

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/
http://gihyo.jp/magazine/SD

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

技術評論社の本が電子版で読める！

https://gihyo.jp/dp

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

インフラエンジニア教本2

̶システム管理・構築技術解説
編集部　編　
2,580円　 PDF EPUB

昨年刊行した『インフラエンジニア教本』の続編として，
Software　Designの人気特集記事を再編集しまとめました。
今回は，サーバの運用管理を中心に今すぐ使える技術をピッ
クアップ。 ITインフラの管理と運用，そして構築を学ぶこと
ができます。お勧めは「ログを読む技術」「ログを読む技術・
セキュリティ編」をはじめとして盛りだくさん。大事なインフラ
をささえるサーバの選び方から，無線LAN構築までがっちり
サポート。最強のインフラエンジニアになるための1冊です。
書き下ろし「エンジニアのための逃げない技術̶̶幸せなエ
ンジニアになるための３つの条件」もあり！

https://gihyo.jp/dp/ebook/2015/978-4-7741-7815-8

OPCEL認定試験
OpenStack技術者認定試験対
策教科書

EPUB

現場で使える
［最新］Java SE 7/8 速攻入門

EPUB PDF

［改訂新版］
正規表現ポケットリファレンス

EPUB PDF

ITエンジニアのための
機械学習理論入門

EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
https://gihyo.jp/dp/ebook/2015/978-4-7741-7815-8
mailto:gdp@gihyo.co.jp

ED - 1 - Software Design

　現在のWebアプリケーションで
は、RESTfulなAPIが事実上の標
準として使用されています。しかし
これまで、RESTful APIを記述する
ための業界標準のフォーマットと
いうものはとくに定められていませ
んでした。そのため、それぞれの
WebアプリケーションやWebサー
ビスごとに独自のフォーマットが使
用されており、相互運用性が低い
などといった問題が生じていました。
　このような現状を解消するため
に、The Linux Foundationが主導
する形で設立されたのが「Open
API Initiative」で す。Open API
Initiativeの目的は、RESTful API
を記述するためのベンダーに依存
しない標準フォーマットを策定す
ることです。設立メンバーには
MicrosoftやGoogle、IBM、Smart
Bearといったベンダーが名前を連
ねています。
　複数のWebサービスを組み合わ
せて新しいWebサービスを生み出
すといった手法は、現在では当た
り前に使われています。RESTはそ
の連携のための標準的なしくみと
して用いられていますが、もしもこ
れらのWebサービスのAPIが統一
されたフォーマットを持っていれば、
それぞれの相互運用性が高まり、
Webの可能性をより拡大させるこ
とにつながります。
　似たような試みとしては「WSDL
（Web Services Description Lan
guage）」がありました。WSDLは

XMLベースのWebサービスを記述
するための標準フォーマットであり、
API呼び出しのプロトコルやデータ
フォーマットを規定することができ
ます。さらに、APIを呼び出すため
のコードを自動生成することもでき
るようになっています。
　現在はXMLよりもRESTが主流
となっていますが、Open API Ini
tiativeが目指すのはまさにRESTful
APIのためのWSDLのような存在
を作り上げることにあります。とは
いえ完全にゼロから構築するわけ
ではなく、オープンソースのAPIフ
レームワークである「Swagger」の
仕様をベースにして、新しい
RESTful APIの記述フォーマットを
策定する方針とのことです。

　SwaggerはREST APIのリファレ
ンスを生成するためのオープン
ソースのフレームワークです。Swa
ggerには、RESTful APIを記述す
るためのプログラミング言語に依
存しない JSON形式のフォーマット
が規定されています。記述方法は
極めてシンプルであり、開発者や
設計者がフルスクラッチで書くこ
とも可能ですが、YAML形式で記
述したものをJSON形式に変換して
ダウンロードできるオンラインエ
ディタ「Swagger Editor」なども用
意されています。
　Swagger Editor以外にもSwagg
erにはAPIの実装やドキュメント
化をサポートする各種ツールが備
えられています。たとえばSwagger

UIを使えば、SwaggerのAPI定義
ファイルから、自動でHTML形式
のAPIリファレンスを生成してくれ
ます。Swagger Coreは、ソースコー
ド中のアノテーションからSwagger
準拠のAPI定義ファイルを生成す
るJava用ライブラリです。また
Swagger Codegenでは、Swagger
によるAPI定義からサーバおよびク
ライアントのスケルトン実装を自動
生成することが可能です。
　Swaggerの強みは、汎用的なAPI
記述用のフォーマットに加えて、こ
れらのツール群による強力なエコ
システムを形成している点にあると
言えます。
　Swagger APIプロジェクトの権利
はSmartBear社が取得していまし
たが、同社がこれをThe Linux
Foundationに寄贈したことが、
Open API Initiativeの立ち上げに
つながったそうです。Open API
Initiativeでは、Swaggerの仕様を
そのまま採用するのではなく、これ
を拡張して中立で移植性の高い仕
様の構築を目指します。今後は、
The Linux Foundationのガバナン
スモデルに基づいて、Technical
Developer Committee（TDC）が中
心となって仕様の策定とメンテナ
ンスを行っていくとのことです。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 85回

Open API Initiative

Open API Initiative
https://openapis.org/
Swagger
http://swagger.io/

RESTful API 記述の
標準化を目指して

「Swagger」とは

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
https://openapis.org/
http://swagger.io/

DIGITAL GADGET

　古くは、人工知能研究というと、コ
ンピュータチェスや、人工知能を学ぶ
のに最適だと言われるLISP言語で何
か作るなど、実用とは少し離れた分野
で探求が進んでいました。しかし現在
では、ごくごく身近に存在するものに
なってきています。
　一口に人工知能といっても、さまざ
まな分野とアプローチが存在します。
アルゴリズムによって人工知能的な
ものとして作り上げられたものや、膨
大な機械学習によって振る舞いを導
き出されたものもあります。
　現代では、料理のレシピを考えた
り、ファッションのコーディネートを推奨
するといった、従来は人、それもある特
定のスキルを持った人でなければ対
応できなかったところまで人工知能が
進出しています。まだまだレベルとして

はトップクラスの人間にはかなわない
かもしれませんが、これもそのうち、膨
大なデータが蓄えられれば、一般の人
が考えるレシピやコーディネートを凌
駕するようになるかもしれません。
　最近では、不倫相手を探すWeb
サービスが不正アクセスによって内
容を暴露された際、不倫相手の女性
のほとんどが、アルゴリズムによって
実装されたボットによる会話だったと
いうような、驚きの話題もありました。
　人工知能がテーマになった映画
「her／世界でひとつの彼女」では、
相手は自分だけかと思っていた人工
知能に、実は641人とつきあっている
と言われてショックを受けるというシー
ンもありました。ほかにも、人工知能を
搭載した、人間と見まがうロボットを描
いた「エクス・マキナ（日本公開未
定）」や、人間の知識、知能、意識を
全部コンピュータに移してしまう「トラ
ンセンデンス」など、映画の中だけでも

ずいぶん人工知能的な表現が現実
化しています。
　ロボットや人工知能にお株を奪わ
れ、将来はなくなっていることが予想さ
れる職業リストが話題にもなりました。
ビジネスマンの間でも人工知能の存
在が取りざたされる中、事務の業務な
どを代行するエージェントツールやス
マートフォンに搭載された音声エー
ジェントなど、わざわざ「人工知能」と
銘打っていないものも多く、それほど
意識しなくても人工知能的なものは
生活の中に少しずつ浸透してきてい
るのが実情です。
　こういった動向は、Googleが人工
知能関係の企業DeepMind／自己学
習するdeep Q-network／スケジュー
ル調整のTimeful／自然言語解析の
Dark Blue Labs／視覚認識のVision
Factoryを次 と々買収したり、Appleも
人工知能を活用した音声認識のVo
calIQ／画像認識のPerceptioを買

収したことからわかるとおり、続 と々体
制強化が進んでいます。さらに、人工
知能プラットフォームのVicariousが多
数の投資を集めたり、IBM Watsonも
APIを公開し、応用を推し進めている
ことから、おおいに盛り上がっている
ことがみてとれます。Facebookがこ
れからサービスを提供しはじめるパー
ソナルアシスタント「M」は、人工知能
技術半分、人手による対応が半分と
言われていますが、今後登場する新し
いテクノロジーは何らかの形で人工知
能の影響を受けているものばかりかも
しれません。

　人工知能には、人間を限りなく模
倣するというアプローチの事例と、人
間ができないこと、たとえば大量の
データを扱ったり、ものすごく素早く
データ処理をしたりといったアプロー
チのように、人が扱いきれないものを
扱う事例、そして、純粋に楽しむため
のエンターテインメントの事例が広が
りつつあります。
　完全に人の代替とはならずとも、従
来、人間が経験のもと、苦労して判断
したり、面倒ながらも作業していた事
柄で、コンピュータが代替できるもの
は数多くあるでしょう。仕事を奪われる
と危惧する人もいますが、面倒なこと
をコンピュータに任せてしまえば、人間
はもっと創造的なことや、娯楽に時間
を費やすことができるかもしれません。

用意されたテンプレートに無理矢
理コンテンツを当てはめるのではな
く、さまざまな要望に応じたWebデ
ザインをコーディングなしで作成で
きる。目的をチョイスをしていけば、
最適化されたWebページができる
サービス。制作ユーザが用意する
のは、画像と文章のみ

ユーザが雰囲気などを示したキー
ワードを入力したり、提示された条
件をいくつか選択し、デザインテイ
ストの好き嫌いを入力していくと、ロ
ゴデザインを提示してくれるサービ
ス。人工知能と銘打っているが、そ
れほど知能の気配は感じない

　そのほか、どこまで実際に人工知
能的な実装が成されているのか不明
ですが、人工知能的サービスは各種、
各分野に広がってきています。さらに
現在は人工知能と銘打っていなくと
も、着 と々準備中のサービスもあるこ
とでしょう。

ネットの世界に新しい話題をもたらそ
うとする技術

人工知能が入会審査をするSNS

ゲームのキャラクタ、テクスチャ素材
や情景、環境などを自動生成

不動産価格を推定

ファッションアイテムを紹介

Webサイトを分析して改善案を提示

運動をアドバイスしてくれるパーソナ
ルトレーナー

転職マッチングサービス

　人間は、その意志さえあれば、常に
学び続けることができます。覚えたり、
忘れたり、思い出したり、判断に迷っ
たり、判断を後悔したり。たまに集中
力が途切れたり、焦って間違ったり、
罪悪感や高揚感を感じたりと、さまざ
まな感情とともに「知識」が活用され
ています。このような人間性を模倣す
る人工知能もあれば、逆に模倣せず、
正確性や信頼性を重視する道を進む
人工知能もあるでしょう。
　たとえば、音声で対話式コミュニ
ケーションを人工的に構築した場合、

あまりにも素早く回答を返してしまう
と、人同士の会話の間とは異なるた
め、違和感を感じてしまうと言われてい
ます。すなわち人間性を模倣する場
合は、単に高速化、最適化すれば良
いというものでもないのです。
　今後は「人工知能に対するUX

（ユーザ体験）」、そしてまた逆に人工
知能が機械として理解し、対応するた
めの、「人工知能のためのUX」も考
慮していかなければいけなくなるのか
もしれません。
　iPhoneには「Hey, Siri」、Android
には「OK, Google」と呼びかけます。
どちらもデバイスやクラウドサービスを
擬人化したUIととれます。人にお願い
しているかのような自然さがある一方、
擬人化してしまうと、人間と同等の受
け答えをしてくれるものだと過度の期
待をしてしまう面もあります。
　人工知能の概念、エージェントの
概念をひも解いた古典、マーヴィン・ミ
ンスキーの『心の社会』では、人の意
識や思考は1種類しかなく、切り替え
たり、割り込んだりすることはできる
が、常に1つだということ、また、心を多
数のモジュールの集まりだと考え、何
かの作業のためにはこれらの階層化
した心のモジュールが連携して動くと
考えられていることが紹介されていま
す。今はまだコンピュータに人間の心
とまったく同じものが実装されるとは思
えませんが、研究が進み、少しずつ人
の脳や心のしくみがひも解かれていく
ことに期待したいものです。
　そういった人を模倣した実装や考え
方のもと、たとえば画像認識技術も単
に何が映っているのかを判別するだ
けでなく、周辺の状況やどういった場
面なのか、何が起こっているのかを理
解できるようになってきています。みな
さんが今まで開発してきたり、使ってき
たツールやサービスも「人工知能エー
ジェント」的な要素を追加すると、何か
もっと新しいものとして新鮮に、便利
に使えるようになるかもしれませんね。
｢

vol.205

古い人工知能と
新しい人工知能

浸透してきた人工知能

人工知能を活用した事例

これからの人工知能の
活躍の場

DIGITAL
GADGET

人工知能搭載
レーシングカーキット

Anki Overdrive

CogniToys

https://anki.com/

Gadget 1

浸透してきた人工知能

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

コースタイルで自由に走行コースを作り、
そのコースに合わせて人工知能レーサー
が走行するオモチャ。ビデオゲームの世界
をリアルの世界に持ってきたかのようなオ
モチャで、コースタイルを増やせば巨大で
複雑なコースも実現可能です。車2台、タ
イル10枚のスターターキットが149.99ド
ルから。自立式で走らせることも、スマート
フォンでコントロールもできます。リモコン
カーというよりも、ロボットカーというほうが
近いかもしれません。同等の製品でReal
FXというのもあります。

会話をこなすスマートオモチャ

http://www.elementalpath.com

https://www.indiegogo.com/projects/
mycroft-open-source-artificial-
intelligence#/

Gadget 2

Elemental Pathというスタートアップ企
業のCogniToysは、現在は試作段階で
すが、もうじき一般販売が予定されている
オモチャです。IBM Watsonと接続し、複
雑な会話のやり取りができる子供向けの
製品で、子供達の「どうして？」「なぜ？」と
いった疑問に回答してくれます。恐竜型
のユーモラスな形状の中には、スピー
カー、マイク、バッテリー、ネット接続装置
が収められているのみで、事実上の本体
はクラウドに存在する、シンプルなデバイ
スになっています。対象年齢は4歳から7
歳、色は3色、現在119.99ドルで予約受
付中。

執事のような
エージェントデバイス

Mycroft

Gadget 3

Mycroftは人工知能による音声応答シス
テムを利用し、ユーザの声でさまざまなネッ
ト上のサービスや、家の中の家電などをコ
ントロールするためのデバイスです。単に
音声コマンドで操作するのではなく、インテ
リジェンスを持って対応してくれるのです。
ちなみにマイクロフトとは、シャーロック・
ホームズに登場する、イギリス政府に務
めるホームズの兄の名前。LEDライトが
目と口のように点滅して、ロボットっぽく対
応してくれます。一家に一台というよりも、
一部屋に一台の勢いで導入してほしい
そうです。

https://www.indiegogo.com/projects/
musio-your-curious-new-friend

子供とともに成長するロボット

Musio

Gadget 4

Musioは、語りかけることによって言語処
理能力を伸ばしていくことができる、とのう
たい文句の子供用ロボット。単純な会話し
かできないバージョンから、大容量のバッ
テリーを搭載した高機能なバージョンまで
3段階のロボットが用意されています。ベー
スはAndroidで、フルスペックのバージョン
が599ドル。開発キットも付属しています。
何か役に立つ人工知能ばかりでなく、たよ
りなく、育ててあげなければ機能的にも成
長しないといった、ユーザの扱いに依存す
るデバイスもこれから増えていくかもしれま
せん。最初の出荷が2016年6月に予定さ
れています。

artomatix：ゲーム素材の
自動生成

Random：話題提供サービス

Moov Now：運動のアドバイス mitsucari：転職マッチング
サービス

Tailorでロゴを制作中の画面The GridでWebページ制作中の様子

人工知能でWebデザイン
The Grid
http://thegrid.io

人工知能でロゴデザイン
Tailor
https://www.tailorbrands.com/

http://artomatix.com/

http://sensy.jp/

https://wacul-ai.com/

http://welcome.moov.cc/

https://mitsucari.com/

artomatix

SENSY

AIアナリスト

Moov Now

mitsucari

http://www.random.co/
Random

https://lemonlemon.co/
Lemon

https://value.heyazine.com/
VALUE

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 Jan. 2016 - 1

http://www.andoh.org/

DIGITAL GADGET

　古くは、人工知能研究というと、コ
ンピュータチェスや、人工知能を学ぶ
のに最適だと言われるLISP言語で何
か作るなど、実用とは少し離れた分野
で探求が進んでいました。しかし現在
では、ごくごく身近に存在するものに
なってきています。
　一口に人工知能といっても、さまざ
まな分野とアプローチが存在します。
アルゴリズムによって人工知能的な
ものとして作り上げられたものや、膨
大な機械学習によって振る舞いを導
き出されたものもあります。
　現代では、料理のレシピを考えた
り、ファッションのコーディネートを推奨
するといった、従来は人、それもある特
定のスキルを持った人でなければ対
応できなかったところまで人工知能が
進出しています。まだまだレベルとして

はトップクラスの人間にはかなわない
かもしれませんが、これもそのうち、膨
大なデータが蓄えられれば、一般の人
が考えるレシピやコーディネートを凌
駕するようになるかもしれません。
　最近では、不倫相手を探すWeb
サービスが不正アクセスによって内
容を暴露された際、不倫相手の女性
のほとんどが、アルゴリズムによって
実装されたボットによる会話だったと
いうような、驚きの話題もありました。
　人工知能がテーマになった映画
「her／世界でひとつの彼女」では、
相手は自分だけかと思っていた人工
知能に、実は641人とつきあっている
と言われてショックを受けるというシー
ンもありました。ほかにも、人工知能を
搭載した、人間と見まがうロボットを描
いた「エクス・マキナ（日本公開未
定）」や、人間の知識、知能、意識を
全部コンピュータに移してしまう「トラ
ンセンデンス」など、映画の中だけでも

ずいぶん人工知能的な表現が現実
化しています。
　ロボットや人工知能にお株を奪わ
れ、将来はなくなっていることが予想さ
れる職業リストが話題にもなりました。
ビジネスマンの間でも人工知能の存
在が取りざたされる中、事務の業務な
どを代行するエージェントツールやス
マートフォンに搭載された音声エー
ジェントなど、わざわざ「人工知能」と
銘打っていないものも多く、それほど
意識しなくても人工知能的なものは
生活の中に少しずつ浸透してきてい
るのが実情です。
　こういった動向は、Googleが人工
知能関係の企業DeepMind／自己学
習するdeep Q-network／スケジュー
ル調整のTimeful／自然言語解析の
Dark Blue Labs／視覚認識のVision
Factoryを次 と々買収したり、Appleも
人工知能を活用した音声認識のVo
calIQ／画像認識のPerceptioを買

収したことからわかるとおり、続 と々体
制強化が進んでいます。さらに、人工
知能プラットフォームのVicariousが多
数の投資を集めたり、IBM Watsonも
APIを公開し、応用を推し進めている
ことから、おおいに盛り上がっている
ことがみてとれます。Facebookがこ
れからサービスを提供しはじめるパー
ソナルアシスタント「M」は、人工知能
技術半分、人手による対応が半分と
言われていますが、今後登場する新し
いテクノロジーは何らかの形で人工知
能の影響を受けているものばかりかも
しれません。

　人工知能には、人間を限りなく模
倣するというアプローチの事例と、人
間ができないこと、たとえば大量の
データを扱ったり、ものすごく素早く
データ処理をしたりといったアプロー
チのように、人が扱いきれないものを
扱う事例、そして、純粋に楽しむため
のエンターテインメントの事例が広が
りつつあります。
　完全に人の代替とはならずとも、従
来、人間が経験のもと、苦労して判断
したり、面倒ながらも作業していた事
柄で、コンピュータが代替できるもの
は数多くあるでしょう。仕事を奪われる
と危惧する人もいますが、面倒なこと
をコンピュータに任せてしまえば、人間
はもっと創造的なことや、娯楽に時間
を費やすことができるかもしれません。

用意されたテンプレートに無理矢
理コンテンツを当てはめるのではな
く、さまざまな要望に応じたWebデ
ザインをコーディングなしで作成で
きる。目的をチョイスをしていけば、
最適化されたWebページができる
サービス。制作ユーザが用意する
のは、画像と文章のみ

ユーザが雰囲気などを示したキー
ワードを入力したり、提示された条
件をいくつか選択し、デザインテイ
ストの好き嫌いを入力していくと、ロ
ゴデザインを提示してくれるサービ
ス。人工知能と銘打っているが、そ
れほど知能の気配は感じない

　そのほか、どこまで実際に人工知
能的な実装が成されているのか不明
ですが、人工知能的サービスは各種、
各分野に広がってきています。さらに
現在は人工知能と銘打っていなくと
も、着 と々準備中のサービスもあるこ
とでしょう。

ネットの世界に新しい話題をもたらそ
うとする技術

人工知能が入会審査をするSNS

ゲームのキャラクタ、テクスチャ素材
や情景、環境などを自動生成

不動産価格を推定

ファッションアイテムを紹介

Webサイトを分析して改善案を提示

運動をアドバイスしてくれるパーソナ
ルトレーナー

転職マッチングサービス

　人間は、その意志さえあれば、常に
学び続けることができます。覚えたり、
忘れたり、思い出したり、判断に迷っ
たり、判断を後悔したり。たまに集中
力が途切れたり、焦って間違ったり、
罪悪感や高揚感を感じたりと、さまざ
まな感情とともに「知識」が活用され
ています。このような人間性を模倣す
る人工知能もあれば、逆に模倣せず、
正確性や信頼性を重視する道を進む
人工知能もあるでしょう。
　たとえば、音声で対話式コミュニ
ケーションを人工的に構築した場合、

あまりにも素早く回答を返してしまう
と、人同士の会話の間とは異なるた
め、違和感を感じてしまうと言われてい
ます。すなわち人間性を模倣する場
合は、単に高速化、最適化すれば良
いというものでもないのです。
　今後は「人工知能に対するUX

（ユーザ体験）」、そしてまた逆に人工
知能が機械として理解し、対応するた
めの、「人工知能のためのUX」も考
慮していかなければいけなくなるのか
もしれません。
　iPhoneには「Hey, Siri」、Android
には「OK, Google」と呼びかけます。
どちらもデバイスやクラウドサービスを
擬人化したUIととれます。人にお願い
しているかのような自然さがある一方、
擬人化してしまうと、人間と同等の受
け答えをしてくれるものだと過度の期
待をしてしまう面もあります。
　人工知能の概念、エージェントの
概念をひも解いた古典、マーヴィン・ミ
ンスキーの『心の社会』では、人の意
識や思考は1種類しかなく、切り替え
たり、割り込んだりすることはできる
が、常に1つだということ、また、心を多
数のモジュールの集まりだと考え、何
かの作業のためにはこれらの階層化
した心のモジュールが連携して動くと
考えられていることが紹介されていま
す。今はまだコンピュータに人間の心
とまったく同じものが実装されるとは思
えませんが、研究が進み、少しずつ人
の脳や心のしくみがひも解かれていく
ことに期待したいものです。
　そういった人を模倣した実装や考え
方のもと、たとえば画像認識技術も単
に何が映っているのかを判別するだ
けでなく、周辺の状況やどういった場
面なのか、何が起こっているのかを理
解できるようになってきています。みな
さんが今まで開発してきたり、使ってき
たツールやサービスも「人工知能エー
ジェント」的な要素を追加すると、何か
もっと新しいものとして新鮮に、便利
に使えるようになるかもしれませんね。
｢

vol.205

古い人工知能と
新しい人工知能

浸透してきた人工知能

人工知能を活用した事例

これからの人工知能の
活躍の場

DIGITAL
GADGET

人工知能搭載
レーシングカーキット

Anki Overdrive

CogniToys

https://anki.com/

Gadget 1

浸透してきた人工知能

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

コースタイルで自由に走行コースを作り、
そのコースに合わせて人工知能レーサー
が走行するオモチャ。ビデオゲームの世界
をリアルの世界に持ってきたかのようなオ
モチャで、コースタイルを増やせば巨大で
複雑なコースも実現可能です。車2台、タ
イル10枚のスターターキットが149.99ド
ルから。自立式で走らせることも、スマート
フォンでコントロールもできます。リモコン
カーというよりも、ロボットカーというほうが
近いかもしれません。同等の製品でReal
FXというのもあります。

会話をこなすスマートオモチャ

http://www.elementalpath.com

https://www.indiegogo.com/projects/
mycroft-open-source-artificial-
intelligence#/

Gadget 2

Elemental Pathというスタートアップ企
業のCogniToysは、現在は試作段階で
すが、もうじき一般販売が予定されている
オモチャです。IBM Watsonと接続し、複
雑な会話のやり取りができる子供向けの
製品で、子供達の「どうして？」「なぜ？」と
いった疑問に回答してくれます。恐竜型
のユーモラスな形状の中には、スピー
カー、マイク、バッテリー、ネット接続装置
が収められているのみで、事実上の本体
はクラウドに存在する、シンプルなデバイ
スになっています。対象年齢は4歳から7
歳、色は3色、現在119.99ドルで予約受
付中。

執事のような
エージェントデバイス

Mycroft

Gadget 3

Mycroftは人工知能による音声応答シス
テムを利用し、ユーザの声でさまざまなネッ
ト上のサービスや、家の中の家電などをコ
ントロールするためのデバイスです。単に
音声コマンドで操作するのではなく、インテ
リジェンスを持って対応してくれるのです。
ちなみにマイクロフトとは、シャーロック・
ホームズに登場する、イギリス政府に務
めるホームズの兄の名前。LEDライトが
目と口のように点滅して、ロボットっぽく対
応してくれます。一家に一台というよりも、
一部屋に一台の勢いで導入してほしい
そうです。

https://www.indiegogo.com/projects/
musio-your-curious-new-friend

子供とともに成長するロボット

Musio

Gadget 4

Musioは、語りかけることによって言語処
理能力を伸ばしていくことができる、とのう
たい文句の子供用ロボット。単純な会話し
かできないバージョンから、大容量のバッ
テリーを搭載した高機能なバージョンまで
3段階のロボットが用意されています。ベー
スはAndroidで、フルスペックのバージョン
が599ドル。開発キットも付属しています。
何か役に立つ人工知能ばかりでなく、たよ
りなく、育ててあげなければ機能的にも成
長しないといった、ユーザの扱いに依存す
るデバイスもこれから増えていくかもしれま
せん。最初の出荷が2016年6月に予定さ
れています。

artomatix：ゲーム素材の
自動生成

Random：話題提供サービス

Moov Now：運動のアドバイス mitsucari：転職マッチング
サービス

Tailorでロゴを制作中の画面The GridでWebページ制作中の様子

人工知能でWebデザイン
The Grid
http://thegrid.io

人工知能でロゴデザイン
Tailor
https://www.tailorbrands.com/

http://artomatix.com/

http://sensy.jp/

https://wacul-ai.com/

http://welcome.moov.cc/

https://mitsucari.com/

artomatix

SENSY

AIアナリスト

Moov Now

mitsucari

http://www.random.co/
Random

https://lemonlemon.co/
Lemon

https://value.heyazine.com/
VALUE

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 2 - Software Design

http://thegrid.io
https://www.tailorbrands.com/
http://www.random.co/
http://welcome.moov.cc/
http://welcome.moov.cc/
https://mitsucari.com/
http://sensy.jp/
http://artomatix.com/
https://value.heyazine.com/
https://lemonlemon.co/

DIGITAL GADGET

　古くは、人工知能研究というと、コ
ンピュータチェスや、人工知能を学ぶ
のに最適だと言われるLISP言語で何
か作るなど、実用とは少し離れた分野
で探求が進んでいました。しかし現在
では、ごくごく身近に存在するものに
なってきています。
　一口に人工知能といっても、さまざ
まな分野とアプローチが存在します。
アルゴリズムによって人工知能的な
ものとして作り上げられたものや、膨
大な機械学習によって振る舞いを導
き出されたものもあります。
　現代では、料理のレシピを考えた
り、ファッションのコーディネートを推奨
するといった、従来は人、それもある特
定のスキルを持った人でなければ対
応できなかったところまで人工知能が
進出しています。まだまだレベルとして

はトップクラスの人間にはかなわない
かもしれませんが、これもそのうち、膨
大なデータが蓄えられれば、一般の人
が考えるレシピやコーディネートを凌
駕するようになるかもしれません。
　最近では、不倫相手を探すWeb
サービスが不正アクセスによって内
容を暴露された際、不倫相手の女性
のほとんどが、アルゴリズムによって
実装されたボットによる会話だったと
いうような、驚きの話題もありました。
　人工知能がテーマになった映画
「her／世界でひとつの彼女」では、
相手は自分だけかと思っていた人工
知能に、実は641人とつきあっている
と言われてショックを受けるというシー
ンもありました。ほかにも、人工知能を
搭載した、人間と見まがうロボットを描
いた「エクス・マキナ（日本公開未
定）」や、人間の知識、知能、意識を
全部コンピュータに移してしまう「トラ
ンセンデンス」など、映画の中だけでも

ずいぶん人工知能的な表現が現実
化しています。
　ロボットや人工知能にお株を奪わ
れ、将来はなくなっていることが予想さ
れる職業リストが話題にもなりました。
ビジネスマンの間でも人工知能の存
在が取りざたされる中、事務の業務な
どを代行するエージェントツールやス
マートフォンに搭載された音声エー
ジェントなど、わざわざ「人工知能」と
銘打っていないものも多く、それほど
意識しなくても人工知能的なものは
生活の中に少しずつ浸透してきてい
るのが実情です。
　こういった動向は、Googleが人工
知能関係の企業DeepMind／自己学
習するdeep Q-network／スケジュー
ル調整のTimeful／自然言語解析の
Dark Blue Labs／視覚認識のVision
Factoryを次 と々買収したり、Appleも
人工知能を活用した音声認識のVo
calIQ／画像認識のPerceptioを買

収したことからわかるとおり、続 と々体
制強化が進んでいます。さらに、人工
知能プラットフォームのVicariousが多
数の投資を集めたり、IBM Watsonも
APIを公開し、応用を推し進めている
ことから、おおいに盛り上がっている
ことがみてとれます。Facebookがこ
れからサービスを提供しはじめるパー
ソナルアシスタント「M」は、人工知能
技術半分、人手による対応が半分と
言われていますが、今後登場する新し
いテクノロジーは何らかの形で人工知
能の影響を受けているものばかりかも
しれません。

　人工知能には、人間を限りなく模
倣するというアプローチの事例と、人
間ができないこと、たとえば大量の
データを扱ったり、ものすごく素早く
データ処理をしたりといったアプロー
チのように、人が扱いきれないものを
扱う事例、そして、純粋に楽しむため
のエンターテインメントの事例が広が
りつつあります。
　完全に人の代替とはならずとも、従
来、人間が経験のもと、苦労して判断
したり、面倒ながらも作業していた事
柄で、コンピュータが代替できるもの
は数多くあるでしょう。仕事を奪われる
と危惧する人もいますが、面倒なこと
をコンピュータに任せてしまえば、人間
はもっと創造的なことや、娯楽に時間
を費やすことができるかもしれません。

用意されたテンプレートに無理矢
理コンテンツを当てはめるのではな
く、さまざまな要望に応じたWebデ
ザインをコーディングなしで作成で
きる。目的をチョイスをしていけば、
最適化されたWebページができる
サービス。制作ユーザが用意する
のは、画像と文章のみ

ユーザが雰囲気などを示したキー
ワードを入力したり、提示された条
件をいくつか選択し、デザインテイ
ストの好き嫌いを入力していくと、ロ
ゴデザインを提示してくれるサービ
ス。人工知能と銘打っているが、そ
れほど知能の気配は感じない

　そのほか、どこまで実際に人工知
能的な実装が成されているのか不明
ですが、人工知能的サービスは各種、
各分野に広がってきています。さらに
現在は人工知能と銘打っていなくと
も、着 と々準備中のサービスもあるこ
とでしょう。

ネットの世界に新しい話題をもたらそ
うとする技術

人工知能が入会審査をするSNS

ゲームのキャラクタ、テクスチャ素材
や情景、環境などを自動生成

不動産価格を推定

ファッションアイテムを紹介

Webサイトを分析して改善案を提示

運動をアドバイスしてくれるパーソナ
ルトレーナー

転職マッチングサービス

　人間は、その意志さえあれば、常に
学び続けることができます。覚えたり、
忘れたり、思い出したり、判断に迷っ
たり、判断を後悔したり。たまに集中
力が途切れたり、焦って間違ったり、
罪悪感や高揚感を感じたりと、さまざ
まな感情とともに「知識」が活用され
ています。このような人間性を模倣す
る人工知能もあれば、逆に模倣せず、
正確性や信頼性を重視する道を進む
人工知能もあるでしょう。
　たとえば、音声で対話式コミュニ
ケーションを人工的に構築した場合、

あまりにも素早く回答を返してしまう
と、人同士の会話の間とは異なるた
め、違和感を感じてしまうと言われてい
ます。すなわち人間性を模倣する場
合は、単に高速化、最適化すれば良
いというものでもないのです。
　今後は「人工知能に対するUX

（ユーザ体験）」、そしてまた逆に人工
知能が機械として理解し、対応するた
めの、「人工知能のためのUX」も考
慮していかなければいけなくなるのか
もしれません。
　iPhoneには「Hey, Siri」、Android
には「OK, Google」と呼びかけます。
どちらもデバイスやクラウドサービスを
擬人化したUIととれます。人にお願い
しているかのような自然さがある一方、
擬人化してしまうと、人間と同等の受
け答えをしてくれるものだと過度の期
待をしてしまう面もあります。
　人工知能の概念、エージェントの
概念をひも解いた古典、マーヴィン・ミ
ンスキーの『心の社会』では、人の意
識や思考は1種類しかなく、切り替え
たり、割り込んだりすることはできる
が、常に1つだということ、また、心を多
数のモジュールの集まりだと考え、何
かの作業のためにはこれらの階層化
した心のモジュールが連携して動くと
考えられていることが紹介されていま
す。今はまだコンピュータに人間の心
とまったく同じものが実装されるとは思
えませんが、研究が進み、少しずつ人
の脳や心のしくみがひも解かれていく
ことに期待したいものです。
　そういった人を模倣した実装や考え
方のもと、たとえば画像認識技術も単
に何が映っているのかを判別するだ
けでなく、周辺の状況やどういった場
面なのか、何が起こっているのかを理
解できるようになってきています。みな
さんが今まで開発してきたり、使ってき
たツールやサービスも「人工知能エー
ジェント」的な要素を追加すると、何か
もっと新しいものとして新鮮に、便利
に使えるようになるかもしれませんね。
｢

vol.205

古い人工知能と
新しい人工知能

浸透してきた人工知能

人工知能を活用した事例

これからの人工知能の
活躍の場

DIGITAL
GADGET

人工知能搭載
レーシングカーキット

Anki Overdrive

CogniToys

https://anki.com/

Gadget 1

浸透してきた人工知能

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

コースタイルで自由に走行コースを作り、
そのコースに合わせて人工知能レーサー
が走行するオモチャ。ビデオゲームの世界
をリアルの世界に持ってきたかのようなオ
モチャで、コースタイルを増やせば巨大で
複雑なコースも実現可能です。車2台、タ
イル10枚のスターターキットが149.99ド
ルから。自立式で走らせることも、スマート
フォンでコントロールもできます。リモコン
カーというよりも、ロボットカーというほうが
近いかもしれません。同等の製品でReal
FXというのもあります。

会話をこなすスマートオモチャ

http://www.elementalpath.com

https://www.indiegogo.com/projects/
mycroft-open-source-artificial-
intelligence#/

Gadget 2

Elemental Pathというスタートアップ企
業のCogniToysは、現在は試作段階で
すが、もうじき一般販売が予定されている
オモチャです。IBM Watsonと接続し、複
雑な会話のやり取りができる子供向けの
製品で、子供達の「どうして？」「なぜ？」と
いった疑問に回答してくれます。恐竜型
のユーモラスな形状の中には、スピー
カー、マイク、バッテリー、ネット接続装置
が収められているのみで、事実上の本体
はクラウドに存在する、シンプルなデバイ
スになっています。対象年齢は4歳から7
歳、色は3色、現在119.99ドルで予約受
付中。

執事のような
エージェントデバイス

Mycroft

Gadget 3

Mycroftは人工知能による音声応答シス
テムを利用し、ユーザの声でさまざまなネッ
ト上のサービスや、家の中の家電などをコ
ントロールするためのデバイスです。単に
音声コマンドで操作するのではなく、インテ
リジェンスを持って対応してくれるのです。
ちなみにマイクロフトとは、シャーロック・
ホームズに登場する、イギリス政府に務
めるホームズの兄の名前。LEDライトが
目と口のように点滅して、ロボットっぽく対
応してくれます。一家に一台というよりも、
一部屋に一台の勢いで導入してほしい
そうです。

https://www.indiegogo.com/projects/
musio-your-curious-new-friend

子供とともに成長するロボット

Musio

Gadget 4

Musioは、語りかけることによって言語処
理能力を伸ばしていくことができる、とのう
たい文句の子供用ロボット。単純な会話し
かできないバージョンから、大容量のバッ
テリーを搭載した高機能なバージョンまで
3段階のロボットが用意されています。ベー
スはAndroidで、フルスペックのバージョン
が599ドル。開発キットも付属しています。
何か役に立つ人工知能ばかりでなく、たよ
りなく、育ててあげなければ機能的にも成
長しないといった、ユーザの扱いに依存す
るデバイスもこれから増えていくかもしれま
せん。最初の出荷が2016年6月に予定さ
れています。

artomatix：ゲーム素材の
自動生成

Random：話題提供サービス

Moov Now：運動のアドバイス mitsucari：転職マッチング
サービス

Tailorでロゴを制作中の画面The GridでWebページ制作中の様子

人工知能でWebデザイン
The Grid
http://thegrid.io

人工知能でロゴデザイン
Tailor
https://www.tailorbrands.com/

http://artomatix.com/

http://sensy.jp/

https://wacul-ai.com/

http://welcome.moov.cc/

https://mitsucari.com/

artomatix

SENSY

AIアナリスト

Moov Now

mitsucari

http://www.random.co/
Random

https://lemonlemon.co/
Lemon

https://value.heyazine.com/
VALUE

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 2 - Software Design Jan. 2016 - 3

https://anki.com/
http://www.elementalpath.com
https://www.indiegogo.com/projects/mycroft-open-source-artificial-intelligence#/
https://www.indiegogo.com/projects/musio-your-curious-new-friend

4 - Software Design

公開鍵暗号

公開鍵暗号とは

　公開鍵暗号（Public Key Cryptography）とは、
暗号化と復号化注1で「鍵」を分けた暗号方式の
ことです。公開鍵暗号では、2つの鍵を分ける
ことで鍵配送問題を解決します。
　公開鍵暗号が解決する鍵配送問題を簡単に説
明します。アリスが秘密の情報（平

ひらぶん

文）をボブに
送りたいとき、アリスは平文を暗号化して送信
します。そしてボブは、暗号文を復号化しても
との平文を得ます。通信経路を流れるのが暗号
文だけなら、盗聴者イブは平文を得ることがで
きません。
　しかし、ここで「鍵配送問題」が起きます。ア

リスが鍵をボブに配送しなければ、ボブは復号
化できません。だからといって、図1のように
鍵を配送してはいけません。これでは、盗聴者
イブにも鍵が知られてしまうからです。鍵を配

送しなければ受信者ボブは平文を得られない。

鍵を配送してしまうと盗聴者イブも平文を得ら

れてしまう。これが鍵配送問題です。
　公開鍵暗号では「暗号鍵（公開鍵）」と「復号鍵
（プライベート鍵）」を分けることで鍵配送問題
を解決します。ボブは暗号鍵をアリスに送りま
す。アリスは暗号鍵で暗号化を行い、暗号文を
ボブに送ります。ボブは復号鍵で復号化を行い、
平文を得ます。このとき、通信経路を流れる鍵
は暗号鍵だけですから、盗聴者イブは暗号文を
復号化できません（図2）。
　暗号を、鍵の付いたトランクにたとえるなら
「トランクを閉める

4 4 4

鍵」が暗号鍵で、「トランク
を開ける

4 4 4

鍵」が復号鍵と言えます。私たちは普
段「閉める鍵」と「開ける鍵」を分けて考えません。

公開鍵暗号

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 32

暗号文

アリス ボブ

盗聴者イブ

暗号文

平文

暗号化

暗号文

平文

復号化

暗号文

鍵鍵

鍵

 ▼図1　鍵配送問題

暗号文
鍵

鍵

アリス

鍵

ボブ

盗聴者イブ

暗号文

平文

暗号化

暗号文

鍵 平文

復号化

暗号文

 ▼図2　公開鍵暗号では復号鍵は配送されない

注1） 通常は「復号」と書きますが、ここでは表記の対称性を優
先して「復号化」と書きます。

http://www.hyuki.com/

4 - Software Design Jan. 2016 - 5

ある鍵で閉めたら同じ鍵で開けるのが普通だか
らです。公開鍵暗号のすばらしい発想は、鍵が

持つ2つの役割（閉める・開ける）を別々の鍵に

割り当てたところにあります。開ける鍵（復号鍵）
さえ守っていれば、閉める鍵（暗号鍵）のほうは
世界中にばらまいてもまったく問題ないのです。

不可分に見えるものはないか

　私たちの日常生活で、コインロッカーのシス
テムは公開鍵暗号に似ています。コインロッカー
はお金を入れれば誰でも荷物を入れて「閉める」
ことができます。でも、いったん閉めたあとは、
第三者がその場所にやってきていくらお金を入
れても開けることはできません。開けるときに
は「開ける鍵」が必要になります。コインロッカー
では、コインが「閉める鍵」となり、閉めたとき
に得られたキーが「開ける鍵」の役割を果たして
いることになりますね。閉めることは誰でもで
きるが、開けることは「開ける鍵」を持った人に
限られる。これは、公開鍵暗号のシステムとた
いへん似ています。
　公開鍵暗号の発想をもう少し抽象化して考え
てみましょう。公開鍵暗号は鍵配送問題を「鍵
を2つに分ける」ことで解決しました。抽象化
すればこれは「不可分に見えるものを、役割を

明確にして分けた」という発想と言えます。も
しも鍵を「暗号で必要なもの」のようにふわっと
考えていただけでは公開鍵暗号は生まれません。
「暗号化」と「復号化」という2つの役割を明確に
すること、そしてしっかり守らなければならな
いものは復号化の役割だけであると気づくこと、
それが大事だったのです。
　会社で仕事を行うとき「忙しいのに誰も手伝っ
てくれない」という状況を経験したことはない
でしょうか。これはいわば「自分」という1つの
存在を複数に分けることができないという状況
です。これは「不可分な存在」があることを匂わ
せていますね。もしも、「自分は仕事で忙しい」
のようにぼんやりと考えるのではなく、自分が
この仕事で行っているのは「A」という役割と「B」

という役割の2つがある（そして「B」については
ほかの人に任せられる）と気づいたなら、作業
分担が容易になるのではないでしょうか。

分けて生じる新たな問題

　「不可分に見えるものを分ける」という簡単な
例として、自分の仕事を人に分担するという話
をしました。でもこれはずいぶんナイーブな発
想とも言えます。というのは、人に仕事を任せ
るというのはそれほど単純な話ではないからです。
　ほかの人に仕事の一部を任せるためには、そ
の仕事を説明し、また必要に応じて会議や打ち
合わせをする必要が生じるでしょう。いわゆる
コミュニケーションコストが発生するのです。
　公開鍵暗号の場合はどうなっているのでしょう。
つまり、暗号鍵で暗号化したものをどうして、
別の鍵である復号鍵で復号化できるのでしょうか。
　それが可能なのは暗号鍵と復号鍵のあいだに
数学的な関係があるからです。公開鍵暗号を使
うためには前もって「鍵ペアを作る」という作業
が必要になります。そのときに数学的な計算を
行い、暗号鍵と復号鍵には一対一の関係が作ら
れます。なので、人間の仕事分担のようなコミュ
ニケーションコストは発生しません。
　しかし、公開鍵暗号がすべてを解決してくれ
るわけではありません。ボブから送られてきた
公開鍵が、ほんとうにボブ本人から送られてき
た暗号鍵かどうかを確かめなければならない問
題は残っているからです。これを解決しようと
いうのが、公開鍵証明書です。公開鍵をめぐる
一連の興味深い物語は、拙著『暗号技術入門』を
ぜひお読みください。
　「不可分に見えるものを分ける」というのはす
ばらしい発想ですが、それですべてが解決する
わけではありません。「分ける」という1つの問
題の解決法そのものが、「分けたことによって
生じる新たな問題」を発生させてしまうのです。
　あなたの周りで「不可分に見えるもの」を「2

つに分ける」ことで生まれる便利なものはない
でしょうか。ぜひ、考えてみてください。｢

32

6 - Software Design

　先月号の記事でも書いたように、製品にも日
記にもレシピにも場所にもURLがついており、
あらゆる情報がURLで表現できる時代になっ
てきたと言えるでしょう。
　ところが、なぜかメールメッセージにアクセ
スするのにURLを使うのは一般的ではなく、
メール専用のアプリケーションやサービスを利
用するのが普通で、何かと不便が多い状況になっ
ています。たとえば、会議やイベントの連絡を
メールで受け取ったとき、その内容を表現する
URLは存在しませんから、ブックマークでき
ませんし、SNSなどにURLを貼ることができ
ませんし、別のページやWikiなどからリンク
を張ることもできません。
　メールで個人的に受け取った情報を他人に伝
えようとすると、メールを転送したり、SNS

にコピー&ペーストしたりしなければなりませ
ん。あらゆる情報がWeb上で表現されている
現在、情報に直接ブラウザからアクセスできな
いのはたいへん不便であり、メールで受け取っ
た情報だけが別の世界に存在するように感じら

れてしまいます。

なぜメールが使いにくいのか？

　メールとWebの相性が悪い原因は次のよう
なものだと思われます。

URLで紐付けられた
世界で

・メールはWebより前から存在しており、独
自の環境で扱われていた

・メールは個人的な情報のやりとりに使わるこ
とが多かったため 公開が前提のWebの世界
とは別物と考えられていた

　このような事情のため、Webと融合する方
法があまり工夫されていなかったのでしょう。
　メールの普及はWebの普及よりもずっと前の
ことですので、しかたがなかったかもしれませ
んが、Webが発明されてから20年以上経過して
いる現在、いつまでもメールを別世界のまま放
置しておくわけにはいかないでしょう。何らかの
方法での融合が必要だと思われます。

　メールメッセージを普通のWebページと同
じように扱うことができれば、メールの扱いは
ずっと便利になるはずです。私はメールを簡単
にWebページに変換できるG

ギ ャ ム

yammというシス
テムを作って運用しています（図1）。
　Gyammを使うと、メールメッセージをどこ
からでもアクセスできるHTMLページに変換
することができます。

Gyammの使い方

　Gyammの使い方はとても簡単です。メールメッ
セージを［example@gyamm.com］のようなメール
アドレスに送ると、送られたメッセージは［http://

gyamm.com/example/］から閲覧できるWebペー

Gyamm――メールメッセージ
をWebページ化する

増井ラボノート

注1） http://thinkit.co.jp/free/article/0709/19/

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張らずに楽できるなら、それに越したことはないで
しょう。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろ
んなシステムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用してい
るような単純かつ便利なシステムをたくさん紹介していきます。

第 3 回　Gyamm

http://thinkit.co.jp/free/article/0709/19/
http://gyamm.com/example/

NO.

6 - Software Design Jan. 2016 - 7

G y a m m

ジに変換されます。メールが添付ファイルを含
んでいたり、HTMLメールだったりした場合で
も、普通にWebページとして閲覧できます。
　たとえば、受け取ったHTMLメールを［exam

ple@gyamm.com］に送ると、図2のようなWeb

ページが生成されて［http://gyamm.com/exam

ple/20151119003655］のようなURLでアクセ
スできます。メールの情報を簡単な手間で
Webで公開できたことになります。
　添付ファイルがある場合は「▶」の右にファイ
ル名が表示されます（図3）。

Gyammの利用例

　Gyammは、次のようなさまざまな用途に利用
できます。

 情報の公開／共有
　受け取ったメールをそのままの形式で、Web

ページで公開するのは普通は簡単ではありませ
んが、Gyammを利用すれば、HTMLメールも
添付ファイルつきメールもWebページに変換し
て、ブックマークしたり他人と共有したりでき
ます。

 　 メーリングリストのアーカイブ
　xxxxという名前のメーリングリストのメンバと
して［xxxx-archive@gyamm.com］のようなアドレ
スを登録しておくと、メーリングリストのあらゆ
るメッセージが［xxxx-archive@gyamm.com］に送
られ、その結果全メッセージが［http://gyamm.

com/xxx-archive/］に蓄積されるので、メッセー
ジのアーカイブとして利用できます。

 　 フロー情報のストック化
　宴会などの案内がメールで送られてくること
はよくありますが（図4）、こういうフロー情報
をWebページのようなストック情報に変換し
ておくと、後でアクセスしやすくなって便利で
す。

 　 情報の集約
　何かのトピックに関して、いろいろな人から

 ▼図1　 SoftwareDesign@Gyamm.comに送られた
メールのリスト

 ▼図2　書店からの案内メール

 ▼図3　添付ファイルつきのHTMLメール

 ▼図4　宴会案内メールをWebページに変換したもの

http://gyamm.com/example/20151119003655

増井ラボノート

8 - Software Design

メールを受け取ったとき、それを全部［special-

topic@gyamm.com］のようなアドレスに転送す
るようにしておけば、関連するあらゆるメール
を［http://gyamm.com/special-topic/］からアク
セスできるようになります。アンケートやレポー
トをメールで集計するような場合に便利です。

 　 情報の分類管理
　仕事に関するメールなど、やらなければなら
ない仕事は全部［masui-todo@gyamm.com］に転
送することにしておけば、やらなければならな
い仕事をすべてGyamm上にリストできます。
Gyammではメールが表示されないように指定
できるので、終わった仕事に関するメールは非
表示にしておけば良いでしょう。同様に、トピッ
クごとに別のGyammアドレスに送るようにす
れば、フォルダのように管理できます。

　Gyammは次のように実装されています。

①SMTPを解釈するGyammサーバをgyamm.
comで動かし、［???@gyamm.com］宛のメー
ルをすべて受け取る

②届いたメッセージを解析してHTMLに変換する

　SMTP（Simple Mail Transfer Protocol）はイン
ターネットのメール転送で標準的に利用されてい
るプロトコルで、各種のメール送信アプリケーショ
ンやPostfixのようなメール転送エージェント

Gyammの実装

（MTA）で広く利用されています。Gyammはメー
ルサーバではありませんが、SMTPを解釈してメー
ルサーバのふりをすることによって、Gyamm.com

へのメールを受け取って処理しています。

SMTPサーバの実装

　SMTPの仕様はRFC821で定義されていま
す。SMTPサーバには25番ポートを利用して
図5のように対話的にアクセスできます（太字
がユーザ入力です）
　正式なSMTPサーバはメール転送などの処
理をする必要がありますが、Gyammサーバは
メールを受け取ってデータを処理するだけです
ので、実装はそれほど複雑ではありません。図
5のようなやりとりができるようにするために、
表1のような一部のSMTPコマンドを解釈す
るコードを実装しておけば大丈夫です。

メールをHTMLに変換

　DATAコマンドによって メールのメッセー
ジの本体が送られます。Subject:やFrom:の
ようなメールヘッダもこの中に含まれます。メー
ルのヘッダと中身を適切にデコードして解析し
てHTMLに変換することによって、Webブラ
ウザから読めるようになります。

MIME

　日本語を含むタイトルや添付ファイルを利用
するときMIME形式へのエンコーディングが用
いられています。

　メールのSubject（タイトル）に
日本語を利用したり、画像や文書
などをメールに添付するのは現在
あたりまえになっていますが、も

% telnet gyamm.com 25
Trying 133.242.135.184...
Connected to gyamm.com.
Escape character is '^]'.
220 gyamm.com ESMTP GYAMM
HELO example.com
250 gyamm.com
MAIL FROM: masui@pitecan.com
250 ok
RCPT TO: masui@example.com
250 ok

DATA
354 send the mail data, end with .
From: masui@pitecan.com
To: masui@example.com

Hello
.
250 ok
QUIT
221 Bye
Connection closed by foreign host.
%

 ▼図5　telnetでメールサーバにアクセスしてみる

HELO 通信開始
MAIL 送信アドレスを指定
RCPT 受信アドレスを指定
DATA メッセージ本文を指定
QUIT 通信切断

 ▼表1　SMTPの仕様の一部

NO.

8 - Software Design Jan. 2016 - 9

G y a m m

ともとのメールの仕様ではタイトルも本文も
ASCII文字しか利用できませんでした。インター
ネットのメールが世の中に普及しはじめた
1980年代は、メールの本文にJISコードを利
用することにより、なんとか日本語のメッセー
ジを送ることはできましたが、正式な仕様では
ないので微妙なところがありました。また、パ
ソコン通信などの非インターネットの世界では、
タイトルや本文にShiftJISの日本語テキスト
が利用されていることが多く、メールの世界は
かなり混沌とした状態になっていました。
　1990年代のはじめまではそういう状況が続
いていたのですが、1996年にMIME規格が
RFC2045として制定されたおかげで、既存の
メール配信システムを変更することなく、以下
のような手法でさまざまなマルチメディアデー
タをエンコードしてメールメッセージとして送
れるようになっています。

・データ型の指定
　Content-Type：フィールドでデータ型や文
字コードを指定する

・データのエンコード
　画像や文書など任意のデータをテキスト形式
に変換する方法を定義

・データの階層的な構造化
　マルチパートというデータ型で複数のデータ
をまとめて扱う。複数のパートをまとめたデー
タを上位データのパートとすることもでき
るので階層的なデータ構造を表現できる

・ヘッダの国際化
　任意の文字コードをヘッダで利用できるエン
コード方式を定義

MIMEのデコード

　Gyammでは、MIME形式で送られてきたメー
ルをデコードして、人間が読める形に変換して
います。テキストは普通のHTMLテキストに
変換し、それ以外のものは添付ファイルとして

リストするようにしています。
　MIME形式で送られてきたメールメッセージ
をHTMLファイルに変換するには次の処理が
必要です。

・ヘッダ文字列のデコード
　日本語タイトルなどをデコードする
・MIMEパートの分離／デコード
	 階層的にパートを分離しつつ、データをデコー
ドして添付ファイルなどを取り出す

・埋め込み画像の変換
　1つのパートに含まれるHTMLファイルから、
別のパートに含まれる画像を参照する場合は

Content-IDを利用した特殊なimgタグが利用
されるので、これを通常のimgタグに変換する

　Gyammを使うのは簡単なのですが、SMTP

やMIMEの扱いのため実装は若干複雑になっ
てしまい、コロンブス指数が低いものになって
しまったのは残念なところです。そもそも
MIMEフォーマットはマルチメディアデータを
無理矢理テキストに埋め込むための苦肉の策で
あり、最善のものではありませんし、将来のコ
ミュニケーションはすべてWebベースになる
でしょうから、メールは次第に廃れていくと考
えられ、Gyammのようなシステムも不要にな
ると思われます。しかしメールが完全になくな
るにはまだ10年はかかるでしょうから、それ
までは十分利用価値があると思います。ﾟ

Gyammの将来

本連載でこれまでに紹介したシステムをGitHub
で公開しています。ぜひご覧ください。
・GyaTV　［https://github.com/masui/GyaTV］
・Gyump　［https://github.com/masui/Gyump］
・Gyamm　［https://github.com/masui/Gyamm］

「GitHubにコードあります」コラム

https://github.com/masui/GyaTV
https://github.com/masui/Gyamm
https://github.com/masui/Gyump

10 - Software Design

自己紹介をお願いします。

「あくやん」こと、タナカユカと申

します。現在はおもに㈱Cerevoで

広報をしています。製品を多くの方

に知っていただき、使っていただく

ための活動全般を行っています。会

社からは基本的に「広報の立場でよ

いと思うことはどんどんやって」と

言われています。

”あくやん”というハンドルネーム

にはどんな意味があるのですか？

よく聞かれるんですけど意味はな

いのですよ（笑）。中学生のころに、

ずっと使えるハンドルネームが必要

だと自分で考えて「あくやん」と付け

ました。「あ」で始まって「ん」で終わ

る名前で、読みやすく親しみやすい

もので語呂がよいものを選んだので

す。母には「名前のアルファベット

を逆さにしたんでしょ？」と言われ

て、妙に納得したのを覚えています。

デジタルネイティブ世代ですか？

両親が新しいもの好きだったの

で、小さいころから家にパソコンは

ありました。世代でいうとISDNが

普及し始めたくらいのころからWeb

に触れることが多くなりました。

Webに興味を持ち始めたのは、中学

生のころです。当時は部活でイラス

トを描きまくっていたのですが、そ

のイラストをWebで仲間と共有し

たことがきっかけで、だんだんと

Web制作の楽しさを知り、将来の仕

事にしたいと思うようになりました。

そしてデジタルハリウッドに進学し

ました。学校ではデザインではなく、

ディレクションを中心に学んだので

すが、それは今も制作の現場でとて

も役に立っています。

デジハリ卒業後はどんなお仕事に

就いたのですか？

卒業してWeb制作会社に入社し

ようと思っていたのですが、どの会

社を選んでいいのか、経験がなくて

迷いました。そんな中途半端な気持

ちで就職するのは不本意だったので、

武者修行のためにいろいろなことを

経験するべく、派遣という形を中心

に働いていました。おかげでいろい

ろなお仕事を経験させてもらいまし

た。私はおもにフロント側で、静的

コーディングやCSS、HTML、デザ

インやディレクション担当でした。

Web制作のお仕事から、IoTベン

チャーと呼ばれる現在のCerevoへ

転職したきっかけは、何ですか？

以前から、デザインは見た目だけ

ではなく、全体の設計などを含めた

ものだと考えていました。その中で

人と、モノやサービスの間のコミュ

ニケーションについてもデザインで

きるのではないかと思うようになり

ました。どう人（ユーザ）に届き、ど

う印象に残すことができるのか、そ

れを仕事とするには広報なのではな

いかと考えました。ちょうどそのタ

イミングで、友人から「Cerevoの広

報をやってみないか」というお話を

いただいたのです。もともと1人で

行動することが大好きなので、それ

を知っている人には広報という仕事

に就いたことに驚かれますが、デザ

インの一環として今の仕事をしてい

るつもりです。

Cerevoのことについて教えてく

ださい。

主力商品はLiveShellというシ

リーズで、パソコンなしでUstream

などの動画配信サービスに映像配信

できる製品です。映像配信にこだわ

ゲスト：タナカユカさん第18献
タナカユカ（あくやん）さん
㈱Cerevoマーケティング／広報。また、コミュニケー
ションデザイナとしても活動するなど複数の顔を持つ。
幼いころからWebに親しみ、中学生のときからサイト
制作の魅力にハマる。デジタルハリウッド卒業後、Web
ディレクター／デザイナとして複数の会社を経て、昨年
独立。その後、2015年6月より㈱Cerevoの広報として、
“人とモノの間のコミュニケーションをデザインするこ
と”をテーマに、活動の幅を広げている。旅行とビール
が好き。Twitter @akuyan　http://akuyan.to/

㈲ユニバーサル・シェル・プログラミング研究所
鎌田 広子（かまた ひろこ）

Twitter：@kamapu

http://akuyan.to/

10 - Software Design Jan. 2016 - 11

る「簡単にきれいな画質の映像を発

信したい」という一部の方の熱い想

いに応えています。シリーズ累計で

約一万台売れています。Cerevoで

は一般的なニーズを探るのではなく、

「限られた極端な需要にのみしぼっ

て開発している」という形ですね。そ

ういったニッチなニーズを埋めて行

くというのがCerevoのコンセプト

の1つです。そのほかにも、鍵をひ

ねるだけでWebサービスをハック

できる鍵「Hackey」や、Googleカレ

ンダーと連携してアラームを自動

セットしてくれる「cloudiss」という

製品も出しています。

まさにIoTですね。

個人的にも、今後もっといろんな

モノにネットがつながると思ってい

ます。IoTという言葉自体は、使う

側は意識しなくていいと思っていま

す。将来全部のモノにインターネッ

トが入るようになれば、ビルの建物

全体がインターネットに接続されて

いて、人がビルに入れば持ち物すべ

てがオンラインになるし、ビルから

出れば勝手に施錠されるとか。ゆく

ゆくは技術的に不可能ではなくなる

ことがいろいろあります。実際に日

本にもIoTの波が来ていて、Cerevo

の社員数も2014年から2015年の

1年間で、10人から約80人に増え

ました。今年度は十数製品がリリー

スされています。

開発はたいへんですか？

社内には3Dプリンタも何台かあ

り、考えたものをすぐに作って試す

ことができます。また、去年の11

月に秋葉原に“DMM.make AKIBA”

という、モノ作りのシェアスペース

が誕生したのですが、Cerevoもこ

この立ち上げにかかわっています。

そこでCerevoがイベントを手伝っ

たり、モノ作りする人のサポートを

しています。作るだけではなく実際

の販売のことも考えると、あらゆる

ことを想定して動いて行かなければ

いけませんし、また多くの問題にぶ

つかります。そういったノウハウを

共有していくことで、この場でハー

ドウェアのスタートアップや、日本

のモノ作りを応援していければと

思っています。

ところで、お1人で海外にも行か

れているようですが。

どこに行くのも何をするのも1人

でふらふらするタイプです。先日も

1人でオランダ、ベルギー、ドイツ

に周遊旅行に行って、ビール飲んで

きました（笑）。

聞いていると、お話をするのが得

意な方なので、1人で行動するのが好

きというのは意外です。

社会人になりたての19歳のころ、

ランチは1人で食べることがほとん

どというくらい人見知りが酷くて仕

事に支障が出ていました。「これじゃ

いかん」と考え、直すように努力し

ました。制作の仕事は1人ではでき

ないですし、自分の行動パターンを

変える必要に迫られて、やっと……

という感じです（笑）。クライアント

とコーダー、デザイナなど、いろん

な方とのコミュニケーションが必要

ですからね。

ビールがお好きなのですか？

両親は、2人ともビール会社に勤

めていました。そのため、ビールが

冷蔵庫に冷えているのが当たり前と

いった家庭でした（笑）。社会に出て、

冷蔵庫にビールを貯蔵していない方

が多くいたことが、私にとってはカ

ルチャーショックでした（笑）。

ほかに趣味はありますか？

小学生までは少女漫画しか読んだ

ことがなかったのですが、中学に

入って週刊少年ジャンプや少年サン

デーなどの少年漫画も読むようにな

り、幅が一気に広がっていきました。

そのころ、内藤泰弘先生の『トライ

ガン』という漫画に出会って、人生

観が大きく変わりました。この作品

に出会ってなかったら、もっと性格

がゆがんでいたと思います（笑）。

人生を変えたのは漫画だったので

すね。今日はどうもありがとうござい

ました。ｦ

12 - Software Design

はじめに

　前々回、マイコンで使われるさまざまなシリ
アルプロトコルの概要を紹介し、前回はSPIに
ついて詳しく紹介しました。今回は、I2C（Inter-

Integrated Circuit、アイ・スクエアド・シーと
読みます）について詳しく紹介していきたいと思
います。
　I2Cは、フィリップス（現在のNXPセミコン
ダクターズ）が開発した規格です。SDA（シリア
ルデータ）とSCL（シリアルクロック）という2

本の信号線（バス）に、複数のデバイスを接続す
ることのできる規格です。同一バスに接続され
たデバイス同士を区別するためには7bitのアド
レスが用いられ、規格上、1つのバスに最大112

個（27=128個から予約されている16個を引いた
値）のデバイスを接続できます。
　今回も、I2Cで接続できるICを題材に説明を
進めていきたいと思います。比較的よく使われ
る、LM75Bというデジタル温度センサを使っ
てみましょう。

LM75B

　LM75Bはメジャーな部品だけあって、複数
の会社からLM75Bという型番のチップが出て
います。ここでは、I2Cの規格を生み出した、
NXPセミコンダクターズのLM75Bを使ってみ
ることとします。LM75Bには、LM75BD、LM75

BDP、LM75BGDといった具合にパッケージ
（部品の形状）が異なる複数のバリエーションが
あります。しかしどれもブレッドボードにその
まま挿せるような形でピンが付いていないため、

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

I2Cで通信してみる第
七
回

スイッチサイエンスで発売している「LM75B温
度センサ（I2C接続）注1」を使います。
　「LM75B温度センサ（I2C接続）」の商品ページ
には、基板の回路図とデータシートが掲載され
ています。このデータシートを見ると、LM75B

のピン配置は図1のようになっていることがわ
かります。このA0～A2という3つのピンを
HIGHにするか、LOWにするかで、LM75Bの
アドレスを設定できます。I2Cの7bitのアドレ
スのうち、上位4bitは1001に決まっており、続
く3bitをA2、A1、A0のそれぞれのピンの状態
で決めることができます。スイッチサイエンス
の「LM75B温度センサ（I2C接続）」の場合、出荷
時の状態では3bitとも0ですので、アドレスは
1001000となっています。
　I2Cのアドレスは7bit値ですので、Cなどのコ
ンピュータ言語で扱うときには8bit値にして、
10進や16進表記をします。マイコンの開発環
境によって、この7bit値の上位をゼロ埋めする
か、下位をゼロ埋めするかというお作法が異な
るので注意が必要です。mbedの場合、最下位
ビット（LSB）をゼロ埋めしますので、先ほどの

注1） http:ssci.to/1813

はじめに

LM75B

SDA VCC

SCL A0

OS A1

GND A2

1

2

3

4

6

5

8

7
LM75BDP

 ▼図1　LM75Bのピン配置

http://ssci.to/1813

12 - Software Design Jan. 2016 - 13

I2Cで通信してみる 第
七
回

1001000は、10010000で、0x90と表記します。
Arduinoの場合、最上位ビット（MSB）をゼロ埋
めするので、01001000で、0x48と表記します。

プルアップ抵抗

　第四回で記した、マイコンの出力を思い出し
てみてください。図2のように、トランジスタ
が2つあったと思います。HIGHを出力すると
きには、電源につながったPchのトランジスタ
をオンにし、LOWを出力するときには、GND

につながったNchのトランジスタをオンにして
出力を行います。このような構成は、プッシュ
プルと呼ばれます。
　これに対して、I2Cバスに接続するデバイス
は、オープンドレインという、出力段のトラン
ジスタが1つだけの構成になっています（図3）。
オープンドレインでは、GNDにつながったトラ
ンジスタをオンにして、LOWを出力すること
しかできません。HIGHを出力するときには、こ
のトランジスタをオフにして、信号線につながっ
たプルアップ抵抗を使って信号線をHIGHにし
ます。前々回に簡単に触れましたが、I2Cの信
号線にはプルアップ抵抗という、信号線をHIGH

に引っ張る役割をする抵抗を取り付けます。
　I2Cがこのような方法を採るようになってい
るのは、同じ信号線に複数のデバイスをつなぐ
ことが前提になっているためです。複数のプッ
シュプルなデバイスが同一の信号線につながっ
ている場合、1つがHIGHを出力し、もう一つ
がLOWを出力すると、電源とGNDがショート
します。すると大きな電流
が流れて、デバイスが破損
する可能性があります（図
4）。こういったことを避け
るため、I2Cでは、「ワイ
ヤードAND接続」（図5）と
いう方法で、複数のデバイ
スを接続します。接続され
たデバイスのいずれかが
LOWを出力すると、I2Cバ

プルアップ抵抗

マイコン
Nch

Pch I/O ピン

I²Cデバイス
Nch

I/O ピン

 ▼図2　プッシュプル

 ▼図3　オープンドレイン

 ▼図4　プッシュプルの場合

 ▼図5　ワイヤードAND接続の場合

14 - Software Design

スはLOWになります。どのデバイスもLOWを
出力していないときには、I2Cバスはプルアッ
プ抵抗を通じて電源に接続されているので、
HIGHになります。

つなげてみる

　今回必要になる部品は表1のとおりです。
「LM75B温度センサ（I2C接続）」には、購入時に
はピンヘッダが取り付けられていません。はん
だづけが必要になります。
　部品がそろったら、図6のように配線をしま
す。これで、図7のような回路ができあがりま
す。「LM75B温度センサ（I2C接続）」には、10k

Ωのプルアップ抵抗がすでに取り付けられてい
るので、別途プルアップ抵抗を接続する必要が
ありません。

ソフトウェア

　LM75Bのデータシート注2に、このデバイス

注2） http://www.nxp.com/documents/data_sheet/LM75B.
pdf

から温度を読み出す方法が記されています。9

ページに温度が記録されているレジスタの説明
があり、15ページにあるFig 11の手順で読み出
せばよいようです。そこで、リスト1のような
コードを書いてみました。mbedのAPIについ
ては、ハンドブック注3を参照してください。
　I2Cでは、データ転送を8bitのデータと、1

ビットのアクノリッジ（Acknowledge）の、9bit

をひとつの単位として行います。
　I2Cの通信は、マスタ（この場合はmbed LPC

1768）が開始します。

i2c.start();

で、図8の上段にあるように、マスタはスター
トコンディションを作り出します。スタートコ
ンディションというのは、データ転送の開始を
表す合図です。続く、

i2c.write(addr, cmd, 1, true);

で、I2Cのクロック（SCL）に合わせて7bitの通
信相手のアドレスを送信、続いて1bitの通信方
向を示すbitを送ります。この場合、writeです
ので、LOW（0）が送信されます。マスタからの
転送を受け取ると、スレーブ（この場合LM75B）
は、アクノリッジ（以下ACK）を返します。ACK

は1bitで、転送されたデータが有効であれば

注3） https://developer.mbed.org/handbook/I2C

 ▼表1　部品表

部品名 入手先 参考価格
mbed LPC1768 ssci.to/250 ¥5,940
ブレッドボード ssci.to/313 ¥270

固いジャンパワイヤ ssci.to/314 ¥270
LM75B温度センサ

（I2C接続） ssci.to/1813 ¥378

普通のピンヘッダ
10本セット ssci.to/92 ¥378

SCL
GND

SDA

SD
A

SC
L

GN
D

mbed

LM75B

VC
C

 ▼図6　配線図 ▼図7　I2Cの接続例

ソフトウェア

つなげてみる

http://www.nxp.com/documents/data_sheet/LM75B.pdf
https://developer.mbed.org/handbook/I2C

14 - Software Design Jan. 2016 - 15

I2Cで通信してみる 第
七
回

LOW（0）が送信されます。続いて、温度レジス
タのポインタ値である0x00がマスタからスレー
ブに転送され、これにもACKがスレーブからマ
スタに返されます。上段の最後にRE-START

と書いてあるように、リピーテッドスタートを
発行します。これは、i2c.write()の最後の引数
の trueで指定しています。リピーテッドスタート
は、スタートコンディションと役割は同一なので
すが、後に発行するストップの発行をせず、す
ばやく次のデータ転送に移るために使われます。
　次に、温度の読み出しです。ここからは図8
の下段を見てください。

i2c.read(addr, cmd, 2);

　writeのときと同様に、マスタは通信
相手のアドレスを送信したあと、readで
すのでHIGH（1）で転送方向がデバイスか
らマスタであることを示します。これを
受信したデバイスは、ACKを返します。
続いてデバイスは、温度を8bitマスタに
送信し、受け取ったマスタはACKを返
します。温度は2byteのデータですので、
ACKを受け取ったデバイスは下位の8bit

を送信します。マスタは i2c.readの引数
で指定した2byteを受信したので、ここ
でACKを返さず、HIGH（1）のNACK

（ノットアクノリッジ）を返して転送の終了を知
らせます。これで一連の通信は終了ですので、

i2c.stop();

で、ストップコンディションを発生させます。

ライブラリ

　LM75Bのライブラリも、mbedには登録され
ています。コンポーネントのページ注4で配布さ
れていますので、これを使えば手軽にLM75B

を使うことができます。ｦ

注4） https://developer.mbed.org/components/LM75B-
Temperature-Sensor/

ライブラリ

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 0 0 1 0 0 0 R A D7 D6 D5 D4 D3 D2 D1 D0 A' D7 D6 D5 D4 D3 D2 D1 D0 NA P

1 2 3 4 5 6 7 8 9 0

)txen(A000000AW100S 1

(next)

SDA

SCL

SDA (cont)

SCL (cont)

RS

device address pointer byte

device address MSByte from device LSByte from device

START RE-STARTwrite device
acknowledgedevice

acknowledge

read master
acknowledge

master not
 acknowledgeddevice

acknowledge

STOP

000 00

 ▼図8　LM75Bとの通信内容

 ▼リスト1　I2Cで温度を読み出すコード

#include "mbed.h"

I2C i2c(p28, p27);
const int addr = 0x90;

int main() {
 char cmd[2];
 while (1) {
 wait(1);
 cmd[0] = 0x00; // 温度レジスタのポインタ値
 i2c.start();
 i2c.write(addr, cmd, 1, true); // I2Cで1byte送信
 i2c.read(addr, cmd, 2); // I2Cで2byte受信
 i2c.stop();
 float tmp = (float((cmd[0]<<8)¦cmd[1]) / 256.0);
 printf("Temp = %.2f¥n", tmp);
 }
}

https://developer.mbed.org/components/LM75B-Temperature-Sensor/

16 - Software Design

Windows PC、MacをOSまるごとロー
カ ル 環 境 と ク ラ ウ ド に、iOSお よ び
Androidデバイスの写真・動画、連絡先、
スケジュールをクラウドに容量無制限で
バックアップできます（本製品で、コン
ピュータ1台+モバイルデバイス3台に
対して1年間使用できます）。

7インチHDMI
マルチモニター
「LCD-7000VH」

7インチ（WXGA1,280×800ピクセル）のIPSグレアパネル
を搭載したHDMIマルチモニターです。入力仕様はHDMI

（HDCP対応）／VGAの2つ、電源供給はUSBバスパワー／AC
アダプター／単三乾電池の3種類。スピーカー（モノラル）に加
え、背面には角度を2段階に調整できるチルトスタンドを装備。
デュアルディスプレイは、PCに出力の機能があれば可能です。
提供元 	センチュリー　http://www.century.co.jp

世界最小
USBハブ
「USB2-HUBMC2SS」

Android、Windowsのスマホ、タブレットに取り付けることで、
microUSBのポートが「1つ→2つ」になる指先サイズのハブで
す。PC用USB typeAの機器を使用できる変換ケーブルも付属。
提供元 	システムトークス　http://www.system-talks.co.jp

提供元 	アクロニス
	 http://www.acronis.com

1名

3名

Acronis
True Image Cloud

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2016年1月17日です。プレゼントの
発送まで日数がかかる場合がありますが、ご了承ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

腕時計型デバイス向けのAndroid Wear
アプリを開発するために必要な知識をまと
めた入門書。標準的な機能を持ったアプリ
の設計・実装を独力で行えるようにします

（開発環境はAndroid Studio）。

提供元 	技術評論社
	 http://gihyo.jp

Android Wearアプリ開発入門
神原 健一 著

2名

読者プレゼント
のお知らせ

クヌース博士によるアルゴリズムの名著を
「アスキードワンゴ」が再刊行しました。第
3巻のテーマは「ソートと探索」。要素の並
び替えアルゴリズムと、メモリ上から特定
要素を集めるアルゴリズムを学びます。

提供元 	ドワンゴ
	 http://info.dwango.co.jp

The Art of Computer Programing Volume 3
Donald E. Knuth 著

2名

並列分散処理基盤「Apache Spark」の入
門書。概要からRDD（Resilient Distri
buted Dataset）による処理のしくみ、導
入やアプリケーション開発、周辺ライブラ
リの活用について解説しています。

提供元 	翔泳社
	 http://www.shoeisha.co.jp

Apache Spark入門
株式会社NTTデータ、猿田 浩輔 ほか 著

2名

機械学習理論を数学的な背景からしっかり
と解説していきます。本書中のPythonで
書かれたサンプルプログラムを実行し、そ
の結果を見ることで、機械学習を支える理
論を実感できるようになります。

提供元 	技術評論社
	 http://gihyo.jp

ITエンジニアのための機械学習理論入門
中井 悦司 著

2名

3名

http://thinkit.co.jp/free/article/0709/19/
http://gihyo.jp/magazine/SD/
http://gihyo.jp
http://gihyo.jp
http://www.century.co.jp
http://www.acronis.com
http://www.system-talks.co.jp
http://info.dwango.co.jp
http://www.shoeisha.co.jp

