、モード
CBC、ハッシュ関数SHA-1で、鍵交換がDHE
とRSAである場合、グループAの暗号スイー
トである鍵交換DHEのほうを、グループBの
鍵交換RSAより優先させる

ということを意味しています。

とにかく設定してみよう

　本ガイドラインは「暗号技術以外のさまざまな
利用上の判断材料も加味した合理的な根拠」を重

視して現実的な利用方法を目指す観点で有識者
の知見を集めて作られています。そのため、要
求設定が机上の空論ということはありません。
実際、本ガイドラインのAppendixにはApache

などの設定方法例も記載されています。
　実際の製品では、とくに暗号スイートの設定
に関して、本ガイドラインの記載どおりに細か
く設定できない可能性はあります。しかし、そ
の場合でも、本ガイドラインの暗号スイートの
基準にもっとも近い設定を行うことで、安全性
を高めることができます。
　ここで解説した事項以外にも、TLSを安全に
使うために考慮すべきポイントなどの記載もあ
ります。TLSサーバを構築する際には、デフォ
ルト設定のままにしておくのではなく、本ガイ
ドラインを参考にした安全なサーバ設定に変え
ていってほしいと思います。｢

推奨セキュリティ型	

グループA

鍵交換DHE、署名RSA、暗号化（鍵長128bit）AESまたはCamellia、モードGCMまたはCBC、
ハッシュ関数SHA-2またはSHA-1
鍵交換 ECDHE、署名 ECDSA または RSA、暗号化 AES または Camellia、モード GCM または
CBC、ハッシュ関数SHA-2またはSHA-1

グループB 鍵交換RSA、署名RSA、暗号化（鍵長128bit）AESまたはCamellia、モードGCMまたはCBC、
ハッシュ関数SHA-2またはSHA-1

グループC 鍵交換ECDH、署名ECDSAまたはRSA、暗号化（鍵長128bit）AESまたはCamellia、モードGCM
またはCBC、ハッシュ関数SHA-2またはSHA-1

グループD

鍵交換DHE、署名RSA、暗号化（鍵長256bit）AESまたはCamellia、モードGCMまたはCBC、
ハッシュ関数SHA-2またはSHA-1
鍵交換ECDHE、署名ECDSAまたはRSA、暗号化（鍵長256bit）AESまたはCamellia、モード
GCMまたはCBC、ハッシュ関数SHA-2またはSHA-1

グループE 鍵交換RSA、署名RSA、暗号化（鍵長256bit）AESまたはCamellia、モードGCMまたはCBC、
ハッシュ関数SHA-2またはSHA-1

グループF 鍵交換ECDH、署名ECDSAまたはRSA、暗号化（鍵長256bit）AESまたはCamellia、モードGCM
またはCBC、ハッシュ関数SHA-2またはSHA-1

設定すべき鍵長

鍵交換でDHEを利用する場合には鍵長1,024bit以上、RSAを利用する場合には鍵長2,048bit以
上、ECDHEまたはECDHを利用する場合には鍵長256bit以上の設定を必須とする。なお、DHE
の鍵長を明示的に設定できない製品を利用する場合には、DHEを含む暗号スイートは選定すべ
きではない

セキュリティ例外型	
グループA～F 推奨セキュリティ型と同じ
グループG 鍵交換RSA、署名RSA、暗号化（鍵長128bit）RC4、ハッシュ関数SHA-1
グループH 鍵交換DHEまたはRSA、署名RSA、暗号化Triple DES、モードCBC、ハッシュ関数SHA-1

設定すべき鍵長 推奨セキュリティ型と同じ

 ▼表5　暗号スイートの要求設定

安全な通信を確保するSSL/TLSの教科書
インターネットの通信セキュリティを確保するしくみをマスターしよう！

第2特集

106 - Software Design

TLS 1.3

　スノーデン事件、PRISMの発覚以来、通信の暗号
化は非常に注目を浴びるトピックとなり、TLS、そ
してHTTPSはそれを担う最も大事な通信プロトコル
となりました。
　TLSはIETF（第2章参照）で標準化が行われており、
プロトコル仕様に根ざす脆弱性などが発覚した場合
には、IETFでも即座に対策について話し合われるよ
うになってきています。仕様そのものを変更するの
はなかなか難しいため、多くの対策は追加の形で仕
様が作られています（例：POODLE Attackにおける
TLS_FALLBACK_SCSVの導入など注1）。今後に向け
てプロトコルの仕様そのものを更新する動きも始まっ
ており、TLS 1.3として現在IETF TLS WGで作業中
です。
　TLS 1.3は2015年6月現在、まさに策定中であ
り、今後どうなるかはわかりませんが、現時点で挙
げられている大きな課題としては次のようなものが
あります。

・renegotiation（通信中の再ネゴシエーション）の禁止
・compression（通信の圧縮機能）の禁止
・Perfect Forward Secrecy（PFS）の必須化
・Authenticated Encryption with Associated Data
（AEAD）の必須化

・脆弱な暗号アルゴリズムの整理
・ネゴシエーションの高速化
・TLS 1.2との互換性
・楕円曲線暗号採用の是非

　このようにTLS 1.0や1.1に比べ、1.3では今まで
よりも大きな変更が行われることが予測されます。
これは、もちろん現実世界におけるTLSの重要性や
現状の変化をふまえたものです。
　仕様の変更、とくにセキュリティに関わる仕様の
変更は、その仕様を実装する組織や人々に大きな影
響を与えるため、慎重に行われます。また、仕様を
策定してから、実装が行われ、一般的になる（デプロ
イが終わる）までにはかなりの時間がかかります。TLS
は今までそういったことに配慮した結果、より安全

で好ましい選択肢があるにもかかわらず、なかなか
それを仕様として条件付けできずに、何度も危機的
な状況に陥ってしまっている状況にありました。
　そういった背景をふまえ、TLS 1.3ではTLSを近
代的な仕様に刷新し、基準となるベースラインを底
上げする方向に向かっていると言えるでしょう。

TLS 1.3を先取りするHTTP/2

　このTLSの取り組みの一部は、最近RFCとなった
HTTP/2注2でも配慮されており、たとえば暗号アル
ゴリズムの要求などはTLS 1.3の方向性を先取りす
る形でHTTP/2に反映されている注3など、少しずつ
実社会に影響を与えてきています。
　通信の暗号化という意味では、HTTP/2の策定段
階でも「常時暗号通信を行うべきなのではないか」と
いった激しい議論があり、「HTTPの平文通信はなく
すべき」といった話もありましたが、最終的には一応
暗号化されていない平文通信も仕様上は残ることに
なりました。一方で、現時点でも平文のHTTP/2を
実装しているブラウザはほとんどなく、率先して
HTTP/2のブラウザ実装を公開してきたGoogle

（Chrome）もMozilla（Firefox）もHTTP/2の実装は
HTTPSのみの対応となっています。

今後のWebは暗号化が必須!?

　また、TLS通信で大きな障壁ととらえられがちな
証明書に関しても、DV（Domain Validation）証明
書注4に関しては無料で発行してしまい、HTTPSを普
及させようというLet's Encrypt Project注5のよう
な、ある意味過激とも言える取り組みまで始まって
います。
　HTTPもTLSが事実上主流になるなど、さまざま
な状況をふまえると、今後のインターネット上の通
信はほとんど暗号化されることが明白です。今後
Webおよびインターネットに関わる人にとって、
TLS、HTTPS、そして暗号通信は避けて通れない重
要な基礎技術となっていくと思われます。｢

TLSを取り巻く環境、そしてTLSの今後について
（TLS 1.3、 HTTP/2）

Appendix
 Author ㈱レピダム　林 達也（はやし たつや）

注1） https://tools.ietf.org/html/rfc7507
注2） https://tools.ietf.org/html/rfc7540
 http://summerwind.jp/docs/rfc7540/　（Moto Ishizawa氏による日本語の参考訳）
注3） RFC 7540 Appendix A. TLS 1.2 Cipher Suite Black List
注4） ドメインが存在するか（レジストラへ登録されているか）のみを確認して発行される証明書。組織が実在するかを確認し基準を

満たしているかを確認するEV（Extended Validation）、OV（Organization Validation）証明書といった、より厳格な証明書も存
在する。

注5） https://letsencrypt.org/

https://tools.ietf.org/html/rfc7507
https://letsencrypt.org/
https://tools.ietf.org/html/rfc7540
http://summerwind.jp/docs/rfc7540/

107 - Software Design Aug. 2015 - 107

その数式、
プログラムできますか？

　Web全盛の昨今、プログラムする対象はWebブラウザ
とサーバ間のやり取りが中心になり、科学技術計算的な問
題を解決するためのプログラミングは減少したかのように
見える。しかし、現在はコンピュータシステムが極めて大
規模になり、たとえばHadoopのような抽象度の高い分散
処理を使いこなすにはアルゴリズム、ひいては数学的な知
識が必要になってきている。本書のスタンスは、アルゴリ
ズムとデータ構造を設計することに焦点を合わせた「ジェ
ネリックプログラミング」である。さらに、これを学ぶう
えで必要なものは抽象代数学、そして数論である。理解の
ために丁寧な解説と付録がついているが、やはりハードル
は高い。目の前の仕事にすぐに役立つものではないが、実
力を涵

かんよう

養するために、じっくり読んでほしい本だ。

アレクサンダー・A・ステパノフ、
ダニエル・E・ローズ 著、
株式会社クイープ 訳
A5判／348ページ
2,600円＋税
翔泳社
ISBN＝978-4-7981-4110-7

ＩＴプロジェクトの
英語

　本書は企画・設計・開発・保守・管理・評価といったIT
プロジェクトの大まかな流れに沿って、各場面で使われる
英単語・フレーズを紹介している。send an internal
decision request（稟議を上げる）、avoid rework（手戻り
を防止する）といったほかの業界でも使えるフレーズのほ
か、Define non-functional requirements（非機能要件を
定義する）、implement functions（機能を実装する）、
Cope with incidents（インシデントに対応する）など普通
の英語書には載っていないフレーズも学ぶことができる。
本の中に出てくる201の英語例文については、MP3形式
の音声ファイルが用意されており、出版社のサイトから無
料でダウンロードすることで、発音やイントネーションを
確認しながらの勉強ができる。

塚本 俊、小坂 貴志 著
A5判／224ページ
1,800円＋税
ジャパンタイムズ
ISBN＝978-4-7890-1599-8

ゲームプログラマの
ためのコーディング
技術

　職業プログラマは、保守しやすく可読性の高いコードを
書くことが求められる。しかし、コーディングパターンや
オブジェクト指向など、知識として知っていても実際の開
発に反映させるのはなかなか難しい。本書は、すぐに実践
できる順番にコーディング技術が紹介されている。前半で
は、わかりやすいコードを書くために複雑なコードを小さ
く分割する方法を紹介している。“とりあえず動く”C++の
サンプルコードをもとに解説しているので、コードを改善
する流れが理解しやすい。後半では、オブジェクト指向設
計の原則をもとに、シンプルなクラス設計とは何かを解説
している。全体を通して平易な文章で解説していおり、高
度に感じられるテクニックも楽に読み進められる。C++プ
ログラマであれば、手元に置いておきたい1冊と言える。

大圖 衛玄 著
A5判／256ページ
2,480円＋税
技術評論社
ISBN＝978-4-7741-7413-6

Scala
ファンクショナル
デザイン

　Scalaについて、その関数型機能を中心に解説した1冊
（対象とするバージョンはScala2.1.1）。「コレクション」
「高階関数」「クロージャ」「部分適用とカリー化」「パターン
マッチング」などの関数型の特徴となる機能を、簡潔で短
いコードで説明している。プログラミングの基礎について
は簡単な説明しかなく、Scalaの文法を網羅しているわけ
ではないので、対象読者は中級者と思われる。しかし、第
4章「関数」では、関数の定義と実行のしくみ、引数と戻り
値の関係などが実例を挙げて詳しく解説されており、以後
の「高階関数」などの発展的な章の理解の助けになる。Scala
は学習コストの高い言語と言われているが、本書では「文
法」ではなく「機能」に解説の重点を置くことで、読者の早
期理解を助けている。

深井 裕二 著
A5判／300ページ
2,500円＋税
三恵社
ISBN＝978-4-86487-379-6

108 - Software Design108 - Software Design

Amazon Web Servicesの提供する
PaaS、Elastic Beanstalkとは？

Elastic Beanstalkとは何か

　AWSが提供するElastic Compute Cloud（EC2）
やSimple Storage Service（S3）のことをご存じ
の方は多いと思いますが、Elastic Beanstalkと
いうサービスを知っている方はあまり多くない
かもしれません。
　Elastic Beanstalkは 2011年にAWSが公開
したサービスで、EC2やS3、Elastic Load

Balancing（ELB）といったAWSのサービスを
組み合わせて提供されているPlatform as a

Service（PaaS）の1つです。Elastic Beanstalk

自体に費用は発生せず、構築したWebサービ
スのEC2やS3、ELBなどの利用分だけに費用
が発生します。
　先述したアプリケーションサーバの構築やロー
ドバランサの設定などはすべてElastic Beanstalk

がよしなに面倒をみてくれるので、ユーザはWeb

サービスを開発し、Elastic Beanstalkにデプロイ
を行うだけで、負荷にあわせて自動的にスケール
するWebサービスを簡単に公開できます。
　もちろんアプリケーションサーバはEC2の

インスタンスなので緊急時や不具合の調査のた
めにSSHで接続して各種操作を行うことも可
能です。
　公開当初にサポートされている言語はJava

だけでしたが、現在は次のようにさまざまな言
語とプラットフォームに対応注1しています。

●	PHP

●	Python

●	Node.js

●	Ruby

●	.NET

●	Go

　さらにDockerというコンテナ型の仮想化ソ
フトウェアにも対応したため、Dockerのコン
テナとして提供すれば事実上どのようなプラッ
トフォームでもElastic Beanstalkの恩恵を受
けることができます。

JavaとElastic Beanstalk
組み合わせの利点

　コンシューマ向けWebサービス界隈では敬
遠される傾向にあったJavaですが、2014年に

注1） http://docs.aws.amazon.com/elasticbeanstalk/latest/
dg/concepts.platforms.

特別企画

エンタープライズJavaの進化

AWSで始めよう！
Javaアプリケーション開発

しなやかで強いソフトウェアの作り方
モダンな

JavaとDockerで始める
実践Elastic Beanstalk入門第 回1

 Author 永瀬 泰一郎（ながせ たいいちろう）　 Twitter nagaseyasuhito
 Mail nagase@nagaseyasuhito.net

Amazon Web Services（AWS）やGoogle Cloud Platformなどのクラウドプラットフォームの出現によって、
少ない費用、短い期間でITインフラの調達ができるようになり、クラウドプラットフォームは個人やスタートアッ
プ企業などにとって欠かせないものになっています。しかし、Webサービスの公開などにあたり、アプリケーショ
ンサーバの構築、ロードバランサの設定、監視やスケールアウトの設計などインフラ層の設定は多岐にわたるた
め、運用コストも少なくなくWebサービスの開発だけに注力するには、まだまだ難しいのが現状です。そのよ
うな問題を解決するのがAWSが提供するElastic Beanstalkというサービスです。今回は一番ホットな仮想化
ソフトウェアのDockerとJavaを例にElastic Beanstalkを使ったWebサービスを公開する方法を紹介します。

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.platforms.

108 - Software Design Aug. 2015 - 109108 - Software Design

リリースされた Java 8はラムダ式やStream

APIなど関数型言語のエッセンスを取り入れ
たことで、過去の資産を生かしつつモダンなア
プリケーション開発ができるようになりました。
　そして企業システムを始めとしたエンタープ
ライズ向けと位置づけられるJava EEですが、
本質は大規模で信頼性の高いサーバアプリケー
ションを開発するためのプラットフォームです。
　いまやデータベースとフロントエンドだけで
はWebサービスは成り立ちません。メール送
信やバッチ処理、メッセージキューといった開
発や運用に欠かせないバックエンドの機能も
Java EEには盛り込まれています。いくつもの
ミドルウェアを組み合わせずに複雑なWebサー
ビスを Java EEだけで開発できる点はコン
シューマー向けWebサービスでも非常に魅力
的ではないでしょうか？
　またJavaのビルドツールのApache Maven注2

にはElastic Beanstalkに対応したプラグイン
があり、通常のビルドライフサイクルに
Elastic Beanstalkへのデプロイをシームレス
に統合できる点も見逃せません。
　シンプルなしくみでありながらスケールする

注2） https://maven.apache.org/

Webサービスを提供できるElastic Beanstalk

と、さまざまな機能がアプリケーションサーバ
に盛り込まれたJava EEを組み合わせることで、
パワフルなWebサービスを短期間でリリース
できるようになります。

アプリケーションと環境

Elastic Beanstalkのアーキテクチャ

　図1のとおりElastic BeanstalkはほかのAWS

のサービスを組み合わせて成り立っています。
Elastic Beanstalkのアプリケーションは1つの
Webサービスを表すもっとも大きな単位で環境
とアプリケーションバージョンを持ちます。
　環境はアプリケーションの機能の単位です。
目的に応じて複数の環境を持つことができる
ので、例えばWebサービスのユーザ向けの環
境と、管理者用のアプリケーションを論理的に
分割して管理する使い方ができます。
　環境はWebサーバ環境枠・ワーカ環境枠の2

種類の環境枠から1つを選択して構築します。
　Webサーバ環境枠はユーザからのHTTPリ
クエストを受け付けてレスポンスを返す、い
わゆるアプリケーションサーバ用の環境です。

アプリケーション

アクセス

Webサーバ環境

S3

バージョン1.0.0

デプロイ

バージョン1.0.2

ELB

ワーカ環境

EC2

EC2

EC2

EC2

SQS

バージョン1.0.1

 ▼図1　Elastic Beanstalkのアーキテクチャ

JavaとDockerで始める
実践Elastic Beanstalk入門 第 回1

https://maven.apache.org/

110 - Software Design

[任意の名前].elasticbeanstalk.comとい
うドメイン名を割り当てられます。
　ワーカ環境枠というのはAWSのサービスの
ひとつSimple Queue Service（SQS）というメッ
セージキューのサービスを使ったバックグラウ
ンド処理用の環境枠です。この環境枠はSQS

のキューに配信されたメッセージをHTTPの
POSTリクエストに変換します。つまり
HTTPリクエストとしてキューのリクエスト
を受け取り、レスポンスを返すバックエンド
Webサービスを開発するだけで簡単にバック
グラウンド処理を記述できます。
　環境枠はTomcatやGlassFishといった言語や
アプリケーションサーバなどが定義されたプラッ
トフォームを選択できます。事前に設定済みの
環境からDockerを用いた独自の環境まで、さま
ざまなプラットフォームが用意されています。
　環境はロードバランシングでオートスケーリ
ングするものと、ひとつのインスタンスのみを
使うシングルインスタンスの2つの環境タイプ
から選べます。本番環境などはロードバランシ
ングでオートスケーリングする環境を選び、ト
ラフィックが少ないことが想定される場合や、
検証に使う場合はシングルインスタンスの環境
タイプを選択するといいでしょう。
　Javaのウェブアーカイブ（war）などアプリ
ケーションサーバにデプロイするアーカイブは、
アプリケーションバージョンと呼ばれるラベル
付けがおこなわれた状態でS3に保管されてい
て、いつでもデプロイすることができます。

Elastic Beanstalkと
Javaの関係

TomcatとGlassFish

　Elastic Beanstalkで選択できるJavaのプラッ
トフォームは、リリース当初からサポートされ
ているTomcatと、Dockerコンテナとして提供
されるGlassFishの2種類です。
　新たにWebサービスを開発するのであれば

GlassFishを選択しましょう。その理由は3つ
あります。
　1つめは、GlassFishはJava EEのすべての
機能を提供しているのに対し、Tomcatはサー
ブレットをはじめとしたJava EEの一部の機
能だけの提供にとどまっていることです。つま
りGlassFishは、Tomcatの機能をほぼ包含し
ているのです。
　2つめに、パフォーマンスの面でもGlass

Fishは優れていることが挙げられます。筆者
が行ったGETリクエストを送るだけの単純な
負荷テストだけでもGlassFishはTomcatのお
よそ4倍ものスループットを記録しました。
　3つめは、GlassFishはDockerコンテナ上で
動いているので、Dockerのしくみを使ってカ
スタマイズを行えば、ローカルマシンでも
Elastic Beanstalkと同じ環境を再現して動作
確認ができます。
　これらの理由からJavaのプラットフォーム
は既にあるTomcatに依存したアプリケーショ
ンを移行するのでなければGlassFishを選択す
るのが無難でしょう。
　もちろん独自にDockerイメージを作れば
Play Framework注3やSpring Framework注4な
どほかのアプリケーションサーバでもWebサー
ビスを公開できます。

Dockerとは？

　さて、GlassFishはDockerコンテナとして
提供されていると書きましたが、Dockerとは
どのようなものか簡単に説明しておきましょう。
　Dockerはコンテナ型の仮想化ソフトウェア
でDocker社によりオープンソースソフトウェ
ア（OSS）として提供されています。
　仮想化ソフトウェアにはいくつかの種類があ
り、たとえばEC2はXenというハイパーバイ
ザ型の仮想化ソフトウェアを使っていて、物理

注3） https://www.playframework.com/

注4） http://projects.spring.io/spring-framework/

エンタープライズJavaの進化

AWSで始めよう！
しなやかで強いソフトウェアの作り方

Javaアプリケーション開発モダンな

https://www.playframework.com/
http://projects.spring.io/spring-framework/

110 - Software Design Aug. 2015 - 111

サーバを複数の仮想サーバとして動作させてい
ます。それぞれの仮想サーバは物理サーバと同
じような振る舞いをするので、ユーザは使い勝
手を損なうことなくリソースの有効活用ができ
るという利点があります。
　それに対しDockerは図2のようにDockerエ
ンジンと呼ばれる仮想化ソフトウェアがホスト
OS上の1つのプロセスとして動作し、Docker
コンテナと呼ばれる仮想環境がDockerエンジ
ン上で動作する構成のため、ほかの仮想化技術
と比較して起動やリソースアクセスのオーバー
ヘッドが少ないことが特徴です。
　DockerはDockerイメージと呼ばれるアプリ
ケーションや設定ファイルなどが含まれたパッ
ケージをDockerエンジンにデプロイして
Dockerコンテナとして動作させます。
　Elastic BeanstalkはWebサービスとアプリ
ケーションサーバをパッケージングした
Dockerイメージを生成しDockerコンテナとし
てデプロイしています。

開発に便利なMavenプラグイン

　Elastic BeanstalkにWebサービスをデプロ
イする方法として、マネジメントコンソールか
ら手動でデプロイする方法やebコマンドを使
う方法などいくつかありますが、Javaのビル
ドツールMavenにはbeanstalk-maven-plugin注5

というプラグインがあります。
　このプラグインはElastic Beanstalk APIの
ラッパーです。アプリケーションや環境の作成、
アプリケーションアーカイブのアップロード、

注5） http://beanstalker.ingenieux.com.br/beanstalk-maven-
plugin/

環境のスワップなどが行えます。
　環境のスワップとは、稼働中の環境の他に新
たにデプロイするアプリケーション用としても
う1つ環境を準備し、それぞれの環境に割り当
てられたCNAMEをスワップすることで、ダ
ウンタイムなしでアプリケーションをバージョ
ンアップする方法です。
　MavenのビルドライフサイクルでElastic

Beanstalkの操作が行えるため、テストが通っ
たwarをアップロードし、作成した環境にデプ
ロイしてから稼働中の環境とスワップするといっ
た使い方ができます。
　またDocker上で動いているGlassFish用の
Webサービスの場合、docker-maven-pluginが
役立ちます。
　このプラグインもその名のとおりDocker用
のプラグインです。Mavenのビルドライフサイ
クルでDockerイメージの作成が可能になるの
で、より本番環境に近い形でテストを行うこと
ができるので活用しましょう。

Elastic Beanstalkを
使ってみる

サンプルアプリケーションを動かす

　Elastic Beanstalkにはそれぞれのプラット
フォームにサンプルアプリケーションが用意さ
れています。まずはこのアプリケーションを動
かしてみましょう。
　AWS Management Consoleにログインしたあ
とにメニューからElastic Beanstalkを選択する
と図3のようなホーム画面注6が表示されます。
ページ右上の［Create New Application］をクリッ
クして、次のApplication Information画面で
Application nameに任意のアプリケーション名
を入力します。
　次のNew Environment画面では環境の選択を行

注6） https://console.aws.amazon.com/elasticbeanstalk/
home

 ▼図2　Dockerのアーキテクチャ

JavaとDockerで始める
実践Elastic Beanstalk入門 第 回1

http://beanstalker.ingenieux.com.br/beanstalk-maven-plugin/
https://console.aws.amazon.com/elasticbeanstalk/home

112 - Software Design

います。Web Server EnvironmentがWebサーバ
環境枠、Worker Environmentはワーカ環境枠です。
ここではWeb Server EnvironmentのCreate web

serverボタンをクリックします。
　Permissionダイアログ画面が開くのでIdentity

and Access Management（IAM）プロファイルを
作成、もしくは選択します。作成した場合は
aws-elasticbeanstalk-ec2-roleというロール名に
なります。
　Environment Type画面では起動するプラッ
トフォームと環境タイプの選択をします。
Predefine configurationはGlassFishを選択し、
Environment typeはひとまずLoad balancing,

auto scalingを選択しましょう。
　Application Version画面では起動するアプリ
ケーションアーカイブを選択します。すでにwar

がある場合はUpload your ownを選択してwar

をアップロードしましょう。ここではまずAWS

が用意しているサンプルアプリケーションを起
動するためSourceにSample applicationを選択
します。Deployment Limitsはデフォルト値のま
まで大丈夫です。
　Environment Information画面では環境名を指
定します。Environment nameには任意の環境名
を入力し、Environment URLはブラウザからのア

クセスに使うURLのサブドメイン名を入力します。
　Additional Resourcesはデフォルトのままでよ
いでしょう。MySQLなどのリレーショナルデー
タベースを扱うAmazon Relational Database

Service（RDS）や、仮想プライベートネットワー
クを扱うAmazon Virtual Private Cloud（VPC）
などを利用する場合はチェックを入れましょう。
　Configuration Detailsの画面ではEC2インスタ
ンスの設定などを行います。Environment Tags

画面ではとくに何も設定せずでよいでしょう。
　Review Information画面でこれまで設定した
内容を確認します。問題がなければLaunchボ
タンをクリックすれば環境の構築が始まります。
環境の構築が始まるとEC2やELBに対する課
金が始まります。5～10分ほどでEnvironment

URLで設定したURLにアクセスすると図4の
ようなページが表示されるはずです。
　アプリケーションを終了するには、Elastic

Beanstalkのホーム画面よりアプリケーション
名の右側にあるActionsボタンからDelete

Applicationをクリックすると終了できます。

Webサービスを開発する

Elastic Beanstalkに適した
プロジェクトとは？

　Elastic Beanstalkのしくみがわかったところ
で実際にWebサービスを開発してみましょう。
今回は公開前のWebサービスにありがちなメー
ルアドレスを事前登録するだけの簡単なWeb

サービスを例にします。ソースコードは

 ▼図3　Elastic Beanstalkのホーム画面

 ▼図4　サンプルアプリケーションの画面

エンタープライズJavaの進化

AWSで始めよう！
しなやかで強いソフトウェアの作り方

Javaアプリケーション開発モダンな

112 - Software Design Aug. 2015 - 113

https://github.com/nagaseyasuhito/
gymnasterに公開しているのでぜひ手元でビ
ルドして試してみてください。
　非常に単純なWebサービスですが、JSF、
JPA、CDIなどJava EEの基本的なコンポー
ネントを網羅しています。
　基本的には通常のWebサービス開発と変わ
りませんが注意点がいくつかあります。
　まずEC2のインスタンスはオートスケール
により自動的に増減します。そのためインスタ
ンスのストレージデバイスにデータを保存する
ような仕様だと、インスタンスが減った際にデー
タも失われてしまうので気をつけてください。
ユーザデータなどはRDSやDynamoDBへ、画
像データなどはS3などに保存しましょう。
　またオートスケールにより複数のインスタン
スが起動しても、アプリケーションサーバがク
ラスタリングされるわけではないので、ステー
トレスな設計にするかインスタンスの増減時に
適切にクラスタリングを行うようにアプリケー
ションサーバの設定を修正する必要があります。
　データベースへの接続情報などはwarには含
めず環境変数など外部から受け取れるようにし
ましょう。新規アプリケーション作成時に

Additional ResourcesでRDSをデータ環境枠
として選択した場合はRDS_HOSTNAME、RDS_
PORT、RDS_DB_NAME、RDS_USERNAME、RDS_
PASSWORDといった環境変数にデータベースへ
の接続情報が格納されるので便利です。

GlassFishのDocker�leを覗く

　Elastic Beanstalkの GlassFishは Dockerコ
ンテナ上で動作していると書きましたが、ここ
ではDockerfileと呼ばれるDockerイメージを
生成するためのスクリプトを覗いてみましょう。
　Elastic Beanstalkで使われているGlassFish

のDockerイメージはDocker Hub注7という公式
のDockerレジストリで公開されていて注8、ソー
スコードはGitHub注9で管理されています。
　このリポジトリには JDK7で動くGlass

Fish4.0と、JDK8で動くGlassFish4.1のDocker

イメージがあります。ここではGlassFish4.1の
ものを例に解説します。
　リスト1は 4.1-jdk8ディレクトリにある

注7） https://registry.hub.docker.com/

注8） https://registry.hub.docker.com/u/amazon/aws-eb-
glassfish/

注9） https://github.com/aws/aws-eb-glassfish-dockerfiles

 ▼リスト1　GlassFish4.1用のDocker�le

FROM java:8-jdk

ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64
ENV GLASSFISH_HOME /usr/local/glassfish4
ENV PATH $PATH:$JAVA_HOME/bin:$GLASSFISH_HOME/bin

RUN apt-get update && \
 apt-get install -y curl unzip zip inotify-tools && \
 rm -rf /var/lib/apt/lists/*

RUN curl -L -o /tmp/glassfish-4.1.zip http://download.java.net/glassfish/4.1/release/ｭ
glassfish-4.1.zip && \
 unzip /tmp/glassfish-4.1.zip -d /usr/local && \
 rm -f /tmp/glassfish-4.1.zip

EXPOSE 8080 4848 8181

WORKDIR /usr/local/glassfish4

verbose causes the process to remain in the foreground so that docker can track it
CMD asadmin start-domain --verbose

JavaとDockerで始める
実践Elastic Beanstalk入門 第 回1

https://github.com/nagaseyasuhito/gymnaster
https://github.com/nagaseyasuhito/gymnaster
https://registry.hub.docker.com/
https://registry.hub.docker.com/u/amazon/aws-eb-glassfish/
https://github.com/aws/aws-eb-glassfish-dockerfiles

114 - Software Design

GlassFish4.1用のDockerfileです。
　まずFROMですが、ここにDockerイメージ名
を指定して別のDockerイメージを継承できま
す。java:8-jdkはその名のとおりJDK8がイ
ンストールされたDockerイメージなので
GlassFishが必要な今回のケースの継承元とし
てはぴったりのDockerイメージです。
　ENVは環境変数を定義します。JAVA_HOMEや
GlassFishのホームディレクトリ、PATHに
GlassFishの管理コマンドasadminの存在する
パスの追加などを行っています。
　RUNは環境構築のためのコマンドを実行しま
す。ここではapt-getで必要なパッケージの
インストールと、GlassFishのアーカイブのダ
ウンロードと展開をしています。
　EXPOSEはDockerの特色の1つでDockerコ
ンテナの外に公開するポート番号です。
GlassFishはHTTP用に 8080、HTTPS用に
8181、管理コンソール用に4848を使うのでそ
れぞれ列挙しています。
　WORKDIRはカレントディレクトリを指定します。
　CMDはアプリケーションを起動するコマンド
を指定します。GlassFishは、通常 asadmin
start-domainで起動させますが、Dockerは
アプリケーションがフォアグラウンドで起動す
る必要があるため--verboseオプションを付
けてフォアグラウンドで起動させています。

デプロイのしくみ

　先述したDockerイメージはGlassFishを起
動するだけでwarのデプロイなどは行っていま
せん。Elastic Beanstalkはアプリケーションの
デプロイ時にアプリケーションアーカイブを
GlassFishにデプロイしたDockerイメージを
生成してからDockerコンテナを起動します。
リスト2はその際に使われる4.1-jdk8-aws-
eb-onbuildのDockerfileです。
　先ほどのGlassFishがインストールされた
Dockerイメージを継承し、CMDではなく

ENTRYPOINTで glassfish-start.sh（リスト
3）というシェルスクリプトを使ってGlassFish

の起動とwarのデプロイを行っています。
　Elastic Beanstalkはデプロイするアプリケー
ションアーカイブを/var/appに展開します。
glassfish-start.shは/var/app以下を zip

に圧縮したwar相当のアーカイブをasadmin
コマンドを使ってGlassFishにデプロイします。
　最後にinotifywaitコマンドでPIDファイ
ルを監視し、削除されるまで処理をブロックし
ます。こうすることで管理コマンドなどでアプ
リケーションサーバが終了するまでDockerコ
ンテナを起動させ続けます。

GlassFishのカスタマイズ

　このようにElastic BeanstalkのGlassFishは
Dockerと密接に関わっていて簡単にカスタマイ

 ▼リスト3　glass�sh-start.sh

#!/bin/sh

PID_FILE=$GLASSFISH_HOME/glassfish/ｭ
domains/domain1/config/pid

when deploying a directory, Glassfish ｭ
expect all submodules to be extracted
which is usually not the case for EARs
zip app back into a bundle and let ｭ
Glassfish handle it
rm -f /var/app/Dockerfile
rm -f /var/app/Dockerrun.aws.json
zip /var/app.zip -r .

asadmin start-domain
asadmin deploy --contextroot / --name ｭ
current-app /var/app.zip

inotifywait -qq -e delete_self $PID_FILE

 ▼リスト2　4.1-jdk8-aws-eb-onbuildのDocker�le

FROM glassfish:4.1-jdk8

WORKDIR /var/app

ADD glassfish-start.sh /

ONBUILD ADD . /var/app/

CMD []
ENTRYPOINT ["/glassfish-start.sh"]

エンタープライズJavaの進化

AWSで始めよう！
しなやかで強いソフトウェアの作り方

Javaアプリケーション開発モダンな

114 - Software Design Aug. 2015 - 115

ズできるしくみになっています。Dockerfileもシ
ンプルな構文なので容易に習得できるでしょう。
　Elastic Beanstalkで用意されているDocker

ベースのプラットフォームは、アプリケーショ
ンアーカイブにDockerfileが含まれていた場合、
そのDockerfileを使ってDockerイメージの生
成を行います。つまりGlassFishの場合はwar

にDockerfileを含めるだけで簡単にカスタマイ
ズができるのです。
　たとえば起動前にJDBCドライバをダウン
ロードしたり、asadminコマンドでGlassFish

の設定を変更するなど柔軟に対応できます。
Dockerfileで記述するのでローカルマシン上の
Dockerエンジンで動作すれば、理論上Elastic

Beanstalkでも同じように動作するので「本番
環境ではなぜか動かない」といったことが大幅
に少なくなります。このようにアプリケーショ
ンサーバの設定も含めてパッケージングできる
ことがDockerの大きな魅力の1つですね。
　ここではデータベースと連携するための設定
方法を例として取り上げます。GlassFishはデー
タベースと連携するために、

●	JDBCドライバのダウンロード

●	コネクションプールの設定

が必要です。今回はH2 Database Engine注10と
いうインメモリデータベースを例に実現してみ
ましょう。
　まずDockerfileをMavenビルド時にwarファイ
ルに含める設定をします。src/main/dockerとい
うディレクトリを作り、そこにDockerfileを作成し
ます。このディレクトリをwarファイルに含めるた
めリスト4のようにmaven-war-pluginをproject/
build/plugins以下にプラグインを定義します。
　リスト5がカスタマイズするためのDockerfile

です。先ほどのamazon/aws-eb-glassfish:4.1-
jdk8-onbuild-3.5.1を継承します。
　glassfish-start.shも修正するので改めてADD

注10） http://www.h2database.com/html/main.html

でリソースの追加を行います。またmaven-

war-pluginでは個々のファイルのパーミッショ
ンは変更できないため、RUNでパーミッション
を変更しておきます。
　GlassFishは連携するデータベース用のJDBC

ド ラ イ バ を $GLASSFISH_HOME/glassfish/
domains/domain1/libに配置する必要がある
ため、wgetコマンドでMavenのセントラルリ
ポジトリからH2 Database EngineのJDBCド
ライバをダウンロードします。
　コネクションプールの設定はGlassFishが起
動したあとに行う必要があるので、リスト6の
ようにglassfish-start.shに記述します。
　asadmin start-domainで GlassFishを 起
動 し、asadmin create-jdbc-connection-
poolでコネクションプールを作成します。
　asadmin create-jdbc-resourceでは作成
したコネクションプールをJDBCリソースとし
てJNDIで参照できるようにしましょう。

 ▼リスト4　DockerFileを含める例

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <webResources>
 <resource>
 <directory>src/main/docker</directory>
 <targetPath></targetPath>
 <filtering>true</filtering>
 </resource>
 </webResources>
 </configuration>
</plugin>

 ▼リスト5　H2 Database EngineのJDBCドライバを
 ダウンロード

FROM amazon/aws-eb-glassfish:4.1-jdk8-ｭ
onbuild-3.5.1

ADD glassfish-start.sh /

RUN chmod 755 /glassfish-start.sh
RUN wget -P $GLASSFISH_HOME/glassfish/ｭ
domains/domain1/lib http://central.ｭ
maven.org/maven2/com/h2database/h2/ｭ
1.4.187/h2-1.4.187.jar

JavaとDockerで始める
実践Elastic Beanstalk入門 第 回1

http://www.h2database.com/html/main.html

116 - Software Design

　このように jarのダウンロードなどGlassFish

起動前に必要な処理はDockerfileに、asadmin
コマンドなどGlassFish起動後に必要な処理は
glassfish-start.shに記述すると良いでしょう。

ローカルマシンで
動作確認するには

　Elastic Beanstalkへのデプロイは早くても数
分かかるため開発時の動作確認には不向きです。
効率よく開発を進めるためにローカルマシンに
Dockerをインストールして動作確認をする環
境を整えましょう。
　最近のLinuxディストリビューションであれ
ばDockerパッケージが用意されているので
APTやyumなどの管理コマンドでインストール
するだけですぐ使えるようになります。
　Mac OS XやWindowsであればBoot2docker注11

というVirtualBox注12上で動作するLinuxディス
トリビューションをインストールしましょう。

注11） http://boot2docker.io/

注12） https://www.virtualbox.org/

Mac OS Xの場合はHomebrew注13を使うと、
DockerをはじめVirtualBox、Boot2dockerなど
必要なものはコマンドラインからインストールで
きます（図5）。インストールしたら図6のように
コンテナを初期化して起動します。
　Boot2dockerを起動すると環境変数の設定を
促すメッセージが表示されるので .bash_
profileに記述するなど適宜設定してください。
docker infoを実行してDockerの情報が正常
に出力されればDockerの準備は完了です。

Dockerイメージを作る

　それではカスタマイズしたGlassFishをロー
カルマシンのDockerで動かしてみましょう。
Mavenにはビルド時にDockerイメージを生成
するdocker-maven-pluginというプラグインが
あるのでproject/build/plugins以下に定義しま
す（リスト7）。
 　Dockerイメージにはビルドされたソースコー

注13） http://brew.sh/

 ▼リスト6　JDBCドライバの設定を追加したglass�sh-start.sh

#!/bin/sh

PID_FILE=$GLASSFISH_HOME/glassfish/domains/domain1/config/pid

when deploying a directory, Glassfish expect all submodules to be extracted
which is usually not the case for EARs
zip app back into a bundle and let Glassfish handle it
rm -f /var/app/Dockerfile
rm -f /var/app/Dockerrun.aws.json
zip /var/app.zip -r .

asadmin start-domain

asadmin create-jdbc-connection-pool \
 --datasourceclassname org.h2.jdbcx.JdbcDataSource \
 --restype javax.sql.XADataSource \
 --property url=jdbc\\:h2\\:mem\\: \
 ${project.artifactId}

asadmin create-jdbc-resource \
 --connectionpoolid ${project.artifactId} \
 jdbc/${project.artifactId}

asadmin deploy --contextroot / --name current-app /var/app.zip

inotifywait -qq -e delete_self $PID_FILE

エンタープライズJavaの進化

AWSで始めよう！
しなやかで強いソフトウェアの作り方

Javaアプリケーション開発モダンな

http://boot2docker.io/
https://www.virtualbox.org/
http://brew.sh/

116 - Software Design Aug. 2015 - 117

ドなどを含める必要があります。そのため
mvn clean package docker:buildのように
packageゴールのあとにdocker:buildゴール
を指定してMavenを実行してください。Maven

の実行に成功するとDockerイメージが生成され、
docker imagesコマンドでビルドしたDocker

イメージの情報が表示されます（図7）。
　Dockerコンテナの起動はdocker runコマ
ンドで行います。-pはポートフォワーディン
グのオプションでDockerコンテナ内のポート

とDockerエンジンのホストのポートをマッピ
ングしています。上記の例だとDockerイメー
ジの IDは0b216a8c1113なので引数の最後に
指定して起動します（図8）。
　Boot2dockerを使っている場合はリスト8の
ようにVirtualBoxのVMとホストのマッピン
グをする必要があります。
　ブラウザで http://localhost:18080/に
アクセスすると図9のような画面が表示されます。
テキストフィールドにメールアドレスを入力し

Pre-Registerボタンをクリックする
と画面が遷移して、データベースに
新たに行が追加されます。
　Dockerコンテナを終了する場合
はdocker psコマンドでコンテナ
の IDを調べて docker killコマ
ンドで終了させます。

 ▼図5　インストール各種

Homebrewのインストール
$ ruby -e "$(curl -fsSL https://raw.githubusercontent.comｭ
/Homebrew/install/master/install)"

