

技術評論社の本が電子版で読める！

https://gihyo.jp/dp

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

サーバ／インフラエンジニア養成読本 DevOps編
[Infrastructure as Code を実践するノウハウが満載！]

吉羽龍太郎，新原雅司，前田章，馬場俊彰　著　
1,980円　 PDF EPUB

DevOpsとは，開発と運用の現場が一体となり，継続的な成
果を生むための開発手法を抽象的に表した言葉です。インフ
ラ部門でのDevOpsは，サービスの迅速なリリースやスケー
ルに耐えられる柔軟なインフラ部門の構築を目的とします。
本書は，Ansibleによるサーバ管理，CircleCIでの継続的イ
ンテグレーションフローを解説します。また，あらかじめ設定
した開発環境を構築するためのDockerとオーケストレーショ
ンツールKuberunetesの具体的な使用方法にもふれますの
で，本書でDevOps環境はひと通り揃うことになります。

https://gihyo.jp/dp/ebook/2016/978-4-7741-8022-9

AWSエキスパート養成読本
［Amazon Web Servicesに最適化された
 アーキテクチャを手に入れる！］

EPUB PDF

オブジェクト指向を
きちんと使いたいあなたへ
EPUB PDF

［増補改訂版］クラウド時代のネットワーク技術

OpenFlow実践入門
EPUB PDF

【改訂新版】サーバ構築の実例がわかる
Samba［実践］入門
EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
https://gihyo.jp/dp/ebook/2016/978-4-7741-8022-9

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

ED - 1 - Software Design

　「TensorFlow」はGoogleが開発し
た機械学習ライブラリです。もともとは
自社サービスのために開発が進められ
てきたものですが、2015年11月にオー
プンソースソフトウェアとして一般に公開
されたことで大きな話題を呼びました。
　近年、機械学習や深層学習
（ディープラーニング）といった技術が
注目を集めるようになってきました。機
械学習とは、簡単に言ってしまえば人
間が自然に行っているような学習能力を
コンピュータで実現しようとする技術で
す。深層学習は機械学習の手法の1
つで、ニューラルネットワークと呼ばれ
る人間の神経を模した多層化された
ネットワーク構造に膨大なデータを与えて
“学習”させることによって、より人間の
思考に近い解析結果を導けるようにす
るものです。
　機械学習の具体的な応用分野とし
ては、たとえば写真の自動認識機能
が挙げられます。機械学習エンジンに
大量の写真データを読み込ませて学習
させることで、写真内から数字や文字
を読み取ったり、被写体となっている人
物や物の種類などを人間と同じように
認識できるようになります。
　Googleでは近年この技術の開発に
力を入れており、すでに写真認識だけ
でなく、音声認識や機械翻訳、Web
検索結果の最適化、メールの分別、
広告事業など、あらゆるプロダクトを支
える基盤技術として導入を進めていると
のことです。それらの実績をもとに洗練
されてきたソフトウェア群一式を、一般
の開発者が利用できる形にライブラリ化

したものがTensorFlowです。したがっ
て、これを利用すればGoogleの各種
サービスが持つのと同等の学習機能
が、自前のソフトウェアでも実現できると
いうことになります。

　TensorFlowはApache 2.0ライセン
スで公開されています。おもな特徴とし
ては次のような項目が挙げられます。

• フレキシビリティ
計算する内容をデータフローグラフ
として表すことができれば、どのよう
なデータでも処理できる。簡易か
つ柔軟な記法によって複雑なモデ
ルを表現できるほか、自前のハイレ
ベルなライブラリをTensorFlowの
上に構築することも可能

• ポータビリティ
CPUでもGPUでも動作するように
設計されており、モバイルデバイス
からデスクトップ、データセンター上
のサーバまで幅広い環境にデプロ
イすることが可能。Dockerコンテ
ナ上での動作もサポートされている

• 多様な応用分野
科学技術の研究からプロダクション
レベルのサービスまで、幅広い分
野で利用することができる。これは、
研究レベルのアイデアを素早く実
際のプロダクトに取り込めるように
なることを意味する

• プログラミング言語との親和性
TensorFlowのコア部分は C++
で実装されており、ユーザ向けに
はC++とPythonのインターフェー
スが用意されている。そのほかの

言語からも、SWIGなどのブリッジ
ツールを利用することで Tensor
Flowのライブラリにアクセスできる。
また、すぐに使い始められるようにド
キュメントやサンプルがそろっている

• 可視性
TensorBoardという強力な可視化
ツールが付属する。これによって
計算フローや計算結果を簡単に確
認することができる

　機械学習はこれからの科学技術研
究や革新的なプロダクトにとって不可欠
な存在になるでしょう。しかし、実際に
関連する研究論文を紐解いて自前で
実装するのは決して容易なことではあり
ません。GoogleがTensorFlowをオー
プンソース化した狙いは、そのような障
壁を取り払い、多くの人が手軽に機械
学習を活用して自分のアイデアを実現
できるようにすることです。そして、多く
の人々に利用され応用分野が拡がるこ
とによって、機械学習そのものの研究
や普及を促進したいとのことです。
　今後の方針としては、メモリ使用量
の削減や処理速度の向上、対応する
OSやデバイスの拡大などを進めること
が挙げられています。また、本稿執筆
時点のオープンソース版ではマルチマ
シンによる分散処理に対応していない
ため、この問題にも対処していくとのこと
です。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 88回

TensorFlow

TensorFlow
https:////www.tensorflow.org/

Google製の機械学習ラ
イブラリ「TensorFlow」

TensorFlowの特徴

Google の狙い

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

https://www.tensorflow.org/
mailto:sd@gihyo.co.jp

DIGITAL GADGET

　単なる懐古主義ではなく、新しい楽
器としてシンセサイザーの新機種が
続 と々登場しています。ある時期、デ
ジタル技術で既存の楽器の音に近
い表現が競われ、ありがたがられたこ
とがありました。しかし現在は楽器とし
ての表現は当然のこととして、卓越し
たデジタル技術によって、さらに魅力
のある音の表現力の幅が広がってき
ています。さらに、1980年代頃に活
躍したシンセサイザーの復刻版や、音
源を再現したソフトウェアシンセサイ
ザーもその当時の価格と比べると安
価に出そろってきています。
　楽器の製造過程に関する技術的
進化はあれど、バイオリンやピアノな
ど、演奏する楽器そのものは完成の
域に達しています。一方で、その楽器
で奏でられる音楽の流行は日々変化
しています。楽器や音楽の進化を、コ
ンピュータやソフトウェア、アプリの世

界に当てはめて考えてみるとどうなる
でしょう？
　映画やドラマの音楽で、奇をてらっ
た新しい音、流行の音楽が使われて
いる場合、その時期に聴いたり観たり
したときは、たいそうな目新しさをもたら
します。けれど、数年程度、少し時間
が経ってから聴いたり観たりすると、と
ても古臭いものに感じてしまうのでは
ないでしょうか？　ハリウッドの大作映
画を思い出してみてください。どれもフ
ルオーケストラの古典的で重厚なサ
ウンドトラックで、物語を表現してはい
ないでしょうか？
　iPhone登場当時に大流行りした
スキュアモーフィズムと呼ばれる現実
世界にある物を模倣したデザインは、
いまではすっかりフラットデザインやマ
テリアルデザインに置き換えられてお
り、実物風のデザインは古臭いものだ
と感じられています。
　それと同様に文字フォントのデザイ
ンやグラフィックデザインも、長く使わ

