

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

技術評論社の本が電子版で読める！
https://gihyo.jp/dp

 GIHYO
 Digital Publishing

 GIHYO
 Digital Publishing

未来の“普通”を，今。

 Gihyo Digital Publishing

 GIHYO
 DIGITAL
 PUBLISHING

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

ITエンジニアのための機械学習理論入門
中井悦司　著　
2,580円　 PDF EPUB

現在話題となっている機械学習（Machine Learning）のツー
ルやライブラリは内部でどのような計算をしているのか？　
計算で得られた結果にはどのような意味があり，どのように
ビジネス活用すればよいのか？̶ ̶という疑問を持つエンジ
ニアが増えています。本書は機械学習理論を数学的な背景
からしっかりと解説をしていきます。そしてPythonによる
サンプルプログラムを実行することにより，その結果を見る
ことで機械学習を支える理論を実感できるようになります。

https://gihyo.jp/dp/ebook/2015/978-4-7741-7727-4

たのしいインフラの歩き方

EPUB PDF

エンジニアとして世界の最前線で働く選択肢
～渡米・面接・転職・キャリアアップ・レイオフ
対策までの実践ガイド

EPUB PDF

Python ライブラリ厳選レシピ
EPUB PDF

Docker実践入門
̶̶Linuxコンテナ技術の基礎から応用まで

EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
mailto:gdp@gihyo.co.jp

倉田晃次、澤井健、
幸坂大輔 著
B5変形判 ・ 520ページ
定価 3,700円（本体）＋税
ISBN 978-4-7741-6984-2

勝俣智成、佐伯昌樹、
原田登志 著
A5判 ・ 288ページ
定価 3,300円（本体）＋税
ISBN 978-4-7741-6709-1

吾郷協、山田順久、
竹馬光太郎、和智大二郎 著
B5判 ・ 136ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6797-8

川本安武 著
A5判 ・ 400ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-6807-4

中村行宏、横田翔 著
A5判 ・ 320ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-7114-2

養成読本編集部 編
B5判 ・ 164ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7057-2

養成読本編集部 編
B5判 ・ 192ページ
定価 2,280円（本体）＋税
ISBN 978-4-7741-7631-4

岩永信之、山田祥寛、井上章、
伊藤伸裕、熊家賢治、
神原淳史 著
B5判 ・ 128ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7607-9

中井悦司 著
B5変形判 ・ 200ページ
定価 2,680円（本体）＋税
ISBN 978-4-7741-7654-3

養成読本編集部 編
B5判 ・ 128ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7320-7

養成読本編集部 編
B5判 ・ 168ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6931-6

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

小飼弾のコードなエッセイ
小飼 弾 著
定価 2,080円＋税　ISBN 978-4-7741-5664-4

寺島広大 著
B5変形判 ・ 440ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6543-1

遠山藤乃 著
B5変形判 ・ 392ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6571-4

松本直人、さくらインター
ネット研究所（日本Vyatta
ユーザー会） 著
B5変形判 ・ 320ページ
定価 3,300円（本体）＋税
ISBN 978-4-7741-6553-0

[改訂新版]サーバ/インフラエンジニア
養成読本　仮想化活用編
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6425-0

iOSアプリエンジニア養成読本
髙橋俊光、諏訪悠紀、湯村翼、平屋真吾、
平井祐樹 著
定価 1,980円＋税　ISBN 978-4-7741-6385-7

Webアプリエンジニア養成読本
和田裕介、石田絢一（uzulla）、
すがわらまさのり、斎藤祐一郎 著
定価 1,880円＋税　ISBN 978-4-7741-6367-3

[改訂新版]Linuxエンジニア養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6377-2

Androidライブラリ実践活用
菊田剛 著
定価 2,480円＋税　ISBN 978-4-7741-6128-0

データベースエンジニア養成読本
データベースエンジニア養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5806-8

〈改訂〉Trac入門
菅野裕、今田忠博、近藤正裕、杉本琢磨 著
定価 3,200円＋税　ISBN 978-4-7741-5567-8

JavaScriptライブラリ実践活用
WINGSプロジェクト 著
定価 2,580円＋税　ISBN 978-4-7741-5611-8

PHPエンジニア養成読本
PHPエンジニア養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5971-3

はじめての3Dプリンタ
水野操、平本知樹、神田沙織、野村毅 著
定価 2,480円＋税　ISBN 978-4-7741-5973-7

Androidエンジニア養成読本Vol.2
Software Design編集部 編
定価 1,880円＋税　ISBN 978-4-7741-5888-4

データサイエンティスト養成読本
データサイエンティスト養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-5896-9

Raspberry Pi［実用］入門
Japanese Raspberry Pi Users Group 著
定価 2,380円＋税　ISBN 978-4-7741-5855-6

サウンドプログラミング入門
青木 直史 著
定価 2,980円＋税　ISBN 978-4-7741-5522-7

[改訂新版]サーバ/インフラエンジニア
養成読本
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6422-9

[改訂新版]サーバ/インフラエンジニア
養成読本　管理/監視編
養成読本編集部 編
定価 1,980円＋税　ISBN 978-4-7741-6424-3

乾正知 著
B5変形判 ・ 352ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-6304-8

養成読本編集部 編
B5判 ・ 128ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6429-8

WINGSプロジェクト 著
B5判 ・ 256ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6566-0

川瀬裕久、古川文生、
松尾大、竹澤有貴、
小山哲志、新原雅司 著
B5判 ・ 156ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7313-9

森藤大地、あんちべ 著
A5判 ・ 296ページ
定価 2,780円（本体）＋税
ISBN 978-4-7741-6326-0

養成読本編集部 編
B5判 ・ 212ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6578-3

福田和宏、中村文則、
竹本浩、木本裕紀 著
B5判 ・ 128ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7345-0

中島雅弘、富永浩之、
國信真吾、花川直己 著
B5変形判 ・ 416ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-7369-6

上田隆一 著
USP研究所 監修
B5変形判 ・ 416ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-7344-3

養成読本編集部 編
B5判 ・ 112ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-7441-9

養成読本編集部 編
B5判 ・ 168ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6787-9

〒162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

沓名亮典 著
A5判 ・ 416ページ
定価 2,880円（本体）＋税
ISBN 978-4-7741-5813-6

中井悦司 著
B5変形判 ・ 384ページ
定価 2,980円（本体）＋税
ISBN 978-4-7741-5937-9

ニコラ・モドリック、
安部重成 著
A5判 ・ 336ページ
定価 2,780円（本体）＋税
ISBN 978-4-7741-5991-1

沼田哲史 著
B5変形判 ・ 360ページ
定価 3,200円（本体）＋税
ISBN 978-4-7741-6076-4

大谷純、阿部慎一朗、大須賀稔、
北野太郎、鈴木教嗣、平賀一昭 著
㈱リクルートテクノロジーズ、
㈱ロンウイット　監修
B5変形判 ・ 352ページ
定価 3,600円（本体）＋税
ISBN 978-4-7741-6163-1

TIS㈱ 池田大輔 著
B5変形判 ・ 384ページ
定価 3,500円（本体）＋税
ISBN 978-4-7741-6288-1

久保田光則、アシアル㈱ 著
A5判 ・ 384ページ
定価 2,880円（本体）＋税
ISBN 978-4-7741-6211-9

㈱パイプドビッツ 著
A5判 ・ 224ページ
定価 2,480円（本体）＋税
ISBN 978-4-7741-6205-8

養成読本編集部 編
B5判 ・ 164ページ
定価 1,980円（本体）＋税
ISBN 978-4-7741-6983-5

https://gihyo.jp/site/inquiry/dennou

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

年間定期購読

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/
 定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

ED - 1 - Software Design

　Linux Foundationは2015年の
LinuxConにおいて、大手ハードディ
スクベンダーやネットワーク機器ベン
ダーなどと共同で「Kinetic Open
Storage Project」と呼ばれる新しいプ
ロジェクトを開始することを発表しました。
Kinetic Open Storageは、ストレー
ジサーバによる管理なしに、アプリケー
ションがイーサネット経由で直接ディスク
ドライブやSSDにアクセスできるように
するしくみです。同プロジェクトでは、
この技術のオープン化と対応するディ
スクドライブの開発を推進することを目
的として、具体的なAPIやプロトコル
の策定を行うとのことです。
　Kinetic Open Storageでは、ディ
スクドライブ自身がIPアドレスを持つこ
とで、中間にWebサーバやストレージ
管理サーバを置かず、アプリケーショ
ンから直接イーサネット接続してデータ
の格納や参照ができます。データの
保管はキーバリューストア方式で行
われ、アプリケーションからはAPI
（Kinetic API）経由でデータを操作す
るしくみになっています。
　従来のオブジェクトストレージでは、
ディスクドライブとアプリケーションの間
に、キーバリューストアを実現するため
のストレージサーバや、アプリケーショ
ンとの仲介を行うアプリケーションサー
バなどのレイヤーが必要でした。この
構造はアプリケーションからストレージ
内部の実装を隠蔽できるメリットがある
一方で、中間レイヤーのオーバーヘッ
ドによる性能劣化や、管理するサーバ
が増えることによる運用コストの増加な

どといったデメリットがあり
ました。
　Kinetic Open Sto
rageではこれらの中間レ
イヤーが省略できることか
ら、次のようなメリットが得
られるとのことです。

• システム全体の構造
が簡略化できる

• ストレージをコンピュー
ティングから分離でき
る

• ラックの密度を高めら
れる

• 冷却のためのファンを
最小化できる

• データセンターの構築や運用管理
のコストを削減できる

　Kinetic Open Storageは、もとも
とはSeagate社が開発を進めていた
技術です。その誕生の背景には、大
規模なデータ駆動型アプリケーション
が急増したことによって、ストレージイン
フラに求められる性質が変わってきたと
いう事情があります。保管するデータ
の種類が大きく変化していることに加え
て、容量とコスト、そして速度に対する
要求は増し続けており、従来の枠組
みのままでは対応が追いつかなくなりつ
つあります。
　そこで非効率性の原因となっている
中間のレイヤーを取り除き、モダンなエ
ンタープライズアプリケーションの要求
に最適化した新しいしくみとして生み出
されたのが、Kinetic Open Storage

というわけです。中間レイヤーを省略し
て必要なリソースにダイレクトにアクセス
するというコンセプトは「サーバレス
アーキテクチャ」と呼ばれており、スト
レージ以外の分野でも普及しつつある
ものです。
　Seagateは当初OpenStackの
SwiftおよびAWS S3互換のRiak CS
向けにAPIをリリースし、それと並んで
オープン化やサードパーティへの普及
を推進してきました。今回のプロジェク
ト発足はその延長にあるもので、東芝
やWestern Digitalといった競合大手
が参加しているほか、ネットワークベン
ダーやOSベンダーなどからも広く支持
されていることがポイントです。ストレー
ジの重要性がますます大きくなっている
ことから、プロジェクトが順調に進めば、
Kinetic Open Storageは広く普及す
る可能性が高いと言えるでしょう。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 84回

Kinetic Open Storage Project

Kinetic Open Storage Project
http://www.openkinetic.org/index.php

Kinetic Open
Storage Projectとは

誕生の背景

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

▼図1　イーサネット接続でのストレージシステム

従来のストレージの構造 Kinetic Open Storage の構造

アプリケーション アプリケーション

アプリケーション
サーバ

ストレージサーバ

ディスクドライブ ディスクドライブ

イーサネット

mailto:sd@gihyo.co.jp
http://www.openkinetic.org/index.php

　コンピュータグラフィックスとイン
タラクティブ技術に関する世界最
大の学会・展示会である、第42回
SIGGRAPH 2015が8月9日から13日
の5日間、米国ロサンゼルスで開催さ
れました。先月号に続いて、デジタルガ
ジェット視点でレポートをお届けします。
　今年のSIGGRAPHの基調講演
は、マサチューセッツ工科大学（MIT）
メディアラボの所長、伊藤譲一氏でし
た。例年、コンピュータグラフィックス
直球ではなく、その周りの専門家を呼
んでお話ししてもらうことで、参加者に
示唆を与えたり、今後の指針となるよ
うな話題の人物が選定されています。
過去には、著名なゲーム作家である
ウィル・ライト氏や、コンセプトアートの
シド・ミード氏、SF作家のブルース・ス
ターリング氏らが講演されています。

　伊藤氏の講演は、前メディアラボ
所長のニコラス・ネグロポンテ氏の言
葉を借り、「Bio is the new digital」
を前面に打ち出したものでした。過去
を振り返ると、インターネット登場以前
と以後では世の中や社会のしくみが
大きく変わってきました。バイオ技術の
進化と、デジタル技術との組み合わ
せやその応用によって、今までにはな
かったモノが作れたり、見たことのない
アートの世界にバイオ技術が活用さ
れたりした事例が紹介されました。バ
イオ技術とデジタル技術の組み合わ
せによって、インターネットによる革新
と同じくらい新しいことが起きつつある
ということを、濃縮された情報とともに
伝えた60分の講演でした。
　また、今年のSIGGRAPHの表彰で
は、CG映像制作には不可欠なBSP
Treeというアルゴリズムの考案や、黎
明期のVR（バーチャルリアリティ）技

術発展への貢献が認められ、Henry
Fuchs氏がクーンズ賞を獲得しまし
た。Fuchs氏はBSP Tree（Binary
Space Partitioning：バイナリ空間分
割）と呼ばれる、三次元空間内に描こ
うとしている物体が存在するかどうかを
再帰的に分割していく手法で知られ
ています。BSP Treeは現在でも、ゲー
ムやロボット工学における衝突判定に
は欠かせない重要な考え方です。
　そのほか、アーティストのLillian
Schwartz氏が、長年のデジタルアー
トコミュニティへの貢献が認めら
れ、優秀アーティスト賞を受賞しまし
た。Schwartz氏は1980年頃からデ
ジタル技術を活かした、2D、3Dの新
たな表現方法を切り開いた作家とし
て知られています。いくつかの作品は
MOMAへの永久所蔵品として収めら
れています。
　また今年はちょうど、さまざまな

映画の特殊効果を手がけるILM（In
dustrial Light & Magic）が40周年
を迎え、そのお祝いとなる記念セッショ
ンも開催されました。深海に住む未知
の生命体を描いた映画「アビス」に
始まり、現在作成中の最新作の「ス
ター・ウォーズ」まで、さまざまな映画を
振り返りながら、CG/VFXの歴史を
振り返るセッションでした。また、最
新の取り組みであるILMの研究所
ILMxLABによる、VRを活用した撮影
環境の話題が紹介されました。

　今年のSIGGRAPHでの注目の話
題は、パノラマ映像と安価なHMD

（ヘッドマウントディスプレイ）による
VRコンテンツの浸透です。VR（バー
チャルリアリティ）は技術や機材的に
も研究開発的にもSIGGRAPHが得
意とする領域ですが、過去にも何度
かブームがあり、盛り上がっては盛り
下がっていった中で、近年のVRブー
ムは一般ユーザ向けのため、今度こ
そ一大ブームになると意気込む人々
が増えてきている印象です。
　日本でも個人によるさまざまな試作
コンテンツ、広告キャンペーンなどで
VRが活用されていますが、欧米では

中規模のゲーム制作規模の予算が
ついたり、アーティストのプロモーショ
ンやミュージックビデオでの活用、ハリ
ウッド映画を制作していたような映像
チームがパノラマ映像を撮影しはじめ
たりなど、産業として広がりつつあるこ
とが見て取れます。

　Googleが進めるパノラマ映像コン
テンツ視聴用アプリ「Google Spot
light Stories」（iOS/Android）では、
5分の短編「HELP」が公開。これはイ
ギリスの大手映像プロダクションThe
Mill制作によるもので、監督はワイル
ド・スピードシリーズを手がけるJustin
Lin氏です。6K解像度のRED EPIC
DRAGONカメラ4台で同時撮影し、リ
アルタイムプレビューしながらパノラマ
撮影するという、スタッフ構成も機材的
にも現在考えうる最高の組み合わせで
作られたパノラマ映像です。

　Googleはハイエンドからローエンド
までパノラマ映像の展開を網羅し始
めており、安価なものでは、ダンボール

で作られたCardboardを展開し、サー
ドパーティ製のものも含め、世界で
100万人のユーザがCardboardア
プリを使い始めているそう。会場では
Google JUMPと呼ばれる、アクショ
ンカムのGoPro HERO4を16台つな
ぎ合わせた力技的なパノラマ撮影リ
グ（台座）もお披露目されていました。
現在撮影プロジェクトを募集中で、企
画が通った撮影案にはJUMP機材
が貸与されるそうです。

　現在、リアルタイムで描画するコ
ンピュータグラフィックスの世界は
OpenGLとDirectXが主流ですが、
アーキテクチャ的には古くなりつつあ
り、最新のハードウェアを最大限に活
かしきれなくなってきています。そう
いった声を反映して、Vulkanという
OpenGLの次に続く新しいAPI群が
予定されています。VulkanはApple
のMetal APIに相当するもので、並列
化された最近のハードウェアのしくみ
に合わせ、それらの性能を最大限に
活かしたアプリを作ることのできる環
境を目指しています。
　一方で、いままでグラフィックスドラ
イバが面倒を見てくれていた並列処

理や各種設定、負荷分散などを自前
で用意しなければいけないということ
で、労力の割には速度的メリットは少
ないとも言われています。これからの
チューニングは、ハードウェア性能の
向上が期待されます。

　SIGGRAPH開催中の夜に、エレ
クトロニックシアターというCG短編の
受賞作十数本を2時間ほど観られる
イベントが開催されます。その開始ま
での待ち時間に、「WHAM」というア
プリを使ったお楽しみがありました。こ
のアプリによって会場にいる個々人
のスマートフォン全部が連動し、映像
を映し出したり、フラッシュが連動して
光ったりして、たいへん盛り上がった
のです。知らない人同士が集う会場
で、デジタル技術であっという間に一
体感が創り出されたのがとても感動
的でした。
　映画でしか触れることのできなかっ
た最先端のコンピュータグラフィック
ス技術が、手のひらの中のスマート
フォンで実現し、ネットワークやコン
ピュータパワーを気にすることなく、瞬
時に手に入れることができる世界が
身近にやってきています。一昔前なら
1秒分の映像を制作するのに、数十
億円もする高額なスーパーコンピュー
タが必要だった時代から、ノートパソコ
ン1台、スマートフォン1台で、リアルタ
イムで素晴らしい表示がなされるよう
になりました。しかし、人間の欲望と表
現への欲求は限りがありません。
　来年夏のSIGGRAPH 2016は米
国アナハイムで開催されることが決
まっています。また、今年11月2日から
5日の4日間開催されるSIGGRAPH
ASIA 2015は、2009年以来の日本
開催となる、神戸での開催です（http:
//sa2015.siggraph.org/）。アジア
各国から集まるCG作品や、最新技
術展示に多くの期待が集まっていま
す。｢

コンピュータグラフィックスの祭典SIGGRAPH 2015［後編］

vol.204

SIGGRAPH
基調講演と表彰から

DIGITAL
GADGET

弦楽器の震え
プロジェクション

Sensel Morph

http://nae-lab.org/~naemura/publication/

Gadget 1

コンピュータグラフィックスの祭典SIGGRAPH 2015［後編］

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

DIGITAL GADGET

Wobble Stringsは、東京大学大学院情
報理工学系研究科・苗村研究室による
研究開発中のプロジェクトで、デジタルカ
メラなどでみられるローリングシャッター現
象を活用したものです。たとえば高速に回
転するプロペラや扇風機などをデジタルカ
メラで撮影したとき、ぐにゃぐにゃに曲がっ
た写真が撮影された経験はないでしょう
か？　Wobble Stringsはギターのピック
アップから得られた信号をMIDIデジタル
データに変換し、その音データに応じた
投影データを、ギターの弦がはってある
ネックの部分に投影するというものです。

変化するタブレットデバイス

https://www.kickstarter.com/projects/1152958674/
the-sensel-morph-interaction-evolved

https://nod.com/

https://www.pstechnik.de/en/skater-
scope-pl-pl/a-1059/

Gadget 2

Sensel Morphは、表面カバーを付け替え
ることで、さまざまな用途に変化するタブ
レットデバイスです。圧力によって入力情
報が変化し、押す強さに応じて入力値を
変化させることができます。上に載せる
シートによって、通常のQWERTYキー
ボードのほかにも、ピアノ鍵盤やDJコント
ローラ、筆ペンなどに変化します。現在
は、クラウドファンディングのKickstarter
で資金集めに成功し、製品化に向けて
邁進しているそうです。2016年の中頃
に249ドルで一般販売が予定されていま
す。

指輪型モーションデバイス

nod ring

Gadget 3

nod ringは、指につけて、腕や手の動きを
検知するためのモーションデバイスです。
モーションセンサー、タッチセンサーが搭載
されています。おもにゲームのコントローラ
用途として、ディスプレイの前で使うことを
想定しています。バッテリは約1日持ち、防
水となっています。最大の特徴は、わざわ
ざ新しいジェスチャを覚えたり、登録したり
する必要はなく、ごく自然で単純な手や指
の動きを検知し、それをトリガーにして操作
が可能なことです。開発者用に99ドルで
先行販売していましたが、今後予定されて
いる一般販売の際は149ドルとなる見込
みです。

マクロレンズ接続用アダプタ

SKATER SCOPE

Gadget 4

蟻サイズの小さなスーパーヒーローが登
場する映画「アントマン」の撮影に用いら
れたカメラレンズアダプタ。実際の撮影
には、Mocoというモーションコントロール
カメラ（ロボットのように精密に動きを何
度も繰り返すことのできる装置）の先に、
レンズ方向を自由に設定できるこの
SKATER SCOPEを取り付け、さらにそ
の先に一眼レフカメラ用の100mm焦点
マクロレンズを装着して映画撮影用のカ
メラとしたそうです。SKATER SCOPE
の価格は約400万円。1日レンタルでも
数万円します。極小の撮影ができます
が、価格は小さくありませんね。

映画の都ロサンゼルス。映像技術編

Henry Fuchs氏の
クーンズ賞受賞の様子

Lillian Schwartz氏のデジタル
アート作品（lillian.com より）

超高解像度のデジタルビデオカメラ4台を
搭載した、パノラマ撮影用カメラセット

GoPro HERO4を16台搭載した
パノラマカメラリグ「Google JUMP」

WHAMアプリの一体感を楽しむ観客

Vulkanによる描画の展示
（インテルブース）

技術の進化と映像の進化

Side Effectsブースでの
HELP制作のメイキング

Googleが攻める
パノラマ映像機材と
パノラマ映像ソリューション：
Google JUMP

VulkanというAPIの浸透、進化

これからのコンピュータ
グラフィックスの進化

SIGGRAPH会場内、VR展示の様子

SIGGRAPH会場内、
さまざまな機器を試用、試作
できるスタジオ展示の様子

静止した車に乗りながら、
ヘッドマウントディスプレイを
装着し、VRを楽しむ様子

バイオと
デジタル技術を
テーマにした
伊藤譲一氏の
基調講演

Wobble Strings

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 Dec. 2015 - 1

http://www.andoh.org/

　コンピュータグラフィックスとイン
タラクティブ技術に関する世界最
大の学会・展示会である、第42回
SIGGRAPH 2015が8月9日から13日
の5日間、米国ロサンゼルスで開催さ
れました。先月号に続いて、デジタルガ
ジェット視点でレポートをお届けします。
　今年のSIGGRAPHの基調講演
は、マサチューセッツ工科大学（MIT）
メディアラボの所長、伊藤譲一氏でし
た。例年、コンピュータグラフィックス
直球ではなく、その周りの専門家を呼
んでお話ししてもらうことで、参加者に
示唆を与えたり、今後の指針となるよ
うな話題の人物が選定されています。
過去には、著名なゲーム作家である
ウィル・ライト氏や、コンセプトアートの
シド・ミード氏、SF作家のブルース・ス
ターリング氏らが講演されています。

　伊藤氏の講演は、前メディアラボ
所長のニコラス・ネグロポンテ氏の言
葉を借り、「Bio is the new digital」
を前面に打ち出したものでした。過去
を振り返ると、インターネット登場以前
と以後では世の中や社会のしくみが
大きく変わってきました。バイオ技術の
進化と、デジタル技術との組み合わ
せやその応用によって、今までにはな
かったモノが作れたり、見たことのない
アートの世界にバイオ技術が活用さ
れたりした事例が紹介されました。バ
イオ技術とデジタル技術の組み合わ
せによって、インターネットによる革新
と同じくらい新しいことが起きつつある
ということを、濃縮された情報とともに
伝えた60分の講演でした。
　また、今年のSIGGRAPHの表彰で
は、CG映像制作には不可欠なBSP
Treeというアルゴリズムの考案や、黎
明期のVR（バーチャルリアリティ）技

術発展への貢献が認められ、Henry
Fuchs氏がクーンズ賞を獲得しまし
た。Fuchs氏はBSP Tree（Binary
Space Partitioning：バイナリ空間分
割）と呼ばれる、三次元空間内に描こ
うとしている物体が存在するかどうかを
再帰的に分割していく手法で知られ
ています。BSP Treeは現在でも、ゲー
ムやロボット工学における衝突判定に
は欠かせない重要な考え方です。
　そのほか、アーティストのLillian
Schwartz氏が、長年のデジタルアー
トコミュニティへの貢献が認めら
れ、優秀アーティスト賞を受賞しまし
た。Schwartz氏は1980年頃からデ
ジタル技術を活かした、2D、3Dの新
たな表現方法を切り開いた作家とし
て知られています。いくつかの作品は
MOMAへの永久所蔵品として収めら
れています。
　また今年はちょうど、さまざまな

映画の特殊効果を手がけるILM（In
dustrial Light & Magic）が40周年
を迎え、そのお祝いとなる記念セッショ
ンも開催されました。深海に住む未知
の生命体を描いた映画「アビス」に
始まり、現在作成中の最新作の「ス
ター・ウォーズ」まで、さまざまな映画を
振り返りながら、CG/VFXの歴史を
振り返るセッションでした。また、最
新の取り組みであるILMの研究所
ILMxLABによる、VRを活用した撮影
環境の話題が紹介されました。

　今年のSIGGRAPHでの注目の話
題は、パノラマ映像と安価なHMD

（ヘッドマウントディスプレイ）による
VRコンテンツの浸透です。VR（バー
チャルリアリティ）は技術や機材的に
も研究開発的にもSIGGRAPHが得
意とする領域ですが、過去にも何度
かブームがあり、盛り上がっては盛り
下がっていった中で、近年のVRブー
ムは一般ユーザ向けのため、今度こ
そ一大ブームになると意気込む人々
が増えてきている印象です。
　日本でも個人によるさまざまな試作
コンテンツ、広告キャンペーンなどで
VRが活用されていますが、欧米では

中規模のゲーム制作規模の予算が
ついたり、アーティストのプロモーショ
ンやミュージックビデオでの活用、ハリ
ウッド映画を制作していたような映像
チームがパノラマ映像を撮影しはじめ
たりなど、産業として広がりつつあるこ
とが見て取れます。

　Googleが進めるパノラマ映像コン
テンツ視聴用アプリ「Google Spot
light Stories」（iOS/Android）では、
5分の短編「HELP」が公開。これはイ
ギリスの大手映像プロダクションThe
Mill制作によるもので、監督はワイル
ド・スピードシリーズを手がけるJustin
Lin氏です。6K解像度のRED EPIC
DRAGONカメラ4台で同時撮影し、リ
アルタイムプレビューしながらパノラマ
撮影するという、スタッフ構成も機材的
にも現在考えうる最高の組み合わせで
作られたパノラマ映像です。

　Googleはハイエンドからローエンド
までパノラマ映像の展開を網羅し始
めており、安価なものでは、ダンボール

で作られたCardboardを展開し、サー
ドパーティ製のものも含め、世界で
100万人のユーザがCardboardア
プリを使い始めているそう。会場では
Google JUMPと呼ばれる、アクショ
ンカムのGoPro HERO4を16台つな
ぎ合わせた力技的なパノラマ撮影リ
グ（台座）もお披露目されていました。
現在撮影プロジェクトを募集中で、企
画が通った撮影案にはJUMP機材
が貸与されるそうです。

　現在、リアルタイムで描画するコ
ンピュータグラフィックスの世界は
OpenGLとDirectXが主流ですが、
アーキテクチャ的には古くなりつつあ
り、最新のハードウェアを最大限に活
かしきれなくなってきています。そう
いった声を反映して、Vulkanという
OpenGLの次に続く新しいAPI群が
予定されています。VulkanはApple
のMetal APIに相当するもので、並列
化された最近のハードウェアのしくみ
に合わせ、それらの性能を最大限に
活かしたアプリを作ることのできる環
境を目指しています。
　一方で、いままでグラフィックスドラ
イバが面倒を見てくれていた並列処

理や各種設定、負荷分散などを自前
で用意しなければいけないということ
で、労力の割には速度的メリットは少
ないとも言われています。これからの
チューニングは、ハードウェア性能の
向上が期待されます。

　SIGGRAPH開催中の夜に、エレ
クトロニックシアターというCG短編の
受賞作十数本を2時間ほど観られる
イベントが開催されます。その開始ま
での待ち時間に、「WHAM」というア
プリを使ったお楽しみがありました。こ
のアプリによって会場にいる個々人
のスマートフォン全部が連動し、映像
を映し出したり、フラッシュが連動して
光ったりして、たいへん盛り上がった
のです。知らない人同士が集う会場
で、デジタル技術であっという間に一
体感が創り出されたのがとても感動
的でした。
　映画でしか触れることのできなかっ
た最先端のコンピュータグラフィック
ス技術が、手のひらの中のスマート
フォンで実現し、ネットワークやコン
ピュータパワーを気にすることなく、瞬
時に手に入れることができる世界が
身近にやってきています。一昔前なら
1秒分の映像を制作するのに、数十
億円もする高額なスーパーコンピュー
タが必要だった時代から、ノートパソコ
ン1台、スマートフォン1台で、リアルタ
イムで素晴らしい表示がなされるよう
になりました。しかし、人間の欲望と表
現への欲求は限りがありません。
　来年夏のSIGGRAPH 2016は米
国アナハイムで開催されることが決
まっています。また、今年11月2日から
5日の4日間開催されるSIGGRAPH
ASIA 2015は、2009年以来の日本
開催となる、神戸での開催です（http:
//sa2015.siggraph.org/）。アジア
各国から集まるCG作品や、最新技
術展示に多くの期待が集まっていま
す。｢

コンピュータグラフィックスの祭典SIGGRAPH 2015［後編］

vol.204

SIGGRAPH
基調講演と表彰から

DIGITAL
GADGET

弦楽器の震え
プロジェクション

Sensel Morph

http://nae-lab.org/~naemura/publication/

Gadget 1

コンピュータグラフィックスの祭典SIGGRAPH 2015［後編］

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

DIGITAL GADGET

Wobble Stringsは、東京大学大学院情
報理工学系研究科・苗村研究室による
研究開発中のプロジェクトで、デジタルカ
メラなどでみられるローリングシャッター現
象を活用したものです。たとえば高速に回
転するプロペラや扇風機などをデジタルカ
メラで撮影したとき、ぐにゃぐにゃに曲がっ
た写真が撮影された経験はないでしょう
か？　Wobble Stringsはギターのピック
アップから得られた信号をMIDIデジタル
データに変換し、その音データに応じた
投影データを、ギターの弦がはってある
ネックの部分に投影するというものです。

変化するタブレットデバイス

https://www.kickstarter.com/projects/1152958674/
the-sensel-morph-interaction-evolved

https://nod.com/

https://www.pstechnik.de/en/skater-
scope-pl-pl/a-1059/

Gadget 2

Sensel Morphは、表面カバーを付け替え
ることで、さまざまな用途に変化するタブ
レットデバイスです。圧力によって入力情
報が変化し、押す強さに応じて入力値を
変化させることができます。上に載せる
シートによって、通常のQWERTYキー
ボードのほかにも、ピアノ鍵盤やDJコント
ローラ、筆ペンなどに変化します。現在
は、クラウドファンディングのKickstarter
で資金集めに成功し、製品化に向けて
邁進しているそうです。2016年の中頃
に249ドルで一般販売が予定されていま
す。

指輪型モーションデバイス

nod ring

Gadget 3

nod ringは、指につけて、腕や手の動きを
検知するためのモーションデバイスです。
モーションセンサー、タッチセンサーが搭載
されています。おもにゲームのコントローラ
用途として、ディスプレイの前で使うことを
想定しています。バッテリは約1日持ち、防
水となっています。最大の特徴は、わざわ
ざ新しいジェスチャを覚えたり、登録したり
する必要はなく、ごく自然で単純な手や指
の動きを検知し、それをトリガーにして操作
が可能なことです。開発者用に99ドルで
先行販売していましたが、今後予定されて
いる一般販売の際は149ドルとなる見込
みです。

マクロレンズ接続用アダプタ

SKATER SCOPE

Gadget 4

蟻サイズの小さなスーパーヒーローが登
場する映画「アントマン」の撮影に用いら
れたカメラレンズアダプタ。実際の撮影
には、Mocoというモーションコントロール
カメラ（ロボットのように精密に動きを何
度も繰り返すことのできる装置）の先に、
レンズ方向を自由に設定できるこの
SKATER SCOPEを取り付け、さらにそ
の先に一眼レフカメラ用の100mm焦点
マクロレンズを装着して映画撮影用のカ
メラとしたそうです。SKATER SCOPE
の価格は約400万円。1日レンタルでも
数万円します。極小の撮影ができます
が、価格は小さくありませんね。

映画の都ロサンゼルス。映像技術編

Henry Fuchs氏の
クーンズ賞受賞の様子

Lillian Schwartz氏のデジタル
アート作品（lillian.com より）

超高解像度のデジタルビデオカメラ4台を
搭載した、パノラマ撮影用カメラセット

GoPro HERO4を16台搭載した
パノラマカメラリグ「Google JUMP」

WHAMアプリの一体感を楽しむ観客

Vulkanによる描画の展示
（インテルブース）

技術の進化と映像の進化

Side Effectsブースでの
HELP制作のメイキング

Googleが攻める
パノラマ映像機材と
パノラマ映像ソリューション：
Google JUMP

VulkanというAPIの浸透、進化

これからのコンピュータ
グラフィックスの進化

SIGGRAPH会場内、VR展示の様子

SIGGRAPH会場内、
さまざまな機器を試用、試作
できるスタジオ展示の様子

静止した車に乗りながら、
ヘッドマウントディスプレイを
装着し、VRを楽しむ様子

バイオと
デジタル技術を
テーマにした
伊藤譲一氏の
基調講演

Wobble Strings

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 2 - Software Design

　コンピュータグラフィックスとイン
タラクティブ技術に関する世界最
大の学会・展示会である、第42回
SIGGRAPH 2015が8月9日から13日
の5日間、米国ロサンゼルスで開催さ
れました。先月号に続いて、デジタルガ
ジェット視点でレポートをお届けします。
　今年のSIGGRAPHの基調講演
は、マサチューセッツ工科大学（MIT）
メディアラボの所長、伊藤譲一氏でし
た。例年、コンピュータグラフィックス
直球ではなく、その周りの専門家を呼
んでお話ししてもらうことで、参加者に
示唆を与えたり、今後の指針となるよ
うな話題の人物が選定されています。
過去には、著名なゲーム作家である
ウィル・ライト氏や、コンセプトアートの
シド・ミード氏、SF作家のブルース・ス
ターリング氏らが講演されています。

　伊藤氏の講演は、前メディアラボ
所長のニコラス・ネグロポンテ氏の言
葉を借り、「Bio is the new digital」
を前面に打ち出したものでした。過去
を振り返ると、インターネット登場以前
と以後では世の中や社会のしくみが
大きく変わってきました。バイオ技術の
進化と、デジタル技術との組み合わ
せやその応用によって、今までにはな
かったモノが作れたり、見たことのない
アートの世界にバイオ技術が活用さ
れたりした事例が紹介されました。バ
イオ技術とデジタル技術の組み合わ
せによって、インターネットによる革新
と同じくらい新しいことが起きつつある
ということを、濃縮された情報とともに
伝えた60分の講演でした。
　また、今年のSIGGRAPHの表彰で
は、CG映像制作には不可欠なBSP
Treeというアルゴリズムの考案や、黎
明期のVR（バーチャルリアリティ）技

術発展への貢献が認められ、Henry
Fuchs氏がクーンズ賞を獲得しまし
た。Fuchs氏はBSP Tree（Binary
Space Partitioning：バイナリ空間分
割）と呼ばれる、三次元空間内に描こ
うとしている物体が存在するかどうかを
再帰的に分割していく手法で知られ
ています。BSP Treeは現在でも、ゲー
ムやロボット工学における衝突判定に
は欠かせない重要な考え方です。
　そのほか、アーティストのLillian
Schwartz氏が、長年のデジタルアー
トコミュニティへの貢献が認めら
れ、優秀アーティスト賞を受賞しまし
た。Schwartz氏は1980年頃からデ
ジタル技術を活かした、2D、3Dの新
たな表現方法を切り開いた作家とし
て知られています。いくつかの作品は
MOMAへの永久所蔵品として収めら
れています。
　また今年はちょうど、さまざまな

映画の特殊効果を手がけるILM（In
dustrial Light & Magic）が40周年
を迎え、そのお祝いとなる記念セッショ
ンも開催されました。深海に住む未知
の生命体を描いた映画「アビス」に
始まり、現在作成中の最新作の「ス
ター・ウォーズ」まで、さまざまな映画を
振り返りながら、CG/VFXの歴史を
振り返るセッションでした。また、最
新の取り組みであるILMの研究所
ILMxLABによる、VRを活用した撮影
環境の話題が紹介されました。

　今年のSIGGRAPHでの注目の話
題は、パノラマ映像と安価なHMD

（ヘッドマウントディスプレイ）による
VRコンテンツの浸透です。VR（バー
チャルリアリティ）は技術や機材的に
も研究開発的にもSIGGRAPHが得
意とする領域ですが、過去にも何度
かブームがあり、盛り上がっては盛り
下がっていった中で、近年のVRブー
ムは一般ユーザ向けのため、今度こ
そ一大ブームになると意気込む人々
が増えてきている印象です。
　日本でも個人によるさまざまな試作
コンテンツ、広告キャンペーンなどで
VRが活用されていますが、欧米では

中規模のゲーム制作規模の予算が
ついたり、アーティストのプロモーショ
ンやミュージックビデオでの活用、ハリ
ウッド映画を制作していたような映像
チームがパノラマ映像を撮影しはじめ
たりなど、産業として広がりつつあるこ
とが見て取れます。

　Googleが進めるパノラマ映像コン
テンツ視聴用アプリ「Google Spot
light Stories」（iOS/Android）では、
5分の短編「HELP」が公開。これはイ
ギリスの大手映像プロダクションThe
Mill制作によるもので、監督はワイル
ド・スピードシリーズを手がけるJustin
Lin氏です。6K解像度のRED EPIC
DRAGONカメラ4台で同時撮影し、リ
アルタイムプレビューしながらパノラマ
撮影するという、スタッフ構成も機材的
にも現在考えうる最高の組み合わせで
作られたパノラマ映像です。

　Googleはハイエンドからローエンド
までパノラマ映像の展開を網羅し始
めており、安価なものでは、ダンボール

で作られたCardboardを展開し、サー
ドパーティ製のものも含め、世界で
100万人のユーザがCardboardア
プリを使い始めているそう。会場では
Google JUMPと呼ばれる、アクショ
ンカムのGoPro HERO4を16台つな
ぎ合わせた力技的なパノラマ撮影リ
グ（台座）もお披露目されていました。
現在撮影プロジェクトを募集中で、企
画が通った撮影案にはJUMP機材
が貸与されるそうです。

　現在、リアルタイムで描画するコ
ンピュータグラフィックスの世界は
OpenGLとDirectXが主流ですが、
アーキテクチャ的には古くなりつつあ
り、最新のハードウェアを最大限に活
かしきれなくなってきています。そう
いった声を反映して、Vulkanという
OpenGLの次に続く新しいAPI群が
予定されています。VulkanはApple
のMetal APIに相当するもので、並列
化された最近のハードウェアのしくみ
に合わせ、それらの性能を最大限に
活かしたアプリを作ることのできる環
境を目指しています。
　一方で、いままでグラフィックスドラ
イバが面倒を見てくれていた並列処

理や各種設定、負荷分散などを自前
で用意しなければいけないということ
で、労力の割には速度的メリットは少
ないとも言われています。これからの
チューニングは、ハードウェア性能の
向上が期待されます。

　SIGGRAPH開催中の夜に、エレ
クトロニックシアターというCG短編の
受賞作十数本を2時間ほど観られる
イベントが開催されます。その開始ま
での待ち時間に、「WHAM」というア
プリを使ったお楽しみがありました。こ
のアプリによって会場にいる個々人
のスマートフォン全部が連動し、映像
を映し出したり、フラッシュが連動して
光ったりして、たいへん盛り上がった
のです。知らない人同士が集う会場
で、デジタル技術であっという間に一
体感が創り出されたのがとても感動
的でした。
　映画でしか触れることのできなかっ
た最先端のコンピュータグラフィック
ス技術が、手のひらの中のスマート
フォンで実現し、ネットワークやコン
ピュータパワーを気にすることなく、瞬
時に手に入れることができる世界が
身近にやってきています。一昔前なら
1秒分の映像を制作するのに、数十
億円もする高額なスーパーコンピュー
タが必要だった時代から、ノートパソコ
ン1台、スマートフォン1台で、リアルタ
イムで素晴らしい表示がなされるよう
になりました。しかし、人間の欲望と表
現への欲求は限りがありません。
　来年夏のSIGGRAPH 2016は米
国アナハイムで開催されることが決
まっています。また、今年11月2日から
5日の4日間開催されるSIGGRAPH
ASIA 2015は、2009年以来の日本
開催となる、神戸での開催です（http:
//sa2015.siggraph.org/）。アジア
各国から集まるCG作品や、最新技
術展示に多くの期待が集まっていま
す。｢

コンピュータグラフィックスの祭典SIGGRAPH 2015［後編］

vol.204

SIGGRAPH
基調講演と表彰から

DIGITAL
GADGET

弦楽器の震え
プロジェクション

Sensel Morph

http://nae-lab.org/~naemura/publication/

Gadget 1

コンピュータグラフィックスの祭典SIGGRAPH 2015［後編］

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

DIGITAL GADGET

Wobble Stringsは、東京大学大学院情
報理工学系研究科・苗村研究室による
研究開発中のプロジェクトで、デジタルカ
メラなどでみられるローリングシャッター現
象を活用したものです。たとえば高速に回
転するプロペラや扇風機などをデジタルカ
メラで撮影したとき、ぐにゃぐにゃに曲がっ
た写真が撮影された経験はないでしょう
か？　Wobble Stringsはギターのピック
アップから得られた信号をMIDIデジタル
データに変換し、その音データに応じた
投影データを、ギターの弦がはってある
ネックの部分に投影するというものです。

変化するタブレットデバイス

https://www.kickstarter.com/projects/1152958674/
the-sensel-morph-interaction-evolved

https://nod.com/

https://www.pstechnik.de/en/skater-
scope-pl-pl/a-1059/

Gadget 2

Sensel Morphは、表面カバーを付け替え
ることで、さまざまな用途に変化するタブ
レットデバイスです。圧力によって入力情
報が変化し、押す強さに応じて入力値を
変化させることができます。上に載せる
シートによって、通常のQWERTYキー
ボードのほかにも、ピアノ鍵盤やDJコント
ローラ、筆ペンなどに変化します。現在
は、クラウドファンディングのKickstarter
で資金集めに成功し、製品化に向けて
邁進しているそうです。2016年の中頃
に249ドルで一般販売が予定されていま
す。

指輪型モーションデバイス

nod ring

Gadget 3

nod ringは、指につけて、腕や手の動きを
検知するためのモーションデバイスです。
モーションセンサー、タッチセンサーが搭載
されています。おもにゲームのコントローラ
用途として、ディスプレイの前で使うことを
想定しています。バッテリは約1日持ち、防
水となっています。最大の特徴は、わざわ
ざ新しいジェスチャを覚えたり、登録したり
する必要はなく、ごく自然で単純な手や指
の動きを検知し、それをトリガーにして操作
が可能なことです。開発者用に99ドルで
先行販売していましたが、今後予定されて
いる一般販売の際は149ドルとなる見込
みです。

マクロレンズ接続用アダプタ

SKATER SCOPE

Gadget 4

蟻サイズの小さなスーパーヒーローが登
場する映画「アントマン」の撮影に用いら
れたカメラレンズアダプタ。実際の撮影
には、Mocoというモーションコントロール
カメラ（ロボットのように精密に動きを何
度も繰り返すことのできる装置）の先に、
レンズ方向を自由に設定できるこの
SKATER SCOPEを取り付け、さらにそ
の先に一眼レフカメラ用の100mm焦点
マクロレンズを装着して映画撮影用のカ
メラとしたそうです。SKATER SCOPE
の価格は約400万円。1日レンタルでも
数万円します。極小の撮影ができます
が、価格は小さくありませんね。

映画の都ロサンゼルス。映像技術編

Henry Fuchs氏の
クーンズ賞受賞の様子

Lillian Schwartz氏のデジタル
アート作品（lillian.com より）

超高解像度のデジタルビデオカメラ4台を
搭載した、パノラマ撮影用カメラセット

GoPro HERO4を16台搭載した
パノラマカメラリグ「Google JUMP」

WHAMアプリの一体感を楽しむ観客

Vulkanによる描画の展示
（インテルブース）

技術の進化と映像の進化

Side Effectsブースでの
HELP制作のメイキング

Googleが攻める
パノラマ映像機材と
パノラマ映像ソリューション：
Google JUMP

VulkanというAPIの浸透、進化

これからのコンピュータ
グラフィックスの進化

SIGGRAPH会場内、VR展示の様子

SIGGRAPH会場内、
さまざまな機器を試用、試作
できるスタジオ展示の様子

静止した車に乗りながら、
ヘッドマウントディスプレイを
装着し、VRを楽しむ様子

バイオと
デジタル技術を
テーマにした
伊藤譲一氏の
基調講演

Wobble Strings

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 2 - Software Design Dec. 2015 - 3

http://nae-lab.org/~naemura/publication/
https://nod.com/
https://www.kickstarter.com/projects/1152958674/the-sensel-morph-interaction-evolved
https://www.pstechnik.de/en/skaterscope-pl-pl/a-1059/
http://sa2015.siggraph.org/

4 - Software Design

Library——ライブラリ

ライブラリとは

　ライブラリ（Library）とは、ほかのプログラ
ムから利用されることを前提としたプログラム

で、通常はそれ単独での動作を前提としないも

のです。数学関数を集めたライブラリ、多倍長
演算を行うライブラリ、暗号やセキュリティに
関する関数を集めたライブラリなど、用途に応
じた多種多様なライブラリが開発されています。
　プログラマがアプリケーション（以下、アプリ）
の開発を進めるとき、自分が使いたい機能がラ
イブラリとして使えるなら、開発の手間は大き
く軽減されます。ライブラリはプログラミング
言語ごとに開発／提供されるので、使おうとす
るプログラミング言語にどんなライブラリが存
在するかは重要な情報になります。良いライブ
ラリが充実していれば開発は楽になるでしょう。
　もともと、ライブラリは「図書館」という意味
で、“library”という英単語はラテン語の“liber”
（本）から派生したものです。調べものをしたい
人が図書館に行って目的に合った本を利用する
ように、アプリを開発したい人は、ライブラリ
をうまく利用して必要な機能を実装するのです。
　“library”という英単語には「書庫」という意
味もあります。書庫という意味では、アーカイ
ブ（archive）という言葉もあり、こちらは作っ
たものを変更せずに保存しておくニュアンスが

強い言葉です。

用意されているメリット

　ライブラリを使う大きなメリットは、プログ
ラマがいちいち自分でプログラミングしなくて
も、ライブラリで提供されている関数やクラス
を利用できる点にあります（図1）。たとえば、
ゲームのアプリを作ろうとして sinやcosの計
算が必要になったとします。もしも三角関数ラ
イブラリを使わなければ、プログラマは自分で
sinやcosを計算するコードを書かなければな
りません。これでは、本来やりたいゲーム開発
になかなか取りかかれません。ライブラリは必
要な関数やクラスがすでに用意されているから
こそ便利なのです。それは、図書館に行けば必
要な本がすでにそろっていて、すぐに利用でき
る状況とよく似ています。
　ところで、図書館で調べものをする場合「必

Library

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 31

アプリ

sin cos

ライブラリ

 ▼図1　アプリはライブラリを利用する

http://www.hyuki.com/

4 - Software Design Dec. 2015 - 5

要な本をすばやく見つけることができるか」は
大切ですね。そのためには書籍の検索ができる
ことや、そもそも司書がしっかり配架を整理し
ておくことが必要でしょう。アプリが利用する
ライブラリも同様に、ライブラリの開発者がしっ
かりと関数やクラスを設計し、ドキュメントや
サンプルが準備されていることが大事になりま
す。つまり、必要な関数やクラスがそろってい
るだけではなく、アプリのプログラマが使いや
すい状態になっていることが求められるのです。

分離しているメリット

　アプリの開発が楽になることだけがライブラ
リを使うメリットではありません。トラブルが
発生したときにも、アプリとライブラリが分離
していることが重要な意味を持ちます。それは、
発生したトラブルがアプリとライブラリのどち
らに起因しているのかを調べて、トラブルの原
因を切り分けることができるからです。
　また、実行環境ごとに異なるライブラリを用
意し、それを切り換えるようにすれば、アプリ
の修正をほとんど行わずに複数の環境に対応で
きるプログラムが作れます。アプリとライブラリ
とが分離していればテストも容易になるでしょう。
　アプリとライブラリが分離していれば、ライ
ブラリはアプリと独立に性能アップに取り組む
こともできます。汎用性の高いライブラリは、
たくさんのアプリから利用されます（図2）から、

1つのライブラリの性能を上げるだけで、たく
さんのアプリの性能がアップすることになりま
す。これはいいことですね。アプリとライブラ
リが分離しているからこそ、ライブラリをうま
く共有できるのです。

日常生活とライブラリ

　プログラミングのライブラリが持つ発想法を
日常生活に生かせるでしょうか。ライブラリは
もともと、私たちの図書館から借りてきたメタ
ファです。しかし、図書館以外にもライブラリ
の発想を生かせる場合がたくさんありそうです。
　たとえば、何かを作るとき、「自分ですべて
を作ろう」とするのではなく、「すでに世の中に
存在するものを利用できないか」と考えるのは
大事です。さらに「そもそも、自分が今から作
ろうとしているものは、過去に誰か似たものを
作っているのではないか」という発想も重要で
しょう。これは、アプリ開発でライブラリを利
用することに相当します。
　もっと言うなら「自分が作り上げたものをほ
かの人に利用してもらえないか」という発想も
ありますね。これは、ライブラリを開発するプ
ログラマの発想です。その際には、ほかの人が
利用しやすくするための工夫も必要でしょう。
　考えてみると、現代のインターネットは、「他
人の成果物を利用する」あるいは「自分の成果物
を他人に利用してもらう」ことを実現できる基
盤と言えます。

　プログラミングの分野では、インター
ネットの力を生かしてプログラマ同士
が成果物を共有し合っています。それ
以外の分野でも同じように、成果物を
うまく共有できたらいいですね。

◆　◆　◆
　あなたが何かを作るとき、「すべて
を自分で作ろうとしていないか」ある
いは「成果物を他人に利用してもらう
ことはできないか」とぜひ考えてみて
ください。｢

31

ライブラリ

アプリ1 アプリ2 アプリ3

 ▼図2　ライブラリはアプリに共有される

6 - Software Design

　あらゆるものがURLで表現可能になりつつ
ありますが、URLで表現する対象が膨大な量
になってくると、長いURLを扱う機会が増え
てきています。長いURLは取り扱いが面倒で
すし、記憶するのもたいへんですから、次のよ
うな工夫がよく用いられています。

ブックマークを利用する

　よく使うURLに手軽にアクセスできるように
するために、ブラウザのブックマーク機能が広
く使われています。ブックマーク機能はMosaic

のような初期のブラウザでも実装されていたほ
どポピュラーなもので、あまり機能が進化しな
いまま現在のブラウザでも利用されています。
　ブラウザのメニューからよく使うURLにア
クセスできるのは便利ですが、気軽に登録して
いるとあっという間にメニューが一杯になって
しまいます。階層的にブックマークを管理すれ
ば良いのですが、きちんと分類して管理するの
は面倒なので、結局利用の機会が減ってくるこ
とが多いようです。
　ブックマーク情報を、複数のマシンやブラウ
ザで共有しづらいのも面倒です。最近のブラウ
ザではブックマーク情報を複数マシンで同期で
きますが、こういう設定は面倒なものです。ま
た、ブックマークをブラウザ上に記憶する代わ

長いURLを
便利にしたい

りに、クラウド上に記憶して共有するソーシャ
ルブックマークのようなサービスもありますが、
ソーシャルブックマークは、Webページにコ
メントを付ける用途で利用されることが多く、
頻繁に利用するURLにアクセスする用途には
あまり使われていないように思われます。

長いURLを短いURLで置き換える

　長いURLに簡単にアクセスしたり他人に
URLを知らせたりする場合のために、長い
URLを短くしてくれるTinyURL、Bit.ly、Goo.

glなどのURL短縮サービスがよく使われていま
す。これらのサービスを利用すると、http://
pitecan.com/……のような長いURLの代わり
に、http://goo.gl/jx7VZy や http://bit.
ly/1LnYzAtのような短いURLを利用できます。
　URLが短ければ記憶が可能かもしれませんし、
他人とURLをやりとりする場合にも便利なのですが、
「jx7VZy」のような暗号的な文字列を記憶すること
は困難です。覚えることができないため、ファイル
などに書いておく必要があるのであれば、長い
URLを利用するのとあまり変わらないかもしれま
せん。短い名前を自分で選べるサービスもあります
が、好きな名前が使えるとは限りませんし、一度登
録したURLを後で変更できないのが普通です。
　また、短いURLと長いURLの対応はサーバ
に記憶されているので、サービスにトラブルが
あったり、サービス自体が終了したりすると使
えなくなるのは心配です。普通は対応データベー
スを取得できませんから、データをバックアッ
プしておくこともできません。

増井ラボノート

注1） http://thinkit.co.jp/free/article/0709/19/

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張らずに楽できるなら、それに越したことはないで
しょう。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろ
んなシステムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用してい
るような単純かつ便利なシステムをたくさん紹介していきます。

第 2 回　Gyump

http://thinkit.co.jp/free/article/0709/19/
http://www.pitecan.com/
http://goo.gl/jx7VZy
http://bit.ly/1LnYzAt
http://bit.ly/1LnYzAt

NO.

6 - Software Design Dec. 2015 - 7

G y u m p

◆ ◆ ◆

　そもそも個人的に使うURLは短くて
良いはずです。私の周囲で「SFC」とい
えば慶應義塾大学湘南藤沢キャンパスの
ことに決まっており、スーパーファミコ
ンのことではありません。自分の周囲で
言及することが多いものは、たいてい数
文字で表現できてしまうでしょうから、
よく使うものから順番に短い名前を割り
当てておけば便利でしょうし、情報圧縮や効率
化の面でも有利なことは間違いありません。今
回は自分用の短い名前を気軽にブックマークと
して活用できるGyump（ジャンプ）というサー
ビスを紹介します。

　URL短縮サービスの1つであるGoo.glに
http://pitecan.com/を登録するとhttp://goo.
gl/jx7VZyのようなURLが利用できるようになり
ます。curlコマンドで確認してみると、図1のよう
なHTMLとステータス301(Moved Permanently)
が返ってくることがわかります。
　Goo.glや、そのほかのURL短縮サービスは、
短い名前と長い名前の対応データベースを保持し
ており、短い名前でアクセスされたとき図1のよう
なHTMLとステータスコードを返すという単純な
しくみで動いているようです。このようなものは自
分で作るのも簡単です。
　Gyumpは、ユーザが指
定した名前を使って任意
のURLにアクセスでき
るようにするサービスで
す。たとえば「sd」という
IDを持つユーザが「map」
というキーワードで東京
駅の地図にアクセスした
いとき、http://gyump.

Gyump：柔軟な
URL短縮サービス

com/sd/mapというURLを利用できるようにす
るというものです。既存の短縮サービスと異なり、
Gyump.com以下の名前は任意のものが使えるの
で、自分の ID（e.g. sd）と短い名前（e.g. map）の
ような任意の組み合わせを利用できます。
　何も登録されていない状態でGyump.com/sd/
にアクセスすると、図2のように登録フォームだ
けが表示されます。
　ここで「map」というキーワードと東京駅の地図
のURLを入力して登録すると、東京駅のURL

が「map」という名前で登録され、登録された
URLが図3のようにリストされます。この状態で
はhttp://sd.gyump.com/mapというURLで東
京駅の地図にアクセスできます（図4）。
　リスト中の「map」をクリックすると編集モー
ドになります。http://sd.gyump.com/map!
のように、短いURLの最後に「!」を付けた
URLにアクセスすると、直接編集ページに飛
ぶことができます（図5）。

 ▼図2　sd.gyump.comの初期状態

% curl -w '[%{http_code}]\n' http://goo.gl/jx7VZy
<HTML>
<HEAD>
<TITLE>Moved Permanently</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
<H1>Moved Permanently</H1>
The document has moved here.
</BODY>
</HTML>
[301]
%

 ▼図1　短縮URLサービスでcurlコマンドを試す

 ▼図3　東京駅を登録後のリスト

http://www.pitecan.com/
http://goo.gl/jx7VZy
http://goo.gl/jx7VZy
http://gyump.com/sd/
http://gyump.com/sd/map
http://sd.gyump.com/map
http://gyump.com/sd/map
http://sd.gyump.com/map!

増井ラボノート

8 - Software Design

ブラウザの検索窓に登録

　短いとはいってもhttp://sd.gyump.com/map
のようなURLをブラウザに入力するのは面倒で
しょう。Firefoxなどではopensearch機能を使っ
て検索窓をカスタマイズできるようになっている
ので（図6）、Gyumpを検索システムとして登録し
ておけば、検索窓にmapと入力するだけで
http://sd.gyump.com/mapにアクセスできるよ
うになるので便利です（図7）。
　このように、Gyumpをデフォルト検索サービス
として登録しておくと、検索枠に「map」と入力す
るだけで東京駅の地図を開くことができます。
Gyumpに登録されていない文字列を入力すると
Google検索するようになっているので、検索エ
ンジンを切り替える必要は多くありません。

階層的な情報管理

　たくさんのURLを扱いたい場合はGyump.
com/sd/maps/tokyoのような階層的な名前も利
用できます。この場合、Gyump.com/sd/maps/
akiba、Gyump.com/sd/maps/shibuyaのような
名前を登録しておけば、Gyump.com/sd/maps/

で地図のリストを見ることができます。
　「sd」や「map」のような名前は自由に選択できま
すし、登録URLを後から変更することもできる
ので、次に示すようにさまざまな使い方ができます。

その1「地図へのアクセス」

　初めての場所に行こうとするとき、行先をあら
かじめGoogle Mapsなどで調べておく人が多いと
思いますが、パソコンで調べたURLにスマホか
らアクセスするためには、なんらかの方法で
URLを送る必要があるので面倒です。Google

MapsのURLはとても長いのでメールで送るのも
手軽ではありません。
　私は、行先の地図のURLを常にmyname/map
のような名前でGyumpに登録するようにしており、
Gyump.com/myname/mapのショートカットをスマ
ホのホーム画面に登録してあるので、スマホ上で
これをタップするだけで、常に行きたい場所の地
図を表示できるようになっています。行先が変わっ
た場合でも、同じURLから目的地の地図が表示
されるのでとても便利です。

その2「予定表」

　私は予定表をWebで管理しており、Gyump.

Gyumpの活用例

 ▼図5　編集フォーム

 ◀図6　
Firefoxの検索エンジ
ン選択機能

 ◀図7　
デフォルト検索エンジ
ンとして「sd.gyump.
com」を指定

 ▼図4　http://sd.gyump.com/mapにアク
　　 セスして表示される地図

http://sd.gyump.com/map
http://sd.gyump.com/map
http://sd.gyump.com/map
http://sd.gyump.com/map

NO.

8 - Software Design Dec. 2015 - 9

G y u m p

com/myname/sのような短いURLでアクセスで
きるようにしています。予定表のURLは毎月変
わるのですが、現在の日付からURLを計算して
今月の予定表ページに飛ぶプログラムを用意して
いるので、常に同じURLで今月の予定表にアク
セスできるようになっています。

その3「買い物／メモ」

　GyumpのURL登録欄にURL以外の文字列を
書いておくと、そのURLに飛ぶかわりに、登録
した文字列が表示されるようになっているので、
私は買い物メモなどはGyump.com/myname/buy
のようなところに書くようにしています。

その4「よく使うショートカット」

　よく利用するサービスに飛ぶためのブックマー
クとしても私はGyumpを活用しており、たくさん
の固定URLを登録して使っています。「tenki」で
天気予報にアクセスしたり、「jor」でジョルダン乗
り換え案内にアクセスしたり、「hon」で本棚 .org

のページにアクセスしたり、あらゆる状況で頻繁
にGyumpを利用しています。

その5「一時的な仕事での利用」

　不慣れなAPIなどを調べて使いたいような
場合、マニュアルやブログなどたくさんのペー
ジを参照しながら理解を深めるものですが、検
索したページをすべて開いたままにしておくと
ブラウザがタブだらけになってしまいます。こ
のような場合、必要になるかもしれないページ
を Gyump.com/sd/api/1、Gyump.com/sd/api
/2のようなアドレスにどんどん登録しておくよ
うにすれば、タブの数などを気にすることなく
後で簡単にアクセスできます。

その6「登録URLのチェックと
バックアップ」

　通常のURL短縮システムと異なり、Gyumpで
は登録されたURLのリストを眺めることができ
ますから、そのページをバックアップしておけば

Gyumpが使えなくなった場合でも安心です。

Gyumpアドレスのブックマーク

　Gyump.com/sd/mapのようなURLをブラウザや
スマホでブックマークしたい場合、ブラウザ上でこ
のようなURLを入力すると、ここに登録されてい
る地図URLにジャンプしてしまうためGyump.com/
sd/mapという短いURLをブックマークできません。
Gyumpでは、Gyump.com/sd/で表示されるリスト
画面の中から「map」を選択するとGyump.com/sd/
mapのようなアドレスで登録画面が表示されるので、
ここで短いURLをブックマークできます。

　私はこのシステムを長年活用しているのですが、
同様のシステムを活用している人は多くないよう
なのが不思議です。さまざまなWebページにア
クセスしようとするときは、毎回Google検索した
り、ブラウザのURL補完機能やブックマーク同
期機能を利用したり、Google Mapsのようなサー
ビスが用意している登録機能を利用したり、
Evernoteのような情報管理ツールを利用したり、
人それぞれにいろいろな方法が利用されているよ
うですが、Gyumpは単純な割に応用が広く、「sd/

map」のような文字列さえ覚えておけば、あらゆる
ブラウザで使えるので安心ですし、他人に口頭で
URLを伝えるのにも便利だと思います。
　Gyumpのようなシステムはもちろん万能ではあ
りません。「map」のような適切な名前を思いつかな
い場合もありますし、登録したものを他人に書き
換えられてしまう可能性もあります。しかし運用を
工夫すればそれほど困ることはありませんから、メ
リットを活かして活用するのが良いと思っています。
　しくみの単純さと効果の大きさを掛けたものを、
筆者はコロンブス指数と呼んでいるのですが、単
純なしくみにもかかわらず応用範囲が広く有用だ
という意味で、Gyumpのコロンブス指数はかなり
高いと言えるでしょう。ﾟ

Gyumpの利用経験

10 - Software Design

子供時代、何が好きでしたか？

本が好きで、本屋に何時間居ても

飽きない子でした。将来は文字を書

くのが仕事になればいいと思ってい

て、今でも小説家に憧れています。

吉岡さんのコンピュータとの出会

いはいつごろですか？

中学が大学に付属していた関係

で、大学にあるコンピュータを使っ

て、『電子計算機入門』という課外授

業があり、それが最初です。コン

ピュータといっても、その当時はパ

ンチカードで入力する計算機です。

パンチカードって実物を見たこと

ないのですが、どんなものですか？

紙に穴をあけて1枚が1行分で

す。今の若い人たちは写真も見たこ

とない人が多いと思いますが、1枚

1円ぐらいで、タイプミスをすると、

その1枚が無駄になるのでたいへん

です。よく考えてからプログラムを

書くという経験をしました。今は画

面でいくらでもやりなおしができる

けど、そのころはパーソナルコン

ピュータがない時代で、もちろん

キーボードも触ったことがない。

キーを探してポチポチ打つ。そうす

ると機械がパンチカードに穴を開け

（パンチカードに穴をあける機械を

穿
せ ん こ う き

孔機と呼ぶ）、それが何枚もでき

る。それを読み込ませて初めてプロ

グラムが計算機に入力されるわけで

す。プログラミングをすると何かが

出てくる。その体験がすごく楽し

かった。この環境があったのはラッ

キーだったと思います。

パソコンが出て来たのはいつごろ

ですか？

高校2年生のとき、日経サイエン

スという雑誌の記事に「マイクロプ

ロセッサ」が紹介されていました。こ

のチップの誕生でコンピュータの原

理が成り立つんですよね。その記事

には、きれいなICのカラー写真が

あって、これにメモリをつけるとコ

ンピュータとして動作すると書いて

ある。当時の計算機は数千万円で、

何百ドル（数万円）で同じものができ

るとわかって驚きました。

大学では、どんな研究をされたの

でしょうか？

大学では、工学部の統計の研究室

に入りました。大学院ではデータ

ベースの研究室に進みました。論文

を集めるのが趣味で、山のように論

文を集めました。

新卒でDECに入社されて、エン

ジニアの職に就いたのですか？

はい、私は新卒でDECの研究開

発センターに入社しました。そこで

はCOBOLの日本語化が初めての仕

事でした。入社したのは1984年の

ことですが、入社してすぐに会社主

催の花見の会がありました。そこで

米国本社から来ていたエンジニアを

紹介してもらったりして、いきなり

のことに驚きました。米国の技術者

は当時の自分には雲の上の存在でし

たから。

DECからOracleへ転職された

のは、何がきっかけだったのですか？

DECの景気が悪くなって、希望

退職を募っていたので手を挙げまし

た。お世話になった方々へ退職メー

ルを書いて送ったのですが、DEC

RDB（という製品があって、Oracle

へ部門ごと売却された）でお世話に

な っ た 人 が 米 国 Oracle に い て、

「Oracleの国際化どう？」と、職を紹

介してくれました。トントン拍子で

ゲスト：吉岡 弘隆さん第17献
吉岡 弘隆（よしおか ひろたか）さん
1958年生まれ。楽天株式会社技術理事、ビジネス・ブ
レークスルー大学教授、産業技術大学院大学客員教授。
1984年、慶應義塾大学大学院修了後、日本DEC研究開
発センター入社、ソフトウェアの日本語化、国際化など
に従事。日本Oracleを経て、2000年にミラクル・リ
ナックスを創業、取締役CTOを歴任。2009年より現職。
1999年よりカーネル読書会を主宰。日本におけるオー
プンソース、ハッカー、勉強会文化の普及・啓蒙に努め
る。TwitterID：@hyoshiok

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

10 - Software Design Dec. 2015 - 11

米国に行きました。Oracleでのシリ

コンバレー時代は楽しくてしょうが

なかったです。

シリコンバレーではとくに何が楽

しかったですか？

スタンフォード大学の授業に潜入

し、データベースの授業を聞き、毎

週のように参加しました。米国大学

のいいところは、社会人が授業に参

加していても問題なくて、大学以外

でも勉強会のようなものはいたると

ころにありました。その費用は10

ドル、20ドルで、参加しやすいの

もよい点です。CPUを作っている

人、OSを作っている人、コンパイ

ラを作っている人、いろんな人が集

まっていて、盛んに情報交換してい

ました。約3年半、貴重な時間を過

ごしました。

カーネル読書会を始めたきっかけ

は何ですか？

日本に戻って、シリコンバレーで

体験したことを日本でもできるか試

験的にやってみたんです。やってみ

たらみんな楽しんで盛り上がりまし

た。第1回は川崎の溝の口に30名

ほど集まりました。それがだんだん

規模も大きくなり、気がついたら

100回を越えることができました。

実際のところは、システムコールの

実装が知りたいな、と思ったことが

きっかけでした。

GitHubを勧めていますよね。

もっとGitHubの文化が伝わると

いいと思っています。利用している

ところは利用していると思うのです

が、大企業はまだまだじゃないです

かね。オープンソースの世界では当

たり前のように理解されていますが、

IT技術（ソフトウェア開発）という範

囲では、まだまだ認知が浅いと思い

ます。

楽天へ転職されたきっかけはなん

だったんでしょうか？

ずっと外資だったので、国内に本

社がある会社に勤めてみたかったの

です。東京で働くなら日本の会社で

すね。それとオープンソースに力を

入れている会社に入りたかった。日

本でオープンソースに力入れている

会社はWeb系が多く、その中で楽

天にお世話になることになりました。

社長の三木谷さんは、インターネッ

トやオープンソースのことをよく理

解している経営者ですね。日本の経

営者の中では一番理解している一人

じゃないかな。そして入ってみて実

感していることですが、楽天の偉い

ところは、人材育成に本気で力を入

れているところですね。

楽天の有名な英語公用語化はその

一部なのでしょうか？

そうですね。英語以外にも教育メ

ニューは充実しています。人間はソ

フトウェアと一緒で変化し続ける必

要がありますから、力を入れて環境

を与えてしっかりと育てる。それを

愚直にやっています。英語化を始め

るときはTOEICのスコアなどを指標

としていましたが、そういう指標も

変化しつつあります。最近では隣の

席が外国人というのが当たり前に

なってきたので、英語が話せないと

話にならないです。スコアがあるだ

けではダメです。英会話に力を入れ

ていなかった人にとっては、たいへ

んな環境だと思います。会社は伸び

る社員をサポートします。そして会

社が躍進するためには「教育」が欠か

せない要素ですね。

吉岡さん個人は10年後、どうなっ

ていたいですか？

著述業かな。あと、タモリ倶楽部

に出たいです。本当は笑っていいと

ものテレフォンショッキングに出て、

徹子の部屋に出て、タモリ倶楽部と

いう順で考えていました。ブラタモ

リが復活してうれしいです。タモリ

さん大好き。

今日はたくさんのお話、どうもあ

りがとうございました。s

12 - Software Design

　前回はさまざまな通信プロトコルを紹介しま
した。UART（Universal Asynchronous Receiver

Transmitter）は一般的ですし、皆さん簡単に使
うことができるでしょう。そこで今回は、前回
紹介したSPI（Serial Peripheral Interface）を
実際に使ってみましょう。mbedには、多くの電
子部品にライブラリが作られ、Componentsとし
て登録されています。OSで言うところのデバ
イスドライバがすでに提供されているようなも
のです。ですから、SPIを直接操作しなければ
ならないのは、Componentsに登録されていない
部品を使うときくらいでしょう。今回は、筆者
が使いたいと思って中国から買い付けてきた、
「GT20L16J1Y」という日本語フォントが入った
ROMをSPIで読み出して使ってみたいと思い
ます。

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

SPIで通信してみる第
六
回

GT20L16J1Y

　このチップのメーカーのページ注1を見ると、
「GT20L16J1Y规格书V2.0I_B」注2というデー
タシートが掲載されているのが見つかります。
中国語で書かれているので、とても読みづらい
ですが、データシートを見て、どのようにアク
セスをすればよいのか確認しましょう。
　まず、基本的なところを確認します。GT20

L16J1Yを使うための電圧と、アクセス方法で
す。4ページを見ると、SPI、30MHz、工作电

压：2.7～3.6Vといった情報が読み取れます。こ
のチップは、2.7～3.6Vで動き、30MHz以下の
SPIでアクセスすればよいようです。10ページ
には、ピン配置と、SPIのタイミング図が載っ
ています。このタイミング図を見る限り、SPI

のモード0あるいはモード3でアクセスするよ
うです。また、マイコンとROM（GT20L16J1Y）

の配線については、先ほどの
ピン配置に加えて11ページに
配線図が載っていました。こ
れを参考に、mbed LPC1768

とGT20L16J1Yを図1のよう
に配線します。
　ここでは、mbedのp10(CS)

をROMのCS#(3)に、p11(MO

SI)をSI(6)に、p12(MISO)を

注1） http:/ /www.genitop.com/
P roduc t s / i ndex l i s t _GT20
L16J1Y.html

注2） http:/ /www.genitop.com/
admin/upload/2015051114
4125736.pdf

 ▼図1　配線図

はじめに GT20L16J1Y

http://www.genitop.com/Products/indexlist_GT20L16J1Y.html
http://www.genitop.com/admin/upload/20150511144125736.pdf

12 - Software Design Dec. 2015 - 13

SPIで通信してみる 第
六
回

SO(5)に、p13(SCLK)をSCLK(1)にそれぞれ

接続しています。mbed LPC1768がSPIのマ

スタに、ROMがスレーブになっています。そう
いえば、前回はCS（チップセレクト）ではなく、
SS（スレーブセレクト）と記していました。昨

今ではスレーブ（奴隷）という語感がよろしくな
いということで、こういった置き換えをよく見
ます。

ソフトウェア

　接続をしたところで、実際にSPIを使ってア
クセスしてみましょう。mbedでSPIを使うに
は、まず、

SPI spi(p11, p12, p13);

といった具合に、SPIとして使うピン名を指定
し、コンストラクタを呼んで初期化します。こ
こで、spiというオブジェクトができますので、

spi.format(8,3);
spi.frequency(1000000);

と、データフレームの長さと、モード、ま
た、SPIのクロックの速さを設定します。
この場合、1,000,000Hzですので、1MHz

です。
　先ほどのデータシートの8ページ目を見
ると、このROMを使うには、まず0x03を
書き込んでREADモードにして、続いて

読み出したい番地を3byte（24bit）送るようです
（図2）。SPIの設定を終えたので、SPIでアク
セスしてみましょう。SPIでアクセスする前に、
CSをHIGHからLOWにして、今、通信してい
る相手のチップを明確にします。そのうえで、

spi.write(0x03);

とすると、0x03をマイコンからROMに送るこ
とができます。この調子でuint32_tのAddress

に入っている番地を、1byteずつ転送します。

spi.write(Address >> 16 & 0xff);
spi.write(Address >> 8 & 0xff);
spi.write(Address & 0xff);

　これで、読み出したい文字が記録されている
番地を送ることができました。次に、ROMから
送られてくるデータを読み出しましょう。前回
記したように、SPIの通信はマスタ主導で行う
必要があります。SPIは、SCLKに合わせて
MOSI（Master-Out Slave-In）とMISO（Master-

In Slave-Out）とが同時に通信を行います（図3）。

ソフトウェア

命令 アドレス (24bit)

1 2 3 4 5 6 7 8 9 10

01234567 7

0123

29 30 31 32 33 34 35 36 37 38 3928

212223

Data Out 1 Data Out 2

CS#

SCLK

SI

SO

MSB

MSB

ハイインピーダンス

0

 ▼図2　フォントROMを読み出すときの信号

Master Slave

MOSI

MISO

SCLK

SS(CS)

送受信が同時に行われる

 ▼図3　SPIの通信

14 - Software Design

合、フォントのデータが1文字あたり32

byteあるからです。図4のように15×16

ドットフォントが1列のスペース付きで
格納されています。最後に、CSをLOW

からHIGHにするとSPIの通信を終了さ
せることができます。上記の例では、
matrixdata32という配列にフォントの
ビットマップが入っているので、これを
液晶などに表示して使います。

サンプルコード

　今回は、UARTで読み出したフォント
を表示してみるサンプルコード注3を用意
してみました。mbed LPC1768は、パソ
コンにUSBで接続すると、ドライブだけ
でなく、シリアルポートも備えた複合デ
バイスとして認識されます。OS Xでは
ドライバのインストールが不要ですが、
Windowsでは、ドライバのインストール
が必要です。mbedのシリアルポートのド
ライバは、配布ページ注4でダウンロード
できます。
　サンプルコードを“Import this prog

ram”ボタンをクリックして自分の開発環
境にインポートし、“Compile”ボタンを
クリックすると、コンパイルが実行され、
生成されたバイナリのダウンロードが始
まります。ダウンロードされたバイナリ
をmbedのドライブにコピーし終えたら、
mbed LPC1768のリセットボタンを押し
てください。
　次にシリアルポートを、お手持ちのシ

注3） https://developer.mbed.org/users/ytsuboi/
code/GT20L16J1Y_sample/

注4） https://developer.mbed.org/handbook/
Windows-serial-configuration

マスタが何かを送ろうとしてSCLKを出さなけ
れば、スレーブからは何も戻ってきません。で
すので、マスタからは、0x00などのデータを送
ります。スレーブから送られて来た値は spi.

write()の戻り値になっていますので、次のよう

に読み出します。

for (int i = 0; i < 32; i++) {
 matrixdata32[i] = spi.write(0x00);
}

　32回ループを回しているのは、全角文字の場

 ▼図5　フォントが表示される

15 列

B0
B1
B2
B3
B4
B5
B6
B7

B
Y

TE 0

B0
B1
B2
B3
B4
B5
B6
B7

B
Y

TE 16

B0
B1
B2
B3
B4
B5
B6
B7

B
Y

TE 1

B0
B1
B2
B3
B4
B5
B6
B7

B
Y

TE 17

B0
B1
B2
B3
B4
B5
B6
B7

B
Y

TE 14

B0
B1
B2
B3
B4
B5
B6
B7

B
Y

TE 30

B0
B1
B2
B3
B4
B5
B6
B7

B
Y

TE 15

B0
B1
B2
B3
B4
B5
B6
B7

B
Y

TE 31

空白

16 行

 ▼図4　フォントの格納イメージ

サンプルコード

https://developer.mbed.org/handbook/Windows-serial-configuration
https://developer.mbed.org/users/ytsuboi/code/GT20L16J1Y_sample/

14 - Software Design Dec. 2015 - 15

SPIで通信してみる 第
六
回

リアルターミナルで開きます。mbedでUART

を使用するとき、とくに指定をしなければ、
9,600bps、8bit、パリティなし、ストップビッ
ト1でUARTが動きます。お手元のシリアル
ターミナルも、この設定にしてください。また、
このフォントROMには、JIS X 0208の並びで
フォントが格納されています。サンプルプログ
ラムは、Shift_JISからフォントROM内のアド
レスに計算して読み替えを行っています。です
ので、シリアルターミナルの文字コードをShift_

JISにすることも忘れないでください。
　シリアルターミナルでmbedのシリアルポート
に接続し、「技」と入力すると、図5のようにROM

に格納されていたフォントが表示されます。

ライブラリ

　ここまでは、SPIを使って、直接フォント

コードに書いた日本語を、mbedアプリケーショ
ンボード注6という基板（写真1）に搭載されてい
る液晶に表示することができます（写真2）。ち
なみに、この液晶もSPIでmbedに接続されて
います。s

注6） https://www.switch-science.com/catalog/1276/

　SPIは、「MOSI」「MISO」「SCLK」の3本の信号線を使うことから3線式シリアルとも呼ばれます。よ
り大きな帯域幅を求めて、SPIを拡張して作られたクワッドSPIという規格も存在します。SPIは
MOSIとMISOの2本を使った全二重の通信を行いますが、クワッドSPIは4本の信号線を使い、半二
重の通信を行います。複数のデータ線を使っているので、厳密にはシリアル通信とは言えませんね。