VirtualBoxをインストールするためHomebrew-Caskをインストール
$ brew install caskroom/cask/brew-cask

VirtualBoxのインストール
$ brew cask install virtualbox

DockerとBoot2dockerのインストール
$ brew install docker boot2docker

 ▼図6　コンテナの起動

Boot2dockerの初期化
$ boot2docker init

Boot2dockerの起動
$ boot2docker up

 ▼リスト7　docker-maven-pluginの設定

<plugin>
 <groupId>com.spotify</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>0.2.6</version>
 <configuration>
 <!-- Dockerイメージの名前 -->
 <imageName>${project.groupId}/${project.artifactId}:${project.version}</imageName>

 <!-- Dockerイメージ化するディレクトリ -->
 <dockerDirectory>${project.build.directory}/${project.build.finalName}</dockerDirectory>
 </configuration>
</plugin>

 ▼図7　Dockerイメージの情報

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
com.github.nagaseyasuhito/gymnaster 0.0.1-SNAPSHOT 0b216a8c1113 About an hour ago 768.5 MB
amazon/aws-eb-glassfish 4.1-jdk8-onbuild-3.5.1 772b9da45423 5 months ago 767.5 MB

JavaとDockerで始める
実践Elastic Beanstalk入門 第 回1

118 - Software Design

Elastic Beanstalkに
デプロイする

手動でデプロイする

　まずは手動でWebサービスをデプロイしてみ
ましょう。mvn clean packageコマンドでwar

を生成したら、Elastic Beanstalkの環境のダッ
シュボード画面の中央にUpload and Deployとい
うボタンがあるのでクリックしましょう（図10）。
　開いたダイアログボックスの Upload

applicationはwarを選択し、Version labelに
はアプリケーションバージョンを識別する文字
列を入力してください。Deployボタンをクリッ
クするとデプロイが始まり、Healthのステー
タスがUpdatingになります。
　デプロイが完了するとHealthがふたたび
Greenになります。ブラウザからアクセスして
みるとローカルマシンで動かしたときと同じ画
面が表示されます。
　デプロイ時のログは画面左側のメニューの
Logsからダウンロードして確認できます。
Request LogsボタンからFull Logsをクリック
すると一覧にダウンロードできるログのzipファ

イルが追加されます。Downloadをクリックし
てログをダウンロードしてみましょう。zipファ
イルを展開すると/var/log以下のログが格納
されているのがわかります。
　GlassFishのログは /var/log/eb-docker/
containers/eb-current-appに出力されるの
で、不具合が起こった場合などはインスタンス
にSSHで接続しなくてもログを確認できます。

Mavenプラグインでデプロイする

　それではElastic Beanstalkへのデプロイを
Mavenのビルドライフサイクルに含めるため
beanstalk-maven-pluginを使ってみましょう。
まずpom.xmlのproject/build/plugins以下
にプラグインを定義します（リスト9）。
　そしてデプロイに関する設定をpropertiesに
定義します。
　beanstalk.versionLabel は Elastic Bean

stalkのアプリケーションバージョンです。
MavenのPOMのバージョンと揃えておくとわ
かりやすいので${project.version}のよう
にMavenプロパティを指定しましょう。
　beanstalk.environmentNameは作成した
環境名を指定してください。ここでは
${project.artifactId}を指定しています。
　beanstalk.s3Bucketには ${project.art
ifactId}を定義していますが、S3のバケット
名はS3全体でユニークでなくてはならないの
で必要に応じて書き換えてください。

 ▼図8　Dockerイメージの IDで起動

docker run -p 8080:8080 0b216a8c1113

 ▼リスト8　ホスト（ポート18080）とVirtualBox（ポート
 8080）間のポートフォワーディングの設定

VBoxManage controlvm "boot2docker-vm" natpf1 ｭ
"glassfish,tcp,127.0.0.1,18080,,8080"

 ▼図9　デプロイしたアプリケーションの画面

 ▼図10　環境のダッシュボード

エンタープライズJavaの進化

AWSで始めよう！
しなやかで強いソフトウェアの作り方

Javaアプリケーション開発モダンな

118 - Software Design Aug. 2015 - 119

　デプロイにはAWSのアクセスキーとシーク
レットキーが必要です。これらのキーをまだ生
成していない場合は IAMで生成しておいてく
ださい。
　キーは環境変数でMavenに渡すのが簡単で
すが、シェルの履歴に残ってしまうので注意し
ましょう。安全に取り扱いたい場合はMaven

の settings.xmlに暗号化して記述しておく方
法注14もあります。
　リスト10のようにMavenを実行してみましょう。

まとめ

　いかがだったでしょうか？　そのしくみ自体
はシンプルなElastic Beanstalkですが、監視
やデプロイ、スケールアウトの機能などが準備
されているため運用の負荷が大幅に削減できる
ことを感じられたのではないでしょうか。

注14） http://beanstalker.ingenieux.com.br/beanstalk-maven-
plugin/security.html

　充実したMavenのプラグインのおかげで
JavaベースのWebサービスをすぐにデプロイ
できるうえ、Dockerでシステム構成をイミュー
タブルに保てるので開発環境でも本番と同じ
構成の再現が簡単にできます。一見制約にも
みえるこのしくみのおかげで、Webサービス
を堅牢に育てていく大きなメリットとなるで
しょう。
　ぜひ、みなさんもElastic Beanstalkを実際
に試し、スピーディにWebサービスを公開す
る方法を体験してください。ﾟ

 ▼リスト9　beanstalk-maven-pluginの設定

<build>
 <plugins>
 <plugin>
 <groupId>br.com.ingenieux</groupId>
 <artifactId>beanstalk-maven-plugin</artifactId>
 <version>1.4.0</version>
 </plugin>
 </plugins>
</build>

<properties>
 <!-- アプリケーションバージョン -->
 <beanstalk.versionLabel>${project.version}</beanstalk.versionLabel>

 <!-- 環境名 -->
 <beanstalk.environmentName>${project.artifactId}</beanstalk.environmentName>

 <!-- サブドメイン名 -->
 <beanstalk.cnamePrefix>${project.artifactId}</beanstalk.cnamePrefix>

 <!-- 利用するリージョン -->
 <beanstalker.region>ap-northeast-1</beanstalker.region>

 <!-- アプリケーションアーカイブをアップロードするS3のバケット名 -->
 <beanstalk.s3Bucket>${project.artifactId}</beanstalk.s3Bucket>
</properties>

 ▼リスト10　Maven設定例

AWS_ACCESS_KEY_ID=[アクセスキー] \
AWS_SECRET_KEY=[シークレットキー] \
mvn clean package \
 beanstalk:upload-source-bundle \
 beanstalk:create-application-version \
 beanstalk:update-environment

JavaとDockerで始める
実践Elastic Beanstalk入門 第 回1

http://beanstalker.ingenieux.com.br/beanstalk-maven-plugin/security.html

120 - Software Design

Kot l in入門
プログラマに優し

い
現実指向JVM言

語
短期集中
連載

背景

　java.lang.NullPointerExceptionは、Javaプ
ログラマがよく出会う例外でお馴染みです。オ
ブジェクトが必要な場面でnullを使用してしま
うことでスローされる例外です。具体的には
String型の変数にnullを代入しておき、その変
数に対してlengthメソッドを呼び出した場合に
NullPointerException、「ぬるぽ」の愛称で親し
まれる例外（以下、NPEと表記）が投げられます。
　nullは、値が存在しないときに使用されます。
たとえば、指定した IDを持ったユーザが存在
しないときにfindUserByIdのようなメソッド
がUserクラスのインスタンスを返す代わりに
nullを返すと言った具合です。
　このような観点で、nullは便利に働きます。
しかしこのnullのおかげで筆者たちは見たく
もない例外、NPEと遭遇するはめになるのです。
適切にnullチェック、つまりif文などでnull
でないことを確認すれば回避できるのですが、
なぜそれができないのでしょうか。
　nullを返さないことがわかっているメソッ
ドの戻り値に対してnullチェックはしないの
が普通だと思います。ここが重要なのですが、
仕様的にnullを返し得ないメソッドがあっても、
Javaのコードでそのことを保証することはで
きません。Javaにおいて、変数やメソッドの
戻り値はいつでもどこでもnullになり得ます。

つまり nullチェックをすべきものと、null
チェックが不要なものがごちゃまぜになってい
るので、うっかりNPEを招いてしまうのです。

nullと上手に付き合う方法

　nullかもしれないものと、nullではないも
のを区別するための方法が世の中にはいくつか
あります。

 メソッドシグネチャの工夫
　原始的な方法です。nullを返す可能性がある
メソッドのシグネチャを工夫して、プログラマ
に注意喚起します。たとえばgetNameOrNullの
ような名前のメソッドです。名前を見ればnull
が返されるかもしれないことに気づくわけです。

 静的解析ツール
　メソッドにアノテーションを付けて、静的解
析ツールに指摘してもらう方法です。getName
メソッドがnullを返すかもしれない場合には@
Nullable String getName() {...}と記述し、
nullを返し得ない場合には@Nonnull String
getName() {...}と記述します。

 型で表現
　存在しない可能性のある値を表現するために
nullの代わりに新しく定義した型を使う方法
です。具体的には Java SE 8で導入された
java.util.Optionalクラスです。値が存在し

null安全第 5 回

Author 長澤 太郎（ながさわ たろう）　 Twitter @ngsw_taro　 Mail taro.nagasawa@gmail.com

前回はKotlinにおけるクラスとその周辺の機能、文法を紹介しました。
今回はKotlinのユニークな機能であるnull安全について解説します。

120 - Software Design Aug. 2015 - 121

null安全第 5 回

ないときにはOptional#emptyで返されるオブ
ジェクトを使用し、値が存在するときはその値
をOptional#ofの引数に渡してラップします。
Optional型とそれ以外の型で、存在しないか
もしれない値と絶対に存在する値の区別が容易
になるだけでなく、Optionalにはさまざまな
便利なメソッドが提供されています。

Kotlinのnull安全

　静的解析ツールやOptionalを使うことはと
ても良いことです。しかし繰り返しになりますが、
Javaにおいて変数やメソッドの戻り値はいつで
もどこでもnullになり得ます。すべてを台無し
にするコードをご覧ください（リスト1）。
　そこでKotlinのnull安全機構の登場です。
Kotlinでは nullの可能性のある値（以下
Nullable）と nullではない値（以下NotNull）の
区別を言語組込みの機能としてサポートします。
　Optionalを使う方法とは異なり、新しいイ
ンスタンスの生成（とGC）が不要なのでその分
のオーバーヘッドがなく、Androidなどのリソー
スが限られた環境で有利のようです。

基本的な使い方

　前回、前々回と使用してきたごく普通の変数
初期化と再代入をリスト2に示します。変数a
はString型です。ここでは型を明示していま
すが省略しても問題ありません。varキーワー
ドにより変更可能な変数として宣言しているの

で"Goodbye"を代入できます。しかしその次の
行のnullを代入する部分でコンパイルエラー
が起こります。変数aはNotNullとして宣言さ
れているのでnullの代入をコンパイラが許し
ません！　逆を言えば、変数aは常にnullで
はないと安心して使用できます。
　では、nullを代入できるNullableな変数は
どのように宣言すれば良いのでしょうか。簡単
です。通常の型アノテーションのあとに?を置
くだけです。リスト3を見てください。変数b
の型アノテーションがString?になっています。
これは「nullが代入可能なString型」と読めま
す。2行目でnullを代入していますが、コンパ
イルに成功します。今回の場合、変数bの型ア
ノテーションを省略できないことに注意してく
ださい。なぜなら、"Hello"はString?ではな
くStringとして推論されるからです。
　KotlinではNullableとNotNullを明確に区別
することがわかりました。NotNullの変数には
nullが入ってこないので、これを扱ううえで
NPEは起こらないので安全です。Nullableの
変数にはnullが入る可能性があるのでNPEが
起こりそうです。ということでNPEを起こし
てみましょう（リスト4）。
　String?な変数sにnullを代入して初期化し
ています。このsにlengthメソッドを呼び出
してNPEを起こそうとしています。が、実際
にはコンパイルエラーとなります。Kotlinは
NPEを起こさせたくないので、NPEの可能性
のある操作をコンパイルエラーとするのです。
Nullableに対するメソッド、プロパティアクセ
スは禁止されています。
　しかし現実問題、Nullableのメンバにアクセ

// Javaコードです
@Nonnull
Optional<String> getName() {
 return null;
}

 ▼リスト1　誰にもnullは止められない！

var a: String = "Hello"
a = "Goodbye"
a = null // ここでコンパイルエラー

 ▼リスト2　NotNullの変数

var b: String? = "Hello"
b = null

 ▼リスト3　Nullableの変数

val s: String? = null
s.length() // ここでコンパイルエラー

 ▼リスト4　NPEを起こしたい

122 - Software Design

プログラ
マに優しい現実指向JVM言語

短期集中連載 Kot l in入門

スできないのは不便どころか使い物になりません。
もちろんアクセスする方法が用意されています。
その方法とは、nullチェックすることです！
　リスト5のように変数sがnullでないことを
確認すると、それが保証される範囲内（ifのブ
ロック内）でsをNotNullとして扱えるように
なります。sに"Hello"が代入されていればリ
スト5を実行すると「5」と出力されます。

Nullableの
便利な機能

　KotlinのNullableを使ううえで必要な
知識は、前節までの内容でまかなえます。です
がnullチェックをするコードを書くのは退屈
で面倒な作業ですので、KotlinはNullableを便
利に使える機能を提供しています。

安全呼び出し

　リスト5ではNullableのメソッドを呼び出す
ためにnullチェックを行いました。これを簡
潔に記述できるように、安全呼び出し（Safe

Call）と呼ばれるしくみがあります。
　リスト6の最初の行ではString?型の変数s
のlengthメソッドを安全に呼び出しています。
通常のメソッド呼び出しと異なるのは、ドット
の前に?を置くことです。これにより安全呼び
出しとなり、Nullableのメソッドを安全に、す
なわちNPEの心配なく呼び出すことができます。
　仮にsがnullだった場合には、メソッドを呼
び出さずnullを返します。1行目の安全呼び出

し方式と、2行目のnullチェック方式は等価です。
　安全呼び出しはメソッドチェーンを形成した
い場合などではとくに効果を発揮します（リス
ト7）。foo()?.bar()?.baz()のように記述した
場合、途中でnullが返されても安全呼び出しが
チェーンして最終的にnullが返されるだけです。

デフォルト値

　デフォルト値、nullだった場合に使用する値、
を簡単に指定できます。Nullableのあとに続け
てエルビス演算子（?:）とデフォルト値を記述し
ます。リスト8を見てください。s?.length()は
安全呼び出しにより、文字列の長さかnullが返
されます。nullが返された場合、デフォルト値
として 0を使用するように指定しています。
nullでない場合、デフォルト値は評価されません。

禁断の !!演算子

　最後に紹介するのは禁断の演算子です。
　!!演算子は、Nullableの直後に置き、強制的
にNotNullへの変換を試みます。リスト9では
String?である変数sを!!演算子により強制的
にStringに変換しています。
　この例はたまたまうまく行きました。しかし
リスト10は実行時に例外を投げてクラッシュし
ます。nullであるものに対して!!演算子を使う
とKotlinNullPointerExceptionを投げます。
　nullの場合に例外が投げられる。これって
結局今までと同じです。!!演算子を使用した
くなったらnullチェックや安全呼び出し、デ
フォルト値の使用を検討してください。どうし

if(s != null) {
 println(s.length())
}

 ▼リスト5　nullチェックするとNotNullになる

// 安全呼び出し方式
val length1: Int? = s?.length()
// nullチェック方式
val length2: Int? = if(s != null) s.ｭ
length() else null

 ▼リスト6　安全呼び出し

// 安全呼び出し方式
val result1 = foo()?.bar()?.baz()
// nullチェック方式
val foo = foo()
val result2 = if(foo != null) {
 val bar = foo.bar()
 if(bar != null) bar.baz() else null
} else {
 null
}

 ▼リスト7　安全呼び出しでメソッドチェーン

122 - Software Design Aug. 2015 - 123

null安全第 5 回

てもやむを得ない場合に限り!!演算子を使い
ましょう。その際にはコメントとして使った理
由や経緯を記しておくと良いでしょう。
　1つ、!!演算子を使いたくなるような例を示
します。要素として nullを許容するリスト
（List<T?>）から、nullを排除してNotNullな
要素だけの新しいリスト（List<T>）を得るため
の関数がほしいとします。その場合の実装はリ
スト11のようになります。
　list.filter { it != null }により、要素
がnull以外のものに絞り込みます。しかしリ
ストの型は依然List<T?>のままです。そこで
次のmap { it!! }で強制的に要素の型をT?か
らTの変換しています。
　実際には!!演算子を使用せずに実装できま
すし、filterNotNullはコレクションの標準メ
ソッドとして提供されています。

標準拡張関数 let

　Kotlinの標準ライブラリとして、任意の型に
対してletという拡張関数注1が提供されていま
す（リスト12）。
　letは、レシーバとなるオブジェクト（this）
に、引数に取る関数（f）を適用しているだけです。
使用例をリスト13に示します。

　関数リテラルに渡る唯一の引数（暗黙の変数
it）はletのレシーバと同一オブジェクトです
ので、この例ではitは5です。
　さて、この単純な関数は何の役に立つのでしょ
うか。ずばり、NullableにNotNullな引数を取
る関数を適用するときに便利です。具体的に見
て行きましょう。
　リスト14で、NotNullなIntを引数に取る関
数succを定義しました。Nullableである変数a
を、この関数の引数として渡したいです。しか
しNullableとNotNullの違いがあるので、素直
には渡せません。succは関数であり、Intのメ
ソッド（あるいは拡張関数）ではないので安全呼
び出しも使えません。となるとifでnullチェッ
クしてNullableを安全にNotNullとして扱える
ようにするしかありません。
　ここでletの登場です。まず、letは任意の
型の拡張関数ですからa?.let {...}のような
安全呼び出しができます。そしてletの引数と
なる関数（リスト12におけるf）が受け取る引数
は、レシーバと同じ型のNotNullです。レシー
バがnullのときはlet拡張関数は呼び出せな
いので理に適っていますね。
　ということでletを使うことでリスト14の
succ適用の部分はリスト15のように書き換え
られます。ちなみにリスト15はもっと簡潔に

注1） 正確にはpublic inline指定されていますが便宜上省略しています。

// エルビス演算子
val length1: Int = s?.length() ?: 0
// nullチェック
val len: Int? = s?.length()
val length2: Int = if(len) len else 0

 ▼リスト8　デフォルト値

val s: String? = null
println(s!!.length())

 ▼リスト10　実行時例外が起こる

fun <T> filterNotNull(list: List<T?>): List<T> =
 list.filter { it != null }
 .map { it!! }
val a: List<String?> = listOf("foo", null, "bar")
val b: List<String> = filterNotNull(a)
println(b) // => ["foo", "bar"]

 ▼リスト11　自作�lterNotNull

fun <T, R> T.let(f: (T) -> R): R = f(this)

 ▼リスト12　標準拡張関数 let

5.let {
 println(it * 3) // => 15
}

 ▼リスト13　letの使用例

val s: String? = "Hello"
println(s!!.length()) // => 5

 ▼リスト9　強制的にNotNull化

124 - Software Design

プログラ
マに優しい現実指向JVM言語

短期集中連載 Kot l in入門

記述できます。第3回で紹介した定義済み関数
の参照を得るスタイルで記述するとリスト16
のようになります。
　JavaですでにOptionalに親しんでいる人に
は、letは Optionalに お け る map、flatMap、
ifPresentの3役こなす存在だと思っていただ
けると理解しやすいでしょう。

Javaからコードを
呼び出す

　Kotlinから Javaコードを呼び出す場合、
NotNull/Nullableの扱いが特殊になります。リ
スト17のようなhelloメソッドをKotlinから
呼び出して結果を変数に代入する際、val msg
= Sample.hello("World")のように型アノテー
ションを省略した場合、変数msgはNotNullと
しても、Nullableとしても扱える型となります。
そのため msg.length()も、msg?.length()も
コンパイラは許可します。もしmsgがnullで
あればmsg.length()はNPEを起こします。
　型アノテーションを明示することで
NotNull/Nullableを表明できます。val msg:
String = Sample.hello("World")とすれば、
msgはNotNullとして扱えます。もしString.
hello("World")がnullを返すようなことがあ
れば、NotNullを表明しているmsgに代入する
時 点 で java.lang.IllegalStateExceptionを
投げます。これは例外を投げるタイミングが早
いという観点で、msgの型アノテーションを省
略したうえでNotNullとして扱うより幾分マシ
です。安全側に倒すならval msg: String?と

Nullableを表明するとよいでしょう。
　ただし、Javaのコンストラクタ、intや
booleanなどのプリミティブ型を返すメソッド
が返す値は、Kotlinでは常にNotNullとなります。

まとめ

　今回はKotlinのユニークな機能であるnull安
全に関して、そのモチベーションから文法、活
用方法まで紹介しました。
　少なくとも現時点の JavaではNotNullと
Nullableを厳格に区別することはできません。
Kotlinではこの区別を厳格にすること、さらに
Nullableの扱い方をとことん注意深くすること
でNPEとの決別を図っています。Nullableは
そのままでは扱えないことが多く不便に思われ
がちですが、nullチェック後にNotNullとして
使えることや、安全呼び出し、デフォルト値な
ど言語組込みのサポートにより簡単に扱えるよ
うになっています。標準ライブラリとして提供
されている let拡張関数を組み合わせればさら
にnull安全ライフが楽しいものとなります。
　いよいよ次回はKotlinによるAndroidプログ
ラミングについて解説します。ﾟ

// NotNullを受け取る関数
fun succ(n: Int): Int = n + 1
// Nullableな変数
val a: Int? = 3
val b: Int? =
 if(a != null) succ(a)
 else null

println(b) // => 4

 ▼リスト14　NotNullを受け取る関数を適用したい

val b: Int? = a?.let(::succ)

 ▼リスト16　関数参照でよりすっきり

val b: Int? = a?.let { succ(it) }

 ▼リスト15　letを使うとすっきりする

// Javaコードです
public class Sample {
 public static String hello(String name) {
 return "Hello, " + name + "!";
 }
}
// Kotlinコードです
val msg = Sample.hello("World")
println(msg.length()) // => 13

 ▼リスト17　Javaからコードを呼び出す

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Aug. 2015 - 125

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

 第1特集

Linux systemd入門
あなたの知らない実践技

 第2特集
そろそろ、やめませんか？
なぜ「運用でカバー」がダメなのか？
 一般記事
・Intel DPDK技術詳解
・これはなんて読む？　UNIX用語読み方指南
・Googleベンチャーズが提唱するデザインスプリントとは
ほか

2015年2月号

定価（本体1,220円＋税）

 第1特集

カンファレンスネットワークの
作り方
 第2特集
いまからでも遅くない！
Hadoop超 2 入門
 一般記事
・Cisco VIRLでネットワークシミュレーション
 ［前編］
・Snappy Ubuntu Core

2015年3月号

定価（本体1,220円＋税）

 第1特集

トラブルシューティングの極意
達人に訊く問題解決のヒント

 第2特集

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

 特別付録
・3分間ネットワーク基礎講座［特別篇］

2015年4月号

定価（本体1,300円＋税）

 第1特集

テキスト処理ベーシックレッスン
手を動かしてデータを操ろう！

 第2特集
ファイル共有自由在在

［徹底入門］
最新・Sambaの教科書
 特別付録
・3分間HTTP&メールプロトコル基礎講座［特別篇］

2015年5月号

定価（本体1,300円＋税）

 第1特集
新人さん歓迎特集
Git&GitHub入門
 第2特集

OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例
 一般記事
・SambaによるActive Directoryの機能性と
 移行性を検証する

2015年6月号

定価（本体1,220円＋税）

 第1特集
あなたにもできる！
ログを読む技術［セキュリティ編］
 第2特集

黒い画面（tmux）の使い方
プロになるためのターミナル活用術
 第3特集
6人の先駆者に訊く
スペシャリストになる方法

2015年7月号

定価（本体1,220円＋税）

http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

126 - Software Design

で学ぶErlang
並行プログラミング

OTPの今後のロードマップ

　本題に入る前にErlang/OTPの今後のロード
マップについて紹介します。17.x系の安定版は
17.5.6.1[1]が6月25日にリリースされました。
GitHubレポジトリでタグを指定することでソー
スコードからビルドできます（詳細は本連載第
3回の注8で説明）。
　6月24日にOTP 18.0がリリースされました。
インストールの方法は本連載第1回の説明を参
考にしてください。リリース番号は「18.0」となり、
ダウンロードディレクトリ注2に一式用意されて
います注3。OTP TeamのErlang User Conference

2015の報告 [2]では、今後は次の予定となるよ
うです。

・18.1……2015年9月〜10月ごろ
・18.2……2015年12月〜2016年1月ごろ
・18.3……2016年4月
・19 ……2016年第2四半期

注1） “behaviour”はイギリス（および米国以外）での英語の綴り
で、米国の綴りではbehavior（uがありません）ですが、ど
ちらもErlangのコンパイラでは同様に使えます。筆者は普
段米国の英語の綴り方をおもに使っているので、あえて専
門用語としてuの入ったほうをErlangのコーディングでは
使っています。また、gen_serverは筆者は「ジェンサーバ」
と読んでいます。

注2） http://erlang.org/download/

注3） http://www.erlang.org/

OTPでの実行プログラム作成

　Erlangは複数のモジュールをどう組み合わ
せるかについて高い自由度を持っています。
しかし、現実に大規模な実行プログラムを作
成するには、細部を共通化しておかないと、
ささいな実装上の相違でやっかいなバグが入
り込んだり、デバッグが難しくなったりします。
そこでOTPでは実行プログラムをどう書くか
についての指針 [3]を定めており、開発者にも
これに準拠することを要請しています。この
指針では、プログラムを次の構成で組むこと
を想定しています。

 プロセス管理ツリー（図1）
　プログラムを構成するプロセスについて、実
際に処理をするワーカ（worker）と、ワーカを
監視するスーパーバイザ（supervisor）に分けま
す。ワーカに異常が発生した場合は、担当する
スーパーバイザが再起動します。スーパーバイ
ザはさらに上位のスーパーバイザで監視され階
層構造を作っており、これによって耐障害性を
持つプログラムを実現できます。

 ビヘイビア
　管理ツリーの配下にある各種プロセスの多く

この連載ではプログラミング言語Erlangとその並行プログラミングについて紹介していきます。今回は、
Erlang/OTPのプログラミング用フレームワークであるビヘイビア（behaviour）と、その典型例であるgen_
server 注1について紹介します。

 Author 力武健次技術士事務所 所長 力武 健次（りきたけ けんじ） http://rikitake.jp/

第5回 OTPのビヘイビアとgen_server

で学ぶErlang
並行プログラミング

http://rikitake.jp/
http://erlang.org/download/
http://www.erlang.org/

126 - Software Design Aug. 2015 - 127

は類似した役割と構造を持っており、共通部
分を定式化して切り分けることで、プログラ
マは個別処理に注力でき、かつ共通部分の見
通しとデバッグが容易になります。

 アプリケーション注4

　OTPのアプリケーションは、ある特定の目
的を持った複数のモジュールの集まりに名前
をつけたものです。Erlang/OTPの最小限の
システムはkernelとstdlibより成ります（前回
連載を参照）。アプリケーションは個別に起動
や終了したり、設定したりすることが可能です。
OTPでの大規模な実行プログラムは、アプリ
ケーションの集合体と考えることができます。

 リリース
　OTPでの「リリース」という単語は、実行プ
ログラムに必要な複数のアプリケーションと、
Erlang/OTPの必要な部分（BEAMを含む実行
時システム（ERTS）とOTPの中で関連するア
プリケーション群）をまとめたものです。この
リリースをインストールすることで、実行プロ
グラムを動かすことができます。リリースはリ

注4） この単語は、一般に「何かを行うためのプログラム」として
使われる「アプリケーション」ではなく、OTP特有の定義か
つ意味を持っていることに注意が必要です。

リースハンドリングによって、新しいバージョ
ンに更新したり、あるいは古いバーションに戻
したりすることができます。

ビヘイビアによるプログラミング
パターンの抽象化

　OTPのビヘイビアは、その「ふるまい」とい
う英語の原義のとおり、各種の定型的なプログ
ラミング上のパターンを定式化したものです。
具体的には、プログラムを次の2つの部分に分
けて、その片側をビヘイビアとしてOTPが提
供していると考えることができます。

・それぞれのプログラムで個別に処理する部分
（コールバックモジュール）

・各種パターンで共通に使う部分（ここをビヘ
イビアで提供）

　ビヘイビアを使って書かれたコードは、コー
ルバックモジュールとビヘイビアのモジュー
ルが互いに呼び合う構造を持ちます。これによっ
て記述するモジュールを分離しながら1つのプ
ログラムとして協調動作をさせることができ
ます。
　コールバックモジュールにて、コンパイラ
に“-behaviour(gen_server).”として指示する
ことでビヘイビアが使えるようになります。こ

 ▼図1　プロセス管理ツリー

スーパーバイザは階層構造を持ち、
上位のものが下位のものを管理する

スーパーバイザはワーカからの異常終了の
シグナルを受信するか、死活監視で反応が
ない場合は、再起動を試みる

ワーカは異常により停止する直前に
スーパーバイザにシグナルを送る

第5回 OTPのビヘイビアとgen_server

128 - Software Design

で学ぶErlang
並行プログラミング

れで指示したビヘイビアに則
のっと

ったプログラムを
書くことができます。
　OTPでは次のビヘイビアを標準として提供
しています注5。

・gen_server：一般的なクライアント=サーバ
構成でのサーバ

・gen_fsm：有限状態機械（通信プロトコルの
状態管理などで多用）

・gen_event：イベントハンドリング（ログや
アラートなどのイベント処理用）

・supervisor：プロセス管理ツリー中のスーパ
バイザを書くためのビヘイビア

gen_serverビヘイビアの使い方

　gen_server注6は、サーバがクライアントか
ら処理要求を受け取り、それぞれの処理要求
に対して返答を返す、という典型的なクライ
アント＝サーバ間処理をするためのビヘイビ
アです（図2）。クライアントとサーバの間の
やり取りはErlangのメッセージとして行われ
ます注7。
　本連載第3回、第4回で例としているカウン
タサーバを今回も例として使うことにします。
サンプルコードをリスト1に示します。
　リスト1のサンプルコードでは、最初にサー
バにしてほしい作業をgen_server:call/2経
由でメッセージとして送る関数を列挙し、そ
の後にサーバからのコールバック関数（handle_
call/3など）として、受け取ったメッセージ
をどのように処理するかについて記述してい

注5） 実際にはユーザが独自にビヘイビアを書くことも可能です。
またOTPにもSSHを使う際の ssh_channelモジュールな
ど、特定のプロトコル処理を個別のビヘイビアに切り分け
ている実装が多数あります。

注6） gen_serverの設計と動作の詳細については（http://www.
erlang.org/doc/design_principles/gen_server_
concepts.html）を、使う関数については（http://www.
erlang.org/doc/man/gen_server.html）を参照してくださ
い。

注7） サンプルコードでは割愛しましたが、実際には登録済みプ
ロセスとしてサーバに名前を付けたり、さらにそれらを分
散したBEAMノード間でglobalモジュールなどを介して
統一した名前として管理するようにすることもできます。

ます。このように抽象化することで、サーバ
での処理を増やしたいときはメッセージの送
信関数と対応するコールバック処理（一般的に
はhandle_callの中の節）を増やしていけばよ
いようになっています。
　図3にサンプルコードを動かした結果の例を
示します。所定の動作をしていることがわかり
ます。この際、erlang:process_info/{1,2}と
いう関数を使うと、プロセスが存在しているか、
また存在している場合は内部状態を知ることが
できます。
　図4ではサンプルコードを連載第4回と同様
の分散したBEAMノード間で実行した結果を
示します。ここで注目すべき点は、コードその
ものがローカルノードの場合とまったく変わっ
ておらず、またBEAMノード間の通信はgen_

serverの中で処理されるためプログラマは個別
にメッセージングのためのコードを書く必要が
ないことです。

sysモジュールによるサーバの
状態監視と操作

　OTPのビヘイビアを使ってサーバを書くこ
との利点の1つとして、OTPのデバッグライ
ブラリを活用することができます。今回は図5

 ▼図2　gen_serverビヘイビアが想定するクライア
　　 ント＝サーバ間通信

クライアント
からの要求

クライアント
プロセス群

サーバ
からの応答

サーバ
プロセス

http://www.erlang.org/doc/design_principles/gen_server_concepts.html
http://www.erlang.org/doc/man/gen_server.html
http://www.erlang.org/doc/design_principles/gen_server_concepts.html
http://www.erlang.org/doc/design_principles/gen_server_concepts.html
http://www.erlang.org/doc/man/gen_server.html

128 - Software Design Aug. 2015 - 129

にOTP標準の sysモジュールによるサーバの
内部でのBEAMの処理（リダクション）回数や
メッセージの入出力回数といった統計情報の取
得や、内部の状態を操作する例を示しました。
sysモジュールを使ってこのように動作してい
るプロセスの状態を外部から確認できるのは、

各種ビヘイビアを使って開発する大きな利点で
あると筆者は考えます注8。

注8） ビヘイビアを使ったプロセス動作のデバッグについては
（http://www.erlang.org/doc/design_principles/spec_
proc.html）を参照してください。

第5回 OTPのビヘイビアとgen_server

右段へ続く↗︎

 ▼リスト1　gen_serverで実装したカウンタサーバ（msgcounter_gen_server.erl）

カウンタを状態に持つサーバをgen_serverで書いた
詳細は第3回のmsgcounter.erlを参照してほしい
-module(msgcounter_gen_server).

gen_serverビヘイビアを使う旨を宣言
-behaviour(gen_server).
gen_serverのためのコールバック関数もexportする
-export([start_link/0, init/1,
 inc/1, dec/1, zero/1, val/1, stop/1,
 handle_call/3, terminate/2,
 handle_cast/2, handle_info/2, ｭ
code_change/3]).

レコードの中にカウンタの内部状態を入れる

-record(state, {counter = 0}).
リンク付きでサーバを起動する
成功すると {ok, Pid} で、pidがタプルの中に返る
-spec start_link() -> {ok, pid()}.
start_link() ->
 ?MODULEはこのモジュール自身の名前のアトム
 gen_server:start_link(?MODULE, [], []).

ここからはgen_server:call/2を通じて
サーバにどんなメッセージを送るかを書くための関数
内部状態のカウンタの値を1つ増やしてその後の値を返す
-spec inc(pid()) -> integer().
inc(Pid) ->
 gen_server:call(Pid, inc).
内部状態のカウンタの値を1つ減らしてその後の値を返す
-spec dec(pid()) -> integer().
dec(Pid) ->
 gen_server:call(Pid, dec).
内部状態のカウンタの値を1つゼロにして成功したらokを返す
-spec zero(pid()) -> ok.
zero(Pid) ->
 gen_server:call(Pid, zero).
内部状態のカウンタの値を返す

-spec val(pid()) -> integer().
val(Pid) ->
 gen_server:call(Pid, val).
サーバを止める

-spec stop(pid()) -> ok.
stop(Pid) ->
 gen_server:call(Pid, terminate).

ここから先はビヘイビアからのコールバック関数の定義
gen_serverからのサーバ初期化作業のコールバック関数
-spec init([]) -> {ok, #state{}}.
init([]) ->
 カウンタの値をゼロに初期化する
 {ok, #state{counter = 0}}.
gen_server:call/2で同期メッセージを送った際に
返事を返すためのコールバック関数
この関数単独ですべてのメッセージをさばくため

各種要求はセミコロンで区切られた
パターンマッチングの節として実装している

-spec handle_call(term(), pid(), #state{}) ｭ
-> term().
第1引数にはgen_server:call/2からのメッセージの内容
第2引数には呼出元のPidと識別用のタグの組み合わせ
第3引数には呼ばれる前の内部状態が与えられる
handle_call(inc, _From, #state{counter = ｭ
Count}) ->
 返り値としてタプルを設定し次の動作を決める
 第1要素は動作の指定(replyなら返答を返す)
 第2要素は返答の内容、
 第3要素は返答を返した後の内部状態を示す
 {reply, Count + 1, #state{counter = ｭ
Count + 1}};
前の節ではinc/1の処理、ここからはdec/1の処理
handle_call(dec, _From, #state{counter = ｭ
Count}) ->
 {reply, Count - 1, #state{counter = ｭ
Count - 1}};
zero/1の処理
handle_call(zero, _From, _S) ->
 {reply, ok, #state{counter = 0}};
var/1の処理
handle_call(val, _From, S = #state{counter = ｭ
Count}) ->
 {reply, Count, S};
stop/1の処理
handle_call(terminate, _From, S) ->
 タプルの第1要素がstopだとサーバのプロセスは停止して消滅する
 第2要素は停止理由（terminate/2で判断する）
 第3要素は返答内容、第4要素は内部状態を示す
 {stop, normal, ok, S}.
これでhandle_call/3の処理は終了なので最後はピリオドで終わっている
terminate/2はgen_serverから
プロセス終了時に呼ばれるコールバック関数

-spec terminate(normal, #state{}) -> ok.
第1引数は停止理由（問題がなければokを返しておく）
terminate(normal, _S) -> ok.
ここから先の関数は本サンプルコードでは明示的には使わない
handle_cast/2はcast/2で送られた非同期メッセージを処理する
-spec handle_cast(term(), #state{}) -> term().
handle_cast(_Msg, S) -> {noreply, S}.
handle_info/2はcallやcast以外のメッセージを受けとった時の処理をする
-spec handle_info(term(), #state{}) -> term().
handle_info(_Info, S) -> {noreply, S}.
code_change/3ではモジュールの動的なアップデートの際に
サーバの内部状態を更新するかどうかを指定する

-spec code_change(term(), #state{}, term()) ｭ
-> {ok, #state{}}.
code_change(_OldVsn, S, _Extra) -> {ok, S}.

左段下から続く↙︎

http://www.erlang.org/doc/design_principles/spec_proc.html

130 - Software Design

で学ぶErlang
並行プログラミング

まとめ

　今回はErlangのビヘイビアとgen_serverに
ついて紹介しました。次回はErlang/OTPでの

テストとデバッグ用各種ツールについて紹介す
る予定です。

ソースコードとサポートページ

　連載の記事で紹介したソースコードなど
GitHubのレポジトリに置いています注9。どうぞ
ご活用ください。｢

注9） https://github.com/jj1bdx/sd-erlang-public/

 ▼図4　BEAMノード間での実行結果

ホストalphaとbravoは同じネットワーク上にあり
同じサブドメインに属するものとする
ホストalphaでは
erl -sname node1 -setcookie cookie_string
というコマンドを実行しておく
ホストbravoでは
erl -sname node2 -setcookie cookie_string
というコマンドを実行しておく
以下はalpha上で動くBEAMノード「node1@alpha」の
シェルでの実行結果
操作を楽にするためノード名を変数に定義しておく

(node1@alpha)1> Remotenode = 'node2@bravo'.
node2@bravo

 死活監視用の関数を実行する
(node1@alpha)2> net_adm:ping(Remotenode).
pong % ノードは生きている

相手のノードでmsgcounter_gen_server:start_link/0を使って
カウンタサーバを起動してみる
(node1@alpha)3> {ok, P} = rpc:callｭ
(Remotenode, msgcounter_gen_server, ｭ
start_link, []).
{ok,<6243.44.0>} % 問題なく起動できた

以下相手のノードのカウンタは同じプログラムでまったく問題なく
動いている

(node1@alpha)4> msgcounter_gen_server:ｭ
inc(P).
1
(node1@alpha)5> msgcounter_gen_server:ｭ
inc(P).
2
(node1@alpha)6> msgcounter_gen_server:ｭ
val(P).
2

 ▼図3　サンプルコードの実行例

Eshell V6.4.1 (abort with ^G)
モジュールをロードする

1> l(msgcounter_gen_server).
{module,msgcounter_gen_server}
1つ目のカウンタP1を起動する
2> {ok, P1} = msgcounter_gen_server:ｭ
start_link().
{ok,<0.35.0>} % {ok, Pid}という値が戻る
この時P1はパターンマッチングでPidの値になっている
2つ目のカウンタP2を起動する
3> {ok, P2} = msgcounter_gen_server:ｭ
start_link().
{ok,<0.37.0>}
P1を2回増やしてみる
4> msgcounter_gen_server:inc(P1).
1
5> msgcounter_gen_server:inc(P1).
2
P2を1回減らしてみる
6> msgcounter_gen_server:dec(P2).
-1
カウンタの値を確認

7> [msgcounter_gen_server:val(P) || P <- ｭ
[P1, P2]].
[2,-1]
P2のカウンタの値をゼロにする
8> msgcounter_gen_server:zero(P2).
ok
再度カウンタの値を確認

9> [msgcounter_gen_server:val(P) || P <- ｭ
[P1, P2]].
[2,0]
P1を止めてみる
10> msgcounter_gen_server:stop(P1).
ok
P1の状態をerlang:process_info/2で確認する
11> process_info(P1, status).
undefined 存在していない状態
P2の状態をerlang:process_info/2で確認する
12> process_info(P2, status).
{status,waiting} メッセージを待っている状態
P2を止めてみる
13> msgcounter_gen_server:stop(P2).
ok
P2の状態をerlang:process_info/2で確認する
14> process_info(P2, status).
undefined 存在していない状態

参考文献
[1]	 https://github.com/erlang/otp/commits/OTP-17.5.6.1
[2]	 News From the OTP Team, Erlang User Conference, Stockholm 2015, http://www.erlang-factory.com/static/

upload/media/1434558750592554otpnewseuc2015.pdf
[3]	 OTP Design Principles, http://www.erlang.org/doc/design_principles/des_princ.html

https://github.com/jj1bdx/sd-erlang-public/
https://github.com/erlang/otp/commits/OTP-17.5.6.1
http://www.erlang-factory.com/static/upload/media/1434558750592554otpnewseuc2015.pdf
http://www.erlang.org/doc/design_principles/des_princ.html

130 - Software Design Aug. 2015 - 131

 ▼図5　sysモジュールによるサーバ状態取得と変更の例

Eshell V6.4.1 (abort with ^G)
1> {ok, P} = msgcounter_gen_server:start_link().
{ok,<0.34.0>}

サーバの動作統計情報を取り始めている
2> sys:statistics(P, true).
ok

何もしていない状態の情報を取る
3> sys:statistics(P, get).
{ok,[{start_time,{{2015,6,19},{18,42,41}}}, ｭ
起動時刻
 {current_time,{{2015,6,19},{18,42,50}}}, ｭ
取得した時点の時刻
 {reductions,18}, ｭ
これは内部演算であるリダクションの回数を示す
 {messages_in,0}, いくつメッセージを受信したかを示す
 {messages_out,0}]} いくつメッセージを送信したかを示す

4> msgcounter_gen_server:inc(P).
1

5> msgcounter_gen_server:inc(P).
2
2回カウンタを増やした後の状態
6> sys:statistics(P, get).
{ok,[{start_time,{{2015,6,19},{18,42,41}}},

右段へ続く↗︎

 {current_time,{{2015,6,19},{18,43,15}}},
 {reductions,66}, リダクションの回数が増えている
 {messages_in,2}, ｭ
メッセージを2つ受信していることを示している
 {messages_out,0}]}

この関数ではgen_serverで保持している内部状態を示す
7> sys:get_state(P).
これはレコードの #state{} の最初の要素（counter）が2であることを示している
{state,2}

カウンタをゼロにしてみる
8> msgcounter_gen_server:zero(P).
ok

内部状態も変わった
9> sys:get_state(P).
{state,0}

内部状態を変更する関数をサーバプロセスに適用してみる
（注意：デバッグ用途以外で使うのは推奨しない）
10> sys:replace_state(P, fun(_) -> {state,100}
end).
{state,100}

カウンタの値も相応して変化している
11> msgcounter_gen_server:val(P).

