

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

年間定期購読

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/
 定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/
http://gihyo.jp/magazine/SD

技術評論社の本が電子版で読める！
https://gihyo.jp/dp

 GIHYO
 Digital Publishing

 GIHYO
 Digital Publishing

未来の“普通”を，今。

 Gihyo Digital Publishing

 GIHYO
 DIGITAL
 PUBLISHING

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

人類総プログラマー化計画
～誰でもプログラミングできる世界を目指して～
清水亮　著　
980円　 EPUB

あの人気連載がついに電子書籍化！

パーソナルコンピュータの父、アラン・ケイに憧れる筆者
が、一生のさまざまな段階に応じたプログラミングができる
端末を目指し、コンピュータの再発明に挑む！
https://gihyo.jp/dp/ebook/2015/978-4-7741-6661-2

AWK実践入門

EPUB PDF

シェルプログラミング実用テクニック

EPUB PDF

Dockerエキスパート養成読本
［活用の基礎と実践ノウハウ満載！］

EPUB PDF

Laravelエキスパート養成読本
[モダンな開発を実現するPHPフレームワーク！]

EPUB PDF

他の電子書店でも
好評発売中！

2015年 8月 31日まで
特別価格777円！

https://gihyo.jp/dp
https://gihyo.jp/dp/ebook/2015/978-4-7741-6661-2
mailto:gdp@gihyo.co.jp

ED - 1

　Apache Sparkは、大規模データ
を極めて高速に処理することができる
オープンソースの並列分散処理フ
レームワークです。大規模データに
対応した分散処理基盤としては
Apache Hadoopが有名ですが、
SparkはHadoopとは異なるしくみで
データ処理を実現しており、Hadoop
の苦手とする分野を補完できるとして
注目を集めています。
　Sparkのおもな特徴としては次のよ
うなものが挙げられています。

• スピード……Hadoopに比べてイ
ンメモリで 100倍、ディスクでも
10倍高速

• 使いやすさ……Scala、Java、
Python、R向けの APIが用意さ
れており、シンプルなコードで簡単
に並列処理を記述できる

• 普遍性……SQLやストリーム処理、
機械学習、解析などのさまざまな
ライブラリが用意されている

• どこでも動く……スタンドアロンだ
けでなく、クラウドや Hadoop、
Mesosなどさまざまな環境上で動
作する。また、HDFSや Cassan
dra、HBase、S3といったデータ
ソースにもアクセスできる

　現在、大規模データ処理のスタン
ダードとなっているHadoopは、Map
Reduceと呼ばれるしくみを利用して
大量データの並列処理を実現してい
ます。処理するサーバを増やすこと
で簡単にスループットを高めることがで

きる点が大きな強みですが、その一
方で、1つのデータセットに対して繰り
返し計算を行うような処理では、ディ
スクI/Oやデータ転送のコストが無視
できずに処理効率が大きく低下すると
いう弱みがあります。
　それに対してSparkが得意としてい
るのが、まさしくこの大量データを繰り
返し変換していくような処理です。し
たがってSparkは、このような処理が
頻繁に登場する機械学習やグラフア
ルゴリズム、インタラクティブなデータ
マイニングなどの分野においてとくに
大きな力を発揮することができます。
一方で、クラスタの総メモリに収まりき
らない大きさのデータ処理や、大きな
データセットを少しずつ更新するような
処理を苦手としているという側面もあり
ます。

　Sparkが高速な並列分散処理を
実現するうえで鍵となっているのが、
DAG（Directed Acyclic Graph：
有向非循環グラフ）ベースの実行エ
ンジンと、RDD（Resilient Distri
buted Dataset）と呼ばれる抽象化
データセットです。
　Sparkの実行エンジンでは、繰り
返し処理をDAGと呼ばれるグラフを
用いて表現します。MapReduceの
場合、基本的にはMapとReduceと
いう2つのステップを逐次実行するこ
とが求められます。それに対して
DAGでは、ツリー構造を形成可能
な複数のステップを持てるため、
MapReduceよりも汎用性が高く、よ
り複雑な計算処理を効率的な形で表
現できるとのことです。さらに、Map

Reduceのように中間結果をディスク
に書き込まずインメモリで動作するた
め、ディスクI/Oのオーバーヘッドを
排除して高速に動作するというメリット
もあります。
　もう1つの鍵であるRDDはコレク
ションのようなデータ構造で、次のよ
うな性質を備えることにより、並列分
散によるレイテンシの低い計算処理を
実現しています。

• イミュータブル（不変）である
• パーティション単位で分割され、複
数のサーバ上に分散配置される

• 再利用のためにメモリ上にキャッ
シュされる（可能な限りインメモリで
処理される）

• 遅延計算される

　このRDDにデータを保持したうえで、
変換処理を繰り返し実施することに
よって目的の結果を得るというのが、
Sparkを使った基本的なデータ処理
の流れになります。
　上記に加えて、耐障害性を確保す
るためにRDDはデータが変換された
経緯の情報を保持しています。これ
によって、もし必要なデータに欠損が
あった場合でも、失われる前のデータ
から目的のデータを再構築することが
できるわけです。
　前述のように、SparkとHadoop
にはそれぞれ得意・不得意な分野が
あり、決して競合する性質のものでは
ありません。したがって、今後は両者
を組み合わせて利用するモデルが一
般的になるものと考えられます。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 81回

Apache Spark

Apache Spark
http://spark.apache.org/

並列分散処理基盤
「Apache Spark」

Spark のしくみ

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

http://spark.apache.org/
mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://hcp.sap.com/developers.html

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.kokuchpro.com/event/saphcp/

　ネットの世界を楽しんだり、デジタル
コンテンツを楽しんでいると、知らず知
らずの間に多くの広告に触れていま
す。目が勝手にフィルタリングして見な
いようにしているかもしれませんし、有
益な広告であれば注意深く観ている
かもしれません。
　Webページの中に細長く表示され
るバナー広告から、記事やコンテンツ
の中に溶け込んだ形で掲載するネイ
ティブ広告、検索したキーワードと連
動した広告など、広告の形態もいろい
ろ進化してきました。さらにWebページ
だけでなく、アプリ内の広告も浸透し
てきました。
　広告制作も少しずつ変化しつつあ
ります。さまざまな広告媒体を活用し、
多角的に展開することによって、視聴
者がより広く商品やサービスにかかわ
るようになってきています。加えて、さま
ざまな媒体に対して同じような広告を
展開するのではなく、SNSにはSNS

用の広告、WebにはWeb用の広告、
動画広告はまた別な形でと媒体の特
性にあわせて少しだけ形の違う広告
を打ち出すことにより、商品やサービ
スをより親密に感じてもらえるように工
夫されてきています。
　さらに広告にどとまらず、サービスに
必要となるハードウェアを作ってしまっ
たり、スタートアップ支援のような形
で、投資しつつプロジェクトを後押しす
るような新しいタイプのかかわり方をし
ていることが伝わってくる広告制作も
出現してきました。
　ネット広告の量と予算額が多くなる
にともなって、「少ない予算で工夫し
て挑戦的なことを試そう！」という風潮
とはまた別に、多くの人に届く確実な
表現で、伝わる広告を作ろうという風
潮もあり、大きく表現が変化していく
時代になってきているようです。

　2015年6月に、広告を中心とした
クリエイティブフェスティバル、

Cannes Lions 2015が開催されまし
た。単なる広告からさまざまなクリエイ
ティブに活 躍 の 場を拡げている
Cannes Lions 2015フェスティバル
から、とくにモバイル端末や最新テク
ノロジを活用した、広告戦略のいくつ
かを紹介しましょう。

Cannes Lions

Look At Me

単に恥ずかしがりだったり、さまざまな
要因で、人の目を見て話せない子供
たち向けに、アプリの力を借りてコミュ
ニケーションを取りやすく仕向けるた
めの、サムソンの社会貢献プロジェク
ト。ゲーミフィケーションの要素も取り
入れられています。

The Other Side

良いお父さんの白い車と、ちょっと悪
者の赤い車。キーボードの“R”キーを
押すだけで、映像が切り替わるという
表現のWebサイト。単なるファミリー
カーではなく、走る楽しみも素晴らしい
ということがとても伝わってきます。

Clever Buoy

海水浴場のサメの出現通知を最新
のセンサーを搭載したブイと、衛星通
信とスマートフォンデバイスで解決す
るという案。

Safety Truck

背面にディスプレイを搭載し、トラック
の前方の様子が後続車にも見えるト
ラック。

実際のフットボールの試合シーンと同
じ場面を、ゲーム映像として作ってしま
うサイト。素材は一気にソーシャルに
広がり、広告としても活用される。

Makeup Genius

スマホアプリでメイクアップの指南。
スマホのインカメラと顔認識技術の
進化により、かなり自然なバーチャル
メイクシミュレーションが実現。

Base Phoneaddress

スマートフォンの現在地を新しい物理
アドレスとして利用するためのしくみ。
たとえば公園にいるときにスマートフォ
ンでピザを注文し、到着までに公園内
を移動していても、ちゃんと届けてくれ
る。

Backmeapp

女性が深夜、徒歩で帰宅する途中、
スマートフォンアプリを活用して知人
に遠隔で見守ってもらうシステム。イ
スラエルのアプリ。

Sos Sms

医療情報を赤十字に登録しておき、
緊急時にSMSで問い合わせるだけ
で、救急隊員が簡易カルテを見られる
システム。

The Fun Queue

遊園地専用アプリ。一緒に競争して
楽しむアプリで、結果が良いと遊園地
のアトラクションの列をVIP待遇しても
らえる。

Found

アプリを活用して、迷子犬を近所の人
たちで見つけるためのサービス。

The Lucky Iron Fish Project

貧血防止のため、調理のときに鉄の
板を入れるよう啓蒙していたのだが一
向に活用されない。その鉄を小さな魚
の形にすることによって祈りや想いを
込めることができ、多くの人に使われ
るようになったという、デザインの力を

感じるプロジェクト。

　SF映画『マイノリティ・リポート』や、
最近公開された『ゼロの世界』では、
歩く人についてきて話しかけるという
プライベート広告が登場します。遠い
将来も、形や表現方法は変われど

「広告」というものはなくならず発展し
ているように思えます。
　今年のCannes Lionsの作品群か
ら感じられる要素は次のようなもので
す。

●ソーシャルメディアの活用。口コミ
で話題を拡げるのは当然のことに
なっている

●手法や技法にはこだわらず、何を
伝えるのか、何が伝えられたのかが
重要視される

●単に広告主と広告制作との関係
だけではなく、運命共同体としての
広告の価値が上がっている

●新しい技術を取り入れつつ、その
新しい技術に振り回されない表現
が求められている

●単なる商品広告というだけでなく、
社会や社会のしくみにどれだけ影
響を与えるかが評価される

　デジタル技術やスマートフォン関連
技術は進化し、人々のコミュニケー
ションや、購買欲、知識欲といったさま
ざまな欲求はますます強くなり、人々の
移動量も、得られる情報量も増えてき
ます。あふれる情報の中で、必要なも
のを取捨選択し、より必要なものを必
要なだけ手にいれるのです。
　保険会社ガイコのYouTube広告
は、最初の5秒で伝えるべきことをす
べて言い切ってしまい、あとは出演者
が静止したままという動画広告です。
最初だけ観て、すぐクリックして飛ばさ
れてしまうYouTube広告を逆手に
取った手法です。広告の形、見せ方
も、デジタルの世界に合わせて進化し
ているのです。｢

広告におけるデジタルの役目

vol.201

- Samsung Electronics -
Cheil Worldwide
http://pages.samsung.com/ca/lookatme/English/

- Ea Sports -
Heat, Grow, Google
http://giferator.easports.com/create/team

デジタル技術と広告技術

Cannes Lions 2015より

この先の広告の形態

サイバー部門
（Webサイトや、
デジタル分野の広告）より

モバイル部門
（スマートフォン、
タブレット端末向けの広告）より

プロダクトデザイン部門

DIGITAL
GADGET

自転車専用の方向指示器

Hammerhead

http://hammerhead.io/

Gadget 1

乳幼児の様子を知るデバイス

Owlet Baby Care

https://www.owletcare.com/

Gadget 3

筆記音の出るお絵描きボード

Write More

http://issueplusdesign.jp/writemore/

Gadget 2

音トリガーデバイス

Lisnr

http://lisnr.com/

Gadget 4

広告におけるデジタルの役目

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

DIGITAL GADGET

http://www.canneslions.com/

Ea Sports Madden Giferator:
An Art, Copy &
Code Project With Google

世界中のどこでも英単語3語で表現し
て位置を示す「What3Words」

子供が手書きで描いたスピードメー
ターに図柄を差し替えるVolkswagen
のプロジェクト「Reduce Speed Dial」

- Samsung -
Leo Burnett Argentina
http://global.samsungtomorrow.com/
the-safety-truck-could-revolutionize-road-safety/

- Optus -
M&c Saatchi
https://cleverbuoy.com.au/

- Honda Motor Europe -
Wieden+kennedy
http://www.hondatheotherside.com/

- L'oréal Paris -
Mccann Paris
http://www.lorealparisjapan.jp/
makeup_genius/

- Base -
Ddb Brussels
http://www.ddb.be/work/BASE/
phone-address/

- Procter & Gamble -
Leo Burnett Italy

- Liseberg -
Shout
http://liseberg.com/en/home/Amusement-Park/
Rides--Attractions/Helix--The-next-level/

- Lucky Iron Fish -
Geometry Global
http://www.luckyironfish.com/

- Mars -
Colenso Bbdo

- Mexican Red Cross -
Grey México

Clever Buoy Makeup Genius

Safety Truck Backmeapp Found

Hammerheadは自転車専用の方向指
示器で、一般的に使われているスマート
フォン単体で地図画面を見る方法より使
いやすく、安全です。開発元のR/GAは
NIKE fuelbandの初期の企画／開発に
も携わっていました。何か解くべき課題を
見つけ、それを解く方法として、スマホア
プリやWebサービスに留まることなく専用
のハードウェアを作ってしまうのは、1つの
大きな流れのようです。名前のとおりシュ
モクザメの頭の形をしており、LEDの点
滅によって方向を示し、視線を移さず判
断することができます。

乳幼児の足首につけるデジタルデバイ
ス。赤ちゃんの様子を少し離れた部屋で
もリモートで知ることのできる専用アプリ
が用意されています。「スマートソックス」
と呼ばれるこのデバイスは、心拍や酸素
レベルを知ることができ、常に赤ちゃんの
ことを気にしていなければいけない親に、
少しの間、代わりをしてくれるデバイスで
す。バッテリーは約2日間持ち、絶縁ケー
スにくるまれているため感電などの心配も
ないそうです。赤ちゃんが寝返りしたとき
にはアラートで知らせてくれます。250ド
ルで販売の予定です。

書くことが楽しくなるお絵描きボード。カリ
カリ、サラサラといった「筆記音」が出ま
す。書くときの音を大きくすることで、より
筆記用具を使うモチベーションになった
り、正しく描く、素早く描く、注意深く描くこ
との手助けにもなるそうです。音を楽しみ
ながら、ひらがなを学べる練習帳が用意
されています。この切り替え可能な筆記
音の強調フィードバックは、クロスモーダ
ル（感覚間相互作用）と呼ばれる研究を
活かしたもので、iPhoneアプリとWrite
Moreボードとを一緒に使用して実現して
います。

人間の耳に聞こえない高周波をトリガー
として活用できるデバイス。その手軽さに
より、NFCタグの用途を置き換えるとも言
われています。R/GA Acceleratorという
広告企業によるスタートアップ支援プロ
ジェクトから出てきたプロダクトです。
Lisnrの標語は「音でデータの力を解き放
つ」です。ショップのBGMや映画館のア
ナウンス、テレビ番組から流れる音などさ
まざまな音に信号を載せることができま
す。さらにAPI、SDK、ポータルサイトの提
供で、多くの開発者が利用できるように
なる模様です。

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 Sep. 2015 - 1

http://www.andoh.org/
http://www.canneslions.com/
http://pages.samsung.com/ca/lookatme/English/

　ネットの世界を楽しんだり、デジタル
コンテンツを楽しんでいると、知らず知
らずの間に多くの広告に触れていま
す。目が勝手にフィルタリングして見な
いようにしているかもしれませんし、有
益な広告であれば注意深く観ている
かもしれません。
　Webページの中に細長く表示され
るバナー広告から、記事やコンテンツ
の中に溶け込んだ形で掲載するネイ
ティブ広告、検索したキーワードと連
動した広告など、広告の形態もいろい
ろ進化してきました。さらにWebページ
だけでなく、アプリ内の広告も浸透し
てきました。
　広告制作も少しずつ変化しつつあ
ります。さまざまな広告媒体を活用し、
多角的に展開することによって、視聴
者がより広く商品やサービスにかかわ
るようになってきています。加えて、さま
ざまな媒体に対して同じような広告を
展開するのではなく、SNSにはSNS

用の広告、WebにはWeb用の広告、
動画広告はまた別な形でと媒体の特
性にあわせて少しだけ形の違う広告
を打ち出すことにより、商品やサービ
スをより親密に感じてもらえるように工
夫されてきています。
　さらに広告にどとまらず、サービスに
必要となるハードウェアを作ってしまっ
たり、スタートアップ支援のような形
で、投資しつつプロジェクトを後押しす
るような新しいタイプのかかわり方をし
ていることが伝わってくる広告制作も
出現してきました。
　ネット広告の量と予算額が多くなる
にともなって、「少ない予算で工夫し
て挑戦的なことを試そう！」という風潮
とはまた別に、多くの人に届く確実な
表現で、伝わる広告を作ろうという風
潮もあり、大きく表現が変化していく
時代になってきているようです。

　2015年6月に、広告を中心とした
クリエイティブフェスティバル、

Cannes Lions 2015が開催されまし
た。単なる広告からさまざまなクリエイ
ティブに活 躍 の 場を拡げている
Cannes Lions 2015フェスティバル
から、とくにモバイル端末や最新テク
ノロジを活用した、広告戦略のいくつ
かを紹介しましょう。

Cannes Lions

Look At Me

単に恥ずかしがりだったり、さまざまな
要因で、人の目を見て話せない子供
たち向けに、アプリの力を借りてコミュ
ニケーションを取りやすく仕向けるた
めの、サムソンの社会貢献プロジェク
ト。ゲーミフィケーションの要素も取り
入れられています。

The Other Side

良いお父さんの白い車と、ちょっと悪
者の赤い車。キーボードの“R”キーを
押すだけで、映像が切り替わるという
表現のWebサイト。単なるファミリー
カーではなく、走る楽しみも素晴らしい
ということがとても伝わってきます。

Clever Buoy

海水浴場のサメの出現通知を最新
のセンサーを搭載したブイと、衛星通
信とスマートフォンデバイスで解決す
るという案。

Safety Truck

背面にディスプレイを搭載し、トラック
の前方の様子が後続車にも見えるト
ラック。

実際のフットボールの試合シーンと同
じ場面を、ゲーム映像として作ってしま
うサイト。素材は一気にソーシャルに
広がり、広告としても活用される。

Makeup Genius

スマホアプリでメイクアップの指南。
スマホのインカメラと顔認識技術の
進化により、かなり自然なバーチャル
メイクシミュレーションが実現。

Base Phoneaddress

スマートフォンの現在地を新しい物理
アドレスとして利用するためのしくみ。
たとえば公園にいるときにスマートフォ
ンでピザを注文し、到着までに公園内
を移動していても、ちゃんと届けてくれ
る。

Backmeapp

女性が深夜、徒歩で帰宅する途中、
スマートフォンアプリを活用して知人
に遠隔で見守ってもらうシステム。イ
スラエルのアプリ。

Sos Sms

医療情報を赤十字に登録しておき、
緊急時にSMSで問い合わせるだけ
で、救急隊員が簡易カルテを見られる
システム。

The Fun Queue

遊園地専用アプリ。一緒に競争して
楽しむアプリで、結果が良いと遊園地
のアトラクションの列をVIP待遇しても
らえる。

Found

アプリを活用して、迷子犬を近所の人
たちで見つけるためのサービス。

The Lucky Iron Fish Project

貧血防止のため、調理のときに鉄の
板を入れるよう啓蒙していたのだが一
向に活用されない。その鉄を小さな魚
の形にすることによって祈りや想いを
込めることができ、多くの人に使われ
るようになったという、デザインの力を

感じるプロジェクト。

　SF映画『マイノリティ・リポート』や、
最近公開された『ゼロの世界』では、
歩く人についてきて話しかけるという
プライベート広告が登場します。遠い
将来も、形や表現方法は変われど

「広告」というものはなくならず発展し
ているように思えます。
　今年のCannes Lionsの作品群か
ら感じられる要素は次のようなもので
す。

●ソーシャルメディアの活用。口コミ
で話題を拡げるのは当然のことに
なっている

●手法や技法にはこだわらず、何を
伝えるのか、何が伝えられたのかが
重要視される

●単に広告主と広告制作との関係
だけではなく、運命共同体としての
広告の価値が上がっている

●新しい技術を取り入れつつ、その
新しい技術に振り回されない表現
が求められている

●単なる商品広告というだけでなく、
社会や社会のしくみにどれだけ影
響を与えるかが評価される

　デジタル技術やスマートフォン関連
技術は進化し、人々のコミュニケー
ションや、購買欲、知識欲といったさま
ざまな欲求はますます強くなり、人々の
移動量も、得られる情報量も増えてき
ます。あふれる情報の中で、必要なも
のを取捨選択し、より必要なものを必
要なだけ手にいれるのです。
　保険会社ガイコのYouTube広告
は、最初の5秒で伝えるべきことをす
べて言い切ってしまい、あとは出演者
が静止したままという動画広告です。
最初だけ観て、すぐクリックして飛ばさ
れてしまうYouTube広告を逆手に
取った手法です。広告の形、見せ方
も、デジタルの世界に合わせて進化し
ているのです。｢

広告におけるデジタルの役目

vol.201

- Samsung Electronics -
Cheil Worldwide
http://pages.samsung.com/ca/lookatme/English/

- Ea Sports -
Heat, Grow, Google
http://giferator.easports.com/create/team

デジタル技術と広告技術

Cannes Lions 2015より

この先の広告の形態

サイバー部門
（Webサイトや、
デジタル分野の広告）より

モバイル部門
（スマートフォン、
タブレット端末向けの広告）より

プロダクトデザイン部門

DIGITAL
GADGET

自転車専用の方向指示器

Hammerhead

http://hammerhead.io/

Gadget 1

乳幼児の様子を知るデバイス

Owlet Baby Care

https://www.owletcare.com/

Gadget 3

筆記音の出るお絵描きボード

Write More

http://issueplusdesign.jp/writemore/

Gadget 2

音トリガーデバイス

Lisnr

http://lisnr.com/

Gadget 4

広告におけるデジタルの役目

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

DIGITAL GADGET

http://www.canneslions.com/

Ea Sports Madden Giferator:
An Art, Copy &
Code Project With Google

世界中のどこでも英単語3語で表現し
て位置を示す「What3Words」

子供が手書きで描いたスピードメー
ターに図柄を差し替えるVolkswagen
のプロジェクト「Reduce Speed Dial」

- Samsung -
Leo Burnett Argentina
http://global.samsungtomorrow.com/
the-safety-truck-could-revolutionize-road-safety/

- Optus -
M&c Saatchi
https://cleverbuoy.com.au/

- Honda Motor Europe -
Wieden+kennedy
http://www.hondatheotherside.com/

- L'oréal Paris -
Mccann Paris
http://www.lorealparisjapan.jp/
makeup_genius/

- Base -
Ddb Brussels
http://www.ddb.be/work/BASE/
phone-address/

- Procter & Gamble -
Leo Burnett Italy

- Liseberg -
Shout
http://liseberg.com/en/home/Amusement-Park/
Rides--Attractions/Helix--The-next-level/

- Lucky Iron Fish -
Geometry Global
http://www.luckyironfish.com/

- Mars -
Colenso Bbdo

- Mexican Red Cross -
Grey México

Clever Buoy Makeup Genius

Safety Truck Backmeapp Found

Hammerheadは自転車専用の方向指
示器で、一般的に使われているスマート
フォン単体で地図画面を見る方法より使
いやすく、安全です。開発元のR/GAは
NIKE fuelbandの初期の企画／開発に
も携わっていました。何か解くべき課題を
見つけ、それを解く方法として、スマホア
プリやWebサービスに留まることなく専用
のハードウェアを作ってしまうのは、1つの
大きな流れのようです。名前のとおりシュ
モクザメの頭の形をしており、LEDの点
滅によって方向を示し、視線を移さず判
断することができます。

乳幼児の足首につけるデジタルデバイ
ス。赤ちゃんの様子を少し離れた部屋で
もリモートで知ることのできる専用アプリ
が用意されています。「スマートソックス」
と呼ばれるこのデバイスは、心拍や酸素
レベルを知ることができ、常に赤ちゃんの
ことを気にしていなければいけない親に、
少しの間、代わりをしてくれるデバイスで
す。バッテリーは約2日間持ち、絶縁ケー
スにくるまれているため感電などの心配も
ないそうです。赤ちゃんが寝返りしたとき
にはアラートで知らせてくれます。250ド
ルで販売の予定です。

書くことが楽しくなるお絵描きボード。カリ
カリ、サラサラといった「筆記音」が出ま
す。書くときの音を大きくすることで、より
筆記用具を使うモチベーションになった
り、正しく描く、素早く描く、注意深く描くこ
との手助けにもなるそうです。音を楽しみ
ながら、ひらがなを学べる練習帳が用意
されています。この切り替え可能な筆記
音の強調フィードバックは、クロスモーダ
ル（感覚間相互作用）と呼ばれる研究を
活かしたもので、iPhoneアプリとWrite
Moreボードとを一緒に使用して実現して
います。

人間の耳に聞こえない高周波をトリガー
として活用できるデバイス。その手軽さに
より、NFCタグの用途を置き換えるとも言
われています。R/GA Acceleratorという
広告企業によるスタートアップ支援プロ
ジェクトから出てきたプロダクトです。
Lisnrの標語は「音でデータの力を解き放
つ」です。ショップのBGMや映画館のア
ナウンス、テレビ番組から流れる音などさ
まざまな音に信号を載せることができま
す。さらにAPI、SDK、ポータルサイトの提
供で、多くの開発者が利用できるように
なる模様です。

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design

http://www.hondatheotherside.com/
http://giferator.easports.com/create/team
http://www.lorealparisjapan.jp/makeup_genius/
http://liseberg.com/en/home/Amusement-Park/Rides--Attractions/Helix--The-next-level/
https://cleverbuoy.com.au/
http://global.samsungtomorrow.com/the-safety-truck-could-revolutionize-road-safety/
http://www.ddb.be/work/BASE/phone-address/
http://www.luckyironfish.com/

　ネットの世界を楽しんだり、デジタル
コンテンツを楽しんでいると、知らず知
らずの間に多くの広告に触れていま
す。目が勝手にフィルタリングして見な
いようにしているかもしれませんし、有
益な広告であれば注意深く観ている
かもしれません。
　Webページの中に細長く表示され
るバナー広告から、記事やコンテンツ
の中に溶け込んだ形で掲載するネイ
ティブ広告、検索したキーワードと連
動した広告など、広告の形態もいろい
ろ進化してきました。さらにWebページ
だけでなく、アプリ内の広告も浸透し
てきました。
　広告制作も少しずつ変化しつつあ
ります。さまざまな広告媒体を活用し、
多角的に展開することによって、視聴
者がより広く商品やサービスにかかわ
るようになってきています。加えて、さま
ざまな媒体に対して同じような広告を
展開するのではなく、SNSにはSNS

用の広告、WebにはWeb用の広告、
動画広告はまた別な形でと媒体の特
性にあわせて少しだけ形の違う広告
を打ち出すことにより、商品やサービ
スをより親密に感じてもらえるように工
夫されてきています。
　さらに広告にどとまらず、サービスに
必要となるハードウェアを作ってしまっ
たり、スタートアップ支援のような形
で、投資しつつプロジェクトを後押しす
るような新しいタイプのかかわり方をし
ていることが伝わってくる広告制作も
出現してきました。
　ネット広告の量と予算額が多くなる
にともなって、「少ない予算で工夫し
て挑戦的なことを試そう！」という風潮
とはまた別に、多くの人に届く確実な
表現で、伝わる広告を作ろうという風
潮もあり、大きく表現が変化していく
時代になってきているようです。

　2015年6月に、広告を中心とした
クリエイティブフェスティバル、

Cannes Lions 2015が開催されまし
た。単なる広告からさまざまなクリエイ
ティブに活 躍 の 場を拡げている
Cannes Lions 2015フェスティバル
から、とくにモバイル端末や最新テク
ノロジを活用した、広告戦略のいくつ
かを紹介しましょう。

Cannes Lions

Look At Me

単に恥ずかしがりだったり、さまざまな
要因で、人の目を見て話せない子供
たち向けに、アプリの力を借りてコミュ
ニケーションを取りやすく仕向けるた
めの、サムソンの社会貢献プロジェク
ト。ゲーミフィケーションの要素も取り
入れられています。

The Other Side

良いお父さんの白い車と、ちょっと悪
者の赤い車。キーボードの“R”キーを
押すだけで、映像が切り替わるという
表現のWebサイト。単なるファミリー
カーではなく、走る楽しみも素晴らしい
ということがとても伝わってきます。

Clever Buoy

海水浴場のサメの出現通知を最新
のセンサーを搭載したブイと、衛星通
信とスマートフォンデバイスで解決す
るという案。

Safety Truck

背面にディスプレイを搭載し、トラック
の前方の様子が後続車にも見えるト
ラック。

実際のフットボールの試合シーンと同
じ場面を、ゲーム映像として作ってしま
うサイト。素材は一気にソーシャルに
広がり、広告としても活用される。

Makeup Genius

スマホアプリでメイクアップの指南。
スマホのインカメラと顔認識技術の
進化により、かなり自然なバーチャル
メイクシミュレーションが実現。

Base Phoneaddress

スマートフォンの現在地を新しい物理
アドレスとして利用するためのしくみ。
たとえば公園にいるときにスマートフォ
ンでピザを注文し、到着までに公園内
を移動していても、ちゃんと届けてくれ
る。

Backmeapp

女性が深夜、徒歩で帰宅する途中、
スマートフォンアプリを活用して知人
に遠隔で見守ってもらうシステム。イ
スラエルのアプリ。

Sos Sms

医療情報を赤十字に登録しておき、
緊急時にSMSで問い合わせるだけ
で、救急隊員が簡易カルテを見られる
システム。

The Fun Queue

遊園地専用アプリ。一緒に競争して
楽しむアプリで、結果が良いと遊園地
のアトラクションの列をVIP待遇しても
らえる。

Found

アプリを活用して、迷子犬を近所の人
たちで見つけるためのサービス。

The Lucky Iron Fish Project

貧血防止のため、調理のときに鉄の
板を入れるよう啓蒙していたのだが一
向に活用されない。その鉄を小さな魚
の形にすることによって祈りや想いを
込めることができ、多くの人に使われ
るようになったという、デザインの力を

感じるプロジェクト。

　SF映画『マイノリティ・リポート』や、
最近公開された『ゼロの世界』では、
歩く人についてきて話しかけるという
プライベート広告が登場します。遠い
将来も、形や表現方法は変われど

「広告」というものはなくならず発展し
ているように思えます。
　今年のCannes Lionsの作品群か
ら感じられる要素は次のようなもので
す。

●ソーシャルメディアの活用。口コミ
で話題を拡げるのは当然のことに
なっている

●手法や技法にはこだわらず、何を
伝えるのか、何が伝えられたのかが
重要視される

●単に広告主と広告制作との関係
だけではなく、運命共同体としての
広告の価値が上がっている

●新しい技術を取り入れつつ、その
新しい技術に振り回されない表現
が求められている

●単なる商品広告というだけでなく、
社会や社会のしくみにどれだけ影
響を与えるかが評価される

　デジタル技術やスマートフォン関連
技術は進化し、人々のコミュニケー
ションや、購買欲、知識欲といったさま
ざまな欲求はますます強くなり、人々の
移動量も、得られる情報量も増えてき
ます。あふれる情報の中で、必要なも
のを取捨選択し、より必要なものを必
要なだけ手にいれるのです。
　保険会社ガイコのYouTube広告
は、最初の5秒で伝えるべきことをす
べて言い切ってしまい、あとは出演者
が静止したままという動画広告です。
最初だけ観て、すぐクリックして飛ばさ
れてしまうYouTube広告を逆手に
取った手法です。広告の形、見せ方
も、デジタルの世界に合わせて進化し
ているのです。｢

広告におけるデジタルの役目

vol.201

- Samsung Electronics -
Cheil Worldwide
http://pages.samsung.com/ca/lookatme/English/

- Ea Sports -
Heat, Grow, Google
http://giferator.easports.com/create/team

デジタル技術と広告技術

Cannes Lions 2015より

この先の広告の形態

サイバー部門
（Webサイトや、
デジタル分野の広告）より

モバイル部門
（スマートフォン、
タブレット端末向けの広告）より

プロダクトデザイン部門

DIGITAL
GADGET

自転車専用の方向指示器

Hammerhead

http://hammerhead.io/

Gadget 1

乳幼児の様子を知るデバイス

Owlet Baby Care

https://www.owletcare.com/

Gadget 3

筆記音の出るお絵描きボード

Write More

http://issueplusdesign.jp/writemore/

Gadget 2

音トリガーデバイス

Lisnr

http://lisnr.com/

Gadget 4

広告におけるデジタルの役目

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

DIGITAL GADGET

http://www.canneslions.com/

Ea Sports Madden Giferator:
An Art, Copy &
Code Project With Google

世界中のどこでも英単語3語で表現し
て位置を示す「What3Words」

子供が手書きで描いたスピードメー
ターに図柄を差し替えるVolkswagen
のプロジェクト「Reduce Speed Dial」

- Samsung -
Leo Burnett Argentina
http://global.samsungtomorrow.com/
the-safety-truck-could-revolutionize-road-safety/

- Optus -
M&c Saatchi
https://cleverbuoy.com.au/

- Honda Motor Europe -
Wieden+kennedy
http://www.hondatheotherside.com/

- L'oréal Paris -
Mccann Paris
http://www.lorealparisjapan.jp/
makeup_genius/

- Base -
Ddb Brussels
http://www.ddb.be/work/BASE/
phone-address/

- Procter & Gamble -
Leo Burnett Italy

- Liseberg -
Shout
http://liseberg.com/en/home/Amusement-Park/
Rides--Attractions/Helix--The-next-level/

- Lucky Iron Fish -
Geometry Global
http://www.luckyironfish.com/

- Mars -
Colenso Bbdo

- Mexican Red Cross -
Grey México

Clever Buoy Makeup Genius

Safety Truck Backmeapp Found

Hammerheadは自転車専用の方向指
示器で、一般的に使われているスマート
フォン単体で地図画面を見る方法より使
いやすく、安全です。開発元のR/GAは
NIKE fuelbandの初期の企画／開発に
も携わっていました。何か解くべき課題を
見つけ、それを解く方法として、スマホア
プリやWebサービスに留まることなく専用
のハードウェアを作ってしまうのは、1つの
大きな流れのようです。名前のとおりシュ
モクザメの頭の形をしており、LEDの点
滅によって方向を示し、視線を移さず判
断することができます。

乳幼児の足首につけるデジタルデバイ
ス。赤ちゃんの様子を少し離れた部屋で
もリモートで知ることのできる専用アプリ
が用意されています。「スマートソックス」
と呼ばれるこのデバイスは、心拍や酸素
レベルを知ることができ、常に赤ちゃんの
ことを気にしていなければいけない親に、
少しの間、代わりをしてくれるデバイスで
す。バッテリーは約2日間持ち、絶縁ケー
スにくるまれているため感電などの心配も
ないそうです。赤ちゃんが寝返りしたとき
にはアラートで知らせてくれます。250ド
ルで販売の予定です。

書くことが楽しくなるお絵描きボード。カリ
カリ、サラサラといった「筆記音」が出ま
す。書くときの音を大きくすることで、より
筆記用具を使うモチベーションになった
り、正しく描く、素早く描く、注意深く描くこ
との手助けにもなるそうです。音を楽しみ
ながら、ひらがなを学べる練習帳が用意
されています。この切り替え可能な筆記
音の強調フィードバックは、クロスモーダ
ル（感覚間相互作用）と呼ばれる研究を
活かしたもので、iPhoneアプリとWrite
Moreボードとを一緒に使用して実現して
います。

人間の耳に聞こえない高周波をトリガー
として活用できるデバイス。その手軽さに
より、NFCタグの用途を置き換えるとも言
われています。R/GA Acceleratorという
広告企業によるスタートアップ支援プロ
ジェクトから出てきたプロダクトです。
Lisnrの標語は「音でデータの力を解き放
つ」です。ショップのBGMや映画館のア
ナウンス、テレビ番組から流れる音などさ
まざまな音に信号を載せることができま
す。さらにAPI、SDK、ポータルサイトの提
供で、多くの開発者が利用できるように
なる模様です。

※本記事で紹介しているものは国内未発表・未発売のものを含んでおります。 2 - Software Design Sep. 2015 - 3

http://hammerhead.io/
https://www.owletcare.com/
http://issueplusdesign.jp/writemore/
http://lisnr.com/

4 - Software Design

Token——トークン

トークンとは

　トークン（Token）とは、何かを表す1つのま

とまったもののことです。もともとは古い英語
で「しるし」という意味の言葉から生まれた単語
らしいです。
　「何かを表す1つのまとまったもの」では抽象
的すぎるので具体例を挙げましょう。コンパイ
ラがソースをコンパイルするときには最初に「字
句解析」と「構文解析」という2つの処理を行い
ます。字句解析はソースを1文字ずつ読んでトー
クンの列に変換する処理で、構文解析はトーク
ンを1個ずつ読んで構文木を作る処理です。こ
の様子を図1に示します。ソース中に現れる文

字をいくつか合わせた文法的に意味のあるまと

まりがここでのトークンなのです。
　2段階の処理にしないで、まとめて処理すれ
ばいいのに̶̶と思いたくなりますが、それを
行うと、コンパイラが複雑になってしまうので
す。value = 3.14という代入文から構文木を
作るとき、 v a l u e = 3 . 1 4 と
いう 10文字からいきなり作るのではなく、
value という変数名、 = という代入演算子、
そして 3.14 という数値リテラルという3つの
トークンから作ります。人間が“value”という
文字の列をまとめて変数名として認識するよう
に、コンパイラも、いったんトークンというま
とまりを作ったほうが処理しやすいのです。

トークンリング

　トークンのまったく別の例として、今はもう
使われなくなりましたが、トークンリングとい
うネットワークについてお話しします。
　トークンリングでは、通信を行うコンピュー
タたちが円環（リング）状に接続されています。
そしてそのリングの上を1つのトークンがぐる
ぐる回っています（図2）。ここでのトークンは
「送信権限のしるし」として使われます。つまり、
トークンを持っているコンピュータだけがデー
タを送信できるのです。
　データを送信したいコンピュータは、自分に
トークンがやってくるのを待ちます。トークン
が流れてきたら、そのトークンの上に送信した
いデータと宛先を乗せ、またトークンリングに

Token

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 28

字句解析

構文解析

value 3.14=

value 3.14

=

v a l u e = 3 . 1 4

トークン

 ▼図1　字句解析と構文解析

http://www.hyuki.com/

4 - Software Design Sep. 2015 - 5

流します。データが乗ったトークンを受け取っ
たコンピュータは、宛先が自分だったらそのデー
タを受信し、自分以外だったら次のコンピュー
タにトークンを回します。トークンリングでは、
このようにトークンをぐるぐる回して通信を行
います。
　「ネットワークを流れているトークンは唯一
である」という条件で、送信の衝突が起きない
ようにしているのですね。

ゲームセンターのコイン

　一般の生活でもトークンは使われています。
たとえば、ゲームセンターで使われているゲー

ム用のコインはトークンの一種です。ゲームを
したい利用者は、お金を払ってコインを購入し、
ゲームを行うときにはコインだけを使うことに
なります。
　コインというトークンはどんな役割を果たし
ているでしょうか。
　まず、ゲームセンターに設置されているゲー
ムマシンをシンプルにする効果があります。ゲー
ムマシンに実際のお金を処理する機能（両替や
お釣りの機能）を付ける必要がなくなり、1種
類のコインだけを処理すればいいからです。お
金をコインに変換する両替機は、文字の列をトー
クンに変換する字句解析と少し似ていますね。
また、コインというトークンがあれば、ゲーム
センターの運営者はお金の管理が楽になるでしょ
う。お金を扱うところをコイン両替の場所だけ

に集中できるからです。さらに、コインはゲー
ムセンターの外では価値がありませんから、盗
難防止の効果もあるでしょう。

トークンと定型化

　字句解析で作られるトークンも、ゲームセン
ターのコインも、定型化の役目を果たしていま
す。種類が多すぎては扱いにくいので、トーク
ンという形に定型化して管理を楽にしようとい
う発想です。
　この場合、目的によって「何種類にそろえるか」
は変化するかもしれません。ゲームセンターの
コインは1種類ですが、カジノで使うチップは
金額によって何種類もありますね。

トークンと唯一性

　トークンリングで使われているトークンは、
「同時に2ヵ所に存在できない」という制約を持っ
ています。これは現実世界の物体が持つ制約を
仮想的に作り、それを使って排他制御している
のです。複数のものが並行に動作しているとき
にはどうしても衝突が発生しますが、トークン
が持つ唯一性を利用するのは一法ですね。
　たとえば、カンファレンスでは「発言者用の
マイク」がトークンの役割を果たすことがよく
あります。複数人が同時に話し出したら収集が
つかなくなるので、「発言する権利」を持ってい
るしるしとしてマイクを使うのです。
　トークンの個数は、同時に活動できる主体の
最大数を定めます。たとえば、カンファレンス
で使うマイクを2本にしておけば、同時に発言
できる人を最大2人に設定したことになります。
こうしておけば、質問者と解答者の2人だけが
発言できる状況を自然に作れますね。

◆　◆　◆
　あなたの周りを見回して、多種類が混乱を生
んでいるものをトークンに変換できないでしょ
うか。あるいは、複数のものが衝突する状況を
トークンで整理できないでしょうか。
　ぜひ、考えてみてください。｢

28

コンピュータ

トークン
（送信権のしるし）

 ▼図2　トークンリング

6 - Software Design

Raspberry Pi 2を
10台大人買いしてみる

　1GBのメモリとARM Cortex-A7 900MHzク
アッドコアCPUを搭載したRaspberry Pi 2が
たったの＄35で購入できるということで、思
い切って10台ほど大人買いしてみました。
　用途はあとで考えるとして、10台のRasp

berry Pi 2上でLinuxを同時に起動できれば
PCクラスタシステムを安価に構築することが
できます。持ち運びが可能なちょっとしたスパ
コンを自作する気分になれるので、まずは物理
設計から始めましょう。

Raspberry Pi 2を安価に
ラッキングする方法

　Raspberry Pi 2のケースは1個あたり1,000

円前後するのですが、これだと10個買うと1

万円程度になってしまいます。また、密閉型の
ケースだと十分に排気されずCPUの熱がこも
りやすくなるので、長時間動かすと高温になっ
てしまい動作が不安定になってしまうリスクも
考えられます。Raspberry Pi 2の基板には直
径3mmの穴が4個あいているので、ここに2cm

以上の棒を挿しこんで立てていけば積み上げる
ことができそうです。ちょうど良い形状の六角
オネジ・メネジ「MB3-20」が秋月電子通商に売っ

ているのでこれを買いました（写真1）。
　「MB3-20」は1個だと30円なのですが、100

個以上まとめて購入すると単価が19円になるの
で、これもごっそり100個（1,900円）で買ってし
まいましょう。「MB3-20」はL=20mm、L1=6mm

の大きさで、中の穴は直径3mmなので、ラズパ
イをスタックするにはちょうど良い大きさなの
です（図1）。
　ただし、Raspberry Pi 2の基板にある3mm

の穴にはネジの切込みが入っていないため人間
の指の力で挿入することはできません。ペンチ
で六角ネジの側をつかんでねじ込めないことは
ないのですが、不安定で作業効率が悪いので、
六角ラチェットドライバーを調達してきます。

おとなラズパイリレーは、Raspberry Piを文字どおり「リレー」し、好奇心旺盛なITエンジニアが電子工作をするという企画
です。前編で構想を練り、後編で実装します。1年を通してどんなデバイスができあがるのか？……今回は、日本最大のハッ
キングコンテストを運営するSECCON実行委員長の竹迫良範さんによるRaspberry Piのミルフィーユ？――です。

Writer 竹迫 良範（たけさこ よしのり）　サイボウズ・ラボ株式会社

「Raspberry Pi 2を大人買いしてLinuxクラスタを作ろう（前編）」
竹迫 良範

第11回

 ▼写真1　六角オネジ・メネジ「MB3-20」の外観

6 - Software Design Sep. 2015 - 7

「Raspberry Pi 2を大人買いして
Linuxクラスタを作ろう（前編）」

第11回

　実は5.5mmの六角ビットを
挿入できるラチェットドライ
バーの種類は少なく（※JIS規
格、ISO規格では5mmの次の
大きさが6mmと決められてい
るため5.5mmの対応数が少な
いのです）、たまたま電器店で
見つけたのがE-Value T型ラ
チェットドライバーセット
「ERD-3」です（写真2）。
　型番「ERD-3」を検索すれば
Amazonでも購入できます。こ
のドライバーを使うと作業効率
が大幅にアップするので、
Raspberry Pi 2を積み重ねる作
業では必需品となります。ぜひ
一家に1セット常備しておきま
しょう。このセットには5.5mm

の六角ビットが付属しており、
ラチェットドライバーの差込角
ソケットに挿入して使用します。
　Raspberry Pi 2の4個の穴に
六角ネジを配置して、ネジが斜
めにならないよう慎重に垂直に
ねじ込んでいきます（写真3）。
　ここで基板から少しネジがは
み出るのがミソで、このはみ出
たマージンを利用して次のラズ
パイを重ねていくことができる
のです。10台のRaspberry Pi

2全部を連結するのはちょっと
不安なので、5台セットで2個
組み上げてみました（写真4）。
　Raspberry Pi 2の個体を認
識できるようにするためラベル
プリンタであらかじめ番号を
振っておきます。12mmのラベ
ルテープを使うとLANコネク

M3 M3L1

L6

L： 4～ 60mm Tolerance：±0.1
L：65～100mm Tolerance：±0.2

5.5

 ▼図1　 六角オネジ・メネジ「MB3-20」はL=20mm、L1=6mmなのでラズ
パイにぴったりフィット

 ▼写真3　斜めにならないよう垂直にねじ込んでいく

 ▼写真2　 E-Value T型ラチェットドライバーセット「ERD-3」

8 - Software Design

タの横にちょうど貼ることができて視認性も良
好です。

まさかの電源
供給問題が発生

　10台のRaspberry Pi 2にまとめて電源を供
給するために手元にあったUSBハブを試した
ところ、1ポートあたり最大0.4Aの電源供給力
しかなく、Linuxの起動途中でカーネルパニッ
クになるなどRaspberry Pi 2が正常に動作し
ませんでした。
　Raspberry Pi 2に同封されていた取扱説明書
を改めてよく見てみたところ、5VのDC電源で
最大1,500～2,000mAの供給が必要と書いてあ
りました。これは明らかに電力供給不足です。
　昔の機種のRaspberry Pi Model Bでは最大
700～1,500mAだったようで（写真5）、Rasp

berry Pi 2でCPUの性能が上がった分、電力消
費も大きくなっているようでした。
　組み込み機器だと意外とこういった基礎的な
部分で問題が起きてしまうものです。
　しかし、よくよく考えると普通のUSB充電
器でも最大1A程度しか対応しないものが多い ので、2Aまで対応しているものを選ぶとなる

とちょっとたいへんです。
USB充電器やバッテリー
で困ったときはAnkerとい
うことで、調べてみると6

ポートで最大12Aのフル
スピード充電（各ポートご
とで最大 2.4A）が可能な
USB 60W急速充電器「A21

23511」がAmazonで売って
いましたので即買いです（写

真6）。
　最近はスマートフォンや
タブレットなどUSBで充
電する機器も増えてきてい
るので、何台か買いそろえ

 ▼写真5　Raspberry Piの取扱説明書には最大消費電力が記載されている

 ▼写真4　Raspberry Pi 2タワーの完成

● 執筆協力

RSコンポーネンツ㈱Raspberry Piに興味のある方は次
のサイトをチェック
http://jp.rs-online.com/web/generalDisplay.
html?id=raspberrypi

8 - Software Design Sep. 2015 - 9

「Raspberry Pi 2を大人買いして
Linuxクラスタを作ろう（前編）」

第11回

ておいて損はないでしょう。
ここでも大人買いです。
　microUSBケーブルを必
要本数買いそろえて、Rasp

berry Pi 2タワーに電源供
給です（写真7）。USB簡易
電圧・電流チェッカーも
Amazonや上海問屋で探せ
ば売っているので、実際の
電源の供給がどの程度なの
かUSBケーブルの間に差し
込むとわかります（写真8）。
　USB電流チェッカーがあ
ると、LANがリンクアップ
すると消費電流が0.20A→

0.27Aに増えたり、USBキーボードを接続すると
0.32Aになったり、microSDカードの読み書きが
大量に発生すると一時的に0.42Aになったりと、
リアルタイムで数字が見えてわかるので、これを

眺めているだけでも相当面白いです。USB電流
チェッカーも一家に1個買いそろえておくと良い
と思います！

タワーRaspberry Pi
に命を吹き込む

　次回はRaspberry Pi 2のLinuxクラスタを安
定稼働させるための実装テクニック編です。ﾟ

 ▼写真7　microUSBケーブルで接続して電源供給

 ▼写真8　USB簡易電圧・電流チェッカー

 ▼写真6　Anker 60W 6ポート USB急速充電器「A2123511」

http://jp.rs-online.com/web/generalDisplay.html?id=raspberrypi

10 - Software Design

（鎌田）篠田さんは情報セキュリ

ティ分野で活躍されていますが、まず

はご出身や学生時代、キャリアのこと

を簡単に教えてください。

（篠田）出身は奈良県です。ITとの

出会いは遅く、初めてコンピュータ

に触ったのは高校の授業ででした。

そのころは、特別にコンピュータに

興味を持ってはいませんでした。高

校卒業後はジュエリーショップや不

動産屋など、いろいろなことをして

いました。そのころのキャリアプラ

ンは「手に職を」ではなく「結婚して

母親になる」だったんです。

現在のようなキャリアを目指され

ていたわけではないんですね。

小学生の頃にTVで見た通訳さん

が素敵に見え、育児しながら通訳ガ

イドもいいかなと考え、留学を決め

ました。今思えば、通訳さんが自分

の知らない言語の暗号化と復号をし

ていて魅力的に見えたのかもしれま

せん（笑）。米国留学後、進路を決め

るときにカウンセラーから勧められ

たのが『コンピュータ学科』でした。

それがこの業界に入るきっかけ

だったんでしょうか。どうしてコン

ピュータ学科だったのでしょうか。

スカラシップ（奨学金）をとりなが

らアルバイトを4つ掛け持ちしてい

たので、勉強する時間が限られてい

ました。ですので、より実用的で、

大量の書物と英文レポート提出を必

要としないコースを希望したのです。

それでネットワーク技術を学ぶこと

になったのですが、自分にピッタリ

はまりました。プログラミングの学

習でコードを書いたり、BSD環境で

ネットワークのノード解析をしたり、

トラブルシュートしたり、かなり実

用的な授業でした。おかげで、時間

の余裕と、将来役に立つ実践的な技

術が身につきました。

そこでの経験から、コンピュータ

関連の職業に就くことに決めたので

すね。

卒業して帰国することになり、国

内で就職活動をしました。じつは米

国では、新卒のエンジニアでも高給

なのですが、日本はちょうどそのこ

ろ、就職氷河期で、条件は悪かった

のです。それでも帰国子女特有の押

しの強さ（笑）で何社かから内定をも

らいました。自分のできることをア

ピールしたのがよかったのだと思い

ます。その中で人事の人が優しそう

で、研修がしっかりしていそうなプ

ロシードを選びました。

その後、何社か転職されているよ

うですが。

セキュリティのサポートからセ

キュリティリサーチャー、コンサル

タント。そしてカンファレンスのコー

ゲスト：篠田 佳奈さん第14献
篠田 佳奈（しのだ かな）さん
㈱BLUE代表。日本発のセキュリティ国際会議「CODE
BLUE」を運営。米国留学を機にITを学び、セキュリ
ティの調査研究、翻訳やコンサルティングなどを中心に
キャリアを積む。情報セキュリティ国際会議「Black Hat
Japan」の企画運営のほか、APWGやSECCONなど、
国内外問わずさまざまなイベントに携わる。2014年には

「TEDxKids@Chiyoda」で講演を行う。
CODE BLUE：http://codeblue.jp/2015/
Facebook：https://www.facebook.com/kana39

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

http://codeblue.jp/2015/
https://www.facebook.com/kana39

10 - Software Design Sep. 2015 - 11

ディネータ、という流れです。リサー

チャーをしていたころ、ちょうど

DES（Data Encryption Standard）

からAES（Advanced Encryption

Standard）へ暗号方式が変わるとき

でした。そこで数学を一から勉強し

なおし、暗号技術をより理解できる

ようになりました。途中でOpen

PGP（Open Pretty Good Privacy；

暗号化ソフトウェア）のRFC文書の

翻訳もしました。大きな転身のきっ

かけは『Black Hat』というセキュリ

ティイベントとの出会いです。「Black

Hat Japan の運営をやってみない

か？」というお話しが来たんです。

Black Hatで苦労されたことは

ありましたか？

たとえば、脆弱性を見つけて初め

て攻撃対策がとれる、パッチを当て

ることができるので、セキュリティ

研究者は米国などでは尊敬される

のですが、まだまだ当時の日本では

ハッカー＝クラッカーとして『けし

からん的なもの』と見られ、スポン

サー集めに苦労しました。私は海外

の動きばかりみていたので、この価

値観のズレがそこまで大きいことは

知らずに苦労しました。真面目な国

際会議なのに……。

スポンサーを集めるのに苦労され

たのですね。どうされたのですか？

あらゆる努力をしました。会場ホ

テルを含む大幅な値切り交渉や、細

かいコストカット、価値がわからな

い方々へめげずに説明する、営業・

広報・受付・通訳翻訳・国内海外と

の調整・手作り資料、なんでもやり

ました。ここでの経験があって、今

の『CODE BLUE』があります。世界

で活躍するハッカーたち、世界で十

分通用する非英語圏のハッカーたち

に、スポットライトがあたるステー

ジを用意したかったのです。

CODE BLUEを創設した理由は

何ですか？

周辺国には当たり前にある、その

国発の会議が日本にはないことを不

思議に思い、Black Hatのようなベ

ンダ中立な日本発の国際会議を作り

たかったのです。Black Hatは、そ

こで講演すると一目置かれる世界最

高峰のカンファレンスです。CODE

BLUE初回の基調講演をしたJeff

Moss氏が発起人です。もともとは、

彼が主催するメーリングリストのオ

フ会をベガスで開催したものが

DEFCONとなり、さまざまな種類

のハッカーが集まる場となっていっ

たのですが、その数年後「真剣に討

議できる場が別にほしい」との声が

高まったことでBlack Hatが生まれ

ました。CODE BLUEの「BLUE」は

海を表現して、日本は海に囲まれて

鎖国になっている、それを「CODE

（技術）」の海でつなげていくという

意味があるんです。

今後のCODE BLUEの目標は何

ですか？　人材育成でしょうか？　安

全なIT社会の形成でしょうか？

その両方かな。海外のカンファレ

ンスに出るたび、ムーヴメントを肌

で感じています。日本のためだけで

はなく、アジア全体に埋もれている

有能なハッカーを世界に発信したい。

トップの層を動かして全体の人材の

底上げをしていきたい。このイベン

トでいろんな層の人に関わってもら

いたい。一石二鳥だけではなく三鳥

も四鳥も期待されています。CODE

BLUEはみんなのいろんな夢を抱え

ている船なんですよ。大変ですが、

やれるだけやってみようと思ってい

ます。

今年のCODE BLUEは10月に

開催されるそうですが。

はい。10月28〜29日に東京のベ

ルサール新宿グランドで行います。

興味をお持ちの方はぜひ、ご参加く

ださい。

今日は真剣なお話、どうもありが

とうございました。s

12 - Software Design

はじめに

　前回はmbed LPC1768に搭載されている
LEDを点滅させてみました。今回は、ブレッド
ボードを使って、電流制限抵抗とLEDをマイコ
ンに接続して点滅させてみましょう。

ジャンパワイヤ

　ブレッドボードを使って配線をするには、ジャ
ンパワイヤという電線を使います。ジャンパワ
イヤには大きく分けて、柔らかくて長いもの（写
真1）と、短くて固いもの（写真2）の2種類があ
ります。どちらも機能は同じで、ブレッドボー
ドの穴にジャンパワイヤの端を差し込み、ブレッ
ドボードの中でつながっていない場所どうしを
接続するためのものです。
　使い分けにはとくに決まりはなく、好みでよ
いでしょう。短くて固いもののほうがいろいろ
な長さのものが入っていて安価で、ブレッドボー
ドの表面から浮き上がらずに配線できるので、
不意に抜けてしまうことが少ないです。一方で、

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

LED点滅の極意（中編）第
三
回

長くて柔らかいもののほうが、配線の自由度が
高く、ジャンパワイヤの長さを気にせずに簡単
に配線ができるというメリットがあります。筆
者は、両方を併用して配線しています。

つなげてみる

　今回必要になる部品は表1のとおりです。
　これらの部品を使って、つなげてみましょう。
図1に接続例を記します。
　電流制限抵抗には、1kΩの抵抗を使いました。
1kΩの抵抗は、本体に茶色、黒色、赤色、金色
の順で帯（カラーコード）が刷られています。ス
ルーホール実装用の抵抗の多くは、最初の2桁
と、3番目の指数を使って抵抗値を表していま
す（図2）。この場合、茶色は1、黒は0で10を、

 ▼写真1　柔らかくて長いジャンパワイヤ ▼写真2　短くて固いジャンパワイヤ

 ▼表1　部品表

はじめに

ジャンパワイヤ

つなげてみる

部品名 入手先 参考価格
mbed LPC1768 ssci.to/250 ¥5,940
ブレッドボード ssci.to/313 ¥270
固いジャンパワイヤ ssci.to/314 ¥270
抵抗コンデンサLED
詰め合わせパック ssci.to/1218 ¥680

12 - Software Design Sep. 2015 - 13

LED点滅の極意（中編） 第
三
回

赤の2は102の指数部分を表しています。この場
合、10×102=1,000で1kΩです。最後の金色は、
抵抗値の許容差が±5％であるということを表
しています。こういった抵抗の中には薄い炭素
の膜が入っていて、電気を流れにくくする役割
を果たしています。抵抗は取り付ける方向が決
まっていませんので、どちら向きに取り付けて
もかまいません。抵抗をブレッドボードに差し
込むため、適当に抵抗の両端にある針金部分を
曲げてください。
　LEDは、第1回で述べたように、取り付ける
方向が決まっています。今回は赤色のLEDを
使ってみましたが、この赤色の樹脂の中を見て
みると、2つの金属板が入っているのが見える
と思います。たいていの場合、この金属の板の
うち、大きいほうがカソード（マイナス極）です。
ただ、LEDによっては大きさの関係が逆だった
りします。樹脂部分の切り欠きがある側がカソー
ドだったりもしますので、参考にしてください
（図3）。
　接続し終えると、写真3のようになります。
抵抗やLEDについている線（リード線）を曲げた
だけで挿し込むと、このようにブレッドボード
から部品が高く浮き上がってしまいます。この
くらいの部品数であれば、ブレッドボードの上

 ▼図1　接続例

図：抵抗のカラーコード

数値 倍率 許容差

10 × 102 = 1,000±5%Ω

1 0 2 ±5%

 ▼図2　抵抗のカラーコード

 ▼写真3　実際の接続例

数値 0 1 2 3 4 5 6 7 8 9
色 黒 茶 赤 橙 黄 緑 青 紫 灰 白

許容差 ±5% ±10%
色 金 銀

＋

＋ −

−

アノ ード カソード

切り欠き

図：LED
 ▼図3　LEDの切り欠きの向き

14 - Software Design

にある部品も少なく、ショートさせてしまう危
険は少ないのですが、やはり切ってしまったほ
うがよいでしょう。ジャンパワイヤのブレッド
ボードの穴に差し込む部分程度の長さに部品の
リード線を切ってみましょう。部品のリード線
を切るには、マイクロニッパーという工具を使
います。ニッパーには、プラモデル用のもあり
ますが、ここでは金属を切るためのものを使い
ましょう。百円均一ショップなどでも売ってい
ますが、筆者は㈱エンジニアのNP-05注1を愛用
しています。

ソフトウェア

　今回は、LEDをmbed LPC1768のp21に接続
しました。ですので、前回基板の上にあるLED

を光らせてみたコードを少し書き換えて、p21

の出力をコントロールするように変更します（リ
スト1）。
　mbedの開発環境は、マイコンの入出力操作を
抽象化して手軽に使えるように作られています。
mbedのオンラインコンパイラを立ち上げ、前回
作った「mbed_blinky」のDigitalOutで引数とし
て渡しているLED1をp21に変更してください。
あとはビルドし、バイナリファイルをダウンロー
ドしておきます。そして、mbed LPC1768をパ
ソコンに接続して認識されたドライブにその枚
なりファイルをドラッグ&ドロップしてコピー
します。

注1） http://www.engineer.jp/products/nipper/np01/
item_03/np-05

HIGHとLOW

　リスト1のとおり、LEDを点滅させるために、
myledをTrueにしたりFalseにしたりしていま
す。myledに1を書き込むと、p21はHIGH、つ
まりマイコンの電源（3.3V）に接続された状態に
なり、LEDに電流が流れてLEDが点灯します
（図4）。
　myledに0を書き込むと、p21はLOW、つま
りGNDに接続された状態になります。LEDの
両端がGNDに接続されるため電流は流れず、消
灯します。
　図4では、わかりやすくするためにマイコン
の中にスイッチがあるように描きました。しか
し、実際にマイコンの中に機械的なスイッチが
入っているわけではありません。実際には中に
トランジスタが入っています。I/Oレジスタと
呼ばれる記憶領域に書き込まれた値に応じて、
このトランジスタをONしたりOFFしたりして、
ピンの状態が変わります。図5（マイコンの内部
構造）のように、ピンに対応するI/Oレジスタに
ソフトウェアで値を書き込むと、トランジスタ
がマイコン内部の電源とピンをつないだり、
GNDとピンをつないだりします。
　このトランジスタも半導体ですので、流すこ
とのできる電流には制限があります。今回、電
流制限抵抗は1kΩを使いました。また、赤色
LEDの順方向電圧はたいてい2V程度ですので、
第1回で紹介した計算式、

（V-Vf）=If×R　（電圧＝電流×抵抗）

を使うと、(3.3-2)=If×1,000から、
順電流 If=0.0013A=1.3mAという
ことがわかります。もっと抵抗値
の小さい330Ωを電流制限抵抗に
使っても、順電流は4mA程度です。
mbed LPC1768に搭載されている
マイコンのデータシートに掲載さ
れている図（図6）を見ても、6mA

程度流しても3Vが得られることが

 ▼リスト1　LEDを点滅させるプログラム

#include "mbed.h"

DigitalOut myled(p21); // DigitalOutクラスのコンストラクタ

int main() {
 while(1) {
 myled = 1; // 指定されたGPIOポートをHIGHに
 wait(0.2); // 0.2秒待つ
 myled = 0; // 指定されたGPIOポートをLOWに
 wait(0.2);
 }
}

ソフトウェア

HIGHとLOW

http://www.engineer.jp/products/nipper/np01/item_03/np-05

14 - Software Design Sep. 2015 - 15

LED点滅の極意（中編） 第
三
回

わかります。この程度の電流ならば流せ
ることが確認できます。
　こうして流す電流に応じて電圧が下
がってしまうのは、トランジスタ（正確に
はFET、電界効果トランジスタ）には「オ
ン抵抗」と呼ばれる抵抗が内部にあるから
です。トランジスタがONになっている
とき、スイッチはつながっているものの、
そこには抵抗があります。結果、マイコ
ンがHIGHのときには、マイコンの中の
電源からトランジスタのオン抵抗と電流
制限抵抗を通じてLEDが接続されている
ことになります。
　このオン抵抗の値はFETのデータシー
トに書いてあります。なぜかマイコンの
データシートではたいてい、図6のよう
に出力電圧として表記されています。
LEDに流す電流を正確に求めるには、こ
のオン抵抗を計算に入れることになりま
すが、そもそも使っている抵抗の許容差
が±5％もありますから、筆者は普段、気
にしていません。
　マイコンのピンで電流を流したり止め
たりできるのであれば、モーターを回す
ことができるかもしれないと考えるかも
しれません。しかし、マイコンにモーター
を直接つないで回すことはできません。
モーターが消費する電流は、オモチャな
どで使われるものでも500mA以上あるか
らです。より大きな電流をマイコンでコ
ントロールするには、トランジスタやモー
タードライバと呼ばれる半導体を使う必
要があります。s

マイコンによっては、High-drive outputなどという名前で、もっと大きな電流を流しても電圧が
下がらないピンを搭載しているものもあります。こういうマイコンのピンには、オン抵抗の値が
低いトランジスタが中に入っています。

High-drive？

マイコン

01234567
I/Oレジスタ 1

電流 (mA)
0 24168

2.8

2.4

3.2

3.6

電圧
(V)

2.0

T(温度) = 85 °C
25°C

－40°C

 ▼図5　マイコンの内部構造

 ▼図6　LPC1768のピンが出力できる電流と電圧

マイコン マイコン

HIGH LOW

 ▼図4　HIGHとLOW

16 - Software Design

「Raspberry Pi 2 Model B」＆
「Camera module」セット

旧型「Raspberry Pi Model B+」から、速さ最大6倍（クワッド
コアARM Cortex-A7）・メモリ容量2倍（1GB RAM）と格段に
パワーアップしました。さまざまなデバイスと接続して自分だけ
のガジェットが作れます。今回はRaspberry Pi本体と接続でき
る、5Mピクセルセンサー搭載の「カメラモジュール」とセットで
のご提供です（ロゴ入りのペンケースもお付けします）。
提供元 	アールエスコンポーネンツ　http://jp.rs-online.com

1名

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」からア
クセスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を入力いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2015年9月17日です。プレゼントの
発送まで日数がかかる場合がありますが、ご了承ください。

提供元 	はてな
	 http://www.hatena.ne.jp 3名

はてなTシャツ2015

Mackerel Tシャツ

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。入力いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

世界的に有名な計算機科学者クヌース博士
によるアルゴリズムの名著、その第3版の
翻訳本。アスキーが2004年に発行した
ものを、今年新しく発足した新レーベル

「アスキードワンゴ」が再刊行しました。

提供元 	ドワンゴ
	 http://info.dwango.co.jp

The Art of Computer Programming Volume 1
Donald E. Knuth 著

2名

クラウドサービスなどで利用される新しい
暗号技術を中心に、暗号の基礎および暗号
技術を支える数学を解説した1冊です。

「Developers Summit 2015」で行われ
た人気の講演を書籍化したものです。

提供元 	秀和システム
	 http://www.shuwasystem.co.jp

クラウドを支えるこれからの暗号技術
光成 滋生 著

2名

新人のITシステム管理者向け、RHEL 7の
入門本です。Web、DNS、メール、DBと
いった各種サーバの構築・運用管理を学べ
ます。Dockerの実行についても章を設け
て解説しています。

提供元 	インプレス
	 http://www.impress.co.jp

できるPRO Red Hat Enterprise Linux 7
平 初、できるシリーズ編集部 著

2名

読者プレゼント
のお知らせ

コンテナ型仮想化技術「Docker」を特集し
た、8人の著者によるムック本。Dockerの
概要と最新動向、ソフトウェア開発・運用
の現場で活用するためのノウハウをゼロか
ら学べます。

提供元 	技術評論社
	 http://gihyo.jp

Dockerエキスパート養成読本
杉山 貴章 ほか 著

2名

USBチャージ機能付き
雷ガードタップ
P3U3-JP
3つ のACコ ン セ ン ト（ 計14.5A）、3つ のUSBポ ー ト（ 計
5V/2.1A）を持つ雷ガードタップ。両方に、サージ保護機能が付
いています。また、タブレット端末を立てかけられるスタンドが
付いており、充電しながらの操作ができて便利です。
提供元 	シュナイダーエレクトリック　http://www.apc.co.jp/

1名

ブログサービスなどを展開する、はてなの
ノベルティTシャツ。“Mackerel”は本誌
の連載でも取り上げている、同社が展開中
のサーバ監視ツール。さまざまな外部ツー
ルと連携して、簡単にサーバを管理できる
のが特徴です。TシャツのサイズはLサイ
ズのみとなります。

http://sd.gihyo.jp/
http://www.apc.co.jp/
http://jp.rs-online.com
http://www.hatena.ne.jp
http://info.dwango.co.jp
http://www.impress.co.jp
http://www.shuwasystem.co.jp
http://gihyo.jp

IT 業界に入った多くの若い技術者が驚くのは、文字コードの違いや検索をいかに効率化する
かといったデータの扱い方ではないでしょうか。またデータベースから望みのデータを選び出す方
法「SQL」も習得しておかねばならない重要な技術です。さらにソフトウェア開発の現場に出た
ときはオブジェクト指向も理解していなければなりません。しかし苦手なまま日々業務を過ごして
しまうことも少なくありません。

これら 3 つの技術に対して、数多くの開発現場を経験してきた先輩が先生となり学習のコツを
演習形式で特別講義します。題して「エンジニアの夏期講習」。今夏、本誌で学習経験をするか
否かで大きくその後の成長で差がつきます。本特集でエンジニアの底力をつけましょう！

CONTENTS

第　　　 時限

エンジニアの共通言語
正規表現をマスターする
—— �アンチパターンから 
 正解を導く

（とみたまさひろ）

........................... 18

第　　　 時限

スマートにSQLを書く
コツ
—— �リレーショナルモデルと 
 正規化の重要性

（奥野 幹也）

.......................... 29

思いどおりにSQLを組めるようになりたい！ Javaを使いこなしていますか？

.......................... 44

第　　　 時限

オブジェクト指向の
実践的な考え方とやり方
—— �変更に強いプログラムの 

 書き方
（増田 亨）

エンジニアの夏期講習

正規表現・SQL・
オブジェクト指向
苦手克服のベストプラクティス

特
講

第1特集

18 - Software Design18 - Software Design

　正規表現は、ある文字列に適合するような
文字列を表記するための規則のことです。英
語ではRegular expressionと言い、プログラ
ム中の関数名や変数名では regexや regexpと
書かれることがあります。
　UNIX系OSのシェルで作業をしていると、
ファイル名を指定するのに *、?、[...]など
の特殊な記号を使うことが多いでしょう。た
とえば、*.txtは拡張子が.txtであるファイ
ル名に適合しますし、[abc]*は a、b、cのい
ずれかの文字から始まるファイル名に適合し
ます。
　正規表現はこのシェルの持つファイル名の
適合機能を、より高度にしたものと言えます。
シェルの特殊記号と同じような働きを正規表
現で記述するとどのようになるかを表1に示し
ます。
　また、正規表現は通常、文字列の一部に一
致します。文字列全体に一致させたい場合は
先頭（^）と末尾（$）を明示する必要があります。
たとえば、先ほどのシェルでの*.txtと同等の
正規表現は^.*･.txt$となります。
　UNIX系OSでは、grep、sed、awkなどの
コマンドで、文字列のマッチングを行うため

に正規表現が使われます。grepコマンド名中
の“re”はregular expressionのことです注1。有
名なテキストエディタのVimでも、検索や置
換には正規表現の知識が必須です。また、
UNIX系OS以外でも、プログラム中で文字列
処理を行うのに正規表現はよく使用されます。
PerlやRuby、JavaScriptなどのスクリプト言
語では、数値や文字列と同じように、正規表
現を記述するための専用の構文が用意されて
います注2。このことからも正規表現の重要性が
わかるでしょう。

基本的な正規表現

　実際にgrepを使っていくつかの正規表現を
試してみましょう。あるディレクトリの下に
図1のようなファイル／ディレクトリがあると
します。

注1） Wikipediaには、grepという名前はエディタ「ed」の、正
規表現に一致する行を表示するコマンドg/re/p（globally
search a regular expression and print）が由来と書かれて
います。

注2） Cや Javaでは構文で正規表現をサポートしていないため、
正規表現用の関数を呼び出す必要があります。

正規表現とは

シェル 正規表現 意味
? . 任意の1文字
* .* 0文字以上の任意の文字列
[abc] [abc] abcのいずれかの1文字

 ▼表1　シェルのファイル名適合機能と正規表現の対応

エンジニアの夏季講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

基本・実践に分けて「正規表現」を学びます。前半では正規表現の概要、種類、構成要素といった基本を解説。後
半では、演習問題を解きながら、メールアドレスをすべて正規表現で表すことに挑戦します。アンチパターンを
示しながら解説しているので、どこが間違っているかを考えながら、正解の正規表現を導き出しましょう。

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

エンジニアの共通言語

正規表現をマスターする
アンチパターンから正解を導く

 Author とみたまさひろ　 Twitter @tmtms

第　　　 時限

18 - Software Design18 - Software Design Sep. 2015 - 19

　「ls -l」の結果からhoge.txtだけを抽出する
ためにgrepコマンドを使用します（図2）。し
かし、hoge.txtだけでなくhogeetxtも抽出さ
れてしまいました。これは、正規表現で.は任
意の1文字にマッチするためです。.をそのま
まの文字として扱うためには･.と指定します。
今度はちゃんとhoge.txtの行だけが抽出され
ました（図3）。
　次に、hogeディレクトリの行を抽出したい
とします。hogeと指定すると hoge.txtや
hoge.datも出力されてしまいます（図4）。
　通常、正規表現のマッチングは対象の文字
列中でパターンに一致する文字列が含まれて
いるかどうかを判定します。図4では、hoge.
txt中にもhogeが含まれているので、正規表
現に適合したとみなされてしまっています。

今回の場合はhogeで終わる行を指定できれば
良さそうです。正規表現は文字だけではなく
文字の位置を指定することもできます。行末
は$で表します。ですので、hoge$と指定すれ
ば「hogeで終わる行」の意味になります（図5）。
　ディレクトリの行だけを抽出したい場合は、「d
で始まる行」を指定できれば良さそうです。行
頭は^で表せるので、^dを指定すれば良いで
す（図6）。
　次に、hoge.txtとhuge.txtを抽出してみま
す。2文字め以外は共通ですので、2文字めに
任意の文字を表す.を指定してみます（図7）。
hige.txtも引っかかってしまいました。ほし
いのは2文字めがoかuだけです。このような
場合は、角括弧でくくられた中のいずれかの
文字という指定の[]を使用します。今回は
h[ou]ge･.txtと指定すれば hoge.txtまたは
huge.txtに一致するようになります（図8）。
　hoge.txtとfuga.txtの行を抽出してみます。
この2つは3文字めが gであること以外共通

点はなさそうです。図7のように .を使って
..g.･.txtと指定するとhige.txtやhuge.txt

 ▼図1　ファイル／ディレクトリの例

％ ls -l
total 8
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:14 HOGE.txt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:14 Hoge.txt
drwxrwxr-x 2 tommy tommy 4096 Jun 21 22:14 fuga
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:14 fuga.txt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:14 hige.txt
drwxrwxr-x 2 tommy tommy 4096 Jun 21 22:14 hoge
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:14 hoge.dat
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:14 hoge.txt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hogeetxt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:14 huge.txt

 ▼図2　hoge.txtを抽出したつもりが……

％ ls -l ¦ grep 'hoge.txt'
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hoge.txt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hogeetxt

 ▼図3　hoge.txtを抽出

％ ls -l ¦ grep 'hoge¥.txt'
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hoge.txt

 ▼図4　hogeディレクトリの行を抽出したつもりが……

％ ls -l ¦ grep 'hoge'
drwxrwxr-x 2 tommy tommy 4096 Jun 21 22:17 hoge
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hoge.dat
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hoge.txt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hogeetxt

 ▼図5　hogeディレクトリの行を抽出

％ ls -l ¦ grep 'hoge$'
drwxrwxr-x 2 tommy tommy 4096 Jun 21 22:17 hoge

 ▼図6　ディレクトリの行を抽出

％ ls -l ¦ grep '^d'
drwxrwxr-x 2 tommy tommy 4096 Jun 21 22:17 fuga
drwxrwxr-x 2 tommy tommy 4096 Jun 21 22:17 hoge

 ▼図7　hoge.txtとhuge.txtの行を抽出したつもりが……

％ ls -l ¦ grep 'h.ge¥.txt'
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hige.txt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hoge.txt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 huge.txt

 ▼図8　hoge.txtとhuge.txtの行を抽出

％ ls -l ¦ grep 'h[ou]ge¥.txt'
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hoge.txt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 huge.txt