クワッドSPI

ROMにアクセスしてきま
した。しかし冒頭で紹介し
た よ う に、mbedの Com

ponentsページには、多く
のライブラリが登録されて
います。このGT20L16J1Y

のライブラリもすでに作ら
れ、登録されています注5。
このComponentsページに
あるサンプルコードは、
UTF-8を JIS X 0208に変
換するテーブルも含まれて
います。このため、ソース

注5） https://developer.mbed.
org /components /GT20
L16J16Y-Japanese-font-
ROM/

ライブラリ

 ▼写真1　mbedアプリケーションボード

 ▼写真2　液晶に漢字を表示させてみた

https://www.switch-science.com/catalog/1276/
https://developer.mbed.org/components/GT20L16J16Y-Japanese-font-ROM/

16 - Software Design

ハイレゾ対応USBパワードスピーカー
Olasonic 『TW-S9』
卵型のPC用スピーカー。96kHz/24bitまでのハイレゾ音源入力
に対応しています。パソコンへはUSBケーブル1本で接続し、
バスパワーで動作します。卵型キャビネットは音響的に理想的な
形状で、剛性が高く、箱鳴りなどの不要音の発生や定在波を防
ぎ、高音質再生を実現しています。OSは、Mac OS X 10.1以
降、Windows Vista/7/8/8.1/10に対応しています。
提供元 	東和電子　http://www.olasonic.jp/

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2015年12月17日です。プレゼント
の発送まで日数がかかる場合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

探索、知識表現と推論、学習、自然言語処
理、進化的計算と群知能など、人工知能の
基本分野を解説した1冊。ビッグデータ解
析やディープラーニング、技術的特異点な
どの現代的な話題も紹介しています。

提供元 	共立出版
	 http://www.kyoritsu-pub.co.jp

人工知能入門
小高 知宏 著

2名

自身のコードを出力する「Quine」、特定の
文字だけでコードを組む「○○禁止プログ
ラミング」、コードのアスキーアート化な
ど、一般的な技術書ではお目にかかれない
プログラミングテクニックが満載です。

提供元 	技術評論社
	 http://gihyo.jp

あなたの知らない超絶技巧プログラ
ミングの世界 遠藤 侑介 著

2名

Javaユニットテストを自動化するフレー
ムワーク「JUnit」の解説書です。ユニット
テストの基礎からチーム開発でのユニット
テストまで、実践的なテクニックを解説し
ています。

提供元 	オライリー・ジャパン
	 http://www.oreilly.co.jp

実践JUnit
Jeff Langr, Andy Hunt, Dave Thomas 著

2名

読者プレゼント
のお知らせ

Dockerが動くしくみから、GitHubと連携
したデプロイ方法、Dockerfileの書き方、
kubernetesと の 連 携 方 法、Atomic
Hostでの使い方など、実践を想定した
Dockerの使い方を解説しています。

提供元 	技術評論社
	 http://gihyo.jp

Docker実践入門
中井 悦司 著

2名

D456 USB
Desktop
アクアリウム
デスクで魚が飼える癒しグッズ。USBから循環ポンプとLEDラ
イトに給電します。ペンスタンドと液晶表示の時計・カレンダー・
温度計も付いて、通常のツールとしても活躍。忙しい作業空間に
癒しをお届けします。

提供元 	パソコン工房　http://www.pc-koubou.jp

1名

ウイルスバスター モバイル
不正アプリ対策、Web脅威対策、保護者による使用制限、盗難／
紛失時の対策、迷惑SMS／迷惑着信対策が行えるスマートフォ
ン・タブレット用のセキュリティアプリ。「1年1OS用」をプレゼ
ントします。
提供元 	トレンドマイクロ　http://www.trendmicro.co.jp

1名

1名

http://gihyo.jp/magazine/SD/
http://www.olasonic.jp/
http://gihyo.jp
http://gihyo.jp
http://www.pc-koubou.jp/
http://www.trendmicro.co.jp/jp/index.html
http://www.kyoritsu-pub.co.jp/
http://www.oreilly.co.jp/index.shtml

［決定版］

Docker自由自在
実用期に入ったLinuxコンテナ技術

第1特集

　すでに普及段階に入ったDockerとコンテナ技
術。本特集ではDockerのおさらいから、さらに使
いこなすためのノウハウをまとめました。
　第1章ではDockerコマンドを使い、コンテナを
操作する方法を紹介します。第2章ではDockerイ
メージの使い方とDockerクライアントの操作方
法を紹介します。第3章ではDockerデーモンの管
理方法を学習します。第4～6章では、Dockerに
よる自動処理や、クラスタ管理のツール、設定ファ
イルによる自動化などの手法を紹介します。最後
の第7章では、HashiCorp社のツールを使った
Dockerの環境構築や管理を紹介します。

Dockerのキホン
環境構築から基本操作をマスターしよう ……P.18

第1章

Dockerのイメージ管理と基本操作
レジストリとDockerクライアントの操作法 ……P.27

第2章

Dockerの操作と管理
便利なコマンド／オプションを一挙に学ぼう ……P.35

第3章

Docker環境を自動構築
オーケストレーションツール「Docker Machine」 ……P.44

第4章

Docker Swarmでコンテナのスケジューリング
コンテナをクラスタリングしリソースを管理 ……P.51

第5章

Docker環境のコード化とオーケストレーション
DockerfileとDocker Composeで作業の省力化・効率化 ……P.59

第6章

HashiCorpの自動化ツールとDockerの連携
HashiCorp道の真

しん
髄
ずい

 ……P.64

第7章

 Author 前佛 雅人（ぜんぶつ まさひと）　クリエーションライン㈱　 Twitter @zembutsu

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

18 - Software Design

Docker の成り立ち

　Dockerは、Docker社注1がオープンソースと
して開発／提供しているコンテナ管理用のプラッ
トフォームです。一般的にDockerと呼ばれる場
合は、このDocker社を指す場合と、中心となる
プログラムのDockerエンジン（Dockerデーモン）
と周辺ツール（Docker Toolbox、Docker Machine

など）やサービス（Docker Hub、Docker Trusted

Registry）を総称している場合があります。
　Dockerが初めて発表されたのは、2013年3月
15日、カリフォルニア州のサンタクララで開催
されたPython開発者向けイベントPyCon 2013

でした。dotCloud社のCEOだったSolomon

Hykes氏により、わずか5分間のライトニング
トーク注2で発表されました。このとき、概要の
説明と「docker」コマンドでDockerイメージを使
い、Dockerコンテナを実行できるというデモが
行われました
　その発表から1週間ほどして、Dockerのプロ
ジェクトとソースコードがGitHub上に公開され
ました。ソースコードはオープンソースとして
公開され、社内外から多くの人たちが開発に参
加するプロジェクトがスタートします。そして、
2015年10月現在の段階で、GitHubのスター数

は25,000件を超え、18,000以上ものコミット、
累計1,300名のコントリビュータが参加してお
り、GitHub上でもトップ20以内のプロジェク
トになるまでに成長しています。
　Dockerそのものも、世界で幅広く使われるよ
うになりました。Dockerイメージを共有する
Docker Hubは、過去1年間で24万人の利用者、
15万件のリポジトリ、5億ダウンロード（pull）注3

という、世界でも有数の開発プラットフォーム
に成長しています。
　dotCloud社はもともとPaaS（Platform-as-a-

Service）事業を展開していました。発表後、
Dockerを事業の主力として取り扱うことを決
め、社名をDocker社に変更しています。
　Dockerの普及に伴い、業界動向も大きく変わ
りつつあります。当初はこのDocker社だけでコ
ンテナの仕様取り決めや方向づけを行っていま
した。しかし、2015年6月に開催されたDockerCon

では、The Open Container Project注4の発表を
通し、さまざまな開発会社やベンダ、クラウド
事業者が協力して、共通のコンテナ仕様を決め
ることが発表されました。

Dockerが解決する問題

　Dockerが幅広く使われるようになった理由を
紐
ひも

解いてみましょう。Dockerのよいところは、

Dockerの
キホン
環境構築から基本操作をマスターしよう

 Author 前佛 雅人（ぜんぶつ まさひと） クリエーションライン㈱　 Twitter @zembutsu

　日本国内でも日に日にDockerやコンテナについての認
知が広まりつつあります。そもそもDockerやコンテナとは
何であり、どのような機能や利便性をもたらすのでしょう
か。本章ではまず始めに、Dockerの概要と環境構築のしか
たを学びます。それから、Dockerコマンドを使い、一通り
のコンテナの操作方法を習得しましょう。

第1章

注1） https://www.docker.com/
注2） The future of Linux Containers https://www.youtube.

com/watch?v=wW9CAH9nSLs

注3） http://www.slideshare.net/Docker/dockercon-15-
keynote-day-2/16

注4） http://www.opencontainers.org/

https://www.docker.com/
http://www.opencontainers.org/
http://www.slideshare.net/Docker/dockercon-15-keynote-day-2/16
https://www.youtube.com/watch?v=wW9CAH9nSLs

Dockerのキホン
環境構築から基本操作をマスターしよう

第1章

18 - Software Design Dec. 2015 - 19

簡単なコマンドを実行するだけで、コンテナを
実行できる点にあります。アプリケーションだ
けでなく、ミドルウェア環境もすべてコンテナ
化することにより、開発環境／テスト環境／本
番環境を問わず、アプリケーションが必ず動く
環境を提供します。
　これにより、環境におけるライブラリやミド
ルウェアなどの違いによって「開発環境では動い
たのに、本番環境では動かなかった」という問題
を回避します。Docker社のサイトでも「Docker

はアプリケーションや自身の依存関係を含め、
それらをソフトウェア開発における標準的なユ
ニットにしたもの」と説明があります。
　Dockerの扱うコンテナ環境（Dockerイメー
ジ）は、実行が非常にスムーズです。詳しくは後
述しますが、あくまでもDockerが実際に行う処
理とは、隔離された環境でプロセスを起動する
だけです。そのため、利用者からすると、コマ
ンド実行後は瞬間的にアプリケーションやプロ
グラムが起動するように見えます。これが
Dockerコンテナが速いと言われるゆえんです。
　そのため、ちょっとしたコマンドやアプリケー
ションのテストを行いたいときDockerを使え
ば、わざわざOS環境からミドルウェアも含め
てすべてを構築する必要はありません。使い終
わったら簡単に環境を削除できるのも魅力の1

つです。
　Dockerイメージを共有するプラットフォーム
として、Docker Hub注5の役割もDockerにおい

て欠かせないものです。Docker Hubはパブリッ
クレジストリと呼ばれており、公式のDockerイ
メージが提供されているだけでなく、GitHubの
ように、任意のイメージ登録・共有を行うこと
ができるインターネット上のサービスです。イ
メージのダウンロードや検索、公開リポジトリ
の登録は、すべて無料で行うことができます。
　そのほか、DockerとDocker HubはAPIを実
装しています。このAPIを通せば、何らかの自
動的な作業を行ったり、ほかのツールと連携し
た自動処理や、CI（継続的インテグレーション）
やCD（継続的デリバリ）への応用も可能となり
ます。

Dockerが解決しない問題

　一見すると何でも便利に行えるかのように見
えるDockerですが、よくある誤解は、既存の仮
想化またはクラウド環境をおきかえるものだと
いう考えです。Docker（Dockerエンジン）は、あ
くまでもLinuxカーネルの機能を使って、コン
テナと呼ばれる各種リソースが隔離されたプロ
セス空間を作るためのものです。仮想化システ
ムやクラウドで扱う仮想マシンは、ホスト側と
は独立したリソースやOSを持ちます。一方、
DockerコンテナはOS側と同じkernelを使って
動作する環境を作るものです（図1）。したがっ
て、仮想化とDockerを使ってコンテナ化された
環境は、しくみが違うために一概に比較できま
せん。
　Dockerで何らかのプロセスを実行したい場注5） https://hub.docker.com

ゲスト
OS

ゲスト
OS

仮想
マシン

ハイパーバイザ

物理マシン

仮想化環境
（ハイパーバイザ型）

仮想
マシン

コンテナ コンテナ

Docker エンジン

OS（Linux）

物理／仮想マシン

コンテナ化の環境

ゲスト
OS

ゲスト
OS

仮想
マシン

ホストOS

KVM（kernel モジュール）
や VirtualBox

物理マシン

仮想化環境
（ホスト型）

仮想
マシン

 ▼図1　仮想化とDockerの違い

https://hub.docker.com/

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

20 - Software Design

合、仮想化やクラウド環境のように仮想マシン
環境を用意する必要がありません。Dockerエン
ジンはプロセスを実行するにあたり、OSの環
境内にユーザ空間と呼ばれる独立した環境を複
数実行できます（図2）。
　一方で、仮想マシンのように異なったOSで
コンテナを動かすことはできません。たとえば、
WindowsやMac OS上の環境でLinuxのコンテ
ナは動きません。同様に、64bitのLinuxカーネ
ル環境で動作するアプリケーションは、32bitの
環境では動かないこともあるでしょう。
　ほかにも、ChefやPuppetなどの構成管理ツー
ルとDockerが比較されることもあります。これ
は、後の章で説明するDockerfileやDocker

Composeを使うことで、Dockerイメージやコン
テナ環境をコードで管理できるからです。
DockerfileやComposeの役割は、あくまでコン
テナのイメージやコンテナ間の情報を定義する
ものであり、、インストールや設定変更を行うた
めの構成管理ツールとは役割が少し違います。
すでに構成管理ツールを使っているのであれば、
これまでの知見を活かしてコンテナ内の環境構
築に活かすのも方法の1つです。そもそも、
Dockerが動作しない環境では、やはり従来どお
り、構成管理ツールを使うほうが便利な場合も
あると思われます。
　ほかにもDockerが解決しない問題としては、

コンテナが動作する複数マシンのクラスタ管理
とスケジューリングが挙げられます。複数のホ
ストにまたがるクラスタ上で、どのようにコン
テナを実行すべきかは、Docker単体では解決で
きません。そのためDocker単体では、ロードバ
ランサや仮想ネットワークなどを扱う機能は提
供されていません。
　クラスタ管理には、ほかのツールと連携する
必要があります。具体的には、後の章で扱う
Docker Swarmや、Kubernetes、Apache Mesos、
Nomadなどのツールを使うか、Amazon EC2

Container Service (ECS)などのクラウド事業者
の提供するサービスを使う方法があります。

Docker のアーキテクチャ

DockerとLinuxコンテナの違い

　混同されがちですが、Dockerとは「コンテナ」
のことではありません。Dockerはさまざまな
ツールやサービスの総称です。その中でも
Dockerエンジンが、コンテナを配布・実行する
ためのプラットフォームの役割を持っています。
　それではDockerコンテナの「コンテナ」とは何
でしょうか。「Dockerコンテナ」はDockerがさ
まざまなLinuxカーネルの機能を扱い、複雑な
設定を抽象化してコンテナを作り上げたもので

物理／仮想マシン

ユ
ー
ザ
プ
ロ
セ
ス

ユ
ー
ザ
プ
ロ
セ
ス

OSのカーネル空間

OS

ユーザ空間

…

通常のOS環境

物理／仮想マシン

Docker

ユ
ー
ザ
プ
ロ
セ
ス

ユ
ー
ザ
プ
ロ
セ
ス

OSのカーネル空間

ユーザ空間

ユ
ー
ザ
プ
ロ
セ
ス

ユ
ー
ザ
プ
ロ
セ
ス

ユーザ空間

…

Docker のコンテナ環境

 ▼図2　通常のOSとDockerの違い

Dockerのキホン
環境構築から基本操作をマスターしよう

第1章

20 - Software Design Dec. 2015 - 21

す。つまり、ここでのコンテナとは、Linuxカー
ネルが提供する次の2つの機能を使い、プロセ
ス、ファイルシステム、ネットワークを分離す
る環境のことを指します。

・Control Groups（cgroups）
　特定のプロセスに対してリソースの上限を設
定するための機能です。Dockerはこの機能を使
い、すべてのコンテナに対するメモリやCPUリ
ソースを管理します。また、コンテナのリソー
スの使用状況を把握するdocker statsコマン
ド使用時にも利用します。

・Namespaces（名前空間）
　コンテナごとにリソースを分離する機能であ
り、コンテナ中では自分自身のリソースしか見
えません。リソースにはmount（ファイルシステ
ム）、UTS（コンテナ自身がホスト名、ドメイン
名を持つ）、IPC、PID、ネットワーク、ユーザ
（UID・GID）があります。

　これらの技術を使うので、コンテナの中では
通常のファイルシステムやネットワークが存在
しているように見えます。また、複数のコンテ
ナが起動したとしても、各々は独立して見えま
すし、コンテナの中からホスト側の情報を見る
こともできません。ただし、OS側とLinuxカー
ネルは常に共有している状態です。
　このコンテナと似ている、従来か
らある手法がchrootです。chrootは
プロセスとファイル空間を分離する
ために使う機能です。Dockerも隔離
された環境においてアプリケーショ
ンを実行していますが、カーネルの
機能を使ってリソース管理なども含
めて「コンテナ」として扱えるように
しています。
　Dockerのコンテナと同じような処
理は、Linuxコンテナ（LXC）を使っ
ても実現できます。LXCもLinux

カーネルが持つコンテナ関連機能を使うための
ライブラリやツール群です。LXCは2008年か
ら開発が始まっており、2014年にLXC 1.0がリ
リースされました。これはDockerとは異なった
コンテナ管理のアプローチです。
　Dockerもバージョン0.9まではLXCを使って
いましたが、以降のバージョンでは libcontainer

というGo言語で書かれた独自ライブラリを使っ
てLinuxカーネルを操作しています。なお、現
在もDockerデーモン起動時のオプションで、
LXCドライバを使うことはできます。
　コンテナやLXCについては、次の資料が参考
になります。

・Dockerを支える技術（中井悦司氏）注6

・LinuxコンテナとLXC入門 （加藤泰文氏）注7

サーバ／クライアント型の
アーキテクチャ

　Dockerはサーバ／クライアント型のシステム
です（図3）。DockerエンジンはLinuxカーネル
のコンテナ機能の制御や、Dockerイメージを操
作する役割があります。いわば、Dockerエンジ
ンが、プラットフォームにおける中心的な役割
を果たします。このDockerエンジンの実体こそ
が、サーバ上で稼働しつづけるDockerデーモン
です。

コンテナ コンテナ

Docker エンジン
（Docker デーモン）

Docker
クライアント

・docker コマンド
・Kitematic（GUI）

物理 / 仮想サーバ

リモート
API

OS（Linux）
Linux kernel

コンテナ

 ▼図3　Dockerはサーバ／クライアント型

注6） http://www.slideshare.net/enakai/docker-34668707
注7） https://speakerdeck.com/tenforward/1st-kistudy

http://www.slideshare.net/enakai/docker-34668707
https://speakerdeck.com/tenforward/1st-kistudy

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

22 - Software Design

　デーモンはTCPポートまたはUNIXドメイン
ソケットをオープンし、Dockerクライアントか
らの要求を受け付けます。クライアントは、
Dockerデーモンに対してAPIを通したリクエス
トを行います。クライアントには、コマンドラ
インで利用可能なdockerコマンドと、GUIを備
えるKitematic（WindowsおよびMac OS向け）
が提供されています。
　実際にコンテナを使うには、利用者がクライ
アントを使ってデーモンに対してさまざまな命
令を送ります。たとえば、コンテナを使うため
にはdocker runコマンドを実行し、ホスト上
で動作しているデーモンに対して、コンテナの
実行を命令します。デーモンとクライアントは
同じ環境だけに限定されません。クライアント
側の設定により、命令先のホストを任意に切り
替えることもできます。

Dockerイメージ

　Dockerの概念の中でも独特なのは、コンテナ
を実行するときに必要となるDockerイメージで
す。これは仮想化やクラウド環境における仮想
マシンイメージとは異なります。仮想マシンの
場合は、ブート可能なOSが含まれる単一ファ

イルのことであり、ファイルの形式や環境によっ
て互換性がない場合があります。
　Dockerイメージには、コンテナを実行すると
きに使うためのすべての要素が含まれています。
たとえばファイル群です。アプリケーションや
何らかのサーバを動かすためには、バイナリファ
イルやライブラリ、設定ファイルなどが必要と
なります。イメージの中には、ほかにも外部に
公開するポート番号の情報や、コンテナとして
標準で実行されるべきコマンドの情報も含み

ます。

イメージ管理とレジストリの役割

　Dockerがコンテナを起動するまでの流れを整
理しましょう。Dockerでコンテナを実行する前
に、まずDockerイメージを用意する必要があり
ます。通常は、Docker Hub注8でパブリックに
公開されているイメージをDockerの実行環境に
ダウンロードします。このイメージは、自分で
作成することもできます。
　Dockerクライアントからコンテナを実行しよ
うとすると、まずローカル環境上に実行しよう
とするイメージが存在しているかどうか確認し
ます（図4）。もしイメージがなければ、Docker

デーモンはDocker Hubから自動的にイメージ
のダウンロードを試みま
す。イメージの取得後、
コンテナを起動します。
　なお、イメージはダウ
ンロードするだけでな
く、リモート環境上に
アップロードすることも
できます。このイメージ
を取得・保管しておく場
所が、レジストリです。
レジストリには3種類あ
ります。一般的にパブ
リックに公開されている

注8） https://hub.docker.com

Docker デーモン
（サーバ）

Dockerクライアント

docker pull

docker run < イメージ名 >

ローカルにイメージが無ければ
レジストリから取得

イメージ イメージ

Docker Hub
Docker Trusted Registry

Docker Registry

レジストリ

コンテナ コンテナ コンテナ

イメージを使って
コンテナの起動

 ▼図4　コンテナの起動とイメージの関係

https://hub.docker.com/

Dockerのキホン
環境構築から基本操作をマスターしよう

第1章

22 - Software Design Dec. 2015 - 23

Docker Hubでは、他人とイメージを共有するだ
けでなく、自分や特定のグループだけが参照で
きるプライベートな環境を持てます。あるいは、
自分自身でサーバ環境を利用して使えるDocker

Registry（レジストリ）と、Docker Trusted Regi

stry（トラステッドレジストリ）があります。詳
細は第2章で紹介します。

Docker の環境構築

　Dockerを使うにはDockerデーモンとクライ
アントの準備が必要です。用意する環境は、OS

ごとに異なります。

・Linux
⇒Docker社が提供しているセットアップ用
スクリプトやパッケージを使う方法
⇒ディストリビューションが提供している
パッケージを使う方法

・WindowsまたはMac OS X
⇒ Docker Machine（boot2docker）を 使 い、
VirtualBox の仮想環境を準備する方法

Linux 環境へ準備する方法

　LinuxでDockerを使い始めるのは、最もシン
プルな方法です。物理・仮想化の環境を問わず、
Dockerの動作環境を準備できます。ディストリ
ビューションごとにさまざまなセットアップ方
法があります。

・インストール用のスクリプトを使う方法
・Docker社が提供しているバイナリパッケージ

を使う方法
・ディストリビューションごとに提供されてい

るバイナリパッケージを使う方法

　インストール方法によりバージョンが異なる
場合があります。この違いとは、誰がメンテナ
ンスをしているかです。Docker社のスクリプト
およびバイナリは、Docker社自身によってメン
テナンスされており、常に最新の安定版を利用

できます。一方、ディストリビューション版は
各々のコミュニティや提供会社によってサポー
トされています。そのため、最新版への対応は
時間がかかりがちです。
　Docker社としては、推奨すべきディストリ
ビューションはありません。どちらを使うかは、
最新版の必要性や、ディストリビューションに
よるサポートの有無をもとにご検討ください注9。
　以降では、Docker 社が提供する最新安定版
をセットアップする方法を見ていきます。

動作環境
　Dockerの動作のためには、Linux上に次の環
境が必要です。

・iptables 1.4以上
・Git 1.7以上
・procps（またはpsコマンドを実行可能なもの）
・XZ Utils 4.9以上
・cgroupsの階層を参照可能なこと

　Linuxカーネルは3.10以上が推奨されていま
す。ですが、ディストリビューションによって
はサポートされておらず、導入によってOSの
サポートが受けられなくなる場合がありますの
で、ご注意ください。

インストールスクリプトの使用
　Ubuntuなどの対象OS注10であれば、スクリプ
トを使ったセットアップが最も手軽です。
DockerとDockerに依存関係のあるパッケージ
を自動的にセットアップします。

curl -sSL https//get.docker.com | sh

　正常終了すると、画面にインストールした
Dockerデーモンとクライアントのバージョン情

注9） 原稿執筆時点では、商用サポート（CS）版のDocker動作環
境は、Red Hat Enterprise Linux 7およびUbuntu 14.04
LTSです。

注10） Ubuntu、Fedora、Gentoo 、Debian、CentOSなどの主
要ディストリビューションに対応しています。

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

24 - Software Design

報が表示されます。以後はすぐに利用できます。
docker versionコマンドで再度バージョン番
号を確認できます。

公式docker-engineパッケージを使う方法
　自動インストール用のスクリプトを使わず、手
動でパッケージを確認しながら作業を進めるこ
とができます。それはDocker社がメンテナンス
しているリポジトリを使い、docker-engineパッ
ケージを使う方法です。ただし、各ディストリ
ビューションが提供しているパッケージとは内
容やバージョンが違うため、注意が必要です。

・Ubuntu/Debianの場合

$ apt-key adv --keyserver hkp://p80.ｭ
pool.sks-keyservers.net:80 --recv-keys ｭ
58118E89F3A912897C070ADBF76221572C52609D
$ vi /etc/apt/sources.list.d/docker.list

　ファイル中にリポジトリと対象環境のディス
トリビューションを記述します。以下はDebian

Wheezyの場合です。

deb https://apt.dockerproject.org/repo ｭ
debian-wheezy main

　Ubuntuの場合は、次のように指定できます。

deb https://apt.dockerproject.org/repo ｭ
ubuntu-precise main

　利用可能なリポジトリは、http://apt.docker

project.org/repo/dists/をご確認ください。
　パッケージをインストールするには、apt-
get install docker-engineを実行します。

・CentOS/Fedoraの場合
　図5の「centos/7」にあたるディストリビュー
ション名やバージョンは、自分の環境に合わせ
て書き換えてください。
　インストールするには、yum install docker
-engineを実行します。

WindowsまたはMac OS X

構築方法
　現時点で選択肢は2つあります。ローカルに
環境を構築するのであれば、Docker Toolboxを
使う方法が、現時点で推奨されています注11。あ
るいは、仮想化・クラウド上にLinuxをセット
アップし、その上でDockerを入れる方法もあり
ます。
　あるいは、常にクラウドの利用が前提であれ
ば、Docker Machineのバイナリのみをセット
アップする方法もあります。

Docker Toolboxを使う方法
　Docker Toolboxは次のものがパッケージ化さ
れたセットアップ用のツールです。

・Docker Machine
・Docker Compose（MacOS Xのみ）
・Kitematic
・Virtualbox

　Docker Machineは、さまざまな仮想化環境／
クラウドに対してDockerの実行環境を自動的に
構築するためのツールです。デフォルトでは、
Toolboxに梱包されている、VirtualBox用のド
ライバを使用します。コマンド docker-ma
chineを使うと、自動的にDockerがインストー
ルされた環境を手軽に構築したり、使い終わっ
たあとは削除したりできるため、便利です。

 ▼図5　CentOS/Fedoraのリポジトリ追加

cat >/etc/yum.repos.d/docker.repo <<-EOF
[dockerrepo]
name=Docker Repository
baseurl=https://yum.dockerproject.org/repo/ｭ
main/centos/7
enabled=1
gpgcheck=1
gpgkey=https://yum.dockerproject.org/gpg
EOF

注11） 以前はboot2dockerというツールが提供されていました。
Docker Machineはboot2dockerの機能を拡張し、汎用性
を高めたものです。

http://apt.dockerproject.org/repo/dists/

Dockerのキホン
環境構築から基本操作をマスターしよう

第1章

24 - Software Design Dec. 2015 - 25

Docker Toolboxのセットアップ
　Docker Toolboxを使った環境に対応している
のは、次の環境です。

・Windows 7.1、8、8.1注12

・Mac OS X 10.8以上

　ダウンロード用のページ注13にアクセスし、自
分の環境にあった「Download」のリンクをクリッ
クします。ファイルのダウンロードが終わった
ら、インストーラを起動し、Docker Toolboxの
セットアップを進めます。「セットアップ後は、
メニューからDocker Quickstart Terminal」を
実行します。内部でDocker Machineを使い、
Dockerが動作するLinux仮想マシンを起動し

ます。

Docker の基本操作

Dockerを使ったコンテナの起動

　Dockerの実行環境を整えたあとは、実際にコ
ンテナを起動してみましょう。コンテナの起動
には、Linux環境上にあるDockerエンジンを使
います。コンテナを起動するにはdocker run
コマンドを実行します。ここではテスト用の
「hello-world」コンテナの起動を試みます。

$ docker run hello-world

　コンテナの起動や停止／再起動というと、仮
想マシンの操作を想像されるかもしれません。
しかし、実際には通常のプロセスを起動するの
と同様の操作であり、そこにコンテナ独特の機
能が付加されているものです。
　初回実行時は、ローカル環境上に「hello-

world」イメージが存在しません。そのため、
Docker Hubからイメージのダウンロード（pull）
を自動的に行います（図4参照）。ダウンロード

が終わったら、その後、自動的にコンテナを起
動します。正常に実行されると、次のようなメッ
セージを表示して、コンテナは停止します。

Hello from Docker.
This message shows that your ｭ
installation appears to be working ｭ
correctly.

　次はubuntuコンテナを起動し、bashを使っ
て仮想サーバのように操作してみます。今度は、
新しく2つのオプションを使います。

・-i …… 標準入力を受け付ける
・-t …… 疑似ターミナルを使用する

　さらに、最後にコンテナの中で実行するコマ
ンドを指定します。次のようにdocker runコ
マンドのオプションと、最後に/bin/bashを指
定すると、bashのみ実行するコンテナ環境を開
始します。/bin/bashを指定します。

$ docker run -i -t ubuntu /bin/bash
root@87c50014765b:/#

　コマンド「docker run」を実行すると、Docker

エンジンは次の処理を行います。

①�ubuntuイメージがローカルになければリモー
トのDocker Hubからイメージを取得

②イメージを使って、新しいコンテナを作成
③�ファイルシステムを割り当て、新たに読み書

き可能なイメージ層を追加
④�コンテナがローカルホストと通信できるよう

に、ネットワークと IP アドレスを割り当て
⑤�指定したプロセス/bin/bashを実行
⑥プロセスの標準入出力を画面に表示

　コマンドを実行すると、「root@コンテナID」
の形式でシェルが起動します。以降の操作は、コ
ンテナの中で行います。コンテナは本章の冒頭
で解説したように、隔離されたプロセス空間で
す。psコマンドを実行すると、bashのプロセス
のPIDが1になっていることがわかります（図6）。
　またdfコマンドを実行すると、ホスト側とは

注12） Windowsの場合は、ハードウェア側がBIOS設定で仮想化
機能（Intel Virtualization Technology など）に対応してい
る必要があります。

注13） https://www.docker.com/toolbox

https://www.docker.com/docker-toolbox

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

26 - Software Design

異なるパーティション構成が見られます（図7）。
　同様にネットワークも隔離されていることを
ifconfigコマンドで確認しましょう（図8）。こ
ちらもホスト側と異なり、172.17.0.0/16のネッ
トワーク範囲内でIPアドレスが自動的に割り振
られていることが確認できます。
　最後にコンテナを停止するには、exitコマン
ドを実行し、bashを終了します。このbashプロ
セスが停止すると、自動的にコンテナは停止状
態となります。

root@87c50014765b:/# exit
exit

　通常のプロセスと違うのは、コンテナを起動
するたびに、都度、コンテナに対する新しいイ
メージ層（ファイルシステム）が自動的に作成さ
れます。そのため、忘れがちですが、最後に使
い終わったコンテナを削除する作業が必要です。
これにはdocker runに--rmオプションを指定
するか、コンテナ停止後にdocker rmで削除し
ます。そうしない限りファイルは残り続けます
ので、注意が必要です。今回はdocker rm 87c50
014765bと実行してコンテナを削除します。

◆　◆　◆
　以上がコンテナを使った基本的な操作となり
ます。具体的なDockerクライアントの操作方法
は、次章で見ていきましょう。｢ ▼図6　psコマンドでPIDを確認する

root@87c50014765b:/# ps -ef
UID PID PPID C STIME TTY
 TIME CMD
root 1 0 0 07:52 ? 00:00:00 /bin/bash

 ▼図7　dfコマンドでパーティション構成を見る

root@87c50014765b:/# df
Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 20511356 7073044 12373356 37% /
none 20511356 7073044 12373356 37% /
tmpfs 250896 0 250896 0% /dev
shm 65536 0 65536 0% /dev/shm
tmpfs 250896 0 250896 0% /sys/fs/cgroup
/dev/disk/by-label/DOROOT 20511356 7073044 12373356 37% /etc/hosts
tmpfs 250896 0 250896 0% /proc/kcore
tmpfs 250896 0 250896 0% /proc/latency_stats
tmpfs 250896 0 250896 0% /proc/timer_stats

 ▼図8　ifcon�gでネットワーク状況を確認する

root@87c50014765b:/# ifconfig
eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:0f
 inet addr:172.17.0.15 Bcast:0.0.0.0 Mask:255.255.0.0
 inet6 addr: fe80::42:acff:fe11:f/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:8 errors:0 dropped:0 overruns:0 frame:0
 TX packets:9 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:648 (648.0 B) TX bytes:738 (738.0 B)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

27 - Software Design Dec. 2015 - 27

Dockerイメージの基本概念

Dockerイメージとは？

　Dockerでコンテナを作成／実行するときに必
要になるのが、Dockerイメージです。このイ
メージとは、読み込み専用のテンプレートであ
り、コンテナを実行する際に必要なすべての情
報（例：プログラムやライブラリなど）が格納さ
れています。さらに、イメージの中に含まれる
のは、「コンテナ実行時に何のコマンドを実行す
るか」、「どのポートを利用するか」、「どのボ
リュームをマウントするか」などの情報も含まれ
る場合があります。そのため、仮想化やクラウ
ドにおける仮想マシンイメージに近い概念です
が、その実体は異なるものです。

レジストリとリポジトリ

　Dockerイメージを取得してコンテナとして利
用するには、レジストリ（Registry）からイメー
ジをダウンロード（pull）します。レジストリと
は、Dockerイメージを格納しておく場所のこと
です。一番有名なレジストリはDocker Hub注1

です。これはDocker社による公開リポジトリと
して提供されており、誰でも利用できます。そ
のほか、自分が自由に使えるプライベートなレ
ジストリを構築することもできますし、サポー
トを受けられるDocker Trusted Registryも利
用できます。
　各々のレジストリの中にリポジトリ（Repo

sitory）があります。このリポジトリには、さま
ざまなアプリケーションやミドルウェアなどの
情報が集まっており、この中にDockerイメージ
が格納されています（図1）。
　Docker Hubには公式（Official）リポジトリが
あります（例：Ubuntu、CentOS、Nginx、MySQL

など）。これは公式のイメージが配布されていま
す。公式という名前が付くとおり、Docker社に
よる認証／精査済みのイメージであり、Docker

Hub上で配布されています。ただし、あくまで
場所が提供されているだけであり、イメージの
メンテナンスやサポートを行うのはDocker社で

Dockerのイメージ管理と
基本操作
レジストリとDockerクライアントの操作法

 Author 前佛 雅人（ぜんぶつ まさひと）　クリエーションライン㈱　 Twitter @zembutsu

　Dockerを使ったコンテナ操作の中心となるのがDocker
イメージの管理です。本章はイメージの基本的な扱い方と、
Docker Hubを含めたレジストリの利用方法、そして基本的
なDockerクライアントの操作方法に対する理解を深めま
す。

第2章

イメージ：タグ

イメージ：タグ…

イメージ：タグ

リポジトリ

centos:7

centos:6

…

centos:6.7

リポジトリ
（例：CentOS）

レジストリ（例：Docker Hub）

nginx:1.9.5

nginx:1.9

…

nginx:1

リポジトリ
（例：Nginx）

 ▼図1　レジストリとリポジトリの関係

注1） https://hub.docker.com/

https://hub.docker.com/

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

28 - Software Design

はなく、それぞれの公式リポジトリの提供者です。
　Docker Hubでは公式リポジトリ以外にも、さ
まざまな方が作成したリポジトリからイメージ
をダウンロードできます。また、自分のリポジ
トリにアップロードしたイメージを共有するこ
ともできます。共有したくない場合は、プライ
ベートリポジトリを作ることもできます。

イメージのバージョン管理

　各イメージには、イメージ名とタグが割り当
てられています。イメージ利用時にタグを指定
しない場合は「latest」（最新）を指定したものと
みなされます。
　具体的な例を見ていきましょう。CentOSの
コンテナを実行するにはdocker run centos
と入力します。これはcentos:latestという
イメージを指定したのと同義です。もしCentOS

のバージョンを明示したいのであれば、docker
run centos:6のように<イメージ名>:<タグ>
の形式で入力する必要があります。

イメージの構造

　Dockerイメージはイメージ層（image layer）
の積み重ねにより構成されています（図2）。各
イメージは、必ずベースイメージを持っていま
す。公式リポジトリで配布されているイメージ
は、公式のベースイメージ（UbuntuやCentOS

など）を利用しています。一方、自分で利用する
場合は、自分でベースイメージを作成すること
もできます。
　また、複数のコンテナで共通しているイメー
ジ層を利用している場合、Dockerはイメージ層
を共有して利用します。たとえば、共通のUbuntu

ベースイメージを利用しているDockerイメージ
を使いたいとき、すでにローカルにベースイメー
ジをダウンロード済みであれば、Dockerはあら
ためてベースイメージをダウンロードしません。
このしくみのため、迅速なイメージのダウンロー
ドや、ディスク容量の節約を実現しています。
　イメージはすべて読み込み専用として配布さ
れます。コンテナとして実行するときに、初め
て書き込み可能な層が割り当てられます。その
ため、コンテナ内で何らかの処理を行い、設定
を反映したい場合にはコミット（docker commit）
を必ず行わなくてはいけません。また、docker
runを繰り返す度に、コンテナ内のファイル階
層が初期化されるように見えるのは、その都度、
新しい書き込み可能な層が割り当てられている
ためです。

イメージの構築方法

　Dockerイメージを構築するには3つの方法が
あります。

・コンテナの変更内容を新しいイメージとして
コミット（docker commitコマンド）

・�Dockerfileをもとにイメージを構築（docker
buildコマンド）
・�Dockerにtar形式のバイナリを取
り込みイメージ作成（docker
importコマンド）

　開発環境で頻繁に使用されるのが、
docker commitコマンドを使ってコ
ミットする（内容を確定）方法です。
開発が完了しており状況を再現する
ために使われるのがDockerfileを
使ってビルドする方法です。Docker

Linux カーネル

変更内容 A

変更内容 B

書き込み可能領域

ベースイメージ
（例：CentOS）

変更内容 C

書き込み可能領域

ベースイメージ
（例：Ubuntu）

読み込み
専用

読み込み
専用

コンテナを実行するごとに
割り当てられるイメージ層

すべてのイメージは、Docker Hubを通して配布さ
れている公式リポジトリのイメージを使用している

 ▼図2　イメージ層の構成とコンテナ

Dockerのイメージ管理と基本操作
レジストリとDockerクライアントの操作法

第2章

28 - Software Design Dec. 2015 - 29

Hubで配布されている各公式イメージは、
Dockerfileも配布されていますので、どのよう
な過程でイメージを構築したのかを確認でき

ます。

Dockerイメージの管理と配布

　Dockerイメージを保管する場所をレジストリ
と呼ぶと説明しましたが、Docker社によるレジ
ストリは、ライセンスや利用形態によって3つ
に分類されます（表1）。どの場合も、イメージ
の送信手順は共通しています。まずはコンテナ
に対する変更内容をdocker commitで確定し、
docker tagでタグ付け（名称変更）を行い、
docker pushでイメージを送信します（図3）。

Docker Hub
（パブリックレジストリ）を使う方法

　前述のとおり、Docker Hubは誰もが利用可能
なパブリックレジストリの位置づけです。公式
リポジトリを通して、各種の公式イメージが配
布されているだけはありません。アカウント登
録を行えば、自分の作成したイメージを登録・
共有できます。

　Docker Hubの利点としては、自分や特定グ
ループのみ参照可能なプライベートレジストリ
が利用可能なことです。1つだけなら無料です
が、5つまでは7ドル/月額、以降はリポジトリ
の数に応じて課金されます注2。また、リポジト
リごとにWebhookを指定できます。そのため、
イメージ内容の更新をトリガとして、GitHubや
外部のサービスと連携する使い方もできます。
　以降では、実際にアカウントを作成し、自分
で編集したbusybox注3コンテナのアップロード
を行ってみます。

Docker Hubの登録
　アップロードのためには、アカウントの登録
が必要です。登録は無料で行えます。Docker

Hubのサイト注4に移動します。図4の画面上「user

name」（登録した名前は、自分のリポジトリ名と
しても利用されます）、「email」、「password」各
項目を入力し、「Sign Up」ボタンを押します。登
録確認用のメールが届きますので、メール本文

 ▼表1　3つのレジストリの比較

レジストリ 説明 イメージ
管理 GUI 認証 リソー

ス表示 ログ TLS サポ
ート 動作環境 料金

Docker Hub 誰もが利用
可能 ○ ○ ○ × × ○ △ Docker

動作環境
無料～

Docker Registry
ローカルに
レジストリ
を準備

○ × × × × △ × -

Docker Trusted
Registry ○ ○ ユーザ認証

LDAP認証 ○ ○ ○ ○
RHEL 7.0,7.1、
Ubuntu 14.04
LTS

1 Registry、
10 Engine 150
ドル /月～

docker commit

イメージ内容の確定

イメージ

docker tag

Docker Hub のユーザ名と
同じ名前空間のイメージ名称に
変更する

pushコマンドで、イメージを
リポジトリに送信 (push) する

< ユーザ名 >/イメージ :タグ

docker push

例：Docker Hub

< ユーザ名 >/イメージ :タグ

 ▼図3　リポジトリへイメージをpushする流れ

注2） Docker Hub 料金表 https://www.docker.com/pricing
注3） https://hub.docker.com/_/busybox/
注4） https://hub.docker.com/

https://www.docker.com/pricing
https://hub.docker.com/_/busybox/
https://hub.docker.com/

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

30 - Software Design

のURLをクリックすると登録が完了します。

リポジトリの作成
　イメージをDocker Hubにアップロードする
前に、イメージ用のリポジトリを新規に作成し
ます。作成には、Docker Hubにログインし、画
面右上にある「Create Repository」（リポジトリ
作成）ボタンをクリックします。その次の「Create

Repository」画面（図5）では、次の項目を選択／
入力します。

・ネームスペースの選択（必須）
　通常は自分のDocker Hubユーザ名ですが、組
織（Organization）に登録されている場合は、選
択肢から選べます
・リポジトリ名 （必須）
　mybusyboxなど、任意のリポジトリ名を入力
します
・短い説明（必須）
　何のリポジトリなのか、説明を入力します
・詳細説明
　通常のテキスト形式のほか、Markdown形式
で記述することもできます

ネームスペースの
選択（必須）

任意のリポジトリ名
（必須）

簡易説明（必須）

詳細説明

公開範囲の選択

 ▼図5　リポジトリの登録画面

 ▼図4　Docker Hubログイン画面

Dockerのイメージ管理と基本操作
レジストリとDockerクライアントの操作法

第2章

30 - Software Design Dec. 2015 - 31

・公開範囲
　publicまたはprivateを選択します

　入力後は「Create」ボタンを作成すると、画面
が切り替わり（図6）、リポジトリ作成が完了し
たことがわかります。これがリポジトリの基本
画面です。この画面から必要に応じて、説明を
書き換えたり、Webhookの設定、リポジトリの
削除を行います。

アップロード用イメージの作成
　ここでは例としてbusyboxイメージをアップ
ロードします。busyboxは公式イメージの1つ
で、容量が2.5MB程度の小さなLinuxディスト
リビューションです。
　アップロードする前に、busyboxイメージを
使ってコンテナを実行します。次のようにコマ
ンドを実行するとbusyboxコンテナを起動し、
コンテナ内のルートディレクトリにファイルを

置きます。最後にexitを実行するとコンテナを
終了します。

$ docker run -t -i busybox
/ # echo "Hello World" > hello.txt
/ # exit

　次にイメージ内容をコミットします。docker
ps -lで、最後に実行したコンテナのコンテナ
IDを確認し、commitコマンドで<Docker Hub
ユーザ名>/mybusyboxというイメージ名として
タグ付します。図7の例ではコンテナ IDは
7ab41e8ac9ffですが、実際の出力に合わせて
書き換えます。
　作成したイメージの中に、hello.txtが作成
されていることを確認しておきます。

$ docker run -ti zembutsu/mybusybox ｭ
cat /hello.txt
Hello World

 ▼図6　作成したリポジトリ

 ▼図7　コンテナ IDを指定してイメージをコミットする

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED ｭ
STATUS PORTS NAMES
7ab41e8ac9ff busybox "/bin/sh" 27 seconds ago ｭ
Exited (0) 5 seconds ago pensive_stallman
$ docker commit 7ab41e8ac9ff zembutsu/mybusybox
a8a72c90493844ba589c7e94dea4c114ba9877efe4d6fb4267c95cd22892a5a2　 ← 新しく作成したイメージID

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

32 - Software Design

　これで準備が整いました。次はDocker Hub

に作成したイメージをアップロードします。
　なお、この時点で不要なコンテナを削除して
おきます。正確には、コンテナを実行するとき
に自動的に作成された、新しいイメージ層です。
docker ps -aコマンドを実行すると、停止中
のコンテナ情報がすべて表示されます。これら
は再利用しませんのでdocker rm <コンテナ
ID>コマンドを実行して削除しておきます。

Docker Hubにアップロード
　アップロードする前に、docker loginコマ
ンドを実行し、認証を行います（図8）。認証に

成功すると、Docker Hubのトークンが発行さ
れ、̃ /.docker/config.jsonに保管されます。
認証を解除するにはdocker logoutコマンド
を実行します。
　次にdocker pushコマンドでイメージを
Docker Hubに送信します。このコマンドを実行
すると、ローカルに保管されているイメージを
送信します（図9）。
　それでは、ローカルのイメージを削除して、
Docker Hubからダウンロードしなおしてみま
しょう。イメージを削除するにはdocker rmi
コマンドを実行します（図10）。
　これでローカルのイメージは削除されました。

 ▼図8　docker loginによって認証を行う

$ docker login
Username: zembutsu ← Docker Hub のアカウント
Password: ← パスワード
Email: foo@example.jp　 ← 登録メールアドレス
WARNING: login credentials saved in /home/zem/.docker/config.json
Login Succeeded

 ▼図9　docker pushでイメージをDocker Hubに送信する

$ docker push zembutsu/mybusybox
The push refers to a repository [docker.io/zembutsu/mybusybox] (len: 1)
a8a72c904938: Image successfully pushed
0f864637f229: Image successfully pushed
79722f6accc3: Image successfully pushed
cf2616975b4a: Image already exists
latest: digest: sha256:1b7fe4531632d6cab92adb0d80bf5def056a62185c124955bb83eef26de06000 ｭ
size: 6507

 ▼図10　docker rmiでイメージを削除する

$ docker rmi zembutsu/mybusybox
Untagged: zembutsu/mybusybox:latest
Deleted: a8a72c90493844ba589c7e94dea4c114ba9877efe4d6fb4267c95cd22892a5a2

 ▼図11　docker runでコンテナを実行する

$ docker run -ti zembutsu/mybusybox cat /hello.txt
Unable to find image 'zembutsu/mybusybox:latest' locally ←ローカルにイメージがない
latest: Pulling from zembutsu/mybusybox ←最新のイメージを取得（pull）
a8a72c904938: Pull complete
cf2616975b4a: Already exists
79722f6accc3: Already exists
0f864637f229: Already exists
Digest: sha256:1b7fe4531632d6cab92adb0d80bf5def056a62185c124955bb83eef26de06000
Status: Downloaded newer image for zembutsu/mybusybox:latest
Hello World

Dockerのイメージ管理と基本操作
レジストリとDockerクライアントの操作法

第2章

32 - Software Design Dec. 2015 - 33

次に再びdocker runコマンドを使ってコンテ
ナを実行します（図11）。今度はローカルにイ
メージがありませんので、自動的にDocker Hub

からイメージを取得したあと、実行します。
　今回はパブリックリポジトリに登録しました。
そのため、自分以外の誰でもダウンロードでき
ますし、イメージの検索対象に含まれますので
注意しておく必要があります。
　不要になったリポジトリは削除できます。
Docker HubのGUIにログインし、対象のリポ
ジトリを開きます。メニューの「Delete Repo

sitory」（リポジトリの削除）をクリックし、確認
メッセージの「Delete」をクリックするとリポジ
トリの削除が完了します。
　このように便利なDocker Hubですが、使う
ためには必ずインターネットに接続可能な環境
が必要です。ローカルの閉じた環境内や、自分
が持っている環境上でリポジトリを使うには、
次に紹介するレジストリを使う方法があります。

Docker Registryを使う方法

　Docker Registry（レジストリ）とは、Docker

Hubを使わずに自分でリポジトリを管理できる
レジストリのことです。イメージの保管場所に
は、ローカルのディスクを使うこともできます
し、Amazon S3 や Azure、Google Cloud Sto

rage、OpenStack Swiftなどのストレージにも
対応しています。
　Docker RegistryはDocker Hub上で配布注5

されており、誰でも自由に利用できます。使用
するにはDocker Hub上のイメージを使う方法
と、ソースコードから構築する方法があります。

　開発はGitHubのコミュニティ注6を通して行
われています。ただし、サポートなどはありま
せんし、Docker HubのようなGUIも準備され
ていません。サポートや高度な機能が必要な

場合はDocker Trusted Registryをご検討くだ
さい。

ローカルにイメージを保管するregistry環境
　Docker Registryをコンテナとして動かすに
は、Dockerが動作している環境が必要です。実
行するためにはdocker run -p 5000:5000
registryのように実行します。ここでは-pオ
プションを使い、コンテナ内のポート5000をホ
スト側のポート5000に割り当てています。実際
には、次のようにコンテナをデタッチドモード
で実行する-dオプションも使用します。

$ docker run -d -p 5000:5000 registry:2.0

　docker psコマンドを実行すると、図12の
ようにコンテナが動作していることがわかり

ます。
　このRegistryにイメージを送信するには、
docker pushコマンドを使います。イメージを
送信する前に、docker tagコマンドを使い、イ
メージ名をタグ付しておく必要があります。

$ docker tag <イメージID> <ホスト名:5000>ｭ
/<イメージ名>:<タグ>

　ホスト名の個所は、IPアドレス（パブリック
またはプライベート）もしくは名前解決が可能な
ホスト名を指定する必要があるので注意が必要
です。

 ▼図12　docker psでコンテナの動作を確認する

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ｭ
STATUS PORTS NAMES
5383bf7675b3 registry:2.0 "registry cmd/registr" 3 seconds ago ｭ
Up 2 seconds 0.0.0.0:5000->5000/tcp clever_torvalds

注5） https://hub.docker.com/r/library/registry/ 注6） https://GitHub.com/docker/docker-registry

https://hub.docker.com/r/library/registry/
https://GitHub.com/docker/docker-registry

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

34 - Software Design

$ docker tag <イメージ名> localhost:5000/ｭ
myapp:1.0

　実行したあとは、docker pushコマンドでイ
メージを送信します（図13）。
　Registryにどのようなタグが登録されている
かを調べるには、curlなどでAPIの情報を取得
する必要があります。

$ curl http://localhost:5000/v2/myapp/ｭ
tags/list
{"name":"myapp","tags":["1.0"]}

　イメージを取得するのは、Docker Hubと同じ
ようにdocker pullコマンドを使用します（図
14）。
　このとき、リモートの環境からイメージの取
得をする場合、Dockerデーモンのオプションで
--insecure-registry <ホスト名/IPアドレ
ス>:5000のオプションが必要になります。接
続先がローカル環境（127.0.0.0/8）の場合のみ、
この設定は不要です。
　なお、Regisryの環境は動作するポート番号
さえわかっていれば、どのような環境からもア
クセスができます。ローカル環境ならまだしも、

インターネットに公開された環境で使う場合に
は十分な注意が必要です。

Docker Trusted Registry

　Docker Trusted Registry（以下DTR）は、自
分のインフラ上で安全にDockerイメージを保管
するためのリポジトリです。基本構造はDocker

Registryと同等ですが、次の機能拡張が行われ
ています。

・Webで設定可能なGUIやダッシュボード
・認証機能（パスワード認証、LDAP認証）
・SSL証明書を使った暗号化のサポート
・ログの記録・監査機能

　DTRを使うには、ライセンスの取得が必要で
す。評価用として、30日間無償利用可能なライ
センスが配布されています注7。
　なお、DTRは通常のDockerエンジンと異な
り、商用サポート版のDockerエンジンが提供さ
れています。動作環境は現時点でRed Hat

Enterprise Linux 7.0、7.1、Ubuntu 14.04のみ
です。｢

 ▼図13　docker pushでイメージを送信する

$ docker push localhost:5000/myapp:1.0
The push refers to a repository [localhost:5000/myapp] (len: 1)
8c2e06607696: Image successfully pushed
6ce2e90b0bc7: Image successfully pushed
cf2616975b4a: Image already exists
1.0: digest: sha256:9215bd2c4aa49481dd66881d03c69ab3909e8aa384d3c2ccd974b4c35d1b8ea0 ｭ
size: 5047

 ▼図14　docker pullでイメージを取得する

$ docker pull localhost:5000/myapp:1.0
1.0: Pulling from myapp
cf2616975b4a: Already exists
6ce2e90b0bc7: Already exists
8c2e06607696: Already exists
Digest: sha256:9215bd2c4aa49481dd66881d03c69ab3909e8aa384d3c2ccd974b4c35d1b8ea0
Status: Image is up to date for localhost:5000/myapp:1.0

注7） https://hub.docker.com/enterprise/

https://hub.docker.com/enterprise/

35 - Software Design Dec. 2015 - 35

Dockerクライアントで
コンテナ操作
　Dockerコンテナに対する操作は、図1のよう
なライフサイクルを持ちます。基本的にコンテ
ナを実行して停止するまでの流れは、通常の
Linux上のプロセスと何ら変わらないものです。
そこに、Docker独特の要素として、イメージの
取得／構築といったコマンドや、イメージの内
容を確定するコマンド、差分／履歴を確認する

管理用のコマンドが準備されています。

コンテナの実行と停止

　コンテナを操作するには、dockerコマンド
（表1）で特定のコンテナに対して命令を出しま
す。ここでは各コマンドの詳しい動きを見てい
きます。
　コマンドdocker runはコンテナを起動しま
す。正確には特定のプロセスを独立した（隔離さ
れた）コンテナとして実行するためのコマンドで

Dockerの
操作と管理
便利なコマンド／オプションを一挙に学ぼう

 Author 前佛 雅人（ぜんぶつ まさひと）　クリエーションライン㈱　 Twitter @zembutsu

　Dockerを日常的に使ううえで欠かせないのが、クライア
ントの操作方法とデーモンの管理です。コマンドの便利な
使い方やオプションの指定方法を学ぶことで、Dockerをよ
り便利に使いこなせるようになっていきましょう。

第3章

イメージ一覧表示
docker images

イメージの取得
docker pull

コンテナ実行
docker run

コンテナ停止
docker stop

コンテナ削除
docker rm

イメージの自動構築
docker build

コンテナにアタッチ
docker attach

コンテナイメージ化
docker commit

標準出力の表示
docker logs

差分／履歴表示
diff ¦ history

詳細情報の表示
docker inspect

 ▼図1　おもなdockerコマンドとコンテナのライフサイクル

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

36 - Software Design

す。第1章で学んだように、プロセスを稼働す
るとともに、独立したファイルシステム、ネッ
トワーク、プロセスツリーを持ちます。コンテ
ナ起動時に、どのDockerイメージを使い、どの
ようなコマンドを実行するか、どのポートを公
開するかなどの指定を行います。

 書式
$ docker run [オプション] イメージ名ｭ
[:tag] [コマンド] [引数]

　Ubuntuイメージを使い/bin/bashを実行す
るには、次のようにコマンドを入力します。

$ docker run -i -t ubuntu:latest /bin/bash
root@30edd8bb4427:/#

　コマンドを実行するとプロンプトがroot@30
edd8bb4427:/#に切り替わり、コンテナの中で
bashを操作していることがわかります。コンテ
ナの中でps -efなどのコマンドを実行すると、
自身のPIDが「1」として実行していることが確
認できます（図2）。

　プロンプト上のホスト名にあたる個所に表示
されている英数字30edd8bb4427はコンテナID

であり、コンテナを実行するたびにランダムで
割り振られるものです。コンテナを停止すると
きや、各種操作を行うときに、このコンテナID

を使って命令します。もう少し詳しく説明する
と、各コンテナは64桁のロング IDと呼ばれる
コンテナIDを持っています、そのうち先頭から
12桁だけのものをショートIDと呼び、Docker

のコマンド実行時に多用します注1。
　なお、先の例ではubuntuイメージのタグに
latestを指定しています。もしタグを指定しな
いと、自動的にlatestが割り当てられます。た
とえば、centosのイメージを指定するときにタ
グを指定しないと、自動的にcentos:latestに
なります。これは、現時点ではcentos:7を指
定するのと同じことになるため注意が必要です。
　ターミナルを操作、exitを実行すると、実行
しているbashプロセスを終了するとともに、コ
ンテナそのものも終了状態となります。コンテ
ナのプロセスを停止せずにホスト側に戻りたい
場合は、コンテナ内のターミナル上で ÌCtrlÔ＋ ÌPÔ

＋ ÌQÔキーを同時に押します。

コンテナの状態を確認

　コンテナが稼働しているか停止してい
るか、どのようなコマンドを実行してい
るかなどを確認するにはdocker psコマ
ンドを実行します。 コマンドを実行する
と、コンテナID、利用しているイメージ
名、コンテナの中で実行されているコマ
ンド、作成した時間、状態、ポートの割

り当て状況を確認できます（図3）。
 ▼図2　コンテナの中におけるpsコマンドの実行例

root@30edd8bb4427:/# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 02:22 ? 00:00:00 /bin/bash

 ▼図3　docker psの実行例

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS （略）
3c2ad14fc213 nginx "nginx -g 'daemon off" 2 seconds ago Up 2 seconds 0.0.0.0:32769->80/tcp,（略）
0e37159335c5 ubuntu "/bin/bash" 2 hours ago Up 2 hours （略）

コマンド 説明
docker run コンテナの起動
docker ps コンテナの一覧表示（実行中／停止中を含む）
docker attach コンテナにアタッチ
docker exec コンテナ内でコマンドの実行
docker logs コンテナのログ（標準出力）を表示
docker stop コンテナの停止（SIGTERMシグナル送信）
docker kill コンテナの停止（SIGKILLシグナル送信）
docker start 停止したコンテナの再起動
docker restart コンテナを停止したあとで再起動

 ▼表1　dockerコマンド（実行と停止にかかわるもの）

注1） dockerコマンドでコンテナを指定すると
き、ロング IDとショート IDのどちらも指
定できます。正確には、IDが前方一致する
コンテナを操作します。

Dockerの操作と管理
便利なコマンド／オプションを一挙に学ぼう

第3章

36 - Software Design Dec. 2015 - 37

　docker psコマンドはプロセスが実行中のも
のだけを表示します。便利なオプションは表2
のとおりです。これらは組み合わせて利用可能
です。たとえば、最後に実行したコンテナのID

のみを表示するには、次のように実行します。

$ docker ps -lq
30edd8bb4427 ←コンテナID

コンテナをバックグラウンドで実行

　コンテナを対話型ではなく、バックグラウン
ドでデーモンとして動かすには、docker run
-dを使用します。これをDockerでは「デタッチ
ド・モード（detached mode）で実行する」と言い
ます。たとえば、pingコマンドをデタッチド・
モードで実行するには、図4のように実行しま
す。画面にはコンテナ IDが表示されるだけで、
実行結果は表示されません。このときdocker
logs <コンテナID>コマンドを実行すると、実
行中のpingコマンドの状況が表示されます。
logsはコンテナ内のログ（出力）を表示して終了
します。コマンドの実行結果を見続けたい場合
はdocker logs -f <コンテナID>を実行する
と、処理が終わるまで表示されるので便利です。
　デフォルトではコンテナを実行してからすべ
てのログを表示します。表示量が多い場合は
--tail <行数>オプションを使うことで、直近
のログのみを表示します。次の例は直近の10行
以降のログを表示し続ける指定です。

 書式
$ docker logs --tail 10 -f <コンテナ>

　次に、ログの表示を停止したい場合は ÌCtrlÔ＋
ÌCÔを実行します。
　ログを画面に表示するだけでなく、実際にコ
ンテナ内を操作したい場合はdocker attach
<コンテナID>コマンドを実行します。コンテ
ナにアタッチすると、先ほどのログと違い、直
接実行中のプロセスを操作することができます。
そのため、何らかのコマンドやデーモンを実行
中であれば ÌCtrlÔ＋ ÌCÔを実行することで、プロセ
スが停止してしまうので注意が必要です。アタッ
チしている状態でホスト側に戻るには ÌCtrlÔ＋ ÌPÔ

＋ ÌQÔを実行します。

execコマンドで追加プロセス実行

　コンテナの中で操作するには、docker attach
でプロセスにアタッチする命令のほかに、
docker execコマンドを使う方法があります。
これはコンテナの中で追加のプロセスを実行す
るものです。たとえば、何らかのデーモンが稼
働中のコンテナがあり、その中でSSHログイン
するように操作／デバッグを行いたい場合は、
次のようにコマンドを実行します。

 書式
$ docker exec -i -t <コンテナID> /bin/bash

　これはコンテナ内で稼働しているプロセスと
は別の/bin/bashプロセスを起動します。その
ため、作業後にexitで終了しても、コンテナそ
のもののプロセスは停止しません。

　　コンテナの停止

　コンテナを停止するにはdocker stop
<コンテナID>、またはdocker kill <コ
ンテナID>を実行します。docker stopは

オプション 説明
-a 停止したコンテナを含めてすべて（all）表示
-l 直近（latest）に実行したコンテナの情報を表示
-q コンテナ IDのみ表示する静かな（quiet）モード

--filter 状態（STATUS）で表示結果をフィルタ
例：docker ps -a --filter "Exited=1"

 ▼表2　docker psのオプション

 ▼図4　デタッチド・モードで実行するとpingの結果ではなくコンテナ ID（ロング ID）を表示

$ docker run -d centos ping 127.0.0.1 -c 60
e6c12622cdec0adec3141157a4522364eb431217f97ed3079bbc8ea101084ce9

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

38 - Software Design

SIGTERMシグナルを送信後、一定期間経過後
にSIGKILLシグナルを送信します。一方の
docker killはただちにSIGKILLシグナルを
送信するという違いがあります。

 書式
$ docker stop <コンテナID>
$ docker kill <コンテナID>

コンテナの再起動

　停止したコンテナのプロセスは、docker
startコマンドを使うことで再開できます。オ
プションを指定しない場合、以前と同じオプショ
ンでコンテナは起動します。このとき-aオプ
ションを使うと、コンテナを再起動しつつ、コ
ンテナ内にアタッチすることができます。

 書式
$ docker start -a <コンテナID>

　実行中のコンテナを再起動したい場合は、
docker restartコマンドを使うこともできます。

コンテナの削除

　コンテナを実行し終えたあと、docker rmコ
マンドで対象のコンテナを削除します。逆に、
docker rmで削除しない限り、コンテナの実行
ごとに作成された情報は削除されないため、注
意が必要です。

 書式
$ docker rm <コンテナID>

コンテナ管理コマンド

　コンテナでファイルを扱ったり、情報を表示し
たりするコマンドとして表3のものがあります。

ファイルの複製

　docker cpコマンドはLinuxのcpコマンドの
ように、ホスト上のファイルやディレクトリを
コンテナ上にコピーしたり、コンテナ上のもの
をホスト上にコピーしたりできます（図5、6）。
　停止中／実行中、どちらの状態でもコピーす
ることができます。ただし、コンテナとコンテ
ナの間で直接コピーすることはできません。

プロセス表示

　docker topは、コンテナ内で何のプロセス
が稼働しているかを知るためのコマ
ンドです（図7）。プロセスの状況の
みを知りたい場合、都度コンテナに
アタッチする必要がなく便利です。

 コンテナの詳細情報

　docker inspectコマンドは、コ

 ▼図5　docker cpの書式

$ docker cp <ローカルのパス> <コンテナID>:<コンテナ内のパス>
$ docker cp <コンテナID>:<コンテナ内のパス> <ローカルのパス>

 ▼表3　dockerコマンド（コンテナ管理にかかわるもの）
コマンド 説明

docker cp ホスト／コンテナ内でのファイルの
複製

docker top コンテナ内のプロセス表示
docker inspect コンテナの詳細情報を表示

 ▼図6　docker cpの実行例：コンテナ内の /etcをローカルの /archive
 にコピー

$ docker cp 0e37159335c5:/etc /archive/

 ▼図7　docker topの実行例

$ docker top 3c2ad14fc213
UID PID PPID C STIME TTY TIME CMD
root 32172 15258 0 00:38 ? 00:00:00 nginx: ｭ
master process nginx -g daemon off;
sshd 32178 32172 0 00:38 ? 00:00:00 nginx: ｭ
worker process

Dockerの操作と管理
便利なコマンド／オプションを一挙に学ぼう

第3章

38 - Software Design Dec. 2015 - 39

ンテナIDをもとに、コンテナ内のホスト名やコ
マンドだけでなく、公開するポート、ボリュー
ムなどに関する情報を表示します。

 書式
$ docker inspect <コンテナID>

　実行すると、結果はデフォルトでJSON形式
として表示されます。項目が多数あるので、特
定の項目のみ知りたい場合は--formatオプショ
ンを使うと便利です（図8）。

Dockerイメージの管理

　イメージを管理するために、表4のようなコ
マンドが用意されています。

イメージの一覧

　ローカルにあるイメージの一覧を表示するに
はdocker imagesコマンドを使います（図9）。
ここではリポジトリ名、タグ、イメージ IDやサ
イズの情報が表示されます。

イメージの検索

　docker searchコマンドは、リモート・レジ
ストリ（Docker Hub）に登録されているイメージ
情報の一覧を表示します。ブラウザでDocker

Hubを表示して調べることもできますが、コマ
ンドライン上でも検索できます。

 書式
$ docker search <検索したいキーワード>

イメージの取得

　リモート・レジストリからイメージを取得す
るには、docker pullコマンドを使います。通
常、何も指定しない場合は、Docker Hubからダ
ウンロードを試みます。

 書式
$ docker pull <リポジトリ名>:<タグ>

　対象のリポジトリに多数のタグがある場合、
まとめてダウンロードするには--all-tagsオ
プションの利用が便利です。ただし、リポジト
リによってダウンロードに時間がかかる場合や、
ディスク容量を消費する場合があるので、注意
が必要です。

$ docker pull --all-tags centos

　なお、第2章で紹介した任意のレジストリや
Docker Trusted Registryを使う場合は、ホスト
名やポート番号の指定が必要になります。

$ docker pull localrepo:5000/myapp:1.0

 ▼図8　docker inspectの実行例：コンテナに割り当てられている IPアドレスを確認

$ docker inspect --format='{{.NetworkSettings.IPAddress}}' 3c2ad14fc213
172.17.0.13

 ▼図9　docker imagesの実行例

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox latest 0f864637f229 2 weeks ago 2.433 MB
centos latest 7322fbe74aa5 3 months ago 172.2 MB

コマンド 説明
docker images イメージのリポジトリや IDを一覧表示
docker search リモートのイメージ情報を検索
docker pull イメージをリモートから取得
docker push イメージをリモートに送信
docker tag コンテナにタグ付け

docker commit コンテナの内容を、名前を付けてイメージに保存
docker rmi イメージの削除

 ▼表4　 dockerコマンド（Dockerイメージ管理にかか
わるもの）

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

40 - Software Design

イメージをレジストリに送信

　ローカルのイメージをレジストリに送信する
にはdocker pushコマンドを使います。対象ホ
ストの指定がない場合は、Docker Hubへのアッ
プロードを試みます。

 書式
$ docker push <リポジトリ名>:<タグ>

　Docker Hub以外のレジストリに送信する場合
は、docker pushコマンドを実行する前に、
docker tagコマンドを使って、送信先のホス
ト名やポート番号を指定する必要があります。
たとえば、ホスト名がdev.docker.jp、ポート
番号が5000の場合、次のように指定します。

$ docker tag myapp:1.0 dev.docker.jpｭ
:5000/myapp:1.0

　docker tagコマンドはリポジトリ名だけで
なくイメージIDも指定できます。なお、docker
tagコマンドを実行しても、新しいイメージが
作られるわけではないため、ディスク容量は増
えません。docker imagesコマンドでは、見か
け上イメージが増えたように見えます。しかし、
イメージが別名でタグ付けされただけであり、
コンテナIDは共通です。

イメージの削除

　イメージが存在し続けると、ローカルのディ
スク容量を圧迫していきます。使わないイメー
ジはdocker rmiコマンドで削除可能です。

 書式
$ docker rmi <イメージID>
$ docker rmi <リポジトリ名>:<タグ>

イメージの作成

　使用しているコンテナの情報をもとに、新し
いイメージを作成するにはdocker commitコ
マンドを使います。コミットとは「コンテナの内
容を確定する」という意味です。

 書式
$ docker commit <コンテナID> <リポジトリ名ｭ
:タグ>

　新しいイメージを作成するには、このコミッ
ト以外にも、Dockerfileという設定ファイル
を使ってイメージを作る方法もあります。詳し
くは第6章で扱います。

イメージのexportとimport

　サーバを越えてイメージをやりとりするには、
Docker Hubなどのレジストリを使う方法以外
に、イメージ用のファイルを直接やりとりする
方法があります。docker exportコマンドは、
tar形式でイメージを出力します。

 書式
$ docker export <出力ファイル名>.tar

　出力した環境を別のDocker環境で取り込むに
は、docker importコマンドを実行します。パ
スに指定できるのはローカル上だけでなく、
http://で始まるURLも指定できます。

 書式
$ docker import <パス> | - <リポジトリ名>ｭ
:<タグ>

コンテナに対する
ポートの割り当て
　Dockerコンテナ内外の通信は、ホスト側の
docker0という仮想ブリッジを通して行われま
す。そのため、コンテナの内外で通信したい場
合は、使うポートを明示する必要があります。
　手動でコンテナ内とホスト側のポートを割り
当てる場合は、docker runの-pオプションを
使用します。-p <ホスト側ポート>:<コンテナ
側ポート>の形式で指定します。ホスト側ポー
ト8080に、Nginxコンテナのポート80を割り当
てる場合は次のように実行します。

$ docker run -d -p 8080:80 nginx

Dockerの操作と管理
便利なコマンド／オプションを一挙に学ぼう

第3章

40 - Software Design Dec. 2015 - 41

　また、コンテナによっては-P（大文字）を指定
すると、コンテナが使用するポートを自動的に
ホスト側に割り当てることもできます注2。

$ docker run -d -P nginx

　このときに割り当てられるのは、ホスト側の
49151～65535の範囲内の空きポートです。
docker psコマンドで確認するほかに、docker
portコマンドでも確認できます。

$ docker port 931ea28cc678
443/tcp -> 0.0.0.0:32768
80/tcp -> 0.0.0.0:32769

　また、Webサーバとデータベース間のように
コンテナとコンテナの間で安全に通信を行いた
い場合は、--linkオプションを使うと便利で
す。通常、コンテナが起動するときにホスト名
やIPアドレスを割り当てることはできません。
しかし--linkオプションを使えば、コンテナ
起動時に対象コンテナのエイリアス（別名）を指
定できます。さらに、このエイリアスを使って
ポート番号や IPアドレスを知ることができま
す。次の例はコンテナIDbf058dc12286にfro
ntというエイリアス名を指定したものです。

$ docker run -it --link bf058dc12286:ｭ
front ubuntu bash

　この新しいコンテナの中では、FRONTで始ま
るポート番号やIPアドレスなどの環境変数を持
ちます。

 envコマンド実行例
FRONT_PORT_80_TCP_ADDR=172.17.0.6
FRONT_PORT_80_TCP=tcp://172.17.0.6:80

　これらの情報が取得できるので、IPアドレス
やホスト名がわからなくても、--linkの設定を
もとにコンテナ間の通信設定を行いやすくなり
ます。
　なお、先の--linkオプションの実行例では、

オプションの中でコンテナIDを用いましたが、
Dockerのコンテナ名（未指定時はランダムな形
容詞と科学者／ハッカーの名前が割り当てられ
ます注3）も利用できます。コンテナ名を変更する
場合はdocker rename <コンテナ名またはID>
<新コンテナ名>が利用可能です。

コンテナの
ボリューム・オプション
　Dockerではコンテナでデータを扱うために、
ボリュームと呼ばれるディレクトリを指定する
ことができます。これはコンテナ起動時に指定
するとコンテナとは別の領域として認識／マウ
ントされ、docker commitを実行しても、対象
ディレクトリはコンテナに反映されません。ま
た、コンテナを削除してもボリュームの情報は
残り続けます（docker rm時に-vオプションを
付けると、ボリュームも削除します）。
　ボリュームをマウントして使うには、docker
run実行時に-vオプションを使用します。オプ
ションは複数回の利用が可能です。

$ docker run -d -v /mydata ubuntu

　このとき、ボリュームがマウント／利用して
いるのは、単純にホスト上のディレクトリ
（docker inspectで表示されるvolumeのパス）
を利用しているだけです。つまり、暗号化など
はされていませんので、パーミッションなどデー
タの取り扱いには注意が必要です。
　ボリュームを定義するほかに、ホスト側の既
存ディレクトリをマウントすることも可能です
（図10）。たとえば/wwwディレクトリにコンテ
ンツがあるとして、それをNginxコンテナのド
キュメント・ルートと共有したい場合は、図11
のようにコンテナを実行します。ホスト側の

/wwwにindex.htmlを作成しておけば、ブラウ
ザなどでホスト側のポート8080にアクセスする
と、その内容が表示されます。

注2） 正確には第6章で扱うDockerfileにおいて、コンテナが使
用するポート（EXPOSE）が明示されていると、コンテナ実
行時、自動的にポートが割り当てられます。

注3） https://github.com/docker/docker/blob/master/pkg/
namesgenerator/names-generator.go

https://github.com/docker/docker/blob/master/pkg/namesgenerator/names-generator.go

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

42 - Software Design

　高度な使い方としては、ほかのコンテナが利
用しているボリュームを参照する方法もありま
す。新しいコンテナを起動するときにdocker
runのオプションとして、--volumes-from
<コンテナID>を指定すると、新しいコンテナ
も指定したボリュームを参照可能になります。

その他の管理用コマンド

　これまでに紹介したもの以外に表5のような
コマンドがあります。

統計情報の出力

　docker statsコマンドは、コンテナの使用
しているリソース情報を表示するためのコマン
ドです。CPU、メモリ、ネットワークI/Oに関
する情報が表示されるため、特定のホスト内で
どのコンテナが多くリソースを使っているか、

あるいはリソースを使っていないかを確認する
ことができます（図12）。コンテナは1つまたは
複数の指定が可能です。

Docker環境の情報表示

　docker infoは、クライアントが接続してい
るホスト側の情報を表示するためのコマンドで
す。Dockerを動かす環境上で、どれだけのコン
テナが実行されているか、イメージが保管され
ているか、どのようなシステム状況なのかを確
認できるようになります（図13）。

バージョンの表示

　docker versionはクライアントおよびサー
バ側のDockerバージョンを表示します（図14）。

リモートの Docker デーモンに
接続するには

　dockerコマンドを実行する
とき、クライアントが何も指
定しない場合は、ローカル環
境上のUnixソケット/var/
run/docker.sockなどを参
照しようとします。Docker

デーモンを起動していない場
合や、リモートに疎通できな
い場合には、コマンドを実行
しても図15のようなエラーが

 ▼図12　docker statsの実行例

$ docker stats 3c2ad14fc213 0e37159335c5
CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O
0e37159335c5 0.00% 1.81 MB/513.8 MB 0.35% 9.286 MB/532.2 kB
3c2ad14fc213 0.00% 2.466 MB/513.8 MB 0.48% 50.35 kB/738 B

 ▼図10　ホスト側の既存ディレクトリをマウントする際の書式

$ docker run -v <ホスト側パス>:<コンテナ側パス> <イメージ名>

 ▼図11　ホスト側の既存ディレクトリをマウントする際の実行例

$ docker run -d -p 8080:80 -v /www:/usr/share/nginx/html nginx

 ▼図13　docker infoの実行例

$ docker info
Containers: 60 ←コンテナ数
Images: 246 ←イメージ数
Storage Driver: aufs ←使用中のストレージ・ドライバ
 Root Dir: /var/lib/docker/aufs ←ルート・ディレクトリ
 Backing Filesystem: extfs ←ファイルシステム
 Dirs: 366 ←ディレクトリ数
 Dirperm1 Supported: false ←aufsマウント時のオプション
Execution Driver: native-0.2 ←実行ドライバのバージョン
Logging Driver: json-file ←ロギング・ドライバ
Kernel Version: 3.13.0-57-generic ←kernelバージョン
Operating System: Ubuntu 14.04.3 LTS ←ディストリビューションのバージョン
CPUs: 1 ←ホスト側CPU数
Total Memory: 490 MiB ←ホスト側メモリ
Name: dev.docker.jp ←ホスト名

コマンド 説明
docker stats 統計情報の出力
docker info Docker環境の表示

docker version バージョン情報の
表示

 ▼表5　dockerコマンド
 （その他管理用）

Dockerの操作と管理
便利なコマンド／オプションを一挙に学ぼう

第3章

42 - Software Design Dec. 2015 - 43

表示されてしまいます。
　Dockerデーモンをリモートから接続するため
には、Docker起動時にオプションでTCPポー
トを開くための指定が必要になります。具体的
には、UnixソケットとTCPポートの両方が有
効になるように、Dockerの設定ファイルを編集
します。Ubuntu/Debianの場合は/etc/defau
lt/dockerを開き、Fedora/CentOS/RHELの
場合は/etc/sysconfig/dockerを開き、DOC

KER_OPTS行をリスト1のように書き換えま

す。設定を有効にするため、Dockerデーモンを
再起動します。

 Ubuntu/Debianなど
$ service docker restart
 Fedora/RHELなど
$ systemctl docker restart

リモートのDockerへの接続

　リモートに接続するためには、2つの方法が
あります。1つはdockerコマンド実行時に都度
-HオプションでリモートのDockerデーモンを
指定する方法（図16）か、あるいは、環境変数
DOCKER_HOSTを定義したあと、dockerコマン
ドを実行する方法（図17）です。図16、17はい
ずれも同じ結果になります。
　注意点としては、このクライアントの通信が
暗号化されていないことです。セキュリティ上
のリスクを避ける方法として、TLS（Transport

Layer Security）をDockerでも利用できます。
通常の設定方法は多少複雑ですが、第4章で紹
介するDocker Machineを使って環境を構築する
ことで、自動的にTLSも有効化できます。｢

 ▼図14　docker versionの実行例

docker version
Client:
 Version: 1.8.1
 API version: 1.20
 Go version: go1.4.2
 Git commit: d12ea79
 Built: Thu Aug 13 02:35:49 UTC 2015
 OS/Arch: linux/amd64

Server:
 Version: 1.8.1
 API version: 1.20
 Go version: go1.4.2
 Git commit: d12ea79
 Built: Thu Aug 13 02:35:49 UTC 2015
 OS/Arch: linux/amd64

 ▼図15　Dockerデーモンに接続できない場合のエラー

$ docker ps
Get http:///var/run/docker.sock/v1.20/containers/json: dial unix /var/run/docker.sock: ｭ
permission denied.
* Are you trying to connect to a TLS-enabled daemon without TLS?
* Is your docker daemon up and running?