第１
特集

はじまっています。
ChatOps
導入を決めた7社の成功パターン

S lack・HipChat・Hubot

　先進的なWeb企業を筆頭に、社内コミュニケーションの中心がメールからチャットへと移りつ
つあります。チャットには、「テーマを絞った議論が行いやすい」「会話の履歴をたどりやすい」
といったメリットがあります。このチャットツールの上に「bot」というプログラムを常駐させ、今日
の天気の確認からシステムのデプロイまで、コメント1つで実行してしまうのが「ChatOps」とい
う開発手法。チャットツールにはSlackやHipChatを、botフレームワークにはHubotを使うの
がポピュラーです。
　本特集ではChatOpsを実際に導入した7つの組織に、その新しい手法をどのように導入した
のか、コミュニケーションと開発スタイルはいかに変わったのかを紹介してもらいました。

Author 田中 慎司

エンジニアのためのより良い環境づくり
はてなにおけるChatOpsのこれまでとこれから p.50

C a s e 6

Author 大塚 弘記

IRCからHubot中心のChatOpsへ
XFLAGスタジオ「モンスターストライク」の裏側 p.18

C a s e 1

Author 本寺 広海

Slack＋Hubotで環境構築解説
ChatOpsで開発から社内交流まで活性化したスピカ p.26

C a s e 2

Author 千葉 哲也

Slackで、世界を、もっと、はたらきやすく
コミュニケーションの向上をめざして──サーバーワークスの場合 p.32

C a s e 3

Author 前當 祐希／大城 敦哉

ゆるきゃら「ぺこbot」が生まれた理由
ぺこbot爆誕！＠Socket p.37

C a s e 4

Author 石川 雄基／佐藤 有花／坪井 優朋／福本 貴之／肥後 彰秀／菊池 正宏

組織にChatOpsを根付かせるために
GaiaxのChatOps実現までの軌跡 p.42

C a s e 5

Author 市川 貴邦／後藤 拓郎／中根 智大／光野 達朗／山口 寛

「MYM」でコミュニケーション改革
ヤフーの爆速開発を支える自家製ツール p.55

C a s e 7

18 - Software Design

第１特集
はじまっています。ChatOps　導入を決めた7社の成功パターン

Slack・HipChat・Hubot

ChatOps導入前

　本章では、スマートフォンのゲームアプリ「モ
ンスターストライク」を開発する㈱ミクシィの
XFLAGスタジオにおける事例を紹介します。
筆者は同社でサーバサイドの開発に従事してい
ます。
　筆者の所属している部署では、一般に
ChatOpsと呼ばれるような環境をHipChatと
Hubot注1を中心に構築しています。まずは、そ
のChatOps環境を構築する以前の環境につい
て振り返っておきたいと思います。

社内専用の IRC

　筆者は2013年4月から同社で働いています
が、このころからすでに全社的に IRCが活用
されていました。社内専用の IRC（Internet

Relay Chat）サーバが稼働しており、エンジニ
アのみならず、営業職から企画職まで、あらゆ
る職種が IRCサーバへ接続していました。仕
事のちょっとしたやりとりは IRCを利用して
行うのが普通でした。もちろん、「誰かお昼一
緒に行きませんか？」なんていうプライベート
なやりとりもされていました。この時点ですで
に、弊社の社員はチャットでコミュニケーショ
ンするということに抵抗がなかったと言えます。

IRCとは？

　IRCは、サーバとクライアント間で IRCプ
ロトコルをやりとりすることによって稼働する
チャットシステムです。古くからインターネッ
トを利用している人には実際に使った経験のあ
る人も多いでしょうが、現在では新規に利用さ
れることは少なくなった印象です。
　自身でIRCサーバを用意せずとも、世界中に
公開されているIRCnetやfreenodeといったネッ
トワークがあります。クライアントはLimeChat

などが扱いやすいと思います。

 チャンネル
　IRCには「チャンネル」というチャットルーム
（Lineでいうところのグループ）のような概念が
あります。チャンネルは「#perl」や「#ruby」のよう
にシャープ記号付きで表記されます。オープンソー
スプロジェクトのコミュニケーション方法の1つ
としてIRCが利用されることが多く、前述した
freenodeには、オープンソース界隈で著名な方
たちが現在でも接続しています。何か相談事が
あればやりとりをしてみるのも良いでしょう。
　弊社では部署やチームごとにこのようなチャ
ンネルがあり、「#emacs」や「#vim」など、特定
のソフトウェアに関するチャンネルなどもあり
ました。「#2014年新卒」といった同期だけのチャ
ンネルもあったようです。もちろん、チャンネ

注1） URL https://hubot.github.com/　インストールの方法などはCase2を参照

Author 大塚 弘記（おおつか ひろき）　㈱ミクシィ XFLAGスタジオ
Twitter @hirocaster　　 URL http://hiroki.jp/

IRCからHubot中心の
ChatOpsへ
XFLAGスタジオ「モンスターストライク」の裏側
モンスターストライクを開発するミクシィのXFLAGスタジオでは、ゲーム上のイベン
ト確認やゲームデータの入れ替えをChatOpsで行えるようにしています。ミクシィの
ほか数社でChatOpsの導入をサポートした筆者がその事例を紹介しつつ、Hubotをは
じめとしたbotソフトウェアの選定ポイントについて解説します。

C a s e

1

http://hiroki.jp/
https://hubot.github.com/

18 - Software Design Jan. 2016 - 19

第１特集
IRCからHubot中心のChatOpsへ
XFLAGスタジオ「モンスターストライク」の裏側

C a s e

1

ルを経由せずとも接続しているユーザ同士、ダ
イレクトにメッセージをやりとりすることもで
きます。
　このように、弊社は仕事においてチャットを
利用するということについて抵抗はなく、すで
に文化として根付いていました。もちろん、メー
ルも並行して利用されていました。

 IRC Proxyやbot
　IRCでは、オフラインのときにチャンネルで
やりとりされたメッセージをあとから読み返す
ようなことができません。これの対策として、
TiarraZNCなどの IRC Proxyと呼ばれるソフ
トウェアを経由して IRCサーバに接続するこ
とにより、オフラインのあいだも IRC Proxy

がメッセージを受け取って記録できます。これ
により、ユーザがオンラインになった際に過去
ログを表示できます。そのほかにも、

・不在時にダイレクトメッセージが来た場合に
自動応答メッセージを送信

・特定の文字列が表示されたらスマートフォン
にPUSH通知

など、さまざまな機能がプラグインとして各種
IRC Proxyに実装されています。
　IRC Proxy以外にも、URLに反応してタイ
トルを投稿するものなど、チャットメッセージ
上で何らかの文字列に反応して処理をする「bot」
と呼ばれるようなアプリケーションが、このこ
ろからすでに数多くありました。

現代のチャットサービスとの違い

　現在多くの企業で導入されているSlackや
HipChatといった現代的なチャットサービスと
IRCが違う点は、IRC自体はシンプルにメッセー
ジのやりとりしか機能を提供していないという
ことです。もちろんスマートフォン用のアプリ
ケーションなどはありません。IRCでは、ユー

ザ側がbotなど独自のソフトウェアを利用して、
便利な機能を付け加えていったのです。
　現代のチャットサービスでは、次のような機
能をチャットサービス自身が直接提供してくれ
ます。

・スマートフォン用のアプリケーションおよび
通知

・URLからのタイトルや画像の展開
・ほかのサービスとの連携

　既存のチャットサービスを利用すれば、すぐ
にこれらの機能を利用できるようになっています。
　IRCでは、botなどの外部のソフトウェアを
利用できる知識がある程度必要でした。現代の
チャットサービスではWebで設定するだけで
さまざまな機能が使えるなど、より多くの人が
利用しやすいつくりになっています。仕事や職
場でチャットシステムを新しく導入するとなる
と、“プログラミングの知識を持たない人でも
便利な機能を使える”ということは非常に重要
になってきます。

外部ツールの情報をチャットに統合

　弊社では、GitHub Enterpriseを2013年から
導入して徐々に利用部署を広げていったため、
Pull Request注2スタイルでの開発フローに慣
れている人も増えていました。ソフトウェアの
自動テストも積極的に利用していたため、CI（継
続的インテグレーション）の利用実績もすでに
豊富でした。Pull Requestへのコメント通知や
JIRAなどのチケット管理システム、Wikiなど
のあらゆるツールの更新情報を IRCなどの
チャットシステムへ通知してもいました。これ
により、普段からコミュニケーションをとって
いる IRCの画面に、ほぼリアルタイムに更新
情報が飛び込んできます。そのため更新情報に
早く気付け、対応やフィードバックもすばやく
できます。

注2） GitHubにおいて、変更を加えたソースコードの差分を相手のリポジトリに取り込んでもらう要求をするための機能。

20 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

　このように弊社では、チャットシステムに情
報を統合することによって効率的に情報を処理
して行動を起こすことができるというメリット
をすでに経験していたのです。そのため、現在
ChatOpsと呼ばれるような機能を実現しても、
スムーズに導入できたのだと考えています。

botの活躍

　ここまでで、弊社がChatOpsの機能を本格
的に実装する前の環境について話してきました。
ここからは、現在実際に使っているbotを、か
つてどのように導入して現在に至るまで利用し
ているのか、その一部を紹介していきます。

導入理由

　筆者は2013年10月ごろからモンスタースト
ライクのサーバサイドの開発に携わっています。
この時点では、サーバサイドのチームは会社の
IRCを利用していました。筆者がかかわり始め
てから、GitHubを利用してPull Requestスタ
イルの開発に切り替えていきました。

Pull Requestスタイルの開発

　GitHubのリポジトリにある設定で「webhook」
というものがあるのですが、これに IRCを設
定することにより、リポジトリでPull Request

が作成されたときなどに、その情報が IRCに
通知されるようになります（図1）。すなわち、
通常業務で利用しているチャットの中にPull

Requestの情報がリアルタイムで飛び込んでく
ることになります。そうすることで、Pull

Requestへすばやく反応できるようになります。

Pull Requestを指した
コミュニケーション

　Pull Requestベースで開発を進めるとなると、
「このPull Request」「あのPull Request」というよ
うにPull Requestを指したコミュニケーション
が生まれてきます。こういった表現や、「Aと
いう機能のPull Request」というやりとりでは、
指しているPull Requestが不明確であり、誤
解が生まれることがあります。
　Pull Requestと issueには「#1」や「#2」のよう
に、それぞれユニークな番号が割り振られてい
ます。そこで、これを利用して「#32のレビュー
お願いします」という表現をしたほうが、効率
的で間違いの少ないやりとりができます。
　先ほど例として挙げた「#32のレビューお願
いします」というメッセージの投稿があった場合、
チャットを閲覧しているユーザはGitHubの
「#32」のPull Requestを見ようとします。URL

にすると、「http://github.com/ユーザ名/リポ
ジトリ名/pull/32」となります。

チャットコミュニケーションを
快適にするために

　こういった状況では、ユーザがたどり着きた
いURLの画面にいち早くかつ快適にたどり着
けるかどうかで、チャットコミュニケーション
がスムーズに運ぶかどうかが決まります。
　具体的な方法としては、ブラウザから手入力
してアクセスしてもいいですし、GitHubのトッ
プページやリポジトリの画面を一度表示して、
Pull Requestのリストから探してもいいでしょ
う。メッセージを投稿する人が、Pull Request

へアクセスできるURLを毎回きちんと貼り付け
るようにしておくということも1つの手です。
ですが、メッセージを投稿する人もPull

Requestを閲覧する人も一番簡単にアクセスし

 ▼図1　Pull Requestが作成されたとき、 IRCに通知される

20 - Software Design Jan. 2016 - 21

IRCからHubot中心のChatOpsへ
XFLAGスタジオ「モンスターストライク」の裏側

C a s e

1

やすい方法としては「#32のレビューお願いしま
す」というメッセージを書き込んだあとに、該当
のURLをbotがメッセージとして投稿するよう
にしておくことです。閲覧者はそのURLをクリッ
クするだけで該当の画面にアクセスできます。
　URLだけでなくPull Requestのタイトルも
同時に表示してくれれば、Pull Requestの概要
まで同時に把握できるはずです。閲覧者によっ
ては「あぁ、この機能は早くマージしないとね！」
と思いながら該当のURLをブラウザで開き始
めることができます。人によってはまったく無
関係のPull Requestですのでスルーする、と
いうこともできるようになります。
　このように、コミュニケーションを簡素で的
確にするために導入したのがHubotで、それが
すべてのはじまりでした。

botの選定

　すでにHubotを導入したことを述べましたが、
どのようにしてbotを選定したのかについてあら
ためて振り返ってみたいと思います。ここでいう
botとは、チャットシステムに常駐して特定の処
理を実行するソフトウェアのことを指しています。
こういったソフトウェアは現在さまざまな言語で
書かれており、あらゆるチャットシステムに対応
しています。代表的なものを表1にまとめました。

 選定のポイント
　botのソフトウェアを選ぶポイントについて
触れておきたいと思います。ポイントを3つほ

ど挙げます。

❶利用したいチャットシステム
（Slack、HipChatなど）に対応

❷利用したい機能のプラグインがある
❸自分が扱える言語で開発されている

　最初のポイントは“自分たちが利用したいチャッ
トシステムに対応していること”です。コミュニ
ケーション方法の1つとしてチャットを利用する
のが主たる目的でしょうから、botを使うことが
目的ではありません。自分たちが快適にコミュ
ニケーションが取れるチャットシステムを選択
して、そのうえでサポートしているbotのソフト
ウェアを選ぶべきです。チャットシステムを改
造することは難しいでしょうが、botソフトウェ
アを改造することは非常に簡単です。
　2つめのポイントであるプラグインについて。
これは“利用したい機能のプラグインがすでに
あること”です。多くのユーザがいるbotソフ
トウェアであれば、同時に数多くのプラグイン
が公開されているでしょうから、自分がコード
を書かずともすでに存在するプラグインを利用
することで、必要な機能の大部分がすぐに利用
できるはずです。この点について、あえて気を
つけるべきポイントを挙げるとすれば、“プラ
グインが日本語に対応していること”です（詳し
くは事例として後述）。
　最後の3つめのポイントは“自分が扱える言
語で記述されていること”です。チャットや
botを利用する人の多くは、メインのビジネス

ソフトウェア 説明

Hubot
GitHub社によって開発され、CoffeeScriptで記述されている。多くのチャットシステムへ接続でき、プラグインが豊
富で、GitHubを始めとしたさまざまな開発ツールと連携できる。国内でも多くの利用者がいる

LITA注3 Jimmy Cuadra氏によって開発され、Rubyで記述されている。複数のチャットシステムへ接続でき、プラグインも豊富

Errbot注4
Guillaume Binet氏によって開発され、Pythonで記述されている。表中では一番古くから開発されている。多くのチャッ
トシステムで利用でき、プラグインも豊富

Ruboty注5
Ryo Nakamura氏によって開発され、Rubyで記述されている。後発であることからも実装が洗練されたシンプルなコー
ドになっている。作者が日本人であり、日本語の情報が比較的多い。後発のためプラグインは少ないが、必要なもの
はひと通りある

 ▼表1　代表的なbot

注3） URL https://www.lita.io/
注4） URL http://errbot.net/
注5） URL https://github.com/r7kamura/ruboty

https://www.lita.io/
https://github.com/r7kamura/ruboty
http://errbot.net/

22 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

がほかにあるはずです。bot拡張は多くのメリッ
トをもたらすでしょうが、それにかけるコスト
は抑えられるものなら抑えるべきです。プラグ
インを利用するだけで済むのであれば、プラグ
インを利用する。プラグインに少し手を加えれ
ば済む場合は、慣れている言語であればすぐに
手を加えることができるでしょう。慣れない言
語ですと、このときに小さな障壁が生まれます。
ふと思ったときに機能をサクッと追加できるよ
うに、扱い慣れている言語で記述されたbotが
望ましいです。
　一度導入して本格的に利用を始めると、bot

を全面的に違うソフトウェアに入れ替えること
はなかなか難しいです。よって、今回挙げたよ
うなポイントをふまえて検討していただければ
幸いです。

 Hubotを採用した背景
　ここまでで、botにはさまざまな種類がある
ことと、その選定のポイントを紹介しました。
ここからは、筆者自身がHubotを採用した背景
について簡単に説明します。これは弊社での導
入当初時点（2013年後半）のことです。現在の
状況とは変わっていることがあります。
　Hubotを採用した大きな理由は、筆者がすで
に他社でHubotの導入をした経験があったから
です。筆者は今の会社に入社する前、フリーラ
ンスのエンジニアとしていくつかの会社にお邪
魔させていただき、開発のお手伝いをしていま
した。このときにすでにHubotを数社に導入して、
チャットによるコミュニケーションやChatOps

の推進をしていました。こういった経験から、
Hubotの導入が迅速でスムーズに行えたのです。
　また、Hubotには「adapter」という概念があり、
当時の弊社がメインで利用していた IRC以外
にも、現在多くの会社で使われているSlackや

HipChatなどにも対応していたことが導入の後
押しをしました。将来的に IRC以外のチャッ
トシステムを利用することになった場合には、
adapterを切り替えれば、今までのbotをほぼ
そのままの形で利用できます。実際に筆者の所
属するチームでは、ある時期からメインで使う
チャットシステムを IRCからHipChatへ移行
しており、その際にはHubotのadapterを切り
替えるだけでbotの移行作業は完了しました。
　さらにHubotはnpmパッケージとして豊富な
プラグインがあります。前述した issueの番号
（#32など）を展開するスクリプトもすでにあり、
導入したい機能を手に入れるまでのコストが少
なかったことが採用理由の1つです。
　Hubotが、まったく知らない言語ではなく、
ある程度扱ったことがあるCoffeeScriptで記述
されていることも採用理由の1つです。
　最初は、社内にある筆者個人が利用するサー
バでHubotを稼働し始めました。その後本格的
にチームで利用されるようになり、現在はチー
ムで管轄するサーバに移動しています。

Hubotに何をさせて
いるのか？

　ここまででHubotを採用した理由について紹
介しました。ここでは、実際にHubotにどのよ
うなことをさせているのか、その一部を紹介し
たいと思います。

issueのURL展開

　前述したGitHubの issue番号（#32など）を
URLに展開するために「github-issue-link」を利
用しています。HubotはGitHub社製というこ
ともあって、こういった機能はHubotにあらか
じめ用意されており、有効にすればすぐに利用
できます。チャットシステムで issueの番号を

記述したことにHubotが
反応して、該当する issue

へのリンクを提供してく
れます（図2）。

 ▼図2　issue番号からURLに展開

22 - Software Design Jan. 2016 - 23

IRCからHubot中心のChatOpsへ
XFLAGスタジオ「モンスターストライク」の裏側

C a s e

1

URLのタイトル表示

　issue以外にも、URLの投稿をするとそのペー
ジのタイトルをHubotが書き込んでくれるよう
にしています。これにより、URLが指す情報
を自動的に得ることができます。

　当初は「hubot-url-title」注6を利用して実現し
ていましたが、Webサイトで利用されている
文字コードとしてUTF-8しか想定しておらず、
EUC-JPなどを利用したサイトだと文字化け
やHubot自身が停止してしまうことがありまし
た。このことから、「hubot-ya-url-title」注7と
いうプラグインを新たに開発し、文字コードを
自動で判定することで、できるだけ文字化けせ
ずに安全に投稿できるようにしています。

環境の貸し借り

　筆者は本番と同じような環境として、ステー
ジング環境注8というものを用意しています。
たとえば、新しい機能の動作チェックをすると
き、チェック中にほかの人が違うバージョンの
コードをデプロイしてしまうと動作が変わって
しまうので、その環境を一時的に独占して利用
したい場合があります。
　こういった環境の貸し借りをするのには予約
システムのようなものを用意すれば良いのです
が、そんな大掛かりなものは欲しくありません
でした。また、チャットシステムにおいて「使
います」「空いてますか？」「終わりました」など
のコミュニケーションでは明確性に欠け、利用
中はチャットを気にしないといけなくなるため
合理的ではありません。こういった理由から、
ステージング環境を利用するときに、独占する

ための簡易的な機能を作成しました。
　機能はシンプルです。ステージング環境を利
用したければ、まずステージング環境の現在の
状態を確認します。

のようにチャット上でコマンドを打つことによっ
て、ステージング環境が現在利用されていない
ことがわかります。ステージング環境を利用す
るため、環境をロックしてみます。

　ロック中にほかの人がロックしようとすると
すでにロックされているため占有権を獲得でき
ません。ステータス状態も同様に表示されます。

　ステージング環境での検証が終わり、専有を
解除するときはアンロックします。

　これで、ほかの人がステージング環境の占有
権を入手できるようになります。
　このようにステージング環境を利用するうえ
では、必ず占有権を取得してから利用するとい
うルールを運用しています。Webの予約画面

注6） URL https://github.com/dentarg/hubot-url-title
注7） URL https://github.com/hirocaster/hubot-ya-url-title
注8） 新しい機能や開発中の機能の動作チェックなど、開発中に利用する環境のこと。

https://github.com/hirocaster/hubot-ya-url-title
https://github.com/dentarg/hubot-url-title

24 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

などを作らずとも、数行のスクリプトを書くだ
けで機能が実装できました。この機能では、
botが環境のロック状態を保持しているので、
デプロイシステムなどと連携して、ロック中は
ほかの人がデプロイできないようにするなど、
さらに安全性を高めることができます。現状で
はステータスを通知する機能だけですが、人間
側がルールを守ることで事故は一度も起きてい
ません。
　みなさんの現場でも同じような事情を抱えて
いれば、こういった方法で解決できるかもしれ
ません。

イベントのスケジュールを確認

　筆者の所属するチームが開発しているのがス
マートフォンゲームアプリなので、ゲーム内で
行われるイベントのスケジュールが、サーバな
どの負荷に影響を及ぼします。ですので、「今
日のイベントがなんなのか？」「現在開催され
ているイベントは？」などイベントの一覧をす
ぐに確認できるようにしています。あまり詳し
い内容をお見せできません
が、botがスケジュールデー
タを参照して投稿している
だけの簡単なものです。

デプロイ

　ChatOpsの代表的な機能
としてデプロイがあります。
もちろん弊社でも、Chat

Opsでデプロイが実現でき
るようになっています（図
3）。
　弊社では複数の環境を構
築しているので、チャット
の中でデプロイするブラン
チと環境を指定すると、
botが反応して Jenkinsの
Jobにパラメータを構築し
てリクエストを送ります。

これにより、デプロイの処理をするJenkinsが
処理をスタートするようにしています（図4）。
　この環境は段階的に構築しました。当初から
デプロイではCapistranoを使い、スクリプト
によって自動化していました。具体的には、プ
ログラマがサーバからcapコマンドを利用して
デプロイしていました。
　これを、JenkinsのJobとしてコマンドを発
行することで、デプロイできるように変更しま
した。通常は JenkinsのWeb UIなどから Job

をスタートさせますが、botからHTTPリクエ
ストによってもスタートできるようにしました。
このときbotが行っているのは、HTTPリクエ
ストの構築と送信だけです。デプロイの大部分
はJenkinsによって実施されています。
　Jenkinsを利用するメリットは、Jobの同時実
行などを制御する部分として、Jenkinsのもと
もとの機能を利用できる点です。デプロイ処理
中のコンソールやログもJenkins上にきちんと
残ります。また、処理の開始と終了をJenkins

が通知してくれるように設定しています。

 ▼図3　ステージング環境にデプロイしている様子

 ▼図4　デプロイシステムの構成概要

GitHub

Jenkins
サーバ

ソースコード取得

デプロイ

コマンド
検出

HTTPリクエスト

開始・終了を通知

Hubot

HipChat

24 - Software Design Jan. 2016 - 25

IRCからHubot中心のChatOpsへ
XFLAGスタジオ「モンスターストライク」の裏側

C a s e

1

ゲームデータの入れ替え

　筆者の所属するチームではゲームのパラメー
タやデータを確認するために、各開発環境のゲー
ムデータをChatOpsで入れ替えられるように
しています。
　ゲームパラメータを作っている担当者はデー
タを作り、データをリポジトリに登録します。
そのあと、確認したい環境へ特定のコマンドを
実行します。するとbotが、データ投入を行う
JenkinsのJobへ、HTTPリクエストを作成し
て投げつけます。デプロイと同様にJenkinsの
Jobが先ほど作成されたデータを投入し始め、
終了を通知します。
　これにより、ゲームパラメータを作成してい
る担当者は、プログラマの手を借りることなく、
指定した環境のゲームパラメータを入れ替えら
れ、動作の確認などができるようになっています。

運用面での工夫

　現在botを運用している中で工夫している点
についてもいくつか紹介します。

 Updateはサーバに入らない
　botに対してできるだけ気軽に機能を追加で
きることはもちろん、運用負荷を下げるために
botの機能／追加／削除といったUpdateに関し
ては、サーバにログインしなくても実施できる
環境を構築しています。
　筆者のチームで稼働しているHubotは
「forever」注9を経由して立ち上げています。こ
れによりHubotのプロセスがエラーなどで落ち
たとしても、foreverによってHubotが再度起
動し、チャットシステムにログインしてくるよ
うになっています。
　Hubotにはupdate.coffeeというスクリプトが
あり、これを有効にすることによって、チャッ

トシステム上で「hubot update」と投稿すると、
hubotが「git pull」や「npm update」を実施してく
れます。updateがすべて終了したあとに「hubot

die」と投稿するとHubotは自分自身のプロセス
を終了させます。これを foreverが検知して、
再度Hubotを起動してくれます。
　HubotのコードはGitHubを利用してチーム
と共有しています。新たに機能を追加したけれ
ばPull Requestを送り、Mergeしてもらいます。
Merge後は、前述のようにチャットシステムで
一連の投稿をするだけで、Pull Requestを送っ
た機能がデプロイされ、実行できるようになり
ます。

 特定ルームのみで実行されるようにする
　デプロイなどをはじめとした周知されるべき、
記録されるべき機能などは、Hubotがデプロイ
ルームでしか実行しないよう実装をしています。
仮にHubotのアカウントに直接話しかけて実行
できるようにしてしまうと、ほかのチームメン
バが知らないところでデプロイが実施されるこ
とになってしまいます。このようにbotが特定
の影響下でしか反応しないなど運用上の配慮を
しています。

　今回は筆者のチームで運用している、Hubot

を中心としたChatOpsの事例を紹介しました。
みなさんの現場でも使えそうな内容があったら、
積極的に活用してみてください。
　今回導入したPull Requestスタイルの開発
ワークフロー自体にご興味を持った方は、筆者
の著書『GitHub実践入門』（技術評論社、2014

発行）をぜひ参考にしてください。ワークフロー
からGitHubの使い方、CIなどの連携について
まで詳細に解説しています。ﾟ

注9） Node.jsで書かれたスクリプトをデーモン化するツール。 URL https://github.com/foreverjs/forever

おわりに

https://github.com/foreverjs/forever

26 - Software Design

第１特集
はじまっています。ChatOps　導入を決めた7社の成功パターン

Slack・HipChat・Hubot

ChatOps環境を
作ってみよう！

　当社スピカでは、Slack上でH
ヒュボット

ubotという
ChatOpsのフレームワークを利用してChatOps

を実現しています。本稿では、まずHubotと
Slackの連携による導入方法を解説します。

Hubotとは

　HubotとはGitHub社が開発したMITライセン
スで公開しているオープンソースのChatOpsフレー
ムワークです（図1）。Node.js上で動作するように

実装されており、CoffeeScriptで独自のHubotス
クリプトを記述できます。SlackやHipChat、
ChatWorkなどのさまざまなチャットツールに対
応しています。多くの方が利用できるという点で
非常にお勧めです。

SlackにHubotを追加する

　Slackにユーザ登録し、Sign Inすると左ペ
インにメニューの一覧が表示されます。そこで
［Integrations］を選択します（図2）。
　そうすると画面にSlackで連携できる Inte

grationの一覧が表示されますので、Hubotの
欄の［View］ボタンを押下します（図3）。
　Usernameの入力欄がありますが、ここで入
力したHubotの名前がSlackのチャット上での
名前になります（図4）。名前を入力して［Add

 ▼図1　GitHubで作られたHubot

 ▼図2　［Integrations］の選択

 ▼図3　Integrationの一覧からHubotを選択

 ▼図4　Hubot名の入力

Author 本寺 広海（もとでら ひろみ）　㈱スピカ　　 Twitter @__moai

Slack＋Hubotで
環境構築解説
ChatOpsで開発から社内交流まで活性化したスピカ
本章ではスピカでのSlack＋Hubotによる環境構築の方法紹介、サービス開発基盤とモ
バイルアプリケーション配布のしくみを解説します。さらに、社内コミュケーションの
改善にChatOpsがどのような効果を上げたのか紹介します。

C a s e

2

26 - Software Design Jan. 2016 - 27

第１特集
Slack＋Hubotで環境構築解説

ChatOpsで開発から社内交流まで活性化したスピカ

C a s e

2

Hubot Integration］を押下します。
　次の画面で、下記に示す項目をそれぞれ入力、
［Save Integration］で保存します（図5）。

・Setup Instructions：HUBOT_SLACK_
TOKEN={トークン文字列}

・Integration Settings
	 API Token：Hubotとの連携時に必要なトー

クン文字列
	 Customize Name：Hubotの名前
	 Customize Icon：Hubotのアイコン画像
	 First & Last Name：Hubotの姓と名前
	 What this bot does：botの用途を記述する
	 Channels：Slackへ追加時に自動的に参加

するチャンネル（変更可能）

　これでSlackのチャンネル上にHubotが現れま
す。しかし、まだスケルトンでしかないので、後
ほど生成するHubotに紐付けする必要があります。

Hubot環境構築

 Node.js 環境準備
　Hubotは、Node.js上で動くので環境構築が
必要です。その方法はOSやツールによって異
なるので、Webでの情報や書籍などを参照く
ださい。必要なものは次のとおりです。なお、
今回はNode.jsの環境構築は割愛します。

・OS X環境の場合（wget、Homebrew、node.
js package）

・Linux環境の場合（wget、node.js package）

 Node.js 動作確認
　それぞれのOSの環境にインストールが完了後、
動作確認をします。次のコマンドで行います。

$ node -v

　バージョン情報が表示されます。

 npm動作確認
　Node.jsの環境の構築では、同時にnpmもイン

ストールされます。npmとはNode.js上で動作する
モジュールを管理してくれる管理ツールです。こ
のnpmを使ってHubotをインストールするので、
npmの動作確認をします。次のコマンドで行います。

$ npm -v

　バージョン情報が表示されます。

 Hubotの導入に必要なnpmモジュール
　Hubotの生成にはnpm経由で次のモジュール
をインストールします。

・yo：雛形作成コマンド
・hubot：Hubot本体
・generator-hubot：yoを利用したHubotの雛

形生成
・coffee-script：CoffeeScript本体（bot動作記

述用）

　これらは次のコマンドを入力すると導入がで
きます。

$ npm install -g yo hubot generator-hubot ｭ
coffee-script

 Hubot生成
　Hubot用のディレクトリを用意し、その中で
次のコマンドを入力します。

 ▼図5　Hubotの基本設定の入力と保存

28 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

$ yo hubot

　対話形式で必要な情報を入力していきます。
今回はSlackで連携することを前提としている
のでBot adapterは slackとしていますが、
HipChatや ChatWorkの場合、それぞれの
adapter名を入力します（図6）。
　すべて入力が完了すると図7のような画像が
表示されます。
　動作確認としてHubotを動かしてみましょう。

$ bin/hubot
$ @sdbot ping
$ PONG!

HubotとSlackの連携

　Hubotに必要な環境変数を追加します。

$ export HUBOT_SLACK_TOKEN="{Slackで登録しｭ
たHubotのAPIトークン}"
$ export PORT={Hubot用に空けたポート番号}

 Hubotを起動
　次のコマンドを入力します。

$ bin/hubot --adapter slack

　起動に成功した場合、追加したHubotがいる
チャンネルに@{Hubotのメンション名} ping

と入力するとPONGと返してくれます（図8）

Hubotを常駐させる

 foreverのインストール
　foreverをnpmからインストールします。

$ npm install -g forever

　完了したら、次のコマンドを入力します。

$ forever --minUptime 3000 --spinSleepｭ
Time 3000 start -c coffee node_modules/.ｭ
bin/hubot --adapter slack --name {Hubot名}

　再起動する場合は、コマンドforever res
tartallを使用します。

ChatOpsをベースとした
サービス開発基盤
ChatOpsで構築する
サービス開発基盤

　当社ではモバイルサービスの開発基盤を
Hubotだけでなく、Slack上でのWebhookによ
る外部サービス連携も取り入れることで実現し
ています。これにより開発チーム、運用チーム
関係なく互いの業務の状況がSlack上ですべて
確認することができます。各チームの領域外の
ことでも常にSlack上からフィードバックを得
られるので、個人のサービスに対する意識を高
めつつ、サービスの成長を促進するしくみとし
て機能しています。その概要を図9に示します。

モバイル向けサービスを
支えてくれる spiko BOT

　spiko BOTは、以前からアプリの配布や定期
的なイベントを教えてくれるようなしくみが欲
しいという社内でのニーズから生まれました。

? Owner: {作者のメールアドレス}
? Bot name: {生成したいHubotの名前}
? Description: {生成したいHubotの説明}
? Bot adapter: slack

 ▼図6　Hubotの生成開始

 ▼図7　Hubotの生成成功！

 ◀図8
spiko BOT

28 - Software Design Jan. 2016 - 29

Slack＋Hubotで環境構築解説
ChatOpsで開発から社内交流まで活性化したスピカ

C a s e

2

当社は女性向けのサービスとして2つのモバイ
ルアプリをリリースしています。モバイルアプ
リ開発に特化したbotとして皆を支えてくれて
います。

Slackからサービスを見るしくみ

 業務に関連するサービスの監視
　Slack上で連携しているbotを次に挙げます。

・Zendesk（https://www.zendesk.co.jp/）
・Qiita:Team（https://teams.qiita.com/）
・Backlog（http://www.backlog.jp/）
・GitHub（https://github.com/）

　Zendeskでユーザからの問い合わせをSlack

上から確認できるようにしました。連携以前は
サポート担当からエスカレーションが上がって
きたときぐらいしか、その内容を知る機会があ
りませんでしたが、今ではリアルタイムにすべ
ての問い合わせが共有されています。これによっ
てエンジニア側のユーザ理解が深まりました。
結果として、ユーザ目線を意識したプロダクト
開発がエンジニアに浸透しています
　Qiita:Teamは、社内のドキュメント管理で
利用しており、誰がいつドキュメントに対して
操作をしたのかがSlack上から確認できるよう
になっています。更新状況が見えるようになっ
たことから、連携以前に比較してメンバの

Qiita:Teamのドキュメント作成量が増えました。
見える化は非常に大事です。良いコミュニケー
ションのきっかけとなっています。
　GitHubをSlackと連携させて、アプリ・サー
バのリポジトリに対して操作ログをSlack上に流
すようにしています。コミットログが共有される
ため、チーム・プロジェクトをまたいだメンショ
ンが入るようになり、コード品質が向上しました。
　Backlogは、まだSlackと連携できていませ
ん。Backlogのチケット登録時・期限切れチケッ
トがあった場合などにアラートをあげるように
対応予定しています。

 Crashritycsで開発に関するサービスの監視
　モバイルアプリのクラッシュを検知するため
にCrashritycs注1を利用しています。アプリを
リリースした後の障害検知が早くなりました（図
10）。導入以前はユーザからの問い合わせ、ア
プリストアでのレビューなどをきっかけに障害
検知することが多かったですが、クラッシュロ
グの発生がSlackに通知されることによりほぼ
リアルタイムに検知が可能となりました。以前
はアプリの開発者だけしかアプリに異常が起き
たことを認識できませんでしたが、アプリのど
こでクラッシュしているかをSlack上で確認で
きることによってアプリエンジニア・サーバエ
ンジニア問わず確認ができるようになったため、

 ▼図9　Slack+Hubotを中心した各種ツールとのサービス開発基盤

GitHub

Crashritycs

New Relic

Qiita:Team

Backlog

Zendesk

・サロンブック

Hubot

Slack

Team

Spika

・グロース ・サポート

・ネイルブック

App

・サロンブック

注1） URL https://try.crashlytics.com/　

https://www.zendesk.co.jp/
https://teams.qiita.com/
https://github.com/
http://www.backlog.jp/
https://try.crashlytics.com/

30 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

障害の切り分けがしやすくなりました。

 New Relicでサーバ監視
　当社ではAWS上で、モバイルサービス基盤
となるサーバを構築しています。そのサーバを
New Relic注2で監視しています。その監視結果
の情報を流す［alert］というチャンネルをSlack

に用意して、サーバ開発者だけでなく皆が状況
をわかるようにしました（図11）。
　以前はサーバ管理者だけしか問題が検知でき
ませんでした。そのため、属人性が高いのが欠
点でした。今では公平に確認できるようになっ
たので「見える化」が進みました。インフラ管理
者へのアラート通知だけだったときは、対応が
遅れることがありましたが、
Slackとの連携後は情報共有が進
み、対応が早まりました。さらに
インフラに関心が薄かった開発者
も興味を持ったり、負荷・障害を
意識した設計を心がけたりする良
いきっかけにもなりました。

ChatOpsによる
開発支援

 モバイルアプリの配布
　モバイルアプリを配布するしく
みをSlack上から行えるようにし
ています。概要を図12に示します。

 配布までの流れ
　大きく2つの方法で配布を行っ

ています。1つめは、GitHubで作業分をマー
ジしたタイミングで配布するものです。2つめ
はSlack上でspiko BOTに依頼する方法です（図
13）。次の流れでアプリが配布されます。

①Slack上でHubotに対してアプリのビルド依頼
②HubotがJenkinsに対してアプリ作成を実施

するAPIを叩く
③Jenkinsのアプリ作成が完了したタイミング

でCrashritycsでアプリを配布

 ▼図11　New Relicのbotメッセージ ▼図10　Crashritycsのbotメッセージ

 ▼図12　モバイルアプリの配布での利用方法

GitHub

Hubot Jenkins

Crashritycs

依頼

結果

merge

Build

作成App
配布

サロンブック
ネイルブック

注2） URL http://newrelic.com/　

http://newrelic.com/

30 - Software Design Jan. 2016 - 31

Slack＋Hubotで環境構築解説
ChatOpsで開発から社内交流まで活性化したスピカ

C a s e

2

　このしくみを導入する前は、アプリエンジニ
アが毎回ビルドして配布作業をしていました。
ディレクターが内容を確認したいタイミングで
行えなかったり、アプリエンジニアの工数がと
られたりするなどの問題がありました。導入後、
アプリエンジニアの工数が削減されました。ディ
レクターがSlack上から自分でアプリをビルド
できるようになったので確認のフィードバック
が早くなりました。

ChatOpsでのコミュニ
ケーション改善

 朝会＆夕会
　毎日の定時にある朝回や夕会の10分前・時
間になるとアラートしてくれます（図14）。

 天気
　spiko BOTに天気を聞くと、東京の今日、明
日、明後日の天気を教えてくれます（図15）。

 ゴミ出し当番
　ゴミ出し当番を毎週持ち回り制でやっていま
すので、週の頭に当番の人をメンション付きで
教えてくれます、これにより社内での活動に一
役買ってくれています。

 輪読会
　当社では、輪読会を週1回のペースでやって

おり、読む人の順番を毎回変えているのですが、
spiko BOTからランダムでメンションが呼ば
れた人が担当になります。これによって順番が
まだ来ないメンバにも緊張感が走るので、ドキ
ドキしながら輪読会を待つことができます。

 導入初期の失敗
　Hubotのcronの定期実行処理が2回走る問題
がありました（図16）。

◆ 　 　 　 ◆ 　 　 　 ◆

　botは愛着が湧きやすいので会話のネタにな
りやすく、やはり導入をお勧めします。ﾟ

 ▼図13　ChatOpsによる開発支援 ▼図14　アラートするspiko BOT

 ▼図15　天気を教えてくれるspiko BOT

 ▼図16　二度言うクセで苦情を言われるspiko BOT

32 - Software Design

第１特集
はじまっています。ChatOps　導入を決めた7社の成功パターン

Slack・HipChat・Hubot

はじめに

　著者が所属する、㈱サーバーワークスでは「ク
ラウドで、世界を、もっと、はたらきやすく」とい
うビジョン掲げ、これから起こる「働きかた」の変
化に向けて、いくつかの取り組みを進めています。

作らないSI／社内サーバゼロ／会社支給PCゼ
ロ／社内LANゼロ／社内メール禁止／フリー
アドレス／リモートワーク

　これらの中で、もっとも歴史が古いものが
2006年から進めている「社内メール禁止」となり
ます。本章では、著者らがコミュニケーション
の多くをメールに頼っていたころ（以下、メール
の時代）に抱えていた課題を、Slackを導入した
ことで、どのように解決してきたかを紹介します。

メールの時代に
おける課題

　はじめに、メールの時代に抱えていた課題の
代表的なものを説明させていただきます。

メールでは、送信先を
選定することが難しい

　メールの時代には、同僚が困らないようにと
の配慮から、同僚のメールアドレスをCCに追
加していました。その結果、1日の始まりに仕
事をするための仕事として、メールボックスに
大量に届いたメールから「自分が確認するべき
重要なもの」と「そうでないもの」を分類すると

いう、生産的とは言えない作業を必要としました。
　また、その逆に送信者の手違いでメールが配
信されず、必要な情報が届かないといった事故
も起きていました。送信者が「気をつける」こと
には限界があり、この問題はメールを使う限り
は解決できないものだと、とらえていました。

メールでは、誤りを
訂正することは難しい

　送信したメールの誤りを訂正するためには「先
ほどお送りしたメールに、一部誤りがあったた
め、申しわけありませんが次のとおり訂正させ
てください」といったメールを再送する必要が
ありました。これだけでも十分に面倒なのです
が、その訂正メールを準備している途中に、訂
正前のメールに対するReply（返信）が届いてし
まったら目も当てられません。

メールでは、過去の情報を
確認することは難しい

　1つのテーマについてのコミュニケーション
が、1通のメールに対するReplyで完結してい
れば良いのですが、そうならないことも多くあ
ります。複数のメールをまたいだコミュニケー
ションを後から確認するには多くの労力を必要
とします。

❶文字列や、送信先のドメインを駆使して全文
検索する

❷日付順でソートして、時期でのあたりをつける
❸上から順番に1通ずつ読みながら探す

　これには多くの労力を必要とするうえに、検

Author 千葉 哲也（ちば てつや）　㈱サーバーワークス

Slackで、世界を、
もっと、はたらきやすく
コミュニケーションの向上をめざして─
サーバーワークスの場合
かた苦しい挨拶文、検索効率の悪さなどから、最近ではメールによるコミュニケーショ
ンが敬遠されることがあるようです。サーバーワークスはそんな課題にいち早く気づき、
社内メールを禁止しました。今はチャットツール「Slack」でやりとりをしています。そ
れにより、社内コミュニケーションはどう変わったのでしょうか。

C a s e

3

32 - Software Design Jan. 2016 - 33

第１特集
Slackで、世界を、もっと、はたらきやすく

コミュニケーションの向上をめざして─
サーバーワークスの場合

C a s e

3

索から漏れているメールがないことを証明する
ことは非常に難しいです。
　ほかにもメールにおける課題は多々あります
が、本章でお伝えしたい内容を説明するにはこ
れで十分ですので控えたいと思います。ここか
らは、Slackを導入したことでメールの時代に
抱えていた課題を、どのように解決したかにつ
いて紹介します。

Slackとは

　S
スラック

lackとは、Flickrの創設者であるスチュワー
ト・バターフィールド氏によって開発された、
チームコミュニケーションツールです。
　チャンネルと呼ばれる公開／非公開の部屋や、
ダイレクトメッセージを使い、メンバー間での
コミュニケーションを取ることができます。
　メールを含めた多くのコミュニケーションツー
ルでも同等のことができますが、Slackの優れ
ているポイントの1つに導入が容易であること
が挙げられます。そのほか次の特徴があります。

・メンバー数の制限なく無料で利用し続けられ
る（ログの保存期間などの制限がある）

・インターフェースが洗練されていてエンジニ
ア以外のメンバーでもマニュアルなどを必
要とせずに利用できる

・Mac/Windows/Linux/iOS/Android/Win
dows Phone向けのアプリが提供されている

Slack導入時に
設けたルール

　Slackの導入にあたって、始めに“1つのシン
プルなルール”を設けました。

“すべてのチャンネルはオープンであり、興味
があれば誰でも自由に参加・閲覧を可能とする”

　もちろん、機密性の高い情報を扱うプロジェ

クトなどの例外はありますが、基本スタンスと
して、すべての情報（チャンネル）を開き、面倒
な手続きなどいっさいなく、望めば誰でもいつ
でも参加することを可能としました。この狙い
は、メールの時代に課題となっていた「受信者
の選定」の難しさを解決することです。このルー
ルを設けたことで「念のためCCに追加する」と
いった、行為が不要になりました。情報を必要
とするメンバーは、必要になったタイミングに、
その情報が存在するチャンネルへ参加すること
で、過去からの経緯を含めたすべての情報を利
用できます。
　たとえば、セールスチームのメンバーが提案
資料を作成するために、自社サービスのアカウ
ント増加数を確認したいのであれば、サービス
開発チームのチャンネルに参加することで、過
去から現在までの増加推移を確認できます。メー
ルの時代のように、サービス開発チームの担当
者に「お疲れさまです」で始まり「よろしくお願
いします」で終わる、長文の依頼メールを送る
必要はありません。

外部サービスとの
連携

　著者の所属するサービス開発チームでは、コ
ミュニケーションのためのチャンネルとは別に
通知専用のチャンネルを作成して、プロジェク
トで利用している各種サービスからの通知を集
約しています。

バージョン管理サービス／
CIサービスとの連携

　GitHubのIssue/Pull Requestの更新や、Circle

CIのBuild結果を通知することでSlackのチャ
ンネルから、進行中タスクの状態を正確に把握
できます。

異常の検知

　StatusPage.io注1が検知するサービスレベル

注1） Webサービスのステータス（APIの状況、メトリクス）を表示するページを簡単に作成できるサービス。

34 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

の異常、Papertrail注2が検知するア
ラート、Errbit注3が検知する例外
といったアプリケーションレベルの
異常、AWS/Herokuといったプラッ
トフォームレベルの異常などを
Slackに通知することで、トラブル
が起きたことの早期検知を可能とし
ています。また、異なるサービスか
らの通知が、1つのチャンネルに時
系列で集約されるため、原因切り分
けにかかる労力を最小化します。

ユーザとのコミュニケーション

　UserVoice注4の更新も通知しているので、ユー
ザからの問い合わせや、機能のリクエスト／投
票があったことを、リアルタイムに関係者へ共
有することが可能です（図1）。
　また、のちほど紹介するZapierを利用する
ことで、ユーザのサインアップ／プラン変更と
いった行動や、管理コンソールへのサインイン
を通知し、利用の証跡をリアルタイムで把握で
きるようにしています（図2）。
　このように、プロジェクトを取り巻くすべて
の情報を集約することで、プロジェクト関係者
が「今起きていること」を正確に把握できるよう
になりました。
　たとえば、長期休暇から戻った日の朝を想像
してください。Slackを使っていれば、メール
の時代のように雑多に並べられたメールボック
スの整理から始める必要はありません。目的別
に分類されたSlackのチャンネルへアクセスす
るだけで、休暇期間中の出来事をすべて把握で
きます。
　ここで紹介したサービスは、すべてSlackへ
の連携機能を提供しているので、特別なしくみ
を必要とせずに通知を設定することが可能です。

Zapierを使って、
もっと便利に

　次に、Zapier注5というサービスを使って、
Slack連携機能を持たないサービスや、自前の
データソースからSlackへ通知する方法を紹介
します。
　Zapierとは、各種Webサービスを連携させ
るハブサービスです。たとえば、「foo@example.

com宛てに届くメールをSlackのチャンネルに
通知する」といったことや、「DBのテーブルに
レコードが追加されたらSlackのチャンネルに
通知する」などの連携をノンコーディングで実
現します。これにより、非エンジニアのメンバー
も積極的にSlackのチャンネルへ情報を公開す
るようになりました。
　社内メールを廃止して、多くの情報がSlack

で共有されるようになったことで、コミュニケー
ションの質が向上したと感じています。

たのしいSlack開発

　Slackのすばらしいところは、自作botや、ス
ラッシュコマンドと呼ばれる機能の拡張に簡単
にチャレンジできる点にあります。

 ▼図1　UserVoiceの機能リクエストに投票があったことを通知

 ▼図2　管理機能へのサインインを通知

注2） さまざまなサーバのログを収集し、閲覧・検索できるサービス。
注3） Webサービスを監視し、エラーの検知や通知をしてくれるオープンソースのツール。
注4） 顧客からのフィードバックの受付やヘルプデスクなどのシステムを簡単に構築できるサービス。
注5） URL https://zapier.com/

https://zapier.com/

34 - Software Design Jan. 2016 - 35

Slackで、世界を、もっと、はたらきやすく
コミュニケーションの向上をめざして─

サーバーワークスの場合

C a s e

3

bot

　たとえば、弊社のSlackには、昨年入社の新
人@GALACTIC1969注6がHubotを使って作成
した@buri（ブリ）と呼ばれるbotが住んでいて、
「xxx is 何？」と投稿すると、Wikipediaから検
索して知ったかブリをしてくれます（図3）。
　もともとは知ったかブリ機能だった@buriは
順調に機能を拡張しており、今では褒めてくれ
るまでに育ちました（図4）。
　Hubotの勉強のため、という理由で始まった
@buri開発ですが、上記で紹介した“知ったか
ブリ”／“褒める”のほかにも新機能が続々と追
加されています。ちなみに、次に実装を予定し
ている機能は社内Wikiと連携する機能だそう
です。彼によると「社内Wikiを調べるまでもな
いようなことを手際よく調べたいとき、人に聞
いたほうが早いという理由で、つい人に聞いて
しまうが、そこをHubot（@buri）でカバーしたい。
人が覚えなくて良いことをWikiなどから取り
出しやすくするインターフェースとしてHubot

が適しているのではないかと考えている」との

ことです。
　このように、入社して間もない新人が「誰か
の役に立ちたい」と思った際に、上司の説得や、
関係各所の承認を取るといった煩わしい手続き
を必要とせずに、機能拡張にチャレンジできる
サービスポリシーもSlackを評価するポイント
です。

スラッシュコマンド

　次に、スラッシュコマンドについて紹介しま
す。弊社では、事業所移転を機にフリーアドレ
ス制度を導入しました。これまでは各メンバー
の自席に設置していたビジネスフォンを撤廃し、
各自が所有するBYOD端末（iOS/Android）に
SmartPBX注7をインストールし、内線電話と
して利用するようにしました。事業所の移転＋
フリーアドレス制度の導入＋内線番号の変更が、
同時に起こったことで、一時的に電話の取り次
ぎが混乱してしまいました。
　この問題を解決したものが、スラッシュコマ
ンドです。Slackに「/info @メンバー」と投稿
することで、対象メンバーの内線番号や現在い

注6） URL https://twitter.com/galactic1969
注7） URL hthttps://www.ntt.com/a_smartpbx/

 ▼図3　「本気」とは何か教えてくれる@buri

 ▼図5　スラッシュコマンドinfoでメンバーの状況を確認

図4▶
ほめてくれる@buri

https://twitter.com/galactic1969
https://www.ntt.com/a_smartpbx/

36 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

るエリアといった情報を返してくれます。こち
らも@buriと同じく機能拡張を経て、今では
Googleカレンダーと連携して、今日のスケジュー
ルも返してくれるようになりました（図5）。

ノイズと
メンバー間の配慮

　Slackはチャットですので、「お疲れ様です」
から始めて「よろしくお願いします」で締める必
要がありません。そのため、自然とラフなコミュ
ニケーションをする機会が増えました。もちろ
ん、コミュニケーションが増えることは良いこ
とだと思うのですが、その一方でメールの時代
とは異なる「ノイズのストレス」が生まれました。
　まず、はじめにチャンネルから離脱するメン
バーが増えました。メールの時代に毎朝行って
いた「自分が確認するべき重要なもの」を選別す
る作業と似ていますが、Slackの場合はチャン
ネルから離脱することで、以後の情報を完全に
シャットアウトすることができます。また、あ
らためて必要と感じた際は、再度チャンネルへ
参加することで離脱期間の情報を取り戻せるこ
とから離脱への抵抗が少ないのだと思います。
　次に、誰が提唱したわけでもなくメンバーの
行動に2つの変化が起きました。興味深い変化
でしたので、紹介したいと思います。

①チャンネルメンション
（@channel）は使わなくなった

　@channelとは、オンライン／オフラインを
問わず、そのチャンネルに所属するメンバーに
メッセージを通知する機能です。とても便利な
機能ですので、Slack導入当初は多くのメンバー
が積極的に使っていました。しかし、通知され
た側のメンバーがメッセージを確認すると、自
分とは関係のない内容であることが多く「ノイ
ズ」と感じることがありました。現在は、オン
ライン中のメンバーだけに通知する@hereや、
メンバーを指定して通知するような配慮がされ
るようになりました（表1）。

②目的別にチャンネルを
細分化するようになった

　業務連絡、チーム、雑談、部活といった目的
別にチャンネルが細分化され「xxxの話題であ
れば#xxxチャンネルに投稿してください」と
いったように、メンバーが情報の流れを意識し
て注意するようになりました。その結果、チャ
ンネル数は350まで増えてしまいましたが、メ
ンバーごとに必要なチャンネルを取捨選択でき
ているので、全員にとってノイズの少ない環境
になった結果だと考えています（表2）。

◆　◆　◆
　著者らが「社内メール禁止」の取り組みをはじ
めてから9年間、いろいろなサービスを試して
きましたが、今はSlackがベストだと考えてい
ます。
　メールの是非については本稿での言及を避け
ますが、メール以外のアプローチのほうが効果
的なコミュニケーションとなるケースがあるこ
とをご理解いただければ何よりです。ﾟ

投稿例 通知先

@channel: xx日にビルの停電があります 全員

@here: 下のコンビニに芸能人いた !! オンライン中の全員

@foo: コードレビューをお願いします @foo 1名

 ▼表1　例：通知への配慮

チャンネル名 目的 参加を必須とするメンバー

#announce 全社アナウンス 全員

#random 雑談 なし（全員自由に参加できる）

#dept_service_dev サービス開発チーム サービス開発チームメンバー

#ext_kokeshi（参加することで部員と認定） こけし部 なし（全員自由に参加できる）

#prj_xxx xxxプロジェクト プロジェクトメンバー

#rss_xxx 各種RSSの通知 なし（全員自由に参加できる）

 ▼表2　例：チャンネルの紹介（一部）

Jan. 2016 - 37

第１特集

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン

ぺこbot誕生の理由

メンバー全員がアラートに
気がつくようにしたい！

　「ぺこbot」は、システムの異常に開発チーム
のメンバーが誰でも気づくことができるように
したい、という動機から誕生しました。当社が
運営する「F

フリップデスク

lipdesk」は、ECサイトなどWeb上
で訪問者の状況にあわせて実店舗のような接客
体験を提供するサービスを行っています。Web

サイトを運営するお客様は、自社サイトに
HTMLタグを1行埋め込むだけで、クーポン発
行やお知らせ配信、チャット対応などの機能を
組み込むことができます。Flipdeskがきちんと
動作すること――これがお客様サイトの印象に
も密接にかかわってくるため、安定したサービ
スを提供することが重要です。さらにシステム
やDBの監視も必要
不可欠です。
　しかし、ぺこ bot

導入以前は、特定の
メンバーだけが監視
情報のアラートメー
ルを受信していまし
た。もしくは問題を
気にかけていたメン
バーがコンソールに
入って状態を確認す
るしかありませんで

した。
　このような「気にかけていないと気づけない。
気にかけている人しか気づけない」という状況
を解決するため、ぺこbotの導入が始まりました。

Slack＋Hubot＋
はらぺこ君＝ぺこbot

　ぺこbotは、システムを監視し異常の兆候が
あればチャットツールのSlackに通知すること
ができます（図2）。当社ではSlackを日常的な
コミュニケーションの場として使用しています。

 ▼図1　メッセージを言うはらぺこ君

おはぺこ！

そのつらさは
いつか人生の糧に
なるぺこな

 ▼図2　ぺこbotの役割

@yuki:RDSが
ラグってる
ぺこよ！

システム
障害

確認

確認

Slack へ通知

メール通知

張り付き
監視

Author 前當 祐希（まえとう ゆうき）　㈱Socket　 Twitter @maetoo11

ゆるきゃら「ぺこbot」が
生まれた理由
ぺこbot爆誕！＠Socket
Socketの開発チーム内では、botのキャラクタとしてペコッターというグルメQ&Aサー
ビスの「はらぺこ君（図1）」を採用し、ぺこbotと名付け親しんでいます。本章では、な
ぜぺこbotが誕生したのか、ぺこbotはどのように作られているのかを解説します。

C a s e

4
Author 大城 敦哉 （おおしろ のぶや）　フリーランス　 Twitter @atsuya046

38 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

通知先としてSlackを選択したのは、アラート
を通知することで、開発にかかわるメンバー全
員がシステムの状況を把握できるようにしたかっ
たからです。
　また、botのSlack連携方法についても、イ
ンターネット上に情報が多いHubotを使用して
システムを構築しています。これは開発難易度
を下げることにもつながりました。
　しかし、普通のbotでは単なる通知機能のよ
うで面白みがありません。そこでキャラクタを
考え、性格付けをすることにしました。botの
マスコットとしては、㈱ブライトテーブルが提
供する「ペコッター」というグルメQ&Aサービ
スのキャラクタで、開発チーム内で人気のあっ
た“はらぺこ君”を採用しました（もちろんデザ
イナーさんから許可を得ています）。具体的には、
botのアイコンをはらぺこ君の画像にし、アラー
トメッセージでも語尾に必ず「ぺこ」を付けるな
ど、はらぺこ君らしさをいろいろな部分に盛り
込みました。
　今では、キャラクタ化されたbotは「ぺこbot」
と呼ばれ、メンバーから親しまれています。キャ
ラ付けをしたことで、メンバーがbotにより親し
みを感じ、botを触ってみることへのハードルが
下がりました。導入の初めのころは、ぺこbotに
可愛いことをさせたいという思いから「つらい」
という言葉に反応して「そのつらさはいつか人生
の糧になるぺこな」というような簡単なメッセー
ジ応答機能を追加して楽しんでいたメンバーも、
今ではバッチ監視のような複雑な機能を実装す
るなど、活発に機能拡張をしています。
　「可愛い」という印象を持ったことを通して、
導入したメンバーだけではなく、複数のメンバー
がさまざまな機能を追加するようになり、ぺこ
botはみんなで育てるものになりました。

ぺこbotの導入と効果

　当初、ぺこbotは簡単な定型文を投稿する機
能しか持っていませんでした。しかし、複数の

メンバーが機能追加をすることで、現在はバッ
チ処理の監視ができるまでに成長しています。
　ここではそれぞれの機能がなぜ生まれたのか、
どのような効果をもたらしたのかを解説します。

おやつの時間ぺこ！

　最初に導入された機能は、毎日15時に「おや
つの時間ぺこ」という定型文をSlackに投稿す
る機能です。開発チーム内では「土日にもおや
つの時間を伝えてくる」「ぺこが言ってるし、
おやつを食べるか」「糖質制限とかストレッチ
をすすめたりできないの？」などの声があがり
ました。
　このおやつの時間を通知する機能で、メンバー
がぺこbotに興味を持ち始めるようになりました。

システム監視機能の追加

　定型文投稿でぺこbotに興味を持ったメンバー
により、DBやバッチの監視機能が追加されて
いきました。これにより「システムの状況を気
にかけていないと異常に気づけない」という問
題が解決されました。
　FlipdeskはECサイト訪問者の状況に合わせた
接客をするために、ボタンクリックやページ閲覧
など訪問者の行動ログを収集し、Amazon RDS

へ蓄積します。また、蓄積したデータを活用す
るためにGoogle Cloud PlatformのBigQueryへ
転送したり、一定期間ごとのデータを集計したり
もしています。
　ぺこbotはデータ集計バッチ、DBレプリケー
ション状態、BigQueryへのデータ転送の3つ
を監視しています（図3）。
　異常があった際の通知は、ほかのメッセージ
に埋もれないよう、Slackに専用チャンネルを
作り、そこに出力させています。

 データ集計バッチの監視
　当社では、Flipdeskの導入がお客様のサイト
にどのような影響を与えたか分析するため、
Flipdeskの使用が購入に結び付いたかなどの

38 - Software Design Jan. 2016 - 39

ゆるきゃら「ぺこbot」が生まれた理由
ぺこbot爆誕！＠Socket

C a s e

4

情報をログとして取得しています。さらに一定
期間に収集されたデータをバッチが集計してい
ます。これらの情報は、Flipdeskを使用した施
策の効果を測定するため、データ集計としてと
ても重要です。
　しかし、このデータ集計バッチが、DBの再
起動に巻き込まれて停止してしまうことがあり
ました。その件が発生したときは休日だったこ
ともあり、バッチが停止したことにすぐ気づく
ことができませんでした。これをきっかけに、
ぺこbotにバッチを監視させてアラートを出力
することにしました。
　データ集計バッチの監視には次の3つの機能
を実装しています。

①バッチを監視し停止の可能性があった場合に
アラートを出す

②バッチが正常に戻ったときもメッセージを出す
③バッチが出力するログをtailする

　これらの機能を追加したことにより、バッチ
担当者だけではなく、開発チーム全員がバッチ
の異常に気づけるようになりました。さらに、
集計データ量の増加でバッチのパフォーマンス
が低下した際、アラートが頻繁に出たことによ
り事象に気づき、バッチのパフォーマンス改善
をするきっかけとなりました。

 DBのレプリケーション状態監視
　Flipdeskは広告配信プラットフォーム並みの
膨大なアクセスを処理するために、Amazon

RDSのレプリケーション機能を利用して負荷
分散を行っています。もし、短時間でアクセス
が増加することでレプリケーションの遅延が発
生し、それが継続してしまう場合にはサービス
に影響が出る可能性もあります。このような高
負荷状態を検知し、いち早く対処できるよう、
ここでもぺこbotで監視を行っています。
　ぺこ botが定期的にAWS CloudWatchの
APIにアクセスし、レプリケーションの状態
を確認します。もし急激なアクセスの増加があ
り、レプリケーションに遅延が発生した場合に
は「アクセススパイク発生中」のアラートメッ
セージをSlackに送信します。また、軽度なレ
プリケーションの遅延でも、遅延中のサーバ情
報と併せてアラートメッセージをSlackに送信
します。
　このような高負荷状態はすぐに解消される場
合も多々あるので、高負荷状態が解消された場
合にもその旨のメッセージを送信して、即時の
対応が必要なのかどうかを切り分けられるよう
にしています。

 BiqQueryへのデータ転送監視
　FlipdeskではAmazon RDSに蓄積した大量の

 ▼図3　システム監視対象の概念図

行動ログ収集
ECサイトなどの

Webサイト

Flipdesk

Google BigQuery

データ
集計バッチ

① 集計バッチ監視

データ
転送バッチ

Amazon
RDS ② レプリケーション状態の監視

③ データ転送監視

40 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

訪問データなどを、専用のバッチで
BigQueryに転送して活用できるよう
にしています。この転送バッチがまれ
に停止してしまい、一部の機能に不具
合が出てしまうことがありました。し
かし、この転送バッチの構成はバック
エンドで使用しているRuby on Rails

の監視システムと同じものが利用でき
ないものであったため、監視のしくみ
を別途構築する必要がありました。
　そこで、ぺこbotで監視を行うことにしまし
た。ぺこbotに定期的にBigQeuryにアクセス
させ、転送された最新のデータ作成時刻と現在
時刻を比較することで、エラーを検知します。
そして、もし一定以上の開きがある場合は
Slackにアラートメッセージを送るという機能
を作り、エンジニアが異常を検知できるように
しました。
　監視のしくみを構築したことで、アラートメッ
セージが普段より多く送信されてくる場合には
警戒姿勢を取ったり、高負荷状態が長く続くよ
うな場合は相応のアクションに移ったりできま
す。このようにしてぺこbotは安定的なサービ
ス稼働にも一役買うようになりました。

開発チーム支援

　監視機能が入ったことで、ぺこbotは開発チー
ムに有益な仕事をしてくれる存在として認めら
れました。現在では、開発の支援にもぺこbot

が役立っています（図4）。

　 朝ぺこを促す
　開発チームにはリモートワークを行っている
メンバーもいるため、朝会はSlack上のメッセー
ジのやりとりで行われます。朝会では「昨日やっ
たこと・今日やること・今困っていること」を
各メンバーが報告します。毎朝10時になると
ぺこbotが図5のようなメッセージを出力しま
す（社内では朝会を「朝ぺこ」と呼んでいます）。
　これによりお互いの状況がわかるようになり、
困っている人により気づきやすくなりました。
また、メンバーがどんな作業をしているかが事
前にわかるため、メンバー間で話をするときに
内容を理解しやすくなるというメリットもあり
ました。

 カバレッジ計測
　現在、Flipdeskのバックエンドは大部分が
Rubyで作られていますが、大量のアクセスを効
率よく処理できるよう一部をScalaに移行する
プロジェクトが進行中です。併せて長期的に運
用できるよう再設計することで、メンテナンス
性の向上も狙っています。その一環として、ユニッ
トテストを積極的に行っていく方針を立てており、
CI（継続的インテグレーション）でテストカバレッ
ジの計測とレポートの生成を行っています。
　ただ、CIの機能だけでは、能動的にカバレッ
ジレポートを見に行かなければならず、気軽に
カバレッジを把握できません。この煩わしさの

 ▼図4　ほめられる“ぺこbot”

 ▼図5　朝ぺこ（朝会）を促す“ぺこbot”

40 - Software Design Jan. 2016 - 41

ゆるきゃら「ぺこbot」が生まれた理由
ぺこbot爆誕！＠Socket

C a s e

4

ため、そのうち誰も見なくなってしまうのでは
ないかという懸念がありました。
　この煩わしさを解消し積極的にテストを書く
習慣のサポートができるよう、ぺこbotに活躍
してもらうことにしました。
　カバレッジレポートはCircleCI注1のBuild

artifactsという機能を使い、CircleCI API経
由で取得できるようにしています。そこにぺこ
botが定期的にアクセスし、最新のBuildで生
成されたレポートを取得します。このレポート
を解析してレポートのサマリーを作り、それを
アスキーアートで表現したメッセージに変換し
てSlackに送信します（図6）。

　この機能を導入したことで、メンバーがバラ
バラにカバレッジレポートを確認しに行かずと
も、Slack上で確認できるようになりました。
これをきっかけに、テストの薄いところを改善
するだけでなく、カバレッジが日に日に厚くなっ
ていく様子が楽しめるなど、積極的にテストを
行う動機付けになるのではと期待をしています。

まとめ

　メッセージを定時に出力するという簡単なこ
とから導入し、監視やプロジェクト支援までで
きるほどにぺこbotは成長しました。
　当社ではbotに愛着のあるキャラクタを採用

することで、誰かが機能を実装して終
わりにするのではなく、

作る→便利さが受け入れられる→また

誰かが機能を追加する（可愛い！）

という好循環が生まれています。単に
botを導入するのではなく、このよう
な好循環（図7）を創りだしていくこと
もChatOpsがチーム内に浸透してい
く秘訣なのではないでしょうか。ﾟ

注1） URL https://circleci.com/　

 ▼図7　これからもメンバー全員でぺこbotを育てていくぺこ！

ぺこbot の
好循環

機能追加

ぺこ bot は役立つ！
あれこれさせたい！

可愛い

 ▼図6　カバレッジレポートを行う“ぺこbot”

https://circleci.com/

42 - Software Design

第１特集
はじまっています。ChatOps　導入を決めた7社の成功パターン

Slack・HipChat・Hubot

ChatOps文化の
良さと実現方法

　Gaiaxではここ1年でChatOps文化が一気に
浸透しました。現在では毎日のようにチャット
でさまざまなことが行われています。
　これだけのChatOpsを実現するまでに、何
を考え、いかにして実現させてきたか。また、
現在どのようなChatOpsが実現されているか
などを紹介します。

ChatOpsの良さ

　そもそもChatOpsとは何で、どんなメリッ
トがあるのでしょうか？　実現方法や事例を紹
介する前に、ChatOpsそのものについて述べた
いと思います。

 あらゆる情報のハブと
してのチャットツール

　ChatOpsは、チャットと
いうツールの今までの在り
方を変える概念です。チャッ
トは本来、「人対人」のコミュ
ニケーションツールですが、
ChatOpsはこれを「人対何
か」に拡張するものです。こ
こでいう「何か」とは、たと
えば botであったり、チー
ムで利用しているサービス

（GitHub、Trello、Bitbucket、Mackerel、Qiita:

Teamなど）であったり、さまざまなデバイス（G

PS、温度計、家電など）であったりします（図1）。
　「人」に限らずあらゆるリソースにチャットを
通してアクセスできるようになると、あらゆる
情報がチャットツールに集約されていきます。
情報が集約されると、「チャットを見ればその
チームの状況がすべてわかる」ようになります。
「Trelloを更新する」「日報を書く」などのタス
クはチーム全体で習慣化して毎日行うことが重
要ですが、利用するツールが多くなればなるほ
ど手間が増え、次第に習慣が薄れ、文化として
定着せずに使われなくなってしまいます。
　ChatOpsによって「チャットさえ見ておけばい
い」という状況を作ることで、このような「意識

 ▼図1　情報のハブとしてのチャット

Bitbucket
Mackerel
Qiita:Team

各種サービス

各種デバイス

bot チャット

人
Trello
GitHub

Author 石川 雄基（いしかわ ゆうき） ㈱ガイアックス Twitter @hoto17296
Author 佐藤 有花（さとう ゆか） ㈱ガイアックス Twitter @cradle_of_nox
Author 坪井 優朋（つぼい ゆうほ） アディッシュ㈱ Twitter @ufo_ocha
Author 福本 貴之（ふくもと たかゆき） ㈱ガイアックス Twitter @__papix__
Author 肥後 彰秀（ひご あきひで） ㈱ガイアックス Twitter @hidehigo
Author 菊池 正宏（きくち まさひろ） ㈱ガイアックス Twitter @sohismyson

組織にChatOpsを
根付かせるために
Gaiaxの ChatOps実現までの軌跡
ChatOpsの導入は、組織のコミュニケーションを大きく変える改革です。メンバーの
意識を変え、ChatOps文化を根付かせるには何が必要なのか。Gaiaxの事例を参考に考
えてみましょう。

C a s e

5

42 - Software Design Jan. 2016 - 43

第１特集
組織にChatOpsを根付かせるために

GaiaxのChatOps実現までの軌跡

C a s e

5

すべき習慣」を限りなく減らすことができ、新し
い文化を取り入れる障壁を下げることができる
のです。

 ChatOpsによるコミュニケーションの活性化
　Gaiaxの社内bot「Gaiachan」にはさまざまな
機能がありますが、中でも最も多く使われてい
るのが「ポイント」機能です（図2）。これはHip

Chat Bot LabのKarmaと同じ機能をGaiaxの
botに実装したもので、チャットで@name ++
と書くことでその人にポイントを与えることが
できるというシンプルな機能です。なんてこと
はない機能に思えるかもしれませんが、これは
気軽に感謝や称賛を表現できるようになるとて
も強力な機能です。
　常日頃の些細な感謝や称賛は、「どう伝えるか」
よりも「まず伝えること」が重要です。

　「ありがとうございます」なのか「サンキュー！」
なのかを考えるよりも、まずどんな手段でもい
いから表現することが大切なのです。ポイント
機能は非常にハイコンテクストなコミュニケー
ションで、「その人が何か良いことをしたらしい」
ということしか表現できません。しかし、それ
ゆえにどんな言葉よりも気軽に表現することが
できます。若者が「ヤバい」を汎用するように、
感謝・称賛も「ポイント機能」という汎用的な手
段でできる限り多く流通させたほうが、チーム
全体のコミュニケーションは活性化するのです。
　ChatOpsによるコミュニケーション活性化の
事例をもう1つ紹介します。Gaiaxには「書庫た
ん」という、会社で買った書籍の管理をする社
内サービスがあり、「誰がどの本を借りた・返
却した」「新しい本の購入申請をした」という情
報がチャットに流れるようになっています。そ
れを見たほかのメンバーから「おもしろそうだ
から今度読もう」「それ調べたいならこっちの
本もオススメ」というような会話が生まれるこ
とも多々あり、新しい本に出会うきっかけになっ
ています（図3）。
　活発なコミュニケーションを生むために必要
なのは、会話の種をたくさん蒔

ま

くことです。「本
を借りる」という取るに足らない行動も、その
情報が共有されることによって新たなコミュニ

 ▼図2　ポイント機能

 ▼図3　書庫たんの事例

44 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

ケーションが生まれる種になり得るのです。

ChatOps文化を
根付かせるために

　前項で「ChatOps文化の何が良いのか」につい
て述べました。次に「いかにしてChatOps文化
を定着させるか」を考えます。
　せっかくbotを作ったのに、なかなか活用して
もらえない。気づけば、忘れられている。そういっ
た経験はないでしょうか。前述のような効果を
期待するのであれば、組織でbotが活用されるし
くみを作り、環境を整備し、ChatOpsを文化と
して根付かせることが必要です。
　この項では、GaiaxでChatOps文化を根付か
せるために、これまでどのようなしくみや環境
を作ってきたのかを紹介します。

botの機能
――愛されるbotを作る

 使える頻度が高く、気軽に使える機能を作る
　botには、使う頻度が多い機能、気軽に使え
る機能を実装すると、botの存在をアピールで
きます。
　Gaiachanにあるポイント機能は、人から人
へ気軽に「いいね！」を伝えられる手段になって
います。良い情報をシェアしてくれたら、機能
追加に対応してくれたら、渾身のギャグが決まっ
たらなど、汎用性が高いので、使えるチャンス

が自然と多くなります。何度も使われれば、bot

の存在が目にとどまる機会も増えます。
　逆に、botの機能が、使いどきのわかりにく
いもの、使うのに抵抗感があるものばかりだと、
botの存在は忘れられてしまいます。まずは汎
用的に使える機能を用意し、日常会話の中で自
然とbotが使われるようになると良いでしょう。

 コミュニケーションを後押しする機能を作る
　botからメンションを送らせて特定の人を巻
き込んでいくことで、新しいコミュニケーショ
ンを後押しすることができます。
　Gaiachanには順番決め機能があります。勉
強会の発表順など、複数人の順番をランダムに
決めてほしいときによく使われています（図4）。
普段はbotを使わない人も、ほかの人がbotを
通じてメンションを送ることで、botに興味を
持ってもらえます。

 愛着の湧くbotにする
　botはプログラムですので、実装したとおり
にしか動きません。しかし、人間味のある口調
や反応を用意すれば、挨拶を返してくれるだけ
の機能でも、不思議と愛着が生まれるものです。
　Gaiachanには、発言とともにアイコンが表
示されるようにしています。発言の内容に合わ
せて異なる表情のアイコンを表示することで、
よりイメージが湧きやすくなりました（図5）。

 困ったときのヘルプを作る
　botのインターフェースはコマンドに近く、
呼び出されない限りは機能の全貌が見えません。
ヘルプ機能を実装しておくと、使い方をすぐ確
認できますし、知らない機能が増えていても気
づくことができます（図6）。

環境の整備
――botのいる日常を作る

 チャットツールを組織的に導入する
　まずは前提として、botを利用できるチャット
ツールを日常的に利用しており、チャットがコミュ

 ▼図4　順番決め機能

 ▼図5　発言の内容に合わせたアイコン

44 - Software Design Jan. 2016 - 45

組織にChatOpsを根付かせるために
GaiaxのChatOps実現までの軌跡

C a s e

5

ニケーションの中心となっていることが必要です。
　Gaiaxでは以前、Skypeを全社的に利用して
いましたが、現在ではエンジニア全員がHipChat

に移行しています。ChatOpsが文化として根付
くには「皆がチャットを見ている」ということが
重要です。一部の人はチャットツールを使い、
一部の人はほかのツールを使っているという状
況では、botをきっかけとしたコミュニケーショ
ンが発生しにくくなります。
　チャットツールの導入については、後述の
「ChatOps実現における障壁と、どう折り合い
をつけてきたか」にて詳しく紹介しています。