れてきたオーソドックスなものこそ、斬
新な目新しさはないながらも、今後も
長く見慣れたものとして変わらぬ印象
を持ってもらえるのです。

　さて、楽器に話しを戻しましょう。楽
器の演奏には、指先で感覚として感
じられ、物としてのフィードバックがある
ことが重要です。タッチパネルやジェ
スチャーによって音を操作するアプリ
も存在しますが、微妙な演奏や超絶
技巧の演奏などにはなかなか向きま
せん。
　微妙な調整が必要なもの、反発
や、動きといったフィードバックを感じ
ながら、その感覚によってさらに微調
整をしていくようなものが楽器です。
操作したらすぐに素早く反応するも
の、単に音が出る／出ないだけでは
ない「演奏する物」としての楽器の要

素が多々あります。
　ボリュームつまみやフェーダー、ス
イッチなどといった物理的操作方法
が、デジタル技術が駆使されたシンセ
サイザー楽器においても、身体の延
長として弾きこなすための楽器には重
要な要素となっています。
　よく楽器やプログラミングの習得に
は、1万時間が必要だと言われます。
1万時間というと毎日4時間練習した
として約7年です。楽器もプログラミン
グも、簡単な音を出したり簡単なプロ
グラムであればすぐに実現できます
が、人を感動させるような音楽を奏で
たり、誰もが唸るようなプログラムを作
るのは、そう簡単なことではありませ
ん。もちろん持って生まれた才能や身
体的能力もあるかもしれませんが、や
はり膨大な時間をかけないと、一定の
水準に達するのは難しいことでしょう。
　その一方、数十時間あれば、そこそ
こ楽器を弾けるようになるという考え
もあり、その際に大切なことは「必要

なスキルを細かく分解して把握できる
こと」「間違いを自分で正せるようにな
ること」「集中できること」が重要だと
言われています。
　そう考えると、スマートフォンのアプ
リやWebなどの操作にも、単に取っ
付きやすい、単に使いやすいというこ
とばかりでなく、最初は少し使いづらく
習熟までに時間がかかるが、習熟し
きった際には間違うことなく、自分の
身体の延長線として自由自在に使え
る、楽器的インターフェースというのを
考慮しても良いのかもしれません。

　1983年に登場したシンセサイザー
の相互制御規格MIDI（Musical
Instrument Digital Interface）は30
年以上経った今も使われ続けていま
す。登場当時の太くてごわごわした
ケーブルから、現在は無線でやりとり
できるようになったり、さまざまな機能

が拡張されていたりしますが、楽器の
音データを送受信するというその基本
は変わりません。発案された当時は、
限界性能ぎりぎり、かつ必要充分な
仕様でありましたが、レガシーと言われ
ていることこそ多くなれど現在でも使
い続けられ、30年前のデジタル楽器
と現在のデジタル楽器をつなげて演
奏できることは素晴らしいことです。
　3kgもある肩掛けタイプのショル
ダーホンが登場したのが1985年でし
た。今ではファイル保存のアイコンと
しか認識してもらえない、3.5インチフ
ロッピーディスクの登場は1980年で
した。2DDと呼ばれる容量のディスク
で720KBしかなく、今ではスマートフォ
ンで撮影した写真1枚にも足りないく
らいです。
　今主流となっているものは、たいて
い30年ほど前に発明されたり、研究
されていたものだと言われています。
数年で消えてしまうWebサービスやア
プリが多い中で、今後生き残るデジタ

ル技術とはどのようなものでしょうか？
　OSやプログラミング言語、開発
ツールの寿命もそれほど長くありませ
ん。スマートフォンやタブレット端末、ア
プリの継続性もこの先どうなるのかわ
かりません。そこで楽器の存在から学
べることは何でしょうか？

●ユーザが多いこと、知見や経験が
受け継がれていくこと

●教本や教室などで、教える人、教え
られる人がいること
●そもそも奏でることが楽しみである
こと
●プロフェッショナルだけでなく、たくさ
んのアマチュアが存在すること

　歴史の長い楽器や音楽の素晴ら
しさからさまざまな事柄を学び取り、デ
ジタル技術やネット上のサービス展
開、プログラミング技術、ユーザイン
ターフェースの考え方などに生かせる
のではないかと考えています。｢

vol.208

デジタルな楽器、
楽器のデジタル化

デジタル楽器のガジェット視点

DIGITAL
GADGET
デジタル楽器のガジェット視点

円盤形ドラムマシン

ARQ Aero
RhythmTrak

Gadget 1

Zoom ARQは加速度センサーを搭載した
円盤形ドラムマシン。ドラム音を奏でるだけ
でなく、さまざまな音色を再生するシーケン
サーとしても機能します。Bluetooth MIDI
に対応しており、円形の輪の部分だけが
分離してワイヤレスのタンバリンのような
楽器としても活用できます。円という形状
を活かし、ループフレーズを組み立てるの
にも向いてます。468種類の生楽器系の
波形、70種類のシンセ波形を内蔵。音色
の元となる音源を加工し、新たな音色の
加工も自在。2016年春に599.99ドルで
リリース予定です。

http://miselu.com/ja/c-24/

iPadケース型キーボード

Gadget 2

miselu C.24はBluetoothでiPhoneや
iPadの音楽アプリと接続することのでき
る、ケース型のキーボードです。2オクター
ブ分のミニしかありませんが、楽器として必
要充分な操作と機能を持っています。
CoreMIDIに対応したiOS、Mac OS Xの
350以上の音楽アプリケーションに対応
しています。演奏時はiPad/iPhoneスタン
ドにもなり、持ち運び時にはキーボードの
部分が畳み込まれ、薄いケースとして扱う
ことができます。日本でも、ソフトバンクセレ
クションなどで24,800円（税込）で販売さ
れています。

ゲームウオッチ風ミニシンセ

Gadget 3

1980年代に流行した、任天堂のゲーム＆
ウオッチを覚えているでしょうか？　読者の
中にはまだ生まれていない人もいるかもしれ
ません。液晶画面を搭載したシンプルな携
帯型ゲームで、任天堂のゲームの原点とも
言われるものです。そのゲーム＆ウオッチを
彷彿させる画面と、無骨な部品むき出しの、
電池で動くシンセサイザーがTeenage
Engineering Pocket Operatorです。リズ
ム、サブマリン、プラント、アーケード、オフィ
ス、ロボの6機種がそろっており、新製品も
予定されています。

単体ミックスフェーダー

Gadget 4

DJが2つの音源を混ぜ合わせながらプレ
イする際に、ミックスフェーダーと呼ばれる
ボリュームを操作します。たいていは専用
のDJミキサーの中央部に設置されていま
すが、このMixfaderはBluetoothで接続さ
れた、単体の機器として扱うことができま
す。iPhoneやiPad、PC上のDJアプリの
ミックス操作を、このMixfaderで行うことが
可能です。本体バッテリーは10時間持ち、
たいていのDJプレイには充分な時間で
しょう。一番心配な反応の遅延（レイテン
シー）も極少まで減らされているそうです。

タッチ操作で音楽を奏でる「PlayGround」。
誰にでもノリの良い音楽が奏でられるアプリ

「SoundBow」は指の動きに合わせて
音色がループするアプリ

フランスExpressive E社の「Touché」。
表面を押したり、指を滑らしたりして
操作するコントローラ

https://www.teenageengineering.com/
products/po

http://www.themixfader.com/

https://www.zoom.co.jp/ja/products/
production-recording/digital-instruments/
arq-aero-rhythmtrak

C.24

Pocket Operator

Mixfader

ユーザインターフェース
として考える
デジタル楽器の存在

未来の楽器、
奏で続けられる楽器

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

MIDI over Bluetooth LE対応のキーボード
「microKEY Air（25鍵、37鍵、49鍵、61鍵）」

http://www.korg.com/jp/products/
controllers/microkey2_air/

1970年代に活躍したシンセの
復刻版「SYSTEM-500」
http://www.roland.co.jp/products/
system-500_complete_set/