 ▼リスト1　Dockerの設定ファイルで、UnixソケットとTCPポートを有効にする

DOCKER_OPTS="-H tcp://0.0.0.0:2375 -H unix:///var/run/docker.sock"

 ▼図16　dockerコマンド実行時に都度、-HオプションでリモートのDockerデーモンを指定する例

$ docker -H tcp://192.168.0.10:2375 ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
 （以下略）

 ▼図17　環境変数DOCKER_HOSTを定義したあとに、dockerコマンドを実行する例

$ export DOCKER_HOST="tcp://192.168.0.10:2375"
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
 （以下略）

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

44 - Software Design

Docker Machine概要

　Docker Machineは、コマンドライン上で
Docker環境を管理するためのツールです。仮
想化やクラウドの環境を問わず、Dockerを使
い始めるためには仮想マシンを用意し、そのう
えでDockerエンジン（デーモン）をセットアッ
プします。また、リモートで管理する場合は、
デーモンの設定追加やTLSで安全に使う設定
のほか、環境の切り替えが手間になりがちです。
　Dockerを使えばいろいろなコンテナ環境を

手軽に実行できるのに、そもそも、Dockerが
動作するPCやサーバ環境の管理が手間になっ
てしまうのは本末転倒です。
　Docker Machineを使えば、Docker環境にお
ける面倒な作業を自動化します。コマンド1つ
実行するだけで、仮想マシン環境の自動起動と、
Dockerデーモンのプロビジョニングを行いま
す。さらに、複数の環境についてもコマンドを
通して管理でき、利用が終わればコマンド1つ
で環境を破棄することもできます（図1）。
　Docker Machineを使う利点の1つに、さまざ
まな環境をすべてコマンドライン上から操作で

Docker環境を
自動構築
オーケストレーションツール「Docker Machine」

　本章からはDockerを取り巻くオーケストレーションツー
ルをとりあげます。オーケストレーションの意味には諸説
ありますが、ここではDocker社が提供するツールを使い、
複数のサーバにまたがる自動化処理のことを指します。ま
ずは環境構築を行うDocker Machineです。

第4章

 Author 前佛 雅人（ぜんぶつ まさひと）　クリエーションライン㈱　 Twitter @zembutsu

コンテナ コンテナ

従来の Docker 利用場面

自分の PC 環境

Docker エンジン

仮想マシン
（Tiny Core Linux）

VirtualBox

コンテナ

$ boot2dockerboot2docker ssh
docker run ...

コンテナ コンテナ

Docker Machine 利用場面

Docker エンジン

仮想マシン
（RancherOS など）

VirtualBox

コンテナ コンテナ コンテナ

自分の PC 環境 リモート環境

Docker エンジン

仮想マシン
（Ubuntu、Debian など）

クラウド事業者

コンテナ

$ docker-machine

 ▼図1　Boot2DockerとDocker Machineの比較

Docker環境を自動構築
オーケストレーションツール「Docker Machine」

第4章

44 - Software Design Dec. 2015 - 45

きることが挙げられます。専用のGUIにログイ
ンすることなくDockerが動くマシンを作成でき
るだけでなく、SSHでログインするための IP

アドレスをGUIで確認する必要もありません。
また、DockerエンジンはTLS通信による暗号
化設定も自動的に行いますので、クライアント
はリモートから安全にDockerを操作できます。
　対応している環境はVirtualBoxなどのローカ
ルPC上の仮想環境だけではありません。
Amazon Web Services（EC2）、SoftLayer、
Azure、DigitalOceanなどの幅広いクラウドプ
ロバイダに対応しているのも特徴です。

Boot2Dockerとの違い

　これまでWindowsやMac OSなど、ローカル
PC上における環境構築にはBoot2Docker注1の
利用が推奨されていました。2015年 8月に
Docker Toolbox注2が新しく発表注3されてから
は、環境構築としてはDocker Machineを推奨す
る旨がアナウンスされています。
　Docker Toolboxとは、次のツール群を1つに
まとめたパッケージです。

・Dockerクライアント：コマンドライン上で操
作するdockerコマンド

・Docker Machine：Docker動作環境の自動構
築と管理

・Docker Compose：複数のコンテナの状態を
コードで管理（Mac版のみ）

・Kitematic：GUIのコンテナ管理ツール
・VirtualBox：Oracle社が提供する仮想マシン

管理ツール

　この中でも、Docker MachineがBoot2Docker

の発展型という位置づけです。どちらもローカ
ル環境上のVirtualBoxを使い、Dockerの動作
環境を構築します。一方、Docker Machineは複
数のローカル環境を扱うことが可能です。それ
だけでなく、リモートのクラウド環境上におけ
るDocker環境の構築や削除・管理にも対応して
います（図2）。詳しい機能の違いは表1をご覧く
ださい。なお、どちらもオープンソースとして
開発・公開されており、自由に使うことができ
ます。

対応環境

　Docker Machineは「ドライバ」と呼ばれる単位
でさまざまな環境を混在して利用できます。現
時点（v0.4.0）で対応しているシステム環境は次
のとおりです。

・クラウドやVPS環境：Amazon Web Services、
Microsoft Azure、DigitalOcean、Exoscale、
Google Compute Engine、OpenStack、
Rackspace、SoftLayer

・仮想化システム：Microsoft Hyper-V、Virtual
Box、VMware vCloud Air、VMware Fusion、

create

Docker の
動作環境構築

ドライバが対象環境の API
にアクセスし、仮想マシンの
自動構築とDocker のプロビ
ジョニングを実施

ssh、cpなど

環境の利用

リモートからSSHログインし
たり、Docker クライアント
から環境を操作

rm

環境の削除

利用していた仮想マシンの
環境を破棄

 ▼図2　Docker Machine利用の流れ

注1） http://boot2docker.io/
注2） Docker Toolbox配布サイト
 https://www.docker.com/toolbox
注3） https://blog.docker.com/2015/08/docker-toolbox/

https://www.docker.com/docker-toolbox
http://boot2docker.io/
https://blog.docker.com/2015/08/docker-toolbox/

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

46 - Software Design

VMware vSphere

　それぞれのドライバごとに、独自のオプショ
ン（リージョンやセキュリティに関する設定な
ど）が存在します。各ドライバの詳細は対応ペー
ジ注4をご確認ください。

対応環境とセットアップ方法

　Docker Machineの実体は docker-machine
という単一のバイナリファイルです。セットアッ
プには2つの方法があります。1つはDocker

Toolboxを使ってセットアップする方法です。
PC上では手軽な方法ですが、Docker Machine

だけを欲しい場合は冗長です。
　もう1つの方法は、docker-machineのバイ
ナリをダウンロードする方法です。ダウンロー
ド用のページ注5に移動します。ダウンロードの
一覧に、各OSやアーキテクチャごとのバイナ
リが配布されています。Linux 64bit環境の場合
は「docker-machine_linux-amd64」、Mac OS は

「docker-machine_darwin-amd64」、Windowsは
「docker-machine_windows-amd64.exe」をダウ
ンロードします。Windows以外の環境では、ダ
ウンロード後は実行可能なパーミッションを設
定します（図3、4）。
　正常にセットアップされたかどうかは、次の
ようにバージョン情報が表示されるかどうか確
認します。もし「No such file or directory」と表
示された場合は、/usr/local/bin/にパスが通っ
ているかどうかを確認ください。

$ docker-machine -v
docker-machine version 0.4.1 (e2c88d6)

Docker Machineで環境管理

　Docker環境を構築・管理・削除するまで、一
連の流れを見ていきます。

VirtualBoxで環境構築

　コマンドdocker-machine createを次の書
式のように実行することで、ドライバで指定し
た環境上に仮想マシンを構築し、Dockerのセッ

ローカル環境の構築 複数のローカル環境 クラウド環境 TLS設定 初期リリース
Docker Machine VirtualBox、VMwareなど ○ ○ ○ 2015年2月
Boot2Docker VirtualBoxのみ × × × 2013年12月

 ▼表1　機能比較表

 ▼図3　Linuxの設置例

$ wget -O docker-machine https://github.com/docker/machine/releases/download/v0.4.1/docker ｭ
-machine_linux-amd64
$ chmod 755 ./docker-machine
$ sudo mv ./docker-machine /usr/local/bin/docker-machine

 ▼図4　Mac OSの設置例

$ curl -L https://github.com/docker/machine/releases/download/v0.4.1/docker-machine_darwin ｭ
-amd64 > ./docker-machine
$ chmod 755 ./docker-machine
$ sudo mv ./docker-machine /usr/local/bin/docker-machine

注4） Supported Drivers　https://docs.docker.com/machine/
drivers/

注5） https://github.com/docker/machine/releases/

https://docs.docker.com/machine/drivers/
https://github.com/docker/machine/releases/

Docker環境を自動構築
オーケストレーションツール「Docker Machine」

第4章

46 - Software Design Dec. 2015 - 47

トアップを行います。

 書式
$ docker-machine create --driver <ドライｭ
バ名> <ホスト名>
$ docker-machine create -d <ドライバ名> ｭ
<ホスト名>

　ドライバを指定しない場合、デフォルトでは
virtualboxが適用され、ローカルのVirtual

Box上に環境を構築します。オプションで-d
virtualboxと環境を明示することもできます。

 書式
$ docker-machine create -d virtualbox ｭ
<オプション> <ホスト名>

　一番簡単な構築方法は、ホスト名を入力する
だけです。図5のコマンドを実行するとlocal
という名称の仮想マシンが自動的に構築されま
す。このとき、VirtualBoxをPC上で起動して
おく必要はありません。バックグラウンドで自
動的に環境構築が進行します。また、デフォル
トではCPU 1プロセッサ、1MBのメモリ、HDD

容量20GBを使用する仮想環境を構築しますが、
オプション（表2）を指定することで仮想マシン

環境をカスタマイズできます。次のコマンド例
では、CPU 2プロセッサ、メモリ 512MB、ディ
スク容量を2GBに設定しています。

$ docker-machine create -d virtualbox ｭ
--virtualbox-memory 512 --virtualbox-ｭ
cpu-count 2 --virtualbox-disk-size ｭ
2000 <ホスト名>

　初回実行時はVirtualBoxの中で使うための
Linuxディストリビューション（Boot2Docker付
属のCore Linux）をダウンロードするため少々
時間がかかります。次回以降はこのダウンロー
ドの必要がないため、数分程度で環境が構築で
きるようになります。バックグランドでは仮想
環境の構築と、SSHログイン用の鍵ペアの作成、
Dockerデーモンのセットアップが自動的に進行
します。この時点で、自分のホームディレクト
リ直下の.docker/machine/ディレクトリに、
各種の証明書やマシンごとのSSH鍵、Virtual

Boxの場合はISOイメージなどが保管されます。
　コマンド実行後、エラーが出なければ環境構
築は完了です。docker-machine lsコマンド
を実行すると、仮想マシンの稼働状態が一覧形
式で表示されます（図6）。STATE（状態）の個所が

オプション 説明 デフォルト値
--virtualbox-memory 仮想マシンのメモリ容量 1024
--virtualbox-cpu-count 仮想マシンのCPUコア数 1
--virtualbox-disk-size 仮想マシンのディスク容量（単位MB） 20000（20GB）

 ▼表2　VirtualBoxドライバのオプション

 ▼図5　仮想マシン localの実行

$ docker-machine create -d virtualbox local
Creating CA: /Users/zem/.docker/machine/certs/ca.pem
Creating client certificate: /Users/zem/.docker/machine/certs/cert.pem
Image cache does not exist, creating it at /Users/zem/.docker/machine/cache...
（省略）

 ▼図6　仮想マシンの稼働状態を確認

$ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM
local virtualbox Running tcp://192.168.99.100:2376

［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

48 - Software Design

Runningであれば正常に実行中です。なお、複
数のマシンをcreateすると、作成されたホス
ト情報がすべて表示されます。

Docker環境に接続

　Docker環境を操作するには2つの方法があ
ります。1つはSSHで仮想マシンにログインす
る方法と、もう 1つはDockerクライアント
（dockerコマンド）から操作する方法です。
　SSHでログインするにはdocker-machine
ssh <ホスト名>コマンドを使います（図7）。仮
想マシンのIPアドレスを知らなくても自動的に
SSHログインが可能です。これは後述するAWS

などのクラウド環境のドライバを使った場合も
同様で、自動的にパブリック側のIPアドレスに
対してログインします。
　ホスト名の後にコマンドを指定すると、SSH

コマンドのように、ログインせずにリモート環
境上でコマンドを実行することもできます。次

の例はlocalという名称のホスト上でuptime
コマンドを実行します。

$ docker-machine ssh local uptime
 03:55:45 up 1:49, 1 users, load ｭ
average: 0.00, 0.01, 0.04

　一方、複数のDocker環境を切り替えて使う場
合であれば、Dockerクライアントを使うほうが
便利です。クライアントは何も指定しない場合、
ローカル環境上のDockerを参照しようとしま
す。クライアント上の環境変数を切り替えると、
リモートのDockerデーモンを直接操作できま
す。環境変数の確認はdocker-machine env
<ホスト名>コマンドで行います。図8はWin

dows＋Cygwin環境での実行例です。通常は不
要ですが、このようにシェル環境を明示する場
合は、--shellオプションを使います。
　クライアントを切り替えるには、それぞれの
export行を実行するか、eval $(docker-ma

 ▼図7　仮想マシン localへのSSHログイン

$ docker-machine ssh local
 ## .
 ## ## ## ==
 ## ## ## ## ## ===
 /"""""""""""""""""___/ ===
      ~~~ {~~ ~~~~ ~~~ ~~~~ ~~~ ~ /  ===- ~~~
           \______ o           __/
             \    \         __/
              \____\_______/
 _                 _   ____     _            _
| |__   ___   ___ | |_|___ \ __| | ___   ___| | _____ _ __
'_ \ / _ \ / _ \| __	__) / _`	/ _ \ / __		/ / _ \ '__					
	_)	(_)	(_)		_ / __/ (_		(_)	(__	<  __/
_.__/ \___/ \___/ \__	_____\__,_	\___/ \___	_	\_\___	_				
Boot2Docker version 1.8.1, build master : 7f12e95 - Thu Aug 13 03:24:56 UTC 2015
Docker version 1.8

 ▼図8　Dockerクライアントを使ったログイン

$ docker-machine env local --shell bash
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.100:2376"
export DOCKER_CERT_PATH="C:\Users\zembutsu\.docker\machine\machines\local"
export DOCKER_MACHINE_NAME="local"
# Run this command to configure your shell:
# eval "$(C:\cygwin64\bin\docker-machine env local)"



Docker環境を自動構築
オーケストレーションツール「Docker Machine」

第4章

48 - Software Design Dec.  2015 - 49

chine env <ホスト名>)コマンドを実行しま
す。以降docker runやdocker psコマンドを
実行すると、リモートのDockerを操作します。
　なお、接続先を切り替えるなど環境変数をリ
セットしたい場合には、次のコマンド実行が便
利です。

$ eval $(docker-machine env -u)

ファイルを複製するscp

　開発環境のコードをコンテナに送りたい場合
や、コンテナ間でデータを複製したい場合には
docker-machine scpコマンドを使うと便利で
す。

 書式 
$ docker-machine scp [-r] <コピー元ホスｭ
ト>:<パス> <コピー先ホスト>:<パス>

　たとえば、ローカルにある/etc/temp.txt
を、ホストlocalの/opt/etc/にコピーする場
合は次のように入力します。

$ docker-machine scp /etc/temp.txt localｭ
:/opt/etc/

　また、ディレクトリ単位でまとめてコピーす
る場合は、-rオプションを使います。

$ docker-machine scp -r ./code/ local2 ｭ
:/home/docker/code

　コピー先がリモートの場合、ディレクトリに
は適切な権限が必要です。VirtualBoxの場合は

dockerユーザでログインするため、このユーザ
権限の範囲の場所にファイルを置く必要があり
ます。

環境の削除

　使い終わった環境は、docker-machine rm
コマンドで削除できます。このとき、確認もな
くすべての情報が削除されるため、必要なデー
タがあれば事前にバックアップが必要です。

$ docker-machine rm local
Successfully removed local

　なお、VirtualBox上もしくはクラウド上のマ
シンをDocker Machineを使わずに削除した場合
は、ホームディレクトリ以下にある.docker/
machine/machines/にある対象マシン用ディ
レクトリを直接削除する必要があります。

そのほかの仮想マシン管理コマンド

　これまで紹介したほかにも、表3にまとめた
ような管理用のコマンドが用意されています。

クラウド環境で環境構築

　Docker Machineはドライバを使い分けること
でさまざまな環境を利用できます。ここでは主
な環境における構築方法を見ていきましょう。

Amazon Web Servicesを 
使う場合

　Amazon Web Services（AWS）上のEC2イン
スタンスを自動的に起動し、その中にDocker環

書式 動作
docker-machine start ＜ホスト名＞ 仮想マシンの起動
docker-machine kill ＜ホスト名＞ 仮想マシンの強制停止
docker-machine restart ＜ホスト名＞ 仮想マシンの再起動
docker-machine stop ＜ホスト名＞ 仮想マシンの停止
docker-machine ip ＜ホスト名＞ IPアドレスの表示
docker-machine inspect ＜ホスト名＞ 仮想マシンの詳細表示

 ▼表3　主な管理用コマンド



［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

50 - Software Design

境を自動的に構築します。Docker Machineを使
えばGUIにログインせず、迅速な環境の構築や、
利用後の環境削除もスムーズに行えます。
　利用時は-d amazonec2ドライバの指定や、
各種のオプションを指定します。オプションの
中でもアクセスキーとVPC IDの指定が必須な
ため、利用する環境にあわせて適切なものを入
力します（図9）。
　オプションのうち、リージョン（デフォルトは
us-east-1）、インスタンス（t2.micro）、OSやディ
スクサイズ（16GB）などを変更可能です。ある
いは、環境変数を使った定義も可能です。指定
できるオプションおよびデフォルト値はドキュ
メント注6をご覧ください。注意点としては、イ
ンターネットに接続できない環境でインスタン
スを準備した場合、インスタンスの起動は可能
ですがDockerを自動セットアップできません。

DigitalOceanを使う場合

　DigitalOcean注7は世界中に複数のデータセン

タを持つVPSサービスとして、世界中で広く使
われているサービスです。Docker Machineを使
えば、DigitalOcean上でもDockerがすぐに利用
できるドロップレットの構築・管理が可能です。
　DigitalOceanの場合、必須のパラメータは
APIトークンです。管理画面上で事前にAPI

トークンを発行し、控えておきます（図10）。デ
フォルトのパラメータを変更したい場合は、ド
キュメント注8を参考に調整ください。

汎用的なgenericドライバを 
使う方法

　これまで紹介してきた仮想化・クラウド環境
のほかにも、SSHが可能な環境であれば、
genericドライバを使うことでDocker Machine

の管理対象とすることができます。これにより、
任意のクラウド環境や任意のディストリビュー
ション上を操作できます。ただし、条件として
リモートログインするSSHアカウントはrootな
いし同等の権限を持っている必要があります（図
11）。｢

【参考情報】

・Docker Machineドキュメント
　https://docs.docker.com/machine/
・Docker Machine 0.3.0 Deep Dive　

https://blog.docker.com/2015/06/
docker-machine-0-3-0-deep-dive/

 ▼図10　DigitalOcean利用時に最低限必要なオプション

$ docker-machine create ¥
    --driver digitalocean ¥
    --digitalocean-access-token <APIトークン> ¥
    <ホスト名>

 ▼図11　genericドライバを使った構築の例

$ docker-machine create -d generic ¥
    --generic-ssh-user <ログイン名> ¥
    --generic-ssh-key <SSHログイン用公開鍵のパス> ¥
    --generic-ip-address <IPアドレス> ¥
    <ホスト名>

注6） https://docs.docker.com/machine/drivers/aws/
注7） https://www.digitalocean.com/

注8） https://docs.docker.com/machine/drivers/digital-ocean/

 ▼図9　AWS利用時に最低限必要なオプション

$ docker-machine create ¥
    --driver amazonec2 ¥
    --amazonec2-access-key <アクセスキー> ¥
    --amazonec2-secret-key <秘密アクセスキー> ¥
    --amazonec2-vpc-id <VPC ID> ¥
    <ホスト名>

https://docs.docker.com/machine/drivers/aws/
https://www.digitalocean.com/
https://docs.docker.com/machine/drivers/digital-ocean/
https://docs.docker.com/machine/
https://blog.docker.com/2015/06/docker-machine-0-3-0-deep-dive/


51 - Software Design Dec.  2015 - 51

クラスタのコンテナを管理する
Docker Swarm
　コンテナをどのサーバ上でどのように起動す
るのか決めることを、コンテナのスケジューリ
ングと呼びます。Docker Swarm注1は、このス
ケジューリングを行うためのツールの1つです。
おもにDocker社によって開発が進められていま
すが、ソースコードはGitHubで公開されてお
り、オープンな開発が行われています。
　Docker Swarmのシステムは、Swarmマネー
ジャとエージェントがクラスタを形成し、1つ

のリソースプール（Dockerホスト上のリソース
がまとめられた状態）を形成しています（図1）。
このDocker Swarmを使えば、Dockerが動作す
る複数の環境を1つのリソースプールとして扱
うことができます。ただし、現時点では開発中
のバージョンであり、機能はコンテナをスケ
ジューリングすることに特化しています。
　負荷分散や高度なリソース管理を行うことは
できませんので、このような機能を使いたい場
合は、後述する別のツールをご検討ください。

Dockerエンジンと互換性のある
API

　Swarmの大きな特徴の1つに、DockerのAPI

Docker Swarmで 
コンテナのスケジューリング
コンテナをクラスタリングしリソースを管理

　コンテナの可用性を高めたり分散したりして処理を行う
ために、複数のDockerホストを1つのリソースの集まりと
して扱うことができます。このクラスタを管理するために
さまざまなツールが開発・提供されています。ここでは
Docker Swarmを使ったリソースとコンテナの管理方法を
見ていきます。

第5章

  Author    前佛 雅人（ぜんぶつ まさひと）　クリエーションライン㈱　 Twitter   @zembutsu

コンテナ

Docker エンジン

Dockerクライアント
Swarm マネージャ

サーバ

Docker エンジン
（Docker デーモン）

サーバ

コンテナ コンテナ

Docker エンジン

サーバ

コンテナ

Docker エンジン

サーバ

コンテナ

Docker エンジン

サーバ

リソースプール

・spread
・binpack
・random

ストラテジとフィルタに
応じてコンテナの配置
をスケジューリング

Docker Machine で
Docker 動作マシン構築と
Swarm 環境のプロビジョニング

Docker 互換
API で操作

コンテナのスケジュール

Swarmノード登録通知

ストラテジ
・constraint
・affinity
・port
・dependency
・health

フィルタ

ディスカバリ・バックエンド

 ▼図1　Docker Swarmの構成

注1） https://www.docker.com/docker-swarm

https://www.docker.com/docker-swarm


［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

52 - Software Design

と互換性がある点が挙げられます。これは、通
常のDockerクライアントがリモートのDocker

エンジンを操作するのと同じように、Swarmが
公開しているポートに対してアクセス可能です。
　つまり、通常のdockerコマンドと同じコマン
ドを使い、クラスタ全体のコンテナ操作が可能
なことを意味します。たとえばdocker runコ
マンドを実行すると、通常はDockerエンジンが
稼働している環境でコンテナが起動します。リ
モートのDockerを操作するには環境変数を切り
替えます。これと同様にSwarmのホストやポー
トを指定すると、Swarmが管理するリソース
プール内のいずれかのサーバ上でコンテナを起
動できます。
　リソースプール上でコンテナを起動するとき、
Dockerエンジンが動作するノードの情報を意識
する必要はありません。しかし全体的なスケ
ジューリングの方向性としての「ストラテジ」や、
より具体的なコンテナの実行方針として「フィル
タ」を指定できます。

Docker Swarm の環境構築

　Docker Swarmのクラスタは、Swarmマネー

ジャ、Swarmノード、ディスカバリ・バックエ
ンド（図1）によって構成されます。Swarmマネー
ジャとSwarmノードは、Docker社から公式リ
ポジトリが公開されていますので、こちらを使
うのが便利です。必要があればGitHubで公開さ
れているGo言語のソースコード注2を元に、バ
イナリをビルドすることもできます。
　クラスタ全体の構成は図2のように単純なも
のです。SwarmマネージャがDockerクライア
ントのAPIを受け付け、Swarmノード上にコン
テナをスケジュールしたり、各Swarmノード上
のリソース情報やプロセスの情報を収集する役
割があります。

ディスカバリ・バックエンド

　Swarmはクラスタを形成するとき、Swarmが
動作するノード管理に「ディスカバリ・バックエ
ンド」を使用します。これは、ノードを登録した
り、障害があるノードを検知し、Swarmマネー
ジャに伝える役割を持ちます。
　ディスカバリ・バックエンドには、Docker 

Hubを使うホステッドディスカバリを使うか、

Docker デーモン

swarm-master

・Dockerクライアント
　（Swarm 操作）

・Docker Machine
　（環境構築） サーバ

リモート
操作

コンテナの
スケジュール

Swarm マネージャ

Docker デーモン

swarm-node-01

swarm-node-02

サーバ

Swarm エージェント

Docker デーモン

サーバ

Swarm エージェント

 ▼図2　Docker Swarm動作環境の構築

注2） https://github.com/docker/swarm

https://github.com/docker/swarm


Docker Swarmでコンテナのスケジューリング
コンテナをクラスタリングしリソースを管理

第5章

52 - Software Design Dec.  2015 - 53

自分でローカルにKVSを構築する方法（etcd、
Consul、Zookeeperなど）を選べます。どちらも
利用できますが、インターネットに接続可能な
環境であれば、ホステッドディスカバリを使う
方法が簡単です。
　ホステッドディスカバリはトークンを使って
クラスタを形成します（図3）。まずあらかじめ
swarm createというコマンドを通して、ラン
ダムな文字列のトークンを作成します。次に、
リソースプールに追加したいノード上では、自
分のIPアドレスとDockerが稼働しているポー
ト番号、そして発行したトークンを指定して
swarm joinコマンドを実行します。あとは自
動的にSwarmマネージャがノードを認識できる
ようになります。

トークンの作成

　ホステッドディスカバリを使う場合、まずは
じめにSwarmクラスタを識別するために、トー
クンを作成する必要があります。いずれかの環
境で、次のコマンドを実行します。

$ docker run --rm swarm create
 （...省略...） 
↓最後に表示される文字列がトークン 
7546a86262b847f7f34785ab2e0d6118

Docker Machine でクラスタを
構築

　Docker Machineを使えば、Swarmマネージャ
もノードも比較的簡単に構築できます。仮想マ
シンの構築を行えるだけでなく、Dockerおよび
Swarmマネージャまたはノードのプロビジョニ
ングを自動的に行えます。また、環境の管理や
削除もDocker Machineを使えばスムーズに行え
ます。
　まずはじめにSwarmマネージャを起動しま
す。図4の例はswarm-masterという名称のホ
ストを起動します。ここではDigitalOceanの環
境を使用していますが、VirtualBoxやAWS向
けなど、任意のドライバを利用できます。
　次にSwarmノードを、同じくDocker Machine

を使って起動します（図5）。先ほどとコマンド
は似ていますが、--swarm-masterというオプ
ションが外れ、ホスト名がswarm-node-01に

docker run swarm create
認識したノード情報をマネージャへ送信

ホステッドディスカバリ・バックエンド
（Docker Hub）

docker run -d -P ¥
swarm manage token://<token>

docker run -d swarm join ¥
--addr=<node ip>:<node port> ¥
token://<token>

トークン自動発行

Docker エンジン

サーバ

Docker エンジン

サーバ

Swarm マネージャ

 ▼図3　ホステッドディスカバリ・バックエンドとトークン



［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

54 - Software Design

なっている点のみ違います。
　同様に、ホスト名をswarm-node-02として
起動すると、自動的に2台目のノードが起動し、
Swarmクラスタに追加されます。この状態で
docker-machine lsを実行すると、図6のよう
にホスト情報が追加されていることがわかりま
す。
　Dockerクライアントからリモートでクラスタ
を操作するには、次のコマンドを実行し、画面

に表示される環境変数を有効化します。

$ docker-machine env --swarm swarm-master

　以後dockerコマンドを使った操作は、Swarm

クラスタ全体に対する操作となります。たとえ
ばdocker infoは特定のDockerホストに関す
る情報表示ではなく、クラスタ全体のリソース
情報を表示するようになります（図7）。
　この状態でdocker runコマンドを実行する
と、クラスタ内のいずれかのホスト上でコンテ

ナが実行されます。次のコマンドを
実行したあと、各ノードにSSHでロ
グインし、どこでコンテナが起動し
ているか確認しましょう。

$ docker run -d -P nginx

　さらに、各ノードのDockerエンジ
ンはSwarmクラスタの管理下に入り
ます。試しに、ノード内でdocker 
runコマンドで任意のコンテナを起
動してみましょう。それから、Swarm

に対してdocker psを実行すると

 ▼図4　Swarmマネージャの起動

$ docker-machine create ¥
 --driver digitalocean ¥
 --digitalocean-access-token <DigitalOceanのトークン>  ¥
 --swarm ¥
 --swarm-master ¥
 --swarm-discovery token://<トークン> ¥
 swarm-master

 ▼図5　Swarmノードの起動

$ docker-machine create ¥
 --driver digitalocean ¥
 --digitalocean-access-token <DigitalOceanのトークン>  ¥
 --swarm ¥
 --swarm-discovery token://<トークン> ¥
 swarm-node-01

 ▼図6　ホスト情報の表示

$ docker-machine ls
NAME            ACTIVE   DRIVER         STATE     URL                          SWARM
swarm-master             digitalocean   Running   tcp://128.199.179.153:2376   swarm-master ｭ 
(master)
swarm-node-01            digitalocean   Running   tcp://128.199.157.183:2376   swarm-master
swarm-node-02            digitalocean   Running   tcp://188.166.252.45:2376    swarm-master

 ▼図7　クラスタ全体のリソース情報を表示

$ docker info
Containers: 4
Images: 1
Role: primary
Strategy: spread
Filters: affinity, health, constraint, port, dependency
Nodes: 1
 node1: 188.166.252.158:2375
  m Containers: 4
  m Reserved CPUs: 0 / 1
  m Reserved Memory: 0 B / 514.5 MiB
  m Labels: executiondriver=native-0.2, kernelversion=3.13.0-57-generic, 
operatingsystem=Ubuntu 14.04.3 LTS, provider=digitalocean, storagedriver=aufs
CPUs: 1
Total Memory: 514.5 MiB
Name: 0477faab5932



Docker Swarmでコンテナのスケジューリング
コンテナをクラスタリングしリソースを管理

第5章

54 - Software Design Dec.  2015 - 55

ノード名/コンテナ名として自動的にコンテナ
が認識されていることがわかります。
　なお、この状態でSwarmクラスタに参加して
いるホスト情報を知るには、swarm listコマ
ンドを使う方法もあります。

$ docker run swarm list token://<トークン>
103.253.146.176:2375
188.166.252.158:2375

手動でクラスタ構築

　手動でSwarmクラスタを構築することも可能
です。ただし、マシン環境は自分で構築しなく
てはいけません。すでに稼働中のマシン環境が
あり、そこを利用する場合には有用です。
　まず、構築時に必要なのは、Swarmマネー
ジャの起動です。起動コマンドは次のように実
行します。

$ docker run -d -P swarm manage ｭ
token://<トークン>

　2台のノードを用意したら、それぞれのノー
ド上で次のコマンドを実行することで、自動的
にクラスタに登録されます。

$ docker run -d swarm join --addr=<ノードｭ
のIPアドレス>:2375  token://<トークン>

　このとき、マネージャ側のサーバでdocker 
psコマンドを実行すると、ホスト側のどのポー
トがSwarmに対して割り当てられているか確認
できます（図8）。
　今回の例ではポート32768がSwarmのポート
番号だとわかります。あとは、Dockerクライア
ントは環境変数を指定するか、あるいは次のよ
うに-Hオプションを指定し、Swarmにアクセ

スできます。

$ docker -H tcp://127.0.0.1:32768 info

　Swarmクラスタに対してdocker infoコマ
ンドを実行すると、クラスタ全体のノード情報
やリソース情報が表示されます。

3種類のストラテジ

　コンテナ実行時、Swarmはどのノードでコン
テナを実行するのか、大まかなスケジューリン
グ方針をあらかじめ決められます。この方針は
ストラテジ（strategy）と呼ばれ、それぞれのス
トラテジのアルゴリズムに従ってSwarmノード
をランク付けし、順位の高いノード上でコンテ
ナを実行しようとします。
　ストラテジは3種類あり、「spread」「binpack」
「random」いずれか適用されます。以降で1つ1

つのストラテジを見ていきます。

spreadストラテジ

　spreadストラテジは、より多くのノードを使
いコンテナを分散しようとする方式であり、
Swarmのデフォルトのストラテジです（図9）。
この方式では、実行中のコンテナ数に応じてノー
ドをランク付けします。初回実行時など、複数
のコンテナで実行しているコンテナ数が同じに
なった場合は、ランダムにノードが選ばれます。

binpackストラテジ

　binpackストラテジは、できるだけ少ないノー
ドにコンテナを集約する方式です。対象となる
ノードで利用可能なリソース（CPU、メモリ）の
上限に達するまで、コンテナの起動を試みます

 ▼図8　ホスト側の割り当てポート確認

$ docker ps
CONTAINER ID        IMAGE               COMMAND                  CREATED             ｭ 
STATUS              PORTS                     NAMES
0477faab5932        swarm               "/swarm manage token:"   4 seconds ago       ｭ 
Up 3 seconds        0.0.0.0:32768->2375/tcp   trusting_mcclintock



［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

56 - Software Design

（図10）。リソース上限に達すると、別のノード
を使用します。なお、こちらも初回実行時はラ
ンダムに選択されます。
　ただし、他のストラテジと異なり、コンテナ
を実行するたびにコンテナが使用するリソース
（CPU、メモリいずれか、または両方）を必ず指
定する必要があります。この指定を行わずにコ
ンテナを稼働しても、Swarmはリソースの計算
ができないため、1つのノード内で多くのコン
テナが稼働することになります。
　リソースを指定するには、コンテナ実行時に
オプションを指定します。次のコマンドは-mオ
プションを使い、tomcatコンテナが利用可能な
メモリ上限を512MBとしています。

$ docker run -d -m 512MB tomcat

randomストラテジ

　randomストラテジは、spreadやbinpackと異
なり、ランキングのためのアルゴリズムを使用
しません。おもにデバッグ用途で使用します。
ランダムに選びたくない場合は、後述するフィ
ルタを使って具体的なノードを選択します。

ストラテジの使い分け

　デフォルトのspreadストラテジは、分散して
コンテナを実行したい場合に向いています。1

つのノードで障害や停止が発生しても、全体に

サーバ①

コンテナ

サーバ②

コンテナ

サーバ③

コンテナ

① ② ③

サーバ①

コンテナ

サーバ②

コンテナ

サーバ③

コンテナ

① ② ③
コンテナ コンテナ コンテナ

④ ⑤ ⑥
コンテナ コンテナ コンテナ

⑦ ⑧ ⑨

 ▼図9　spreadストラテジ

サーバ①

コンテナ

サーバ②

コンテナ

サーバ③

① ④

サーバ①

コンテナ

サーバ②

コンテナ

サーバ③

コンテナ

① ④ ⑦
コンテナ コンテナ コンテナ

② ⑤ ⑧
コンテナ コンテナ コンテナ

③

コンテナ

②
コンテナ

③

⑥ ⑨

 ▼図10　binpackストラテジ



Docker Swarmでコンテナのスケジューリング
コンテナをクラスタリングしリソースを管理

第5章

56 - Software Design Dec.  2015 - 57

対する影響が少ないため、たくさんのノードを
持っている場合は有効なストラテジです。
　一方のbinpackストラテジは、限られたノー
ド内のリソースをできるだけ使おうとします。
そのため、リソースの使われていないノードが
増えることはありません。ただし、障害が発生
すると多くのコンテナに影響が出ます。

ストラテジの指定方法

　ストラテジを指定するには、Swarmマネー
ジャの起動時にオプションで指定します。以下
の例では、オプション--strategyでbinpack
ストラテジを指定しています。

$ docker run -d -P swarm manage ｭ
token://<トークン> --strategy binpack

5種類のフィルタ

　スケジューリングにおいてストラテジが大ま
かな方針を決めておくのに対し、フィルタはよ
り具体的なスケジューリング先を指定するため
のものです。フィルタの指定は、ストラテジよ
りも優先されます。
　具体的な使い方としては、特定のOSやハー
ドウェア環境を選択してコンテナを起動する場
合に重宝します。また、コンテナの依存関係や
ノードの稼働状態によって、システム側で自動
的に決定されるフィルタもあります。以下でそ
れぞれのフィルタの役割を見ていきましょう。

Constraintフィルタ

　Dockerのラベル（label）、システム情報、ノー
ド名に応じて、コンテナのスケジューリング条
件を指定することができるフィルタです。
　ノードに任意のラベルを付けるには、Docker

デーモンの起動オプションに--labelを使いま
す。たとえば、リージョン tokyoというラベル
を指定したい場合は--label region=tokyoを
Docker起動時に指定します（デーモン起動時の

オプションは/etc/default/dockerなどで指定で
きます）。
　こうしておけば、このノードでコンテナをス
ケジュールしたい場合、コンテナ実行時に-eオ
プションを使ってラベルを指定することでフィ
ルタリングの条件として機能させられます。次
の例はラベルregionがtokyoの環境で、nginx

コンテナをスケジュールします。また、条件の
設定には==（同じ）演算子または!=（否定）演算子
が利用できます。

$ docker run -d -e ｭ
constraint:region==tokyo nginx

　2つめは、standard constraintと呼ばれる固有
のDocker環境に関する条件です。これはdocker 
infoコマンドを実行したときに表示されるス
トレージドライバ（storagedriver）、実行ドライ
バ（executiondriver）、カーネルのバージョン
（kernelversion）、OS情報（operatingsystem）に
よって指定できます。
　3つめは、ノードconstraintと呼ばれるもの
で、ノード名を直接指定することができます。
次の例はノード名web1に対してnginxをスケ
ジュール「しない」ものです。

$ docker run -d -e constraint:node!=ｭ
web1 nginx

affinityフィルタ

　既存のコンテナ名、またはダウンロード済み
のイメージ名に対応して、コンテナをスケジュー
ルします。すでに稼働中のコンテナと同じノー
ド上でコンテナを使いたい場合、あるいは使い
たくない場合に指定します。たとえばコンテナ
名cacheが存在するノードでtomcatコンテナを
実行するには、次のように実行します。

$ docker run -d -e ｭ
affinity:container==cache tomcat

　イメージの指定が有効な場合があります。



［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

58 - Software Design

Swarmクラスタ上でコンテナを起動しようとす
るとき、その対象ノードにイメージがない場合
はダウンロードを開始します。このイメージが
巨大なファイルサイズの場合、コンテナの稼働
に時間がかかります。そこで、あらかじめイメー
ジが取得済みのノードを指定することにより、
迅速に稼働したい場合にお勧めのフィルタです。
次の例は、tomcat:6コンテナを持っているノー
ド上でコンテナを実行します。

$ docker run -d -e ｭ
affinity:image==tomcat:6 tomcat:6

ポートフィルタ

　Swarmクラスタ上でコンテナを実行するとき、
-pオプションでポートを指定すると、自動的に
ポートが未使用なノード上でコンテナを起動し
ようとします。たとえば、docker runをSwarm

に対して実行し、オプションで-p 80:8080（コ
ンテナのポート8080を、Swarmの80に割り当
て）を指定すると、ポート80が使われていない
ノードのいずれかでコンテナを実行します。

依存関係フィルタ

　依存関係フィルタとは、コンテナの依存関係
がある場合に自動的に適用されるフィルタです。
特定のコンテナとリンクするオプション--link
か、ボリュームを参照するオプション--vol 
umes-fromを使いコンテナを起動しようとする

と、同じノード上でコンテナを起動しようとし
ます。
　ただし、同じノードにコンテナがスケジュー
ルできない場合（リソースがないなど）、コンテ
ナを実行することはできません。たとえば、新
しいコンテナを起動するとき、複数のコンテナ
に対するリンクを指定しているとします。もし、
対象のコンテナが別々のノードで稼働している
場合、コンテナは起動できません。

ヘルスフィルタ

　ノードの死活状況に応じて自動的に適用され
るフィルタです。ディスカバリ・バックエンド
によって正常に稼働していないとみなされるノー
ドは、自動的にスケジュールの対象から除外さ
れます。ノードが正常に復帰すると、スケジュー
ル対象にも自動的に復帰します。

その他のスケジューラ

　Docker Swarm以外にもさまざまなスケ
ジューラを使うことができます。最後に、Docker

と連携する主なツールを表1に紹介しておきま
す。｢

【参考情報】

・Docker Swarm
　https://docs.docker.com/swarm/

名称 URL 概要

Kubernetes http://kubernetes.io/
Google社によって開発され、オープンソースとして開発が続けら
れている。ラベルやポッドの概念を使い、コンテナを管理すること
が可能

OpenShift https://www.openshift.com/ DockerとKubernetesを組み合わせたPaaS環境を実現しており、
RedHat社によるサポートを受けられる

Rancher http://rancher.com/
ロードバランサや仮想ネットワークをサポートしており、プライ
ベートなコンテナ利用環境を目指している。Rancher社が開発して
おり、オープンソースとして公開

Nomad https://nomadproject.io/
スケジューリングだけでなく、リソース管理も可能。コンテナ以外
にも仮想化システムでの処理やバイナリの実行にも対応。HashiCorp
が開発中であり、オープンソースとして公開

 ▼表1　Docker Swarm以外の主なスケジューラ

https://nomadproject.io/
https://docs.docker.com/swarm/
http://rancher.com/
https://www.openshift.com/
http://kubernetes.io/


59 - Software Design Dec.  2015 - 59

設定管理のコード化、 
その恩恵と問題
　アプリケーションやミドルウェアの環境をど
のように構築するか。これは、Dockerコンテナ
だけに限らず、物理環境やクラウド環境でも大
きな課題になりつつあります。かつての環境構
築は、人手によって設定手順書に従いコマンド
を実行するものでした。しかし、この人手によ
る作業には、次のような課題があります。

・作業者によって作業に時間がかかる
・作業ミスを引き起こすリスクと、ミスを回避
するためのチェック体制

・手順書の変更やその管理・共有方法

構成管理ツール

　これを解決する手法の1つが、Chef、Puppet、
Ansibleなどのツールを使う手法です。これら
は構成管理ツールと呼ばれており、あらかじめ
設定ファイル（レシピ、プレイブックなど）でイ
ンストールすべきパッケージの情報や、サーバ
内の設定を定義しておきます。あとは環境構築
時にツールを実行することで、定義された環境
を正確・迅速に自動的に構築します。
　さらにこのファイルを、ソースコードのよう
な「コード」として扱うことで、変更差分の確認

を容易にできるようになりました。ただし、設
定ファイルは各ツールによって互換性がなく、
ある程度自由に使いこなすためには、それぞれ
の設定言語（DSL）を学ぶ必要があります。

マシンイメージの活用

　構成管理ツールと似たような手法として、仮
想マシンイメージを作る方法があります。これ
は頻繁に使う開発環境や共通するアプリケーショ
ンを、あらかじめテンプレート的な環境として
仮想サーバ上に構築します。このとき、構成管
理ツールと組み合わせることもできます。環境
が整うと、それを頻繁に使うマシンイメージと
して保管し（これをゴールデンイメージと呼ぶ場
合もあります）、必要に応じて使う手法です。
　一見すると便利な手法ですが、アプリケーショ
ンやミドルウェアのバージョンが上がる場合（仕
様変更やセキュリティ対策などで）、都度、マシ
ンイメージの再構築が必要になります。また、
イメージの数が増えてくると、管理がたいへん
になりがちという新しい課題も出てきました。

DockerfileでDockerイメージ
を構築

　Dockerでは、Dockerfileと呼ばれる設定
ファイルを使い、コンテナイメージを自動構築
できます。Dockerfileでは何のDockerイメー
ジをもとにコンテナを準備し、コンテナ内でど

Docker環境のコード化と 
オーケストレーション
DockerfileとDocker Composeで作業の省力化・効率化

  Author    前佛 雅人（ぜんぶつ まさひと）　クリエーションライン㈱ 　 Twitter  @zembutsu

　Dockerイメージを使うには、前章までに紹介したほかに
も、設定ファイルを使うことによって自動的にイメージを
構築できます。また、複数のコンテナの構築だけでなく同
時に起動／停止することもできます。本章では、これらの
作業を自動化するため、Dockefileを使ったイメージの構築
方法と、Docker Composeを使った複数コンテナの構築や
オーケストレーションのしかたをみていきます。

第6章



［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

60 - Software Design

のようなコマンドを実行するか定義します。こ
れにより、Dockerイメージを手作業で構築する
よりも、効率的に作成できるようになります（図
1）。
　具体的な使い方としては、特定のパッケージ
をコンテナ内にセットアップしたり、設定ファ
イルを書き換えたり、ソースコードやバイナリ
をコンテナ内にコピーできます。このファイル
を使いdocker buildコマンドを実行すること
により、自動的にDockerイメージを構築するし
くみになっています。
　作成後のイメージはコンテナとして実行でき
るだけでなく、Docker Hubなどのレジストリを
通して共有できます。イメージの容量が大きい
場合でも、Dockerfileであれば手軽にファイ
ルを共有できますし、GitHubのようなリポジト
リを使ってバージョン管理も行えます。
　このような機能から、docker buildは構成
管理ツールやマシンイメージによる環境の構築
と管理を組み合わせたような概念を持っている
と言えるでしょう。ただし、必ずしもDockerfile

を使う必要はありません。もし、これまでに
Chef、Puppet、Ansibleなどの構成管理ツール
の知見があるのであれば、それを活用するのも
方法の1つです。とはいえ、Docker Hubに自分
のイメージを公開・配布するときは、Docker 
fileを通して構築手順が明らかになっている方
が、多くの方にとって経緯がわかりやすく、再
利用しやすくなると思われます。

コンテナ実行時の環境も定義

　Dockerfileはイメージ構築時のコマンドを定
義するだけはありません。コンテナ実行時に必
要となる、次の情報を定義することもできます。

・コンテナがデフォルトで実行するコマンドや
オプション

・ホスト側に公開するポート番号
・参照するボリューム
・動作用のディレクトリやユーザ権限

　さらにDockerには、複数のコンテナの構築や
操作を行うDocker Composeというツールが提
供されています。これは、複数のコンテナの状
態をdocker-compose.ymlファイルで定義した
り、Docker Composeを使い同時に操作（オーケ
ストレーションと呼ばれる一斉作業）したりでき
るようになります。

イメージを自動構築する
Dockerfile
　Dockerfileとは、Dockerイメージの構築時
の命令を記述するファイルのことです。イメー
ジを構築するにはdocker buildコマンドを使
います。

 書式 
$ docker build <オプション> <Dockerfileの ｭ
パス>

　典型的な使い方は、作業用のディレクトリを
作成し、Dockerfileを配置・編集したあと、
docker buildコマンドでイメージを構築しま

手作業 docker pull

イメージ取得

docker run

コンテナの実行

各種の
構築作業

docker commit

 イメージをコミット イメージ完成

自動 Dockerfile

設定ファイル編集

docker build

構築コマンド実行 イメージ完成

 ▼図1　Dockerイメージ構築手法の比較



Docker環境のコード化とオーケストレーション
DockerfileとDocker Composeで作業の省力化・効率化

第6章

60 - Software Design Dec.  2015 - 61

す。このとき、-tオプションでタグの指定
と、.（カレントディレクトリ）にあるDockerfile

を指定します。

簡単なコンテナの作成

　例として、WebサーバとしてNginxを起動す
るためのDockerfileを作成してみます。コンテ
ナは次のような条件を指定するとします。

・ベースとするイメージ
　centos:7
・インストールするパッケージ
　epel-release、nginx
・ローカルのindex.htmlをドキュメントルート
に複製

・ポート80を公開
・Nginxの起動

　まず、任意の名前のディレクトリを作成し、
中に移動します。エディタを使い、Dockerfile
を作成し、次のとおりに編集・保存します。詳
細な命令の意味については後述します。

FROM centos:7
MAINTAINER <自分の名前>
RUN yum update -y
RUN yum install -y epel-release
RUN yum install -y nginx
ADD index.html /usr/share/nginx/html/
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

　それから、ドキュメントルートとして表示す
るためのindex.htmlを作成します。

$ echo '任意の文字列' > ./index.html

　docker buildコマンドでイメージを構築し
ます。次の例ではmynginxとタグ付けしていま
すが、任意の名称が利用できます。

$ docker build -t mynginx .

　もしエラーが出る場合は、記述が違っている
可能性がありますので、内容を見直します。問
題なければ、このmynginxイメージを使い、コ

ンテナを起動します。

$ docker run -d -p 80:80 mynginx

　実行後、ブラウザから対象マシンのポート80

にアクセスすると、先ほど作成した index.html

の内容が表示されています。

Dockerfile の命令

　ファイルの中ではコンテナに関するさまざま
な命令を記述できます。

・ FROM……コンテナ構築時に使用するイメージ
（必須）。
　 例：FROM nginx

・ MAINTAINER……コンテナの管理担当者名や
メールアドレスなど任意の文字列。
　 例：MAINTAINER foo@example.jp

・RUN……コンテナ内でコマンドを実行。
　 例：RUN apt-get install -y wget

・ CMD……コンテナ実行時にデフォルトで実行
するコマンドと引数。ただしコンテナ実行時
に引数があると、この指定は無視。
　 例：CMD［"ping","127.0.0.1","-c","30"］

・ ENTRYPOINT……コンテナ実行時に実行する
コマンドを指定。CMDと違いコンテナ実行時
に--entrypointオプションを指定しない限
り、必ず実行する。また、CMDと併記する場
合はその内容がENTRYPOINTで指定したコマ
ンドのオプションになる。
　 例：ENTRYPOINT［"ping"］

・ COPY……ホスト上の特定のファイルやディレ
クトリをコンテナ内に複製。
　 例： COPY <ホスト上のパス> <コンテナ内パス>

・ ADD……COPYと同様の機能を持つが tar形式
の展開やURLの指定も可能。
・ WORKDIR……コンテナ内でRUN・CMD・ENTRY 
POINTなどの命令を実行するディレクトリを
指定。
・ ENV……コンテナの中で参照可能な環境変数



［ 決 定 版 ］D o c k e r 自由自在
実用期に入ったLinuxコンテナ技術

第1特集

62 - Software Design

を定義。
　 例：ENV WEB_PORT 80

・VOLUME……ボリュームのマウント先。
　 例：VOLUME［"/var/log/"］

・ PORT……コンテナが使用するポート番号。た
だし、コンテナの中でのポート指定であり、
docker run時に-pまたは-Pオプションの利
用が必要。
　 例：PORT 80 443

・ USER……RUN、CMD、ENTRYPOINTの実行時の
ユーザ名またはUID。
　 例：USER nginx

　詳細な使い方やサンプルはリファレンス注1を
ご覧ください。

コンテナのクラスタを管理する
Docker Compose
　Docker Composeは複数のコンテナやアプリ
ケーションを構築・管理するためのコマンドラ
インツールです。設定にはdocker-compose.
ymlというYAML形式のファイルを使い、
Dockerfileと連動して環境構築ができます。
Composeはコンテナ環境を自動的に構築するだ

けでなく、複数のコンテナの起動／停止といっ
たコンテナ管理もできます（図2）。
　Docker Hubで公開されている公式パッケージ
を中心に、複数のコンテナを組み合わせる環境
構築を簡単にする方法として、docker-
compose.ymlを配布する流れもあります。

Docker Composeのセットアップ

　Composeを使うにはdocker-composeという
単一のバイナリファイルを使います。基本的な
セットアップ手順はDocker Machineと同様で
す。ダウンロード用のページ注2に移動し、各OS

やアーキテクチャごとのバイナリをダウンロー
ドし、適切なパーミッションを設定します（図
3）。
　正常にセットアップされたかどうかは、バー
ジョン情報が表示されるかどうかで確認します。

$ docker-compose -v
docker-compose version: 1.4.2

Composeの利用例

　WordPressを使うためのコンテナを起動して
みます。任意のディレクトリでdocker-compo 
se.ymlファイルを作成し、内容をリスト1のよ

注1） Dockerfile reference https://docs.docker.com/refer 
ence/builder/ 注2） https://github.com/docker/compose/releases/

…

$ docker-compose up

コンテナ A の image

コンテナ B の image

Buildfile Linux
コンテナ A

Linux
コンテナ B

公開ポート

docker-compose.yml

コマンド実行ディレクトリ内の docker-compose.yml に従い、
その実行環境の Docker で、記述どおりにコンテナ群のイメージを作成・起動します。

 ▼図2　Docker Composeでコンテナ群の自動起動

http://docs.docker.com/engine/reference/builder/
https://github.com/docker/compose/releases/


Docker環境のコード化とオーケストレーション
DockerfileとDocker Composeで作業の省力化・効率化

第6章

62 - Software Design Dec.  2015 - 63

うに編集します。これはwordpressとdbとい
う名前のサービスを定義し、それぞれの利用す
るイメージ名、リンク、ポートの公開に関する
情報を定義しています。
　このファイルを作成したあと、docker-com 
pose upを実行すると、コンテナが起動します。
メモリが少ない環境は起動できない場合があり
ますのでご注意ください。あとはブラウザから
ポート8080にアクセスすると、WordPressの
初期画面が表示されます。このときl+Cを
実行するとコンテナが停止します。
　利用可能な主なコマンドは次のとおりです。

・docker-compose up
　 コンテナ群の起動。-dオプションをつけると、
デタッチドモードとしてバックグランドで動作
・docker-compose ps
　対象のコンテナ群の状態を表示
・docker-compose stop
　コンテナ群を停止
・docker-compose kill
　コンテナ群を強制停止

・docker-compose logs
　コンテナ群のログを表示
・docker-compose rm
　 コンテナが使用したファイルを削除。確認画
面でyを入力すること

　詳細な設定方法やオプションについては、ド
キュメント注3をご参照ください。
　Composeは開発途上のツールであり、現時点
では1つのサーバ上のコンテナのみ管理できま
す。言い換えれば、複数のサーバにまたがって
コンテナを配置することはできません。しかし、
今後のバージョンアップにより、たとえば
Docker Swarmと連携するなどし、アプリケー
ションを複数のサーバ上で展開できるようにな
れば、Composeはコンテナを使った運用におい
て欠かすことができないツールになるでしょう。
｢

 ▼図3　Mac OSとLinuxの設置例

 ・Mac OSの設置例 
$ curl -L https://github.com/docker/compose/releases/download/1.4.2/docker-compose-ｭ 
Darwin-x86_64 > ./docker-compose
$ chmod 755 ./docker-compose
$ sudo mv ./docker-compose /usr/local/bin/docker-compose

 ・Linuxの設置例 
$ curl -L https://github.com/docker/compose/releases/download/1.4.2/docker-compose-ｭ 
Linux-x86_64 > ./docker-compose
$ chmod 755 ./docker-compose
$ sudo mv ./docker-compose /usr/local/bin/docker-compose

 ▼リスト1　docker-compose.yml

wordpress:
  image: wordpress                  ←wordpressイメージの使用 
  links:
    - db:mysql              
  ports:
    - 8080:80                       ←コンテナ内のポート80をホスト側8080に公開 

db:
  image: mariadb                    ←mariadbイメージの使用 
  environment:
    MYSQL_ROOT_PASSWORD: example    ←rootパスワードをexampleで指定 

注3） Docker Compose https://docs.docker.com/compose/

https://docs.docker.com/compose/


［決定版］D o c k e r自由自在
実用期に入ったLinuxコンテナ技術

第1特集

64 - Software Design

HashiCorpとDocker

　HashiCorp社注1は、開発環境の自動構築とし
て有名なVagrantを始めとし、多くのDevOps問
題を解決するためのさまざまなツールを提供し
ている会社です。
　HashiCorpのよいところは、「何かをするため
には、使った方が楽だよね」というツールを提供

していることです。これはHashiCorp道（The 

Tao of HashiCorp注2）と呼ばれる開発方針にも
とづき開発を進めているためです。彼らはまず、
最適な業務フローを検討し、それを達成するた
めのツールがなければ自分たちで開発する方式
を採っています。現在9つのプロダクトが提供
されていますが、それぞれが異なった作業範囲
における目的を解決するためのものです（図1）。
　これまでHashiCorpでは、おもに仮想化環境

HashiCorpの 
自動化ツールと 
Dockerの連携
HashiCorp道の真

しんずい
髄

  Author    前佛 雅人（ぜんぶつ まさひと）　クリエーションライン㈱　 Twitter  @zembutsu

　ここまでの章では、Docker社が提供する各種のツールを
紹介してきました。最後に、HashiCorpのツールを使い、
Docker環境の構築や管理を行う手法を紹介します。

第7章

注2） https://hashicorp.com/blog/tao-of-hashicorp.html注1） https://hashicorp.com/

各
ツ
ー
ル
の

サ
ポ
ー
ト
範
囲

開発段階
・コーディング
・ファイルのアップロード
・GitHub 等の連携

Vagrant TerraformPacker
Consul

Nomad

Otto Serf

Atlas

Vault

開発サイド 運用サイド開発と運用の境界

環境構築
・マシン・イメージ作成
・インフラ環境の管理
・デプロイ

システム運用
・クラスタ管理
・障害検知
・監視

 ▼図1　HashiCorpのツールがカバーする範囲

https://hashicorp.com/
https://hashicorp.com/blog/tao-of-hashicorp.html


HashiCorpの自動化ツールとDockerの連携
HashiCorp道の真髄

第7章

64 - Software Design Dec.  2015 - 65

やクラウドに対応したツール開発が行われてき
ました。2015年以降はDockerのコンテナ環境に
も対応し始めています。そのため、これまで
HashiCorpのツールを使ったことがある方なら、
これまでと同じ感覚でDocker環境も扱えます。
　たとえばVagrantであれば、開発環境の選択
肢の1つとしてDockerを選ぶこともできます。
PackerであればDockerイメージを構築します
し、Terraformはコンテナ環境をデプロイしま
す。現時点での各ツールとDockerの対応状況は
表1をご覧ください。
　今年9月に開催されたHashiConfではDocker

のスケジューリングに特化したNomad注3と、
Dockerにも対応する開発・デプロイ用ツールと
してOtto注4の発表も行われており、今後も活発
に開発が進められるものと思われます。

各ツールの対応状況

TerraformでDocker環境の構築

　Terraformはインフラ環境を自動的に構築し、
管理するためのツールです。プロバイダを切り
替えることにより、クラウド環境だけでなく、
Dockerにも対応できます。
　TerraformのDockerプロバイダは、Docker 

APIを通してDockerデーモンまたはDocker 

Swarmと通信します。現時点の機能では、
Dockerコンテナを動かす下準備として、各サー
バ上にコンテナやDockerイメージを自動的に設
置／削除するのに便利です。
　例として、Ubuntuイメージを使ったDocker

の環境を構築します。docker.tfというファイ
ルを準備し、内容をリスト1のとおりにします。

注3） https://nomadproject.io/
注4） https://ottoproject.io/

 ▼表1　HashiCorpの各ツールとDockerの対応状況
名称 URL ツールの役割 Docker対応状況

Vagrant https://www.vagrantup.com/ 開発環境の自動構築と管理 Dockerイメージを使った環境
構築に対応

Packer https://packer.io/ マシンイメージの自動構築 Dockerイメージの構築に対応
Terraform https://terraform.io/ インフラのコード化と自動構築 Docker環境の構築（簡易）
Serf https://serfdom.io/ クラスタ管理とオーケストレーション Dockerに依存しない
Consul https://consul.io/ サービス検出やオーケストレーションなど Dockerに依存しない
Vault https://www.vaultproject.io/ 秘密鍵やトークンなど秘密情報の管理 Dockerに依存しない
Atlas https://atlas.hashicorp.com/ 開発から運用に至るフローを一体化 Dockerイメージの管理に対応

Nomad https://nomadproject.io/ コンテナのスケジューリング Dockerコンテナのスケジュー
リングに対応

Otto https://ottoproject.io/ 開発環境の自動構築とデプロイ アプリケーションタイプの1つと
してDockerに対応

 ▼リスト1　docker.tf

provider "docker" {
    host = "tcp://127.0.0.1:2375/"  ← DockerデーモンのIPアドレスとポート番号 
}

resource "docker_container" "web" {  ←Dockerコンテナのリソースを定義 
    image = "${docker_image.uginx.latest}"  ←使用するイメージはリソースdocker_image 
    name = "web"
}

resource "docker_image" "nginx" {   ←Dockerイメージのリソースを定義 
    name = "nginx:latest"
}

https://nomadproject.io/
https://www.vagrantup.com/
https://ottoproject.io/
https://packer.io/
https://terraform.io/
https://ottoproject.io/
https://nomadproject.io/
https://atlas.hashicorp.com/
https://www.vaultproject.io/
https://consul.io/
https://serfdom.io/


［決定版］D o c k e r自由自在
実用期に入ったLinuxコンテナ技術

第1特集

66 - Software Design

　このあとインフラに対する変更内容を確認す
る terraform plan、そして反映する terra 
form applyを実行すると、自動的にNginx用
のDockerイメージをダウンロードし、webとい
う名称でコンテナを起動します（図2）。使い終
わったあとは、terraform destroyコマンド
を実行すると、コンテナの停止と削除を行いま
すので、環境構築まわりの面倒な作業を楽にで
きます。
　ここで紹介したほかにもさまざまなオプショ
ンが利用できます。詳細についてはドキュメン
ト注5を参照ください。

VagrantとDocker開発環境

　Vagrantでは、デフォルトのVirtualBox環境
のほかにもさまざまな環境を、プロバイダと呼
ばれる単位で操作できます。このプロバイダの
1つにDockerも対応しており、Dockerコンテナ
を開発環境として利用できるようになります。
Vagrantを連携する利点は、Dockerイメージを
そのまま使えるだけでなく、Dockerfileがあれば
イメージをもとに環境を構築することもできるこ
とです。詳細はドキュメント注6を参照ください。

PackerとDockerイメージ

　Packerはマシンイメージを自動構築するため
のツールです。単純にイメージを作るだけでな
く、Chef・Puppetなどの構成管理ツールを自動

的に実行することもできます。Docker向けの機
能としては、特定のDockerイメージを自動的に
コミットしたり、tar形式のファイルとしてエク
スポートする機能があります。こちらも詳細な
オプション設定は、ドキュメント注7を参照くだ
さい。

Serf・Consulについて

　SerfやConsulはクラスタ管理やオーケスト
レーションを実施するためのツールです。いず
れもOS上で動作するアプリケーションのため、
Docker環境の利用にあたって特別な設定・操作
などはありません。

DockerとHashiCorp

　個人的に、DockerとHashiCorpが提供する手
法は似通っているように思います。たとえば
Dockerの場合はdocker runでコンテナ環境を
実行しますし、Vagrantはvagrant upコマン
ドで自動的に環境を構築します。ただし、Docker

はあくまでコンテナありきな操作や機能が中心
です。それに対して、HashiCorpのツールの場
合はプラットフォームを自由に選べます。Doc 

kerに限らず、複数の環境を併用したり使い分
けたりできるのが大きな違いです。加えて、既
存の構成管理ツールやサービスとの連携も容易
になるしくみを提供しています。
　開発・運用現場の規模や考え方によって、合
うツールや合わないツールがあるかもしれませ
ん。筆者はDockerやHashiCorpのツールを必ず

しも皆が使うべきとは考
えていません。みなさん
の現場において、今回の
特集の中で「もしかして
使えるかも？」という利
用シーンがあれば、積極
的に活用していただけれ
ばと思っています。｢

Docker デーモン

terraformdocker.tf
（設定ファイル）

Docker API

参照

terraform plan
内容確認

terraform apply
設定反映

terraform destroy
環境の削除

 ▼図2　TerraformとDocker連携

注5） https://terraform.io/docs/providers/docker/index.html
注6） http://docs.vagrantup.com/v2/docker/index.html
注7） https://www.packer.io/docs/builders/docker.html

https://terraform.io/docs/providers/docker/index.html
http://docs.vagrantup.com/v2/docker/index.html
https://www.packer.io/docs/builders/docker.html


サーバ、スイッチ、ルータ、プリンタ……、ネットワークにつながったあらゆる機器を、同じルール
で管理できるプロトコル「SNMP」。本特集では、「“運用”とは何か」「なぜ、SNMP が必要なのか」とい
う疑問を出発点に、入門編、実用編、応用編とステップアップしながら SNMP について学びます。実際
の運用でのハマリどころも扱っていますので、日々の運用にぜひ役立ててください。

また、コラム①〜④では、本文で出てきた各テーマについておさらい、深堀りをしています。 
こちらも併せてお読みください。

セクション❶～❻：   Author   山下 薫（やました かおる）   URL   http://www.linkedin.com/in/kaoruyamashita

コラム❶～❹：   Author   馬場 俊彰（ばば としあき）　㈱ハートビーツ CTO／  Twitter   @netmarkjp

SNMPはなぜ必要なのか ..............................................................681
SNMP入門編 ...................................................................................... 702
SNMP 実用編 ......................................................................................773
SNMP応用編 ......................................................................................844
SNMPの関連技術 .............................................................................915
まとめ ........................................................................................................ 936

SNMPの動作形態 ...........................................................................73コラム 1
SNMPのデータモデル ...................................................................75コラム 2
CentOSでの利用方法 ...................................................................80コラム 3
SNMPのバージョン .........................................................................83コラム 4

CONTENTS

SNMPの
教科書

ネットワーク・システム管理の定石

堅実な監視で 
障害をキャッチ

第2特集

https://www.linkedin.com/in/kaoruyamashita


68 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

　「 SNMP（ Simple Network Management 

Protocol）」は、情報システムの「運用」を支える、
地味ですが広く用いられているプロトコルで
す［1］。では、そもそも「運用」とは何でしょうか。
　ネットワークを含む情報システムを新しく
導入する場合、構築作業が必要です。具体的
には、ユーザの要件に合わせてシステムを設
計し、その構成要素を選び、開発または設定
して全体を組み立て、テストを行います。テ
ストの結果、要件を満足できていれば、本番
稼働に入ります。本番稼働後の情報システム
を正常に稼働させ続け、万が一のトラブルに
対応する段階が「運用」です。
　情報システムの多くが、定期メンテナンス
などを除けば24時間365日、いつも正常に動
いていることが当然になっている今日、運用
の役割はとても重要です。では、情報システ
ムの運用の際には、どのようなトラブルが発
生するのでしょうか。運用担当者が対処しな
ければならないトラブルの例を2つ挙げます。
　1つめは、サーバやルータのCPU負荷の上
昇によるアプリケーションの応答時間の遅延
です。アプリケーションの種類によりますが、
ユーザが体感できるかどうかのごくわずかな
遅延でも、使い勝手に影響が出てきます。入
力に対する応答に、たとえば10秒の待ち時間
が発生すると、アプリケーションによってはユー
ザ離れを招きます。これを防ぐために、CPU

負荷を監視しておき、想定していた値を超え

運用にトラブルは 
つきもの

るようであればサーバを増設するなどの対策
を施します。
　2つめは、ネットワーク機器のインターフェー
スへの過負荷によるパケットロスです。たと
えば、1Gbpsの帯域を持つインターフェース（ギ
ガビットイーサネット）に、1G以上の負荷が
かかると、転送できないパケットが発生（パケッ
トロス）します。パケットロスが少ないうちは、
ユーザへの影響はほとんどありませんが、ロ
スが多くなってくると、1つめの例と同じくア
プリケーションの応答が遅くなったり、正常
に動作しなくなってしまいます。これを防ぐ
ためには、インターフェースの利用率や、転
送できないパケットの数を監視し、過負荷が
続くようであれば帯域を増やすなどの対策を
とります。

　先に挙げた2つのトラブルの例において、も
しSNMPが使えないとしたら、どうやって機
器の状態を監視すれば良いのでしょうか。
　CPU負荷やパケットロスは、サーバやネッ
トワーク機器にsshなどでログインして、テキ
ストベースのコマンド（CLIまたはCUI）を入力
することで知ることができます。図1は、Cisco

ルータの例です。ここでは「line vty」および 

「line con」以下に、「exec prompt timestamp」を
設定しています。
　また、専用のGUIやWeb画面経由で必要な値
を知ることができる機器もあります。図2は、無
線LANアクセスポイント（自律型）にブラウザで

もしSNMPがなければ

SNMPはなぜ必要なのか1
システムの運用に利用する「SNMP」とはどのようなプロトコルなのか、その説明の前にまずはシステムの「運用」
とはどのような段階を指すのかをお話しします。

  Author   山下 薫（やました かおる）  URL   http://www.linkedin.com/in/kaoruyamashita

https://www.linkedin.com/in/kaoruyamashita


68 - Software Design Dec.  2015 - 69

アクセスして、統計情報を表示させたものです。
　しかし、これらのアクセス手段は、システ
ムを構築する際の各機器の設定と動作確認の
ために用意されていることがほとんどです。

構築担当エンジニアにはお馴染みのものであっ
ても、運用担当者にとって必ずしも使いやす
いものとは限りません。たとえば、画面に表
示される項目の数や情報量が多過ぎて、監視

 ▼図2　Web UIによる監視の例

 ▼図1　CLIによる監視の例

cisco1921#show interfaces GigabitEthernet 0/0
Load for five secs: 0％/0％; one minute: 1％; five minutes: 2％ → CPU負荷
Time source is NTP, 16:20:28.150 JST Sat Oct 17 2015

GigabitEthernet0/0 is up, line protocol is up → リンクしているか?
...（中略）...
  5 minute input rate 1282000 bits/sec, 147 packets/sec → 受信トラフィック量
  5 minute output rate 1353000 bits/sec, 159 packets/sec → 送信トラフィック量
     12694238 packets input, 2985991471 bytes, 0 no buffer
     Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles → 受信時のエラー
     4269 input errors, 0 CRC, 0 frame, 4269 overrun, 0 ignored
     0 watchdog, 0 multicast, 0 pause input
     6913178 packets output, 434240556 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets → 送信時のエラー
     8 unknown protocol drops
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier, 0 pause output
     0 output buffer failures, 0 output buffers swapped out



70 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

の対象だけをピックアップすることが困難だっ
たりします。
　また、たとえばCPU負荷を監視したいとし
ても、対象の機器の種類やベンダによって方
法が違うことがほとんどです。テキストベー
スのCLIでは、CPU負荷を知るためのコマン
ドが違ったり、もしコマンドが同じであった
としても、出力内容が異なったりすることが
あります。これはGUIやWeb UIでも同じです。
さらに、同じベンダの製品でも、機種が違え
ば監視のための方法が違ってくる場合があり
ます。
　さらに、図1のようなテキストベースのコマ
ンドの出力において、どこが監視対象の項目
なのかを特定できたとしても、手動でその値
を継続して監視し続けるのは一苦労です。
　そのため、監視のための操作を自動化する
ことが必須になります。しかし、機器にログ

インし、コマンドを入力し、出力を解析する
までのステップすべてを自動化することは簡
単ではありません。もし自動化のためのスク
リプトを書けたとしても、監視対象の機器の
種類によってスクリプトの内容を変えなけれ
ばなりません。また同じ機器であっても、ソ
フトウェアアップグレードを実施すると、コ
マンドの出力が変更されてしまい、自動化の
ためのスクリプトが正しく動かなくなってし
まうこともあり得ます。
　以上のような監視のための課題を解決する
プロトコルが、SNMPです。SNMPがあれば、
情報システムのさまざまな構成要素を、同じ
方法で監視できます。具体的には、サーバ、
スイッチ、ルータなどが、SNMPで規定され
ている共通のプロトコルとデータモデルに従
うことによって、一元的な監視が可能になる
のです。

　SNMPでは、監視する側を「マネージャ」、
監視される側を「エージェント」と呼びます（図
3）。この図のような「リクエスト―応答」型の
場合は、マネージャがクライアント、エージェ
ントがサーバのように働きます。
　SNMPの「N」は「Network」の略ですが、SNMP

で監視される対象はネットワーク機器に限り
ません。本特集で解説するルータ、スイッチ
の監視に限らず、ネットワークカメラ、温度計、
気圧計、さらには工場のなかの機器をSNMP

あらゆる監視対象を
「OID」で管理

で監視している例［2］もあります。今ふうに言
うと IoT（Internet of Things）のためのプロト
コルとして用いられていると言えるかもしれ
ません［3］。
　さまざまな種類の機器を同じプロトコルで
取り扱うために、SNMPでは独特の「データモ

リクエスト
SNMP
エージェント

応答
ルータ、スイッチ

など

SNMP
マネージャ

Net-SNMP、Cacti
など

 ▼図3　SNMPマネージャとエージェント

SNMP入門編2
ここでは、SNMPの概要について解説します。基本的なコマンドとその実行結果、またデータモデルを見ながら、
SNMPがどのように動作するのかをつかんでください。

  Author   山下 薫（やました かおる）  URL   http://www.linkedin.com/in/kaoruyamashita

https://www.linkedin.com/in/kaoruyamashita


70 - Software Design Dec.  2015 - 71

デル」を定義しており、対象となる機器すべて
がこのモデルに従います。ただし、このデー
タモデルには相当「くせ」があるため、とっつ
きにくいと感じられる方が多いのではないで
しょうか。このあたりの実際を、具体例を用
いて紹介していきます。
　たとえば、対象となる機器の2番めのインター
フェースが受信したバイト数を、監視対象と
して取得したい場合は、

IF-MIB::ifInOctets.2

という名前で指定します。この監視対象（オブ
ジェクト）の名前を「OID（Object ID）」と呼びま
す。また、「MIB」は「Management Information 

Base」の略で、OIDを定義している一種のデー
タベースです。IF-MIBという名前は、インター
フェースに関するMIBであることを意味して
います。ifInOctetsは、インターフェース（if）
で受信（In）したオクテット数（Octets注1）をそ
れぞれ略し、連結した名前です。

　ここからは、フリーのSNMPマネージャで

注1） オクテットは、8ビットと同じ意味です。

SNMPはどう動くか

ある「Net-SNMP」の一部として配布されてい
るユーティリティ「net-snmp-utils」と、本誌
2015年3月号と4月号の記事『Cisco VIRLで
ネットワークのシミュレーション』で紹介した
「Cisco VIRL［4］」を用いて、実際のSNMPの動
作とデータモデルを見ていきます。
　net-snmp-utilsは、次の手順でインストール
できます。

・CentOS、Fedoraなど

# yum install net-snmp-utils

・Ubuntu（必要に応じてsudoを併用）

# apt-get install snmp
# apt-get install snmp-mibs-downloader
# ln -s /var/lib/mibs/* /usr/share/snmp/ｭ
mibs
このあと、/etc/snmp/snmp.confの最後の行を「mibs +ALL」
に変更

　さらに、監視対象として、図4の上側の構成
を用意します。Cisco VIRLに含まれている仮
想化された IOSルータ「IOSv」と、net-snmp-
utilsをインストールしたLinux（CentOS 7.1）
を接続した、とても単純な構成です。
　図4中の「flat-1」という雲のアイコンは、Cisco 

VIRLと外部を接続するためのレイヤ2のブリッ
ジです。これによって、論理的には図4の下側
のように、IOSvとLinuxマシンが直接接続さ

iosv-1
link0

GigabitEthernet0/1

flat-1 net-snmp-utilsを
インストールしたLinux

IOSv
192.168.0.99

GigabitEthernet0/1

net-snmp-utilsを
インストールしたLinux

 ▼図4　ネットワーク構成図（上：実際の構成、下：論理的な見え方）



72 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

れているように見え、IOSvには IPv4アドレ
ス「192.168.0.99」でアクセスできます。筆者が
確認した範囲では、SNMPの動作に関しては、
IOSvは従来のCisco IOSルータとまったく同
様に動作します。ですから、この記事で紹介
する動作例は、実機の IOSルータでも利用で
きます。
　まず、IOSvにSNMPを使用するための最低
限の設定をします。具体的には次のコマンド
を1行入力します。

IOSv(config)#snmp-server community ｭ
public RO

　snmp-serverはSNMPエージェントを意 

味しています。community publicによって、
SNMPのパスワードに相当する「コミュニティ
名」にpublic注2という文字列が含まれたリクエ
ストを受信した場合に限り、アクセスを許可
します。ROは「Read Only」の略で、リクエス
トによって値を読み込むだけであり、書き換
えたりはしないことを意味します。このコマ
ンドによって、IOSvの内部で動作している
SNMPエージェントに外部からアクセスする
ことが可能になります。
　次に、Linux側でSNMPマネージャに相当
するsnmpgetコマンドを用いて、SNMPリク
エストを送信し、応答を確認します。

$ snmpget -v2c -c public 192.168.0.99 ｭ
IF-MIB::ifInOctets.2
IF-MIB::ifInOctets.2 = Counter32: 84339

　Counter32: 84339という応答が得られまし
た。これは、このインターフェースの受信バ
イト数を、32ビット整数で表現したものです。
snmpgetのオプションのうち、-v2cはSNMP

注2） 例として用いているpublicは、コミュニティ名のデフォ
ルトとしてよく用いられているものです。実際のネットワー
クでは、パスワードに準じて推測されにくい文字列を設定
するか、この記事の後半で解説する「SNMPバージョン3」
を使用してください。

プロトコルの「バージョン2c注3」を、-cはコミュ
ニティ名publicをそれぞれ指定しています。
　SNMPバージョン 2cの場合、SNMPエー
ジェント（ここでは IOSv）側の設定と、リクエ
ストの際に指定されたコミュニティ名が一致
すれば、アクセスが許可されます。192.168. 
0.99は、図4の下側の IOSvルータに設定した
IPv4アドレスで、このアドレスを用いてSN 

MPリクエストと応答を送受信します。
　念のために、インターフェースの名前を確
認します。ifDescrは、インターフェース（if）
の説明（Description）注4を意味しています。

$ snmpget -v2c -c public 192.168.0.99 ｭ
IF-MIB::ifDescr.1
IF-MIB::ifDescr.1 = STRING: ｭ
GigabitEthernet0/0