 気軽にbotを試せる場所を作る
　botを導入しても、始めは業務連絡以外のコミュ
ニケーションは取りにくいかもしれません。bot

の発言で会話が流れてしまうため、botの機能を
呼び出すこと、新しい機能を試すことがためら
われる場合があります。botは呼び出されないと
何が起こるか予測しづらい、というのもその一
因となります。
　まずは、気軽にbotを使える場所を用意しましょ
う。Gaiaxでは、HipChat上で若手部屋・Bot部
屋など部署横断のグループを自由に作成してい
ます。これらのグループが、botを試せる場、さ
らには新たな機能が提案される場になっています。

 ChatOpsを活用している人たちを増やす
　Gaiaxでは、botを広めたいメンバーが積極
的に活用していくことで、ChatOpsを使う文化
が定着していきました。
　多くの人が見る場でbotを使えば、それを見
た人に使い方や使う状況が伝わります。興味を
持ったほかの人がさらに別の場でbotを使い、
またほかの人が……と続いていくことで、
ChatOps文化は広まっていくのです。
　また、botを使う人が増えていけば、botに
対する改善案や新しいアイデアも生まれていき
ます。Gaiachanでは、作成当初からPull Request

を使った開発が活発に行われており、社内の多
くの人が機能追加をしています。自分で実装し
た機能が追加されれば、さらにbotへの愛着が
増します。そうして、botを活用するメンバー
が増えていったことも、ChatOps文化定着の大
きな要因でしょう。

botのいる日常を

　ここまでChatOps文化を根付かせるための、
さまざまなGaiaxの取り組みを紹介しました。
　しかし何よりも大事なのは、botを皆で楽し
むことだと思います。業務に必要な機能だけと
言わず、皆が楽しめる機能を自由に追加して、
皆で楽しむことによって、日常にbotが馴染ん

 ▼図6　ヘルプ機能

46 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

でいきます。
　botは手を入れれば入れるほど、自分たちに
最適な機能を備えるようになり、使えば使うほ
ど、botへの愛着が湧くようになります。いつ
しか、botはコミュニケーションの一部を担う
立派なチームメンバーに育っているはずです。
みなさんも自分たちのチームメンバーとなるよ
うなbotを、ぜひ育ててみてください。

そして「Chatで
Operation」へ

　前節で、私たちはChatOpsを「チャットツー
ルにあらゆる情報を集めるための道具」として
とらえて推進し、Gaiaxのエンジニア文化の1

つとして根付かせるための工夫について解説し
てきました。このように、botが私たちの日常
の一部として定着してくると、次は“本来の”
ChatOps、すなわちチャットツール上でさまざ
まなオペレーションをしたくなってくるのは当
然のことではないでしょうか。
　このようなChatOpsについては、すでにさ
まざまな会社が実現していて、その知見もたく
さん共有されています。しかし、ChatOpsはア
イデアやコードをまるごとコピーしてすぐさま
便利に活用できるものではありません。なぜな
ら、ChatOpsはチームの状況や、プロダクトに
適したオペレーションに対応できなければ真価
を感じることができないからです。そのため、
ChatOpsの実現と活用は、単にbotを会社やチー
ムの文化として定着させるより、一段難しいの
ではないでしょうか。
　この節では、Gaiaxが2015年にリリースし
た「Reactio」注1という障害対応支援サービスの
開発現場にChatOpsを採用した事例を紹介し
ます。そしてその中で体感した、初めて
ChatOpsに取り組む際に考慮すべきポイントに
ついて述べたいと思います。

ReactioにおけるChatOps

　ChatOpsの良さとして、前節では「情報の集約」
や「コミュニケーションの活性化」を挙げました。
Reactioチームでは、これに加えて「日々繰り返
し行われるさまざまなオペレーションのbotに
よる自動化」を利点と考え、ChatOpsの採用に
踏み切りました。とはいえ、これらはあくまで
結果にすぎません。大切なのは、ChatOpsによっ
てエンジニアが働きやすい環境をエンジニア自
身で作っていけるという点だと思います。
　そのため、ChatOpsに挑戦するにあたって、
Reactioチームは次の2つのポイントを重視し
て取り組みました。

・オペレーションを小さい部品に分けて実装し
ていく

・使い慣れた道具を使って実装する

　ここからは、ReactioチームにChatOpsが定
着するまでの流れを紹介しながら、この2つの
ポイントについて詳しく見ていきます。

 ▼図7　Reactioにおけるデプロイ処理の流れ

①

②
③

④

⑤

⑥

HipChat

エンジニア

サーバ

Hubot

Jenkins

Deploy Script
（Perl）

Amazon Web
Services

注1） URL https://reactio.jp

https://reactio.jp

46 - Software Design Jan. 2016 - 47

組織にChatOpsを根付かせるために
GaiaxのChatOps実現までの軌跡

C a s e

5

 ReactioにおけるChatOps
　Reactioチームでは、いくつかのオペレーショ
ンをbotに行わせていますが、今回はその中で
もデプロイの処理を見ていくこととします。
　図7は、Reactioというサービスにおいて、
botがデプロイのオペレーションをする際の処
理の流れです。まず、エンジニアがHipChat上
でbotアカウントに対して、メンションを使っ
てデプロイオペレーションを呼び出します（①）。
すると、そのメンションにHubotが反応し（②）、
Jenkinsのデプロイジョブを呼び出します（③）。
Jenkinsは、Perlで書かれたデプロイスクリプ
トを実行し（④）、デプロイスクリプトが実際の
デプロイ処理を行います（⑤）。デプロイの途中
経過や最終結果は、HipChatの通知APIを利用
して、HipChat上に通知されます（⑥）。このし
くみを構築することで、Reactioチームではデ
プロイ作業をHipChat上だけで完結できるよう
になり、デプロイ作業の負担を大幅に軽減する
ことができました。
　この流れは、あくまで最終的にこのような形
に落ち着いただけであり、最初からこのような
形を目指して進めていったわけではありません。
先ほど述べた2つのポイントを実践しているう
ちに、このような形に落ち着いただけです。

 オペレーションを小さい部品に分けて

実装していく
　オペレーションは、チームやプロダクトの状
況に応じて日々変化するものです。そのため、
いきなり最終的なゴールを想像し、1つの大き
な部品として実装してしまうと、変化に追随す
ることが難しくなってしまいます。まずはチー
ムやプロダクトに必要なオペレーションを小さ
な部品に切り分け、1つずつ実装し、それを組
み合わせることでChatOpsを実現していくの
が良いでしょう。
　Reactioチームの場合、デプロイのChatOpsを
実現するにあたって、まず初めに実装したのは「デ
プロイスクリプト」だけでした。次にHubotを導

入し、エンジニアがHipChatとHubotを通して、
デプロイスクリプトを実行できるように環境を加
えました。最終的に、Reactioのテストのために
Jenkinsを使うようになったので、デプロイスク
リプトをJenkinsが呼び出し、HubotはJenkinsの
ジョブを実行するように置き換えました。
　このように、オペレーションを小さな部品に
分けながら実装を進めると、ChatOpsを推進し
ている中で、チームやプロダクトの状況が変化
したことに起因する路線変更が非常にやりやす
くなります。先ほどの例では、最初にデプロイ
の実行を「デプロイスクリプト」という部品とし
て切り出したおかげで、デプロイ処理の呼び出
し方の変更が、非常に容易になりました。もし
最初からHubotのスクリプトにデプロイ処理を
べた書きしていたら、Jenkinsを導入する際に、
「デプロイ処理を呼び出す」部分と、「デプロイ
を実行する」部分を分離しなければならなかっ
たでしょう。

 使い慣れた道具を使って実装する
　ChatOpsを実装する手段として「チームメン
バーが使い慣れた道具を使うこと」は非常に重
要です。なぜなら前述のとおり、ChatOpsは「エ
ンジニアが働きやすい環境を、エンジニア自身
で作っていける」ことが重要だからです。これ
を実現するためには、なるべく多くのチームメ
ンバーがChatOpsに関するコードを読み書き
できる状態にしなければなりません。
　Hubotを利用する場合、オペレーションを
JavaScriptで実装することが一般的ですが、
Reactioチームの場合はPerlに慣れているエン
ジニアが多かったので、オペレーションを実行
するためのスクリプトはすべてPerlで実装し
ました。そしてHubotの役割を、オペレーショ
ンのためのスクリプトやJenkinsのジョブを呼
び出すことだけに留めました。
　使い慣れた道具を使うことで、多くのメンバー
をChatOpsに巻き込めるだけでなく、これま
でに得ている情報を活かして、高速にChatOps

48 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

の実装を進めることが可能になります。

ChatOpsの実現を目指して

　この2つのポイントを意識してChatOpsの実
現を進めると、ChatOpsはいつでも方向性を変
えられるようになります。これはChatOpsを
実現するうえで、非常に重要な要素です。なぜ
なら、ChatOpsはチームやプロダクトの変化に
“必ず”、“正確”に追随しなければならないから
です。もしChatOpsが追随できなくなってし
まったら、ChatOpsは使われなくなる……とい
うよりは、使えなくなってしまうからです。
　まだChatOpsを試したことのない方は、ぜ
ひ前述の2つのポイントを意識しながらチャレ
ンジしてみてはいかがでしょうか。そして
ChatOpsを活用して、日々の仕事をより良いも
のにしていきましょう！

ChatOps実現における障壁と、
どう折り合いをつけてきたか

　この節では、ツール選定の意思決定者の立場
でChatOpsの初期の話や経緯について触れて
みようと思います。読者のみなさんが自身の環
境でChatOpsを実現する際の戦略として活か
していただければうれしいです。
　各社の組織構成や歴史によっては、必ずしも
ChatOpsが可能なコミュニケーションツールや
基盤が整っていないこともあるのではないでしょ
うか。Gaiaxにおいても、ChatOps実現の最大
の障壁は、ChatOpsが可能なチャットツールを
導入することでした。

 新ツール導入までの経緯
　Gaiaxでは長らくSkypeを業務におけるコ
ミュニケーションツールとして利用しています。
エンジニア以外の事業メンバーも多いGaiaxで
は、新ツールであるHipChatを導入するまでに

は、何度も提案がありましたし、議論が盛り上
がったこともあります。実際、IRCを導入し、
普及を試みたことも2度はあったと記憶してい
ます。どちらも半年～1年ほどかけて取り組み
ましたが、キャズム注2を超えることはなく次
第に利用されなくなっていきました。この失敗
の原因は、botと連携しやすいツールという点
でのPros注3はありつつも、コミュニケーショ
ンツールとしてのUXの乏しさがあり、既存の
コミュニケーションツールを代替しきれなかっ
たこと。それに加えて、botや通知を中心とし
た利用として並立（両用）を狙って進めたこと。
この2つだと考えています。
　これをふまえて、今回の新ツール導入にあたっ
ては、次の2点を重視して進めました。

 ❶自身だけでなく、組織が動く理由を考
え、しっかりとした議論をする

　今回、新ツール導入を推進する理由として、
「Gaiaxの事業環境、働く環境を考えたときに、
招待型の非公開チャット（要はSkype）ではなく、
公開部屋（いわゆるルームやチャンネル）がリス
トされており選んで参加する形へ、コミュニケー
ションのスタイルの変更が必要」という点を掲げ、
検討・導入を進めました。ここで強調したいの
はこの理由の是非ではなく、導入の提案者とし
て直接の動機やPros（たとえば「bot作りやすい、
bot作るとこんなに良い」）を提案するだけではな
く、一歩俯

ふ かん

瞰して組織を動かすに値する理由を
見つけることも重要だということです。もし、読
者のみなさんに、いくら提案しても通らない、と
お感じの方がいらっしゃればぜひ参考にしてみ
てください。

 ❷エンジニアでのスタンダード
　前述したように、エンジニア以外のメンバー
も多いGaiaxにおいては、全社でのスタンダー

注2） 新しい商品やサービスが市場でブレイクする際に超えなければいけない一線（深い溝）のこと。
注3） 良い点のこと。逆に悪い点はCons。

48 - Software Design Jan. 2016 - 49

組織にChatOpsを根付かせるために
GaiaxのChatOps実現までの軌跡

C a s e

5

ドはまだSkype。インターフェースの面、未読
管理や通知の面、正直有用過ぎるとさえ感じま
す。こういうツールをひっくり返すのはとても
たいへん。エンジニアとしてのProsを足さな
いと、Pros/Consが拮抗しないので、全社で利
用するコミュニケーションツールを一気に置き
換えることは難しいと考えました。
　一方で、歴史をふまえて、並立（両用）ではな
くコミュニケーション基盤を移すことが重要、
と考えていたので、初期の導入範囲を絞り、エ
ンジニアでの標準ツールとして導入することに
しました。「エンジニア同士のコミュニケーショ
ンの場は基本的に新ツールに移行し、各事業で
のコミュニケーションは、事業ごとに任せる。
そして多くの事業は既存のツールを利用する。
その境界にまたがるメンバーは、新旧ツールの
両使い」、この方針について、全チームで持ち
帰り議論してもらい決定しました。結果として
は、全エンジニアチームが既存ツールとの両使
いの不便も承知のうえで、新ツールへの移行に
合意してもらえました。

 まとめ
　思惑どおり、まずはエンジニアのコミュニケー

ションの標準ツールとして定着しました。実際、
ツールの並存のオーバーヘッドと新ツールの定
着とのせめぎ合いがあったと思っています。と
もすれば過去の IRCのように新ツールが定着
しない可能性もありました。が、今回は、本章
のほかのパートで述べたような、連携性、業務
の自動化を含めて、遊び心を刺激するbot（プロ
グラマブル）という要素、メンバーの主体的な
活動があってこそ定着したと考えています。
　2つめの変化として、エンジニアが人数的に
も事業的にも中心の事業は、事業全体のコミュ
ニケーションをHipChatに移行するケースも増
えています。自動化が外せない要素になってい
る、その理解が広がっている、と考えています。
　全社に広める、どこかのタイミングで全体を
置き換えきる（さらにはSlackへ）、というのは
今後の課題ですが、Gaiaxのケースとして、範
囲は限定しながらも、しっかりとした議論を行
い、ChatOpsを実現していく、というところが
みなさんの参考になれば幸いです。エンジニア
の感覚で組織を塗り替えていく。まだ道のりは
長いですが、引き続き模索とトライを進めてい
きます。ﾟ

　HipChat（ヒップチャット）は、Bitbucketや JIRAなどでも知られるAtlassian社製のチャットツールです。ビデ
オ通話、スクリーン共有、APIやWebhookでのインテグレーションなどが可能です。Mac、Windows、iOS、
Android、Linuxに対応しており、さらにはブラウザからでも利用することができるので、あらゆる場所からチー
ムとの連携がとれるチャットツールになっています。
　GaiaxではSkypeを全社で利用していましたが、さらに開発を加速させるため、ChatOpsを前提としたチャッ
トツールの選定を行いました。選定の基準として、「APIやWebhookが充実していてエンジニアフレンドリー
であること」や、情報共有の重要性から、「メンション機能」や「ルーム（公開部屋）がオープンになっていて興味
のあるルームに能動的に参加できること」など挙げられました。
　Skypeからの移行時にSlackやChatworkなども同時に検討しましたが、選定基準を満たすことのほか、選定
当時の各事業や開発チームの状況、費用対効果も踏まえエンジニアのチャットツールはHipChatを利用するこ
とに決定しました。利用開始して6ヵ月が過ぎましたが、HipChatの利用は定着したと考えていますし、導入に
より多くの課題が改善されました。今後もGaiaxでは、その時々で必要なツールやしくみを柔軟に取り入れつつ、
開発を加速させていきたいと考えています。

c o l u m n

HipChatとは？――Gaiaxにおけるチャットツールの選定

50 - Software Design

第１特集
はじまっています。ChatOps　導入を決めた7社の成功パターン

Slack・HipChat・Hubot

はてなの
ChatOps初期

IRC時代

　弊社では2000年半ばより、チャットツールと
してIRCを活用してきました。IRCはインター
ネットプロトコルの一種で、RFC2810から
RFC2813注1までで定義されています。IRCのサー
バ実装はいくつかありますが、弊社では「ircd」注2

を利用していました。ircdはシンプルな実装で
すので、メッセージ保存のような機能は「Tiarra」注3

を利用している人が多くいました。
　2014年夏にSlackを導入することになるの
ですが、それまでの10年ほどは IRCとさまざ
まなツール／サービスを連携させつつ、IRCに
よるコミュニケーションを軸に業務を進めてき
ました。最初は人同士の会話だけでしたが、次
第にさまざまなbotを立ち上げるようになり、

徐々にツール連携を増やしていきました。

IRCでのツール連携

　たとえば、Capistranoのデプロイを実行する
とリスト1のようなメッセージを流していまし
た。これは、serviceAや serviceBといったア
プリケーションをデプロイしていた様子です。
IRCと各ツールの連携には「ikachan」注4を利用
していました。ikachanを経由することで、
HTTPのREST APIで簡単に IRCにメッセー
ジを投げることができました。
　そのほかの例として、Jenkinsを連携させて、
CIテスト結果を投稿させたり、ジョブキュー
に溜まっているジョブ数を投稿させたり、サー
ビス上のユーザアクティビティ（投稿など）を流
したりしていました（リスト2）。
　もちろんインフラ監視も連携していました。
たとえば、Nagiosのアラートを通知させたり、
monitによるプロセスメモリ監視の結果を通知

注1） URL https://tools.ietf.org/html/rfc2810（2811,2812,2813）
注2） URL http://www.irc.org

19:43:23 (#cap@hatena:ikachan) serviceA: stanaka @production update (on 4f3b1e2)
19:44:58 (#cap@hatena:ikachan) serviceB: stanaka @production update (on 7877c28)

 ▼リスト1　「Capistranoとの連携」IRCに流れるデプロイのメッセージ

00:00:47 (#main@hatena:hudson) Project Foo build #379: STILL FAILING in 6.8 sec: http://jenkins/job/Foo/379/
00:00:54 (#main@hatena:hudson) Project Bar build #369: STILL FAILING in 14 sec: http://jenkins/job/Bar/369/
00:42:01 (#service@hatena:ikachan) job count: SomeJob has 14700 jobs. Landmine jobs are inserted at ｭ
(2013-03-10 04:30:00).
00:05:23 (#service@hatena:ikachan) [Q] : foobar: http://example.com/foobar

 ▼リスト2　「Jenkinsとの連携」IRCに流れるテスト結果など

注3） URL http://www.clovery.jp/tiarra
注4） URL https://github.com/yappo/p5-App-Ikachan

Author 田中 慎司（たなか しんじ）　㈱はてな
Twitter @stanaka

エンジニアのための
より良い環境づくり
はてなにおけるChatOpsのこれまでとこれから
はてなでは、Slackをコミュニケーションのハブとして、日々の開発や運用を進めてい
ます。現在のこのスタイルになるまでには、いくつかの変遷がありました。本章では、
IRCを中心にしたスタイルから、今現在のSlackを中心とした使い方までの流れについて、
さまざまな試行錯誤とともに紹介します。

C a s e

6

https://github.com/yappo/p5-App-Ikachan
http://www.clovery.jp/tiarra
http://www.irc.org
https://tools.ietf.org/html/rfc2810

50 - Software Design Jan. 2016 - 51

第１特集
エンジニアのためのより良い環境づくり
はてなにおけるChatOpsのこれまでとこれから

C a s e

6

させたり、Webサーバのアクセスログからステー
タスコード種別ごとのアクセス数統計を投稿し
たりしていました（リスト3）。

Slackへの移行

IRCの限界

　IRCはシンプルで拡張性も高いツールなので
すが、次のような課題がありました。

・非エンジニアにとって導入のハードルが高い
・テキスト情報のみでメッセージの表現力が低い
・画像の共有方法がクライアントツール依存
・過去ログを保存する標準のしくみがない
・GitHubのようなSaaSからメッセージを投
稿するのが面倒

Slackの採用

　これらの課題を解決するより良いツールがほ
かにないか探していた中、見つけたのがSlackで
した。弊社ではSlackを、2013年末のベータ期
間中から試用開始していました。当初は実験的
に利用するのみで、引き続きIRCをメインで利
用していました。半年ほど試用した結果、本格
的に社内のコミュニケーションツールとしてIRC

をリプレイスすることを決定し、2014年夏には
有料プランへ移行、本格的な利用を開始しました。
　現在では、ほぼ完全にIRCからの移行を完了
し、さまざまなサービスやツールと連携してい

ます。IRCを利用していたころと比べると、社
内でGitHubやTrelloなどのSaaS利用が促進さ
れたこともあり、さまざまな情報がリアルタイ
ムにSlackに流れるようになってきています。
また、IRC時代の終わりから利用していた
Hubotを引き続き利用したり、ikachanから
Slackに投稿できるようにすることで、既存資
産をそのまま流用できるようにしたりもしました。

Slack上でのChatOps

　ChatOpsは、アプリケーションやインフラの
フロー情報をチャットツール上に流すことによっ
て、関係者が同じ情報をリアルタイムに共有し
ながら、日々の運用や障害時の緊急対応をスムー
ズにするための方法論です。
　弊社では、このために次のような情報を
Slackに通知させています。

・デプロイ情報
・ステージング環境の起動
・Mackerel注5からのアラート情報
・エラーログ情報
・Twitterエゴサーチ結果

デプロイ通知

　ChatOpsと言えばデプロイとアラートの通知
ですが、まずデプロイ情報連携から紹介します。
弊社ではデプロイにCapistranoを利用してい
ますので、Capistranoのスクリプト内でSlack

連携のコードを挿入しています。

注5） URL https://mackerel.io

20:35:03 (#main@hatena:Nagios) CRITICAL somedb18/mysql_process_my Duration:0d 0h 2m 19s -> http:// ｭ
server/host/10.0.xx.yy (processcount: 524)
21:04:19 (#main@hatena:Nagios) OK somedb18/mysql_process_my Duration:0d 0h 0m 3s -> http://server/ｭ
host/10.0.xx.yy (processcount: 15)
00:49:17 (#monit@hatena:ikachan) someapp:/ apache [trigger] memory out of bounds [3405280kb, 3425872kb, ｭ
*3730976kb, *3706148kb, *3866624kb] (GroupMemoryUsage)
00:49:24 (#monit@hatena:ikachan) someapp:/ apache [trigger] process is running (ProcessRunning)
08:00:01 (#statuscode@hatena:ikachan) someapp37 app-edit 07:00:01-08:00:01 2xx:4768(91.66%) ｭ
3xx:356(6.84%) 4xx:76(1.46%) 5xx:2(0.04%)

 ▼リスト3　「Nagios、monitとの連携」IRCに流れるアラートなど

注3） URL http://www.clovery.jp/tiarra
注4） URL https://github.com/yappo/p5-App-Ikachan

https://mackerel.io

52 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

　実際の様子は図1のようになり
ます。ここでは“魚”と“釣り竿”と
“寿司”の絵文字が使われています
が、それぞれの魚がデプロイ先の
ホストを意味し、釣られて寿司に
なるとデプロイが完了したことを
示しています。図1では魚が2匹
いますので、2台のホストにデプ
ロイされており、すべて寿司にな
るとデプロイのプロセスがすべて
完了したことがわかります。
　また、デプロイ先がステージン
グ環境の場合、デプロイしたブラ
ンチ用のドメインを用意して、
Webサーバを新しく起動するこ
ともあります。その際には、新た
に起動したWebサーバにアクセスするための
URLを、同時に投稿するようにしています。
これにより、ブランチごとにWebサーバを起
動したとしても、「アクセス先のURLを間違え
てしまう」というミスを減らすことができます。

アラート通知

　アラート通知は、「Mackerel」から流すよう
にしています。Mackerelは弊社で提供してい
るサーバを監視するためのSaaSで、アラート
をSlackを含む各種サービスに投稿できます。
また、その際にアラート対象のメトリックグラ
フを画像として同時に投稿します（図2）。これ
により、アラート通知がどの程度の緊急性を持っ
ているのか、即時の対応が必要かどうかを直観
的に判断できるようになります。
　さらに、対応するエンジニアがリアルタイム
に流れてくるグラフを同時に見ている前提で、
チャット上で対処方法を話し合えますので、よ
り精度が高く、よりスムーズな対応ができるよ
うになります。
　Mackerelからのアラート通知以外にもインフ

ラ関連ではエラーログ情報をSlackに流すよう
にしています。これは「fluentd」注6と「fluent-

plugin-slack」注7を利用して実現しています。
fluentdにアプリケーションサーバのエラーログ
を読み込ませ、fluent-plugin-slack経由でSlack

のチャンネルに通知しています。エラーログは
出ていることになかなか気づきにくいものですが、
Slackに通知することで、いつどのようなエラー
が出ているか普段から把握できます。もちろん、
障害発生時には重要な参考情報となります。
　ただし、エラーログがWarningレベルで普段
から大量に出力されている場合、その情報を
Slackに流すようにしてしまうと、重要な情報が
埋もれてノイズばかりが流れるチャンネルになっ
てしまい、誰も気にかけなくなってしまいます
ので、S/N比注8を適切に保つことが大事です。
　また、弊社が提供する「はてなブログ」や「はて
なブックマーク」といったサービスの場合、障害
発生時にTwitterにユーザ反応が表れることが
多くありますので、障害の影響範囲の感覚を掴
むためにも、エゴサーチ結果をSlackで見られる
ようにしています。Twitterのエゴサーチには

 ▼図2　Mackerelのアラート通知

 ▼図1　デプロイの様子

注6） URL http://www.fluentd.org
注7） URL https://github.com/sowawa/fluent-plugin-slack

注8） Signal（信号）とNoise（雑音）の比。

https://github.com/sowawa/fluent-plugin-slack
http://www.fluentd.org

52 - Software Design Jan. 2016 - 53

エンジニアのためのより良い環境づくり
はてなにおけるChatOpsのこれまでとこれから

C a s e

6

fluentdを利用しており、「fluent-plugin-twitter」注9

と「fluent-plugin-grep」注10、「fluent-plugin-

suppress」注11を組み合わせて実装しています。
　Twitterのエゴサーチの結果はノイズが多いこ
ともありますので、適宜fluent-plugin-grepの設
定でフィルタリングを行うことでS/N比を一定
以上に保つようにしています（「Mackerel」でエゴ
サーチを行っていると、鯖料理の写真がよく流
れてきてお腹が減ってしまいます注12）。
　もちろんTwitterのエゴサーチは障害時だけ
ではなく、新しい機能のリリース時や普段のサー
ビスに関するユーザ反応の体感値を獲得するた
めにも役に立っています。いろいろな意見をサー
ビス開発にフィードバックするとともに、リア
ルタイムに反応が可視化されることで、エンジ
ニアのモチベーションを引き上げることもでき
ます（もっとも、ネガティブな意見も可視化さ
れることになりますのでそこは辛いのですが、
貴重な意見であることには変わりありません）。

フロー情報とストック情報

　このようにSlackをリアルタイムコミュニケー
ションの中心に置いているわけですが、それだ
けでは次のような問題があります。

・発言した内容が流れていってしまい、検索が
難しい

・複数の話が混ざることがあるため、あとから
話を追いにくい

　これらの問題は、フロー情報とストック情報
を意識することで解決できます。Slackでやり
とりされる情報はおも
にフロー情報で、個々
の発言は断片的かつ、
あとから参照がされに
くい情報です。一方、
ストック情報はある程
度まとまった量の情報

で、あとから参照しやすくしておく情報です。
　弊社では、ストック情報を溜める場所として
「はてなグループ」を利用しています。はてなグ
ループは2004年にリリースされ、それから10

年以上情報を蓄積し続けており、今でも、
2005年のはてなブックマークリリース時当初
のやりとりを参照できます。
　ただ、フロー情報とストック情報の境界はあ
いまいで、あとで参照する価値のある有意義な
ディスカッションがSlack上で行われることも
あります。Slackのようなフローに強いツール
に慣れると、ついつい情報をストックするのが
面倒になってしまいます。
　そこで、はてなグループにエントリを投稿す
るとSlackにも流れるようなツールを利用して
います（このツールはオープンソースにできて
おらず、すみません）。
　弊社では、チームごとに別のグループを利用
しており、グループごとに対応するSlackチャ
ンネルにエントリのURLと概要が流れるよう
にしています（図3）。これにより次のようなス
トック情報とフロー情報の使い分けを行ってい
ます。

❶	��議論の切っ掛けになるようなストック情報と
なるエントリを、はてなグループに投稿する

❷それがSlack上に流れてくるのを受けてフ
ロー情報となるリアルタイムのディスカッ
ションを行う

❸議論が収束したら、まとめを再度エントリと
して投稿する

 ▼図3　はてなグループのエントリ投稿

注9） URL https://github.com/y-ken/fluent-plugin-twitter
注10） URL https://github.com/sonots/fluent-plugin-grep

注11） URL https://github.com/fujiwara/fluent-plugin-suppress
注12） Mackerelは日本語で「サバ」。

https://github.com/y-ken/fluent-plugin-twitter
https://github.com/fujiwara/fluent-plugin-suppress
https://github.com/sonots/fluent-plugin-grep

54 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

❹最後にまとめエントリが流れてくるのをみん
なで確認し合う

　はてなグループに投稿されたエントリはあと
から簡単に検索できますので、数ヵ月後に議論
を振りかえったり、チームに新しい人が入って
きたときに情報を共有したりできます。

そのほか連携している
サービスとbot

　これまでに紹介してきた以外にも、メンバの予
定の可視化だったり、サポートまわりのツールで
あったり、少し柔らかい話題を提供するような連
携も設定しています。それらについて紹介します。

 Googleカレンダー
　SlackではGoogleカレンダーの予定を流すこ
とができます（図4）。予定直前のリマインド通
知、予定の追加／変更／削除の通知だけではな
く、1日のサマリも、毎日指定した時間に投稿
できます。毎朝チームの予定を自動投稿させる
ことで、チームメンバが予定を忘れてしまうこ
とがないようにできます。

 desk.com
　ユーザからのサポート宛てのメールは、サー
ビスの問題点や改善点を発見するうえで有意義
です。弊社では、サポートメールの処理に「desk.

com」注13を利用しており、サポートメールが
Slackに流れてくるようにしています（図5）。

 engineerkun
　「engineerkun」注14は、エンジニアのあいだで

話題を共有するために、はてなブックマークの
指定したタグが付与されたエントリを、定期的
にSlackに流してくれるbotです。ときおり話
題が提供されることで、会話が始まったりする
ことがよくあります（図6）。

はてなにおける
ChatOpsの今後

　Slackを利用するようになって1年以上が経
過し、本章で紹介したような連携を日々試して
いますが、まだまだ新しい改善ポイントが見え
てきており、進化の余地があります。具体的に
は、次のような課題が見えてきています。

・連携が多くなり過ぎると、流れが早くなり過
ぎて流れを追うのがたいへんになる

・1つのチャンネルにディレクター、デザイナ
などさまざまな職種の人がいろいろな話を
しており、会話と通知が混線する

　これらを解決するために、用途ごとにチャン
ネルを分割したり、連携するサービス／ツール
の取捨選択を進めたりしています。みなさんも
いろいろ試しながら、自分たちにフィットした
チャットツールの使い方を見い出していっては
いかがでしょうか。ﾟ

 ▼図4　Googleカレンダーとの連携

注13） URL http://www.desk.com 注14） URL http://hakobe932.hatenablog.com/entry/2014/12/18/193819

 ▼図5　desk.comとの連携

 ▼図6　engineerkunの様子

http://hakobe932.hatenablog.com/entry/2014/12/18/193819
http://www.desk.com

Jan. 2016 - 55

第１特集

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン

ヤフーとChatOps

　一口にChatOpsと言っても、その内容はさ
まざまです。「リリースやジョブの開始を指示
する」「アラートの対応を指示する」、はたまた「六
曜を教えてもらう」など、日々の業務効率化か
らちょっとした息抜きまでエンジニアの目的に
応じて自由に設計できます。
　そんな中、弊社のChatOpsは、とくに情報
の可視化・共有、コミュニケーション向上にこ
だわって発展しました。本章では、それに至る
経緯と具体的な事例を紹介します。

MYM

　ChatOpsを実践するには、最低限チャットツー

ルが必要となります。最近では Slackや
HipChatが人気ですが、弊社ではMYM（エムワ
イエム）と呼ばれる内製のチャットツールが広
く使われています（図1）。チャットツールを内
製する理由はいくつか挙げられますが、とくに
弊社のChatOpsの立場からみると、カスタマ
イズ性の面で大きなメリットがあります。チャッ
トツールの本体にまで手を加えられることで、
たとえば情報管理やパフォーマンスなど、さま
ざまな社内ツールと連携するための特殊な要件
にも柔軟に対応できます。
　当社のケースはさておき、もしまだあなたの
会社でチャットツールが導入されていない場合、
まずはその選定と普及から始める必要があります。

生い立ち

　MYMは2011年2月、Hack Day注1と呼ばれる
社内ハッカソンで誕生しました。それまで広く利

用されていたYahoo!メッセン
ジャーは1対1でのコミュニ
ケーションを主体とするツー
ルで、巨大化したヤフーとい
う組織には合わなくなってき
ていました。そこで大規模な
組織における情報共有フロー
の最適化を目指して、グルー
プコミュニケーションを主体と
したMYMが開発されました。

注1） 24時間でプロトタイピングを行う弊社伝統のイベントです。参加資格を社内に限定しないOpen Hack Dayもありますので、腕に
覚えのある方はぜひご参加ください！

 ▼図1　MYMの画面

Author 市川 貴邦（いちかわ たかくに）　後藤 拓郎（ごとう たくろう）　中根 智大（なかね ともひろ）
 光野 達朗（みつの たつろう）　山口 寛（やまぐち ひろし）　ヤフー㈱

「MYM」で
コミュニケーション改革
ヤフーの爆速開発を支える自家製ツール
ヤフーでは、既存のチャットツールを利用するのではなく、新たに「MYM」という独自ツー
ルを開発することで、ChatOpsを実現しました。情報共有を効率化するため、コミュニ
ケーションを円滑にするため、また会社の体制の変化に対応するために行った、機能改
善の歩みを紹介します。

C a s e

7

56 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

 ルーム機能
　MYMはサーバもクライアントも基本的に
JavaScriptで組まれています。クライアントは、
PC版もモバイル版も同じコードで動作する
Webアプリです。このMYM上で会話のコンテ
キストを分けるには「部屋」を作成します注2。
　新しい部屋を作るのに特別な操作は必要あり
ません。部屋名はURLに含まれていてアクセ
スした瞬間からその部屋を利用できます。会話
の流れから自然に部屋を作成して誘導できる簡
便さから、MYM上にはさまざまな部屋が作られ、
徐々に文化が醸成されていきました。サービス
や組織、特定の言語や技術、部活動や趣味の部
屋など、現在では約50,000もの部屋が存在し
ます。ChatOpsもこの部屋単位で行われます。

 ユーザ拡張
　MYMは全体的に、ユーザスクリプトで変更
しやすい設計になっています。こうすることで、
ヤフーが誇る2,000人強のエンジニア・デザイ
ナが、細かな不満を勝手に解消してくれます。
また、それらのユーザスクリプトをMYM上で
列挙してオン／オフできるしくみも用意されて
おり、筋の良い機能は公式の拡張機能として
MYM本体に取り込まれます。あとで紹介する
独自bot（事例3）も、この拡張機能のしくみを
利用して作られています。

 いいね機能
　MYMでは発言ごとに「いいね」ボタンを押す
機能があります。誰かがボタンを押すと発言が
派手に動き注3、リアルタイムに注目度の高い発
言がわかるようになっています（図2）。また、
押された回数に応じて発言のスタイルが変わる
ため、あとから読んだときにも発言時の雰囲気
を掴めます。この「いいね」数はbotとのコミュ
ニケーションにも応用されています（事例4）。

そしてChatOpsへ

　前置きが長くなりましたが、弊社のChatOps

はこのMYM上で展開されています。チャット
ツール自体は特殊なものですが、個々の事例は
他のツールでも再現できるものと思います。こ
れから紹介する事例が、何らか解決の一助にな
れば幸いです。
　現状ではまだChatOpsに関する全社的な方
針が決まっているわけではなく、各サービス・
各チームが思い思いの形で取り組んでいる状態
です。本稿ではそれらの中から抜粋した事例を
「片方向」と「双方向」の２パターンに分類して紹
介していきます。

片方向のChatOps：
情報の集約と共有

　チャットツールへ一方的にメッセージを送る
だけのChatOpsです（図3）注4。この形の場合、
必ずしもbotは必要ありません。非常にシンプ

注2） Slackでいうチャンネルです。
注3） 社長がその動きを「ズキュン」と形容したためズキュン機能とも呼ばれます。
注4） 図中右のマークはMYMのロゴです。弊社デザイナーがYahoo!メッセンジャーの“スマイリー”マークをモチーフに制作しました。

 ▼図2　「いいね」機能

 ▼図3　片方向のChatOps

GitHub

Jenkins

Cron、Scripts、
etc...

JSONデータ

MYM

PRがあった、build が成功し
た／失敗した、etc...

56 - Software Design Jan. 2016 - 57

「MYM」でコミュニケーション改革
ヤフーの爆速開発を支える自家製ツール

C a s e

7

ルなのですが、効果はバカにでき
ません。チャットツールさえ開い
ていれば、アラートであろうとリ
ポジトリの更新であろうと新着情
報が1つのツールで手に入るよう
になります。メールでの通知に比
べ、「なんかキタ」「↑のプルリクエスト見てく
ださい」と即話題につながるのも大きな違いです。
　本節ではリポジトリ変更とサーバ監視での活
用事例を紹介します。

事例1：issue/PRの共有

　社内ではGitHub Enterprise（以下GHE）を中
心とした開発を行っているのですが、GHEが
普及する段階で問題になったのが、issue/pull

request（以下PR）が気づかれないという問題で
す。日常使うサービスのリポジトリはともかく、
ちょっとした思いつきを共有し合うようなリポ
ジトリは放置されてしまう傾向にありました。
メールでの通知や通知用ブラウザ拡張もありま
すが、どうしても各人の努力に頼ってしまいます。
　そこで、GHEのWebhooks（issuesイベント
とpull_requestイベント）をMYMに投稿すると
いう取り組みを始めました（図4）。MYMには
部屋単位でWebhooks用のエントリポイントが
用意されています。たったこれだけなのですが、
誰もが目にする場所で共有されることで「issue/

PR気づかれない問題」は解決に向かいました。
　また、1つだけ工夫がされており、あえて通
知専用の部屋を作らず、チームで日々やりとり
をする部屋に更新を流しています。通知量など
課題はありますが、部屋を分けないことで担当
外の案件や修正に対してコメントが付く・議論
が始まるという効果が出ており、チャットツー
ルへの情報の集約・共有の恩恵を強く得られる
結果となりました。

事例2：品質維持のための
情報を集める

　事例1ではサービス開発時の紹介をしました。
事例2では運用フェーズでサービスを安定して
届けるためのChatOps例を紹介します。Chat

Opsを始める以前は、ライブラリなどのバージョ
ンアップ対応などは人依存となっており、対応
する人も限られていました。このため、対応に
遅れが出るなど課題を持っていました。
　チームとしてプロダクトを支えていくために、
チームのコミュニケーションの場に情報を
Pushする取り組みをしました（図5）。しくみは、
毎週1回ライブラリなどの更新情報を取得し通
知するシンプルなものです注5。ポイントは、結
果をプロダクトごとの担当者にメンションを付
けてMYMのチーム部屋に投稿する点です。コ
ミュニケーションの中心に通知することで漏れ
がなくなり、プロダクト担当者は早い段階で対
応方針の検討を開始できます。また、チームメ
ンバもキャッチアップできるので協力して対応
することもできます。以前は対応が遅かったも
のもすばやく対応できる環境となり、品質の維
持につながっています。

 ▼図5　情報収集の流れ

プロダクト群

サービスA

API

bot
サービスB

サービスC

情報収集

担当者宛てに投稿MYM

 ▼図4　GHEの issue連携

注5） 週1回の通知部分について補足しますと、緊急度により通知方法は分かれています。このbotでは1ヵ月程度で対応を求められる
もののみ流すようにしています。

58 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

継続へのポイント

　片方向の事例として2つ紹介しました。どちら
もポイントは、通知専用の部屋を作らず日常的な
コミュニケーションの部屋に通知を取り入れるこ
とです。チームの誰もが目にする場所に通知が来
ることで、担当外の人からの気づきが得られたり、
情報の共有が促進されたりと高い効果が得られ
ます。始めるときは、ぜひみなさんのチームのチャッ
トルームへの通知を試してみてください。

双方向のChatOps：操作の効率化と
コミュニケーション円滑化

　botを置いて対話的に進めるChatOpsです（図
6）。いわゆるChatOpsと聞いて思い浮かべる
のはこちらの形ではないでしょうか。片方向の
ChatOpsでは情報の集約までしかできません。
botを利用した双方向のChatOpsが実現すると
行動（対応、アクション）までもがチャットツー
ル上に集約されるようになります。
　botを準備するため導入のハードルは上がり
ますが、「XXにある対応手順書を参照して」「ど
れですか」「あれ、ちょっとまって……」という
虚しいやりとりを省略して、

❶チャットツールからbotに指示を送るだけで
作業が完了する

❷チームの新メンバもチャット上のやりとりを
見れば作業がわかる

という運用の構築ができるようになります。本
節では社内での双方向ChatOpsを普及させた事
例と、アラート通知に関する事例を紹介します。

事例3：
botと自由におしゃべりする

　MYMが広まったのは、日本でもHubotなど
ChatOpsの事例が見られるようになったころで
した。このChatOpsによる効率化とコミュニ
ケーションが魅力的で、何より楽しそうだった
こともあり、弊社でもすぐに取り組みたいと考
えました。その導入を促進するために生まれた
のが「Yabot」です。MYMや社内ツールとの相
性が良い独自botフレームワークであり、開発
者が取り組みやすい環境を実現しています。こ
こでは、自由にbotとの会話を増やしていける
ようにしたしくみと、それを通してどんな会話
がなされているかという実例を紹介します。

 Hubotを簡素化したしくみ「Yabot」
　前述のとおり、Hubotに代表されるチャット
用botフレームワークがMYMにもほしいと思っ
たことをきっかけに、そのお手軽版である
Yabotを開発しました。
　開発の過程では、発言者のみならず閲覧者の
分もbotが解釈して実行してしまうなどバグが
ありましたが、チャットでデバッグしながら完
成までこぎつけました。詳細なしくみについて
は割愛しますが、Hubotになぞらえて用意した

 ▼図6　双方向のChatOps

GitHub Hubot Scripts

Jenkins

Cron、Scripts、
etc...

original bots

MYM

データが欲しい、
リリースしたい、etc...

 ▼図7　Yabotの構造

チャットツール

Adapter

Robot

Script

58 - Software Design Jan. 2016 - 59

「MYM」でコミュニケーション改革
ヤフーの爆速開発を支える自家製ツール

C a s e

7

機構を列挙しておきます（図7）。

・チャットに応じてどのような挙動をするか記
述する「Script」

・Scrpitを実行する「Robot」
・Robotとチャットツールを仲介する「Adapter」

　「Hello」と呼びかけるのに5分とかからず、ま
た「Script」の追加もチャットを通して行えるな
ど、導入にあたっての難しさをできる限り排除し、
誰でも使えるようにすることを意識しています。

 　 Helloから始まり、生まれた会話
　前述のしくみを用意して、社内の誰でも自由
におしゃべりできるようにした（=Scriptを追加
できるようにした）ことでさまざまな会話が生
まれました。
　「Hello」と呼びかけ、botが「Hello」と返し疎
通確認が完了したあとは、それぞれの会話の始
まりです。たとえば「天気はどう？」と聞いたら、
botがYahoo!天気サービスの情報から天気を調
べて答えてくれます（図8）。
　開発者の趣味趣向によって、botの挙
動や反応がさまざまなこともおもしろい
です。天気を訊いて雨の予報のときは「雨
の日があるみたい。傘持って行ったら？」
と答えてくれたり、サーバの状態を問い
合わせてサービスアウト中のときは、「触
れないで」と答えてくれるなど十人十色
です。運用作業を簡略化してくれたり、
遊び心満載の冗談でチャットルームの雰
囲気を良くしてくれたりもします（図9）。

 　 チャットでお手軽な動作確認
　次に、実際にシステム運用する際にチームで
行っている実例を紹介します。当チームが担当
しているシステムはいくつものコンポーネント
から構成されており、リクエストを受けてから
非同期処理がどこまで進んだのか確認するのも
一苦労でした。この動作確認をbotにお願いす
ることにしたのです（図10）。流れは次のよう
になります。

①テストする人がシステムの環境とパラメータ
をbot宛に発言

②発言内容を解析したbotがシステムのAPIを
コール

③botが後続のコンポーネントにおいて非同期
処理が進んでいるかチェック

④最後のコンポーネントまでチェックが終わる
とその結果をbotが返信

 ▼図8　天気bot ▼図9　猫画像bot

 ▼図10　動作確認の流れ

bot

②

③

①

④
進捗の確認機構

リクエスト

API

コンポーネントA

コンポーネントB

コンポーネントC

システムX

チ
ャ
ッ
ト
ツ
ー
ル

60 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

　このようにすること
で、いったい何がうれし
いのでしょうか？　いく
つかあります。

・動作確認の作業コスト
が削減できること

・誰でも簡単にテストで
きること

・テストしたことが記録として残ること
・結果を見ながらのコミュニケーションができ
ること

　結果として、動作確認がとてもお手軽なもの
になりました。発言するだけでいいので、担当
外の開発者でも企画担当者でもテストできます。
チャットのアーカイブはそのままテスト実施記
録にもなるので、発言日時における動作保証や遡

さかのぼ

っ
て調べる際の材料にもなるでしょう。
　また、もしテストが失敗しても問題のある個
所がわかっているので、あとは開発者が原因を
調べるだけです。結果の内容も瞬時に共有され
ているので、空いているチームメンバがヘルプ
で入ることもできます。1つの結果を眺めながら、
そのままチャットを通して原因や対応について
メンバ同士の議論へと進展する世界ができあが
ります。
　ChatOpsの醍醐味である「誰でもできる」「み
んなでできる」ということが、効率化と新しい
コミュニケーションをもたらしました。ちょっ
とした工夫で面倒だった作業を解消し、楽しさ
をも加えられるのでぜひお試しください。

事例4：アラート通知のChatOps化
で機能横断型組織へ

　最後の事例はbotそのものに工夫を凝らして、
より高度なChatOpsを実現させている取り組
みです。監視アラートをチャットに通知するこ
とは組織規模の大小を問わず行っていると思い
ます。この事例では、アラート通知にChatOps

を取り入れることで、チームがどのように変化
していったかを紹介します。

 開発と運用の意識の壁
　弊社では2012年に宮坂 学社長の新体制に切
り替わるまで、内部統制のために開発と運用の
役割を組織単位で分離していました。新体制に
なってからは、内部統制を維持しつつ新しいこ
とにすばやく挑戦できるように、開発と運用を
組織単位では分けず、機能横断型チームで開発
することを選択できるようになりました。
　機能横断型チームではお互いの業務を尊重し、
コラボレーションを発揮することが期待されま
すが、開発体制の変化に対してメンバの意識変
化が追いつかず、元開発のメンバと元運用のメ
ンバの間で壁ができてしまい、運用業務の属人
化が問題になっていました。

 アラートの見える化「力の1号」
　アラートメールを見る習慣がないメンバに
「メールをチェックしてね」と言葉で伝えても、
それを習慣として根付かせるには不十分です。
自分たちの開発スタイルの中に“見る機会”をど
うにか組み込んで、運用意識を高めていく必要
が出てきます。
　すでにMYMを通してコミュニケーションをし
つつ開発するスタイルが確立していたため、監
視サーバからメールを送りつつMYMにも通知し、
開発スタイルを大きく変えずに意識の改善がで
きないかと思い、見える化を行いました（図11）。
　多くのChatOpsでは監視サーバからチャッ
トシステムにデータを送ることと思いますが、
弊社のネットワークポリシーでは、監視サーバ
のあるプロダクションから開発環境にある

 ▼図11　MYMでアラートの見える化

60 - Software Design Jan. 2016 - 61

「MYM」でコミュニケーション改革
ヤフーの爆速開発を支える自家製ツール

C a s e

7

MYMに直接通知データを飛ばせません。その
ため、定期的に開発環境から監視サーバにデー
タを取得しに行く必要があります。
　定期的に実行というとcronを思い浮かべる
方も多いと思いますが、cronは“どこで動かし
ているか忘れる”、“変更記録がなく、最新コー
ドがどこにあるかわからなくなる”といった問
題が起きることがあります。
　Jenkinsの定期実行を利用すると、

・リポジトリからコードを落とすのでコード管理
を行いつつ、常に最新のコードを実行できる

・Jenkinsのjob一覧を見ることでどのような
目的で、どのような処理が行われているか
がひと目でわかる

といったメリットがあります（図12）。

 これで改善……しなかった。
　これでアラートを定期的に取得しつつMYM

に送れるようになりました。目新しさからか、
チーム内だけでなくチーム外のメンバも見てく
れるようになりました。しかし数週間もすると、
通知は見るけど対応まで手が動かず、元運用メ
ンバに対応が集中するという元の状態に戻って

しまいました。botによる見える化は、“見える
ようにする”だけでは成功には向かいません。
何が問題だったのか、双方向なChatOpsでど
う改善できたかを次に説明します。

 　 アラートの人格化「技の2号」
　当時のMYM部屋には、ただちに対応が必要
なもの、そうでないものなど、多様な性質のア
ラートがbotによって並列に投下されていまし
た。それらの判別は人間が経験的に行う必要が
あり、経験の不足している人間には負担が大き
いものでした。それなりの量のアラートが投下
される状況の中でこのMYM部屋を見続けるた
めに、botに改良が加えられました。
　問題のあるアラートをより効率的に見分ける
ために、「基本的に問題ない」あるいは「ただち
に対応が必要」とわかっているものは、フィル
タリングして担当のbotを割り振り、さらに
MYM上で特徴的なアイコン、名前そしてキャ
ラクタを設定しました。その結果、「この子（bot）
が喋ったらすぐ対応」「この子は基本的に大丈夫」
といった形で、ひと目でアラートの属性を判別
でき、認識の負担が軽減されました。
　またアラートのテキストの中で必要とされる
情報はごく一部であることが多いため、どのサー

バで、何のアラートが挙がった
のか、日本語でまとめて報告す
るようにしました。情報量を最
小限に抑え、かつ我々の第一言
語である日本語を用いたことで、
認識スピードの向上につながり
ました（図13）。

 botとのコミュニケーショ
ンの導入

　前述したキャラクタごとのカ
テゴリ分けが実装された結果、
カテゴリ分けされなかったア
ラート（図13の「終着点」）は、
経験的判断を必要とするものと

 ▼図12　1号システム全体図

開発環境ネットワーク
プロダクション
ネットワーク

GitHub

Jenkins

監視サーバ

最新のコードを
取得

定期実行で
アラート
情報を取得

アラート情報を
MYMに通知

MYM

62 - Software Design

Slack・HipChat・Hubot

はじまっています。ChatOps　導入を決めた7社の成功パターン
第１特集

して、特別なキャラクタに報告が割り振られま
した。このキャラクタの発言は、誰かが問題の
ありなしを判断する必要があるため、MYMの「い
いね」機能を使って、判断・対応済みであるこ
とをbot側に報告するシステムを導入しました。
　このキャラクタの発言に「いいね」をしないと、
30分後に未確認のアラートに問題がないか再確
認されるため、経験的判断を必要とするアラー
トの見逃し防止、誰かが確認して対応した／対
応が必要ないと判断したことの共有、さらには
判断の付かないアラートが発生した際の議論の
きっかけを与えることとなりました（図14）注6。

 2号導入の効果
　「技の2号」を導入したことによるメリットを
まとめました。

・意味ベースでアラートをまとめることで、bot
によるポスト数が以前の1/2ほどになった

・アラートの属性とキャラクタを紐付けること

で、認識コストが軽減された
・双方向コミュニケーションの導入で、アラー
トの確認頻度が向上した

・アラート部屋を起点としたコミュニケーショ
ンが活発になり、運用・開発の職能意識の
壁がなくなった

まとめ

　いかがだったでしょうか。みなさんには馴染
みのない弊社独自のチャットシステムですが、
ChatOpsで行っていることは一般的なものかと
思います。片方向によるチャットシステムへの
情報の集約、botを介することによる作業効率
化やコミュニケーションの円滑化は、弊社の爆
速な開発の支えとなっています。
　ぜひみなさんも簡単なものからChatOpsラ
イフに取り組んでみてください。ﾟ

 ▼図13　2号システム全体図

監視
サーバ

アラート

キャラクタ別
フィルタ群

…

終着点

MYM

！

注6） 余談ですが、再確認にも「いいね」をしないで放置するとキャラクタが泣き出す仕様にしたところ、これを泣かせまいとしてアラー
トの確認頻度が向上しました。

 ▼図14　2号のMYM部屋

第2特集

　サーバの構成をコードで管理する“構成管理ツール”が注目されています。コードで管理
することによって自動化や手順の明文化ができ、サーバ構築の負担が軽減されます。本特集
では、その構成管理ツールの1つである「Ansible」の使い方を解説します。
　数ある構成管理ツールのなかからAnsible が選ばれる理由はどこにあるのか、そしてどん
なことができるのか、本特集で確認してみてください。

Ansible
サーバ構成管理を
 省力化

で

簡単に使い始められます
Ansibleの概要とインストール 64

 Author 若山 史郎
第 章1

非プログラマでも読み書きしやすい
InventoryとPlaybook、2つのファイルを理解する 68

 Author 若山 史郎
第 章2

少しずつ積み重ねて理想の自動化環境を作ろう
より便利な使い方で複雑な手順を簡潔に 80

 Author 若山 史郎
第 章3

便利なのに使われないAnsibleになるのを防ぐ
ディレクトリ構成の熟考のススメ 86

 Author 湖山 翔平

1
Appendix

エージェントレスでWindowsのデプロイ自動化
AnsibleからWindowsを操作する 92

 Author 廣川 英寿

3
Appendix

89
 Author 上野 晶鋭

2
Appendix

手軽さとコード化しやすさが人気 ！

GitHubでの管理を考える
Playbookの置き方とssh秘密鍵の暗号化

64 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

なぜ構成管理ツールを
使うのか

　構成管理とは、インストールされているソ
フトウェアや設定ファイル、サービスの起動
や停止、ネットワーク設定といったサーバの
中身、つまり構成を、業務が円滑に運ぶよう
に構築・調整することです。構成管理ツール
とはそのためのツールです。構成管理ツール
を使うと、少なくとも次の2つの利点が生まれ
ます。

1. 自動化
2. コード化

自動化
　人間は必ず間違えます。人の手でサーバの
構築などを行うと、間違いが発生する可能性
は常につきまといます。さらに、人間であれ
ば同じことを何度も行うと疲れが溜まってき
たり、慣れてしまって警告を見逃したりする
かもしれません。あるいは人によって手順が
異なっているかもしれません。自動化により、
間違いが起きる可能性を最小限に抑え込めま
すし、コンピュータにやらせれば愚直に何度
でも同じことを繰り返します。主人たる人間
はその間飲み物でも飲んでいればいいのです。
　ただ、自動化だけが円滑に事を運べる方法
なわけではありません。そもそもその作業が
必要なのか、別のもっと良い方法がないか、
一度考えてみるのも1つです。その場合に大事

なのは標準化です。バリエーションがあると
複雑になります。標準化して1つにまとめると、
作業自体が必要なくなる場合も多々あります。

コード化
　もう1つの利点はコード化です。構成管理ツー
ルを使うには必ず、そのツール用に設定をファ
イルに記述（コード化）します。つまり、「従来
は目に見えなかったり、人間の暗黙知に頼っ
ていた構築手順を、何をするか明確なコード
の形に落とし込むことができる」ということで
す。コードを書くことこそがインフラ構築と
なるのです。そして、コードは通常テキストファ
イルで記述されるので、検索が可能になったり、
差分がわかりやすくなるという利点も生まれ
ます。また、わざわざ実サーバ上で確認しな
くても、コードを見れば設定値などがすべて
わかるようになります。
　コードはGitやMercurialなどのバージョン
管理システムと組み合わせることでより便利
になります。さらにはGitHubのPull Request

や Issueとも組み合わせると、作業フローも明
確化されます注1。Ansibleに限らず構成管理ツー
ルを導入するならば、バージョン管理システ
ムも一緒に導入することをお勧めします。

◆　◆　◆
　仮想化やクラウドのおかげでサーバ構築が
楽になり、インフラ系エンジニアだけでなく、
プログラマ（おもにWeb系）も簡単に扱えるよ

注1） GitHubによる管理の一例はAppendix 2を参照ください。

導入の敷居の低さは、Ansibleが評価されている点の1つです。設定対象のサーバ側にはたいてい何の準備も必要とせ
ず、実行用サーバにAnsibleをインストールし、設定に必要な2つのファイルを作るだけです。なにはともあれ、本章
を読んで体験してみてください。

 Author 若山 史郎（わかやま しろう）　ツキノワ㈱

第 章1 簡単に使い始められます
Ansibleの概要とインストール

64 - Software Design Jan. 2016 - 65

簡単に使い始められます
Ansibleの概要とインストール 第 章1

うになった近年、このような利点をもった構
成管理ツールを活用するところが増えています。
　構成管理ツールは、次のような人にとって
助けとなるツールです。

・日常的にサーバの新規構築や構成変更をし
ている人

・日々変わっていくアプリケーションをサー
バにデプロイしている人

・忘れっぽくてすぐに構成や設定値を思い出
せなくなる筆者のような人

　つまり、何らかの形でサーバにかかわる人
は利用の検討をする価値があるでしょう。

Ansibleとは

　Ansible注2は、構成管理ツールの1つです。
類似のソフトウェアには、Puppet注3やChef注4

があります。
　Ansibleは、Ansible社が中心となって開発
しています。ソースコードはGitHub上で公開
され、非常に多くの人がかかわっています。
GitHubのスターは13,000を超え、Issueやメー
リングリストも非常に活発です。
　なお、Ansible社は 2015年 10月にRed Hat

社に買収されました。Red Hat社は「自動化ツー
ルは今後重要になり、その中でも複数のクラウ
ドに対応し、簡単に使い始められるAnsible社
を買収した」と発表注5しています。Ansible社は
買収後も変わらず活発に開発を続けています。
　Ansibleの特徴として、次の3つが挙げられ
ています。

・Simple：Ansibleは最低限必要なファイルが
2つだけと、簡単に始められる。また、YAML
という形式で書くため、プログラマでなくて

注2） http://www.ansible.com/

注3） https://puppetlabs.com/

注4） https://www.chef.io/

注5） https://www.redhat-cloudstrategy.com/why-did-red-
hat-acquire-ansible/

も使える
・Agentless：対象となるサーバに特別なツー

ルをインストールする必要はない。SSHで
接続できれば動かせる

・Powerful：単なる構成管理ツールではない。
アプリをデプロイしたり、クラウド上にイ
ンスタンスを立ち上げたり、あるいは多数
のサーバからログをローカルに一気に持っ
てきたりと、いろいろな使い方が可能

　顧客のサーバを扱っていて、エージェント
などをインストールすることが難しい場合など、
とくにAgentlessはAnsibleの大きな魅力と
なっています。
　また、Amazon Web Services（AWS）やGoogle

Cloud Platformなど多くのクラウドサービス
と連携するための機能を持っています。たと
えばAmazon ELBにインスタンスを付けたり
外したりする機能や、Zabbixの監視を一時的
に停止する機能などです。これらの機能があ
ることで、単なる構成管理ではなく、デプロ
イにまで使える強力なツールとなっています。
AWSとの連携に関してはAnsible公式ドキュ
メント注6がありますし、各モジュール（モジュー
ルについては後述）に使い方の例が書かれてい
ますので、参考にしてください。

Ansibleの動作概要

　前述のとおり、AnsibleはSSHだけで動作
します。より正確に言うと、実行対象となるサー
バにPython 2.4以上が必要なのですが、現在
使われているLinuxディストリビューション
のほぼすべてでPythonが最初からインストー
ルされていますので、あまり問題はありませ
ん（FreeBSDなどでは入っていないので別途
インストールする必要があります）。
　Ansibleを実行するホストを管理ホスト

注6） http://docs.ansible.com/ansible/guide_aws.html

https://puppetlabs.com/
http://docs.ansible.com/ansible/guide_aws.html
https://www.redhat-cloudstrategy.com/why-did-red-hat-acquire-ansible/
https://www.chef.io/
http://www.ansible.com/

66 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

（Control Machine）と呼びます。一方、対象と
なるホストを対象ホスト（Managed Node）と
呼びます（図1）。
　管理ホストで実行されたAnsibleのコマンド
は、対象ホストに対してSSHで接続を確立し
ます。その後、管理ホストで生成したPython

スクリプトを対象ホストに送り込み、対象ホ
スト上で実行します。実行が成功しても失敗
しても、PythonスクリプトはAnsibleのコマ
ンドが終了するときに削除されます。
　対象ホストを複数指定した場合、Ansibleは
各対象ホストに対して並列にPythonスクリプ
トを実行します。デフォルトでは5台まで並列
実行されますが、コマンドラインオプション
で同時実行数を変えられます。SSHですので、
並列に実行するための管理ホスト側のコスト
はさほどでもなく、100台程度に対して並列に
実行しても大丈夫です。

Ansibleのインストール

　では、Ansibleを管理ホストにインストール
してみましょう。対象ホストではPython 2.4

以上であれば動作しますが、管理ホストには
Python 2.6以上が必要です（ただし、Python 2.4

ではsimplejsonというライブラリを別途イン
ストールする必要があります）。

　インストールには pip注7という
Python標準のパッケージ管理ツー
ルを使うと、最新版を手に入れら
れます。インストール時にopenssl

をビルドするため、あらかじめ次
のようにしてpython-devをインス
トールしておきます。

$ sudo apt-get install python-ｭ
pip python-dev
$ sudo pip install ansible

　また、各ディストリビューション標準のパッ
ケージ管理ツールを使う方法もあります。その
場合、バージョンが古いことがありますので、
適宜確認してください。yumでインストールす
る場合はEPELのインストールが別途必要です。

$ sudo apt-get install ansible
 もしくは
$ sudo yum install ansible

　執筆時点ではAnsibleの最新バージョンは
1.9.4です。本稿も1.9.4を前提としています。
ただし、現在次バージョンの2.0がβテストに
入っており、近々リリースされるものと思い
ます。2.0では1.9までに対して互換性があり
ますし、本稿で紹介した内容は2.0βでもその
まま動くことを確認しています。
　AnsibleはPythonで実装されていますが、
Ansibleを使うときには基本的にPythonの知
識は必要ありません。これから解説する
YAMLという形式で記述していきます。ただ、
本特集では述べませんが、Pluginという
Ansible本体を拡張するしくみを自作する場合
にはPythonの知識が必要になってきます。

試しに動かしてみる

　インストールが終わったら、早速動かして

注7） https://pip.pypa.io/

 ▼図1　Ansibleの動作

対象ホスト 実行

対象ホスト 実行

対象ホスト 実行
Python
スクリプト

ssh

管理ホスト

Ansible
を実行

https://pip.pypa.io/

66 - Software Design Jan. 2016 - 67

簡単に使い始められます
Ansibleの概要とインストール 第 章1

みましょう。Ansibleを使うのに必要なファイ
ルは最低限2種類です。

・Inventory：対象ホストへのアクセスに必要
な情報を記載する

・Playbook：対象ホスト上で実行する内容を
記載する

　細かい説明は後ほど行います。
　テスト実行のイメージは図2のようになりま
す。まず、 hostsというファイルにリスト1の
内容を記載します。これが Inventoryファイル
となります。192.168.10.10の個所は認証なし
で sshログインできる IPアドレスを記載して
ください。認証なしでsshするには、パスフレー
ズを設定しない鍵認証や、ssh-agentなどを利
用してください。

ヒント sshでパスワード認証がある場合、コマ
ンドに -kオプションをつけて実行するとパスワー
ドを聞いてくるようになります。

　次に、dir.ymlというファイルにリスト2の
内容を記載します。インデントが重要なので、
間違えないようにしてください。半角スペー
スで2文字です。これがPlaybookファイルで
す。書き終わったら早速実行してみましょう。

$ ansible-playbook -i hosts dir.yml

　図3のように表示されるはずです。誌面では
白黒ですが、実際には ok: [test]が緑色で、
changed: [test]が黄色で表示されます。実
行後、/tmp/ansible-testというディレクト
リが指定したホスト（対象ホスト）上に作成さ
れていると思います。
　ここまでAnsibleの概要を説明し、使い方を
体験していただきました。次章から、Ansible

の使い方をもう少し学んでいきます。ﾟ

 ▼図2　テスト実行環境

SSH 接続

$ ansible-playbook ～

hosts

dir.yml

ローカルPC
（管理ホスト）

192.168.10.10
（対象ホスト）

 ▼リスト1　hostsファイル（Inventory）

test ansible_ssh_host=192.168.10.10

 ▼リスト2　dir.ymlファイル（Playbook）

- hosts: test
 tasks:
 - file: path=/tmp/ansible-test state=directory

PLAY [test] ***

GATHERING FACTS ***
ok: [test]

TASK: [file path=/tmp/ansible-test state=directory] ***************************
changed: [test]

PLAY RECAP **
test : ok=2 changed=1 unreachable=0 failed=0

 ▼図3　リスト1、2を使ったAnsibleの実行結果

68 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

接続情報——Inventory

　第1章で書いたhostsというファイルには、
対象ホストへの接続情報を記載しています。
このファイルを「Inventory」と呼びます。

Inventoryの作成
　Inventoryは、ini形式（正確には ini形式を拡
張した形式）で記述したファイルです。第1章
での例は簡単すぎましたので、リスト1に別の
例を示します。このファイルを/etc/ansible/
hostsに作成すると、自動的に読み込んでくれ
ます。あるいは、第1章でのコマンド実行例の
ように-iオプションで指定もできます。
　[web]や[db]はグループを示します。また、
web01、db01などはサーバを示します。つまり、

この例ではdbというグループにdb01.example.

com、db02.example.comという2つのサーバ
が含まれていることを示しています。また、
mail.example.comはどのグループにも属して
いません。ただし、allというすべてのホスト
が属するグループが暗黙的に作成されており、
その中には入っています（図1）。
　なお、同じサーバを複数のグループに所属
させることもできます。その場合、複数グルー
プを実行対象として指定しても、同じサーバ
に対しては1回の操作しか行われません。

サーバの設定
　Inventory内では各サーバに対してさまざま
な設定ができます。たとえばリスト2のように
書くと、web01.example.comに対しては 192.

