

技術評論社の本が電子版で読める！

https://gihyo.jp/dp

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

ソフトウェアエンジニアのための
ITインフラ監視［実践］入門
斎藤祐一郎　著　
2,280円　 PDF EPUB

クラウドの一般化に伴って，ITインフラの運用に Iaas
（Infrastructure as a Services）を利用するケースが非常に増
えました。 IaaSによって，サーバ構築・運用の負荷は劇的に
軽くなりましたが，その分，ITインフラ管理の業務を開発者が
行うようなケースも増えています。本書では，そうした趨勢
において，サーバサイドソフトウェアエンジニアや ITインフラ
エンジニアが限られた時間とコストで，効率的に ITインフラ，
とくにWebサービスの運用における監視の設計・構築，そし
て運用を行うためのノウハウをわかりやすく解説します。

https://gihyo.jp/dp/ebook/2016/978-4-7741-7937-7

Unityエキスパート養成読本
[ゲーム開発の現場で役立つノウハウ満載！]

EPUB PDF

かんたん Perl

EPUB PDF

Android Studio本格活用バイブル
～効率的にコーディングするための
使い方【電子増補・完全版】
EPUB PDF

システムインテグレーション再生の戦略
～いまSIerは何を考え，どう行動すればいいのか？

EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

〒162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

https://gihyo.jp/site/inquiry/dennou

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

ED - 1 - Software Design

　自動車のIT化が進むにつれて、
車載情報機器向けのソフトウェア
にも大きな注目が集まるように
なってきました。そんな中で、The
Linux Foundationの協業プロジェ
クトである「Automotive Grade
Linux（AGL）」は、自動車業界を
ターゲットとした新しいLinux
ディストリビューション「AGL
Unified Code Base」（以下、AGL
UCB）を発表しました。AGLは、
自動車関連企業と技術系企業の連
携によってLinuxベースの車載情
報機器向けソフトウェアスタック
を開発するオープンソースプロ
ジェクトです。自動車メーカーか
らは、トヨタ自動車や日産自動車、
Jaguar Land Roverなど、計8社が
参加しています（2016年1月現在）。
　今回発表されたAGL UCBは、
車載機器向けのソフトウェアの開
発に使われることを前提とした
ディストリビューションです。
AGLでは2015年に、車載情報機
器特有の要件を満たすための共通
的な要求仕様書を公開しており、
AGL UCBはこれに準拠したものに
なっています。この要求仕様では、
データ転送規格としてCAN（Con
troller Area Network）とMOST
（Media Oriented Systems Trans
port）が、無線通信方式としては
Wi-FiとBluetoothが採用されてい
ます。また、アプリケーション開
発ではネイティブアプリとHTML5
をサポートします。

　AGL UCBの大きな特徴の1つは、
同じコードベースから自動車に搭
載されるさまざまなアプリケー
ション向けのプロファイルを作成
できるように設計されているとい
う点です。そのうえ、純粋な車載
情報機器だけでなく、計器盤や
ヘッドアップディスプレイ、テレ
マティクスなどのための共通シス
テム基盤としても利用可能な柔軟
性を備えています。各種UIコン
ポーネントも完備されており、UI
フレームワークはQtおよびQML
をサポートします。
　AGLの公式サイトではAGL
UCBを使ったデモアプリケーショ
ンが公開されており、ホームスク
リーンやメディアブラウザ、カー
ナビゲーションシステムなどと
いった各種アプリケーションの実
装例を確認することができます。

　AGLでは、2014年まではTizen
をベースとした車載情報機器向け
OSの「Tizen IVI」をリファレンス
として採用していました。そして
2014年以降はその方針を変更し、
「Yocto Project」をベースに、車載
向けに特化して機能強化した新し
いLinuxディストリビューション
の開発を目指しました。その成果
物がAGL UCBです。
　Yocto Projectとは、組込み機器
のためのLinuxベースのカスタム
システムを構築するコラボレー
ションプロジェクトおよびその成
果物の総称です。ビルドツールや

ビルド命令のメタデータ、ライブ
ラリ、ユーティリティ、GUIツー
ルセットなど、組込みLinuxシス
テムを開発するための環境が用意
されており、独自のディストリ
ビューションをハードウェアアー
キテクチャに依存しない形で構築
することができます。
　さらに、AGL UCBの開発にあ
たっては車載情報機器向けのプ
ラットフォームとしては競合関係
にあたるドイツのGENIVIアライ
アンスとの連携も強化しており、
実際にGENIVIによる成果物も取
り込まれています。すなわち、AGL
UCBはゼロから独自に設計された
ディストリビューションではありま
すが、Yocto ProjectやTizen IVI、
GENIVIアライアンスをはじめとす
る既存オープンソースプロジェク
トで得たノウハウを積極的に取り
入れたものになっているというこ
とです。
　コネクテッドカーやスマート
カーへの期待が高まる中で、車載
情報機器の果たす役割はますます
大きくなっています。自動車や自
動車部品のメーカーは、この分野
の主導権を特定のソフトウェア
メーカーに委ねるつもりはないよ
うです。AGLによる挑戦はその意
思を明確にするものだと言えます。
そういう意味でも、AGL UCBは自
動車業界を取り巻く状況に対して
大きな一石を投じる存在になりそ
うです。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 87回

AGL Unified Code Base

Automotive Grade Linux
https://www.automotivelinux.org/

車載機器向けLinux
「AGL UCB」

Tizen IVI や GENIVI
によるノウハウも生かす

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
https://www.automotivelinux.org/

DIGITAL GADGET

　Interaction Award（インタラクショ
ンアワード）は、インタラクション（相互
の［inter］＋効力［reaction］）を活用
したプロダクトを評価する、米国IxDA
（Interaction Design Association）
が主催するアワードです。

　とくに最近の傾向は、製品として明
確な存在や操作性をもったインタラク
ションだけでなく、インタラクションを重
視したサービスやプロジェクト、企画そ
のものも評価の対象になっています。
インタラクションそのものも、マイクロイ
ンタラクションと呼ばれる、操作をさらに
細かい単位に分割して人の振る舞い
を考えたり、ちょっとした操作や小さな
動きで人の感情を喚起する手法も数
多く用いられるようになってきました。
　ユーザインターフェースでも、意味

もなく動くアニメーションは邪魔と感じ
ますが、動きに意味があり、必然性が
ある動作や操作であれば、より楽しく、
親しみをもって扱うことができます。新
しいデジタルデバイスが氾濫していく
中で、既存のほとんどのインタラクショ
ンはいままでにあった何らかの物理的
事象を模倣したものになっており、そ
のおかげで操作を覚えておくことが容
易なものになっています。インタラク
ションには、適切な反応と、操作対象
に対して直接的に影響を与えている
ような感覚が重要です。
　また、時間的な要素である「素早
さ」「遅さ」「タイミング」「待機時間」な
どもポイントです。一見同じように見え
る操作も、タイミングの違いやタイミン
グの悪さによっては、操作感に雲泥
の違いをもたらします。またどんなに綿
密に計画し、設計したインタラクション
も、実際に操作してみないとわからな
いことや、見当違いなどといった状況
もあり、経験豊富な人にとってもなか
なか安心できない要素でもあります。

　一方「No UI」と呼ばれる、ユーザイ
ンターフェースなし、インタラクションな
しで、目的を達成するようなインター
フェースの考え方も広がってきました。
操作そのものが楽しく、素早く扱える
ものでないかぎり、操作しないで目的
を達成できることは1つの理想形では
あります。けれど実際のところ、インタ
ラクションの操作コストや学習コスト
がゼロになることはありません。考えた
だけで脳波でらくらく操作できるような
未来になるまでは、実際の操作を始
めるまでの面倒さをできるだけ少なく
するのが良いと言われています。読む
／予測する／理解する／探す／操
作する／待つ／切り替える／確認す
るといった操作1つ1つの面倒さを極
小化していくのです。

　Interaction Awardは、次に紹介す
る5つの部門に分かれ、それぞれの部
門の主眼にもとづいて評価されます。
複数の要素を持っており、複数の部門

に同時エントリーされている作品もあり
ます。過去に本連載でも紹介した自転
車方向指示器のHammerheadなど、
すでに取り上げたものも数多くノミ
ネートされています。

Connecting（つながり）部門
人と人や、人とコミュニティ間のコミュ
ニケーションを手助けするしくみ
●Edward M. Kennedy Institute
……教室内でのタブレットを活用し
た投票システム
●SAP Tennis Analytics for Coach

es……テニスのコーチのための試
合状況解析ツール
●Trafficbridge……紙ベースのワー
クフローの再構築
●Who, Like Me, Is Threatened?
……人権運動のための装置。さま
ざまな種類のインタビューを聴くこと
ができる

Disrupting（再構築）部門
当たり前となっている既存のサービス
や事柄を壊して再構築し、新しい価
値を生み出す
●The New Eurosport Player……ス
ポーツ中継のサポートアプリ
●reForm……形状を記憶し、再構築
する物体
●Sensel Morph……さまざまな用途
に変化するタッチパネル（本連載

204回に掲載）
●Wayfindr……目の不自由な人向
けの旅行ガイド杖

Empowering（助力）部門
人々が限界を超え、今までできなかっ
たような事柄をできるように仕向ける
●Kurbo（＊1）……子供の肥満防止、
カロリー管理のためのアプリ
●Owlet……乳幼児みまもり用デジ
タル靴下（本連載201回に掲載）
●SAM……デジタルプロトタイプ用
キット
●Wayfindr［複数部門受賞］

Engaging（魅了）部門
日々の出来事に喜びや注目を集め、
その事柄に意味をあたえる
●ANNA（＊2）……呼吸のタイミングを
補助してくれる子供向け医療機器
●The Color Visualizer（＊3）……標
本の色をビジュアライズする教育用
展示機器
●The Imagination Machine（＊4）
……好きな場所に飛んでいけるデ
ジタル地球儀と航路の表示装置
●The Pursuit by Equinox（＊5）……
ビジュアライズされたフィットネスバ
イクスシステム
●SMART（＊6）……情報やデータをビ
ジュアライズする絵画のような表現
の表示装置

Expressing（表現）部門
人々の自己表現や、創造性を手助け
するしくみ
●NailSnaps（＊7）……美しいカスタ
ムネイルアートの作成・共有アプリ
●Sound Blocks（＊8）……アナログ
シンセサイザーのような、音の成分
を電子ブロックで構成するもの
●SquareTalk（＊9）……コミュニケー
ションのためのデジタル灯籠
●Step（＊10）……リアルな操作で扱
えるデジタルドラムマシン
●Trashtag……社会的メッセージを
発信するためのゴミ捨て用の文字
タグ

Optimizing（最適化）部門
日々の行動をより効率的に行う方法
●Adobe Fill & Sign（＊11）……デジ
タル署名用のソリューション
●Arlanda Departure Sequencing

Tool……飛行機の発着とタクシー
の待ち行列を連携させるシステム
●Basen……ノルウェーの軍用の宿
泊管理システム
●Kurbo［複数部門受賞］

　右ページのGadgetコーナーでは、
ノミネートされた作品の中から、惜しく
も受賞は逃したものの興味深い作品
を紹介します。

　インタラクションの観点としては、次
のような要素に配慮すると良いでしょ
う。

●操作するときのペース配分
●反応速度（瞬間、瞬時、そのとき、と
いったいくつかの異なるタイムス
ケール）
●利用するときの状況（立っている、
座っている、寝ている、走っている、
急いでいるなど）
●コンテンツやデータが変化したとき
の見せ方、操作の仕方の変化
●使い続ける場合への配慮。しばらく
使わなかったときの配慮

　人の動きや動作には個人差があ
り、インタラクションのための操作に
も、慣れや身体的特徴も含めた個人
差が存在します。そういった環境下に
おいて標準化やパーソナライゼーショ
ンが重要な要素になってくるとともに、
個人差とは関係ない普遍的な要素も
存在します。
　さらに最近では、ユーザインター
フェースや操作の微調整そのものを
機械学習によって最適化しようという
考えもあり、最適化のアプローチと一
般的ジェスチャー操作の標準化が進
むことによって、さらに便利で使いや
すいものになっていくことでしょう。｢

vol.207

インタラクションの
コストと効果

Interaction Awardに見る、インタラクションの本質

DIGITAL
GADGET

Interaction Awardに見る、インタラクションの本質

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

https://www.biltapp.com/

デジタル組立図

BILT

Gadget 1

BILTは複雑な組み立て作業が必要な製
品の、組み立て方を指南するしくみです。
たとえばある屋外用バーベキューコンロで
あれば、2人がかりで約1時間、40工程で
組み立てる様子を、ステップを追って確認
できます。また必要な道具も的確に明示さ
れます。たいていは紙に書かれてわかりに
くい手順も、BILTアプリでチェックすること
で、平易に間違いなく組み立てることがで
きます。単なる動画マニュアルとも異なり、
個々人のペースで進められるところが便
利な点です。組み立て用のコンテンツも、
製品を提供する企業が作るだけでなく、一
般の人による解説の可能性も考えられて
います。

http://philippschmitt.com/

ソーシャル撮影カメラ

Camera Restricta

Gadget 2

Camera Restricta（制限するカメラ）は、常
にネットワークに接続されたカメラで、絶景
が見える場所や写真撮影ポイントのよう
な、多くの人が撮影済みのポイントを位置
情報とともに教えてくれます。ただし、ネット
上の写真共有サイトにある写真の位置情
報と自動的に比較し、皆が撮影しているよ
うな場所で写真を撮ろうとすると、シャッ
ターが降りなくなるのです。意図的に皆と
は異なる写真を撮らなければならない、ネッ
ト時代の不思議なカメラです。カメラ的デ
バイスの中身は単なるスマートフォンです
が、このカメラで撮影すると、必ずと言って
いいほど誰もまだ撮影したことのない風景
が撮影できるわけです。

デジタル貯金箱

Mr. Piggy

Gadget 3

Mr. Piggyが提唱するのは、ネットワーク化
されたデジタル貯金箱です。声をかけると
耳を動かし、口の部分にはクレジットカード
のリーダーが搭載されており、利用額や口
座残額に応じて豚の体の大きさが変化す
るようになっています。残念ながらまだコン
セプトモデルでしかありませんが、既存の
技術で可能なサービスであり、お金や硬
貨、貯蓄といった古くからある金銭感覚を、
ネット時代に融合しているところがポイント
です。電子マネーや仮想通貨が話題にな
るなかで、単純に新しいことに飛びつくの
ではなく、既存のしくみや既存のサービス
を、うまくデジタルデバイスと連携させた好
例です。

デジタルかつアナログな
スケジュールボード

Memo
-tangible appointment

Gadget 4

Memoはおもに認知障害の人向けに考え
られた、アナログかつデジタルなスケジュー
ルボードです。カレンダーに書き込んだり、
冷蔵庫に貼り付けたメモ情報は、その場
にはありますが、そのままの状態では平易
に共有できません。また、メモや予定そのも
のを忘れてしまうこともあります。このプロ
ジェクトでは、一目見ただけでわかるアナロ
グ的なカレンダーと、そこに貼り付けた丸い
オブジェクトの情報がデジタル化され、ス
マートフォンやネットと適切に連携して利用
することができます。丸いオブジェクトは単
体でも機能し、Arduinoを用いて試作品が
作られています。

＊7） NailSnaps

＊8） Sound Blocks

＊5） The Pursuit by Equinox

今年の傾向と作品の評価

これからのインタラクション

http://awards.ixda.org/entry/2016/
mr-piggy-your-pet-piggy-bank/

http://juliahunold.com/
MEMO-tangible-appointments

Interaction Award 2016
公式サイト
http://awards.ixda.org/2016-interaction-awards/

＊11） Adobe Fill & Sign＊1） Kurbo ＊2） ANNA breathing assistant

＊6） SMART

＊3） The Color Visualizer

＊4） The Imagination Machine ＊10） Step

＊9） SquareTalk

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 Mar. 2016 - 1

http://www.andoh.org/
http://awards.ixda.org/2016-interaction-awards/

DIGITAL GADGET

　Interaction Award（インタラクショ
ンアワード）は、インタラクション（相互
の［inter］＋効力［reaction］）を活用
したプロダクトを評価する、米国IxDA
（Interaction Design Association）
が主催するアワードです。

　とくに最近の傾向は、製品として明
確な存在や操作性をもったインタラク
ションだけでなく、インタラクションを重
視したサービスやプロジェクト、企画そ
のものも評価の対象になっています。
インタラクションそのものも、マイクロイ
ンタラクションと呼ばれる、操作をさらに
細かい単位に分割して人の振る舞い
を考えたり、ちょっとした操作や小さな
動きで人の感情を喚起する手法も数
多く用いられるようになってきました。
　ユーザインターフェースでも、意味

もなく動くアニメーションは邪魔と感じ
ますが、動きに意味があり、必然性が
ある動作や操作であれば、より楽しく、
親しみをもって扱うことができます。新
しいデジタルデバイスが氾濫していく
中で、既存のほとんどのインタラクショ
ンはいままでにあった何らかの物理的
事象を模倣したものになっており、そ
のおかげで操作を覚えておくことが容
易なものになっています。インタラク
ションには、適切な反応と、操作対象
に対して直接的に影響を与えている
ような感覚が重要です。
　また、時間的な要素である「素早
さ」「遅さ」「タイミング」「待機時間」な
どもポイントです。一見同じように見え
る操作も、タイミングの違いやタイミン
グの悪さによっては、操作感に雲泥
の違いをもたらします。またどんなに綿
密に計画し、設計したインタラクション
も、実際に操作してみないとわからな
いことや、見当違いなどといった状況
もあり、経験豊富な人にとってもなか
なか安心できない要素でもあります。

　一方「No UI」と呼ばれる、ユーザイ
ンターフェースなし、インタラクションな
しで、目的を達成するようなインター
フェースの考え方も広がってきました。
操作そのものが楽しく、素早く扱える
ものでないかぎり、操作しないで目的
を達成できることは1つの理想形では
あります。けれど実際のところ、インタ
ラクションの操作コストや学習コスト
がゼロになることはありません。考えた
だけで脳波でらくらく操作できるような
未来になるまでは、実際の操作を始
めるまでの面倒さをできるだけ少なく
するのが良いと言われています。読む
／予測する／理解する／探す／操
作する／待つ／切り替える／確認す
るといった操作1つ1つの面倒さを極
小化していくのです。

　Interaction Awardは、次に紹介す
る5つの部門に分かれ、それぞれの部
門の主眼にもとづいて評価されます。
複数の要素を持っており、複数の部門

に同時エントリーされている作品もあり
ます。過去に本連載でも紹介した自転
車方向指示器のHammerheadなど、
すでに取り上げたものも数多くノミ
ネートされています。

Connecting（つながり）部門
人と人や、人とコミュニティ間のコミュ
ニケーションを手助けするしくみ
●Edward M. Kennedy Institute
……教室内でのタブレットを活用し
た投票システム
●SAP Tennis Analytics for Coach

es……テニスのコーチのための試
合状況解析ツール
●Trafficbridge……紙ベースのワー
クフローの再構築
●Who, Like Me, Is Threatened?
……人権運動のための装置。さま
ざまな種類のインタビューを聴くこと
ができる

Disrupting（再構築）部門
当たり前となっている既存のサービス
や事柄を壊して再構築し、新しい価
値を生み出す
●The New Eurosport Player……ス
ポーツ中継のサポートアプリ
●reForm……形状を記憶し、再構築
する物体
●Sensel Morph……さまざまな用途
に変化するタッチパネル（本連載

204回に掲載）
●Wayfindr……目の不自由な人向
けの旅行ガイド杖

Empowering（助力）部門
人々が限界を超え、今までできなかっ
たような事柄をできるように仕向ける
●Kurbo（＊1）……子供の肥満防止、
カロリー管理のためのアプリ
●Owlet……乳幼児みまもり用デジ
タル靴下（本連載201回に掲載）
●SAM……デジタルプロトタイプ用
キット
●Wayfindr［複数部門受賞］

Engaging（魅了）部門
日々の出来事に喜びや注目を集め、
その事柄に意味をあたえる
●ANNA（＊2）……呼吸のタイミングを
補助してくれる子供向け医療機器
●The Color Visualizer（＊3）……標
本の色をビジュアライズする教育用
展示機器
●The Imagination Machine（＊4）
……好きな場所に飛んでいけるデ
ジタル地球儀と航路の表示装置
●The Pursuit by Equinox（＊5）……
ビジュアライズされたフィットネスバ
イクスシステム
●SMART（＊6）……情報やデータをビ
ジュアライズする絵画のような表現
の表示装置

Expressing（表現）部門
人々の自己表現や、創造性を手助け
するしくみ
●NailSnaps（＊7）……美しいカスタ
ムネイルアートの作成・共有アプリ
●Sound Blocks（＊8）……アナログ
シンセサイザーのような、音の成分
を電子ブロックで構成するもの
●SquareTalk（＊9）……コミュニケー
ションのためのデジタル灯籠
●Step（＊10）……リアルな操作で扱
えるデジタルドラムマシン
●Trashtag……社会的メッセージを
発信するためのゴミ捨て用の文字
タグ

Optimizing（最適化）部門
日々の行動をより効率的に行う方法
●Adobe Fill & Sign（＊11）……デジ
タル署名用のソリューション
●Arlanda Departure Sequencing

Tool……飛行機の発着とタクシー
の待ち行列を連携させるシステム
●Basen……ノルウェーの軍用の宿
泊管理システム
●Kurbo［複数部門受賞］

　右ページのGadgetコーナーでは、
ノミネートされた作品の中から、惜しく
も受賞は逃したものの興味深い作品
を紹介します。

　インタラクションの観点としては、次
のような要素に配慮すると良いでしょ
う。

●操作するときのペース配分
●反応速度（瞬間、瞬時、そのとき、と
いったいくつかの異なるタイムス
ケール）
●利用するときの状況（立っている、
座っている、寝ている、走っている、
急いでいるなど）
●コンテンツやデータが変化したとき
の見せ方、操作の仕方の変化
●使い続ける場合への配慮。しばらく
使わなかったときの配慮

　人の動きや動作には個人差があ
り、インタラクションのための操作に
も、慣れや身体的特徴も含めた個人
差が存在します。そういった環境下に
おいて標準化やパーソナライゼーショ
ンが重要な要素になってくるとともに、
個人差とは関係ない普遍的な要素も
存在します。
　さらに最近では、ユーザインター
フェースや操作の微調整そのものを
機械学習によって最適化しようという
考えもあり、最適化のアプローチと一
般的ジェスチャー操作の標準化が進
むことによって、さらに便利で使いや
すいものになっていくことでしょう。｢

vol.207

インタラクションの
コストと効果

Interaction Awardに見る、インタラクションの本質

DIGITAL
GADGET

Interaction Awardに見る、インタラクションの本質

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

https://www.biltapp.com/

デジタル組立図

BILT

Gadget 1

BILTは複雑な組み立て作業が必要な製
品の、組み立て方を指南するしくみです。
たとえばある屋外用バーベキューコンロで
あれば、2人がかりで約1時間、40工程で
組み立てる様子を、ステップを追って確認
できます。また必要な道具も的確に明示さ
れます。たいていは紙に書かれてわかりに
くい手順も、BILTアプリでチェックすること
で、平易に間違いなく組み立てることがで
きます。単なる動画マニュアルとも異なり、
個々人のペースで進められるところが便
利な点です。組み立て用のコンテンツも、
製品を提供する企業が作るだけでなく、一
般の人による解説の可能性も考えられて
います。

http://philippschmitt.com/

ソーシャル撮影カメラ

Camera Restricta

Gadget 2

Camera Restricta（制限するカメラ）は、常
にネットワークに接続されたカメラで、絶景
が見える場所や写真撮影ポイントのよう
な、多くの人が撮影済みのポイントを位置
情報とともに教えてくれます。ただし、ネット
上の写真共有サイトにある写真の位置情
報と自動的に比較し、皆が撮影しているよ
うな場所で写真を撮ろうとすると、シャッ
ターが降りなくなるのです。意図的に皆と
は異なる写真を撮らなければならない、ネッ
ト時代の不思議なカメラです。カメラ的デ
バイスの中身は単なるスマートフォンです
が、このカメラで撮影すると、必ずと言って
いいほど誰もまだ撮影したことのない風景
が撮影できるわけです。

デジタル貯金箱

Mr. Piggy

Gadget 3

Mr. Piggyが提唱するのは、ネットワーク化
されたデジタル貯金箱です。声をかけると
耳を動かし、口の部分にはクレジットカード
のリーダーが搭載されており、利用額や口
座残額に応じて豚の体の大きさが変化す
るようになっています。残念ながらまだコン
セプトモデルでしかありませんが、既存の
技術で可能なサービスであり、お金や硬
貨、貯蓄といった古くからある金銭感覚を、
ネット時代に融合しているところがポイント
です。電子マネーや仮想通貨が話題にな
るなかで、単純に新しいことに飛びつくの
ではなく、既存のしくみや既存のサービス
を、うまくデジタルデバイスと連携させた好
例です。

デジタルかつアナログな
スケジュールボード

Memo
-tangible appointment

Gadget 4

Memoはおもに認知障害の人向けに考え
られた、アナログかつデジタルなスケジュー
ルボードです。カレンダーに書き込んだり、
冷蔵庫に貼り付けたメモ情報は、その場
にはありますが、そのままの状態では平易
に共有できません。また、メモや予定そのも
のを忘れてしまうこともあります。このプロ
ジェクトでは、一目見ただけでわかるアナロ
グ的なカレンダーと、そこに貼り付けた丸い
オブジェクトの情報がデジタル化され、ス
マートフォンやネットと適切に連携して利用
することができます。丸いオブジェクトは単
体でも機能し、Arduinoを用いて試作品が
作られています。

＊7） NailSnaps

＊8） Sound Blocks

＊5） The Pursuit by Equinox

今年の傾向と作品の評価

これからのインタラクション

http://awards.ixda.org/entry/2016/
mr-piggy-your-pet-piggy-bank/

http://juliahunold.com/
MEMO-tangible-appointments

Interaction Award 2016
公式サイト
http://awards.ixda.org/2016-interaction-awards/

＊11） Adobe Fill & Sign＊1） Kurbo ＊2） ANNA breathing assistant

＊6） SMART

＊3） The Color Visualizer

＊4） The Imagination Machine ＊10） Step

＊9） SquareTalk

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 2 - Software Design

DIGITAL GADGET

　Interaction Award（インタラクショ
ンアワード）は、インタラクション（相互
の［inter］＋効力［reaction］）を活用
したプロダクトを評価する、米国IxDA
（Interaction Design Association）
が主催するアワードです。

　とくに最近の傾向は、製品として明
確な存在や操作性をもったインタラク
ションだけでなく、インタラクションを重
視したサービスやプロジェクト、企画そ
のものも評価の対象になっています。
インタラクションそのものも、マイクロイ
ンタラクションと呼ばれる、操作をさらに
細かい単位に分割して人の振る舞い
を考えたり、ちょっとした操作や小さな
動きで人の感情を喚起する手法も数
多く用いられるようになってきました。
　ユーザインターフェースでも、意味

もなく動くアニメーションは邪魔と感じ
ますが、動きに意味があり、必然性が
ある動作や操作であれば、より楽しく、
親しみをもって扱うことができます。新
しいデジタルデバイスが氾濫していく
中で、既存のほとんどのインタラクショ
ンはいままでにあった何らかの物理的
事象を模倣したものになっており、そ
のおかげで操作を覚えておくことが容
易なものになっています。インタラク
ションには、適切な反応と、操作対象
に対して直接的に影響を与えている
ような感覚が重要です。
　また、時間的な要素である「素早
さ」「遅さ」「タイミング」「待機時間」な
どもポイントです。一見同じように見え
る操作も、タイミングの違いやタイミン
グの悪さによっては、操作感に雲泥
の違いをもたらします。またどんなに綿
密に計画し、設計したインタラクション
も、実際に操作してみないとわからな
いことや、見当違いなどといった状況
もあり、経験豊富な人にとってもなか
なか安心できない要素でもあります。

　一方「No UI」と呼ばれる、ユーザイ
ンターフェースなし、インタラクションな
しで、目的を達成するようなインター
フェースの考え方も広がってきました。
操作そのものが楽しく、素早く扱える
ものでないかぎり、操作しないで目的
を達成できることは1つの理想形では
あります。けれど実際のところ、インタ
ラクションの操作コストや学習コスト
がゼロになることはありません。考えた
だけで脳波でらくらく操作できるような
未来になるまでは、実際の操作を始
めるまでの面倒さをできるだけ少なく
するのが良いと言われています。読む
／予測する／理解する／探す／操
作する／待つ／切り替える／確認す
るといった操作1つ1つの面倒さを極
小化していくのです。

　Interaction Awardは、次に紹介す
る5つの部門に分かれ、それぞれの部
門の主眼にもとづいて評価されます。
複数の要素を持っており、複数の部門

に同時エントリーされている作品もあり
ます。過去に本連載でも紹介した自転
車方向指示器のHammerheadなど、
すでに取り上げたものも数多くノミ
ネートされています。

Connecting（つながり）部門
人と人や、人とコミュニティ間のコミュ
ニケーションを手助けするしくみ
●Edward M. Kennedy Institute
……教室内でのタブレットを活用し
た投票システム
●SAP Tennis Analytics for Coach

es……テニスのコーチのための試
合状況解析ツール
●Trafficbridge……紙ベースのワー
クフローの再構築
●Who, Like Me, Is Threatened?
……人権運動のための装置。さま
ざまな種類のインタビューを聴くこと
ができる

Disrupting（再構築）部門
当たり前となっている既存のサービス
や事柄を壊して再構築し、新しい価
値を生み出す
●The New Eurosport Player……ス
ポーツ中継のサポートアプリ
●reForm……形状を記憶し、再構築
する物体
●Sensel Morph……さまざまな用途
に変化するタッチパネル（本連載

204回に掲載）
●Wayfindr……目の不自由な人向
けの旅行ガイド杖

Empowering（助力）部門
人々が限界を超え、今までできなかっ
たような事柄をできるように仕向ける
●Kurbo（＊1）……子供の肥満防止、
カロリー管理のためのアプリ
●Owlet……乳幼児みまもり用デジ
タル靴下（本連載201回に掲載）
●SAM……デジタルプロトタイプ用
キット
●Wayfindr［複数部門受賞］

Engaging（魅了）部門
日々の出来事に喜びや注目を集め、
その事柄に意味をあたえる
●ANNA（＊2）……呼吸のタイミングを
補助してくれる子供向け医療機器
●The Color Visualizer（＊3）……標
本の色をビジュアライズする教育用
展示機器
●The Imagination Machine（＊4）
……好きな場所に飛んでいけるデ
ジタル地球儀と航路の表示装置
●The Pursuit by Equinox（＊5）……
ビジュアライズされたフィットネスバ
イクスシステム
●SMART（＊6）……情報やデータをビ
ジュアライズする絵画のような表現
の表示装置

Expressing（表現）部門
人々の自己表現や、創造性を手助け
するしくみ
●NailSnaps（＊7）……美しいカスタ
ムネイルアートの作成・共有アプリ
●Sound Blocks（＊8）……アナログ
シンセサイザーのような、音の成分
を電子ブロックで構成するもの
●SquareTalk（＊9）……コミュニケー
ションのためのデジタル灯籠
●Step（＊10）……リアルな操作で扱
えるデジタルドラムマシン
●Trashtag……社会的メッセージを
発信するためのゴミ捨て用の文字
タグ

Optimizing（最適化）部門
日々の行動をより効率的に行う方法
●Adobe Fill & Sign（＊11）……デジ
タル署名用のソリューション
●Arlanda Departure Sequencing

Tool……飛行機の発着とタクシー
の待ち行列を連携させるシステム
●Basen……ノルウェーの軍用の宿
泊管理システム
●Kurbo［複数部門受賞］

　右ページのGadgetコーナーでは、
ノミネートされた作品の中から、惜しく
も受賞は逃したものの興味深い作品
を紹介します。

　インタラクションの観点としては、次
のような要素に配慮すると良いでしょ
う。

●操作するときのペース配分
●反応速度（瞬間、瞬時、そのとき、と
いったいくつかの異なるタイムス
ケール）
●利用するときの状況（立っている、
座っている、寝ている、走っている、
急いでいるなど）
●コンテンツやデータが変化したとき
の見せ方、操作の仕方の変化
●使い続ける場合への配慮。しばらく
使わなかったときの配慮

　人の動きや動作には個人差があ
り、インタラクションのための操作に
も、慣れや身体的特徴も含めた個人
差が存在します。そういった環境下に
おいて標準化やパーソナライゼーショ
ンが重要な要素になってくるとともに、
個人差とは関係ない普遍的な要素も
存在します。
　さらに最近では、ユーザインター
フェースや操作の微調整そのものを
機械学習によって最適化しようという
考えもあり、最適化のアプローチと一
般的ジェスチャー操作の標準化が進
むことによって、さらに便利で使いや
すいものになっていくことでしょう。｢

vol.207

インタラクションの
コストと効果

Interaction Awardに見る、インタラクションの本質

DIGITAL
GADGET

Interaction Awardに見る、インタラクションの本質

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

https://www.biltapp.com/

デジタル組立図

BILT

Gadget 1

BILTは複雑な組み立て作業が必要な製
品の、組み立て方を指南するしくみです。
たとえばある屋外用バーベキューコンロで
あれば、2人がかりで約1時間、40工程で
組み立てる様子を、ステップを追って確認
できます。また必要な道具も的確に明示さ
れます。たいていは紙に書かれてわかりに
くい手順も、BILTアプリでチェックすること
で、平易に間違いなく組み立てることがで
きます。単なる動画マニュアルとも異なり、
個々人のペースで進められるところが便
利な点です。組み立て用のコンテンツも、
製品を提供する企業が作るだけでなく、一
般の人による解説の可能性も考えられて
います。

http://philippschmitt.com/

ソーシャル撮影カメラ

Camera Restricta

Gadget 2

Camera Restricta（制限するカメラ）は、常
にネットワークに接続されたカメラで、絶景
が見える場所や写真撮影ポイントのよう
な、多くの人が撮影済みのポイントを位置
情報とともに教えてくれます。ただし、ネット
上の写真共有サイトにある写真の位置情
報と自動的に比較し、皆が撮影しているよ
うな場所で写真を撮ろうとすると、シャッ
ターが降りなくなるのです。意図的に皆と
は異なる写真を撮らなければならない、ネッ
ト時代の不思議なカメラです。カメラ的デ
バイスの中身は単なるスマートフォンです
が、このカメラで撮影すると、必ずと言って
いいほど誰もまだ撮影したことのない風景
が撮影できるわけです。

デジタル貯金箱

Mr. Piggy

Gadget 3

Mr. Piggyが提唱するのは、ネットワーク化
されたデジタル貯金箱です。声をかけると
耳を動かし、口の部分にはクレジットカード
のリーダーが搭載されており、利用額や口
座残額に応じて豚の体の大きさが変化す
るようになっています。残念ながらまだコン
セプトモデルでしかありませんが、既存の
技術で可能なサービスであり、お金や硬
貨、貯蓄といった古くからある金銭感覚を、
ネット時代に融合しているところがポイント
です。電子マネーや仮想通貨が話題にな
るなかで、単純に新しいことに飛びつくの
ではなく、既存のしくみや既存のサービス
を、うまくデジタルデバイスと連携させた好
例です。

デジタルかつアナログな
スケジュールボード

Memo
-tangible appointment

Gadget 4

Memoはおもに認知障害の人向けに考え
られた、アナログかつデジタルなスケジュー
ルボードです。カレンダーに書き込んだり、
冷蔵庫に貼り付けたメモ情報は、その場
にはありますが、そのままの状態では平易
に共有できません。また、メモや予定そのも
のを忘れてしまうこともあります。このプロ
ジェクトでは、一目見ただけでわかるアナロ
グ的なカレンダーと、そこに貼り付けた丸い
オブジェクトの情報がデジタル化され、ス
マートフォンやネットと適切に連携して利用
することができます。丸いオブジェクトは単
体でも機能し、Arduinoを用いて試作品が
作られています。

＊7） NailSnaps

＊8） Sound Blocks

＊5） The Pursuit by Equinox

今年の傾向と作品の評価

これからのインタラクション

http://awards.ixda.org/entry/2016/
mr-piggy-your-pet-piggy-bank/

http://juliahunold.com/
MEMO-tangible-appointments

Interaction Award 2016
公式サイト
http://awards.ixda.org/2016-interaction-awards/

＊11） Adobe Fill & Sign＊1） Kurbo ＊2） ANNA breathing assistant

＊6） SMART

＊3） The Color Visualizer

＊4） The Imagination Machine ＊10） Step

＊9） SquareTalk

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 2 - Software Design Mar. 2016 - 3

https://www.biltapp.com/
http://philippschmitt.com/
http://juliahunold.com/MEMO-tangible-appointments
http://awards.ixda.org/entry/2016/mr-piggy-your-pet-piggy-bank/

4 - Software Design

Timestamp
——タイムスタンプ

タイムスタンプとは

　データのタイムスタンプ（Timestamp）とは、
データが作成・修正・参照されたときの日時の
ことです。たとえば、ファイルには自動的にタイ
ムスタンプが付きます。普段はあまり意識しま
せんが、ファイルのタイムスタンプは3種類あり、
ファイルの作成・修正・参照の日時がそれぞれ
個別に管理されています。たとえば、この記事
の原稿ファイルをls -lUコマンドで調べると、
1 11 10:36:43 2016と表示されました。これは、
ファイルの作成

4 4

日時が2016年1月11日10時36

分43秒であることを表しています。ls -lTコマ
ンドを使うと最後の修正

4 4

日時が表示されます。
ls -luコマンドを使うと最後の参照

4 4

日時が表示
されます。デフォルトのls -lで表示されるのは
最後の修正日時ですが、秒は省略されます。
　ファイルが作成されると、そのときの日時が
作成日時として記録されます。そしてそれ以降、
通常のファイル操作では作成日時は変わらず、
修正日時と参照日時のみが更新されることにな
ります。時間は、未来に向かって一方向に進む
単調性を持っていますから、ファイルの作成日
時もまた単調性を持つことになります。

順序とmake

　タイムスタンプはファイルを管理するときに

非常に重要な情報です。その理由の1つはファ
イルに順序が付けられるためです。ファイルを
修正すると修正日時が更新されますから、結果
として、最近作業したファイルはどれなのかわ
かることになります。自分のファイル一覧をい
つも修正時刻順で表示している人は、野口悠紀
雄氏の「超」整理法と呼ばれる書類管理法（書類
を使った順番に並べておく方法）を自然にやっ
ていることになりますね。
　プログラムを開発するときに使うmakeなど
のビルドツールでは、ファイルのタイムスタン
プを利用します。makeは、ソースファイルを
コンパイルしてオブジェクトファイルを作ると
き、両者のタイムスタンプを比較します。そし
て、ソースファイルのほうが新しいとき（つま
り前回のコンパイル後にソースファイルに修正
が加わったとき）にのみコンパイルを実行しま
す。これは、タイムスタンプを利用して不要な
コンパイルを省略していることになります。

ユニークなURL

　私は自分個人の小さなブログサイトを作るの
が好きですが、そのときのURLには、よくタ
イムスタンプを使います。たとえば、http://
snap.textfile.org/20150906233506/のように
します。この数字列20150906233506は、記事
を作成した日時である2015年09月06日23時
35分06秒そのものを表しています。
　このようにURLにタイムスタンプを使うと、
コンテンツが変化しても変化することのない、

Timestamp

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 34

http://www.hyuki.com/

4 - Software Design Mar. 2016 - 5

いわゆる「クールなURI」が簡単に実現できます。
記事を最初に作成した日時は不変だからです。
クールなURIについては、“Cool URIs don't

change”注1（邦訳「クールなURIは変わらない」注2）
を参照してください。

タイムスタンピング

　ファイルの作成日時を表すタイムスタンプは、
通常のファイル操作では変更を受けませんが、
絶対に変更できないわけではありません。です
から「このファイルは確かにこの日時に作成し
た」ということを証明することはできません。
　ある日時にファイル（データ）の存在を保証す
るためのサービスをタイムスタンピングといい、
そのサービスを実現するプロトコルとして
Time-Stamp Protocol（TSP）が定められていま
す（RFC 3161）。TSPでは、タイムスタンピン
グを実行するTime Stamping Authority（TSA）
という機関との通信手順を定めています。TSA

は、ファイルのハッシュ値にタイムスタンプを
連結し、そのデジタル署名を作成します（図1）。

このデジタル署名によって「この日時にこのファ
イルが存在したこと」を検証するのです。
　たとえば、“Hello!･n”という7文字からなる
データが2016年01月12日01時26分07秒に
存在していたことはTrueTimeStamp注3という
フリーのサービスで検証できます。実はこのデー
タは筆者がこの原稿を書いているときに登録し
たものです（図2）。
　一般に、タイムスタンプはセキュリティで重
要な役割を担います。SSL/TLSで通信を行う
ときに利用する証明書には、有効期限が付けら
れています。私たちが安心してセキュアな通信
を行うためには、有効な証明書は欠かせません。
ですから、コンピュータの時計が狂っている場
合には、必ず警告が表示されるようになってい
ます。たかが日時と侮ることはできません。

日常生活とタイムスタンプ

　私たちはスーパーで買い物をするとき、新鮮
な食品を購入するために賞味期限というタイム
スタンプを読みます。賞味期限を食品に印刷し
ているのはその食品を加工している人です。つ
まり私たちは、そのタイムスタンプを信用する
ことで、タイムスタンピングを行う人を信用し
ていることになりますね。
　また、大学受験の募集要項などに「消印有効」
と書かれていることがあります。郵便物に押さ
れる消印をタイムスタンプにして、出願の書類
を受け付けるかどうかの判断が行われます。大
学側は、郵便局をタイムスタンピングを行うサー
ビスとして信用していることになります。

◆　◆　◆
　あなたの周りを見回すと、たくさんのタイム
スタンプが見つかるでしょう。そのタイムスタ
ンプは不変でしょうか。それとも、修正がある
たびに更新されるでしょうか。そのタイムスタ
ンプを生成しているサービスは誰でしょうか。
ぜひ、考えてみてください。｢

34

ハッシュ値
タイムスタンプ

TSAの
プライベート鍵

デジタル署名

ハッシュ値の
計算

署名の実行

ファイル

 ▼図1　TSAのタイムスタンピング

 ▼図2　TrueTimeStamp.org

注3） URL http://truetimestamp.org
注1） URL http://www.w3.org/Provider/Style/URI.html
注2） URL http://www.kanzaki.com/docs/Style/URI

http://www.w3.org/Provider/Style/URI.html
http://www.kanzaki.com/docs/Style/URI
http://truetimestamp.org

6 - Software Design

　今回は「G
ぎ ゃ き

yaki」というお絵描きシステムを紹
介します。
　計算機やWebがこれだけ普及しているのに、
お絵描きシステムが世の中であまり使われてい
ないのが不思議です。iPad Pro、Surface Pro、
Surface Bookのような魅力的なペン計算機が
最近たくさん登場しているのにもかかわらず、
ペンを使ったお絵描きシステムは広く活用され
ていませんし、普通のユーザがお絵描きするシ
チュエーションも、あまり想定されていないよ
うに見えるのは気のせいでしょうか。スマホが
流行る以前は、PalmなどのPDA（Personal

Digital Assistant：携帯情報端末）でメモを描
く人も多かった気がするのですが、スマホやタ
ブレットでお絵描きする人は以前より減ってい
るような気がしています。
　文章を使うよりも絵で説明するほうがわかり
やすいことは多いでしょうし、デザインをスケッ
チしたいことも多いでしょうし、考えをまとめ
るために図を描きたいこともあるでしょうし、
ペンで絵を描きたい機会は多いはずです。実際、
紙のノートを活用している人は多いと思われま
すが、現在のパソコンはマウスやキーボードを
使って、テキストや図を編集するのに使うのが
普通だと思われており、ペンを使って知的生産
活動を行うことはとくに推奨されていません。

お絵描きシステムを
忘れていませんか？

Palmのようなペン型PDAが広く使われていた
ときは、ペンによるお絵描きもそれなりに利用
されていたと思うのですが、スマホが普及して
ペンが駆逐されたために、手書きでメモする機
会が減ってしまったように思われます。
　しかし、

・性能が良いペンコンピュータが普及しつつある
・あらゆるブラウザでお絵描き機能が提供され
ている

という状況の現在、新しいWeb時代のお絵描き
システムが、もっと使われるべきだと思います。

　お絵描きアプリやWebサービスはたくさん
ありますが、達人のための機能を持つものが多
く、とくにお絵描きが得意でない普通のユーザ
が手軽に使うためのものは多くありません。ア
イデアなどをメモしたくなったとき、最小の手
間でお絵描きを開始して安全に保存できるよう
なお絵描きシステムを簡単に使えるようにして
おきたいものです。
　パソコンやタブレットで文章を書くときはエ
ディタを起動するのが普通であるのと同様に、
お絵描きするときはアプリを起動したりWeb

ページを開いたりする必要があります。しかし
絵を描く方法やセーブ方法を簡単化することに
よって、お絵描きのハードルを下げることはで
きるでしょう。私は、最小限の機能をもち手軽
に利用できる「Gyaki」（楽ギャキ）というシステ

Gyaki――ブラウザ上の
手軽なお絵描きシステム

増井ラボノート

注1） http://thinkit.co.jp/free/article/0709/19/

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張らずに楽できるなら、それに越したことはないで
しょう。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろ
んなシステムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用してい
るような単純かつ便利なシステムをたくさん紹介していきます。

第 5 回　Gyaki

http://thinkit.co.jp/free/article/0709/19/

NO.

6 - Software Design Mar. 2016 - 7

G y a k i

ムを作って使っています。
　Gyakiでは、とにかく手軽にアイデアをスケッ
チすることを目標としているので次のような機
能だけを用意しています。

・手書きで線を描く
・3種類の太さを選択
・3種類の色（黒／灰色／白）を選択

　一度描いたものを移動することはできません
し、undo機能すらありませんが、紙のスケッ
チでも同様ですし、たいていの場合においてそ
れでなんとかなっているわけですから、無理に
たくさんの機能を用意する必要はないと割り切っ
ています。
　これらの機能だけを用意した理由は、情報科
学芸術大学院大学（IAMAS）の小林 茂氏の著書
『Prototyping Lab』（オライリー・ジャパン、
2010年）で紹介されている「アイデアスケッチ」
をスマホやタブレットで簡単に使いたいと考え
たからです（図1）。アイデアスケッチは小林氏
の同僚であるJames Gibson氏が考案したもので、
学内外のワークショップなどを通じて小林氏が
普及に努めているものです。
　絵が下手な人間でもこの方法でスケッチを書
けば、割とまともな感じに見えるという大きな
利点があります。

　http://Gyaki.com/［適当な文字列］というURL

にアクセスすることでGyakiのお絵描きを始め
られます（図2）。
　デフォルトのペンを使って、私が箱の絵を描く
とこのようなサエない絵になってしまいますが（図
3）、アイデアスケッチで書けばこのようになり（図
4）、かなりカッコ良くなることがわかります。
　普通の紙でアイデアスケッチを利用する場合
は、灰色のコピックや薄墨の筆ペンなどが必要
になりますが、Gyakiだともっと気軽にアイデ
アスケッチを使うことができます。

Gyakiの使用例

 ▼図1　Prototyping Lab̶ 「̶作りながら考える」ため
　　　のArduino実践レシピ（小林茂著、オライリー・
　　　ジャパン、2010年）より注2 作図：蛭田直

 ▼図3　デフォルトでは
　　　こんな具合

 ▼図4
アイデアスケッチ導入！

 ▼図2　Gyakiの初期画面

注2） https://www.oreilly.co.jp/books/9784873114538/

https://www.oreilly.co.jp/books/9784873114538/

増井ラボノート

8 - Software Design

　前述のGyakiのURLの「適当な文字列」のとこ
ろに、GyazoのユーザID（Macの場合̃/Library/
Gyazo/idに書かれている文字列）を指定すると、
アップロードボタンを押したとき、お絵描き結果
が自分のGyazoアカウントに追加されます。URL

が多少長くなってしまいますが、本誌12月号で紹
介したGyumpを使って、短いURLを使用すれば
便利です。描いた絵の一部分だけが必要な場合は、
Gyazoで選択してアップロードすればよいでしょう。
いずれの場合でも、何かを描いてからWeb上にセー
ブするための手間はかなり少なくなっていますし、
Gyazo.com上で後から検索するのも簡単です。

　昔のブラウザ上でお絵書きするためには、
FlashやJavaなどのプラグインを使う必要があり
ましたが、最近のブラウザのJavaScriptではい
ろいろな方法で何でも描けるようになりました。

・Canvas機能を使う
・SVG機能を使う
・WebGLを使う

　3次元描画を行うにはWebGLが適しており、
最近人気の情報視覚化システム「D3.js」では
SVGが利用されているなど、用途によって適
した描画システムは異なりますが、単純なお絵
書きにはCanvas機能を使うのが一番楽です。
Gyaki.comではCanvas機能を使ったお絵描き
をサポートしています注3。

Gyakiの実装

　白い紙の上にいきなり絵を描くのは難しいも
のです。Gyaki＋アイデアスケッチは、考え方
をすぐに視覚化するのには適しているのですが、
きれいな絵を描こうとする場合や奇抜な絵を描
くのには向いていません。

トレース

　お絵描きが得意でない人にいきなり自転車を
描かせてみると、まともに書けないことが多い
ようです（図5）。
　しかし「自転車」でWeb画像検索すれば、さ
まざまな自転車の写真が見つかりますから、そ
れをなぞったりコピー&ペーストしたりすれば、
苦労せずに正しい自転車の絵を書くことができ
ます。最近は多くのものが画像検索で見つかる
ので、現実世界に存在するものを描く必要性は
少なくなっているかもしれません。

補助線の利用

　整った表や図を描きたいときは方眼紙を使う
と便利ですが、背景として枡目や集中線を利用
すると、絵を描きやすくなることがあります。
たとえば集中線を背景にして先ほどと同じ絵を
描くと（図6）、より正しいパースで絵を描くこ
とができます。

枯尾花システム

　現実世界に存在しない物体を描きたい場合や、

上手なお絵描き
方法の考察

 ▼図6　集中線を使って
　　　描画してみる

注3） Gyakiのコードを公開しています（https://github.com/masui/Gyaki）。

 ▼図5　いろんな人に自転車を描いてもらった例

https://github.com/masui/Gyaki

NO.

8 - Software Design Mar. 2016 - 9

G y a k i

新しく形状をデザインし
たいような場合は画像検
索ができません。しかし、
そのような場合でも想像力を喚起するお絵描き
支援システムを作ることはできるかもしれません。
　雲の中に動物が見えたり、自動車の前面が人
の顔に見えることがよくありますが、このよう
な現象はパレイドリア（Pareidolia）と呼ばれて
います（写真1）。「幽霊の正体見たり枯

かれおばな

尾花」と
いう諺

ことわざ

がありますが、ススキのパターンが人間
の想像力を喚起することがあり得るということ
なのでしょう。
　ランダムな曲線群や直線群の中に関係ない絵
が見える現象は、レオナルド・ダ・ヴィンチが
指摘していたほどであり注5、『吾輩は猫である注6』
の中では迷亭先生が次のように語っています。

レオナルド・ダ・ヴィンチは門下生に寺院の
壁のしみを写せと教えた事があるそうだ。
なるほど雪隠などに這入って雨の漏る壁を
余念なく眺めていると、 なかなかうまい模様
画が自然に出来ているぜ。 君注意して写生
して見給えきっと面白いものが出来るから。

　枯尾花的パターンを自動生成すると、 自分が
描きたいものをその中に発見できるかもしれま
せん。たとえば、先進的UIデザイナの深津貴

之（fladdict）さんが開発した「Jackson Pollock

的スケッチシステム注7」を使うと、絵心がない
人でも躍動的な絵を描ける可能性があります（図
7、図8）。
　枯尾花お絵描きに向いたパターンというのは
確かに存在するようですし、描きたいものの分
野によって有効なパターンも異なると思われます。
　Deep Learningで学習した画像認識システム
を利用したDeep Dreamは人間の枯尾花認識機
能を計算機でシミュレートしたものだと言える
かもしれません（図9）。こういう技法を組み合
わせることによって、もっと気軽にお絵描きで
きるシステムを作りたいと思っています。ﾟ

 ▼写真1　パレイドリアの例注4 ▼図7　踊っている人が見える? ▼図8　トレース結果

 ▼図9　Deep Dream（http://deepdreamgenerator.com/）

注4） https://ja.wikipedia.org/wiki/パレイドリア
注5） http://www.goodreads.com/quotes/978797-look-at-walls-splashed-with-a-number-of-stains-or
注6） 青空文庫（http://www.aozora.gr.jp/cards/000148/files/789_14547.html）
注7） fladdict（http://fladdict.net/blog/2016/01/jackson-pollock.html）

http://deepdreamgenerator.com/
https://ja.wikipedia.org/wiki/%E3%83%91%E3%83%AC%E3%82%A4%E3%83%89%E3%83%AA%E3%82%A2
http://www.goodreads.com/quotes/978797-look-at-walls-splashed-with-a-number-of-stains-or
http://www.aozora.gr.jp/cards/000148/files/789_14547.html
http://fladdict.net/blog/2016/01/jackson-pollock.html

宮原徹の新
連
載

10 - Software Design

OSCは全国で開催中

　皆さん、こんにちは。宮原徹です。

今月号から毎月、私がオープンソー

スカンファレンス（OSC）で全国を飛

び回っている様子を中心に、オープ

ンソースに関連したトピックやIT業

界の動向、エンジニア論などをお話

していきたいと思います。

　OSCとは、日本全国で開催されて

いる「オープンソースの文化祭」とい

う感じのイベントです。SD読者の

中にも、参加したことがあるという

方は実は多いのではないかと思って

います。

　2004年9月に第1回を東京で開

催したあと、北は北海道から、南は

沖縄まで、11年で120回以上開催

されてきています。だいたい1ヵ月

に1回開催されていることになりま

すが、ここ最近は、多いと月2回開

催されています。これまで開催した

地域を日本地図で見てみると、図1

のようになります。

OSCの変形版、
OSunCも開催

　また、OSCの変形版である「オー

プンソースアンカファレンス

（OSunC）」も以下の地域で開催され

ています。

・川越（埼玉県）

・鹿児島

　OSunCは、事前に発表者を決め

ず、当日参加者から発表者を募る形

式です。懇親会を兼ねて食べ物、飲

み物を楽しみつつ発表を聞く、とい

うスタイルで開催されるので、和や

かな雰囲気で開催されているのも特

徴でしょう。開催日時とプロジェク

ターの使える場所を決めるだけでよ

いので、今後はOSCが開催されて

いない地域でもOSunCを開催して

いきたいと考えています。

なぜOSCを開催するのか

　OSCは学校行事の「文化祭」をイ

メージしてスタートしました。第1

回の開催は日本電子専門学校の校舎

をお借りしていましたし、それ以後

もできるだけ大学、専門学校をお借

りして開催するようにしています。

　OSCではセミナーとブース展示の

2つが柱になっていますが、とくに

力を入れているのがブース展示です。

OSSコミュニティ、協賛企業のみな

さんが思い思いにブース（150〜

180センチ幅の机）でデモやパネル

などを展示します。小規模な開催で

も20、東京や京都などの大規模開

催では100以上のブースが並びま

す。その様子を「コミケっぽい」と評

する人もいます。ブース展示は、文

化祭でいえばクラスや部活、サーク

ルなどの発表に相当すると考えても

らうとよいでしょう。

　ブース展示では、来場者と出展者

全国で開催されるOSCとOSunC第1回

北海道（札幌）

岩手

仙台

福島（会津）

東京

浜松名古屋

京都島根

広島

福岡

大分

沖縄

徳島
香川

愛媛

高知

大阪
神戸

新潟（新潟・長岡）

 ▼図1　OSCの開催地

宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

10 - Software Design Mar. 2016 - 11

R e p o r t

全国で開催されるOSCとOSunC第1回

の間で直接顔を見ながらの双方向コ

ミュニケーションが発生しますから、

双方にとって満足が得やすいという

メリットがあります。また、効果的

な展示を行うために出展者はパネル

や看板、テーブルクロスを作ったり、

ノベルティグッズを作って配ったり

とさまざまな工夫をする必要が出て

くるので、出展を重ねるごとにブー

スの展示内容が進化していくのもお

もしろいところです。

　このように、OSCはセミナーなど

による来場者に対しての情報発信だ

けでなく、どのようにしたら自分た

ちのOSSのよさが伝わるかを考え

て、そして実践する、出展者にとっ

ての「学びの場」でもあるというのが

私の考えです。もともと、私が日本

オラクルという会社で製品マーケ

ティングにかかわってきた経験やノ

ウハウをOSSコミュニティ全体に還

元できないか？というのがOSC開

催を始めたきっかけでもあります。

10年以上経って、学びの場として

のOSCは徐々に機能しつつあるよ

うに感じています。

OSCはみんなで作るもの

　OSCは、通常の商業イベントと異

なり、私の会社であるびぎねっとが

事務局となって準備などの作業を

行っていますが、事前の企画や当日

の運営などには各開催地域の人々、

とくに学生スタッフのみなさんの協

力に負うところが多いのも特徴です。

　スタッフの役割には、受付などの

人と接する作業もあれば、セミナー

やブース展示などが円滑に進むよう

準備や運営を行う作業などさまざま

なものがあります。また、手が空い

ている時間にはセミナーやブース展

示を見て廻ることもできますし、い

ろいろな経験ができるという意味で

スタッフ参加は実はお得だったりし

ます。各開催では常にスタッフを募

集していますので、興味のある方は

ぜひ応募してください。

懇親会、そして家に帰る
までがOSCです

　OSCは全国各地で開催されている

こともあり、ちょっとした旅気分で

各地のOSCに出展する人たちがた

くさんいます。そのときの楽しみと

して、地元の人たちとの交流、美味

しいものを食べたり飲んだり、そし

てちょっと観光をして帰る、なんて

いうこともあります。とくに前夜祭

や終了後の懇親会への参加は知り合

いを増やすチャンスでもありますの

で、OSCに参加するときは可能な限

り懇親会まで参加してほしいと思っ

ています。

　OSCはとくに学生のみなさんを優

遇するようにしているので、学生は

懇親会参加費が安くなっています。

社会人の参加者にアレコレと聞いて

みてください（ときには就職活動に

有利だったりもするようです）。

全国各地のOSCの楽しさ
をお伝えしていきます

　次回からは、全国各地で開催され

るOSCの様子をみなさんにお届け

して、その楽しさを少しでもお伝え

できればと思っています。ですが、

OSCの本当の楽しさは参加しても

らって初めて伝わるかと思っていま

す。2016年は夏ごろまでの開催日

程が決まっていますので、近くで開

催の際にはぜひご参加ください。ま

たWebサイト（http://ospn.jp）で

も随時情報を発信していますので、

確認してみてください。｢

2016年の開催スケジュール（確定分）
　1月23日 浜名湖（浜松）
　1月29日 大阪
　2月26・27日 東京
　4月24日　OSunC川越
　5月28日 名古屋
　6月17・18日 北海道
　7月2日 沖縄

全国各地の特色を活かした懇親会

　「OSCは懇親会からが本番」というぐらい懇親会には力を入れ
ています。過去の懇親会で印象深いものを紹介します。
　北海道といえばジンギスカン。有名なサッポロビール園で圧
巻の150名以上の参加者を集めて開催されました。ひたすらジ
ンギスカンを食べ、ビールを飲む、北海道らしい懇親会です。沖
縄では会場の目の前にあるビーチでビーチパーティーです。海
に沈む夕陽を見ながらのBBQで沖縄の夏を満喫しました（写真）。
　今後も、全国各地の特色のある懇親会を紹介していきます。

http://ospn.jp

12 - Software Design

はじめに

　これまで、デジタルな入出力をしてきました
が、今回はアナログ入力をしてみることにしま
しょう。「デジタル」と「アナログ」と突然書きま
したが、マイコンボードの入出力には、それぞ
れアナログとデジタルの2種類があります。ア
ナログは、図1の左の文字のように、特定のマ
スに収まりきらない情報を指します。デジタル
は、図1の右の文字のように特定の大きさのマ
スに収められていて、1、2といった具合に数え
られる量を指します。
　たとえば、私たちは気温を24℃といった具合
に表現しますが、実際のところ気温は整数値と
は限らず24.4857365836533……℃といった具
合に厳密に測ればずっと細かく測ることができ
るでしょう。しかし、気温を小数点以下100桁
まで測っても特段のメリットはないため、私た
ちは整数（24℃）とか、体温でしたら小数点以下
一桁（36.5℃）といった実用的な区切りで、情報
を簡潔に表して使っています。アナログ信号に
は段階というものがありませんが、デジタル信

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

アナログ入力してみる第
九
回

号には、段階があります。
　音を表すにも、昔はレコード（円盤に掘った溝
の深さ）ですとか、磁気テープ（テープの磁気の
強さ）といった具合にアナログな方法で記録をし
ていました。今では、CDやMP3といった具合
に、音を一定の細かさの数字で表してデジタル
記録をしています。こういう変化する信号をデ
ジタルにするには、アナログ信号を定期的にサ
ンプリングします（図2）。たとえば、CDのサン
プリング周波数は44.1kHzです。つまり、アナ
ログ信号である音を、1秒間に44,100回サンプ
リングして、デジタル信号にしています。アナ
ログ信号は連続していますが、デジタル信号は
断続的な信号です。ちなみに、CDのサンプル
ビット数は16bitですので、音を216＝65,536段
階でサンプルしています。

AnalogIn

　この、アナログからデジタルに変換する回路
が、ADコンバータ（アナログ→デジタル変換回
路）です。先ほどのCDの例にも挙げたように、
ADコンバータには、サンプリングを行える速

はじめに

AnalogIn

時間

電圧
アナログ

デジタル

 ▼図1　アナログとデジタル ▼図2　アナログとデジタル

12 - Software Design Mar. 2016 - 13

アナログ入力してみる 第
九
回

度と分解能があります。mbed LPC1768のマイ
コン、LPC1768に搭載されているADコンバー
タは、サンプリングを最大秒間20万回、分解能
12bitで行うことができます。mbedの開発環境
では、AnalogInを使って、このADコンバータ
で得た値を0.0～1.0の間のfloatか、unsigned

short（16bit値）で得ることができます。先ほど
述べたように、LPC1768で得られる値は12bit

ですので、mbedの開発環境でuint16_tで値を返
すときには、4bitシフトが行われています。
　実際に、AnalogInを使ってみましょう。例に
よって、mbedアプリケーションボードを使って
実験してみます。このサンプルコード（リスト
1）は、アプリケーションボードについている半
固定抵抗によって分圧された電圧をAnalogInで
読み取り、液晶に表示します。アプリケーショ
ンボードには半固定抵抗が2つ搭載されている
ので、それぞれの値を表示します。
　このサンプルコードでは、AnalogInで読み
取った値を表示するための液晶を制御するため、
C12832というライブラリ注1を使用しています。
ライブラリを組み込んだ状態でサンプルコード
を公開注2していますので、こちらをインポート
していただくとすばやく実験できます。

半固定抵抗

　半固定抵抗というのは、写真1のようなピン
が3つある抵抗器です。回路記号は、図3の左

注1） https://developer.mbed.org/users/chris/code/C12832/

注2） https://developer.mbed.org/users/ytsuboi/code/app-
board-pot/

のように抵抗器に接点が1つ追加されたような
ものです。中身は図3の中央のように、①と③
の間にカーボンなどの抵抗材があり、その上を
移動する②の接点があります。抵抗材は電気が
流れにくい材料で、抵抗材が長くなると両端の
間の抵抗値が増えます。ですので、長さの変わ
らない①と③の間の抵抗値は一定ですが、①と
②、②と③の間の抵抗値は②の接点の移動に応
じて変わります。つまり、半固定抵抗は図3の
右のように読み替えることができます。
　ここで、①を電源に、③をGNDに接続する
と、②の電圧は②の接点の位置に応じて変化し
ます。これは「分圧」と呼ばれます（図4）。電源
はVinで、VinとVout、VoutとGNDの電位差
（電圧）を足すと、VinとGNDの間の電位差と等
しくなります。これは「キルヒホッフの第2法

半固定抵抗

①

②

③ ① ② ③

①

②

③

 ▼図3　半固定抵抗のイメージ ▼写真1　半固定抵抗

 ▼リスト1　AnalogInのサンプルコード

#include "mbed.h"
#include "C12832.h"

C12832 lcd(p5, p7, p6, p8, p11);

AnalogIn pot1 (p19);
AnalogIn pot2 (p20);

int main()
{
 while(1) {
 lcd.cls();
 lcd.locate(0,3);
 lcd.printf("Pot 1 = %.2f", (float)pot1);
 lcd.locate(0,14);
 lcd.printf("Pot 2 = %.2f", (float)pot2);
 wait(0.1);
 }
}

https://developer.mbed.org/users/chris/code/C12832/
https://developer.mbed.org/users/ytsuboi/code/app-board-pot/

14 - Software Design

則注3」と呼ばれるもので、高校の物理でも習い
ます注4。
　Voutの電位は、Vinと、R1とR2の抵抗値に
よって決まります。VinはR1とR2にかかる電
圧、VoutはR2にかかる電圧です。電圧は抵抗
値に比例するので（オームの法則）、Vin：Vout

＝（R1+R2）：R2となります。つまり、Vin÷
Vout＝（R1+R2）÷R2で、この式を変型すると、
Vout＝Vin×R2÷（R1+R2）になります。たと
えば、半固定抵抗のつまみを中間、つまり②の
接点を①や③から等距離にすると、R1とR2は、
1：1になります。この状態で先ほどの計算式に
数値を入れると、Vout＝Vin×1/2です。こう

注3） キルヒホッフの第1法則：電気回路の任意の分岐点につい
て、そこに流れ込む電流の和は、そこから流れ出る電流の
和に等しい。キルヒホッフの第2法則：電気回路の任意の
一回りの閉じた経路について、電位差の和は0である。

注4） 電位差や電圧については、この連載の第1回を読み返して
みてください。

して、半固定抵抗のつまみを回すことで②の電
位は変化し、その値はAnalogInで読むことが可
能になります。
　半固定抵抗と似た電子部品に、ボリュームが
あります（写真2）。オーディオ機器に付いてい
て、つまみを回して音量を変えたりするために
使われます。半固定抵抗は、「半固定」という名
のとおり、ボリュームのように頻繁に操作され
ることを前提に設計されていません。このボ
リュームや半固定抵抗器を合わせて、可変抵抗
と呼びます。英語では、可変抵抗器をポテンショ
メータ（Potentiometer）と呼びます。このため、
先ほどのサンプルコードでは、半固定抵抗をpot1

やpot2と名付けています。
　なお、ボリュームには、AカーブとBカーブ
という2種類の製品があります（図5）。これは、
つまみの回転角と抵抗値の関係を表していて、
正比例するものがBカーブと呼ばれます。Aカー
ブのほうは、最初は回す量に対して抵抗値の増
加が鈍く、後半は早く増えていきます。Aカー
ブは、人間の感覚に近い、対数変化注5をします。

曲げセンサ

　先ほど紹介した可変抵抗とは異なりますが、
曲げ具合によって抵抗値が変わる「曲げセンサ」
というデバイスがあります（写真3）。曲げセン

注5） たとえば、1,2,3,4……と変わる通常変化に対して、
1,10,100,1000と急激に変化する（この場合桁数）ものを対
数変化と考えてください。

曲げセンサ

 ▼写真2　ボリューム

R1

R2

Vin

Vout

回転角

抵抗値

Aカーブ

Bカーブ

 ▼図4　抵抗分圧回路

 ▼図5　AカーブとBカーブ

14 - Software Design Mar. 2016 - 15

アナログ入力してみる 第
九
回

サには、センサの長さが55mm程度のものと、
112mm程度のものの2種類があります。今回は
55mmのほう注6を使ってみます。データシート
によると、この曲げセンサは平面時に抵抗値が
25kΩ±30％で、180°曲げると抵抗値が平面時
の2倍以上になるそうです。
　先ほどの分圧回路を使えば、この曲げセンサ
の曲がり具合を、mbedのAnalogInで読み取る
ことができます。図6のように曲げセンサを接
続してみましょう。
　曲げセンサは、先ほど記したように25kΩで
すので、抵抗分圧回路のR1に10kΩの抵抗を接
続します。抵抗分圧回路のVinには、mbedの
Vout（3.3V）を接続します。mbed LPC1768のア
ナログ入力端子に加えてよい電圧は最大3.3Vで
す。mbed LPC1768のアナログ入力端子はp15

～p20ですが、p19と p20はmbedアプリケー
ションボードの半固定抵抗にすでにつながって
います。ですので、ここではmbed LPC1768の
p18を使って、分圧された電圧を読み取ってみ
ます。
　これで計算すると、mbed LPC1768のp18に
かかる電圧は、Vinの25k/（10k＋25k）＝0.714

倍になるはずです。mbedのAnalogInは、3.3V

のときに1.0を返しますので、AnalogInが返す
値は、0.71くらいの値でしょう。実際にブレッ
ドボードで回路を組んで（写真4）動かしてみた
ところ、0.74という値が表示されました。曲げ

注6） http://ssci.to/508

センサの抵抗値は、平面時に抵抗値が25kΩ±
30％ということですし、このくらいの誤差はあ
るでしょう。
　曲げセンサを曲げ、抵抗値が増えると、mbed

LPC1768のp18にかかる電圧は、 Vinの50k/

（10k＋50k）＝0.833倍以上になり、1.0に近づ
いていくはずです。筆者の手元では、最終的に
0.90になりました。

まとめ

　AnalogInを使うと、0～3.3Vの間の電圧を測
り、デジタル値にできます。抵抗分圧回路によっ
て、抵抗値を電圧に変換できます。こうして、
可変抵抗や曲げセンサの抵抗値の変化をマイコ
ンで読み取ることができます。s

まとめ

 ▼写真3　曲げセンサ
 ▼写真4　曲げセンサを使ってみた

10kΩ

曲げセンサ

Vout 3.3V

p18

GND

 ▼図6　曲げセンサの接続

http://ssci.to/508

16 - Software Design

PC、タブレット／スマートフォン向けの
セキュリティソフトです。保護対象のデバ
イスは、Webの管理コンソールからその状
況 を 確 認 で き ま す。 動 作 環 境 は、Win
dows 10/8.1/8/7、Mac OS X 10.8
以降、Android 4.0以降、iOS 8以降（1
年1ユーザ、台数無制限版）。

表面にナノシルバー加工を施した抗菌仕様のキーボードです。保
護等級「IP68」※をクリアした防塵防水設計で、キーボードの丸洗
いができます。インターフェースはUSB（Aタイプコネクタ）、
キーは、106キー＋ボリューム3キーで、109A日本語配列準拠
です。対応OSは、Windows10/8.1/8/7/Vista/XP。

※ 「粉塵が中に入らない」「継続的に水没しても内部に浸水することがない」
　 を満たした基準。

提供元 	サンワサプライ　https://www.sanwa.co.jp

洗える防水キーボード
「SKB-BS3W」

提供元 	マカフィー
	 http://www.mcafee.com/jp

1名

5名

1名

McAfee LiveSafe

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2015年3月17日です。プレゼントの
発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

Dockerの導入・運用ノウハウが凝縮され
た1冊。導入前のシステム設計、Docker
の基本的な利用方法、Dockerfileによる自
動化の手法、管理・監視ツールなどについ
て、実際に操作をしながら解説します。

提供元 	インプレス
	 http://www.impress.co.jp

Docker 実践ガイド
古賀 政純 著

2名

『「納品」をなくせばうまくいく』の著者が、
自分が経営する企業でリモートワークを導
入し、社員のワークライフバランスをうま
くとりながら生産性を上げる「リモート
チーム」を作り上げる過程を書いた1冊。

提供元 	日本実業出版社
	 http://www.njg.co.jp

リモートチームでうまくいく
倉貫 義人 著

2名

ネットワークの定番構成パターンを、豊富
な図を使って解説。現代のネットワークを
社内LAN、インターネット接続、サーバ
LAN、拠点間接続の4つに分け、それぞ
れの構成の最適解を提示しています。

提供元 	SBクリエイティブ
	 http://www.sbcr.jp

ネットワーク・デザインパターン
みやた ひろし 著

2名

読者プレゼント
のお知らせ

クラウドの一般化で、インフラ管理を開発
者が行うケースが増えた昨今。限られた時
間とコストで、インフラ（とくにWebサー
ビスにおけるインフラ監視）の設計・構築・
運用のノウハウを解説しています。

提供元 	技術評論社
	 http://gihyo.jp

ITインフラ監視［実践］入門
斎藤 祐一郎 著

2名

GitHub Tシャツ&ステッカー
エンジニアに人気のリポジトリサービス「GitHub」のマスコット

「Octocat（海賊バージョン）」が描かれたTシャツ（Sサイズ）で
す。今回はOctocatのステッカーとセットでプレゼントします。
提供元 	ギットハブ・ジャパン　http://github.co.jp

http://gihyo.jp/magazine/SD/
http://gihyo.jp
http://github.co.jp
http://www.mcafee.com/jp
https://www.sanwa.co.jp
http://www.impress.co.jp
http://www.sbcr.jp
http://www.njg.co.jp

第1特集

SUUMO Retty Qiita

　Webサービスや iPhone ／ Android アプリは次々に新しいものが登場してきます。とても活気
があって挑戦しがいのある市場です。その激しい競争の中でユーザに高く評価され、継続して使
われるためには、改善とリリースを“頻繁に”行うことが必要条件となりつつあります。しかし、
どうやったらそんなに早いリリースができるのでしょうか？
　本特集では、継続したリリースを実現するチーム開発のヒントとして、人気サービス／アプリ
を擁する気鋭の開発チームの方々に、自社で行っている
手法や心得を教えていただきました。どこから手を付け
たら良いのかわからない、というときのアイデアにつな
がることを願っています。

まわすチーム開発を
現場のアイデア

なぜすぐリリースできるのか

第 部1
　第1章　
SUUMO流アジャイル開発［分析編］
現状分析からはじめた開発体制の改善� P.18
 Author 吉田 拓真 　

第 部1
　第3章　
SUUMO流アジャイル開発［自動化編］
クリエイティブな作業時間を自動化で増やそう� P.36
 Author 吉田 拓真 　

第 部2
RettyがアプリAPIの品質向上で考えた
開発言語／ツールの選定とテストを重視する工夫� P.44
 Author 石田 憲幸 　

第 部3
HRTと情報共有こそチーム開発の要
Qiita開発で知る、テスト、自動化、バグ／タスク管理術� P.51
 Author 及川 卓也 　

第 部1
　第2章　
SUUMO流アジャイル開発［データ編］
技術的負債、コンバージョン、パフォーマンスの“見える化”� P.26
 Author 吉田 拓真 　

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

18 - Software Design

はじめに

　手前味噌で恐縮ですが、現在のSUUMOス
マホサイトは、比較的大規模な開発体制と言
える中で、新しい技術の導入、たとえば日本
で初めてのService Workerを用いたWeb-

Pushや、Polymerを利用したローンシミュレー
ション機能など、Webの先端技術を取り込み
ながら開発ができている状態にあります注1。
　今回はこの場をお借りして、先端系の技術
も取り込めるある程度の余裕を持った開発体
制の構築をするために我々が何を考え、何を
実施してきたのか、具体的な細部まで紹介で
きればと思います。
注1） 実はChrome Developer Summit 2015においても日本で

唯一SUUMOのWebサイトが紹介されています。https://
tech.recruit-sumai.co.jp/中、「SUUMOスマホサイトへの
Service Worker導入① add to home screen編」に記事あ
り。

SUUMOの開発が 
遅いらしい……？

　2013年10月、開発に関するアンケートを内
部で実施したのですが、開発が速いと感じる
意見がなく“遅い”といった意見が目立ちました。
このままではよくない、ということで何がど
のようにどれだけ遅いのか、定性意見だけで
なく定量的にも調査してみました。
　結果が図1になります。定量調査の具体内容
ですが、紆余曲折を経てWebのフロントエン
ドに関するUI変更数を競合他社と比較すると
いう形で実施しました注2。具体数は省きますが、
残念ながら競合他社に比べて“速い”とは言え
ない結果となりました。
　つまるところ、「SUUMOがプロダクトの改
善回数であるリリースの頻度が競合に劣って

いる状況になりつつあるのでは」という話にな
りました。このままでは時代の流れに取り残
されてしまう危機感を覚えることになり、改
善に向けた取り組みがはじまりました。

注2） もし開発生産性を厳密に測る場合は「MM÷FP（総開発工数
÷ファンクションポイント）」によって算出するのもいいの
では、との話も挙がりましたがこれは見送りました。そも
そも開発生産性の高低を同業他社との比較が現実的に難し
いということと、FPのモニタリングの基準設定や算出に手
間がかかるためです。

機能追加・削除

コンテンツ／特集追加・削除

クリエイティブ・レイアウト変更

不動産ポータル（PC）のUI変更状況

A社 B社 SUUMO C社

 ▼図1　SUUMOと競合他社のUI変更回数の比較

　本章ではSUUMOのスマホサイトで取り入れているアジャイル開発について説明していきます。ア
ジャイル開発を導入するにあたり、さまざまな課題に直面し、議論を重ねてきました。ここではそんな議
論を通して得られた1つの答えをなるべく具体的にご紹介できればと思います。

 Author 吉田 拓真（よしだ たくま）
（株）リクルート住まいカンパニー
 Mail t_yoshida@r.recruit.co.jp
 Facebook https://www.facebook.com/takuma.yoshida.355