　このインターフェースは、この構成では使
用していないGigabitEthernet0/0に対応して
います。さらに、2番目のインターフェースを
確認します。

$ snmpget -v2c -c public 192.168.0.99 ｭ
IF-MIB::ifDescr.2
IF-MIB::ifDescr.2 = STRING: ｭ
GigabitEthernet0/1

　このインターフェースが、SNMPマネージャ
と接続しているGigabitEthernet0/1であるこ
とがわかります。これで先に得られた、IF-
MIB::ifInOctets.2 = Counter32: 84339 が、
IOSvルータの GigabitEthernet0/1の受信バ
イト数を示していることが確認できました。

　では、SNMPのデータモデルの正体に、少

注3） v2Cと、「C」だけを大文字で書く場合もあります［5］。
注4） Cisco IOSでインターフェースのコメントを設定する

descriptionコマンドとは異なり、インターフェースの
名前そのものを指します。

SNMPのデータモデル



72 - Software Design Dec.  2015 - 73

　SNMPの世界では監視・管理する側をマネー
ジャ、監視・管理される側をエージェントと
呼びます。データの流れとしては次の2種類が
あります。

・マネージャがエージェントにリクエストを
発行し、エージェントがレスポンスを返す

・エージェントからマネージャにデータを送
信する（トラップ）

　CentOSなどで採用されているSNMPマネー
ジャ側のプログラムはSNMPのget/setリクエ
ストを発行する snmpget、snmpwalkなどと、
SNMPトラップを受け付ける snmptrapdがあ
ります。
　エージェント側のプログラムには snmpdが
あります（図A）。
　監視の基本はマネージャからの定期リクエ
ストです。マネージャから定期的にアクセス

し状態を確認することで、エージェントが何
の前触れもなく突然ダウンしたときにも漏ら
さず検知できます。定期リクエストによるデー
タ取得の間隔よりも早く、よりリアルタイム
に状況変化をキャッチしたい場合は、エージェ
ントからのトラップを利用することで対応で
きます。家庭用のスイッチングHUBなどはと
くに何も設定できないのですが、専門事業者
が使うネットワーク機器ならば、telnetや ssh

でたいていログインでき、SNMPでの監視・
管理ができます。このようにログインできた
りSNMPでの監視・管理が可能な機能を俗に
インテリジェント機能と呼びます。たとえば
インテリジェント機能つきのL3スイッチをイ
ンテリL3スイッチと呼んだりします。データ
センターの重要な個所で利用されるネットワー
ク機器（定価10万円程度以上のもの）には基本
的にインテリジェント機能があります。

ネットワーク機器

SNMPエージェント

GET/SETリクエスト

GET/SETレスポンス

トラップ

サーバ

SNMPマネージャ

snmptrapd

サーバ

クライアントプログラム
（snmpget、snmpwalkなど）

snmpd

snmp 機能

 ▼図A　SNMPマネージャとエージェントの構成例

SNMPの動作形態
  Author   馬場 俊彰（ばば としあき）　㈱ハートビーツ CTO／  Twitter   @netmarkjp

コラム

1



74 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

し踏み込んでみます。次のコマンドは、先の
コマンドにオプション-Of（full）を追加したも
のです。

$ snmpget -v2c -c public 192.168.0.99 ｭ
-Of IF-MIB::ifInOctets.2
.iso.org.dod.internet.mgmt.mib-2.ｭ
interfaces.ifTable.ifEntry.ifInOctets.2 ｭ
= Counter32: 84969

　応答の前にあるOIDが、リクエストの際と
はまったく異なる長い文字列になっています。
これは、OIDを省略せずにテキスト形式で表
現したものです。また、応答は Counter32: 
84969となっており、最初のときより値が増え
ています。これは、このインターフェースが
上記のSNMPのリクエストと応答そのものを
送受信しているためです。
　さらに、オプションを-On（numerically：数
値で）に変更すると、次のようになります。

$ snmpget -v2c -c public 192.168.0.99 ｭ
-On IF-MIB::ifInOctets.2
.1.3.6.1.2.1.2.2.1.10.2 = Counter32: 85296

　.1.3.6.1.2.1.2.2.1.10.2 は、OID を
SNMPリクエストとして実際に送受信される
フォーマット、すなわち、数値で記述したも
のです。
　ここまでの例で現れた次の3つは、いずれも
同じOIDを示しています。

① IF-MIB::ifInOctets.2
② .iso.org.dod.internet.mgmt.mib-2.
interfaces.ifTable.ifEntry.ifInOctets.2
③ .1.3.6.1.2.1.2.2.1.10.2

　もし想定しない形式でOIDが表示されてし
まった場合は、snmptranslateコマンドに先ほ
どと同じ-Ofや-Onオプションを付けて実行す
ることで変換できます。
　説明を先のばしにしてきましたが、実は

OIDは深い階層を持つ木構造のデータです。
このOIDの場合、階層は図5のようになって
います。木の頂点（Root）を除くすべての分岐
点と葉、すなわち「ノード」には、数字と名前
が割り当てられています。これらの数字と名
前を、Rootに近いほうから順番に並べ、「.」で
連結したものがOIDです。OIDは、身近なも
のに例えると、Linuxのファイルシステムのパ
ス名で用いられている「/」の代わりに、「.」を用
いて木構造を表現したものだととらえるとわ
かりやすいでしょう。
　OIDの階層構造は相当深くなっています。
これは、「OSI 7層モデル」に名前が残ってい
る「OSI」という普及しなかったプロトコルの
一部となれるよう、データモデルが定義され
たためです。
　しかし、TCP/IPを用いる今日のネットワー
クでは、OIDの先頭にある.1.3.6.1はいつも
同じです。ですので、この無駄な部分を削っ
てしまいたいところなのですが、OIDの互換
性が失われてしまうため今日でも残っています。
その代わりに、IF-MIB::ifInOctets.2のよう
な省略形によって、OIDを指定したり表現で
きるよう工夫されています注5。
　OIDの一番最後の部分、木構造の葉の1つ上
にあたる「ifDescr(2)」や「ifInOctets(10)」は、監
視対象になるデータの種類と型を表します。
先に説明した動作例では、前者がSTRING、後
者がCounter32というデータ型になっています。
　インターフェースのように同じデータ構造
が複数ある場合は、OIDの最後の数値（木構造
の葉）が配列の「添字」の役割を果たします。
IF-MIB::ifInOctets.2 や IF-MIB::ifDescr.2
の最後の「2」が、同じ2番めのインターフェー
スの、受信バイト数と名前を指定するために
用いられています。

注5） 筆者が確認した限り、この省略形（モジュール形式）のOID
名はNet-SNMPでのみ使えるようです。Net-SNMPを含ま
ないほかのSNMPマネージャでは、省略形が使えない可能
性があります。



74 - Software Design Dec.  2015 - 75

IF-MIBで
定義されている

範囲

Root

joint(2)iso(1)

org(3)

dod(6)

mgmt(2)

ifTable(2)

ifEntry(1)

mib-2(1)

interfaces(2)

ifInOctets(10)ifDescr(2)

internet(1)

ccitt(0)

at(3)system(1)

directory(1)

ifNumber(1)

experimental(3) private(4)

ip(4)

 ▼図5　SNMPのデータモデル

　SNMPの世界では管理上で欲しいデータを表
す方法としてMIB（Management Information Base） 
を使います。MIBは.（ドット）で始まるツリー
構造になっていて、各階層・要素が数字で表
されています。これをOID（Object Identifier）
と呼びます。
　CentOS 7のデフォルトインストール状態で
は、.1.3.6.1.2.1.1（SNMPv2-MIB::system）、 
.1.3.6.1.2.1.25.1.1（HOST-RESOURCES-MIB 

::hrSystemUptime）にアクセスできるよう設定さ
れています。

　各OIDはそれぞれ名前が付いています。数
字のOID（.1.3.6.1.2.1.1）とテキストの名称
（SNMPv2-MIB::system）は同じものを指しま
す。そのためSNMPリクエストを発行する際
に.1.3.6.1.2.1.1と指定するのと、SNMPv2-

MIB::systemと指定するのは同じ意味になりま
す。この2つはsnmptranslateコマンドで変換
できます。

[root@manager ̃]# snmptranslate ｭ 
.1.3.6.1.2.1.1
SNMPv2-MIB::system

SNMPのデータモデル
  Author   馬場 俊彰（ばば としあき）　㈱ハートビーツ CTO／  Twitter   @netmarkjp

コラム

2



76 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

　SNMPを利用してエージェントとデータの
やりとりをする際には、このOIDを数字また
はテキストで指定し、データを取得します。

[root@manager ̃]# snmptranslate .1
iso
[root@manager ̃]# snmptranslate .1.3
SNMPv2-SMI::org
[root@manager ̃]# snmptranslate .1.3.6
SNMPv2-SMI::dod
[root@manager ̃]# snmptranslate .1.3.6.1
SNMPv2-SMI::internet
[root@manager ̃]# snmptranslate .1.3.6.1.2
SNMPv2-SMI::mgmt
[root@manager ̃]# snmptranslate ｭ 
.1.3.6.1.2.1
SNMPv2-SMI::mib-2
[root@manager ̃]# snmptranslate ｭ 
.1.3.6.1.2.1.1
SNMPv2-MIB::system

　なおテキストから数字に変換する場合は 
-Onオプションを利用します。

[root@manager ̃]# snmptranslate -On ｭ
SNMPv2-MIB::system
.1.3.6.1.2.1.1

　MIBは独自拡張可能なため、各ネットワー
ク機器ベンダは独自のMIBを持っています。
UP/DOWNなどポートのステータスや、ポー
トごとのトラフィックなどを取得できます。
また変わったところでは JVM（Java VM）も
MIBを持っており、SNMPでステータスを取
得できます。
　CentOS 7のsnmpdでは特定のOIDにアクセ
スすると任意の処理を実行させる設定ができ
ます。/etc/snmpd/snmpd.confで execを設定
することで実現できます。
　myuptimeという名前でuptimeコマンドを実
行するOIDを定義する例は次のとおりです。

exec myuptime /bin/uptime

　このように設定すると、.1.3.6.1.4.1.8072.1.3 
（NET-SNMP-AGENT-MIB::nsExtensions）配
下にアクセスすることで、このコマンドを実
行し結果を取得できるようになります（図B）。

[root@manager ̃]# snmpwalk -v 2c -c public agent .1.3.6.1.4.1.8072.1.3
NET-SNMP-EXTEND-MIB::nsExtendNumEntries.0 = INTEGER: 1
NET-SNMP-EXTEND-MIB::nsExtendCommand."myuptime" = STRING: /bin/uptime
NET-SNMP-EXTEND-MIB::nsExtendArgs."myuptime" = STRING:
NET-SNMP-EXTEND-MIB::nsExtendInput."myuptime" = STRING:
NET-SNMP-EXTEND-MIB::nsExtendCacheTime."myuptime" = INTEGER: 5
NET-SNMP-EXTEND-MIB::nsExtendExecType."myuptime" = INTEGER: exec(1)
NET-SNMP-EXTEND-MIB::nsExtendRunType."myuptime" = INTEGER: run-on-read(1)
NET-SNMP-EXTEND-MIB::nsExtendStorage."myuptime" = INTEGER: permanent(4)
NET-SNMP-EXTEND-MIB::nsExtendStatus."myuptime" = INTEGER: active(1)
NET-SNMP-EXTEND-MIB::nsExtendOutput1Line."myuptime" = STRING:  08:11:31 up  3:53,  ｭ 
1 user,  load average: 0.00, 0.01, 0.05
NET-SNMP-EXTEND-MIB::nsExtendOutputFull."myuptime" = STRING:  08:11:31 up  3:53,  1 user,  ｭ
load average: 0.00, 0.01, 0.05
NET-SNMP-EXTEND-MIB::nsExtendOutNumLines."myuptime" = INTEGER: 1
NET-SNMP-EXTEND-MIB::nsExtendResult."myuptime" = INTEGER: 0
NET-SNMP-EXTEND-MIB::nsExtendOutLine."myuptime".1 = STRING:  08:11:31 up  3:53,  1 user,  ｭ
load average: 0.00, 0.01, 0.05

 ▼図B　snmpwalkコマンド実行例



76 - Software Design Dec.  2015 - 77

 ▼図6　 図5中「IF-MIBで定義されている範囲」に含まれるすべてのOIDとその値を取得

$ snmpwalk -v2c -c public 192.168.0.99 .iso.org.dod.internet.mgmt.mib-2.interfaces
IF-MIB::ifNumber.0 = INTEGER: 3
IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.2 = INTEGER: 2
IF-MIB::ifIndex.3 = INTEGER: 3
IF-MIB::ifDescr.1 = STRING: GigabitEthernet0/0
IF-MIB::ifDescr.2 = STRING: GigabitEthernet0/1
IF-MIB::ifDescr.3 = STRING: Null0
...（中略）...
IF-MIB::ifAdminStatus.1 = INTEGER: down(2)
IF-MIB::ifAdminStatus.2 = INTEGER: up(1)
IF-MIB::ifAdminStatus.3 = INTEGER: up(1)
IF-MIB::ifOperStatus.1 = INTEGER: down(2)
IF-MIB::ifOperStatus.2 = INTEGER: up(1)
IF-MIB::ifOperStatus.3 = INTEGER: up(1)
...（以下略）...

　ここまでのSNMPの動作例では、監視対象
となるOIDが前もってわかっていることが前
提でした。これに対して、Net-SNMP（net-

snmp-utils）には、ファイルシステムに対する
ls -Rコマンドと同様の動作をする、snmpwalk
コマンドが含まれています。
　たとえば、図5にある「IF-MIBで定義され
ている範囲」に含まれるすべてのOIDとその値
は、図6のようにして取得できます。この例で
アクセスしている IOSvには、2つの物理イン
ターフェースと、「Null0」という論理インター
フェースがあり、それぞれの状態がわかります。
Null0は、Linuxの /dev/nullに相当する論理
インターフェースです。
　ls -R /に相当する操作も可能で、木構造の

snmpwalkでOIDと
値をまとめて取得

Rootに対応するOIDである「.」を指定する注6

と、対象になる機器のすべてのOIDとその値
の一覧が出力されます（図7）。このように、
OIDがわからなくても一覧が取得できるので、
監視対象にしたい値に対応するOIDが存在す
るかどうかを、対象となる機器（SNMPエージェ
ント）に実際に問い合わせて確認できます。
　一方、実際にアクセスしてOIDの木構造を
調べるのではなく、Net-SNMP側にインストー
ルされているMIBをもとに、SNMPマネージャ
側だけでOIDの構成を表示させることもでき
ます。この目的にも、snmptranslateコマンド
が使えます。図5の「IF-MIBで定義されてい
る範囲」に対してsnmptranslateを実行すると、
図8のような出力が得られます。Rootからた
どることもできます。

注6） 「.」を省略しても、同じ動作をします。

SNMP実用編3
ここでは、SNMPを使った運用の現場でよく使われるコマンドと、「トラップ」のしくみについて解説します。また、
SNMPの新しいバージョン「3」の特徴をまとめました。

  Author   山下 薫（やました かおる）  URL   http://www.linkedin.com/in/kaoruyamashita

https://www.linkedin.com/in/kaoruyamashita


78 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

　SNMPでは、OIDの値を読み出すだけでは
なく、書き換えることで機器の状態を変える
こともできます。実際にやってみましょう。
まず、Cisco IOS（IOSv）に設定を追加します。

# snmp-server community private RW

　コミュニティ名としてprivate注7を、読み書
き両方が可能なことをRW（Read/Write）でそれ

注7） 説明をわかりやすくするため、デフォルトでよく用いられ
ているものをコミュニティ名としてそのまま使っています。
実際のネットワークでは、セキュリティに配慮してください。

OIDの値を書き換える
ぞれ指定します。
　では、IOSvのインターフェースの状態を変
更してみましょう。先ほどのsnmpwalkの結果
をよく見ると、1番目のインターフェースであ
る GigabitEthernet 0/0の名前とOID、値は
次のようになっています。

IF-MIB::ifDescr.1 = STRING: ｭ
GigabitEthernet0/0
IF-MIB::ifAdminStatus.1 = INTEGER: down(2)
IF-MIB::ifOperStatus.1 = INTEGER: down(2)

　ifAdminStatusは管理者によって設定された
状態を示し、ifOperStatusは実際のインター
フェースの状態を示しています。この時点では、
GigabitEthernet 0/0には shutdownコマンド

$ snmptranslate -Tp .iso.org.dod.internet.mgmt.mib-2.interfaces
+--interfaces(2)
   ¦
   +-- -R-- Integer32 ifNumber(1)
   ¦
   +--ifTable(2)
      ¦
      +--ifEntry(1)
         ¦  Index: ifIndex
         ¦
         +-- -R-- Integer32 ifIndex(1)
         ¦        Textual Convention: InterfaceIndex
         ¦        Range: 1..2147483647
         +-- -R-- String    ifDescr(2)
         ¦        Textual Convention: DisplayString
         ¦        Size: 0..255
...（中略）...
         +-- -RW- EnumVal   ifAdminStatus(7)
         ¦        Values: up(1), down(2), testing(3)
         +-- -R-- EnumVal   ifOperStatus(8)
         ¦        Values: up(1), down(2), testing(3), unknown(4), dormant(5), ｭ
notPresent(6), lowerLayerDown(7)
...（以下略）...

 ▼図8　SNMPマネージャ側だけでOIDの構成を表示

 ▼図7　 対象になる機器のすべてのOIDとその値の一覧を出力

$ snmpwalk -v2c -c public 192.168.0.99 .
iso.0.8802.1.1.2.1.3.1.0 = INTEGER: 4
iso.0.8802.1.1.2.1.3.2.0 = Hex-STRING: FA 16 3E 34 45 EB
iso.0.8802.1.1.2.1.3.3.0 = STRING: "IOSv"
iso.0.8802.1.1.2.1.3.4.0 = STRING: "Cisco IOS Software, IOSv Software ｭ 
(VIOS-ADVENTERPRISEK9-M), Version 15.5(2)T,
...（以下略）...



78 - Software Design Dec.  2015 - 79

が投入されていて、インターフェースが実際
には何かに接続されていても、ダウンしたま
まになります。
　ここからはsnmpsetコマンドを用いて、インター
フェースの状態を変更してみます。snmpgetの
場合とは異なり、i 1でOIDの新しい値を指定
します。iは「INTEGER」の略で、1は「up」を
意味しています。

$ snmpset -v2c -c private 192.168.0.99 ｭ
IF-MIB::ifAdminStatus.1 i 1
IF-MIB::ifAdminStatus.1 = INTEGER: up(1)

　すると、IOSvルータの側でもインターフェー
スの状態が変化します（リスト1）。192.168. 
0.148は、SNMPマネージャNet-SNMPが動
作しているLinuxマシンの IPv4アドレスです。
IOSvの側で show run int Gi0/0を実行して
確認すると、もともと入っていたshutdownコ
マンドが消えています。

　ここまでで解説したSNMPのプロトコルを
用いて実際に監視をするには、定期的に監視
対象にアクセスして値を取得すること、すな
わち「ポーリング」が必要です。もし監視対象
に何らかの変化があっても、次回のポーリン
グまではそれを知ることができません。この
ため、監視対象であるSNMPエージェントから、
SNMPマネージャに対して変化があったこと
をすぐに通知することで、より早く監視対象
の変化を把握できるしくみが用意されています。
これが「SNMPトラップ」です（図9）。
　snmpgetやsnmpsetでは、SNMPエージェン

SNMPトラップ

トがサーバのように働き、リクエストを待っ
ていました。SNMPトラップではこれと逆に
なり、SNMPエージェントから送信されるト
ラップを、SNMPマネージャが待ち受けます。
Net-SNMPには、「snmpd」と「snmptrapd」の 2

つのデーモンが含まれていますが、snmpdは
それが動作しているLinuxマシンにSNMPエー
ジェントの役割を持たせるためのもので、トラッ
プを待ち受ける機能はありません。代わりに、
snmptrapdがSNMPトラップを受信し、ログ
ファイルにその内容を記録したり、管理者にメー
ルで通知したりします。
　SNMPは、バージョンに関係なくUDP（User 

Datagram Protocol）の161番ポートをリクエ
ストと応答に、162番ポートをトラップに用い
ます。もしsnmpdとsnmptrapdの2つのデーモ
ンを同じLinuxマシンで動作させても、それ
ぞれ161番と162番ポートで別途パケットを待
ち受けるため、誤動作することはありません。
　では、実際にCisco IOS（IOSv）とNet-SNMP 

を用いて、SNMPトラップを送受信してみま
しょう。まず、snmptrapdの設定ファイル「/etc 

/snmp/snmptrapd.conf」を次のように書き換え
て、snmptrapdを再起動します。

authCommunity   log,execute,net public
traphandle default /usr/bin/logger

SNMP
エージェント

監視対象となる
イベントの発生

トラップ

ルータ、スイッチ
など

SNMP
マネージャ

snmptrapdなど

 ▼図9　SNMPトラップ

 ▼リスト1　 snmpsetで変更されたインターフェースの状態

*Oct 18 01:01:37.471: ％SYS-5-CONFIG_I: Configured from 192.168.0.148 by snmp
*Oct 18 01:01:39.340: ％LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to up
*Oct 18 01:01:40.340: ％LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, ｭ
changed state to up



80 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

　CentOS 7でSNMPを利用する場合はnet-
snmpパッケージを利用します。net-snmpパッ
ケージには、SNMP要求を受け付けるsnmpdと、
SNMPトラップを受け付けるsnmptrapdが含ま
れています。また、net-snmp-utilsにsnmpget
やsnmpwalkなどのクライアントツールが含ま
れています。
　agentというホスト名のサーバでsnmpdをイ
ンストールする方法は次のとおりです。

[root@agent ̃]# yum install net-snmp ｭ
net-snmp-utils
[root@agent ̃]# systemctl start snmpd
[root@agent ̃]# firewall-cmd --add-port ｭ
161/udp

　自動起動設定と、設定の永続化も忘れずに
実施しておきましょう。

[root@agent ̃]# systemctl enable snmpd
[root@agent ̃]# firewall-cmd --add-port ｭ
161/udp --permanent

　インストール直後の/etc/snmp/snmpd.conf
は図Cのとおりです。コミュニティ文字列public、 
SNMPバージョンv1、v2cで、.1.3.6.1.2.1.1（SNMPv2 

-MIB::system）、.1.3.6.1.2.1.25.1.1（ HOST-

RESOURCES-MIB::hrSys0temUptime）にアク

セスできる設定です。
　syslocationや syscontactを設定できるあた
りが、システムリソース利用状況だけでなく、
システム管理そのものも考えられている感が
ありますね。
　snmpgetやsnmpwalkを使うことでエージェ
ントからデータを取得できます。snmpgetは
MIBのOIDを決め打ちで取得し、snmpwalkは
MIBのOIDを指定するとその配下を一通り取
得します。
　たとばmanagerというホスト名のサーバか
らagentというホスト名のサーバにアクセスし、
前出のsysLocationをsnmpwalkで取得する方
法は次のとおりです。snmpwalkの場合は、
sysLocation.0ではなくsysLocationと指定し
ても値を確認できます。

[root@manager ̃]# snmpwalk -v 2c -c ｭ
public agent sysLocation.0
SNMPv2-MIB::sysLocation.0 = STRING: ｭ
Unknown (edit /etc/snmp/snmpd.conf)

　snmpgetの場合は次のとおりです。snmpgetの
場合はsysLocationではダメで、sysLocation.0
まで指定する必要があります。

CentOSでの利用方法
  Author   馬場 俊彰（ばば としあき）　㈱ハートビーツ CTO／  Twitter   @netmarkjp

コラム

3

 ▼図C　インストール直後の/etc/snmp/snmpd.conf

com2sec notConfigUser  default  public
group   notConfigGroup v1       notConfigUser
group   notConfigGroup v2c      notConfigUser
view    systemview     include  .1.3.6.1.2.1.1
view    systemview     include  .1.3.6.1.2.1.25.1.1
access  notConfigGroup ""       any  noauth exact  systemview none none
syslocation Unknown (edit /etc/snmp/snmpd.conf)
syscontact Root <root@localhost> (configure /etc/snmp/snmp.local.conf)
dontLogTCPWrappersConnects yes



80 - Software Design Dec.  2015 - 81

[root@manager ̃]# snmpget -v 2c -c ｭ
public agent sysLocation.0
SNMPv2-MIB::sysLocation.0 = STRING: ｭ
Unknown (edit /etc/snmp/snmpd.conf)

　snmpwalkの場合は.（ドット1つ＝ルートと
いう意味）を指定して、取得できる全データを
確認できます。ぜひ一度試してみてください。

[root@manager ̃]# snmpwalk -v 2c -c ｭ
public agent .

　CentOS 7 の snmpd は ucd-snmp/proxy モ
ジュールが組み込まれており、proxy機能が利
用できます。これを利用することでmanager→ 

agent→agentという踏み台構成を実現できま
す。
　proxy機能を使うためには/etc/snmp/snmpd. 
confにcom2secとproxyを設定します。
　コンテキストはsnmpd.conf内でユニークな
文字列であればよいです。このコミュニティ
文字列は中間エージェントにアクセスする際
のコミュニティ文字列です。

com2sec -Cn コンテキスト notConfigUser ｭ
default コミュニティ文字列

　コンテキストは com2secと同じものを指定
します。このコミュニティ文字列は最終エージェ
ントにアクセスする際のコミュニティ文字列
です。
　設定例は次のとおりです。

proxy   -Cn コンテキスト -v 2c -c ｭ 
コミュニティ文字列 ホスト OID

　このように中間エージェントにアクセスす
る際のコミュニティ文字列を最終サーバごと
に異なるものにすることで、各最終エージェ
ントは同じコミュニティ文字列（今回はpublic）
を受け付ける設定にしておくことができます。

com2sec -Cn remote-child-1 ｭ 
notConfigUser default child-1-public
proxy -Cn remote-child-1 -v 2c -c ｭ 
public child-1 .1.3

　このように設定すると、コミュニティ文字
列child-1-publicを指定して中間エージェン
トにアクセスすることで、最終エージェント
child-1の値を取得できます。
　この方法で1つの踏み台を経由して大量の
バックエンドにアクセスできます。

　また、IOSvに次の設定をします。

IOSv(config)#snmp-server enable traps ｭ
snmp linkdown linkup
IOSv(config)#snmp-server host ｭ
192.168.0.148 version 2c public

　これで、インターフェースの状態が変化し
た際に、SNMPトラップが snmptrapd（この例
では 192.168.0.148で動作）へ送信されます。
snmptrapdが動作しているLinuxマシンで、
tail -f /var/log/messagesを実行すれば、

SNMPトラップの内容がわかります。たとえば、
IOSvの GigagitEthernet0/0がダウンした際
には、リスト2のようなログメッセージが記録
されます。
　snmptrapdは、トラップの受信をトリガにメー
ルを送信したり、コマンドを実行することも
できます。また、Cisco IOSでは、リスト2の
例のインターフェースのリンクアップ／リン
クダウン以外にも、SNMPトラップの対象に
なるイベントを細かく設定できます［6］。単に
snmp-server enable trapsだけを設定すると、



82 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

サポートされているすべての種類のSNMPト
ラップが送信されるようになってしまいます
ので注意してください。

　ここまで説明したSNMPバージョン2cは、
コミュニティ名さえ一致していればアクセス
を許可するものでした。また、SNMPバージョ
ン2cでは通信はまったく暗号化されていない
ので、コミュニティ名は平文でネットワーク
上を流れます。このため、SNMPのパケット
を傍受できれば、コミュニティ名を知ること
はとても簡単です。いったんコミュニティ名
が漏れてしまうと、監視対象の詳細な情報が
知られたり、機器の状態を勝手に変えられた
りてしまいます。
　このため、セキュリティを強化した「SNMP

バージョン3」が標準化されています［5］。
　SNMPバージョン3は、OIDなどのデータ
モデルはバージョン2cとまったく同じで、認
証と暗号化のしくみを強化したプロトコルです。

SNMPバージョン3
（SNMPv3）

　SNMPバージョン3では、認証と通信の暗
号化にそれぞれ別の方式を用います。また、
USM（User-based Security Model）という概念
が追加されています。具体的には、ユーザと
グループ、さらにOIDのどの範囲のアクセス
を許可するかなどを細かく設定できます。
　図 10に、Cisco IOS（IOSv）を SNMPバ ー
ジョン3のエージェントとして動作させるため
の設定例を示します。（1）でグループを登録し
ます。グループにはviewという属性があり、
図5のOIDの木構造のどの部分にアクセスでき
るかを制限できます。この例の（2）と（3）では
isoを指定しているので、事実上すべてのOID

にアクセスできます。（4）が、ユーザ名とパスワー
ドの設定です。ユーザ認証とSNMPプロトコ
ルの暗号化が分かれているので、それぞれの暗
号化方式とパスワードを指定します。auth 
md5 authPasswdは、認証にauthPasswdという
パスワードを用いてMD5を使い、priv des 
privPasswdは暗号化にprivPasswdというパス
フレーズを用いてDESを使うことを、それぞ

 ▼図10　IOSvをSNMPバージョン3のエージェントとして動作させるための設定例

IOSv(config)#snmp-server group V3Group v3 auth read V3Read write V3Write （1）
IOSv(config)#snmp-server view V3Read iso included （2）
IOSv(config)#snmp-server view V3Write iso included （3）
IOSv(config)#snmp-server user V3User V3Group v3 auth md5 authPasswd priv des privPasswd （4）
IOSv(config)#snmp-server host 192.168.0.148 version 3 auth V3User （5）

 ▼リスト2　 IOSv（Cisco IOS）のGigagitEthernet0/0がダウンし、SNMPトラップが送信された際のログメッセージ

Oct 18 20:01:39 localhost snmptrapd[3279]: 2015-10-18 20:01:39 <UNKNOWN> [UDP: ｭ
[192.168.0.99]:62684->[192.168.0.148]:162]:
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (21122011) 2 days, 10:40:20.11
SNMPv2-MIB::snmpTrapOID.0 = OID: IF-MIB::linkDown
IF-MIB::ifIndex.1 = INTEGER: 1  IF-MIB::ifDescr.1 = STRING: GigabitEthernet0/0
IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)
SNMPv2-SMI::enterprises.9.2.2.1.1.20.1 = STRING: "Lost Carrier"
Oct 18 20:01:39 localhost logger: UDP: [192.168.0.99]:62684->[192.168.0.148]:162
Oct 18 20:01:39 localhost logger: DISMAN-EVENT-MIB::sysUpTimeInstance 2:10:40:20.11
Oct 18 20:01:39 localhost logger: SNMPv2-MIB::snmpTrapOID.0 IF-MIB::linkDown
Oct 18 20:01:39 localhost logger: IF-MIB::ifIndex.1 1
Oct 18 20:01:39 localhost logger: IF-MIB::ifDescr.1 GigabitEthernet0/0
Oct 18 20:01:39 localhost logger: IF-MIB::ifType.1 ethernetCsmacd
Oct 18 20:01:39 localhost logger: SNMPv2-SMI::enterprises.9.2.2.1.1.20.1 "Lost Carrier"



82 - Software Design Dec.  2015 - 83

　SNMPはバージョンとして version 1(v1)、
version 2(v2、v2p、v2c、v2u)、version 3(v3)

があります。最新版のv3を使うのがよさそう
なものですが、筆者がCentOSで使ってみたと
ころ、どうにもうまく動かないことが多く、
高負荷時や大量取得時にデータがなぜか取得
できない事態が頻発したためv2cを利用してい
ます。CentOS 7のsnmpdでv3を利用するには、
いくつかの段取りが必要です。
　今回はOID.1に readonlyアクセス可能な
ユーザとしてユーザ名myuserを作成します。
まずはユーザの設定を/etc/snmp/snmpd.conf
に記載します。

rouser myuser priv .1

　次にcreateUserを/etc/snmp/snmpd.confに
記載します。今回はハッシュ方式SHA、認証
パスワード authp@ssw0rd、暗号化方式AES、
暗号化パスフレーズcryptp@ssw0rdを利用す
ることにします。

createUser myuser SHA authp@ssw0rd AES ｭ
cryptp@ssw0rd

　rouserとcreateUserを記載したらsnmpdを
再起動します。

[root@agent ̃]# systemctl restart snmpd

　再起動すると/var/lib/net-snmp/snmpd.conf
にmyuser関連の記載が追加されます。
　ここまでできたらユーザ作成完了なので 
/etc/snmp/snmpd.confの createUser行を削
除しておきます。v3を利用してsnmpwalkでア
クセスする方法は次のとおりです。
　v2のときと比較するとコミュニティ文字列
の指定がなく、-u -l -a -A -x -Xの指定が
必要となります。

[root@manager ̃]# snmpwalk -v 3 -u ｭ
myuser -l authPriv -a SHA -A ｭ
authp@ssw0rd -x AES -X cryptp@ssw0rd ｭ
agent sysLocation.0

　v3と比較してv2cではデータの暗号化がで
きません。パスワードに相当するコミュニティ
名も平文で流れます。v3を利用することでデー
タを暗号化できるようになります。SNMPは
Management Protocolの名のとおり、情報取
得（GET）だけでなく、設定変更（SET）もでき
ます。とはいえプロトコルがUDPということ
もあり、セキュリティ対策としての接続元制
限はあまり有効に機能しない可能性が考えら
れます。通常SNMPは通信にUDPを使います
が、Net-SNMP 5.6以上であればTCPも選択
可能となるため、TLSによる経路暗号化が利
用できます。ただし最近はSSHやプロビジョ
ニングツールを使うのが主流ですので、正直
なところSNMPでの設定変更は出番がありま
せん。

SNMPのバージョン
  Author   馬場 俊彰（ばば としあき）　㈱ハートビーツ CTO／  Twitter   @netmarkjp

コラム

4



84 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

れ意味します注8。（5）で、SNMPバージョン3

でアクセスするマネージャとユーザ名を設定
します。
　Net-SNMPからSNMPバージョン3でアク
セスする際は、認証と暗号化のためのパラメー
タが増えるだけで、それ以外はSNMPバージョ
ン2cと同じです。

注8） Cisco IOSでは、（4）を設定してもshow runでは表示され
ません。

セキュリティのためのTipsColumn

　Cisco IOSが動作しているルータやスイッチでは、
SNMPマネージャの IPアドレスを制限することに
よって、ある程度ですがセキュリティを高めるこ
とができます。たとえば、次の設定をすると、
192.168.0.148という IPv4アドレスを持ったSNMP

マネージャからのリクエストのみを受けつけ、ほ
かは拒否します。

IOSv(config)#access-list 1 permit 192.168.0.148
IOSv(config)#snmp-server community public RO 1

# snmpwalk -v3 -u V3User -a MD5 -A ｭ
authPasswd -x DES -X privPasswd -l ｭ
authPriv 192.168.0.99 .1.3.6.1.2.1.2.2.1

　-a、-Aと -x、-Xが、Cisco IOS側 の（4）で
設定した認証と暗号化のためのパラメータに
対応します。これら4つのすべてが一致する場
合に限り、アクセスが許可されます。

　今日のスイッチは、ルーティングなどルー
タの基本機能の多くを持っています。また、
Cisco Catalystのように、ルータと共通のOS

が動作するスイッチでは、SNMPの挙動はルー
タと大きく変わりません。とはいえ機器の構
造が異なっているので、SNMPで監視する際
の振る舞いが異なることがあります。この項
では、SNMPという切り口から見たスイッチ

スイッチにおけるSNMP
の2つの特徴を説明します。

インターフェースの多さ
　1つめは、ルータに比べてインターフェース
が多いことです。また、設定の変更やハードウェ
アの増設によって、インターフェースの数が
増減することが、ルータに比べると頻繁に起
こります。
　具体例を見ていきましょう。図11のリストは、
先に説明したルータと場合とまったく同じや
り方（snmpwalk）で、インターフェースとそれ

SNMP応用編4
ここでは、スイッチの扱い、ベンダ固有のOIDなど、SNMPを利用するうえで気をつけておきたいことを解説し
ます。また、OIDのビット数、可視化の方法、時刻同期といった少し踏み込んだ知識もお伝えしたいと思います。

  Author   山下 薫（やました かおる）  URL   http://www.linkedin.com/in/kaoruyamashita

https://www.linkedin.com/in/kaoruyamashita


84 - Software Design Dec.  2015 - 85

に対応するすべてのOIDを列挙したものです。
ここで用いているスイッチはCisco Catalyst 

3560で、192.168.0.2はこのCatalystに割り
当てている IPv4アドレスです。
　まず、IF-MIB::ifNumber.0 = INTEGER: 16
が、インターフェースが全部で16個あること
を示しています。OIDの最後の .0は、この
OIDが配列ではなく、要素を1つしか持たな
い値に対応していることを意味します。
　次の ifIndexが、各インターフェースの論
理的な番号（インデックス）です。インター
フェースが増減しても番号を振りなおさなく
て済むように、飛び飛びの値が割り振られて
います。具体的には 1、100、128がVLANイ
ンターフェース（SVI）、10101から10112が物

理インターフェース、10501がNull0にそれぞ
れ対応します。
　先に説明したルータの例では、Gigabit 
Ethernet0/1の受信バイト数に対するOIDは
IF-MIB::ifInOctets.2で、ifIndexは2でした。
　このスイッチの例では、ifDescrからGigabit 
Ethernet0/1のifIndexが10101であることが
わかります。ですから次のやり方で、ルータ
と同じようにGigabitEthernet0/1の受信バイ
ト数を知ることができます。

$ snmpget -v2c -c public 192.168.0.2 ｭ
IF-MIB::ifInOctets.10101
IF-MIB::ifInOctets.10101 = Counter32: ｭ
17257969

 ▼図11　 インターフェースとそれに対応するすべてのOIDを列挙

$ snmpwalk -v2c -c public 192.168.0.2 .iso.org.dod.internet.mgmt.mib-2.interfaces
IF-MIB::ifNumber.0 = INTEGER: 16
IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.100 = INTEGER: 100
IF-MIB::ifIndex.128 = INTEGER: 128
IF-MIB::ifIndex.10101 = INTEGER: 10101
IF-MIB::ifIndex.10102 = INTEGER: 10102
IF-MIB::ifIndex.10103 = INTEGER: 10103
IF-MIB::ifIndex.10104 = INTEGER: 10104
IF-MIB::ifIndex.10105 = INTEGER: 10105
IF-MIB::ifIndex.10106 = INTEGER: 10106
IF-MIB::ifIndex.10107 = INTEGER: 10107
IF-MIB::ifIndex.10108 = INTEGER: 10108
IF-MIB::ifIndex.10109 = INTEGER: 10109
IF-MIB::ifIndex.10110 = INTEGER: 10110
IF-MIB::ifIndex.10111 = INTEGER: 10111
IF-MIB::ifIndex.10112 = INTEGER: 10112
IF-MIB::ifIndex.10501 = INTEGER: 10501
IF-MIB::ifDescr.1 = STRING: Vlan1
IF-MIB::ifDescr.100 = STRING: Vlan100
IF-MIB::ifDescr.128 = STRING: Vlan128
IF-MIB::ifDescr.10101 = STRING: GigabitEthernet0/1
IF-MIB::ifDescr.10102 = STRING: GigabitEthernet0/2
IF-MIB::ifDescr.10103 = STRING: GigabitEthernet0/3
IF-MIB::ifDescr.10104 = STRING: GigabitEthernet0/4
IF-MIB::ifDescr.10105 = STRING: GigabitEthernet0/5
IF-MIB::ifDescr.10106 = STRING: GigabitEthernet0/6
IF-MIB::ifDescr.10107 = STRING: GigabitEthernet0/7
IF-MIB::ifDescr.10108 = STRING: GigabitEthernet0/8
IF-MIB::ifDescr.10109 = STRING: GigabitEthernet0/9
IF-MIB::ifDescr.10110 = STRING: GigabitEthernet0/10
IF-MIB::ifDescr.10111 = STRING: GigabitEthernet0/11
IF-MIB::ifDescr.10112 = STRING: GigabitEthernet0/12
IF-MIB::ifDescr.10501 = STRING: Null0
...（以下略）...



86 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

OID値の更新の遅れ
　もう1つのSNMPにおけるスイッチの特徴
は、OIDの値の更新の遅れです。
　たとえばスイッチにおいて、インターフェー
スの受信バイト数が急激に増加していても、
SNMPリクエストの応答がリアルタイムでは
増加しないことがあります。これは、スイッ
チにおけるパケット処理とSNMPエージェン
トの実装が理由です（図12）。
　今日のスイッチでは、パケット処理はすべ
て専用のハードウェア（ASIC）が担当していま
す注9。このため、パケット数や送受信のバイト
数がリアルタイムで記録されるのは、ASICの
内部にある各種ハードウェアカウンタです。
SNMPリクエストに応じて、この値を毎回読
み出すのであれば、OIDの値として必ず最新
のものが返されるはずです。
　しかし、SNMPリクエストのたびにASIC

にアクセスしていると、スイッチにとってもっ
とも優先度の高いASICの制御の邪魔になり、
最悪の場合スイッチの動作が不安定になる可
能性があります。そこで、SNMPリクエスト
とは無関係に、一定間隔でASICのハードウェ

注9） OvSやハイパーバイザ内蔵のvSwitchのように、パケット
をソフトウェア処理している場合もあります。

アカウンタを読み出してソフトウェア側に値
を反映しています。
　Cisco IOSが動作しているCatalystスイッ
チでは、IOSのアーキテクチャに基づいたカ
ウンタと、それをSNMP OIDに対応するよう
変換したものの2種類のソフトウェアカウンタ
を管理しています。
　図12に示すように、ASICのハードウェア
カウンタが「a」の矢印の向きで、IOSのソフト
ウェアカウンタに一定間隔で反映されます。
さらに「b」の矢印の方向へ、別の時間間隔で
IOSのソフトウェアカウンタがOIDの値に変
換されます。実際に筆者が試してみたところ、
Catalyst 3560では1秒間隔で「a」が実行され
ていました。また、Cisco IOSでは「b」はデフォ
ルトで5秒間隔で実行されるため、連続してイ
ンターフェースの受信バイト数の値を読み出
しても、5～6秒程度は同じ値が返ってきます。
　この挙動が問題になるのは、SNMPで定期
的にスイッチのOIDの値を確認し、値の増加
が止まった場合には何らかの問題が発生した
と判断して、バックアップ系に切り替えるといっ
たスクリプトをしかけるような場合です。こ
のスクリプトで、「値の増加が止まった」と判
断するまでの時間を短くし過ぎると、誤動 

作する可能性があります。Cisco IOSでは、
snmp-server hc poll や service counters 

ハードウェア
（ASIC）

各種カウンタ

リクエスト

SNMP
エージェント

ソフトウェア
（IOS）

応答

各OIDの値

ソフトウェアの
カウンタ

定期的な更新
（SNMPリクエストとは同期していない）

SNMP
マネージャa b

 ▼図12　スイッチでのSNMPの実装



86 - Software Design Dec.  2015 - 87

max ageコマンドによって、OIDの値の更新間
隔を短くすることは可能［7］ですが、CPU負荷
が高い場合には応答が遅れる場合があります。
　また、モジュール型の大型のスイッチなど
では、パケット転送を担当するASICとそれ
を制御するCPUが複数あり、並列化されてい
るため、小型のスイッチに比べるとOIDの値
の更新がさらに遅くなる可能性があります。
ですから、モジュール型スイッチでは極端に
短い間隔でOIDの値を取得することは避けた
ほうが良いと思います。

　Cisco IOSが動作している機器のCPU負荷
は、

cisco1921#show processes cpu
CPU utilization for five seconds: 42％ｭ
/39％; one minute: 21％; five minutes: 9％

のように、過去5秒間、1分間、5分間の3通
りの時間軸で計測されています。過去5秒間は、
2つのパーセンテージが表示されており、この
例ではCPU負荷の合計が42％で、そのうちの
39％が割り込み処理（ほとんどがパケット転送）
に消費されています。この過去5秒間のCPU

負荷に対応する最新のOIDは、リスト3の3つ
です。
　しかし、デフォルト設定のNet-SNMPでは、

ベンダ独自のOID 
（プライベートMIB）

これらのOIDに名前でアクセスできません（図
13）。これは、OIDがベンダ（メーカー）によっ
て独自に割り当てられているためです。ベン
ダ独自のOIDの定義とそれを含むファイルを
「プライベートMIB」と呼び、図14のように構
成されています。
　OIDの5番めと6番めの数字が4.1（private.

enterprise）である場合、その次の数値がベン
ダ固有の番号として使われます。Ciscoの番号
は9です。ほかのベンダにも固有の番号があり、
その下の階層は各ベンダが独自に定義してい
ます。
　では、CiscoのプライベートMIBをNet-

SNMPに追加して、CPU負荷のOIDに名前で
アクセスできるようにしてみましょう。まず、
CiscoのWebサイト「SNMP Object Navigator［8］」 
で、OIDを数値で検索します（ユーザ登録しな
くても利用できます）。機械翻訳で日本語で読
むこともできますが、誤訳があるので必要に
応じ英語でアクセスしてください（図15）。下
のほうにある「MIB」の「CISCO-PROCESS-

MIB」をたどっていくと、MIBファイルをダウ
ンロードできます。Net-SNMPのデフォルト
では、「/usr/share/snmp/mibs/」にMIBファ
イルがありますので、ここに存在しないファ
イルを選び、「̃/.snmp/private-mibs/」にダウ
ンロードしてください。この場合、必要なファ
イルは次の3つです。

 ▼リスト3　過去5秒間のCPU負荷に対応するOID

CISCO-PROCESS-MIB::cpmCPUMonInterval.1 (.1.3.6.1.4.1.9.9.109.1.1.1.1.9.1)
CISCO-PROCESS-MIB::cpmCPUTotalMonIntervalValue.1 (.1.3.6.1.4.1.9.9.109.1.1.1.1.10.1)
CISCO-PROCESS-MIB::cpmCPUInterruptMonIntervalValue.1 (.1.3.6.1.4.1.9.9.109.1.1.1.1.11.1)

 ▼図13　 デフォルト設定では名前からOIDにアクセスできない

$ snmpget -v2c -c public 192.168.0.99 CISCO-PROCESS-MIB::cpmCPUTotalMonIntervalValue.1
MIB search path: /usr/share/snmp/mibs
Cannot find module (CISCO-PROCESS-MIB): At line 0 in (none)
CISCO-PROCESS-MIB::cpmCPUTotalMonIntervalValue.1: Unknown Object Identifier



88 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

・CISCO-SMI.my
・CISCO-TC.my
・CISCO-PROCESS-MIB.my

　さらに、「̃/.snmp/snmp.conf」を作成し、次
の2行を書き込みます。このファイルでは、ホー
ムディレクトリを絶対パスで指定してください。

MIBDIRS /usr/share/snmp/mibs:/home/ｭ
kaoru/.snmp/private-mibs
MIBS all

　これで、Cisco独自のOIDに、名前でアクセ
スできるようになります（図16）。

　筆者が初めてSNMPに触れたころは、イー
サネットインターフェースの最高速度がやっと
1Gbpsになったばかりで、まだ主流は100Mbps

でした。先に紹介したインターフェースの受信
バイト数のOIDは32ビット整数だったので、
100Mbpsで100％の負荷がかかった場合、約5.7

64ビットカウンタ

分で桁あふれが発生して0に戻ります。より高
速のインターフェースでは、1Gbpsだと約34秒、
10Gbpsになると3秒と少しでカウンタが0に
戻ってしまうことになります。
　これでは、たとえば1分間隔でOIDの値を
取得して値が増加していたとしても桁あふれ
が起きたか否かがわからず、正確なバイト数
を知ることができません。このために、64ビッ
トのOIDが用意されています［9］。

$ snmpget -v2c -c public 192.168.0.99 ｭ
IF-MIB::ifInOctets.2
IF-MIB::ifInOctets.2 = Counter32: ｭ
3256237645

$ snmpget -v2c -c public 192.168.0.99 ｭ
IF-MIB::ifHCInOctets.2
IF-MIB::ifHCInOctets.2 = Counter64: ｭ
16141143794

　64ビットカウンタのOIDの名前に含まれて
いる HCは「High Capacity（大容量）」の略です。
32ビットカウンタで表現できる最大値が
4,294,967,295（232－1）であるのに対して、64

ビットカウンタでは18,446,744,073,709,551, 

Root

joint(2)iso(1)

org(3)

dod(6)

mgmt(2)

mib-2(1)

internet(1)

ccitt(0)

juniper(1411) brocade(1588) arista(30065)cisco(9)

directory(1)

enterprise(1)

experimental(3) private(4)

 ▼図14　プライベートMIB



88 - Software Design Dec.  2015 - 89

615（264－1）まで数え上げることができます。
　この例で、32ビットカウンタと64ビットカ
ウンタの値を比較すると、前者は3回桁あふれ
を起こして0に戻っていたことがわかります。
64ビットカウンタであれば、現時点で最高速
の100Gbpsのインターフェースでも、桁あふ
れまでに約47年かかります。標準化が始まっ
ている400Gイーサネットでも12年弱ですか
ら、当面は問題にならないと思います。

 ▼図16　Cisco独自のOIDに名前でアクセス

$ snmpget -v2c -c public 192.168.0.99 CISCO-PROCESS-MIB::cpmCPUMonInterval.1
CISCO-PROCESS-MIB::cpmCPUMonInterval.1 = Gauge32: 5 seconds
$ snmpget -v2c -c public 192.168.0.99 CISCO-PROCESS-MIB::cpmCPUTotalMonIntervalValue.1
CISCO-PROCESS-MIB::cpmCPUTotalMonIntervalValue.1 = Gauge32: 42 percent
$ snmpget -v2c -c public 192.168.0.99 CISCO-PROCESS-MIB::cpmCPUInterruptMonIntervalValue.1
CISCO-PROCESS-MIB::cpmCPUInterruptMonIntervalValue.1 = Gauge32: 39 percent

 ▼図15　Cisco SNMP Object Navigator

　SNMPでは、その瞬間のOIDの値はわかり
ますが、過去にさかのぼることはできません。
また、Net-SNMPにはOIDの値を可視化する
機能はありません。そんな中「Cacti注10［10］」は、
監視対象の機器のさまざまな情報を蓄積し、

注10） 「カクタイ」と発音されることが多いようです。

可視化ツール「Cacti」



90 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

グラフ化してくれるツールです。SNMPを用
いて機器にアクセスでき、かつあまりSNMP

を意識しなくても良いように工夫されています。
　Cactiは、5分ごとに監視対象の機器にアク
セスして、その結果をMySQLやMariaDBの
データベースに蓄積していきます。グラフは、
データベースに蓄積されたデータをもとに生
成するので、グラフ化の時間軸の範囲と刻み
幅を選んで、さかのぼって情報を確認できます。
　SNMPで取得したデータのグラフ化には、
古くから「MRTG［11］」が用いられてきました。
しかし、MRTGは古いソフトウェアであり、
メンテナンスもあまり頻繁に行われなくなっ
ているため、代替ツールとしてCactiが広く使
われています注11。

注11） この稿では紹介しませんが、Cacti以外にも監視ツールは
たくさんあります。

　図17は、Ciscoルータ、Catalystスイッチ、
無線LANアクセスポイント（Aironet）の3台の
機器のCPU負荷と、インターフェースのトラ
フィックをグラフ化した例です。CentOS 7.1-

1503にCacti 0.8.8bをインストールし、実際
に動作させています［12］。
　この6つのグラフを見ると、いくつか興味深
いことがわかります。右側の縦に3つ並んだト
ラフィックの変動は、3台ともほぼ同じです。
しかし、CPU負荷がトラフィックに連動して
いるのは、左上のルータの場合だけです。こ
れは、このルータのみがCPUでパケット転送
処理をしており、AironetとCatalystでは、
CPUが直接パケット処理に関わっていないた
めです。実際に、Aironetではグラフの中央付
近でCPU負荷が2回ほど高くなっていますが、
トラフィックには連動していません。Catalyst

スイッチではまた挙動が異なり、トラフィッ

 ▼図17　Cactiによるグラフ化



90 - Software Design Dec.  2015 - 91

　本特集で紹介したSNMPトラップと同様の
役割を持つしくみとして「syslog」があります。
syslogは、1台のサーバが複数の機器からのロ
グメッセージを受信し、1つのファイルにまと
めて書き込んだり、複数のファイルに分ける
ことができます。1台の機器から複数のサーバ
へログを送信することも可能で、障害発生時
にもできる限りログを残すようにできます。
syslogサーバは、ログのファシリティ（種類）
とレベル（重要度）に応じて、対応するファイ
ルに受信したメッセージを書き足します。
　SNMPトラップは、対象になるイベントで
どのOIDの値が変化したかを通知するので、“何
が起こったか”を機械的に判定することが容易
です。これに対して、syslogはテキストデー
タでメッセージを取り扱うので、syslogサー
バ側で何が起きたかを判別する処理が難しく

syslog
なります。
　syslogサーバとしてもっともよく用いられ
るのはLinuxだと思いますが、最近はログ管
理を journaldへ移行する方向です。しかし、
たとえばCentOS 7では従来のsyslogサーバと
互換性を持つ rsyslogdが並行して動作してお
り、当面は外部機器のログを rsyslogdで記録
する方法が残るようです。
　rsyslogdに、Cisco IOSが動作しているルー
タからのログを受信させ、ファイルに記録させ
てみましょう。まず、rsyslogdの設定ファイル 

「/etc/rsyslog.conf」の次の3行のうち、2行目
と3行目の行頭のコメント#を削除します。

# Provides UDP syslog reception
$ModLoad imudp
$UDPServerRun 514

　また、次のようにログのファシリティとロ
グファイルの場所を記述して、rsyslogdを再
起動します。

クに無関係にCPU負荷が20％弱のまま、ほぼ
一定になっています注12。

　SNMPバージョン3では、SNMPのパケッ
トをキャプチャして再生する攻撃に対処する
ために、タイムスタンプを用いています。具

注12） 詳細は、Cisco社のバグ ID「CSCtn42790」を参照してくだ
さい［13］。

時刻同期について

体的には、受信したメッセージがリクエス
トの送信時刻から前後150秒の範囲に収まっ
ているかを確認します［5］。この時刻の取得
には、SNMPエージェントが起動してから
の経過時間を用いています。ですから、
NTPなどによるSNMPエージェントとマ
ネージャの時刻同期は、必須ではありません。
しかし、監視の精度を上げるために、でき
る限りNTPなどを用いて関連する機器すべ
ての時刻を同期することをお勧めします。

SNMPの関連技術5
SNMPトラップと似た「syslog」、そしてSNMPそのものを発展させた「NETCONF」および「YANG」を紹介します。

  Author   山下 薫（やました かおる）  URL   http://www.linkedin.com/in/kaoruyamashita

https://www.linkedin.com/in/kaoruyamashita


92 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

　①がもっとも重要な課題であり、これを克
服するべくベンダ、機種に依存しない設定と
運用のための「共通言語」または「データモデル」
を確立しようという、ネットワーク界の「聖
杯」注13を求めての試行錯誤が続いてきました。
この目標は「オーケストレーション」「プログラ
マビリティ（プログラム可能）」「SDNコントロー
ラ」などの用語でも表現され、ネットワーク機
器の設定を楽にするだけにとどまらず、より
高い自由度や柔軟性を持たせよう、という試
みが行われています。
　一方、前記の課題を克服して、機器の設定
を一元化し、SNMPを置き換えることを目標
にしているプロトコルが「NETCONF」です。
筆者が最初に触れたNETCONFは、SNMPの
OIDやMIBの代わりにXMLを用いる「NET 

CONF/XML」と呼ばれるものでした［14］。
　2008年から2010年ごろのお話です。当時ま
だ発売されたばかりのとあるネットワークOS

は、過去のOSのしがらみから自由になるため
に、SNMPのサポートは必要最小限にとどめ、
NETCONF/XMLに全面的に移行するという
大胆な方針で市場に投入されました。ところが、
XMLによる記述の自由度が高過ぎて、どう書
いたら良いのかがわからない状況が続出し、
またSNMPを用いる既存のマネージャとの互
換性がなさ過ぎたため、ユーザの支持を得る
ことができませんでした。このため、SNMP

のサポートを従来機種と同じレベルまで復活
させることになり、NETCONF/XMLはごく
一部でだけ使われるにとどまっています。

注13） 「見果てぬ夢」でもあります。

local6.* /var/log/gihyo.log

　一方、IOSに次の設定を追加します。

IOSv(config)#logging facility local6
IOSv(config)#logging host 192.168.0.148
↑rsyslogdが動作しているサーバのIPv4アドレス

　以上で、rsyslog.confで指定したファイルに
ログが記録されるようになります（図18）。 
このログメッセージは、SNMPトラップの動
作例と同じく、インターフェース Gigabit 
Ethernet0/0がダウンした場合の出力例です。
SNMPトラップでは、送信されるのはOIDの
形で構造化されたメッセージでしたが、syslog

では普通のテキストデータが送信されます。

　（※「NETCONF」と「YANG」の項には、筆者
の主観が多く含まれます。ご了承ください）

　SNMPでは、先に書いた snmpsetを用いて
機器の設定を変更できます。しかし、SNMP

だけを用いた機器の設定は、次のような理由
により現実的ではありません。

①	機器の設定すべてを、OIDだけで表現する
ことが難しい

②	変更内容が実際に受けつけられるか、事前
に確認できない

③	設定がまったく入っていない状態から開始
するためのしくみがない

NETCONF

 ▼図18　ログが記録されているか確認

$ tail -f /var/log/gihyo.log
Oct 13 20:15:56 192.168.0.99 129: *Oct 13 20:16:26.080: ％LINEPROTO-5-UPDOWN: Line ｭ 
protocol on Interface GigabitEthernet0/0, changed state to down
Oct 13 20:15:56 192.168.0.99 130: *Oct 13 20:16:27.080: ％LINK-3-UPDOWN: Interface ｭ
GigabitEthernet0/0, changed state to down



92 - Software Design Dec.  2015 - 93

　最後に、この記事で解説したSNMPによる
監視とは何だったのか、何に留意しなければ
ならないのかをまとめます。「監視」の目的は、
大別すると次の2つです。

❶ 定常運用に入った情報システムが正常に動
作しているか、確認し続けること

❷ 異常を検出した場合、その原因と正常状態
への復旧手段（対策）を知るための手掛かり
を見つけること

　❶を実施し続けるためには、自動化が必須
です。そのために、情報システムを構成する

さまざまな機器の状態を知るためのプロトコ
ルが、SNMPでした。しかし、実際にやって
みるとわかりますが、監視対象のすべての機
器に対してsnmpwalk .を実行すると、膨大な
OIDとその値がリストアップされます。です
ので、どのOIDを監視対象にするのかを絞り
込むことが重要です。
　次に、何をもって「正常」と判断するかの基
準を決めます。SNMPリクエストに対して応
答があることがまず大前提ですから、監視の
対象となる機器へネットワーク経由で到達で
きることが、正常動作の確認の第一歩です。

　実は、もともとNETCONFのプロトコルを
策定する際に、データモデルが一番難しいと
いうことは早い段階からわかっていました。
そこで、XMLに代わるデータモデルである
「YANG（Yet Another Next Generation：さら
に別の次世代）」が、2010年にRFC 6020とし
て標準化されました。YANGは、「設定（コン
フィグ）」に特化したプログラミング言語といっ
た感じです。設定する対象を表現するための
さまざまなデータ型や、プログラミング言語
によくある構造体、共用体などが使えるよう
になっています。また、ルーティングテーブ
ルなどの表形式のデータを扱うためのデータ
型と、それに対する操作なども定義されてい
ます。ただし、通常のプログラミング言語が持っ
ている条件分岐や繰り返しの機能はほとんど

YANG
ありません。
　おもなネットワークベンダのYANGへの取
り組みとしては、BrocadeとCiscoがGitHub

でサンプルなどを公開しています［15］。ただし、
Ciscoはハイエンドルータ用のOSである「IOS 

XR」向けのサンプルしか、現時点では公開し
ていません。代わりに、Ciscoは買収した
Tail-f Systemsが開発した「ConfD」の機能制
限版である「Basic ConfD［16］」を、無償で配布
しています。Basic ConfDはYANGをサポー
トしており、設定サンプルなども含まれてい
ます。
　YANGに関する網羅的な情報は、筆者が調
べた限りでは日本語で書かれたものを見つけ
られませんでした。代わりに、英語ではあり
ますが、Tail-f Systemsが公開しているビデ
オ［17］とプレゼン資料［18］が、現時点ではもっと
もよくまとまっていると思います。

まとめ6
あらゆる機器を同じルールで管理できるのがSNMPの強み。本番環境ではどのようにSNMPを活用すればいいの
か、そのヒントをお伝えします。

  Author   山下 薫（やました かおる）  URL   http://www.linkedin.com/in/kaoruyamashita

https://www.linkedin.com/in/kaoruyamashita


94 - Software Design

第2特集 堅実な監視で障害をキャッチSNMPの教科書
ネットワーク・システム管理の定石

　さらに、SNMPトラップをうまく使うこと
ができれば、異常動作の自動検出と通知がで
きます。ただし、自動的に正確に異常が検出
できるのは、たとえば常に必ずリンクアップ
していなければならないインターフェースが
ダウンしたなど、症状が明確なものに限られ
ます。
　もしSNMPでは障害が検出できず、ユーザ
の申告などで判明した場合も、該当する時間
帯に送信されていたSNMPトラップが原因特
定に使えることもあります。
　複数の機器から集まってきていた syslogに
よるログメッセージと突き合わせることも、
原因特定と対策を調べるために役立ちます。
過去の障害と同じかどうかは、Cactiなどで蓄
積した履歴と比較することで、ある程度判断
できます。
　以上、SNMPの概要について説明しました。
みなさんのネットワークとシステムが、無事
稼働し続けますように。ﾟ

SNMPエージェントだけが動作しなくなるこ
とは少ないので、SNMPリクエストに対する
応答の有無で、この到達性は確認できます。
　SNMPとは別に、マネージャから定期的に
pingして、到達性と、対象機器が応答できる
状態にあるかどうかを確認することもよく行
われています。
　さらに、監視対象のOID、たとえばCPU負
荷、残りメモリ、インターフェースの状態と
負荷、パケット送受信数などが、どんな値の
範囲になるかを見ます。正常稼働時に、この
ような値がどんな範囲に収まっているのかが
「ベースライン」です。ベースラインは、運用
に入る前のテストで見極めておくのが理想で
すが、実際は本番運用をしばらく続けている
内に分かってくることも多いと思います。で
すので、Cactiなどでそれっぽいグラフが並ぶ
と運用できている気分にはなりますが、ベー
スラインがわからず、正常時と異常時を区別
できないのであれば、グラフは無意味です。

○参考資料
［1］『入門SNMP』, Douglas R. Mauro, Kevin J. Schmidt著 , 土本 康生監訳 , 福田剛士訳 , オライリー・ジャ
パン , ISBN＝978-4-87311-090-4

［2］http://www.ibsjapan.co.jp/tech/details/successstory/building-automation-security/intrusion-
detection-with-snmp-and-ip-video-in-factory.html

［3］http://embedded-computing.com/articles/internet-things-requirements-protocols
［4］http://www.lansw-book.net/VIRL/
［5］『実践SNMP教科書』, 山居正幸著 , CQ出版社 , ISBN＝978-4789818759
［6］http://www.cisco.com/cisco/web/support/JP/100/1008/1008143_snmp_traps-j.html
［7］http://networkengineering.stackexchange.com/questions/14630/snmp-if-mib-stats-export-interval-in-

cisco-ios
［8］http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
［9］http://www.cisco.com/cisco/web/support/JP/100/1006/1006423_faq-snmpcounter-j.html
［10］http://www.cacti.net/what_is_cacti.php
［11］http://oss.oetiker.ch/mrtg
［12］http://www.server-world.info/query?os=CentOS_7&p=cacti&f=1
［13］https://supportforums.cisco.com/ja/document/106446
［14］http://www.janog.gr.jp/meeting/janog22/jointevent/data_3/netconf-01atarashi.pdf
［15］https://github.com/YangModels/yang/tree/master/vendor
［16］https://developer.cisco.com/site/confD/
［17］http://www.tail-f.com/confd-training-videos
［18］http://www.slideshare.net/tailfsystems/presentations

http://embedded-computing.com/articles/internet-things-requirements-protocols/
http://www.cisco.com/cisco/web/support/JP/100/1008/1008143_snmp_traps-j.html
http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://www.ibsjapan.co.jp/tech/details/successstory/building-automation-security/intrusion-detection-with-snmp-and-ip-video-in-factory.html
http://www.slideshare.net/tailfsystems/presentations
http://networkengineering.stackexchange.com/questions/14630/snmp-if-mib-stats-export-interval-in-cisco-ios
http://www.lansw-book.net/VIRL/
http://www.cisco.com/cisco/web/support/JP/100/1006/1006423_faq-snmpcounter-j.html
http://www.cacti.net/what_is_cacti.php
http://oss.oetiker.ch/mrtg/
http://www.server-world.info/query?os=CentOS_7&p=cacti&f=1
https://supportforums.cisco.com/ja/document/106446
http://www.janog.gr.jp/meeting/janog22/jointevent/data_3/netconf-01atarashi.pdf
https://github.com/YangModels/yang/tree/master/vendor
https://developer.cisco.com/site/confD/
http://www.tail-f.com/confd-training-videos/


95 - Software Design Dec.  2015 - 95

実践JUnit

　Javaのテスティングツール「JUnit」を題材に、Javaで
のテストコード作成における勘所をまとめている。ユニッ
トテストと聞くと機械的な作業をイメージしてしまうが、
本書は独特なフレーズを使って、ユーモラスに説明してい
る。たとえば、良いテストの条件として「FIRST（Fast・
Isorated・Repeatable・Self-validating・Timely）」とい
う合言葉を作り、テスト作成時の指針とするよう書いてい
る。また、あとから見返すと内容が理解できないような悪
いテストコードの特徴を“テストの臭い”と表現し、それを
嗅ぎ分けるためのポイントが解説されていたりもする。本
書はEclipse上でJUnitを使うことを想定してはいるが、
普遍的な内容が多く、NetBeansやIntelliJ IDEAのユーザ
にも、別のテストツール「TestNG」のユーザにも有用だ。

Jeff Langr、Andy Hunt、Dave 
Thomas 著、牧野 聡 訳
A5判／272ページ
2,800円＋税
オライリー・ジャパン
ISBN＝978-4-87311-730-0

あなたの知らない 
超絶技巧プログラ 
ミングの世界

　超絶技巧プログラミングとは「実用的なプログラミング
言語を使って全く実用的でないものを作る遊び」と著者が
本の中で述べているもの。「実用的なプログラミング言語」
とあるように、コードはすべてRubyまたはC言語で書か
れているので、手元の環境で実行できる。扱っているプロ
グラムは、著者が得意としている「Quine」形式で作成され
たものがもっとも多い。Quineとは、それ自体の文字の並
びが絵に見えるソースコードを実行すると、元のコードと
同じ文字列が出力されるというもの。本書表紙のウロボロ
スの絵も、実はQuine形式のプログラムである。Ruby 
→Scala→Scheme……と、100種類のプログラミング言
語を経由したのちに、元のウロボロスの絵を出力するとい
う大傑作なのだ。

遠藤 侑介 著
B5変形判／272ページ
2,680円＋税
技術評論社
ISBN＝978-4-7741-7643-7

Docker
実践入門

　Dockerは、時代にマッチした技術だ。一言でいえばそ
うなる。ハイパーバイザで過剰なまでの仮想化を行うので
はなく、必要な機能を自由に使い、必要がなくなったら捨
てるというスマートな計算機資源の管理ができる。これが
いい。クラウド環境を構築し、その中でサーバインスタン
スを多数立ち上げ、トラフィックの増減に対応しなければ
ならない現代の環境が求めたものなのだ。Immutable 
Infrastructure（不変なインフラ）という言葉があるが、し
ばらく時が経てばITエンジニアにとって、自然なものにな
るだろう。必要な機能をもったサービスを立ち上げて、
ニーズがなくなれば捨てる（消去する）というスタイル。こ
れを支える重要な技術の1つがDockerだ。まずは本書で
基礎を固めてほしい。

中井 悦司 著
B5変形判／200ページ
2,680円＋税
技術評論社
ISBN＝978-4-7741-7654-3

人工知能入門

　人工知能研究の歴史はアルゴリズムの発見と計算機の処
理能力向上の歴史でもある。本書で解説する人工知能研究
の産物は、現在「ビッグデータ」や「ディープラーニング」と
いった言葉で語られる、“膨大なデータを高速に処理し、そ
こに意味を見いだす技術”の基礎である。著者は福井大学
大学院で知能情報学を専攻する教授であり、教科書らしい
内容で、即座に実践に役立つ類いの本ではない。しかし、
データ分析の基礎となる考え、そして全体像をつかむうえ
では、一読しておくとしっかりとした土台が築ける。ちま
たで話題の“計算機の能力が人間の知的能力を上回る”時点

（シンギュラリティ）については本書でも最後の章で触れて
いるが、それは本書で解説する工学的な観点での人工知能
とは別のお話。

小高 知宏 著
A5判／192ページ
2,300円＋税
共立出版
ISBN＝978-4-320-12389-2



96 - Software Design

クラウド時代の
再入門

はじめに

　皆さん、はじめまして。仲川樽八です。筆者
は2000年頃の携帯向けWebサービスの黎明期
に起業したベンチャー企業に新卒として入社、
その後15年間Webサービスの開発に携わって
きました。入社後しばらくの間は物理サーバを
利用して携帯向けの公式サイトの構築、運用業
務に携わっていたのですが、ここ数年間はクラ
ウドを利用したシステムの構築、運用を中心と
した業務を行っています。

クラウド以前・以後

　AWSを始めとしたクラウドの登場はシステム
構築の現場を大きく変えました。一般的にはク
ラウドが与えた恩恵と言えば、中小のサービス
事業者や開発ベンダにおいても巨大なリソース
を扱えるようにしたことです。しかしクラウド
がシステムリソース調達のスピードを劇的に変
えたことは、それ以上に大きな恩恵であり、ク
ラウド時代の本質であると、筆者は考えています。

負荷試験の必要性

　オンプレミス時代は、常に余剰システムリソー
スの在庫を抱えている体力のある事業者でなけ
れば、新規リソースの追加は選定から発注、納
品まで1ヵ月以上の期間がかかることがよくあり
ました。サービスリリース時点および将来の必
要リソースを見積もることはサービスの継続の
ための必須要件であり、そのための負荷試験は
非常に重要視されていました。また、その負荷

試験を行うためにも、試験用サーバリソース調
達のための期間が別途必要であり、スケジュー
ル的に十分な余裕をとっておく必要がありました。
　クラウドの登場はシステム調達の速度を、数ヵ
月という単位から数分といった単位に変えまし
た。これにより開発ベンダの必要リソースの見
積もり方や負荷試験の位置づけが大きく変わり
ました。負荷試験をしてあらかじめ必要リソー
ス量を見積もっておかなくても、まず動くもの
を作ってサービスインしてしまい、実際のユー
ザのアクセスに合わせて動的にシステムリソー
スの調達をするといった、まるで後出しジャン
ケンといってもいい手法が採れるようになった
のです。

オンプレミス時代の負荷試験とは？

　クラウド以前は、システムの可用性に対する
要求も現在ほど高くなかったこともあり、突発
的なアクセス増に対して動的にシステム構成を
変えないものが主流でした。また、多くの場合
において、システムリソースの選定はシステム
が組み上がる前に行っておく必要があったため、
負荷試験を行う段階では対象のシステムリソー
ス構成はほぼ決定していました。その固定され
たシステムについて、利用可能な単位時間あた
りのユーザ数の見積もりを出すことが負荷試験
の目的でした。
　サービスインまでのスケジュールに余裕があ
る場合ならば、負荷試験の結果をもとにサーバ
の構成を変更し、あらためて追加リソースの発
注をかけることができましたが、システムの構
成が決定するまでは試験もできないというジレ

クラウド時代の

再入門

短期集中
連載

  Author    仲川 樽八（なかがわ たるはち）　㈱ゆめみ　Twitter@tarupachi

クラウド時代における負荷試験とは何か第 回1



96 - Software Design Dec.  2015 - 97

ンマがあるため、商用環境と同じ構成での負荷
試験を行うことも難しいことがほとんどでした。
　もちろん、同じシステムリソースではより多
くのユーザにサービスを提供することが求めら
れますから、負荷試験時には同時にシステムの
プロファイリング、ボトルネックの特定を行い、
チューニングしていくことはクラウド時代にお
いても変わらない、負荷試験の目的の1つです。

クラウド時代の負荷試験とは？

　クラウド時代には、後出しジャンケンのよう
な手法が採れるようになったと説明しました。
しかし、その一方でシステムは24時間365日
稼働して当たり前になりました。また、高速な
通信や処理が可能なスマートフォンの普及など
により、サービスの利用ユーザの規模も、1人
あたりのリソース要求量も膨れ上がりました。
さらにユーザ数の増加に伴う負荷の増大や、突
発的なアクセス増などに対しても“システムリ
ソースを（動的に）増強することでシステムの応

答性能を向上させることができるシステム”つ
まり“スケーラブルなシステム”を設計、構築す
ることが当然になりました。
　しかし、そのシステムが本当
に“スケーラブルなシステム”で
あるということは、どうやって
担保されるのでしょうか。それ
は負荷試験を実施しなかった場
合には、システムをリリースし
たあとに、まさに必要に迫られ
てシステムリソースを増強しよ
うとした、そのときまでは実際
にはわからないのです。そして
わかったときには、すでに遅かっ
たりします。
　クラウド時代においての負荷
試験の主な目的はすでに固定さ
れた構成における性能を保証す
ることではなく、構築された対
象のシステムがまさに“スケー

ラブルなシステム”であることを確認すること
なのです。

スケーラブルなシステムの 
設計の復習

　サーバ構成を変えるスケールの手法には単一
のシステムリソースの処理能力の増減を行う方
法とシステムリソースの台数を増減させる方法
の2つがあります。言うまでもなく、これらの
手法はクラウド登場以前からありますが、クラ
ウドによって非常に利用しやすくなり、積極的
に設計に取り入れられるようになりました。ま
た、上記の2つの方法とは別にクラウド業者が
サービスとしてスケール対応であることを保証
するフルマネージドサービスと呼ばれるストレー
ジやロードバランサ、KVS（Key-Value Store）
などのサービスもあります。
　スケーラブルなシステムを構築する際には要
件や規模に応じてこれらを組み合わせて考えま
す（図1）。Webサーバ部分、データベース部分、
キャッシュ部分とサブシステムに分解していき、
すべての部分で冗長性およびスケーラビリティー
が確保された設計となるようにします。

Availability Zone Availability Zone

M
RDS DB
instance

S
RDS Standby
（Multi-AZ）

ElastiCache ElastiCache

EC2 instance EC2 instance EC2 instance EC2 instance

web app
server

web app
server

web app
server

web app
server

Elastic Load
Balancing

Amazon
Route 53

AWS

 ▼図1　冗長化対応、スケール対応のシステムの例

第 回1  クラウド時代における負荷試験とは何か

クラウド時代の

再入門

短期集中
連載



98 - Software Design

クラウド時代の
再入門

冗長性の確保について

　システム上の、どのサーバノードが停止して
もサービスを継続して受けることができるよう
にします。それには、複数台のサーバを利用す
ることで単一障害点を作らないとともに、デー
タも常に最新のデータの二重化を行う必要があ
ります。
　たとえばRDSというDBサービスでは
MySQLやPostgreSQLなどのDBを利用でき
ますが、その際にMulti-AZというオプション
があり、それを利用することで最新のデータを
複数のAvailability Zone（データセンターにあ
たると考えてください）間にまたがった別々の
サーバ上で保持しますので、どちらかのサーバ
またはAvailability Zoneに障害が発生しても
そのままデータの欠損を生むことなくサービス
を継続できます。オンプレミス時代には難しかっ
た、データセンターをまたいだ形でのシステム
の冗長化を簡単に行うことができるというのも
クラウド（AWS）の大きなメリットの1つです。

スケールアップ・スケールダウン

　システム負荷が上がったときに、機器そのも
のをより高機能なものに変更することをスケー
ルアップ（図2）、逆にシステムリソース使用状
況に余裕があった場合に適切なリソースになる
までより低機能な機器に変更することをスケー
ルダウンと言います。

スケールアップのメリット
　アプリケーションやミドルウェアが未対応でも
簡単に該当リソースの応答性能の増強ができます。

スケールアップのデメリット
　デメリットを次に挙げます。

・スケールアップさせた機器の応答性
能が、その機器を利用するコストに比
例しては上がらないことが少なくない （と
くにすでにかなり良い機器を利用してい

た場合には、2倍の値段の機器を利用してもス
ループットがほとんど変わらないことがある）

・提供されている機器の最大サイズがシステムの
上限となってしまい、それ以上の増強が不可能

・中間的なサイズのリソースが提供されていない
ことが多い （2倍→4倍→8倍→16倍といった
感じでリソースも増強されるがコストも上がる）

・システムのリプレイス時に一定時間のダウンタイ
ムが発生することが多い

スケールアウト・スケールイン

　システム負荷が上がったときに、機器の台数
を追加することでスループットの改善を図るの
がスケールアウト（図3）、逆にシステムリソー
ス使用状況に余裕があった場合に適切なリソー
スになるまで機器の台数を減らすことがスケー
ルインです。

スケールアウトのメリット
　メリットを次に挙げます。

・スループットの増減は機器の台数に比例して
追従しやすい （スケールアップの場合と比較し
てコストパフォーマンスに優れることが多い）

・システムの応答性能の上限がサーバ1台の最
大能力に制限されないため、スケールアップを
行う場合より性能上限を引き出しやすい

・機器を複数台利用することで性能向上を狙う
と同時にシステムの冗長化を図ることができる

・オートスケールといった手法を取ることにより、
負荷に応じて自動的に機器の台数を増減させ
ることも可能

MM

RDS DB instance
8xlarge

RDS DB instance
xlarge

お金で解決する！

 ▼図2　若干のメンテナンス時間さえとれればスケールアップできる



98 - Software Design Dec.  2015 - 99

・マスタ、スレイブ構成のレプリケーションを組
んでいる際に、スレイブ側の負荷分散は比較
的容易に可能

スケールアウトのデメリット
　デメリットを次に挙げます。

・追加された機器を適切に利用するために、ア
プリケーションもしくはミドルウエアに対応が
必要となることが多い

・コネクションの上限の問題やネットワーク的な
問題が発生することがある

・マスタ、スレイブ構成のレプリケーションを組
んでも更新側の負荷が大きなコンテンツには対
応できない

・分散構成に対応していないDBへの更新負荷
を分散させるためにはデータ垂直分割注1、水平
分割注2などを考える必要があり、分割されたデー
タ間ではJOINができないなどの制約が発生す
るため、設計、実装レベルでシステムの複雑
度が上がる

クラウド提供業者によるフルマネージド
サービスの利用

　ファイルサーバとして、AWSのS3を利用
する、ロードバランサとしてELB（Elastic 

注1） 扱うデータの種類によりデータの格納先DBを変える手法、
扱うDBごとに異なるテーブルを管理する形になります。

注2） すべてのDBで同じテーブルのスキーマを利用しますが、
たとえばユーザの区分ごとにDBを分けるといった管理を
します。こちら、分割された個々のDBをシャードDBと呼
ぶこともあります。