左段下から続く↙︎

月刊誌『Software Design』の2012年1月号～2013年12月号で
連載していた「開眼シェルスクリプト」の内容を大幅に加筆／修
正し、書籍にまとめました。
LinuxやUNIXのコマンドは単独で使うよりも、複数のコマンドを
組み合わせてこそ真価を発揮します。テキストデータの検索／
置換／並べ替え、ファイルのバックアップや削除、数値や日付の
計算など活用範囲は無限大。シェルは、端末にコマンドを入力し
てすぐに実行できるのも良いところ。その場かぎりの作業にこそ、
ちょちょいとシェルプログラミングが使えると便利です。本書のいく
つもの実例を順に見ていけば、コマンドを自在に組み合わせるた
めに必要なシェルの機能と考え方が身につきます。

上田隆一 著 USP研究所 監修
B5変形判／416ページ
定価（本体2,980円＋税）
ISBN 978-4-7741-7344-3

・Linux/UNIX利用者全般、プログラマ、インフラエンジニア
・コマンドを自在に組み合わせるコツを知りたい方
・大量のテキストデータの編集や集計を高速に行いたい方
・手作業でやっている作業を自動化したい方

第5回 OTPのビヘイビアとgen_server

132 - Software Design

　今回はSphinxの特徴の1つである「Sphinx拡
張」の基本的な使い方、少し大きめのドキュメン
トを作成する際に便利に使えるディレクティブ
を紹介します。
　Sphinx拡張には、あらかじめSphinxに機能
として実装されている「組み込み拡張機能」と、
インストールして機能を追加するサードパーティ
製の拡張機能があります。さまざまな拡張機能
がありますが、おもな拡張はディレクティブを
追加し、Sphinxで表現できる記法を増やします。
ほかの外部コマンドの実行結果を取り込むよう
な拡張もあります。
　今回は組み込み拡張の1つ、「todo拡張」につ
いて紹介します。どの拡張機能も有効にする方
法は同じですので、公式ドキュメントを参考に
他の拡張機能も使用してみてください。
　todo以外の拡張機能については公式ドキュメ
ント注1を参照してください。

拡張機能を有効にする

　拡張機能を使用するにはプロジェクトディレ
クトリのルートにあるconf.pyに設定を追加しま
す。todo拡張を有効にするには次のように設定
します。

注1） http://sphinx-doc.org/extensions.html
http://docs.sphinx-users.jp/extensions.html

Sphinx拡張

　複数の拡張機能を使用する場合はカンマ（,）で
区切って並べます。1行で記述しても問題あり
ませんが、次の例では可読性を高めるために改
行を入れています。

追加されるディレクティブと
オプション

　todo拡張を有効にすると「todo」と「todolist」と
いうディレクティブが追加されます。
　todoディレクティブは、ToDoとしてメモし
ておきたい内容注2をreSTに埋め込みます（図

1）。ディレクティブの要素にToDoの内容を記
述します（リスト1-①）。なお、ToDoが1行の
場合には、ディレクティブの引数に内容を記述
することもできます（リスト1-②）。
　todolistディレクティブは、プロジェクト全体
の todoの内容を列挙します。どのreSTファイ
ルの何行目にあるtodoなのかも合わせて表示し
ます（図2、リスト2）。
　しかし、これらのToDoはこのままではHT

注2） OSSのドキュメントであれば、将来実装したい機能やあと
で追記する予定の部分をToDoで書いておくなど。

 変更前
 extensions = []
 変更後
 extensions = ['sphinx.ext.todo']

 複数の拡張機能を使用する例
 extensions = [
 'sphinx.ext.todo',
 'ほかの拡張機能',
]

Sphinxで始める
 ドキュメント作成術

目次、用語集、索引を付けよう
̶̶大きめのドキュメントを読みやすくするために

第5回

川本 安武 KAWAMOTO Yasutake　 Twitter @togakushi

Sphinxで始める
 ドキュメント作成術

http://sphinx-doc.org/extensions.html
http://docs.sphinx-users.jp/extensions.html

132 - Software Design Aug. 2015 - 133

MLには表示されません。todo拡張を有効にす
ると、「todo_include_todos」というオプションが
追加されます。conf.pyに「todo_include_todos =

True」と追加で設定すると、todo、todolistが表
示されるようになります。

　以前、本連載の中で紹介したtoctreeディレク
ティブは、ドキュメント全体の目次を作成する

目次を作る

ものでした。ページ内の目次を作るにはcontents

ディレクティブを使います。contentsディレク
ティブは、記述した位置にページ内のセクショ
ンを目次として埋め込むディレクティブです（図

3、リスト3）。
　図3ではcontentsディレクティブ部分の見出
しに「目次」と表示されていますが、これは
contentsディレクティブの引数で「目次」と見出
し名を指定しているからです。引数が省略され
た場合は「contents」という見出しが付きます。

目次、用語集、索引を付けよう
̶̶大きめのドキュメントを読みやすくするために 第5回

 ▼図1　todoの適用例

 ▼図2　todolistの適用例

ToDoサンプル
============

Webサーバ要件

.. todo:: Webサーバの要件はまだ決まっていないのであとで書く

DBサーバ要件

.. todo::

 DBサーバの要件はまだ決まっていないのであとで書く

 (クラスタにすることだけ決まっている)

 ▼リスト1　todoの使用例

 ① ディレクティブの要素に記述

 ② ディレクティブの引数に記述

ToDo一覧
========

.. todolist::

 ▼リスト2　todolistの使用例

====================
ドキュメントタイトル
====================

概要
====

これはcontentsディレクティブのサンプルです。

.. contents:: 目次

第1章
=====

はじめに

第2章
=====

 ▼リスト3　contentsの使用例

 引数に見出しの文言を記述する

 ▼図3　contentsの適用例

ページ内の各セクションが
目次として埋め込まれる

134 - Software Design

contentsディレクティブは表1のオプションを
指定できます。
　contentsについてはDocutilsの公式ドキュメ
ント注3も参照してください。

　Sphinxには用語集を作成するための「gloss

注3） http://docutils.sphinx-users.jp/docutils/docs/ref/rst/
directives.html#table-of-contents
http://docutils.sourceforge.net/docs/ref/rst/directives.
html#table-of-contents

用語集を作る

ary」というディレクティブがあります（図4、リ

スト4）。glossaryディレクティブに記述したキー
ワード（用語）は、「term」というロール（後述）で
参照できます（図5、リスト5）。また、キーワー
ドとして定義した単語は、索引（後述）のページ

Sphinxで始める
 ドキュメント作成術

.. glossary::
 :sorted:

 Sphinx
 Pythonで作成されたオープンソースのドキュメンテーションツール。

 Excel
 Microsoft Excel。マイクロソフト製の表計算ソフト。

 Word
 Microsoft Word。マイクロソフト製の文書作成ソフト。

 ▼リスト4　glossaryの使用例

更新されないドキュメント
　todoと todolistをそれぞれ別のファイルに記述
している場合、todoを追加したあとに「make
html」を実行しても、todoが記述されているドキュ
メントは更新されますが、todolistが記述されてい
るドキュメントは更新されません。これは、make
が更新のあった reSTファイルのみを対象にドキュ
メントの変換を行うためです。todolistも変換の対
象にするには、todolistが記述されている reSTファ
イルのタイムスタンプを touchコマンドなどを使
用して更新します。

　別の方法として、「make clean」を実行する方法
もあります。make cleanはmake htmlによって
変換されたすべてのファイルを削除します。reST
のファイル名を変更した場合、新しいファイル名
でドキュメントが生成されますが、古いファイル
名のドキュメントは削除されません。このような
場合もmake cleanを使用します。
　なお、make clean後はすべてのドキュメント
を再生成することになるので、ドキュメントの量
によっては変換に時間がかかります。

COLUMN

オプション 意味
depth 目次に載せるセクションの深さを数値で指定する。省略時はすべてのセクションが目次になる

local contentsディレクティブが記述されているセクション内だけの目次を作成する。省略時はページ全
体のセクションが目次になる

backlinks
セクションから目次へ戻るためのバックリンクを生成する。指定できる引数は、entry（目次のエン
トリーに対して作成）、top（目次の見出しに対して作成）、none（バックリンクを作成しない）。省略
時はentryとなる

 ▼表1　contentsディレクティブのオプション

 ▼図4　glossaryの適用例

http://docutils.sphinx-users.jp/docutils/docs/ref/rst/directives.html#table-of-contents
http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents

134 - Software Design Aug. 2015 - 135

にも載り、そこからも参照できます。
　glossaryはディレクティブの要素にキーワー
ドを指定し、さらにインデントを付けてキーワー
ドの説明を記述します。複数のキーワードを指
定する場合は空行で区切って並べます（リスト

4）。これは「定義リスト」と呼ばれるreSTの記
法の1つです。定義リストの詳しい内容につい
ては、Docutilsのドキュメント注4を参照してく
ださい。
　glossaryは1個所にまとめて記述する必要は
なく、複数ページで使用しても問題ありません。
　また、リスト4ではsortedオプションを指定
しています。このオプションは、HTML変換時に
キーワードをアルファベット順に並べ替えます。
　glossaryの詳しい使用方法は公式ドキュメン
ト注5を参照してください。

ロールとは

　ロールは記述されているテキストが特別な意
味を持つことをSphinxに伝える役目をする記法
です。
　意味を持たせるテキストをバッククォート（`）
で囲み、その前後のどちらかにロールマーカと

注4） http://docutils.sourceforge.net/docs/ref/rst/
restructuredtext.html#definition-lists
http://docutils.sphinx-users.jp/docutils/docs/ref/rst/
restructuredtext.html#definition-lists

注5） http://sphinx-doc.org/markup/para.html#glossary
http://docs.sphinx-users.jp/markup/para.html#glossary

呼ばれる「ロールである」ことを示す記法を追加
します。ロールマーカはコロン（:）で挟んで記述
します。
　具体的には次のような記述になります。

　前回までに紹介した、ドキュメント間のリンク
を表現する「:ref:」や「:doc:」もロールの一種
です。このほかにも多数のロールが存在します。
詳細は公式ドキュメント注6を参照してください。

　前述したように、索引にはglossaryディレク
ティブで指定したキーワードが載ります。さら
に indexディレクティブ、または indexロールを

注6） http://sphinx-doc.org/markup/inline.html#cross-
referencing-syntax
http://docs.sphinx-users.jp/markup/inline.html#cross-
referencing-syntax

:ロール名:`意味を持たすテキスト`

`意味を持たすテキスト`:ロール名:

索引を作る

目次、用語集、索引を付けよう
̶̶大きめのドキュメントを読みやすくするために 第5回

:term:`Sphinx` と :term:`Word` について、それぞれのメリット・デメリットをまとめます。

 ▼リスト5　glossaryを参照する例

索引へのリンクについて
　Sphinx1.3のデフォルトテーマのAlabasterでは、
ブラウザのウィンドウの横幅が860px未満の場合、
ページの右上に索引へのリンクが表示されます（図
4）。しかし、横幅が860px以上あるとリンクは消
えてしまいます。
　リンクを表示するには、ブラウザの横幅をサイ

ドバーが消えるまで縮める（横幅860px未満）か、
ページ内に「:ref:`genindex`」としてリンクを作
成してください。テーマによっては、ページの右
上、または右下に索引のリンクが常に存在するも
のもあります。テーマの変更については次回紹介
します。

COLUMN

 ▼図5　termロールの適用例

ここをクリックすることで、
図4のページを参照できる

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#definition-lists
http://docutils.sphinx-users.jp/docutils/docs/ref/rst/restructuredtext.html#definition-lists
http://sphinx-doc.org/markup/para.html#glossary
http://docs.sphinx-users.jp/markup/para.html#glossary
http://sphinx-doc.org/markup/inline.html#cross-referencing-syntax
http://docs.sphinx-users.jp/markup/inline.html#cross-referencing-syntax

136 - Software Design

使用すれば、索引に載せる単語を指定できます。
本節ではその方法を紹介します。

indexディレクティブ

　indexディレクティブの引数に単語を指定する
ことで、索引にその単語が載るとともに、索引
から indexディレクティブを記述した場所へ自
動的にリンクが作成されます（リスト6）。索引
からのリンクは indexディレクティブを記述し
た位置に作成されます。リンクが作成される位
置にはテキストが存在しないため、索引に載せ
る単語が示すものの直前（セクションや段落な
ど）に記述します。オプションによって、キー
ワードに階層を持たせたり、複数のキーワード
で相互にリンクを作成することもできます。オ
プションについては、公式ドキュメント注7を参
照してください。

indexロール

　また、本文中の単語にロールを付けることで
も索引に載せられます（リスト7）。indexディレ
クティブと同様のオプションも使用できますが、

注7） http://sphinx-doc.org/markup/misc.html#index-
generating-markup
http://docs.sphinx-users.jp/markup/misc.html#index-
generating-markup

1行で記述する必要があるため複雑なオプション
はreSTの可読性を下げてしまいます。
　indexとglossaryを使用している索引は図6の
ようになります。リスト4、6、7で指定した単
語が索引に載っていることがわかります。また、
現在のバージョンのSphinxでは日本語は記号に
分類されてしまいます。

Sphinxで始める
 ドキュメント作成術

索引に :index:`単語を載せる` にはこのようにします。

 ▼リスト7　indexロールの使用例

.. index:: 索引に載せたい単語

索引に載せたい単語とは

 ▼リスト6　indexディレクティブの使用例

 ▼図6　indexとglossaryを使用している例

ロールを使って取り消し線を引く
　reSTには取り消し線（HTMLのsタグ）を表現する
記法がありません。
　Sphinxでは新しくロールを定義することができ、
それにスタイルシートを適用させられます。この
機能を利用して取り消し線を引いてみます。
　新しいロールの定義は「role」というディレクティ
ブで行います。追加したロールが使用される前に、
同じ reSTファイル内で定義しておきます。ほかの
ロールと同様の使い方で、テキストに色を付けら
れます。

　スタイルシートを追加する方法は前回のコラム
「HTMLのテーブルに罫線を表示する」で紹介した
方法で行います。適用結果は図Aのとおりです。

 追加するロール
 .. role:: strike

 追加するスタイルシート
 .strike {
 text-decoration: line-through;
 }

 reSTに記述するロール
 ここに :strike:`取り消し線` を引きます。

COLUMN

 ▼図A　新しいロールを適用した結果

http://sphinx-doc.org/markup/misc.html#index-generating-markup
http://docs.sphinx-users.jp/markup/misc.html#index-generating-markup

136 - Software Design Aug. 2015 - 137

◆　◆　◆
　これまでにreSTの基本的な記法や、よく利
用するSphinx独自のディレクティブを紹介しま

した。次回は、テーマの変更方法、Sphinxド
キュメントをWebサーバで公開する際に知って
おきたいことを取り上げます。｢

目次、用語集、索引を付けよう
̶̶大きめのドキュメントを読みやすくするために 第5回

PyCon APAC 2015 in Taiwan
　本連載執筆者の1人、清水川です（直近では第4
回「テーブルを使いこなそう」の執筆を担当）。
　2015年6月5～7日に台湾（台北）でPyCon APAC
2015注Aが行われました。PyCon APACはアジア太
平洋地域の国で毎年行われるPythonのカンファレ
ンスです。2010年にシンガポールで第1回が開催
され、2013年は日本で、昨年と今年は台湾で開催
されました。
　筆者はこのイベントで、Sphinxの機能を紹介す
る2つの発表を行ってきました。また、カンファ
レンス2日目の夜のパーティー兼コミュニティー
ブースという構成の企画にも応募し、Sphinxブー
ス展示をさせてもらいました。そこで本欄を利用
して、発表内容の概要と、ドキュメントを書くこ
とやSphinxに対してカンファレンス参加者がどの
ような様子だったかを紹介したいと思います。

 ■発表で紹介した機能
　1つ目の発表は「 Easy contributable interna
tionalization process with Sphinx（Sphinxによる
貢献しやすい翻訳プロセス）」注Bです。本発表では、
Sphinxの基本機能とドキュメント翻訳サポート機
能を紹介しました。また、翻訳ボランティアがOSS
プロジェクトに参加しやすいしくみを提供する方
法として、システム構成や自動化手法ついても話
しました。
　2つ目の発表は「Sphinx autodoc: automated API
documentation（Sphinx autodoc：APIドキュメン
トの自動生成）」注Cです。この発表では、Sphinxの
自動ドキュメント機能を使うと、Pythonプログラ
ムの充実したドキュメントを手軽に作れることを
紹介しました。

 ■台湾でのSphinxへの反応
　カンファレンス2日目の夜に、パーティー企画
の一部注DとしてSphinxのブース展示を行いまし
た（写真A）。約2時間の展示で、50人ほどの人に
Sphinxを紹介しました。ブースに来てくれた参加
者の中でSphinxをすでに知っている、使っている、
という人は3人程度しかいませんでした。Sphinx
を知らなくても、Sphinxで作られているPython
公式ドキュメントは全員が読んだことがあるため、
Python公式ドキュメントがどのようなしくみで作
られているのかを紹介しました。
　ドキュメントの作成については、簡単に作りた
いと思っているものの、どう書いたら良いのかわ
からない、という方が多かったようです。そのた
め、ドキュメントを手軽に生成できるSphinxには、
みんな興味を持ってくれたようで、熱心に質問を
していました。

 ▼写真A　ブースでSphinxの紹介中

　Pythonのデファクトスタンダードとなっている
Sphinxのことはもう少し知られているかと思った
のですが、そうでもないことがわかりました。こ
ういった違いを知ることができるのも、遠征する
ことの楽しみの1つですね。
　より詳しい PyCon APAC 2015のレポートを
gihyo.jpに掲載しております。そちらもご参照く
ださい注E。

COLUMN

注A） PyCon APAC 2015 https://tw.pycon.org/2015apac/
en/

注B） http://www.slideshare.net/shimizukawa/easy-
contributable-internationalization-process-with-
sphinx-pycon-apac-2015-in-taiwan-49057754

注C） http://www.slideshare.net/shimizukawa/sphinx-
autodoc-automated-api-documentation-pycon
apac2015

注D） https://tw.pycon.org/2015apac/en/program/night-
party/

注E） 海外PyCon発表修行レポート2015
 http://gihyo.jp/news/report/01/overseas-pycon-pre

sentation-training-2015

 Author 清水川 貴之

https://tw.pycon.org/2015apac/en/
http://www.slideshare.net/shimizukawa/easy-contributable-internationalization-process-with-sphinx-pycon-apac-2015-in-taiwan-49057754
http://www.slideshare.net/shimizukawa/sphinx-autodoc-automated-api-documentation-pyconapac2015
https://tw.pycon.org/2015apac/en/program/night-party/
http://gihyo.jp/news/report/01/overseas-pycon-presentation-training-2015

138 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

価値をもたらすことができます。たとえば、街
を歩いているユーザに対して近隣のお店の情報
をリアルタイムに配信したり、自分が旅行先で
移動した経路を記録しておき、あとで振り返る
ことができるようにするといった使い方が考え
られるでしょう。このように、位置情報に連動
したサービスは、スマホ以上にウェアラブルのユー
ザに価値を提供できます。それでは、Wear上で
どのように位置情報を取得するのかを解説して
いきます。

Wearアプリでの
位置情報取得

　Wear実機にはハードウェアとしてGPSを搭
載している機種（Sony SmartWatch 3など）もあ
れば、内蔵していない機種（LG G Watchなど）
もあります。Wearアプリで位置情報を利用した
い場合、前者であれば、Wear単体で位置情報
を直接取得することができます（図1）。一方、後
者の場合、Wear単体で位置情報を取得できな

はじめに

　前号（本誌7月号）では、Android Wear（以降
「Wear」と表記）らしいアプリを開発するために
考慮すべきこと、および、Wear向けに提供され
ているUIライブラリについて解説しました。こ
れらを適切に活用することで、ユーザに好まれ
るアプリに近づけることができます。詳細は、
前回の記事をご参照ください。
　今回は話題を変えて、Wear上のGPS機能の
活用方法について解説します。Wearはユーザが
普段身につけているという大きな特徴を持って
います。そのため、ユーザがいる位置に連動し
た有益な情報があれば、スマホ以上にユーザに

いため、代わりにスマホやタブ
レット（以降「Handheld」と表記）
で取得した位置情報を用いるこ
とになります（図2）。
　ただ、いずれの方式でも、位
置情報を取得する実装に大きな
違いはありません。では実装方
法を解説していきます。具体的

Android Wear

アプリ開発入門
第6回（最終回） WearアプリでGPS機能を活用！

～より生活に密着する
スマートデバイスの世

界～

 ▼図1　Wearでの位置情報
　　 取得（直接方式）

 ▼図2　Wearでの位置情報
　　 取得（間接方式）

GPS GPS

Wear実機 Handheld実機 Wear実機

iplatform.orgにて情報発信するかたわら、「セカイフォン」などを開発。Droidconなどでのカンファレンス講
演、MWC/CES/IFAでのプロダクト展示、執筆などの活動も実施。NTTソフトウェア株式会社テクニカルプロフェッ
ショナル。現在はAndroid以外のモバイルOSにも取り組み、公私にわたってモバイルアプリの世界に没頭中。

神原 健一（かんばら けんいち ）　　　　 http://blog.iplatform.org　　　　　　@korodroidWeb Twitter

http://blog.iplatform.org

Aug. 2015 - 139138 - Software Design

第6回（最終回）WearアプリでGPS機能を活用！

には、Google Play Servicesに含まれるLocation

APIを利用します注1。

位置情報を取得する
プログラムの開発

　今回は、位置情報を取得するサンプルアプリ
（図3）を用いて、実装の流れを紹介します。ア
プリを起動すると、一定間隔で位置情報を取得
し、その結果をトーストとして表示するという
機能を持たせます。Wearアプリとして実装し
ますが、具体的な実装のステップは次のとおり
です。

①AndroidManifest.xmlでの宣言
②build.gradleの設定
③GoogleApiClientに関する実装
④LocationAPIに関する実装

① AndroidManifest.xml
　 での宣言

　Google Play Servicesに含まれる機能を用い
るため、その宣言をAndroidManifest.xmlで行
います。リスト1のとおり、<application>～

</application>内に、<meta-data />の定義を
行ってください。また、位置情報の取得に必要

注1） 位置情報といえば、Androidフレームワークに含まれる
Location API（android.locationパッケージ）もありますが、
現在は非推奨となっています。既存のアプリで利用してい
る場合もGoogle Play Servicesへの移行が推奨されていま
すので留意しましょう。

となるパーミッショ
ン“ACCESS_FINE_LOCATION”を追加して
おきます。

②build.gradleの設定
　アプリで利用するライブラリをbuild.gradle

のdependenciesで定義しておきます。今回の
アプリでは、Google Play ServicesのAPIに含
まれるAndroid WearとLocationライブラリを
用いるため、リスト2のとおり、定義を行って
おきます。
　余談ですが、Google Play Servicesには、そ
の他にもさまざまなライブラリが含まれていま
す。提供されているAPI一覧、および、build.

gradleの定義内容に関しては、公式サイト注2を
参照ください。今後、これらのAPIは増減し
たり、バージョンアップなども行われると思い
ますので、最新情報を適宜ウォッチすることを
心がけてください。

③GoogleApiClient
　に関する実装

　Google Play Servicesを利用するには、Goo

gleApiClientクラスを用いる必要があります。
具体的には、リスト3のコードを記述します。
　まず、Activityの onCreate()メソッド内で、
GoogleApiClientのインスタンスを生成してい

注2） http://developer.android.com/google/play-services/
setup.html

 ▼図3　サンプルアプリ

 ▼リスト1　AndroidManifest.xmlでの宣言

 ▼リスト2　build.gradleの定義例

<application>
 ...（略）...
 <meta-data android:name="com.google.android.gms.version" android:value="@integer/ｭ
google_play_services_version" />
</application>
...（略）...
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 ...（略）...
 compile 'com.google.android.gms:play-services-wearable:7.5.0'
 compile 'com.google.android.gms:play-services-location:7.5.0'
}

http://developer.android.com/google/play-services/setup.html

140 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

ます（リスト3（1））。また、接続成功、中断を
監視するリスナーをaddConnectionCallbacks()

メソッドでリスト3（2）、接続失敗を監視する
リスナーをaddOnConnectionFailedListener()

メソッドで登録していますリスト3（3）。これ
により、接続成功時はonConnected()メソッド、
接続中断時はonConnectionSuspended()メソッ
ド、接続失敗時はonConnectionFailed()メソッ
ドがコールバックされます。さらに、Activity

がフォアグラウンドに移行するonResume()の

契機でGoogleApiClientの接続処理をリスト3
（4）、バックグラウンドに移行するonPause()

の契機で切断処理を行っています（リスト3（5））。

④LocationAPIに関する実装
　今 回 は、Google Play Servicesの Location

APIを利用するため、リスト3に対して次の4

つの改造を行います。

ⓐLocationListenerをimplementsする
ⓑLocation APIを利用することを宣言する

 ▼リスト3　GoogleApiClientの接続処理

public class MainActivity extends Activity implements
 GoogleApiClient.ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener{

 private GoogleApiClient mGoogleApiClient;
 private static String TAG = "MainActivity";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mGoogleApiClient = new GoogleApiClient.Builder(this) (1)
 .addApi(Wearable.API)
 .addConnectionCallbacks(this) (2)
 .addOnConnectionFailedListener(this) (3)
 .build();
 }

 @Override
 protected void onResume() {
 super.onResume();
 mGoogleApiClient.connect(); (4)
 }

 @Override
 protected void onPause() {
 super.onPause();
 mGoogleApiClient.disconnect(); (5)
 }

 @Override
 public void onConnected(Bundle bundle) { 接続成功時
 Log.i(TAG, "onConnected");
 }

 @Override
 public void onConnectionSuspended(int i) { 接続中断時
 Log.i(TAG, "onConnectionSuspended");
 }

 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) { 接続失敗時
 Log.i(TAG, "onConnectionFailed");
 }
}

リスト4aの個所

リスト4bの個所

リスト4cの個所

リスト4dの個所

Aug. 2015 - 141140 - Software Design

第6回（最終回）WearアプリでGPS機能を活用！

ⓒ位置情報の取得処理を開始する
ⓓLocationListenerの処理を実装する

　ⓐでは、位置情報取得を監視するリスナーで
あるLocationListenerを実装しています（リス
ト4a）。
　ⓑでは、GoogleApiClientで利用するLocation

Servicesを利用するため、addApi()メソッドで
宣言を行っています（リスト4b）。
　ⓒでは、GoogleApiClientの接続完了（onCon

nected()が呼び出されて以降）の契機で、位置
情報取得処理を開始しています（リスト4c）。
まず位置情報取得を行うためのLocation

Requestオブジェクトを生成し、3つのパラメー
タを設定しています。setPriority()メソッドで
精度（今回はPRIORITY_HIGH_ACCURACY

（高精度））、setInterval()メソッドにて位置情
報の取得間隔をミリ秒単位で（今回は5,000ミ
リ秒）、setFastestInterval()メソッドにて正確
な位置情報の取得間隔をミリ秒単位で（今回は

5,000ミリ秒）指定しています。次に、
位置情報のプロバイダであるLoca

tionServices.FusedLocationApiク
ラスの requestLocationUpdates()メ
ソッドを呼び出すことで、位置情報
の取得を開始します。
　ⓓでは、位置情報が変化する契機
で呼び出されるonLocationChanged()

メソッドをオーバーライドして処理
を実装しています（リスト4d）。呼
び出される際に、位置情報が含まれ
るLocationオブジェクトが渡され
るというしくみになっています。今
回は、取得した位置情報の緯度と経
度を、それぞれ getLatitude()、get

 ▼リスト4a　改造処理その1

 ▼リスト4b　改造処理その2

public class MainActivity extends Activity implements
 GoogleApiClient.ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener,
 LocationListener { 追加行
 ...（略）...
}

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main); 追加行
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addApi(LocationServices.API) 追加行
 .addApi(Wearable.API)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();
}

 ▼リスト4c　改造処理その3（差し替え）

 ▼リスト4d　改造処理その4（全体追加）

private static final long UPDATE_INTERVAL_MS = 5000;
private static final long FASTEST_INTERVAL_MS = 5000;

@Override
public void onConnected(Bundle bundle) {
 LocationRequest locationRequest = LocationRequest.create()
 .setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY)
 .setInterval(UPDATE_INTERVAL_MS)
 .setFastestInterval(FASTEST_INTERVAL_MS);

 LocationServices.FusedLocationApi
 .requestLocationUpdates(mGoogleApiClient, locationRequest, this);
}

@Override
public void onLocationChanged(Location location) {
 Toast.makeText(this, "Latitude=" + location.getLatitude() +
 ", Longitude=" + location.getLongitude(), Toast.LENGTH_SHORT).show();
}

142 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

Longitude()の両メソッドにより取得し、トー
ストとして表示しています。
　これによりWearアプリで位置情報取得が行
われます。しかし、冒頭で紹介したとおり、
WearにはGPS機能が搭載されている機種も
あれば、そうでないものもあります。また、
Wear実機とペアリング済みのHandheldが、
Wear実機と接続されている場合もあれば、切
断されている場合もあります。これらをすべて
場合分けしなければいけないのでしょうか。
Android WearのOSの振る舞いとしては、そ
こまで面倒なことをせずとも位置情報をよしな
に取得してくれるため、どのように位置情報が
取得されるかについては基本的に心配する必要
はありません。
　たとえば、Wearアプリで位置情報の取得を
試みると、Wear実機とHandheld実機が接続さ
れているときは、Handheldで取得した情報が
利用されます。Wear実機とHandheld実機が切
断されているときは、Wear実機のGPS搭載有
無により振る舞いが変わります。GPSがあれ
ばその値が返却され、ない場合は値を取得でき
ないことになります。

位置情報取得に
関するTips

　位置情報を扱うWearアプリを開発する場合
に、あらかじめ留意しておくべき事項をいくつ
か紹介します。

Wear実機での
GPS機能の搭載判定

　Wear実機とHandheld実機が接続されている
場合は、Handheld経由で位置情報を取得でき
ますが、その接続が解除されると、当然ながら、
GPS未搭載のWear実機では位置情報を取得
できなくなります。そのとき、Wear実機の
GPS搭載有無により、Wearアプリの処理を変
更したい場合もあるでしょう。
　たとえば、リスト5のようなコードを記述す
ることで実現できます。hasSystemFeature()メ
ソッドを用いて、引数として、判定したい機能
（GPSの場合は、PackageManager.FEATURE

_LOCATION_GPS）を与えることで、その機
能が搭載されているか否かを取得できます。

WearとHandheldが
切断されたときの制御

　Wear実機がHandheld実機と切断されると、
WearアプリはHandheld経由では位置情報を取
得できない状態となります。その際、GPS未
搭載のWear実機は位置情報を取得できないた
め、位置情報を必要とするサービス（歩行ルー
トのトラッキングなど）は利用できなくなりま
す。そのとき、アプリの利用者にはその旨を通
知したほうがよいでしょう。そのためには、
WearとHandheldの切断契機を知る必要があり
ます。
　これはWearableListenerServiceを使えば実
現できます。具体的には、リスト6に示すコー

 ▼リスト5　GPS機能の搭載判定

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main_activity);
 if (!hasGps()) {
 Log.d(TAG, “GPS未搭載です。”);
 } else{
 // GPSを用いる処理
 }
 ...（略）...
}

private boolean hasGps() {
 return getPackageManager().hasSystemFeature(PackageManager.FEATURE_LOCATION_GPS);
}

Aug. 2015 - 143142 - Software Design

第6回（最終回）WearアプリでGPS機能を活用！

ドを記述します。同サービスを継承し、切断時
に呼び出されるonPeerDisconnected()メソッド
をオーバーライド実装します。その中でユーザ
に通知したい内容をトーストとして表示してい
ます。また、同Serviceと IntentFilterの宣言
をAndroidManifest.xmlで行っておく必要があ
ります。リスト7のとおり、<application>～

</application>内に定義すればOKです。

最新の位置情報取得
　GPS未搭載機種がHandheld実機と切断され
ると、Wearアプリで位置情報を取得できなく
なりますが、そのときでも、過去に取得した最
新の位置情報を用いて処理を実行したい場合も
あるでしょう。リスト8に示すコードを記述す
ればOKです。getLastLocation()メソッドに
GoogleApiClientのインスタンスを渡すことで、
過去に取得した中で最新の位置情報が格納され
たLocationオブジェクトを取得できます。あ

とは、その中から緯度・経度を取得するという
流れです。

おわりに

　今回は、位置情報取得に関する実装方法や関
連するトピックを解説しました。
　2015年3月号より開始した本連載ですが、
この回をもち、いったん充電期間をいただくこ
とにしました。これまでの連載記事が皆様の
Wearアプリ開発のヒントになっておりました
ら、著者として大変うれしいかぎりです。読者
の皆さんが素敵なWearアプリを世の中に提供
することで、ウェアラブルの世界を一緒に盛り
上げてくださることを願うばかりです。また近
いうちに、皆様のお目にかかることもあるかと
思います。その節はどうぞよろしくお願い致し
ます＆これまで本当にありがとうございました！
s

 ▼リスト6　接続が切断されたときの実装

 ▼リスト7　AndroidManifest.xmlでの宣言

 ▼リスト8　最新の位置情報取得

public class NodeListenerService extends WearableListenerService {

 @Override
 public void onPeerDisconnected(Node peer) {
 if(!hasGps()) {
 Toast.makeText(this, "位置情報を取得できないため、利用できる機能が制限されます",
Toast.LENGTH_SHORT).show();
 }
 }
 ...（略）...
}

<application ...>
 <service android:name=".NodeListenerService">
 <intent-filter>
 <action android:name="com.google.android.gms.wearable.BIND_LISTENER" />
 </intent-filter>
 </service>
 <...>
</application>

Location location = LocationServices.FusedLocationApi.getLastLocation(mGoogleApiClient);
Toast.makeText(this, "Latitude=" + location.getLatitude() +
 ", Longitude=" + location.getLongitude(), Toast.LENGTH_SHORT).show();

144 - Software Design

言語で開発されており、高速に動作することが
特徴です。まず、使い方を見てみましょう。特
定ロールのホスト一覧情報を取得するには図1の
ようなコマンドを叩きます（My-Service、proxyは
それぞれ架空のサービス名とロール名です）。
　mkrの出力形式は基本的にJSONになります。
jq注2コマンドにより、自由に出力内容をカス
タマイズできます。たとえば、「My-Serviceサー
ビスにおけるproxyロールのhostIDのみの一覧」
を取得したい場合は、図2のようなコマンドを
叩きます。jqの記法の詳細については公式マニュ
アル注3を参照してください。
　今度は、特定ホストのステータスとロールを更
新してみましょう。「2eQGEaLxiYUホストのステー
タスをmaintenance、サービスをMy-Service、ロー
ルをdb-masterに」変更します（図3）。

Mackerelではじめる
サーバ管理

　今回から、より実運用を想定したMackerelの使い方を特集していきます。前半では、
特定の操作を一括で行える「mkr」、Chefなどの構成管理ツールをサポートする
「cookbook-mackerel-agent」を紹介。後半ではAWSとMackerelの連携に関する

Tipsを紹介します。

Writer 坪内 佑樹 （つぼうち ゆうき） ㈱はてな
Twitter @y_uuk1

　前回は、メトリック関連のAPI、およびチェッ
ク監視機能とそのAPIを説明しました。今回は、
Mackerelによるサーバ運用をサポートするツール、
さらにAWS（Amazon Web Services）のサービスを
Mackerelで監視するためのノウハウを紹介します。

運用ツール

　まず、Mackerel周辺の運用ツールとして、C

LIツール「mkr」と、Chef cookbookの「cookbook-

mackerel-agent」を紹介します。

mkr

　Mackerelのような管理ツール系のサービス
では「ある操作を一括で行いたい」といった柔軟
な操作性を求められます。たとえば、特定サー
ビスに属するホストのステータスをすべて
「standby」にする操作が挙げられます。
　しかし、一括操作をWebUIで表現すること
が難しいという事情もあります。そこで、コマ
ンドラインツールmkr注1を開発しました。mkr

とUNIXのパイプやリダイレクトを活用するこ
とにより、一括操作はもちろん、ほかのUNIX

ツールと組み合わせることで運用の幅を広げる
ことができます。
　mkrはホスト情報の参照・更新やメトリックを
投稿するためのコマンドラインツールです。Go

第6回 Mackerel周辺の運用ツールと
AWS連携ノウハウ

mkr hosts --service My-Service --role proxy
[
 {
 "id": "2eQGEaLxiYU",
 "name": "myproxy001",
 "status": "standby",
 "roleFullnames": [
 "My-Service:proxy"
],
 "isRetired": false,
 "createdAt": "Nov 15, 2014 at 9:41pm (JST)"
 },
…（略）…
]

 ▼図1　mkrで特定ロールのホスト一覧情報を取得

注1） URL https://github.com/mackerelio/mkr

注2） URL http://stedolan.github.io/jq
注3） URL http://stedolan.github.io/jq/manual

http://stedolan.github.io/jq
http://stedolan.github.io/jq/manual
https://github.com/mackerelio/mkr

144 - Software Design Aug. 2015 - 145

　さらに応用として、My-Serviceサー
ビス、proxyロール配下のホストのステー
タスをすべてworkingに変更してみます。
mkr updateコマンドの引数には複数の
ホスト IDを指定できるため、図4のよ
うに mkr hostsコマンドの結果を mkr
updaeコマンドの引数としてシェルに展
開させます。参照系と更新系のコマン
ドをシェル上で組み合わせることにより、
特定サービスや特定ロール配下のホス
ト群に対しての一括操作ができます。
　ここまで、mkrを単独で利用する方法
を紹介しました。しかし、mkrの活用は
これにとどまるものではありません。
たとえば、本連載の第4回にて紹介した tmux-

cssh注4と組み合わせることもできます。My-
Serviceサービスのappロール配下のすべての
ホストにsshログインする場合は、図5のよう
なコマンドになります。
　執筆現在、mkrは開発版のみの提供です。
GitHubリポジトリ注5からソースコードと実行
ファイルを取得できます。ぜひご利用ください。

　Mackerelを利用するためには、ホスト情報
やメトリック情報を取得するために、監視対象
ホストにmackerel-agentをインストールする
必要があります。mackerel-agentはLinuxホス
トへのインストールを容易にするために、rpm

およびdebパッケージを、それぞれaptリポジ
トリ、yumリポジトリ上で提供しています。
　しかし、実際にはパッケージをインストール
するために、aptコマンドやyumコマンドを直
接叩かずに、ChefやAnsibleのような構成管理
ツールを利用されている方も多いでしょう。
　そこで、mackerel-agentのインストールをサ
ポートするためのcookbook-mackerel-agentを

用意しました。これはmackerel-agentパッケー
ジのインストール、mackerel-agent-pluginsの
インストールおよびmackerel-agent.confを設
定する機能を提供します。RHEL系とDebian

系の両方のディストリビューションに対応して
いますので、yum・aptなどのパッケージマネー
ジャの違いを意識することなく利用できます。
　Berkshelf（Chefのcookbookを管理するため
のツール。RubyGemsにおけるbundlerのよう
なもの）をお使いの場合は、Berksfileに次のよ
うな1行を追加します。バージョンは執筆現在
では1.2.0が最新です。なるべく最新版を使用
するようにしてください。

cookbook 'mackerel-agent', '~> 1.2.0'

　cookbook-mackerel-agentは基本的には、適
切にアトリビュートを設定し、レシピをinclude

するだけで使えます。
　まず、リスト1にアトリビュートの設定例を
載せました。必須の指定項目はapikeyのみです。
node['mackerel-agent']['conf']以下の名前
空間はmackerel-agent.confの設定に対応して
います。次に、mackerel-agentのインストール
が必要なレシピ内で、次のようにmackerel-

agentのレシピを includeします。注4） URL https://github.com/dennishafemann/tmux-cssh
注5） URL https://github.com/mackerelio/cookbook-mack

 erel-agent

cookbook-mackerel-agent

第 6 回
Mackerel周辺の運用ツールとAWS連携ノウハウ

mkr update --status maintenance --rolefullname ｭ
 My-Service:db-master 2eQGEaLxiYU

 ▼図3　特定ホストのステータスとロールを更新

mkr update --status maintenance --role ｭ
 My-Service:db-master $(mkr hosts --service ｭ
 My-Service --role proxy | jq -a -M -r ".[].id")

 ▼図4　ロール配下のホストのステータスを一括で変更

tmux-cssh $(mkr hosts --service My-Service --role app)

 ▼図5　tmux-csshと連携して複数のホストに一括ログイン

mkr hosts --service My-Service --role proxy |ｭ
 jq -r -M ".[].id"
2eQGEaLxiYU
2eQGDXqtoXs

 ▼図2　特定ロールの、hostIDのみの一覧を取得

https://github.com/dennishafemann/tmux-cssh
https://github.com/mackerelio/cookbook-mackerel-agent

146 - Software Design

 Mackerelではじめるサーバ管理

include_recipe 'mackerel-agent'