第1章 

第 部1 現状分析からはじめた
開発体制の改善

SUUMO流アジャイル開発［分析編］

https://www.facebook.com/takuma.yoshida.355
https://tech.recruit-sumai.co.jp/

18 - Software Design Mar. 2016 - 19

開発のリードタイムが 
長い理由

　実際に、なぜ開発が遅い（＝リードタイムが
長くなる）のかをもう一段階調査してみました。
図2の左が、実際に現場にヒアリングした課題
をまとめた結果で、中央列がその課題がもた
らす悪い影響を示しています。
　中身を見てみると、開発に関わる人間が多
いことで生まれやすいオーナーシップがまだ
十分に持てていない、とか、失敗しないため
についつい確実性を追求し過ぎてしまう、といっ
た、どこかで聞いたような話が浮き彫りにな
りました。そしてこれらの課題を1段階抽象化
したのが図2中の右になります。「システム（プ
ロダクト）」「制度・ルール」「文化・風土」各々

に課題が存在するのであろう、ということが
わかりました。

SUUMOで取り入れた
新しい開発スキーム

　競合他社に負けないためには、少なくとも
現在と同じ工数でリリース回数を増やすとい
うことが必要です。これを実現するためには
要件定義～開発までの期間（開発リードタイム）
を短縮すればよいことになります。
　ということでまず前述の開発リードタイム
を長期化させている要因に打ち手をマッピン
グする形で開発スキームを設置しました（図3）。
　このスキームのポイントですが、①国内外
のアジャイル開発事例研究を通じて我々に合
致するように細かいところを最適化している

開発リードタイムが長い

影響範囲が広く、複雑 ……調査・テストにかかる時間の肥大化

サービス開発への悪影響

要求品質が案件・事業で一様

コミュニケーションの多階層化

プロダクト・オーナーシップの欠如

確実性の追求

……課題や打ち手の性質に応じて体制を最適化できない
　　※同様に開発スキームも基本的にWF型で統一

……情報伝達や現場の判断に時間がかかる

……状況対応力が不足し、意思決定が遅れる

……企画段階での事前検討期間の長期化
　　短期での成果を見立てやすいものを優先

システム
（プロダクト）

制度・ルール

文化・風土

 ▼図2　開発リードタイムが長い原因と、サービスへの悪影響について

基盤
Platform

体制
System

 標準化
 自動化

 スモールチーム
 オーナーシップ

システム
（プロダクト）

制度・ルール

文化・風土

プロセス
Process

文化・風土
Culture

 反復型
 フィードバックループ

 不確実性への挑戦

 ▼図3　開発リードタイムを縮小する開発スキーム

第 部1
　第1章　

SUUMO流アジャイル開発［分析編］
現状分析からはじめた開発体制の改善

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

20 - Software Design

ということ、また実際に②F/S注3によるブラッ
シュアップを数回繰り返し実用レベルまで昇
華させているところがミソです。とくに②に
関してですが机上だけではなく実際に試す→
ブラッシュアップする、ということが非常に
大事だと考えています。事例研究を進めると、
導入を失敗する企業の多くが、いきなりアジャ
イル開発のプロセスや体制だけを試してみて
うまくいかなった話をよく見かけますが、試
す→社内にあったやり方に変える、というブラッ
シュアップを行い続けることが必要なのでは
と考えています。
　実際に試すとわかるのですが、プロセスだ
けでなく、その根底にある文化や風土の改善
も同時に行わなければ、けっして新しい開発
スキームの導入ができないことがわかります。
　それでは次節よりこの新しい開発スキーム
の具体例を紹介していきます。

文化・風土

　最も重要であり、また変えることも難しい
文化／風土についてですが、これは根底にあ
る考え方を合わせるところから始めました。
　まず図4を見てください。今までは企画→開
発を一気にやりきるという形でしたが、これ
だと検討が甘い場合に効果目標に達しない恐
れがあります。この不確実性を可能な限り小
さくしようとした結果、企画が長期化しやす
注3） Feasibility Study。実現可能性調査。

いという課題がありました（図4左）。
　対して新しい開発スキームでは、そもそも
Webというマーケット自体が不確実なもので
溢れていることを前提とした考え方にシフト
しました。具体的に行ったこととしては案件
の見立てをある程度で打ち切り、案件を小さ
く区切って高頻度にリリースするという形に
変えました（図4右）。
　こうすることでリリースごとにカスタマー
からのフィードバックが得られ、打ち手の方
向性や質を、都度確認しながら進めることが
でき、設定した効果目標を追いやすくなるの
ではと考えました。
　ただ、よく勘違いされるのですが、上記は
あくまで基本となる考えであって、すべての
案件に当てはまるわけではありません。下手
をするとただの“行き当たりばったりな開発”
になってしまいます。事前に効果見立てや予
測が立つような案件に関しては、今までと変

わらずきっちり計画してやりきったほうがよく、

解決策に唯一の正解がないような案件（≒不確

実性が高い案件）に関しては、上記の考え方を

当てはめるべきと考えています。
　ただし、不確実性と向き合うことで問題を
小さく切って挑戦していくという考え方がで
きたとしても、これだけだとまだ課題があり
ます。挑戦が評価されない環境では、実際に
行動に移すことが難しいからです（挑戦して失
敗したら周りから冷たくされる、という状況

不確実性

効果目標ライン 検討

既存開発 新開発スキーム

検討

検討

施策

施策1
施策2

施策3

施策4

 ▼図4　不確実性と向き合う考え方

20 - Software Design Mar. 2016 - 21

を想像してみてください）。つまり考え方が変
わったとしても、同時に環境も変えなければ

実際の行動につながらないということです。
　図5左が実際に文化・風土を構成するヒエラ
ルキーを示しています。独自の考えにはなり
ますが、文化・風土はそれぞれマインドと環
境によって構成されていて、環境は責任・権限・
資源・評価の4つから成ります。
　冒頭の不確実性と向き合う話はマインド部
分であり、これだけ変えても無理があるとい
う話でした。では環境はどのように変えるか
ですが、こちらは重要なポイントが2つありま
す。それは責任と権限の適切な分配にあります。
　まず責任の分配とは、明確なKPI注4を事業
部門と合意のうえ、施策実現に対しての責任
をチームが持つということです。具体的には
シンプルなKPI（例：コンバージョン数を120％
にする）を策定し、チームのオーナーと事業部
門の間できちんとすり合せることを行いました。
　次に権限の分配ですが、KPIの実現に向け
た各個別施策の意思決定権をチームに委譲す
るということで、たとえばKPIを120％にす
る個別の施策の立案・実施はすべて現場に任
せることを指しています。こうすることでチー
ムが自らの意思で動きやすくなるため、投資
対効果（ROI）を見立てにくい案件などもチー
ムの裁量で実施できるようになります。
注4） Key Performance Indicators。重要業績評価指標。

　長々と説明しましたが、体制やプロセスだ
けではなく環境も同時に変えることも重要と
いうことが伝わればと思います。

体制

　新開発スキームでは、5～8人で構成される
ような小さい規模のワンチームで1つのプロダ
クトを見るようにしました（図6）。またメンバー
同士が物理的にも近くなるように、席替えな
ども行っています。
　小さい規模にした意図ですが、コミュニケー
ションを効率化させることと、コラボレーショ
ンの創出の2点を狙ったものです。
　従来では実際の作業をする人が思ったこと
や考えたことが企画者までには伝わりづら
く注5、単に依頼する側と受ける側という形にな
りがちでした。
　たとえばある企画や施策があったときに、
決められた工数や期間で実現できるのか／で
きないのか、ということ以上のコミュニケーショ
ンが生まれづらい状況になっていました。
　新開発スキームでは企画者と作業者の距離
が非常に近しいことと、企画者が課題背景の
共有や仮説設定を個人ではなくチーム単位と

注5） 伝わりづらい原因はおもにコミュニケーションが多階層に
なることが問題であると考えています。企画者、デザイナ、
ディレクター、開発者といったいろいろなステークホルダー
を介すような形で案件が進むのですが、企画から遠くなれ
ばなるほど細かい意図が伝わりづらくまた企画者に聞きづ
らいという課題があります。

＜マインド＞
態度・姿勢

＜環境＞
責任／権限／資源／評価

文化を醸成する環境要件文化・風土

責任

権限

資源

評価

明確なKPIを事業と合意し、実現に責任を持つ

KPIの実現に向けた個別施策の意思決定権

開発工数（体制）の確保と工期の確保

個人だけでなくチームとしての表彰制度、など

キーポイント

 ▼図5　文化・風土の構成要素と、醸成するための要件について

第 部1
　第1章　

SUUMO流アジャイル開発［分析編］
現状分析からはじめた開発体制の改善

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

22 - Software Design

して実施するため、「できる／できない」では
なく「どうやったら実現できるか」へ議論が自
然にシフトするような状態が作りやすくなり
ます（コラボレーションの創出）。
　またそれぞれ役割を明確にし、通常体制で
は存在しなかったプロダクトオーナー、スク
ラムマスタ、テックリーダー、QA（品質担当）
という4つの役割を新規に導入しました（図7）。

　ワンチームというのも大きなポイントで、
これはプロダクトに対するオーナーシップを
従来よりも持ちやすくすることを狙っています。
今までは図8左にあるように、デザインやエン
ジニアを機能組織から個別にアサインをして
いました。
　ただ時期やそのときの状況によってアサイ
ンされるプロダクトが異なるため、「自分がプ
ロダクトをよくしていくのだ」という責任感や
それを生み出す愛着感を持つのがなかなか難
しいとの声が内部で挙がっていました注6。
　ですので、新しいスキームでは図8右にある
ようにチームとして長期間同じプロダクトを
担当することで、従来よりも愛着感や責任感
を持ちやすくするようにしています。ただし
こうすることで逆にプロダクトがそのチーム
注6） 内部組織が半年単位でガラっと変わることも珍しくなく、

逆に同じプロダクトを1年以上担当することのほうがまれ、
みたいな感覚があります。

プロダクトオーナー

テックリーダー

サイクルマスター

QA （品質担当）

デザイナ エンジニア

One team

 ▼図6　 小さい規模のワンチームで1つのプロダクト
を見る

役割 通常体制での役割 新開発スキームでの役割

不在（近い役割はPL)
企画担当としてすべてを決定

KPIの設定
要件やプロダクトに対する意思決定

プロダクトオーナー

不在（近い役割はディレクター）
進捗管理に従事

KPI実現方法の決定、プロセス管理
チームファシリテーション

サイクルマスター
（＝スクラムマスター）

要件に応じて実装 実装
実装方法のボトムアップ、企画参加

クリエーター
（エンジニア・デザイナ）

不在（近い役割はべテランの工ンジニア）
非機能要件に関するアドバイスなど

非機能要件の担保
技術支援（自動化、各種ツール作成）

テックリーダー

テス卜担当
工ンジニアが兼任 or テス卜のみ切出 レビュー、テス卜（自動・手動）QA・品質担当

 ▼図7　役割についての説明

ex）デザイナ ex）エンジニア

機能軸でのナレッジ強化が強み
プロダクトより機能に対する思い入れ

アサイン アサイン

ex）Aチーム ex）Bチーム

プロダクトオーナーを中心にプロダクトに
チームごとコミット
属人化しやすくスケールが弱み

コミット

既存開発 新開発スキーム

Product Product

 ▼図8　よりオーナーシップを持ちやすいチームとする工夫

22 - Software Design Mar. 2016 - 23

ありきになったり、同じようなチームを作り
づらいため、横展開しづらい（スケールしづらい）
といったデメリットもあります。しかしながら、
現状ではデメリットの方が大きいからワンチー
ムはやめよう、といった話は出たことはあり
ません。

プロセス（サイクル）

　開発のサイクルは図9にあるように反復型開
発を基本思想としています。すでに文化・風
土のところでも説明しましたが、不確実性と
向きあうために仮説検証のPDCA注7を短縮化
させ、それによる効果と学びの獲得機会を増
やすことを目的としているためです。
　ここではいくつか独自に工夫しているとこ
ろと、共有したいポイントを絞って説明します。
　そもそもなぜ反復のサイクルの長さを2週間
にしたのかということですが、これは社内で
実際に試した結果、チームが最もやりやすかっ
注7） Plan（計画）、 Do（実行）、 Check（評価）、 Act（改善）。

たとの声が多かったことから上記の期間に設
定しています。ほかに試した期間のアンケー
トを紹介すると、1週間だと精神的に疲れやす
く継続するのがキツい、とか、3週間だと中だ
るみしやすい、などがあります。
　また図9中のTech-Cycleについてですが、
これはゴールデンウィークや年末など10営業
日を満足に確保できないときに実施する特別
なサイクルを指しています。
　この期間は、いつも気になっているが解決
できなかった優先度が低い案件注8を解消する
ことに充てています。
　役に立つかどうかはわかりませんが、実際
に1サイクルの中でどのようなことを行ってい
るのかをまとめてみました（図10）。1週目に
開発＆テスト効率化に向けた開発計画の立案、
2週目の水曜日にリリース、2週目の木／金は
注8） 例：ドキュメント群の整理、1pixelのズレ、まれにしか起

こらないが個人的に気になるバグ、普段のルーチンワーク
を解消するためのツール開発、などがあります。地味です
がやってみるとかなり良いです。精神衛生上、スッキリし
ます。

▲普段できない
細かい案件の消化に充てる

（長期休みや祝日があったとき）

Dev-Cycle1 Dev-Cycle2 Tech-Cycle

計画 モニタリング 振り返り

Dev-Cycle3 Dev-Cycle4 Tech-Cycle

2week 2week 1week 2week 2week 1week

▲学びの獲得▲タスク化

 ▼図9　反復型開発のイメージ。仮説検証・学びの回数を多くすることを目指している

午前

午後

午前

午後

チーム会

全体計画会

テスト骨子計画

リリース判断

リリース作業

振り返り会

管理定例

管理定例

月 火 水 木 金

1週目

2週目

開発期間

リリース日 改善期間テスト期間

 ▼図10　2週間サイクルの内訳（スマホチーム）

第 部1
　第1章　

SUUMO流アジャイル開発［分析編］
現状分析からはじめた開発体制の改善

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

24 - Software Design

ドキュメント化や振り返り、次のサイクルに
向けた計画を行っています。

基盤

　新しい開発スキームを実践するうえで必要
になってくるツール群（JIRA/HipChatなど）や
開発環境のことを基盤としています。プロセ
スや体制を変えるのであれば、ベースとなるツー
ル群もそれに合せて変えたほうがよりチーム
としてのパフォーマンスを発揮できると考え、
基盤を整備する専任チームを定義し、移行を
実施しました。
　基盤に求められる要件として重要になるのが、
既存課題をなるだけ解消できていることです。
こうありたい、こんなツールを使いたい、といっ
た要望を持つのも重要ですが、きちんと既存
課題が解決できていなければただ単にやりた
いことをやってみました、になりかねません。
　ですから基盤チームではまずは 1.既存課題、
2.打ち手の方向性、3.具体的なツール／解決
手法、をそれぞれマッピングし、現状と目指

すべき姿を定義しました（表1）。
　この表があることで、どのツールが何の課
題に対する打ち手なのかが明確になり、また
どこがゴールなのかをイメージしやすくなり
ました。
　また基盤ツールの導入だけでなく、プロダ
クトのアーキテクチャ（ER注9／モジュール凝
集度など）も非常に重要なポイントです。なぜ
ならばいくら開発プロセスが優れていたとし
ても、複雑過ぎるシステムでは本来の力が発
揮できないためです。
　図11はシステムの複雑度合いをイメージし
てみたものです。図中左にあるようデータの
橋渡しが入り乱れると、開発がしにくいばか
りか自動化もしづらくなるのは想像に難くな
いと思います。開発プロセスをうまく回そう
としたときは、やはりシンプルなシステムで
あることが求められるということが伝われば
と思います。

新開発スキームの導入
を行った結果……

　新開発スキームの導入を行ってどうなった
かについてですが、最終的に図12のようにな
りました。既存（ウォーターフォール型）・新
開発スキーム（アジャイル型）のチームが混在
する形になっていて、全体で40～50名ほどの
規模です。
　なぜ混在しているかですが、開発の規模が
非常に大きく注10アジャイルのチームだけでは
開発をまかなえないことが大きな理由です。
したがって案件の種別に応じて、ウォーター
フォール／アジャイルのチームを切り替えて
いて、おもにUI/UXにかかわる案件をアジャ
イルのチームが、そうでない案件を従来のウォー
ターフォールのチームが担当するようにして

注9） Entity-relationship Model。実体関連モデル。
注10） SUUMOは賃貸、新築マンション、土地といった複数の領

域があり、それぞれの領域でやりたいことを合算すると、
どうしても開発規模が大きくなります。領域ごとにまった
くデータ構造が違うので複数サイトを同時に開発している
ようなイメージです。

　進捗管理にはカンバンを用いています。各
担当の業務ボリュームの把握と進捗を見える
化することで、進捗管理にかかる時間の短縮
とコミュニケーションロスを防ぐことを目的
にしていますが、私たちのチームではより効
率的にするために壁に付箋を貼る形ではなく“デ
ジタル”なカンバンをもちいています。
　実際にアナログのカンバンでいくかデジタ
ルでやるか実際にやってみて比較検討したの
ですが、やはりブランチを切ったり納品物の
添付をしたり議論経緯を残したりストーリー
ポイントを記録・集計したり、といった開発
の上で起こるアクティビティについてアナロ
グのカンバンがついていけず、結局Atlassian
の JIRA Agileを採用しました。具体的な使い方
は以前の記事注Aを見てください。

カンバンについて

注A） 2015年5月号の『迷えるマネージャのためのプロ
ジェクト管理ツール再入門』。

24 - Software Design Mar. 2016 - 25

開発
フェーズ 重点課題 打ち手 キーワード

現状○／目指すレベル★
優先度

Lv1 Lv2 Lv3 Lv4 Lv5
要件定義 コミュニケーショ

ンコスト大 ツール整備 JIRA、HipChat ○ ★ 1st
設計

開発

品質低下
コード品質定量化 SonarQube

○ ★ 3rd
テスト自動化 Selenium、E2E

開発効率低
リファクタリング クラス整理

○ ★ 2nd
テスト環境整備 検品環境拡充

開発不透明 開発コミュニケー
ション見える化

PR開発、
Bitbucket ○ ★ 4th

テスト
… … … … …

リリース
～以下省略～

 ▼表1　基盤チームが整理した課題・打ち手・ツール・目指すべき姿をまとめた表

複雑度の高いシステム 縦に疎にしたシステム 縦も横も疎なシステム

画面

ロジック

API

データ

API

データ

画面

ロジック

データ

開発・自動化がしやすい開発・自動化がしづらい

 ▼図11　システムの複雑度と新開発スキームの適用のしやすさのイメージ

不確実性

例：

大

UI/UX磨き込み
新機能

小

保守案件、
大規模案件

アジャイル型

スクラムチーム

ウォーターフォール型

既存保守チーム

アーキ・基盤整備チーム

手法

体制

案
件
種
別

 ▼図12　 新開発スキームの導入と、既存開発スキー
ムとの使い分け

います。また開発基盤の保守や小物ツールの
作成などは、上記の2チームとは別に専任のチー
ムを置いてサポートする形になっています。
　結局のところ、この混成チームにしてから
良かった／悪かったのか、どちらかで言えば
良かったことのほうが圧倒的に多いです。
　導入してから約1年とちょっと経ちますが、
事業とチームの間で定めたKPIに関しては今
のところ目標数値を下回ったことはなく、む
しろ超えることの方が多く、またシステム的
にも経年劣化どころか以前より改修しやすい
状態に改善し続けられており、むしろWebの
最新技術であるService Worker/Polymerな
どにいち早く追従できるような状態です。
　結果論にすぎませんが、Webの最新技術を

追える開発体制を目指して打ち手を考えて実
践していくよりも、開発プロセスとそれを支
える環境を整えて、あとはチームにお任せす
るといったほうが近道かもしれません。ﾟ

第 部1
　第1章　

SUUMO流アジャイル開発［分析編］
現状分析からはじめた開発体制の改善

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

26 - Software Design

新スキームの導入だけ
では不十分？

　新スキームは単純に開発のやり方（プロセス）
のみを示していて、対象となるシステムが複
雑な状態だと本来のパフォーマンスを十分に
発揮できません。そこで新スキームの導入の
傍ら、既存の複雑化しつつあるコードをより
シンプルに作り替える必要がありました。加
えてウォーターフォール／アジャイル型のチー
ムが同時に開発してもコンフリクトが起きに

くいような状態にすることも必要でした。こ
れらのリファクタリング活動を円滑に進める
ために取り組んだのが技術的負債の見える化
です。

技術的な“負債”が開発速度を�
下げている？

　それでは技術的負債というのはいったい何
を指しているのでしょうか。技術的負債とは、
設計のまずさやコーディング規約に反するコー
ドなど、開発を妨げるような課題の総称です。
具体的には先ほど述べた“複雑過ぎて開発のス
ピードを遅くしている”ということだったり、“コ
ンフリクトが思ったよりも多発する”というよ
うな事象を引き起こすものを指しています。
　技術的負債は増えれば増えるほど、開発に
かかるコストが増え→開発速度が下がり→カ
スタマーの期待に応えるまでの時間が延びる、
というやっかいな性質があります（図1）。
　また負債の名前が示すとおり借金と同じよ
うな性質を持つため、返済せずそのままにし
てしまうと雪だるま式に大きくなってしまい
ます。
　こう説明すると非常に恐ろしいものに見え
ますが、ポジティブにとらえるならば継続的
に返済さえできれば開発速度を落とさずに開

開発スピード

技
術
的
負
債

時間

 ▼図1　 技術的負債を放置したまま時間が経てば、プ
ロダクトの改修にかかる時間も長くなり、結果
としてカスタマーへの価値の提供が遅くなる

　前章では、SUUMOでの新しいアジャイル開発スキームの概念や定義を紹介しました。この新開発
スキームを運用していくにあたり、非常に重要になってくるのが各種指標（KPIなど）の見える化です。
KPIが見えていないまま開発を進めてしまうと、行き当たりばったりな開発になりがちです。とはいえ、
見える化といっても具体的にどうすればいいのかお悩みの方も多いと思われます。そこで本章では、
SUUMOのスマートフォンWebサイトで実際に行っているデータの見える化をテーマに、KPIやログと
いった基本的な可視化から技術的負債やWebサイトのパフォーマンスといったより実践的な見える化ま
でを紹介します。

 Author 吉田 拓真（よしだ たくま）
（株）リクルート住まいカンパニー
 Mail t_yoshida@r.recruit.co.jp
 Facebook https://www.facebook.com/takuma.yoshida.355

第2章 

第 部1 技術的負債、コンバージョン、
パフォーマンスの“見える化”

SUUMO流アジャイル開発［データ編］

https://www.facebook.com/takuma.yoshida.355

26 - Software Design Mar. 2016 - 27

発ができるということを意味しています。つ
まり高速なPDCAを回す開発活動を中長期的
に維持するためには、技術的負債を見える化（債
務整理）し、計画的な返済計画を立てて実施す
ればよいということになります。ただこの見
える化についてはコツがあり、定性的かつ定
量的に行う必要があります。それではこれら
について詳しく説明していきます。

負債の債務整理（定性）

　まず定性的な見える化ですが、これは非常
に単純な話で、開発を行ううえで気になった
点を記録したものになります。この表を作る
目的は、返済すべき負債をできる限り漏れの
ないよう管理することと、着手すべき順番を
決めるときに利用するためとなります。
　具体例として図2に、実際に作成した課題表
の一部抜粋を示します。この表はConfluence

で作成していて、誰もが記述してもよいので
すが、テックリーダー（TL）と呼ばれる役割が
主担当としてこの表を管理・維持・解決の推
進をしていきます。
　この表は作るとわかるのですが、単純に作
ると項目があり過ぎて何から着手していけば
よいのかわかりづらくなってしまいます。そ
こで工夫としてそれぞれの課題について優先
順位を記載するようにしています。

　さらに優先順位の決め方にも工夫をしていて、
表1のような判断マトリクスを用いて、ある程
度機械的に判断するようにしています注1。

負債の債務整理（定量）

　次に定量的な負債の見える化ですが、これ
は基本的にツールなどで機械的に検知・計算
できるものを指しています。具体的にはソー
スコードを静的解析して得られるものが大半で、
コーディングルールの違反数、複雑度、テス
トカバレッジ、重複度（コピー&ペースト割合）
などを指しています。とくにコーディングルー
ルの違反数は小さければ小さいほど読みやす
いということになるため、常に最小に留める
ことが開発スピードの担保につながります。

注1） 基本的な考えとしては工数が小さくかつ想定効果が大きい
案件を最優先とするような考え方をベースとしていますが、
工数が大きくて効果が小さい案件も実施するようなことは
あります。これは時と場合に応じてテックリーダーが判断
します。

 ▼図2　定性的な技術的負債の見える化（通称TL課題管理表）

A

B

C

A

A

B

A

B

C

B

C

C

工数優先
順位

効
果

Small Medium Large

 ▼表1　 技術的負債の優先順位を決めるための判断
マトリクス

第 部1
　第2章　

SUUMO流アジャイル開発［データ編］
技術的負債、コンバージョン、パフォーマンスの“見える化”

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

28 - Software Design

　この静的解析にはSonarQubeと呼ばれるツー
ルを用いていて、実際の解析結果を図3に示し
ます。具体的な活用方法ですが、このようなダッ
シュボード画面をリリース前後に確認したり、
Jenkinsとリポジトリの機能を活用（図4）して
図5にあるようにプルリクエスト単位でどれだ
け増えたのか減ったのかを確認していたりし
ます。

返済を継続的に推進するためには

　それでは実際に見える化した負債を継続的
に返済するために、どう工夫しているのかにつ

いて説明します。端的に言うと、アジャイルの
チームの中ではプロダクトを直接的に改善する
UI/UX改善系（通称プロダクト改善）だけでな
く、プロダクトを技術的な観点から改善する系
（通称開発改善）も1サイクルの中で必ず一定量
こなすというルールを設けました（図6）。
　またチームの中でも開発者がそれぞれの専
任のテーマを持つようにしていて、プロダクト
改善をメインに担当するエンジニアと、開発改
善を担当するエンジニアに分けています（図7）。
　図6中のプチ改善という項目ですが、これは
けっこう大きなポイントです。上記のように
負債を一定量こなすという形にするだけだと、
優先度が低い案件（例：句読点の打ち方が変、
1pixelのずれを直す、など）はかなり長い期間

 ▼図3　 SonarQubeで得られる指標の抜粋。ここで
は負債の大きさと具体的な違反数、および
内訳が表示されている（数値はダミーです）

開発者

1.push

4.閲覧

Bitbucket Jenkins

Sonar
Qube

2.analysis

3.s
tor
e

 ▼図4　 開発者がリポジトリを更新するごとにJenkins
でSonarQubeを動かす

 ▼図5　 プルリクエスト単位でSonarQubeの解析結
果を通知するしくみの例

1サイクル中の工数内訳
※割合はイメージ

プチ改善

UI/UX改善
（プロダクト改善）

技術的負債
返済用

（開発改善）

 ▼図6　 1サイクル中の案件割合のイメージ。負債返
済用の工数は3～4割ほどある

アジャイルチーム

開発改善担当プロダク卜改善担当

プチ改善はそれぞれ1人ずつ持つ

 ▼図7　 プロダクト改善、開発改善というエピック単
位でエンジニアの担当が決まっている

28 - Software Design Mar. 2016 - 29

後回しになってしまいます。ですから、優先
度が低くて改修コストが小さい案件は“プチ改
善”と名付け、1サイクルの中で開発者1人が1

つの案件を必ず実施するようにしています。
　我々は現在このようなアプローチで、技術
的負債を特定→継続的に返済することに関し
て一定の成果を出すことができています。で
すが本来は返済することに躍起になることで
はなく負債が蓄積しづらいような設計・しく
み作りを実践することが重要であるため、今
後はしくみを作るというところに力を入れて
いく予定です。

KPIの見える化
～コンバージョン～

　SUUMOのスマホサイトではKPIとして、
資料請求数（賃貸領域の場合）の拡大とパフォー
マンスの改善という2つを主なKPIとしてい
ます。ここではまず資料請求数（コンバージョン）
の見える化について説明します。

資料請求数、足りてる？足りてない？

　まず最も単純な見える化として、目標数と
現状の進捗を可視化するという見える化があ
ります。たとえばKPIである資料請求数を前
期比+○○％とします、と言われても今日現在
資料請求数が足りているのか足りていないの
か聞かれてもすぐにわかりませんよね。これ
が瞬時にわかるようにするためには図8のよう
な見える化が必要です。
　この見える化にはTableauというBIツール
を用いており、この画面は朝会で1回／週ぐら
いの頻度で予測に対する実績がどうなってい
るのかを確認するようにしています。この見
える化を実施したことで以前よりも早くに異
常を察知できるようになっただけでなく、
KPIの雲行きが怪しい場合はすぐさま先手を
打てる状態になりました。

UI/UXの改善を見える化する

　読者のみなさんも一度はご経験されたこと
があるかと思いますが、ページごとのCTRや

 ▼図8　資料請求数の予測・実績を確認する（Tableau）

年月日［日］

計測日

CV予測値
（日時の累計値）

CV［数］

CV実績値（累積）［数］
（アプリ／サイトの積み上げ）

第 部1
　第2章　

SUUMO流アジャイル開発［データ編］
技術的負債、コンバージョン、パフォーマンスの“見える化”

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

30 - Software Design

CVR注2の変動をいちいちモニタリングツール
を開いたりExcelでまとめるのがつらいと思っ
たことはありませんか。高速なPDCAの開発
ではこういったサブ指標は頻繁に参照するため、
このモニタリングにかかるコストを最小にす
ることは非常に重要です。
　ということで実際に社内のデータ専門チー
ムと協業し、今までのモニタリングを見直し、
画面に関するモニタリングの大部分を自動化
＆見える化しました。実際の画面が図9になり
ます。数値を単純にまとめるだけでなく、よ
く使うグラフを10種類以上用意していて、こ
のレポート上で数年前から～現在までの主要
指標をインタラクティブに閲覧できます。

注2） CTR（Click Through Rate）。広告がクリックされた確率。
CVR（Conversion Rate）。アクセス数に対しての成果率。

 ▼図9　 UI/UXの改善を確認するためのモニタリングシート。よく使う10種類以上のグラフが自動的に用意される
（Tableau）

　また詳細な数値は図10のようにまとめてい
ます（一部具体的な数字はぼかしてあります）。
こちらは主要ページのCTR／CVR／離脱率な
ども各領域ごと・ページごとに日次・週次・
月次などで確認ができます。このままExcelに
も変換できるため、指標を見るだけであれば
もはやExcelは必要ない、というぐらいの状態
に仕上がっています。
　これらのTableauを用いた可視化について
の具体的な実現方法は誌面の都合上割愛しま
すが、図11に示すようなフローで自動的に生
成しています。

KPIの見える化
～パフォーマンス～

　SUUMOでは快適な家探しを実現するために、
サイトのパフォーマンスをできる限り高速化

30 - Software Design Mar. 2016 - 31

など多くの環境要因によって変動しやしすい
ため厳密に定義することが難しいのですが、
定量化しないことには何も始まりません。

 ▼図10　 主要ページのCTR／CVR／離脱率などを、各領域ごとに日次・週次・月次などで確認ができる。全自動
でまとめられるため、Excelでまとめる必要がない

閲覧者

1.各種バッチ処理

Tableau
パッケージ
ファイル

閲覧履歴

各種CV指標DB

Tableau
Reader

2.Tableau生成バッチ

 ▼図11　Tableauの生成フロー

しようと試みていて、高速化というのがKPI

の1つでもあります。
　ではここでいうパフォーマンスの定義ですが、
モバイルサイトとして備えるべき性質を持っ
ているかどうかをベースとして、次の2つから
構成されるものとして定義しました。

①�ターンアラウンドタイムができる限
り短いこと

　ターンアラウンドタイム（Turn Around Time；
TAT）とは、アプリケーションの応答速度を表
す指標の1つで、Webアプリケーションにお
いてはユーザがアクセスしたときにサイトが
閲覧できるようになるまでにかかる時間を指
します。デバイスの性能やネットワーク環境

DNS解決 TCP接続 HTTP送受信 サーバ処理 クライアント処理

TAT（Turn Around Time）

 ▼図12　 Webページが表示されるまで（TAT）にかかる処理の概念図。とくにサーバ処理／クライアント処理の部分
は自助努力による改善がしやすい部分

第 部1
　第2章　

SUUMO流アジャイル開発［データ編］
技術的負債、コンバージョン、パフォーマンスの“見える化”

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

32 - Software Design

　図12はWebページが表示されるまでにかか
る各種処理を簡略化したものです。これらの
処理のうち、それぞれを小さくすることでよ
り速くユーザにコンテンツを提供できること
になります。

②�モバイルサイトとしてのお約束を
守っていること

　お約束とは一言で形容することが難しいの
ですが、下記のような一見するとアタリマエ
に近い暗黙のルールを指しています。また下
記の一部は、暗黙的ではなくGoogleのSEOガ
イドラインに定義されているような項目もあ
ります。

・HTML/JavaScript/CSSといったマークアッ
プ言語やスクリプト言語に文法的な誤りが
ないこと

・静的コンテンツ（画像／JavaScript/CSS）の
サイズが可能な限り圧縮されていること

・明らかにユーザがタップできない／表示で
きない位置に要素が存在する、といったユー
ザビリティを阻害するマークアップがされ
ていないこと

　いくらTATが速くても上記の項目が守れて
いないコンテンツは、ユーザにとって有益に
なるとは限らないため、これらのルールに則っ
たコンテンツを提供できているかどうかを継

続的に確認することは重要です。

パフォーマンスを定量化してみる

　それではTATと規約遵守度の2つをどのよ
うに定量化したのかですが、結論から言うと
Googleが用意しているPageSpeed Insights注3

という計測ツールと、WebPageTest注4と呼ば
れるOSSを複合して定量化しました。定量化
を行うシステムの全体像を図13に示します。
　ここでは詳しく説明しませんが、PageSpeed

InsightsはWebページの速度とWebのお約束
に関してのスコアを0～100点までの数値で定
量化してくれるという非常に優秀なツールで
す注5。
　実際にどのように使っているかですが、公
開されているHTTPのAPIとJenkins/Rubyを
組み合わせて専用のモニタリングシートを日
次で自動作成するようにしています。またリリー
ス前後にも計測していて、もし大幅にスコア
が下がった場合はすぐさま原因の分析と対策

注3） https://developers.google.com/speed/pagespeed/
insights/

注4） http://www.webpagetest.org/

注5） ほかにもMobile-Friendlyテストというツールも公開して
いて、これと併用することでモバイルとしてのお約束を守っ
ているかどうかのチェックも行うことができます。https://
www.google.com/webmasters/tools/mobile-friendly/

開発者

事業部門／TL

1.リリース

2.ジョブ実行

本番環境

smp.suumo.jp

Jenkins

WebPageTest

PageSpeed
Insights

4.計測

３.API呼び出し

5.レポート作成／送信

 ▼図13　 パフォーマンスを定量化し継続的にモニタリングできるようにするシステムの全体像。手動で運用を続け
ることが難しいため一部を自動化している

https://developers.google.com/speed/pagespeed/insights/
https://www.google.com/webmasters/tools/mobile-friendly/
http://www.webpagetest.org/

32 - Software Design Mar. 2016 - 33

を実施するようにしています。
　ただこのPageSpeed Insightは万能ではなく、
このツールだけではわからない指標もあります。

それらをカバーする形でWebPageTestと呼ば
れるパフォーマンステスターを併用しています。
図14が実際にSUUMOのスマホサイトの

 ▼図14　 WebPageTestの結果サンプル： サーバ処理時間やDocument CompleteといったTimingAPIから得ら
れる各種タイミングまで詳細にわかる

Googleは“モバイルページは1秒以下で描画すべき”と
定義している

　サーバサイドの処理時間とクライアントサイド
での処理時間（描画など）も合わせて、何秒以内で
描画したほうがいいのかみなさん考えたことはあ
りますでしょうか。
　実はGoogleの公式ドキュメントの中では“スク
ロールせずに見える（Above The Fold）コンテンツ
を1秒未満で配信しレンダリングする”と書いてあ
ります注A。
　これがどのぐらい速いのかぱっと感じ取ること
は難しいと思いますが、スマホのWebページで
チェックボックスを押して反応があるまでの極小
時間（約300ms）内でサーバとクライアントサイド
の処理を全部やれ、と言い換えると少しわかりや
すくなるでしょうか。
　そもそもすべてを1秒以内に収めようとすると、
回線（3G）とDNSの正引き+HTTPのリクエスト／レ

スポンスの通信だけの時間で600ms前後はかかる
と言われているので、残りの300～400ms内でサー
バ内処理と JavaScriptや描画処理を実行する必要が
あります。そしてスマホのブラウザでは一般的に
ダブルタップ判定のために、最初のタップから次
のタップまで300ms待つような実装があるのです
が、300～400msというのはそのぐらいの僅かな時
間なのです。たしかに、もしその極小時間内にす
べてを終わらせられるのであればユーザはストレ
スのないWebブラウジングが実現できそうです。
　言うは易く行うは難しですが、SUUMOスマホサ
イトでも1秒以内に描画できるよう、日々改善を続
けています。

注A） https://developers.google.com/speed/docs/insights/
mobile?hl=ja

第 部1
　第2章　

SUUMO流アジャイル開発［データ編］
技術的負債、コンバージョン、パフォーマンスの“見える化”

https://developers.google.com/speed/docs/insights/mobile?hl=ja

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

34 - Software Design

TOPページを解析した結果です。たとえば総
読み込み時間（Document Complete）やサーバ
サイドの処理時間であるFirst Byteといった
具体的な時間が確認できます。単体でも十分
使えるのですが、画面同士の比較や日々に渡っ
ての記録などの機能がないため、こちらも専
用のツールを用意して計測を行っています

（図13）。

 ▼図15　 Webアプリケーションから呼び出すAPIのパフォーマンスを自動的に計測している（AppDynamics）

サーバサイドのボトルネックを�
可視化する

　スマホサイトではさらにサーバサイドの処
理時間の改善に力を入れていて、Application

Peformance Mangement（APM）と呼ばれる類
の一種のプロファイリングツール（AppDyna

mics）を活用しています。図15にあるように
WebアプリケーションからのHTTPの呼び出
しについて呼び出し回数／レスポンス平均を

 ▼図16　 1,500msかかった処理のコールスタックと時間。外部APIの呼び出しが1,400msかかっていてアプリケー
ション自体の問題ではないことがわかる（AppDynamics）

34 - Software Design Mar. 2016 - 35

自動的に記録したり、さらにコールスタック
と実際に処理にかかった時間といったデバッ
ギングツールでしか確認できないようなこと
をほぼ全自動的に計測してくれます（図16）。
　APMのツールの大半が安くはない値段では
ありますが、もし手動で調査するとなると、
かなり大変なことを自動化できるため、我々
にとっては費用以上に見合うメリットがあり
ました。

組織目標と今やっている
ことを見える化する

　突然ですが、プログラムをリファクタリン
グをすることで、どのように売り上げにつな

がっていくか論理的に説明することはできま
すか？　……おそらく、ぱっと答えられる方
は少ないと思われますが、実はこのつながり
を知ることは大切です。
　たとえばWebサイトとしてカスタマーに本
当に求められているのは使い勝手の向上だっ
たのに、とりあえず設計が汚いから「リファク
タリングをして保守性を改善した」結果、「売
上が下がってしまった」みたいな本末転倒なこ
とがあり得るということです。

G1：SUUMOを使って
もらう人を増やす

Q1

G2：スマホサイトのCV
を増やす

G3：流入数を増やす G4：CVRをよくする

Q2

M：CVR
M：流入

M：CVシェア

・・・ ・・・ ・・・

・・・

GoalとGoalの間に
論理の飛躍がないか
Question（仮定）を立てながら
サブツリーを補完していく

 ▼図17　 GQMの考え方をベースに独自に目標を可視化してみた結果（一部）。G1の大目標は住まいカンパニーの
経営理念である「住まいを中心とした暮らしの進化を追求し、幸せな個人や家族をもっと増やす」から来て
いる

　こうならないためにも、組織目標（Goal）と
今やっていることが本当につながっているの
かという整合性を保つために目標の整理が必
要になってきます。
　この整理を行う考え方の1つとしてGQM注6

/GQM+Strategy注7というフレームワークがあ
るのですが、これを参考にチームのメンバ内
で目標の整理を実施しました。図17が実際に
整理したときのGQMツリーを簡略化したもの
で、最上位に住まいカンパニーの経営理念を
置き、そこからどんどん仮定や事実をもとに
掘り下げていくような形になっています。
　このような目標の見える化をすることでよ
かったと思えることとして、チームの目標や
役割を明確にできるため、取り組み前よりも
目標達成までのストーリーを描きやすくなり
ました。本節の冒頭で述べた「リファクタリン
グをするとどう売り上げにつながるのか」とい
う問いにドキッとした開発リーダーの方は、
ぜひこのような目標整理をお勧めします。ﾟ

注6） Goal, Question, Metric。
注7） GQM+Strategiesは IESEが保有する国際登録商標です。

第 部1
　第2章　

SUUMO流アジャイル開発［データ編］
技術的負債、コンバージョン、パフォーマンスの“見える化”

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

36 - Software Design

自動化して
実現したいこと

　読者のみなさんは、自動化をして何を実現
したいと考えていますでしょうか。我々が自
動化を行う目的ですが、これは開発者の単位
時間当たりの生産性を上げるために行ってい
ます。自動化して生産性を上げるイメージは
図1になります。まず自動化することで、モニ
タリングやリリースにかかっている時間を削
減できます。すると開発者は削減した時間を
開発に充てることで、結果的に同じ時間でよ

り多くの成果を生み出しやすい状況になります。
「生産性＝成果物÷時間」ですから、自動化を
するということは生産性を上げることにつな

がるというのが基本としている考えです。
　したがって自動化のポイントですが、“リリー
ス”といった局所的な作業を集中して自動化す
るのではなく、モニタリングやテストといっ
た作業についてもまんべんなく実施すること
が肝要です。以降はモニタリング、リリース、
テストというそれぞれのトピックに分けて説
明していきます。

モニタリング編
（ChatOps/Kibana）

ChatOps＋リマインダー

　まず、自動化できそうな定常業務とはどん
なものがあるでしょうか。たとえばサーバリソー
スのモニタリングや、KPIのモニタリングな
どがありますが、そもそもそういった定常業
務を管理すること自体がけっこうたいへんで
はないでしょうか。せっかくなら、定常業務
自体を管理してくれるようなしくみを実現し
たほうがよいだろうと考え、チャット上で使
えるリマインダーを開発しました。
　図2が実際にHubot（on Hipchat）にリマイン
ダー機能を実装し、定常業務を通知している
様子です。これは、朝にサーバリソースのモ
ニタリングを促している様子で、メンション
付きで通知しているのがわかります（毎日担当

モニタリング

リリース

テスト

開発

自動化により生産性を高めるイメージ

従来 自動化したあと

 ▼図1　 自動化を推進して開発というクリエイティブ
な作業を増やすイメージ

　“自動化”とひとえに言っても、リリースやテストの自動化などいろいろな自動化があります。本章では
SUUMOのスマホサイトで取り組んでいる自動化の具体事例を紹介していきます。読者のみなさんに広
く役立ちそうな、ちょっとした自動化からより実務的な自動化まで、広く紹介したいと思います。

 Author 吉田 拓真（よしだ たくま）
（株）リクルート住まいカンパニー
 Mail t_yoshida@r.recruit.co.jp
 Facebook https://www.facebook.com/takuma.yoshida.355

第3章 

第 部1 クリエイティブな作業時間を
自動化で増やそう

SUUMO流アジャイル開発［自動化編］

https://www.facebook.com/takuma.yoshida.355

36 - Software Design Mar. 2016 - 37

は変わります）。
　このリマインダーはリスト1のような仕様で
Hubot＋ cronモジュールを用いて独自に実装
しています。ここには記述していませんが、
cronの書式でリマインドを登録することもで
きます。
　リマインダーはモニタリングや会議通知な
どといった定常業務の通知だけを実施してい
るわけではありません。ちょっとしたライフハッ
クとして図3にあるように定時に早く帰るよう
に促すような通知を行わせていたりします。
　実際に私個人の話ですがこの通知を見て帰
らなくてはと気づかされる場面があるので、
よりよいワークライフバランスの実現に向け
てChatOpsを活用してもいいかもしれません。
ChatOpsをもっと知りたい方は弊社テックブ
ログをご覧ください。

サーバリソースのモニタリング

　能書きが長くなりましたが実際のモニタリ
ング作業の自動化について説明していきます。
上記のサーバリソースのモニタリング作業で
すが、作業者がもう一段簡単になるように工
夫しています。ボットに@bot graph 3dayと
いうようなコマンドを打つことで、サーバリソー
スを確認するための専用のHTML画面（パーマ
リンク付き）を作成してくれます（図4）。
　この画面ではDBサーバやWebサーバ、ロー
ドバランサに付随するすべてのリソース状況
を確認でき、また最大で過去1年（@bot graph

1year）まで遡
さかのぼ

ることもできます。このしくみ
は単純で、ボットがZabbixのHTTP APIを
用いて各グラフデータ（画像）をダウンロードし、
それを用いてHTMLを作成するという流れで
実現しています。

　それと、実はこのモニタリングは以前は一
部のチームメンバーでしか行われていなかっ
た作業だったのですが、ChatOpsに組み込ん
だことで、今ではチームメンバー全員でローテー
ションして実施できるようになりました。

ログモニタリングツール

　ここでいうログモニタリングというのは、
おもにサーバサイドのアクセスログに関する
モニタリングを指しています。単純にログの
モニタリングといってもいろいろな悩みがあ
りました。大量のデータ（1日で100GB以上）
で転送するだけでも手間がかかったり、物件
が頻繁に入れ替わったりするため、404エラー
が恒常的に発生し単純な集計だけでは不十分、
といったような悩みです。
　そこでログのモニタリングツールが必要に
なってくるのですが、結果としてKibana 4＋

 ▼図3　 ChatOps：残業をしないように気遣ってくれ
るスーモbot（スーモがしゃべっているわけで
はありません。あくまでボットです）

 ▼図2　 ChatOps：スーモbotが定常業務をお知らせしてくれる

 ▼リスト1　リマインダーの仕様～ChatOps～

リマインドをセットする(日付)
/remind set <曜日> <時刻> <メッセージ>
 <曜日>
 - 毎日 : daily
 - 平日のみ(月-金) : weekday
 - 曜日指定 : ｭ
mon¦tue¦wed¦thu¦fri¦sat¦sun
 <時刻>
 24時間表記(00:00 - 23:59)
 <メッセージ>
 出力するメッセージ

第 部1
　第3章　

SUUMO流アジャイル開発［自動化編］
クリエイティブな作業時間を自動化で増やそう

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

38 - Software Design

Elasticsearch＋fluentd＋AWS Kinesisという
ソフトウェアスタックで構築しました注1。実際
に図5にKibanaでモニタリングしている様子
を示します。秒単位レベルでの分解能を持ち、
すべてのサーバのすべてのログにある、すべ
注1） 余談ですが、このツールはすべて新人1人で作ってもらい

ました。お願いするときに「即応性があって、ちょっとし
た複雑な集計もできて、メンテナンスもしやすく、かつラ
ンニングコストを最小に抑えつつ作って！」という無茶振
りでしたが、見事にこなしてくれました。

ての項目について集計できます。
　またElasticsearchではdynamic scriptingと
いうしくみが用意されており、Groovyなどの
言語を用いて検索結果をリアルタイムに加工・
集計できます（図6）。
　実際に詳細ページを領域ごとに集計するス
クリプトをリスト2に示します。このスクリプ
トで処理された結果を、404や500というステー

 ▼図5　 suumon：Kibana＋fluentd＋ElasticSearchを用いてサーバのリアルタイムログモニタリングを実施して
いる様子。ここではエラー系の時間別統計とサーバでの処理時間推移を示している

 ▼図4　 ChatOps：サーバリソースの確認用ダッシュボードを作成＆表示してくれる（上からELB/RDS/EC2を示して
いる）

38 - Software Design Mar. 2016 - 39

タスコードの条件フィルタを組み合わせるこ
とで領域ごとのエラー集計を実現できるとい
う寸法です。

リリース編
（ChatOps＋AWS）

サービスのリリースについて

　まずリリース作業をどのぐらい自動化して
いるかを説明するために、実際のリリース手
順をもとにChatOpsのコマンドと対比しつつ
説明していきます。スマホサイトでのリリー
スは次のような流れで行っています。

①本番の代替機（コールドスタンバイ）を起動
②代替機にリリース
③ステージング環境で確認＆取り外し
④本番機と入れ替え
⑤後始末

　これを実際のChatOpsでのコマンドと合わ

せると図7のようになります。なお実際のリリー
スの雰囲気は図8に示します。
　見ていただけるとわかるとおり、基本方針
としてはフルマネージド（例：変更をコミット
したら自動的に本番反映する）ではなく、既存
の手動での手順をできる限り自動化するとい
う思想で自動化をしています。完全な自動化
ではないとはいえ、AWSのEC2操作を含めて
数行のコマンドでリリースできるため、リリー
ス時間は従来と比べてかなり効率化されまし

 ▼リスト2　 詳細ページを領域ごとに集計するスクリプト（Groovy＋Kibana）

import java.net.*

def m = (_value =̃ /GET \/(\w+)\/\w+\/sc_\d+\/.+/)
if (m.size() > 0) {
 def ryoiki = m[0][1]
 if (ryoiki.find(/mansion¦chintai¦chukomansion¦ikkodate¦chukoikkodate¦tochi/)) {
 return ryoiki
 }
}

 ▼図6　 ダイナミックスクリプトを用いた集計の一例。
賃貸や新築一戸建などといった領域単位で集
計することも可能

//1.本番の代替機（コールドスタンバイ）を起動
@bot ec2 start server1 server2 ... serverXX

//2.代替機にリリース
//キャッシュのクリアや静的リソースのminifyなどリリース時の細かい操作が実施される
@bot release server1 server2 ... serverXX

//3.ステージング環境確認＆取り外し
//コールドスタンバイを本番相当のELBに組み込み最終チェックを行う
@bot elb replace staging server1 server2 ... serverXX
@bot elb remove staging

//4.本番機と入れ替え
//一種のBlue-Greenデプロイメント。ELB内のEC2を総入れ替えする
@bot elb replace production server1 server2 ... serverXX

 ▼図7　リリース作業のコマンド一例

第 部1
　第3章　

SUUMO流アジャイル開発［自動化編］
クリエイティブな作業時間を自動化で増やそう

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

40 - Software Design

た（とくにモジュールをリリースするだけなら
ば1分以内です）。またそれぞれの操作がアト
ミックであるため、リリース手順が多少組み
替わったとしても（例：前日にステージングま
でリリースして当日は入れ替え作業だけ行い
たい）柔軟に対応しやすいというメリットもあ
ります。
　ちなみに今の自動化のしくみはいきなりす
べてを実現できたわけではなく、少しずつ継
続的に改善を続けた結果です。たとえば最初
は@bot releaseしかできず、EC2の起動や
ELBへの編入などはすべて手動でした。この
ように少しずつ自動化の範囲を広げていくこ
とで、いつの間にか必要十分な自動化になっ
ていた、というアプローチで自動化していく
方法もありますので、ご自身が自動化を推進
するときの選択肢の1つとして参考になればと
思います。

検品・開発環境へのリリース

　本番のリリースだけでなく、開発環境や検
品環境といったテスト環境にもChatOpsでリ
リースを行っています。こちらはgitコマンド
ライクなインターフェースを用意していて、

 ▼図8　ChatOpsを用いたEC2の起動～サービスインまでの様子（@bot release）

@bot checkout feature/hogeというようなコ
マンドを打つだけで適用することができます。
　従来はQAやプロダクトオーナーが必要に
なったタイミングで開発者にリリースを依頼
していたのですが、いまでは誰でもほぼコス
ト0でリリースすることができるようになって
います。
　ちなみにスマホサイトでは開発／検品環境
が合わせて10環境以上（開発／検品の2種類×
必要になる数）あります注2。どの環境に何が適
用されているのか把握するのが困難なため、
図9にあるようなChrome Extention（通称向き
先さま～る）を作成し、すぐに把握できるよう
なしくみを実現していたりします。

品質保証編（自動テスト）

なぜ画面テスト（E2E）にしたのか

　スマホサイトの自動テストの目的は、QAの
テスト工数の削減・効率化だけでなく、中長
注2） なぜ10環境以上もあるかと言えば、スマホサイトでは同

時並行で開発する案件が多いからです。開発規模が大きい
ため、どうしても並列開発を行う必要があります。中には
数ヵ月に渡るような案件もあるため、複数の検品環境が必
要になってきます。

40 - Software Design Mar. 2016 - 41

ドの記述にPageObjectデザインパターン注3を
適用している点です。
　テストコードを見ていただくとわかるとおり、
CSSのセレクタなどページに依存する要素が
すべてPageObjectに隠蔽されており、テスト
コードはテストの内容のみが記述されています。
こうすることで、ページの体裁が変わったと
してもPageObjectを修正するだけでテストコー
ドに手を入れる必要がなくなるため、保守し
やすいというメリットがあります。
　またテストコード自体も非常にシンプルに
見えるかと思いますが、こちらはGeb注4を用
いて jQueryライクな記法と独自DSLを利用し
ているからこそ実現できています。自動テス

注3） ここでは詳しく解説しませんが、Seleniumのドキュメン
トがわかりやすいのでこちらを見てください。https://
code.google.com/p/selenium/wiki/PageObjects

注4） http://www.gebish.org/

取り組みやすい 低い

難しい 高い

S
U
U
M
O
ス
マ
ホ
サ
イト
で
の
取
り
組
み
や
す
さ

自
動
化
の
投
資
対
効
果

手動テスト

GUIテスト

受け入れテスト
（APIレイヤ）

結合テスト
単体テスト

 ▼図10　 自動テストの種類・費用対効果のヒエラルキー

 ▼図9　 すべての開発／検品環境のモジュール適用状況を一覧化してくれるChrome Extention。図中のバーは本
番（master）を基準として、左側がbehind、右側がaheadのコミット数を示している

期的なサイト品質の向上も狙っています。そ
して自動テストは単体テストではなく、画面
のテスト（End to End；E2E）をメインとして
実施しています。これには理由があり、本来
ならば費用対効果が高いと言われる単体テス
トから実施したかったのですが、既存のコー
ド自体がテスタビリティ（testability）が低く、
単体テストを書くために膨大な改修コストが
かかってしまうことが判明したため図10にあ
るようにまずは画面のテスト（GUIテスト）か
ら着手することにしました。

資料請求の全自動テスト

　まずE2Eテストをするにあたり、どのテス
トを自動化するのか決める必要があります。
そこでサービスとしてのコアバリューを担保
するためのテストから着手すべきと考え、各
画面の資料請求ボタンがきちんと動作するか
どうかの確認を自動化することとしました。
　具体的なE2Eの実装方法ですが、Jenkins＋
Gradle＋Geb＋Spock＋PhantomJSといったソ
フトウェア群を用いてGroovyで記述していま
す（リスト3）。実際に用いているテストコード
を読みやすくしたものをリスト4に示します。
　これらのテストコードですが保守性を確保
するためにいくつか工夫が施されています。
まず一番大きなポイントとして、テストコー

第 部1
　第3章　

SUUMO流アジャイル開発［自動化編］
クリエイティブな作業時間を自動化で増やそう

https://code.google.com/p/selenium/wiki/PageObjects
http://www.gebish.org/

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

42 - Software Design

トというとけっこう難しそうなイメージがあ
る方も多いと思いますが、JavaScriptを書く
ような感覚でテストコードが書けます。
　なお実際にJenkins上で自動テストを実行し
た結果が図11です。ここでは失敗したテストと、
具体的になぜ落ちたのかを確認できます。
　一般的にE2Eのレポーティングというと貧
弱になりがちなのですが、Geb＋spockを用い

ることで特別なことをせずとも図12のように
期待値（expect）と実際の値（actual）が表示され
ます。

URLの自動チェック

　またE2Eだけでなく、全画面が少なくとも
ステータスコードが200で返却されることを
確認するようなテストツールも運用しています。

 ▼リスト3　自動テストのテストコードサンプル（PageObject）

// ★ポイント1. PageObjectにページ依存の要素をまとめることで
// 画面体裁が変わってもPageObjectを修正するだけでよい
class 一覧ページ extends Page {
 static url = "/chintai/"
 static content = {
 // ★ポイント2. jQueryライクな記法ができ、可読性が高い
 物件カセット大枠 { $('#bukkenListAll') }
 一覧ページ数 { 物件カセット大枠.find('ul.toulist') }
 固定バー { $('#js-popupBtn') }

 物件のチェックボックスをタップ { n ->
 def 物件カセット = $('ul.toulist li', n-1)
 def チェックボックス = 物件カセット.find('input[type="checkbox"]')
 def checked = チェックボックス.attr('checked')
 チェックボックス.click();
 waitFor {
 checked != チェックボックス.attr('checked')
 }
 }
}

 ▼リスト4　自動テストのテストコードサンプル（実際にほぼこのままで動きます）

// ★ポイント1: このテストコードにはパーツのセレクタなどの要素がいっさい存在しない
// つまりページの体裁が変わってもこのテストコードは影響を受けにくい
def "賃貸エリア導線：一覧画面を直接開き、更読みをせずに資料請求を行う"() {
 setup:
 ブラウザの初期化()
 when:
 to 一覧ページ, 'tokyo', 'sc_101'
 then:
 物件カセット大枠 != null
 一覧ページ数.size() > 0

 when:
 interact { 物件のチェックボックスをタップ(1) }

 then:
 固定バーが表示されていること()

 when:
 資料請求ボタンを押す()

 then:
 at(資料請求画面)
}

42 - Software Design Mar. 2016 - 43

 ▼図11　 E2Eテストのレポーティング結果（by Spock）。ここではSUUMOのサイトのCVである資料請求テストの
全領域分のテスト結果を示している

 ▼図12　 テストが失敗したときに詳細なアサーションが表示される（spock）

実際のテスト結果を図13に示します。このツー
ルはルーティングの設定ミスや意図しないデ
グレードを包括的にチェックすることを目的
としています。
　ツール自体はPHPで書かれていて、基本的
にはURL一覧を逐次的に curlし、結果を
HTMLにまとめるというシンプルなしくみに
なっています。このURLチェッカーとE2Eテ
ストを用いることで、最低限の安全ラインを
確保できるため、テスト工数の削減だけでな
くリファクタリングを含めた開発作業がしや
すくなるという副次的な効果も得ることがで
きました。

 ▼図13　 リリース前にURLの全網羅チェッカーを運用している様子。ルーティングのミスや意図しないデグレードチェッ
クに活用している

第1部のまとめ

　第1部ではSUUMOでのアジャイル開発の
イロハを紹介しました。ここで紹介した取り
組みは1年とちょっとかかりましたが、前向き
に捉えれば、1年あれば、今回説明したさまざ
まな取り組みが実現できるのではと思います。
　なお疑問に思ったところや講演依頼などは
できる限りお応えしますので、お気軽にご連
絡ください。またここで紹介しきれない内容
は住まいカンパニーのテックブログ注5でも紹
介しているのでぜひご覧ください。ﾟ
注5） https://tech.recruit-sumai.co.jp/

第 部1
　第3章　

SUUMO流アジャイル開発［自動化編］
クリエイティブな作業時間を自動化で増やそう

https://tech.recruit-sumai.co.jp/

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

44 - Software Design

はじめに

　筆者の勤務するRettyはWebとアプリで展
開しているグルメサービスで、Webとアプリ
が利用する内部API（以下、アプリAPI）を
PHPで記述しています。今まで、サービスの
拡大に応じてPHPのコードに改修を加えてき
ましたが、ここ最近、アプリAPIにおけるメ
ンテナンス面、パフォーマンス面などの問題
が顕在化してきました。また、アプリAPIでは、
データこそWebと同じものを使っていますが、
ロジック面ではあまり関連性のないものも多
くあり、Webから切り離したいという声もあっ
て、まったく別のしくみとしてリニューアル
することになりました。
　本稿では、筆者がかかわったアプリAPIの
リニューアルに際して、どのような考えでツー
ルや言語を選定し、また、どのように開発を
進めていったか、その取り組みをご紹介した
いと思います。

Rettyの開発体制

　アプリAPIのリニューアルの話題に入る前
に、Rettyにおける開発の体制について少しだ
け触れたいと思います。

Rettyの開発チーム

　Rettyの開発チームは、エンジニア、デザイ
ナといった、業種ベースのチーム編成ではなく、
アプリやSEOといった、プロジェクトベース
のチーム編成になっています。各チームにはチー
ム内のミッションがあり、たとえば、アプリチー
ムであればアプリ利用継続率◯％、SEOチー
ムであれば月間ユニークユーザ数○万、といっ
た定量的なチーム目標をそれぞれ設定して、
それを達成するために日々の開発案件をこな
しています。
　チームのメンバー構成はそのチームによっ
て異なりますが、おおむね次のメンバーで構
成されています。

・プランナー：開発案件の仕様を策定し、ま
た案件の進捗全体を管理する

・デザイナ：画面の動きや要素の配置などの
デザインを設計する

・アプリケーションエンジニア：コードを書
いてサービスを改修する

　各開発案件は多くの場合、プランナー、デ
ザイナ、アプリケーションエンジニアが各1人
割り当てられます。
　また、インフラチームのように、ほかのプ
ロジェクトとは独立した横串体制のチームも
あります。インフラチームは日々の開発案件
が滞りなく進むよう、また開発案件の不具合

　月間利用者数1000万人を突破し、成長を続けるグルメサイト『Retty』。急成長を支えるサービス開発
がどのようにして行われているのか。その片鱗を、内部API開発のプロジェクトを通じて見てみましょう。

 Author 石田 憲幸（いしだ のりゆき）　
Retty（株）
 Mail noripi@retty.me

第 部2 開発言語／ツールの選定と
テストを重視する工夫

RettyがアプリAPIの品質向上で考えた

44 - Software Design Mar. 2016 - 45

に起因してサービスに致命的な影響が出ない
よう、日々Rettyのサービスを守っています。
　なお、開発チームがプロジェクトベースの
編成になっているため、チームの編成は全社
的な目標に応じて柔軟に変化します。アプリ
APIリニューアルのチームも、全社的な目標
の変化に応じて生まれたチームの1つです。

開発チームのメンバー構成

　チーム内におけるプランナー、デザイナ、
エンジニアの構成比は、そのチームが開発す
るプロダクトの性質に応じて設定されています。
　たとえばアプリチームの場合、企画段階で
時間を要する案件が比較的多いことや、大人
数で開発するとコンフリクトが発生しやすい
側面から、エンジニアに比べてプランナーが
多めなメンバー構成となっています。一方
SEOチームでは、素早く企画を立てて、その
案件をなるべく早く進める必要があることから、
プランナーとエンジニアが同数程度で、規模
が大きめのチームになっています。ただし、
こちらも全社的な目標に応じて柔軟に変化し
ます。
　どのチームにもプランナー、デザイナ、ア
プリケーションエンジニアのすべてがいるわ
けではなく、そのチームの目標に必要なメンバー
が必要なだけ所属しています。実際、アプリ
APIリニューアルのチームは、技術的な設計
に終始するプロジェクトだったため、プランナー
もデザイナもおらず、エンジニア2人が所属し
ていました。
　Rettyは、PDCA注1を素早く回すことを常に
意識していて、チームの編成も、メンバーの
構成も、より良くPDCAのサイクルを回すた
めに、その段階で最適な形にしようとしてい
ます。

注1） Plan（計画）－Do（実行）－Check（評価）－Act（改善）の過
程を繰り返すことによって、業務を継続的に改善する手法。

アプリAPIの
リニューアル

　冒頭で述べたように、アプリAPIはPHP

で記述されていましたが、規模の拡大に伴っ
ていくつかの問題が顕在化し、アプリAPIの
リニューアルに至りました。ここでは、リ
ニューアルに至った経緯、目的について詳述
します。

アプリAPIで発生していた問題

メンテナンス面の問題　
　リニューアル以前のアプリAPIにおいて発
生していた問題の1つはメンテナンス面の問題
です。リニューアル以前は、アプリのバージョ
ンによらず同じエンドポイントを利用しつつも、
しばしば違うレスポンス形式を期待するもの
になっており、APIのロジック内にバージョ
ン分岐が大量に埋め込まれていました。その
ため分岐が多く、ロジックが非常に複雑なも
のになっていました。テストの際にも、各バー
ジョンごとにテストをする必要があったため、
テストの工数が膨大になり、PDCAサイクル
の速度にも影響していました。
　また、APIのレスポンスコードが適切に設
定されておらず、例外処理漏れなどにより
API側でエラーが発生していても、レスポン
スコードが正常のまま、不適切な値が返って
くるしくみになっており、エラーの発見が難
しい状態になっていました。

パフォーマンス面の問題
　もう1つの問題はパフォーマンス面の問題で
す。RettyではWebとアプリAPIを同じリソー
スの中で構築してきましたが、Webとアプリ
APIでは、利用するユーザの性質も、負荷の
かかる部分も異なっており、同じリソースで
開発を続けるところに無理が生じ始めていま
した。
　また、Rettyのユーザ数は近年Web、アプリ

第 部2
RettyがアプリAPIの品質向上で考えた

開発言語／ツールの選定とテストを重視する工夫

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

46 - Software Design

共に急速に伸び始めており、Webとアプリ
APIの両方のパフォーマンス改善のためにも、
分離して個別に運用する必要性が出てきました。

リニューアルの要件

　前節で述べた問題が顕在化してきたことを
受けて、RettyではアプリAPIのリニューアル
をすることになりました。このリニューアル
でAPIが満たそうとしていた要件をここで整
理したいと思います。

シンプルな設計と高品質なプロダクト
　リニューアル以前に埋め込まれたバージョ
ンの分岐を排除し、ロジックをよりシンプル
にすることを目指しました。また、テストフレー
ムワークを導入してテストを記述することに
より、高品質なプロダクトを実現することを
目指しました。

エラーの発見が容易
　リニューアル以前は不完全だった例外処理
を適切に行うとともに、エラーがあれば発見
できるしくみを作ることを目指しました。

パフォーマンス上の問題がない
　APIに最適化された設計で実装することに
よってパフォーマンスを改善するとともに、
運用時、そのパフォーマンスに問題が発生し
ていないかを監視できる体制を作ることを目
指しました。

運用の手間がかからない
　APIのリニューアルによって運用の手間が
上がってしまうとPDCAサイクルの速度に影
響してしまうため、テストや監視の体制を作
りつつも、運用の手間が上がらないようなし
くみを作ることを目指しました。

内部仕様の決定

　前節で述べた目的を達成するためには、言
語の選定やサーバの構成など、内部仕様も重
要になってきます。ここではリニューアルを
進めていく中で、言語やサーバの構成をどの
ように決定したかについて述べたいと思います。

言語の選定

　言語の選定は、コードの品質を保持するこ
とや、エラーの発見を容易にする観点から非
常に重要です。結論としてはJavaを選定する
ことにしました。以下では、APIを実装する
にあたって重視したJavaの言語的な性質をい
くつか見ていきたいと思います。

コンパイル言語・静的型付け言語である
　言うまでもなく、Javaは静的型付け言語で
あるため宣言なしに変数を使うことはできず、
また、宣言した変数に異なる型の変数を代入
することもできません。逆に言えば、それによっ
て利用している変数の型が明確になり、想定
外の値が代入されることによる不具合を軽減
することができます。
　また、コンパイル言語であり、例外処理も
厳格なため、多くの例外はコンパイル時に発
見できます。実行時例外は Internal Server

Errorとして処理されるようにすることがで
きます。

Webサービス、APIの実装に適した仕様が
ある
　Javaにはサーバサイドでデータ処理を行う
ためのJava Servletという技術があり、この
上でAPIなどのサーバサイド処理を行うこと
ができます。また、JAX-RS（Java API for

RESTful Web Services）という、RESTに基
づくWebサービスを開発するためのAPIが
Java EE 6以降で標準搭載されており、アノテー

46 - Software Design Mar. 2016 - 47

ションを使って受け入れるHTTPメソッドや
返り値の形式をシンプルに記述することがで
きます（図1）。

言語レベルでテストフレームワークがサポートさ
れている
　テストコードを書くことにより、万能では
ないながらも、想定外の処理や例外を防ぐ意
味で一定の効果があります。Javaには JUnit

という実績のあるテストフレームワークがあり、
多くの IDEやビルドツールではデフォルトで
JUnitをサポートしているので、スムーズにテ
ストフレームワークを導入できます。

サーバの構成

　シンプルな設計をするにあたって、言語だ
けでなく、どのようなミドルウェアを導入す
るか、また、サーバの構成をどのようにする
かを考慮する必要があります。
　まず、Java Servletを動作させるために、サー
ブレットコンテナを導入する必要があります。
サーブレットコンテナにはTomcatや Jetty、
WebLogicなどいくつかの種類がありますが、
今回これらの中からJettyを採用しました。そ
の理由として、TomcatやWebLogicに比べ起
動時間が短く、また、構築手順がシンプルであっ
た点があります。
　さらに、サーバの構築を自動化し、構築手
順をコード化するしくみとして、Dockerを導
入しました。これによりサーバの構築手順を
テストすることができます。副次的な効果と
して誰の開発環境でも同じ環境を作ることが

でき、それによって開発時の環境差分を小さ
くできます。

内部仕様と設計の指針

　内部仕様や設計を決める場合、各要素には
複数の選択肢があり、簡単には決められない
場合がほとんどです。実装を始めてから、別
の選択肢をとったほうが良かったと後悔する
こともあるかもしれません。こういった場合、
満たしたかった要件まで立ち返って、設計を
見直すことが最終的には有益になるケースも
あります。
　今回のリニューアルでも、実装がある程度
進んだ時期に、データベース関連のライブラ
リを再度見直すかどうかの判断を迫られたこ
とがありました。データベース関連のライブ
ラリはプロダクトのかなり根幹であり、もし
別のライブラリで再度作り直すとなれば、か
なりの工数が見込まれましたが、最終的には
別のライブラリで作り直す判断をしました。
　この判断の軸となったのが、リニューアル
において満たしたかった要件の1つ、「運用の
手間がかからない」でした。元のライブラリは
リファレンスが少なく、しかも利用方法がか
なり特殊なものでした。これではプロダクト
完成後の運用のコストが上がってしまうと考
えたのです。
　今思えば、最初にそのライブラリを選んだ
時点で気づくべき過ちですが、工数を割いて
でも別のライブラリで作りなおした意味は大
きいと思っています。

 ▼図1　 JAX-RSの仕様のもとで記述されたメソッド

/**
 * “hello ${名前}” という文字列を返すAPI
 */
@Path(“/user/{user_name}”) // /user/*** へのリクエストを受け付ける
@GET // GETリクエストを受け付ける
@Produces(MediaType.TEXT_PLAIN) // text/plain形式でレスポンスを返す
public String hello(@PathParam("user_name") String userName) {
 return “hello ” + userName;
}

第 部2
RettyがアプリAPIの品質向上で考えた

開発言語／ツールの選定とテストを重視する工夫

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

48 - Software Design

テスト手法

　今回のリニューアルで重視した点の1つが
コードの品質です。リニューアル以前はテス
トのしくみが導入されていなかったため、想
定どおり動いているかを確かめるために、毎
回すべての分岐を手動で確認する必要があり
ました。そのためテストの漏れも発生しやす
い状況でした。これらの問題を改善するため、
リニューアル後のAPI開発ではテストのしく
みを導入することで、単体テストを自動化す
るとともにテストの漏れも削減し、プロダク
トの品質の担保を目指しました。
　テストのしくみは有用ですが、ただ導入す
るだけでは続かないことも経験上何度かあっ
たため、どうやって運用していくか、どうやっ
て品質を担保し続けるかを意識して導入を進
めました。

ブラックボックステストとホワイトボッ
クステスト

　テストの書き方には、大きく分けてブラッ
クボックステストとホワイトボックステスト
があり、今回の開発ではその両方を用いてい
ます。

ブラックボックステスト
　ブラックボックステストは、実装されてい
るロジックがどうなっているかを考慮せずに、
仕様のみから記述されるテストです。今回の
開発では、コードの変更時に仕様を満たせて
いるかどうかを確認するためのテストとして
用いています。

ホワイトボックステスト
　ホワイトボックステストは、実装されてい
るロジックの各経路が意図どおり動作するか
を検証するために記述されるテストです。
APIのロジックには、Null Pointer Exception

など、コンパイル時にチェックされない実行

時例外がしばしば含まれるので、ホワイトボッ
クステストを用いて事前に検知しようとして
います。

ビルドツールと自動テスト

　テストのしくみを導入しても、エンジニア
内である程度テストを書く文化が根付いてい
ないと「テストを記述する分、工数が増大する」
というイメージが先行して、結局書かなくなっ
てしまいます。残念なことに、Rettyではまだ
まだテストを書く文化が根付いていなかった
ため、ある程度強制力を持ってテストを書い
てもらう必要がありました。

ビルドツールの導入
　リニューアル後のAPIではソースコードか
ら最終的にサーブレットとなるwarファイル
を生成しますが、そのビルドの手順を毎回手
作業で実行するのは非常に面倒です。そこで、
ビルドを実行してくれるツールとしてGradle

を利用することにしています。うれしいことに、
最近のビルドツールはデフォルトでJUnitと連
携できるタスクが準備されていることが多く、
また、テストが失敗するとビルドも失敗する
ものが多くなっています。
　今回の開発では、ビルドの前提となるテス
トとして、コードカバレッジ注2を計測するタ
スクを追加しています。コードカバレッジ計
測のためのライブラリは、Gradleと連携でき
るJacoco注3を利用し、この計測結果が一定以
下であればテストが失敗するようにしました。
これにより一定量以上のテストコードが記述
されることを保証することができました。

自動テスト
　ビルドツールの導入は、テストコード記述
に対する強制力として一定の効果がありますが、

注2） コード全体のなかで、テストが行われた部分の占める割合
のこと。

注3） http://eclemma.org/jacoco/

http://eclemma.org/jacoco/

48 - Software Design Mar. 2016 - 49

不慮の事故によってテストされないままレポ
ジトリにPUSHしようとしたときに備え、自
動テストのしくみを導入しました。
　自動テストによく使われるツールとして
Jenkinsが挙げられますが、これを利用する場
合、自身でJenkinsが動作する環境を構築し、
その環境をメンテナンスする必要が出てきます。
リニューアルの要件の1つとして挙げた“運用
の手間がかからないようにする”こととの両立
が悩みどころでした。そこで、自身で運用す
る必要がなく、かつある程度カスタマイズが
できるSaaSとして、CircleCI注4を利用するこ
とにしました。CircleCIを使うと、GitHubと
連携して、レポジトリへのPUSHをトリガに
して自動的にテストすることができます。
　これに加えて、まだテストの通っていない
開発ブランチ、テストが失敗したブランチは
メインストリームのブランチへマージしては
ならず、テストが通った後のブランチのみをマー
ジして良いという運用フローを設定しました（図
2）。これにより、メインストリームのブラン
チのコードが常にテストされていることを保
証することができました。

自動デプロイ
　今回のリニューアルで重視した別の項目と
して、運用の手間がかからないようにすると
いうものがあります。一般的に、テストが終わっ
てコードをメインストリームにマージした後は、
そのコードをステージング環境にデプロイし、
結合テストをする必要があります。
　リニューアル以前のAPIは、コードに更新
があった際に自動的にステージング環境にデ
プロイされるしくみを用意していて、そのデ
プロイにおいて運用コストがほぼかからない
ようになっていました。そこで、今回のリニュー
アルでも自動的にステージング環境にデプロ
イするしくみを導入することにしました。幸い、

注4） https://circleci.com/

CircleCIはRettyが利用しているAWSとの連
携ができるので、1ソースコードのビルド、
テストを実行し、2Dockerイメージのビルド、
Docker Hubへの登録を行い、3AWSへのス
テージング環境へのデプロイ要求を送るフロー
を作りました。また、AWSがデプロイ完了後
にSlackに通知するようなしくみも、あわせて
導入しました（図3）。

導入時の注意点

　今回、テストを導入したうえで、そのテス
トが通らなければメインストリームにマージ
できないという開発フローを作りました。こ
れにより、メインストリームのコードの品質
を担保することに成功したと考えています。
　しかしながら、新規開発するプロダクトに
テストを導入する場合、注意して検討したい
ことがあります。それはホワイトボックステ
ストのコードカバレッジです。先に述べたよ
うに、ホワイトボックステストは、コンパイ
ル時にチェックされないNull Pointer Excep

tionなどの例外チェックの意味で一定の効果
があります。しかし、開発が始まって間もな
い頃は、そのしきい値を高く設定し過ぎない
よう、注意を払う必要があります。
　コードカバレッジの指標には、テストされ
た命令文の割合を示すステートメントカバレッ
ジと、テストされた条件分岐の割合を示すブ

マージ不可

マージ可

開発ブランチ
（未テスト）

テスト

開発ブランチ
（テスト成功） メインブランチ

変更

 ▼図2　開発ブランチをマージするまで

第 部2
RettyがアプリAPIの品質向上で考えた

開発言語／ツールの選定とテストを重視する工夫

https://circleci.com/

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

50 - Software Design

ランチカバレッジがよく使われますが、とく
に初期の段階でブランチカバレッジを高く設
定し過ぎると、しきい値を下回った場合にテ
ストコードを記述することが困難になり、カ
バレッジをあげるために新規開発する事態に
なる場合もあります。実際、今回の開発では
ステートメントカバレッジ90％、ブランチカ
バレッジ90％をしきい値としていましたが、
とくにブランチカバレッジが初期の段階でネッ
クとなるケースが頻発しました。
　もちろん、常にカバレッジ100％で書ければ
理想ですが、中にはファイル読み込み系の例
外など、テストが非常に書きづらい、もしく
は書けない条件分岐もあります。開発の初期
段階では条件分岐数も少なく、テストを書き
づらい条件分岐の割合が大きくなりがちで、
このような事態が発生しやすくなります。