168.1.10のポート2222で接続しにいきます。

第1章でAnsibleのインストールを行い、どんなことができるかを体験してもらいました。本章では、Ansibleの詳し
い使い方を説明します。

 Author 若山 史郎（わかやま しろう）　ツキノワ㈱

第 章2 非プログラマでも読み書きしやすい
InventoryとPlaybook、2つのファイルを理解する

web01.example.com ansible_ssh_ｭ
host=192.168.1.10 ansible_ssh_port=2222

mail.example.com

[web]
web01.example.com

[db]
db01.example.com
db02.example.com

 ▼リスト1　Inventoryの例その1

 ▼リスト2　サーバの設定

 ▼図1　リスト1のイメージ

webグループ

all

web01.example.com

mail.example.com

dbグループ

db01.example.com

db02.example.com

68 - Software Design Jan. 2016 - 69

非プログラマでも読み書きしやすい
InventoryとPlaybook、2つのファイルを理解する 第 章2

　ほかにも表1のような設定ができます。

グループの設定
　サーバごとにansible_ssh_portなどでひとつ
ひとつ設定していく場合、台数が多いと大変
になります。せっかくグループを分けている
のですから、グループ単位で設定しましょう。
　リスト3のように:varsを書くと、グループ
での設定をまとめて記述できます。この例で
はdbグループに属しているすべてのサーバを
一括で設定しています。

変数について
　リスト3に job=dbという行がありました。
これは、SSH接続の設定ではなく、変数です。
変数は条件判断や値を埋め込んだりといった
用途で使います。リスト3の例ではdbグルー
プに対して、jobをdbというグループ変数と
して設定しています。

・グループ変数：グループ単位で設定する変
数

・ホスト変数：ホストごとに設定する変数

　ホスト変数とグループ変数の両方が定義さ
れていた場合、ホスト変数のほうが優先され

ます。
　変数を使うには、変数名を{{ }}で囲みます。
リスト4にその例を示します。この例ではjob
という変数にdbが設定されているので、/tmp/
ansible-dbというディレクトリが作成される
ことになります。変数の設定方法については
後ほどvarsセクションの節で説明します。

手順ファイル
—Playbook

　Ansibleでは手順ファイルを「Playbook」と呼
びます。Playbookには変数やそのPlaybookを
実行する際に必要な設定など、Ansibleで実行
する一連の手順を記載します。
　PlaybookはYAMLと呼ばれる形式で記載し
ます。Playbookを今すぐ書きたい気持ちをぐっ
とこらえて、まずYAML形式を簡単に説明し
ます。

YAML形式
　YAMLは入れ子になった構造や、シーケン
ス（配列）・マッピング（辞書）のデータ構造を
読みやすく記述できます。
　まず、YAMLの基本的な書き方を説明します。
より詳細は「プログラマーのためのYAML入
門（初級編）注1」などを参考にしてください。

注1） http://magazine.rubyist.net/?0009-YAML

[db]
db01.example.com
db02.example.com

[db:vars]
ansible_ssh_port=2222
ansible_ssh_user=admin
job=db # これは変数です

 ▼リスト3　グループの設定

- hosts: all
 tasks:
 - file: path=/tmp/ansible-{{ job }} state=directory

 ▼リスト4　変数の使い方

設定変数名 説明
ansible_ssh_user sshで接続するユーザ名
ansible_ssh_private_key_file 秘密鍵ファイル

ansible_ssh_pass 接続パスワードを平文で指定できる。もちろん安全ではないのでどうしても必
要なとき以外は使わないように！

ansible_python_interpreter コマンドが /usr/bin/pythonでない場合に対象ホストのpythonコマンドを指定
する（例：ansible_python_interpreter=/usr/bin/python2）

 ▼表1　Inventory内での主な設定例

http://magazine.rubyist.net/?0009-YAML

70 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

シーケンス
　シーケンスとは、リストや配列などと呼ば
れているデータ構造です。行頭に-をつけると
シーケンスとなります。

- A
- B
- C

　また、次のように1行に書くこともできます。

[A, B, C]

マッピング
　連想配列や辞書、マップとも呼ばれているマッ
ピングは次のように:の後に半角スペースを1

つ以上入れて書きます。

A: aaa
B: bbb
C: ccc

　:の後ろに半角スペースを入れないとエラー
になります。意外と引っかかることが多いの
で注意してください。

階層構造
　YAMLでは半角スペースでインデントする
ことでデータの階層構造を表せます。

A: aaa
B:
 B1: bbb1
 B2: bbb2
C: ccc

　インデントする文字数は決められていませ
んが、2文字の場合が多いです。また、タブ文
字（ハードタブ）は使えません。
　なお、シーケンス同士で階層構造を作り、
箇条書きのように書くことはできません。た
とえば、次のように記述したとします。

- A
- B
 - C
 - D
- E

　これはB - C - Dとつながってしまい、意図
どおりにはなりません。階層構造にするためには、
次のように書く必要があります。

- A
-
 - C
 - D
- E

　また、マッピングで次のように書くことは
できず、エラーになります。

a: aaa
 a1: aaa1
 a2: aaa2

　a: aaaの次の行にインデントをつけてマッ
ピングの要素は書けません。書く場合には次
のようになります。

a:
 a1: aaa1
 a2: aaa2

　プログラム言語ではなくYAML形式を使うこ
とで、書き方が制限され、柔軟な制御はでき
なくなります。しかし、そのために書き方が
統一され、プログラマ以外にも書きやすくな
ります。また、Playbookファイルは YAMLな
のに Inventoryファイルは ini形式で書かれて
いることに違和感を持たれるかもしれません。
Ansibleの開発者によると、Inventoryファイ
ルには複雑な階層構造が必要ではないため、
より単純な ini形式を選択したとのことです。

なぜYAML？

70 - Software Design Jan. 2016 - 71

非プログラマでも読み書きしやすい
InventoryとPlaybook、2つのファイルを理解する 第 章2

シーケンスとマッピングの組み合わせ
　シーケンスとマッピングは組み合わせて階
層構造にできます。リスト5のものは実際に
Ansibleで使われている例です。

コメント
　#をつけることでコメントを記述できます。

ここにコメントを書けます
a: # ここもコメントです
 a1: aaa1

複数行にまたがって書く
　Ansibleを使っていると、たくさんの引数を記
述したいときがでてきます。その場合、改行す
ると見やすくなります。改行後にはインデント

が必要になります。改行をすると、実際には空
白区切りの1行として扱われます。

- glance_image:
 login_username=admin
 name=cirros
 state=present

　シェルスクリプトなど、改行自体に意味が
ある場合は次のように|を付けます。

- shell: ¦
 ./configure
 make
 make install

書いてみる
　お待たせしました。いよいよPlaybookを書

いてみましょう。まず、リスト6の
Inventoryがあるとします（図2）。
この Inventoryを /etc/ansible/ho
stsに保存し、自動的に読み込まれ
るようにしておきます。あるいは、
実行時に-iでファイルを指定しま
す。
　では、この Inventoryにあるweb

グループに、基本的なWebアプリ
の実行に必要な環境を構築する
Playbookを書いてみましょう。

　YAMLがおかしいと、Ansibleはコマンドを実行
したときに指摘してくれます。
　あるいは、--syntax-checkを付けて実行すると、

形式チェックだけを行ってくれます。CIに組み込
むなどすると便利でしょう。

YAMLの確認

ERROR: Syntax Error while loading YAML script, test.yml

The error appears to have been in 'dir.yml': line 3, column 3, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

 job:testjob
 ^

- hosts: web
 become: yes
 vars:
 - required: ['docker', 'pyyaml'] # シーケンスを指定
 tasks:
 - name: docker imageを作成
 docker_image: name="my/app" state=present

 ▼リスト5　シーケンスとマッピングの組み合わせ例

[web]
web01.example.com ansible_ssh_host=192.168.0.1
web02.example.com ansible_ssh_host=192.168.0.2

 ▼リスト6　Inventoryの例その2

72 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

　UTF-8形式でリスト7の内容を記述します。
ファイル名はweb.ymlとします。
　保存したら、図3のようにansible-playbook
コマンドで手順ファイル（web.yml）を指定して
環境構築を行います。
　誌面は白黒なためわかりませんが、changed
が黄色く表示されると思います。これで、記
した手順がすべて実行されました。appuserと
いうユーザが作成され、/var/log/appディレ
クトリが作成され、nginxがインストールされ
たはずです。
　もう一度実行してみましょう（図4）。
　今度は緑色でokとなりました。okとは、も
うすでに環境が構築されているため、2回目は
変化が起きることなく終了したということです。

　このように、何度同じコマンドを実行して
も対象ホストは同じ状態になります。これを
冪
べきとうせい

等性があると呼びます。冪等性がない場合、
同じ設定を何度も行ってしまったり、複数回
実行したときにエラーになったりします。
Ansibleのほとんどのモジュールは冪等性を持
つように作成されています。
　冪等性があるため、Playbookは何度実行し
ても構いません。そのため、AnsibleのPlay

bookは少しずつ「育てていく」という書き方が
できます。つまり、少し書いて実行し、また
少し書いて実行、という書き方です。変更し
ていない個所は実行されないので、実行する
ansible-playbookコマンドを変える必要はあり
ません。

$ ansible-playbook web.ymlｶ

PLAY [web] ***

GATHERING FACTS ************************************
ok: [web01.example.com]
ok: [web02.example.com]

TASK: [実行用ユーザの作成] *************************
changed: [web01.example.com]
changed: [web01.example.com]

TASK: [ログディレクトリの作成] *********************
changed: [web01.example.com]
changed: [web01.example.com]

TASK: [nginxのインストール] ***************
changed: [web01.example.com] => (item=nginx)
changed: [web01.example.com] => (item=nginx)

PLAY RECAP ***
web : ok=4 changed=3 unreachable=0 failed=0

- hosts: web # 対象ホストを指定。今回はwebグループ
 become: yes # sudoを行う
 vars: # 変数指定
 logdir: /var/log/app
 tasks: # 実行するtaskの指定を開始
 - name: 実行用ユーザの作成 # taskの名前
 user: name=appuser
 - name: ログディレクトリの作成
 file: path={{ logdir }} state=directory
 - name: nginxのインストール
 apt: name=nginx state=installed

 ▼リスト7　Playbookの例

 ▼図3　ansible-playbookコマンドの実行

 ▼図2　リスト6のイメージ

webグループ

all

web01.example.com
（IPアドレス：192.168.0.1）

web02.example.com
（IPアドレス：192.168.0.2）

72 - Software Design Jan. 2016 - 73

非プログラマでも読み書きしやすい
InventoryとPlaybook、2つのファイルを理解する 第 章2

Playbookの解説
　では、リスト7のPlaybookを解説し
ます。Playbookは多くの場合3つのセ
クションで構成されています。

・targetセクション：実行対象の設定
・varsセクション：変数の設定
・tasksセクション：実行するtaskの設
定

　これらのセクションについて説明していき
ます。

targetセクション
　対象ホストを指定する部分を targetセクショ
ンと呼びます。リスト7から抜き出すとリスト
8の部分です。
　hostsで対象を指定します。ここの例では
webグループを指定しています。このhostsの
指定は必須です。
　このPlaybookでは、ユーザの作成などに
root権限が必要なため、becomeを指定してい
ます。becomeとは、「別のユーザで実行する」
ことを指示する設定で、デフォルトではsudo

を実行します。以前はsudoと指定していまし
たが、1.8から変更されました。
　そのほか、いろいろな設定を指定できます。
リスト9にその一部を示します。

varsセクション
　varsセクションでは使用する変数を設定し
ます。具体的にはリスト7のリスト10の部分
です。変数は先述の「変数について」の節で述
べた Inventoryで設定するグループ変数および
ホスト変数や、このvarsセクションで定義で
きるほか、後ほど出てくるroleで定義したり、

- hosts: web # 対象ホストを指定。今回はwebグループ
 serial: 10 # 同時実行数を指定。デフォルトは5
 remote_user: newuser # 接続先ユーザ名
 gather_facts: no # 後述のfactを収集するかしないか

 ▼リスト9　設定例

- hosts: web # 対象ホストを指定。今回はwebグループ
 become: yes # sudoを行う

 ▼リスト8　targetセクション

$ ansible-playbook web.ymlｶ

PLAY [web] ***

GATHERING FACTS ************************************
ok: [web01.example.com]
ok: [web02.example.com]

TASK: [実行用ユーザの作成] *************************
ok: [web01.example.com]
ok: [web01.example.com]

TASK: [ログディレクトリの作成] *********************
ok: [web01.example.com]
ok: [web01.example.com]

TASK: [nginxのインストール] ***************
ok: [web01.example.com] => (item=nginx)
ok: [web01.example.com] => (item=nginx)

PLAY RECAP ***
web : ok=4 changed=0 unreachable=0 failed=0

 ▼図4　ansible-playbookコマンドの実行（2回目）

vars: # 変数指定
 logdir: /var/log/app

 ▼リスト10　varsセクション

74 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

2.0からはタスク単位で定義できたりと、さま
ざまな個所で定義できます。
　Ansibleでは変数の名前空間が1つしかあり
ません。ほかの個所で同じ名前で定義された
変数は優先順位に従い上書きされますが、そ
の優先順位がわかりにくいという問題があり
ます。たとえばvarsセクションで定義した変
数は、Inventoryで定義したホスト変数やグルー
プ変数よりも優先度が高くなります。変数に
はなるべく重複しないような名前を付けたほ
うが問題が少なくなります。
　リスト10では logdirという変数に /var/
log/appという値を設定しています。この変数
はあとでログディレクトリの作成に使ってい
ます。なお、YAMLの制限で foo-barのよう
に-がつく変数名は使用できません。
　varsは複数指定したり、入れ子構造や配列
を指定することも可能です（リスト11）。入れ
子構造の子の内容を指定する場合は、ドット（.）
で区切ります。
　また、varsではなく vars_filesを使うと、
別のYAMLファイルから変数を読み込めます。
変数が多くなってきた場合には別ファイルに

分割し、vars_filesを使用したほうが見通し
が良くなります。vars_filesは複数ファイル
を読み込めます（リスト12）。
　同じ名前の変数が設定されていた場合、下
にあるほうが後から読みこんで上書きします。
そのため、最初にデフォルト値を記述したファ
イルを指定すると良いでしょう。

tasksセクション
　tasks以下でPlaybookで実行する taskを指
定します。taskは、1つのモジュールとそれに
対する引数で構成されます（リスト13）。
　この例では taskに対する名前をnameで指定
し、taskの内容としてuserモジュールを使用
して、さらにモジュールへの引数を指定して
います。
　それぞれは次の意味となります。

・name：そのtaskの名前。必須ではないが、
付けておくとログに表示されたり、日本語
で何をしているかがぱっと見てわかるため、
指定することを推奨

・user：実行するモジュール。リスト13の
nameはuserモジュールの引数。引数はモ
ジュールごとに異なる

　1つのPlaybook内で複数の taskを実行でき
ます。その際インデントはそろえる必要があ
ります。前述のリスト7では、次の3つのモ
ジュールを使う taskを定義しています。

・user：ユーザの作成、削除を行う
・file：ファイルやディレクトリ、シンボリッ
クリンクの作成や削除を行う

・apt：apt-getでパッケージをインストール
する

　これらのモジュールについては後述の「モ
ジュール紹介」に記載していますので、参考に
してください。
　1つのPlaybook内に書ける taskの数に制限
はありません。ただし、長いと見にくくなる

vars: # 変数指定
 username: newuser
 group: admin
 shell:
 bash: /bin/bash
 zsh: /bin/zsh
tasks:
 - user: name={{ username }} group={{ ｭ
group }} shell={{ shell.zsh }}

 ▼リスト11　複雑な変数指定

vars_files:
 - default.yml
 - var.yml

 ▼リスト12　別のYAMLから変数を読み込むvars_files

tasks: # 実行するtaskの指定を開始
 - name: 実行用ユーザの作成 # taskの名前
 user: name=appuser

 ▼リスト13　tasksセクションの例

74 - Software Design Jan. 2016 - 75

非プログラマでも読み書きしやすい
InventoryとPlaybook、2つのファイルを理解する 第 章2

ので、後述する includeやroleで別のファイル
に分割する必要がある場合が多いと思います。

taskの実行順
　taskは必ず上から順に記述された順番で実
行されます。リスト7では、user、file、apt
の順です。この「上から順に実行される」は
Ansibleでの基本ポリシーとなっています。
　別の例を示します。リスト14の例では、ユー
ザを追加した後に、ホームディレクトリ
に.bashrcをコピーしています。逆の順番で
実行されてしまっては問題が起きます。この
ような問題が起こりにくいように、taskは常
に記述した順番に実行されます。

モジュール紹介

　Ansibleは、200以上（Ansible 2.0からは400

以上）のモジュールが最初から使えるようになっ
ており、実に多くの用途に対応できます。し
かし、一般的にはそこまで多くの種類のモジュー
ルを使う必要はありません。ここではよく使わ
れるモジュールについて簡単に説明します。そ
のほかのモジュールについてはAnsibleの公式
ドキュメント注2を参照してください。

debug
　デバッグ用のメッセージを出力します。最初
がこれか、と思われるかもしれませんが、開発
時に一番多く使うモジュールです（リスト15）。
　表示する変数がマッピングを含むなど複雑
な構造をしていても、そのまま表示してくれ
ます。開発時、後述するwhenによる条件分岐
を使うときなどにとくに便利です。

script
　管理ホストに置かれているスクリプトを対
象ホストに転送し、対象ホスト上でそのスク

注2） Ansible Documentation　http://docs.ansible.com/

リプトを実行します。既存のシェルスクリプ
トをそのまま流用できるので、それまでに使
用していた自作構築スクリプトからの移行に
便利です。
　リスト16で呼び出している command.shと
いうファイルは、Playbookと同じ場所からの
相対パス指定、あるいは絶対パスでの指定と
なります。
　また、createsという引数を指定すると、そ
のファイルがあった場合には実行せずにスキッ
プします。スクリプトの最後でこのファイルを
作るようにすれば、何度実行しても1回しか実
行されません。つまり、シェルスクリプトであっ
ても冪等性を備えられます。

shell
　shellモジュールは、任意のコマンドを実行し
ます。>や|を使うこともできます（リスト17）。
　引数 createsを設定すると、そのファイル
がある場合は実行されません。また、引数

tasks:
 - name: ユーザを追加
 user: name=appuser
 - name: bashrcをコピー
 copy: src=̃/.bashrc dest=/home/appuser/.bashrc

 ▼リスト14　tasksセクションでの実行順について

tasks:
 - name: somevarの中身を表示する
 debug: msg="somevar is {{ somevar }}"

 ▼リスト15　debugモジュール

 ▼リスト16　scriptモジュール

tasks:
 - name: command.shを実行する
 script: command.sh
 - name: files/other.shを実行する。/tmp/done.txtｭ
があれば実行しない
 script: files/other.sh creates=/tmp/done.txt

tasks:
 - name: targetという行を抜き出します
 shell: grep "target" /tmp/list >> /tmp/list.out

 ▼リスト17　shellモジュール

http://docs.ansible.com/

76 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

chdirを設定すると、そのディレクトリに移動
した後にコマンドを実行します。
　shellモジュールは大変便利ですので、なん
でもshellモジュールで実行したくなるかもし
れません。ただし、creates引数である程度の
冪等性があるとはいえ、基本的にはありません。
そのため、なるべく用意されているモジュー
ルを使うほうが後々問題が少なくなります。

file
　ファイルやディレクトリの作成、所有者や
グループの変更、シンボリックリンクの作成
などを行います（リスト18）。
　stateには表2の種類があります。fileモ
ジュールだけでファイルやディレクトリに関
するだいたいのことが実現できます。

template
　Pythonでよく使われているJinja2注3という

注3） http://jinja.pocoo.org/

テンプレート言語を使って、ファイルのコン
テンツを記述したテンプレートに対して変数
を埋め込み、対象ホストでファイルを生成し
ます。Jinja2で変数を埋め込むには{{ }}で変
数名を囲みます。
　nginxの設定ファイル（の一部）を作成する例
を示します。templateモジュールと変数を使
うと、たとえば役割ごとに違う内容の設定ファ
イルを置くことなどが可能になります。
　まず template.j2というファイル名でテンプ
レートファイルを作成します（リスト19）。
　Playbookのvarsセクションで変数を設定し、
templateモジュールを使います（リスト20）。
　結果として、リスト21のファイルが/etc/
nginx/nginx.confに作成されます。
　この例では worker_processesが 1ですが、
たとえば本番環境では異なる値にした設定ファ
イルを設置することなどが、変数を置き換え
るだけで実現できます。

tasks:
 - name: /etc/example.confを設定
 file: path=/etc/example.conf owner=admin group=admin mode=0644
 - name: シンボリックリンクを作成
 file: src=/etc/link/to dest=/etc/symlink state=link
 - name: ディレクトリ作成
 file: path=/etc/deep/dir/ex state=directory
 - name: /home/admin以下すべてのファイルのownerを設定
 file: path=/home/admin owner=admin recurse=yes

 ▼リスト18　fileモジュール

 ▼表2　stateの種類と処理内容

state 処理

file
ファイルの属性を設定する。もし
ファイルが存在しない場合、エラー
になる

link シンボリックリンクを作成する

directory

ディレクトリを指定した場合、深
い階層でも途中のディレクトリをす
べて作成する。recurse=yesを指
定すると再帰的に指定したディレ
クトリすべてを変更する

touch ファイルの属性を設定する。ファ
イルが存在しない場合作成する

absent
ファイルやディレクトリを削除する。
シンボリックリンクやハードリンク
の場合そのリンクを削除する

user {{ user }};
worker_processes {{ worker_process_num }};

error_log {{ error_log_path }};
pid /var/run/nginx.pid;

 ▼リスト19　 templateモジュールで設定ファイルを作成する例

vars:
 user: www-data
 worker_process_num: 1
 error_log_path: /var/log/nginx/error.log
tasks:
 - name: nginx.confを設定します
 template: src=template.j2 dest=/etc/nginx/ｭ
nginx.conf

 ▼リスト20　varsを利用した templateモジュール

http://jinja.pocoo.org/

76 - Software Design Jan. 2016 - 77

非プログラマでも読み書きしやすい
InventoryとPlaybook、2つのファイルを理解する 第 章2

unarchive
　管理ホストに置かれている圧縮ファイルを
対象ホストに転送し、展開します。.tar.gz
や.zipなどさまざまな圧縮ファイルを扱えま
す（リスト22）。また、copy=noを付けると、
転送せずに対象ホスト内にあるファイルを展
開します。

apt
　aptコマンドを使ってパッケージをインストー
ルします（リスト23）。また、パッケージの削
除も行えます。
　Ansibleには、aptだけではなく yumや pkg、
pacmanなど、各種のOS、ディストリビューショ
ンのパッケージ管理ツールがあり、ほぼ同じ
書き方で使えます。また、ツールによっては
キャッシュの更新の有無など、そのツール独
自の機能も指定できます。

user
　ユーザを追加、あるいは削除します（リスト
24）。
　passwordを指定することでパスワードを設
定できます。このパスワードはハッシュ化さ
れている必要があります。passlibをPython

でインストールすると、リスト25のコマンド
でハッシュ化されたパスワードが標準出力に
表示されます。

そのほかの機能

　AnsibleのPlaybookは完全なプログラミン
グ言語ではありませんが、繰り返しや条件式
などいくつかの制御構造を記述でき、複雑な
動作が可能になっています。

繰り返し——with_items
　1つの taskを何度も繰り返して実行したい場
合、with_itemsを使います（リスト26）。

user www-data;
worker_processes 1;

error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

 ▼リスト21　templateモジュール実行結果

tasks:
 - name: tar.gzファイルを/tmpに展開する
 unarchive: src=foo.tar.gz dest=/tmp
 - name: 対象ホスト内にすでにあるzipファイルを展開する
 unarchive: src=/var/backup.zip dest=/home
copy=no

 ▼リスト22　unarchiveモジュール

tasks:
 - name: 最新のnginxをインストールした状態にします
 apt: name=nginx state=latest
 - name: nginxをインストールしていない状態にします
 apt: name=nginx state=removed
 - name: nginxとpython-devをインストールした状態にｭ
します
 apt: name={{ item }} state=installed
 with_items:
 - nginx
 - python-dev

 ▼リスト23　aptモジュール

tasks:
 - name: zshを使うユーザ、appuserを追加します
 user: name=appuser
 shell=/bin/zsh
 password=1SomeSalt$Drh7s/vUcl5XnIZ/
Neglz1

 ▼リスト24　userモジュール

passlibをインストール
pip install passlib
<your password>部分を書き換え、ハッシュを取得
python -c "from passlib.hash import sha512_crypt; \
 print sha512_crypt.encrypt('<your
password>')"

 ▼リスト25　passwordの設定方法

tasks:
 - name: /opt/foo以下にbin, conf, logディレクトリ作成
 file: path=/opt/foo/{{ item }} state=directory
 with_items:
 - bin
 - conf
 - log

 ▼リスト26　繰り返し

78 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

　with_items以下に配列を指定し、配列内の
変数を当てはめたい個所に{{ item }}のよう
にitemという変数を設定すると、その配列の
数だけ指定した taskを繰り返します。この
itemという変数名は固定です。
　基本的な繰り返しにはwith_itemsで対応で
きます。しかし、もっと複雑な繰り返し処理
をしたい場合があります。辞書での繰り返し
などいくつかの繰り返し形式はサポートされ
ていますが、YAML形式はプログラミング言
語ほどの表現力を持たないため、複雑な繰り
返しは表現できません。本当に必要であれば
自分でモジュールを作ることも可能ですが、
本稿では割愛します。

条件付き実行——when
　taskにwhenを付けることで、その taskを実
行する条件を設定できます。
　リスト27の例では、jobという変数が web
の場合とdbの場合とで、異なるアプリケーショ
ンをインストールしています。whenを使うと、
同じ1つのPlaybookで、対象ホストやグルー
プに応じて異なる動作を行えます。

ansibleが取得する情報
　ansible-playbook実行時に、

GATHERING FACTS *************************
ok: [test]

と表示されます。ここで、対象ホストの情報
を収集しています。実際には内部で setupモ

ジュールを実行します。また、取得した情報
をfactと呼びます。
　setupモジュールで取得できる情報の一部を
紹介すると、

・OS名
・ディストリビューション名
・ネットワークインターフェースやIPアドレス
・搭載メモリ量
・HDD使用量

などなど、かなり多くの情報を収集しています。
これらはすべて変数に格納されるため、この
情報を使っての条件分岐ができます。
　たとえば、Ubuntuだったらaptモジュールを、
CentOSだったらyumモジュールを使う場合に
はリスト28のように記述します。
　この例で使用しているansible_distribution
という変数がsetupモジュールによって自動的
に取得されたディストリビューションの情報
が入っている変数です。taskがwhenで指定し
た条件に合致せず実行されなかった場合には、
ansible-playbookコマンドの実行結果には
skippedと表示されます。

他のファイルを読み込む
——include

　taskが増えていくとPlaybookの見通しが悪
くなってきます。includeを使うことで、他の
ファイルから taskを読み込めます。リスト29
の例では tasks/other_tasks.ymlというファ
イル（リスト30）を読み込んでいます。
　includeを記述している側にtasksを記述し
てあるので、other_tasks.ymlの中では tasks

 ▼リスト27　条件付き実行

tasks:
 - name: jobがwebだったらnginxを入れる
 apt: name=nginx state=installed
 when: job == "web"
 - name: jobがDBだったらmysql-clientを入れる
 apt: name=mysql-client state=installed
 when: job == "db"

 ▼リスト28　 setupモジュールで取得した情報を使っ
た条件分岐

tasks:
 - name: Ubuntuの場合
 apt: name=apache2 state=installed
 when: ansible_distribution == "ubuntu"
 - name: CentOSの場合
 yum: name=httpd state=installed
 when: ansible_distribution == "centos"

78 - Software Design Jan. 2016 - 79

非プログラマでも読み書きしやすい
InventoryとPlaybook、2つのファイルを理解する 第 章第 章第 章2

を宣言する必要はありません。先ほどのwhen
と組み合わせると、条件分岐によるファイル
の読み込みができます（リスト31）。
　このように、ファイルを分割しておくと、
構成の見通しが良くなります。

変更時だけ実行
̶̶Handler

　設定ファイルを更新したら、再起動や再読
み込みなどをしなければならない場合は多々
あります。単純に変更するたびに毎回再起動
するのではなく、更新したときにだけ、ある
いは、複数ファイルを更新したときでも1回だ
け再起動すると、効率が良くなります。その
ようなときにHandlerを使います。Handlerは
tasksと同じインデントレベルでhandlersと
記述し、その下に taskを記述していきます（リ
スト32）。
　こう定義しておき、通常の tasksで、notify
を定義します。この notifyに書く文字列は、
handlersで定義した taskの nameと同じ必要
がある点に注意してください。上記例では

reload nginxです。
　この例では、2つの taskで reload nginxを
呼び出しています。両 taskで変更があった場
合でもreload nginxが呼び出されるのは1回
だけです。また、両方とも変更がなかった場
合には、reload nginxは呼び出されません。
　なお、notifyは複数個の設定もできます。そ
の場合、設定した順番にHandlerが呼び出され
ます。

第2章のまとめ

　駆け足でしたが、Ansibleが持つ機能を一通
り紹介しました。ここまで説明したことを覚
えれば、Ansibleの基本的な使い方はできると
思います。とくにモジュールは非常に多く用
意されているので、やりたいことが出てきたら、
まず公式ドキュメントのモジュール紹介ペー
ジを検索してみてください。やりたいことそ
のままの機能を持つモジュールがすでに用意
されている場合も多いです。ﾟ

 ▼リスト29　includeの例 ▼リスト30　tasks/other_tasks.ymlの中身

tasks:
 - include: tasks/other_tasks.yml

- name: nginxのインストール
 apt: name=nginx state=installed

 ▼リスト31　includeとwhenの組み合わせ

tasks:
 - name: Ubuntuの場合、main_ubuntu.yml を読み込む
 include: main_ubuntu.yml
 when: ansible_distribution == "ubuntu"
 - name: CentOSの場合、main_centos.yml を読み込む
 include: main_centos.yml
 when: ansible_distribution == "centos"

 ▼リスト32　Handlerの書き方

tasks:
 - name: ログディレクトリを作成
 file: path=/opt/log/nginx state=directory mode=0755 owner=nginx
 notify: reload nginx # handlers内で定義したtaskのnameと同じ
 - name: nginx 設定ファイルを展開
 template: src=nginx.conf.j2 dest=/etc/nginx/nginx.conf
 notify: reload nginx
handlers: # インデントレベルに注意
 - name: reload nginx
 service: name=nginx state=reloaded

80 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

Playbookの機能

まとめて再利用——roles
　第2章で解説した includeは単一のファイル
を読み込むだけでした。しかし、1つの taskを
実行するためには、変数や第2章で説明した
templateモジュールで使用するファイルなど
が別々に必要になる場合があります。
　roleはその役割が必要とする情報をすべて
そのディレクトリ内に格納し、再利用しやす
くしたものです。

roleの作成
　roleはrolesディレクトリ以下に作成します。
このrolesという名前は固定です。roles以下
には図1のようなディレクトリ構造を作成しま
す。この例はcommonというroleを作成する場
合です。
　この中で必要なディレクトリは、tasksだけ
です。それ以外のディレクトリは必要に応じ
て作成して構いません。また、各ディレクト
リ以下にあるmain.ymlは固定のファイル名と
なります。このファイルの中に各種の設定を
書いていきます。
　たとえば、roles/common/tasks/main.ymlに
は、リスト1のように taskを記載します。今
までtasks以下に書いていた内容をそのまま記
載するだけとなります。
　この例ではcopyとtemplateモジュールを記

載しています。copyの場合filesディレクト
リ以下を、templateの場合 templatesディレ
クトリ以下を自動的に検索します。
　また、defaultsとvarsには両方とも変数を
定義しますが、優先順位が違います。defau
lts以下で定義した変数は優先度が最低となる
ため、ほかからの上書きが容易です。rolesは
基本的にdefaults以下で定義した変数を使う
ようにし、いつでも上書きできるようにして
おくと問題が少なくなります。

ここまでで述べてきた基本的な使い方でも十分にAnsibleを使いこなせると思います。本章では、もう少し便利な使い
方をご紹介します。

 Author 若山 史郎（わかやま しろう）　ツキノワ㈱

第 章3 少しずつ積み重ねて理想の自動化環境を作ろう
より便利な使い方で複雑な手順を簡潔に

 ▼図1　rolesディレクトリ構造

　　 tasks/ # taskを記載

　　　 　main.yml

　　 files/ # copy モジュールで使うファイル

　　　 　binary.tar.gz

　　 templates/ # template モジュールで使うファイル

　　　 　config.conf.j2

　　 handlers/ # handerを記載

　　　 　main.yml

　　 vars/ # 変数設定を記載

　　　 　main.yml

　　 defaults/ # デフォルト変数値を記載

　　　 　main.yml

common/

roles/

 ▼リスト1　roles/common/tasks/main.ymlの例

- name: test.confを配布
 copy: src=test.conf dest=/tmp/test.conf
- name: sample.appを配布
 template: src=sample.app.j2 dest=/tmp/sample.app

80 - Software Design Jan. 2016 - 81

少しずつ積み重ねて理想の自動化環境を作ろう
より便利な使い方で複雑な手順を簡潔に 第 章3

roleの使い方
　roleは Playbookの中
でリスト2のように使い
ます。
　rolesで role名を指定
します。また、varsで
設定した変数は、roleの
中に引き継がれます。先
ほど説明したとおり、同
じ名前の変数は上書きさ
れます。
　role に when や tag を
指定することもできます。
その場合は次のように
マップとして指定します。

roles:
 - { role: java, when: "mode == prod" }
 - { role: java, tags: ["java"] }

roleの分け方
　多くの roleを用意しておくと、適した role

を複数組み合わせることで、簡単に多様な環
境に適したPlaybookができあがります。しか
し、闇雲に roleを作成していてもうまくいか
なくなります。
　roleは単体で動作するように分割していく
と再利用しやすくなります。task、変数やテ
ンプレートファイルも、roleに必要な情報は
すべて roleのディレクトリ以下に押し込めら
れている状態です。また、“web”といった抽象
的な分類ではなく、“nginx”や“apache”といっ
た具体的なソフトウェアで分割すると後述す
るAnsible Galaxyとも組み合わせやすくなる
と思います。
　ひとつ注意しておく必要がある点があります。
それは変数名です。Playbookは変数の名前空
間を1つしか持ちません。つまり、複数のrole

でportなどの汎用的な名前をつけてしまうと
重複してしまい、望みの結果が得られなくなっ
てしまいます。この問題を避けるためには、少々

冗長にはなりますがredis_portなどのように
role名（例：redis）を変数名に付けておくのが
良いでしょう。ただし、複数の roleにまたが
るような変数を定義したい場合はこの限りで
はありません。

delegate_toとlocal_action
　Ansibleには非常に数多くのモジュールがあ
りますが、それらの中にはAWSのインスタン
スを立ち上げるなどのクラウドサービスとの
連係機能を持つモジュールがあります。この
ようなモジュールの場合、対象ホストで実行
する必要はありません。むしろ、管理ホスト
でのみ実行する必要があります。
　このような場合には delegate_toを使いま
す。delegate_toはモジュールの実行を別のホ
ストに移譲します。たとえばリスト3のように
delegate_to: 127.0.0.1と指定することで、
管理ホストで実行する指定となります。
　この例では ec2_elbというAmazon ELBを
扱うモジュールを2回呼んでいます。この2回
は管理ホストで実行されます。一方、service
モジュールは対象ホストで実行されます。
　なお、delegate_toではなく local_action

 ▼リスト2　roleの使い方

- hosts: web
 become: yes
 vars:
 username: test # この変数はrole内に引き継がれます
 roles:
 - common

 ▼リスト3　delegate_toの使用例

hosts: webservers
 serial: 1
 tasks:
 - name: ロードバランサからインスタンスを取り外す
 ec2_elb: instance_id={{ ansible_ec2_instance_id }} state=absent
 delegate_to: 127.0.0.1
 - name: アプリを再起動
 service: name=fooapp state=restarted
 - name: ロードバランサにインスタンスを付ける
 ec2_elb: instance_id={{ ansible_ec2_instance_id }} state=present
 delegate_to: 127.0.0.1

82 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

という指定もできます。しかし、この場合モ
ジュール名の指定が少し通常と異なりますので、
少々わかりにくくなります。詳細は誌面の都
合で割愛しますが、Ansibleのドキュメント注1

などをご参照ください。

run_once
　前述の delegate_toは、対象ホストが複数
台あった場合、その台数分 taskが管理ホスト
で実行されます。しかし、多くの場合は1回だ
けで十分だったりします。そのような「1回だ
け実行したい」場合は run_onceを taskに指定
します（リスト4）。これで管理ホストで実行さ
れるのが1回だけになります。

環境変数を設定する
　environmentを指定することで、実行時の環

注1） http://docs.ansible.com/ansible/playbooks_delegation.
html

境変数を設定できます（リスト5）。task単位で
の設定もできます（リスト6）。

ディレクトリ構造の
ベストプラクティス

　Ansibleが公式で紹介しているディレクトリ
構造のベストプラクティスを紹介します。図2
のように、トップにPlaybookファイルと
Inventoryファイルを置き、roles以下に各
roleを置きます。
　site.ymlの中身は次のように、webservers.yml

とdbservers.ymlをincludeしているだけです。

- include: webservers.yml
- include: dbservers.yml

　webservers.ymlはこうです。

- hosts: webservers
 roles:
 - common
 - webtier

　対象はwebserversグループだけに絞られて
います。そして、tasksはこの中には記述せず、
roleのみを定義しています。実際に行われる
taskはすべてroleの中に押し込めているため、
Playbook自体は非常にシンプルとなります。
　このような構成にしておき、webとdbを構
築するには、次のように実行します。

 ▼リスト4　run_onceの使用例

- hosts: webservers
 serial: 1
 tasks:
 - name: ロードバランサからインスタンスを取り外す
 ec2_elb: instance_id={{ ansible_ec2_ｭ
instance_id }} state=absent
 delegate_to: 127.0.0.1
 run_once: true

 ▼リスト5　environmentの使用例

- hosts: web
 environment:
 http_proxy: http://proxy.example.com:8080
 tasks:
 - name: proxyを使用してnginxをインストール
 apt: name=nginx state=installed

 ▼リスト6　environmentの使用例（task単位）

- hosts: web
 tasks:
 - name: proxyを使用してnginxをインストール
 apt: name=nginx state=installed
 environment:
 http_proxy: http://proxy.example.com:8080

 ▼図2　ディレクトリ構造のベストプラクティス

production # 本番環境用 Inventoryファイル
staging # テスト環境用 Inventoryファイル
site.yml # すべてを行うPlaybook
webservers.yml # Web サーバに対するPlaybookファイル
dbservers.yml # DB サーバに対するPlaybookファイル
group_vars/ # グループ変数を格納
 all.yml
 web.yml
host_vars/ # ホスト変数を格納
 web01.yml
 web02.yml
roles/ # 各種 Role
 common/
 web/
 db/

http://docs.ansible.com/ansible/playbooks_delegation.html

82 - Software Design Jan. 2016 - 83

少しずつ積み重ねて理想の自動化環境を作ろう
より便利な使い方で複雑な手順を簡潔に 第 章3

$ ansible-playbook -i production site.yml

　このように includeとroleを使うことで、同
じ内容を何度も書き加える必要なく、複雑な
構成のサーバ群を構築できます。
　注意していただきたい点は、必ずしもこの
ベストプラクティスに従う必要はないという
ことです。この構成はあくまで1つの案であり、
それぞれの事情にあった構成を作成するのが
一番です。Ansibleはそのような柔軟性も持ち
合わせています。

コマンドライン
オプション

　ansible-playbookコマンドには多くのコマ
ンドラインオプションがあります。どれも有
用ですが、その中のよく使う一部のオプショ
ンを紹介します。

-v、--verbose
　-vをつけると、詳細な情報が表示されます。
-vv、-vvvと増やしていくと、より詳細な情報
が得られます。Ansibleで問題が生じるのは
SSH接続とユーザの場合が多いので、-vvvを
使うことが多いです。このオプションを付け
て実行すると、図3のように接続するユーザ名
が表示されます。

-t、--tag
　tagはタスクごとに設定するタグです。次の
ように各 taskに設定します。

tasks:
 - name: ユーザを追加
 user: name=appuser
 tags: init

　このように記述しておくと、ansible-
playbookコマンド実行時に -tを付け、その
tagを設定した taskだけ実行できます。

$ ansible-playbook -i hosts web.yaml -t init

　タグは複数設定することもできます。また、
Ansible 1.9からalwaysという tagが導入され
ました。alwaysとtagsに設定しておくと、そ
の taskはどんなタグを指定しても必ず実行さ
れます。タグは includeにも適用できますので、
ほかの ymlファイルを読み込む include文に
tagsを設定しておくと、不必要な処理をまと
めてスキップできて便利です。

-l、--limit
　limitは、実行する対象ホストを絞り込みます。

$ ansible-playbook -i hosts web.yaml -l web

と指定すると、webという名前のホスト、ある
いはwebグループに対してのみ実行します。こ
の指定はかなり柔軟で、たとえばweb*と指定
すると、webから始まるホスト名を指定します。
　前述の tagとの使い分けをまとめると、

・limit：対象とするホストを絞り込む
・tag：対象とするタスクを絞り込む

ということになります。この2つを組み合わせ
て使うことで、特定の処理だけを特定のホス
トだけで実行できます。

--start-at-task
　Playbookを作成しているときにエラーが起
きた場合、もう一度最初から実行すると時間

GATHERING FACTS ***
<web01.example.com> ESTABLISH CONNECTION FOR USER: shirou
<web01.example.com> REMOTE_MODULE setup

 ▼図3　-vvvオプションを付けた実行例

84 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

がかかってしまう場合があります。先ほどの
tagを使って実行する taskを絞り込む方法もあ
りますが、--start-at-task <タスクの名前>
を指定すると、指定した名前を持つタスクか
らPlaybookが開始されます。試行錯誤してい
るときにとくに便利です。

ansibleコマンド

　Ansibleをインストールすると、ansibleと
いうコマンドも使えるようになります。
ansible-playbookがPlaybookに基づいて多く
の処理をこなすのに対し、ansibleは単体のモ
ジュールを実行するだけとなります。
　ansibleコマンドは、Playbookを用意して
ある定型的な処理ではなく、一時的なその場
だけの処理にとても便利です。たとえば、

・全サーバのプロセスリストを見たい
・ログを手元に持ってきたい
・脆弱性が発見されたので、このパッケージ
だけ今すぐ更新したい

などなど、複数台のサーバに対して手動で実
行するとなかなか大変な作業を1回で行えます。
とくに大きな利点として、ansible-playbook
で通常使用している Inventoryを使いますので、
サーバリストを別途作成する必要はありません。
　ansibleコマンドは次のように実行します。
-mで使用するモジュールを、-aで引数を指定
します。

$ ansible -i hosts -m shell -a "uptime" web

　この例では、shellモジュールを使用して、
uptimeをwebグループに対して実行していま
す。結果は図4のように表示されます。
　-t outputsをつけると、outputsというディ
レクトリに各ホストごとに別々のファイルと
して結果が保存されます。

ansible-galaxy

　roleは、他者との共有も考慮された作りになっ
ています。Ansibleの開発元が提供している
Ansible Galaxy注2というサービスでは、全世
界の人とroleを共有できるようになっています。
　Ansibleを イ ン ス ト ー ル し た と き に、
ansible-galaxyというコマンドも同時にイン
ストールされます。ここではRedisをインストー
ルするroleを使う例を見てみましょう。
　Ansible Galaxyのサイトから使えそうな
roleを検索します。今回は DavidWittman.
redisというroleを選んでみます（図5）。
　図5のようにansible-galaxyコマンドを実
行すると、roles/DavidWittman.redisという
ディレクトリが作成され、その中に taskのファ
イルや設定ファイルのテンプレートなど、こ
の roleが必要とするすべてのファイルがイン
ストールされます。あとは通常の roleと同じ
ように使えます。
　また、ansible-galaxyはAnsible Galaxyの
サイトからだけでなく、tar.gzや任意のgitリ
ポジトリから取得することもできます。つまり、
プライベートリポジトリに共有 roleをたくさ

注2） https://galaxy.ansible.com/

web01.example.com ¦ SUCCESS ¦ rc=0 >>
16:57 up 2 days, 6:18, 1 users, load averages: 0.31, 0.33, 0.52

web01.example.com ¦ SUCCESS ¦ rc=0 >>
16:57 up 2 days, 6:18, 2 users, load averages: 0.08, 0.03, 0.05

 ▼図4　ansibleコマンドの実行結果

https://galaxy.ansible.com/

84 - Software Design Jan. 2016 - 85

少しずつ積み重ねて理想の自動化環境を作ろう
より便利な使い方で複雑な手順を簡潔に 第 章3

ん作成して置いておき、必要な roleを ansi
ble-galaxyコマンドでダウンロードすること
もできます。このようにすることで、別のプ
ロジェクト間であっても roleをうまく共有し
再利用できます。

Windows対応

　残念ながら、Windowsを管理ホストとする
ことはできません。Cygwin注3上にAnsibleを
インストールすることは可能ですが、多くの
困難を伴います。一方、対象ホストとしては
Windowsを扱えます。
　Windowsの場合は sshではなく、WinRMを
使用して接続し、PythonではなくPowerShell

を利用してモジュールを実行します。ほかの
モジュールとは互換性がないため、win_とい
う接頭辞が各モジュールについています。そ
の一部を紹介します。

・win_user：ユーザアカウントの作成・削除
・win_service：サービスの起動・停止
・win_msi：msiファイルからのインストール・
削除

・win_copy：copyモジュールのWindows版。
ただし、大きなファイルを送ると遅い

　あわせて、本特集のAppendix 3を参照くだ
さい。

注3） Unix系OSで普及しているGNUプロジェクトによるツー
ル群をWindows用に移植したもの。

 https://www.cygwin.com/

おわりに

　第1章から第3章までで、Ansibleの使用方
法をまとめました。Ansibleは構成管理以外に
アプリのデプロイやインスタンスの立ち上げと、
幅広く使えます。さらに、ansibleコマンドに
より緊急対応などにも使えます。
　事前に必要なソフトウェアはsshだけですの
で、実際上敷居はなく、導入が容易です。普
段行っている手作業を少しずつAnsibleに置き
換えていくと、手動に比べて間違いが少なく
なります。いきなりすべてを自動化するのは
大変ですので、少しずつ、少しずつ進めてい
くのが最終的には手戻りが少なく、成功する
確率が高いように思います。さらに言うと、
少しずつ育てたPlaybookは、バージョン管理
システムに保存し、ほかの人からも見えるよ
うにしていくと、ほか人から理解が得られや
すくなります。
　Ansibleは慣れるとシェルスクリプトを書く
よりも早く、間違いが少なく、何度実行して
も誰が実行しても問題がない環境ができあが
ります。また、YAMLで書かれているためプ
ログラムに不慣れな方にでもわかりやすいうえ、
教えやすくもあり、使ってもらう敷居が低くなっ
ています。ぜひみなさまも使いこなして作業
を効率化してください。ﾟ

$ mkdir -p roles # rolesというディレクトリを作成するｶ

$ ansible-galaxy install DavidWittman.redis -p rolesｶ
- downloading role 'redis', owned by DavidWittman
- downloading role from https://github.com/DavidWittman/ansible-redis/archive/1.0.2.tar.gz
- extracting DavidWittman.redis to roles/DavidWittman.redis
- DavidWittman.redis was installed successfully

 ▼図5　ansible-galaxyで redisの roleをインストール

https://www.cygwin.com/

86 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

AnsibleとChefの比較

　AnsibleとChefの違いは次のように考えています。

Chefのメリットとデメリット
▶Chefのメリット

❶	可読性が高い
❷	用意されているリソースが便利
❸	構成がシンプル
❹	ohai連携でサーバのデータが細かく取得で
き、扱える

❺	多様なサーバがあったら分岐しやすい

▶Chefのデメリット

❶	初回導入に時間がかかる
❷	chef-solo、chef-server、knife-soloなど覚え
ることが多い

❸	client側にchef-dkのインストールが必要な
ので、初回のbootstrapに時間がかかる

❹	knife-soloはroundsmanなどを入れないと、
1コマンドで並列処理ができない

	（ターミナルを2つ開くなどで並列処理はできる）

Ansibleのメリットとデメリット
▶Ansibleのメリット

❶シンプルで柔軟なディレクトリ構成
❷	sshを叩いてるだけなので、ホスト側にソフ
トウェアなどは不要

❸	格納されているスクリプトをssh越しに実行
できる

❹並列処理

▶Ansibleのデメリット

❶Ansible独特な記法が多く、可読性が低い
	（failed_when: result.rc not in [0, 1] など）
❷	自由度が高い分、運用ルールを設けないと、
日々複雑になっていく

❸	オプションが多くてすぐ忘れる
❹シンプルな構成なので分岐に向いていない

　以上よりインフラチームでは、

・	OSセットアップはChefで管理／運用
・	定常オペレーション、脆弱性対応、スポッ
ト作業はAnsibleで実施

と使い分けています。

開発チームでのAnsible
の利用

　ここからは、筆者が所属している、ジョブ
センスリンク開発チームのAnsibleの運用につ
いて紹介させていただきます。主な利用方法
は次の4つです。

❶各ホストにMackerelの導入、設定変更
❷	脆弱性対応などのスポット作業
❸	インフラチームから渡されたOSに対して、ア
プリがデプロイできるまでの初期セットアップ

❹セットアップしたあとのserverspec実行

弊社では、インフラチームはAnsibleとChefを使い分けてOSが入ったサーバをメディア開発チームに提供し、
サーバを受けとったメディア開発チームはAnsibleを使って最終セットアップをして利用、といったフローで作
業を行っています。したがって、インフラチーム＋各メディアの開発チームそれぞれがAnsibleのリポジトリを
保持し運用しています。

 Author 湖山 翔平（こやま しょうへい）　㈱リブセンス　 Twitter @sion_cojp

A.1
便利なのに使われないAnsibleになるのを防ぐ

ディレクトリ構成の熟考のススメ

86 - Software Design Jan. 2016 - 87

便利なのに使われないAnsibleになるのを防ぐ
ディレクトリ構成の熟考のススメ A.1

　ansible.cfgは、/etc/ansible/ansible
.cfgにシンボリックリンクを貼ってGitで管
理しています。

$ more ansible.cfg
[defaults]
forks=100
host_key_checking = False
remote_port = 22
remote_user = hoge
ssh_args = -o ControlMaster=auto -o
ControlPersist=60s
ask_pass=True

　Ansibleで最も悩まされるのがディレクトリ
構成です。Ansible公式ドキュメントや他者の
ベストプラクティスを、理解せずそのまま利
用して運用すると、大半が運用しづらくなり、
「便利なのに使われないAnsible」ができあがる
でしょう。
　会社によってAnsibleでやりたいことが違う
ので、ベストプラクティスはあくまでも参考
程度に留めておき、自社に合ったディレクト
リ構成＋運用方法をしっかり議論し構築しま
しょう。弊社では図1のようなディレクトリ構
成にしています。
　このようなディレクトリ構成を取った理由
は次のとおりです。

❶基本はRoles構成。Roles構成のメリットは
冪
べきとう

等性と役割の分担
❷1つのディレクトリでRoles構成を使うと、
可読性が低くなる＋分岐が複雑になるので、
サービスごとにディレクトリを分けてRoles
構成を分離させたい

❸spotはスポット作業用。バージョンの更新
などの冪等性は求めていないので、Roles構
成から除外させる

❹spotで使われるファイル群は、すべてfiles
に格納し、かつ相対パスで記述

　Roles構成というのは、表1のようなディレ
クトリ構成でそれぞれのmain.ymlが読み込ま
れるようになっています。

ディレクトリ 内容

files/ ホストに配布する、変数を持たない
ファイルを保持

templates/
テンプレートファイルを保持。変数
を使って動的に変化させることがで
きる。jinja2というテンプレート言
語で構成

tasks/ タスク（メインの処理）実行
vars/ 変数を定義

handlers/ notifyで定義されたハンドラ処理を
実行

defaults/
変数を定義。一番優先度が低い
（弊社ではvars/で事足りるため、使っ
ていない）

meta/ roleの依存関係を定義

 ▼表1　Roles構成のディレクトリ構造

 ▼図1　ディレクトリ構成

　よく使わないRolesのディレクトリを .keep

ファイルで保持するのを見かけますが、なる
べくシンプルな構成を心がけるため、使わな
いディレクトリは削除しましょう。

88 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

　各ホストの情報取得については、Dynamic

Inventory＋Mackerelを利用しています。
DynamicInventoryのメリットは、現在のホス
トステータスをAnsibleDynamicInventoryで定
義されたJSON形式で出力させれば、それを
Inventoryファイルとして扱えるということで
す。ホスト情報を手動で管理しなくていいと
いうのは、ホスト間違いによる作業ミス、と
いう懸念が除外されるので、とても大事なこ
とです。ただ、Mackerelの初回導入時のみ
hosts/にリスト1の Inventoryファイルを作
り、ファイル指定でAnsibleを実行しています。
　mackerel/web_job_j-sen_jp.ymlはリス
ト2のようになっています。
　web_job_j-sen_jpに 対 し て、roleに あ る
installとsetupのtasks/main.ymlを実行して
います。installがどのようになっているかは
本誌のサポートページ注1からダウンロードし
て参考にしてください。
　ymlの書き方のポイントは、いかに冪等性を
担保するかです。必要であればwhenステート

注1） http://gihyo.jp/magazine/SD/archive/2016/201601/
support

メントで分岐し、分岐しなくてよい部分はな
るべく分岐しないように工夫しましょう。そ
して何度打っても同じ結果になるようにしま
しょう。

最後に

　以上、弊社のAnsible利用例でした。皆様も
Ansibleを使って、オペレーションの自動化を
目指してください！ﾟ

- hosts: web_job_j-sen_jp
 user: hoge
 sudo: yes
 gather_facts: no
 roles:
 - { role: install }
 - { role: setup }
 vars:
 ### Mackerelのroleを指定する場合は以下を有効化
 mackerel_agent_roles:
 - "web:job_j-sen_jp"
 - "job_j-sen_jp:web"

 ### Mackerelで監視したい項目ファイルを記述
 mackerel_conf_file:
 - "web_job_j-sen_jp.conf"

 ▼リスト2　mackerel/web_job_j-sen_jp.yml

Mackerel設定初回投入
$ vim hosts/test
192.168.1.1
$ ansible-playbook -i hosts/test mackerel/web_job_j-sen_jp.yml

Dynamic InventoryでMackerelの設定更新
ホスト一覧を調べる
inventor.py ←http://gihyo.jp/magazine/SD/archive/2016/201601/support からダウンロードしてください
$ python inventory.py --list
実行結果サンプル： sample_inventory_lists.log
 ↑http://gihyo.jp/magazine/SD/archive/2016/201601/support からダウンロードしてください
ホストのIPを調べる
$ python inventory.py --host host1.example.com
実行結果サンプル： sample_host_info.log
 ↑http://gihyo.jp/magazine/SD/archive/2016/201601/support からダウンロードしてください
実行
$ ansible-playbook inventory.py mackerel/web_job_j-sen_jp.yml

host1.example.comだけに実行させたいとき
$ ansible-playbook inventory.py -l host1.example.com mackerel/web_job_j-sen_jp.yml

 ▼リスト1　Inventoryファイル

http://gihyo.jp/magazine/SD/archive/2016/201601/support

89 - Software Design Jan. 2016 - 89

GitHubでの管理を考える
Playbookの置き方とssh秘密鍵の暗号化 A.2

どんなプロジェクト？

　筆者がかかわっているプロジェクトでは、「SSL

終端を行うロードバランサを提供するサービス」
を実現するJobQueueシステムを開発しています。
　システムの構成は大まかに図1のようになって
います。各コンポーネント（API、Controllerなど）
は冗長化されていますので、サーバ台数としては
1セットで24台の構成となっています。プロジェ
クトでは4セット利用して開発を行っているので、
全体のサーバ台数は96台になります。この96台
のサーバの構築や設定変更を簡単に行いたくて
Ansibleを導入しました。

なぜAnsible？

　なぜ数ある構成管理ツール（Chef、Puppet、最

近だとItamaeなど）の中でAnsibleを選んだのか。
理由はAnsibleの特徴である次の3点のためです。

・エージェントレス
・設定ファイルのように記載できる
・モジュール内で冪

べきとうせい

等性が確保されている

　これらは第1章から第3章までの記事で詳しく
述べられていますので、ここからは筆者のチーム
で行っているAnsibleの運用実例として、
Playbookの管理方法とAnsibleのコマンドで行え
る暗号化の利用方法について紹介します。

［Ansible Tip1］
Playbookの管理方法

　いつも思うのですが、プロジェクトを進めると
きにアプリケーション（ソースコード）以外のもの
を「どこで、どんな構成で、どのように運用して
いくか」を迷いませんか？　筆者以外の人でも悩

んでいる人がいるのかなと思い、
ここに紹介させていただきます。

どこで
　アプリケーションと同じ
GitHubのリポジトリで管理し
ています。リポジトリのトップ
ディレクトリからPlaybookがあ
るディレクトリまでを図示する
と図2のようになっています。
　$｛各コンポーネントのディレ
クトリ｝にはアプリケーションの
コンポーネント単位のソースコー

 ▼図1　Ansible適用対象システム

Database Key-Value
Store

ControllerGUI 監視

SSL終端
ロードバランサ

Agent

Worker ログサーバ

API MessageQueue ロードバランサ

メッセージ

RabbitMQSinatra

Percona

Sensu

Redis

InfluxDB

LVS

本稿では、筆者が執筆時現在かかわっている自社開発中のプロジェクトにおいて、なぜAnsibleを導入した
のかという理由と、導入して得られた知見や感じたことを紹介します。

 Author 上野 晶鋭（うえの あきと）　㈱ IDCフロンティア

A.2 GitHubでの管理を考える
Playbookの置き方とssh秘密鍵の暗号化

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

90 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

ドが格納されています。AnsibleのPlaybookはソー
スコードとは別のディレクリ（common/playbook）
で管理しています。common配下にはPlaybook

以外にもDeploy用のスクリプトなども配置してい
ます。

どんな構成で
　Playbookの実体は図2のplaybook/rolesディ
レクトリに図3の構成で配置しています。
　Defaultsでデフォルト値を管理して、filesで対
象ホストに転送するファイルを管理します。
Templatesでは対象ホストに関連する変数置換が
必要なファイルを管理して、handlersでは
Playbookの最後に実行される処理を記載したファ
イルを管理します。Tasks配下でメインの処理を
記載したファイルを管理して、vars配下でroleご
との変数を管理しています。
　roleによって必要のないディレクトリは削除し
ていますが、基本的にすべてのroleが上記のディ
レクトリ構成に従っています。

どのように運用しているか
　ルールを決めてもなかなか守れないのが人の性
ですよね。そこで筆者のチームでは、チームのメ
ンバーが導入したadd_roleコマンドを図2の
common/playbook/binに配置して運用しています。
新しくroleを追加するときは、次のようにコマン

ドを実行することで図3のディレクトリ構成の
roleを作成します。

$./bin/add_role ${new_role}

［Ansible Tip2］公開し
たくない情報の取り扱い

　公開したくない情報をGitHubにアップロード
するなという話でもありますが、管理先が複数に
なると管理が煩雑になりがちです。
　筆者がかかわっている今の開発ではクラスタリ
ングを組む際にssh接続が必要な個所があり、
sshの秘密鍵を管理する必要があります。万が一
のことを考えて鍵をそのままGitHubにアップロー
ドするのは抵抗があります。そうは言ってもほか
で管理したくない……。
　そこで利用しているのが、ansible-vault注1コマ
ンドです。ansible-vaultではパスフレーズを用い
て対象ファイルの暗号化／復号をコマンド一発で
できます。
　運用としては次のように行っています。

1. GitHubからPlaybookをpull
2. ansible.cfg の vault_password_file に 指 定

したファイルの作成、パスフレーズの入力

注1） http://docs.ansible.com/ansible/playbooks_vault.html

 ▼図3　Playbookディレクトリ構成（common） ▼図2　GitHubディレクトリ構成

　　playbook/
README.md
ansible.cfg
bin/
group_vars/
hosts/
roles/
sites.yml
stage_vars/

${ 各コンポーネントのディレクトリ}/
common/

./
　　 defaults/
　　　 　main.yml
　　 files/
　　　 　main.yml
　　 templates/
　　　 　main.yml
　　 handlers/
　　　 　main.yml
　　 meta/
　　　　 main.yml
　　 tasks/
　　　　 main.yml
　　 vars/
　　　　 main.yml

playbook/roles/common/

http://docs.ansible.com/ansible/playbooks_vault.html

90 - Software Design Jan. 2016 - 91

GitHubでの管理を考える
Playbookの置き方とssh秘密鍵の暗号化 A.2

　　例：�vault_password_file に password.txt
と指定し、password.txtにはパスフ
レーズのみを入力して保存

3. ansible-vaultで復号
　　$ ansible-vault decrypt ${target_file}
　　�復号した後はPlaybookを流したり、修正

が必要の場合はPlaybookを修正する
4. ansible-vaultで暗号化
　　�暗号化対象ファイルを編集した場合は次の

コマンドで暗号化した後にGitHubにpush
　　$ ansible-vault encrypt ${target_file}

　結局 ansible-vaultの暗号化パスフレーズを
別管理しているじゃんって突っ込まれそうで
すが、sshの秘密鍵を別管理するよりは良いか
なと思って運用しています。より良い管理方
法があれば教えてください！

まとめ

　まだシステムの開発中で、Ansibleは試験的
に導入している段階のため正確には評価でき
ていません（この点については別の機会があれ
ば紹介します）。ただ「Ansible Tip1」で述べた
ように、異なる roleで同じディレクトリ構成
をとっているおかげで、開発メンバー間の共
有は楽にできていますし、ansible-vaultを利
用して隠したい情報を簡単に暗号化／復号し
てGitHub上で管理することができています。
　今回ご紹介したTipsが読者の皆さんのお役に
立ち、Ansibleに興味を持っていただければ幸い
です。ﾟ

92 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

AnsibleからWindows
を操作するために

Windows側の準備
　Ansibleと言えばエージェントレスが売りで
す。もちろん、Windowsを操作する場合でも
それは変わりません。ただし、Windowsには
Linux/UNIX系OSのようにSSHサーバが備
わっていないため、AnsibleではWindowsの遠
隔操作にWinRMを採用しています。
　WinRMとは、Microsoft純正のWindowsリ
モート管理システムで、PowerShellなどと一緒
にWindows Management Framework（以下
WMF）に含まれているパッケージです。また、
AnsibleからWindowsを操作するためには、
Windows側にWMF 3.0以上がインストールされ
ている必要がありますので、Windows 8、
Windows Server 2012未満の場合は、あらかじ
めWMF 3.0以上をインストールしておく必要が
あります。

　なお、WMF 3.0を使う場合には、hotfix注1を
忘れず適用してください。これが適用されていな
いとAnsible実行中、WinRM側で予期せぬタイ
ミングのメモリエラーが発生してしまいます。
　WMF 3.0以上がインストールされていれば、
あとの設定は簡単です。Ansibleが公式に提供
しているWindows設定用スクリプトをダウン
ロードして、PowerShellから実行してくださ
い。このスクリプトでは、WinRMサービス有
効化、WinRMでHTTPS接続を受け付けるた
めのSSL証明書発行、ファイアウォール設定、
PowerShellリモート実行許可などの処理をま
とめて実行してくれます。
　Administratorユーザでログインしている場
合のPowerShell上からの設定スクリプトのダ
ウンロード、実行手順は図1のようになります。
　スクリプトを実行した結果、Ok.と出力され
れば問題なく設定が完了しています。
　これでWindows側の準備は整いました。IaaS

や仮想環境を使っている場合、マシン立上げ後
すぐにAnsibleを使い始められるように、ここま
で設定済みの状態をイメージ化しておくとよい
でしょう。最後に、WinRMのHTTPS通信用に、
5986番ポートにAnsibleから接続できるよう
に外部ファイアウォールなどを設定すれば、
あとはAnsibleからの接続を待つばかりです。

Ansible側の準備
　さて、次はAnsible側の準備です。Ansible自

注1） http://support.microsoft.com/kb/2842230

WMFのバージョン Windowsのバージョン

3.0インストール可
Windows Server 2008
Windows Server 2008 R2
Windows 7

3.0プリインストール
済

Windows Server 2012
Windows 8

4.0プリインストール
済

Windows Server 2012 R2
Windows 8.1

5.0プリインストール
済

Windows 10
Windows Server 2016（予定）

 ▼表1　 Windowsのバージョンとインストール可能な
WMFバージョン

Ansibleの強みの1つにネイティブでのWindows対応があります。筆者の所属する㈱リアルグローブでも、自社シ
ステムはすべてLinuxなのですが、Windowsサーバをメインで使用されているお客様も多く、そんな方のシステム
運用自動化支援を実施するにあたり、対応当初からLinuxだけではなくWindowsのデプロイ自動化にもAnsible
を活用しています。ここでは、上記のような業務の中で得た経験をもとに、意外とハマりやすいAnsibleから
Windowsに接続するための手順や、実際Ansibleでどのくらいのことができるのかを紹介します。

 Author 廣川 英寿（ひろかわ ひでとし）　㈱リアルグローブ

A.3
エージェントレスでWindowsのデプロイ自動化

AnsibleからWindowsを操作する

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

http://support.microsoft.com/kb/2842230

92 - Software Design Jan. 2016 - 93

エージェントレスでWindowsのデプロイ自動化
AnsibleからWindowsを操作する A.3

体のインストールやpipの導入は済んでいるもの
として、まずはWinRMをPythonから操作する
ためのライブラリpywinrmをインストールします。

$ pip install pywinrm

　次に、接続情報を記述したhostsファイルを
用意しましょう（リスト1）。
　そして、少し厄介なのがSSL自己証明書を
使うための対応です（Python2.7.9未満では対
応不要）。リスト2、3のようなファイルを用意
してください。
　最終的に、図2のようなファイルツリーになっ
ていればOKです。
　これで準備が整いました。それでは、実際
にAnsibleからWindowsに接続ができるよう
になったか、win_pingモジュールを使って確
認してみましょう。

$ ansible windows -i hosts -m win_ping
 # 以下のように出力されれば成功
<<Windowsホスト名>> ¦ success >> {
 "changed": false,
 "ping": "pong"
}

AnsibleからWindows
にできること

　Ansibleには組み込みで使える便利な
Windows専用モジュールが用意されています。

数の勝負ではLinux/UNIX用の充実には遠く及
ばないものの、最新安定版1.9.4（2015年11月12

日現在）では13種類であるWindows用モジュー
ルが、現在ベータフェーズで近日リリース予

定の2.0では29種類にまで増えており、Win

dows対応が急速に進んでいることがうかがえ
ます。

すぐに使い始められるモジュール
　実のところ、1.9.4の時点でも実用的なモジュー
ルはかなり出揃っており、たとえば、基本的なファ

 設定スクリプトをダウンロード
PS C:\Users\Administrator> Invoke-WebRequest -Uri https://raw.githubusercontent.com/ｭ
ansible/ansible/devel/examples/scripts/ConfigureRemotingForAnsible.ps1 -OutFile ｭ
.\Desktop\ConfigureRemotingForAnsible.ps1
 ダウンロードしたスクリプトを実行
PS C:\Users\Administrator> powershell -ExecutionPolicy RemoteSigned .\Desktop\ｭ
ConfigureRemotingForAnsible.ps1

 ▼図1　PowerShellからスクリプトをダウンロードし実行する

[windows]
 <<Windowsホスト名>>

[windows:vars]
ansible_ssh_user= <<ログインユーザー名>>
ansible_ssh_pass= <<ログインパスワード>>
ansible_connection=winrm

 ▼リスト1　hostsファイルの内容

import ssl
if hasattr(ssl, '_create_default_https_context') and hasattr(ssl, '_create_unverified_context'):
 ssl._create_default_https_context = ssl._create_unverified_context

class CallbackModule(object):
 pass

 ▼リスト2　callback_plugins/fix-ssl.py

[defaults]
bin_ansible_callbacks=True
callback_plugins = ./callback_plugins

 ▼リスト3　ansible.cfg

 ▼図2　ファイルツリー

ansible.cfg
callback_plugins/

fix-ssl.py
hosts/

94 - Software Design

第2特集 Ansibleでサーバ構成管理を省力化
手軽さとコード化しやすさが人気！

イル操作にURLからのファイルダウンロード、
テンプレートの展開配置、ユーザやグループの
編集、サービス起動管理、Windows Updateの
操作、Windowsの機能のインストール、choco

lateyによるパッケージ管理などは、今すぐに
使い始めることができます。
　そしてさらに2.0では、レジストリ編集、タ
スクスケジューラ管理、ファイアウォール操作、
IIS管理、ファイルのACL管理などが増え、
Windowsプロビジョニングに必要な大部分の
操作がAnsible組み込みモジュールだけで完結
できるようになったなという印象です。
　ただし、一部利用時に注意が必要なモジュー
ルもあります。その代表例がwin_copyです。
win_copyでは通常のcopyモジュールと同様
にAnsibleローカルからリモートへのファイル
コピーが実施できますが、WinRMの仕様上の
制約から実用上1MB未満のファイルにしか使
えません。3MBを超えるような場合はエラー
になるばかりか、Windows側でWinRMの再起
動が必要になってしまうような場合もあります。
エラーにならないような場合でも、ものすご
く転送が遅くなってしまうので、Windowsに
大きなファイルを送りたい場合は、Windows

から参照可能なURLで公開してから win_
get_urlにダウンロードさせるといった工夫
が必要です。

PowerShellとの連携も可能
　このように現時点では利用に一部注意が必要
なものもありますが、Windows用モジュールは
かなり充実してきています。それだけではなく、
もちろんrawモジュールでの生コマンド実行や
scriptモジュールでのPowerShellスクリプト
実行を組み合わせれば、操作の自由度に制限は
ありません。また、Windowsモジュール用の
PowerShellヘルパーが用意されているので、
PowerShellを触ったことがある人であれば自
作モジュールの作成も簡単です。
　その気になれば、UIAutomationと組み合わ

せてGUIアプリケーションの操作を自動化し
たり、レジストリ内に保存されたバイナリを
書き換えてシェルからは編集できないWin

dowsの設定を更新したりといったところまで
自動化できてしまいます。とくに後者は一度
GUIから手動設定した際の値をリストアすれ
ば状態を再現できるので、筆者はデスクトッ
プ環境設定の自動化に多用しています。突き
詰めるとAnsibleで自動化できない範囲などな
いのです！
　GUI自動化まではしていませんが、2.0で追
加されたモジュールの使用例も含んだ簡単な
Windowsサーバ・セットアップ用のPlaybook

サンプル注2を公開してありますので、参考に
してください。

まとめ

　AnsibleにWindowsサポートが付いた2014

年8月の1.7のリリースから一年強の月日が経
ちました。多くの操作を、結局は自前Power

Shellスクリプトで実装しなければならなかっ
た当初と比べると、モジュールも出揃い、安
定性も上がり、Windowsに対してもAnsibleの
美点である「シンプルさ」「冪

べきとう

等性」といったポ
イントを気軽に享受できるようになってきま
した。
　本誌の読者さんは、筆者も含めてLinux使
いの方がメインでしょうが、ときにはWindows

を相手にしなければならないという方も多いか
と思います。Ansibleを使えば、Windowサーバ
とLinuxサーバを組み合わせたシステムでもワ
ンストップ、ワンPlaybookでデプロイ可能に
なります。みなさん、ぜひともWindowsへのデ
プロイにもAnsibleを導入し、快適な運用ライ
フをお送りください！ﾟ

注2） https://github.com/h-hirokawa/ansible-windows-
sample

https://github.com/h-hirokawa/ansible-windows-sample

95 - Software Design Jan. 2016 - 95

Apache Spark
入門

　Apach SparkはHadoopのエコシステムの上で動く、
OSSの並列分散処理基盤。本書は、Sparkに初めて触れる
エンジニアに向けて書かれた入門書であり、データ処理の
ための並列分散処理アプリを組み立てられるようになるこ
とを目標としている。Sparkは、RDDというイミュータブ
ル（不変）・遅延評価という性質のデータ構造を持ち、「RDD
を加工して新たなRDDを生成し、これを繰り返すことで
目的の結果を得る」という動作モデルに基づいている。本
書前半では、そういったSparkの基本、動作原理について
解説している。本書後半では実践編として、基本的なAPI、
Spark SQL、Spark Streaming、MLibの使い方について
説明している。それぞれ具体的なデータを挙げながら解説
しているので、実際の使い道を考えながら学べるだろう。

株式会社NTTデータ、猿田 浩
輔、土橋 昌、吉田 耕陽、佐々
木 徹、都築 正宜 著／下垣 徹
監修
B5変形判／320ページ
3,200円＋税
翔泳社
ISBN＝978-4-7981-4266-1

Android Wear
アプリ開発入門

　腕時計向けのアプリを作ろうとしたとき、どうやってス
マホアプリからの通知を受け取るのか、利用したいセン
サーが腕時計側にない場合はどう対処するのか、円形の画
面と四角形の画面があるが、UIデザインはどう切り替える
のかといったことは実装に欠かせない知識だ。本書は
Androidスマホアプリの開発経験者を対象に、これら腕時
計型アプリ開発に必要な要点を集中して習得できるようコ
ンパクトにまとめている。また、Android Studioの環境構
築や効率を上げるためのTipsは、Eclipseからの移行にも
役立つだろう。ハードウェア側の機能やデザインバリエー
ションは今後充実していくだろうが、スマートウォッチが
普及するには何よりソフトウェアの力が必要だ。発展途上
のいまこそ、新しい市場に挑戦してみてはどうだろうか。

神原 健一 著
B5変形判／192ページ
2,580円＋税
技術評論社
ISBN＝978-4-7741-7749-6

ITエンジニアのため
の機械学習理論入門

　機械学習のライブラリや優秀なツールが簡単に手に入る
ようになった昨今、参入へのハードルが低いと考えている
方も多いのではないだろうか。否、全然そんなことはな
い、と本書を読んだ方は感じるだろう。本書を読み解くう
えで必要とされるのは、理系大学1年〜2年程度の高等数
学だ。偏微分、重積分、確率統計、線形代数など、基本的
に知っていなければならないことが多い。難解で厳しいと
感じるだろう。しかし、本書のよいところは、計算過程を
いっさい省いていないことだ。つまり、数式をじっくりに
らみながら、式の変形をトレースできるのだ。この本は、
難解な理論の手の内を、つまびらかに明かしてくれる家庭
教師みたいなものだ。Pythonの例題コードもあるので、PC
を傍らに置いて冬休みにじっくりトライしてほしい。

中井 悦司 著
A5判／256ページ
2,580円＋税
技術評論社
ISBN＝978-4-7741-7698-7

The Art of Computer
Programming
Volume 3

　クヌース博士によるコンピュータアルゴリズムのシリー
ズのうち、第5章「ソート」、6章「探索」をまとめた1冊で
ある。5章は大きく内部ソートと外部ソートの節に分けられ
る。前者はソートするレコードの数が十分に小さく、全処
理をメモリ上で実行できる場合。後者は処理が遅い周辺記
憶装置（テープ、ドラム、ディスク）において、ソートアル
ゴリズムが要求する素早い反応ができるようにデータ構造
を調整する場合だ。6章で扱うのは、メモリ上から必要な情
報のみを集めるためのアルゴリズム。逐次探索、キー比較
による探索（二分木、バランス木）、デジタル探索（ハッ
シュ、副キー）などが学べる。余談ではあるが、博士はこ
の第3巻の第2版の制作中、組版システム「Tex」とフォン
ト作成システム「METAFONT」を完成させたそうだ。

Donald E. Knuth 著／有澤 誠、
和田 英一 監訳／石井 裕一郎、
ほか 訳
B5判／760ページ
4,800円＋税
ドワンゴ
ISBN＝978-4-04-869431-5

96 - Software Design

クラウド時代の
再入門

はじめに

　前回の記事で、クラウドの登場する前を「オ
ンプレミス時代」、クラウド登場後を「クラウド
時代」と定義し、とくにクラウド時代における
負荷試験の概要やアンチパターンを説明しまし
た。今回は負荷試験を行うためのツールの紹介
と負荷試験実施にあたっての全体的な考え方を
紹介します。

負荷試験ツールに共通の
考え方

負荷試験にかかわる用語の説明

　今回説明するものを含め、ほぼすべての負荷
試験ツールには次の共通する概念があります。

・	クライアント（HTTPのリクエストを同時に1つ
だけ実行できる単位）

・	クライアントの同時起動数 （負荷試験ツール
から見て並列で発行するリクエスト数）

・	RampUp期間（クライアントがすべて起動する
までの時間）

・	シナリオ実行回数（または実行時間）
・	スループット（単位時間あたりに処理されたリク
エスト数）

・	レイテンシ（負荷試験ツールからみたリクエスト
の処理時間）

　負荷試験ツールからのリクエストの大まかな
の流れは①～⑧のとおりです（図1）。

①	リクエストが負荷試験攻撃サーバ上で生成され
る（同時起動数の設定まで）

②	リクエストはHTTPリクエストとしてネットワー
ク上を移動

③	リクエストはロードバランサによりWebサーバ
に振り分けられる

④	リクエストがHTTPリクエストを持ってWeb
サーバに到達する

⑤	Webサーバによって生成された、HTTPレスポ
ンスを返答する

⑥	レスポンスはロードバランサを経由して外に出る
⑦	レスポンスはネットワーク上に戻る
⑧	HTTPレスポンスを負荷試験攻撃サーバが受
け取る→シナリオの実行回数が完了するまで
①へ戻って繰り返す

負荷試験ツールで観測されるレイテンシはサー
バの応答速度とは異なる
　負荷試験ツールでのレイテンシは、ネットワー
クを転送される間に生じる遅延やSSLのデコー
ドにかかわる遅延を含んだ数値です。サーバが
いくら高速に応答しても、それが反映されてい
るとは限りません。
　各サーバの実際の応答速度はサーバ上でログ
を出力したり、ロードバランサで観測されるレ
イテンシを見る必要があります。

クライアントの同時起動数とサーバで処理さ
れる同時接続数は異なる
　「負荷試験ツールから作成したリクエスト」の
多くはネットワーク上や攻撃サーバ上にあり、
実際に負荷をかける対象のサーバ上で処理中の

クラウド時代の

再入門

短期集中
連載

 Author 仲川 樽八（なかがわ たるはち）　㈱ゆめみ　Twitter@tarupachi

負荷試験と負荷試験ツール第 回2

96 - Software Design Jan. 2016 - 97

が重要です。
リクエスト元サーバの台数、
ネットワークの違い

　負荷試験環境では、攻撃サーバの数は1台～
数台の範囲です。しかし公開環境においてはア
クセスするユーザ数分だけのリクエスト元が存

リクエストは全体の一部でしかありません。
　とくにネットワークのレイテンシが大きいとき
には、負荷試験ツールで設定したクライアントの
同時起動数と比較して、実際にサーバが処理中に
なる割合が小さくなりますので、攻撃サーバでは
クライアントの同時起動数を上げる必要がありま
す。しかし、それは攻撃サーバ側の負荷となり、
試験結果を不安定にする要因となります。

クライアントは前のリクエストが完了しない
と次のリクエストを発行しない
　サーバ上や、ネットワーク上のどこかでリク
エストの応答が停滞すると、全体のスループッ
トを大きく下げる要因となりますが、これは負
荷試験特有の挙動であり、実際の挙動とは異な
ります。

負荷試験ツールによる負荷試験と
実際のユーザアクセスの違い

　負荷試験を行うにあたり、各種ツールを使う
ことで得られる試験結果と実際のユーザアクセ
スは異なります。そのことを理解しておくこと

　数百リクエスト／秒程度ならば問題ありませ
んが、それ以上の負荷を継続的にかけたい場合
には、攻撃サーバでは次のパラメータを変更し
ておきます。そうしないと、より高い負荷をか
けるために攻撃サーバのスケールアップを実施
した場合であっても、途中でリソースが枯渇
し、エラーが発生することがあります。

例）Linuxの場合

・ ファイルディスクリプタ上限を上げる

ulimit -n 65535

・ tcp接続の上限数を調整する（/etc/sysctl.conf）

net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_fin_timeout = 30

高負荷をかけたいときに攻撃
サーバ上で変更しておきたい
パラメータ

ロードバランサ
（ELB：Elastic Load Balancer）

Web サーバクラスタ

Internet

Amazon
Route 53

AWS

攻撃サーバ

②HTTPリクエストとしてネットワーク上を移動 ⑦HTTPレスポンスとしてネットワーク上を移動

③ロードバランサがリクエストを
 Web サーバに振り分ける

④ HTTPリクエストとして
 Web サーバが受け付ける

⑤HTTPレスポンスとして Web サーバが応答

⑥ロードバランサを通って外に出る

⑧負荷試験攻撃サーバが HTTPレスポンスを
 受け取る、その後再利用して①に戻る①負荷試験攻撃サーバ上でクライアントの作成

 ▼図1　クライアントが実際に攻撃をするイメージ

第 回2 負荷試験と負荷試験ツール

クラウド時代の

再入門

短期集中
連載

98 - Software Design

クラウド時代の
再入門

在します。そのため、SSLを利用したサイト
の場合、負荷試験環境においてはSSL接続の
確立およびデコードのための負荷が攻撃サーバ
に集中してしまい試験ができません。加えて
SSL接続をしない場合でも、httpリクエスト
のたびに通信が切断／再接続されるので、攻撃
サーバにとって過剰な負荷となります。システ
ムに効率的に負荷をかけるためには、Keep

Aliveについても有効な状態で負荷試験をする
必要があります（図2）。
　また、同様にネットワークについても、負荷

試験環境においては攻撃サーバにトラフィック
が集中しますが、公開環境では分散します。そ
のため、攻撃サーバの性能がいくら高くても、ネッ
トワークトラフィックが十分でない場合には試
験になりません。また、環境によっては同一の
IPからの連続アクセスを遮断する機構などが働
いていることもありますので注意が必要です。

リクエスト先エンドポイントの違い

　リクエスト先のエンドポイントのサーバが、
負荷試験環境では攻撃サーバごとに一定時間

負荷試験は卓球のラリーである

　筆者は、負荷試験の動作イメージを卓球のラリー
（打ち合い）のようにとらえています（図A）。こう考
えると、先ほどの「負荷試験で重要な3点」をイメー
ジしやすくなります。

・ 負荷試験ツールで観測されるレイテンシはサーバの
応答速度とは異なる

・ クライアントの同時起動数とサーバで処理される同
時接続数は異なる

・ クライアントは前のリクエストが完了しないと次の
リクエストを発行しない

　また、負荷試験サーバと対象システム間でより高速
なラリーを行うためには負荷試験サーバをできるだ

け対象システムに近づけて配置する必要があること
がイメージできます。
　負荷試験用語を卓球に当てはめて考えると次のよ
うになります。

・ クライアント（攻撃サーバ上で卓球をする人）

・ クライアントの同時起動数（攻撃サーバ上で卓球を
する人の人数）

・ RampUp期間（クライアントを全員追加するまでの
時間）

・ シナリオ実行回数（ラリー回数またはラリー実行時間）

・ スループット（単位時間あたりのラリー回数）

・ レイテンシ（打った球が返ってくるまでの時間）

Internet

攻撃サーバ 球出しする人の数＝クライアントの同時起動数

この中にある球が同時リクエスト数

Webサーバ
クラスタ

 ▼図A　卓球のラリーでたとえる負荷試験

98 - Software Design Jan. 2016 - 99

DNSキャッシュされてしまうことがあります。
そのため、エンドポイントのサーバが自動的な
スケールアウトに対応していたとしても、本来
の性能を発揮できないことがあります（図3）。
ただし、公開環境ではリクエスト元が分散して
いますので、この問題は発生しません。試験を
するときは単一障害点となり得るエンドポイン
トを外すことで回避します。

同時リクエスト数の違い

　負荷試験環境では、攻撃サーバからのリクエ
ストは、その結果が攻撃サーバに戻ってくるこ

とを待って、はじめて次のリクエストが投げら
れます。このためシステムの応答速度がいくら
遅くても、あらかじめ指定したクライアント数
のリクエストしか同時に発生しません（図4）。
　しかし、公開環境では特定のユーザの応答に
時間がかかり、それらのリクエストの返答を待っ
ている間であっても、ほかのユーザが新たに利
用を開始し、別のリクエストをどんどん投げて
しまいます注1。結果として、システムの応答時
間が遅いと処理しなければならない同時リクエ

注1） コラムで説明した卓球の例を思い出してください。

ユーザ

システム

公開環境

処理コストがすべて
集中する

同一のネットワー
クに集中する

処理コストが勝手に
スケールする

→処理に時間がかか
らないので、システ
ムの応答は十分に高
速に見える

システム

攻撃サーバ

負荷試験環境

 ▼図2　負荷試験環境と公開環境におけるサーバ台数・ネットワークの違い

攻撃サーバ ユーザ

システム

エンドポイント

負荷試験環境 公開環境

エンドポイント名で
DNS Lookup し
たときに DNS が複
数あるエンドポイン
トのうち 1 つだけを
返 答 するが、そ れ
をサ ー バ がキャッ
シュしてしまう

同一のエンドポイ
ントに処理が集中
して、そこがボト
ルネックになって
しまう

複数のエンドポイントに
分散して処理を受け付け
ることができる

エンドポイント名で DNS
Lookup し た と き に、
DNS が複数あるエンド
ポイントのうち 1 つだけ
を返答するが、それぞれ
のユーザに対しては異な
るエンドポイントが返答
される

システム

 ▼図3　負荷試験環境と公開環境におけるリクエスト先のエンドポイントの違い

第 回2 負荷試験と負荷試験ツール

100 - Software Design

クラウド時代の
再入門

スト数はどんどん上昇していくという関係があ
ります。同時リクエスト数の増加は、該当サー
バにおけるメモリリソースの利用や外部サーバ
への同時コネクション数などの数値に密接に影
響を与えますので注意してください。

平均スループットの
考え方の違い

　負荷試験環境では、非常に時間のかかるリク
エストが少しでも混ざると、次のリクエストを
投げることができず、全体のスループットが大
きく落ち込むことがあります（図5）。しかし、
公開環境においては、一部の時間のかかるリク
エストは全体の処理のボトルネックとはならな
い場合があります。このときボトルネックとな
る一部のリクエスト以外のリクエストには、十
分な負荷をかけられなくなるという状況が発生
します。このような場合は、時間のかかるリク
エストは別スレッドからの攻撃にするか、シナ
リオからいったん外してください。

負荷試験ツールの紹介

　次に挙げるのは、筆者が環境に応じて使い分
けているツール群です。ここで紹介する以外に

もさまざまなツールがあるのですが、今までに
述べた基本的な考え方はそれぞれのツールに依
存せず、ほぼ同じです注2。

・	ApacheBench
・	Locust
・	Jmeter
・	Tsung

　これらにはそれぞれ特徴があり、対象システ
ムに合わせて適切なツールを選定せねばなりま
せん。また、同じURLに対する負荷試験を行っ
ているにもかかわらず、使うツールによって結
果が異なることはよくあります。その場合は、
対象のシステムにより負荷がかかり、結果とし
てより高いスループットが出ているほうがより
良い負荷試験となります。そこで、想定した負
荷がかからない場合には、ほかのツールを使用
して数値を比較します。
［アンチパターン］対象のシステムに
合わない負荷試験ツールを使用する

　負荷試験はその規模や目的によって、使用す
るツールが変わってきます。たとえば、非常に

注2） オンラインでURLを入力することで負荷試験を行うサービ
スもありますが、ネットワーク的に近い場所からの試験が
できませんので、適切な負荷試験の実施が困難になります。
そのため本稿では触れません。

ユーザ攻撃サーバ

システム

負荷試験環境 公開環境

リクエストが返って
きた分しか、次のリ
クエストを出せない

応答にいくら時間
がかかっても、攻
撃サーバは次の
リクエストを待っ
てくれるので、
処理中のリクエス
ト量は一定

一部の応答に時間がかかると、後
続のシナリオすべてが待たされる
ため、負荷状況が変化してしまう

システム

 ▼図4　負荷試験環境と公開環境における同時リクエスト数の違い

100 - Software Design Jan. 2016 - 101

高いスループットを提供するべきシステムがあ
り、それを試験するためにApacheBenchを利
用すると、その特性のせいで結果として十分な
負荷をかけきれないことがあります。試験を実
施するにあたり、その特性に慣れたツールを1

つ作ることも非常に重要ですが、ツールの選択
も同様に重要です。

負荷試験ツール全体的な特性注3

　システム応答の監視について、表1の各ツー
ルに含まれるスループットの監視ツール、可視
化ツールがありますが、全体のスループットが
重要である場合にはロードバランサのモニタリ
ングを利用すると、ツールに依存せずにモニタ
リングできます。また、ネットワークレイテン
シを含まないシステムの処理レイテンシを計測
するためにもロードバランサのモニタリングが

注3） これらは筆者の主観です。各ツールの機能を適切に使うこ
とにより実際の評価は変動します。

必要です。
　AWSの場合、ロードバランサのモニタリン
グは管理コンソールから簡単にモニタリングで
きます（図6、図7）。
　スループットは、図7のCloudWatchメトリッ
クスの欄の［合計2xx（カウント）］、レイテンシ
としては、［平均レイテンシ（ミリ秒）］を確認し
てください。
　同様にELBの処理レイテンシを含まないサー
バ上での処理を計測するためにはアクセスログ
に処理時間を出力する必要があります。
Apache 2では、httpd.confの Logformat指定
部分に%Dを追加してhttpdを再起動します。こ
れで応答時間がmicrotimeで表示されるように
なります。

LogFormat "%D %h %l %u %t \"%r\" %>s ｭ
%b" common

ユーザ攻撃サーバ

システム

負荷試験環境 公開環境

リクエストが返って
きた分しか、次のリ
クエストを出せない

一部の応答に時
間がかかると、
後続のシナリオ
すべてが待たさ
れるため、負荷
状況が変化して
しまう

一部の応答に時間がかか
るリクエストがあっても該
当しないユーザには影響を
与えにくい

システム

 ▼図5　 平均スループットの違い

 ▼表1　負荷試験ツールの特性注3

導入の容易さ 複雑なシナリオへの対応 結果の見やすさ 高負荷対応

ApacheBench ★★★★★ — ★ ★

Locust ★★★ ★★★★★ ★★ ★★

JMeter ★ ★★★★★ ★★★★★ ★★★

Tsung ★★ ★★★ ★★★ ★★★★★

第 回2 負荷試験と負荷試験ツール

102 - Software Design

クラウド時代の
再入門

使用リソース監視ツールについて

　リソースの利用状況の監視ツールとしては、
AWSを利用する場合は管理コンソールから利
用できるCloudWatchでほぼ十分と筆者は考え
ています。ただし、RDSやELBでは1分間隔
でのモニタリングをしますが、EC2インスタ
ンスに関してデフォルトの監視タイミングは5

分間隔です。そのため負荷をかけていない間の
リソース使用状況と平均化されますので、15

分程度の負荷をかけ続ける必要があります。そ
のためグラフ上ではリソースの使用状況が正し
く反映されません。対応策として追加料金は発

生しますが、負荷試験中はCloudWatchの［メ
トリックスの詳細モニタリングを有効化］オプ
ションを付けることで、1分間隔のモニタリン
グが可能になります。スケールアウト対象のサー
バの場合、最低でも1台のサーバに設定してお
きます。

ApacheBench

特徴と注意点
　インストールが平易なので時間をかけること
ができない場合など、ApacheBenchがお勧め
です。ただし、シナリオを記載した試験を行う
ことができないので、シナリオを使用した試験

 ▼図6　 AWSにおけるロードバランサのモニタリング①

①ログイン後、［EC2］を選択

 ▼図7　 AWSにおけるロードバランサのモニタリング②

①［ロードバランサー］を選択

②対象のロードバランサーを選択

③［モニタリング］を選択

102 - Software Design Jan. 2016 - 103

が必要なシステムの場合には、他のツールの利
用を検討する必要があります。また、システム
からリダイレクトヘッダが返答されてくる場合
でも、リダイレクト先のURLに再アクセスし
ないことに注意してください。
　特徴をまとめると次のようになります。

・	単一のURLに対する試験を簡単に行うことが
できる

・	POST/PUTの試験も可能 （※DELETEはで
きない）

・	リクエストごとにパラメータを変更できない
・	シナリオ記載ができない
・	攻撃サーバのCPUコアを1つしか利用できない

導入方法
　Apacheがインストール済みのサーバならば
すぐに利用できます。また、Apacheをインストー
ルしたくない場合は、apr-utilパッケージまた
はhttpd-toolsを導入すると利用できます。

$ sudo yum install apr-util

　または、次のコマンドを入力します。

$ sudo yum install httpd-tools

重要なオプション
　ApacheBenchでは先に述べたRampUP時間

の設定項目はなく、最初のタイミングで-cオ
プションで設定した数のリクエストを同時に送
付しようとします。そのため、攻撃開始時にサー
バに処理が集中しますので、クライアント数の
設定は攻撃先サーバの同時接続数の上限を超え
ないように注意してください。

% ab -h

でヘルプ表示します。重要なオプションを表2
にまとめます。使い方は次のようになります。

Usage: ab [options] [http[s]://]ｭ
hostname[:port]/path

ApacheBenchの実行
　実行例を図8に示します。ここではローカル
に設置したサーバのTOPページヘのアクセス
をしています。この結果の中で筆者がとくに注
目するパラメータは先に述べた次の2つです。

・	Requests per second（平均スループット）
・	Time per request（平均レイテンシ）

　負荷試験としては、このTime per request

があらかじめ決められた許容範囲でどれだけ
Request per secondを増やせるかを、性能の指
標とすることが多いです。

 ▼表2　ApacheBenchの重要なオプション

オプション 意味 説明

-n requests 総リクエスト数（※クライアントの同時起動数×シナリオ実行回数に相当）

-c concurrency 同時リクエスト数（※クライアントの同時起動数に相当）

-p postfile POSTメソッドでリクエストする場合にbodyを記載したファイルを指定する

-u putfile PUTメソッドでリクエストする場合にbodyを記載したファイルを指定する

-i — HEADメソッドでのリクエストを行う

-C attribute cookieを送付する場合に使用

-A attribute Basic認証を利用する場合に使用

-k keepalive KeepaAliveを利用する場合に使用

-h help ヘルプ表示

第 回2 負荷試験と負荷試験ツール

104 - Software Design

クラウド時代の
再入門

Apache JMeter

特徴と注意点
　非常に多岐にわたる機能が提供されているツー
ルです。また、攻撃サーバのインスタンスタイ
プにもよりますが、数千リクエスト／秒（req/

sec）までのシステムの場合は十分な負荷をかけ
られます。ただし、Apache JMeterは攻撃サー
バ1台あたりのリソース使用量が比較的大きく、
より高負荷をかけたい場合には、攻撃サーバと
して複数のサーバを準備する必要があります。
また、そのためには各攻撃サーバ間の通信ポー
トを開いておくなどのネットワーク設定が必要
です。攻撃サーバを複数台準備する場合には各
攻撃サーバと、シナリオを流し込む元のサーバ
のJMeterのバージョンが一致している必要が
あることも注意してください。JMeterを利用
して高負荷をかける方法は、クラスメソッド㈱

の記事によくまとまっています注4。
　特徴を次にまとめます。

・	Apache Benchでできない、DELETEメソッ
ドの試験が可能

・	リクエストごとに動的にパラメータを変更する
ことが可能

・	複数のURLに対してシナリオを組んだ複雑な
試験を行うことが可能

・	シナリオはXMLで記述するがGUIが用意されて
おり、比較的直感的なシナリオの記載が可能

・	ProxyRecorderを利用したシナリオ作成も	
可能

・	試験結果の表示機能が豊富
・	複数のサーバを連携させることで比較的高負
荷をかけることができる

注4） 「SpotInstanceと JMeterを使って400万 req/minの負荷
試験を行う」http://dev.classmethod.jp/cloud/apache-jm
eter-master-slave-100mil-req-min/

 ▼図8　ApacheBenchの実行例

~% ab -n 1000 -c 100 http://localhost/
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking virtualbox1 (be patient)
Completed 100 requests

...（中略）...