第　　　 時限 正規表現をマスターする
アンチパターンから正解を導く

エンジニアの共通言語

20 - Software Design

も一致してしまいます。|で、正規表現を2つ
以上並べていずれかに一致するという指定を
行うことができます（図9）。この機能は標準の
正規表現（基本正規表現）ではなく、拡張正規
表現（コラム「正規表現の種類」参照）の機能で
す。拡張正規表現であることを示すために
grepに -Eオプションを与えています。また、
括弧でくくって一部だけを指定することもで
きます（図10）。

エスケープシーケンス

　PCRE（Perl Compatible Regular Expre

ssion）では\に続けて英字を記述すると特別な
意味になります（表2）。実装によってはこれら
以外の表記も有効な場合があります。

文字クラス

　[]はくくられた文字列のどれか1文字を表
します。たとえば、[0123456789ABCDEFabcdef]
は16進数の1文字を表します。文字コード順で
連続している範囲の文字は、範囲の先頭と末尾
の文字を-で連結することで表せます。先ほど
の16進数の1文字は[0-9A-Fa-f]と書けます。
　-そのものを[]中に含めたい場合は先頭か
末尾に記述します。[a-z-]は英小文字と-を
表します。PCREでは･-と書くことで-その
ものを表せます。[a･-z]と記述すると a、-、

 ▼図9　hoge.txtとfuga.txtの行を抽出

％ ls -l ¦ grep -E 'hoge¥.txt¦fuga¥.txt'
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 fuga.txt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hoge.txt

 ▼図10　hoge.txtとfuga.txtの行を抽出（括弧で
　　　 くくって部分指定）

％ ls -l ¦ grep -E '(hoge¦fuga)¥.txt'
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 fuga.txt
-rw-rw-r-- 1 tommy tommy 0 Jun 21 22:17 hoge.txt

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

■■基本正規表現
　正規表現はPOSIXで規格化されていますが、
実際には処理系ごとにさまざまな拡張がされてい
ます。基本正規表現はgrep、sedなどのコマンド
が標準で使用できる正規表現です。

■■拡張正規表現
　基本正規表現を拡張したものです。grepでは

「grep -E」として実行すると拡張正規表現の記法
が使用できます。sedコマンドでは「sed -r」とし
て使用できます。
　実は基本正規表現でも拡張正規表現でもそこま
で機能に違いはありませんが、表記上\の有無が
異なります。基本正規表現で()や{ }の機能を
使うには\(\)、\{ \}と記述します。
　拡張正規表現にあり、基本正規表現にない機能
は+、?、¦です。ですが、Linuxの正規表現ライ
ブラリはこれらの前に\を置いて、\+、\?、\¦
と書くことで、基本正規表現でも使用できます。

■■ Perl互換正規表現（PCRE）
　Perlの正規表現はPOSIXの拡張正規表現より
もさらに高度な機能を持っています。Perlの正規
表現と互換の正規表現をライブラリ化したものが
PCREと呼ばれています。PCREを使用すること
でPerl以外のプログラムでも、強力な正規表現
を使用できるようになります。多くのプログラム
がPCREまたはPCREを基にした正規表現ライ
ブラリを使用しています。なお、grepコマンド
はgrep -Pとして実行するとPCRE 正規表現の
記法が使用できます。
　基本正規表現や拡張正規表現では、記号を指定
したときにそのままでメタ文字になるのか、\を
前に置いたときにメタ文字になるのかが、記号ご
とに異なっていてややこしいです。しかし、
PCREでは\を前に置いたときには記号そのまま
の文字として扱うという規則があるので明確です

（すべての記号がメタ文字というわけではないので、
\を前に置かなくてもそのままの文字として扱わ
れる記号もあります）。

正規表現の種類

20 - Software Design Sep. 2015 - 21

zのいずれかの文字という意味になります。
　角括弧の中の最初の文字が^で始まる場合は
否定の意味になります。[^a-z]は英小文字以
外の文字を表します。
　また、[]の中にはエスケープシーケンスを
記述することもできます。たとえば [･d]は
[0-9]と同じ意味になります。
　[]中に含める文字の種類をシンボルでも指
定できます。たとえば[[:alnum:]]は[A-Za-z
0-9]と同じです（表 3）。[[:alnum:]]は [[:
alpha:][:digit:]]と書いても同じ意味です。
　これらの文字の適合条件はC言語のisXXXXX()

関数と同じです。たとえば [:print:]は
isprint()関数が真になる文字に適合します。

繰り返し

　hoge、hooge、hooogeにマッチする正規表
現を考えてみます。h(o|oo|ooo)geでもいいの
ですが、同じ文字の繰り返しを指定する表記
があります。この場合はメタ文字を使って
ho{1,3}geと記述できます。メタ文字{n,m}は
直前の文字をn回からm回までの範囲で繰り返
すことを表します。{n,}と指定するとn回以
上で上限なし、{,m}は0回～m回、{n}はちょ
うどn回の指定になります。基本正規表現では
{、}の代わりに･{、･}と記述します。
　繰り返す対象はメタ文字でもかまいませ
ん。.{2,5}は、2～5文字の任意の文字列に適

合します。[a-z]{1,3}は1～3文字の英小文字
に適合します。
　よく使われるものには、より簡単な記述が
用意されています。*は0回以上、?は0～1回、
+は 1回以上を表します。それぞれ、{0,}、
{0,1}、{1,}と同じです。繰り返し指定がない
ものは{1}が省略されているという考え方もで
きます。
　PCREではさらに、これらの表記の後ろに?
を追加することで、最短一致として働くよう
になります。たとえば :1:2:3:という文字列
に対し、正規表現:.*:は:1:2:3:全体に適合
しますが、:.*?:では:1:だけに適合するよう
になります。

位置指定

　文字ではなく位置
3 3

を指定するための表記も
あります。すでに説明しましたが、^、$はそ
れぞれ行頭、行末という位置を指定しており、
文字に一致しているわけではありません。ほ
かにも･A、･zで文字列の先頭と末尾、･bで単
語の境界を表します。
　PCREでは、より複雑な位置指定もできます。
(?=)は括弧の中のパターンに一致する位置を
意味します。たとえば(?=abc)aは文字列abc
の先頭のa1文字に適合します。(?!)を使う
と否定になり、括弧内のパターンに一致しな
い位置を意味します。(?!abc)aはabc以外の

エスケープシーケンス 値
¥f ASCII FF（0x0C）
¥n ASCII LF（0x0A）
¥r ASCII CR（0x0D）
¥t ASCII HT（0x09）
¥v ASCII VT（0x0B）
¥s 空白文字。ASCII SPACE

（0x20）と\f \n \r \t \v
¥S \s以外の文字
¥d 数字
¥D 数字以外
¥w 英数字と_
¥W \w以外の文字

 ▼表2　PCREのエスケープシーケンス
文字クラス 意味
[:alnum:] 英数字
[:alpha:] 英字
[:blank:] 空白とタブ（\tと0x20）
[:cntrl:] 制御文字（0x00～0x1F、0x7F）
[:digit:] 数字
[:graph:] 印字可能文字
[:lower:] 英小文字
[:print:] 印字可能文字（空白文字0x20を含む）
[:punct:] 英数字以外の印字可能文字
[:space:] 空白文字（\f \n \r \t \vと0x20）
[:upper:] 英大文字
[:xdigit:] 16進数字

 ▼表3　おもなシンボル

第　　　 時限 正規表現をマスターする
アンチパターンから正解を導く

エンジニアの共通言語

22 - Software Design

文字列のaに適合します。

グループ化

　正規表現を括弧でくくってグループ化でき
ます。単に(hoge)だけですとhogeと同じ意味
ですが、後ろに繰り返しを指定すると異なっ
てきます。hoge+はhoge、hogee、hogeeeなど
に適合しますが、(hoge)+はhoge、hogehoge、
hogehogehogeなどに適合します。これは括弧
でくくった表現を1つの固まりとして扱ってい
るためです。ここでの括弧は入れ子にもでき
ます。(hoge(fuga)?)*はhoge、hogefuga、hoge
fugahogehogeなどに適合します。
　また、括弧でくくった正規表現に適合した
文字列を、正規表現中で再利用できます。た
とえば、123-456-789や123_456_789のように
3組の数字が-または_で区切られている文字
列を考えてみます。これに適合する正規表現
は[0-9]+[-_][0-9]+[-_][0-9]+のようになる
でしょう。しかし、123-456_789のように-と
_が混在していてはいけないとしたらどう

でしょうか。[0-9]+[-_][0-9]+[-_][0-9]+は
123-456_789にも適合してしまいます。最初の
区切り文字が-だとしたら次の区切り文字も-
でないといけません。この場合は[0-9]+([-_])
[0-9]+･1[0-9]+のようにするとうまくいきま
す。･1は正規表現中に最初に表れる括弧に適
合した文字を表します。同様に2番めの括弧は
･2、3番めの括弧は･3です。このような、適
合した文字列を後ろで使用するような括弧を
「キャプチャ」といいます。
　グループ化とキャプチャは同じ表記ですが、
括弧がたくさん表れるような複雑な正規表現
では、キャプチャせずにグループ化だけした
いこともあります。その場合は(?:〜)のよう
に括弧の中を?:で始めます。これにより、こ
の括弧はキャプチャとしては働きません注3。

注3） これはPCREの機能です。

％ echo abcabc ¦ grep -P '(...)¥1'
abcabc
％ echo abcabc ¦ grep -P '(?:...)¥1'
grep: reference to non-existent subpattern

大文字小文字

　正規表現は通常、大文字と小文字を区別し
ますが、それらを区別しないようにする機能
もあります。ただし、正規表現中では通常指
定できません。外部からフラグを与える必要
があります。grepコマンドでは「grep -i」と指
定します。sedコマンドでは「s/re/str/i」のよ
うに「i」を付けます。PCREでは正規表現中に
(?i)と書くことにより、それ以降のパターン
で大文字小文字を区別しなくなります。たと
えば、abc(?i)abcは abcABCに適合しますが、
ABCABCには適合しません。

　同じ文字でもエンコーディングが異なれば
バイト表現が異なります。

エンコーディング 「あ」のバイト表現
UTF-8 E3 81 82
EUC-JP A4 A2
CP932 82 A0

　逆に同じバイト列でもエンコーディングに
よって別の文字になります。

エンコーディング C2 A9が表す文字
UTF-8 ©
EUC-JP 息
CP932 ﾂｩ

　処理しようとする文字列のエンコーディン
グが正しくなければ文字を正しく判別できず、
正規表現で正しく処理できません。grepやsed

コマンドはコマンド実行時のロケールに依存
して、処理対象のデータのエンコーディング
を決定します。ロケールは、LC_ALL環境変

文字コード

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

22 - Software Design Sep. 2015 - 23

注A） ISO-2022-JPで表現できる文字集合には半角カナが含まれていませんでした。そのため、以前は「インターネットで半角カナは使
 用してはいけない」と言われたものでした。また「①」「㈱」などの字も含んでいませんでしたが、Windowsは半角カナやこれらの
 文字も無理やり含めて ISO-2022-JPとしていたため、Windowsから送られたメールをWindows以外の環境で見ると文字化けし
 たものでした。

第　　　 時限 正規表現をマスターする
アンチパターンから正解を導く

エンジニアの共通言語

　正規表現の扱うデータの最小単位は「文字」です。
1文字が複数バイトで構成されているマルチバイ
ト文字でも文字単位で処理されます。正規表現.は
任意の1文字を表します。半角英字「A」でもひら
がなの「あ」でも同様です。コンピュータ上で文字
を扱えるようにするため、文字には1対1に対応
した番号が割り当てられています。番号を付けた
文字の集まりを文字集合と言います。文字集合に
はASCII、JIS X 0208、Unicodeなどがあります。
文字集合ごとに番号の体系は異なりますし、同じ
文字に付けられている番号も異なります。たとえ
ば「あ」はJISコードで4区2点、Unicodeでは3042
といった具合です。
　さらにコンピュータで処理しやすいように、こ
れらの番号をある方式でバイト列に変換します。
この方式をエンコーディング方式（文字符号化方式）
と呼びます。「文字コード」はあいまいな用語で、
文脈によってエンコーディング方式のことだった
り、特定の文字をあるエンコーディングで表現し
たバイト列のことだったりします。「このテキス
トファイルの文字コードはUTF-8です」「『あ』の
文字コードはE3 81 82です」などのように。日本
語は歴史的な経緯により、複数のエンコーディン
グ方式が使用されています。

■■ ISO-2022-JP
　すべての文字が7bit（0x0〜00x7Fの範囲内）に
収まるようなエンコーディング方式です。初期の
インターネットメールは7bitしか使用できなかっ
たため、これが使用されていました。現在でも日
本語のメールにはISO-2022-JPが多く使用され
ています注A。ISO-2022-JPは複数の文字集合が
含 ま れ（ASCII、JIS X 0201（英 数 記 号）、JIS X
0208）、エスケープシーケンスによって文字集合
を切り替える方式になっています。そのため文字
単位としては扱いにくく、文字単位の処理をする
場合はほかのエンコーディング方式の文字列に変

換してから処理するのが一般的です。ISO-2022-
JPは「JISコード」と言われることもあります。

■■ EUC-JP
　UNIX系OSでよく使用されていました。文字
集合はASCII、JIS X 0201（半角カナ）、JIS X 0208、
JIS X 0212です。ISO-2022-JPとは異なり、1文
字を1〜3バイトで表現できるマルチバイト文字
です。最近はUnicodeが使用されるようになっ
ているため、あまり使われていないと思います。

■■ CP932
　Windowsでよく使用されています。文字集合は

「マイクロソフト標準キャラクタセット」で、JIS X
0201、JIS X 0208と、それに加え「①、㈱、髙、﨑」
などのJIS X 0208に含まれない文字が含まれて
います。CP932とは別にSHIFT_JISという似た
規格がありますが、SHIFT_JIS の文字集合はJIS
X 0201、JIS X 0208だけですので、厳密には異
なります。一般にシフトJISと言われているエン
コーディングはCP932のことです。

■■UTF-8
　文字集合Unicodeのエンコーディングで、1文字
1～4バイトです。ISO-2022-JP、EUC-JP、CP932
のエンコーディングはJISの文字集合を基本とし
ていましたが、UTF-8の文字集合はそれらとは異
なりUnicodeです。Unicodeは世界で使われてい
るすべての文字を含めることを目的として作られ、
日本語の文字はISO-2022-JP、EUC-JP、CP932
の文字すべてが含まれています。UTF-8の1バイ
ト文字はASCIIと互換があり、使い勝手が良いの
で 広 く 使 わ れ て い ま す。「♥」「☃」「✈」な ど、
CP932にも格納されていない記号や絵文字が多
く含まれているため、最近はメールでもUTF-8
が使用されることがけっこうあります。

文字コード

24 - Software Design

数の値、LC_CTYPE環境変数の値、LANG環
境変数の値の順で、最初に見つかったものが使
用されます。
　図 11では、文字を *に置換しています。
UTF-8ロケールでは「E3 81 82」のバイト列が
「あ」1文字とみなされ、*1文字に置換されま
すが、Cロケールでは各バイトが1文字とみな
され*3文字に置換されています。
　また、[:alnum:]などの文字クラスもロケー
ルの影響を受けます。図12では、UTF-8ロケー
ルでは全角のＡＢＣが[:alnum:]にマッチし
ますが、Cロケールではマッチしないことを
示しています。

　Rubyの正規表現エンジンは「鬼雲（Onigmo）」注4

です。PCREと同等の機能が使用できます。
Rubyプログラム中で正規表現を使用する場合、
通常は/abc/のように/でくくってリテラルで
表記します。

if str =̃ /abc/
 # 文字列strが正規表現abcに適合した場合の処理
end

　これでは正規表現中に/を含められないので、
/は･/と表記します。ただしこれはRubyのリ
テラル表記の制限ですので、正規表現として/

注4） URL https://github.com/k-takata/Onigmo

に特別な意味があるわけではありません。Ruby

の正規表現リテラルにはほかにも%r{abc}とい
う表記があります。/を多用するような正規表
現の場合は、この表記を使用するのが良いでしょ
う。%r{ }でなくても%r[]、%r()、%r| |な
どを使うことができます。
　リテラル表記の直後にオプションを付ける
こともできます（表4）。
　また、リテラル表記以外にも、Regexp.new
("...")としてプログラム実行中に動的に正規
表現を作成することもできます。次のように、
作成済みの正規表現オブジェクトを埋め込んで、
新たな正規表現を作成することもできます
（(?-mix:bar)はm、i、xオプションが指定さ
れていないことを意味します）。

re1 = /bar/
re2 = /foo#{re1}baz/
 #=> /foo(?-mix:bar)baz/

　Rubyは文字列オブジェクトや正規表現オブ
ジェクトごとにエンコーディングを持ちます。
非ASCII文字が含まれていて、異なるエンコー
ディングの文字列と正規表現をマッチングさ

 ▼図11　エンコーディングを指定して文字置換

％ printf "¥xe3¥x81¥x82¥n" ¦ LC_ALL=ja_JP.UTF-8 sed -e 's/./*/g'
*
％ printf "¥xe3¥x81¥x82¥n" ¦ LC_ALL=C sed -e 's/./*/g'

 ▼図12　ロケールによる文字クラスの差異

％ echo ABCＡＢＣ ¦ LC_ALL=ja_JP.UTF-8 sed -e 's/[[:alnum:]]/*/g'

％ echo ABCＡＢＣ ¦ LC_ALL=C sed -e 's/[[:alnum:]]/*/g'
***ＡＢＣ

Rubyの正規表現

オプション 意味
i 大文字小文字を区別しない
m .が改行に適合する
x 正規表現中の空白とコメントを無視する
u UTF-8エンコーディング
e EUC-JPエンコーディング
s CP932エンコーディング

 ▼表4　リテラル表記のオプション

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

https://github.com/k-takata/Onigmo

24 - Software Design Sep. 2015 - 25

せようとすると次のようにエラーになるので
注意しましょう。

re = /ほげ/ # UTF-8
str = "ほげ".encode("cp932") # CP932

str =̃ re
Encoding::CompatibilityError:
incompatible encoding regexp match ｭ
(UTF-8 regexp with Windows-31J string)

　メールアドレスのパターンは複雑で、正規
表現では表せないと言われることがときどき
ありますが、そんなことはありません。パター
ンが入れ子にでもなっていない限り、たいて
いの文字列パターンは正規表現で表すことが
できます注5。
　メールアドレスの規則をRFC 5321から抜
き出してみます（リスト 1、一部RFC 5322、
RFC 5234からも抜粋）注6。この表記はABNF

（Augmented Backus-Naur Form）と言うもので、
RFC 5234で定義されています。今回は
ABNFについての説明はしませんが、知らな
くてもなんとなく読めるのではないかと思い
ます。日本語で簡単に説明すると図13のよう
になります。

基本編

　これら規則を満たす、メールアドレス全体
の正規表現はどのようになるでしょうか。複
雑ですのでローカルパートとドメインに分け
て考えましょう。ヒントを元に、解き進めて
みてください。

注5） メールヘッダ上のFromやToの値はメールアドレス以外に
も表示名やコメントが含まれる可能性があり、さらに複雑
です。コメントは入れ子にできるので正規表現で表すのは
難しいですが、PCREでは?Rで再帰できるので、実現は可
能かもしれません。

注6） Mailboxのaddress-literalは IPアドレス表記です。通
常のメールアドレスではないので今回は無視します。

演習：メールアドレスに
適合する正規表現を作る

 ▼リスト1　メールアドレスの規則

Mailbox = Local-part "@" (Domain / ｭ
address-literal)
Local-part = Dot-string / Quoted-string
Dot-string = Atom *("." Atom)
Atom = 1*atext
atext = ALPHA / DIGIT /
 "!" / "#" /
 "$" / "％" /
 "&" / "'" /
 "*" / "+" /
 "-" / "/" /
 "=" / "?" /
 "^" / "_" /
 "`" / "{" /
 "¦" / "}" /
 "̃"
Quoted-string = DQUOTE *QcontentSMTP DQUOTE
QcontentSMTP = qtextSMTP / quoted-pairSMTP
qtextSMTP = ％d32-33 / ％d35-91 / ％d93-126
quoted-pairSMTP = ％d92 ％d32-126
Domain = sub-domain *("." sub-domain)
sub-domain = Let-dig [Ldh-str]
Let-dig = ALPHA / DIGIT
Ldh-str = *(ALPHA / DIGIT / "-") Let-dig
ALPHA = ％x41-5A / ％x61-7A
DIGIT = ％x30-39
DQUOTE = ％x22

 ▼図13　メールアドレスの規則（日本語）

❶�メールアドレスは@でローカルパートとドメイ
ンに分割される

❷ローカルパートは次のいずれか
　❷−（1）�英数字と記号（! # $ ％ & ' * + - /

= ? ^ _ ` { | } ~）で構成される 1
文字以上の文字列を.で連結したもの

　❷−（2） "と \を除く 0x20-0x7Eの範囲の文字、
または「\と0x20-0x7Eを組み合わせた
もの」の0回以上の連続を"でくくった
もの

❸ドメインはサブドメインを.で連結したもの
❹サブドメインは英数字と-（ただし-は先頭と末
尾には置けない）
❺ ABNFには含まれていないが、次の長さ制限も
ある

　❺−（1）�ローカルパートの最大長は64文字（RFC
5321 4.5.3.1.1）

　❺−（2）�ドメインの最大長は255文字（RFC 5321
4.5.3.1.2）

　❺−（3） メールアドレス全体の最大長は256文
字（RFC 5321 4.5.3.1.3）

　❺−（4）�サブドメインの最大長は 63文字（RFC
1035 2.3.4）

第　　　 時限 正規表現をマスターする
アンチパターンから正解を導く

エンジニアの共通言語

26 - Software Design

ローカルパート
問題1 ローカルパートの規則❷−（1）

英数字と記号（! # $ ％ &' * + - / = ? ^ _ ` {
| } ｺ）で構成される1文字以上の文字列を.で
連結したものを正規表現で表してみましょう。

ヒント 単純に、この規則に現れる文字種を並べ
ると次のようになります。

[0-9a-zA-Z!#$％&'*+¥-/=?^_`{¦}̃.]+

　これは間違いです。この正規表現はabc..xyz
や.abcにも適合しますが、.は連結文字ですので
連続していたり先頭や末尾に現れたりしてはいけ
ません。
　あるパターンXが文字dで結合されているとい
うことは、X、XdX、XdXdX、XdXdXdX……という
並びになるということです。つまり、Xの後ろに
dXが0回以上現れるということです。dXをひとま
とまりとして扱うにはグループ化して(dX)とし
ます。(dX)が0回以上現れるということは後ろに
*を付けて(dX)*とすれば良いです。よって、X
がdで結合されるというパターンはX(dX)*と表せ
ます。

→解答はリスト2

問題2 ローカルパートの規則❷−（2）
"と･を除く0x20～0x7Eの範囲の文字、また
は「･と0x20～0x7Eを組み合わせたもの」の0

回以上の連続を"でくくったものを正規表現で
表してみましょう。

ヒント "と \を除く 0x20～0x7Eは [\x20\x21\
x23-\x5b\x5d-\x7e]として表せます。\と0x20
～0x7Eの組み合わせは \\[\x20-\x7e]です。A
またはBというパターンは(A|B)で表せ、これの
0回以上の繰り返しは(A|B)*となります。

→解答はリスト3

問題3 ローカルパート全体を問題1と問題2

の答えを組み合わせて作ってみましょう。
→解答はリスト4

ドメイン
　ドメイン（❸）はサブドメインを.で連結した

ものですので、まずサブドメインを解決します。

問題4 サブドメイン❹
サブドメインは英数字と-（ただし-は先頭と
末尾には置けない）に適合する正規表現を表し
てみましょう。

ヒント サブドメインは英数字と-ですが、先頭
と末尾には-を置けません。これは単に、先頭と
末尾のパターンと途中のパターンが異なるという
だ け で す。先 頭 と 末 尾 は 英 数 字 で す の で
[0-9a-zA-Z]、途 中 は 英 数 字 と -で す の で
[0-9a-zA-Z-]と表記できます。これを単純に組
み合わせると次のようになります。

[0-9a-zA-Z][0-9a-zA-Z-]*[0-9a-zA-Z]

　しかしこれは間違いです。この正規表現は1文
字の文字列にはマッチしません。途中のパターン
は*で0文字以上となっていますが、先頭と末尾
は1個ずつないといけないことになっているため、
最低2文字ないとマッチしないことになります。
そこで次のようにしてみます。

[0-9a-zA-Z][0-9a-zA-Z-]*[0-9a-zA-Z]?

　末尾のパターンに?を付けることにより、0個
か1個と指定しています。これで1文字の文字列
にもマッチするようになりました。
　しかし、これも間違いです。これだと先頭文字
＋途中文字にマッチするため、abc-のように-で
終わる場合にもマッチしてしまいます。
　先頭文字をS、途中文字をM、末尾文字をEとす
ると、S、SE、SMEにはマッチし、SMにはマッチ
しないようなパターンを作れば良いです。Mがあ
れば必ずEもあるようにするには、2つをグルー
プ化してS(M*E)?のようにすれば良いでしょう。

→解答はリスト5

　さらにサブドメインには最大63文字という
長さの制限があります。先頭文字と末尾文字
を含めて63文字ということは途中文字を最大
61文字に制限すれば良いということですので、
リスト5の中で、*の代わりに{,61}を指定し
ます（リスト6）。

問題5 ドメイン

ドメインを正規表現で表してみましょう。

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

26 - Software Design Sep. 2015 - 27

ヒント ドメインはサブドメインを.で連結した
ものですので、ローカルパート❷－（2）と同じよ
うに、X(dX)*形式で表せます。

→解答はリスト7

問題6 メールアドレス全体を正規表現で表し
てみましょう。
→解答はリスト8

　ローカルパートとドメインの正規表現がで
きたので@で連結すればメールアドレス全体の
正規表現が完成です。文字列の先頭と末尾に
も一致するように･Aと･zも追加しましょう。

発展編

読みやすくする
　ちょっと長くて読みにくいのでRubyプログ
ラム中でのリテラル表記として書き直してみ
ます（リスト9）。xオプションを指定すると、

正規表現の意味を変更せずに空白や改行、コ
メントを入れることができます。/は正規表現
リテラルの終わりの記号とみなされないよう
に･/としてエスケープしています。
　また、PCREでは、何度も現れるパターン
に (?<name> ...)で名前を付けて、･g<name>
で再利用できます（リスト10）。かなり見やす
くなったと思うのですが、いかがででしょうか。

長さ制限を追加する
　今回作成した正規表現にはメールアドレス
全体、ローカルパート、ドメインの長さ制限（❺
－（1）～（3））がありません。これらの長さはプ
ログラムで簡単にチェックできるので、通常
はあまり正規表現には記述しないと思いますが、
今回はこの長さ制限も正規表現に行わせてみ
ましょう。
　今回の場合は(?=)を使えば、長さの制限も
実現できます。たとえば (?=.{5,10}･z)は任
意の5～10文字のあとに文字列末尾があるよ

 ▼リスト2　問題1の答え　❷－（1）を正規表現で表す

[0-9a-zA-Z!#$％&'*+¥-/=?^_`{¦}̃]+(¥.[0-9a-zA-Z!#$％&'*+¥-/=?^_`{¦}̃]+)*

 ▼リスト3　問題2の答え　❷－（2）を正規表現で表す

"([¥x20¥x21¥x23-¥x5b¥x5d-¥x7e]¦¥¥[¥x20-¥x7e])*"

 ▼リスト4　 問題3の答え　❷－（1）＋❷－（2）を正規表現で表す

([0-9a-zA-Z!#$％&'*+¥-/=?^_`{¦}̃]+(¥.[0-9a-zA-Z!#$％&'*+¥-/=?^_`{¦}̃]+)*¦"([¥x20¥x21¥x23-ｭ
¥x5b¥x5d-¥x7e]¦¥¥[¥x20-¥x7e])*")

 ▼リスト5　問題4の答え　❹を正規表現で表す

[0-9a-zA-Z]([0-9a-zA-Z-]*[0-9a-zA-Z])?

 ▼リスト6　リスト5に文字数制限を追加

[0-9a-zA-Z]([0-9a-zA-Z-]{,61}[0-9a-zA-Z])?

 ▼リスト7　問題5の答え　❸＋❹ドメインを正規表現で表す

[0-9a-zA-Z]([0-9a-zA-Z-]{,61}[0-9a-zA-Z])?(¥.[0-9a-zA-Z]([0-9a-zA-Z-]{,61}[0-9a-zA-Z])?)*

 ▼リスト8　 ❷－（1）＋❷－（2）＋❸＋❹を正規表現で表す　問題6の答え

¥A([0-9a-zA-Z!#$％&'*+¥-/=?^_`{¦}̃]+(¥.[0-9a-zA-Z!#$％&'*+¥-/=?^_`{¦}̃]+)*¦"([¥x20¥x21¥x23-ｭ
¥x5b¥x5d-¥x7e]¦¥¥[¥x20-¥x7e])*")@[0-9a-zA-Z]([0-9a-zA-Z-]{,61}[0-9a-zA-Z])?(¥.[0-9a-zA-Z]ｭ
([0-9a-zA-Z-]{,61}[0-9a-zA-Z])?)*¥z

第　　　 時限 正規表現をマスターする
アンチパターンから正解を導く

エンジニアの共通言語

28 - Software Design

位置に適合します。つまりこの位置以降の文
字数が50文字であることを指定できるのです。
先頭でこれを使用することで文字列全体の長
さの範囲を制限できます（リスト11）。
　また、同じように先頭で (?=.{,64}@[^@]
{,255}･z)と指定することで、ローカルパート
が64文字以内、ドメインが255文字以内とい

う制限になります。

正規表現を部品化して組み立てる
　Rubyでは、作成済みの正規表現を埋め込ん
で正規表現を作ることができます。これを利
用して、ABNF規則から機械的にメールアド
レスの正規表現を作成することもできます（リ

スト12）。最終的にできあがる正規表現は人間
の目には読みにくいものになりますが、意味
のある要素ごとに小さく作って組み合わせる
ことができるので、実際のプログラムではこ
の方法も有用だと思います。

　正規表現の基本的な説明から、複雑なもの
まで紹介してきましたが、これがすべてでは
ありません。正規表現を詳しく説明するとそ
れだけで書籍1冊になるくらいの高度な機能を
持っています。使いこなせると、とても強力
な武器になります。正規表現を知らなかった
人は、簡単なことからで良いので、ぜひ使っ
てみてください。ﾟ

 ▼リスト11　リスト10に文字数制限を追加

/¥A
 # 全体で256文字以下
 (?=.{,256}¥z)
 # local-partは64文字以下でdomainは255文字以下
 (?=.{,64}@[^@]{,255}¥z)
 # local-part
 (# dot-string
 (?<atom>[0-9a-zA-Z!#$%&'*+¥-¥/=?^_`{¦}̃]+)(¥.¥g<atom>)*
 ¦ # quoted-string
 "([¥x20¥x21¥x23-¥x5b¥x5d-¥x7e]¦¥¥[¥x20-¥x7e])*"
)@
 # domain
 (?<sub_domain>[0-9a-zA-Z]([0-9a-zA-Z-]{,61}[0-9a-zA-Z])?)(¥.¥g<sub_domain>)*
¥z/x

 ▼リスト9　 メールアドレスの正規表現をRubyのリテ
ラル表記として書き直す

/¥A
 # local-part
 (# dot-string
 [0-9a-zA-Z!#$％&'*+¥-¥/=?^_`{¦}̃]+(¥.[0-9aｭ
-zA-Z!#$％&'*+¥-¥/=?^_`{¦}̃]+)*
 ¦ # quoted-string
 "([¥x20¥x21¥x23-¥x5b¥x5d-¥x7e]¦¥¥[¥x20-¥x7ｭ
e])*"
)@
 # domain
 [0-9a-zA-Z]([0-9a-zA-Z-]{,61}[0-9a-zA-Z])?(¥.ｭ
[0-9a-zA-Z]([0-9a-zA-Z-]{,61}[0-9a-zA-Z])?)*
¥z/x

おわりに

 ▼リスト10　リスト9をさらに簡略化

/¥A
 # local-part
 (# dot-string
 (?<atom>[0-9a-zA-Z!#$％&'*+¥-¥/=?^_`{¦}̃]+ｭ
)(¥.¥g<atom>)*
 ¦ # quoted-string
 "([¥x20¥x21¥x23-¥x5b¥x5d-¥x7e]¦¥¥[¥x20-¥x7ｭ
e])*"
)@
 # domain
 (?<sub_domain>[0-9a-zA-Z]([0-9a-zA-Z-]{,61}ｭ
[0-9a-zA-Z])?)(¥.¥g<sub_domain>)*
¥z/x

 ▼リスト12　 Rubyの機能を使って、正規表現を部品
の集まりとして作成

atext = /[0-9a-zA-Z!#$％&'*+¥-¥/=?^_`{¦}̃]/
atom = /#{atext}+/
dot_string = /#{atom}(¥.#{atom})*/
qtextsmtp = /[¥x20¥x21¥x23-¥x5b¥x5d-¥x7e]/
quoted_pairsmtp = /¥¥[¥x20-¥x7e]/
qcontentsmtp = /#{qtextsmtp}¦#{quoted_pairsmtp}/
quoted_string = /"#{qcontentsmtp}*"/
local_part = /#{dot_string}¦#{quoted_string}/
let_dig = /[0-9a-zA-Z]/
ldh_str = /[0-9a-zA-Z-]*#{let_dig}/
sub_domain = /#{let_dig}#{ldh_str}?/
domain = /#{sub_domain}(¥.#{sub_domain})*/
mailbox = /¥A#{local_part}@#{domain}¥z/

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

29 - Software Design Sep. 2015 - 29

　「思ったとおりの結果を得られるSQLを書
くことができない」あるいは「思ったとおりの
結果は得られるけど、SQLがスパゲティになっ
てしまい、あとで思ったとおりの結果が返ら
なくなった」という経験はないでしょうか。
　よくプログラムは思ったとおりではなく、

書かれたとおりに動くと言いますが、SQLも
この例外から外れることはできません。むし
ろSQLはたいへん癖のある言語であり、ほか
のプログラム言語を書くよりもずっと難易度
は高くなります。少ない記述で大量の仕事を
させることもできるため、SQLが書かれたと
おりに動いた結果、意味もなくサーバが高負
荷になってしまうというようなケースも、少
なくありません。

　思いどおりのSQLを書けない原因はいろい
ろありますが、その中でもとくに重大なもの
として、筆者は次の2つを挙げたいと思います。

・データベース設計とアルゴリズムの間に乖
かい

離
り

がある

・リレーショナルモデルを知らない

　この2点について少し詳しく見て行きましょう。

データ構造とアルゴリズム

　プログラマのみなさんであれば、あるアル
ゴリズムを実行するのには、そのためのデー
タ構造を準備しなければならないということを、
よくご存じではないかと思います。言い換え
ると、データ構造とアルゴリズムはセットだ
ということです。両者を切り離すことはでき
ません。
　このことを思い出していただくために、少
し例を挙げてみましょう。
　整数の演算に適したデータ型は何でしょう。
もちろん使用するプログラミング言語しだい
ではありますが、たとえばC言語であれば int

型でしょう。桁数が増えればまずは long long

intなど、多くの桁数をカバーできるデータ型
の利用を検討するべきでしょう。それでも足
りなければ、本当は任意の桁数を扱えるライ
ブラリを使うべきです。もしここで判断を誤っ
て可変長文字列で数値を表現してしまった場
合どうなるでしょう。可変長文字列ならば、
たしかに任意の桁数の数値を表現できます。
しかし肝心の演算はまったくできません。文
字列に対して定義された演算は、連結や部分

はじめに

なぜ思いどおりのSQL
が書けないのか

※本稿において示されている見解は、筆者自身の見解ですので、所属する団体の見解を反映したものではありません。ご了承ください。

29 - Software Design Sep. 2015 - 29

第　　　 時限
思い通りにSQLを組めるようになりたい！

スマートにSQLを書くコツ

本稿では、みなさんにスマートにSQLを書くコツを伝授したいと思います。コツと言っても、何も秘伝のように、
ミステリアスで魔法のような方法ではなく、至極当たり前のことばかりですので、みなさん肩の力を抜いて読ん
でみてください。

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

思いどおりにSQLを組めるようになりたい！

スマートにSQLを書くコツ
リレーショナルモデルと正規化の重要性

 Author 奥野 幹也（おくの みきや）　日本オラクル㈱　MySQL Global Business Unit

第　　　 時限

30 - Software Design30 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

文字列の抽出、パターンマッチなどであって、
四則演算ではないからです。例え数字しか格
納されていなくても、自動的にその数字の意
味を理解して演算するということはありません。
このように、演算や操作にはそれに合ったデー

タ型があるということはプログラミングにとっ
て極めて本質的で重要なことです。データに
対する演算や操作は、適切な型あるいは構造
を持つデータにしか適用できませんし、デー
タ構造に合った演算しか容易されていないの
です。
　「何を当たり前のことを言ってるんだ !?」と呆
れた方もいらっしゃるかもしれません。ここ
であらためてこのようなことを言う理由は、
汎用言語を用いたプログラミングではわかる
上記のことが、なぜかデータベースでは見落
とされてしまうという風潮がしばしば見られ
るからです。そのことをよく表すフレーズと
して、「データベースはただの入れ物」という
ものがあります。これはデータ構造なんか関
係ないと言ってるのも同然です。そのような
認識では、データベースへのアクセスが非効
率になって当然なのです。

リレーショナルモデルは道具

　データモデルを用いてデータを表現する場合、
当然ながら、そのデータモデルがどのような
ものであるかを知っている必要があります。
道具の使い方がわからないのに、それをどうやっ
て使えばよいというのでしょう。筆者は最近、
趣味で自転車にハマってるのですが、自転車
を整備する道具の1つに振れ取り台というもの
があります。振れ取りという作業を知らない
人に、この道具は何の用途で使うのかを尋ね
ても、きっと答えることはできないでしょう。
道具は使い方を理解してこそ使えるのです。デー
タモデルは道具です。その使い方を理解しな
ければ、正しい使い方はできません。
　たとえばC言語で int型の変数を、整数値を
表すことに利用できるのは、int型が整数値を

表すものであり、それに対してどのような演
算が可能なのかということを、プログラマが知っ
ているからです。つまり、データモデルを理
解するということは、そのデータモデルで表

されたデータがどのような意味や性質を持っ

ているかということや、どのような演算が定

義されているかということを知ることにほか
なりません。そのうえで、そのデータモデル
においてどのような応用ができるかといった
ことや、どのような用途では使えないかとい
うことを知れば、データモデルを自由自在に
使いこなすことができるでしょう。
　リレーショナルデータベース上でデータを
表現するには、リレーショナルモデルという
道具の使い方を理解する必要があります。そ
れを知らずにリレーショナルモデルを批判し
たり、NoSQLへ移行すれば人件費が下がると
言ったりしないでほしいものです。

　リレーショナルモデルとは何かということ
をきっちりと本稿で説明できればよいのですが、
残念ながら筆者に与えられたページ数ではと
ても足りません。リレーショナルモデルがど
のようなものか、基本的な使い方とデータベー
ス設計の基礎、そして応用方法といったこと
について知りたい方は、ぜひ拙著注1を読んで
ください。筆者が言いたいことは、あらかた
こちらの本の中で述べています。もしくはリレー
ショナルモデルを主題にした、もっと分厚く
てきちっとした内容の本を読むのもよいでしょ
う。たとえばC.J.Date注2やJ.Celko注3です。
　リレーショナルモデルを理解するには述語
論理や集合の知識が必須ですので、それらを

注1） 『理論から学ぶデータベース実践入門 ―リレーショナルモ
デルによる効率的なSQL（Web+DB PRESS plus）』、奥野
幹也著、技術評論社、ISBN978-4-7741-7197-5

注2） URL http://www.amazon.co.jp/C.-J.-Date/e/B000A
Q6OJA

注3） 『プログラマのためのSQL すべてを知り尽くしたいあなた
に』、ジョー・セルコ著、翔泳社、ISBN978-4-798128023

リレーショナルモデルを
知る

http://www.amazon.co.jp/C.-J.-Date/e/B000AQ6OJA

30 - Software Design Sep. 2015 - 3130 - Software Design Sep. 2015 - 31

スマートにSQLを書くコツ
リレーショナルモデルと正規化の重要性

思いどおりにSQLを組めるようになりたい！

第　　　 時限

よく知らないという人は、そういった分野に
ついても一度勉強しておいたほうがよいでしょ
う。拙著でもリレーショナルモデルを理解す
るのに必要最低限の内容をカバーしています
ので、そちらを読んでいただいてもかまいま
せん。ただ、若干解説が駆け足過ぎた感があり、
難しいという声をよく耳にしますので、読ん
でみてもよくわからないという人は教科書を
めくってみましょう。述語論理や集合は、整
数と同じく数学上の概念です。みなさんはきっ
と整数の扱いには精通されていらっしゃると
思います。なぜ同じ数学上の概念であるにも
かかわらず、述語論理や集合はあまり理解さ
れていないかというと、単にカリキュラム上
の問題ではないかと思います。つまり、整数
については小学校のころからずっと勉強してい
るのでみなさんはとても詳しくなりやすく、述
語論理や集合などは高校や大学になってから学
ぶため、慣れ親しんでいないだけではないかと
思うわけです。これらはリレーショナルモデル
以外にも応用が利く概念ですので、数学の基礎
知識としてぜひマスタしておきましょう。費や
した時間はけっして無駄になりません。
　ただ単に、「ほかの本で勉強してください」
というだけでは本稿の話が進みませんので、
リレーショナルモデルの概要を大まかにかい
つまんで紹介したいと思います。

リレーショナルモデルは集合の
世界

　リレーショナルモデルについて、非常によ
くある間違いの中に、リレーションとはテー

ブル同士の関係性のことであるとかリレーショ

ナルモデルとはER図を使ってテーブルを設計

することであるというようなものがあります。
これは完全な誤りです。
　リレーショナルモデルでリレーションと言
えば、データを操作する単位のことで、SQL

でいうところのテーブルに相当します。この
ことを聞いて、「えっ?!」となってしまった方は
ご用心。もしかすると、今までちゃんとした

リレーショナルモデルの解説を読んだことが
なかったのかもしれません。これを機に、あ
らためてリレーショナルモデルを学習してみ
てはいかがでしょうか。
　リレーショナルモデルはリレーション注4を
単位として、さまざまな演算をするデータモ
デルです。リレーションは集合ですが、任意
の集合ではなく、特徴的な構造を持った集合
です。リレーションの要素はタプル（組、
tuple）と呼ばれ、1つのリレーション内のタプ
ルはすべて同じ構造になっています。タプル
も集合であり、その要素はアトリビュート値（属
性値、attribute value）と呼ばれます。アトリ
ビュート値はそれ以上分解することができな
い値となっています。アトリビュート値には
でたらめな値が表れるわけではなく、あらか
じめどのような値になるべきかということが
わかっており、そのような値全体は集合とし
て定義されているものと考えます。その集合
をドメイン（定義域、domain）と呼びます。つ
まりアトリビュート値は、ドメインの1つの要
素であり、ドメインは集合であるためにその
要素を分解することはできないということに
なります。また、タプルの集合はリレーショ
ンの本体（body）と言われ、リレーションに対
する演算はおもに本体が対象になります。そ
のリレーションのタプルにどのようなアトリ
ビュートが含まれているかということを示す
ため、見出し（headding）が設けられています。
見出しも集合です。見出しの要素はアトリビュー
ト（属性、attribute）と呼ばれ、名前と型のペア
になっています。アトリビュートの具体的な
値がアトリビュート値というわけです。
　リレーションの例とドメインの例を、それ
ぞれ図1、図2に示します。
　図1のリレーションには、いくつかの国が格
納されています。本体のすべての要素、つま
りタプルはすべて国名、国番号、大陸という

注4） リレーションは関係とも呼ばれますが、日本語と混同しや
すいため、本稿ではカタカナを用いています。

32 - Software Design32 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

名前のアトリビュートを持っていることが、
見出しからわかります。また、このリレーショ
ンのアトリビュートの1つである大陸のドメイ
ンを表したのが図2です。リレーション（本体、
見出し）もタプルもドメインも集合ですので、
要素間に順序はありません。
　リレーショナルモデルがとことんまで集合
をベースとしたデータモデルになっていると
いうことがおわかりでしょうか。集合という
概念を理解しないと、リレーショナルモデル
は使いこなせないのです。

リレーションの演算

　リレーションの構造について見たところで、
次は演算について紹介しましょう。リレーショ
ンに対する演算は、集合の操作に基づいたも
のとなります。そのほかに、リレーショナル
モデル特有の操作、つまりリレーションがす
べて同じ構造を持ったタプルを要素としてい
るという性質を利用した操作が、いくつか定
義されています。図3～6は、代表的なリレー
ションの演算の一例です注5。
　それぞれの演算の意味は次のとおりです。

・制限（restrict）

注5） ほかにも演算はたくさんあります。

 ▼図1　リレーションの例

本体

見出し

国番号：86,
国名：中華人民共和国,

大陸：アジア

国番号：61,
国名：オーストラリア,
大陸：オセアニア

大陸：アフリカ,
国名：カメルーン,
国番号：237

大陸：欧州,
国名：スウェーデン,
国番号：46

国名：日本,
国番号：81,
大陸：アジア

国名：米国,
国番号：1,
大陸：北米

国番号/整数 大陸/文字列国名/文字列

 ▼図2　ドメインの例

オセアニア
南極

北米南米
欧州

アフリカ
アジア

 ▼図3　制限

制限（restrict）

 ▼図4　射影

射影（projection）

32 - Software Design Sep. 2015 - 3332 - Software Design Sep. 2015 - 33

スマートにSQLを書くコツ
リレーショナルモデルと正規化の重要性

思いどおりにSQLを組めるようになりたい！

第　　　 時限

　1つのリレーションを特定のタプルだけに絞
り込む操作

・射影（projection）
　 1つのリレーションを特定のアトリビュート
だけに絞り込む操作

・和（union）
　 2つのリレーションの両方に含まれるタプル
を求める操作。ただし重複は排除される

・結合（join）
　 同じアトリビュートを含んだ2つのリレー
ションのタプルを総当たりで組み合わせて
得られるタプルのうち、同じアトリビュー
トに対して共通の値を持つタプルを求める
操作

　リレーションの演算の性質の大きな特徴は、
演算の入力も結果もリレーションになるとい
うことです。つまり、ある演算をした結果得
られるリレーションを、別の演算の入力にで
きるのです注6。リレーションの演算をいくつも
組み合わせて、複雑な演算を表現できるとこ
ろが、リレーショナルモデルの真骨頂なのです。
　こういった演算について知らない、よくわ
からないということでしたら、まずはリレーショ

注6） このような性質を閉包性と言います。

ナルモデルをしっかりと学んでください。そ
れがSQLを上手に使いこなすための近道です。
筆者は、リレーショナルモデルなんてわから

なくてもSQLを使いこなせる、などという無

責任なことは絶対に言えませんから。

SQLとリレーショナルモデル

　賢明な読者の方であればすでにお気づきか
もしれません。リレーショナルモデルを知れ
ば知るほど、SQLとリレーショナルモデルは

別物ではないか??という疑念が沸き起こって
くることでしょう。それもそのはず、両者の
間には大きな乖

かいり

離があるのです。
　SQLはたしかにリレーショナルモデルをも
とにして考案された言語です。しかし、それ
以上のこともできてしまいます。なぜならば、
リレーショナルモデルは集合をベースとして
構築されているため、集合で表現できないデー
タはリレーショナルモデルでは扱うことがで
きないからです。そのため、SQL上のオブジェ
クトと、リレーショナルモデル上のオブジェ
クトの間にも違いがあります。SQLではテー
ブル、行、列というオブジェクトが、リレーショ
ナルモデルではリレーション、タプル、アト
リビュートというオブジェクトに相当しますが、
名前が違うことからも察するように、それぞ
れ性質は異なります。テーブルや行は集合で

 ▼図5　和

和（union）

a b c

d e f

g h i

j k l

t u v

a b c

x y z
d e f

g h i

d e f

g h i

j k l
t u v

a b c

x y z

 ▼図6　結合

結合（join）

a x

b y

c z

w 1

x 2

x 3

a x 3

a x 2

34 - Software Design34 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

はないのです。そのことをきちんと理解して
SQLを記述しないと、リレーショナルモデル
に沿った使い方はできないのです。
　このSQLとリレーショナルモデルの違いに
気づかずにSQLを書いてしまうと、リレーショ
ナルモデルをまったく無視した使い方になっ
てしまいます。もっと言うと、リレーショナ
ルモデルをまったく知らなくても、SQLを使
えてしまうのです。もちろん、リレーショナ
ルモデルを知らなければ、適切なデータベー
ス設計ができるわけもなく、その結果クエリ
もスパゲティになり、正確な結果が返らず、
性能も出ず、いつになっても製品やサービス
をリリースできないないというような状況に
なりかねません。これはSQLに潜む大きな罠
です。恐ろしいですね。

集合と述語論理

　リレーショナルモデルを理解するうえで、
もうひとつ忘れてはいけないのが述語論理です。
本稿では、リレーショナルモデルは集合に基
づいたものであると説明してきましたが、実
はリレーショナルモデルは述語論理（predicate

logic）に根ざしたデータモデルでもあります。
これはなぜかというと、集合と述語論理が1対

1で対応するからです。
　本稿では、リレーションは特殊な構造を持っ
た集合であるということをすでに述べましたが、
集合と述語論理が一対一で対応するのであれば、
リレーションは述語論理でどのように表現で
きるのでしょうか。詳細な説明を省いて単刀
直入に言うと、リレーションとは真となる命

題の集合なのです。リレーションの要素、つ
まりタプルはすべて命題であり、それを評価

した結果は真になるということです。リレーショ
ンの演算は、1つあるいは複数の真の集合から、
別の真の集合を導く論理演算であると言えます。
話が長くなるので詳細な解説は省きますが注7、

注7） 興味のある方は、拙著（注1）をご参照ください。

リレーションの演算が論理演算であるという
点は極めて重要です。なぜならば、リレーショ
ンの演算、すなわちクエリ（問い合わせ）が、

論理演算にほかならないということを意味す
るからです。
　さて、真の命題とはいったいいかなるもの
でしょうか。リレーショナルモデルでは、真

の命題とは事実であると考えます。つまり、
ある1つあるいは複数の事実から、論理的な演
算、つまり推論によって、別の事実を導き出
すというのが、リレーションの演算の実体な
のです。このため、リレーショナルモデルが
適合できる範囲のクエリは、漏れや不確実性

とは無縁であり、すでに判明している事実か

ら論理演算によって、論理的に正しい結果が

得られることになります。リレーショナルモ
デルがいかに強力なデータモデルであるかが
おわかりでしょうか？

論理の天敵：矛盾

　論理的に正しい答えが得られるということは、
極めて強力な特徴です。しかし強力であるが
ゆえに、反対に脆

もろ

い面も持ち合わせています。
それは、論理演算であるがゆえに、矛盾に弱

いというものです。
　矛盾とは、正しいとされる命題に食い違い
が生じている状態です注8。2つの命題が真であ
ると仮定すると、どちらが正しいのか判断が
つかないようなもののことを指します。たと
えば、「太郎は15歳です」という命題と「太郎
は18歳です」という命題がともに真だと仮定
しましょう。もし両方が真なのであれば、いっ
たい太郎さんの年齢はいくつなのでしょうか？
この問いに対しては、いくら考えても答えは
でません。なぜならば、2つの命題が矛盾して
いるからです。
　論理演算の結果、正しい答えが得られるのは、
その前提となる命題が本当に正しい場合、つ

注8） リレーションに生じた矛盾を異常（anomaly）と呼びます。

34 - Software Design Sep. 2015 - 3534 - Software Design Sep. 2015 - 35

スマートにSQLを書くコツ
リレーショナルモデルと正規化の重要性

思いどおりにSQLを組めるようになりたい！

第　　　 時限

まり矛盾を含んでいない場合のみです。矛盾
が含まれていると、途端にデータモデルの有
効性は崩壊してしまいます。このような矛盾
を生じないようにするにはどうすればよいの
でしょうか。この問に対する一般的な答えが、
データの重複をなくすということです。つまり、
同じ命題（＝タプル）が繰り返し出現するのを
避けるということです。データに矛盾が生じ
るのは、重複したデータが含まれているから
であり、間違って片方だけを更新してしまう
と矛盾になってしまうというわけです。
　リレーションは集合ですので、その要素そ
のものに重複が起きることはありません。で
はどこに重複が起きるかというと、タプル全
体ではなく、タプルの一部ということになり
ます。

　命題＝タプルですが、命題と言えば先ほど
の「太郎は10歳です」という例のように文章に
なっており、これをそのままデータとして用
いるのは都合がよくありません。データをリレー
ションで表現する場合には、つまり命題をタ
プルとして表現するには、変動するパラメー
タの部分だけを抜き出すことになります。また、
先ほどの命題のように、単に人物と年齢が格
納されただけのリレーションでは、通常矛盾
は生じません。なぜならば、リレーショナル
モデルにはキーという概念があるからです。キー

はタプルの値を一意に特定するためのもので
あり、1つのリレーション内において、同じ値
のキーが2度出現することはありません。たと
えば名前、年齢という2つのアトリビュートが
設定されたリレーションでは、名前がキーに
設定されていると、同じ名前について異なる
複数のタプルが格納されることはないからです。
　リレーションの内部に、矛盾の温床となる
重複が生じるのは、リレーションがもう少し
複雑な場合です。表1は矛盾が生じているリレー

ションの例です。このリレーションは、ある
学校の生徒の名前と部活、学年がアトリビュー
トとして含まれています。
　同じ生徒が複数回出現しているのは、おそ
らく部活を掛け持ちしているためでしょう。
山田太郎さんは野球部とパソコン部に所属し
ていることがわかりますが、学年が一方では2、
もう一方では3と、同じではありません。いっ
たいどちらが正解なのかということは、先ほ
ども述べたとおり、このリレーションをいく
ら眺めたところで判断できません。なぜなら、
リレーションはどちらのタプル＝命題も、真
であるということを示すからです。このよう

な矛盾が生じる余地がないように、リレーショ

ンを分解する作業が正規化です。正規化には
いくつかの段階があり、段階が上がるほど重
複のないよい状態になるとされています。
　実は、正規化をしてもしなくても、リレーショ
ンにはリレーショナルモデルの演算を適用で
きるのですが、正しい結果が得られるかどうか、
そして演算を適用しやすいかどうかというこ
とが違ってくるのです。すっきりとしたSQL

を書くには、その前段階として、操作する対

象のテーブルが、しっかりと設計されている

必要があります。とくに矛盾は大敵ですから、
矛盾が生じないようにするためには、重複を
解消する正規化という作業は欠かせないのです。

　本稿ではここまで、アルゴリズムとデータ
構造はセットであること、そのためプログラ

正規化の重要性

名前 部活 学年
山田太郎 野球 2
山田太郎 パソコン 3
鈴木次郎 水泳 2
佐藤三郎 水泳 1
佐藤三郎 吹奏楽 1
田中士郎 野球 2

 ▼表1　矛盾が生じている例

高速で正確なクエリを
書くためのテクニック

36 - Software Design36 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

マは適切なデータモデルを選択しなければな
らないこと、リレーショナルデータベース上
で扱うデータモデルであるリレーショナルモ
デルについてを、かなり大雑把に説明してき
ました。これらをふまえたうえで、実践的に
SQLを上手に書くためにはどうすればよいか
ということを、解説したいと思います。

SQLを宣言的に記述する

　リレーショナルモデルは深いテーマですので、
雑誌の1コーナーではとても解説することはで
きません。ですので、リレーショナルモデル
をよく知らないという方には、雰囲気だけで
もつかんでいただければ幸いなのですが、本
稿の内容程度ではやはり不十分です。一度きっ
ちりとリレーショナルモデルについて学ぶべ
きでしょう。繰り返しになりますが、リレーショ

ナルモデルがわからなくてもSQLぐらい使い

こなせるなどという無責任なことは絶対に言

えません。

　リレーショナルモデルに沿ってクエリを記
述した場合には、クエリが宣言的になるとい
う特徴があります。すでに判明している事実（リ
レーション）に対して、論理演算を適用し、漏
れなくかつ正確な答えが得られるからです。ルー

プや条件分岐を駆使する必要はありません。1

回のSELECTで、必要な答えはすべて得られ
るのです。

リレーショナルモデルの限界

　リレーショナルモデルをきちんと理解した
ならば、リレーショナルモデルができること
とできないこと、向き不向きなどがわかるよ
うになります。リレーションは集合の一種で
すので、集合で表現できないデータ、あるい
は集合演算ではうまく解決できないアルゴリ
ズムには、適用するべきではないのです。
SQLを宣言的に記述できるのは、リレーショ

ナルモデルが適用できる場合だけであることは、
忘れてはなりません。

　リレーショナルモデルの範
はんちゅう

疇でないデータ
は世の中に溢れています。たとえば、履歴、
グラフ、ツリー、キュー、スタック、行列、
正規言語、3次元構造などです。こういったデー
タをリレーショナルデータベース上で格納す
るだけなら可能ですが、肝心のクエリはリレー
ショナルモデルでうまく表現できません。ク
エリがうまく表現できなくても、別々のデー
タベースを使い分けるのは不便ですから、そ
のようなデータがリレーショナルデータベー
ス上に格納されることは多々あります。
　SQLはリレーショナルモデルがベースには
なっているものの、完全にデータモデルを再
現しているわけではなく、それ以外のことも
たくさんできるのはこのためです。そのよう
な場合には、リレーショナルモデルについて

の定石はすべて捨て去って、ストアドプロシー

ジャでループや条件分岐を駆使したり、アプ

リケーション側のコード内でデータを加工す

るといった対応が必要になるでしょう。
　大切なのは、今扱おうとしているデータや
アルゴリズムが、リレーショナルモデルの範

疇で扱うべきなのかどうかということを、明

確に把握することです。

SQLについて知る

　SQLは、リレーショナルモデルに基づいた
言語ではありますが、リレーショナルモデル
との間には大きな乖離があります。そのため、
リレーショナルモデルだけを理解しても、
SQLを理解することはできません。リレーショ

ナルモデルがどのようにSQLにマッピングす

るかということを知る必要があります。
　SQLはとても柔軟な言語であり、きちんと
理解するのは一苦労です。SQLでテーブル内
のデータを参照するためのコマンドといえば
SELECTですが、それ以外にテーブル内のデー
タを参照する手段はありません。SELECTと
いう1つのコマンドに、参照のための膨大な機
能が詰め込まれているのです。本稿で紹介し

36 - Software Design Sep. 2015 - 3736 - Software Design Sep. 2015 - 37

スマートにSQLを書くコツ
リレーショナルモデルと正規化の重要性

思いどおりにSQLを組めるようになりたい！

第　　　 時限

たリレーションの演算である制限、射影、和、
結合はもちろんSELECTに詰め込まれていま
すし、それ以外にも外部結合やサブクエリ、ソー
ト、要約など、SELECTだけでも覚えるべき
ことは満載です注9。
　それだけではありません。ストアドプロシー
ジャやトリガー、ビュー、トランザクション、
ユーザ権限の管理などなど、データを操作す
る以外にも覚えることはたくさんあります。
リレーショナルモデルでは表現できないデー
タを扱うには、ストアドプロシージャなどは
大いに活用する必要があるでしょう。

自分が欲しいデータは何か

　とても根本的なことですが、クエリをきち
んと書くためには、いったい自分が何のデー

タがほしいのかということが明確になってい
なければなりません。何を当たり前のことを言っ
てるのかと思われるかもしれませんが、これ
が意外にも見落とされがちなのです。
　何のデータがほしいのかというのは、言い
換えればアプリケーションが何をするべきも
のなのかということです。つまり今自分が作っ
ているアプリケーションが何をするものかと
いうことを明確に理解しなければ、クエリを
きちんと記述することもできないのです。し
かしこれは一朝一夕には行きません。小さな
プロジェクトや、自分が最初から書いている
プログラムであれば理解することは難しいこ
とではないかもしれません。しかし、プロジェ
クトが巨大であったり、前任者から仕様書な
どを引き継いでプロジェクトへ参加すること
になった場合などには、アプリケーションが
何をするものなのか、本来の正しい振る舞い
はどのようなものかということを理解するこ
とは、とても困難な作業となるでしょう。
　アプリケーションの正しい振る舞いを知る、

そしてアプリケーションが何のためにそのク

注9） リレーショナルモデルの結合は、SQLでは内部結合に相当
します。

エリを実行するのかを理解することが、上手
にSQLクエリを書くための前提条件なのです。

データベース設計の見直し

　アプリケーションの動作を知るというのは、
とても難しいテーマです。開発を継続する中
で新たな要件が追加されたり、コードを書い
ていくに連れてアプリケーションの役割が明
確になったりすることで、アプリケーション
にどんどん改良が加えられ、元のプログラム
の姿から大きく違うものになってしまうとい
うことは、珍しくありません。
　アプリケーションの振る舞いが変われば、
当然それにしたがってデータベースのほうも
変更されるべきです。しかしながら、既存のデー
タベースをそのまま使い続けるケースが非常
に多く見られます。バグのないプログラムを
書くことができないのと同じように、いっさ
い問題のないデータベースを最初から設計で
きるはずがありません。必要に応じてデータベー
ス設計の妥当性を検証し、変更ができること
が重要です。データベース設計は変更があっ

て当然だと考えておきましょう。変更をする
には、どのようにしてデータベースをリファ
クタリングするべきかということを知ってお
く必要があります。リファクタリングの手法
については、拙著注1でも触れていますので、
ご一読いただければと思います。

実装について知る

　SQLクエリは、高速に実行されなければ価
値がありません。いくら正確な答えが得られ
ようとも、いくらデータベース設計がきっち
りとできていようとも、実用的な応答速度な
らびにスループットが得られなければ、使い
物にはならないからです。
　性能のよいクエリを記述する上で最も大切
なことは、実装を知るということです。どの
ようにクエリが処理されるのかを知らなければ、
コンピュータの仕事量を見積もることはでき

38 - Software Design38 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

ません。コンピュータのリソースは有限です
から、限られたリソースを有効活用するために、
同じ内容の仕事でも、できるだけ効率的に実
行するに越したことはありません。どのよう
にすれば最も効率的な実行ができるのかとい
うことを考えるには、実装について詳しくな
る必要があるのです。リレーショナルデータベー
スで言えば、インデックスの構造やオプティ
マイザの挙動、実行計画の詳細、トランザクショ
ンの振る舞い、I/O周りの挙動などが相当しま
す。実装を理解したうえで、クエリが効率的

に実行できるかどうかを判断しながら記述す

る必要があるでしょう。
　高級な言語を使用すれば、その言語の使い
方だけを理解すれば十分であり、中身まで知
らなくてもよいというような意見を耳にする
ことがあります。しかし、筆者はその考え方
には反対です。やはりコンピュータ上で実行
するものである以上、内部で何が行われてい
るかを理解することは、実用的なプログラム
を作る上で必要不可欠です。データベースソ
フトウェアの実装だけでなく、OSやネットワー
ク、ストレージと言った、コンピュータの動
作原理に関係する知識も必要です。そういっ
た知識をふまえ、実際にプログラムがどのよ
うに実行されるかを想像することが大切なの
です。まれにO/Rマッパーを使えばSQLを知
らなくてもよいという意見も耳にしますが、
当然それはよくない考えだと筆者は思います。
　また、いくら実装を知ったところで、人間
が頭の中でプログラムの動作を完全にシミュ
レートできるわけはありません。したがって、
本当に満足な性能が得られるかどうかは、実
際にクエリを実行してたしかめるしかありま
せん。つまり、クエリの性能は、ベンチマー
クテストによってたしかめる必要があるのです。
クエリを書くときには実装を理解して効率的
に実行できるような記述を心がけつつ、最終
的にベンチマークテストでたしかめることを
お勧めします。

トランザクション

　リレーショナルデータベース上で実行され
るのは参照系のクエリだけではありません。
更新系の処理も大量に、しかも同時に実行さ
れるのが一般的です。同時に、しかも大量に
更新が行われると、同時に同じデータへのア
クセスも発生してしまうことになります。当
然ながら、同じデータへアクセスすると、デー
タに不整合が生じてしまう可能性があります。
このような問題についての解説で、最もよく
用いられるのが銀行の口座で、（A）引き出しと
（B）預け入れの操作を同時に行うという例です。
それぞれの操作は大雑把に言うと次のような
ことを処理します注10。

・A-1:口座の残高を確認する
・A-2:�口座の残高と引き出す金額x円の差額を

計算する
・A-3:�口座の残高がマイナスでなければ、x円

を客へ支払い、口座の残高を書き込む

・B-1:口座の残高を確認する
・B-2:客がy円を支払う
・B-3:�口座の残高と預け入れる金額y円の合計

を計算する
・B-4:口座の残高を書き込む

　（A）の処理も（B）の処理も、それぞれ順番に
実行されれば何の問題もありません。しかし、
同時に実行してしまうと結果に不整合が生じ
てしまいます。たとえば現在の口座の残高が
100万円だったとしましょう。そこへ、20万
円引き出す処理と、30万円預け入れる処理を
同時に行ったとします。もし、（A-2）と（A-3）
の間に（B）の処理がすべて割り込んでしまうと、
残高は本来110万円のはずが、（B）によって更
新された残高は完全に上書きされてしまい、
結果は80万円になってしまうでしょう。これ

注10） 手数料などについては考慮していません。

38 - Software Design Sep. 2015 - 3938 - Software Design Sep. 2015 - 39

スマートにSQLを書くコツ
リレーショナルモデルと正規化の重要性

思いどおりにSQLを組めるようになりたい！

第　　　 時限

は大問題です。
　このように、同時アクセスによって生じるデー

タの不整合を防ぐ手段がトランザクションです。
そのほかにも、トランザクションはデータベー
スサーバがクラッシュしたときに、データを
正常な状態へリカバリするといった機能も提
供します。データが正しく保たれてこそ、デー
タベースは役に立ちますから、トランザクショ
ンはデータを保護するために欠かせない技術
なのです。本稿ではトランザクションについ
ての詳細には踏み込みませんが、とても重要
な技術ですので、ぜひしっかりと勉強してみ
てください。

テスト

　プログラムにはテストが必須です。これは
汎用プログラミング言語を用いた場合だけで
なく、SQLにも当てはまります。先ほど述べ
たようなベンチマークテストだけでなく、そ
もそもSQLクエリによって想定したデータが
得られるかどうか、あるいは想定どおりに更
新が行われるかといった機能面についても、しっ
かりとテストする必要があります。そのよう
なテストがなければ、本当にそのSQLが正し
いのかどうかということは保証できません。
　テストを記述するのは、SQLそのものに対
してではなく、アプリケーションがデータベー
スへアクセスする機能に対して行います。最
終的に、アプリケーションが正常にデータを
得られるかどうか、正常に更新ができるかど
うか、つまりアプリケーションの振る舞いが
正しいかどうかが重要なのです。その点につ
いてしっかりとテストしておけば、データベー
ス側で何らかの変更を行った場合でも、アプ
リケーションの機能が損なわれないかどうか
をたしかめることができます。
　しっかりとテストをすることで、アプリケー
ションの品質が高まると同時に、データベー
スのリファクタリングがやりやすくなるのです。

　それでは本稿の締めくくりとして、少し演
習問題を出しておきたいと思います。次に挙
げるような内容のデータが、リレーショナル
モデルに当てはまるかどうかどうかについて
考えてみてください。

問題1 レシピサービスのデータ構造

　あなたは今、レシピの共有をテーマとした
Webサービスを作ろうとしていると仮定して
ください。まず、次のようなデータを格納す
るテーブルを設計するでしょう。

・ユーザ情報：ユーザID、名前（ハンドル名）、
メールアドレス、ログイン情報

・レシピ：レシピID、料理の名前、材料、手順、
食べる人数

・お気に入りのレシピ：ユーザID、レシピID

　まずはこの3つの情報をそのまま3つのテー
ブルで表現してみてください。すると第一正
規形にならないことに気づくと思いますので、
まずは正規化に取り組んでみましょう。

Q これらのテーブルはリレーショナルモデルの
範疇にあるでしょうか？　ないでしょうか？

問題2 レシピ検索機能

　レシピの検索について考えてみましょう。
おそらくユーザは料理のカテゴリから作りた
い料理のレシピを検索するでしょうから、料
理のカテゴリの情報をつけたほうがよさそう
ですが、どのように表現するかは悩ましいと
ころです。ツリー構造にして大カテゴリ（たと
えば肉のおかず）、中カテゴリ（牛肉）、小カテ
ゴリ（煮込み）のように区別するか、それとも
単なるタグにして、1つの料理に日本料理、鍋
料理、魚料理と言ったタグをつけるべきか、
それとも両方にすべきかという選択があるで

演習問題

40 - Software Design40 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

しょう。いずれにしても、そういった情報は
別のテーブルで表現するのがよいでしょう。

Q こういった検索機能はリレーショナルモデル
の範疇にあるでしょうか？　ないでしょうか？

問題3 ソーシャル機能

　次に、あなたはソーシャル機能を拡充する
ことを思いつきます。よいレシピを作成するユー
ザとお友達になる、あるいはフォローする機能。
レシピの更新や日々の出来事などをタイムラ
インとして綴る機能。さらに友人のタイムラ
インをまとめて時系列で表示する機能などが
考えられます。

Q 次の機能がリレーショナルモデルの範疇かど
うかについて考えてみてください。

・友達リスト
・個人のタイムラインを表示する
・ 友人やフォローしている人のタイムラインをま
とめて表示する

・友達の候補をユーザに提示する

　先ほどの3つの問いに対する解答例を解説し

ます。先に読み進める前に、ぜひ先ほどの問
題についてご一考してみてください。

解答1 レシピサービスのデータ構造

　いずれもリレーショナルモデルの範疇で設
計することができます。ユーザの集合、レシ
ピの集合、どのユーザがどのレシピを気に入っ
ているかという事実の集合です。材料につい
ては、レシピテーブルの1行として表現すると、
第一正規形を満たしませんので、どの材料が
どのレシピで使われているかということを示
すテーブルを作成するべきでしょう。ただし
同じ材料が複数のレシピに出現することを考
えると、材料の種類一覧を表すテーブルが合っ
たほうがよいでしょう。
　手順をどう表現するかは、やや課題があり
ます。手順全体を1つの文書のように扱うので
あれば、1つのカラムとして表現してもよいで
しょう。1つのステップをデータの単位とする
なら、別のテーブルで表現するべきですが、
その場合はリレーショナルモデルの範疇には
なりません。なぜならば、手順の各ステップ
には前後関係があるからです。集合は要素の
間に順序があってはいけませんので、手順は
リレーショナルモデルでは扱えません。
　図7に解答例のER図を示します。この解答
例では、手順は1つの文書であるという前提に

解答例

 ▼図7　A1のER図

40 - Software Design Sep. 2015 - 4140 - Software Design Sep. 2015 - 41

スマートにSQLを書くコツ
リレーショナルモデルと正規化の重要性

思いどおりにSQLを組めるようになりたい！

第　　　 時限

基づいています。また、ユーザのパスワード
認証の部分だけ別テーブル分けています。

解答2 レシピ検索機能

　まず、カテゴリを設定する方法についてで
すが、大カテゴリ、中カテゴリといった構造は、
階層構造≒ツリー構造になってしまいますので、
リレーショナルモデルは適用できません。ツリー
はSQL上でも表現する方法はありますので、
リレーショナルデータベース上で管理しても
問題はありませんが、アプリケーションが別
の方法で管理してもかまいません。
　タグは少々やっかいです。というのも、タ
グをつけるという行為自身は、リレーショナ
ルモデルの範疇で行うことができます。たと
えばタグテーブルは図8のように設計できるで
しょう。
　タグから目的のレシピを探すためのクエリも、
リレーショナルモデルに沿ったものになります。
問題は、そのクエリが実用的な性能にはなら
ないという点です。タグを使って検索をする
場合、1つのタグを指定しただけでは、膨大な
数のレシピが表示されるでしょう。たとえば「肉
料理」というタグがある場合、レシピの1/3ぐ
らいは該当するかもしれません。そこで、検
索結果を絞り込むために、ユーザは複数のタ
グを指定したくなるでしょう。そうすると、
そのクエリは2つのタグを検索した結果を、結
合（JOIN）するという構造を持ったものになり
ます。いわば自己結合です。次に、そのよう
なクエリの例を示します注11。

注11） このテーブルでは、1つのrecipe_idに対して、複数のタグ
を指定することができます。

SELECT a.recipe_id
FROM recipe_tags t1
INNER JOIN recipe_tags t2
USING (recipe_id)
WHERE t1.tag = '肉料理'
AND t2.tag = '煮込み料理'

　t1、t2双方から、膨大な数の検索結果がヒッ
トしますので、リレーショナルデータベースは、
膨大な行数を操作する必要があり、満足な性
能が出るはずがありません。リレーショナル

モデルに適合する場合でも、実装上効率的に

クエリを解決できず、満足な性能が得られな

い場合があるということは覚えておきましょう。
この問題に対しては、拙著注1で詳しく解説し
ていますので、そちらを参照してください。

解答3 ソーシャル機能

　それぞれの機能について考えてみましょう。

友達リスト
　これはリレーショナルモデルの範疇で設計
することができます。図9は友達リストのテー
ブルの例です。このように、2つのカラムを用
いて友だち関係であることを示しています。
　このテーブルにデータを格納するには2つの
方式が考えられるでしょう。

・user_id_1とuser_id_2で、どちらが大きい
IDになるかを事前に決めておく

・友達であることをフォローで表現する。互
いに友達であると認識している場合には、
相互にフォローする

 　前者の方法では列に順序が生じてしまうた

 ▼図8　タグの例 ▼図9　友達リストの例

42 - Software Design42 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

め、リレーショナルモデルにはなりません。
後者はデータ量は増えますが、リレーショナ
ルモデルに合致しますので、リレーショナルデー
タベース上では好ましい設計であると言えます。

個人のタイムラインを表示する
　集合は要素間に順序がないため、時系列で
並んだデータは集合にはなり得ません。したがっ
てタイムラインはリレーショナルモデルには
適合しないデータであると言えます。ただし、
個人のタイムラインは1つのテーブルとして表
現するのは難しくありませんし、クエリも
ORDER BY句を用いればすんなりと書けてし
まうでしょう。次の例は、user_timelinesと
いうテーブルに対してID=1000のユーザのタ
イムラインを10件取得するものです（テーブ
ル定義は省略しますが、データはtl_idの順に
格納されているものとします）。

SELECT tl_id, tl_content, tl_timestamp
FROM user_timelines
WHERE tl_user_id = 1000
ORDER BY tl_id DESC LIMIT 10

　ページ送りをしたい場合、たとえば最後に
取得したデータのtl_idが10000だった場合に
は、WHERE句に tl_id < 10000という条件
を追加すればよいでしょう。

友人やフォローしている人のタイムラインを
まとめて表示する
　この場合も先ほどと同様、リレーショナル
モデルでは表現できないデータです。しかも、
データの出どころがたくさんあるため、
ORDER BY句がインデックスで解決できない
公算が高く、さらに悩ましいデータ構造とな
ります。検索を高速化するよい方法は、フォロー
しているすべてのユーザに対して、事前に更
新があったことを配信してしまうことです。
配信済みのデータは、上記の場合と同様のク
エリでタイムラインを取得することができます。

問題は、配信をどのように実装するかという
ことでしょう。とくにフォロワーが多い人が
更新した場合には、配信先も多くなってしま
いますので、それに応じてデータ量も増え、
場合によっては膨大な量のデータを操作しな
くてはならないことになるでしょう。そのため、
コンテンツ本体は別テーブルに分け、IDだけ
を配信するのが現実的でしょう。

友達の候補をユーザに提示する
　リレーショナルモデルでは表現できない課
題です。ユーザの候補かどうかということは、
論理的に導くことができないからです。友達
の友達を表示するということなら難しくはあ
りませんし、それだけならリレーショナルモ
デルの範疇です。しかし、友達かどうかの判
定基準はそれだけではないはずですので、候
補を選び出すには、レコメンドエンジンのよ
うな、もっと複雑なアルゴリズムが必要にな
るでしょう。
　こういったよくありがちなテーマであっても、
リレーショナルモデルの範疇とそうでないデー
タに分かれてしまうということを、ご理解い
ただけたでしょうか。設計とは無限にある可
能性の中から1つを選択することですので、こ
の解答以外にも、もっとよいものがあるかも
しれないということは、付け加えておきたい
と思います。

　本稿では、アルゴリズムとデータ構造が切
り離せない存在であることを説明しました。
大切なことは、今必要なアルゴリズムは何か
ということを見極め、そのうえで適切なデー
タモデルを選択するということです。リレーショ
ナルデータベースはリレーショナルモデルが
基本的なデータ構造ですから、リレーショナ
ルモデルが適している場合に真価を発揮します。
リレーショナルモデルはたいへん応用が利く