ワイヤレスMIDI/USB
MIDIインターフェース「MD-BT01」
http://jp.yamaha.com/products/music-production/
accessories/interfaces/md-bt01/?mode=model

「OP-Z」。まるでコンピュータ画面のようなシンセサイザー
https://www.teenageengineering.com/products/op-z

時代に逆行するような、
巨大マトリックススイッチを搭載した「MatrixBrute」
https://www.arturia.com/matrixbrute/overview 譜めくりコントローラ「iRig BlueTurn」

http://www.ikmultimedia.com/
products/irigblueturn/

どんなギターにもアーム機能を
付け加えてしまう「Virtual Jeff」
http://www.fomofx.com/

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 Apr. 2016 - 1

http://www.andoh.org/

DIGITAL GADGET

　単なる懐古主義ではなく、新しい楽
器としてシンセサイザーの新機種が
続 と々登場しています。ある時期、デ
ジタル技術で既存の楽器の音に近
い表現が競われ、ありがたがられたこ
とがありました。しかし現在は楽器とし
ての表現は当然のこととして、卓越し
たデジタル技術によって、さらに魅力
のある音の表現力の幅が広がってき
ています。さらに、1980年代頃に活
躍したシンセサイザーの復刻版や、音
源を再現したソフトウェアシンセサイ
ザーもその当時の価格と比べると安
価に出そろってきています。
　楽器の製造過程に関する技術的
進化はあれど、バイオリンやピアノな
ど、演奏する楽器そのものは完成の
域に達しています。一方で、その楽器
で奏でられる音楽の流行は日々変化
しています。楽器や音楽の進化を、コ
ンピュータやソフトウェア、アプリの世

界に当てはめて考えてみるとどうなる
でしょう？
　映画やドラマの音楽で、奇をてらっ
た新しい音、流行の音楽が使われて
いる場合、その時期に聴いたり観たり
したときは、たいそうな目新しさをもたら
します。けれど、数年程度、少し時間
が経ってから聴いたり観たりすると、と
ても古臭いものに感じてしまうのでは
ないでしょうか？　ハリウッドの大作映
画を思い出してみてください。どれもフ
ルオーケストラの古典的で重厚なサ
ウンドトラックで、物語を表現してはい
ないでしょうか？
　iPhone登場当時に大流行りした
スキュアモーフィズムと呼ばれる現実
世界にある物を模倣したデザインは、
いまではすっかりフラットデザインやマ
テリアルデザインに置き換えられてお
り、実物風のデザインは古臭いものだ
と感じられています。
　それと同様に文字フォントのデザイ
ンやグラフィックデザインも、長く使わ

れてきたオーソドックスなものこそ、斬
新な目新しさはないながらも、今後も
長く見慣れたものとして変わらぬ印象
を持ってもらえるのです。

　さて、楽器に話しを戻しましょう。楽
器の演奏には、指先で感覚として感
じられ、物としてのフィードバックがある
ことが重要です。タッチパネルやジェ
スチャーによって音を操作するアプリ
も存在しますが、微妙な演奏や超絶
技巧の演奏などにはなかなか向きま
せん。
　微妙な調整が必要なもの、反発
や、動きといったフィードバックを感じ
ながら、その感覚によってさらに微調
整をしていくようなものが楽器です。
操作したらすぐに素早く反応するも
の、単に音が出る／出ないだけでは
ない「演奏する物」としての楽器の要

素が多々あります。
　ボリュームつまみやフェーダー、ス
イッチなどといった物理的操作方法
が、デジタル技術が駆使されたシンセ
サイザー楽器においても、身体の延
長として弾きこなすための楽器には重
要な要素となっています。
　よく楽器やプログラミングの習得に
は、1万時間が必要だと言われます。
1万時間というと毎日4時間練習した
として約7年です。楽器もプログラミン
グも、簡単な音を出したり簡単なプロ
グラムであればすぐに実現できます
が、人を感動させるような音楽を奏で
たり、誰もが唸るようなプログラムを作
るのは、そう簡単なことではありませ
ん。もちろん持って生まれた才能や身
体的能力もあるかもしれませんが、や
はり膨大な時間をかけないと、一定の
水準に達するのは難しいことでしょう。
　その一方、数十時間あれば、そこそ
こ楽器を弾けるようになるという考え
もあり、その際に大切なことは「必要

なスキルを細かく分解して把握できる
こと」「間違いを自分で正せるようにな
ること」「集中できること」が重要だと
言われています。
　そう考えると、スマートフォンのアプ
リやWebなどの操作にも、単に取っ
付きやすい、単に使いやすいというこ
とばかりでなく、最初は少し使いづらく
習熟までに時間がかかるが、習熟し
きった際には間違うことなく、自分の
身体の延長線として自由自在に使え
る、楽器的インターフェースというのを
考慮しても良いのかもしれません。

　1983年に登場したシンセサイザー
の相互制御規格MIDI（Musical
Instrument Digital Interface）は30
年以上経った今も使われ続けていま
す。登場当時の太くてごわごわした
ケーブルから、現在は無線でやりとり
できるようになったり、さまざまな機能

が拡張されていたりしますが、楽器の
音データを送受信するというその基本
は変わりません。発案された当時は、
限界性能ぎりぎり、かつ必要充分な
仕様でありましたが、レガシーと言われ
ていることこそ多くなれど現在でも使
い続けられ、30年前のデジタル楽器
と現在のデジタル楽器をつなげて演
奏できることは素晴らしいことです。
　3kgもある肩掛けタイプのショル
ダーホンが登場したのが1985年でし
た。今ではファイル保存のアイコンと
しか認識してもらえない、3.5インチフ
ロッピーディスクの登場は1980年で
した。2DDと呼ばれる容量のディスク
で720KBしかなく、今ではスマートフォ
ンで撮影した写真1枚にも足りないく
らいです。
　今主流となっているものは、たいて
い30年ほど前に発明されたり、研究
されていたものだと言われています。
数年で消えてしまうWebサービスやア
プリが多い中で、今後生き残るデジタ

ル技術とはどのようなものでしょうか？
　OSやプログラミング言語、開発
ツールの寿命もそれほど長くありませ
ん。スマートフォンやタブレット端末、ア
プリの継続性もこの先どうなるのかわ
かりません。そこで楽器の存在から学
べることは何でしょうか？

●ユーザが多いこと、知見や経験が
受け継がれていくこと

●教本や教室などで、教える人、教え
られる人がいること
●そもそも奏でることが楽しみである
こと
●プロフェッショナルだけでなく、たくさ
んのアマチュアが存在すること

　歴史の長い楽器や音楽の素晴ら
しさからさまざまな事柄を学び取り、デ
ジタル技術やネット上のサービス展
開、プログラミング技術、ユーザイン
ターフェースの考え方などに生かせる
のではないかと考えています。｢

vol.208

デジタルな楽器、
楽器のデジタル化

デジタル楽器のガジェット視点

DIGITAL
GADGET
デジタル楽器のガジェット視点

円盤形ドラムマシン

ARQ Aero
RhythmTrak

Gadget 1

Zoom ARQは加速度センサーを搭載した
円盤形ドラムマシン。ドラム音を奏でるだけ
でなく、さまざまな音色を再生するシーケン
サーとしても機能します。Bluetooth MIDI
に対応しており、円形の輪の部分だけが
分離してワイヤレスのタンバリンのような
楽器としても活用できます。円という形状
を活かし、ループフレーズを組み立てるの
にも向いてます。468種類の生楽器系の
波形、70種類のシンセ波形を内蔵。音色
の元となる音源を加工し、新たな音色の
加工も自在。2016年春に599.99ドルで
リリース予定です。

http://miselu.com/ja/c-24/

iPadケース型キーボード

Gadget 2

miselu C.24はBluetoothでiPhoneや
iPadの音楽アプリと接続することのでき
る、ケース型のキーボードです。2オクター
ブ分のミニしかありませんが、楽器として必
要充分な操作と機能を持っています。
CoreMIDIに対応したiOS、Mac OS Xの
350以上の音楽アプリケーションに対応
しています。演奏時はiPad/iPhoneスタン
ドにもなり、持ち運び時にはキーボードの
部分が畳み込まれ、薄いケースとして扱う
ことができます。日本でも、ソフトバンクセレ
クションなどで24,800円（税込）で販売さ
れています。