おわりに

　本稿では、Rettyで実施したアプリAPIを題
材として、開発フローの事例について述べま
した。今回の新規開発における要件はいくつ
かありますが、その中でもとくに重視した項

目は「高品質なプロダクトを作る」と「運用の手
間がかからないようにする」の2点です。
　今回の開発では「高品質なプロダクトを作る」
ために、静的型付け言語でかつテストフレー
ムワークをサポートしているJavaを採用しま
した。また、テストフレームワークJUnitとコー
ドカバレッジ計測ツールJacocoを導入したう
えで、ブラックボックステスト、ホワイトボッ
クステストを記述しないとメインストリーム
にマージできないフローを作り、コードの品
質を担保することを試みました。
　さらに「運用の手間がかからないようにする」
ために、自動テストのためのツールとして運
用が不要なCircleCIを導入し、自動デプロイ
のしくみを整えました。
　最後になりますが、本稿で紹介した開発フロー
はまだまだ改善途上のもので、これからもよ
り良いフローを作っていこうと日々取り組ん
でいます。今回ご紹介した事例が皆さまの開
発の中で少しでもご参考になりましたら幸い
です。ﾟ

CircleCI Docker Hub

AWS

ソースコード

Slack

Dockerfile

Docker
イメージ

レポジトリ

1テスト

2Dockerイメージのビルド・登録

3デプロイ要求

最新のDocker イメージを参照

4完了を通知

 ▼図3　自動デプロイのフロー

なぜすぐにリリースできるのか
チーム開発をまわす現場のアイデア第1特集

51 - Software Design Mar. 2016 - 51

はじめに

　Incrementsは、プログラミングに関する知
識を記録・共有するためのサービスとして、
多くのエンジニアの方に愛用いただいている
Qiita注1を開発・運営しています。本章では、
その Incrementsが用いている開発プロセスや
それを支える文化について解説します。

QiitaとIncrementsの
使命

　Qiitaにアクセスしていただくと、「プログ
ラミング知識を共有しよう。」というキャッチ
フレーズがトップに書かれていることに気づ
くでしょう。Incrementsは「ソフトウェア開発
をよくすることで世界の進化を加速させる。」
をミッションとして、QiitaやQiita:Teamとい
う組織内情報共有サービスを提供しています。
このキャッチフレーズやミッションステート
メントからおわかりいただけるように、エン
ジニア、その中でもプログラマに特化したサー
ビスを提供することで社会をより良くするこ
とを、Incrementsは目指しています。そのた
めに、情報共有サービスの提供に加え、自社

注1） URL https://qiita.com

の技術をオープンソースにすることや、開発
プロセス、ノウハウなどを公開することも積
極的に進めています。
　筆者は昨年の11月に Incrementsに入社した
ばかりですが、Incrementsを支えるものは自
社ツールのQiita:Teamや、チャットツールで
あるSlackを中心とした情報共有と、その源泉
となるエンジニアリング文化にあると感じて
います。
　一方、Qiitaはすでにアクティブユーザ数も
200万人を超え、累計の投稿も10万件以上あ
ります。このようなプログラマにとってのイ
ンフラになりつつあるサービスを支える開発
プロセスは、もちろん一朝一夕で作られたも
のではありませんし、今も日々進化しています。
まずは、この開発プロセスからお話します。

開発プロセスの全貌

　Incrementsではどのようなツールを使って、
どのような開発フローを実現しているのか。
タスク管理やオフィス環境にも触れながら解
説していきます。

ツール

　Incrementsでは表1の開発ツールを用いて
います。このように Incrementsでは誰でも利

　プログラマに特化した情報共有サービス「Qiita」。エンジニアならば、一度は利用した経験があるの
ではないでしょうか。第3部では、その開発元「Increments」の開発事情について紹介します。どのよ
うな文化の下、どのようなチーム開発を行っているのか、人気サービスを支える技術をご覧ください。

 Author 及川 卓也（おいかわ たくや）　
Increments㈱
 Twitter @takoratta

 

第 部3 Qiita開発で知る、テスト、
自動化、バグ／タスク管理術

HRTと情報共有こそチーム開発の要

https://qiita.com

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

52 - Software Design

用できるツールを組み合わせて開発基盤を実
現していますが、その弊害としてツールの吐
き出す情報が分散してしまうことが挙げられ
ます。この問題は、後述するように、コミュ
ニケーションのハブとしてSlackとQiita:Team

を用いることで解決しています。

開発フロー

　開発フローには、すでに一般的となった
GitHubのPull Requestを用いた手法を用いて
います。ソースリポジトリとしては、オープ
ンソース化されているものはGitHubのパブリッ
クリポジトリを、それ以外はプライベートリ
ポジトリを用いています。
　Pull Reuestベースの開発としては極めて一
般的な手法、すなわち、

①各リポジトリのmasterブランチから分岐し
て実装

②実装終了後にGitHubでPull Requestを投げ
③CircleCIによるCIを走らせるとともに
④ほかのエンジニアにコードレビューしても

らい

⑤コードレビューとCIが無事終了したことを
確認し

⑤masterブランチにマージしてデプロイする

という、今や王道とも言える手法をそのまま
用いています。

テスト

　テストは、Circle CIが走る際に自動的に行
われます（リスト1）。テストには2種類あり、
1つがLinterによる文法チェック（静的コード
解析）、もう1つがRSpecによる機能テストで
す。QiitaはRuby on Railsにより開発されて
おり、フロントエンドではSCSSをCSSのプ
リプロセッサとして利用しています。文法チェッ
クや機能テストはこれらのソースファイルに
対して行われます。
　Linterによる文法チェックはYAMLと
SCSS、Rubyに対して行われるようになって
います。SCSSには scss-lint注2を、Rubyには

注2） URL https://github.com/brigade/scss-lint

ツール 概要 社内での用途
Amazon Web Services インフラ（EC2、RDS、ElastiCache）言わずもがな、QiitaやQiita:Teamのインフラ
GitHub ソースリポジトリ コードレビューや Issueを用いたタスク管理、ディ

スカッションを行う
CircleCI 継続的インテグレーション（CI）環境 CI基盤として用いる
Sentry エラーの補足や通知 障害発生検知に用いる
New Relic パフォーマンスの測定 パフォーマンス障害の検知や、改善対策用に用

いる
Mackerel サーバの管理・監視 同じく、パフォーマンスなどの監視を行う
Google Analytics アクセスログ解析 Webアクセスログ解析としてお馴染みのツールで、

基本的なアクセス解析を行う
Mixpanel イベント計測 特定のイベントの成果を測定することなどに用

いる
Google BigQuery アクセスログ解析 fluentd経由で集約されたアクセスログの解析を

行う
Optimizely A/Bテスト用ツール 各種実験を行い、その成果を計測するのに用い

る
MailChimp メールマガジン配信 ユーザへのメール配信に用い、開封率など各種

指標を管理する
Trello 一般的なタスクや仮説検証用タスク

の管理
現在は個人やサブチームレベルで使うことはあ
るが、全社的には用いていない

 ▼表1　ツール一覧

https://github.com/brigade/scss-lint

52 - Software Design Mar. 2016 - 53

Rubocop注3を使っています。Rubocop既定の
ルールが .rubocop.ymlに書かれていますが、
Rubyの文法チェックはチームのコーディング
規約に沿う必要があるため、Incrementsでは
これに少し変更を加えて利用しています。

bundle updateの自動実行

　IncrementsではGemパッケージの管理を
Bundlerで行っているのですが、Gemの更新
を取り込むためのbundle updateをCIに組込
み、定期的に実行するようにしています。
　bundle updateすることで、依存している
Gemのバグ修正やパフォーマンス改善、新機
能などを取り入れることができます。しかし

注3） Rubocopの紹介記事を弊社CEOの海野が書いています。
 URL http://qiita.com/yaotti/items/4f69a145a22f9c8f
8333

長い間更新していないと、大きな差分により、
最悪の場合アプリケーションが動作しなくなっ
てしまい、対応に大きなコストが発生します。
そのため、Incrementsではこのbundle update

をCIに組み込むことで常に最新版を使えるよ
うにしています。
　CIによる bundle updateの定期実行には、
CircleCIのNightly Builds注4という機能を使っ
ています。これは、外部から環境変数を設定
したうえで、特定のブランチのビルドを行う
という機能です。Incrementsでは、BUNDLE_

UPDATEという環境変数を用意して、これが
trueのときにbundle updateが起動されるスク
リプトを組み、cronで毎日実行するようにし
ています。リスト2がcircle.ymlの該当個所で
す。
　この自動実行の流れは次の図1のようになり
ます。こちらについては、弊社CTOの高橋が
Qiitaで記事注5にしていますので、参考にして
ください。

バグを防ぐさまざまな工夫

　QiitaもQiita:Teamも、社内でテストを行っ
たあとに外部リリースを行ってはいますが、
それでも不具合は発生し得ます。そこで、大
きなバグ修正や新機能の場合、社内の人間で
しばらく使用してから外部リリースを行う、

注4） URL https://circleci.com/docs/nightly-builds

注5） URL http://qiita.com/yuku_t/items/0f8e48771822420d
3ffa

 ▼リスト1　 文法チェックと機能テスト（circle.ymlから
の抜粋）

test:
 override:
 - bash script/circleci/lint_yaml.sh
 - bash script/circleci/lint_scss.sh:
 parallel: true
 files:
 - app/assets/stylesheets/**/ｭ
*.scss
 - bash script/circleci/lint_ruby.sh:
 parallel: true
 files:
 - app/**/*.rb
 - lib/**/*.rb
 - spec/**/*.rb
 - bash script/circleci/test_rails.sh:
 parallel: true
 files:
 - spec/**/*_spec.rb
 - bash script/circleci/test_ｭ
javascript.sh

 ▼リスト2　 bundle update自動実行の設定（circle.
ymlから抜粋）

test:
 post:
 - >
 if [-n "${BUNDLE_UPDATE}" -a ｭ
"${CIRCLE_BRANCH}" = 'master'] ; then
 bundle update
 fi

cronサーバ masterブランチのサーバ

スクリプト実行で
CircleCIを起動

$bundle update

CircleCI
hook

CI

GitHub

環境変数
BUNDLE_UPDATEを
付加してCIを実行

git pushの実行および
Pull Requestの作成

 ▼図1　bundle updateの自動実行

第 部3
HRTと情報共有こそチーム開発の要

Qiita開発で知る、テスト、自動化、バグ／タスク管理術

http://qiita.com/yaotti/items/4f69a145a22f9c8f8333
https://circleci.com/docs/nightly-builds
http://qiita.com/yuku_t/items/0f8e48771822420d3ffa

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

54 - Software Design

いわゆるドッグフード環境を用意しています。
「increments.qiita.com」は Incrementsが使って
いるQiita:Teamのアドレスですが、このアド
レスのみ特定のサーバを示すようにDNSで切
り替えたり、社内スタッフであることがわか
るユーザのフラグが付与されている場合に、
Gitの特定ブランチを参照するようにしたりす
ることで、ドッグフード環境を実現しています。
今後は、これをリリースプロセスの中に組み
込んで自動化することを検討しています。
　また、リリース後にもユーザからの反応を
モニターし、不具合の報告などがあった場合
にはすぐに対応するようにしています。
TwitterでのQiitaを含むツイートはすべて社
内で共有されており、不具合と思われる挙動
があって追加情報が必要と思われる場合には、
社員個人がQiita公式アカウント注6から問い合
わせることもあります。また、ユーザからの
フィードバックを受け付ける窓口をオンライ
ンで開設しており（図2）、この窓口経由での
フィードバックも、オンラインカスタマーサポー
トツールであるZendesk注7経由で社内に共有
されています。

タスク管理

　開発に関係するタスク管理には、GitHubの
Issueを使っています。GitHub Issueはラベル
とマイルストーン、アサイン先しか項目を持
たないシンプルなバグ・課題管理システムです。

注6） URL https://twitter.com/qiita

注7） URL https://www.zendesk.co.jp

JIRAやRedmineなどが持つ優先度やカテゴリ・
コンポーネント、課題の種類（バグや機能要求
など）を持たないため、それらを必要とする場
合はラベルやマイルストーンを活用して実現
する必要があります。
　Incrementsでは、ラベルで「Qiita」や「Qiita

:Team」など製品を示すようにしています。一方、
カテゴリやコンポーネントをラベルで管理す
ることはしていません。バグも機能要求も複
数にまたがることが多いうえ、粒度を定義す
ることが難しく、たとえコンポーネント分け
ができたとしても、その依存度含めてうまく
運用することに困難を感じたためです。
　また、現在では優先度も用いていません。
優先度（Priority）や深刻度（Severity）は定義が
難しく、ふと気づくと「すべてのバグが中レベ
ルの優先度になってしまっている」ということ
もありがちです。緊急性の高いバグは優先度
で区別するまでもなく、すぐに社内で対策を
検討できる環境になっているため、現在では
優先度はとくに設けなくて良いだろうと判断
しています。その結果、現在の Incrementsの
運用では、ラベルに Issueの種類として「バグ
（Bug）」と「機能要求（Feature Request）」を用
意するだけにとどまっています。マイルストー
ンは、期間や締め切りを持つ Issueを束ねると
いうごく一般的な使い方をしています。
　Issueは、気づいたときに迅速に登録するこ
とを重視しています。ただし、そうは言って
も必要な情報が書かれていないと、登録した
本人もあとから見なおしたときに、どうして
登録したか、重要度や緊急性がどの程度かも
わからなくなってしまいます。そのため、必
要な項目を定めたテンプレートを作成し、登
録時にはそれを埋めるようにしています。
GitHub IssuesはURIパラメータで項目を引き
渡せるため、バグと機能要求用に2種類のURI

を用意し、登録時にはそれらをクリックする
ことでテンプレートを埋めることができるよ
うにしています（図3）。

 ▼図2　Qiitaについてのご意見

54 - Software Design Mar. 2016 - 55

　また、GitHub Issue登録ガイドラインを社
内で制定し、適宜見直しを図るようにしてい
ます（図4）。
　製品リリースのためには、バグや機能要求
以外のタスクも数多くあります。サポートの
準備を行わなければいけないことや、製品の
リリースに合わせて利用規約を変更するよう
なこともあり得ます。また、仮説検証を回す
というタスクにも管理が必要です。以前はこ
のようなタスクのために、TrelloやPivotal

Trackerを用いていました。しかし最終的に
実装タスクに落ちるときに、結局GitHub Issues

に登録しなおす必要が発生していたため、現
在全社的にはこれらのタスク管理ツールを用
いていません。一方、GitHub Issuesはリポジ
トリをまたがるタスク管理が難しく、タスク
のフロー管理も得意ではありません。そこで、
現在はZenHubというGitHubを拡張し、カン
バン方式のようなタスクボードを実現するサー
ビスの導入を検討しているところです。

オフィス環境

　最後に、少し話が脱線しますが、オフィス
環境についても説明します。現在、Increments

は小さなオフィスビルの1フロアを借り、全社
員がそこで勤務しています。フリーアドレス
制度を採用しているわけではないのですが、
机の上にほとんど物がなく、筆者が入社した

日にレイアウト変更を行ったときは、ものの
30分もかからずに移動が完了しました。
　モニターを所有するエンジニアは一部を除
き居ないため、オフィス内でも好きな場所で
開発を行います。サーバの類はいっさいあり
ません。AWSやSaaSとして利用できるサー
ビスを中心に採用しているため、オフィス内
にサーバを置く必要がないためです。電話や
ファックスなどもなく、社外の方からの連絡
もメールやチャットを用いて行われています。

エンジニアリングチーム
の文化

　ソフトウェア開発は技術とツールを活用し
た“プロセス”に依るところが多いですが、一
方でそれらを築き上げるのは“人”であり、“チー
ム”です。チームの意思が技術やツールを選び、
プロセスを形作っていきます。Incrementsで
はそのような考えから、技術やツール、プロ
セス以上にチームの文化を大切にしています。

HRTという考え

　HRTは、Googleのシカゴオフィスを立ち上
げた2人のエンジニアによって書かれた「Team

Geek」という書籍で紹介されている考えです。
HはHumility（謙遜）、RはRespect（尊敬）、T

はTrust（信頼）をそれぞれ意味しています。以

 ▼図3　 GitHub Issues登録用テンプレート
 ▼図4　 Incrementsが使用するGitHub Issue登録

ガイドライン

第 部3
HRTと情報共有こそチーム開発の要

Qiita開発で知る、テスト、自動化、バグ／タスク管理術

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

56 - Software Design

降、Team Geekから抜粋します。

謙虚（Humility）

	 世界の中心は君ではない。君は全知全能で
はないし、絶対に正しいわけでもない。常
に自分を改善していこう。

尊敬（Respect）

	 一緒に働く人のことを心から思いやろう。
相手を1人の人間として扱い、その能力や
功績を高く評価しよう。

信頼（Trust）

	 自分以外の人は有能であり、正しいことを
すると信じよう。そうすれば、仕事を任せ
ることができる。

　いかがでしょう。「謙虚」「尊敬」「信頼」とい
う単語だけで聞くよりも、この説明を見ると、
もっと心に響くのではないでしょうか。コー
ドを書くときや他人のコードをレビューする
とき、方針を話し合うときなど、自分が自信
のある分野ですと、ともすると自分が正しく、
いかに自分の考えを他人に理解してもらうか
に腐心してしまうことがあるのではないでしょ
うか。自分は常に間違っている可能性がある
と一歩引くことで、コミュニケーションが円
滑になりますし、自分では気づかなかったこ
とを発見できるかもしれません。
　「ソフトウェア開発はチームスポーツである」。
これもTeam Geekの中の言葉ですが、これを
意識すると、個人技を極めるだけでなく、ど
のようにチームとして機能するかを考えない
といけないことがわかります。Incrementsで
はこの精神を尊重し、次のような行動指針を
立てています。

・オンラインでは直接口頭で話すとき以上に
言葉遣いを丁寧にする

・コードレビューはあくまでコードを批判し
ているのであって、書き手を批判している
と取られないように注意する

・絵文字や画像を積極的に使う

　3つめは、テキストではどうしても無味乾燥
になりがちなコミュニケーションをより円滑
に進めるためです。直接会って話す場合には、
顔の表情や口調などから、伝えることは同じ
でも、より多くの情報が付加されます。テキ
ストでも、可能な範囲で付加情報を加えるこ
とで誤解の生じないコミュニケーションが可
能となります。

属人性の排除としての自動化

　チームスポーツとしてソフトウェア開発を
考えると、特定のエンジニア、すなわちプレー
ヤに依存するのがリスキーなことがわかります。
　昔のプロ野球ならば絶対的なエースがシー
ズンで30勝40勝することもありましたが、今
日では投手も分業制を採っており、1人への依
存をできるだけ少なくしています。春や夏の
限定した期間で1回でも負けたら終わりという
高校野球と違い、プロスポーツは年間通して
試合がありますし、1年だけでなく、翌年や翌々
年も継続して勝てるチームを作らなければい
けません。ソフトウェア開発チームもプレー
ヤである各エンジニアの成長とともに、特定
個人に依存しない体制を作る必要があります。
　この「属人性の排除」に対して Incrementsが
行っていることとして、徹底した自動化とい
うのが1つあります。開発の中でルーチンワー
クがあったならば、それは本当に人が行う必
要があるのかと疑い、自動化の可能性を探り
ます。
　自動化に関係する最近のエピソードとしては、
勤怠管理にまつわるものがあります。Incre

mentsでは某ASPを用いた勤怠管理を開始し
ました。このシステムでは、出退勤時にブラ
ウザからそのASPのWebページにアクセスし
てログインしたあと、ボタンをクリックしな
ければなりません。エンジニアの1人がこの通
信の中身を解析し、Slack上のbotに語りかけ
ることで同じことを行えるように変更したの
ですが、それでもまだ「これって人間のやるこ

56 - Software Design Mar. 2016 - 57

とじゃないですよね」と、今はオフィスに入っ
ただけで出勤処理が行えるように実験中で
す注8。

情報共有

　QiitaやQiita:Teamといったサービスを提供
している Incrementsですので、それらを用い
た情報共有も徹底しています。テキスト情報
として情報を共有することと、非同期コミュ
ニケーションを重視することが特徴です。
　共有する情報は、チャットのようなフロー
情報とドキュメントやメモのようなストック
情報に分かれます。Incrementsではチャット
としてSlackを用いており、ストック情報には
Qiita:Teamを用いています。
　Slackは次節で紹介するように、各種CIツー
ルやbotが連携されたChatOpsの基盤となって
いますが、それ以外にも社内の他愛ない会話
や開発に関する議論などもされています。オフィ
ス内で口頭で済ますことも多いですが、それ
も過程や結果をSlack（長い場合はQiita:Team）
に投稿するように心がけています。Slackでハ
イコンテキストな環境を作り、そこで投稿さ
れた内容をまとめたり、それ以外の暗黙知を
テキスト化したりして、形式知としてQiita

:Teamに投稿するという流れです。Qiita:Team

のストック情報を元に、またフロー情報とし
ての会話が始まり、これがうまく循環されて
いくことでチームの情報共有は成立していま
す（図5）。
　最近社内の一部で取り組み始めたこととし
ては、個人専用のチャンネル――たとえば
「#status_takoratta」というのが筆者個人チャ
ンネルですが――を用意して自分の作業ログ
を残していくというのがあります。プライベー
トチャンネルではなく、普通のチャンネルで
すので、ほかのチームメンバーも参加できます。

注8） Raspberry Piを用いて、社員の持つスマートフォンが社内
Wi-Fiに接続されたら出勤、とみなすようなシステムです。

　もし筆者が自分の思考過程をこのチャンネ
ルで共有したときに、ほかのメンバーがそれ
に対して知見を持っていたなら、アドバイス
を得られます。また、そのような直接の利点
がなかったとしても、誰が何をしているかが
わかりやすくなります。Qiita:Teamでは日報
を共有しているのですが、この個人専用チャ
ンネルに書かれたものをベースに記載できる
ようになったので、手間も省けます。
　Qiita:Teamでは、日報以外にも各種のメモ
やドキュメントが共有されます。現在の
Qiita:Teamには細かいアクセス制御の考え方
はありません。一部のメンバーだけに共有す
べき内容というのももちろんありますが、多
くの場合は心のなかのハードルが全メンバー
への共有を妨げているだけではないでしょうか。
実は筆者も Incrementsで勤務し始めたときに、
特定メンバーにのみ情報共有をしたいと考え
た1人です。実際には、特定メンバーにとくに

4 4 4

見てもらいたいが、ほかのメンバーに見られ
ても困るものではないことがほとんどでした。
Qiita:Teamの今の機能が十分とは言えないで
すが、すべて公開するという精神はエンジニ
アリングチームの文化としてはとても大切な
ものではないでしょうか。
　この“すべて公開する”という精神は社外に
対しても当てはまります。Incrementsではオー
プンにできるものはオープンにするという精
神で汎用性の高いコードのオープンソース化
を進めており、積極的に技術情報を公開して
います。

チャットを通じて、
ハイコンテキストな環境を作り出す

Slack Qitta:Team

 ▼図5　フロー情報とストック情報の関係

第 部3
HRTと情報共有こそチーム開発の要

Qiita開発で知る、テスト、自動化、バグ／タスク管理術

なぜすぐリリースできるのか
チーム開発をまわす現場のアイデア第1特集

58 - Software Design

ChatOps基盤としての
Slack

　Incrementsでも、最近多くの組織で導入が
進みつつあるChatOpsという手法を用いて開
発を行っています。ChatOpsとは、本誌2016

年1月号でも特集が組まれていましたが、チャッ
トをコミュニケーションツールとしてだけで
なく、各種開発ツールから吐き出す情報を集
約するのに利用したり、常駐する汎用botを利
用することで開発ツールへの指示さえもチャッ
ト経由で行ったりするオペレーションです。

各種ツールと連携

　Incrementsがチャットとして用いている
Slackには、次のアプリケーションが連携され
ています（利用頻度の高い4ツールを抜粋）。

・CircleCI
・GitHub
・Googleカレンダー
・Zendesk

　Googleカレンダーとの連携では、全社スケ
ジュールが「#general」チャンネルに投稿され
ます。午前10時に当日のスケジュール一覧が
投稿され、そして予定が開始される5分前にも
投稿されます。また、個人のスケジュールを
自分のチャンネルに投稿するように設定して
いる人も多くいます。オンラインのカスタマー
サポートにZendeskを使っていることはすで

に書きましたが、ユーザからの問い合わせも
その回答も、「#support」というチャンネルで
共有されています。担当者以外でも、回答を
率先して用意することが多くあります。

専用bot「Qiitan」による
オペレーション

　社員のコミュニケーションやツールが吐き
出す情報の共有としてのチャットも重要ですが、
なんと言っても開発のコアとなっているのは、
Increments自社開発の専用bot「Qiitan」の存在
です（図6）。
　ChatOps用 botフレームワークとしては
Hubotが有名ですが、Qiitanはその互換Ruby

実装のRubotyで作られています注9。このQiitan

は、IncrementsのSlack上で次のようなさま
ざまな機能を提供しています（図7）。

・天気予報
・渋谷ランチ情報（社員が推薦するランチ情報

が書かれたQiita:Teamの投稿の該当部分か
ら抜粋）

・任意のRubyコード実行（図7では、1から
16の整数をランダムに並び替えていますが、
これは社員のプレゼンテーションの順番を
決めていたときのものです）

　Qiitanはほかにも定期的なタスクの実行が

注9） Rubotyについては URL http://qiita.com/r7kamura/items
/8d1b98e28154de6030b9にまとめられています。

 ▼図6　自社製bot「Qiitan」

 ▼図7　 Qiitanによる天気予報の提供と渋谷ランチ情
報、任意のRubyコード実行

http://qiita.com/r7kamura/items/8d1b98e28154de6030b9

58 - Software Design Mar. 2016 - 59

可能です注10。たとえば、平日の朝10時に「おは
よう！」と話しかけてもらうことも可能です（図
8）。
　Incrementsではこれをさらに応用し、オフィ
スの掃除の開始時間に掃除の分担をつぶやく
ようにさせています（図9）。この分担は社員の
増加により変更の必要が出てきたのですが、
それも図10のように簡単に変更できます。

botによる開発オペレーションの
実行

　今まで紹介したQiitanの処理は、いろいろ
な定期オペレーションを自動化するものであっ
たり、ともすれば無味乾燥に成りがちなチャッ
トでのコミュニケーションを和ませてくれた
りするようなものでしたが、Qiitanの真価は
開発プロセスのハブとして機能するところに
あります。
　たとえば、GitHub Issueへの登録は図11の
ようにQiitanに話しかけることで行えます。

注10） Rubotyに定期的に何かしてもらう URL http://qiita.com/
r7kamura/items/f7b5bf676494703b0758

 ▼図8　 Qiitanによる定期的なタスクの実行

この例では、タイトルだけ指定して Issue登録
をしていますが、このような場合は時間がで
きしだい、GitHub上で Issueを更新してほか
の必要な情報を入力します。
　また、Qiitanを通じてデプロイすることも
できます。masterブランチからproductionブ
ランチへのPull Request作成と、レビュー後
のそのPull Requestのマージを、Qiitan経由
で行えます（図12）。
　このほかにもQiitanは、Twitterでつぶやか
れた「Qiita」が含まれたツイートの収集なども
やっており、Incrementsにとってなくてはな
らない存在となっています。人間がするべき
でない繰り返しの作業を代わりに行ってくれ
るだけでなく、開発プロセスの中心にいる愛
すべきキャラクターとなっています。

　以上、Qiitaを支えている組織とチーム開発
プロセスについて説明させていただきました。
HRTを尊重し属人性を排除するための情報共
有の工夫なども含めて、読者の方々のチーム
開発に少しでもお役に立てたならば幸いです。
ﾟ

 ▼図9　掃除の分担の通知

 ▼図10　掃除の分担の更新

 ▼図11　GitHubへの Issue登録

 ▼図12　Qiitan経由でのデプロイ

おわりに

第 部3
HRTと情報共有こそチーム開発の要

Qiita開発で知る、テスト、自動化、バグ／タスク管理術

http://qiita.com/r7kamura/items/f7b5bf676494703b0758

60 - Software Design

リモート
チームで
うまくいく

　著者は『「納品」をなくせばうまくいく』で話題になったソ
ニックガーデンの倉貫氏。本書はその姉妹本とも言え、ソ
フトウェア開発会社の働き方として「リモートワーク」を提
案する。タイトルにある「リモートチーム」とは、リモート
先が個人でも、まるでオフィスでいっしょに働いているか
のような「ほかの人の存在を感じられる」リモートワークの
スタイル。チャットでの雑談の奨励や、いつでも相談でき
るように働く時間をそろえるなどの取り組みによって、「信
頼関係」「セルフマネジメント」「チームワーク」が生まれて
くる。リモートワークでより良いワークライフバランスを
実現するために個人や組織で必要とされるものが何なの
か、試行錯誤のうえに成り立っている同社の手法は、仕事
環境を考えるときの貴重な参考となるはずだ。

倉貫 義人 著
四六判／224ページ
1,500円＋税
日本実業出版社
ISBN＝978-4-534-05342-8

Docker
実践ガイド

Dockerを現場でどのように導入・運用するのかに重きを置
いた実践的な1冊。序盤の章は、Dockerという技術につい
ての情報を整理しながら、向くシステム・向かないシステ
ムといった導入に関する検討、導入前の準備・環境設計と
いった下準備を扱う。基本コマンド、Dockerfileの使い方
を説明したあとは、各種ツールについて分野別で使い方を
解説している。おもなものを挙げると、構築・スケールア
ウ ト の ツ ー ル と し て「Docker Compose」「Docker
Swarm」、管理・監視ツールとして「DockerUI」、マルチホ
スト環境の構築として「Kubernetes」、コンテナ特化型
OSとして「Atomic Host」「CoreOS」、クラスタ環境の構
築として「Apache Mesos」などを紹介している。対象
バージョンは、Docker 1.8/1.9。

古賀 政純 著
B5変形判／328ページ
3,000円＋税
インプレス
ISBN＝978-4-8443-3962-5

ITインフラ監視
［実践］入門

　IaaS（Infrastructure as a Services）の普及によって、
ITインフラの管理・運用を開発者が行う必要があるような
ケースも増えてきた。本書ではそうした、インフラ管理・
監視の経験があまりないが、自らがシステム監視を行う必
要がある、管理・監視を専業としないエンジニアを想定し
て、システム監視の全体像とそのしくみの設計・運用のノ
ウハウを解説する。監視の設計、現状分析、障害監視のた
めの判断基準設計、監視サーバの選択、経路設計、監視業
務設計、そして構築と運用後の問題への対処、というよう
に、システム監視の全体像、監視システムの設計・構築と
監視業務の勘どころを流れを追って説明する。いざという
ときに備えるために、筆者が経験してきたインフラ監視に
おいての勘どころを解き明かす書籍だ。

斎藤 祐一郎 著
A5判／160ページ
2,280円＋税
技術評論社
ISBN＝978-4-7741-7865-3

ネットワーク・
デザインパターン

　ネットワーク構築の現場における“鉄板構成”を紹介しな
がら、ネットワークの基礎知識、運用においてのTipsを解
説している。本書は「Trust」「Untrust」「DMZ」「WAN」「総
合構成」と、セキュリティゾーンによって章を分けており、
各章はまたネットワークの規模によってSmall・Medium・
Largeの3つのクラスに分けられ、さらに1つのクラス内
で2つのデザインパターンが紹介されている。たとえば
DMZの章では、Small：ミニマム冗長化構成／サーバ仮想
化構成、Medium：負荷分散インライン構成／負荷分散ワ
ンアーム構成、Large：ブレードサーバインライン構成／ブ
レードサーバワンアーム構成という順に紹介されている。
　具体的なマシンの型番こそ出てこないが、限りなく実務
に近いノウハウを学べるだろう。

みやたひろし 著
B5判／440ページ
3,400円＋税
SBクリエイティブ
ISBN＝978-4-7973-8284-6

第 章3mapを極める者がVimを制す
mapを極める者がVimを制す

61 - Software Design Mar. 2016 - 61

あなたの知らない
COBOLの実力

　春先に決まって売れるIT書籍あり。それは「COBOL」の本。COBOLは、古い、レガシーな技術だ、今
どきじゃないと思われていますが、金融システムを支え、社会の基盤であることは言うまでもありません。
　初期のCOBOLは囲い込まれ部外者からは見えにくいものになっていましたが、現代にいたるまでにさまざ
まな情報科学の知見が反映され、いろいろな人や組織に門戸を開放した言語になっています。まずは第1
章でCOBOLの基本的な話を紹介します。そして第2章ではopensource COBOLでCOBOLのパワーを
ほんの少し体験します。第3章ではCOBOLの本当の良さ・その本質とは何か考え、第4章では、COBOL
プログラマが他のプログラミング言語と向き合うときの話を紹介します。最後に前述したCOBOL書籍の裏
側を執筆者自らが解説します。COBOLを通して眺めれば日本が抱えるIT業界の問題も見えてきます。

好き嫌いで判断していませんか？

―経済を支える基盤技術―

第2特集

Appendix

著者自らが自著を解説

COBOL書籍が必要とされる�
背景と読者のニーズ� 86

 Author 細島 一司

第 章4
壁を越える力を身に付けよう

COBOLから別のプログラミング言語を�
習得するときのヒント� 81

 Author 吉谷 愛

第 章3 本質を見極める力

良いCOBOL、悪いCOBOL� 76
 Author 谷口 有近

第 章2 金額・利率計算で実践

opensource COBOLを試してみよう� 69
 Author 稲垣 毅／清水 真

第 章1 多くのシステムで使われる理由はどこにある？

ちょっと深めのCOBOLの話� 62
 Author 高木 渉

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

62 - Software Design

はじめに

　COBOLは、汎用のプログラミング言語です注1。
その最初の仕様書は、1960年に米国で発行され
ました。
　ここでは、初期の設計時に組み込まれた
COBOLの特徴を紹介して、現在の目で評価し
てみたいと思います。
　一般的に、プログラミング言語は世に出たと
きに完成形であることはまずなく、次々に必要
と考えられる仕様を追加していきます。仕様を
追加する場合は、以前の仕様との互換性を保つ
ようにするのが原則です。非互換になる変更を
すると、新しい仕様に基づくコンパイラでは、
既存のユーザ資産がコンパイルできなくなって
しまうからです 注2。
　COBOLにも1960年当時の仕様が残ってい
て、それは長所でもあり、制約でもあります。
　なお、本稿では、初期の言語設計の経緯を
Sammetの論文［2］に依拠します。

COBOLは
共通の事務処理用言語

　1959年に米国で、政府関係者、コンピュータ
ユーザ、コンピュータメーカーの人々が、共通
の事務処理用言語を作ろうと集まりました。こ
れがきっかけで、翌1960年4月にCOBOLの最
初の仕様書が発行されました。
　COBOLという名称は、COmmon Business

Oriented Languageから取られていて、そのま
ま「共通の事務処理用言語」です。ここで、「共通
の言語」と「事務処理用の言語」を分けて考えてみ
ます。「共通の言語」の部分を理解するには、時
代背景を考慮する必要があります。
　1959年当時は、まだコンピュータの黎明期で
す。複数のメーカーが、異なるハードウェア・
アーキテクチャのコンピュータを開発しては世
に出していました。オペレーティングシステム
（以下、OS）の概念はまだ確立されていません。
FORTRANはすでにあったとはいえ、高級言語
も黎明期です。いわゆる事務処理用言語は、実
装が1つ知られていて、ほかにも実装しようと
している機関が現れている時期でした。1959年
に集まった人たちは、1つのハードウェア用に
プログラムを作っても、ほかのハードウェア上
では再プログラミングすることになり、時間と
費用が掛かってしまうことを問題として意識し
ていました。

注1） 事務処理用と思われがちだが、言語としては、国際規格書
にもあるように「汎用言語として広まっている」［1］。

注2） コンパイルはできても、実行時の動作が以前と異なるよう
な仕様変更もあり得る。このような仕様変更も影響が著し
いので、同様に避けるようにしている。

COBOLは事務処理用言語と言うだけあって、多くの金融／公共システムで利用されています。しかし、ど
んなところが事務処理に向いているのでしょう？　「固定小数点の十進数による演算」「英語に近い書き方」
「データ構造の定義の仕方」の3点に注目して、COBOLが事務処理に使われてきた背景を考えてみます。

 Author 高木 渉 （たかぎ わたる）
	 COBOLコンソーシアム 会長 （㈱日立製作所）

多くのシステムで使われる理由はどこにある？

ちょっと深めの
COBOLの話

第 章1

ちょっと深めのCOBOLの話
多くのシステムで使われる理由はどこにある？

第 章1

62 - Software Design Mar. 2016 - 63

　「9999V99」の部分をPICTURE文字列と言い
ます。並べた9の個数が十進数の有効桁数を表
し、Vの位置が小数点位置を示しています。こ
こでは「6桁の十進数で、小数点以下の桁数が2

桁である、hensuuという名称の変数」を定義し
ています。
　ほかの多くの言語では、数値型の変数が表現
可能な値の範囲を考えるときに、その型が占め
るバイト数を意識すると思います。たとえば、
C言語なら、int型の変数が占めるバイト数を認
識したあとで、表現できる値の範囲を確認する
のではないでしょうか。
　COBOLでは、数値変数の定義で、表現でき
る値の範囲を十進数の1桁単位で指定します。4

バイトだ、8バイトだ、というバイト数が先で
はありません。しかも、小数点の位置まで指定
して、固定小数点の十進数として定義してしま
うことが特徴です。整数の変数は、小数点を右
端に置いた特別な場合と考えることができます。

 変数の定義で丸めを制御
　COBOLの実行文で、演算の結果を丸めるた
めの処理は、通常書きません。演算結果は、変
数の定義から、十進数の最小の桁位置を基準に
丸めてくれます 注7。
　COBOLが十進数に強いと筆者が思う理由は、
ここにあります。十進数での丸め位置の指定を
変数の定義に片寄せしていて、実行文には丸め
制御のためのコードを書きません。十進数での
丸め制御のためのコードを書かなければいけな
いプログラミング言語の場合、本来の処理のた
めのコードが埋もれてしまいます。

 整数でも十進の固定小数点数を扱える
　十進数の0.1を二進数で表現すると循環小数
になるように、十進数の小数点以下の値は、必
ずしも二進数で表現できません。ですから、小
数点を有効桁の左端のほうに寄せて正規化する

　「共通の言語」とは、いわゆるOSがなくてむ
き出しの、ばらばらなアーキテクチャのハード
ウェアのどれにも依存しない言語、という意味
合いです。プログラムに移植性（ポータビリティ）
がないことは、コンピュータの黎明期から問題
視されていたことになります。
　「事務処理用言語」については、定義がありま
せん。1959年5月の会議の記録で、簡単な英語
を最大限使用する方針に、多数が賛成していま
す。筆者は、FORTRANのような数式を扱う言
語とは異なる言語、という意識もあったのでは
ないかと想像します。しかし、英語で書くこと
と「事務処理用言語」との関係は明らかではあり
ません。
　現在でも事務処理用言語の定義はないので、
COBOLの当初からの仕様で、筆者が事務処理
向けだと思う点を3点挙げます。

①固定小数点の十進数を扱う
②記号よりは英語での表現を好む
③入出力レコードを階層構造のある連接した
フィールドで定義する

　次節で、これら3点について評価してみます。

COBOLの事務処理
向けの仕様の評価

❶十進数の演算に強いCOBOL

 十進数の桁を明示する変数の定義
　COBOLで数値を扱う変数 注3を定義するとき、
十進数の桁数と小数点位置を指定します 注4。指
定のしかたを例で見てみましょう。

01 hensuu PICTURE 9999V99. 注5

　「01」はレベル番号と言います（詳しくは後述）。
「hensuu」 注6は、定義する変数の名称です。

注7） 丸め方の指定がなければゼロ側に切り捨てる。四捨五入す
るには指定が必要である。

注3） COBOLの用語では「データ項目」という。本稿では、COBOL
に独特な用語を使うことは、できるだけ避ける。

注4） 桁数を指定しない種類の変数もある。
注5） COBOLソースプログラムでは、英字の大文字は対応する

小文字と等価である。ただし、文字列定数の中は除く。
注6） 変数名には日本語も使える。本稿では英字にした。

 Author 高木 渉 （たかぎ わたる）
	 COBOLコンソーシアム 会長 （㈱日立製作所）

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

64 - Software Design

は、ほぼ裏切られていると筆者は思います。一
方で、英語で書くのでCOBOLの記述が長いと
いう、通常批判的に語られる特徴が、プラスに
働いている面はあると思っています。

 英語によるプログラム表現
　COBOLの実行部分 注8は、英語の動詞で始ま
る文の連続です 注9。たとえば、代入 注10命令な
ら、次のように書きます。

　MOVE a TO b.

　これで、変数aの値を変数bに代入します。
MOVEという動詞を使うので、ほかの言語に慣
れた人には見慣れないと思いますが、代入です。
英語らしく、ちゃんとTOという前置詞を入れ
ています。また、英語の文になぞらえて、文が
ピリオドで終わっています。
　もう 1つの例として、割り算を実行する
DIVIDE文の書き方の1つを見てみます 注11。

　DIVIDE a BY b GIVING q REMAINDER r.

　それなりに英語として読める語順になってい
ます。「変数aの値を変数bの値で割って、商を
変数qに入れ、余りを変数rに入れよ」と読めま
す。このように、一定数の決まった英単語を規
則どおりに並べることで、文を構成します。
　次にCOBOLの実行部分の構成を簡略化した
ものをリスト1に示します 。
　構造として、複数の節があり、節の中に複数
の段落が含まれ、段落の中に複数の文が含まれ
ます。英語の文章の構造をなぞった構造になっ
ています注12。
　リスト1中の、「節の名前n」や「段落の名前n」
は、いわゆるラベルですが、単に位置を示すも
のではありません。その節や段落に含まれる文

二進数の浮動小数点数型では、COBOLが扱う
十進の固定小数点数を同じ精度では扱えません。
　整数型の変数で工夫する方法はあります。小
数点以下がn桁あれば、小数点をn桁移動して整
数にし、このnを何らかの形でペアとして持っ
ていれば整数だけで固定小数点数の演算はでき
ます。演算は整数で行うので、二進数でも十進
数と同じ精度で小数点以下の値を作ることがで
きます。たとえば、2.3と3.7を掛け算するのに、
次のように分解すれば途中に小数点以下の演算
は不要です。

2.3×3.7
＝（23÷10）×（37÷10）
＝851÷100
＝8.51

　この例で書いた2.3も3.7も8.51も、整数型で
は表現できないので、工夫して保持しなければ
ならない値です。途中の演算も面倒です。丸め
制御が絡むとさらに複雑になります。
　COBOLでは、とくに指定しないで数値変数
を定義すると、各桁を実際に十進数で値を持つ
形になります。ASCII文字を使う環境ならば、
ASCIIの数字列で値を持つイメージです。
　ところで、筆者が耳にする言説で「COBOLは
十進数で演算できるから誤差がない」というのが
ありますが、正しいとは思えません。丸めが絡
む以上、演算誤差はあるのです。誤差の扱いが、
十進数を基本にした丸め方の定義に沿っている
だけです。

❷英語でプログラムを書くCOBOL

 英語でプログラムすることで期待する効果
　簡単な英語でプログラムを書くことは、当初
のCOBOLの設計方針です。もし、経営層や、
そこまでいかなくても、プログラミングと関係
ない実務担当者が、英語で書かれているという
だけでプログラムを読んで理解できるなら、夢
のような事務処理用言語です。
　しかし、英語だから誰でもわかるという期待

注8） COBOLの用語では「手続き部」という。
注9） IF文のように動詞でない語で始まる文もある。
注10） COBOLの用語では、「転記」という。
注11） 念のために補足すると、COBOLは1960年の仕様書のと

きから算術式を記述できる。このDIVIDE文の例のような、
加減乗除それぞれ用の文も用意されている。

注12） 節や段落のない書き方も存在する。

ちょっと深めのCOBOLの話
多くのシステムで使われる理由はどこにある？

第 章1

64 - Software Design Mar. 2016 - 65

しれません。大きなコンピュータで時間をかけ
て計算しても、現代の表計算ソフトの基本的な
機能で簡単にできることをやっと処理する感覚
です。しかし今では、コンピュータに処理させ
る業務処理の内容が、膨大、かつ、複雑になり、
専門にしている人でもすぐに理解できるもので
はありません。
　そもそも経営層がプログラムを読む必要性の
ある場面は、そうそうないでしょう。多くの場
合、いかに処理しているかは重要ではなく、結
果のほうに興味があるはずです。

 英語になりきれない構文
　英語や日本語などの自然言語でプログラムを
書こうという考え方は、好き嫌いはあっても、
理解はできると思います。しかし、どうやら英
語らしい構文だけでプログラムを記述すること
はできないように思います。
　たとえば、英語では処理の枠構造が作れませ
ん。構造化プログラミングが広まり、COBOL

に枠構造を作る構文が導入されたのは、1985年
の規格でした。このとき導入したのは、英語と
は言えない構文です。たとえばIF文なら、この

全体に名前を付けたものです。この違いは、
PERFORM文で節や段落に分岐するときに明ら
かになります。リスト1のプログラム構造の例
の途中で、どこかに次のような文を書くとしま
す。

PERFORM 節の名前2.

　すると、「節の名前2」というラベルに分岐し
たあと、この節の中の段落に含まれる文をすべ
て実行したあとに、このPERFORM文の次の文
に制御が戻ります（リスト2）。

 英語で書けば経営層がプログラムを理解で
きるか 注13

　プログラムは英語の文章のようには読めませ
ん。仮に逐次処理しかないとしたら、頭から読
んで理解できるかもしれません。しかし、分岐
が出てくると、途端に文章らしく読むことがで
きなくなります。また、処理の目的を知らずに
プログラムを追うことが難しいのは、英語で書
いても変わりません。
　もしかしたら、1960年当時、コンピュータが
現実的に実施できる業務処理の内容は、経営層
が読んでもわかるくらいの複雑さだったのかも

 ▼リスト1　COBOLの実行部分の構成

節の名前1 SECTION.
段落の名前1.
 文.
 ⋮
 文.
段落の名前2.
 文.
 ⋮
 文.
節の名前2 SECTION.
段落の名前3.
 文.
 ⋮
 文.
段落の名前4.
 文.
 ⋮
 文.

注13） 経営層でも、自在にプログラミングする方は除く。
 ▼リスト2　PERFORM文による分岐の例

節の名前1 SECTION.
段落の名前1.
 文.
 ⋮
 PERFORM 節の名前2.
 文.
 ⋮
 文.
段落の名前2.
 文.
 ⋮
 文.
節の名前2 SECTION.
段落の名前3.
 文.
 ⋮
 文.
段落の名前4.
 文.
 ⋮
 文.

「節の名前2」に
移る

元のPERFORM
文の次の文に
制御が戻る

処理実行

処理実行

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

66 - Software Design

があります。
　COBOLが英語表現を採用したことで得た利
点は、プログラム記述の粒度が適切なレベルに
落ち着いたことだと、筆者は考えています。ど
うやっても、詰め込み過ぎない粒度でプログラ
ムを記述するようになります。
　理解しやすさの観点での粒度の適切さについ
ては、筆者の感覚に過ぎないので、この主張に
議論はあるかと思いますが、あえて述べておこ
うと思います。
　プログラミング言語は、プログラマが楽しく
プログラミングできるようなものであるべきだ
という趣旨の主張を聞いたことがあります。そ
の点に異論はありませんが、同時に、読んで理
解しやすいものでもあるべきだと筆者は考えま
す。楽しくプログラミングできても、他人が理
解するのが困難なプログラムを書き散らすこと
になっては、のちに何度も変更しなければなら
ない担当者に酷です。

❸入出力レコードを構造化するCOBOL

 入出力レコードを分割して階層化
　COBOLの最初の仕様書が書かれた1960年当
時、OSの概念はまだ確立されていません。で
すから、COBOLのプログラムの中で、入出力
の対象には、あからさまにハードウェアデバイ
スの名前を指定しました 注14。そして、入出力
用に定義する領域は、ハードウェアと直接やり
とりするときに使う入出力バッファのイメージ
です 注15。
　筆者は、COBOLのデータ構造の作り方は、
この入出力バッファをフィールドに区切るとこ
ろから始まっていると考えています。
　入出力バッファにあたる領域をレコードと呼
びます。入出力はレコード単位に行います。レ
コードの中をバイト数でフィールドに分割し、

文を終わらせるために導入されたのは、END-

IFという語でした。しかし実際の英語には、
END-IFなどという単語はありません。結局、
英語らしく枠構造を作ることはできず、妥協し
たとも取れます。
　枠構造を作る構文を導入しても、互換性の観
点から、従来の構文は禁止していません。依然
としてEND-IFで閉じないIF文の書き方を許し
ています。このとき、IF文を終わらせるのは、
ピリオド（.）です。
　次の例の「MOVE g TO y」はELSE部に含ま
れません。「MOVE f TO x」の直後のピリオドで
IF文を終わらせているからです。このピリオド
がなければ、「MOVE g TO y」もELSE部に含
まれます。

IF a = b THEN
 MOVE e TO x
ELSE
 MOVE f TO x.
MOVE g TO y.

　次のようにちゃんとEND-IFで閉じるほうが
はるかに構造が明快です。

IF a = b THEN
 MOVE e TO x
ELSE
 MOVE f TO x
END-IF.
MOVE g TO y.

　筆者は、枠構造を作らない書き方のプログラ
ムを今から追加していくことには賛成しかねま
す。しかし、1985年のCOBOL規格以前のスタ
イルで書かれたプログラムは現役で存在します。
ときに、そうしたプログラムを読んで理解し、
変更する必要があります。

 英語を採用して良かったこと
　これまで見たように、英語（自然言語）で書く
からという理由でプログラムの意図まで読みと
れるとは思えません。また、英語らしい表現だ
けで、プログラムの構造を記述するのには無理

注14） 今はデバイス名である必要はない。文字列定数で、UNIX
やWindowsのようなファイルシステムのパス名を指定す
る構文がある。

注15） 現在のアーキテクチャではOSが間に入る。直接入出力バッ
ファとして利用することはまずない。

ちょっと深めのCOBOLの話
多くのシステムで使われる理由はどこにある？

第 章1

66 - Software Design Mar. 2016 - 67

　COBOLに特徴的なのは、下位の階層の変数
のあり方を無視して、上位の階層の変数を使え
ることです。たとえばレベル番号02のkojin-

zokuseiは、X(41)の変数として使えます。領域
のサイズを41と言い当てられるのは、フィール
ドが連接しているからできる芸当です。kojin-

zokuseiに、下位の階層の意味や切れ目を無視し
た値を代入してもかまいません。

 入出力中心のデータ領域の扱い
　レコードを分割する考え方は、プログラム内
で定義する入出力に直接関係しない領域にも使
います。入出力バッファと同じく、あるメモリ
領域をレコードとし、階層的にフィールドに分
割して、各フィールドに変数名を付けます。
　入出力バッファ内のデータ領域の扱いが、そ
のままプログラム内部のデータ領域の扱いにつ
ながる仕様は、入出力を中心にした言語設計だ
と筆者は考えています。入力したレコードをそ
のまま内部領域に移して処理でき、処理結果を
すぐに出力レコードに移せるからです。
　データの表現として、テキストで値と構造を表
す記法がよく使われますが、その処理オーバー
ヘッドにも注目すべきです。単純なCSV（comma-

separated values）形式にしても、入力した1行
を分解して対応する各変数に入れる処理や、変
数の並びからCSVの1行に組み立てて出力する
処理に、計算リソースを使います。本来の処理
でない傍流の処理でリソースを使い、性能ネッ
クになりかねません。COBOLのレコード入出
力は、そのような変換が不要な仕様が基本になっ
ています。

それぞれに変数名を付けます。たとえば、図1

のような形です。
　レコード内のフィールド分割には、次の特徴
があります。

1.フィールドが連接していて隙間がない
　ほかのプラットフォームにデータを移しても、
領域がずれない 注16

2.複数のフィールドをまとめたフィールドを定
義できる

　階層的にデータを定義すること自体はほかの
言語でも珍しくないが、上位階層と下位階層
の関係に特徴がある

　図1のレコードをCOBOLで表現してみます
（リスト3）。変数名は、図1に対応して筆者がそ
れなりに付けたものです。
　各行の左端にある「01」「02」「03」は、レベル番
号です。字下げに文法的な意味はありません。
01レベルは、レコード全体です。番号が大きく
なるほど階層が深いことを示します。PICTURE

の後ろの「X(n)」は、領域に入る英数字文字の個
数を示します 注17。ここで「X(6)」は、「XXXXXX」
と、Xを6回続けて書くのと等価です 注18。

 ▼図1　レコード内のフィールド分割のイメージ

学生番号
6バイト 住所

20バイト
氏名

10バイト

個人属性

電話番号
11バイト

 ▼リスト3　COBOLのレコード表現

01 gakusei-rec.
 02 gakusei-no PICTURE X(6).
 02 kojin-zokusei.
 03 shimei PICTURE X(10).
 03 juusho PICTURE X(20).
 03 denwa PICTURE X(11).

注16） 実際には、まったくずれることがないと言い切れるほど理
想的ではない。

注17） 説明を簡単にするために、この例で日本語データは使って
いない。

注18） 同様に、固定小数点数の例で示したPICTURE文字列の
「9999V99」は、「9(4)V9(2)」とも書ける。

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

68 - Software Design

下位の変数の切れ目を意識していると、フィー
ルドの位置がずれて意図どおりにならないこと
があるのです。1文字のデータを領域中の固定
バイト幅の塊として扱い、抽象化していないこ
との副作用です。
　なお、英数字データしか扱わないプログラム
では、データ移行に伴う領域サイズの問題は起
こりません。

仕様を残し続ける
プログラミング言語

　COBOLは今もよく使われている言語で、国
内ではJavaに次ぐ選択率（第1言語の場合）との
調査結果もあります［3］。Javaが台頭する前は、
最も使われた言語でしょう。これだけ使われて
いると、大量の資産プログラムが存在します。
過去の言語仕様を、そう簡単に捨て去ることは
できません。
　COBOLは、1960年当時の人が事務処理には
最善と考えていた技術から始まっています。本
稿では紹介していませんが、COBOLはこれま
で、規格の改正のたびに最新の技術を取り入れ
てきました。一度導入された仕様は今も残り注21、
現在の知見で判断すれば、長所も短所もありま
す。
　COBOLは初め、ハードウェア非依存という
意味で「共通」言語を目指しました。それから半
世紀を経て、COBOLは時代を超えて「共通」な
言語としても使われています。ﾟ

 領域のずれを生みやすい文字の扱い
　文字コードに関してCOBOLに特異な点に触
れます。
　2002年のCOBOL規格で、英数字に加えて各
国文字（National characterの訳）を扱う変数を
定義できるようになりました 注19。1文字に複数
バイトを占めるコード（Shift_JISやUnicodeな
ど）の文字データを格納できます。
　ここで、COBOLの仕様では、1文字を格納す
る領域の占めるバイト数が、英数字と各国文字
でそれぞれ固定であることが原則です。英数字
が1バイトで、各国文字が2バイトといった調
子です 注20。それぞれのバイト数は、COBOLの
実装者が決めていいことになっています。しか
し、たとえば各国文字は2バイトであると決め
たら、可変にはできません。COBOLは、レコー
ドやフィールドの領域サイズを意識する言語な
のです。
　ところで、プログラムをほかのプラットフォー
ムに移行するとデータの移行も伴います。この
とき文字コードが変更になることがあります。
移行先の文字コード1文字の占めるバイト数が、
移行元とは異なるとき、領域の再設計が必要に
なります。
　ことを複雑にするのが、下位の階層の変数の
あり方を無視して、上位の変数を扱える仕様で
す。たとえば、上位の変数を扱っているのに、

＜参考文献＞
［1］ ISO/IEC 1989:2014 Information technology - Programming languages, their environments

and system software interfaces - Programming language COBOL

［2］ Jean E. Sammet: The Early History of COBOL, History of Programming Languages, ACM

(1981)

［3］ 独立行政法人情報処理推進機構（IPA）、『ソフトウェア開発データ白書2014-2015』

注21） 実際には規格から削除した仕様もある。次回の規格改正時
に仕様を削除することを予告するしくみがある。

注19） 日本市場のCOBOLベンダが仕様を提案して、国際規格に
採用されたもの。

注20） UTF-8は1文字が可変バイト数を占めるので、各国文字に
使うには不適切な符号化方式である。

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

69 - Software Design Mar. 2016 - 69

opensource
COBOLとは

　「opensource COBOL」は、COBOL85 と
COBOL2002のいくつかの重要な仕様に準拠し
たオープンソースのCOBOLコンパイラです。メ
ンテナンスは、任意団体であるOSSコンソーシ
アムのオープンCOBOLソリューション部会 注1

で行っています。
　opensource COBOLは、オープンソースの
COBOLコンパイラ「OpenCOBOL」から派生し
たものです。OpenCOBOLは、日本医師会総合
政策研究機構ORCAプロジェクト注2で日医標準
レセプトソフトのために開発されました。原作
者は西田圭介氏（当時、㈱ネットワーク応用通信
研究所）です。先述の日医標準レセプトソフト
は、2002年の本運用開始以来、現在も多くの医

療機関で実運用されています。
　それでは、OpenCOBOLとopensource COBOL

の関係をそれぞれのバージョンの推移とともに
振り返ってみましょう（図1）。
　OpenCOBOLは、ORCAプロジェクト完了後、
ヨーロッパを中心としたOpenCOBOLコミュニ
ティに移管され、2009年2月にOpenCOBOL

1.1 pre-releaseがリリース、コミュニティ有志
によるバグフィックス反映版のOpenCOBOL

1.1 CE（Community Edition）が2013年にリリー
スされています。その後、フリーソフトウェア
財団（FSF）に寄贈されGNUパッケージとなり、
2014年1月にGNU Cobol 1.1がリリースされて
います。GNUパッケージとなった際、COBOL

コンパイラ（ランタイム除く）のライセンスは
“GPLv3 or later”に、ランタイムのライセンス
は“LGPLv3 or later”に移行しています。

 ▼図1　OpenCOBOLとopensource COBOLの関係

注1） オープンCOBOLソリュー
ション部会のページ

 URL http://www.osscons.
jp/osscobol/

 開発ページ（GitHub）
 URL https://github.com/

opensourcecobol/open
source-cobol

注2） URL https://www.orca.
med.or.jp/

v1.2J

2012/07

v1.3.1J

2013/12

v1.3.0J

2013/04

v1.3.2J

2014/03

v1.4.0J

2015/03

OpenCOBOL
1.1 CE

2013/05

GNU Cobol 1.1

2014/01

OpenCOBOL
1.1 pre-release

2009/02 FSFに寄贈
2013/09

OpenCOBOL

opensource
COBOL

かつてのCOBOLはメインフレーム上で利用されるばかりでしたが、現代ではLinuxなどのオープン系サーバ
での利用も増えています。本章では、そのようなCOBOLの1つ「opensource COBOL」を実際に使ってみ
ましょう。COBOLが向いていると言われる金額・利率の計算を試して、その特徴を理解しましょう。

 Author 稲垣 毅 （いながき つよし） ㈱日立ソリューションズ 技術開発本部 研究開発部、OSSコンソーシアム
	 清水 真 （しみず まこと） 東京システムハウス㈱ マイグレーションソリューション部、OSSコンソーシアム

金額・利率計算で実践

opensource COBOLを
試してみよう

第 章2

http://www.osscons.jp/osscobol/
https://github.com/opensourcecobol/opensource-cobol
https://www.orca.med.or.jp/

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

70 - Software Design

算、動的CALL文、SCREEN SECTION）を外
部のライブラリに任せており、たとえば、
COBOL言語の特徴でもある数値演算にはGNU

MP（Windows環境の場合はMPIR）を使ってい
て、一部は高速化を狙ってシンプルにした独自
のコードを生成するよう工夫もされています。
　次に、COBOL開発から実行までの一連の流
れを図2に示します。opensource COBOLコン
パイラは、COBOLソースをC言語に一度トラ
ンスレートしたあと、実行プログラムを生成し
ます。実行プログラムを生成する際にCコンパ
イラを使用するため、gcc（Windows環境の場合
はVisual Studio）が必要になります。この実行
プログラムは、通常の実行可能ファイルのほか
にsoやdllも生成できるので、他言語や他シス
テムから呼び出すことができるといったメリッ
トがあります。なお、生成された実行プログラ
ムは、opensource COBOLランタイムとCラン
タイム上で実行するため、それぞれのランタイ
ムが必要になります。
　開発にあたっては、Eclipseなどの統合開発環
境が準備されていませんので（連携することは可
能で実績あり）、COBOLソースの開発は vi

（Vim）やEmacsなどのエディタで行い、コンパ
イルと実行はシェルで行います（図3）。
　COBOLプログラムをデバッグする場合は、
基本的にgdbを用います。opensource COBOL

のコンパイラオプションでC言語のコードにト

　一方、日本のビジネス利用を指向した拡張 注3

をするため、先述の団体で参加企業を募りコミュ
ニティを立ち上げました。コミュニティ立ち上
げ後の2012年2月にopensource COBOLとし
てフォークし、定期的にメンテナンスを行って
います。現在は、バージョン1.4.0Jがリリース
されており、フォーク後は機能拡張やバグフィッ
クスで100以上のパッチを作成・適用していま
す。また、導入実績も着実に進んでおり、コミュ
ニティ内だけでも、企業の基幹系システムへの
導入やクラウド環境への適用が進んでいます。
ちなみに、開発を行っている企業が、opensource
COBOLを使ったマイグレーションサービスや
サポートを提供しています 注4。ライセンスに関
しては、OpenCOBOL 1.1のときと同じ（COBOL

コンパイラ（ランタイム除く）は“GPLv2 or later”、
ランタイムは“LGPLv2 or later”）で変更はあり
ません。

opensource
COBOLのしくみ

　opensource COBOLは、gccなどのコンパイ
ラと同様、コンパイラとランタイムが存在しま
す。コンパイラの一部の実装（ISAMや数値演

注3） 日本語機能のサポートやWindowsネイティブ（MSVC：
Microsoft Visual C++）のサポート、データベース連携な
ど。

注4） 提供サービス一覧
 URL http://www.osscons.jp/osscobol/service/

 ▼図2　開発から実行までの流れ

COBOLソース
開発者 サーバ実行プログラム

または
共有ライブラリ
（.so、.dll）

opensource COBOLコンパイラ（cobcコマンド）

トランスレート
（COBOL→C）

opensource COBOL
ランタイム

Cランタイム

開発時 実行時

サブプロセス起動

ロードモジュール
生成

Cコンパイラ
（gcc、cl.exe）

C言語
中間ファイル ［対応OS］

・Linux
・Windows

http://www.osscons.jp/osscobol/service/

70 - Software Design Mar. 2016 - 71

ランスレートした結果を出力するようにして、
COBOLソースに対応したC関数を確認します
（図4）。そのうえでgdbを使ってその関数にブ
レークポイントを設定し、ステップ実行してデ
バッグをするといった流れです（図5）。
　なお、開発目的でopensource COBOLをイン
ストールする際には、gccオプションの「-g -O0」
を付与して、コンパイルするようにしてください。

opensource
COBOLの環境構築

　opensource COBOLは、Windowsもしくは
Linux環境で実行することができます。今回は
最もシンプルなLinux環境で使用する方法を紹
介します。
　Linux環境にopensource COBOLを構築する

場合、ソースパッケージからインストールする
方法とrpmパッケージからインストールする方
法があります。またソースパッケージには、文
字コードがShift_JISとUTF-8の2種類があり
ます。
　文字コードの違いについては、コラム
「COBOLと文字コード」をご覧ください。
　パッケージは、OSSコンソーシアムのオープ
ンCOBOLソリューション部会のダウンロード
サイト注5よりダウンロードできます。2016年1

月時点の最新バージョンは、1.4.0Jとなります。
　ダウンロードサイトより、図6のパッケージ
を入手します。

 ▼図3　Vimでのコーディング（上）とシェルでのコンパイルと実行（下） ▼図4　トランスレートのみして、Cのコー
 ドを出力

$ cobc -C sample01.cob
$ vi sample01.c
（略）
/* MAIN SECTION */

/* MAIN PARAGRAPH */

/* sample01.cob:4: DISPLAY */
{
 cob_display (0, 1, 1, &c_1);
}
/* sample01.cob:5: STOP */
{
 cob_stop_run ((*(int *) (b_1)));
}
（略）

 ▼図5　gdbでのデバッグ

$ gdb sample01
(gdb) b cob_display ←gdbを起動して、ブレークポイントを設定
Breakpoint 1 at 0x4008d0
(gdb) r ←実行
Starting program: /home/inagaki/sample01

Breakpoint 1, cob_display (outorerr=0, newline=1, varcnt=1) at termio.c:214
214 if (!outorerr && !cob_screen_initialized) {

(gdb) s
（ステップ実行して処理を進める）
(gdb) s
222 display (f, fp);
(gdb) p f->data ←ある時点の値を取得
$1 = (unsigned char *) 0x400c40 "Hello World!!"

注5） ダウンロードサイト
 URL http://www.osscons.jp/osscobol/download/

http://www.osscons.jp/osscobol/download/

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

72 - Software Design

いるという点があります。プログラマが、
COBOLで扱うデータ項目の整数・小数の10進
桁数を明示的に定義することができます。また、
四則演算やべき乗の計算も自由に記述できます。
このことが、COBOLが事務計算処理に向いた
言語であると言われる所

ゆえん

以の1つになっていま
す。
　この特徴を活かして、今回はローンの返済額
を計算するサンプルプログラムをopensource

COBOL環境で実行しましょう。
　今回は、元利均等返済方式で計算を行います。
元利均等返済方式とは、返済額（元金＋利息）が
一定となるため、返済計画が立てやすい返済方
式です。
　元利均等返済方式の計算方法は図8のとおり
です。
　この計算式をCOBOLで記述すると、次のと

　また、Linux環境で open

source COBOLを実行するに
は次のモジュールが必要です。

・gcc
・gmp
・ncurses
・db4

　今回、Amazon EC2に用意
したCentOS 6.5（x64）環境で
進めたところ、これらのモ
ジュールが標準ではインス
トールされていませんでした。
そこで、それぞれyumコマン
ドでインストールを行っています。

$ yum install gcc
$ yum install gmp-devel
$ yum install ncurses-devel
$ yum install db4-devel

　続いてrpmコマンドでopensource COBOLを
インストールします（図7）。
　これでopensource COBOLのインストールは
完了です。なおopensource COBOLのライブラ
リは、/usr/local/libにインストールされますの
で、環境変数「LD_LIBRARY_PATH」にこの
ディレクトリのパスを通してください。

$ export LD_LIBRARY_PATH= $LD_LIBRARY_ｭ
PATH: /usr/local/lib

　これでopensource COBOLの環境構築は完了
です。

opensource COBOLで
ローン返済額の計算をする

　COBOLの特徴の1つに、四則演算に優れて

 ▼図7　opensource COBOLのインストール

$ rpm -ivh opensource-cobol-1.4.0J-1.el6.x86_64.rpm
Preparing... ### [100%]
 1:opensource-cobol ### [100%]

 ▼図8　元利均等返済方式の計算式

毎月の返済額 ＝
借入金額 × 月利 × （1 ＋ 月利）返済回数

（1 ＋ 月利） － 1返済回数

 ▼図6　rpmパッケージのダウンロード

72 - Software Design Mar. 2016 - 73

おりとなります。

COMPUTE PAYMENT =
 (LOAN * INTEREST-MONTH *
((1 + INTEREST-MONTH) ** (PERIODS))) /
((1 + INTEREST-MONTH) ** (PERIODS) - 1).

　またCOBOLでは、プログラムで扱うすべて
のデータ項目をデータ定義部に記述する必要が
あります。計算式で必要なデータ項目は次のよ
うに定義します。

01 COMPUTE-AREA.
 03 INTEREST-MONTH PIC 9(02)V9(09).
 03 PERIODS PIC 9(03).
 03 PAYMENT PIC 9(09)V9(09).
 03 LOAN PIC 9(09)V9(09).

　データ定義名の前に記載されている「01」はレ
ベル番号と呼びます。レベル番号を変更すること
でデータ項目の階層や従属関係を定義できます。
　このサンプルでは、01レベルの「COMPUTE-

AREA」のデータ項目の従属データとして、03

レベルで「INTEREST-MONTH」「PERIODS」
「PAYMENT」「LOAN」の4つのデータ項目が定
義されています。
　COMPUTE-AREAを初期化することで、す
べての従属データを初期化することができます。

INITIALIZE COMPUTE-AREA.

　また変数名の後ろにある「PIC …… 」は変数
の型を表しており、9は正の整数、括弧内の数
字は桁数、Vは小数点の区切り位置を意味して
います。
　このほかにも、COBOLにはさまざまなプロ
グラミングのお作法があります。もし興味があ
ればCOBOLの解説本やインターネットをご覧
ください。
　それでは「借入金額」「利率」「返済回数」から
「毎回の返済額」を求めるプログラムを紹介しま
す（リスト1）。このサンプルプログラムは、画
面にそれぞれの値を入力すると答えが求められ

 ▼リスト1　サンプルプログラム「loan.cbl」

 **
 * *
 * ローン返済額計算サンプル（元利均等返済） *
 * *
 **
 IDENTIFICATION DIVISION.
 **
 PROGRAM-ID. loan.
 AUTHOR. TOKYO-SYSTEM-HOUSE.
 DATE-WRITTEN. 2016/01/14.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. OPEN-COBOL.
 OBJECT-COMPUTER. OPEN-COBOL.
 **
 DATA DIVISION.
 **
 WORKING-STORAGE SECTION.
 01 WK-AREA.
 03 INTEREST-RATE PIC 9(02)V9(03).
 03 INTEREST-YEAR PIC 9(02)V9(09).
 03 KAKUNIN PIC X.
 01 COMPUTE-AREA.
 03 PERIODS PIC 999.
 03 PAYMENT PIC 9(09)V9(09).
 03 LOAN PIC 9(09)V9(09).
 03 INTEREST-MONTH PIC 9(02)V9(09).