　最後に、対象サーバに対してChefを実行す
ると、mackerel-agentが起動します。
　cookbook-mackerel-agentはGitHub上で開発
していますので、不具合などがあれば、issue

で報告していただくか、修正のためのPull

Requestを送っていただければと思います。

Mackerelと
AWSとの連携

　ここからは、AWS上で構築したシステムを
Mackerelを用いて管理する方法を紹介します。

EC2インスタンス情報の表示

　執筆現在、MackerelにはAWSをサポートす
るための機能として、EC2のインスタンス情
報をホスト詳細画面やホスト一覧画面に表示す
るというものがあります。
　mackerel-agent 0.14.3以降をEC2インスタ
ンスにインストールすると、図6のように追加
のホスト情報として、インスタンスタイプ、セ
キュリティグループなどが表示されます。
　実際の運用では、Availability Zone単位の障
害に備えて、Availability Zoneをまたがってイ
ンスタンスを配置することにより、可用性を担
保することがあります。そのような場合、
Mackerel上で同じロール内のホストがすべて
同じAvailability Zoneに追加されていないか
などを確認できます。
　ほかには、たとえば、Mackerelのパフォー
マンスグラフを眺めつつインスタンスタイプを
調整する場合にも、Mackerel上でインスタン
スタイプを閲覧できて便利です。

　基本的に、EC2以外のAWSサービスには
mackerel-agentを直接インストールする術があ
りません。しかし、実際にはELBやRDSのメ
トリックを監視したいという要求があります。
ここでは、RDSを例に取り、AWSサービスを
Mackerelで監視するノウハウを紹介します。
　RDSのメトリックを取得し、Mackerelのグ
ラフとして表示するための方法はいくつかあり
ます。その中でも、RDSのインスタンスを
Mackerelのホストとして登録する方法が最も
手軽で、扱いやすいでしょう。すでに述べてい
ますが、RDSインスタンス自体にはmackerel-

agentをインストールできません。したがって、
mackerel-agentによるMackerelへのホスト登
録ができません。しかし、MackerelにはAPI

経由で任意のホスト情報を投稿できる機能があ
ります。先ほど紹介したmkrコマンドを用いて、
図7のようなコマンドでRDSのエンドポイン
トをホスト名として、RDSホストを作成します。
　今は、ホストを作成しただけの状態です。次

 ▼図6　 Mackerelに表示されたEC2インスタンスの
情報

EC2以外のAWSサービスとの連携

node.default['mackerel-agent']['conf']['apikey'] = 'Your API KEY' # 必須
node.default['mackerel-agent']['conf']['roles'] = ["My-Service:app", "My-Service:proxy"] # 複数指定可能
node.default['mackerel-agent']['plugins'] = true # mackerel-agent-pluginsパッケージをインストールするかしないか
node.default['mackerel-agent']['conf']['plugin.metrics.nginx'] = {
 'command' => '/usr/local/bin/mackerel-plugin-nginx -port=8081 -path=/server-status',
}

 ▼リスト1　cookbook-mackerel-agentを使うためのアトリビュートの設定例

146 - Software Design Aug. 2015 - 147

に、メトリックを取得し、投稿する必
要があります。RDSのメトリックを取
得し、投稿するには、図8のように
mackerel-plugin-aws-rdsとmkrを組み
合わせます。mkr throwコマンドは、
mackerel-agent-pluginのメトリック出
力形式を入力として、<hostId>で指定された
ホストに対して、メトリックを投稿できます。
　図8のコマンドを1回実行すると、現時点の
データが送られるだけです。毎分メトリックを
投稿するためには、開発ホストなどの適当なホ
ストのcronを使うのが手軽でしょう（図9）。
　さらに、RDSの実体はMySQLですので、
mackerel-plugin-mysqlとmkrを組み合わせた、
MySQLのメトリック表示もできます（図10）。
　このようにして、ホストを作成し、メトリッ
クを投稿すると、loadavgなどの基本メトリッ
クグラフを省いたカスタムメトリックのみのホ
スト詳細ページができあがります（図11）。当然、
メトリックに対して監視条件を指定しアラート
を発生させることができます。

　RDS以外にも、mackerel-plugin-aws-elb、
mackerel-plugin-aws-elasticache、mackerel-

plugin-aws-ec2-cpucredit、mackerel-plugin-

aws-sesなどのAWS関連のプラグインがあり
ます。これらを活用して、AWSサービスのメ
トリックをMackerelで表示し、監視できます。

◆　◆　◆
　Mackerel関連の運用ツール「mkr」「cookbook-

mackerel-agent」、さらにAWSとの連携のノウ
ハウについて紹介しました。
　MackerelではREST API注6を公開していま
すので、ユーザのみなさんがAPIを利用した
運用ツールを自作できます。ぜひ、みなさんの
運用環境に合わせたオリジナルのツールを作っ
てみてください。ﾟ

 ▼図11　RDSのメトリックグラフ 左上から順に、「MySQLのクエリ数」「MySQLのコネクション数」「InnoDBのハッシュイ
ンデックスサイズ」「InnoDBのバッファプールサイズ」「InnoDBのバッファプール上の読
み書きおよび作成されたページ数」「InnoDBのバッファプールのヒット効率」のグラフ

第 6 回
Mackerel周辺の運用ツールとAWS連携ノウハウ

mkr create --roleFullname My-Service:rds-master ｭ
 examplerds01-xxxxxxxxxxx.ap-northeast-1.elb.amazonaws.com

 ▼図7　mkrコマンドを用いてRDSホストを作成

mackerel-plugin-rds -identifier=examplerds01 |ｭ
 mkr throw --host <hostId>

 ▼図8　RDSのメトリックを取得し、投稿

*/1 * * * * root /usr/local/bin/mackerel-plugin-aws-rds -identifier=examplerds01 |ｭ
 /usr/local/bin/mkr throw --host <hostId> 1>/dev/null | logger -t mackerel-plugin-aws-rds

 ▼図9　毎分メトリックを投稿するcron

*/1 * * * * root /usr/local/bin/mackerel-plugin-mysql -host=examplerds01-xxxxxxxxxxx.ap-northeast-1.ｭ
elb.amazonaws.com -username=monitor -password=monitor |ｭ
 /usr/local/bin/mkr throw --host <hostId> 1>/dev/null | logger -t mackerel-plugin-mysql

 ▼図10　MySQLのメトリックを表示するcron

注6） URL http://help-ja.mackerel.io/entry/spec/api/v0

http://help-ja.mackerel.io/entry/spec/api/v0

148 - Software Design

WWDC15で
得られたものは何か？

　前回と今回の間に、WWDC15注1がありました。
素人的には、「見るべきものがなかった」前回以上
に「つまらない」WWDCだったかもしれません。
前回同様、新ハードウェアの発表はゼロ。Mac

OS Xと iOS のバージョンが1つずつ上がるのは
いつもどおり。しかもOS X v10.11の名前「El

Captan注2」は、Mac OS Xの名前の由来である
Yosemite注3の中の地名。命名的には、Mac OS X

v10.5 LeopardとMac OS X v10.6 Snow Leopard

より変化に乏しいと言えなくもありません。
　その「素人的にはつまらなかった」前回が、「玄
人的にはサイコー」だったのは、新言語Swift

の発表に尽きるでしょう。それからわずか1年で、
Stack OverflowのDeveloper Surveyで「最も愛
される開発言語（図1）」の座を射止めました注4。
　しかし、現時点において、Swiftで開発でき
るソフトウェアはMac OS Xと iOSという、わ
ずか2種類のプラットフォームのみ。「Watch

OSもあるではないか」という意見もありますが、
Apple Watchが iPhoneを必須とするのと同様、
Watch OSが現時点で iOSを必須とする以上、
ひいき目に見ても対象プラットフォームは3で
はなく2.5といったところでしょう。しかもす
べてApple製ハードウェア上でしか動かない。
あくまで現状は「Apple帝国公用語」であって、

「ギークの共通言語」ではないのです。
　Appleは、それが半年後に変わることを公約
しました。
　Swiftは2015年末にオープンソースソフト
ウェアになるのです。

Appleの公約

　WWDC15でAppleが公約したのは、次のと
おりです注5。

・SwiftのソースコードがOSI認可のpermissive
なライセンスのもとで公開されること

・Apple自身がMac OS X、iOSに加えLinux
ポートを寄贈する所存であること

・ソースコードにはSwiftコンパイラおよび標
準ライブラリが含まれていること

書いて覚える 入門Swift

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

Swiftが愛される理由7第 回

 ▼図1　Stack Over�owのDeveloper Surveyより

注1） https://developer.apple.com/wwdc/
注2） https://en.wikipedia.org/wiki/El_Capitan
注3） https://en.wikipedia.org/wiki/Yosemite_National_Park

注4） http://stackoverflow.com/research/developer-survey-2015
注5） https://developer.apple.com/swift/blog/

https://developer.apple.com/wwdc/
https://en.wikipedia.org/wiki/EL_Capitan
https://developer.apple.com/swift/blog/
https://en.wikipedia.org/wiki/Yosemite_National_Park
http://stackoverflow.com/research/developer-survey-2015

148 - Software Design Aug. 2015 - 149

Swiftが愛される理由7第 回

　本連載第0回で、筆者はこう書きました。

口上だけみると、SwiftはiOS/OS Xアプリケー
ション開発専用に見えますが、専用にしておく
にはもったいないほどよくできた言語で、学べ
ば学ぶほど汎用向けの言語であることが明らか
になってきます。Swiftをオープンソース化する
つもりがあるかをAppleはつまびらかにしてい
ませんが、同社のオープンソース戦略、とくに
LLVMへのコミットメントを考えるとその可能
性は低くないと筆者は考えています

　予言というより願望だったのですが、それが
成就したといってもよいでしょう̶̶この
Swiftの沿革は、Objective-Cのそれと比べる
と実に興味深い。

Back to the Future

　Swiftの登場まで「Apple帝国公用語」だった
Objective-Cは、

・クロスプラットフォームな
・C言語上位互換の
・オブジェクト指向言語

として誕生しましたが、

・NextSTEPで採用された以外は、（gccに標
準サポートされているにもかかわらず）他プ
ラットフォームではあまり採用されず

・NeXT社のAppleによる買収——という形をとっ
た、Steve Jobsによる「大政奉還」—にともなって、
Mac OS Xの事実上の標準開発言語となり

・それがiPhone OS、後のiOSにも引き継がれ
・事実上のAppleプラットフォーム専用言語

となって今にいたっているわけですが、Swiftは

・Mac OS XおよびiOS専用言語として生まれ
・事実上どころか公式のAppleプラットフォー

ム第1言語（Lingua Prima）となった後
・オープンソース化とクロスプラットフォーム

化がなされる

というわけでObjective-Cの歴史を逆再生して
いるようです。それも20倍速ぐらいで。
　Appleはなぜそうしたのでしょう?

後出しジャンケンは
勝ってなんぼ

　21世紀において、電脳言語というのは、はじ
めからクロスプラットフォームかつオープンソー
スとして公開されるのが常識になってきていま
す。Mozilla Foundation が公開したRust注6し
かり、Googleが公開したGo注7しかり。Perlや
PythonやRubyは前世紀どころか「オープンソー
ス」という言葉が生まれる前からそうでしたし、
それらの言語の成功が、「言語はオープンソー
スが当たり前」という現況の原動力になったの
はたしかでしょう。
　しかし悲しいかな、言語が普及するにあたっ
て最も重要なのはオープンソースであることで
はないのです。RustとGoを比較してもそれはわ
かります。言語としてより先進的なのはどう見
てもRustで、SwiftもRustから多くの特長を取
り入れています。しかしどちらがより使われて
いるかといえば、Goのほうでしょう。なぜか？
　ライフワーク（life work）ならぬ「ライスワー
ク（rice work）」、つまりその言語を学ぶことで
日々の糧を得ることがより容易だからです。普
及した言語におよそ例外は見当たりません。
COBOLとFORTRANの時代から、数多の言
語が群雄割拠する現在に至るまで。思い起こせ
ば、Java、正確にはJavaの生みの親であるSun

Microsystems（以降Sun略記）による標準の
JDKもオープンソース化されたのは、1995年
から11年後の2006年。しかもJDKの「ほとん

注6） http://www.rust-lang.org　　　　　　　　　 　注7） http://golang.org

http://www.rust-lang.org
http://golang.org

150 - Software Design

書いて覚える 入門Swift

ど」であってすべてではありませんでした。
　言語を普及させるのに、オープンソースであ
ることは必須ではないのです。
　それではなぜ、Appleはオープンソース化に
踏み切ることにしたのでしょうか？
　主導権を握り続けるためだ、と筆者は考えて
います。
　Javaの事例は、格好の反面教師となっていま
す。SunがJDK̶̶の全部ではなく大部分̶̶
をオープンソース化した2006年、Sunはかつて
誇っていた主導権をさまざまな分野で失ってい
ました。サーバはLinuxに押され、もともと
Javaが狙っていたシンクライアントの分野は分
野そのものがテイクオフしたとは言い切れず
……Javaのオープンソース化は同社の起死回生
の一手（の一環）でしたが、結局同社はそれから
4年後の2010年、Oracleによって買収されたの
は読者のみなさんもご存じのとおりです。
　そのJavaの本来の目的に最も忠実なのは、
Androidでしょう。Javaの深慮遠謀はスマートフォ
ンによって花開いたわけですが、その果実がもた
らされる前に生みの親はなくなってしまいました。
その「最も成功したJava」であるAndroidのJava

が、「それは本物のJavaじゃない、勝手に使うな」
とばかりにSunを買収したOracleに訴えられてい
るにいたってはもう何がなんだかです。
　食えなきゃ誰も食ってくれない。
　オープンでなければ、誰も食いつづけてくれ
ない。
　よって、まずは食える言語としての地位を確立
しておき、まだ主導権がある内にオープンにする。
　それが、Swiftに対するAppleの基本戦略だっ
たと弾言できます。
　歴史の教訓によく学んだ、悪く言えば見事な
後出しジャンケンと言えるでしょう。
　それだけに、負けるわけにはいかない。

　言語の普及競争において、Swiftほど高いオッ
ズを持つ言語が見当たりません。

Swift2「後方互換性？　
なにそれおいしいの？」

　ところで、オープンソース化されるSwiftは、
Version 2以降のものになります。で、この
Swift2、Swift1のコードはほとんどそのまま
では動きません。
　「後方互換性？　なにそれおいしいの？」とば
かりの改変がもりだくさんです。
　たとえばprintln()とprint()が`print()の
み に な り、改 行 の 有 無 を 2番 目 の 引 数
appendNewline: Bool = true（つまりただの
print()はSwift1の println()と等価）という
変更だけみても、「ひょえぇぇ」です。Python

2とPython 3の違いに匹敵する違いがあります。
　その代わり、Swift 2の現時点における唯一
の実装、Xcode 7 betaにはコンバータが付いて
います（これも Python っぽい）。Swift 1のプ
ロジェクトをSwift 2に変換してくれるのです
が、試しにswift-complex注8を食わせてみたと
ころ、手による修正ゼロでコンバートできまし
た（図2、図3、図4）。同プロジェクトはプロ
トコル、ジェネリクス、演算子定義といった
Swiftの特長をめいっぱい活用したプロジェク
トであることを考えると、まさに驚き桃の木も
といリンゴの木。
　ただし、Swift 2の言語仕様注9は、執筆現在に

 ▼図2　コンバート開始

注8） https://github.com/dankogai/swift-complex
注9） http://adcdownload.apple.com/WWDC_2015/Xcode_7_beta/Xcode_7_beta_Release_Notes.pdf

https://github.com/dankogai/swift-complex
http://adcdownload.apple.com/WWDC_2015/Xcode_7_beta/Xcode_7_beta_Release_Notes.pdf

150 - Software Design Aug. 2015 - 151

Swiftが愛される理由7第 回

おいてリリースノートのみ。Swift 0→Swift 1

のころの変更の激しさを思い起こすと、βが取れ
るまではかなり頻繁な変更が予想されます。
Swift 2への移行は正式版が出た後で、ただし
Swift 2正式化以後はSwift 1の後方互換性サポー
トも捨てるのがよさそうです。筆者がGitHubに
上げているプロジェクトはそうするつもりです。

import POSIX // ???

　今回はほとんどコードが出てきませんでした。
いや、政治も立派なcode（法）ではあるのですが、
Swiftのソースコードが出ていなかったのはた
しかです。というわけで1つだけ。

　Appleのいうところの「標準ライブラリ」とは
いったい何を指すのでしょう？
　同社の文化と沿革から考えて、Foundation
やIOKitまでそこに含まれることは考えがたい。
現在「最低限 *nix的なAPI」は、Darwinという
名前でこれはオープンではあるけれど標準とは
言い難い。というわけで今から予想しておくと
それはPOSIXという名前になるのでないでしょ
うか。

import POSIX // write once, run everywhere

　この予測が当たるかどうか、半年後が今から
楽しみです。ﾟ

 ◀図3　変更点が指摘される

 ◀図4　いっきに修正、手ずからの
 作業はゼロ

152 - Software Design

「かけた記憶のない国際電話の料金が請求され、調べてみるとIP-PBX（IP電話交換機）に何者かが接続
し、そこから勝手に発信していた」という報道がつい最近ありました。突然、高額な国際電話料金を請
求される問題は古くて新しい問題です。その原因となっているIP電話やIP-PBXについて考えていきま
す。また、家庭用ルータに付属するIP電話機能などのセキュリティも一緒に考えてみましょう。

最近多発する
IP電話乗っ取り事件

　まずは実際にあった事件を読売新聞の記事から引
用します。

　インターネット回線を利用した IP電話が乗っ取
られて高額の電話料金を請求される問題で、東京都
内の通信機器販売会社の顧客のうち4割が被害を受
けていたことが分かった。
読売新聞（2015年6月13日）注1より

　この報道がなされる前日の2015年6月12日に
は、総務省から「第三者によるIP電話等の不正利用
に関する注意喚起」という文章が出されています。
こちらはより具体的です。

利用者がIP電話等の電話サービスを利用する際に
インターネットに接続している通信機器（PBX、IP

電話対応のルータ等）におけるソフトウェアやハー
ドウェアの設定の問題や、セキュリティ上の脆弱性
を突いた「なりすまし」や「乗っ取り」による不正利用
が原因であることが確認されています。
総務省サイト「第三者によるIP電話等の不正利用に関する
注意喚起」注2より

　これらの情報から、IP-PBXやIP電話対応のルー

タなどのアカウントの乗っ取りや不正中継が発生し
ている様子がわかります。

IP電話とは

　IP電話とは、別の言い方をすると、SIPプロトコ
ルを利用しているTCP/IPネットワーク（以下単に
ネット）上の音声通信（VoIP：Voice over IP）です。
　VoIPだけを取り上げると、ネット上であれば、
音声をやりとりするのはTCPプロトコルで接続し
ても、UDPプロトコルでパケットを送っても、既存
の規格を使っても、独自の規格を使っても、とにか
く音声さえ届き通話さえできればVoIPです。Skype

でも、LINEの無料通話でも、Googleハングアウト
でも、音声（Voice）がTCP/IPネットワークを介し
て（over IP）通信できているので、VoIPということ
になります。
　一方、SIPはSession Initiation Protocolの略で、
直訳すると「セッションを初期化するプロトコル」と
なります。これはネット上にあるSIP端末を呼び
出す役目を果たします。SIP規格は1999年のRFC

2543が最初です。
　筆者の記憶を思い出すと、インターネット電話と
いう、これまでの電話にとってかわる重要な転換点
ということで、そこでの主導権争いや、すでに

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第二三回】

すずきひろのぶ
suzuki.hironobu@gmail.com

IP電話のセキュリティ

注1）	「都内の会社 客4割被害　IP電話乗っ取り 総務省聞き取りへ」　読売新聞、2015年6月13日、朝刊、38面
注2）	 http://www.soumu.go.jp/menu_kyotsuu/important/kinkyu02_000191.html

http://www.soumu.go.jp/menu_kyotsuu/important/kinkyu02_000191.html

Aug. 2015 - 153

【第二三回】 IP電話のセキュリティ

ITU-T（国際電気通信連合の電気通信標準化部門。
簡単にいうと電話の国際規格を決めるところ）で同
様の規格が策定されていたことなど、いろいろな要
素が重なりたいへんだったので、ずいぶん議論が長
引いて、結局1999年まで延びに延びたという印象
があります。
　さて、ここでのSIP端末とは、SIPプロトコルが
使えるVoIPソフトウェアを搭載した機器のことで
す注3。古典的に電話の形をしたSIP端末もありま
すし、インターネットに接続しているルータがSIP

端末としての能力を持っており既存の電話をその
ルータに接続するものもありますし、あるいはPC

やスマートフォンのアプリケーションとして用意さ
れているSIPアプリを利用してSIP端末とするこ
ともあります。
　SIP端末はSIPサーバにネット経由で接続しま
す（図1）。SIPサーバは同じLAN上にあるかもしれ
ませんし、組織内ネットワークに用意されているか
もしれませんし、外部のサーバやクラウド上で動作
しているかもしれません。SIPサーバは、接続して
きたSIP端末が登録されているかをデータベース
（数が少なければファイルの中のリストとして登録
し保持している場合もあります）と照合し、受け入
れます。通常はアカウント名（内
線電話番号）とパスワードで接続
します。
　同じSIPサーバに収容されて
いる場合、そのSIP端末は内線
につながれている内線電話その
ものです。それは内線電話のシ
ステムのようなものだといって
も過言ではありません。ですの
で純粋なSIPサーバとしてだけ
ではなく、構内交換機（PBX）が
必要としている各種機能（たとえ
ば音声案内や留守番電話など）を
持っています。そのためIP-PBX

（IP - Private Branch eXchange：

IPベースの構内交換機）とも呼ばれます。
　基本的にSIPサーバは、SIPサーバに接続してい
るSIP端末同士を呼び出し通話することが可能な
だけです。もし、普通の電話と同じように電話網を
経由してどこにでも電話をかけられるようにしたけ
れば、IP-PBXから接続が可能な（外部の）電話会社
と契約し、IP-PBXからその電話会社と接続できる
ようにします。これで内線から外部に電話をかけら
れるようになります。
　IP-PBXのメーカーとして、海外ではCisco Sys

tems社、Avaya社、日本国内では富士通、沖電気、
日立、NECなどの会社が知られています。一方で、
現在、海外でも国内でもオープンソースのIP-PBX

であるAsteriskが急速に広がってきています。

Asterisk

　Asteriskは、米Digium社が開発しているオープ
ンソースのIP-PBXです。運用も安定していて機
能が良いので、IP-PBXのプラットフォームとして
広く使われています。IP-PBXが登場したことで、
これまでたいへん高価であった内線電話システムが
大幅にコストダウン可能になりました。さらに

注3）	 VoIPのコーデック（音声フォーマット）とは別な話ですので注意してください。

◆◆図1　SIP/IP-PBXのモデル

端末登録情報
SIP サーバ

電話接続会社

SIP 端末

SIP サーバに SIP 端末がぶら下がる。
この場合、SIP 端末は内線電話と
考えてもらえれば良い

SIP 端末

154 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

Asteriskの登場で、内線電話システムのコストを劇
的に低く抑えられるようになりました。現在では、
Asteriskを（あるいはそのコア部分を）組み込んでい
る製品がいくつもあります。
　Asteriskは、これまでのIP-PBXのためのサー
バだけではなく、クラウドやVPS、はてはRasp

berry Piの上でも動作するIP-PBXです。また、
Digium社はビジネス版Asteriskを販売しています
し、日本国内にもそれを扱う代理店があります。
　オープンソースですから、自分で自作SIPサー
バを立てて運用している人もいます。筆者自身も実
験SIPサーバをクラウド上で用意していて、運用
の実験をしています。

国際電話詐欺

　知らないうちに国際電話を使っていて多額の請求
が行われる。これは昔からある国際電話のしくみを
使った詐欺です。その金額の何割かが犯罪者に
フィードバックされるしくみです。
　これはインターネット時代よりも古いパソコン通
信の時代からありました。ポルノサイトに自動的に
接続するというプログラムがあり、それを入手して
モデムを使ってパソコンで接続すると大量のポルノ
写真が手に入ります。時間をかけて大量にダウン
ロードしたはいいが、実はそれは謎でもなんでもな
く海外のサイト。1ヵ月後に数十万という金額が電
話会社から請求されることになります。こういう事
例は1980年代にはすでにありました。
　携帯電話、スマートフォン時代の今も、この詐欺
は形を変えて健在のようです。これは少なくとも
2013年には行われていました。知らない相手から
自分に電話がかかってきます。出る前に切れるか、
出てもすぐに切れます。おかしいなと思い、かけ直
したら延々と音楽が流れます。電話番号を確認する
とアフリカあたりの小国だったりします。
　たぶん、これはその遠くの小国から直接かかって
きたわけではなく、日本国内から発信者電話番号を

偽装してかけてきたものと筆者は推定します。実際
に国内でも携帯電話に発信者電話番号が偽装されて
着信し、犯罪に利用されていたという報告がありま
す注4。
　これであれば、かけるほうのコストは小さく、国
際電話のコールバック詐欺で1回に得られる金額は
たとえ数百円とか数千円とかいう単位であっても大
量にかけてくるでしょうから、最終的にはかなりの
金額になるのではないでしょうか。しかも、数百円
や数千円ならば、契約している電話会社に連絡し、
支払いを差し止めるといったことは、面倒なのでし
ないでしょうから、泣き寝入り＝犯罪者の懐に入
る、という図式になっているかと思います。

IP-PBXの不正利用

　IP-PBXに登録しているSIP端末のアカウントと
パスワードがわかれば、当たり前ですが、このIP-

PBXを利用することができます。
　そして、このIP-PBXが電話会社に発信をかけ
られるようにしており、インターネット側（外部か
ら）からのアクセスには特段のフィルタリングなど
していないと仮定します。その場合、世界中どこか
らでもIP-PBXに登録しているSIP端末（SIPクラ
イアント・アプリケーション）であれば接続可能な
設定になっている可能性が高いでしょう。
　ここで2つの疑問が出ると思います。1つは「どう
やって現在登録されているアカウントがわかるの
か」、もう1つは「どうやってパスワードがわかるの
か」です。

Asteriskのログを
解析してみて

　筆者は実験的に外部のクラウド上にAsteriskを
立ち上げていて、SIPクライアントの利用方法の運
用実験をしています。そのログを分析した経験から
わかったことを書いてみたいと思います。
　なお、これは意図的に記録させるために fail2ban

注4）	 発信者電話番号が偽装されて着信する通話について　http://www.tca.or.jp/information/camouflage.html

http://www.tca.or.jp/information/camouflage.html

Aug. 2015 - 155

【第二三回】 IP電話のセキュリティ

設定（あるいは設定ミス）は、わかっていません。

総当たり攻撃対応

　fail2ban注5は総当たり攻撃などに対応するために
ログファイルを解析し、何度も繰り替えして失敗し
ている相手のIPアドレスを iptablesでフィルタリ
ングしてしまう定番のツールです。Asteriskだけで
はなく、SSHなどのパスワード総当たり攻撃にも使
えます。

高い率で
成功している点に着目

　冒頭で紹介した新聞報道の「東京都内の通信機器
販売会社の顧客のうち4割が被害を受け」という点
に着目して考えてみると、これはすべてが同じ問題
を抱えていたのではないかと思います。つまり、ど
の種類のIP-PBXを使っていたかはわかりません
が、脆弱性と呼べるような共通の問題があったと考
えるほうが合理的です。
　Asteriskもそうですが、IP-PBXの設定はわかり
やすいものではありません。ユーザが自分でマニュ
アルを見ながら簡単に変更する、といったものでは
ありません。業者が顧客ごとに毎回バラバラのもの
を設定するのではなく、顧客すべてが共通の設定

などの設定をしませんでした。通常は fail2banなど
を導入してフィルタリングします（後述）。

パスワードの総当たり攻撃

　ログにはextrensions.confのデフォルトにあるナ
ンバーをターゲットにして攻撃をしかけられている
形跡が大量にあります。
　Asteriskの設定ファイルであるextrensions.conf

は、Asteriskのダイアルのプランを記述するファイ
ルです。ここには、1000、1234、1236、500、600

という電話番号がサンプルとして用意されていま
す。ログには、この番号とアカウント名が同じで、
かつSIP端末が割り当てられているという前提で、
パスワードの総当たり攻撃をしかけてきている記録
が残っています。
　2014年7月22日3時55分から2014年7月24日
12時19分の間に表1のようなパスワードの総当た
り攻撃が記録されていました。
　デフォルトでも筆者の設定でも、これらのダイヤ
ル番号にはSIP端末が割り当てられていないので、
いくらパスワードを試行しても接続するのは無理で
す。さて600番の内訳を見てみると、おもに3つの
IPアドレスが発信源でした（表2）。

辞書攻撃（アカウントとパスワードが
連動）

　たとえば、1つのアカウントに対してパスワード
試行は5回程度のものがこれにあたります。電話番
号、アカウント、パスワードが同じ、あるいはパス
ワードは123456といった単純なものであるという
前提で次々にアカウントを試していっていると考え
られます。実際のログを見ると、狙っているアカウ
ントは100、101、1010、1111、2020……といった
単純なものになっています。

拡張番号を試す

　電話がつながっているとして、直接、拡張番号を
入力する方法です。直接外線にかけることを試みて
いるようです。筆者もこの方法が成功するであろう

注5）	 http://www.fail2ban.org

◆◆表1　筆者のAsteriskサーバに来たパスワード総当たり◆
 攻撃

◆◆表2　筆者のAsteriskサーバに来たパスワード総当たり◆
 攻撃（600番の内訳）

電話番号 パスワード試行回数

1236 368,761

1000 386,474

1234 411,343

500 635,920

600 1,226,261

IPアドレス 国・地域 パスワード
試行回数

その1 ドイツ・ハノーバー 492,783

その2 アメリカ・ジョージア州 377,416

その3 アメリカ・ジョージア州 356,040

http://www.fail2ban.org

156 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

ファイルを使用していた可能性があります。つまり
アカウントもパスワードも同じであったという可能
性です。
　ありがちなのが、IP-PBXにテスト接続用の電話
番号／アカウントが用意されており、そのパスワー
ドが電話番号アカウントの数字の並びと同じか、あ
るいは12345といった定番のものになったまま出荷
されている可能性です。もしかするとユーザ・マ
ニュアルには「テスト用のパスワードはすぐに変更
すること」と説明をしているのかもしれません。そ
のため、残りの6割は被害が及ばなかったというこ
とも考えられます。
　いずれにしても共通の問題がないのに偶然、顧客
の4割が被害を受けたというのは、通常では考えら
れません。

IP電話機能を持つ
家庭用ルータ

　050IP電話対応のSOHO家庭用ブロードバンド
ルータを使ったIP電話の場合、050の電話番号を割
り当てるIP電話事業者（SIPプロバイダ）に接続す
るだけのSIP端末（ここにアナログの電話をつなげ
る）と、複数のSIP端末を扱える機能を持っている
ものと、いろいろなものがあります。
　これらは機材に大きな脆弱性が発見されない限り
安全なように作られています。単純にSIP端末の機
能しか持たないものであれば、あとに述べる問題以
外に関しては大きく心配する必要はないでしょう。
　簡易なIP-PBX機能があっても内部のIPアドレス
のみアクセスできる仕様になっているでしょうか
ら、不正に外部からこのルータにSIP端末を接続す
る、というような問題が発生する可能性は小さいで
しょう。
　ただし、このIP電話機能を持つ家庭用ルータか
ら発信される可能性が小さいからといって国際電話
の料金が請求されない、というわけではありませ
ん。なぜならば（ユーザが設定できないタイプの）
SIPプロバイダ側のアカウントとパスワードが盗ま

れる可能性があるからです。この場合、ユーザ側で
できることはあまり多くはありません。

パスワードで防御する
限界

　対策を施すとしても、現在のSIPのプロトコル
を使う限り、本質的にはユーザIDとパスワードの
強化しかありません。電子署名の機能が入ってい
て、それでサーバ側でユーザを認証して高い安全性
を保つといったプロトコルではないからです。
　IP電話専用の機材を使うといった時代ではなく
なり、現在ではスマートフォンやパソコンのアプリ
ケーションからIP電話をかける場面も多いかと思
います。その状態でマルウェアが、SIPのユーザID

とパスワードを盗んでいくことも十分視野に入れて
考えなければなりません。
　自分のSIPプロバイダのアカウントが盗まれて
しまった場合、世界中どこからでもかけることがで
きますし注6、それが盗まれて使われてしまってい
ても自分で気がつくチャンスはほぼないでしょう。
結果として、突然、高額な国際電話料金が請求され
て驚くということになります。

国際電話の禁止

　筆者がこの手の被害を知ったのは2007年です。
被害側となったヨーロッパのとあるSIPプロバイ
ダのエンジニアの講演を聞きました。これもユーザ
になりすまし、SIPプロバイダに接続していたもの
でした。ですから、これらの詐欺は新しいようで、
古い話ではあります。
　Skypeのようにプリペイド方式であれば、どんな
に使われようと、事前に買った分までしか被害はあ
りませんが（それでも困りますが）、後払い方式だと
青天井になってしまいます。これでは対応のしよう
がありません。デフォルトでIP電話からは国際電
話はかけられないようにするのも1つの方法でしょ
う。ただし、すべてのIP電話の会社がこのような

注6）	 厳密な運用をするIP-PBXでは、接続される機材のIPアドレスやMACアドレスでアクセス制御をしている場合がありますが、少なくとも
日本国内のSIPプロバイダでこのような厳密な管理をしているところを、筆者は知りません。

Aug. 2015 - 157

【第二三回】 IP電話のセキュリティ

対応を取ってくれるわけではないようです。
　たとえば、国際電話料金のレートが高額な地域に
はかけることができないといったサービスを提供し
ているようなSIPプロバイダは、少なくとも国内
では見つけることができませんでした。
　これまでに日本でも、IP電話に外部から不正に接
続され、多額の国際電話料金を請求されるといった
事例はありました。ただそれは、雑誌やWebから
の情報を見て自分でIP-PBXを立ち上げて設定し、
さらに050電話を使えるようにしていて、そこに穴
があったため、というケースだったようです。ある
いは、トラブルがあった場合でも、SIP端末のユー
ザIDもパスワードもSIPプロバイダが管理してい
て、SIPプロバイダが被害を被るという形で対処し
ており、あまり表には出なかったようです。
　今回は、ユーザ側はとくに知識もなくIP-PBX

を導入し、業者が十分な配慮をしていなかったとい
うことが伺い知れる状況で、IP-PBXを使うユーザ
側から不正な国際電話が発信され、高額な通信費が
請求される注7という、これまでとはずいぶん違う
ケースだと言えるでしょう。だからこそ総務省は
「第三者によるIP電話等の不正利用に関する注意喚
起」という告知を出したのだと思います。
　また「面倒くさいからお金を払う」という単純な話
でもありません。なぜならばお金を払えば、それは
犯罪者に届くからです。お金が入るのですから、そ
れゆえに犯罪は続くことになるでしょう。
　すでに古い問題に分類されるであろうSIPアカ
ウントの乗っ取りによる国際電話詐欺ですので、日
本でもとうとう表に出てきたか、という感じでとら
えてもらえれば良いと思います。個人で何か対策を
施すといっても限りがあります。これはきちんと業
界団体や省庁で連携を取り、環境を整備すべき問題
だと筆者は考えています。

金銭目的以外の
アカウント狙い

　筆者はAsteriskサーバのログを分析していて

ちょっとしたことに気づきました。
　Asteriskのパスワードクラッキングの発信元は、
アメリカ、ドイツ、フランスといったインターネッ
ト先進国からが多いのですが、それに混じってパレ
スチナからの記録がありました。数ヵ月を通してみ
るとコンスタントにやっているのでもしかすると同
じ人、あるいは同じグループなのかもしれません。
　WCLSCAN注8の経験からは中東方面からの脆弱
性探しなどのパケットはイスラエルかトルコがほと
んどでそれ以外の地域はめったに見ることができま
せん。ですので、Asteriskへはパレスチナからコン
スタントに探りを入れてくるのはたいへん興味深い
ところです。これは世界に散らばっている無名な
SIPサーバを見つけ、それを通話に使い、連絡の中
継地点にしたいのではないかと考えると合点がいき
ます。

まとめ

　突然騒がしくなった気がする IP電話の不正利用
による高額な国際電話料金の請求ですが、これはプ
ロの詐欺師集団が昔からやっている犯罪モデルで
す。それを近年ではIP電話に置き換えただけのも
のです。外部からIP-PBXへ不正接続するといっ
た事例はすでに7～8年前から知られています。
　海外からみると日本はIP電話の普及およびIP-

PBXの導入が遅れていましたが、最近は増えてき
て、それに伴い今回のようなトラブルが表面化した
と考えたほうが良いでしょう。
　また、そのようなトラブルの経験や知識は国内で
は共有されておらず、右往左往している状態といっ
て良いのかもしれません。
　このような問題に対しては、セキュリティ技術の
面では業界内での知識や経験を共有すること、ま
た、不当な料金などに関しては消費者を守り、犯罪
者にお金が回らない制度設計をすること、そしてこ
れら全体をプロモートする省庁の動きが不可欠で
す。s

注7）	 この費用の負担は今後どう処理されるのかは、筆者は見当もつきません。
注8）	 筆者の研究している「インターネット早期広域攻撃警戒システム」のこと。www.wclscan.org

http://www.wclscan.org

158 - Software Design

Emacsは小宇宙

　ども、るびきちです。本連載のここ3回は基
本に立ち返り、標準コマンドに光を当ててみま
した。さすがEmacsは奥が深く、標準コマンド
に少し触れるだけでも3回分かかってしまいま
した。これまで当たり前に思ってきた標準コマ
ンドの機能性を再発見してもらえれば幸いです。
　しかし、標準コマンドで終わるEmacsではあ
りません。Emacsユーザは当然、Emacsを自分
好みの色に染めたいものですよね。個々のユー
ザの要望にとことん応えてくれるのがEmacsの
魅力です。
　Emacsは単なるテキストエディタではなく、
テキストエディタの顔をした「Lispマシン」です。
Lispというプログラミング言語の比類なき柔軟
性により、ありとあらゆるタスクがEmacsで実
現できます。Lispは実行中にプログラムそのも
のを変更できるので、あなたの意のままの形態
に変化します。変数を設定したり、関数を定義
したり……、Lispファイルをロードすればその
時点で“世界で1つ、あなただけのためのEmacs”
なのです。elispのおかげで日常的なテキスト編
集がより快適になり、突き詰めれば統合開発環
境にもなりますし、ゲームソフトにすらなって
しまいます。

　人体は小宇宙と言われていますが、筆者は
Emacsも小宇宙であると考えています。Emacs

は人間によって書かれた1プログラムにしか過
ぎませんが、あたかも生き物のように思えると
きがあります。動物は食物を摂取しますが、
Emacsにとってはelispパッケージが食物（や薬）
に相当します。健康を維持するには何を食べる
かが重要であるように、快適なEmacsを保つに
も、どんなパッケージを使うかが重要です。薬
の飲み合わせがあるように、お互い相性の悪い
パッケージのせいで無用なトラブルに巻き込ま
れることもあります。
　Emacsは標準添付のパッケージも充実してい
ますが、Emacs24からはパッケージシステムが
導入されたので、世界中の外部パッケージを簡
単に導入することができます。誰もが簡単に外
部パッケージを導入し、設定すればすぐにあな
たのEmacsに反映されます。門は開かれました。
あなたのEmacsをデザインしてください。
　こういう話をしていて、いつも頭をよぎるの
が筆者の少年時代に遊んだミニ四駆です。電池
2本で一直線にしか走れない玩具の車ですが、当
時はいかに速くコースを走るかが競われていま
した。ミニ四駆本体を買って組み立て、電池を
入れて電源を入れればすぐに走ります。しかし、
より速く走らせるためにはより強力なモーター
に交換したり、軽量化などの改造を施したりし

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

Emacsと長く付き合っていくために
　今回はいつもの連載から少し視点を変え、「Emacsとの付き合い方」についてのコラムをお届けします。
Emacsを自分好みにカスタマイズするのに外部パッケージは非常に便利ですが、同時にサポートの終了や設
定の競合などのリスクを孕

はら

みます。そういった「利便性と代償との折り合い」を中心に、一歩引いた目線で
Emacsを再考します。

Writer

番外編
コラム第16回

http://rubikitch.com/

158 - Software Design Aug. 2015 - 159

の繰り返しです。筆者サイト「日刊Emacs」を更
新するために、毎日パッケージをインストール
していますが、実運用しているものは少ないで
す。膨大なelispを見てきた中で、システムに対
する洞察力が身につき、elispそれぞれの性格、
およびトラブルの臭いを嗅ぎ分けられるように
なりました。今回は長年のEmacs歴で学んだ教
訓をお伝えしていきます。

外に開かれたEmacs

　今からEmacsを始める人はとても恵まれてい
ます。なぜならパッケージシステムにより、世
界中の数千ものelispパッケージから簡単にイン
ストールして試せるからです。パッケージシス
テムが登場する前はEmacsWikiというEmacs情
報集積場にノウハウやelispが集められていまし
たが、パッケージシステムほど使いやすいもの
ではないので、elisp開発者はパッケージへと移
行しました。何かパッケージがほしいと思った
らM-x list-packagesからインクリメンタル
サーチやoccurでキーワード検索すればいいの
です。ほかの人にも使ってもらいたいとパッケー
ジを作成した開発者は、MELPAに登録しない
わけがありません。パッケージシステムはEmacs

の標準機能ですので、一度MELPAに登録した
ら、世界中のEmacsユーザに知れ渡るのです。
とても便利な時代になりました。
　RPGをプレイしたことがあるならば、船や飛
空艇などの乗り物を得たときの解放感は忘れら
れないでしょう。これまで徒歩のみの移動で世
界のごく一部しか行けなかったのが、乗り物に
よって新しい大陸へ自由に行けるようになった
とき、ものすごくワクワクしたことでしょう。
筆者も夢中になって新しい街や洞窟を見つけに
世界を探険したものでした。今のEmacsは、
RPGでいえば飛空艇で世界中のいたるところに
行ける状態です。Emacsは、子供のころのあの
楽しかった思い出を想起させてくれます。
　Emacs歴が短いのならば、ぜひともいろいろ