Load Balancing）を利用するなど、利用状況に
応じて自動でスケールするフルマネージド注3な
サービスもあります。また、システムのスルー
プットの予約を動的に変更することができる
DynamoDBのようなサービスもあります。デ
メリットとしては提供されている機能が要件に
合わなければ利用できないことが挙げられます
が、逆に要件を整理してでも積極的に利用する
ことで設計や運用をかなり楽にできます。

Webシステム設計事例と 
負荷試験の事例

　携帯向けのWebコンテンツの開発に筆者が長
くかかわってきたために事例は偏ってしまうの
ですが、2000年以降のシステム開発の設計事
例と、負荷試験、その結果の事例を紹介します。
［オンプレ時代］フィーチャフォン黎明期
の携帯向け公式サイトシステムの事例

　Webブラウザが搭載された携帯電話が相次
いで発表されたころ、それをビジネスチャンス
ととらえたサービス事業者が次々と参入しまし
た。筆者が所属する会社もまさにその時期に起
業したベンチャーで、当時は筆者を含めた全員
がまだ学生でした。関係者の誰もが携帯向けコ
ンテンツの開発経験がないなか、最初に立ち上
げた携帯向け公式サイトの概要が図4です。現

注3） フルマネージドサービスを利用していても、実際にその能
力をすべて引き出すことができるかは、構築したシステム
依存であることに注意ください。

EC2
instance

web
app

server

EC2
instance

web
app

server

EC2
instance

web
app

server

EC2
instance

web
app

server

EC2
instance

web
app

server

EC2
instance

web
app

server

EC2
instance

web
app

server

EC2
instance

web
app

server

EC2
instance

web
app

server

EC2
instance

web
app

server

EC2
instance

web
app

server

Elastic Load
Balancing

AWS

お金で解決する！

 ▼図3　高負荷のときはスケールアウトする

第 回1  クラウド時代における負荷試験とは何か



100 - Software Design

クラウド時代の
再入門

在のシステムと比較すると障
害にかなり弱い設計です。す
べてのサーバが単一障害点で、
どのサーバが障害を起こした
としても代替サーバのセット
アップが完了するまでサービ
スも停止し、また完全なデー
タ保全も保証されていません
でした。

その当時の負荷試験について
　数週間ほどオフィスに寝泊
まりしながらコンテンツの開発を行い、リリー
ス直前までデバッグ作業を行った結果、まとも
な負荷試験をかけることなくサービスインして
しまいました。今考えるとそれがシステムの冗
長度の低さと合わさって、その後の長い苦しい
運用の始まりだったのですが、その結果として
サービスイン後は実際のユーザアクセスを利用
して商用環境に高負荷をかける“実践的な負荷
試験”を毎晩かけることができました。しかし
ながらその“実践的な負荷試験”（もちろん皮肉
です）は次のような代償を伴っていました。

・	夜間に接続不能という状況が続き、ユーザの
利便性を大きく損ない続けた

・	ほかのメディアと連動した短期的にユーザが集
中する系統の施策や、会員数を増やすための
有効な施策が打てない

・	負荷が高いときにはサーバにログインできなく
なるので、その分析もできない

・	単体部分の試験ができないので特定のリソース
の逼

ひっぱく

迫の原因がどこにあるのかの分析が困難
・	対策コードのリリースやより高価なシステムリソー

スへのリプレイスを行っても、応答性能は変わ
らなかったケースがある

反省事項
　このシステムにかかわったことで、本来であ
れば負荷試験の重要性や冗長化されたシステム
のありがたさを学び取ることができたはずなの

ですが、残念ながら当時は経験も浅く、こういっ
たシステムが当たり前だと思ってしまっていま
した。
　それらの重要性がわかったのは、そのあとの
システム開発において実際に負荷試験を行った
り冗長化されたシステムを構築したりして、そ
の恩恵がおもに開発者に対して向けられること
を実感してからとなります。
［オンプレ時代］フィーチャフォン最盛期
の携帯向け公式サイトシステムの事例

　前節のシステム開発から数年、数々の公式サ
イト開発の事例を積み重ねたあとに、より大規
模なエンタープライズ向けのシステムを構築す
ることとなりました。この案件では何よりも
24時間365日無停止であることが重要視され、
そのために当時のシステムとしてはかなり潤沢
なサーバリソースを利用しました。

サイト内容
　携帯3キャリア（imode、Softbank、EZweb）
向けのクーポンサイトです。ユーザの居住エリ
ア情報や性別、店舗での利用状況といった情報
を基にユーザごとにクーポンを発行し、またそ
の利用を追跡、プロファイリング可能とします。
システム概要は図5のとおりです。

［オンプレ時代］のシステム構成と負荷対策
　システム構成を次にまとめます。全体的に冗

オフィス

・会員マスタ
・懸賞マスタ
・会員のトランザクションデータ

DBサーバ

管理画面サーバ

管理画面

EZweb向け
コンテンツサーバ

EZweb専用ドメイン

Jphone向け
コンテンツサーバ

Jphone専用ドメイン

imode向け
コンテンツサーバ

imode専用ドメイン

 ▼図4　システム概要（［オンプレ時代］フィーチャフォン黎明期）



100 - Software Design Dec.  2015 - 101

長化され障害にも強くなり、また参照系の負荷
分散やアプリケーションサーバの負荷分散がさ
れていましたが、MasterDBサーバは冗長化さ
れていないという状態でした。サービスイン当
初の負荷対策は次のようになります。

・	Apache＋PHP＋MySQL構成
　（PHPアクセラレータの導入）
・	Webサーバをロードバランサの下に配置するこ

とで冗長性およびスケール性能を確保
・	データの冗長化はMySQLのレプリケーション

機能と定期バックアップを組み合わせた
・	アプリケーションサーバは各キャリア向け共通

で、DB操作が必要なページ以外はすべて静的
ファイルとして構築

　	→静的ファイルの一部のデータや絵文字の変
換をApacheモジュールで処 理することで
PHPを利用せずに高速に応答させる

　	→ユーザの認証機構もApacheモジュールで
担保するため、会員制コンテンツ部分も高速
に応答

・	DBの参照負荷はMySQLのレプリケーション
機構を利用して対策

負荷試験について
　この案件ではJmeterを利用
した負荷試験を複数回ほど実
施できました。しかし、オン
プレミスのため、システムリ
ソースの選定、発注から稼働
開始まで2ヵ月間程度は余裕
を見ておく必要がありました。
そのため負荷試験の結果を見
てからのサーバ調達はできず、
すでに準備された環境に対す
る負荷試験となってしまいま
した。それでもサービスイン
までには負荷試験の結果を受
けて各種の対策を実施でき、
サービスイン後しばらくの間
順調にサービスを行い続けま

した。しかしながらそのあと、会員数が数百万
人規模に順調に増加していったことと、クーポ
ンアプリケーションのリリースとともにクーポ
ンをすべてユーザごとに配布するという方式に
変えたことでMasterDBサーバの能力が不足し、
次の負荷対策が追加必要となりました。

リリース後の負荷対策
　次に記載する負荷試験を行うため、専用の環
境を構築しましたが、実際のサイズのものを準
備することが難しく、商用環境の数分の1のサ
イズのシステムでの負荷試験となりました。

・	DBサーバ機器の入れ替え
・	会員トランザクションデータを書き込むDBを

会員ごとに分割するシャードDB対応
・	DB/SQLチューニング
　	→Indexの見直し、追加
　	→ロックを発生させないように更新処理はすべ

て主キーを指定したクエリになるように書き換え

反省事項
　ユーザ数の増加、要件の追加によりバックエ
ンドシステムのリプレイスを必要としましたが、

データセンター

集計DBサーバ

Master
DBサーバ

管理画面サーバ

管理画面

MySQL
レプリケーション

更新
トランザクション

アプリケーションサーバクラスタ

参照のみ

3キャリア共通ドメイン

・会員マスタ
・コンテンツマスタ

Slave DBサーバクラスタ

…

…
・会員マスタ
・コンテンツマスタ
・会員トランザクションデータ

 ▼図5　 ［オンプレ時代］フィーチャフォン最盛期のシステム概要（データセンター
にサーバを設置）

第 回1  クラウド時代における負荷試験とは何か



102 - Software Design

クラウド時代の
再入門

負荷試験を行うスケジュールが確保できたこと
およびシステムの冗長構成を取ることができた
ことで、全体的には非常に安定した運用を行え
るようになりました。
　また、事前に負荷試験をすることで各種の不
具合を未然に防げました。一方でサービスイン
したあとにデータ移行を伴う大きな設計変更を
加えることは非常にコストが高くつくので、可
能ならば最初の設計時点ですべての場所でスケー
ル性を考慮しておくべきであることを痛感しま
した。
［クラウド時代］スマホアプリケーション

APIサーバ
　ユーザの利用デバイスの中心がスマートフォ
ンに移行し始めたころ、スマートフォン向けソー
シャルゲームアプリケーションのバックエンド
側APIの構築をしました。ユーザごとのトラ
ンザクション量が非常に多いため負荷対策も重
要で、またサーバ上で管理させるデータや処理
とアプリケーション上で管理させるデータや処
理との同期方法などに工夫が必要なサービスで
す。筆者の所属するチームでは、このころから
システム構築の中心をAWS利用に移行し始め
ており、この案件も同様です。システム概要は
図6のとおりです。

システム構成と負荷対策
　エンドユーザからアクセスされるすべての部
分注4が冗長構成となっており、単一のノードの
障害やゾーン障害が発生してもサービスに影響
を与えることなくそのまま利用可能であり、ま
たデータの欠損も生じさせない構成です。
　これらは以前の案件ではエンタープライズ向
けの一部のお客様でしか取れなかったような贅
沢な構成でした。しかしクラウドにより、こう
いった構成は案件の規模にかかわらず導入可能
となり、また、逆にそうすることが当たり前の

注4） 逆にユーザから見えない部分の管理画面サーバなど一部の
サーバは冗長化されていませんが、障害時であってもあら
かじめ取得しておいたサーバのイメージを起動するだけで
すぐに復旧ができます。

時代となってきました。そのときの負荷対策は
次のようになります。

・	Apache＋PHP＋MySQL構成（PHPアクセ
ラレータの導入）

・	横断検索の必要なデータはリードレプリカを利
用する （落ちていたときはマスタ参照）

・	横断検索の必要ないユーザのトランザクション
データはシャードDBに格納（あらかじめ60
シャードの論理DBを作成しておくことで、DB
ノード追加時のユーザデータの移行を行いや
すくした注5）

・	複数のAPIを同一のHTTPリクエストとして
コールできるフレームワークを自社開発

　	→HTTPリクエスト数を絞ることが可能
　	→複数のシャードDBおよびキャッシュデータ

をまたいだ更新であっても、同時にコールされ
たリクエストはすべて同一のトランザクション
として扱う。この機構によりアプリケーション
側からトランザクション範囲を適切に制御可能

・	Webサーバをロードバランサの下に配置するこ
とで冗長性およびスケール性能を確保

・	データの冗長化はRDSのMultiAZオプション
を利用する

・	キャッシュ機構を利用することでDBの参照負
荷を減らす

負荷試験について
　Jmeterを利用した負荷試験を複数回実施し、
次のような障害を発見、解消しました。重要な
ことは、これらの障害は負荷試験を実施しなかっ
た場合にはサービスイン後に顧客に見える障害
として発生してしまう問題だったことです。

・	最 初 に 選 定した PHP アクセラレ ータは
Apacheを巻き込んで停止してしまうものであっ
たためにアクセラレータを変更

注5） シャード用のDBノードとして2台準備した場合は30論理
DBずつ利用、3台準備した場合は20論理DBずつ利用、
と4台、5台、6台と台数を少しずつ追加しやすい数字の
ため。また、論理DBをあらかじめ分けておくと、テーブ
ルの中から一部のユーザのデータを切りだすといった作業
がなく、簡単にDBのコピーを行うことができます。



102 - Software Design Dec.  2015 - 103

・	高負荷時にRDS for MySQL
への接続が失敗することがある

　	→接続リトライ機構を組込み
解決

・	高負荷時にMemcachedへの
接続が失敗する注6

・	Webサーバを追加していっても
応答性能が上がらない

　	→MySQL 接続で可能な部分
は永続的接続を利用する（接
続上限数を超えない場合）

　	→Memcached接続で永続的
接続を利用する

反省事項
　負荷試験およびプロファイリ
ングは、まさに試行錯誤の中で
ボトルネックと対策を見つけて
いく作業ではありますが、この頃はまだ負荷試
験をかけるにあたって効率的なツールや、手順
などを意識していなかったことで正解にたどり
着くまでに遠回りをしてしまうことや、間違っ
た解答を導き出してしまうことが今よりも多く
ありました。

負荷試験を行わなかったことに
よる失敗事例（と思われるもの）

　クラウドにより、スケーラブルなシステムの
構築が当たり前となりました。ただ、それでも
なお負荷対策不足に起因する事故は至るところ
で発生しており、それらは決して他人事ではあ
りません。これらの事故は想定よりもはるかに
多くのアクセスがあったために発生した不可避
の不幸な事故の可能性も考えられますが、多く
の場合は適切な負荷試験を行い、その結果の数

注6） 接続失敗とそのときに発生するオートフェールオーバー機
構の副作用でMemcachedが更新前の古いデータを取得し
てしまう現象が発生してしまい、結果としてユーザデータの
不整合を発生させます。これを回避するためにElastiCache
ではなく、KyotoTycoonの利用に変更しました。こちらの
問題に関しては［Qiita:本当は怖いMemcached<http://
qiita.com/taruhachi/items/a844bf373623991873ff>］に
詳細を記載しています。

字を尊重することにより回避できた可能性は高
いと考えています。最近の事例でも次のような
ことを聞いたことがありますし、中には皆さん
も思い当たる事例もあるかと思います。

・	開発環境では動作していたのに商用環境では
まともに動かない

・	負荷対策はスケールアップで対応させる予定だっ
たが、最大クラスのインスタンスを使用しても
負荷に耐えられなかった

・	スケール対応のフルマネージドシステムとつな
ぎ込んでいるはずなのにまったく性能が向上し
ない

・	Webサーバをいくら追加してもまったくスケー
ルしない

・	ECサイトリニューアル以降、数週間サイトに
アクセスできない状態が続く

・	大々的な告知をした期間限定のキャンペーンサ
イトが、期間が終了するまで落ち続ける

Availability Zone Availability ZoneShared DBs
（Multi AZ）

Center DB
（Multi AZ）

EC2 instance

web app
server

EC2 instance

web app
server

EC2 instance

web app
server

EC2 instance

web app
server

ELB

Amazon
Route 53

AWS

MySQL

MySQL

MySQL

MySQL

EC2 instance

cache
server

EC2 instance

cache
server

管理画面

管理画面サーバ

 ▼図6　 ［クラウド時代］スマホアプリケーションAPIサーバシステム概要（AWS
上ですべて構築）

第 回1  クラウド時代における負荷試験とは何か

http://qiita.com/taruhachi/items/a844bf373623991873ff


104 - Software Design

クラウド時代の
再入門

負荷試験が難しいケースと
その対策

　もちろん負荷試験が難しいケースもいろいろ
存在しますが、最低限の目標として構築したシ
ステムがスケール性能を保有していることを担
保するところまでは必ず試験が必要です。たと
えば次のような場合においては試験が難しいと
感じることもあるかもしれません。
［ケース1］負荷試験環境が存在しない 
場合

　クラウド時代のメリットを最大限に利用して、
実際の環境を模した専用の負荷試験環境をぜひ
構築してください。たとえ巨大なシステムであっ
ても、時間貸しのシステムで構築して数時間だ
けしか使わないという利用方法をした場合には
驚くほど安く利用できるのがクラウドです。た
とえばAWSで考えたときに、月額で100万円
の利用料のかかるシステムであっても、1時間
あたりで計算すると1,400円以下となります。
料金シミュレータで計算するとこれはc4.large

インスタンスを100台同時に稼働させることが
できる値段注7となります。
　また、どうしても同等レベルの環境を構築す
ることが難しかった場合には各サーバのインス
タンスタイプをスケールダウンしたり、スケー
ルインした環境を利用して全体のスループット
を推測するという方法もありますが、こちらは
スケーラビリティを確認するのには良いのです
が、実際のシステムのスループット上限値を推
定することが非常に難しくなりますので注意し
てください。また、この手法を採るときには次
のことが重要になります。

・	冗長性に関しては商用環境とまったく同じ構成
にする注8

注7） 2015年11月現在：AWSの料金はドル建てですので、円・
ドル相場によって変動します。また、AWSの料金改定に
よる値下げは随時発表されていますのでこちらは参考まで
にしてください。

注8） 商用環境でMultiAZオプションを利用するのなら負荷試験
環境でも利用するなど。

・	性能の低いインスタンスで得られた結果と性能
の高いインスタンスで得られた結果はインスタ
ンスタイプの値段やスペックシートに正比例は
しない。よって必ず両方で試験をして、それぞ
れにおけるスループットの比率を計測しておく

・	投入したダミーデータの量が負荷試験結果に
重大な影響を及ぼすシステムと結果には影響
をほとんど与えないシステムがあるので、そこ
は見極める必要がある

［ケース2］外部システムとの結合があ
る場合

　外部システムとの結合があり、かつ結合先の
環境に余計な負荷をかけられないケースなどは
負荷試験をためらいがちになります。しかしな
がら、一般的にシステムの処理時間の多くは外
部システムへの通信部分が占めることが多く、
その部分がシステム全体のスループットやスケー
ル性能を左右することが多いですので、逆にこ
ういった場合こそ負荷試験を諦めてしまっては
いけません。このような場合では次のいずれか
方法をとります。

①	該当の外部システムのダミー応答をするスタブ
サーバを構築する

②	プログラム内部で外部システム連携部分のスタ
ブを準備する

　これらの方法のうち、強くお勧めするのは①
の方法です。外部システム自体がどんなに高速
に応答を返しても、実際に連携をさせた場合に
は思ったような性能が出ないということはよく
あります。相手は静的なファイルの設置でもか
まいませんので、ぜひ通信のシミュレーション
を含めた試験を行ってください注9。

注9） どちらの場合であっても、実際の応答が得られる時間を想
定したSleep()処理を入れておいてください。Sleep()処理
は処理サーバのCPU負荷を上げずに全体の処理時間を伸ば
すという意味で、システムに対して実際の外部システム連
携をした場合と似た負荷をかけられます。



104 - Software Design Dec.  2015 - 105

［ケース3］システムの性能が高すぎる
ため負荷をかけきれない場合

　負荷試験をかけるためのツールはたくさんあ
りますが、大きく次の軸で考えらえます。

①	お手軽に使えるツール（ApacheBench、
Locust等）

②	複雑な攻撃シナリオの記載、実施が可能なツー
ル（JMeter、Locust等）

③	高負荷をかけることが得意なツール（tsung、
Jmeter等）

　この中で③の「とにかく高負荷をかけること
が得意なツール」を利用する必要があります。
また、負荷試験環境が存在しない場合と同じく
商用環境を小さくしたセットに対して負荷試験
をかける方法もありますが、この場合の注意点
は前述のとおりです。
［ケース4］セッション IDやパスワード等、リクエスト
ごとに異なるパラメータを付ける必要がある場合

　次の2つの方法があります。これはどちらの
方法でもかまいませんがスタブを利用する場合
はその部分の負荷のシミュレートが難しくなる
点に注意が必要です。

・	負荷試験をされる側のプログラムを改変して、
パラメータを利用する部分をスタブにしたり、
プログラムの先頭でパラメータを生成して埋め
込んだりする

・	前項における「複雑な攻撃シナリオの記載、実
施が可能なツール」を利用する

［ケース5］予算・スケジュールがない

　負荷試験は必ず見積もりに含めてください。
仮にお客様が実施するので納品物としては含め
ないという契約の場合であっても、スケーラブ
ルなシステムであることを担保することは必要
です。その担保のためにはやはり内部での工数
は必要です。工数として省いてはいけません。

負荷試験がほぼ不要な 
ケース

　筆者は、次の場合においては負荷試験はほぼ
不要なのでケースに合わせて省略してかまわな
いものと考えています。逆に言えば、次のケー
スに当てはまらない場合は、原則的に負荷試験
を実施すべきと考えてください。

・	ELBやCloudFrontなどのベンダがスケール性
能を保証しているシステムに対する負荷試験

・	すでにスケール性能が担保されている既存シス
テムに対する少改修注10

・	トラフィックが“絶対に”増えないケースやスケー
ル性能を担保しないシステム

負荷試験の 
アンチパターン集

　最後に負荷試験におけるアンチパターンを紹
介します。それぞれの理由は次回以降に説明し
ていきます。

・	対象のシステムに合わない負荷試験ツールを利
用する

・	SSLページの負荷試験をする
・	負荷試験環境を全部入りサーバで構築する
・	負荷試験のスケジュールをシステムリリース直

前に持ってくる
・	最初からシステム全体の負荷試験をする

次回予告

　次回は各種負荷試験ツールの紹介およびツー
ルを使用した負荷試験の基本的な考え方の紹介
をします。｢

注10） ただし、データリソースへのアクセス、外部APIの利用など、
外部システムとの結合個所が1ヵ所でも増える場合はそこ
がシステム全体の応答性能を大きく左右してしまう可能性
がありますので、負荷試験を行うべきです。

第 回1  クラウド時代における負荷試験とは何か



106 - Software Design

ユーザ認証のしくみを探る

　クライアントとサーバの間で使用するダイア
レクトが決定したあとに行うべきこと――それ
は「ユーザ認証」です。つまり、サーバに対して
身分を証明することで、そのユーザの権限が決
まります。このユーザ認証は、コンピュータの
普及に伴ってセキュリティリスクが高まるたび
に、仕様が次々と追加されてきた歴史がありま
す。SMBプロトコルが扱っている「ファイル共
有」という機能の性質上、ユーザ詐称ができて
しまえば他人のファイルを盗むことができてし
まうため、被害がとても大きくなります。昔は
パスワード文字列をそのままLANに垂れ流し
ていることも普通に多かったと思いますが、今
日では許されないことです。
　ユーザ認証を安全に行うこと、これがSMB

プロトコルの最初の関門です。

さまざまな認証方式

　SMBプロトコルでのユーザ認証方式は、い
くつか存在します。適用される認証方式は、次
の条件から決定されます。

・capabilities値に含まれるextended_security

第4部
身分を証明しろ

値（拡張セキュリティ）が1である→Kerberos
認証方式、NTLMSSP認証方式など

・上記のextended_security値が0である→LM 
/NTLM/NTLMv2 Challenge Response 認
証方式

　拡張セキュリティには、ほかにもGSS-API、
LDAP、MS-RPC、SPNEGOなども仕様上は
利用できます。これらの「サブプロトコル」の存
在が、SMBプロトコルをさらに難解にしている
原因です。もちろん「SMBプロトコルは柔軟性
がある」と言うこともできるのですが、そもそも
パケットキャプチャして解析している身としては、
サブプロトコルの存在はうれしくありません。
　今回僕が実装した認証方式は、NTLMSSP

認証方式と、LM/NTLM/NTLMv2 Challenge/

Response方式の2つです。この2つの方式それ
ぞれを理解し、正しく使い分けができるように
なるまでには、多くの時間がかかりました。そ
れはなぜか？――今振り返ると、その要因は2

つありました。
　1つは、そもそもNTLMSSP認証方式は
SMBプロトコルとは独立した仕様であるため、
SMBプロコトルに関する仕様をいくら読んで
も説明されていなかった、ということです。参
考にしていた@ITの記事や Implementing 

CIFS本にも、NTLMSSP認証方式に関する
説明は載っていません。

SMB 実装を
めぐる冒険
探す、調べる、ソフトを作る喜び
File System for Windowsの作り方

第 2 回

Author   田中 洋一郎（たなか よういちろう） 　 Blog   https://www.eisbahn.jp/    Twitter   @yoichiro

こんにちは。よういちろうです。「Windows共有フォルダをChromeOSのファイルアプリにマウン
トする」ことができるChromeアプリを開発してリリースしました。これを開発するためには、SMB
（Server Message Block）と呼ばれるプロトコルを理解し、SMBプロトコルを話すクライアントコード
を JavaScriptで書くことが必要でした。これは「File System for Windows」という名前でChromeウェ
ブストアにて無料で公開していますので、Chromebookを持っている方はぜひ使ってみてください。
今回は、前編に引き続き探偵風に開発過程を紹介します。

https://www.eisbahn.jp/yoichiro/


106 - Software Design Dec.  2015 - 107

File System for Windows の作り方 第2回

　そしてもう1つは、拡張セキュ
リティと認証方式の関係がまっ
たくわからなかったことです。
Implementing CIFS本には、L 

M/NTLM/NTLMv2 Cha 

llenge/Response認証方式のこ
とが説明されていました。その
章を読んで当然「よし、これで
ユーザ認証できる！」と思い込
み、意気込んでLM/NTLM/

NTLMv2 Challenge/Response認証方式を実装し
て、いざサーバにリクエストを送ってみても、
STATUS_INVALID_PARAMETER（0xC000000D）が返っ
てきて途方に暮れました。結論としては、拡張
セキュリティが適用されたサーバに対して、拡張
セキュリティではない場合の認証方式でリクエス
トし続けていたからエラーになっていた、という
ことだったのですが、これに気がつくまでに1週
間程度かかったのを記憶しています。

NTLMSSP認証方式

　サーバがずっとエラーを返し続けて悩んでいた
とき、ふと初心に返って、OS XがSMB1/CIFS

でどのようにユーザ認証要求を送っているのか、
Wiresharkを使ってパケットキャプチャをしてみ
ようと思い立ちました。すると、図1のような結
果が表示されたのです。そこには僕が知らない謎
のSecurity Blobバイト列が指定されていました。
　これは Implementing CIFS本には載ってな
い……いや、載ってました。拡張セキュリティ、
つまり extended_security値が 1の場合には、
あるアルゴリズムで計算されたパスワードのダ
イジェスト値を使う方法（LM/NTLM/NTLM 

v2 Challenge/Response認証方式）ではなく、
Kerberos認証方式、NTLMSSP認証方式など
が採用される、ということが書かれていました。
これでやっと拡張セキュリティと認証方式の関
係に気がついたのですが、肝心のNTLMSSP

認証方式に関する詳しい手順は説明されていま
せん。困りました。
　インターネットで探せばあるはずだ、と思い、
再度文献を探したところ、幸いにも見つけるこ
とができました。

［The NTLM Authentication Protocol and 

Security Support Provider］注1

http://davenport.sourceforge.net/ntlm.html

　この内容を読んでいくと、実はNTLMSSP

認証方式では3つのType Messageが存在して
いて、クライアントとサーバ間のやりとりは1

回ではなく2回必要になる、ということがわか
りました。そして、ユーザ名とパスワードをい
かにして計算していくかについても、例も含め
てとても丁寧に解説されていました。
Wiresharkで先ほどパケットキャプチャした際
の内容ともどうやら一致している模様です。光
が見えてきました。
　3つのType Messageは、それぞれ異なる内
容を持ちます。具体的には次のような感じです。

・Type 1 Message：認証要求を示す各種フラ
グ値などを持つ。これは、クライアントか
らサーバに送られる

・Type 2 Message：チャレンジなどを持つ。
これは、サーバからクライアントに送られる

 ▼図1　NTLMSSP認証方式が適用されたパケットのキャプチャ

注1） （日本語訳）http://www.monyo.com/technical/samba/translation/ntlm.html

http://davenport.sourceforge.net/ntlm.html
http://davenport.sourceforge.net/ntlm.html


108 - Software Design

SMB 実装をめぐる冒険
探す、調べる、ソフトを作る喜び

・Type 3 Message：ユーザ名、ドメイン名、チャ
レンジに対するレスポンスなどを持つ。こ
れは、クライアントからサーバに送られる

 Type 1 Message
　1つずつ見ていきましょう。まずはType 1 

Messageです。これは、ユーザ認証を行うため
にクライアントがサーバに提示する条件を伝え
る役目を持っています。つまり、重要なのはフ
ラグ値です。Type 1 Messageの構造をリスト
1に示します。
　flag値は4バイトもあります。つまり、指定
可能なフラグは32個と多いのですが、基本的
には次を指定しておけば良いでしょう。

・NEGOTIATE_UNICODE (0x00000001)
・REQUEST_TARGET (0x00000004)
・NEGOTIATE_NTLM (0x00000200)
・NEGOTIATE_OEM_DOMAIN_SUPPLIED 

(0x00001000)
・NEGOTIATE_OEM_WORKSTATION_

SUPPLIED (0x00002000)
・NEGOTIATE_128 (0x20000000)

　supplied_domainは、“?”を指定します。また、
supplied_workstationには、クライアントの
プログラム名を指定しておけば良いでしょう（今
回作ったChromeOS向けアプリケーションで
は“FSP_CIFS”と指定しています）。この2つは
任意ですので、指定しなくても大丈夫です（OS 

Xでは指定されていません）。

　ここでセキュリティバッファについて説明し
ておきましょう。名前からは連想しにくいので
すが、比較的長いバイト列を指定するために、
実際のバイト列と「そのバイト列がどこにどん
な長さで存在するか」を分けて指定する方式の
ことを指しています。具体的には、リスト2の
ように3つの値で構成されます。
　flagとして上記の値を、SuppliedDomainは“?”、
SuppliedWorkstationに“FSP_CIFS”を指定した
場合のType 1 Messageのバイト列は、リスト3
のようになります。

 Type 2 Message
　Type 1 Messageをクライアントがサーバに
送信したあと、クライアントはサーバから
Type 2 Messageを受け取ることになります。
このType 2 Messageは、クライアントから提
示された条件をサーバが受け付けられるかどう
かの返答、およびチャレンジとなるバイト列が
含まれています。つまり、クライアントが
Type 3 Messageを作るために必要となる情報

が、Type 2 Messageによってサー
バから提供されるという流れです。
Type 2 Messageの構造はリスト4
になります。
　サーバが返してきたflag値に応じ
て、クライアントはユーザのパスワー
ドから作成するレスポンスの作り方
を変化させていく必要があります。

Type1Message {
  UCHAR[8] signature; 　　　　 // "NTLMSSP"
  UINT message_type; 　　　　　// 0x00000001
  UINT flag;
  UCHAR[8] supplied_domain_security_buffer;
  UCHAR[8] supplied_workstation_security_buffer;
  ANY supplied_domain;        // ASCII
  ANY supplied_workstation;   // ASCII
}

 ▼リスト1　Type 1 Messageの構造

SecurityBuffer {
  USHORT length; 　　　　 // セキュリティバッファ値のバイト数
  USHORT allocated_space;// 割り当て済みのバイト数
  UINT offset; 　　　　　 // Type 1 Messageの先頭からの位置
}

 ▼リスト2　セキュリティバッファ

4e54 4c4d 5353 5001 0000 0005 3200 2001
0001 001b 0000 0008 0008 0020 0000 003f
4653 505f 4349 4653

 ▼リスト3　Type 1 Messageの例



108 - Software Design Dec.  2015 - 109

File System for Windows の作り方 第2回

 Type 3 Message
　Type 2 Messageを受け取った
クライアントは、サーバが提示し
てきたflag値に応じて、ユーザの
パスワードをさまざまな計算を行
うことで変化させてレスポンスを
生成し、それをType 3 Message

に乗せて再度サーバに送る、とい
うことを行います。その「さまざ
まな計算」にも複数の種類があり
ます。表1は、執筆時点で存在す
る計算方法の一覧です。
　ドメイン環境（NTドメインや、
ActiveDirectoryによるドメイン）
でKerberos認証方式が適用され
ている場合を除いて、現在は
LMv2 ResponseおよびNTLMv2 

Responseが広く利用されていま
す。ここではこの2つのレスポンスの計算方法
を紹介します。
　LMv2 Responseの計算手順は表2になります。
　また、NTLMv2 Responseの計算手順は表3
になります。LMv2 Responseのときよりも、
使用する値が増えています。
　LMv2 Responseおよび NTLMv2 Response

を持つType 3 Messageをサーバに送ることで、
サーバはユーザ認証処理を行います。もちろん、
Type 3 MessageにはLMv2 Responseおよび
NTLMv2 Responseを指定する個所があります。
リスト5は、Type 3 Messageの構造です。
　Type 1 Messageのsupplied_domainには“?”

を指定しましたが、Type 3 Messageのdomain

には、もしドメインコントローラによって管理
されているユーザで認証したい場合には、正し
いドメイン名を指定することが必要です。そう
ではなく、ワークグループレベルでのユーザ認
証の場合には、このdomainについても“?”で大
丈夫です。

ユーザ認証のためのメッセージ
（拡張セキュリティの場合）

　NTLMSSP認証方式の内容を把握できましたが、
クライアントおよびサーバはType 1～3 Message

を送受信できなければなりません。Type 1～3 

MessageはSMBプロトコルのメッセージではあり

Type2Message {
  UCHAR[8] signature;        // "NTLMSSP"
  UINT message_type;         // 0x00000002
  UCHAR[8] target_name_security_buffer;
  UINT flag;
  UCHAR[8] challenge;        // レスポンス生成に利用
  UCHAR[8] context;
  UCHAR[8] target_information_security_buffer;
  ANY target_name;           // Unicode、レスポンス生成に利用
  ANY target_information;    // レスポンス生成に利用
}

 ▼リスト4　Type 2 Messageの構造

名前 説明
LM Response 最初に策定された方式

NTLM Response Windows 2000/XPなどのNT系OSで採用された形式

NTLMv2 Response Windows NT SP4から導入された形式

LMv2 Response LM Responseのセキュリティ強化形式

N T L M 2  S e s s i o n 
Response

NTLM2 Session Securityがネゴシエートされた際に
利用する形式

Anonymous Response 匿名として認証する形式

 ▼表1　レスポンスの計算方法の一覧

No. 説明 例

1
UnicodeベースのパスワードからMD4を使ってNTLMハッシュ
を計算する “SecREt01”→0xcd06ca7c7e10c99b1d33b7485a2ed808

2
Unicodeベースのユーザ名および target_name文字列をそれぞ
れ大文字変換した結果を結合し、NTLMハッシュ値を鍵として
HMAC-MD5によるNTLMv2ハッシュを計算する

("USER"+"SECRET01")×HMAC-MD5→0x04b8e0ba74289c
c540826bab1dee63ae

3 ランダムな8バイトのclient_nonceを生成する 0xffffff0011223344

4
challenge値とclient_nonceを結合し、NTLMv2ハッシュを鍵
としてHMAC-MD5によるダイジェスト値を計算する

(0x04b8e0ba74289cc540826bab1dee63aeffffff0011223344)
×HMAC-MD5→0xd6e6152ea25d03b7c6ba6629c2d6aaf0

5
4のダイジェスト値とclient_nonceを結合して、LMv2 Response
とする 0xd6e6152ea25d03b7c6ba6629c2d6aaf0ffffff0011223344

 ▼表2　LMv2 Responseの計算手順



110 - Software Design

SMB 実装をめぐる冒険
探す、調べる、ソフトを作る喜び

ませんが、SMB1/CIFSプロトコ
ルではユーザ認証のためのコマ
ンドが定義されています。それが、
SMB_COM_SESSION_SETUP_ANDX 
0x73です。このメッセージにTy 

pe 1～3 Messageのバイト列を格
納して、クライアントとサーバ間
でユーザ認証のためのやりとりを
行います。
　SMB_COM_SESSION_SETUP_ANDX
メッセージの構造は、拡張セキュ
リティが適用されるかどうかに
よって変わってきます。リスト
6は、拡張セキュリティが適用
されていた場合の SMB_COM_
SESSION_SETUP_ANDXリクエスト
の構造です。
　ここで重要な値はsecurity_
blobです。このsecurity_blob
値として、Type 1～3 Message

のバイト列を指定します。ほか
の値は、ネゴシエートした際の

No. 説明 例

1 UnicodeベースのパスワードからMD4を使ってNTLMハッ
シュを計算する "SecREt01"→0xcd06ca7c7e10c99b1d33b7485a2ed808

2
Unicodeベースのユーザ名および target_name文字列をそ
れぞれ大文字変換した結果を結合し、NTLMハッシュ値を
鍵としてHMAC-MD5によるNTLMv2ハッシュを計算する

("USER"+"SECRET01")×HMAC-MD5→0x04b8e0ba74289cc5408
26bab1dee63ae

3 現在日時を表現するタイムスタンプ値を生成する 2003/06/17-06:00:00→0x0090d336b734c301

4 ランダムな8バイトのclient_nonceを生成する 0xffffff0011223344

5 署名、0、タイムスタンプ値、client_nonce、0、target_
information、0を結合したblobを生成する

0x01010000 00000000 0090d336b734c301 ffffff0011223344 
00000000 02000c0044004f004d00410049004e0001000c0053004
50052005600450052000400140064006f006d00610069006e002e0
063006f006d00030022007300650072007600650072002e0064006
f006d00610069006e002e0063006f006d0000000000 00000000

6 challengeとblobを結合する

0x0123456789abcdef+blob→0x0123456789abcdef010100000000
00000090d336b734c301ffffff00112233440000000002000c004400
4f004d00410049004e0001000c0053004500520056004500520004
00140064006f006d00610069006e002e0063006f006d0003002200
7300650072007600650072002e0064006f006d00610069006e002e
0063006f006d000000000000000000

7 NTLMv2ハッシュを鍵として、5の結果のHMAC-MD5ダイ
ジェスト値を計算する 0xcbabbca713eb795d04c97abc01ee4983

8 6の結果とblobを結合したバイト列をNTLMv2 Response
とする

0xcbabbca713eb795d04c97abc01ee49830x010100000000000000
90d336b734c301ffffff00112233440000000002000c0044004f004d
00410049004e0001000c0053004500520056004500520004001400
64006f006d00610069006e002e0063006f006d0003002200730065
0072007600650072002e0064006f006d00610069006e002e006300
6f006d000000000000000000

 ▼表3　NTLMv2 Responseの計算手順

Type3Message {
  UCHAR[8] signature;               // "NTLMSSP"
  UINT message_type;                // 0x00000003
  UCHAR[8] lm_lmv2_response_security_buffer;
  UCHAR[8] ntlm_ntlmv2_response_security_buffer;
  UCHAR[8] domain_security_buffer;
  UCHAR[8] user_name_security_buffer;
  UCHAR[8] workstation_name_security_buffer;
  UCHAR[8] session_key_security_buffer;
  UINT flag;
  ANY lm_lmv2_response;             // LMv2 Responseを指定
  ANY ntlm_ntlmv2_response;         // NTLMv2 Responseを指定
  ANY domain;                       // ワークグループであれば"?"
  ANY user_name;
  ANY workstation_name;
  ANY session_key;
}

 ▼リスト5　Type 3 Messageの構造

　SMBプロトコルでのタイムスタンプ値は、少し特殊な計算方法です。
次の手順で計算します。

① 現在日時のUNIX時間 (1970/01/01 00:00:00からの経過秒数 )を得る
②  1601/01/01 00:00:00からの経過秒数とするために、①に116444 

73600を加算する
③ ②の結果について、10000をかける
④  ③の結果について、リトルエンディアンの64ビット値として表現

する

Column 「SMBタイムスタンプの計算方法」



110 - Software Design Dec.  2015 - 111

File System for Windows の作り方 第2回

結果から指定すると良いでしょ
う。capabilitiesは、再度サー
バに期待する動作を指定するフ
ラグ値ですが、試行錯誤の結果、
次の指定でうまくいきました。

・CAP_STATUS32 (0x00000040)
・CAP_NT_SMBS (0x00000010)
・CAP_UNICODE (0x00000004)

　native_osにはクライアントが
動作するOSの名前を、native_
lan_manにはクライアント（アプ
リケーション）の名称をそれぞれ
指定すると良いでしょう。今回
僕が作ったChromeOS向けのア
プリケーションでは、それぞれ
“ChromeOS”、“File System for 
CIFS”と指定しました。
　NTLMSSP認証方式では3つ
のメッセージをやりとりする必要
があることを説明しました。つま
り、SMB_COM_SESSION_SETUP_
ANDXメッセージも1回のユーザ
認証で「2往復」することになりま
す。具体的には、図2のような
流れになります。
　Type 1 Messageをサーバに送
信したあと、サーバがエラーコー
ド（ MORE_PROCESSING_

REQUIRED）を返してくるのが
ポイントです。エラーとはいえ、
もちろん継続できます。SMB_

COM_SESSION_SETUP_

ANDXレスポンスの構造はリス
ト7のようになります。
　クライアントはType 2 Mes 

sageから各種レスポンスを計
算し、それらを持つType 3 Messageをサーバ
に送ってユーザ認証を継続します。もし認証処
理が成功すれば、サーバからの最後のメッセー

ジのヘッダには、user_id値がセットされます。
　LM Response、NTLM Responseを使う場合
も、Type 3 Messageにそれらを含めて上記の

SMB_PARAMETER {
  UCHAR word_count;          // 12
  words {
    struct {
      UCHAR command;         // 0xff
      UCHAR reserved;        // 0x00
      USHORT offset;         // 0x0000
    } ANDX;
    USHORT max_buffer_size;
    USHORT max_mpx_count;
    USHORT vc_number;
    UINT session_key;
    USHORT security_blob_length;
    UINT reserved;           // 0x00000000
    UINT capabilities;       // サーバに期待する動作のフラグ値
  }
}
SMB_DATA {
  USHORT byte_count;
  bytes {
    ANY security_blob;       // Type 1,3 Messageが入る場所
    ANY native_os;           // Null-terminated String
    ANY native_lan_man;      // Null-terminated String
  }
}

 ▼リスト6　拡張セキュリティの場合のSMB_COM_SESSION_SETUP_　
　　　　  ANDXリクエストの構造

command: SMB_COM_SESSION_SETUP_ANDX
security_blob: Type 1 Message

command: SMB_COM_SESSION_SETUP_ANDX
security_blob: Type 3 Message

command: SMB_COM_SESSION_SETUP_ANDX
nt_status: MORE_PROCESSING_REQUIRED
security_blob: Type 2 Message

command: SMB_COM_SESSION_SETUP_ANDX
nt_status: OK (0x00000000)
user_id: 0x1234

Client Server

 ▼図2　拡張セキュリティ適用時のメッセージの送受信手順



112 - Software Design

SMB 実装をめぐる冒険
探す、調べる、ソフトを作る喜び

手順を行えば、ユーザ認証ができるはずです。
しかし、これらはすでにセキュリティ強度が非
常に弱いことが知られているため、サーバによっ
ては受け付けてくれない可能性があります。

ユーザ認証のためのメッセージ
（拡張セキュリティではない場合）

　拡張セキュリティをサーバが要求しなかった
場合は、Type 1～3 Messageは使用しません。
そして、SMB_COM_SESSION_SETUP_ANDXリクエ
ストの内容も若干変わります。変更個所は次に
なります。

・SMB_PARAMETER.word_count 値 を 12 か
ら13に変更

・SMB_PARAMETER.security_blob_length
を次の2つに変更

　USHORT case_insensitive_password_
length;

　USHORT case_sensit ive_password_
length;

・SMB_DATA.security_blobを次の4つに変更
　ANY case_insensitive_password;
　ANY case_sensitive_password;
　ANY account_name;
　ANY primary_domain;

　拡張セキュリティを適用しない場合は、LM 

Responseを case_insensitive_

password に、NTLM Res 

ponse を case_sensitive_

passwordにそれぞれセットし
ます。先ほどLMv2 Response、
NTLMv2 Responseを生成し
た際にはType 2 Messageの内
容が計算に必要でしたが、LM 

ResponseおよびNTLM Res 

ponseを計算する際には、ネゴ
シエートした際にサーバから
渡されたencryption_keyを使
用します。
　拡張セキュリティではない

場合は、図3のように、SMB_COM_SESSION_

SETUP_ANDXメッセージを1往復するだけで
ユーザ認証が完了します。
　LM ResponseおよびNTLM Responseの計
算方法は、先ほど紹介した“The NTLM Authe 

ntication Protocol and Security Support 

Provider”の記載内容を参照してください。最
初に少し触れましたが、Implementing CIFS本
に書かれている手順は、この拡張セキュリティ
を適用しない場合の手順でした。この手順を懸

SMB_PARAMETER {
  UCHAR word_count;
  words {
    USHORT security_blob_length;
    UINT reserved;              // 0x00000000
    UINT capabilities;          // サーバに期待する動作のフラグ値
  }
}
SMB_DATA {
  USHORT byte_count;
  bytes {
    ANY security_blob;          // Type 2 Messageが入る場所
    UCHAR[0 or 1] padding;      // 2バイト境界のためのパディング
    ANY native_os;              // Null-terminated String
    ANY native_lan_man;         // Null-terminated String
  }
}

 ▼リスト7　SMB_COM_SESSION_SETUP_ANDXレスポンスの構造

　クライアントとサーバ間で行われる通信の回
数が少なければ少ないほど、行われる処理全体
のパフォーマンスはよくなります。また、1回の
通信で複数の処理をクライアントから要求でき
れば、サーバは要求された複数の処理を一貫性
を持って行うことができる可能性が高まります。
SMB1/CIFSプロトコルには、末尾に“_ANDX”とつ
いているコマンドが多くありますが、これらは「1
回のリクエストで複数のコマンドを送信できる
能力を持ったコマンド」です。
　しかし、実際にはWindows系OSにおいてこ
のANDX系コマンドが使われていることはほと
んどないらしいです。コマンドを連鎖させるた
めにSMB_PARAMETERの最初に「次のコマンドは○
○ですよ」と指定できるのですが、本記事ではす
べて0x�（次のコマンドはない）を指定しています。

Column 「ANDXとは？」



112 - Software Design Dec.  2015 - 113

File System for Windows の作り方 第2回

命に拡張セキュリティを要求し
ているサーバに送っていたわけ
です。うまくいかなかったわけ
ですね。

ヘッダに user_id値を
指定する
　以上の手順でユーザ認証がで
きるようになりました。これで
user_id値を得ることができま
したので、敵の懐に飛び込んで
いくことが可能になります。
SMBプロトコルの大きな山を1つ超えたこと
になります。
　これ以降、クライアントがサーバに送信する
すべてのメッセージのヘッダに対してuser_id
値を指定することで、ユーザ認証が完了してい
ることをサーバに伝えます。サーバの動作は、
user_id値から導き出される認証済みユーザの
権限の範囲内で行われます。

次号はさらに真相に迫る！

　ユーザ認証ができてしまえば、サーバの中に
入っていろいろとファイルを入手したり書き込
んだりできそうですが、その前にまだやるべき
ことがあります。それは「共有リソース一覧を
入手」し、利用したい「共有リソースのTree ID

を入手」する、という2つの手順が待ち構えて
います。OS XやWindowsからファイルサーバ

にアクセスした際に、最初に「どの共有リソー
スに接続しますか？」という問い合わせが表示
されると思います。また、もしURIでファイ
ルサーバにアクセスする場合は、“smb://

server/share1”というように共有リソース名を
パスとして記載するはずです。この共有リソー
スは1つのサーバに複数存在することが一般的
ですので、クライアントは共有リソースの一覧
を入手して、ユーザに選択してもらい、選択さ
れた共有リソースに接続してTree IDを得る、
ということをします。
　敵のアジトに入れたからといって、簡単に相
手の資産に触れられるわけではないのです。そ
の前に、各資産を管理している番人にお願いし
て、関所を越えるための IDを発行してもらわ
なければならないのです。これは、ユーザ認証
の次の壁となります。（以下次号に続く！）゚

command: SMB_COM_SESSION_SETUP_ANDX
nt_status: OK (0x00000000)
user_id: 0x1234

command: SMB_COM_SESSION_SETUP_ANDX
case_insensitive_password: LM Response
case_sensitive_password: NTLM Response

Client Server

 ▼図3　拡張セキュリティ適用時のメッセージの送受信手順

　SMB1/CIFSプロトコルは、DOS時代から存在している非常に古い仕様です。これは僕の勝手な想像ですが、
UNICODEサポートは後から追加されたものではないかと思っています。そのためなのか、SMBメッセージ内では
「UNICODE文字列の開始は、ヘッダの先頭を起点として必ず16ビット境界であることを保証しなければならない」
というルールがあります。つまり仮に“hoge”というUNICODE文字列（6800 6f00 6700 6500 0000）があったとすると、

・�53 4d42……0102 0368 006f 0067 0065 0000 00　     →16ビット境界から始まっていないのでNG
・�53 4d42……0102 0300 6800 6f00 6700 6500 0000　→ 先頭に0x00を追加して16ビット境界から開始するよ
　　　　　　　　　　　　　　　　　　　　　　　　　    うに補正しているのでOK

というようにPadding値を追加するかどうかクライアントは判断しないといけません。これは、SMBプロトコ
ルを難解にしている要因の1つと言えるでしょう。

Column 「やっかいなPadding」



114 - Software Design

“VimでJava”への
飽くなき挑戦

　前回はVimからEclipseと同等の機能が扱え
るEclimについて紹介しました。Eclimはバッ
クエンドでEclipseの機能を使っているだけあっ
て、高機能かつ統合的な操作をVimに提供して
くれます。あれはあれで非常に便利で、どっし
りと構えた開発を行う場合にはかなり有用です。
ただし、やはりEclimはEclipse上で行う開発手
法をVimから間接的に実行するためのプラグイ
ンです。Eclipseでサポートされていない機能は
もちろん使えませんし、Eclipseの決めごとに従
い続けなければなりません。たとえば、プロジェ
クトは必ずworkspaceというEclipse上のルール
に従って管理する必要があります。Mavenプロ
ジェクトであれば一度Eclipseで取り込んでお
いてからEclimで開き直す必要もあります。さ
らにはEclipseではMavenの扱いに癖があり、場
合によってはファセットが正しく機能しない場
合もあります。
　ちょっとしたJavaのコードを書きたいがため
だけに、Eclimdという重たいバッチプログラム
を起動するのは億

おっくう

劫ですよね。たとえば、Java 

8に導入されたStream APIの挙動を今すぐ試し
たい場合を考えてみましょう。Eclimの長い起動
を待ち、ようやく起動が完了したEclimで新規

にプロジェクトを作ってVimから接続し、よう
やくコーディングを開始するというのは非常に
大きな手間ですし、頭に浮かんだアイデアを逃
してしまうこともあります。
　Javaでの開発にはIDE（統合開発環境）を使う
のが一般的と言われています。「Vimのようなテ
キストエディタでは補完も効かないし、Eclipse

のように import文の簡単挿入も行えない」――
みなさんそんなふうにお考えかもしれません。
　しかしながら、Vimは進化し続けるテキスト
エディタです。“ないものは作る”のエンジニア
魂により、これまで何度かVimでJava開発をす
る試みが行われてきました。

Java補完に
vim-javacomplete2を使う

Vim上のJava補完機能、 
それは長い長い黒歴史

　過去に幾度か、Javaの補完機能をVim上で実
現するプラグインが現れました。しかし、その
ほとんどはお世辞にも使えるというレベルには
達しておらず、言ってしまえば“オモチャ”でし
かありませんでした。単純な補完であれば実現
できるのですが、Javaの構文の複雑さゆえ、コ
ンテキストを意識した補完となるとEclipseを
バックエンドに持つEclimを使うほかありませ

一歩進んだ使い方
のため

のイロハ

VimでJavaを使う
（補助プラグイン編）

　前回紹介したEclimは、高機能な反面、起動が遅く、自由度が低いという難点がありました。今回は、
Vim上でのスピーディなJava開発を、vim-javacomplete2、sonictemplate-vim、java_checkstyle、
google-java-formatという4つの補助プラグインを使って実現する方法を紹介します。

mattn
twitter:@mattn_jp

第 回3



114 - Software Design Dec.  2015 - 115

んでした。また、javacompleteという入力補
完プラグインがあり、一部のユーザの間で使
われていましたが、リフレクション 注1のみで
クラス解析を行っていたために補完候補を出
すにはいくぶん貧弱で、コアなユーザからは
使われていませんでした。そして、Javaに
GenericsやLambdaが追加されてからは、も
はや使いものにならなくなってしまいました。

vim-javacomplete2の誕生

　「やはりVimには荷が重過ぎるのか」――多
くのVimユーザがそんなふうに思っていた中、
2015年 5月に vim-javacomplete2 注2が現れ
ます（図1）。vim-javacomplete2は表1の機能
を持ち合わせています。
　vim-javacomplete2は javacompleteをベー
スに開発されています。javaparserというラ
イブラリを使うことで、リフレクションによ
る解析だけでなくパーサを用いたソースコー
ドの解析も行っています。ですのでソースコー
ドが多少不完全であっても、極力パースが継
続されるように作られています。
　バックエンドとしてJavaで書かれたサーバを
起動していますが、最小限の機能しか持ってい
ないため、サーバが起動してから補完が実行可
能になるまで数秒しかかかりません。筆者の環
境（Intel Core i5、メモリ8GB）であれば3秒程
度です。一度起動すれば、Vimを終了するまで
常駐します。使用しているパッケージの量にも
よりますが、起動直後であれば10MB程度のメ
モリ使用量です。
　筆者がこのプロジェクトを初めて見たときは、
まだ粗削りで補完も完全ではなく、エラーもよ
く発生しました。しかしながら javaparserを使
うというデザインに惹かれ、いくらかコントリ

ビュートもさせていただきました。

vim-javacomplete2を導入する

　vim-javacomplete2はEclimのようにEcilpse

のworkspaceに依存しません。pom.xmlがあれ
ば、Mavenを使ってクラスパスを自動で検出し、
依存ライブラリを認識します。入力補完を行う
のであればリスト1の設定をvimrcに追加する
だけです。
　プラグインを導入すると、初回の使用時にサー
バを自動でビルドします。Mavenのコマンドmvn

へパスを通しておいてください。ほかの面倒な
設定は必要ありません。サードパーティのパッ

注1） プログラムの実行中にプロ
グラム自身の構造を読み 
取って解析すること。

注2）  URL  https://github.com/
artur-shaik/vim-javacom 
plete2

 ▼図1　vim-javacomplete2の入力補完

クラスのフィールドやメソッド、コンストラクタの入力
補完
クラス自身やサブパッケージの入力補完
メソッドの引数情報、オーバーロードメソッドの入力補完
入力途中の単語を入力補完
JSPファイル内でsessionやrequestを認識した入力補完
Genericsを使ったソースコードの入力補完
Lambdaを使ったソースコードの入力補完
アノテーションの入力補完
ネストされたクラスの入力補完
使用しているクラスから import文を生成
未使用の import文を削除
pom.xmlを使ったクラスパスの追加
Eclipseの .classpathファイルからのクラスパスの追加

 ▼表1　vim-javacomplete2の機能

 ▼リスト1　入力補完を有効にする

augroup MyJavaFileType
    au!
    autocmd FileType java setlocal omnifunc=javacomplete#Complete
augroup END

VimでJavaを使う（補助プラグイン編）

第 回3

https://github.com/artur-shaik/vim-javacomplete2


一歩進んだ使い方
のため

のイロハ

116 - Software Design

ケージを使わないのであれば、プロジェクトに
関する設定すらも必要ありません。たとえば、
Java 8のStream APIを試したいだけならば、
Vimでリスト2のJavaファイルを開いて.（ドッ
ト）の位置で<C-x><C-o>とタイプすればDate

のメンバが表示されるようになります。

コマンド説明

　現状vim-javacomplete2が提供する主要なコマ
ンドは次の3つです。

・JCimportAdd

　カーソル下のクラス名から自動でimport文を
生成

・JCimportsAddMissing

　未検出なimport文を生成
・JCimportsRemoveUnused

　未使用なimport文を削除

　vim-javacomplete2が提供する補完機能とこれ
らのコマンドがあれば、Javaの編集作業はかな
り捗ります。まだ現状リファクタリング機能が
ありませんが、GitHubリポジトリの issueには
すでに登録されています。いずれ実装されるこ
とになると思います。
　次に、Javaの開発をさらに便利にするプラグ
インを見ていきましょう。

ひな形のコード生成に
sonictemplate-vimを使う

　Javaを書いていて頻繁に直面するのが、書き
出しのコードやgetter/setterなどの決まりきっ
たコードです。クラス名だけ決めれば自動でク

ラスのソースコードを生成してほしいですよね。
sonictemplate-vim 注3というプラグインを使う
ことで、こういった書き出しのソースコードや、
getter/setterなどの部分的なソースコードを生
成できます。
　Java、C、C++、Golang、Python、Perl、Ruby

など多くのプログラミング言語に対応し、ある
程度コンテキストに従ったテンプレートやスニ
ペットを展開できます。
　たとえば、Foo.javaというファイルを新規で
開き、次のコマンドを実行します（Templateは
Temくらいまでタイプして、　　 で補完可能）。

:Template main

　すると、リスト3のソースコードが生成され
ます。ふとおもしろいソースコードが思い浮か
んで、頭から消えないうちに書き出したいとい
うときには最適です。
　次に、このソースコードにgetter/setterを足
したいと思います。リスト4のカーソル位置
で:Templateまでをタイプし、コマンド引数を
　　 で補完すると、getterとgetter-setterとい
う候補が現れます。getter-setterを選択すると
name（名前）と type（型）を聞かれるのでそれぞれ
foo、Stringと入力します。するとリスト5の
コードが生成されます。単純な操作で、ここま
でのソースコードができあがるのです。あとは
main部分の処理を実装し、vim-quickrunで実行
すれば、スクリプト言語をサクッと実行してい
るような使い心地になります。

Tab

Tab

 ▼リスト2　Javaのコードサンプル

package main;
import java.util.Date;

public class Foo {
    public static void main(String[] args) {
        System.out.println(new Date().);
    }
}

 ▼リスト3　生成されるテンプレート

/**
* Foo
*/
public class Foo {
    public static void main(String[] args) {
        //カーソルの位置
    }
}

注3）  URL  https://github.com/mattn/sonictemplate-vim

https://github.com/mattn/sonictemplate-vim


116 - Software Design Dec.  2015 - 117

　sonictemplate-vimは各言語ごとに、baseと呼
ばれるテンプレートとsnipと呼ばれるスニペッ
トの集まりで構成されており、自分専用のテン
プレートを簡単に作成できるようになっていま
す。たとえばリスト5で使用したgetter-setterの
テンプレートはリスト6のようになっています。
　_input_でnameとtypeを入力させ、その値
nameおよび typeを使って、getterおよびsetter

のメソッド名や引数を作成します。if_python

やif_rubyなどを使用していないので、Vim 

scriptだけしか動かない環境でも間違いなく動
作します。

ソースコードの検証に
java_checkstyleを使う

　VimでJavaの開発ができるようになったのは
良いのですが、自由になり過ぎてどんどん汚い
ソースコードを書いてしまいがちです。ここは
しっかり文法チェックやコード規約のチェック
をしたいところです。Javaでコード規約のチェッ
クを行うにはcheckstyle 注4を使います。これを
Vimから扱うプラグインに、java_checkstyle.

vim 注5があります。
　しかし現在、checkstyleの出力結果が変わっ
たためか正しく動作しておらず、かつモダンな
作りになっていなかったので筆者が作りなおし
たもの 注6を使ったほうが良いです。
　設定する変数名は java_checkstyle.vimと同じ
になっています。Checkstyleコマンドが用意さ

れているので:Checkstyleと実行するか、前述
の補完設定と合わせてリスト7のようにファイ
ル書き込み時にCheckstyleコマンドを実行する
ようにしておくと良いでしょう。
　このプラグインを使うには、SourceForgeの
該当ページ 注7からcheckstyle-6.11-all.jarをダ

 ▼リスト4　宣言文を加えて、カーソルを移動

/**
* Foo
*/
public class Foo {
    private String foo;
    //カーソルの位置
    public static void main(String[] args) {
    }
}

 ▼リスト5　できあがったテンプレート

/**
* Foo
*/
public class Foo {
    private String foo;
    /**
    * get foo
    * @return foo
    */
    public String getFoo() {
        return foo;
    }

    /**
    * set foo
    * @param foo
    */
    public void setFoo(String foo) {
        this.foo = foo;
    }

    public static void main(String[] args) {

    }
}

 ▼リスト6　getter-setterのテンプレート

/**
* get {{_input_:name}}
* @return {{_var_:name}}
*/
public {{_input_:type}} get{{_expr_:ｭ 
substitute('{{_var_:name}}', '\w+', ｭ 
'\u\0', '')}}() {
    return {{_var_:name}};
}

/**
* set {{_var_:name}}
* @param {{_var_:name}}
*/
public void set{{_expr_:substitute('{{_ｭ
var_:name}}', '\w+', '\u\0', '')}}({{_ｭ
var_:type}} {{_var_:name}}) {
    this.{{_var_:name}} = {{_var_:name}};
}

注4）  URL  http://checkstyle.sourceforge.net
注5）  URL  https://github.com/vim-scripts/java_checkstyle.vim
注6）  URL  https://github.com/mattn/vim-java_checkstyle

注7）  URL  http://sourceforge.net/projects/checkstyle/files/
checkstyle

VimでJavaを使う（補助プラグイン編）

第 回3

http://checkstyle.sourceforge.net/
https://github.com/vim-scripts/java_checkstyle.vim
https://github.com/mattn/vim-java_checkstyle
http://sourceforge.net/projects/checkstyle/files/checkstyle/


一歩進んだ使い方
のため

のイロハ

118 - Software Design

ウンロードし、~/.vim/libの下に置いておく
か、変数g:Checkstyle_Classpathでパスを
指定します。また、スタイル定義に用いるXML

ファイルは、お好みのものをダウンロードし、同
じフォルダに置いたうえで、変数g:Checkstyle_

XMLで指定します。筆者はsun_checks.xmlとい
うSun Code Conventionsに基づいたチェックが
できるXMLファイルを使っています。エラー
が消えるまではQuickfixが閉じないようになっ
ているので、必然的にきれいなコードになりま
す（図2）。

Javaのコード整形に
google-java-formatを使う
　VimでJavaのコードを書いていると、Vimの
ユーザスキルによってはソースコードが汚くな
りがちです。そこでgoogle-java-formatという
コマンドを使い、ソースコードを成形します。
google-java-formatはGoogleの開発者が提供し
ているソフトウェアで、IntelliJ IDEAのプラグ
インとして開発されていますが、コマンドライ
ンから使える jarプログラムとしても使えます。
　まずリポジトリ注8からgoogle-java-formatを
入手します。残念ながら執筆時点ではテストが
通らないため、次のコマンドを実行して jarファ
イルを生成します。

$ mvn -Dmaven.test.skip=true package

　エラーは発生しますが「core/target/google-

java-format-0.1-SNAPSHOT.jar」というファ
イルが生成されるので、これを使ってJavaファ

イルを整形します。ただこのままだとVimから
使いづらいため、筆者が用意したVimプラグイ
ン注9を使用します。このプラグインを使うため
には、先に作成した jarファイルを次のフォルダ
に格納しておく必要があります。

・Linux/MAC OS Xの場合

　~/.vim/lib/google-java-format-0.1-ｭ 

　SNAPSHOT.jar
・Windowsの場合

　%USERPROFILE%\.vim\lib\google-java-ｭ 
　format-0.1-SNAPSHOT.jar
　もしくは、
　%USERPROFILE%\vimfiles\lib\google-ｭ 

　java-format-0.1-SNAPSHOT.jar

　あとはVimでJavaのソースコードを開き、

:JavaFmt

を実行するか、もしくはファイル名を指定して、

:JavaFmt＜Javaソースコードのパス＞

を実行することで、Google Java Coding Style

の形式に合わせてソースコードが整形されます
（リスト8）。g:javafmt_optionsという変数によ
りgoogle-java-formatのオプションが指定でき
ます。執筆時点ではvim-javafmtから使用できる
google-java-formatのオプションは次の--aosp
のみとなります。

注9）  URL  https://github.com/mattn/vim-javafmt注8）  URL   https://github.com/google/google-java-format

 ▼リスト7　ファイル書き込み時にCheckstyleコマンド 
 を実行する設定

augroup MyJavaFileType
    au!
    autocmd FileType java setlocalｭ 
omnifunc=javacomplete#Complete
    autocmd BufWritePost *.java 
:Checkstyle
    augrou  END

 ▼図2　checkstyleのソースコード検証

https://github.com/google/google-java-format
https://github.com/mattn/vim-javafmt


118 - Software Design Dec.  2015 - 119

--aosp, -aosp, -a 

　このオプションは、Google Style

（4スペースインデント）の代わりに
AOSP Style（8スペース）を使用す
る指定です（AOSPはAndroid Open 

 Source Projectの略）。
　ぜひ、きれいなソースコードを心
がけてください。

◆　◆　◆
　vim-javacomplete2の 登 場 に
よって、VimでJavaの開発を行う
障壁は大きく下がりました。
Eclipseではできないような高速
なJavaコーディングをぜひ体験し
てみてください。また、今回誌面
の都合で紹介できなかったJava関
連のプラグインを使えば、さらに
便利に、さらに効率的にJavaの開
発を行えるようになります。ﾟ

 みなさん、Vimでソースコードを編集する際に

ctags 注Aはお使いでしょうか？　ctagsはソース

コードからタグファイルを生成するプログラムで

す。Vimとctagsを連携することで、関数や変数、

マクロの宣言位置へ高速にジャンプできるように

なります。実は昔、ctagsはVimのリポジトリに含

まれていました。それから時代が過ぎ、ctagsは

SourceForge上で開発されてきましたが、作者で

あるDarren Hiebert氏が活発に開発できなくなっ

てしまい、Universal Ctagsが開発を引き継ぐこと

になりました。

　ctagsから生成される tagsファイルは、個々の

ソースコードのエンコーディングが異なっている

場合に、Vimから正しく扱えないという問題があ

りました。今回、Universal Ctagsへ開発の本流が

移ったことを契機に、vim-jpではこの問題を修正

するpull-requestを行いました。実際にはctagsで

各言語のエンコーディングを指定できるようにな

りました。たとえば、~/.ctagsに次の設定を追加

しておくと、Javaとバッチファイルはシフト JISと

して扱って、tagsファイルが生成されるようにな

ります。

--input-encoding=utf-8
--input-encoding-java=cp932
--input-encoding-dosbatch=cp932

より使いやすくなったctags

注A）  URL  https://ctags.io/

 ▼リスト8　Google Java Coding Styleの形式に合わせてソースコードを 
　　　　 整形

 実行前 
package sample;

public final class App
{
public static void main(final String[] args
) {
Foo foo = new Foo();
        System.out.println(
                "Hello World!" + foo.getMessage());
    }

    protected App() {
       }

}

 実行後 
package sample;

public final class App {
  public static void main(final String[] args) {
    Foo foo = new Foo();
    System.out.println("Hello World!" + foo.getMessage());
  }

  protected App() {}
}

VimでJavaを使う（補助プラグイン編）

第 回3

https://ctags.io/


120 - Software Design

確実なテキスト入力を

　ども、るびきちです。先々月、先月と、操作
性を高めるためにはキーボードでの操作をしっ
かりと整えることが重要だとお伝えしました。
キーバインドを適切に設定しておけば、いつで
もすばやくコマンドが呼び出せるからです。そ
れと同時に、入力支援機能を活用して、ミスタ
イプなく入力する確実な方法を確立すれば一気
に使いやすくなります。

標準的な入力支援

動的略語展開

　まず真っ先に使うべき入力支援機能はdabbrev

（動的略語展開）です。長い文字列の入力を省力
化する重要な機能です。この機能がないテキス
トエディタは正直、使いものになりません。
　テキストエディタを使っていると、どうして
も同じ単語を何度もタイプすることが多くなり
ます。しかし、毎回馬鹿正直にタイプすると、
時間はかかるしタイプミスが起こりやすくなり
ます。Emacsではその問題に対する解決策が用
意されています。
　最初の数文字をタイプしてからM-/を押して

みましょう。すると“魔法”が発動し、その数文
字から始まる単語に補完されます。たとえば、
interのあとにM-/を押すとinternet、interesting、
interactive、interactivelyなどの単語に変化し
ます。再度M-/を押すと別の単語になります。
　そのカラクリはというと、入力された文字列
から始まる単語をカーソルに近いほうから順次
探索しています。カレントバッファで見つから
ない場合はほかのバッファからも探索します。
知ってしまえば当たり前に思えるしくみも、初
めて使うとあたかも魔法が発動したかのような
感動を覚えることでしょう。入力支援基本のキ
として、M-/は常用しましょう。

静的略語展開

　動的略語展開が動的ならば、静的な略語展開
もあるのではないか？　もちろんあります。
　静的略語展開は、シンプルに略語から長い文
字列を展開する機能です。動的略語展開が動的
なのは、変化する単語の結果がバッファの内容
に依存するからです。対して静的略語展開は変
化する単語の結果が決まっています。たとえば
interから必ず internetに展開されるように略語
展開の設定ができます。設定したうえで、M-x 

abbrev-modeでマイナーモードを有効にし、
interとタイプ後、スペースやカンマなどの単語
区切り文字を入力すれば、internetと展開され

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

標準機能から「yasnippet」まで Emacsの入力支援
　Emacsの操作性アップシリーズ、今回は入力支援編です。Emacsに標準で備わる、動／静的略語展
開、スケルトンといったEmacs標準の入力支援についておさらいしたあと、これらを統合したパッケージとも
言える「yasnippet」を紹介します。

Writer

第20回

http://rubikitch.com/


120 - Software Design Dec.  2015 - 121

骸骨……ではなくコードの骨格を意味します。
Emacsにおけるスケルトンとは、パラメータを
対話的に入力することで定型文を入力するコマ
ンドです。スケルトンのコマンドを実行するこ
とを「スケルトンを展開する」といいます。
　たとえば、次のコードを挿入するスケルトン
を考えます。

(defun find-file--my-advice (&rest them)
  )
(advice-add 'find-file :around
            'find-file--my-advice)

　これはEmacs 24.4から使える新しいアドバイ
ス定義法で、関数を再定義せずに関数の挙動を
変更できます。スケルトンの展開には、表1の
情報が必要ですのでミニバッファから入力を求
めます。これをスケルトンで表現するとリスト

1のようになります。入力が複数ですので、ス
ケルトンそのものではなく、コマンド定義とス
ケルトン展開の合わせ技です。スケルトン定義
において> \nがインデントして改行するという
指定で、「_」が展開後のカーソル位置です。M-x 

emacs-lisp-insert-advice-addを実行し、
必要な情報を入力すれば先のコードが挿入され
ます。しかし、わかりづらいですよね。

ます。この機能は後で紹介するyasnippetに完全
に置き換わってしまうので、詳しくは述べませ
ん。
　もし日本語入力にSKKを使っているのなら
ば、アスキー文字から変換する機能があります。
たとえば「/file」→「ファイル」のように変換でき
ます。SKKは単語登録中心主義であるため、よ
く使う略語をガンガン登録すれば快適に入力で
きます。そう考えれば、SKKそれ自体が略語展
開の機能を持っていると言えます。筆者は長年
この機能を略語展開として使っています。

hippie-expand

　M-x hippie-expandは動的略語展開、静的
略語展開、ファイル名補完、シンボル補完など
を統合した単語補完の“十徳ナイフ”です。M-/

よりも高機能である反面、望みの補完をしてく
れないことがあるのが玉に瑕です。
　そこで筆者はhippie-exp-extパッケージにて、
hippie-expandの機能性を活かしつつ補完の目的
に沿ったコマンドを作成しました。M-x hippie-
expand-dabbrev-limited-charsは、1バイ
ト文字限定の動的略語展開および、「-」あるいは
「_」から入力した場合に限り、長い文字列を途中
から補完できるようにしたコマンドです。たと
えば「-li」から「hippie-expand-dabbrev-limited-

chars」と補完できます。
　M-x hippie-expand-file-nameはファイル
名補完に限定したコマンドです。

スケルトンによる定型文入力

　コンピュータの世界におけるスケルトンとは

説明 変数名 具体的な文字列
元の関数名 symbol find-file
場所 where around
アドバイス名 name my-advice

 ▼表1　アドバイス定義で必要な入力

 ▼リスト1　スケルトンの設定テンプレート

(defun emacs-lisp-insert-advice-add (symbol where name)
  (interactive "s元の関数名: ¥ns場所: ¥nsアドバイス名: ")
  (skeleton-insert
   '("" nil    ;;;おまじない
     "(defun " symbol "--" name " (&rest them)" > ¥n
     _ ")" > ¥n
     "(advice-add '" symbol " :" where > ¥n
     " '" symbol "--" name ")" > ¥n)))

第20回 標準機能からyasnippetまで　Emacsの入力支援



122 - Software Design

のようにS式ベースのテンプレート展開elispも
ありますが、やはりelispの知識を要求するので
一般ユーザにはお勧めできません。elispがわか
る人にとっても可読性の問題があり、お勧めで
きません。elispにはヒアドキュメントなどの高
可読性の文字列表現がサポートされていないの
で、文字列を表現するには常に文字列リテラル
を使う必要があります。elispの言語としての限
界がそこにあります。
　そうなると、必然的にテンプレートを独立し
たファイルに記述する方式が望まれます。この
方式のelispもいくつか登場してきましたが、今
ではyasnippetが定番です。

「スニペット」の簡単定義

　先ほどのアドバイス定義のテンプレート
（yasnippetではスニペットという）をyasnippet

で定義すると、リスト2のようになります。暗
号的なスケルトンと比較すれば可読性は明らか
に上です。
　冗長になっていますが、定義時（M-x yas-

new-snippet）にあらかじめひな形が用意され
るので丸暗記する必要はありません。スニペッ
トの先頭から#で始まる行はコメントです。name
はスニペットの1行説明文、keyはそのスニペッ
トに展開する略語です。スニペットの内容は 

# --行のあとに記述します。
　スニペットの実体は、穴埋め部分を含むこと
ができる定型文です。穴埋め部分が存在しない
場合は、普通の略語展開と同じ機能です。
　穴埋め部分は${1:symbol}のように、数字と
表示文字列を指定します。数字は穴埋めされる
順番で、表示文字列は穴埋めの説明の役割とデ
フォルト値の役割を果たします。スケルトンと
の対比のために${4:where}と書いていますが、
aroundと指定するケースが多いのならば、
${4:around}と書いてデフォルト値として使い
ましょう。スニペット展開時はこの部分で文字
列を入力することになります。表示文字列を書
いていない$1のような指定は、穴埋め部分で入

真打yasnippet

略語展開とスケルトンの融合

　略語展開は単に略語と展開結果の対応を表し
たもので、大した機能ではありません。入力作
業全体から見てみれば略語→単語の略語展開に
よる恩恵は微々たるものです。
　一方で、略語展開の結果には関数（コマンド）
を渡すことができます。スケルトンはコマンド
ですので略語展開の結果にスケルトンを割り当
てられます。それをうまくやっているのがEmacs

標準添付のpython.elによるpython-modeです。
次の設定を加え、if、while、for、try、def、class

のあとにスペースを押せばスケルトンが展開さ
れます。

(setq python-skeleton-autoinsert t)
(add-hook 'python-mode-hook 'abbrev-mode)

スケルトンの問題

　メジャーモード側で略語展開＋スケルトンの
設定をしてくれているのは、ユーザからすれば
親切といえます。しかし、スケルトンはS式で
あるため、細かい指定こそできるものの可読性
が低いという欠点があります。穴埋めが複数あ
るスケルトンを定義するには、先のリスト1の
ようにコマンドを定義しなければなりません。
　テンプレート展開はテキストエディタを効率
よく使いたい一般ユーザとしてはぜひとも身に
つけておきたいところですが、elispプログラミ
ングを要求するのは敷居が高過ぎます。読みづ
らいのはともかくとして、たかだか定型文のテ
ンプレートを登録するのになぜelispの知識が必
要なのでしょうか！？

yasnippet登場

　スケルトンの使いづらさからか、テンプレー
ト展開のelispは数多く存在します。スケルトン

るびきち流
Emacs超入門



122 - Software Design Dec.  2015 - 123

合はそこにカーソルが移動し、入力できるよう
になるので、入力したら　　 で次の穴埋め部分
に移動します。穴埋め部分を空白にするにはC-d

です。すべての穴埋めが終われば展開終了です。
　ミニバッファで情報を入力するスケルトンと
違い、穴埋め部分にカーソルが移動するので、
入力するべきテキストが明らかになるのが強み
です。
　略語が思い出せない場合はM-x yas-insert-

snippetで展開します。また M-x yas-des 

cribe-tablesでスニペットを一覧します。

おわりに

　今回は基本的な入力支援をおさらいしてから、
yasnippetという強力なテンプレート入力の入口
を紹介しました。yasnippetはそのまま使うだけ
でも入力を省力化できますが、可読性が高い
フォーマットですので自分でスニペットを定義
すれば、より便利なものとなります。次回はス
ニペット定義・テスト方法から始まり、いろい
ろな応用技を見ていきます。
　筆者はサイト「日刊Emacs」を運営し、毎日
パッケージの紹介記事を書いています。マイナー
なものも紹介しているので、新たなパッケージ
を求めている人の役に立てば幸いです。また、
EmacsユーザのQOLを上げるための厳選した
情報を週間メルマガで配信しています。Emacs

についてはもちろんのこと、ライフハックなど
いろいろな分野について書いています。ﾟ
　登録はこちら➡http://www.mag2.com/m/ 

0001373131.html

Tab

力されたのと同じ文字列に置き換わります。最
後に$0はスニペット展開後に移動するカーソル
位置です。

インストールと設定

　yasnippetはMELPAに登録されているので
M-x package-install yasnippetからイン
ストールできます。パッケージをインストール
するとyasnippet.el本体だけでなく、数多くのス
ニペットも同時にインストールされます。
　そして、次の設定をします。

(require 'yasnippet)
(yas-global-mode 1)
;;; スニペット名をidoで選択する
(setq yas-prompt-functions 
    '(yas-ido-prompt))

　スニペットの置き場はyas-snippet-dirsで
指定しますが、デフォルトは次のようになって
います。

("~/.emacs.d/snippets"
 yas-installed-snippets-dir)

　~/.emacs.d/snippetsは自分で定義したス
ニペットを置くディレクトリです。yas-in 

stalled-snippets-dirはパッケージによって
インストールされたスニペットディレクトリの
変数です。ほかのスニペットも使いたい場合は、
この変数を適宜設定してください。

スニペットを展開する

　スニペットを展開するには、略語（key）を入力
して　　 を押します。穴埋め部分が存在する場Tab

 ▼リスト2　yasnippetでのスニペット定義テンプレート

# -*- mode: snippet -*-
# name: advice-add with function
# key: advice
# --
(defun ${1:symbol}--${2:name} (${3:&rest them})
  $0)
(advice-add '$1 :${4:where}
  '$1--$2)

第20回 標準機能からyasnippetまで　Emacsの入力支援

http://www.mag2.com/m/0001373131.html


124 - Software Design

唯一変わったのは、 
そのすべて

　「唯一変わったのは、そのすべて」。iPhone 

6sのキャッチコピーですが、むしろそれは
Swiftにこそふさわしい一言ではないかという
ぐらいSwiftは大きく変わりました。前回はそ
れを広く浅く紹介したのですが、今回からはそ
れぞれの変化を深く見ていきましょう。

Type？

　Swiftの最大の特長は何かと問われたら、筆
者はOptional型の多用だと答えます。本連載
を最初から追いかけてくださっている読者の皆
さんは納得していただけると思いますが、そう
ではない読者のために、ここで一度おさらいし
ておきましょう。
　次のようなDictionaryがあったとします。

var supportedLanguages = [
    "C" : 1,
    "ObjectiveC" : 2,
]