ゲームウオッチ風ミニシンセ

Gadget 3

1980年代に流行した、任天堂のゲーム＆
ウオッチを覚えているでしょうか？　読者の
中にはまだ生まれていない人もいるかもしれ
ません。液晶画面を搭載したシンプルな携
帯型ゲームで、任天堂のゲームの原点とも
言われるものです。そのゲーム＆ウオッチを
彷彿させる画面と、無骨な部品むき出しの、
電池で動くシンセサイザーがTeenage
Engineering Pocket Operatorです。リズ
ム、サブマリン、プラント、アーケード、オフィ
ス、ロボの6機種がそろっており、新製品も
予定されています。

単体ミックスフェーダー

Gadget 4

DJが2つの音源を混ぜ合わせながらプレ
イする際に、ミックスフェーダーと呼ばれる
ボリュームを操作します。たいていは専用
のDJミキサーの中央部に設置されていま
すが、このMixfaderはBluetoothで接続さ
れた、単体の機器として扱うことができま
す。iPhoneやiPad、PC上のDJアプリの
ミックス操作を、このMixfaderで行うことが
可能です。本体バッテリーは10時間持ち、
たいていのDJプレイには充分な時間で
しょう。一番心配な反応の遅延（レイテン
シー）も極少まで減らされているそうです。

タッチ操作で音楽を奏でる「PlayGround」。
誰にでもノリの良い音楽が奏でられるアプリ

「SoundBow」は指の動きに合わせて
音色がループするアプリ

フランスExpressive E社の「Touché」。
表面を押したり、指を滑らしたりして
操作するコントローラ

https://www.teenageengineering.com/
products/po

http://www.themixfader.com/

https://www.zoom.co.jp/ja/products/
production-recording/digital-instruments/
arq-aero-rhythmtrak

C.24

Pocket Operator

Mixfader

ユーザインターフェース
として考える
デジタル楽器の存在

未来の楽器、
奏で続けられる楽器

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

MIDI over Bluetooth LE対応のキーボード
「microKEY Air（25鍵、37鍵、49鍵、61鍵）」

http://www.korg.com/jp/products/
controllers/microkey2_air/

1970年代に活躍したシンセの
復刻版「SYSTEM-500」
http://www.roland.co.jp/products/
system-500_complete_set/

ワイヤレスMIDI/USB
MIDIインターフェース「MD-BT01」
http://jp.yamaha.com/products/music-production/
accessories/interfaces/md-bt01/?mode=model

「OP-Z」。まるでコンピュータ画面のようなシンセサイザー
https://www.teenageengineering.com/products/op-z

時代に逆行するような、
巨大マトリックススイッチを搭載した「MatrixBrute」
https://www.arturia.com/matrixbrute/overview 譜めくりコントローラ「iRig BlueTurn」

http://www.ikmultimedia.com/
products/irigblueturn/

どんなギターにもアーム機能を
付け加えてしまう「Virtual Jeff」
http://www.fomofx.com/

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 2 - Software Design

https://www.teenageengineering.com/products/op-z
https://www.arturia.com/matrixbrute/overview
http://www.fomofx.com/
http://jp.yamaha.com/products/music-production/accessories/interfaces/md-bt01/?mode=model

DIGITAL GADGET

　単なる懐古主義ではなく、新しい楽
器としてシンセサイザーの新機種が
続 と々登場しています。ある時期、デ
ジタル技術で既存の楽器の音に近
い表現が競われ、ありがたがられたこ
とがありました。しかし現在は楽器とし
ての表現は当然のこととして、卓越し
たデジタル技術によって、さらに魅力
のある音の表現力の幅が広がってき
ています。さらに、1980年代頃に活
躍したシンセサイザーの復刻版や、音
源を再現したソフトウェアシンセサイ
ザーもその当時の価格と比べると安
価に出そろってきています。
　楽器の製造過程に関する技術的
進化はあれど、バイオリンやピアノな
ど、演奏する楽器そのものは完成の
域に達しています。一方で、その楽器
で奏でられる音楽の流行は日々変化
しています。楽器や音楽の進化を、コ
ンピュータやソフトウェア、アプリの世

界に当てはめて考えてみるとどうなる
でしょう？
　映画やドラマの音楽で、奇をてらっ
た新しい音、流行の音楽が使われて
いる場合、その時期に聴いたり観たり
したときは、たいそうな目新しさをもたら
します。けれど、数年程度、少し時間
が経ってから聴いたり観たりすると、と
ても古臭いものに感じてしまうのでは
ないでしょうか？　ハリウッドの大作映
画を思い出してみてください。どれもフ
ルオーケストラの古典的で重厚なサ
ウンドトラックで、物語を表現してはい
ないでしょうか？
　iPhone登場当時に大流行りした
スキュアモーフィズムと呼ばれる現実
世界にある物を模倣したデザインは、
いまではすっかりフラットデザインやマ
テリアルデザインに置き換えられてお
り、実物風のデザインは古臭いものだ
と感じられています。
　それと同様に文字フォントのデザイ
ンやグラフィックデザインも、長く使わ

れてきたオーソドックスなものこそ、斬
新な目新しさはないながらも、今後も
長く見慣れたものとして変わらぬ印象
を持ってもらえるのです。

　さて、楽器に話しを戻しましょう。楽
器の演奏には、指先で感覚として感
じられ、物としてのフィードバックがある
ことが重要です。タッチパネルやジェ
スチャーによって音を操作するアプリ
も存在しますが、微妙な演奏や超絶
技巧の演奏などにはなかなか向きま
せん。
　微妙な調整が必要なもの、反発
や、動きといったフィードバックを感じ
ながら、その感覚によってさらに微調
整をしていくようなものが楽器です。
操作したらすぐに素早く反応するも
の、単に音が出る／出ないだけでは
ない「演奏する物」としての楽器の要

素が多々あります。
　ボリュームつまみやフェーダー、ス
イッチなどといった物理的操作方法
が、デジタル技術が駆使されたシンセ
サイザー楽器においても、身体の延
長として弾きこなすための楽器には重
要な要素となっています。
　よく楽器やプログラミングの習得に
は、1万時間が必要だと言われます。
1万時間というと毎日4時間練習した
として約7年です。楽器もプログラミン
グも、簡単な音を出したり簡単なプロ
グラムであればすぐに実現できます
が、人を感動させるような音楽を奏で
たり、誰もが唸るようなプログラムを作
るのは、そう簡単なことではありませ
ん。もちろん持って生まれた才能や身
体的能力もあるかもしれませんが、や
はり膨大な時間をかけないと、一定の
水準に達するのは難しいことでしょう。
　その一方、数十時間あれば、そこそ
こ楽器を弾けるようになるという考え
もあり、その際に大切なことは「必要

なスキルを細かく分解して把握できる
こと」「間違いを自分で正せるようにな
ること」「集中できること」が重要だと
言われています。
　そう考えると、スマートフォンのアプ
リやWebなどの操作にも、単に取っ
付きやすい、単に使いやすいというこ
とばかりでなく、最初は少し使いづらく
習熟までに時間がかかるが、習熟し
きった際には間違うことなく、自分の
身体の延長線として自由自在に使え
る、楽器的インターフェースというのを
考慮しても良いのかもしれません。