まとめ

42 - Software Design Sep. 2015 - 4342 - Software Design Sep. 2015 - 43

スマートにSQLを書くコツ
リレーショナルモデルと正規化の重要性

思いどおりにSQLを組めるようになりたい！

第　　　 時限

データモデルであるため、適しているケース
はとても多く、これからもリレーショナルデー
タベースは広く使われることでしょう。
　万物に完璧なものはなく、リレーショナル
モデルも例外ではありません。リレーショナ
ルモデルをよく理解すれば、自ずとその限界
もわかってきます。リレーショナルモデルで
は表現できないデータは、リレーショナルモ
デルを適用すべきではありません。そのデー
タに合ったデータ構造を用いましょう。幸か
不幸か、SQLはリレーショナルモデル以外の
データも扱えるようになっています。それは、
SQLがリレーショナルモデルを基礎としつつ
も、完全には一致していないということに起
因します。リレーショナルモデルに適合しな
いデータであっても、SQLの範疇でカバーで
きるケースがたくさんあるということを覚え
ておきましょう。
　さらに実践でSQLを利用するには、満足な

性能が得られなければなりません。そのため
にはリレーショナルデータベースや、その配
下にあるOSなどの実装を理解する必要がある
でしょう。また、トランザクションをきっち
りと実践したり、テストをしっかり書くといっ
たことも重要です。
　プログラマの生産性は、できる人とそうで
ない人では100倍も違うと言われています。
たいへんインパクトのある数字ですが、SQL

も例外ではありません。リレーショナルモデ
ルをきちんと理解し、リレーショナルモデル
を適用できるデータかどうかを見極められる
かどうかで、プログラマの生産性は大きく異なっ
て来るでしょう。しかもデータベースの場合は、
同じ設計をたくさんの人で使いまわすため、デー
タベース設計がよくなかった場合の影響は甚
大です。ぜひリレーショナルモデルをきちん
と理解したうえで実践し、快適なデータベー
スライフを送ってください。ﾟ

月刊誌『Software Design』の2012年1月号～2013年12月号で
連載していた「開眼シェルスクリプト」の内容を大幅に加筆／修
正し、書籍にまとめました。
LinuxやUNIXのコマンドは単独で使うよりも、複数のコマンドを
組み合わせてこそ真価を発揮します。テキストデータの検索／
置換／並べ替え、ファイルのバックアップや削除、数値や日付の
計算など活用範囲は無限大。シェルは、端末にコマンドを入力し
てすぐに実行できるのも良いところ。その場かぎりの作業にこそ、
ちょちょいとシェルプログラミングが使えると便利です。本書のいく
つもの実例を順に見ていけば、コマンドを自在に組み合わせるた
めに必要なシェルの機能と考え方が身につきます。

上田隆一 著 USP研究所 監修
B5変形判／416ページ
定価（本体2,980円＋税）
ISBN 978-4-7741-7344-3

・Linux/UNIX利用者全般、プログラマ、インフラエンジニア
・コマンドを自在に組み合わせるコツを知りたい方
・大量のテキストデータの編集や集計を高速に行いたい方
・手作業でやっている作業を自動化したい方

44 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

なぜオブジェクト指向で
開発するのか

　ソフトウェア開発は変更コストとの戦いです。
コードが1行もないところから、コードの追加
と変更を繰り返す作業がソフトウェアの開発
です。初期の開発が終わり、ソフトウェアが
使われ始めると、想定外の使われ方に対応し
たり、機能の追加や変更の要求に応えるために、
ソフトウェアの変更作業が続きます。
　オブジェクト指向は、このソフトウェアの
変更を楽で安全にするための実践的な考え方
であり工夫です。
　同じ機能は、いろいろな書き方で実現でき
ます。そして、書き方の違いによって、変更
がたいへんになることもあれば、変更が簡単
になることもあります。
　この記事では、Javaの例を使いながら、オ
ブジェクト指向を使って、変更がやりやすい
プログラムの書き方、その考え方とやり方を
紹介します。

変更コストの敵を知る

　変更がたいへんになるプログラムの特徴は
次のとおりです。

・どこに何が書いてあるかわからない
・同じ修正があちこちで必要
・変更の副作用がこわくて変更ができない／

変更したら思わぬところに副作用が起きた

　なぜ、このようなことが起きるのでしょうか。
どのようなことに気をつけてソフトウェアを
設計すれば、どこに何が書いてあるかわかり
やすく、変更が必要な個所が少なく、変更の
副作用の心配をしなくてよくなるのでしょうか。
　オブジェクト指向では、次の点に注目して、
この問題の改善に取り組みます。

・データの扱い方の工夫
・場合分けの書き方の工夫
・プログラムの分割のしかたの工夫
・名前の付け方の工夫

　具体的に見ていきましょう。

関連するデータとロジッ
クは同じクラスに書く

　オブジェクト指向では、データとロジック
（データの操作）を、1つのクラスにまとめるこ
とを重視します。
　逆に言えば、次のようなプログラムは、オ
ブジェクト指向「らしくない」書き方です。

・getter/setterだけの「データのいれもの
クラス」と、ロジックを集めた「機能クラス」
とに分ける

・String getXxxx()の形式で、オブジェク
ト内部のインスタンス変数を、加工も処理
もせず、そのまま取得する

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

第　　　 時限

オブジェクト指向の
実践的な考え方とやり方
変更に強いプログラムの書き方

Javaを使いこなしていますか？

 Author 増田 亨（ますだ とおる）　ギルドワークス㈱（http://guildworks.jp/）

http://guildworks.jp/

44 - Software Design Sep. 2015 - 45

第　　　 時限 オブジェクト指向の実践的な考え方とやり方
変更に強いプログラムの書き方

Javaを使いこなしていますか？

・オブジェクトを引数なしのコンストラクタ
で生成する

・void setXxxx(引数)形式のメソッドを使っ
て、オブジェクトのインスタンス変数を書
き換える

・StringUtil、DateUtilなど、データを操
作するロジックを集めたライブラリクラス（共
通サブルーチン集）を使う

　オブジェクト指向は、これとは逆の発想です。

・データを操作するロジックは、そのデータ
をインスタンス変数に持つクラスに一緒に
する（データクラスと機能クラスに分けない）

・オブジェクトを生成するときは、必ず操作
対象のデータをコンストラクタの引数とし
て渡す

・オブジェクトに、getXxxx()の形式で内部
のインスタンス変数を要求しない

・オブジェクト内部のインスタンス変数を、
外から変更しない（setterメソッドを使わな
い）

　このようにする理由は3つです。

・データとロジックを別のクラスに分けると、
データを操作するロジックが、あちこちに
重複しやすくなる

・オブジェクトのインスタンス変数を書き換
える操作は（状態が変わるので）、プログラ
ムの動作が不安定になりやすい

・データを引数で渡すことを繰り返すと、そ
のデータを使った判断／加工／計算のロジッ
クが、どこ書いてあるか、見つけ出すのに
苦労する

　データと、そのデータを使った判断／加工
／計算のロジックを同じクラスに書いておけば、
そのデータを扱うロジックを変更するときに、
そのデータを持つクラスに注目すればよくな
ります。1つの要求変更でプログラムのあちこ
ちを調べ回る必要はありません。ロジックは、

そのクラスに一元化されていますから、あち
こちに同じ変更を繰り返す必要はありません。
　オブジェクト内部のデータ（インスタンス変
数）を上書きはしないようにすれば、そのオブ
ジェクトの挙動が安定します。メソッドを呼
び出すタイミングや順番が変わっても、同じ
結果を返すようになります。使う側にとって、
安心して使えます。
　このように、データとロジックを一緒のク
ラスにまとめる、という発想が、オブジェク
ト指向の基本アイデアの1つです。

基本のデータ型を使うロジック
を用途ごとのクラスにまとめる

　データとロジックを同じクラスにまとめる、
具体的なやり方を説明します。
　基本は、プログラミング言語に用意されて
いる汎用的なデータ型を使って、用途を限定
した「独自のクラス」を作ることです。
　Java言語に用意されている基本的なデータ
型は表1のものがあります。
　これらの基本的なデータ型とそのメソッドは、
いろいろな用途に使えるように汎用的に設計
されています。
　扱える数字の範囲、文字列の長さ、文字の
種類、日付の範囲、コレクションが持てる要
素数。どれも実質的には無制限です。
　また、それぞれのクラスに用意されている
メソッドも、add（引数）、plus（引数）、get（引

数）など、任意の引数を渡して、どのような範
囲の操作もできるようになっています。
　このような汎用的なデータ型と汎用的な操
作をそのまま使うと、次の問題が起きがちです。

数値 Integer, BigDecimal
文字列 String, StringBuilder
日付時刻 LocalDate, LocalDateTime
コレクション List<型>,Set<型>,Map<型>

 ▼表1　Javaでよく使う基本的なデータ型

46 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

・業務的に正しくないデータが混入しても動
いてしまう

・プログラムのどこを見ても同じような記述
が並ぶ（基本データ型だらけのコード）

・plus(1)など汎用的な操作が、どのような
意図なのか、判断しにくい

　「誕生日」を扱うロジックを考えてみましょう。
　LocalDateクラスは、10億年前から10億年
後まで20億年分の日付を扱えます。通常の「誕
生日」の概念から考えると、ほとんどが異常な
データです。
　LocalDateクラスは、年月日の任意のフィー
ルドで、任意の加算／減算ができます。「誕生日」
について、知りたいこと、やりたいことは、
それほど、汎用的なデータ操作ではありません。
　オブジェクト指向らしい設計は、汎用的なデー
タ型であるLocalDateを内部に持つ、独自の「誕
生日」クラスを作ることです。
　たとえばリスト1のようなクラスです。
　汎用的なLocalDateを内部に持ち、用途を「誕
生日」に限定した独自のクラスを作るこのやり
方のメリットは次のとおりです。

・「誕生日」に関するロジックを1個所に集約
できる

・間違った日付が混入しないので、安心して
使える

・オブジェクトの持つ日付を変更できないので、
どのタイミングでメソッドを呼び出しても、
同じ結果であることを保証できる

　DateOfBirthのような独自のクラスを作らな
い場合と比較すると、違いがよくわかります。
　誕生日のデータを持つLocalDateオブジェ
クトを使えば、誕生日の妥当性のチェックや、
月日だけを取り出す操作は、プログラムのど
こでも簡単に記述できます。しかし、これが
問題です。誕生日に関するロジックを変更し
たいときに、プログラム中のすべてのLocal

Date型を調べることになりかねません。

LocalDate型は「誕生日」以外の用途にも使い
ますから、プログラムの中で、「誕生日に関連
する」個所を特定することは、たいへんな作業
です。
　一方、DateOfBirthクラスを使えば、ロジッ
クは、このクラスだけに集約されています。
また、変更の影響範囲は、DateOfBirthクラス
を使っている個所だけに限定できます。
 この「誕生日」クラスが、オブジェクト指向で
変更コストを下げる典型的な書き方です。
　同じ考え方で、次のような目的を限定した
クラスをたくさん作るのがオブジェクト指向
らしい設計スタイルなのです。

・数量、単価、消費税、人数、……
・申込日、予定日、期間、期日、……
・氏名、電話番号、メールアドレス、備考、
メモ、……

　このように、アプリケーションで使うデー

 ▼リスト1　用途を限定した独自の誕生日クラス

class DateOfBirth {

 @NotEmpty(message = "必須")
 @Past(message = "過去日付")
 LocalDate date;

 DateOfBirth(LocalDate date) {
 this.date = date;
 }

 MonthDay withoutYear() {
 return MonthDay.from(date);
 }

 Year onlyYear() {
 return date.getYear();
 }

 int daysTo() {
 LocalDate today = LocalDate.now();
 Period period = date.until(today);
 return period.getDays();
 }

 String asText() {
 DateTimeFormatter formatter = ｭ
DateTimeFormatter.ofPattern("y年M月d日生");
 return date.format(formatter);
 }
}

46 - Software Design Sep. 2015 - 47

第　　　 時限 オブジェクト指向の実践的な考え方とやり方
変更に強いプログラムの書き方

Javaを使いこなしていますか？

タを扱うための用途限定のクラスを設計する
パターンを「値オブジェクト（VO:Value Obj
ect）」と呼びます。
　数値、文字列、日付を扱う基本的なデータ
型を内部に持って、用途を限定した「値オブジェ
クト」を作ることが、ソフトウェアの変更を楽
に安全にするオブジェクト指向らしいプログ
ラミングのやり方です。

データの意図と操作の
意図のレベルを合わせる

　オブジェクト指向で「データとロジック」を
一体で考えるのは、単純に、1つのクラスにデー
タとロジックをまとめて書く、というだけで
はありません。
　もっと大切なのは、そのクラスで扱うデー
タの意図と、そのデータを操作するメソッド
の意図の「レベル」を合わせることです。わか
りにくいですね。DateOfBirthを例にして説
明しましょう。図1を参考にしてください。
　LocalDateは、内部に int year、short mon
th、short dateのプリミティブなデータ型を
持っています。intとshortの使い分けは、メ
モリの使用効率を意識した選択です。
　LocalDateのメソッドの中身は、このintや
shortのインスタンス変数を判断／加工／計算
するロジックです。
　LocalDateのメソッドの中のコードは、メモ
リ効率などコンピュータのしくみを強く意識
した内容です。「コンピュータのしくみを意識
する」という点で、レベルが一致しています。
　LocalDateを外側から見てみましょう。クラ
ス名からわかるとおり、このクラスは「日付」
を（現地のタイムゾーンで）扱うことを意図し
ています。
　それと対応して、LocalDateのメソッド名は
plusDays()/atStartOfDay()/isBefore() な
ど、日付を意識した名前になっています。「日付」
を扱うという点で、レベルが一致しています。
　そして、LocalDateを使ったDateOfBirthク

ラスは、いろいろな日付の中でも「誕生日」だ
けに用途を限定したクラスです。
　メソッドも「誕生日」を使った判断／加工／
計算に使うメソッド名だけです。LocalDateの
ように汎用的な日付計算はできません。「誕生日」
という関心事のレベルで一致しています。
　このように関心事のレベルをそろえながら、
int/shortを使ってLocalDateクラスを定義し、
LocalDateクラスを使って、DateOfBirthクラ
スを階層的に作っていくのがオブジェクト指
向らしいプログラミングのやり方です。
　コンピュータのしくみを意識したレベルの
データ／ロジックや、それを使った汎用的なデー
タ型は、Javaが言語として用意しています。
　オブジェクト指向を使って、アプリケーショ
ンを開発する技術者がやるべきことは、
DateOfBirhtクラスのように、ソフトウェアを
利用する人たちの関心事を直接表現できるク
ラスを発見し、実装することなのです。

ドメインオブジェクト

　「誕生日」クラスのように、ソフトウェアを
利用する人たちの関心事に直接対応するオブ
ジェクトを「ドメインオブジェクト」と呼びます。

 ▼図1　データの扱い方の階層

使う

人間の関心事

コンピュータのしくみ

DateOfBirth
クラス

使う

int year
short month
short day

「誕生日」に用途を限定して
独自に定義したクラス

日付を汎用的に扱うクラス
範囲は実質的に無限

LocalDate 内部の
インスタンス変数
Java のプリミティブな
データ型を使用

LocalDate
クラス

48 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

　ソフトウェアの対象領域（ドメイン）の関心
事に由来するオブジェクト、という意味です。
　オブジェクト指向のプログラミングでは、
このドメインオブジェクトの発見と実装が主
要な課題です。ドメインオブジェクトは、利
用者の関心事に直接対応します。ですので、
利用者の言葉で語られる、機能の修正や拡張
の対象となる個所は、クラス名から簡単にか
つ正確に特定できます。どこに何が書いてあ
るか調べるのがたいへん、という問題を解決
できるわけです。また、利用者の関心事の単
位にデータとロジックを整理したドメインオ
ブジェクトは、変更の副作用を減らします。
　「誕生日」という関心事についての変更は、「締
切日」という別の関心事に影響はしません。
　DateUtilクラスに日付の計算処理を集約し
た、オブジェクト指向でないスタイルだと、「誕
生日」と「締切日」の両方で、同じ日付計算メソッ
ドを使っている可能性があります。「誕生日」
に関する仕様を変更したつもりが、「締切日」
の判定に影響がでた、というようなことが起
きる原因です。
　クラス以外にも、変更の対象個所を特定し
たり、影響範囲を狭くコントロールするしく
みがあります。複数クラスのグループを宣言
するパッケージ（package）宣言です。
　パッケージ名も、利用者の関心事、利用者
の要求の説明に使われる言葉を使うようして、
どこに何が書いてあるかわかりやすくします。
　そして、パッケージ内のクラスとメソッドは、
可能な限り、Javaのデフォルトのスコープ（パッ
ケージプライベート）にします。パッケージプ
ライベートのクラスやメソッドは、パッケー
ジの外部から参照できません。変更が外部に
波及することを制限する良いプログラミング
スタイルです。

コレクション型の扱い

　List<Order>など、コレクション型のデータ

は、ソフトウェア変更を難しくする原因にな
りがちです。
　コレクションの操作は、ループ処理が多く、
バグが混入しやすく、変更がやりにくい個所
です。また、コレクションの要素の追加や削除、
要素の内容の変更を行うと、状態が変わるため、
プログラムの挙動が不安定になります。
　コレクション型のロジックの変更はやっか
いで危険な作業です。
　コレクション型も、数値／文字列／日付を
扱う「値オブジェクト」と同じように扱います。
コレクション型のインスタンス変数と、その
コレクション型を操作するロジックを1個所に
集めた独自のクラスを作るのがオブジェクト
指向らしいやり方です（リスト2）。
　この設計のやり方を、コレクション型の変
数1つを特別扱いするクラス、という意味で
「ファーストクラスコレクション」と呼びます。
こうすることで、変更の対象となるロジック
が書かれた場所を特定しやすく、変更の影響
範囲を狭く閉じ込めやすくなります。
　また「注文履歴」クラスも、利用者の関心事
に直接対応しています。つまり「ファーストク
ラスコレクション」は、ドメインオブジェクト
を発見して実装する方法でもあるのです。
　ソフトウェアを利用する人たちの関心事に
合わせた「値オブジェクト」や「ファーストクラ
スコレクション」を積極的に作ることが、オブ
ジェクト指向らしい、ソフトウェアの変更が
楽で安全になる工夫です。
　次に変更の大敵である「場合分け」との戦い
方を説明します。

場合分けの書き方の工夫

if-else は、変更がたいへん
になる

　「場合分け」の書き方の違いは、ソフトウェ
アの変更コストに大きく影響します。
　具体例で見てみましょう（リスト3）。

48 - Software Design Sep. 2015 - 49

第　　　 時限 オブジェクト指向の実践的な考え方とやり方
変更に強いプログラムの書き方

Javaを使いこなしていますか？

　給付金（payAmount）の金額を、「死亡時」「退
職時」「通常時」で、場合分けする処理を、if-

else構文で記述した例です。
　この書き方は、もっと変更が楽で安全にな
るように書き換えることができます。

早期リターン

　前の例は、一時変数resultを使い、if文を
終わったあとで、resultを返しました。
　しかし、この例では、条件に一致すれば、
その時点で給付金額が確定します。ですので
一時変数は使わず、条件文の中でただちに
returnできます（リスト4）。

　先ほどの例よりも、一時変数がなくなって
いるので、その分、シンプルになりました。
これが「早期リターン」という書き方です。

elseを使わない書き方

　「早期リターン」で書くと、実は else句を書
く必要はありません（リスト5）。

・「死亡した時」は、ただちに「死亡時の金額」
を返す

・「退職した時」は、ただちに「退職時の金額」
を返す

・それ以外の一般的な場合は、「通常の金額」
を返す

　ずいぶんとすっきりしたコードになりました。
最初の一時変数を使った if-else形式の書き方
と比較してみてください。
　特殊な場合を if文で判定し、else句を使わ
ずに早期リターンするこの書き方を「ガード節」
と呼びます。
　「リファクタリング」本の「条件記述の単純化」
で紹介されているテクニックです。if-else構
文を見つけたら、「早期リターン」や「ガード節」
に書き換えることを検討してみましょう。ちょっ
とした書き方の変更ですが、「場合分け」のコー

 ▼リスト2　注文履歴クラス

class OrderHistory {

 List<Order> orders;

 OrderHistory(List<Order> orders) {
 this.orders = orders;
 }

 Quantity totalOfThisYear() {
 // 今年注文された総数
 }

 Orders lastOf() {
 // 直近の注文
 }

 PendingOrders pending() {
 // 未受注の注文一覧
 }
}

 ▼リスト3　if-elseを使った書き方の例

double getPayAmount(){
 double result;
 if(isDead()){
 result = deadAmount();
 } else if(isRetired()){
 result = retiredAmount();
 } else {
 result = normalAmount();
 }
 return result;
}

 ▼リスト4　金額が確定したらすぐリターンする

double getPayAmount(){
 if(isDead()){
 return deadAmount();
 } else if(isRetired()){
 return retiredAmount();
 } else {
 return normalAmount();
 }
}

 ▼リスト5　早期リターンの例

double getPayAmount(){
 if(isDead())　return deadAmount();
 if(isRetired()) return retiredAmount();
 return normalAmount();
}

50 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

ドがすっきりし、変更時にバグが紛れ込む可
能性を減らせます。

複文より単文

　「ガード節」と「早期リターン」を適用した最
後の例は、独立した3つの「文」が並ぶシンプル
な分岐構造です。
　if-else構文を使った最初の2つの例は、if文
の else句の中に、さらに if文を書いている構
造です。つまり文の中に文を書く「複文」構造
です。「複文」構造がわかりにくいのは、自然
言語でも、プログラミング言語でも同じです。
最後の例がすっきりしてわかりやすのは、文
の中に文を書いた「複文」ではなく、「単文」を
並べたシンプルな構造だからです。else-ifの
ような「複文」構造を見つけたら、「早期リター
ン」＋「ガード節」で「単文」構造にできないか検
討してみましょう。「単文」構造にできれば、コー
ドは読みやすく変更しやすくなります。

処理の独立性

　「単文」構造にした最後の例は、処理（文）の
独立性も高くなっています。「複文」は、「文」
と「文」の関係があきらかに「密結合」ですね。「単
文」を並べる方式は、それぞれの「文」の結合度
（影響度合い）が下がります。
　たとえば「離婚したときの給付金額」を追加
してみましょう。単文を並べた方式は、別の
単文を追加するだけです。簡単で間違いが減
ります（リスト6）。
　この3つの if文は、順番を入れ替えても何も
問題がおきません。処理どうしの関係が「疎結合」
になっている良い点です。
　このように、同じ場合分けでも、密結合の「複
文」構造ではなく、できるだけ、独立性の高い「単
文」に分解することが、オブジェクト指向らし
い場合分けの書き方の基本アイデアです。

オブジェクト指向らしい
場合分け

　今までの例は、if文を使って、処理の場合分
けを書きました。Javaなどオブジェクト指向
のしくみを取り入れた言語では、「場合分け」は、
もっと別の書き方ができます。
　発想は単純です。

	 ＜場合ごとのロジック、それぞれ独立した
別のクラスにしてしまう＞

　場合分けを、「単文」を並べる方式にすると、
それぞれの if文と if文の関係が疎結合になり
ました。これを発展させて、場合ごとのロジッ
クを別々のクラスに分けて書く、という発想
です（リスト7）。
　こうすれば、それぞれの「場合」のロジック
をどこに書くかが明確です。
　「死亡時」の金額の計算方法を変更するために、
DeadAmountクラスを修正しても、他のクラ
スに影響しません。場合ごとの変更を分離し
独立させて扱うことが、この書き方の狙いで
あり、メリットです。
　場合ごとにクラスを分けると、複数のクラ
スを使い分けるのはたいへんになります。そ
こで3つの場合ごとのクラスの違いを意識せず
に同じように扱うしくみを導入します。それ
が「インターフェース宣言」です（リスト8）。
　「給付金額」を知りたいクライアント（使う側）

 ▼リスト6　離婚の場合を追加する変更

double getPayAmount(){
 if(isDead())　return deadAmount();
 if(isRetired()) return retiredAmount();
 if(isSeparated()) return separatedAmount();
 return normalAmount();
}

 ▼リスト7　場合ごとのクラス

class DeadAmount { double getAmount(){...}; }
class RetiredAmount { double getAmount(){...}; }
class NormalAmount { double getAmount(){...};}

50 - Software Design Sep. 2015 - 51

第　　　 時限 オブジェクト指向の実践的な考え方とやり方
変更に強いプログラムの書き方

Javaを使いこなしていますか？

ラスのオブジェクトを生成するときに、どこ
かに if文かswitch文が必要になりそうです。
　Javaの場合は、列挙型（enum）という便利な
しくみがあって、実装クラスの生成も、if文な
しに記述できます。
　たとえばこんなenumを宣言します（リスト

10）。
　こうすると、PayAmount型で参照するオブジェ
クトは、タイプ名の文字列から、生成できま
す（リスト11）。
　Enum#valueOf()メソッドは、if文や switch

文を使わずに、場合ごとに異なるオブジェク
トを生成できる便利でわかりやすい方法です。

のクラスは、こんな書き方になります（リスト

9）。
　クラス図で描くと、こんな感じです（図2）。
　クライアントクラスは、PayAmountという
「型」を意識しているだけで、「死亡時」「退職時」
「通常時」の場合分けは、意識していません。
これが「多態」とか「ポリモフィズム」と呼ぶ、
オブジェクト指向らしい場合分けの書き方の
例です。

場合ごとのオブジェクトを
if文なしに生成する

　先ほどの例では、Clientクラスには場合分
けは登場しません。しかし、インスタンス変
数で宣言したPayAmount型で参照する実装ク

 ▼リスト9　給付金額を知りたいクラス

class Client {
 private PayAmount amount ;

 double getAmount() {
 return amount.getAmount();
 }
}

 ▼リスト8　場合ごとのクラスを束ねるしくみ

interface PayAmount {
 dboule getAmount();
}

//それぞれのクラスでインターフェースを実装する
class DeadAmount implements PayAmount {...}
class RetiredAmount implements PayAmount {...}
class NormalAmount implements PayAmount {...}

 ▼図2　クラス図

Client
amount :PayAmount－

RetiredAmount
getAmount() :double＋

DeadAmount
getAmount() :double＋

NormalAmount
getAmount() :double＋

PayAmount
getAmount() :double

<<interface>>

＋

 ▼リスト10　enumで場合ごとのクラスを宣言する

enum PaymentType{
 dead(new DeadAmount()),
 retired(new RetiredAmount()),
 normal(new NormalAMount());

 private PayAmount amount;

 private PaymentType(Payamount amount) {
 this.amount = amount;
 }

 double getAmount() {
 return amount.getAmount();
 }
}

52 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

オブジェクト指向で場合分けの
変更コストを下げる

　業務アプリケーションでは「区分」や「種別」
ごとのビジネスルールが複雑になりがちです。

また、「区分」や「種別」は変更が必要になるこ
とも多く、変更ミスやバグの温床になります。
　「区分」や「種別」を使ったビジネスルールを
記述するプログラミングでは、一時変数と if-

elseを使った最初の書き方と、最後に紹介し
た「多態」「列挙型（enum）」を使った書き方では、
ソフトウェアの変更コストがそうとう違って
きます。
　「プログラムを動かす」だけなら、どの書き
方でも同じです。しかし「変更コスト」を考え
ると、if-elseを使った「複文」構造は、できる
だけ避けるべきです。

オブジェクト指向らしい
設計の考え方とやり方

部品から組み立てる

　「値オブジェクト」「ファーストクラスコレク
ション」「列挙型」を使った場合ごとのクラス分
け。いずれも、プログラムの全体構造ではなく、
アプリケーション機能を実現する部品に注目
したアプローチです。
　オブジェクト指向は、部品を発見し、部品
を実装しながら、全体を組み立ていく、ボト
ムアップを重視したアプローチです。
　オブジェクト指向の、この部品からアプロー
チするスタイルは、ジグソーパズルに似てい
ます。
　最初はどのピースがどこにはまるかがわかっ
ていません。

　わかりやすいピースをなんとか見つけて配
置していきます。そのピースのまわりにだん
だん別のピースがはまり始めます。
　そういうピースの塊が、あちこちで成長を
始めますが、まだ大きな空白も残ったままです。
　しかし、あるところまでピースの塊の成長
が進むと、急激に空白がうまります。部品か
ら出発して全体を組み立てていくオブジェク
ト指向のボトムアップのアプローチはこれと
よく似ています。
　実際には、オブジェクト指向によるボトムアッ
プのアプローチは、もう少し複雑です。
　登場する部品は、ジグソーパズルのピース
のように、最初から決まっているわけではあ
りません。部品そのものも、手探りで作って
いく感じです。また、ジグソーパズルでは、
最終形の写真があることが普通です。しかし、
ソフトウェアの開発では、最終形が具体的に
見えてくるのは開発の終盤です。
　もちろん、最初の段階で、ある程度の最終
形を想定してから開発を進めます。しかし、
実際には、開発の途中で発見されるさまざま
な事象により、最終形が当初の想定とは異な
る姿になるほうが普通でしょう。

全体像と部分をいったりきたり
しながら積極的に変更する

　開発の早い段階で全体構造を決めてから段
階的に詳細化する機能分割のようなアプロー
チはオブジェクト指向らしくないアプローチ
です。
　オブジェクト指向でも、全体のイメージを
想定はしますが、単純で明確な部品を発見し、
それを早い段階から実装することを重視します。
　この部品重視のやり方は、オブジェクト指
向が「変更コスト」を下げることを重視した技
術であることと深く関係しています。
　開発は終盤になるほど変更コストが高くなる、
という従来のアプローチだと、変更を避ける
ために、可能な限り設計を前倒しして精緻に
決めようとします。

 ▼リスト11　タイプ名の文字列から生成する

PaymentType　type = Payamount.
valueOf("dead");
　 ……（中略）……
double amount = type.getAmount();

52 - Software Design Sep. 2015 - 53

第　　　 時限 オブジェクト指向の実践的な考え方とやり方
変更に強いプログラムの書き方

Javaを使いこなしていますか？

が高くなります。詳細機能レベルでは同じデー
タを使うことが多いので、あちこちの詳細機
能のプログラムに、同じデータを操作する似
たようなコードが重複します。その結果、変
更のためにあちこちを調べ、広い範囲のコー
ドを書き換え、副作用がないことを検証する
ために大量のテストが必要になります。
　この問題の解決策の1つがオブジェクト指向
であることはこの記事で説明してきたとおり
です。　機能の段階的詳細化ではなく、ソフト
ウェアを利用する人たちの関心事、ソフトウェ
アに対する要求を説明する「言葉」に注目して、
それを、そのまま「ドメインオブジェクト」と
してプログラム単位とするのがオブジェクト
指向のアプローチです。
　そして、言葉の組み合わせ方でさまざまな
文章を生みだせるように、「ドメインオブジェ
クト」の組み合わせ方、オブジェクトのネット
ワーク構造で、さまざま機能を実現し、組み
合わせ方によって、機能の変更や拡張に柔軟
に対応するのがオブジェクト指向らしい設計
の考え方です。

クラス図もネットワークを
意識して描く

　部品を発見し、部品の組み合わせ方を考え
る手段の1つがクラス図です。
　UML（統一モデリングン言語）は、クラス図
を始め、さまざまなモデリングや設計のため
図法が標準化されています。
　オブジェクト指向の設計に、すべてのUML

仕様を理解し、使いこなす必要はありません（と
いうか、最近のUMLは複雑すぎて、そもそも
全体を習得するのは無理です）。
　しかし、標準化された記法は、共通の言語
として、意図を正しく伝達しあうためにはた
いへん便利です。UMLの基本的な記法、とく
にクラス図の基本事項はチーム内の共通理解
にしておくことは大切です。
　クラス図の書き方の基本は、ジグソーパズ
ルと一緒です。部品となりそうなドメインオ

　ソフトウェアのコード量が増えても「変更を
楽に安全」にできる、というオブジェクト指向
の発想だと、開発の前半で設計に時間をかけ
ることは費用対効果が悪いと考えます。
　あまり細かいことを把握できていない初期
の段階では、ざっくりとした全体像を掴む程
度にし、部品を見つけながら、ジグソーパズ
ルのように完成に向かって、部分部分を成長
させていく、という発想です。
　部分を作っていくと、全体に対する知見も
増えます。その知見を活かして全体像も見直
しながら開発を進めます。
　このようなインクリメンタルな開発という、
アジャイル手法の考え方の根底にあるのは、
オブジェクト指向技術で「変更コスト」を下げ
ることができる、ソフトウェアの規模が大き
くなっても、変更を楽に安全にできるように
設計できる、という考え方なのです。
　また「リファクタリング」も、オブジェクト
指向の「変更を楽に安全にする」という発想か
ら生まれています。
　実際に動いてから発見したことを反映して
ソフトウェアを変更するほうが、良い設計に
早くたどり着ける、という発想です。
　また「リファクタリング」を実践することで、
変更コストの高い設計を、徐々に改善して、トー
タルの変更コストを下げる、という発想です。

全体は「ツリー」ではなく
「ネットワーク」

　オブジェクト指向ではソフトウェアの全体
構造を「ツリー」構造とはとらえません。
　さまざまなドメインオブジェクトがネット
ワーク状に連携することで、必要な機能を提
供する、ネットワーク構造としてソフトウェ
アの構造を設計します。
　機能分解からトップダウン式で機能を詳細
化するアプローチは、要求の整理の手法とし
ては有効です。
　しかし、その機能分解の構造を、そのまま
プログラムの構造に反映すると、変更コスト

54 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

ブジェクトの候補クラスを見つけながら配置
していきます。
　クラスの候補は、要件定義書／ユースケー
ス／画面仕様書／データ仕様書などに登場す
る言葉と言い回しが良い手掛かりになります。
　部品が見つかるたびに、配置を変更したり、
部品と部品の関係を見直しながら、クラス図
上で、ざっくりと全体を組み立ててみます。
　そして役に立ちそうな部品、使うことがほ
ぼ確実な部品を見つけたら、実際にプログラ
ミングして設計の妥当性を検証します。プロ
グラミングの過程で、新たな部品や関係を発
見できることもよくあります。
　そうやって、クラス図（やパッケージ図）で
全体像をとらえながら、実際のコードで部分
を作っていきます。クラス図の全体像とコー
ドの実装をいったりきたりしながら、全体も
部分も段階的に完成させていくのがオブジェ
クト指向らしい開発のやリ方です。
　なお、クラス図に詳細なクラス定義をすべ
て描くのは費用対効果の悪いやり方です。
　全体像がわかることは大切ですが、詳細はコー
ドで確認すれば十分だし、そのほうが正確です。

クラス図とER図

　オブジェクト指向の設計に使うクラス図と
テーブルの設計に使うER（Entity Relation）図
は、どちらも箱と矢印を使った似た記法です。
　しかし、その意味は大きく異なります。と
くに矢印の意味が異なります。ER図では、矢
印は「キー」に注目した、テーブルとテーブル
の（データとデータの）関係を示します。
　クラス図の矢印には、そういう意味はあり
ません。
　クラス図の矢印は、サービスを依頼するク
ラス（クライアント）と、サービスを提供する
クラス（サーバ）とのクラス間の「協力関係」を
示しています。
　ですので、それぞれのクラスが保持するデー
タの間には、何も関係がなくても、あるクラ

スと別のクラスがクライアント／サーバの関
係になることができます。
　クラス図の矢印は、矢印の先にあるクラス
に対して、「そのクラスに仕事を依頼する」と
か「そのクラスの持つサービスを使う」という
意味です。

全体の組み立て方

　オブジェクト指向は、このクラスのクライ
アント／サーバの関係で全体を組み立てます。
このネットワーク上に組み立てるやり方が、
オブジェクト指向でプログラミングした場合に、
変更が楽で安全になる理由の1つです。
　機能に追加が必要になったときは、サーバ
役のクラスを追加する、あるいはサーバ役の
クラスだけを取り替えればが良いわけです。
　またクライアントとサーバの関係は、実行
時に動的に切り替えることができるのがオブ
ジェクト指向の特徴です。実行時に、その状
況に最適な仕事の依頼先を自動的に見つけて、
仕事を依頼するスタイルで、全体を組み立て
ておくわけです。

演習問題

　1つ演習問題をやってみましょう。

問題
　ある美術館の入場料金は表2のとおりです。
　この料金表をコンソール（Sytem.out）に表示
するプログラムを書いてください。

高齢者 -（無料）
大人 2,000円（通常料金）
子供 1,000円（半額）

 ▼表2　入場料金表

54 - Software Design Sep. 2015 - 55

第　　　 時限 オブジェクト指向の実践的な考え方とやり方
変更に強いプログラムの書き方

Javaを使いこなしていますか？

ヒント
（1） 「列挙型（enum)」と「多態」を活用してください。
（2） 「列挙型」のすべての要素は、values()メソッ

ドで取得できます。
（3） 高齢者の金額表示("-")はガード節で出し分

けてください。

解答例
　図3にクラス図を示します。サンプルプログ
ラムはリスト12～リスト15です。
解説

 ▼図3　クラスのラフスケッチ

 ▼リスト12　表示プログラム

public class Client {
 public static void main(String[] args) {
 for(ChargeType type : ChargeType. ｭ
values()) {
 System.out.println(type);
 }
 }
}

 ▼リスト13　料金タイプ（列挙型）

public enum ChargeType implements Charge {
 silver(new Silver()),
 adult(new Adult()),
 child(new Child());

 Charge charge ;

 ▼リスト13　料金タイプ（列挙型）　（続き）

 private ChargeType(Charge charge) {
 this.charge = charge;
 }

 @Override
 public String label() {
 return charge.label();
 }

 @Override
 public Yen amount() {
 return charge.amount();
 }

 @Override
 public String description() {
 return charge.description();
 }
 @Override
 public String toString() {
 return String.format("%s : %s ｭ
(%s)", label(), amount().asText(), ｭ
description());
 }
}

 ▼リスト14　料金のインターフェース宣言と実装クラス

interface Charge {
 String label();
 Yen amount();
 String description();
}

public class Silver implements Charge {
 @Override
 public String label() {
 return "高齢者";
 }

 @Override
 public Yen amount() {
 return new Yen(0);
 }

 @Override
 public String description() {
 return "無料";
 }
}

public class Adult implements Charge {
 @Override
 public String label() {
 return "大人";
 }

 @Override
 public Yen amount() {
 return new Yen(2000);

次ページに続く

56 - Software Design

エンジニアの夏期講習
「正規表現・SQL・オブジェクト指向」

苦手克服のベストプラクティス
特講第1特集

　このように設計すると、たとえば、「女性料金」
や「幼児料金」を追加するときに、プログラム
の変更が楽で安全になります。

・メインの表示プログラムの変更は不要
・既存の料金やその説明を記述したクラスは
変更の対象外（独立性が高いのでほかの料金
の追加をしても影響しない）

　オブジェクト指向の基本は次のとおりです。

・データとロジックをまとめる（合わせて考え
る）

・人間の関心事に沿って部品化する（クラス名
やパッケージ名を業務の言葉と対応させる）

・部分を発見し、固めながら、ボトムアップ
でネットワーク状に全体を組み立てていく

　こうすることで、以下が実現できます。

・どこに何が書いてあるか特定しやすくする
・1つの関心事にかかわるコードを1個所に集
める（プログラムのあちこちに分散させない）

・機能の変更があったときに、ごく一部の部
品の変更や、既存部品の組み合わせ方で変
更できる

・部品の用途を限定し、独立性を高め、変更
の影響範囲を狭く閉じ込めやすくする

　こうすることでソフトウェアの変更が楽で
安全になります。
　オブジェクト指向らしくない書き方は次の
とおりです。

・データクラスと機能クラスを分ける
・同じ処理をあちこちに重複して書く
・（独自のクラスは積極的に作らないで）プロ
グラミング言語の基本データ型とその操作
だけでプログラミングする

・場合分けの構造を、if/else文やswitch文の
複文構造で作り込む

　このようなオブジェクト指向らしくない書
き方と比べると、オブジェクト指向が、変更
が楽で安全になる理由が実感できるはずです。
ﾟ

 ▼リスト14　 料金のインターフェース宣言と実装クラス
（続き）

 }

 @Override
 public String description() {
 return "通常料金";
 }
}

public class Child implements Charge {

 @Override
 public String label() {
 return "子供";
 }

 @Override
 public Yen amount() {
 return new Yen(1000);
 }

 @Override
 public String description() {
 return "半額";
 }
}

 ▼リスト15　金額

public class Yen {
 int value;

 Yen(int value) {
 this.value = value;
 }

 String asText() {
 if(value == 0) return "-";
 return String.format("%d円 ｭ
",value);
 }
}

まとめ

56 - Software Design Sep. 2015 - 57

第　　　 時限 オブジェクト指向の実践的な考え方とやり方
変更に強いプログラムの書き方

Javaを使いこなしていますか？

　ソフトウェア開発は複雑さとの戦いです。その
複雑さと戦うために、さまざまなアイデアや技法
が生まれました。
　オブジェクト指向もソフトウェアの複雑さと戦
うための工夫の1つです。
　しかし、オブジェクト指向を一言で説明し理解
するのが難しいことは、みなさんがご存じのとお
りです。本を読んでも、ネット上の情報を調べて
も、すっきりと理解できません。
　それは、オブジェクト指向が、1つの単純な原
理をもとに発展させた考え方ではなく、次のよう
な、さまざまなアイデアや技法を組み合わせたも
のだからです。

　・構造化プログラミング
　・抽象データ型
　・モジュラープログラミング
　・動的束縛
　・メッセージによる協調動作
　　………

　オブジェクト指向は、これらの考え方の、よく
言えば「集大成」です。悪く言えば「ごった煮」です。
ソフトウェアの複雑さと戦うためのさまざまな技
法から良いところ取り込み組み合わせた総合格闘
技がオブジェクト指向なのです。そのため、何を
もってオブジェクト指向とするかが、あいまいで、
定義がしにくいのです。
　オブジェクト指向をわかりにくくしている、も
う1つの理由が、プログラミング言語です。
　たとえば、Javaはオブジェクト指向の言語と
言われます。しかし、Javaは「オブジェクト指向」
以外にも、「手続き型」や「関数型」のスタイルでも
記述できる、なんでもありの言語です。Javaを使っ
てプログラミングすれば、オブジェクト指向のプ
ログラミングになるわけではありません。
　Javaは、C言語からの移行しやすさを重視し
て開発された経緯もあり、C言語そのままの「手
続き型のプログラミング」ができる言語です。
int/float/charなどのプリミティブなデータ型、
固 定 サ イ ズ の 配 列 宣 言、++や +=の 演 算 子、
staticメソッド、……。これらは、オブジェク

ト指向プログラミングの道具ではなく、手続き型
プログラミングの道具です。
　また、Java 8で関数型プログラミングの考え
方を取り入れたStream APIが追加され、関数型
に近いプログラミングもできるようになりました。
　つまり、Javaを使ってプログラミングをする
といっても、オブジェクト指向／手続き型／関数
型のスタイルが混在できるわけです。
　筆者は、オブジェクト指向のスタイルを重視し
ていますので、次のような方針で、Javaを使っ
ています。

　・�int/float/charなどプリミティブなデータ
型は使わない

　・�++や+=など同じ変数を書き換える演算子を
使わない

　・�staticメソッドはほんとうに必要な場所以
外では使わない

　・�Stream APIを使う場所は「ファーストクラス
コレクション」の内部に限定する

　・オブジェクトはできるだけ不変にする

　この記事で説明した、ソフトウェアの変更を楽
に安全にする方法をJavaで実践するには、この
ような方針が良いのではないかと、考えています。

　最後に参考としてオブジェクト指向設計を学ぶ
ための推薦図書を挙げておきます。

●『新装版リファクタリング』（オーム社、2014）
　この本の設計改善テクニックを覚えるとオブジェ
クト指向の設計力が自然と身につきます。第1章

「最初の例」と第３章「コードの不吉な臭い」から読
み始めてみるのが良いでしょう。

●『エリック・エヴァンスのドメイン駆動設計』
　（翔泳社、2011）
　オブジェクト指向設計の考え方を深く学ぶため
の名著です。難解ですが、何度も読み直す価値が
あります。「まえがき」をじっくり読んで理解する
だけでも、学びがたくさんあります。

オブジェクト指向は総合格闘技

58 - Software Design

クラウドを支える
これからの暗号技術

　電子商取引やクラウドサービスで必須の暗号技術につい
て解説する本。共通鍵暗号、公開鍵暗号などの現在よく使
われている暗号技術や、2000年以降に登場した新しい暗
号技術を取り上げる。新しい暗号とは、暗号化したまま検
索したり計算したりできる暗号、多数の人に一度に効率よ
く暗号化されたコンテンツを配信するための暗号などを指
す。本書は数式を使った説明も多いので、内容を理解する
には高校～大学の数学知識がないと厳しいかもしれない。
ただ、文章と図からだけでも、その暗号は「どんな条件の
もとで安全性が保たれるのか」「どれほど破られにくいの
か」「弱点は何か」ということが把握できる。昨今、暗号ソ
フトの脆弱性が発見されることがたまにあるが、そのよう
な事象を読み解く際にも、本書の知識は役に立つだろう。

光成 滋生 著
A5判／240ページ
2,800円＋税
秀和システム
ISBN＝978-4-7980-4413-2

The Art of Computer
Programming
Volume 1

　計算機科学者ドナルド・クヌースによる、「アルゴリズム
の解析」についての一連のシリーズ第1巻である。各アル
ゴリズムについて、アセンブリ言語、数式、UMLなどを
使ってその原理・考え方を徹底的に解説している。本書は
600ページにも及ぶ長編だが、章立ては「基礎概念」「情報
構造」の2章のみ。前者では帰納法といった数学の基礎知
識からサブルーティンといった基本的なプログラミング技
法について、後者では線形リスト・木構造について、それ
ぞれ大量の演習問題を載せながら解説している。演習問題
にはそれぞれ00～50のレートが振られているので、挑戦
する前に難易度を把握できる。ちなみに、「00」は頭の中で
ただちに解ける問題、「50」は執筆時点でまだ満足のいく解
が読者から得られていない研究問題とのことだ。

Donald E. Knuth 著／有澤 誠、
和田 英一 監訳／青木 孝、筧
一彦、鈴木 健一、長尾 高弘 訳
B5判／688ページ
4,800円＋税
ドワンゴ
ISBN＝978-4-04-869402-5

できるPRO
Red Hat
Enterprise Linux 7

　新人のサーバ管理者向けに書かれた、Red Hat Enter
prise Linux（RHEL） 7によるサーバ構築の解説書。Web、
FTP、ファイル、DHCP、プロキシ、DNS、メール、デー
タベース、CMSと、企業における基幹業務のためのおもな
サーバシステムの構築方法を解説している。各々のサーバ
の説明は、主要ソフトのインストールと設定方法、運用に
おいてのキーポイントに留められてるので、実運用やトラ
ブルシューティングについてはそれぞれ別の専門書をあた
るといいだろう。ファイアウォールについては、旧式の
iptablesおよび新方式のfirewalldの設定方法を両方掲載
している。firewalldには、ネットワークを抽象化して「ゾー
ン」に分けて管理するという新しいしくみが導入されてい
るが、その点が重点的に解説されている。

平 初、できるシリーズ編集部 著
B5判／344ページ
3,000円＋税
インプレス
ISBN＝978-4-8443-3839-0

Dockerエキスパート
養成読本

　2013年の登場以来、ITインフラ技術として注目が高
まっている「Docker」。本書の前半では、Dockerの概要や
それを取り巻く最新動向、Docker Engine、Doclerfile、
管理ツール「Kubernetes」の入門など、これから実際に試
してみようという人に向けた解説がまとめられている。後
半では「実践編」として、Dockerによる環境構築の自動化、
CIツ ー ル 活 用、 そ し て ニ ュ ー ス ア プ リ を 展 開 す る

「Gunosy」でDockerを実戦投入・検証した様子の記録な
ど、Dockerに取り組みたい人が今知っておきたい解説が盛
りだくさん。国内ではまだ開発環境での利用例が多く、本
格的な導入はこれから広まっていくと思われるコンテナ型
仮想化技術について、まさに今押さえておきたい知識が収
められた1冊であるだろう。

杉山 貴章、大瀧 隆太、Yugui
（Yuki Sonoda）、中津川 篤司、
前佛 雅人、松原 豊、米林 正
明、松本 勇気 著
B5判／112ページ
1,980円＋税
技術評論社
ISBN＝978-4-7741-7441-9

メールシステムの
教科書

日本語もバイナリもちゃんと届くのはなぜか

日々当たり前に使っているメールも、その裏側はもちろんサーバ、プロトコル
が関与するネットワークの世界です。メールクライアントソフトの送受信ボタン
を押したとき、その裏側でサーバはどんなプロトコルでやりとりをして、自分の
メールを回収し、目的のサーバに送り届けているのか。一方で届いたデータ
に目を移せば、本来ASCII文字しか扱えないメールシステムに、どうやって
日本語やバイナリを含ませているのか。そして、情報漏えいや外部攻撃の
火種となるメールに対するセキュリティはどうなっているのか。本特集でその
基本をしっかりと整理しておきましょう。

......60

......72

......79

......85

メールメッセージのデータ形式

メールクライアントソフトのデータ管理

メールの安全性はどう守るのか

メール配送のしくみ

櫻井 賢一

とみたまさひろ

とみたまさひろ

佐藤 潔

文字化けやスパムの
原因がわかった！

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか第2特集

60 - Software Design

メールが届くまで

　英語の「mail」は日本語で言うと郵便や郵便物
という意味で、電子メールのことは「email」と言
います。しかし、日本語で「メール」と言うと電
子メールを意味することが多いでしょう。本記
事でも以降では「メール」と表記します。
　紙の郵便とメールは当然異なるものですが、
配送のしくみはかなり似ています。メールを書
いてからメールが届くまで、どのようなしくみ
でメールが送られているか説明します。

メールアドレス

　メールアドレスはhoge@example.comの形式
です。「@」はアットマークという記号ですが、
まさにatの意味です。hoge@example.comはhoge

at example.comで、example.comの場所のhoge

さんということを表しています。郵便で言うと、
example.comが住所でhogeが名前に相当します。

メールを出す

　メールの送信は、郵便の場合で言うと手紙を
書いて封筒に入れ、封筒に宛先と差出人を書い
てポストに投函するまでに相当します。
　メールアプリで宛先、件名、本文を入力し、
もし必要ならば添付ファイルを追加して送信ボ
タンを押します。ここから先の処理は利用者が

意識することはありません。
　メールアプリで送信ボタンを押すと、宛先、
件名、本文、添付ファイルなどから1つのメッ
セージ形式に組み立てられます。このメッセー
ジが封筒の中の手紙に相当します。メッセージ
の形式については第2章で説明します。
　メールはメールアプリに設定されたメールサー
バに送られます（図1）。一般家庭では、契約し
ているインターネット接続プロバイダのメール
サーバを使用することが多いでしょう。契約者
以外に使用されないように、IDとパスワードに
よる認証が求められることが一般的です。大き
な組織であれば、組織内に専用のメールサーバ
が用意されていることもあると思います。
　メールアプリはメールサーバに送信者メール
アドレスと受信者メールアドレスを伝え、メッ
セージを送ります。この送信者メールアドレス
と受信者メールアドレスを「エンベロープ送信
者」、「エンベロープ受信者」と言います。メール
アプリを使用した場合は、通常はアプリに登録
済みの送信者メールアドレスと入力された宛先

メール配送のしくみ

 Author とみたまさひろ Twitter @tmtms

当たり前に使っているメールですが、それがどのようにして相手まで届くのか、正しく説明できますか？　SMTP、
POP、IMAPなどのプロトコルの役割をきちんと理解していますか？　まずはそれらの基本を整理しましょう。

メールアプリ
（メールアプリで
指定されている）
メールサーバ

 ▼図1　メールの送信

メール配送のしくみ

60 - Software Design Sep. 2015 - 61

メールアドレスが使用されますが、プロトコル
上は異なるメールアドレスを使用することもで
きます（詳細は第2章、第4章で解説します）。
　エンベロープとは封筒（envelope）のことです。
エンベロープ送信者／受信者は、郵便の場合の
封筒の差出人と宛先に相当します。
　メールの送信に使用されるプロトコルはSM

TP（Simple Mail Transfer Protocol）です。TCP/

IPポート番号は通常は587（submission）です。

メールを配送する

　メールの配送は、郵便の場合で言うと、ポス
トから郵便物を回収し宛先の家まで配達すると
ころまでに相当します。
　メールを受け取ったサーバは、エンベロープ
受信者のメールアドレスが、自分が処理すべき
ものであれば、アドレスが示すユーザのメール
ボックスにメールを格納します。そうでなけれ
ば、宛先のアドレスごとに配送先のメールサー
バにメールを送信します（図2）。メールの配送
先はアドレスのドメイン部（@の右側）を使って
DNSのMXレコード注1から求めます。
　このメールを受け付けて配送するプログラム
をMTA（Mail Transfer Agent）と言います。オー
プンソースの代表的なMTAとしてはPostfix、
Sendmail、qmailがあります。
　メール配送に使われるプロトコルもSMTPで
すが、TCP/IPポート番号は25（smtp）です。

注1） 電子メールの配送先を決定する際に使用する情報。ドメイ
ンごとに配送先となるメールサーバのホスト名などが登録
されている。

　MTAはエンベロープ受信者アドレスに従って
メールを配送するだけで、基本的にはメールの
メッセージの内容については関与しません。た
だし例外がいくつかあります。

・自分がメールを中継したことをメッセージに
記録する（Received）

・足りない情報を補完する（Date、From、Mes
sage-Idなど）

・プロトコル上不正となる形式を整形する（8bit
コードの扱いや長い行の折り返しなど）

・メッセージにエンベロープ送信者と受信者を
記録する（Return-Path、Delivered-To）

　これらの処理が行われるかどうかはMTAに
依存します。
　インターネットからメールを受け付けたあと、
ウィルススキャンやスパムチェックを行うサー
バを経由し、ユーザのメールボックスを持つサー
バに配送するといったように、組織内で複数の
メールサーバを経由することも一般的です。

メールを受け取る

　メールの受信は、郵便の場合、自宅ポストに
配達された郵便物を取り出す行為に相当します。
　メールボックスに配送されたメールはメール
アプリによって読み出されます（図3）。メール
アプリはメールメッセージ形式から送信者、受
信者、件名、本文などを取り出して表示します。
　プロトコルはPOP（Post Office Protocol）や
IMAP（Internet Message Access Protocol）が
使用されます。POPはメールボックスからメー
ルを取り出すこととメールを削除することくら

メールサーバ
（配送先の）
メールサーバ

メールボックス

 ▼図2　メールの配送

メールアプリ

メールボックス

メールサーバ

 ▼図3　メールの受信

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか第2特集

62 - Software Design

いしかできませんが、IMAPはメールの取り出
し、削除のほかに検索や格納もできます。複数
のメールボックスをフォルダとして扱うことも
できます。

複数宛先

　同じメールをCcやBccで複数の宛先に送った
場合、メールの配送経路上ではできるだけ複数
宛先を保ったまま送信されます（図4）。
　配送先が異なる場合は配送先ごとにまとめて
送信されますが、MTAによっては配送先が同一
であってもまとめずにメールアドレスごとに送
信するものもあります。たとえばPostfixは配送
先ごとにまとめますが、qmailはまとめずにメー
ルアドレスごとに送信します。
　また配送先ごとにまとめる場合であっても、1

つのメールに指定できる宛先メールアドレス数
には上限があります。SMTPのことを規定して
いるRFC 5321には、最低でも100個は受け付
けなくてはいけないという規定がありますが、
上限はとくに定められていません。Postfixのデ
フォルトでは、1,000個までの宛先を受け付け
ますが、送信時の宛先数は最大50個です。

配送エラー

　配送先メールサーバ
が応答しない、宛先の
メールアドレスが存在
しない、宛先のメール
ボックスが満杯で受け
付けられないなどの理
由により、配送途中で
エラーになることがあ
ります。
　メールの配送エラー
もメールとして元の
メールのエンベロープ
送信者に送られます
（図5）。エラーメール
もメールですので、通

常のメールの配送と同じ経路で送られます。エ
ラーメールのメッセージの形式はRFC 3461で
規定されていますが、比較的新しい規格のため、
これに従っていないMTAもあります。

不正中継防止

　メールサーバはどこから送られた誰宛のメー
ルでも中継していいというわけではありません。
信頼できないクライアントから外部の宛先のメー
ルを受け付けて送信してしまうと、スパマーに
よって利用され、スパム中継サーバとなってし
まいます。メールを受け付ける際には最低限次
のような制約を設けるべきです（図6）。

メール送信サーバの場合
・信頼できるクライアントからの接続であれば

受け付ける
・そうでなければ受け付けない
メール受信サーバの場合（DNSのMXレコード
に登録されているサーバなど）
・自分が管理しているドメイン宛のメールであ

れば受け付ける
・そうでなければ受け付けない
送信と受信を兼ねているサーバの場合
・信頼できるクライアントからの接続であれば

宛先
A@example.com
B@example.jp
C@example.jp

宛先
B@example.jp
C@example.jp

宛先
C@example.jp

宛先
B@example.jp

宛先
A@example.com

宛先
A@example.com

example.jp
メールサーバ

example.com
メールサーバ

メールサーバ

 ▼図4　複数宛先への送信

メール配送のしくみ

62 - Software Design Sep. 2015 - 63

受け付ける
・自分が管理しているドメイン宛のメールであ

れば受け付ける
・そうでなければ受け付けない

　「信頼できるクライアント」とは、信頼できる
IPアドレスのクライアント、または認証を通っ
たクライアントのことです。認証については第
4章で詳しく説明します。
　Postfixのデフォルト設定では、自分のサーバ
から発信されるメールは宛先がどこであっても
受け付け、それ以外のクライアントからは自分
のドメイン宛のメールしか受け付けないように

なっているため安全です。

メールに使われるプロトコル

　前述したように、メールはDNS、SMTP、
POP、IMAPというプロトコルが使用されます。
それぞれについて詳しく見ていきます。

DNS

　DNS（Domain Name System）はホスト名に対
応する IPアドレスを得るためのプロトコルで
す。DNSはメールのためだけに使用されるもの
ではありません。たとえば、ブラウザでインター

ネットのコンテンツを表示す
る際にも使用されています。
　ですが、DNSにはメール配
送専用の機能があります。MX

レコードはメール配送のため
だけに使用されます。メール
は、宛先アドレスのドメイン
部をDNSで検索し、そのMX

レコードの値が示すサーバに
送られます。
　DNSはバイナリベースのプ
ロトコルですので、人間が直
接使うことはできません。そ
のため、配送先サーバなどの
情報は次のようにdigコマン
ドなどを用いて調べます。

$ dig +short mx exampleｭ
.com
10 mx1.example.com
20 mx2.example.com

　これはexample.comのメー
ルの配送先はmx1.example.

com、mx2.example.comの2つ
のサーバであることを表して
います。数字は優先度を表し、
数字が小さいほうが優先度が
高くなります。この例ではmx1

③Aさん宛の
エラーメール生成

送信者 A@example.com
宛先 B@example.jp

エラーメール
送信者 <>

宛先 A@example.com

①example.jp に送ろう ②Bさんはいないよ

example.jp
メールサーバ

example.com
メールサーバ

A@example.com の
メールボックス

 ▼図5　配送エラー

外部から
自分宛は許可

内部からは
どこ宛でも許可

外部から認証済みなら、
どこ宛でも許可

外部から認証済みでなければ、
外部宛の中継禁止

内部ネットワーク

 ▼図6　メールを受け付ける際の制約

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか第2特集

64 - Software Design

のほうがmx2よりも優先度が高いことを表して
います。
　example.comドメイン宛にメールを配送する
システムは、まずmx1.example.comに配送を試
み、失敗するとmx2.example.comに配送を試み
ます。

SMTP

　SMTP（Simple Mail Transfer Protocol）は
メールを送信するためのプロトコルでRFC

5321で規定されています。
　SMTPはテキストベースのプロトコルですの
で、Telnetなどを使えば人間でもサーバとやり
とりすることができます。コマンドや応答は改
行で終了します。改行はCRLF（0x0D 0x0A）の
2バイトが使用されます。
　クライアントからコマンドを発行し、サーバ
がそれに対する応答を返します。サーバからの
応答は、「3桁の数字」＋「空白」＋「文字列」の形
式です。3桁の数字は先頭の1文字で表1の意味
を表します。

 応答の例
250 2.1.0 Ok

　複数行の応答が返る場合は、最後の行以外は
「3桁の数字」＋「-」＋「文字列」の形式で、最後の
行は「3桁の数字」＋「空白」＋「文字列」の形式と
なります。

 応答（複数行）の例
250-server.example.com
250-PIPELINING
250-SIZE 10240000
250-ETRN
250-ENHANCEDSTATUSCODES

250-8BITMIME
250 DSN

　SMTPの基本的なコマンドはEHLO、HELO、
MAIL、RCPT、DATA、RSET、VRFY、
NOOP、QUIT、VRFYです。以降で各コマン
ドについて説明します（NOOP、VRFYについ
てはあまり使われないため割愛します）。
　接続してから切断するまでのフローを図7に
示します。

■■接続
　MTAのポート（25か587）に接続すると、サー
バから220応答が返ります。

220 server.example.com ESMTP Postfix ｭ
（Ubuntu）

　応答の最初の文字列はサーバのホスト名で、
それ以降はコメントです。

■■挨拶
　接続後、クライアントからEHLO（Extended

HELLO）コマンドを発行します。パラメータは
クライアントのホスト名です。サーバの応答は
通常は複数行形式です。

数字 意味
2xx 成功
3xx 成功（途中）
4xx 一時的な失敗
5xx 永続的な失敗

 ▼表1　SMTPの応答コード

接続

EHLO/HELO

MAIL

RSET

RCPT

DATA

QUIT

切断

 ▼図7　SMTPの接続から切断までのフロー

メール配送のしくみ

64 - Software Design Sep. 2015 - 65

EHLO client.example.com
250-server.example.com ←ホスト名
250-PIPELINING ←この行以降は拡張機能
250-SIZE 10240000
250-ETRN
250-STARTTLS
250-AUTH DIGEST-MD5 CRAM-MD5 NTLM LOGIN ｭ
PLAIN
250-ENHANCEDSTATUSCODES
250-8BITMIME
250 DSN

　応答の最初の値はサーバのホスト名、それ以
降はサーバで有効な拡張機能を表します。各拡
張機能はRFC 5321以外のRFCで規定されてい
ます。上の例の応答の意味を表2に示します。
　EHLOがエラーになる場合は、拡張機能をサ
ポートしないサーバです。EHLOがエラーに
なったらクライアントはHELOを使用します。
HELOに対するサーバの応答は1行だけです。

HELO client.example.com
250 server.example.com

　また、クライアントがEHLOではなくHELO

を送信すると、サーバはクライアントが拡張機
能をサポートしていないものとみなして処理し
ます。

■■送信者アドレス指定
　MAILコマンドでメールのエンベロープ送信
者アドレスを指定します。

MAIL FROM:<sender@example.com>
250 2.1.0 Ok

　エラーメールなどのMTAからの通知メッセー
ジの場合は空アドレスが指定されます。

MAIL FROM:<>
250 2.1.0 Ok

　SIZE拡張が有効な場合は、これから送ろう
とするメッセージの大きさをオプションで指定
できます。

MAIL FROM:<sender@example.com> SIZE=5432
250 2.1.0 Ok

■■受信者アドレス指定
　RCPTコマンドでメールのエンベロープ受信
者アドレスを指定します。

RCPT TO:<rcpt@example.com>
250 2.1.5 Ok

　宛先が複数の場合は、RCPTコマンドを複数
回発行します。なお、SMTPでは、To、Cc、Bcc

の区別はありません。

■■メッセージ送信
　クライアントからDATAコマンドが送られる
と、サーバは354応答を返します。クライアン
トはサーバからの354応答を待ってからメッセー
ジを送信し、最後に「.」だけの行を送ります。

DATA
354 End data with <CR><LF>.<CR><LF>
From: sender@example.com
To: rcpt@example.com
Subject: test

次ページに続く

拡張 RFC 内容
PIPELINING RFC 2920 クライアントはサーバの応答を待たずに次のコマンドを送って良い

SIZE RFC 1870 サーバが受け取れるメッセージサイズ、クライアントが送信するメッ
セージサイズを事前に通知

ETRN RFC 1985 ETRNコマンドが有効
STARTTLS RFC 3207 STARTTLSコマンドが有効
AUTH RFC 4954 AUTHコマンドが有効
ENHANCEDSTATUSCODES RFC 2034 拡張ステータスコード（RFC 3463）を返す
8BITMIME RFC 6152 8bitメッセージを送信可能
DSN RFC 3461 エラーメール（DSN）の詳細を指定可能

 ▼表2　SMTPの拡張機能

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか第2特集

66 - Software Design

test
.
250 2.0.0 Ok: queued as 8FFBD6009D

　メッセージ中に「.」で始まる行がある場合は、
クライアントはその行の先頭に「.」を追加して送
信する必要があります。サーバは行の先頭の「.」
を無視します。
　DATAコマンド発行後は接続を切断する以外
にメールの送信を取りやめることはできません。

■■リセット
　RSETコマンドを発行すると、それまでに指
定したエンベロープ送信者アドレス、エンベロー
プ受信者アドレスをクリアし、EHLOが発行さ
れた直後の状態に戻します。

RSET
250 2.0.0 Ok

■■終了
　QUITコマンドで接続を切断します。

QUIT
221 2.0.0 Bye

POP

　POP（Post Office Protocol）はメールボック
スからメッセージを取り出すプロトコルで、RFC

1939で規定されています。また、RFC 2449拡
張機能をサポートしているPOPサーバもありま
す。TCP/IPのポート番号は110（pop3）です。
　POPもSMTPと同じくテキストベースのプ
ロトコルです。SMTPと同様に、コマンドや応
答は改行で終了し、改行はCRLFです。
　サーバからの応答は正常の場合は「+OK」から
始まり、エラーの場合は「-ERR」から始まりま
す。コマンドによっては応答が複数行になりま
す。複数行の応答は「.」だけの行で終了します。

複数行の応答の中に「.」で始まる行がある場合は、
サーバはその前にさらに「.」を追加します。クラ
イアントは「.」だけの行は応答の終了とみなしま
すが、後ろに何か文字が続く場合は先頭の「.」を
無視します。
　POPの基本的なコマンドは、USER、PASS、
APOP、STAT、LIST、UIDL、RETR、TOP、
DELE、NOOP、RSET、QUITです。拡張機
能が有効な場合はCAPAコマンドも有効ですが、
今回は拡張機能については割愛します。

■■接続
　POPのポート（110）に接続するとサーバから
応答が返されます（図8）。応答に< >でくくられ
た文字列がある場合は、サーバがAPOP認証（後
述）に対応していることを表しています。

■■認証
　USERコマンドとPASSコマンドで認証を行
います。USERコマンドの引数はユーザ名、
PASSコマンドの引数は平文のパスワードです。

USER hoge
+OK
PASS P@ssWord
+OK Logged in.

　USER/PASSは平文認証ですので、通信経路
が暗号化されていない場合はパスワードが盗聴
される可能性があります。
　APOPは直接パスワードを送信するのではな
く、パスワードのMD5ハッシュ値を送信する認
証方式です。引数はユーザ名とパスワードのハッ
シュ値です（図9）。APOPは、接続時にサーバ
から返される文字列に< >でくくられた文字列
が含まれている場合に使用可能です。
　ハッシュ値は、接続時の応答の< >でくくら
れた文字列（<と>も含みます）とパスワードを結
合した文字列のMD5 digest値を16進数で表し

 ▼図8　POPのポートに接続した際のサーバからの応答

+OK Dovecot (Ubuntu) ready. <4392.3.55a3c764.WJKDtpgMuwPTSOM4r5uvmA==@pop.example.com>

メール配送のしくみ

66 - Software Design Sep. 2015 - 67

たものです。Rubyではリスト1のようにして求
めることができます。
　APOPではサーバもクライアントと同様に
ハッシュ値を求め、クライアントからのハッシュ
値と同じ値であれば認証が成功します。そのた
めサーバでパスワードを平文（または復号可能な
暗号文）で保持している必要があります。

■■メッセージサイズ
　LISTコマンドはメッセージのサイズを返し
ます。引数はメッセージ番号です。メッセージ
番号はログイン時に確定し、1から順番に番号
が振られます。

LIST 2
+OK 2 5043

　引数を指定しない場合は、「+OK」のあとに全
メッセージのサイズを複数行で返します。

LIST
+OK scan listing follows
1 2044
2 5043
 （略）
17 2399
18 2448
.

■■メッセージUID
　UIDLコマンドはメッセージのUIDを返しま
す。メッセージ番号はログインごとに振りなお
されるので番号が変わりますが、UIDは一度割
り当てられるとメッセージが削除されるまで変
更されません。POPクライアントはこのUIDを
もとに新着メールの有無を判定します。引数は

メッセージ番号です。

UIDL 2
+OK 2 0000000255a3daf1

　引数を指定しない場合は、「+OK」のあとに全
メッセージのUIDを複数行で返します。

UIDL
+OK
1 0000000155a3daf1
2 0000000255a3daf1
 （略）
17 0000001155a3daf1
18 0000001255a3daf1
.

■■メッセージ取り出し
　RETRコマンドでメッセージを取り出します。
引数はメッセージ番号です。「+OK」のあとにメッ
セージ全体を返します。

RETR 2
+OK
From: fuga@example.net
To: hoge@example.com
Subject: test

line1
line2
line3
.

■■メッセージの一部取り出し
　TOPコマンドでメッセージヘッダ全体と本文
の先頭を返します。大きなメッセージ全体をダ
ウンロードせずに送信者や件名を取り出す場合
に使用されます。引数はメッセージ番号と本文
の行数（0以上）です。

 ▼リスト1　RubyでAPOPのハッシュ値を求める

require 'digest/md5'
Digest::MD5.hexdigest("<4392.3.55a3c764.WJKDtpgMuwPTSOM4r5uvmA==@pop.example.com>P@ssWord")
#=> "aa63987281ea8816fac46564912fdc90"

 ▼図9　APOP認証の様子

+OK Dovecot (Ubuntu) ready. <4392.3.55a3c764.WJKDtpgMuwPTSOM4r5uvmA==@pop.example.com>
APOP hoge aa63987281ea8816fac46564912fdc90
+OK Logged in.

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか第2特集

68 - Software Design

TOP 2 1
+OK
From: fuga@example.net
To: hoge@example.com
Subject: test

line1
.

■■削除
　DELEコマンドでメッセージを削除します。
引数はメッセージ番号です。DELEを発行して
も実際にはまだ削除されていません。QUITす
ることで実際に削除されます。

DELE 2

+OK Marked to be deleted.

■■リセット
　RSETコマンドはDELEによる削除を取り消
します（図10）。引数はありません。

■■終了
　QUITコマンドで接続を切断します。引数は
ありません。DELE済みのメッセージがある場
合は実際にメールボックスから削除します。

QUIT
+OK Logging out.

IMAP

　IMAP（Internet Message Access Protocol）
はメールボックスからメッセージを取り出した
り、格納、検索したりできるプロトコルで、RFC

3501で規定されています。TCP/IPのポート番
号は143（imap）です。
　POPはメールを取り出したらサーバから削除
しクライアントでメールを管理するのが一般的
ですが、IMAPは基本的にサーバにすべてのメー
ルを置いて管理します。複数のクライアントか
ら共通のメールボックスを扱えます。また、複
数のメールボックスを扱うこともできます。メー
ルボックスはメールアプリからはフォルダとし
て扱われます。

　クライアントから発行するコマンドは、
「タグ」＋「空白」＋「コマンド」の形式です。
タグは「(」「)」「{」「%」「*」「+」「"」「\」を除く
0x21～0x7EのASCII文字で、クライアン

 ▼図10　RSETで削除を取り消す様子

LIST 2
+OK 2 2363 ←2番のメッセージが存在している
DELE 2
+OK Marked to be deleted. ←削除成功
LIST 2
-ERR Message is deleted. ←削除済みなのでエラー
RSET
+OK
LIST 2
+OK 2 2363 ←RSET後はメッセージが復活

 ▼図11　IMAPコマンド実行例（成功例）

A001 CREATE hoge
A001 OK Create completed.

 ▼図12　IMAPコマンド実行例（失敗例）

A002 SELECT hoge
A002 NO Mailbox doesn't exist: hoge

 ▼図13　IMAPコマンド実行例（プロトコルエラー例）

A003 HOGE
A003 BAD Error in IMAP command HOGE: Unknown command.

 ▼図14　IMAPコマンド実行例（複数データ返却例）

A004 SELECT INBOX
* FLAGS (¥Answered ¥Flagged ¥Deleted ¥Seen ¥Draft)
* OK [PERMANENTFLAGS (¥Answered ¥Flagged ¥Deleted ¥Seen ¥Draft ¥*)] Flags permitted.
* 430 EXISTS
* 0 RECENT
* OK [UNSEEN 1] First unseen.
* OK [UIDVALIDITY 1436801777] UIDs valid
* OK [UIDNEXT 431] Predicted next UID
* OK [NOMODSEQ] No permanent modsequences
A004 OK [READ-WRITE] Select completed (0.000 secs).

メール配送のしくみ

68 - Software Design Sep. 2015 - 69

トが自由に決めます。長さの制限はありません。
　サーバからの応答は、成功時は「タグ」＋「空
白」＋「OK」（図11）、失敗時は「タグ」＋「空白」＋
「NO」（図12）、プロトコルエラー時は「タグ」＋
「空白」＋「BAD」（図13）です。複数のデータを
返す場合は「*」で始まる行を複数返し、最後にタ
グ付きの応答を返します（図14）。
　IMAPはSMTPやPOPに比べてはるかに複
雑なプロトコルでコマンドも多いので、以降は
よく使用されるものだけ紹介します。

■■ログイン
　LOGINコマンドでログインを行います。引数
はユーザ名とパスワードです。

A001 LOGIN hoge P@ssWord
A001 OK LOGIN Ok.

　LOGINは平文パスワードによる認証ですの
で、テストなどで手動で試すには良いのですが、
メールアプリからは使用されることはあまりな
いでしょう。通常はSASL（Simple Authentication

and Security Layer）による認証が行えるAUTH

ENTICATEコマンドが使用されます。今回は、
AUTHENTICATEコマンドは説明しません。

■■メールボックス
　LISTコマンドでメールボックスを一覧します。
引数は階層名とメールボックス名です。メール
ボックス名にはワイルドカードが使用できます。

A001 LIST "" "*"

* LIST (¥HasChildren) "." hoge
* LIST (¥HasNoChildren) "." hoge.fuga
* LIST (¥HasNoChildren) "." INBOX
A001 OK List completed.

　メールボックスは階層構造にできます。階層
の区切り記号はシステム依存です。上の例では
「.」が区切り記号です。
　ワイルドカード「*」は階層をまたいでマッチし
ますが、「%」は階層をまたぎません。

A002 LIST "" "%"
* LIST (\HasChildren) "." hoge
* LIST (\HasNoChildren) "." INBOX
A OK List completed.

　CREATEコマンドでメールボックスを作成
します。引数はメールボックス名です。

A001 CREATE hoge
A001 OK Create completed.

　DELETEコマンドでメールボックスを削除
します。引数はメールボックス名です。

A001 DELETE hoge
A001 OK Delete completed.

　RENAMEコマンドでメールボックス名を変
更します。引数は元のメールボックス名と新し
いメールボックス名です。

A001 RENAME hoge fuga
A001 OK Rename completed.

■■メールボックス選択
　SELECTまたはEXAMINEコマンドでメー
ルボックスを選択します（図15、16）。引数は

 ▼図15　SELECTコマンド実行例

A001 SELECT INBOX
* FLAGS (¥Answered ¥Flagged ¥Deleted ¥Seen ¥Draft)
* OK [PERMANENTFLAGS (¥Answered ¥Flagged ¥Deleted ¥Seen ¥Draft ¥*)] Flags permitted.
* 430 EXISTS
* 0 RECENT
* OK [UNSEEN 1] First unseen.
* OK [UIDVALIDITY 1436801777] UIDs valid
* OK [UIDNEXT 431] Predicted next UID
* OK [NOMODSEQ] No permanent modsequences
A001 OK [READ-WRITE] Select completed (0.000 secs).

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか第2特集

70 - Software Design

メールボックス名です。SELECTは読み書き
用、EXAMINEは読み込み専用です。

■■メッセージ情報取り出し
　FETCHコマンドで現在のメールボックスの
中のメッセージの情報を取り出します。
　FETCHは多様な引数を取り、メッセージの
情報をさまざまな形式で取り出せます。具体的
には、メッセージの件名の一覧や、メッセージ
の構造、メッセージの生データなどです。
　第1引数は表3のような形式で、対象のメッ
セージを指定します。第2引数で取り出したい

項目を指定します。一部を表4で説明します。こ
れらを ()でくくって複数指定することもできま
す。
　サーバからの応答は、各メッセージについて

 ▼図17　FETCHコマンド実行例

A001 FETCH 1,2 BODY[HEADER.FIELDS (SUBJECT)]
* 1 FETCH (BODY[HEADER.FIELDS (SUBJECT)] {17}
Subject: test

)
* 2 FETCH (BODY[HEADER.FIELDS (SUBJECT)] {21}
Subject: hogehoge

)
a OK Fetch completed.