Completed 1000 requests
Finished 1000 requests

Server Software: Apache/2.2.15
Server Hostname: virtualbox1
Server Port: 80

Document Path: /
Document Length: 4883 bytes

Concurrency Level: 100
Time taken for tests: 0.991 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 5185930 bytes
HTML transferred: 4912298 bytes
Requests per second: 1008.70 [#/sec] (mean)
Time per request: 99.137 [ms] (mean)
Time per request: 0.991 [ms] (mean, across all concurrent requests)
Transfer rate: 5108.46 [Kbytes/sec] received
...（以下略）...

http://dev.classmethod.jp/cloud/apache-jmeter-master-slave-100mil-req-min/

104 - Software Design Jan. 2016 - 105

・	HTMLコンテンツの場合、コンテンツ中で要
求されるさまざまな静的リソースも同時に取得
する試験を行うことが可能

導入方法
　JDKのインストール後にソースファイルを
展開するだけで利用できます注5。

実行結果サンプル
　スレッドグループを作成し（表3）、どれくら
いのクライアント数でどれくらいの回数の負荷
試験を行うかなどを設定します（図9）。
　TOPページコンテンツ中で呼び出される静
的なリソースも自動で取得されていることが確
認できます（図10）。図11では統計レポートを
出力しています。
　筆者がよく実施する方法は、シナリオの作成
はローカルのWindows PCから［結果をツリー
で表示］を有効にした状態で、少ないクライア
ント数の設定および攻撃回数で行い、シナリオ
が確定したら、別途構築した専用のインスタン
スにシナリオを設置して本格的な攻撃を行う方
法です注6。

注5） http://jmeter.apache.org/　など
注6） 本格的な攻撃を行う際には［結果をツリーで表示］オプショ

ンは外す必要があります。ここで、［ログエラーのみ］のオ
プションを付けても実際にはかなりの負荷となり、対象の
サーバに適切な負荷をかけることができなくなる原因とな
ります。また、JMeterには非常に便利な機能がたくさん
あるのですが、それらの中には［結果をツリーで表示］と同
様に本格的な負荷をかける際には邪魔になる機能が多く含
まれているので、随時調整してください。

Locust

　Locustは英語でイナゴを意味するようです。
大量のリクエストが同時に飛ぶイメージでしょ
うか。シナリオをPythonで記述できる負荷試
験ツールです。

特徴と注意点
　JMeterに近い機能があり、比較すると次の
ようになります。

・	Pythonで試験シナリオを作るので、柔軟な記
述ができる

・	シナリオがスクリプトであることから、Git管理
などと相性がよい

・	必要なサーバリソースが少ないので少数の攻
撃サーバで負荷をかけやすい

・	結果表示がシンプル

　攻撃サーバ上でコマンドラインで攻撃ツール
を起動し、それをWebのインターフェースか
ら同時接続ユーザ数を指定して実際の攻撃を開
始します。結果表示としての詳細な表示が不要
なことも多いですので、筆者の場合、JMeter

の代わりにこのツールをよく利用します。

 ▼表3　Apache JMeterのスレッドプロパティ

スレッド数 ［クライアントの同時起動数］に
相当

RampUp期間（秒）［クライアントがすべて起動す
るまでの時間］に相当

ループ回数 ［シナリオ実行回数］に相当

 ▼図9　Apache JMeter（スレッドグループの作成と設定）

第 回2 負荷試験と負荷試験ツール

http://jmeter.apache.org/

106 - Software Design

クラウド時代の
再入門

インストール方法
　公式Webページなどを参照し導入してくだ
さい注7。

攻撃サーバ起動スクリプトサンプル
　上記公式サイトにサンプルがありますが、
run_10slaves.shなどのファイル名でリスト1を記
述してから起動すると、同一サーバ上で複数の
攻撃Slaveサーバを簡単に構築できます。

$ sh ./run_10slaves.sh

　攻撃サーバを起動後に、Webインターフェー

注7） http://docs.locust.io/en/latest/installation.html

スとして用意された画面からクライアントの同
時起動数、追加率などを指定して実際の攻撃を
開始します。

実行例
　実行結果（図12）の項目の意味を次に示します。

①	攻撃ユーザ数 （クライアント数）：攻撃開始時
に攻撃クライアントの増加率とともに設定する

②	Slaveサーバ数：CPUコアに余裕がある場合
などはSlaveサーバ数を増やすことで、負荷を
かける上限をあげることができる

③	総スループット：全体のスループットですので、
シナリオとしてのスループットとは一致しないこ
とに注意する

 ▼図10　Apache JMeter（静的なコンテンツの自動取得の確認）

 ▼図11　Apache JMeter（統計レポートの出力）

http://docs.locust.io/en/latest/installation.html

106 - Software Design Jan. 2016 - 107

・	少ない攻撃サーバで高負荷をかけることが非
常に得意

・	試験結果はJSON形式で出力されるが、それを
可視化するためのWebインターフェースも完備

　Locustとは異なり、コマンドラインで起動
したタイミングから実際の攻撃を開始します。
　用意された機能を正しく使用すれば、Tsung

だけで詳細なシナリオを記載した負荷試験が可
能ですが、XML記述の難易度が高いため、詳
細なシナリオのチェックはLocustで行い、さ
らに高負荷をかけたいときにバックグラウンド
でTsungで簡単なシナリオを流すなどの組み合
わせで、筆者は利用しています。
　ただし、このような方法をするときにはツー
ル上で見る結果表示の信頼性が著しく下がりま
すので、前述したロードバランサにおけるスルー
プットのモニタリングなどを利用し、各負荷試
験ツールの提供する画面は利用しません。

④	Stopボタン：Locustでは起
動時に総リクエスト数を指定
せず、試験の中断はこのボタ
ンから行う

⑤	URL別のスループット：シナ
リオとしてのスループットを見
るためには、各シナリオで一
度だけ通るリクエストのスルー
プットを見る。この場合は、
ログイン処理を一度だけと定
義しているため、1秒間に
367シナリオをこなせるとい
う見方をする

Tsung

　Erlangで記載された速度重視のツールです注8。

特徴と注意点
　JMeterに近いのですが、比較すると少し癖
があります。その特徴を次に挙げます。

・	シナリオをXMLで記載するのはJMeterと同
様。むしろJMeterより比較的シンプルで理解
しやすい記述が可能 （ただしGUIによるシナ
リオの作成・閲覧ができないので、複雑なシ
ナリオの管理にはやや不向き）

・	JMeterと同じく、ProxyRecorderを利用して
シナリオを作成可能

注8） http://tsung.erlang-projects.org/user_manual/index.
html

 ▼リスト1　 起動スクリプト例（10 slaveサーバで起動する場合）

#!/bin/sh

LOCUST_FILE=${1:-src/locustScinario.py}
SCINARIO_CLASSNAME=WebsiteUser
sudo /bin/sh -c "
ulimit -n 65535
for slaves in {1..10}
do
 /usr/local/bin/locust -f ${LOCUST_FILE} ${SCINARIO_CLASSNAME} --slave &
done

/usr/local/bin/locust -f ${LOCUST_FILE} ${SCINARIO_CLASSNAME} --master

 ▼図12　Locust実行画面

第 回2 負荷試験と負荷試験ツール

http://tsung.erlang-projects.org/user_manual/index.html

108 - Software Design

クラウド時代の
再入門

導入方法
　公式サイトを参照し、次のように導入してく
ださい注9。

$ git clone https://github.com/ｭ
processone/tsung.git
$ cd tsung
$./configure
$ make && sudo make install

シナリオ記載、試験実施
　ここで紹介するにはボリュームが大きくなり
ますので、AccessTokenを取得して利用したペー
ジを呼び出す簡単なサンプルのみ一部紹介（リ
スト2）。このようなXMLファイルを、公式

注9） http://tsung.erlang-projects.org/user_manual/
installation.html

Webページなどを参考にしながら記述します。

実行結果サンプル
　実行結果は、図13に示します。

次回予告

　負荷試験は、今回紹介したようなツールを利
用して進めていけばいいのですが、実際に負荷
試験を進めるにあたっては効率的に行うための
段取りがあります。それを無視して進めること
は、結果としてシステムのプロファイリング（ボ
トルネックや改善点の分析）を難しくし、負荷
試験を無駄なものにしてしまいます。
　次回は効率的に負荷試験を進める方法を、次
の項目で紹介します。｢

・静的ファイルを叩くことで利用する負荷試験ツー
ルや設定の試験を行う

・HelloWorldを叩く
・参照系のページ、APIを叩く
・更新の発生するページ、APIを叩く
・外部サービスとの結合を含むページ、APIを叩く
・シナリオを組んで試験を行う
・離れたネットワークから試験を行う
・各リソースのスケールアップをして試験を行う
・ソースのスケールアウトをして試験を行う
・より強い負荷を与える

 ▼リスト2　Tsungのシナリオファイル例

<?xml version="1.0"?>
<!DOCTYPE tsung SYSTEM "/usr/local/Cellar/tsung/1.5.1/share/tsung/tsung-1.0.dtd" [] >
<tsung loglevel="notice" version="1.0">
 <clients>
 <client host="localhost" use_controller_vm="true" maxusers="2000" cpu="10"/>
 </clients>
 <servers>
 <server host="[server_host]" port="80" type="tcp"></server>
 </servers>
 <load>
 <arrivalphase phase="1" duration="10" unit="minute">
 <users maxnumber="2000" arrivalrate="200" unit="second"></users>
 </arrivalphase>
...（以下略）...

 ▼図13　Tsungの統計レポート表示（公式サイトより）

http://tsung.erlang-projects.org/user_manual/installation.html

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Jan. 2016 - 109

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

 第1特集
あなたにもできる！
ログを読む技術［セキュリティ編］
 第2特集

黒い画面（tmux）の使い方
プロになるためのターミナル活用術

 第3特集
6人の先駆者に訊く
スペシャリストになる方法

2015年7月号

定価（本体1,220円＋税）

 第1特集
Lispより始めよ、されば救われん！
なぜ関数型プログラミングは
難しいのか？
 第2特集
安全な通信を確保する
SSL/TLSの教科書
 短期連載
・AWSで始めよう！　モダンなJavaアプリケーション
	 開発

2015年8月号

定価（本体1,220円＋税）

 第1特集

特講
正規表現・SQL・オブジェクト指向
苦手克服のベストプラクティス

 第2特集

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか

 特別企画
・なぜ俺の提案は通らないのか？

2015年9月号

定価（本体1,220円＋税）

 第1特集
多層防御や感染後対策を汎用サーバに実装
攻撃に強いネットワークの作り方
 第2特集

Webメールの教科書
クラウドサービス利用か？　自社で構築か？

 特別付録
・創刊300号記念　Vim&Emacsチートシート

2015年10月号

定価（本体1,220円＋税）

 第1特集

すいすいわかるHTTP/2
HTTP/1.1から変わること・変わらないこと

 第2特集
攻撃を最前線で防ぐ
ファイアウォールの教科書
 特別企画
・SMB実装をめぐる冒険　File System for Windowsの
 作り方

2015年11月号

定価（本体1,220円＋税）

 第1特集

［決定版］Docker自由自在
実用期に入ったLinuxコンテナ技術

 第2特集
ネットワーク・システム管理の定石
SNMPの教科書
 短期連載
・クラウド時代のWebサービス負荷試験再入門

2015年12月号

定価（本体1,220円＋税）

Webで

購入 ！
家でも

外出先でも

http://www.fujisan.co.jp/product/1535/
http://www.fujisan.co.jp/product/1535/
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

110 - Software Design

　前回まで、ユーザ認証について、その認証方
式を探りました。NTLMSSP認証方式を分析
するにあたり、Type 1 Message、Type 2 Mess

age、Type 3 Messageをそれぞれ調べ、ユーザ
認証のしくみを明らかにしました。
　ユーザ認証ができれば、接続先のサーバの資
源を利用できそうですが、そう簡単にいかない
のがSMBの複雑なところです。「共有リソー
ス一覧を入手」し、「共有リソースのTree IDを
入手」せねばなりません。ユーザ認証の壁の次は、
共有リソースの壁でした。

共有リソース関連コマンドが
見当たらない

　ユーザに共有リソースの名前をクライアント
の画面上で入力してもらえれば簡単なのですが、
やはり自動的に共有リソース一覧をサーバから
取得して提示し、ユーザが選択するだけで済む
ようにしておくべきでしょう。OS XやWin

dowsなど各種OSが当然のように共有リソー
ス一覧を提示してくるので、もちろん方法があ
るはずです。
　しかし、@ITの記事注1にも、Impementing CI

FS本注2にも、そのやり方が掲載されていませ

第5部
相手の資産を把握しろ

んでした。さらに、MS-CIFS仕様書を読んでも、
それらしい記述は見当たりません。インターネッ
トで検索しようにも、「SMB shared resource

list」といったキーワードで検索してみましたが、
それらしい情報はヒットしませんでした。
SMB_SHARED_RESOURCE_LISTというコマンド
があることを期待しましたが、残念ながらそれ
らしいコマンドは存在しませんでした。
　数時間ほど探しに探したのですが、まったく
情報が得られない状況でした。せっかくユーザ
認証という大きな壁を超えたのに、敵はもう1

つ大きな壁で行く手を阻んできました。

困ったときのパケットキャプチャ

　探しても情報が見つからなかった場合は、目の
前に流れている正解を解析するしかありません。
そう、パケットキャプチャの出番です。今回の場
合は、SMB1/CIFSで定義されているコマンドの
中にはズバリそのものがなかったため、NTLM

SSP認証方式のときと同様に、きっとサブプロト
コル的なものが適用されている予感がします。そ
んなときは、tcpdumpコマンドではなく、Wire

sharkが有益な情報をもたらしてくれそうです。
　Wiresharkを起動しておいて、SMB1/CIFS

プロトコルの設定を施しておいたSambaサーバ
にMac OS XのFinderから接続して、送受信さ

SMB 実装を
めぐる冒険
探す、調べる、ソフトを作る喜び
File System for Windowsの作り方

第 3 回

注1） http://www.atmarkit.co.jp/ait/articles/0410/29/news103.html
注2） Implementing CIFS（http://www.amazon.co.jp/dp/013047116X）もしくは Implementing CIFS―ubiqx.org（http://ubiqx.org/cifs/）

Author 田中 洋一郎（たなか よういちろう） 　 Blog https://www.eisbahn.jp/yoichiro Twitter @yoichiro

こんにちは。よういちろうです。「Windows共有フォルダをChromeOSのファイルアプリにマウン
トする」ことができるChromeアプリを開発してリリースしました。これを開発するためには、SMB
（Server Message Block）と呼ばれるプロトコルを理解し、SMBプロトコルを話すクライアントコード
を JavaScriptで書くことが必要でした。これは「File System forWindows」という名前でChromeウェ
ブストアにて無料で公開していますので、Chromebookを持っている方はぜひ使ってみてください。
今回は、短期連載2回目に引き続き探偵風に開発過程を紹介します。

http://www.atmarkit.co.jp/ait/articles/0410/29/news103.html
https://www.eisbahn.jp/yoichiro
http://www.amazon.co.jp/dp/013047116X
http://ubiqx.org/cifs/

110 - Software Design Jan. 2016 - 111

File System for Windows の作り方 第3回

れるパケットを「盗聴」しまし
た。その結果、共有リソース
一覧を取得するために、予想
していたよりも多くのメッセー
ジが送受信されていることが
わかりました。具体的には次
の手順になります。

① SMB_COM_TREE_CONNECT_ANDXコマンドを
使って、"\\[server_name]\IPC$" という
共有リソースに接続し、その結果のTree ID
を入手する

②SMB_COM_NT_CREATE_ANDXコマンドを使っ
て、"\srvsvc"をオープンし、その結果の
FID値を入手する

③SMB_COM_TRANSACTIONコマンドを使って、名
前付きパイプを用いたDCE/RPCプロトコル
による先ほど入手したFIDへのバインドを行う

④SMB_COM_TRANSACTIONコマンドを使って、名
前付きパイプを用いたDCE/RPCプロトコル
によるNetShareEnumAllオペレーションをサー
バに送信し、共有リソース一覧を入手する

　簡単に言うと、図1のように「SMBプロトコル
上で、DCE/RPCプロトコルを使って“\\[ser
ver_name]\IPC$\srvsvc”に対する名前付きパ
イプで共有リソース一覧取得を要求する」という
内容です。SMBプロトコルは通信のための単な
るペイロードであり、実際に行われていることは
RPC（Remote Procedure Call）です。つまり、共
有リソース一覧の取得に関してはDCE/RPC on

SMBという多段プロトコルであり、SMBプロト
コルの知識だけでは足りない、ということです。

DCE/RPCを勉強せずにDCE/
RPCする

　一般的にRPCは、利用したいプログラミン
グ言語に応じたStubおよびSkeletonというコー
ドを準備（ほとんどの場合 IDLから自動生成さ
れます）することで、通信内容をまったく知ら
なくても通信処理がコーディング可能になりま
す。DCE/RPCについても本来はSDKなどを

使って扱うものなのですが、今回の場合は
DCE/RPCでの通信に必要なバイト列を自分
で作って、それをSMBプロトコルのメッセー
ジ内に含める必要があります。
　「DCE/RPCは複雑なことが有名」というこ
とがWikipediaに書かれていて、DCE/RPCを
勉強して把握することは最初から諦めました。
では、どうしたら良いでしょうか？
　パケットキャプチャした結果を注意深く見ていっ
たところ、あることに気がつきました。それは、

「動的に変更しなければならない値は、そう多
くない」

ということです。DCE/RPCを成立させるため
に必要な値がほとんどを占めていて、それらは
クライアントやサーバの動作環境に依存せず固
定値で良さそうです。そして、パケットキャプチャ
から得られた内容に基づいて、動的に変化させ
なければならない値の指定方法を導き出すこと
ができれば……、やりたいことを満たすことは
できそうだと考えました。ユーザ認証のための
処理ほどすべてを把握する必要はなさそうなので、
この戦略で十分開発できそうな予感がしました。
　事実、この戦略は正しかったのです。最終的
に、さほど苦労することなく、共有リソース一
覧の取得に成功しました。

IPC$への接続とTree IDの入手

　では、具体的なメッセージのやりとりの説明
に入っていきましょう。最初に行うことは、
IPC$リソースへ接続し、Tree IDをサーバか
ら入手することです。

Client
Server

Tree ID FID

Named Pipe ¥¥server¥IPC$¥srvsvc

DCE/RPC

SMB

 ▼図1　共有リソース一覧取得のための概念

112 - Software Design

SMB 実装をめぐる冒険
探す、調べる、ソフトを作る喜び

　IPC$（InterProcess Communication）とは、
「そのサーバが外部に公開している共有リソー
ス（ファイルやプリンタなど）一覧の取得などを
行うためのプロセス間通信（IPC）に使用される
Windowsの機能」であり、Windows系OSやSa

mbaでは必ず IPC$を共有リソースの1つとし
て公開しています。クライアントは、SMB_

COM_TREE_CONNECT_ANDX（0x75）メッ
セージを使って、この IPC$共有リソースに接
続を行います。サーバにて接続処理が成功すれ
ば、その接続を示すTree ID値がレスポンスと
して返ってきます。
　SMB_COM_TREE_CONNECT_ANDXリクエストで
使われるSMB_PARAMETERおよびSMB_DATAの
構造は、リスト1のようになります。
　先ほどすでにユーザ認証を行っていますので、
SMB_COM_TREE_CONNECT_ANDXリクエストで
のパスワードはなし（0x00値のみ）で大丈夫で
す。ここで注意すべき点としては、pathと
serviceの文字コードの違いです。

・path：NULL終端文字付きUNICODE文字列
・service：NULL終端文字付きASCII文字列

　serviceには“?????”を指定します。「え？　5

文字であれば何でも良いという意味？」と思う
かもしれませんが、違います。クエスチョンマー
ク5つです。これは「任意のリソースまたはサー
ビスにマッチする」という指定になります。
　サーバから返されるSMB_COM_TREE_CONNECT_
ANDXレスポンスには、もちろんSMB_PARAMETER
やSMB_DATAにいくつか値が含まれているのです
が、それらはさほど重要ではありません。ヘッダ
に含まれるnt_status値が0（エラーなし）であれ
ば、同じくヘッダに含まれるtree_id値を入手
して、SMB_COM_TREE_CONNECT_ANDXメッセー
ジでの目的は達成です。このtree_id値を使って、
IPC$共有リソースにアクセスできます。

/srvsvcのオープンとFIDの入手

　IPC$のTree IDを入手したあとは、その
IPC$共有リソースの中にある“/srvsvc”とい
う名前付きパイプをオープンし、そのFID値
を得ます。これには、SMB_COM_NT_CREATE_
ANDX（0xa2）コマンドを使います。このコマン
ドのメッセージは、既存のファイルをオープン
してFID値を返す働きが基本ですが、もし指
定されたファイル名のファイルが存在しなかっ
たときに新規作成を指示したりできます。また、
相手がファイルではなく名前付きパイプであっ
たとしても、ファイルと同じように扱うことが
できるようになっています。
　そのため、SMB_COM_NT_CREATE_ANDXリクエ
ストが持つ値の数は、少し多めです。最初このメッ
セージに出会ったときは「うわ、面倒そうだな」と
思ったのですが、よく見ていくと、ファイルを作
成する際に必要な設定値としては当たり前のもの
ばかりでした。SMB_COM_NT_CREATE_ANDXリク
エストの構造はリスト2のようになります。
　desired_accessは、オープンしたファイル
や名前付きパイプに対して行われる可能性があ
る処理を指定するためのフラグ値です。本来は
最低限の指定に留めるべきですが、次のように
ほぼフルセットとなる値を指定しておけば問題
はないでしょう。

SMB_PARAMETER {
 UCHAR word_count; 　　　　// 8
 words {
 struct {
 UCHAR command; 　　　 // 0xff
 UCHAR reserved; 　　　// 0x00
 USHORT offset; 　　　 // 0x0000
 } ANDX;
 USHORT flags; 　　　　　// 0x0000
 USHORT password_length; // 0x0001
 }
}
SMB_DATA {
 USHORT byte_length;
 bytes {
 ANY password; // 0x00
 UCHAR[0 or 1] padding; // この場合はなしでOK
 ANY path; // "\\[server_name]\IPC$"
 ANY service; // "?????"
 }
}

 ▼リスト1　SMB_COM_TREE_CONNECT_ANDX
　　　　 リクエストの構造

112 - Software Design Jan. 2016 - 113

File System for Windows の作り方 第3回

・FILE_READ_DATA (0x000001)
・FILE_WRITE_DATA (0x000002)
・FILE_APPEND_DATA (0x000004)
・FILE_READ_EA (0x000008)
・FILE_WRITE_EA (0x000010)
・FILE_READ_ATTRIBUTES (0x000080)
・FILE_WRITE_ATTRIBUTES (0x000100)
・READ_CONTROL (0x020000)

　“IPC$/srvsvc”に対するSMB_COM_NT_CREATE_
ANDXリクエストで重要な値は、file_nameおよび
create_dispositionです。file_nameには“\sr
vsvc”を、create_dispositionにはFILE_OPEN
を指定します。もちろん、ヘッダにuser_id値お
よび先ほど入手したtree_id値を指定するのも忘
れてはなりません。
　サーバがリクエストの内容に基づいて正しく

処理できれば、“\srvsvc”に対するFID値が発
行され、クライアントに返却されます。ヘッダ
にはFIDを入れる場所がないので、クライアン
トはSMB_COM_NT_CREATE_ANDXレスポンスの
内容からFID値を取り出す必要があります。
SMB_COM_NT_CREATE_ANDXレスポンスの構造
は、リスト3になります。SMD_DATAはありませ
ん。

DCE/RPCによるFIDへのバインド

　“\\server\IPC$\srvsvc”に対応するTree

ID値およびFID値を得ることができました。
これでやっと関所と会話することができます。
その会話方法は、先ほど紹介したDCE/RPC

プロトコルです。
　DCE/RPCプロトコルは、SMBプロトコル
のSMB_COM_TRANSACTION（0x25）メッセージに
よって送受信されます。DCE/RPCプロトコ
ルの前に、この SMB_COM_TRANSACTIONメッ
セージの内容を見ていきましょう。
　SMB_COM_TRANSACTIONメッセージは、まさに
名前付きパイプやプロセス間通信など、サブプロ
トコルを扱いたいときに使用するメッセージです。

SMB_PARAMETER {
 UCHAR word_count;
 words {
 struct {
 UCHAR command; // 0xff
 UCHAR reserved; // 0x00
 USHORT offset; // 0x0000
 } ANDX;
 UCHAR reserved; // 0x00
 USHORT name_length;
 UINT flags; // REQUEST_OPLOCK(0x02)ｭ
| REQUEST_OPBATCH(0x04)
 UINT root_directory_fid; // 0
 UINT desired_access; // 0x2019f
 ULONG allocation_size; // 0
 UINT ext_file_attributes; // EXT_FILE_ATTR_ATTR_ｭ
NORMAL(0x80)
 UINT share_access; // READ(0x01) |
WRITE(0x02) | DELETE(0x04)
 UINT create_disposition; // FILE_OPEN(0x01)
 UINT create_options; // NON_DIRECTORY_ｭ
FILE(0x40)
 UINT impersonation_level; // SEC_IMPERSONATE(0x02)
 UCHAR security_flags; // CONTEXT_TRACKING(0x01)
| EFFECTIVE_ONLY(0x02)
 }
}
SMB_DATA {
 USHORT byte_count;
 bytes {
 ANY file_name; // Null-terminated UNICODE
 }
}

 ▼リスト2　SMB_COM_NT_CREATE_ANDXリクエスト
 の構造

SMB_PARAMETER {
 UCHAR word_count; // 68
 words {
 struct {
 UCHAR command; // 0xff
 UCHAR reserved; // 0x00
 USHORT offset; // 0x00
 } ANDX;
 UCHAR op_lock_level;
 USHORT fid; // FID
 UINT create_disposition;
 ULONG create_time; // SMBタイムスタンプ
 ULONG last_access_time; // SMBタイムスタンプ
 ULONG last_write_time; // SMBタイムスタンプ
 ULONG last_change_time; // SMBタイムスタンプ
 UINT ext_file_attributes;
 ULONG allocation_size; // Disk上のサイズ
 ULONG end_of_file; // 実際のサイズ
 USHORT resource_type;
 USHORT nm_pipe_status;
 UCHAR directory; // Directory=1, Otherwise=0
 }
}

 ▼リスト3　SMB_COM_NT_CREATE_ANDXレスポ
 ンスの構造

114 - Software Design

SMB 実装をめぐる冒険
探す、調べる、ソフトを作る喜び

そのため、サブプロトコルのバイ
ト列を汎用的に運搬できるように
設計されています。SMB_COM_
TRANSACTION は「trans_setup、
trans_parameter、trans_
data」という3つのペイロードが
あります。サブプロトコルごとに、
3つのうちのどれにどんな情報を
持たせるかが異なっています。
また、3つのうちの1つだけでは
なく、複数のペイロードを必要と
するサブプロトコルも珍しくあり
ません。
　SMB_COM_TRANSACTIONリク
エストの構造は、リスト4のよ
うになります。
　trans_parameterおよびtran
s_dataについては、それぞれ「全
部のバイト数は○○だけど、今
回送ったのは△△」という指定が
できるようになっていて、送りた
い量が多い場合に複数のリクエ
ストに分けて送信ができます。
しかし、2回目以降は別のコマン
ド（SMB_COM_TRANSACTION_
SECONDARYなど）を使う場合があ
り、注意が必要です。
　SMBプロトコル側の説明がで
きたところで、DCE/RPCの話
に移りましょう。バインドのた
めのDCE/RPCリクエストは、
trans_dataと trans_setupを
使って送信されます。その構造
は、リスト5のようになります。
　リスト5を見てわかるとおり、
重要な値はpacket_type、fun
ction、そしてfidくらいです。
他の値は、DCE/RPCの都合で
必要となる値ばかりに見えます。
頑張ってDCE/RPCを勉強する

SMB_PARAMETER {
 UCHAR word_count;
 words {
 USHORT total_parameter_count; // Parameterの総サイズ
 USHORT total_data_count; // Dataの総サイズ
 USHORT max_parameter_count; // 1リクエストあたりのParameterの最大長
 USHORT max_data_count; // 1リクエストあたりのDataの最大長
 UCHAR max_setup_count; // Setupの最大長
 UCHAR reserved; // 0
 USHORT flags; // 0
 UINT timeout; // サーバのタイムアウト時間(ms)
 USHORT reserved2; // 0
 USHORT parameter_count; // Parameterのサイズ
 USHORT parameter_offset; // Parameterの開始位置
 USHORT data_count; // Dataのサイズ
 USHORT data_offset; // Dataの開始位置
 UCHAR setup_count; // Setupのサイズ
 UCHAR reserved3; // 0
 ANY trans_setup; // setup_count分のバイト列
 }
}
SMB_DATA {
 USHORT byte_count;
 bytes {
 ANY name; // Null-terminated UNICODE文字列
 UCHAR[0...3] padding1; // 4バイト境界に合わせるためのパディング
 ANY trans_parameter; // parameter_count分のバイト列
 UCHAR[0...3] padding2; // 4バイト境界に合わせるためのパディング
 ANY trans_data; // data_count分のバイト列
 }
}

 ▼リスト4　SMB_COM_TRANSACTIONリクエストの構造

name = "\PIPE\";
trans_setup {
 USHORT function; // TransactNmPipe (0x0026)
 USHORT fid; // FID
}
trans_data {
 UCHAR[2] version; // 5.0 (0x0500)
 UCHAR packet_type; // BIND (0x0b)
 UCHAR packet_flags; // Last frag (0x02) | First frag (0x01)
 USHORT data_representation; // Little Endian (0x00000010)
 USHORT frag_length; // trans_dataの長さ
 USHORT auth_length; // 0
 UINT call_id; // 1
 USHORT max_xmit_frag; // 4280
 USHORT max_recv_frag; // 4280
 UINT assoc_group; // 0
 UCHAR num_ctx_items; // 1
 USHORT context_id; // 0
 UCHAR num_trans_items; // 1
 UCHAR[16] interface; // SRVSVC UUID (4b324fc8-1670-01d3-127ｭ
8-5a47bf6ee188)
 UCHAR[2] interface_version; // 3.0 (0x0300)
 UCHAR[16] transfer_syntax; // 8a885d04-1ceb-11c9-9fe8-08002b104860
 UINT ver; //0x00000002
}

 ▼リスト5　バインドのためのDCE/RPCリクエストの構造

114 - Software Design Jan. 2016 - 115

File System for Windows の作り方 第3回

よりも、Wiresharkのパケット
キャプチャの結果から重要な個
所のみを把握したほうが理解し
やすかった、という戦略を取っ
た理由がわかっていただけたと
思います。
　SMB_COM_TRANSACTIONレスポ
ンスも、SMB_COM_TRANSACTION
リクエストとほぼ同じ構成です。
つまり、trans_setup、trans_
parameter、trans_dataの3つ
のペイロードを持っています。
バインド結果は、SMB_COM_TRAN
SACTIONレスポンスのtrans_
dataに格納されてサーバから返
却されます。そのtrans_dataに
は、DCE/RPCプロトコルにお
けるサーバからのレスポンスが
格納されていて、次の値をチェッ
クすることでバインドがうまくいっ
たかどうかを確認できます。

・packet_type が Bind_ack
（0x0c）であること

・44バイト目のack_resultがAcceptance（0x00）
であること

DCE/RPCによる
共有リソース一覧の取得

　やっと準備が整いました。共有リソース一覧
の取得要求をサーバに出すことができます。再
度DCE/RPCプロトコルを使って、“\\server\
IPC$\srvsvc”に対して名前付きパイプで共有リ
ソース一覧を取得します。バインドと同じように、
SMB_COM_TRANSACTIONメッセージとDCE/

RPCプロトコルの組み合わせを使います。
　共有リソース一覧の取得要求は、先ほどと同
じように、SMB_COM_TRANSACTIONメッセージ
の trans_setupおよび trans_dataの 2つの
ペイロードを使用します。trans_setupに指
定する内容は、バインド時のものと同じです。

それに対して、trans_dataの内容が少し異なっ
てきます。共有リソース一覧取得のための
DCE/RPCリクエストの構造は、リスト6のよ
うになります。
　今までで最も値が多いメッセージかもしれま
せんが、重要と思われる値は、次の3つだけです。

・�packet_type：RPCの処理要求を示すRequest
（0x00）値

・�opnum：RPCの処理種別を示す
NetShareEnumAll（0x000f）値

・�server_unc：サーバ名を示すUNICODE文字
列（“\\[server_name]\”）

　たったこれだけの情報を渡すために、上記の
ようなメッセージを作らなければなりません。
いかにRPCの内部で複雑なやりとりが行われ
ているかが、バインドのときよりもよくわかり

name = "\PIPE\";
trans_data {
 UCHAR[2] version; // 5.0 (0x0500)
 UCHAR packet_type; // Request (0x00)
 UCHAR packet_flags; // Last frag (0x02) | First frag (0x01)
 USHORT data_representation; // Little Endian (0x00000010)
 USHORT frag_length; // trans_dataの長さ
 USHORT auth_length; // 0
 UINT call_id; // 2
 UINT alloc_hint; // alloc_hintを含むここから最後までの長さ
 USHORT context_id; // 0
 USHORT opnum; // NetShareEnumAll (0x000f)
 struct {
 UINT referent_id; // 0x00000001
 UINT max_count; // ASCIIでのserver_uncの文字数
 UINT offset;
 UINT actual_count;
 ANY server_unc; // Null-terminated UNICODE文字列
 } PointerToServerUnc;
 struct {
 UINT level; // 0x00000001
 } PointerToLevel;
 struct {
 UINT ctr; // 0x00000001
 UINT referent_id; // 0x00000001
 UINT count; // 0x00000000
 UINT pointer_to_array; // 0x00000000
 } PointerToCtr;
 UINT max_buffer; // 0xffffffff
 struct {
 UINT referent_id; // 0x00000001
 UINT resume_handle; // 0x00000000
 } PointerToResumeHandle;
}

 ▼リスト6　共有リソース一覧取得のためのDCE/RPCリクエストの構造

116 - Software Design

SMB 実装をめぐる冒険
探す、調べる、ソフトを作る喜び

ます。実際には、上記3つ
以外の値は、ほぼ変更なし
でサーバは動作します。
　SMBプロトコルのヘッ
ダに user_idおよび tree
idをセットし、trans
setupにはバインド時と同
じ内容を、そして trans_
dataに上記の内容をセッ
トしてサーバに送信すると、
user_idで指定したユーザ
がアクセス可能な共有リ
ソース一覧をサーバが返し
てきます。これがまた……
複雑かつ余計な値がどっさ
り入ったレスポンスです。
本質的ではない内容がリク
エスト以上に多く含まれて
います。
　関所に設けられた砦が突
破されてしまった今、敵は
最後の抵抗として「これでも
食らえ！」と情報量で圧倒し
てきます。しかし、ここま
で複雑かつ難解なSMBプ
ロトコル、NTLMSSP認証
方式、そしてDCE/RPCプ
ロトコルを見てきた僕にとっ
ては、恐るるに足りません。
　では、共有リソース一覧
がどのようにサーバから渡っ
てくるか、詳細を見ていき
ましょう。共有リソース一
覧は、SMB_COM_TRANSACTIONのtrans_dataに
格納されています。リスト7は、そのtrans_
dataに含まれるDCE/RPCレスポンスの構造で
す。
　packet_typeがResponse (0x02)になって
いること以外は、前半はリクエスト時の内容と
ほとんど変わりません。後半は共有リソースの

名前、種別、そしてコメント文字列がセットさ
れています。リスト7では便宜上種別と名前、
コメントを別の構造体（struct）で記載しました
が、実際には連続したバイト列です。
　TYPE_INFOとNAME_COMMENTの2つに分けま
したが、どう考えても「名前、種別、コメント」
で共有リソース1つを構成するはずなのに、種

trans_data {
 UCHAR[2] version; // 5.0 (0x0500)
 UCHAR packet_type; // Response (0x02)
 UCHAR packet_flags; // Last frag (0x02) | First frag
(0x01)
 USHORT data_representation; // Little Endian (0x00000010)
 USHORT frag_length; // trans_dataの長さ
 USHORT auth_length; // 0
 UINT call_id; // 2
 UINT alloc_hint; // NetShareEnumAllすべての長さ
 USHORT context_id; // 0
 UCHAR cancel_count; // 0x00
 UCHAR[0 or 1] padding;
 struct {
 UINT level; // 0x00000001
 } PointerToLevel;
 struct {
 UINT ctr; // 0x00000001
 UINT referent_id; // サーバで生成された値
 UINT count; // 共有リソースの個数
 UINT referent_id; // サーバで生成された値
 UINT max_count; // 共有リソースの個数
 } PointerToCtr;
 TYPE_INFO[count] types; // 共有リソースの種別値などの配列
 NAME_COMMENT[count] names_and_comments; // 共有リソースの名前およびコメントの配列
 UINT total_entries; // 共有リソースの個数
 UINT pointer_to_resume_handle; // 0x00
 UINT windows_error; // エラーコード
}

struct {
 UINT name_referent_id;
 UINT type; // 共有リソースの種別
 UINT comment_referent_id;
} TYPE_INFO;
struct {
 UINT name_max_count; // 共有リソース名の長さ
 UINT name_offset; // 0
 UINT name_actual_count; // 共有リソース名の長さ
 ANY name; // 共有リソース名のNull-terminated
UNICODE文字列
 UCHAR[0...3] padding;
 UINT comment_max_count; // 共有リソースのコメントの長さ
 UINT comment_offset; // 0
 UINT comment_actual_count; // 共有リソースのコメントの長さ
 ANY comment; // 共有リソースのコメントのNull-
terminated UNICODE文字列
 UCHAR[0...3] padding;
} NAME_COMMENT;

 ▼リスト7　共有リソース一覧を持つDCE/RPCレスポンスの構造

116 - Software Design Jan. 2016 - 117

File System for Windows の作り方 第3回

別を共有リソースの個数分だけ並べたあとに、
あらためて名前とコメントを共有リソースの個
数分並べる、という謎の構造になっています。
概念的には、図2のようになっています。
　typeは、共有リソースの種類に応じて値が変
化します。具体的には、表1に示した値の組み
合わせとなります。
　たとえば、一般的なファイルやディレクトリ
を持つ共有リソースであれば、STYPE_DISKTREE
が type値となるでしょう。それに対して、先ほ
どtree_idを取得したIPC$であれば、STYPE_
IPCと STYPE_HIDDENの論理和を取った値
（0x80000003）がtype値となるでしょう。
　これで共有リソース一覧が取得できるようにな
りましたが、本当はこれだけでは不十分です。1

回のレスポンスに共有リソース一覧が収まらなかっ
た場合に、サーバはnt_statusとしてSTATUS_
BUFFER_OVERFLOW（0x80000005）を返すことで、
クライアントに「もっと情報あるよ」と伝えてきま
す。続きの共有リソース一覧は、SMB_COM_
READ_ANDX（0x2e）メッセージによって取得する
ことになります。
　さあ、これで敵が持っている関所をすべて突
破できました。敵の資産にいよいよアクセスで
きます。ここまでくれば、ユーザ認証結果の権
限の範囲内で、ディレクトリやファイルを自由
に作成したり編集したりすることが可能になり
ます。大きな2つの壁であった「ユーザ認証」と

「共有リソース一覧取得」を超えました。もう敵
は丸裸も同然、勝ったも同然です。

ひどかったエラーコード

　ここで1つ愚痴を言うならば、共有リソース
一覧取得を試行錯誤していた中で、最も辛くき
つかったこと、それは「nt_statusとして
INVALID_PARAMETER（0xC000000d）しか返っ
てこなかったこと」でした。
　SMBプロトコルで規定された範囲内におい
て何か間違っていたのであれば、その原因は
nt_status値によってある程度推測できます。
しかし、DCE/RPCプロトコルの規定範囲内
で何か間違っていた場合、SMBプロトコルと
しては「サブプロトコルの中で何か間違いが起
きた＝サブプロトコルのバイト列のどこかが変」
程度の認識となり、結果として INVALID_
PARAMETERしか返してくれない、というレス
ポンス内容になります。これだけ言われても、
何がおかしかったのかさっぱりわかりません。
　結局、自分が送ったリクエスト内容と、OS

Xなどの「正しく動いているクライアント」の通
信内容をパケットキャプチャして比較し、ひと
つひとつ値をチェックしていきながら原因を探す、
ということを日々行うしかありませんでした。
　何かプロトコルを実装するには、とにかく「根
気」が必要です。しかし、「辛いな」と思ってい
てはストレスが溜まる一方です。とくに仕様書
がしっかりとそろっていない場合には、最初か
ら「パケットキャプチャを楽しむ」という前向き
な気持ちを持つことが大事だと痛感しました。
　次号は解決編となります。そしてまとめて大
団円へ！ﾟ

type（1）

type（2）

…
…

name（1）
comment（1）

name（2）
comment（2）

 ▼図2　共有リソースの構造

定数 値 意味
STYPE_DISKTREE 0x00000000 Disk Drive

STYPE_PRINTQ 0x00000001 Printer Queue

STYPE_DEVICE 0x00000002 Communication Device

STYPE_IPC 0x00000003 Interprocess Communication

STYPE_TEMPORARY 0x40000000 Temporary Resource

STYPE_HIDDEN 0x80000000 Hidden Resource

 ▼表1　共有リソースの種類

118 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

　Androidは常に進化しています。2015年10

月に、Androidの最新バージョン6.0である「マ
シュマロ（Marshmallow）」が正式に公開されま
した。Androidのコミュニティもまた、進化し
ています。最も普及したスマートフォンOSで
あるAndroidは、アプリケーションを開発する
人、技術に興味を持つ人など、多くの人の注目
を集めています。これらの人々が行う仕事や学
校の枠を超えたコミュニティ活動により、より
楽しくて面白い、エキサイティングなAnd

roidの世界が作り出されています。
　今号から始まるこの連載では、このような「進
化を続ける新しいAndroid」の情報を紹介する
とともに、これを活用したさまざまな技術を、
日本Androidの会で活躍するメンバーが中心と
なり紹介します。一緒になって、アプリケーショ
ン（以下、アプリと省略することもあります）や
モノを「ともにつくりだして」いきましょう。

Android 6.0登場

今回のバージョンアップは
「ファンを増やす?」

　前述のとおり、Androidの最新バージョンで
ある「Marshmallow」が登場しました。Nexus 5x

とNexus 6Pという最新OS搭載の端末も発売
されました（写真1）。また、最新の開発環境で
あるAndroid Studio 2.0が続いて11月に公開

されています。このMarshmallowを一言で言
うと「より便利で手放せない存在」になるバー
ジョンです（図1）。
　Googleとしては、今回のバージョンは使う
人の「使い心地の良さ」に響く機能を集中して拡
張しています。AndroidのユーザはAppleの
iPhoneに比べると、「信者」と呼ばれる人は少
ないように思います。使いやすくすることで
Androidのファンとなるユーザを増やしたい、
これが今回のバージョンの意図でしょう。多く

新連載

第1回 Android 6.0 Marshmallow誕生とコミュニティ

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

嶋 是一（しま よしかず）
NPO法人日本Androidの会
理事長

 ▼図1　Marshmallowバージョンとは

 ▼写真1　Marshmallow対応端末
　　　 （左：Nexus 5x、右：Nexus 6P）

Androidは世界で出荷される8割のスマートフォンに搭載※される、事実上
スマートフォンの標準OSです。このOS上で動くアプリケーションを開発す
ることは、自分のアイデアを世界に発信し、最も多くのスマートフォン上で
動かしてもらえる可能性がある行為です。このAndroidの最新情報と、そ
れを取り巻くコミュニティを知って、魅力的な開発をはじめませんか?

※IDC Worldwide Mobile Phone Tracker, August 7, 2013

http://www.android-group.jp/

Jan. 2016 - 119118 - Software Design

Android 6.0 Marshmallow誕生とコミュニティ第1回

の人が手放せなくなるマシュマロとなるべく
Androidが進化したのです。確かにマシュマロ、
食べると美味しいです。少しあぶって食べると、
離れられなくなるようなおいしさです。しかし、
注意が必要です。100gあたり326kcalもあり、
継続的に食べ続けると、どうやら健康的に問題
を来してしまいそうですが……。これは冗談と
して、Android 6.0で搭載した機能を紹介しま
しょう。

安心して使えるための機能

▶省電力待機機能「Doze」

　スマートフォンをいつでも使えるように持ち
歩くためには、電池持ちが良くなければなりま
せん。にもかかわらず、フィーチャーフォン（二
つ折りのガラケーに代表される携帯電話）に比
べて、Androidのアプリは電池食いなものが多
く、どうしても電池持ちの時間が延びません。
電池食いのアプリが多くなる理由には、─た
とえそれが自分以外のアプリの動作や端末全体
の省電力を犠牲にするとしても─自分のアプ
リには電池を食ってしまうような機能やパワー
をふんだんに使うことで利便性を上げ、高評価
を得ることで多くの人にダウンロードさせたい
と思う開発者の心理もありそうです。こればか
りは、「みんなでお行儀よく」にはならない状況
が続いていました。
　省電力の取り組みはAndroid 5.0から「プロ
ジェクトボルタ」にて行われており、アプリご
との動作状況や電池消費量が確認できるように
なっています（図2）。これにより、電池を消費
しすぎているアプリを発見することができ、利
用者が発見したときにはアンインストールの処
置などを判断できるようにしていました。これ
はあくまでも開発者の改善や、利用者の判断に
委ねているだけでした。
　この野放しを改めて、Android 6.0からは
「Doze（ドーズ）」機能が搭載されました。もっ
と積極的にAndroid OSが省電力に動作するよ

うになったのです。この機能はAndroid 6.0で
動作するアプリケーションすべてに影響します。
ソース修正の必要なく機能は有効になりますが、
開発者は正しく動作することを確認する必要が
あります。
　これまでの一般的な動作として、ユーザの操
作がなくなり一定時間経つと、画面が消灯して
黒くなります。消えることで、不使用時の無駄
なディスプレイ電力を節約できます。さらに画
面が消えた状態では、とくに処理するもの（ユー
ザ操作やタイマーによるアプリの処理、電話着
信など）がない場合、CPUやTX/RX（電波の送
受信回路）などもオフにして、「より高い省電力
の状態」に移行します。この状態が長ければ長
いほど、電池の持ちが良くなります。
　しかし現実には、黒く消えた画面の裏でもメッ
センジャー系のSNSアプリなど、数秒に一度
ネットワークの確認を行うものもあり、期待し
たほどは端末が「より高い省電力の状態」に入れ
ません。もちろんアプリ側も電池食いがばれる
と評価が悪くなる可能性があるため、省電力を
考慮した設計がされてきています。しかし、定
期的にネットワークを確認するアプリが複数入っ
ていると、どうしても効果的にネットワークの
アクセス頻度を減らすことができませんでした。
　Dozeモードとは「寝ている状態」です。端末
の操作がなくなり、充電しておらず、画面が暗
く（スクリーンオフ）なると、一定時間でDoze

モードに入り「より高い省電力の状態」なります
（図3）。これまでのAndroidではこの状態で、

 ▶図2　
アプリの電池消費
確認画面

120 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

断すれば、インストールを中止させることがで
きました。しかし多くのユーザは、内容を確認
せずに「許可して」インストールしてしまい、セ
キュリティの脅威にさらされていました。
　これを改善するために、センシティブなパー
ミッションだけは、実際にアプリがデータにア
クセスしたり、センシティブな動作をするとき
に許可を求めるようになりました。たとえば、
アプリが実際に電話を発信する直前に「電話発
信（CALL_PHONE）」の許可を求められます。
カレンダー、カメラ、電話帳、マイク、通話履
歴、SIP、SMS、センサー情報、外部ストレー
ジの利用などが、このような扱いになります。
　会社で配布されるAndroid端末を、会社のカ
レンダー（スケジュール）と同期させている人も
いると思います。あるいは他人に絶対知られた
くない予定を管理している人もいるでしょう。
旅行宿泊予定アプリや、グルメ予約アプリのよ
うな第三者のアプリからカレンダー同期を要求
され、中身が読まれてしまうのを、これまで（利
用断念以外に）防ぐ方法がありませんでした。
この実行時パーミッションのしくみが加わった
ことで、個人情報を利用するアプリをより安心
して使えるようになります。詳細の動作につい
ては次回の本連載で紹介予定です。

▶アプリケーションの自動バックアップ

　Android端末を乗り換えたり、端末のオール
リセットを行って問題になるのは、端末内部情
報の消失です。多くのデータはクラウド側にあ
るため、Gmailやスケジュールデータなどで問
題になることは少ないでしょう。また、端末に
インストールしてあるアプリ本体もバックアッ
プと復元が可能です。しかし“アプリのデータ
領域”は対象外でした。Android 6.0からは、こ
の領域もバックアップできるようになりました。
ただし25MB上限で、ユーザのGoogle Drive

の領域を用いるという制限があります。これに
より、アプリ内部の設定や、一部のゲームのス
コアなどもバックアップ可能になります。

アプリからネットワークなどの処理要求がある
と、都度「より高い省電力の状態」を解除して処
理を行っていました。しかしAndroid 6.0の
Dozeモードでは、アプリから処理を要求され
ても動きません。その代わり、一定時間に一度
だけ“メンテナンスウィンドウ”という時間を設
けてあり、このタイミングに合わせて複数の処
理をまとめて行います。終わったら再びDoze

モードに入ります。積極的にアプリを止めるこ
とにより、省電力が実現します。電池の持ちが
通常の2倍程度良くなると言われています。
　たとえば、端末にインストールした2つの
SNSアプリがおのおの10分に1回ネットワー
クに確認していた場合、これまでは平均して5

分に1回端末が起き上がっていた計算になりま
すが、このDozeのしくみによって、10分ごと
のタイミングでまとめて処理するため、10分
に1回のネットワークアクセスで済むようにな
るというわけです。

▶実行時パーミッション

　信頼できないアプリに電話帳のデータの利用
許可を与えると、インターネットに送付して悪
用される危険性があります。これまでのバージョ
ンには、Androidのアプリをインストールする
とき、「パーミッション」という機能でアプリが
利用する機能やデータを提示し、利用者へ許可
を求めるしくみがあります。信頼できないと判

消費電流
スクリーンオフ

無操作状態

メンテナンス
ウィンドウ

経過時間

 ▼図3　Dozeモードの説明

Doze Doze

http://developer.android.com/intl/ja/training/
monitoring-device-state/doze-standby.html からの引用

http://developer.android.com/intl/ja/training/monitoring-device-state/doze-standby.html

Jan. 2016 - 121120 - Software Design

Android 6.0 Marshmallow誕生とコミュニティ第1回

使い勝手の向上

　使い勝手を向上させる改善も行われています。
主なものをかいつまんで紹介します。

▶指紋認証

　Android標準で指紋認証の機能が搭載されま
した。アプリケーションから機能を呼び出して
認証部分の利便性を向上させることができます。

▶アプリとリンクの紐付け

　URLを指定する際に、起動するアプリケー
ションを選択可能になっています。これをドメ
インごとに設定できるようになります。

▶共有の向上

　共有（Share）を行ったときに出てくる共有メ
ニューの中に、特定のアプリのユーザ名やグルー
プなどを表示させることができるようになりま
す。これによって、共有先をより明確にした情
報の共有ができるようになります。

▶音声操作

　Voice Action APIが搭載され、アプリを音
声コマンドで操作できるようになります。

▶アシストAPI

　Android 6.0から搭載されたNow on Tap機
能は、ホームボタンを長押しすることで、現在
起動しているアプリの情報を読み取り、Google

Nowがそのアシスト（検索や電話の促し）を表
示する機能です。この有効／無効や、アシスト
内容を設定するAPIです。

▶テーマ設定

　テーマによる着せ替え機能が搭載されました。

歴史から見た
Android 6.0

　Androidのバージョン名（コードネーム）は、

お菓子の名前で、かつ1文字目がアルファベッ
トの順で決まっています。その、バージョンと
バージョン名称の一覧は表1のとおりです。
　これらのバージョンの歴史から見ると図4の
とおりとなり、いくどもさまざまなプラット
フォームに分裂、統合を繰り返しながら進化を
続けています。とくに「Froyo」から、スマート
フォン版の「Gingerbread」と、タブレット版の
「Honeycomb」にOSが分裂したときがあり、次
のバージョンの「Ice Cream Sandwich」で統合
された経緯があります。そして、この次のバー
ジョンの「Jelly Bean」では、プロジェクトバター
と呼ばれる画面のスクロールの「ぬるぬるさ」を、
iOSのスムーズさに負けないモノにするために
とり組んだバージョンとして有名です。つまり、
統合したバージョンの後、使いやすさや品質向
上を狙ったバージョンといえます。このあと
「KitKat」の時代にAndroid Wearが発表されま

頭文字 バージョン バージョン名称
（コードネーム）

C Android 1.5 Cupcake

D Android 1.6 Donut

E Android 2.0/2.1 Eclair

F Android 2.2 Froyo

G Android 2.3 Gingerbread

H Android 3.0/3.1/3.2 Honeycomb

I Android 4.0 Ice Cream Sandwich

J Android 4.1/4.2/4.3 Jelly Bean

K Android 4.4 KitKat

L Android 5.0/5.1 Lollipop

M Android 6.0 Marshmallow

F G

H

I J K L

L

L

L

M

分裂 分裂統合 品質 品質

 ▼表1　
Androidのバージョンとバージョン名称の一覧

 ▼図4　Androidのバージョンの進化

タブレット

Wear
TV
Auto

122 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

されますか？　開発での悩みを聞いてもらいた
い、壁にぶち当たったときに教えてもらいたい、
自分の作品やアイデアを知ってもらいたい、自
分の活動（Webページでもハッカソンでも）を
宣伝して広めたい。あるいは一人でできないこ
とを実現してみたい、仕事をもらいたい、最新
の情報を知りたい、自分が団体を率いてみたい
（隊長になってみたい）、などでしょうか。
　これらすべて正しく、そして、すべてが正解
というわけではありません。コミュニティへの
参加の動機としてはいずれも正しいですが、コ
ミュニティはすべてを与えてくれるものではあ
りません。自分で活動した分に応じて、それら
のいくつかは満たすことができます。しかし、
動機や期待にかかわらずコミュニティに参画す
ると、それ自体が「楽しいこと」であるのがわか
ります。参加をするだけで、いきなり世界が広
がります。技術の面や、アイデアの面や、時に
は他人の持つユーモアのあるバカさ加減で、自
分の世界を広げてくれます。初めは驚きととも
に、入ってくる情報に戸惑ってしまい、身動き
ができないかもしれません。しかし、そこから
自分の興味の琴線に触れる情報や技術に対して、
少しずつ活動（参画）を始めると、自分のモチベー
ションが上がってきます。つまり楽しくなりは
じめます。そういう心のタッチポイントの機会
に出会えるようになる、それこそがコミュニティ
のご利益ではないかと思っています。
　世の中には数々のコミュニティがあります。
その目的と性格、運営方法により、得られる内
容も、より楽しいと思う方向性も違ってきます。
開発を黙々と行う開発主体のコミュニティもあ
れば、新技術をどんどんと味見のように試して
いく初物好きのコミュニティもあります。いず
れにしても、これらを体験するのに、はじめの
一歩、コミュニティへの参加が必要です。勇気
を出して、その一歩を踏み出してみませんか。

コミュニティ活動

　Androidの進化と共に、Android界隈のコミュ

した。「Lollipop」では、スマートフォンだけで
なく、Wear（スマートウオッチ）、TV（テレビ）、
Auto（自動車）にも対応するOSとして公開され
ました。その背景には、Androidに対抗する
OS陣営が、スマートフォン以外の品目に向け
てプラットフォーム化を広げていたことが一因
となっています。そういう意味で、今回のMar

shmallowは分裂後の、使い勝手向上や品質を
向上するバージョンという位置づけになります。
そのため、安心して使える機能や、ユーザビリ
ティの向上を追加し、「より便利で手放せない
存在に」となっていると思われます。
　なお、アプリをこれまで作成してきた人にとっ
て一番気になるのが、新しいAndroidバージョ
ンでも問題なく動くかどうか、でしょう。基本
的には新しいバージョンでも動作するはずです
が、非推奨のAPIなどを利用していると、新
しいAndroidバージョンでAPIが削除されて、
機能が利用できなくなることがあります。
　Lollipopのときには、かなり多くのAPIが追
加、変更、削除、非推奨となりましたが、今回
のMarshmallowでは、それが半分近くまで少
なくなっていますので、影響は限定的です。し
かし、その中でも気を付けるべきは、Marsh

mallowからHTTPを用いた通信を行うApache

HTTP Client（クラスorg.apache.http）がまる
ごと削除された点です。org.apache.http自体は
Gingerbreadのバージョンから非推奨となって
おり、HttpURLConnectionを使うよう促され
ていました。無視してきた人にツケが回った感
じです。とはいえ、どうしても利用したい場合
は、org.apache.http.legacyのライブラリを利用
するよう、libsに追加することもできます。

開発者とコミュニティ

コミュニティってどんなところ？

　開発者にとってコミュニティは、どんなとこ
ろでしょうか？　またはどのようなことを期待

Jan. 2016 - 123122 - Software Design

Android 6.0 Marshmallow誕生とコミュニティ第1回

ることです。しかし、もっとお勧めするのが、
コミュニティが開催する、勉強会やイベントに
参加することです。こちらの場合は、足を運ぶ
必要があるので、少しだけの時間と勇気が必要
となりますが、Androidの情報を得られるだけ
でなく、コミュニティの雰囲気や、今多くの人
が持っている興味などを知ることもでき、より
楽しむことができると思います。その後に、メー
リングリストやSNSに加わり活動することも
できます。
　コミュニティに参加して面白いのは､ 必ず「日
本一」を目指す人がいるところです。たとえば、
今回のようにAndroidのバージョンが発表され
ると、いち早くその機能を搭載したアプリを公
開する人、または、いち早くその機能の解説記
事を執筆公開する人がいます。そのような人の
情報は、いち早くコミュニティの中を駆け巡り、
その早さの技術力を称えられつつ、周りの人は
その情報で、一般の人より早く技術を学べる場
となっているのです。
　これらAndroidコミュニティの1つである、
日本Androidの会は、会員2万2千人を擁する、
世界でも最大級のAndroidユーザコミュニティ
です注1。活動の多くは、メーリングリストの情
報交換、そして首都圏で実施する毎月の無料勉
強会、そして年2回実施するAndroidの祭典と
なるイベント「Android Bazaar and Conference

（以下、ABC）」の開催です。無料月例の勉強会
は100～200名程度で、毎月テーマを決めて、
平日の夜19時～21時に講演会形式で実施しま
す。ABCは、大学や商業施設の会場を棟ごと
注1） http://www.android-group.jp/

借り、休日1日を使って行うイベントです。
Bazaar（展示会場）とConference（講演会場）の
2つに分かれており、1,000～3,000名程度の来
場者があります（写真2）。前回のABC 2015

Summer注2では、Android Mプレビュー版が登
場した後だったため、技術解説講演があったり、
ドローンを開発するための集中講座が催されま
した。また、会場では数々の IoTデバイスと
Android端末の連携や、Pepperを利用したデ
モストレーション、Android Wearの作成アプ
リ紹介、Beacon技術の展示などにあふれかえり、
おおいに盛り上がりました。
　また全国に37地方支部があり、地域での勉
強会やハッカソンなど、地域に根ざした活動も
行われています。また、ワーキンググループ／
部活動として、テーマを決めて活動しているメ
ンバーもいます。「VR部｣「福祉部」「学生部」「ロ
ボットサミット」「Web部」「Unity部」「アド部」
「Open Beacon Field Trial」「ドローン部」など、
盛り上がっています。
　また、もっと密接にコミュニティに参加した
い人には、コミュニティ自体の運営や、企画さ
れるイベントの実行委員に参加する方法もあり
ます。コミュニティは自身がかかわればかかわ
るほどに、その面白さも情報も増えます。運営
されている方に相談してみるのもよいでしょう。

コミュニティの進化

　Androidのコミュニティも進化しています。
単純にAndroidに関係するコミュニティが増え
ているとか、規模が大きくなっているとか、そ
注2） http://abc.android-group.jp/2015s/

ニティ活動も進化してきました。
Androidも登場して8年となり
ますので、さまざまなコミュニ
ティでの活動が行われてきまし
た。コミュニティ活動に参加す
る一番の方法は、コミュニティ
が公募しているメーリングリス
トや、SNSのグループに加わ

 ▼写真2　ABC 2015 Summer

http://www.android-group.jp
http://abc.android-group.jp/2015s/

124 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

ういう進化の話もありますが、集まる人たちの
持つ興味の進化も顕著です。Androidの創成期
には、アプリ開発方法自体が興味となっており、
とにかく情報が少なく、書籍も数えるほどしか
ありませんでした。また、海外のWebを探し
てもAndroidの情報が集まらないため、実際に
開発したり、新しい機能を試したり、限られた
GoogleやAndroidの情報を持っている人を求
めて、人が集まってきていました。なんといっ
ても、1年に2回も3回もバージョンアップが
繰り返される状況だと、Android開発者として
も食いついて振り落とされまいと必死に情報を
求めるわけです。そのためハンズオンや勉強会
がコミュニティの基本的な活動でした。
　AndroidバージョンのGingerbreadのあたり
から日本の書籍も増え、単純な開発のノウハウ
は共有されるようになりました。ドキュメント
に書かれていない「新しい技術情報」や、
Androidに取り入れられる「目立つ機能」に、多
くの人の興味が向くようなりました。このあた
りから、アイデアで自分のアプリを広く公開す
る人などが出はじめます。そういう、技術の牽
引メンバーたちが、イベントや講演会などで活
躍するようになりました。
　最近の進化傾向としては、Kitkatからは
Android自体のバージョンアップのペースも落
ち着いており、Android自体に搭載される機能
の注目度も以前ほどはなくなってきました。そ
うすると、Android自体の興味だけでなく、そ
の周辺技術の、Web、Beacon、IoTデバイス接
続などに興味が移って来ました。とくに、
Lollipopからは、Android Wear、Android TV、
Android Autoのプラットフォームが登場し、“ス
マートフォンのAndroid”ではない領域の興味
が大きくなっています。コミュニティはこのよ
うな興味に合わせて、新しい活動を作り出した
り、終わらせたりして進化しています。
　最近感じられるのは、人の興味が1つのコミュ
ニティの枠に収まらなくなっている点です。そ
の興味は時として、ほかのコミュニティの活動

と重なることもあります。そのため複数のコミュ
ニティに所属する人もいますし、あるいはコミュ
ニティの人のつながりの中で、他の興味のある
ジャンルのコミュニティとコラボレーションし、
共同で勉強会を開いたり、交流を行うケースが
増えてきています。まさに、これが新しいコミュ
ニティの進化だと思います。Androidの進化、
コミュニティの進化を体感することで、あなた
のAndroidアプリ開発や技術的興味がより促さ
れるでしょう。
　まだAndroid未経験な方は、この魅力的な
Android開発をはじめてみませんか？s

日本Androidの会が主催するABCの2016年春 (spring
開催)のイベント。表参道近辺で実施予定。開発者を中
心にしたAndroidの総合イベント。最新のAndroid情
報や、開発成果物を発表するイベント。また、Android
周辺技術の展示も数多い。企業の展示もあり、端末から、
アプリ、デバイス、サービス、クラウドまで、展示の多
様と混沌さも楽しめる無料イベント。
http://abc.android-group.jp/

Android Bazaar and
Conference 2016 Spring
開催日：2016年3月12日
場所：東京都 青山学院大学
 青山キャンパス

Androidのコミュニティで
行われるイベント紹介

COLUMN

石川工業高等専門学校（石川県河北郡津幡町北中条タ1）
日本Androidの会 金沢支部が開催するABCの地方開催
イベント。展示と講演として、Androidだけでなく、
VRについて内容が充実。クラウドファンディングも活
用し目標達成！
http://abcd2015k.strikingly.com/

ABCD 2015 Kanazawa
- Android Bazaar and Conference Diverse -
開催日：2015年11月22日～23日（終了）
場所：石川工業高等専門学校
　　 （石川県河北郡津幡町北中条タ1）

DroidKaigi実行委員会主催のエンジニアが主役の
Androidカンファレンス。Android技術情報の共有とコ
ミュニケーションを目的に開催。学生割引あり。
https://droidkaigi.github.io/2016/

DroidKaigi 2016

開催日：2015年2月18日～19日
場所：東京工業大学 新岡山キャンパス

http://abc.android-group.jp/
https://droidkaigi.github.io/2016/
http://abcd2015k.strikingly.com/

126 - Software Design

スニペット展開の王道
yasnippet

　ども、るびきちです。11月8日にJohn Wiegley

氏がEmacsのメンテナに就任し、Emacs25リ
リースへ向けての動きで盛り上がっています。
彼は前世紀からたくさんのelispプログラムにか
かわり、長年熱心に活動している人物ですので、
これからのEmacs界が楽しみです。執筆時点で
25.1への仕様が凍結されたので、そう遠くない
日にリリースされるでしょう。
　前回は基本的な入力支援機能に触れてから、
yasnippetという強力なスニペット（テンプレー
ト）展開パッケージを紹介しました。yasnippet

はMELPAダウンロードランキングでベスト10

入りするほど定番になってきました。これを使
えば穴埋め式で定型文を確実に入力できるので、
コーディングや文書作成が捗ります。インス
トール後の初期設定は次のとおりです。

(yas-global-mode 1)
;;; スニペット名をidoで選択する
(setq yas-prompt-functions'(yas-ido-prompt))

スニペットを定義する

　yasnippetはインストールした時点で各メ
ジャーモード用にスニペットが用意されていま
すが、やはり自分で定義してこそ、使いこなし

ていると言えます。とくにコーディングの場面
においては定型文入力の繰返しになります。関
数、クラス、メソッドにはイディオムのような
決まった使い方があり、それを登録することで
確実に、効率よく入力できます。

スニペット登録例

　前回（2015年12月号）登場したアドバイス定
義のコードをスニペットの登録例にします。前
回は完成形スニペットを例として示しましたが、
そこに到達するまでの道のりを解説します。
　リスト1は筆者が実際に使っている設定です。
C-x v lでバージョン管理システムのログを表
示し、そこでdを押したらM-x log-view-diff

が実行されて前回のコミットとのdiffが表示さ
れます。しかし、そのあとdiffを表示している
ウィンドウを自動的に選択してしまうのが不満
ですので、それを解消するアドバイスを書きま
した。アドバイスを定義するには、アドバイス
の内容となる関数を定義し、advice-addでそ
の関数を登録します。関数名は任意ですが、ど
の関数に対するアドバイスかを明確にするため、
筆者は「元の関数名--アドバイス名」の形式にし
ています。その骨格だけを抜き出すと、