　1983年に登場したシンセサイザー
の相互制御規格MIDI（Musical
Instrument Digital Interface）は30
年以上経った今も使われ続けていま
す。登場当時の太くてごわごわした
ケーブルから、現在は無線でやりとり
できるようになったり、さまざまな機能

が拡張されていたりしますが、楽器の
音データを送受信するというその基本
は変わりません。発案された当時は、
限界性能ぎりぎり、かつ必要充分な
仕様でありましたが、レガシーと言われ
ていることこそ多くなれど現在でも使
い続けられ、30年前のデジタル楽器
と現在のデジタル楽器をつなげて演
奏できることは素晴らしいことです。
　3kgもある肩掛けタイプのショル
ダーホンが登場したのが1985年でし
た。今ではファイル保存のアイコンと
しか認識してもらえない、3.5インチフ
ロッピーディスクの登場は1980年で
した。2DDと呼ばれる容量のディスク
で720KBしかなく、今ではスマートフォ
ンで撮影した写真1枚にも足りないく
らいです。
　今主流となっているものは、たいて
い30年ほど前に発明されたり、研究
されていたものだと言われています。
数年で消えてしまうWebサービスやア
プリが多い中で、今後生き残るデジタ

ル技術とはどのようなものでしょうか？
　OSやプログラミング言語、開発
ツールの寿命もそれほど長くありませ
ん。スマートフォンやタブレット端末、ア
プリの継続性もこの先どうなるのかわ
かりません。そこで楽器の存在から学
べることは何でしょうか？

●ユーザが多いこと、知見や経験が
受け継がれていくこと
●教本や教室などで、教える人、教え
られる人がいること
●そもそも奏でることが楽しみである
こと
●プロフェッショナルだけでなく、たくさ
んのアマチュアが存在すること

　歴史の長い楽器や音楽の素晴ら
しさからさまざまな事柄を学び取り、デ
ジタル技術やネット上のサービス展
開、プログラミング技術、ユーザイン
ターフェースの考え方などに生かせる
のではないかと考えています。｢

vol.208

デジタルな楽器、
楽器のデジタル化

デジタル楽器のガジェット視点

DIGITAL
GADGET
デジタル楽器のガジェット視点

円盤形ドラムマシン

ARQ Aero
RhythmTrak

Gadget 1

Zoom ARQは加速度センサーを搭載した
円盤形ドラムマシン。ドラム音を奏でるだけ
でなく、さまざまな音色を再生するシーケン
サーとしても機能します。Bluetooth MIDI
に対応しており、円形の輪の部分だけが
分離してワイヤレスのタンバリンのような
楽器としても活用できます。円という形状
を活かし、ループフレーズを組み立てるの
にも向いてます。468種類の生楽器系の
波形、70種類のシンセ波形を内蔵。音色
の元となる音源を加工し、新たな音色の
加工も自在。2016年春に599.99ドルで
リリース予定です。

http://miselu.com/ja/c-24/

iPadケース型キーボード

Gadget 2

miselu C.24はBluetoothでiPhoneや
iPadの音楽アプリと接続することのでき
る、ケース型のキーボードです。2オクター
ブ分のミニしかありませんが、楽器として必
要充分な操作と機能を持っています。
CoreMIDIに対応したiOS、Mac OS Xの
350以上の音楽アプリケーションに対応
しています。演奏時はiPad/iPhoneスタン
ドにもなり、持ち運び時にはキーボードの
部分が畳み込まれ、薄いケースとして扱う
ことができます。日本でも、ソフトバンクセレ
クションなどで24,800円（税込）で販売さ
れています。

ゲームウオッチ風ミニシンセ

Gadget 3

1980年代に流行した、任天堂のゲーム＆
ウオッチを覚えているでしょうか？　読者の
中にはまだ生まれていない人もいるかもしれ
ません。液晶画面を搭載したシンプルな携
帯型ゲームで、任天堂のゲームの原点とも
言われるものです。そのゲーム＆ウオッチを
彷彿させる画面と、無骨な部品むき出しの、
電池で動くシンセサイザーがTeenage
Engineering Pocket Operatorです。リズ
ム、サブマリン、プラント、アーケード、オフィ
ス、ロボの6機種がそろっており、新製品も
予定されています。

単体ミックスフェーダー

Gadget 4

DJが2つの音源を混ぜ合わせながらプレ
イする際に、ミックスフェーダーと呼ばれる
ボリュームを操作します。たいていは専用
のDJミキサーの中央部に設置されていま
すが、このMixfaderはBluetoothで接続さ
れた、単体の機器として扱うことができま
す。iPhoneやiPad、PC上のDJアプリの
ミックス操作を、このMixfaderで行うことが
可能です。本体バッテリーは10時間持ち、
たいていのDJプレイには充分な時間で
しょう。一番心配な反応の遅延（レイテン
シー）も極少まで減らされているそうです。

タッチ操作で音楽を奏でる「PlayGround」。
誰にでもノリの良い音楽が奏でられるアプリ

「SoundBow」は指の動きに合わせて
音色がループするアプリ

フランスExpressive E社の「Touché」。
表面を押したり、指を滑らしたりして
操作するコントローラ

https://www.teenageengineering.com/
products/po

http://www.themixfader.com/

https://www.zoom.co.jp/ja/products/
production-recording/digital-instruments/
arq-aero-rhythmtrak

C.24

Pocket Operator

Mixfader

ユーザインターフェース
として考える
デジタル楽器の存在

未来の楽器、
奏で続けられる楽器

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

MIDI over Bluetooth LE対応のキーボード
「microKEY Air（25鍵、37鍵、49鍵、61鍵）」

http://www.korg.com/jp/products/
controllers/microkey2_air/

1970年代に活躍したシンセの
復刻版「SYSTEM-500」
http://www.roland.co.jp/products/
system-500_complete_set/

ワイヤレスMIDI/USB
MIDIインターフェース「MD-BT01」
http://jp.yamaha.com/products/music-production/
accessories/interfaces/md-bt01/?mode=model

「OP-Z」。まるでコンピュータ画面のようなシンセサイザー
https://www.teenageengineering.com/products/op-z

時代に逆行するような、
巨大マトリックススイッチを搭載した「MatrixBrute」
https://www.arturia.com/matrixbrute/overview 譜めくりコントローラ「iRig BlueTurn」

http://www.ikmultimedia.com/
products/irigblueturn/

どんなギターにもアーム機能を
付け加えてしまう「Virtual Jeff」
http://www.fomofx.com/

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 2 - Software Design Apr. 2016 - 3

https://www.zoom.co.jp/ja/products/production-recording/digital-instruments/arq-aero-rhythmtrak
https://www.teenageengineering.com/products/po
http://miselu.com/ja/c-24/
http://www.themixfader.com/
http://www.roland.co.jp/products/system-500_complete_set/
http://www.ikmultimedia.com/products/irigblueturn/
http://www.korg.com/jp/products/controllers/microkey2_air/

4 - Software Design

Scope——スコープ

スコープとは

　名前のスコープ（Scope）とは、名前の有効範

囲のことです。スコープはもともと広い意味を
持つ単語ですが、以下ではプログラミング言語
での意味に限定して使います。1つのプログラ
ムの中には、たくさんの名前が登場します。プ
ログラマは、変数・関数・クラス・メソッドの
ような多数の概念に名前を付け、それらを組み
合わせてプログラムを作ります。
　スコープの記述方法は、プログラミング言語
の文法規則によって定められています。たとえ
ばJavaの場合、“{”と“}”で挟まれた範囲で定
義された局所変数が使えるのは、その範囲のみ
です（図1）。言い換えれば、スコープの外から
は使うことができません。どのようなスコープ