ます。取り替えられるパーツは多くのメーカー
が生産していて、その選択は多岐に渡ります。
「これは」と思ったパーツに取り替え、自分オリ
ジナルのミニ四駆を構築したものでした。そし
て大人になった今、このノリがGNU/Linuxマ
シン構築やEmacs環境構築に活かされています。

拡大と収縮

　筆者はEmacsを使い始めた途端いきなり魅了
され、数ヵ月しないうちにelispを書くようにな
りました。そして「こんなコマンドがあったらい
いな」を自分で実装していました。右も左もわか
らず、試行錯誤の日々が何年も続きました。
　当時はパッケージシステムという便利な代物
は存在せず、公開されているelispは少ないもの
でした。お手本となるelispもないなか、自分な
りに学んでいました。ネット上でelispを見つけ
ても手動でダウンロードして手動インストール
の時代でした。暗中模索のなかだったとはいえ、
ミニ四駆の魔改造のようにEmacsにいろいろな
機能を追加する作業はとても楽しいものでした。
　一気に大量のelispコードを書いては、しばら
く時間がたてばその機能の存在すら忘れてしま
うことを繰り返して10年以上になりました。そ
の間、コードを書いては捨て、書いては捨てと
いう感じで init.elの総行数は15,000行を突破し
ていました。自作／外部問わず、ありとあらゆ
るelispを突っ込みまくり、筆者のEmacsはモン
スターのように肥大化しました。
　現在はパッケージシステムによって検索すれ
ば何かしら見つかる時代になり、自分でコード
を書く必要性がめっきり減りました。また、日々
使うelispはほんの一部にすぎないことにも気づ
きました。せっかく書いたコードも今となって
は役立たないものも多いです。init.elをスリム
にした結果、現在は5,000行くらいに落ち着い
ています。さらに絞れば数千行ほどになるかも
しれませんが、あいにく時間が取れていません。
　このように、筆者のEmacs遍歴は拡大と収縮

Emacsと長く付き合っていくために第16回

160 - Software Design

・自分で実装する必要はあるのか？
・すでに誰かが実装していないか？

　これらがNOなら自分でコードは書きません。
　パッケージを実運用する際も慎重になるよう
になりました。「果たしてパッケージを導入して
どれくらい操作性が上がるのか？」と自問するよ
うにしています。なるべく多くの局面で操作性
が上がるのならば、そのパッケージを導入すれ
ば良いです。プログラムの最適化ではボトルネッ
クの最適化に集中するのと同じように、Emacs

の操作性のボトルネックを改善するパッケージ
ならば導入すべきです。いわゆる「プロファイリ
ング思考」です。すると、無闇に外部パッケージ
や自前の実装に頼ることが減り、標準機能に回
帰するようになりました。外部パッケージは真
新しい実装よりも、標準機能を拡張するものを
好むようになりました。
　このことはあなたに「外部パッケージに頼る
な。標準機能だけを使え」と言っているわけでは
ありません。Emacsの経験が少ないのならば多
くのパッケージを経験するべきです。ちょうど
海外旅行を多く経験して初めて日本のありがた
みがわかるように、標準機能がそれなりによく
できていると悟るようになります。

機能は適切に
管理しよう

　スマホを始めとする多くの電化製品は機能性
をアピールしています。そういうセールストー
クに筆者はうんざりしています。普通の人は「こ
んなこともできるんだ！　すご～い」という感じ
で機能性に魅入られます。しかしいざ購入した
とき、アピールされた機能を使いこなせている
でしょうか？　多くはNOだと思います。機能
性の感動は一時のものに過ぎず、結局は基本的
な機能＋αくらいしか使わないことでしょう。
　筆者はEmacsについても同じように感じてい
ます。長年Emacsを使っていて、数多くのパッ
ケージの設定を組み込んでいますが、結局常用

なパッケージを試してみてください。実際に使
うことによってEmacsの経験値が増えます。新
たな角度から問題を眺められるようになり、よ
り便利な方法が見えてきます。
　とはいえインストールするとトラブルが怖い
と思うのはよくわかります。けれどもパッケー
ジからインストールするだけでは、すぐにコマ
ンドが使えるようになるだけで勝手に機能が有
効になったりはしません。筆者は「日刊Emacs」
のために毎日新規パッケージをインストールし
ていますが、インストールしたことによるトラ
ブルは経験したことがありません。インストー
ルは無害です。
　筆者が知る限り唯一の例外はbetter-defaults

パッケージで、インストールするだけで変数を
変更してしまいます。しかしそれは“よりよいデ
フォルト設定を提供する”という動機でわざと
やっています。MELPA登録はpull requestに
よって人力チェックが入るので、そのほかのパッ
ケージでこのような不作法

4 4 4

はないでしょう。

円熟してくると

　これは筆者の経験ですが、Emacsに魅了され
常にいじくり回し、多くのパッケージを使って
いれば、次第にいろいろなことが見えてきまし
た。ちょうど熱愛から円熟に差し掛かってきま
す。既存のパッケージもそうですが、実現させ
たい機能が見つからない場合は自分で実装して
いました。首尾よく実装できると、最初は作っ
た機能に満足します。しかし、たいていの場合
は次第に使わなくなり、しまいにはその機能の
存在すら忘れてしまうようになりました。見方
によっては時間の無駄のように思えますが、プ
ログラミングした経験により学びが得られます。
　昔は機能が欲しければ真っ先に手が動いてプ
ログラミングを始めていましたが、今では次の
ように自問しています。

・この機能は本当に必要なのか？

るびきち流
Emacs超入門

160 - Software Design Aug. 2015 - 161

題を自分で解決するか、代替の手段を講じなく
てはなりません。これがEmacsにおける利便性
の代償です。「特定のパッケージがなきゃ生きて
いけない」というのは、内部構造を熟知して、す
ばやく問題解決できるようになって初めて言え
ることです。自分が理解できないパッケージは
使わないほうがいいです。自分が何をやってい
るのかがわからない状態は、機械の奴隷に成り
下がっていることと同じです。

トラブルの少ない
パッケージの選び方

　トラブルの少ないパッケージの選び方の指針
は、なるべく通常のEmacsからかけ離れないよ
うにすることだと考えています。“Emacs的に自
然”であるということです。
　まず標準パッケージで実現できることであれ
ば標準パッケージで済ませるのが一番です。な
ぜなら、Emacs本体とともに継続的にメンテナ
ンスされているからです。将来のバージョンアッ
プでも間違いなくその機能が使えるからです。
　確かに標準パッケージそのものがobsolete（サ
ポート打ち止め）になってしまうことはあります
が、その場合は新しい手段が用意されているも
のです。Emacs 24.4では iswitchbがobsoleteに
なり、以前からある標準パッケージ ido（バッファ
やファイル名を絞り込み選択）や icomplete（ミニ
バッファに補完候補を表示）に取って代わられた
のは記憶に新しいです。obsoleteになってもし
ばらくの間は削除されないので、時間のあると
きにゆっくりと移行していけば良いです。
　外部パッケージは、放置され、新しいEmacs

では動作しなくなるリスクが伴うことに留意し
てください。もっともelispは互換性を重視して
いるので、昔に書かれたelispもそのまま動くこ
とが多いです。それでも放置リスクについては
頭の片隅に置いておいてください。
　編集コマンドのみが定義されているのは安全
です。そういうコマンドはいくらあってもいい
です。Emacsが新しいコマンドを学習しただけ

している機能はごくごく一部でしかないことに
気づきました。せっかく設定しても長い間使っ
ていないと設定したことすら忘れてしまいます。
　このことから「できることが多いということが
偉大なのではない。要は適切にコントロールす
ることが大事だ」という教訓を得ました。パッ
ケージを入れまくればいいわけではありません。
せっかく導入しても使い方を忘れているのでは
意味がありません。機能志向は、結局は機械に
使われるハメになります。

利便性には
必ず代償を伴う

　筆者の座右の銘を紹介します。それは「利便性
には必ず代償を伴う」です。
　たとえば、インターネットの普及によって人
間関係をネットで済ませるような人が出てきま
した。常時接続されたインターネットは距離に
関係なく、いくらでも相手と交信できる利便性
を生みました。しかし、同時に人間関係スキル
が磨かれなくなり、リアルでは希薄な関係に終
わってしまう傾向になっています。
　セキュリティと利便性はトレードオフである
ことが多々あります。sshのパスフレーズを毎
回入力するならばセキュリティは強固ですが、
面倒ですね。そこでkeychainを使ってパスフ
レーズ入力の手間を省けますが、ちょっとした
不注意でスキを与えてしまいます。
　これらの事例を見てわかるように、便利なも
のにはダークサイドがあるのです。何か便利な
ものを発見したときには、単に魅了されるのは
極めて危険です。きちんとリスクを把握したう
えで適切にコントロールしておきましょう。
　普段のEmacsの使い勝手を大きく変えるパッ
ケージにはよくよく注意が必要です。便利でも
しくみが複雑なパッケージは、いざトラブルが
起きたとき、自分で問題解決することが困難で
す。筆者は、パッケージはその利便性の代償を
受け入れられる人だけが使うべきだと考えてい
ます。エラーで使えなくなった場合は、その問

Emacsと長く付き合っていくために第16回

162 - Software Design

くにキーバインドを定義しているマイナーモー
ドは、マイナーモードの有効順によっては動作
しないことがあります。うまく解決できない場
合はそのマイナーモードを無効にしてください。
　最後に、開発がとても活発なパッケージはし
ばしば非互換な変更がなされます。以前のバー
ジョンでは動いても、バージョンアップしたと
き名称が変更されたり削除されたりする場合は、
元の設定では動作しません。

helmは複雑さの
コストを上回る利便性

　Emacsの操作性を大きく改善した大人気パッ
ケージhelmは、以前の連載（2015年3、4月号）
で紹介しました。ミニバッファにクエリを入力
して絞り込み検索を行い、複数の情報源（バッ
ファ、最近開いたファイル、ブックマーク、カ
レントディレクトリのファイルなど）から多くの
アクションが実行できます。内部はとても複雑
ですが、影響範囲は各種 helmコマンド（M-x

helm-mini、M-x helm-for-filesなど）を実
行している間のみですので、Emacs全体にまで
及んでいません。仮にhelm使用時にエラーが起
きて使えなくなっても、元の標準コマンドや ido

でしのげばいいです。よって、利便性が複雑さ
のコストを上回っていると筆者は考えています。
　ただ、helmのありがたみはEmacs初心者には
わからないものです。標準コマンドに不便さを
感じるようになって、あらためてhelmの良さが
実感できるものです。中級者になればhelmは手
放せなくなるでしょう。

キー割り当てを
変更するのは安全

　新たなパッケージを模索するよりも、なるべ
く標準コマンドでうまくやりくりするほうが賢
明と考えます。前述したように標準機能はずっ
とメンテナンスされるので安心して使えます。
デフォルトの設定では不便に感じた場合、キー
割り当てを変更することで劇的に操作性が上が

で、ほかへの影響がないからです。たとえばzop-

to-charパッケージはM-x zop-to-charを実行
するだけで使用できます。そしてそれを便利に
感じて初めてM-zに割り当てればいいです。
　特定のファイルの編集を快適にしてくれるメ
ジャーモードも安全です。なぜなら、対象のファ
イルを開いたときに初めて有効となるからです。
そのほかの局面で影響はおよびません。ファイ
ル名とメジャーモードの関係を定義するauto-

mode-alistもパッケージをインストールした時
点で設定されることが多いです。たとえば、lua-
modeパッケージをインストールすると、その時
点で*.luaのファイルに対して lua-modeになる
ように設定されます。編集したいファイルに対
してメジャーモードが標準で存在せずに外部パッ
ケージになっている場合は、安心して導入して
ください。あまり知られていませんが、(require
'generic-x)を設定に加えれば、多くの設定
ファイル用のメジャーモードが定義されます。
　Emacsの挙動を変更するパッケージには注意
が必要です。それらはフックやアドバイスを定
義しているので、影響が広範囲におよぶことが
あるからです。また、ほかのパッケージとの相
性が悪いことがあります。
　自動で動作する機能は、一段と注意して使う
必要があります。Emacsには「タイマー」と「各コ
マンド実行前後に行うアクション」が定義できま
す。前者は、一定時間後に自動で関数を実行し
ます。後者は、pre-command-hookとpost-com

mand-hookです。これらの機能はEmacsを便利
にしてくれる超強力な機能ですが、代償を伴い
ます。自動実行される関数でエラーが起きた場
合わかりづらいのです。タイマーでのエラーは
エコーエリアにerrorと出るだけですので見落
とされがちです。2つのフックでのエラーは自
動的にその関数がフックから外されます。開発
者側にとってもこれらの関数のデバッグは困難
を極めます。よって、派手な自動実行に過度に
依存しないようにするのもEmacs的処世術です。
　マイナーモードは干渉の恐れがあります。と

るびきち流
Emacs超入門

162 - Software Design Aug. 2015 - 163

ちで作業が始められる心理的なメリットもあり
ます。あなたも試してみては？

Emacsは人生

　Emacsはいくらでも強くなれます。しかし強
力な機能はそれなりの代償が伴うので、あくま
でもあなたの理解の範囲内に留めましょう。理
解を超えたパッケージは、逆に機械に使われて
しまいます。ですので、便利なパッケージに惚
れ込んだ場合「もっと早く出会いたかった」と後
悔する必要はありません。Emacs力が未熟な段
階で出会っても受け入れ態勢ができていなかっ
たことでしょう。今、その便利なパッケージを
使っている̶̶この事実に満足しましょう。
　これは、算数と数学の関係と同じです。方程
式を使えばあっさり解けてしまう算数の難問奇
問がありますが、限られた知識の範囲内で悪戦
苦闘したからこそ、方程式という飛び道具のあ
りがたみを感じるものです。いきなり方程式を
教えられても、小学生当時のあなたは理解でき
たでしょうか。
　Emacsは人生です。
　洞察力を深めるには多くのパッケージに触れ
て理解に努めましょう。ほしいパッケージが存
在しなければ、自分でelispを書きましょう。

終わりに

　いかがだったでしょうか？　今回は総論的な
話題で退屈したかもしれません（笑）。
　筆者は「日刊Emacs」以外にもEmacs病院兼メ
ルマガのサービスを運営しています。Emacsに
関すること関しないこと、わかる範囲でなんで
もお答えします。「こんなパッケージ知らない？」
「挙動がおかしいからなんとかしてよ！」はもち
ろんのこと、自作elispプログラムの添削もしま
す。集中力を上げるなどのライフハック・マイ
ンド系も得意としています。ﾟ登録はこちら➡
http://www.mag2.com/m/0001373131.html

ることがしばしばあります。
　たとえば別ウィンドウに切り替える（other-

window）にはC-x oと2ストローク必要です。フ
レームを3分割以上している場合、C-x oを繰
り返すかC-x zでリピートする必要があり、ス
トレスがたまります。頻繁にウィンドウを切り
替えるのならば、次のように1ストロークのキー
に割り当て直すのが無難です。
　
(global-set-key (kbd "C-t") 'other-window)

　これはswitch-windowパッケージなどを導入
するよりも手軽です。
　直前のウィンドウ構成に戻すことは標準パッ
ケージのwinnerを使えば可能です。別のバッ
ファに切り替えたあとに元のバッファに戻した
り、ウィンドウ分割状態を戻したりすることは
よくやります。winner-undoを次のように1スト
ローク化してしまえば、それだけでpopwinと同
等の操作性を亨受できます。

(winner-mode 1)
(global-set-key (kbd "C-q") 'winner-undo)

　連続して実行され得るコマンドはsmartrepや
hydraを導入すればプレフィクスキーを省略で
きます。また、repeat（C-x z）を1ストロークに
割り当て直すのも、お手軽かつ強力な方法です。

1日の作業の終わりに
Emacsを閉じる

　筆者がいつもやっている習慣をお教えします。
無駄なバッファやデータが増えるとEmacsが重
くなりますが、そういう場合はEmacsを再起動
することで軽快さを取り戻せます。ですので1

日の作業が終わったら、お疲れさまと言って
Emacsを終了しています。tempbufパッケージ
はしばらく使っていないバッファを自動的に削
除しますが、1日ごとにEmacsをリセットすれ
ばそれも不要です。パッケージも最新版が使わ
れるようになります。ちょうど使ったものを片
付けるようにEmacsを閉じ、明日は新しい気持

Emacsと長く付き合っていくために第16回

http://www.mag2.com/m/0001373131.html

164 - Software Design

ShowNetが示す
ネットワークの近未来

たとおり、この1枚に今年のShowNetで構築
されたネットワークのすべてが集約されてい
ます。このトポロジ図を見ながら、ShowNet

NOC（Network Operation Center）チーム、コ
ントリビュータおよびSTM（ShowNet Team

Member）が一丸となってネットワークを構築
していきます注2。
　2015年の準備期間（通称：ホットステージ）
は5月28日の資材・機器搬入と管理用ネットワー
ク構築から始まり、6月5日の14時でいったん
の完成をみます。わずか9日間足らずで、最新
技術を盛り込んだ大規模イベントネットワーク
が構築されるわけです。その後、会場全体への
配線作業が入り、次いで各ブースの機材が搬入
されてShowNetへのネットワーク接続が開始

注2） 本文中に記載した「今年の見どころ」ページにある動画を見
ると、トポロジ図の変遷が垣間見えます。

ShowNetは
どのように作られる?

　本連載でこれまで紹介してきたShowNetが、
去る2015年6月10～12日まで千葉・幕張メッ
セで行われた Interop会場でお披露目となりま
した。連載第5回は、この準備期間中の様子を
紹介します（写真1、2）。まずは、次のWebサ
イトに掲載されているShowNetのトポロジ図
（ネットワーク構成図）を見てみてください注1。

ShowNet 2015　今年の見どころ
http://www.interop.jp/2015/shownet/
highlight.html

　本連載の第2回（2015年5月号）で書かれてい
注1） PDFとしてダウンロードもできます。

インターネット技術とビジネスが出会う国内最大のイベント「Interop
Tokyo」。ほかでは類を見ないその最大の特徴である“ShowNet”は、会
場全体に構築される最先端の技術を駆使したネットワークです。このネッ
トワークの敷設はInteropの会場である幕張メッセにて約2週間前か
ら行われます。今回はShowNetの裏側、イベント開始直前の様子をお
届けします。

第5回 ShowNetの裏側
～ホットステージレポート～

ShowNet が示す
ネットワークの近未来

編集部
http://www.interop.jp/

取材・文
URL

 ▼写真1　ShowNetブース構築中 !

 ▼写真2　机上で作業を行うNOCチームメンバー。
　　　 こことブースにあるラックを行ったり来たりする

http://www.interop.jp/
http://www.interop.jp/2015/shownet/highlight.html

Aug. 2015 - 165164 - Software Design

ShowNetの裏側
〜ホットステージレポート〜

第5回

されます。各出展ブースへのネットワークサー
ビスもShowNetの構築メンバーが担っている
ため、NOCメンバーとSTMはシフトを組んで
接続検証とともに最終調整を行います。なお、
今年のShowNet構築・運用に携わった関係者
は400名以上にのぼりました。

注目のラック（構築中）紹介

　ShowNet 2015では、合計16個のラックに
機器が搭載されました。その中からこれまでの
連載で取り上げてきたものを中心にいくつか見
ていきましょう。

SDNを用いた IXと
バックボーンネットワーク

　今回のShowNetにおいて今後のインターネッ
ト技術に影響を与えそうなものの1つとして、
インターネットサービスプロバイダ同士が相互
接続に利用するインターネットエクスチェンジ
（IX）を、SDNで構築している点が挙げられる
でしょう。
　写真3のラックには、NECのPF5240（Open

Flowスイッチ）、NTTが開発、オープンソー
ス化したOpenFlow対応ソフトウェアスイッチ
「Lagopus」を搭載したサーバなどが収められ、
NTT大手町に設置されたもう一対のOpenFlow

スイッチと接続しています。トポロジ図では図
1のあたりに該当します。ここでは4つのOpen

FlowスイッチでDDoS攻撃を遮断する実証実
験も実施しています（解析側のラックは後述）。
IXにSDN技術を取り入れることで、DDoS攻
撃による被害事業者の運用者自身がコントロー
ラを介してフィルタ設定を行い、攻撃への迅速
な対応が可能となります。
　写真4の3つのラックでは、こちらもDDoS

攻撃対策技術の1つとして注目されるBGP

Flowspec注3や、経路情報の安全性を高めるた
めに証明書による認証を行うRPKI（Resource

Public Key Infrastructure）、NTP（Network

注3） 詳細は本誌2015年7月号の連載第4回を参照ください。

Time Protocol）よりも高い時刻精度を持つ
PTP（Precision Time Protocol）といった3種
類の相互接続実証が実施されていました。

 ▼写真3　 SDNインターネットエクスチェンジが構築さ
れたラック

 ▼図1　写真3のラックに該当するトポロジ図

 ▼写真4　 ラック前でBGP Flowspec、RPKI、PTPの
検証を行うNOCとコントリビュータ

166 - Software Design

ShowNetが示す
ネットワークの近未来

NFVのスケールアウト実証実験

　ネットワーク仮想化実験でもう1 つ注目した
いのは、NFV（Network Function Virtualization）
によるリアルスケールアウトの実証実験です。
スケールさせるには、個々のサービスを複数の
仮想マシンや機器で構成します。DELLの
PowerEdge R630に載せたJuniper Networks

の仮想ファイアウォールvSRXで、ユーザごと
にどのサービスを適用するかをパケットの
TOS（Type of Service）フィールドにマークし、
NECのOpenFlowスイッチPF5459/PF5248

とNOCチームが自作したOpenFlowコントロー
ラで、マークに応じた適切なサービスへパケッ
トを転送します。適用する場合は、PowerEdge

C6220に載せたCiscoの仮想ルータCSR 1000V

や、HuaweiのX6800サーバに載せたPalo Alto

Networksの仮想ファイアウォールVM-300、さ
らにA10 NetworksのDDoS防御装置Thunder

6435 TPSといった各サービスへトラフィック
を分散してスケールアウトさせるというしくみ
です（写真5）。
　このラックに収まっている機器をトポロジ図
で探すと、中央にある「.nfv」という囲みに該当
します。

セキュリティ／監視

　もう1つの大きなテーマであるセキュリティ
では、NOCチームメンバーから昨年のステー
ジで提唱された次世代型多層防御モデルを導入
し、実際に運用で活用していました。
　例年と異なる点は、ファイアウォールとサン
ドボックス（Palo Alto NetworksのPAシリー
ズおよびWF500、CiscoのASA/FirePower、
FortinetのFortiGateおよびFortiSandbox）を
インラインで設置している点です。これにより、

 ▼写真7　DDoS攻撃の分析機器が収められたラック

 ▼写真6　NIRVANA改の監視用画面
　　　 （※この写真のみ会期中のものです）

 ▼写真5　下からX6800、PowerEdge、PF5459と
　　　 収められている

Aug. 2015 - 167166 - Software Design

ShowNetの裏側
〜ホットステージレポート〜

第5回

　また、DDoS対策の最適分散配置の検知装置
として、フロー情報を収集して攻撃を検知する
NTTコミュニケーションズのSAMURAIが稼
働していました（写真7）。たとえば、回線を埋
め尽くすほどのDDoS攻撃を検知した場合には、
このSAMURAIがNTTコミュニケーションズ
社内のDDoS緩和装置と連動し、トランジット
ISP側で対処してくれるというもので、攻撃量
と回線速度、攻撃経路などによって最適な場所
（ISP内やSDN－ IX内、ShowNet内）でDDoS

攻撃を防御または緩和することができます。

ネットワーク
エンジニアの祭典

　ラックの裏側も見せてもらいました（写真8）。
排熱に関しては写真9のように冷気をラック下
から送り込み、上に風が抜けるしくみですが、
下からの熱気が上の機器に影響を与えないよう、
ラックの途中途中で熱が逃げるような空気の流
れを作っているとのことでした注4。
　わずか3日間のイベントネットワークですが、
ホットステージ期間中、NOCチーム、コント
リビュータとSTMの方々は土日も昼夜も問わ
ずネットワーク構築に尽くします。彼ら、彼女
らの高い技術力と協調性、そして何より新しい

注4） 空気の流れを計測する機器もコントリビュータからの提供
です。

ことにチャレンジする熱意がShowNetを支え
ています。
　次回は本連載の最終回として、ShowNet

2015での実証実験で得られた知見を披露して
いただきます。s

攻撃を階層的に解析でき、脅威
となるトラフィックをより詳細
に抽出することが可能となりま
す。さらに今年は、SIEM（写
真6にあるNICTのNIRVANA

改）とフォレンジック（Savvius

の Omnipliance と Arbor の
Pravail）の本格導入と活用に
よって、インシデント発生時の
早期通知とその他のアラートと
の相関分析、被疑端末の危険度
を早期に判断し対応できるよう
にしていました。

 ▼写真8　ShowNetブースのラックを裏側から

 ▼写真9　 排熱処理は写真右にある送風装置からダク
トを伝ってラックの下から送り、上へと逃
がす構造

168 - Software Design

xhyveとは？

　xhyveは浅田拓也氏による本誌連載「ハイ

パーバイザの作り方」で紹介されたFreeBSD用の
仮想化ハイパーバイザ・bhyveをMac OS Xにポー
ティングしたものです。Mac OS X 10.10“Yosemite”
には仮想化ハイパーバイザのフレームワークが実
装されており、これを利用したDOSエミュレータ
であるhvdos注1がすでにありますが、より本格的
な仮想化ハイパーバイザがhvdosと同じ作者によっ
て実装・公開注2されました。
　bhyveのポーティングということもあり、
VGAに対応していないことを除くと基本的な
機能は実装されているため、Mac OS X上で
Linuxの動作を検証するといった用途であれば

十分にこなせるレベルにあります。またすべて
Mac OS Xのユーザスペースで実装されている
ため、Mac OS Xのカーネルに悪影響を及ぼす
懸念もありません。

xhyveの準備

　xhyveを利用するにはコンパイルが必要とな
るため、Mac OS Xの開発環境であるXcodeを
Mac OS Xにインストールしておきます。Mac

OS Xのターミナルでgitコマンドを実行すると
Xcodeのインストールが必要である旨のメッセー
ジが表示されるので、メッセージに従って操作
すればMac OS XのApp Storeが起動してイン
ストールされます。Xcodeのインストール完了後、
ターミナルで図1のコマンドを実行します。
　とくに問題がなければ、xhyve/build/の下に

xhyveコマンドがコンパイルされま
す（図2）。
　執筆時点で取得したソースコー
ドから生成されるコマンドは
222KBしかなく、非常に軽量で
あることがわかります。また、
xhyve/test/以下にはTiny Core

Linuxが用意されているので、
xhyve/xhyverun.shスクリプトを

第14回 xhyveでRHELを動かしてみよう

注1） https://github.com/mist64/hvdos　　　注2） https://github.com/mist64/xhyve

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

米国時間2015年6月10日にMac OS X用の仮想化ハイパーバイザであるxhyveが
リリースされました。Mac OS Xで動作する仮想化ソフトウェアはすでにあるものの、
xhyveは荒削りながら軽量ということやCUIだけで操作できる点が魅力です。

Writer レッドハット（株）サービス事業統括本部
プラットフォームソリューション統括部ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）

$ git clone https://github.com/mist64/xhyve
Cloning into 'xhyve'...
remote: Counting objects: 313, done.
remote: Compressing objects: 100% (160/160), done.
remote: Total 313 (delta 156), reused 305 (delta 148), pack-reused 0
Receiving objects: 100% (313/313), 11.16 MiB | 3.88 MiB/s, done.
Resolving deltas: 100% (156/156), done.
Checking connectivity... done.
$ cd xhyve/
$ make

 ▼図1　xhyveの準備

$ ls -lh build/xhyve
-rwxr-xr-x 1 rio staff 222K 6 12 12:01 build/xhyve

 ▼図2　xhyveのファイルサイズ

https://github.com/mist64/hvdos
https://github.com/mist64/xhyve

168 - Software Design Aug. 2015 - 169

第 14 回xhyveでRHELを動かしてみよう

実行すれば、すぐにLinuxが動作することが確
認できます（図3）。

$ sudo ./xhyverun.sh

　なお、Tiny Core Linuxを終了するには、Tiny

Core Linuxのターミナルでsudo haltコマンドを
実行してください。

インストールの前に

　Tiny Core Linuxが動いたところでニヤニヤ
していても「仕事」にならないので、xhyveで
RHEL 7をインストールしてみます。実はxhyve

を紹介したブログエントリー注3にはUbuntuのイ
ンストール方法が紹介されているのですが、
RHEL/Fedora/CentOSをインストールするに
はもう少し手順が必要ですので、筆者が確認し
た方法を以下で紹介します。
　なお何らかの理由でxhyveを強制的に停止す
る必要があるときは、Mac OS Xのアクティビ
ティモニタで「すべてのプロセス」を表示し、
xhyveのプロセスを停止してください（図4）。

RHEL 7.1インストール用
スクリプト

　前述のとおり、Tiny Core Linuxを起動する
際に付属のxhyverun.shを実行しました。中を
見ると非常に単純でxhyveコマンドに渡す引数
を列挙しているだけです（リスト1）。
　これを“rhel71install.sh”のようにリネームし
て、RHEL 7.1のインストール用に変更したも
のがリスト2です。
　VNCを経由したGUIインストールが必要なけ
れば、inst.vncおよび inst.vncpasswordオプショ
ンは必要ありませんが、inst.sshdオプションは
インストール完了時に作成された initramfsなど
をMac OS X側に転送するために必要となります。

注3） http://www.pagetable.com/?p=831hyve

#!/bin/sh

KERNEL="rhel71/vmlinuz"
INITRD="rhel71/initrd.img"
CMDLINE="console=ttyS0 acpi=off inst.vnc inst.
vncpassword=hogehoge inst.sshd"

MEM="-m 1G"
#SMP="-c 2"
NET="-s 2:0,virtio-net"
IMG_CD="-s 3,ahci-cd,/Users/rio/Downloads/rhel-
server-7.1-x86_64-dvd.iso"
IMG_HDD="-s 4,virtio-blk,rhel71/hdd.img"
PCI_DEV="-s 0:0,hostbridge -s 31,lpc"
LPC_DEV="-l com1,stdio"

build/xhyve $MEM $SMP $PCI_DEV $LPC_DEV $NET $IMG_CD
$IMG_HDD -f kexec,$KERNEL,$INITRD,"$CMDLINE"

 ▼リスト2　rhel71install.sh

 ▼図3　Tiny Core Linux on xhyve
#!/bin/sh

KERNEL="test/vmlinuz"
INITRD="test/initrd.gz"
CMDLINE="earlyprintk=serial console=ttyS0 acpi=off"

MEM="-m 1G"
#SMP="-c 2"
#NET="-s 2:0,virtio-net"
#IMG_CD="-s 3,ahci-cd,/somepath/somefile.iso"
#IMG_HDD="-s 4,virtio-blk,/somepath/somefile.img"
PCI_DEV="-s 0:0,hostbridge -s 31,lpc"
LPC_DEV="-l com1,stdio"

build/xhyve $MEM $SMP $PCI_DEV $LPC_DEV $NET $IMG_CD
$IMG_HDD -f kexec,$KERNEL,$INITRD,"$CMDLINE"

 ▼リスト1　xhyverun.sh

 ▼図4　 アクティビティモニタ（プロセスを選び、左上の
×印のボタンで停止する）

http://www.pagetable.com/?p=831hyve

170 - Software Design

いといけないことがあります。

1. anacondaのメニューで“5”を入力してg
2. Network settingsのメニューで“2”（Con�gure devi

ce eth0）を入力してg
3. Device con�gurationのメニューで“8”（Apply con�

guration in installer)を入力してg

　ネットワーク接続が完了すれば、図9のよう
なメッセージがコンソールに出力されます。
　Mac OS Xのターミナルで別ウインドウある
いはタブを開いてsshで接続できることを確認
しておきます。rootのパスワードは不要です。

$ ssh root@192.168.64.14
[anaconda root@localhost ~]#

　すべての項目の設定が完了したらインストー
ルを開始しましょう。ただしインストールが完了
してもファイルを転送する必要があるため再起動

RHEL 7.1のインストール

　スクリプトを実行する前にインストーラ
DVDからvmlinuzおよび initrd.imgを抜き出す
作業が必要です。しかしながらインストーラ
DVDをダブルクリックしても図5のようにマ
ウントできません注4。そこでMac OS Xのター
ミナルでちょっとした作業をします（図6）。
　次にインストール先となるhdd.imgを作成します。
図7では16GBのイメージを作成していますが、
もしLVMを用いない場合はより大きなイメージ、
たとえば32GBが必要な点に注意してください。
　以上でインストールの準備ができたのでイン
ストール用スクリプトを実行します。インストー
ラが無事起動すると図8のように表示されます。

$ sudo ./rhel71install.sh

　ここで注意点が2つあります。anacondaの仮
想ターミナルの切り替えが可能ならばシェルを
実行できるため、initramfsなどの転送ができ
ます。しかし、Mac OS Xのターミナルではで
きません注5。このためインストール用のスクリ
プトで sshdが起動するように設定しました。
また執筆時点で理由は判明していませんが、ネッ
トワークを有効化するにはanacondaのメニュー
の“5）Network settings”での手順を繰り返さな

$ dd if=/dev/zero of=~/xhyve/rhel71/hdd.img bs=1g count=16

 ▼図7　hdd.img（16GB）のイメージ作成

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

 ▼図5　 インストーラDVDはMac
OS Xではマウントできない $ mkdir -p ~/xhyve/rhel71/boot/

$ dd if=/dev/zero of=/tmp/tmp.iso bs=2k count=1
$ dd if=~/Downloads/rhel-server-7.1-x86_64-dvd.iso bs=2k skip=1 >> /tmpｭ
/tmp.iso
1899519+0 records in
1899519+0 records out
3890214912 bytes transferred in 12.717327 secs (305898785 bytes/sec)
$ hdiutil attach /tmp/tmp.iso
$ cp /Volumes/RHEL-7.1\ Server./images/pxeboot/initrd.img ~/xhyve/rhel71/
$ cp /Volumes/RHEL-7.1\ Server./images/pxeboot/vmlinuz ~/xhyve/rhel71/
$ hdiutil detach /Volumes/RHEL-7.1\ Server./
$ rm /tmp/tmp.iso

 ▼図6　RHEL 7.1のインストールの事前作業

 ▼図8 インストーラ（anaconda）が起動した状態

Wired (eth0) connected
 IPv4 Address: 192.168.64.14 Netmask: 255.255.255.0ｭ
Gateway: 192.168.64.1
 DNS: 192.168.64.1

 ▼図9　ネットワーク接続が成功した場合

注4） Fedoraの場合はハイブリッドDVD-ROMイメージなのでマウントできるが、これはMacにFedoraをインストールする際に
必要なパーティションがマウントされるだけで、xhyveで必要となるファイルを抜き出せない。

注5） Modifierキーの転送ができないため。

170 - Software Design Aug. 2015 - 171

第 14 回xhyveでRHELを動かしてみよう

はしないでください（図10）。
　インストールが完了したら
Mac OS Xのターミナルで
RHELからMac OS Xにファ
イルを転送します（図11）。
　また、xhyveではGRUB 2

の1stステージを利用しない
ためxhyveにカーネルパラメー
タを指示する必要があります。
Mac OS Xのターミナルでgrub.cfgを転送してお
くと良いでしょう（図12）。

RHEL 7.1の起動スクリプト

　先に転送したgrub.cfgを参照しながら作成し
た“rhel71run.sh”スクリプトがリスト3です。
　スクリプトを実行するとRHEL 7.1が起動し
ます。

$ sudo ./rhel71run.sh

　なお、RHEL 7.1とほぼ同様の手順でFedora

22/CentOS 7.1でもインストールができます。
Fedora 22の場合、起動用のvmlinuz/initrd.img

はFedoraのミラーサイト注6からダウンロードす
るのが最も簡単ですが、インストーラDVDイメー
ジに含まれるものと同じである必要があるため、
うまくいかない場合はいずれかのLinux上でイン
ストーラDVDイメージをループバックマウント

して当該ファイルを抜き出してください。

まとめ

　昨今はMacBook Air/MacBook Proを持って
セミナーや勉強会に参加するエンジニアが増え
ています。xhyveならば、手軽にLinuxをゲス
トOSとして動作させられるので、メリットが
いろいろありそうです。ﾟ

#!/bin/sh

KERNEL="rhel71/boot/vmlinuz-3.10.0-229.el7.x86_64"
INITRD="rhel71/boot/initramfs-3.10.0-229.el7.x86_64.img"
CMDLINE="console=ttyS0 BOOT_IMAGE=/vmlinuz-3.10.0-229.el7.x86_64 root=/dev/
mapper/rhel-root ro rd.lvm.lv=rhel/swap console=ttyS0 crashkernel=auto
rd.lvm.lv=rhel/root acpi=off LANG=en_US.UTF-8"

MEM="-m 1G"
#SMP="-c 2"
NET="-s 2:0,virtio-net"
#IMG_CD="-s 3,ahci-cd,/Users/rio/Downloads/rhel-server-7.1-x86_64-dvd.iso"
IMG_HDD="-s 4,virtio-blk,rhel71/hdd.img"
PCI_DEV="-s 0:0,hostbridge -s 31,lpc"
LPC_DEV="-l com1,stdio"

build/xhyve $MEM $SMP $PCI_DEV $LPC_DEV $NET $IMG_CD $IMG_HDD -f kexec,$KE
RNEL,$INITRD,"$CMDLINE"

 ▼リスト3　rhel71run.sh

$ scp root@192.168.64.14:/mnt/sysimage/boot/initram* ./xhyve/rhel71/boot/
initramfs-0-rescue-faabd67daf984767aea59626a4 100% 38MB 38.0MB/s 00:01
initramfs-3.10.0-229.el7.x86_64.img 100% 17MB 16.9MB/s 00:00
$ scp root@192.168.64.15:/mnt/sysimage/boot/vmlinuz* ./xhyve/rhel71/boot/
vmlinuz-0-rescue-faabd67daf984767aea59626a491 100% 4909KB 4.8MB/s 00:01
vmlinuz-3.10.0-229.el7.x86_64 100% 4909KB 4.8MB/s 00:00

 ▼図11　ファイル転送の様子 ▼図10　インストール開始

$ scp root@192.168.64.14:/mnt/sysimage/boot/grub2/grub.cfg ./xhyve/

 ▼図12　grub.cfgの転送

 ▼図13　RHEL 7.1 on xhyve

注6） たとえば、http://ftp.iij.ad.jp/pub/linux/fedora//releases/22/Server/x86_64/os/images/pxeboot/

http://ftp.iij.ad.jp/pub/linux/fedora//releases/22/Server/x86_64/os/images/pxeboot/

172 - Software Design

これまでで最大規模、
BSDCan 2015

　*BSD注1コミュニティは年に1回、または2年に1

回といったペースで世界各地でカンファレンスを開
催しています。開催されるカンファレンスの数は増
え続けており、この数年だけでもBSDCan、vBSD

Con、EuroBSDCon、BSDCon Brazil、AsiaBSDCon、
MeetBSD California、BSDCam、NYBSDCon、
ruBSD、KyivBSD、BSDDayといったカンファレン
スが開催されています。
　会議の規模、参加者の規模、発表内容の質、開催
の頻度、募集と選定の確からしさなどから、Asia

BSDCon、BSDCan、EuroBSDConの3つのカンファ
レンスが代表的と言えます。とくにカナダのオタワ
で開催されるBSDCanは年々順調に参加者を増や
し、もっとも規模の大きな*BSDのカンファレンス
になっています。スポンサードも増やし、カンファ
レンスの質も年々向上しています。
　今年からBSDCanの開催月が5月から6月に変更
されました。今年の参加者はこれまでで最大とな
り、発表トラックも4トラックになりました。BSD

Canの前にはFreeBSD DevSummitも開催され、
FreeBSDの今後の動向が見える会議になりました。
BSDCan 2015の発表から、とくに興味深かった講
演や各プロジェクトによる発表をピックアップして
紹介します（写真1）。

基調講演はあのBourne
Shellの開発者：
Stephen Bourne氏

　BSDCan 2015の基調講演にはStephen Bourne氏

注1	 BSDと名の付くものを総称して、このように「＊」を付けて表
記させてもらいます。

が登壇しました。Bourne氏といえば、*BSDやLinux

で広く使われているBourne Shell（/bin/sh）の開発
者として有名です（ディストリビューションに含ま
れているのはBourne Shellそのものではなく互換
シェルです）。本誌の全読者にもっとも強い影響を
与え続けている人物の一人といえます。
　Bourne氏からは1975年の終わりごろから、それ
まで使っていたシェルの代わりとしてBourne Shell

を開発するに至った経緯や、最初の設計と実装がど
ういった指針に基づいて行われたものであるかなど
が語られました。最初のバージョンは1976年にリ
リースされていますので、Bourne Shellの登場から
もう40年が経過しようとしていることになります。
　Bourne Shellの特徴的なシンタックスである、if

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第22回 ❖BSDCan 2015で知る今後の動向

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

▼▼写真1　BSDCan 2015

Aug. 2015 - 173

▶第22回◀
BSDCan 2015で知る今後の動向

　armやmipsはamd64ほどは汎用的でパワフルな
マシンが存在しませんので、通常であれば次の2つ
のアプローチを取ることになりますが、どちらもビ
ルドが完了するまで長い時間がかかるという問題が
あります。

●●実機でビルドする
●● QEMU上でビルドする

　Sean Bruno氏とStacey Son氏はこれに対し、Jail
でビルド環境を作成するとともに、CPUの処理だけ
エミュレートするQEMUのユーザモードエミュ
レーションを使用する方法を紹介。こうすることで
amd64の高速な環境でのクロスビルドが可能で、現
実的なパッケージクラスタとして使用できることを
紹介しました。

プロセッサの機能を使って
Capsicumを強化する
CheriBSD：Brooks Davis氏

　FreeBSDは10.0からCapsicumと呼ばれるケーパ
ビリティの実装系を導入しています。これはプロセ
スが自発的に自身のアクセスできるリソースやシス
テムコールを制限することで、より安全に動作でき
るようにしようという試みで、既存のPOSIX API