見出し部。ここから下にプロ
グラム名や作成者、作成日な
どの情報を記述する

環境部。ここから下に実行環
境情報や環境変数、プログラ
ムが取り扱うファイル情報
などを記述する

データ部。ここから下にファ
イル定義、ワーク変数、外部
引数、画面定義などプログラ
ムで使用するすべてのデー
タを定義する

次ページへ続く↘︎

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

74 - Software Design

るようにしています。
　リスト1をLinux環境でコンパイルします。

$ cobc -x loan.cbl

　コンパイルが成功すると、カレントディレク
トリに実行形式のオブジェクトが作成されます
（図9）。　このオブジェクトを実行します。

$./loan

　すると、次のような画面が表示されます。

LOAN CALCULATOR
LOAN AMOUNT: ___________
ANNUAL INTEREST RATE: ______
MONTHS: ____
MONTHLY PAYMENTS: 0

　ここで、借入額は「15000000」を、利率（年）に
は2016年1月現在の主要都市銀行最低変動金利
である「0.625」を、返済回数は「420」（35年×

 **
 SCREEN SECTION.
 **
 01 SCR-AREA.
 03 LINE 01 COL 01 VALUE "LOAN CALCULATOR".
 03 LINE 02 COL 01 VALUE "LOAN AMOUNT: ".
 03 LINE 02 COL 23 USING LOAN
 PIC ZZZ,ZZZ,ZZ9 BLANK WHEN ZERO.
 03 LINE 03 COL 01 VALUE "ANNUAL INTEREST RATE: ".
 03 LINE 03 COL 28 USING INTEREST-RATE
 PIC Z9.999 BLANK WHEN ZERO.
 03 LINE 04 COL 01 VALUE "MONTHS: ".
 03 LINE 04 COL 30 USING PERIODS
 PIC ZZZ9 BLANK WHEN ZERO.
 03 LINE 05 COL 01 VALUE "MONTHLY PAYMENTS: ".
 03 LINE 05 COL 23 FROM PAYMENT
 PIC ZZZ,ZZZ,ZZ9.
 01 SCR-KAKUNIN.
 03 LINE 06 COL 01 TO KAKUNIN.
 **
 PROCEDURE DIVISION.
 **
 HAJIME.
 INITIALIZE WK-AREA
 COMPUTE-AREA.
 MAIN-000.
 DISPLAY SCR-AREA.
 ACCEPT SCR-AREA.
 MAIN-100.
 COMPUTE INTEREST-YEAR = INTEREST-RATE / 100.
 COMPUTE INTEREST-MONTH = INTEREST-YEAR / 12.
 * 毎回の返済額 = (借入金額 * 月利 * ((1 + 月利) ** (返済回数)))
 * / ((1 + 月利) ** (返済回数) - 1)
 COMPUTE PAYMENT =
 (LOAN * INTEREST-MONTH *
 ((1 + INTEREST-MONTH) ** (PERIODS))) /
 ((1 + INTEREST-MONTH) ** (PERIODS) - 1).
 MAIN-900.
 DISPLAY SCR-AREA.
 ACCEPT SCR-KAKUNIN.
 OWARI.
 STOP RUN.
 --------------------<< END OF PROGRAM >>-----------------------

DATA DIVISIONで定義した
LOANを入出力項目として使
用する

DATA DIVISIONで定義した
PAYMENTを出力項目とし
て使用する

手続き部。ここから下にプロ
グラムで実行する処理を記
述する

WK-AREA、COMPUTE-
AREAを初期化する

SCR-AREAを画面に表示する

LOAN項目を画面に表示する
とき、ゼロサプレスとカンマ
編集を行う。また、値がゼロ
のときは空白を表示する

画面の1行1桁目から“LOAN
CALCULATOR”という文字
を表示させる

計算された結果を反映し、再
度SCR-AREAを画面に表示
する

SCR-KAKUNIN項目の入力値を受け取る。通常は、ここで受け取る値（“Y”や“N”など）を
判定し、繰り返すか終了するか分岐するのだが、このプログラムでは無条件に終了へ流れる

SCR-AREAの画面から入力
値を受け取る

画面定義節。ここから下に画
面への入出力情報を記述す
る

↗︎前ページの続き︎

74 - Software Design Mar. 2016 - 75

12ヵ月）を入力し©キーを押します（なお、
項目の移動は†キーもしくはÑキー、à

キーで行います）。
　すると、1回あたりの返済額が表示されます。
この場合は「39,772」となっています。

LOAN CALCULATOR
LOAN AMOUNT: _15,000,000
ANNUAL INTEREST RATE: _0.625
MONTHS: _420
MONTHLY PAYMENTS: 39,772

まとめ

　opensource COBOLは、Linux環境でCOBOL

の開発・実行を手軽に行うことができるOSSで
す。その昔、COBOLで開発をしていた方でも、
これからCOBOLを使う方でも馴染みやすいも
のです。この機会にぜひ一度お試しください。
　最後に告知です。opensource COBOLの次期
バージョンのリリースが2016年春ごろに計画さ
れています。それに伴い、新バージョンのリリー
ス内容や事例紹介のセミナーも同じく春ごろに
計画されています。日程などが決まり次第、OSS

コンソーシアムのWebサイト注6で発表しますの
で、興味／関心のある方は参加してみてはいか
がでしょうか。ﾟ

　COBOLと最も相性の良い文字コードは何でしょ

うか？

　COBOLはもともと、メインフレームなどの大型

コンピュータで使うための汎用プログラミング言

語として開発されました。そのメインフレームが

標準としていた文字コードはEBCDICコードです。

これは、半角文字と全角文字のバイト数が、それ

ぞれ明確に半角は1バイト、全角は2バイトと決

まっており、COBOLプログラマもそれを前提とし

たプログラムを作成してきました。

　たとえば、COBOLのデータファイルは固定長

を基本としていますが、並び替え（ソート）処理

においては、バイトオフセット（xバイト目から

yバイト目）で並び替えのキー値を指定します。

また、データ項目の内部を参照する場合でもバ

イトオフセットを使用します（リストA）。

　このようにCOBOLは、データのバイト位置を

意識してプログラミングされているケースが多い

ため、バイトが可変となるUnicode（UTF-8など）と

は相性が悪いと言えます。またEUCについても、半

角カナ文字が2バイトとなるため、ここがEBCDIC

とは異なります。

　その結果、半角、全角文字のバイト数がEBCDIC

とまったく同じであるShift_JISが、COBOLと最も

相性が良い文字コードと言えます。

COBOLと文字コード

 ▼リストA　データ項目の内部参照例

01 IN-ADDRESS PIC X(20).
01 OUT-ADDRESS.
 03 OUT-ADDRESS-1 PIC X(10).
 03 OUT-ADDRESS-2 PIC X(10).

MOVE IN-ADDRESS(1:10) TO OUT-ADDRESS-1.
MOVE IN-ADDRESS(11:10) TO OUT-ADDRESS-2.
 ※COBOLのバイトオフセットは1から始まる

 ▼図9　実行形式のオブジェクトが作成される

$ ls -l
-rwxr-xr-x. 1 user user 18492 Jan 21 12:00 loan ←実行形式のオブジェクト
-rw-r--r--. 1 user user 3387 Jan 21 12:00 loan.cbl

注6） URL http://www.osscons.jp/

http://www.osscons.jp/

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

76 - Software Design

真面目な話、
COBOLの何が悪いのか。

　COBOLは、COmmon Business Oriented

Language=共通事務処理用言語というその名が
表すように、始まりからして事務処理や帳票業
務のプログラミングを宿命として生まれてきた
言語です。最近のシステム開発は、COBOLが立
ち上がった時代には想定していなかった技術や
業務領域での開発が多数を占める状態になって
きていますが、金融においてもFintech然

しか

り、そ
のトレンドは避けられるものでもなく、結果と
して、言語仕様上そんなことは考えてなかった
的なCOBOL界隈の苦労がコストにも跳ね返って
いる状態が、筆者のまわりで観測されています。
　当然、COBOLへの風当たりはいよいよ厳し
く、業界向けネットメディアではもっぱらDis

られるばかり。莫大な人月ベースでの改修予算
を捻り出すための責任を押し付けられる、悲し
い言語に成り下がっている感があります。でも、
COBOLってそんなに悪い子なんだっけか？
　COBOLの言語仕様の特徴として、自然言語
に近い構文を持つとWikipediaには書かれてい
ます 注1が、実際そのとおり、人語の様相そのま
まです。自然言語と同じように、処理系依存（地
域）の方言があり、時代に合わせての拡張（若者

言葉）もあれば、文脈依存で処理が振れる（ここ
ではきものをぬげ）など、よく言えば実に多国籍
で華やか、悪く言えばお隣さんとでさえ言葉は
通じない的なノリ。
　共通言語として世に放たれた仕様ですが、プ
ラットフォーム依存する Javaや JavaScript、
CSSの初期と同じように、実行環境の多様化と
利便性追求という囲い込みのなか、共通仕様が
分断されていく世界線がここにもあります。

至高のDSLとしての
COBOL

　もしDSL（ドメイン特化言語：Domain Specific

Language）の究極 VS. 至高の対決を企画するな
らば、究極のDSLとも言えるUNIXシェルスク
リプトに真っ向から勝負を挑む、至高のDSLと
してCOBOLを推薦したいわけですよ。COBOL

こそ、ドキュメントDBなど差し置いて、真の
意味で（紙の）伝票と台帳を管理するDSLである
ことに異論はないはず。
　一例を挙げれば、Cの構造体での順序保証の
もとになっているであろう注2、COBOL注3の数

注1） URL https://ja.wikipedia.org/wiki/COBOL

注2） 興味深い議論は URL http://nanyanen.jp/comp/struct.
html などに。

注3） Professor Charles Nicholas, The University of Maryland
(2002) UMBC CMSC631 -- Fall 2002 Principles of
Programming Languages Section 0101 URL http://
www.csee.umbc.edu/courses/graduate/631/Fall2002/
より URL http://www.csee.umbc.edu/courses/graduate/
631/Fall2002/COBOL.pdfが地味に面白い。Rubyには
COBOLの思想が受け継がれているという評価。

COBOLがDisられるのはなぜか？　それは誤解が多いからではないでしょうか。本稿ではその原因を明らかに
し、IT業界を生き抜くための知恵をそこから導出します。あえて本音で書き散らしますが、それゆえ辛口・口
語調はご容赦ください。ガツンと行こうぜ！

 Author 谷口 有近 （たにぐち ありちか）
　　　 team Sirocco, LLC/チームシロッコ合同会社　代表執行役員社長　Twitter @arichika

本質を見極める力

良いCOBOL、
悪いCOBOL

第 章3

https://ja.wikipedia.org/wiki/COBOL
http://nanyanen.jp/comp/struct.html
http://www.csee.umbc.edu/courses/graduate/631/Fall2002/
http://www.csee.umbc.edu/courses/graduate/631/Fall2002/COBOL.pdf

良いCOBOL、悪いCOBOL 第 章3
本質を見極める力

76 - Software Design Mar. 2016 - 77

ター業務との分業化に適したシステムデザイン
を生み、技術の進化がさらに高速で大容量のデ
バイスを登場させ、その環境変化に都度、伝票
管理業務を適応させてきた英知の蓄積が、現在
のCOBOL、至高のDSLなのです。

COBOL言語の成功

　DSLであることは、事務処理数≒仕様書数≒
実装（画面）数、という関係性を高い信頼度で維
持して開発プロセスが進行することを担保しま
すから、仕様を単純化したり使い回すなりして
業務仕様の整合性の観点でその品質を一定水準
で維持できれば、機械が理解する命令への転記
という作業のコストは、機能数や画面数、そし
て並行稼働可能な転記作業の人数をもって近似
ができるわけです。
　このことは、規模や工数をFP（ファンクショ
ンポイント）やステップでとらえるアプローチの
信頼度を高めるので、見積もりのブレを抑える
ことにつながり、結果として安定した利益率を
実現します。エンタープライズなプロジェクト
マネジメントと大手SIerの爆誕ですね。利益率
の向上には、仕様工程と転記工程での品質担保
が必須です。製品の歩留まりを見るように、業
務区分やコード行数、担当者とバグとの相関を
観測し始めるわけです。コード転記作業の自由
度は品質を悪化させる悪ですので、仕様書通り
に書くことこそが正義です。
　台帳管理業務の一部として、業務仕様書に書
かれることが多い管理対象データの検索更新操
作の手順 注6ですが、これも、仕様書から命令
セットへの転記として処理ができたほうが、DSL

の役割としては適切です。RDBMSが登場した
際にも、その操作を埋め込みSQLという形で、
仕様書からコードの一部として容易に転記でき
るようになっていきます。
　COBOLが伝票管理事務作業のDSLであるこ

値型や集団項目注4の実装でしょう。ハードウェ
ア側から見れば、当時の潤沢ではないリソース
環境でのテクニックの駆使で、ただひたすらに
感心し、モダン言語の富豪っぷりに感謝の気持
ちを抱いてしまいます。
　しかし、これを業務ロジックの実装側から見
れば、IEEE754制定以前の世界で小数点以下の
存在を前提とする10進数で上等な通貨を、誤差
なく運用しなければならないという要求をふま
えたうえで、日付情報の部分管理や階層化グルー
プ化された各入力内容の操作に対するプログラ
ミング上の便宜、さらには固定長電文としての
管理上の利便性と性能の担保という機能があり
ます。これはつまり、伝票の管理事務作業とい
うプログラミング、要は契約台帳＝紙の束の管
理というドメインに最適化された要素になって
います。
　当時の事務作業の機械化という行為は、事務
作業のハードウェア化に直結していた時代です。
伝票台帳の管理業務は、オープンリールなどの
磁気テープメディアの管理とほぼイコールだっ
たので、台帳管理に対する指示命令は、磁気テー
プや磁気ディスクに対する指示と同等です。伝
票の印刷は連帳プリンタの操作と同等です。ゆ
えに、変数の値をコピーして計算するといった
抽象化された演算命令と、台帳管理としてのハー
ドウェア特性に依存するファイル操作やデバイ
スの指示が、それぞれに同じ抽象化水準として
言語空間で同等に扱われているのが、事務作業
DSLとしてのCOBOLの特徴です 注5。
　COBOLの歴史は、契約伝票と台帳としての
管理の歴史とイコールです。手作業だった伝票
管理事務作業が、公衆網の発達とともに電子化
され、経済発展とともに地方拠点の増加とセン

注4） 無理矢理に今っぽく言えば、任意の場所を指定可能な名
前付き添え字を持つスコープのないバイト配列、または、
メモリ上の格納順序が保証されていて境界の踏み抜きが
可能な名前付きでグローバルなタプル。どう考えてもバ
グの温床ですが、その固定長バイト配列のような発想は、
GC（ガーベジコレクタ）を極力回避しなければならないよ
うな高負荷環境では今でも大切な設計視点。

注5） 抽象化のレイヤが少ないことそのものが、古い言語では時
代背景的に一般的。MSX-BAISCでのVPOKE/VPEEKしかり。 注6） どの帳票を検索してどう更新するか、というCRUD。

 Author 谷口 有近 （たにぐち ありちか）
　　　 team Sirocco, LLC/チームシロッコ合同会社　代表執行役員社長　Twitter @arichika

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

78 - Software Design

とは強力かつ有益な個性です。その強烈な個性
は、社会の電子化というトレンドのなか、方言
バリバリの言語仕様を提供する汎用機メーカー
と、方言だらけのSQL文法を提供することにな
るRDBMSメーカーにとって、自分達のしばし
の成功を約束するものとなりました。

現場の実態と転換点

　「仕様策定の工程に対して、プログラミングは
製造工程である」という考え方 注7がありますが、
筆者は、前述したCOBOL言語（＝言い換えれ
ば、その時代のプログラミングへの要請）がもた
らしたプロセスとその標準化の成功がこの観点
を決定的なものにした、という見方をしていま
す。
　製造工程である認識であれば、ミスのない製
造をするためには仕様書から自動製造すべし、
というアプローチが生まれます。業務仕様書に
書かれた内容からCOBOLコードを自動生成す
る Excel VBAが現場で開発され、モジュール管
理はAccessフォームで実現されていくわけで
す。秘伝のタレと化したExcelやAccessは、時
としてOfficeのアップデートに抗い、そして誰
かが破損させたであろうファイルを巡って軋

あつれき

轢
を生むことになるのですが、一方で営業はこの
便利道具が売り物になると気がついてしまい、
高速開発ツールと銘打って売り出すわけです。
業務仕様書のさまざまな観点での整合性を無視
しながら。
　「プログラミングは製造である」。この観点は、
品質マネジメント規格ISO9001で要求される製
造工程の観測や、開発と運用の分離という命題
とも影響しあいながら注8、まさに今のSIの現場
を形作っていきます。結果として、利益率の向
上を実現し、経済成長を支えていくことになり
ます。皆さんがお察しのとおり、インターネッ

トが登場するまでは。

足枷となった標準化

　製造である以上、業務仕様書をもとに具現化
されたロジックは観測可能な指標を用いて数値
化されます。たとえばステップ数とバグとの関
係です。転記においてはステップ数≒製造時間
であり、機械の稼働時間のように費用が計算さ
れ、人月が決定されていきます。プログラマの
創意工夫は否定されるべきで、設計時点ですべ
てを決めることになります。高コストであって
も利益の源泉になるからこそ再利用される前提
の業務設計は、環境の変化を追従せずいつまで
も蔓

はびこ

延る結果、おいてきぼりです。この世界で
は、業務設計は実装とイコールで、基盤の予算
が実装規模と関係なく先に決定してしまいます。
また、先に決まっているわりに業務仕様がそれ
を前提としないアホな設計だったりするなんて
ことも。そんなこんな分断されたプロジェクト
では出来上がってもまともに動くはずもなく、
開発と設計と運用はいよいよ対立し、設計は業
務設計しかできず、ゴミのようなシステムが生
まれるわけです。
　過去の開発現場では、相応のコンパイル時間
を必要とするのが当時の当然でした。しかし、
モダンな開発言語やプロセスで実現されていく
世界の改造は、コンパイルを帰宅前に仕込んで
翌朝結果を見ていた時代の速度とは、まるで違
います。CPU速度は、開発言語や開発体制その
ものの変化を誘発し、時代を変える速度さえも
加速させているという現実に、我々は自覚的で
しょうか。
　誤解を恐れず、強い意志を込めて意見を表明
したいと思いますが、COBOL時代に実現した
成功プロセスが生み出した標準化により隠蔽さ
れた“何か”を意識せず、先人が当時に苦労して
発明した手順上の理想をなぞった経験だけで自
らを正当化した程度の人材が、いわゆるネット
な今と、これからの時代に期待される技術主導

注7） ソフトウェア工学のうち生産工程として力点を置く分野な
ど。

注8） 機会があればここも掘り下げたいのですが、今回は省略。

良いCOBOL、悪いCOBOL 第 章3
本質を見極める力

78 - Software Design Mar. 2016 - 79

トートロジーでしょ。

COBOL“的”からの
即時脱却を

　COBOLは、時代背景を考えれば素晴らしい
役割を果たした言語です。とはいえ、命令セッ
ト抽象化レベルが、今どきのインフラ構成や機
能の分離とは一致しておらず一体化しているた
め、実行環境の制限の中で、開発後半での調整
範囲は限定的でドラスティックに変えにくく注10、
新規開発で選ぶことは絶対にない言語の1つだ
と思います。
　とくに、継続的にメンテナンスし続けていく
ことが強く求められる業務システムでは、書く
人で省略記法の癖が全然違う！　このNOTはど
こまで係ってるんだっけか？　などという有様
は当然ながら困るわけです。もちろん人手に任
せればモダン言語でも容易に起こるこれらの問
題、今ならコードライティングの時点で随時指
摘してくれるアプリケーションも存在します。
ではCOBOLでは？̶̶実行時エラーでしか判
断できないコードも容易に書けてしまう言語で
は、やはり厳しいでしょう。
　それならば「Javaで開発だ！」としたところで、
COBOL時代の成功パターンとしてのエコシス
テム注11を変えなければ、staticだけの無駄に長
大なメソッド実装とクラス作成申請書による詳
細設計管理のコンボで、その言語特性の恩恵を
無視しているだけでなく、ドブに捨てているの
と同じです。だからといって、大人数での並行
開発なのに何でもアリにしてしまえば、あっと
いう間にオブジェクト迷宮なOOPの出来上が
り。1行変えたら全サービス死亡みたいなノリ
も容易に起こる無法地帯になります。
　ここに、我々が注目しなければならない事実
があると考えています。COBOL時代の開発の

によるビジネスアイデアや仕様の検討、そのよ
うな価値を売るサービス営業、そしてそれらの
開発を管理職として工程を管理するようなこと
が果たしてできるものなのでしょうか。筆者は
無理だと考えています。

変えられなかった価値観

　PMやSEは技術を知らずして成り立つか、と
いう命題もちょくちょくネットで取り上げられ
ますが、COBOL時代のような製造工程管理と
してのプログラミングで良い程度の案件なら、
そりゃ技術なんぞ知らなくても心理戦で現場を
押し切ってしまえばオンスケ達成なんぞできる
ぜよ程度の話ですわな、と。COBOL時代のノ
リで今も見積もりやら設計やらマネジメントや
らを極めようとしてるから、そりゃぁクッソダ
サい画面の業務システムしか創れないし、そん
なんでクラウドのシステムが組めないってさ、
何言ってやがんの？　FP法でFacebookやら
Twitterやら見積もってみやがれ、と本音では
言いたくなるわけです 注9。
　非効率な現場をさらに混乱に陥れるような人
材採用で毎月ウン十万円の出費は許されるのに、
開発環境を改善する月額2万円程度クラウドサー
ビスやアプリケーションの稟議は通らず、今や
設計品質にさえ影響を与える開発者用の端末は
なぜか非力なノートPCのままです。しかもPC

の性能はコードを書かない管理職と同じかそれ
以下です。さらに、担当範囲の進捗率をパーセ
ント単位で日々のExcel日報で報告することをい
まだに求められているという現状さえ、事実と
して存在しています。挙げ句の果てに業界団体
は、「総工数（人月）＝係数A×画面数＋係数B×
バッチ数」で開発工数との相関ガー、などという
ショーモナイ議論を飽きずにやっているのです。
　ゴールありきで走り出したエンタープライズ
な案件のアンケート結果から推定したら、そりゃ

注9） 言っちゃってますけどね。

注10） 書けばわかる……直そうとすればわかる……変えようとす
ればわかる……。

注11） 開発プロセスだけでなく、仕様決定プロセスから基盤の発
注管理まで含めたシステムマネジメントのライフサイクル
としての生態系。

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

80 - Software Design

常識は、今やその大部分が非常識なアプローチ
である、そう言い切っても過言ではないと思い
ます。しかしながら、シリコンバレーで流行っ
てる、有名なあの人が言ってた、バズってるの
でこれ言っておけば先端っぽいだろ的なノリで
突入してしまうと、そりゃもうモダン言語でモ
ダンテクノロジーだろうが、システムが容易に
死ねるわけです。
　いやね、メモリ足りてないドキュメント指向
データベースにログぶち込むとか、ぐにゃっと
した業務システムをオサレだからと関数型で開
発してみたりとか、コスト構造が高止まりの背
景を顧みず、改竄不可な低価格ストレージだ！
と言ってみたり、安くなると言われてIaaS上に
システム載せ変えて性能が出ないとか、もう屍
の山ですよ。

COBOLこそ
DevOpsへ！

　COBOL言語を前提に、よりよく書こうとす
る行為そのものは、クラウド時代になった今で
も、プログラミングにおける要点の観点で、そ
れほど変わらないのも事実です。最適なインデッ
クスでデータを当てて、少ないリソースでデー
タを処理し、効率的なデータの変換操作を目指
す̶̶ハードウェアリソースが限られていた時
代だからこそ、そのコードの書き方は、クラウ
ド的な分散処理の発想と似ています。埋め込み
SQLは、その抽象化を進化させていけば、O/R

マッパー、そして統合言語クエリ（LINQ注12）の
ようなアプローチにもたどり着きます。
　「要求仕様に合わせ、確実に設計し、あとあと
手戻りしないようプロセスを管理する」ことと、
「変わり続ける仕様を前提に手戻りしても変えや
すいように確実に構造を設計しプロセスを回す」
ことは、どちらもプロジェクトの成功を目指し
ているものの、決定的に異なる知識と環境、判
断の上に成り立ちます。

　継続的インテグレーションの概念が育ってい
ない時代に成功した開発体制や道具の使い方の
ままで改修を続けていれば、そりゃテスト費用
も改修費用も人力総当たりですし、囲い込みの
ど真ん中ですから、コストに跳ねかえって当然
です。それが嫌なら、違う成功パターンを目指
していかなきゃなりません。そのためには、発
注元の覚悟も要求される時代になっているわけ
です。それがDevOpsであり、アジャイルスク
ラムの思想でもあるわけです。

成功体験を捨てろ！

　COBOL言語としてイケてないから脱却しな
きゃならないなんてことはありません 注13。古
い時代のCOBOL言語を前提とした仕様検討と
開発の体験、そして囲い込みに見事にはめ込ま
れてしまった経営的課題を解決しようとせず、
結果としての高コスト構造のCOBOL界隈から
逃げ出すためだけに改修するなど、いかほどの
費用をかけようとも、それはすでに形骸です。
あえて言いましょう！　カスであると！　脱却
すべきは、COBOL時代に習った成功体験です。
　COBOLが抱える課題は業界の歴史そのもの
です。一時代を確実に築き上げた言語からは学
ぶことが多いはず。同じ失敗を他言語でも踏み
抜かないよう、精進していこうじゃありません
か。ﾟ

注12） URL https://ja.wikipedia.org/wiki/統合言語クエリ

注13） 古い古いってね、モダンなCOBOLならオブジェクト指向
＋マルチスレッドで書けるんですわ。いや、そりゃ、だか
らといって書きたいとは思わないんですがね、エンジニア
のライフプランとして……。

https://ja.wikipedia.org/wiki/%E7%B5%B1%E5%90%88%E8%A8%80%E8%AA%9E%E3%82%AF%E3%82%A8%E3%83%AA

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

81 - Software Design Mar. 2016 - 81

COBOLから
別の言語に移った理由

　筆者がCOBOLからその当時Visual Basic/

Java/C＃ .Netといった今どきな言語を使うプロ
グラマにキャリアチェンジしようと思い立った理
由は、「これからCOBOL案件は減少する。他の
プログラミング言語を習得しないと生き残れな
い」というまわりの話を聞き、それを真に受けた
からでした。加えて当時のメインフレーム開発で
一般的に行われている仕事のやり方や慣習に漠然
とした疑問を抱いていたことも挙げられます。
　そのあと、幸か不幸かあまり学習しないまま
COBOL以外の言語を使う現場に移ることがで
きましたが、「漠然と疑問を抱いていた仕事の慣
習」は以前のままでした。具体的には、次のよう
なものです。

1. 大規模なシステム開発のメンバ（プログラマ）
という位置付けのため、自分のコードが誰の
役に立っているのか把握できない

2. 1行で済むコードの仕様を、半日かけて設計
書に書き起こさなければいけない

3. 一度テストして納品したあとに、仕様に欠陥
があることがわかり、修正が必要なのに、上
長からの指示なしでは対応できない

4. 実際にプログラムを動かしてみればすぐにわ
かるのに、テストエビデンスとして画面のハー

ドコピーを毎回とり、Excelのシートに貼り
付けねばならない

　これらが筆者にはどうしても理不尽に感じら
れ、SNSやブログなどで目に入る「Web系」と言
われる人たちがとてもキラキラして見えました。
そして彼らの「ソフトウェアエンジニアを大切に
する」という価値観が非常に魅力的に感じ、独学
でWebプログラミング言語であるPHPやRuby

の習得に取り組むようになりましたが、それら
を習得するのはたいへんでした。その一番大き
な理由は、Webプログラミング関連の書籍が、
読者がWebの基本的な知識をすでに持っている
前提で執筆されていたからです。
　きっとCOBOLからWebプログラミング言語
の習得で苦労されている方も、「COBOLだか
ら」だけではなく、暗黙的に「Webの知識」を求
められるところで苦労されているのではないで
しょうか。それならWebプログラミング言語の
勉強をする前にWeb技術の勉強をすればいいの
か――と思われるかもしれません。が、ご存じ
のようにWeb技術は、非常に幅広く深いため、
業務の片手間に独学をするのはなかなかたいへ
んです。そこで、仕事と並行して無理なくWeb

系言語（ここでは、PHPを例として取り上げま
す）を習得するためのノウハウを本稿では紹介し
ます。

皆さん、こんにちは。フロイデ㈱の吉谷 愛と申します。筆者はちょうど10年以上前に、エンジ
ニア人生をCOBOLプログラマからスタートさせ、その後Visual Basic/Java/C＃.Netにキャ
リアチェンジしたのち、PHP/Rubyを習得しました。現在は経営者兼技術講師という肩書です。
本稿では講師経験をもとにCOBOLプログラマが別の言語を習得するノウハウを紹介します。

 Author 吉谷 愛 （よしたに あい） フロイデ㈱　代表取締役

壁を越える力を身に付けよう

第 章4 COBOLから別のプログラミング
言語を習得するときのヒント

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

82 - Software Design

う。そこで「XAMPPとは何なのか？」と問えば、
「PHPインタプリタはもちろん、Apacheや
MySQLや、そうそうphpMyAdminなど、いろい
ろなフリーのソフトウェアやライブラリをパッケー
ジとしてまとめたものだよ」と答えるでしょう。そ
こで「インタプリタ？　Apache？　MySQL？

phpMyAdmin？」と聞くと、きっと「後はググって
くれ」と言われておしまいです。そこであなたは
PCを立ち上げて検索します。すると「HTTP」や
「Webサーバ」についての“膨大な量の”記述を見
つけます。もしかしたら、その過程であなたは
Webテクノロジの深淵に少しだけ触れられるか
もしれません。しかし、そんなふうにXAMPPに
ついて完璧に理解するまで、XAMPPのインス
トーラをダウンロードしないのであれば、あなた
の最大の目的であるはずの「PHPの開発環境を作
るにはどうすればいいか」という疑問の解決はか
なり遠くなることでしょう。
　Web技術は非常に深く広く豊穣であり、情報
量もまた膨大です。そしてそれがすさまじい速
さでアップデートされています。それを理解し、
さらに支配しようとしても、なかなかうまくい
かないでしょう。

なぜCOBOLプログラマは
壁にぶつかるのか？

　実は筆者たち技術講師にとって、「COBOLか
らPHP/Rails/Java講座」は難易度の高い案件に
なります。なぜかと言えばアンケート結果が、
他の講座に比べ今一つ辛い評価になりがちだか
らです。思い当たる理由はいろいろありますが、
講師たちと話をしているとよく「技術の説明をし
ているのに、なぜか設計など業務の話に結び付
けてくる方が多い」という話になります。理由と
しては次のものがあるのではないでしょうか。

1. 自分の実業務と紐づけることで理解を深めよ
うとしている

2. 実装（プログラミング）より業務知識が最優先
だと考えている

COBOL技術者がPHPを習得
する際に躓きやすいポイント

COBOLとPHPを紐づけながら
学習しようとする

　これは筆者が最初にやった失敗です。たとえ
ば、COBOLの「DISPLAY」とPHPの「print」な
ど、ごく簡単な命令語であれば問題ありません。
やはりPHPなどと比べるとCOBOLは非常に冗
長なプログラミング言語です。PHPにはIDENT

IFICATION DIVISION.に該当する構文はあり
ません。逆にCOBOLにはジェネレータ機能が
ないので、無理にyieldキーワードに該当する機
能を探そうとしても結び付けられません。そこ
で無理に紐づけようとすると、COBOLにない
プログラミング言語のメリットを理解しづらく
なったり、変な勘違いを起こしたりする恐れが
あります。

プログラミング言語だけに
フォーカスして学習しようとする

　PHPのようなWebプログラミング言語を習
得する場合に使用する言語は、（そういうただし
書きがないまま）Webの基本的な知識が前提と
なっていることがあります。その場合、プログ
ラミング言語の文法自体は何となく理解できて
も、その全体像はもちろん、その書籍が本当に
言わんとしていることが理解できないままとなっ
てしまう可能性があります。COBOLエンジニ
アにCOBOLの文法だけではなくメインフレー
ムやJCLなどの知識も必要なのと同様です。

一言一句完璧に理解してから
先に進もうとする

　たとえば「一言一句完璧に理解しながらPHPを
勉強しよう」と思いたったあなたが、同僚のPHP

エンジニアに「PHPの開発環境を作るにはどうす
ればいいか」と質問したとします。おそらくその
方は「XAMPP」を使った環境構築を勧めるでしょ

82 - Software Design Mar. 2016 - 83

　1．に関しては、アジャイル開発のように、
「PHPを使用したWebアプリケーション開発で
は普通に行われているけれど、メインフレーム
を使用する開発ではめったに行われない開発手
法」があります。その開発手法を理解しないまま
実業務に無理やり結び付けようとすると、前述
したように混乱する一因になります。
　2．については一概には言えません。ただ、一
般的にWebアプリ開発では、いわゆる上流工程
を担当する設計者にもWebの技術知識や開発・
テスト手法、インフラ／ネットワークやプログ
ラミング言語などの、より「Webエンジニアリ
ング」な知識を幅広く求められることが多いよう
です。またメインフレーム開発に比べ、非常に
短い期間で要件定義・設計・製造・テストを行
うため、役割をあまりはっきり区別しないこと
もあります。要件定義をしたエンジニアがその
ままプログラミングを行うことは、往々にして
あるようです。

COBOLエンジニアが効率よく
Web系言語を習得するコツ

COBOL言語はいったん忘れましょう！
　前述のように、COBOLとWebプログラミン
グ言語を無理に紐づけて理解しようとすると、
かえって混乱することが多くなります。いった
んCOBOL言語は忘れましょう。新人が最新の
技術をあっという間に習得できるのは脳が柔ら
かいだけでなく、そういう「混乱をきたす紐づ
け」自体ができないのでそのまま素直に吸収せざ
るを得ないというのもあります。

「勉強する」ではなく
Webアプリを作りましょう！

　とにかく最初は「勉強」というスタンスではな
く「豊穣なWebアプリ技術の恩恵にあずかる」と
いう気持ちで、素直に工作を楽しむようにWeb

アプリを作ってみてください。「理解する」こと
を目的とせず「Webアプリを作って動かす」こと

を目的にしましょう。とにかくよくわからない
ままでも作ることで、0だった知識は1になりま
す。COBOLエンジニアの方はエンジニアだか
らこそなのでしょうが、真から理解することで
安心し、かつ深い満足感を得る傾向にあると思
います。その気持ちは元COBOLエンジニアと
してとても共感できます（図1）。
　しかし、Webアプリ開発に関しては、最初は
「習うよりも慣れろ」だと割り切って、まず1つ
Webアプリを作ってデプロイし、自分のスマー
トフォンやPCで自分の作ったWebアプリが
思ったように動くかどうかを、試してみるとこ
ろから始めてください。そして「では今度はこん
な機能を追加できるだろうか？」と実際にそれを
試してみましょう。要は「勉強」を目的とせずに
手段とするのです。英語を習得したいなら日本
語の通じない海外に行けば嫌でも覚えるとよく
言います。その場合、英語は「目的」ではなく、
その土地で生きていくための「手段」です。同様
に「Webアプリを作る」ことを目的とすれば、自
ずと「技術習得」は、そのための手段となります。

Webアプリ構築時は
「デプロイ」までやってみる

　デプロイとは、レンタルサーバやクラウドに、
ローカル環境で作成したWebアプリを配置して

 ▼図1　 習うより慣れろ！　まずは実践あるのみで作ってみま
しょう！

壁を越える力を身に付けよう

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

84 - Software Design

後は、自分のテストの知識を捨てはせず、Web

開発の中でも比較的テスト領域内もしくはそれ
に近い「テスト自動化」や「TDD（テスト駆動開
発 注2）」などを学ぶことで、少しずつWebアプ
リ開発の世界に入っていくことができました。
　スティーブ・ジョブズ氏の『connecting the

dots』をご存じでしょうか？

「先をあらかじめ見通して点を繋ぐことはでき
ない。振り返って、繋ぐことしかできない。だ
から将来何らかの形で、その点が繋がると信じ
ることだ。何かを信じ続けることだ。直感、運
命、人生、カルマ、その他何でも。この手法が
私を裏切ったことは一度もなく、そして私の人
生に大きな違いをもたらした」

　あなたがCOBOLや汎用機で習得した知識や
経験は、まさにここでいう「dot」です。Webプ
ログラミング言語学習で得た知識も「dot」です。
無理にCOBOLとWeb系のプログラミング言語
という「dot」をつなぐのではなく、いずれそれ
らがつながると信じて学習していってください。
　私事で恐縮ですが、筆者自身もCOBOL技術
を習得してWeb系に転じたときは、まったくそ
れらがつながるなどとは考えてもいませんでし
た。ところがテスト技法だけはなく、メインフ
レーム開発から離れて十年以上たって「COBOL

技術者向けRails講座」を考案し、それが2年前
に福岡県主催の「フクオカRuby大賞」の奨励賞
を受賞しました。その結果COBOLエンジニア
の方向けのWebアプリケーション技術習得セミ
ナーの企画をさせていただく機会が増えるよう
になるとともに、筆者の会社の知名度も向上し
ました。
　筆者はこのような結果を想定して、COBOL

インターネット経由などで使用可能な状態にす
ることです。デプロイすることでインターネッ
トに接続されたPCやスマートフォンから構築
したWebアプリを利用できるようになります。
自分で考えて作ったWebアプリを、自分や友人
のPCやスマートフォンなどで確認できると、そ
れだけで確実にモチベーションが上がります。
それと同時に「よくわからないままチュートリア
ルに沿ってWebアプリを作ってみたけれど、な
ぜこれで動くのだろう？」という疑問もわくはず
です。その時は疑問に思った部分をしっかり調
べてみてください。きっと自分でも驚くほど効
率よく知識を吸収することができるようになっ
ているでしょう。

Webアプリ開発技術習得のコツ
　繰り返しになりますが、とにかく効率よく技
術を習得するコツは、手を動かしてWebアプリ
を作ることに尽きます。それも「Hello，World」
のようなものではなく、シンプルでもデータ
ベースを使用したCRUDアプリケーション 注1

を、クラウドにデプロイするところまでやって
みましょう。

Web開発の現場で活用できる
COBOLエンジニアの知識や経験

　個人的な感想ですが、ソフトウェアテストを
含む品質保証に関するノウハウは（実際は現場
によって違うのでしょうが）メインフレーム開
発のほうがWeb開発よりもしっかりしていると
思います。最初、筆者がメインフレームから
Windows系のアプリ開発に移った際、メインフ
レーム開発で行っていたテストをすると――「時
間がかかり過ぎ」といわれたものの――品質で
高い評価を受けました。それはWindows系から
Webアプリ開発に移った際も同様でした。そこ
で筆者は基本的なWebの技術と言語を習得した

注1） CRUDアプリケーション：一般的なアプリケーションに
必要とされるデータのCreate（登録）、Read（読込）、
Update（更新）、Delete（削除）の基本的な機能を持つアプ
リケーションのこと。

注2） TDD（テスト駆動開発）：アプリケーション開発の際、まず
最初にテストコードを書き（これをテストファーストと言
う）、そのテストコードを実行するために必要な実装を必
要最低限な範囲で行い、そのたびにテストを実行しながら
少しずつコードを洗練させる工程を繰り返すスタイル。近
年はとくにアジャイル開発におけるXP（エクストリームプ
ログラミング）で取り上げられることが多い。

84 - Software Design Mar. 2016 - 85

エンジニアになったわけでもWebアプリ言語を
習得したわけでも決してありません。技術習得
活動が自分の中の「dot」を作り続けていくことで
あるなら、学んだことを活かすために必要なの
は、“dotをつなげることをあきらめないこと、
自分のdotがつながっていくと信じる心を持つ
こと”だと筆者は思います。

おわりに

　実際にメインフレーム開発からWebアプリ
ケーション開発にキャリアチェンジされた方と
お話しすると、現場の「スピード感」に付いてい
けないと感じる方が多いようです。毎週毎週サー
ビスをデプロイし続ける「アジャイル開発」に違
和感をいだいていた方もいました。今までデプ
ロイする際には厳重なクロスチェックを経る必
要があったり、顧客からの仕様変更の必要が発
生しても上長の承認を得るまではソースに触れ
ることができなかったりするような現場に携わっ
ていた方からすれば、それは当然でしょう。た

だ、COBOLエンジニアの方がWeb系の技術を
習得すること自体は、今までお伝えした事項に
気を付けていただければ、そんなに難しいこと
ではありません。実際筆者が受け持った受講生
のほとんどの方が、そこまで無理せず習得でき
ています。
　メインフレーム上で稼働しているCOBOLで
構築されたシステムをWebアプリに置き換える
マイグレーション案件は、おそらく今後も出て
きます。また、すでに完成され安定した稼働を
保証するCOBOL資産を活かし続けるために、
COBOLでのシステム開発も行われ続けるで
しょう。
　「Webアプリケーションに置き換えるべきか、
それともこのままCOBOL資産を使用し続ける
か」
　そこで適切な判断を行うことができる「メイン
フレーム／COBOL」と「Webアプリケーション
／Webプログラミング言語」、その両方の知見
を持つエンジニアの需要は、今後もますます高
まるでしょう。ﾟ

　Webアプリケーション言語を習得するには、ま

ず小さいWebアプリを何か作ってみるのが一番で

す。ですが、実際に未経験者が1つWebアプリを

作成するのはなかなか難しいでしょう。そこで未

経験者向けに、

・徹底的に実践型の「このとおり作ればちゃんとう
まくいく」という、成功体験が得られる

・実際のWeb開発の現場で使用する本格的なツー

ルを使っている
・最低限必要な機能を最低限のコードに絞り込ん
で最低限の時間で完了できる

という本があれば良いのにと思いました。

　そして筆者は、未経験者でも実際に業務で使う

うえで必要な最低限の情報に触れながら、土日の

2日間（約16時間）でデータベースを使用したWeb

アプリケーションを完成できるようにこの書籍を

執筆しました。

　もともとはシステム開発未経験者を意識して作

成しましたが、現在、メインフレームや制御から

のキャリアチェンジ希望者の方やWebデザイナ、

HTML/CSSコーダーや元プログラマのマネージャ・

経営者の方からも高い評価を受けています。

短期集中講座　
土日でわかる
 PHPプログラミング教室
―― 環境づくりからWebアプリが
動くまでの2日間コース

（http://www.amazon.co.jp/dp/
47973827）

お勧め書籍

壁を越える力を身に付けよう

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

86 - Software Design

執筆のきっかけ・経緯

――たくさんのCOBOL書籍を執筆なされてい

ますが、きっかけはどういう経緯からでしたか？

　COBOL書籍を初めて手掛けた1999年は、
メーカーを退職して独立した年でした。
　退職前に筆者も所属していた情報処理学会傘
下のJIS規格COBOL作業委員会の委員長から
「COBOLの本を書いてみないか？」とお話をい
ただいたのがきっかけでしたね。出版社も発売
時期も決定していたので、ほかの仕事をそっち
のけで書いていた思い出があります。執筆に必
要なソフトウェアや資料などは委員長の所属会
社である㈱日立製作所のCOBOLチームのみな
さんから提供を受けて、全面協力って感じでし
た。

――COBOL書籍に需要があると思われました

か？

　当初は思いませんでしたね。というのも、プ
ログラミングの世界ではオブジェクト指向技術
が定着しつつありましたし、世の中では
「COBOLはもう時代遅れでしょ」とささやかれ
ていましたから。しかし、COBOL全盛だった
ころの膨大なソフトウェア資産がまだまだ枯れ
ることなく金融業界、官公庁や文教市場などで
稼働していましたし、当時の技術者が退職で年々

不足していく中、いかにしてレガシーシステム
を維持していくかが企業内の検討課題であった
ので、そこに注力すれば「きっと需要がある」と
自分に言い聞かせて執筆していました。
　おかげさまで、最初の書籍が増刷を繰り返し
て順調に売れていたため、複数の出版社から執
筆依頼があり、スキマ産業的なCOBOL本です
が、結果的に需要があったと思っています。

――著書は語り口調的な文章ですが、なぜこの

ような手法を取り入れたのですか？

　手法というほどの高尚なものではないのです
が、COBOLの本というと、お堅いイメージが
あるじゃないですか。古くからある言語という
のはだいたい同じ感じになってしまいがちです。
文法書的な。そこで、入社以来、COBOL一筋
で培った技術と経験をそのまま、やわらかくわ
かりやすく本にしてみようというコンセプトと、
学生時代は家庭教師や塾講師、企業時代には臨
時講師をしていたので、目の前に読者がいるイ
メージで書いていたら、あのようになってしま
いました。

――すべての著書はANS85を中核とした第3次

規格で記述されていますが、その意図はどのよ

うなものですか？

　第4次規格からオブジェクト指向に突入して
いくわけですが、新規で、COBOLで、オブジェ

毎年、春になると売れるCOBOLの書籍。入社や異動で、COBOLで開発している部署に配属された方々
が購入しているようです。そんな顕著な傾向が見られるのも、COBOLを使う開発現場がまだ多いからでしょ
うか。そんなCOBOL書籍を多数執筆している著者に、COBOLへの思いや、執筆時の考えを述べてもら
いました。

 Author 細島 一司 （ほそしま ひとし）　トータルセブン 代表

Appendix

著者自らが自著を解説

COBOL書籍が必要とされる
背景と読者のニーズ

COBOL書籍が必要とされる背景と読者のニーズ
著者自らが自著を解説

Appendix

86 - Software Design Mar. 2016 - 87

したり、COBOL規格環境が変わったりで、そ
の対応をした書籍で、基本路線は初版と変わっ
ていません。

 “演習問題で基礎から学ぶ”
やさしいCOBOL入門（図2）

　前書籍での反応で、情報処理試験対策用、学
校教材、独学用として読まれている方から、「ペー
ジ数が多くて読み終わらない」「実務レベルはい
らないから基礎中心で」といった声が結構あった
ので、基礎を中心とした学習用ワークブック形
式の書籍を書きましょうとなりました。学習し
た内容を演習問題の穴埋め式で補完するという
ストーリーですね。発行から相当年数が経過し
ていますが、息の長い書籍です。

 ▼図2　“演習問題で基礎から学ぶ”やさしいCOBOL入門
　　 （細島一司（著）、カットシステム、2000年発行）

 開発現場で役立つCOBOLプログラミング
入門 注2、開発現場で役立つCOBOLプログ
ラミング入門 第2版（図3）

　COBOL教本としてこれまでの2冊で「完結か
な」と考えていましたが、世の中では現場スキル
を持ったCOBOL技術者が退職などでどんどん
少なくなっていて、その代替とする社員を教育
するにもお金も時間も余裕がない、文法も重要
だけれども開発現場に特化した書籍がほしいと

クト指向で、というよりはレガシーCOBOLを
なんとかしたい（しないといけない）という声が
読者から多数ありました。大学の講義テキスト
や企業の新入社員研修テキストにも採用されて
いるのですが、いずれも今後というよりは、今
までのCOBOLのメンテ人材養成という観点で
使用されていることから、ニーズに応えた結果
です。

それぞれの本の特徴

――それぞれの書籍についての特徴と思い入れ

などがありましたら教えてください。

 標準COBOLプログラミング 注1、
標準COBOLプログラミング 第2版（図1）

　最初に執筆したCOBOL書籍で、読者層のター
ゲットを絞り込まずに文法基礎から開発現場で
必要になる実務内容まで網羅したオールマイティ
的なものにしました。時期的に2000年問題対策
中であったのと、開発現場について執筆された
本が珍しかったのか、その需要は予想以上でし
たね。
　第2版は、読者の声を反映して、使用頻度の
高い文法の例題を増やしたり、演習問題を精査

注1） 細島一司（著）、今城哲二（編）、カットシステム、1999年
発行、10刷、2014年絶版

注2） 細島一司（著）、秀和システム、2008年発行、3刷、2013
年絶版

 ▼図1　標準COBOLプログラミング 第2版
　　 （細島一司（著）、カットシステム、2014年発行）

第2特集
あなたの知らない
COBOLの実力

好き嫌いで
判断していませんか？

88 - Software Design

いう要望を経て実現した書籍です。
　この本を読んで「手軽に」「すぐに」確認ができ
るようオープンソースのOpenCOBOLコンパイ
ラの適用やデータベース接続にOracleを選択す
るなど「動作」を意識した構成と、現場の必須技
術となる指南書項目を章立てしたのが喜ばれて
いますね。

 COBOLポケットリファレンス（図4）
　周知されているポケットリファレンスシリー
ズのCOBOL版です。通常の書籍は結構大きい
ので、システムエンジニアやプログラマが毎日、
カバンで持ち歩くのはたいへんですよね（かさば
るし重いですし）。このシリーズは小さくて携帯
性が優れているのと、出先で手元にマニュアル
がないときにサッと出せるところが特徴です。1

ページ、見開きで調べたいことが完結できるよ
うに心がけました。
　電子ブック対応したのもこの本からですね。
もともとの本が小さいのでページ字数が少ない
ためか、スマートフォンに入れているという読
者も多いです。

読者の反応

――何か裏話的なものはありますか？

　読者からのアクションとしては、文法質問は

学生の方からが圧倒的に多いですね。また、現
場からの相談事などコンサルティングに近い質
問もあれば、仕事上の愚痴やよもやま話なども
あります。「景気の高低で質問って変わるんだ
なぁ」と実感したり、「COBOLをやっている人
たちって変わっているのかな？」なんて思った
り、いろんなことがありますが、執筆っておも
しろいなぁと。ただ、書いているときはお金が
一銭も入らないのがつらいですが（笑）。

――学校でプログラミングを教えているとお聞

きしましたが、執筆と講義では何が違いますか？

　執筆は本の向こう側の見えない人たちを意識
して書きますが、講義は目の前ですからね。そ
の辺の難しさはありますが、執筆しているとき
と同じように、自分の持っているものをすべて
出して、現場の話を入り交ぜて講義しています
ね。
　今年度はJava、Android、JavaScript、PHP

のプログラミングを講義しましたが、言語が変
わると如実に拒否反応を示すのですよ。言語の
特性はあるにしろ、プログラミングは「手段」で
あって、その根本は「何も変わらないんだよ」と、
年間をかけてわかってもらえば良いかなと。執
筆とは違う、講義でしか得られないものもある
ので、それを含めて次の執筆に展開しようと思っ
ています。ﾟ

 ▼図3　開発現場で役立つCOBOLプログラミング入門 第2版
　　 （細島一司（著）、秀和システム、2013年発行、2刷）

 ▼図4　COBOLポケットリファレンス
　　 （細島一司（著）、技術評論社、2012年発行）

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Mar. 2016 - 89

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

 第1特集

特講
正規表現・SQL・オブジェクト指向
苦手克服のベストプラクティス

 第2特集

メールシステムの教科書
日本語もバイナリもちゃんと届くのはなぜか

 特別企画
・なぜ俺の提案は通らないのか？

2015年9月号

定価（本体1,220円＋税）

 第1特集
多層防御や感染後対策を汎用サーバに実装
攻撃に強いネットワークの作り方
 第2特集

Webメールの教科書
クラウドサービス利用か？　自社で構築か？

 特別付録
・創刊300号記念　Vim&Emacsチートシート

2015年10月号

定価（本体1,220円＋税）

 第1特集

すいすいわかるHTTP/2
HTTP/1.1から変わること・変わらないこと

 第2特集
攻撃を最前線で防ぐ
ファイアウォールの教科書
 特別企画
・SMB実装をめぐる冒険
 File System for Windowsの作り方

2015年11月号

定価（本体1,220円＋税）

 第1特集

［決定版］Docker自由自在
実用期に入ったLinuxコンテナ技術

 第2特集
ネットワーク・システム管理の定石
SNMPの教科書
 短期連載
・クラウド時代のWebサービス負荷試験再入門

2015年12月号

定価（本体1,220円＋税）

 第1特集

はじまっています。ChatOps
導入を決めた7社の成功パターン

 第2特集
手軽さとコード化しやすさが人気！
Ansibleでサーバ管理構成を
省力化
 新連載
・Androidで広がるエンジニアの愉しみ

2016年1月号

定価（本体1,220円＋税）

 第1特集

［最新］MySQLと
PostgreSQL徹底比較
 第2特集

1Gbps超ネットワーク高速化
時代の適切なLANケーブリン
グの教科書
 一般記事
・Android Studioのスタイルで効率アップ！

2016年2月号

定価（本体1,220円＋税）

Webで

購入 ！
家でも

外出先でも

http://www.zasshi-online.com/
http://www.fujisan.co.jp/sd
http://www.fujisan.co.jp/product/1535/
http://www.fujisan.co.jp/product/1535/
http://www.e-hon.ne.jp

90 - Software Design

手書きコンピュータの

聖杯伝説
　今年はApple Pencilが主役になる年かもし
れない。現状は iPad Proでしか使えないが、
今年のアップデートで iPad Airや iPad mini、
iPhone 7や iPhone 7 Plusといった端末で使え
るようになると、Apple Pencilの活用範囲はぐ
んと広がることになる。
　実際にAppleがそれをやるかどうかは、いつ
ものようにまったくわからない。やるかもしれ
ないし、やらないかもしれない。しかし確実に
ひとつ言えることがある。
　Appleはひとつチャンスを失ったということだ。
　そしてこのチャンスは、もしかするとApple

だけでなく、我々人類が永久に失ってしまった
かもしれないチャンスなのだ。
　何のチャンスか ?　それはコンピュータが紙
に取って代わる、その先頭を切り開くチャンス
をAppleが失ってしまったことを意味するのだ。

スティーブ・ジョブズが
見落としたケイのコンセプト

　筆者らが開発した手書きプログラミング端末
enchantMOONを最初にアラン・ケイに見せに
行ったとき（写真1、2）、アラン・ケイはビジュ
アル・プログラミングのコンセプトとして参考
にすべき事例としてGRaILのデモを見せてく

れた（一部は、https://www.youtube.com/watch?

v=QQhVQ1UG6aMで見られる。写真3）。
　GRaILは1968年ころ、米軍の研究機関のひ
とつ、RANDコーポレーションが開発したペ
ンをベースとしたビジュアル・プログラミング
環境である。ペンでフローチャートを記述して
いくだけでプログラムの全体構造が記述でき、
さらに深く潜っていくと最終的にはアセンブリ
言語までペンで操作できるという画期的なもの
だった。
　GRaILはGRaphical Input Languageの略と

ペンコンピュータの軌跡

 ▼写真1　筆者らの開発したenchantMOON

 ▼写真2　アラン・ケイとenchantMOON

のさきに

Dynabook, Newton, Palm, Zaurus, Pocket PC, Tablet PC and ...

清水 亮（しみず りょう）
（株）ユビキタスエンターテインメント

Author

iPad Pro
見えてくるもの

https://www.youtube.com/watch?v=QQhVQ1UG6aM

Mar. 2016 - 9190 - Software Design

されているが、「聖杯（Holy Grail）」を意識した
ネーミングであることは疑いようもない。当時
からすでにペンによるコンピューティング（と
りわけプログラミング）は、コンピュータの究
極の利用法と位置づけられ、いつかはたどり着
かなければならない境地であると考えられてい
たのだろう。
　もっとも古いペンコンピュータは、アイヴァ
ン・サザーランドのSketchpadである。この
Sketchpadに刺激を受けたアラン・ケイによっ
て、「パーソナル・コンピュータ」というコンセ
プトが産まれた。ケイが1970年代に描いたビ
ジョン、「Dynabook（ダイナブック）」コンセプ
トでは、今見ると iPadそっくりの端末に、子
供が自由に絵を描くことが前提となっている。
　このコンセプトを暫定的に実現した環境のひ
とつがSmalltalkとAltoであり、これを見学に
来たスティーブ・ジョブズとビル・ゲイツがそ
れぞれLisa、Macintoshと、Windowsを作った
ことはあまりにも有名だ。
　ちなみに暫定ダイナブックコンセプトの実装
環境はAlto（およびSmalltalk）だけではない。
ごく初期のプロトタイプとして、可搬型のもの
もあった。当時の技術水準を反映してディスプ
レイはあまりに小さく、お世辞にも操作しやす
いものではなかったようで、ポインティングデ
バイスとしてはマウスが用いられた。これは専

もっぱ

ら画面サイズの制約だった。これはXerox

NoteTakerとして知られている。
　スティーブ・ジョブズは、Lisaでアラン・
ケイの背中を追いかけ、こだわりすぎてLisa

のチームを追放され、さらにジェフ・ラスキン
の率いたMacintoshチームを事実上乗っ取って、
のちにMac OSと呼ばれるOSの最初のバージョ
ンを完成させた。最初のMacintoshは商業的に
は失敗したが、ジョブズが追放されたあと、
Macintoshは成功への道筋を歩み始めた（写真
4）。
　1995年、Appleに復帰する前に行われたス
ティーブ・ジョブズへのインタビューで、ジョ
ブズは興味深い証言をしている。
 「アラン・ケイのAltoを見たとき、最初はその
グラフィカル・ユーザ・インターフェースに目
を奪われてもっと重要なことを見落としていた。
それはオブジェクト指向と、ネットワークだ」
　そしてネットワーク機能とオブジェクト指向
を大胆に取り入れたNeXTを作り（写真5）、こ
れが今のMac OS Xや iOSの直系の先祖になっ
たことはよく知られている。実際、よくできた
OSである。いまだにOS Xのシステムオブジェ
クトがNSで始まるのは、OSがNeXTSTEP

と呼ばれていたことの名残である。
　しかしジョブズはもうひとつ見落としていた
ことがあった。
　それはジョブズが見て、直接影響を受けた
AltoおよびSmalltalkは、あくまでもより大き

引用元：YouTube（「Alan Kay Demos GRaIL」作成者：Vincent
Gable）

 ▼写真3　GRaILの画面 ▼写真4　初期のMacintosh

92 - Software Design

ペンコンピュータの軌跡

iPad Proのさきに見えてくるもの

響カプラまで内蔵されており、FAXの送受信
もできた。ただし、残念ながらこのPalmTop

Computerは成功したとは言い難かった。コン
セプトは優れているものの、製品の中に閉じた
世界になっていた。
　当時、すでにコンピュータとは、豊富なアプ
リケーションがサードパーティから多数提供さ
れるものであり、成功するコンピュータとは、
多数のサードパーティを味方に引き入れたもの
に限られていた。この分野で当時最も成功して
いたのはNECのPC-9801シリーズであり、ゲー
ム機であればファミリーコンピュータだった。
いずれもサードパーティの活気が肝だ。
　そうした世界観に比べると、PalmTop Com

puterの出現はあまりに異質すぎた。当時はバ
ブル絶頂期ではあったものの、20万円という
高価格もあり、サードパーティを巻き込みひと
つのエコシステムを作るまでには至らなかった。
　それから時間をおかずして、ジョブズを追放
した当の本人である、ジョン・スカリーは自分
が単なるコーラ屋ではなく、コンピュータの歴
史に英雄として永遠に名を刻むために、ひとつ
のコンセプトに取りつかれていた。
　それが「パーソナル・デジタル・アシスタント」
という思想である。パーソナル・アシスタント
といえば個人秘書を意味するが、間にデジタル
が入ることによって、これが電子化される。
　スカリーはまず豪華なコンセプトビデオを作
らせた。とある地質学の教授が、パーソナル・
デジタル・アシスタントを内蔵したノート型の
コンピュータと会話しながら仕事を進めるとい
うものだ。
　このコンセプトビデオは極めて異様だった。
非常によくできているが、現実感がどこにもな
い。英国訛

なま

りでしゃべる執事（バトラー）のよう
ないでたちで表現されたパーソナル・デジタル・
アシスタントを、スカリーは「ナレッジナビゲー
ター」と名付けた。
　ナレッジナビゲーターは、ペンが使える。と
いうよりも、一見すると紙のノートのようにい

なビジョンDynabookの暫定的な実装に過ぎな
いということだ。そして完全なDynabookには、
ペンが必要とされていたのだ。なぜならケイは
Dynabookを子供でも“プログラミングで”自分
の考えを表現したり確かめたりできるツールと
して定義しており、初期のコンセプトスケッチ
にも、右下にスタイラスを格納するためのスリッ
トが描かれている（写真6）。
　そしてデジタルペンは文字どおり聖杯となっ
た。数々の人間がデジタルペンのコンセプトに
魅了され、挑み、そして散っていったのだ。

PalmTop Computerと
Newton

　ジョブズがAppleを追放され、NeXTを発表
した直後、日本の雄、SONYは、それまでに
ないまったく新しいコンセプトのコンピュータ
を打ち出した。それが、PalmTop Computerで
ある。
　PalmTop Computerは1990年に発売された。
きわめて野心的な製品で、当時としては先進的
な手書き文字認識はもちろん、通信のための音

 ▼写真5　筆者とNeXT Cube

 ▶写真6　
ケイの描いた初期の
ダイナブックのスケッチ。
右下にスタイラス
（STYLUS）の記述がある

Mar. 2016 - 9392 - Software Design

ろいろなことが書き込めるようになっており、
必要に応じてデジタル・アシスタントと会話す
ることで仕事を効率的に進められるようになっ
ていた。
　今このビデオを見ると、このビデオの完成か
ら30年を経た現在であっても、これを実現す
るのはあまりに難しいということがわかるだろ
う。これは短編SF映画と言っても過言ではなく、
現実のテクノロジーから激しく乖

かい

離
り

している。
そのうえ、どう考えても、現在の通常のOS、
つまりややこしいデジタル・アシスタントの介
在しない普通のOSのほうが、はるかに効率的
に同じような仕事をできるように思えてならな
いのである。
　しかしスカリーはこのコンセプトビデオを単
なるコンセプトで終わらせるつもりはなかった。
彼が満を持して投入したのが、パーソナル・デ
ジタル・アシスタント製品のNewtonである（写
真7）。

Newton OS

　Newton OSとはいかなるものであったか。
まず、NewtonはすべてのPDAの元祖である。
なにしろ「パーソナル・デジタル・アシスタント」
を縮めたものがPDAなのだから、こういって
しまっても乱暴ではないだろう。
　筆者は実際にNewtonを入手し、使ってみた
ことがある。モノクロの画面に感圧式のペンが
ついていて、これで文字を書くことができる（写
真8）。たいていのことはペンのジェスチャー
で指示する。書き損じを消したいときはグチャ

グチャっとペンで書けば、紙をくちゃくちゃに
丸めたようなエフェクトが出て、データが消え
る。新しい項目を書きたいときは、画面を横切
るようにまっすぐに線を引くと、新しいノート
が引いた線の下にできるという感じだ。これは
使っていてなかなか楽しく、小気味よい。
　さらに特筆すべき機能は、デジタル・アシス
タント機能だ。
 「I've a dinner with Mary next friday

 （次の金曜日にメアリーと夕飯をとる）」
　こんな感じで手書きメモをして、Newtonの「デ
ジタル・アシスタント（Assist）」ボタンをタッ
プすると、住所録からMaryで始まる人物のリ
ストを表示して「どのメアリーですか?」と聞い
てくる。特定のメアリーを指定すると、それが
そのまま次週の金曜日の夕方7時くらいの予定
に設定される。つまりノートでありながらスケ
ジューラーやアドレス帳とも連動しているのだ。
　Newtonは開発者たちを興奮させた。このほ
かにも開発者たちを興奮させるしかけはいくつ
もあった。たとえばIMEそのものを加える機能。
Newtonの IMEは単なる手書き文字認識だけで
はない。ときには図形を認識させたり、筆ペン
のようになる機能もあった。
　Newtonがデフォルトでは日本語に対応して
ないことに業を煮やした在日オーストラリア人
が、自ら日本語対応FEPを開発し、それが逆
にアップルジャパンのオフィシャルになるなど
の快挙も果たした。そのほかにも無数のアプリ
が開発された（写真9）。つまりNewtonは非常
にハッカブルであり、開発者たちを夢中にさせ
るのに十分なプラットフォームに思えた。

 ▼写真7　
筆者のNewton MessagePad 2100

 ▼写真8
Newtonで書いたメモ

 ▼写真9
Newton向けの路線図アプリ

94 - Software Design

ペンコンピュータの軌跡

iPad Proのさきに見えてくるもの

た。フリーウェアはもちろんのこと、シェアウェ
アなどの商流も盛んであり、コンパクトな手書
きコンピュータを求める人々にとってほとんど
唯一の選択肢となった。
　Palmは 2008年に iPhoneが登場するまで、
モバイルインターネットの主役であり続け、し
かし残念ながら、2008年に iPhoneが登場して
以来、すっかり影を薄くしてしまっている。
2010年にヒューレット・パッカードが買収し、
新OSとして「webOS」を発表し、短い期間脚光
を浴びたが、2011年にヒューレット・パッカー
ドはwebOS関連機器からの撤退を表明した。
以後、2013年にLGにライセンスしたという
ニュース以来、歴史の表舞台からは姿を消して
しまった。

ビル・ゲイツ、三度の挑戦

　Microsoftが「ペンコンピューティング」の聖
杯を求めて挑戦したのは、少なくとも3回以上
はある。
　1回目の挑戦は、Newtonと同じく1992年、
「Windows for pen computing」である。これは、
Windows 3.1をベースとしたペンコンピュー
ティング用のOSで、鳴り物入りで登場した割
には人々の話題にもあまり上らなかった。その
後、このpen computing関連のコンポーネント
はWindows 95以降ではOS本体に統合された。
　2回目の挑戦は、2000年、先行するPalmに
強く影響を受けたWindows CE 3.0ベースの
Pocket PCである（写真10）。これはほぼPalm

を完コピしつつWindows（のようなOS）が携帯
機で走るということで、一定数のファンを獲得
したが、メインストリームには至らなかった。
　Microsoftの主力製品群であるOfficeもMicro

soft Pocket Officeとして、機能制限版ながら
Word、Excel、PowerPointなどが移植された。
しかしこうした挑戦の数々は「こんなに小さい
モバイルマシンでもWindowsやOfficeが使える
ことの感動」よりも、逆に「こんなに小さいモバ

　第一弾のNewton MessagePadは非力すぎる
CPUに貧弱な文字認識エンジンのせいであま
り実用にならなかったが、そうした問題もプロ
セッサの進歩が少しずつ解決していった。
1997年ごろに発売されたNewton MessagePad

2000になると問題の大部分は解決され、実用
になるかと思えた。しかし思い出してほしい。
このころのAppleは控えめに言っても瀕死の状
態だった。開発者コミュニティに愛された
NewtonはAppleの膨大な赤字を支えるほどの
利益を生み出すことができなかった。
　そしてスティーブ・ジョブズが復帰するやい
なや、Newton関連のプロジェクトはすべて中
止された。もちろん当時のAppleには利益に貢
献しない余計なことをやっている暇はなかった。
Appleが産み、育てようとしたペンコンピュー
ティングの世界を自ら閉ざしたのは、ほかなら
ぬスティーブ・ジョブズだったのである。

Palm

　スカリーの後を追い、自ら聖杯を探し求める
者も少なくなかった。Newtonプロジェクトに
もかかわった日本のシャープは手書き対応電子
手帳として液晶ペンコム「ザウルス」シリーズを
展開し、一定の成功を収めた。
　ジェフ・ホーキンスが立ち上げたPalm社も
成功した企業のひとつである。Palm社の提供
するPalm OSは複雑で巨大な計算リソースを
必要とするNewtonとは異なり、コンパクトで
必要最低限の機能だけを提供するシンプルな設
計を採用した。
　特筆すべきは手書き認識をGraffiti（グラフィ
ティ）という簡易な一筆書きに制限してしまっ
たことだ。こうすることで慣れたユーザはスト
レスなく文字入力ができるようになり、Palm

は本家のNewtonを差し置いて大成功を収めた。
　Palmもまたハッカブルであり、標準アプリ
と同等の機能を持つ「置き換えアプリ」と呼ばれ
るサードパーティ製アプリが大いに盛り上がっ

Mar. 2016 - 9594 - Software Design

イルマシンなのになぜWordやExcelを使わな
ければならないのか」という疑問のほうをむし
ろユーザに強く問いかける形になった。実際、
実用に耐えることはほとんどなく、筆者もかな
りの種類のPocket PCをかなりの期間愛用し
ていたが、Pocket Officeが実用的に使えたと
感じたことは残念ながら一度もなかった。
　おそらくビル・ゲイツとしては三度目にして
最後の挑戦が、Windows XP for Tablet Edition

とTablet PCコンセプト、そしてMicrosoft

OneNoteの三点セットである。
　そもそもMicrosoft OneNoteのタイトルは、
通常のOffice製品から逸脱している。通常、
Office製品は一語で終わるものが圧倒的に多い
のに対し、OneNoteだけが二語になっている。
なぜMicrosoft NoteではなくOneNoteなのか。
噂によればOneNoteはビル・ゲイツがアーキ
テクトとして最後に作らせた製品であるといわ
れる。それは彼が、それまでの人生の集大成と
してペンコンピューティングを自らのOSに取
り込みたいという強い意志の表れだったと考え
ることもできる。
　ゆえにペンコンピューティングは聖杯なので
ある。
　OneNoteは、それまでのOfficeアプリケーショ
ンとは異なり、キーボードとペン入力を区別し
ない。どちらの情報も対等に扱えるよう工夫さ
れている。階層的なフォルダ構造を持つことが
可能で、整理しやすいため、根強いファンも多

い。そしてビル・ゲイツはついにペンを
NewtonやPalmのような、OSのネイティブな
特徴としてではなく、OneNoteという閉じられ
た空間の中でだけ使えるように封じ込めること
に成功した。
　ビル・ゲイツの執

しつよう

拗なまでのペンへのこだわ
りは、いまだにMicrosoft Surfaceの最新機種
にペンが用意されていることからもうかがえる
（写真11）。もちろん、ビル・ゲイツはもはや
引退して久しい。しかしレドモンドには、いま
だにビルの亡霊が聖杯を求めて彷

さまよ

徨っているの
である。

Courier

─消されたプロジェクト

　ビル・ゲイツの亡霊ともいうべき、ペンコン
ピューティングへの聖杯を求める者は、レドモ
ンドの内部にもいた。
　2008年、Microsoft内部の研究所、Microsoft

Research（以下MSR）でひそかに開発されてい
た画期的な製品コンセプトが発表された。それ
が「Courier（クーリエ）」である。
　Courierは2つ折りの本のような形をしてお
り、開くことによって起動する。マルチタッチ
スクリーンとデジタイザを備え、ユーザは紙の
ノートにメモするのと同じような感覚でそれを
操作することができる。試作機はWindows CE

をベースとしたカスタムOSを搭載し、
NVIDIAの高性能なモバイルGPUである

Tegraを内蔵していた。
　この試作機のデモビデオ
は世界に衝撃を与えたが、
Microsoftは 2010年にこの
チームを解散させ、開発終了
を宣言してしまう。なぜわざ
わざ実験プロジェクトの終了
を宣言したのかという意図は
不明だが、Microsoftという
会社は内部に無数の優秀なエ
ンジニアやアイデアを抱えな

 ▼写真10　
Windows CEを搭載した
W-ZERO3［es］

 ▼写真11　
Microsoft Surface Book。
 やはりペンが同梱されている

96 - Software Design

ペンコンピュータの軌跡

iPad Proのさきに見えてくるもの

環境に過ぎないのだ。
　いまどき、それが何らかのアイデアであれ、
そうでないものであれ、クローズドな世界の発
展はたかが知れている。Paperで創りだされる
コンテンツは、Adobe Photoshopで創りだされ
るコンテンツと同程度に多いかもしれないが、
サードパーティ製プラグインで拡張可能なソフ
トウェアプラットフォームでもあるPhotoshop

に比較すると、Paperの示す世界観は窮屈に感
じる。
　しかしこれこそがAppStoreで頒布されるソ
フトウェアの限界であり、Appleの無

む く

垢にして
邪悪な欲望̶̶市場すべてを意のままにコント
ロールしたいという欲望̶̶を暗示している。
　OS Xを含む従来のPC向けOSがどちらか
というと“悪意のあるプログラムは作られない”
という性善説に基づいて作られていたとすれば、
iOSを含むスマートフォン／タブレット用OS

は性悪説、すなわち“人は生来的に悪徳なプロ
グラムを作り、ユーザの個人情報を盗み出すも
のである”という立場で設計されている。
　携帯電話のようにリテラシーの低いユーザが
圧倒的多数を占める世界では、もちろんそれが
トラブルを最小化する方法として有効なのは間
違いない。しかし筆者からすると、そうした発
想そのものが少々傲

ごうまん

慢にも思える。アプリケー
ションを檻に囲い込むということは、アプリケー
ションの未来の可能性を閉ざすことをも意味す
るのではないだろうか。
　Apple Pencilの登場は、Appleにとって再び
彼らが聖杯を手にする最短のチャンスだった。

がら、結局はWindows中心主義という原理主
義に回帰せざるを得ないジレンマを抱えている。
このほかにも数多くの有望なコンセプトやプロ
ジェクトが歴史の影で葬られてきた。
　CourierのチームはMSRを解雇された後、
Fifty-three社を立ち上げ、iPad向けの画期的
なお絵かきアプリ「Paper」を開発する。そして
皮肉にも、このPaperが、iPad ProとApple

Pencilのキラーアプリの1つでもあるのだ。

Paperが示す理想と

アプリの限界
　Paperは、Courierチームの残党が立ち上げ
たFifty-three社の代表的なプロダクトである。
そしてApple Pencilの登場で最も光り輝いた
アプリでもある。
　Paperはその名のとおり、iPad Proを紙そ
のもののように扱いやすくする（写真12）。機
能は徹底的にシンプル化され、洗練され、余計
なものを足さず、かといって必要なものまで取
り除かない。Courierコンセプトにあって
Paperにないものは少なくないが、それはそれ
で正しい選択だったと思えるような哲学と美学
をユーザはPaperというアプリを通じて感じる
ことができるだろう。
　Paperはある意味で完璧なアプリに思える。
そしてまた同時に、iPad Pro、そしてApple

Pencilの限界を示すものでもある。Paperは、
元がCourierという独自コンセプトのOSだっ
ただけに、ひとつの世界観の中で完結した美し
いアプリになっている。
　しかし同時に、これはAppleが許容する「ア
プリ開発者の世界」の境界線を示すものでもあ
る。Paperはどこまでいってもアプリであり、
Newtonのように開発者がワクワクするような
ハックを施すものでもなければ、ザウルスのよ
うにコミュニティによって進化するものでもな
い。ただひたすら、Fifty-three社が自社のア
プリをアップデートするという手法によっての
み、発展し続けることを許されたクローズドな

 ▼写真12　iPad ProとApple Pencil

Mar. 2016 - 9796 - Software Design

しかし彼らはビル・ゲイツと同じようにペンを
矮
わいしょうか

小化し、単なるOSのオプション機能として
しまった。筆者も含めてこの決断に少々失望し
たファンは少なくないのではないだろうか。も
う二度と、Newtonは戻ってこないのだ。

聖杯を求める旅の終着点

　ダグラス・エンゲルバートは初期の光ペン
（GRaILで利用されているような）には根本的
な問題があることを指摘していた。まず、垂直
に近い画面に対して光ペンを保持する姿勢は無
理があるし、画面が操作するペンで隠れてしま
う。ダブルクリックなどのマウスでは当たり前
のテクニックがペンでは極端に難しくなる、な
どである。では果たしてペンはいらないのか、
間違っているのか。
　初期のタッチスクリーンが登場したとき、エ
ンゲルバートはそれが光ペンと同様の問題を持っ
ていることを指摘した。しかし現在、タッチス
クリーンではなくマウスまたはトラックボール
で操作するスマートフォンが欲しいなどと本気
で言うユーザがいるだろうか。ペンが不便なら、
これほど多くの人が未だに紙のノートを完全に
捨てられない理由はなにか。単純にそれはコス
トか、重さか、それとも別の何かか。
　マシンの処理速度やユーザとの距離感、使用
環境、そういったものが刻々と改善されていっ
た結果、ようやく我々は聖杯を再び追いかける
ことのできる場所にやって来たと言っても良い。
　最新のハードウェア、たとえばMicrosoft

Surface BookやTOSHIBAのREGZA Tablet

やdynaPad、そしてもちろん iPad ProとApple

Pencil、ここまで環境がそろってくると足りな
いものは自ずと見えてくる。ソフトウェアプラッ
トフォームだ。
　Windowsにしろ、iOSにしろ、Androidにし
ろ、ペンを前提として組み立てられたプラット
フォームはひとつもない。頼みの綱のPalmで
さえ、webOSではペンを前提とすることをや

めてしまった。
　ようやく一般向けに販売されたSONY

Digital Paperがなぜいまいち盛り上がらない
のか。SONY Digital Paperの軽さは十分であ
る。大きさも、A4サイズで十分過ぎると言っ
て良い。ところがSONY Digital Paperを実際
に活用するには想像力が必要だ。想像力なしで
これを使いこなすのは相当な忍耐が必要だし、
そのために10万円というプライスタグを適正
と考えるユーザがどれだけいるかは疑問が残る。
いっそシャープの電子ノートのように電子ペー
パーではなく白黒液晶のほうが追従性がいいの
にという気もする。
　ユーザに想像力を要求する製品は、一般には
「難しい製品」とうけとられがちである。そして
ユーザの想像力を掻き立てるような小回りのき
いた機能を実現するには、本来はそうした製品
はソフトウェアプラットフォームでなければな
らない。Newtonやザウルスがそうであったよ
うに。そこに小さくとも開発コミュニティがあ
り、実用性が高いものも低いものも、大小さま
ざまなソフトウェアが開発可能であり、流通可
能であり、場合によってはそれ自体を生

なりわい

業にす
ることが可能でなければならない。
　その意味では、手書きコンピュータのソフト
ウェアプラットフォームとして現在までに生き
残っている環境はひとつもない。かつて惜しい
ものはたくさんあったが、今はどこにいったか
もわからない。
　しかし聖杯は今、ようやく手の届きそうなと
ころに来た。
　これまで、手書きはあまりにも黒魔術的であ
り、それをコンピュータが理解するためには手
書き文字認識をはじめとする人工知能関連技術
を使いこなすことが必須だった。しかし現在、
人工知能関連技術、とりわけディープラーニン
グが急速に進歩を遂げている。
　こうした知見を取り入れれば、あるいは聖杯
はついに人々の手に取り戻されるのだろうか。
s

98 - Software Design

ウチのWebサイトが
マルウェアを配布！？

　ここ数年、改ざん被害を間接的に見ることが多く
なりました。
　「間接的に見る」というのは、昔のように「どこか
の国旗がぱたぱたとはためく画面」のように「これみ
よがしに目立つ」改ざんではなく、Webサイトにア
クセスしたときに「ウイルススキャナが反応する」よ
うな形で改ざんに気付くことを指しています。
　ウイルススキャナが反応する理由は、Webアクセ
スの延長でマルウェアに代表される「悪意あるコン
テンツ」がダウンロードされているためなのですが、
このようなことに至る理由はいくつかあります。

①Webサイトが直接提供す

るコンテンツもしくはWeb

サーバの設定が改ざんさ

れ、Drive-by Download

攻撃の拠点にされた

　具体的には、Webブラウザ
でサイトにアクセスしてき
たとき、当該Webブラウザ
が稼働しているコンピュー
タに、マルウェアに代表さ
れる「悪意あるコンテンツ」
をダウンロード・実行させる
ようなしくみを入れ込まれ
た状態です（図1）。

②マルバタイジング注1に代表されるような手法で、広

告などWebサーバが本来提供する「以外」のコンテ

ンツにマルウェアをダウンロードするようなしくみを

入れ込まれた

　①とほとんど同じですが、インターネット広告で
配信される内容に悪意あるコンテンツをダウン
ロードさせるような記述が行われれば、Webサイト
改ざんがなされなくてもDrive-by Downloadが成立
します。
　②については、Webサイトのオーナ側では対処が

注1	 マルウェアをはじめとする不正なソフトウェアの拡散や、不
正なサイトへのリダイレクトなどといったことを行う悪質なオ
ンライン広告を用いた攻撃のこと。

サイトオーナが
とるべき行動と
注意点

Webサイトオーナを悩ます外部からの悪意ある攻撃。幾重にもセキュリティ対策を行っていることかと思いま
す。しかし、万一改ざん被害に遭ってしまったら……。そのときになって慌てない、そして間違った対応をして
しまわないために、本稿で手順を再確認し、自社の対策作りに役立ててください。

 Author
宮本 尚志（みやもと ひさし）

Webサイトが改ざん！

▼▼図1　Drive-by Downloadの簡単な解説

②Web閲覧者による
　Webサーバアクセス

①コンテンツ
　改ざん

③攻撃者が準備した
　悪意あるコンテンツに、
　①によって意図せず
　アクセス＆ダウンロード

悪意あるコンテンツが
置かれているサーバ

コンテンツ配信者Web閲覧者

④悪意あるコンテンツが動作

Internet

フォームタイトル
ファイル(F) 編集(E) 表示(V)

〈 〉

〈
〉

改ざん

Mar. 2016 - 99

●●復旧する
●●管理下にある他のWebサーバでの確認を行い、

改ざんされていたら上記の手順を繰り返す

Webサイト改ざん対応
〜改ざん対応は、基本的に
　気付いてから始まる

　改ざんされてしまったWebサイトを指して「なぜ
改ざんされたのか」とか「こうすれば改ざんされな
かったのに」という方は多いですが、じゃあ「どう対
応するか」という話まで踏み込む人はそれほど多く
ありません。
　情報セキュリティマネジメント上、「抑止」－「防
止」－「検知」－「回復」というフェーズがありますが、
改ざんを認識するところは、抑止も防止もすっとば
して、検知というところが走っています。このた
め、Webサイト改ざんからの回復は「検知に始まる
サイクル」が走ると考えるのがよいでしょう。

なぜ改ざんされるのか？〜モチベーション
はさまざまだが、手法は限定される

　攻撃者がWebサイトの改ざんを行う理由はさま
ざまですが、最近よく見られるのは「マルウェア感
染させてから何かをする」というようなものであり、
「何か」はたいていの場合、情報収集やお金儲けとい
うところにつながることのように見えます。そんな
Webサイトの改ざんですが、大きく次の2通りの手
法で実現されます。

●●Webサイト上のコンテンツを改ざんし、よろし

くない内容を入れ込む

難しい部分もあるのですが、①は比較的対応がしや
すいものになります。それでは、Webサイトオーナ
が改ざん被害に気付いたときにどのような対応を取
るべきか？について、説明を始めます。
　なお、本稿では分量の兼ね合いもあり、具体的な
方法やケーススタディには触れません。その代わ
り、読者のみなさまの環境でどのようなことを行え
るかの検討ができるように、どのようなツールがあ
るか？についても触れておきますので、参考にして
いただければ幸いです。

Webサーバの改ざん被害に
遭ったときはどうするの？
〜基本的な考え方と手順

　Webサーバの改ざん被害は前述のとおり比較的
目にする状態になっていますが、改ざん被害に遭遇
した際に取るべき手順は大まかに言って次のように
なります（図2）。

●●Webサイトの一時停止／閉鎖を

行い、被害の拡大を防ぐ
●●Webサイトをホストしているコ

ンピュータを保全し、改ざんさ

れた状態のデータを確保する
●●改ざんされている／不正に置か

れているコンテンツを特定する
●●コンテンツが改ざんされた／不

正に置かれた時刻を特定する
●●不正に置かれた時刻周辺でシス

テムに起こったことを確認する

▼▼図2　復旧の手順

②改ざんされたコンテンツの特定

①Webサイトの停止（外部からWebサーバに
　対するアクセス遮断など）

③コンテンツ改ざん日時の特定

④③で特定した日時付近で発生した事象を
　把握し、改ざん手口を特定する。
　/var 配下のログが参考になることが多い
⑤復旧する。④で特定した手口を行えないような
　措置を取り、再発防止を心がける

Internet

改ざん

◦注意とお願い◦
攻撃の検証などは、自分が責任を持てる環境のみで！
　以降、実際にどうやって対処していくか？という話
を展開するわけですが、話の流れから「どのような形
で攻撃を実現可能か」という例を示すことがあります。
しかしこれは、あくまで例示であり、読者のみなさま
に対して攻撃行為を推奨するものではありません。試
す場合には、壊れてもいい環境で試し、自分以外のと
ころに迷惑がかからないようにしてください。そうで
ないと罪に問われることもありうるので、攻撃検証な
どはあくまで自分が責任を持てる環境で実施するよう
にしてください。

100 - Software Design

Webサイトが改ざん！
サイトオーナがとるべき行動と注意点

ビッグウェーブに乗り遅れるな
〜改ざんの入口や兆候のつか
　み方

　ここでは改ざんの入口や、どのような兆候が見ら
れるのかについて解説します。

改ざんの入り口は脆弱性？〜実は結構
あるWebサイト改ざん

　改ざんされたWebサイトのオーナの中には、「な
ぜウチが改ざんされるのか？」という疑問を抱く方
もいらっしゃることでしょう。でも、オーナの事情
など一切勘案してくれないのが改ざんを行う者で
あり、攻撃者です注2。さらに、改ざん結果によって
は、改ざんされたWebサイトが攻撃に加担させら
れることにつながり、被害を受けるだけではなく他
のユーザに対する加害者にもなりえます。