形式 意味
3 3番めのメッセージ
3:6 3～6番めのメッセージ
3:* 3番め～最後のメッセージ
3,5,6 3、5、6番めのメッセージ
1:3,5:* 1～3番めと、5番め～最後のメッセージ
1:* すべてのメッセージ

 ▼表3　FETCHの第1引数（対象メッセージ）

項目 意味
BODY メッセージの構造
BODY[HEADER] メッセージのヘッダ部注2

BODY[HEADER.FIELDS (Subject)] 件名注2

BODY[TEXT] メッセージの本文部注2

RFC822 メッセージ全体
RFC822.SIZE メッセージサイズ
ENVELOPE メッセージの日付、件名、送信者、受信者などの情報
FLAGS 既読（\Seen）、返信済み（\Answered）などのフラグ
UID メッセージの一意な識別子となる数値

注2） SELECTでメールボックスが選択された場合はメッセージが既読状態になります。

 ▼表4　FETCHの第2引数（取り出したい項目）

フラグ 説明
\Seen 既読。FETCHコマンドの指定によって

は自動的に設定される
\Answered 返信済み
\Flagged フラグ。Thunderbirdなどのメールア

プリでは☆としてマークされる
\Deleted 削除。STOREではマークを付けるだけ

で実際には削除されない
\Draft 草稿

 ▼表5　STOREで設定できるフラグ

 ▼図16　EXAMINEコマンド実行例

A001 EXAMINE INBOX
* FLAGS (¥Answered ¥Flagged ¥Deleted ¥Seen ¥Draft)
* OK [PERMANENTFLAGS ()] Read-only mailbox.
* 430 EXISTS
* 0 RECENT
* OK [UNSEEN 1] First unseen.
* OK [UIDVALIDITY 1436801777] UIDs valid
* OK [UIDNEXT 431] Predicted next UID
* OK [NOMODSEQ] No permanent modsequences
A001 OK [READ-ONLY] Examine completed (0.000 secs).

メール配送のしくみ

70 - Software Design Sep. 2015 - 71

タグなし応答が返ります（図17）。
　応答は、「メッセージ番号」＋「FETCH」＋「指
定した項目とその値のペア」です。「{数字 }」は文
字列の特殊な表記で、次の行以降に書かれてい
る文字列のバイト数を表します。

■■フラグ設定／削除
　STOREコマンドで、メッセージごとに表5に
示したフラグを設定できます。サーバの実装に
よってはこれら以外のフラグも設定できること
があります。
　「+FLAGS」で指定フラグの追加、「-FLAGS」
で指定フラグの削除、「FLAGS」で指定したフ
ラグの置き換え、になります（図18）。EXPUN

GEコマンドを実行すると\Deletedフラグが付
いたメッセージが削除されます（図19）。

■■コピー
　COPYコマンドでメッセージをほかのメール
ボックスにコピーできます。引数はメッセージ
番号とコピー先のメールボックスです。

A001 COPY 5 Other
A001 OK Copy completed.

　IMAPにはメッセージを移動するコマンドは
ありません。メールアプリがメッセージを移動
した場合は、内部的にはコピーと削除が行われ
ています。

■■メールボックスのクローズ
　CLOSEコマンドで、SELECT/EXAMINE

で選択したメールボックスをクローズします。
　\Deletedフラグが付いたメッセージはCLO

SEコマンド実行時に削除されます。\Deleted

フラグを付けたままで削除したくない場合は、
CLOSEコマンドを実行してはいけません。
\Deletedフラグを付けたまま別のメールボック
スを選択したい場合は、CLOSEせずにSELE

CT/EXAMINEを実行すれば良いです。

■■メッセージの格納
　APPENDコマンドで、メッセージをメール
ボックスに格納できます。メールアプリで作成
中のメッセージを草稿に格納したり、送信した
メールを送信控フォルダに格納したりする際に
使用されます。
　引数はメールボックス、フラグ（オプション）、
タイムスタンプ（オプション）、メッセージです。

A001 APPEND INBOX (¥Seen) {300}
+OK
 （...300バイトのメッセージ...）
A001 OK Append completed.

■■終了
　LOGOUTコマンドで接続を切断します。

A001 LOGOUT
* BYE Logging out
A001 OK Logout completed.

◆　◆　◆
　ここまでDNS、POP、SMTP、IMAPの概要
を説明しました。メールアプリの裏側では、こ
れらのコマンドを実行することでメールの送受
信や管理が行われています。｢

 ▼図18　STOREコマンド実行例

A001 FETCH 1 FLAGS
* 1 FETCH (FLAGS (¥Seen)) ←既読状態
A001 OK Fetch completed.
A002 STORE 1 -FLAGS (¥Seen) ←既読フラグを削除
* 1 FETCH (FLAGS ())
A002 OK Store completed.
A003 FETCH 1 FLAGS
* 1 FETCH (FLAGS ()) ←未読になった
A003 OK Fetch completed.

 ▼図19　EXPUNGEコマンド実行例

A001 STORE 1,3 +FLAGS (¥Deleted) ←削除フラグ設定
* 1 FETCH (FLAGS (¥Deleted ¥Seen))
* 3 FETCH (FLAGS (¥Deleted ¥Seen))
A001 OK Store completed.
A002 EXPUNGE ←実際に削除
* 3 EXPUNGE
* 1 EXPUNGE
A002 OK Expunge completed.

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか第2特集

72 - Software Design

メールメッセージの構造

　メールメッセージの基本的な形式はRFC

5322で規定されています。RFC 5322はかなり
複雑です。日本語や添付ファイルを扱う場合は
また別のRFCがあり、さらに複雑になります。
　メッセージの構造は大まかにヘッダ部とボディ
部に分かれます。ヘッダ部には送信者名、受信
者名、件名、日付など利用者に見えるものや、
メッセージの構造、文字コード、通過したMTA

など通常利用者が意識しない情報が含まれます。
ボディ部はメールの本文、添付ファイルのデー
タが含まれます。
　添付ファイルが付いていないメッセージは単
純な構造です（図1）。ヘッダ部とボディ部は空
行で区切られます。とても単純なメッセージの
例をリスト1に示します。添付ファイルが付い
ているメッセージについては後述します。

ヘッダ部

　ヘッダ部は複数のヘッダフィールドから構成
されます。ヘッダフィールドは、「フィールド
名」＋「:」＋「フィールド値」の形式です。CRLF

（0x0D 0x0A）で終わります。
　物理的な1行の長さは78バイト以下にすべき
という制限がありますが、長い行は折り返すこ
とで論理的に長い1行を表すことができます。折
り返しは「CRLF」＋「空白」（0x20または0x09

（TAB））で、空白がある個所で行えます。次の
2つの表現は同じ意味になります。

Subject: long long long

Subject: long
 long
 long

　ヘッダ部にはASCII文字だけしか含めること
ができません。フィールド名の大文字小文字は
区別されません。各フィールドの値は、それぞ
れ構造が決まっています。いろいろなフィール

メールメッセージの
データ形式
 Author とみたまさひろ Twitter @tmtms

SMTPやPOPはテキスト（ASCII文字）ベースのプロトコルです。しかし実際には、日本語でメールを書くことも、画
像などのバイナリデータを添付することもできています。それらはどのように実現されているのでしょうか。

ヘッダ部

ボディ部

 ▼図1　メールメッセージの構造

 ▼リスト1　単純なメッセージの例

Date: Wed, 15 Jul 2015 23:20:10 +0900
Message-Id: <12345@example.com>
From: sender@example.com
To: recipient@example.net

Hello.

メールメッセージのデータ形式

72 - Software Design Sep. 2015 - 73

ドがありますが、必須のフィールドは、From、
Date、Message-Idだけです。

■■メールアドレス
　フィールドの前にメールアドレスの形式につ
いて説明します。メールアドレスはローカルパー
トとドメインを「@」で結合したものです。ロー
カルパートは、英数字と一部の記号を「.」で結合
したもの、または「"」でくくられた任意の文字列
です。「"」でくくられた文字列中に「\」「"」を含め
たい場合は「\\」「\"」と記述します。ドメインは
英数字と「-」を「.」で結合したものです。
　次は正当なメールアドレスの例です。

・hoge.fuga@example.com
・hoge$fuga*@example.com
・"hoge..fuga"@example.com

　次はメールアドレスとしては不当な例です。

・hoge..fuga@example.com
　……ローカルパートに「.」が連続している
・hoge.@example.com
　……ローカルパートが「.」で終わっている
・"hoge"fuga"@example.com
　……「"」中に「"」がそのまま現れている
・hoge@exam_ple.com
　……ドメイン中に「_」が含まれている

　メールアドレスの厳密な形式については第1

特集第1章の正規表現の記事（p.25～28）に書き
ましたので、そちらを見てください。

■■ From/Sender/Reply-To
　Fromはメッセージの作成者、Senderはメッ
セージの送信者を表します。作成者と送信者が
同一の場合は、Senderは必要ありません。通常
はFromだけのことが多いでしょう。Fromは
メッセージに必ず必要なフィールドです。
　作成者／送信者が1つの場合の形式は、次の
いずれかの表現になります。

・メールアドレスそのまま
　例：mail@address
・< >でくくられたメールアドレス
　例：<mail@address>
・表示名つきメールアドレス
　例：display name <mail@address>

　あまり見かけませんが、実はFromは「,」で区
切って複数のアドレスを含むことができます。
その場合はSenderが必須となります。Sender

には1つの送信者しか含むことができません。
　Reply-Toはメッセージの受信者が返信をする
際の宛先となるアドレスです。このフィールド
がない場合は、Fromが返信先になります。
Reply-Toの形式はTo/Cc/Bccと同じです。

■■To/Cc/Bcc
　To、Cc、Bccはそれぞれ、おもな宛先、副の
宛先、受信者に見えない宛先です。奇妙に思わ
れるかもしれませんがTo、Cc、Bccはメッセー
ジに必須ではありません。メールアプリからメー
ルを送信する場合は、これらのフィールドに記
述した宛先にメッセージが送信されるので、通
常は一致するのですが、メッセージ上のこれら
のフィールドと実際に送られる宛先は異なって
いる場合もあります。たとえば自分が参加して
いるメーリングリストに送信されたメールは、
自分に届いたメッセージのToを見ても自分の
メールアドレスは書かれていないでしょう。
　実際に送られる宛先はSMTPのエンベロープ
受信者アドレスです。第1章で説明したように、
エンベロープ受信者はメッセージとは別に指定
するので、異なる場合があり得ます。同様に、
From/Senderとエンベロープ送信者が異なる場
合もあります。
　To、Cc、Bccフィールドには複数のアドレス
やグループを含めることができます。値の形式
は、Fromとほぼ同じですが、グループが指定
できることが異なります。グループは「表示名」
＋「:」＋「0個以上の宛先」＋「;」という形式です。

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか第2特集

74 - Software Design

・	display name:;
・	display name: mail@address;
・	display name: mail@address, name
<mail@address>;

　宛先が0個のグループは、宛先としてエンベ
ロープ受信者が指定されているけれども、それ
をメールの受信者に知らせたくない場合などに
使用されます。

■■Date
　Dateはメッセージの送信時刻が記録されます。
「Thu, 16 Jul 2015 20:05:05 +0900」のような形
式で記録されます。先頭の曜日は省略してもか
まいません。

■■Message-Id/In-Reply-To/
References

　Message-Idはメッセージを一意に識別するた
めのフィールドです。形式は「<abc.def.hoge@

example.com>」です。世界中で過去から未来ま
で含めて一意にする必要があるため、時刻やド
メイン名から作られることが一般的です。
　In-Reply-Toフィールドはメッセージに返信
する際に付加されます。これは返信元のメッセー
ジのMessage-Idの値を含み、どのメッセージに
対して返信したかの情報を保持するためのもの
です。Referencesも同様ですが、直接の返信元

だけでなく、返信を繰り返すたびに後ろに
Message-Idが追加されていきます（リスト2）。
これらの情報はメールアプリ上でメッセージを
スレッドツリー表示するのに使用されます。

■■Subject
　Subjectフィールドは件名です。このフィール
ドはとくに決まった形式を持っていません。

■■空白とコメント
　構造を持つフィールドの値には、空白を含め
ることができます。単語の途中以外、ほとんど
の場所に空白を置くことができます。
　また、空白を置けるところにはコメントを置
くことも可能です。コメントは「(」と「)」でくく
られた文字列で、コメントをさらに入れ子にす
ることもできます。たとえば、次のFromフィー
ルド

From: hoge@example.com

は、次のように書いても同じ意味になります。

From: hoge @ (comment) example.com ｭ
(comment2)

■■任意のフィールド
　決められているフィールド名以外のフィール
ドを自由に付けることができます。フィールド
名は「:」以外の印字可能文字（0x21～0x7E）であ
れば何でも使えます。任意のフィールドである
ことを表すために「X-」で始まる名前が使われる
ことが多いようです。

ボディ部

　ボディ部はメッセージの本文です。ボディ部
も通常はASCII文字だけで構成されます。
　Unicode以前の日本語文字列の表現方法とし
て、ASCII文字だけで表すことができる ISO-

2022-JPというエンコーディングがあります。
これを使用すればメールメッセージの制約の中

 ▼リスト2　In-Reply-ToとReferencesが付加される
 様子

 元メッセージ（A）
Message-Id: <A@example.com>

 Aに対する返信（B）
Message-Id: <B@example.com>
In-Reply-To: <A@example.com>
References: <A@example.com>

 Bに対する返信（C）
Message-Id: <C@example.com>
In-Reply-To: <B@example.com>
References: <A@example.com> <B@example.com>

メールメッセージのデータ形式

74 - Software Design Sep. 2015 - 75

でも日本語を記述できたため、メールで日本語
を送る場合はISO-2022-JPを使用するのが一般
的でした。現在でも、日本語のメッセージでは
ISO-2022-JPが多く使用されています。

MIME（Multipurpose Internet
Mail Extensions）

　以前は、メールメッセージのヘッダにはASCII

文字しか含められなかったので、日本語の件名
や送信者名を記述できませんでした。ボディ部
と違い、ESC（0x1B）を含められないのでISO-

2022-JPも使用できません注1。
　バイナリデータを送ることもできませんでし
た。バイナリデータをメールで送る場合は、
uuencodeコマンドなどでテキストに変換したも
のを本文に貼り付けて送ったりしていました。
　その後MIME規格が生まれ、多くのメールア
プリがこの規格に対応することで、利用者が意
識することなく、表示名や件名に非ASCII文字
を使えるほか、バイナリデータも添付できるよ
うになりました。
　MIMEはRFC 2045、2046、2047、2048、2049
で規定されています。MIMEを使用したメッセー
ジは「MIME-Version: 1.0」というヘッダフィー
ルドを付けて、MIMEメッセージであることを
示します。MIMEに対応していない環境でも問
題が起きないように、MIMEはRFC 5322と互
換があるように作られています。

■■ヘッダ中の非ASCII文字
　MIMEでは文字列を特定の方法でASCII文字
にエンコードすることで、ヘッダ中に非ASCII

文字を含めることができます。=?UTF-8?B?5pel
5pys6Kqe?=はUTF-8の文字列「日本語」をBエ
ンコーディングで表現したものです。
　Bエンコーディングは、3バイトのデータを4

文字で表すエンコーディングです。エンコード
後の文字はASCII英数字と「+」「/」「=」だけにな

注1） 余談ですが、日本でメールの本文の先頭で自分の名前を名
乗る習慣は、Fromに日本語で名前を書けなかったためでは
ないかと個人的には思っています。

ります。Rubyの場合はリスト3のようにして変
換できます。
　エンコーディングはBエンコーディングのほ
かにQエンコーディングもあります。同じく「日

本語」をQエンコーディングで表すと、=?UTF-
8?Q?=E6=97=A5=E6=9C=AC=E8=AA=9E?=とな
ります。Qエンコーディングは非ASCII文字、
空白、「=」「?」「_」を1バイトずつ、「=」に続けて
16進数2桁で表現したものです。空白は「_」に
変換されます。これら以外のASCII文字はその
まま表現されます。
　どちらのエンコーディングも特殊な記号は使
われていないのでRFC 5322と互換があります。
　注意すべき点は、これらのエンコーディング
は空白で区切られた文字列の単位で行われると
いう点です。「012 漢字 ABC」は012 =?UTF-8?
B?5ryi5a2X?= ABCと変換できますが、「012漢
字ABC」を012=?UTF-8?B?5ryi5a2X?=ABCとし
てはいけません。そのような場合は、前後の012、
ABCも含めてエンコーディングし、=?UTF-8?B?
MDEy5ryi5a2XQUJD?=とする必要があります。
　さらに、エンコードされた文字列が続くと間
の空白が無視されて結合されるという規則があ
ります。「日本語 文字列」を=?UTF-8?B?5pel5
pys6Kqe?= =?UTF-8?B?5paH5a2X5YiX?= と
してしまうと、デコードしたときに「日本語文字

列」となってしまいます。このような場合は途中
の空白も含めて=?UTF-8?B?5pel5pys6KqeIOa
Wh+Wtl+WIlw==?=とする必要があります。
　また、「"」でくくられている場合はデコードして
はいけません。"=?UTF-8?B?5pel5pys6Kqe?="
は「"日本語"」にデコードするのではなく、その
ままの文字列として扱う必要があります。
　このあたりの処理は非常に複雑なため実装者
泣かせで、間違って実装されているプログラム
も多いようです。

 ▼リスト3　RubyによるBエンコーディング

["日本語"].pack("m") #=> "5pel5pys6Kqe¥n"
"5pel5pys6Kqe".unpack("m").first #=> "日本語"

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか第2特集

76 - Software Design

■■Content-Transfer-Encoding
　MIMEエンコーディングによりヘッダ部に日
本語を記述できるようになりました。さて次は
ボディ部です。
　JISベースの日本語文字列の表現方法は ISO-

2022-JP以外にもSHIFT_JIS、EUC-JPがあ
ります。UnicodeだとUTF-8が一般的です。こ
れらはISO-2022-JP以外はいずれも8bitのデー
タです。また、そもそもテキストデータですら
ないバイナリデータはやはりテキストに変換す
る必要があります。
　これらのデータをテキストに変換するための
方式は、Base64とQuoted-Printableの2種類が
あります。ヘッダ部のContent-Transfer-Encod

ingフィールドで、ボディ部のエンコード方式を
示します。Content-Transfer-Encodingの値はほ
かに「7bit」、「8bit」があります。Content-Trans

fer-Encodingフィールドを省略した場合は
「7bit」が指定されたものとみなされます。これ
はとくに変換されていない7bitデータというこ
とを表しています。8bitについては後述します。

■■Base64
　Base64はヘッダのBエンコーディングと同じ
方式で、バイナリデータをテキストに変換する
エンコーディングです。ヘッダ部には「Content-

Transfer-Encoding: base64」と指定します。エ
ンコード後の文字はASCII英数字と「+」「/」「=」
だけであり、1行が76バイトよりも大きくなら
ないように改行が挿入されます。デコード時に
は改行は単純に無視されます。

■■Quoted-Printable
　Quoted-PrintableはヘッダのQエンコーディ
ングと似た方式のエンコーディングです。ヘッ
ダ部には「Content-Transfer-Encoding: quoted-

printable」と指定します。空白（0x20）、タブ
（0x09）、「=」を除く0x21～0x7Eの範囲のASCII

文字はそのままですが、それら以外の文字は「=」
に続けて16進数2桁で表現します。

　改行コードはCRLFです。CRLFとして表れ
ないCRやLFデータはそれぞれ=0D、=0Aに変
換する必要があります。空白とタブ文字はその
まま記述できますが、行末には置けません。も
し行末に空白かタブ文字がくる場合はエンコー
ドして=20、=09とします。1行が76文字以内
に収まらない場合は行末に「=」を置いて改行し
ます。デコード時には行末の「=」は続く改行も
含めて無視されます。

■■Content-Type
　Content-Typeフィールドは「type/subtype」の
形式でボディ部のデータの種類を表します。さ
らに「; attribute=value」を続けて属性を示すこと
もできます。表1に例をいくつか示します。Con

tent-Typeフィールドが省略された場合は「text/

plain; charset=US-ASCII」とみなされます。
　type/subtypeのリストは IANA（Internet As

signed Numbers Authority）で管理されていて、
Webで見られます注2。同様にcharsetのリストも
見られます注3。

マルチパートメッセージ

　Content-Transfer-EncodingとContent-Type

を適切に組み合わせることで、8bit表現の日本
語テキストや画像ファイルなどのバイナリデー

注2） http://www.iana.org/assignments/media-types/media-
types.xhtml

注3） http://www.iana.org/assignments/character-sets/
character-sets.xhtml

種類 説明
text/plain US-ASCIIテキスト
text/plain; charset=UTF-8 UTF-8テキスト
text/html HTMLテキスト
image/jpeg JPEG画像
application/octet-stream バイナリデータ
application/javascript JavaScript
application/vnd.ms-excel Excel
message/rfc822 メールメッセージ

 ▼表1　Content-Typeで指定できるデータの種類

http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/character-sets/character-sets.xhtml

メールメッセージのデータ形式

76 - Software Design Sep. 2015 - 77

タをメールで送れるようになりました。ただ、
バイナリデータを送れると言っても、1つのメッ
セージで1つのデータしか送れないようだと困
ります。何らかのデータをメールで送りたい場
合は、本文のテキストと1つ以上の添付ファイ
ルという形式が一般的でしょう。
　1つのメッセージに複数のデータを含めたメッ
セージをマルチパートメッセージと言います。
マルチパートメッセージの構造はボディ部が複
数のパートに分かれていて、各パートはメール

は必ず「=」「?」を含み、これらの文字は「"」でくく
らなければパラメータの値には書けないのです
が、MIMEヘッダでは「"」でくくられた文字列は
デコードしてはいけないためです。そのため
MIMEエンコーディングとは異なる方式でエン
コードする必要があります（RFC 2231）。
　エンコーディングの詳細は割愛しますが、

メッセージと同じ構造を持ち、ヘッ
ダ部とボディ部があります（図2）。マ
ルチパートが入れ子になることもあ
ります（図3）。

マルチパートメッセージの
構造

　マルチパートメッセージはContent-

Typeフィールドに「multipart/mixed」
を指定し、さらにboundary属性で各
パートの区切り文字列を指定します。
　boundary文字列の先頭に「--」を付
加した文字列で各パートが区切られ、
さらにその末尾に「--」を付加した文
字列でパートの終了を表します（リス

ト4）。boundary文字列は、ボディ部
に現れない文字列を選択する必要が
あります。

ファイル名

　添付したデータのファイル名など
の情報はContent-Dispositionヘッダ
フィールドに含みます（RFC 2183）。
Content-Dispositionの値は「inline」
（メッセージ本文中に表示）か「attach

ment」（添付ファイルとして表示）で、
さらに「filename」などのパラメータ
を続けることができます（リスト5）。
　非ASCII文字を含むファイル名は
MIMEエンコーディングでは記述で
きません。MIMEエンコーディング

ヘッダ部

ボディ部

ヘッダ部

ボディ部

…

ヘッダ部

 ▼図2　 マルチパートメッセージ
の構造

ヘッダ部

ヘッダ部

ボディ部

ヘッダ部

ボディ部

ボディ部

…
…

ヘッダ部

ヘッダ部

 ▼図3　 マルチパートが入れ子に
なっている

 ▼リスト4　マルチパートメッセージの例

Content-Type: multipart/mixed; boundary="123456789.hoge"

 （ここはマルチパートメッセージに対応したアプリでは表示されない）

--123456789.hoge
Content-Type: text/plain

 （メッセージ本文）

--123456789.hoge
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

 （Base64で変換された添付ファイルデータ）

--123456789.hoge--

 （ここもマルチパートメッセージに対応したアプリでは表示されない）

1つめのパート

2つめのパート

 ▼リスト5　Content-Dispositionの例

Content-Disposition: attachment; filename="hoge.data"

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか第2特集

78 - Software Design

UTF-8で「日本語ファイル名.txt」をRFC 2231

でエンコードした例をリスト6に示します。

8bitデータの扱い

　SMTPは基本的に7bitのデータしか扱えませ
んが、拡張で8bitデータを扱うこともできます。
SMTPのEHLOコマンドの応答で8BITMIME

が返される場合は、そのSMTPサーバは8bit

データを受信できます。
　8bitデータを含むメッセージを送信したいク
ライアントは、EHLOコマンドの応答に8BIT

MIMEが含まれていることを確認し、MAILコ
マンドにBODY=8BITMIMEというオプション
を渡します。さらにメッセージヘッダに「Con

tent-Transfer-Encoding: 8bit」を指定すること
で、ボディ部に8bitデータを含めることができ
ます。これでSHIFT_JISやUTF-8の本文をそ
のまま送信できます。
　なお、8bitデータを送れるといっても、バイ
ナリデータをそのまま送れるわけではありませ
ん。SMTPはテキストベースのプロトコルです
し、メールメッセージもテキストデータです。
　8bitテキストデータがバイナリデータと異な
るのは、改行コード（CRLF）で区切られた各行
の長さが最大998バイト以下であることと、NUL

（0x00）データを含まないことです。この条件に
当てはまらない場合は、Base64やQuoted-Prin

tableでテキストに変換する必要があります。

文字化け

　メールで文字化けに遭遇することが結構あり
ます。たいていはメールを送信したアプリがメッ
セージを正しく作成していないためです。

・	charsetが正しくない
　テキストデータはSHIFT_JISなのに、Content-
TypeのcharsetにISO-2022-JPと書かれて
いると、正しく表示できない

・	charsetに含まれない文字を使用している
　たとえばISO-2022-JPは、半角カナ、丸囲み
数字（「①」など）、括弧付き漢字（「㈱」など）を
含むことができない。しかし、Windowsでは
これらの文字をISO-2022-JPとして無理やり
メールを送ってしまうため、Windows以外の
環境でこのようなメールを受けると送り手の
期待どおりに表示されないことがある。Win	
dowsが作成したメッセージのISO-2022-JP
は、ISO-2022-JPではなくCP50221として
扱うことで文字化けを避けられる。同様に
SHIFT_JISはCP932として扱えば良い

・MIMEエンコーディングが間違っている
　たとえばMIMEエンコーディングした文字列
が「"」でくくられて"=?UTF-8?B?5pel5pys6
Kqe?="となっていると、正しく実装された
アプリではそれをデコードしないため、利用
者からすると文字化けのように見えてしまう。
日本語を含む添付ファイル名が正しくRFC
2231でエンコーディングされていない場合
も文字化けして見えることがある

◆　◆　◆

　普段何気なく読み書きしているメールですが、
メッセージの内部構造は非常に複雑になってい
ます。メールは非常に古いプロトコルで、メー
ルメッセージのRFCの初期の版のRFC 822は
1982年に作られました。現在のRFC 5322でも
それと矛盾しないように規格が拡張されている
のが、複雑になっている原因です。メールを読
み書きするようなプログラムを作るような人以

外は、この複雑なメッセージ構造を
知っておく必要はないかもしれませ
んが、メールの文字化けなどの問題
に遭遇したときにこの記事が一助に
なれば幸いです。｢

 ▼リスト6　日本語ファイル名をRFC 2231でエンコードした例

Content-Disposition: attachment;
 filename*0*=utf-8''%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%83%95;
 filename*1*=%E3%82%A1%E3%82%A4%E3%83%AB%E5%90%8D.txt

79 - Software Design Sep. 2015 - 79

はじめに

　近年、Gmailなどに代表されるいわゆる「Web

メール」の機能が充実しているため、メールクラ
イアントソフトを使っていないという人も増え
てきました。一方、メールシステム自体はクラ
ウド全盛の今の時代よりもずっと前から使われ
ている技術で、第1章、第2章で述べられてき
たプロトコルやサーバ側の技術とともに、メー
ルクライアントソフトも進化・発展してきてい
ます。
　本章では普段何気なく使っているメールクラ
イアントソフトがどのようにメールデータを管
理しているか、検索や読み込みの高速化のため
にどのような工夫をしているかについて、代表
的な無料メールクライアントソフトである
Mozilla Thunderbird（以下、Thunderbird）を例
に説明します。

Thunderbirdとは

　Thunderbirdは非営利団体のMozilla Foun

dationを中心に開発が行われている、オープン
ソースの無料メールクライアントソフトです（図

1）。バージョン1.0のリリースから10年以上の
歴史があり、Windows、Mac OS X、Linuxで利
用可能です。日本でも、個人／法人ともに広く

使われているメールクライアントソフトの1つ
です。

メールデータの保存

　メールクライアントソフトを利用して送受信
したメールは、通常ローカル（メールクライアン
トソフトがインストールされたPC）のファイル
システムに保存されています。ローカルに保存
しているためネットに接続していないオフライ
ン状態のときでもメールの閲覧・検索ができる
わけですが、一体どのような形式で送受信した
メールは保存されているのでしょうか。

メールデータの保存形式

　メールクライアントソフトがどのようにメー
ルを保存するかについての規約・制約は基本的

メールクライアント
ソフトのデータ管理
 Author 櫻井 賢一（さくらい けんいち）　NYKソフトウェア／C Channel㈱
 Mail Kenichi.Sakurai@cpa.com

本章では代表的な無料メールクライアントソフトである「Mozilla Thunderbird」を例に、メールクライアントソフトが
どのようにメールデータを管理しているかについて説明します。

 ▼図1　Thunderbirdの画面イメージ

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか

第2特集

80 - Software Design

にありませんので、各メールクライアントソフ
トでそれぞれで異なっています。Thunderbird

では「受信トレイ」、「送信済みトレイ」や、たと
えば自分で作成した「仕事用」といった各フォル
ダごとに1つのファイルを作成し、そのファイ
ルにフォルダ内の全メールを保存しています。
　このファイルは、メールがネットワーク上で
保存される際に使用されるmbox形式をベース
に、独自の拡張を加えた形式になっています。
mbox形式は図2に示すように「From 」で区切ら
れた各メールを、プレーンテキストで1ファイ
ルに保存しています。保存される内容は送信さ
れてきた形式そのままですので、たとえば本文
がBase64でエンコードされたメールであれば、
そのまま（エンコードされたまま）の状態で保存
されます。

高速化のための工夫

　単純に上記のmbox形式のファイルのみしか
保持していなかったとすると数千、数万、ある
いはそれ以上のメールの検索・閲覧・削除など
を効率的に行うことはできません。Thunderbird

では、この1つ1つのmbox形式のファイルに対
応する索引ファイルをそれぞれ作成し、アクセ
ス効率を高めています。また、すべてのフォル
ダのメールを効率よく検索するために検索用デー
タベースも保持しています（図3）。

索引ファイル

　索引ファイルは .msfの拡張子がついたファイ
ルです。1つのmboxファイルに対して1つの索
引ファイルが作成されます。索引ファイルは、
フォルダ内の各メールやスレッドのサマリー情

 ▼図2　mbox形式（Thunderbirdの Inboxファイルの例）

From
MIME-Version: 1.0
x-no-auto-attachment: 1
Received: by 10.28.22.137; Sun, 29 Mar 2015 06:12:51 -0700 (PDT)
Date: Sun, 29 Mar 2015 06:12:51 -0700
Message-ID: <CAPW8GLbVw0Hr_8==Pvhzgf6mq8YVq0Dqx959XKoSKc3a4=AqfA@mail.gmail.com>
Subject: =?UTF-8?B?R29vZ2xlIEFwcHMg44GnIEdtYWlsIOOCkuS9v+eUqOOBmeOCi+aWueazlQ==?=
From: =?UTF-8?B?R21haWwg44OB44O844Og?= <mail-noreply@google.com>
To: =?UTF-8?B?5qu75LqV44Kx44Oz44Kk44OB?= <kenichi@cchan.tv>
Content-Type: multipart/alternative; boundary=047d7bacb124681a4c05126d1f25

--047d7bacb124681a4c05126d1f25
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: base64

IEdvb2dsZSBBcHBzIOOBpyBHbWFpbCDjgpLkvb/nlKjjgZnjgovmlrnms5UNCltpbWFnZTogR29v

＜＜中略＞＞

aXY+PC9kaXY+PC9ib2R5PjwvaHRtbD4NCg==
--047d7bacb124681a4c05126d1f25--
From
MIME-Version: 1.0
x-no-auto-attachment: 1
Received: by 10.28.22.137; Sun, 29 Mar 2015 06:12:51 -0700 (PDT)
Date: Sun, 29 Mar 2015 06:12:51 -0700
Message-ID: <CAPW8GLYYEiFCu=2A05uY5Pq8-9J7Y94tQansT5z-k3LGcWCWZg@mail.gmail.com>
Subject: =?UTF-8?B?44Gp44GT44Gn44KCIEdtYWlsIOOCkuacgOWkp+mZkOOBq+a0u+eUqA==?=
From: =?UTF-8?B?R21haWwg44OB44O844Og?= <mail-noreply@google.com>
To: =?UTF-8?B?5qu75LqV44Kx44Oz44Kk44OB?= <kenichi@cchan.tv>
＜＜以下略＞＞

送受信に利用したエンコーディングのまま保存

「From 」で各メールを区切る

1 通目の
メール

2 通目の
メール

メールクライアントソフトのデータ管理

80 - Software Design Sep. 2015 - 81

報と、フォルダのメタ情報などを保持していま
す。このファイルがあることにより各メールへ
のアクセスが素早く行えます。大量のメールが
あるフォルダで表示をスレッドごとに切り替え
たり、スレッド表示を解除したりということが
高速に行えるのもこの索引ファイルのおかげで
す。まさに図鑑などの巻末についている「索引
ページ」のような役割を果たしているわけです。
　文字どおり「索引」情報で、メールの原本を保
持しているわけではありません。ですのでmbox

ファイルがあれば、索引ファイルの再作成をす
ることが可能です。仮に索引ファイルが破損し

たという場合でも、対象フォルダの情報画面の
メニューから、図4にある「フォルダを修復」ボ
タンを押すことにより索引ファイルを再作成で
きます。

メールの削除処理

　図4のフォルダ情報画面の記述内容を見て「あ
れっ？」と思われた方もいらしゃるかもしれませ
んね。『フォルダの索引ファイル（.msf）が損傷
し、削除したはずのメッセージが表示されてし
まうことがあります。』の部分です。
　上で説明したとおり、Thunderbirdでは、メー
ルの原本は各フォルダごとにmbox形式で1つの
ファイルにまとめて保存されています。そのた
め1つのフォルダに数千、数万あるいはそれ以
上のメールが格納されている可能性があります。
新規に受信・送信したメールはmboxファイル
の末尾に追記されていきます。しかし、メール
の削除やフォルダ間の移動の実行時に、mbox

ファイルの中から対象のメールを削除する（取り
除いて詰める）ということは行いません。もしそ
うしてしまうとファイル内の更新対象個所が多
くファイルシステムに対するオーバーヘッドが
大きくなり、処理を実行するたびに時間がかかっ
てしまうためです。
　実際の削除の実行時には、mboxファイル内の
対象メールの管理用ヘッダーのフラグを削除状
態に変更し、あわせて索引ファイルの情報を更
新するだけにとどめます注1（図5）。mboxファイ
ルからメールが削除されるわけではなく、「この
メールはこのフォルダから削除されたメールだ
よ」と印をつけるだけですので、メールの削除を
実施してもmboxファイルのサイズは変わりま
せん。
　索引ファイルが破損して不整合状態になった
ような場合に、「削除したはずのメッセージが表
示」されるということが起こり得るのも、このよ
うなしくみのためです。

Thunderbird の
プロファイルディレクトリ

メールアカウント
ディレクトリ…

…
検索用データベース

「受信トレイ」
（mbox）

「受信トレイ」
索引ファイル

「送信済みトレイ」
（mbox）

「送信済みトレイ」
索引ファイル

 ▼図3　メールデータを保存しているファイル

 ▼図4　Thunderbirdのフォルダ情報画面

注1） 設定、状況によりmboxファイルの更新はまったく行われ
ない場合もあります。

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか

第2特集

82 - Software Design

フォルダの最適化

　ということは、一見するといくら不要なメー
ルをせっせと削除してもローカルディスクの使
用領域の削減につながらなさそうです。「削除済
み」のマークが付けられたメールを実際にmbox

ファイル内から削除し、ファイルサイズを小さ
く適正にする処理をフォルダの「最適化」と呼ん
でいます。ちょっと異なりますが、メモリ管理
でたとえるとガベージコレクションをイメージ
していただけると理解しやすくなるかもしれま
せん。
　現バージョンのThunderbirdのデフォルトの
設定では、最適化実行によりディスク容量が
20MB以上削減できる場合は自動で最適化が実
行されるようになっています（図6）。また、手
動で最適化を実行することも可能です。実際に
数万通のメールを保存しているようなサイズの
大きなフォルダで、いくつかメールを削除して
から最適化を実行してみると、それなりに時間
を要する処理だということを体感できます。

検索用データベース

　索引ファイルの利用によるアクセスの高速化
に加えて、Thunderbirdでは検索専用のデータ
ベースを持っていて検索処理の高速化を実現し

ています。「グローバル検索データベース
（Gloda）」と呼ばれるこの検索用データベースは、
SQLiteを用いて実装されています。軽量・高
速なRDBMSとして実績のあるSQLite上でイ
ンデックス情報を管理することにより、メール
原本自体は、そのメールが送信されたエンコー
ドのまま保存しているにもかかわらず、（もちろ
ん日本語も含めて）高速なフルテキストサーチが
可能となっています。
　このファイルもメール原本自体を管理してい
るものではありませんので、索引ファイル同様
に再作成が可能注2です。

メール A
削除フラグ 0

メール B
削除フラグ 0

メール C
削除フラグ 0

メール B 削除前

メール A
削除フラグ 0

メール B
削除フラグ 1

メール C
削除フラグ 0

メール B 削除後

・削除されたことを示すフラグが
付与される（例外あり）

・メール原本自体は削除されない
ため mbox ファイルのサイズは
変わらない

 ▼図5　メール削除実施時のmboxファイルの変化（メールBの削除を実行した場合）

 ▼図6　 フォルダ最適化自動実施に関する設定
（Thunderbirdの環境設定画面）

注2） 詳細手順はhttps://support.mozilla.org/ja/kb/rebuilding-
global-databaseを参照。

https://support.mozilla.org/ja/kb/rebuilding-global-database

メールクライアントソフトのデータ管理

82 - Software Design Sep. 2015 - 83

メールのエクスポート

　Thunderbirdでは個々のメールを選択して、
eml形式のファイルとしてエクスポートするこ
とが可能です。eml形式は多くのメールクライ
アントソフトでサポートされていて、インポー
トやエクスポートの際によく用いられています。
1ファイルにメール1通の情報を、プレーンテキ
ストのMIMEフォーマットで格納します。

メールデータのバックアップ・移行

　これまでの説明のとおり、Thunderbirdの索
引ファイルやグローバル検索用データベースは、
元となるメールデータのファイル（mboxファイ
ル）から再作成可能です。逆にmboxファイルは
メールの原本となる情報を管理しているため、
重要なフォルダのmboxファイルはしっかりと
バックアップを取るべきです注3。
　正式な移行手順ではありませんが注4、PCの
買い替えなどでThunderbirdのデータを移行す
る場合、Thunderbirdのプロファイルディレク
トリの適切な位置にmboxファイルさえ置けば、
Thunderbirdを起動した際に認識し、適切に取
り込まれて、索引ファイルや検索データベース
の作成などの処理が行われます。

　Thunderbirdからほかのメールクライアント
ソフトに移行する場合にも、移行先のメールク
ライアントソフトが対応していれば、mbox形式
のファイルそのものやエクスポートしたeml形
式のファイルを利用して、メールデータを引き
継ぐことが可能です。

Thunderbird以外のメールク
ライアントソフトのデータ管理
　代表的なメールクライアントソフトの1つで
あるMicrosoft Outlookでは、Outlookデータ
ファイル（.pst）にメールの情報が格納されてい
ます。このpstファイルのフォーマットはThun

derbirdとは異なりプレーンテキスト形式ではな
いため、テキストエディタで開いて直接中身を
確認することはできません。
　また、Windows用の国産メールクライアント
ソフトとして歴史があり固定ファンも多い（有）
リムアーツのBecky! Internet Mailでは、メー
ルの原本データは .bmfファイルにテキスト形式
で格納されますが、mbox形式ではありません
し、必ず1つのフォルダに対して1つのファイ
ルというわけではないようです。
　このようにメールデータの保存はメールクラ
イアントソフトごとに異なっていることが多く、
それぞれのソフトウェアごとに管理の効率化、
処理の高速化のための工夫がなされています。
｢

　ThunderbirdはブラウザのFirefoxや、おもにモバイル機器向けのOSであるFirefox OSといった他のMozilla
によるソフトウェアと同様にオープンソースのソフトウェアであり、世界中の多くのコミュニティメンバーの貢
献により支えられています。コミュニティメンバーの貢献内容はプログラムの開発はもちろんですが、技術文書
の翻訳やバグ報告・テスト支援など多岐にわたっています。これはほかのオープンソースコミュニティでも同様
ですね。
　筆者の知人で「オープンソースプロジェクトに参加してみたいが、自分にはハードルが高そう」と言っていた若
いエンジニアの方がいます。確かにプログラム開発による貢献となるとハードルが高いと感じてしまう方もいる
と思います。でも、翻訳やバグ報告など自分が貢献できそうな領域を見つけて、そこをきっかけに徐々に使うだ
けの立場から、作り上げていく立場にもなっていくことはとても楽しいことだと思います。世界中の人が使って
くれますしね。最近では各地で翻訳イベントなども実施されています。オープンソースコミュニティへの参加、ぜ
ひオススメしたいです。

オープンソースコミュニティへの参加

注3） POP3を利用していてサーバ側にメールデータが残ってい
ない場合。

注4） 各ファイルの位置づけを説明するための記述です。正式な
移行手順は、https://support.mozilla.org/ja/kb/moving-
thunderbird-data-new-computerを参照してください。

https://support.mozilla.org/ja/kb/moving-thunderbird-data-new-computer

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか

第2特集

84 - Software Design

S/MIMEを利用する

　Webメールと比較してメールクライアントソフト
を使うことのメリットの1つに、S/MIME（エスマイ
ム）の利用があります。S/MIMEとはSecure/Multipur
pose Internet Mail Extensionsの略でメールの暗号
化とデジタル署名に関する標準規格です。S/MIMEを
利用することによりメールの機密性・真正性・完全性・
否認防止性を実現することができます。

●秘密にしたい情報をセキュアにやりとりする

Webの場合
　本誌の読者であればブラウザを使ってWebサイト
にアクセスする際に、たとえば個人情報を取り扱うサ
イトで「このサイトはSSL対応か？」ということを気に
される方が多いのではないかと思います。SSL対応の
サイトにより実現できることは、通信の「エンド・ツー・
エンドでの暗号化」（機密性）、「接続先のサイトが本当
に目的のサイトかどうかの確認」（真正性）などいくつ
かありますが、メールのやりとりでも同様のことを気
にされる方はそこまで多くはないかもしれません。
　「エンド・ツー・エンドの暗号化」とは、Webブラ
ウザとWebサーバの間の通信内容を暗号化すること
を指します。これにより通信経路上の第三者に内容を
盗み見られることを防止できます。これは情報がどこ
の通信経路を通るか保証されないインターネットの世
界ではとても重要なことです。

Webメールだと
　メールの場合で考えてみましょう。たとえば取引先
の会社と重要な機密情報をやりとりする必要があった
とします。Webメールを利用して通信内容を完全に
エンド・ツー・エンドで暗号化するためには、いろい
ろと難しい課題があります。
　一例を挙げると、通常Webメールでは、受信した
メール内の文章や添付ファイルの情報を利用者が読め
る形にデコード・整形しているのは、Webメールサー
ビスの提供者です。この時点でWebメールサービス
の提供者は平文のメールの内容を（原理的には）読むこ
とが可能になり、エンド・ツー・エンドの暗号化は実
現できていないことになります。暗号化されたメッセー
ジの内容を復号化するために、自分の秘密鍵をWeb
メールサービスの提供者に預けておかなければならな

い、ということになるわけです。

メールクライアントソフトだと
　ThunderbirdやOutlookなど主要なメールクライ
アントソフトの多くはS/MIMEに対応しています。メー
ルクライアントソフトを利用することにより、送信者
のメールクライアントソフトで送信時に暗号化された
メッセージを、受信者側のメールクライアントソフト
で受信時に復号化するという「エンド・ツー・エンドの
暗号化」を実現できます。各利用者の秘密鍵もWeb
メールのサービス提供者に預けたりする必要がないの
で、より厳格に機密性・真正性・完全性・否認防止性
を実現することが可能になります。

●S/MIME利用時の注意事項

　S/MIMEで暗号化、署名の対象になるのはメールの
本文（ボディ）部分です。ヘッダ部分は対象にはなりま
せん。つまり、S/MIMEを利用して暗号化してもメー
ルの件名部分（サブジェクト）などは平文のままですの
で利用時には注意が必要です。
　受信者側がS/MIMEに対応したメールクライアント
ソフトを使用していないと、メッセージの中身を確認
できないという点も当然ですが注意事項の1つです。

●S/MIMEの普及について

　S/MIMEの利用には、

①利用者が電子証明書を取得（購入）する必要がある
②秘密鍵をなくしてしまうと暗号化されたメールが読
めなくなる

など利用面で不便な点もいくつかあり、少なくとも日
本においては広く普及しているとは言えません。一方
で、他国の事例では個人への電子証明書の普及が進ん
でいる国もあり、S/MIMEの利用率は国や地域により
違いがあるようです。
　S/MIMEは、昨今問題となっている成りすましメー
ルによる特定の企業・組織への標的型メール攻撃の有
力な防御手段の1つとなります。S/MIME自体は新し
くはない技術ですが、日本でも普及してほしいと思い
ます。なお、国内での普及活動は一般財団日本情報経
済社会推進協会（JIPDEC）により行われています注A。

メールクライアントソフトだからできること

注A） http://jcan.jipdec.or.jp/smime/

http://jcan.jipdec.or.jp/smime/

85 - Software Design Sep. 2015 - 85

なぜ送信者や送信先を
偽装できるのか
　日本年金機構の個人情報漏洩事件など、最近
話題となっている標的型攻撃では、メールが攻
撃の起点となっています。このようなウィルス
メールや迷惑メールなどでは、送信者を偽装し
てメールを送付することが多いです。しかしな
ぜ送信者の偽装が可能なのでしょうか。
　実はメール（SMTP）ではもともと、送信者を
認証するしくみはありませんでした。そして現
時点でも、メールアプリで「差出人」として表示
される部分には認証するしくみはないのです。
SMTPではSMTPセッション中で渡される送信
先と送信者を、envelope-to（エンベロープ受信
者）、envelope-from（エンベロープ送信者）と呼
び、メールのヘッダ部分に記載されているもの
をheader-to、header-fromと呼びます。メール
クライアントで「宛先」や「差出人」として表示さ
れるのは、このheader-toとheader-fromのもの
です。しかし、実際に送信される先はenvelope-

toにあたるアドレスです。
　このenvelope-toとheader-toとは、実はまっ
たく無関係のアドレスを表記することができる
のです。そしてチェックもされません。これは
「差出人」にあたる header-fromと envelope-

fromでも同じで、後述のSPF/DKIM以外では
これらのアドレスがチェックされることはあり

ません。つまり、envelope-to以外はすべてウソ
の情報が書いてあってもメールを出すことがで
きるのです。

メールの送信認証方法

　このように、もともとメールのしくみには送
信者を認証するための機構はありませんでした。
しかし、ウィルスメールや迷惑メールのように、
メールに送信認証がないことを悪用して大量の
メールを出す人たちが出てきました。そのため、
送信認証を行うことで、そういった悪用ができ
ないしくみが徐々に取り入れられていきました。
メールの送信認証がどのように変化してきたか、
歴史を追いながら説明をしていきます。

Open relay

　Open relayとは、メールサーバがなんの制限
もなくメール送信を受け付ける状態になってい
ることを指します。今、メールアプリからメー
ルを出すと、まず送信メールサーバに指定して
ある、利用しているISPや自社のメールサーバ
がメールを受け取り、そこから宛先のメールサー
バへと転送されます。しかし、接続に使ってい
ないISPや他社のメールサーバを指定して送ろ
うとしても、拒否されてしまい送れません。実
は昔のメールサーバでは、なんの制限もなくす
べての送信者からのメールを受け取り、それが

メールの安全性は
どう守るのか
 Author 佐藤 潔（さとう きよし）　㈲ジーワークス

本章では、メールの送信者の認証や暗号化、迷惑メール対策について説明します。

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか

第2特集

86 - Software Design

自分が扱う範囲のメールではない場合は、それ
を受け取るべきメールサーバに対してメールを
再送するという動作をしていました。
　しかし、迷惑メールを送る人たちが出てくる
と、このようなメールサーバに対して迷惑メー
ル送付を押し付けることで、大量のメールを送
るようになりました。そこで第1章でも説明が
あるように、自ネットワークからの接続や後述
のSMTP-Authで認証が通った場合だけ、送信
を許可するように設定するのが一般的となった
のです。

POP before SMTP（PbS）

　ホスティングサーバなどでOpen relayをしな
い設定をすると、なんらかの方法でメールアプ
リからの送信を接続元IP以外の方法で認証する
必要が出てきます。そこで、POP before SMTP

（PbS）という方法が使われるようになりました。
これは（SMTP接続の）直前にメール受信でPOP

の認証をしておくと、その接続元IPからのメー
ル送信を一定時間だけ受け付ける、というもの
です。
　もともとMTA（Mail Transfer Agent）とPOP

サーバのようなMRA（Mail Retrieval Agent）と
は直接は連携していないため、MRAで認証され

た接続元IPをなんらかの方法でMTAに参照さ
せてやる必要があります。そのためにdracd注1

などが利用されています。ただ、次で説明する
OP25Bという制限が一般的になったため、今で
はPbSが使われることはほとんどなくなってい
ます注2。

Outbound Port 25 Blocking
（OP25B）

　Open relayの対策が進んだため、迷惑メール
の送信手段が変化し、ウィルスに感染させて遠
隔操作可能にしたPC（bot）を利用して、直接送
付先のメールサーバにメールを送る、という手
法が一般的になりました。これは現在でも迷惑
メール送信の主流となっています（図1）。
　この、botからのメール送信自体を行わせない
ようにすることで、迷惑メールを出させなくす
るしくみがOutbound Port 25 Blocking（OP25

B）です。botは直接、自ネットワーク外のメー
ルサーバの25番ポートに接続を行い送信しよう
とします。そこでネットワークの出口で、メー
ルサーバ以外の IPから外部の25番ポートへ接
続しようとするものをすべて拒否してしまうこ

注1） http://mail.cc.umanitoba.ca/drac/index.html
注2） OP25Bにより自ネットワーク外へのSMTP接続自体がで

きなくなるため。

メールスプール
B社 メールサーバ

mx.B社.ne.jp

Port 25

Port 25

Port 25

A社 メールサーバ
mail.A社.ne.jp

ISP B社

ISP A社

 ▼図1　通常のメール送信（左）とbotからのメール送信（右）の違い

メールスプール
B社 メールサーバ

mx.B社.ne.jp

Port 25

bot化

bot化

A社 メールサーバ
mail.A社.ne.jp

ISP B社

ISP A社

http://mail.cc.umanitoba.ca/drac/index.html

メールの安全性はどう守るのか

86 - Software Design Sep. 2015 - 87

とで、botからメールサーバへの接続をさせない
ようにしてしまうわけです（図2）。
　通常、迷惑メール対策というとメールを受け
る側の手法が思い浮かびますが、OP25Bの場
合、迷惑メールを出させないことで全体の迷惑
メールを減らすという手法であること、サーバ
ではなくネットワークのフィルタで行うもので
あることが特徴的です。日本ではJEAGという
迷惑メール対策を行っていた団体が強力に推進
したため、ほとんどのISPでこのフィルタが行
われるようになり、日本発の迷惑メールが大幅
に減ることになりました注3。

SubmissionポートとSMTP-Auth

　OP25Bの制限があると、今までPbSにより
可能だったホスティングサーバや外から自社メー
ルサーバを使ったメール送信が利用できなくなっ
てしまいます。そこで、Submissionポートと呼
ばれるメールアプリからのメール送信を受け付
ける専用のポート（587番ポート）が使われるよ
うになりました。

　Submissionポートから送信する際、ユーザ認
証のない通常のSMTPではまた迷惑メール送信
に悪用されてしまうので、送信に認証が必要な
SMTP-Authというプロトコルが利用されるの
が一般的となりました。

SPFとDKIM

　SubmissionポートとSMTP-Authにより、自
ユーザからの送信者認証は行えるようになりま
した。しかし最初に説明した、送信者のメール
アドレスを偽装できてしまうという問題は解決
されていません。ただ、送信者のメールアドレ
スの「ドメインが正しいか」を判定するしくみは
作られました。それがSPF（Sender Policy Fra

mework）と DKIM（DomainKeys Identified

Mail）です。SPFやDKIMは、送信者として書
かれているメールアドレスのドメイン部分から、
そのドメインのDNSのTXTレコードなどを参
照して、正規のメールサーバから出されたもの
かを判定できるようにするものです。
　SPFは、DNSのTXTレコード（もしくはSPF

レコード）に規定の書式にしたがって、MTAの
IPを列挙します。この書式では、このドメイン
が送信者になっているメールはこのIPから出さ

注3） ただ現在は、このOP25Bを乗り越えるSubmissionスパム
と呼ばれる手法で迷惑メールが出されることも起きてい
る。

メールスプール
B社 メールサーバ

mx.B社.ne.jp

Port 25

OP25B
外部のPort 25への
接続を拒否

ユーザ認証
・ユーザID
・パスワード

Port 587

bot化

bot化

A社 メールサーバ
mail.A社.ne.jp

ISP B社

ISP A社

 ▼図2　OP25Bによりbotからのメール送信を防ぐ

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか

第2特集

88 - Software Design

れる、ということが示されています（図3）。
　DKIMは、公開鍵暗号方式を用いてメール本
文から署名を作り、メールヘッダに追加されま
す。受け取った側は送付元ドメインのDNSの
TXTレコードから公開鍵を取得して、メール
ヘッダの署名が正しいかを判定します。
　SPFは転送が行われる場合やエラーメールを
返す場合に、DKIMはメーリングリストのよう
に内容の一部が変更される場合に、問題が起き
ます。そのため、SPFとDKIMどちらも対応し
ておき、どちらか一方が通った場合には認証が
通ったとするのがお勧めです。そのような柔軟
な条件でSPFやDKIMの検証を行うには、
milter manager注4やENMAなどのツールを利用
するのが良いでしょう。

メールの暗号化

　次にメールの暗号化はどのような手法がある
のか、そしてその問題点を紹介します。

　送信認証についてもそうでしたが、SMTPで
はもともと暗号化などは考慮されていませんで
した。そのため、通信内容は基本的にすべて平
文で流れるようになっていますし、POPのユー
ザ認証時などのパスワードでも平文で通信され
ます。なので、経路上でパケットキャプチャで
きる環境があると、そこでメールの内容やパス
ワードを盗み見ることができてしまいます。ま
た通常、メールスプールに置いてあるファイル
は暗号化されていないことが多く、メールスプー
ルのメールを覗かれる危険性もあります。

SMTP over SSL/TLS（SMTPs）

　SMTP over SSL/TLS（SMTPs）は、SSLま
たはTLSで暗号化した通信経路上でSMTPの
通信を行うというものです。さらに、最初から
SSL/TLSでの接続を行うものと、最初は
SMTPで接続してからSTARTTLSコマンドに
より、SSL/TLSの通信に移行するものとがあ
ります。またSMTPだけではなく、メール受信
を暗号化して行うためのPOP over SSL/TLS

（POPs）や IMAP4 over SSL/TLS（IMAP4s）

from:
foo@example.jp

from:
foo@example.jp

IP:198.51.100.11
からの接続は不正

example.jp へ TXTレコードの問い合わせ
v=spf1 +ip4:203.0.113.1 -all

IP:203.0.113.1
からの接続は正しい

example.jpドメインの
DNSサーバー

送信者 受信者

bot
IP:198.51.100.11

正しいexample.jpの
メールサーバー

受信者メール
サーバー

IP203.0.113.1

 ▼図3　SPFで送信元ドメインのチェックを行う

注4） http://milter-manager.sourceforge.net/index.html.ja

http://milter-manager.sourceforge.net/index.html.ja

メールの安全性はどう守るのか

88 - Software Design Sep. 2015 - 89

もあります。
　ですが、これらの接続の暗号化が保証される
のは、あくまで自分のメールアプリとメールサー
バ（MTAやMRA）との間の暗号化に過ぎません
（図4）。送付元と送付先のメールサーバ間が暗
号化通信しており、受信者もPOPsなどで受信
していればすべての経路が暗号化されますが、
通常は知るすべがありませんから、ちゃんと暗
号化のことを考えるなら、ここだけ暗号化して
もあまり意味がないでしょう。ただ、公衆Wi-Fi

を利用して接続する場合など、メールサーバま
での経路の暗号化に意味がある場合は積極的に
利用すべきです注5。

PGP（GPG）とS/MIME

　SMTPsはあくまで通信経路の暗号化で、先
の経路のことまでは保証されないため、限定的
にしか暗号化の効果がありませんでした。そこ
でPGP（GPG）やS/MIMEでは、メールアプリ
で暗号化や署名をして、受け取った相手のメー
ルアプリで暗号化を解くことで、完全な暗号化
を実現しています。
　PGPは公開鍵暗号方式を用いた暗号化ツール
で、GPGはGnuPGとも呼ばれるPGPのGPL

版のものです。PGPは商用利用は有料ですが、
GPGはフリーソフトウェアなので無料で利用で
きます。S/MIMEも電子証明書を用いて暗号化

や署名を行うしくみですが、SSLのように認証
局から証明書を発行してもらう必要があります。
詳しくは第3章のコラムを参照してください。
　GPGやS/MIMEを利用すれば、完全な暗号
化や送信者の認証を行うことができますが、こ
れらを利用できる人がほとんどいない、という
のが一番の問題となります。

暗号化zipファイルとパスワード問題

　GPGのような完全な暗号化ではなくても、暗
号化を行いたい場合は多くあります。そのよう
なときよく使われるのが、暗号化したzipファ
イルやパスワード付きのExcelファイルを添付
して、別メールでパスワードを送る、というも
のです。
　ですが、パケットキャプチャなどでメールが
覗かれうる状況ならば、パスワードの書かれた
メールも覗かれますから、この方法ではほぼ意
味がないということがわかると思います。
　このように見ると、メールの暗号化には残念
ながらこれといった解決法がないのが現状と言
えるでしょう。

迷惑メールの対策

　迷惑メールは2000年代後半をピークに徐々に
減りつつありますが、それでもまだ大量の迷惑
メールが出されています。本章の最後に、迷惑
メール対策の代表的な手法と、利用方法を簡単

この経路はSMTPsで
暗号化される

メールサーバー間の経路や
メールアプリ受信時の経路が
暗号化されるかは不明

送信者 受信者送信者メール
サーバー

経路全体が暗号化されるわけではない

受信者メール
サーバー

 ▼図4　SMTPsで暗号化される範囲

注5） 相手がGmailなどSMTPs対応であることがわかっている
場合なども意味がある。

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか

第2特集

90 - Software Design

に紹介します。

迷惑メールの送信手法

　メールの送信認証方法で説明したように、
SMTPには送信者の認証機構がないため、送信
者アドレスはまったくあてになりません。また、
OP25Bの解説でも説明しましたが、多くの迷惑
メールはbotを利用して出されているので、送
信元の個々のbotを特定することはできても、遠
隔操作している元にたどり着くのは困難です。
そのため、真の迷惑メール送信者を捕まえるこ
とは難しくなっています。
　ただ、botを用いて大量のメールを送るための
特徴やクセがあり、それを使って迷惑メールを
判定することができます。

DNSBL

　DNSBL（DNS Blacklist）は RBL（Real-time

Blackhole List）とも呼ばれ、迷惑メールを送付
してきたIPアドレスのブラックリストを、DNS

を用いて共有するサービスです。迷惑メールを
送られたユーザからの通報や、ハニーポットと
いう迷惑メールを受信するために仕掛けられた
罠のメールアドレスに届いたメールなどから、
迷惑メール送信元のIPアドレスをブラックリス
トに登録します。
　利用者は、DNSBL提供元のDNSに対しメー
ル送信元 IPを問い合わせると、結果に応じて
127.0.0.1などの値が返ってくるため、それでブ
ラックリストに載っているか判断します。
Spamhaus注6などのサービスが有名です。
　正しいメールサーバでも、ウィルスなどから
それを使って迷惑メールを出されるとDNSBL

に登録されてしまうため、その誤検出が問題に
なることも意外に多いです。ホスティングサー
ビスなどで近くのIPアドレスのメールサーバか
ら迷惑メールを出されることで、巻き添えでブ
ラックリストに入れられてしまうこともありま

す。そのため、DNSBLだけの判定で迷惑メー
ルと判定せず、複数の基準で総合して判定する
システムにすることをお勧めします。また、
DNSBLのサービスが終了してしまうと、それ
が原因で誤検出を起こすことがありますので、
利用しているDNSBLサービスが継続している
か注意しておく必要があります。
　PostfixでDNSBLを利用するには、postscreen
を利用するか、milter managerを使い、ほかの
指標と組み合わせて利用するのが良いでしょう。
　botからのメールが増えたため、DNSBLは結
果的に動的IPのアドレス帯をブラックリストに
することと意味的に近くなります。そのような
動的IPフィルタとしてはS25R注7という手法が
あります。

greylisting

　botからのメールは短時間に大量のメールを送
ることが目的であり、到達性は求められません。
SMTPでは、メールサーバがなんらかの理由に
より一時的にメールが受け取れない場合、再送
要求を出すことができるようになっています。
再送要求を受け取ると、通常のメールサーバで
は一定時間後に再送を行いますが、botでは再送
せずにそのままあきらめてしまうものがほとん
どなのです。greylistingは、わざといったんメー
ルを「一時拒否」と返答し、きちんと再送された
ものだけ受け取ることで迷惑メールをフィルタ
します。
　Postfixでgreylistingを導入する場合、post

grey注8やmilter-greylist注9がよく使われます。
　このようなSMTPセッションレベルでのクセ
を利用したフィルタはほかにも、tarpittingとい
う返答の遅延を利用したものや、ウソの返答を
してその反応を見るもの、などいろいろなもの
があります。
　greylistingでは初めて受け取るメールサーバ

注6） https://www.spamhaus.org/

注7） http://gabacho.reto.jp/anti-spam/
注8） http://postgrey.schweikert.ch/
注9） http://hcpnet.free.fr/milter-greylist/

https://www.spamhaus.org/
http://gabacho.reto.jp/anti-spam/
http://postgrey.schweikert.ch/
http://hcpnet.free.fr/milter-greylist/

メールの安全性はどう守るのか

90 - Software Design Sep. 2015 - 91

からのメールが遅延してしまうことや、まれに
再送要求に応じない「正しい」メールサーバから
のメールが受け取れないことがあります注10。
tarpittingを使って遅延や誤検出を減らした
taRgrey注11という手法もあります。

ベイジアンフィルタ

　ベイジアンフィルタとは迷惑メール中に含ま
れる語句を、ベイズ学習という機械学習手法に
より学習させ、迷惑メールの判定を行うもので
す。ベイジアンフィルタでは、まず最初にどれ
が迷惑メールなのかを学習させる必要がありま
す注12。届いたメールの内容を単語に分かち書き
し、迷惑メールと判定されたメールの中に、た
とえば「出会い」という単語が入っていた場合、
「出会い」と入っているメールが迷惑メールだっ
た確率、つまり単語ごとの迷惑メール確率を算

出していきます。判定させる場合は、メールに
含まれているすべての単語に、この単語ごとの
迷惑メール確率を積み上げていき、閾値以上に
なったときに迷惑メールと判定します。
　メールアプリでの迷惑メール判定でも多く使
われており、Thunderbirdの迷惑メールフィル
タやPOPFile注13などで使われています。サー
バで利用する場合、SpamAssassin注14というよ
く使われているサーバ側の統合型迷惑メールフィ
ルタでもベイジアンフィルタを利用することが
できますので、これを利用するのが良いでしょ
う。機械学習の前処理として分かち書きが必要
となるため、言語によりローカライズが必要に
なります。SpamAssassinの日本語ローカライズ
はSpamAssassin日本語対応パッチ注15を利用し
ます。｢

注10） Webの登録ページから登録確認メールなどをメールサー
バを経由せずに直接送ろうとしている場合などに多い。

注11） http://k2net.hakuba.jp/targrey/ 筆者が考案したもの。
注12） プレ学習されていても日本語圏でないところで学習された

データは精度があまり良くないことも。

注13） http://getpopfile.org/docs/jp
注14） http://spamassassin.apache.org/
注15） http://emaillab.jp/spamassassin/ja-patch/

http://k2net.hakuba.jp/targrey/
http://getpopfile.org/docs/jp
http://spamassassin.apache.org/
http://emaillab.jp/spamassassin/ja-patch/

92 - Software Design

はじめに

　本誌の読者は若手と中堅が多いと聞いてい
ます。立場はおそらく違いますが、自分の提
案に対して周囲の共感を得ることが難しいな
と感じていませんか。その困難は、両世代に
共通していると思います。技術的な興味を引
く説明はできても、それが自社にとってどの
ような影響を及ぼすのか……、事業の観点か
ら説明するのが苦手——そういう方が多くな
いですか。
　本記事では、事業での数字の扱い方をでき
る限りシンプルに解説します。そして会議な
どの提案資料の裏付けの1つとして「皆がわか
る数字」を出せるようになることを目的として
います。なお、本記事はDevelopers Summit

冬2015 20-E-1での講演および資料を元にし
ています。同Summitでも注意点として挙げま
したが、本記事の内容をそのまま提案資料に
活かすのは避けてください。なぜなら数字の
費用計上のルールや、減価償却率の適応、固
定資産への組み入れ方や除却の方針、そのほ
かについて、細かい部分での取り扱いは会社
によって違いがあるからです。本記事を手が
かりに、会計担当の方に確認を取ってから実
践してください。

私が伝えたいこと

　若い開発者に、わかりやすくお金の話を伝
えたかったというのが最初の思いです。

　会社にまつわるお金というのは、実は思っ
ている以上にロジカルに成り立っています。
麻生元総理曰く「帳簿っていうのを見れば、ま
ず借り方と貸し方と、2つがあるでしょ、（中略）
お金を100借りていれば、必ず、100貸してい
る人がいないとおかしい。帳簿って言うのは
左と右が必ずそろうことになってますから」——
つまり入ってきたら必ず出ていく何かがあり
ます。モノか、違う種類のお金に変わるだけ
なのです。
　「帳尻が合う」の「帳」は帳簿の「帳」であり、
項目を並べた最終行の合算値が貸方／借方で
ぴったり合うことなのです。

　今後皆さんがどのような立場になろうが、
お金の話は常に近くにあります。生きていく
ための手段は多いほうが良いですし、誰かに
何かを伝えるための表現方法は手が多いほう
が目的を達しやすいのです。また、以前とあ
る会合で㈱さくらインターネットの田中社長
のお話で印象に残ったものがあります。それ
は「事業には、作り手（技術）、売り手（営業・
企画）、支え手（サポート）のバランスが大事」

特別企画
冷静と情熱の間には、お金の川が流れている
俺の提案は通らないのか

　

なぜ ？

俺の提案は

　
冷静と情熱の間には、
お金の川が流れている

なぜ

？

特別企画

通らないのか
 Author 土居 昭夫（どい あきお）　㈱NTT PCコミュニケーションズ

会社で進められているさまざまなプロジェクト。「なぜ、あの案件が決まってしまったのだろうか、俺のほうが
優れているのに」と忸

じく じ

怩たる思いをしたことはありませんか。その決定の根拠は何でしょうか。答えはコスト＝
お金です。しかし企業では、単に儲かる・損をする、という単純なモノサシで決定されているのではありません。
そこにいたる共通解があるのです。本記事は、その気がつきにくいポイントを明らかにしていき、読者の皆さん
の気持ちを晴らし、より実践的なエンジニアになる手がかりを共有したいと思います。

92 - Software Design Sep. 2015 - 93

ということです。これらのうち、どれかが突
出しても、誰かが不幸になる構造になってし
まい、その結果ユーザを幸せにできない、と
いうものでした。筆者はこれら3つの関係性に
おいてプロトコル（共有している概念）は、「モ
ノ」と「お金」ではないかと気がつきました。モ
ノがなくてはお金は入ってきませんが、入っ
て残るような構造を作り込むには、3つの役割
の方々が同じ感覚で説明できなくてはなりま
せん。たとえば売り手が原価を度外視して「売
れるから」という理由で売価を作ると、事業は
うまくいきません。また、支え手が「お客様に
完璧な体制を作りたい」と採算を度外視して投
資しても、事業はうまく立ち行きません。も
ちろん「マインド」とか「プライド」とか「ビジョ
ン」が共有できているのは大前提です。

　でもお金はどうでしょうか。皆さん、会社

に関する金銭感覚を共感できているのでしょ

うか？

　そして、世の中には「原価○○円だから、自
分でやればもっと安くできる」という主張もあ
ります。これは「一見わかってる風」ですが、
あまりにも浅薄な話です。こんな話をネタ以
外でするのは少し格好悪いです。だいたい自
分の仕事を勝手に値踏みされて外野に言われ
るのって気分は良くありません。ですから技
術者には、そうした雑な議論をしてほしくな
いのです。
　このような思いもあってDevelopers Summit

でお話しさせていただいたわけですが、ひょ
んなことからこのような執筆の機会をもらい
ました。本記事が何かのためになれば幸いです。
　なお、本稿の内容は個人の見解であり、そ
の責任はすべて筆者個人に帰するもので、所
属する組織を代表する意見ではありません。

商売で使う数字の基本

　「ビジネス」というと堅苦しいので「商売」と
ここでは言います。しくみはいたってシンプ

ルです。
　仕入れ、加工し、宣伝し、販売する。販売後
のケアも商品によっては含まれるでしょう（図1）。
　ここで、やっていることは単純な足し算と
引き算ですので「難しい」ということありません。
図1にある費用には変動費と固定費の2種類が
あります。簡単に言うと、変動費は“顧客の伸
びや売れ行きで変動する費用”のことで、固定
費は、“売り上げにかかわらず運営していくこ
と自体でかかる費用”のことです。アカウント
ごとにライセンス費が出るならそれは変動費、
設備の償却費やリース料、人件費は固定費、
というとわかりやすいでしょうか。

現金の流れを押さえていますか？

　さて、事業の観点から見た場合、行為に紐
づくキャッシュ（現金）の流れがとても重要です。
　現金は各種の費用として日々流れていきます。
実際のところ「ダラダラと流れている」という
よりは、その多くに「締め日」があり、「決済日」
があり、と慣例に従った日付があるので、特
定のある日に膨大な決済をしていることと思
います。
　利益をきちんと確保した事業設計になって
いない場合、いずれは資金が枯渇し事業運営
に支障が出ます。極端な話をすると、「受注が
突然大量に入ってきたけど、お金がないので
製造できず納品できない」——みたいなことも
起こり得るわけです。「うれしい悲鳴」とか言っ
てる場合ではありません。信用問題になりか
ねません。
　そして、年度末には法人税などの納付があ
りますし、さらには毎月従業員の人件費や厚

－売上 利益変動費 － ＝固定費

現金収入

現金として残る部分仕入・加工・宣伝
などの費用

倉庫・販売員
事務員などの人件費

 ▼図1　ビジネス（商売）のモデル図

特別企画
冷静と情熱の間には、お金の川が流れている
俺の提案は通らないのか

　

なぜ ？

94 - Software Design

生年金、住民税の支払い（会社が給与から差し
引き自治体に納めています）など、出て行くお
金はたくさんあります。ですので、筆者がい
た会社では、仮に無収入になったとしても全
従業員の2年分程度の人件費を支払える程度の
現金が常にありました（このあたりの方針は企
業によりまちまちです）。

個人と法人の違い	 	

　ここからほんの少し難しいのですが、個人
と法人では大きく違うのが財務会計管理の方
法です。たとえば個人であれば、家計簿など
で現金の出入りを整理すれば、自ずとキャッシュ
フローが見えてきます。大半の方はこのくら
いで十分、となりますが、法人の場合は財務
の観点から、もっと精

せい ち

緻にお金の動きを追い
ます。これには資産や負債も含まれます。

　なせ法人がそうなのか、というと税金の枠

組みが違うから、というのがざっくりとした
回答になります（図2）。

費用と投資の違い、減価償却とは何か？

　またもう1つ大事なことがあります。法人で
はお金の使い道に「費用」、「投資」の2つの区別
があります。皆さんも聞いたことがあるかも
しれません。
　会社内で何かしらの提案をするにあたり、
これらを混同すると危険です。まず話がとお
りません。法人においては大きく意味が違い
ますので、軽く整理しておきます。なお、こ
こで言う「投資」は有価証券取引などでイメー

ジする「投資」とはニュアンスが違いますので
気を付けてください。サーバやストレージ、
ソフトウェアの開発委託などをおもに意味し
ています。
　表1の中で「減価償却」という言葉が出てきま
したが、世の中にあるさまざまな「モノ」につ
いて、ある種のモノには国税庁が定める耐用
年数があり、買ったものはその年数に従って
資産価値が減じていきます。そのため、ある
年に買ったらそれでおしまい、というわけで
はありません。現金としてはその年に決済さ
れますが、資産としては数年間残り続けるこ
とになります。そこで事業収支という観点では、
直接の現金の支払いとは分けて考えねばなり
ません。このような要素が絡み合って、実態
のキャッシュフローと、事業収支、というも
のが見えてくるわけです。

俺の提案はなぜ通らないのか

　提案に限らないのかもしれませんが、ある

税引後
給与等収入

労働

預貯金

大体はいったん振込

会社からの報酬

個人の場合（一般的なサラリーマンを想定）

消費活動

やる気や、生きていくうえでの希望的なもの

遊興費など

生活費
サービス

収入等売上

事業の拡充

預貯金
（当座）

基本的に直接的な現金の
やり取りはあまりない

従業員の労働の成果

企業の場合（かなり抽象化してます）
事業活動費用

残った利益を再投資

税金など

投資など

各種費用

 ▼図2　お金の流れの個人と法人

 ▼表1　費用と投資の表

概要 例

費用

一般的な役務での
人件費や小額の物
品 の 購 入 な ど。
サービス利用料、
ライセンス料

・ アルバイト、派遣社員の
人件費（役務によります）

・事務用品、タブレット
・クラウドサービス利用料
・データセンタ利用料

など

投資

高額な物品であ
り、耐用年数が決
められており、減
価償却の対象とな
る資産の購入

・ネットワークスイッチ
・サーバ
・ストレージ
・ サーバラック（自社調達）
・自社開発ソフトウェア

など

特別企画
冷静と情熱の間には、お金の川が流れている
俺の提案は通らないのか

　

なぜ ？

94 - Software Design Sep. 2015 - 95

提案や議論がまとまらないのは、おおむねコミュ
ニケーション上のズレに対して、意見が摺

す

り
合わさっていないことが原因ではないでしょ
うか。皆さんは、自分なりに課題を設定し、
それを解決するために正しいことを進めてい
ます。しかし提案を受け承認を出す側は、皆
さんと同じような課題意識を持っているので
しょうか？　現場で活動する皆さんと、承認
者ではそもそもロール（役割）が違います。ま
ずはそこを考えるのがいいと思います。

経営側と現場では優先度が違う

　説明をわかりやすくするために、承認者は
経営サイドの方（部長以上）とします。経営者
は立場上事象を細かくとらえることをしません。
また、提案にある技術には明るくないことも
よくあります。それでも役割がそもそも違う
ので、それはそれでいいのです。

　彼らは事業を通して企業を運営することに
責任を負っていますので、提案がその観点か
ら有用かどうかだけを判断します。もしかす
ると社会的に企業の価値を上げると思えば、
収支が赤字だとしても短期的であればいいと

割り切る——そういうこともたまにあります
がおおよそイレギュラーな事例です。

　たとえばOSSに対するドネーションやイベ
ントの主催、スポンサード、このあたりはす
べて費用です。しかし費用対効果を定量的に
測ることは不可能です。ですが、その会社は
周囲の方から感謝されますし、企業価値の向
上の観点としては有用です。端的には費用が
出て行っただけに見えますが、このようなお
金の使い方をする会社は確実にあります。と
は言え、これはとても難しいことで、実は筆
者もうまくできたことがありません。費用対
効果が測れない提案というのは非常に難易度
が高いと感じています（表2）。