が存在するか、またそれをどのように記述する
かは、プログラミング言語ごとに異なります。
ですから、プログラミング言語を学ぶ人は、ス
コープについて学ぶ必要があります。

名前のコンフリクトと人間の能力

　プログラミングというものに慣れていない人
は「どうしてスコープなんて面倒なものを使う
のだろう。変数の名前が見えなかったら使えな
いのに。わざわざ不便なルールを作るなんてお
かしい」と考えるかもしれません。でも、もち
ろん、わざわざ不便なルールを作っているわけ
ではありません。スコープを作る目的の1つは、
名前の有効範囲を制限して名前のコンフリクト

（衝突）を少なくすることにあります。
　たとえば、プログラムのある個所で“name”と
いう変数を使っていたとします。“name”という
名前はとても一般的なので、別の個所で誰かが
別の変数に同じ名前を使う可能性は高いでしょ
う。これが名前のコンフリクトです（図2）。あ
る個所で処理をしているのに、別の個所でその
変数の内容を変更してしまったら、正しい処理

Scope

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 35

 ▼図1　名前のスコープ

 ▼図2　名前のコンフリクト

http://www.hyuki.com/

4 - Software Design Apr. 2016 - 5

が行われなくなってしまいます。
　プログラミング言語は、スコープを使って名
前の有効範囲を制限し、プログラムのある個所
の処理が、ほかの個所に影響を与えないように
しているのです。
　名前の衝突を防ぐというのはスコープの目的
の1つですが、あらためて考えてみると、その
背後には「人間の能力は限られている」という事
実があることに気づきます。
　プログラムは複雑な構造物ですから、バグを
出さないように組み立てるのはたいへんなもの
です。バグの修正を行うときも、ほかの個所に
悪影響を与えていないか注意しなければなりま
せん。しかし、人間の能力は無限ではありませ
んから、プログラム全体に対して常に注意を払
うことは不可能です。スコープ内の変数は、ス
コープ外から参照されていないことが保証され
ていますので、修正の影響が広範囲に及ばない
ように抑えられるのです。スコープは影響を局
所化させ、人間への負担を減らしていると言え
るでしょう。
　1つの関数が何百行にも及ぶようなプログラ
ムを書くと、周りの開発者から非難されます。
それは、不用意にスコープを広げることになり、
プログラムのメンテナンスがたいへんになるか
らです。意外と陥りやすいのは、プログラムを
ちょっとずつ修正しているうちにいつの間にか
巨大な関数になってしまうケースです。スコー
プが大きくなりかけた段階で対処しないと混乱
を生んでしまうでしょう。

言葉のスコープ

　私たちの日常生活にもスコープはかかわって
います。日常生活でのスコープとは、ある言葉

が「通じる範囲」に相当します。
　営業部に田中さんが1人しかいないなら、部
内では「田中さん」と言うだけで不都合はありま
せん。しかし、会社に田中さんがたくさんいた
ら、営業部の外では「田中さん」だけでは駄目で
すね。名前のコンフリクトが起きるからです。

その場合には「営業部の田中さん」のように補足
情報を付けたり、「田中太郎さん」のようにフル
ネームを使ったりすることになるでしょう。そ
れは、スコープが大きくなって発生した衝突を
回避していると言えます。
　私たちがプレゼンテーションを行うとき、自
分が使う言葉がどの範囲まで通じるかを意識す
るのは大切です。聴衆が同じ部署だけか、会社
全体か、あるいは社外の人も含むのかを意識し
て言葉を選ばないと、意味が通じない結果になっ
てしまうでしょう。スコープが大きくなればな
るほど、言葉の選択には注意が必要になります。
　スコープが大きくなる名前ほど、注意深く作
る必要があります。社内で使うコードネームな
らいいのですが、広く浸透させたい商品名やサー
ビス名を生み出すときのことを想像すればよく
理解できます。商品名でユーザが誤解したり、
サービス名で名前のコンフリクトが起こったり
しては困りますね。登録商標などの法的なしく
みは名前のコンフリクトを解決するために用意
されていると言えるでしょう。
　最近私は、「マイナンバー」と「マイナンバー
カード」という2つの名前が気になっています。
この2つの名前は指すものが異なります。です
から、「マイナンバーを利用する」と「マイナン
バーカードを利用する」とでは違う意味を持ち
ます。マイナンバーカードに記録されている情
報はマイナンバーだけではないので、「マイナ
ンバーカードを利用する」からといって「マイナ
ンバーを利用する」とは限らないのです。この
2つの名前は、国民全体という非常に大きなス
コープに浸透させる名前ですので、もっと整理
してほしかったと思います。

◆　◆　◆
　あなたの周りを見回して、使っている言葉の
スコープを考えてみましょう。あなたがよく使
う言葉は、自分の周囲のどの範囲まで有効に通
じるでしょうか。どこまでスコープを広げたら
誤解が生まれるでしょうか。
　ぜひ、考えてみてください。｢

35

6 - Software Design

　計算機の上で同じ作業を何度も繰り返さなけれ
ばならないことがよくあります。計算機は単純な
繰り返し作業が得意なはずですが、つまらない作
業を人間が繰り返さなければならないことは意外
と多いものです。たとえばExcelの表の中の負の
数字だけアンダーラインを付けたいときはどうす
れば良いでしょうか？　そういう機能はExcelに
は用意されているかもしれませんが、知らなけれ
ば使えませんし、同じような処理であってもシス
テムに用意されていなければどうしようもありま
せんから、この手の仕事があったときは泣きなが
ら手作業で処理したり、頑張ってスクリプトを書
いたりしている人が多いのではないでしょうか。
　計算機上の操作を効率化するために「予測イ

ンターフェース」と呼ばれるシステムが広く使
われています。スマホのテキスト入力を効率化
する「予測入力システム」やブラウザのURL補

便利な
予測インターフェース

完機能、エディタの補完機能のような簡単な予
測インターフェースは最近よく使われています
し、これまでの購入履歴を基にして商品を推薦
するシステムなども一種の予測システムと言え
るでしょう。予測インターフェース研究の歴史
はけっこう古く、1993年には予測インター
フェースの研究をまとめた『Watch What I Do』
という本が出版されていますし、最近は例示や
予測だけでプログラムを作ってしまおうという
研究も行われています（図1）。
　予測インターフェースシステムでは、アプリケー
ションに関連したデータベースやユーザの操作
履歴などを基にして、ユーザの次の操作を予測
することによってユーザの仕事を減らす工夫を
しています。URL補完の場合はよく使われる
URLのデータベースが利用できますし、プログ
ラミング言語に関する情報を持っていれば、ユー
ザが次に入力する言語キーワードを予測できます。
このような固定的なデータベースを用意してお
くことも重要ですが、ユーザの操作履歴を予測

のためのデータベースとして利
用すると便利です。ユーザが一
度訪れたサイトのURLを覚えて
おけば補完に利用できますし、
予測入力システムではユーザが
利用した単語やフレーズが次の
予測に利用されます。前述の
Excelの例のような場合、負の
数字にアンダーラインを付ける
操作が繰り返されていることを
システムが検出できればユーザ

増井ラボノート

注1） http://thinkit.co.jp/free/article/0709/19/

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張って楽できるなら、それに越したことはないでしょ
う。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろんな
システムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用しているよ
うな単純かつ便利なシステムをたくさん紹介していきます。

第 6 回　Dynamic Macro

 ▼図1　予測インターフェースに関する書籍

Watch What I Do: Programming
by Demonstration（Allen Cypher、
The MIT Press、1993年）

Your Wish is My Command:
Programming By Example
（Henry Lieberman、Morgan

Kaufmann、2001年）

No Code Required：Giving Users
Tools to Transform the Web（Allen
Cypher/Mira Dontchevam/Tessa
Lau/Jeffrey Nichols、Morgan
Kaufmann、2010年）

http://thinkit.co.jp/free/article/0709/19/

NO.