●●特定の脆弱性を保有するか否かを無差別にス

キャン
●●特定の脆弱性を保有するWebサイトをピンポイ

ントで攻撃

　もちろん「スキャン→ヒット→攻撃」というのを繰
り返す方法もあるでしょうが（図3）、まず高速にス
キャンを実施し、脆弱性を保有することがわかった
ところをピンポイントで攻撃するというほうが効率
はよいでしょう注3（図4のように、とりあえずス
キャン時のレスポンスは保存しておいて、後でまと
めて結果を処理してリスト化し、脆弱性のある
Webサイトをまとめて攻撃するほうが、出回って
いるツールの組み合わせで普通にやりやすいです）。
もしくは脆弱性の有無にかかわらず、いきなり脆弱
性をトリガするようなリクエストを投げてくること
も想定されます。
　そのほかに、コンテンツ書き換えに必要なIDと
パスワードを別のマルウェアによって窃取された
り、脆弱なIDとパスワードを使っていて不正アク
セスを受けたりするパターンも意外とあります。数

注2	 勘案してくれるような攻撃者がいたら、それはそれでコワイ
です。

注3	 ZMap（https://zmap.io/）などの高速スキャンツールを用い
て広範囲に情報を収集し、あとでゆっくり攻撃対象を見定め
て攻撃するなど。

●●Webサイトの設定を改ざんし、よろしくない内

容を入れ込む

　Webサイト上のコンテンツ改ざんの場合、静的
ファイルに保持されたコンテンツを改ざんされる
ケースと、WordPressなどCMSで管理されたコン
テンツ（静的ファイルもあれば、DBMS上に保持さ
れるコンテンツもある）を改ざんされるケースがあ
ります。
　レアなケースとして、Webサイトの名前解決を行
うDNSを書き換えたり、ドメインを乗っ取って
DNSそのものを攻撃者が管理するものに変更した
りというようなものもありますが、これはどちらか
というとWebサイトの書き換えではなく、すでに
攻撃者が用意したWebサーバに被害者を追い込む
ような手法なので、本稿では述べません。

改ざんに気付くトリガ〜自分で気付く
か、他者に指摘されるか

　いずれの場合も、Webサイトにアクセスした場合
に提供されるコンテンツが本来意図したものと異
なったものになっています。このような場合、自分
で気付くか他者から指摘されるかのいずれかで被
害が発覚しますが、改ざんを検知するためのしくみ
を導入していない場合、他者から指摘されるケース
が多くなります。

自分で気付く例

●●改ざん検知システムを導入していて、通知が

Webサイト管理者に送られてきた
●●メンテナンス時に見慣れないファイルが置かれて

いるのを確認した
●●メンテナンス時に見慣れない内容がコンテンツに

書かれているのを確認した

他者から指摘される例

●●外部からの連絡先を設置している場合、その窓

口に対して改ざん時に連絡される
●● CSIRTを設置している企業の場合、当該CSIRT

の連絡窓口に対して連絡がある

https://zmap.io/

Mar. 2016 - 101

年前に流行した「Gumblar」などは、Webサーバのコ
ンテンツを更新するPCにマルウェアを感染させ、
コンテンツ更新に必要な情報を当該PCから抜き
取って、攻撃者がコンテンツを改ざんするというも
のでした。

ログに残る攻撃の痕跡〜Webサーバ
ログやOSの認証ログを例に

　改ざんに限りませんが、誰かが何らかの攻撃を
Webサーバにしかけた際に、特徴的なログが残る
ことが多いです。OSの脆弱性、CMSの脆弱性、パ
スワードリスト攻撃、ブルートフォース攻撃のそれ
ぞれで特徴が異なります。

◆◆OSの脆弱性
　OSの脆弱性を突かれた場合、当然ですがどこを
突かれたかによって残るログが異なります。OS

カーネルの脆弱性を突かれた場合とOS上で動作す
るサービスの脆弱性を突かれた場合でも、ログの残
り方が異なります。

◆◆CMSの脆弱性
　CMSの脆弱性を突かれた場合は、当該脆弱性を
突いた際の特徴的なリクエスト文字列が残ることが
あります。この場合、CMSのログもさることなが
ら、Webサーバのログに特徴的な文字列が残ること
が多いです。
　また、CMSの脆弱性を探索するようなツールもあ
ります。たとえばWordPressの脆弱性をスキャン

するWPScanというツールがありますが、動作さ
せた場合にはWebサーバのアクセスログには図5
のように現れます。このとき、WPScanで脆弱性が
見つかると、WPScan側にはその旨出力されます
（図6）。図6の出力結果を見ると、「バージョンの特
定」「当該バージョンで存在する脆弱性」「当該脆弱性
が修正されているバージョン」が★印部分に表示さ
れていることがわかります。

◆◆パスワードリスト攻撃
　パスワードリスト攻撃が行われた場合は、攻撃を
受けたサービスの認証ログに攻撃の痕跡が残ること
が多いです。またCMSの仕様により、1回のリクエス
トで多くの認証試行が行われていることもあります。

◆◆ブルートフォース攻撃
　ブルートフォースには、「ID固定でパスワードを
複数チャレンジする」ものと、「パスワード固定で
IDを複数チャレンジする」ものがありますが、ログ
イン画面でブルートフォース攻撃を行う場合には、
多くの場合は認証失敗の記録が多数残されます。こ
れもまたパスワードリスト攻撃と同じく、CMSの仕
様によっては1回のリクエストで多くの認証試行が
行われることもあります。
　図7は、筆者が管理するコンピュータの1つに残
された、SSHの認証失敗ログの一部です注4。ありが

注4	 Debian GNU/Linuxの場合は、/var/log/auth.logに残され
ます。

▼▼図3　攻撃者の取るアプローチ1

②スキャン①スキャン

③スキャンで見つかった
　脆弱性を攻撃

④スキャン

スキャンを行い、脆弱性が見つかったら即攻撃

Hit

▼▼図4　攻撃者の取るアプローチ2

①スキャン①スキャン

②スキャンで見つかった
　脆弱性を攻撃

① スキャンを行い、結果は別途保存する
② ①で保存した結果を確認し、脆弱性が確認された
　 Web サイトに対して攻撃をしかける

①スキャン

102 - Software Design

Webサイトが改ざん！
サイトオーナがとるべき行動と注意点

192.168.44.131 - - [16/Jan/2016:18:50:01 +0900] "GET /wordpress/ HTTP/1.1" 200 8000 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:02 +0900] "GET /wordpress/ HTTP/1.1" 200 8000 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:02 +0900] "GET /wordpress/wp-content/plugins HTTP/1.1" 301 571 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:02 +0900] "GET /wordpress/robots.txt HTTP/1.1" 404 459 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:02 +0900] "GET /wordpress/readme.html HTTP/1.1" 200 7448 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:02 +0900] "GET /wordpress/wp-includes/rss-functions.php HTTP/1.1" ｭ
500 185 "http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:02 +0900] "GET /wordpress/wp-content/debug.log HTTP/1.1" 404 469 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:03 +0900] "GET /wordpress/.wp-config.php.swp HTTP/1.1" 404 467 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:03 +0900] "GET /wordpress/wp-config.php.bak HTTP/1.1" 404 466 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:03 +0900] "GET /wordpress/wp-config.orig HTTP/1.1" 404 463 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:03 +0900] "GET /wordpress/wp-config.php~ HTTP/1.1" 404 463 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:03 +0900] "GET /wordpress/%23wp-config.php%23 HTTP/1.1" 404 464 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:04 +0900] "GET /wordpress/wp-config.php.save HTTP/1.1" 404 467 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:05 +0900] "GET /wordpress/wp-config.php.swp HTTP/1.1" 404 466 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:07 +0900] "GET /wordpress/wp-config.php.swo HTTP/1.1" 404 466 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"
192.168.44.131 - - [16/Jan/2016:18:50:08 +0900] "GET /wordpress/wp-config.php_bak HTTP/1.1" 404 466 ｭ
"http://192.168.44.207/wordpress/" "WPScan v2.8 (http://wpscan.org)"

▼▼図5　WPScanが残すWebサーバログ（一部抜粋）

root@kipple:~# wpscan http://192.168.44.207/wordpress/

 __ _______ _____
 ¥ ¥ / / __ ¥ / ____|
 ¥ ¥ /¥ / /| |__) | (___ ___ __ _ _ __
 ¥ ¥/ ¥/ / | ___/ ¥___ ¥ / __|/ _` | '_ ¥
 ¥ /¥ / | | ____) | (__| (_| | | | |
 ¥/ ¥/ |_| |_____/ ¥___|¥__,_|_| |_|

 WordPress Security Scanner by the WPScan Team
 Version 2.8
 Sponsored by Sucuri - https://sucuri.net
 @_WPScan_, @ethicalhack3r, @erwan_lr, pvdl, @_FireFart_

[i] It seems like you have not updated the database for some time.
[?] Do you want to update now? [Y]es [N]o [A]bort, default: [N]y

（中略）

[+] WordPress version 4.0.8 identified from meta generator
[!] 1 vulnerability identified from the version number

[!] Title: WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
 Reference: https://wpvulndb.com/vulnerabilities/8358 ★
 Reference: https://wordpress.org/news/2016/01/wordpress-4-4-1-security-and-maintenance-release/
 Reference: https://github.com/WordPress/WordPress/commit/7ab65139c6838910426567849c7abed723932b87
 Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1564
[i] Fixed in: 4.0.9

（中略）

[+] Finished: Sat Jan 16 18:50:13 2016
[+] Requests Done: 78
[+] Memory used: 1.766 MB
[+] Elapsed time: 00:00:10

▼▼図6　WPScan出力結果（一部抜粋）

Mar. 2016 - 103

ちと思われるユーザ名に対するスキャンを短時間に
複数行っていることがわかります。

◆◆スキャンツールの例〜当然だが、よくある攻撃
はツール化されている
　図8はMedusaと呼ばれるスキャンツールを用い
たスキャンの例です。スキャン対象ホスト、ユーザ
名、パスワード文字列をまとめたファイルを指定し
て、SSHでログイン可能かどうかをスキャンさせて

いる様子になります。もちろん、コマンドでユーザ
名とパスワードを直接指定することも可能なので、
ユーザIDとパスワードの組を指定してのパスワー
ドリスト攻撃もMedusaを用いて実現可能です。

改ざんされたときに踏むべき手順
〜まずは慌てず騒がず落ち着いて

　改ざんされてしまうということは、「運用環境も
含めたWebサーバの環境に何らかの不備がある」と

Jan 18 00:15:05 mx1 sshd[30569]: Invalid user usuario from xx.yy.253.132
Jan 18 00:15:07 mx1 sshd[30571]: Invalid user unison from xx.yy.253.132
Jan 18 00:15:08 mx1 sshd[30573]: Invalid user oracle from xx.yy.253.132
Jan 18 00:15:10 mx1 sshd[30575]: Invalid user postgres from xx.yy.253.132
Jan 18 00:15:11 mx1 sshd[30578]: Invalid user postgres from xx.yy.253.132
Jan 18 00:15:12 mx1 sshd[30580]: Invalid user support from xx.yy.253.132
Jan 18 00:15:14 mx1 sshd[30583]: Invalid user student from xx.yy.253.132
Jan 18 00:15:15 mx1 sshd[30585]: Invalid user plcmspip from xx.yy.253.132
Jan 18 00:15:16 mx1 sshd[30587]: Invalid user PlcmSpIp from xx.yy.253.132
Jan 18 00:15:18 mx1 sshd[30589]: Invalid user webuser from xx.yy.253.132
Jan 18 00:15:19 mx1 sshd[30591]: Invalid user mysql from xx.yy.253.132
Jan 18 00:15:21 mx1 sshd[30593]: Invalid user testuser from xx.yy.253.132
Jan 18 00:15:22 mx1 sshd[30595]: Invalid user ftpuser from xx.yy.253.132
Jan 18 00:15:23 mx1 sshd[30597]: Invalid user zabbix from xx.yy.253.132
Jan 18 00:15:25 mx1 sshd[30599]: Invalid user pi from xx.yy.253.132

▼▼図7　SSHの認証失敗ログの一部

root@kipple:~# cat hostfile
192.168.44.207
root@kipple:~# cat userfile
root
admin
root@kipple:~# cat passfile
12345678
qwerty
abc123
root
admin
root@kipple:~# medusa -H hostfile -U userfile -P passfile -M ssh
Medusa v2.1.1 [http://www.foofus.net] (C) JoMo-Kun / Foofus Networks <jmk@foofus.net>

ACCOUNT CHECK: [ssh] Host: 192.168.44.207 (1 of 1, 0 complete) User: root (1 of 2, 0 complete) ｭ
Password: 12345678 (1 of 5 complete)
ACCOUNT CHECK: [ssh] Host: 192.168.44.207 (1 of 1, 0 complete) User: root (1 of 2, 0 complete) ｭ
Password: qwerty (2 of 5 complete)
ACCOUNT CHECK: [ssh] Host: 192.168.44.207 (1 of 1, 0 complete) User: root (1 of 2, 0 complete) ｭ
Password: abc123 (3 of 5 complete)
ACCOUNT CHECK: [ssh] Host: 192.168.44.207 (1 of 1, 0 complete) User: root (1 of 2, 0 complete) ｭ
Password: root (4 of 5 complete)
ACCOUNT CHECK: [ssh] Host: 192.168.44.207 (1 of 1, 0 complete) User: root (1 of 2, 0 complete) ｭ
Password: admin (5 of 5 complete)
ACCOUNT CHECK: [ssh] Host: 192.168.44.207 (1 of 1, 0 complete) User: admin (2 of 2, 1 complete) ｭ
Password: 12345678 (1 of 5 complete)
ACCOUNT CHECK: [ssh] Host: 192.168.44.207 (1 of 1, 0 complete) User: admin (2 of 2, 1 complete) ｭ
Password: qwerty (2 of 5 complete)
ACCOUNT CHECK: [ssh] Host: 192.168.44.207 (1 of 1, 0 complete) User: admin (2 of 2, 1 complete) ｭ
Password: abc123 (3 of 5 complete)
ACCOUNT CHECK: [ssh] Host: 192.168.44.207 (1 of 1, 0 complete) User: admin (2 of 2, 1 complete) ｭ
Password: root (4 of 5 complete)
ACCOUNT CHECK: [ssh] Host: 192.168.44.207 (1 of 1, 0 complete) User: admin (2 of 2, 1 complete) ｭ
Password: admin (5 of 5 complete)
ACCOUNT FOUND: [ssh] Host: 192.168.44.207 User: admin Password: admin [SUCCESS]

▼▼図8　Medusaを用いたスキャンの例

104 - Software Design

Webサイトが改ざん！
サイトオーナがとるべき行動と注意点

いうことを疑うべきです。単純に改ざんされたコン
テンツを書き換えるだけでは、また同じことが発生
する可能性もあります。なので、踏むべき手順を
きっちり踏んで、同じ手口で改ざんされないように
という必要があります。
　手順は0番から述べており、基本的な流れは押さ
えていますが、場合によっては手順が前後したり並
行に走ったりすることもありえる点に留意してくだ
さい。状況によっては手順を飛ばすなどもやむを得
ませんが、基本は押さえたうえで、“なぜ飛ばした
のか”という理由も残しておきましょう。

やるとまずいこと〜改ざん発生時ある
ある

　実際の対応手順に入る前に、「やっちゃまずいこ
と」を述べておきます。まず、昔は「攻撃されたら
OSから再インストール」というような対処もされ
ていましたが、相当古い考え方であると言わざるを
得ません。そして筆者が見る限り、ありがちな「間
違った」対処は大きく次の3つになります。

①改ざんされたコンテンツを修正して元に戻す

②バックアップされているコンテンツを上書きして元

に戻す

③OSごとやられたことを考慮して、すべて再インス

トールを行い、改ざんされる前の環境に戻す

　程度によりますが、いずれもダメです。まず、①
②については「改ざんされた理由／トリガを特定せ
ずに」コンテンツを復旧しても、改ざんを行った攻
撃者はどうやればコンテンツを改ざんできるか知っ
ており、また同じやり口でコンテンツを改ざんされ
る危険性が高いためです。③についても、同じソフ
トウェアを用いてパッチなどの状況もすべて改ざん
されたものと同じにしてしまうと、やはり再度改ざ
んされる危険性が高いです。
　一方、改ざんされたコンテンツを含むシステムに
対し、適切な証跡を残すようにしてあれば、それら
の証跡を手がかりにして改ざんされた原因や手口を
すみやかに特定することも可能です注5。

注5	 もちろん、それらの証跡を読み解く力は必要です。

　このために必要なことは「やられたWebサーバの
保全」になりますが、後述するとおり、Webサーバ
の所在／Webサーバの所有者が誰かによっても保
全の仕方が異なりますので、各人の環境によってど
うすべきかを事前に確認しておいてください。

 手順0 まずはWebサイトの一時閉鎖
　改ざんが確認された時点でまずやるべきは、Web

サイトの一時閉鎖です。この際に気をつけるべき
は、後述する「手順1」の内容と競合しないように、
Webサイトに触れずに閉鎖する、ということです。
たとえばですが、次の方法が考えられます。

●●改ざんされたWebサイトを置いているコン

ピュータとは別のコンピュータ上に、「一時閉鎖

してます」というメッセージを置き、DNSのエン

トリを変更する
●●とりあえずマシンを停止させる

　いずれにしても、改ざんされたWebサーバを継
続的に用いるということは避けましょう。

 手順1 改ざんされた状態を「保全」しよう
　後でも述べますが、Webサーバを改ざんされた際に
よく言われるのが「保全しよう」ということです。保
全とは、おおまかに言うと「改ざんが発覚した時点」
のWebサーバの状態をそのまま保存し、あとで行う
調査に必要な情報を確保する、ということです。
　ここで言う「Webサーバの状態」とは、HDDや、可
能であればメモリの中身のことを指しますが、メモ
リの中身についてはできればでよいでしょう。「メ
モリの内容についてはいいや」と割り切れるのであ
れば、Webサーバを保全する際には「電源をいきな
り切断する」のが経験上はベストです注6。

◆◆仮想環境の場合は？〜スナップショットをまる
ごと保存

　仮想環境上で動作するVPSなどの場合、スナッ
プショットを保存可能な場合があります。このよう

注6	 どこかしら壊れる危険性はありますが、保全対象となるデー
タがなくなるよりはマシです。

Mar. 2016 - 105

な場合は発覚した段階のスナップショットを保存し
て、調査に備えるのがよいでしょう。

◆◆保全のあとは？〜とりあえず調査用の複製を
　保全が終わったらさぁ調査！と行きたいところで
すが、まだ待ってください。保全した内容が調査手
順の不備で改変されてしまったら、場合によっては
改ざんされた際の手がかりを消し飛ばしてしまうこ
ともありえます。保全した内容は、調査のための複
製を取得するようにして、極力手を触れないように
保存しておきましょう。たとえば、次のような手順
が考えられます。

●●コンピュータからHDDなど記憶装置を取り外す
●●専用の装置などでHDDを複製する

　専用の装置を準備できない場合には他のコン
ピュータに接続することになりますが、この際には
保全対象のHDDに書き込みをしないように細心の
注意をはらって、ddなどのコマンドでHDD全体の
複製を取ってください。
　仮に記憶装置の取り外しが困難な場合には、リス
クはありますが改ざんされたWebサイトが稼働す
るコンピュータ上に、データを保全するための必要
最小限のコマンドを送り込み、HDDのイメージなど
を取得する方法が考えられます。

◆◆さらに興味がある人は？〜「証拠保全ガイドラ
イン」を読もう！
　保全ひとつを取っても、留意しなければならない
点が多々あることはご理解いただけたかと思いま
す。ここで示したのは原則かつ最小限の話であり、
本格的に知りたいという方には、デジタル・フォレ
ンジック研究会という団体がリリースしている「証
拠保全ガイドライン」をお勧めします。

▪「証拠保全ガイドライン第4版」公開のお知らせ

https://digitalforensic.jp/2015/03/06/
guidelines-4/

 手順2 改ざんコンテンツ特定と改ざん時刻と
ログ〜Webサーバのログ、CMSのログ、その
他いろいろ〜を調査
　手順1が終わって「さて調査するぞ」となったとき
に、まず何を調査するか？を確定しましょう。経験
的に最もわかりやすいのが「見知らぬファイルが置
かれている」とか「変な内容が追加されている」とい
うものなので、そのようなケースでどのように調査
するのかを示していきます。

◆◆確認する範囲を絞り込み〜置かれたファイル／改
ざんされたファイルのタイムスタンプを取得する

　よく「何かあったときにログを調査する」という話
を聞きますが、取得されたログが膨大な量にわたる
際には、多分やる気がなくなると思います。また、
仮に相談を受けて大量のログを送りつけられても
「何の手がかりもない状態でどこから見るのか」とい
うやるせなさが後に残ります。
　そんなときに役立つのが、タイムスタンプです。
周到かつ高度な技術を持つ攻撃者はタイムスタンプ
すらも改ざんすることがありますが、多くの場合は
タイムスタンプまでは更新できません。これは、タ
イムスタンプの改ざんには、適切な権限をもって、
OSに密接に関連したしくみを利用して実現される
ため、アプリケーションが動作する権限ではほぼ改
ざんできないことに起因します。このため、まずは
改ざんされたファイルのタイムスタンプを取得しま
しょう。
　見知らぬファイルが置かれた場合にはファイルの
作成時刻、既存のファイルが改ざんされた場合には
ファイルの更新時刻を取得するのが定石となります。

◆◆絞り込んだ範囲のログを確認する
　ログには多くの情報が残ります。たとえば次のよ
うな情報がログには残されます。

●●脆弱性を突いたものであるならば、特徴的なログ

が残存するケースがある
●●想定していないIPアドレスからのアクセスがある
●●ツールによるスキャンがされていれば、スキャン

https://digitalforensic.jp/2015/03/06/guidelines-4/

106 - Software Design

Webサイトが改ざん！
サイトオーナがとるべき行動と注意点

をした跡がログに残るケースがある
●●「？」なリファラをともなったリクエストがある
●●やたらとPOSTばかり行われた形跡がある

　でも、やみくもに手がかりがない状態でログを見
ても、正直なところ役に立ちません。そこで役立つ
のが直前に取得したタイムスタンプです。当該タイ
ムスタンプの前後で何が行われたのかを集中的に確
認することで、改ざんが行われた経路を特定する速
度が早まります。
　なお、肝心のログが残っていないような事態に陥
らないために、ログの保存期間を長めにとっておく
必要があるのは言うまでもありません。

◆◆その他のケース〜絞り込み手段と確認すべきロ
グの種類はさまざまだが、基本はいっしょ
　上記は最もシンプルな「ファイル改ざん」を想定し
た手順になりましたが、コンテンツがDBMSに置
かれている場合などは、こんなにシンプルにはいか
ない可能性ももちろんありえます。そのような場合
でも「どうやって範囲を絞り込むか」という考え方お
よび、「絞り込んだ範囲で残存する痕跡を見つけ出
す」という考え方は役立ちます。
　あくまで上記は「ごく基本的なやり方」を述べてい
るに過ぎません。このやり方をもとに、みなさまの
ところでできそうなやり方を模索してみてくださ
い。
　また、保全から調査に至るまでの手順は、「コン
ピュータ・フォレンジック」と呼ばれる手法をベー
スに組み立てています。コンピュータ・フォレン
ジックそのものについて興味がある人は、先にも述
べたデジタル・フォレンジック研究会という団体の
Webサイトを見てみるなどして調べてみることを
お勧めします。

■特定非営利活動法人 デジタル・フォレンジック
　研究会

　https://digitalforensic.jp/

 手順3 復旧〜手順2で得られた情報をもとに
穴を塞ぎ、元に戻す
　手順2が無事完了すると、改ざんされた原因をつ
かめることと思います。復旧する際には、そのよう
な原因を根絶し、少なくとも同じ手法で改ざんを行
えないようにすることが必要です。
　多くの場合は「CMSやOSなど、環境に含まれる
脆弱性」「脆弱なパスワード」というのが挙げられる
ので、環境の最新化や強固なパスワードへの変更な
どが必要になってきます。運用やコンテンツの都合
上、環境の最新化が難しいなどの場合には、改ざん
を検知／ブロックできるようなソリューションの導
入などを検討してください。特定のパラメータを
伴ったリクエストを防げればよいという場合には、
Web Application Firewall（WAF）の導入も効果的
です注7。

 手順4 影響範囲の確定〜入口によってはほかの
個所の確認も必要／場合によっては全部作り直し
　手順2で確定された入口がきわめて限定的なもの
であれば、手順3までで改ざんそのものの対応は完
了します。しかしシステムアカウントが乗っ取られ
た結果の改ざんなど、そうでない場合には、確認範
囲が多岐にわたります。
　最悪なのは、システム基盤がLinuxなどで構成さ
れていて、root権限まで乗っ取られている場合です。
このようなケースは、単に既存の穴を塞いでコンテ
ンツを正常なものに書き戻すだけでは対処が足りな
いことがあります。

 手順5 改ざんされたWebサイトがほかにも
ないか確認する（オプション）
　Webサイトを1つ管理しているだけであれば、手
順3もしくは手順4で対応は終わりますが、複数の
Webサーバを管理している場合には、ほかのWeb

サーバが改ざんされていないか、そして同じ穴を
持っていないか確認する必要があります。不幸にし
てやられてしまったWebサーバが存在する場合に

注7	 Apache2のモジュールとして提供されるmod_securityも
WAFの一種といえます

https://digitalforensic.jp/

Mar. 2016 - 107

は、上記の手順1～3を繰り返し、手口の特定から
復旧までを行うことになります。

 手順6 改ざんされた原因が発生しないような
管理手順を確立する（オプション）
　もし手順を確立してWebサイトを管理している
場合には、改ざんされた原因への対応を（可能であ
れば）手順に反映し、少なくとも同じ攻撃方法で改
ざんされないようなものにしましょう。

そのほかやるべきこと〜Webサイトの性質に
よって異なるが、最低限告知はしておこう

　自分が管理するWebサイトが改ざんされていた
場合、Webサイト改ざん発覚から復旧までの流れ
と、改ざんされたり不正に置かれたコンテンツにど
の程度のアクセスがあったかという情報くらいは可
能な限り早く告知しましょう。とくにWebサイト
が「マルウェア感染を引き起こす」ような改ざんをさ
れていた場合や、何らかのプロモーションサイトで
あった場合には、（個人的には）必須の対応であると
考えます。
　改ざんされてしまったという事実は消せないの
で、発生してしまった事実に対して取りうる対応を
実施するのが正しい姿といえます。

事前にできる「事後対応や被害
低減の準備」

　基本、改ざん対応が行われるのは、改ざんされて
しまった後のことです。ちょっとしたことに留意し
ておくことで、改ざんされた後の対応を効率化でき
たり、場合によっては攻撃そのものを撃退すること
も可能になります。ここからはそういった対応をい
くつか例示してみます。

「こんなのムリ！」という方は〜対応依
頼を行う先の確保を

　すでに述べた手順はどちらかというと「わかる人
が自前でどうやっていくか」という方法であり、正
直こんな手順をすべての人にやってくれ、というの
は相当ムリがあります注8。となると、相談できる先

注8	 わかってて書いてます。

を確保するのが必要になってきます。
　自前でいろいろ管理している人で、自分でなんと
かしなきゃいけないという場合には、もうその人自
身がなんとかするしかないのですが、専門家に対応
依頼する費用をなんとかできる場合には、たとえば
次のようなサービスを利用するのも手です。

■サイバー119サービス（株式会社LAC）
http://www.lac.co.jp/service/incident/
cyber119.html

■セキュリティ・インシデント救急サービス
　（NTTデータ先端技術株式会社）

http://www.intellilink.co.jp/security/
services/consulting/10.html

　ただ、いったん改ざん事故が起きると、対応の要
所要所で費用はかかります。このような対応を依頼
する際の費用もかなりかさむということは覚悟して
ください。

Webサーバは誰のもの？〜できる対
応と難しい対応

　Webサーバが自分の家やオフィスにあるなどし
て、気がついたらすぐに対処可能な場合は停止もラ
クですし、その後の対処も比較的容易に行えます。
しかし、Webサーバがそのような場所以外のとこ
ろ̶̶たとえばデータセンターなど̶̶に置かれ
ていたり、Webサーバを所有しているのがほかの人
だったりすると、できる対応とできない（難しい）対
応があります。

●●Webサーバを外部のデータセンタなどに置いて

ある場合
●●Webサーバの所有者がWebサイトのオーナで

あっても、Webサーバを他者と共用している場合
●●Webサーバの所有者がWebサイトオーナでない

場合

　上記のいずれの場合も、Webサーバを置いてある
場所に入る手続きがあったり、Webサーバに他者の
情報も入ったりするため、証跡をすぐに確保するの
が難しいことがあります。このような場合の対応

http://www.lac.co.jp/service/incident/cyber119.html
http://www.intellilink.co.jp/security/services/consulting/10.html

108 - Software Design

Webサイトが改ざん！
サイトオーナがとるべき行動と注意点

は、まだ攻撃による被害がなく余裕があるうちに確
認し、できる対応を明確にするのが吉といえます。

基本は脆弱性対応とデータの自衛〜
パッチとバックアップは確実に（！）

　本稿は「改ざん被害に遭ったら」という前提で書い
てますが、それでもなるべく改ざん被害に遭わない
ようにするにこしたことはありませんし、改ざん被
害に遭った際の復旧を手早く行えるにこしたことは
ありません。そのために必要なのは、次のことにな
ります。

●●Webサイトで使っているソフトウェアで発見さ

れた脆弱性への対処を迅速にする（＝公開された

パッチを迅速に適用する）
●●プログラム以外のデータのバックアップをとって

おく（＝改ざんされる前の状態に戻せるようにす

る）

　いずれも通常運用に含める形で実践していただく
のがよいでしょう。ちなみにバックアップを取った
つもりでもレストアできないというトラブルはよく
聞くので、取得したバックアップデータをレストア
できることは確認してください。
　あと留意するべき点は、脆弱性が含まれているプ
ログラムもいっしょにレストアしないようにすると
いうことです。もしそのようなプログラムもいっ
しょにレストアしてしまうと、せっかく対処した脆
弱性がまた復活することになります。稼働する状態
のシステム全体を復旧目的でバックアップする際に
は、バックアップデータよりレストアを完了した後
からシステムを再開（公開）する前までの間に、パッ
チを適用するようにしてください。

転ばぬ先の杖〜保全の訓練と使うツー
ルの確保を

　やられてしまってからツールをそろえるのでは、
なかなか調査も進みません。となると、「やられて
しまうこと」をある程度念頭に置いた道具立てが必
要になってきます。
　対応手順の中では「保全」という話を展開してお
り、解説中でも「コンピュータ・フォレンジック」と
いう言葉を用いていますが、保全をはじめとする

フォレンジック活動をまともに行うためには事前の
準備が必要です。保全の手順や道具を準備していな
いと、その後の原因究明まで時間がかかることも
多々あります。
　たとえばですが、事前準備には次のようなアプ
ローチが考えられます。

●●保全のために必要な環境をあらかじめそろえてお

き、改ざんが発生したときの保全や調査にその

環境を用いる
●●保全を含めた調査活動の訓練を事前に行い、手

順を確認する

　必要な環境については、上を見たらきりがないの
ですが、調査訓練のために必要な道具立ては、たと
えば次のようなものを用いることで対処可能です。

■SANS investigative Forensic Toolkit(SIFT)
　Workstation Version 3

http://digital-forensics.sans.org/community/
downloads

■Kali Linux
　https://www.kali.org/
■Autopsy（図9）
　http://www.sleuthkit.org/autopsy/

　それぞれのツールの使い方1つを紹介するにもか
なりの分量になってしまうのですが、機会があれば
ご紹介させていただければと思います。s

▼▼図9　Autopsy

http://digital-forensics.sans.org/community/downloads
https://www.kali.org/
http://www.sleuthkit.org/autopsy/

109 - Software Design Mar. 2016 - 109

はじめに

　前回の特集にて、段取りに従った負荷試験の
進め方の前編として、次のステップを紹介しま
した。

step1. �静的ファイルを叩くことで利用する負荷
試験ツールや設定の試験を行う

step2. HelloWorldを叩く
step3. 参照系のページ、APIを叩く
step4. 更新の発生するページ、APIを叩く
step5. �外部サービスとの結合を含むページ、API

を叩く

　今回は最終回として、段取りに従った負荷試
験の進め方の後編を紹介します。

step6. シナリオを組んで試験を行う
step7. 離れたネットワークから試験を行う
step8. �各リソースのスケールアップ・スケールア

ウトをして試験を行う
step9. より強い負荷を与えてみる

負荷試験対象システム

　負荷試験の対象システムは、前回同様に
AWS上に、スケール可能かつ、単一障害点を
作らないWebサービスを構成するものとしま
す（図1）注1。

・MySQLはRDSというAWSの提供するサービ

スを利用
・上記MySQLにはMultiAZオプションを付けて、

ホットスタンバイ方式による冗長化を行ってお
く

・DNSとしてAWSの提供するRoute53サービ
スを利用

・ロードバランサとしてAWSの提供するElastic
Load Balancer （以降ELB）を利用

・Webサーバはデータセンターに相当する
Availability Zone （以降 AZ）をまたがる形で
複数台利用することで冗長化とスケールアップ
性能を担保

・キャッシュとしてAWSがサービスとして提供す
るElasti CacheをMemcacheプロトコルで
AZをまたぐ形で利用

・外部のサービスとhttpまたはhttps経由で連携
している

［Step6］シナリオを組んで
試験を行う

　前回までの負荷試験は単体のページやAPI

を対象としましたが、今回からはいよいよ負荷
試験シナリオを利用した負荷試験を行います。

負荷試験シナリオとは、複数のページやAPI

に対して実際のユーザが行うようにページや
APIをまたいで連続してリクエストを発生さ
せる方法などを記載したファイルで、負荷試験
ツールはこのファイルに記載された内容に基い
て負荷試験を行います。

注1） 今回は、説明を単純にするために、MySQLのスケール対
応はRDSのスケールアップのみで対応することにしていま
すが基本は同じです。

クラウド時代の

再入門

短期集中
連載

 Author 仲川 樽八（なかがわ たるはち）　㈱ゆめみ　Twitter@tarupachi

段取りに従った負荷試験の進め方（後編）・最終回第 回4

110 - Software Design

クラウド時代の
再入門

クボックス的なページに対する試験などでシナ
リオの組み方がよくわからない場合は、ブラウ
ザのデバッグ機能を利用して確認できるパラメー
タを埋め込む方法もあります（例：Chromeの
要素を検証→Networkから確認できるパラメー
タなど）。
　あまり深く考えずに典型的なユーザの導線を
“適当に”考えて“適当に”組んでいってください。
いずれにせよ、ユーザ導線の完全なモデルケー
スを作成するのは非常に困難ですので、よりア
クセス頻度が高く、負荷が高く、問題が発生し
そうなシナリオが含まれていればOKです。ク
ラウド時代における負荷試験の目的は「システ
ムのスケール性能を担保すること」であり、特
定の条件下での完全な性能担保ではないと考え
てください。

シナリオ作成時の注意事項

　作成中のテスト実行と、実際に負荷をかける
ときには、次の部分が異なります。

・シナリオ作成中は同時アクセス数を1にしたほ
うがログや結果を追跡しやすい

　一般的にWebシステムの負荷試験といえば
このシナリオを利用した試験のことを指すこと
も多いですので、いきなり負荷試験シナリオを
組んで試験を始めることも多いと思われますが、
過去に負荷試験がうまくいかなかった方に関し
ては、ぜひ前号の記事で紹介した［Step1］～
［Step5］に関して見なおしていただければ問題
解決のヒントが埋まっているかもしれません。
　シナリオを記載して負荷試験を行うツールと
しては以前の記事で紹介したJMeter、Locust、
Tsungのいずれを利用してもかまいませんが、
利用する負荷試験ツールによって作成方法は異
なりますのでツールに合わせて個別で作成する
必要があります。

シナリオの組み方

　JMeterやTsungではシナリオを組むために
proxyを立てて、実際のリクエストをキャプチャ
する方法もありますが、多くの場合必要ありま
せん。デバッグ用に適切なアクセスログを出力
するようにしておけば、そちらからリクエスト
内容を抽出するなどしてもいいでしょう。ブラッ

Availability Zone Availability Zone

M
RDS DB
instance

S
RDS Standby
（Multi-AZ）

ElastiCache ElastiCache

EC2 instance EC2 instance EC2 instance EC2 instance
HTTP/

HTTPS 通信
外部サービス

S3/DynamoDB
他、Restful API サービスなど

web app
server

web app
server

web app
server

web app
server

ELB

Amazon
Route 53

AWS

▼▼図1　負荷試験の対象となるシステム概要

110 - Software Design Mar. 2016 - 111

・シナリオ作成中は詳細な結果レポートを出力し
たほうが作成しやすいですが、本番の負荷をか
けるときには外す必要がある

・シナリオ作成はネットワーク的に離れた場所か
ら作成して良い

スループットの評価について

　シナリオを組んだ負荷試験を行う場合におい
て取得される個別のリクエストに関するスルー
プットと、単体ページに対する負荷試験で得ら
れるスループットは考え方が変わりますので注
意が必要です。
　例として10件の懸賞が登録された懸賞応募
サイトのユーザ導線をシミュレートするシナリ
オを次に挙げます。

①ログインする （ログインAPI）
②応募可能な懸賞の一覧を取得する （一覧取得

API）
③応募可能な懸賞が残っている場合は懸賞に応

募する （懸賞応募API） →②に戻る

　このときに次の試験結果が得られたとします。

ログインAPIのスループット : 100 req/sec
一覧取得APIのスループット : 1000 req/sec
懸賞応募APIのスループット : 1000 req/sec
Total: 2100 req/sec

　このシナリオにおけるシステムの性能を知り
たい場合には、この数字のどこに注目するかに
よって結果が変わってきます。

・参加可能なユーザのシナリオに注目する場合
→ 100 req/sec

・懸賞の応募数に注目する場合 → 1000 req/
sec

　また、とくに補足のない状態で上記の結果を
見たときに、一覧取得APIや懸賞応募APIは1

秒間にログイン処理の10倍の回数をこなして
いるため、処理性能としてもそれぞれ10倍高
速に応答をこなすことができるように受け取ら
れることがありますが、もちろんこちらは間違
いで単体のAPIの応答性能はスループットで
はなく、API個別のレイテンシを見ないと判定
することはできません。 同一シナリオ中の個

Availability Zone Availability Zone

M
RDS DB
instance

S
RDS Standby
（Multi-AZ）

ElastiCache ElastiCache

EC2 instance
HTTP/

HTTPS 通信
外部サービス

S3/DynamoDB
他、Restful API サービスなど

ELB

Amazon
Route 53

AWS

攻撃ツール

×シナリオ

web app
server

×今まで単体でコールしていなかった API

×他の APIとの競合でロックするAPI

 ▼図2　Private IP経由での攻撃をかける。前回記事でシナリオ不要のケースと同様の構成

第 回4 段取りに従った負荷試験の進め方（後編）・最終回

112 - Software Design

クラウド時代の
再入門

別のページやAPIのスループットは単純にその
シナリオ内で設定された実行回数に比例します
ので、とくに負荷試験レポートを記載する際に
レポートを読む人間がこの数字を読み間違えな
いようなレポートの記載をする必要があります。

対象のシステム

　負荷をかける対象のサーバが1台、ローカル
ホストまたは同一セグメントのサーバから
Private IP経由での攻撃をすることは前回の特
集で記載したシナリオ不要のケースと同じです
（図2）。

目的

　セッション的な手続きのあるシナリオにおけ
るシステムのスループットを計測します。実際
のユーザのアクセスをシミュレートした環境で
の負荷試験を行います。

次へ進む条件

　シナリオが正常に流れ、結果として、Webサー
バもしくはDBサーバのリソースのいずれかが
逼迫することが確認できれば、次に進んでくだ
さい。結果の数値が今までの個別の試験結果か
ら予想できる範囲に収まっていれば大丈夫です。
また、負荷試験実施の結果、DBなどに正常に
データが登録されていることの確認は必要です。

負荷がうまくかからない原因の例

負荷試験ツールの設定が悪い
　次の対策などが考えられます。

・これまでの試験と別のツールを利用した場合、
静的ファイルへのアクセスからいったんやり直
して設定を見なおしてみる

・JMeterの場合、シナリオ中でJavaScript関数
を多用するとJMeter側でリソースを大量に使
用してしまうことがあるので注意する

・JMeterの場合、長時間の試験を行っている間
に攻撃側の能力が下がってくることがあるため、

システムのスループットが落ちてきたように見え
るときがある
アプリケーションに問題がある
　次のような問題が考えられます。

・今まで試験していなかったページやAPIのロジッ
ク不備、リソース競合など

・コールされるページやAPIの組み合わせによる
リソース競合など

［Step7］離れたネットワーク
から試験を行う

対象のシステム

　今までの試験は、すべてローカルホストまた
は同一セグメントのサーバからPrivate IP経
由での攻撃を行っていました。これをロードバ
ランサを経由した攻撃に変更します。この試験
では今まで行ってきた試験を攻撃サーバのみ変
更した状態ですべて再実行します。
　ロードバランサの配下に設置するWebサー
バはまだ1台だけとしてください（図3）。

目的

　グローバルセグメントからの攻撃が適切に行
われることを確認します。独立した負荷試験攻
撃サーバからかけることができる攻撃の限界値
を計測します。

次へ進む条件

　この試験の結果として、今までの試験と同じ
く適切に各リソースが利用されて、同等のスルー
プットが出ていれば次に進んでください。
ELBは急激な負荷上昇を検知したときに自動
でスケールするため、ウォームアップが済んで
いない状態だと本来のスループットを出せなく
なることがありますが、実際には数分間負荷を
かけ続けた時点で十分な能力までスケールしま
す。しばらく負荷をかけてもスループットが改
善しない場合はELBではなく、ほかのインフ

112 - Software Design Mar. 2016 - 113

ラの能力を疑ったほうがいいかもしれません。

負荷がうまくかからない原因の例

インフラの問題
　ELBのウォームアップが完了していない場
合が考えられます。

ネットワークの問題
　ネットワーク側の問題として、次の項目が考
えられます。

・攻撃ツールにGlobal IPが割り当てられておらず、
NAT経由での攻撃をしている （＝NATサーバ
がボトルネックになっている）

・SSLを利用した負荷試験を行っている注2

注2） AWSでシステムを組む場合において実際にはELBにてSSL
の終端を担うことが多いと思います。その場合は各Webサー
バへのSSLの負荷はかかりません。であるにもかかわらず、
SSLを利用したアクセスをしている場合、負荷試験にて観
測可能なスループットは1/10以下になるなど、著しく劣
化するといった状態が発生します。このとき、Webサー
バには実際にはほとんど負荷がかかっておらず、Webサー
バ上で見たレイテンシはほとんどない状態で高速に応答し
ているにもかかわらず、負荷試験ツールから見たレイテン
シが高いため、次のリクエストを投げることができないと
いう状況となります。これは負荷試験サーバ側でSSLのデ
コードのためのコストがかかるために適切な負荷試験を行
えていないパターンとなりますので、負荷試験においては
SSLを利用しない試験を行う必要があります。

・攻撃サーバとELB間でKeep-Aliveされていな
い

［Step8］各リソースのスケールアッ
プ・スケールアウトをして試験を行う

　いよいよ本番です。クラウド時代における負
荷試験の目的はまさにこれで、これまではこの
試験を円滑に進めるための前準備に過ぎません。

今までの試験においてボトルネックとなってい
たリソースに関して、スケールアップまたはス
ケールアウトを行い、再試験を行うことを繰り
返します（図4）。

目的

　システムのスループットがスケールアップや
スケールアウトに追従して改善することを確認
します。

スケールアップ、スケールアウトの例

　ここまでの試験が順調に進んでいた場合、シ
ステムのリソースが逼迫しているのはWebサー
バのCPUリソースであることがほとんどです

Availability Zone Availability Zone

M
RDS DB
instance

S
RDS Standby
（Multi-AZ）

ElastiCache ElastiCache

EC2 instance
HTTP/

HTTPS 通信
外部サービス

S3/DynamoDB
他、Restful API サービスなど

ELB

Amazon
Route 53

AWS

web app
server

攻撃ツール
※GlobalIP が必要

×ネットワークリソース×ネットワークリソース

×接続方法

×ツール設定

×攻撃シナリオ

 ▼図3　対象のシステム

第 回4 段取りに従った負荷試験の進め方（後編）・最終回

114 - Software Design

クラウド時代の
再入門

ので注3、この場合はまずWebサーバに対してス
ケールアップおよびスケールアウトを行います。
理想的なCPUボトルネックの場合であれば、
システムのスループットはWebサーバのスケー
ルアップやスケールアウトに対応して正比例し
て向上しますので、システムリソースの増強に
合わせて、攻撃ツールのクライアントの同時接
続数も増やしながら試験を繰り返します。
　Webサーバの追加に関しては2台→4台→8

台→16台と、リソースの逼迫がWebサーバ以
外の部分に移行するまで、思い切って倍々で増
やしていきます。これはWebサーバリソース
の余裕が中途半端だった場合にはたとえ他の部
分のリソースにボトルネックがあり、そのボト
ルネックを解消することで全体のスループット
が改善するという状況であったとしてもその効
果が目に見えにくいためです。
　Webサーバの追加により、Webサーバのリ
ソースに十分な余裕が出たうえで、Webサー

注3） WebサーバのCPUボトルネックの場合は非常にわかりや
すく、負荷試験中のCPUリソースがほぼ100％の状態で張
りつきます。

バの追加によってはそれ以上システムスループッ
トが改善しなくなった時点でWebサーバ以外
に発生しているリソース逼迫個所（DBのCPU

リソースなど注4）を探します。次のボトルネッ
クが判明した場合はそのボトルネックに対して
システムリソースのスケールアップ、スケール
アウトを行っての負荷試験を行ってください。
　実際の商用環境ではボトルネックでない個所
に対して必要以上のリソースを確保することに
はまったく意味がなくリソースの無駄遣いとなっ
てしまうのですが、今回は試験ですので、それ
ぞれのリソースに対してWebサーバの増強時
と同じく、十分な余裕のあるリソースサイズに
なるまで余分に増強したうえで次のボトルネッ
クを探してそちらを対策するという作業を繰り
返します。
　この作業の途中でそれぞれのリソースに対し

注4） DBサーバの場合、WebサーバのCPUボトルネックとは異
なり、CPU使用率が60％～80％など、100％になる前に
単体スループットが頭打ちとなることがありますので注意
してください。また、RDS for Auroraの場合はCPUを積
極的に利用するという設計のため、CPU利用率は100％近
くとなっていても、まだ単体スループットが上がるという
ことがあるようですので、こちらも注意が必要です。

Availability Zone Availability Zone

M
RDS DB
instance

S
RDS Standby
（Multi-AZ）

ElastiCache ElastiCache

EC2 instance
HTTP/

HTTPS 通信
外部サービス

S3/DynamoDB
他、Restful API サービスなど

ELB

Amazon
Route 53

AWS

web app
server

攻撃ツール
※GlobalIP が必要

× CPUリソース

× Memリソース

EC2 instance EC2 instance EC2 instance

web app
server

web app
server

web app
server

スケールアップ
またはスケールアウト

 ▼図4　スケールアップ・スケールアウトして試験を行う構成

114 - Software Design Mar. 2016 - 115

ては今まではかからなかった負荷がかかるよう
になってきます。 とくにスケールアウトでは
なく、スケールアップにてスケール性能を担保
しようとしてきたリソース（今回の例では
RDS）には負荷が集中しますので、そちらがボ
トルネックとなり今まで出なかったロックなど
が発生することがありますので、システムのス
ケールアップやスケールアウトと平行してアプ
リケーションのチューニングも進めます。

次へ進む条件

　リソースが逼迫していた部分のスケールアッ
プ、スケールアウトをすることで、ボトルネッ
クの解消とともにシステムのスループットが改
善することを確認してください。システム全体
のスループットが当初の目標値を上回った時点、
または先の試験で確認した攻撃ツールの限界ま
で負荷がかかったため、それ以上の負荷をかけ
ることができなくなった時点でこのステップは
終了します。
スケールアップで負荷が
うまくかからない原因の例

ミドルウェア設定、カーネルパラメータ設定
に問題がある
　サーバ1台あたりで処理させなければならな
いリクエスト数が増えていきますので、Apa

cheなど、各種ミドルウェアの設定値をそれに
応じた設定に見なおさなければなりません。

DBに問題がある
　とくにMultiAZオプションを利用していた
場合、DBのスケールアップによるスループッ
トはインスタンスタイプごとのCPU処理能力
とは比例しない（ことも多い）ですので、ある程
度以上のインスタンスタイプを最初から利用し
ている場合にはリソースのインスタンスタイプ
を変更してもあまりスループットが改善しない
ことがあります。

スケールアウトで負荷が
うまくかからない原因の例

　こちらは、サーバの台数に左右されない外部
リソースへのアクセス部分を中心に疑ってくだ
さい。

インフラに問題がある
　次の3例が考えられます。

・ロードバランサに問題がある
　アプリケーションサーバをMulti AZ構成とした

ときに、負荷試験ツールによっては適切に負荷
を分散できないという症状が発生する （JMeter
など）。この場合は、どちらかのAvailability
Zoneにサーバをすべて集めて構築することで
対応

・ネットワーク設定に問題がある
　外部APIを利用する場合にNATによるルーティ

ング部分がボトルネックとなり、途中までしか
スケールしないという症状になることがある

・ネットワーク帯域に問題がある

アプリケーションに問題がある
　次の問題が考えられます。

・キャッシュ設計に問題がある
・ログ転送先が詰まっている

　過去事例では、rsyslogによる外部転送がボ
トルネックになったことがあります。
　このときは、Webサーバを一定数以上追加
すると、負荷試験中のスループットが乱高下す
るようになってしまいました。

［Step9］より強い負荷を
与えてみる

　多くの場合はこのステップは必要ありません
が、システムに要求されるスループットが高い
ときには、攻撃サーバ1台では適切な負荷をか
けることができないことがあります。その場合

第 回4 段取りに従った負荷試験の進め方（後編）・最終回

116 - Software Design

クラウド時代の
再入門

には複数の攻撃サーバを起動して、同時に負荷
をかけてその結果を観測します（図5）。JMeter

やLocust、Tsungにはそれぞれ複数の攻撃サー
バ間の連動機能が提供されていますが、詳細な
結果でなくても良いのであればCloudWatchに
よるモニタリングだけでもつかむことができま
すので、複数の攻撃サーバを連動させることが
できないツールや、連動機能を利用しない場合
であってもとくに問題はありません。また、適
宜複数のツールを組み合わせて同時に負荷試験
を行っても大丈夫です。この試験においては攻
撃サーバの増強に応じて、前のステップでスケー
ルアップ、スケールアウトを行い解消させたボ
トルネックにふたたび負荷が集中し、新たなボ
トルネックとして発現するようになりますので、
再度［Step8］に戻ってシステムの増強をするこ
とを繰り返し行います。

JMeterで攻撃Slaveサーバを
連動させる

　JMeterにおける連動機能の利用方法は誌面
で紹介するには量が多くなりますので、ここで
はWeb上に公開されている記事の紹介だけと

させていただきます。

・SpotInstanceとJMeterを使って400万req/
minの負荷試験を行う注5

　以前の記事で紹介したクラスメソッド社が公
開している記事です。JMeterで攻撃をかける
場合は攻撃サーバ1台あたりの攻撃性能が低く
なりがちですので、ほかのツールと比較して大
量の攻撃サーバを準備する必要がありますが、
こちらの記事ではクラウドのメリットを最大限
に利用して安価に大量の攻撃サーバを準備して
います。

Locustで攻撃Slaveサーバを
連動させる

　以前の記事で紹介した複数のSlaveサーバを
同一のインスタンス上で起動するパターンと同
様にしてSlaveサーバを物理的に他のサーバ上
で起動させることができます（リスト1参照）。
このときも、Slaveサーバ上のCPUの空きリ
ソースに応じて複数のSlaveサーバを起動させ

注5） http://dev.classmethod.jp/cloud/apache-jmeter-master-
slave-100mil-req-min/

Availability Zone Availability Zone

M
RDS DB
instance

S
RDS Standby
（Multi-AZ）

ElastiCache ElastiCache

EC2 instance
HTTP/

HTTPS 通信
外部サービス

S3/DynamoDB
他、Restful API サービスなど

ELB

Amazon
Route 53

AWS

web app
server

攻撃サーバを複数立てる

EC2 instance EC2 instance EC2 instance

web app
server

web app
server

web app
server

 ▼図5　より強い負荷を与えてみる

http://dev.classmethod.jp/cloud/apache-jmeter-master-slave-100mil-req-min/

116 - Software Design Mar. 2016 - 117

ることができます。

Tsungで攻撃Slaveサーバを連動させる

　XML設定ファイル中の設定部分において攻
撃用Slaveサーバの定義を記載します。
　こちらは設定サンプルがWeb記事注6に記載
されています（Xexaさんの公開記事）。3台の
Tsungサーバを連動させて攻撃させています。
Tsungでは比較的少ない台数のサーバでも大き
な負荷をかけることができます。

目的

　単体の攻撃サーバからでは負荷をかけきれな
い、より大規模なシステムにおける負荷試験を
実施します。

完了条件

　攻撃サーバのリソース追加および、システム
のリソース追加に対応してシステムがスケール
することを確認し、最終的にシステムの応答が
目標のスループットを出していること、高負荷
時にシステムが予期せぬ挙動となっていないこ
となどを確認できた時点で負荷試験の終了です。

注6） Qiita:Tsungで負荷試験（http://qiita.com/Hexa/items/323
d69ee19a68f217191）

リリースに必要なリソースを
見積もる

　負荷試験としてはここまでで挙げた内容で一
通り終わりになります。しかしながら、負荷試
験としては各リソースがボトルネックとならな
いようにリソース増強の際には必要十分以上の
リソースを追加していく作業を繰り返してきま
したが、実際にはより多くのリソースを使用す
るということはよりコストがかかるということ
ですので、リリース時点においては必要十分な
中で適正なリソース量に絞り込むことが必要と
なります。実際に想定されるユーザアクセス数
に一定の安全係数をかけたうえで、各リソース
が余り過ぎない範囲でリソースの選定を行い、
最後にもう一度負荷試験をかけて性能を測定し
ます。

最後に

　全4回にわたって負荷試験に関する全体的な
考え方や効率的な実施手順を紹介してきました
が、いかがでしたでしょうか。「クラウド時代」
のと銘打ってはいますが、当然オンプレミスに
おける負荷試験に関しても負荷試験ツールの考
え方などは同じです。これらの考え方は負荷試
験実施を効率的に行うことだけでなく、負荷試
験レポートをまとめる際にどの数字に対して
フォーカスしなければならないかなど、見せる
数字、見せるべきではない数字などを選定する
ためにも非常に重要な考え方となります。負荷
試験に関しては筆者もいまだに試行錯誤を繰り
返している状態ではありますが、この記事がシ
ステムリリース後の事故を減らすことに少しで
もつながれば幸いです。｢

 ▼リスト1　起動ファイルの例（run_remote_slaves.sh）

#!/bin/sh

LOCUST_FILE=${1:-src/locustScinario.py}
SCINARIO_CLASSNAME=WebsiteUser
MASTER_HOST=127.0.0.1

sudo /bin/sh -c "
ulimit -n 65535

 for slaves in {1..10}
do
 /usr/local/bin/locust -f ${LOCUST_ｭ
FILE} ${SCINARIO_CLASSNAME} --slave ｭ
--master-host=${MASTER_HOST}&
done

第 回4 段取りに従った負荷試験の進め方（後編）・最終回

http://qiita.com/Hexa/items/323d69ee19a68f217191

118 - Software Design

　それは今からXX年前のこと、ある取引先か
らの1本の電話がきっかけでした。「来週カット
オーバー予定のうちのシステムなんですが、ど
うにもレスポンスが遅くて困ってるんです。生
島さん、ちょっと見てやってもらえませんか？」
（以下、私（生島）は根が大阪人なので、会話では
大阪弁が出ることをご容赦ください）。
　2つ返事で引き受けて担当者に状況を聞いて
みたところ、システムというのはあるECサイ
トで、お客様がネットを通じてアクセスし、商
品カテゴリを選ぶと、該当するカテゴリの商品
一覧をその瞬間の在庫数量とともに表示するも
ので、その商品一覧画面の表示が遅い、という
ことでした。
　「応答時間の目標はなんぼやの？」と聞くと、
「3秒切ればなんとか格好がつくんですが……」
と答えてくれたのは担当の大道君。ずいぶん若
いなと思ったら、まだ24歳だそうでした。画面
自体は見たところ、どこのECサイトにでもあ
るような何の変哲もない商品一覧です。「（普通
に作れば1秒かからんやろうけど）……で、今は

本番システムでは性能が
出ない！

どれぐらい？」「3分です」「そら～、しんどいな」
「はい……」と、いかにも意気消沈の様子。これ
が解決しないとサービスインできないため、上
司も含めて2週間ほどあれこれやってみたがダ
メだった、もはやリリース延期やむなしか、と
いうところで私が呼ばれたようでした。
　「開発中も遅かった？」
　「いえ、本番のデータを食わせたら遅くなった
んです」
　「開発用のデータは本番と同じ件数ある？」
　「ありません。10分の1もないと思います」
　「まあよくあるパターンやな。もっと早めに本
番と同じデータでテストしとくんやったな」

生島氏
DBコンサルタント。性能トラブルのヘ
ルプのため大道君の会社にやってきた。

大道君
大阪のSI企業に勤める新米エンジニア。
素直さとヤル気が取り柄。

登
場
人
物

紹
介

 原案 生島 勘富（いくしま さだよし） info@g1sys.co.jp ㈱ジーワンシステム
 構成・文 開米 瑞浩（かいまい みずひろ）　 イラスト フクモトミホ

遅いシステムができてしまう原因として、DBを適切に使えていないケースがよくあります。その背景には、多く
のエンジニアがSQLを正しく理解していないということがあるようです。生島氏と大道君の事例を通じて、SQL
の正しい使い方を楽しく学びましょう。

SQLは集合指向の言語だということを知っていますか？第1回

118 - Software Design Mar. 2016 - 119

　「やっぱりそうですよね……次からはそうしま
す」
　お、素直なリアクション。若いときにこの姿
勢はとくに大事。見どころあるじゃないか、と
密かに思いつつ、次はプログラムを見せてもら
いました。

意外によくある怒濤の
二重ループ

　「ふむ……原因はこれやな」
　「えっ、わかったんですか？」
と驚く大道君。まあ、この2週間ほど上司と2

人で四苦八苦してダメだったのに、DBコンサ
ルタントの生島とかいう知らないオッサンに30

分もしないうちに「わかったでえ」とか言われて
も、にわかに信じられないことでしょう。それ
は無理もないことなので、その場で簡単なプロ
グラムを作ってみせたところ、同等の結果を得
るための応答時間は3分から1秒に縮まりまし
た。その差約200倍。大道君、口あんぐり状態。
　「な……なんでこうなるんですか？」
　「ほな、説明しよか」
　原因はこうでした。在庫数量は入荷数量の合
計から受注数量の合計を引くことで得られます
が、要するにその集計処理をアプリケーション

（以下、アプリ）側で行っていたのです（図1）。
　本来この計算は、適切なSQL（Structured

Query Language）を書いてデータベース（以下、
DB）側で行うべきものです。それをアプリ側で
やると、①DBの実行計画作成回数、②DBの
ディスクアクセス回数、③DBサーバとAPサー
バ間のデータ転送量、④AP側の実行命令数、と
いう4つの点で不利になり、負荷が重くなりや
すいのです。
　「え？　ダメなんですか、これ？」と大道君。
　「実はな、あかんのや」
　「知りませんでした……」
　メモを取りながらの、やはり素直なリアクショ
ンに好感が持てます。こういう若者は環境しだ
いで大きく成長します。
　さてこのパターン、AP側で二重にループを
回すことになるので怒濤の二重ループ問題とで
も呼んでおきましょう。単純ですが性能トラブ
ルの原因としてわりとよく見かけるものです。
原因はすぐにわかりましたが、問題はなぜこれ
を自力で解決できず、私のところに相談が回っ
てきたのかということです。率直に言ってこの
二重ループ問題、RDB（Relational Database）と
SQLの基本を知っていれば起こすはずがありま

SQLは集合指向の言語だということを
知っていますか？第1回

 ▼図1　怒濤の二重ループ構造による性能悪化

Java AP

集計

集計

集計

集計

カテゴリ商品リスト読込

商品1入荷データ読込

商品1受注データ読込

商品2入荷データ読込

商品2受注データ読込

以下同じ

…
…

カテゴリ商品
ループ

アプリ側での二重の
ループ構造によって性能悪化

商品1
ループ

商品2
ループ

RDB

120 - Software Design

せんし、たとえ起きてもすぐわかるはずなので
す。それがわからなかった、ということは……。

RDBとSQLの基本を知らない？

　つまり、RDBとSQLの基本を知らずに設計
／プログラミングをしているのでしょうか。
　そう考えざるを得ない事例を、私は長年見て
きました。現代のオープン系システム開発、と
くに業務系の開発ではRDBは必ず使われると
言って良いでしょう。にもかかわらず前述の事
例のようなケースに限らず、設計者の知識を疑
わざるを得ないような設計をよく目にします。
そしてこれは根本的には会社の組織体制に問題
がある、と私は考えるようになりました（図2）。
　「システムの性能が悪い」問題を受けて原因を
調べると「SQLの使い方が悪い」部分が見つかり
ます。コードは直せば動きますが、実際には「設
計者がRDBとSQLのしくみをわかっていない」
場合は同じ失敗を繰り返しますので、教育が必
要です。しかし、現実には「DB技術者が育たな
い組織体制になっている」会社が多いのです。
　「こういう二重ループはアカン、て、誰か教え
てくれへんかった？」
　「いえ、誰も……」
　「SQLは集合指向の言語やって、聞いたこと
ないか？」
　「集合指向？　なんですかそれ？」
というこの答えが象徴しているように、きちん
と教えてくれる先輩が身近にいなかったわけで
すね。技術というのは日々の実践で向上してい

くものなので、社外に1日2日の研修に出すだ
けでは限界があります。教育をするにしてもそ
れが可能な組織体制でない限り成果は上がりま
せん。とはいえ、組織体制を変えるには会社を
動かす必要があります。勉強だったら自分がや
れば済むことなので、エンジニア自身で1人で
もできます。
　というわけで本連載では、DB技術を学びた
いエンジニアに役立つ情報提供をしていきます。
まずは集合指向言語と手続き型言語の違いを押
さえておきましょう。

　現在のIT技術者がおもに使うプログラミング
言語というと、Java、C#、C/C++、Python、
PHP、Visual Basicなどが挙げられますが、こ
れらはいずれも「手続き型言語、またはそれを発
展させたオブジェクト指向言語」であり、コード
の細部は手続き型の考え方を基本としています。
一方、RDBへの問い合わせに使うSQLは「集合
指向」という、手続き型とは根本的に異なる設計
思想を持った言語です。これが、一般のIT技術
者にとってSQLの理解を難しくしている原因な
のです。では、手続き型と集合指向ではどのよ
うに違うのでしょうか？

手続き型言語では実行順序を
記述する

　図3に食材からカレーやシチューのような料
理を作る作業をイメージしたフローを示しまし
た。手続き型言語が想定しているのは、このよ
うに「多数の異なる手続きの実行順序を記述す
る」ことです。そしてその際よく出てくる特定の
パターンを簡潔に書くために、「判断」「繰り返
し」のような制御構造、あるいはサブルーチン
化、例外処理、オブジェクト指向といった仕様
が導入されてきました。その具体的な仕様は個々
の言語によって違いますが、「実行順序を記述す
るものである」という基本は手続き型言語に共通
しています。

SQLは「集合指向」言語
です

 ▼図2　DB技術を重視しない組織体制が根本原因

システムの性能が悪い

SQLの使い方が悪い

設計者がRDBとSQLのしくみを
わかっていない

DB技術者が育たない
組織体制になっている

原因は？

原因は？

原因は？

120 - Software Design Mar. 2016 - 121

SQLでは範囲指定で同じ操作を
一括適用する

　一方、SQLが想定しているのは図4のような
モデルです。こちらは、ホテルの宴会場のよう
な場所で、何種類ものメニューを一気に大量に

作る場面をイメージしてください。最終的にで
きる料理がカレー、シチュー、肉じゃがと違っ
ていても、中には共通の部分があります。たと
えば「食材を一口大に切る」ところはすべての料
理に共通だから一括してできるし、カレーとシ
チューについては味付け以外は共通なのでまと
められるでしょう。SQLはこのような場面で「範
囲指定して同じ操作を一括適用する」ための言語
なのです。手続き型言語は図4の縦方向の処理、
SQLは横方向の処理に向いているわけです。
　こうした違いが典型的に表れるのが、「ルー
プ」です。
　リスト1のコード例はいずれも「注文データを
集計して金額の合計、最大、平均を出す」という
想定のものですが、手続き型言語（Java）の例で
は for文を使ったループ処理があり、SQLでは
それがないことに注目してください。SQLでは
「同じ性質を持ったデータの集合に対して同じ操

SQLは集合指向の言語だということを
知っていますか？第1回

 ▼リスト1　集計処理

 手続き型言語（Java）での集計処理（orders配列のBillingの合計、最大、平均値を算出）
 int sum = 0, max = 0, avg = 0;
 for(int i=0; i < orders.length ; i++){
 sum += orders[i].Billing;
 max = (max > orders [i] .Billing) ? max : orders [i] .Billing;
 }
 if(orders.length > 0) avg = sum/orders.length;

 集合指向言語（SQL）での集計（orderテーブルのBillingの合計、最大、平均値をcustomer_idごとに算出）
 SELECT customer_id, sum(Billing) , max(Billing), avg(Billing)
 FROM order
 GROUP BY customer_id;

 ▼図3　手続き型言語の処理モデル

料理

多数の異なる手続きの
実行 順序 を記述する

食材

切る

下味付け

炒める

煮る

味付け

 ▼図4　集合指向言語（SQL）の処理モデル

カレー

範囲指定して同じ操作を一気に適用する

食材

味付け

シチュー

食材

味付け

肉じゃが

食材

下味付け

炒める

煮る

味付け

味噌汁

食材

煮る

味付け

切る

下味付け

炒める

煮る

122 - Software Design

作を一括適用」するのが基本です。ループ制御構
造を記述する必要がない分、SQLの例のほうが
簡潔に書けていることがわかりますね。しかも、
SQLのコード例が「customer_idごとに分類して
集計」しているのに対して、手続き型言語では全
体を集計しています。もし手続き型言語でも
customer_idごとに分類しようとして、そのた
めに連想配列を使わずにもう一段ループをかま
すと……はい、こうして「怒濤の二重ループ構
造」が発生するわけです。

設計思想が違うものは
理解しにくい

　「同じ性質を持った要素群」つまり「集合」に対
して「同じ操作を一括適用する」という場面には、
それに向いた言語があります。それがつまり「集
合指向言語」であり、SQLなのです。
　もう一度書きますが、手続き型言語は図4の
縦方向の処理を書くのに向いているため、横方
向の「繰り返し処理」を書こうとするとループ制
御構造の作業変数や処理の開始／終了ロジック
が必要になり、コードが複雑化します。言語の
設計思想が根本的に違うのです。
　この根本的な設計思想の違いが、SQLの「理
解しにくさ」の原因です。「プログラム言語は、1

つ覚えればほかの言語にも応用が利く」と聞いた
ことはありませんか？
　「聞いたことあります。そう思ってました」と
大道君。
　「手続き型同士ならそのとおりなんやけどな。

集合指向は感覚が違うんよ」
　手続き型言語の感覚でSQLを学ぼうとしても
うまくいかないので、ゼロからやりなおすつも
りで取り組むべきなのですが、それを教えてく
れる先輩はなかなかいません。その結果「よくわ
からん。なるべく使わないでおこう……」とSQL

から逃げると、本来SQLで処理すべきことまで
手続き型言語で書くようになります。その行き
着くところが「怒濤の二重ループ問題」のような
事例です。そんなケースを私はこの20年間何度
も見てきました。
　「二重ループは絶対にやっちゃいけないんです
か？」
　「まずは全力でなくす方向で考えること。使っ
てもいい場合がないこともないけれどね。でな
いと、複雑な帳票では7重、8重のネスト構造に
なってしまう。そうなってから1つのSQLに直
そうとすると、仕様書からソースコードまでまっ
たく別物やから、無駄になる工数／納期は、今
回の数倍になるよ」
　「二重ループを使わないってことは……発行す
るSQL文は今より複雑になりますよね」
　「そのとおり」
　「SQLが複雑になっても、こういう繰り返し
処理はできるだけDB側でやらせて、最後の結
果だけを一発でアプリに返すほうがいいんです
か？」
　「そのとおり！」
　そう、そこが本質なんです。大道君、なかな
か筋がよさそう。私は少しずつ、彼に期待した
くなっていました。きちんと勉強すれば伸びる
タイプでしょう。

　そもそもアプリケーション開発にかかわるテ
クニカル・スキルは大きく2種類あり、UI層（ビ
ジネス・ロジックを含む）は手続き型言語、DB

層は集合指向言語（SQL）の領域なのです。とこ
ろが手続き型言語を使い慣れた技術者に比べて

役割分担が適切に引かれ
ていない

122 - Software Design Mar. 2016 - 123

熟練のDB技術者は少ないため、適切な役割分
担ができていないケースが非常に多いのが現実
です。その結果SQLを使うべきところできちん
と使えないと、性能悪化／開発工数の増加など
の問題を引き起こしてしまいます。この問題を
解決するためには、第1に経営者がDB技術の重
要性を理解して、技術者間で適切な役割分担が
できる組織体制を組むこと、第2にSQLをきち
んと理解している技術者を増やすことが必要で
す。
　「ちゃんと勉強すれば、僕にもできますか
……？」
　「あったり前やないか。やったらできるもんや

で。やるか？」
　「やります！」
　「今からがんばったら、大阪で3本の指に入る
技術者になれるわ」
　若いエンジニアがその気になったのなら、オ
ジサンも頑張らなければいけません。というわ
けで、本連載では第2のポイントである「技術者
育成」に役立つよう、現場の技術者の悩みの種で
ある性能トラブル事例をもとにして、集合指向
言語としてのSQLの特性を理解しやすい技術解
説を提供します。また第1のポイントである組
織体制についての提言も随時行いますので、よ
ろしくご期待ください。｢

SQLは集合指向の言語だということを
知っていますか？第1回

 ▼図5　集合指向言語と手続き型言語の役割分担

UI層
（ビジネス・ロジックを

含む）

DB層

アプリケーション開発にかかわるテクニカル・スキルは大きく2種類。
DBを扱う集合指向言語スキルが不足するケースが多い。

高いスキルを持ったDB技術者はとくに少なく、
これが多くのシステム開発プロジェクトの壁になっている。

システム階層

手続き型
（C#、Java、PHP、

VBなど）

集合指向

多い

少ない

言語体系 技術者数

　今回は詳しく触れませんでしたが、二重ループ
を使うと負荷が重くなりやすい理由の1番目の指
摘に出てきた「実行計画」は、Javaのような一般の
プログラミング言語とSQLの違いを理解するうえ
での重要なキーワードの1つです。一般の言語の
場合は、最終的にほしい「結果」を得るために、途
中で行う処理の「アルゴリズム」をプログラマが考
えてソースコードにそれを書きます。それに対し
て、SQLの場合は「アルゴリズム」を考えるのはDB
エンジン（のオプティマイザ）の役割です。SQL文

は「最終的にこんなデータがほしい」という結果の
イメージをプログラマからDBエンジンに伝えるた
めに書くもので、実際の処理アルゴリズムはデー
タの状況に応じてDBエンジンが動的に生成しま
す。そうして動的に生成された「アルゴリズム」を
「実行計画」と呼ぶわけです。この意味でSQLはイ
ンタプリタ言語の一種と言えます。DBの動きを知
るためには実行計画の理解は欠かせません。この
件は、今後の本連載で別途詳しく扱います。

COLUMN 実行計画とは

124 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

小さなデータを端末間で
サクっとやりとり

　新しいコミュニティに入ったり、勉強会で隣
になった人とSNSの IDを交換するのは度胸が
いりますよね。IDを交換しなくても手軽にメッ
セージやファイルを交換できたら便利だと思い
ませんか？ iOSやOS Xでは、AirDrop機能
を使ってこのようなデバイス同士の連携ができ
ます。iPhoneと iPhone、iPhoneとMacBookな
どのデバイスで写真や音楽などのファイルを共
有することができるわけです。
　Androidには標準でそのような機能はありま
せん。そこで今回は、Androidでもデバイス同
士の連携をすることができるAPI「Nearby」を
紹介します注1。

Nearby

　Nearbyは、Wi-FiやBluetooth、あるいはス
ピーカーとマイクを使って近くのAndroidと通
信をするための、Googleが開発したサービス
です。Android 2.3以上に対応しています。ま
た iOS版も用意されていますので、iOS端末と
通信するアプリを作ることもできます。
　NearbyではNearby MessagesとNearby Con
注1） 本稿で解説するサンプルコードが、本誌サポートサイトか

らダウンロードできます。http://gihyo.jp/magazine/SD/
archive/2016/201603/support

nectionsの2つのサービスを提供しています。
実際の利用ではGoogle Play Servicesの機能と
して動作します。そのため「Google Play開発
者サービス」のアプリケーションがインストー
ルされているAndroid端末で動作します注2。
　Nearby Messagesは端末から、近接する複数
のAndroid端末に向けてメッセージの送信がで
きます。送信は一方通行のため、リクエストし
たデータに対してレスポンスを受け取るといっ
た双方向の通信はできません。また通信経路は
Wi-FiやBluetoohを使うため、同じネットワー
クに接続していなくても通信が可能です。デー
タはバイナリで送信します。文字列以外にもデー
タを送れるのでアプリのデータや制御にも使え
ます。
　Nearby Connectionsでは同じネットワーク
に接続している1台のAndroid端末がホストと
なり、それ以外のAndroid端末はクライアント
として動作します。これはマルチスクリーンを
用いたマルチプレイのゲームや、複数の端末で
同期をとって動作するようなアプリケーション
で使う機能になります。ルータの機能でマルチ
キャストが有効になっている必要があります。
実際に動かしたときに動作しない場合はルータ
の設定を確認してみてください。

注2） インストールされていない端末の例として、Amazon
Kindle Fireが挙げられます。

第3回 Nearbyとコミュニティ運営

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

三宅 理（みやけ おさむ）
日本Androidの会運営委員・
日本Androidの会埼玉支部

Androidは世界で出荷される8割のスマートフォンに搭載※される、事実上
スマートフォンの標準OSです。このOS上で動くアプリケーションを開発す
ることは、自分のアイデアを世界に発信し、最も多くのスマートフォン上で
動かしてもらえる可能性がある行為です。このAndroidの最新情報と、そ
れを取り巻くコミュニティを知って、魅力的な開発をはじめませんか?

※IDC Worldwide Mobile Phone Tracker, August 7, 2013

http://www.android-group.jp/
http://gihyo.jp/magazine/SD/archive/2016/201603/support

Mar. 2016 - 125124 - Software Design

Nearbyとコミュニティ運営第3回

Nearby Messagesを
使うための準備

　本稿では図1のような、EditViewで文字を入
力すると、Nearby Messagesを使ってメッセー
ジを相手に送り、受け取った側はListViewで
メッセージを表示するアプリを作ってみましょ
う。開発の環境として、Android Studioと
Androidの実機を2台用意する必要があります。
スマートフォンとタブレットの組み合わせでも
大丈夫です。

Android SDK Manager

　Nearbyは、Google Play Servicesの中にAPI

が含まれています。Android SDK Managerを
起動して「Google Play Services」「Google Re

pository」がインストールされているかチェッ
クしてください。インストールされていない場
合は、図2のように2つの項目をチェックして
「Install Packages」ボタンを押します。

APIキーの取得

　Nearby Messagesを利用するためには、Goo

gle Developer ConsoleでAPIキーの取得が必
要になります。Googleアカウント（Gmailなど
を利用する際に使うアカウント）を持っていな
い場合は、アカウントを作成してください。
Google Developer Console注3にアクセスします
注3） https:/ /console.developers.google.com/flows/

enableapi? apiid=copresence&keyType=CLIENT_SIDE_
ANDROID&reusekey=true

証明書のハッシュ値です。Android Studioで
開発をしている場合、デバッグ用のキーが次に
示すパスにあります。
aMacの場合
keytool -list -keystore ̃/.android/
debug.keystore

aWindowsの場合
keytool -list -keystore C:¥Users¥
ユーザ名¥.android¥debug.keystore

（図3）。
　「続行」ボタンを押して新しいプ
ロジェクトを作成します。認証情
報画面でパッケージ名とSHA-1

証明書のフィンガープリントを入
力します（図4）。ここでは例とし
てパッケージ名「com.example.

nearby」とします。SHA-1証明書
のフィンガープリントは、APK

ファイルを署名する際に利用する

 ◀図1　本稿で解説するNearbyアプリのイメージ

 ▼図2　Android SDK Manager
　　 からのインストール

 ▼図3　Nearby Messages APIキーの取得

 ▼図4　Google Developer Console（認証情報）

https://console.developers.google.com/flows/enableapi? apiid=copresence&keyType=CLIENT_SIDE_ANDROID&reusekey=true

126 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

中にリスト2の内容を追加します。その際「API

キー」と書かれた部分は、発行したAPIキーを
入力します。

Nearby Messagesを
使う

　Android Studioで新しくプロジェクトを作
成します。その際パッケージ名はAPIキーを
取得したときに使用した「com.example.nearby」
を使います。

Google開発者サービスの利用方法

　NearbyはGoogle Play Servicesに含まれる
APIを利用するため、リスト3のようにActivity

の onCreateメソッド内でGoogleApiClientの
インスタンスを生成して、onStartメソッド内
で接続しています。その際APIを指定するため、
addApiメソッドでNearby.MESSAGES_API

を指定しています（リスト3①）。

初回起動時の
パーミッション確認

　初回の呼び出しでは、パーミッションの確認
ダイアログが表示されます（図6）。許可ボタン
を押すことでNearbyの機能を使うことが可能
です。権限が許可されない場合、アプリ内で
Nearbyの機能を使うことはできません。
　パーミッションの確認は、後述するPublish

とSubscribeメソッドを呼び出した際のエラー
処理で判定して、ダイアログを表示するように
しています（リスト4）。

Publish（メッセージの送信）

　メッセージを送信するときは、Nearby.Me

ssages.publishメソッドを呼び出します（リスト

5）。メッセージはバイトコードで送信するため、
文字列以外のデータも送信可能です。Message

クラスのインスタンスを生成するときに送信す
るデータを定義しています。Nearby.Messages.