と高い相性を実現しているという特徴があります。
　Capsicumの研究者らはその開発を通じて、Cap

sicumが実現しようとしているリソースの隔離を行
うには、現在のプロセッサでは実装がトリッキーに
ならざるを得ないと指摘しています。これを改善す
るために、より簡潔にリソースの区画化を実現でき
るように命令セットアーキテクチャのデザインその
ものを模索する取り組みとして、CHERI（Capability

Hardware Enhanced RISC Instructions）の開発に乗
り出します。
　CheriBSDは、実験機として開発されたCHERI

を実装したハードウェアに対応した、FreeBSD派生
のオペレーティングシステムです。CHERIを利用で
きるようにカーネルが変更されているほか、ユーザ
ランドのソフトウェアからCHERIの機能が利用で
きるように実装が追加されています。
　CHERIそのものも興味深いのですが、Brooks

... fi、case ... esacといった表記やプログラ
ムのフロー、置換の機能などはALGOL 68のコン
セプトをそのまま使用したと説明がありました。
Bourne氏はALGOL 68のコンパイラの開発者でも
あるからです。1977年には現在のBourne Shellの機
能の大半が実装されていたようです。1975年当時は
Unixの6th editionを使っていて、必要がなかった
ので実装にはCのライブラリは使っていなかったと
説明しています。
　Bourne氏はBourne Shellの開発を通じて実施し
たことや感じたことから、次のような項目を紹介し
ていました。

●●他人が読みやすいコードを書くこと
●●とにかくはじめてから細かく繰り返すこと
●●実際に使っているリアルユーザの声に耳を傾ける

こと
●●機能をたくさん追加することで逆に扱いにくくな

る現象に陥らないようにすること

　なお、Bourne氏が開発したshのソースコードは、

http://minnie.tuhs.org/cgi-bin/utree.pl?file=V7/

usr/src/cmd/shで閲覧できます。C言語をALGOL

68風に記述するためのマクロが使われ、一見する
とCのソースコードとは思えないような作りになっ
ています。

JailとQEMU UEでARMおよび
MIPS向けのパッケージビルド：
Sean Bruno氏／Stacey Son氏

　FreeBSDプロジェクトは、amd64と i386をTier

1注2プラットフォームとしてサポートしています。
そしてarm、ia64、pc98、powerpc、sparc64はTier

2、mipsはTier 3と位置づけています。現在プロ
ジェクトではarmとmipsに関しても需要が高いこ
とから、Tier 1と同じようにパッケージの提供へ向
けた作業を行っていますが、どういった方法で取り
組まれているのかの発表がありました。

注2	 FreeBSDプロジェクトは複数のアーキテクチャをサポートし
ていますが、そのサポートのレベルをTier 1〜4で表現して
います。Tier 1はもっともサポートが手厚い対象で、リリー
スごとにインストーラもパッケージもすべてが提供されてい
ます。数字が大きくなるほどサポート内容が減っていきます。

174 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

を動作させてシステムコールの不正な実行を排除す
るという研究成果が、FreeBSD DevSummitでも発
表されていました。このあたりは今ホットな研究領
域のようです。

ケンブリッジスタイルOSコース
L41：George Neville-Neil氏／
Robert Watson氏

　大学におけるオペレーティングシステムの授業は
さまざまですが、BSDCan 2015ではRobert Watson

氏によってケンブリッジ大学で開講されている
「L41 Advanced Operating Systems」が紹介されま
した。オペレーティングシステムの授業ではシンプ
ルな模造オペレーティングシステムを使ったり、実
際のオペレーティングシステムを使っているものの
難しすぎるといったこともあります。
　「L41 Advanced Operating Systems」ではほかの
コースとは異なり、教材として本物のFreeBSDを
採用。教科書としては「The Design and Implemen

tation of the FreeBSD Operating System（2nd

Edition）」や「DTrace: Dynamic Tracing in Oracle

Solaris, Mac OS X and FreeBSD（Oracle Solaris

Series）」などを利用しつつ、システムをモニタリン
グする方法や分析する方法を通じて動きを探り、そ
れに合わせて内部構造やしくみを解説する方法を
取っていることを紹介していました。この取り組み
の一部は、先に東京で開催されたAsiaBSDCon

2015において、その一部分がDTraceのチュートリ
アルという形で実施されています。
　とくに発表では、DTraceを使ったシステムの動
作モニタリングが授業において重要なポジションを
占めていることが示されていました。実際にカーネ
ルの内部でどういったことが起こっているのかを実
際に手でコマンドを打って確認し、それを受けて設
計や実装の講義を受けるスタイルです。カーネルの
動きが実感として理解でき、論理的に系統立って頭
に中に整理されるのではないかと感じました。

次世代設定ファイルフォーマット
「UCL」：Allan Jude氏

　FreeBSDユーザや管理者がもっとも影響を受け

Davis氏の発表ではリポジトリの管理にGitHubを
使ったこと、この結果としてマージ作業がとても簡
単になったこと、などが紹介されていた点が特徴的
でした。FreeBSDプロジェクトはSubversionを
バージョン管理システムとして採用し、開発者向け
にはPerforceを提供しています。Gitへのエクス
ポートも実施しているのでGit経由でもソースコー
ドを取得できますが、あくまでも中心はSubver

sionです。
　CheriBSDでは、GitHubのFreeBSDからソース
コードを派生させてプロジェクトを開始していま
す。HEADに導入される変更を随時マージしなが
ら、CheriBSDの変更部分に関しても保持し続ける
という取り組みは興味深いものがありました。プロ
ジェクトの最新の成果物を取り込み続けながら、カ
スタムコードも保持し続ける方法として参考になり
ました。ソースコードはhttps://github.com/CTS

RD-CHERI/cheribsd/tree/masterで閲覧できます。

カーネルメモリ保護機能
KCoFIとVirtual Ghost：
John Criswell氏

　ユーザランドで動作するソフトウェアはアクセス
できるメモリ領域や利用できる機能が限られてお
り、システムを破壊するような操作はできないよう
になっています。一方、カーネルはどのリソースに
も自由にアクセスできるため、カーネルにバグが
あったり、バッファオーバーフローなどを仕込まれ
ると、セキュリティはあってないような状態になり
ます。
　カーネルにおけるメモリアクセスを制限したり、
問題のある動作をモニタリングして事前に処理を排
除する方法などいくつかの方法がありますが、John

Criswell氏からは「KCoFI」および「Virtual Ghost」
という2つの研究成果が発表されました。
　アイディアの根幹にあるものは、カーネルとユー
ザランドの間にすごく薄くて軽量なハイパーバイザ
のようなものを挟み込んで、このレイヤでカーネル
によるほかの領域へのメモリアクセスを制御しよう
といった内容になっています。アイディアはまった
く異なるのですが、カーネルの中にさらにカーネル

https://github.com/CTSRD-CHERI/cheribsd/tree/master
https://github.com/CTSRD-CHERI/cheribsd/tree/master

Aug. 2015 - 175

▶第22回◀
BSDCan 2015で知る今後の動向

ることになるであろう取り組みが、このUCL（Uni

versal Configuration Files）でしょう。FreeBSDプ
ロジェクトは今よりモダンで、さまざまなデバイス
で利用できる「プラットフォーム」としてFreeBSD

を開発すべく会議や開発を繰り返しています。その
1つがUCLです。
　現在 iXsystemsでCTOを務めるJordan Hubbard

氏は、以前FreeBSDの開発者会議で、FreeBSDは
プラットフォームとして変わるべき時を迎えている
とし、たとえば設定ファイルを統一されたXMLに
するなどの取り組みを進めるべきだと提案したこと
がありました。この発言を受けてAllan Jude氏が開
発をはじめたフォーマットであり、言語がUCLで
す。
　UCLの直接の発想はNginxの設定ファイルから
来ているそうです。JSONのようなフォーマットで
すが、JSONのように厳密なルールにはなっておら
ず、より人間でも書きやすいようなフォーマットに
なっています。JSONはよく利用されるフォーマッ
トですが、人間が直接記述するには規制が強い
フォーマットで、適切なJSONを手動で書き続ける
のは難しいことです。
　Allan Jude氏はいくつかのサービスでUCLを使
い始めているほか、ほかの開発者もツールの設定
ファイルにUCLの使用をはじめています。UCLは
設定のオーバーレイやインクルード、ほかのフォー
マットへの変更が可能で、コマンドからも操作がで
きます。Jude氏は将来的に、現在/etc/の下に展開
されているデフォルトの設定ファイルをUCL

フォーマットに変更するとともに、/etc/defaults/

以下へ移動させ、システムのデフォルトとユーザが
あとから追加した設定などを分離することで、管理
とアップデートを容易化するアイディアを紹介して
いました。
　実際にどのファイルを対象とするのか、ディレク
トリ配置をどうするのか、さらに多くのコミッタ間
で議論を進める必要がありますが、開発者の間にと
くに強く反対する雰囲気はなかったように思いま
す。少なくとも、大幅な変更が行われるのはFree

BSD 12以降になるのではないかと思いますが、よ

り少ない手間でアップグレードの容易化や管理ツー
ルからの管理の容易化を進める取り組みに関して、
議論が進んでいることは知っておくと良いかもしれ
ません。

ベースシステムのpkg(8)化：
Baptiste Daroussin氏

　FreeBSDプロジェクトは、ベースシステムの
アップデートに freebsd-update(8)、サードパーティ
製ソフトウェアのインストールやアップデートに
pkg(8)を採用しています。これに関して、より細か
いアップデートやインストールなどを実現できるよ
うにするために、ベースシステムも個別のパッケー
ジpkg(8)として実装しようという取り組みが進めら
れています。PC-BSDではすでにそのしくみでベー
スシステムの提供を開始しています。
　この取り組みは10系にバックポートされること
はないと思いますが、早ければ11で、強い反対の
理由がなければ12には基幹機能として取り込まれ
るのではないかと見られます。

BSDCanオークション

　BSDCanはクロージングセッションでオーク
ションを実施するという習慣があります。オーク
ションの売上げはFreeBSD Foundationへの寄付に
なるわけですが、このオークションはなかなか面白
いものです。BSDCanのDan Langille氏が丁々発止
にオークションを進めていくのですが、書籍やT

シャツから実にくだらないものまで、調子に乗せて
どんどん値上げしていきます。これは凄いものだと
値を上げるだけ上げて落札させたあとに、実はもう
3枚あると言い出したり、会場は笑いの渦に包まれ
ます。
　BSDCanは開催場所も毎年同じですし、宿泊に
は費用の安い大学のレジデンスが使えます。海外の

*BSDカンファレンスとしては参加しやすいので、
興味がある方はBSDCan 2016の参加を検討してみ
てください。s

176 - Software Design

29 Debian Developer　やまねひでき　henrich@debian.org

リポジトリの役割を理解して
Debianを快適に使おう

開発の流れと
リポジトリの関係

　今回は、Debianの stable/testing/unstable

バージョンの話と、用途ごとに存在するリポジ
トリ注1の立ち位置を説明します。「自分の用途
とスキルでは、どのリポジトリを指定すれば、
Debianを快適に利用できるのか」がおのずと見
えてきます。
　Debianではstable/testing/unstableにリポジト
リが分かれていて、「unstable→testing→stable」

注1） リポジトリはパッケージの集積場所です。目的に合わせて
分かれており、リポジトリ内ではパッケージ間の整合性が
とられていますが、ほかのリポジトリを不用意に混ぜて利
用すると依存関係が破綻する可能性があります。

という流れで開発が進みます。これに加え、そ
の他さまざまなリポジトリが存在するのですが、
何がどう違っているのかを理解されている方は、
おそらく少数でしょう。今回は図1を見ながら、
各リポジトリの関係について順を追って理解を深
めていきましょう。

unstable

　unstable（コードネーム：sid）は、Debianパッ
ケージが最初に投入されるリポジトリです。最
新のパッケージはここへアップロードされます。
unstableのリポジトリは1日に4回更新され、
逐次新しいパッケージが利用できるようになっ
ていますが、数日経つとデスクトップ環境では
「アップデートが数百MBほどある……」という

experimental

リリース（2 年に1回）

マイグレーション
（随時）

stable

Point release統合 統合

unstable

testing

 ▼図1　Debianの各リポジトリとその関係

176 - Software Design Aug. 2015 - 177

リポジトリの役割を理解してDebianを
快適に使おう 29

ことは珍しくありません。
　また、チェック不足によるバグなども多くあ
ります（そのため「unstable」という名前が付い
て、リリース版であるstableとは分けられてい
るのですが注2）。ここで勇敢な利用者による多
くの確認を経て、重大な問題が見つからなけれ
ば、通常5日後注3にパッケージが testingへ「マ
イグレーション」されます。

testing

　testing（現在のコードネーム注4：stretch）は
stableリリースをベースに、unstableからマイ
グレーションが行われたパッケージで構成され
たリポジトリです。「これまで使い続けてきた
タレに適宜新しいタレを混ぜている」という感
じでしょうか。一部のパッケージは残念ながら
unstableで「RCバグ」注5が見つかり修正されて
いないためにマイグレーションが実施されず、
stableの古いバージョンのまま……ということ
もそれなりにあります。あとからRCバグが見
つかったものは削除されるので、ユーザとして
はとくに不具合なく使っていたソフトウェアが
いつの間にか testingリポジトリから消えてい
てインストールができなくなっている……とい
うこともしばしば見られます。
　ここで2年に1回実施される半年程度の「フ
リーズ」期間の間に大きなバグを修正、あるい
はパッケージ自体を削除などして調整がなされ、
ある時点でstableとして「リリース」されます。

注2） unstable（不安定）という怖そうな名前が付いていますが、
近年は「not stable」というぐらいの安定度になっています
ので、そこまで怖がることはありません。地雷になるパッ
ケージはだいたい特定のものに限られますし、Twitterな
どを見ていれば地雷を踏んだ誰かが悲鳴をあげているので、
それを回避することもできます。

注3） パッケージのchangelog（/usr/share/doc/パッケージ名 /
changelog.Debian.gz）を見るとわかるのですが「urgency」
という項目があり、これが lowならば10日、mediumな
ら5日、highなら2日でマイグレーションが実施されます。
以前は lowが開発ツールによる標準値でしたが、より開発
を加速させるためにmediumに変更されています。

注4） unstableのコードネームはずっと sidですが、testing、
stableのコードネームはリリースに合わせて変わります。

注5） Release Criticalバグ。機能面だけではなく「ソースからビ
ルドできない」「ライセンス違反がある」などでもRCバグと
されます。

stable

　一度stableとしてリリースされるといっさい
の変更が加えられないので、変更に振り回され
ず安定して利用できます。ただし、これには例
外が2つあります。セキュリティ更新とポイン
トリリースです。
　Debianにおける「セキュリティ更新」は、基
本的にセキュリティ修正だけを含む最低限の変
更を加えたものです注6。セキュリティ問題が発
見される注7と、

①	メンテナがパッケージに適用するパッチを
用意

②	セキュリティチームによるパッチの精査
③	セキュリティチームによるパッケージのビル
ドおよびアップロードが行われる。これによ
り「stable-security注8」リポジトリが更新され、
DSA（Debianセキュリティ勧告）が固有の番
号付きで発行される。そして、GPGで署名
されたメールがdebian-security-announce
メーリングリストに送信され、Webサイトに
情報が掲載される

という流れでユーザの手元までやってきます。
実は「stable-security」リポジトリ自体は stable

リポジトリとは別になっているのですが、イン
ストール時点でapt lineに記述されているので、
気づいてない方がほとんどでしょう（ちなみに
stable-securityリポジトリは特殊なところがあ
り、通常のミラーサーバとは扱いが別になって
います。security.debian.org以外ではミラーさ
れていません）。

注6） upstreamがセキュリティ修正以外の機能追加も含めたリ
リースしかしない場合（例：Firefox）はこの限りではありま
せん。

注7） 多くの場合はCVE（Common Vulnerabilities and Exposures）
が発行されて、各ディストリビューションベンダでハンドリ
ングが容易になるように調整されます。CVEが発行される前
の未公開の脆弱性の場合は、セキュリティチームが各メンテ
ナに対してGPG鍵で暗号化したメールを送るなどして、第
三者に漏れないように慎重に作業が進められます。

注8） stableの部分は、その時々のコードネームに置き換えてくだ
さい。現在だと jessie-securityという名前です。以降、
stableの表記が出てきた場合は同様に読み替えてください。

178 - Software Design

　もう1つの「ポイントリリース」についてです
が、「stable-proposed-updates」というリポジト
リがあります。これはいわば「β版」のリポジト
リです。stableに対して何かしらの修正を加え
たアップデートを適用したい場合、stableリリー
スチームによる差分のチェックが行われたうえ
でこちらにアップロードを行い、ユーザによる
テスト期間を経てポイントリリースの時点で
stableに統合されます注9。
　最近ですと、Debian 8に対する8.1のリリー
スがポイントリリースにあたります。proposed-

updatesのリポジトリは公開されているので、大
規模な運用を行っている場合はリリース前に限
定した環境で適用してテスト運用を行い、問題
があればフィードバックを行うと利用者は幸せ
になれるでしょう。
　stableに対してのリポジトリには、もう1つ
「stable-backports」があります。新しく更新した
パッケージが testingまで降りてきても、stable

のリリースは2年ごとなのでタイミングが合わ
ないとstableでは利用できません。とはいえ、2

年というのは短くない期間ですので、「stableを
使っているけど、testing/unstableにあるパッケー
ジの機能を使いたい！」というジレンマが発生し
ます。
　これを解消する方法としては、testing/unsta

bleにあるパッケージを「借りてくる」やり方（apt

pinning）があります。しかし、この方法は依存
関係を破壊してせっかく安定して運用できてい
る環境を壊す危険性も秘めているため、頻繁に

注9） 加えられるのはあくまでも修正であり、機能追加ではあり
ません。

利用したくはありません。ここで、「testingに
あるバージョンのソースをもとにstableに合わ
せてビルドしなおしたパッケージのリポジトリ」
＝ stable-backportsの登場です。既存の環境に
悪影響を与えることなく新しいバージョンを利
用できます。
　非常に有用ではありますが、望むパッケージ
がbackportsに用意されているかはメンテナの
気力しだいであるのが難点です（testingから
backportの自動化ができれば良いのですが
……）。また、セキュリティアップデートがケ
アされているかというと、これも気力しだいで
すので追いつかないこともあり、サーバで運用
する場合は注意が必要になります。

experimental

　これまで説明したもの以外では「experimental」
があります。experimentalは独立したリポジト
リで、「大規模な変更のためそのままでは
unstableに入れてtestingにマイグレーションす
るのは怖い、もしくはリリース前でunstableへ
の投入がためらわれる注10」けれど、「継続的にリ
リース自体は行っておきたい（手元に死蔵させて
おきたくはない）」などの場合に利用されます。
　experimentalにあるパッケージを利用するに
はapt lineに追加するだけではダメで、インス
トール時に「experimentalのパッケージをイン
ストールする」ことを明示的に指定する必要が
あります（図2）。

注10） 今後ですが、フリーズ期間中の新しいバージョンのアップ
デートについては testing-proposed-updatesリポジトリ
へアップロードすることにより、unstableへの投入が禁止
されなくなるかもしれません。

 ▼図2　experimentalのパッケージをインストールする手順

$ sudo sh -c "echo deb http://ftp.jp.debian.org/debian exerimental main >> /etc/aptｭ
/sources.list"
 ↑experimentalリポジトリをapt lineに追加し、
$ sudo apt-get update
 ↑aptのデータベースをアップデートして変更を反映
$ sudo apt-get install -t experimental hello
 ↑-tオプションでexperimentalを使うことを明示し、ここではhelloパッケージのインストールを指示

178 - Software Design Aug. 2015 - 179

リポジトリの役割を理解してDebianを
快適に使おう 29

　また、ここに入れられたパッケージはリリー
スされることはないため、同じ内容のパッケー
ジであっても必要に応じてバージョン番号を上
げてunstableにアップロードしなおされます。

で、私はどれを
利用すればいいの？

　基本はstable、現在であればDebian 8「jessie」
を利用するのが一番です。「まだDebianに慣れ
ていない」「安定して利用したい」「時間と手間は
かけたくない」方はstableを利用し、新しいパッ
ケージが必要な場合は、適宜backportsを取り
入れるのが良いでしょう。大規模サーバ用途で
利用する場合は、proposed-updatesを有効にし
たテスト環境も用意しておくことを忘れずに。
　とにかく最新のバージョンが好きな人や、ソ
フトウェアの開発を行ったり注11、Debianを「いじ
る」のが好きで時間が取れる人はunstableを検
討するのが良いでしょう。unstableは重大な問
題が見つかっても報告の2、3日後には修正され
ていることはザラで、当日にアップデートが出
ることもしばしばあります。ただし、タイミン
グしだいでは（かなり稀

まれ

ですが）起動しなくなる
ような問題が紛れ込むこともあり得る「じゃじゃ
馬」ですので、その点は覚悟が必要です。利用
する場合は、インターネットで情報検索するた
めに別に予備機を1台持っておくと安心です。
　参考までに筆者の場合ですが、自身のメンテ
するパッケージの開発も目的ではあるものの、
Debian全体のドッグフーディング注12も兼ねて
unstableをメインに利用することにしています
（一方でリポジトリサーバなどの利用者が多く
重要なインフラについては基本的にはstableで、
サードパーティリポジトリなどの兼ね合いで一

注11） 「ソフトウェア開発は行うが、枯れた環境での開発でかま
わない」場合はstableでいきましょう。

注12） 「eat your own dogfood」とも言い、開発者自身が自分の
開発するソフトウェアを利用することで、早期に問題を発
見し修正するようにする開発手法。Microsoft社のWin
dows NT開発を描いた『闘うプログラマー』でも、開発者
に対して中期のまだ不安定なNTの利用を強制することで
重要な問題を修正するように仕向け、安定性を高める描写
があります。

時的に1つ前のstableである「oldstable」を利用
します）。unstableを利用していても、特定のバー
ジョンが必要な場合、動作させるときはVir

tualBoxやchrootを利用することで検証を行い、
パッケージビルドするときは cowbuilder上で
unstable/stableに対してそれぞれビルドを行え
ますので、不都合はありません。また、リスク
ヘッジとしてデスクトップPCとノートPCの
2台を用意し、パッケージのアップデートは若
干時期をずらして適用することで、バグで何も
できなくなることを防いでいます。

結論：基本はstable、慣れてきて余裕があれば
unstableが楽しい

　testingについては、unstableほど最新とは言
いがたいものの、stableとは違って更新がそれ
なりにやってくるという「どっちつかず」なもの
になっているのですが、これは「リリース前の
クッション役」というリポジトリの性格上、致
し方がないところです。
　testingにはもう2つほどマイナス点がありま
す。unstableでは直っているのに testingでは
直っていない問題（セキュリティ修正含む）は、
開発者からはほぼまったくケアされません（問
題があってもマイグレーションで修正される予
定なので。testingに個別にケアするような、
そんな潤沢なリソースはどこにもありません）。
同様に、RCバグが直っていないパッケージは
自動で削除され、利用したいときには testing

に存在しないということがしばしば起こります
（これもunstableで修正されないと直りません）。
　とはいえ、致命的な問題を避けつつ「全体的に」
新しめのパッケージを使いたいという場合は
testingも選択肢になり得ます（筆者からすると
unstable/stableでのそれぞれの良い部分が潰さ
れてしまっていて、あまり常用をお勧めできま
せん。ただ例外があって、リリース前のフリー
ズ期間は testingを一番美味しくいただけます。
この場合はstableに近い形で安定して利用がで
きるでしょう）。｢

180 - Software Design

Ubuntu Monthly Report

　Ubuntu 15.10から、インプットメソッドがFcitx

に変更されることになりました。中国語では15.04

からすでにデフォルトだったので注1、これに日本語、
韓国語、ベトナム語が続くことになります。
　Ubuntuで日本語の入力ができるようになったのは
2006年6月リリースのUbuntu 6.06 LTSからでし
た。最初のインプットメソッドはSCIMであり、9.10

からIBusに変更され、15.10からさらにFcitxとなり
ます。
　一方、変換エンジンは一貫してAnthyです。しか
し、新しい変換エンジンが生まれてこなかったのか
というと当然そのようなことはありません。変換エ
ンジンが変わらなかったのは後述するUbuntu特有
の事情からで、調査するとインプットメソッドと変
換エンジンの発展には切っても切れない関係があり
ました。まさに「歌は世に連れ、世は歌に連れ」とい
うことです。実際は「歌は世に連れ」は事実ですが
「世は歌に連れ」は事実ではないのもまた同じです。
というのも、変換エンジンのためにインプットメ
ソッドに手を加えられることは実のところほとんど
ないのです。

注1） Ubuntuの中国向けフレーバーであるUbuntu Kylinは、以前
よりFcitxでした。

歌は世に連れ 世は歌に連れ

　インプットメソッドという用語は、今回はSCIM/

IBus/Fcitxを一般化して呼称したものとして使用し
ていますが、本来これは正しくありません。変換エ
ンジン部分、すなわちAnthyも含めてインプットメ
ソッドと呼称するのが正しいのです。というわけで、
今回はSCIM/IBus/Fcitxの一般名称をIMF（Input

Method Framework）、変換エンジンは変換エンジ
ン、双方のブリッジをIME（Input Method Engine）と
呼称することにします注2。

　Ubuntuのほかにはない特徴として、リポジトリの
コンポーネントがmain、universe、restricted、multive

rseの4つに分類されていることがあります。後者2

つは、いわゆるnon-freeですのでさておき注3、mainは
Canonicalによるサポートがあり、universeにはありま
せん。それはいいのですが注4、Ubuntuにデフォルトで
含まれるパッケージは依存するパッケージ、ビルド
注2） Windowsの IMEは Input Method Editorであり、また別のも

のです。
注3） とはいえmain/universeとほぼ同じなのですが。
注4） すべてのパッケージをCanonicalがメンテナンスするのは非

現実的ですし、またそのようなことをするべきではないから
です。

インプットメソッドという用語

Ubuntu特有の事情とは

今回はインプットメソッドと変換エンジンの発展に関するレポートです。両者は相互に独立して開発
されていますが、発展に何らかの関係はあるのでしょうか。はたまたないのでしょうか。調査すると
意外なことがわかりました。

インプットメソッドと
変換エンジンの
遠くて近い関係

Ubuntu Monthly Report第64回

Ubuntu Japanese Team　あわしろいくや

180 - Software Design Aug. 2015 - 181

インプットメソッドと変換エンジンの遠くて近い関係 第 64 回

に必要なパッケージも含めてすべてmainに存在する
必要があります注5。universeにあるパッケージをmain

に入れる場合はMIR（Main Inclusion Request）注6とい
うプロセス注7を経る必要があります。
　当然といえば当然ですが、そのジャンルにおける
パッケージは厳選されます。すなわち、IBusがmain

になるとSCIMはuniverseに戻ることになり、実際に
そうなっています。今のところはIBusもFcitxも
mainにありますが、いずれはIBusもuniverseに戻る
ことになるでしょう。Anthyも、ほかの変換エンジン
がmainになったら、同じくuniverseに移ることにな
るでしょう。このことにより何が起きるのかという
と、非常に単純な話ですが言語ごとの事情を斟

しんしゃく

酌し
ません。Debianではどうなっているのかというと、中
国語ではFcitx注8、日本語ではuim注9です。また、変換
エンジンもMozcとAnthyがインストールされ、Mozc

が優先的に起動するようになっているようです。
　MIRというプロセスがあるのならば、そこを通過
すればいいじゃないかというのはまったくそのとお
りなのですが、現実的にはなかなか難しいのです。
というのも、Mozcはたくさんの機能があるので依存
関係が複雑です。前述のとおりビルドに必要なパッ
ケージもMIRを通過する必要があるので、膨大な作
業量が見込まれます。MIRがどれほどたいへんな作
業なのかというのは、Fcitxでの作業の様子注10を見れ
ば一目瞭然です。英語の読み書きが不自由なくでき
ることはもちろん、パッケージのクオリティに問題
があればそれを修正するだけの知識も必要です注11。

　Anthyの開発が始まったのが2000年、SCIMの開

注5） 当然各種フレーバーはまったく別です。
注6） 現在鋭意開発中のディスプレイサーバ、Mirとはまったく別です。
注7） https://wiki.ubuntu.com/MainInclusionProcess

注8） https://packages.debian.org/wheezy/task-chinese-s-
desktop

注9） https://packages.debian.org/wheezy/task-japanese-
desktop

注10） https://bugs.launchpad.net/ubuntu/+source/fcitx/+
bug/1356222

注11） とはいえ、つい最近なんとかなるかもしれない動きがありま
した。

SCIMとAnthy

発が始まったのは2002年ごろですが、SCIMの開発
者は中国人であり、日本語のことはあまり重要視し
ていませんでした注12。同じく2002年に開発が始まっ
たIMFであるuimはライブラリとしても使用できた
ので、scim-uimというIMEが開発され、SCIM＋
scim-uim＋uim＋uim-anthy＋Anthyという組み合
わせでAnthyを使用することはできましたが、uimも
IMFですのでSCIMをフロントエンドにする積極的
な理由はありませんでした。
　そんな中登場したのがscim-anthyです（図1）。初の
パブリックリリースは2004年11月29日で、バージョ
ンは0.2.0でした。2005年も開発は継続し、その間に
実用レベルに達しました。というわけで、Ubuntu 6.06

LTSはscim-anthyを採用することによって最初から
「普通に」日本語の入力ができたのです。
　今から考えるとscim-anthyのインパクトはとても
大きかったように思います。SCIMより前、uimを入
れても同様ですが、Linuxディストリビューションで
は「普通に」日本語を入力するということは困難だっ
たのです。SCIMとscim-anthyが安定していたのは当
然のこととして、たとえばMicrosoft IMEのキーア
サインとローマ字テーブルに慣れているのでこれを
Linuxディストリビューションでも引き続き使用した
いという場合、ATOKと同様の場合、JIS配列キー
ボードではないキーボード、具体的にはNICOLA（親
指シフト）配列を使用したいという場合、それらの要
求を一気かつ容易にかなえてくれたのがこのscim-

anthyでした。もちろんAnthyの開発も積極的に行わ
れており、当時はベストな変換エンジンでした。
　SCIMの品質が十分に高かったこと、Anthyはとて
もシンプルな機能しか提供しないのでIME側の実装
の自由度が高かったこと、そして何よりscim-anthy

開発者の慧
けいがん

眼と開発力の高さが、「普通に」入力でき
るレベルまで引き上げることができたのでしょう。
　とはいえSCIMには構造的な問題がいくつかあり、
IBusの登場となったわけですが、デフォルトの座を奪
われた後どうなったのかというと、Tizen注13のIMFとし
て採用され、現在でもメンテナンスが継続しています。

注12） 厳密に言えばできなかったのでしょう。
注13） https://www.tizen.org/ja

https://wiki.ubuntu.com/MainInclusionProcess
https://packages.debian.org/wheezy/task-chinese-s-desktop
https://packages.debian.org/wheezy/task-japanese-desktop
https://bugs.launchpad.net/ubuntu/+source/fcitx/+bug/1356222
https://www.tizen.org/ja

182 - Software Design

Ubuntu Monthly Report

IBus

　IBusの開発が始まったのは2008年5月ごろで、最
初のリリースは同年8月10日でした、IBusとibus-

anthyは同一の開発者によって同時に開発が進めら
れ、最初のリリース日も同一です注14。IBusの開発者は
中国人ですが、おそらくscim-anthyを参考に実装し
たのではないかと思います。scim-anthyはC++でibus-

anthyはPythonと開発言語が異なるのでソースコード
の流用は不可能ですが、機能はよく似通っています。
　IBusの偉大だったところは、開発開始からあまり
間をおかずに各種Linuxディストリビューションで
デフォルトになったことです。Ubuntuでは9.10から
でした。それだけSCIMの構造的な問題が深刻だっ
たということではあるのですが、単純にAnthyを使
いたいだけであればSCIMのままのほうが都合がよ
く、実際に筆者もUbuntu 9.10以降IBusからSCIM

に戻して使用していた期間もありますが、あまり長
くは続きませんでした。それはMozcが登場したか
らです（図2）。
　Mozcの最初のリリースは2010年5月11日です。
その時点でAnthyの変換効率を超えていたと記憶し
ていますが、今となってははっきりとは思い出せま
せん。時期的にはリリース日からも明らかなように
Ubuntu 10.04 LTSリリースの直後です。

注14） リリースタグが打たれた日はなぜか ibus-anthyのほうが1日
早いのですが、8月10日リリースと考えていいと思います。

IBusとMozc Mozc

　MozcはGoogleが開発しており、そのGoogleの戦
略をいろいろなところで感じます。まずはGoogle日
本語入力のオープンソース版ではあるものの、辞書
やそれに付随するファイルは非公開であり、その部
分はGoogle日本語入力で採用されているものとは
違ったものになっています。ライセンスはオープン
ソース（3条項BSDライセンス）ですが、開発はオー
プンではなく、原則として外部からのパッチを受け
取ることができません注15。変換エンジンだけではな
くIMEも含まれているのですが、現在は ibus-mozc

のみです。scim-mozcはいったんは追加されたもの
の、ほどなくして削除されました。前述のとおり
fcitx-mozcやuim-mozcは取り込むことができないた
め、Mozcへのパッチという形式で公開されています。
もともともはChromium OSのために公開されたの
だと推測します。当初はChromium OSもIBusを採
用していたため、ibus-mozcが最初からリリースに含
まれているのは当然のことでした。その後IBusの使
用を取りやめ、専用のIMFが実装されると、ibus-

mozcをメンテナンスする理由もなくなり、ibus-mozc

はソースツリーから削除される予定です。2013年3

月29日のリリースからはAndroidでもビルドできる
ようになり、最近ではこのAndroid対応が開発のメ
インになっています。
　Anthyの開発を継続するのは困難であり、Mozcは
Google社員以外が手を入れるのは難しいという理

注15） Google Codeが閉鎖されるにあたってプロジェクトが
GitHubに移行されましたが、Pull Requestをmergeできない
という珍しいプロジェクトになっています。

図1　Ubuntuで最初にデフォルトになったscim-anthy 図2　ibus-mozcで入力しているところ

182 - Software Design Aug. 2015 - 183

インプットメソッドと変換エンジンの遠くて近い関係 第 64 回

由注16から開発が始まったのが libkkc注17です。これ
はイマドキのアプローチで開発された変換エンジン
で、最初のリリースは2013年1月24日です。libkkc

の興味深いところは、Anthyのようにライブラリなの
ですがAnthyよりもサポートする機能が多く、たと
えばキーバインドの追加は libkkc自身に行います。
それによってIMEによる違いがあまり出ないように
なっています。今後新しいIMFがリリースされても
容易に対応ができ、また開発もオープンで注18、今後
も継続的に発展することが期待できます。

　Fcitx（小
リトルペンギンインプッドメソッド

企鹅输入法）はパッと出てきたような印象
がありますが、元となるバージョンの開発が始まっ
たのは2002年と、かなりの老舗です。とはいえ日本
語でも使えるようになったのは2010年にリリースさ
れたバージョン4.0からですので、そこだけ見ると5

年間の歴史、と言えなくもないのですが。
　fcitx-mozcの初リリースが2012年3月、fcitx-anthy
の初リリースが同年7月、fcitx-kkcの初リリースが
2013年6月、fcitx-skkの初リリースが同年10月と、
日本語にも対応できるようになってそこそこの時間
が経ってから各種IMEがリリースされるようになり
ました。ここで興味深いのは、すべて開発者（中国
人）によって開発が開始されたことです。そして実用
レベルに達したのはここ数ヵ月～1年くらいのこと

注16） https://fedoraproject.org/wiki/Features/libkkc

注17） https://github.com/ueno/libkkc

注18） 筆者のPull Requestがmergeされる程度にはオープンです。
この場を借りて御礼申し上げます。

Fcitxと……？

です注19。日本語の翻訳が一通り完了したのが2013年
4月ごろであることをつけ加えると、だいたいの流
れが見えてくるのではないでしょうか。
　個人の主観はさておき、客観的に日本語でFcitx

を使用するメリットがどのあたりにあるのかは、筆
者にはよくわかりませんでした注20。しかし中国語で
Fcitxが便利に利用できるのであれば、そちらに移
行するのは当然のことのように思われましたし、事
実そうなったわけです。
　では、中国語ではFcitxのどういうところが好評
なのでしょうか。筆者は中国語のことはまったくわ
からないのでなんとも言えない部分はありますが、
細やかなニーズを拾っている部分はあるように見受
けました。たとえばスキン機能ですが、日本ではあ
まり馴染みのない機能ではあるものの、Baidu

IME注21ではサポートしているなど、中国語圏では割
にポピュラーな機能なのかもしれません。また、設
定項目が多いのもそれだけのニーズがあることの証
左のように思います。設定画面をよく見ると、中に
は日本語ではどういう効果があるのかよくわからな
い項目もあります。
　筆者は中国語の変換エンジン事情にも明るいわけ
ではありませんが、UbuntuではSunPinyinほかいく
つかのピンインがデフォルトでインストールされて
います。そしてUbuntu Kylinの特徴注22を見ている
と、Sogou Input Method（搜

ソウゴウインプッドメソッド

狗输入法）注23が使えるこ
とが謳

うた

われています（図3）。たしかにUbuntu用の
パッケージしかないため、Ubuntu/Ubuntu Kylinの特
徴と言えるでしょう注24。さらにSogou Input Method

はFcitxにしか対応しておらず、このあたりもIBus

からFcitxに変更した理由ではないかと思われます。
やはりFcitxでも変換エンジン（正確にはピンインで
すが）との関係が発展の鍵になっていると言えそうで
す。ｦ

注19） ただし筆者にはfcitx-skkが常用に達するのかはわかりません。
注20） Fcitxを推進した立場にある筆者が言っていいことなのかはわ

かりませんが……。
注21） http://ime.baidu.jp/type/

注22） http://www.ubuntu.com/desktop/ubuntu-kylin

注23） http://pinyin.sogou.com/linux/

注24） プロプライエタリなライセンスですので、デフォルトでイン
ストールしておくことはできません。

図3　 Sogou Input Method（搜狗输入法）で入力してい
るところ

https://fedoraproject.org/wiki/Features/libkkc
https://github.com/ueno/libkkc
http://ime.baidu.jp/type/
http://www.ubuntu.com/desktop/ubuntu-kylin
http://pinyin.sogou.com/linux/

184 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

はファイルが読み込まれたかどうかで既読管理
を行うmutt（メールクライアント）のようなatime

が更新されることを期待するアプリケーション
が誤作動するという問題が発生します。
　そこでrelatimeという折衷案が考え出されま
した。これは現在のatimeが、mtimeやctimeよ
りも前だったとき（または、現在のatimeが24時
間以上前だったとき）にのみ、atimeを更新する
という設定です。この設定であれば、muttのよ
うに「ファイルの最終更新時刻が、アクセスされ
た時刻よりも前かどうか」で既読判定を行ってい
るアプリケーションの動作が壊れることはあり
ません。現在では、noatimeまたは strictatime

（atimeを厳密に毎回記録する）を指定しない限り、
デフォルトでrelatimeの動作が行われます。

タイムスタンプの遅延
書き込み：lazytime

　このnoatime、relatimeをさらに進化させた実
装が、Linux 4.0で導入された lazytimeです。こ
れまでのnoatime、relatimeは「atimeの更新をさ
ぼる」ことで、更新書き込みの問題を避けてきま
した。そのため、atimeの更新を期待している
アプリケーションはうまく動作しません。たと
えば、よくアクセスされるファイルをSSD上に
置き、逆に1時間以上アクセスされていないファ
イルはHDD上に置くといったアプリケーション

　6月24日にLinux 4.1がリリースされ、その
直後からさっそくLinux 4.2の新機能のcommit

が始まっています。4.2でも、f2fsの暗号化サポー
トやVFSのパス名解決ルーチンの書き換えなど
多くの更新が入っています。
　今月はLinux 4.0の新機能の中から、ファイ
ルシステム関連の機能である lazytimeとDAX

について紹介していきます。

タイムスタンプ更新の
問題

　ファイルシステムでは、ファイルのタイムス
タンプとしてctime（inode情報が変更された時
刻）、mtime（データが変更された時刻）、atime（ア
クセスされた時刻）を記録しています。タイムス
タンプの取り扱いはファイルシステムにとって
悩ましい問題です。
　atimeの取り扱いはとくに重大で、これまで
にもnoatimeや relatimeというmountオプショ
ンを追加するというトリックが使われてきました。
atimeはファイルがアクセスされた時刻を記録
するので、ファイルを読むだけでもatimeの更
新を行う必要があります。この「読み込みによっ
て書き込みが起きる現象」のため、atimeの更新
はとくにパフォーマンスへの影響を与えていま
した。そこでatimeの更新を行わないnoatimeが
昔から使われてきました。しかし、noatimeで

Linux 4.0の機能
〜lazytimeとDAX
Text：青田 直大　AOTA Naohiro

第41回第41回

184 - Software Design Aug. 2015 - 185

Linux 4.0の機能
〜lazytimeとDAX

第41回第41回

は、まったくatimeを更新しないnoatimeでも、
24時間に1回しかatimeを更新しないrelatime

でも思ったようには動作しません。
　lazytimeでは、この問題を「ディスク上の
atimeの更新を遅延する」というアプローチで解
決します。lazyatimeを有効にすると、タイムス
タンプの情報はメモリ上でのみ更新されるよう
になります。ディスクへのタイムスタンプの反
映は次の3つの条件のいずれかの場合にのみ行
われます。

・	タイムスタンプ以外でinodeの更新が行われ
るとき

・	ユーザスペースのプログラムが fsync()や
syncを行ったとき

・	削除されていないinodeの情報がメモリから
解放されるとき

　すなわち、ほかの情報が更新されることで
inodeが更新されるときについでにタイムスタン
プも更新するときか、syncなどでプログラムか
らディスクへの更新を強制されたときか、メモ
リ上から消えてディスクに書き戻すときという
ことになります。

lazytimeの
パフォーマンス測定

　それでは、lazytimeのパフォーマンスについ
て見ていきましょう。リスト1のようなスクリ
プトを動かします。このスクリプトは、ext4を

#!/bin/bash

DEV=/dev/libvirt_lvm/ktest

run() {
 option=$1
 echo $1
 wipefs -a ${DEV} >/dev/null
 mkfs.ext4 ${DEV} >/dev/null
 mount -o $1 ${DEV} /mnt/test || exit 1

 dd if=/dev/urandom of=/mnt/test/file bs=256M count=16 iflag=fullblock
 echo 3 > /proc/sys/vm/drop_caches
 sync
 seekwatcher -t ${option}.trace -o ${option}.png ?
 -p 'for x in `seq 5`; do echo 1 > /proc/sys/vm/drop_caches; cat /mnt/test/file ｭ
>/dev/null; done' ?
 -d ${DEV} >${option}.result.txt

 file=file
 cat /mnt/test/${file} >/dev/null
 stat /mnt/test/${file} |grep 0900
 sleep 1

 cat /mnt/test/${file} >/dev/null
 sync
 stat /mnt/test/${file} |grep 0900
 umount ${DEV}
 echo
}

run strictatime
run noatime
run relatime
run lazytime,strictatime
run lazytime,relatime