6 - Software Design Apr. 2016 - 7

D y n a m i c M a c r o

の次の操作を予測できるでしょう。

　文章やプログラムのようなテキストを編集する
とき、 同じような操作を繰り返すことがよくあり
ます。たとえば、連続する行の先頭に記号を挿
入したいような場合はカーソルを1行ずつ動かし
て記号を入力していくのが普通ですが、 たくさん
の行に対して同じ操作を繰り返すのはたいへんで
す。行頭に記号を挿入するスクリプトを書けば良
いのかもしれませんが、 一度きりかもしれない処
理のためにプログラムを作成するのは面倒ですし、
プログラミングの知識が必要です。また、CSV

（Comma Separated Values：カンマ区切り）デー
タの桁を並び替えたいときはどうでしょうか？
CSVデータをExcelなどで読み取ってから並び
を変えて出力すれば良いかもしれませんが、方法
を考えるのも実際に作業するのも面倒です。

キーボードマクロ

　このような作業を簡単にするために「キーボー
ドマクロ」という機能が用意されているエディ
タがあります。キーボードマクロとは、一連の
エディタ操作を1つのキー操作に割り当てるこ
とにより、複雑な編集操作を楽に実行しようと
いうものです。たとえば「行頭に記号を挿入し
てから1つ下の行に移動する」という処理をA

というキーに割り当てておけば、Aを連打す
ることによって連続する行の先頭に記号を入力
していくことができますし、「カンマで区切ら
れた部分を選択して移動してから次の行に移動
する」という処理をBというキーに割り当てて
おけば、Bを連打することによってCSVの桁
を入れ替えていくことができます。
　キーボードマクロは便利な機能ですが、キー
ボードマクロの定義開始と終了のための操作が
必要であるうえに、処理を正確に登録するのが
難しいという問題があります。たとえば前述の

編集作業の効率化

例の場合、「1つ下の行に移動する」処理を定義
に含めることを忘れてしまうと正しく動きません。

　キーボードマクロの機能をもっと簡単に使える
ようにするため、私はキーボードの繰り返し操作
から次の操作を予測して、自動的にキーボードマ
クロとして登録できるDynamic Macroというシス
テムを作って長年Emacsの上で利用しています。
　Dynamic Macroの原理は非常に単純で、

 「同じ編集操作を2回繰り返したあとでö+t
を押すと繰り返された操作が再実行される」

というものです。「二度あることは三度ある」と
言うように、同じことが二度あればもう一度あ
るのは世の中でごく普通のことです。二度実行
した操作をもう一度実行することもよくあるこ
とですので、この方法はたいへん効果的です。

Dynamic Macroの利用例

　Emacs上に実装したDynamic Macroの利用
例を示します。図2はEmacsで abcabcと入力
したところです。
　ここでö+tを押すと、Emacsのキー
操作履歴から「abcの入力」の繰り返しが検出さ
れ、キーボードマクロとして登録されて実行さ
れ、図3のようにもう1つabcが挿入されます。
　再度ö+tキーを押すと、図4のように
またabcが入力されます。

Dynamic Macro

 ▼図2　Emacsでabcabcと入力

 ▼図3　ö+tキーでもう1つabcが入力される

増井ラボノート

8 - Software Design

　これは単純な例でしたが、Dynamic Macroはもっ
と複雑な編集操作でも使うことができます。
　図5のようなテキストの上から2行を図6の
ように編集したとします。
　図6は、行頭に「puts "」を入力してから行末
に移動して「"」を入力して 次の行に移動すると
いう操作を2回繰り返した結果ですが、ここで
ö+tキーを押すと、この操作の繰り返
しが検出されてマクロ登録されて実行されるの
で、画面は図7のように変化します。
　さらにö+tキーを何度か押すと画面
は図8のように変化します。
　このように、複雑な操作であっても、同じ操
作を2回繰り返したあとではDynamic Macroで
何度でも連続実行できることになります。

Dynamic Macroの特徴

　Dynamic Macroは繰り返し操作を効率化す
るシステムですが、予測インターフェースの考

え方をキーボードマクロに応用したものだとも
いえます。ユーザの繰り返し操作を基にして次
の操作を「予測」し、それをキーボードマクロの
ように利用できるからです。予測と言っても繰
り返し操作からの「予測」ですので、誤った予測
をしてしまう可能性はほとんどありません。
　キーボードマクロと比較すると、Dynamic

Macroには次のような利点があります。

・使うキーがö+t1つだけである
・定義の開始と終了を正確に指定する必要がない
　→繰り返し操作中のどこでö+tを押

しても操作が再実行される
・操作を行ったあとで繰り返し実行を指示できる
　→普通のキーボードマクロを利用する場合、

これから繰り返し操作を行うぞ、と意識し
て登録を開始する必要があるが、Dynamic
Macroの場合は操作のあとで繰り返しに気
づいて再実行させることができる

Emacsでの実装

　Dynamic Macroは最初はEmacsの上で実装
されました。Emacsでは (recent-
keys)という関数を使って、最近の
キー操作履歴を知ることができるの
で、ö+tが押されたときに、
この機能を使ってキー操作履歴を取
得し、繰り返し操作が見つかれば、
それをキーボードマクロとして登録
して実行すれば良いことになります。
　dmacro.elを改良したndmacro.el注2

というシステムもsnj14さんによって
公開されています。ndmacro.elでは 1,
2, 3 と入力したあとでö+t

を押すと4, 5, 6, ……のように、
連続する文字列を入力していくこと
ができます。

注2） https://github.com/snj14/ndmacro.el

 ▼図7　ö+tキーで入力補完
 ▼図8　ö+tキーを何度か
　　　押してみる

 ▼図4　ö+tキーでさらにもう1つabcが入力される

 ▼図5　Dynamic Macroで
　　　もっと複雑な編集操作

 ▼図6　テキストを編集してみる

https://github.com/snj14/ndmacro.el

NO.

8 - Software Design Apr. 2016 - 9

D y n a m i c M a c r o

Atomでの実装

　GitHubが開発しているAtomというエディタ
が最近プログラマの間で人気が出ています。
AtomはJavaScriptとブラウザ技術をベースに作
成されたモダンで高機能なエディタで、ユーザ
が自由にJavaScriptやCoffeeScriptで拡張機能
を作成できます。Atomの拡張機能を利用するこ
とによって、Atom上でもDynamic Macro注3を利
用できます（図9）。
　Atomには(recent-keys)のような履歴保存機
能は用意されていないので、addEventListener()
のような機能を使って、操作履歴を自力で覚え
ておくようにしています。

　予測インターフェースは便利なものですが、
あくまで「予測」ですので、システムの予測がユー
ザの意図と異なる可能性が常に存在します。ユー
ザが1, 2, 3, 1, 2, 3と入力したとき、ユーザ
が次に入力したいのが1なのか4なのかはユーザ
本人にしかわかりません。高度な予測を行おう
とすると、予測を間違える可能性が高くなりま
すし、複数の予測結果から希望するものを選択
する必要が出てくるかもしれませんから、機能
と使い勝手のバランスが重要になってきます。
　予測入力システムの場合、ユーザが入力した