　話はそれますが、筆者としてはこれからそ
ういう活動がエンジニアに対する理解の深さ
を示す指標になり、また間接的なインセンティ

クラウドでコストダウンと安易に言うなかれColumn

　さまざまな広告で「クラウドにすればコストダウ
ンできる」と安易に書かれていますが、実際のとこ
ろそんなに簡単な話ではありません。
　この言葉にはユーザの背景はいっさい考慮され
ておらず、今までやってきたオンプレミスで構築
するプロセスを「単純に置き換えているシーンで安
い」というのが実態とのギャップではないかと思い
ます。
　それを使うには、使いこなすまでのスタッフの
教育コスト、システムを変更するためのスイッチ
ングコスト（運用体制の切り替えや、ソフトウェア
の更改などの変更にかかる費用）、また、既存シス
テムを並行して運用するとなれば、移行完了まで
の期間は追加でクラウドのコストがかかります。
それらを積算してイニシャルコストがどれだけか
かり、いったい何年後からコスト効果が得られる

のか、そういった部分を検討しなくては安易な結
論は出せないのです。また、スイッチさせる場合
は単にスイッチさせるのか、はたまたリニューア
ルして切り替えるのか、こういったことでもコス
トに差がでます。もっとも大きな罠は転送量によ
る従量課金かもしれません。
　このような論調でイノベーティブな技術が広がっ
ていくのは、筆者にとって切ないものがありますが、
これもまた本記事にあるような提案の難しさが要
因になっていると思うのです。数文字のキャッチ
コピーで決済権者に直撃したい、となれば悲しい
かな「コストダウン」が現在ではもっとも有効なワー
ドなのかもしれません。
　クラウド利用で得られるスピードや、柔軟性、
ロバスト（堅牢）性を推してほしいと願ってやみま
せん。

Z

 ▼表2　経営者、管理者、現場エンジニアで優先順
 位が異なる（一例は筆者の個人的見解）

経営者、管理者 現場エンジニア
ビジネスプラン 安全性、可用性、機能性
話題性 プロダクト
プロダクト ビジネスプラン

特別企画
冷静と情熱の間には、お金の川が流れている
俺の提案は通らないのか

　

なぜ ？

ブにもなり、そういった活動をする企業にエ
ンジニアが集まるようになるのではないか、
そのように予感しています。

　基本的には収支が合っているかどうか、他社
に比べて優位かどうか、そのあたりが大きな関
心事です。経営側が技術そのものに造詣が深い
のであれば、それは幸せなことかもしれません
が、それとこれとは判断軸が別ですので、主観
的な期待はしないほうがいいでしょう。

事業規模の違いをとらえていますか？

　提案内容がどのような事業モデルなのか、
についても大きな違いがあります。SIなどの
短期的な事業モデルなのか、Webサービスなど、
長期化する事業モデルなのか。長期モデルに
関しては設備更改のタイミングや、利用率に
おける収支の観点が必要です（表3）。
　たとえば、1,000万円の投資（開発で500万円、
設備で 500万円）、月々に 50万円の運営費、
1,000円／月のサブスクリションを販売という
条件の事業モデルがあるとします。この当初
設備では、1,000サブスクリプションが性能を
担保する上での限界だとします。なお、シン
プルにしたいので人件費は含みません。

　この場合、いったいどれだけのサブスクリ
プションを販売すれば良いのでしょうか？　
はたまた、1,000円／月／サブスクリプション
（契約）でいいのでしょうか？
　これら2つを解決するには、シミュレーショ
ンを繰り返しながら売値を決めていく、とい
うアプローチと、市場の価格感をベースに売
値をまず決め、そこから導きだすアプローチ

96 - Software Design

があります。
　筆者の経験は前者が基本ですが、もちろん
市場の価格感は根底に置く必要がありました。
競合のある業界では、価格感のズレは商売の
困難さと直結します。
　緻密な作業が必要になってくる部分ですし、
実際には売れ行きは予想とは異なるのが常で
すが、ここで決めていった流れそのものがそ
の後の軸になることですので、この作業は外
せないプロセスです。前者でのシミュレーショ
ンをしてみましょう。
　表4の内容はあえて非常にシンプルにしてい
ます。表中の項目は考慮する内容として重要
な要素として挙げておきます。これらをベー
スにシミュレーションしてみましょう。
　四半期ごと100ずつユーザが増え、リニア
に10ヵ月目にキャパシティの限界を迎えます。
ここで追加投資をせず、そのままユーザも増
えないとしました。その結果、2年目のQ3で
ブレークイーブンを迎え、その後順調に利益
が推移し、4年目Q2で累損を解消します（図3）。
これまでの費用投下をカバーし、さらに純粋
に利益を出すようになりました。
　―少し待ってください。これはいくらな
んでもユーザの伸びが理想的すぎるのではな
いでしょうか。予測どおりに売れないとか、
解約のリスクをいっさい加味していません。
というわけでもっと消極的に考え直しましょ
う。
　全体のキャパシティに対して50％の利用率
に到達して、それを維持した設定で再計算し
てみたところ、永遠に黒字化しない結果になっ

 ▼表3　収支予測で意識する諸要素

収入面 固定費用面 変動費用面
契約数 有形固定資産額 運用保守費用
平均顧客単価 無形固定資産額 広告宣伝費
キャパシティ ライセンス その他販売管理費
平均利用期間 データセンタ 回線利用料
広告の効果 その他販売管理費

 ▼表4　サンプルモデルの条件（とある ITサービスつ
 いてこのような条件であるとします）

設備投資 500万円
償却法：定率法36.9％

開発したソフト 500万円
償却法：定額法5年間

運営費 50万円
キャパシティ 1,000契約／設備
販売単価 1,000円／月／契約

特別企画
冷静と情熱の間には、お金の川が流れている
俺の提案は通らないのか

　

なぜ ？

96 - Software Design Sep. 2015 - 97

てしまいました。少々消極的過ぎたたようです。
そこで70％までは到達できるとしてみたとこ
ろ、2年目のQ3でブレークイーブンに達した
のち、ゆるやかな利益の蓄積により累損は解
消されていきますが、5年のスパンでは解消し
きれず、設備更改を考慮するとかなり厳しい
結果といえます。投資に対して回収がしきれず、
ズルズルと現金を吐き出し続けることになる
でしょう。

　そこで価格を1,000円から1,200円としたと
ころ、2年目Q2でブレークイーブンを迎え、4

年目Q3で累損解消となりました（図4）。価格
の調整は難しい部分はありますが、リリース
前ならなんとかなるかもしれません。

ブレークイーブンするポイントとは何か？

　このようなシミュレーションから営業目標
や稼働目標が導きだされ、投資計画が作られ

（2,500,000） 0

200

設備償却額

売上

400

600

800

1,000

1,200

（1,500,000）

（500,000）

500,000

1,500,000

2,500,000

3,500,000

4,500,000

5,500,000

6,500,000

7,500,000

Y1Q1 Y1Q2 Y1Q3 Y1Q4 Y2Q1 Y2Q2 Y2Q3 Y2Q4 Y3Q1 Y3Q2 Y3Q3 Y3Q4 Y4Q1 Y4Q2 Y4Q3 Y4Q4 Y5Q1 Y5Q2 Y5Q3 Y5Q4

ソフトウェア償却額

累積利益

運用費

累積加入数

利益

損益分岐時期 累積損失の解消

金額 契約数

 ▼図3　1回目のシミュレーション

（2,500,000） 0

設備償却額

売上

800

700

600

500

400

300

200

100（1,500,000）

（500,000）

500,000

1,500,000

2,500,000

3,500,000

4,500,000

Y1Q1 Y1Q2 Y1Q3 Y1Q4 Y2Q1 Y2Q2 Y2Q3 Y2Q4 Y3Q1 Y3Q2 Y3Q3 Y3Q4 Y4Q1 Y4Q2 Y4Q3 Y4Q4 Y5Q1 Y5Q2 Y5Q3 Y5Q4

ソフトウェア償却額

累積利益

運用費

累積加入数

利益

損益分岐時期 累積損失の解消

金額 契約数

 ▼図4　2回目のシミュレーション（利用率70％、価格1,200円）

特別企画
冷静と情熱の間には、お金の川が流れている
俺の提案は通らないのか

　

なぜ ？

98 - Software Design

ることになります。このあたりは機器の購入
タイミングを最適にするために行っている運
用や予測がそのまま利用できます。

　ソーシャルゲームなどのフリーミアムな世
界では、もっとシビアかつ精緻なシミュレーショ
ンを行う必要がありますが、その話は専門の
方にお任せすることにします。
　さて、「ブレークイーブン」という言葉が出
ましたが、これは「損益分岐点」を意味します（図

5）。
　シミュレートを抽象化することでこのよう
な図を作れますが、これによって「いくらで売

ればいいのか」という指標が明らかになります。
この指標を頭の中で計算してある程度作り出
せるようになると、いろいろと提案すること
が楽になります。

経営側に届く提案をしていますか？

　会社への提案というものは自社の成長にお
いて、さまざまな「仮説」が達成され、利益を
産み、さらなる成長・安定の大きな因子にな
るという「有用な提案」でなければなりません。
　つまるところ、単に「これがやりたい」「かっ
こいい」「◯◯社でも導入している」だけでは会

P/LとB/Sとは何かColumn

　P/L（Profit and Loss＝損益計算書）は収支を見る
ために作られるもので、売上に対しての費用・税・
利益が明らかになります。
　一方、B/S（Balance Sheet＝貸借対照表）は資産
のバランスを見るために作られ、現金や現金同等物、
債権などと、かつてそれらが交換された固定資産、
債務などのバランスを表現したものです。これによっ
て会社の現状の体力や資産状況を見ることができ
ます。
　本記事ではどちらかというとP/Lよりの話になり
ますし、大体現場ではこちらで考えるほうが話を
進めやすくなります。
　かつての職場であった興味深い議論はこういっ
たものでした。あるサービスの設備を設計し、さ
て見積りとなった段階での出来事です。

筆者 「リースがいいのか、買ったほうがいいの
か」

役員A 「P/Lで見たときに投資（買う）すると初年度
赤字スタートするのが嫌なので、リース注a

でいこう」
役員B 「リースにしたらB/Sには債務に載る。しか

もトータルで支払いが増えるからだめだ。
金ならあるよ！」

筆者 「どっちでもいいですよ……でも不必要な支
払いはしないほうがいいから、買ったほう

注a） ファイナンスリースです（リース会社による代理購入と
考えてください）。

が気持ちはいいですね」

　このときは、結局購入したんだったかな……忘
れちゃいました。リースと購入は会社のキャッシュ
フローの状態によって判断すると思います。個人
でいえば、ローンで買うか、現金一括で買うのか、
という選択によく似ています。
　さて、サーバやストレージは高価ですし、機能
の陳腐化、費用対効果の向上が速いものです。利
用するシーンにおいてそれを3年以上使うのかど
うかが判断の目安です。購入した場合は減価償却
費として、購入価格に対して一定の率がかかりな
がら価値が下落していきます。一定の率で償却さ
れていきますので購入当年度がもっとも償却費が
大きく、5～6年かけてだんだんと低減していき、
最終的には購入価格の5％程度まで落ちていきます。
　一方、リースを活用した場合は、最初から一定
の支払額になりますので、当初のコストは低いの
です。しかし、投資をして購入した固定資産は、年々
価値が減じていくことで、償却期間のだいたい半
分でリースよりも有利な金額になります。3年後に
ある程度の売上規模があった場合、利益率はリー
スした場合よりもいいものになります（図A）。なお、
リースについても契約期間が完了して再リースと
なれば、費用がガクッと下がることもあります。
　読者の皆さんは、表Aに示すようなメリット、
デメリットをふまえてより良い判断を心がけてく
ださい。

特別企画
冷静と情熱の間には、お金の川が流れている
俺の提案は通らないのか

　

なぜ ？

98 - Software Design Sep. 2015 - 99

 ▼表A　リース、投資のメリット／デメリット

メリット デメリット

リース

・初期投資が少なく、支払いが一定
・損益分岐が早い
・いらなくなったら返却できる

・支払総額が大きくなる
・ 途中でやめても残存契約期間分が違約金とし
て発生するので、キャッシュアウトが発生す
る
・改造などは契約上難しい場合が一般的

投資
・減価償却されるので徐々に原価が下がる
・支払い総額に特別な上乗せはない
・基本的には自分のものなので、好きにしていい

・初期投資が大きい
・税金がかかる
・処分する責任がある

※ 大きな違いでは所有権の有無が挙げられるが、メリットともデメリットとも言えるので外している。
※ リース会社との契約にもよるのであくまでも目安である。

●損益分岐点の例

売値
　1,000 円／契約
　月ごとに10売れる

固定費
　10万円／月

変動費
　4契約ごとに
　1,000 円

売上

利益

損失

0
0

50,000

100,000

150,000

200,000

250,000

1 2 3 4 5 6 7 8 9 10 11 12

売上が総費用を超え、
黒字になる。
ここが損益分岐点

固定費用 総費用
金額

月

 ▼図5　損益分岐点の例

 ▼図A　 購入・リース5年間の差
（60ヵ月、減価償却率36.9％、リース料率1.87％で計算。縦軸は月ごとの支払額）

0
1

5,000

10,000

15,000

20,000

25,000

30,000

35,000

4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

投資 リース

特別企画
冷静と情熱の間には、お金の川が流れている
俺の提案は通らないのか

　

なぜ ？

100 - Software Design

社の上層部には「思い」が届きません。
　「届く」提案におけるポイントをまとめると
こう言えます。
　“どう”やるか、”いつ”やるか。”勝算”の根拠
は何か。それらを個別にまとめていくと次の
ようになります。

・「どう」：利用する技術は何か、販売方法と
それに即した広告法や販売促進策は何か、
戦略・戦術

・「いつ」：リリースを含めた各行動の実施ス
ケジュール

・「勝算」：競合他社との有利差の比較（販売企
画や利用技術において）、トレンド、市場を
調べ尽くしたか

　本記事では事業企画をベースに説明をして
きましたが、このような種類の提案だけでなく、
単純なソフトウェア開発においても同じこと
です。何かの機能を追加しようと考えたとき、
その「機能」というのははいったい誰のためな
のか、何のためなのか、どのくらいの期間で

リリースできるのか、そういうところから話
はスタートします。事業にまつわる話も本質
的には一緒です。お金の流れを踏まえた、承
認者にとって納得のいくストーリーが必要な
のです。
　そしてお金の話は、日々の生活における自
らの決断、家族への説得（家庭内稟議、なんて
いう言葉もありますね）、はたまた業務上の些
細な決済ひとつひとつに必ずあることです。
そういった身近なことからお金の流れを感じ
ることを行ってみてはいかがでしょうか。
　この記事で興味が湧きましたら、簿記検定
を受験してみることもスキル向上に役立ちます。
簿記というのは技術者も含めて、さまざまな
立場で一生使える知識・技能といっても過言
ではありません。
　これまで解説してきた「お金の話」をふまえ、
上記ポイントを軸にストーリーを作り、「会社

にとってプラス」な提案を行って、決済者が「共

感」してくれれば、きっと「俺の提案も通る」よ
うになるでしょう。ﾟ

　本記事では事業性の強い提案を想定して書きま
した。しかし提案には、このほかにも業務の効率
化など、別の性格のものもあります。Developers
Summitでも次のような質問がありました。

「社内のシステムを更改したい、その場合はどう説
明すれば良いか」
̶̶社内システムの場合は、基本的にはそもそも
費用ですので、コストカットの側面で攻めるのが
常道です。ですから何が効率化されるのか、具体
的には、新システムへの更改により業務プロセス
が改善されることで、コスト系人員を売上系人員
に配置転換できる、とか、そうしたロジックが有
効でしょう。単純なコストカットよりも、さらに
売上寄与までする、となればかなり良い案になる
と思います。

「社員に資格や検定を受けさせたいのですが、有料
のものはなかなか通しにくい。どうすれば良いか」
̶̶そうしたケースについては本記事を応用し、
その費用・投資が自社においてどのような結果を
もたらすかを定量的に説明する、あるいは世の中
の流れを外部の権威を用いつつ説明するといった
作戦が取れます。投資を行って長期の利益を取る、
というモデルであれば話もしやすいのですが、純
粋に費用が流れる話だと少し難易度が高いかもし
れません。パートナーになるために有資格者が○
○人必要、とするとやりやすいですね。
　しかし提案というアクションの肝は、相手の立
場と達成すべき事柄は何なのかに尽きるので、め
げずに進めてください。

講演時に心に残った質問Column

特別企画
冷静と情熱の間には、お金の川が流れている
俺の提案は通らないのか

　

なぜ ？

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Sep. 2015 - 101

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

家でも
外出先でも

Webで

購入 ！

 第1特集

カンファレンスネットワークの
作り方
 第2特集
いまからでも遅くない！
Hadoop超2入門
 一般記事
・Cisco VIRLでネットワークシミュレーション
 ［前編］
・Snappy Ubuntu Core

2015年3月号

定価（本体1,220円＋税）

 第1特集

トラブルシューティングの極意
達人に訊く問題解決のヒント

 第2特集

［最新］DNSの教科書
ネットワークを支える本物のインフラを学ぶ

 特別付録
・3分間ネットワーク基礎講座［特別篇］

2015年4月号

定価（本体1,300円＋税）

 第1特集

テキスト処理ベーシックレッスン
手を動かしてデータを操ろう！

 第2特集
ファイル共有自由在在
［徹底入門］
最新・Sambaの教科書
 特別付録
・3分間HTTP&メールプロトコル基礎講座［特別篇］

2015年5月号

定価（本体1,300円＋税）

 第1特集
新人さん歓迎特集
Git&GitHub入門
 第2特集

OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

 一般記事
・SambaによるActive Directoryの機能性と
 移行性を検証する

2015年6月号

定価（本体1,220円＋税）

 第1特集
あなたにもできる！
ログを読む技術［セキュリティ編］
 第2特集

黒い画面（tmux）の使い方
プロになるためのターミナル活用術

 第3特集
6人の先駆者に訊く
スペシャリストになる方法

2015年7月号

定価（本体1,220円＋税）

 第1特集
Lispより始めよ、されば救われん！
なぜ関数型プログラミングは
難しいのか？
 第2特集
安全な通信を確保する
SSL/TLSの教科書
 短期連載
・AWSで始めよう！　モダンなJavaアプリケーション
	 開発

2015年8月号

定価（本体1,220円＋税）

http://www.fujisan.co.jp/sd
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

102 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

　みなさん、お久しぶりです！　最近、Rick James

の「Super Freak」にハマっている、Eiji James

Yoshidaです。30過ぎの人なら知っているであ
ろうMCハマーの「U Can't Touch This」の原曲で
すが、開口一発目に“She's a very kinky girl”っ
て歌詞を持ってくるRick Jamesの変態的なセン
スがお気に入りだったりします。さて、前回の連
載（2014年11月号～2015年1月号）ではバイナリ
エディタを使ってpcapとpcap-ngの違いを説明し
ましたが、さすがに毎回バイナリエディタで読む
のも辛いので、今回はpcap-ngから追加されたさ
まざまなフィールドの情報を、Wiresharkの機能
を使って見ていきたいと思います。

　本稿を書く際に使用した環境はWindows 8.1

とWireshark 1.12.5です。キャプチャファイ
ルは下記の筆者のブログから icmp.pcapと icmp.

pcapngをダウンロードしてください。

・Software Design短期集中連載「Jamesのセ
キュリティレッスン」用キャプチャファイル

　http ://d .hatena .ne . jp/Ei j iYosh ida/
20140907/1410071296

　あとは何かBGMでも流しましょう。筆者は
Michael Jacksonの生前最後のアルバム「Invincible」

を聴きながら深夜に本稿を書いています。少々
うるさいですが攻撃的な曲が多くて目と頭が冴
えます。
　環境が整ったら、さっそくWiresharkで icmp.

pcapと icmp.pcapngを別々のウインドウで開い
てみましょう。

　Wiresharkで icmp.pcapと icmp.pcapngを別々
のウインドウで開いたら、両ファイルの
［Statistics］メニュー（図1）にある［Summary］を
クリックしてSummaryウインドウ（図2と図3）
を表示し、並べてください。
　このSummaryウインドウにはキャプチャファ
イルのさまざまな情報が表示されるため、解析
前には必ず目を通しておくことをお勧めします。
　icmp.pcapの Summaryウインドウ（図2）と
icmp.pcapngのSummaryウインドウ（図3）を見
比べると、片方にはない項目や機能していない
項目が見つかるので、そのような個所を枠で囲っ
てみました。大まかに言ってしまえば、これが
pcapとpcap-ngの情報量の違いとも言えます。
　それでは SummaryウインドウのFileと
Captureにある各項目の内容と、キャプチャファ

 ▼図1　［Statistics］メニュー

まずはWiresharkの
Summaryを見比べてみよう

はじめに

環境説明

第4回
 Writer 吉田 英二（Eiji James Yoshida）

　合同会社セキュリティ・プロフェッショナルズ・ネットワーク（http://www.sec-pro.net/）

pcap-ngのさまざまな情報を
Wiresharkで見てみよう！

JamesのJamesの
セキュリティレッスンセキュリティレッスン
パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★ 短

期集中連載

http://www.sec-pro.net/
http://d.hatena.ne.jp/EijiYoshida/20140907/1410071296

102 - Software Design Sep. 2015 - 103

pcap-ngのさまざまな情報をWiresharkで見てみよう！ 第4回

イルの該当するフィールドについて説明してい
きましょう。

●	FileのName項目（図2の①、図3の①）
　pcapとpcap-ngの両方に表示される項目です。
FileのName項目には、キャプチャファイルの
パスと名前が表示されます。まだキャプチャファ
イルに保存していない場合は一時ファイルのパ
スと名前が表示されます。

●	FileのLength項目（図2の②、図3の②）
　pcapとpcap-ngの両方に表示される項目です。
長さがバイト単位で表示されます。

●	FileのFormat項目（図2の③、図3の⑥）
　pcapとpcap-ngの両方に表示される項目です。
キャプチャファイルのファイル形式が表示され
ます。この項目はキャプチャファイルの拡張子
ではなく、pcapのグローバルヘッダ・ブロッ
クにあるマジックナンバー・フィールド（図4

の③）の値や、pcap-ngのセクションヘッダ・
ブロックにあるブロックタイプ・フィールド（図

5の⑥）の値をもとに表示されます。

●	FileのEncapsulation項目（図2の④、図3の⑦）
　pcapとpcap-ngの両方に表示される項目です。
リンク層のヘッダタイプを表すデータリンクタ
イプが表示されます。この項目はpcapのグロー
バルヘッダ・ブロックにあるデータリンクタイ
プ・フィールド（図4の④）の値や、pcap-ngの
インターフェース概要・ブロックにあるデータ
リンクタイプ・フィールド（図6の⑦）の値をも
とに表示されます。

●	FileのPacket size limit項目（図2の⑤）
　pcapで表示される項目です。キャプチャす
るパケットの最大長を表すキャプチャリミット
の値が表示されます。この項目はpcapのグロー
バルヘッダ・ブロックのキャプチャリミット・
フィールド（図4の⑤）の値をもとに表示されま
す。

●	CaptureのOS項目（図3の⑧）
　pcap-ngで表示される項目です。パケットキャ
プチャで使用したOSの名前が表示されます。
pcap-ngのセクションヘッダ・ブロックにある
オプション・フィールド（shb_os）（図5の⑧）の
値をもとに表示されます。

 ▼図2　icmp.pcapのSummaryウインドウ
 ▼図3　icmp.pcapngのSummaryウインドウ

104 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

●	CaptureのCapture application項目
（図3の⑨）
　pcap-ngで表示される項目です。パケットキャ
プチャで使用したアプリケーションの名前が表
示されます。pcap-ngのセクションヘッダ・ブロッ
クにあるオプション・フィールド（shb_

userappl）（図5の⑨）の値をもとに表示されます。

●	CaptureのCapture file comments項目
（図3の⑩）
　pcap-ngで機能する項目です。キャプチャファ
イルに設定されたコメントが表示されます。こ
の項目はpcap-ngのセクションヘッダ・ブロッ

クにあるオプション・フィールド（opt_comment）
（図5の⑩）の値をもとに表示されます。

●	CaptureのInterface項目（図3の⑪）
　pcap-ngで機能する項目です。キャプチャで
使用した各インターフェースの名前が表示され
ます。この項目はpcap-ngのインターフェース
概要・ブロックにあるオプション・フィールド
（if_name）（図6の⑪）の値をもとに表示されます。

●	CaptureのDropped Packets項目	
（図3の⑫）
　pcap-ngで機能する項目です。キャプチャで

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース
統計情報

［可変長］

…
…

…

ブロックタイプ（0x0A0D0D0A）［4バイト］⑥

ブロック全長［4バイト］

バイトオーダーマジック（0x1A2B3C4D）［4バイト］

セクション長［8バイト］

オプションコード［2バイト］ オプション長［2バイト］

バージョン番号（メジャー）［2バイト］ バージョン番号（マイナー）［2バイト］

オプション値［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

オ
プ
シ
ョ
ン・フ
ィ
ー
ル
ド
⑧
⑨
⑩
⑯
⑱

 ▼図5　pcap-ngのセクションヘッダ・ブロック

グローバルヘッダ
［24バイト］

以降、パケット情報ヘッダと
パケットデータの繰り返し

パケット情報ヘッダ
［16バイト］

パケットデータ
［可変長］

パケットデータ
［可変長］

マジックナンバー（0xa1b2c3d4）［4バイト］③

タイムゾーンオフセット［4バイト］

タイムスタンプ精度［4バイト］

キャプチャリミット［4バイト］⑤

バージョン番号（メジャー）［2バイト］ バージョン番号（マイナー）［2バイト］

データリンクタイプ［4バイト］④

1 2 3 4

…

パケット情報ヘッダ
［16バイト］

 ▼図4　pcapのグローバルヘッダ・ブロック

104 - Software Design Sep. 2015 - 105

pcap-ngのさまざまな情報をWiresharkで見てみよう！ 第4回

使用した各インターフェースがドロップしたパ
ケット数が表示されます。インターフェース統
計情報・ブロックのオプション・フィールド（isb_

ifdrop）（図7の⑫）の値をもとに表示されます。

●	CaptureのCapture Filter項目（図3の⑬）
　pcap-ngで機能する項目です。キャプチャで
使用した各インターフェースに設定されたキャ
プチャフィルタが表示されます。この項目は
pcap-ngのインターフェース概要・ブロックに
あるオプション・フィールド（if_filter）（図6の

⑬）の値をもとに表示されます。

●	CaptureのLink type項目（図2の⑯、図3の⑭）
　pcapとpcap-ngの両方で機能する項目です。キャ
プチャで使用した各インターフェースのリンク層
のヘッダタイプを表すデータリンクタイプが表示
されます。この項目はpcapのグローバルヘッダ・
ブロックにあるデータリンクタイプ・フィールド（図

4の④）の値や、pcap-ngのインターフェース概要・
ブロックにあるデータリンクタイプ・フィールド（図

6の⑭）の値をもとに表示されます。

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース
統計情報

［可変長］

ブロックタイプ（0x00000005）［4バイト］

ブロック全長［4バイト］

インターフェースID［4バイト］

タイムスタンプ（上位部分）［4バイト]

タイムスタンプ（下位部分）［4バイト]

オプションコード［2バイト］ オプション長［2バイト］

オプション値［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

…
…

…

オ
プ
シ
ョ
ン・フ
ィ
ー
ル
ド
⑫

 ▼図7　pcap-ngのインターフェース統計情報・ブロック

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース
統計情報

［可変長］

…
…

…

ブロックタイプ（0x00000001）［4バイト］

ブロック全長［4バイト］

キャプチャリミット［4バイト］⑮

オプションコード［2バイト］ オプション長［2バイト］

データリンクタイプ［2バイト］⑦⑭ 予約（0x0000）［2バイト］

オプション値［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

オ
プ
シ
ョ
ン・フ
ィ
ー
ル
ド
⑪
⑬

 ▼図6　pcap-ngのインターフェース概要・ブロック

106 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

●	CaptureのPacket size limit項目（図2の
⑰、図3の⑮）

　pcapとpcap-ngの両方で機能する項目です。各
インターフェースのキャプチャするパケットの最
大長を表すキャプチャリミットの値が表示されま
す。この項目はpcapのグローバルヘッダ・ブロッ
クにあるキャプチャリミット・フィールド（図4の

⑤）の値や、pcapngのインターフェース概要・ブロッ
クにあるキャプチャリミット・フィールド（図6の

⑮）の値をもとに表示されます。
◆　◆　◆

　Summaryウインドウの各項目の内容と、キャプ
チャファイルの該当するフィールドについての説
明は以上となります。両ファイルのSummaryウイ
ンドウは［Cancel］ボタンを押して閉じてください。
　このようにpcap-ngから追加されたフィールド
に含まれる情報の多くはSummaryウインドウに表
示されるので、キャプチャファイルをpcap-ngで
保存しているなら、このSummaryウインドウに表
示される内容を知っておくと、インシデント対応
などで役立ちます。

　pcap-ngにはキャプチャファイルに対するコ
メントだけではなく、パケットに対するコメン
トも保存できます。icmp.pcapngの［Statistics］
メニュー（図1）にある［Comments Summary］を
クリックしてComments Summaryウインドウ
（図8）を表示してください。
　これを見るとわかるように、Comments

Summaryウインドウの内容はSummaryウイン
ドウと大半同じですが、Statisticsの次を見る
とCapture file comments（図8の⑱）のほかに、
Summaryウインドウにはなかった内容があり
ます。これがパケットに対して設定したコメン
トのPacket Comments（図8の⑲）です。この
Packet Commentsはpcap-ngの拡張パケット・
ブロックにあるオプション・フィールド（opt_

comment）（図9の⑲）の値をもとに表示されます。

　Packet Commentsを見るほかの方法として
は、Packet Detailsペインで見る方法とEdit

or Add Packet Commentsウインドウで見る方
法などがあります（後述）。

　Packet DetailsペインでPacket Commentsを
見るには、icmp.pcapngのPacket Listペイン
でNo.3フレームをクリックします。すると
Packet Detailsペインの一番上にPacket comm

ents項目が表示されるので、それをクリックし
て展開するとコメントが表示されます（図10）。
すぐにコメントが確認できるので便利ですが、
今のところPacket Detailsペインで日本語を表
示すると文字化けしてしまうのが欠点です。

　Edit or Add Packet Commentsウインドウで
Packet Commentsを見るには、icmp.pcapngの
Packet ListペインでNo.3フレームを右クリッ
クして［Packet Comment...］を選択すると（図

11）、Edit or Add Packet Commentsウインド
ウ（図12）にコメントが表示されます。

 ▼図8　 icmp.pcapngのComments Summaryウイ
ンドウ

pcap-ngに保存されている
コメントを見てみよう

Packet DetailsペインでPacket
Commentsを見てみよう

Edit or Add Packet Commentsウイン
ドウでPacket Commentsを見てみよう

106 - Software Design Sep. 2015 - 107

pcap-ngのさまざまな情報をWiresharkで見てみよう！ 第4回

　Packet Comments の 表 示 で Edit or Add

Packet Commentsウインドウを使ったので、
今度は同じEdit or Add Packet Commentsウイ
ンドウでPacket Commentsを設定しましょう。
　Packet Commentsを設定するには、まず
Packet Listペインでコメントを設定したいパ
ケットを右クリックして［Packet Comment...］
を選択すると、Edit or Add Packet Comments

ウインドウ（図12）が表示されます。あとは、
このウインドウ内にコメントを入力して［OK］
ボタンをクリックすれば設定されます。
　パケットではなくキャプチャファイルにコメ
ントを設定したい場合は、［Statistics］メニュー
（図1）にある［Summary］をクリックしてSum

maryウインドウを表示して、あとはCapture

のCapture file comments項目（図3の⑩）の欄
にコメントを入力して［OK］ボタンをクリック
すれば設定されます。

◆　◆　◆
　今回はWiresharkのSummaryウインドウや
Comments Summaryウインドウなどを使って、
pcap-ngから追加されたさまざまなフィールド
の情報を見てみました。前述のとおり、pcap-

ngにはインシデント対応を行う際に役立つ情
報を格納できるので、キャプチャファイルは
pcap-ngで保存
することをお勧
めします。
　本稿の内容が
少しでもみなさ
んのお役に立て
ば幸いです。ﾟ

セクションヘッダ
［可変長］

インターフェース概要
［可変長］

拡張パケット
［可変長］

インターフェース
統計情報

［可変長］

ブロックタイプ（0x00000006）［4バイト］

ブロック全長［4バイト］

インターフェースID［4バイト］

タイムスタンプ（上位部分）［4バイト］

タイムスタンプ（下位部分）［4バイト］

キャプチャしたパケットの長さ［4バイト］

キャプチャしたパケットの元の長さ［4バイト］

オプションコード［2バイト］ オプション長［2バイト］

オプション値［可変長］ パディング［可変長］

パケットデータ［可変長］ パディング［可変長］

オプション終端コード（0x0000）［2バイト］ 0x0000［2バイト］

ブロック全長［4バイト］

1 2 3 4

…

…
…

…

オ
プ
シ
ョ
ン・フ
ィ
ー
ル
ド
⑲

 ▼図9　pcap-ngの拡張パケット・ブロック

 ▼図10　 Packet DetailsペインのPacket comments項目

 ▼図11　Packet Listペインの
　　　 コンテキストメニュー

 ▼図12　Edit or Add Packet Commentsウインドウ

コメントを設定してみよう

108 - Software Design108 - Software Design

Apache Mavenの逆襲

　Apache Maven注1というツールをご存じでしょ
うか？　2002年から開発されているJava製の
ビルドツールで、多くのJavaプロダクトで使
われているデファクトスタンダードの1つです。
ビルドツールが普及する前は、独自のシェルス
クリプトでjavacやjarコマンドを駆使しなが
ら、クラスライブラリを自分でコピーしてきて
依存関係を解決したり、Eclipseなどの IDEの
機能を使ってパッケージングしていました。し
かし、このような方法は属人性が高くなりがち
で、環境が少しでも変わるとビルドができなく
なることが日常茶飯事でした。

問題解決のためのMaven

　Apache Mavenはこのような問題を解決する
ためのビルドツールで、依存関係の解決からコ
ンパイル、テストやパッケージングまで標準的
なアプリケーションのビルドライフサイクルの
大部分をサポートしています。そして実装は
Pure JavaですのでJavaがインストールされて

注1） https://maven.apache.org/

いればどのような環境でも動作するという
“Write Once, Run Anywhere”注2を体現してい
ます。
　継続的なテストやデプロイのしくみを整備せ
ずに、テスト用のデータベースの構築方法が不
明だったり、稼働中のサービスがどの時点のソー
スコードがデプロイされているのかを誰も把握
していなかったり、特定のスタッフだけが手動
でコマンドを叩いたり、WebのUIを操作した
りしてデプロイするようなしくみだったりする
と、サービス継続において大きなリスクになり
ます。
　Mavenにはテストに関するプラグインも充実
しているほか、標準的なリリース用のプラグイ
ンや、さまざまなアプリケーションサーバへア
プリケーションをデプロイするプラグインなど
が用意されています。そして複数人で1つのア
プリケーションを開発するには、バージョン管
理システム（VCS：Version Control System）
もなくてはならないものの1つになっていると
言えるでしょう。
　今回はMavenと共用リポジトリサービスの1

注2） 「一度プログラムを書けばどのような環境でも動作する」と
いう意味。Javaのスローガンとして広く知られていた。

特別企画

エンタープライズJavaの進化

DevOpsで始めよう！
Javaアプリケーション開発

しなやかで強いソフトウェアの作り方
モダンな

ストップ属人化！
MavenとGitHubで安全なテストと
スピーディなデプロイ

第 回2

 Author 永瀬 泰一郎（ながせ たいいちろう） Twitter nagaseyasuhito
 Mail nagase@nagaseyasuhito.net

DevOps時代のいま、アプリケーションの開発はユーザからのフィードバックをもとにしたバグフィックスや、
機能改修のイテレーションを矢継ぎ早に行い、安全かつスピーディにサービスを提供し続けることが重要です。
中には1日に数百回もアプリケーションをリリース、デプロイしているサービスもあります。
そんな状況のなかで、継続的にサービスを提供し続けるためには、テストの環境はもちろん、リリースやデプロ
イまわりのしくみづくりも非常に重要になっています。そのようなしくみを整備するにあたって、アプリケーショ
ンのビルドツールは、今やなくてはならないものになりました。

https://maven.apache.org/

108 - Software Design Sep. 2015 - 109108 - Software Design

つのGitHubを使い、継続的にテストを実行す
る環境を整備し、属人化したデプロイを排除し、
再利用性の高いデプロイのしくみを作ることで、
安全かつスピーディーにサービスを提供する実
践的な考え方と、その手法を紹介します。

Mavenのおさらい

　Mavenにはビルドツールそのものだけではなく、
個人で開発したクラスライブラリから企業が開発
したアプリケーションサーバ、そしてMavenのプ
ラグインまで、さまざまなJavaの成果物が登録
されているMaven Central Repositoryと呼ばれ
るリポジトリシステムがあります。
　Mavenが普及する前は、必要なクラスライブ
ラリなどを自分で探し出してダウンロードした
あとに、クラスパスに追加する必要がありまし
た が、Maven Central Repositoryの お 陰 で、
POM注3と呼ばれるMavenのビルドスクリプト
に、利用したいクラスライブラリを記述するだ
けで、自動的にダウンロードしてクラスパスに
追加できるようになりました。そして申請をす
れば誰でも開発したクラスライブラリをMaven

Central Repositoryへ登録できます。
　このエコシステムを構築したことがMaven

が大きく普及する引き金となったと言えるでしょ
う。Maven Central RepositoryはMavenだ け
でなく、ほかのビルドツールからも利用されて
いて、事実上Java標準のクラスライブラリリ
ポジトリとなっています。
　JavaのビルドツールにはMavenのほかに
Apache Ant注4やGradle注5といったビルドツー
ルが存在します（表1）。AntはMavenよりも早

注3） Project Object Model

注4） http://ant.apache.org/

注5） https://gradle.org/

く2000年にリリースされました。Mavenと同
じようにXMLでビルドスクリプトを記述しま
すが、タスクごとにプラグインが用意されてい
るMavenに対し、Antはjavacやjarなどコマ
ンド単位でXMLタグが用意されていて、それ
らを組み合わせて比較的自由なスタイルでビル
ドスクリプトを記述します。またApache

Ivy注6というAntのサブプロジェクトを使うこ
とでMaven Central Repositoryにあるクラス
ライブラリのダウンロードにも対応できます。
　Gradleは2007年にリリースされた比較的新
しいビルドツールで、ビルドスクリプトに
Groovyを採用したのが特徴です。Mavenはプ
ラグインベースの宣言的なビルドスクリプトの
ため、条件による分岐やループなどの記述が困
難でしたが、GradleはGroovyで非常に柔軟な
ビルドスクリプトを記述できます。
　今回取り上げるMavenは、さまざまな種類
のビルドレポートの出力から、テストに関する
サポート、アプリケーションサーバへやクラウ
ドプラットフォームへのデプロイに至るまで、
目的に応じた非常に多くのプラグインが提供さ
れています。これらのプラグインが、プロジェ
クトの要件にマッチするのであればMavenは
非常に便利なビルドツールです。
　反対にMavenのプラグインではカバーしき
れなかったり、ビルドスクリプトで細かい制御
が必要な場合などはGradleを使うといった使
い分けをするといいでしょう。

ビルドライフサイクル

　Mavenにはビルドライフサイクル、フェーズ、
ゴールという概念があります。ビルドライフサイ

注6） http://ant.apache.org/ivy/

 ▼表1　ビルドツールの比較
ビルドツール リリース年 定義ファイル 特徴

Apache Ant 2000年 XML コマンドの組み合わせでタスクを記述

Apache Maven 2002年 XML プラグインの組み合わせでタスクを記述

Gradle 2007年 Groovy Groovyスクリプトでタスクを記述

ストップ属人化！
MavenとGitHubで安全なテストとスピーディなデプロイ 第 回2

http://ant.apache.org/
https://gradle.org/
http://ant.apache.org/ivy/

110 - Software Design

クルはフェーズを束ねる単位で、Clean、Default、
Siteの3つが定義されています。フェーズは複数
のゴールを束ねる単位で、3つのビルドライフサ
イクルで合計30個が定義されています（表2）。
　コマンド実行時にはmvn［フェーズ］のように
引数にフェーズを指定して実行します。たとえば
mvn cleanを実行すると、Cleanビルドライフサ
イクルのpre-cleanと clean、mvn compile
を実行すると、Defaultビルドライフサイクル
のvalidateからcompileまでのように、それ
ぞれのビルドライフサイクルの該当するフェー
ズまでが対象となります。実行時には各フェー
ズに紐

ひも

付いたゴールが順番に実行されビルドが
進行していきます。
　Cleanはビルド成果物を削除し、プロジェクト
のディレクトリをクリーンアップするフェーズ
が定義されています。ソースコードを削除しても、
コンパイルされたクラスファイルなどが出力さ
れる targetディレクトリに、クラスファイルな

どは残ってしまうのでビルドエラーの原因とな
る可能性があります。ビルドする際は必ずclean

フェーズを指定するようにしましょう。
　Defaultはコンパイルやテスト、パッケージン
グからインストール、デプロイまでの、いわゆ
る成果物を生成するフェーズが定義されています。
　Siteはプロジェクトのドキュメントを生成す
るためのフェーズが定義されています。あまり
活用されていませんが、Javadocをはじめ各種
レポーティング用のプラグインを利用している
場合には、ドキュメントがまとめてHTML化
されるので、プロジェクトの概要を把握する際
に重宝します。
　POMで定義しているパッケージングが jarの
ときはjar:jarゴール、warのときはwar:war
を実行するなど、各フェーズで実行されるゴー
ルはデフォルトでいくつか定義されている注7ほ

注7） http://maven.apache.org/ref/3.3.3/maven-core/
default-bindings.html ▼表2　Mavenのビルドライフサイクル

Clean Default Site
pre-clean validate pre-site
clean initialize site
post-clean generate-sources post-site

process-sources site-deploy
generate-resources
process-resources
compile
process-classes
generate-test-sources
process-test-sources
generate-test-resources
process-test-resources
test-compile
process-test-classes
test
prepare-package
package
pre-integration-test
integration-test
post-integration-test
verify
install
deploy

 ▼図1　jarパッケージングでmvn clean packageを
　　 実行した際に呼び出されるフェーズとゴール

Clean
ビルドライフサイクル ゴール

mvn clean package

Default
ビルドライフサイクル

validate

initialize

generate-sources

process-sources

pre-clean

clean clean:clean

post-clean

integration-test

generate-resources

process-resources

compile

prepare-package

package

pre-integration-test

・・・

・・・

compile:compile

jar:jar

エンタープライズJavaの進化

DevOpsで始めよう！
しなやかで強いソフトウェアの作り方

Javaアプリケーション開発モダンな

http://maven.apache.org/ref/3.3.3/maven-core/default-bindings.html

110 - Software Design Sep. 2015 - 111

か、POMにプラグインの設定を書くことで、独
自にどのフェーズでどのゴールを実行するかを
定義できます。プロジェクトによっては
process-resourcesフェーズでCSSの圧縮を
行ったり、pre-integration-testフェーズ
でデータベースの初期化を行ったりするなど、
必要なプラグインをPOMに定義してビルドの
設定を作ります（図1）。
　もちろんMavenのプラグインは独自に開発す
ることもできるため、Maven Central Repository

にはさまざまな用途に応じたプラグインが登録
されています。標準のプラグインでは満たせな
いタスクも、すでにプラグインが公開されてい
る可能性があるので、プラグインを開発する前
にまず一度探してみるとよいでしょう。

Mavenプロジェクトの
ライフサイクル

単体テストと結合テスト

　堅牢なアプリケーションを提供するために、
ビルドツールはテストにまつわる機能がとても
重要です。Mavenには単体テスト用のtestと、
結合テスト用のintegration-testという2つ
のフェーズが定義されています。どのように使
い分ければよいでしょうか？
　まずはこの2つの違いを見てみましょう。
testと integration-testの違いの 1つに、
integration-testフェーズの前後には、結
合テスト用の環境を準備するための pre-
integration-testと、後片付けをするpost-
integration-testというフェーズが準備さ
れていることが挙げられます。これはアプリケー
ションサーバやデータベースの初期化や起動、
終了などの実行を想定して定義されたものです。
　つまりtestフェーズではいわゆるクラスや
メソッド単位のテストやモックオブジェクトな
どを使った単体テストを実行し、テストをすべ
てパスしたもののみ、データベースやアプリケー
ションサーバなど結合テスト用の環境を準備し

てintegration-testフェーズを実行すると
いった使い方をします。
　単体テストの実行時はmvn testでよいです
が、結合テストの場合はmvn integration-
testと実行するとpost-integration-test
フェーズが実行されず後片付けができないため、
代わりにmvn verifyを実行しましょう。
　testフェーズはmaven-surefire-pluginとい
うプラグインがデフォルトで使われます。この
プラグインはクラス名がTestで終わるテスト
クラスをすべて実行します。
　integration-testフェーズ用にはmaven-

failsafe-pluginというプラグインが用意されて
いて、クラス名がIT（Integration Testの略）で
終わるテストクラスをすべて実行します。つま
りクラス名を書き分けるだけでテストのフェー
ズを変更できるのです。
　なおmaven-failsafe-pluginはデフォルトで有
効になっていないので、POMに定義する必要
があります（リスト1）。
　テスト設計で陥りがちな例として、事前にイ
ンストールされているソフトウェアや、定義さ
れている環境変数に左右されるテストの作り方
をして、特定のマシンや人だけしかテストが実
行できないような設計にしてしまうと、どうし
てもテストの実行回数が減っていき、いつしか
テストを実行しなくなってしまうことがあります。
　テストはいつでも繰り返し実行できることが

 ▼リスト1　maven-failsafe-pluginの設定

<plugin>
 <groupId>org.apache.maven.plugins</ｭ
groupId>
 <artifactId>maven-failsafe-plugin</ｭ
artifactId>
 <version>2.18.1</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
</plugin>

ストップ属人化！
MavenとGitHubで安全なテストとスピーディなデプロイ 第 回2

112 - Software Design

重要で、そのために極力どのような環境でも動
作するような設計にすることがポイントです。
　たとえば結合テスト用のアプリケーションサー
バを事前に用意しておくのではなく、自動的に
アプリケーションサーバを起動してテストを行
うArquillian注8を使ったり、データベースも
Maven実行時にMySQLサーバを構築する
jcabi-mysql-maven-plugin注9というプラグイン
を使うなど、極力Mavenのみで環境を構築す
ることも検討しましょう。
　とくにデータベースに関しては、データが事
前に準備されている共用のデータベースなどを
使わずに、テーブルの作成やデータの準備など
もテストの一部に含めることをお勧めします。

リリースとデプロイの違いを正しく
理解していますか？

　リリースとデプロイについてはさまざまな定
義がありますが、違いを意識したことはあるで
しょうか？　漠然と似たようなもの、という認
識することも多いですが、ここではリリースは
「ソースコードをタグ付けし、アプリケーショ
ンをデプロイ可能な状態にすること」、デプロ
イは「リリースされたアプリケーションをアプ
リケーションサーバに適用すること」と定義し
ます。
　ソースコードのタグ付けとは、GitやSVNな
どのVCSの特定のコミットを識別するために
名前付けするしくみのことで、タグの名前には
バージョンを指定するのが一般的です。
　ここで重要なのがソースコードは単体テスト

注8） http://arquillian.org/

注9） http://mysql.jcabi.com/

や結合テストが、すべてパスしたものだけリリー
スするということです。古い機能や使わなくなっ
たメソッドのテストが失敗するなど機能的には
問題がなくても、テストが失敗しているものを
本番環境にデプロイすることは、将来的に思わ
ぬ事故の原因となるので避けるのが懸命です。
　本番環境には必ずリリースされたアプリケー
ションだけをデプロイすることで、どの時点の
ソースコードが本番環境で動いているのかを把
握するのに役立ちます。本番環境にどのリリー
スがデプロイされているのかわからない状況で
は、不具合が起きたときの原因究明に時間がか
かってしまいます。
　もちろん本番環境のみならず、開発環境でも
常にどのバージョンがデプロイされているか把
握できるようにしておくと良いでしょう。「あ
の人の環境では動くのに、自分の環境では動か
ない」というようなことは、サーバ通信のある
ネイティブアプリケーションなど、クライアン
トとサーバのソースコードがそれぞれ独立して
いる場合などはありがちです。そのような際に
デプロイされているアプリケーションのバージョ
ンを把握しておくことは、問題の切り分けの大
きな手がかりになるでしょう。
　悪い例を挙げますが、もしもリリースは手動
でPOMのバージョンを変更後、単体テストや
結合テストを行い、問題なかったらVCSにコミッ
ト、タグ付けを行い、POMのバージョンをイン
クリメントして再度コミットを行ったり、デプ
ロイはリリースされたバージョンをチェックア
ウト、パッケージを作成したあと、手動でscp

コマンドを叩きデプロイ先のサーバへコピー、
サーバにログインしてからパッケージのパーミッ
ションを変更、特定のディレクトリに移動した
あと、アプリケーションサーバを再起動するコ
マンドを叩く―といった手順だといつか必ず
ミスが起こることは想像に難

かた

くないでしょう。
　複雑な手順は作業が属人化しやすいため、リ
リースもデプロイも手動で複数のコマンドを実
行するのではなく、1つのコマンドにまとめる

 ▼図2　バージョン表記の例

メジャーバージョン

1 . 0 . 2
インクリメンタルバージョン
マイナーバージョン

エンタープライズJavaの進化

DevOpsで始めよう！
しなやかで強いソフトウェアの作り方

Javaアプリケーション開発モダンな

http://arquillian.org/
http://mysql.jcabi.com/

112 - Software Design Sep. 2015 - 113

などシンプルに実行できるようにすることがと
ても重要です。

バージョンの付け方

　Mavenプロジェクトのバージョン表記には
1.0.2のようにピリオド区切りの3つの数字を
使うことが一般的です。それぞれ、

●	メジャーバージョン

●マイナーバージョン

●インクリメンタルバージョン

と呼ばれています（図2）
　たとえば1.0.2というバージョンは、メジャー
バージョンが1、マイナーバージョンが0、イ
ンクリメンタルバージョンが2という具合です。
　それぞれのバージョン間で桁上りはせずバー
ジョン1.0.9のインクリメンタルバージョン
を上げた場合は1.1.0になるわけではなく、
1.0.10になります。また2.3.10のメジャー
バージョンを上げた場合は3.0.0のように下
位のバージョンは0にリセットします。バージョ
ンを上げる方針はプロダクトによってさまざま
ですが、一般的にインクリメンタルバージョン
はAPIやインターフェース、メソッドシグネチャ
の変更を伴わない軽微な修正やバグフィックス
の際に上げます。
　マイナーバージョンはAPIやインターフェー
スの追加など後方互換性が損なわれない程度の
修正や内部アルゴリズムの変更による性能改善、
メジャーバージョンは大幅な機能の追加や削除、
APIやインターフェースの変更などドラスティッ
クな修正を行った際に上げましょう。
　Mavenプロジェクトは開発中のバージョンに
は-SNAPSHOTという識別子がデフォルトで付
加されています。たとえばバージョン1.5.2
の開発中は1.5.2-SNAPSHOTのようになりま
す。リリースの際にはこの-SNAPSHOTを外し
たものをVCS注10にコミットして、開発中のソー

注10） Version Control System

スコードとリリースされたソースコードを明確
に区別できるようにします。

GitHubとは

　本誌の読者ならすでにGitHub注11をご存じの
方も多いかもしれません。GitHubはGitをベー
スとした無料で利用できる共用リポジトリサー
ビスです。同様のサービスにAtlassianが提供
するBitbucket注12や、独自のサーバに環境を構
築して使うGitLabやGitBucketといったOSS

もあります。
　単純なGitリポジトリとしても使えますが、
これらのサービスにはプルリクエスト（Pull

Request）と呼ばれる複数人でアプリケーション
を開発する際に非常に便利なしくみがあります。
　プルリクエストとは元となるリポジトリを
フォークして、自分のリポジトリでソースコー
ドの修正をし、差分をもとのリポジトリに対し
て取り込む（プル）ようにリクエストを通知する
しくみのことです。機能追加やバグフィックス
ごとにプルリクエストを作成し、必要に応じて
コードレビューや修正を加えたあとに元のリポ
ジトリにマージできます。見やすいWebのUI

でコードレビューが気軽にできるようになった
ことはGitHubが大きく広まった理由の1つで
す。多くのOSSの開発もGitHub上で行われる
ようになり、プルリクエストベースの開発フロー
はモダンな開発現場のデファクトスタンダード
と言えるでしょう。

テストとプルリクエスト

　GitHubにプルリクエストされたソースコー
ドを、元のリポジトリにマージする前にテスト
を行うにはどうすれば良いでしょうか？
　GitHubはプルリクエストが作られると、シー
ケンシャルな IDが振られ、その IDに対応する

注11） https://github.com/

注12） https://bitbucket.org/

ストップ属人化！
MavenとGitHubで安全なテストとスピーディなデプロイ 第 回2

https://github.com/
https://bitbucket.org/

114 - Software Design

ブランチが生成されるので、ローカルにチェッ
クアウトすることができます。
　git fetch origin pull/[プルリクエスト

番号]/head:[ブランチ名] でフェッチするか、
もしくは図3のようにgit configでリモート
リポジトリのブランチをローカルブランチにマッ
ピングし、git remote updateでフェッチし
ておくと、いつでもプルリクエストごとのブラ
ンチをチェックアウトできるので便利です。
　チェックアウトしたらあとはいつもどおり、
mvn clean verifyコマンドなどでテストを
実行し、問題がなければプルリクエストをマー
ジすると良いでしょう。

実践！　リリース＆デプロイ

　それではMavenを使ったシンプルなJava EE

のアプリケーションをGlassFish注13にデプロイ
するケースを例に、実際にリリースとデプロイ
を体験してみましょう。
　Mac OS Xの場合はHomebrew注14を使うと
GlassFishを簡単にインストールできます。そ
の他のプラットフォームの場合はオフィシャル
サイトからアーカイブをダウンロードして適当
なディレクトリに展開してください。
　サンプルのソースコードは https://github.
com/nagaseyasuhito/hypericum に公開し
ています。Java EEを使ったREST APIのサ
ンプルで、kuromoji注15という日本語形態素解
析エンジンを使い、リクエストのクエリ文字列
をわかち書きし、JSONフォーマットに変換し

注13） https://glassfish.java.net/

注14） http://brew.sh/

注15） http://www.atilika.org/

 ▼図3　プルリクエストをローカルリポジトリにマージする

git config --add remote.origin.fetch '+refs/pull/*/head:refs/remotes/pull/*'
　 プルリクエストのブランチ(refs/pull/*/head)をローカルブランチ(refs/remotes/pull/*)にマッピング 

git remote update  リモートリポジトリをフェッチ 

git checkout pull/14　 #14のプルリクエストをチェックアウト 

 ▼図4　GitHubのForkボタン

エンタープライズJavaの進化

DevOpsで始めよう！
しなやかで強いソフトウェアの作り方

Javaアプリケーション開発モダンな

https://glassfish.java.net/
http://brew.sh/
http://www.atilika.org/
https://github.com/nagaseyasuhito/hypericum
https://github.com/nagaseyasuhito/hypericum

114 - Software Design Sep. 2015 - 115

て返します。GitHubにサインアップしてフォー
クしてみましょう。図4のリポジトリの画面右
上の［Fork］ボタンをクリックすると自分のリ
ポジトリにフォークされます。

プルリクエストベースのワークフロー

　プルリクエストを体験するために、フォーク
したリポジトリを、ローカルマシンにクローン
して修正を行い、プルリクエストを投げてみま
しょう。通常はフォーク元のリポジトリに対し
てプルリクエストを行いますが、今回は説明を
単純化するため同じリポジトリ内でプルリクエ
ストを投げてみます。
　POMのscm以下に記述されているリポジトリ
のURLを、自身のGitHubリポジトリのURLの
修正してみましょう（図5）。
　流れとしては、最初にgit cloneでローカ
ルマシンにフォークしたリポジトリを持ってき

たあと、git checkout -bで作業用のブラン
チを作成します。POM修正後にmvn clean
verifyでテストが正しく通るか確認し、git
pushで新しいリモートブランチにプッシュし
ています。新しく差分がプッシュされると、プ
ルリクエスト用のボタンがWebのUIに表示さ
れます（図6）。
　このボタンをクリックするとプルリクエスト
の作成ができます。差分を確認して問題なけれ
ば［Create pull request］ボタンをクリックしま
しょう。複数人での開発の場合、プルリクエス
トの内容をチェックしながら、コードレビュー
やテストを行い、必要があれば追加で修正など
をして再度プッシュします。このようにコード
レビューと修正の履歴が可視化されるので、あ
とあとに修正の意図を知りたい場合に重宝します。

 ▼図5　Gitで編集する例

git clone git@github.com:[自身のGitHubアカウント名]/hypericum.git　 ローカルマシンにクローン 
git checkout -b changeScmUrl  changeScmUrlという名称のブランチを作成 
vi pom.xml  POMを編集する 
mvn clean verify　 Mavenでテストを実行 
git commit -a -m "change scm url to own repository url"　 POMを修正後コミットしてoriginにプッシュ 
git push origin changeScmUrl

 ▼図6　GitHubのプルリクエストの通知

ストップ属人化！
MavenとGitHubで安全なテストとスピーディなデプロイ 第 回2

116 - Software Design

maven-release-pluginでリリース

　それでは次にリリースを行ってみましょう。
Mavenにはmaven-release-pluginというリリー
スのためのプラグインが用意されていて、
POMに記述しているプロジェクトのバージョ
ンの変更やVCSへのタグ付けなどが行えます。
　maven-release-pluginはリスト2のように
POMにプラグインの設定を記述します。この
プラグインにはprepareとperformという2

つのゴールが含まれています。prepareゴー
ルは、

①	未コミットのファイルがないかチェック

②	スナップショットの依存関係がないかチェック

③	プロジェクトのバージョンから-SNAPSHOTを
削除したものに変更（1.0.0-SNAPSHOT →

1.0.0）

④	テストの実行

⑤	変更したPOMをコミット

⑥	VCSにタグ付け

⑦	プロジェクトのバージョンをインクリメント

（1.0.0 → 1.0.1-SNAPSHOT）

⑧	変更したPOMをコミット

を実行します。
　performゴールは、prepareゴールでVCS

にタグ付けされたソースコードに対して、

 ▼リスト2　maven-release-pluginの設定

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.5.2</version>
 <configuration>
 <goals>package cargo:deploy</goals>
 </configuration>
</plugin>

 ▼リスト3　cargo-maven2-pluginの設定

<plugin>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-maven2-plugin</artifactId>
 <version>1.4.13</version>
 <configuration>
 <container>
 <containerId>glassfish4x</containerId>
 <type>remote</type>
 </container>
 <configuration>
 <type>runtime</type>
 <properties>
 <cargo.hostname>${cargo.hostname}</cargo.hostname>
 <cargo.glassfish.admin.port>${cargo.glassfish.admin.port}</cargo.glassfish.admin.port>
 <cargo.remote.username>${cargo.remote.username}</cargo.remote.username>
 <cargo.remote.password>${cargo.remote.password}</cargo.remote.password>
 </properties>
 </configuration>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.glassfish.main.deployment</groupId>
 <artifactId>deployment-client</artifactId>
 <version>4.1</version>
 </dependency>
 </dependencies>
</plugin>

エンタープライズJavaの進化

DevOpsで始めよう！
しなやかで強いソフトウェアの作り方

Javaアプリケーション開発モダンな

116 - Software Design Sep. 2015 - 117

POMのconfigurationのgoalsで定義されたゴー
ルを実行します。つまりgoalsにパッケージ生
成とデプロイを行うゴールを記述しておくこと
で、リリースと同時にアプリケーションサーバ
にデプロイすることが可能になります。

cargo-maven2-pluginで
GlassFishにデプロイ

　アプリケーションサーバにデプロイする
cargo-maven2-plugin注16というプラグインがあ
ります。これはGlassFishだけでなくJBossや
Wildfly、WebLogicからTomcatや Jettyまで
さまざまなアプリケーションサーバに対応した
デプロイ用のプラグインです。
　リスト3はGlassFish4.1用の設定です。confi

guration以下のcontainerにはデプロイするコ
ンテナの種類を記述し、configurationにはデプ
ロイ先のホスト名やポート番号、管理ユーザの
ユーザ名やパスワードを記述します。
　ホスト名などはMavenのプロパティにする
ことで、プロファイルやコマンドライン引数で
指定できるようになります（図7）。
　GlassFishの管理用コマンドasadmin start
-domainでアプリケーションサーバを起動し

注16） h t t p s : / / c o d e h a u s - c a r g o . g i t h u b . i o / c a r g o /
Maven2+plugin.html

た状態でmvn clean verify cargo:deploy
を実行するとデプロイが行われます。デプロイ
後curlコマンドでREST APIにリクエストを
送信すると、結果がJSONで返ってくることが
確認できます（図8）。
　先 述 し た と お り maven-release-pluginの
performを実行したときのゴールをpackage
cargo:deployにしておくことで、mvn clean
release:prepare release:performの実行
で、リリースとデプロイを同時にできます。

まとめ

　いかがでしたでしょうか？　Mavenには数多
くの機能がプラグインとして提供されているた
め、宣言的に設定を記述できることがおわかり
いただけたかと思います。またビルドライフサ
イクルの理解を深め、単体テスト、結合テスト
のユースケースの違いを把握することで効率的
なテスト設計ができるようになります。
　開発現場によってベストプラクティスはさま
ざまですが、この記事を参考にモダンなプルリ
クエストベースの開発フローと安全なリリース、
デプロイのしくみを導入し、スピーディなサー
ビスを提供できる体制を作るきっかけになれば
幸いです。ﾟ

 ▼図7　コマンドライン引数でホスト名を指定する例

mvn clean verify cargo:deploy -Dcargo.hostname=127.0.0.1

 ▼図8　デプロイしたアプリケーションにクエリを発行する例

$ curl http://localhost:8080/hypericum/api/tokenize?query=本日は晴天なり
{
 "query":"本日は晴天なり",
 "tokens":{
 "token":[
 {"allFeatures":"名詞,副詞可能,*,*,*,*,本日,ホンジツ,ホンジツ","reading":"ホンジツ",ｭ
"surfaceForm":"本日"},
 {"allFeatures":"助詞,係助詞,*,*,*,*,は,ハ,ワ","reading":"ハ","surfaceForm":"は"},
 {"allFeatures":"名詞,一般,*,*,*,*,晴天,セイテン,セイテン","reading":"セイテン",ｭ
"surfaceForm":"晴天"},
 {"allFeatures":"助動詞,*,*,*,文語・ナリ,基本形,なり,ナリ,ナリ","reading":"ナリ",ｭ
"surfaceForm":"なり"}
]
 }
}

ストップ属人化！
MavenとGitHubで安全なテストとスピーディなデプロイ 第 回2

https://codehaus-cargo.github.io/cargo/Maven2+plugin.html

118 - Software Design

Kot l in入門
プログラマに優し

い
現実指向JVM言

語短期集中
連載
最終回

はじめに

　Kotlinは、以前紹介したようにJava仮想マシ
ンやJavaScriptだけでなくAndroidもターゲッ
トとしています。Kotlinのシンプルで読みやすく、
安全なコードでAndroidアプリケーションを開
発できるのはとても魅力的です。そして、使い
たくなるようなライブラリやツール群もいくつか
あります。本記事では、開発環境の構築から始
めて、Kotlin用Androidプロジェクトの作成、
Kotlin活用のアイデアを解説したあと、ライブ
ラリとツールの紹介をします。なお、Android開
発経験のある人を対象とした構成となっています。

開発環境構築

　連載第2回（2015年5月号）で紹介した開発環
境の 1つに、Kotlinプラグインを導入した
IntelliJ IDEA注1がありました。この IntelliJ

IDEAをベースとして作られているAndroid

Studio注2にKotlinプラグインをインストール
します。Android Studioが未インストールの
人は、まずそちらをインストールしてください
（インストール方法については誌面の都合上割
愛させていただきます）。
　Android Studioを起動した状態で、メニュー
から［Preferences...］を選択し表示します。そ

して［Plugins］の項目から画面下部にある
［Install JetBrains Plugin...］をクリックします。
するとインストール可能なプラグイン一覧が表
示 さ れ る の で［Kotlin］を 選 択 し、［Install

plugin］ボタンをクリックします。ダウンロー
ドとインストールが始まります。検索ボックス
に「Kotlin」と入力するとプラグインが名前でフィ
ルタリングできるので便利です。インストール
が完了したらAndroid Studioを再起動してプ
ラグインを有効にしてください。

KotlinでAndroid
開発を始める

　まずはPhone用のプロジェクトを新規作成し
ます。<プロジェクトルート>/app/src/main/
java/<パッケージ>/MainActivity.javaが生
成されているはずです（デフォルトの設定を使用
した場合)。このMainActivity.javaファイル
を開きます（図1）。
　メニューから［Code］→［Convert Java File to

Kotlin File］をクリックします。この操作により
MainActivity.javaに記述されているJavaコー
ドが自動的にKotlinコードに変換され、ファイ
ル名もMainActivity.ktに変わります（図2）。
　次に、メニューから［Tools］→［Kotlin］→［Con

figure Kotlin in Project］をクリックします。
すると使用するKotlinのバージョンについて
質問するダイアログが表示されるので、そのま

KotlinでAndroidプログラミング第 6 回

Author 長澤 太郎（ながさわ たろう）　 Twitter @ngsw_taro　 Mail taro.nagasawa@gmail.com

注1） https://www.jetbrains.com/idea/ 注2） https://developer.android.com/intl/ja/sdk/index.html

4月号から続いた本連載も今月で最終回です。今まで解説してきた内容を
ふまえて、KotlinによるAndroidプログラミングを解説します。

https://www.jetbrains.com/idea/
https://developer.android.com/intl/ja/sdk/index.html

118 - Software Design Sep. 2015 - 119

KotlinでAndroidプログラミング第 6 回

ま「OK」ボタンをクリックします（図3）。図4の
ようにbuild.gradleに必要な記述が自動的に追
記されます。この変更をAndroid Studioに反
映するため画面上部の［Sync Now］をクリック
してください。

　最後に、/app/src/main/kotlinディ
レクトリを作成し、MainActivity.ktファ
イルを/app/src/main/javaからそこへ
移動して完了です。これでAndroid開発
を始められます！
　MainActivity.ktをリスト1のよう
に編集して、ビルド、実行してみてくだ
さい。KotlinコードがAndroid上で動い
ていることが確認できます。

Kotlin活用の
アイデア

　KotlinでAndroid開発を始めると、す
ぐにその快適さに気づくと思います。こ
こではその快適さをもたらしてくれる
Kotlin活用のヒントを紹介します。

関数リテラルでイベントリスナ

　KotlinはJavaとの相互運用性が高い
です。JavaコードをKotlinで呼び出す
のがすごく簡単です。
　ViewクラスのメソッドsetOnClick
Listener(View.OnClickListener)
の例を考えます。ビューのクリック時の
アクションを登録するこのメソッドです
が、クリック時のアクションはView.
OnClickListenerというインターフェー
スで表現されています。このインター

フェースはfun onClick(v: View): Unitとい
うメソッドを1つだけ持ちます。このように抽象
メソッドをただ1つ持ったインターフェースを引
数に取るメソッドに、Kotlinコードでは関数を
渡すことができます！ この例では(View) ->

 ▼図1　自動生成されたMainActivity.java

 ▼図2　JavaからKotlinに自動変換される

 ▼図3　 Kotlinのバージョンを質問してくるダイ
アログ

 ▼図4　 build.gradleに必要な記述が自動的に追記される

120 - Software Design

プログラ
マに優しい現実指向JVM言語

短期集中連載
最 終 回

Kot l in入門

Unit型の関数を View#setOnClickListener
(View.OnClickListener)の引数として渡せる
ということです。
　リスト2ではクリック時のアクションを関数
リテラルで表現してリスナ登録しています。参
考までにJavaで書き直したものをリスト3に
示します。

拡張関数で便利APIを作る

　既存の型にメソッドを生やせる拡張関数がす
ごく便利なことは第5回で解説しました。この
拡張関数を駆使してAndroid標準のAPIを使い
やすく改造してみましょう。
　まずはシンプルな例としてトーストを挙げま
す。リスト4のようなコードを書きました。こ
の拡張関数toastにより、Contextのサブク
ラス内、たとえばActivity内でトースト表示
する際にはtoast("こんにちは")と記述する

だけで済みます。このような記述を得る
ためだけにBaseActivityのようなスー
パークラスを導入していまいがちですが、
いろいろ厄介なBaseActivityを避けら
れます。
　もう1つ面白い例を紹介します。リス

ト5では、プリファレンスの編集を便利
にする拡張関数を定義しました。
　呼び出し側のコードはどのようになるか
想像できますか？　すでに取得しているプ
リファレンスprefに対してリスト6のよう
なコードが記述できるようになります。
　まずリスト5の拡張関数editを見てく
ださい。この拡張関数の役目は、プリファ
レンスの編集が終わったあとにShared
Preferences.Editor#applyを実行する
ことです。引数として受け取る関数fの

中で実際に編集が行われ、fの呼び出しのあと
にapplyを呼び出しているだけです。引数fの
型に注目してください。初めて登場する記法で
す。SharedPreference.Editor.() -> Unit
という関数型です。() -> Unitだけであれば
「引数を取らずに何も返さない関数の型」と読め
るのは、すでにご存じかもしれません。頭に付
くSharedPreference.Editor.は、メソッド
のレシーバとみなせます。つまりfは、クラス
SharedPreference.Editorの() -> Unitな
メソッドなのです！
　このfは単なる関数ではなく、メソッドです
ので単体では呼び出せません。レシーバとなる
オブジェクトが必要です。リスト5でeditor.
f()のように呼び出しているのはそのためです。
editorがレシーバとなりfを呼び出しています。
　このような拡張関数、いや拡張メソッドは何
の役に立つのでしょうか。実際、fの型を

button.setOnClickListener {
 Log.d(TAG, "Clicked")
}

 ▼リスト2　 OnClickListenerの代わりに関数
を渡せる

// Javaコード
button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Log.d(TAG, "Clicked");
 }
});

 ▼リスト3　Javaで書くとノイズが多い

fun Context.toast(msg: String) {
 Toast.makeText(this, msg, Toast.LENGTH_SHORT).show()
}

 ▼リスト4　Contextの拡張関数としてトースト表示機能を追加

public class MainActivity : Activity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 "Kotlin".hello()
 }

 fun String.hello() {
 val msg = "Hello, $this!"
 Toast.makeText(this@MainActivity, msg, Toast.
LENGTH_SHORT).show()
 }
}

 ▼リスト1　Hello, Kotlin!