　次はなんとprintするでしょうか?

print(supportedLanguages["C"])

　1ではなく、Optional(1)ですね。では次は？

print(supportedLanguages["Swift"])

　nilとなります。
　今度はOptional(1)ではなく1となります。こ
の挙動を、型に着目して追っていきましょう。
まずsupportedLanguagesの型は[String:Int]で
す。つまりStringを添字にすると、対応する
Intが返ってくるデータ型なのですが、その中に
ないStringを添字には何を返したらよいでしょ
う？　クラッシュするか「何もない」を何らかの
形で返すかのどちらかということになります。
Swiftが採用したのは後者でした。この「何もない」
のがnilで、「nilか値を返す」のがOptional型で
す。つまりsupportedLanguages[k]の型は、Int
ではなくOptional<Int>つまりInt?ということ
になります。
　ところで Swiftには、enumがあります。
Optional型をenumで表現するとどうなるでしょ
うか?　こんな感じでしょうか。

enum Optional<T> {
 case Nil
 case Some(T)
}

　Swiftの実装は、まさにそのようになっていま
す。[String, Int]が実は Dictionary<String, 
Int>の構文糖衣であるように、Int?というのは
Optional<Int>の構文糖衣に過ぎないのです。

There's more than one way to fail

　以上を踏まえて、次を見てみましょう。

書いて覚える          入門Swift

Writer  小飼 弾（こがい だん）　　 twitter  @dankogai

例外を避ける？10第    回



124 - Software Design Dec.  2015 - 125

例外を避ける？第    回10

var language = "C"
if let i = supportedLanguages[language] {
    print(i)
} else {
    print("Swift is not supported");
}

　Optional(1)ではなく、1と表示されます。i
の型はInt?ではなくIntで、ifに続く{}の中で
は100％例外なくiはIntであることが保証され
ている一方、elseに続く{}の中ではsupported 
Languages[language]がnilだったことが100％
例外なく保証されているわけです。これがSwift

におけるエラー処理の基本でした。Optional（と
型変数）導入により、静的な型でもDictionary
のような動的に扱いたい型の扱いが動的言語な
みに楽になったのです。
　しかし、実際には「うまくいかない」だけでは
うまくいかないケースは少なくありません。「何
がどううまくいかなかった」かによって、処理
を変えたいケースも多いのです。たとえば「軽い」
エラーならデフォルト値を代わりに使って続行
し、「重い」エラーならプログラムを終了する。

そういった場合、どうしたらよいのでしょう？
　SwiftのOptionalがenumで実装されているこ
とを知っていれば、次のようなSuperOptional
を定義してしまえばその問題は解決しそうです。

enum SuperOptional<E,T> {
    case Error(E)
    case Some(T)
}

func handleSuperOptional<E,T>(so:SuperOptio
nal<E,T>) {
    switch(so) {
    case let .Some(i):
        print(i)
    case let .Error(s):
        print("Error:\(s)")
    }
}

var so:SuperOptional<String, Int> = 
.Some(42)
handleSuperOptional(so)
so = .Error("Not a number")
handleSuperOptional(so)

　ところが、Swift 1では型変数を複数持つ総称
型enumはサポートしていな
かったのです（図1）。
　見てのとおりSwift 2では
期待どおり動いていますが、
Swift 1.xではコンパイラが
クラッシュしてしまいます。
　Swift 1におけるOptional
はenumで実装されていまし
たが、Swift 2における try 
catchも enum によって実現
されています。

give it a try

　というわけでSwift 2の
try catchを実際に使ってみ
ましょう。ここでは例題とし

 ▼図1　総称型enumの動作



126 - Software Design

書いて覚える          入門Swift

て、「クラッシュしない配列」を実装してみます。
　SwiftのArrayの要素に範囲外の添字を与え
ると、問答無用でクラッシュします。

var ary = [0,1,2,3]
ary[4] // ここでクラッシュ

　これはDictionaryとは異なる振る舞いです。

var dict = [0:0, 1:1, 2:2, 3:3]
dict[4] // nil

　問答無用でクラッシュする代わりに、何らか
のエラーを返すにはどのようにしたらよいでしょ
うか？
　Swift 2では、まずどんなエラーを返すかを
定義します。

enum ArrayError : ErrorType {
    case RangeError
}

　見てのとおり、エラーはErrorType型を継承
したenumです。次に、エラーを起こしうるメソッ
ドを次のように定義します。

extension Array {
    func valueAtIndex(i:Int) throws -> 
Element {
        if self.count <= i {
            throw ArrayError.RangeError
        }
        return self[i]
    }
}

　通常のfuncと異なる点は2つ。1つは->の前
にthrowsというキーワードが追加されている
こと、もう1つは範囲外であることを検出した
うえで、その場合はthrow ArrayError.Range 
Errorしていること。
　あとはこれを使うだけ。

var ary = [0,1,2,3]
do {
    var v:Int
    v = try ary.valueAtIndex(0)
    v = try ary.valueAtIndex(4)
} catch {
    print("Array out of range")
}

　たしかに今度はクラッシュ
せず、“Array out of range”
と表示されるようになりま
した（図2）。ここでコード
を見てみましょう。まず、
実行ブロックがtryではな
く doで始まっています。
そして tryは ary.valueAt 
Index()の前についていま
す。tryを取り除くとどう
なりましたか？
　Java（Script）と同様、ca 
tchは特定のエラーだけを
捕まえることもできます。
たとえば次のようにコード
を書き換えてみましょう。

 ▼図2　trycatchのエラー



126 - Software Design Dec.  2015 - 127

例外を避ける？第    回10

enum ArrayError : ErrorType {
    case OutOfBounds
    case NegativeBounds
}

extension Array {
    func valueAtIndex(i:Int) throws -> 
Element {
        if i < 0 {
            throw ArrayError.NegativeBounds
        }
        if self.count <= i {
            throw ArrayError.OutOfBounds
        }
        return self[i]
    }
}

var ary = [0,1,2,3]
do {
    var v:Int
    v = try ary.valueAtIndex(0)
    v = try ary.valueAtIndex(-1)
} catch ArrayError.NegativeBounds {
    print("Array Index must be zero or 
lager")
} catch ArrayError.OutOfBounds {
    print("Array Index too large")
} catch {
    print("Unknown Error")
}

例外を例外扱いしないSwift

　さらにSwiftならではの特長として、catch
でまとめて捕まえるのではなく、if letや
guardで捕まえることもできます。

if let v = try? ary.valueAtIndex(4) {
    print(v)
} else {
    print("Array out of range")
}

　もしくは

guard let v = try? ary.valueAtIndex(3) else 
{
    print("Array out of range")
}

　まとめると、次のとおりとなります。

・TypeErrorを継承したエラー型を定義
・エラーを起こしうるfuncには->の前にthrows
をつける

　（エラーを起こしたら定義したエラーをthrow）
・エラーを起こしうる関数／メソッドはtryする
　（エラーはcatchだけではなくif letやguard
で使うこともできる）

　このようにSwift 2のtry catch機構は、Java

（Script）？のそれと比べると少し面倒ですが、
例外ではなく飽くまで一般的なデータ型である
enumの自然な拡張として実現されている点が実
に特長的です。構文の視点で見るとdo catchは
「例外処理」ですが、型の視点で見ると飽くまで
で普通の処理。Swift 2に合わせて改定された
［The Swift Programming Language］注 1で も、
「例外」（exception）という言葉を避けて飽くま
で「エラー処理」（Error Handling）としているの
もそのためでしょう。

次号は

　「なるべく一般的かつ包括的に」。それがさら
に反映されているのが、Protocol Oriented Pro 

grammingという新たなスローガンでしょう。
　次回は、いよいよこのProtocol Oriented Pro 

grammingを取り上げます。ﾟ

注1） https://itunes.apple.com/jp/book/swift-programming-language/id881256329?l=en&mt=11

https://itunes.apple.com/jp/book/swift-programming-language/id881256329?l=en&mt=11


128 - Software Design

で学ぶErlang
並行プログラミング

OTP最新版の状況

　本稿入稿時のErlang/OTPの最新版は18.1.3

です注1。9月23日に18.1がリリースされました [1]。
sslモジュールでTLS接続から単純なTCP接
続へのダウングレードが可能になり、sshモ
ジュールの鍵交換アルゴリズムにより強度の高
いものが追加されたこと、またエラーログの量
を制限できるようになったことなどがおもな変
更点です。その後18.1.1[2]で inetsとmnesia両
モジュールのバグ修正、18.1.2[3]と18.1.3（10

月16日リリース）[4]ではsshモジュールの機能
追加が行われました。なお、17.5系列ではバグ
修正を含んだ17.5.6.4[5]が10月1日にリリース
されています。

Erlangでの情報共有のスタイル、
そして黒魔術としての暗黙のデータ共有

　Erlangの基本的なプログラミングの方針と
して、状態が変化する前後の違いを明示的に記
述し（参照透過性を確保し）、暗黙の情報共有を
極力避ける（連載第2回を参照）という方針があ
ります。この方針に沿った形で情報を共有した

注1） 最新版はGitHubリポジトリを使いタグを指定すること
でビルドできます。詳細は「kerlでGitHub版の Erlang
をインストールする」（http://qiita.com/jj1bdx/items/ 
4f7d7b5a53fcec32ab8d）を参照してください。

い場合は、原則として次の手法を採ります。

・	複数の関数の間で内部状態を共有する場合は、
明示的に関数の引数や戻り値の中に含めて渡
す注2。この典型的な例として、再帰による繰
り返し実行がある

・	複数のプロセスの間で情報を共有する場合は、
明示的にメッセージを送受信することで行う。
データベースのように多数のプロセスで情報
を共有する際は、共有する情報を内部状態と
して保持するプロセスを作り、当該プロセス
にメッセージで読み書きを明示的に指示する

　この参照透過性の確保を重視したデータの共
有手法には、プログラムを読みやすくし、バグ
を出にくくするという効果があります。しかし
その一方で、関数呼び出しやメッセージを介し
た1対1のやりとりの積み重ねとして処理を書
くのが冗長な場合もあります。
　複数の関数呼び出しにまたがる情報共有が必
要な一例として、「1つ前に実行した関数の内
部状態を使い演算をして結果を得て、その演算
によって変化した内部状態を次の演算に使うた
めに保存する」という作業があります。これを
実現するには、参照透過性を確保するプログラ
ミングスタイルでは関数に明示的な状態として

注2） Erlangでは参照渡しは行わないため、関数の引数や戻り値
の受け渡しでは、値をコピーする処理をします。

この連載ではプログラミング言語Erlangとその並行プログラミングについて紹介していきます。今回は参照透
過性の原則からあえて離れた暗黙の情報共有を可能にするErlangのプロセス辞書と、OTPのErlang Term 
Storage（ETS）という機能について紹介します（今回紹介予定だったOTPのデータベースMnesiaについては稿
をあらためて次回紹介の予定です）。

  Author    力武健次技術士事務所 所長 力武 健次（りきたけ けんじ） http://rikitake.jp/

第9回  プロセス辞書とETSによる暗黙のデータ共有

で学ぶErlang
並行プログラミング

http://www.k2r.org/gijyutsushi/
http://qiita.com/jj1bdx/items/4f7d7b5a53fcec32ab8d


128 - Software Design Dec.  2015 - 129

「1つ前の内部状態」を引数に与えて、「現在の
内部状態」を戻り値として得るという作業が必
要です。仮に内部状態を複数の関数実行の間で
どこか別の場所に置いておけるのであれば、内
部状態をその場所から読み出して演算処理をし
て書き込むという作業ができるので、プログラ
ミングは簡単になります注3。
　またほかの例として、ネットワークで言えば
ブロードキャストやマルチキャストなどの1対
多の通信では、1対1のやり取りの繰り返しで
は処理の記述が難解になり、また並列かつ並行
に実行できる処理が逐次処理となってしまうた

注3） たとえばOTPの疑似乱数モジュール randにおいては、
rand:uniform/{0,1}ではプロセス辞書に内部状態（rand:state()
という型）を書き込みますが、rand:uniform_s/{1,2}では内
部状態を関数の引数あるいは戻り値の中で明示的に受け渡
しをします。

め、速度の低下を招くことがあります。
　たとえばErlangの基本的なプログラミング
スタイルであるメッセージパッシングで複数の
相手にデータ共有を行う際は（図1）、それぞれ
の相手に確実に伝達しその記録が取れるという
利点の代償として、相手の数だけメッセージを
繰り返して送らなければなりません。一方、共
有メモリなど明示的でなく、書き込むのと読み
出すのと場所が同じということを利用して暗黙
の内にデータ共有をする際は（図2）、同一記憶
場所に対するアクセスが並行かつ並列に行える
限り速度を上げることができますが、その代償
として何のデータがいつ書かれたのかについて
は別途通知し、かつロックなどで排他制御をし
なければならなくなります。
　Erlangでは極力メッセージパッシングのスタ
イルを取るということはこの連載で繰り返し書

いてきました。しかし実際には、
Erlang/OTPでもおもに速度の
向上を目的として、暗黙の内に
データを共有する例外的なデー
タ構造（後述のプロセス辞書や
ETS）を使うことができるよう
になっています。ただし、これ
らの暗黙の共有を許容するデー
タ構造を使った場合、データ構
造に対しては破壊的代入を行う
ため、参照透明性はなくなって
しまいます。言い換えれば、デー
タ構造の中身を変更する前と後
の値を明示的に得ることができ
なくなるため、コードのデバッ
グは困難になります。また、暗
黙の共有を許すデータ構造では、
どのプロセスが書き込み、どの
プロセスが読み出すかのタイミ
ングを明確にしておかないと、
競合状態（race condition）が発
生して、予期しないバグに悩ま
されることになります。このよ

 ▼図1　メッセージパッシングによる共有

● メッセージパッシングによる共有では、
送る側は何（メッセージ）を送るかを相
手ごとに明示的に指定する必要がある。
言い換えれば何を送ったかの記録を確実
に取れる

● メッセージのやり取りの際には、誤り検
出や抜けた情報の再送が可能なプロトコ
ルを使うことで、相手に確実にメッセー
ジを送りかつその確認ができる

● メッセージだけを考えて複数の相手に情
報共有するには、仮に同じメッセージを
すべての相手に送るとすれば相手の数だ
け作業を繰り返さなければならないた
め、時間がかかるという欠点がある

 ▼図2　共有メモリを使ったデータの共有

共有メモリを使ったデータ共有は場所
（URL、メモリアドレスなど）だけを
指定し、データをその場所にいつ誰が置
くかは明示的にはわからない。そのため
確実なデータのやり取りには別途同期を
とったり一貫性を確保する排他制御（ロ
ックなど）のしくみが必要になる

● 共有メモリを使ったデータ
共有では、書き込む側は読
み出す相手の数に関係なく
一度だけ書き込めばよい

● 読み出す側はそれぞれ自由
なタイミングで読み出すこ
とができる。書き込む側の
一貫性さえ確保されていれ
ば読み出す処理は並行かつ
並列化できる

● この方式の欠点は、場所だ
けしかわからないので内容
が書き換わった場合は別途
メッセージパッシングなど
で通知する必要が出てくる
ことである

共有場所

第9回  プロセス辞書とETSによる暗黙のデータ共有



130 - Software Design

で学ぶErlang
並行プログラミング

うな理由により、Erlangのプログラミングでは
暗黙の共有を許容するデータ構造を必要もない
のに使うことは推奨されていません [6][7]。これら
の例外的なデータ構造は、いわば「黒魔術」として、
普段は使うべきでないものと筆者は考えます（と
はいえ、現実のプログラミングでは速度向上の
ために取らざるを得ない手法でもあります）。

プロセス辞書

　Erlangのプロセスでは、プロセスに属する
複数の関数間でのデータ共有のために、プロセ
ス全体で 1つだけプロセス辞書（Process 

Dictionary）というKey-value型データストア
（KVS）を使うことができます。
　プロセス辞書はプロセスの生成とともに作ら
れ、初期値は空です。キーと値それぞれに
Erlangの項（アトムだけでなくタプルやリスト
なども可）を取ることができます。プロセスが
終了するまでプロセス辞書は保持されますから、
複数の関数呼び出しにわたってプロセス内部の
状態を保持できます。これらの操作には組込み
関数（BIF）のget/{0,1}, put/2, erase/{0,1} 
, get_keys/0で操作できます。プロセス辞書
の中身は、pidがわかればBIFの process_
info(Pid, dictionary)として外部から取得す
ることもできます注4。
　リスト1に簡単なカウンタ（連載第3回を参照）
の例を示します。メッセージパッシングを使わ
ずput/2とget/1で書いているため、Erlangの
通常のプログラミングスタイルとはかなり違っ
た感じになっています。シェルから実行した例
を図3に示します。過去の連載で紹介したカウ
ンタと一見同じ動作をしますが、その内容はプ
ロセス辞書に書かれているため、同じプロセス
から呼ばれている関数からしか操作できないの

注4） process_info/{1,2}では、プロセス辞書の内容のコピーを作り、
それを戻り値として返します。そのため、大きなプロセス
辞書、あるいは大量のプロセスに対して実行した場合は、
BEAMのメモリ使用量が増大することでシステムの動作に
影響を及ぼすことが指摘されています（http://videlalvaro.
github.io/2015/05/erlang-process-dict.htmlを参照）。

が欠点です。Erlangの並行動作はプロセス単
位ですから、より実用的なものにするためには、
複数のプロセスからアクセス可能なデータ構造
を使う必要があります注5。

ETS：ノード内で使える
共有データ構造

　プロセス辞書が同一プロセス内でしか使えな
いのに対し、Erlang Term Storage（ETS）は、
仮想マシンBEAMに実装されているメモリ上

注5） もちろんカウンタの内容を含むプロセス辞書を持つプロセ
スに対して、メッセージパッシング等でやり取りすること
でほかのプロセスからカウンタの内容を読み書きすること
はできますが、その方法は本連載の過去の記事にて各種実
装として説明しているため今回は割愛します。別の言い方
をするなら、プロセス辞書を使った実装はプロセス内部の
状態の持ち方が変わるだけだとも言えます。

 ▼リスト1　プロセス辞書を使ったカウンタの例  
 （msgcounter_procdict.erlモジュール）

-module(msgcounter_procdict). 
関数名は連載第3回のmsgcounterモジュールに準じる
-export([start/1, stop/1, inc/1, dec/1, ｭ
zero/1, val/1]).
辞書内のカウンタのキーは{?MODULE, カウンタの名前}とする。
?MODULEはモジュール名(msgcounter_procdict)を示すマクロであ
る。名前を引数に取るカウンタを使えるようにしている
-spec start(term()) -> term().
start(Name) ->
    put({?MODULE, Name}, 0),
    Name.
名前を引数に取るカウンタを消す
-spec stop(term()) -> ok.
stop(Name) -> 
    erase({?MODULE, Name}),
    ok.
名前で指定したカウンタの値を1つ増やす
-spec inc(term()) -> integer().
inc(Name) ->
    New = get({?MODULE, Name}) + 1,
    put({?MODULE, Name}, New),
    put/2の戻り値は変更「前」の値なので明示的に変更後の値を返す
    New.
名前で指定したカウンタの値を1つ減らす
-spec dec(term()) -> integer().
dec(Name) ->
    New = get({?MODULE, Name}) - 1,
    put({?MODULE, Name}, New),
    New.
名前で指定したカウンタの値をゼロ(0)にする
-spec zero(term()) -> 0.
zero(Name) ->
    put({?MODULE, Name}, 0),
    0.
名前で指定したカウンタの値を返す
-spec val(pid()) -> integer().
val(Name) -> get({?MODULE, Name}).

http://videlalvaro.github.io/2015/05/erlang-process-dict.html


130 - Software Design Dec.  2015 - 131

で動作するKVSで、ETSのあるノードで動く
すべてのプロセスからアクセスできるようになっ
ています。この特徴によりプロセス間の情報共
有の速度を上げる方法の1つとして使うことが
できます。
　ETSでは複数の連想配列（テーブル）を持つ
ことができます。その上限値は既定値では約
1400です注6。各テーブルはOTPのetsモジュー
ル [8]に定義された関数を使って作成や消去をし
たり、テーブルの内容を読み書きできます。テー
ブルを作成したプロセスは「オーナープロセス」
とされ、オーナープロセスが終了すると作成さ
れたテーブルも消えます注7。各テーブルは作成
時に名前を付けたり、オーナープロセス以外の
アクセス権を定めることができます。
　ETSのテーブルのアクセス権には次の3つ
があります。既定値のprotectedを使うことで、
複数のプロセスが同時に書き込もうとすること
による競合を防ぐことができます。

・	private：オーナープロセスしか読み書きは
できない

・	protected（既定値）：書き込みはオーナープ
ロセスだけが可能だが、読み出しや検索は
ets:new/2で返されるテーブルID（整数ある
いは指定した名前）を知っていればノード内
のどのプロセスからもできる

・	public：テーブルIDを知っていればノード
内のどのプロセスからも書き込みと読み出
し双方ができる

　リスト2にmsgcounter_procdictモジュールと
同様の機能を持つカウンタの例を示します。ets

モジュールには多くの関数が用意されており、
このモジュールは実質的にはetsモジュールの
ラッパーとして書くことができています。

注6） ETSのテーブル個数はBEAM起動時に環境変数ERL_MAX_
ETS_TABLESを設定することで増やすことができます。

注7） ETSのテーブルを作成する関数ets:new/2にheirオプション
を付けることで、プロセス終了時にほかのプロセスをオー
ナープロセスにできます。また、ets:give_away/3という関
数を使うことで明示的に他のプロセスに所有権を移すこと
もできます。

 ▼図3　msgcounter_procdictモジュールの実行例

Eshell V7.1  (abort with ^G)　モジュールをロードする
1> l(msgcounter_procdict).
{module,msgcounter_procdict} 
シェルで管理しているプロセス辞書には何も入ってない
2> get().
[]
3> msgcounter_procdict:start(c1). 
1つめのカウンタc1を起動する
c1
4> msgcounter_procdict:start(c2). 
2つめのカウンタc2を起動する
c2
5> msgcounter_procdict:inc(c1).
2つのカウンタが独立しているのがわかる
1
6> msgcounter_procdict:dec(c2).
-1
7> msgcounter_procdict:inc(c1).
2
8> msgcounter_procdict:val(c2).
-1
9> get(). 
プロセス辞書の状態を見るとカウンタの状態が反映されている
[{{msgcounter_procdict,c1},2},ｭ
{{msgcounter_procdict,c2},-1}]
10> get_keys(). プロセス辞書のキーだけをリストとして列挙する
[{msgcounter_procdict,c1},ｭ
{msgcounter_procdict,c2}]
11> get({msgcounter_procdict,c1}). 
キーがわかれば同じプロセス内ならアクセス可能
2
12> self(). process_info/2で外部から様子をうかがえる
<0.36.0>
13> process_info(self(), dictionary).
{dictionary,[{{msgcounter_procdict,c1},2},
             {{msgcounter_procdict,c2},-1}]}
14> msgcounter_procdict:stop(c1). 
カウンタを停止（プロセス辞書から消去）
ok
15> msgcounter_procdict:stop(c2).
ok
16> get(). 消えているのがわかる
[]
User switch command 
ここで【CTRL】+【G】を押してノード内に別のシェルを立ち上げる
 --> ?
  c [nn]            - connect to job
  i [nn]            - interrupt job
  k [nn]            - kill job
  j                 - list all jobs
  s [shell]         - start local shell
  r [node [shell]]  - start remote shell
  q                 - quit erlang
  ? | h             - this message
 --> s ←新しくローカルシェルを起動する
 --> j ←ノード内のジョブのリストを見る
   1  {shell,start,[init]}
   2* {shell,start,[]}
 --> c 2 ←新しいシェルに切り替える
Eshell V7.1  (abort with ^G)
1> self(). この新しいシェルのpidは前のものとは違う
<0.46.0> 
2> process_info(pid(0,36,0), dictionary). 
前のシェルのpidを指定すればプロセス辞書の中身が見える
{dictionary,[{{msgcounter_procdict,c1},2},
             {{msgcounter_procdict,c2},-1}]}

第9回  プロセス辞書とETSによる暗黙のデータ共有



132 - Software Design

で学ぶErlang
並行プログラミング

　msgcounter_etsモジュールの各関数をシェル
から実行した例を図4に示します。カウンタは
プロセス辞書での実装と同様の動作をしますが、
大きな違いはオーナープロセスが存在している
限り、ノード内の他のプロセスからもアクセス
できることです。またets:update_counter/3と
いう更新の際の一貫性を確保した関数を使うこ
とで、同時にカウンタへのアクセスが複数のプ
ロセスからあってもデータが壊れないようになっ

ています注8。
　ETSにはその他の機能として、テーブル中
のエントリに対してマッチスペック（match 

specification）によるパターンマッチング検索
を行う機能や、テーブルをファイルやDETS

（ディスクベースのETS同様のKVS）[9]と相互
に変換する機能など、インメモリデータベース
として使うために十分な機能がそろっています。
ただし、ETS自身はデータの自動複製の機能
などはないため、トランザクションかつ耐障害
性の必要なデータベースを組むには別のしくみ
が必要です注9。

プロセス辞書とETSの違い

　プロセス辞書とETSには次に述べる実装上
の違いがあります [10]。

・プロセス辞書は各プロセスが占めるプロセスヒー
プ内に存在し、ガーベッジコレクション（GC）
の対象となる。これは実行速度に影響する。
一方、ETSはGCの対象にならない

・プロセス辞書の読み書きには内容のコピーを
必要としない。一方、ETSのテーブルは読み
書きに内容のコピーを必要とする。これは実
行速度に影響する

・プロセス辞書は当該プロセスが終了すると消
える。一方、ETSではテーブルのオーナープ
ロセスが終了してもほかのプロセスに所有権
を渡すことでテーブルの中身を保持し続ける
ことができる

・プロセス辞書の内容は単純なキーの一致か不
一致でしか検索できず、ほかのプロセスに割
り込まれずに読み出しと書き込みを一度の操

注8） ETSで保証されているのは、テーブルの各要素の更新中に
は他のプロセスが影響することがなく、更新が完了するか
失敗するかのどちらかであることです。ただし、ETSは本
質的には暗黙の内にデータを共有しているデータ構造です
から、相互排除問題を解決するには、別途ロックなどの排
他制御を行う必要があります。

注9） 耐障害性を確保するためには外部のデータベースバックエ
ンドを使うこともできますが、Erlang/OTPではMnesia
（http://erlang.org/doc/man/mnesia.html）と い う 分 散
データベースが用意されています（次回紹介予定）。

 ▼リスト2 ETSを使ったカウンタの例 
　　　　（msgcounter_procdist.erlモジュール）

 関数名は連載第3回のmsgcounterモジュールに準じる
-module(msgcounter_ets).
-export([init/0, cleanup/0,
         start/1, stop/1, inc/1, dec/1, ｭ
zero/1, val/1]).
 MODULEはモジュール名（msgcounter_ets）を示すマクロ。ETSのテー
ブル名は?MODULEとする。カウンタを列挙するETSテーブルを初期化する。
アクセス権はpublicなのでどのプロセスからも読み書きできる。ETSテー
ブルを検索するキーは、keyposオプションで位置を指定できる（既定値
は1でタプルの最初の要素）
-spec init() -> atom().
init() ->
    ets:new(?MODULE, [named_table, public]).
カウンタを列挙するETSテーブルを消去
-spec cleanup() -> true.
cleanup() ->
    ets:delete(?MODULE).
 名前を引数に取るカウンタを使えるようにする
-spec start(term()) -> term().
start(Name) ->
    ets:insert(?MODULE, {Name, 0}).
 名前を引数に取るカウンタを消す
-spec stop(term()) -> ok.
stop(Name) -> 
    ets:delete(?MODULE, Name).
 名前で指定したカウンタの値を1つ増やす。ここで登場する
ets:update_counter/3はテーブル内のエントリに存在するタプルの指
定した位置の要素をカウンタとして操作する。操作中は他のプロセスは
テーブルにアクセスできないため値の更新に関する一貫性が保たれる
-spec inc(term()) -> integer().
inc(Name) ->
    ets:update_counter(?MODULE, Name, {2, ｭ
1}).
 名前で指定したカウンタの値を1つ減らす
-spec dec(term()) -> integer().
dec(Name) ->
    ets:update_counter(?MODULE, Name, {2, ｭ
-1}).
 名前で指定したカウンタの値をゼロ(0)にする
-spec zero(term()) -> 0.
zero(Name) ->
    ets:insert(?MODULE, {Name, 0}),
    0.
 名前で指定したカウンタの値を返す
-spec val(pid()) -> integer().
val(Name) ->
    ets:lookup_element(?MODULE, Name, 2).

http://erlang.org/doc/man/mnesia.html


132 - Software Design Dec.  2015 - 133

作で行うことができない。ETSではパターン
マッチングを使って検索したり、fold演算（連
載第3回を参照）や他のプロセスに割り込まれ
ないカウンタとして使うなど、複雑な操作を
行うことができる

・プロセス辞書の内容はノードが異常停止した
際にエラーログに吐き出される。一方、ETS

の内容はノードが異常停止した際には、オーナー
プロセスが停止するため、消滅してしまう。
前者はエラーログの量が膨大になり、後者は
情報の消失のために、いずれの場合もデバッ
グが困難になるという問題が起きる。これは
参照透過性を犠牲にした破壊的操作の結果と
しては不可避であると筆者は考える

 ▼図4　msgcounter_etsモジュールの実行例

Eshell V7.1  (abort with ^G)
1> l(msgcounter_ets).
{module,msgcounter_ets} ets:i/0はノード内にあるETSテーブ
ルの概要を表示する。複数のテーブルがすでに存在していることがわかる
2> ets:i().
 id              name              type  ｭ
size   mem      owner
 ------------------------------------------ｭ
----------------------------------
 1               code              set   ｭ
278    13029    code_server
（中略）
 inet_db         inet_db           set   ｭ
29     576      inet_db
 inet_hosts_byaddr inet_hosts_byaddr bag   ｭ
0      305      inet_db
 inet_hosts_byname inet_hosts_byname bag   ｭ
0      305      inet_db
 inet_hosts_file_byaddr inet_hosts_file_ｭ
byaddr bag   0      305      inet_db
 inet_hosts_file_byname inet_hosts_file_ｭ
byname bag   0      305      inet_db
ok
 ets:i/1で（アクセス権があれば）各テーブルの中身を見られる
3> ets:i(inet_db).
<1   > {res_usevc,false}
<2   > {res_alt_ns,[]}
<3   > {res_hosts_file,"/etc/hosts"}
<4   > {tcp_module,inet_tcp}
<5   > {udp_module,inet_udp}
 ……（中略）……
<28  > {res_resolv_conf_tm,0}
<29  > {res_hosts_file_info,undefined}
EOT  (q)uit (p)Digits (k)ill /Regexp -->q
 ←インタラクティブなので【q】を入れて止める
ok
 カウンタを格納するETSテーブルを作る
4> msgcounter_ets:init().
msgcounter_ets
 ETSテーブルのリストを見ると、msgcounter_etsが入っていることがわかる
5> ets:all().
[msgcounter_ets,8207,file_io_servers,inet_ｭ
hosts_file_byaddr,
 inet_hosts_file_byname,inet_hosts_ｭ
byaddr,inet_hosts_byname,
 inet_cache,inet_db,global_pid_ids,global_ｭ
pid_names,
 global_names_ext,global_names,global_ｭ
locks,4098,1,ac_tab]
 カウンタを起動する
6> msgcounter_ets:start(c1).
true
7> msgcounter_ets:start(c2).
true

 カウンタが正常動作しているのがわかる
8> msgcounter_ets:inc(c1).
1
9> msgcounter_ets:dec(c2).
-1
10> msgcounter_ets:inc(c1).
2
11> msgcounter_ets:val(c2).
-1
 ETSテーブルの中では次のように表現されている
12> ets:i(msgcounter_ets).
<1   > {c1,2}
<2   > {c2,-1}
EOT  (q)uit (p)Digits (k)ill /Regexp -->q
 ←【q】を入力して止める
ok
 ets:info/1ではETSテーブルの諸情報を見ることができる
13> ets:info(msgcounter_ets).
[{read_concurrency,false},
 {write_concurrency,false},
 {compressed,false},
 {memory,319},
 {owner,<0.37.0>},
 {heir,none},
 {name,msgcounter_ets},
 {size,2},
 {node,nonode@nohost},
 {named_table,true},
 {type,set},
 {keypos,1},
 {protection,public}]
14>
User switch command ここでノード内に新しいシェルを起動する
 --> s ← シェルを起動
 --> j ← ジョブのリストを見る
   1  {shell,start,[init]}
   2* {shell,start,[]}
 --> c 2 ← 新しいシェルに制御を移す
Eshell V7.1  (abort with ^G)
 プロセス辞書の場合と違いカウンタの値が引き継がれる
1> msgcounter_ets:inc(c1).
3
 カウンタを停止（ETSテーブルからエントリを削除）する
2> msgcounter_ets:stop(c1).
true
3> msgcounter_ets:stop(c2).
true
4> ets:i(msgcounter_ets).
 エントリがなくなっているのがわかる
EOT  (q)uit (p)Digits (k)ill /Regexp -->q
 ←【q】を入力して止める
ok
5> msgcounter_ets:cleanup(). ETSテーブルを消去する
true

第9回  プロセス辞書とETSによる暗黙のデータ共有



134 - Software Design

で学ぶErlang
並行プログラミング

まとめ

　今回はErlangのプロセス辞書ならびにOTP

のETSという、2つの暗黙のデータ共有の手
法について紹介しました。繰り返しますが、プ
ロセス辞書もETSもErlang/OTPの大原則で
ある非破壊代入や参照透明性といった特徴をあ
えて（おもに実行速度の向上のために）曲げて実
装されている機能ですから、使う際は競合状態
や相互排除問題が生じないかどうかについて細

心の注意を払って使うことが必要です。
　次回はより高度なOTPのデータベースであ
るMnesiaについて紹介する予定です。

ソースコードとサポートページ

　連載の記事で紹介したソースコードなど
GitHubのリポジトリに置いています（https://

github.com/jj1bdx/sd-erlang-public/）。どうぞ
ご活用ください。｢

参考文献
[1]	 http://www.erlang.org/news/92
[2]	 http://erlang.org/pipermail/erlang-questions/2015-October/086285.html
[3]	 http://erlang.org/pipermail/erlang-questions/2015-October/086443.html
[4]	 http://erlang.org/pipermail/erlang-questions/2015-October/086474.html
[5]	 http://www.erlang.org/download/OTP-17.5.6.4.README
[6]	 Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams,"Concurrent Programming in Erlang" (Second 

Edition), Prentice-Hall,1996, ISBN-10: 0-13-508301-X, p. 132 (Section 9.6, "ProcessDictionary").
[7]	 Fred Hébert, "On the Use of the Process Dictionary in Erlang",2011-03-31,http://ferd.ca/on-the-use-of-the-process-

dictionary-in-erlang.html
[8]	 http://erlang.org/doc/man/ets.html
[9]	 http://erlang.org/doc/man/dets.html
[10]	 Ulf Wiger, erlang-questions mailing list, 2007-04-30,http://erlang.org/pipermail/erlang-questions/2007-

April/026330.html

Linuxのコンテナ技術の1つであるDockerは、迅速なWebサー
ビスの展開に必要不可欠なものであり、多くのIT企業が注目して
いる重要なものである。
本書では、そのしくみを明らかにし、まずDockerをGitHubと連携
したデプロイ方法を基礎から解説する。効率の良いデプロイを実
現するDockerfileの書き方や管理ツールであるkubernetesとの
連携方法、レッドハット社のAtomicHostでの使い方など、最新か
つ定番的なノウハウを盛り込んだ実践的な入門書である。

中井悦司 著
B5変形判／200ページ
定価（本体2,680円＋税）
ISBN 978-4-7741-7654-3

・インフラエンジニア
・ソフトウェア開発者
・クラウドエンジニア

https://github.com/jj1bdx/sd-erlang-public/
http://www.erlang.org/news/92
http://erlang.org/pipermail/erlang-questions/2015-October/086285.html
http://erlang.org/pipermail/erlang-questions/2015-October/086443.html
http://erlang.org/pipermail/erlang-questions/2015-October/086474.html
http://www.erlang.org/download/OTP-17.5.6.4.README
http://ferd.ca/on-the-use-of-the-process-dictionary-in-erlang.html
http://erlang.org/doc/man/ets.html
http://erlang.org/doc/man/dets.html
http://erlang.org/pipermail/erlang-questions/2007-April/026330.html


Dec.  2015 - 135

先日、Linux.Wifatchというマルウェア（？）が家庭用ルータに侵入し勝手に設定を書き換え、セキュリ
ティを高めていたという報道がなされました。善意のハッカーの登場ということで注目を集めた事件で
したが、少し冷静にこの事件を分析してみると、IoTのセキュリティには、インターネット黎明期や
Webアプリケーション黎明期と同じような問題をはらんでいることが見えてきます。

マルウェア？　
Linux.Wifatch

　先日、Twitterで「善意のハッカー」が脆弱性のあ
る家庭用ルータを勝手に書き換え、セキュリティを
高めていたという話題が流れていました。

　GIGAZINE
　「1万台ものルーターを何者かが勝手にハックし

てセキュリティを高めていたことが発覚」注1

　非常に興味深いので、情報ソースであるSyman 

tec Official Blog注2の該当の記事を詳しく読んでみ
ました。ここで説明されているLinux.Wifatchは、
家庭用LinuxルータやIoT製品などに侵入し、その
侵入先のシステムをコントロールするというマル
ウェアで、機能的にはこれまで何度となく聞いてき
た典型的なボット型マルウェアと言えるでしょう。
そういう意味ではちまたに溢れるマルウェアの1つ
ですが、ただし、その目的があまり聞いたことのな
いものでした。その目的とは、

　感染したルータやIoT製品のセキュリティを高める

だったのです。

　ここまで読んで、頭の中にたくさんのクエスチョ
ンマークが浮かんだ方もいるかと思いますので、以
下にもう少し整理してみます。
　ただし、筆者はこのマルウェア（善意のソフト
ウェアですので「マルウェア」と呼ぶのは不適当かも
しれませんが）の目的の良し悪しではなく、技術的
に興味深い部分をクローズアップしていきます。
　Symantec社のサイトのマルウェア情報注3によれ
ば、Linux.Wifatchはバックドア型トロイの木馬で、
Linuxを搭載しているルータに侵入／感染します。
Linux.Wifatchはシステムに侵入したらバックドア
を作り、C&C（Command and Control）サーバに接続
し、感染先ルータをコントロール下におきます。発
見したのは2015年1月とのことです。
　経済誌Forbesのサイト注4によれば、少なくとも
10,000台のルータがLinux.Wifatchに感染している
と見積もられています。
　ルータをコントロール下において何をしているか
と言えば、徹底したセキュリティ強化のためのセッ
トアップです。Symantec社のサイトの情報を読んで
いてわかったことは、「Linux.Wifatchに感染した
ルータは、Linuxセキュリティとしてやるべきことを
ほぼ一通り行われているので、かなり安全性の高い

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第二七回】 

すずきひろのぶ 
suzuki.hironobu@gmail.com

注1）	 http://gigazine.net/news/20151002-hacked-routers-secure/
注2）	 Symantec Official Blog“Is there an Internet-of-Things vigilante out there?”2015年10月1日	 	

http://www.symantec.com/connect/blogs/there-internet-things-vigilante-out-there
注3）	 https://www.symantec.com/security_response/writeup.jsp?docid=2015-011216-2314-99
注4）	 http://www.forbes.com/sites/thomasbrewster/2015/10/01/vigilante-malware-makes-you-safer/

同じ轍を踏まないために。IoT時代に向けてできること

http://gigazine.net/news/20151002-hacked-routers-secure/
http://www.symantec.com/connect/blogs/there-internet-things-vigilante-out-there
https://www.symantec.com/security_response/writeup.jsp?docid=2015-011216-2314-99
http://www.forbes.com/sites/thomasbrewster/2015/10/01/vigilante-malware-makes-you-safer


136 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

ルータになっている」ということです。どんなことを
行われていたのか、次にいくつか例を挙げます。

●●ルータのファイアウォール機能を強化し、外部

からの通信をブロックし安全性を高める
●●強制的にパスワードを強化する設定にする
●●実行権限を整理して安全な設定にする
●●不必要なサービスを停止／削除する
●●セキュリティ／アップデートを施す
●●その他、多くのセキュリティ強化のためのチュー

ニングを行う

　しかも、意図的に telnetポートは開いていて、そ
こに telnetで接続するであろうルータの持ち主に次
のような内容のメッセージを表示します。
　「これ以上感染しないようにtelnetは使えなくし
ています。telnetを使用禁止にし、telnetのパスワー
ドを変更し、そしてファームウェアをアップデート
してください。」

まだまだ存在するデフォ
ルトのままのパスワード

　後日、Linux.Wifatchの作者はSymantec Official 

Blogのインタビューで次のようにを答えています。

　「Linux.Wifatchは侵入するために巧妙なバック

ドアやゼロデイアタックなどは使っていない」

　「telnetなどのパスワードに簡単なもの（“pass 

word”など）を試しているだけ」

　出荷時の共通の管理者アカウント名と共通のパス
ワード（すべての製品にデフォルトで、アカウント
“admin”、パスワード“password”と設定しているよ
うなもの）にしたまま販売しているネットワーク製
品が、今でも多いことが容易に想像できます。
　感染国の割合が示唆に富む内容で、表1のように
なっています。
　ヨーロッパの先進国や日本は上位に入っていませ
ん。急速に経済発展を遂げているブラジル、ロシ
ア、インド、中国をまとめてBRICsと呼びますが、

このリストには、そのうちの3つが入っています。
ロシアの代わりにベトナム、トルコといった、やは
り急速に力をつけてきている国が入っています。
　インターネットにあるネットワーク機器の脆弱性
をデータベース化しているSHODAN注5を使って検
索してみれば、デフォルトのパスワードのままの
ルータに関する傾向がつかめるかもしれません。そ
こでSHODANで“router default password”という
3つのキーワードで検索してみました。
　国別にはトップ5はアメリカ、インド、中国、ア
ルゼンチン、サウジアラビアという並びになりまし
た。アプリケーション／サービスに関してのトップ
はダントツで telnetでした。組織別のデータを見る
と、先ほどの国にあるISPに連動しています。
　日本でもそうですが、普通はインターネットサー
ビスを契約した際、ISPに接続するルータはISPが
提供する機材であるケースがほとんどです。ですか
ら、ISP単位でネットワーク単一機種ルータが稼動
しており、そこに脆弱性があれば（この場合は単一
のログイン名と単一のパスワードですが）、このよ
うな結果になると考えるのが合理的だと思います。
　つまり、インターネットが先行して普及した国の
多くは、すでにこのような基本的なセキュリティに
関しては、経験を積んでおり慎重になっていると考
えていいと思います。たとえば、日本国内の家庭用
ルータも、現在ではデフォルトパスワードが1台1

台異なるようになっています。

◆◆表1　Linux.Wifatchの感染国の割合

国名 割合

中国 32％

ブラジル 16％

メキシコ 9％

インド 9％

ベトナム 7％

イタリア 7％

トルコ 7％

韓国 5％

アメリカ 5％

ポーランド 3％

注5）	 https://www.shodan.io/

https://www.shodan.io/


Dec.  2015 - 137

【第二七回】 同じ轍を踏まないために。IoT時代に向けてできること

問題は
ルータだけではない

　しかし、インターネットに接続しているLinux

ベースの機材はルータだけではありません。今や家
電製品でもLinuxベースの製品は多々あります。
ハードディスク・レコーダーなどの取扱い説明書を
見てみると、最後にGPLライセンスが載っている
ことも、そんなに珍しいことではありません。
　家電製品がLinuxベースというより、中身がデス
クトップPCやサーバと区別がつかないものもあり
ます。広く出回っているディストリビューションに
少し手を入れただけの製品でも十分に動くので、そ
れで出荷しているものもかなりあるかと思います。
そして、そのような機材が一般家庭に設置され、イ
ンターネットに直接接続されて、簡単に乗っ取られ
てしまうという状況は否定できないようです。
　SHODANでの検索ランキングの上位に顔を出す
Dreambox注6というネットワーク側からアクセスで
きる装置があります（写真1）。有料テレビや衛星テ
レビの番組を見るために使われるセット・トップ・
ボックスだそうで、スペイン、ラトビア、スウェー
デン、ドイツなどおもにヨーロッパ方面で使われて
いるようです。
　インターネットの上のブログなどを参考にする
と、どうやらDreamboxのLinuxシステムのrootが
単一パスワードになっているようです。もちろん、
ユーザは本来rootのパスワードは知ることができ
ません。しかし、ハードウェアを手に入れシステム
のパスワードファイルを取り出し、パスワードをク
ラックしてしまえば、rootでログインできるように
なってしまいます。英数字のみからなる6文字程度
のパスワードは、今日の計算機の能力を使えば正し
い値を見つけるのは難しいことではありません。
　SHODANの情報を見ると、このボックスは
telnet経由でアクセス可能なようです。そして、検
索ランキングが上位にあるということは、かなりの
回数、興味をもって検索されているようです。この

状況を見る限りデフォルトのパスワードが流出して
いると考えて良いのかもしれません。
　どこかで見たような、これまでと同じ問題であっ
ても、これまでの利用範囲ではなく、新しい分野の
新しい製品で問題が繰り返し発生していく様子が、
ここから見てとれます。

IoTとLinux

　組み込みLinuxはIPv4/IPv6に強く、ライセンス
の関係もあって、大量に使われるIoT製品には向い
ているようです。また、Raspberry Piに代表される
ような、CPUがARMベースの小さなLinux Boxが
脚光を浴びています。半導体メーカー最大手の
Intel社もIoT向けのシステムEdison用のLinux 

Development Kitを配布しています。今後、IoTの分
野で組み込みLinuxがさらに大きな存在になってい
くでしょう。
　しかし、Linuxは、スーパーコンピュータから
IoTまで基本的に同一アーキテクチャです。つま
り、これらの製品でセキュリティを作り込もうとす
ると、必要とする基礎知識はスーパーコンピュータ
でも、IoTでも同じなのです。
　これまで組み込みはハードウェアの制限や、その
制限されたハードウェアで動くソフトウェアでの制
限がありました。ですので、まずは最小限の機能を
載せるのが精一杯でした。しかし、今やハードウェ
アには十分な処理能力と容量があり、何か便利そう
な機能があれば容易に載せておけます。一方で、1

注6）	 http://www.dream-multimedia-tv.de/

◆◆写真1　有料テレビや衛星テレビのためのチューナー◆
             Dreambox

（出典：https://en.wikipedia.org/wiki/Dreambox）

http://www.dream-multimedia-tv.de/
https://en.wikipedia.org/wiki/Dreambox


138 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

なしにインターネットに接続するような環境が当た
り前のようにあったので、自分のPCのフォルダを
全世界に公開するなんていうのも平気でありました。
全世界とまではいかなくても、ケーブルテレビ会社
のネットワーク経由でインターネットに接続すると、
マンションが1つのLANになっていて、隣の家の
フォルダが見えるといったこともありました。
　高度と言うほどではない、それまでのネットワー
ク技術者にとって当たり前のような、ちょっとした
常識レベルのセキュリティすらも、新しく参入して
きたグループ（ソフトウェアベンダ、ISP、ユーザ）
には伝わっていませんでした。
　新規参入者には、「最先端」であるネットワーク技
術を見よう見まねでもかまわないので取り入れるこ
とが最優先だったとしか筆者には思えません。

Webアプリケーションの経験

　初期のWebアプリケーションも状況はひどいも
のでした。とにかくWebサービスのニーズは高い
ものですから、どんどん新規参入してきました。し
かし、技術を学ぶのは一朝一夕にできるものではあ
りません。何が起こったかというと、雑誌や本に書
いてあるコードを見よう見まねで取り入れました。
　雑誌や本において、サンプルコードは、理解を促
進するために煩雑なエラー処理やセキュリティ機能
などは省き、本質的な部分のみを示すのが一般的で
す。さらにOSの持つ機能は知っていることを前提
に、説明を省いていることがほとんどです。そのた
め、WebサーバがUNIXのとき、OSとしてUNIXの
持つ実効ユーザID／実効グループIDがどう作用す
るのかなど基本的な理解がないままプログラミング
し、適切なアクセス管理ができていないこともしば
しばでした。
　コマンドインジェクションやSQLインジェク
ションなど、ユーザ入力を直接実行系に渡してしま
い、問題を引き起こすようなことも普通に発生しま
す。コンパイラを勉強すると必ず学ぶTombstone 

diagram（あるいはT-diagramsとも呼ぶ）の知識があ
れば、別言語体系で入力させ、変換したあとに実行
するといった知恵も出てきたのかもしれません。

つ1つの機能を吟味して、安全性を高める作業をし
なければなりません。しかし、何が起こるかを想定
し安全性を高めるのは、技術的にも時間的にもたい
へんコストのかかる作業です。その安全性とコスト
のバランスをうまく取るのは至難の技と言えます。
　ましてやまだ普及期にも届かないIoT技術です。
十分なノウハウがたまっているとは言いかねます。
また、組み込み系雑誌を読んでいてもIoT特集とし
てネットワークからアクセスできるアプリケーショ
ンの作り方を説明していますが、その安全性に対す
る説明はほとんど省かれています。紹介というレベ
ルですのでしかたのないことかと思いますが、その
背景にあるべき安全性に対する考え方まで伝わって
いるかどうかたいへん不安です。

Windows 95の悲劇再び？

　インターネットが一般に普及したのはWindows 

95以降と言われています。それまでインターネッ
トを活用していたのは、大手企業や研究者など
UNIXシステム、とくにUNIXワークステーション
を使うようなユーザが中心でした。
　インターネットのセキュリティ脅威は、1988年の
モリスワームが引き起こした大規模な通信障害以
来、常に懸念事項です。またインターネット上の通
信は暗号化しない限り安全性が保てないことも、す
でにそれまでのインターネットユーザには常識でし
た。また、外部から不正に接続されないようにフィ
ルタリングをする、あるいは接続管理をするといっ
たことも当たり前のようにされていました。もちろ
ん、人間が管理する以上、今も昔も間違いや失敗は
ありましたし、そこから生じるセキュリティ上の問
題も、今も昔も本質的には変わりがありません。
　ところが、Windows 95の登場によって引き起こさ
れた状況は、ちょっとそれとは異なります。Windows 

95/98のTCP/IPの能力はLANを前提にして作ら
れています。フォルダをLANに公開するのは簡単
で、アクセスするにもパスワードは必須ではなく、
LANにWindows 95/98をつなげばアクセスできる、
「誰でも簡単につなげられる」ものでした。
　さらに当時は、ファイアウォールのような機能も



Dec.  2015 - 139

【第二七回】 同じ轍を踏まないために。IoT時代に向けてできること

　しかし、現実にはこのような教養とも言える基礎
知識はWebアプリケーション作成の範囲から追い
出されていて、別な知識として学ぶ必要がある体系
になっています注7。
　Webアプリケーション作成の現場だけではなく、
レンタルサーバサービスの管理側が実行権限とファ
イルアクセス権限の関係性を理解できていないため
にWebサーバとコンテンツマネージメントシステ
ムの不整合が発生し、その間

かんげき

隙をついてユーザサイ
トが第三者によって改ざんされたという事例もあり
ます注8。
　しかしながら、このような苦い経験を経て、ベス
トプラクティスとしてコミュニティの中に知識とし
て溜まり、少しずつではあるのですがセキュリティ
が改善してきてはいるのです。

IoTで
繰り返さないために

　IoTでは、少なくとも組み込みエンジニアが持っ
ている知識と、ネットワーク技術者の知識に加え、
これまでのインターネット上で繰り返されてきたセ
キュリティ侵害の知識が必要になります。
　そうでなければ、Windows 95/98のころにあった
PCからのインターネット利用の立ち上がり期での
トラブルや、Webアプリケーション立ち上がり期の
トラブルが、今度はこれから立ち上がるIoTで繰り
返されることになるでしょう。

これだけはほしい
IoTセキュリティ機能

　ルータの安全性を高めていたLinux.Wifatchです
が、本来はこのようなことがないようにベンダがき
ちんとやるべきなのは言を待ちません。
　では、LinuxベースのIoTを想定し、ネットワー
ク的にどのような形が望ましいかを考えてみます。

①工場出荷時のパスワードは個別にし、単一のパ

スワードなどは使わない

②パスワード設定が必要な部分は自動的にパス

ワードを生成するか、あるいはユーザの入力す

るパスワードの強度をチェックする

③必要のないポートはデフォルトでフィルタリン

グしておき、使うポートのみ明示的に通過させ

るようにする

④クライアント機能に徹しサーバ機能は持たせな

いで、通知にはプッシュ機能を使う

⑤通信は電子認証が可能でかつ暗号経路が可能な相

手（たとえばTLSやVPN）としか行わない

⑥アップデート通知を受け取り、ユーザによらな

い自動アップデートを行う

⑦内部で動くプログラムは何でもrootではなく、

適切なユーザ権限を割り当て、万が一のセキュ

リティ侵害でも被害を最小限に止める

⑧SELinuxを有効にし、意図しないアプリケー

ションの導入などを許さない

⑨正当な権限をもたないアクセスが頻繁にあった

場合、通信を禁止にする

　普通、スマートフォンはサーバの機能を持たず
プッシュ通知により相手からの情報をもらうという
形にしていますが、このような形にすることでセ
キュリティを高めることができます。
　この手のマルウェアのノード（ボット）管理は、
プッシュで命令を送ったり、通信に暗号を使ったり
など解析が難しいメカニズムを採用しているものも
あります。裏を返せばセキュリティの問題がどこに
あるのかがわかっている人たちが作るので、利用さ
れている技術は皮肉というか当然というか可用性が
高く安全性を考慮するものになっているのでした。
　筆者はLinux.Wifatchの作者のようなやり方には
賛同できませんが、上記のリストもLinux.Wifatch

の作者が考えている具体的な対策と重なるところが
多々あります。必要なセキュリティを考えれば、基
本は同じ、ということなのかもしれません。s

注7）	 安全なウェブサイトの作り方　https://www.ipa.go.jp/files/000017316.pdf
注8）	 paperboy＆co.レンタルサーバサービス「ロリポップ！レンタルサーバー」　「第三者によるユーザーサイトの改ざん被害に関するご報告」

2013年9月9日　http://lolipop.jp/info/news/4149/

https://www.ipa.go.jp/files/000017316.pdf
https://lolipop.jp/info/news/4149/


140 - Software Design

　今回のテーマは「図」です。図はドキュメント
を書くうえで欠かせない要素の1つです。文章
だけではイメージがつかみづらいことも、図を
使って説明することでドキュメントを読む人に
理解してもらいやすくなります。そこで今回は、
Sphinxにおける図の使い方を取り上げます。

　ドキュメンテーションツールの中にはMicrosoft 

Wordのように作図機能を持つものがあります
が、Sphinxが利用しているreStructuredTextに
は、それ単体で図を作る機能がありません。
　reStructuredTextで図や画像を扱いたい場合
はあらかじめ外部のグラフィックツール（ペイン
トなど）を利用して画像ファイルを作成してお
き、figureディレクティブ（本連載第3回で紹介）
を使ってドキュメントの中に画像を埋め込みま
す。

今回のテーマ

figureディレクティブ

　表1に示すように、figureディレクティブに
は画像の大きさやリンクに関するオプションが
いくつかあります。
　たとえば、scaleオプションを使って画像の大
きさを50％にリサイズする場合は、次のように
指定します。

　オプションは、figureディレクティブの次の
行に「:オプション名: 設定値」と指定します。

　figureディレクティブは一般的な画像形式に
対応しているため、さまざまなツールで作成し

 figureディレクティブの使用例 
.. figure:: 画像ファイル.png

   サンプル画像   ←ここはキャプションになる 

 scaleオプションの使用例 
.. figure:: images/sphinx-logo.png
   :scale: 50%

   Sphinxのロゴ

外部のツールで図を 
作成する

Sphinxで始める
 ドキュメント作成術

ドキュメントに図を入れよう
̶̶さまざまなグラフィックツールとの連携

第9回

小宮 健  Komiya Takeshi　 Twitter  @tk0miya

Sphinxで始める
 ドキュメント作成術

オプション名 概要
align 画像の表示位置を left、center、rightから選択する
alt 画像の説明を指定する。HTMLのalt属性などに利用される
width 画像をリサイズする。画像の幅をピクセル単位で指定する（例：120px）
height 画像をリサイズする。画像の高さをピクセル単位で指定する（例：120px）
scale 画像をリサイズする。画像の大きさを％で指定する（例：50%）
target 画像にリンクを張る。リンク先のURLを指定する

 ▼表1　figureディレクティブのおもなオプション



140 - Software Design Dec.  2015 - 141

た図を利用できます。ここでは、よく使われて
いるツールを紹介します。

Cacoo

　Cacoo注1はNulab社の提供するオンライン・ド
ローイングツールです。ブラウザを利用して自
由に作図できます（図1）。
　Cacooで作成した図をSphinxドキュメントに
埋め込むには、Cacooのエクスポート機能を利
用して、作成した図を画像ファイルに変換しま
す（図2）。エクスポート機能はさまざまな形式
の画像ファイルへの変換が可能ですが、PNG形

注1） http://cacoo.com/

式の画像ファイルとしてSphinxプロジェクト内
に保存すれば、figureディレクティブを使うこ
とでドキュメントに埋め込めます。

 ■ sphinxcontrib-cacoo
　エクスポート機能を使うとCacooの図をSphinx

ドキュメントに埋め込めますが、図を更新する
たびにエクスポートを行わなくてはならないた
め、ドキュメントへの反映には手間がかかりま
す。
　このエクスポートの手間を軽減するSphinx拡
張が、sphinxcontrib-cacoo注2です。sphinxcon 

注2） https://pypi.python.org/pypi/sphinxcontrib-cacoo

ドキュメントに図を入れよう
̶̶さまざまなグラフィックツールとの連携 第9回

figureディレクティブとimageディレクティブ
　Sphinxの画像系ディレクティブには、�gureディ
レクティブのほかに、imageディレクティブが用
意されています。imageディレクティブは�gure
ディレクティブと同様に、引数に画像へのパスを
指定して画像をドキュメントに埋め込みます。

　2つのディレクティブには次のような違いがあ

ります。

・imageディレクティブはキャプションを持たな
い（設定できない）
・figureディレクティブはブロック要素（別の段落
になる）として扱われるが、imageディレクティ
ブはインライン要素（テキストの間に入れられ
る）として扱われる

　用途に合わせて2つのディレクティブを使い分
けると良いでしょう。

 imageディレクティブの使用例 
.. image:: 画像ファイル.png

COLUMN

 ▼図2　Cacooのエクスポート機能 ▼図1　Cacooでの作図

http://cacoo.com/
https://pypi.python.org/pypi/sphinxcontrib-cacoo


142 - Software Design

trib-cacooはCacoo APIを利用して図のエクス
ポートを自動的に行うため、手動でエクスポー
ト操作を行うことなくCacooで作成した図をド
キュメントに埋め込めます。
　また、タイムスタンプを使って図の更新を
チェックしているので、Sphinxの変換時に図が
更新されていれば、自動的に再エクスポートを
行い最新の図を取り込みます。
　sphinxcontrib-cacooはサードパーティ製の
Sphinx拡張です。利用するには次のようにして
インストールを行う必要があります。

　そして、conf.pyでsphinxcontrib-cacooを有効
にします。同時に、CacooのAPIキーをcacoo_

 sphinxcontrib-cacooのインストール 
$ pip install sphinxcontrib-cacoo

apikeyにセットします。

　CacooのAPIキーは、Cacooの設定画面の
APIキーメニュー（図3）から生成します。
　図を埋め込むには、figureディレクティブの
代わりにcacoo-figureディレクティブを使いま
す。cacoo-figureディレクティブの引数にはCa 

cooで作成した図のURLを指定します（リスト

1）。
　cacoo-figureディレクティブは figureディレ
クティブとの互換性があり、キャプションを指
定できるほか、scaleやaltなどのオプションに
も対応しています。

 sphinxcontrib-cacooの設定（conf.py） 
extensions = ['sphinxcontrib.cacoo']
cacoo_apikey = 'your apikey'

Sphinxで始める
 ドキュメント作成術

 ▼図3　CacooのAPIキーの生成画面

.. cacoo-figure:: https://cacoo.com/diagrams/mb53vvmYG38QGUPf

   Cacooで作成したユースケース図

 ▼リスト1　cacoo-figureディレクティブの使用例



142 - Software Design Dec.  2015 - 143

　ドキュメントの生成には、これまでどおりmake 
htmlを実行します。sphinxcontrib-cacooは自動
的に図を取り込みます（図4）。

Microsoft Visio

　Microsoft社のVisioも、よく利用される作図
ツールです。Visioにはステンシルと呼ばれる図
形テンプレート機能があり、図の部品を共有で
きます。Cisco社をはじめネットワーク関係の
企業が多くステンシルを公開しているので、ネッ
トワーク図などによく使われています（図5）。
　Cacooと同様、Visioも作成した図をPNGな
どの形式で保存できるため、figureディレクティ
ブを使ってSphinxドキュメントに図を埋め込め
ます。

 ■ sphinxcontrib-visio
　Visio専用のSphinx拡張として、sphinxcont 

rib-visio注3が提供されています。sphinxcontrib-

visioはCOM（Component Object Model）を利用
してVisioを呼び出し、Visio形式の図（.vsdx）を
自動でPNGに変換してSphinxドキュメントに
埋め込みます。また、sphinxcontrib-cacooと同
様に図の更新をチェックしているので、図が更
新されている場合はSphinxの変換時に自動的に
取り込みます。
　sphinxcontrib-visioは内部でVisioを呼び出し
ているため、Visioがインストールされた
Windowsマシンでのみ動作します。また、sphinx 
contrib-visioをインストールする際は、事前に
依存ライブラリであるpywin32をインストール
する必要があります。pywin32はPython for 

Windows ExtensionのWebサイト注4でインストー
ラが配布されています。インストーラはPython

のバージョン（2.6、2.7、3.4など）とプロセッ

注3） https://github.com/visio2img/sphinxcontrib-visio

注4） http://sourceforge.net/projects/pywin32/

ドキュメントに図を入れよう
̶̶さまざまなグラフィックツールとの連携 第9回

 ▼図5　Cisco社提供のVisioステンシルで描いた図

 ▼図4　sphinxcontrib-cacooの出力結果

https://github.com/visio2img/sphinxcontrib-visio
http://sourceforge.net/projects/pywin32/


144 - Software Design

サ・アーキテクチャ（32/64ビット）によって分
かれています。適切なバージョンを選択してイ
ンストールしてください。
　次にsphinxcontrib-visioをインストールしま
す。

　最後に、conf.pyでsphinxcontrib-visioを有効
にします。

　sphinxcontrib-visioを利用して図を埋め込む
には、figureディレクティブの代わりにvisio-

figureディレクティブを使います。引数には
Visioで作成したファイル（.vsdx）へのパスを指
定します。

 sphinxcontrib-visioのインストール 
$ pip install sphinxcontrib-visio

 sphinxcontrib-visioの設定（conf.py） 
extensions = ['sphinxcontrib.visio']

　複数のシートを持つVisioファイルを扱う場
合は、pageオプションもしくはsheetオプショ
ンを使って、ドキュメントに埋め込むシートを
指定します（表2）。
　ドキュメントの生成には、これまでどおりmake 
htmlを実行します。sphinxcontrib-visioが自動的
に図の取り込みを行います。

　今回はSphinxでの図の使い方と各種ツールと
の連携方法について紹介しました。次回はテキ
ストマークアップから図を生成する方法につい
て紹介します。｢

 visio-figureディレクティブの使用例 
.. visio-figure:: example.vsdx

   Visioで作成したユースケース図

次回予告

Sphinxで始める
 ドキュメント作成術

オプション名 概要
page ページ番号（1、2、3、……）を使って変換対象のシートを指定する
sheet シート名を使って変換対象のシートを指定する
alt、scaleなど そのほか、figureディレクティブと同じオプションに対応している

 ▼表2　visio-figureディレクティブのオプション

その他のグラフィックツールとSphinx
　今回はCacooとVisioについて取り上げました
が、ほかにもSphinxと連携できるツールはいくつ
かあります（表A）。
　Sphinx向けに図を作成する際には、自分が使う
ツールに合わせたSphinx拡張がないか確かめてみ

ると良いでしょう。
　拡張によって書式やオプションが異なるため、
利用する際は各ツールのREADMEを確認してくだ
さい。

COLUMN

Sphinx拡張の名称 対応するツール／サービス
sphinxcontrib-cacoo Cacoo
sphinxcontrib-visio Microsoft Visio
pptshape Microsoft PowerPoint
sphinxcontrib-astah astah*
sphinxcontrib-libreoffice LibreOffice

 ▼表A　おもな画像系Sphinx拡張



144 - Software Design Dec.  2015 - 145

ドキュメントに図を入れよう
̶̶さまざまなグラフィックツールとの連携 第9回

PyCon JP 2015	  Author  清水川 貴之

　本連載の執筆陣の1人、清水川です。
　2015年10月9～12日に、東京でPyCon JP 2015注A

が開催されました。筆者はカンファレンスに参加
し、Sphinxの発表を行い、Sphinx-users.jpもハンズ
オン、ポスターセッション、スプリントを開催し
ました。本コラムでは各活動の様子を紹介します。

■ハンズオン
　ハンズオンでは、8名の参加者すべてがSphinx
を使い始めたところということでした。Sphinxを
使う目的は、Wordの置き換えとしてテキストベー
スのドキュメンテーションツールを導入したい、
という方がほとんどでした。リポジトリで管理し
やすい、差分を把握しやすい、プログラムと一緒
に管理しやすい、ネットワーク図やシーケンス図
を描きやすい、といったあたりがSphinxを使うメ
リットとして見られているようです。
　チュートリアルは、ユーザ会のサイトに掲載し
ている「Sphinxをはじめよう」という記事注Bをもと
に行いました。まずは、sphinx-quickstartから始
めて、複数ページの扱い方、記法の練習などを各
自で進めてもらい、質問があれば手を挙げてもらっ
て講師が答える、というスタイルです。
　チュートリアルの最後には、個別に出た質問と
回答をいくつか紹介しました。たとえば、テーブ
ルの作成方法として、Sphinxで使える4つの方法
とそれぞれの特徴について紹介しました。テーブ
ルの書き方については、本連載の第4回でも紹介
しましたので、そちらもご参照ください。

■プレゼンテーション
　筆者は、「Sphinxで作る貢献しやすいドキュメ
ント翻訳の仕組み」というタイトルで、Sphinxの
ドキュメント翻訳サポート機能（i18n）について紹
介し、約100名の方が参加してくれました。発表
の最初に参加者に行った質問で、「技術文書の翻訳
はほかの技術者の助けになると思いますか？」とい
う問いに、8割近くの参加者が手を挙げました。技
術文書の翻訳は、日本では高いニーズがあると言
えるでしょう。
　筆者の発表では、翻訳者が挫折せずに参加しや
すい翻訳のしくみを紹介しました。Sphinxの多言

語化機能とTransifex注Cサービスを組み合わせて使
うことで、そのようなしくみを作れます。いつか
本連載でも紹介したいと思います。

■ポスターセッション
　ポスターセッションでは、Sphinx関連のポス
ターを掲示し、訪れた参加者にSphinxを紹介した
り、質問を受けたり、あるいはドキュメンテーショ
ンツールについて議論を交わしたりしました。

■スプリント
　スプリントは短期集中型のソフトウェア開発イ
ベントです。筆者はSphinxスプリントのリーダー
として5名の参加者と一緒にSphinxのドキュメン
ト翻訳や開発などを行いました（写真A）。
　PyCon JPイベント内での開催だったためか、初
めて参加した方、遠方から参加した方が半数でし
た。今回はSphinxドキュメントの翻訳プロジェク
トへの参加方法を教え、さっそくいくつかの文章
翻訳に協力してもらいました。こういったイベン
トでは、文字では伝えづらいことを直接伝えられ
るのがメリットですね。
　Sphinx-users.jpでは、このように集まって行う
ハッカソンイベントと、お茶会イベントをそれぞ
れ月に1回開催しています注D。ハッカソンは休日
の日中に開催しており、今回のスプリントと同じ
ように各参加者がそれぞれ題材を持ち寄って、
Sphinxやドキュメンテーション、翻訳などについ
て質問や雑談をしながら各自作業しています。お
茶会は平日夜に2時間ほどファミレスで開催して
おり、雑談や情報交換を中心に行っています。気
楽なイベントですので、ぜひご参加ください。

COLUMN

注A） https://pycon.jp/2015/

注B） http://sphinx-users.jp/gettingstarted/

注C） https://www.transifex.com/

注D） http://sphinxjp.connpass.com/

 ▼写真A　筆者（後列左）とスプリントの参加者

https://pycon.jp/2015/ja/
http://sphinx-users.jp/gettingstarted/
https://www.transifex.com/
http://sphinxjp.connpass.com/


146 - Software Design

％ brew tap mackerelio/mackerel-agent
％ brew install mkr

　mkrに必要な最低限の設定として、APIキー
を環境変数で指定します。

％ export MACKEREL_APIKEY=<API key>

　brew以外にもaptやyum、go getによるイン
ストールもできます。詳細は本連載第6回もし
くは公式ドキュメント注4を参照してください。

mkrで監視ルールを
操作する

　mkrでは、監視ルールの操作にmonitorsサ
ブコマンドを使います。monitorsサブコマン
ドでは、次のようなpull/diff/pushの3種類
の操作が可能です。

・pull
　Mackerelから監視ルール一覧を取得し、ロー
カルファイル「monitors.json」に保存

・diff
　Mackerelに設定されている監視ルール一覧
と、ローカルファイル「monitors.json」との
差分を表示

Mackerelではじめる
サーバ管理

　監視の対象・種類、アラートの発動条件などを設定するMackerelの「監視ルール」。
今回はその監視ルールを、コマンドラインで取得・設定できるツール「mkr」を紹介
します。さらに、そのmkrを使ってGitHubで監視ルールを管理する方法を解説しま
す。サーバをコードで管理する、イマドキの運用にぴったりです。

Writer  田中 慎司 （たなか しんじ）  ㈱はてな
Twitter  @stanaka

mkrで Infrastructure 
as Code

　Mackerel注1では、サーバ運用をサポートする
CLIツール「mkr」を提供しています（本連載の第
6回［2015年8月号］で紹介）。その後、Mackerel

の監視ルールを取得・更新するためのAPIが公
開され、それに合わせてmkrもアップデートさ
れています注2。
　mkrを利用して監視ルールをAPI経由で扱え
るようにすることは、いわゆるInfrastructure as 

Codeの考え方に合致するものです。今回は監視
ルールをmkrで扱う方法と、それを応用して監
視設定をGitHubで管理する方法を紹介します。

mkrを導入する

　mkrはMackerelの各種設定を取得・更新す
るためのCLIツールで、ホストのステータス
をまとめて変更したり、手順をスクリプトに組
み込んで自動化したりすることが可能です。
mkrのコードはGitHub注3で公開しています。
OS Xでbrewを利用してインストールする場
合は次のようにします。

第10回 Mackerelの監視ルールを
コードで管理しよう

注1） URL  https://mackerel.io
注2） URL  http://blog-ja.mackerel.io/entry/2015/08/13/182620
注3） URL  https://github.com/mackerelio/mkr
注4） URL  http://help-ja.mackerel.io/entry/advanced/cli

https://mackerel.io/ja/
http://blog-ja.mackerel.io/entry/2015/08/13/182620
https://github.com/mackerelio/mkr
http://help-ja.mackerel.io/entry/advanced/cli


146 - Software Design Dec.  2015 - 147

・push
　ローカルファイル「monitors.json」の監視ルー
ルの設定をMackerelに反映

　サブコマンドを指定しない場合、監視ルール
一覧が標準出力に表示されます。

監視ルールのフォーマット

　個々の監視ルールのJSONオブジェクトは、
たとえばリスト1のようなものです。監視ルー
ル一覧は、このJSONオブジェクトの配列とな
ります。監視ルールに現れるフィールドとその
意味を表1に示します。監視ルールの種類ごと
に、必要なフィールドは変化します。

監視ルールの識別ロジック

　idフィールドはMackerelが監視ルールを識別
するためのIDとなります。このidはMackerel

が付与しますので、後述のGitHubで管理する際
にpushだけでの運用ができるように、nameによ
る識別方法も用意しています。具体的には次の
ようなロジックで監視ルールを識別します。

・idを含む……idで識別

・idを含まず、nameを含む……nameで識別

　同じnameを持つ監視ルールが存在した場合、
idでのみ識別を行います。そのためすべての
監視ルールにidが含まれる必要があり、ない
場合はWarningメッセージを出力します。id
もnameも含まないルールがある場合はエラー
となります。

　mkr monitorsコマンドの実行例を図1と図2に
示します。図1は、ローカルファイルとMackerel

間で差分がある場合にdiffを実行した例で、図2 

mkr monitorsコマンドの実行例

{
  "type": "host",
  "name": "disk.aa-00.writes.delta",
  "duration": 3,
  "metric": "disk.aa-00.writes.delta",
  "operator": ">",
  "warning": 20000.0,
  "critical": 400000.0,
  "scopes": [
    "Hatena-Blog"
  ],
  "excludeScopes": [
    "Hatena-Bookmark: db-master"
  ]

 ▼リスト1　監視ルールの例

フィールド 説明
id 監視ルールの ID

type 監視の種類（host：ホストメトリック監視、service：サービスメトリック監視、external：外形監視、
connectivity：サーバの死活監視）

name 監視一覧などで参照できる任意の名称

service 監視対象となるサービス名

duration 指定された間隔（分）の平均値を監視する（有効範囲：1~5分）

metric 監視対象のホストメトリック名。特定の定数文字列を指定することで、割合監視が可能

operator 指定した数値より大きいか小さいかというアラート条件を指定。“>”または“<”（左辺が観測値で右辺が設定値）

warning warningのアラート発生の閾値

critical criticalのアラート発生の閾値

scopes 監視対象のサービス名またはロール詳細名

excludeScopes 監視除外対象のサービス名またはロール詳細名

responseTimeWarning warningのアラート発生の応答時間の閾値（ミリ秒）。service指定が必要

responseTimeCritical criticalのアラート発生の応答時間の閾値（ミリ秒）。service指定が必要

responseTimeDuration 指定された期間のリクエストの平均値を監視（1~5分）。service指定が必要

maxCheckAttempts 何回連続でwarning/criticalになったらアラートを発生させるか。デフォルトは1回（1~5回）

 ▼表1　監視ルールのフィールド

第 10 回
Mackerelの監視ルールをコードで管理しよう



148 - Software Design

       Mackerelではじめるサーバ管理

はローカルファイルをMackerelにpushした例で
す。

監視ルールを
GitHubで管理しよう

　これまで紹介したとおり、mkrを使うことで

監視ルールをローカルファイルに保存したり
（pull）、ローカルファイルとMackerelの設定
の差分を確認したり（diff）、ローカルファイル
の内容をMackerelの設定に反映させたり（push）
することができます。これらを利用してGit 

Hubで監視ルールを管理する方法を紹介します。

％ mkr monitors diff
Summary: 1 modify, 1 append, 1 remove

  {
   "name": "Filesystem ％",
   "type": "host",
   "metric": "disk％",
   "operator": ">",
-  "warning": 95.000000,
+  "warning": 96.000000,
   "critical": 99.000000,
   "duration": 3,
   "scopes": [
    ],
    "excludeScopes": [
    ],
  },
- {
-   "id": "<id>",
-   "name": "loadavg5",
-   "type": "host",
-   "metric": "loadavg5",
-   "operator": ">",
-   "warning": 1.000000,
-   "critical": 5.000000,
-   "duration": 3,
-   "scopes": [
-     "My-Service:proxy"
-   ],
-   "excludeScopes": [
-   ],
- },
+ {
+   "name": "loadavg",
+   "type": "host",
+   "metric": "loadavg5",
+   "operator": ">",
+   "warning": 1.000000,
+   "critical": 5.000000,
+   "duration": 5,
+   "scopes": [
+     "My-Service:proxy"
+   ],
+   "excludeScopes": [
+   ],
+ },

 ▼図1　ローカルファイルとMackerel間の差 
 分がある場合のdi�

％ mkr monitors push --dry-run -F monitors_new.json
      info Create a new rule.
 {
   "name": "loadavg",
   "type": "host",
   "metric": "loadavg5",
   "operator": ">",
   "warning": 1.000000,
   "critical": 5.000000,
   "duration": 5,
   "scopes": [
     "My-Service:proxy"
   ],
   "excludeScopes": [
   ],
 },
      info Delete a rule.
 {
   "id": "<id-1>",
   "name": "loadavg5",
   "type": "host",
   "metric": "loadavg5",
   "operator": ">",
   "warning": 1.000000,
   "critical": 5.000000,
   "duration": 3,
   "scopes": [
     "My-Service:proxy"
   ],
   "excludeScopes": [
   ],
 },
      info Update a rule.
 {
   "id": "<id-2>",
   "name": "Filesystem ％",
   "type": "host",
   "metric": "disk％",
   "operator": ">",
   "warning": 96.000000,
   "critical": 99.000000,
   "duration": 3,
   "scopes": [
   ],
   "excludeScopes": [
   ],
 },

 ▼図2　ローカルファイルをMackerelにpush



148 - Software Design Dec.  2015 - 149

　mkrによる監視ルールの管理方法には、
WebUIとローカルファイルの両方で変更を行
うか、それともローカルファイルのみで変更す
るかで、大きく次の2パターンがあります。

・�WebUIとローカルファイルの両方で監視ルー
ルを変更する

　→pullとpushを利用する
・WebUIでは変更せず、ローカルファイルの
みで監視ルールを変更する

　→pushのみを利用し、pullは利用しない

　前述のとおり、mkr monitorsでは監視ルー
ルの識別にidもしくはnameを利用します。前
者ではidベースで管理しますので、ローカル
ファイルのJSONにもidを含める必要があり
ます。後者はnameベースで管理しますので、ロー
カルファイルのJSONにidを含める必要があ
りません。ただしnameが重複していないこと
が必要条件です。
　もしローカルファイルのJSONやMackerel