(defun log-view-diff--noselect (&rest them)
)
(advice-add 'log-view-diff :after
 'log-view-diff--noselect)

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

定型文を瞬時に入力　yasnippetの実力
　今回は前回少し紹介した、穴埋め式で定型文を入力できるパッケージ「yasnippet」について深堀りしてい
きます。スニペット作成のチュートリアルから、auto-yasnippetパッケージによる即席スニペットの使い方まで
を解説します。

Writer

第21回

http://rubikitch.com/

126 - Software Design Jan. 2016 - 127

定にしました。

◆スニペットをテストする
　ここでC-c C-tを押せばスニペットが正しく
展開されるかテストができます。そのまま貼り
付けた場合であってもエスケープ漏れの可能性
があるので、テストすることをお勧めします。
　場合によってはスニペット自体は正しくても、
テスト展開でエラーになることがあります。ス
ニペットにはelispの式を埋め込めるのですが、
テスト時と実運用時では環境が異なるためです。
たとえば、ファイル名を表す変数、関数の
buffer-file-nameはテストバッファではnil

となるため、elisp式展開部分ではerrorと表示
されます。それでも、ほかの部分ではテストが
できるので役立たずではありません。テストで
エラーが起きたときには元のバッファで展開し
てください。これでうまくいくのであれば問題
ありません。

◆スニペットを登録する
　無事にテストがうまくいったらC-x bなどで

のようになります。

登録の手順

◆3つのdirective
　このリスト1をスニペットにしましょう。M-x

yas-new-snippetを実行します。すると、「*new

snippet*」バッファに切り替わり、name、key、
bindingという3つのdirectiveが表示されま
す。この時点で新規登録用スニペットが展開さ
れています（リスト2）。
　nameはスニペット名なのですが、実際はスニ
ペットの1行説明文で何を定義しているかを書
きます。略語（key）を思い出せなくても、M-x

yas-insert-snippetを使えばnameを手がか
りにスニペットを展開できます。なので、スニ
ペットに使われているキーワードをスペースで
区切って羅列するというのは良いアイデアです。
　keyはスニペットを展開する略語です。とく
に使用頻度の高いスニペットに対しては、短く
て覚えやすいものを設定しておくことで劇的に
使い勝手が向上します。使用頻度が低いものに
ついては、いずれ忘却の彼方へ追いやられるの
で適当に考えても良いでしょう。
　bindingはそのスニペットを展開する
キーバインドです。たとえばC-c C-i C-i

を指定すれば、そのキーで展開できます。
使わない場合はC-dで入力をキャンセル
してください。

◆スニペット本体を記述する
　スニペット本体は# --以下の行に記述
します。基本的にはここに記述した文字
列がそのままスニペットになるのですが、
スニペット展開の指令に使われる「$」と
「`」、そして「\」そのものについては、そ
れぞれ「\$」「\`」「\\」とエスケープする必
要があります。リスト3の例ではエスケー
プ不要ですのでそのまま貼り付ければい
いです。nameとkeyはそれぞれadvice-

add、adviceと指定し、bindingは無指

 ▼リスト1　di�を表示したあとの挙動に関する設定

(defun log-view-diff--noselect (&rest them)
 (other-window -1))
(advice-add 'log-view-diff :after
 'log-view-diff--noselect)

 ▼リスト2　新規登録用スニペット

-*- mode: snippet; require-final-newline: nil -*-
name:
key:
binding: direct-keybinding
--

 ▼リスト3　スニペット本体を記述

-*- mode: snippet; require-final-newline: nil -*-
name: advice-add
key: advice
--
(defun log-view-diff--noselect (&rest them)
)
(advice-add 'log-view-diff :after
 'log-view-diff--noselect)

第21回 定型文を瞬時に入力　yasnippetの実力

128 - Software Design

のは、同じ番号の穴埋めを複数
個置いたときで、入力するたび
に該当する穴埋めの文字列が同
時に変化することです。スニ
ペット登録時、nameを入力す
ると同時にkeyにも同じ文字列
が入力されたのもこの現象で

す。また、$0は特別な意味があり、スニペット
展開終了後に置かれるカーソル位置を示します。
　これらをふまえたうえで穴埋めを設定しましょ
う注1。コードから生まれたスニペットの場合は、
デフォルト値はそのまま保持しておくと記憶を
たどりやすいです。advice-addの行にも穴埋
めに設定したlog-view-diffとnoselectが登
場するので、それぞれ$1、$2と記述します（リ
スト4）。ほかにも「`」で囲んでelisp式を埋め込
んだり、「${数字:$$(yas-choose-value 文

字列リスト)}」で文字列の選択肢を表示できた
りします。

auto-yasnippetで
即席スニペット

普段の文字入力で起こる同じパターンの入力

　yasnippetは入力をとても効率良くしてくれま
すが、それだけではあらかじめ定義されたスニ
ペットでしか有効ではありません。普段の文字
入力でも同じようなパターンを入力することは
よくあります。たとえば次の3行を入力する場
合を考えてみましょう（これは筆者が関わった
elispプログラムの一部です）。

(key (plist-get args :key))
(switch (plist-get args :switch))
(before (plist-get args :before))

　おそらく共通部分だけを書いてコピーし、異
なる部分をあとで入力することを真っ先に思い
付くことでしょう。

スニペットのバッファに戻り、C-c C-cで登録
します。すると、「Choose or enter a table」と
いうプロンプトが出て、登録するメジャーモー
ドを尋ねてきます。多くの場合M-x yas-new-

snippetを実行したバッファのメジャーモード
となるので、そのまま　　 で確定します。次に
新規作成したスニペットについては「Looks like

a library or new snippet. Save to new file」と尋
ねてきますが、これもそのままyで確定します。
これでスニペットの登録が終わり、元のバッファ
に戻ります。

◆穴埋めを設定する
　この時点でadvice 　　 と入力することで貼
り付けたスニペットがそのまま展開されます。
これはこれで使用例を貼り付けられるので役立
つのですが、機能的には略語展開となんら変わ
りありません。スニペットがスニペットらしく
あるためには穴埋めを設定してナンボです。
　とはいえ穴埋めを設定するかどうかは、その
スニペットの使用頻度と相談すべきです。あま
りにも使用頻度が低いと、穴埋め設定が面倒に
感じてしまい、yasnippetに悪い印象を持ちかね
ないからです。使用例を貼り付けただけのスニ
ペットでも、十分な場合があることも事実です。
今回のアドバイスのスニペットのように、これ
からも使用されることが予想される場合は迷わ
ず穴埋めを設定してください。
　穴埋めは「$数字」（$1、$2～）あるいはデフォ
ルト値付きで「${数字:デフォルト値}」と指定
します。スニペットを展開すると、　　 を押す
たびに数字の順番でカーソル位置が穴埋め位置
に移動し、入力できるようになります。圧巻な

RET

Tab

Tab

 ▼リスト4　スニペットに穴埋めを設定

-*- mode: snippet; require-final-newline: nil -*-
name: advice-add
key: advice
--
(defun ${1:log-view-diff}--${2:noselect} (${3:&rest them})
 $0)
(advice-add '$1 :${4:after} '$1--$2)

注1） 1度作成したスニペットの編集に移るには、M-x yas-
visit-snippet-fileが便利です。

るびきち流
Emacs超入門

128 - Software Design Jan. 2016 - 129

フルバージョン即席スニペット

　お手軽タイプは確かに便利ですがキーボード
マクロに毛が生えた程度のものにすぎません。
穴埋め部分が複数個ある場合や即席スニペット
が複数行に渡る場合はフルバージョンを使う必
要があります。フルバージョンは穴埋め部分の
前に「~」を付けるか「`'」で囲みます。「~」のあと
は英数字、ハイフン、アンダーバーまでが穴埋
め部分とみなされます。それら以外を含む場合
は「`'」を使います。plist-getをフルバージョン
にすると、次のどれかになります。

(~key (plist-get args :~key))
(`key' (plist-get args :`key'))

　C-u C-x C-yを押すと穴埋め部分を指定する
記号が削除され、即席スニペットが登録されま
す。あとは同様にC-x C-yで展開していきます。
　このように穴埋め部分の文字列が同じ場合は、
同じものが入るとみなされます。フルバージョ
ンでは穴埋め部分を複数個指定できるようになっ
た代償として、同じ文字列を入力する必要があ
ります。明らかに穴埋め部分が1つの場合はお
手軽タイプが楽です。フルバージョンが本領を
発揮するのは、複数行に渡る即席スニペットで
す。この場合はregionを指定してからC-u C-x

C-yで登録してください。
◆　◆　◆

　筆者のサイト「日刊Emacs」は日本語版Emacs

辞典を目指すべく日々更新しています。手元で
grep検索できるよう全文をGitHubに置いてい
ます。またEmacs病院兼メルマガのサービスを
運営しています。Emacsに関すること関しない
こと、わかる範囲でなんでも御答えします。「こ
んなパッケージ知らない？」「挙動がおかしいか
らなんとかしてよ！」はもちろんのこと、自作
elispプログラムの添削もします。集中力を上げ
るなどのライフハック・マインド系も得意とし
ています。ﾟ　登録はこちら➡http://www.
mag2.com/m/0001373131.html

auto-yasnippetを使う

　こういう場合にyasnippetの展開が使えれば便
利ですが、たった一度の入力のためにスニペッ
トを定義するのはあまりにもめんどうです。そ
こでauto-yasnippetパッケージによる即席スニ
ペットを使えば、普段の文字入力においても
yasnippetの展開の恩恵が受けられます。M-x

package-install auto-yasnippetでインス
トールしましょう。ついでにmykieパッケージ
もインストールしておけば、対になるコマンド
を1つのキーに割り当てられて便利です。次の
設定をしましょう。

(setq aya-create-with-newline t)
(mykie:global-set-key "C-x C-y"
 :default aya-expand :C-u! aya-create)

　yasnippetのスニペットは読みやすいですが、
即席で使うにはいささか煩雑です。そこでauto-

yasnippetではより入力しやすいシンプルな構文
を採用し、内部でスニペットに変換しています。

お手軽1行即席スニペット

　auto-yasnippetには2つのタイプの即席スニ
ペットがあります。お手軽タイプは現在行を即
席スニペットにする機能限定版です。regionが
設定されていない状態、かつ穴埋め部分が1つ、
かつその行に「~」が含まれていないときに使え
ます。先ほどのplist-getの場合がまさにこのケー
スです。お手軽タイプは穴埋め部分を「$」と入
力して使います。次のように入力して、

($ (plist-get args :$))

行末にてC-u C-x C-y（aya-create）を実行する
と「$」が消えてスニペット展開状態になるので
key 　　 と入力すればいいです。すでにこの状
態で即席スニペットが登録されたので、次の行
にてC-x C-y（aya-expand）で展開できます。同
じように展開されるのでswitchと入力し、同
様にbeforeも入力します。

Tab

第21回 定型文を瞬時に入力　yasnippetの実力

http://www.mag2.com/m/0001373131.html

130 - Software Design

昨今の
Web開発事情とVim

　前回、前々回と、VimでJavaを扱う方法や

Tipsを紹介しました。Vimの強力なカスタマイ
ズ性によって、プラグインを導入したり簡単な
設定を行ったりするだけで、IDE に匹敵する機
能性を保ちながらも、重くならない開発環境を
得ることができました。Eclimを使うか、それ
とも選び抜かれたプラグインを導入するかはみ
なさんしだいです。自分にあったほうを選んで
みてください。
　さて、昨今ではWebアプリケーション（以下
Webアプリ）の開発者の数が世界的に多くなっ
ているようです。石を投げればWeb系エンジニ
アに当たると言っていいほどWeb開発の需要が
増えてきました。筆者もいろいろな仕事に携わっ
ていますが、その中でもWebアプリ開発は大き
な位置を占めています。今やWebアプリ開発の
スキルは当然のものとなってきており、中には
Web開発スキルだけでエンジニアをやっている、
なんて人も意外と多いようです。
　JavaScriptといえば、昔はHTMLを制御する
ための記述言語でしかありませんでしたが、
Node.jsの登場により、今ではサーバサイドもク
ライアントサイドも開発できるプログラミング
言語となりました。極論で言ってしまえば、

JavaScriptだけ覚えておけばWebアプリ開発が
できる、そんな時代になったと言ってもいいで
しょう。巷にはaltJSと呼ばれる「JavaScriptで
実装された別言語」が流行し、JavaScript自身も
ES6（ECMAScript 6th Edition）へと進化が進
んでいます。
　今回はJavaScriptをメイン言語としたWebア
プリの開発方法を、Vimを使って説明していき
たいと思います。

開発開始！

　準備として、Node.jsをインストールしておい
てください。執筆時点ではバージョン5.0.0がリ
リースされていますが、とくに新しいバージョ
ンである必要もありません。筆者は0.10.40で開
発しています。何を作ろうか迷いましたが、SPA

（Single Page Application）の todoアプリを作り
たいと思います。今回は「Riot.js」というユーザ
インターフェースライブラリを使います。

VimでJavaScriptを書く

　まずexpress注1でファイルサーバを作ります。
もちろんVimはデフォルトでJavaScriptのシン
タックスハイライトやインデントをサポートし

注1） URL http://expressjs.com

一歩進んだ使い方
のため

のイロハ

VimでWeb開発

　Web開発にはさまざまな言語が必要ですが、言語ごとにいちいち環境を変えるのは面倒ですよね。今回
は、WebアプリをVim 上だけで開 発することをゴールに、JavaScript → HTML → Riot.js → CSS
→PostgreSQLの順で、それぞれの段階における便利なVimプラグインを紹介していきます。

mattn
twitter:@mattn_jp

第 回4

http://expressjs.com

130 - Software Design Jan. 2016 - 131

どなかったかもしれませんが、今後このソース
コードがどんどん膨らんでいったとしても効率
的にプログラミングするためには、補完機能が
あったほうが便利です。JavaScriptに特化した
入力補完プラグインもありますが、「myhere/

vim-nodejs-complete」を導入するとNode.jsに
適した入力補完が得られます。リスト3を設定
してインストールしてください。これ以外の設
定はとくに必要ありません。このプラグインを
導入すると、図1のように、requireするパッ
ケージ名を補完できます。また、このプラグイ
ンはrequireしたパッケージのメンバ補完もで
きるため、たとえば図2のように fsモジュール
だけに絞った入力補完も行えます。

ています。しかし、デフォルトのイ
ンデントはあまり賢くありません。ま
たシンタックスハイライトにおいて
もいくらかのキーワードがハイライ
トされないという問題があります。
　そこで「pangloss/vim-javascript」
をインストールします。プラグイン
マネージャ「vim-plug」をお使いであ
れば、リスト1をvimrcに追加し、再
起動後に:PlugInstallコマンドを
実行します。本記事では以降、vim-

plugの設定方法のみを記述します。
そのほかのプラグインマネージャを
お使いの方は個々のマニュアルを参
照してください。
　まずapp.jsをVimで開き、ファイ
ルサーバのコード（リスト2）を書きま
す。一番下の行にあるおまじないのようなもの、
これはモードラインと言い、このファイルを開
いたときにVimの設定を行う機能です。この例
では次のように設定されます。

・et（expandtab）：タブ文字をスペースで置き
換える

・sw=2（shiftwidth）：インデントを2スペース
とする

・cino=>2,j1,J1（cinoptions）：改行後のイン
デントを2スペース、無名関数や無名クラス
の後を段下げ

　詳しくは:help modelineで参照してくださ
い。JavaScript、とくにNode.jsのようにコール
バック関数が多く出現する言語では、タブ文字注2

の代わりにスペースでインデントすることが多
く、また無名関数によってネストされることが
多いので、なるべく少ないインデント幅が好ま
れます。
　また、リスト2のような簡単なスクリプト程
度であれば、入力補完が登場する場面はそれほ

注2） 設定により、見た目の幅を変えることもできます。

 ▼リスト1　vim-javascript導入のための設定

" https://github.com/pangloss/vim-javascript
Plug 'pangloss/vim-javascript', { 'for': 'javascript' }

 ▼リスト2　ファイルサーバのコード

var express = require('express'),
 app = express();

app.set('port', (process.env.PORT || 5000));
app.use(express.static(__dirname + '/assets'));

app.listen(app.get('port'), function() {
 console.log('app is running on port', app.get('port'));
});

// vim:set et sw=2 cino=>2,j1,J1:

 ▼リスト3　myhere/vim-nodejs-complete導入のための設定

" https://github.com/myhere/vim-nodejs-complete
Plug 'myhere/vim-nodejs-complete', { 'for': 'javascript' }

 ▼図1　Node.jsの入力補完

VimでWeb開発

第 回4

一歩進んだ使い方
のため

のイロハ

132 - Software Design

を行で選択（Vをタイプしてjjで3行選択）し、
<C-y>,をタイプ、「Tag:」のプロンプトで、

ul>li*>a.link[http://www.google.com/ｭ
search?q=$#]{$#}

のように入力します。すると、リスト7のよう
なリンク集が簡単に作れてしまいます。慣れて
くると、このEmmet構文がスラスラと出てくる
ようになるので、興味のある人はぜひ使ってみ
てください。Emmet記法について詳しく知りた
い方はオフィシャルサイト注3を参照ください。

VimでHTMLを書く

　次にindex.html（リスト4）を書きます（と
は言っても、Riotのカスタムタグを読み
込むための土台でしかありませんが）。今回は誌
面の都合上、リッチなHTMLは書きませんが、
もう少し凝ったHTMLを書くのであれば「mattn/

emmet-vim」を導入することでサクサクとHTML

を書けるようになります（リスト5）。Emmetは
HTML/CSSをコーディングする際にとても便利
な記法で、たとえば次のように入力し、

ul>li*3>a{hello $$$}

<C-y>,（　　 -　 のあとにカンマ）をタイプす
ると、リスト6のように展開されます。さらに
ビジュアル選択でテキストの一部分、たとえば
リスト6の001をビジュアルモードで選択し<C-

y>,をタイプすると「Tag:」というプロンプトが
表示されます。bを入力すると、

hello 001

のように、選択していた部分がで囲ま
れます。もう少し応用してみましょう。

桃太郎
浦島太郎
寿司太郎

Ctrl Y

 ▼図2　requireしたパッケージのメンバ補完 ▼リスト4　index.html

<!doctype html>
<html>
<head>
 <title>Riot todo</title>
</head>
<body>
<todo></todo>
<script src="todo.tag" type="riot/tag"></script>
<script src="https://cdn.jsdelivr.net/g/
riot@2.0.14(riot.min.js+compiler.min.js)"></script>
<script>
riot.mount('todo');
</script>
</body>
</html>

 ▼リスト7　リンク集を簡単に作成

 桃太郎
 浦島太郎
 寿司太郎

 ▼リスト5　mattn/emmet-vim導入のための設定

" https://github.com/mattn/emmet-vim
Plug 'mattn/emmet-vim'

 ▼リスト6　Emmet記法の展開

 hello 001
 hello 002
 hello 003

注3） URL http://emmet.io

http://emmet.io

132 - Software Design Jan. 2016 - 133

VimでRiot.jsを書く

　さて、次はRiot.jsのカスタムタグを
作っていきます。入力ボックスと追加ボ
タン、「対応済み」を示すチェックボック
スが付いた todoリストを図3のように配
置した構成とします。
　まずはRiotによるビューを作成します。
Riot.jsはRiotタグの中に JavaScript/

JSXを埋め込んだものですので、JSX専
用のプラグインでは機能しません。そこ
で「nicklasos/vim-jsx-riot」というRiot.js

専用のプラグインを導入します（リスト

8）。これにより、tagファイルがシンタッ
クスハイライトされるだけでなく、カス
タムタグ内に書かれているスクリプトが
JavaScriptとして認識されます。先に紹
介したmyhere/vim-nodejs-completeを導
入していれば、インラインで書かれたス
クリプトに対して入力補完ができます（図

4）。
　基本的な動作を todo.tag（リスト9）に記
述しました。これだけでも追加ボタンや
チェックボックスが機能するため、紙芝居の確
認ができます。

VimでCSSを書く

　次に、見た目を変えるためにCSSを作成しま
す。ただし、ここで問題が発生します。Vimに
同梱されているCSSシンタックスハイライト
は、CSS3をすべてサポートしていないのです。
CSS3のシンタックスハイライトを有効にする
には、「JulesWang/css.vim」を導入します（リ

スト10）。開発者のJules Wang氏は、Vimに同
梱されているCSSシンタックスハイライトのメ
ンテナで、このプラグインはVim 7.0がリリー

 ▼図4　Riotの tagファイルでも入力補完

 ▼リスト9　Riotのタグファイル

<todo>
 <h3>{ opts.title }</h3>

 <li each={ items }>
 <label class={ completed: done }>
 <input type="checkbox" checked={ done } ｭ
onclick={ parent.toggle }> { title }
 </label>

 <form onsubmit={ add }>
 <input name="input" onkeyup={ edit }>
 <button disabled={ !text }>Add #{ items.ｭ
length + 1 }</button>
 </form>
 <script>
 this.items = opts.items || []
 edit(e) {
 this.text = e.target.value
 }
 add(e) {
 var item = this
 if (!item.text) return false
 item.items.push({ title: this.input.value })
 this.input.value = ''
 return false
 }
 toggle(e) {
 var item = e.item
 item.done = !item.done
 return true
 }
 </script>
</todo>

 ▼リスト8　nicklasos/vim-jsx-riot導入のための設定

" https://github.com/nicklasos/vim-jsx-riot
Plug 'nicklasos/vim-jsx-riot'

 ▼図3　todoリスト

 ▼リスト10　JulesWang/css.vim導入のための設定

" https://github.com/JulesWang/css.vim
Plug 'JulesWang/css.vim', { 'for': 'css' }

VimでWeb開発

第 回4

一歩進んだ使い方
のため

のイロハ

134 - Software Design

たと思ったら「thinca/vim-quickrun」（リスト14）
を使い、Vimから直接実行します。

:QuickRun sql/postgres

　ただし直接実行するには、表1の環境変数が
設定済みである必要があります（いくらかは省略
可能）。データベースによってユーザとパスワー
ドを切り分けたい人は、$HOME/.pgpass（Win

dowsでは、%APPDATA%\postgresql\pgpass.
conf）に次のように設定しておくと便利です。

:5432::postgres:postgres
server1:5432:develop:user1:PaSsWd
server2:5432:production:user2:pAsSwD

編集したら自動でリロード

　todoテーブルができたらapp.jsに処理を書き
ます。その際、何度かアプリケーションを再起
動します。できれば自動で再起動してほしいで
すよね。gulpで状況にあった環境を作成するの
も良いのですが、こういった小さいプロジェク
トではめんどうです。筆者は自作のツール
「mattn/goemon」を使っています。まずリスト15

スされたあとも、細かくCSS3への対応を行っ
た成果が含まれています。
　また、「hail2u/vim-css3-syntax」を導入する
と（リスト11）、W3Cにて現在ワーキングドラ
フトになっているCSSについてもシンタックス
ハイライトされるようになります。
　これでもかなり便利になったのですが、もう
少しだけ便利にしたいと思います。たとえば
CSSを編集していて配色を変更したときに、毎
回ブラウザをリロードするのは面倒ですよね。
かと言って色見本を開くのも面倒ですし、ブラ
ウザにフォーカスを移すのすら面倒なときもあ
ります。そこで「gorodinskiy/vim-coloresque」
を導入します（リスト12）。このプラグインを導
入すると図5のようにCSSの配色指定の部分が
実際の色で表示されます。色の値を変更すると、
保存せずともリアルタイムで配色が変更される
ため、デザインに要する時間を節約できます。

VimでSQLを書く

　さて、この紙芝居を実際にデータベースと接
続して機能させるためにapp.jsを編集します。
データベースにはPostgreSQLを使います。
DDL（Data Definition Language）としてschema.

sql（リスト13）を作成します。一発で決まれば
良いのですが、そう簡単には行きません。何度
かテーブルを壊しつつ、完成に近づけることに
なります。Vimでschema.sqlを開きつつ、でき

 ▼リスト11　hail2u/vim-css3-syntax導入のための設定

" https://github.com/hail2u/vim-css3-syntax
Plug 'hail2u/vim-css3-syntax', { 'for': 'css' }

 ▼リスト12　gorodinskiy/vim-coloresque導入のための設定

" https://github.com/gorodinskiy/vim-coloresque
Plug 'gorodinskiy/vim-coloresque', { 'for': 'css' }

 ▼リスト14　thinca/vim-quickrun導入のための設定

" https://github.com/thinca/vim-quickrun
Plug 'thinca/vim-quickrun'

 ▼図5　CSSの配色指定の部分が、実際の色にハイライト

 ▼リスト13　schema.sql

--- drop table todo;
create table todo (id serial, title text, done bool default false, createat timestamp default 'now');

環境変数名 設定する内容
PGUSER ユーザ
PGPASS パスワード
PGHOST ホスト
PGPORT ポート
PGDATABASE データベース

 ▼表1　vim-quickrunのための環境変数

134 - Software Design Jan. 2016 - 135

編集する場合、「CtrlP」（リスト16）や「Unite」
（リスト17）を導入すると便利になります。筆者
はCtrlPを使っています。
　この記事を執筆しているときも、原稿、app.

js、assets/todo.tagを切り替えながら編集して
いました。ちなみに todo一覧を取得するコード
はリスト18のようになりました。
　クライアント側ではsuperagentを使い、リス

ト19のように実装すれば画面表示時に todo一
覧が表示されます。
　そのほか、「/api」へのPOSTで todo追加、
「/api/:id」へのPOSTで更新を行う処理を書け
ば、一応の todoアプリができあがります。誌面
の都合ですべてのソースコードは載せられませ
んが、リポジトリ注4にできあがったものを置い
ておきますので、興味のある方は遊んでみてく

のファイルgoemon.ymlをプロジェクトフォルダ
に置いておきます。次に livereloadを有効にす
るために、index.htmlの<head>タグ内に次の行
を追加します。

<script src="http://localhost:35730/ｭ
livereload.js"></script>

　そして、端末上でgoemonを実行します。

$ goemon node app.js

　以降、todo.cssや todo.tag、index.htmlを編集
するとブラウザが自動でリロードします。また
app.jsを編集するとnodeコマンドが再起動しま
す。つまり、開発者はソースコードを編集する
だけで良く、コーディングに専念できるように
になります。

HTMLもJavaScriptもSQLも同時に

　vim-quickrun で SQL が
抽出する結果を確認しなが
らapp.jsのJavaScriptを実
装し、HTML/CSSのデザ
インを修正します。複数の
バッファを切り分けながら

 ▼リスト15　goemon.yml

Generated by goemon -g
livereload: :35730
tasks:
- match: './assets/*.js'
 commands:
 - minifyjs -m -i ${GOEMON_TARGET_FILE} >
${GOEMON_TARGET_DIR}/${GOEMON_TARGET_NAME}
.min.js
 - :livereload /
- match: './assets/*.css'
 commands:
 - :livereload /
- match: './assets/*.html'
 commands:
 - :livereload /
- match: './assets/*.tag'
 commands:
 - :livereload /
- match: 'app.js'
 commands:
 - :restart
 - :livereload /

 ▼リスト16　CtrlP導入のための設定

" https://github.com/ctrlpvim/ctrlp.vim
Plug 'ctrlpvim/ctrlp.vim'

 ▼リスト17　Unite導入のための設定

" https://github.com/Shougo/unite.vim
Plug 'Shougo/unite.vim'

 ▼リスト19　クライアント側で todo一覧を表示させる

<script>
var request = window.superagent;
request.get("/api").end(function(err, data) {
 riot.mount('todo', { title: 'やることリスト', items: data.body });
})
</script>

注4） URL https://github.com/mattn/node-riot-example

 ▼リスト18　todo一覧を取得するコード

app.get('/api', function(req, res) {
 pg.connect(function(err, client) {
 if (err) throw err;
 client.query("SELECT * FROM todo ORDER BY id",ｭ
function(err, result) {
 if (err) throw err;
 res.set('Content-Type', 'application/json');
 res.send(result.rows);
 });
 });
});

VimでWeb開発

第 回4

https://github.com/mattn/node-riot-example

一歩進んだ使い方
のため

のイロハ

136 - Software Design

います。改行のないJSONファイルもきれいに
インデントされます（リスト20）。
　jqコマンドの出力結果は可読性が高く、起動
も高速ですので筆者も重宝しています。

◆　◆　◆
　今回はVimを使ってNode.jsアプリを開発し、
その行程で必要となるプラグインやコマンド、
そしてテクニックを紹介しました。今回紹介し
た方法がすべてではありませんし、正解でもあ
りません。自分で別のプラグインを見つけても
良いですし、自作しても良いでしょう。自分な
りの拡張方法を見つけ、自分に一番合った Vim

を作り込んでいってください。Vimの拡張性を
どう使いこなすかは、みなさんしだいなのです。
ﾟ

ださい。

VimでJSONを編集する

　Node.jsのアプリはpackage.jsonというファイ
ルでパッケージングします。ファイル名のとお
りJSONファイルなのですが、JSONファイル
を編集しているとインデントがずれたり改行位
置がまばらだったりと、本質的ではない部分で
多くの時間を取られてしまいます。さらにWeb

サービスのAPIが返すJSONには改行がないこ
とが多く、可読性が低くて編集に苦労する人も
いるでしょう。
　そんな場合はjq注5というコマンドが便利で
す。jqは本来、JSONにクエリを与えて抽出／
整形するプログラムですが、全体を抽出するク
エリ「.」を引数に与えてやれば、改行付きでき
れいな JSONを得ることができます。jqは

Ubuntu であればapt-getでインストールでき
ます。インストールしたあと、Vim で JSON

ファイルを開き次のコマンドを実行します。

:%!jq .

　バッファの内容をjqコマンドの標準入力に書
き込み、整形した結果でバッファを入れ替えて

～Vimがもっとも華麗だと言われている理由、そ

れはおそらく、使うという行為が考え始めること

と同義になっている、ということであろう。Vim

は名詞、動詞、副詞で完結する、謂わば言語のよ

うに機能するよう設計されている。～

　これはDaniel Miessler氏が書いたVimの入門記

事「A vim Tutorial and Primer」 注Aで語られている

文章です。本連載の第1回で筆者も同様のことを

言いましたが、Vimがほかのテキストエディタと

大きく異なる点は、「何を」「どのように」「どうす

る」をユーザ自身がコマンドとして操作することに

より、自由自在に操れるところにあります。頭で

覚えるのも良いですが、本当にVimをマスターし

たいのならば、喋るようにVimを操ることを念頭

に入れて練習すべきです。

Vimをマスターしたいのならば、言葉のように使え

注A） URL https://danielmiessler.com/study/vim/

注5） URL https://stedolan.github.io/jq/

 ▼リスト20　jqでJSONを整形

 実行前
{"foo": "bar", "bar":[{"baz": true}]}

 実行後
{
 "foo": "bar",
 "bar": [
 {
 "baz": true
 }
]
}

https://stedolan.github.io/jq/
https://danielmiessler.com/study/vim/

Jan. 2016 - 137

2015年11月、Baidu社が提供しているMoplus SDKにバックドアが組み込まれていることが発表されま
した。このSDKを利用したアプリには脆弱性が含まれてしまうことが、報告されています。開発者に
とっては考えたくない事態ですが、似た事例はほかにも確認されています。注意喚起の意味も込めてい
くつか紹介します。また、この機会に、オープンソース開発の安全性についても考えてみましょう。

マルウェアを埋め込む
開発環境

　今回は、ここのところ話題になっている、開発環
境からのマルウェア汚染について考えてみたいと思
います。開発者の立場からすると、自分で作ったプ
ログラムがいつの間にかマルウェアに変身していた
としたら、それは悪夢としか言いようがない事態で
しょう。開発者がどんなに気をつけても、開発環境
自体が、作ったアプリケーションにマルウェアを埋
め込むメカニズムを持っていたならば、完全にお手
上げです。そして、そのようなアプリケーションが
世の中に広く出回ってしまえば、開発者にとっても
ユーザにとってもたいへんに困った事態になります。

バックドア機能が組み込
まれたMoplus SDK

　この事件は最初、Bin Ma氏注1が、中国国内検索
サービス最大手の会社で、日本でも知名度の高い、
Baidu（百度）社が提供しているAndroidアプリ「Baidu

Map」のバックグラウンドで、40310/TCPのポート
をオープンしていることに気づいたことがきっかけ

のようです。この内容はMa氏の最初のドキュメン
ト注2に詳しく書かれています。
　このドキュメントには、「Baidu Mapは、バック
グラウンドで特定ポート番号のソケットを作りデー
モンとして外部からの通信を受け付けることができ
るようになっており、それがDoSとして使える脆
弱性となっている」という重要な指摘が書かれてい
ます。そして、Baidu Mapだけではなく、ほかの似
たようなアプリケーションでも同様な脆弱性がある
ことも指摘しています。
　それを氏はWormHoleと呼び、のちにBaidu Moplus

SDKに起因していることに気がつきます注3。
　この情報をベースに中国国内のNVD（National

Vulnerability Database）である、CNVD（China

National Vulnerability Database：国家信息安全漏洞
共享平台）は2015年11月5日に、CNVD-2015-07217

として脆弱性の注意喚起を行っています注4。危険度
を表す指標（おそらくCVSSと同等な評価）は9.3と
なっており、危険度は「高」としています（図1）。
　Baiduからは10月31日付けで、脆弱性に対する
アップデートが行われたという説明が、中国最大手
のブログWeibo上でなされています（図2）注5。

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第二八回】

すずきひろのぶ
suzuki.hironobu@gmail.com

注1）	 http://www.weibo.com/u/1146576392
注2）	 Bin Ma, "Research on Open Socket Apps"　http://vdisk.weibo.com/s/zo_33fRAzXCZK
注3）	 http://drops.wooyun.org/papers/10180
注4）	 http://www.cnvd.org.cn/flaw/show/CNVD-2015-07217
注5）	 日本国内では「Moplusに関する本社の発表について」として、Baidu Japanがプレスリリースを次のURLで公開している。内容はWeibo

の内容と同じ。 http://www.baidu.jp/info/press/report/151112.html

開発環境からのマルウェア汚染

http://www.weibo.com/u/1146576392
http://drops.wooyun.org/papers/10180
http://www.cnvd.org.cn/flaw/show/CNVD-2015-07217
http://www.baidu.jp/info/press/report/151112.html
http://vdisk.weibo.com/s/zo_33fRAzXCZK

138 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

それは意図的なもの
——Trend Microの指摘

　2015年11月1日付けのTrend Micro社のセキュ
リティブログ注6でMoplus SDKの分析結果として、
次のような極めて重要な指摘がなされます。

しかしながら、トレンドマイクロがこの脆弱性につい
て調査を進めたところ、Moplus SDK自体にバックド
ア機能が備わっており、必ずしもそれが脆弱性に由
来または関連しているわけではないことが明らかにな
りました。 トレンドマイクロ㈱の日本語訳サイト注7より引用

　繰り返しになりますが、これは脆弱性ではなく、
最初から意図的に組み込まれたバックドア機能であ
るという指摘です。Trend Micro社は、バックドア
のリスクとして「フィッシングサイトへの誘導」「任
意の連絡先の追加」「偽のショート・メッセージ・サー
ビス（SMS）」「送信リモートサーバへのローカル
ファイルのアップロード」「アプリをAndroid端末に
インストール」を挙げています。
　また、Moplus SDKを組み込んだアプリ（SHA-1

シグニチャの違い、バージョンの違いなどを含む）
は14,112あり、そのうち4,014がBaiduの提供して
いる公式アプリだそうです。そこから1億人の
Androidユーザが影響を受けているであろうと見積
もっています。
　Trend Micro社の分析はたいへん詳しく説明され
ており、この内容に関しては十分に信頼できるもの
と筆者は判断しています。

知らぬ間にバックドアが
設置される

　このバックドアの目的は、短く言ってしまえば
「Baidu社はユーザの持つAndroid端末を自分の支
配下におき、自分が望むようにコントロールした
かった」と考えるしかありません。その目的が善意

なのか悪意なのかは、ここでは関係ありません。問
題とすべきはユーザにどれだけのリスクを与えた
か、という部分です。CNVDが脆弱性として評価し
たとおり、危険度は極めて高いのです。そのリスク
をユーザに意図的に与えたことは大きな問題です。
　ここで「Baiduが特別なのだろうか」「これまでに、
このような問題はなかったのか」といった、疑問が
いくつか出てくるはずです。
　答えを先に言いますと、すでに前例があります。
今から10年前の2005年に発覚した注8、いわゆる
Sony BMG rootkit（あるいは“Sony BMG copy

protection rootkit scandal”）の問題です。

注6）	 Seven Shen, "Setting the Record Straight on Moplus SDK and the Wormhole Vulnerability"	 	
http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-straight-on-moplus-sdk-and-the-
wormhole-vulnerability/

注7）	 http://blog.trendmicro.co.jp/archives/12540
注8）	 The "Sony rootkit" case (NEWS FROM THE LAB - Tuesday, November 1, 2005)	 	

https://www.f-secure.com/weblog/archives/00000691.html

◆◆図1　CNVDのWebサイトで公開されたWormHoleの◆
 脆弱性情報

◆◆図2　Weiboで公表されたBaiduからの説明

脆弱性の問題は世界共通で、中国も脆弱性データベースを公開して
いる。

日本語訳：
弊社Androidアプリの脆弱性問題に関する一部の報道について、百度
セキュリティチームは上記報道以前にアラートを発しており、そして
即座に脆弱性を修復しました。10月30日24時までに、すべての百
度Androidアプリはバージョンアップを完了しております。また、
iOSについては本件とはいっさい関係がありません。ユーザ様に最新
バージョンへの更新をお願い申し上げます。セキュリティコミュニ
ティのご協力とみなさまのご理解を心から感謝しております。

http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-straight-on-moplus-sdk-and-the-wormhole-vulnerability/
https://www.f-secure.com/weblog/archives/00000691.html
http://blog.trendmicro.co.jp/archives/12540

Jan. 2016 - 139

【第二八回】 開発環境からのマルウェア汚染

　これは、ある種の音楽CDを、Microsoft社の
Windowsが入っているPCのCD-ROMリーダーに
挿入すると、ユーザの知らない間にXCP（Extended

Copy Protection）、あるいはMediaMax CD-3と
いったソフトウェアがインストールされてしまう、
という問題です。これらのソフトウェアはrootkit

の技術が使われており、インターネットに接続して
いると外部から任意のコードが実行される潜在的な
リスクの原因となりました注9。
　当時、Sony BMG rootkitが含まれていた音楽CD

の数は、EFF（Electronic Frontier Foundation：電
子フロンティア財団）のWebサイトの情報によれば
250タイトル以上とのことです注10。
　これらの顛

てんまつ

末に関しては、世界的に著名なセキュ
リティ専門家Bruce Schneier氏のブログサイト「Sch

neier on Security」の記事注11が参考になります。
　このように企業がユーザに知らせることなく、
ユーザのリスクも考えず、平気でセキュリティを侵
害しているようなケースは、昔から存在していま
す。もちろんSony BMGに対してもSchneier氏の
ブログのように厳しい声がありましたし、今回のBaidu

に関しても厳しい声があるのは当然です。
　ベンダがこのようなことをするのは、ユーザのコ
ンピューティング環境をユーザの許可を取ることな
く勝手に利用することが当たり前のように考えてい
るからなのか、それともこれがユーザに対する便宜
だと思っている一種の誤ったパターナリズムから派
生しているのか、はたまた別の理由からこうなって
しまったのか、まったく見当がつきません。しかし
ながら、ユーザ視点に立てば、「企業がユーザの信
頼を裏切り、堂々とセキュリティを侵害していると
考えざるを得ない」としか言いようがありません。

開発環境でバックドアを
埋め込むアイデア

　開発環境からバックドアを忍ばせる、というコン

セプトも実は古くからあります。もっとも有名なの
は、Ken Thompson氏の「コンパイラが自動的に
login.c（login コマンド）にバックドアをしかける」と
いうもので、世間ではThompson hackと呼ばれて
います注12。
　UNIXの開発者として知られるThompson氏と
Dennis Ritchie氏は1983年にACM Turing Award

を受賞します。Thompson氏はそのときの受賞記念
講演で“Reflections on trusting trust”というタイト
ルの講演をします。
　一応、確認のために書いておくと、Turing Award

受賞した理由は、“for their development of generic

operating systems theory and specifically for the

implementation of the UNIX operating system.（汎
用オペレーティングシステム理論の構築とUNIXオ
ペレーティングの実装に対して）”です。直接的にセ
キュリティは関係していません。
　このThompson hackですが、たとえば login.cを
コンパイルするときに、自動的にパスワード認証回
避のコードを加えバックドアを作るようなコンパイ
ラを用意するというアイデアです。巷

ちまた

のブログを読
むと login.cにバックドアを埋め込むコンパイラが
存在した、ということを書いているものもあります
が、少なくともThompson氏の論文“Reflections on

trusting trust”にはアイデアが書かれているだけ
で、それを実装したという記述はありません。
　論文中でも指摘されていますが、コンパイラがバ
イナリで提供されている環境では、どんなに login.

cのコードを眺めていようとも、バックドアは見つ
けられません。もし見つけようとするなら login.c

をコンパイルしたバイナリを直接解析するしかあり
ません。問題があれば、まず login.cのソースコー
ドを疑うでしょうし、login.cのみにバックドアをし
かけることに特化していれば、ほかのソースコード
をコンパイルしても何の異常も出ません。もちろん
バイナリの実行コードを逆アセンブルすれば見つか

注9）	 Vulnerability Note VU#312073　https://www.kb.cert.org/vuls/id/312073
注10）	 Updated Sony BMG DRM Spotter's Guide　https://www.eff.org/deeplinks/2005/12/updated-sony-bmg-drm-spotters-guide
注11）	 Sony's DRM Rootkit: The Real Story　https://www.schneier.com/blog/archives/2005/11/sonys_drm_rootk.html
注12）	 Thompson, Ken (1984). "Reflections on trusting trust"　https://dx.doi.org/10.1145%2F358198.358210

https://www.kb.cert.org/vuls/id/312073
https://dx.doi.org/10.1145%2F358198.358210
https://www.schneier.com/blog/archives/2005/11/sonys_drm_rootk.html
https://www.eff.org/deeplinks/2005/12/updated-sony-bmg-drm-spotters-guide

140 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

ですが、以前は有料でDeveloper Programに登録
しなければ、ダウンロードできませんでした。それ
が中国国内で海賊版Xcode開発環境が広がってい
た原因のようです。
　その海賊版Xcode開発環境にXcodeGhostが加えら
れていたため、その開発環境で開発したアプリケー
ションにはバックドアなど悪質なマルウェアの機能が
入ってしまうという状況になってしまいました。
　CAC（Cyberspace Administration of China）の
Webサイトには、2015年9月21日の京華時報から
提供された記事が掲載されており注16、360 Nirvan

Teamが145,000アプリをスキャンし、うち344ア
プリが影響を受けていた、と書かれています。
　のちに iOSのUnityライブラリも同様にマルウェ
アが組み込まれていることが判明しており、そちら

るでしょうが、そこまで思いつくかどうか……。
　そのうち誰かが見つける可能性もないわけではな
いでしょうが、脆弱性ですら何年も見つからないの
ですから、ずっと見つからずに存在し続ける可能性
のほうがずっと高い、というネガティブな考えが筆
者の中では強いです。
　この論文の最後のAcknowledge（謝辞）のセクショ
ンで、「トロイの木馬の考え方はMultics実装の初期
段階に米空軍のドキュメントに書いてあったのを読
んだが、それが何だったか思い出せない。誰か知っ
ていたら教えてほしい」ということが書かれていま
す。このようにバックドアの考え方は、1960年代か
らすでにあったことがわかります。新しいようで極
めて古くから懸念されている問題なのです。

診断なのかバックドアなのか

　2014年に、iOSに、パスワードなしに個人情報デー
タにアクセスできる隠し機能があることが発覚しま
した注13。Apple社は、これを診断のための機能である
と説明しています。しかし、何であれ、本来は守ら
れるべき個人情報データに、ベンダからアクセスで
きる手段があることを隠していたことは事実です。

悪夢が現実に
——XcodeGhost

　以前、Apple社のオリジナルXcode開発環境に、中
国国内で第三者が変更を加えて同国内だけで配布し
ていた特殊なXcode開発環境がありました。実はそ
こにマルウェア（XcodeGhost）が組み込まれていたこ
とが、2015年9月に中国で発見されました（図3）。
　XcodeGhostはAlibaba社のセキュリティチー

ム注14や360 Nirvan Team注15が詳しく分析していま
す。ちなみに、これらの分析でも先述のThompson

hackについて言及していました。
　最新のXcode 7は無料でダウンロードできるよう

注13）	 Undocumented iOS functions allow monitoring of personal data, expert says	 	
http://arstechnica.com/security/2014/07/undocumented-ios-functions-allow-monitoring-of-personal-data-expert-says/
Roundup of iOS Backdoor (AKA“Diagnostic Service”) Related Tech Articles　http://www.zdziarski.com/blog/?p=3522

注14）	 AlibabaセキュリティチームによるXcodeGhost分析　http://jaq.alibaba.com/blog.htm?id=82
注15）	 360 Nirvan TeamによるXcodeGhost分析　http://www.freebuf.com/vuls/78945.html
注16）	 http://www.cac.gov.cn/2015-09/21/c_1116620258.htm

◆◆図3　XcodeGhostの最初の発見だと言われるWeibo◆
 のメッセージ

iOS開発のエキスパートJoeyBlue_氏が、最初にネット上で言及
したと言われる。
http://www.weibo.com/1650375593/CAV5fqdo3

http://arstechnica.com/security/2014/07/undocumented-ios-functions-allow-monitoring-of-personal-data-expert-says/
http://www.weibo.com/1650375593/CAV5fqdo3
http://www.freebuf.com/vuls/78945.html
http://jaq.alibaba.com/blog.htm?id=82
http://www.zdziarski.com/blog/?p=3522
http://www.cac.gov.cn/2015-09/21/c_1116620258.htm

Jan. 2016 - 141

【第二八回】 開発環境からのマルウェア汚染

はUnityGhostと名付けられています。
　日本国内でよく使われるであろうアプリケーショ
ンらしきものは、リストの中に見当たらなかったの
で、日本で感染している iOSアプリはごくわずか
であると思われます。
　いずれにしろ、コンセプトとして以前から知られ
ていたThompson hackが現実に行われ、しかも、
スマートフォンという大きなサイズの市場に影響を
与えた歴史的な意味は大きいと言えます。

FLOSS開発環境なら
安全か

　FLOSS（Free/Libre Open Source Software）開発
環境ではソースコードが提供されているので安全で
ある、とは必ずしも言えません。それにはいくつもの
安全性を確保するための前提が必要だからです。

①汚染されていないコードを入手する
　これには、第三者によるマルウェアコードが入っ
ていないことを確実にする必要があります。公式の
配布サイトからソースコードをダウンロードする場
合のみ、安全性が保てます。しかも、その配布サイ
トが安全である必要があり、侵入されコードが書き
換えられているような事態にならないことが求めら
れます。途中でのすり替えがないようにサイトとク
ライアント間はHTTPSで保護している必要があり
ます。現在では、GitHubのようなサイトが使われる
時代になっていますから、以前のようにFTPでダ
ウンロードする時代からは、格段に安全性は高まっ
ていると言えるでしょう。

②コードは電子署名されている
　①とも絡むのですが、ディストリビューションの
中のパッケージとして配布されているような場合
は、コードは事前に電子署名されているので安全性
はぐっと高くなっていると言えるでしょう。

③コードは精査されている
　誰かが何の目的で作ったかわからないようなコー
ドがいつの間にかマージされるようなことでは、セ

キュリティを確保できません。悪意がなくても、品
質の低いコードがいつの間にかマージされているよ
うなことも要注意です。もちろん、悪意のあるコー
ドであろうとなかろうと、品質のためにきちんと精
査されたうえでマージされるべきです。

◆　◆　◆
　これらの条件が満たされないとき、FLOSSでも
XcodeGhostのようなことが十分に発生します。
　ただし、FLOSSの場合、ベンダが意図してバッ
クドアを付けたMoplus SDKやSony BMG rootkit

のようなケースは避けられるでしょうし、Appleの
ような診断用アクセス権限はユーザの判断によって
機能を入れる／入れないといった選択をさせること
もできるでしょう。確かに1行や2行で済むような
バックドアなら見つけづらいかもしれませんが、そ
れなりの機能を加えるならば、相応のコード行数と
なり目立ってしまい、誰かに見つけられる可能性は
かなり高いと思われます。

まとめ

　ソースコードを公開しておらず、ブラックボック
スとしてベンダ側に頼っているソフトウェアに、ベ
ンダが意図的にバックドアに相当するものを入れて
いると、たいへん発見が難しいと言えます。しかし
ながら、いつまでも秘密にしておくことは、これま
た意外と難しいことが、今回の事例から見えてきま
した。遅かれ早かれ誰かがどこかで見つけるものな
のかもしれません。
　健全なアプリケーションに、開発環境側からマル
ウェアを組み込むアイデアは非常に古くからあっ
て、それが今回、意外とわかりやすい形で我々の目
の前に現れました。これまで、その効果は（悪い意
味で）非常に大きいと言われていましたが、実際に
大規模な影響を与えることが実証されました。
　また、FLOSSもソースコードを公開していると
いうことだけで、安全性が保たれるわけではありま
せん。そのソースコードの中身がきちんと見られて
いて、ソースコードが流通する部分が安全な場合の
み、安全性が高いと考えるべきでしょう。s

142 - Software Design

で学ぶErlang
並行プログラミング

OTP最新版の状況

　本稿入稿時のErlang/OTPの最新版は11月
13日のパッチリリースである18.1.4です注1 [1]。
inetsモジュールへのソケットオプションを指
定可能にするなどの機能拡張とバグ修正が行わ
れています。

OTPのディスク版KVSである
DETSとその課題

　前回はErlang/OTPでのプロセス間データ共
有のしくみとして、仮想マシンBEAM上に展
開するErlangの項を検索したり保存したりす
るKey-value型データストア（KVS）である
ETSを紹介しました。ETSはBEAMのメモリ
しか使えませんから、BEAMが停止すればデー
タは失われます。そこでディスクを使って
BEAMが停止してもデータが残るようにした
KVSとして、DETS[2]が用意されています。
図1にETSとDETS相互の情報転送の例を示
します。ETSとDETSそれぞれで書き換えた
内容が反映されていることがわかります。
　DETSではKVSのテーブルごとにファイル

注1） 最新版はGitHubリポジトリを使いタグを指定することで
ビルドできます。詳細は「kerlでGitHub版のErlangをイン
ストールする」（http://qiita.com/jj1bdx/items/4f7d7b5a
53fcec32ab8d）を参照してください。

を作ります。テーブルの大きさには最大2GB

という制限があります。テーブル名を知ってい
ればDETSのテーブルは複数プロセス間で共
有されます。ETS同様、テーブルをオープン
したプロセスが停止すると、そのテーブルには
アクセスできなくなります注2。
　ETSとDETSをうまく組み合わせれば、た
とえばKVSのデータをメモリのETSとディス
クのDETS双方のテーブルに置き、読み出し
はメモリ内のみに別途インデックスのETSテー
ブルを作って高速化し、プロセスやBEAMが
停止するなどの障害が発生したときはディスク
上のDETSテーブルから復旧するといった構
成が可能になります。さらに複数BEAMノー
ド（以下「ノード」）間の連携も可能になるでしょ
う。
　しかし、ETSやDETSを連携させたプログ
ラムを組むのは簡単ではありません。データの
書き込みだけを考えてもETSとDETS両方へ
の操作が必要ですし、損傷したデータを修復す
るにはテーブルを明示的にロックして、終了後
解除するなどの煩雑な作業が必要です [3]。そこ
でこれらの機能を統合した分散データベースと

注2） 実際にはファイル名がわかっていれば再度テーブルを開く
ことができます。また、他にテーブルをオープンしたプロ
セスが残っていれば、そのプロセスからはアクセスし続け
ることができます。

この連載ではプログラミング言語Erlangとその並行プログラミングについて紹介していきます。今回はOTPの
データベースMnesiaについて紹介します。

 Author 力武健次技術士事務所 所長 力武 健次（りきたけ けんじ） http://rikitake.jp/

第10回 OTPのデータベースMnesia

で学ぶErlang
並行プログラミング

http://qiita.com/jj1bdx/items/4f7d7b5a53fcec32ab8d
http://www.k2r.org/gijyutsushi/

142 - Software Design Jan. 2016 - 143

して、M
エ ム ネ ジ ア

nesia注3が考案されました [4]。

注3） Mnesiaの語源となったであろう英語のamnesia（アムネジ
ア）には「記憶喪失」という意味があり、Mnesiaという名前
はamnesiaにひっかけた「駄洒落」であろうと筆者は推察し
ます。記憶喪失してしまうデータベースというのはかなり
皮肉の効いたジョークだと思いますが（笑）。（詳細は次の
文献にあります :Joe Armstrong, "Programming Erlang",
Second Edition, Pragmatic Bookshelf, 2013, ISBN-13:
978-1-93778-553-6, p. 322, コラム "Why is the DBMS
Called Mnesia?"）

Mnesiaの特徴

　Mnesia[5]では、ETSやDETSを構成部品と
して使いつつ、複数のKVSの連携や、トラン
ザクション、複数ノード間のデータ複製などの
機能を使うことができるデータベースです。

第10回 OTPのデータベースMnesia

 ETSとDETSの間の相互転送の例を示す
Eshell V7.1 (abort with ^G)
 DETSのファイルtest.detsに対しDETSテーブルtestを対応づけて開く
1> dets:open_file(test, [{file, "test.dets"}]).
{ok,test}
 DETSテーブルtestにデータを加える
2> dets:insert(test, {a, 1}).
ok
3> dets:insert(test, {b, 2}).
ok
 DETSテーブルtestの情報を取得する
4> dets:info(test).
[{type,set},
 {keypos,1},
 {size,2},
 {file_size,5485},
 {filename,"test.dets"}]
 DETSテーブルtest全体の情報を出力する。dets:traverse（テーブル名、関数）で、関数をテーブル全体に適用する
5> dets:traverse(test, fun(X) -> io:format("~p~n", [X]), continue end).
{a,1}
{b,2}
[]
 ETSテーブルtest_etsを名前付きで作る
6> ets:new(test_ets, [named_table]).
test_ets
 DETSテーブルtestの中身をETSテーブルtest_etsに加える（insert操作が行われる）
7> dets:to_ets(test, test_ets).
test_ets
 ETSテーブルtest_etsの中身を見ると加えられているのがわかる
8> ets:tab2list(test_ets).
[{b,2},{a,1}]
 ETSテーブルtest_etsにデータを加える
9> ets:insert(test_ets,{c,3}).
true
10> ets:insert(test_ets,{d,4}).
true
 ETSテーブルtest_etsの中身を見ると加えられているのがわかる
11> ets:tab2list(test_ets).
[{d,4},{c,3},{b,2},{a,1}]
 今度はETSテーブルtest_etsの中身をDETSテーブルtestに加える（insert操作が行われる）
12> dets:from_ets(test, test_ets).
ok
 DETSテーブルtest全体を見てみると加えられているのがわかる
13> dets:traverse(test, fun(X) -> io:format("~p~n", [X]), continue end).
{a,1}
{b,2}
{c,3}
{d,4}
[]

 ▼図1　実行例1（ETSとDETSのテーブル間情報転送の例）

144 - Software Design

で学ぶErlang
並行プログラミング

MnesiaではETSやDETS同様にキーとバ
リュー双方として取り扱うのはErlangの項を
想定しています。Mnesiaは次の例に示した用
途に適しています。

・	Erlangのリストやタプル、マップなどのデー
タ構造をKVSのキーや値として持ちたい

・	複数のノードからも同じようにKVSにアク
セスしたい

・	同じKVSの複製を複数ノードに持ち耐障害
性を高めたい

・	同じKVSの複数をメモリとディスク双方に
持ち、ノードやプロセスの停止に耐えられ
るようにしたい

・	複数ノード間の整合性を厳密に保ちたい注4

　一方、Mnesiaに向いていないデータの例と
しては次の例が挙げられます。

注4） Mnesiaは複数ノードに存在するデータの複製（replica）の
間にネットワーク分割 (partitioned network)による不整
合が発生した場合は、エラーイベントが発生します。この
場合mnesia:set_master_nodes/{1,2}でマスターとなる
ノードを指定する必要があります。また、テーブル作成時
にmajorityオプションを指定することで、ネットワーク分
割が起こった場合多数側でない場合は、書き込みができな
くなるようにすることもできます。

・	小規模かつマップ（連載第7回を参照）やdict
モジュール（単純な連想配列を実現）[6]で済む
もの

・	KVSの持つ値のサイズが大きい（ファイル、
バイナリなど）

・	ログやアーカイブなどデータが増え続ける
もの（これらは専用のライブラリや外部デー
タベースで処理すべき）

・	数GB以上の大規模なKVS注5

・	複数ノード間の可用性を優先するために、結
果整合性（eventual consistency）を自動処理
したい注6

　Mnesiaはejabberd[7]やRabbitMQ[8]といった

注5） MnesiaにはDETSの2GB制限による単一DETSファイルの
場合の容量制限がありますが、これは分割（fragmentation）
を行うことで回避できます。詳細は（https://erlangcentral.
org/wiki/index.php/Mnesia_Table_Fragmentation）を 参
照してください。なお、実運用で2008年に2億5千万件
のエントリを512個のDETSに分割して動かしていたとい
う報告があります（http://erlang.org/pipermail/erlang-
questions/2008-March/033951.html）。

注6） 一般にデータベースの可用性を整合性よりも優先する場合は、
あるキーに対して複数の矛盾する値の複製をすべて読み出
して集めたうえで、最終的な値をどれにするかを決定する
必要があります。

　　　　このような手法の1つとして、Bob Ippolitoによる state
box（ https://github.com/mochi/statebox ）があります。

疑似乱数の初期化など必要に応
じて各処理単位（プロセス）が
他のプロセスと重複しないパラ
メータを要求し、ブローカーが
返事を返す

データベースとブローカー
は特性多項式やその他のパ
ラメータに重複がないこと
を保証する

ブローカー

TinyMTDCなどのパラメータ
生成装置や外部ファイルなどの
パラメータ供給源

バッファとしての
データベース

（余剰になったパラメータ
を蓄積しておく）

 ▼図2　疑似乱数のパラメータ生成と配布のモデル

https://erlangcentral.org/wiki/index.php/Mnesia_Table_Fragmentation
http://erlang.org/pipermail/erlang-questions/2008-March/033951.html
https://github.com/mochi/statebox

144 - Software Design Jan. 2016 - 145

メッセージングシステムに使われています。ま
たチャットサービス大手のWhatsAppでは
Mnesiaを独自に改造することで2TBのメモリ
を16分割して180億のレコードを記憶するの
に使っていたという2014年の報告があります [9]。

Mnesiaを疑似乱数の
生成パラメータ取得に使ってみる

　Mnesiaは他のKVS同様、いろいろな用途に
応用可能です。今回は疑似乱数生成アルゴリズ
ムのパラメータ取得という例を考えてみること
にします。
　疑似乱数の1つであるTinyMT[10, 11]注7は、同
一のアルゴリズムでも与えるパラメータを変え
ることで、最大2の58乗個という非常に多く
の独立した疑似乱数列を得ることができます [12]。
この性質を活かすことで、TinyMTは並行ある
いは並列計算にも有効です。たとえば並行ある
いは並列計算で疑似乱数によるシミュレーショ
ンを行う際は、それぞれの計算単位（Erlangな
らばプロセス）で違うパラメータを使って独立
した疑似乱数列を生成することで、生成された
疑似乱数が重複することを防ぐことができます
（図2）。
　筆者は過去TinyMTのパラメータ生成ソフト
ウェアTinyMTDCを長期間にわたって動かし、

注7） 筆者は2012年にErlang/OTP用のTinyMTの実装について
論文発表を行いました [11]。

約2億5千万通りの組み合わせを得ています [13]。
このパラメータは次の特徴を持っています。

・	特性多項式のパラメータは127ビットの2
進数で表現でき、重複はない

・	状態遷移関数を決定するパラメータは32ビッ
トの2進数が2つである

・	出力関数を決定するパラメータは32ビット
の2進数が1つである

・	状態遷移関数と出力関数が決まれば、疑似
乱数列の生成アルゴリズムが確定する

　TinyMTDCにより生成されたパラメータ列 [13]

は次のとおりです。

charactristic, type, id, mat2, mat2, ｭ
tmat, weight, delta
d8524022ed8dff4a8dcc50c798faba43,32,0,ｭ
8f7011ee,fc78ff1f,3793fdff,63,0
 ……以下略……

　これを次のUNIXコマンドでErlang/OTPの
file:consult/1で読める形に変換します（先頭が
#の行は取り除いています）。

#!/bin/sh
awk 'BEGIN{FS=",";}{print "{tinymt32param, ｭ
16#" $1 ", 16#" $4 ", 16#" $5 ", 16#" $6 ｭ
", " $7 ", " $8 "}.";}'

　変換された結果内容はtinymt32param（レコード
名）、characteristic、mat1、mat2、tmat、 weight、
deltaの順番で次のようになります。file:consult/1

第10回 OTPのデータベースMnesia

 ▼リスト1　Mnesiaのテーブル定義レコードファイル（tinymt_params.hrl）

 TinyMT（32ビット版）の疑似乱数生成パラメータを定義するレコード。32ビット符号なし整数の型
-type uint32() :: 0..16#ffffffff.
 レコードを定義する
-record(tinymt32param, {
 特性多項式を示す128ビットの一意な数
 characteristic :: 0..16#ffffffffffffffffffffffffffffffff,
 mat1, mat2, tmat の組で疑似乱数生成が一意にできる
 mat1 :: uint32(),
 mat2 :: uint32(),
 tmat :: uint32(),
 これらは特性多項式の性質を示す数
 weight :: 0..127,
 delta :: 0..31
 }).

146 - Software Design

で学ぶErlang
並行プログラミング

はこのタプル列を読んでリストに変換します。

{tinymt32param, 16#d8524022ed8dff5a8dcc50cｭ
798faba43, 16#8f7011ee, 16#fc78ff1f,
16#3793fdff, 63, 0}.
 ……以下略……

　このように事前にテキスト処理をしておくこ
とで、file:consult/1という関数でタプルを

要素とするリストとして外部のデータをまとめ
て読み込むことができるようになります。
　今回の例では、あらかじめ計算したパラメー
タ群をMnesiaのテーブルとして用意し、プロ
セスが疑似乱数の計算を初期化する際に、必要
に応じてそのテーブルからパラメータを読み出
せるようにします。一度使ったパラメータはテー

 ▼リスト2　Mnesiaのテーブル操作のためのモジュール（tinymt_params.erl）

-module(tinymt_params).
-include("tinymt_params.hrl").
-export([first_time/0,
 init/0,
 add_record/1,
 select_record_tmat_delete/1,
 pickup_random_param/0]).
 最初にMnesiaのスキーマを作る関数
-spec first_time() -> ok.
first_time() ->
 ok = mnesia:create_schema([node() | nodes()]).
 Mnesiaのテーブルを作る関数
-spec init() -> {atomic, ok}.
init() ->
 {atomic, ok} = mnesia:create_table(
 tinymt32param,
 [{disc_copies, [node() | nodes()]},
 {attributes,
 record_info(fields, tinymt32param)}]).
 Mnesiaのテーブルにレコードを加える
-spec add_record(#tinymt32param{}) -> {atomic, ok}.
add_record(R) ->
 mnesia:transaction(
 fun() -> mnesia:write(R) end).
 Mnesiaのテーブルにあるレコードのうちtmatが引数と同じか大きいものを1つ選び、その選んだレコードを返すと同時に消去する
-spec select_record_tmat_delete(uint32()) -> #tinymt32param{}.
select_record_tmat_delete(Tmat) ->
 マッチスペックを定義：tmatフィールドが与えられた値以上の場合、characteristicフィールドを返す
 Matchhead = #tinymt32param{
 characteristic = '$1', tmat = '$2', _ = '_'},
 Guard = [{'>=', '$2', Tmat}],
 Result = '$1',
 F = fun() ->
 {[V], _} = mnesia:select(tinymt32param,
 [{Matchhead, Guard, [Result]}], 1, write),
 [Rec] = mnesia:read(tinymt32param, V),
 ok = mnesia:delete(tinymt32param, V, write),
 Rec
 end,
 {atomic, R} = mnesia:transaction(F),
 R.
 上記の関数を使いランダムに1つパラメータを返す。選ばれたパラメータはMnesiaのテーブルから消える
-spec pickup_random_param() -> #tinymt32param{}.
pickup_random_param() ->
 select_record_tmat_delete(rand:uniform(16#100000000) - 1).

146 - Software Design Jan. 2016 - 147

ブルから消去します。この作業だけであれば
Mnesiaである必要はまったくないのですが、
今回は書き込むノードと読み出すノードを別に
し、かつ両者のノードそれぞれのメモリとディ
スク上双方にテーブルを持つことにして、どち
らかに事故が起こっても復旧できるための準備
をしておきます注8。
　MnesiaはETSやDETS同様、KVSをErlang

のレコードの組として表現します。一般的には
レコード名がMnesiaのテーブル名、またレコー
ドの最初の要素がKVSのキーに相当します。
今回は特性多項式の情報をKVSのキーとする
ことで、キーが重複しないことを保証しています。
リスト1にMnesiaのテーブルを表すレコード定
義を示します。
　Mnesiaでは、データベースの構造を示すス
キーマ（データベース中のテーブル定義や各テー

注8） 具体的な復旧の手段については、どれがより確実な情報か
を判断する方法が別途必要です。Mnesiaはデータベース
の一貫性を重視するため、実際の運用ではマスターノード
を決めるか、ノード数を増やして多数決で決定するのが現
実的だと筆者は考えます。

ブルの関連情報を保持するデータ構造）を、
mnesia:create_schema/1で最初に作る必要
があります。スキーマは関連するすべての分散
ノード上で作られる必要があります。スキーマ
ができると、mnesia:create_table/2でテー
ブルを作ることができます。テーブル作成時の
オプションとして、どこに実体を置くか（disc_
copiesではメモリとディスク双方に置かれま
す）、またどのようなレコード定義を持つかな
どを指定できます。
　データベースの操作を行う際に使われる
Mnesiaの関数は、「トランザクション」注9の単
位で実行されることを前提にしています。
mnesia:transaction/1という関数を実行す
ることで、この関数の引数として与えられる関
数を、トランザクションの単位として実行する

注9） トランザクションの定義はMnesiaでも他のデータベース
と同様です。トランザクションに含まれる操作は全部行わ
れるかまったく行われないかのどちらかです。一度実行さ
れたトランザクションの結果は確定して消えることはあり
ません。トランザクションの前後でデータベースの一貫性
は失われません。また、各トランザクションの間に他のト
ランザクションが割り込むことはなく、直列に実行されます。
これらの特性をACIDといいます。

第10回 OTPのデータベースMnesia

 以下ホスト名“bigmac”というOS Xを実行している機器の例。コンパイルとディレクトリの初期化を行う
端末A: rebar compile
端末A: mkdir ./mnesia-alpha
端末A: mkdir ./mnesia-bravo
 仮想マシンのノードをそれぞれ起動
端末A: erl -sname alpha -pa ebin -mnesia dir '"./mnesia-alpha/"'
端末B: erl -sname bravo -pa ebin -mnesia dir '"./mnesia-bravo/"'
 以下はErlangシェルで分散ノード間接続のためのクッキーを設定
端末AとB: erlang:set_cookie(node(), mnesia_test_cookie).
 分散ノード間の疎通を確認（これをしないと、Mnesiaを扱うノードが確定しない）

端末A: net_adm:ping(alpha@bigmac).
端末B: net_adm:ping(bravo@bigmac).
 コンパイルしたオブジェクトとレコードのパターンを読み込む
端末AとB: l(tinymt_params).
端末AとB: rr(tinymt_params).
 最初の一度だけはMnesia起動前にMnesiaのスキーマを決める必要がある
端末A: tinymt_params:first_time().
 スキーマが決まったらMnesiaを起動できる
端末AとB: mnesia:start().
 Mnesiaのテーブルを作る。分散ノード接続ができていればノードalphaとbravo双方にテーブルができる
端末A: tinymt_params:init().
 Mnesiaのテーブルに情報を書き込む。TinyMTのパラメータを一度変数にすべて読み込む
端末A: {ok, Tablelist} = file:consult("tinymt32dc-rawtuples.txt").
 読み込んだレコードのリストをすべてMnesiaのテーブルに加える
端末A: [tinymt_params:add_record(R) || R <- Tablelist].

 ▼図3　2つのノードを1つのホストで立ち上げてMnesiaデータベースをセットアップするまでの手順

148 - Software Design

で学ぶErlang
並行プログラミング

ようになっています。この引数の関数は何度も
再試行される可能性があるため、外部への副作
用があると予期せぬ動作につながることがあり
ます。また、mnesia:read/{1,2,3}やmnesia
:write/{1,3}などの操作関数はトランザク
ション中以外の場所で実行することを想定して

いません注10。
　リスト2にMnesiaのテーブル作成や操作の
ための関数をモジュールにまとめました。テー

注10） Mnesiaにはdirty_で始まるトランザクションの制約を受
けない関数群がありますが、これらはより高速である代わ
りに、データベースの一貫性を損なう可能性があります。
本稿では扱いません。

 プロンプトの最初にノード名を記している。時系列で示すため2つのノードが混ざっている。テーブルのサイズを返す
(alpha@bigmac)66> mnesia:table_info(tinymt32param, size).
65536
 テーブル中のフィールド名を返す
(alpha@bigmac)67> mnesia:table_info(tinymt33param, attributes).
[characteristic,mat1,mat2,tmat,weight,delta]
 ここでノードbravoにてパラメータを1つ取得する
(bravo@bigmac)59> tinymt_params:pickup_random_param().
#tinymt32param{characteristic = 188318017379614859055003800087298981289,
 mat1 = 646644945,mat2 = 2875222745,tmat = 4294437887,
 weight = 71,delta = 1}
 この時点でテーブルのサイズを見ると1つ減っているのがわかる
(alpha@bigmac)68> mnesia:table_info(tinymt32param, size).
65535
 さらにノードbravoにてパラメータを1つ取得する
(bravo@bigmac)60> tinymt_params:pickup_random_param().
#tinymt32param{characteristic = 234226369015328067279219598290313905135,
 mat1 = 575472713,mat2 = 633915763,tmat = 3960389631,
 weight = 61,delta = 0}
 さらにサイズが1つ減っているのがわかる
(alpha@bigmac)69> mnesia:table_info(tinymt32param, size).
65534

 ▼図5　Mnesiaデータベース操作の実行例

特定の関数を呼ぶごとにパラメータを得る
ことができ、かつ一度得られたパラメータ
はMnesiaのテーブルから消えることがト
ランザクションの単位で保証される

ノードごとにあるMnesia
のストレージ（メモリ、
ディスク）によって冗長化
と耐障害性の向上が図れる

alpha bravo

外部ファイルからの
パラメータ入力

分散ノード間通信
により一体化している

Mnesiaスキーマの通用範囲

 ▼図4　Erlang分散ノードとMnesiaによる疑似乱数パラメータ配布

148 - Software Design Jan. 2016 - 149

ブルへのレコード追加を行う関数のほかに、テー
ブルの検索→読み出し→該当レコードの消去と
いう3つの作業を1つのトランザクションにま
とめた関数を用意しています。こうすることで、
読み出し中の内容を他のプロセスによって変え
られてしまうことを防ぐことができます。
　本連載では個々のErlangシェルでの実行例
を紹介していますが、今回は2つのノードが関
与するため、図3にそれぞれのノードに端末を
対応させたセットアップ手順を別に記します。
MnesiaもErlang/OTPのアプリケーションで
あり、mnesia:start/0で実行を開始するよう
になっています。セットアップしたシステムの
構成を図4に示します。
　実行の様子を図5に示します。ノードbravoで
操作した結果は、ノードalpha上にも遅滞なく反
映されていることがわかります。この実行例で
は65536個のレコードを読み込ませていますが、
筆者のMac mini（Late 2012：2.6Ghz Intel Core

i7/主記憶 16GB/256GB SSD/OS X 10.11.1/

Erlang/OTP 18.1.4）では2つのノードに対する
データベースの読み込みに20秒弱かかりました。
SSDへの複製をせずメモリだけで動作するよう
にすればより高速になるものと思います。また、
1,048,576個のレコードを読み込ませた時も、今
回紹介したコードで問題なく動作しています。

まとめ

　今回はErlang/OTPのデータベースMnesiaに
ついて紹介しました。Mnesiaの機能の詳細を理
解するには、他のOTPライブラリ同様リファレ
ンスマニュアル [5]とユーザーズガイド [14]を熟読
することをお勧めします。とくにユーザーズガ
イドでは、今回割愛したテーブル間連携やデー
タベースの分割、ディスクレスノードの使い方
など、運用のノウハウが詰め込まれています。
　次回はErlangから他のプログラムやライブ
ラリを利用する方法について紹介する予定です。

ソースコードとサポートページ

　連載の記事で紹介したソースコードなど
GitHubのリポジトリに置いています（https://

github.com/jj1bdx/sd-erlang-public/）。どうぞ
ご活用ください。｢

参考文献
[1]	 http://erlang.org/pipermail/erlang-

questions/2015-November/086722.html
[2]	 http://erlang.org/doc/man/dets.html
[3]	 Francesco Cesarini, Simon Thompson,

"Erlang Programming", O'Reilly Media,
2009, ISBN-13: 978-0-596-51818-9, pp.
213-243 (Chapter 10: ETS and Dets
Tables).

[4]	 Hakan Mattsson, Hans Nilsson, and Claes
Wikström, "Mnesia - A Distributed Robust
DBMS for Telecommunications App	
lications", In Proceedings of the First
International Workshop on Practical
Aspects of Declarative Languages (PADL
'99), Springer-Verlag, London, UK, 1999,
pp. 152-163. PDF URL:http://www.
erlang.se/publications/mnesia_overview.
pdf

[5]	 http://www.erlang.org/doc/man/mnesia.
html

[6]	 http://www.erlang.org/doc/man/dict.
html

[7]	 http://docs.ejabberd.im/
[8]	 https://www.rabbitmq.com/
[9]	 h t tp : / /h i ghsca lab i l i t y . com/b log/	

2014/3/31/how-whatsapp-grew-to-
nearly-500-million-users-11000-cores-an.
html

[10]	ht tp ://www.math .sc i .h i rosh ima-u .
ac.jp/~m-mat/MT/TINYMT/index-jp.html

[11]	Kenji Rikitake, "TinyMT Pseudo Random
Number Generator for Erlang",Erlang'12:
Proceedings of the 2012 ACM SIGPLAN
Erlang Workshop,pp. 67-72 (2012).（実装
は https://github.com/jj1bdx/tinymt-
erlang/ を参照）

[12]	斎藤睦夫、松本眞、「高速並列計算用の状態空
間の小さな高品質疑似乱数生成器」、情報処理
学会研究報告 Vol. 2011-HPC-131, No. 3,
pp. 1-6.