120 - Software Design Sep. 2015 - 121

KotlinでAndroidプログラミング第 6 回

(SharedPreference.Editor) -> Unitとし
て、f(editor)と呼び出せば機能としては同
じことができます。しかし呼び出し側（リスト6）
のコードが変わってきます。it.put("id" to
123L)のようにレシーバを（それが明らかなの
にもかかわらず）明示する必要が出てきます。
fがSharedPreference.Editorの拡張メソッ
ドであることでput("id" to 123L)のように
レシーバを省略することが可能になります。
　それからリスト5の2つの拡張関数putにつ
いてです。この2つの関数は、Kotlin標準ライ
ブラリに含まれるクラスPairを引数に取りま
す (説明のためにわざとらしくそうしています)。
クラスPairはその名のとおり組、ペアを表現
するクラスです。今回の場合、プリファレンス
として保存する対象となっているのでPairの
第1要素をキー、第2要素を値としています。
2つの関数putは同名ですが、Pair<String,
StringとPair<String, Long>で引数の型が
異なります。Kotlinではこれを区別できますが、
Javaではできません。そのためJava用に別名
を付けてやる必要があります。platformName
アノテーションを付けて、その引数にJava用
の名前を付けるだけです。
　最後にリスト6を見てください。putの引数
を"id" to 123Lと記述しています。これは
Pairリテラルです。と言うとわかりやすいで

すが少し違います。toは任意の型に対する拡
張関数で、Pairインスタンスを生成します。
"id" to 123Lは "id".to(123L)と も Pair
("id", 123L)とも記述できます。

ライブラリ・ツール

　KotlinでのAndroid開発をより快適にしてく
れるライブラリやツールを紹介します。

Kotter Knife

　Kotter Knife注3はView Injectionライブラリで
す。頻繁に登場するfindViewByIdによるビュー
のマッピング作業から解放してくれるライブラリ
です。Java用のButter Knife注4のKotlin版と言
えます。ちなみに開発者はAndroid界隈で名高
い（どころかスーパースターの）Jake Whartonさ
んです。
　導入は簡単です。リスト7のようにbuild.gradle

を編集してください。
　導入後、すぐに使い始められます。リスト8に
Kotter Knifeの簡単な使用例を示します。
MainActivityのプロパティとして各ビュー
(nameEditTextとsubmitButton)を保持してい
ます。onCreateメソッド内でfindByViewIdメ
ソッドを呼び出してビューのマッピングを行うの
が 通常の方法ですが、このコードには

fun SharedPreferences.edit(f: SharedPreferences.Editor.() -> Unit) {
 val editor = this.edit()
 editor.f()
 editor.apply()
}

platformName("putLong")
fun SharedPreferences.Editor.put(pair: Pair<String, Long>) {
 putLong(pair.first, pair.second)
}

platformName("putString")
fun SharedPreferences.Editor.put(pair: Pair<String, String>) {
 putString(pair.first, pair.second)
}

 ▼リスト5　プリファレンスの編集を便利に

pref edit {
 put("id" to 123L)
 put("name" to "たろう")
}

 ▼リスト6　 プリファレンス編集が
簡単になった

注3） https://github.com/JakeWharton/kotterknife 注4） http://jakewharton.github.io/butterknife/

https://github.com/JakeWharton/kotterknife
http://jakewharton.github.io/butterknife/

122 - Software Design

プログラ
マに優しい現実指向JVM言語

短期集中連載
最 終 回

Kot l in入門
findByViewIdが登場しません。setContent
View(R.layout.activity_main)を呼び出した
後すぐにsubmitButtonに対してクリックリスナ
を登録しています。
　これを可能にしているのは各ビューのプロパ
ティの宣言時にby bindView(ID)と記述したお
かげです。bindViewメソッドはKotter Knifeが
提供するAPIです。プロパティ
宣言のあとにbyと記述してい
るのはKotlinのDelegated Pro

pertyという機能を使うためで
す。詳細は割愛しますが、
Delegated Propertyとはプロ
パティへアクセスがあったと
きに、その処理を別のオブジェ
クトに委譲するしくみです。
Kotter KnifeではこのDele

gated Propertyを使って、プ
ロパティとして保持している
ビューに初めてアクセスがあっ
たときに、ビューを取得する
コードが発動するように作ら
れています。

Anko

　次に紹介するのはJetBrains

により開発されているライブ
ラリ、Anko注5です。Android

開発を簡単にする便利なAPI

が数多くそろっていますが、
目玉機能はUIレイアウトを構
築するDSL（Domain Specific

Language：ドメイン特化言語）
です！
　Android開 発 で は 通 常、
XMLでレイアウトを組んで
Javaコードからそれを利用す
るという流れが一般的なのは
みなさんご存じのとおりです。

AnkoはレイアウトをXMLファイルとしてでは
なく、Kotlinコード上で組み上げるアプローチ
を提案しています。Kotlinで作成されたDSLを
使うので、Kotlinの恩恵をそのまま受けられます。
つまり簡潔、型安全、NULL安全ということです。
　まずは非常に簡単な例をご覧入れましょう。
リスト9では、押すとトーストが表示されるボ

dependencies {
 // (略)
 compile 'com.jakewharton:kotterknife:0.1.0-SNAPSHOT'
}
repositories {
 // (略)
 maven {
 url 'https://oss.sonatype.org/content/repositories/snapshots/'
 }
}

 ▼リスト7　Kotter Knife導入

class MainActivity : Activity() {

 val nameEditText: EditText by bindView(R.id.name_edit_text)

 val submitButton: Button by bindView(R.id.submit_button)

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 submitButton.setOnClickListener {
 val name = nameEditText.getText().toString()
 Toast.makeText(this, name, Toast.LENGTH_SHORT).show()
 }
 }
}

 ▼リスト8　Kotter Knife使用例

class MainActivity : Activity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 verticalLayout {
 button("Click me!") {
 onClick {
 toast("Hello")
 }
 }
 }
 }
}

 ▼リスト9　Ankoはこんな感じでUIを表現する

注5） https://github.com/JetBrains/anko　「小豆を煮詰めて作る、あの“あんこ”が名前の由来らしいです」

https://github.com/JetBrains/anko

122 - Software Design Sep. 2015 - 123

KotlinでAndroidプログラミング第 6 回

タンが1つ表示されるようなアクティビティを
作っています。
　Kotlinコードですので、Kotlinでできること
は何でもできます。たとえばレイアウトの使い
回しはどうするのか、という問題はリスト10

のように関数に出すのも1つの方法です。
　拡張関数 createLayoutで、
Ankoを使ってレイアウトを構
築しています。そしてAnkoを
使って生成したボタンを返して、
関数の呼び出し元でボタンにク
リックリスナを登録しています。
Ankoはまだ発展途上のライブ
ラリで、筆者自身もベストプラ
クティスを模索中です。
　肝心の導入方法ですが、簡単
です。リスト11の1行をgradle.

buildのdependenciesに追記す
るだけです。とても面白いライ
ブラリですのでぜひ使ってみて

ください。

Kotlin Extensions for Android

　最後に紹介するのはKotlin Extensions for

Androidというツールです。モチベーションとし
てはKotter Knifeと同じくfindViewByIdの排除
です。しかしKotlin Extendions for Androidはさ
らに一歩進めて、プログラマがビューのマッピン
グを行ったり指定したりするような記述すら必要
ありません。
　簡単な具体例を示します。リスト12はact
ivity_main.xmlという名前のレイアウトファイ
ルです。そして、このレイアウトファイルを使
うMainActivityの定義がリスト13です。

class MainActivity : Activity() {
 override fun onCreate(savedInstanceState:
Bundle?) {
 super.onCreate(savedInstanceState)
 val button = createLayout()
 button.setOnClickListener {
 toast("Hello")
 }
 }
}

fun Activity.createLayout(): Button {
 var button: Button? = null
 verticalLayout {
 // ボタンのテキストとしてリソースIDも指定できる
 button = button(R.string.click_me) {
 // ボタンのテキストサイズを指定
 textSize = 24f
 }.layoutParams {
 // マージンを指定
 margin = dip(20)
 }
 }
 // ボタンを返す
 return button ?: throw AssertionError()
}

 ▼リスト10　UI構築部分を関数として切り出す

compile 'org.jetbrains.anko:anko:0.6.2-15'

 ▼リスト11　Anko導入

<RelativeLayout xmlns:android="http://schemas.
android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:id="@+id/helloButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello"/>
</RelativeLayout>

 ▼リスト12　activity_main.xml

package com.taroid.sample

import android.app.Activity
import android.os.Bundle
import android.widget.Toast
import kotlinx.android.synthetic.activity_main.helloButton

public class MainActivity : Activity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 helloButton.setOnClickListener {
 Toast.makeText(this, "Hello", Toast.LENGTH_SHORT).show()
 }
 }
}

 ▼リスト13　ビューオブジェクトが自動生成されている

124 - Software Design

プログラ
マに優しい現実指向JVM言語

短期集中連載
最 終 回

Kot l in入門
　リスト13では、onCreate内でいきなり登場す
るhelloButtonに対してクリックリスナを登録し
て い ま す。Kotter Knifeのときと 異 なり、
helloButtonはプロパティに宣言されていなけれ
ばDelegated Propertyも使用されていません。
このhelloButton、どこからやってきたのかと言
うとKotlin Extensions for Androidによって生成
され、それをインポートすることでMainActivity
内で使えるようにしています。自動生成される
ビューの完全な名前を一般化すると「kotlinx.
android.synthetic.<レイアウトファイル名>.<
リソースID>」のような形式になります。
　Kotlin Extensions for Androidを導入するに
は、まずプラグインをインストールします。同
名のプラグインをAndroid Studioにインストー
ルし、再起動します。そしてbuild.gradleをリス

ト14のように編集して、使えるようになります。

まとめ

　Android Studioにプラグインを入れるだけで、
すぐにKotlinによるAndroidプログラミングを
体験できます。Kotlinコードからシームレスに
AndroidのAPIを呼び出せます。Kotlinの独特
な文法、たとえば拡張関数やNULL安全など
もAndroid上で動きます。
　ボタンのクリックリスナのような、抽象メソッ
ドが1つしかないインターフェースとして関数
リテラルを使うことができます。クリックリス
ナの登録のときに、匿名クラスを書いて、メソッ
ドをオーバーライドするようなノイズの多い記
述 を Kotlin で
はしなくて済み
ます。
　Context を
引数に取るよう
な便利メソッド
の定義の際に
は、拡張関数が

非常に威力を発揮するでしょう。Contextに
対する拡張関数とすれば、呼び出し側のコード
が目に優しく直感的なスタイルになります。
　便利なライブラリ・ツールを3つ紹介しまし
た。Kotter Knifeは Butter Knifeの Kotlin版
で、Delegated PropertyというKotlinの機能
をうまく利用して実現されているView

Injectionライブラリです。AnkoはAndroid開
発におけるDSLセットで、とくにUIレイアウ
トが興味深いです。Kotlinの簡潔で安全な特長
をUIレイアウトに活かせるのはうれしいです。
Kotlin Extensions for Android は View

Injectionのためのツールで、ビューのマッピ
ングが全自動なため作業が減り、コードもすっ
きりします。

おわりに

　全6回に及ぶKotlin入門連載、いかがでした
か？　業務でKotlinを使う日は遠からず来る
のではないかと期待しています。現時点で
Kotlinはβ版という位置づけですが、そろそろ
バージョン1.0がリリースされそうな気配を感
じています。今後も筆者のブログでKotlin情
報の発信は続けていくので、新しいマイルストー
ンがリリースされたときなどにはチェックして
ください。
　Kotlinでみなさまのプログラミングが少しで
も快適に、そして今よりもっと楽しくなればエ
バンジェリスト注6冥利に尽きます。Let's enjoy

Kotlin！ﾟ

buildscript {
 // (略)

 dependencies {
 // (略)
 classpath "org.jetbrains.kotlin:kotlin-android-extensions:$kotlin_version"
 }
}

 ▼リスト14　Kotlin Extensions for Android導入

注6） 自称ですが。

〒162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

川本安武 著
A5判 ・ 400ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-6807-4

中村行宏、横田翔 著
A5判 ・ 320ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-7114-2

吾郷協、山田順久、竹馬光太郎、
和智大二郎 著
B5判 ・ 136ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6797-8

福田和宏、中村文則、
竹本浩、木本裕紀 著
B5判 ・ 128ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7345-0Software Design plusシリーズは、OSと

ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

寺島広大 著
B5変形判 ・ 440ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6543-1

倉田晃次、澤井健、
幸坂大輔 著
B5変形判 ・ 520ページ
定価 3,700円（本体）＋税
ISBN 978-4-7741-6984-2

遠山藤乃 著
B5変形判 ・ 392ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6571-4

松本直人、さくらインター
ネット研究所（日本Vyatta
ユーザー会） 著
B5変形判 ・ 320ページ
定価 3,300円（本体）＋税
ISBN 978-4-7741-6553-0

勝俣智成、佐伯昌樹、
原田登志 著
A5判 ・ 288ページ
定価 3,300円（本体）＋税
ISBN 978-4-7741-6709-1

PHPライブラリ＆サンプル実践活用
［厳選100］
WINGSプロジェクト 著
定価 2,480円＋税　ISBN 978-4-7741-6566-0

フロントエンドエンジニア養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6578-3

サーバ/インフラエンジニア養成読本
ログ収集～可視化編
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6983-5

WordPressプロフェッショナル
養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6787-9

アドテクノロジー
プロフェッショナル養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6429-8

Zabbix統合監視徹底活用
TIS㈱ 池田大輔 著
定価 3,500円＋税　ISBN 978-4-7741-6288-1

Webアプリエンジニア養成読本
和田裕介、石田絢一（uzulla）、
すがわらまさのり、斎藤祐一郎 著
定価 1,880円＋税　ISBN 978-4-7741-6367-3

iOSアプリエンジニア養成読本
髙橋俊光、諏訪悠紀、湯村 翼、平屋真吾、
平井祐樹 著
定価 1,980円＋税　ISBN 978-4-7741-6385-7

[改訂新版]
Linuxエンジニア養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6377-2

[改訂新版]
サーバ/インフラエンジニア養成読本
仮想化活用編
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6425-0

[改訂新版]
サーバ/インフラエンジニア養成読本
管理・監視編
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6424-3

[改訂新版]
サーバ/インフラエンジニア養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6422-9

GPU並列図形処理入門
乾正知 著
定価 3,200円＋税　ISBN 978-4-7741-6304-8

エンジニアのための
データ可視化［実践］入門
森藤大地、あんちべ 著
定価 2,780円＋税　ISBN 978-4-7741-6326-0

過負荷に耐えるWebの作り方
㈱パイプドビッツ 著
定価 2,480円＋税　ISBN 978-4-7741-6205-8

川瀬裕久、古川文生、松尾大、
竹澤有貴、小山哲志、新原雅司 著
B5判 ・ 156ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7313-9

養成読本編集部 編
B5判 ・ 164ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7057-2

きしだなおき、のざきひろふみ 、吉田真也、
菊田洋一、渡辺修司、伊賀敏樹 著
B5判 ・ 168ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6931-6

上田隆一 著
USP研究所 監修
B5変形判 ・ 416ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-7344-3

中島雅弘、富永浩之、
國信真吾、花川直己 著
B5変形判 ・ 416ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-7369-6

126 - Software Design

で学ぶErlang
並行プログラミング

最新版の状況

　17.x系は 17.5.6.2[1]が 7月 7日に、18.x系は
18.0.2[2]が 7月 8日にリリースされました。
GitHubリポジトリでタグを指定することでソー
スコードからビルドできます（詳細は連載第3

回の注8で説明）。ランタイムシステム（ERTS）
のバグ修正や時間の取り扱い変更に伴う修正が
加えられています。

稼動プロセスをobserverで
状態監視する

　Erlangの仮想マシンでは多くのプロセスが
同時並行に動いています。これを網羅的に状態
監視するのは決して易しくはありませんが、幸
いOTPには状態監視用の各種ツールが標準で
用意されています。ここでは代表的なobserver

というツールを見ていきます。
　筆者は2014年にerltrek[3]というテキスト版
スタートレックゲーム注1をErlang/OTPで開発
しています（図1）。図1注2でerltrekのゲームを

注1） 1970年代に作られた宇宙船間の戦闘ゲームです。FreeBSD
ではPortのgames/bsdgamesをインストールすれば"trek"
でBSD UNIX版を起動できます。Linuxにも対応させたもの
は（https://github.com/jj1bdx/bsdtrek）にて公開しています。

注2） erltrekは筆者が発表した直後に、ErlangによるWebフレー
ムワークの1つZotonic[4]のコア開発者Andreas Stenius
氏によって、宇宙船やゲーム空間の銀河の状況が、すべて
Erlangのプロセスで表現されるように改良されました。な
お、実行にあたってはWindowsでは表示ドライバが動作
しないため、Linux/OS X/FreeBSDなどが必要です。

起動した直後に、observerを立ち上げると図2の
画面が表示されます。ここでボタン［Applications］
をクリックすると、仮想マシンに実行中の各ア
プリケーションとそれぞれに属するプロセスの
ツリー図が表示されます（図3）。各プロセスの
状態はボタン［Processes］をクリックすると表
示されます（図4）。図4では登録済みプロセス
は登録された名前で、その他は起動した関数の
情報が表示されています。
　図4のプロセス一覧表で、詳細表示したいも
のをクリックすると、さらに細かい情報を得る
ことができます。試しにerltrek_galaxyという
登録済みプロセスについて表示してみます（図

5）。プロセスごとのメモリ使用状況やほかの
プロセスとのリンクやモニタの関係が一目でわ
かります。このプロセスが保持している内部状
態はボタン［State］をクリックすると表示でき
ます（図6）注3。図6のラベルStateの項目を見る
と、内部状態が省略された形で出ています。こ
れは最下行の［Click to expand above term］を
クリックするとさらに展開した形で見ることが
できます（図7）。
　observerではこのほかにもスケジューラや
I/O、メモリ消費の状態について表示できます。
今回は同じBEAMの中で実行しましたが、別の

注3） プロセスの内部状態を表示するには、対象となるプロセス
でgen_serverなどが動作していること、つまりsysモジュー
ルに定義するシステム標準のメッセージに準拠したメッセー
ジに対して送受信処理ができることが必要です。

この連載ではプログラミング言語Erlangとその並行プログラミングについて紹介していきます。今回はプロセ
ス状態監視やテストの手法について紹介します。

 Author 力武健次技術士事務所 所長 力武 健次（りきたけ けんじ） http://rikitake.jp/

第6回 Erlang/OTPでのプロセス状態監視とテスト

で学ぶErlang
並行プログラミング

http://rikitake.jp/
https://github.com/jj1bdx/bsdtrek

126 - Software Design Sep. 2015 - 127

 ▼図2　observer起動時画面

 ▼図4　実行中プロセスの一覧

 ▼図3　アプリケーションerltrekと関連プロセス
　　 のツリー図

 ▼図1　erltrekの実行とobserverの起動

Erlang/OTP 18 [erts-7.0.1] [source] [64-bit] ｭ
[smp:8:8] [async-threads:10] [hipe] [kernel- ｭ
poll:false] [dtrace]
↑実行は./game.shというコマンドで起動している

ErlTrek Shell (abort with ^G)
Command > Short range sensor scan
 0 1 2 3 4 5 6 7 8 9
0 . . * H . 0 Stardate: 2000.00
1 K * . * 1 Position: 2,2/7,5
2 . . # . . @ 2 Condition: GREEN
3 K . . 3 Energy: 5000
4 4 Shield: 1000
5 5 Klingons: 44
6 H . . . * * 6
7 * E 7
8 * 8
9 . K 9
 0 1 2 3 4 5 6 7 8 9
Starsystem Ardana
Condition changed to: RED　
↑放っておいてもゲームは勝手に進む

Klingon hit with phasers from sector 3,7 level 62
Shield level down to 938
Klingon hit with phasers from sector 1,6 level 52
Shield level down to 886
 ……（中略）……
User switch command　
↑ここでコントロールGを押して別のシェルを起動する
 --> ?
 c [nn] - connect to job
 i [nn] - interrupt job

 k [nn] - kill job
 j - list all jobs
 s [shell] - start local shell
 r [node [shell]] - start remote shell
 q - quit erlang
 ? | h - this message
 --> j ←現在のジョブの状況
 1* {erltrek_shell,start,[]}
 --> s ←新しくローカルシェルを起動する
 --> j ←ジョブの状況を見るとシェルが増えるのがわかる
 1 {erltrek_shell,start,[]}
 2* {shell,start,[]}
 --> c 2 ←2番のローカルシェルに接続する
Eshell V7.0.1 (abort with ^G)
1> observer:start(). observerを起動する
ok
2> ←ここでコントロールGを押してゲームに制御を戻す
User switch command
 --> c 1　←【Enter】押すとゲームのプロンプトに戻る
Command > s
Short range sensor scan
 0 1 2 3 4 5 6 7 8 9
0 . . * H . 0 Stardate: 2003.57
1 K * . * 1 Position: 2,2/7,5
2 . . # . . @ 2 Condition: RED
3 3 Energy: 5000
4 4 Shield: 648
5 5 Klingons: 44
6 H . . . * * 6
7 * E 7
8 * 8
9 9
 0 1 2 3 4 5 6 7 8 9
Starsystem Ardana右段へ続く↗︎

左段下から続く↙︎

第6回 Erlang/OTPでのプロセス状態監視とテスト

128 - Software Design

で学ぶErlang
並行プログラミング

ノードから接続して状態監視することもできます。
実行にはGUI環境が必要なのが難点ではありま
すが、BEAMの中で何が起こっているかを把握
するには最初に試してみるべきツールでしょう。
　observerで実行できることの多くは、前回紹
介したsysモジュールの機能を使っても実現で
きます。sysモジュールはGUI環境がなくても
実行できるので便利です。このほかにもプロファ
イリングツールとしてcprof/eprof/fprofの各
モジュールがあり、これらを使って実行コード
のうちに、どこに時間がかかっているかを調べ
ることができます。詳しくは各モジュールのマ
ニュアルを参照してください。

単体テストツールEUnit

　OTPにある各種テストツールのうち代表的な
ものとして、EUnit[5]を紹介します。EUnitはプ
ログラムの個々の関数が正しく動作しているか

どうかをテストする単体テストのための自動化
ツールです。EUnitは各種操作の実行結果が正
しいかどうかを判定するマクロや、テスト前後
の処理を自動化するための機能を備えています。
　EUnitは独立したアプリケーションとしても
使えますが、ここではビルドツールrebar[6]を
使って単体テストを行う例を示します。rebar

はErlangで書かれたビルドツールで、各種依
存関係を解決したり、テストツールの起動やリ
リースやアプリケーションの作成を支援する機
能を持っています。
　早速、前回（第5回）で作成したカウンタのプ
ログラムをテストしてみることにします。具体
的な rebarの設定の仕方を図8に示します。
rebarはテンプレートを生成する機能があるた
め、それに従ってapp.srcファイルを作り、ソー

 ▼図5　登録済みプロセスerltrek_galaxyの詳細

 ▼図6　プロセスerltrek_galaxyの内部状態の概要

 ▼図7　プロセスerltrek_galaxyの内部状態の詳細
　　 表示

128 - Software Design Sep. 2015 - 129

スの .erlファイルをsrc/の下に置けばコマンド
1つでコンパイルとテストを実行できます。また、
rebar.configに設定を書くことにより、EUnit

の設定もできるようになっています。
　テストをどのように書くかについては、リス

ト1を参照してください。このリストでは、テ
ストの前準備と後片付けは直接実行する関数と
して定義し、テスト自身はテストセットを生成
する関数を定義してそれをEUnitで実行する方
法を取っています。このテストセットを生成す
る方法を取ることで、複数のテストセット生成
関数を組み合わせたテストを行うことも可能に
なります。

　Erlang/OTPで は EUnitのほ か にCommon

Test[7]という単体テストだけでなく複数のノー
ド間にわたるテストも可能なしくみが用意され
ており、OTP自身のテストはCommon Testで
書かれています。

属性テストツールQuickCheck

　プログラムのテスト手法として、属性テスト
（property test）というのがあります。これは従
来のテストツールでは発見し得なかったバグを
見つけるのに役立ちます。EUnitなどのテスト
ツールはあらかじめプログラムで列挙されたテ

 ▼図8　rebarの簡易的設定

git clone https://github.com/rebar/rebar.git
 rebarをビルドする 
cd rebar
./bootstrap
 これでrebarという実行形式ファイルができるのでPATHの通っているディレク 
 トリに置いておく 

 ターゲットディレクトリ（sd_ep06_eunitとする）に移動してrebarの実行準 
 備をする 

cd sd_ep06_eunit
mkdir src ebin

 rebarでアプリケーション設定ファイルの雛形を作る 

rebar create-lib
 これでsd_ep06_eunit/src/mylib.app.srcというファイルができたのでこ  
 れをもとに次のとおりのsd_ep06_eunit/src/sd_ep06_eunit.app.src 
 というファイルを作る 

 sd_ep06_eunit/src/sd_ep06_eunit.app.src 
{application, sd_ep06_eunit,
[
{description, "An Erlang mylib library"},
{vsn, "1"},
{modules, [
 このリストにはコンパイルに必要なモジュール名を書いておく 
 msgcounter_gen_server,
 sd_ep06_eunit
]},
{registered, []},
{applications, [
 kernel,
 stdlib
]},
{env, []}
]}.

 sd_ep06_eunit/src/sd_ep06_eunit.app.src はここまで 

 sd_ep06_eunit/src/にはmsgcounter_gen_server.erlとsd_ep06_ 
 eunit.erlの2つのファイルがある。またsd_ep06_eunit/rebar.config 
 にrebarでEUnitのカバレッジを有効にする次の設定をしておく 

 sd_ep06_eunit/rebar.config 
{cover_enabled, true}.
 sd_ep06_eunit/rebar.config はここまで 

 この状態でディレクトリsd_ep06_eunitに戻り次のコマンドを実行するとコン 
 パイルの後にEUnitによるテストが実行される実行結果の例は次のとおり 

rebar compile eunit
==> sd_ep06_eunit (compile)
Compiled src/sd_ep06_eunit.erl
Compiled src/msgcounter_gen_server.erl
==> sd_ep06_eunit (eunit)
Compiled src/msgcounter_gen_server.erl
Compiled src/sd_ep06_eunit.erl
 All 10 tests passed.
 Cover analysis: /home/example/src/sd_ep06_ ｭ
eunit/.eunit/index.html

 この状態で.eunit/index.htmlをWebブラウザで開くとテストカバレッジの 
 状態がわかる。次にmsgcounter_gen_server.erlについての要旨を抜 
 粋。縦線の左側は実行された回数 

1..| gen_server:start_link(?MODULE, [], ｭ
[]).
4..| gen_server:call(Pid, inc).
2..| gen_server:call(Pid, dec).
1..| gen_server:call(Pid, zero).
3..| gen_server:call(Pid, val).
1..| gen_server:call(Pid, terminate).
1..| {ok, #state{counter = 0}}.
4..| {reply, Count + 1, #state{counter ｭ
= Count + 1}};
2..| {reply, Count - 1, #state{counter ｭ
= Count - 1}};
1..| {reply, ok, #state{counter = 0}};
3..| {reply, Count, S};
1..| {stop, normal, ok, S}.
1..| terminate(normal, _S) -> ok.
 カバレッジのない以下3行はブラウザでは赤字で表示される 
0..| handle_cast(_Msg, S) -> {noreply, S}.
0..| handle_info(_Info, S) -> {noreply, S}.
0..| code_change(_OldVsn, S, _Extra) -> ｭ
{ok, S}.

右段へ続く↗︎

左段下から続く↙︎

第6回 Erlang/OTPでのプロセス状態監視とテスト

130 - Software Design

で学ぶErlang
並行プログラミング

ストケースの実行結果を判定します。これに対
し、属性テストではテストケースそのものを与
えるのではなく、テストケースが満たすべき条
件を与え、その範囲内での各種テストを大量か
つランダムに実行してバグを見つけだそうとす
る点が違っています。その意味では、属性テス
トは処理を関数ごとに分けてその入出力を定義
するという関数型プログラミングによく適した
テスト手法と言えます。
　属性テストツールを使うには、まず各関数の
満たすべき属性を定義します。たとえば前述の

カウンタのプログラムであれば、inc/1という
関数の満たすべき属性は「実行後にカウンタの
値が1増えていること」と定義できます。これ
らの属性の定義を必要な関数ごとに列挙し、か
つそれぞれの関数の入力が取り得る値の範囲を
定義して属性テストツールに与えることが、属
性テストを書くという具体的作業になります。
　今回紹介する属性テストツールQuickCheck[8]

はもともとはHaskellのためのツールとして作
られましたが、現在は同名のツールが他の各種
言語向けに開発されています。今回は
QuickCheck CIを使います注4。これを使うため
には、GitあるいはMercurialの公開リポジト
リにソースを置き、必要なライセンスファイル
を置くことでライセンス条件に同意を示した上
で、テストの指示の設定をするファイルを書く
必要があります注5。
　今回はカウンタの試験のために4つの関数に
ついてテスト定義を書きました（リスト2）。図

9に実行結果を示します。ここでは1,000回テ
ストを実行して、すべて成功していることがわ
かります。また、どの関数をどのような頻度で
実行したかもパーセント表示され、各テストが
どのような関数の順序で実行されたという詳細
の抜粋も表示されます。
　属性テストはテスト定義が関数の動作仕様そ
のものとなるため、実は関数の動作を理解した
り記述していくうえでも有用な手法です。大変
難しいテスト手法の1つ注6ですが、一度覚える
と手放せなくなるのも事実です。

注4） Erlang で の QuickCheck 実 装 は Quviq 社 の Erlang
QuickCheck[9]（有償の非公開製品）そしてこれをOSSとし
て公開されているソフトウェアに対し無償で提供している
QuickCheck CI［10］、さらにQuickCheck互換の属性テス
トツールとしてOSSの形で実装したpropEr［11］やTriq［12］が
あります。

注5） 本稿ではQuickcheck CIの設定の詳細は割愛しますが、執
筆に使った公開レポジトリ（サポートページ欄参考）があり
ますので、設定の詳細はそちらを参照してください。

注6） 筆者はQuickCheckの商品版のトレーニングを2015年3
月末にQuviqとErlang Solutions両社のご厚意で米国サン
フランシスコにて受ける機会がありましたが、テストケー
スを生成するためのルールを書くという発想に慣れるのは
難しく、とても時間がかかりました。それでも3日間ホテ
ルに缶詰になって学習した成果はあったと筆者は感じてい
ます。

 ▼リスト1　sd_ep06_eunit.erl

 EUnitによるテストケースのモジュールです
-module(sd_ep06_eunit).
 -ifdef(マクロ) ... -endif. の間はマクロが定義されている場合のみコン
 パイルされる。EUnitではTESTというマクロを定義している
-ifdef(TEST).
 EUnitに必要な定義ファイルをインクルードする
-include_lib("eunit/include/eunit.hrl").
-endif.
 テストコード
-ifdef(TEST).
 最後が"_test_"で終わっている関数はテストを生成する役割をする
counter_test_() ->
 このsetupで始まるタプルで次の定義をする。*テスト全体はcounter_check/1
 で返されるテストセットで実行。テスト実行前にcounter_start_link/0を実行。
 テスト終了後はcounter_stop/1を実行
 {setup,
 fun counter_start_link/0,
 fun counter_stop/1,
 fun counter_check/1
 }.
 カウンタのgen_serverを起動してPidを返す
counter_start_link() ->
 {ok, Pid} = msgcounter_gen_server:start_link(),
 Pid.
 Pidで示されたカウンタを停止する
counter_stop(Pid) ->
 msgcounter_gen_server:stop(Pid).
 Pidで示したカウンタに対するテストセットを返す
counter_check(Pid) ->
 [
 初期値が0であるかどうかのテストを返す
 ?_assertEqual(0, msgcounter_gen_server:val(Pid)),
 1つ増やしたら1になるかどうかのテストを返す
 ?_assertEqual(1, msgcounter_gen_server:inc(Pid)),
 ?_assertEqual(2, msgcounter_gen_server:inc(Pid)),
 ゼロに戻す関数の戻り値がokであるかどうかのテストを返す
 ?_assertEqual(ok, msgcounter_gen_server:zero(Pid)),
 ?_assertEqual(0, msgcounter_gen_server:val(Pid)),
 ?_assertEqual(1, msgcounter_gen_server:inc(Pid)),
 ?_assertEqual(0, msgcounter_gen_server:dec(Pid)),
 ?_assertEqual(-1, msgcounter_gen_server:dec(Pid)),
 ?_assertEqual(0, msgcounter_gen_server:inc(Pid)),
 ?_assertEqual(0, msgcounter_gen_server:val(Pid))
 ここまでで10個のテストを定義したことになる
].
 ここまででテストケースのモジュールは終了
-endif.

130 - Software Design Sep. 2015 - 131

 ▼図9　QuickCheck CIの実行結果

第6回 Erlang/OTPでのプロセス状態監視とテスト

右段へ続く↗︎

 ▼リスト2　QuickCheck CIに対する定義ファイル

 msgcounter_gen_serverモジュールの属性テストの例（抜粋のため各種 
 定義は一部割愛）。QuickCheck CIの中で保持する内部状態を定義する。 
 ここではカウンタのみとする
-record(state, {count = 0}).
 テストの初期状態を定義する 
initial_state() -> #state{}.

zero_command(_) ->
 {call, msgcounter_gen_server, zero, [{var, ｭ
pid}]}.

 zero_next/3では関数実行後の内部状態を定義する。ここではcountの 
 値をゼロにするという内部状態を定義 

zero_next(S, _, _) -> S#state{count = 0}.

 zero_post/3では関数実行後に満たすべき条件を定義する。ここではカウ 
 ンタがゼロに等しいことと返り値がokに等しいことを定義している 

zero_post(S, _, Result) ->
 eq(S#state.count, 0),
 eq(Result, ok).

 関数inc/1へのテストの定義 
inc_command(_) ->
 {call, msgcounter_gen_server, inc, [{var, ｭ
pid}]}.
 ここではcountの値が前より1増えるという内部状態を定義している
inc_next(S, _, _) ->
 S#state{count = S#state.count + 1}.
 ここではcountの値が実行後にはそれ以前より1増えるという条件を定義し 
 ている
inc_post(S, _, Result) ->
 eq(Result, S#state.count + 1).
 関数dec/1へのテストの定義 
dec_command(_) ->
 {call, msgcounter_gen_server, dec, [{var, ｭ

pid}]}.
 ここではcountの値が前より1減るという内部状態を定義している 
dec_next(S, _, _) ->
 S#state{count = S#state.count - 1}.
 ここではcountの値が実行後にはそれ以前より1減るという条件を定義している 
dec_post(S, _, Result) ->
 eq(Result, S#state.count - 1).
 関数val/1へのテストの定義 
val_command(_) ->
 {call, msgcounter_gen_server, val, [{var, ｭ
pid}]}.
 この関数の実行によって内部状態は変えないという定義をしている 
val_next(S, _, _) -> S.
 この関数の実行によって内部状態は変わっていないという条件を定義している 
val_post(S, _, Result) ->
 eq(Result, S#state.count).

prop_msgcounter() ->
 numtests(1000, ?FORALL(Cmds, commands(?MODULE),
 begin
 カウンタのgen_serverを起動する
 {ok, Pid} = msgcounter_gen_server: ｭ
start_link(),
 あらかじめ定義したコマンドをランダムに複数実行する。テスト
 定義の中でpidとして値を参照できるようにする
 {H, S, Res} = run_commands(?MODULE, Cmds, ｭ
[{pid, Pid}]),
 コマンド群の実行後サーバを停止する
 msgcounter_gen_server:stop(Pid),
 結果がokでない場合は失敗したコマンドを集約して表示する
 pretty_commands(?MODULE, Cmds, {H, S, Res},
 aggregate(command_ ｭ
names(Cmds), Res == ok))
 end)).
 以上で属性テストの定義の主要部分は終了 

左段下から続く↙︎

 関数zero/1へのテストの定義。zero_command/1 では msgcounter_ 
 gen_server:zero/1を呼ぶ指示をする。{var,pid}と書いているのは後 
 述のrun_commands/3の中で与えられるPidの値をzero/1の第1引数とし 
 て与えよという意味

 実際の属性テストのコード。詳細は省くが、numtests/2の第1引数で1000 
 回テストを繰り返すことを指示し、このモジュールの中に書いてあるテスト定 
 義（コマンド）のすべてに対し次のbegin - end節の中の内容をテストとして 
 実行する

132 - Software Design

で学ぶErlang
並行プログラミング

まとめ

　今回はErlang/OTPでのプロセス状態監視と
テストのための各種ツールについて紹介しました。
　ここまでの連載では、Erlang/OTPの持つ並
行プログラミング支援の言語機能と各種ツール
についてその概要を説明してきました。
Erlang/OTPの世界はとても奥深く、すべてを
紹介するのは困難ですが、この連載が皆様の理
解の一助になれば幸いです。

ソースコードとサポートページ

　連載の記事で紹介したソースコードなど
GitHubのリポジトリに置いています（https://
github.com/jj1bdx/sd-erlang-public/）。
　また、今回はQuickCheck CIのためのリポジ

トリも用意しました（https://github.com/
jj1bdx/sd_ep06_eqc/）。どうぞご活用ください。
｢

参考文献
[1]	 http://erlang.org/pipermail/erlang-questions/	

2015-July/085082.html
[2]	 http://erlang.org/pipermail/erlang-questions/	

2015-July/085097.html
[3]	 https://github.com/jj1bdx/erltrek
[4]	 http://zotonic.com/
[5]	 EUnit User's Guide, http://erlang.org/doc/apps/

eunit/chapter.html
[6]	 https://github.com/rebar/rebar/
[7]	 Common Test User's Guide, http://erlang.org/

doc/apps/common_test/basics_chapter.html
[8]	 https://en.wikipedia.org/wiki/QuickCheck
[9]	 http://www.quviq.com/products/erlang-

quickcheck/
[10]	 http://quickcheck-ci.com/
[11]	 http://proper.softlab.ntua.gr/ ソースコードは

https://github.com/manopapad/proper
[12]	 http://krestenkrab.github.io/triq/

UNIX登場期から使われ続けているawkを習得すれば、ログ
データや各種テキストデータから必要な情報を引き出すことがで
きます。手軽なデータ解析、テキスト整形ツールとしての有用性
はクラウド時代の今でも変わりありません。
本書は最新のgawk 4系に対応し、「awkをはじめて使う人から、
プロのプログラマまで使っていただける」ことを目指した以下の目
的でまとめています。

・ awkと正規表現のリファレンスとしての活用
・ awkプログラミングをサポートするスクリプトライブラリ集
・ awkを使った問題解決の事例集

中島雅弘、富永浩之、
國信真吾、花川直己 著
B5変形判／416ページ
定価（本体2,980円＋税）
ISBN 978-4-7741-7369-6

・コマンドラインインターフェイスを利用する方
・ログをはじめとする各種テキストデータを手軽に分析したい方
・awkをはじめて使う方
・プロのプログラマ

https://github.com/jj1bdx/sd_ep06_eqc/
https://github.com/jj1bdx/sd-erlang-public/
https://github.com/jj1bdx/sd_ep06_eqc/
https://github.com/jj1bdx/sd-erlang-public/
http://erlang.org/pipermail/erlang-questions/2015-July/085082.html
https://github.com/jj1bdx/erltrek
http://erlang.org/pipermail/erlang-questions/2015-July/085097.html
http://zotonic.com/
http://erlang.org/doc/apps/eunit/chapter.html
https://github.com/rebar/rebar/
http://erlang.org/doc/apps/common_test/basics_chapter.html
https://en.wikipedia.org/wiki/QuickCheck
http://www.quviq.com/products/erlang-quickcheck/
http://quickcheck-ci.com/
http://proper.softlab.ntua.gr/
https://github.com/manopapad/proper
http://krestenkrab.github.io/triq/

133 - Software Design Sep. 2015 - 133

Emacsの
セーフガードシステム

　Emacsが歴史のあるソフトウェアであること
は今さら言うまでもありません。歴史があると
いうことは、それだけ多くの人に使われていて、
長年に渡るノウハウが蓄積されていることを意
味します。昔から多くの人が不満に思っている
点は、たいてい解決されています。
　今回はEmacsで使える多くのセーフガードシ
ステムを標準・外部パッケージ問わず紹介して
いきます。人間は操作ミスをする生き物ですの
で、Emacsではその被害をなくしたり最小限に
抑えたりするための方法が多くあります。昔か
ら「保存し忘れたからフリーズしたときにデータ
が飛んだ」といった悲鳴をよく聞きますが、
Emacsならばそんなことは太古の昔に解決され
ているのです。
　Emacsの状態を元に戻す機能も大切なセーフ
ガードです。けれども、せっかくセーフガード
システムが用意されていても知らなかったので
は意味がありません。今月は次のテーマを採り
上げます。

・間違った編集を元に戻す
・迷子になったカーソルを戻す
・ウィンドウ構成を戻す

・自動保存でデータ消失をなくす

編集を元に戻す

標準のundo

　通常、Emacsのバッファは作成時からの編集
履歴を記憶しています。間違った編集をしてバッ
ファの内容がめちゃくちゃになったとしても、
あわてずにC-/（undo）を押してください。直前
の編集状態に戻ります。もっと前に戻したい場
合は引き続きC-/を押します。もし戻し過ぎて
しまった場合は、C-fなど編集を行わないコマ
ンドを実行後、C-/を押します。

undoをカイゼンするredo+パッケージ

　標準のC-/は戻し過ぎてしまった場合の挙動
が使いやすくありません。というのは、過去方
向だけでなく未来方向に進むことがあるからで
す。redo+パッケージはundoを過去方向のみ遡

さかのぼ

れるように再定義し、未来方向に進むM-x redo

を定義します。これはMELPAに登録されてい
るのでM-x package-install redo+でインス
トールして次の設定を加えてください。

(require 'redo+)
(global-set-key (kbd "C-M-/") 'redo)

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

“手遅れ”を防ぐ　Emacsのセーフガードシステム
　今回は、Emacsにおいて“いかに安全な編集を実現するか”に焦点を絞ってEmacsのセーフガード（安全
装置）システムを紹介していきます。undo機能の強化、カーソル位置・ウィンドウ構成の引き戻しコマンド、
ファイルの自動バックアップを設定することで、致命的なミスを格段に減らせます。

Writer

第17回

http://rubikitch.com/

134 - Software Design

直観的に操作できます。C-p／C-nで履歴を時系
列順にたどり（上下）、C-b／C-fで分岐を選択
（左右）します。なお、M-x redoをキーに割り
当てている場合は、そのキーにM-x undo-tree-

redoが割り当てられます。インストール後、次
の設定を加えてください。

(setq undo-tree-mode-lighter "")
(global-undo-tree-mode 1)

カーソル位置を戻す

C-u C-SPCでマークを戻す

　Emacsにはさまざまなカーソル移動コマンド
がありますが、長距離を移動するコマンドを実
行した場合に、すぐに元の位置に復帰できるし
くみになっています。つまり、行きはよくても
帰りがわからない――カーソルが迷子になる―
―ことがないようなセーフガードが設けられて
います。本節の内容は以前の連載（2015年6月
号など）でも触れましたが、セーフガードの観点
から再び採り上げることにします。
　長距離移動とは、バッファ先頭・末尾への移
動（M-<、M->）やインクリメンタルサーチ（C-r、
C-s）や関数単位の移動（C-M-a、C-M-e）などが
該当します。
　これらのコマンドを実行するとき、あらかじ

　この設定を加えた場合、C-/を押し過ぎてし
まった場合にC-M-/で戻せるようになります。

編集履歴を永続化するundohistパッケージ

　編集履歴は通常、バッファ作成時に初期化さ
れます。つまり、バッファを削除したり、ファ
イルを開き直したり、Emacsを終了したときに
は失われてしまいます。
　MELPAのundohistパッケージはバッファを
削除する際に編集履歴をディスクに保存し、再
びファイルが開かれるときにそれを復元します。
インストール後、次の設定を加えてください。

(require 'undohist)
(undohist-initialize)
;;; 永続化を無視するファイル名の正規表現
(setq undohist-ignored-files
 '("/tmp/" "COMMIT_EDITMSG"))

編集履歴をツリー状に可視化する
undo-tree

　C-/で編集を戻して新しく編集しなおすと、編
集履歴は分岐することになります。つまり、戻っ
た時点から見て間違った古い履歴と、次の編集
で作られる新しい履歴ができます。新しい履歴
が作られたとき、通常のC-/では古い履歴にア
クセスできません。編集履歴のデータには古い
履歴も保持されているのに、もったいないです
よね。
　そこでMELPAの undo-treeパッケージを
使って編集履歴の木構造を
「見える化」します（図1）。も
ともとundoはC-x uとC-/

に割り当てられていますが、
undo-treeを導入すると両者
に別の役割が与えられます。
　C-/にはundo-tree版undo

で あ る M-x undo-tree-

undoが、C-x uには編集履歴
の木構造にアクセスするM-x

undo-tree-visualizeが割
り当てられます。木構造では

 ▼図1　C-x uで編集履歴にアクセス

るびきち流
Emacs超入門

134 - Software Design Sep. 2015 - 135

(require 'point-undo)
(global-set-key [f7] 'point-undo)
(global-set-key [M-f7] 'point-redo)

　お使いの環境によっては　　や M-f7が
Emacsで使えないこともあるので、そのときは
ほかのキーに割り当ててください。そのときは
　　とM-f7のように対になるキーバインドを
お勧めします。

編集履歴からカーソル位置をたどる
goto-chgパッケージ

　前節で示したように、Emacsは編集履歴を記
憶しています。編集履歴とは、変更された場所
とその内容の集まりです。
　MELPAにあるgoto-chgパッケージは、編集
履歴の中の変更された場所にアクセスすること
で、変更された位置を遡ります。これは、慣れ
るまで動作がイメージしづらいかもしれません
が、バッファに変更を加えた時点で自動的に編
集履歴に記録されることを理解すれば良いです。
　手動のC-SPCに対して、自動のgoto-chgです。
goto-chgは別な場所を編集してから元の場所を
編集するときに効果を発揮します。たとえば文
章を書いていて、ふと誤字脱字が目に付いて、
そこを修正したあと、ふたたび元の位置に戻っ
て文章の続きを書くといったケースです。
　次の設定では　　で編集履歴に記憶された場
所を過去方向にたどり、M-f8で未来方向にたど
ります。

(require 'goto-chg)
(global-set-key [f8] 'goto-last-change)
(global-set-key [M-f8] 'goto-last-change-
reverse)

ウィンドウ構成を戻す

以前のウィンドウ構成に戻す
標準機能winner

　Emacsを使っているとウィンドウ構成がめま

F7

F7

F8

め“暗黙のマーク”によって元のカーソル位置を
記憶します。そして、C-u C-SPCを押せば元の
位置に戻れます。たとえば、バッファ先頭を見
てからすぐ戻る場合、M-<のあとにC-u C-SPC

を押せばいいだけです。C-SPC M-<と明示的に
マークする必要はありません。
　暗黙のマークの存在を知っていれば、作業が
とても楽になります。たとえば、ソースコード
にrequire（必要なライブラリの宣言）を書き加え
る場合、requireまでインクリメンタルサーチで
移動し、書き加え、C-u C-SPCで戻れるのです。
　何かしらの理由でカーソル位置が思いもよら
ない場所に移動してしまった場合、暗黙のマー
クがしてあればC-u C-SPCを押せば元の位置に
戻れるのです。
　マークは複数個記憶しているので、C-u C-SPC
を繰り返せばどんどん過去のマークへ移動でき
ます。何度もC-uを付けるのが面倒であれば次
の設定を加えると良いでしょう。

(setq set-mark-command-repeat-pop t)

　これによりC-u C-SPC C-SPC……とC-SPC

を連打して遡れます。

カーソル位置を戻す
point-undoパッケージ

　C-u C-SPCはカーソル迷子の万能薬ではあり
ません。C-v／M-vなどの画面スクロールは暗黙
のマークを設定しません。また、外部パッケー
ジによるコマンドも必ずしも暗黙のマークを設
定するとは限りません。
　MELPAにある拙作point-undoパッケージは、
すべてのカーソル移動を記憶することで、暗黙
のマークに関係なくカーソル位置を戻します。
見た目上違和感のないように、カーソル位置だ
けでなくウィンドウの表示位置も復元します。
　次の設定では　　でカーソル位置を過去方向
に戻し、M-f7で戻し過ぎたカーソル位置を未来
方向へ進めます。

F7

第17回 “手遅れ”を防ぐ　Emacsのセーフガードシステム

136 - Software Design

　C-gと　　 　　 　　 の共通点は次のとおり
です。

・regionをキャンセルする
・ミニバッファから抜ける
・前置引数をキャンセルする

これらの用途では素直にC-gで間に合います。
　一方、　　 　　 　　 の独自機能は次のとお
りです。

・再帰編集から抜ける
・バッファを閉じる（閉じ方は設定可能）
・ウィンドウが分割されているときは分割を解
除する

　このうち「バッファを閉じる」アクションに
winner-undoを指定すれば、　　 　　 　　 で
ウィンドウ構成を戻せるようになります。バッ
ファを閉じる関数はbuffer-quit-functionに指定
します。デフォルトではnilになっていて、その
ときはウィンドウ分割を解除、または隠しバッ
ファ（バッファ名がスペースから始まる）を閉じ
るようになります。
　「再帰編集」とは、コマンド実行中にバッファ
を編集できるようにする機能です。代表的な再
帰編集は置換で起こります。M-％やC-M-％の途
中でC-rを押せば置換は中断されて再帰編集に
入り、　　 　　 　　 で抜けるまでEmacsの任
意の操作ができます。再帰編集を抜けると、実
行中のコマンドが再開されます。再帰編集は、
モードラインのモード名が[]で囲まれているか
どうかで判別できます。
　前項でbuffer-quit-functionをwinner-undoに
設定しているので、　　 　　 　　 は再帰編集
から抜けるか、ウィンドウ構成を戻すコマンド

ESC ESC ESC

ESC ESC ESC

ESC ESC ESC

ESC ESC ESC

ESC ESC ESC

ぐるしく変わります。ウィンドウ構成とは、画
面の分割状態とバッファの配置のことです。ウィ
ンドウを分割したり、大きさを変更したり、別
なバッファを表示させたときにウィンドウ構成
が変更されます。
　たとえば　　 f（関数の説明表示）などのヘル
プを表示した場合、ヘルプバッファの内容を読
んだあとにしたいことは、元のウィンドウ構成
に戻すことです。ヘルプバッファはGUIにたと
えればメッセージダイアログボックスがポップ
アップすることに相当します。ダイアログボッ
クスは元の画面に重なるように表示され、「閉じ
る」を押せば消滅します。
　M-x winner-undoは「閉じる」ボタンに相当
するコマンドで、直前のウィンドウ構成に戻し
ます。
　ほかの「戻す」系パッケージと同様に逆方向の
M-x winner-redoもあります。マイナーモー
ドwinner-modeが有効のときのみ動作するので、
リスト1の設定を記述する必要があります。
　Emacsにポップアップウィンドウという概念
を導入するpopwinパッケージが人気ですが、筆
者はwinnerのほうが応用範囲が広いと感じてい
ます。popwinでは、popwinで表示されたウィン
ドウのみを閉じますが、winnerはすべてのウィ
ンドウが対象です。popwinではC-gでポップ
アップウィンドウを閉じられますが、それを実
現するためにかなり複雑なしくみになっていま
す。ウィンドウを閉じることくらい、標準機能
でも間に合います。

特殊状態を“取り止め”るには
ESC（C-[）を3回叩け！

　あなたは、　　 　　 　　 に割り当てられた
コマンドをご存じですか？　Emacs的に意外な
キーに割り当てられたkeyboard-escape-quitと
いうコマンドはマルチな機能を発揮します。コ
マンド名からしてC-g（keyboard-quit）に似てい
ることは想像できますが、共通点と相異点があ
ります。

F1

ESC ESC ESC

 ▼リスト1　winner-modeの設定

(winner-mode 1)
(global-set-key (kbd "C-z") 'winner-undo)
(global-set-key (kbd "C-M-z") 'winner-redo)
;;; 後述のESC ESC ESCで使う場合
(setq buffer-quit-function 'winner-undo)

るびきち流
Emacs超入門

136 - Software Design Sep. 2015 - 137

として、persp-modeパッケージがあります。
　大昔からあるwindows.el（未パッケージ化）は
20年以上に渡っていまだにメンテナンスされて
います。ウィンドウ構成の情報や開いたバッファ
も永続化されます。
　ウィンドウ構成に名前を付けるだけならば
spacesパッケージやwindataパッケージがあり
ます。
　ぜひとも好みに応じてパッケージを選んでみ
てください。パッケージを自由に選べるのも
Emacsの魅力です。

自動保存で
データ消失を防ぐ

標準のauto-save-mode

　最後のテーマはデータ消失を防ぐ方法につい
てです。まさに「セーフガード」にぴったりな話
題です。
　Emacsでは標準でauto-save-modeという自動
保存機能が有効になっています。この自動保存
は編集中のファイルに直接保存されるのではな
く、別のファイルに保存されます。一般に自動
保存のファイル名は元のファイル名を#で囲ん
だものになります。たとえば、「foo.c」ならば
「#foo.c#」となります。diredを使っていると、も
しかしたらこのようなファイルを見掛けたこと
があるかもしれません。普通のファイルならば
カレントディレクトリに作られますが、Tramp

によるリモートファイル（sshや ftpやsudoなど）
は/tmpに置かれます。
　自動保存ファイルはC-x C-sなどで明示的に
保存されたときに消去されます。保存せずにバッ
ファを削除しようとしたり、Emacsを終了しよ
うとしたりといったときには、本当に削除・終
了するかわざわざ訊いてくるので、保存忘れに
よる最低限のセーフガードはできています。も
し保存せずにバッファを削除した場合、自動保
存ファイルが残っているので、そこからある程
度の内容を復元できます。そのため、保存忘れ

になります。単に前のバッファに戻りたいので
あれば、buffer-quit-functionにprevious-buffer

を設定してください。
　　　 　　 　　 の定義はとてもシンプルなも
ので、cond式一発で構成されています。condは
他言語でいう if～elseif～elseif～elseに相当す
る構文で、条件式を次々にチェックしていき、
最初に一致した条件式にマッチする挙動を行い
ます。elispが読める方はM-x find-function-

on-key ESC ESC ESCでコードを読んだほうが
より確実に理解できるでしょう。なお、標準添
付の lispソースコードがインストールされてい
ない環境ではエラーになるので、Emacsについ
て深く学びたい方はインストールしてください。
Debian系列ではemacs24-elパッケージが必要で
す。

ウィンドウ構成を記憶させる
いろいろな方法

　Emacsであらゆるタスクを同時進行させてい
る人ならば、ウィンドウ構成を戻すよりも、記
憶させたくなると思います。ウィンドウ構成を
記憶させる方法はいろいろあり、そのためのパッ
ケージもたくさん存在します。本稿はあくまで
もセーフガードを主題としているので軽く触れ
ておくにとどめます。
　標準の方法はレジスタにウィンドウ構成を記
憶させることです。C-x r wで記憶し、C-x r

jで復元します。
　ウィンドウ構成を記憶する無難なパッケージ
はelscreenです。GNU Screenを模倣して作ら
れていて、ウィンドウ構成をscreenに見立てて、
切り替えられるようになっています。
　helmにもelscreenに関するアクションが存在
します。elscreen-persistパッケージでEmacsを
終了しても screenの状態を復元できます。
elscreen-separate-buffer-listパ ッ ケ ー ジ で
screenごとに独立したバッファリストを持てる
ようになります。elscreen＋elscreen-persist＋
elscreen-separate-buffer-listと似たパッケージ

ESC ESC ESC

第17回 “手遅れ”を防ぐ　Emacsのセーフガードシステム

138 - Software Design

名のあとに~が付きます。デフォルトでは、バー
ジョン管理システム管理下のファイルや、一時
ファイルのディレクトリ（/tmpなど）は対象外と
なります。
　バックアップファイルは過保護で余計なファ
イルが混入されるせいで、しばしば嫌がられま
す。それならば、ファイルをバージョン管理シ
ステム管理下に置くのが一番です。きちんとコ
ミットされている限り、いつでもすべてのリビ
ジョンを取り出せるからです。バージョン管理
システムと比べれば、バックアップファイルは
原始的なしくみでしかありません。
　バックアップファイルを作成しないのであれ
ば、次の設定を加えればいいです。

(setq make-backup-files nil)

　しかし、その分セーフガードがゆるんでいる
ので自己責任でお願いします。

ファイルに直接自動保存！

　標準のauto-saveは別のファイルに保存します
が、より過激なアプローチとしてファイルに直
接自動保存をさせるMELPAパッケージもあり
ます。自動保存の間隔をコンマ数秒～数秒に設
定すれば、手動でC-x C-sする必要がなくなり
ます。つまり、“ファイルを保存する”という概
念を消し飛ばしてしまいます。手動で保存する
のが面倒と考えているならば導入の価値はあり

に対しては二重のセーフガードになっています。
　そして、何よりうれしいのがEmacsやOSが
フリーズしたときに、自動保存に助けられると
いうことです。自動保存ファイルが残っている
ファイルを開いたとき、

ファイル名 has auto save data; consider ｭ
M-x recover-this-file

と教えてくれます。内容が古い場合は M-x

recover-this-fileを実行してみましょう。
　また、一度に複数のファイルを復元したい場
合はM-x recover-sessionを実行します。自
動保存ファイル名を記録したファイルがdired

で列挙されるので、C-c C-cで復元できます。
　自動保存の間隔が頻繁であればあるほど、デー
タ消失を防げます。今では次のように事実上即
自動保存しても問題ない設定にしています。

;;; 4ストロークごとに自動保存（デフォルト300）
(setq auto-save-interval 4)
;;; 1秒のアイドルで自動保存（デフォルト30）
(setq auto-save-timeout 1)

バックアップファイル

　標準に備わっているもうひとつのデータ消失
対策セーフガードは、自動バックアップファイ
ルの作成です。バッファが作成され、最初に保
存したときにのみバックアップファイルが作成
されます。バックアップファイル名はファイル

 ▼リスト2　auto-save-bu�ers-enhancedの設定

(require 'auto-save-buffers-enhanced)
;;; 自動保存の対象外となるファイル名正規表現のリスト
(setq auto-save-buffers-enhanced-exclude-regexps
 '("Org Src"))
;;; *scratch*バッファも保存対象にする
(setq auto-save-buffers-enhanced-save-scratch-buffer-to-file-p t)
;;; *scratch*バッファ保存時のファイル名
(setq auto-save-buffers-enhanced-file-related-with-scratch-buffer
 (locate-user-emacs-file "scratch"))
;;; 自動保存時にWroteというメッセージを出さないようにする
(setq auto-save-buffers-enhanced-quiet-save-p t)
 ;;; 3秒後に自動保存
(setq auto-save-buffers-enhanced-interval 3.0)
 ;;; 有効にする！
(auto-save-buffers-enhanced t)

るびきち流
Emacs超入門

138 - Software Design Sep. 2015 - 139

プファイルとして書き出します。たとえば

「/tmp/test.txt」ならば「/backup/backup-each-save/

tmp/test.txt-150719_025939」のようなファイル名
になります。履歴を見たり復元したければC-x

d /backup/backup-each-save/tmp/test.

txt-*のようにdiredを開けば良いです。リス

ト3が設定例になります。
　前項の auto-save-buffers-enhancedと組み合
わせると度が過ぎるほど冗長になりますが、現
在のストレージ容量を考えれば、高々Emacsで
編集する程度のテキストファイルがいくつあっ
ても問題ありません。データ消失に対して、ま
さに鉄璧の守りになります！

　今回はセーフガード特集ということで、元に
戻すことやデータ保護について触れました。「備
えあれば憂いなし」というように、いざというと
きに役立つ知識をまとめました。
　筆者は「日刊Emacs」以外にもEmacs病院兼メ
ルマガのサービスを運営しています。Emacsに
関すること関しないこと、わかる範囲でなんで
も御答えします。「こんなパッケージ知らない？」
「挙動がおかしいからなんとかしてよ！」はもち
ろんのこと、自作elispプログラムの添削もしま
す。集中力を上げるなどのライフハック・マイ
ンド系も得意としています。ﾟ
　登録はこちら➡http://www.mag2.com/m/

0001373131.html

ます。「きりのいいところで保存するのではな
く、きりのいいところでバージョン管理システ
ムにコミットする」という考えを持っているな
ら、受け入れやすいです。
　ただ、先月号でお話したように「利便性には代
償が伴う」ことに注意してください。意図せずに
ファイルを変更してしまった場合、それに気づ
きにくくなるのです。バッファが変更されたな
らばモードラインに**という修正された印が表
示されますが、自動保存であれ、ファイルが保
存されたのならば常に無修正とみなされます。
undohistやバージョン管理システムと連携させ
れば良いでしょう。
　MELPAに登録されているauto-save-buffers-

enhancedパッケージが古くから使われています
（リスト2）。これは *scratch*バッファも自動保
存・復元します。初回起動時はscratchファイル
が存在しないのでエラーになりますが、*scratch*
バッファに何か書き込むか、̃ /.emacs.d/scratch

ファイルをあらかじめ作成しておけば問題あり
ません。
　シンプルで新しい実装としてreal-auto-save

パッケージも存在します。こちらのほうはマイ
ナーモードとして実装されているので、有効無
効を切り替えたり、特定のモードのみで有効に
したりできます。

保存時に自動スナップショット！

　標準のバックアップファイルは最初の保存時
に作られるものですが、MELPAにあるbackup-

each-saveパッケージはより積極的なアプローチ
です。標準とは異なり、保存時に別ディレクト
リに日付を含むファイル名で、毎回バックアッ

 ▼リスト3　backup-each-saveの設定

(require 'backup-each-save)
;;; バックアップ先
(setq backup-each-save-mirror-location "/backup/backup-each-save")
;;; 日付の形式を指定
(setq backup-each-save-time-format "％y％m％d_％H％M％S")
;;; 元のメジャーモードで開くように設定する
(add-to-list 'auto-mode-alist '("-[0-9]\\{6\\}_[0-9]\\{6\\}$" nil t))

おわりに

第17回 “手遅れ”を防ぐ　Emacsのセーフガードシステム

http://www.mag2.com/m/0001373131.html

140 - Software Design

　Sphinxで作成した静的HTMLをWebサーバ
にアップロードすれば、Webサイトとして使用
できます。本稿では、見た目を変えるHTML

テーマや知っていると便利なこと、これまでに
まだ扱っていない記法について取り扱います。

　本連載ではこれまで、HTMLドキュメントを
生成するためにmake htmlコマンドを実行して
きました。この結果、図1のような画面のHTML

が生成されていました。
　このHTMLの見た目を手軽に変更する機能が
「HTMLテーマ」です。

今回のテーマ

HTMLテーマを
変更する

　HTMLテーマを変更するには作成したプロ
ジェクトディレクトリのルートにあるconf.pyの
html_themeを変更します。
　sphinx-quickstartで生成されるconf.pyには、
alabasterというHTMLテーマがデフォルト値
として設定されています。別のHTMLテーマで
ある bizstyleに変更するには conf.pyの html_

themeをalabasterからbizstyleに変更します。

　HTMLテーマの設定を変更したらmake html
コマンドでHTMLを生成しなおします。

　HTMLテーマが alabasterからbizstyleに変
更され、生成されるHTMLファイルの見た目が
変わります（図2）。
　ほかにも、組み込みのテーマはsphinx_rtd_

theme、classic、sphinxdoc、nature、haikuなど、
十数種類あります。
　また、各HTMLテーマにはそれぞれオプショ
ンが用意されています。オプションを変更する
には conf.pyのhtml_theme_optionsの記述を変
更し、HTMLを生成しなおします。

 変更前
 html_theme = 'alabaster'
 変更後
 html_theme = 'bizstyle'

$ make clean
$ make html

 変更前
 #html_theme_options = {}

Sphinxで始める
 ドキュメント作成術

Webサイトを作ろう（前編）第6回

山田 剛 Yamada Go Twitter @usaturn

Sphinxで始める
 ドキュメント作成術

 ▼図1　HTMLテーマ「alabaster」の例

140 - Software Design Sep. 2015 - 141

　生成されたHTMLを確認すると左にあったサ
イドバーが右へ移り、ブルーからブラックを基
調とした色彩に変更されます（図3）。
　テーマごとに使えるhtml_theme_optionsは違
いますので、ほかの組み込みのテーマや、テー
マのオプションについての詳細は公式ドキュメ
ント注1を参照してください。

注1） http://docs.sphinx-users.jp/theming.html#builtin-
themes

 変更後
 html_theme_options = {
 'rightsidebar': 'true',
 'maincolor': 'black'
 } 　テーマを変更することにより見た目を大幅に

変えることができました。次は「ロゴ」と「favicon」
を追加してみましょう。ロゴで扱える画像デー
タの種類は jpeg、png、gifです。ロゴはサイド
バーの上部に配置され、横幅が200ピクセルを
超える画像はリサイズされます（図4）。favicon

は16×16か32×32（単位はいずれもピクセル）
のWindowsのアイコンファイル形式（.ico）の
データを用意します。そしてconf.pyのhtml_logo、
html_faviconが記載された行を書き換えます。

ロゴとfaviconの追加

Webサイトを作ろう（前編） 第6回

 ▼図2　HTMLテーマ「bizstyle」の例

HTMLの確認について
　ブラウザは端末のローカルに保存しているHTML
ファイルを読み込めますが、セキュリティ上の制
限で一部のファイルが読めない場合があります。
このような問題を避けるため、HTMLファイルを
確認する際はローカルに簡易なhttpサーバを起動
することをお勧めします。
　すでにApacheやNginxが起動してあればそれ
らを使っても良いのですが、Sphinxを動かしてい
るPythonを使い、すばやくhttpサーバを起動す
ることができます。

　Sphinxで生成したHTMLファイルの出力先（標準
ではプロジェクトのルートの_build/html）で次の
コマンドを実行してください。

　ブラウザでhttp://localhost:8000にアクセスす
るとドキュメントが確認できます。

 Python2系の場合
 $ python -m SimpleHTTPServer 8000
 Python3系の場合
 $ python -m http.server 8000

COLUMN

 ▼図3　「bizstyle」のオプションを変更した例

http://docs.sphinx-users.jp/theming.html#builtin-themes

142 - Software Design

　ロゴ、faviconを保存しているファイルパス
（conf.pyから見た相対パス）を指定します。conf.

pyを書き換えたらmake htmlを実行し、HTML

を生成しなおします。

　Webサイトにファイルを設置し、そのファイ
ルをユーザにダウンロードしてほしいというシー
ンでは、downloadロールが利用できます。down

loadロールは、プロジェクト内に設置したファ
イルへのダウンロード用リンクを作成します。

 変更前
 #html_logo = None
 #html_favicon = None
 変更後
 html_logo = 'logo.png'
 html_favicon = 'favicon.ico'

ファイルをダウンロード
させるリンク

　example.zipのダウンロードリンクを作成する
場合は、任意の場所にファイルを設置し、down

loadロールでexample.zipの相対パス、あるいは
プロジェクトのトップディレクトリをルートと
した絶対パスで指定します。
　リンクを張りたいドキュメント（reSTファイ
ル）にリスト1のように記述します。ドキュメン
トを更新したらmake htmlを実行し、HTMLを
生成しなおします。

　「Webサイト」とは直接関係しませんが、リン
クの一種である脚注について説明します。
　reSTで脚注を作成するには、次のようにしま
す。脚注を付けたい位置に「[キーワード]_」を
記述します。指定するキーワードは、プロジェ

クト内で重複しないように指定します。
生成されるHTMLには「[キーワード]」
と表示され、脚注へのリンクが作成さ
れます。
　キーワードに対する脚注（説明文）は
「.. [キーワード]説明文」と記述しま
す。具体的にはリスト2のように記述
します。HTMLを生成すると図5のよ
うになります。
　また「[#foo]_」「[#hoge]_」と記述
することにより自動採番することも可
能です（リスト3、図6）。

サイトを公開する

　Sphinxで作成されるHTMLドキュ
メントは静的HTMLですので、これら
をWebサーバにアップロードすればコ
ンテンツとして利用できます。

脚注

Sphinxで始める
 ドキュメント作成術

 ▼図5　脚注の例（HTML）

Windowsのコマンドラインシェルには標準シェル [脚注1]_ 以外 ｭ
にオープンソースのbashやnyagos [脚注2]_ なども利用できる。

.. [脚注1] cmd、powershellがある

.. [脚注2] https://github.com/zetamatta/nyagos

 ▼リスト2　脚注の記述例

 ▼リスト1　downloadロールの記述例

:download:`ダウンロードできます <example.zip>`

 ▼図4　ロゴとfaviconを追加した例

favicon ロゴ

142 - Software Design Sep. 2015 - 143

make html実行後のディレクト
リ構成

　プロジェクトをsphinx-quickstartで作成
し、make htmlを実行した場合のディレクトリ
構成は、図7のとおりです。

_build/htmlディレクトリ配下の
ファイル

　図7のディレクトリの内、Webサイトの公開
に必要なファイルは、_build/htmlの配下に生成
されています。_build/html配下について簡単に
説明をします。この中には、Webサイトとして
利用するうえでは、不必要なファイルもありま
すが、セキュリティの観点では問題ないので、
そのまま公開しても良いでしょう。

・.buildinfo
設定情報などのハッシュ値を記録しておく
ファイル。存在しないとmake時にすべての
ファイルを生成しなおす。Webサーバにアッ
プロードする際は不要なため削除してもかま
わない

・genindex.html
索引をまとめたHTML

・index.html
index.rstから生成されたHTML

・objects.inv
オブジェクトのマッピング情報を保存したファ
イル

・search.html
検索結果ページを表示するためのHTML

・searchindex.js
検索するためのJavaScript

_sourcesディレクトリ配下の
ファイル

　生成したHTMLのサイドバーにある「ソース
コードを表示」で閲覧できるreSTのソースファ
イルを格納しています。
　コンテンツとして公開したくない場合は、conf.
pyのhtml_show_sourcelinkを次のように変更し
たうえで削除してください。

　ただし、_sourcesディレクトリを削除した場

html_show_sourcelink = False

Webサイトを作ろう（前編） 第6回

昔から有名なテキストエディタにはVim [#vim]_ や [#emacs]_ Emacsなどが存在する。

.. [#vim] http://www.vim.org/

.. [#emacs] https://www.gnu.org/software/emacs/

 ▼リスト3　脚注（自動採番）の記述例

 ▼図6　脚注（自動採番）の適用例（HTML）

プロジェクトのルート

 conf.py
 index.rst
 make.bat
 Makefile

 _build
 doctrees
 environment.pickle
 index.doctree

 html
 .buildinfo
 genindex.html
 index.html
 objects.inv
 search.html
 searchindex.js

 _sources
 index.txt

 _static
 ajax-loader.gif
 alabaster.css
 basic.css
 （省略）
 websupport.js

 _static
 _templates

 ▼図7　 sphinx-quickstart、make html後の
ディレクトリ構成

144 - Software Design

合、検索結果画面にヒットした位置のコンテン
ツが表示されません。また、make htmlをする
たびに_sourcesディレクトリは生成されます。

_staticディレクトリ配下の
ファイル

　おもにHTMLテーマで使用されるcssファイ
ルや jsファイルが格納されています。基本的に
必要なため、すべてアップロードしてください。

サイトにHTMLドキュメントを
設置する

　Apache HTTP Server（以下、Apache）にHT

MLドキュメントを設置する場合の手順を簡単
に説明します。
　サーバにApacheをインストールし、設定ファ
イル（httpd.conf、apache2.confなど）のDocument

Rootを書き換えます。

　Sphinxのプロジェクトをmake htmlしたあ
と、_build/html以下のファイルを/var/wwwへ

 Apacheのconfig設定
 書式
 DocumentRoot [HTMLドキュメントを設置する ｭ
任意のパス]
 記述例
 DocumentRoot /var/www

コピーします。Apacheを起動し、サーバにWeb

ブラウザでアクセスすればSphinxで作成したコ
ンテンツを閲覧できます。

Webサイトにrobots.txtや
.htaccessを設置する

　Sphinxでビルドした_build/htmlディレクト
リの中身をすべてアップロードしてWebサイト
の更新をしたい場合、robots.txtや .htaccessな
どのドキュメントに直接関係ないファイルをあ
らかじめプロジェクトに含めておくことができ
ます。
　生成したHTMLに特定のファイルを含めるに
は、まずプロジェクト内の任意の場所に含めた
いファイルを設置します。そして、conf.pyの
html_extra_pathにそれらのファイルのファイル
パス（conf.pyから見た相対パス）を指定します。
　例としてリスト4ではプロジェクトのルート
にextrafilesというディレクトリを作成し、そこ
にrobots.txt、.htaccessを保存しています。
　conf.pyを書き換えたらmake htmlを実行し、
HTMLを生成しなおします。リスト4の場合は
extrafilesに保存したファイルが_build/html配
下にコピーされます。

Sphinxで始める
 ドキュメント作成術

 変更前
 #html_extra_path = []
 変更後
 html_extra_path = ['extrafiles/robots.txt', 'extrafiles/.htaccess']

 ▼リスト4　html_extra_pathの記述例

Webサイトのバックアップについて
　Sphinxドキュメントはプロジェクトさえ残って
いれば、HTMLファイルがなくなってもmake html
を実行することで何度でも同じHTMLファイルを
生成できます。
　しかしながら、Sphinxの実行環境が変わってし
まう場合、たとえば、使い方がよくわからない拡
張を環境に追加したり、アップデートに失敗した
りして意図しないHTMLが生成され元のHTMLが

生成できなくなることがあります。
　このような問題を避けるために、安易な生成済
みHTMLの削除、環境の変更をしないようにしま
しょう。
　また、Sphinxの実行環境はいつでも作りなおせ
るように自動化する、あるいは手順を残し、すで
に公開しているサイトについてはバックアップを
取ることをお勧めします。

COLUMN

144 - Software Design Sep. 2015 - 145

◆　◆　◆
　今回はSphinxドキュメントをWebサイトと
して公開するために必要な基本的な情報と、こ
れまでに触れていなかった記法について取り上

げました。次回は応用編としてSphinxドキュメ
ントをホスティングするためのいくつかの手段
と、Sphinxと相性の良いバージョン管理につい
て紹介します。｢

Webサイトを作ろう（前編） 第6回

PyCon Singapore 2015	 Author 清水川 貴之

　本連載執筆陣の1人、清水川です。
　2015年6月17日～19日にかけて、シンガポール
でPyCon Singapore 2015注A（以下、PyCon SG）が行
われました。PyCon SGは毎年シンガポールで行わ
れるPythonカンファレンスで、今年で6年目です。
シンガポールは、APAC（アジア太平洋）地域の
Pythonカンファレンス「PyCon APAC」を初めて開
催した国です。PyCon APACは2010年から2012年
までの3年間はシンガポールで開催され、2013年
には日本で、昨年と今年は台湾で開催されました。
　筆者は、前回のコラムでお知らせしたPyCon
APAC 2015注Bと同様に、Sphinxの多言語化機能を
紹介する発表を行ってきました。今回は、PyCon
SG 2015の様子と、Sphinxに対するカンファレン
ス参加者の様子を紹介したいと思います。

■シンガポールでのSphinxへの反応
　筆者は、PyCon SGにて「Easy contributable
internationalization process with Sphinx（Sphinx
による貢献しやすい翻訳プロセス）」注Cの発表を行
いました。この発表では、Sphinxのドキュメント
翻訳サポート機能について紹介しました。
　翻訳について、現地の人が実際に使っている言
語をまじえて紹介しようと、事前にシンガポール
の言語について調べたところ、公用語が「英語」だ
ということがわかりました。シンガポールでは、
学校を卒業するには英語の習得が必須なんだそう
です。こういった事情もあり、筆者の「翻訳プロセ
ス」についての発表は、参加者が13人でした。そ
れでも、参加者にはSphinxの国際化機能について、
その価値を提供できたのではないかと思います。
　発表の初めに、どのくらいの人がOSSを使った
ことがあるか聞いて手を挙げてもらったところ、10
人ほどの人が手を挙げてくれました（写真A）。しか

し、何かOSSへ貢献したことがあるかと聞くと手
を挙げてくれたのは2人でした。そこで、「OSSを
使うこと自体が最初の貢献だし、そのOSSをほか
の人に伝えることも貢献ですよ」ということを伝え
ました。
　シンガポールは英語の国で、技術者も英語に慣
れていますが、日本では英語に慣れ親しんでいる
技術者はそれほど多くありません。そのため、翻
訳ドキュメントはそのソフトウェアを広めるのに
も、使い始めるのにもとても有用、ということを
発表の中で伝えました。
　発表のあとに、2人の方からSphinxの機能につ
いて質問を受けました。マレーシアから参加され
たLucasさんは、「マレーシアには英語に不慣れな
人が多いので、翻訳しないと読めない人が多い」と
いう話をしてくれました。「教育に使うドキュメン
トの翻訳に今日聞いた話を役立てたい、さっそく
使ってみたいのでスライドを共有してほしい」と、
とても熱心な様子でした。こういう方に出会える
のはとてもうれしいですね。
　今回のPyCon SGでは、多くの人にはSphinxを
紹介できませんでしたが、ドキュメント翻訳をサ
ポートするしくみを必要としている方に、Sphinx
の手法を伝えられたと思います。
　PyCon SG 2015の参加レポートをgihyo.jpに掲
載しています注D。そちらもご参照ください。

COLUMN

注A） PyCon Singapore 2015　https://pycon.sg/

注B） PyCon APAC 2015　
https://tw.pycon.org/2015apac/en/

注C） http://www.slideshare.net/shimizukawa/sphinx-
autodoc -automated-ap i -documenta t ion-
pyconapac2015

注D） PyCon SG 2015参加レポートとSphinxに関する発表
http://gihyo.jp/news/report/01/overseas-pycon-
presentation-training-2015/0002

 ▼写真A　発表の始めにいくつか質問しました

https://pycon.sg/
https://tw.pycon.org/2015apac/en/
http://www.slideshare.net/shimizukawa/sphinx-autodoc-automated-api-documentation-pyconapac2015
http://gihyo.jp/news/report/01/overseas-pycon-presentation-training-2015/0002

146 - Software Design

わせて最適なツールを利用してください。また
Webhookを利用することで、単なる通知を越
えたしくみを作ることもできますが、こちらに
ついてはまた別の機会に紹介します。

Slackチャンネルを設定する

　Slackチャンネルの設定をするには、まずは
Mackerelトップページのサイドバー内「Monitors」
をクリックし監視ルール一覧に遷移します。次
に、右上の「チャンネル設定」からチャンネル一
覧に遷移します。そして右上の「通知グループ
／通知チャンネルを追加」から「Slack」を選択し
ます。
　図1のようなダイアログが表示されますので、
「通知チャンネル名」「URL」の2つを指定します。
Slackチャンネルへの通知には、Slack APIの
1つである Incoming Webhooksを利用していま
す。図1でのURLの欄には、SlackのConfigure

Integrationsの設定から Incoming WebHooksの
Webhook URLを調べ、入力してください。
　また、MackerelからSlackへのアラート通知
を送る際に、監視のステータスに応じてメンショ
ンを送ることも可能です。メンションは「なし」
「@everyone」「@channel」「@group」から選択で
きます。重要なアラートが発生した際にメンショ
ンを送ると、スマートフォンでもSlackアプリ
を利用することですぐに通知を受信することが
できます。それぞれの効果についてはSlackの

Mackerelではじめる
サーバ管理

　サーバの状態を、思い思いのツールで知ることができると便利ですよね？　今回
はMackerelのアラートを外部サービスに通知する機能について、チャットツール
「Slack」、インシデント管理ツール「PagerDuty」を例に解説します。開発チームごと
にアラートを振り分ける「通知グループ」の設定についても紹介します。

Writer 田中 慎司 （たなか しんじ） ㈱はてな
Twitter @stanaka

　Mackerel注1では、発生したアラートをさまざま
な手段（チャンネル）で通知することができます。
またそれらの通知手段をアラート内容に合わせて
使い分けることもできます。連載第7回目の今回は、
アラート通知の詳細な設定方法について紹介しま
す。アラートを発生させるための監視ルールの設
定方法は、連載第3回（本誌2015年5月号）を参
照してください。

通知チャンネル

　アラートを適切な手段で受け取るために、ま
ずはチャンネルの設定をしましょう。

各種チャンネル

　チャンネルにはメールや、Slackなどのチャッ
トサービスを指定することができます。執筆時
点（2015年7月）では、チャンネルとしてメール、
Webhook、Slack、HipChat、PagerDuty、
im.kayac.com、Chatwork、Typetal、OpsGenie

に対応しています。
　ここでは、SlackとPagerDutyについて設定
方法を紹介しますが、ほかのチャンネルについ
ても似た手順で設定できますので、チームに合

柔軟なアラート通知

第7回 Mackerelでアラート通知を
最適化しよう

注1） URL https://mackerel.io

https://mackerel.io

146 - Software Design Sep. 2015 - 147

 ▼図1　Slackの設定ダイアログ ▼図2　 チャットに、メトリックのグラフを画像として流す

ヘルプ注2を参照してください。
　Slack以外のHipChat、Chatwork、Typetalk

のチャットツール連携も同様の手順で設定でき
ます（詳細は個別のヘルプを参照してください）。

グラフを画像として通知

　チャットツールにアラートを流す際、対象メ
トリックを含むグラフを画像として合わせて通
知することができます（図2）。
　チャット上にアラートを通知する際にグラフ
画像を合わせて投稿することにより、通知され
たアラートがどの程度の緊急性をもっているか、
数値が徐々に上って閾

しきい ち

値を越えたのか、急激に
上昇して閾値を越えたのか、直感的に判断する
ことができます。それにより毎回Mackerelの
画面を開く必要がなくなり、緊急性の低いアラー
トに作業を妨害されることがなくなります。
　またチャット上のメンバが同じ画像を見ている
前提で対応方針を相談できますので、「見ている
グラフが実は別だった」といったミスを減らせます。
またスマートフォン上のチャットアプリでも同様
にグラフ画像を見ることができますので、出先で
ノートPCを広げる必要があるかかどうか、事前
に判断することができるようになります。

　PagerDuty注3は、Mackerelのような監視ツー
ルからのアラートを集約し、PagerDuty上に登録

PagerDutyチャンネルを設定する

した任意の通知ルールに従ってさまざまな通知を
送ることができるインシデント管理サービスです。
　たとえば、通知先を時間で変更するようなス
ケジューリング機能や、一定時間で反応がなけ
れば次の通知先に通知するようなエスカレーショ
ン機能を持っています。通知の例として、音声、
SMS、email、プッシュ型のアラート通知を送
ることができます。
　PagerDutyとの連携を行うことで、Mackerel

で設定した監視ルールに従い発生したアラート
通知をインシデント通知としてPagerDutyに
送ることができます。アラートが発生したとき、
アラートが解決されたときなどにPagerDuty

に通知を送ります（図3）。
　連携には、PagerDutyの Integration APIを
利用しています。設定方法の詳細はヘルプペー
ジ注4を参照してください。
　またPagerDuty連携では、アラート状態に

注2） URL https://slack.zendesk.com/hc/en-us/articles/202009646-Making-announcements
注3） URL http://www.pagerduty.com　　　 注4） URL http://help-ja.mackerel.io/entry/howto/alerts/pagerduty

 ▼図3　 PageDutyへの通知

第 7 回
Mackerelでアラート通知を最適化しよう

https://slack.zendesk.com/hc/en-us/articles/202009646-Making-announcements
http://www.pagerduty.com
http://help-ja.mackerel.io/entry/howto/alerts/pagerduty

148 - Software Design

 Mackerelではじめるサーバ管理

応じてPagerDutyへ通知するかどうか選択す
ることができます。通知対象のアラート状態は
連携設定フォームで「Warning & Critical」また
は「Critical only」のどちらかを選べます。それ
ぞれ次のような挙動をします。

Warning & Critical
・Warning、Criticalいずれかのアラートが発生し
た際に、PagerDutyにインシデント通知を送る

・ステータスが正常に戻ったときに、PagerDuty
のインシデントは自動的に解決される

・WarningとCritical間の状態遷移が生じた際に
もPagerDutyに通知を送るが、一度発生した
インシデントに対する経過通知を送るのみ

Critical only
・Warning時のアラートでは通知は送らず、
Criticalのアラート時のみにPagerDutyにイ
ンシデント通知を送る

・Warning状態への遷移時にはPagerDutyに
対しては何も行わない

　いずれにしてもステータスが正常に戻ったと
きに、PagerDutyのインシデントは自動的に解
決されます。
　PagerDutyの類似サービスとしてOpsGenie注5

にも対応していますので、チームによって適し
たほうを使ってください。

通知グループ

　Mackerel上で扱うホスト数が増え、監視ルー
ルが増えてくると、“すべてのアラートがすべ
てのチャンネルに通知される”状態では不都合
がでてきます。典型的には、通知先のチャット
のメンバによって関係のあるアラートと関係の
ないアラートがある、ということがあります。
　これに対処するために、アラートが通知され
るチャンネルをきめ細かく制御することができ
る通知グループというしくみがあります。通知

グループを利用することで、特定のサービスや
監視ルールで発生したアラートを異なるチャン
ネルに振り分けることができます。

　通知グループを作るには、通常のチャンネル
と同様にトップページサイドバーの「Monitors」
をクリックし監視ルール一覧に遷移します。次
に、右上の「チャンネル設定」からチャンネル一
覧に遷移します。そして右上の「通知グループ
／通知チャンネルを追加」から「通知グループ」
を新規設定します（図4）。通知グループ名とそ
のグループに入れるチャンネルと通知グループ
を選択します。次に、通知したいアラートの発
生元のサービス、監視ルールを指定します。最
後に通知チャンネルを選択します。
　発生元のサービス、監視ルールはそれぞれ複
数設定することができます。監視ルールの設定
には「他の通知グループを無視」というオプショ
ンを指定することができます。
　また複数の通知グループを設定することがで
きます。「Default」の通知グループは、デフォ
ルトではすべてのアラートが通知されますが、
「他の通知グループを無視」と指定されているア
ラートを除きます。

通知グループの作り方

注5） URL https://www.opsgenie.com

 ▼図4　通知グループの設定

https://www.opsgenie.com

148 - Software Design Sep. 2015 - 149

　通知グループの通知先決定のアルゴリズムは
すこし複雑ですので具体例を紹介します。サー
ビスは2つ、ホストが3つあり、それぞれ次の
ように所属しているとします。

サービスA：ホストA、ホストB
サービスB：ホストA、ホストC

　監視ルールは次の3つ。

監視ルール1：全サービスのCPU使用率
監視ルール2：サービスAのサービスメトリック
監視ルール3：サービスBのサービスメトリック

　通知グループはデフォルトを含め、次の4つ。

通知グループ1：サービスA
通知グループ2：サービスB
通知グループ3：�監視ルール3「他の通知グルー

プを無視」が有効
通知グループDefault

　このようなときに、ホストAのCPU使用率
が高くなったとします。すると監視ルール1に
より、アラートが発生します。アラートの発生
元のホストAはサービスAとサービスBの両方
に所属していますので、通知グループ1と通知
グループ2の両方に通知されます。また、デフォ
ルトの通知グループDefaultにも通知されます。
　もしCPU使用率が高くなったのがホストB

の場合は、通知グループ1とデフォルトの通知
グループDefaultの2つに通知されます。
　またサービスAのサービスメトリックで監視
ルール2によりアラートが発生した場合は、通
知グループ1と通知グループDefaultの2つに通
知されます。一方、サービスBのサービスメト
リックで監視ルール3によりアラートが発生し
た場合は、通知グループ3のみに通知されます。
　通知グループ3では「他の通知グループを無視」
が有効になっていますので、通知グループ2お
よび通知グループDefaultには通知されません。

　通知グループは少し複雑になっていますが、
柔軟な設定をすることができます。

お勧めの通知設定

　Mackerelを活用するうえで、必要十分な通
知を行うことはとても大事です。緊急対応の必
要がないアラートをあまり関係のない人も含ま
れるチャンネルに大量に送ってしまったり、逆
に緊急性の高いアラートを一部の人にしか届か
ないチャンネルに送ってしまったりすると、ア
ラートが無視されやすくなったり、気づかれな
かったりしてしまいます。
　筆者が所属するはてなでは、次のような原則
を用いてアラートを通知するようにしています。

・すべてのアラートを受け取るチャンネルとし
てSlackの専用チャンネルを作る

　インフラ全体を見るチームのメンバのみがこ
こを見ています。

・サービスごとのチャンネルに外形監視など、
そのサービスの重要な監視のみを通知する

　各チャンネルにはディレクターなどエンジニ
ア以外のメンバも参加していますので、緊急
性の低いアラートは送らないようにしています。
通知の際にメンションを入れるかどうかは、
各チームに任せるようにしています。

　このようにアラートの重要性に応じて、受け
取るメンバを切り分けるようにしています。

おわりに

　今回は通知チャンネルと通知グループについ
て解説しました。Mackerelのようなサーバ監
視を利用する際は、通知まわりをうまく設計す
ることが重要となります。監視通知を日々受け
とっていると感覚が麻痺してしまって、なかな
か見直す機会がないかもしれませんが、たまに
は通知が最適化されているかどうか棚卸しして
みてはいかがでしょうか。ﾟ

通知グループの例

第 7 回
Mackerelでアラート通知を最適化しよう

150 - Software Design

ランサムウェアとは、PCの中のデータを暗号化し、「それを戻したければ金銭を払え」と要求する「身代
金目的」のマルウェアです。ランサムウェア自体は古くからあり、そんなに珍しいものではありません。
しかし、近年は暗号技術、匿名通信路、デジタル通貨などの発展により高度化してきています。

ランサムウェア

　ランサムウェア（Ransomware）のランサム（Ran

som）とは「身代金」という意味です。辞書をひくと
名詞では「身代金」のほかに「身請け」、動詞では「（身
代金を払って）～を受け戻す」「（人質を）身代金を受
け取って解放する」という説明があります。Ransom

にしっくりくる言葉が見つからないので、本稿でも
身代金を要求するためのマルウェアとして「ランサ
ムウェア」という言葉を使います。
　ランサムウェアの基本的なモデルは次のようなも
のです。

①まず相手のコンピュータにマルウェアを感染させる

②コンピュータの中のファイルを暗号化する

③復号するための鍵は攻撃者が持っている

④暗号化したファイルを戻すために金銭的な要求を

する

　ある意味、極めてシンプルなランサムのモデルです。

1989年のランサムウェア

　最初のランサムウェアは1989年のPC Cyborg

Trojan（以下、PC Cyborg ）だと言われています。
PC CyborgはDOSで稼働するトロイの木馬です。

AUTOEXEC.BATを書き換え、PCの立ち上げ回数
を見ています。そして、一定の回数を越えると「PC

Cyborg Corporationにリニューアル・ライセンスを
払え」というメッセージを表示させて、Cドライブの
ファイルやディレクトリの名前をすべて暗号化して
しまうものでした。要求する金額は189ドルで、指
定された送り先は中南米パナマの私書箱でした。
　PC Cyborgの作者はDr. Joseph Popp氏であるこ
とが英国のアンチウイルスベンダによって突き止め
られ、スコットランドヤード（ロンドン警視庁）に
よって逮捕されました。四半世紀前の事件で記憶が
薄れたとはいえ、サイバー犯罪史においてはエポッ
ク・メイキングな事件でした。

2015年のランサムウェア

　マルウェア対策の大手ベンダであるMcAfee社の
2015年第1四半期に発行した脅威レポート“McAfee

Labs Threats Report May 2015”注1は次のような文
章で始まっています。

McAfee Labs saw almost twice the number of

ransomware samples in Q1 than in any other

quarter.