側でnameが重複していた場合、mkrはidベー
スで監視ルールを特定しようとします。name
が重複しているにもかかわらず各監視ルールに
idが存在しない場合は、mkrは「不正なJSON」
という内容のエラーを出力します。

pullとpushを利用する

　idベースで監視ルールを識別します。その
ため監視ルールを新規登録したあとで、Macke 

rel側で付与されたidを取得する手順が必要と
なります。

 ●リポジトリを初期化
　次の手順に従ってリポジトリを初期化します。

①GitHubにリポジトリを作成

②git clone

％ git clone <repo-url>
％ cd <repo-path>

③監視ルールをMackerelから取得

％ mkr monitors pull

④GitHub上のリポジトリにコミット、プッシュ

％ git add monitors.json
％ git commit -m '<commit-msg>'
％ git push

 ●  リポジトリとMackerelの設定の同期が取
れているかを確認

　リポジトリとMackerelの設定が一致してい
るかどうかを確認するには次の手順に従います。

①GitHubから最新のデータを持ってくる

％ cd <repo-path>
％ git pull

②Mackerelとの差分を確認

％ mkr monitors diff

③差分がない場合、次のような結果が得られる

Summary: 0 modify, 0 append, 0 remove

 ●WebUIで監視ルールを変更
　Web側で監視ルールを変更した場合は次の
手順でリポジトリに反映します。

①Web側で監視ルールを変更
②変更された監視ルールをMackerelから取得

％ cd <repo-path>
％ mkr monitors pull

③GitHub上のリポジトリにコミット、プッシュ

％ git add monitors.json
％ git commit -m '<commit-msg>'
％ git push

 ●  ローカルファイルから監視ルールを変更
　ローカルファイルから監視ルールを変更した
場合は次の手順でMackerelおよびリポジトリ
に反映します。

mkrによる監視ルールの管理

第 10 回
Mackerelの監視ルールをコードで管理しよう



150 - Software Design

       Mackerelではじめるサーバ管理

①�GitHub上で変更・レビューなどを行い、
masterブランチ（など）に反映

②�変更された監視ルールをGitHubから取得

％ cd <repo-path>
％ git pull

③Mackerelとの差分を確認

％ mkr monitors diff

④変更された監視ルールをMackerelに反映

％ mkr monitors push

 ●  ローカルファイルで監視ルールを新規追加
　ローカルファイルから監視ルールを新規追加
するには次の手順に従います。

①JSONを作成後、GitHub上で変更・レビュー
などを行い、masterブランチ（など）に反映

　（ここでのJSONはidなしのものを作成（JSON
フォーマットの詳細は公式サイト注5を参照））

②�Mackerelとの差分を確認

％ mkr monitors diff

③追加された監視ルールをMackerelに反映

％ mkr monitors push

④追加された監視ルールにMackerelが付与し
たid付きで取得

％ mkr monitors pull

⑤GitHub上のリポジトリにコミット、プッシュ

％ git add monitors.json
％ git commit -m '<commit-msg>'
％ git push

pushだけを利用する

　nameベースで監視ルールを管理します。各
監視ルールでnameが重複しないようにする必
要があります。また、WebUI側での監視ルー
ルの変更が非推奨となります。もし変更してし
まった場合は手動でJSONを組み立てるか、

pullを実行する必要があります。

 ●リポジトリを初期化
　次の手順に従ってリポジトリを初期化します。

①GitHubにリポジトリを作成
②git clone する

％ git clone <repo-url>
％ cd <repo-path>

③監視ルールをMackerelから取得

％ mkr monitors pull

④GitHub上のリポジトリにコミット、プッシュ

％ git add monitors.json
％ git commit -m '<commit-msg>'
％ git push

 ●  リポジトリとMackerelの設定の同期が取
れているかを確認

　リポジトリとMackerelの設定が一致してい
るかどうかを確認するには次の手順に従います。

①GitHubから最新のデータを持ってくる

％ cd <repo-path>
％ git pull

②Mackerelとの差分を確認

％ mkr monitors diff

③差分がない場合、次のような結果が得られる

Summary: 0 modify, 0 append, 0 remove

 ●  ローカルファイルから監視ルールを変更
　ローカルファイルから監視ルールを変更した
場合は、次の手順でMackerelおよびリポジト
リに反映します。

①GitHub上で変更・レビューなどを行い、
masterブランチ（など）に反映

②変更された監視ルールをGitHubから取得

％ cd <repo-path>
％ git pull

注5） API仕様の「監視設定の登録」  URL http://help-ja.mackerel.io/entry/spec/api/v0#monitor-create

http://help-ja.mackerel.io/entry/spec/api/v0#monitor-create


150 - Software Design Dec.  2015 - 151

③Mackerelとの差分を確認

％ mkr monitors diff

④変更された監視ルールをMackerelに反映

％ mkr monitors push

 ●  ローカルファイルで監視ルールを新規追加
　ローカルファイルから監視ルールを新規追加
するには次の手順に従います。

①ローカルファイルに新規監視ルールを追加し
たあと、GitHub上で変更・レビューなどを
行い、masterブランチ（など）に反映

　（ここでの監視ルールはidなしのものを作成）
②Mackerelとの差分を確認

％ mkr monitors diff

③追加された監視ルールをMackerelに反映
％ mkr monitors push

　Nameベースで監視ルールの同一判定をする
ため、id反映のためのpullは不要となります。

 ●Mackerel側のルールを反映
　WebUI側で変更してしまった場合は、次の
フローでローカルファイルを最新化し、リポジ
トリに反映させます。

①変更された監視ルールをMackerelから取得

％ cd <repo-path>
％ mkr monitors pull

　pullすることでid付きのJSONとなる

②JSONからidフィールドを削除
　idフィールドが存在しても動作に支障はな
いので、放置しても実用上は問題なし

③Mackerelとの差分を確認

％ mkr monitors diff

④GitHub上のリポジトリにコミット、プッシュ

％ git add monitors.json
％ git commit -m '<commit-msg>'
％ git push

　ここまでで、Mackerelの監視ルールをGitHub 

で管理できるようになりました。ただし、この
連携は手動操作が必要ですので、Mackerelの
監視ルールとGitHub上のコードがずれる可能
性があります。それを防ぐためにCI（継続的イ
ンテグレーション）で正しく同期されているか
確認するようにしましょう。
　mkr monitors diffコマンドには差分があっ
た場合に終了コードを「1」にする--exit-code
オプションがありますので、これを利用します。
　たとえば、次のようなRakefile注6を用意し、
CIでrake注6を実行させることで差分が発生し
たことを通知できます。

task :default do
  sh "mkr monitors diff -e"
end

まとめ

　Infrastructure as Codeのように、インフラ
運用のための各種設定をコードで管理する考え
方は徐々に広まりつつあります。Mackerelも
その流れをふまえ、監視設定をコードで管理す
るための方法を提供開始しました。今後、その
ほかのさまざまな設定もコードで管理できるよ
うに拡張していくことを検討しています。まず
は監視設定をコードとしてGitHubなどで管理
することをぜひお試しください。ﾟ

CIでテストする

第 10 回
Mackerelの監視ルールをコードで管理しよう

注6） rakeはRuby製のビルドツールで、Rakefileに定義されたさまざまなタスクを実行させることができます。詳しくはGitHubリポジ
トリを参照してください。 URL https://github.com/ruby/rake

https://github.com/ruby/rake


152 - Software Design

無償で利用可能？

　Identity Management（IdM）はLDAPサーバと
して389 Directory Server、認証やシングルサイ
ンオンにKerberosを用い、ユーザインターフェー
スを含むプロジェクト全体がOSSで開発されて
いるID管理ソフトウェアで、FreeIPA注1がアッ
プストリームになります。Red Hat Enterprise 

Linux（RHEL）に同梱されており、RHELのサブ
スクリプション契約があればCAL注2はもちろん
のこと、追加の費用なしに利用することができます。
　389 Directory Serverについて少し説明して
おきましょう。Red Hatは2004年に米・America 

Onlineの一部門であった米・Netscape Security 

SolutionsからNetscape Directory Server(NDS)

の知的財産権を買収し、翌2005年注3にRed Hat 

Directory Server（RHDS）およびRed Hat Certi 

ficate Systemという名称でOSS化、自社製品化
しました。NDSはもとをたどれば米・ミシガン
大学のslapdに起源をおくため、旧Sun Micro 

systemsのJES/SunOne Directory Server（現・
Oracle Directory Server）とは兄弟関係にありま

す。またRHDSは米・HP社のHP-UXにも供給
されており、UNIX/Linuxのディレクトリサー
バとして広く使われています。さらに2009年に
Fedoraプロジェクトにおいては、Fedora 

Directory ServerはLDAPのポート番号・389 /

udp,tcpにちなんだ名称変更注4がなされ現在に至
ります。

RHDSとの違い

　上述したようにRHDSはRed Hat製品の中でも
歴史が長く、現在の最新版であるバージョン10は
2015年6月にリリースされ2020年6月までのサ
ポートが決定しています。一方でRHDSのユーザ
インターフェースは古臭い、あるいは管理手順が
現代的でない点は否定できません。LDAPを広範
に利用するのであれば致し方ないのですが、認証
だけを行う場合、RHDSの管理はLight Weight注5

なのにちょっと「重すぎる」とも言えます。そこで
登場したのがIdMで、Webブラウザによる一元管
理を実現しているのはもちろん、インストールや
設定もインタラクティブ注6に質問に答えていけば
一通り行える実装になっています。またOTP（One 

第17回 Identity Managementを使おう

注1） IPAは、Identity、Policy、Auditの頭文字（http://freeipa.org/）。
注2） Client Access License
注3） 筆者がRed Hatに入社した2005年に製品化されたため、入社直後に実施されたトレーニングで使われたテキストは“Netscape 

Directory Server”のままで、ここかしこにNetscapeのロゴが表示されていた。
注4） ググラビリティ（検索のしやすさ）を劇的に低下させたので、筆者や周囲は否定的。
注5） LDAPはLight-weight Directory Access Protocol
注6） answerファイルを用意してバッチ的にインストールすることも可能。

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

2011年12月にリリースされたRed Hat Enterprise Linux 6.2から同梱されている Identity Management
は認証に特化した ID管理ソフトウェアです。認証という比較的地味な役割を担うためあまり脚光を浴びるこ
とはありませんが、Red Hat Enterprise Linuxにこのような機能も含まれている例として紹介します。

Author  レッドハット（株）サービス事業統括本部
プラットフォームソリューション統括部ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）  Twitter@rioriost

http://www.freeipa.org/


152 - Software Design Dec.  2015 - 153

第 17回Identity Managementを使おう

Time Password）にも対応し
ており、昨今の認証基盤と
して必要とされる機能を一
通り実現しています。
　ただしインストールや設
定が簡素になっている反面、
RHDSとは異なり IdMは
汎用のLDAPサーバでは
ありませんし、Windows

の Active Directory（AD）
と連携できるもののADの
代替製品として ID管理を統合するものでもあ
りません。メリット／デメリットをしっかりと
理解して上手に利用しましょう。

Active Directoryとの
相互運用

　業務システムとしてOSにWindowsを採用して
いる一定以上の規模の企業で、ADを利用してい
ないということは考えにくく、実際、筆者自身も
業務の中で「Linuxの認証基盤にもADを利用した
い」という要望をいただくことがよくあります。
UNIX/Linuxしかなければ今でもNISで認証して
いるということもあるのですが、「NISが古くなっ
たので移行を検討している」という文脈の中で出
てくることがほとんどです。
　IdMではADからパスワードの変更を受け取
り同期することや、Kerberosを用いたCross 

Realm TrustチェインによってADが発行した
チケットをもとにIdMでクレデンシャルを提供
しLinux（UNIX）/Windowsをまたいだシング
ルサインオン（SSO）を実現できます。

パッケージを
インストールする

　IdMを試してみるにはインストールするのが
一番です。本稿執筆時点ではRHELのバージョ

ンは6.7あるいは7.1が最新なので7.1のx86_64

版での手順を説明します。IdMのサイジングで
最も重要なのはメモリ容量で、1万ユーザ・100

グループであれば2GB、10万ユーザ・5万グルー
プであれば16GBが必要最小限のメモリ容量と
なります。試してみる、という目的であれば
2GB程度のメモリで十分に動作しますし、仮想
化環境でも用意するのは難しくないでしょう。
　まずはベースOSとなるRHEL 7.1を最小パッ
ケージ構成でインストールします。IdMのFQDN

が正引き・逆引きで問題なく設定されていること
を確認します。またNetworkManagerによる動的
なネットワーク構成変更がなされないように
systemctlコマンド、あるいはservice/chkconfig

コマンドでNetworkManagerを停止し、network

サービス注7が起動するように設定します。
subscription-managerで登録後、適切なサブスク
リプションとリポジトリ注8が紐付けされていれば、
次のコマンドだけでIdMに関連するパッケージの
インストールが完了します。

# yum -y install ipa-server bind bind-dyndb-ldap

初期設定はコマンド1発！

　図1のようにパッケージインストールの終了

注7） サービスといっても、実態としては単なる ifup / ifdownコマンド。
注8） subscription-manager repos --enable=rhel-7-server-rpms

# ipa-server-install

The log file for this installation can be found in /var/log/ipaserver-install.log 
=======================================================================

=======
 This program will set up the IPA Server.

This includes:
  * Configure a stand-alone CA (dogtag) for certificate management
  * Configure the Network Time Daemon (ntpd)
  * Create and configure an instance of Directory Server
  * Create and configure a Kerberos Key Distribution Center (KDC)
  * Configure Apache (httpd)

To accept the default shown in brackets, press the Enter key.

Do you want to configure integrated DNS (BIND)? [no]:

 ▼図1　IdMのインストール（ipa-server-installコマンドの実行）



154 - Software Design

ワーク関連の情報、管理者のパスワードなどを
インタラクティブに回答していくと、インストー
ルの最終段で設定項目の確認を求められます。
　図2の一覧で問題がなければ、“yes”とタイ

プしgキーの入力でインストールが
開始されます（図3）。
　無事にインストールが完了すると、
図4のメッセージが表示されます。
　firewall-cmdで必要なポートを解
放し、kinitコマンドで“admin”アカウ
ントを初期化します。これで利用開始
に必要な作業は完了です（図5）。

ユーザアカウントを
追加する

　Webブラウザで IdMサーバにアク
セスし、ユーザアカウントを追加して
みましょう。kinitで設定したadmin/

パスワードでログインします（図6）。
　ログインするとユーザ管理画面が表
示されます。ユーザを追加するには［+ 

Add］ボタンをクリックします（図7）。
　ユーザのログインアカウント、氏名、
パスワードを入力します（図8）。
　“Test”ユーザが追加されました。画
面右上の［Administrator］プルダウン
からログアウトします（図9）。
　ログアウト後、Webブラウザで再
度IdMサーバにアクセスし、追加した
“Test”ユーザでログインしてみましょ
う（図10）。
　すると「パスワードがすでに失効し
ている」旨の表示がされます（図11）。
ユーザアカウント作成時に設定したパ
スワードは管理者（adminユーザ）が

後、IdMのインストールは ipa-server-inst 
allコマンドで開始します。
　さらにホスト名やドメイン名注9などのネット

注9） IdMではADで用いるのと似た「ドメイン」という概念を用いる。

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

The IPA Master Server will be configured with:
Hostname:       idm.rio.st
IP address(es): 192.168.1.135
Domain name:    rio.st
Realm name:     RIO.ST

BIND DNS server will be configured to serve IPA domain with:

Forwarders:    192.168.1.2
Reverse zone(s):  1.168.192.in-addr.arpa.

Continue to configure the system with these values? [no]:

 ▼図2　IdMのインストール（設定項目の入力と確認）

The following operations may take some minutes to complete.
Please wait until the prompt is returned.

Configuring NTP daemon (ntpd)
  [1/4]: stopping ntpd
  [2/4]: writing configuration
  [3/4]: configuring ntpd to start on boot
  [4/4]: starting ntpd
Done configuring NTP daemon (ntpd).
Configuring directory server (dirsrv): Estimated time 1 minute
  [1/38]: creating directory server user
  [2/38]: creating directory server instance
  [3/38]: adding default schema
  [4/38]: enabling memberof plugin
  [5/38]: enabling winsync plugin
  [6/38]: configuring replication version plugin
 ..........

 ▼図3　IdMのインストール実行中の画面

Setup complete

Next steps:
 1. You must make sure these network ports are open:
  TCP Ports:
    * 80, 443: HTTP/HTTPS
    * 389, 636: LDAP/LDAPS
    * 88, 464: kerberos
  UDP Ports:
    * 53: bind
    * 88, 464: kerberos
    * 53: bind
    * 123: ntp

 2. You can now obtain a kerberos ticket using the command: 
'kinit admin'
    This ticket will allow you to use the IPA tools (e.g., ipa 
user-add)
    and the web user interface.

Be sure to back up the CA certificate stored in /root/cacert.p12
This file is required to create replicas. The password for this
file is the Directory Manager password

 ▼図4　IdMのインストールの完了

# firewall-cmd --permanent --zone=public --add-
port={80/tcp,443/tcp,389/tcp,636/tcp,88/tcp,464/tcp,53/tcp,88/udp,464/udp,53/udp,123/udp}

# kinit admin

 ▼図5　ファイアウォールの設定



154 - Software Design Dec.  2015 - 155

第 17回Identity Managementを使おう

知っています。この初期作成パスワードは、ユー
ザアカウントが自身のパスワードを設定するた
めにだけ用いられるようになっています。

　前述したように、新規アカウント作成時のパ
スワードにもセキュリティを考慮した発行フロー
が採用されていることや、一方向性ハッシュに
よるパスワードの保存など、IdMはセキュリティ
側に倒した実装がなされている点も非常に魅力
的です。次回はIdMによるクライアント認証や

まとめ

Webサービスにおけるユーザアカウントの管理、
RHEL 7.2における IdMとの認証統合の強化に
ついて紹介する予定です。ﾟ

 ▼図6　IdMサーバにログイン

 ▼図7　IdMサーバのユーザ管理画面

 ▼図8　ユーザアカウントの追加設定画面

 ▼図9　Testユーザの追加完了画面

 ▼図10　Testユーザでログイン
 ▼図11　パスワード失効エラー （新規パスワード設定 
               画面）



156 - Software Design

大人気のOpenBSDファイア
ウォール pf(8)

　FreeBSDにはipfw(8)、pf(8)、ipfilter(8)という3

つのファイアウォール機能が用意されています。
FreeBSDプロジェクトがネイティブに開発している
ファイアウォールはipfw(8)です。この3つの中では
もっとも高速で安定しています。複雑なことを実施
しようとするとルールがだいぶ難しくなりますが、
性能と安定性、スケーラビリティの高さが魅力です。
　pf (8)はOpenBSDプロジェクトで開発されてい
るファイアウォールです。シンタックスがわかりや
すく、便利なルール表記がしやすいことから人気が
あります。FreeBSDはOpenBSD pf(8)をインポー
トして使っています。ipfw(8)と比べて扱いやすい反
面、スケーラビリティや安定性の面でipfw (8)にか
なわないところがあります。
　ipfilter(8)は現在では開発が停滞していますし、
ipfw(8)やpf(8)と比べると存在感の薄いところがあ
ります。今後のメンテナンスなども考えると、そう
遠くない将来にはデフォルトの機能からはずれる可
能性があります（問題が発生したときや本当にユー
ザが少なくなったときに、手を挙げる開発者がいな
ければ消える可能性が高いといえます）。実質的に、
FreeBSDのファイアウォールといえばipfw (8)か
pf(8)かということになるでしょう。
　FreeBSD pf (8)の問題点といえば、常にOpen 

BSD pf(8)をマージし続けているわけではないとい
うことです。シンタックスが変わったときなどに大
規模マージを実施して、あとは必要に応じてマージ
が行われています。つまり、最新のOpenBSD pf(8)
と比べると、使える機能やシンタックスが常に
ちょっと古いということになります。

餅は餅屋方式：OpenBSDファ
イアウォール・オン・
FreeBSDハイパーバイザ

　餅は餅屋ということになりますが、やはりpf (8)
はOpenBSD版を使いたいところです。ただし、
OpenBSDはマルチコアへのスケーラビリティが
FreeBSDにかなわないところがあります。最近の
pf (8)はだいぶ実装がスケールするようになりまし
たが、OpenBSDはカーネルそのもののスケーラビ
リティがFreeBSDのスケーラビリティに追いつい
ていません。
　現在のマシンはマルチコア／メニーコアが主流に
なりつつあるため、ハードウェアで直接動作するオ
ペレーティングシステム（OS）には、高いスケーラ
ビリティを発揮するFreeBSDを使いたいところで
す。ということであれば、ホストにはFreeBSDを
使用し、その上で仮想化機能でありハイパーバイザ
であるbhyve(8)を使い、OpenBSD pf(8)を仮想環境
で運用するというのが、1つの方法ということにな
ります。
　これはなかなか活用しがいのあるアイデアです。
bhyve(8)登場以降は、このように単一のOSに機能
をマージするのではなく、複数のOSの良いところ
を組み合わせたシステム構築が可能になりました。

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第26回 ❖bhyveでOpenBSDファイアウォール on FreeBSDを構築

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。



Dec.  2015 - 157

▶第26回◀ 
bhyveでOpenBSDファイアウォール on FreeBSDを構築

　em0とtap0を結び付けるために、bridge0という
ネットワークブリッジデバイスを作成します（図4）。
次に、em0とtap0を、作成したbridge0に追加します
（図5）。これでem0とtap0がリンクします。
　コマンドで操作した内容はシステムを再起動する
とクリアされますので、リスト1、2のように/etc/rc. 
confと/etc/sysctl.confに設定を書いておきます。

OpenBSDは興味深いOSですので、使ったことの
ない方はこの機会に使ってもらえればと思います。

ネットワークのセットアップ

　OpenBSD on bhyveを実現するための設定を紹介
します。まず、ゲスト向けのネットワーク環境を用
意します。図1のように1つ
の物理NICが搭載されたマ
シンを使っているものとし
ましょう。em0がそれです。
後でこのem0と、ゲスト環
境に割り当てるネットワー
クインターフェースとを接
続します。
　仮想環境で動作する
OpenBSD向けにtap0とい
うソフトウェア的なトンネル
ネットワークインターフェー
スを用意します（図2）。Open 

BSDはこれを経由してネッ
トワークにアクセスできま
す。tap0をオープンしたとき
に自動的にステータスが
UPに切り替わるように、図
3のようにsysctl(8)の値を
変更しておきます。

# ifconfig bridge0 addm em0 addm tap0 up ｶ
# ifconfig bridge0 ｶ
bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
        ether 02:11:20:51:96:00
        nd6 options=9<PERFORMNUD,IFDISABLED>
        id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
        maxage 20 holdcnt 6 proto rstp maxaddr 2000 timeout 1200
        root id 00:00:00:00:00:00 priority 32768 ifcost 0 port 0
        member: tap0 flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>
                ifmaxaddr 0 port 3 priority 128 path cost 2000000
        member: em0 flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>
                ifmaxaddr 0 port 1 priority 128 path cost 20000

▼▼図5　ブリッジにem0とtap0を追加

cloned_interfaces="bridge0 tap0"
ifconfig_bridge0="addm em0 addm tap0"

▼▼リスト1　/etc/rc.confに追加する設定

net.link.tap.up_on_open=1

▼▼リスト2　/etc/sysctl.confに追加する設定

# ifconfig | grep mtu ｶ
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384

▼▼図1　マシンのNIC一覧。lo0はループバックインターフェース

# ifconfig tap0 create ｶ
# ifconfig tap0 ｶ
tap0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500
        options=80000<LINKSTATE>
        ether 00:bd:f9:74:00:00
        nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
        media: Ethernet autoselect
        status: no carrier

▼▼図2　ゲストOS向けのネットワークインターフェースtap0を作成

# sysctl net.link.tap.up_on_open=1 ｶ
net.link.tap.up_on_open: 0 -> 1

▼▼図3　tap0オープン時に自動的に状態がUPになるように設定を変更

# ifconfig bridge0 create ｶ
# ifconfig bridge0 ｶ
bridge0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500
        ether 02:11:20:51:96:00
        nd6 options=9<PERFORMNUD,IFDISABLED>
        id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
        maxage 20 holdcnt 6 proto rstp maxaddr 2000 timeout 1200
        root id 00:00:00:00:00:00 priority 0 ifcost 0 port 0

▼▼図4　ネットワークブリッジデバイスbridge0を作成



158 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

るため、zfs(8)でボリュームを作成した場合と比べ
ると処理が遅くなります。イメージとしては眼鏡・
オン・眼鏡というか、ファイルシステム・オン・ファ
イルシステムになるので、無駄な処理が増えるから
です。bhyve(8)を使う場合にはZFSの活用を前提に
しておきましょう。

カーネルローダのセットアップ

　bhyveで仮想環境を起動する手順は次のステップ
になります。

1　ゲストOSのカーネルを読み込み

2　仮想環境を起動

　FreeBSDをゲストOSとして利用する場合、
bhyveload(8)というコマンドでFreeBSDカーネル
を読み込みます。FreeBSD以外のカーネルを読み込
む場合はgrub2-bhyveというコマンドを使います。
grub2-bhyveはベースシステムにはマージされてい
ませんので、pkg(8)経由でインストールします（図8）。

これでシステムを再起動しても同じ設定になります。

仮想化機能のセットアップ

　仮想化の機能を有効にする方法は、vmmカーネル
モジュールを読み込むだけです。

# kldload vmm

　この設定も再起動すると無効になりますので、 
/boot/loader.confに次の設定を追加して、再起動
しても自動的にvmmカーネルモジュールが読み込
まれるようにしておきます。

vmm_load="YES"

　実際に運用する場合には、この段階で何度か再起
動して、再起動後に同じ設定になるか確認しておき
ましょう。

仮想ディスクのセットアップ

　次に、ゲストの仮想ディスクをセッ
トアップします。bhyveの仮想ディスク
はZFSの機能を使って用意するのが
よいでしょう。使い勝手がよく、性能
も期待できるからです。図6のように
zfs(1)コマンドを実行すると32GBの
仮想ディスクを作成できます。ここで
はzというプールを使っているので、z/
openbsd-5.7という仮想ディスクを
作っています。コマンド実行後に 

/dev/zvol/z/openbsd-5.7というデバ
イスファイルが生えてきますので、こ
れを仮想ディスクとして使用します。
　ファイルを仮想ディスクとして扱う
こともできます。その場合には、図7
のようにして仮想ディスクファイルを
作成します。
　ただし、ファイルを仮想ディスクと
して扱うと、ホスト側のファイルシス
テムスタックの処理も通ることにな

# zfs create -V 32G -o volmode=dev z/openbsd-5.7 ｶ
# ls -l /dev/zvol/z/ ｶ
total 0
crw-r-----  1 root  operator  0x7e Oct  5 16:46 openbsd-5.7

▼▼図6　zfs(8)で仮想ディスクを作成

# pkg install grub2-bhyve ｶ
Updating FreeBSD repository catalogue...
FreeBSD repository is up-to-date.
All repositories are up-to-date.
The following 1 package(s) will be affected (of 0 checked):

New packages to be INSTALLED:
        grub2-bhyve: 0.40

The process will require 1 MiB more space.
408 KiB to be downloaded.

Proceed with this action? [y/N]: y
Fetching grub2-bhyve-0.40.txz: 100%  408 KiB 417.3kB/s    00:01
Checking integrity... done (0 conflicting)
[1/1] Installing grub2-bhyve-0.40...
[1/1] Extracting grub2-bhyve-0.40: 100%

▼▼図8　grub2-bhyveをインストール

# truncate -s 32G openbsd-5.7.img

▼▼図7　ファイルを仮想ディスクにする場合



Dec.  2015 - 159

▶第26回◀ 
bhyveでOpenBSDファイアウォール on FreeBSDを構築

　grub2-bhyveを使ってカーネルを読み込む場合、
仮想ディスクやCD/DVDのISOファイルを設定
ファイルで指定しておく必要があります。ここでは
OpenBSD 5.7をインストールする予定なので、リ
スト3のようにgrub2-bhyveで使用する設定ファイ
ルを作成しておきます。パスはそれぞれの環境に読
み替えて変更してください。

OpenBSD 5.7インストール

　執筆現在、OpenBSDの最新リリース版はOpenBSD 

5.7です。本誌が出版された頃にはOpenBSD 5.8が
リリースされていると思います（OpenBSDのリリース
エンジニアリングは厳密で、ほとんど遅延なく計画ど
おりにリリースされます）。試すときはOpenBSD 5.8

以降の最新版を使うとよいと思います。
　fetch(1)コマンドなどでインストールISOイメー
ジファイルを取得します（図9）。
　図10のようにgrub-bhyveコマンドを実行して、
OpenBSDカーネルを読み込みます。途中の操作は
含まれているファイルを調べているだけで、最後に

実行している「kopenbsd -h com0 (cd0)/5.7/amd64/
bsd.rd」と「boot」が重要です。
　ここではシングルコアを割り当ててOpenBSD 

5.7を動作させることを想定しています。図11のよ
うにbhyveコマンドを実行すると、OpenBSDインス
トーラが起動してきます。
　OpenBSDのインストールはシンプルです。とき
どき入力を求められますが、とくに変更する必要が
なければそのままリターンキーを押せばよいでしょ
う。入力する必要がある部分だけ最低限入力するだ
けでインストールは完了します。インストール後は
shutdown -p nowを実行するなどして、いったん仮
想環境を終了してください。

OpenBSD 5.7を運用しよう

　先ほどはインストーラを起動するための操作でし

(hd0) /dev/zvol/z/openbsd-5.7
(cd0) /bhyve/install57.iso

▼▼リスト3　�grub2-bhyveの設定ファイル▼
openbsd-5.7-device.map

# fetch ftp://ftp.kddilabs.jp/OpenBSD/5.7/amd64/install57.iso ｶ
install57.iso                                 100% of  218 MB 4525 kBps 00m49s

▼▼図9　OpenBSD 5.7のインストールISOイメージファイルを取得

# grub-bhyve -m openbsd-5.7-device.map -r cd0 -M 2G openbsd-5.7 ｶ

                             GNU GRUB  version 2.00

   Minimal BASH-like line editing is supported. For the first word, TAB
   lists possible command completions. Anywhere else TAB lists possible
   device or file completions.

grub> ls (cd0)
Device cd0: Filesystem type iso9660 - Label ¥¥`OpenBSD/amd64   5.7 Install CD' -
Last modification time 2015-03-06 01:10:10 Friday, UUID 2015-03-08-11-10-10-00
- Total size 448444 sectors
grub> ls (cd0)/
5.7/ etc/ TRANS.TBL
grub> ls (cd0)/5.7
amd64/ TRANS.TBL
grub> ls (cd0)/5.7/amd64/
base57.tgz boot.catalog bsd bsd.mp bsd.rd cdboot cdbr comp57.tgz game57.tgz INS
TALL.amd64 man57.tgz SHA256 TRANS.TBL xbase57.tgz xfont57.tgz xserv57.tgz xshar
e57.tgz
grub> kopenbsd -h com0 (cd0)/5.7/amd64/bsd.rd
grub> boot

▼▼図10　grub2-bhyveを使ったOpenBSDカーネルの読み込み



160 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

たので、インストールしたOpenBSDを起動する操
作はまたちょっと違ってきます。まず、grub2-
bhyveの実行は図12のように、CD/DVDからではな
く仮想ディスクからになります。仮想環境の起動も
図13のようにちょっと引数が変わります。
　grub2-bhyveとbhyve(8)コマンドを毎回このよう
に入力するのは面倒です。シェルスクリプトにする
こともできますが、リスト4のようにエイリアスを
作成するだけでもコマンド一発で起動できるように
なります。
　典型的な使い方としては、FreeBSDホストに
ssh (1)を使ってログインし、そこでbhyve経由で
OpenBSDを利用するといったことになるでしょ
う。ここにさらにtmux(1)やscreen(1)といったター
ミナルマルチプレクサを組み合わせれば、遠隔から
コンソール経由でログインできる仮想環境のできあ
がりということになります。もちろん、コンソール
を使わずにssh(1)経由のみのログイン環境を仕立て

ることもできます。

WindowsやIllumosも
サポート

　これまでbhyve (8)で動作するOSはFreeBSD、
NetBSD、OpenBSD、Linuxあたりでしたが、2015

年10月に実施されたコミットでWindows（ヘッドレ
スモード）やIllumosも動作するようになりました。
今後さらに動作するOSの数は増えることになると
思います。
　これは体感ですが、bhyveはほかの同様の実装と
比べて動作が軽快な印象を受けます。最初はコマン
ドやオプションがややこしく思うかもしれません
が、それぞれが意味するところがわかってくると、
これはなかなか扱いやすい機能です。まだ使ったこ
とがないのであれば、一度使ってみてください。
　今回はpf (4)まで書ききれませんでした。次回に
ご期待ください。s

# bhyve ¥
    -H -P -A ¥
    -W -c 1 ¥
    -m 2G ¥
    -l com1,stdio ¥
    -s 0:0,hostbridge ¥
    -s 1:0,lpc ¥
    -s 2:0,virtio-net,tap0 ¥
    -s 3:0,ahci-cd,/home/bhyve/install57.iso ¥
    -s 4:0,virtio-blk,/dev/zvol/z/openbsd-5.7 ¥
    openbsd-5.7 ｶ

▼▼図11　OpenBSD 5.7インストーラの起動

# grub-bhyve -m openbsd-5.7-device.map -M 2G openbsd-5.7 ｶ

                             GNU GRUB  version 2.00

   Minimal BASH-like line editing is supported. For the first word, TAB
   lists possible command completions. Anywhere else TAB lists possible
   device or file completions.

grub> kopenbsd -h com0 -r sd0a (hd0,openbsd1)/bsd
grub> boot

▼▼図12　仮想ディスクからOpenBSDカーネルを読み込み

# bhyve ¥
    -H -P -A ¥
    -W -c 1 ¥
    -m 2G ¥
    -l com1,stdio ¥
    -s 0:0,hostbridge ¥
    -s 1:0,lpc ¥
    -s 2:0,virtio-net,tap0 ¥
    -s 3:0,virtio-blk,/dev/zvol/z/openbsd-5.7 ¥
    openbsd-5.7 ｶ

▼▼図13　OpenBSD 5.7仮想環境を起動

alias bhyve_openbsd_5.7='sudo bhyvectl --destroy --vm=openbsd-5.7; printf "kopenbsd -h com0 -r sd0a ｭ
(hd0,openbsd1)/bsd¥nboot¥n" | sudo grub-bhyve -m /d/bhyve/openbsd-5.7-device.map -M 2G openbsd-5.7; ｭ
sudo bhyve -W -c 1 -m 2G -H -P -A -l com1,stdio -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap6 ｭ
-s 3,virtio-blk,/dev/zvol/z/openbsd-5.7 openbsd-5.7; sudo bhyvectl --destroy --vm=openbsd-5.7'

▼▼リスト4　一連の起動作業をエイリアスに設定



バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D  I  G  I  T  A  L

Dec.  2015 - 161

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

 第1特集 
新人さん歓迎特集
Git&GitHub入門
 第2特集 

OpenLDAPの教科書
ユーザ／ネットワーク管理の基本と活用例

 一般記事 
・SambaによるActive Directoryの機能性と 
  移行性を検証する

2015年6月号

定価（本体1,220円＋税）

 第1特集 
あなたにもできる！
ログを読む技術［セキュリティ編］
 第2特集 

黒い画面（tmux）の使い方
プロになるためのターミナル活用術

 第3特集 
6人の先駆者に訊く
スペシャリストになる方法

2015年7月号

定価（本体1,220円＋税）

 第1特集 
Lispより始めよ、されば救われん！
なぜ関数型プログラミングは
難しいのか？
 第2特集 
安全な通信を確保する
SSL/TLSの教科書
 短期連載 
・AWSで始めよう！　モダンなJavaアプリケーション 
	 開発

2015年8月号

定価（本体1,220円＋税）

 第1特集 

特講
正規表現・SQL・オブジェクト指向
苦手克服のベストプラクティス

 第2特集 

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか

 特別企画 
・なぜ俺の提案は通らないのか？

2015年9月号

定価（本体1,220円＋税）

 第1特集 
多層防御や感染後対策を汎用サーバに実装
攻撃に強いネットワークの作り方
 第2特集 

Webメールの教科書
クラウドサービス利用か？　自社で構築か？

 特別付録 
・創刊300号記念　Vim&Emacsチートシート

2015年10月号

定価（本体1,220円＋税）

 第1特集 

すいすいわかるHTTP/2
HTTP/1.1から変わること・変わらないこと

 第2特集 
攻撃を最前線で防ぐ
ファイアウォールの教科書
 特別企画 
・SMB実装をめぐる冒険　File System for Windowsの
  作り方（前編）

2015年11月号

定価（本体1,220円＋税）

Webで

購入 ！
家でも

外出先でも

http://www.fujisan.co.jp/product/1535/
http://www.fujisan.co.jp/product/1535/
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/


162 - Software Design

30 Debian Developer　やまねひでき　henrich@debian.org

DebConf15レポート（前編）と
最新トピック

DebConf15開催

　Debianの開発者ミーティング「DebConf15」
が2015年8月15～22日の間、ドイツ・ハイデ
ルベルクのユースホステルを会場として開催さ
れました。ハイデルベルクはフランクフルト国
際空港から電車で約1時間程度の場所にあり、
古城が有名なドイツでも十指に入る人気の観光
地です（写真1）。
　今回のDebConfは盛況で、参加者は52ヵ国
から過去最大の555名を数えました（写真2、3）。
特徴的だったのは、この参加者のうちの28名
は「kids」、つまり子供だということです。すで
に16回を数えるカンファレンスということも
あり注1、参加者も子持ち世代が増えているとい
う証左ですね。ここから次世代のDebian開発

者が生まれてくるかもしれません。
　ほとんどのセッションが録画されていますの
で、興味のある方はビデオアーカイブ注2を参
照するか、あるいはYouTubeで「DebConf15」
で検索してみてください。
　今回はそのセッションの中からいくつかを取
り上げて、報告してみようと思います。

 ▼写真1　ハイデルベルクの古城

 ▼写真2　セッションの様子

 ▼写真3　多数の参加者でにぎわう会場

注1） 初回のDebconfは「DebConf0」と、0からスタートして
います。 注2）  URL  http://debconf15.debconf.org/videostream.xhtml

http://debconf15.debconf.org/videostream.xhtml


162 - Software Design Dec.  2015 - 163

DebConf15レポート（前編）と
最新トピック 30

PPA“bikeshed”

　数年前からDebianにおいても、Launchpad注3

の「PPA（Personal Package Archive）」のような
しくみについての提案はされていましたが、こ
こに来て本格的に導入を進めよう、というセッ
ション「PPAs - what's next?」が開かれました。
　PPAは、ディストリビューションのリポジ
トリとは別に、個人／チーム／サードパーティ
によるパッケージリポジトリを提供する機能で
す注4。公式のリポジトリでは足りない部分を独
自に補ったり、実験的なパッケージ群を公式リ
ポジトリに影響を与えることなく提供したりす
る場合などに使うこともできます。
　サードパーティ側が複数のバージョンやアー
キテクチャに対してのビルド環境を整えたり、
パッケージリポジトリを用意したりするのは、
結構骨が折れる作業です。そのため、ディスト
リビューションがこのような機能を提供してく
れるのは、自前のリポジトリを作成して賄

まかな

って
きた開発者やそれを利用したいユーザにとって
もありがたいことです。
　今回のDebianにおける提案とLaunchpadの
PPAとの違いは、Launchpadでは登録ユーザ
がPPAを持つことができるが、Debianの場合
はDebian Developerにのみ提供されるという
点です。この違いは次の2点から生じています。

①	プロジェクトが提供できるビルドサーバな
どのインフラ面でのリソース量に差がある

②	個別にリポジトリを用意すれば配布に際して
法的なリスクを負うことになるが、Debian
ではそこまで対応できない

　①についてですが、Launchpadの場合は企業
がバックについて積極的に支援しているのに比
べ、Debianのビルドサーバ群は基本的に寄付

／寄贈に頼っていたり、フルタイム勤務のシス
テム管理者が不在であったりします。この点を
改善するのは難しいということがあります。
　②について、Debianの公式リポジトリに入
るパッケージに関しては、パッケージメンテナ
と ftpmasterと呼ばれるリポジトリ管理者がラ
イセンスの精査を行ってから配布を開始するな
どの手順を経ています。しかし、PPAではこ
のような過程を省略しているため、問題のある
パッケージが「混入してしまう可能性」が発生し
ます。
　筆者がLaunchpadで実際に見た例としては、
ライセンスに無頓着なユーザが再配布禁止の
Oracle JDKを配布していたことがありました。
このような問題のあるリポジトリは、そのまま
放置すると訴訟などの事態になりかねないため、
管理者側で該当のファイル削除や、ユーザへの
警告やヒアリング、場合によってはアカウント
停止措置やその案内などの対応が必要となりま
す。結果として、貴重な人的リソースが消費さ
れてしまいます。この点もDebianプロジェク
トとしてはさらなるリソースを追加するのは難
しいと思われます。
　それでもPPAが利用できるようになれば、
たとえばGNOMEなどの巨大なパッケージ群
について、更新を安定版に対して提供するなど
さまざまな試みが行えるようになるはずで、期
待が膨らみます。
　なお、セッション中に「このPPAをなんと呼
ぶか？」という問いが出たのですが、これに対
して「bikeshed」（＝自転車置き場）というジョー
クが出て、そのまま名付けられてしまいました。
「一時的にパッケージを置いておく場所」という
意味合いだと思うのですが、bikeshedにはもう
1つ「誰もが参加できるようなどうでもいい議論」
という意味もあります。そのため、ネーミング
についての議論も起きています……が、「これ
こそまさにbikeshedだ」と思ったのは筆者だけ
ではないはずです。

注3） Canonical社が開発／管理しているホスティングサービス。
Ubuntuの開発はLaunchpadを中心に進められている。

注4） openSUSEにおける「OBS（Open Build Service）」やFedora
における「Copr」なども、同様のしくみとして挙げられます。



164 - Software Design

local-apt-repository 
パッケージ

　リポジトリの話が出たので、このあたりの話
をもう少し。JenkinsやJenkins-debian-glueを
使って継続的デリバリを行っているという
「Continuous Delivery of Debian packages」と
いうセッション注5の最中に、自前のリポジト
リを簡単に作成できるツールとして「local-apt-

repository」パッケージが紹介されるとともに、
公式パッケージ化の話がでました注6。
　これは、インストール後に /srv/local-apt-

repositoryディレクトリを作って、そこにdeb

ファイルを置くだけでaptからパッケージをイ
ンストールできるようになるというツールです。
これまでのapt-ftparchivesコマンドやreprepro

を使ったリポジトリの作成と比べても容易にリ
ポジトリを作成できます。

Microsoft AzureとDebian

　カンファレンスの期間中、「Debian is not 

welcome on Microsoft Azure」というちょっと
刺激的な投稿がdebian-develメーリングリスト
にありました注7。「Microsoft AzureのSLA（Ser 

vice Level Agreement：サービス品質保証）は、
“Non-Endorsed Distribution”（非推奨ディスト
リビューション）であるDebianには適用されな
いので、クライアントがAzure上でDebianの
利用を許してくれない」という不満です。Azure

でSLAの対象になるのは企業体がバックにつ
き、Microsoft社と協力して問題のエスカレー
ションが行えるディストリビューションだけと
なっており、Debianの場合はこのようなリソー
スがないことがネックとなっています。
　これに対し、今回のカンファレンスのスポンサー
の1つであるcredativ社は、AzureでのCentOS

イメージにおけるOpenLogic社同様に、credativ

社がDebianイメージを提供する企業となって、
Debian を Azure の“Endorsed Distribution”（推
奨ディストリビューション）にする作業を進めて
いることを表明しました注8。これが進めば、ユー
ザはAzureのギャラリーからDebianが簡単に
利用可能になるのと同時に、前述のSLAの問
題も解決します。
　また、credativ社に雇用されているDebian

開発者らが中心になって、Azureについての
BoFセッションを開き、現状の確認と懸念点
などを話しあいました。筆者もこのセッション
に参加し、外部へのトラフィックを削減するた
めに、Ubuntu同様にAzure上にリポジトリミ
ラーを置く予定であることを確認しています。
今後の動きに注目しましょう。

「公式」イメージにまつわる話

　先ほどのAzureなどにも関連してきますが、
クラウドになると「クラウドベンダにとっての
公式」なのか、それとも「イメージを作成してい
る団体にとっての公式」なのか、それとも「その
両方の意味での公式」なのか、何をもって「公式
なDebianのイメージと呼ぶのか」という問題が
持ち上がります。たとえばDockerのイメージ
があったとして、「Docker側が公式サイトで配
布する」イメージと「Debianプロジェクトが公
式に作成／配布する」イメージはまったくの別
物です。ですが、多くの人はその点を省略して
「公式イメージ」と呼ぶ傾向にあります。
　たいていの人が興味を持ちづらく、技術的に
はどうでも良さそうなことですが、法的には商標
などのからみもあり、プロジェクトとしてもこの
あたりの基準をはっきりとさせておく必要があり
ます。そのため、「What should be allowed to 

call itself“Debian”?」というセッションが開かれ
ました。結論らしい結論は出なかったものの、こ
の問題に取り組もうという意志は共有できたもの

注5）  URL  http://annex.debconf.org/debconf-share/debconf 
15/slides/286-continuous-delivery-of-debian-packa 
ges.pdf

注6）  URL  https://lists.debian.org/debian-devel/2015/08/msg 
00370.html

注7）  URL  https://lists.debian.org/debian-devel/2015/08/msg 
00227.html

注8）  URL  http://www.credativ.co.uk/credativ-blog/debian-
images-microsoft-azure

http://annex.debconf.org/debconf-share/debconf15/slides/286-continuous-delivery-of-debian-packages.pdf
https://lists.debian.org/debian-devel/2015/08/msg00370.html
https://lists.debian.org/debian-devel/2015/08/msg00227.html
http://www.credativ.co.uk/credativ-blog/debian-images-microsoft-azure


164 - Software Design Dec.  2015 - 165

DebConf15レポート（前編）と
最新トピック 30

と思います。
　まだまだDebConfについての話題はつきま
せんが、今回はこれで終わりにします。続いて、
カンファレンス以外のネタもピックアップして
みましょう。

ここ最近の話題

GitLabパッケージ

　Gitを使うためのホスティングツールという
と、GitHubがすぐに思い浮かびます。ただ、
企業などでは「このようなツールを完全に組織
内部だけでホスティングしたい（オンプレミス
で運用したい）」という要求がよく聞かれます。
このような利用者からの要望に対して、GitHub

社はGitHub Enterpriseという製品を提供して
いますが、お値段も張るので気軽に導入、とは
いきづらいのが実情でしょう。そのような組織
が代わりに利用しているのが「GitLab」です。
　GitLabはGitHubとは違い注9、ソースコード
がMITライセンスで提供されているOSSです
ので、無償で自由に利用できます（GitLabと組
織内のディレクトリサービスとの統合など、高
度な機能については有償版を利用することにな
ります）。
　Debian上で利用するには、すでにGitLab社
が提供するCommunity Editionのオムニバスイ
ンストーラパッケージがあります注10。ただ、
GitLabが利用するNginx、PostgreSQL、Redis

などのソフトウェアがすべて一括で入るため
300MB程度と比較的大きいサイズです。さらに、
頻繁に更新されるのにもかかわらず、リポジト
リ側の応答が悪く、筆者の環境でもたまにダウ
ンロードに失敗するなどの事態が起きています。

　これに対し、Debianの公式パッケージとし
て配布ができるようにパッケージングしよう、
という動きが出ています注11。ただし、依存す
るパッケージが280個近くあり、さらに、その
うちの20個程度がまだ公式パッケージになっ
ていない状況ですので、道のりは長そうです（公
式リポジトリ入りしたとしても、今度は全部入
りのオムニバスパッケージでは発生しない、コ
ンポーネントの組み合わせバージョン間での問
題が発生する可能性があります注12が、それは
また別の問題……）。
　Debianプロジェクトにはすでにホスティン
グサービスとしてAliothがありますが、その
Webインターフェースは使い勝手が良いもの
とは言えず、単なるリポジトリとして使われて
います。GitLabのようなモダンなインター
フェースを持ったツールがプロジェクトのサー
ビスとして使えるようになると、状況も多少変
わってくるかと思いますので、今後に注目です。

GNOME 3.18リリース

　9月23日にGNOME 3.18がリリースされ、
Debianでの対応も順調に進んでいます。パッ
ケージの進捗状況はWebで確認できます注13。
　今回から筆者もパッケージチームに加わって
作業をしてみていますが、Debian GNOMEチー
ムのリポジトリがSubversionを利用しており、
Gitを使っているupstreamとのすり合わせ作業
が面倒でたまりません。また、40,000コミッ
ト以上もされていてリポジトリ構成も独特なた
めに、簡単にGitへの移行を完了……といかな
いのが悩ましいところです。｢

注11）  U R L   http://balasankarc.in/gitlab/
注12） オムニバスパッケージは「すべてのパッケージのバージョ

ンを微調整して1個のパッケージにしている」のに対し、
公式パッケージ群は「個々のパッケージが最新版を目指し
て更新されている」という違いがあります。そのため、あ
る特定のバージョン間では問題が発生しない場合でも、
最新版同士だと問題がある、というような状況が発生す
る可能性があるのです。

注13）  URL  https://www.0d.be/debian/debian-gnome-3.18-st 
atus.html　「3.18」の部分をほかのバージョンに変更すれ
ば今後も確認が可能です。

注9） よく勘違いされますが、GitHub自体のソースコードは公
開されていないプロプライエタリなものです。そのため、
GitHub上のグループとしてDebianを作って活用しよう
という意見が出ても「プロプライエタリサービスに依存す
るのはどうなのか」という反対意見が出て立ち消えになる、
というのがしばしば見られます。

注10）  URL  https://about.gitlab.com/downloads/

https://about.gitlab.com/downloads/
http://balasankarc.in/gitlab/
https://www.0d.be/debian/debian-gnome-3.18-status.html


166 - Software Design

Ubuntu Monthly Report

　Skylakeは新しいCPUというだけでなく、ソケッ
ト形状が変更になり、チップセットの更新、バス帯
域の強化、DDR4メモリのサポートなど、プラット
フォーム全体が進化しています。さらに、Windows 

10のリリースも重なったこともあって、自作PC向
けに多種多様なパーツも一気に発売されました。
　せっかく新しいプラットフォームが出たのだから、
自作してUbuntuも動かしてみたい、と考えている方
もいることでしょう。さらに本誌が発売されるころ
にはSkylake採用のデスクトップやノートPCも発売
開始しているでしょう。でも新しいがゆえに、そも
そもUbuntuが動くかどうかわからない、どうやって
調べればいいかわからないと不安に感じるかもしれ
ません。

　今回はテスト用に次のシステムを利用しました注1。
CPUは「Skylake-K」ではなく通常版です。またマ
ザーボードには、比較的新しいNICとしてIntel I219-V

注1） 残念ながら家族用のPCです。Windowsをインストールする前
のハードウェアテスト用に特別にUbuntuをインストールさ
せてもらいました。

Intelの新CPU「Skylake」

SkylakeでUbuntuは 
動くのか

が載っていることも特徴です。今回は、Ubuntuのイ
ンストールに光学ドライブは使用しませんでした。

・	CPU：Skylake i7-6700
・	メモリー：Crucial DDR4-2400 8GB×2
・	マザーボード：ASRock Z170 Extreme4
・	ストレージ：Crucial MX200 250GB SATA M.2 Type

　結論から先に言うと、Ubuntu 14.04.3 LTS、15.04、
執筆時点で開発中の15.10のいずれもSkylake上で
動作しました。実はNICについては4.1以降のカー
ネルでないと動かないのですが、Ubuntuの場合15.04

カーネルにもサポートコードがバックポートされて
いたため、リリース間の違いはほとんどありません
でした。ただしそのままでは3Dアクセラレーション
が動作せず、後述するようにカーネルの起動オプ
ションを変更する必要がありました。ここからは本
誌が発売されるころにはリリースされている15.10

を対象に説明します。
　新しいプラットフォームでUbuntuが動くかどうか
の鍵を握っているのはLinuxカーネルです。Linux

カーネルがサポートしていたらほぼ問題なく動くで
しょうし、サポートしていなかったらそもそも動か
ないか、動いたとしても十分にパフォーマンスを出
せません。IntelのCPUの場合は内蔵GPUがあるた
め、カーネルのサポートに加えて、X.orgのドライバ
がサポートしているかどうかも重要になります。

　今年8月に、Intelの新世代CPU「Skylake」の発売が開始されました。そこで今回は、実際にSkylakeで

Ubuntuを動かしてみた結果や動作確認方法を紹介します。

UbuntuとSkylake

Ubuntu Monthly Report第68回

Ubuntu Japanese Team
㈱創夢　柴田 充也（しばた みつや）　mail：mty.shibata@gmail.com



166 - Software Design Dec.  2015 - 167

UbuntuとSkylake 第 68 回

X.orgが十分にサポートしていたら3Dアクセラレー
ションが有効になり、デスクトップとしての用途も
問題ないでしょう。ただし、X.orgのサポートがなく
ても汎用ドライバで動作する可能性は高いため、
「まったく動かない」ということはほぼありません。
少なくともXubuntuなどの2Dアクセラレーションが
動けばそこそこ高速なデスクトップ環境を使えば、
とくに困ることはないはずです。
　Ubuntuの場合、6ヵ月の開発期間のおおよそ半ば
あたりにリリースされたカーネルを採用します。
2014年4月にリリースされた14.04であれば2014年
1月にリリースされた3.13カーネルですし、2015年4

月リリースの15.04は2015年2月リリースの3.19、
2015年10月リリース予定の15.10は2015年8月リ
リースの4.2カーネルを採用といった具合です。当
然のことながら、より新しいUbuntuの方が、新しい
デバイスが動く可能性は高くなります。ただしほぼ
2ヵ月弱ごとにリリースされるLinuxカーネルからみ
ると、Ubuntuのカーネルは少し古いカーネルです。
最新版ではサポート済みのデバイスだけれども、
Ubuntuでは動かないこともよくあります。
　言い方を変えると、IntelのようなLinuxカーネル
へ積極的にコミットしているベンダの新しいプラッ
トフォームについては、それが発売された時期を起
点に「次の次」ぐらいのリリースのUbuntuだとまとも
に動く可能性が高い、ということになります。8月に
発売したSkylakeプラットフォームだと「次（15.10）
の次」ですので2016年4月リリース予定のUbuntu 

16.04 LTSが狙い目ですね。
　ちなみにLTSのポイントリリースである14.04.3

はカーネルのみ15.04相当、つまり3.19カーネルに
なります。そのため、14.04.3と15.04では、カーネル
（や同様にバージョンが更新されるX.org）に関する
ハードウェアサポート状況はほとんど変わりありま
せん。また2016年1月ごろにリリースを予定してい
る14.04.4では、15.10の4.2カーネルとなります。

　前述のとおり、現在サポートされているバージョ

デバイスは認識されるのか

ンのUbuntuであれば、Skylakeで構築されたシステ
ム上で動作します。では、具体的にどのように動作
確認すればよいのでしょうか。ここからは、実際に
PCにUbuntuをインストールする流れをもとに、
ハードウェアの動作確認を行っていきましょう。

Live USBの起動

　最近のPCで、最初につまずく可能性があるポイ
ントがUEFIとセキュアブート周りです。UEFIに
よって、ブートデバイスの選択画面やBIOS設定UI

が非常にリッチになりました。しかし、リッチに
なったがゆえに製品によっては、USBデバイスから
起動する方法がわかりにくくなっていたり、場合に
よってはUbuntuのLive USBをうまく認識できな
かったりします。さらにUEFIでセキュアブートを
有効にしていると、OSによっては起動できないこと
もあります。Ubuntuは署名済みカーネルを同梱して
いるため、基本的にセキュアブート有効でも起動で
きるようになっています。ただし、もしうまく認識
できないようであれば、UEFIからセキュアブートを
無効にしてみてください。それでもダメなら「レガ
シーBIOS」へ変更するような設定を行う必要がある
かもしれません。

メモリのテスト

　うまくLive USBを起動できたら、先にメモリテ
ストを走らせておきましょう。PCの電源を入れてか
ら`キーを連打すると、Ubuntuを起動する前に
GRUBの画面が表示されるはずです。そこで
「Memory test」を選択するとメモリのテスト（Memtest 

86++）が自動的に開始されます。
　画面中ほどにある「Pass」の数が、テストを通過し
た回数です。一般的には1回では不十分で、連続的
に負荷をかけた状況、温度が上がってきたときの動
作、PCの外の電源環境の変化を見るためにも、ある
程度長時間連続でテストを行うべきです。状況にも
よりますが、一晩から一日程度テストを行いつつ放
置しておくのがよいでしょう。
　ちなみに今回のシステムですと、1回のテストが1

時間半ぐらいでした。1回あたりのテスト時間を把握



168 - Software Design

Ubuntu Monthly Report

したうえで、何回目のテスト（いつごろのテスト）で
エラーが出たかを覚えておくと、今後の参考になる
かもしれません。1回目にエラーが出るようであれ
ば、そもそもメモリに問題があるか、接触不良の可
能性が高いので、まずはそこから確認してください。

Live環境での動作確認とインストール

　メモリのテストが終わったら、UbuntuのLive環境
を起動し、動作確認を行います。この時点ではディ
スプレイに画面が表示されるか、ネットワークにつな
がるか、音が鳴るか、マウスやキーボードの挙動に
問題がないかといった基本的な機能の確認だけで十
分です。ほかの部分はインストール後に確認します。
　インストール前のみにできる動作確認としては、
ストレージI/Oのテストがあります。読み込みテス
トは常に実施できるのですが、書き込みテストはマ
ウントしていない状態でしか実施できないのです。
Dashから「ディスク」を起動し、ストレージを選択
し、右上のハンバーガーアイコンから「ディスクのベ
ンチマーク」を選択してください。
　基本的な機能がLive環境でうまく動かない場合、
そのUbuntuでは対応できない可能性が高いです。
とくにネットワークは、このタイミングで動いてい
ないとインストール後のパッケージのアップデート
はおろか、動作するための調査すらままなりません。

よってうまく動かないようなら、より新しいUbuntu

か、ほかのLinuxディストリビューションを試して
みてください。また、ただの接触不良や初期不良と
いう可能性もあります。
　なおグラフィックカードによってはこの時点では
3Dアクセラレーションが有効にならず、Unityの動作
が緩慢になることがあります。この対応はインストー
ル後にした方が楽なので、今は我慢してください。
　とくに問題がなければ、Ubuntuをインストールし
ましょう。

インストール後の動作確認

　インストール後は各種デバイスの動作確認を行い
ます。Ubuntuの場合はまず図1のように3Dアクセラ
レーションが有効か確認しましょう。
　「Unity 3D supported」が「no」の場合、ソフトウェ
アレンダリングを行います。しかし、この処理はた
いへん重く、ほぼ実用には耐えません。Unityを使い
続ける場合は、「追加のドライバー」アプリケーショ
ンでグラフィックドライバを追加してください。
　Intelの内蔵GPUを使う場合は最初から3Dアクセ
ラレーションが有効になっています。ただしリリース
前のデバイスについては特定のモジュールパラメー
タを指定しないと認識しません。Ubuntu 15.10で使用
しているカーネル4.2はまだSkylakeが発売される前

に開発していたカーネルなので、このま
までは3Dアクセラレーションが有効にな
らないのです。
　モジュールパラメータを追加するため
に、リスト1のようにGRUBの設定ファ
イル「/etc/default/grub」を編集します。
編集したら設定を反映し、再起動してく
ださい（図2）。図1のように最後が「yes」
になったら完了です。ちなみに4.2カー
ネルのSkylake用ドライバはまだ公開前
ということもあって、システムログに警
告がいろいろと表示されます。このあた
りは4.3以降のカーネルを採用するはず
のUbuntu 16.04 LTSでは、解消される
見込みです。

$ /usr/lib/nux/unity_support_test -p
OpenGL vendor string:   Intel Open Source Technology Center
OpenGL renderer string: Mesa DRI Intel(R) Skylake DT  GT2
OpenGL version string:  3.0 Mesa 11.0.2

（...中略...）

Unity 3D supported:       yes

図1　3Dアクセラレーションの有効化の確認

 変更前 
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"

 変更後 
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash i915.preliminary_ｭ
hw_support=1"

リスト1　/etc/default/grubの変更点

$ sudo update-grub
$ grep "preliminary" /boot/grub/grub.cfg

図2　GRUB設定を反映する



168 - Software Design Dec.  2015 - 169

UbuntuとSkylake 第 68 回

　それ以外にもいくつか動作確認すべき項目があり
ます。まずシステムログ（dmesgや journalctl）に何ら
かの警告やエラーが出ていないか確認しておきま
しょう。「$ sudo lshw」を実行すると、Windowsで言
うところのデバイスマネージャーのように認識して
いるデバイスリストが表示されますので、期待どお
りの結果になっているか確認できます。マザーボー
ドのUSBポートにUSBデバイスをつなげて、「$ 

sudo lsusb」を実行してどのポートもちゃんと動くか
どうか確認しておくのもよいでしょう。
　最近のUbuntuは、イヤフォンジャックにイヤフォ
ンを接続すると、ボリュームやミュートを自動調整
する機能が備わっています。システム設定の「サウン
ド」を開いてテストしてみましょう。同様に音量や輝
度のファンクションキーが動作するかどうかも確認
しておきましょう。ノートPCの場合は、サスペン
ドとレジュームがちゃんと動くかどうかも確認すべ
き項目の1つです。

　少なくともハードウェアが認識されていることを
確認したら、あとは「十分なパフォーマンスが出てい
るか」どうかを確認していきます。確認手順はデバイ
スごとに異なりますが、ここではより一般的な方法
をいくつか紹介しましょう。

起動速度

　最近はPCIe接続のSSDからのOSの起動に対応し
たマザーボードも増えてきました。PCIe接続のSSD

自体も値段が下がってきたので、システム領域として
このデバイスを使うこともこれから増えてくることで
しょう。とくにUbuntuの場合はシステム領域が8GB

ぐらいあれば十分ですので、容量が小さいタイプの
SSDでも十分実用に耐えます。そうなると気になる

パフォーマンスのチェック

のが、「どれくらい起動時間が速くなるのか」です。
　起動時間の計測には「bootchart」というソフトウェ
アがよく使われます。これは起動時の各プロセスの
起動タイミングとCPUやI/Oの消費量をまとめたも
ので、起動時のボトルネックの調査に非常に有用な
ツールです。もともと独立したソフトウェアだった
のですが、現在はすべてを統べるsystemdに統合さ
れてしまいました。
　systemdを使用しない14.04以前はbootchartパッ
ケージをインストールするだけで動作します。イン
ストール後に再起動すると、/var/log以下にsvgファ
イルが保存されます。
　systemdを採用した15.04以降は「/etc/default/

grub」をリスト2のように編集します。3Dアクセラ
レーション用にモジュールパラメータを設定してい
るのであれば、それは残したまま、その後ろに追記
してください。編集したら設定を反映し、再起動し
てください（図3）。再起動後は、図4のように/run/

log/以下にsvgファイルが保存されています。/run以
下は再起動すると消えてしまいますので、必要であ
れば別の場所にファイルを移動してください。
　プロセス単位ではなく、systemdの各サービス単位
の起動時間を調べたいだけであれば、systemd-

analyzeコマンドが便利です。こちらはとくに設定は
必要ありません（図5）。

ストレージのI/O

　Live環境で実施した「ディスクのベンチマーク」は
ファイルシステムに関係ない生の速度に近い値です。
それに対して実生活では、ファイルシステム経由で
ストレージにアクセスしますので、個々のファイル
システム上のI/Oパフォーマンスも調べておきたい
ところです。
　簡単に計測したいのであればddコマンドが便利で
すが、ここではfioを使うことにしましょう。fioは計

 変更前 
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"
 変更後 
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash init=/lib/systemd/systemd-bootchart"

リスト2　/etc/default/grubへの変更
$ sudo update-grub
$ grep "bootchart" /boot/grub/grub.cfg

図3　GRUB設定の反映



170 - Software Design

Ubuntu Monthly Report

測ジョブのパラメータをファイルとして渡すことが
できます。この設定ファイルを調整することで、
Windows関連でよく使われているCristalDiskMark

と同じような計測ができるのです。
　fioパッケージをapt-getでインストールしたら、リ
スト3のようなジョブファイルを作成してください。
　あとはfioコマンドにこのジョブファイルを渡すだ
けです（図6）。実行したディレクトリの直下に
filenameで指定したファイルを作成して計測します。
計測サイズを増やしたい場合は、ジョブファイルの
sizeを増やしてください。
　注目すべきは「bw=」や「iops=」の値です。ちなみに
CrystalDiskMarkと似たような計測方法ではありま
すが、そもそもソフトウェアやOS、ファイルシステ
ムが異なるため、直接比較できる値ではありません
のでご注意ください。

ビルドテスト

　CPUの純粋な計算速度だけでなく、統合的な「処
理速度」を計測するツールはいくつも存在します。そ
のうちSysBenchやApache Benchなどは、お手軽な
こともあってよく見かけるでしょう。またLinux上
でのハードウェア／ソフトウェアスタックのレ
ビューや性能比較を行っているPhoronix注2が開発
しているPhoronix Test Suiteには、より多くのツー
ルが組み込まれているため、広範囲のテストを一括
して実施できます。またOpenBenchmarking.org注3

にアップロードされたほかの結果との比較も容易で
す。これらはいずれもubuntu-benchmark-toolsパッ
ケージで導入できます。

注2注3統合的なベンチマークツー
ルとは別のアプローチとし
て、「大きなプロジェクトのビ
ルド時間」でパフォーマンス
を計測するという方法もあり
ます。Linuxディストリビュー
ションはたいていの場合、

注2） http://www.phoronix.com/

注3） http://openbenchmarking.
org/

$ systemd-analyze plot > plot.svg

図5　解析結果をSVGファイルとして保存

$ fio crystaldiskmark.fio
 （中略） 
Seq-Read: (groupid=0, jobs=1): err= 0: pid=29856: Sun Sep 13 21:10:19 2015
  read : io=1024.0MB, bw=448685KB/s, iops=438, runt=  2337msec
Seq-Write: (groupid=1, jobs=1): err= 0: pid=29891: Sun Sep 13 21:10:19 2015
  write: io=1024.0MB, bw=428165KB/s, iops=418, runt=  2449msec
 （中略） 
4K-Read: (groupid=4, jobs=1): err= 0: pid=29999: Sun Sep 13 21:10:19 2015
  read : io=1024.0MB, bw=34718KB/s, iops=8679, runt= 30203msec
 （中略） 
4K-Write: (groupid=5, jobs=1): err= 0: pid=30351: Sun Sep 13 21:10:19 2015
  write: io=1024.0MB, bw=143111KB/s, iops=35777, runt=  7327msec
$ rm fio.dat

図6　ベンチマークの実行

図4　bootchartの結果

[global]
ioengine=libaio
iodepth=1
size=1g
direct=1
runtime=60
filename=fio.
dat

[Seq-Read]
bs=1m
rw=read
stonewall

[Seq-Write]
bs=1m
rw=write

stonewall

[512K-Read]
bs=512k
rw=randread
stonewall

[512K-Write]
bs=512k
rw=randwrite
stonewall

[4K-Read]
bs=4k
rw=randread
stonewall

[4K-Write]
bs=4k
rw=randwrite
stonewall

[4K-QD32-Read]
iodepth=32
bs=4k
rw=randread
stonewall

[4K-QD32-Write]
iodepth=32
bs=4k
rw=randwrite
stonewall

リスト3　ジョブファイルcrystaldiskmark.�o

http://www.phoronix.com/
http://openbenchmarking.org/


170 - Software Design Dec.  2015 - 171

UbuntuとSkylake 第 68 回

ソースパッケージをダウンロー
ドし、パッケージのビルド環境
を構築する手順は簡略化されて
いるため、専用のベンチマーク
ツール導入とたいして変わらな
い手間で実施できるのです。
　Ubuntuのパッケージで、ビ
ルドに時間がかかりそうなプロ
ジェクトの1つがLibreOfficeで
しょう。ソースパッケージだけ
でも数百MBのサイズになり、
最新のCPUであっても数時間
のビルド時間が必要なビッグプ
ロジェクトです注4。
　図7はLibreOfficeパッケージ
のビルド手順です。うまくビル
ドができたらホームディレクト
リのpbuilder/以下にバイナリ
パッケージとともにビルドログ
が保存されます。このうちビルド開始時と終了時に
「Current time」が記録されますので、その差分を見れ
ばおおよそのビルド時間がわかるというわけです。
　図8はビルド中のシステムモニターの様子です。
本格的にコンパイルを行いだした後ろ3分の1ぐらい
から4コア8スレッドのCPUがすべて100％で張りつ
いているのがわかります。ちなみにSkylakeの
Core-i7でも、1時間ぐらいはこの状態が続いていま 

した。

　Intelは積極的にLinuxコミュニティへのコミット
を行っているため、どのデバイスも比較的簡単に動
くという特徴があります。Intel自身、Ubuntuや
Fedora向けに最新グラフィックスタック用インス
トーラ注5を配布しているぐらいです。よって新しい

注4） ソースコードのサイズだけで言うと1GBを越えるTeX Liveの
方が上ですが、こちらはあまりにも大き過ぎるため、ソース
パッケージの時点で複数に分割されています。

注5） https://01.org/linuxgraphics

まとめ

PCでも、半年後ぐらいにリリースされたUbuntuで
あれば「メインの機能」はほぼ問題なく動きます。
　ただPCベンダによってカスタマイズされている
部分やIntel以外の部分、とくにNICやグラフィック
カードについては、個々のベンダに依存しますので、
可能な限りLive環境でテストする前にどこのベンダ
のなんという型番かは調べておきましょう。「型番 

Ubuntu」のように検索すれば、ちゃんと動くかどう
かや、運がよければその手順もわかる場合があるか
らです。
　ベンチマークの結果を「正しく」理解するためには
ハードウェアとソフトウェアに対する正しい知識が
必要です。しかしながら、新しいPCになったのだ
からどれくらい快適になったか「なんとなく知りた
い」程度であれば、そこまで知識は必要ありません。
せっかくですので、一度、新旧の環境でベンチマー
クを動かしてみるのはいかがでしょうか。また、今
回は触れませんでしたがビデオデコードやエンコー
ドもパフォーマンステストではよく行われます。VA-

APIに対応したツールを使って、試してみるのもよ
いでしょう。｢

$ sudo apt-get install ubuntu-dev-tools cowbuilder
$ cowbuilder-dist wily create
$ apt-get source libreoffice
$ cowbuilder-dist wily build libreoffice*.dsc
$ grep "^I: Current time" ~/pbuilder/wily_result/libreoffice*.build
I: Current time: Sun Sep 13 21:58:42 JST 2015
I: Current time: Mon Sep 14 00:26:50 JST 2015

図7　LibreO�ceパッケージのビルド

図8　libreo�ceのビルド中のシステムモニター

https://01.org/linuxgraphics


172 - Software Design

Linuxカーネル観光ガイド

Linux 

カーネ
ル 

観光ガ
イド

ext4の暗号化
　こうしたファイルシステムの暗号化の手法が
ある中、Linux 4.1ではext4にも暗号化機能が
実装されました。ファイルシステム自身に暗号
化機能が実装されているので、ブロック単位で
暗号化を行うdm-cryptや、あるいはほかのファ
イルシステムの上にスタックするEncFSや
eCryptFSなどと比較して、より効率的で柔軟
なファイルの暗号化ができることが期待されます。
　まずはext4の暗号化を使ってみましょう。こ
の機能を使うには、カーネルだけでなくユーザ
ランド側のツールも必要です。e2fsprogs-1.43_

pre20150518.ebuildのようにコピーし、emerge

することでもインストールできます。
　まずは、“-O encrypt”でext4の暗号化フラグ
を立てて暗号化機能が有効になったファイルシ
ステムを作ります（図1❶）。ここでは新たなファ
イルシステムを作っていますが、tune2fsコマン
ドを使って既存の ext4ファイルシステムに
encryptフラグを立てることもできます。当然こ
のフラグを立てた場合、以前のカーネルでは
mountできなくなるので注意してください。
　ext4の暗号化はディレクトリツリーの単位で
行われます。暗号化を有効にしファイルシステ

  　10月18日にLinux 4.3-rc6 がリリースされて
います。だいたいrc7かrc8まで出て、リリース
となっているのでこの記事が出ているころには 

Linux 4.3もリリースされているのではないかと
思います。今月はLinux 4.1からの新機能であ
るext4の暗号化について見ていきます。

ファイルシステムの 
暗号化

　Ubuntuのインストーラでも、暗号化したファ
イルシステムの作成がオプションとして提供さ
れているように、ファイルシステムの暗号化に
は一定のニーズがあります。現状よく使われて
いるのは、dm-crypt、eCryptFS、EncFSの 3

つでしょうか。
　dm-cryptは、デバイスマッパ上に実装され、
ブロック単位で暗号化を行い、そのうえにファ
イルシステム（やその他なんでも）を作ることが
できます。dm-cryptがデバイスの上に重ねるの
に対して、eCryptFSはほかのファイルシステ
ムの上に重ねて暗号化を提供しています。最後
のEncFSもeCryptFS同様にほかのファイルシ
ステムの上に重ねるタイプの暗号化ですが、ほ
かの2つがカーネル内で実装されているのに対
して、これはFUSEを用いてユーザランドでの
実装を行っています。

  

Linux 4.1の新機能
ext4の暗号化機能

Text：青田 直大　AOTA Naohiro

第45回第45回



172 - Software Design Dec.  2015 - 173

Linux 4.1の新機能
ext4の暗号化機能

第45回第45回

ム上にディレクトリfooとbarを作成し、一方は
空ディレクトリ時に、もう一方はファイルを作っ
たあとに暗号化を行うコマンドを実行してみま
す（図1❷）。
　暗号化には“e4crypt add_key”を使います。こ
のコマンドは“-S”オプションで暗号のsaltを指
定し、パスフレーズを入力することで、指定し
たディレクトリおよびその下のファイルツリー
に暗号化の設定を行います。saltの指定はリス
トのように“s:”から始めて文字列を指定する方
法や、“/”から始まるフルパスあるいは“f:”から
始まるファイルパスを指定してファイルの内容
で指定する方法、そして“0x”から始めてhex文
字列でバイナリデータを指定する方法の3つの
方法があります。
　パスフレーズを入力すると、暗号鍵が fooに
適用されたとのメッセージが出ます。ここで
foo、bar下にファイルを作り、さらに foo/1に
“foo”と書いておきます。その後、先ほどと同様
に暗号化コマンドを“bar”に対して使ってみます。
パスフレーズは聞かれていますが、ディレクト

リが空ではないので、“Error [Directory not 

empty]setting policy.”とエラーが出ています。
このように暗号化設定は空ディレクトリのとき
に行う必要があります。
　“e4crypt get_policy”を使うと、ディレクトリ
に指定されている暗号鍵のIDを見ることができ
ます。“e4crypt add_key”で、適用された IDが
出力されているのを見ることもできます。
　暗号化されたファイルが、暗号化した本人以
外からどのように見えるのかを見てみましょう。
ファイルシステムを一度mountしなおして、
rootとしてfoo、barを見てみましょう。暗号化
していないbarの中は普通に元のファイル名が
見えています。しかし、暗号化されている foo

の中はファイル名がランダムのような文字列に
変わっています（図2❶）。
　では、ファイルへのアクセスについてはどう
でしょうか。ファイルサイズ（とinode番号）から
“foo/1”に対応しているとわかる“foo/hn+EPsLo 

2RbnSVQWvlMsWA”を読み込もうとしても、
鍵がないとのエラーが出て読み込むことはでき

$ truncat -s 30G ext4.img
$ /sbin/mkfs.ext4 -O encrypt ext4.img                     # ❶暗号化機能を有効にしたFSの作成 
mke2fs 1.43-WIP (18-May-2015)
Discarding device blocks: done
Creating filesystem with 7864320 4k blocks and
$ /usr/sbin/e4crypt get_policy foo
foo: c75cff06381143e0
$ touch {foo,bar}/{1,2,3}; echo foo > foo/1
$ ls -li foo/* bar/*
655362 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 bar/1
655363 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 bar/2
655364 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 bar/3
393218 -rw-r--r-- 1 naota naota 4 Oct 26 20:55 foo/1
393219 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 foo/2
393220 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 foo/3
$ /usr/sbin/e4crypt add_key -S s:salt2 bar               # ❷barの暗号化指定（失敗） 
Enter passphrase (echo disabled):
Added key with descriptor [56786db4865cc0ae]
Added key with descriptor [b1f33fc98fc26cec]
Error [Directory not empty] setting policy.
The key descriptor [b1f33fc98fc26cec] may not match the existing encryption context for 
directory [bar].
$ /usr/sbin/e4crypt get_policy foo bar
foo: c75cff06381143e0
Error getting policy for bar: No such file or directory

 ▼図1　ファイルの暗号化



174 - Software Design

Linuxカーネル観光ガイド

ません（図2❷）。もちろんディレクトリの外に
リンクしてみても同様に読めませんし、rootで
あっても鍵を知らないので書き込むことができ
ません。また、暗号化されたディレクトリの中
に新しいファイルを作ることもできません。た
だし、ファイルを削除する権限があればそのファ
イルを削除することはできます（図2❸）。
　このようにext4の暗号化では、鍵がなくても
ファイルの存在や inode番号、タイムスタンプ
という情報は取得できます。ただし、ファイル
名は一定の方法でハッシュ化され、元のファイ
ル名を知ることはできません。
　ここまでのコマンドで追加した鍵は、基本的
には再起動するまでは、鍵を追加したユーザと
結びつけられています。すなわちファイルシス
テムをumountしても鍵の再設定は必要ありませ
ん。しかし、再起動後や「鍵セッション」の変更
後は、再度鍵を追加する必要があります。鍵の
追加は暗号化を設定したときと同じコマンドを
繰り返すだけです（図3）。

inode ごとの暗号鍵
　もう少し深くext4の暗号化を見ていきましょ
う。同じ暗号鍵を使って2つの暗号化ディレク
トリに、同一の名前のファイルを作ったら、そ
の2つのファイルの鍵がないときに表示される
ファイル名は一致するのでしょうか。あるいは
同じ暗号鍵を使って、2つの同一の内容のファ
イルを作ったらそのディスク上のデータは一致
するのでしょうか。
　図4のように同じ暗号鍵を使って同一ファイ
ル名かつ同一コンテンツのファイル foo0/1と
foo1/1を作ります。まずはファイル名を見てみ
ると、ちゃんとディレクトリごとに表示されるファ
イル名が変わっているのがわかります（図4❶）。
　同様にディスク上のデータについても見てみ
ましょう。こちらはdebugfsコマンドで見てい
きます。まず、“blocks”コマンドをファイルの
inode番号に対して使って、ファイルデータを

  

$ cd; sudo umount /mnt/tmp
$ sudo -i
# mount ~naota/ext4.img /mnt/tmp
# cd /mnt/tmp; ls -li foo/* bar/*                      # ❶ファイル名が暗号化されている 
655362 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 bar/1
655363 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 bar/2
655364 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 bar/3
393220 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 foo/FTZnujPSL2Y5gTbFtqOXUD
393218 -rw-r--r-- 1 naota naota 4 Oct 26 20:55 foo/hn+EPsLo2RbnSVQWvlMsWA
393219 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 foo/JDRQqMbrYMYe+JDe7h,36A
# cat foo/hn+EPsLo2RbnSVQWvlMsWA                       # ❷暗号化されたファイルの読み込み 
cat: foo/hn+EPsLo2RbnSVQWvlMsWA: Required key not available
# ln foo/hn+EPsLo2RbnSVQWvlMsWA baz
# cat baz
cat: baz: Required key not available
# echo > foo/hn+EPsLo2RbnSVQWvlMsWA
-bash: foo/hn+EPsLo2RbnSVQWvlMsWA: Required key not available
# touch foo/aaa
touch: cannot touch ‘foo/aaa’: No such file or directory
# rm foo/hn+EPsLo2RbnSVQWvlMsWA                        # ❸暗号化されたファイルの削除は可能 
# exit
# ls -li foo/* bar/*                                   # foo/1 が消えている 
655362 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 bar/1
655363 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 bar/2
655364 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 bar/3
393219 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 foo/2
393220 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 foo/3

 ▼図2　暗号化されたファイルへのアクセス



174 - Software Design Dec.  2015 - 175

Linux 4.1の新機能
ext4の暗号化機能

第45回第45回

(reboot ...)
$ sudo mount ext4.img /mnt/tmp
$ cd /mnt/tmp; ls -li foo/*
$ ls -li foo/*                                    # 鍵がないので読めない 
393220 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 foo/FTZnujPSL2Y5gTbFtqOXUD
393219 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 foo/JDRQqMbrYMYe+JDe7h,36A
$ /usr/sbin/e4crypt add_key -S s:somesalt foo     # 鍵の追加 
Enter passphrase (echo disabled):
Added key with descriptor [19cb4cd62773ca20]
Added key with descriptor [c75cff06381143e0]
Key with descriptor [c75cff06381143e0] applied to foo.
$ ls -li foo/*                                    # ファイルが読めるようになった 
393219 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 foo/2
393220 -rw-r--r-- 1 naota naota 0 Oct 26 20:54 foo/3

 ▼図3　暗号鍵の再設定

$ /usr/sbin/e4crypt add_key -S s:somesalt foo{0,1}
Enter passphrase (echo disabled):
Key with descriptor [19cb4cd62773ca20] already exists
Key with descriptor [c75cff06381143e0] already exists
Key with descriptor [c75cff06381143e0] applied to foo0.
Key with descriptor [c75cff06381143e0] applied to foo1.
$ echo foo > foo0/1
$ echo foo > foo1/1
(reboot ...)
$ ls -li foo0/* foo1/*
1441794 -rw-r--r-- 1 naota naota 4 Oct 27 01:07 foo0/FzAk81TGszPbrEhct2wg6C
 393218 -rw-r--r-- 1 naota naota 4 Oct 27 01:07 foo1/paj3RWcqpwvhKphOYClCKA
$ /sbin/debugfs ext4.img -R 'blocks <1441794>'      # inode 1441794 の file block を取得 
debugfs 1.43-WIP (18-May-2015)
5799936
$ /sbin/debugfs ext4.img -R 'blocks <393218>'
debugfs 1.43-WIP (18-May-2015)
1606661
$ /sbin/debugfs ext4.img -R 'bd 5799936'|head
debugfs 1.43-WIP (18-May-2015)
0000  75f6 f9b7 adc6 01db f8a0 b1f3 754b e096  u...........uK..
0020  df3b 1e06 079a d2c6 0a17 dfe0 b186 72e6  .;............r.
0040  e025 8d23 e2f0 a98f 953c 93c4 27bb 05e3  .%.#.....<..'...
0060  423f a990 d210 8ac6 2e03 306d 267f a061  B?........0m&..a
0100  3cd7 dce7 bdb9 9e11 12db fde3 df6c b86d  <............l.m
0120  2637 31a4 33a3 7b97 6ebe c15a dc4a fef4  &71.3.{.n..Z.J..
0140  a7c1 af18 f857 628c 9d17 1715 f033 a2d7  .....Wb......3..
0160  35e2 ef3c 090b 530c 86c3 f744 fe62 69fe  5..<..S....D.bi.
0200  8d5f b0cf 6081 662e eb5b 67eb da06 4436  ._..`.f..[g...D6
0220  73ad 5959 dcd8 85db 3ff3 8157 e869 f291  s.YY....?..W.i..
$ /sbin/debugfs ext4.img -R 'bd 1606661'|head
debugfs 1.43-WIP (18-May-2015)
0000  b5ec 359b 8be7 86ff 73e4 8a0d bd72 158a  ..5.....s....r..
0020  e23e 3e41 391d 2e09 e151 7836 866b be6f  .>>A9....Qx6.k.o
0040  7573 9a71 5fa3 9646 c1c0 399f ee77 d834  us.q_..F..9..w.4
0060  0edd 4d5b b05c 6d95 f865 6397 ec57 04fb  ..M[.?m..ec..W..
0100  6b0d 169a 8434 81cb 67dc b89b 3d3f a436  k....4..g...=?.6
0120  4c06 2d77 efe3 331e 6697 4e02 647c 475c  L.-w..3.f.N.d|G?
0140  3887 5c59 d2fa 0917 3c8c 7cf5 bc1e 5308  8.?Y....<.|...S.
0160  8561 f979 51fb 44ff a507 0ebd 7b0a 2b98  .a.yQ.D.....{.+.
0200  bf36 7572 670a 5893 bc54 5330 080e 4249  .6urg.X..TS0..BI
0220  955d 605b 2231 f853 f1f2 31e5 ca6c d827  .]`["1.S..1..l.'