　今回はこのデバッグキーを使ってフィンガー
プリントを登録します（図5）。keytoolを実行注4

した際に入力するパスワードは「android」です。
フィンガープリントの登録を行うと、APIが発
行されます。このキーを後ほど使うのでメモし
ておいてください。

プロジェクト作成

　Android Studioを起動して新しくプロジェク
トを作成します。新規プロジェクト作成時の
ウィザードの中で「Add an activity to mobile」
は、「Empty Activity」を選択して作成します。
作成したプロジェクトのappフォルダの中にあ
るbuild.gradleのdependenciesの中に、リスト

1のコードを追加します。
　GradleのSyncをするとNearbyを使う準備
ができました。次に、Androidmanifest.xmlの

注4） keytoolが起動しない場合は、JDKのbinフォルダのPATH
を設定してください。

 ▼リスト1　build.gradleに追加するコード

 ▼リスト2　Androidmanifest.xmlに追加するコード

dependencies {
 compile 'com.google.android.gms:play- ｭ
services-nearby:8.4.0'
}

〈manifest xmlns:android="http://schemas.
android.com/apk/res/android"
 package="com.example.nearby" 〉
 〈application ...〉
 〈meta-data
 android:name="com.google. ｭ
android.nearby.messages.API_KEY"
 android:value="APIキー" /〉
 〈activity〉
 ...
 〈/activity〉
 〈/application〉

〈/manifest〉

 ▼図5　証明書のハッシュ値を取得

Mar. 2016 - 127126 - Software Design

Nearbyとコミュニティ運営第3回

publishメソッドでメッセージの送信を行って
います。公式サイトにはデータのサイズを3KB

までにすることが望ましいと書かれています。
大きなデータサイズになる写真や動画などのデー
タを送信する用途には適しませんのでご注意く
ださい。

Subscribe（メッセージの受信）

　Publishで送信したメッセージを受け取るに
は、Nearby.Messages.subscribeメソッドを実
行します（リスト6）。Strategyクラスのインス

 ▼リスト3　Nearby Messages APIの指定

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addApi(Nearby.MESSAGES_API) ←①
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();
}

@Override
protected void onStart() {
 super.onStart();
 mGoogleApiClient.connect();
}

@Override
public void onStop() {
 super.onStop();
 if (mGoogleApiClient != null && mGoogleApiClient. ｭ
isConnected()) {
 mGoogleApiClient.disconnect();
 }
}

 ▼リスト4　パーミッションの確認判定

private void handleUnsuccessfulNearbyResult(Status status) {

 if (mResolvingError) {
 return;
 } else if (status.hasResolution()) {
 try {
 mResolvingError = true;
 status.startResolutionForResult(this,
 REQUEST_RESOLVE_ERROR);
 } catch (IntentSender.SendIntentException e) {
 mResolvingError = false;
 }
 } else {
 if (status.getStatusCode() == CommonStatusCodes.NETWORK_ERROR) {
 Toast.makeText(getApplicationContext(),
 "ネットワークに接続できませんでした。設定アプリを開いて確認してください",
 Toast.LENGTH_LONG).show();
 } else {
 // エラー発生
 }
 }
}

 ▼図6　
Nearbyパーミッション
確認ダイアログ

タンスに使うパラメータ（Dis

coveryMode、DistanceType、
TTLSeconds）は公式ドキュメ
ントを参照ください。

画面デザイン

　今回はListViewとEditText

の2つのViewを使ったシンプ
ルな構成です。デザインXML

は誌面の関係上掲載できなかっ
たので、Webからダウンロー
ドしたコードを参照ください。

128 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

トがあります。日本の場合、日本語の書籍がた
くさんあるので勉強するだけなら1人でも可能
です。知識の幅を広げたい、技術以外も学びた
いと思ったら一度はオフラインコミュニティへ
参加してみることをお勧めします。自分が興味
あるテーマを扱っているコミュニティの勉強会
を一度のぞいてみましょう。同じ技術、テーマ
で切磋琢磨している人がたくさんいます。
　コミュニティでは技術そのものよりも、ロジッ
クや考え方、つまづいたときのフォローを学ぶ
ことがあります。それがコミュニティに参加す
る楽しみだと筆者は思います。

コミュニティを運営

　自分が参加したいコミュニティがないときは
どうしたらいいのでしょうか。その場合はコミュ
ニティを自分で作るという方法があります。自

Nearbyのまとめ

　実際にアプリを動かしてみます。メッセージ
を入力して完了ボタンを押すと、数秒後にもう
一方の端末に入力したメッセージが表示される
と思います。今回は簡単にするために文字列を
送信していますが、バイナリデータであればな
んでも送信可能です。Nearbyの機能を使って
皆さんもAndroid端末同士で通信するプログラ
ムを書いてみましょう。

開発者の
コミュニティ運営

コミュニティへ参加

　IT技術を学ぶなら今では書籍やインターネッ
身が発起人になり、コミュニ
ティを作って紹介用のサイトを
用意します。コミュニティに関
する情報があると参加する人が
情報収集する際に活用できます。
また、検索サイトから見つけて
もらえる可能性が上がります。
自身のTwitterなど、SNSで告
知するのも効果的です。これで
コミュニティのできあがりです。
後は定例会や勉強会を開催して
いきます。
　コミュニティを作るのは比較
的簡単です。一方、運営は大変
です。定期的に活動してないと
活動しているコミュニティと認
知されません。定例会などのイ
ベントに備えてネタを作り、会
場を設定してイベント告知を行
い、人を集めないといけません。
　運営の中でも一番大変なこと
は人を集めることです。集客は
もちろんですが、一緒にコミュ

 ▼リスト5　メッセージ送信部

private void publish(String strMessage) {
 mMessage = new Message(strMessage.getBytes());

 if (!mGoogleApiClient.isConnected()) {
 if (!mGoogleApiClient.isConnecting()) {
 mGoogleApiClient.connect();
 }
 } else {
 PublishOptions options = new PublishOptions. ｭ
Builder()
 .setCallback(new PublishCallback() {
 @Override
 public void onExpired() {
 // 配信されなかった時の処理
 }
 }).build();

 Nearby.Messages.publish(mGoogleApiClient, ｭ
mMessage, options)
 .setResultCallback(new ResultCallback〈Status〉() {
 @Override
 public void onResult(Status status) {
 if (status.isSuccess()) {
 // 配信した時
 } else {
 // 配信されなかった時
 handleUnsuccessfulNearbyResult(ｭ
status);
 }
 }
 });
 }
}

Mar. 2016 - 129128 - Software Design

Nearbyとコミュニティ運営第3回

ニティを運営してくれる人たちがいると助かり
ます。1人で開催していくのには限界があります。

まとめ

　日本Androidの会でも毎月定例会を開催して
います。スピーカーを招待して会場を押さえる
必要がありますが、これらを運営委員で行って
います。これらを毎回設定するのがとても大変
です。
　大変なことをあえてする理由はなんなのでしょ
うか?　筆者は新しいことを知りたい欲求が高
く、そのためならなんでもするということで動
いているからだと思います。そして、そういっ
た人達の集まりが運営を動かしているのだと思
います。
　皆さんも興味があるコミュニティがあればぜ
ひ参加してみてください。また、新しいコミュ
ニティを作ってみてください。そうすると世界
が広がると思います。s

　日本Androidの会が主催するAndroid Bazaar
and Conference（ABC）の2016年春開催のイベ
ント。開発者を中心にしたAndroidの総合イベ
ントでセミナー形式のカンファレンスと展示会
形式のバザールから構成される。無料で誰でも
参加できる。今回は IoTの発展に向け、「神経
回路たるAndroidスマートフォンとかかわるセ
ンサ機器・組込み機器」「BLEや将来の5Gも含
めた無線ネットワーク」「クラウド側のディー
プラーニングをはじめとする機械学習機能」に
焦点を当て、Androidを中心とする IoTの体系
的なカンファレンスを予定。加えて、センサ、
スマートフォン、クラウドの連携を進め、人類
の機能拡張の可能性を感じられるバザール出展
を集めた祭典を目指している。参加者と同時に
バザールの出展希望者、運営スタッフも募集中。
http://abc.android-group.jp/2016s/

Android Topics

Android Bazaar and
Conference 2016 Spring
開催日：2016年3月12日
 場 所 ：東京都 青山学院大学
テーマ：IoTの発展に向けたAndroidの新たな役割

COLUMN

 ▼リスト6　メッセージ受信部

private void subscribe() {
 Strategy strategy = new Strategy.Builder()
 .setDiscoveryMode(Strategy.DISCOVERY_MODE_DEFAULT)
 .setDistanceType(Strategy.DISTANCE_TYPE_DEFAULT)
 .setTtlSeconds(Strategy.TTL_SECONDS_INFINITE)
 .build();

 SubscribeOptions options = new SubscribeOptions.Builder()
 .setStrategy(strategy)
 .setCallback(new SubscribeCallback() {
 @Override
 public void onExpired() {
 // タイムアウト
 }
 }).build();

 Nearby.Messages.subscribe(mGoogleApiClient, mMessageListener, options)
 .setResultCallback(new ResultCallback〈Status〉() {
 @Override
 public void onResult(Status status) {
 if (status.isSuccess()) {
 // 購読成功
 } else {
 // 購読失敗
 handleUnsuccessfulNearbyResult(status);
 }
 }
 });
}

http://abc.android-group.jp/2016s/

130 - Software Design

一般的なキーの
カスタマイズとは

　一般的に、カスタマイズが可能なテキストエ
ディタには、キーのカスタマイズ機能が存在し
ます。Vimはもちろん、Emacs、秀丸、Sakura

エディタ、gedit、EmEditor、あのnanoでさえ
キーのカスタマイズができます。
　多くのテキストエディタが提供するキーのカ
スタマイズ機能はキーボードショートカットと
呼ばれ、 　　 や　　 といった修飾キーと別の
キーを同時に押すことでテキストエディタの機
能を呼び出す、といった連携機能を提供してい
ます。
　かたやVimやEmacsでは、キーストロークと
いう複数のキーの組み合わせにより、1回だけ
のキー押下よりも数多くのアクションをアサイ
ンできるようになっています。とくにVimにお
いては、文字を入力するインサートモードに限っ
たものではなく、ノーマルモードやコマンドモー
ドにおいても、モード別のキーをアサインでき
るため、無限のカスタマイズを行えるようになっ
ています。Vimでは、このキーに対する機能の
割り当てを「map」と呼び、ユーザに細かいカス
タマイズができるようにコマンドやオプション
を提供しています。
　しかしながら、皆さんはこのmapを十分に活

Ctrl Shift

かし切れているでしょうか？　筆者が知る限り、
Vimのカスタマイズを極めている人の多くは体
系立ったキーマッピングを施しており、多少キー
アサインを忘れてしまっても簡単に思い起こせ
るような設定を行っています。キーのカスタマ
イズを極めることで編集操作のバリエーション
に幅が生まれ、Vimの機能を何倍にも引き出せ
るのです。
　今回は、mapのことは知っているけどあやふ
やだったという人にもわかりやすく、mapとは
何か、どんな機能なのか、どんな応用方法があ
るのかを説明したいと思います。

そもそもmapって
どんな機能？

　前述したとおり、Vimのmapはモード別に用
意された機能とキーの割り当てを意味します。

imap

　インサートモードでは多くの場合、タイプし
た文字がそのまま入力されることが期待される
ため、あまりストロークは使用しません。でき
れば1キーで機能が呼び出せるようファンクショ
ンキーを使ったり、 　　 を使用したりします。
　簡単な例から説明します。たとえば、インサー
トモードで　　 -　 （以降<C-f>と表記）を押し
たとき、「World」という文字を入力するmapを

Ctrl

Ctrl F

一歩進んだ使い方
のため

のイロハ

mapを極める者が
Vimを制す

　今回はエディタとしての基本に立ち返り、キーに対する機能の割り当て「map」について解説していきます。
一口にmapといっても、適用するモードによって、また「再マップ」の許可／不許可によってそれぞれコマンド
が分岐し、さらに修飾子を加えることで特殊な動作が可能になるなど、複雑で奥が深い機能です。

mattn
twitter:@mattn_jp

第 回6

130 - Software Design Mar. 2016 - 131

いたくない場合は、

inoremap <C-z> <C-b><C-f><C-f>

と実行してください。<C-z>をタイプすると、
画面に「^B^F^F」という本来のキーコードがそ
のまま入力されるはずです。inoremapコマンド
はインサートモードでremapを行わないという
意味で「i-no-remap」と覚えてください。

nmap/nnoremap

　imap/inoremapと同様に、ノーマルモードの
機能を呼び出します。

nmap <C-b> iHelloWorld<ESC>

　<C-b>をタイプすると、iでインサートモー
ドに入り、カーソル位置に「HelloWorld」を入力
します。inoremapと同様、remapしたくない
のであればnnoremapを使います。
　コマンドモードでもimap/nmap同様に、cmap
とcnoremapでキーアサインを行い、ビジュア
ルモードではvmapとvnoremapを使います。

◆　◆　◆
　これまでの説明では基礎を学ぶため意図的に
imap/nmapを使用しましたが、remapを行いた
い意図がとくにない場合には、inoremap/

nnoremap/cnoremapを使うべきです。
　また、これらのmapはVimを終了すると消え
てしまいます。起動時に使いたいのであれば、
mapコマンドをvimrcに記述してください。

cmap/cnoremap

　コマンドモードに作用します。たとえば、コ
マンドモードでEmacsのように先頭と末尾への
カーソル移動を<C-a>、<C-e>にしたい場合は、
次のように実行します。

cnoremap <C-a> <Home>
cnoremap <C-e> <End>

　これは、もともと<Home>や<End>に割り当
てられている機能をmapしています。

定義してみます。

imap <C-f> World

　コマンドモードでこれを実行し、インサート
モードで<C-f>をタイプすると「World」が入力
されるはずです。ここではimapというコマンド
を実行しましたが、これはインサートモード（i）
でのキーのマッピング（map）を意味します。imap

のヘルプ（:help imap）では、

imap {lhs} {rhs}`

のように表記されており、{lhs}（Left Hand

Side）がタイプされると {rhs}（Right Hand

Side）として再生される、という意味になりま
す。
　次に、以下のコマンドを実行します。

imap <C-b><C-f> Hello

　これは、<C-b>のあとに続けて<C-f>をタイ
プすると「Hello」を入力するmapを登録するコマ
ンドです。インサートモードで<C-b><C-f>を
タイプすると、期待どおりに「Hello」が入力さ
れ、続けて<C-f>をタイプすると「World」が入
力されます。ここで注意してほしいのが、先に
imapで登録した<C-f>が、あとに登録した
<C-f>と被っていることです。
　このように、Vimは複数のキーからなるスト
ロークをmapコマンドにより登録できます。さ
らにはmapから、異なるmapの{lhs}を呼び出
すこともできるのです。

再マップとinoremap

　先に説明した{lhs}に対して、別の{lhs}を
割り当てられます。

imap <C-z> <C-b><C-f><C-f>

　インサートモードで<C-z>をタイプすると
「HelloWorld」が入力されます。複数のmapを1

つのmapに置き換えられました。これを「再マッ
プ（remap）」と言います。もし逆に、remapを行

mapを極める者がVimを制す

第 回6

一歩進んだ使い方
のため

のイロハ

132 - Software Design

ding）状態の場合にのみ作用します。次から、テ
キストオブジェクトとomap/onoremapを使っ
た簡単な例を示していきます。

テキストオブジェクトって何だ
　ここでひとまず、そのテキストオブジェクト
について説明します。

int x = do_something(dog, cat, cow);
int y = do_everything();
int z = do_nothing();

　このソースコードの「cat」の部分でdi(をタ
イプしてみてください。括弧の中身が消えるは
ずです。次に 1行下の「do_everything()」の
「(」の部分に移動し、pをタイプしてください。

int x = do_something();
int y = do_everything(dog, cat, cow);
int z = do_nothing();

　「do_something」の引数が、すべて「do_every

thing」の引数へ移動しました。Vimを知らない
人にとっては、このテキストオブジェクトとい
う機能は魔法のように見えると言われます。
　たとえば、元のソースコードにて「do_some

thing」の引数を「food」だけに変更する場合、引
数部分でciwfoodとタイプします。続けて、
「do_everything」「do_nothing」の引数部分で
「.」をタイプすると、すべての関数の引数が
「food」だけになります。
　Vimの操作は、yやd、cといったオペレータ
と、それに続くwや$といったモーションで構
成されます。テキストオブジェクトはwや$と
いった一方向のモーションではなく、カーソル
位置のコンテキストに依存した、もう少し複雑
なモーションとして作用します。ほかにも便利
なテキストオブジェクトがありますが詳細
は:help text-objectsを見てください注1。

vmap/vnoremapと
xmap/xnoremapの違い

　vimrcにvmapやvnoremapを設定している人
はよくいますが、xmap/xnoremapを設定してい
る人は意外と見かけません。違いを確認するた
めに、次のmapを実行してみます。

nnoremap j gj
nnoremap k gk
vnoremap j gj
vnoremap k gk

　このmapは、ノーマルモードおよびビジュア
ルモードでのj/k移動を、wrapによる行の折り
返し時にも1行ずつ移動させるようにするため
の設定で、ほとんどの場合これは正しく動作し
ます。　ただし、このmapには1点だけ間違いが
あります。
　Vimのビジュアルモードは、選択中に<C-g>

をタイプするとセレクトモードに移行します。
このセレクトモードは、一般的なテキストエディ
タと同様に印字可能な文字がタイプされると選
択部分が削除され、インサートモードになるモー
ドのことです。試しに、このmapを実行したあ
とでビジュアルモードから<C-g>でセレクト
モードに移り、jをタイプしてみてください。本
来であれば、選択部分が削除されjが入力され
るはずですが、期待どおりに動作しません。実
はvmap/vnoremapはビジュアルモードとセレ
クトモードの両方に作用するmapなのです。よっ
てこのようなケースでは、セレクトモードの動
作を壊さないようにxmap/xnoremapを使わな
ければなりません。

smap/snoremap

　前述のxmap/xnoremapに対して、逆にセレ
クトモードだけに適用したい場合にはsmap/

snoremapを使用します。

omap/onoremap

　omap/onoremapは入力待ち（Operator Pen

注1） 本誌2015年10月号に付属する、創刊300号記念チート
シートにも、いくらか便利なテキストオブジェクトがまと
められています。

132 - Software Design Mar. 2016 - 133

修飾子<buffer>
　<buffer>修飾を付けると、そのmapが現在
のバッファにのみ適用されます。たとえば、バッ
ファがJavaのソースコードであった場合だけ、
<C-b>で現在の時刻を入力させるmapを行いた
いのであれば、リスト1をvimrcに追加します。
　みなさんがよく使う、特定のファイルタイプ
にだけ作用するVim pluginのキーマッピングは、
このように実装されています。

修飾子<silent>
　<silent>修飾を付けると、mapが再生されて
いるあいだ、あらゆるメッセージの表示（エラー
メッセージを除く）が抑制されます。たとえば、
バッファから「HelloWorld」を検索するmapは次
のように書けます。

nnoremap <silent> ,h /HelloWorld<CR>

　<silent>を付けることで検索コマンドライ
ンに「/HelloWorld」が表示されなくなります。

修飾子<nowait>
　次のmapを実行してみてください。

imap <C-b><C-f> Hello
imap <buffer> <C-b> World

　1つめのmapは、すべてのバッファに適用さ
れます。これをグローバルマッピングと言いま
す。また2つめのmapは、現在のバッファにの
み適用されます。
　この場合、後者を設定したバッファでは<C-b>

をタイプしても、即座に「World」が入力されま
せん。これはグローバルマッピングとバッファ

本題へ
　さて、このテキストオブジェクトのi(はdを
タイプしたあとの入力待ち状態でタイプするの
ですが、omap/onoremapはこの入力待ちに作用
するmapです。

:onoremap p i(

のように設定すると、ノーマルモードでのpに
は反応しませんが、dpというコンビネーション
でdi(を実行できます。また、/もモーション
として扱えるので、

:onoremap ; /;\zs<CR>

とすることで、カーソル位置から「;」までをd;

で削除できるようになります。

mapの修飾子

　mapコマンドは、いろいろな機能を持ち合わ
せた修飾子を付与することで、特殊なmapを実
行できます。

修飾子<expr>
　imapコマンドを<expr>修飾を付けて実行す
ると、{rhs}を式として評価した結果が再生さ
れます。たとえば、インサートモードで<C-b>

をタイプしたときに現在の時刻を入力させたい
のであれば、次のように実行します。

inoremap <expr> <C-b> strftime('%c')

　実は先ほど紹介したj/kで行を1行分移動す
るmapは、3jや2kといったカウントを指定し
た場合に正しく動作しません。そこで<expr>

を使い、カウントv:countが指定されていない
場合のみgj/gkを再生するmapを実行します。

nnoremap <expr> j (v:count == 0 ? 'gj' : 'j')
nnoremap <expr> k (v:count == 0 ? 'gk' : 'k')
xnoremap <expr> j (v:count == 0 ? 'gj' : 'j')
xnoremap <expr> k (v:count == 0 ? 'gk' : 'k')

 ▼リスト1　バッファがJavaのコードの場合適用される
　　　　 map

augroup JavaKeyMapping
 autocmd!
 autocmd FileType java inoremap <buffer>ｭ
<expr> <C-b> strftime('%c')
augroup END

mapを極める者がVimを制す

第 回6

一歩進んだ使い方
のため

のイロハ

134 - Software Design

抽象化して定義したいものです。こういった場
合に、<script>修飾子を使用します注2。

nnoremap <script> <Space> <SID>[Toggle]

　これにより<Space>に[Toggle]というマッ
ピング名がアサインされます。<Space>をタイ
プした際に画面右下に表示されるキーにも
[Toggle]と表示されます。
　あとは、このプレフィックスを使ってトグル
動作を行うマッピングを行います（リスト2）。プ
レフィックスを別のキーに変更する場合でも1

行で済むようになります。
　もう1つ例を示します。通常、Vimで画面内
のウィンドウをリサイズするには<C-w>のあと
に+ - > <のどれかをタイプします。つまり1回
のリサイズに2個のキーをタイプする必要があ
ります。しかも、1つめは　　 と同時に押す必
要があり、2つめは　　 を同時に押さなければ
なりません。リサイズで微調整を行う場合には、
非常に面倒な入力方法です。かと言って、1キー
だけで動作するmapを登録してしまうとウィン
ドウリサイズのために計4つものキーが消費さ
れてしまいます。
　そこで、先ほど説明したプレフィックスキー
を使ったmapが必要になります（リスト3）。は
じめの 4つは <C-w>と + - > <で構成される

ウィンドウリサイズのキーと、<SID>wsという
<script>修飾子を指定した、残りの4つのmap

へのプレフィックスを付加して再生しています。
これにより、どれかをタイプしてリサイズが行
われたあとに意図的な入力待ちが発生するよう
になります。ここでユーザが、+ - > <をタイプ
すると、さらにウィンドウリサイズが行われ、
再度入力待ち状態となります。
　つまりユーザはリサイズをするのに、<C-

w>+++++--->>>><<などと入力すれば良いこと
になります。<C-w>と+や<などを交互にタイ
プする必要がなくなるので、簡単にウィンドウ

Ctrl

Shift

ローカルマッピングで<C-b>がバッティングし
ているためです。Vimは<C-b>がタイプされた
あと、後続の<C-f>が入力されるのを一定時間
待ち、入力されなければ「Hello」を、<C-f>が入
力されれば「World」を入力します。この入力待
ち時間の長さはtimeoutlenオプションで変更
できます。
　「このコマンドを実行したバッファでは、グ
ローバルマッピングよりもバッファローカルマッ
ピングを優先したい」といった場合、<nowait>

修飾を利用します。

imap <C-b><C-f> Hello
imap <buffer> <nowait> <C-b> World

　こうすることで、<buffer>を指定して実行
したバッファでは<C-b>をタイプしても入力待
ちが発生しなくなります。

修飾子<unique>
　mapは基本的に上書き登録されます。プラグ
インを複数登録している場合や、気づかず同じ
キーに別の機能をmapしてしまった場合、期待
しない設定により事故が起きる可能性がありま
す。キーがバッティングする可能性がある場合
は、次のように<unique>を付けて、意図的に
エラーを発生させることが推奨されます。

nnoremap <unique> ,, :e .<CR>

修飾子<script>
　この修飾子は、mapに直接作用しません。た
とえば、

・<Space>では何もしない
・<Space>wでwrapのトグル
・<Space>lでlistのトグル

というキーマッピングを行いたいとします。簡
単に、それぞれのmapを<Space>を使って書い
ても良いのですが、ときにはこのプレフィック
スを簡単に変更したいこともあります。しかし、
目的は「トグル動作」であることから、できれば

注2） <script>修飾子や<SID>修飾子のあるコマンドは .vimrc
に記述して試してください。

134 - Software Design Mar. 2016 - 135

ます。
　まずプラグイン開発者は、sugoi_plugin#

Sugoi(1)に対するインターフェースを外部に
公開するために、次のmapを行います。

nnoremap <plug>(sugoi-command) :call sugoi
_plugin#Sugoi(1)

　そして、このプラグインを使用するユーザに
対しては<plug>(sugoi-command)へmapする
ように指示します。

nmap ,G <plug>(sugoi-command)

　これによりプラグイン開発者は、気にせず
sugoi_plugin#Sugoi(1)のインターフェース
変更を行えるようになります。

◆　◆　◆
　mapの基本的な機能説明から、常套テクニッ
クに至るまでを解説しました。応用例はまだま
だあります。次のURLで毎週土曜の夜11時か
ら「vimrc読書会」が開催されており、筆者も時
おり参加しますが、まれに「へぇこんなmap見た
ことなかった」といったものが登場します。興味
のある方はぜひ参加してみてください。ﾟ

・vimrc読書会

　http://vim-jp.org/reading-vimrc

のリサイズを行えるようになります。また、こ
の<script>が付いた<SID>wsは、このmapが
実行されるスクリプトの外からは参照できない
ようになっているため、一連のしくみを隠蔽で
きるようになっています。
　この手法はサブモードと呼ばれており、
tinymode.vimやsubmode.vimといったプラグイ
ンで簡単に登録できるようになっています。

<leader>プレフィックスキー
　前述のプレフィックスをもう少し簡単に設定
する方法があります。Vimにはmapleaderとい
う変数が用意されており、この変数に登録され
たキーが<leader>という修飾子に置き換えら
れます。

nnoremap <leader>, :cwindow <Bar> cc<CR>
nnoremap <leader>h :help<CR>

　デフォルトではmapleaderは<C-\>になって
いるので、このmapは、

nnoremap <C-¥>, :cwindow <Bar> cc<CR>
nnoremap <C-¥>h :help<CR>

に置き換えられます。たとえば、この<C-\>を,

で置き換えたい場合には、一連のmapコマンド
を実行する前に、

let mapleader = ','

を設定しておけば良いことになります。

<plug>マッピング
　たとえば、みなさんがVim pluginを作ったと
しましょう。そして、便利な関数を作ってユー
ザからmapで呼ばせたいとします。その際、

nnoremap ,G :call sugoi_plugin#Sugoi(1)

と書いてしまうと、開発者は以後sugoi_plugin

#Sugoi(1)を名称変更したり、引数の構成を変
更したりできなくなります。そのためにVimで
は、<plug>マッピングという機能を提供してい

 ▼リスト2　トグル動作を実現するmap

nnoremap <script> <Space> <SID>[Toggle]
nnoremap <SID>[Toggle] <Nop>
nnoremap <SID>[Toggle]w :setlocal wrap!<CR>
nnoremap <SID>[Toggle]l :setlocal list!<CR>

 ▼リスト3　ウィンドウのリサイズを簡単にするmap

nmap <C-w>+ <C-w>+<SID>ws
nmap <C-w>- <C-w>-<SID>ws
nmap <C-w>> <C-w>><SID>ws
nmap <C-w>< <C-w><<SID>ws
nnoremap <script> <SID>ws+ <C-w>+<SID>ws
nnoremap <script> <SID>ws- <C-w>-<SID>ws
nnoremap <script> <SID>ws> <C-w>><SID>ws
nnoremap <script> <SID>ws< <C-w><<SID>ws
nmap <SID>ws <Nop>

mapを極める者がVimを制す

第 回6

http://vim-jp.org/reading-vimrc

136 - Software Design

バージョン管理
システムとEmacs

　ども、るびきちです。今回はEmacsでバー
ジョン管理システムを扱うお話となります。
Emacsは昔から、バージョン管理システムとの
連携がとてもうまくできるようになっています。
それは「vc」という標準パッケージのおかげです。
　vcを使えば、バージョン管理システムの基本
的な操作――コミット・diff・履歴参照など――
が簡単に、しかも、どのツールを使っているか
に関係なく共通した操作で行えます。そのため、
使っているバージョン管理システムに詳しくな
くても、Emacsの中で簡単に操作できるという
メリットがあります。
　バージョン管理システムには、原始的なもの
から先進的なものまで、本当にたくさんのソフ
トウェアが存在します。フリーのもので言えば、
1ファイルしか管理できないRCSから始まり、
複数ファイルを管理できるように進化したCVS、
そしてCVSの欠点を克服したSubversionが登
場しました。今はGitが主流ですね。vcは、こ
れらに挙げたバージョン管理システムすべてに
対応しています。

おすすめはGit

　Gitは先進的な分散バージョン管理システム

で、完璧にマスターするのはたいへんです。Git

はもともとLinuxカーネル開発のために開発さ
れ、実運用されているので信頼性は高く、大規
模開発にも耐えられます。一方、1ファイルか
らの小規模な用途でも手軽に使えます。
　vcを使えば過去にほかのバージョン管理シス
テムを使っていても、Gitに簡単に移行できま
す。実際に、筆者も長期に渡ってRCSとSubver

sionを使っていましたが、vcを介して使ってい
る限りはGitでも違和感なく使えました。
　それだけではありません。日頃からGitを使っ
ていれば、そのリポジトリを簡単にGitHubで公
開できます。GitHubで公開してしまえば、思い
がけないpull requestを受けられます。また、
MELPAによるパッケージの公開も簡単になり
ます。非公開リポジトリならば、Bitbucketで無
料で何個でも持てます。
　そういう理由で、デフォルトで使うバージョ
ン管理システムはGitがいいのです。

vcとGitでファイルの
変更記録を付ける

vcは簡単！

　vcはEmacs標準添付ですので、何の設定もせ
ずにバージョン管理を始められます。
　また、vcは汎用的に作られているため、使っ
ているバージョン管理システムに依存せずに共

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

EmacsでGitを使う！
　Emacsには、「vc」というバージョン管理システムとの連携を行う標準パッケージがあります。RCS、CVS、
Subversion、Gitに対応しているvcですが、今回はGitを選んで、リポジトリの作成、ファイルの登録・コミ
ット、履歴管理の方法について解説していきます。

Writer

第23回

http://rubikitch.com/

136 - Software Design Mar. 2016 - 137

コーエリアには次のように表示されます。

Registering (/tmp/vc-first/greeting.txt)ｭ
... done

　ただ、この状態は「ファイルを管理下に置きま
す」と宣言しただけで、ファイルの内容は登録さ
れていません。最初のC-x v vで、内部的に、
ーgit init

ーgit add greeting.txt

が実行された状態です。ファイルの内容を登録
する（コミット）には、再度C-x v vを実行しま
す。すると、*VC-log*バッファが出てきます。

Enter a change comment. Type C-c C-c ｭ
when done

と表示されますが、これは「*VC-log*バッファ
には変更した内容のメッセージを書いてからC-c

C-cを押せ」という指示です。この場合は新規登
録ですので、

greeting.txt: New

と書いてC-c C-cを押しましょう。内部では、
ーgit commit -m 'greeting.txt: New'

が実行されます。エコーエリアには、

Checking in /tmp/vc-first/greeting.txt...ｭ
done

と表示されます。Check inとは、変更内容をリ
ポジトリに登録したという意味です。そのあと
は、引き続きgreeting.txtを編集できます。以
後、C-x v vはコミットの働きをします。
　キリがいいところまで編集してからC-x v v

を押せば、編集内容がリポジトリに登録されま
す。今度は、greeting.txtの内容を、

Hello world!

に書き換えてから、C-x v vを押します。コミッ
トメッセージには、

通の操作を行えます。その代わり、バージョン
管理システム固有の先進的な機能はサポートさ
れていません。vcのすばらしいところは、C-x

v系のコマンドを実行すればすぐに使うことが
できることです。そのうえ、C-x v v（vc-next-

action）が空気を読んでくれるので、これさえ
知っていればほかに何も知らなくても、変更履
歴を記録できます。

リポジトリ作成・ファイル登録・コミット

　それでは、Gitとvcを使って1つのファイル
をバージョン管理下に置いてみましょう。

C-x C-f /tmp/vc-first/greeting.txt

を実行し、新規ディレクトリにファイルを作成
します。/tmp/vc-firstは存在しないディレクト
リですので、エコーエリアの指示どおりM-x

make-directory RET RETでディレクトリを作
成してください。そこでファイルの内容に、

Hello!

と書いておきます。
　greeting.txtをバージョン管理するために、最
初に使うコマンドは万能なC-x v vです。する
と、初めてバージョン管理をするので、どのバー
ジョン管理システムを使うか聞いてきます。

/tmp/vc-first/greeting.txt is not in a ｭ
version controlled directory.
Use VC backend:

　これには「Git」と答えます。次に、どのディレ
クトリをGit管理下に置くかを聞いてきます。

create Git repository in: /tmp/vc-first/

　リポジトリというのはGitが管理する変更履
歴データベースのことで、範囲はリポジトリが
置いているディレクトリおよびサブディレクト
リです。この場合はそのまま©を押しま
す。すると、新しくGitリポジトリが作成され、
greeting.txtがリポジトリに登録されます。エ

第23回 EmacsでGitを使う！

138 - Software Design

理システムでは、最後のコミットから変更され
た部分がすべてコミット対象となりますが、Git

ではステージングエリアに上がった変更個所が
コミット対象となります。そのため「変更したか
らコミットしろ」と言われても、Git側からする
と「ステージングエリアに何もないからコミット
できません」ということになります。
　ステージングエリアとはコミット対象となる
変更個所を登録する場所のことです。この仲介
者はGit初学者を悩ましますが、コミットに柔
軟性を与えてくれます。たとえば、ファイルA、
Bを変更した場合、従来だとAとBの変更が一
緒にコミットされますが、GitではAとBを別々
のコミットにできるのです。それどころか、同
じファイル内に複数の変更がある場合でも、コ
ミットを分割できます。
　vcは従来のバージョン管理システムに合わせ
て作られているため、ステージングエリアは隠
蔽されます。これではGitの魅力を押し殺して
いるようですが、vcはシンプル性を選択しまし
た。C-x v vでコミットする場合、カレントファ
イルのすべての変更をステージングエリアに上
げてからコミットします。C-x v vは変更が1

ファイルに閉じている場合にとても便利です。

ファイル変更履歴を見る

　バージョン管理システムを導入すれば、い
つでも過去にアクセスできます。
　現時点で、greeting.txtは2回コミットされ
ています。「Hello!」と「Hello world!」でした
ね。それでは、変更履歴を見てみましょう。
C-x v lを押してください。すると、*vc-

change-log*バッファが出てきて、リスト1の
ように過去に書いたコミットメッセージが表
示されます。内部では、
ーgit log -- greeting.txt

が実行されます。また、*vc-change-log*内で

greeting.txt: Add "world"

とでも書いてから、C-c C-cです。このとき内
部では、
－git add greeting.txt

ーgit commit -m 'greeting.txt: Add "World"'

が実行されます。
　このように、C-x v vは空気を読んで次の働
きをしてくれます。

・リポジトリがないときはリポジトリを作成し
てからファイルの登録

・ファイルが未登録のときは登録
・ファイルが登録されているときはコミット

　新規ファイルではC-x v vを2回実行するこ
とを覚えておいてください。vc経由でGitを使
い始めるには、何も考えずにC-x v vを叩けば
いいのです。決して難しいことはありません。
　コミットメッセージには、あとで何を変更し
たのかを思い出せるように書いておくべきです。
コミットメッセージは、子供やペットの成長記
録みたいなものです。Gitはまさにタイムマシ
ンと言えるもので、過去のバージョンに変更を
加えて、歴史を変えることすら可能です。

ステージングエリアは隠蔽される

　Gitでのコミットは、従来のバージョン管理
システムとは異なります。従来のバージョン管

 ▼リスト1　*vc-change-log*に変更履歴が表示される

commit fd06fa1e7933933ac3fb8648a69023816f4aba79
Author: rubikitch <rubikitch@ruby-lang.org>
Date: Wed Jan 6 10:41:24 2016 +0900

 greeting.txt: Add "world"

commit f35c3fad9f106635b9e7209daca634e808b4d7dd
Author: rubikitch <rubikitch@ruby-lang.org>
Date: Wed Jan 6 10:41:11 2016 +0900

 greeting.txt: New

Process git finished
[Show 2X entries] [Show unlimited entries]

過去の変更を参照

るびきち流
Emacs超入門

138 - Software Design Mar. 2016 - 139

示されます。白黒の誌面ではわかりづらいです
が、1行目は青、2行目は赤になっています。暗
い色は変更時期が古い行、明るい色が新しい行
です。そこで、pやnを押すと、前後のバージョ
ンも手軽に見ることができます。

　gittyパッケージを導入すればgit stashとい
う便利な機能がvcから使えるようになります。
magitパッケージはGitのEmacsインターフェー
スとして大人気です。git-gutter/git-gutter+

パッケージは未コミットの行を教えてくれます。
ほかにもたくさんのGit関係のパッケージが存
在するので、気になる方はM-x list-packages

から探してインストールしてみましょう。
　筆者のサイト「日刊Emacs」は日本語版Emacs

辞典を目指すべく日々更新しています。手元で
grep検索できるよう全文をGitHubに置いてい
ます。また、Emacs病院兼メルマガのサービス
を運営しています。Emacsに関すること関しな
いこと、わかる範囲でなんでもお答えします。
「こんなパッケージ知らない？」「挙動がおかし
いからなんとかしてよ！」はもちろんのこと、自
作elispプログラムの添削もします。集中力を上
げるなどのライフハック・マインド系も得意と
しています。ﾟ
登録はこちら➡ http://www.mag2.com/m/

0001373131.html

dを押せば、カーソル位置のバージョンと直前
のバージョンの差分が *vc-diff*に表示されます
（リスト2）。diffはunified diff形式で表示され、
「+」の行が加えられた行、「-」の行が取り除かれ
た行を表します。*vc-diff*内で©を押せば、
その部分に移動できます。

直前のコミットからの差分を見る

　直前のコミットとの差分を見るにはC-x v =

を使います。ファイルの修正個所のみを見る場
合に使います。greeting.txtに「Hi!」を付け加え
て保存してください。

Hello world!
Hi!

　その後、C-x v =を押すと、リスト3のよう
な出力になります。筆者は、コミットする直前
によく使っています。もちろん©で該当行
に移動できます。次に移る前に、C-x v vでコ
ミットしてください。

ファイルの各行がいつ更新されたのかを見る

　vcのおもしろい機能として、各行がいつ変更
されたのかを色分けして見ることができます。
C-x v gを押してください。すると、図1のよ
うに表示されます。
　左側にその行が更新されたコミットと変更者
と日時が表示され、右側に色付けされた行が表

 ▼リスト2　*vc-change-log*内のカーソル位置の
　　　　 バージョンと、直前のバージョンの差分

diff --git a/greeting.txt b/greeting.txt
index 10ddd6d..cd08755 100644
--- a/greeting.txt
+++ b/greeting.txt
@@ -1 +1 @@
-Hello!
+Hello world!

 ▼リスト3　直前のコミットとの差分

diff --git a/greeting.txt b/greeting.txt
index cd08755..f7e4ed5 100644
--- a/greeting.txt
+++ b/greeting.txt
@@ -1 +1,2 @@
 Hello world!
+Hi!

 ▼図1　各行がいつ変更されたのかを見る

おわりに

第23回 EmacsでGitを使う！

http://www.mag2.com/m/0001373131.html

140 - Software Design

すでに始まったPOP
（Protocol Oriented
Programming）の時代

　今回はいよいよ懸案のProtocol Oriented

Programmingについて解説します。
　Swift Standard Library注1を眺めていると、
際立った特徴があります。
　Classが少ないのです。たったの5

つ。しかも1つは継承でつながってい
るので実質3つ（図1）。
　そ れ に 対 し て Structと Enumと
Protocolはどっさりあります。これ
は何を意味するのか？
　SwiftにおいてClassというのはあ
くまでも Objective-C の遺産を活用
するためのものであって、Swift的な
ProgramとはStructやEnumをProto

colで「つなげて」活用することである
という「中の人の心の叫び」であると弾
言しておきます。

ClassとStructや
Enumの違い

　それを理解するためには、Classと
StructやEnumの違いを理解しておく
必要があります。細かい違いは数あれ
ど、「若者のClass離れ」の理由を理解
するために必要なのは、ただ1つです。
　Classは継承できるが、Structや

Enumは継承できない。つまり、リスト1の事
例のようなコードは書けないのです。
　なぜ継承できないのか？　参照型であるClass

と異なり、StructやEnumには実体があるから
です。上記の例ではインスタンス変数は実際3

つあり、それが参照でつながっています。xにア
クセスするには親クラスの親クラスまで参照を

書いて覚える 入門Swift

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

Protocol Oriented Programming12第 回

注1） Protocol-Oriented Programming in Swift（https://developer.apple.com/videos/play/wwdc2015-408/）

 ▼図1　Swift Standard Library（https://developer.apple.com/
　　　 library/ios/documentation/General/Reference/Swift
　　　StandardLibraryReference/）

https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference/
https://developer.apple.com/videos/play/wwdc2015-408/

140 - Software Design Mar. 2016 - 141

Protocol Oriented Programming第 回12

たぐらなければなりません。sizeofValue(cv3)
はポインターのサイズである8。Classのインス
タンスであれば、必ずそうなります。
　これに対し、StructやEnumは、必要なイン
スタンスはすべて自前で持っています。

struct StructV3 {
 var x = 0.0, y = 0.0, z = 0.0
 init (x:Double, y:Double, z:Double) {
 self.x = x
 self.y = y
 self.z = z
 }
}
let sv3 = StructV3(x:1, y:2, z:3)

　ここでsizeofValue(sv3)は、Doubleのきっ
かり3倍である24。確かに実体を持っています。
StructやEnumは、何も共有していないのです。
Shared Nothingというは、並列プログラミン
グを格段に容易にします。共有は競合を産み、
その競合をどう調停するかで我々はかなり苦労
してきました。なら共有しなければいい。簡単
ですね？

「えー、ちょっと待って！　それってDRY（Don't

repeat yourself）に反しない？」と反応した読者
は鋭い。そうなのです。共有をやめるというこ
とは、型の数だけ実装がいるということでもあ
るのです。共通項を取り出してまとめるという
のは、プログラミングの作法で最重要なものの
1つなのに。
　でも、それはソースのレベルの話であって、
必要なマシンコードはコンパイラーのほうで生
成してくればいいじゃん？――我々がしたいの
は、ソースの共有であって、実体ではないので
すから。
　それを可能にするのが、Protocolなのです。

実践例
［swift-complex］

　論より証拠。実例を見てみましょう。[swift-

complex]という github projectがあります。
Swiftの演習用に筆者がずっと書いてきたもの
ですが、今回の記事のためにごっそり書き直し
ました（図2）。
　要は複素数を使うためのライブラリです。使
い心地はRubyであれば、

require 'cmath'
include cmath

　Pythonであれば

from cmath import *

したときにとてもよく似ています。余談ではあ
りますが、去年のクリスマスにリリースされた
Perl 6では、複素数サポートは組み込みです。
　そのまま遊べるように、Playgroundも用意
してあります。みんな大好きマルデンブロー集
合もこのとおり（図3）。
　で、自分で言うのもなんですが、割によく書
けていると思います。よく書けているというのは、

class ClassV1 {
 var x = 0.0
 init (x:Double) {
 self.x = x
 }
}
class ClassV2 : ClassV1 {
 var y = 0.0
 init (x:Double, y:Double) {
 super.init(x:x)
 self.y = y
 }
}
class ClassV3 : ClassV2 {
 var z = 0.0
 init (x:Double, y:Double, z:Double) {
 super.init(x:x, y:y)
 self.z = z
 }
}
var cv3 = ClassV3(x:1, y:2, z:3)

 ▼リスト1　Class継承のサンプル

142 - Software Design

書いて覚える 入門Swift

 Swiftの特徴を活かしていること

 ・演算子関数による直感的な操作
 →Playground
 ・クロスプラットフォーム
 →OS XやiOSだけでなく、Linuxでも動く

 「実数」の実装が入れ替え可能であること

 ・現時点で Doubleだけでなく、FloatやInt
もサポート

 ・任意制度の数値ライブラリを別途用意すれば、
それを使うことも可能

　では実際に見てみましょ
う。500行ちょっとしかな
いので全部掲載したいとこ
ろですが、紙幅が足りない
ので要点だけ（リスト2）。

　まず、Protocolで複素数
の要素として最低限満たし
ておくべき要件を列挙して
おきます。

・�Swiftの組込み型からの
初期化をサポートしてい
ること

・�基本的な四則演算をサ
ポートしていること

というのをSwift語で書き
 ▼図3　みんな大好きマンデルブロー集合

 ▼図2　swift-complex（https://github.com/dankogai/swift-complex）

https://github.com/dankogai/swift-complex

142 - Software Design Mar. 2016 - 143

Protocol Oriented Programming第 回12

下しただけです。
　で、Intはすでにこれらを満たしているので、

extension Int : ArithmeticType {}

とすでにArithmeticTypeに準拠（conform）して
いますよ、と一言で済みます。
　ここまではSwift 1の時代からあったのです
が、Swift 2の時代ですごいのは、ここです（リ
スト3）。
　ご覧のとおり、42.iとかと書くと(0+42.i)
になるのは、ここでやっています。わざわざ他
の型で実装する必要はないんです。
　Protocolといういうのは、あくまで規約であっ

て、その規約をどう満たすかはそのProtocol

を準拠する型（types）に任されてきたのですが、
Swift 2になって、Protocol Extension で実装
まで一緒にできるようになったのです。つまり、
準拠する型が10あれば10、100あれば100、
一挙にメソッドやプロパティを追加することが
可能になったのです。これはすごい。
　実際 Swift 2 では、ArrayだけではなくSeque
nceに準拠する型であればすべて.mapや.reduce
が使えるようになったのですが、まさに

Protocol Extension の賜物と言えるでしょう。
　ではいよいよComplexを見てみましょう（リ
スト4）。
　リスト4は見てのとおり、ArithmeticType
に準拠した Tによる総称型です。1+1.iは

public protocol ArithmeticType:
AbsoluteValuable, Equatable, ｶ
Comparable, Hashable {
 // Initializers (predefined)
 init(_: Int)
 //// [中略]
 init(_: Double)
 init(_: Float)
 init(_: Self)
 // CGFloat if !os(Linux)
 #if !os(Linux)
 init(_: CGFloat)
 #endif
 // Operators (predefined)
 prefix func + (_: Self)->Self
 prefix func - (_: Self)->Self
 func + (_: Self, _: Self)->Self
 func - (_: Self, _: Self)->Self
 func * (_: Self, _: Self)->Self
 func / (_: Self, _: Self)->Self
 func += (inout _: Self, _: Self)
 func -= (inout _: Self, _: Self)
 func *= (inout _: Self, _: Self)
 func /= (inout _: Self, _: Self)
}

 ▼リスト2　複素数実装のサンプル

public extension ArithmeticType {
 /// self * 1.0i
 public var i:Complex<Self> ｶ
{ return Complex(Self(0), self) }
 /// abs(z)
 public static func abs(x:Self)->Self { ｶ
return Swift.abs(x) }
 /// failable initializer to conver the type
 /// - parameter x: `U:ArithmeticType` ｶ
where U might not be T
 /// - returns: Self(x)
 public init?<U:ArithmeticType>(_ x:U) {
 switch x {
 case let s as Self: self.init(s)
 case let d as Double: self.init(d)
 case let f as Float: self.init(f)
 case let i as Int: self.init(i)
 default:
 return nil
 }
 }
}

 ▼リスト3　ArithmeticTypeの実装サンプル

public struct Complex<T:ArithmeticType> : Equatable, CustomStringConvertible, Hashable {
 public typealias Element = T
 public var (re, im): (T, T)
 //// [中略]
}

 ▼リスト4　Complexの実装

144 - Software Design

書いて覚える 入門Swift

Complex<Int>、1.0+1.0.iは Complex<Double>
になるわけです。
　ところで賢明な読者は、この時点で絶対
値.absや偏角.argがないことに気づかれるか
もしれません。これらは複素数自体が
Complex<Int>、つまりガウス整数であっても
整数におさまるとは限らないからです。
　うまいこと、整数の場合は整数を返さないメ
ソッドを持たせず、しかし「実数」の場合にはこ
れを追加するということができるのでしょうか?

できます。そう。Swiftならね。
　まず、ArithmeticTypeの要件をすべて満た
す上位互換Protocolを1つ追加します（リスト
5）。
　そしてこれをProtocol Extensionで拡張しま
す（リスト6）。
　要するに、三角関数や指数関数などをLinux

であればGlibc、そうでなければFoundationか
らごっそり持ってくるわけです。ちなみに

Protocol Extension と型の Extension で同名
の識別子がある場合、型のほうが優先して使わ
れます。実際［swift-complex］でも、Floatに関

してはいったんDoubleに変換してFloatに戻
すのではなくFloatのままで計算するために
cosfなど末尾にfがついた関数を使いたかった
ので、extension Floatで上書きしています。
　そうしたうえで、リスト7です。
　つまり複素数の要素がRealTypeに準拠して
ある場合にのみ、.absや.argを追加するとい
うことがSwift 2で可能になったのです。
　あとは、関数や演算子を粛々と定義していけ
ばいいだけです。たとえば除算/はこんな感じ。

public func / <T>(lhs:Complex<T>,
rhs:Complex<T>) -> Complex<T> {
 return (lhs * rhs.conj) / rhs.norm
}

　共役.conjとノルム.normは、Complex<T>で
あれば必ず持っているので、複素数の掛け算と
複素数と実数の掛け算でこのように定義できる
わけです。実際のソースをGitHubでご覧いた
だくと、ほとんどすべての演算子がこのような
1行定義になっています。
　次に"cmath”な関数を見てみましょう。

public protocol RealType : ArithmeticType, FloatingPointType {
 static var EPSILON:Self { get } // for =~
}

 ▼リスト5　上位互換Protocolの追加

extension RealType {
 /// Default type to store RealType
 public typealias Real = Double
 //typealias PKG = Foundation
 // math functions - needs extension for each struct
 #if os(Linux)
 public static func cos(x:Self)-> Self { return Self(Glibc.cos(Real(x)!))! }
 //// [中略]
 #else
 public static func cos(x:Self)-> Self { return Self(Foundation.cos(Real(x)!))! }
 //// [中略]
 #endif
}

 ▼リスト6　Protocol Extensionによる拡張

170-173_RHEL19

144 - Software Design Mar. 2016 - 145

Protocol Oriented Programming第 回12

public func exp<T:RealType>(z:Complex<T>)
-> Complex<T> {
 let r = T.exp(z.re)
 let a = z.im
 return Complex(r * T.cos(a), r *
T.sin(a))
}

　「博士の愛した数式」(小川洋子)でもお馴染みの、
e ** (x+y.i) = e**r * (cos(y) + i*sin(y))そ
のままですね。ただしcosでなくてT.cosと書い
ています。RealTypeのProtocolでpublic static
func cos(x:Self)->Selfとなっているものを指定
しています。なぜメソッドではなく型関数 (static

method)かというと、既存の型をなるべく上書き
したくなかったから。かつてはメソッドとして追
加していたのですが、その方法だとXcodeなど
で.cosまで補完されてしまってちょっと驚きなの

です。Rubyistsなどからするとちょっと残念かも
しれませんが。

Todo

　というわけで弾言します。総称関数とプロト
コルを制するものが、Swiftを制するのだ、と。
Swift 2の protocol extension で、その可能性
はさらに高まりました。
　とはいえ、Swift 2でもまだ至らないことも
多々あります。たとえばプロトコルに準拠する
ためのメソッドや関数を書いている最中には、
“type Foo does not conform to protocol
Bar”というエラーメッセージでXcodeが真っ
赤になったりするのですが、具体的にどんなメ
ソッドやプロパティが足りないかを一挙に調べ

てくれるとうれしいので
すが。
　あと、Linuxでもimport
Foundationできるのに、
これがOSX/iOSのそれ
と全然違うってのも悩ま
しい。なるべく#ifを書か
ずに済ませたいのに……。
　それにしても、これほ
ど書いていて楽しい言語
というのはそうありません。
［IBM Swift Sandbox注 2］
のおかげでブラウザから
も試せるようになった
Swift、皆さんもぜひ遊ん
でみてください。ﾟ

extension Complex where T:RealType {
 public init(abs:T, arg:T) {
 self.re = abs * T.cos(arg)
 self.im = abs * T.sin(arg)
 }
 /// absolute value of self in T:RealType
 public var abs:T {
 get { return T.hypot(re, im) }
 set(r){ let f = r / abs; re *= f; im *= f }
 }
 /// argument of self in T:RealType
 public var arg:T {
 get { return T.atan2(im, re) }
 set(t){ let m = abs; re = m * T.cos(t); im = m * T.sin(t) }
 }
 /// projection of self in Complex
 public var proj:Complex {
 if re.isFinite && im.isFinite {
 return self
 } else {
 return Complex(
 T(1)/T(0), im.isSignMinus ? -T(0) : T(0)
)
 }
 }
}

 ▼リスト7　Swift 2ならではの実装例

注2） IBM Swift Sandbox（http://swiftlang.ng.bluemix.net/）

170-173_RHEL19

http://swiftlang.ng.bluemix.net/

146 - Software Design

で学ぶErlang
並行プログラミング

OTP最新版の状況

　Erlang/OTPは昨年12月16日に18.2 [1]がリ
リースされ、SSL/TLSやSSH、そして高速
化のためのHigh Performance Erlang（HiPE）
の更新などが行われました。その後昨年12月
18日には18.2.1[2]でWindowsのパス名に関す
る問題と、FreeBSDでのHiPE実行の問題の
解決注1が行われました。本稿入稿時のErlang/

OTPの最新版は1月11日のパッチリリースで
ある18.2.2です [3]注2。
　OTP最新版の更新状況は、erlang-questions

メーリングリスト [4]、そしてFreeBSDのPorts

にある lang/erlang[5]の更新などで知ることがで
きます。

ErlangとWebサービス

　Webの基本プロトコルであるHTTPは、並
行して大量のコネクションやストリームを扱い
オブジェクトを迅速に転送することを想定して

注1） 本稿筆者による FreeBSDのOSシグナルの取り扱いの
改善提案が取り込まれました（https://github.com/
erlang/otp/pull/926）。

注2） 最新版は GitHubリポジトリを使いタグを指定する
ことでビルドできます。詳細は「ker lで GitHub版
の Erlangをインストールする」（http://qiita.com/
jj1bdx/items/4f7d7b5a53fcec32ab8d）を参照して
ください。

います注3。これはErlangで想定している「多数
の軽量プロセスを大量に作り、並行して仕事を
させる」という並行処理のやり方に適していま
す。Webサーバの場合、Erlang/OTPのプロセ
スにHTTPによるデータ転送の仕事を対応づ
ければ、効率よく大量のコネクションやストリー
ムをさばくことが期待できます注4。
　Erlang/OTPでは gen_tcpモジュール [6]で
TCPを直接扱えるしくみがあり、これの上にい
ろいろなネットワークサービスを構築できます。
OTPでは inetsアプリケーション [7]HTTP/1.1

のクライアントとしてhttpcモジュール [8]、サー
バとしてhttpdモジュール [9]が提供されています。
httpc:request/1を使った簡単なクライアント
の例を図1に示します [10]。
　もっとも、実際の運用では inetsアプリケー
ションが提供する機能だけでは機能が不十分な
ことが多いため、現在多くのWebアプリケー
ションやフレームワークがErlang/OTP上で開
発され使われています。今回はこれらの中から
筆者が普段使っているWebサーバ／アプリケー

注3） HTTP/1.1では複数のTCPコネクションを張って並行し
てデータ転送を行っていたのが、HTTP/2では単独の
TCPコネクション上に複数のストリームを使って並行し
てデータ転送を行うという違いはありますが、高い並行
度が要求されることは変わりありません。詳細は本誌
2015年11月号の特集「すいすいわかるHTTP/2」を参照
してください。

注4） このようなアイデアは2001年10月ごろにすでにあった
ようです（http://erlang.org/pipermail/erlang-questions/
2001-October/003944.html）。

この連載ではプログラミング言語Erlangとその並行プログラミングについて紹介していきます。最終回の今回
はErlangによるWebサーバとライブラリの使い方について紹介します。

 Author 力武健次技術士事務所 所長 力武 健次（りきたけ けんじ） http://rikitake.jp/

最終回・第１２回 ErlangのWebサーバとライブラリ

で学ぶErlang
並行プログラミング

http://www.k2r.org/gijyutsushi/
https://github.com/erlang/otp/pull/926
http://qiita.com/jj1bdx/items/4f7d7b5a53fcec32ab8d
http://erlang.org/pipermail/erlang-questions/2001-October/003944.html

146 - Software Design Mar. 2016 - 147

ションのYaws[11]と、軽量Webアプリケーショ
ンを構築するためのライブラリであるCowboy[12]

を紹介します。

Erlangで書かれた
HTTPサーバYaws

　Yaws注5は、Apache Web Serverや nginx同
様、静的動的双方のコンテンツを配信でき、単
独でも使え、かつ他のErlangアプリケーショ
ンとも組み合わせて使えるHTTPサーバです。

注5） Yet Another Web Serverの略で、筆者は「ヨーズ」と発
音しています。

2002年注6からErlangの初期
からの開発者ClaesWikström

が開発を始め、現在では
Steve Vinoskiほ か 多 く の
Erlangエンジニアの支持を
受けて広く使われています。
筆者も自宅のサーバをYaws

に置き換えて長期にわたり動
かしています。
　Yawsの導入にはOS Xで
あればHomeBrewの yaws、
FreeBSDならPortsの www/
yaws、Ubuntuであれば apt-
get install yawsとすること
でインストール [14]ができます。
　最も簡単な設定ファイルを
リスト1に示します。この設
定ファイルをカレントディレ
クトリに置いて次のコマンド
を起動すると、コンソールか
ら Erlangの 仮 想 マ シ ン
BEAMを操作できる状態で
Yawsが立ち上がります注7。
̶̶̶̶̶̶̶̶
$ yaws --conf ./yaws.conf

　この状態でドキュメント
ルート（リスト1では /var/
tmp/yaws/localhostの下）に

index.htmlを置けば、http://localhost:8000/
の中身としてアクセスできます。これだけの設
定で通常の静的コンテンツサーバとして、ドキュ
メントルートにファイルを展開して使えます注8。

注6） Gitに変換されたSubversionのログによる情報です [13]。

注7） デーモンモード（--daemonオプション）を付けることで、
デーモンとしても起動できます。詳細はYawsのマニュ
アルを参照してください（http://yaws.hyber.org/doc.
yaws）。

注8） YawsはBEAM上で動作するため、BEAMに対するOS
プロセスのアクセス制限が適用されます。不正アクセス
などのセキュリティ事故を防ぐには、BEAMを実行する
環境に対して、一般的な OSの仮想化、あるいは
FreeBSDの Jailや Linuxのコンテナ、最近ならDocker
などの実行環境隔離のしくみを使うことを強く推奨します。
本記事では実験のためアクセス制限はとくにOSレベル
では行わないものとします。

Eshell V7.2.1 (abort with ^G)　inetsアプリケーションを起動する
1> inets:start().
ok
httpc:request/1 を使って筆者のホームページにアクセスする。この関数では同期受信のためオブジェ
クトの受信完了まで待つ。ヘッダーはHeadersという変数に入る。変数Bodyは本文のUTF-8の文字列を
示すリストになっている

2> {ok, {{Ver, Code, Reason}, Headers, Body}} = ｭ
httpc:request("http://www.k2r.org/kenji/").
{ok,{{"HTTP/1.1",200,"OK"},
 [{"cache-control","public, max-age=5"},
 {"date","Tue, 19 Jan 2016 12:59:48 GMT"},
 {"accept-ranges","none"},
 {"server","GSE"},
 {"vary","Accept-Encoding"},
 {"content-length","19910"},
 {"content-type","text/html; charset=utf-8"},
 {"expires","Tue, 19 Jan 2016 12:59:53 GMT"},
 {"last-modified","Sun, 03 Jan 2016 08:00:45 GMT"},
 {"x-frame-options","SAMEORIGIN"},
 {"x-robots-tag","noarchive"},
 {"x-content-type-options","nosniff"},
 {"x-xss-protection","1; mode=block"}],
 [60,33,68,79,67,84,89,80,69,32,104,116,109,108,32,80,85,66,
 76,73,67,32,34,45|...]}}
io:format/2でBodyの内容を表示する。実際にはかなり長いので途中を省略している
3> io:format("~s~n",[Body]).
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" itemscope=""
itemtype="http://schema.org/WebPage">
<head>
<meta http-equiv="X-UA-Compatible" content="chrome=1" />
（中略）
</body>
</html>
inetsアプリケーションを止める。INFO REPORTの部分はアプリケーションsaslによるログ
4> inets:stop().
ok
5>
=INFO REPORT==== 19-Jan-2016::22:01:08 ===
 application: inets
 exited: stopped
 type: temporary

 ▼図1　httpcモジュールによるWebページ内容取得の例

最終回・第１２回 ErlangのWebサーバとライブラリ

http://yaws.hyber.org/doc.yaws

148 - Software Design

で学ぶErlang
並行プログラミング

Yawsによる動的コンテンツ生成

　Yawsでは .yawsという拡張子のファイルに
HTMLとErlangコードが混ざったものを書く
ことで、Erlangコードを使ったコンテンツの
動的生成ができます。具体的な方法としては、
静的コンテンツをHTMLで書き、「<erl>…</
erl>」というブロックの中にYawsが理解する
Erlangコードを書きます。各コードブロック
にはout/1という関数が必要です。out/1から
はHTMLを文字列として出力したり、Erlang

のデータ構造からHTMLを生成するための
EHTMLという形式での出力ができます。
　リスト2に動的コンテンツの生成のための設
定例を示します。最初にHTMLに必要なタグ
を列挙した上で、1番目のErlangコードブロッ
クでは、Yawsから与えられたクライアントの
IPアドレスとポートの情報を出力しています。
2番目のコードブロックでは、Yawsの動いてい
るBEAMノード中のプロセスID（Pid）を列挙し、
各Pidに対応した登録名、メモリ消費量、リダ
クション（reduction）注9の回数をテーブルにして
返します。
　リスト2の中身をドキュメントルートに index.

yawsというファイルとして置いてアクセスした
結果を図2に示します。図2の元となった
HTMLファイルを読むと、YawsでのEHTML

記法がどのようにHTMLに変換されているか

注9） BEAMの各プロセスはリダクションのカウンタを持ち、関
数実行1回ごとに1つずつ増えていきます。このカウンタ
の値がスケジューリングに影響します（http://erlang.org/
doc/man/erlang.html#bump_reductions-1 を参照）。

がわかります。
　Erlang自身をYawsの拡
張言語として利用できるこ
とで、Yawsを柔軟性の高い
Webサーバとして使うこと
ができます。Yawsにはこの
他にも CGIやWebsocket

などへの対応や、Yaws自
身を他のErlangアプリケーションに組み込む
多くの機能が満載されています。Yawsをおも
に取り上げたErlangによるWebアプリケー
ションの制作については、専門の参考書 [15]が
出ており、YawsのWebサイト [11]と併せて一
読の価値はあるかと思います。

Cowboyによる
Webアプリケーション制作

　Cowboy[16]は、Yawsよりもさらに細かい操
作を集めたWebアプリケーション制作用のラ
イブラリ集です。Yawsとは違い機能を厳選し
たアプリケーションをリリース（本連載第5回
を参照）としてまとめることができます。作者
のLoïc Hoguinは、GNU Makeによる汎用ビル
ドツールerlang.mk[17]、そしてTCPのソケット
受信ライブラリRanch[18]、Cowboy用のWebプ
ロトコルライブラリCowlib[19]を公開していて、
Webアプリケーション制作用ツールセットの
定番の1つとなっています。
　Cowboyでのアプリケーション制作手順の概
要は次のとおりです。詳細はユーザガイド [20]

に書かれています。

①	プロジェクト名と同じ名前の開発用ディレ
クトリを作り、そこにerlang.mkの最新版 [17]

をコピーして、次のコマンドを実行する

$ make -f erlang.mk bootstrap bootstrap-rel

②	プロジェクトのMakefile ができるので、
“include erlang.mk”の前に“DEPS = cowboy”
を追加する

 ▼リスト1　localhostにサーバを設定するためのYawsの設定ファイルの例

http://localhost:8000/ にてIPv4/v6両方でサーバを立ち上げます

<server localhost>
 port = 8000
 listen = 127.0.0.1
 listen = ::1
 # 以下はドキュメントルートのディレクトリです
 docroot = /var/tmp/yaws/localhost
</server>

http://erlang.org/doc/man/erlang.html#bump_reductions-1

148 - Software Design Mar. 2016 - 149

 ▼図2　index.yaws の実行結果の表示例 ▼リスト2　動的コンテンツ生成のための .yawsファイルの例

<!-- yawsファイルではHTMLの中にErlangのコードを入れることｭ
で動的コンテンツ生成ができます -->
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Yaws Server status</title>
<style> .num { text-align: right; } </style>
</head>
<body>
<h1>Yaws Server status</h1>
<erl><!-- erlタグで囲まれた中はErlangのコードです -->
 out/1という関数の返り値を解釈してHTMLを出力する。ここではクライアントのIPアドレスと
ポート番号を出力
out(A) ->
 {Addr, Port} = A#arg.client_ip_port,
 out/1の返り値が出力になる。 {html, String}ではStringをそのままHTML出力として埋
め込む。関数f/2はio_lib:format/2と等価で、Yawsの設定ファイル中で簡便に書けるよう
にしたもの
 {html, f("<p>You are from IP ~s Port ~.10B</p>",
 [string:to_lower(inet:ntoa(Addr)), Port])}.
</erl>
<!-- 一度erlタグのブロックを出るとHTMLに戻ります -->
<h2>Process status</h2>
<erl><!-- 複数のErlangのコードを単独のyawsファイルの中に置ｭ
けます -->
 複数の関数を定義できる
pinfo(P, Item) ->
 element(2, process_info(P, Item)).
 ここではYawsを実行しているBEAMノードのプロセスの状況をテーブルにして出力する
out(_) ->
 PL = processes(),
 {ehtml, List}では、リストListの中身をHTMLのタグやブロックに変換する。{タグ名、タ
グの属性リスト、タグで囲われた中身の文字列}という3要素のタプルを列挙していく
 {ehtml, [
 {p, [], f("Number of processes: ~.10B",
[length(PL)])},
 {table, [{border, "1"}], [
 {thead, [],
 [{tr, [], [
 {td, [], "Pid"}, {td, [], "name"},
 {td, [], "memory"}, {td, [], "reductions"}
]}]},
 {tbody, [],
 [{tr, [],
 この行からはプロセスごとの情報表示をリスト内包表記で書いている
 [{td, [], f("~w", [P])},
 {td, [],
 case process_info(P, registered_name) of
 {registered_name, Name} -> f("~s",
[Name]);
 [] -> ""
 end},
 {td, [{class, "num"}], f("~.10B", [pinfoｭ
(P, memory)])},
 {td, [{class, "num"}], f("~.10B", [pinfoｭ
(P, reductions)])}]}
 || P <- PL]
 ここまでがリスト内包表記
 }]
 }
]}.
</erl>
</body>
</html>

最終回・第１２回 ErlangのWebサーバとライブラリ

150 - Software Design

で学ぶErlang
並行プログラミング

③	あとは次のコマンドを実行すればリクエス
トハンドラのひな形ができる

$ make new t=cowboy_http n=リクエストハンドラ名

④	コーディングを終えたら“make”でビルドし
て“make run”でできあがったリリースを走
らせることができる

　Cowboyを使ってWebサーバを書く際は、ク
ライアントからの処理要求を扱うリクエストハ
ンドラを書く必要があります。このリクエスト
ハンドラは専用のビヘイビア（本連載第5回を
参照）となっており、外部からの要求に対して
どのような処理をするかだけを書けばあとは
Cowboy側で処理するようになっています。
　リスト3では、前述のYawsとほぼ同様の処
理を行っています。cowboy_req:peer/1で接続
クライアントのIPアドレスとTCPポート番号
を取得した後、cowboy_req:reply/3で返答を
返しています。サンプルソースの全文は
Githubのリポジトリ [21]に公開しています。

Erlang/OTPの I/O出力と
iolist/Deeplist

　YawsでもCowboyでも使われているErlang/

OTPの I/O出力に関するデータ構造として、
iolist（またはDeeplist）と呼ばれるものがあり
ます。iolistは複数の階層を持つバイナリや文
字列のリストで、リストで表記されている文字
列を複数個並べるときや、高速化のためバイナ
リとして文字列を扱う際に頻繁に発生します。
　Erlang/OTPでは、iolistを出力の際平準化
（flatten）することで、単一階層のリストと同じ
ように扱うよう工夫しています。平準化とは簡
単に言えば、複数階層のための大括弧を取り払
い、全要素を左から右に結合する演算です（図3、
図4）。この演算は木構造の探索とリスト要素
のコピーが必要で、コストの高いものです。
　Erlang/OTPのポート（本連載第11回を参照）
出力では、この iolistを直接扱えるようになっ
ており、平準化演算の関数lists:flatten/1を

使う必要がありません。YawsのHTML出力や
Cowboyのcowboy_req:reply/3も同様に iolist

を直接扱えます。また、最終的に iolistから出
力をまとめるための組込み関数list_to_bin
ary/1や iolist_to_binary/1も用意されてい
ます注10。

本連載を終えるにあたって

　今回はYawsとCowboyを例としたErlang/

OTPによるWebサーバのプログラミングにつ
いて紹介しました。2015年4月号より12回に
わたりErlang/OTPとその関連技術について紹
介してきましたが、本連載では他の参考書等で
はあまり紹介していない内容を努めて取り上げ
るようにしました。至らぬところも多かろうと
思いますが、みなさんの今後の学習の参考にな
れば幸いです。
　手元の記録を見てみると、筆者がErlang/

OTPを勉強し始めたのは2008年の4月とあり
ます。もうすでに8年近く時が経ったことにな
りますが、その間にErlang/OTPを取り巻く環
境は大きく変わりました。ネットでは多くの
Erlang/OTPの運用実績を読むことができます
し、ElixirなどBEAM仮想マシンで動く新た
な言語も登場し、より多くの人達がErlang/

OTPの関連技術を使うようになっていること
を日々感じています。
　Erlang/OTPの魅力は処理速度、スケジュー
リング、メモリ管理といった基本機能のギリギ
リのバランスを取りながら、できる限り並行処
理を書きやすくし、分散システムを組みやすく
するための工夫を各所に盛り込んでいるところ
だと、筆者は考えています。他の言語とコミュ
ニティのような華やかさには欠けますが、地道
な縁の下の力持ちとして、世界の情報基盤を支

注10） iolistの要素にはアトムを混ぜることはできません。また、
iolistは定義上0から255までの整数とそれらを要素に
したリスト、そしてバイナリのみが要素となり得るため、
Unicode文字列をそのまま扱うことはできないことに注
意が必要です。

150 - Software Design Mar. 2016 - 151

最終回・第１２回 ErlangのWebサーバとライブラリ

 ▼リスト3　Cowboyのリクエストハンドラの一例 beam_status_handler.erl（Cowboyによるハンドラモジュール
　　　　 からの抜粋）

-module(beam_status_handler). gen_server同様の使い方
-behaviour(cowboy_http_handler).
-export([init/3]).
-export([handle/2]).
-export([terminate/3]).
-record(state, {}).
init(_, Req, _Opts) -> ハンドラの初期化
 {ok, Req, #state{}}.
 ここからは内部の補助関数。Yawsのf/2と同じ定義
f(F, X) -> io_lib:format(F, X).
 バイナリによる静的コンテンツ部（関数3つ）
static1() ->
 << "<!DOCTYPE html>" "<html>" "<head>"
 "<meta charset=\"utf-8\">"
 "<title>Cowboy server status</title>"
 "<style> .num { text-align: right; } </style>"
 "</head>" "<body>" "<h1>Cowboy server status</h1>"
 >>.
static2() ->
 <<"<h2>Process status</h2>">>.
static3() ->
 <<"</body>" "</html>" >>.
 index.yaws同様の記述
pinfo(P, Item) ->
 element(2, process_info(P, Item)).
 プロセスごとのテーブルエントリを作る
pinfo_table() ->
 PL = processes(),
 以下のコードはネストしたリストを返すが、これらは出力の際ネストが平滑化されて、あたかも単一階層のように扱われる（iolistまたはDeeplist）
 [
 f("<p>Number of processes: ~.10B</p>", [length(PL)]),
 "<table border=\"1\">",
 "<thead><tr><td>Pid<td>name<td>memory<td>reductions</tr></thead>",
 "<tbody>",
 [["<tr>",
 f("<td>~w", [P]),
 "<td>",
 case process_info(P, registered_name) of
 {registered_name, Name} -> f("~s", [Name]);
 [] -> ""
 end,
 "<td class=\"num\">",
 f("~.10B", [pinfo(P, memory)]),
 "<td class=\"num\">",
 f("~.10B", [pinfo(P, reductions)])]
 || P <- PL],
 "</table>"
].
 ハンドラ本体。それぞれの処理ごとにReqの中身を変えていく
handle(Req, State=#state{}) ->
 接続してきたクライアントのアドレスを取得する
 {{Addr, Port}, Req2} = cowboy_req:peer(Req),
 リクエストに返答を返す
 {ok, Req3} = cowboy_req:reply(200, [
 このタプルでヘッダのコンテンツを決める
 {<<"content-type">>, <<"text/html">>},
 {<<"cache-control">>, <<"private, max-age=0, no-cache">>}
],
 ここからはHTML文書のbody部の内容。これもiolistですが出力では平滑化される
 [static1(),
 f("<p>You are from IP ~s Port ~.10B</p>",
 [string:to_lower(inet:ntoa(Addr)), Port]),
 static2(),
 pinfo_table(),
 static3()
],
 Req2),
 gen_server同様に変わったReqの中身を返す
 {ok, Req3, State}.
 サーバ終了時の処理（何もしない）
terminate(_Reason, _Req, _State) ->
 ok.

152 - Software Design

で学ぶErlang
並行プログラミング

本連載の各記事で紹介したソースコードなどは、
GitHubのリポジトリに置いています（https://

github.com/jj1bdx/sd-erlang-public/）、どうぞ
ご活用ください。｢

参考文献
[1] 	 http://www.erlang.org/news/97
[2] 	 http://www.erlang.org/news/98
[3] 	 h t t p : / / e r l a n g . o r g / p i p e r m a i l / e r l a n g -

questions/2016-January/087311.html
[4] 	 http://erlang.org/mailman/listinfo/erlang-

questions
[5] 	 http://www.freshports.org/lang/erlang/
[6] 	 http://erlang.org/doc/man/gen_tcp.html
[7] 	 http://erlang.org/doc/apps/inets/users_guide.

html
[8] 	 http://erlang.org/doc/man/httpc.html
[9] 	 http://erlang.org/doc/man/httpd.html
[10] 	http://erlang.org/doc/apps/inets/http_client.

html
[11] 	http://yaws.hyber.org/
[12] 	https://github.com/ninenines/cowboy/
[13] https://github.com/klacke/yaws
[14] 	http://yaws.hyber.org/configuration.yaws
[15] 	Zachary Kessin, "Building Web Applications with

Erlang", O'Reilly Media, 2012, ISBN-13: 978-1-
449-30996-1.