　図1のグラフは同報告書からの引用ですが、2015

年第1四半期に発見されたランサムウェアの数は、

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第二四回】

すずきひろのぶ
suzuki.hironobu@gmail.com

注1）	 http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf

日本に忍び寄るランサムウェアの影

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf

Sep. 2015 - 151

【第二四回】 日本に忍び寄るランサムウェアの影

その前の2014年通年の数よりも多く、これまで四
半期単位で最大だった2013年第2四半期の2倍に
なっているという驚異的な数字になっています。
　現状においてランサムウェアは最大の脅威の1つ
ととらえるべきものです。ランサムウェア被害の
85％はアメリカとヨーロッパで、アジア地域全体
では7％です。日本では感染率が低いためか関心が
薄いと言わざるを得ません。
　IPAの発表によれば、2015年段階で日本において
はランサムウェアの被害の報告は月に1桁とのこ

と注2ですので、蔓
まんえん

延している欧米の状況とは大き
く異なります。
　日本は空白地帯とも言えるわけですが、ターゲッ
トが日本に振り向けられたならば、欧米がすでにそ
うであるように、一気に蔓延する可能性は極めて高
いことを認識しておかなければならないでしょう。

今どきのランサムウェア
の技術

　基本的には何らかの方法でシステムに入り込むマ
ルウェアによって引き起こされるので、感染のルー

トは以前に紹介したZeusといったいろいろな種類
のマルウェアと変わりはありません。ですので、
メールでマルウェアを送ったり、あるいはメールや
メッセンジャーで送られたURLをクリックさせブ
ラウザやブラウザのプラグインの脆弱性をついてシ
ステムに入り込んだりとさまざまです。このよう
に、いつでもランサムウェアが入ってくる可能性は
あります。
　現在の形態のランサムウェアに変化していった背
景には3つの技術が関わっています。

●●暗号技術の向上と普及
●●ボットテクノロジの向上
●●匿名化が進んだ支払い方法の普及

暗号技術の向上と普及

　「ランサム（身代金）」というぐらいですから、お金
を払えば元に戻せることが条件です。もし、お金を
払っても戻らないようだと誰もお金を払わなくなり
ますから、そもそも前提条件が成り立ちません。

注2）	 http://www.ipa.go.jp/security/txt/2015/06outline.html

　LINEのプリペイド詐欺のケースを考えた場合、
だまされた人もかなりの数いたようですが、言語の
壁があり定形的な文言しか入力できずパターンが決
まってしまっていて、だますにも限界がありました。
　以前の標的型攻撃のメールの文面や、フィッシン
グの誘導メールや画面構成などで使われている日本
語は、言い回しや文法があきらかにおかしいものが
たくさんありました。そのころは言語の壁があった
のは事実です。しかし、だんだんと完成度が高く
なっており、最近は、普通の事務的文章と区別がつ
かないレベルにまで達してきています。
　そして、それが今後は欧米で猛威を奮っているラ
ンサムウェアに振り向けられ、日本でも本格的な課
題になることは時間の問題であろうと筆者は考えて
います。

◉言語の壁
◆◆図1　新しく発見されたランサムウェア数	 ◆
 （出典：McAfee Labs Threats Report May 2015）

http://www.ipa.go.jp/security/txt/2015/06outline.html

152 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

　いろいろな実装が考えられますが、ゼロから完全
な暗号の実装を独自に進めるのは、相当な技術力が
必要です。ですが、今や、そのようなことは必要あ
りません。今日においておもなオペレーティングシ
ステムは暗号のためのAPIをデフォルトで用意し
ています。そのAPIを呼び出せば良いのですから、
製作に必要な技術力やコストは大幅に下がります。
　今から10年前の2005年に著名な暗号研究者Moti

M. Yung氏とAdam L. Young氏が書いた“An Imple

mentation of Cryptoviral Extortion Using Micro

soft's Crypto API”注3という文書があります。
　その文書は、題名にあるようにMicrosoft社の標
準の暗号化APIを利用しランサムウェアの暗号化
部分を作れることを示しています。つまりランサム
ウェアが使っている技術はMicrosoft社のオペレー
ティングシステムと同じ暗号学的な強度を持ってい
るので、正当な方法注4以外では戻せないことがわ
かります。
　まず公開鍵暗号の鍵ペアを生成し、暗号鍵を残
し、復号鍵をボットのコレクションサーバにタグを
付けてアップロードする（と同時に元の復号鍵を消
去する）か、あるいはC&Cサーバ側で鍵ペアを作り

感染先マルウェアが暗号鍵をダウンロードします。
　各々のファイルを暗号化する際はファイルごとに
独立したセッション鍵を使い共通鍵暗号で暗号化
し、そのセッション鍵を公開鍵暗号の暗号鍵で暗号
化してしまいます。これは既存のファイル暗号化の
アプリケーションのアプローチとなんら違いはあり
ません。
　こうなると正攻法での解読は不可能ですから、通
常のアプリケーションと同じで製作者がミスをおか
し、脆弱性を発生させた部分から攻めるしかありま
せん。

ボットテクノロジの向上

　マルウェアZeusを説明したときと同じく、命令
を利用して公開鍵の情報を送り出す司令塔のC&C

サーバや、密かにデータ（この場合はビットコイン
などの情報）を収集するコレクションサーバの技術
は、そのままランサムウェアの基本的なインフラス
トラクチャーになります（図2）。C&Cサーバから暗
号鍵が送られてくるタイプ、あるいは感染側で公開
鍵ペアを生成し、復号鍵をC&Cサーバに通知する
タイプ、初めからランサムウェアの中に暗号鍵が複

注3）	 http://www.cryptovirology.com/cryptovfiles/newbook/Chapter2.pdf
注4）	 この場合、犯人から復号するための鍵を受け取ることを意味します。

◆◆図2　ランサムウェアのインフラストラクチャー

ランサムウェアで使っているネットワーク・インフラの構造は、これまでのマルウェアのインフラとなんら変わりがない。
コンピュータ内部の情報を盗むのではなく、C&Cサーバから暗号化に使う公開鍵を送り、コレクションサーバに相当する
センターサーバにビットコインなどの情報を送る

C&Cサーバ

コレクションサーバ

http://www.cryptovirology.com/cryptovfiles/newbook/Chapter2.pdf

Sep. 2015 - 153

【第二四回】 日本に忍び寄るランサムウェアの影

を処理していたビットコイン交換所Mt. Gox社が、
2014年初頭に大量のビットコインを盗まれているこ
とが発覚し、倒産に追い込まれたのは記憶に新しい
かと思います。ビットコインがどのような（所有者を
表す）ビットコインアドレスをたどっていったか調べ
られそうな気もしますが、その盗まれたビットコイ
ンを追跡できたという話は、ついぞ聞きません。
　また利用価値の高いプリペイカードやクーポンな
どの登場も同様です。一時期、乗っ取ったLINEア
カウントから、他人にプリペイカードを購入させ、
その（金銭的な）価値を盗むという手口が流行りまし
たが、このように良い意味でも悪い意味でもイン
ターネット時代の支払い方法は多様化し、かつ、瞬
時にお金の受け渡しができる時代になっています。

CryptoLocker

　CryptoLockerは2013年に現れたMicrosoft社の
Windows向けランサムウェアです。「公開鍵暗号を
使う」「Gameover ZeuSのボットネットに相乗りす
る」「ビットコインやプリペイカードで支払いを要求
する」という今日のランサムウェアの特徴を持って
おり、ランサムウェアの代名詞的な存在になってい
ます。感染する経路はおもにメールに付属した実行
ファイルです。最初に感染した段階ではスタート
アップ時に自動的に立ち上がりバッグラウンドジョ
ブとしてC&Cサーバと通信をしています。
　興味深いのは、RSA-2048の公開鍵ペアはサーバ
上で用意されており、C&Cサーバから感染先コン
ピュータのCryptoLockerに暗号鍵（公開鍵）をダウ
ンロードするよう指示を出し、ダウンロードさせる
ことです。現状では2,048ビットのRSAを解読す
る方法はありません。近い将来でも無理です。
　ZDNetの2013年12月の記事によれば、Crypto

Lockerの被害者数は25万、72時間以内に身代金を
払えと要求し、おもにビットコインで平均300ドル
を支払ったとあります注5。

数入っていて、どの暗号鍵を使うかC&Cサーバに
指示されるタイプといろいろと考えられます。
　理論上は最小で1KBにも満たないデータ量（使う
暗号鍵のタグ）を送るだけというのも可能ですから、
ファイアウォールでのトラフィック量の増減による
異常検知といったことで発見するのもたいへん難し
いことでしょう。
　Gameover ZeuSのように情報流通のインフラを
P2Pで構築しているとしたら、さらに把握するの
は難しくなります。これらもランサムウェア側で新
たに実装や検証をする必要はなく、ZeusやGeme

over ZeuSでの実績のある環境を取り入れることが
可能ですし、実際に取り入れているランサムウェア
もあります。匿名通信経路を確保するためにTor

ネットワークを利用するものが現れるなど、速いス
ピードで進化しています。

匿名化が進んだ支払い方法の普及

　デジタル通貨（Digital Currency）の登場が、ある
意味、ランサムウェアに新時代をもたらしました。
それまで最も難しかったのは、マネタイズする部分
です。脅迫の際に銀行の振込先を教えているようで
は、その銀行口座もあっというまに閉鎖されてしま
います。アメリカの同時多発テロ事件以降、世界中
の銀行ではテロ資金のマネーロンダリングに神経を
尖らせている状況です。このような状況でお金を動
かすことは、以前にも増して難しくなっています。
これまでは、ここがボトルネックでした。
　しかし、ビットコインのようなデジタル通貨の登
場で状況は一変します。ビットコインの特徴は身元
を明かさずにビットコインを保有することが可能な
ことです。また、高速に、かつ複雑にビットコイン
を譲渡することが可能です。意図的に流通に複雑な
ルートを形成させることで、ビットコインの流れを
追うことができなくなるような性質があるのも確か
なようです。
　2013年3月には全世界のビットコイン交換の7割

注5）	 CryptoLocker's crimewave: A trail of millions in laundered Bitcoin	 	
http://www.zdnet.com/article/cryptolockers-crimewave-a-trail-of-millions-in-laundered-bitcoin/

http://www.zdnet.com/article/cryptolockers-crimewave-a-trail-of-millions-in-laundered-bitcoin/

154 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

CTB-Locker

　現在急激に増え、またさらに技術的に高度化して
いるランサムウェアがCTB-Lockerです。2014年7

月に現れたと言われています。これまでのランサム
ウェアの最も進化したバージョンと言えるかもしれ
ません。CTBの意味は次のとおりです。

●● C（Curve）：公開鍵暗号に楕円曲線暗号を使って

いる
●● T（Tor）：インターネット上の接続経路を匿名化

するTorを使う
●● B（Bitcoin）：支払いはトラッキングが難しい

Bitcoinを要求する

　楕円曲線暗号は鍵ビット数が500ビット前後あれ
ばRSAの鍵長10,000ビット超の強度を持ちます。
これは通常、処理の高速化あるいは実行されるプロ
グラムのメモリ量のコンパクト化を狙うために使わ
れます。しかし、公開鍵暗号を使った暗号化を考え
た場合、RSAは暗号鍵のサイズが小さくて済み、現
状の鍵ビット数程度であれば暗号化プロセスに関し
ては処理の不利益になるほどではありません。です
から、楕円曲線暗号を処理速度のためにあえて選ぶ
必要はありません。強度を保つために使っていると
考えるほうが合理的です。
　Torは、普通は「途中で暗号化されたプロクシが
たくさんあり、そこをいくつも経由することでサー
バにアクセスする際にユーザを匿名化する」という
説明になると思います。C&CサーバがTorのプロク
シ網の外にある場合、つまり、最終アクセスホスト
としてURLで指し示している場合には、C&Cサー
バのある場所は明確になります。しかし、このプロ
クシの途中にC&Cサーバが隠されて置かれていた
場合は、発見するのは困難、もしくは不可能でしょ
う。というのも、これを見つける技術は、ユーザの
使っているコンピュータを見つける技術とほぼ同じ
だからです。今でも十分にTorの匿名性が確保され

ているわけですから、そこに隠れているC&Cサー
バを見つけるのはほぼ不可能だと筆者は考えます。
　最後にビットコインです。今でもビットコイン
は、トラッキングして本来の所有者を特定するこ
と、キャッシュアウト時の保有者を特定することに
成功していません。ですので、ビットコインで支払
われればキャッシュアウトしても今はまだ足がつき
ません。

購入可能なランサムウェア

　CTB-Lockerは販売されているランサムウェアと
しても知られています。
　malwareid.jpの「CTB Lockerランサムウェアま
たは暗号化されたファイルの解読法」注6という記事
から引用します。

CTB Lockerは誰でもオンラインで$3,000（米国ド
ル）で購入することができます。この金額で、全て
を正しく設定するための基本的なキットや完全な
サービスをCTB Lockerの開発者から受け取るこ
とになります。

　CTB-Lockerはただでも厄介なうえに、お金さえ
払えば自分用にカスタマイズする親切丁寧な説明が
ついた開発キットが入手できるというランサムウェ
アです。つまり、今後もランサムウェアは、さらに
加速度的に増えるということを意味しています。

非暗号ロック系
ランサムウェア

　こちらの場合は、人質を取るというより、脅迫す
るマルウェアと呼べるでしょう。いろいろなパター
ンがあるのですが、有名なのがRevetonというマル
ウェアです。Zeusの流れをくむマルウェアで、感染
すると「違法な画像がコンピュータ内に存在してい
るのを発見した。警察に通報されたくなければ金を
払え」と恐喝します。違法な画像の代わりに「違法な
音楽や映画を発見したので、著作権管理団体に通報
されたくなければ金を払え」というバリエーション

注6）	 http://www.malwarerid.jp/ctb-locker-ランサムウェアまたは暗号化されたファイルの/

http://www.malwarerid.jp/ctb-locker-%E3%83%A9%E3%83%B3%E3%82%B5%E3%83%A0%E3%82%A6%E3%82%A7%E3%82%A2%E3%81%BE%E3%81%9F%E3%81%AF%E6%9A%97%E5%8F%B7%E5%8C%96%E3%81%95%E3%82%8C%E3%81%9F%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB%E3%81%AE/

Sep. 2015 - 155

【第二四回】 日本に忍び寄るランサムウェアの影

もあるそうです。
　筆者は本当にこんなもので引っかかるのか疑問で
すが、このランサムウェアを真に受けて、それで観
念して自ら警察に出頭した人がいるという記録があ
るのでそれなりに被害は出ているのでしょう。これ
までに何度も繰り返してきた言葉̶ 「̶コンピュー
タ・セキュリティを考えた場合、そのコンピュータ・
システムのリーソースの中で最も脆弱な部分は人間
である」という言葉を思い出さずにはいられません。

初の日本語ランサムウェア
の使用者は17才の少年

　日本国内でランサムウェアを語るうえで、避けて
は通れない話題ですので言及したいと思います。
　2015年7月1日、報道各社は、警視庁が不正アク
セス禁止法違反と私電磁的記録不正作出・同供用容
疑で神奈川県に住む17才の無職少年を逮捕したと
いうニュースを流しました注7。
　ネット上で「0Chiaki」と名乗り、技術評論社が利
用している「さくらのVPS」のコントロールパネル
へアクセスするためのアカウントとパスワードを盗
み、サーバのOSを入れ替え、第三者サイトへリダ
イレクトするように設定したのも、この少年です。
　ランサムウェアの定義が広いのはこれまでの説明
のとおりですが、今日的な暗号でファイルをロック
させるタイプのランサムウェアを日本国内向けに日
本語バージョンで作って配布したというのは、少な
くとも筆者の調べた範囲では0Chiaki以前には事例
を見つけられませんでした。
　0ChiakiはYOMIURI ONLINEのインタビュー注8

でTorLocker 2.0を使ったと言っています。
　TorLockerのエコシステムは、TorLocker運営
と、それを使う（相手に感染させる作業を行う）ユー
ザとの間で利益を分けるパートナーシップのモデル
です。TorLocker運営はそれをアフィリエイトと呼
んでいます。
　TorLocker運営からユーザ（この場合は0Chiaki）

にTorLockerのコントロールパネルのパスワード、
TorLockerをカスタマイズするためのビルダ、必
要なバイナリが送られます。ターゲット（被害者）の
PCにTorLockerが感染し、身代金としてビットコ
インが支払われると、TorLocker運営が30％、ユー
ザが70％の取り分で分け合います。
　ビジネスモデルと言っていいのかわかりませんが、
アフィリエイト方式はビジネスモデルとして大きな
収益が得られるチャンスがあります。あくまでも成
功すれば、ですが。ですので今後、ランサムウェア
は増えることはあっても減ることはないでしょう。
　ただし、そうも世の中うまくは回りません。Tor

Lockerのコントロールパネルのサーバが乗っ取ら
れました。したがってTorLockerに感染した人が
ビットコインを払ったところで、元に戻す鍵を入手
できません。つまり、TorLockerに感染する＝ファ
イルを永遠に失うということになります。もちろん
ユーザにもTorLocker運営にもビットコインはま
わりません。
　またTorLockerの暗号化部分はScraperという
マルウェアからの流用で、そのScraperに瑕

か し

疵があ
り、AES-256/RSA-2048という強力な暗号の組み
合わせにもかかわらず、70％以上のファイルが復元
できるという報告注9がカスペルスキー研究所
（Kaspersky Lab ZAO）から出されています。

まとめ

　ランサムウェアは欧米では蔓延しており、日本に
本格的に上陸してくるのも時間の問題です。ランサ
ムウェアをめぐる環境は、インフラを運営し開発環
境を提供する側と、マルウェアをターゲット向けに
カスタマイズし送る側とで分業する段階に達してい
ます。そして、そのような環境では17才の少年で
もランサムウェアを使ったサイバー犯罪パートナー
となる、そんな事例まで現れる時代になったことを
我々は認識しておかなければなりません。s

注7）	 http://www.asahi.com/articles/DA3S11836202.html
注8）	 http://www.yomiuri.co.jp/it/security/goshinjyutsu/20141219-OYT8T50085.html
注9）	 https://securelist.com/blog/research/69481/a-flawed-ransomware-encryptor/

http://www.asahi.com/articles/DA3S11836202.html
http://www.yomiuri.co.jp/it/security/goshinjyutsu/20141219-OYT8T50085.html
https://securelist.com/blog/research/69481/a-flawed-ransomware-encryptor/

156 - Software Design

ShowNetが示す
ネットワークの近未来

おける自動化を実現し、運用負荷を軽減するこ
とに成功しています。
　出展社へのネットワークサービスでは
OpenStackを用いたセルフ仮想マシン環境を構
築しました。また、ネットワークにBGP Flow

specを実装し、DDoS対策などのセキュリティ
対策機能を用いることによって必要機器を削減
し、全体ネットワーク設計に簡潔性を持たせま
した。

柔軟性（�exibility）
実現に向けての取り組み

　増え続けるトラフィックやインターネットに
つながる端末の増加と多様化、それに伴うネッ
トワークへの接続形態の変化などに対応するた
め、柔軟性のあるネットワーク構築の実現は今
後のインターネット業界にとって大変重要な課

ShowNet 2015の
取り組みについて

　過去の連載で紹介してきたとおり、“今のイ
ンターネットを見直す”という3年がかりのプ
ロジェクトの2年目となった今回は、Scratch

& Rebuild the Internet Phase 2 ─ ULTIMA

TE BALANCE─をテーマとして、簡潔性
（simplicity）と柔軟性（flexibility）、高信頼性
（reliability）といった一見相反する要素をバラ
ンスよく実現した近未来のネットワークを目指
しました。
　ShowNetはインターネット全体を模倣して
作られることから、前述の3つの要素が通信事
業者、サービスプロバイダ、データセンタ（DC）・
クラウド事業者、エンタープライズのネットワー
クの世界に散りばめられています。ここからは
それぞれの要素における取り組みをいくつか紹
介していきます。

簡潔性（simplicity）
実現に向けての取り組み

　ShowNetではより簡素なネットワークを実
現するため、昨年からルータやスイッチなどの
機器の物理的な配置を見直すことをはじめ、論
理的なネットワーク設計においても工夫をして
います。仮想化、SDN（Software Defined Net

work）、NFV（Network Functions Virtuali

zation）を採用することによって、経路制御に

インターネット技術とビジネスが出会う国内最大のイベント「Interop
Tokyo」。今年も6月10～12日に幕張メッセで開催され、昨年を約4,000
名上回る136,341名の来場者を迎えて盛況の後閉幕しました。他展では類
を見ないその最大の特徴である“ShowNet”は、会場全体に構築される最先端
の技術を駆使したネットワークです。6回に渡ってお届けしてきた本連載もい
よいよ最終回。今回はShowNet 2015での活動についてご紹介していきます。

最終回 ShowNet 2015 Scratch & Rebuild
the Internet Phase 2総括編

ShowNet が示す
ネットワークの近未来

 ▼図1　 事業者間をまたぐレイヤ2パスをOpenFlow
を用いて自動で IX上に構築

　　　櫨山 寛章（はぜやま ひろあき）
奈良先端科学技術大学院大学
　　　大嶋 康彰（おおしま やすあき）
㈱ナノオプト・メディア
　　　 http://www.interop.jp

Writer

Writer

URL

OpenFlow
スイッチ

SDN IX

OpenFlow
コントローラ

事業者
A

事業者
C

事業者
B

事業者
D

http://www.interop.jp

Sep. 2015 - 157156 - Software Design

ShowNet 2015 Scratch & Rebuild
the Internet Phase 2総括編

最終回

題です。今年のShowNetでは柔軟性を実現す
る技術として、SDNを IX（Internet eXchange）
の基盤に採用しました。クラウド事業者間や通
信事業者間で顧客ネットワークを接続する用途
を想定し、事業者間をまたぐレイヤ2パスを
OpenFlowを用いて自動で IX上に構築するこ
とによって、細かな経路制御や柔軟なパス交換
を実現しました（図1）。また、ShowNet内のネッ
トワークでは、柔軟性を維持しながら容易にス
ケールアウト可能なNFV環境を既存技術のみ
で構築しました。開催期間中は、実際に構築し
たNFVを用いて一部の展示会出展者を収容し、
インターネット接続サ－ビスを提供しました。
　DC・クラウドネットワークでは、従来のネッ
トワークに、より高い柔軟性を実現可能な
VXLANの相互接続実験を実施しました。
VXLANは現在主流であるVLANに対し、識

別子空間が広いため、その拡張性の高さを期待
されています。しかし、経路管理機構が不十分
であることから、サービス網への適用にはいく
つかの課題があります。今回のShowNetでは、
Ethernet VPN、およびOVSDB（Open vSwitch

Database）Management Protocolを VXLANの
経路管理機構として用い、各構成において相互
接続性を確認しました（図2）。

高信頼性（reliability）
実現に向けての取り組み

　ネットワーク利用者にとっての高信頼性とい
う意味では、安全（セキュア）・快適（高パフォー
マンス）ということが重要な要素になると考え
られます。今年のShowNetでは、大規模な
DDoS攻撃を個別組織で対策することが困難に
なってきていることから、DDoS対策機能を
ISP、IX、自社網に最適分散配置するという試

 ▼図3　DDoS対策機能の最適分散配置

 ▼図2　経路管理機構を用いたVXLAN相互接続実験

課題：大規模DDoS攻撃の個別組織での対策が困難に
対策：IX、トランジット、自AS内での対策機能を分散配置

②IX
①ISP

③自社網

1. ISPにおける緩和・破棄
BGP経路操作による攻撃を
緩和装置へ誘導し緩和・破棄

3. 自社網での緩和・破棄
BGP経路操作により攻撃を
緩和装置へ誘導し緩和・破棄

2. IXにおける緩和・破棄
SDN技術を活用し攻撃の
流入口での緩和・破棄

自律分散型
（Ethernet VPN 連携）

VXLAN装置
Ethernet VPN メッセージ
VXLAN トンネル

コントローラ
VXLAN装置
OVSDB メッセージ
VXLAN トンネル

管理機構上で
経路情報を受送信

VXLAN装置情報
ホストアドレス情報

…

学習した情報を元に
VXLANトンネルを形成

集中管理型
（OVSDB 連携）

158 - Software Design

ShowNetが示す
ネットワークの近未来

みを行いました（図3）。
　また、さまざまな攻撃手段への対策としてイ
ンライン、多層防御、フォレンジック、SIEM

（Security Information and Event Management）
の運用といったセキュリティオーケストレーショ
ンモデルを実装することで、より安全なネット
ワークを構築しました（図4）。さらに、対外組

織との接続部分では、通信事業者間での経路広
告の信頼性と安全性を向上させるRPKIと呼ば
れる公開鍵基盤（PKI）を用いて、正当な IPア
ドレス資源の所有者を証明するしくみを導入し
ました。このRPKIでは、実運用を行うととも
に複数社のルータ間で相互接続実験を実施しま
した（図5）。

ShowNet ShowNet

 ▼図4　ShowNet 2015のセキュリティのポイント

Layer1
Aggregation フォレンジック

Sandbox

Sandbox

Email
Sandbox

IPS/IDS

ファイア
ウォール

DDoS防御

SIEM

ファイア
ウォール

RPKIで経路の正当性を検証 !

Origin Validationに基づく経路制御

2014年a2015年

Mis-Origin経路広告

a.0.0.0/24 a.0.0.0/24
a.0.0.0/16 a.0.0.0/16

AS a
a.0.0.0/16

AS a
a.0.0.0/16AS x

x.0.0.0/24
AS x

x.0.0.0/24

他のASから
強い経路が誤って
広告されると……

RPKIで検証して
不正な経路を
Dropすると……

1 1

2 2

 ▼図5　RPKI相互接続実証実験

間違った宛先に
トラフィックが吸い込まれる

トラフィックが
正しく流れる

ROA
キャッシュ

ShowNet ShowNet

Mail Srv

TAP

TAP

Sep. 2015 - 159158 - Software Design

ShowNet 2015 Scratch & Rebuild
the Internet Phase 2総括編

最終回

　前述の IXや出展社ブース向けのネットワー
クにも採用されたSDN/NFVでは、柔軟なネッ
トワークの実現に加えて、OpenFlowによる負
荷分散やパケットI/O高速化技術の採用による
高パフォーマンス化への取り組み、SDN技術
を活用したDDoS攻撃流入口での緩和や破棄と
いったセキュリティ対策を実施しました。
　DC・クラウドの分野では、企業やコンテン
ツプロバイダからの障害対策やオンプレミスと
の併用、ワークロード分散などでニーズが高まっ
ているマルチクラウド活用にも取り組みました。
課題となっている品質の保証、障害時の切り分
けの複雑性、セキュリティへの懸念などの解決
として、Multi Cloud Fabricをコンセプトとし
た、さまざまなネットワークが持続可能でオー
プンなプライベート接続基盤の実現を目指しま
した（図6）。

Phase 2から
何が見えたのか?　

　ここまでPhase 2の3つの要素における取り
組みを紹介してきましたが、いくつかのテーマ
にまたがる技術キーワードが存在すること、バッ
クボーンネットワークにもセキュリティ機能が
実装されることなど、これまでの役割にプラス
アルファがあります。これからのインターネッ
トを支えていくためには各技術が単に連携する
だけでなく、うまくバランスされた環境が必要

となるでしょう。
　たとえば自動化されたネットワークも、性能
が出なくてはこれからも増え続けるネットワー
クトラフィックに対応することができませんし、
多様化するユーザニーズやセキュリティの脅威
にも柔軟に対応できなくてはなりません。今年
のShowNetでは、仮想化とセキュリティ技術
をネットワークで連携させることによって、簡
潔性（simplicity）、柔軟性（flexibility）、高信頼
性（reliability）の3要素をバランスよく実現し
た、近未来のネットワークの1つのモデルを提
案できたのではないかと自負しています。
　本連載でご紹介した各技術分野における詳細
については、後日 Interop Tokyo公式サイトに
公開される報告書を参考にしてください。s

COLUMN

▶Interop Tokyo公式ページ　http://www.interop.jp

▶Twitter　@ShowNet_NOCTeam

▶公式FaceBook　https://www.facebook.com/
 interop.shownet

　2016年の Interop Tokyoは 6月8～10日に幕張メッ
セでの開催が決定しています。今年の秋頃から次回に
向けての設計が始まります。いよいよ次は3年越しの
プロジェクトの最終回 !　ぜひ次回に向けてもご期待
ください。会合の模様など、ShowNet公式SNSアカ
ウントより発信していますので、ご覧ください。

Phase 3に向けて

 ▼図6　Multi Cloud Fabric
さまざまなネットワークが接続可能なオープンな
プライベートコネクトプラットフォームを目指して

クラウド
コンテンツ
プロバイダ

エンタープライズモバイル

Multi Cloud Fabric

オンプレミス

http://www.interop.jp
https://www.facebook.com/interop.shownet

160 - Software Design

OptaPlannerを
いじってみよう

　PlannerはBusiness Resource Planningを扱
う機能です。限られたリソースを配分して最大

の効率あるいは利益を上げるというと簡単に聞
こえますが、現実には「完全解」を得られること
はほとんどなく、「最適解」――つまり現実的に
は妥当で最善の解を得られれば十分であること
が経験的にわかっています注1。
　Plannerをきちんと理解するのはなかなか難
しいのですが、Plannerのコミュニティ版であ
るOptaPlannerのサンプルを触ってみればこの
機能の面白さが直感的にわかると思います。
OptaPlannerのサンプルは optaplanner.orgか
らダウンロードできます（図1）。
　ダウンロードしたファイルを解凍し、“examples”
ディレクトリの下にあるrunExamples.sh注2を実
行するとサンプルプログラムが起動します注3（図2）。

サンプルを動かしてみる

　サンプルに含まれるのはいわゆるNP完全問
題注4として代表的なものです。NP完全につい
ては次回に解説します。今回は簡単にサンプル
を紹介します。

N queens

　チェスの盤面に、いずれのクイーンからも取

第15回 Planner in JBoss BRMS 6.1

注1） より正確には、現実的な時間内に完全解を得られない一群の問題に分類される。
注2） Windowsでは runExamples.bat
注3） 起動するには Javaの実行環境が必要。OpenJDKあるいはOracle Javaを事前にインストールしておく。
注4） Non-deterministic Polynomial time、非決定性多項式問題。

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

　2015年4月にRed Hatミドルウェア製品である JBoss BRMS 6.1がリリースされ
ました。Business Rule Management Systemとして歴史を刻んできた同製品には、
新たにPlannerと呼ばれる機能が追加されフルサポートが開始されました。今回は
このPlannerについて説明します。

Writer レッドハット（株）サービス事業統括本部
プラットフォームソリューション統括部ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）

 ▼図1　 optaplanner.orgのトップページ、左上にサンプ
ルのダウンロードリンクがある

 ▼図2　サンプルプログラムのメインメニュー

160 - Software Design Sep. 2015 - 161

第 15 回Planner in JBoss BRMS 6.1

られないようにクイーンを配置する問題で、も
ともとはチェスの8×8の盤面に8つのクイー
ンを配置しますが、このサンプルでは256×
256の盤面に配置する問題までを扱います（図3）。

Cloud Balancing

　クラウドコンピューティングにおける、コン
ピューティングリソースの最適化問題で、広義
にはBin Packing Problem、BPPと呼ばれる
問題です。各プロセス（仮想マシン）が必要とす
るCPU、メモリ、ネットワーク帯域を満たし、
かつコストが最小となるような組み合わせを求
めます。マシンにトラブルがありシャットダウ
ンした場合に再配置が行われる様子も見られる
サンプルになっています（図4）。

Traveling Salesman

　Traveling Salesman Problem注5、「巡回セー
ルスマン問題」は有名ですね。サンプルにはア
メリカ合衆国のいくつかの州の都市を最短距離
で回るシナリオが含まれており図5に挙げたも
のはフロリダ州の巡回問題になっています。最
短距離で巡回する＝最小の燃料消費という設定
ですが、もちろん州間高速注6を利用して最短時
間で巡回する、といった最適化問題も扱えます。

　学校の時間割を最適化する問題で、Cloud

Balancingと同じBPPに分類されます。小中高
の時間割ぐらいであれば問題空間がそれほど広
くないので、人力でも解くことができますが、大
規模な総合大学であればかなり複雑な問題とな
り得ます。教室のキャパシティ、設備、常勤・非
常勤講師の別など、さまざまな制約条件を可能
な限り満たすように時間割を組むのは難しい問題
です（図6）。

Vehicle Routing

　TSPと似ていますが、こちらはVehicle

Routing Problem、VRPと呼ばれ区別されます。
1つの配送拠点から可能な限り少ない台数の配

Course Timetabling

注5） Political Correctnessを考慮するとSalespersonですが、いずれの場合もTSPと省略される。
注6） 州間高速は Interstateと呼ばれ、その表示に用いられる字形が同名のフォントになっており、Red Hatの製品ロゴに使われ

ている。なお、“redhat”というロゴに用いられているフォントはMyriadという書体。

 ▼図3　N queens

 ▼図4　Cloud Balancing

 ▼図5　Traveling Salesman Problem

162 - Software Design

　次回はNP完全問題やアニーリングといった、
Plannerの理解に必要な説明をする予定です。
ﾟ

送トラックで定められた時間内に多くの配送先
をカバーする、というシナリオです。サンプル
では動作中に画面をクリックすることで配送先
を増やすことが可能となっており、その際にそ
れまでに得られている最適解を棄却するのでは
ないことがポイントです（図7）。

Cheap Power Time
Scheduling

　ICON Challenge on Forecasting and

Scheduling注7を解くもので、各マシンに必要
なリソースを配分しつつ、電力消費（コスト）を
最小化する問題です（図8）。

まとめ

　紹介したサンプルの動作の様子を誌面で表現
するのは難しく、その面白さがわかりにくいか
もしれません。ぜひ、サンプルをダウンロード
して自分のマシンで動かしてみてください。
Plannerは現実世界の幅広い領域の問題を比較的
簡単に解決することを目的としており、利用す
るエンドユーザに深い理解を要求しない点が魅
力です。読者の皆さん、あるいはエンドユーザ
が直面している問題を解決できるかもしれません。

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

注7） http://iconchallenge.insight-centre.org/challenge-energy

 ▼図6　Course Timetabling

 ▼図7　Vehicle Routing

 ▼図8　Cheap Power Time Scheduling

http://iconchallenge.insight-centre.org/challenge-energy

164 - Software Design

FreeBSDが使われる
プラットフォームの拡大

　FreeBSDはサーバオペレーティングシステムと
いう側面から、さまざまなプロダクトの『プラット
フォーム』という位置づけに、その必要とされる場
所を変えつつあります。それは大規模なものであれ
ばペタバイトクラスのストレージシステム、高性能
ネットワークアプライアンス、もちろんエッジサー
バでも使われますし、BHyVeベースの仮想化プラッ
トフォーム、サイズが小さくなってくると組込み機
器やモバイルデバイスに至るまで、そうしたシーン
の『プラットフォーム』として使われています。
　このため、近年とくにFreeBSDに求められるも
のが「どのシーンにも必要に応じて簡単に対応でき
るようなしくみや構造」になってきています。たと
えばすでに実装された機能や、今後実装される機能
などを含めて、次のような取り組みが進められてい
ます。

●●小さいカーネルと多種多様なカーネルモジュール
●●さまざまなアーキテクチャに対応するための

FDT（Flattened Device Tree）のサポート
●●Web UIベースの管理アプリケーションとの親和

性の向上
●●設定ファイルの管理を容易にするためのUCLの

導入
●● GPLを嫌うベンダ向けにベースシステムのコマ

ンドをBSDライセンス実装へ置き換え

　現在のカーネルはデフォルトで基本的なドライバ
や機能をスタティックに取り込んでいます。これを
必要最小限のカーネルに変更すること、また起動時
に必要なカーネルを読み込んで動作するように変更

することが考えられています（メモリの少ないデバ
イスでも快適に動作でき、細かい機能調整がカーネ
ルの再構築なしで可能になる）。
　上記取り組みのなかでもユーザの視点から考える
と、設定ファイルをUCL（Universal Configuration

Language）へ移行させる取り組みが進んでいること
は、そろそろ知っておいたほうがよいかもしれませ
ん。今回はUCLの基本的なアイディアと目的、
UCLへの移行にともなって導入が検討されている
操作コマンドの使い方などを紹介します。

人が扱いやすくてソフトウェア
からも扱いやすい設定ファイル

　/etc/にインストールされるシステムの設定ファ
イル̶̶さまざまな設定ファイルがあります
が̶̶これらは“歴史的に随時”導入されてきたこ
とから、フォーマットもさまざまです。UCLはこれ
らを統合するための設定ファイルフォーマットのよ
うなものです。
　実際にものを見てもらったほうが理解が早いで
しょう。ログローテーションを実施するnewsys
log (8)の設定ファイルnewsyslog.conf(5)のフォー
マットはリスト1のようになっています。
　これをUCLで書き換えるとリスト2のようにな

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第23回 ❖次世代設定ファイル言語UCL

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

Sep. 2015 - 165

▶第23回◀
次世代設定ファイル言語UCL

mergemaster(8)が必要ないようにすることを目指し
ます）。
　UCLはシェルスクリプトや管理ツールからも簡
単に操作できる必要があります。これを実現するた
めのライブラリが libucl、コマンドがuclcmd(1)で
す。

uclcmd(1)でUCLを
マニピュレーション

　libuclとuclcmdは開発段階にあります。古いバー
ジョンの libuclはFreeBSD 10.1-RELEASEにも
導入されていますが、最新の機能を使用するには最
新版が必要です。ここではuclcmdの最新版を取得
してきて使ってみましょう。
　libuclとuclcmdの最新版は図1および図2のよう
にgit (1)コマンドを実行して、Allan Jude氏の
GitHubから持ってきます（gitはpkg install git
のようにパッケージからインストールしておきま
す）。また、libuclおよびuclcmdのビルドにはauto

conf、automake、libtoolが必要になりますので、

ります。
　1行目に書いてあるのはUCLのバージョン1であ
ることを示す識別子です。UCLのフォーマットは
Nginxの設定ファイルによく似ています。これは
UCLの取り組みを進めているAllan Jude氏が
Nginxの設定ファイルを扱いやすいフォーマットだ
と感じたことに理由があります注1。
　UCLはJSONやYAMLのような書き方をもっと
緩く書けるようにしたものと考えておくとよいと思
います。ファイルのインクルードやオーバーレイな
ども可能であるほか、入れ子構造の記述もできま
す。/etc/の設定ファイルのいくつかはすでにUCL

を使うように書き換わっていますし、pkg(8)コマン
ドもすでにUCLを使っています。

UCLへの移行はスムーズに

　UCLへ移行する設定ファイルのいくつかはすで
に目処が立っています。しばらくの間は徐々に
UCLへの移行が進められる予定になっています。
先ほどUCLファイルの先頭に#fucl1という表記
がありましたが、この表記のないファイルは従来の
フォーマットで記述された設定ファイルであるとし
て、従来のパーサが動作するように処理を切り替え
る予定でいます。
　現在は/etc/rc.conf.local、/etc/rc.conf、/etc/

defaults/rc.confのファイルが「システムのデフォル
ト設定」と「個別に変更した内容」といったように
ベースシステムと個別の設定とを分離しています
が、UCLへの移行にともなって、設定ファイルその
ものに対しても差分だけを設定できるようにする予
定になっています。これで従来よりもシステムの
アップデートが簡単になります（究極的には

logfilename [owner:group] mode count size when flags [/pid_file] [sig_num]
/var/log/all.log 600 7 * @T00 J
/var/log/amd.log 644 7 100 * J

▼▼リスト1　現在のnewsyslog.conf(5)

#fucl1
all {
 file = /var/log/all.log
 mode = 600
 count = 7
 size = *
 when = @T00
 compress = bzip2
}
amd {
 file = /var/log/amd.log
 mode = 644
 count = 7
 size = 100kb
 when = *
 compress = bzip2
}

▼▼リスト2　UCLで記述したnewsyslog.conf(5)

注1	 アイディアの最初の段階ではMac OS Xのlauchd(8)が使っているバイナリXML plistなどを使ってはどうか、という話もありましたが、
すべてのデータを単一の設定ファイルにしたり、XMLを使うというのは、あまり人に優しいとは言い難いというのがAllan Jude氏の考え
です。

166 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

と、図6のようにコマンドが使用できるようになり
ます。uclcmdでUCL形式データの値取得、値変更、
フォーマット変更（JSON、縮小化したJSON、YA

ML、UCL）、マージ、削除などを実施できます。

uclcmdの実行サンプル

　uclcmd(1)の操作はjq(1)コマンド注2の操作によく

図3のようにパッケージ経由でインストールしてお
きます。
　最初に libuclをビルドしてインストールします。
クローンしたリポジトリへ移動して図4のようにビ
ルドおよびインストールを実施します。libuclをイ
ンストールしたら、uclcmdのビルドとインストール
を図5のように実施します。
　uclcmdのビルドおよびインストールに成功する

% git clone https://github.com/allanjude/libucl.git ｶ
Cloning into 'libucl'...
remote: Counting objects: 3222, done.
remote: Total 3222 (delta 0), reused 0 (delta 0), pack-reused 3222
Receiving objects: 100% (3222/3222), 2.76 MiB | 260.00 KiB/s, done.
Resolving deltas: 100% (2143/2143), done.
Checking connectivity... done.

▼▼図1　gitでlibuclのソースコードを取得

% uclcmd ｶ
Usage: uclcmd get [-cdejklnquy] [-D char] [-f filename] variable
 uclcmd set [-cdjuy] [-D char] [-f filename] [-i filename] variable [UCL]
 uclcmd merge [-cdjuy] [-D char] [-f filename] [-i filename] variable
 uclcmd remove [-cdjuy] [-D char] [-f filename] variable
 中略
 array_1_name="value"

%

▼▼図6　uclcmdコマンド

% git clone https://github.com/allanjude/uclcmd.git ｶ
Cloning into 'uclcmd'...
remote: Counting objects: 287, done.
remote: Total 287 (delta 0), reused 0 (delta 0), pack-reused 287
Receiving objects: 100% (287/287), 94.07 KiB | 0 bytes/s, done.
Resolving deltas: 100% (160/160), done.
Checking connectivity... done.

▼▼図2　gitでuclcmdのソースコードを取得

% pkg install autoconf ｶ
% pkg install automake ｶ
% pkg install libtool ｶ

▼▼図3　�ビルドに必要になるツールをインス
トール

% cd /pathto/libucl ｶ
% ./autogen.sh ｶ
% ./configure ｶ
% make ｶ
% make install ｶ

▼▼図4　�libuclのビルドとインス
トール

% cd /pathto/uclcmd/ ｶ
% make ｶ
% make install ｶ

▼▼図5　�uclcmdのビルドとインス
トール

注2	 JSONデータをコマンドから操作する場合に使うコマンド。

Sep. 2015 - 167

▶第23回◀
次世代設定ファイル言語UCL

似ています。
　個別の値を取得する場合には図7のようにgetサ
ブコマンドを使います。
　フォーマットを変更する場合は図8や図9のよう
に値として「.」を指定して、あとはオプションで出
力するフォーマットを指定します。
　値を変更するには図10のようにsetサブコマン
ドを使います。
　こうしたライブラリやコマンドのおかげで、Web

UI系の管理アプリケーションではJSONデータを
扱い、FreeBSD側に来た段階でUCLへ変更、その
まま設定ファイルを更新する、といった流れでシス
テムの設定ファイルをアップデートする作業がシー
ムレスに実行できるようになります。s

% uclcmd get -f newsyslog.conf amd.compress ｶ
"bzip2"
% uclcmd get -f newsyslog.conf -k amd.compress ｶ
amd.compress="bzip2"

▼▼図7　uclcmd：値を取得

% uclcmd get -f newsyslog.conf -j . ｶ
{
 "all": {
 "file": "/var/log/all.log",
 "mode": 600,
 "count": 7,
 "size": "*",
 "when": "@T00",
 "compress": "bzip2"
 },
 "amd": {
 "file": "/var/log/amd.log",
 "mode": 644,
 "count": 7,
 "size": 102400,
 "when": "*",
 "compress": "bzip2"
 }
}

▼▼図8　uclcmd：UCLからJSON形式へ変換

% uclcmd get -f newsyslog.conf -c . ｶ
{"all":{"file":"/var/log/all.log","mode":600,"count":7,"size":"*","when":"@T00","compress": ｭ
"bzip2"},"amd":{"file":"/var/log/amd.log","mode":644,"count":7,"size":102400,"when":"*", ｭ
"compress":"bzip2"}}

▼▼図9　uclcmd：UCLからコンパクトなJSON形式へ変換

% printf gzip | uclcmd set -f newsyslog.conf amd.compress -u ｶ
all {
 file = "/var/log/all.log";
 mode = 600;
 count = 7;
 size = "*";
 when = "@T00";
 compress = "bzip2";
}
amd {
 file = "/var/log/amd.log";
 mode = 644;
 count = 7;
 size = 102400;
 when = "*";
 compress = "gzip";
}

▼▼図10　uclcmd：値を変更

168 - Software Design

Ubuntu Monthly Report

　LibreOfficeの最初のバージョンは3.3でした。互
換性の問題で、バージョニングはOpenOffice.orgを
引き継ぐしかなかったのです。4.0がリリースされた
のは2013年2月ですので、5.0は2年半ぶりのメ
ジャーバージョンアップ、ということになります。
ただし、LibreOfficeはタイムベースリリースであり、
それはすなわち時期が来たらリリースされるという
ことで、この機能を実装したらメジャーバージョン
アップ、というルールにしているわけではありませ
ん。5.0も多数の機能が実装されたということはなく、
単純にマーケティングの都合です。現に設定ファイ
ルは4のままだったりします（図1）。
　あえて大きな変更があった点を挙げるとすれば、

LibreOffice 5.0
それはユーザインターフェースです。とはいえ、こ
れも5.0ではなく4.4からの路線ですので、むしろ
4.4を5.0にすべきだったのかもしれません。サイド
バーという機能自体はApache OpenOfficeのソース
コードから取り込まれたものですが、LibreOfficeで
徹底的に磨かれ、より洗練された使い勝手になって
います。昨今のワイドディスプレイの普及を見ても、
サイドバーの使い勝手を向上するには理にかなって
いるといえます。
　もちろんそれ以外にも、やはり4.4からの流れで
はあるものの、コンテキストメニューの変更や、上
部ツールバーの機能割り当ての変更など、歴史的経
緯以外に変更しなかった理由を見いだせない部分に
も手が入っています。
　メジャーバージョンアップの際にはAPIを整理す
るという作業も行われています。4.0のときにはかな
りアグレッシブな変更があったのですが注1、5.0では
いくつか追加されただけであり、非互換は発生しな
いものと思われます。
　あらためて考えてみると、5.0というバージョニン
グはマーケティングの都合だったとしても、今後歩
むLibreOfficeの独自路線のスタートラインに立った
バージョン、と言えるのかもしれません。

注1） もちろん大部分はOpenOffice.orgの負の遺産の棚卸しだった
わけですが。

　今回は8月上旬にリリース予定のLibreOffice 5.0の変更点についてお知らせします。2年半ぶりのメ
ジャーバージョンアップには、どんな理由があるのでしょうか。

LibreOffice 5.0の
変更点

Ubuntu Monthly Report第65回

Ubuntu Japanese Team　あわしろいくや

図1　 設定ファイルの場所は［ツール］-［オプション］-［Libre
O�ce］-［パス］で確認できます

168 - Software Design Sep. 2015 - 169

LibreOffice 5.0の変更点 第 65 回

絵文字の入力

　真っ先にオフにされることで有名なオートコレク
ト機能を使用し、絵文字が入力できるようになりま
した。入力方法も入力できる絵文字もおおむね
Emoji cheat sheet注2に準じていますが注3、“_”（アン
ダースコア）の代わりに“ ”（スペース）が入ります。
“Tofu on Fire”注4として一躍有名になった“:name_

badge:”は、LibreOfficeでは“:name badge:”と入力し
ます（図2）。入力できる絵文字は［ツール］-［オートコ
レクトオプション］の［置換と例外扱いの言語］を［英
語（米国）］などにすると確認できますが、フォントは
いわゆるトーフになってしまい、表示できません注5。
もちろんある程度は推測できるので、とくに問題な
いような気はします。
　Ubuntu 14.04だと絵文字フォントがインストール
されていないので、“ttf-ancient-fonts”パッケージを
インストールしてください。15.04ではインストール
されています。
　そもそもからしてオートコレクト機能で絵文字入
力というのは、インプットメソッドを使用しない言
語向けの機能です。Mozcは絵文字変換に対応してい
るので、そちらで入力するほうが簡単です。しかし、
どんな読みで変換すれば絵文字が表示されるのかわ
からない場合や、覚えてしまって直接入力してし
まったほうが早い場合には、この機能は使えるので
はないでしょうか。ベータ後に取り込まれた機能で
未だに喧々諤々議論があるようですが、
単純におもしろい機能だと思います。

注2） http://www.emoji-cheat-sheet.com/

注3） もちろん一部ないものもあります。具体的に
はGitHubでよく使われる :+1:などです。

注4） http://news.mynavi.jp/articles/2015/03/08/
matsumura_apple/

注5） 確認したところWindowでも同様でした。筆
者が知る限り、絵文字を網羅したUI用のフォ
ントは存在しないので、うまく調整しないと
このトーフを改善することはできないように
思います。

Writer サイドバーでスタイルのプレビュー

　今までは書式設定ツールバーでしかできなかった
スタイルのプレビューが、サイドバーの［スタイルと
書式設定］でもできるようになりました。

Wordの蛍光ペンと文字の網かけ

　Wordには、フォントの装飾に蛍光ペンと網かけ
機能があります。一方、LibreOfficeには文字の背景
しかありません。機能は似ていて、インポート／エ
クスポートもなんとなく行えてはいましたが、完全
に同じものではないので十分なものではありません
でした。そこで、次のような変更が加えられました。

・Wordからインポートしたファイルに蛍光ペンと網かけが
あった場合、変更を加えない場合はエクスポートして
もそのままとする

・変更した場合はLibreOfficeの文字の背景とする
・文字の背景をエクスポートした場合、蛍光ペンとする

か、あるいは網かけとするかは設定（［ツール］-［オプ
ション］-［読み込みと保存］-［Microsoft Office］）で
変更できる

　ついでに、［文字の背景］は［Text Highlighting］の
訳語ですが、“Highlighting”を“背景”と訳すのは本来
正しくありません。“強調”と訳すべきですが、文字
を強調する方法は色を変える以外にもフォントを大
きくするなどたくさんあります。というわけで、蛍
光ペンよりも色数が多い［ラインマーカー］と訳すこ
とにしました。

図2　 絵文字の入力例。「:!: :bike: :atm: :bird: :100: :white �ower:
:name badge:」と入力しました

http://www.emoji-cheat-sheet.com/
http://news.mynavi.jp/articles/2015/03/08/matsumura_apple/

170 - Software Design

Ubuntu Monthly Report

画像のトリミング

　マウスで簡単に画像のトリミングができるように
なりました。大きめの画像を挿入し、ピンポイント
で表示したい個所がある場合に便利でしょう。方法
はいくつかあり、画像を選択した状態で、

・右クリックで［画像のトリミング］をクリックする
・ツールバーの［画像のトリミング］をクリックする
・［書式］-［画像］-［画像のトリミング］をクリックする

のいずれかで実行してください。

ページ番号の表示

　左下に表示されるページ番号ですが、ページをス
クロールした場合、今までは次のページが完全に表
示されるまでは前のページのままでした。たとえば
2ページのドキュメントがあったとして、上から
徐々にスクロールしていって、1ページを完全に表示
しなくなってからページ数が2/2になっていました。
ただ、これはあまり自然な動きではなく、いくらか2

ページめを表示したらページ数を2/2にするべきで
す。というわけで、2ページめを43％表示したらペー
ジ数が2/2になるようになりました。おもしろいこ
とに、この43％というのはソースコードにそのまま
書いてありました。おそらく数字自体に意味はなく、
だいたいこのくらい表示したらいいだろうというと
ころから来ているものと思われます。

表の管理機能の強化

　たとえば5行の表があったとして、あと2行追加
したいという場合、2行を選択して行を追加すると選
択した分、すなわち2行を追加できるようになりま
した。いまいちどういうニーズがあるのかはよくわ
からなかったのですが、Calcと挙動を合わせたとい
うことのようです。あと、セルの右クリックから［挿
入］-［上に行の挿入］［下に行の挿入］［左に列の挿入］
［右に列の挿入］ができるようになりました。これは
わかりやすく便利になったというか、今までできな
かったのが不思議なくらいです。

OOXMLとの相互運用性向上

　arcToを使用したWordのシェイプを正しく表示
できるようになりました。LibreOfficeのサポート企
業であるCollaboraの方が修正しているので、おそ
らく有償サポートで依頼があったのでしょう。

条件付き書式の強化

　条件付き書式のデータバーが強化されました。今
まではグラフはグラデーションになっていましたが、
これをグラデーションとグラデーションなしの両方
から選べるようになりました。また、数字なしの
バーとバーの長さの上限も設定できるようになりま
した（図3）。

指数表記の強化

　右クリック-［セルの書式設定］-［数値］タブ-［指数
表記］で［エンジニア表記］が選択できるようになりま

Calc

図3　強化されたデータバーの設定画面

170 - Software Design Sep. 2015 - 171

LibreOffice 5.0の変更点 第 65 回

した。通常の指数表記では、たとえば“1.11E+29”と
なるところを、［エンジニア表記］にチェックを入れ
ると“111.11E+27”となります。筆者がこの手の表記
にうといことを差し置いても、日本語ではあまり有
用な情報を検索できませんでしたが、バグ報告をた
どっていくと最初に報告された注6のは2002年6月17

日とOpenOffice.org 1.0リリース直後で、13年越しで
実装されたことになります。

関数の追加

　FLOOR関数とCEILING関数は2番めのパラメー
タはオプションになりました。1番めと2番めのパラ
メータが必須の関数として、新たにFLOOR.XCLと
CEILING.XCLが追加されました。ExcelのFLOOR.

XCLあるいはCEILING.XCL関数をインポートし
た場合、CalcではFLOOR.XCLあるいはCEILING.

XCLに置き換えられます。
　Excelに も あ るFLOOR.MATHとCEILING.

MATH関数がCalcでもサポートされました。
FLOOR.XCLあるいはCEILING.XCL関数をExcel

形式でエクスポートした場合、FLOOR.MATHある
いはCEILING.MATH関数に置き換えられます。
FLOOR.XCLあるいはCEILING.XCL関数をExcel

形式でエクスポートした場合は、FLOORあるいは
CEILING関数で置き換えられます。非常にややこ
しいですが、自動的に処理するのであまり気にしな
くてもよさそうです。
　ほかにも、ENCODEURL関数とERROR.TYPE

関数が追加されました。いずれもExcelとの相互運
用性向上のためであり、またとても便利そうな関数
です。

すべての行／すべての列の範囲指定

　今までは、たとえばすべての行を指定する場合は
A1:AMJ1、すべての列を指定する場合はA1:A10485

76と範囲指定する必要がありましたが、5.0からは行
の場合は1:1、列の場合はA:Aで範囲指定できるよ
うになりました。もちろん今までの表記でも問題あ

注6） https://bz.apache.org/ooo/show_bug.cgi?id=5930

りません。全部の列または全部の行を指定すること
はよくあることですので、とても便利になりました。

画像の扱い

　Calcでも画像のトリミングや画像の置き換え、保
存ができるようになりました。

OOXML/XLSXとの相互運用性向上

　そのほか、OOXML/XLSXとの相互運用性を向上
する改善が行われています。

塗りつぶしのカラーパレットの変更

　LibreOffice 4.4から登場した新しいカラーパレッ
トは、塗りつぶしの場合はサイドバーからしか使用
できませんでした。しかし、5.0からはツールバーに
ある塗りつぶしアイコンからでも新しいカラーパ
レットが表示できるようになりました。

テキストでも背景色

　テキストボックスでも背景色が設定できるように
なりました。

PDFエクスポートの機能追加

　PDFエクスポートで、タイムスタンププロトコル
がサポートされました。ただし、残念ながら今回検
証は行えませんでした。認証局に制限があったりす
るのでしょうか。

Adobe Swatch Exchange（.ase）
サポート

　aseはAdobe InDesignやPhotoshopで使用されて
いるカラーパレットだそうです。これのインポート
ができるようになりました。興味深いのは機能その
ものより、FreedomSponsorsというサービスを使用

Impress/Draw

全般

https://bz.apache.org/ooo/show_bug.cgi?id=5930

172 - Software Design

Ubuntu Monthly Report

し、機能を実装した人に寄付を行ったことでしょう。
日本にもこのようなマッチングサービスがあればい
いのではないかと思います。もっとも、実装する人
がいないかもしれませんが……。

インポートフィルタの追加

　WriterではApple Pages（'09以前）、Calcでは
Apple Numbers（'09以前）、Lotus 1-2-3（wk3と
wk4）、Quattro Pro（wq1とwq2）、DrawではClaris

DrawとMacDraft（v. 1）のインポートフィルタが追
加されました。残念ながら筆者の手元にはこれらの
ファイルはないため、確認できませんでした。
MacDraftは初耳ですが、老舗のCADソフトだそう
で、日本語版は発売されていないようでした。

その他

　その他にもKeynote、MS Works、Adobe/Macro

media FreeHandインポートフィルタが強化されて
います。

インポートフィルタ
大幅なデザインの変更（Impress）

　Impressでは大幅にデザインが見直されました（図

4）。2段あったツールバーは1段になり、縦に広く使
えるようになった分、横に延びました。その余裕を
利用して、レイアウトにもスペースが入ったりもし
ています。

図形描画ツールバー（Draw）

　Drawでは、今まで下にあった図形描画ツール
バーが縦に表示されるようになりました（図5）。た
しかにDrawではページを縦置きで使用することが
多いため、下にツールバーがあるとそれだけ表示面
積が小さくなってしまいます。逆に横置きで使用す
ることが多いImpressでは、今のままがベストで
しょう。考えてみれば当然の変更です。

サイドバーの仕様変更

　次のサイドバーに仕様変更がありました。

・Impressの画面切り替えタブ

GUI

図4　Impressは全体的に横幅を広く取るようになりました。また、サイドバーのレイアウトにもスペースが入っています

172 - Software Design Sep. 2015 - 173

LibreOffice 5.0の変更点 第 65 回

・	 Impressのタブの順番
・	 Calcのプロパティタブ

の配置セクション
・	 Impress/Drawのプ

ロパティタブの［段落］
セクションに［インデン
トを増やす］［インデント
を減らす］ボタンの追
加

・	 Impress/Drawのプ
ロパティタブの［段落］
セクションに［レベル
を下げる］［レベルを
上げる］［下に移動］

［上に移動］ボタンの
追加

タブの仕様変更

　Calcのタブの仕様が変更になりました。まず、最
初と最後のシートに飛ぶボタンがなくなり、シート移
動のボタンが半減しました。最初か最後のシートに飛
びたい場合は、lキーを押しながら左右のシート移
動ボタンをクリックしてください。また、追加ボタン
がタブの左側に移動したことにより、複数のシートを
作る場合にそのままクリックすればよくなりました。
今までは追加ボタンはタブの右側にあったため、タブ
を増加すると追加ボタンも右にずれたので、専属して
タブを作成する場合はマウスを右にずらす必要があり
ました。タブをたくさん作ってスクロールが必要に
なった場合は、マウスホイールの回転によってタブの
表示をスクロールできるようになりました。これら
も、どうして今までこうならなかったのかが不思議な
変更で、かなり使い勝手が向上すると思います。

ユーザインターフェースに
システムフォントを使用

　古くからのOpenOffice.orgユーザの中には見覚え

機能削除

がある人も多いであろう、［ツール］-［オプション］-
［表示］-［ユーザインターフェースにシステムフォン
トを使用］機能が削除されました。常にシステムフォ
ントを使用するため、設定する必要がないとのこと
です。

64bit版の提供

　Ubuntuにはまったく関係ありませんが、5.0から
Windows用の64bit版インストーラも配布するよう
になりました。

　10月にリリースされるUbuntu 15.10とそのフレー
バーはLibreOffice 5.0がパッケージングされる見込
みです。そのほかのUbuntuでは、PPA注7を確認して
ください。｢

注7） https://launchpad.net/~libreoffice

Windows版

インストール方法

図5　Drawは縦幅を圧縮するために横幅を広く取ったという感じです

https://launchpad.net/~libreoffice

174 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

Kspliceです。現在はOracleにより管理され、
Oracle が OracleLinux、Red Hat Enterprise

Linux用のパッチを有料で、あるいはUbuntu、
Fedoraデスクトップ用のパッチを無料で配布し
ています。残念ながらKspliceは、Linuxカーネ
ル本体へのマージは行われませんでした。
　そこでカーネル本体へのマージを考慮に入れ
て作られたのが、Red Hatの kpatchおよび
SuSEのkGraftです。
　これら2つの実装はそれぞれLKML（Linux

Kernelの開発メーリングリスト）にほぼ同時期
に投稿されました。そのあと、2つの実装間の
比較や議論が行われ、ひとまずkpatchとkGraft

の両方が使うコア部分のみを“livepatch”として、
Linux 4.0にマージすることになりました。

livepatchモジュール
の構造

　まず、現在Linuxにマージされている live

patchがどのように動いているのかを見ていき
ましょう。Linuxカーネルには、livepatch機能
とともに livepatchを使うサンプルコードもマー
ジされています。このサンプルコードはサイズ

　Linux 4.2-rc3が7月19日にリリースされてい
ます。このまま順調にいけば、この雑誌が出る
ころにはLinux 4.2がリリースされているかもし
れません。今月はLinux 4.1の livepatch機能に
ついて紹介します。

カーネルの動的更新
：livepatch

　ユーザランドのセキュリティパッチに比べ、
カーネルのセキュリティパッチの適用は困難です。
パッチの適用には、新しいプログラムをインス
トールし、既存のプロセスを再起動するという
2つのステップがあります。ユーザランドのプ
ログラムであれば、そのプロセス単体の再起動
でパッチの適用を完了できますが、カーネルの
場合にはパッチの適用にはシステム全体の再起
動が必要となり、サービスの停止時間が長くなっ
てしまいます。
　そこでカーネルを動的に書き換え、システム
起動中にパッチの適用されたカーネルに切り替
える livepatchという機能が開発されています。
この機能を使うことで、カーネルを再起動する
ことなくセキュリティパッチを適用できるよう
になります。
　Linuxカーネルにおける live

patch機能は、現在3つの実装が
あります。最も歴史が古いのが

Linux 4.1の機能
〜カーネルの動的更新livepatch
Text：青田 直大　AOTA Naohiro

第42回第42回

Kernel hacking --->
 [*] Sample kernel code --->
 <M> Build live patching sample -- loadable modules only

 ▼リスト1　livepatchのサンプルをビルドする

174 - Software Design Sep. 2015 - 175

Linux 4.1の機能
〜カーネルの動的更新livepatch

Linux 4.1の機能
〜カーネルの動的更新livepatch

第42回第42回

も小さく、livepatchの使い方を知るには最適で
す（リスト1）。kernel configのリストに示す設定
（SAMPLE_LIVEPATCH）を有効にすること
で、サンプルのpatchモジュールがビルドされ
ます。このpatchを適用すると、本来カーネル
への引数を出力する/proc/cmdlineの出力が“this

has been live patched”に置き換えられます。
　patchモ ジ ュー ル（livepatch-sample）を mod

probeすることで、livepatchが適用されます（図

1）。このとき、同時に/sys/kernel/livepatchの
下に読み込まれた livepatchを示すエントリが作
られます。livepatch_sampleディレクトリの下
の“enable”はpatchが有効かどうかを制御し、
vmlinux/cmdline_proc_showは“vmlinux”（カーネ
ル本体）の“cmdline_proc_show”という関数が
patchされたことが示されています。ここで
“enable”に“0”を書くことで、livepatchがrevert

され、ふたたび/proc/cmdlineでカーネル引数
が表示されるようになります。
　それでは、サンプルのソースコード（リスト2）
を見ていきましょう。このコードを理解する上で
重要なのは、❶関数“livepfatch_cmdline_proc_
show”、❷構造体“struct klp_patch patch”、❸
関数“livepatch_init”の3つです。
　まず、関数 livepfatch_cmdline_proc_show()は

cat /proc/cmdline # 本来のカーネル引数
BOOT_IMAGE=/boot/vmlinuz-4.1.1-gentoo-r1 root=UUID=0bb07f44-2cbe-402c-84c9-253e3d1d7ce6 ro init=/
usr/lib/systemd/systemd
modprobe livepatch-sample # patchの読み込み
cat /proc/cmdline # patchが適用され、カーネル引数が表示されなくなった
this has been live patched
find /sys/kernel/livepatch/ # /sys/kernel/livepatch下にエントリができる
/sys/kernel/livepatch/
/sys/kernel/livepatch/livepatch_sample
/sys/kernel/livepatch/livepatch_sample/enabled
/sys/kernel/livepatch/livepatch_sample/vmlinux
/sys/kernel/livepatch/livepatch_sample/vmlinux/cmdline_proc_show
cat /sys/kernel/livepatch/livepatch_sample/enabled # livepatch_sampleが有効であるとわかる
1
echo 0 > /sys/kernel/livepatch/livepatch_sample/enabled # livepatch_sampleを無効にする
cat /proc/cmdline # カーネル引数が復活
BOOT_IMAGE=/boot/vmlinuz-4.1.1-gentoo-r1 root=UUID=0bb07f44-2cbe-402c-84c9-253e3d1d7ce6 ro init=/
usr/lib/systemd/systemd zswap.enabled=1
echo 1 > /sys/kernel/livepatch/livepatch_sample/enabled # 再びlivepatch_sampleを有効にする
cat /proc/cmdline # カーネル引数が隠される
this has been live patched

 ▼図1　サンプルpatchのテスト

#include <linux/seq_file.h>
static int livepfatch_cmdline_proc_show(structｭ
seq_file *m, void *v) ……❶
{
 seq_printf(m, "%s¥n", "this has been live ｭ
patched");
 return 0;
}

static struct klp_func funcs[] = {
 {
 .old_name = "cmdline_proc_show",
 .new_func = livepatch_cmdline_proc_show,
 }, { }
};

static struct klp_object objs[] = {
 {
 /* name being NULL means vmlinux */
 .funcs = funcs,
 }, { }
};

static struct klp_patch patch = { ……❷
 .mod = THIS_MODULE,
 .objs = objs,
};

static int livepatch_init(void) ……❸
{
 int ret;

 ret = klp_register_patch(&patch);
 if (ret)
 return ret;
 ret = klp_enable_patch(&patch);
 if (ret) {
 WARN_ON(klp_unregister_patch(&patch));
 return ret;
 }
 return 0;
}

 ▼リスト2　サンプルpatchモジュールのソースコード（抜粋）

176 - Software Design

Linuxカーネル観光ガイド

置き換え後の/proc/cmdlineの読み出し関数で
す。リスト3の本来の読み出し関数であるcmd

line_proc_showと同じ引数をとり、問題なく差
し替え可能なようにできています。
　次の“struct klp_patch patch”は、どのオブ
ジェクト（カーネル本体、またはモジュール）の
どの関数をどの関数に置き換えるかを記述する
構造体になります。1つのpatchで複数のオブジェ
クトの複数の関数を置き換えられるように、図

2のような少し複雑な構造になっています。
“struct klp_patch”のobjsは、対象オブジェク
トの配列となっています。各要素は“struct
klp_object”であり、その“name”要素がpatch対
象のモジュール名を示し（空文字の場合はカー
ネル本体）、“funcs”が書き換え対象の関数の配
列を示しています。末尾のエントリは funcsが
NULLとなっています。“struct klp_func”は
それぞれ“old_name”により置き換え前の関数の
名前を、“new_func”により置き換え後の関数の
アドレスを指定しています。末尾のエントリは
“old_name”をNULLとすることで示されます。
　最後の livepatch_initは、モジュールのロード
時に実行される関数です。ここで livepatchが登
録（klp_register_patch）され、有効にされていま