 ▼図4　暗号化された同一のファイルを比較する

}❶



176 - Software Design

Linuxカーネル観光ガイド

保存しているブロック番号を取得します。さら
に“bd”コマンドでそのブロックデータをダンプ
します。もともとは同一コンテンツであるのに、
比べてみるとまったく異なっているということ
が確認できます。
　この結果から確認できるように、ext4では
inodeごとにランダムなnonceを作成し、指定し
た暗号鍵とnonceとを組みわせてファイル名お
よびデータの暗号化を行っています。この情報
は inodeのextended attributeとして保存されて
います。この値は通常は見ることができませんが、
debugfsの“ea_list”コマンドでダンプできます（図
5）。データは、構造体ext4_encryption_context

になっており、最初の4byteがフォーマット番号、
ファイルデータの暗号化形式（ここではAES 

_256_XTS）、ファイル名の暗号化形式（AES_256 

_CTS）、フラグを示しています。次のc7から始
まる8byteが暗号鍵の“c75cff06381143e0”と
なっており、e4cryptが出力しているものと一致
していることが確認できます。そのあとの
16byteが inodeごとのnonceとなっていて、この
部分は各 inodeで違っていることが確認できます。

カーネルによる 
鍵の管理

　さて、これまで“e4cyrpt add_key”によって「鍵
が追加」されると書いてきましたが、その鍵とは
どこにどんな形式で保存され、誰が管理してい
るのでしょうか。実はLinuxカーネルは鍵を管
理し、必要に応じて提供する機能を持っています。
この鍵管理システムを見ていくことで、ext4の
暗号化の裏側を探ることができます。
　まずはカーネルがどのような「鍵」を持ってい
るのかを見てみましょう。カーネルの「生の」イ
ンターフェースとしては/proc/keysと/proc/

key-usersとがあります（図6）。
　前者は自分の鍵のリストを、左からシリアル
番号、鍵の状態を示すフラグ、使用数、鍵の期限、
パーミッション、UID、GID、タイプ、説明文
といった形式で表示します。後者はシステム全
体での鍵の使用量を示すファイルです。左から
UID、参照カウント、キーの数（有効数／全体）、
キー数のquota、キーサイズのquotaを示してい
ます。また、/proc/keysをわかりやすく表示す
るものとして“keyctl show”コマンドを使うこと

  

$ /sbin/debugfs ext4.img
debugfs 1.43-WIP (18-May-2015)
debugfs:  ea_list foo0
Extended attributes:
  c = "01 01 04 00 c7 5c ff 06 38 11 43 e0 e5 51 36 34 ff d4 ec 57 94 a7 ec bd d9 11 df 1c " (28)
debugfs:  ea_list foo1
Extended attributes:
  c = "01 01 04 00 c7 5c ff 06 38 11 43 e0 ee 71 12 9d 71 d6 25 36 0c e6 f7 df 6c 46 f8 f3 " (28)

 ▼図5　inodeごとの暗号設定のダンプ

$ cat /proc/keys
38c2cfaf I--Q---     1 perm 1f3f0000  1000 65534 keyring   _uid_ses.1000: 1
3cd234e5 I--Q---     2 perm 1f3f0000  1000 65534 keyring   _uid.1000: empty
$ cat /proc/key-users
    0:     6 5/5 2/1000000 22/25000000
 1000:     2 2/2 2/200 28/20000
$ keyctl show -x
Session Keyring
0x38c2cfaf --alswrv   1000 65534  keyring: _uid_ses.1000
0x3cd234e5 --alswrv   1000 65534   ?_ keyring: _uid.1000

 ▼図6　鍵情報の表示



176 - Software Design Dec.  2015 - 177

Linux 4.1の新機能
ext4の暗号化機能

第45回第45回

ができます。
　では、暗号化を設定すると鍵はどうなるでしょ
うか。先ほどと同様に、e4cyrptを使って暗号
化を設定し、鍵を見てみます（図7）。
　すると、“ext4:19cb4cd62773ca20”と“ext4:46 

28fd0bbe3215f8”という鍵が追加されているこ
とが確認できます。これらの鍵のタイプは“logon”
となっており、このタイプの鍵はカーネルから
は参照できますがユーザからは読めないという
ものです。
　これらの鍵は、ユーザごとの“デフォルトセッ
ション”のキーリングに追加されており、そのた
めログアウトしても鍵情報は残っています。では、
一時的に暗号化された部分が見えないプロセス
を作るにはどうしたらいいでしょうか。そのた
めには、新しい鍵セッションを作成する“keyctl 

session”（またはe4crypt new_session）を使いま
す。これを使うと新しいセッションが開始され、

鍵が見えなくなります（図8）。実際一度ディレ
クトリキャッシュをクリアしてから、ファイル
名を表示してみると暗号化されているのがわか
ります。

他ファイルシステムと
の共通化

　ファイルシステム自身での暗号化機能は、実
はext4以外に、すでにF2FSにも実装されてい
ます。どちらのファイルシステムもファイルご
との暗号化設定の読み書き、およびsaltを取得
するための ioctlを実装しています。
　ext4のメンテナであるTed Ts'oはF2FSのメ
ンテナと、2つのインターフェースを共通化す
る議論を行っているようです。将来的にはこれ
らの ioctlが一般化され、さまざまなファイルシ
ステムで暗号化機能がシームレスに使えるよう
になるのかもしれません。｢

  

$ /usr/sbin/e4crypt add_key -S s:somesalt foo
Enter passphrase (echo disabled):
Added key with descriptor [19cb4cd62773ca20]
Added key with descriptor [4628fd0bbe3215f8]
Key with descriptor [4628fd0bbe3215f8] applied to foo.
$ cat /proc/keys
03bdccb1 I--Q---     1 perm 3d010000  1000  1000 logon     ext4:19cb4cd62773ca20: 72
36c1e96c I--Q---     2 perm 3d010000  1000  1000 logon     ext4:4628fd0bbe3215f8: 72
38c2cfaf I--Q---     1 perm 1f3f0000  1000 65534 keyring   _uid_ses.1000: 5
3cd234e5 I--Q---     2 perm 1f3f0000  1000 65534 keyring   _uid.1000: empty
$ keyctl show -x
Session Keyring
0x38c2cfaf --alswrv   1000 65534  keyring: _uid_ses.1000
0x3cd234e5 --alswrv   1000 65534   ?_ keyring: _uid.1000
0x36c1e96c --alsw-v   1000  1000   ?_ logon: ext4:4628fd0bbe3215f8
0x03bdccb1 --alsw-v   1000  1000   ?_ logon: ext4:19cb4cd62773ca20

 ▼図7　鍵のタイプを表示する

$ touch foo/1
$ keyctl session （または /usr/sbin/e4crypt new_session）
Joined session keyring: 322164927
$ keyctl show
Session Keyring
 322164927 --alswrv   1000  1000  keyring: _ses
$ cd ..; echo 3 | sudo tee /proc/sys/vm/drop_caches; cd -
$ ls -l foo/*
-rw-r--r-- 1 naota naota 0 Oct 27 11:26 foo/oGy4BHHDKOJVDVzPm9E,ZA

 ▼図8　暗号化されたものを非表示にする



178 - Software Design

　各言語の近況を伝えるセッションです。今回は初
めての試みとして、司会からお題を提示し、それに
各出演者が回答するという方式を採用しました。最
新版で変わったところ、すでに古くなってしまった
仕様、ほかの言語との比較、個人的偏愛点などにつ
いて話をうかがいましたが、言語に精通した方々に
よる内容の濃い回答のおかげで、情報量の多いセッ
ションになりました。

■IoT時代のLLスタック

¡	出演：青木俊介（ユカイ工学㈱）、若狭正生、

	 岡島康憲（岩淵技術商事㈱）、椎野孝弘（ヤフー㈱）

¡	司会：森藤大地（ニフティ㈱）

　IoTデバイスをLLで操作するために必要な技術
や知識を紹介するセッションです。IoTを取り巻く
状況として注目のベンダやデバイスの紹介、なぜ組
み込み言語ではなくLLでデバイスを扱うのか、LL

でプログラムを書く側から見たデバイスの制約や制
御の難しさ／楽しさ、IoTの延長上に何を目指すの
か、といった話題について討論しました。IoTデバ
イスは小型の物が多いため、PCの内蔵カメラでデ
バイスを撮影してスクリーンに投影していました。

■パネルディスカッション：

	 エンジニア不足はいつまで続くのか

¡	出演：伊藤健吾（㈱キャリアデザインセンター）、

清水俊博（㈱ドワンゴ）、吉田浩一郎（㈱クラウ

ドワークス）、吉田真吾（フリーランス）

¡	司会：小山哲志（合同会社ほげ技研）

　今回は、13年目を迎えたLightweight Languageイ
ベント（LLイベント）について報告します。今年は
2006年のLL Ringで使用したプロレス専用会場・新
木場1stRingを再びお借りし、リングに再び帰ると
いう意味を込めてLL Ring Recursiveと題して開催
しました（写真1）。参加者は166人でした。以下、
実施したプログラムを紹介します。

	 ■Lightweight Language Ring Recursive

	【日時】2015年9月5日（土）10:30〜20:00

	【会場】新木場1stRING

■Language Update

¡	出演：JavaScript：竹迫良範

　　　　Perl：徳永広夢（subtech）

　　　　PHP：hnw（KLab㈱）

　　　　Ruby：成瀬ゆい

¡	司会：高橋征義（㈱達人出版会）

写真1　LL Ring Recursiveスタッフ一同（リング上にて）

Lightweight Language Ring Recursive

リングに再び帰るLLイベント

NO.50
December 2015

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/


Dec.  2015 - 179178 - Software Design

　近年、各企業でエンジニアが不足している状況に
ついて討論するセッションです。IT系の求人動向の
変化、採用する側／される側の考え、副業の是非、
エンジニア人口を増やすにはどうすれば良いかな
ど、多面的な議論が交わされました。「Web系エン
ジニアは、新卒で入った世代がまだ定年を迎えてい
ないためキャリアパスが見えにくい」「安定は会社で
はなく自分に求めるもの」など、印象に残るコメン
トがいくつも聞かれました。

■LLが支えるデータサイエンスの世界

¡	出演：佐藤建太（東京大学/JuliaTokyo）、

	 大野健太（㈱Preferred Networks）

¡	司会：村田賢太

　機械学習やデータ分析の分野におけるLLの利用
について話をうかがうセッションです。大野さんに
はChainerというディープラーニングのフレーム
ワークを紹介していただきました。ニューラルネッ
トの理論に始まり、Chainerの環境構築、Pythonで
書かれた学習プログラムの解説などがありました。
佐藤さんからは科学技術計算向けのLLである
Juliaの紹介がありました。Juliaの特徴である動的
なプログラミング、簡潔な言語仕様、高速な処理、
科学技術計算向けの豊富なライブラリなどを、実際
にJuliaを動かしながら説明されました。

■懇親会とLightning Talks

　今回は会場内で飲食できることを利用して、本編
に含める形で懇親会とライトニングトークを行いま
した。ライトニングトークは持ち時間3分で、当日
会場にて発表者を募る方式を採用しましたが、総勢
12名の方が応募し盛り上げてくださいました。タ
イトルと発表者は表1のとおりです。

■物販＆見本誌展示

　今年もIT系出版社による書籍の即売と見本誌展示
を行いました。参加してくださった出版社は、㈱オラ
イリー・ジャパン、㈱オーム社、㈱達人出版会、USP

出版、アスキードワンゴ、㈱インプレス、㈱マイナビ、
㈱技術評論社、㈱日経BP、SBクリエイティブ㈱です。

■終わりに

　9年前に同会場で開催したときはあっという間に
満席になってしまったのですが、今年は当日券でも
入場できるぐらいの参加者数で、かと言って空席が
目立つほどでもなく、適正な規模で実施することが
できました。プログラムも充実した内容だったと思
います。言語系のイベントや勉強会が増えた今、こ
のイベントの位置付けを再考しつつ、またおもしろ
いものを企画できればと考えています。
　LL Ring Recursiveの発表資料、写真、映像など
はWebサイト注1に置いてあります。こちらもぜひ
ご参照ください。｢

注1）  URL  http://ll.jus.or.jp/2015/

LTタイトル 発表者
IoTなんかシェルで十分だろが 上田隆一（USP友の会／千葉工業大学）
安全に「危険シェル芸」ができるスタートアップスクリプトのご案内 横田真俊（さくらインターネット㈱）
とある正規表現を高速化した話 西山和広
Lua言語 上野豊（産業技術総合研究所）
問題提起：「日々これ修業」の代わりは？ 齊藤明紀（鳥取環境大学）
福利厚生の話 HaiTo
そろそろ焼きそばについて一言いっておくか @kwappa（㈱ドワンゴ）
俺に焼きそばを焼けって言われても kuzuha
言語をディスるのはやめろ dark（㈱セプテーニ・オリジナル）
プロジェクト℃ ～夢見者たち～ 舞台裏 海老原寛之（㈱サイタスマネジメント）
PHPでRubyを攻略する マスクドPHP
新言語XYを作ってみた 竹迫良範（㈱リクルートマーケティングパートナーズ）

表1　ライトニングトークの発表内容

（司会：法林浩之（日本UNIXユーザ会））

リングに再び帰るLLイベント December
2015

http://ll.jus.or.jp/2015/


180 - Software Design

キックオフ

　初日、参加者は郡山駅や郡山市役所などからバス
を利用したり、また自家用車などで直接、会場の福
島県郡山自然の家に集まりました。この会場は地元
の方にとっては有名な施設だそうで、入浴施設、さ
らには食堂も完備されていて、まさにハッカソンの
ような開発合宿にはぴったりの会場でした。
　まず、主催者などからの説明でイベントは開始さ
れました。
　今回のイベントの主催である、郡山地域ニューメ
ディア・コミュニティ事業推進協議会からは、UDC

の説明がされました。全国各地に拠点がある中、東
北からは一関と会津若松に加えて郡山が選ばれたこ
と、「Connect」に込めた「笑顔でつないでいく」と「世
界につないでいく」という想いが紹介されました。
　郡山市政策開発部ソーシャルメディア推進課から
郡山市のICTの取り組みが紹介された後、運営協
力しているCode for KORIYAMAおよびエフスタ !!

の代表の大久保仁さんから、郡山で活動している
ITコミュニティ代表の立場からこのイベントへの
期待が述べられました。大久保さんは、「まだまだ
地方ではITの勉強会やハッカソンなども会社側か
らは遊びとして見られてしまうことが多いが、この
イベントで理解が進むようになるようにしたい。2

日間楽しんでほしい」と参加者に呼びかけました。
また、地域課題を理解するため、郡山市政策開発部
政策開発課から郡山市の課題と取り組みが紹介され
ました。郡山市在住の人であっても、結構自分の住
んでいる自治体のことは知らないものなので、大変
参考になったように見受けられました（写真1）。

アイデアソン

　初日の午後はアイデアソンが行われました。ファ
シリテーターはNPO法人森とIT理事長の國枝裕介
さんです。アイデアソンは次のようなステップで進
められました。

◉個人ワーク

2色の付箋紙に、1つは「誰に？」に対して、もう1

つは「どんな」価値を届けるかを、3つ以上書き出す

➡

◉チーム内発表

チームを組み、付箋紙に書きだしたアイデアを1人

ずつ発表。チームの他の人はそのアイデアをひたす

ら褒める

➡

◉アイデアの分析／まとめ

付箋紙に書きだしたアイデアを模造紙に貼り付け、

Hack For Japan
エンジニアだからこそできる復興への一歩

Connect 2015 in Koriyama, with UDC第48回
8月29日から2日間にわたって、福島県郡山市で「Connect 2015 in Koriyama, with UDC（アーバンデー
タチャレンジ）」が行われました。地域の課題をオープンデータを用いて解決するという目的のために、
郡山市に集まった方々が泊まり込みで行ったハッカソンの模様を今回はお伝えします。

●Hack For Japanスタッフ
　及川 卓也　OIKAWA Takuya
　 Twitter  @takoratta
　清水 俊之介　SHIMIZU Shunnosuke
　 Twitter  @donuzium

◆◆写真1　郡山市のイメージキャラクター がくとくんも参加



Dec.  2015 - 181

Connect 2015 in Koriyama, 
with UDC第48回

誰に何を提供したいかにおいてチーム内で傾向が

あったかを話し合う。その後、改めてアイデアを整

理する

➡

◉ペアブレスト
ペアで輪になり、5分間ペアでブレインストーミン

グを行う。気づかされたことを1分間メモを取り、

その後、1人移動し、別のペアとなり、同じことを

繰り返す。これを5回行う

➡

◉アイデアスケッチ

ここまでで温められてきたアイデアを、キャッチコ

ピーをタイトルとした形できれいにまとめる。テキ

ストだけでなく、図や絵などを折り込み、アイデア

をよりわかりやすくする

➡

◉上位案抽出

テーブルにアイデアスケッチを並べ、全員で回り、

良いと思ったものに☆をつける

　以上のアイデアソンの結果、ハッカソンでの開発
の元ネタが固まっていきました（写真2）。

ハッカソン2日目

　2日目は小雨の降る中、早朝のラジオ体操からス
タート。筆者（清水）は初日からハッカソンに参加し
ました。
　朝食を食べると、午後の成果発表に向けてハッカ
ソン再開です。ハッカソンには珍しくチームを超え
て助けあう参加者が多く見受けられたのは、日頃か
ら熱心にコミュニティ活動をしている方々が多いか
らでしょうか。市民活動をする人をつなぎ、情報を
オープンデータ化する「まちコミ !!」を作った「チー
ムよし坊」を率いる大久保さんは、まさにそのコ
ミュニティ活動の中心にいます。市民の声を可視化
するための「にこにこイライラマップ（仮）」を制作し
た「チームFIC」を含めた2チームは、大久保さんの
会社の後輩を中心に構成されていました。

雨のBBQ

　スケジュールを見て楽しみにしていたBBQは雨で
開催が危ぶまれたものの、屋根付きのスペースで無
事決行されました。ただでさえ不慣れなうえに雨で
湿気ってしまった薪に火をつけるのは、2日間で最難
関のハックでしたが、それでも自分たちで火を起こし
て作ったご飯からはどこか懐かしい味が。途中煙が
こもってしまい、屋根の縁の下に人が密集するイベン
トではありましたが、滅多に味わえないハッカソン中
のBBQを皆さん満喫していました（写真3）。
　BBQ会場は同じ施設ではあるものの施設自体が
広いため、ハッカソン会場から歩いて2分ほどのと
ころにありました。雨で足元がぬかるむ中、近くに
トイレがあるのかわからず、とりあえず会場を往復
しましたが、「チームエフコム」の作った「トイレ
マップ」があれば一番近いトイレを探すことができ
たかもしれません。「CSHと愉快な仲間」が作った
「エンジョイ！Now！」は、まさに大きな1つの会場

◆◆写真2　アイデアソンの模様

◆◆写真3　みんなで作るBBQは最高！



182 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

で利用するためのアプリで、iBeaconにより詳細な
位置情報と連動した情報を提供するため、今回のよ
うな会場で大活躍しそうです。
　午後からは最後の発表に向けてラストスパートで
す。どのチームも気合が入ってきます。「チームこ
じん」のアプリ「アキカツ」は、スペースを提供する
側、使いたい側が利用するもので、空きスペースの
予約が簡単にできるアプリを目指して、チーム内で
の議論が白熱していました。

結果発表

ポンプン

　長い審査を終えて、まず3位に選ばれたのが「WiZ 

Graduate」の皆さんが作ったアプリ「ポンプン」。
　ポンプンは地域防災力の向上を目的とした消防団
員の活動を支援します。消防署に連絡が入ると、す
ぐさま消防団員のインストールしているアプリに通
知が届き、火災現場の情報を示すマップが表示でき
るというものです。また火災現場の位置情報だけで
はなく、消火栓や防火水槽の位置も把握することが
でき、自分たちの良く知っているエリア外であって
も、それら消火活動に必要な情報を支援するための
アプリを目指したいということでした。
　ポンプンでは通知することに終わらず、各隊員間
でもそのアプリ内でコミュニケーションがとれるよ
うなアイデアが盛り込まれています。現在は通知さ
れた後の連絡はそれぞれの電話やメールで行われて
いることが多いそうですが、通知から出動、現場で
の情報収集までカバーできます。すべてを完結でき
るこのようなアプリはいろいろな分野でも必要なも
のだと思います。

オストメイトトイレ

　2位に選ばれたのは、会津大生とWiZの学生で構

成されたチームの「SHED（データ部門）」の「オスト
メイトマップ」。ちなみにSHEDというのはアプリ
開発合宿で一緒になったメンバーで作ったサークル
の名前だそうで、今回は2つのチームに分かれて参
加していました注1。
　SHED（データ部門）のメンバーは、全国におおよ
そ10万人いるとされる人工肛門や人工膀胱保有者
の方 （々オストメイト）を支援するため、それらの情
報を整理しLinkDataで公開し、サイトの機能を
使ってマップ上に公開しました。LinkDataでは
Excelのようなデータ形式をRDF注2に変換してく
れるため、よりWebやアプリ開発にフレンドリー
なデータ形式となっています。
　現在郡山市ではオストメイトトイレの情報を
PDFファイルで公開している注3ため、このような
オープンデータを整備していくことも、シビック
テックを支えるためには大切なことだと思います。

MAP＋DEPLOY＝MAPLOY

　ここまで読んで気づかれた方も多いと思います
が、発表されたものの多くが、位置情報や地図を扱
うものです。オープンデータを利用したアプリの中
に、地図にデータをマッピングする機能が入ったも
のが多いのは今回に限った話ではなく、筆者（清水）
が参加したハッカソンでも同じような機能を実装す
ることが繰り返しありました。
　浅井渉さんと結成したチーム「BAKAVIRUS_A」
で制作した「.MAPLOY」は、地図を利用したアプリ
の開発やオープンデータの公開を支援するため、
Excelファイルをドラッグ＆ドロップするだけで、
データを地図上に可視化できるWebサービスです。
さらにはAPIとしてもデータを提供することがで
きます。運良く最優秀賞に選んでいただきました。
　ワンアクションで、地図上に吹き出しの出るマー
カーや「データの重み」を表現する円を配置すること
ができます。住所だけのデータでも自動で緯度経度

注1	 惜しくも受賞はなりませんでしたが、もう一方のSHED（アプリ部門）チームは「About Route Guide」という、キャラクターとの対話形
式で希望の場所とそこまでのルートを提案してくれるアプリを発表しました。

注2	 Resource Description Framework
注3	 https://www.city.koriyama.fukushima.jp/212000/fukushi/documents/2381_osutomeito2207.pdf

https://www.city.koriyama.fukushima.jp/212000/fukushi/documents/2381_osutomeito2207.pdf


Dec.  2015 - 183

Connect 2015 in Koriyama, 
with UDC第48回

キックオフイベントでもあった今回の「Connect 

2015 in Koriyama, with UDC」。年末に再度開催さ
れる審査会のために、アイデアをブラッシュアップ
したり、開発を進めたりと今後も続いていきます。
皆さん、また郡山でお会いしましょう！s

をつける機能があるため、難しいことをあまり意識
せずに、オープンデータを利用してシビックテック
に参加できるようになればという想いもあります。

来年に向けて

　来年開催されるUDC 2015本番に向けての、

情報支援レスキュー隊の一般社団法人化Column

　8月8日の創立総会では、設立にあ
たっての挨拶を陸前高田市、多賀城市、
茨城県の来賓3名の方からいただきまし
た。また、50名弱の参加者とともに、初
年度の活動内容をテーマに記念ワーク
ショップが開催されました。
　現在はまだ団体としての体制を固めて
いる最中です。たとえば、隊員募集は開
始しているものの、本原稿執筆段階では
隊員規則もまだ作成中です注3。隊員の要
件やトレーニング内容などを検討し、そ
れを隊員規則に反映させる予定です。ま
た、運営委員会の中にワーキンググルー
プ（WG）を設立し、会の活動や平時の準
備を進めています。現在立ち上がった
WGは、情報システムWG、提携・協定

会員総会

……

隊員 隊員規則（予定）

正会員 賛助会員

理事会

運営委員会

ワーキング
グループ

ワーキング
グループ

ワーキング
グループ

事務局

◆◆図A　IT DART体制図

注1	 http://www.itdart.org/
注2	 http://itdart.org/wanted/
注3	 そのため、隊員募集は暫定的なものとなっております。
注4	 JimdoやWix、Weebly、Strikinglyなど。
注5	 http://itdart.org/content/2015911-heavyrain/

　この連載でも何回かお知らせしている、災害発生時に
被災地から正しい情報を迅速に発信することで災害復旧・
復興支援を行う情報支援レスキュー隊注1（英語名IT 
DART）が一般社団法人となりました。このコラムでは、8
月8日に行われた創立総会の模様と現在の活動状況、今
後の予定をお伝えします。
　8月8日にスマートニュース社のイベントスペース（東
京都渋谷区）で行われた創立総会では、まず一般社団法人
としての創立総会・理事会が開催され、初年度の活動体制
と計画が承認されました。体制としては、正会員（個人）
および賛助会員（法人）からなる会員総会により会の運営
方針が決定され、それを代表する立場として理事会およ
び運営委員会が組織されるという体制となっています。
一方、実際の活動の主体は隊員となり、これは会員総会
とは別に組織されます（図A）。
　正会員の年会費は1万円であり、賛助会員は同じく年
会費10万円となっています。一方、隊員からは会費は徴
収しません。正会員や賛助会員もそうですが、とくに隊
員は発災時に被災地にすばやく赴くことを考えているの
で、全国各地から募集したいと考えています。すでに、
正会員、賛助会員、隊員の募集と寄附の受け付けを開始
しています注2。

促進WG、隊員活動WG、情報分析・発信WGとなりま
す。たとえば、情報システムWGでは、会員や隊員間、
さらには提携団体との間のコミュニケーションや情報共
有手段の整備を進めています。また、発災時に用いる地
理情報システム（GIS）や簡易Webサイト作成サービス注4

の調査なども行っています。
　このように、本格的な活動に向けての準備を進めるの
と同時に、災害時の活動も開始しています。9月に北関東
から東北にかけての豪雨で茨城県常総市など多くの地域
が甚大な被害を被りました。この災害に対して、IT DART
も2回の被災地入りをするなど、「情報支援」の立場で活動
を行っています注5。
　まだ団体としての活動は開始されたばかりですが、技
術の力での支援をぜひとも本格化させていきたいと考え
ています。ご興味のある方は会員や隊員としての参加を
ご検討ください。

http://itdart.org/content/2015911-heavyrain/
http://itdart.org/
http://itdart.org/wanted/


184 - Software Design

はじめに

　1980年代の中ごろ、筆者の地
元で活動していた小田原マイコ
ンクラブの例会では、遠く離れ
た場所の公衆電話機とパソコン
との間でのデータ通信ができた
という話題で盛り上がっていま
した。そこで使用されていた通
信機器は、音響カプラ注1（写真
1）と呼ばれる転送速度が300
ボー注2で、1秒間にわずか約
30byteのものです。通信ホスト
は、富士通8bitパソコンFM-7
でした。「ピーガラガラ」という
音声でのデータ通信でしたの
で、この程度のマシンの処理速

注1） スピーカーとマイクが電話機の受話
器の位置にあり、その上に受話器を
直接置いて、データ通信を行う通信
機器。

注2） 80年代初めのパソコンは、プログラ
ムやデータを音声データで転送して
いました。その通信速度はNECや日
立のパソコンでは600ボー（baud）で
した。このボーは1秒間の変調／復
調回数を表す単位で、600ボーは1
秒間に600回変復調が行われます。
当時のデータレコーダは、1回の復
調で1bitのデータに変換していまし
た（ほかの機器では1回の復調が必ず
しも1bitのデータになるものではな
い）。また、転送速度の単位bps（Bits 
Per Second）は1秒間に転送される
bit数を示します。データレコーダの
転送速度のボーとbpsが一致するこ
とになり、この2つの単位が混乱し
て使用されているときもありました。
本稿では厳密さを求めないので、bps
として説明します。

度でも十分だったのです。数年
後の1992年3月に筆者のクラ
ブでもパソコン通信ホスト局を
開設することになり、使用する
通信機器とホスト／パソコンと
をつなげるシリアル通信で苦労
しました。今回は、そのシリア
ル通信についてお話します。

パソコン通信ホスト
システムの構築

　パソコンで通信を行うために
アナログモデム（以下、モデム）
を使っていました。80年代は、
音響カプラと同じ300bpsのモ
デムから1,200bps程度のモデ
ムが流通しており、通話用の電
話網でデータを送受信していま
した。受信しているテキストを
画面に表示すると、リアルタイ
ムで読める程度の速度でした。
　ホスト局を開設しようした
1992年ごろは、草の根BBS注3

としては後発でしたので、機器
も進歩しており、高速な通信と
通信品質の高さを実現するため
に、次のような環境を構築しま
した。

・9,600bpsのモデムを使用

注3） 個人やグループが 運営していた小規
模なパソコン通信ホスト局　http://
zob.club/zobst/intro/bbshist.htm

・モデムとパソコンとの転送ス
ピード（DTEスピード注4）を
モデム間スピードの2倍以上
に設定

・ISDN 2回線の高品質回線を
利用

　当時のモデムは、2,400bpsの
ものが広く使われていたのです
が、高速化を目指して、発売さ
れたばかりの高価な9,600bpsの
高速モデムを設置しました。当
初の300bpsの32倍になりまし
たが、問題も出てきました。

RS-232Cの
転送速度

　現在のシリアル通信の規格は
I2CやSPI、Serial-ATAなど多
種多様ですが、当時のパソコン
におけるシリアル通信といえば
RS-232Cを指しました。
　9,600bpsモデムの外部との転
送速度の上限は9,600bpsです
が、パソコン間のDTEスピー
ドは、それ以上を要求しました。
当時の最新モデムでは、MNP5/
V.42bisと呼ばれる通信プロト
コルが利用でき、データを圧縮

注4） DTE（Data Terminal Equipment）。
実際に通信を行う機器、外部ネット
ワークなどと接続するモデムなどの
装置はDCE。

温故知新
ITむかしばなし

速水 祐（HAYAMI You） 　http://zob.club/  Twitter : @yyhayami

シリアル通信 〜高速モデム
とホストマシンとの接続〜

第49回

http://zob.club/zobst/intro/bbshist.htm
http://zob.club/


184 - Software Design Dec.  2015 - 185

して通信ができました。とくに
テキストの送受信は、圧縮率が
高くなるため、高速なDTEス
ピードが要求されたのです。
　ホストで使用したパソコン
は、NECのPC-9801RL（80386 
DX 20MHz）で当時の国産パソ
コンとしては最高速に分類され
るものでしたが、通信速度の上
限は9,600bps（調歩同期式注5）
だったため、そのままでは、そ
れを超える速度を実現できませ
ん。また、PC-8001のころから
継続して Intel 8251互換 IC（以
下 i8251）が搭載されていたた
め、高速化の処理に問題があり
ました。i8251は、与えるクロッ
クによって高速な通信ができる
のですが、その処理は1byteご
とで、1byte分のbitデータが届
いた時点で割り込み処理をする
か、監視ループでデータ処理を
するしか方法がありませんでし
た。この方法ではCPUに大き
な負担がかかり、短時間に連続
した多量のデータが来た場合、
処理できなくなります。そこで
RS-232Cのハードウェアフ
ロー制御によってモデムに転送
を待ってもらうことになりま
す。そのため、シリアル通信だ
けなら2本程度（Rx/Tx）の信号
線で済むはずなのに、ハード
ウェアフロー制御用の信号線
（RTS/CTS、DTR/DSR）も重
要だったのです。

拡張RS-
232Cボード

　2回線のホストの計画でした

注5） データそのものに同期用信号を追加
したもの。＝非同期式。

が、ホストマシンには、RS-
232Cポートが1つしかないの
で、拡張RS-232Cが必要です。
　そこでPC-98の拡張スロット
に2つの接続端子を持つRS-
232Cボードを取り付け運用を
始めました。用意したRS-232C
ボードは、9,600bpsを超える設
定が可能だったのでDTEス
ピードを19,200bpsにしました。
開設当初は、接続する相手側も
9,600bpsモデムを持つメンバが
少なかったので、ほとんど問題
はなかったのですが、会員数が
増え、高速なモデムの接続が多
くなると、フロー制御が頻繁に
行われる状況になりました。
　この問題が出てきたときタイ
ミングよく、シリアル通信を高速
に処理できるNS16550A注6を
使ったRS-232Cボードが発売
されました。NS16550Aは、16 
byte FIFO注7を持ち、割り込み
頻度を i8251に対して1/16に
できたので、ホストの負荷が大
きく低減されました。
　開設から1年後の1993年に
は会員の増加に合わせてISDN
をさらに1本導入して、全4回
線にしました。モデムもV.32 
bis規格の14,400bpsに新調し、
それに併せてNS16550AのRS-
232Cボードを使用することで
DTEスピード 38,400bpsを実現
しました。

その後のシ
リアル通信

　その後1994年に、8回線に、

注6） NSはNational Semiconductor。
注7） First In, First Out。先に入れたもの

を先に取り出す、格納データの処理
方法。

28,800bpsのモデムを導入し、
DTEスピードを57,600bpsに、
95年には、高速で安定動作を行
うことができるUSRobotics 
COURIER V.34に変更し、DTE
スピードは遂に通常のRS-
232C最高速度と考えられてい
る115.2Kbpsにできました。こ
のスピードは、目指していた最
高速度でしたので、達成できた
ときは、多くのパソコン通信メ
ンバと大規模な記念オフ会を開
いたことが思い出されます。
　しかしその時期、パソコンで
一般的に使えるシリアル通信は、
RS-232CからEthernetへ移っ
ていっていたのです。10BASE 
/Ethernetによるデータ転送速
度は、標準で10Mbpsであり、
苦労して達成した115.2Kbpsと
は約 100倍違うのです。Net 
ware Lite注8でパソコン通信の
ホストパソコンと接続したとこ
ろ、巨大なサイズと思っていた
通信ログがあっという間に転送
でき、大きな技術の飛躍を感じ
ました。1995年にはWindows 
95も発売され、パソコン通信も
インターネットの時代へと変わっ
ていったのです。｢

注8） NetWare Lite。ノベル社が開発・販
売した、MS-DOS上で動くピア・
ツー・ピア型のネットワークシステ
ム。

 ▼写真1　音響カプラ

温故知新 ITむかしばなし
シリアル通信 〜高速モデムとホストマシンとの接続〜

第49回



この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://docs.openstack.org/developer/os-client-config/
http://docs.openstack.org/developer/python-openstackclient/plugins.html
https://www.conoha.jp/conoben/
http://docs.openstack.org/developer/python-openstackclient/


この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://gihyo.jp/dev/serial/01/conoha/0003
http://docs.openstack.org/developer/python-openstackclient/humaninterfaceguide.html


この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。



この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。



190 - Software Design190 - Software Design

Catch Up Trend

迷えるマネージャのための

再入門
プロジェクト
管理ツール

開発の

ボトル
ネック

は

どこだ
？

テストにもっと光を！　	 	
言うは易く行うは難し。テスト工程を改善しよう！

第　　回10
  Author   リックソフト㈱　廣田 隆之（ひろた たかゆき）、網野 勉（あみの つとむ）、大塚 和彦（おおつか かずひこ）

みなさんはソフトウェア開発においてどのよ
うなテストを実施されているでしょうか。単体
テスト、結合テスト、総合テストなど、さまざ
まなテストを実施されていることと思います。
では、これらのテストをどのように計画・実行
し、管理されているでしょうか。
ソフトウェアの品質を向上・維持していくう
えで、テストは非常に重要です。今回は、その
重要性が指摘されながら、あまり取り上げられ
ることがなく、開発の花形である設計やプログ
ラミングに比べて少々地味な役回りのテストに
ついてお話したいと思います。

現状の課題

昨今のソフトウェア開発環境はめまぐるしく
進化を続けており、開発サイクルはますます早
くなっています。便利で使いやすいライブラリ
やフレームワーク、ビルドを自動化する継続的
インテグレーション（CI）など、有償・無償を
問わず、さまざまなツールやサービスが提供さ
れ、開発者にとってたいへん便利な時代になり
ました。
ソフトウェアの開発サイクルが短くなる中で、
テストの位置付けはどうでしょうか。テスト駆
動開発（TDD）やCIを活用したテストの自動化

など、高品質なソフトウェアを作るしくみは整
備されてきました。テストの実行はすべてCI

に任せているよ、という方々もいらっしゃると
思います。しかし、納期とコストに追われた開
発現場において、テストのすべてを自動化する
のはとても困難であり、日々悩みを抱えている
開発リーダーも多いのではないでしょうか。

TDDやCIが開発現場で広く受け入れられて
いるのは、高品質なソフトウェアを作りたいと
いうニーズの高まりであり、テストの重要性が
認知されつつあるのは喜ばしいことです。しか
しながら、単体テストはxUnitで自動化、それ
以降のテストは手動で行う、といった現場が多
いことも事実です。
課題は手動のテストがどのように実施されて

いるかということです。おそらく一番多い手法
は、Excelなどの表計算ソフトを使う方法だと
思います。テスト項目表に従ってテストを実施
し、不具合が見つかったら障害票を起票し、開
発者による修正を経て、再度テストを実施する
という流れです。障害票の起票には、Excelに
よる課題管理表、またはJIRAやRedmineなど
の課題管理システムがよく使われます。
図1は、Excelによるテスト項目表の例です。
テスト手順、確認項目、結果、日付、担当者な
どの項目が並んでいます。プロジェクトによっ

 ▼図1　Excelによるテスト項目表の例



190 - Software Design Dec.  2015 - 191

第　　回10 　テストにもっと光を！　言うは易く行うは難し。テスト工程を改善しよう！

190 - Software Design

て多少の違いはあるものの、おそらく似たよう
な形式になるのではないでしょうか。

Excelによるテスト項目表は長年利用されて
おり、メリットも多くあります。たとえば、学
習コストの低さです。特別なトレーニングを受
けなくても、テスト項目の作成や実施ができる
ようになるはずです。自由度の高さもExcelな
らではでしょう。列を追加したり、シートをコ
ピー＆ペーストで増やしたり、プロジェクトの
ニーズに合わせて自由に拡張できます。
しかし、この方法によるテストでは次のよう
な課題・問題点があるように思います。

・	テスト結果の集計が難しい
	 筆者の実体験では、Excelシートにマクロを
埋め込み、件数をバッチで集計するプロジェ
クトもありましたが、テストの進捗をリア
ルタイムで計るのはなかなか骨の折れる作
業です。件数を手でカウントしているよう
な場合は、常に最新の進捗状態を把握する
のは至難の業です。

・	テスト項目と障害票の紐
ひも

付けが手間
	 テストをすれば何らかの不具合が見つかり
ます。そのとき、テスト項目表に障害票の
番号を手動で記入していませんか？

・	テスト項目とエビデンスの紐
ひも

付けがめんどう
	 テストの証跡として、または不具合発生時
の再現テスト用に画面ショット、ログファ
イル、設定ファイルなどをファイルサーバ

にコピーする光景をよく目にします。フォ
ルダ管理をきっちりしないと、ファイルが
迷子になったり、テスト項目との紐

ひも

付けで
悩むことが多くあります。

・	どのバージョンでテストしたのかわからな
くなることがある

	 テスト対象のシステムやプログラムのバー
ジョン管理は労力を要します。テスト担当
者に話を聞いてみたら、最新版ではないバー
ジョンでテストを実施していた、なんてこ
とも。

・	テスト担当者、開発者、管理者のコミュニケー
ションが取りづらい

	 テストで何らかの問題が発生し、開発者に
よる修正が入る場合、テスト→修正→テス
ト→修正→……といったサイクルをうまく
回すには、Excelによる管理では困難を伴い
ます。不具合が増え、納期に追われるとテ
ストの工程はだんだんと厳しくつらいもの
になっていきます。

こうしてみれば？

これまでの連載でも、Excelを使ったプロジェ
クト管理をJIRA（Atlassian社の課題管理シス
テム）へ置き換える提言をしてきました。テス
トの管理においてもテスト管理ツールの活用を
考えてみてはいかがでしょうか。
今回ご紹介するツールは、Zephyr for - 

JIRA Test Management（以
下、Zephyr）です。Zephyrは
米国のZephyr社が開発して
いるJIRA向けのアドオンで
す。このツールを導入する 

と、テスト項目の作成やテス
ト結果の記入をWebブラウ
ザ上でできるようになります。
JIRAはサーバで動作する

 ▼図2　テストの進捗状況が把握できるダッシュボード



192 - Software Design

再入門プロジェクト管理ツール
迷えるマネージャのための開発の

ボトルネック
は

どこだ？

Webアプリケーションなので、複数人の同時
編集も可能になりますし、テスト内容の検索や
レポート出力も簡単です。
テストの実施状況（何％完了して、不具合が
何件発生しているのか）といったリアルタイム
な情報も、常に最新の状態をJIRAのダッシュ
ボードに表示しておくことができます（図2）。

Zephyr流のテスト

では、Zephyrを使ったテストのやり方を俯
瞰してみましょう。まずは、テスト項目を作成
します。これはJIRAにチケットを起票するの
とほぼ同じ方法です（図3）。テストに記述する
内容は、Excelシートを使ったテストと大きく
変わりません。テスト項目、テストデータ、期
待する結果を書いていきます。
テスト項目を作成したら、次はテストの実施
です。Zephyrはテストの規模に応じてさまざ
まなプロジェクトで活用できるように設計され
ています。

Zephyrにはテストサイクルという考え方が
あります（図4）。テストサイクルはいくつかの
テストをグループ分けできるものです。結合テ
ストや総合テストといった単位でテストサイク
ルを定義するのが一般的な使い方です。
テストを実施するときは、Zephyrのテスト
項目を順番にテストしていき、成功すれば
PASS、失敗すればFAILにステータスを変え
ていきます（図5）。

テスト担当者やテスト実行日時といった情報
は自動的に登録されていきます。テスト件数の
集計は自動で行われるため、テスト担当者はテ
ストの実施に集中でき、テスト管理者は
Zephyrの画面を定期的にチェックすることで、
いつでも最新のテスト実施状況を確認できます。
不具合を見つけたときは、テスト項目と同じ

画面からJIRAのチケットを起票すれば、テス
ト項目と不具合チケットの関連付けも自動的に
行われます（図6）。
画面ショットやログファイルの添付が必要な

ときは、JIRAの標準機能でファイルを添付し
ます。テスト担当者はテストの実施、不具合チ
ケットの起票、再テストといった作業をすべて
JIRA上ででき、追跡も簡単ですので、ストレ
スフリーな楽しい（？）テスト生活を送ることが
できます。
開発者にとっては、どのようなテスト手順に

よってバグが発生したのかがわかるので、バグ
を再現するためにテスト担当者に何度もヒアリ
ングすることがなくなると期待できます。
JIRAのファミリー製品であるBitbucket 

Server（Gitリポジトリ）やBamboo（CIサーバ）
を併用していれば、開発→ビルド→テストの追
跡が一気通貫で可能になるので、管理者やリー
ダーにとって何よりの安心感を得られるはずで
す。
その他の便利な機能として、既存のExcelファ

イルをインポートしてテストケースを作成した
り、テストケースをエクスポートしてExcelで

 ▼図3　テスト項目の作成
 ▼図4　Zephyrのテストサイクル



192 - Software Design Dec.  2015 - 193

第　　回10 　テストにもっと光を！　言うは易く行うは難し。テスト工程を改善しよう！

開いたりすることも可能です。また、テストサ
イクルを複製すれば、これまで作成・実施した
テストケースを簡単に再利用できます。

ZephyrのテストケースはJIRAのチケット
そのものなので、JIRAでできること（検索、印
刷、コメントなど）は基本的に何でも可能です。
アイデア次第でさまざまな活用方法が考えられ
ると思います。

現場の声

Zephyrは、ユーザから次の点が評価されて
います。

・	結果の履歴が管理できる
・	テストサイクルを利用して、グループ的に
管理できる

・	インポートツールによりExcelファイルから
テストデータを登録できる

・	1つのテストケース（JIRAのチケット）
を複数のテストサイクルに利用でき、
Excelのようにファイルが増えない

・	テスト中に不具合が見つかったときは、
Zephyrの画面からJIRAの不具合チケッ
トを簡単に起票でき、自動的にリンク
も設定される

・	テストの進捗状況をリアルタイムで確
認できる

テストに多くのメリットをもたらして
くれるZephyrですが、欠点や課題もあり
ます。1つは学習コストです。直感的に使
えるツールですが、操作性などが洗練さ
れていくのはこれからかもしれません。
今後に期待したいところです。2つめは価
格です。JIRAからそろえる場合、必要な
ユーザ数分のライセンスとなると、それ
なりの費用になります。とはいえ、小規
模なチーム向けには安価なライセンスも
用意されており、評価版も利用できるので、
興味を持たれた方はまず試していただき

たいと思います。
その他、ユーザからは次のような意見も寄せ

られています。

・	Webアプリケーションのため、ネットワー
クにつながらない環境などで運用が難しい
場合がある

・	日本語訳がおかしいところがある

おわりに

いかがでしたでしょうか。テスト管理ツール
はこれまであまり重要視されてこなかったよう
に感じます。しかし、品質の良いソフトウェア
を作るためには重要なツールであり、取り組む
価値のあるしくみではないでしょうか。今回の
記事が、テスト工程について何らかの課題を抱
えている読者のみなさんにとって少しでもヒン
トになれば光栄です。ﾟ

 ▼図5　テストを実施し、テストのステータスを変えていく

 ▼図6　 テスト項目と不具合チケットの関連付けは自動的に
行われる



194 - Software Design

　10月4日、秋葉原UDX（東京都千代田区）にて、U-22
プログラミングコンテスト最終審査発表会が行われた。
　U-22プログラミングコンテストでは、「プロをうなら
せるアイデアと技術」をテーマに、22歳以下の若者が開
発したオリジナルのコンピュータプログラミング作品が
募集された。7月から作品の募集が始まり、最終審査会
では、事前審査・1次審査を通過した約20作品がそろい、
開発者自らが作品のプレゼンテーションを行った。
　「経済産業大臣賞」に輝いたのは次の4作品。

『allergy』
中馬 慎之祐さん（成蹊小学校）
　“外食中のアレルギー食品の誤食”を防ぐことを目的
としたアプリ。開発者の中馬さんも卵アレルギーに悩む
1人で、言葉の通じない海外での食事において、自分の
アレルギーをどう伝えればいいか、という問題提起から
開発が始まった。しくみとしては、スマートフォンから
言語と（7ヵ国語）自分のアレルゲン（9つ）を選択すると、
「自分のアレルギーは○○です、この料理は食べられま

す か？」と い う
メッセージを選択
した言語で表示さ
せる、というもの。
まだ小学校高学年
の中馬さんだが、
本アプリはSwift
を使って開発した
そうだ。

　F5ネットワークスジャパン合同会社は、アプリケー
ションデリバリコントローラ（ADC）のアプライアンス
製品である「BIG-IP」製品群の最新メジャーリリースとな
る「BIG-IP 12.0」を発表、国内提供を開始した。
　BIG-IPは、ロードバランサやファイアウォールなど、
アプリのスピードの速さ、高いセキュリティと可用性を
保証するために必要なさまざまな機能を提供する。最新
版の特徴は、「クラウド対応の強化」「セキュリティの強
化」「HTTP/2への正式対応」の3点だ。

・クラウド対応の強化
　これまではCisco ACI、VMware NSX、OpenStack、 

　VMware vCloud Air、Amazon Web Servicesに対応し 
　てきたが、新たにMicrosoft Azureにも対応。
・セキュリティの強化
　SSO（シングルサインオン）、DDoS攻撃防御がそれぞ 
　れ強化された。
・HTTP/2の正式サポート
　2014年8月より限定リリースの形で提供を開始してい 
　たが、今回HTTP/2対応機能を正式にリリースした。

F5ネットワークス、
アプリケーションデリバリコントローラ製品の最新バージョン
「BIG-IP 12.0」を発表

U-22プログラミングコンテスト、最終審査発表回

『Streeem』
清水 大輝さん（国立米子工業高等専門学校）
　「キーワード」に着目したニュースキュレーションア
プリ。話題になっているキーワードを使って検索すると、
それがどのメディアで話題になっているのかを知ること
ができる。本アプリは、電子書籍やメールで気になった
ワードも、ウィジェットから検索できる。

『すまっとシューター』
佐伯 星哉さん、眞鍋 孝明さん、板本 佑磨さん、山田 航
己さん（河原電子ビジネス専門学校）
　複数人でプレイできる、Webアプリのシューティン
グゲーム。プレーヤーたちはスマートフォンをコント
ローラにして、PCからアクセスしたURLの1つの画面を
見ながら操作する。スマホゲームでありながら、複数人
で場を共有する楽しさを目指した作品である。

『Recture～復習しやすい授業記録アプリ～』
藤坂 祐史さん（筑波大学）
　授業でのノート取りを補助する録音アプリ。授業を録
音している間、気になった個所にタグやメモを付けるこ
とができる。録音した音声は、付与したタグの位置から
頭出しで再生できる。

▲▲プレゼン中の中馬 慎之祐さん

U-22プログラミングコンテスト
URL  http://www.u22procon.com

CONTACT

F5ネットワークスジャパン合同会社
URL  https://f5.com/jp

CONTACT

https://f5.com/jp
http://www.u22procon.com/


194 - Software Design Dec.  2015 - 195

注1）組織に対する愛着心、思い入れ。

　グレープシティは10月6日、米Xojo社が開発・販売
する統合開発環境「Xojo（ゾージョー）」の提供を開始した。
　Xojoは「課題解決のためのアプリケーションをすばや
く誰でも簡単に開発できること」を目的としており、OS
もフレームワークも超えて統一された言語体系とプログ
ラミングインターフェースを持つ。WindowsやMac、
iOS、Linuxといった異なるOSのネイティブアプリに加え、
Webアプリまで1つの言語で開発できる。どの環境で
も同じ言語体系・プログラミングインターフェースなの
で、OSやプラットフォームをまたいだプロジェクトファ
イルを共有できる。
　言語としては、可読性に優れ、初心者でも理解しやす

いBasicを採用、Visual Basicの経験者であればすぐに使
いこなせる。
　開発したアプリは、それぞれのOSの機械語コードに
コンパイルされる。ネイティブで実行されるため、高速
で堅牢かつUIの自然さを兼ね備えたアプリを実現できる。
　アプリの設計からデバッグまではすべて無料だが、作
成したアプリを配布するためにビルドしたい場合や、開
発中に日本語技術サポートを受けたい場合にはライセン
スが必要となる。

グレープシティ、
1言語クロスプラットフォーム開発対応型統合開発環境
「Xojo」の国内販売を開始

　10月24日、「OSC 2015 Tokyo/Fall」にて、「日本OSS貢
献者賞」「日本OSS奨励賞」の授賞式が行われた。
　今年の日本OSS貢献者賞は次の4名（敬称略）。

・奥 一穂：世界最速のHTTP/2サーバ「H2O」を開発
・亀澤 寛之：仮想コンテナ技術の核「cgroups」を開発
・古橋 貞之：「MessagePack」「fluentd」を開発
・岡島 順治郎：レイヤファイルシステム「aufs」を開発

　日本OSS奨励賞は、次の9名と1団体。

・鯵坂 明：「Apache Hadoop」のコミッタ
・江木 聡志：プログラミング言語「Egison」を開発

・榎 真治：「LibreOffice」の普及に貢献
・奥村 隆一：「YUI」「YUIDoc」「FormatJS」の開発に寄与
・猿田 浩輔：「Apache Spark」の品質向上・機能追加
・末永 恭正：「HeapStats」を発者
・細田 真道：楽譜作成プログラム「LilyPond」のコミッタ
・宮下 剛輔：「Serverspec」を開発
・吉田 真也：REPLツール「Kulla」のコミッタとして活躍
・国土地理院 情報普及課：「地理院タイル」「地理院地図」
	 をそれぞれオープンソースで公開

「第10回　日本OSS貢献者賞・日本OSS奨励賞」受賞式

　リックソフトは10月20日、顧客エンゲージメント注1、
従業員エンゲージメントの向上を支援するための、アト
ラシアンのエンタープライズ向け情報ナレッジ共有ツー
ル「Confluence」と、そのリデザインツールである
「ThemePress」を組み合わせたエンゲージメント情報
ポータルの提供を開始した。
　Confluenceはヤフー㈱や㈱インターネットイニシア
ティブなど、大手企業に導入実績のある強力な情報ナ
レッジ共有ツール。また、ThemePressはデザインテン
プレートを適用するだけで簡単にWebサイトをリデザ
インできるツール。この2つを組み合わせることで、エ

ンゲージメント
向上目的のWeb
サイトを簡単に
作成できる。同
社は、本情報ポー
タルを、初年度
で10社以上に提
供することを目
標としている。

リックソフト、
「Confluence」と「ThemePress」を組み合わせた
エンゲージメント情報ポータルを提供開始

リックソフト㈱　URL  http://www.ricksoft.jp
CONTACT

グレープシティ㈱　URL  http://www.grapecity.com
CONTACT

▲▲理念・方針・活動が伝わるデザイン例

オープンソースカンファレンス 2015 TOKYO/Fall
URL  http://www.ospn.jp/osc2015-fall

CONTACT

http://www.ricksoft.jp/
http://www.grapecity.com/jp/
http://www.ospn.jp/osc2015-fall/


196 - Software Design

　「ITエンジニアに読んでほしい！技術書・ビジネス書
大賞」は、一般投票・審査員投票によって ITエンジニア
向けの技術書・ビジネス書大賞を選ぶイベント。2014年、
2015年に続いて、2016年が第3回目の開催となる。授
賞式は、2016年 2月に行われる「Developers Summit 
2016」にて行われる。
　本大賞の対象書籍は、技術書、ビジネス書全般（刊行
年は問わない）。過去の大賞『GitHub実践入門』『「納品」
をなくせばうまくいく』（2015年）、『リーダブルコード』
『小さなチーム、大きな仕事 完全版』（2014年）の4冊は
殿堂入りとし、選考から除外される。選考方法として、
一次投票は一般読者からのWeb投票（http://www.

shoeisha.co.jp/campaign/award）で、最終投票は、
特別ゲスト3名＋観覧席の参加者による投票となる。投
票の多かった計6冊の書籍の著者、または編集者が書籍
紹介のプレゼンを行ったうえで、各賞が選ばれる。

翔泳社、
「ITエンジニアに読んでほしい！技術書・ビジネス書大賞 2016」
募集開始

　㈱スイッチサイエンスは10月30日、個人向けにプリ
ント基板を製造するサービス「スイッチサイエンスPCB」
の提供を正式に開始した。
　スイッチサイエンスPCBは、プリント基板を安価に製
造する個人向けのサービス。注文は同社のWebページ
（https://www.switch-science.com/pcborder）から
行う。基板はSeeed Technology Limited.が委託してい
る中国の工場で製造され、入金確認後14日～21日で自
宅へ発送される。窓口はスイッチサイエンスが担当する
ので、ユーザは注文、支払い、問い合わせなどをすべて
日本語で行える。プリント基板は緑色の2層基板の場合、
1,389円／10枚（送料別）から注文できる。4層基板や基

板色の変更も可能。

スイッチサイエンス、
基板製造サービス「スイッチサイエンスPCB」を提供開始

　PSソリューションズ㈱は10月14日、可視化した農業
データを活用して栽培手法や知見を共有する農業IoTソ
リューション「e-kakashi」を販売開始した（サービス提
供開始は12月下旬）。おもな販売対象は、国内の営農支
援を行う自治体・農業協同組合・企業など。
　e-kakashでは、圃

ほじょう

場の温湿度や日射量、土壌内の温度
や水分量、CO2などを計測できる各種センサーを搭載す
る子機からデータを収集し、通信モジュールを内蔵した
親機を経由して、クラウド上で収集データを管理できる。
ユーザは、PCやタブレット、スマートフォンなどから
栽培時に必要となるさまざまなデータを参照できるほ
か、収集データは栽培指導や農作業の品質管理・効率化

に役立てることができる。
子機ー親機間はアドホッ
クな通信、親機ークラウ
ド間は3G/LTEで通信する。
　参考価格は、1親機1台、
子機1台の場合、【機器代
金：最低価格749,600 円
～】＋【月額利用料：最低
価格7,980円～】（税抜）。

PSソリューションズ、
農業 IoTソリューション「e-kakashi」を販売開始

㈱スイッチサイエンス　URL  https://www.switch-science.com
CONTACT

PSソリューションズ㈱　URL  https://www.pssol.co.jp
CONTACT

㈱翔泳社　URL  http://www.shoeisha.co.jp
CONTACT

●●スケジュール

2015年11月9日～2016年1月12日 サイトオープン、一次投票受付

2016年1月18日（予定） 技術書・ビジネス書ベスト10
（一次投票結果）発表

2016年2月18日（木） プレゼン大会、最終投票＆表彰イ
ベント開催

2016年3月～ 書店でのフェア展開

▲▲センサなどが搭載された子機

●●注文例

基盤サイズ 5cm×5cm 10cm×10cm

表面処理 半田レベラー 半田レベラー

レジスト色 緑 緑

面付け枚数 1 1

銅箔厚 1 oz. 1 oz.

層数 2 2

枚数 10 10

基板の厚み 1.6mm 1.6mm

通常価格（送料込） 2,469円（税込） 4,154円（税込）

http://www.shoeisha.co.jp/
https://www.switch-science.com/
https://www.pssol.co.jp/
https://www.switch-science.com/pcborder/
http://www.shoeisha.co.jp/campaign/award
http://www.shoeisha.co.jp/campaign/award


Dec.  2015 - 197

永久機関は存在しませんので、モノを使ってるといつか訪れるソレ。初期不良、有効期限、欠品、経年劣化、インクの乾燥、製造終了、
サポートの終了……。愛用してたそれと無情にも引き離される、突然振りかかるメンテナンス……まさにショッギョ・ムッジョ！　有
効期限とサポート終了は調べればわかることなので対策は可能ですが、故障は対策しにくいので結局サポートを契約することになった
り。この社会は誰かのメンテナンスで成り立っていると思うしかない。S.M.A.R.Tで見てても壊れるときは突然やって来ますしね。そん
なわけで、悪魔がくれる特殊能力みたいなのっていつまで経っても憧れますねぇ。（永遠の厨ニ病）

売
れ
る
本
と
売
れ
な
い
本
の
違
い
が
見
え
る
と
豪
語
す
る
某
編
集
長
で
す
が
、

彼
も
死
神
さ
ん
と
契
約
し
た
ん
で
し
ょ
う
か
ね（
笑
。

作）くつなりょうすけ
@ryosuke927

おい、おまえ。
ちょっと
いいか？

と、いう夢を
見てから
何か変なんです

オレは
死神ヂューク。
退屈だから
遊びに来た。

お前の3人日の
工数と
引き換えに...

モノの寿命を見る
ことができる能力を
与えてやる。

どうだ？ やるか？

わぁ!!
だ、
誰ですか!?

ほぉ。で、何を
見られるように
なったの？

ストレージの
寿命が
わかるようになった。

実はオレも同じような
ことがあって
能力を得たんだ。

実は
オレも
……

死神奮発
しすぎだな！
どんな能力よ？

自動販売機の
残り缶数が
わかるんだ

いらない
能力だな
……

残り少ないの
わかると
全部買い占めたく
なっちゃうんですよ。

え？
本数？

どんな

能力ですか？
Webサイトの
SSL証明書の有効期限
を、サイトを見るだけで
わかるようになった。

echo | openssl s_client -connect 
example.jp:443 -servername examｭ
ple.jp 2>/dev/null | openssl x509 
-noout -enddate
をしなくていいのが楽ですね。
でも、微妙な能力ですね！

何それ！
超便利じゃん！

でも実物の前に
行かないと
見えないんですよ。

はぁ�

数字が見える !第23回

①

④

⑥

⑧⑨⑩

⑤

⑦

②③



198 - Software Design

Web企業のユニークなオフィス
取材や打ち合わせでWeb系企業のオフィスにお邪魔することが多いのですが、おしゃれで遊
び心に富んだ仕事場が本当に多いです。壁一面がホワイトボードになっていたり、仕事ス
ペースのすぐ隣にバーカウンタがあったり……。ドラムセットやバスケットゴール（！）が置
いてあるところもありました。最近の流行りか、床や家具を木製で統一しているオフィスも
多いですね。自由なアイデアや高い技術力は、こういった環境が一役買っているのかも。

サイバー攻撃の検出・防御を、汎用のサー
バ＋OSSで実現する方法について解説
し た 特 集。「Interop Tokyo」の「Show 

Net」プロジェクトにかかわったメンバが、
そこで培われたセキュリティ技術を存分
に披露しました。

セキュリティは、アプリケーションや人
任せなので勉強になりました。
 食欲より睡眠欲が強しさん／埼玉県

復習にとても良い教材です。
 とーふやさん／神奈川県

具体的な対策や高度な内容もあり、た
いへん参考になった。 psiさん／東京都

ネットワークインシデントと攻撃の防
御が役に立った。 raiさん／東京都

本格的なセキュリティ対策には、
やはりアプライアンス製品を導入

するのがベターですが、OSSを使って手
元でセキュリティ対策を行うことで、ど
のようなしくみで攻撃を防いでいるのか、
実際に目で見ながら学ぶことができます。
本特集には、たいへん勉強になったとい
う声を多くいただきました。

本誌9月号の「メールシステムの教科書」
に続いて、今回はブラウザから利用でき
るWebメールに関する特集でした。ク
ラウドサービス（Yahoo!メール）と自社
構築（Roundcube）、両方の利点を挙げ
ながら、Webメールについて再考しま
した。

Webメール特集は身近な話題でおもし
ろかったです。何気なく使っていました
が、動作環境のバリエーションが多い
にもかかわらず、それらに対応している
ことに感心しました。
 ReiLLさん／東京都

Webメールの環境作りにチャレンジし
たい。 よっきーさん／大阪府

RoundcubeというWebメールサー
バはなかなか良さげな感じだったので、
導入してみたい。 大沼さん／群馬県

サーバの環境構築に関して冪
べき
とう性の

話題が出ていた。自社の運用でも取り
入れる必要性を強く感じた。メールの社
会インフラ化はまったく同感。使えなく
なると何もできなくなってしまう。障害
対応の判断、対応は相当たいへんだと推

察します。 隼さん／岩手県

もはや社会インフラとも言える
メールサービス。当たり前のよう

に使われている裏では、並々ならぬエン
ジニアの苦労、工夫がありました。特集
で紹介したRoundcubeに興味を示され
た読者も多いようです。

本誌発行300号を記念して制作したVim

とEmacsのチートシート。mattnさん
＆るびきちさんという、それぞれのエディ
タの超ベテランユーザが監修した渾身の
1枚です。

使用頻度が低いものは「あれ、なんだっ
たっけ？」と検索していましたが、チー
トシートのおかげでほぼパッと見つかる
ようになりました！
 ewiad420さん／神奈川県

A4両面にまとまっていて、とても使い
やすいです。たまにしかエディタを使わ
ない人にも布教しました。
 齋藤さん／神奈川県

チートシートの電子版は本誌のサ
ポートページからダウンロードで

2015年10月号について、たくさんの声が届きました。

第1特集　攻撃に強いネットワー
クの作り方

第2特集
Webメールの教科書

特別付録
Vim＆Emacsチートシート



198 - Software Design Dec.  2015 - 199

きますので、まだの方はぜひご活用くだ
さい！

Windowsに比べると、これぞといった
手段がないMacのクライアント管理。
そんな中「munki」は“手軽な導入”と
“Googleによる開発”で注目を集めるOS 

Xクライアント管理ツールです。本短期
連載では前後編で「munki」の導入・運用
方法を解説します。

タブレットも多く利用しているため、
iOSの管理ツールも知りたいです。
 橿山さん／埼玉県

Macの管理ツールがあったことを知ら
なかったので、使える場面が来たら使い
ます。 クラウドさん／京都府

Macの管理って面倒なところがあるの
ですが、良い情報をいただきました。
 鈴木さん／熊本県

「これはいいツールを見つけた」と
いう声が多く寄せられました。

IBMが企業向けのMac導入支援を始め
たそうですが、小・中規模の組織ですと
この「munki」を使ったほうが、コストも
低く済み、良いかもしれません。

「コードの修正のたびに、自動的にテス
トを実行してアプリの品質を保つ」。
Javaを使って、そんな“イマドキ”の運
用を実現する短期連載です。第3回では、
継続的インテグレーションを実現する
「Travis CI」を取り上げました。

継続的インテグレーションTravis CI
は知らなかった。進化している。
 林さん／愛知県

継続的インテグレーションについて詳
しく知れて良かった。 村橋さん／北海道

“継続的”に管理していくことのたいへ
んさは痛感しています。CIサービスを
検討する時期に来ているのかもしれませ
ん。 NGC2068さん／愛知県

新しい開発手法の導入は、ただ
ツールを入れればいいというわ

けではなく、開発メンバ、あるいは組織
全体で同意を得ないといけません。この
手法にはこういう利点がある、と的確に
説明できる知識が必要ですね。

新しいファイル形式「pcap-ng」も使える
ようになったパケットキャプチャのツー
ル「Wireshark」の使い方を紹介する短期

連載です。今回はパケットの絞り込みに
便利な「ディスプレイフィルタ」の使い方
を詳しく見ていきました。

内容が佳境に入ってきておもしろかった
です。 オミオさん／宮城県

Wiresharkを普段使用しているので参
考になりました。
 サファイアさん／茨城県

GUIで手軽にパケットキャプチャ
ができるWireshark、普段から使っ

ている読者の方が多いようです。膨大な
パケットから目的のものを探すという、
トラブルシューティングに便利な手法を
学ぶことができました。

短期連載　OS Xクライアント管
理ツール「munki」【前編】

短期連載　モダンなJavaアプリ
ケーション開発【3】

短期連載　Jamesのセキュリ
ティレッスン【5】

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

①  「Raspberry Pi 2 Model B」＆「IR Camera module」セット
春田隆佑様（埼玉県）

② ウイルスバスタークラウド 10
坂口美郁様（熊本県）

③ Fedora Tシャツ
キャボさん様（埼玉県）、角田学様（東京都）、羽根田
歩夢様（滋賀県）、inu様（岡山県）、青木克憲様（愛知
県）、石澤景子様（埼玉県）、田代勝久様（埼玉県）、山
田慶行様（埼玉県）、澤下夏実様（大阪府）、檜垣賢様（大
阪府）

④ 『The Art of Computer Programming Volume 2』
西一美様（東京都）、大平圭佑様（東京都）

⑤ 『ヘルシープログラマ』
松山高明様（大阪府）、田代海霞様（福岡県）

⑥  『ルーティング＆スイッチング標準ハンドブック』
金谷直樹様（埼玉県）、vi使って25年様（京都府）

⑦  『ビッグデータ活用の常識は今すぐ捨てなさい』
浜田佳明様（兵庫県）、小林淳一様（東京都）

10月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

http://sd.gihyo.jp/


Software Design
2015年12月号

発行日
2015年12月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2016年1月号
定価（本体1,220円＋税）

192ページ

January 2016
12月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2015 技術評論社 

●現在、まとめ本の『インフラエンジニア教本2』を

製作中。本誌の過去記事のうちインフラ構築にかか

わるものを集めて再編集するというものだ。昨年は

ネットワーク周りの記事を集めて作ったが、今回は

サーバ周りの話をおもにまとめてみた。発売は11月

末の予定。また分厚い本になりそうです。（本）

●プログラマの使うエディタと編集者の使うそれは、

必要な機能が大きく違う。エディタ環境が良ければ作

業も遅滞なく進むしストレスも少ない。機械的にできる

作業は自動化して、推敲に時間をかけるのが良い（＋

ケアレスミスも減らしたい）。ということで自前のRuby

スクリプトを秀丸に移植する日々であります。（幕）

●本誌で連載していた『Android Wearアプリ開発入

門』が内容を充実させて書籍になりました。11月17

日発売なので書店に並んでいるはずです。魅力的

なAndroid腕時計の新商品が年末商戦に出てきます

し、ハードの購入にあわせて、スマホ＆腕時計のア

プリ開発もはじめてみては？（キ）

●東京モーターショー2015では、自動運転技術を搭

載した試作車がお披露目されたようですね。個人的

に自動運転にはすごく期待しています。最近の自動

車の暴走事故のニュースを聞くたびに、「もう人が運

転するのはやめて、全車両を自動運転にしたほうが

安全なのではなかろうか」と思います。（よし）

●最近の大発見は、会社の屋上からスカイツリーが

見えること！　新宿区にある弊社オフィスですが、そ

こから墨田区にある建物が見えるというのは驚きで

すね。機会があれば、スカイツリーの高度450m地

点『天望回廊』まで登りたいのですが、合計で4,000

円近くかかるので足踏みしています。（な）

●久しぶりの入稿作業やそれに纏わるあれこれに戸惑

いつつも、なんとかこなす日々です。止まっていた時

間が動き出すように、なぜか仕事に関係ない方とも会

う機会が増えています。おもに趣味方面の方や懐かし

い友人ですが、多くの刺激を受けながら過ごせる日々

に感謝。作品づくりに活かせますように。（ま）

S D  S t a f f  R o o m

［第1特集］ チャットを使いこなしていますか？

事例にみるChatOps成功のパターン
――効率アップの秘密教えます !
　数年前からWeb系企業をはじめとして浸透してきた「ChatOps」。本特集は、
「ChatOps」を実践し実績を上げているさまざまな先端企業の方々に導入前と導入
後の違いを解説いただき、SlackやHipChatなどのチャットツールの導入、そして
Hubotなどのbotとの組み合わせ、さらにはGitHubとの連携など、具体的な方法
論を紹介します！
［第2特集］ プロビジョニングはお任せ！

Ansibleではじめるサーバ構成管理の省力化
新定番！　構成管理ツール最新解説
　Red Hatが買収したことで、さらに注目を浴びているAnsibleを徹底解説します！
［新連載］ 「Android界隈　ここだけの話」

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

■2015年11月号　連載「Linuxカーネル観光ガイド」
　●p.179、右段、10行目
　　［誤］その後、0x400byte目まで　   ［正］その後、0x200byte目まで
　●p.179、右段、11行目
　　［誤］0x400から0x600がentryのヘッダとなっており　　　［正］0x200から0x400がentryのヘッダとなっており

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

200 - Software Design

mailto:sd@gihyo.co.jp


この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。



この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。


	Software Design2015年12月号
	表紙
	目次１
	目次２
	目次３

	■第1特集 ［決定版］Docker自由自在......前佛 雅人
	第1章：Dockerのキホン
	第2章：Dockerのイメージ管理と基本操作
	第3章：Dockerの操作と管理
	第4章：Docker環境を自動構築
	第5章：Docker Swarmでコンテナのスケジューリング
	第6章：Docker環境のコード化とオーケストレーション
	第7章：HashiCorpの自動化ツールとDockerの連携

	■第2特集 SNMPの教科書......本文：山下 薫、コラム：馬場 俊彰
	セクション1：SNMPはなぜ必要なのか
	セクション2：SNMP入門編
	セクション3：SNMP実用編
	セクション4：SNMP応用編
	セクション5：SNMPの関連技術
	セクション6：まとめ
	コラム1：SNMPの動作形態
	コラム2：SNMPのデータモデル
	コラム3：CentOSでの利用方法
	コラム4：SNMPのバージョン

	■短期集中連載
	クラウド時代のWebサービス負荷試験再入門【新連載】クラウド時代における負荷試験とは何か......仲川 樽八
	SMB実装をめぐる冒険	【2】File System for Windowsの作り方......田中 洋一郎

	■Catch up trend
	ConoHaで始めるクラウド開発入門【5】OpenStack APIを使ったCLI操作をConoHaでやってみる......郷古 直仁
	迷えるマネージャのためのプロジェクト管理ツール再入門【10】テストにもっと光を！ 言うは易く行うは難し。テスト工程を改善しよう！......廣田 隆之、網野 勉、大塚 和彦

	■連載：Column
	digital gadget【204】コンピュータグラフィックスの祭典SIGGRAPH 2015［後編］......安藤 幸央
	結城浩の再発見の発想法【31】Library......結城 浩
	［増井ラボノート］ コロンブス日和【2】Gyump......増井 俊之
	軽酔対談　かまぷの部屋【17】ゲスト：吉岡 弘隆さん......鎌田 広子
	ツボイのなんでもネットにつなげちまえ道場【6】SPIで通信してみる......坪井 義浩
	Hack For Japan〜エンジニアだからこそできる復興への一歩	【48】	Connect 2015 in Koriyama, with UDC......及川 卓也、清水 俊之介
	温故知新 ITむかしばなし【49】シリアル通信〜高速モデムとホストマシンとの接続〜……速水 祐
	ひみつのLinux通信【23】数字が見える！……くつなりょうすけ

	■連載：Development
	Vimの細道【3】VimでJavaを使う（補助プラグイン編）......mattn
	るびきち流Emacs超入門【20】標準機能から「yasnippet」まで　Emacsの入力支援......るびきち
	書いて覚えるSwift入門【10】	例外を避ける？......小飼 弾
	Erlangで学ぶ並行プログラミング【9】プロセス辞書とETSによる暗黙のデータ共有......力武 健次
	セキュリティ実践の基本定石【27】同じ轍を踏まないために。IoT時代に向けてできること......すずきひろのぶ
	Sphinxで始めるドキュメント作成術【9】ドキュメントに図を入れよう――さまざまなグラフィックツールとの連携......小宮 健、清水川 貴之
	Mackerelではじめるサーバ管理【10】Mackerelの監視ルールをコードで管理しよう......田中 慎司

	■連載：OS/Network
	Red Hat Enterprise Linuxを極める・使いこなすヒント .SPECS【17】Identity Managementを使おう......藤田 稜
	Be familiar with FreeBSD～チャーリー・ルートからの手紙【26】bhyveでOpenBSDファイアウォール on FreeBSDを構築......後藤 大地
	Debian Hot Topics【30】DebConf15レポート（前編）と最新トピック......やまねひでき
	Ubuntu Monthly Report【68】UbuntuとSkylake......柴田 充也
	Linuxカーネル観光ガイド【45】Linux 4.1の新機能～ext4の暗号化機能......青田 直大
	Monthly News from jus【50】リングに再び帰るLLイベント......法林 浩之

	■アラカルト
	ＩＴエンジニア必須の最新用語解説【84】Kinetic Open Storage Project......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW
	バックナンバーのお知らせ
	SD NEWS & PRODUCTS
	Readers' Voice 
	次号のお知らせ