[13]	https://github.com/jj1bdx/tinymtdc-
longbatch/

第10回 OTPのデータベースMnesia

http://erlang.org/pipermail/erlang-questions/2015-November/086722.html
https://github.com/jj1bdx/sd-erlang-public/
http://erlang.org/doc/man/dets.html
http://www.erlang.se/publications/mnesia_overview.pdf
http://www.erlang.org/doc/man/mnesia.html
http://www.erlang.org/doc/man/dict.html
http://docs.ejabberd.im/
https://www.rabbitmq.com/
http://highscalability.com/blog/2014/3/31/how-whatsapp-grew-tonearly-500-million-users-11000-cores-an.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/index-jp.html
https://github.com/jj1bdx/tinymt-erlang/
https://github.com/jj1bdx/tinymtdc-longbatch/

150 - Software Design

　前回は、さまざまなツールで作成した図を
Sphinxドキュメントに埋め込む方法を紹介しま
した。今回は応用編として、テキストマークアッ
プから図を生成し、Sphinxドキュメントに埋め
込む方法を紹介します。

　Graphviz注1は、AT&T研究所によって開発さ
れたグラフ描画ツールです。DOT言語という
マークアップ言語で定義したグラフから画像を
生成します。ここでいうグラフとは、ノード（頂
点）と、ノード同士を結ぶエッジ（辺）によって構
成される図のことです（図1）。
　はじめに、Graphvizを単体で動作させる手順
を紹介します。Graphvizを利用するにはインス
トールする必要があります。GraphvizはYumや
APT、Homebrewなどのパッケージ管理システ
ムを利用してインストール可能です。

注1） http://www.graphviz.org/

今回のテーマ

Graphviz

 Graphvizのインストール（Homebrewの場合）
$ brew install graphviz

　それではサンプルを見ながらDOT言語の書き
方を学びましょう。リスト1は4つのノードで
構成されたシンプルなグラフです。
　1行目のdigraphはDOT言語のキーワード
で、定義するグラフが有向グラフである（エッジ
が向きを持つ）ことを表しています。2行目では
「reST」と「HTML」の2つのノードと、reSTか
らHTMLに向かうエッジを->記号を使って定
義しています。行末には文の区切りを示すセミ
コロンがあります。セミコロンは省略すること
も可能ですが、意図せぬ解釈を防ぐために、記
述することをお勧めします。3行目、4行目も同
様にノードとエッジを定義しています。最後の
5行目はグラフの終了を表す閉じ波括弧です。
　グラフ定義は拡張子.dotのファイルに保存し
ます。グラフ定義に日本語を利用する場合は、
文字コードをUTF-8にしてください。
　グラフ定義ファイルから画像を生成するには
dotコマンドを利用します。dotコマンドには-T

オプションで画像形式を、-oオプションで出力
ファイル名を指定します（図2）。
　リスト1のグラフ定義をdotコマンドで変換す
ると、図3の図が生成されます。グラフ定義か
ら生成した画像では、ノードは丸、エッジは矢

Sphinxで始める
 ドキュメント作成術

ドキュメントに図を入れよう
̶̶テキストマークアップから図を生成する

第10回

小宮 健 Komiya Takeshi　 Twitter @tk0miya

Sphinxで始める
 ドキュメント作成術

digraph {
 reST -> HTML;
 reST -> ePub;
 reST -> PDF;
}

 ▼リスト1　DOT言語によるマークアップ

 ▼図1　グラフの例

http://www.graphviz.org/

150 - Software Design Jan. 2016 - 151

印として描画されます。
　Graphvizはグラフ定義から画像を生成する際
に、ノードとエッジを計算に基づいて自動的に
レイアウトします。このため、ノードやエッジ
を追加するにはDOT言語で書かれたグラフ定義
を更新するだけでよく、GUIの作図ツールのよ
うに手動で位置を調整する必要がありません。

SphinxとGraphvizを	
組み合わせる

　SphinxドキュメントにGraphvizのグラフを
埋め込むには、Sphinx付属のsphinx.ext.graphviz

拡張注2を利用します。
　sphinx.ext.graphvizを利用するには、あらか
じめGraphvizをインストールしておき、conf.py

で拡張を有効にします。

注2） http://docs.sphinx-users.jp/ext/graphviz.html

 sphinx.ext.graphvizの設定（conf.py）
extensions = ['sphinx.ext.graphviz']

ドキュメントに図を入れよう
̶̶テキストマークアップから図を生成する

第10回

 ▼図3　リスト1の定義から生成されたグラフ

$ dot -T png [入力ファイル名.dot] -o [出力ファイル名.png]

 ▼図2　dotコマンドの書式

グラフの見た目を変更する
　読みやすいグラフを作るには、ノードやエッジ
を装飾すると良いでしょう。リストAのようにノー
ドやエッジに属性を付与することで、画像に変換
した際の見た目を装飾できます（図A）。
　ノードやエッジの装飾には表Aの属性を利用で
きます。ここで紹介した属性のほかにも、グラフ

の出力を変更するオプションなどが数多く提供さ
れています。詳しくはGraphvizのサイト注Aを参照
してください。

COLUMN

digraph {
 ↓reSTノードを長方形に、枠の色を赤にそれぞれ変更
 reST [shape = box, color = "#FF0000"];

 reST -> HTML [style = dotted]; ←エッジを点線に変更
 reST -> ePub [style = bold]; ←エッジを太線に変更
 reST -> PDF [label = "Using LaTeX"]; ←エッジにラベルを追加
}

 ▼リストA　ノードやエッジに属性を付与する ▼図A　装飾されたノードやエッジ
 （リストAの定義から生成）

オプション名 概要 取りうる値
shape ノードの形を変更する box（長方形）、diamond（ひし形）など

style ノードやエッジの線のスタイルを変更する dashed（破線）、dotted（点線）、
rounded（角丸）、invis（非表示）など

color ノードの枠やエッジの線の色を変更する カラーコード（例：“#FF0000”）
fillcolor ノードの背景を変更する カラーコード
label ノードやエッジのラベルを追加する 任意の文字列（例：“Hello world”）
dir エッジの矢印の向きを変更する back（逆方向）、both（双方向）、none（なし）

 ▼表A　ノードやエッジに指定できるおもな属性

注A） http://www.graphviz.org/content/attrs

http://docs.sphinx-users.jp/ext/graphviz.html
http://www.graphviz.org/content/attrs

152 - Software Design

　グラフをドキュメントに埋め込むにはgraph

vizディレクティブを使います。graphvizディレ
クティブには2種類の記述方法があります。1つ
はdotファイルを引数として指定する方法、も
う1つはグラフ定義をディレクティブのコンテ
ンツとして記述する方法です（リスト2）。
　ドキュメントの生成には、これまでどおり
make htmlを実行します。sphinx.ext.graphviz

が自動的にdotコマンドを実行して、グラフを
生成し、ドキュメントへ埋め込みます（図4）。

外部ツールで生成したグラフを	
取り込む

　Graphvizはさまざまなツールの出力形式に使
われています。HashiCorp社のTerraform注3も
Graphvizに対応しているツールの1つです。
Terraformでは定義し
たインフラ構成を、Gra

phvizを使って可視化で
きます。
　こうした外部ツールで
生成したグラフを継続的
に取り込むには、Make

fileを書き換えると良い

注3） インフラ構成をコードで
記述することで、環境の
自動構築やインフラ構成
のバージョン管理などを
可能にするツール。
https://terraform.io/

でしょう（リスト3）。そうすればドキュメント
の変換時にグラフが生成され、最新の状態が自
動的にドキュメントへと反映されます（図5）。

　拙作seqdiagは、シーケンス図の作成を目的
とするツールです。DOT言語に似た、独自の
マークアップ言語を使って定義したシーケンス
から画像を生成します。
　seqdiagはマルチバイト文字の出力に libfree

type注4を利用するため、シーケンスの定義に日
本語を利用する場合は事前にインストールして

注4） フォントのラスタライズなど、さまざまなフォント関連の
機能をサポートしたライブラリ。http://www.freetype.org/

seqdiag

Sphinxで始める
 ドキュメント作成術

.. graphviz:: example.dot
 :caption: 外部の.dotファイルを引数として指定する例

.. graphviz::
 :caption: グラフ定義をコンテンツとして記述する例

 digraph {
 reST -> HTML;
 reST -> PDF;
 reST -> ePub;
 }

 ▼リスト2　graphvizディレクティブの使用例

html:
 terraform graph > network.dot ←Terraformでグラフを生成
 $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html

 ▼リスト3　HTML変換の際にterraformを実行する設定（Make�le）

 ▼図4　sphinx.ext.graphvizの出力結果

http://www.freetype.org/
http://qiita.com/jj1bdx/items/4f7d7b5a53fcec32ab8d

152 - Software Design Jan. 2016 - 153

おきます。libfreetypeはYumやAPT、Home

brewなどのパッケージ管理システムを利用して
インストール可能です。

　その後、pipコマンドでseqdiagをインストー
ルします。

　それではサンプルを見ながらseqdiagの書き
方を学びましょう。リスト4はブログのコメン
ト投稿の流れを表すシーケンスの定義です。
　1行目のseqdiagはseqdiagのシーケンス定義
であることを表しています。2行目では->記号

 libfreetypeのインストール（Homebrewの場合）
$ brew install freetype

 seqdiagのインストール
$ pip install seqdiag

を使って「browser」ノードから「webserver」ノー
ドへのメッセージを定義しています。また、
label属性を指定してメッセージにラベルを付
けています。5行目では <--記号を使って
「webserver」ノードから「browser」ノードへの戻
り値を定義しています。
　シーケンス定義は拡張子.diagのファイルに
保存します。シーケンス定義に日本語を利用す
る場合は、文字コードをUTF-8にしてくださ
い。
　シーケンス定義ファイルから画像を生成する
にはseqdiagコマンドを利用します。seqdiagコ
マンドには-fオプションでフォントファイルへ
のパスを、-oオプションで出力ファイル名を指
定します（図6）。seqdiagコマンドが対応してい
るフォント形式はTrueTypeフォントおよび

OpenTypeフォントです。
　リスト4のシーケンス
定義からは図7の図が画
像として生成されます。
　seqdiagにもシーケン
ス図の出力を変更するさ
まざまな属性や記法が提
供されています。詳しく
はseqdiagのサイト注5を
参照してください。

注5） http://blockdiag.com/ja/
seqdiag/

ドキュメントに図を入れよう
̶̶テキストマークアップから図を生成する

第10回

$ seqdiag -f [フォントファイルへのパス] [入力ファイル名.diag] -o [出力ファイル名.png]

 ▼図6　seqdiagコマンドの書式

seqdiag {
 browser -> webserver [label = "POST /blog/comment"];
 webserver -> database [label = "INSERT comment"];
 webserver <-- database;
 browser <-- webserver;
}

 ▼リスト4　seqdiagによるマークアップ ▼図7　リスト4の定義から生成されたシーケンス図

 ▼図5　Terraformの出力結果を取り込んだ例

http://blockdiag.com/ja/seqdiag/

154 - Software Design

Sphinxとseqdiagを組み合わ
せる

　Sphinxドキュメントにシーケンス図を埋め込
むには、sphinxcontrib-seqdiag注6を利用します。
　sphinxcontrib-seqdiagはサードパーティ製の
Sphinx拡張です。利用するにはインストールす
る必要があります。

　次に conf.pyで sphinxcontrib-seqdiagを有効
にします。同時にフォントファイルへのパスを
seqdiag_fontpathに指定します（リスト5）。
　シーケンス図をドキュメントに埋め込むには、
seqdiagディレクティブを使います。graphviz

ディレクティブと同様、seqdiagディレクティブ

注6） https://github.com/blockdiag/sphinxcontrib-seqdiag

 sphinxcontrib-seqdiagのインストール
$ pip install sphinxcontrib-seqdiag

でも、シーケンス定義ファイルを引数に指定す
る方法と、シーケンス定義をseqdiagディレク
ティブのコンテンツとして記述する方法が利用
可能です。リスト6はシーケンス定義ファイル
を引数に指定した例です。
　seqdiagディレクティブはfigureディレクティ
ブと互換性があり、scaleやaltなどのオプショ
ンにも対応しています。
　ドキュメントの生成には、これまでどおり
make htmlを実行します。sphinxcontrib-seqdiag
が自動的にseqdiagを実行して、シーケンス図
を生成し、ドキュメントに埋め込みます（図8）。

　今回紹介したGraphvizとseqdiagは、いずれ
もテキストベースの定義から図を生成します。
どちらのツールも図の要素を自動的にレイアウ

次回予告

Sphinxで始める
 ドキュメント作成術

extensions = ['sphinxcontrib.seqdiag']
seqdiag_fontpath = u'/Library/Fonts/ヒラギノ角ゴ Pro W3.otf'

 ▼リスト5　sphinxcontrib-seqdiagの設定（conf.py）

.. seqdiag:: example.diag
 :caption: ブログのコメント投稿のシーケンス

 ▼リスト6　seqdiagディレクティブの使用例

 ▼図8　sphinxcontrib-seqdiagの出力結果

https://github.com/blockdiag/sphinxcontrib-seqdiag

154 - Software Design Jan. 2016 - 155

トしてくれるので、利用者は図の中身を書くこ
とに集中できます。前回紹介したCacooやVisio

も含め、適材適所で作図ツールを選択すると良

いでしょう。
　次回はSphinxの全文検索機能について紹介し
ます。｢

ドキュメントに図を入れよう
̶̶テキストマークアップから図を生成する

第10回

その他のテキストベースの作図ツール
　今回紹介したGraphvizと seqdiagのほかにも、
テキストベースの作図ツールはいくつも存在しま
す（表B）。それぞれマークアップ方式や出力でき
る図が異なっているため、用途に合わせてツール

を使い分けると良いでしょう。どのツールもSphinx
拡張が提供されているため、簡単にSphinxと連携
できます。

COLUMN

ツール名 Sphinx拡張 概要
PlantUML sphinxcontrib-plantuml 各種UML図
yUML sphinxcontrib-yuml UML図（クラス図、アクティビティ図、ユースケース図）
mscgen sphinxcontrib-mscgen シーケンス図
blockdiag sphinxcontrib-blockdiag ブロック図
actdiag sphinxcontrib-actdiag アクティビティ図
nwdiag sphinxcontrib-nwdiag ネットワーク関連の図
gnuplot sphinxcontrib-gnuplot 2次元グラフ／3次元グラフ

 ▼表B　テキストベースの作図ツール

Sphinxワークショップ@関西	 Author 清水川 貴之

　本連載執筆陣の1人、清水川です。
　2015年10月31日に、日本UNIXユーザ会さん主
催のイベント「Sphinxワークショップ@関西」注Bが
大阪の梅田で開催されました。Sphinx-users.jpか
ら講師として、筆者を含む2名が参加してきまし
た。
　参加した13名のうち、半分以上の方がSphinx
を初めて使うということでしたが、中にはSphinx
をかなり使い込んでいる方もいらっしゃいました。
　ワークショップでは、前半でSphinxを紹介し、
後半でチュートリアルを使ったハンズオンを行い
ました（写真A）。チュートリアルは、Sphinxのユー
ザ会のサイトに掲載している「Sphinxをはじめよ
う注C」という記事をもとに、sphinx-quickstartや、

記法の練習などを各自進めてもらい、質問があれ
ば講師が答えるというスタイルで行いました。
　今回のワークショップは、日本UNIXユーザ会さ
んの企画です。Sphinx-users.jpでは、要望に応じ
てSphinxのワークショップやハンズオンの講師を
派遣していますので、お気軽にご相談ください。

 ▼写真A　ハンズオンの様子

COLUMN

注B） http://sphinxjp.connpass.com/event/22023/

注C） http://sphinx-users.jp/gettingstarted/index.html

http://sphinxjp.connpass.com/event/22023/
http://sphinx-users.jp/gettingstarted/index.html

156 - Software Design

した。たとえば、古くから使われているOSS

の監視システムであるNagios注2は、そのよう
なチェック監視を中心に据えた設計になってい
ます。そのころはサーバシステムへの要求も現
在ほどには高くなく、チェック監視でダウンを
検知したらサーバを再起動したり、せいぜい待
機系を用意しておいてそちらに切り替えたりす
るなどの素朴な運用が、多くの場合まかり通っ
ていた時代でもあります。
　現実問題として、膨大な量のメトリックを時
系列データとして定期的に長期保存するために
は、相応のディスク領域や性能が必要になりま
す。しかし、当時はハードウェア・ソフトウェ
アの両面で制約がありました。メトリックを取
得しても、その場で閾値と比較するチェック監
視を行うのみで、時系列データとして保存して
おくのは一部の限られたメトリックに限定せざ
るを得ませんでした。
　しかし、近年ではサーバシステムへの可用性
への要求が向上しています。とくにインターネッ
トの発展により、Webシステムは単にシステ
ムを冗長化しておくだけではなく、急激なアク
セス負荷向上にも備えなくてはいけません。単
なる死活監視だけではなく、キャパシティプラ
ンニングのための監視も必要となってきたので

Mackerelではじめる
サーバ管理

　本連載の第5回でMackerelのチェック監視の紹介をしましたが、その後機能が拡
充され、公式チェックプラグインパッケージの提供も開始されました。今回はあら
ためてチェック監視についての説明を行うとともに、公式プラグインを用いた実践
的な監視方法について取り上げます。

Writer 松木 雅幸 （まつき まさゆき） ㈱はてな
Twitter @songmu

メトリック監視と
チェック監視

　Mackerel注1に限らず、サーバ監視手法は「メトリッ
ク監視」と「チェック監視」の2つに大別されます。
　メトリック監視は、継続的に何らかの数値（メ
トリック）を取得し、その変化を観察、サービ
スの傾向の把握や異常値の検出を行うものです。
Mackerelで言うと、mackerel-agentによるCPU

やメモリ使用率などの取得と可視化、閾
しきいち

値設定
がそれにあたります。
　チェック監視は、定期的に何らかの状態が正
常か異常かをチェックすることで、システムの
状態を確認するものです。たとえば、ログのエ
ラー文字列を検知するログ監視や、あるプロセ
スが正常に起動しているかを確認するプロセス
監視などが挙げられます。Mackerelでは、
mackerel-agentの設定ファイルに設定を追加す
ることで、各種チェック監視ができるようになっ
ています。また、Webサイトが正常なレスポ
ンスを返すかどうかをチェックする「外形監視
機能」も、チェック系の監視と言えるでしょう。

チェック監視は必要か

　以前は、監視と言えばチェック監視が中心で

第11回 mackerel-check-pluginsで
柔軟なチェック監視

注1） URL https://mackerel.io
注2） URL https://www.nagios.org

https://mackerel.io
https://www.nagios.org

156 - Software Design Jan. 2016 - 157

す。そのためにも、リアルタイムにサーバの状
態を可視化することが求められます。
　同時に、時系列データ技術の向上やハードウェ
ア性能の向上、ストレージコストの低下により、
多くのメトリックを時系列データとして保存し
ておくことは、以前ほど苦ではなくなってきて
います。それにより、以前はその場でのチェッ
ク監視しかできなかったメトリックも継続的に
保持し、可視化できるようになりました。
Mackerelもメトリック監視を中心に据えた設
計になっています。
　それでは、チェック監視はもう必要ないので
しょうか？　けっしてそんなことはありません。
ログのキーワード監視や、死活監視、URL外
形監視などは、メトリックと関係のない監視と
言えますし、数値を取るにしても継続的に可視
化する必要がないものもあります。また、何よ
り、NagiosやSensu注3などのチェック監視資
産は非常に豊富であり、かつ枯れて（安定して）
いるため、これらを活用しない手はありません。

チェック監視プラグインの共通仕様

　多くの監視システムで使われている、チェッ
ク監視プラグインのための共通仕様があります。
それはプログラムの終了コードで、監視対象の
状態を表現するものです。これはPOSIXで、終
了コードが0だと正常終了、それ以外だと異常
終了であるという仕様を拡張したものです。終
了コードと状態の対応は次のとおりシンプルな
仕様になっています。（プラグイン実行時の標準
出力は、補助的なメッセージとして利用されます）。

終了コード 状態

〓等幅0 OK

〓等幅1 WARNING

〓等幅2 CRITICAL

〓等幅0,1,2以外 UNKNOWN

　実際のところ、チェックプラグインは単なる

コマンド実行ですので、BashやPerlやPython

やRubyなど、あらゆる言語で記述ができます。
　たとえば、Mackerelの公式チェックプラグ
インに含まれるcheck-httpを利用して、はて
なのトップページの動作チェックを次のように
実行してみます。

% check-http -u http://www.hatena.ne.jp
HTTP OK: HTTP/1.1 200 OK - 126263 bytes in ｭ
0.276851 second respons time

　この場合、正常に200レスポンスが返ってき
た旨が出力されています。正常終了ですので終
了コードもOK（0）となっています。このチェッ
ク監視プラグインの共通仕様はMackerelの
チェック監視だけではなく、次のソフトウェア
でも採用されています。

・Nagios NRPE（ Nagios Remote Plugin
Executor）

・Sensu check plugin
・Consul script check

　つまり、NagiosやSensuのチェックプラグ
インをそのままMackerelのそれとして利用で
きるのです。これは既存の監視システムから
Mackerelに監視設定を移行したいといった場
合に、非常に便利です。

Mackerelにおける
チェック監視の設定

　Mackerelでチェック監視の設定をするために
は、mackerel-agent.confに次のような項目名と、
チェックプラグインのコマンドを指定します。

[plugin.checks.http]
command = "/usr/local/bin/check-http -u http:ｭ
//localhost:5000"

　項目名は、plugin.checks.で始まっている
必要があり、含まれるドットの数はちょうど「2」
である必要があります。2つめのドット以降は

第11 回
mackerel-check-pluginsで柔軟なチェック監視

注3） URL https://sensuapp.org

https://sensuapp.org

158 - Software Design

 Mackerelではじめるサーバ管理

監視設定の名前として利用されます。コマンド
はmackerel-agentにより1分間隔で実行され、
その終了ステータス／標準出力が監視結果とし
て使用されます。これは前述したチェックプラ
グインの仕様に沿って動作する必要があります。
この例では、ローカルのアプリケーションサー
バが動作しているかどうかの死活監視を行って
います。

公式チェックプラグイン
集を活用する

　Mackerelでは公式チェックプラグインのパッ
ケージを提供しています。

インストール

　インストールには、お使いの環境に合わせて
Mackerel公式のyumリポジトリもしくはaptリ
ポジトリを使うことを推奨しています。リポジ
トリの設定が行われていれば、次のようにコマ
ンド1つでチェックプラグイン集をインストー
ルできます。

rpmパッケージの場合
% yum install mackerel-check-plugins
debパッケージの場合
% apt-get install mackerel-check-plugins

　リポジトリの設定方法は公式のヘルプ注4を
ご参照ください。rpmファイルやdebファイル
を直接取得したい場合は、GitHubのリリース
情報注5を参照してください。各プラグインは

/usr/local/binにインストールされますので、
利用する場合にはmackerel-agentの設定ファ
イルに、利用するプラグインに合わせて設定を
追加してください。設定の反映には、macke

rel-agentの再起動が必要です。以降は、公式
プラグイン集を使って、各種監視設定を行う方
法を説明していきます。

 ●シンプルなプロセス監視
　check-procsを使うことでプロセス監視を行
えます。たとえばcronの監視をするには次の
ように指定します。

[plugin.checks.check_cron]
command = "/usr/local/bin/check-procs ｭ
--pattern crond"

　--pattern（-p）オプションには対象のプロセ
スにマッチさせる正規表現を指定します。この
状態でcrondが動作を停止すると、Criticalア
ラートが発生し、プロセス復旧後に自動で閉じ
られます。図1はその様子です。

 ●プロセスの個数も含めて監視
　単にプロセスの死活監視だけではなく、ワー
カーのプロセス数などが適正に保たれているか
どうかの監視をしたい場合もあるでしょう。
check-procsには次のようなオプションがあり、
プロセス数に閾値を設定できます。

check-procsでプロセス監視

 ▼図1　check-procsによるプロセス監視

注4） 「Mackerelエージェントをインストールする」 URL https://mackerel.io/my/instruction-agent
注5） URL https://github.com/mackerelio/go-check-plugins/releases

https://mackerel.io/my/instruction-agent
https://github.com/mackerelio/go-check-plugins/releases

158 - Software Design Jan. 2016 - 159

・-w, --warn-over
　設定値を上回ったらwarning
・-c, --critical-over
　設定値を上回ったらcritical
・-W, --warn-under
　設定値を下回ったらwarning
・-C, --critical-under
　設定値を下回ったらcritical

　たとえば、Nginxのワーカー数を含めた監視
をしたい場合は次のように指定します。

[plugin.checks.check_nginx_worker]
command = "check-procs -p nginx -W 8 -w 10 ｭ
-C 1 -c 30 --user nginx"

　この場合、Nginxのワーカー数が8未満もし
くは10より大きい場合にWarning、1未満もし
くは30より大きい場合にCriticalとなります。
さらにこの例では、--userオプションで実行
ユーザを指定し、より正しくワーカー数が取得
できるように設定しています。
　そのほか、check-procsにはプロセスの実行
時間やプロセスの状態に対して監視を行うよう
なオプションもそろっています。詳しくは
GitHubのREADME注6をご覧いただくか、%
check-procs --helpを実行して確認してくだ
さい。

check-logでログ監視

 ●シンプルなログ監視
　check-logを使うことでログの監視を行えます。

[plugin.checks.access_log]
command = "/usr/local/bin/check-log --file ｭ
/var/log/access.log --pattern FATAL"

　--fileオプションに監視対象のファイルを、
--patternオプションにエラー文言を検出した
いパターンを正規表現で指定します。この場合、

ログファイルにFATALという文字列が出現した
場合にCriticalアラートが発生します。ログの
チェックは1分ごとに行われ、事前に読んだ行
のチェックはスキップされます。

 ● 発生頻度に対する閾値や除外パターンを指
定する

　キーワードの出現頻度に閾値を設定したい場
合や、除外条件を指定したい場合もあるかと思
います。
　たとえばリスト1の設定ではNginxのアクセ
スログを監視して、4xxや5xx系のエラーの発
生をチェックしています。ただし、--exclude
を指定することで「robots.txt」へのアクセスは
除 外 し て い ま す。ま た、--warning-over、
--critical-overを指定することで、1分間に
3回より多く出現したらWarning、10回より多
く出現したらCriticalになるように設定してい
ます。最後に--returnオプションが付いてい
ますが、これはパターンが出現したエラー行を
標準出力に出力する設定です。このオプション
を入れることで、エラー行の内容もMackerel

に送られます。このオプションは有用ですが、
ログに秘匿情報が含まれる可能性がある場合に
は、その点を考慮したうえで利用してください。

 ● 1つのログに対して複数のチェック監視を
設定したい

　check-logは前回のチェックまでに読んだロ

[plugin.checks.access_status]
command = '''
 /usr/local/bin/check-log ¥
 --file /var/log/nginx/access.log ¥
 --pattern 'HTTP/1\.[01]" [45][0-9][0-9] ' ¥
 --exclude 'GET .*?robots¥.txt HTTP/1¥.[01]'¥
 --warning-over 3 --critical-over 10 ¥
 --return
'''

 ▼リスト1　Nginxのアクセスログを監視して、エラー
 発生をチェック

第11 回
mackerel-check-pluginsで柔軟なチェック監視

注6） URL https://github.com/mackerelio/go-check-plugins/blob/master/check-procs/README.md

https://github.com/mackerelio/go-check-plugins/blob/master/check-procs/README.md

160 - Software Design

 Mackerelではじめるサーバ管理

グの位置をステートファイルに保存しています。
ステートファイルは、デフォルトでは/var/
mackerel-cache/check-log下に保存されます。
同じログファイルに対して複数のチェック監視
を設定する場合には、リスト2のように
--state-dirを指定して、別の場所にステート
ファイルを保存するようにしてください。
　check-logのそのほかのオプションに関して
は、GitHubのREADME注7をご覧いただくか

% check-log --helpを実行して確認してくだ
さい。

check-tcpでTCP接続の監視

　check-tcpを使うことにより、TCPサーバ
の接続確認やレスポンスのチェックを行えます。
　リスト3ではHTTPのアプリケーションサー
バに対して、GET / HTTP/1.0\r\n\r\nという
リクエストを送り、レスポンスにOK Farmが含
まれているかどうかの確認をしています。

--escapeオプションを指定することで、
--sendに指定した\rや\nなどの文字列が改行
文字として扱われるようになります。
　また、接続にかかった時間に対して閾値が設
定でき、リスト3の場合ですと、3秒以上かかっ
た場合にWarning、10秒以上の場合にCritical

が発生します。
　もちろん、HTTP以外のサーバのチェック
もできます。いくつかのサービスに関しては
--serviceオプションを指定することで、複雑
な指定なしに標準的なチェックができるように

なります。たとえばFTPの場合だとリスト4
のようになります。--serviceオプションに指
定 で き る 設 定 は、FTP、POP、SPOP、
IMAP、SIMAP、SMPT、SSMTPとなって
います。check-tcpのそのほかのオプションに
関しては、GitHubのREADME注8をご覧いた
だくか、% check-tcp --helpを実行して確認
してください。

mackerel-check-pluginsの
開発について

　mackerel-check-plugins注9はGitHubで開発
しており、OSSとして提供しています。リポ
ジトリ名に「go」がついていることからわかるよ
うに、Mackerelのそのほかのツール群と同様
にGolangで開発しています。また、「mackerel」
を入れていないのは、チェック監視プラグイン
として汎用的に使えるようなツールとして開発

[plugin.checks.access_status5xx]
command = '''
 /usr/local/bin/check-log ¥
 --file /var/log/nginx/access.log ¥
 --pattern 'HTTP/1¥.[01]" 5[0-9][0-9] ' ¥
 --state-dir /var/mackerel-cache/check-log2
'''

 ▼リスト2　ステートファイルの保存場所を指定

[plugin.checks.tcp_app]
command = '''
 /usr/local/bin/check-tcp ¥
 --hostname localhost ¥
 --port 5000 ¥
 --send 'GET / HTTP/1.0¥r¥n¥r¥n' ¥
 --escape ¥
 --expect-pattern 'OK Farm' ¥
 --warning 3 --critical 10
'''

 ▼リスト3　TCP接続の監視

[plugin.checks.ftp]
command = "/usr/local/bin/check-tcp ｭ
--service=ftp -H localhost"

↓上記と等価の設定
[plugin.checks.ftp]
command = '''
 /usr/local/bin/check-tcp ¥
 -H localhost --port 21 ¥
 --expect-pattern '^200' ¥
 --quit QUIT
'''

 ▼リスト4　FTPサーバの接続監視

注7） URL https://github.com/mackerelio/go-check-plugins/blob/master/check-log/README.md
注8） URL https://github.com/mackerelio/go-check-plugins/blob/master/check-tcp/README.md
注9） URL https://github.com/mackerelio/go-check-plugins

https://github.com/mackerelio/go-check-plugins/blob/master/check-log/README.md
https://github.com/mackerelio/go-check-plugins/blob/master/check-tcp/README.md
https://github.com/mackerelio/go-check-plugins

160 - Software Design Jan. 2016 - 161

しているからです。
　Golang製であるため、パフォーマンスと可
読性のバランスに優れています。実際、各種監
視ツールにおいて、チェックプラグインは1分
間隔程度の頻繁な頻度で実行されるため、スク
リプト言語などで書かれたものは場合によって
はパフォーマンスに影響を与えることがありま
す。たとえば、Sensuのプラグインのほとんど
はRubyで書かれていますが、一部動作がやや
重いのです。それらをgo-check-pluginsに差し
替えることにより、プラグイン実行によるパ
フォーマンスへの影響を低減できるでしょう。
　go-check-pluginsはもちろんみなさんのpull

requestをお待ちしています。書き方は、既存
のプラグインのソースコードを参考してください。

　今回はチェック監視の概念の説明や、公式

チェックプラグインを用いた実践的なチェック
監視についての紹介を行いました。Mackerel

は既存のチェック監視ツールとの互換性を考え
て開発しているため、既存のシステムから
Mackerelへの乗り換えも容易に行えるように
なっています。実際、自前で運用していた
Nagiosを撤廃してMackerelに監視を任せたと
いうユーザもいるくらいです。
　チェック監視は歴史がある監視方法であり、
多くのプラグインはオープンソースとして公開
されているので、実装を読んでみると勉強にな
ることも多かったりします。シンプルながら奥
が深い領域だと言えるでしょう。みなさんもぜ
ひチェックプラグインを書いてみてください。
go-check-pluginsへのコントリビュートもお待
ちしています。ﾟ

Linuxのコンテナ技術の1つであるDockerは、迅速なWebサー
ビスの展開に必要不可欠なものであり、多くのIT企業が注目して
いる重要なものである。
本書では、そのしくみを明らかにし、まずDockerをGitHubと連携
したデプロイ方法を基礎から解説する。効率の良いデプロイを実
現するDockerfileの書き方や管理ツールであるkubernetesとの
連携方法、レッドハット社のAtomicHostでの使い方など、最新か
つ定番的なノウハウを盛り込んだ実践的な入門書である。

中井悦司 著
B5変形判／200ページ
定価（本体2,680円＋税）
ISBN 978-4-7741-7654-3

・インフラエンジニア
・ソフトウェア開発者
・クラウドエンジニア

まとめ

第11 回
mackerel-check-pluginsで柔軟なチェック監視

162 - Software Design

ファイアウォール pf(4)

　前回はbhyveを使う例として、OpenBSDをゲスト
オペレーティングシステム（以降、OSと略記）とし
てインストールする方法を紹介しました。シナリオ
として取り上げたのは、FreeBSDをハイパーバイザ
として運用し、OpenBSDをファイアウォールとして
利用するというものです。今回は仮想環境で動作し
ているOpenBSDでpf(4)を使う方法を紹介します。
　pf(4)はOpenBSD 3.0からシステムに同梱される
ようになったTCP/IPトラフィックフィルタリン
グ機能です。いわゆるファイアウォールということ
になります。OpenBSD 3.0よりも前のバージョンで
はIPFilterが使われていましたが、IPFilterのライ
センス変更の影響を懸念したOpenBSDプロジェク
トはIPFilterの使用を止めてpf(4)の開発に取り組
みました。OpenBSD 3.0以降、OpenBSDでは
IPFilterはサポートされておらず、pf(4)が使われて
います。
　pf (4)はTCP/IPトラフィックフィルタリング、
NAT、TCPトラフィック帯域制御、TCPトラフィッ
クパケットプライオリティ化機能などを提供しま
す。OpenBSDのみならずFreeBSD、NetBSD、Mac

OS Xなどに移植され活用されるようになったほ
か、FreeBSDベースのファイアウォール／ルータソ
リューションであるpfSenseやOPNsenseで使われ
ている人気の高いファイアウォールです。

設定ファイルと基本操作
pf.conf(5)＆pfctl(8)

　ここでは例として、執筆時点で最新リリース版と
なるOpenBSD 5.8を扱います。前回も紹介しまし

たが、最新のリリース版はOpenBSDのミラーサイ
ト注1などから取得してください。
　OpenBSDではpf (4)はデフォルトで有効になっ
ています。設定は/etc/pf.confに記述するしくみに
なっていて、この設定ファイルは起動時に読み込ま
れるほか、rcスクリプト経由でも読み込まれます。
OpenBSD 5.8のデフォルトの/etc/pf.confはリスト
1のようになっていて、ループバックネットワーク
デバイスにはフィルタリングをかけず、それ以外は
ステートレストラフィックとX11へのリモートコ
ネクションのみをブロックします。このルール以外
はすべて素通りする設定になっています。ルールの
詳しい読み方については以降の連載で詳しく説明し
ていく予定です。今はなんとなくその雰囲気だけで
も感じてもらえればと思います。
　pf(4)の制御はpfctl(8)コマンド経由で行います。
たとえば、次のようにpfctl(8)コマンドを実行する
ことで、任意のファイルに記述したpf (4)のルール
を適用させることができます。

pfctl -f /path/to/mypf.conf

　設定ファイルを指定してルールを適用した場合、

注1	 http://www.openbsd.org/ftp.html

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第27回 ❖bhyveでOpenBSDファイアウォール on FreeBSDを構築（その2）

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

http://www.openbsd.org/ftp.html

Jan. 2016 - 163

▶第27回◀
bhyveでOpenBSDファイアウォール on FreeBSDを構築（その2）

pfctl(8)の使い方です。/etc/pf.confファイルを編集
して、pfctl(8)コマンドでルールを適用して試して、
といった操作を繰り返して目的とするルールを書き
上げることになると思います。

ルールセット：シンタックス

　pf (4)のシンタックスは基本的にリスト2のよう
になっています。最初に、対象となるパケットを通
すのかブロックするのかを、passおよびblockで指
定して（actionの部分）、以降はその動作に関する修
飾や、どのパケットを対象とするのかの修飾が続き
ます。インターフェース、プロトコル、行き先、送
信元、ポート番号などを指定します。
　pf (4)のシンタックスはだいぶわかりやすいので、
勘のよい方ならこの段階ですでにそれなりに記述で
きると思います。シンタックスの詳しい内容は次回
以降で説明するとして、今回はシンタックスの詳し
い説明に入る前にマクロ、リスト、テーブルと呼ば
れる記述方法を説明しておきます。このあたりがわ
かっていると、ルールの理解やルール記述の効率が
変わってきます。

ルールセット：マクロ

　pf (4)ではルールセットにマクロと呼ばれる機能
が用意されています。これは変数のようなもので、
=で割り当て、$で参照を行います。次のようにルー

それまでのルールはクリアされ、設定ファイルに記載
されたルールに置き換わります。現在適用されてい
るフィルタリングルールは次のように確認できます。

pfctl -srｶ
block return all
pass all flags S/SA
block return in on ! lo0 proto tcp from
any to any port 6000:6010

　/etc/pf.confに記述されたフィルタリングルール
（リスト1）と、pfctl -srで表示されるルールが異な
る記述になっていることが確認できると思います。
ですが、それらが表現しているルールは同一のもの
です。
　pf (4)のルールセットは人間が表記しやすいよう
にいくつかのシンタックスシュガーのような機能
（リスト、マクロ、テーブルなど）が導入されてお
り、pfctl -srでは最終的に展開された状態のルー
ルが表示されています。
　一応、機能を無効化する方法も紹介しておきま
す。pf(4)の利用が前提になっていますので次の設定
を使うことはないと思いますが、pf(4)の機能を無効
にしたい場合には/etc/rc.conf.localファイルに次
の設定を追加してシステムを再起動してください。

pf=NO

　pf(4)の有効化／無効化はpfctl(8)コマンドを使っ
て次のように動的に切り替えることもできます。

 pf(4)を有効化
pfctl -eｶ
pf enabled

 pf(4)を無効化
pfctl -dｶ
pf disabled

　このあたりがOpenBSD pf(4)
で基本となる設定ファイル
pf.conf (5)と 制 御 コ マ ン ド

$OpenBSD: pf.conf,v 1.54 2014/08/23 05:49:42 deraadt Exp $
#
See pf.conf(5) and /etc/examples/pf.conf

set skip on lo

block return # block stateless traffic
pass # establish keep-state

By default, do not permit remote connections to X11
block return in on ! lo0 proto tcp to port 6000:6010

▼▼リスト1　OpenBSD 5.8のデフォルトの/etc/pf.conf

action [direction] [log] [quick] [on interface] [af] [proto protocol] ¥
 [from src_addr [port src_port]] [to dst_addr [port dst_port]] [flags tcp_flags] [state]

▼▼リスト2　pf(4)シンタックスの基本

164 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

行います。
　リストは1つのルールセットに複数同時に使うこ
ともできます。リスト5のように複数のリストを
使った場合、リスト6のように互いの要素を掛け合
わせたルールに展開したものが使用されます（なお、
行末にバックスラッシュを指定することで、1行に
書くべきルールを複数行に改行して記述できます）。
　リストはネストしていても使用できます。リスト
7のようにルールでリストがネストしている場合、
リスト8のようにすべて展開された結果がルールと
して使われます。
　これはマクロと併用する場合に便利な機能です。
リスト9のルールは先のルール（リスト8）と同じ結
果に展開されます。ネストしているリストもフラッ
トなリストに展開されるので、こうした利用が可能
になっています。

ルールセット：
テーブル

　リストと似た機能にテーブルがあります。これは
IPアドレスのグループを表現するもので、大量の
アドレスのグループを表現したい場合などに使われ
ます。リストよりもメモリの消費量が少なく、処理

ルを記述した場合、

if = "fxp0"
block in on $if from any to any

　pf(4)は次のルールに展開して処理を行います。

block drop in on fxp0 all

　if = "fxp0"で、ifに fxp0を割り当てています。
$ifのように使用すると、これがfxp0に置き換わる
というしくみです。なお、fxp0はネットワークイン
ターフェースの名称です（fxpはIntel EtherExpress

PROのデバイスドライバを表しています。この名
称はFreeBSDと同じです）。
　マクロは再帰的に利用することもできます。再帰
的に使用する場合、展開させたい部分はダブル
クォーテーションの中に含めないように記述しま
す。たとえば、次のようにマクロを使います。

host1 = "192.168.1.1"
host2 = "192.168.1.2"
hosts = "{" $host1 $host2 "}"

　この場合、ルールの中で$hostsのように使用す
れば{ 192.168.1.1 192.168.1.2 }と書いたことと
同じになります。IPアドレス、ポート番号、ネット
ワークインターフェース名などをマ
クロで定義するなどして、ルール
セットの複雑性を軽減してメンテナ
ンスを容易にする効果があります。

ルールセット：
リスト

　pf (4)ではプロトコル、ポート番
号、アドレスなどを複数同時に指定
できます。リストは{ }で囲まれた
対象で表現され、{ }の中はスペース
区切り、またはカンマ区切りで値が
使われます。たとえば、リスト3の
ようにIPアドレスを{ }で囲ってカ
ンマ区切りで配置すると、pf(4)とし
てはリスト4のように個別のルール
セットに展開してフィルタリングを

block out on fxp0 ¥
 from { 10.0.0.0/8, { 192.168.1.1, 192.168.1.2 } } to any

▼▼リスト7　リストがネストしているケース

block drop out on fxp0 inet proto tcp from 192.168.1.1 to any
block drop out on fxp0 inet proto tcp from 192.168.1.2 to any
block drop out on fxp0 inet proto udp from 192.168.1.1 to any
block drop out on fxp0 inet proto udp from 192.168.1.2 to any

▼▼リスト6　すべてのリストが展開されて使用される

block out on fxp0 proto { tcp, udp } ¥
 from { 192.168.1.1, 192.168.1.2 } to any

▼▼リスト5　1つの行に複数のリストを指定

block drop out on fxp0 inet from 192.168.1.1 to any
block drop out on fxp0 inet from 192.168.1.2 to any

▼▼リスト4　リストは展開して使用される

block out on fxp0 from { 192.168.1.1, 192.168.1.2 } to any

▼▼リスト3　IPアドレスをリストで指定

Jan. 2016 - 165

▶第27回◀
bhyveでOpenBSDファイアウォール on FreeBSDを構築（その2）

速度が速いという特徴があるとされ
ています。
　テーブルはリストで表現できない
ルールを考えるとよくわかります。
たとえばリスト10のルールを見てく
ださい。これは特定のIPアドレスを
除く、ほかの全体に一致してほしい
という「希望」が見て取れる書き方で
すが（!はNOTを意味しています。
192.168.1.1以外の192.168.1.0/24を
ブロックしてほしい、というニュア
ンスを込めています）、リストは指
定されているものを展開するだけの
機能ですので、処理前にリスト11の
ように展開されます。これでは全部
ブロックされてしまいますので、書
いた方の思惑とは違う動作をするこ
とになります。希望通りには動作してくれません。
　こうした場合に利用する機能がテーブルです。リ
スト12のようにテーブルを使用すると、希望通り
に192.168.1.1以外の192.168.1.*をブロックするよ
うになります。リストのように個別に展開するので
はなく、テーブルとしてひとつのまとまりとして処
理するため、こうしたことが可能になっています。
　テーブルはtableで宣言し、必ず< >で囲って使
用します。適用されているテーブルの内容は次のよ
うにしてpfctl(8)コマンドで確認できます。

pfctl -t hosts -T show
 192.168.1.0/24
 !192.168.1.1

　テーブルの内容はpfctl(8)コマンドを使ってリア
ルタイムに変更することもできます。テーブル名を
指定して、図1、2のようにpfctl(8)コマンドを実行
することで行います。
　テーブルに含めたいアドレス一覧はリスト13、
図3のようにファイルから取得させることもできま
す。テーブルの内容を動的に変更してほしくない場
合にはconstの指定を使えますし、ルールがすべて
消えた場合でもテーブルとして存在させ続ける場合
にはpersistという指定を加えます。テーブルは

pf(4)を使いこなすうえで基本となる機能です。
　次回はpf (4)のもっと踏み込んだ使い方を紹介し
ます。s

host1 = "192.168.1.1"
host2 = "192.168.1.2"
host = "{" $host1 $host2 "}"
block out on fxp0 from { 10.0.0.0/8, $host } to any

▼▼リスト9　マクロとリストのネストを組み合わせた書き方

block drop out on fxp0 inet from 10.0.0.0/8 to any
block drop out on fxp0 inet from 192.168.1.1 to any
block drop out on fxp0 inet from 192.168.1.2 to any

▼▼リスト8　ネストしたリストはフラットなリストとして展開される

block out on fxp0 from { 192.168.1.0/24, !192.168.1.1 } to any

▼▼リスト10　楽観的推測：192.168.1.1以外の192.168.1.0/24をブロック

block drop out on fxp0 inet from 192.168.1.0/24 to any
block drop out on fxp0 inet from ! 192.168.1.1 to any

▼▼リスト11　展開されたルールは無慈悲にも全部をブロック

table <hosts> { 192.168.1.0/24, !192.168.1.1 }
block out on fxp0 from <hosts> to any

▼▼リスト12　テーブルを使って希望のルールを実現

pfctl -t hosts -T add !192.168.1.2
1/1 addresses added.

▼▼図1　pfctl(8) - テーブルへアドレスを追加

pfctl -t hosts -T delete !192.168.1.2
1/1 addresses deleted.

▼▼図2　pfctl(8) - テーブルからアドレスを削除

cat /etc/iplist
192.168.1.0/24
!192.168.1.3
!192.168.1.4
!192.168.1.5
!192.168.1.6
!192.168.1.7
pfctl -t hosts -T show
 192.168.1.0/24
 !192.168.1.3
 !192.168.1.4
 !192.168.1.5
 !192.168.1.6
 !192.168.1.7

▼▼図3　ファイル内容の確認と設定されたルールの確認

table <hosts> file "/etc/iplist"
block out on fxp0 from <hosts> to any

▼▼リスト13　�ファイルからアドレス一覧を取得してテーブ
ルに設定

166 - Software Design

31 Debian Developer　やまねひでき　henrich@debian.org

DebConf15レポート（中編）と、
Debian Live終了騒動

DebConf15レポート
（つづき）

　前回に引き続いて、DebConf15のセッショ
ンの内容をかいつまんで紹介します。

「派生ディストリビューション」
セッション

　DebConfは、DebianやUbuntuをベースとす
る派生ディストリビューションの話が、実際に
開発／運用している当事者から聴ける貴重な機
会です。紹介された各ディストリビューション
をざっと見てみましょう。

LiMux
　「Linux in the City of Munich（AKA LiMux）
- A 2015 status update」というセッションでは、
ミュンヘン市におけるLinuxの採用とその状況
について説明が行われました。
　ミュンヘン市は150万人の住民を擁する、ド
イツで3番め・ヨーロッパで12番めに大きな
都市で、33,000人の職員を抱えています。2001

年に、Windows NT 4.0のサポート終了を視野
に入れて移行プロジェクトが始まりました。プ
ロジェクトのゴールは80％のPC（この時点で
15,000台中12,000台）がLinuxへ移行すること
で、2013年にプロジェクトは終了しましたが、
結果として15,000台のPCが移行を完了してい
ます。そして、2015年現在も、まだLinuxの
利用は進んでおり、18,000台が移行したとの
ことです。

　現在、利用している独自ディストリビューショ
ン「LiMux 5.0」は、Kubuntu 12.04ベースでPPA

（Personal Package Archive）からKDE 4.12を
追加したものです。利用ソフトウェアとして、
Firefox と Thunderbird は ESR 注 1 を、Libre

Officeは4.1をベースに300以上のパッチを当
てたものを利用しています（ミュンヘン市は、
LibreOfficeの開発母体である「The Document

Foundation」のアドバイザリーボード（顧問委員）
でもあります）。
　今後の予定として、Ubuntu 14.04ベースにアッ
プデートし、さらにLiMux 6.0ではUbuntu 18.

04をベースにする予定だそうで、その足取りは
確かなもののようです。

Lernstick
　「Lernstick - A Debian derivative for Schools

in Switzerland」というセッションでは、同様に
公共団体である学校が利用するディストリビュー
ションとして、スイスで開発／利用されている
「Lernstick」注2の紹介が行われました。
　Lernstickは次の目標をめざして開発されて
いるそうです。

¡	学校で便利に使えること
¡	持ち運びができてセキュアな学習環境であ
ること

注1） Extended Support Releaseの略で、長期サポート版のこと。

 URL http://www.mozilla.jp/business/downloads/を参
照。Debianも Iceweaselや IcedoveはESRをベースに採用
している。

注2） URL http://imedias.ch/lernstick/

http://www.mozilla.jp/business/downloads/
http://imedias.ch/lernstick/

166 - Software Design Jan. 2016 - 167

DebConf15レポート（中編）と、
Debian Live終了騒動 31

¡	10年前の古いマシンでも動作すること
¡	技術的な知識の乏しいエンドユーザでも利
用できること

¡	管理負担が少ないこと
¡	BYOD（Bring Your Own Device）が可能であ
ること

¡	安定したベースシステムに最新のアプリケー
ションを載せられること

　開発は大学から資金援助を受けてパートタイ
ムで2名が実施しており、そのほかの資金調達
としては利用する学校からサポート契約を得て
いるとのこと。
　技術的には、Debian stable（Debian Live）を
ベースに、backports＋独自のbackports＋サー
ドパーティリポジトリ＋独自パッケージという
構成で、「なるべくDebianと差分が最小になる
ように」という方向性を採っています。独自に
作成したソフトウェアとして、USBメモリに
インストールするためのツール「DLCopy」や
「Lernstick Welcome」、グラフィカルブートを
実現するソフトウェアgfxbootの設定をしやす
くするツール「xmlboot」などがあります注3。
　標準バージョンは4GB弱のサイズに、複数
のデスクトップ環境（GNOME、KDE、XFCE

など）を含み、デフォルトでは管理者パスワー
ドなしでsudoが可能になっています。
　別バージョンとして、試験での利用を念頭に
置いた制限版（Lernstick Exam Environment）
があります。また、契約者にはプロプライエタ
リ・ソフトウェアを含むカスタムビルドも提供
しています。Debianでは導入しづらい変更点
として、知識がないユーザでも使えるように、
Microsoft社に署名をしてもらってSecure Boot

をサポートしていることや、non-freeなドライ
バが最初から導入できるようになっている、な
どの違いがあるそうです。

注3） こちらのツール類は URL https://github.com/imediasで
公開されている。

　今後は「Debian Edu注4との協業を行う」「開発
したツール類をDebianへアップロードする」
「WikiやTODOリストを公開して開発のプロセ
スを可視化する」などの改善を検討していると
のことです。

AIMS Desktop
　別の学校系ディストリビューションとして、
「AIMS Desktop」というセッションで、AIMS

（アフリカ数学科学研究所）注5で利用されている
「AIMS Desktop」注6の案内がされました。
　AIMSは、2003年に南アフリカのケープタ
ウンで設立された数学とコンピュータサイエン
スのための新しい大学院生センターです。開設
当初からLinuxを使用しており、アプリケーショ
ンとしてSagemath、R Studio、Octave、Scipy、
Spyder、TexMakerなどを利用しています（と
くにSagemathは、Debian/Ubuntu向けのPPA

を作成するなど力を入れているようです）。
　最初はDebian testingを利用しようとしてい
たのですが、2004年に発表されたUbuntuにス
イッチし、その後、Ubuntuをカスタマイズし
たものをずっと利用してきています。しかし、
近年発表されたCanonical社のIPポリシー注7に
抵触しないように、AIMSのライセンスとして
利用できる対象を大幅に制限しているそうで、
その結果としてDebConfでも自由に配布がで
きない状態となっています。これは良くないの
で、今後はDebianへスイッチすることも検討
しているそうです。権利関係周りはややこしい
ですね。

◆　◆　◆
　日本の場合、地方自治体や学校などの団体が
ディストリビューションを作るまでに至るよう
な話はいっさい聞かれません。その代わりに、

注4） 学校向けのディストリビューションで、おもにノルウェー
での活動が活発だが、台湾などでも活動がある。

 URL https://wiki.debian.org/DebianEdu/

注5） URL http://www.aims.ac.za/english/

注6） URL https://launchpad.net/aims-desktop

注7） Interectural Property、知的財産。

https://github.com/imedias
https://wiki.debian.org/DebianEdu/
http://www.aims.ac.za/english/
https://launchpad.net/aims-desktop

168 - Software Design

不得手な担当者がぼんやりとした仕様とカツカ
ツ予算でSIerに丸投げし、SIerは工数がない
ので仕様を詰め切れずに開発して、結果的に誰
も使わないようなシステムができあがる……と
いう話をチラホラと耳にします。
　独自ディストリビューションを作った海外の
事例でも、潤沢に予算があるわけではなく苦肉
の策として始めた……というようなところも多
くあります。ですが、そんな中でも当事者とし
て試行錯誤して工夫を重ねているのが見て取れ
ます。
　日本の自治体や学校は、いくつかの例外を除
いては縮小傾向にありますので、潤沢な予算は
期待できません。今後は、海外の事例のような
方向性を模索していくようになっても良いので
はないでしょうか。

Tails
　「Tails - a technical overview」は、アメリカ
国家安全保障局（NSA）による個人情報収集の
手口を告発したエドワード・スノーデン氏が利
用していることで有名になった「Tails」のコン
トリビュータらによるセッションです。
　TailsはTorネットワーク注8の利用（図1）に

注8） ルータを経由するたびに接続経路の匿名化のために暗号化
を施すことで、何重にも暗号化が施されるという米海軍調
査研究所由来の暗号化通信方式（「オニオンルーティング」
と呼ばれる）を実装しているソフトウェア「Tor」により構築
されたネットワーク。

表されるように、ユーザのプライバシーと匿名
性を第一に考えて開発されているLiveOSです。
現在は、Debian 7「Wheezy」がベースになって
います。特徴として、「どのソフトウェアがネッ
トワークに接続するかを把握できないため、
Torネットワーク以外への接続をすべてブロッ
クする」「シャットダウン時にメモリ上の痕跡
を残さないようにきちんと上書き消去する」な
どの機能があります。
　LiveOSであるものの、USBメモリにインス
トールしてある場合はデータの保存についても
考えてあり、LUKS注9で暗号化したパーティ
ションに保存ができるようになっています。
　セッション中では、このような「ある分野に
特化したディストリビューション」はたいてい
早期に終了する（とくにセキュリティ分野）との
認識が示されており、原因として「チームが小
さい」「長期のコミットメントがない」「メンテ
ナンスやユーザサポートの負荷が高い」「NIH

症候群」注10などが挙げられていました。この対
策として、なるべくDebianで開発されている
ツール類を利用するようにしており、その結果、
Tails固有のコードが減少し、各コンポーネント
のつなぎ合わせ（glue code）が多くなり、活動も
Tailsの要望を取り入れてもらうようにupstream

との対話が多くなっているとのことです。
　開発は、Vagrant注11を使った継続的ビルド
を実施し、Sikuli、libvirt、cucumber注12を利

 ▼図1　Tailsのデスクトップ画面
 （デフォルトでTorネットワークへ接続される）

注9） Linux Unified Key Setup-on-disk-
formatの略で、ディスク暗号化の仕様。
Linuxにおいては通常dm-cryptが利用
される。ブロックデバイス全体を暗号
化するため、脱着可能なストレージメ
ディアやノートPCのディスクドライブ
などに適する。

注10） “Not Invended Here（我々が作ったもの
ではない）”と言って他者が作ったもの
を拒否して作りなおそうとする態度。

注11） HasiCorp社製の仮想環境構築を容易に
してくれるツール。バックエンドとし
て各種仮想化技術が使えるが、おもに
VirtualBoxが使われることが多い。

注12） SikuliはOpenCVをベースに画像認識を
利用してGUI操作の自動化を行うスク
リプト。libvirtはXen、KVM、VMWare
など各種仮想マシンの制御を抽象化し
たライブラリ。cucumberはRubyで実
装されている受け入れテストのための
テスティングフレームワーク。

168 - Software Design Jan. 2016 - 169

DebConf15レポート（中編）と、
Debian Live終了騒動 31

用した自動テストを実装中。限られた人的リソー
ス（15名弱）で、6週間ごとの継続したリリース
を行っています。2016年にはDebian 8「Jessie」
ベースのTails 2.0をリリースする予定だそう
です。2.0では、さらなるセキュリティ面での
強化も予定しているが、Tailsそのものに限ら
ずサイトの国際化やバグトラッカーの設置など
を検討している、とのこと。このあたり「ユー
ザビリティとセキュリティのバランス」も念頭
に置いているのが見て取れます。Tailsプロジェ
クトでは、UI/UXの改善や翻訳者なども必要
としているとのことですので、興味のある方は
一度ダウンロードして利用してみると良いでしょ
う注13。

◆　◆　◆
　これらのほかにも「Cumulus Linux: Debian for

Network Switches」や「hLinux: HP's Debian

derivative a year later」などの商用ベンダによ
る派生ディストリビューションのセッションも
開かれていました。

Debian Live終了騒動

　前節で紹介した各種の派生ディストリビュー
ションでも利用されている「Debian Live」です
が、突然、開発者が「プロジェクトはハイジャッ
クされた」と言って終了を宣言しました。周り
の人には唐突に見えた終了ですが、さて、いっ
たい何があったのでしょうか？
　これは、Bug#804315で新規パッケージとし
て「live-build-ng」が登録されたことに、live-

buildパッケージのメンテナDaniel Baumann氏
が驚いたことに始まります。彼の live-buildパッ
ケージはまだ終わってないのに、第三者が「-ng

（new generation）」などというパッケージを登
録するとはどういうことだ !?となったわけです。
これだけだと、「すでに前任者がいるのにネゴ
も取らないでひどいな」というだけの話なので

すが、これに至るまでにはそれなりのわけがあっ
たのです。
　背景には、Debian LiveがほぼDaniel氏1人
で運営／開発されているプロジェクトであった
ことが根本にあります。彼は他者からのパッチ
や要望の受け入れには消極的であるにもかかわ
らず、突然思いつきで大きく仕様を変更するこ
とが珍しくありませんでした（これは、UEFI

サポートを切望していたdebian-CDチーム側の
バグ登録を2013年から放置したままであった
ことからも見て取れます）。
　CDチーム側からすると、機能面では、作成
のための設定も複雑で壊れやすく扱いが難しい
のが難点でした。さらに、運用面においてもオ
フィシャルLiveイメージの作成も通常のフロー
から外れてDebian Live側で実施したがったう
えに、毎回リリースが遅れる……そのようなこ
とから、CDチームのメンバーにはかなりのフ
ラストレーションだったようです（何度かDaniel

氏に参加してもらおうとも試みたが、すべて失
敗に終わり、最終的にCDチームはDaniel氏に
頼ることなく、自身でビルドするようになった
とのこと）。
　そして、最終的にDaniel氏の live-buildに頼
らない別実装ができたのでそれをパッケージ化
しようとした……のですが、その際にあてつけ
みたいな名前を付けてしまったので議論になっ
た、というわけです。
　現状では、「live-build-ng」は「live-wrapper」
と名前を変えて登録作業が続けられているよう
です。この後、live-buildの作業へDaniel氏が
復帰することは難しそうで、ほかの人が引き継
ぐことになりそうです。これまで、live-build

をベースに作業をしてきた派生ディストリビュー
ションが、live-buildを続けるのか、それとも
live-wrapperベースに移行するかについては、
今後を注視してみたいと思います注14。｢

注13） URL https://tails.boum.org/download/からダウンロー
ドし、 URL https://tails.boum.org/contribute/を参照。

注14） ソースの取得については、live.debian.netが利用できな
い場合は、 URL https://github.com/debian-liveの利用が
推奨されている。

https://tails.boum.org/download/
https://tails.boum.org/contribute/
https://github.com/debian-live

170 - Software Design

Ubuntu Monthly Report

　本連載第67回（2015年11月号）で『Ubuntu 15.10

とそのフレーバーについて』と題して執筆しました
が、締め切りの関係で、本誌発売の1ヵ月前の内容
の割には、現時点でも、付け加えるべき補足はあま
り多くありません。KDE関連の各種ソフトウェア
（KDE Software Compilation）のバージョンがKDE

Framework 5.15とKDE Plasma 5.1.2にアップデー
トされたのと、ライブイメージからの起動でも日本
語が入力できるようになったことくらいです。
　どうしてそれだけの精度になったのかというと、
未確定のことは書かなかったというだけのことです。
といいますか、執筆時点のUbuntu 15.10開発版は、
とても世に出せるようなものではありませんでした。
しかし、ひとつひとつバグ報告をしてすべて修正し
てもらい、リリース前日にようやくまともになった
（とその時点では思っていた）ということです。今回
はその内容の具体的な解説です。
　Kubuntuについてはさらに補足が必要でしょう。
Kubuntu創始者にしてKubuntu Community Council

のメンバであり、リリースマネージャーであった
Jonathan Riddellは、15.10のリリースサイクルで
Ubuntu Community CouncilによりKubuntu Commu

nity Councilの座を辞任するよう要求され、それに

第67回の補足
従いました。なお、Kubuntu Community Councilに
リーダー職はないので、彼は正確には実質的なリー
ダーでした。15.10リリース後リリースマネージャー
も辞任し、Kubuntuプロジェクトから去りました注1。
　その後、2名のリリースマネージャーが就任し注2、
Kubuntuは引き続きリリースされることが正式に決
定しました。一安心といったところです。
　ここまで話がこじれるからにはいろいろあったわ
けですが、要約するとJonathanが知的財産（ライセ
ンス）やポリシーがオープンではなくなっているとい
う意見を表明し、Ubuntu Community Councilと話を
進めていく中で問題のある態度を取り、それをとが
められたということのようです。UbuntuにはCode of

Conduct注3があり、常にこれを順守しなくてはなり
ません。たしかに礼儀正しさは必要なことではある
のですが、有力開発者が何人もいなくなるという事
態を引き起こしてまで守らなくてはいけないものな
のかは、疑問の余地があるように思いますし、Jona

thanの指摘はあながち的外れともいえません。

注1） https://lists.ubuntu.com/archives/ubuntu-devel/2015-
October/038939.html

注2） https://lists.ubuntu.com/archives/ubuntu-release/2015-
November/003443.html

注3） http://www.ubuntu.com/about/about-ubuntu/conduct

今回は第67回に書けなかったUbuntu 15.10のバグとその修正についてのレポートです。

Ubuntu 15.10で
修正された
日本語関連のバグ

Ubuntu Monthly Report第69回

Ubuntu Japanese Team　あわしろいくや

https://lists.ubuntu.com/archives/ubuntu-devel/2015-October/038939.html
https://lists.ubuntu.com/archives/ubuntu-release/2015-November/003443.html
http://www.ubuntu.com/about/about-ubuntu/conduct

170 - Software Design Jan. 2016 - 171

Ubuntu 15.10で修正された日本語関連のバグ 第 69 回

　正確にいえばwishlist（要望）ですが、話がややこ
しくなるので、BTS（Launchpad）に登録された内容は
すべてバグと呼ぶことにします。インプットメソッ
ドがIBusからFcitxに代わったのはUbuntu 15.10開
発開始まもなく（5月9日）注4のことであり、当初は
fcitx-anthyが採用される予定だったものの、その話
の中でfcitx-mozcの方が良いのではないかというこ
とになりました。そこで“Use fcitx-mozc as default

ja_JP input method”注5というバグレポートが書かれ
ました。
　ここで1つポイントなのが、Ubuntuのデフォルト
でインストールされるパッケージは、すべてmainリ
ポジトリになくてはならないということで、fcitx-

mozcも例外ではありません。変換エンジンが独立し
ているfcitx-anthyと違って、fcitx-mozcはmozcソー
スパッケージに含まれるため、Mozcそのものがmain

にある必要があります。
　さらにもう1つポイントがあります。mainのパッ
ケージになるためには、ビルドに必要なパッケージ
もすべてmainになくてはなりません。Mozcは、高機
能かつ自前でいろいろな機能を持っているため、依
存するパッケージもまた多いのです。
　このmainに入れるための作業を“MIR”（Main Incl

urion Request）といいます。ディスプレイマネー
ジャーの“Mir”と同じつづりですが、まったくの別
物ですので注意してください。
　“ [MIR] mozc”注6が報告されたのが8月20日であ
り、fcitx-mozcなどMozc関連パッケージがデフォル
トでインストールするようになったあとのことです。
普通に考えるとMIR通過後に、デフォルトでインス
トールされるようにするべきではないかと思うので
すが、そうはならなかったということです。なかな
か興味深いです。
　というわけで、10月時点で修正されなかったのは

注4） https://bugs.launchpad.net/bugs/1439006

注5） https://bugs.launchpad.net/bugs/1468105

注6） https://bugs.launchpad.net/bugs/1486772

10月時点で
修正されていなかったバグ

実質1つ、“[MIR] mozc”だけということになります。
しかもこれは手続きですので、手伝おうにも手の出
しようがありません。

　では、ここから具体的に修正されたバグを見てい
きましょう。驚くべきことに、少なくとも9月の間
は15.10を日本語でインストールしてもメニューが
英語になってしまうバグがありました。ほかの言語
でも同様のはずで、誰かがバグ報告して直してくれ
るかなと思ったのですが、そんなことはなかったの
で報告しました。
　メニューが英語になる場合に、真っ先に疑うべき
は環境変数です。というわけでenvコマンドで見てみ
ると、“LANGUAGE=en”という環境変数が設定され
ていました。これが原因で間違いありません。Ubuntu

GNOMEやKubuntuでは同様にならなかったため、
これらの違いを考えてみると、デスクトップマネー
ジャーが原因なのではないかと考えました。Ubuntuの
デスクトップマネージャーはLightDMです。Ubuntu

GNOMEはGDM、KubuntuはSDDMです。
　少し補足すると、LANG=ja_JP.UTF-8とLANGU

AGE=enが同時に出力される場合、メニューの表示
には後者が優先されます。LANGUAGEがない場合
はLANGによって決定されるため、日本語で表示さ
れるというわけです。
　LightDMのソースコードをgrepしても、該当しそ
うな部分は見つかりませんでしたが、GDMもSDDM

も環境変数LANUAGEは出力していません。とい
うわけで、LANGUAGEを出力しなければいいので
はないかと考えてバグ報告しました注7。すると、環
境変数の内容はaccountservicesパッケージで決定
しており、このバグを修正することによって正しく
LANGUAGE=jaを出力するようになりました。とは
いえ、ほかのデスクトップマネージャーを見てもわ
かるとおり、基本的にLANGUAGEは不要ですし、
なぜかGDM_LANGという環境変数も出力していま

注7） https://bugs.launchpad.net/bugs/1502921

日本語でインストールしたにもかかわらず、
メニューが英語になってしまうバグ

https://bugs.launchpad.net/bugs/1439006
https://bugs.launchpad.net/bugs/1468105
https://bugs.launchpad.net/bugs/1486772
https://bugs.launchpad.net/bugs/1502921

172 - Software Design

Ubuntu Monthly Report

す。これは見たらわかるようにGDMのための環境
変数ですが、UbuntuでパッケージになっているGDM

はこの環境変数を出力しないパッチが当たっていま
す。そのような奇妙な状態になっているにもかかわ
らず、結局この2つの環境変数は、現在のバージョ
ンでも出力されています。

　これはUnityではないデスクトップ環境であり、か
つCJKV（日中韓越）ではないロケールでキーバインド
がインプットメソッド（IBus、ないしFcitx）の制御に
ならないようにim-configパッケージを修正したつも
りが、CJKVすべてを巻き込んでインプットメソッド
の制御から逃れてしまい、Fcitxが起動しなくなったと
いうバグでした注8。つまりはリグレッションです。
　これではわかりにくいので、実際に動いている
コードを見てください（リスト1）。“IM_CONFIG_

DEFAULT_MODE=cjkv”がximになっていたのがバ
グであり、IBusもFcitxも起動しなくなったのです。
　どうして“xim”になるとインプットメソッドが起動
しなくなるのかは、/usr/share/im-config/data/79_

xim.confと/usr/share/im-config/data/79_xim.rcを
見ると一目瞭然です。
　そもそもどうしてこんな事態になり、かつこれで
修正されるのかがよくわからないのですが、この手
の謎ハックは結構あります。

　Ubuntu 15.04から、fcitx-frontend-qt5パッケー

注8） https://bugs.launchpad.net/bugs/1481025

Ubuntuフレーバーで
Fcitxが起動しなくなるバグ

fcitx-frontend-qt5
パッケージが削除されるバグ

ジはインストールイメージの中に含まれています。
15.10でも同様ですが、なぜかインストール完了直
前に削除されてしまっていました注9。なお、このパッ
ケージがないと、FcitxでQt5アプリケーションに日
本語を入力できなくなります。
　インストーラ（Ubiquity）でインストールした場
合、インストール終了直前に不要なパッケージをア
ンインストールします。必要か不要かは、何かしら
からか依存されているか否かで判断されます。fcitx-

frontend-qt5は language-selectorから呼ばれてお
り、日本語を選択した場合はUbuntuだとアンイン
ストールされずに残り、Ubuntuフレーバーだとイ
ンストールイメージには含まれていないため、リポ
ジトリから取得してインストールします。しかし、
アンインストールするコードにバグがあり、fcitx-

frontend-qt5が必要であるにもかかわらずアンイン
ストールされてしまったということです。
　修正されたコードを見ると、“fcitx-frontend-

qt5:amd64”のような“:”のあとにアーキテクチャが入
るパッケージだとアンインストールしてしまってい
たようです。15.04以前はどうして問題にならなかっ
たのか不思議です。

　前述のとおり、インストール時に日本語を選択す
ると、fcitx-mozcとMozc一式がインストールされる
はずなのですが、Ubuntuフレーバーだとそのとおり
に動いていたものの、肝心のUbuntuではそうでは
なかったのです注10。これは完全に原因不明で途方に
暮れていたのですが、ある日注11突然解決します。原

注9） https://bugs.launchpad.net/bugs/1503297

注10） https://bugs.launchpad.net/bugs/1506502

注11） ある日というか、リリースの2日前になのですが。

fcitx-mozcが
インストールされないバグ

if [-n "$XDG_CURRENT_DESKTOP" -a "$XDG_CURRENT_DESKTOP" = 'Unity']; then
 # Start best input method unless overridden below
 IM_CONFIG_DEFAULT_MODE=auto
else
 # Start best input method only if CJKV environment and not overridden below
 IM_CONFIG_DEFAULT_MODE=cjkv
fi

リスト1　im-con�g 0.29-1ubuntu7の/etc/default/im-con�g

https://bugs.launchpad.net/bugs/1481025
https://bugs.launchpad.net/bugs/1503297
https://bugs.launchpad.net/bugs/1506502

172 - Software Design Jan. 2016 - 173

Ubuntu 15.10で修正された日本語関連のバグ 第 69 回

因はfcitx-mozcがMIRを通過しておらず、mainにな
いことでした。割にやっつけ的なコメントとともに
fcitx-mozcがmainに入ると、インストーライメージ
に収録されました。よって、fcitx-mozcがインストー
ルされないというのは正しくなく、正確にはインス
トールイメージに収録されていなかったのです。た
だ、筆者もインストールイメージに収録されるとは
聞いておらず、寝耳に水でした。完全に狐につまま
れたコメントを、該当のバグに寄せています。
　なお、この副作用としてライブイメージからでも
日本語の入力が可能になっています。

　「やった、fcitx-mozcがインストールされるように
なった！」と喜んだのも束の間、実際にインストール
テストをしてみると、たしかにインストールはされ
ているものの、どうやっても有効になりません。そ
こでいろいろと調査したところ、パッケージがイン
ストールされているという情報はあるものの、パッ
ケージを構成するファイルが根こそぎ何もないとい
うことに気づきました注12。このバグ報告に添付した
画像を再掲します（図1）。
　ここは1つのファイルがないことだけを示してい
ますが、実際にはすべてのファイルがありませんで
した。フォルダはすべてあったのですが。
　原因はfcitx-frontend-qt5と同じで、インストール
完了直前に削除する処理のバグでした。このバグが
修正されたのがリリース前日で、それをもとにイン
ストールイメージが作成されました。これがリリー
ス版になるのかなと思ったのですが、次のインス
トールイメージも作成され、それがUbuntu 15.10と
してリリースされました。本当にギリギリの修正で
あったことがよくわかります。
　余談ですが、筆者はリリースまでにインストール
テストを、Ubuntuを11回、Ubuntu GNOMEを6回、
Xubuntuを4回行っています。もちろん過去最多です。

注12） https://bugs.launchpad.net/bugs/1508121

□□□□■□□□□◆fcitx-mozcのパッケージが
空になってしまうバグ

　こうして15.10のリリース日を迎えたわけですが、
この前後に初回ログイン時にFcitxがfcitx-mozcを
自動的に認識して入力メソッドとして追加するは
ずが、そうはならないというバグが見つかりまし
た注13。すでに開発版の16.04では修正されています。
まともな動作テストが可能になったのがリリースの
前日で、為す術がなかったと言えばそうなのですが、
初めてインプットメソッドを採用したUbuntu 6.06

から、ずっと日本語を選択してインストールすると
インプットメソッドが正しく起動していたのですが、
今回、初めてそうはならないリリースとなってし
まったのがとても残念です。また現在、存在しない
英語キーボードを認識するという仕様になっている
のですが、これだと困るということで修正が進んで
います注14。なお、いずれも先月号の当連載を担当さ
れた柴田さんにより進められています。
　いずれも日本語Remixでは修正されているため、
日本語関連のトラブルを回避したいという場合には
お勧めです。｢

注13） https://bugs.launchpad.net/bugs/1465535

注14） https://bugs.launchpad.net/bugs/1514544

修正されなかったバグ

図1　パッケージの情報はあるものの、ファイルがない

https://bugs.launchpad.net/bugs/1508121
https://bugs.launchpad.net/bugs/1465535
https://bugs.launchpad.net/bugs/1514544

174 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

好ましくありません。
　そこでpingは、main()の冒頭でリスト1に示
す limit_capabilities()という関数を呼び出して
います。この関数内では、まずプロセスの現在
のcapabilitiesを取得（cap_get_proc()）し、cap_

cur_pに保管しています。このcap_cur_pをcap_

get_flag()を使って、Permitted capabilitiesの
CAP_NET_ADMINおよびRAWソケットの作
成を許可するCAP_NET_RAWが立っているか
どうかを調べます。Permitted capabilitiesは、
プロセスが取得できるcapabilitiesを示していま
す。一度、Permitted capabilitiesから落ちた
capabilityは、再取得できません。すなわち、
ここではCAP_NET_ADMINおよびCAP_NET_

RAW以外のcapabilityを使えないようにしてい
ることになります。
　そのうえで、socketを作成する前後でenable_

capability_raw()、disable_capability_raw()をそ
れぞれ呼び出しています（リスト2）。CAP_

NET_RAWを必要なときだけ有効にすることで、
万一の場合のシステムへの影響を限定できます。
　なお、最近のシステムであれば“ping”プログ
ラムが set-uidではなく、file capabilityによっ
て権限付与されていることもあります。file

capabilityとはset-uidのcapability版のようなも

　先月の予想どおり11月2日にはLinux 4.3が
リリースされました。Linux 4.4の開発も順調に
進み、すでにマージウィンドウがクローズされ、
11月23日にはLinux4.4-rc2がリリースされて
います。
　今月は先月に引き続き、Linux 4.1の残りの変
更点を紹介していきます。

Linuxのアクセス制御：
capabilities

　Linuxでは、基本的にはアクセス制御として、
長く使われているuser/groupシステム、および
rootへの特権付加を実装しています。さらに
Linux 2.2以降では、capabilitiesというシステ
ムも導入しています。これはrootに一括して付
与されていた特権を分離するものです。これに
よって、必要な権限だけを付与したプロセスを
作ることができ、万が一プロセスが乗っ取られ
た場合のシステムへの影響を限定できます。
　たとえば、“ping”を送るためにはRAWソケッ
トを使う必要があり、これには特権が必要です。
pingは一般ユーザでも実行したいプログラムな
ので、“ping”にset-uidしておいてroot権限で実
行されるようにしてあります。しかしこれでは、
rootが実行し得ることはなんでもできてしまい