す（klp_enable_patch）。
　livepatchにおけるpatchは、patchする対象の
関数が何であるか、どのような関数に切り替え
るのかのデータを持つカーネルモジュールとし
て作られています。

livepatch適用の
しくみ

　次に livepatchによって古い関数を新しい関数
に置き換えるしくみについて見ていきまょう。
この部分にはkpatchもkGraftも、もちろんその
共通基盤としての livepatchも、すでにカーネル
に存在し長く使われているftraceという機能を
利用しています。
　ftraceとはFunction Traceの略で、Linuxカー
ネルの関数の動きをトレースするためのデバッ
グ用に用いられる機能です。この機能を使って
どの関数がいつ呼び出されたのかを調べること
ができます。
　ftraceの実現にはコンパイラのプロファイル
機能が使われています。コンパイラのプロファ
イル機能（-pg）を有効にすると関数呼び出しの前
に関数“mcount”（または -mfentryをつけた場合
は“__fentry__”）の呼び出しが追加されます（図

3）。本来はこの関数を使って、関数の呼び出
し回数をカウントするといったプロファイル
情報を収集します。Linuxカーネルでは、こ
の5byteの領域を起動時にNOPに書き換え
ます。そして、ftraceを使うときに必要に応
じてほかの関数の呼び出しに書き変え、トレー

スなどの機能を実現
しています。
　このftraceの機能
を使って、livepatch

は置き換え対象の関
数の前に関数 klp_

ftrace_handlerの呼
び出しを追加します
（図 4）。klp_ftrace_

handler は、ftrace

static int cmdline_proc_show(struct seq_file *m,ｭ
void *v)
{
 seq_printf(m, "%s¥n", saved_command_line);
 return 0;
}

 ▼リスト3　本来の /proc/cmdline読み込み用関数

 ▼図2　klp_patchの構造

klp_patch

- mod

klp_object[]- objs

- name = NULL

- funcs = NULL

- name = ""

- funcs

klp_func[]

- old_name = NULL

- funcs = NULL

- old_name = "cmdline_proc_show"

- new_func = livepatch_cmdline_proc_show

funcs = NULLで
末尾

old_name = NULLで
末尾

176 - Software Design Sep. 2015 - 177

Linux 4.1の機能
〜カーネルの動的更新livepatch

Linux 4.1の機能
〜カーネルの動的更新livepatch

第42回第42回

からの戻り先を新しい関数のアドレスに書き換
えることで、関数の置き換えを実現します。

livepatchが
危険な場合

　さて、この livepatchの機能を使うことで単純
な関数の入れかえは実行することができますが、
これだけでは危険な場合もあります。たとえば、
図5のような関数f()を考えてみましょう。関数
f()は、alloc()を呼び出し16byteの配列を確保
し、その後、f()の中でその配列
上のデータにアクセスします。
　この関数が使う配列のサイズを
16byteに変更する livepatchには
危険性があります。もしもf()を
実行し始めて、alloc()を実行す
る前に、livepatchの適用により関
数が入れかえられた場合、適用後

のalloc()で確保する8byteの配列を、もとの
f()が16byteの配列としてアクセスしてしまい、
バッファオーバーフローが発生してしまいます。
　このような livepatchを安全に適用するために
は、patchの当て方を工夫し、livepatch適用前
の関数と適用後の関数が同時に実行されないよ
うに保証する必要があります。このpatch適用
方法の違いが、kpatchとkGraftの違いとなって
います。

$ diff -u <(echo 'main(){}' ¦ gcc -x c -S -o - -) <(echo ｭ
'main(){}' ¦ gcc -x c -S -o - - -pg -mfentry)
--- /proc/self/fd/11 2015-07-20 18:43:43.353993325 +0900
+++ /proc/self/fd/12 2015-07-20 18:43:43.353993325 +0900
@@ -5,6 +5,7 @@
 main:
 .LFB0:
 .cfi_startproc
+ call __fentry__
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16

 ▼図3　プロファイルを有効にすると__fentry__が呼び出される

 ▼図4　livepatchの機能

Call__fentry__

書き換え対象の
関数

プロファイル機能で、
関数の先頭に
__fentry__呼び出しが入る

NOP x5

書き換え対象の
関数

起動時にNOPに
置き換えられる

call ftrace func

書き換え対象の
関数

ftrace func

書き換え後の
関数

klp_ftrace_handler

ftraceからの戻り先を
書き換える

 ▼図5　関数 f()の livepatchの危険性

char *buf;
……
buf = alloc();
……
buf[10] = 10;

return
 kmalloc(16);

f()

char *buf;
……
buf = alloc();
……
buf[5] = 5;

f() pached

alloc()
livepatch

適用

return
 kmalloc(8);

alloc pached

char *buf;
……
buf = alloc();
……
buf[10] = 10;

f()

return
 kmalloc(8);

alloc() pached

f()実行中に差し替えてしまうと？

8byteバッファの外に
アクセスしてしまった

178 - Software Design

Linuxカーネル観光ガイド

kpatchの
consistency model

　kpatchは livepatchの適用にstop_machine()を
使います。stop_machineは、すべての実行中の
プロセスおよび割り込みを停止し、最高優先度
で指定した関数を実行する機能です。
　stop_machineから呼ばれるkpatchの関数であ
るkpatch_apply_patchは、ここですべてのプロ
セスのバックトレースを調べ、置き換え対象の
関数が実行中でないことを調べます。どのプロ
セスのバックトレースにも置き換え対象となる
関数がなければ、この時点で安全に関数を差し
換えることが可能となります。
　この方法はstop_machine()を使うことで「すべ
てのプロセスが停止し、割り込みも発生しない」
という考えることの少ない状況を使えることから、
比較的実装がシンプルとなります。その一方で、
すべてのプロセスをpatch適用の間止めてしま
うので、その間のサービスの停止につながると
いう問題点もあります。

kGraftの
consistency model

　kGraftはkpatchに比べて、より複雑なpatch

適用を行ないます。kpatchではシステム全体で
atomicに古い関数から新しい関数への切り替え
を行なっていましたが、kGraftはタスク単位で
切り替えを行ないます（図6）。
　kGraftによるlivepatch適用を開始すると、シス
テムの全スレッドにTIF_KGR_IN_PROGRESS

というフラグが立ちます。そして、システムコー
ルから抜けるタイミングやシグナルから返るタ
イミングなどで、TIF_KGR_IN_PROGRESS

のフラグがクリアされます。
　kpatchでは置換後の関数にジャンプするだけ
のシンプルな関数をftraceで実行していました
が、kGraftはTIF_KGR_IN_PROGRESSのフ
ラグを見て呼び出す関数をpatch適用前の関数
にするかpatch適用後の関数にするかを決定し
ます。こうしてスレッドごとに順次patchが適
用されていきます。すべてのスレッドがシステ
ムコールなどでpatch適用後に切り替わると、
ftraceによって呼び出される関数がkpatchと同
様にシンプルにpatch適用後を呼び出すものに
切り替えられ、patch適用中にはあったオーバー
ヘッドをなくしています。
　patchの適用を完了するには、すべてのスレッ
ドがシステムコールやシグナルから返ってくる
必要があります。すなわちsleepしているスレッ
ドがあると、そのスレッドが起きるまでpatch

の適用が完了しないということになります。そ
れでは困るので、kGraftはpatchの適用が完了
していないスレッドに対してシグナルを送って
スレッドを起こします。
　kGraftはkpatchに比べてstop_machine()を使
わないため、プロセスが停止することがないと
いうメリットがあります。その一方で、kpatch

が独立したカーネルモジュールとして実装でき
ているのに対して、kGraftではさまざまなカー
ネル本体への変更を必要としています。たとえば、
スレッドの新しいフラグであるTIF_KGR_IN_

 ▼図6　kGraftの動作

patch適用中はスレッドのフラグによって処理を分岐 すべてのpatchが新しい関数を呼ぶようになると
分岐をなくして処理を最適化

call ftrace func

書き換え対象の
関数

ftrace func

書き換え後の
関数

kGraftの
ハンドラcall ftrace func

書き換え対象の
関数

ftrace func

書き換え後の
関数

kGraftの
ハンドラ

スレッドのフラグに
よってどちらかに分岐

178 - Software Design Sep. 2015 - 179

Linux 4.1の機能
〜カーネルの動的更新livepatch

Linux 4.1の機能
〜カーネルの動的更新livepatch

第42回第42回

PROGRESSや、カーネルスレッドがいつ安全
にpatch後に切り替えられるかを示すためにカー
ネル本体のさまざまな場所に変更が必要となっ
ています。

kpatchの
userland tool

　最後にkpatchのuserland toolであるkpatch-

buildを紹介します。前述したように livepatch

はkernel moduleとして構成されています。し
かし、実際にセキュリティパッチを当てたいと
いうときには、patchからどのモジュールのどの
関数をどのように書き換えるかを考えて、
livepatchとして動作するカーネルモジュールを
作成するというのは面倒なものです。kpatch-

buildはこの作業を自動化し、patchを与えると
livepatchとして動作するカーネルモジュールを
作成してくれます。
　では、リスト4のように/proc/cmdlineの出力
に“LIVE PATCHED: ”を追加するpatchから live

patch moduleを作ってみましょう。
図7のようにkpatch-buildを使い
“-s”でカーネルのソースコードを、
次の引数にpatchのパスを指定し
ます。kpatch-buildは指定された
patchを用いて次のプロセスで
livepatch モジュールを作成します。

・元のソースからカーネルをビルド

・patchを適用し、カーネルをリビルド

・objectファイルを比較し、差分を抽出

・�差分のobjectファイルをまとめと、livepatch

モジュールを作成

　差分を抽出するときに関数ごとに独立したセ
クションが作らるので、差分のobjectファイル
は自然にリンクしてまとめることができます。
実際、ここでモジュールのセクションを見てみ
ると書き換えている関数である“cmdline_proc_
show”に対応する“.text.cmdline_proc_show”と
いうセクションができているのがわかります。
なおビルドされた livepatchモジュールはpatch

のファイル名から自動的に名前が付けられます。
　ビルドされたkpatch-patch-cmdline-overwrite.

koを読み込むと、たしかに/proc/cmdlineがpatch

適用された形に変わっていることがわかりま

す。｢

$ sudo ./kpatch-build/kpatch-build -s /usr/src/linux-4.1.1-gentoo-r1 /tmp/patch-cmdline-overwrite
Using source directory at /usr/src/linux-4.1.1-gentoo-r1
Testing patch file
checking file fs/proc/cmdline.c
Building original kernel
Building patched kernel
Extracting new and modified ELF sections
cmdline.o: changed function: cmdline_proc_show
Patched objects: vmlinux
Building patch module: kpatch-patch-cmdline-overwrite.ko
SUCCESS
$ objdump -h kpatch-patch-cmdline-overwrite.ko¦grep cmdline_proc_show
 8 .text.cmdline_proc_show 00000022 0000000000000000 0000000000000000 00000590 2**4
$ sudo insmod kpatch-patch-cmdline-overwrite.ko
$ dmesg¦tail -n 1
[245544.727112] livepatch: enabling patch 'kpatch_patch_cmdline_overwrite'
$ cat /proc/cmdline
LIVE PATCHED: BOOT_IMAGE=/boot/vmlinuz-4.1.1-gentoo-r1 root=UUID=0bb07f44-2cbe-402c-84c9-ｭ
253e3d1d7ce6 ro init=/usr/lib/systemd/systemd zswap.enabled=1

 ▼図7　kpatch-buildによる livepatchの作成と適用

--- a/fs/proc/cmdline.c 2015-07-21 10:50:52.293345753 +0900
+++ b/fs/proc/cmdline.c 2015-07-21 10:51:16.415734984 +0900
@@ -5,7 +5,7 @@

 static int cmdline_proc_show(struct seq_file *m, void *v)
 {
- seq_printf(m, "%s¥n", saved_command_line);
+ seq_printf(m, "LIVE PATCHED: %s¥n", saved_command_line);
 return 0;
 }

 ▼リスト4　/proc/cmdlineへのpatch

180 - Software Design

■ソフトウェアのポータビリティとは

　はじめに、ソフトウェアのポータビリティには、
可搬性、移植性、データの融通性という3つの意味
合いがあることを示し、今回の発表ではその中から
おもに移植性について話をするという前置きがあり
ました。ソフトウェアの移植性は昔から重視されて
いて、1958年ぐらいにはすでにそれに関する論文が
書かれていたようです。また、UNIXにとっても移
植性は重要な特徴の1つであり、UNIXはCPUの種
類を超えて移植可能な最初のOSでした。その結
果、UNIXは多くの子孫を産み、現在に至るまで広
く使われ続けています。
　LibreOfficeのようなアプリケーションソフトウェ
アにとっても移植性は大事ですが、OSにとっての移
植性がおもに対ハードウェアであるのに対して、ア
プリケーションの場合は対ハードウェア、対OS、
対ミドルウェアなど多くの要素を考慮しなければな

らず、移植性を維持する
のはより難しくなります。
そのような厳しい条件下
においてもLibreOfficeの
移植性は高く、現在でも
Windows XP/7/8、Mac

OS X、Linux、FreeBSD/

NetBSD/OpenBSD/

DragonflyBSD、Android

など幅広いアーキテク
チャをサポートしていま
す。さらに iOSもサポー
トしようとしていたり、

　毎年、沖縄で行われるオープンソースカンファレ
ンスにて研究会を開催しています。今回は沖縄在住
でLibreOfficeなどの開発に携わっている安部さん
（写真1）を講師にお迎えし、ソフトウェアのポータ
ビリティに関する考察を語っていただきました。参
加者は8人でした（写真2）。

	 ■古くて新しいLibreOfficeから見る

	 	 ポータビリティ

	【講師】安部 武志（LibreOffice日本語チーム）

	【司会】法林 浩之（日本UNIXユーザ会）

	【日時】2015年7月4日（土）15:15〜16:00

	【会場】沖縄コンベンションセンター

	 	 会議場B1（B棟2F） B会場

写真1　安部武志氏 写真2　研究会の様子

jus研究会　沖縄大会

公益のために……LibreOfficeのポータビリティへの挑戦

NO.47
September 2015

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/

Sep. 2015 - 181180 - Software Design

WebブラウザからLibreOfficeを使えるようにするし
くみも開発中です。

■LibreOfficeの移植性に対する考え方

　ここで、LibreOfficeの移植性に関する考え方がい
くつか示されました。1つめは、モダンなC++コン
パイラを使うことと、本当に必要なときだけクロス
コンパイルすることです。ビルドスクリプトは
GNU Makeベースで書かれており、bashなどのシェ
ルが動く環境であればどこでも動作します。2つめ
は拡張機能の本体への取り込みを積極的に行ってい
て、その際にJavaではなくC++を使用しているこ
とです。Javaは移植性が高いように思われています
が、実際にはJavaのバージョンやOSベンダの数だ
け実行環境のバリエーションが増えるので、移植性
の維持という観点ではかえって面倒です。3つめは、
LibreOfficeではバンドルしているライブラリが山
のようにあるので、依存するライブラリもできるだ
けポータブルなものを選ぶようにすることです。
　しかし、このような基本だけでは通用しないのが
モバイル環境への移植です。たとえばAndroidでは
dynamic linkerが特殊だったり、アプリケーション
の実行ファイルを50MBまでに抑えなければならな
いなどの制約があったりします。また、Touch対応、
Tiled rendering、編集用のUIコンポーネントなど、
モバイル環境ならではの移植ポイントも多々ありま
す。Firefox for Androidという先行事例があるの
で、それを参考にしながら開発が進められています
が、ブラウザは基本的に閲覧機能だけで良いのに対

して、LibreOfficeでは編集機能が必要なので、そこ
は自前で開発せざるを得ないようです。iOS版では
さらに厳しい制約があり、開発の難易度も高いとの
ことです。

■クロスプラットフォームであることの意義

　さらに、LibreOfficeがクロスプラットフォームであ
ることの意義について話がありました。開発者にとっ
ての移植性は、次世代の開発者が新しい環境へ移植
する手間をできるだけ少なくすることで開発効率を高
めるためのものです。しかし、ユーザにとっては移植
性の帰結であるクロスプラットフォーム性、すなわち
多くの環境で同じソフトウェアが動き、同じデータを
使い回せるというデータの融通性が重要です。
　LibreOfficeにおけるクロスプラットフォームの
意義は、従来のデスクトップ環境を所持していない
人、たとえばパソコンがなくスマホしか持っていな
い人などにも使ってもらえる可能性を生み出す点に
あります。とくにオフィススイートは公益性が大事
で、たとえばイギリスでは内閣府が共有文書の
フォーマットとしてODFを採用したり、スペイン
では地域によって異なる公用語が使われているのを
LibreOfficeでは両方サポートしている（図1）のは、
公益性を維持するための努力と言えます。
　最後に、移植性は昔も今も重要であること、
LibreOfficeでは移植のノウハウは蓄積されている
が今後も挑戦が続くこと、LibreOfficeがポータブル
であることの意義は、ソフトウェアの開発効率向上
だけでなく、公益への寄与という点でも重要である

ことを述べて講演を
締めくくりました。
　実際に開発者とし
て活動している安部
さんならではの実感
のこもった、内容の
濃い発表でした。｢

図1　発表資料「古くて新しいLibreOfficeから見るポータビリティ」より注1
注1） http://fixedpoint.

jp/2015/07/04/

公益のために……LibreOfficeのポータビリティへの挑戦 September
2015

http://fixedpoint.jp/2015/07/04/

182 - Software Design

SNSにおける取り組み

　東日本大震災以降、災害時におけるTwitterや
FacebookといったSNSの有効性は多くの方が実感
されているでしょう。この流れを受けて、各SNS

は災害時に利用できる機能を実装する動きが見られ
ます。またユーザ自身がSNSの機能を活かして災
害に備えたり、復旧活動につなげるという利用方法
も見受けられるようになりました。著者が把握して
いる動きを以下にまとめてご紹介します。

Facebook

　Facebookでは2014年10月に「災害時情報セン
ター注1」を新機能として発表しました。この機能は
「Facebook上でつながっている友達や家族に自分が
無事であることを知らせる」、「災害の影響を受けた
地域にいる人の安否を確認する」、「Facebook上で
つながっている友達の無事を報告する」という3つ
があり、最近ではネパール大震災で利用されまし
た注2。紙幅の都合で、詳しくはFacebookの紹介
ページをご覧いただきたいのですが、この機能は東
日本大震災をきっかけにして生まれたものです。
　また、Facebookは2015年3月に「Facebookを活
用した災害対策と対応注3（写真1）」というガイドを
発表しています。ガイドは「災害時対応と災害支援
を担う組織のためのヒント」、「救助隊と行政機関の

注1	 災害時情報センターのご案内
http://ja.newsroom.fb.com/news/2014/10/safety
check/

注2	 https://www.facebook.com/safetycheck/nepalearth
quake

注3	 http://ja.newsroom.fb.com/news/2015/03/facebook_
disaster_response/

ためのヒント」、「個人とコミュニティのためのヒン
ト」の3つで構成されている内容で、それぞれの立
場から投稿や写真・動画の利用目的がどういったも
のであるべきかが述べられており、「Facebookを災
害時にどのように使うか」の指針として参考になる
情報が盛り込まれています。

Twitter

　Twitterでは2013年9月に新機能としてTwitter

アラート注4を開始しました。この機能は、信頼性
のある機関・団体からアラートのマークを付けて出
された重要なツイートを、スマートフォンのプッ
シュ通知で受け取ることができるものです。
　ここで定められている“信頼性のある機関・団体”
とは、一般市民に向けて緊急情報を提供する国、地
方、および国際機関としています。具体的には「警
察および安全対策機関」、「緊急通報受理機関」、「地

注4	 https://about.twitter.com/ja/products/alerts

Hack For Japan
エンジニアだからこそできる復興への一歩

防災・減災とIT 〜SNSとメディアの取り組み編〜第45回
Hack For Japanの活動においては、復興支援に加え、前号で取り上げた「国連防災世界会議」の
ような「防災・減災」をテーマにする機会も増えてきました。そこで今回の連載では「防災・減災
とIT」をテーマにSNSとメディアにおけるトピックを取り上げて紹介します。

●Hack For Japanスタッフ
　佐伯 幸治　SAEKI koji
　 Twitter @widesilverz

◆◆写真1　「Facebookを活用した災害対策と対応」表紙

https://about.twitter.com/ja/products/alerts
http://ja.newsroom.fb.com/news/2014/10/safetycheck/
https://www.facebook.com/safetycheck/nepalearthquake
http://ja.newsroom.fb.com/news/2015/03/facebook_disaster_response/

Sep. 2015 - 183

防災・減災とIT 〜SNSとメディアの取り組み編〜第45回

方自治体およびその付属機関」、「地方自治体の業務
を担う郡または地区の行政サービス機関」、「特定の
政府官公庁、民間非営利団体」と限定され、原稿執
筆時点（2015年6月）では104機関・団体のアカウン
トがTwitterアラートに登録されており、「警視庁警
備部災害対策課」、「東京消防庁」、「新潟県長岡市危
機管理防災本部」など、さまざまな機関・団体が確
認できます。興味のある方は一度リストをご覧に
なって、気になる機関・団体をフォローしておくこ
とをお勧めします注5。
　このTwitterアラートは、Twitterで情報提供をす
る側にもメリットがあります。想定されるのは各機
関・団体のTwitter運用担当者が被災したケースで、
災害時、担当者は必ずしもオフィスにあるパソコン
を使ってツイートできる場所にいるとは限りませ
ん。そのためTwitterアラートでは、パソコンと携
帯電話・スマートフォンからの緊急情報を発信可能
としており、また専用のツイート作成ボックスを使
用してアラートツイートを作成、重要なツイートと
してタグ付けすることができます。
　そもそもTwitterは、ほかのSNSに比べて東日
本大震災時から多くのユーザに利用されていた経緯
から、都道府県・市区町村といった自治体でのアカ
ウント導入が進んでおり、平時から生活やイベント
情報と同様の扱いで、大雨の際の注意を促すなど災
害情報を市民へ向けて発信しているアカウントも見
られます。Hack For Japanスタッフが参加して立ち
上げた「減災インフォ（詳しくはコラム参照）」の
Twitterアカウントでは、災害情報を発信している
自治体のアカウントを活用しやすいように都道府県
別にリスト化しています注6。
　こうしたTwitterアラートやTwitterアカウント
リストの利用以外にも、ハッシュタグやGPS情報
を組み合わせた利用方法も検討されています。たと
えば埼玉県和光市では、2014年2月に和光市の災害
に関するハッシュタグを「#和光市災害」と定めるこ
とを公式発表し、防災訓練にてハッシュタグを活用

注5	 https://about.twitter.com/ja/products/alerts/
participating-organizations

注6	 https://twitter.com/gensaiinfo/lists

「減災インフォ」についてColumn

◆◆図A　「減災インフォ」Webサイト

http://www.gensaiinfo.com/

　Hack For Japanスタッフがかかわっている「減災イ
ンフォ」というプロジェクトが始まっています。6月に
はサイトをオープンしており、減災に関するさまざま
な情報を発信していく予定です（図A）。現在サイトで
は「ブログ」、「自治体と地域メディア」、「災害復興ボラ
ンティア」、「災害の種類とこれまで」、「勉強会」、「減災
友達の輪☆」といったコンテンツを用意しています。ブ
ログでは「災害時の情報まとめ（口永良部島噴火情報な
ど）」、「イベント関連レポート（Twitter勉強会レポート
など）」、「メディアやSNSに関する減災情報まとめ（市
町村のTwitter導入状況など）」といった記事を公開し
ています。
　イベントの1つ、Twitter勉強会ではTwitter社の協
力を得て災害時におけるTwitterの使い方を学ぶ場を
開催したり、減災情報のまとめでは自治体のTwitter
アカウント導入状況をまとめるといった活動を行いま
した。今後もイベントなどを考えていますので、興味
ある方はご参加ください。
　「自治体と地域メディア」では、信頼できる情報を収
集して減災につなげていくため、都道府県別・市区町村
別に信頼性のある情報発信元を調べてリンクで一覧に
しています。お住まいの地域でどのような情報サービ
スが提供されているか、入手可能かを調べておくこと
ができます。ぜひお住まいの地域について確認してみ
てください。
　減災インフォはTwitterでも随時、情報発信してい
ます。アカウントは@gensaiinfoです。皆さんのフォ
ローお待ちしています！

https://about.twitter.com/ja/products/alerts/participating-organizations
https://twitter.com/gensaiinfo/lists
http://www.gensaiinfo.com/

184 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

する取り組みを始めています注7。この和光市の取り
組みにならって市区町村レベルで災害時ハッシュタ
グの活用が広がりを見せており、「#宇部市災害」、
「#北本市災害」、「#狭山市災害」、「#清瀬市災害」、
「#金沢区災害」、「#御嵩町災害」といったハッシュ
タグが導入されています。
　公的機関以外では、群馬県建設協会アカウントの
Twitterでの発信が一例として挙げられます。
『2014年2月の記録的な大雪の際、除雪の様子をツ
イッターで発信したところ大きな反響があったこと
から、一般向けの広報活動に生かせると判断。同協
会の「災害情報共有システム」を刷新し、現場からの
情報をソーシャル・ネットワーキング・サービス
（SNS）で簡単に発信できる機能を追加した。（引用
元：日経コンストラクション）』とあるように、群馬
県建設協会は、平時からパトロールなどの状況を
GPS情報付きで発信、災害時への備えとしていま
す注8（図1）。

LINE & Instagram

　現状、筆者の周囲での防災・減災情報のSNS活用

注7	 災害時におけるツイッターハッシュタグの利用について
http://www.city.wako.lg.jp/home/kurashi/bousai/
bousaitaisaku/_13853.html

注8	 http://www.gun-ken.or.jp/anshin.html
https://twitter.com/gunken000

としては「Twitterで情報発信・収集→Facebookグ
ループでコメントをやりとりして情報を深掘りす
る」といった使い方が多いように思われ、LINEと
Instagramについては、これから活用されていく印
象を持っています。しかしながら平時からLINEは
多くの方が利用しており、また海外ではInstagram

の利用が多いということを考慮すると、これらも軽
視できません。
　LINEについては、オープンなパブリックアカウ
ントとして運用可能なLINE@の自治体での導入が
見受けられます。一例として挙げると埼玉県、滋賀
県大津市危機・防災対策課、大阪府柏原市などがア
カウントを取得しており、福岡県大野城市による
「市民のみなさんへ、防災訓練をお知らせする連絡
網」として活用されている事例がLINE＠のブログ
で読むことができます注9。
　Instagramについては国内での活用事例は目立っ
ていないのですが、海外ではネパール大震災の際
に、ネパールやインドの写真家たちが立ち上げた
「ネパールフォトプロジェクト」がハフィントンポス
トやwiredで取り上げられており、原稿執筆時点で
約6万人のフォロワーを集め継続的に投稿されてい
ます注10。また補足ですが、ネパール大震災ではド
ローンによる被災状況を空撮した動画がSNS経由
で拡散されていったことも注目に値します。ドロー
ンによる取り組みは日経新聞でも取り上げられ、今
後は利用規制との折り合いをどのようにつけるかが
課題として挙げられます注11。

注9	 「防災訓練のお知らせ」福岡県『大野城市』の市民を守るメッ
セージ
http://blog.lineat.jp/archives/25032901.html

注10	 HELPING NEPAL’S QUAKE SURVIVORS—WITH
INSTAGRAM
http://www.wired.com/2015/05/tara-bedi-sumit-
dayal-nepal-photo-project/
ネパール大地震でSNSを使った復興プロジェクト「写真や動
画が災害時に機能するかどうかの試み」
http://www.huffingtonpost.jp/2015/05/13/nepal-
instagram-plays-vital-role-_n_7280128.html

注11	 Drone Films Bird's-Eye View of Nepal Quake
Devastation　NBC News
https://www.facebook.com/NBCNews/videos/1070
798179606878/
ドローン、ネパールに集結 地震被災状況を空撮で把握、対
応力欠く国を世界が支援
http://www.nikkei.com/article/DGKKZO86898300W5A5
10C1TZN000/

◆◆図1　群馬県建設協会アカウントのツイート

http://www.city.wako.lg.jp/home/kurashi/bousai/bousaitaisaku/_13853.html
http://www.gun-ken.or.jp/anshin.html
https://twitter.com/gunken000
http://blog.lineat.jp/archives/25032901.html
http://www.wired.com/2015/05/tara-bedi-sumit-dayal-nepal-photo-project/
http://www.huffingtonpost.jp/2015/05/13/nepal instagram-plays-vital-role-_n_7280128.html
https://www.facebook.com/NBCNews/videos/1070798179606878/
http://www.nikkei.com/article/DGKKZO86898300W5A510C1TZN000/

Sep. 2015 - 185

防災・減災とIT 〜SNSとメディアの取り組み編〜第45回

情報についてはTwitterアカウント「NHK生活・防
災（@nhk_seikatsu）」で発信されています。
　こうしたNHKの試みをきっかけにした民放各局、
新聞、ネットメディアによる災害対応やそれぞれの
連携も今後、期待されるところです。

◆　◆　◆
　以上、「防災・減災とIT」として今回はSNSとメ
ディアでの取り組みをご紹介しました。これら以外
にもYahoo!防災速報注15や自治体の災害対応アプ
リ注16、JAXAによる標高データの無償公開注17、災害
対応のための自治体サイトの改善注18など（技術評論
社からも『［オープンデータ＋QGIS］統計・防災・環
境情報がひと目でわかる地図の作り方注19』が発売さ
れています！）、さまざまな分野で多様な取り組み
が見られますので、またの機会に紹介したいと思い
ます。s

注15	 Yahoo!防災速報、「土砂災害警戒情報」「指定河川洪水予報」
の提供を開始
http://news.mynavi.jp/news/2015/06/19/277/

注16	 防災アプリ：好評　行政オープンデータ活用　埼玉・北本市
http://mainichi.jp/select/news/20150526k0000e040
203000c.html

注17	 世界最高水準の全世界標高データ（30m版）の無償公開につ
いて
http://www.jaxa.jp/press/2015/05/20150518_daichi_
j.html

注18	 災害対策＆セキュリティを強化、茨城県公式ホームページが
リニューアル
http://www.rbbtoday.com/article/2015/04/03/130117.
html
ホームページ一新 災害情報見やすく スマホ対応も 名張市
http://www.iga-younet.co.jp/news1/2015/04/post-
877.html

注19	 http://gihyo.jp/book/2014/978-4-7741-6913-2

メディアにおける取り組み

　メディアでは、NHKのITを利用した防災・減災
への取り組みが目立っているようです。大きなト
ピックとしては3つ挙げられます。
　1つめは5月に起きた口永良部島噴火でのネット
とテレビの同時配信の試みです。NHK総合テレビで
放送中の番組がNHKオンラインで同時配信される
というもので、テレビのない状況でもインターネッ
トにつながってさえいれば、現地の避難状況を見る
ことができました注12。なお原稿執筆時点において、
箱根山の噴火警戒レベルが2（火口周辺規制）から3

（入山規制）へ引き上げられたことから、NHKはライ
ブ映像を公開しリアルタイムでの状況を伝えていま
す（図2）。
　2つめは『データジャーナリズムの新番組「データ
なび」と、NHKが制作した報道のWebサイトを紹介
するポータルサイト。ビッグデータの解析などでつ
かんだ新たな発見を分かりやすく伝えます』（番組紹
介より）とした「データなび注13」サイトを4月にオー
プンしたことです。このサイトではテーマとして災
害が設けられ、口永良部島噴火、御嶽山噴火、震災
ビッグデータ、原発事故といった切り口でデータを
元にしたコンテンツが見られます。
　3つめとしてNHKは「ソーシャル・リスニング・
チーム（Social Listening Team＝SoLT：ソルト）」
というプロジェクトを2013年に発足させています。
これは複数人でTwitterのタイムラインを観測し
て、事故やトレンドの端緒を迅速につかみ報道につ
なげることを目的とした取り組みとして始まりまし
た。現在も試行錯誤している段階のようですが、災
害時での活用も想定されています注14。NHKの災害

注12	 NHK、テレビ放送をネット同時配信　口永良部島の噴火受
け
http://www.itmedia.co.jp/news/articles/1505/29/
news082.html

注13	 http://www.nhk.or.jp/d-navi/
注14	 震災ビッグデータからソーシャルリスニングへ

http://www.nhk.or.jp/bunken/book/regular/media/
media11/2_06.pdf
ＮＨＫ報道局が実践している「ソーシャル・リスニング・チー
ム」とは？
http://www.gensaiinfo.com/blog/2015/0710/2076/

◆◆図2　NHKによる箱根山ライブ映像

http://news.mynavi.jp/news/2015/06/19/277/
http://www.jaxa.jp/press/2015/05/20150518_daichi_j.html
http://www.rbbtoday.com/article/2015/04/03/130117.html
http://www.iga-younet.co.jp/news1/2015/04/post-877.html
http://gihyo.jp/book/2014/978-4-7741-6913-2
http://www.itmedia.co.jp/news/articles/1505/29/news082.html
http://www.nhk.or.jp/d-navi/
http://www.nhk.or.jp/bunken/book/regular/media/media11/2_06.pdf
http://www.gensaiinfo.com/blog/2015/0710/2076/

186 - Software Design

はじめに

　1982年10月、IBM-PCに遅れ
ること約1年。我が国の標準とな
る16bitパソコン「NEC PC-9801」
が登場しました。その10年後の
1992年には、筆者は「PC-9801
スーパーテクニック」注1の一部
を執筆しており、PC-9801の内
部を解析することで、その特徴
を活かしたソフトウェアを書い
ていました。ちょうど初代PC-
9801が手元にありますので、今
回はそれを動かしながら話を進
めましょう。

初代PC-9801の
３つの強み

　1982年は、富士通のFM-7
（6809 2MHz）、シャープのMZ-
2000、X-1（Z80 4MHz）のよう
な高性能な第2世代の8bitパソ
コンが登場してきており、NEC
のPC-8801の動作の遅さが目
立ち始めたときでした。
　そこで登場したのがPC-
9801です。このマシンには、ほ
かのパソコンを超える次の3つ
の強みがありました。
注1） 『PC-9801スーパーテクニック』、小

高輝真、清水和文、速水祐 共著
（1992）、アスキー出版

❶�16bit Intel 8086による高速性と

広大なメモリ空間

❷�グラフィックディスプレイコン

トローラ（GDC）を使用した高速

な描画

❸漢字テキストVRAM

　さらにNECが独自に開発した
N88-BASIC(86)搭載によって、
8bitマシンであるPC-8801の
N-BASICとの互換性を保ち、過
去のPC-8801のBASICソフト
ウェアが動作可能だったのです。

❶ Intel 8086

　IBM-PCは、データバスが
8bitのIntel 8088を採用してい
ましたが、PC-9801はデータバ
スが倍の16bit Intel 8086（i8086）
を採用していました。動作周波
数は、IBM-PCが4.77272MHz
だったのに対し、PC-9801は
4.9152MHz（約5MHz）でした。
バス幅の増加とクロックの上昇
により、高速化をかなり期待し
たのですが、第2世代の8bitパ
ソコンは最適化が進んでいた
ため、実測してみると数十％程
度の速度アップにすぎませんで
した。
　i8086の強みは、むしろメモ

リ空間の広大さです。標準的な
8bit CPUの64KBに対してな
んと 16倍の 1,024KBとなり、
入り江から大海に放り出された
ような大きさでした。
　その後、筆者はこの感覚を二
度感じています。1988年ごろの
80386の32bitモードにおける
1MB→4GB（約4,000倍）、そし
て最近のx86アーキテクチャの
64bit化である x86-64 4GB→
16EB（約43億倍）です。最後の
変化は、宇宙に放り出されたよ
うに倍率は大きく進歩していま
すが、最初の16倍の方がうれ
しく感じた記憶があります。
　メモリマップを図1に示しま
す。標準実装メモリは、128KB
と全体の一部でしたが、64KB
がシステムにほとんど占領され
てわずかなフリーエリアを使っ
ていた8bitマシンに比べると、
かなり自由に使えるメモリエリ
アだと思いました。この後すぐ
に640KBのエリアも小さく思
えてくるのですが……。

❷高速な描画を
実現するGDC

　i8086の実行スピードについ
ては，少し期待外れでしたが、
描画スピードに賭けるものがあ

温故知新
ITむかしばなし

速水 祐（HAYAMI You） 　http://zob.club/ Twitter : @yyhayami

初代PC-9801の
ライン描画速度に魅せられて

第46回

http://zob.club/

186 - Software Design Sep. 2015 - 187

りました。PC-9801には、NEC
の開発した描画機能を持つ
GDC（ Graph i c s D i sp l a y
Controller）μ PD7220 が 2 つ
搭載され、それぞれテキスト表
示管理とグラフィック描画管理
を行います。
　それまでのパソコンでは、ラ
イン描画が非常に遅く、当時ラ
イン描画を含むゲームを作成し
ていたとき、最適化したマシン
語プログラムでも望むスピード
が出ず、製作を断念したことが
ありました。ですので、GDC
を使ったライン描画速度には興
味があり実験してみました。
　当時の最新の8bitパソコン
だったMZ-2000（Z80 4MHz）
で151秒かかったプログラム
が、PC-9801では、なんと10秒！
　圧倒的な速さでした。CPU
の速度が数割しかアップしてい
ないのに対して、約15倍であ
り、大きな速度変化を体感しま
した。これはBASICで作成し
たプログラムでもゲームとして
利用できるレベルで、現在、実
際に実行しても速度と描画の滑
らかさがわかります。
　GDCにはライン描画のほか、
円／円弧／四辺形／グラフィッ
ク文字描画などの機能があり、
グラフィックBIOSではこれら
の機能がサポートされていまし
た。当初のGDCは、グラフィッ
クVRAMのプレーンごとの描
画でしたがPC-9801VM以降に
搭載されたGRCG（グラフィッ
クチャージャ）による複数プレー
ン同時描画や2.5MHzから5MHz
にクロックアップされ、描画ス
ピードはさらに上がりました。

❸漢字テキスト
VRAM

　漢字コードを漢字テキスト
VRAMに書き込むだけで描画が
可能で、スクロールのスピード
なども非常に高速でした注2。そ
して、この機能を使った実用的
な日本語ワープロの、管理工学
研究所の「松」やジャストシステ
ムの「一太郎」が登場することに
なります。後にFreeBSDを日
本語化する際にも、AT互換機
に比べて設定が簡単で高速な表
示／スクロールを実現できてい
ました。

N88-BASIC(86)
（互換性）

　PC-8001、PC-8801と続く
NECのパソコンのBASICは、
Microsoft製だったのですが、
PC-9801 の N88-BASIC(86)
は、NEC製なのです。その製
作の過程は、互換性の確保と時
間との壮絶な戦いだったようで
す注3。そのあとのPC-9801進歩
は、その互換性を維持した状態
での機能の拡大でした。ほかの
コンピュータやゲーム機もこの
ように互換性を確保した機能拡
張に成功したマシンがメジャー
になっていったようです。

おわりに

　Windowsの登場は、PC-9801
の強みを覆すものでした。

注2） 初代PC-9801では、第1水準漢字
ROMは、オプションで、専用のス
ロットに設置することで漢字が使用
できるようになっていました。

注3） 『パソコン創世記』、富田倫生著
（1994）、TBSブリタニカ

　Windowsでは、単機能なGDC
によるグラフィック描画は使え
ないものであり、漢字テキスト
VRAMもインストール以外に使
用することはなく、Windowsの
互換性があれば、PC-9801の互
換性は必要なくなりました。ま
さに強みが逆に作用して、21世
紀になるとPC-98の終焉を迎
えることになりました。
　しかし、今、あらためてPC-
9801を動かしてみると、エディ
タ、ワープロや単純なゲームな
どは、現在のレベルで操作して
も実用的に使用できます。レト
ロPCブームも盛り上がりつつ
ありますが、みなさんも家で
眠っているPC-98を動作させ
ると、また新たな温故知新にな
るかもしれませんね。｢

 ▼図1　PC-9801のメモリマップ

温故知新 ITむかしばなし
初代PC-9801のライン描画速度に魅せられて

第46回

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

https://www.conoha.jp
https://www.conoha.jp
https://www.conoha.jp
https://www.washingtonpost.com
https://www.washingtonpost.com

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://www.super-ping.com/
http://www.super-ping.com/

192 - Software Design

　グレープシティ㈱は7月16日、.NET 帳票開発コンポー
ネント「ActiveReports for .NET 9.0J Professionalエディ
ション」の新機能として、帳票の管理運用を行うサーバ
製品「ActiveReports 9.0J Server」をリリースした。
　ActiveReportsは外観デザインの設定からデータ接続、
印刷・PDFへの出力設定まで、あらゆる機能を備えた帳
票開発コンポーネント。今回そのProfessionalエディショ
ンに追加されたActiveReports Serverは、ActiveReports
で作成した帳票の運用管理に特化したサーバ製品であ
る。製品をWebサーバ（IIS）にインストールするだけで
帳票運用環境を構築でき、使いやすいポータル画面で帳
票のアップロード、プレビュー、印刷、スケジュール配

信などの機能が利用できる。このActiveReports Server
の運用には、基本サーバライセンス（ActiveReports for
.NET Professionalエディションユーザは無料で入手可
能）とエージェントがインストールされたサーバのコア
数に応じたコアサーバライセンスが必要となる。

グレープシティ、
「ActiveReports 9.0J Server」をリリース開始

　㈱マクニカは7月8日、非接触ひずみセンサ搭載のIoT/
M2M開発ソリューション「Mpression CiP-1」を発売した。
　Mpression CiP-1は、搭載されているインダクティブセ
ンサが対象金属までの距離をサブミクロン単位で計測す
ることで、非接触のひずみセンサを実現している。イン
ダクティブセンサによる金属のひずみ検出や屋外・屋内
でのねじ抜け情報などの検出を行いながら、周囲の照度・
湿度・温度・ターゲット製品の熱源温度を計測できる。
　同製品はテキサス・インスツルメンツ社の各種センサ
を搭載し、同社の開発評価キット「CC3200MOD
LaunchPad」に接続することでWi-Fiを使用して、センサ
が取得した情報をモニタ確認できる。現在マクニカでは、

これをゲートウェイやMobile Wi-Fiルータなどに接続
し、AWSにセンサデータを転送する試験を実施してい
る。今後は、同社子会社のマクニ
カネットワークスが取り扱うマ
シンデータ分析プラットフォー
ム「Splunk Enterprise」にアクセ
スすることで、蓄積データの表
示・解析・分析を行うトータルソ
リューションを計画している。

マクニカ、
IoT/M2Mセンサシールド「Mpression CiP-1」を発売

　クリエーションライン㈱は、米Docker社公認のトレー
ニングサービスの提供を開始する。
　同社は今回、日本で初めてDocker社よりDocker
Authorized Training Partnerとして認定を受けた。トレー
ニングはDocker社の提供する教材を日本語へローカラ
イズし、日本で唯一のDocker Certi�ed Trainer（Docker
社公認トレーナー）が講師を務め、2日間のハンズオン
形式として2015年8月末から実施される予定。トレーニ
ング受講者にはDocker社公認の受講修了書が付与され
る。本トレーニングサービスは、同様の内容をユーザの
希望の日程・場所で開催する個別対応サービスとしても
提供していく用意があるとのこと。

　同社は、Docker Authorized Consulting Partnerとして
も認定を受けており、今後はコンサルティングパート
ナーとして、Docker社の各プロダクトの導入・設計支援
サービスととも
に、各社の提供
するプロダクト
とDockerとの連
携検証支援も提
供していく。

クリエーションライン、
Docker社公認トレーニングの提供を開始

●●ActiveReports for .NET 9.0J Professional ライセンス価格

ライセンス種別 ライセンス数 価格（税込）

開発ライセンス 1ライセンス 302,400円

コアサーバライセンス 2コアライセンス 120,960円

●●トレーニング概要

学習形態 講習会（集合教育）、ハンズオン

開催言語 日本語

受講料 120,000円（税別）

期間 2日

初回実施日 2015年8月24日（月）、25日（火）

グレープシティ㈱　URL http://www.grapecity.com
CONTACT

㈱マクニカ　URL http://www.macnica.co.jp
CONTACT

クリエーションライン㈱　URL http://www.creationline.com
CONTACT

▲▲Mpression CiP-1

http://www.grapecity.com
http://www.macnica.co.jp
http://www.creationline.com

192 - Software Design Sep. 2015 - 193

　㈱BlueMemeは7月14日、同社が国内総代理店として
提供中の大企業向けの高速開発ツール「OutSystems
Platform」の新バージョン「OutSystems Platform 9
Amsterdam」について、報道者向けの発表会を行った。
　「OutSystems Platform」は、モバイル／Webアプリの
構築、展開、管理が簡単に実現できる、アプリケーショ
ンプラットフォーム。本製品の特徴は次のとおり。

・文字ベースのコード記述からの脱却
　部品同士をGUIで組み合わせるように、グラフィカル

な言語でアプリケーションのロジックを記述するの
で、JavaやC#の技術的な知識を身につけることなく、
正しく動作する業務アプリケーションを作成できる

・サーバサイド型のモデル駆動型開発基盤
　「Service studio」と呼ばれるクライアントツールでモ

デルデータを生成し、それがサーバに送信されること
によってサーバサイドでソースコードが生成される。
ソースコードの品質と安全性を確保しながら、集中型
の構成管理を実現する

　日本アイ・ビー・エムは7月30日、IBM社が展開中の
コグニティブ・コンピューティング・システム「IBM
Watson」（以下、Watson）について、日本での事業展開
に関する発表を行った。
　Watsonはもともと、クイズ番組に出場して優勝する
ことで「コンピュータが人間のように振る舞えるか」を
証明するプロジェクトのために開発された。現在では、
「自然言語を理解し、人間の意思決定を支援する」とい
う機能を活かし、薬学や司法など幅広い分野で利用され
ている。
　今回の発表では、Watsonの日本における本格的な事
業展開が進んでいることが発表され、日本での2つの事
例も紹介された。

 東京大学医科学研究所、がん研究に採用
　東京大学医科学研究所（以下、東大医科研）は、
「Watson Genomic Analytics」を活用して新たながん研
究を開始している。特定された遺伝子変異情報を医学論
文や遺伝子関連のデータベースなど、構造化・非構造化
データとして存在する膨大ながん治療法の知識体系と照

・ソースコードを管理しない構成管理
　ソースコードではなくモデルデータをほかの環境へ移

送するので、異なる環境間でのソフトウェア移送が可
能。OSのバージョンなどのサーバの環境に合わせて、
モデルデータからソースコードを自動生成する

・非機能要件の自動実装
　インターフェース、セキュリティ対策、ユーザ認証と

いった非機能要件に該当する機能は自動実装される

　BlueMemeの代表取締役である松岡真功氏は、「現状
のスクラッチ開発はさまざまなフレームワーク・ライブ
ラリを寄せ集めたパッチワーク・アーキテクチャであり、
数年で機敏性を失い、リプレースの必要に迫られる。本
製品はWebアプリ開発において必要な機能の多くを統
合することでパッチワークアーキテクチャの解消を実現
できる」と語った。

らし合わせることで、それぞれのがんに合った治療を提
供することが可能になる。

 ソフトバンク、共同でエコシステムを整備
　ソフトバンク㈱は、日本アイ・ビー・エムと共同で、
各業界でWatsonを活用した新しいビジネスアイデアを
展開するためのエコシステムプログラムを構築・提供し、
2015年10月1日から「ビジネスパートナー」「テクノロジ
パートナー」の正式募集を開始する。これにより、起業
家や開発者が日本において新しいWatsonのアプリケー
ションを開発し、採用することが可能になる。

　発表会では、「ヤマダ電機にて、Watsonと接続された
ロボット『Pepper』が、客と会話をしながら4Kテレビを
買ってもらうためのセールストークを行う」ビデオが流
された。流暢な受け答えからは、日本語へのローカライ
ゼーションの進捗が好調であることが窺われた。

BlueMeme、
「OutSystems Platform 9 Amsterdam」について発表

日本アイ・ビー・エム、
日本での「IBM Watson」の展開について発表

㈱BlueMeme　URL http://www.bluememe.jp
CONTACT

日本アイ・ビー・エム㈱　URL http://www.ibm.com/jp/ja
CONTACT

http://www.bluememe.jp
http://www.ibm.com/jp/ja

194 - Software Design

　㈱ネットワールドは、オランダRedSocks社と日本で
初めてディストリビュータ契約を締結し、次世代標的型
攻撃対策製品「RedSocks Malware Threat Defender」を、
7月16日より販売開始した。
　「RedSocks Malware Threat Defender」は、すべての
アウトバウンド・トラフィック（企業のコンピュータシ
ステムから外に出る通信）を監視し、標的型攻撃による
情報漏洩の危機となる通信を、リアルタイムに、検知・
通知できるアプライアンス製品である。
　各端末に潜み、気がつかれないままデータを盗み続け
る「マルウェア」は外部のC＆Cサーバへ情報を送信する。
この通信をリアルタイムでモニターし、C&Cサーバの情
報と照らし合わせ感染を探し出すことができるのが本製
品の特徴である。最近のマルウェアはセキュリティソフ
トのサンドボックス内を通過するようになっており、ア
ウトバンドトラフィック分析に特化した同製品ならばそ
の欠点を補える。しくみとしては、インターネットへの
出口であるファイアウォールやルータなどのミラーポー
トに接続された同製品が、NetFlow/IPFIX（シスコシス
テムズ開発の、IPトラフィック情報を収集するための

　㈱セキュアソフトは、ネットワークセキュリティ機能
強化を図った新製品「SecureSoft Sniper ONE」の販売を
8月3日に開始した。
　「SecureSoft Sniper ONE」は、同社主力製品のIPS技術
を基盤とし、従来それぞれ専用機として提供されていた
高度な検知・防御機能（DDoS攻撃対策、VoIP対策、
DHCP対策、DNS対策）および高度化するセキュリティ
対策に必要な機能（Regular Expression機能、HTTPS機
能、Rate Limit機能）などの多彩なオプションを1台に搭

ネットワーク・プロトコル）により、すべてのアウトバ
ウンドのパケットの中から必要なフロー情報（送信先のIP
アドレスやURL、送信元IPアドレス、MACアドレス、ポー
ト番号、プロトコル）を抽出して保有。この情報を、
RedSocks社のセキュリティエキスパートチーム「The
Malware Intelligent Team」から30分に1回の頻度で送られ
てくるC&Cサーバの情報と照合して、マルウェアによる
C&Cサーバへの通信をリアルタイムに検知し、管理者に
即時に通知する、というものだ。
　価格は、150Mbpsまでの場合はアプライアンス＋初年
度サブスクリプションで4,230,000円（税別）、次年度サブ
スクリプションで
1,395,000円（税別）。
250Mbps、1Gbps、
10Gbpsについては、
問い合わせの必要が
ある。

載しながら高性能化を実現した。ユーザはこれらの中か
ら必要なオプションだけを選択でき、コスト削減につな
げられる。また、導入後の機能追加も可能で、ビジネス
の変化・拡大にあわせて対策を拡充することができる。
　製品ラインナップは3種類。価格は6,500,000円（税別）
からとなっている。

ネットワールド、
オランダRedSocks社とディストリビュータ契約を締結
「RedSocks Malware Threat Defender」を販売開始

セキュアソフト、
ネットワークセキュリティ対策製品
「SecureSoft Sniper ONE」を発売

㈱ネットワールド　URL http://www.networld.co.jp
CONTACT

㈱セキュアソフト　URL https://www.securesoft.co.jp
CONTACT

●●オプション概要

Anti-DDoS TCP SSS、UDP SSS機能により、サーバへの不要な通信
負荷を軽減

Rate Limit 通信の識別により静的、動的な帯域制御が可能

Regular
Expression

正規化表現式を用いた高度なシグネチャの搭載が可能。推
奨シグネチャなどの提供を予定

HTTPS 暗号化通信HTTPSを高速に復号し、その他機能との連携
が可能

DHCP DHCPサーバの防御やDHCPサービスの停止を狙う攻撃に
対しMACアドレスベースでの対策が可能

VoIP SIPをベースにした通話での盗聴、なりすまし、迷惑電話
といった不正を検知防御し、通話セッションの管理も可能

DNS DNSシステムの停止を狙った攻撃に対し、DNSサーバを
防御する機能を搭載

●●製品ラインナップ

機種名 ONE 2000 ONE 4000 ONE40G

筐体

スルー
プット 1.5/3Gbps 2/4Gbps 20/40Gbps

監視ポー
ト 2/4ポート

インター
フェース

10/100/1000Base-T
or 1000Base-SX or LX

10GBase-SR
 or LR

パワーサ
プライ AC（冗長構成標準搭載） AC/DC（冗長構成

標準搭載）

▲▲RedSocks Malware Threat Defender

http://www.networld.co.jp
https://www.securesoft.co.jp

194 - Software Design Sep. 2015 - 195

　トレンドマイクロ㈱は、総合セキュリティソフト「ウ
イルスバスタークラウド10」を7月29日に発売した。
　最新版の「ウイルスバスタークラウド 10」は、Windows
向けの「ウイルスバスタークラウド」、Mac向け「ウイルス
バスター for Mac」、スマートフォン／タブレット端末向
けの「ウイルスバスターモバイル」を統合した製品。1つ
の製品で、パソコン、スマートフォン、タブレット端末
（Windows、Mac、Android、iOS、Kindle Fireシリーズ）

を最大3台まで保護できる。
同時発売の「ウイルスバス
タークラウド 10＋デジタル
ライフサポートプレミアム」
はパソコン／スマートフォン
やインターネットの接続トラ
ブルなどの問い合わせに365
日対応する追加サービスが付
いた製品となっている。おも
な新機能・強化ポイントは次
のとおり。

 ウイルスバスター クラウド（Windows）

・Windows 10に対応
　7月29日にリリースされた、Microsoftの最新OS
「Windows 10」に対応

・クラウドストレージスキャン
　Microsoftの「OneDrive」に保存されているデータをス

キャンし、ウィルスを検出。ウィルスのスキャンはト
レンドマイクロのクラウド上にあるエンジンを用い
て行うため、パソコンに負荷はかからない

・情報漏えい対策のマイナンバー対応
　事前にマイナンバーの一部をウイルスバスタークラウ

ド 10に設定しておくことで、インターネット利用時
にマイナンバーが外部へ送信されることを防ぐ

・不要と思われるプログラム対策
　ユーザの操作を中断する広告や不快な広告を大量に表

示するプログラム、誇張もしくは偽の通知を表示する
プログラムなどを検出する

・セキュリティ証明書チェッカー
　アクセスするWebサイトのSSL証明書が偽装されて

いる場合、アクセスを抑止する

・プライバシー設定チェッカーのFacebookアプリ対応
　Facebookのプライバシー設定を確認し、プライバ

シー保護の観点から推奨の設定を提示する。最新版で
は、Facebook上で利用できるゲームなどのアプリが
自動的に投稿するメッセージの公開範囲をチェック
する

 ウイルスバスター for Mac

・スマートスキャンの対応
　ウィルスを検出するためのデータであるパターンファ

イルの一部をクラウドに移行。これによりクラウド上
の最新パターンファイルを常に利用できることに加
え、端末の負荷を下げられる。リアルタイムの保護と
軽快さを同時に実現した

 ウイルスバスターモバイル

・Android向け新機能
　インストールしているアプリを一覧で管理できる新機

能を追加。アプリのアンインストールや、ダウンロー
ド済みアプリの確認が簡単にできる

・iPhone/iPad（iOS）向け強化機能
　SNSのプライバシー設定を確認し、プライバシー保

護の観点からお勧めの設定をアドバイスする機能が
強化され、Facebookに加えTwitterにも対応。推奨す
る設定に変更することで、より安全にSNSを利用で
きる

※パッケージ版の「ウイルスバスタークラウド 10＋デジタルライフ
サポートプレミアム」、および同時購入版はすべてオープン価格。

トレンドマイクロ、
「ウイルスバスタークラウド 10」を発売

トレンドマイクロ㈱　URL http://www.trendmicro.co.jp
CONTACT

▲▲ ウイルスバスタークラウド 10

●●ダウンロード版製品の価格

製品 バージョン 価格（税込）

ウイルスバスタークラウド 10

1年版 5,380円

2年版 9,680円

3年版 12,780円

ウイルスバスタークラウド 10
＋デジタルライフサポートプレミアム

1年版 7,980円

2年版 13,800円

3年版 18,580円

●●パッケージ版製品の価格（9月4日発売）

製品 バージョン 価格（税込）

ウイルスバスタークラウド 10
1年版 6,460円

3年版 13,810円

http://www.trendmicro.co.jp

196 - Software Design

　9月2日、ベルサール渋谷ファースト（東京渋谷区）に
て「SoftLayer Bluemix Summit 2015」が開催される。
　「SoftLayer Bluemix Summit 2015」は、IBMのIaaS型
クラウド「SoftLayer」と、PaaS型クラウド「Bluemix」の
ユーザコミュニティが主催する、国内最大級の技術カン
ファレンス。2つのクラウドサービスについて、国内外
の最新事例、普段聞けない話題、専門技術の話題、ハン
ズオンなどさまざまな企画がTrackA～Gに分かれて並行
で執り行われる。基調講演として、「IBM Bluemixの最
新動向と今後の方向性（日本アイ･ビー･エム㈱ 東京ソフ
トウェア＆システム開発研究所 クラウド開発 部長浦本
直彦氏による）」「SoftLayerの最新動向と今後の方向性

（IBM社SoftLayer CTO Marc Jones氏による）」などが行
われる予定。
　参加費は無料。申
し込みはイベント支
援サイトの「Compass」
から（http://softlayer.
connpass.com/eve
nt/17037/）。

9月2日、
「SoftLayer Bluemix Summit 2015」開催

SoftLayer Bluemix Summit 2015
URL http://softlayer-bluemix-summit.jp

CONTACT

▲▲Compass内のポスター画像

サイオステクノロジー、
機械学習搭載 ITオペレーション分析製品「SIOS iQ」を販売開始

　サイオステクノロジー㈱は7月28日、機械学習機能を
搭載したITオペレーション分析ソフトウェア「SIOS iQ
Standard Edition」の販売を開始した。
　本製品は、2015年2月から提供中の無償版である「SIOS
iQ Free Edition」の機能に加え、VMware仮想環境の性能
問題の原因分析と予測をする機能を新たに搭載し、シス
テムの性能問題の迅速な解決と未然防止に貢献する。
　SIOS iQは、VMware仮想環境で稼働するシステムの
最適化と問題解決を迅速に行うために、機械学習技術を
用いて開発された。物理ホスト、ストレージ、仮想マシ
ン、アプリケーションなど、システムを構成するすべて
の要素の振る舞いを、24時間×365日、包括的に監視し、
その中で日常的な振る舞いと要素間の相関関係・相互依
存性を自身で学習し続け、アノマリ（異常）を検出する
と同時に原因分析を行う。これは、発生した問題の迅速
な解決を可能にするだけでなく、システムへの影響も予
測するので、深刻な問題の発生を未然に防止し、システ
ムのサービス・レベルの向上にも寄与する。
　今回新しく追加された性能問題の原因分析・予測機能
は、従来の閾

しきいち

値による異常検出とはまったく異なるアプ
ローチを採用し、異常値の判断基準となる閾値やポリ
シーを設定する必要がない。そのほかのおもな機能は次
のとおり。

・フラッシュ・リード・キャッシュの効果分析・設定値
 の提案
　vSphereのvFRCや各フラッシュ・ストレージ・メー

カーが提供するフラッシュ・リード・キャッシュ機能

における最適なキャッシュサイズとブロックサイズ
を導き出して提案する。製品自身でシステムの振る舞
いを学習することにより、キャッシュサイズとブロッ
クサイズの最適値を分析し、設定を変更した場合の効
果（IOPS／レイテンシー）を予測する

・PERCダッシュボード（SIOS PERC Dashboard）
　PERCダッシュボードは、性能／効率性／信頼性／

キャパシティの4つの指標で、VMware仮想環境を評
価し、迅速・明快にシステムの堅牢性を把握すること
を可能にする。また、シンプルで簡単な操作で、症状
／影響範囲／原因／提案などの詳細な情報を参照す
ることができ、俊敏に問題解決や最適化のアクション
を取ることができる

・Microsoft SQL Server専用拡張機能
　VMware仮想環境で、Microsoft SQL Serverを利用し

ている場合、SQL Serverの振る舞いとそのほかの要
素の相互関係を学習し、性能問題に関してさらに詳細
な分析を行うことが可能

　「SIOS iQ Standard Edition」は、1物理ホストに1ライ
センス（240,000円／12ヵ月）を利用するサブスクリプ
ション形式で提供、日本、米国、欧州の各市場向けに販
売するとともに、Free Editionの提供も継続する。

サイオステクノロジー㈱　 URL http://www.sios.com
CONTACT

http://softlayer-bluemix-summit.jp
http://softlayer.connpass.com/event/17037/
http://www.sios.com

Sep. 2015 - 197

最近なんでも妖怪のせいにできてしまう風潮があります。眠気が目覚まし時計に勝って起きれなかったり、ココゾというときにスマホが
再起動していろいろ手間取ったり、宝くじが当たらない、歯の被せモノがはずれる、出張なのにラップトップのACアダプタを忘れる、
肝心な時にDNSサーバがメンテナンス落ちしてる、思わぬバグを踏んで作業時間がなくなる……。ま、妖怪のせいにしても怒られるのは
自分ですけどね。ていねいに進めてても、そういうときはあるので、何にでも「ココロにゆとり」を持って行きましょう。そういえば、こ
の業界には下手を踏ませる妖怪以外に、気づいたら良い方向に進めてくれる「妖精さん」ってのがいて……（妄想話はこの辺にしときます）。

F
S
S
13
巻
を
心
待
ち
に
し
て
い
る
妖
怪
は
た
く
さ
ん
い
る
と
思
う
よ
〜

（
担
当
編
集
も
そ
の
一
人
だ
け
ど
）。

作）くつなりょうすけ
@ryosuke927

客のサーバの
ストレージが
残り少なく
なってる！

リモートサーバを
rebootしたら
返ってこない！

やや!!

やや !!

アップデート
したのに
脆弱性が
直ってないぞ！

ぼく、
気づいたよ

本当の妖怪は
ボクの中に
いるんだね

それは退治するのが
たいへんそうです。
相談にのりますよ。

……

絶対妖怪の
仕業だよ！

絶対妖怪の
仕業だよ！

絶対妖怪の
仕業だよ！

えー。
本当ですか
ねぇ～

えー。
本当ですか
ねぇ～

えー。
本当ですか
ねぇ～

いた!!

いた!!

いた!!

ああ！
古いバックアップを
消さずに溜めこむ

ああ！
アップデートしたけ
ど再起動し忘れる

ああ！
インストールメディア
を置いていかせる

妖怪「ためこん
じゃうおじさん」
 ですね。

妖怪「うっかり」
ですね。

妖怪「置いてけ
メディア」
 ですね。

この「用か？iWatch」
で見つけてやる！

どー
しました？

どー
しました？

どー
しました？

どー
しました？

妖怪のせいなのね第20回

①③

④

⑦⑧⑨

⑩⑪⑫

⑤⑥

②

198 - Software Design

プログラミングは必修科目！
中学校でプログラミング教育の導入が進んでいます。現行の中学校学習指導要領によると「コ
ンピュータを利用した計測・制御の基本的な仕組みを知ること」「情報処理の手順を考え、簡
単なプログラムが作成できること」とのことで、すでに義務教育の一環になっているそうで
す。勉強しているうちに各種ツールに習熟した中学生が、「宿題はVimで書いてGitHubで管
理、Jenkinsで自動デプロイしています」なんて言い出す日も近いのでは？

脆弱性を突いた攻撃、DDoS攻撃といっ
たサイバー攻撃の足跡「セキュリティロ
グ」の分析についての特集です。OS標準
のコマンドやツールを使った、分析手法・
ツールを紹介しました。実際の攻撃が残
したログを見ながら、手元でできるセキュ
リティ対策について学びました。

普段アプリ側の開発を行っているので、
すごく勉強になった。ログの読み方・
分析などすごく良い内容だと思った。
 鈴木さん／埼玉県

Auditは知ってはいましたが、イマイ
チ使えていなかったので役立ちまし
た！ ewiad420さん／神奈川県

知識が少ないもので、よくわからない
かと思ったがサイバー攻撃がここまで
来ているかということを知ることがで
きて、いい勉強になった。

 bunbunさん／大分県

日頃、ログに注視できていなかったの
でとても参考になった。
 カルマドさん／埼玉県

ログの読み方の基本を復習できたのは

とてもよかった。なおかつ初心者では
なかなか見抜けないDDoS攻撃につ
いても解説があり、長く読める特集だ
と思う。 romeosheartさん／長崎県

DDoS攻撃で“ゆっくり攻撃”する手法
が増えてきていると載っていて驚きま
した。高速・大量アクセスへの対応が
十分拡がったからだろうか？と、考え
させられました。
 とーふやさん／神奈川県

日本年金機構の情報流出事件が報道さ
れ、情報セキュリティに対する意識が
高まる中、今回の特集であるログ分析
技術は興味深く参考になりました。サ
イバー攻撃があった際にいち早く検知
できるようにさっそく実践してみます。
 スマイルさん／茨城県

OSの標準機能を使って手元です
ぐにできるセキュリティ対策、と

いったところが好評でした。相次ぐサイ
バー攻撃のニュースで不安になっていた
なか、特集を見ながら実際にログをのぞ
いてみた読者の方も多いのでは？

tmux（ターミナルマルチプレクサ）は端

末を仮想化して、ウィンドウの分割、プ
ログラムの多重実行を可能にするツール。
特集ではその tmuxについて、導入方法
と基礎知識・基本コマンド、カスタマイ
ズ、現場での使われ方を解説しました。

Windowsマシンでも、Cygwinに
tmuxいれて tailです！
 きよしさん／大阪府

画面が暗くても将来は明るくいきたい
ものです（絶対違う……）。
 tekitoizmさん／東京都

ターミナルを見るとgccしたくなる。
ターミナルはプログラマの原点。
 就活の巨人のさん／長崎県

さっそく、自分のすべての環境を
tmux対応に整備してしまいました。
おかげさまでマウスなしで快適な操作
が可能となり、感謝感謝です。
 psiさん／東京都

普段 tmuxを使っているのですが、グ
グった設定をコピペしているだけで、
使いこなしているとはとても言えない
感じでしたので、第2特集の活用事例
がとても参考になりました。
 犬棟梁さん／埼玉県

2015年7月号について、たくさんの声が届きました。

第1特集
ログを読む技術［セキュリティ編］

第2特集
黒い画面（tmux）の使い方

198 - Software Design Sep. 2015 - 199

真っ黒い画面を、マウスを使わず
すべてキーボードで操作する姿は

まさに凄腕のハッカー。tmuxの導入に
よって、利便性はもちろんモチベーショ
ンも高められそうです。

データセンタ、データベース、セキュリ
ティ、ネットワーク、インフラ、ソフト
ウェアという6つの分野で活躍するベテ
ランエンジニアに、「スペシャリストに
なる方法」を訊きました。若い人にはぜ
ひ読んでもらいたい記事です。

先駆者の言葉は若手エンジニアにとっ
て良い道しるべになると思います。
 木檜さん／千葉県

それぞれのスペシャリストたちが、観
点は違えど最後は勉強あるのみだった
のが良い。 raihennさん／東京都

耳が痛い言葉もたくさん。
 藤田さん／東京都

最新技術や流行っているものについて
学ぶ、というのは共感した。
 板垣さん／神奈川県

本誌では珍しい、読み物のみの特
集でした。変化の速い IT業界では、

分野によらず勉強し続けることが大事な

ようです。勉強の方法として、ひたすら
手を動かす、技術書を読む、コミュニティ
に顔を出す、などが挙げられました。

Java仮想マシン上で動作するオブジェ
クト指向言語「Kotlin」についての短期
連載。第4回ではオブジェクト指向を
実現する「クラス」を解説しました。

今後ビジネスでも役に立てられそうな
連載で続きが楽しみです。

 ＹＹさん／神奈川県

こういう記事を読んでいると、そもそも
のプログラミングの足腰が鍛えられるよ
うな気がします。 Tayuさん／千葉県

新しい言語を学ぶことは、すで
に使っている言語の良いところ

や悪いところを再発見する機会にもなり
ます。読者の声にあるような、プログラ
ミング一般のスキル向上も望めることで
しょう。

「Sphinxで始めるドキュメント作成術」
のいろいろなテーブルの記述方法がと
ても興味深かったです。ただ、修正や
ほかのテキスト処理などを考えると、
いろいろなアプリで共通化されたしく

みがあればと感じました。
 出玉のタマさん／大阪府

Sphinxの連載のおかげで、Sphinx
を使ったドキュメントの書き方を少し
ずつではあるけれど覚えることができ
まし。おかげで、仕事の1つである「ソ
フトウェア設計書の作成」にSphinx
を導入するのに成功しました。

 福名　一さん／岡山県

Python製のドキュメンテーショ
ンツール「Sphinx」、少しずつ人

気が出てきているようですね。エンジニ
アの方は、やはり文書や資料もプログラ
マブルに作成したいという思いがあるの
でしょうか。

第3特集
スペシャリストになる方法

短期連載
Kotlin入門【4】

連載

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① 「Raspberry Pi B+」&「IR Camera module」セット
naoki様（千葉県）

② エアーサクセスミニ
佐藤法子様（千葉県）、さり様（愛知県）
平田妙子様（愛知県）

③ Paragon Disk Wiper
向後久様（東京都）

④ Amazon Web Servicesパターン別構築・運用ガイド
木下恵介様（神奈川県）

⑤ 「仮想化」実装の基礎知識
時武佑太様（東京都）、浅野浩史様（神奈川県）

⑥ Javaパフォーマンス
xenserver様（東京都）、bina様（東京都）

⑦ サーバ／インフラエンジニア養成読本
　基礎スキル編
平川邦雄様（神奈川県）、永井一輝様（東京都）

7月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

http://sd.gihyo.jp/
mailto:sd@gihyo.co.jp

Software Design
2015年9月号

発行日
2015年9月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
松本涼子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2015年10月号
定価（本体1,220円＋税）

192ページ

October 2015
9月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2015 技術評論社

●関数型プログラミング特集を企画してやってみて

思ったのは温故知新。 ITエンジニアを目指して日々

研鑽していくのならば、昔の本から読むといいかもし

れない。コンパイラ作り、OS作り、MY言語作りと

いったところからパーサー作りなんかもよいでしょう。

まずは自分のやれるところから。（本）

●「TVのチャンネルを回して」と言えば家で通じるが、

編集部内で聞くと「変えて」でしょと言われる。電話も

ダイヤルを回すというのを知らない人が多い。それで

も未だに保存のアイコンがフロッピーディスクだったり

して、世の中古いんだか新しいんだか。捨ててあっ

たラジオからバリコン取りしたのは大昔の話か。（幕）

●「じんましん」にやられました。発熱もあり、かな

りキツかったです。熱が下がったと思われる夜に見

た夢がすごく印象的で、それまでの混沌としたもの

から、突然絵本のようなやさしい線画に一変！　ウィ

ザードリィの3D迷路風な道を歩きながら懐かしい人

とすれ違う内容（？）がビミョーでしたが。（キ）

●先日、セミの幼虫が数年の地下生活を終え地上に

出てきているところを初めて目撃しました。羽化する

様子も見たかったのですが、急いでいたので泣く泣

くその場を離れました。あとでWebで調べたところ、

羽化観察のコツは、幼虫を見つけたら家に持ち帰り、

室内で観察すれば良いとのこと。結構ひどい。（よし）

●最近、クレイジーソルトにハマっています！　岩塩

とスパイスのミックス調味料で、ふりかけるとなんで

も本格的な料理になります（気のせい？）。チキンソ

テー、生野菜、ポテトサラダなどにかけて食べるの

がお勧めです。1本（約100g）500円と強気の値段

設定なので、豪快に使えないのがネックです。（な）

●母からきゅうりとトマトの苗をもらいました。といっ

てもトマトはもう実がついている状態だったので、苗

とは言えないかな。きゅうりは少し大きな鉢に植え替

えたら、連日の強風にあおられ、抜けかけそうになる

し、トマトは青い実はいっぱいできたけど、一向に赤

くならないし……。収穫はいつになることやら。（ま）

S D S t a f f R o o m

［第1特集］ 多層防御や感染後対策を汎用サーバに実装

攻撃に強いネットワークの作り方
ShowNetの知見を盛り込んだネットワークセキュリティ最前線
　最新機器を投入し、インターネット全体の安全性を高めるという試みがなされた
ShowNet 2015。一方、各企業のネットワーク担当者が現実的なレベルでセキュア
なネットワークを構築するとしたらどうすればよいのでしょうか。
　本特集では、ShowNetでの知見を盛り込み、“今すぐ取り組める”セキュアなネッ
トワーク構築の指針を解説します。

［第2特集］ 機能、運用、セキュリティ……ベストな利用形態を探せ！

Webメールの教科書
クラウドサービス利用か？自社で構築か？
　大規模Webメールサービスのインフラ基盤やスパムメール対策などを紹介。
　また、自社メールシステムをOSSでWebメール化する方法も取り上げます。

［特別企画］「munkiによるMacクライアント一元管理」
［新連載］Vimの細道（仮）

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
　「書いて覚えるSwift入門」（第8回）、「Debian Hot Topics」（第30回）は都合によりお休みさせていただきます。

200 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2015年9月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 特講「正規表現・SQL・オブジェクト指向」
	第1章：正規表現をマスターする......とみたまさひろ
	第2章：スマートにSQLを書くコツ......奥野　幹也
	第3章：オブジェクト指向の実践的な考え方とやり方......増田　亨

	■第2特集 メールシステムの教科書
	第1章：メール配送のしくみ......とみたまさひろ
	第2章：メールメッセージのデータ形式......とみたまさひろ
	第3章：メールクライアントソフトのデータ管理......櫻井 賢一
	第4章：メールの安全性はどう守るのか......佐藤 潔

	■特別企画
	なぜ俺の提案は通らないのか？......土居 昭夫

	■短期集中連載
	Jamesのセキュリティレッスン【4】pcap-ngのさまざまな情報をWiresharkで見てみよう！......吉田 英二
	DevOpsで始めよう！　モダンなJavaアプリケーション開発【2】ストップ属人化！　MavenとGitHubで安全なテストとスピーディなデプロイ......永瀬 泰一郎
	Kotlin入門【最終回】KotlinでAndroidプログラミング......長澤 太郎

	■Solution Flash
	SAP HANA Cloud Platform活用法......編集部

	■Catch up trends in engineering
	ConoHaで始めるクラウド開発入門【2】海外リージョン、ロードバランサ、GeoDNSを使う......斉藤 弘信

	■連載：Column
	digital gadget【201】広告におけるデジタルの役目......安藤 幸央
	結城浩の再発見の発想法【28】Token......結城 浩
	おとなラズパイリレー【11】Raspberry Pi 2を大人買いしてLinuxクラスタを作ろう（前編）......竹迫 良範
	軽酔対談　かまぷの部屋【14】ゲスト：篠田 佳奈さん......鎌田 広子
	ツボイのなんでもネットにつなげちまえ道場【3】LED点滅の極意（中編）......坪井 義浩
	Hack For Japan〜エンジニアだからこそできる復興への一歩【45】防災・減災とIT〜SNSとメディアの取り組み編〜......佐伯 幸治
	温故知新 ITむかしばなし【46】初代PC-9801のライン描画速度に魅せられて......速水 祐
	ひみつのLinux通信【20】妖怪のせいなのね......くつなりょうすけ

	■連載：Development
	Erlangで学ぶ並行プログラミング【6】Erlang/OTPでのプロセス状態監視とテスト......力武 健次
	るびきち流Emacs超入門【17】“手遅れ”を防ぐ　Emacsのセーフガードシステム......るびきち
	Sphinxで始めるドキュメント作成術【6】Webサイトを作ろう（前編）......山田 剛、清水川 貴之
	Mackerelではじめるサーバ管理【7】Mackerelでアラート通知を最適化しよう......田中 慎司
	セキュリティ実践の基本定石【24】日本に忍び寄るランサムウェアの影......すずきひろのぶ

	■連載：OS/Network
	ShowNetが示すネットワークの近未来【最終回】ShowNet 2015 Scratch & Rebuild the Internet Phase 2総括編......櫨山 寛章、大嶋 康彰
	Red Hat Enterprise Linuxを極める・使いこなすヒント .SPECS【15】Planner in JBoss BRMS 6.1......藤田 稜
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【23】次世代設定ファイル言語UCL......後藤 大地
	Ubuntu Monthly Report【65】LibreOffice 5.0の変更点......あわしろいくや
	Linuxカーネル観光ガイド【42】Linux 4.1の機能〜カーネルの動的更新livepatch......青田 直大
	Monthly News from jus【47】公益のために……LibreOfficeのポータビリティへの挑戦......法林 浩之

	■アラカルト
	ITエンジニア必須の最新用語解説【81】Apache Spark......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW
	SD NEWS & PRODUCTS
	Readers' Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内
	バックナンバーのお知らせ
	Software Design plusシリーズのお知らせ