 ▼リスト1　lazytimeのパフォーマンス測定用スクリプト

186 - Software Design

Linuxカーネル観光ガイド

次の5つのmountoptionをそれぞれ用いてmount

します。

❶	常にアクセス時刻を更新する “strictatime”
❷	まったくアクセス時刻を更新しない “noatime”
❸	編集時刻が現在のアクセス時刻よりも前だっ
た場合にアクセス時刻を更新する “relatime”

❹	strictatimeと同じ挙動だが、ディスクへの書
き込みは遅延する “lazytime,strictatime”

❺	relatimeと同じ挙動だが、ディスクへの書き
込みは遅延する “lazytime,relatime”

　そのあと、ファイルシステム上に4Gのファイ
ルを作成し、そのファイルをキャッシュを落と
してから読み込む作業を5回行い、1秒間隔で2

度ファイルを読み込み、各読み込み後のアクセ
ス時刻を見ています。
　まず出力の抜粋から見ていきましょう（図1）。

stritatimeでは①、②に見られるように、2回の
ファイル読み込みで、たしかに20:30:45から
20:30:46にアクセス時刻（Access）が更新されて
います。
　一方noatimeでは③、④のようにアクセス時
刻は20:30:48で変わっていません。relatimeに
おいても、⑤、⑥の間ではアクセス時刻は
20:31:26と変わっていませんが、noatimeでは
更新時刻（Modify）が20:30:55であるのにかかわ
らず、アクセス時刻は20:30:48のままであるの
に対して、relatimeでは更新時刻は20:31:15で、
アクセス時刻は20:31:26と、更新時刻よりは後
になるように一度は更新されていることがわか
ります。
　lazytime、strictatimeでは、ディスクへのタ
イムスタンプ更新が遅延される以外は
strictatimeと変わらないので⑦、⑧のように
20:31:47から20:31:48へとアクセス時刻が更新
されています。
　次にseekwatcherによって出力される比較グ
ラフを見てみましょう（図2）。一番下の表を見
ると、strictatimeがほかのものより一秒平均シー
ク回数が一段多く、その影響でスループットや
I/O回数も悪化しています。lazytimeを用いた2

つはnoatimeとほぼ同等のパフォーマンスをア
クセス時刻をきちんと更新しつつも達成してい
ることがわかります。
　また、一番上の“Disk IO”のグラフを見ると、
4,000MBのあたりに、飛び飛びの点があるのが
わかります。dump2fsでジャーナルファイルの
inode番号を取得し、debugfsでそのファイル領
域を取得してみるとわかりますが、この部分は
ジャーナル領域にあたります（図3）。すなわち
strictatimeにおいてアクセス時刻の更新により
inodeが更新され、ジャーナルへの書き込みが
起きていること、それによってシーク回数が増
えていることが“Disk IO”のグラフでも確認でき
るということになります。
　このように lazytimeを使うことで、パフォー
マンスを損なうことなく、これまでは困難であっ

strictatime
Access: 2015-06-09 20:30:45.254000000 +0900 ①
Modify: 2015-06-09 20:30:35.426000000 +0900
Change: 2015-06-09 20:30:35.426000000 +0900
Access: 2015-06-09 20:30:46.399000000 +0900 ②
Modify: 2015-06-09 20:30:35.426000000 +0900
Change: 2015-06-09 20:30:35.426000000 +0900

noatime
Access: 2015-06-09 20:30:48.456000000 +0900 ③
Modify: 2015-06-09 20:30:55.162000000 +0900
Change: 2015-06-09 20:30:55.162000000 +0900
Access: 2015-06-09 20:30:48.456000000 +0900 ④
Modify: 2015-06-09 20:30:55.162000000 +0900
Change: 2015-06-09 20:30:55.162000000 +0900

relatime
Access: 2015-06-09 20:31:26.374000000 +0900 ⑤
Modify: 2015-06-09 20:31:15.927000000 +0900
Change: 2015-06-09 20:31:15.927000000 +0900
Access: 2015-06-09 20:31:26.374000000 +0900 ⑥
Modify: 2015-06-09 20:31:15.927000000 +0900
Change: 2015-06-09 20:31:15.927000000 +0900

lazytime,strictatime
Access: 2015-06-09 20:31:47.527000000 +0900 ⑦
Modify: 2015-06-09 20:31:37.172000000 +0900
Change: 2015-06-09 20:31:37.172000000 +0900
Access: 2015-06-09 20:31:48.671000000 +0900 ⑧
Modify: 2015-06-09 20:31:37.172000000 +0900
Change: 2015-06-09 20:31:37.172000000 +0900

 ▼図1　出力結果抜粋

※ lazytime,relatimeの結果は省略

186 - Software Design Aug. 2015 - 187

Linux 4.0の機能
〜lazytimeとDAX

第41回第41回

 ▼図2　seekwatcherによる比較グラフ

dumpe2fs /dev/libvirt_lvm/ktest|grep 'Journal inode'
dumpe2fs 1.42.13 (17-May-2015)
Journal inode: 8 # ジャーナルのinode番号=8
debugfs -c -R "stat <8>" /dev/libvirt_lvm/ktest # inode 8の情報をダンプ
debugfs 1.42.13 (17-May-2015)
/dev/libvirt_lvm/ktest: catastrophic mode - not reading inode or group bitmaps
Inode: 8 Type: regular Mode: 0600 Flags: 0x80000
Generation: 0 Version: 0x00000000:00000000
User: 0 Group: 0 Size: 134217728
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 262144
Fragment: Address: 0 Number: 0 Size: 0
 ctime: 0x558a0d2a:00000000 -- Wed Jun 24 10:51:38 2015
 atime: 0x558a0d2a:00000000 -- Wed Jun 24 10:51:38 2015
 mtime: 0x558a0d2a:00000000 -- Wed Jun 24 10:51:38 2015
crtime: 0x558a0d2a:00000000 -- Wed Jun 24 10:51:38 2015
Size of extra inode fields: 28
EXTENTS:
(0-32766):1081344-1114110, (32767):1114111 # ジャーナルのデータ領域は、1081344 blockから1114111 block
$ echo $((1081344 * 4096 / 1024 / 1024)) $((1114112 * 4096 / 1024 / 1024))
4224 4352 # すなわち4224MBから4352MBがジャーナルの領域

 ▼図3　ジャーナル領域の取得

188 - Software Design

Linuxカーネル観光ガイド

た正確なアクセス時刻の記録を行うことができ
るようになります。今回はアクセス時刻にフォー
カスした実験としましたが、VMイメージやDB

のファイルへの書き込みなどファイルサイズは
更新されません。したがって、ファイル更新時
刻以外の inode情報は変わらない操作において
もパフォーマンスの改善が見られるはずです。

ファイルデータへの
ダイレクトアクセス

　現在ファイルシステムはHDDやSSD上に作
られています。これらのデバイスはメモリより
は低速であるため、ディスク上のデータを一度
メモリに読み込みメモリ上でデータの読み書き
を行い、ディスクへの変更の適用は後でまとめ
て行っています。この時使われるメモリ上の
キャッシュを page cacheと言います。page

cacheを用いることでディスクの遅さをユーザ
から隠蔽できます。
　ところが、この機能はより新しく高速なデバ
イス上ではかえって障害となります。たとえば
NV-DIMMというデバイスがあります。これは
通常のDDR4メモリのようにメモリスロットに
挿入でき、通常のメモリのように振る舞います。
しかし、NV-DIMMにはNANDフラッシュがバッ
クアップとしてついていて、通常のメモリと異
なり不揮発性があります。すなわち再起動時に
NANDからメモリへとデータの復元が行われま
す。このデバイス上にファイルシステムを作れば、
高速なストレージにすることができます。ここ
でpage cacheの存在が問題となります。もとも
と低速なディスクのためにあった機能である
page cacheは、メモリ並の速度のデバイスの前
ではただの「無駄なコピー」にしかなりません。
　こうしたデバイスへの最適化として実はext2

（だけ）にはXIPという機能があります。これは
Execute In Placeの意味で、フラッシュデバイ
ス上の実行可能ファイルをメモリにロードせず
に直接実行するという機能になります。これは
フラッシュからメモリへのロードの手間と、ロー

ドされる分のメモリ容量を節約できるというメ
リットのある機能でした。
　このXIPはその“execute”の名のとおり、実
行ファイルに特化していました。Linux 4.0で実
装されたDAXは、XIPをさらに進めすべての
データアクセスをpage cacheの介在なしに行う
ものです。ちなみにDAXとはDirect Accessの
意味で、XはeXcitingのXとのことです :-)

　DAXが有効なファイルシステム（ext2やext4）
をmount option daxをつけてmountすると、
inode情報にS_DAXというフラグが立ちます。
このフラグの付いたファイルへの読み書きは自
動的にO_DIRECTが立ったファイルへの読み
書きと同等に扱われるようになり、page cache

を迂回するようになります。さらに、ファイル
システムはS_DAXのフラグの立った inodeへの
読み書きおよびmmapをDAXのI/O関数を通じ
て行います。ここで呼ばれるDAXのI/O関数で
あるdax_do_io()やdax_mkwrite()は、ファイル
に対応するデバイス上のブロック位置をファイ
ルシステムから取得し、そのブロック位置をデ
バイスドライバのdirect_access関数を用いてメ
モリ上のアドレスへと変換します。こうしてデ
バイスへの読み書きがブロックレイヤを通さず
メモリ上でのコピーだけで完了します。
　では、実際にDAXを使ってみましょう。先
ほど書いたとおり、DAXはデバイスドライバの
direct_access関数を用います。今のところ、3

つのデバイスドライバにこの関数が実装されて
ますが、メモリ上にブロックデバイスを作る
brdが一番お手軽に使えるものでしょう。
“modprobe brd”にリストのように引数を指定す
ることで1GiBのメモリ上ブロックデバイス/

dev/ram0が作成されます（図4）。
　こうしてmountしたファイルシステム上で読
み書きを行い、①ダイレクトI/Oになっている
こと、②ブロックI/Oが使われていないことを
確認します（図5、図6）。

188 - Software Design Aug. 2015 - 189

Linux 4.0の機能
〜lazytimeとDAX

第41回第41回

　①はperf-tools注1の tpointを使って
“ext4/ext4_direct_IO_enter”というイ
ベントをトレースすることで確認でき
ます。これはダイレクトI/Oが実行さ
れるときのイべントです。
　②はbtraceコマンドを用いると確認
できます。通常のファイルシステムで
あれば、ダイレクトI/O時にリストの
ようにブロックI/Oのトレースが出て
きますが、DAXを使ったファイルシス
テムではこの出力がありません。

まとめ
　今月はLinux 4.0の新機能から、ファ
イルシステム関連の機能にフォーカス
してタイムスタンプ書き込みを遅延す
る lazytimeと、page cacheとブロック
I/Oレイヤを迂回してデバイスへの直

注1） https://GitHub.com/brendangregg/perf-
tools

接アクセスを可能にするDAXについて紹介し
ました。Linux 4.1もリリースされていますが、
来月ももう少しLinux 4.0の機能について見て
いきます。｢

modprobe brd rd_nr=1 rd_size=$((1024 * 1024))
fdisk -l /dev/ram0
Disk /dev/ram0: 1 GiB, 1073741824 bytes, 2097152 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
mkfs.ext4 /dev/ram0
 …
mount -o dax /dev/ram0 /mnt/test # DAXを有効にしてmount

 ▼図4　メモリ上ブロックデバイスの作成とmount

 (...DAX使用時...)
~/src/perf-tools/bin/tpoint ext4/ext4_direct_IO_enter
Tracing ext4/ext4_direct_IO_enter. Ctrl-C to end.
 dd-19250 [002] 76718.267275: ext4_direct_IO_enter: dev 1,0 ino 12 pos 0 len 4096 rw 1
 dd-19250 [002] 76718.267290: ext4_direct_IO_enter: dev 1,0 ino 12 pos 4096 len 4096 rw 1
 dd-19250 [002] 76718.267294: ext4_direct_IO_enter: dev 1,0 ino 12 pos 8192 len 4096 rw 1
 …
 (...DAX未使用時...)
btrace /dev/ram0
 1,0 2 1 0.000000000 19148 Q WS 266240 + 8 [dd]
 1,0 2 2 0.000010329 19148 Q WS 266248 + 8 [dd]
 1,0 2 3 0.000015178 19148 Q WS 266256 + 8 [dd]
 …

 ▼図5　ダイレクトI/OとブロックI/Oのトレース

 ▼図6　DAX有効時の動作

ユーザの
書き込みデータ

メモリ/dev/ram0DAX有効FS

direct_access（）を用いて
メモリアドレスを取得

O_DIRECT相当に変換

ファイルデータに対応する
ブロックの取得

page cacheを
使わず直接コピー

書き込み

https://GitHub.com/brendangregg/perf-tools

190 - Software Design

ただきました。参加者は38人でした（写真2）。
　はじめに、今回の発表の元ネタとなった電子書籍
『なるほどUnixプロセス̶̶Rubyで学ぶUnixの基
礎』（図1）注1の紹介がありました。これまでUNIXプ
ロセスの解説書は、プログラムがCやC++で書かれ
たものばかりで、いわゆるLLプログラマにとって
は勉強するためのハードルが高いのが難点でした。
そこをRubyのプログラムで解説することで、LLプ
ログラマにも平易に理解してもらおうというのが本
書ならびに今回のセッションの主旨です。

■UNIXの機能をRubyで書いてみる

　続いて本題に入り、島田さんが irbというRuby

の対話型プログラムを用いてライブコーディングを

　今回は、6月に札幌で行った研究会の模様をお伝
えします。

	 ■なるほどUnixプロセス

	 	 ——RubyでUnixの基礎を学ぼう

	【講師】島田 浩二（Ruby札幌）

	【司会】法林 浩之（日本UNIXユーザ会）

	【日時】2015年6月13日（土）15:15〜16:00

	【会場】札幌コンベンションセンター 201会議室

■LLプログラマのためのUNIX書

　2015年度としては最初の研究会となる札幌大会は、
札幌を拠点にRubyのコミュニティ活動を行っている
島田さん（写真1）を講師にお迎えし、UNIXのプロセ
スをRubyのプログラムで勉強する方法を紹介してい

写真1　島田浩二氏 写真2　研究会の様子

jus研究会　札幌大会

注1） Jesse Storimer（著）、島田浩二（訳）、角谷信太郎（訳）、達人
出版会、2013年発行、EPUB/PDF/ZIP

 URL http://tatsu-zine.com/books/naruhounix

RubyによるLLプログラマのためのUNIX勉強会

NO.46
August 2015

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/
http://tatsu-zine.com/books/naruhounix

Aug. 2015 - 191190 - Software Design

しながら解説を進めていきました。
　まず、プロセスとは何かという話がありました。
プロセスは実行中のプログラムの実体であり、psコ
マンドで見ると実行中のプロセスが表示されます。
個々のプロセスはIDを持っていて、RubyではPro

cess.pidで確認できます。プロセスには標準入力、
標準出力、標準エラー出力という3つの標準スト
リームがついていて、RubyではそれぞれSTDIN、
STDOUT、STDERRで参照できます。また、UNIX

では標準入出力もファイル入出力も同様のリソース
として扱うことができ、それらはファイルディスク
リプタという整数値で表現されます。ファイルディ
スクリプタは、Rubyではfilenoを使うと確認できま
す。さらに、UNIXのシェルでよく用いられるリダ
イレクションは、Rubyではreopenを使うことで実
現できます。
　下記はreopenを使ったプログラム例と実行結果
です。reopenを使って標準出力先をout.txtという
ファイルに変更してから文字列を出力しています。

　これら前半の話をまとめたあと、後半はプロセス

の親子関係や、プロセス同士のつながり方を解説し
ました。まず、UNIXではすべてのプロセスに対し
て親プロセスが存在します。Rubyではこれを
Process.ppidで確認することができます。子プロセ
スの生成には forkを使います。forkにより作られた
プロセスは、forkが宣言されたブロックの中だけで
実行されます。似たようなものにexecがあります。
execを使うと別のプログラムを実行するプロセス
が作られます。それから、UNIXでよく利用される
パイプは、Rubyではpipeを使って実現できます。
　下記は forkやpipeを使ったプログラム例と実行
結果です。psコマンドを実行して得られた出力をwc

コマンドに入力し、行数を数えて出力しています。

■最後に

　最後にまとめとして今日やったこととやらなかっ
たこと（たとえば環境変数など）を紹介し、「Rubyを
使ってUNIXのプロセスを理解することで、より良
いプログラミングに役立ててほしい」とコメントさ
れました。
　jusの本分であるUNIXの世界をRubyで勉強する
という、とても良質なテーマの講演で、参加者にも
満足してもらえたのではないかと思います。島田さ
んにより今回の発表の資料が公開されています注2

ので、こちらもぜひご覧ください。｢

注2） URL https://speakerdeck.com/snoozer05/naruhounix図1　『なるほどUnixプロセス――Rubyで学ぶUnixの基礎』

 プログラム例：redirection_example.rb
file = File.open("out.txt","w")
STDOUT.reopen(file)
puts "標準出力先が変わっているはず"

 実行結果
$ ruby redirection_example.rb
$ cat out.txt
標準出力先が変わっているはず

 プログラム例：pipe_example.rb
IO.pipe do |read_io, write_io|
 fork do
 STDOUT.reopen(write_io)
 exec 'ps', '-x'
 end

 fork do
 STDIN.reopen(read_io)
 exec 'wc', '-l'
 end
end
Process.waitall

 実行結果
$ ruby pipe_example.rb
 13

RubyによるLLプログラマのためのUNIX勉強会 August
2015

https://speakerdeck.com/snoozer05/naruhounix

192 - Software Design

世の人にテクノロジを
もっと活用してもらうには

　Hack For Japanの関です。何度か本連載でも紹介
していますが、筆者はCode for Japanという団体の
代表理事もしています。Code for Japanは、「シビッ
クテック」という新しい社会的な動きを推進するた
めの活動を行っています。「CIVIC TECH（シビック
テック）」とは、市民がテクノロジを活用して、公共
サービスなどの地域課題解決を行うことを指す言葉
です。

●●地方自治のありかたを、ITを使ってバージョン

アップさせるような取り組みやサービス
●●これまで行政が担っていた公共サービスを、地域

コミュニティがITを使って効果的に運用する取

り組みやサービス
●●地域コミュニティ内で官民問わず多様なプレイ

ヤーが協働しながら地域課題を解決する取り組み
●●地域のリソースを効率的にシェアするようなサー

ビス

●●自治体が情報プラットフォームになり、そこから

生まれる新たなサービス

などが当てはまります。
　本稿では、シビックテックを盛り上げる目的のた
めに、今年3月に東京・千代田区の科学技術館で開
催された「CIVIC TECH FORUM 2015　公共とIT

の新しい関係」についてのレポートをお送りします。
筆者はこのフォーラムの実行委員の1人でもありま
した。
　シビックテックは市民主体の多様なムーブメント
である点、まだ黎明期であり明確な事例があまりな
い点から、今回のフォーラムでは地道に地域で活動
をしている人達をなるべく多く集め、参加者と登壇
者、参加者同士の交流を重要視していました。講演
セッション以外にも、子供でも参加できる電子工作
ワークショップや交流スペース（写真1）、講演の模
様をイラストを使って表現するグラフィックレコー
ディング（写真2）など、さまざまな仕掛けを取り入
れています。
　このフォーラムの詳細なレポートは、メディア

Hack For Japan
エンジニアだからこそできる復興への一歩

CIVIC TECH FORUM 2015 レポート第44回
2015年3月29日、東京の科学技術館で「CIVIC TECH FORUM 2015」が開催されまし
た。今回はこのフォーラムで行われたいくつかのセッションをピックアップし、日本で
のシビックテック活動の一端をお伝えします。

●Hack For Japanスタッフ
　関 治之　Hal Seki
　 Twitter @hal_sk

◆◆写真1　交流スペース

Photo by Mika Suzuki @civictech forum（CC-BY）

◆◆写真2　グラフィックレコーディング

Photo by Toshiya Kondo @civictech forum（CC-BY）

Aug. 2015 - 193

CIVIC TECH FORUM 2015 レポート第44回

パートナーである finderさんのほうで公開されてい
ますので、興味を持たれた方はぜひ訪れてくださ
い注1。

シビックテックと
オープンソース文化

　オープニングセッション「シビックテックは何を
もたらすのか？」では、筆者のほうからシビック
テックとオープンソース文化の関連性について解説
させていただきました。筆者のシビックテックに対
する目覚めは、震災直後に始めたsinsai.info（クラ
ウドソースによる震災情報収集サイト）の活動であ
り、Hack For Japanの活動の中でのさまざまな人々
との対話でした。技術はツールにしかすぎません。
技術が正しく使われるには、地域の課題やニーズ
を、地域に入っていくことで把握し、地域の人達が
主体的にITを活用するための手助けをする必要が
ありました。また、活動の中でこれまでブラック
ボックスだった行政のしくみを知ることができまし
た。
　活動の中で、さまざまなステークホルダーが、そ
れぞれの活動の制約の中で新たな解決策を作ること
の重要性を知りました。そういった活動に面白さを
見出したのと同時に、自治体がITをもっと戦略的
に活用することによる社会的なインパクトを感じた
からこそ、Code for Japanの活動につながっていま
す。
　講演の中では、コードを書くことやテクノロジ活
用といった“How”ではなく、エンジニアリング的な
思考と、オープンソースコミュニティ文化こそシ
ビックテックの力だと伝えました。GitHubを使って
Issueの共有がされたり、Pull Requestを通じてこの
流れが加速したり、といった部分こそがテクノロジ
の強みであり、その文化が、エンジニアだけでなく
もっと多くの人に伝播していく。10年、20年といっ
たスパンで見ていけば、このようなオープンソース
的な考え方が、一般の人たちの中でも普通になる世
の中が作れると感じています。

注1	 http://fin.der.jp/civictechforum2015/

コミュニティデザインの
重要性

　その後のセッションでは、東京大学工学部都市工
学科の小泉秀樹先生から、『地域を支えるコミュニ
ティの変遷とこれからの姿「産官民の関わり合いに
今起きている変化」』という講演をしてもらいまし
た。シビックテックで忘れてはいけない要素、それ
はコミュニティビルディングです。市民のためのテ
クノロジである以上、技術者だけの活動だけで満足
するのではなく、多様な人達の中に入っていき、課
題を定義し、解決に向けた持続的な体制を作ってい
く必要があります。IT技術をどう使うかということ
だけではなく、従来のコミュニティデザイン論を学
ぶことで、シビックテックをどのように社会の中に
実装していくのかのヒントにしたいと思い、コミュ
ニティデザインに造詣の深い小泉先生に基調講演を
お願いしました。
　コミュニティとは？という定義から始まり、自治
会などに代表されるような地縁型のコミュニティか
ら、NPOに代表されるようなテーマ型のコミュニ
ティの誕生、そして現代的なコミュニティデザイン
論の必要性などについての解説がありました。ま
た、事例として紹介された、神戸市の真野地区や世
田谷区の太子堂などでの住民たちによるまちづくり
などから、課題やビジョンを共有し、多様な住民が
共に課題解決を行っていくための具体的な手法、ス
テークホルダー分析、ワークショップ、アウトリー
チなどが紹介されました。
　日本では、コミュニティマネージャーという職種
があまり重要視されない側面があり、来場者もあま
り体系立った話を聞いたことがない方が多く、勉強
になったという意見が多かったです。
　続くセッションでは、ルームを分けて、地域のコ
ミュニティ活動をやってきた人々のセッションと、
スタートアップとしてサービスを全国規模、世界規
模にスケールさせていくようなことを模索する人々
のセッションを行っていきました。

http://fin.der.jp/civictechforum2015/

194 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

公と共の担う役割に
変化が起きている

　地域コミュニティ活動側のセッションからは、株
式会社巡の環の信岡良亮さんの、『公共とITのあた
らしい関係「公と共の担う役割に変化が起きてい
る」』を紹介します。
　セッションでは会場全員に立ってもらい、『「海士
町がどこにあるかわからない人」に手を上げさせ、
全員手を下ろすことができるまで座れない』という
ゲームから始まりました。そのルールが提示される
と、海士町の位置を知っている人（手を上げていな
い人）が知らない人（手を上げている人）に海士町の
位置を教え始めます。そのうち、海士町の場所を叫
んで教えるような人も現れました。
　じつは、このとき起きたことが、まさに公と共の
話でした。一定の人が集まって生まれた場である
「共」の課題は、その場の関係者の中で解決ができる
のです。「公」である役所と、「共」を担う人々が合わ
さって「公共」なのに、いつのまにか公共サービスは
「公」のみがやるものという考えになってしまった。
「公共サービスがなくなるという言葉を耳にするけ
れど、公と共とは別のもの。公＝Public（役所）の
反対は『私＝Private』であり、共は私たちのことで
『Commons』です。公のサービスがなくなっても、
人が存在すれば共というサービスはなくならないは
ず」という考えを教えてくれました。
　少子高齢化と、それに伴う税収の低下により、公
のサービスができなくなってきたとき、公に不満を
ぶつけるのではなく、「共」の枠組みを自分達で考え
手を動かしていく。そういったときにシビックテッ
クが必要とされるということでした。

「シビックテックスタート
アップ」は成り立つのか？

　欧米ではシビックテックは成長市場として認知さ
れており、米国におけるシビックテック市場の市場
規模は2015年で65億ドル、2013年から2018年に
かけて、既存のIT投資に比べ14倍早く成長すると

いう調査結果も出ています注2。そのような市場環境
のもと、外部から投資を受け早いスピードで成長す
る会社「シビックテックスタートアップ」が出始めて
います。一方、日本ではシビックテックは市場とし
てはまだ認知さえもされていません。
　筆者の担当するもう1つのセッションでは、日本
でも上記のような市場が生まれるのか？というテー
マについて、パネルディスカッションを行いました
（写真3）。パネラーとして、世界的にもシビック
テックの分野をリードしており、Google Impact

Challengeという、最大5,000万円の助成金をNPO

に支援する施策を日本で開始したばかりのグーグル
の恩賀氏、日本を代表する大手企業の中で、共創を
テーマにしたメディア「あしたのコミュニティラボ」
を運営し大企業のオープンイノベーションをリード
する柴崎氏、2015年を「シビックテック元年」と位
置づけ、シビックテックフォーラムのセッションで
もこの領域への会社としてのコミットを宣言したリ
クルートの麻生氏、そして起業家育成を20年にわ
たり行ってきたNPO法人ETIC.から佐々木氏に登
壇いただくことにしました。
　セッション後半にパネラーが共通して語ったの
は、「身近な課題解決」と「インパクト思考」とのバラ
ンスでした。シビックテックコミュニティやNPO

は、ともすれば目先の身近な課題解決にフォーカス
しすぎて、スケールするビジネスモデルが考えられ

注2	 参照：Knight Foundationによるレポート	
http://www.knightfoundation.org/features/

 civictech/

◆◆写真3　パネルディスカッションの模様

Photo by Tomoki Yanagawa @civictech forum（CC-BY）

http://www.knightfoundation.org/features/civictech/

Aug. 2015 - 195

CIVIC TECH FORUM 2015 レポート第44回

ブ・ハックナイト（The Open Gov Hack Night）」と
いうイベントをシカゴ中心部に位置するコワーキン
グスペースで毎週開催しており、行政、企業、市民
団体から広く参加者を募り、エンジニアとデザイ
ナー同士をつなぐことの重要性を語りました。ウィ
テカー氏は、エンジニアと行政両方の気持ちがわか
る、双方の「翻訳者」としての存在がシビックテック
コミュニティには重要であると言います。シビック
テックを通じて良い地域コミュニティを作るための
ヒントがいろいろ散りばめられた講演でした。

今こそシビックテックに
目覚める時

　いかがでしたでしょうか。これからの社会の中
で、シビックテック的な考え方は非常に重要なもの
になっていくと思います。今このような動きにかか
わっておくことは、皆さんの将来の可能性を大きく
広げるものだと思っています。エンジニアだけでな
く、だれでも活動に参加することができます。
　本稿で紹介したのは、フォーラムのごく一部の
セッションのみであり、まだまだたくさんのテーマ
が語られています。ご興味をもってくださった方は
ぜひフォーラムのサイトを訪れていただき、他の
セッションも見てみてください。セッションの動画
なども公開されています。
　Code for Japanの活動にも興味をもってくださっ
た方は、Facebookページ注3にも訪れていただけまし
たら幸いです。s

注3	 https://www.facebook.com/codeforjapan

ていない場合があります。一方で、スケールやイン
パクトばかりのいわゆる“Big Thing”ばかり考えて
いても、現場感が失われた魂の通わないものになっ
てしまう。起業家側にとってどちらが大事かと言え
ば、「この課題を解決したい」という情熱と、「実際
に解決できている」という部分が、スケーラビリ
ティよりも大事だという点で意見が一致しました。
儲かるかどうかではなく、本当に役に立っているか
が重要であり、それをスケールするしくみはパート
ナー企業側でも考えられるというわけです。
　起業家側はあまり小利口になる必要はなく、真摯
に課題について向き合い、愚直に活動をやり続ける
こと、そして、その動きの延長線をはるか高みに
持っていくインパクト思考との両立を意識すること
が大事なのだと感じました。そして、そんな活動を
応援する企業や社会的なしくみは今後増えていくの
だろうと思います。

シビックテック大国の、
ちいさな取り組み

　基調講演として、シビックテック先進地として名
高いシカゴから、Smart Chicago Collaborativeのク
リストファー・ウィテカー氏に、シカゴ市でのシ
ビックテックの取り組みについて発表していただき
ました。
　ウィテカー氏はもともとエンジニア出身ではな
く、イリノイ州政府の職員として働いていました。
しかし、旧来型の行政システムと、iPhoneやFace

bookなどといった新しいITシステムとのギャップ
に疑問を感じ、ハッカソンなどのイベントに参加す
るようになります。その中で技術者と交流するうち
に、コミュニティメンバーの中心的存在となって
いったそうです。そして今では、シビックテックの
コンサルタントとして自身でCivicWhitaker社を設
立、シカゴ市のシビックテックコミュニティでも重
要な存在となっています。
　シカゴでは、このコミュニティ活動の推進を支援
する財団などもあり、地域をあげてシビックテック
を盛り上げるためのエコシステムができているとい
うことでした。また、ウィテカー氏は「オープン・ガ

◆◆写真4　クリストファー・ウィテカー氏

Photo by Toshiya Kondo @civictech forum（CC-BY）

https://www.facebook.com/codeforjapan

196 - Software Design

はじめに

　手元に 1992年 3月号の「ざ
べ注1」があります。そこで筆者は
Advanced Assemblerというx86
のアセンブラに関する連載をし
ていました。毎月、新たな構想
とプログラムを1つ作成するの
は、時間のない中、忙しくも楽
しい作業でした。この号の連載
タイトルが「CPUのスピード
レース」なのです。

そのころのパソコン
CPUの環境

　1992年、F1レースは91年ま
でのマクラーレン・ホンダのコ
ンストラクターズチャンピオン
4連覇から、ウィリアムズ・ル
ノーに勝者が移っていく年であ
り、同じくパソコン界も、PC-
9801全盛の時代から、流れが
変わる足音が聞こえてくる、1
つのターニングポイントの年で
した。
　その足音とは、性能の高い
AT互換機とWindows 3.1で
す。当時のPC-9801DAに載って
いたCPUは、i80386DX 20MHz。
注1） 正式名称はThe BASIC。弊社から

1983年5月に創刊され1997年9月
号で休刊になりました。

対して海外のAT互換機は、i486
33MHzから50MHzに性能アッ
プしようとする状況です。当時
新製品の記事に、「PC-9801FA
i486SX 16MHz従来機に比べ
て約1.6倍高速化している」とあ
ります。完全に周回遅れです。
使用し始めたWindows 3.0の動
作スピードにいらいら感が募る
中、パソコンにおけるCPUの
スピードに大きな関心が集まっ
ていたのです。

CPUのスピードを
測るCPUBENCH

　CPUのスピードを比べるプ
ログラムをx86アセンブラでサ
クっと書いてみようと思い、前
述の連載のために作成したベン
チマークソフトウェアがCPU
BENCHです。
　基本は整数と文字列処理の
D
ドライストーン

hrystoneを利用しています。
C言語で記述されたソースをコ
ンパイラにより、最適化なしの
設定でアセンブラソースとして
出力させ、それを手作業で最適
化しています。文字列処理関数
のstrcpyなどは、標準ライブラ
リを使用せずにアセンブラで独
自に作成しました（アセンブラ
の製作記事ですから）。それを

3万回ループさせて、1/100秒
の精度で、その実行時間を測っ
ています。スピード比較が容易
にできるように、処理時間を表
示するだけでなく、その指標を我
が国の16bitパソコンの原点で
あ ろ う 初 代 PC-9801（i8086
5MHz）とし、その何倍のスピー
ドであるかを「Ratio to the first
PC9801」で表示するようにしま
した。PC-9801だけでなくIBM-
PCおよび富士通FM-Rでも動
作できるようにして、バージョ
ン0.98として公開したのです。

CPUBNECHの結果
とCPUの載せ換え

　表1にCPUBENCHのおもな
結果を示します。PC-9801シ
リーズ 2代目のPC-9801E/F
（i8086 8MHz[1.8]。（ []内はPC
98比））でベースを築き、次に
CPUをNEC製のV30に載せ
換えたPC-9801VM（V30 10
MHz[3]）で98の優位性が確立し
ました。そして、i80286を載せ
たPC-9801VX（i80286 10MHz
[6]）と続き、PC-9801DA（i80386
DX 20MHz[13]）で1992年を迎
えます。そのとき、AT互換機
は、i486DX 33MHz[42]が標準
になりつつあったのです。この

温故知新
ITむかしばなし

速水 祐（HAYAMI You） 　http://zob.club Twitter : @yyhayami

CPUのスピードレース
CPUBENCH

第45回

http://zob.club

196 - Software Design Aug. 2015 - 197

CPU CLOCK Ratio to
PC9801 64K

i8086 8MHz 1.8
V30 10MHz 3
i80286 10MHz 6
i80286 12MHz 7
i80386SX 16MHz 9
i80386DX
(PC-9801DA) 20MHz 13

i80386DX 33MHz 24
Cyrix486DRx2 40MHz 29
i486DX 33MHz 42
i486DX 50MHz 64
Pentium 133MHz 219 135
Pentium Pro 200MHz 267 150

ためCPUの載せ換えをするマニ
アックなユーザが出てきました。
　Cyrix社やAMD社が発売を
始めた i80386互換で内部処理
を高速化したCPUを、PC-9801
のマザーボード上のCPUと換
装して使用し始めたのです。そ
の際の換装CPUのスピード
チェックに、拙作のCPUBENCH
の利用が広まったようです。

その後の
CPUBENCH

　表1の下2つに、その後発表
されたx86 CPUの値が示され
ています。これは、ZOB/Vプ
ロジェクト注2のために、バー
ジョンアップしたCPUBENCH
v0.99で測定したものです。
CPUのスピードアップは予想
以上に早く、1/100秒精度、
30,000回ループのバージョン
0.98では実用に耐えないものに
なっていました。そこで次のよ
うな改良を加え、バージョン
0.99を作成しました。

❶測定タイムの100倍以上の精
度アップ

❷最新のx86 CPUの自動判別
❸Dhrystone測定ルーチンを連

続的に複数（8）並べて、64K
コードサイズの測定を追加

　❶は、タイマ処理を行うLSI
である i8253を直接操作するこ
とで精度アップを図っていま
す。また、CPUのキャッシュ

注2） PC-AT互換機を自作し、パソコン通
信「ZOB Station BBS」のメンバ同士
で情報とノウハウを共有しようとい
う目的でスタートしたプロジェクト
です。1994～96年の3年間、その
時点で先進性・安定性ともにベスト
と思われる部品を使用して、共通の
PC-AT互換機を製作しました。

サイズの増加に対応するため、
❸のように実行処理部のサイズ
を広げて測定するベンチマーク
処理を追加しています。表1の
最右列項目の64Kは、その値です。
　しかし、その当時の新しい
x86 CPUである スーパースケー
ラ構造のPentiumや内部的RISC
化を図ったPentium Proに対し
ては、改良したCPU BENCH
でも、値にバラツキが出てしま
い正確な測定ができない状況に
なっていたのです。

現在のCPUで
CPUBENCHを動かす

　第4世代 Core i7-4770K 3.5GHz

（Turbo Boost時 3.9GHz）でCPU

BENCH v0.98をMS-DOSの実行
環境を整えて動かしてみると、0

で除算と表示されてしまい、次に
v0.99で実行したところ、ここで
も問題が生じました（画面1）。
　通常でPC98比4,779 、64Kで
は、9,350となりました。なぜ通
常の処理と64Kにこれだけの差が
出たのかは不明です。やはり、16

bitのコードをCore i7 で実行して
スピードを求めるのは無理があり、
単純な比較にもならないようです。
　もう、しかたがないので、32bit

版をサクっと作っ
てみました。C++の
コードをWindows

上のMinGW開発
環境で32bitコード
を出力するように
して、最適化なしで
ビルドしただけの
ものです。ループ数
は、3万から100倍
の 300万にして、

1/1,000秒精度で測定しています。
保有する3種類のCPUで実行した
値が表2です。
　Core i7-4770Kでは、PC98比
で66,442となり、今度は値が大き
過ぎます。ただ、3種類のCPUの
クロック値でPC98比を割った値
の比較では、ある程度は信用でき
そうな結果を出すことができたよ
うです。

おわりに

　次回以降は、1992年のターニ
ングポイントを境に、現在とい
う未来への歩みとともに、マイ
コン黎明期の過去へも遡

さかのぼ

ってみ
たいと思います。新しい IT社
会につながる温故知新であるた
めに。｢

 ▼表1　過去のCPUBENCH 主な結果

CPU クロック Ratio to
PC9801

PC98比
/クロックGHz

Core i7-4770K
Haswell 3.5GHz(3.9GHz) 66442 18983

Core i7-3537U
Ivy Bridge 2.0GHz(3.1GHz) 38820 19410

Core2 Duo D9400 1.4GHz 18983 13559

 ▼表2　 CPUBENCH 32ビットバージョン結果
クロック()内は、Turbo Boost時

 ▼画面1　CPUBENCHでの実行結果

温故知新 ITむかしばなし
CPUのスピードレース CPUBENCH

第45回

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.conoha.jp

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

https://www.conoha.jp/
https://www.conoha.jp/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

206 - Software Design

　グレープシティ㈱は5月25日、業務アプリに欠かせな
いデータの参照や登録を行う画面の開発を支援する2種
のデータグリッド「SPREAD for Windows Forms 8.0J」と
「MultiRow for Windows Forms 8.0J」を発売した。
　「SPREAD」は多機能表計算コンポーネント、「Multi
Row」は1レコード複数行表示を実現するツールとなっ
ている。2製品とも高DPI対応で、今夏リリースが予定
されているWindows 10、Visual Studio 2015などの最新
環境についても、Service Pack（無償アップグレード）を
迅速に公開することで対応していく予定とのこと。1開
発ライセンス価格は、SPREADが172,800円（税込）、
MultiRowが129,600円（税込）となっている。

　業務アプリにおいてデータグリッドは欠かせない存在
だが、データの集計・一覧表示の作成、1レコード複数行、
チャート表示といったように、求められる要件は開発案
件ごとに異なる。そのため同社が提供するWindows
フォームアプリ開発用のデータグリッドコンポーネント
には今回提供の2製品をはじめ、複数の製品が用意され
ている。一覧画面やチャート表示はSPREADで開発、入
力画面はMultiRowで開発するといったように、異なる
機能を持つデータグリッドを併用することができる。

グレープシティ、
機能別グリッド2種の新バージョンを同時発売

グレープシティ㈱　URL http://www.grapecity.com
CONTACT

　リックソフト㈱は、ヤフー㈱の全社約7,000人が利用
する情報共有システムに、アトラシアン社製のビジネス
ツール「Con�uence」を採用し、導入を支援した。
　「Confluence」はアトラシアン社が開発する企業向け
の情報共有のためのツール。チームがコンテンツを作成、
共有、議論するための、シンプルかつ高機能なナレッジ
管理ツールだ。プロジェクト、ドキュメンテーション、
ファイル、アイデア、議事録、仕様、図、モックアップ
などの情報をチームで効率的に共有できる。
　ヤフーでは数年前より経営陣を含めた全社の約7,000
人がConfluenceを利用し、1日あたり15,000ページもの
情報が更新され、共有されている。

　リックソフトは、運用においてのさまざまな課題を解
決するために技術支援を提供し、ヤフーの情報共有シス
テムを支えている。また、同社では現在、独自開発のア
カウント管理システムとConfluenceのアクセス制御機
能を連携させており、人事異動があった場合でも
Confluence側に自動的に反映している。さらに、
Con�uenceの「社内 FAQ」機能や、プロジェクト管理ツー
ルである「JIRA」との連携も視野に、活用範囲を広げて
いく予定とのこと。

リックソフト、
ヤフーの約7,000人の情報共有システムに、アトラシアンの
「Confluence」を活用

リックソフト㈱　URL http://www.ricksoft.jp
CONTACT

　6月11日、マップアール・テクノロジーズ㈱は、同社
が提供するHadoopディストリビューション「MapR」に
含まれる「Apache Drill 1.0」の正式な提供を開始した。
　「MapR」は、ビッグデータの分散処理技術「Apache
Hadoop」の商用ディストリビューションの1つ。その
MapRのパッケージの中で今回正式提供が始まった
「Apache Drill 1.0」は、事前のスキーマ定義を必要とせ
ず、Hadoopに対してANSI SQLでのアクセスを可能にす
る製品。ユーザは本製品を活用することで、複雑な
JSON形式などを含む幅広いデータタイプを、新旧を問
わずあらゆるデータソースから、従来のSQL文で準備・
検索できるようになる。