[16] 	http://ninenines.eu/
[17] 	https://github.com/ninenines/erlang.mk
[18] 	https://github.com/ninenines/ranch
[19] 	https://github.com/ninenines/cowlib
[20] 	HEAD 版 : http://ninenines.eu/docs/en/cowboy/

HEAD/guide/
[21] 	https://github.com/jj1bdx/cowboy_beam_

status/

えるだけの力のある言語システムをErlang/

OTPは提供しています。今後もそうあってほ
しいと、筆者は願っています。

ソースコードとサポートページ

　今回の例に使用したCowboyのコードは
GitHubリポジトリにて公開しています [21]。また、

 ▼図3　iolistの標準化

バイナリ化
と

標準化

d

リクエストの左側から右側へ上から
下へ辿りながら各要素を並べる

リスト

バイナリ

e f

A

d e f A B C D E F n o

B C

D E F

n o

Eshell V7.2.1 (abort with ^G)
 バイナリを3つ定義する
1> B1 = <<100, 101, 102>>.
<<"def">>
2> B2 = <<110, 111>>.
<<"no">>
3> B3 = <<120>>.
<<"x">>
 文字列等が混ざった多階層のリスト（iolist）を作る
4> IL = [B1, "A", ["BC", "DEF", B2], B3].
[<<"def">>,"A",["BC","DEF",<<"no">>],<<ｭ
"x">>]
 ただ平準化するだけではリストとバイナリは別に扱われる
5> lists:flatten(IL).
[<<"def">>,65,66,67,68,69,70,<<"no">>,<<ｭ
"x">>]
 iolist_to_binary/1を使うことで平準化がでる
6> iolist_to_binary(IL).
<<"defABCDEFnox">>
 それぞれをあらためて出力してみると次のようになる
7> io:format("~w~n~w~n~w~n",
 [IL, lists:flatten(IL), iolist_to_ｭ
binary(IL)]).
[<<100,101,102>>,[65],[[66,67],[68,69,70],ｭ
<<110,111>>],<<120>>]
[<<100,101,102>>,65,66,67,68,69,70,<<110,ｭ
111>>,<<120>>]
<<100,101,102,65,66,67,68,69,70,110,111,ｭ
120>>

 ▼図4　iolist平準化の例

http://www.erlang.org/news/98
http://erlang.org/pipermail/erlang-questions/2016-January/087311.html
http://www.erlang.org/news/97
http://erlang.org/doc/man/httpc.html
http://erlang.org/doc/man/httpd.html
http://erlang.org/doc/apps/inets/http_client.html
http://yaws.hyber.org/
https://github.com/ninenines/cowboy/
https://github.com/klacke/yaws
http://yaws.hyber.org/configuration.yaws
http://ninenines.eu/
https://github.com/ninenines/erlang.mk
https://github.com/ninenines/ranch
https://github.com/ninenines/cowlib
http://ninenines.eu/docs/en/cowboy/HEAD/guide/
https://github.com/jj1bdx/cowboy_beam_status/
http://erlang.org/doc/apps/inets/users_guide.html
https://github.com/jj1bdx/sd-erlang-public/
http://erlang.org/doc/man/gen_tcp.html
http://erlang.org/mailman/listinfo/erlangquestions
http://www.freshports.org/lang/erlang/

Mar. 2016 - 153

シェルを初めて使う人に、最初に教えるのはパスワード変更時にパスワードは表示されないことと、tでコマンドを補完できること。
補完を利用するとタイプミスも防げるし、長いコマンドやオプションを失念した時に「ああ、タブがあってよかった！」って誰にでもな
く感謝します。シェルだけではなくvimやemacsなどのエディタや IDEでも補完があります。長い変数名や関数名とかは補完使えない
と編集作業に集中できません。メールソフトによってはメールアドレスを補完することもありますね。同じ「井上」でも別のアドレスが
補完されることがあるので、補完に頼りきるのも注意が必要ですね。このページは今年も補完されないようにがんばります。

バ
レ
ン
タ
イ
ン
デ
ー
前
だ
け
で
な
く
、
い
つ
で
も
女
性
に
優
し
い
く
つ
な
先
生
は

フ
ェ
ミ
ニ
ス
ト
だ
か
ら
で
す
よ
ね
?!
　
チ
ョ
コ
の
数
と
涙
の
数
は
反
比
例
す
る
ら
し
い
よ
!

作）くつなりょうすけ
@ryosuke927

bashの入力に
手間どって
るな……。

vimの入力に
手間どって
るな……。

Emacsの入力に
手間どってるな……。

うるさいよ!!
それは左官
やぁぁぁぁぁ！

うるさいな!
それは
オカンや！!

コマンド入力途中で
tを押すと、
コマンドやオプション
を補完してくれるよ。

c+Pで前に
入力したワードの
補完リストが出るよ。

auto-complete
インストールすれば補完機能
が使えるよ。

今日はあの
壁を塗るぞ!

おい!
へい!
大将!

たけしは
パソコンくわしいね!
カーちゃん

うれしい!

冬はコレ!!
コタツと
コレだよね!

ホカン第25回

①

④

⑦

⑥

⑨

⑤

⑧

②

③

154 - Software Design

　今回のテーマはSphinxで「本を書こう」です。
SphinxはHTMLだけでなく、多様なフォーマッ
トを出力でき、EPUB注1やPDFなど、電子書籍
として読めるフォーマットにも出力できます。
　今回は、筆者自身の経験をもとに、実際に
Sphinxを使って執筆・出力した本注2をAmazon

Kindleダイレクト・パブリッシング（以下、
KDP）注3で販売した経験を紹介します。
　本という、それなりに分量が多い文章を執筆
する場合、流れを概観できたり、構成を組み替
えたりということが容易にできることが大事で
す。Sphinxは、本連載第3回（本誌2015年6月
号）で述べられている toctreeのしくみにより、
文章を細かなファイルに分けておいて、簡単に
組み替えることができる点で優れています。
　また、執筆時はHTMLで確認し、校正を依頼
するときはPDFで出力したりと、気軽にフォー
マットを使い分けられる点も大事です。なお、
筆者が執筆時にPDFではなくHTMLで閲覧し
ているのは、執筆時と校正時でフォーマットを
変えることで新鮮味が生まれ、最初は気がつか
なかった間違いに後から気がつく可能性が高く
なる、と考えているからです。

注1） http://idpf.org/epub

注2） 『入門Ansible』
 http://www.amazon.co.jp/dp/B00MALTGDY

注3） https://kdp.amazon.co.jp/

今回のテーマ
　さらに、Sphinxで執筆するとすべてがテキス
トファイルになるため、ソースコード管理ツー
ルと相性が非常に良くなります。また、ソース
コード管理ツールには多くの場合、課題管理ツー
ルも付いているため、筆者は誤植の指摘や追加
の要望などをソースコード管理ツールの課題管
理で受け付けるようにしました。これにより、
誰からでも気軽に指摘を受け付けられ、それを
修正してすぐにKDPで公開する、という流れを
構築できました。このように、すぐに修正を反
映できる点は電子書籍の良い点だと思います。

　Amazon KDPは、Amazonが展開している電
子書籍販売プラットフォームであるKindleスト
アに出版するツールです。実際に出版するまで
には、次の情報を入力する必要があります。

①アカウントの作成・銀行口座の設定・税処理
②本の詳細情報の入力
③本のコンテンツのアップロードとプレビュー
④出版権の確認
⑤価格とロイヤリティ情報の入力

　今回は誌面も限られていますし、すべてを取
り上げるとSphinxという本題から外れますの
で、これらのうち③に相当する本のコンテンツ
作成に関してのみ取り上げます。その他の項目
は、KDPのページからスタートガイドなどをご
覧ください。

Amazon Kindleダイレクト・
パブリッシング（KDP）

Sphinxで始める
 ドキュメント作成術

Sphinxで本を書こう
̶̶EPUBで出力する

第12回

若山 史郎 Wakayama Shirou　ツキノワ㈱

Sphinxで始める
 ドキュメント作成術

http://idpf.org/epub
http://www.amazon.co.jp/dp/B00MALTGDY
https://kdp.amazon.co.jp/

154 - Software Design Mar. 2016 - 155

EPUB出力

　KDPはWord、HTML、PDF、EPUB、Text

などさまざまなフォーマットをサポートしてい
ます。しかし、KDPのPDFは日本語の本をサ
ポートしていないので、Sphinxで出力する際に
は実質的にはEPUBを使います。
　SphinxでEPUBを出力するには、sphinx-
quickstartで、「epubビルダーを使用するか」
という図1の質問に「y」を入力しておく必要があ
ります。これにより、conf.pyとMakefileにEPUB

の設定が書き加えられます。
　EPUBを出力するにはHTMLなどと同じく
make epubを使います。実行すると、「_build/

epub/<タイトル>.epub」が出力されます。出力
ファイル名を変更するには conf.pyの epub_
basenameを変更します。
　EPUBは iPhoneやAndroid、PCやブラウザ
などいろいろなツールで閲覧できます。後から
KDP上でのプレビューもできますが、この段階
で確認すると、執筆と確認を早く繰り返せます。

　できあがったEPUBファイルを、KDPの画
面にてアップロードします（図2）。

変換とプレビュー

　アップロードが完了したら、「Kindleフォー
マットに変換中」の表示が出ます（図3）。
　変換は数十秒で完了しますので、完了したら
プレビューしましょう（図4）。プレビュー画面

Sphinxで本を書こう
̶̶EPUBで出力する

第12回

 ▼図2　アップロード画面

 ▼図3　変換表示画面

Sphinx can also add configuration for epub output:
> Do you want to use the epub builder (y/n) [n]: ←ここでyを入力

 ▼図1　sphinx-quickstartにおけるepubビルダーの質問

 ▼図4　プレビュー画面

156 - Software Design

では、Kindle Fire HDXやKindle Voyageなど
の端末種類ごとの見た目、横向き縦向きの見た
目、フォントサイズごとの見た目などを確認で
きます。
　ここまでできたら、あとは出版権の確認や価
格を決めていくだけでKindleストアから出版で
きます。実際にストアに並ぶには24時間程度待
つ必要がありますが、それさえ過ぎれば、あな
たもKindle出版デビューです。

　ここまでで簡単にEPUBファイルを作成し、
KDPから出版できることを説明しました。ここ
からはもう少し手を加えて見栄えが良い本にす
る方法を紹介します。

CSSを変更

　EPUBファイルの中身は、HTMLファイルと
EPUB専用の情報を持つファイルを、zipで1つ
にまとめたものです。SphinxのEPUB出力は、
標準で持っているEPUBテーマを適用して、
HTMLと同じように書き出したあとzipで1ファ
イルにまとめる、というしくみで作られていま
す。
　標準のEPUBテーマの見た目を変えたい場合
は、HTMLと同じくCSSを変更します。CSS

をカスタマイズする方法は、本連載の第4回（本
誌2015年7月号）で少し触れていますが、ここ

より綺麗に

でもう一度解説します。

❶conf.pyの末尾に次の2行を追加

❷sphinx-quickstartで作成された「_static」ディ
レクトリに「custom.css」を作成

　これでEPUBにもCSSが適用されます。
　CSSを適用するときには、classの指定が自
由にできると便利です。Sphinxで使える基本的
なディレクティブやロールには、classという
オプションが指定できるようになっています。
このオプションを指定すると、たとえばリスト

1のreStructuredText（以下、reST）がリスト2

のようなHTMLに展開されます。
　また、ロール（本連載第5回、本誌2015年8月
号を参照）に対してclassを設定するには、class

指定を持つ新しいロールをroleディレクティブ
を使って定義します（リスト3）。ここの括弧の
中は継承するロール名で、ここではcodeという
ロールを継承しています。
　こう書くと、出力結果はリスト4となり、code

要素のclass定義にsomenewが入っているのが

 conf.py
def setup(app):
 app.add_stylesheet('custom.css')

 custom.css
table.field-list th, table.field-list td {
 border: 1px solid black !important;
 padding: 0.4em;
}
th { background-color: #eee; }

Sphinxで始める
 ドキュメント作成術

.. image:: picture.png
 :class: newpict

 ▼リスト1　ディレクティブのclass定義（reST）

 ▼リスト2　ディレクティブのclass定義展開後（HTML）

ロールディレクティブで新しい somenewroleを定義しておきます。

.. role:: somenewrole(code) ←somenewroleロールを定義
 :class: somenew ←somenewroleにclassを設定

その後、 :somenewrole:`これは新しい` classです、というように使います。
 ↑somenewroleを適用

 ▼リスト3　新しいロールを定義し、使用する（reST）

156 - Software Design Mar. 2016 - 157

わかります。
　このように、指定したロールやディレクティ
ブに個別にclassを定義できますので、CSSの
追加と合わせて自由に装飾を設定できます。注
意点として、「:」と「`」の間は空けないことと、
拡張したrole定義は定義したファイル内だけの
使用に限られる、という点です。すべてのファ
イルでこの定義を使いたい場合は conf.pyの
rst_prologに設定しておく必要があります。

表紙

　表紙に画像があると見栄えが良くなります。
EPUBで表紙を設定するには次のようにしま
す注4。
　まず、表紙画像をたとえば「cover.jpg」という
名前で「_static」ディレクトリ以下に置き、conf.

pyにリスト5の設定を加えます。
　「_templates」ディレクトリ以下に「epub_cover.

html」を置きます。これが表紙のHTMLとなり
ます。この中にリスト6のように記述すると、
conf.pyで指定した画像ファイル名がHTMLの
{{ image }}に挿入され、EPUBの表紙として
認識されることになります。

注4） KDPではEPUBの表紙画像ではなく、別途、表紙画像をアッ
プロードする方式ですので、ここで説明する方法とは異な
ります。

KindleGenでmobiファイルを
作成

　KDPのプレビューでEPUBからの変換結果
を見ることができますが、Amazonから提供さ
れているKindleGenを使うことで、手元のKin

dleで表示できるmobi形式に変換できます。変
換したmobiファイルをUSBやメール経由で
Kindleに直接送ることで、実機での表示確認が
できます。
　KindleGenは、KDPのページ注5からダウン
ロードできます。ダウンロードして展開すると、
kindlegenというバイナリファイルがあります
ので、それを図5のように実行します。
　-oオプションで指定したファイル名（通常
「.mobi」という拡張子を付けます）に変換結果が
書き出されているはずです。あとはこのファイ
ルをUSBで繋いだKindleに送り込むことで実
機での確認ができます。

縦書き

　EPUBはCSSを縦書き用に設定することで縦
書き表示ができます。先ほど述べたCSSのカス
タマイズの方法を使い、リスト7のようなCSS

を設定します。

注5） https://kdp.amazon.co.jp/help?topicId=A3IWA2TQY
MZ5J6

Sphinxで本を書こう
̶̶EPUBで出力する

第12回

<p>その後、 <code class="code somenew docutils literal">これは新しい</code> ｭ
classです、というように使います。</p>

 ▼リスト4　ロールでのclass定義、展開後（HTML）

epub_cover = ('_static/cover.jpg', 'epub_cover.html')

 ▼リスト5　表紙をconf.pyで設定

<div class="epub-cover">

</div>

 ▼リスト6　EPUB表紙のHTML例（epub_cover.html）

$ kindlegen <できあがったepubファイル名>.epub -o <任意のファイル名>.mobi -locale ja

 ▼図5　kindlegenコマンドの実行

https://kdp.amazon.co.jp/help?topicId=A3IWA2TQYMZ5J6

158 - Software Design

　これをEPUBからkindlegenで変換して、
Kindle Paperwhiteの実機で表示させると図6の
ようになります。

ルビ表示

　縦書きができると、ルビ表示もしたくなりま
す。Sphinxでルビ表示をするためには、拙作
「sphinxcontrib-textstyle」を使います。次のよう
にpipでインストールします。

　あとはconf.pyで有効化します。

　使い方は、:ruby:ロールを指定し、<>内に
ルビを指定します。

　Kindle Paperwhiteの実機上では図7のように
表示されます。

$ pip install sphinxcontrib-textstyle

 conf.py
extensions = ['sphinxcontrib.textstyle']

これから :ruby:`強敵<とも>` に会いにいく

注意点

　SphinxでEPUBを作成するときの注意点とし
ては、フロー型となり、固定レイアウト型の本
は作れない、という点です。フロー型とは、端
末やフォントの大きさによって1画面に表示さ
れる文字数が変わり、ページ数やページ区切り
も変わっていく形式のことです。その反対が固
定レイアウト型で、1画面に表示される内容が
固定されています。固定レイアウト型のほうが
本としての体裁は整います。その分、目が悪い
ためフォントを大きくしたい、というような要
望には応えられなくなります。
　SphinxでのEPUB作成は、HTMLをベース
としているため、フロー型にしかできません。
レイアウトやページ区切りにこだわる場合は、
Sphinxではできないかもしれません。

　今回は、Sphinxを利用して電子書籍を出版し
た話を説明しました。次回はMarkdown形式の
ドキュメントをSphinxで扱う話を紹介します。
｢

次回予告

Sphinxで始める
 ドキュメント作成術

 ▼図6　Kindleでの縦書き表示

@charset "utf-8";
html {
 writing-mode: vertical-rl;
 -webkit-writing-mode: vertical-rl;
 -epub-writing-mode: vertical-rl;
 line-height: 1.75;
 text-align: justify;
}

 ▼リスト7　縦書きにするためのCSS設定例

▶図 7
Kindle上での
ルビ表記

158 - Software Design Mar. 2016 - 159

Sphinxで本を書こう
̶̶EPUBで出力する

第12回

Sphinx-1.3.5 リリース／公式サイトに日本語訳ドキュメント掲載	 Author 清水川 貴之

　本連載執筆陣の1人、清水川です。

■Sphinx-1.3.5リリース
　2016年 1月 12日に Sphinx-1.3.4、1月 24日に
Sphinx-1.3.5をリリースしました注A。これらは1.3
系のマイナーバージョンアップで、1.3.3以降合わ
せて54個の不具合を修正しています注B。
　Sphinx開発チームは、1.4系開発と並行して Issue
の整理を進めています。不具合の再現手順確認や、
ドキュメントの更新など、実装コードの修正以外
にも多くのタスクがあります。ご協力いただける
方がおりましたら、ぜひ、メーリングリストまで
ご連絡ください。よろしくお願いします。

■ 公式サイトに日本語訳ドキュメントが掲載され
ました

　SphinxドキュメントをRead The Docs注Cでのホ
スティングに移行しました。これによってRead
The Docsが提供する機能である、ドキュメントの
過去のバージョンの閲覧、翻訳された別言語のド
キュメントを提供できるようになりました。

・日本語訳ドキュメントの新しいURL
　http://www.sphinx-doc.org/ja/stable/

　これまで日本語訳ドキュメントは「http://docs.
sphinx-users.jp/」で公開していましたが、今回の
移行によって、Sphinx公式ドキュメントと同じド
メインで提供されるようになりました。既存のサ

イトへのアクセスは新しいURLへリダイレクトさ
れます。
　Sphinxにはドキュメントを国際化するためのし
くみがあり、SphinxやPythonの日本語ドキュメ
ントもこの国際化のしくみを使って提供されてい
ます。Sphinxの国際化は、gettext形式の翻訳カタ
ログファイル（*.po）を用いて実現しています。原
文に対する翻訳文を*.poファイルとして用意する
ことで、原文を書き換えずにドキュメントをほか
の言語向けに生成できます。これによって、原文
の更新への追従がとても簡単に行えます。このし
くみとオンラインの翻訳支援サービスTransifex注D

を組み合わせることで、翻訳者は手軽にドキュメ
ントの翻訳に参加できます。Sphinxの国際化機能
についての詳細はPyCon JP 2015で紹介した資
料注Eをご参照ください。

■Sphinx入門 in PyLadies Tokyo Meetup #8
　2016年1月16日に、PyLadies Tokyo注F主催のイ
ベントでSphinxのハンズオンを実施しました（写
真A）。PyLadies Tokyoは、PyLadiesの東京支部と
して女性Pythonista（＝Python利用者）をつなぐた
めに活動している団体です。今回のミートアップ
には11名が参加しました。Sphinxの紹介後、ハン
ズオン形式で各参加者のドキュメント作成を講師
4名でサポートしました。
　Sphinx-users.jpでは、要望に応じて Sphinxの
ワークショップやハンズオンの講師を派遣してい
ますので、お気軽にご相談ください。

COLUMN

注A） https://pypi.python.org/pypi/Sphinx/1.3.5

注B） 不具合報告はメーリングリスト、またはSphinxの
GitHubへお願いします。
メーリングリスト　http://sphinx-users.jp/howtojoin.html
GitHub　https://github.com/sphinx-doc/sphinx

注C） Sphinxのドキュメントビルドとサイト公開を自動的に
行ってくれるサービス（本連載第7回（本誌2015年10
月号）を参照）。https://readthedocs.org/

注D） https://www.transifex.com/sphinx-doc/sphinx-
doc-1_3/dashboard/

注E） http://www.slideshare.net/shimizukawa/
sphinx-53764167

注F） http://tokyo.pyladies.com/

 ▼写真A　ハンズオンの様子

http://www.sphinx-doc.org/ja/stable/
http://sphinx-users.jp/howtojoin.html
https://github.com/sphinx-doc/sphinx
https://pypi.python.org/pypi/Sphinx/1.3.5
https://readthedocs.org/
https://www.transifex.com/sphinx-doc/sphinxdoc-1_3/dashboard/
http://www.slideshare.net/shimizukawa/sphinx-53764167
http://tokyo.pyladies.com/

160 - Software Design

　Serverspecは、さまざまな使い方を許容す
る懐の深いツールです。筆者は、Serverspec

の使い方のうち、とくにサーバの本番投入前の
チェックの自動化に注目しています。
　たとえChefやPuppetなどでサーバの構築を
自動化していたとしても、投入前には人の手で
サーバにSSH接続して動作確認をしている、
ということはよくあることです。しかし人の手
で行われるチェックでは、一部の項目をチェッ
クし忘れたり、チェック内容が属人化したりす
ることがあります。そこで、Serverspecでチェッ
ク内容をコード化しておけば、サーバ構築と同
時にテストを走らせたり、コードの形でノウハ
ウを共有できたりします。

Serverspecで何をテストするのか

　Serverspecでテストできる項目は多岐に渡
ります。具体的に、何をテストすればいいので
しょうか。たとえば、「nginxのプロセスが起動
しているかどうか」などをテストできます。さ
らに例を挙げると、次のようなテストが記述で
きます。

・ポート80番がListenされているか
・/etc/nginx/nginx.confファイルが存在して

Mackerelではじめる
サーバ管理

今回は、サーバの状態をテストするフレームワーク「Serverspec」とMackerelとの連
携がテーマです。Mackerel APIを利用してホスト情報を取得することで、Mackerel
における「ロール」単位でテストを実行するといったことができ、テスト作業の省力
化につながります。

Writer 坪内 佑樹 （つぼうち ゆうき） ㈱はてな
Twitter @y_uuk1

　ここ数年、アプリケーションのテストと同じ
ように、テストコードを記述してインフラをテ
ストするという動きが盛んです。「テスト駆動
インフラ」「インフラCI」というようなワードも
登場しています。
　Serverspec注1はインフラのテストを実践す
るための代表的なツールです。Serverspecは
シンプルなツールがゆえに、さまざまなツール
と組み合わせた運用ができます。今回は、
Mackerel注2のAPIを用いて、Serverspecを効
率よく運用するノウハウを紹介します。

Serverspecとは

　Serverspecは、宮下剛輔氏により開発された、
サーバの状態のテストをコードにより自動化す
るためのツールです。Ruby製のテストフレー
ムワークであるRSpec注3がベースになってい
ます。サーバの状態をテストするためのツール
はほかにもありますが、ChefやPuppetのよう
なサーバ構成管理ツールに依存しないというの
が、Serverspecの特徴です。

インフラはコードで
管理する時代

第13回 MackerelとServerspecを
組み合わせたインフラテスト

注1） URL http://serverspec.org
注2） URL https://mackerel.io
注3） URL http://rspec.info

http://serverspec.org
https://mackerel.io
http://rspec.info

160 - Software Design Mar. 2016 - 161

いるか
・nginxユーザが存在しているか
・/etc/nginx/nginx.confに文字列 gzip_vary

onが含まれているか
・curl -I -X GET http://localhostを実行し
た結果に、文字列200 OKが含まれているか

　実際のコードも紹介しましょう。ポート80

番がListenされているかどうかを確かめるテ
ストは次のように書けます。

describe port(80) do
 it { should be_listening }
end

　そのほか、Serverspecが直接サポートする
テスト内容やコードの書き方については、公式
ドキュメント注4を参照してください。
　基本的に、“普段人の手で確認していたよう
な内容をテストすればよい”と筆者は考えます。
逆に言えば、普段確認していないような内容を
無理してテストする必要はないでしょう。もし、
テストが書かれていれば防げた障害が発生すれ
ば、その都度テストを書き加えていくことで再
発防止につながります。

Mackerelと
Serverspec

　Serverspecがどのようなものかを簡単に紹介
しました。次に、本題であるServerspecと
Mackerelの連携について紹介します。実際に
Serverspecを導入するとき、Mackerelを併用
するとスムーズにServerspecを導入できます。

ロール単位でspecを書く

　ServerspecはRSpecベースであるため、基本
的にRSpecの流儀に則ってテストコードを書き
ます。specディレクトリ以下に、hoge_spec.rb

というようなファイル名でspecファイル（テスト
コードを記述したファイル）を配置します。
Serverspecのデフォルトでは次のように、ホス
トごとにディレクトリを作るようなレイアウト
になります。

spec
├── myblogproxy001
│ └── nginx_spec.rb
├── myblogdb001
│ └── mysql_spec.rb
└── spec_helper.rb

　しかし、システムの成長に伴ってホストが増
加すると、同じ役割のホストのテストコードを
共通化したくなります。
　Serverspec Advanced Tips注5には「How to share

Serverspec tests among hosts」という項目があ
り、たとえばMackerelにおけるロールのような、
あるグループごとにspecを書く構成が紹介さ
れています。ロールに所属するホストはあらか
じめ設定に書いておき、テスト実行時にホスト
名を指定すると、設定内容をみて、ホストに紐
づくロールに対応するspecが実行されます
　しかし、ホスト単位またはロール単位であっ
ても、ホストの作成や退役にあわせて設定を書
いていくのは面倒です。Serverspecに限らず、
ツールを導入するたびにホスト情報をあちこち
に書くはめになることは往々にしてあります。こ
のような運用は、とくにホストをどんどん捨て
て新しいホストを作成するような Immutable

Infrastructure注6的な運用にはあまり沿いません。
　そこでMackerelでは、APIを用いて「ホスト
情報を一元管理する」という思想を推奨してい
ます。ツールを導入するたびにホスト情報を設
定として書くのではなく、Makcerel APIを用
いて動的にホスト情報を取得するという考え方
です（図1）。
　はてなでは、Mackerelをさまざなツールと

第13 回
MackerelとServerspecを組み合わせたインフラテスト

注4） URL http://serverspec.org/resource_types.html
注5） URL http://serverspec.org/advanced_tips.html
注6） URL http://chadfowler.com/blog/2013/06/23/immutable-deployments

http://serverspec.org/resource_types.html
http://serverspec.org/advanced_tips.html
http://chadfowler.com/blog/2013/06/23/immutable-deployments

162 - Software Design

 Mackerelではじめるサーバ管理

も連携させています。たとえば、本連載の第4

回（2015年6月号）で紹介した、tmux-cssh注7や
Capistrano注8があります。さらに、Ansibleや
Chefのような構成管理ツールとも連携させて
います。AnsibleとMackerelの連携については、
筆者ブログ記事注9も併せて参照してください。
　Serverspecの場合は、ホスト名が与えられ
るとMackerel APIを叩いてホスト情報を取得
し、サービスとロールから対応する specファ
イルを決定できます。もちろん、逆にロールを
与えて、ロール配下のホスト群にテストを回す
ということもできます。Serverspecは良い意
味でホスト管理機能のようなものをサポートし
ていないため、APIで動的にホスト情報と実行
すべきspecファイルを対応付けるのが簡単な
のです。
　では、具体的にMackerelと併用した場合の
ディレクトリレイアウトとテスト実行方法を説
明します。

 ●ディレクトリレイアウト
　ロール単位でspecを書くためのServerspec

のディレクトリレイアウトの一例を図2に示し
ます。base_spec.rbに各ロール共通のspecを
書き、serviceディレクトリ以下にMackerel

のサービス・ロールに対応するspecを書きます。
　ミドルウェア単位でspecをまとめたいこと
もあります。そのようなときは、commonとい
うディレクトリ以下に複数のロール間で使い回
せそうなspecを書きます。

 ● Serverspecの実行
　Serverspecのデフォルトでは、spec実行用
にRakefileが生成されます。筆者はRakefileの
書き方が難しくてあまり好きではないので、こ
こではThor注10を使います。Thorは、簡単に
Rubyのコマンドラインインターフェースを作
成できるツールです。もちろん、Serverspec

spec
├── common
│ ├── nginx
│ │ ├── default.rb
│ │ └── proxy.rb
│ └── postgresql
│ ├── default.rb
│ ├── master.rb
│ └── slave.rb
├── base_spec.rb
├── service
│ ├── myblog
│ │ └── proxy_spec.rb
│ │ └── app_spec.rb
│ │ └── db-master_spec.rb
│ └── mybookmark
│ ├── proxy_spec.rb
│ ├── app_spec.rb
│ ├── db-master_spec.rb
│ ├── db-slave_spec.rb
└── spec_helper.rb

 ▼図2　ロール単位でspecを書くための構成

Serverspec

APIによる
ホスト情報の取得

Mackerel

Chef Ansible

 ▼図1　Mackerelと各種ツールの連携イメージ

注7） URL https://github.com/dennishafemann/tmux-cssh
注8） URL http://capistranorb.com
注9） 「Ansible + Mackerel APIによる1000台規模のサーバオペレーション」
　　　 URL http://yuuki.hatenablog.com/entry/ansible-mackerel-1000
注10） URL http://whatisthor.com

https://github.com/dennishafemann/tmux-cssh
http://capistranorb.com
http://yuuki.hatenablog.com/entry/ansible-mackerel-1000
http://whatisthor.com

162 - Software Design Mar. 2016 - 163

がデフォルトで使用するRakefileを使っても問
題ありません。
　たとえば、リスト1のようなThorfileを用意
します。Mackerel APIのRubyクライアントで
あるmackerel-client-ruby注11を用いて、与えら
れたホスト名からAPIを引いてホスト情報を
取得し、ホストが所属するサービス・ロール名
から対応する specファイルの一覧を出し、
rspecコマンドに渡してやります。
　myblogproxy001.domainというホストに対し
てテストを実行したければ、次のようなコマン
ドでテストを実行できます。

thor spec:default myblogproxy001.domain

　このとき、myblogproxy001.domainのMackerel

上のサービスがmyblog、ロールがproxyならば、

spec/service/myblog/proxy_spec.rbに書かれた
specが実行されます。myblogproxy001.domainと、
サービス・ロールの対応を新たに書かなくてもよ
いところがポイントです。

◆　◆　◆
　Serverspecを実際のサーバ運用にうまく組
み込むために、Mackerel APIを活用する方法
を紹介しました。
　Serverspec以外にも、ホスト情報を扱うよ
うなツールの運用効率を改善できると思います。
たとえば、公式ドキュメント注12ではアプリケー
ションデプロイツールであるCapistranoとの
連携を紹介しています。
　APIを用いたホスト管理の一元化は、ほかの
モニタリングツールにはなかなかない考え方だ
と思います。ぜひお試しください。ﾟ

require 'mackerel/client'

RSPEC_OPT = ENV['SABASPEC_RSPEC_OPT'] || '--format doc -c'

class Spec < Thor
 include Thor::Actions
 default_task :host

 desc 'host', 'run spec for a host'
 def host(hostname)
 mackerel = ::Mackerel::Client.new(
 mackerel_api_key: MACLEREL_API_KEY
)

 host = mackerel.get_hosts(name: hostname).first
 raise "Not found host #{hostname}" if host.nil?

 spec_files = ['spec/base_spec.rb']
 spec_files += host.roles.flat_map {|service, roles|
 roles.flat_map {|role| "spec/service/#{service}/#{role}_spec.rb" }
 }.select {|f| FileTest.exist?(f) }

 ENV['ASK_SUDO_PASSWORD'] = '1'
 ENV['RSPEC_SSH_HOST'] = hostname
 run("bundle exec rspec #{RSPEC_OPT} -r spec_helper #{spec_files.join(' ')}")
 end
end

 ▼リスト1　spec実行のためのThor�le

注11） URL https://github.com/mackerelio/mackerel-client-ruby
注12） URL http://help-ja.mackerel.io/entry/advanced/capistrano-2.x

第13 回
MackerelとServerspecを組み合わせたインフラテスト

https://github.com/mackerelio/mackerel-client-ruby
http://help-ja.mackerel.io/entry/advanced/capistrano-2.x

164 - Software Design

セキュリティに限らず何事も予防が大切です。しかし、それを突き詰めていくと、「まずセキュリ
ティを考慮した安全なソフトウェアの開発から始めなければならない」ということになります。今
回は、セキュリティを意識したソフトウェア開発について考えてみます。

ソフトウェア開発と
情報セキュリティを考えてみる

　これまで脆弱性の枠組みの話題を取り上げたり、
動的なメモリアロケーションを考える際にセキュア
コーディングについて言及したりしてきましたが、
ソフトウェア開発そのものは取り上げていませんで
した。なぜならソフトウェア開発のプロセスにセ
キュリティを組み込むといっても、基本定石と呼べ
るようなものは、まだできあがっていないからです。
　しかし将来的に、セキュリティを意識した開発プ
ロセスがみなさんの目に入ってくる、あるいはソフ
トウェア開発やサービスの現場に入ってくることは
間違いない、と筆者は考えています。そこで今回
は、ソフトウェア開発と情報セキュリティを考えて
みることにします。これまでとは違い、概念的な話
が多くなりますし、紹介している方法論もまだ日本
では普及しているとは言いがたい部分はあります。
しかし、取り上げる価値は十分あると思います。

安全なソフトウェアを作るということ

　本連載でのセキュリティの話題でも、「脆弱性が
存在していること／設定に誤りがあることを前提に
対策をする」または、「それらの事象が見つかった際
に事後対応する」といったものが中心です。それゆ
えに（あるいは一般的に）、セキュリティ対策とはそ
のようなものと受け取られているかもしれません。
　しかしながら、もしソフトウェアがより安全に作

られているならば、セキュリティの問題も少なくな
るのは当然です。ならば、「ソフトウェアを安全に
作ることが先決ではないか」という考えに至るのは
自然なことかと思います。
　ところが、さまざまなニーズを仕様に取り入れて
いくための方法、たとえば1つの方法として要求工
学からのアプローチを考えてみても、その中でユー
ザのニーズを汲み取るための議論は聞いたことは
あっても、明示的にセキュリティそのものを仕様に
入れていくための議論はあまり聞いたことがないと
思います。ソフトウェア品質の向上のためにプロセ
ス改善をするという議論はあっても、セキュリティ
品質のためにプロセス改善をするという議論はあま
りないと思います。
　現状では、ソフトウェア工学として要求段階や設
計段階から信頼性の向上を目指す体系的なアプロー
チと、情報通信分野におけるセキュリティの向上と
は、必ずしもリンクしているとは言えない状況にあ
ります。とくに脆弱性対応という視点から見たと
き、リリース後の運用やメンテナンスの段階から
入ってくることが多く、ソフトウェアのライフサイ
クルを考えた場合、上流工程でどう具体的に位置づ
けるべきかも明確とは言えません。次項で、FRE

AK攻撃を具体例として、もう少し具体的に考えて
みたいと思います。

ソフトウェアのライフサイクルと脆弱性

　ここでは、ソフトウェア・ライフサイクル・モデ

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第三十回】

すずきひろのぶ
suzuki.hironobu@gmail.com

セキュリティを意識したソフトウェア開発

Mar. 2016 - 165

【第三十回】 セキュリティを意識したソフトウェア開発

ルを前提として考えていきます。ソフトウェアの
「要求」から「設計」、「開発」、「テスト」、「導入」、「保
守／維持」に至るまでのライフサイクルとします。
なお、ISO/IEC 12207（JIS X 0160）ではAcqui

sition（取得）、Supply（供給）、Development（開発）、
Operation（運用）、Maintenance（保守）、Destruction

（廃棄）と定義されています。
　その前提で、約1年前の2015年1月に話題と
なったSSL/TLSの後方互換性に関する脆弱性
（CVE-2015-0204）、いわゆるFREAK攻撃を考え
てみましょう。この脆弱性の具体的な問題は、SSL

/TLSには512bitの弱いRSA暗号を使うEXPORT

_RSAという仕様が過去に存在し、その実装を持っ
ているSSL/TLS実装では中間者攻撃が可能にな
るというものです。これはオープンソースの実装の
OpenSSLだけではなく、Microsoft社の実装である
Microsoft Schannel（CVE-2015-1637）や、Apple社
の実装（CVE-2015-1067、APPLE-SA-2015-03-09

-3）も同じFREAK攻撃が可能になっていました。
　まず「要求」の段階で、「セキュリティのレベルを
意図的に低くする」という誤った要求をしていたと
言えるでしょう。そして、それが仕様化されていま
した。
　この仕様が取り入れられ実装されてリリースされ
るわけですが、その際に、実装する側で「この仕様
が必要かどうか」という検討がなされた様子はあり
ません。別の言い方をすると仕様のフルスペックを
実装することが要求になっていて、どの実装にも取
り入れられてしまっていたという言い方も可能で
す。まず導入時リスクの評価をしておらず、また経
年リスクの評価もしていません。
　その状態で2015年になり、フランスの研究組織
INRIA（フランス国立情報学自動制御研究所）の研
究チームがFREAK攻撃を発見します。それ以降、
脆弱性に対応する一連のプロセスに入りました。
　「プロトコル仕様の要求と、実装に組み入れられ
る要求は別のことである」と言うことも可能かもし
れません。しかし、RSA512はもうずいぶん前から、
その安全性は無効です。今ではRSA1024も仕様か
ら外されています。

　SSL/TLS仕様の無効化、RSAの鍵長という形で
の暗号の危

き た い か

殆化がソフトウェアには反映されていま
せん。つまり、このような状況の変化を取り入れる
タイミングがありません。
　仕様側に反映されるべきなのか、実装に反映され
るべきなのかという議論はありますが、少なくとも
セキュリティの問題はライフサイクルに入っていな
いということになります。これはオープンソースの
実装、Microsoftの実装、Appleの実装のどれにも
入っている脆弱性ですから、たまたまどれかのソフ
トウェア・ライフサイクルのプロセスが悪かった、
ということではないはずです。構造的な問題だと筆
者は考えます。

ソフトウェア開発プロセス
の成熟度

　1980年代のことです。米国防総省（DoD：United

States Department of Defense）が調達するシステ
ムのソフトウェアは、予算の超過、スケジュールの
超過、品質のばらつきなどさまざまな問題に悩まさ
れていました。安定したソフトウェアの開発が難し
いのは、今も昔も変わりません。DoDの必要とする
ソフトウェアですから、当然ながら軍事的な分野で
使われます。そのようなソフトウェアが不安定なの
は誰が考えても大きな問題です。
　そこでDoDは、カーネギーメロン大学（CMU：
Carnegie Mellon University）のソフトウェア工学研
究所（SEI：Software Engineering Institute）に、ソ
フトウェア開発契約を行うベンダを峻別するための
基準の研究を依頼しました。そして、1988年（出版
は1989年）に出てきたのが、ソフトウェア開発プロ
セスの成熟度を計測する能力成熟度モデルCMM

（Capability Maturity Model）です。成熟度は5段階
あり表1のようになっています。
　DoDはベンダにレベル3の基準を要求します。
　後に、CMMは分野別に、システム・エンジニア
リング（SE-CMM）、ソフトウェア開発（SW-CMM）、
ソフトウェア調達（SA-CMM）、統合製品開発（IPD

-CMM）などが作られます。それらを統合したモデ
ルがCMMI（Capability Maturity Model Integration）

166 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

です。現在では、CMMIのガイドラインが作られて
おり、DoDの調達以外に政府調達にも使われていま
す。日本でも、ソフトウェア開発プロセスの改善と
いうことでCMMIに取り組む会社も増えています。

セキュリティとCMMI

　CMMIにセキュリティを取り込む試みは、2010年
に“Considering the Case for Security Content in

CMMI for Services”として議論が始まっており、9

ページの短いドキュメント注1にまとめられています。
　このドキュメントではCMMI-SVC V1.2（2010）
を対象としています。CMMI-SVCとは、サービス
のためのCMMIとして作られたものです。今日の
情報産業分野の企業の活動は、昔のように情報シス
テムを顧客に提供するという単純な役割ではなく、
「サービス」という付加価値を付けた形で提供してい
ます。そのサービスのプロセスを改善し、あるいは
評価するのがCMMI-SVC（CMMI Service）です。
　CMMIアーキテクチャ・チームとCMMIプロダク
ト・チームは、サービスのプロセスの中にセキュリ
ティを組み込むというアプローチを採用するようで
す。CMMIが非常に広く評価されて利用されている
ので、このアプローチがCMMI-SVCの中の要件と
して広く使われるのではないかと思います。

CERT-RMM

　SEI CERTチームが作ったセキュリティ版CM

MIとも言えるのが、CERT Resilience Management

Model（CERT-RMM）注2です。とはいえ、CMMIと
は違い、能力成熟度モデルをそのままの形では取り
入れていません。
　このモデルは大きく3つの要素からなります注3。

①プロセス（Process Areas）

②一般的な終了条件／経験（Generic Goals/Prac

tices）

③特定生産物と副次的経験（Typical Work Products

and Subpractices）

　CERT-RMMとほかの規格との対応を見てみま
しょう（図1）。CMMIのCMMI-SVC（サービス分野
のためのCMMI）とCMMI-DEV（ソフトウェア開発
分野のためのCMMI）が、CERT-RMMの「プロセス」
に対応しています。
　ISO 27000シリーズは、CERT-RMMの「特定生
産物と副次的経験」に対応しています。ISO 27000

シリーズは情報セキュリティマネジメントシステム
（ISMS：Information Security Management System）
におけるベストプラクティスを提供するものです。
セキュリティにおけるISO 27000シリーズは、よ
く品質管理のISO 9000シリーズや環境保護のISO

14000に例えられます。
　反論は多々あるかと思いますが、CERT-RMMは
いろいろな要素が集められてキメラ的になってお
り、これを一般に理解するには、あるいはプラク

注1）	 Eileen Forrester and Kieran Doyle, "Considering the Case for Security Content in CMMI for Services", Carnegie Mellon
University, Oct., 2010.　http://cmmiinstitute.com/resources/considering-case-security-content-cmmi-services

注2）	 Richard A. Caralli and et al., "CERT Resilience Management Model,Version 1.0 Improving Operational Resilience Processes",
Software Engineering Institute, Carnegie Mellon University, May, 2010.　http://www.sei.cmu.edu/reports/10tr012.pdf

注3）	 ここに挙げた訳語は、正式な訳語が見つからないため、筆者が仮に翻訳したものです。今後、適切な翻訳が出てきたなら、そちらを参照
してください。

◆◆表1　CMMの開発プロセスの成熟度

成熟度 説明

レベル1：初期（Initial） プロセスの導入も不十分で非常にレベルの低い管理である

レベル2：管理されている（Managed） プロジェクトのレベルでプロセスの導入が行われ一部管理が可能となる

レベル3：定義されている（Defined） 組織のレベルでプロセスが導入され管理されている

レベル4：定量的に管理されている
 （Quantitative Managed） プロセスは定量化され管理されている

レベル5：最適化されている（Optimizing） プロセスの改善を行うことができる

http://cmmiinstitute.com/resources/considering-case-security-content-cmmi-services
http://www.sei.cmu.edu/reports/10tr012.pdf

Mar. 2016 - 167

【第三十回】 セキュリティを意識したソフトウェア開発

　手引きからビジネス機能、セキュリティ対策のレ
ベルを書き出してみたのが表2です。

ソフトウェア開発プロセスとしての
SAMM

　SAMMは、さらに各々のセキュリティ対策に対し
てレベル0～3の成熟度を示す基準を用意します。レ
ベル3が最高で、レベル0は何もしていないという意

ティカルに現場に適応するには、たいへん難しい内
容になっている、と筆者は感じました。

ソフトウエアセキュリティ
保証成熟度モデル

　「ソフトウエアセキュリティ保証成熟度モデル
（Software Assurance Maturity Model：SAMM）」
は、Open Web Application Security Project

（OWASP）によって開発されました。『ソフト
ウエアセキュリティ保証成熟度モデル ソフ
トウエア開発にセキュリティを組み込むため
の手引き第1.0版』として邦訳され公開されて
います注4。
　SAMMは、能力成熟度モデル（CMM/CM

MI）と同様に、成熟度モデルを採用していま
す。CMM/CMMIのように開発プロセスのレ
ベルを評価するために使えます。また、今の
成熟度からさらに次の成熟度のレベルに上げ
るための指針としても利用できます。
　SAMMの全体像は図2のようになります。
まずビジネス機能として「ガバナンス」「構築」
「検証」「配備」という分類を作っています。
各々の分類の中に3つのセキュリティ対策を
作っています。

注4）	 https://www.jpcert.or.jp/securecoding_materials.html#owaspsamm
ドキュメントのライセンスはCreative Commons Attribution-Share Alike 3.0 License（表示-継承3.0非移植（CC BY-SA 3.0））です
ので、自由にダウンロードできますし、ほかの人にコピーを渡すことも許されます。

◆◆図2　SAMMの全体像（手引きを参考に作成）

構築

配備

ガバナンス

検証

脅威の査定
レベル1
レベル 2
レベル 3

セキュリティ要件
レベル1
レベル 2
レベル 3

セキュアな
アーキテクチャ

レベル1
レベル 2
レベル 3

脆弱性の管理
レベル1
レベル 2
レベル 3

環境の堅牢化
レベル1
レベル 2
レベル 3

運用体制の
セキュリティ対応

戦略と指針

ポリシーと
コンプライアンス

教育と指導

設計レビュー

コードレビュー

セキュリティテスト
レベル1
レベル 2
レベル 3

レベル 1
レベル 2
レベル 3
レベル 1
レベル 2
レベル 3
レベル 1
レベル 2
レベル 3

レベル 1
レベル 2
レベル 3
レベル 1
レベル 2
レベル 3
レベル 1
レベル 2
レベル 3

ソフトウェア開発

◆◆図1　CERT-RMMとCMMI、ISO 2700xとの関係性

（出典：CERT Resilience Management Model,Version 1.0 Improving Operatio	
nal Resilience Processes）

https://www.jpcert.or.jp/securecoding_materials.html#owaspsamm

168 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

味です。各々の成熟度レベルを評価するための基準
として、さらに具体的な内容が定義されています。
　ソフトウェア開発プロセスとしてのSAMMを見
た場合、ソフトウェアのセキュリティを保証するた
めの成熟度モデルとしては、これまでの中でもっと
も明確で利用しやすいのではないかと思います。

ソフトウェア開発プロセス
とセキュリティ

　ここではCMMI-SVCにセキュリティを取り込む
アプローチと、セキュリティのプロセスを別に用意
するCERT-RMMとSAMMのアプローチの2つを
取り上げました。CERT-RMMやSAMMは仕様も進
んでいるので、そちらを取り入れる組織も多いかと
思います。
　しかし、筆者は疑問に思うことがあります。それ
は、たとえば「malloc()のときにバッファの最大長

を確実に定義することによりバッファオーバーフ
ローを発生させないようにする」という基本ができ
ていないのは、セキュリティの問題というよりも、
malloc()の呼び出しインターフェースの理解ができ
ていない問題なのではないだろうか、そして、それ
は純粋にソフトウェア品質が低いだけではないだろ
うか、という疑問です。
　どんなソフトウェアも完全なものは存在しませ
ん。ですから、セキュリティであろうと、ほかの理
由であろうと、影響度に応じて対応する体制は必要
だと筆者は考えます。想定外の誤った入力を与える
とプログラムがハングアップするのは昔から珍しい
ことではありません。しかし、これを意図的に発生
できるとなると、Denial of Service attack（DoS攻
撃）ということになります。両者の原因は同じ部分
に存在しています。違いは、攻撃者が存在している
か否かです。

◆◆表2　SAMMのビジネス機能、セキュリティ対策の要約

分類 説明

ガバナンス 組織におけるソフトウェア開発活動全体の管理に関するプロセス。ビジネスプロセスも含
む

戦略と指針 ソフトウェアセキュリティ保証プログラム全体の戦略的な方針をたてる

ポリシーとコンプライアンス セキュリティおよびコンプライアンスの管理や監査フレームワークを作る

教育と指導 ソフトウェア開発に携わる人にセキュリティ知識を広める

構築
組織における目標設定の方法と開発プロジェクト内でのソフトウェア作成方法に関するプ
ロセス。製品管理、要件収集、概略レベルのアーキテクチャ仕様、詳細設計、実装などを
含む

脅威の査定 ソフトウェアに対する潜在的な攻撃を把握し脅威となるリスク管理する

セキュリティ要件 ソフトウェアに必要なセキュリティの要件をまとめ仕様化する。ソフトウェア開発工程に
セキュリティ関連の要件も含む

セキュアなアーキテクチャ デフォルト設定で安全な設計をする。ソフトウェア構築の基盤となる技術やフレームワー
クの管理も含む

検証 ソフトウェア開発を通して得た成果物をチェック、テストする方法に関するプロセス。テ
ストやレビュー、あるいは評価などを含む

設計レビュー セキュリティの水準が確実に満たされるように設計のレビューなどを行う

コードレビュー 脆弱性の発見やセキュアなコーディングがされているかレビューを行う

セキュリティテスト 脆弱性の発見のためのテスト、リリース可能なレベルに達しているかを確認するためのテ
ストを行う

配備 リリース、およびリリース後の対応に関するプロセス。エンドユーザへの製品出荷、内部
／外部ホストへの製品配備、ソフトウェアの運用も含む

脆弱性の管理 ソフトウェアに使われている外部のライブラリや環境なども含め脆弱性レポートや情報を
管理し影響度を把握する

環境の堅牢化 ソフトウェアが使われる環境の管理体制を整える。また、リリースされ運用されているソ
フトウェアの利用環境の改善を行う

運用体制のセキュリティ対応 オペレータへセキュリティ対応として必要な情報を提供する。また、ソフトウェアの構成
／配備／稼働などが安全に運用できるための対応を行う

Mar. 2016 - 169

【第三十回】 セキュリティを意識したソフトウェア開発

　ソフトウェア開発プロセスとセキュリティという
のは、実はほとんどが一体化できるもので、特別に
セキュリティと区別したプロセスとして定義しなけ
ればならないものは、本来はそれほど多くないのか
もしれません。

基本定石にはほど遠い

　今回は、セキュリティを意識したソフトウェア開
発プロセスというテーマで議論してきました。いく
つかのアプローチを紹介するにとどまりましたが、

必要性は誰もが認めていることでしょう。しかし、
ソフトウェア工学的に見れば、現在はまだCMMが
出現してきた1990年あたりの状況にいるのではな
いかと筆者は思います。セキュアコーディングのよ
うなベストプラクティスを取り入れるレベルは可能
でも、ソフトウェア開発のプロセスを改善していく
のはまだまだ始まったばかりです。
　このような議論を通して、ソフトウェアの脆弱性
の問題やソフトウェアの安全な運用の問題は今後も
難しい問題であるということを、感じてもらえれば
幸いです。s

　カーネギーメロン大学のSEIはピッツバーグにある
研究所です。CMMIの研究資金はDoDから得ていま
す。
　ソフトウェアの信頼性を担保するための枠組みを
研究するというのは、ソフトウェア開発すべてに関
係する極めて基本的かつ汎用的な研究です。米国で
は「そのような技術に資金を投入し、その技術を広く
公開するのが、米国の軍事技術を支えるために必要
だ」という考え方をします。
　技術の積み重ねはピラミッドに似ており、広い底
辺から積み上げることによって、高い頂きを作ること
ができます。近視眼的に特定の兵器としての特定の
機能に資金をつぎ込んでも、基礎的な技術がなけれ
ば高度な兵器を作ることはできません。とくに高度
なソフトウェアは典型的です。
　1957年にソ連は、米国より先に人類初の人工衛
星を打ち上げました。それがスプートニク1号です。
米国はソ連に負けないようにロケットを作り打ち上げ
ますが、片っ端から打ち上げに失敗します。ソ連に
技術的に先を越されてしまったうえに追いつけない
状況でした。これがスプートニク・ショックです。
　米国はなぜこのような状況になったのか、問題を
調査しました。そして、「米国がソ連に追いつこうと
してもできなかったのは、米国内の基礎的技術や研
究インフラが十分ではなかったためである」という結
論に達しました。
　米国はそれ以降、基礎的な技術にも軍事資金をつ
ぎ込むことになります。そこで開発された技術を研
究開発インフラとして広く公開することにより、米国
全体の技術力および研究環境を向上させるというア

プローチを採ります。その優れた研究開発環境から
次の新しい技術が生まれ、あるいは高度な技術が安
定的に確保でき、そこから優れた軍事技術が得られ
ると考えたのです。
　「インターネットの前身は核戦争に生き残るための
技術として開発された」という誤った俗説をよく耳に
します。なぜインターネットの基本技術であるパ
ケット通信を研究開発したかというと、全米に散ら
ばる高度な計算機を使うためのネットワーク・コスト
を下げるためです。研究コストの削減と、研究イン
フラの向上が目標です。技術というピラミッドの底
辺を広げるためだったのです。
　CMMIも最初は、「DoDがソフトウェアを調達する
際に、ベンダ評価を行うためのメトリクスを作る」と
いう目的で資金を得ました。現在もSEIのCMMI研
究開発にはDoDの資金が入っています。基礎研究色
の強いDARPA（Defense Advanced Research Pro
jects Agency）ではなく、国防長官直属の組織である
米国防長官府（OSD：the Office of the Secretary of
Defense）とDoDと国防産業企業からなる組織NDIA

（the National Defense Industrial Association）からの
資金です。
　資金面からみると軍事色がたいへん強いわけです
が、CMMIは広く公開されています。なぜならばアメ
リカのソフトウェア産業が安定していなければ、高
度な兵器のソフトウェアなど作れないからです。そう
考えてみるとスプートニク・ショックがなければイン
ターネットもCMMIも違うものになっていたかもしれ
ません。

◉CMMIとスプートニク・ショック

170 - Software Design

IdMクライアント
設定の内容

　あるシステムをIdMのクライアントとして設
定することで、IdMが提供するドメイン管理機
能を利用することが可能になります。設定方法
として、ipa-clientパッケージによる半自動設
定と手動設定が利用できますが、RHEL/

CentOSであれば半自動設定のほうがもちろん
簡 単 で す。ま た、RHEL/CentOSの 場 合、
kickstartによって IdMクライアントの設定を
全自動で行うこともできます。
　半自動・全自動でIdMクライアントの設定を
すると、内部的には次の作業が行われます。こ
の作業内容を大まかにでも理解しているとIdM

のトラブルシューティングで役立ちます。

・IdMの認証局の証明書の設定
・IdMのXML-RPCサーバへのケルベロス接続

の設定および有効化
・ipa-joinコマンドによるドメインへの参加

・ホストサービスのプリンシパルの取得と、/
etc/krb5.keytabへのインストール

・certmonger注1サービスの有効化、SSLサー
バ認証の設定、証明書の/etc/pki/nssdbへ
のインストール

・nscd（Name Service Cache Daemon）の 無
効化

・SSSDあるいはLDAP/KRB5の設定
・OpenSSHサーバとクライアントの設定、お

よびDNSのSSHFP注2レコードの作成
・NTPの設定

　作業項目を見るとわかるとおり、IdMが提供
する各種サービスをIdMクライアントが利用で
きる必要があるため、IdMのファイアウォール
を図1のように設定注3しておきます。

IdMクライアントの準備

　IdMクライアントとして設定するシステムが
RHELの場合、有効なサブスクリプション契

第19回 最終回 Identity Managementを使おう（その2）

注1） 証明書の失効を監視し、認証局との連携により失効間近の証明書の更新を行うサービス
注2） SSH Fingerprintレコード
注3） 2015年12月号を参照

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ドット・
スペックス

今回は2015年12月号で紹介した Identity Manager（IdM）によるクライアント認証について紹介します。

Author レッドハット（株）サービス事業統括本部
　　　　 プラットフォームソリューション統括部ソリューションアーキテクト部長　藤田 稜 （ふじた りょう）
Twitter @rioriost

firewall-cmd --permanent --zone=public --add-port={80/tcp,443/tcp,389/tcp,636/tcp,88/tcp,464/tcp,53/
tcp,88/udp,464/udp,53/udp,123/udp}

 ▼図1　IdMのファイアウォール設定

170 - Software Design Mar. 2016 - 171

第 19回 最終回Identity Managementを使おう（その2）

約を保持していることが前提となるので、
subscription-managerで有効化しておきます。
identityサブコマンドによって登録状況を確認
してから、作業を進めてください。なお以下に
設定する手順では、最小構成でインストールし
たRHEL 7.2を前提としています。

subscription identity

　サブスクリプションが確認できたら、ipa-

clientパッケージをインストールします（図2）。
　図2を見るとわかりますが、依存性を解決し
た結果として sssd（System Security Services

Daemon）がインストールされます。sssdは
RHEL 6注4から導入された機能で、ホストやユー
ザの識別および認証を集中管理するためのサー
ビスです。認証サーバへのアクセスができない
場合にも、設定された時間内であればキャッシ

ングによって認証サービスを利用することがで
きます。

ipa-client-installによる
クライアント設定

　次に ipa-client-installコマンドを実行します。
この際、DNSサーバにKerberosやLDAPの
SRVレコードとして IdMが設定されていれば
IdMを自動検出しますが、そうでない場合には
--serverオプションで指定します。あるいは
IdMがDNSサーバを兼ねる場合には /etc/

resolv.confで IdMをDNSサーバとして指定し
てから ipa-client-installコマンドを実行します。
詳細はmanページを参照してください（図3）。
　これでIdMクライアント設定が完了しました。
もし何らかの問題が発生した場合は、まずIdM

のファイアウォール設定を確認してみてください。

注4） RHEL 7はもちろん、RHEL 5.6以降でも利用可能。

yum -y install ipa-client
読み込んだプラグイン:product-id, search-disabled-repos, subscription-manager
依存性の解決をしています
--> トランザクションの確認を実行しています。
---> パッケージ ipa-client.x86_64 0:4.2.0-15.el7_2.3 を インストール

 ……＜中略＞……

 sssd x86_64 1.13.0-40.el7_2.1 rhel-7-server-rpms 91 k
 sssd-ad x86_64 1.13.0-40.el7_2.1 rhel-7-server-rpms 215 k
 sssd-common x86_64 1.13.0-40.el7_2.1 rhel-7-server-rpms 1.1 M
 sssd-common-pac x86_64 1.13.0-40.el7_2.1 rhel-7-server-rpms 134 k
 sssd-ipa x86_64 1.13.0-40.el7_2.1 rhel-7-server-rpms 252 k
 sssd-krb5 x86_64 1.13.0-40.el7_2.1 rhel-7-server-rpms 129 k
 sssd-krb5-common x86_64 1.13.0-40.el7_2.1 rhel-7-server-rpms 154 k
 sssd-ldap x86_64 1.13.0-40.el7_2.1 rhel-7-server-rpms 194 k
 sssd-proxy x86_64 1.13.0-40.el7_2.1 rhel-7-server-rpms 123 k

トランザクションの要約
===
インストール 1 パッケージ (+37 個の依存関係のパッケージ)

総ダウンロード容量: 9.8 M
インストール容量: 38 M
Downloading packages:

 ……＜中略＞……

完了しました!

 ▼図2　ipa-clientパッケージのインストール

172 - Software Design

行してみます（図7）。
　これで図6で示されたユーザ IDを取得でき
ていることがわかります。では、図8でsuコ
マンドを実行してみましょう。
　何が起きたのかは一目瞭然です。図6の右下
に“Home directory”として“/home/rio”が指定さ
れていますが、IdMクライアント上に存在しな
いためエラーが発生しました。IdMではPAMの

設定完了後に IdMクライア
ント上でコマンドを発行する
と、ユーザ IDが取得できて
いることがわかります（図4）。
　また、IdMにWebブラウ
ザでログインするとIdMク
ライアントのホスト名、ここ
では“dhcp-97.rio.st”が確認
できます（図5）。

IdMのユーザで
ログイン

　さらにIdMで管理されているユーザアカウン
トも、IdMクライアント上で利用できます。先
にWebブラウザでユーザアカウントを確認し
ましょう（図6）。
　次に IdMクライアント上でidコマンドを実

ドット・
スペックス

Red Hat Enterprise Linuxを

極める・使いこなす
ヒント

ipa-client-install
Discovery was successful!
Client hostname: dhcp-97.rio.st
Realm: RIO.ST
DNS Domain: rio.st
IPA Server: idm.rio.st
BaseDN: dc=rio,dc=st

Continue to configure the system with these values? [no]: y　←［y］を入力
Synchronizing time with KDC...
Attempting to sync time using ntpd. Will timeout after 15 seconds
User authorized to enroll computers: admin　←IdMの管理アカウントを入力
Password for admin@RIO.ST: 　←IdMの管理アカウントのパスワードを入力
Successfully retrieved CA cert
 Subject: CN=Certificate Authority,O=RIO.ST
 Issuer: CN=Certificate Authority,O=RIO.ST
 Valid From: Fri Oct 09 12:36:47 2015 UTC
 Valid Until: Tue Oct 09 12:36:47 2035 UTC

Enrolled in IPA realm RIO.ST
Created /etc/ipa/default.conf
New SSSD config will be created
Configured sudoers in /etc/nsswitch.conf
Configured /etc/sssd/sssd.conf
Configured /etc/krb5.conf for IPA realm RIO.ST

 ……＜中略＞……

Client configuration complete.

 ▼図3　ipa-client-installコマンドの実行

id
uid=0(root) gid=0(root) groups=0(root) ｶ
context=unconfined_u:unconfined_r:unconfined_ ｶ
t:s0-s0:c0.c1023
getent passwd admin
admin:*:662200000:662200000:Administrator:/ ｶ
home/admin:/bin/bash
getent group admins
admins:*:662200000:admin

 ▼図4　ユーザ IDの取得確認

 ▼図5　IdMのGUIでのホストの確認

172 - Software Design Mar. 2016 - 173

第 19回 最終回Identity Managementを使おう（その2）

モジュールであるpam_oddjob_mkhomedirある
いは pam_mkhomedirを利用して、ユーザのログ
イン時に自動的にユーザホームディレクトリを
作成することができます。IdMクライアント上
でauthconfigコマンドを実行し、再度、suコマ
ンドを実行してみましょう（図9）。
　実際の運用を考慮すると、ユーザ認証を一元
化した一方でユーザのデータが各ホストに分散
してしまう上記の方法はあまり望ましくありま
せん。NFSや共有ストレージを用いて集中管理
することになりますが、IdMではそれらのデー
タ領域をautomountと連携してユーザホームディ
レクトリに自動的にマウントすることもできます。

まとめ

　IdMによるクライアント認証の一端を紹介し
ました。このほかにもホストごとのsudoの管
理やパスワードの一貫したポリシーによる強力

な管理など、セキュリティに役立つ機能が豊富
に含まれており、ぜひ利用を検討してください。
　次回から本連載は同僚の小島啓史氏にバトン
タッチしますが、また近々本誌でお会いできる
ことを楽しみに筆を置かせていただきます。
　長期にわたる連載の機会をいただいた本誌・
池本編集長に感謝いたします。ﾟ

 ▼図6　IdMのGUIでのユーザアカウントの確認

id rio
uid=662200004(rio) gid=662200004(rio) ｶ
groups=662200004(rio)

 ▼図7　idコマンドの実行

su - rio
su: warning: cannot change directory to /home/ ｶ
rio: そのようなファイルやディレクトリはありません

 ▼図8　suコマンドで実行

$ exit
authconfig --enablemkhomedir --update
su - rio
Creating home directory for rio.
最終ログイン: 2016/01/18 (月) 22:19:50 JST日時 pts/1

 ▼図9　IdMクライアント上でホームディレクトリを作成する

174 - Software Design

33 Debian Developer　やまねひでき　henrich@debian.org

Debian創設者の死

創設者Ian Murdockの死

　2015年12月28日にDebianの創設者である
Ian Murdockさんが42歳の若さで亡くなった
ことを、各種報道によって知った人は多いかと
思います。
　筆者が目にしてきたメディアでは、彼がDebian

の創設者であることは述べられているものの、
Debian創設時はどんな状況だったのか、彼は
何をしてきたのか、今のDebianに対してどの
ような影響があるのか、などについてまとまっ
た説明を目にすることはありませんでしたので、
ここで振り返ってみようかと思います。彼の略

歴は表1のとおりです。

Debianの創設〜離脱

　Debianは、1993年8月16日に当時大学生であっ
た Ian Murdockさんにより、ニュースグループ
comp.os.linux.developmentで開始が宣言されまし
た注1。この当時、ディストリビューションと呼べ
るものはSLS（Softlanding Linux System）注2と
初の商用ディストリビューションであるYggd

rasilぐらいしかなく、SLSを使っていてその
クオリティにフラストレーションを覚えていた
Ianが若さに任せて「ぶちあげた」という感じで
しょうか。その投稿には、DebianはSLSを
ちょっと変えたものではなくスクラッチで作っ

 ▼表1　Ian Murdock氏の略歴

年 略歴

1993 Debianの開発を開始

1994 Debian宣言（Debian Manifesto）を発表

1995 Free Software Foundationからの支援を受け、システムプログラマとして勤務
業務としてDebianの開発を行う

1996 プロジェクトリーダーから降り、Bruce Perens氏を2代目リーダーとして指名

1997 アリゾナ大学でプログラマとして勤務

1999 Progeny Linux Systems社を創設

2005 Debian Common Core Alliance（DCCA）構想を発表
Progenyを離れ、Linux Foundationへ

2007 Sun Microsystems社に入社。Project Indianaを率いる
Progeny操業停止

2011 ExactTarget社（後のSalesforce Marketing Cloud）に入社

2015 Docker社に入社

注1） URL https://groups.google.com/forum/#!msg/comp.os.linux.development/Md3Modzg5TU/xty88y5OLaMJ
注2） 現在も残っている最古のディストリビューションSlackwareは、SLSをベースに1993年7月から開始されました。

https://groups.google.com/forum/#!msg/comp.os.linux.development/Md3Modzg5TU/xty88y5OLaMJ

174 - Software Design Mar. 2016 - 175

Debian創設者の死 33

ていることが述べられており、また、「SLSに
比べてこんなにも良い点がある」と9つの点に
ついての説明があります。
　そして、「Debian宣言」を発表し、Debianで
何を目指すのか、どのような形で開発を進めて
いくのかなどを明らかにしました。

「Debian Linuxはまったく新しいLinuxディス
トリビューションです。今までに開発された他
のLinuxディストリビューションのように限定
的な個人やグループが開発しているものではな
く、LinuxとGNUの精神に則り、オープンに
開発されています。Debianは、最終的にLinux

の名に恥じないディストリビューションを作り
出すことを第一の目的としています。Debian

は注意深く、また良心的にディストリビューショ
ンをまとめており、同様の配慮で保守・サポー
トしていく予定です。」
（Debian宣言注3より一部抜粋）

　ただ単に現状に不満を覚えて理想を述べるだ
けなら誰にでもできますが、彼が違ったのは、
実際に彼には優れた才能と馬力と魅力があった
ことです。彼は、今とは違い依存関係の処理な
どない荒削りな状態ながらもパッケージング

ツール「dpkg」の初期開発を行い注4、数十名のハッ

カーをまとめ上げて、Debian 0.01から0.90ま
でのリリースを成し遂げます。
　彼は1993年から1996年までの3年間リー
ダーを務めましたが、このころのDebianは若々
しく少人数の集まりであり、今よりも素朴でテ
クニカルな側面が強かったようです。このあた
りについては「Debian小史」注5にまとまってい
るのでご覧ください。

Progeny〜DCCAの失敗

　次に Ianさんはアリゾナ大学でプログラマと
して勤務する傍

かたわ

ら、1999年に新興企業Progeny

Linux Systemsの創設に携わりました。
　そして、Progeny社は、Debianベースの独
自ディストリビューションを作りました。その
内容として、Red Hat Linux（当時）に使われて
いたAnacondaインストーラをDebianへ移植し
インストールを容易にしたり、さらにハードウェ
ア認識が弱かった当時のDebianの弱点を「Dico

ver」と呼ばれるプログラムを開発して改善した
りしました。ただ、利用者を多くは獲得できず
に業績もさほどではなかったようです。
　そのような状況を払拭するためか、Progeny

は2005年に、Knoppix、LinEx、Linspire、ME

PIS、Sun Wah Linux、Xandrosなどの派生ディ
ストリビューションと共同して「Debian Common

注3） URL https://www.debian.org/doc/manuals/project-history/ap-manifesto.ja.html
注4） 実際にchangelogファイル（/usr/share/doc/dpkg/changelog.Debian.gz）を覗いてみると最初期の2ヵ月ほどですが精力的に活動し

ている様子がうかがえます。
注5） URL https://www.debian.org/doc/manuals/project-history/
注6） Debianフリーソフトウェアガイドライン。「オープンソースの定義」はDFSGをもとにできています。

Debian GNU/LinuxのGNUとは

　ちなみにですが、Debianは、GNUプロジェクト
（FSF、フリーソフトウェア財団）によって1994年

11月から1995年11月までの1年間支援を受けてい
ます。その絡みもあり、初期は単にDebian Linux
と呼んでいたのを、Richard Stallmanの主張を受け
入れてDebian GNU/Linuxと呼ぶようになりました。
　勘違いしている方も多いのでひとこと述べておき

ますと、Ian Murdockさんがリーダーを務めていた
初期のころは確かにGNU/FSFに支援を受けており、
その影響が大きいのですが、後年に独自の組織と哲
学（Debian社会契約とDFSG注6）を持つに至っている
現在、「Debian GNU/Linuxというふうに、GNUの
文字が入っているから、GNUと関連があって云々」
などというのは見当違いな物言いです。

COLUMN

https://www.debian.org/doc/manuals/project-history/ap-manifesto.ja.html
https://www.debian.org/doc/manuals/project-history/

176 - Software Design

Core Alliance（DCCA）」という組織を立ち上げ
ることを、LinuxWorld San Franciscoで発表
しました。
　しかし、最も大きな派生ディストリビューショ
ンであるUbuntuは含まれなかったり、そもそ
ものDebian自体の支持も得られていなかった
りという状態で、弱小連合の体であり、あえな
く失敗に終わります（このあたりはOSDNの佐
渡秀治さんによる「kazekiriの日記：Ian Mur

dockが亡くなった件」注7に詳しくあります）。

Project Indiana

　そして、Progenyを離れ、Linux Foundation

を経てSun Microsystems社に入社した Ianさ
んは、「Project Indiana」を率いることになりま
す。これはLinuxの便利なところを積極的に
Solarisに取り入れようとしていたプロジェク
トで、とくにパッケージングシステムの面では
遅れをとっていたため、当時のOpenSolaris上
にDebianのようなパッケージシステム（Image

Packaging System：IPS）とパッケージ・リポ
ジトリを備えるなど「Linux風のモダンで便利
なものに」と開発を進めていました。まさに彼
が適任だったと言えましょう。
　残念ながらその後、Oracle社のSun Micro

systems買収に伴う方向転換により、2010年に
OpenSolarisはオープンソースプロジェクトと
しては停止し、Project Indianaの成果も一段
落した形になります。
　そして、IanさんはExactTarget社へ転職し、
フリーソフトウェア／オープンソースソフトウェ
アの界隈ではその活動が表立って見えなくなり、
今日に至ります。

彼の功績

　2代目のプロジェクトリーダーであり、オー
プンソースの定義の創設に携わったBruce

Perensさんは自身のブログ注8で、Ianさんにつ
いての評価として、彼に対する大学宛の推薦文
で「Ianは、ゼロから何かを創りだすことがで
きる稀

まれ

な人物の1人」と書かれていたことに触れ、
「そのとおりの人物だった」と振り返っています。
　今のDebianの特徴と言われるdpkg/APTや
「フリー」の精神などについては、後年のプロジェ
クトメンバーの貢献によるものが大きいのです
が、それでもIan Murdockという人物がDebian

という「場」をゼロから作り、志に燃えた癖ぞろ
いのハッカーをまとめ上げてプロジェクトを形
作ったことは偉大な事実です。
　そして、Debianという場がなければ、Debian

フリーソフトウェアガイドラインが生み出され
ることはなく、それを引き継いだ「オープンソー
ス」という概念自体も作られることはなく、そ
して今みなさんが目にしているように、さまざ
まなソフトウェアがオープンソースとして自由
に利用／改変／配布できている現在はなかった
でしょう。そのこと考えると、その価値は途方
もないものです。

Debianへの影響は？

　Progeny Linux Systemsのビジネスが頓
とんざ

挫し
たあと、IanさんがDebianにかかわることはな
かったため、彼の死によってプロジェクトの運
営や開発が影響を受けることはありません（20

年前に引退した創設者の死によって会社の業績
が影響を受けるか、という話ですね）。しかし
ながら、1つの時代が終わってしまった、とい
う寂しさは禁じえません。

Debianの開発状況

　さて、現状のDebianの開発現場では、どん
な進捗／議論が起こっているのでしょうか。

注7） URL http://srad.jp/~kazekiri/journal/599205/
注8） URL https://perens.com/blog/2015/12/31/ian-murdock-dead/

http://srad.jp/~kazekiri/journal/599205/
https://perens.com/blog/2015/12/31/ian-murdock-dead/

176 - Software Design Mar. 2016 - 177

Debian創設者の死 33

APTの高速化

　パッケージメンテナの1人、Julian Andres

Klodeさんのブログによるとバージョン1.1.7に
おいてAPTが大幅に高速化されたそうです注9。
　とくにpdiff注10の扱いについては40倍もの
高速化を遂げ、さらにその後のバージョン1.2

ではキャッシュ生成を15％ほど高速化したと
のこと。testing/unstable利用者の方はapt-get

を使用して、そのスピードを楽しんでみてくだ
さい注11。

debian-installer Stretch
alpha 5のリリース

　debian-installerも新しいバージョンがリリー
スされました。今回のリリースで、i386アー
キテクチャでは i686未満のプロセッササポー
トを打ち切ることになりました注12。
　Twitterなどのタイムラインでは、「32bitアー
キテクチャを打ち切る !?」と誤解をしている人
が散見されましたが、i686は64bit CPUのこ
とではありません……。i686とはPentium Pro

以降のCPUのことです。これを考えると、20

年ほど前からのCPUもこの変更があったとし
ても続けて利用できることがわかります。さら
にそれより古い i586マシン、つまり無印Pen

tium相当のサポートを打ち切っても、機器の
経年劣化を考えると実質的に影響はないでしょ
う注13。
　逆に、i386アーキテクチャについて、これま
で i686未満のサポートのために実施できなかっ
た最適化が行えるようになるため、多少なりと
もパフォーマンスがアップすることになります。

　また、ストレージについても、高速なストレー
ジに利用されているNVMe注14のサポートが追
加されましたので、Intel SSD 750シリーズな
どをお持ちの方はお試しください。

独立したnon-free-firmware
セクションを導入？

　現状のDebianでは、non-freeリポジトリは
デフォルトでは利用しないようになっています。
　しかし、ネットワーク、とくにWi-Fiの利用
においては、non-freeリポジトリを有効にして
ファームウェアを導入しないと使えません。現
実的には、そのような問題があるのは、みなさ
んもご存じのとおりです。
　この夏のDebConfにてファームウェアの取
り扱いに関する議論があり、「Going ahead with

non-free-firmware」というメーリングリストの
スレッドで、実際にこの作業を進めようという
呼びかけがされました。これは、non-freeリポ
ジトリを全面的に利用する設定を避けつつも、
ファームウェアの利用を楽にすることでユーザ
の利便性を上げようという試みです。
　「ほかのディストリビューションに比べて利
用しづらい」という評判が、今までのDebianに
はありました。その大部分は、このファームウェ
アの分離によるネットワーク設定の問題でした
ので、これが実現できれば大きな前進となるで
しょう注15。
　どのように実装するのかについては、インフ
ラストラクチャの制約などとの兼ね合いになり
ますし、そもそもこの実装が行われるかどうか
は未定でもありますので、今後も注目して良い
トピックだと思われます。｢

注9） URL https://juliank.wordpress.com/2015/12/26/much-faster-incremental-apt-updates/
注10） パッケージ一覧の差分データ。毎日4回新規パッケージが導入されることから、毎回のupdateですべてのデータを取得すると効

率が悪くサーバにも負荷が高いため、パッケージの差分だけをpdiffとして切り出して取得するようにしている。
注11） ちなみに、「Debianはaptitudeを推していたのでは？」という方、aptitudeが積極的に推されていたのはDebian 5「lenny」リリー

スのころ（2009年ごろ）までで、現状はAPTのほうが活発に開発されています。
注12） 「i386アーキテクチャと呼んでいるのに i386（や i486、i586）はサポートしてないの？　i686にリネームしたら？」という提案もあ

りましたが、「i386という文字列は、さまざまなコード内に深く埋め込まれているのでとても変更できない……」という回答があり
ました。

注13） 例外的なものとしては、IntelのGalileoが i586らしいです。このような場合には困りますね。
注14） ストレージを接続するための規格で、HDD前提のSATAよりもSSDの性能が引き出せるようになっています。
注15） もう1つの問題は、旧態依然のdebian-installerのインターフェースですが、こちらも、GUIがデフォルトになったので多少マシに