Linux 4.1の残りの変更点と
2015年のLinuxカーネルの
おさらい
Text：青田 直大　AOTA Naohiro

第46回第46回

174 - Software Design Jan. 2016 - 175

Linux 4.1の残りの変更点と
2015年のLinuxカーネルのおさらい

第46回第46回

void limit_capabilities(void)
{
#ifdef CAPABILITIES
 cap_t cap_cur_p;
 cap_t cap_p;
 cap_flag_value_t cap_ok;

 cap_cur_p = cap_get_proc(); /* 現在の capabilities を取得 */
 if (!cap_cur_p) {
 perror("ping: cap_get_proc");
 exit(-1);
 }

 cap_p = cap_init();
 if (!cap_p) {
 perror("ping: cap_init");
 exit(-1);
 }

 cap_ok = CAP_CLEAR; /* CAP_NET_ADMIN が permit されていれば, 続けて permit を取得 */
 cap_get_flag(cap_cur_p, CAP_NET_ADMIN, CAP_PERMITTED, &cap_ok);

 if (cap_ok != CAP_CLEAR)
 cap_set_flag(cap_p, CAP_PERMITTED, 1, &cap_admin, CAP_SET);

 cap_ok = CAP_CLEAR; /* 同様に CAP_NET_RAW の permit も取得 */
 cap_get_flag(cap_cur_p, CAP_NET_RAW, CAP_PERMITTED, &cap_ok);

 if (cap_ok != CAP_CLEAR)
 cap_set_flag(cap_p, CAP_PERMITTED, 1, &cap_raw, CAP_SET);

 if (cap_set_proc(cap_p) < 0) { /* 新しい capabilities の適用 */
 perror("ping: cap_set_proc");
 exit(-1);
 }

 if (prctl(PR_SET_KEEPCAPS, 1) < 0) { /* 次の setuid で capabilities がクリアされないようにする */
 perror("ping: prctl");
 exit(-1);
 }

 if (setuid(getuid()) < 0) {
 perror("setuid");
 exit(-1);
 }

 if (prctl(PR_SET_KEEPCAPS, 0) < 0) {
 perror("ping: prctl");
 exit(-1);
 }

 cap_free(cap_p);
 cap_free(cap_cur_p);
#endif
 uid = getuid();
 euid = geteuid();
#ifndef CAPABILITIES
 if (seteuid(uid)) {
 perror("ping: setuid");
 exit(-1);
 }
#endif
}

 ▼リスト1　iputils-s20150815/ping_common.c

176 - Software Design

Linuxカーネル観光ガイド

ので、プログラム実行時にroot権限の代わりに、
指定したcapabilityのみを付与することが可能
になります。“getcap”を使ってpingの filecapa

bilityを見てみると、たしかにCAP_NET_RAW

が有効（“effect”）で、許可（“permit”）されている
ことがわかります（図1）。

Single User Linux
　このようにLinuxのアクセス制御は柔軟にで
きていますが、そうした権限分離が必要でない
場合もあります。たとえば、Linuxを動かすよ
うな組み込みシステムでは、そのほとんどの機
能をroot:rootで動作する initプロセスに押し込
めていることがあるようです。こうした環境で
はアクセス制御のコードは無駄にしかなりません。
　そこでLinux 4.1ではuser/groupおよびcapa

bilityシステムを、カーネルコンパイル時の設定
で削除できるpatchがマージされました。削除
した場合、すべてのプロセスがroot:root (UID: 0,

GID: 0)で、さらにすべてのcapabilitiesを持っ
た状態で動作するようになります。また、
setuid()や capget()といったuser/groupまたは
capabilitiesに関するシステムコールがビルドさ
れなくなります。こうした機能削除によって、
およそ25KBほどカーネルのテキスト領域が小
さくなります。

TraceFS
　システムの挙動を調べるにあたって、Linux

では tracingという機能を使うことができます。
これはカーネルおよびユーザのプログラムのさ

まざまな場所にhookを仕込んで、その時点での
変数の内容をダンプしたり、あるいはどの関数
がどの関数を呼んでいるかを「トレース」するた
めのシステムです。
　この機能のインターフェースは/sys/kernel/

debug/tracing/下のファイル群へのアクセスで
実現されています。 ここで/sys/kernel/debug

というのがprocファイルシステムのと同様の疑
似ファイルシステムであるdebugfsのmountポ
イントになっています。debugfsはLinuxカーネ
ルのさまざまなデバッグ機能へのインターフェー
スを提供しているファイルシステムで、tracing

機能のインターフェースもその一部として実現
されていたわけです。
　この実装には2つの問題がありました。1つは
debugfsの下に実装されていることです。すな
わち、tracingを使いたいだけなのにdebugfsの
下のさまざまなdebug機能もアクセス可能にし
てしまいます。もう1つの問題点はdebugfsが
userlandからのmkdirをサポートしていないこ
とです。これはtracingの instanceという機能に
かかわってきます。
　デバッグしていると複数の個所にトレースポ
イントを入れたくなることがあります。それら
のダンプがすべて同じバッファに出力されると、
その分類が面倒になってしまいます。そこでトレー
スの出力バッファを複数作成し、それぞれ、ど
のイベントのトレースが出力されるのかを設定
できるようにするのが、tracing instanceの機能

ping.c:
 /* Create sockets */
 enable_capability_raw();
 if (hints.ai_family != AF_INET6)
 create_socket(&sock4, AF_INET, hints.ai_socktype, IPPROTO_ICMP);
 if (hints.ai_family != AF_INET)
 create_socket(&sock6, AF_INET6, hints.ai_socktype, IPPROTO_ICMPV6);
 disable_capability_raw();

 ▼リスト2　iputils-s20150815からpingのsocket作成部分

$ sudo getcap /bin/ping
/bin/ping = cap_net_raw+ep

 ▼図1　pingの file capabilityの確認

176 - Software Design Jan. 2016 - 177

Linux 4.1の残りの変更点と
2015年のLinuxカーネルのおさらい

第46回第46回

です。instanceの作成には、“mkdir instances/

<名前>”を使います（図2）。できたディレクトリ
の中には、トップレベルである tracingと似た

ようなファイルが自動的に作られています。こ
れらファイルがトップレベルの対応するファ

イルと同じような働きを行います。たとえば、
instances/fooと instances/barを作り、fooでは
sched_wakeupを、barではkmallocをそれぞれ
有効にしてみます。するとたしかに、それぞれ
の instanceに各イベントについてのトレースの
みが入っていることがわかります。

　さて、この tracing instanceには、図2のよう
にmkdirが使われています。ところが、debugfs

はmkdirをサポートしていません。そのため、こ
の部分は特別なhackを用いて実装されていました。
　以上の2つの問題点を解決するために、Linux

4.1ではdebugfsから tracefsが分離することに
なりました。tracefsはその名が示すとおりに、
tracing専門の疑似ファイルシステムです。
debugfsから分離することで、ほかのdebug機能
を見せることなく、tracingを使うことができる
ようになりますし、mkdirの部分もきれいに実

cd /sys/kernel/debug/tracing/
ls
available_events current_tracer instances per_cpu set_event ｭ
 set_graph_notrace trace_options tracing_thresh
available_filter_functions dyn_ftrace_total_info kprobe_events printk_formats set_ftrace_filter ｭ
 snapshot trace_pipe uprobe_events
available_tracers enabled_functions kprobe_profile README set_ftrace_notrace ｭ
 trace tracing_cpumask uprobe_profile
buffer_size_kb events max_graph_depth saved_cmdlines set_ftrace_pid ｭ
 trace_clock tracing_max_latency
buffer_total_size_kb free_buffer options saved_cmdlines_size set_graph_function ｭ
 trace_marker tracing_on
mkdir instances/foo
mkdir instances/bar
ls instances/foo/
available_tracers buffer_total_size_kb events per_cpu set_ftrace_filter snapshot trace_clock ｭ
 trace_options tracing_cpumask tracing_on
buffer_size_kb current_tracer free_buffer set_event set_ftrace_notrace trace trace_marker ｭ
 trace_pipe tracing_max_latency
echo 1 > instances/foo/events/sched/sched_wakeup/enable
echo 1 > instances/bar/events/kmem/kmalloc/enable
head head instances/foo/trace_pipe
CPU:0 [LOST 17112 EVENTS]
 plasmashell-2465 [000] d..3 25361.127194: sched_wakeup: comm=QXcbEventReader pid=2467 prio=120 target_cpu=003
 plasmashell-2465 [000] d..3 25361.127200: sched_wakeup: comm=QXcbEventReader pid=2467 prio=120 target_cpu=003
 plasmashell-2465 [000] d..3 25361.127206: sched_wakeup: comm=QXcbEventReader pid=2467 prio=120 target_cpu=003
 plasmashell-2465 [000] d..3 25361.127212: sched_wakeup: comm=QXcbEventReader pid=2467 prio=120 target_cpu=003
 plasmashell-2465 [000] d..3 25361.127217: sched_wakeup: comm=QXcbEventReader pid=2467 prio=120 target_cpu=003
 plasmashell-2465 [000] d..3 25361.127222: sched_wakeup: comm=QXcbEventReader pid=2467 prio=120 target_cpu=003
 plasmashell-2465 [000] d..3 25361.127228: sched_wakeup: comm=QXcbEventReader pid=2467 prio=120 target_cpu=003
 plasmashell-2465 [000] d..3 25361.127234: sched_wakeup: comm=QXcbEventReader pid=2467 prio=120 target_cpu=003
 plasmashell-2465 [000] d..3 25361.127240: sched_wakeup: comm=QXcbEventReader pid=2467 prio=120 target_cpu=003
head instances/bar/trace_pipe
CPU:3 [LOST 52416 EVENTS]
 X-2288 [003] ...1 25377.327571: kmalloc: call_site=ffffffff815cc380 ptr=ffff88017039f000 bytes_req=…
 X-2288 [003] ...1 25377.327572: kmalloc: call_site=ffffffff815cc380 ptr=ffff88017039c200 bytes_req=…
 X-2288 [003] ...1 25377.327574: kmalloc: call_site=ffffffff815cc380 ptr=ffff88017039c600 bytes_req=…
 X-2288 [003] ...1 25377.327575: kmalloc: call_site=ffffffff815cc380 ptr=ffff88017039e600 bytes_req=…
 X-2288 [003] ...1 25377.327576: kmalloc: call_site=ffffffff815cc380 ptr=ffff88017039ea00 bytes_req=…
 X-2288 [003] ...1 25377.327577: kmalloc: call_site=ffffffff815cc380 ptr=ffff88017039f800 bytes_req=…
 X-2288 [003] ...1 25377.327579: kmalloc: call_site=ffffffff815cc380 ptr=ffff88017039e000 bytes_req=…
 X-2288 [003] ...1 25377.327580: kmalloc: call_site=ffffffff815cc380 ptr=ffff88017039de00 bytes_req=…
 X-2288 [003] ...1 25377.327581: kmalloc: call_site=ffffffff815cc380 ptr=ffff88017039c800 bytes_req=…

 ▼図2　tracing instanceを使う

178 - Software Design

Linuxカーネル観光ガイド

装しなおすことができます。
　分離はされましたが、ユーザからの見た目は
ほとんど変わりません。tracefsは/sys/kernel/

debug/tracingの下に自動的にmountされていま
す（図3）。またdebugfsと同様に、tracefsをmount

するためのディレクトリである/sys/kernel/

tracingが自動的に作成されるようになってい

ます。

そのほかの
Linux 4.1の新機能

　Linux 4.1のそのほかの新機能について簡単に
紹介します。指定したサイズのファイル書き込み
領域を確保するfallocate()というシステムコール
があります。このシステムコールは、領域の解放
ができるようにするFALLOC_FL_PUNCH_

HOLEや、指 定 し た 領 域 を 0埋 め す る
FALLOC_FL_ZERO_RANGEなど拡張が続い
ていました。Linux 4.1ではファイルの指定した
offsetに指定した長さの領域を挿入できるFAL

LOC_FL_INSERT_RANGEフラグが登場しま
した。すなわち、ファイルの途中に（0埋めに見
える）holeを挿入し、挿入位置より後ろにもとも
とあったデータはholeの後ろにシフトされます。
　ほかにもファイルシステム関連としてProject

QuotaサポートのVFSへの導入が挙げられます。

これまでVFSでは ユーザ単位あるいはグルー
プ単位でのQuotaをサポートしていました。
XFSでは、これら以外に「プロジェクト」単位の
Quotaをサポートしています。これは各ファイ
ルに「プロジェクトID」を割り当て、その IDご
とにQuotaをかけるというものです。ディレク
トリ内の新規ファイルにプロジェクトIDを継承
させるフラグもあります。つまり、大雑把にい
えばディレクトリツリー単位でのQuotaがかけ
られるようになる、ということです。Project

Quotaは、これまではXFSでしか使われていま
せんでしたが、ext4にも導入する足掛かりとし
てかVFS上にProject Quotaに対応する一般化
されたコードが導入されています。

2015年の
Linuxカーネル

　今回は1月号なので、2015年のLinuxカーネ
ルについて振り返ってみましょう（表1）。2015

年最初のLinuxカーネルは2月にリリースされ
たLinux 3.19です。その後、4月にLinux 4.0、
6月に4.1、8月に4.2、11月に4.3とリリースが
行われています。この最近は、9週間か10週間
でのリリースが続いているので、Linux 4.4を見
るのは来年ということになりそうです。
　今年のLinuxカーネルの最も大きな変更点と
いえば、一目瞭然でそのバージョン番号の変化
でしょう。LinusがGoogle+で投票を行った結果、
Linux 3.20はLinux 4.0とバージョン番号を変
えてリリースされることとなりました。そんな
理由ですので、もちろん3.19と4.0との間で大
きな変化があったわけではありません。Linux 3.0

が出たのが2011年7月、Linux 4.0が出たのが
2015年4月ということでまた4年後5.0が出てく
るのでしょうか？
　2015年のLinuxカーネルの機能面での変化を、
分野ごとに見てみましょう。まず、セキュリティ
関連ではメモリのアクセス範囲を検査する機能
として、ハードウェアの支援を使った Intel

MPXのサポート、ソフトウェアで実現したもの
としてKASANが実装されました。また、セキュ
リティパッチの適用という面で考えれば、カー
ネルを再起動することなく関数を置き換える
livepatchが導入されました。複雑なpatchの場
合にどうやって一貫性を保つかはまだ議論が続
いているようです。一方でモジュールロード時

$ mount|grep trace
tracefs on /sys/kernel/debug/tracing type tracefs (rw,relatime)
$ ls -ld /sys/kernel/tracing
dr-xr-xr-x 2 root root 0 Nov 23 17:20 /sys/kernel/tracing

 ▼図3　tracefs として mount されている

178 - Software Design Jan. 2016 - 179

Linux 4.1の残りの変更点と
2015年のLinuxカーネルのおさらい

第46回第46回

のコードを使うことで、アーキテクチャ依存部
分をなくしx86以外にも livepatchを使えるよう
にする方向にも開発が進んでいます。
　次に仮想化・コンテナ関連を見てみましょう。
いずれもまだ紹介できていませんが、KVM、
Xen関連ではVirtio GPU、コンテナ関連では
PIDs cgroupとblkiocgroupのwritebackサポー
ト、両方にかかわるものとしてuserfaultfdといっ
た機能が挙げられます。Virtio GPUは、virtio

を使ってGPUを仮想化するものです。PIDs

cgroupは新しいcgroupのsub-systemでグルー
プ内のプロセス IDの数を制限します。
userfaultfdはユーザ空間でpage faultの発生を
キャッチし、faultに対応できるようにするもの
です。仮想マシンやコンテナの livemigration時
に、必要なpageをon-demandに持ってくるシス
テムに使われることが予想されます。
　ファイルシステム関連の分野では、Ext4、F2FS

に暗号化機能が実装され、ファイルシステムレ
ベルでの暗号化が共通化されつつあります。また、
NVDIMMといった新しいデバイスに対応する
ため、pageを迂回したデータアクセスを可能に
するDAXや、NVDIMMへのアクセス用のライ
ブラリとなる libnvdimmが作られています。さ
らに、高速なブロックデバイスに対して割り込
みではなく、pollingでデータを受信することを
可能にするpatchも導入されています。またほ
かにもタイムスタンプの更新を遅延することで
metadataの更新を削減する lazytime機能も実装
されました。

　最後にカーネルやドライバ開発関連の機能を
見ていきましょう。カーネル開発ツールに関し
ては、gdbのヘルパスクリプトが追加されデバッ
グに便利なコマンドが使えるようになったこと
が挙げられます。ほかにもDevice Mapperの新
しいターゲットであるdm log-writeによって、
ブロックデバイスへの書き込みを記録・再現が
できるようになり、ファイルシステム開発に役
に立つことでしょう。また、どちらかといえば
システム開発系となりますが、EFIなどの
NVRAM領域にユーザが書き込んだデータを記
録し、再起動後も見ることを可能にする機能で
ある/dev/pmsg0も追加されています。
　また、2015年はeBPFの適用範囲が広がった
年でもありました。eBPFは、もともとはpacket

filtering用の機能であるBPFが、カーネルのヘ
ルパ関数の呼び出し、マップの読み書きという
2つの機能面で拡張されたものです。eBPFは
JITされ、高速かつ安全に動作することから、
さまざまな場所にeBPFが導入され、より柔軟
な機能を実現しています。具体的にはsocketに
結びつけてフィルタリング、eBPFによる通信
フローのクラス分け、kprobeに結びつけてイベ
ントを記録するかどうかの判断が行えるように
なっています。さらにはperfからCのBPFコー
ドを指定することで、そのコードがclangによっ
てBPFバイトコードにコンパイルされ、カーネ
ルに読み込まれるといった機能も実装されてい
ます。｢

1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
Linux 3.19 4.0 4.1 4.2 4.3

セキュリティ MPX KASAN
livepatch

仮想化・
コンテナ

Virtio GPU
writeback
cgroup

PIDs cgroup
userfaultfd

ファイル
システム

DAX
lazytime

Ext4
暗号化 libnvdimm polling

カーネル開発 gdb ヘルパ
/dev/pmsg0

dm log-
write

 eBPF socket cls_bpf
kprobe perf

 ▼表1　2015年のLinuxカーネルの進化

180 - Software Design

　現在の情報系の授業は3本柱で構成されていま
す。1つめはアルゴリズムとプログラミングで、開
設当初から一貫してRubyを教えており、エディタ
はEmacsを使っています。毎年約150人が受講し
ていて、最初の授業でEmacsやCygwinなどの大イ
ンストール大会が行われる様子は阿

あ び きょう かん

鼻叫喚だそうで
す。2つめはネットワーク関連で、こちらはCisco

Networking Academyのプログラムを採用していま
す。UTPケーブルの作成からVLANやOSPFなど
の設定までを学びます。3つめは情報文明論や知的
財産権論といった、どちらかといえば社会的な側面
からの知識を身につける科目が並んでいます。ま
た、近年はさらに高度の専門性を身につける情報課
程と呼ばれる科目群も用意されました。

■さかんな課外活動

　さらに、宮下さんの研究室では課外活動をさかん
に行っています。具体例としては、関西オープン
フォーラムのネットワーク構築、オープンソースカ
ンファレンス京都のボランティア、電子部品アクセ
サリー作り、Rails Girls注1などがあります。これら
の活動はたいてい、宮下さんが「こんなんあるで」と
言ってプロジェクトの紹介だけを行い、あとは学生
たちに自主的にやらせているそうです。課外活動を
楽しむためには勉強が必要になるので、それが彼女
たちの能力を伸ばすことにつながっているようです。
　最後に宮下さんから、理系ではないPC好きは少な
からず存在する、活動を楽しみたいと思えば勉強も

　今回は、8月に京都で行った研究会と、10月に神
戸で行ったインターネットコンファレンスの模様を
お伝えします。

	 ■IT系女子大生の育て方

	【講師】宮下 健輔（京都女子大学）

	【司会】法林 浩之（日本UNIXユーザ会）

	【日時】2015年8月8日（土）15:15〜16:00

	【会場】京都リサーチパーク1号館4階 会議室A

　京都大会は京都女子大学の宮下先生を講師にお迎
えし、女子大生へのIT教育についてご講演いただ
きました。参加者は24人でした。

■カリキュラムの概要

　宮下さんが所属する京都女子大学現代社会学部
は、2000年に開設された比較的新しい学部です。カ
リキュラムとしてはかなり幅広い分野の学問を扱っ
ていますが、予備校では文系に分類されているらし
く、理数系が得意な学生の入学は少ないようです。
そこで大学側も、数学は苦手だがパソコン好きな学
生に狙いを定め、いろいろなものを与えて能力を伸
ばす方針を採っています。そんな現代社会学部ゆ
え、カリキュラムも時代の要請に沿って徐々に変化
していますが、情報系の授業はどの分野へ進むにし
ても必須の基本スキルであるとともに、現代社会を
見る側面の1つであると位置づけられており、相当
数の科目が実施されています。

jus研究会 京都大会

注1） URL http://railsgirls.jp/

今どきの女子大生のIT教育＆今どきのインターネット研究

NO.51
January 2016

法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp　日本UNIXユーザ会
前野 洋史　MAENO Hiroshi　mahiro@smkwlab.net　九州産業大学大学院情報科学研究科
神屋 郁子　KAMIYA Yuko　yuko@smkwlab.net　九州産業大学情報科学部

http://railsgirls.jp/

Jan. 2016 - 181180 - Software Design

楽しくなる、そしてIT系の企業は学生を受け入れて
くれる土壌が存在するのが良いところであるという3

点のまとめが紹介されました。参加者にも大学の先
生が何人かいて、学生の教育について熱心な質疑応
答がなされました。宮下さんの説明はとてもわかり
やすく、参加者にとっても有意義な講演だったと思
います。

	 ■インターネットコンファレンス2015

	【日時】2015年10月13日（火）〜14日（水）

	【会場】サンパル（ひょうご産業活性化センター

	 	 ビジネスプラザ 兵庫ホール）

　本学会は、jus、公益財団法人ひょうご産業活性化
センター、日本学術振興会協力研究委員会インター
ネット技術第163委員会、日本ソフトウェア科学会
インターネットテクノロジー研究会、WIDEプロジェ
クトの5つの主催団体と19の協賛団体で開催されま
した。論文発表は、コンテンツ配信、セキュリティ、
インターネット基盤の3セッションで9件、WIP（Work

in Progress）セッション3件、ポスター・デモ展示
12件と招待講演が3件あり、参加者は66名でした。

■各種表彰

　本学会では優秀な論文／発表を表彰しています。
各賞の受賞者は次のとおりです。

	 論文賞：

¡	「大規模HTTPライブストリーミング配信における

サーバログを用いた視聴遅延の推測手法の提案」

	 二宮 恵、長 健二朗

	（IIJイノベーションインスティテュート）

	 ポスター賞：

¡	「DNSログ解析によるDGAを用いたマルウェア

検知のための予備調査」

	 渡辺 拳竜、池部 実、吉田 和幸（大分大学）

	 プレゼンテーション賞：

¡	「Consumer-driven Adaptive Rate Control for

Real-time Video Streaming in Named Data

Networking」

	 米田 孝弘（パナソニック）

	 学生奨励賞：

¡	「拡張現実技術（AR）によるコンピュータネット

ワークの可視化システム」

	 鄒 曉明（神戸情報大学院大学）

¡	「Application Layer Multicastを用いたPub/Sub

基盤と連携動作するOpenFlow Multicastの設計

および実装とメンバ管理オーバーヘッドの評価」

	 藤田 雅浩（京都産業大学）

¡	「通信制御系に対するモデルベース縮退運転シス

テム」

	 　佐々木 翼（電気通信大学）

■論文紹介

	「大規模HTTPライブストリーミング配信における

サーバログを用いた視聴遅延の推測手法の提案」

　ライブストリーミングにおける視聴遅延にはさま
ざまな要因があります。本論文では、HTTPライブ
ストリーミングにおける視聴遅延をモデル化し、Web

サーバのログのみを用いてユーザごとの視聴遅延を
推測する手法を提案していました。分析の結果、「セ
グメントの長さとクライアントが試聴開始時におい
てバッファリングするセグメント数が視聴遅延の長
さを決める大きな要因となること」、「視聴ごとの視
聴遅延のばらつきの幅が視聴遅延の平均を中心にし
て±2セグメントの範囲に収まること」、「プレイリス
トの長さを短くすることで視聴遅延を短くし、その
ばらつきを小さくできる可能性」が示されました。

◆　◆　◆
　発表された論文はインターネットコンファレンス
2015のWebページ注2から参照できます。2016年度
は鳥取大学の大森幹之氏を実行委員長に迎えて開催
予定とのことです。｢

インターネットコンファレンス2015

注2） URL http://www.internetconference.org/ic2015/

今どきの女子大生のIT教育＆今どきのインターネット研究 January
2016

http://www.internetconference.org/ic2015/

182 - Software Design

東北の若者に
プログラミングを教える

　東北TECH道場注1は2012年の11月に開始され
ました。
　2011年3月の東日本大震災の後、東北の復興と
発展のために多くの方が引き続き精力的に活動され
ています。まだ傷は癒えていない地域が多くあるこ
とも事実ですが、テクノロジーを使ってそれらの活
動を支援できないか、またテクノロジーを使って頑
張っている開発者の皆さんを支援できないかと考え
て始められた取り組みです。
　Google、ゴーガ、イトナブ石巻の協力により運
営されており、Hack For Japanからは筆者が講師、
および運営スタッフとして参加しています。最初は
宮城県は仙台、石巻、岩手県は滝沢という3つの場
所でスタートし、その後、岩手の北上と釜石、盛岡
（滝沢から移動）が加わり、不定期ではありますが福
島の会津若松やいわきでも開催されてきました。そ
して2015年9月から始まった第9期では、新たに
青森県の八戸と福島県の郡山が新たな道場として加
わりました。
　道場という名前が示すように、座学で講義をする
というよりは実際に手を動かして開発していくこと
を重視しており、東北各地の道場でおもにAndroid

アプリの開発を進めています。当初はAndroidアプ
リに限らず、Web、Google Maps APIなど、さまざ
まな技術要素を網羅する予定だったのですが、初回
にさまざまな要素を盛り込みすぎたという反省と、
スマートフォンのアプリ開発は自分の持っている手
元の端末でアプリが動くため成功体験を得やすいと

いう観点から、Androidでの開発に絞ることにした
経緯があります。
　2ヵ月から3ヵ月の期間を1つの区切りとして進
めて、期の締めに成果発表会を行います。本誌発売
時点では第9期が終了したところで、年が明けて
2016年からは第10期が開催される予定です。この
記事の時点で道場開始から3年が経過し、第1期か
ら継続して参加してくれている道場生は今では一人
で一通り開発を進められるまでに成長してくれてお
り、新たに道場に参加してくれた初心者を指導でき
るようになりました。道場というスタイルをとって
いることから役回りとしては師範代と言える存在か
と思います。
　そんな彼らも最初はアプリ開発はもちろん初めて
で、プログラミングも学校で少しやったことはある
けれども……というところからのスタートでした。
そこから積極的に道場に参加して、講師から教わる
だけでなく自分自身でも書籍などで技術を吸収し、
期ごとにアプリをバージョンアップして機能を増や
したり完成度を高めるなど研鑚を積んだ結果です。
　筆者がかかわることになったきっかけは、この連
載でも毎年レポートしている石巻ハッカソンの
2012年7月の第1回目で行われたIT Bootcampにて
石巻工業高校の高校生たちと出会い、継続してサ
ポートをしていきたいと考えていたところに、Hack

For Japanで一緒にスタッフとして活動していた
Googleの方から講師をやらないかと声をかけてい
ただいたことから始まりました。
　それまでもコミュニティ活動などでAndroidのア
プリ開発について誰かに教えることはありました
が、この道場のように継続してサポートしていくと
いうことは初めてで、道場生たちの「作ったアプリ
が自分のスマートフォンで動いた！」というときの

Hack For Japan
エンジニアだからこそできる復興への一歩

東北TECH道場の紹介第49回
テクノロジーを使って復興を支援することができないか。そう考えてたどり着いた方針の1つが、東北の
IT技術者の支援と、長期的な視野でITを地域に根付かせることでした。その人材育成の取り組みの1
つ、東北TECH道場について紹介します。

●Hack For Japanスタッフ
　高橋 憲一　TAKAHASHI Kenichi
　 Twitter @ken1_taka

注1	 http://www.tohokutechdojo.org/

http://www.tohokutechdojo.org/

Jan. 2016 - 183

東北TECH道場の紹介第49回

感動がこちらにも伝わってくるような場面に何度も
遭遇できるのは講師冥利につきるというものです。

ある日の石巻道場

　通常、道場は月に1、2回、土曜日の13時から18

時にかけて開催されます。

オープニング

　オープニングではお互いの状況報告を兼ねて今日
やりたいことを簡単に発表します。初めて参加する
という人がいる場合は自己紹介タイムも兼ねていま
す。また、同時開催の他の道場がある場合はハング
アウトで結んで情報交換をします（写真1）。

講義タイム

　道場生全員に知ってほしいこと、何か新しい技術
の発表などがあった場合には、30分から1時間程度
の講義を行うときもあります。この日は「より良い
コードの書き方」と題して、プログラムを書くにあ
たって気をつけるべきことを筆者が話しました。
　“「アプリが動けばいい、コードの見た目のきれい
さなんて関係ない……」と思っていた人は正直に手
を挙げてください”という問いから始まり、“なぜき
れいなコードを書く必要があるのか”ということを
30分ほどかけて説明しました。

開発タイム

　時間いっぱいまで道場生はひたすらアプリの開発
をします（写真2）。基本的には各自それぞれがオリ

ジナルのアプリを開発し、詰まったりわからないこ
とがあれば、もちろん講師が（時には一緒に悩みな
がら）全力でサポートします。通常、講師は1人か
ら2人体制で、道場によっては地元のエンジニアの
方がチューターとして手伝ってくれる場合もありま
す。初参加の道場生が多い場合は、初心者グループ
でそろってハンズオン課題を進める日もあります。
　頑張って開発して甘いモノがほしくなったり、お
腹が減ってきたという人のために、おやつのお菓子
も提供されます。

クロージング

　クロージングではオープニングと同様にその日の
成果を報告します。やったことを自分で整理して発
表することで、次に向けての課題も見えてくるはず
です。

オンラインでのコミュニケーション

　月に1、2回の開催だけで補いきれない部分は、質
問があるときは道場生と講師が集まるコミュニティ
がGoogle+に設けてあり、そこで質問を投稿すると
講師が答えてくれるようになっています。また、オ
ンライン道場と称して、ハングアウトで東京にいる
講師とつないで質問、相談を受け付けることもあり
ます。

成果発表会

　各期の最後の日は成果発表会を行っています。参
加者それぞれが頑張ってきた成果を発表するのです

◆◆写真1　ハングアウトで結んで他の道場とのやり取り ◆◆写真2　ひたすら開発

184 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

が、東北の各地の道場をハングアウトで結んで行い
ます。アプリを完成させることができた人はGoogle

Playストアにアップロードして世界に向けて公開
します。また、その期に完成しなかった人もできた
ところまでをデモし、基本的に全員が発表用のスラ
イドを作成して次の期に向けての抱負、苦労したと
ころ、工夫したところなどを1人5分程度で発表し
ます。
　各回のオープニングとクロージング、そして発表
会の様子は「ハングアウト オンエア」を使ってスト
リーミングされ、アーカイブとして動画が残されて
います注2。よろしければご覧ください。

お楽しみ

　アプリ開発は決して敷居の高いものではないので
すが、1つのアプリとして公開できるところまで仕
上げるにはそれなりに苦労も伴います。しかし、頑
張ってアプリを完成させた道場生には、賞や景品な
どのお楽しみ企画が出るときがあります。2013年の
8月には、アプリを公開できた人への賞品として東
京にあるGoogleの日本オフィスを見学してランチ
をいただき、さらにGoogleの社員の皆さんの前で
自分の作ったアプリをプレゼンするという貴重な機
会がありました。

道場主の役割

　現在は東北各地に広がる道場ですが、道場運営に
おいて大事なことは、地元で道場主として取りまと
めをしてくれる方々がいることです。会場を準備し
たり、時には大学や高校などを訪問して活動を紹介
し参加者を募るということをしてくれています。こ
のように熱心に取り組んでいただける道場主なしに
は東北TECH道場は成り立ちません。

道場生たちと将来

　参加してくれた人全員がAndroidのアプリ開発者

になるというわけではないと思います。アプリ開発
はあくまでITの技術、プログラミングに触れるた
めのきっかけと捉えて、より深くAndroidの技術を
探求していくのはもちろん良いですし、そこから派
生して別の技術での開発、もしくはプロデューサー
のような方向を目指していくというケースもあると
思います。
　最初はわからなくて当たり前で、小文字のエル
（l）と大文字のアイ（I）を間違えて入力してビルドが
通らないなど戸惑うことも多いと思いますが、少し
ずつ積み重ねていければ良いのです。どんなに経験
を積んだエンジニアでも最初はみんな初心者だった
のです。また、現在はどの道場にも東京などから講
師を派遣していますが、将来的にはその地元の道場
生の中から講師となる人が出てきて、地元だけで道
場を回せるようになるのが最終目標です（写真3）。

講師を募集しています

　プログラミングを学びたいと目を輝かせて参加し
てくれる道場生たちと時間を共にすることは教える
側にとっても刺激になり、自分が書いたプログラム
が初めて動いたときの初心にかえって新鮮な気持ち
になることができると思います。東北の若者と触れ
合ってみたい方、Androidのアプリ開発の腕に覚え
のあるエンジニアの方はぜひとも講師として参加し
ていただければと思います。ご興味のある方は、
info_tohokutechdojo@googlegroups.comまでお知ら
せください。s

注2	 https://goo.gl/9lqkaw

◆◆写真3　ある日の石巻道場

写真提供：イトナブ石巻

https://goo.gl/9lqkaw

Jan. 2016 - 185

東北TECH道場の紹介第49回

道場生によるアプリ
これまでにリリースされたアプリを最近のものからいくつか紹介します。

ココイコ

場所メモったーよ！

pic gift 〜簡単メッセージカード作成〜

橋野鉄鉱山

盛岡道場の遠藤さん
が開発した、第8期
の発表会で多数の賞
を総なめにしたアプ
リです。今いる場所
から近くの飲食店を
探して一緒に行って
くれる人を募ること
ができます。住所か
ら周辺の飲食店を検
索し、Twitterでご飯
の友を募集します。
マテリアルデザイン
を取り入れてアプリ
の見た目にもこだ
わっています。

石巻道場のデザイ
ナー、太田さんが開
発したアプリで、写
真を“大切な人を喜ば
せるためのギフトに
する”というコンセプ
トで、写真を簡単に
かわいいメッセージ
カードに変身させる
ことができます。

石巻道場の中塩さん
が開発したアプリで、
ふと立ち寄ったラー
メン屋など、次に来
ようと思ってもなか
なか来られなかった
り、道を忘れてし
まったりすることの
ないように、座標（地
図）、写真、感想をそ
のままメモすること
ができます。共有機
能で友人にシェアす
ることもできます。

釜石道場にて作成さ
れたアプリで、岩手
県釜石市にある世界
遺産・明治日本の産業
革命遺産の橋野鉄鉱
山を楽しくナビゲー
トするアプリです。
この遺産の歴史、概
要などを知ることが
できます。

https://play.google.com/store/apps/details?id=com.enta.cocoico
https://play.google.com/store/apps/details?id=jp.itnav.nana.picgift
https://play.google.com/store/apps/details?id=jp.itnav.derushio.bashomemo
https://play.google.com/store/apps/details?id=com.konnodenki.hashinobf

186 - Software Design

はじめに

　本連載を執筆するために、筆
者は過去のデータを調べること
が多くなりました。そのため、
1980年代のフロッピーディスク
などを倉庫のロッカーから探し
出し、データを読み出そうとし
たのですが、メディアに問題が
あり読み出せないことがありま
す。10年以上経過したメディア
は再生が怪しくなり、とくに記
録密度が高いものほどその傾向
が強くなります。データを保持
するためには、メディアの変換
を兼ねたバックアップが必要で
す。古いデータは、何年か経つ
と忘れ去られ、廃棄してしまう
ことがありますが、あとで考え
ると貴重なデータであることが
あります。この機会に古い大事
なデータのバックアップにチャ
ンレンジしてみませんか。

　今回は、記録メディアのバッ
クアップについてお話します。

カセットテープ
のバックアップ

　カセットテープは、1962年に
オランダのフィリップ社が開発
した録音／再生用の磁気記録
テープの規格です。1979年に登
場したウォークマンなどで使わ
れ、1980年代前半のパソコンで
も、デジタルデータであるプロ
グラムやデータの保存メディア
としても使用されていました。
　筆者は、1970年頃からカセッ
トテープを使用しており、当時
のテレビ番組を録音して聞いて
いました。そのとき録音したデー
タの中には、今ではほかで聞く
ことができない貴重なものもあ
り、そのバックアップに挑戦し
ました（写真1）。
　まず、1993年まで使用してい
たカセットデッキに電源を入れ
て使用しようとしましたが、セッ
トしたテープが回りません。分
解して内部を調べてみると、テー
プを回すベルトが伸びてしまっ
ていて、空回りしていました。
ベルトをはずし、規格を調べて
通販でほぼ同じものを見つけ、
交換することで正常に回転する

ようになりました。再生すると、
想像していたよりクリアな音が
流れ、当時のオーディオ技術の
レベルの高さを実感しました。
　次に1970年頃のカセットテー
プを巻き戻したところ、動作が
止まらず、ずっと回転し続けて
しまいました。調べてみると、
テープの先頭部分の茶色の録音
テープ部と透明なリード部の接
合部分が切れてました。古いカ
セットテープはこの部分が劣化
していて切れやすいようです。
ですから古いカセットテープを
扱う場合、巻き戻しは慎重に行
い、最後の部分は手回しで対
応注1した方がよいでしょう。そ
れでも切れてしまった場合には、
ケースを一度分解して切れた部
分を粘着テープで接着し、新し
いカセットテープのケースに入
れ直して再生すると回転もスムー
ズになり問題が解決しました。
　1980年代前半の、パソコンの
プログラム保存用のカセットを
再生する場合、当時のデータレ
コーダをそのまま使うと問題が
起こります。30年以上経過した
レコーダーはゴムベルトはもち
ろん、テープを送る役目をする

注1） 昔はカセットテープの穴に、鉛筆を
挿し込んで回していました。

 ▼写真1　 カセットテープ（上：赤い
ケースの60分。下：緑の
ケースの90分）

温故知新
ITむかしばなし

速水 祐（HAYAMI You） 　http://zob.club/ Twitter : @yyhayami

記録メディアのバックアップ
〜古いデジタルデータが消える前に〜

第50回

http://zob.club/

186 - Software Design Jan. 2016 - 187

ピンチローラが劣化してベタベ
タになっていて、そこにテープ
が巻きついてしまいます。
　ピンチローラは、ベルトと同
じく黒いゴム製で、これも間違
いなく劣化しています。筆者が
使用したデータレコーダーを内
蔵したシャープの3台のMZシ
リーズ注2は、すべてピンチロー
ラの交換が必要でした。プログ
ラムを記録したテープのデータ
をMP3の音声データにしてノー
トPCに保存しておけば、ノー
トPCの音声出力をレトロPCの
カセットインターフェースに接
続することで、当時のテープよ
り安定したロードが可能になり
ます。

フロッピーディスク
のバックアップ

　古い3.5インチのフロッピー
ディスクから、ファイルが読め
ないトラブルにあった方は多い
と思います。フロッピーディス
クは、カセットテープ以上に外
気と接触する磁気メディア部の
面積が大きく、劣化の頻度が高
くなります。また湿度が高い環
境ですと、紙製のジャケットが
格好の温床となりカビが生えて
きます。ですから、古いディス
クをフロッピードライブに入れ
る前に、カビの有無を確認して
取り除くことが大事です。
　古いフロッピーディスクの読
み取りの失敗率は、1990年代の
3.5インチHD注3ディスクが一番

注2） 最近ではTVドラマ「掟上今日子の備
忘録」でもMZ-700が出て一部で話題
になっていました。

注3） High-density Double-side：両面高
密度。

高く、80年代後半の5インチ
HDディスクと続き、80年代前
半の5インチ2DD注4ディスクと
いう順番になりました。記録密
度が低い容量320KBの2D注5

ディスクは、保存状態さえよけ
れば案外正確に読み取れます。
　FATフォーマット（MS-DOS
標準フォーマット）のディスクな
ら、Windowsマシンで読み取り
ができますが、DISK BASIC、
CP/MなどのほかのDOSを読
み取るには、そのシステムが動
くマシン環境が必要です。異な
るフォーマットを読み取るソフ
トウェアツールを利用すること
で読めるケースもありますが、
プロテクト注6がかかっているディ
スクではお手上げです。
　1970年代当初のパソコンで
は、パラレルポートを経由し、
CPUでフロッピードライブシス
テムを制御していましたが、簡
単に確実に利用できるNEC
μPD765などのフロッピーディ
スクコンロトーラ（以下FDC）が
使用されるようになりました。
しかし、FDCを介してのデータ
の読み書きは、その機能に依存
し、制約から外れることができ
ません。したがって、FDCの異
なるドライブシステムで書き込
まれた情報を読めないケースも
出てきます。
　しかし最近、この問題を解決
するKryoFlux注7というフロッ
ピードライブをUSBで外付けす
るためのボードが発売されてい
注4） 2-side Double-density Double-

Track：両面倍密度倍トラック。
注5） 2-side Double-density：両面倍密度。
注6） ここでは書き込み保護ではなく、簡単

にコピーされないための保護のこと。
注7） http://www.kryoflux.com/

ます。KryoFluxは、FDCの役割
りをソフトウェアで柔軟に行い、
ディスクのフォーマットを設定
することでデータをイメージ
データとして取り込むことがで
きます。
　写真2のように外付け5インチ
フロッピードライブ（TEAC FD-
155GF）とボードを接続して、
USBケーブルはWindowsマシン
とつなげて使います。FD-155
GFは、2HD/2DD用のドライブ
ですが両面倍密度2Dのディス
クを読むこともできます。
　さらにKryoFluxは、FDC制
御ができるため「ビットストリー
ムをまるごと記録できる」機能を
持っており、フロッピーディス
クのバックアップには有用なシ
ステムボードと言えます。

おわりに

　20年以上前に作成した、ここ
では紹介しなかった映像データ
（ビデオテープ、8mmフィルム）
を含めて音声データ、アナログ
／デジタルデータは、貴重なも
のが多くあるはずです。昔にど
のようなものを作成したかを思
い出して、データが消える前に
早めのバックアップをお勧めし
ます。｢

 ▼写真2　 KryoFluxボードと
FD-155GB

温故知新 ITむかしばなし
記録メディアのバックアップ 〜古いデジタルデータが消える前に〜

第50回

http://www.kryoflux.com/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://www.openstack.org/
https://wiki.openstack.org/wiki/OpenStackClients

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

https://www.vagrantup.com/
https://github.com/mitchellh/vagrant-rackspace

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

192 - Software Design

　㈱ガイアックスは11月18日、同社の障害対応管理ツー
ル「Reactio」と、㈱はてなが提供するサーバ監視サービ
ス「Mackerel」との連携を発表した。
　Reactioは、障害発生後の通知と対応内容を記録・管
理できるツール。障害発生に気づいたユーザは「インシ
デント」注1を作成し、障害の内容や状況、対応方針など
を記載して一斉通知ボタンを押す。すると、登録された
関係者へ自動的に電話がかけられ、記載内容が合成音声
で読み上げられるというしくみ。そのあとは、インシデ
ント内にて、関係者同士で障害対応の議論ができる。
　これまでReactioでは、Mackerelとの連携には独自プ

ログラムの作成や、手動でのインシデント作成が必要
だった。今回の連携により、Mackerelが障害を検知す
るとReactioにて自動でインシデントが作成され、関係
者への日本語による一斉自動コールが可能となる。
　ReactioとMackerelを連携利用する場合、年内申し込
みに限り、6ヵ月間Reactioスタンダードプラン（月額
6,000円）を無料提供するキャンペーン「障害対応完璧プ
ラン」（http://reactio.jp/campaign/mackerel）が実施
されるとのこと。

ガイアックス、
「Reactio」と「Mackerel」の連携を発表

　アドバンスソフトウェア㈱は11月26日、Excel 2016
に対応した高速Excelファイル生成コンポーネント
「ExcelCreator 2016」を発売した。
　ExcelCreator 2016は、Visual Basic .NET、Visual C#、
ASP.NETで作成したプログラムの中から、Excelファイル
を生成できるコンポーネント。実行環境にExcelがイン
ストールされている必要はなく、独自の技術でファイル
の生成を行うため高い処理速度を持つ。Excelファイル
の新規作成や既存のExcelファイルの上書き、別ファイ
ルへの保存ができ、目的のセルに対してデータ設定、書
式、計算式、画像、オートシェイプなどの設定、シート
のコピーや行、列の挿入／削除などがシンプルなコー

ディングで実現できる。生成したExcelファイルはPDF
やHTMLファイルにも出力できる。
　価格は１クライアント開発ライセンスあたり69,120
円。本コンポーネントを組み込んだアプリをサーバに配
置して使用する場合は別途、xlsx形式用／xls形式用のコ
ンポーネントが必要となる（ともに129,600円）。両方の
形式を扱える統合コンポーネントは194,400円（すべて
税込）。

アドバンスソフトウェア、
「ExcelCreator 2016」を発売

　マカフィー㈱は11月13日、2015年に起こったセキュ
リティ事件に関する意識調査の結果を発表した。本調査
では、過去1年間に発生したおもなセキュリティに関す
る事件を30件選定、それら事件に対する認知度が測定
された。対象者は国内企業の経営者、情報システム担当
者、一般従業員など22歳以上の男女1,552人。

マカフィー、
2015年の10大セキュリティ事件、認知度ランキングを発表

㈱ガイアックス　URL http://www.gaiax.co.jp
CONTACT

アドバンスソフトウェア㈱　URL http://www.adv.co.jp
CONTACT

マカフィー㈱　URL http://www.mcafee.com/jp
CONTACT

●●セキュリティ事件に関する意識調査の結果

順位 セキュリティ事件（時期） 認知度

1 日本年金機構への標的型攻撃で125万件の年金個人情報が
流出（2015年6月） 60.1%

2 振り込め詐欺／迷惑電話による被害（1年を通して） 56.8%

3 大手金融機関やクレジットカード会社などをかたるフィッ
シング（1年を通して） 42.1%

順位 セキュリティ事件（時期） 認知度

4 東アジアの国家元首を題材にした映画公開に際し、米Sony
Pictures Entertainmentにサイバー攻撃（2014年11月） 37.0%

5 公衆無線LANのセキュリティ問題（1年を通して） 36.9%

6 Flash Playerの脆弱性（1年を通して） 35.3%

7 全国初のケースとなる、無線LANの「ただ乗り」による電
波法違反容疑で男を逮捕（2015年6月） 32.9%

8 ソニー・コンピュータエンタテインメントの「PlayStation
Network」にシステム障害（2014年12月） 30.7%

9 IP電話の乗っ取り被害（1年を通して） 28.2%

10 中央官庁の局長が、飲酒で寝過ごした電車内でカバン置き
引きの被害に遭い、職員連絡網など流出（2015年6月） 24.9%

注1）本ツールにおいては、障害対応のためのチャットルームを指す

http://www.gaiax.co.jp
http://reactio.jp/campaign/mackerel
http://www.adv.co.jp
http://www.mcafee.com/jp

192 - Software Design Jan. 2016 - 193

　エクセルソフト㈱は11月25日、モバイルクロスプラッ
トフォーム開発環境「Xamarin」の最新バージョン
「Xamarin 4」の提供を開始した。
　Xamarinでは、開発環境「Xamarin Studio」を使って、
Mac上でiOS、Android、Mac OS X向けのC#アプリをビ
ルドできる。また、アドインを使用することで、Win
dows上のVisual Studioでも、シングルソリューション
でiOS、Android、Windows、Windows Phone向けのア
プリをビルドできる。
　Xamarin 4には、UWP（Universal Windows Platform）
のプレビューサポートを追加した「Xamarin.Forms 2.0」、
iOSアプリ開発用の新しいMacビルドホスト「Xamarin

Mac Agent」のほか、AndroidとiOSのUIデザイナの改良
など多くの新機能が含まれる。また、本バージョンでは、
モバイルアプリのテストツール「Xamarin Test Cloud」お
よびモバイルアプリ
の分析・モニタリン
グツール「Xamarin.
Insights」と、IDEと
のスムーズな統合を
実現している。

エクセルソフト、
「Xamarin 4」を提供開始

　㈱ディアイティは11月26日、統合分析プラットフォー
ム「NIRVANA改」の商用版「W

ウ ジ ャ ト

ADJET」製品群を発表、
2016年1月から出荷開始する。販売価格は120万円から。
　昨今、特定の組織に的を絞ったサイバー攻撃や、ファ
イアウォールやIPS/IDSといった既存の防御システムが
突破されるインシデントが多発している。そのためセ
キュリティオペレーションの現場では、セキュリティ機
器が発行する大量のアラートの処理に追われている。イ
ンシデント発生時には物理的な対応も必要となるため、
迅速な対応は困難であり、相当な人的コストがかかり続
けるといった問題があった。
　そんな中販売開始されたWADJETは、NIRVANA改に

ディアイティが独自に開発した分析機能を搭載したも
の。インシデント発生時、ルールに従ってファイアウォー
ルやスイッチなどのネットワーク機器を自動的に制御
し、異常通信の遮断を実現する自動防御機能を持つ。
　NIRVANA改はNICT（情報通信研究機構）によって開発
された、組織内ネットワークを流れる通信のリアルタイ
ムな観測・分析や、各種セキュリティ機器からのアラー
ト集約を実現するサイバー攻撃統合分析プラットフォー
ムである。

ディアイティ、
「NIRVANA改」の商用版、「WADJET」を販売開始

エクセルソフト㈱　URL https://www.xlsoft.com/jp
CONTACT

㈱ディアイティ　URL http://www.dit.co.jp
CONTACT

●●ラインナップ●
　（価格は年間サブスクリプション）

製品名 価格（税抜）

Xamarin.Android Business 127,800円

Xamarin.Android Enterprise 243,000円

Xamarin.iOS Business 127,800円

Xamarin.iOS Enterprise 243,000円

　㈱シマンテックは11月25日、セキュリティに関する
調査「ノートンサイバーセキュリティインサイトレポー
ト」の結果を発表した。
　本調査は、17ヵ国計1万7,152人の、モバイルデバイ
スを持つ18歳以上の成人に対して行われたセキュリ
ティに関する調査。日本の調査結果は、1,009人からの
回答に基づく。次のような結果となった注1。

・ネット犯罪はこの1年でさらに拡大し、被害者数は5億
9,400万人に、被害総額は1,500億USドルとなった

・国別ではインド、ブラジル、UAE、メキシコ、中国で
の発生率が高く、中国の被害額が全体の1/3を占める

・日本におけるネット犯罪の被害者数は786万9,600人
で、調査対象国ではもっとも低い

・日本におけるネット犯罪の被害総額は2,258億円。被
害者1人あたりの損失額は2万8,697円

・日本のネット犯罪の発生率は7%と低いものの、金額
別では11位にランクインしており、1人あたりの被害
額が大きいことが明らかになった

シマンテック、
「ノートンサイバーセキュリティインサイトレポート」を発表

㈱シマンテック　URL http://www.symantec.com/ja/jp
CONTACT注1）被害者数＝オンライン利用成人数×過去1年のネット犯罪被害率

 被害金額＝過去1年の被害者数×ネット犯罪の平均被害額

https://www.xlsoft.com/jp
http://www.symantec.com/ja/jp
http://www.dit.co.jp

194 - Software Design

　㈱サイバーセキュリティクラウドは11月11日、外部
公開サーバへのあらゆる攻撃をリアルタイムに可視化す
るWebサービス「攻撃見えるくん」の提供を開始した。
　同サービスは、自社がどこからどの程度攻撃を受けて
いるかをリアルタイムに地図上やグラフに表示する攻撃
可視化サービス。企業に自社への攻撃の存在を「知る」
体験をしてもらうために、本サービスは無料で公開され
る。攻撃ログの表示件数は1,000件までだが、5,000円／
月で表示件数を10,000件に上げることもできる。
　同社はまた、サーバへのあらゆる攻撃を遮断する
IPS+WAFクラウド型サーバセキュリティサービス「攻撃
遮断くん」を提供している。本サービスはクラウド（IaaS）

を含むほぼすべてのサーバに対応し、ネットワーク、
OS、Webアプリケーションへの攻撃を防ぐ。「攻撃見え
るくん」も、機
能の1つとして
含まれている。
こちらは、初期
費用30,000円、
利用料100,000
円／月となる。

サイバーセキュリティクラウド、
「攻撃見えるくん」サービス提供開始

　日本ヒューレット・パッカード㈱は11月27日、
Dockerエコシステム向けに構築された各種ソリュー
ションを発表した。おもなラインナップは次のとおり。

・「HPE Helion Development Platform 2.0」
　マイクロサービスの展開を実現するためのアプリケー
　ション開発プラットフォーム
・「HPE StormRunner」、「HPE AppPulse for Docker」
　Docker化されたアプリのテスト、展開、モニタリン
　グを実施するためのソリューション
・Remote Docker Swarmクラスタ監視
　エージェントレス監視アプリケーション「HPE Site

　scope」を利用し、Docker Swarmクラスタ全体を監視
・「HPE Codar for Docker」
　ハイブリッド環境で、負荷に応じて継続的にリソース
　プールからのデプロイを行う
・Docker Machine plugin for「HPE Composable
　Infrastructure」
　「HPE OneView」をベースに、Dockerコンテナホスト
　の展開を自動化する

日本ヒューレット・パッカード、
Dockerコンテナ向けに最適化された製品サービスを発表

　11月18日、「DMARC（Domain-based Message
Authentication, Reporting and Conformance）」につい
てのメディア向け説明会が㈱TwoFive主催で行われ、
DMARC.orgのExecutive Directorであるスティーブ・
ジョーンズ氏が登壇した。
　DMARCは、「SPF注1/DKIM注2の認証に失敗したメール
を受信側がどう扱うべきか」のポリシーを、ドメイン管
理者側が宣言するためのしくみ。すでに米国では多くの

ISPがDMARC対応を進めるなど普及率が高まっている。
Twitter社では1日に1億1,000万通あったなりすましメー
ルが1,000通に激減、PayPal社ではクリスマスシーズン
に2,500万通もの迷惑メールを遮断するなど、非常に高
い効果をあげている。
　DMARC.orgは、DMARCの普及および迷惑メール撲滅
を目指して、2012年1月にGoogle社やMicrosoft社をは
じめとする電子メールサービスおよび技術関連企業など
15組織によって立ち上げられた。

DMARC.orgの責任者が来日、
送信ドメイン認証技術「DMARC」についての説明会開催

㈱サイバーセキュリティクラウド　URL http://www.cscloud.co.jp
CONTACT

DMARC.org　URL https://dmarc.org
CONTACT

▲▲「攻撃見えるくん」管理画面（一部）

注1）Sender Policy Framework：送信元のIPアドレスを用いる送
 信ドメイン認証技術
注2）Domainkeys Identified Mail：電子署名を用いる送信ドメン
 認証技術

日本ヒューレット・パッカード㈱
URL https://www.hpe.com/jp/ja

CONTACT

http://www.cscloud.co.jp
https://www.hpe.com/jp/ja/
https://dmarc.org

194 - Software Design Jan. 2016 - 195

　リバーベッドテクノロジー㈱は11月10日、オープン
ソースのネットワーク／プロトコル分析ツール「Wire
shark 2.0」のリリースを発表した。
　新バージョンでは多くの機能が追加、改良され、操作
性も向上した。新しいアプリケーションフレームワーク
の採用により、あらゆるプラットフォーム（とくにMac
OS XやWindows）で、優れたユーザエクスペリエンス
を実現するという。おもな新機能は次のとおり。

・英語、日本語を含む7言語に対応
・SSLディセクタの改良
・I/O、TCPストリーム、スループット、ウィンドウスケー

	 リングの各種グラフの改良
・IPv6の統計情報の収集とアドレス圧縮
・関連するパケットと対話のスパンを最初の列に表示
・キャプチャのグラフや統計を簡単に比較できるウィン
	 ドウ整列機能
・ソートなどを高速化するバックグラウンド分析機能

　Wiresharkは次のURLから無料でダウンロードできる。
▶https://www.wireshark.org

リバーベッド、
ネットワーク／プロトコル分析ツール「Wireshark 2.0」を発表

　Red Hat社は11月19日、「Red Hat Enterprise Linux」
（以下、RHEL）の新バージョンであるRHEL 7.2の提供を
開始した。おもに、Linuxコンテナ、セキュリティ、ネッ
トワーク、システム管理の機能が強化された。

 Linuxコンテナ
　Dockerエンジンのアップデートに加え、Dockerコン
テナの作成／管理ツール「Kubernetes」、Dockerコンテ
ナ管理用のWebインターフェース「Cockpit」などのパッ
ケージがアップデートされた。また、コンテナ向けの軽
量OS「Red Hat Enterprise Linux Atomic Host」も最新の
7.2になった。

 セキュリティ
　SCAP（Security Content Automation Protocol）で定め
られた形式で記述されたチェック項目に従い、システム
を自動で検査できるツール「OpenSCAP」のAnacondaプ
ラグインが追加。インストール中の検査が可能になった。
 システム管理
　システムアーカイブツール「Relax-and-Recover」が導
入された。ISO形式のローカルバックアップの作成や、
災害復旧作業の簡素化が可能となる。

Red Hat、
Red Hat Enterprise Linux 7.2をリリース

リバーベッドテクノロジー㈱　URL http://jp.riverbed.com
CONTACT

　トレンドマイクロ㈱は11月25日、エンドポイント型
標的型サイバー攻撃対策製品「Trend Micro Endpoint
Sensor」を発売した。
　本製品は、各エンドポイントにインストールされる
エージェントと、それらをコントロールするマネージャ
で構成されている。エンドポイントのエージェントは、
各エンドポイント内でのレジストリの変更やプロセスの
生成、権限昇格など、攻撃手法として利用され得る各種
アクティビティを記録する。それら情報をはじめ、ネッ
トワーク監視装置との連携により取得した不審な兆候の
情報や、OpenIOC（脅威情報を共有するフォーマット）、
YARA（不正プログラムの識別・分類ツール）などの情報

を用いて記録したアクティビティを検索することで、関
連する攻撃動作の可視化を実現する。この攻撃動作をIT
管理者が解析し、エンドポイントにおける脅威がどのよ
うに行われていたかを把握できる。
　さらに、このエンドポイント内部で知り得たファイル
名やハッシュ値、攻撃手法として利用され得る各種アク
ティビティ情報など、攻撃に関連する情報を再び利用し、
ネットワーク内のそのほかのエンドポイントを検索する
ことで、ほかにも隠れた脅威を発見できる。

トレンドマイクロ、
「Trend Micro Endpoint Sensor」発売

トレンドマイクロ㈱　URL http://www.trendmicro.co.jp
CONTACT

レッドハット㈱　URL http://www.redhat.com/ja/global/japan
CONTACT

https://www.wireshark.org
http://jp.riverbed.com
http://www.trendmicro.co.jp
http://www.redhat.com/ja/global/japan

196 - Software Design

年
末
年
始
で
ル
ー
プ
す
る
人
生
も
、
ま
た
愉
し
…
…
。
で
も
物
理
年
齢
は
イ
ン
ク
リ
メ
ン
ト
さ
れ
ま
す
か
ら
!

仮
想
化
は
脳
内
だ
け
に
し
と
く
と
い
い
よ
!（
豆
柴
よ
り
）

作）くつなりょうすけ　@ryosuke927

⑩⑪⑫

⑬⑭⑮

⑯⑰

⑱⑲⑳

くッ！あッ！

あぁ、敵の魔
クラック

法で
ローン多重債務者
に変えられて
しまった！

はッ！あぁッ！
敵の魔

クラック
法でやる気の

ない人に変えられて
しまった！

あの2人を、
何とかして
元に戻さないと！

僕一人じゃ
とても戦えない！
無理ゲーだよッ！よかろう、

戻して
やらいでか！

あの2人だけじゃなく、
こうなったら世界ごと
戻すンじゃ。
それが儂

わし
の奥義じゃ。

この魔法には儂の
忌み名がついとる。
儂の本当の名前を
おぬしも知っておろう……
詠唱するのじゃ……

「dump
restore」
先生！

3人のUnix Wizard見習い……次
のステージではうまく戦えるのか？　
さぁ、1コマ目に戻って世界を救え、
おまえらにはCLIがあるじゃないか！

数匹
逃し
たッ！

expectで
対応なう!!

注）自動応答コマンド

196 - Software Design Jan. 2016 - 197

ク
リ
ス
マ
ス
を
一
人
で
過
ご
し
て
い
て
も
、
み
ん
な
そ
う
だ
か
ら
安
心
し
な
よ
!（
44
歳
独
身
編
集
）

①②

③

④⑤

⑦

⑧

⑨

恒例年末年始特番

Unix Wizard専門学校（ホ
グ●ーツっぽい）

一流のWizardになるには、
この学校で学ぶか、
30歳まで清

 D T

い体を守らな
いといけません。

今、学校は最狂の“あの方 ”
からの攻撃を壁

GFW
の

向こうから受けています。

“あの方 ”の攻撃はジワジワ
効いており、もうすぐそこまで
攻撃の手が、あたかも納期の
ように迫っていました。

学校の希望の
星は、
この3人組！

あいつらそろそろ飽きて
攻撃やめねーかな！

がんばれ、
学校のため、一流の
Unix Wizard
になるために！

何かが
来る！

xdemineur
だ！

エクスペクト
…… 注）マインスイーパ―

のUnixパッケージ名

安心してください。大丈夫
です、履いてますから！
～ちがう！　問題ない！
アイツらは攻撃パターン
が決まっている。
それに合わせて……

けっこうな
数が
来そうだよ!!

Unix Wizard専門学校［円環の理］編

⑥

198 - Software Design

次は何 Ops？　開発手法の未来
第1特集「はじまっています。ChatOps」はいかがでしたか？　便利なチャットツールやbot
の登場により、開発手法が劇的に変わったというお話でした。そういえば、開発者と運用者
が連携して高頻度のデプロイを目指す「DevOps」というのも、JenkinsをはじめとしたCI
ツールの登場で盛り上がりを見せた手法ですね。最近は機械学習や人工知能の開発が盛んで
すが、それらに開発サイクルの大部分を任す「RoboOps」なんて手法が出てくるかも。

次世代のインターネットプロトコル規格
「HTTP/2」の特集でした。HTTP/1.1から
の移行の必要性から、HTTP/2のプロト
コルの全体像、HTTP/2対応のサーバソ
フト（nghttp2、h2o、Nginx）による環
境の構築、今後のインターネットの展望
までを扱いました。

まさしく「そろそろ押さえておかないと」
と思っていたのでタイミングがよかった
です。1.1の問題点をふまえた形での解
説、わかりやすくて理解しやすく感じま
した。 romeoshaertさん／長崎県

HTTP/1.1と下位互換になってくれ
るか心配です。ホームページ持ってる
ので。 Tayuさん／千葉県

ちょうど勉強したいと考えていたHT

TP/2の基本を知ることができ、本格的
な学習の入口になった。
 浅井さん／大阪府

HTTP/2は、以前耳にして以来気になっ
ていたので、勉強になった。保守してい
る自社サービスにもWebアプリケー
ションがあるため、今後の参考になった。
 ほまれさん／千葉県

HTTP/1.1との比較が、具体的でわか
りやすかったです。
 すけさん。さん／東京都

HTTP/2は、キーワードと簡単な特徴
だけ知っていましたが、今回の記事を参
考に実際に試してみることで理解が深ま
りました。今後必須技術になるでしょ
うから、非常に参考になりました。
 今井さん／千葉県

「HTTP/2って何だろう」と思っていた
ので、買ってみました。

 護さん／新潟県

HTTP/2について、言葉として聞
いたことはあるけれど、具体的な

しくみは知らなかったという声が多く寄
せられました。インターネットにおいて、
本格的に普及するのはまだ先かもしれま
せんが、知っておくと役立つこと間違い
なしです。

セキュリティ対策のはじめの1歩、ファ
イアウォールの特集でした。基礎概念の
説明から、iptables・firewalldといった
具体的なソフトウェアの解説を行い、最
後の章ではWebアプリ専用のファイア

ウォール「WAF」を紹介しました。

新しいソフトウェアをサーバにインス
トールしてうまく動かないなと思うと、
ファイアウォールが原因だったりして苦
手意識がありました。克服できそうです。
 binaさん／東京都

境界線のところは任せっぱなしだったの
で興味があった。 みふさん／神奈川県

最近はインターネットからの攻撃も多い
ので、防御は重要ですね。
 KKさん／愛知県

firewalldは気になっていましたが手つ
かずだったので、タイミングよく勉強で
きました。 山下さん／東京都

ファイアウォールを設定しているときに、
なんでだろうかと感じているのが解決で
きた。 ももんがさん／静岡県

セキュリティ対策は、他人任せ・
ソフトウェア任せといった人が

多いのではないでしょうか？　特集で紹
介した iptablesや firewalldはOS標準機
能ですので、ぜひ手元で動かしてみてく
ださい。

2015年11月号について、たくさんの声が届きました。

第1特集
すいすいわかるHTTP/2

第2特集
ファイアウォールの教科書

198 - Software Design Jan. 2016 - 199

Windows共有フォルダをChromeOSの
ファイルアプリにマウントするアプリ。
その開発には「SMBプロトコル」の理解
とJavaScriptでの実装が必要でした。連
載第1回では、SMBプロトコルの情報集
めと、そこでやりとりされるメッセージ
の解析までを追いました。

臨場感溢れていて、とてもおもしろい。
次回も気になります……。
 くま～～～さん／神奈川県

SMBの情報がそんな状態だったとは、
知らなかった。
 マシンみな古い／奈良県

なんだかんだ言ってWindowsが混在
するので、SMBは大切です。
 下平さん／東京都

SMB自体は新しい規格ではないので当
然資料などが出回っていると思っていた
が、そうでもないことに驚いた。そのよ
うな状態から1つずつ手探りで仕様を調
べていく展開は手に汗握る感じでとても
おもしろかった。次回記事も期待した
い。 tack41さん／愛知県

SMBプロトコルの通信の中身を、
日本語マニュアルなしに解析し

ていくのは一苦労。謎が1つずつ解き明

かされていくさまは、まさにミステリ小
説ですね。

Windowsに比べると、これといった手
段がないMacのクライアント管理。そ
んな中「munki」は“手軽な導入”、“Goo

gleによる開発”で注目を集めるOS Xク
ライアント管理ツールです。後編では管
理対象のクライアント状態、インベント
リ情報の取得について説明しました。

こんな便利なツールがあるんですね。
 出玉のタマさん／大阪府

munkiは気になっていたので、とても
参考になりました。
 n0tsさん／東京都

OS Xクライアントを簡単に管理
できるmunki、注目度が高いよ

うです。エンジニアさんやデザイナさん
にはMacを好んで使う人が多く、需要
のある企業も多いのではないでしょうか。

新しいファイル形式「pcap-ng」も使える
ようになったパケットキャプチャのツー
ル「Wireshark」の使い方を紹介する短期
連載です。今回はキャプチャファイルか
らポートスキャンの結果を推測する方法

を、問題を出しながら解説しました。

マイナンバーの件もあり、あらためてセ
キュリティについて学べるのは良い。
 ＹＧさん／神奈川県

ポートスキャンの方法がとても参考にな
りました。 そうでげすさん／神奈川県

今回はポートスキャンに関する実
践的な回でした。Wiresharkはサ

イバー攻撃を受けたときの調査用ツール
として非常に有用と言えますね。大きな
アップデートがあれば、「Jamesのセキュ
リティレッスン」でまた紹介したいと思
います。

短期連載　
SMB実装をめぐる冒険【前編】

短期連載　OS Xクライアント管
理ツール「munki」【後編】

短期連載　Jamesのセキュリ
ティレッスン【6】

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① Parallels Desktop 11 for Mac Pro Edition
けん様（埼玉県）、福司久美子様（埼玉県）

② 東芝1号機ものがたりⅡ&12digit premium calculator
匿名希望様（神奈川県）、古沢淳様（神奈川県）

③ GitHub Tシャツ
上田裕己様（島根県）

④ 『入社1年目からの「Web技術」がわかる本』
にぽぽさん様（東京都）、taka様（福岡県）

⑤ 『初めてのSpark』
北海のクマ様（北海道）、おじさん様（東京都）

⑥ 『たのしいインフラの歩き方』
田中俊也様（京都府）、永作肇様（東京都）

⑦ 『データサイエンティスト養成読本　機械学習入
門編』
八坂文規様（神奈川県）、山下高範（奈良県）

11月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

http://sd.gihyo.jp/
mailto:sd@gihyo.co.jp

Software Design
2016年1月号

発行日
2016年1月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2016年2月号
定価（本体1,220円＋税）

192ページ

February 2016
1月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2016 技術評論社

●かつてないほど高齢化が進んだ当編集部は、いわ

ばTOKIOのようなもの（笑）。特集もダッシュ村を参

考にしつつ、ゼロからデータセンターを作ってみると

か、銅線からCAT-5ケーブルを作ってみるとか、全

部無料でシステム構築してみるとかとか、そういうの

がいいかもしれない。いや、そうしようっと。（本）

●最近、野菜がべらぼうに安い。大根1本80円とか、

キャベツ1個90円とか。特売だと白菜が1玉で100円

ということもある。1ヵ月くらい前は、この3倍近くし

たななどと思いつつ、年末にはまたべらぼうに高くな

るんだろうなと推察する。毎年高騰寸前に購入できる

かの想定が難しい。去年の統計とかないのかな。（幕）

●息子の同級生がトランペットを始めるということで、

私のお古を貸し出すことに。が、大学卒業後ろくに

手入れもせずに、うん十年。シルバーだったそれは

青銅器みたいに（言い過ぎ）。あわてて重曹で磨いて

なんとか銀色に見えるようにしました。こいつも使っ

てもらえることになって、うれしいに違いない。（キ）

●マイナンバー通知カードが届きました。ペラペラな

カードなので、遅かれ早かれ失くしそうです。住基

ネットのときも番号が通知されたはずですが、その文

書をどこに保管したか見当もつきません。全然使って

いないから不都合もないのですが。じゃあ、マイナ

ンバーもそんなに気にしなくていいか。（よし）

●仕事柄、PC画面や紙の原稿とにらめっこする時間

が長く、肩と首が猛烈に凝ります。整体に通うのは

億劫なので、休憩中にいろいろなストレッチを試して

います。お勧めのストレッチは、首を回しながら左右

の肩を前後逆向きに回転させるというもの。ビジュア

ル的に、お外ではできないですね。（な）

●息子の学校の役員で広報誌を担当しています。配置

決め前にまず聞かれたのは「広報誌が作れるようなソフ

トが入ったパソコンご家庭にありますか？」でした。今

日びスマホやタブレットで事足りるせいか、手を上げた

のはたったの二人。「若者のパソコン離れ」が囁かれて

いますが、実際はどの世代も、なのでしょうか。（ま）

S D S t a f f R o o m

［第1特集］ 2大OSSデータベースの特異点を知れ！

MySQLとPostgreSQL徹底比較
導入時の「罠」を避ける現場ノウハウ
　皆さんは、MySQL派ですか？ それともPostgreSQL派ですか？ 当たり前のように
使っているOSS DBですが、案外知らないで使っていることばかり。プロセスタイプ
とスレッドタイプの違い、基本的なSQL文法の違い、機能や拡張性の違い、などな
ど特異点（罠）を知り、はまらずにシステム構築するポイントを本特集では解説してい
きます。OSS DBのメリット・デメリットを押さえて積極的に活用してみませんか？
［第2特集］ 永久保存版・現場必携

LANケーブリング／
サーバラッキングの教科書
サーバラックを組む基本知識から応用技術まで
　引き込み線で木版がいる？、床耐加重？、光ファイバーは折れる？、現場でやって
みなければわからない配線の技術と知恵

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
　「Red Hat Enterprise Linuxを極める・使いこなすヒント.SPECｓ」（第18回）、「書いて覚えるSwift入門」（第11回）は都
合によりお休みさせていただきます。

200 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2016年1月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 はじまっています。ChatOps　導入を決めた7社の成功パターン
	Case1：IRCからHubot中心のChatOpsへ〜XFLAGスタジオ「モンスターストライク」の裏側......大塚 弘記
	Case2：Slack＋Hubotで環境構築解説〜ChatOpsで開発から社内交流まで活性化したスピカ......本寺 広海
	Case3：Slackで、世界を、もっと、はたらきやすく〜コミュニケーションの向上をめざして─サーバーワークスの場合......千葉 哲也
	Case4：ゆるきゃら「ぺこbot」が生まれた理由〜ぺこbot 爆誕！＠ Socket......前當 祐希、大城 敦哉
	Case5：組織にChatOpsを根付かせるために〜Gaiax のChatOps 実現までの軌跡......石川 雄基、佐藤 有花、坪井 優朋、福本 貴之、肥後 彰秀、菊池 正宏
	Case6：.エンジニアのためのより良い環境づくり〜はてなにおけるChatOpsのこれまでとこれから.....田中 慎司
	Case7：「MYM」でコミュニケーション改革〜ヤフーの爆速開発を支える自家製ツール......市川 貴邦、後藤 拓郎、中根 智大、光野 達朗、山口 寛

	■第2特集　Ansibleでサーバ構成管理を省力化
	第1章：簡単に使い始められます〜Ansibleの概要とインストール......若山 史郎
	第2章：非プログラマでも読み書きしやすい〜InventoryとPlaybook、2つのファイルを理解する......若山 史郎
	第3章：少しずつ積み重ねて理想の自動化環境を作ろう〜より便利な使い方で複雑な手順を簡潔に......若山 史郎
	Appendix 1：便利なのに使われないAnsibleになるのを防ぐ〜ディレクトリ構成の熟考のススメ......湖山 翔平
	Appendix 2：GitHubでの管理を考える〜Playbookの置き方とssh秘密鍵の暗号化......上野 晶鋭
	Appendix 3：エージェントレスでWindowsのデプロイ自動化〜AnsibleからWindowsを操作する......廣川 英寿

	■短期集中連載
	クラウド時代のWebサービス負荷試験再入門【2】負荷試験と負荷試験ツール......仲川 樽八
	SMB実装をめぐる冒険【3】File System for Windowsの作り方......田中 洋一郎

	■Catch up trend
	ConoHaで始めるクラウド開発入門【最終回】ConoHa API（OpenStack API）を使ってみよう......斉藤 弘信

	■アラカルト
	ＩＴエンジニア必須の最新用語解説【85】Open API Initiative......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW
	バックナンバーのお知らせ
	SD NEWS & PRODUCTS
	Readers’ Voice
	Software Design plus
	次号のお知らせ

	■連載：Column
	digital gadget【205】浸透してきた人工知能......安藤 幸央
	結城浩の再発見の発想法【32】公開鍵暗号......結城 浩
	［増井ラボノート］ コロンブス日和【3】Gyamm......増井 俊之
	軽酔対談　かまぷの部屋【18】ゲスト：タナカユカさん......鎌田 広子
	ツボイのなんでもネットにつなげちまえ道場【7】I2Cで通信してみる......坪井 義浩
	Hack For Japan エンジニアだからこそできる復興への一歩【49】東北TECH道場の紹介......高橋 憲一
	温故知新 ITむかしばなし【50】記録メディアのバックアップ〜古いデジタルデータが消える前に〜......速水 祐
	ひみつのLinux通信【24】Unix Wizard専門学校［円環の理］編……くつなりょうすけ

	■連載：Development
	コミュニティメンバーが伝える　Androidで広がるエンジニアの愉しみ【新連載】Android 6.0 Marshmallow誕生とコミュニティ......嶋 是一
	るびきち流Emacs超入門【21】定型文を瞬時に入力　yasnippetの実力......るびきち
	Vimの細道【4】VimでWeb開発......mattn
	セキュリティ実践の基本定石【28】開発環境からのマルウェア汚染......すずきひろのぶ
	Erlangで学ぶ並行プログラミング【10】OTPのデータベースMnesia......力武 健次
	Sphinxで始めるドキュメント作成術【10】ドキュメントに図を入れよう——テキストマークアップから図を生成する......小宮 健、清水川 貴之
	Mackerelではじめるサーバ管理【11】mackerel-check-pluginsで柔軟なチェック監視......田中 慎司

	■連載：OS/Network
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【27】bhyveでOpenBSDファイアウォール on FreeBSDを構築（その2）......後藤 大地
	Debian Hot Topics【31】DebConf15レポート（中編）と、Debian Live終了騒動......やまねひでき
	Ubuntu Monthly Report【69】Ubuntu 15.10で修正された日本語関連のバグ......あわしろいくや
	Linuxカーネル観光ガイド【46】Linux 4.1の残りの変更点と2015年のLinuxカーネルのおさらい......青田 直大
	Monthly News from jus【51】今どきの女子大生のIT教育＆今どきのインターネット研究......法林 浩之、前野 洋史、神屋 郁子