　もともとHadoopは、スケーリング可能で費用対効果
が高く、スキーマレスの書き込みを行うことが可能だっ
た。今回の「Apache Drill」の提供により、データの読み
出しにおいても、費用対効果の高いスキーマフリーでの
読み出しが可能になる。
　本製品の一番の売りは、企業内のビジネス部門のユー
ザが、IT部門に頼らずHadoopにアクセスできるという
点で、既存のBIツールを使ってリアルタイムにビッグ
データを活用できる。

マップアール・テクノロジーズ、
「Apache Drill 1.0」を提供開始

マップアール・テクノロジーズ㈱　URL https://www.mapr.com/jp
CONTACT

http://www.grapecity.com
http://www.ricksoft.jp
https://www.mapr.com/jp

206 - Software Design Aug. 2015 - 207

　6月11日、ザ・プリンスパークタワー東京（東京都港区）
にて、「Akamai Conference 2015」が開催された。
　「Akamai Conference 2015」は、アカマイテクノロジー
ズ合同会社によって開催された、同社の技術セッション、
ユーザ企業の事例紹介などを含むイベント。同社マーケ
ティング本部の中西一博氏によって行われたプレセッ
ション「DDos攻撃のトレンドとアカマイ・セキュリティ
ソリューション」の模様を紹介する。
　セッション始めに行われたのはアカマイの大規模セ
キュリティ調査の報告。これは、世界中に配置された
17万台以上のエッジサーバからなるアカマイのネット
ワーク上で、2015年第1四半期に観測された、Webアプ
リに対する数百万件の攻撃データと、DDoS攻撃の分析
結果である。おもな結果は次のとおり。

・攻撃件数は1年で2倍以上の増加
・平均攻撃時間は四半期で40%以上増加
・100Gbps以上の攻撃は8件発生（最大は170Gbps）
・とくに「SSDPリフレクション攻撃」「WordPressプラ

グインを標的とした攻撃」が増加

　また、社会情勢として懸念されているのが、DDoS攻
撃請負業者の台頭と、業者間の価格競争の加速である。
業者によっては1,000円ほどの代金で、100Gbpsを超え
る代理攻撃が可能になった。「子供がお小遣いを使って、
企業へのクレームの代わりに大規模なDDos攻撃をしか
けるといったことができてしまう」と、中西氏はこの状
況を危惧している。セッションではほかに、脅迫メール
でサイバー攻撃をほのめかし、ビットコインを要求する
「DD4BC」という新しい脅威も紹介された。
　セッションの最後にはアカマイが提供するDDoS攻撃
対策ソリューション「Kona Site Defender」が紹介され
た。これは、世界中に設置されたアカマイのエッジサー
バを使って攻撃トラフィックを「超分散」させるしくみ。
攻撃元に近いエッジサーバ群でまだ小川の状態の攻撃を
受け止めることで、大河になる前に緩和させられる。大
量のサーバを抱え持つアカマイならではのDDoS対策と
言える。

アカマイテクノロジーズ合同会社　URL http://www.akamai.co.jp
CONTACT

アカマイテクノロジーズ、
「Akamai Conference 2015」開催

できることから、新規案件を立ち上げる際に本サービス
でのシステム構築を検討するユーザが増えるとともに、
自社で構築した既存の環境からの完全移行を検討する
ケースも増えてきている。
　一方、移行に際して一部のサーバなどを、アウトソー
スせずに社内環境に置いておきたいといったケースも多
くある。その場合、自社に残したサーバと本サービスへ
移行した環境が、いかに安全に通信できるかが大きな課
題となる。そのような課題を解決するため、今回リリー
スされたのが「拠点間VPNサービス」である。これを利
用することで、ユーザ企業は本サービスと各拠点間をセ
キュアな状態でローカル接続できるようになる。社内
ネットワーク上にあるサーバとの接続など、既存の資産
を活かした運用を望むユーザや、サーバのアウトソース
の流れの中でどうしても社内に残ってしまうサーバと安
全に通信したいと望むユーザにとって、最適なサービス
となっている。

リンク、
拠点間VPNサービスの提供開始

　㈱リンクは、物理サーバの追加・削除・コピーをコン
トロールパネルの操作からできるベアメタルクラウド
サービス「ベアメタル型アプリプラットフォーム」にお
いて、6月24日より、「拠点間VPNサービス」の提供を開
始した。
　「ベアメタル型アプリプラットフォーム」は、セキュ
リティやパフォーマンスの面から、物理サーバを利用し
たい、あるいは物理サーバと仮想サーバをうまく使い分
けたいといった要望を持つ多くのユーザから好評を得て
いる。また、コントロールパネル上から仮想サーバを利
用する感覚で物理サーバを運用できるため、セキュリ
ティ要件などによって他社とのリソース共有を望まない
ユーザからの評価も高い。物理サーバを提供している
サービスの特性上、データを完全に消去できるため「サー
ビス終了後にエンドユーザの個人情報をサーバに残さ
ず、完全に消去したという証明書がほしい」などの要望
にも対応できている。「データを守る」だけでなく「デー
タを完全に消す」という観点においても安全に運用でき
るサービスとなっている。
　このように、セキュアな環境下で安定した稼働が実現 ㈱リンク　URL http://www.link.co.jp

CONTACT

http://www.akamai.co.jp
http://www.link.co.jp

208 - Software Design

　6月2日、レッドハット㈱主催のイベント「Project
Atomic Meetup」が開催された。
　「Project Atomic Meetup」は米Red Hat社が開発を進
めているコンテナに特化した軽量OS「AtomicHost」に関
する技術イベント。6月3～5日に開催された「LinuxCon
Japan 2015」に合わせて来日した、「AtomicHost」のコ
ミュニティマネージャを務めるジョー・ブロックマイ
ヤー氏が招かれた。Project Atomicの最新情報を取材し
たのでその模様をレポートする。
　ブロックマイヤー氏は、まずProject Atomicの概要に
ついて紹介した。Fedora、CentOS、それにRed Hat
Enterprise Linux（RHEL）のそれぞれのプラットフォーム
に対応したAtomicHostが開発されていることを説明し、
「なぜAtomic用にディストリビューションを自作しな
かったのか？」という問いを自ら挙げたうえで、「すで
にユーザが慣れているOS上でコンテナを動かすことが
もっとも重要。そのためにもう1つのディストリビュー
ションを作るのは賢い選択とは思えない」と説明、
「AtomicHostの開発は、常に最新の機能を盛り込む

Fedoraで行われ、その次にCentOS、それからRHELに対
応する順番になるだろう」とリリース方針を示した。

　AtomicHost注目の新機能、SPCとCockpit
　次に紹介されたのが、現在開発が進む新機能「Super
Privileged Container（SPC）とCockpit」。氏によれば「コ
ンテナはもともとアプリケーションをアイソレーション
させて依存関係をなくし、ポータブルにしたものだが、
デバッグや管理のためにホストのシステムやほかのコン
テナと接続できる特権を持ったコンテナが必要となっ
た。そのためにSPCを開発した」とのこと。
　また、Dockerコンテナの管理ツールであるCockpitは
「AtomicHostが開発されるよりも前に、Red Hat社の中
でプライベートなプロジェクトとして開発されていたソ
フトウェア。AtomicHostのプロジェクトを始めるとき
に『そういえばそんなツールがあったよね』みたいな感
じで掘り起こされたもの」だそう。つまり、サーバを管
理するためのツールではあるが、コンテナを管理対象に
できるもののようだ。
　このあと、実際にノートPCでAtomicHostとCockpit
を稼働させるデモが行われ、いかに少ないリソースしか
要求されないかをモニターしながら解説した。Meetup
に参加した参加者からは「Cockpitはプロダクションの
システムに適用できるのか？」という質問が出たが、こ
れに対して「Cockpitはまだベータの段階。あくまでも
開発やテスト用として使ってほしい」との答え。

　さらに、社内で開発されていた別のソフトウェアとし
て、rpm-ostreeというOSのアップデートのための機能
も紹介された。rpm-ostreeはOSのアップデートなどを
行う際に現在のOSのスナップショットを保存しておき、
何か不具合が発見された際にリブートして以前のOSイ
メージへのロールバックを可能にするもの。これも
Project Atomicの中で利用されている。

　CoreOS RocketとAtomicHost
　Meetup後の懇親会で、Dockerに対抗するコンテナ技
術Rocketについて氏に伺った。
──CoreOSが推進するコンテナ技術、Rocketについて
どのように考えておられるのか教えてください。
　Rocketは、確かにコンテナ技術に対する1つの回答で
はありますが、Red Hat社としてはDockerを主として実
装することを考えています。
──システムインテグレータなどから、「これからは
DockerではなくRocketなのでは？」と聞かれることが
あるのですが、それに関してはどう思われますか？
　コンテナは基本的にはアプリケーションを動かす技術
であって、コンテナそのものが重要なのではありません。
これから数年のうちにもっと別のコンテナ技術が出てく
るかもしれないのです。ただしRed Hat社のスタンスで
言えば、企業ユーザがすでにRHELやCentOSなどを使っ
てシステムを構築しているのが実態であると思います。
そのため、現時点で動いているシステムから大きく変え
ることなくコンテナ技術を導入できるしくみが必要で
す。そのためには既存のプラットフォームを維持するこ
とが重要なのです。Rocketをすぐに導入したいという
ユーザとして考えられるのは、まったく新しくビジネス
を起こすベンチャー企業ですね。しかし、実際にそうい
うユーザは少ないのではないのでしょうか。

◆　◆　◆
　Project Atomicでは、活発に活動しているコミュニ
ティメンバが現在20～30名程度なので、もっと多くの
デベロッパに参加してほしいとのこと、興味のある方は
プロジェクトにコンタクトしてはいかがだろうか。

・著者プロフィール

松下康之（まつしたやすゆき）
フリーランスライター＆マーケティングスペシャリスト。DEC、マ
イクロソフト、アドビ、レノボなどでのマーケティング、ビジネス
誌の編集委員などを経てICT関連のトピックを追うライターに。オー
プンソースとセキュリティが最近の興味の中心。

レッドハット、
「Project Atomic Meetup」開催

レッドハット㈱　URL http://www.redhat.com/en/global/japan
CONTACT

http://www.redhat.com/en/global/japan

208 - Software Design Aug. 2015 - 209

　GitHub社は6月4日、初の海外支社として日本支社
「ギットハブ・ジャパン合同会社」を設立したことを発
表した。同社は東京を本拠地とし、今後はジェネラルマ
ネージャーである堀江大輔氏が運営を行う。
　発表会にはGitHub社のCEOクリス・ワンストラス氏
も参加し、「海外初のオフィスをオープンすることは
GitHubにとってとても重要な節目です。イノベーショ
ンに富んだソフトウェアを生み続けてきた、今でも刻々
と成長を続ける日本のデベロッパコミュニティをサポー
トする日本法人を設立できることを、とてもうれしく
思っています。新しく就任したジェネラルマネージャー
の堀江大輔は、豊富なビジネス経験とGitおよびGitHub
の深い理解で、日本のお客さまにとって必ず役に立って
くれると信じています」と述べた。日本での利用のされ
方について、2008年のまだ日本語サポートのない
GitHub設立当初から、github.comへのアクセス数は上
位10ヵ国に入り続けてきた。そして、日本のユーザは
現在も増加し続けており、2014年の日本ユーザの
GitHub上でのアクティビティは、前年比60％も増加し
たとのこと。

　「GitHub Enterprise」の日本展開
　「GitHub Enterprise」は、オープンソースプラット
フォームと同じプロジェクト環境を、自分たちの組織内
にクローズドで再現できるサービス。日本法人設立に合
わせて、これまで言語や決済などの観点から導入が難し
かった国内企業に対しても、さらに迅速できめ細かい
サービスやサポートを提
供するため、マクニカ
ネットワークス㈱と国内
総代理店契約締結を行
い、日本語による同サー
ビスの法人向け導入サ
ポートを開始した。この
提携により、円建て決済
や日本語のテクニカルサ
ポートも受けられるよう
になる。

ギットハブジャパン合同会社　URL http://github.co.jp
CONTACT

ギットハブジャパン、
GitHub初の海外支社として設立

　さらに、モジュラー化の面では、大量の新機能が追加
された。主なものを挙げれば、ステーブル版のAPI、
ECMAScript 6の新機能をパッケージに導入するための
babelライブラリのサポート、サービスを通じてパッ
ケージが通信する機能、コアエディタを拡大するための
各種の表示オプション、そしてUIを自動的にシンタック
スカラーに合わせる新しいテーマなどだ。一方、auto
complete-plusなどいくつかの優れたコミュニティー版
のパッケージに敬意を表して「Atom 1.0」ではこれに対
応する機能を削除したとのこと。

GitHub社、
テキストエディタ「Atom 1.0」をリリース

　GitHub社は6月26日、テキストエディタ「Atom 1.0」
を正式にリリースした。
　「Atom」は、GitHub共同創業者でCEOのクリス・ワン
ストラスの、“Webデベロッパー向けにEmacsのような
自由にカスタマイズできる新世代のエディタを最新の
Webテクノロジを用いて開発したい”という思いから開
発が始まり、約1年前にβ版が一般公開された。β版時
点でも、Atomのダウンロード回数は130万回、月間ア
クティブユーザは35万人に達していた。また、Atomの
コミュニティでは、660種類のテーマ、2,090種類のパッ
ケージが作られ、この中からはlinter、autocomplete-
plus、minimapなどの人気作も生まれた。
　Atomは現在に至るまで155回ものアップデートが行
われ、パフォーマンス、安定性、機能、モジュラリティ
などあらゆる面で大きく進歩を遂げており、スクロール、
タイプ入力、起動すべてが高速化した。正式版は現在、
Windowsインストーラ版やLinuxパッケージ版として提
供されている。また、ウィンドウペインのリサイズやマ
ルチ・フォルダ同時展開機能など以前から強く要望され
ていた機能が追加されている。 GitHub, Inc.　URL https://github.com

CONTACT

▲▲ダウンロードページ（https://atom.io/）

▲▲堀江大輔氏（左）、クリス・ワンス
トラス氏（右）

http://github.co.jp
https://atom.io/
https://github.com

210 - Software Design

 活気が感じられたInterop2015
　6月10～12日、幕張メッセにて開催されたInterop
Tokyo 2015は、総出展数が1,345、参加企業486社、来
場者数はのべ136,341人（2014年132,609人）と、昨年よ
りも幾分賑やかな印象を受けるものだった。イベントの
目玉でもあり、Ineteropの屋台骨ともいえるネットワー
ク環境の構築については、本誌連載記事「ShowNetが示
すネットワークの近未来」を参照してほしい。

 ShowNetの見どころとは
　東京大学情報基盤センター関谷勇司氏によると
ShowNet 2015の最大のテーマは「今のインターネット
はあと10年生き残れるか」。2020年の東京オリンピック
に向けた課題でもあり、そのためにどうすべきか、現時
点の技術をベースに考えるというもの。今年のShow
Netネットワークの規模は、機材総額がおよそ74億円、
参加した技術者はのべ400名以上、設計に半年以上をか
け、2週間ですべてを構築したという。最新の機材と技
術で作り上げたもので1つとしてムダなものがなく、誇

れるものだという。そし
てネットワークの見どこ
ろとして「セキュリティ」
「Wi-Fi」「IoT（Internet of

Things）」「NFV」「インター
クラウド／マルチクラウ
ド」の5点を挙げた。

 データとインフラの両面でセキュリティ展開
　インターネットの機能拡張を続けてきて課題になるの
は、“今のまま10年いけるのか”ということ。そのこと
に3年がかりで解決を求めてきており、今年で2年目。
今年はバランス重視で設計した。多機能にしてインフラ
が複雑になると、故障が増えて実用に耐えられなくなる。
そこで便利さとタフさのバランスを見極めたという。
　データを守るセキュリティとして、標的型攻撃やマル
ウェアに対してはその前兆をとらえ、攻撃をブロックす
る「運用によるサイバーキルチェーン」を提示した。そ
して、インフラを守るセキュリティとして、DDoS攻撃
対策を重視。DDoS攻撃は近年で400Gbpsに達するもの
もあり大規模化している。その対策には個別組織で行う
のではなく、ISPやIX、そして自社網で防御する必要が
ある。さらにヨーロッパで導入が進んでいるRPKI（リソー
スPKI）にも注目した。そのため全対外接続ルータの全経
路でRPKI相互接続実証実験を行った。最後に提唱された
のが「エンドポイントまでのセキュリティのための多層

防御の重要性」である。この分野には多くの製品があり、
本イベントでは、これらをどのように適用するのか示す
ことで、セキュリティオーケストレーションモデルを提
示するのが目的。
　今年は一般的な無線設計をせずに、「スタジアムアン
テナを会場内に対角で設置」（アクセスポイントを減ら
すため）、「同軸漏洩ケーブルによる局所化」といった技
術を使用し、“きれいな無線（Wi-Fi）”を目指したとのこ
と。これで従来と比較して劇的に改善を図ることができ
たという。Bluetoothや出展社所有のWi-Fiなどで通信が
混乱し、SSIDのビーコンすら発信できないのが現状な
ので、あえて電波密度を疎にしたのだ。同時にNOC（ネッ
トワークオペレーションセンター）では電波状態を計測
し常時監視をしている。
　また、IoTについては、会場内のゴミ箱の中にセンサー
を設置し、ゴミの量をスキャンするセンサーネットワー
クの実験を実施した。
　SDN/NFVでは、真にスケールアウトできるアーキテ
クチャとは何かという課題を挙げて検証を試みたとい
う。SDN/NFVの利点は欲しいときに使いたい機能が使
えることだが、それがタフなサービスとして使えるのか
が問題という。そのため、ソフトウェアを多層化してス
ケールアウトできるアーキテクチャを構成した。イン
ターコネクティビティのためにVxLAN、Ethrenet VPNや
OpenStackなどの実証実験も行っている。
　これらの検証環境はすべてNOCの中のラックに収め
られており、その隣にあるホワイトボードに書かれた吹
き出し1つ1つに技術者の気持ちが込められている。来
年はどのような技術が使われるのか、Interop 2016を訪
れるときはまずはNOCから見学することを勧めたい。

 Interop番外編「村井 純先生還暦を祝う会」
　Interopはインターネットにかかわる多くの人間が集
うイベントであるが、“Internetの父”慶應義塾大学村井
純先生の還暦を祝う会が、6月11日の夕方より開催され
た。スターウォーズ風のビデオ画像が会場内巨大スク
リーンに映写され、はなばなしくスタートした会は、永
井美奈子アナウンサーが司会をつとめ、さんまのまんま
風の舞台でぞくぞくとゲストが見えるという設定。SFC
の1期生や夏野剛氏など村井先生にゆかりのある方々が
続々と登場し還暦を祝った。

「Interop Tokyo 2015」開催

Interop Tokyo 2015
URL http://www.interop.jp/2015/

CONTACT

▲▲関谷 勇司 氏

http://www.interop.jp/2015/

210 - Software Design Aug. 2015 - 211

　㈱デベルアップジャパンは6月23日、同社の豊富なト
ラブルシューティング経験を活かした、障害対応に特化
したパケットキャプチャ専用機「Sonarman」を発売し
た。
　コンピュータネットワークにおいて、システムの入出
力を直接解析する「パケットキャプチャ」はトラブル
シューティングに非常に有効な手法。同製品はパケット
キャプチャを継続的に取得し、障害対応に役立つ“ネッ
トワークにおけるドライブレコーダ”となっている。
　本製品は、ポートミラーリングによって常時監視対象
サーバのパケットをキャプチャし、リングバッファに一
定期間記録を保持、エラー発生時に投げられたSyslog

メッセージをトリガーに、発生時のパケットをストレー
ジに避難させるというしくみ。2GBのメモリ、128GBの
SSDを搭載している。再現性の低い障害への対応策とし
て、また外部業者とのやりとりにおけるエビデンス（証
拠）を基本としたトラブルシューティングの精度向上の
ための利用を想定している。
　価格は、初期設定および各種サポートを含め、35万
円（税別）から。仮想アプライアンスとして動作する無
償バージョンも公開されている。

デベルアップジャパン、
パケットキャプチャ専用機「Sonarman」を発売

㈱デベルアップジャパン　URL http://develup-japan.co.jp
CONTACT

　日本ヒューレット・パッカード㈱は7月2日、ビッグ
データに最適化されたストレージサーバ「HP Apollo
4000シリーズ」を発表した。
　同シリーズは、ソフトウェアベースの分散型ストレー
ジに最適な、高密度実装、シンプルな拡張性、そして柔
軟性を持つサーバプラットフォームだ。2製品のおもな
特徴は次のとおり。

・HP Apollo 4200 System
　2Uサイズに最大224TBとなる28本の3.5インチ（LFF）

ドライブ、または50本の2.5インチ（SFF）ドライブを
内蔵可能。標準的な2Uラックサーバとして、既存のラッ

クをそのまま利用できる

・HP Apollo 4530 System
　4Uラック型シャーシに3台

のサーバノードと各ノード
15本の3.5インチ（LFF）ド
ライブを提供。CPUパワー
とスピンドル数のバランス
を重視した高密度サーバ

日本ヒューレッド・パッカード、
ストレージサーバ「HP Apollo 4000シリーズ」を発表

　㈱ネオジャパンは6月10日、「desknet's NEO」の新バー
ジョン（V3.0）の提供を開始した。
　同製品は累計316万ユーザ（2015年3月時点）の販売実
績を持つ、純国産のWebグループウェア。製品コンセ
プトは「現場主義」で、ユーザへのヒアリング結果をも
とにバージョンアップのたびに現場で必要な機能を積極
的に実装してきた。V3.0では次の機能強化が行われた。

① 交通費／経費精算機能の搭載
② 動画の配信／画像編集ツールの搭載
③ WebメールのIMAP対応
④ Webメールの誤送信防止機能の再強化

⑤ データの自動保存／回復

　とくに①については、ジョルダン㈱の「乗換案内Biz」
との連携により、スケジュール登録と同時に訪問先まで
の交通経路を検索したり、交通費や経費を蓄積して経費
精算申請を行ったりできるようになった。
　同製品のクラウド版は1ユーザ月額400円（税別）。パッ
ケージ版は5ユーザ39,800円（税別）～。今回追加された
交通費／経費精算機能は、別途オプション費用が必要。

ネオジャパン、
グループウェア「desknet's NEO V3.0」をリリース

㈱ネオジャパン　URL http://www.neo.co.jp
CONTACT

日本ヒューレッド・パッカード㈱　URL http://www8.hp.com/jp/ja
CONTACT

▲▲HP Apollo 4200 System（左）
HP Apollo 4530 System（右）

http://www8.hp.com/jp/ja
http://develup-japan.co.jp
http://www.neo.co.jp

〒162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

川本安武 著
A5判 ・ 400ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-6807-4

中村行宏、横田翔 著
A5判 ・ 320ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-7114-2

吾郷協、山田順久、竹馬光太郎、
和智大二郎 著
B5判 ・ 136ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6797-8

福田和宏、中村文則、
竹本浩、木本裕紀 著
B5判 ・ 128ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7345-0Software Design plusシリーズは、OSと

ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

寺島広大 著
B5変形判 ・ 440ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6543-1

倉田晃次、澤井健、
幸坂大輔 著
B5変形判 ・ 520ページ
定価 3,700円（本体）＋税
ISBN 978-4-7741-6984-2

遠山藤乃 著
B5変形判 ・ 392ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6571-4

松本直人、さくらインター
ネット研究所（日本Vyatta
ユーザー会） 著
B5変形判 ・ 320ページ
定価 3,300円（本体）＋税
ISBN 978-4-7741-6553-0

勝俣智成、佐伯昌樹、
原田登志 著
A5判 ・ 288ページ
定価 3,300円（本体）＋税
ISBN 978-4-7741-6709-1

PHPライブラリ＆サンプル実践活用
［厳選100］
WINGSプロジェクト 著
定価 2,480円＋税　ISBN 978-4-7741-6566-0

フロントエンドエンジニア養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6578-3

サーバ/インフラエンジニア養成読本
ログ収集～可視化編
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6983-5

WordPressプロフェッショナル
養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6787-9

アドテクノロジー
プロフェッショナル養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6429-8

Zabbix統合監視徹底活用
TIS㈱ 池田大輔 著
定価 3,500円＋税　ISBN 978-4-7741-6288-1

Webアプリエンジニア養成読本
和田裕介、石田絢一（uzulla）、
すがわらまさのり、斎藤祐一郎 著
定価 1,880円＋税　ISBN 978-4-7741-6367-3

iOSアプリエンジニア養成読本
髙橋俊光、諏訪悠紀、湯村 翼、平屋真吾、
平井祐樹 著
定価 1,980円＋税　ISBN 978-4-7741-6385-7

[改訂新版]
Linuxエンジニア養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6377-2

[改訂新版]
サーバ/インフラエンジニア養成読本
仮想化活用編
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6425-0

[改訂新版]
サーバ/インフラエンジニア養成読本
管理・監視編
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6424-3

[改訂新版]
サーバ/インフラエンジニア養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6422-9

GPU並列図形処理入門
乾正知 著
定価 3,200円＋税　ISBN 978-4-7741-6304-8

エンジニアのための
データ可視化［実践］入門
森藤大地、あんちべ 著
定価 2,780円＋税　ISBN 978-4-7741-6326-0

過負荷に耐えるWebの作り方
㈱パイプドビッツ 著
定価 2,480円＋税　ISBN 978-4-7741-6205-8

川瀬裕久、古川文生、松尾大、
竹澤有貴、小山哲志、新原雅司 著
B5判 ・ 156ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7313-9

養成読本編集部 編
B5判 ・ 164ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7057-2

きしだなおき、のざきひろふみ 、吉田真也、
菊田洋一、渡辺修司、伊賀敏樹 著
B5判 ・ 168ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6931-6

上田隆一 著
USP研究所 監修
B5変形判 ・ 416ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-7344-3

中島雅弘、富永浩之、
國信真吾、花川直己 著
B5変形判 ・ 416ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-7369-6

Aug. 2015 - 213

歩数や睡眠時間などが記録でき、スマホと連携するとメッセージやメールなども通知してくれる機能を持ったブレスレットを買ってみたら、
これが楽しいの。歩くのは通勤程度のデスクワークな私、一応設定した目標に達すると幸せを感じるわけです。コレを始めてみたらログ
するのが楽しくなっちゃって、前からやってたランニングのGPSログに加えて、体重計の数値を記録するスマホアプリを導入したり、飲
酒量とかも記録したりし始めました。振り返りって大切ですよ。「こんなに呑んでたんだ」って愕然とします。コマンド履歴もライフログ
みたいなものですが、コマンド実行回数より利用時間で統計を取りたいですね。そんなログツールありましたっけ？

ラ
イ
フ
ロ
グ
で
自
分
の
一
日
を
振
り
返
る
と
鬱
に
な
る
か
ら
、
怖
く
て
そ
ん
な
こ
と

で
き
な
い
担
当
編
集
に
も
愛
の
ツ
イ
ー
ト
を
!

作）くつなりょうすけ
@ryosuke927

最近ライフログ
を記録してるん
　ですよ

ライフログ？行動履歴というか、
 ボクの場合は
 健康管理ですが

ほかにも
いろいろ
記録できて、
使っている
人は……

体重
でしょ

血圧

体脂肪率に

歩数ですね

食事から
カロリーを
計算したり

おまえのコマンド
ヒストリを見ると

続いてcpと
vimを
合わせて5％

vimとcoreutilsと
bashだけで
 生きていけるな

え

え

lsが90％か

rubyも
使ってないから
アンインストール
しといてやるよ。

オレの
ライフログで
勝手な提案
するなー！

他
人
の
ラ
イ
フ
ロ
グ

勝
手
に
使
う
の

ダ
メ
!
絶
対
!!

え

飲酒量を
つけたり

ガソリン給油量から
値段と燃費をつける
人もいますね

結構自分を
見つめ直せて
楽しいですよ

ほほぉ

ライフログ第19回

①

③

⑦

⑧

⑨

⑩

④⑤⑥

②

214 - Software Design

ラジコン？　いえ、ドローンです。
最近何かと話題の「ドローン」。ネットの新語辞典によると「遠隔操作やコンピュータ制御に
よって飛行する、無人での飛行が可能な航空機の総称」というのが定義だそうです。これだと
ラジコンの飛行機やヘリも含まれてしまいますね。ただ、ドローンのほうが響きが格好いい
ですよね（スター・ウォーズみたいで！）。日本では今、規制化の方向に進んでいますが、い
ろいろなことに使えてしまう汎用性の高さを考えると、仕方ないことなのかもしれません。

分散型バージョン管理システム「Git」、
そのしくみを使ってコードやドキュメン
トを共有・公開できるWebサービス
「GitHub」。特集ではその2つについて、
新人向けに基礎の基礎から解説しました。
第1章導入部分の、新入社員コントが印
象的でしたね。

そろそろ新人が配属になるので、最初
に読んでもらうのにちょうどいいです。
 ganganさん／沖縄県

ちょうど知りたいと思っていたので、雑
誌で特集してくれるのはありがたい。
 野村さん／栃木県

「なぜGitが主流になったのか？」「な
ぜMercurialやBazaarよりGitなの
か？」といった、Gitがほかより優れて
いる点について説明があるともっと良
かったと思います。 齋藤さん／神奈川県

個人で使い始めたところだったので非常
にためになった。 杉岡さん／神奈川県

aicoさんのイラスト、相変わらずナイ
スです。 山下さん／東京都

GitHubについてあまり理解していな
かったため使用していなかったが、便
利そうなので導入を検討したいと思っ
た。 marcosさん／愛知県

開発現場以外でのGitの活用法の紹介
などがあるとおもしろいかなと思いま
した。 島さん／静岡県

Gitはローカルでチェックアウト、コ
ミットができる点が魅力だと思う。Git
以前のソース管理としてSubversion
を使っている現場が多いと思うので、
Gitへの移行時の注意事項や手順など
を扱ってもらうと、現場に浸透しやす
いと思う。 隼さん／岩手県

GitとGitHubの利用は企業・組
織に限らず、地方自治体でも始

まっています。最近の話ですと、和歌山
県がGitHubのアカウントを取得してオー
プンデータの公開などに利用しているそ
うです。

OpenLDAPは、ディレクトリアクセス
プロトコル「LDAP」を実装するOSS。特
集では、まずLDAPの基本事項につい

て紹介し、OpenLDAPによる LDAP

サーバの構築を解説、そしてCentOS、
GitHubなどのクライアントでLDAPを
構築する方法を説明しました。

LDAPについて興味があったので購入
しました。 菊地さん／愛知県

意外と使うので特集があって助かった。
 片山さん／東京都

従来はしくみの説明に終始する記述が多
かったが、とくにDIT設計の勘所を簡
潔にまとめた個所が良かった。
 若山さん／千葉県

OpenLDAPは、あまり情報がなく設
定が呪文みたいでとっつきにくいので
すが、今回の特集のように全体的に網
羅されている記事は参考になります。
呪文みたいな設定を理解したいので、
できれば連載化・書籍化をお願いした
いです。 今井さん／千葉県

当たり前のように使われている
技術だからこそ、その内部構成

を理解しておくことはとても大切です。
「とりあえず動けばいい」と普段からおま
じない的に設定を書いていては、トラブ
ル時に対応できなくなりますね。

2015年6月号について、たくさんの声が届きました。

第1特集
Git＆GitHub入門

第2特集
OpenLDAPの教科書

214 - Software Design Aug. 2015 - 215

Windows Server 2003のサポート終了
を目前に控え、企画された記事。Win

dows Server 2003上に構築されたディ
レクトリサービスシステム「Active

Directory」を、OSSであるSamba上へ
移行する方法について、両者の機能比較
も行いながら解説しました。

自分の働いているところでもWin

dows Server 2003がまだ動いてい
るので、それの移行として考えてみる
ことができた。今後予算が付かない場合、
OSSでの構築も考えないといけないと
思った。 ももんがさん／静岡県

SambaでADの代用が可能だという
ことを初めて知りました。結構ハード
ルは高そうですね。
 NGC2068さん／愛知県

SambaでのADが実用範囲内だと知
り有意義です。 森本さん／埼玉県

テーマとしてこの量では少な過ぎたが、
あまりこういった記事がないので良かっ
たです。 コメットさん／兵庫県

まさにWindows Server 2003から
の乗り換え中なので、とてもタイムリー
なネタで助かります。

 くまーーーさん／神奈川県

昔と比べると非常に使いやすくなってい
ると思え、また試してみたくなった。
 山添さん／東京都

Windows Server 2003は、そのク
ライアントにあたるWindows

XPとともに、あらゆる場所で使用され
てきました。サポート終了を控えて、
OSSへの乗り換えを検討しているユーザ
も多いのではないでしょうか。

Java仮想マシン上で動作するオブジェ
クト指向言語「Kotlin」についての短期連
載。Androidアプリを作るのにも使いや
すいプログラミング言語です。第3回で
はKotlinの、言語としての文法・機能を
1つずつ解説していきました。

高階関数が早くも出てきた、という感じ
がします。 いつも計画倒れさん／奈良県

いよいよ深いところまで踏み込んできた
感じで、少し難しいけどおもしろかった
です。 オミオさん／宮城県

言語の概要説明と環境構築を終え、
いよいよコーディングの話題です。

高階関数など出てきて、難易度がやや
高くなってきましたね。

新種のウイルスは、出現してから対策
ソフトのデータベースに反映されるま
ではどのように対処すれば良いのでしょ
うか。年金問題で自分の環境も見直し
たいです。 澤下さん／大阪府

年金関連で話題の、不審なメールや添
付ファイルなどにどう対処するか……。
特集記事を掲載してください。
 牧さん／大阪府

日本年金機構の個人情報流失事件、
何人かの方から心配の声が寄せら

れました。今回は人的な要因がかなり大
きかったようですが、システムで防げる
部分も多分にあったことと思います。

緊急企画　SambaによるActive Dire
ctoryの機能性と移行性を検証する

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① 「Raspberry Pi B+」＆「Camera module」セット
李凡様（神奈川県）

② 「ISMB-P8700W7」＆「WN-TR2K」
今泉光之様（神奈川県）

③ 現代用語の基礎知識　20年分特別パック
石澤景子様（埼玉県）

④ 絵で見てわかる IoT/センサの仕組みと活用
下平学様（東京都）、QKob様（富山県）

⑤ Webエンジニアの教科書
瀬長孝久様（岐阜県）、笠原敏夫様（埼玉県）

⑥ シェルプログラミング実用テクニック
村橋究理基様（北海道）、chy様（石川県）

⑦ AWK実践入門
福田昌弘様（埼玉県）、外山文規様（新潟県）

6月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

短期連載
Kotlin入門【3】

フリートーク

mailto:sd@gihyo.co.jp
http://sd.gihyo.jp/

Software Design
2015年8月号

発行日
2015年8月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2015年9月号
定価（本体1,220円＋税）

192ページ

September 2015
8月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2015 技術評論社

●ガチャピン先生に問われて連投ツイートした原稿執

筆心得が結城浩先生の目にとまり、まとめサイトで公

開されたら、フォロー数が一気に増えました。技術者

としてまっとうに生き抜いていれば、誰にも負けない

技術・知恵ができているはずです。それを原稿にし

て欲しいんです！　ただそれだけなのです。（本）

●今年も水耕栽培を始めました。ダシパックにバーミ

キュライトを入れ、それを大きめの器に入れて大塚ハ

ウスEC2.6の液肥に浸し、ダイソーで買ってきた50

円のレタスミックスの種を撒くだけの簡単なものです。

2日目には発芽し、数週間で収穫できるくらい大きく

なります。毎日成長を見るのも楽しみです。（撒）

●最近、「3行日記」なるものをつけてみてます（順

天堂大医学部教授 小林弘幸先生提唱）。手書き推奨

なのですが、私は仕事の終わりにテキストファイルに

メモして帰宅することに。するとどうでしょう！ってほ

ど劇的に何かが変わった感じはまだしませんが、「今

日一日が終わった感」がいいです。（キ）

●この十何年間、コンピュータゲームをしていませ

ん。ふと「久々にやると新たな感動があるのでは」と

思い、やってみることに。PS2のエミュレータとROM

イメージを作成し、小一時間ほどかかってPCで動作

させることに成功。何だかそれだけで心が満たされ

てしまい、結局ゲームはやらずじまい。（よし）

●カシオが昔出していた、多機能のデジタル腕時計

が好きです。電卓がそのままくっついたような「デー

タバンク・カリキュレータ」、大きなボタンが4つ付い

た「フューチャリスト」などなど。僕の愛機「ワールド

タイム」は、液晶に世界地図とアナログ風デジタル

時計が組み込まれていてクレイジーです。（な）

●テレビの特集を見てから気になっていた江戸東京

博物館に行ってきました。実物大の模型、当時の様

子を再現した縮尺模型、実際に使っていた実物資料

などの展示や、動く模型の演出と解説もあり、見ご

たえがありました。分館で江戸東京たてもの園もある

そうなので、今度行ってみたいと思います。（ま）

S D S t a f f R o o m

［第1特集］ エンジニアの夏期講習

特講「オブジェクト指向・SQL・正規表現」
苦手克服のベストプラクティス
［第2特集］ しくみをご存じですか？

メールシステムの教科書
メール配信、メッセージ転送、MTAのしくみ、安全性など
多面的にメールシステムを学ぶ

［特別企画］
なぜ俺の提案は通らないのか？
理想を実現するために必要なたった1つのこと
［好評！短期連載］
Jamesのセキュリティレッスン「新しいWireshark」

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

■2015年7月号　連載「Linuxカーネル観光ガイド」第40回
●P.167　図4　SO_INCOMING_CPUの機能の2と3の順番が逆になります。
●P.168　写真1のリンク［URL］http://beagleboard.org/black
●P.168　写真2のリンク［URL］http://elinux.org/File:Bottom-LCD3.jpg

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

216 - Software Design

http://beagleboard.org/black
http://elinux.org/File:Bottom-LCD3.jpg
mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2015年8月号
	表紙
	目次1
	目次2
	目次3

	第1特集 なぜ関数型プログラミングは難しいのか？
	第1章：今こそLisp入門......五味 弘
	第2章：PHPエンジニア、Scalaを学ぶ！......安達 勇太
	第3章：Scalaで始める、型安全な関数型プログラミング......伊奈 林太郎
	第4章：定義で記述するHaskellのわかりやすさ......上田 隆一
	第5章：Elixir入門......力武 健次
	第6章：Pythonで見る関数型言語の本質......辻 真吾
	第7章：Clojure入門......ニコラ・モドリック

	第2特集 安全な通信を確保するSSL/TLSの教科書
	第1章：インターネットの安全性と暗号技術......島岡 政基
	第2章：SSL/TLSと暗号スィートを理解しよう......島岡 政基、伊藤 忠彦、国井 裕樹
	第3章：脆弱性の分析から見えてくる安全なTLSサーバ設定......神田 雅透、林 達也
	Appendix：TLSを取り巻く環境、そしてTLSの今後について（TLS1.3、HTTP/2）......林 達也

	短期連載
	AWSで始めよう！　モダンなJavaアプリケーション開発【新連載】JavaとDockerで始める実践Elastic Beanstalk入門......永瀬 泰一郎
	Kotlin入門【5】null安全......長澤 太郎

	Catch up trend
	ConoHaで始めるクラウド開発入門【新連載】新しくなったConoHaはすごいぞ......斉藤 弘信

	Inside View
	リクルートライフスタイルの技術力を追え！【インフラ編】柔軟性とスピードの両立を目指してパブリッククラウド活用を決断......編集部

	連載：Column
	digital gadget【200】200回を振り返る：SF映画とデジタルガジェット......安藤 幸央
	結城浩の再発見の発想法【27】Fail-Safe......結城 浩
	おとなラズパイリレー【10】IoTをやってみよう（後編）......江草 陽太
	軽酔対談　かまぷの部屋【13】ゲスト：鹿野 恵子さん......鎌田 広子
	ツボイのなんでもネットにつなげちまえ道場【2】LED点滅の極意（前編）......坪井 義浩
	Hack For Japan〜エンジニアだからこそできる復興への一歩【44】CIVIC TECH FORUM 2015レポート......関 治之
	温故知新 ITむかしばなし【45】CPUのスピードレースCPUBENCH......速水 祐
	ひみつのLinux通信【19】ライフログ......くつなりょうすけ

	連載：Development
	Erlangで学ぶ並行プログラミング【5】OTPのビヘイビアとgen_server......力武 健次
	Sphinxで始めるドキュメント作成術【5】目次、用語集、索引を付けよう--大きめのドキュメントを読みやすくするために......川本 安武、清水川 貴之
	Android Wearアプリ開発入門【最終回】WearアプリでGPS機能を活用！......神原 健一
	Mackerelではじめるサーバ管理【6】Mackerel周辺の運用ツールとAWS連携ノウハウ......坪内 佑樹
	書いて覚えるSwift入門【7】Swiftが愛される理由......小飼 弾
	セキュリティ実践の基本定石【23】IP電話のセキュリティ......すずきひろのぶ
	るびきち流Emacs超入門【16】Emacsと長く付き合っていくために......るびきち

	連載：OS/Network
	ShowNetが示すネットワークの近未来【5】ShowNetの裏側〜ホットステージレポート〜......編集部
	Red Hat Enterprise Linuxを極める・使いこなすヒント .SPECS【14】xhyveでRHELを動かしてみよう......藤田 稜
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【22】BSDCan 2015で知る今後の動向......後藤 大地
	Debian Hot Topics【29】リポジトリの役割を理解してDebianを快適に使おう......やまねひでき
	Ubuntu Monthly Report【64】インプットメソッドと変換エンジンの遠くて近い関係......あわしろいくや
	Linuxカーネル観光ガイド【41】Linux 4.0の機能〜lazytimeとDAX......青田 直大
	Monthly News from jus【46】RubyによるLLプログラマのためのUNIX勉強会......法林 浩之

	アラカルト
	ITエンジニア必須の最新用語解説【80】Project Brillo......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW
	SD NEWS & PRODUCTS
	Readers' Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内
	バックナンバーのお知らせ
	Software Design plusシリーズのお知らせ