なっているのではないかと思います。

https://juliank.wordpress.com/2015/12/26/much-faster-incremental-apt-updates/

178 - Software Design

Ubuntu Monthly Report

　Vimもいい、Emacsもいい。でも1つ忘れていませんか？　Ubuntuデフォルトのエディタはgedit

です！

Ubuntuのエディタ
といえばgedit

Ubuntu Monthly Report第71回

Ubuntu Japanese Team
あわしろいくや

　エディタといえばVimとEmacsで、しばしば論争
（というかネタ）になります。本誌でも両者の連載が
あり、人気があるということを端的に示しています。
またAtomだVisual Studio CodeだBracketsだと、
最近リリースされたものもあり、Webブラウザの次く
らいによく使うツールであるにもかかわらず、不思
議と似たような時期に集中し、盛り上がりを見せて
います。
　ここで忘れてはいけないのは、我らがgeditであり
ます注1。Ubuntuを始め、多くのLinuxディストリ
ビューションで、デフォルトでインストールされる
エディタであるということもあってか、あまり顧み
られることはありません。では低機能なのかと言わ
れるとけっしてそのようなことはなく、むしろプラ
グインによる機能の拡張にも対応しているので、か
なり「できるやつ」と断言できます。
　というわけで、今回はgeditの解説をお届けします。

　geditの歴史をたどることは後にも先にもなさそう

注1） nanoのことは忘れておきます……。

第3くらい？ のエディタ、
gedit

geditの歴史

で、ちょうどいい機会ですのでスクリーンショット
を中心にお届けします（図1〜4）。ロゴや著作権者の
変遷をご確認ください。
　geditはGNOME Appsとして、すなわちGNOME

の一部分として開発されています。また歴史も古く、
GNOMEの開発が始まったのは1997年8月15日と
のことであり、geditの開発がいつから始まったのか
は残念ながら調査できませんでしたが、バージョン
管理システム（おそらくCVS）に登録されたのは
1998年3月5日の0.2.1でした。GNOMEからあまり
間をおかずに開発が始まったものと思われます。
　GNOMEのバージョンアップに伴いネーミングルー
ルも変更になり、たとえばNautilusが「ファイル」、
Epiphanyが「ウェブ」といったように一般名称化され
ていきましたが、geditはgeditのまま残っています。
　筆者の手元にあるgeditで一番古いのは、2002年7

月19日にリリースされたDebian GNU/Linux 3.0

（Sarge）のgedit 0.9.6です。図1を見ていただけれ
ば、GNOMEを含めて歴史を感じていただけると思
います。
　図2は、次に古いRed Hat Linux 8です。geditの
バージョンは2.0.2で、GTK2+リリース直後のバー
ジョンであることがわかります。
　図3は、今回のメインプラットフォームである
Ubuntu 15.10のgeditです。バージョンが3.10と古
めです。

178 - Software Design Mar. 2016 - 179

Ubuntuのエディタといえばgedit 第 71 回

　そして図4が、Ubuntu 16.04 LTS開発版のgedit

です。3.18とバージョンが大幅に上がり、見た目もか
なり違ったものになっています。いったいどうなっ
ているのでしょうか。

　初期のUbuntu、正確にはUnityになるまで
UbuntuはGNOMEとともにありました。ですので最
初のバージョンである4.10からgeditがあり、Unity

になっても継続して採用していることになります。
　geditは3.12から、ほかのGNOME Appsに合わせ
てルック＆フィールを大幅に変更しました。しかし
Ubuntuはそれには追随せず、14.04から15.10まで
3.10のままにしておきました。それがいよいよ16.04

から3.18という新しいバージョンになり、変更を受
け入れたということです。

Ubuntuとgedit

　今回の紹介もベースは3.10ですが、3.18でもおお
むね同様です。

　まずはgeditにもともとある機能の解説から行いま
す。もちろん全部は無理ですので、特徴的なものの
みです。

シンタックスハイライト

　シンタックスハイライトはエディタの極めて基本
的な機能ですが、gedit注2も3.10で100強、3.18で120

弱のハイライトに対応しているので、おおむね困る
ことはないでしょう。原則としてはファイルの読み
込み時に自動的にハイライトが選択されますが、［表

注2） 正確には使用しているライブラリであるGtkSourceView。

基本性能

図1　gedit 0.9.6

図4　gedit 3.18.2

図2　gedit 2.0.2

図3　gedit 3.10.4

180 - Software Design

Ubuntu Monthly Report

示］-［ハイライトモード］で任意のハイライトモード
を選択できます。拡張子が違う場合などに便利で
しょう。

ドキュメントの統計情報

　プログラムを書く場合はさほど必要ではありませ
んが、文章を書く場合は大まかな文字数は把握して
おきたいところです。そのような場合には［ツール］-
［ドキュメントの統計情報］で知ることができます。選
択した部分のみの情報を表示することもできますが、
その場合は一度閉じなくてもそのまま範囲選択し、
［更新］をクリックすると反映されるので便利です。

スペルチェック

　［ツール］-［スペルチェック］から英語のスペル
チェックもできます。［ツール］-［スペルミスの強調
表示］も便利です。ついついtypoしてしまうもので
すので、必須の機能といえます。

カラースキーム

　［設定］-［フォントと色］-［カラースキーム］で文字
色や背景色を変更できます。白背景に黒文字は見に
くいという場合には変更してみるといいでしょう。
外部の定義ファイルの取り込みもできます。

プラグイン

　［設定］-［プラグイン］を見ると、実は前に紹介した
機能は1つを除いてプラグインで実装してあります。
もちろんすべてのプラグインがあらかじめ有効に
なっているわけではありませんし、あとから追加す
ることもできます。

コードスニペット

　プラグインの［コードスニペット］を有効にすると、
［ツール］-［Manage Snippets］という項目が追加され
ます。これを見るとだいたい使い方がわかります。
　たとえばMarkdownで画像を挿入する場合は、

![説明](画像のパス)

と入力しますが、コードスニペットを有効にしてあ

れば、“img”と入力してkキーを押すだけでテン
プレートが即座に入力され、手間が省けます。

外部ßツール

　外部ツールに関しては、後ほど詳細に解説します。

再変換機能

　IBusまたはFcitxでMozcを使用している場合、
変換ミスした個所を選択し、変換キー注3で再変換が
できます。これは別にgeditの機能というわけではな
いのですが、Ubuntu上だとできないアプリケーショ
ンがとても多いので注4、これだけでもgeditを使用し
たくなる理由になります。

　geditのプラグインはUbuntuのリポジトリにいく
つかあります。その中で必須なのはgedit-plugins

パッケージでしょう。このパッケージをインストー
ルし、geditを再起動すると［設定］-［プラグイン］に
たくさんのプラグインが追加されます。そのうちの
いくつかを紹介します。

Bracket Completion

　その名のとおり、ブラケットを補完してくれます。
具体的には、“(”を入力すると“()”となります。

Text Size

　このプラグインを有効にすると［表示］タブに
［Larger Text］と［Smaller Text］と［Normal Size］が
追加され、表示しているフォントサイズの変更が簡
単にできるようになります。

組み込み端末

　組み込み端末プラグインにチェックを入れ、［表
示］-［ボトムパネル］を表示すると、ボトムパネルに
端末が表示されるようになります。これでさっと書

注3） ATOKキーバインドだと`+変換キー。
注4） LibreOffice WriterやAtomなどもそうです。

gedit-plugins

180 - Software Design Mar. 2016 - 181

Ubuntuのエディタといえばgedit 第 71 回

いたシェルスクリプトを実行してみたり、gitの操作
などを行えば、いちいち端末とgeditを行き来しなく
てもよくなり、利便性が上がります。画面を広く使
いたい場合は［表示］-［ボトムパネル］のチェックを外
してください。

　説明には「外部コマンドとシェルスクリプトを実行
します。」と書かれていますが、実のところこの外部
ツールはシェルスクリプト以外にもPythonなどさま
ざまなLL（Lightweight Language）に対応します注5。
　外部ツールを使いこなすために必要な情報は
Wiki注6にまとめられています。英語ですが、環境変
数と外部ツールでできる設定についてという重要な
ことが書かれているので、事前に目を通しておいて
ください。
　外部ツールプラグインを有効にすると、［ツール］-
［External Tools］と［Manage External Tools］が増え
ています。まずは後者をクリックし、設定を行い

ます。

MarkdownをHTMLに変換し、
プレビューするツール

　geditにはgedit-markdown注7というMarkdownプ
レビュープラグインがありますが、今回はそれを使
用せず、Pandocで簡単なHTMLに変換してそれを
Webブラウザに渡す、ということをやってみること
にします。Pandoc（パッケージ名は“pandoc”と小文
字です）とプレビュー用のWebブラウザであるウェ
ブ（パッケージ名は“epiphany-browser”）をインス
トールしてください。もちろんWebブラウザは既存

注5） そもそもサンプルコードはPythonです。
注6） https://wiki.gnome.org/Apps/Gedit/Plugins/ExternalTools

注7） https://github.com/jpfleury/gedit-markdown

外部ツール

のものでもいいのですが、プレビューの場合は単独
にしておいたほうが便利でしょう。
　［外部ツールの管理］を起動したら、左下の“+”を
クリックして項目を増やします。タイトルを「Mark

downプレビュー」などとし、［編集］の下にはリスト1
のように入力します。そして［ショートカットキー］
と［保存］は［なし］にし（ショートカットキーはあって
もいいです）、［入力］は［編集中のドキュメント］、［適
用範囲］は［すべてのドキュメント］-［Markdown］に
します（図5）。
　これを［ツール］-［External Tools］-［Markdownプ
レビュー］で実行するとWebブラウザが起動し、そ
こにはMarkdownのプレビューが表示されています。
　見てのとおり、このサンプルはpandocもepiphany-

browserも存在するかどうかのチェックはしていま
せん。そこは注意ですが、あとは何をやっているの
かは見ればだいたいわかるかと思います。
　最初の行で環境変数GEDIT_CURRENT_DOC

UMENT_NAMEから取得したファイル名の拡張子
を削除し、BASENAME環境変数に入れています。
あとはpandocで変換してfindで見つけたそれと思わ
しきHTMLファイルをEpiphanyに渡しているだけ
です。Epiphanyは文字化けするかもしれませんが、
その場合は文字コードをUTF-8に変更してくださ
い。｢

#!/bin/sh
BASENAME=$(basename -s .md $GEDIT_CURRENT_DOCUMENT_NAME)
pandoc -f markdown -t html5 $GEDIT_CURRENT_DOCUMENT_NAME -o $BASENAME.html
epiphany-browser --private-instance $(find $GEDIT_CURRENT_DOCUMENT_DIR -name $BASENAME.html)

リスト1　外部ツールの管理に追加する

図5　Markdownプレビューの設定方法

https://wiki.gnome.org/Apps/Gedit/Plugins/ExternalTools
https://github.com/jpfleury/gedit-markdown

182 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

NVDIMM は
どのように見えるか

　まず、NVDIMMがどのようにシステムから
見えるのかを見ていきましょう。NVDIMMの存
在をシステムに通知するには3つの方法があり
ます。1つ目は、ACPI6.0に策定されている
NVDIMM Firmware Interface Table（NFIT）を
使う方法です。仕様が策定されていることから
わかるとおり、この方法がこれからの標準とな
ることでしょう。残る2つは legacyな方法で、
一方はe820を使って取得できるメモリリージョ
ンとして指定する方法で、もう一方はカーネル
のコマンドラインを使った方法となります。
　e820とはx86におけるBIOSのメモリマップ
を取得する機能のことです。Linuxでも起動後
にまずメモリマップを取得し、各メモリ領域の
アドレスおよびその領域の種類を表示していま
す（図1）。領域の種類には、usable（OSから利
用可能）、reserved（予約領域であり利用不可）、
あるいはACPI data（ACPI Table領域）などが
あります。この領域の種類の1つとして“type-12”
があります。“type-12”は“OEM独自領域”を意
味しますが、これが“Persistent Memory（legacy）”
としてNVDIMMであると認識されます。

 　2015年はやはりLinux 4.3までで、新年最初
となるLinux 4.4は1月10日にリリースされま
した。今回は、Linux 4.1と4.2で実装された、
LinuxのNVDIMM対応機能 libnvdimmについて
見ていきます。

NVDIMMとは
　NVDIMMとはNon-Volatile DIMMのことで、
メモリ並の速さで読み書きが可能でありながら、
一般的なストレージのようにシステムが再起動
したり電源が切れたりしてもデータが残るデバ
イスです。
　現状のストレージはCPUに対して速度が遅
くセクタ単位でデータが読み書きされます。既
存のI/Oスタックはストレージのそうした性質
に対応して開発されてきました。一方で
NVDIMMは十分に速度が速くbyte単位でデー
タの読み書きが行われます。この性質の違いから、
既存の I/OスタックをそのままNVDIMM上で
使うと不都合が起きることがあります。そこで、
どのようにNVDIMMをユーザに見せるかが問
題となります。Linux 4.2では libnvdimmという
名前でNVDIMMに対応するサブシステムが導
入されています。

Linuxの
NVDIMM対応機能
〜libnvdimm〜
Text：青田 直大　AOTA Naohiro

第48回第48回

182 - Software Design Mar. 2016 - 183

LinuxのNVDIMM対応機能
〜libnvdimm〜

第48回第48回

　カーネルコマンドラインを使う方法では
“memmap=nn[KMG]!ss[KMG]”として、アドレス
ssからサイズnnのメモリ領域を、type-12の領
域となるようにe820で取得したメモリマップを
修正します。こうして、先ほどと同様に指定し
た領域がNVDIMMとして認識されます。この
方法ではメモリマップを手動で修正しているので、
NVDIMMがシステムになくてもNVDIMMがあ
るかのように見せかけることもできます。

NVDIMMへの2つの
アクセス方法

　e820を使った legacyな方法では、ある領域が
byte単位でアクセス可能なPersistent Memory

であることだけが通知できました。ACPI NFIT

をサポートしたNVDIMMにおいては、これま
での方法（PMEMと呼ばれます）に加えてBLK

というアクセス方法をサポートできます（図2）。
　PMEMではアクセス可能な全領域がシステム
のメモリ空間にマップされ、その領域を通して
直接データが読み書きされます。このアクセス
方法はシンプルではありながら、いくつかの弱
点もあります。1つの問題は、byte単位でのア
クセスが既存のI/Oスタックやファイルシステ
ムとの相性が悪いことです。既存のI/Oスタッ

クはセクタ単位でアトミックにデータが書き換
えられることを前提として設計されています。
こうしたシステムをそのままNVDIMM上で動
かすと、電源やOSが落ちた場合に1つのセク
タの一部のみが書き換えられ、残りは書き換え
前のままであるという状態が起こりえます。既
存のI/Oスタックはこうした状態は予測してい
ないので、チェックサムなどが記録されていな
い限りシステムがめちゃくちゃになってしまう
ことでしょう。
　もう1つの問題点としてメモリとストレージ
システムでのエラー処理の違いが挙げられます。
PMEMのようなメモリコピーでのアクセスの場
合、デバイスのアクセスした部分にハードウェ
ア的な障害があると例外が発生します。一方で
ストレージシステムでは、データ転送コマンド
を発行し、その完了後にエラーが起きたかどう
かを確認するようなしくみになっています。
　こうしたメモリとストレージとの違いを吸収
するために使われるのが、BLKとなります。
BLKではアクセス可能な領域に対していくつか
の「読み書き用の領域」（sliding window）が設定
され、その領域に読み書きしたいアドレスやサ
イズを書く領域、および読み書き用バッファが
置かれます。この“sliding window”を通すことで、

[0.000000] e820: BIOS-provided physical RAM map:
[0.000000] BIOS-e820: [mem 0x0000000000000000-0x0000000000057fff] usable
[0.000000] BIOS-e820: [mem 0x0000000000058000-0x0000000000058fff] reserved
[0.000000] BIOS-e820: [mem 0x0000000000059000-0x000000000009bfff] usable
[0.000000] BIOS-e820: [mem 0x000000000009c000-0x000000000009cfff] reserved
[0.000000] BIOS-e820: [mem 0x000000000009d000-0x000000000009dfff] usable
[0.000000] BIOS-e820: [mem 0x000000000009e000-0x00000000000bffff] reserved
[0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000afdadfff] usable
[0.000000] BIOS-e820: [mem 0x00000000afdae000-0x00000000affaffff] reserved
[0.000000] BIOS-e820: [mem 0x00000000affb0000-0x00000000ba43afff] usable
[0.000000] BIOS-e820: [mem 0x00000000ba43b000-0x00000000ba63afff] type 20
[0.000000] BIOS-e820: [mem 0x00000000ba63b000-0x00000000bcd3efff] reserved
[0.000000] BIOS-e820: [mem 0x00000000bcd3f000-0x00000000bce7efff] ACPI NVS
[0.000000] BIOS-e820: [mem 0x00000000bce7f000-0x00000000bcefefff] ACPI data
[0.000000] BIOS-e820: [mem 0x00000000bceff000-0x00000000bcefffff] usable
[0.000000] BIOS-e820: [mem 0x00000000bcf00000-0x00000000bf9fffff] reserved
[0.000000] BIOS-e820: [mem 0x00000000f80f8000-0x00000000f80f8fff] reserved
[0.000000] BIOS-e820: [mem 0x00000000fe101000-0x00000000fe112fff] reserved
[0.000000] BIOS-e820: [mem 0x00000000fed1c000-0x00000000fed1ffff] reserved
[0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000023e5fffff] usable

 ▼図1　e820によるメモリマップ 取得例

184 - Software Design

Linuxカーネル観光ガイド

既存のストレージシステムとの齟
そ ご

齬がなく、デー
タを読み書きできます。
　また、デバイスによってはFlush Addressと
いうものが設定されていることもあります。こ
れはNVDIMMに書いたデータが永続化された
ことを保障するために使われるアドレスを指定
するものです。このアドレスにデータが書かれ
るとfsyncのようにデータが永続化されたこと
が保障されます。

ACPI NFIT
　次にNFITの構造について見ていきましょう。
前項で紹介したようにNFITに対応したデバイ
スの場合、NVDIMMに対して2つのアクセス方
法があったり、あるいは“sliding window”があっ
たりと、legacyなPersistent Memory領域より
複雑な構造となっています。
　ここでは図3に示すようなマシンを例として、
NFITがどのようになるかを見ていきます。こ
の図3で示している構成は tools/testing/nv

dimm/下のNFITおよび libnvdimmのテスト用
モジュール（nfit_test）を読み込むことで疑似的
に作られる環境です。
　この図3の環境にはnmem0からnmem3の4つ
の32MBのNVDIMMがあります。そして、その
NVDIMMの上に region0からregion5まで6つ
のregionが定義されています。このうちregion0

とregion1はPMEMでアクセス可能な領域で、

region2からregion5の4つがBLKでアクセス可
能な領域です。region0はnmem0とnmem1の前
半分にまたがった領域で、region1はすべての
NVDIMMの後ろ半分にまたがる領域になってお
り、それぞれ32MBと64MBのサイズとなって
います。region2から region5はそれぞれの
NVDIMM全体を占める、それぞれ32MBの領
域になっています。このようにPMEMの領域は、
複数のNVDIMMにまたがり1つの領域を作るこ
とができます。一方で、BLKの領域はNV

DIMM間を越えることができません。
　NFITは、こうした領域を記述するための複
数の構造体が並んだものです。各構造体は、構
造体の種類とデータ長を示す共通のヘッダとそ
のあとに続く種類ごとのデータからなっています。
テスト用のモジュールの場合、❶システムのメ
モリ領域を記述するテーブル（System Address

Table）、❷NVDIMMとメモリ領域のマッピン
グを記述するテーブル（Memory Map Table）、
❸BLK用のコントロール領域を記述するテーブ
ル（Control Region Table）、❹BLK用のデータ
用の領域を記述するテーブル（Data Region

Table）、❺データの flush用のアドレスを記述
するテーブル（Flush Address Table）が設定さ
れています。
　まずSystem Address Tableのデータから見
ていきましょう（図4）。これはシステムの物理
メモリアドレスのうちどの部分がどのような種
類のメモリ領域であるかを記述するものです。

NVDIMM
読み書き位置を制御
領域に書くことで、
読み書き

いくつかの読み書き
制御領域を持つ

sliding
window

#0

sliding
window

#1

sliding
window

#2
Persistent Memoly領域 システム

メモリ

BLK形式のアクセス

NVDIMM
そのままマップされる
通常のメモリと
同様に読み書き

システム
メモリ

PMEM形式のアクセス

 ▼図2　PMEN形式とBLK形式のアクセス比較

184 - Software Design Mar. 2016 - 185

LinuxのNVDIMM対応機能
〜libnvdimm〜

第48回第48回

たとえば、region0に対応する部分を見るとアド
レスXから32MBの領域がNFIT_SPA_PM（＝
byte単位でアクセス可能なPersistent Memory

領域）として記述しています。また、BLKアク
セス用の読み書きに使われる領域であるNFIT_

SPA_DCRなども設定されています。
　次にMemory Map Tableを見てみましょう。
これはNVDIMMと先ほどのメモリ領域のマッピ
ングを記述します。たとえば1つ目のエントリ

が、nmem0の0byte目から16MBが、region0の
0byte目からの16MBの領域に対応していること
を示し、2つ目のエントリはnmem0の0byte目か
ら16MBが、region0の16MB目から32MBの領
域に対応していることを示します。これによっ
てregion0のどの部分が、どのNVDIMMのどこ
に位置しているのかのマッピングが完成してい
ます。
　次のControl Region Tableでは、BLKアクセ
ス用の“sliding window”の個数、およびwindow

のコントロール用のレジスタの先頭アドレス、
ステータスレジスタの先頭アドレスといったデー
タを保持しています。同様にDataRegion Table

は、BLKアクセス時のデータ転送バッファの位
置などの情報を保持しています。最後のFlush

Address Tableは前述のflushに用いられるアド
レスを記述しています。
　これらの情報が読み込まれているのを、/sys

下のファイル群からも確認してみましょう。先
ほどのテストモジュールが読み込まれると

/sys/devices/platformの下に“nfit_test.0”、“nfit

16MB 16MB

region0
(PMEM)

region5
(BLK)

region1
(PMEM)

nmem0

nmem1

nmem2

nmem3
nmem0からnmem3
全体が、それぞれ
region2からregion5
を構成(BLK)

 ▼図3　NFITの例

nmem1

nmem0

16MB

16MB 16MB

PMEM#0 BLK#0Control flushPMEM#1

Memory
Map #0

Data
Window

System
Address #0

Memory
Map #1

Memory Map Table

System Address Table

システムメモリ上の領域と
NVDIMMとの対応を記述

システムメモリ上の領域の
位置や種類を記述

System
Address #1

System
Address #2

システム
メモリ

 ▼図4　System Address TableとControl Region Table

186 - Software Design

Linuxカーネル観光ガイド

_test.1”とplatformdriverのディレクトリができ
ています。“nfit_test.0”の方が、前述の図3に示
したものですのでそちらを見ていきます。“nfit_

test.0”ディレクトリの中にはさらに“ndbus0”ディ
レクトリがあり、その下からおもなコンテンツ
が始まります（図5）。
　ディレクトリnmem0からnmem3が図3中の4

枚のNVDIMMに対応し、 ディレクトリregion0

からregion5がそれぞれのregionに対応するデー
タを保持しています。図3中にない nmem4、
region6、region7は、もう1枚別のNVDIMMに
よるものです（図からは省略しています）。
　この中で、たとえばnmem0/nfitの中のファイ
ルを見てみると、Memory Map Tableに書かれ
ているNVDIMMのデバイス情報がとれている

ことがわかります（図6）。
　また、region0とregion2の中を見てみましょ
う（図7）。まず、“devtype”ファイルにそれぞれ
“nd_pmem”と“nd_blk”と、どちらのアクセス方
法が使えるregionであるのかが書かれています。
また、“size”ファイルからはたしかにregionの
サイズである32MB（= 33,554,432byte）が取得
できています。さらに、mapping0やmapping1

といったファイルの中の各 regionが、どの
NVDIMMのどの領域にマップされているのか
の情報が書かれていることがわかります。

NVDIMMの
namespace分割

　さて、図3中のregionを見てみると、PMEM

$ ls -l /sys/devices/platform/nfit_test.0/ndbus0
total 0
-r--r--r-- 1 root root 4096 Jan 25 09:54 commands
drwxr-xr-x 3 root root 0 Jan 25 09:54 nd
drwxr-xr-x 2 root root 0 Jan 25 09:54 nfit
drwxr-xr-x 4 root root 0 Jan 25 09:54 nmem0
drwxr-xr-x 4 root root 0 Jan 25 09:54 nmem1
drwxr-xr-x 4 root root 0 Jan 25 09:54 nmem2
drwxr-xr-x 4 root root 0 Jan 25 09:54 nmem3
drwxr-xr-x 4 root root 0 Jan 25 09:54 nmem4
drwxr-xr-x 2 root root 0 Jan 25 09:54 power
-r--r--r-- 1 root root 4096 Jan 25 09:54 provider
drwxr-xr-x 6 root root 0 Jan 25 09:54 region0
drwxr-xr-x 6 root root 0 Jan 25 09:54 region1
drwxr-xr-x 4 root root 0 Jan 25 09:54 region2
drwxr-xr-x 4 root root 0 Jan 25 09:54 region3
drwxr-xr-x 4 root root 0 Jan 25 09:54 region4
drwxr-xr-x 4 root root 0 Jan 25 09:54 region5
drwxr-xr-x 4 root root 0 Jan 25 09:54 region6
drwxr-xr-x 6 root root 0 Jan 25 09:54 region7
-rw-r--r-- 1 root root 4096 Jan 25 09:54 uevent
-r--r--r-- 1 root root 4096 Jan 25 09:54 wait_probe

 ▼図5　nfit_test.0/ndbus0の全体像

$ grep . region0/{devtype,size,mapping*}
region0/devtype:nd_pmem
region0/size:33554432
region0/mapping0:nmem0,0,16777216
region0/mapping1:nmem1,0,16777216
region0/mappings:2
$ grep . region2/{devtype,size,mapping*}
region2/devtype:nd_blk
region2/size:33554432
region2/mapping0:nmem0,0,33554432
region2/mappings:1

 ▼図7　region0とregion2のデータ表示

$ grep . nmem0/nfit/*
nmem0/nfit/device:0x0
nmem0/nfit/format:0x0
nmem0/nfit/handle:0x0
nmem0/nfit/phys_id:0x0
nmem0/nfit/rev_id:0x1
nmem0/nfit/serial:0xffffffff
nmem0/nfit/vendor:0xabcd

 ▼図6　nmem0のデバイス情報表示

186 - Software Design Mar. 2016 - 187

LinuxのNVDIMM対応機能
〜libnvdimm〜

第48回第48回

の領域とBLKの領域が重複している部分があ
るのに気がつきます。 当然、PMEMでの読み
書きとBLKでの読み書きとを同時に行った場合
の動作は未定義となっています。そこでストレー
ジのパーティションのように、namespaceと呼
ばれる単位で領域を分割できます。
　namespaceについての情報は、label storage

というNVDIMM上の特別な領域に“label”と呼
ばれる形式で記録されます。label storageは、
2つの label index blockと複数の labelから構成
されています。label index blockというのは、ファ
イルシステムのsuper blockのようにlabel storage

全体のメタデータを保管しているblockで、 保管
可能な labelの数や、どの labelが空いているの
かといったデータが保存されます。
　ここで label index blockが2つあるのは ato

micに更新を行うためで、有効なindexはこの2つ
のうちのどちらか1つとなります。label index

の書き換えを行うときには、まず現在有効な
indexをもう一方の indexにコピーし、書き換え
を行ったうえでchecksumおよびシーケンス番号
を更新します。checksumとシーケンス番号が書
き変わるまでは、書き換え中の indexは古い、
またはchecksum不整合とみなされます。
　labelにはPMEMアクセス領域用とBLKアク
セス領域用との2種類があり、regionのときと
同様にPMEMの方はNVDIMM間にまたがるこ
とができ、逆にBLKの方はまたがることができ
ません。
　図8に示すように、namespace

を分割するときに各NVDIMM

上の labelがどうなるかを見て
いきましょう。まず、blk2.1の
labelを見てみましょう。こちら
はNVDIMM間をまたがらない
ため簡単で、dpaとrawsizeフィー
ルドに記録されているNVDIMM

上のアドレスとサイズだけが重
要な情報です。
　次にpm0.0を見てみましょう。

このnamespaceはnmem0とnmem1にまたがるた
め、それぞれに1つの labelが作られます。こち
らのlabelの場合、dpa、rawsizeのほかにnlabel、
position、isetcookieも重要なフィールドとなりま
す。nlabelは、その labelが記述するnamespace

がいくつの labelで成立するかを表します。ここ
ではpm0.0がnmem0とnmem1から成立するため、
nlabel = 2となります。positionはnamespaceを
構成するlabelの中で、このlabelが何番目である
かを示しています。つまり、nmem0上ではposition

= 0、nmem1上ではposition = 1となるわけです。
最後のisetcookieはnamespaceを識別するための
IDとなっています。

Block Translation
Table（BTT）

　最後にBlock Translation Table（BTT）につい
て簡単に紹介します。前述したとおり、既存の
I/Oスタックはセクタ単位でatomicに書き換え
られることに依存した設計を行っています。し
かし、NVDIMMでは書き換えがbyte単位で行
われるため、この前提が崩れてしまいます。
BTTは変換テーブルを設置することでソフトウェ
アでNVDIMM上にセクタ単位の書き換え機能
をつけ加えるものです。こちらを使うことで
BLKによるセクタ単位の書き換えができないデ
バイス上でも既存のI/Oスタックをそのまま動
かすことが可能となります。｢

label: pm0.0
@nmem0

-dpa = 0x8000000
-rawsize = 0x800000
-nlabel = 2
-position = 0
-ietcookie = XYZ

label: blk2.1
@nmem0

-dpa = 0x1000000
-rawsize =0x1000000
-nlabel = 0
-position =0
-isetcookie = 0

label: pm0.0
@nmem1

-dpa = 0x800000
-rawsize = 0x800000
-nlabel = 2
-position = 1
-isetcookie = XYZ

8MBblk2.0
(8MB)

blk2.1
(16MB)

16MBblk3.0 blk3.1

pm0.0

nmem0

nmem1

 ▼図8　namespace分割時のNVDIMM上 label

188 - Software Design

の比較から始まり、どのような経緯でSphinx導入
に至ったか、そして利用に際し周囲への理解と環境
整備の働きかけをどのように行ったかについて、丁
寧に話をしていただきました。後半は、まず清水川
さんからSphinxの歴史やAPIなどの説明をしてい
ただいた（写真1）あと、実際に手を動かして文書作
成に取り組みました。最後の質疑応答や、ライトニ
ングトークでは、参加者の方々の取り組みや抱えて
いる問題の共有が活発に行われ、好評のうちに終了
しました。
　遠方よりお越しいただいた講師のご両名、そして
参加者のみなさん、誠にありがとうございました。
勉強会の資料が講師により公開されていますので、
こちらもぜひご覧ください。

¡	安宅さんの資料「Sphinx事例紹介 〜SIerの場合〜」

	 http://www.slideshare.net/kk_Ataka/jus-

sphinx-sphinx-54608065

¡	清水川さんの資料「Sphinx紹介」

	 http://www.slideshare.net/shimizukawa/jus-

sphinx-sphinx

　今回は、2015年10月末に大阪で行ったSphinxの
勉強会と、2015年11月にやはり大阪で行った研究
会の模様をお伝えします。

	 ■Sphinxワークショップ＠関西

	【講師】安宅 洋輔（Sphinx-Users.jp）、

	 	 清水川 貴之（Sphinx-Users.jp）

	【司会】榎 真治（日本UNIXユーザ会）

	【日時】2015年10月31日（土）13:00〜17:30

	【会場】大阪・ECCコンピュータ専門学校 2号館

	 	 2階 2303教室

　10月31日の大阪開催の jus勉強会は、オープン
ソースのドキュメンテーションツール「Sphinx」注1

を用いたドキュメント作成についての勉強会を開催
しました。講師には関東からSphinx-Users.jpの安
宅さん、清水川さんのご両名をお迎えしました。
　SphinxはPython製のドキュメンテーションビル
ダーで、文章を構造化しやすく、美しいドキュメン
トを簡単に生成することができます。勉強会の前半
は安宅さんによる自社にSphinxを導入したときの
事例紹介、後半は清水川さん主導によるハンズオン
が行われました。
　安宅さんの事例紹介は、一般的にドキュメンテー
ションツールとして利用されているワープロソフト
やスプレッドシート、Wiki、MarkdownとSphinxと

注1） URL http://www.sphinx-doc.org/

jus勉強会（大阪）

写真1　清水川貴之 氏

オープンソースの知見を深める秋の大阪2連戦

NO.53
March 2016

日本UNIXユーザ会　http://www.jus.or.jp/
内山 千晶　UCHIYAMA Chiaki　chiaki@jus.or.jp
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/
http://www.sphinx-doc.org/
http://www.slideshare.net/kk_Ataka/jus-sphinx-sphinx-54608065
http://www.slideshare.net/shimizukawa/jus-sphinx-sphinx

Mar. 2016 - 189188 - Software Design

	 ■Symfony2で港湾管理者の業務システムを

	 	 作った話

	【講師】佐々木 伸幸（㈲サンビットシステム）

	【司会】法林 浩之（日本UNIXユーザ会）

	【日時】2015年11月6日（金）17:00〜17:50

	【会場】大阪南港ATC ITM棟 10階 サロン

　2015年も関西オープンフォーラム（KOF）の中で
研究会を実施しました。講師は札幌からサンビット
システムの佐々木さん（写真2）をお招きし、オープ
ンソースソフトウェア（OSS）で構築した港湾業務
システムの話をしていただきました（写真3）。参加
者は15人でした。
　「今回のシステムを理解するには、まず港湾業務
を知る必要がある」ということで、研究会の前半は
港湾管理者が行っている業務の説明がなされまし
た。おもな内容としては、港湾施設の定義、利用料
の徴収、国土交通省に報告する港湾統計、入出港や
荷さばき地使用などの申請許可、申請の業務フロー
などです。
　これに続いて、開発した港湾業務システムの話が
ありました。旧来のシステムはWindowsとAccess

とOracleで動いていましたが、実務の大部分は紙
の書類や管理者による手作業で行われていました。
これをLAPP（Linux＋Apache＋PostgreSQL＋
PHP）とSymfony2で構築したシステムに置き換え
ることにより、Webによる申請と許可、書類のPDF

化、SVG（Scalable Vector Graphics）や地図を用い
た区画の可視化、予約業務の自律化などを実現しま
した。たとえば、荷さばき地の確保を行う場合、従
来は利用者側が申請すると港湾管理者が手動で割り
当てていましたが、本システムでは地図を表示して
利用者側が自分で用地を確保するので、管理者の手
間が軽減されます。
　さらに、システムの要素技術の解説がありました。
ベースとしてLAPPを使用し、その上でフレーム

ワークとしてSymfony2を用いてプログラムを開発
しています。Symfony2は大きなフレームワークなの
で手軽とは言えないが、大規模開発には向いている
とのことです。また、地図や区画の表示にはHTML5

のCanvasとSVGを使用しています。さらに、地図
の制作にWMS（Web Map Service）やWFS（Web

Feature Service）などのGIS（Geographic Informa

tion System：地理情報システム）関連技術を使用して
います。
　構築したシステムは港湾局に納品され稼働してい
ますが、大きなトラブルもなく、港湾管理者の調整
業務は確実に減少したそうです。今回のシステムを
一般化したものを「あまつみ」注2という名前で自治
体向けに提供しており、またシステムの一部を
OSSとして公開すべく準備中だそうです。
　業務システムの話ということで、取っつきにくい
印象があったかもしれませんが、講演ではSymfony2

やSVGのコード実例に基づく解説もあり、技術的
にも内容の濃い研究会でした。｢

注2） URL http://amatsumi.net/

jus研究会　大阪大会

写真3　jus研究会 大阪大会の様子

写真2　佐々木伸幸 氏

オープンソースの知見を深める秋の大阪2連戦 March
2016

http://amatsumi.net/

190 - Software Design

島ソンとは？

第1回 島ソン

　島ソンの舞台は宮城県塩
しおがま

竈市の離島である浦戸諸
島。塩竈市の中ではもっとも東日本大震災の爪痕が
色濃く残る地域です。昨年の島ソンは宮城県塩竈市
出身の筆者が、同じ塩竈で震災被害の大きかった浦
戸諸島にITの力でより貢献したい、と以前から
思っていたところからスタートした企画でした。
　テーマは「島の課題を解決する」。島の住民の方た
ちや島で仕事をする方たちに集まってもらい、課題
を集めてハックをするという内容です。島を歩いて
離島での生活や仕事の様子を感じて課題を洗い出
し、それに向かっていくハッカソンです。
　離島だけあっていろいろ大変なこともありまし
た。まず電波の入りに難がありネットワークにつな
がらないので、電波ハックとしてステンレスボウル
でパラボラアンテナを作りました。そして食事を提
供してくれる場所もないので、食材を持ち込んでの
食材ハック（調理）も自分たちで行っていたのです。
　また、島ソンはハッカソンが抱える問題点につい
て自分なりに対処してみたハッカソンでした。その
問題点とは「このプロダクトは本当に役に立てるの
だろうか？」「プログラムを組めない人が暇になって
しまう」ということ、そして「どんな良いプロダクト
でもハッカソンが終わるとそれで終わりになってし
まう」ということです。
　そこで前回の島ソンではここを解決するために、
石巻専修大学の舛井研究室とタッグを組み「学生の

みなさんがこのイベントを通じて、自分の名刺代わ
りとなるコンテンツを作る」という方法を取りまし
た。舛井研究室のみなさんは経営学部なのでプログ
ラム経験のある方はわずかです。しかし、「自分の
名刺代わり」にするためにはハッカソンが終わった
後も活動を続けなければならない。この流れでハッ
カソンの後も活動を続けようという試みでした。こ
の試みのおかげで、昨年の島ソンは今も動くプロ
ジェクトを生み出せました。

昨年の成果

　島ソンはハッカソンが終わったあともプロジェク
トが続き、成果を上げています。

①「アカモク」
　「浦戸諸島で採れる海藻アカモクをPRしたい」と
いう要望に対して行動し、「渚の妖精ぎばさちゃん
（ギバサはアカモクの別名）」というキャラクターが
生まれました。現在もTwitterを中心に活躍中で
（アカウントは@gibasachan）、人気もぐんぐん上昇
中です。
　本連載第41回
（2015年5月号）
では、まるまる
ぎばさちゃんの
紹介記事も書き
ました。新しく
パッケージ商品
も作られます
（イラスト1）。

Hack For Japan
エンジニアだからこそできる復興への一歩

島ソン2015！　
離島でのアイデアソン！

第51回
この連載の第32回（2014年8月号）でも、Code for Shiogama/Hack For Japanが2014年5月24〜25日
に行った「島ソン〜浦戸諸島ハッカソン〜」を紹介しました。今回はその島ソンの第2弾となる「島ソン
2015」（2015年10月31日開催）を紹介します。

●Hack For Japanスタッフ
　小泉 勝志郎　KOIZUMI Katsushiro
　 Twitter @koi_zoom1

◆◆イラスト1　�ぎばさちゃん商品の
パッケージイラスト

Mar. 2016 - 191

島ソン2015！　離島でのアイデアソン！第51回

②「謎解きゲーム」
　「観光資源はあるのに訪れる人が少ない」という課
題を受け、リアル脱出ゲームの人気にあやかって謎
解きゲームを開催して、若い人に浦戸諸島を知って
もらうきっかけイベントを開催するというプロジェ
クト。2015年12月に開催され、学生たちが多く参
加しました。

③「Island Girls」
　浦戸諸島について知らない人が多く、まずは興味
を持ってもらうことから始めるために聖地化すると
いうアイデアを提案。浦戸諸島をモチーフにした
Island Girlsというアドベンチャーゲーム、つまり
ギャルゲーを作ろうというもの。ほかのハッカソン
に舞台を移しながら開発が継続中です。

そして島ソン2015

　島ソン2015は2015年10月31日に開催、場所は
前回同様、野々島にある合宿施設であるブルーセン
ターです。前回はCode for Shiogama注1とHack for

Japanの共同での開催でしたが、今回は復興庁の
「新しい東北」先導モデル事業である「塩竈アイラン
ズネットワーク協議会」の「浦戸 サスティナビリ
ティ プロジェクト」の一環として行われました。
　昨年の島ソンは泊りがけのハッカソンでしたが、
今回は日帰りのアイデアソンです。泊りがけになる
と先述のように食事の用意も全部自前で行わなけれ
ばならず、ネットワークの問題は相変わらず解決し
ていないのでプログラミングもハードルが高い。そ
こで今回はアイデアソンで行うことにし、イベント
自体も日帰りとしました。今回も石巻専修大学の舛
井研究室とタッグを組んでいます。
　また、テーマも「島の課題を解決する」から「島を
より楽しむためのしくみを考える」にしました。第
1回の島ソンに限らず、ほかのハッカソンでもよく

注1	 Code for Shiogamaは東日本大震災で被災した宮城県塩竈
市の地域活性をITの力で行っていこうという団体です。震災
復興団体とIT技術者がお互いに意見を出し合うミーティング
の開催をしています。Facebookページ：https://www.
facebook.com/CodeForShiogama

見られる現象に「一発受けネタのほうが盛り上がっ
てしまう」というものがあります。チームを組むと
きも受けが狙えるほうに人が流れてしまう。受け狙
いを避けるように進行するという手段もあります
が、参加者に学生も多いため、よりイベントを楽し
めるように受け狙いになっても構わないテーマ設定
にしました。

島ソン2015の流れ

　昨年と違いアイデアソンのみなので流れは変わっ
ています。しかし、一番の肝となる「島あるき」は健
在です。そのあとにアイデアワークを行い、チーム
分け、そして発表の流れです。今回の参加者は19

歳から65歳までと非常に幅広い参加者なので、そ
こで起きる化学反応にも期待しました。

島あるきへ！

　浦戸諸島には桂
かつらしま

島、寒
さぶさわ じ ま

風沢島、会場であるブルー
センターのある野

の の し ま

々島、そして朴
ほおじま

島という4つの島
で構成されています。今回は前回よりも拡大し、ブ
ルーセンターのある野々島だけではなく、渡船を用
いて浦戸諸島の中心地区である桂島、そして浦戸諸
島最大の面積を誇る寒風沢島も「島あるき」をして島
の様子を見て回りました。

●●野々島
　会場のある野々島です。野々島はなんと島内に
100以上もの洞穴があるという特徴があります。そ
のほとんどが人為的に掘られたもので、島では「ボ
ラ」と呼ばれています。写真1を見てもわかるよう
に、きれいな長方形に掘られていて、天然のもので
ないことがわかります。ここに漁具や農作業具を入

◆◆写真1　野々島のボラ

https://www.facebook.com/CodeForShiogama

192 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

れたりと物置的な使われ方をしています。

●●寒風沢島
　寒風沢島は塩竈市で唯一水田のある土地です。天
水を利用した伝統の方法で稲作していて、塩竈が全
国に誇る酒蔵「浦霞」から「寒風沢」という日本酒も出
ています。

●●桂島
　桂島は浦戸諸島の中で最も人口が多く、設備も
整っている島です。塩竈本土との窓口にもなってい
ます。松島の象徴的な島に、島の上に岩がアンバラ
ンスに乗っている仁

におうじま

王島があります。実はこの島は
桂島の海水浴場のすぐそばにあるんです。震災で閉
鎖されていた海水浴場も、現在は夏に開かれるよう
になりました。仁王島も間近に見られます。しかし
一部は震災当時のまま残されていて、いまだに震災
の爪痕が深いことがわかります（写真2）。

アイデアソン！

　島あるきから戻ったあとは島の幸たっぷりのお弁
当を食べてアイデアソンへ。
　アイデアソンではまず島あるきをしてきて印象に
残ったところを箇条書きしてもらい、次にそこをよ
り楽しむにはどうするかを一言で良いので書き込ん
でもらいます。
　このあとがアイデアソンの肝となるスピードス
トーミングです。スピードストーミングは写真3のよ
うに対面し、持ち時間3分で対面しあった2人でのブ
レインストーミングを行います。持ち時間が終わっ
たら片方の列が1人分ずれて、また別の人と2人でブ

レインストーミング。この手法の良いところは通常
のブレストと異なり、しゃべらないで終わってしま
う人が出ないことです。人によって見ているところ
が異なるので、このスピードストーミングでお互い
の情報を交換しながらアイデアを膨らませます。
　スピードストーミングが数セット終わったら、次
は自分なりのアイデアをまとめてもらう「アイデア
スケッチ」と呼ばれる工程に進みます。ここで各人
最低1つは自分のアイデアをまとめます。このアイ
デアスケッチをグルーピングし、ここでチーム分け
を行います。
　チームに別れてからはチーム内でディスカッショ
ンし、その内容を模造紙にまとめて発表となります。

そして成果発表へ

　今回のチームのテーマと発表内容を紹介します。

①「島の幸の体験ツアー」
　コンセプトは「育てる×食べる」（写真4）。海苔を
作る、牡蠣を育てる、といった島での農作業を通じ
て島を体験し、最後は自分で育てたものを食べると
いうツアー。一度の来訪ではなく複数回にわたって
来てもらうことを狙ったアイデア。

②「3D Four Islands」
　浦戸諸島4島の3Dモデルを作り、Unityを用いた
一人称探索ゲームにするというもの（写真5）。ゲー
ムを遊ぶことで島を知ってもらおうというアイデ
ア。そこから島のPRへつなげていく。

◆◆写真2　桂島海水浴場の震災跡 ◆◆写真3　スピードストーミング

Mar. 2016 - 193

島ソン2015！　離島でのアイデアソン！第51回

いです。ここでハッカソンをしたことにもっと意味
を持たせるためにも、今回ここで出たアイデアや、
作ったものを、これからも継続していきましょう」。
実際にイベント終了後も継続していくプロジェクト
が複数生まれました。
　対して今回の島ソンですが、アイデアソンに絞っ
たのもあるのかもしれませんが、実現可能性が昨年
の島ソンに比べてちょっと難しいものが多いかなと
いう印象です。これからの学生の皆さんの継続に期
待したいところではありますが、人を巻き込まなけ
れば動かないものが多いので、そう簡単には進まな
さそうです。これからの奮起に期待します。
　最後に、今回のアイデアソンでも多くの方々に
協力をいただきました。島の方や参加いただいた
方はもちろんのこと、島の案内をしてくださった
e-frontの國吉さんに太田さん、そして塩竈アイラ
ンズネットワーク協議会のみなさん。本当にありが
とうございました。
　Code for Shiogamaでは復興に携わっている方と
IT技術者が議論することで生まれる化学反応を起
こしたいと思っています。今後も定期的に開催して
いきますので、よろしくお願いいたします。s

③「MOVIX浦戸」
　ものすごいネーミングでドキドキしますが、やる内
容はまっとうです。島のお母さんたちの料理教室や島
の見どころ紹介を動画にし、気になった人向けに情報
を提供して実際に足を運んでもらおうというもの。そ
して、島に来た人たちを対象としたイベントを行い、
島に活気を呼ぼうというアイデア（写真6）。

④「ボラフェス」
　野々島に多数存在している「ほら穴」に着眼。なん
と洞穴でライブを行おうというアイデア（写真7）。
洞穴という環境がライブに適しているのではないか
というところから膨らませたとのことです。

　以上、4つのアイデアを発表して島ソンは終了と
なりました。

イベントを終えて

　前回は次の言葉で締めていました。「こうやって
地方でハッカソンなどイベントを起こしても、イベ
ントが終わったら、それで終わりというケースが多

◆◆写真4　島の幸の体験ツアー

◆◆写真7　ボラフェス

◆◆写真6　MOVIX浦戸

◆◆写真5　3D Four Islands

194 - Software Design

はじめに

　マイコンボード IchigoJam注1

や、任天堂3DSで動作するプチ
コン注2など、ふたたびベーシッ
クなプログラミング言語である
BASICが注目を集めています。
今回は、その「BASIC」について
お話をしましょう。

プログラミング
言語BASICとは

　東京でオリンピックが開かれ
た1964年、ダートマス大学で
BASICが誕生しました。当時
の限られたコンピュータの環境
における、プログラミング教育
は長時間で非効率に行われてい
ました。1台のコンピュータを
複数のユーザで共用（タイムシェ
アリング）した端末で、命令を入
力したら、その端末画面で即時
実行結果が表示されるBASIC
のプログラミング環境は、効率
の良いプログラミング教育の環
境を提供したのです。
　10年後の1974年インテルから

注1） こどもパソコンのコンセプトのもと
に開発された、BASIC言語で I/Oポー
ト制御ができるワンボードパソコン。

注2） ニンテンドーDSi/3DS用ソフトウェ
アで、BASIC言語でゲームなどのプ
ログラミングを楽しむことができる。

8bitCPU i8080が発売され、
次の年にこのCPUを搭載した
マイコンであるAltair 8800が登
場しました。ビル・ゲイツとポー
ル・アレンは、このマイコンの
魅力に虜

とりこ

となり、Micro-Soft
BASIC注3を開発しました。
　非力なマイコンにおいて、BA
SICは対話型言語として適して
おり、1977年に登場したPET
2001、APPLE II（ともにCPU
6502）、TRS-80（CPU Z80）はす
べてBASICが搭載されていま
した。これらマイコンはすべて
Micro-Soft BASICも動作が可
能であり、Micro-Soft BASIC
がマイコンの標準のプログラミ
ング言語になっていきました。
　日本においては、1976年登場
のCPU μPD8080を搭載したマ
イコンボードNEC TK-80とベー
シックステーションボードTK-80
BSを組み合わせてBASICを動
かすことから始まり、1978年に
はシャープMZ-80K、日立ベー
シックマスターで独自BASIC搭
載のマイコンが発売されました。
　1979年に登場したNEC PC-
8001にMicro-Soft BASICを元
とするN-BASICが搭載され、
注3） 当時はMicrosoft は、Micro-Softと

“－”が入っていました。https://en.
wikipedia.org/wiki/Microsoft

この後登場するマイコンは、
Micro-Soft BASICを基本とす
るものが主流になっていきました。
　1981年には、PC-8001を高
機能化したPC-8801が登場し、
そこに搭載されたのがN88-
BASICです。N88-BASICは、
N-BASICとの互換性を保ちな
がら、グラフィックや漢字処理
などの高度な命令を持ち、16bit
パソコンPC-9801にも16bit版
のN88-BASIC（86）が搭載され、
利用度が高い標準的なBASIC
としての地位を築きました。

N88-BASICの
特徴と問題点

　以下に標準BASICとして長
く利用されているN88-BASIC
の特徴と問題点を挙げてみます。

①プログラムは行の先頭に行番
号が必要である

　先頭に数字を入力するとこれ
が行番号になり、BASICプログ
ラムソースの入力になります。
RUNコマンドでプログラムが行
番号順に実行されます。プログ
ラムの実行の移動制御は、基本
的に行番号を指すGOTO/GO
SUB文になり、見通しの悪いプ
ログラムになってしまいます。

温故知新
ITむかしばなし

速水 祐（HAYAMI You） 　http://zob.club/ Twitter : @yyhayami

BASIC〜ベーシックな
プログラミング言語〜

第52回

http://zob.club/
https://en.wikipedia.org/wiki/Microsoft

194 - Software Design Mar. 2016 - 195

②変数の宣言が必要ない
　配列変数以外の変数の宣言は
必要がありません。使用頻度が
高い変数は早めに実行しておく
ことや配列変数の宣言の前に変
数を一度使っておくことなどの
実行スピードアップのテクニッ
クが存在します。

③＝が代入と比較と両方で使用
される

　C言語では、代入は「=」、比
較は「==」ですが、BASICでは
双方とも「=」であるため、BA
SICでプログラムを組んでいる
時点でのバグは少ないのですが、
C言語でプログラムを組む段に
なると、その癖を払拭できずバ
グが多発します。また、初心者
に対して「K=K+1」などの代入構
文の説明が難しく、代入の「=」
と数学の「=」との違いを理解す
るための壁があります。

④ IF THEN ELSE は、マルチス
テートメントを使い1行に記
述しなくてはならない

　THENの後ろが、複数の命令
を並べるマルチステートメント
になることが多くあり、ELSE
文まであると1行が非常に長く
なり、可読性の低いプログラム
ソースになってしまいます。

⑤引数を伴うサブルーチン呼び
出しができず、ローカル変数
も使えない

　サブルーチンは、GOSUB行
番号で呼び出し、戻りはRETU
RN文となり、引数も戻り値も
存在しません。ローカル変数の
概念がなく、すべての変数がグ

ローバル変数であるため、再帰
呼び出しのプログラミングを行う
ためには、特別なプログラミン
グテクニックが必要になります。

⑥インタプリタのため実行スピー
ドが遅い
　対話型の即時処理用言語を簡
易に実現するために、インタプ
リタであり、当時のマイコンの
処理スピードの低さと相まって、
実行速度は非常に遅く、さまざ
まな実行速度を高めるプログラ
ミングテクニックが駆使されま
した（リスト1）。

Quick BASICと
Turbo Basic

　1985年 Microsoft社からQuick
BASIC、同じ年にBorland社か
らTurbo Basicが発売されまし
た。2つのBASICは、行番号が
不要で構造化プログラミングが
可能なネイティブなコンパイラ
型のBASICでした。前述の
BASIC問題点をほぼ解決して
おり、テキストベースの総合開
発環境（IDE）上で優れた開発環
境が用意されています。コンパ
イラが基本ですが、デバッグ時
はインタプリタとして動作し、
対話型の即時処理用言語として

のBASICの機能も実現してい
ます。
　Quick BASICは、1988年の
Version 4.5を最後に、Windows
環境で動作して、優れたGUIプ
ログラミングを実現したVisual
BASICに成長していきます。
Turbo Basicは、IBM-PCのみ
で、Borland社からの販売は終
わってしまいましたが、その後
Power BASIC注4としてよみがえ
り、現在も販売が行われています。

おわりに

　BASICは、1980年代前半の
性能の低いマイコン上で動作す
る言語として、そのエディタと
一体化した開発環境が適してい
たこともありました。しかし、
現在の高速／高機能なPC環境
では、ほかに多くのプログラミ
ング教育に適した言語が存在し
ます。BASICが復活して利用
されることは懐かしくうれしく
思いますが、子どもたちに最初
に使ってもらう言語として、そ
のあとの学習発展を考えると、
問題があるかもしれません。｢

注4） GUIを使用してアプリケーションを
作成できるWindows用のネイティ
ブコードコンパイラ。http://www.
powerbasic.com/products/

 ▼リスト1　BASICで再帰呼び出しを実現したハノイの塔のプログラム

10 'ハノイの塔
20 DIM N(4),A(4),B(4)
30 SP=0
40 N(1)=4:A(1)=1:B(1)=3
50 GOSUB 100
60 END
100 SP=SP+1
110 IF N(SP)>1 THEN N(SP+1)=N(SP)-1:A(SP+1)=A(SP):B(SP+1)=ｭ
6-A(SP)-B(SP):GOSUB 100
120 PRINT "円盤";N(SP);"を";A(SP);"から";B(SP);"へ移動する"
130 IF N(SP)>1 THEN N(SP+1)=N(SP)-1:A(SP+1)=6-A(SP)-B(SP):ｭ
B(SP+1)=B(SP):GOSUB 100
140 SP=SP-1
150 RETURN

温故知新 ITむかしばなし
BASIC 〜ベーシックなプログラミング言語〜

第52回

http://www.powerbasic.com/pbwin.php

196 - Software Design

　さくらインターネット㈱は2月3日、「さくらのVPS」の
新プランとして、安定性に優れた物理サーバをまるごと
1台専有できる「さくらのVPSベアメタルプラン」の提供
を開始した。
　さくらのVPSは月額685円から使える手軽な仮想専用
サーバサービス。今回追加されるベアメタルプランでは、
シンプルかつ気軽に使えるVPSライクな物理サーバサー
ビスをコンセプトとしており、さくらのVPSのコント
ロールパネルでのサーバの一元管理や、サーバ間のロー
カルネットワーク接続に対応しており、仮想と物理のそ
れぞれのメリットを活かしたハイブリッド構成を容易に
実現できる。なお本プランには、2週間の無料お試し期

間が用意されている。

さくらインターネット、
「さくらのVPSベアメタルプラン」提供開始

　IoTプラットフォーム「SORACOM」を提供する㈱ソラ
コムは1月27日、「Air」「Beam」に続く新サービス、
「Canal」「Direct」「Endorse」「Funnel」を発表した。

・SORACOM Canal
　Amazon Web Services上に構築したユーザの仮想プ

ライベートクラウド環境（Amazon VPC）とSORA
COMを直接接続するプライベート接続サービス。

・SORACOM Direct
　SORACOMとユーザのシステム（IoTバックエンド）を

専用線で接続する専用線接続サービス。

・SORACOM Endorse
　SORACOM AirのSIMの情報を、外部のサービスにお

いてユーザ認証やデバイス認証などのために利用で
きるサービス。

・SORACOM Funnel
　デバイスからのデータを特定のクラウドサービス（現

状は、AWS Kinesis Streams、AWS Kinesis Fire
hose、Microsoft Azure Event Hubsの3つ）に直接転
送するデータ転送サービス。

ソラコム、
4つの新サービスを発表

　㈱ビーブレイクシステムズは2015年12月25日、統合
型基幹業務パッケージ製品「MA-EYES」において、マイ
ナンバー制度対応を実施したことを発表した。
　同製品は、IT企業のようなプロジェクト型企業の業務
全般をトータルにカバーするERPパッケージ製品。プロ
ジェクト管理、販売管理、在庫管理、購買／経費管理、
作業実績管理、分析／レポート、ワークフローなどの機
能を標準で搭載する。
　利用形態としては、ユーザの環境にインストールして
利用する一括導入版と、クラウド環境上で必要な機能を
月額で利用するSaaS版とが用意されている。
　MA-EYESの原価管理機能では、個人事業主に対する

発注や支払を管理でき、源泉徴収した債務の一覧の確認
や、支払調書の出力を行える。
　今回のマイナンバー制度の開始に伴い、源泉所得税申
告時に必要な支払調書の様式（ひな形）が変更となった。
新様式では法人番号や個人番号などのマイナンバーを記
載する欄を新たに設ける必要がある。これに対応するた
め、MA-EYESの支払調書も自社の法人番号を支払者欄
に自動で出力できるように対応した。

ビーブレイクシステムズ、
ERPパッケージ「MA-EYES」が支払調書へのマイナンバー対応
を実施

さくらインターネット㈱　URL http://www.sakura.ad.jp
CONTACT

㈱ソラコム　URL https://soracom.jp
CONTACT

㈱ビーブレイクシステムズ　URL http://www.bbreak.co.jp
CONTACT

●●プラン仕様（さくらのVPSベアメタル8Gプランの場合）

項目 詳細

月額料 7,776円（税込み）

初期費用 486,00円（税込み）

メモリ 8GB

ストレージ SSD（RAID1）111GB

CPU 物理2Core

ネームサーバ 10ゾーン

ゾーン 東京

https://soracom.jp/
http://www.sakura.ad.jp
http://www.bbreak.co.jp

196 - Software Design Mar. 2016 - 197

UEI、
「enchantMOON Crew Meeting 2016」開催
～終了宣言とCode name「Discovery」～

　1月30日、㈱UEI（旧社名：㈱ユビキタスエンターテイ
メント）によるenchantMOONユーザとプログラミング
教育を考える人々のためのミートアップイベント
「enchantMOON Crew Meeting 2016」が開催された。
　同社代表取締役社長兼CEOの清水亮氏による講演のほ
か、ゲストによるライトニングトークや対談が行われ、
各講演者の技術領域やプログラミング教育にenchant
MOON／MOONBlockを結びつけて未来が語られた。
　enchantMOON S-IIが2015年内で販売終了となり次の
製品に対する情報が期待されたが、enchantMOONにつ
いては事実上の終了宣言が行われた。代わりに新たな製
品プロジェクト、コードネーム「Discovery」が2017年に
リリースされることが発表され、来場者にモニターへの
参加を募った。
　ここからは記者の推測に過ぎないが、enchantMOON
の後継機種、S-IVBシークエンスと呼ばれていたものの
情報をいち早く知りたいと参加した来場者にとって、今
回のイベントは肩すかしをくらった感じではなかっただ
ろうか。講演内容がつまらなかった、ということではな
く「次のenchantMOONを知りたい」と思っていたニー
ズと合っていたかという話だ。
　VAIOやプレイステーションシリーズのデザインを手
がけた後藤禎祐氏による外観デザインやブランド名に対
する考え方などは、なかなか聴けない貴重な話だったし、
NVIDIAの橋本和幸氏によるVRとペンインターフェース、
アスラテックの今井大介氏によるロボットと人工知能、
蒲地輝尚氏によるHyperCardとAIプログラミング、PEZY
Computingの齊藤元章氏によるスパコンとブレインマ

シンインターフェースの話などは、いまの技術と未来を
つなぐ興味深い視点だったと思う。そうではあるが、
enchantMOONとのつながりとなると「こじつけ」感は
否めない気がしていた。
　だがしかし。最後の清水氏の話を聞いて、その認識は
甘かったのではと思うにいたった。
　休日返上で集まったユーザにとって、清水氏から告げ
られた「enchantMOONという名の製品はもう作りませ
ん」という言葉は衝撃だったに違いない。しかし清水氏
はもっと先を見ていて、たとえば後藤氏の基調講演は、
次に出す製品はVAIOやプレイステーションのようにた
くさん売れるものを作るという意思の表れであり、その
ために製品名を含めた製品戦略を練り直すということと
受け取れる。
　また、来場者をいちばんどよめかせたであろう、ペン
デバイスならではのチラシ制作を見せたデモ映像では、
手書き文字認識はもちろん、文脈から推測した意味補完、
太さや配置から推測したフォント選択、類似画像検索と
いったことが行われていた。これらはまさに講演で話さ
れていたディープラーニングや人工知能（AI）といった
領域の技術であり、次に出す製品に組み込まれることを
予感させてくれる。
　「次のenchantMOON」ではなかったが、enchant
MOONに続く同社の挑戦が、2017年に製品となって登
場することに期待したい。

　特定非営利活動法人エルピーアイジャパン（以下LPI-
Japan）は1月19日、NECマネジメントパートナー㈱、㈱
アドックインターナショナル、アセアン・ラボ㈱の3社
を、「LPI-Japan OPCELアカデミック認定校」第一号に認
定したことを発表した。
　本認定校制度は、LPI-Japanが定めたOpenStackの学
習環境基準をクリアした教育機関をOPCEL認定校に指
定し、資格の取得を目指す受験者に質の高い教育を提供
する制度。各社のOpenStackへの取り組みは次のとおり。

・NEC マネジメントパートナー
　「NEC Cloud IaaS」の実現において、OpenStackを

活用。また2015年10月には、「NEC Cloud System
（OSS構築モデル）」を提供開始した。
・アドックインターナショナル
　5G携帯電話サービスのリリースに向け、社内でOpen

Stack エンジニアの育成に努めている。
・アセアン・ラボ
　コミュニティの立ち上げ段階からOpenStackを支援

しており、日本で最初にOpenStack研修事業を立ち
上げた。

LPI-Japan、
「LPI-Japan OPCELアカデミック認定校」第一号を発表

特定非営利活動法人エルピーアイジャパン　URL http://lpi.or.jp
CONTACT

㈱UEI　URL http://www.uei.co.jp
CONTACT

http://lpi.or.jp
http://www.uei.co.jp

198 - Software Design

2016年、トレンド予想
2016年の IT業界、筆者が注目しているのは「IoT」です。ワンボードPCが続々と発売され、
DMM.makeのようなシェアスペースが増え、SORACOMといったプラットフォームが立
ち上がったことで、個人による IoT開発のハードルが大きく下がったと感じています。クラ
ウド上でスケーラブルなシステムを開発できるようになった一方、IoTデバイス開発のため
に少ないメモリを最大限に駆使するような「組込み系の知識」が再評価されるかもしれません。

SlackやHipChatといったチャットツー
ル上に、Hubotで作ったbotを常駐させ、
デプロイをはじめとした作業を肩代わり
させる新しい開発手法「ChatOps」。実
際にChatOpsを導入した7つの組織に、
導入によって開発がどのように変わった
のかを伺いました。

IRCはセキュリティの面で心配だった
ので、ChatOpsで使われるようなツー
ルはどのくらい保障されているか気にな
ります。 Tayuさん／千葉県

社内で使われているツールとしてメール、
ハングアウト、Skype、Slackと乱立
しているので、どうにかしたいなと考え
ていました。この特集を参考にして統一
したいです。 binaさん／東京都

初めて聞く単語が多く、勉強になりま
した！ 南雲さん／埼玉県

とてもおもしろい特集でした。弊社でも
社内用の簡単なチャットツールは導入さ
れていますが、利用されていないのが実
情なので、今回の記事を参考にしたいと
思います。 山本なほさん／神奈川県

フォローとストックが効率的に行える
方法が、いろいろと参考になりました。
 出玉のタマさん／大阪府

最近、ChatOpsを導入しつつありま
すが、確かにメールよりもリアルタイム
で通知を確認でき、さらにチームで同じ
ツールでチャットをしながら対応できる
のでとても便利なのですが、その反面
チャットツールがずっと気になってしま
い、かなりの割り込みとなってしまうの
で、どうしたらいいものかと考えている
昨今です。 n0tsさん／東京都

特集内でも、また読者からのお便
りでも「どのように導入するか」以

上に「いかにメンバーに継続的に使って
もらうか」が重要な点のようです。チャッ
トルームを細かく分けたり、botにかわ
いいキャラクターを設定したりと、どの
組織でもさまざまな工夫がなされている
ことがわかりました。

サーバの構成をコードで管理するという
Infrastructure as Codeを実現できる
ツール「Ansible」の特集です。Ansible

を使うメリットから、導入方法、Inven

tory・Playbookの書き方、Windowsへ

の対応まで解説しました。

別の構成管理ツールと比較するうえで参
考になった。 米坂さん／神奈川県

引き継ぎのことなどを考えると、サーバ
構築の自動化には興味があるので、とて
もおもしろかった。Dockerfileとどち
らが良いのか悩む。
 tack41さん／愛知県

構成管理ツールについてはあまり考え
たことがなかったので、自分が使って
いる部署の構成管理ツールについて興
味を持ちだした。 ももんがさん／静岡県

Red Hatの買収によりどうなるか、注
目しています。 山下さん／東京都

Ansibleでサーバ構成管理を自動化、
省力化するのは魅力的です。人間が手
動で行うと間違う恐れがあるので、自
動化できるものは自動化していくべき
だと思います。 永作さん／東京都

構成管理にAnsibleを使い始めました。
Ansibleは敷居は低いのですが、複雑
なことをしようとすると混み入ったこ
とをしないといけない印象を受けてい
たので、本特集が具体的でとても参考

2016年1月号について、たくさんの声が届きました。

第1特集
はじまっています。ChatOps

第2特集　Ansibleでサーバ構成
管理を省力化

198 - Software Design Mar. 2016 - 199

になりました。 犬棟梁さん／埼玉県

手軽さ、シンプルさが売りの
Ansible。興味を持った読者も多

いようです。同じく構成管理ツールで
あるChefにはRubyの知識が要るので、
言語を選ばないAnsibleを選ぶ人が多い
かもしれませんね。

ITインフラの中心がオンプレミスからク
ラウドへ移るに伴って、システムに対す
る負荷試験も、それに合わせたものを用
意する必要があります。本連載ではクラ
ウドに載せたWebサービスの「スケーラ
ブル」を担保するための負荷試験につい
て見ていきます。第2回では、負荷試験
を行うためのツールを中心に解説してい
きました。

動画データ通信のプロトコル開発を担当
する自分には、負荷試験は興味津々で
す。 Whiskyさん／宮崎県

いろいろな負荷をかけるソフトウェアが
あると知れたのが良かった。
 那須さん／東京都

Webの負荷試験はオンプレミスでもク
ラウドでも必要なので、参考になった。
 ほまれさん／千葉県

ほとんどの場合、テスト機器側、負荷
をかける側がボトルネックになり苦労
します。それをふまえての説明や分析
が良かった。 atachibanaさん／東京都

アプリケーション開発で必要なノウハ
ウな割に、あまり経験する機会がない
ので、この機に勉強しようと思います。
 鐘ヶ江さん／東京都

負荷試験のためのツールについ
ての整理された情報が役に立っ

た、という声がいくつか寄せられました。
Webのコンテンツはますますリッチに、
スマホの普及によってユーザはますま
す増えている今、負荷試験の重要性は
さらに高まっていますね。

Windows共有フォルダをChromeOSの
ファイルアプリにマウントするアプリ。
その開発には「SMBプロトコル」の理解
とJavaScriptでの実装が必要でした。連
載第3回では、接続先の「共有リソース」
の扱いについて見ていきます。

若干、難易度が高いように感じました
が、その分読み応えがあり勉強になり
ました。 ＹＹさん／神奈川県

やっぱりパケットキャプチャが必要なん
だ……。

まだ40MBのHDD持っているさん／奈良
県

この連載では情報の少ないSMBプロト
コルの中身が紹介されているので、とて
も勉強になります。
 スマイルさん／茨城県

前回に引き続き、開発の苦労に共
感するような声が多く寄せられま

した。今でこそOSSが主流になりつつ
ある IT業界ですが、プロプライエタリ
ソフトウェアが当たり前だった時代は、
連載のような、既存ソフトやプロトコル
の解析・再開発が多く行われていたので
しょうか。

短期連載　クラウド時代のWeb
サービス負荷試験再入門【2】

短期連載　
SMB実装をめぐる冒険【3】 コメントを掲載させてい

ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① 7インチHDMIマルチモニター「LCD-7000VH」
川野邦仁様（大阪府）

② 世界最小USBハブ「USB2-HUBMC2SS」
尾崎潤二様（東京都）、陰山善行様（神奈川県）

③ Acronis True Image Cloud
高橋良司様（愛媛県）、モモンガ様（滋賀県）、牧秀亮
様（大阪府）

④ 『The Art of Computer Programing Volume 3』
渡辺啓太様（埼玉県）、中村泰大様（茨城県）

⑤ 『Apache Spark入門』
コメット様（兵庫県）、山崎秀峰様（東京都）

⑥ 『ITエンジニアのための機械学習理論入門』
中村洋様（大阪府）、瓜生聖様（東京都）

1月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

mailto:sd@gihyo.co.jp
http://sd.gihyo.jp/

Software Design
2016年3月号

発行日
2016年3月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2016年4月号
定価（本体1,220円＋税）

192ページ

April 2016
3月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2016 技術評論社

●3歳の娘に振り回される日々。最近は何か計画を企

み、それを押し通す知恵を付けてきて驚愕。あの小さ

い頭で何かを考えているのだと思うと不思議。お菓子や

オモチャを得るために祖父母やママの注意を惹き、パパ

をだまし、伏線を張ったり、ジャストなタイミングでだだ

をこねたり……あ、これって女性の原点か！（本）

●医療・健康系の番組が多い。年配者が増え、身体

に気を遣うことが多いからと推察するが、健康の分野

こそ、もっとIoTや最新センサーを利用した各家庭や

自分自身でのモニタリング技術が増えてもいいんじゃ

ないかと思う。体温や鼓動などだけでもビッグデータ

化して利用できないものか。（自己計測オタクの幕）

●駅で、ふと目に入ったポスターには「超獣バキシ

ム」が。スタンプラリーらしい。ウルトラマンにあん

まり詳しくない私が覚えているほど、子ども心にカッ

コイイと思った怪獣。懐かしい顔に出会えたような

気分になって、会社の最寄り、市ヶ谷駅もチェック。

「ヤメタランス」……orz チカラヌケタ（キ）

●4月号の特集「良いプログラムの書き方」は、5種

類の言語について5人の著者に書いてもらう予定で

す。各著者が考える「良いプログラム」の基準に共感

したり、言語ごとに機能／書きやすさ／得意とする

用途などの違いが見えたりと、いろいろ楽しめます。

まるでプログラミング言語の試食会です。（よし）

●最近、する予定も予算もない引っ越しのことをずっ

と考えています。家賃が抑えめで、映画館のある街

に住みたいなと思っているので、立川や亀有など、

実際に下見にも行ってきました。どの街も、今住ん

でいる所と比べると妙にキラキラして見えるんですよ

ね。隣の芝生はなんとやら……でしょうか。（な）

●「VISCUIT（ビスケット）」で初プログラミングを体験

した息子。自分で描いた絵を動かしながら作れるの

で楽しくプログラミングの世界に入り込めたようです。

母としてはできあがりを楽しみにしていたのですが、

残念ながら栄えある第一号は、保存する前に終了ボ

タンを押したために幻に。なんてお約束的なの ! （ま）

S D S t a f f R o o m

［第1特集］ やればできる！ワンランク上のプログラミング

今すぐ実践できる良いプログラムの書き方
～きれいなコード／モダンなコードが書きたい～
［C、Java、C#、Ruby、JavaScript］
　良いプログラムとは、「可読性が良い」「処理効率が良い」「その言語の慣習に沿っ
ている」「セキュリティのことを意識している」などいろいろあります。ですが、そん
なコードを書くためにどうすればいいのかは、書籍やマニュアルにはなかなか書かれ
ていないもの。そこで、5つの言語のプロフェッショナルに良いコードを書くための
ポイントを伝授してもらいます。スペシャリストは何に注意してコードを書いているの
か、その観点を取り入れて、脱初心者、脱レガシープログラマをめざしましょう。
［第2特集］ 基礎の基礎と使いどころ完全解説

オブジェクトストレージの教科書
［特別企画1］ LANケーブリングの次はこれだ！

サーバラッキング＋配線の教科書
［特別企画2］ 日本で運用と開発はコラボできるか？

DevOps座談会
※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

200 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2016年3月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 チーム開発をまわす現場のアイデア　なぜすぐにリリースできるのか
	第1部 第1章：現状分析からはじめた開発体制の改善　SUUMO流アジャイル開発［分析編］......吉田 拓真
	第1部 第2章：技術的負債、コンバージョン、パフォーマンスの“見える化”SUUMO流アジャイル開発［データ編］......吉田 拓真
	第1部 第3章：クリエイティブな作業時間を自動化で増やそう　SUUMO流アジャイル開発［自動化編］......吉田 拓真
	第2部：開発言語／ツールの選定とテストを重視する工夫　RettyがアプリAPIの品質向上で考えた......石田 憲幸
	第3部：Qiita開発で知る、テスト、自動化、バグ／タスク管理術　HRTと情報共有こそチーム開発の要......及川 卓也

	第2特集　あなたの知らないCOBOLの実力	好き嫌いで判断していませんか？
	第1章：ちょっと深めのCOBOLの話　多くのシステムで使われる理由はどこにある？......高木 渉
	第2章：opensource COBOLを試してみよう　金額・利率計算で実践......稲垣 毅、清水 真
	第3章：良いCOBOL、悪いCOBO　本質を見極める力......谷口 有近
	第4章：COBOLから別のプログラミング言語を習得するときのヒント　壁を越える力を付けよう......吉谷 愛
	Appendix：COBOL書籍が必要とされる背景と読者のニーズ　著者自らが自著を解説......細島 一司

	■一般記事
	ペンコンピュータの軌跡　iPad Proのさきに見えてくるもの　......清水 亮
	Webサイトが改ざん！ サイトオーナがとるべき行動と注意点　......宮本 尚志

	■短期連載
	クラウド時代のWebサービス負荷試験再入門【最終回】......仲川 樽八

	■連載：Column
	digital gadget【207】Interaction Awardに見る、インタラクションの本質安藤 幸央
	結城浩の再発見の発想法【34】......結城 浩
	増井ラボノート　コロンブス日和【5】......増井 俊之
	宮原徹のオープンソース放浪記【新連載】......宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【9】......坪井 義浩
	ひみつのLinux通信【26】ホカンくつなりょうすけ
	Hack For Japan〜エンジニアだからこそできる復興への一歩【51】島ソン2015！ 離島でのアイデアソン！......小泉 勝志郎
	温故知新 ITむかしばなし【52】BASIC ベーシックなプログラミング言語......速水 祐

	■連載：Development
	RDB性能トラブルバスターズ奮闘記【新連載】SQLは集合指向の言語だということを知っていますか？生島 勘富、開米 瑞浩
	Androidで広がるエンジニアの愉しみ【3】Nearbyとコミュニティ運営三宅 理
	Vimの細道【6】mapを極める者がVimを制す　......mattn
	るびきち流Emacs超入門【23】EmacsでGitを使う！るびきち
	書いて覚えるSwift入門【12】Protocol Oriented Programming　......小飼 弾
	Erlangで学ぶ並行プログラミング【最終回】ErlangのWebサーバとライブラリ　......力武 健次
	Sphinxで始めるドキュメント作成術【12】Sphinxで本を書こう——EPUBで出力する　......若山 史郎、清水川 貴之
	Mackerelではじめるサーバ管理【13】MackerelとServerspecを組み合わせたインフラテスト　......坪内 佑樹
	セキュリティ実践の基本定石【30】セキュリティを意識したソフトウェア開発　......すずきひろのぶ

	■連載：OS/Network
	Red Hat Enterprise Linuxを極める・使いこなすヒント .SPECS【最終回】Identity Managementを使おう（その2）......藤田 稜
	Debian Hot Topics【33】Debian創設者の死　......やまねひでき
	Ubuntu Monthly Report【71】Ubuntuのエディタといえばgedit　......あわしろいくや
	Linuxカーネル観光ガイド【48】LinuxのNVDIMM対応機能 libnvdimm　......青田 直大
	Monthly News from jus【53】オープンソースの知見を深める秋の大阪2連戦　......内山 千晶、法林 浩之

	■アラカルト
	ＩＴエンジニア必須の最新用語解説【87】AGL Unified Code Base　......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW
	バックナンバーのお知らせ
	SD NEWS & PRODUCTS
	Readers’ Voice
	次号のお知らせ
	SD Plus
	年間定期購読と電子版販売のご案内