予測インターフェースの
難しいところ

い単語が常に第一候補として提示されるわけで
はありませんが、欲しい単語が候補リストに含ま
れている可能性が高ければ、それほどユーザは
不満を感じません。一方、正しく予測されること
への期待が大きいのにもかかわらず、頻繁に間違っ
た予測が実行されてしまうようであれば、ユーザ
の失望が大きいため、予測システムの利用をあき
らめてしまうかもしれません。予測インターフェー
ス研究の歴史は長いにもかかわらず、最近まであ
まり利用されていなかったのは、こういう理由が
大きいと思われます。Dynamic Macroの場合、まっ
たく同じ操作を繰り返すだけですので間違った予
測が実行されることはほとんどないのですが、そ
れでも間違えることが皆無ではありません。もっ
と微妙な予測の場合は、システムが間違った予測
をしてしまうことは多いでしょう。
　Dynamic Macroのような予測機能は、実世界
のさまざまな場所で使える可能性があります。同
じ設定で2回動かしたらその設定を繰り返せる洗
濯機が売られていたことがありますし、同じフレー
ズを2回弾いたら何度も繰り返してくれるピアノ
があれば便利かもしれません。いろいろな予測
機能を有効に使うことによって、世の中の単調
作業を何でも効率化していきたいものです。ﾟ

注3） 今回のソフトウェアの公開場所
・Emacs版Dynamic Macro（https://github.com/masui/DynamicMacro）
・Atom版Dynamic Macro（https://github.com/masui/atom-dynamic-macro）

 ▼図9　Atomエディタのマクロ「atom-dynamic-macro」

　私は1980年代からEmacsを利用しており、その
上で20年以上Dynamic Macroを使い続けています。
Emacs以外のエディタも使ってみたい気持ちはあっ
たのですが、Dynamic Macroが使えないエディタの
利用は私には考えられないので、ずっとEmacsを使
い続けてきていました。最近 AtomでDynamic
Macroが動くようになったので、これからはAtom
を利用するようにしようかと考えています（この原
稿もAtomで書いています）。
　EmacsもAtomももともとプログラマ向けに開発
されたエディタですが、Atomは30年（!）後発なだ
けに、Emacsに比べると利用のハードルは低いです
し、GUI的な機能もしっかりしており、万人に勧め
られるものに進化しつつあります。これからは
Atom上で誰もが便利に使える他のツールの作成に
も挑戦したいと思っています。

「エディタと私」コラム

https://github.com/masui/atom-dynamic-macro
https://github.com/masui/DynamicMacro

宮原徹の

10 - Software Design

OSCは土曜日開催が
基本です

　オープンソースカンファレンス
（以下OSC）は全国各地で開催して
いますが、通常の開催ではオープ
ンソースのビジネスを行っている
企業と、ボランタリーに活動して
いるいわゆるコミュニティが一緒
になって展示やセミナーを行って
います。
　東京や京都といった規模の大き
な開催では金曜土曜と2日間の開
催ですが、ほとんどは1日開催で
す。これは、参加対象となるエン
ジニアのみなさんが平日に仕事を
抜け出して、あるいは有休を取得
して参加するのが難しいという事
情を鑑みてのことです。
　そのため、出展している企業の
みなさんには休日出勤をしていた
だいていることになり、人員のア
サインなどにご苦労をおかけして

いることになり申しわけないです。
　また、「子供の行事と重なって
……」という理由で参加いただけな
いこともあり、なかなか開催日程
を決めるのも難しいなあといつも
感じています。今のところは最大
公約数としての土曜日開催（あるい
は祝日開催）というのが定着してい
ます。

ビジネスのための
OSC.Enterprise

　一方で、「ちゃんとビジネスとし
て平日参加できるよ、むしろ土曜
日に参加するのは難しいよ」という
声も一定数あります。このような
ご要望にお応えするため、ビジネ
ス中心、企業中心での開催となる
「OSC.Enterprise」を別シリーズと
して東京と大阪で開催しています。
東京は2015年12月9日（水）、大阪
は2016年1月29日（金）に開催さ
れました。

　ビジネス向け開催というだけ
あって出展するのはほとんどが企
業ですが、LibreOfficeやCMSな
ど、多少ビジネス色があるコミュ
ニティも出展しています。それで
も、全体的な雰囲気は文化祭のよ
うな普段のOSCに比べると、スー
ツ着用率も上がりますし、いわゆ
るビジネスイベントに近いものに
なります（写真1、2）。これはこれ
で、オープンソースが着実にビジ
ネスで利用されるようになってい
るということを見える化するため
には大事なことだと思っています。
　平日に開催するだけでなく、会
場選びも少しビジネス寄りにして
います。東京は渋谷駅から徒歩数
分の貸しホール会議室、大阪もJR

大阪駅と空中歩道でつながったビ
ル内の貸し会議室と、便のよい場
所を選んでいます。普段の開催が
大学や専門学校、公共施設などを
利用しているのに比べると、来場

一般向け／ビジネス向けのOSC第2回

 ▼写真1　 OSC.Enterprise大阪。ビジネス向けなので
スーツ多めです

 ▼写真2　 懇親会はなかったので打ち上げに串揚げです。
ソース二度付け禁止

宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

10 - Software Design Apr. 2016 - 11

R e p o r t

一般向け／ビジネス向けのOSC第2回

しやすさは格段に上がります。
　普段の開催も交通の便のよいと
ころにしたいのはやまやまですが、
OSCは広い展示スペースとたくさ
んのセミナー会場が必要になるた
め、そのような場所は学校の校舎
などでないと見つけられないのと、
もし条件に合う会場があったとし
ても利用料が高過ぎるという悩ま
しい問題があります。
　来場者アンケートに「会場が遠
い」と書かれることも多いのです
が、そういう事情があるのです。
とくに都心部での開催は一度早稲
田大学の校舎をお借りして開催し
たのですが、やはりスペースが不
足して廊下を歩くことすらできな
いという状態でした。どこかよい
会場があれば、教えてもらえると
うれしいです。

OSC浜名湖は会場の
一体感が魅力

　一方で、コミュニティ中心の開
催となる小規模な開催も独自の魅

力があります。2016年1

月23日（土）に開催され
たOSC浜名湖は、浜松
市市民協働センターとい
う公共施設のギャラリー
スペースを借りて開催さ
れました。ギャラリーと
いうだけあって、仕切り
のない広いスペースで
す。そこにスクリーンと
プロジェクター、客席を
セミナースペースとして
配置し、それをL字に囲むように
展示スペースとして机を配置しま
す。間に遮るものがありませんの
で、展示スペースにいる人もセミ
ナーの様子を見聞きできます。通
常の開催ではセミナー会場は別で
すから、セミナー開催中は展示ス
ペースがガラーンとしてしまうこ
とがほとんどですが、このような
一体化した会場だと常に賑やかな
感じになります（写真3）。
　もちろん、セミナー中に展示ス
ペースでの話し声や、ときには笑

い声なども聞こえてきてしまうの
は難点ですが、セミナーも1つだ
け、参加者も100名程度の開催規
模であれば深刻な問題にはならな
いで済んでいるようです。
　同じようなスタイルで昨年は新
潟でも開催しましたし、今後未開
催地域での開催はこの展示セミ
ナー一体型のスタイルか、OSunC

としてもっとカジュアルに開催す
るかのいずれかの方法で全国展開
していけそうです。s

 ▲OSC浜名湖懇親会。参加者が多過ぎてギューギュー詰めです
 ▲OSC浜名湖前夜祭。マインシュロスのビー
ルで乾杯！　浜松の杉本さんと

 ▲写真3　 2015年ゆるキャラグランプリで優勝
した「出世大名家康くん」も来場

前夜祭から懇親会まで
　大盛り上がりの浜松

　「浜松といえばマインシュロス」というぐらい、地ビー
ルが美味しい店があります。今回はOSC当日が貸
し切り営業だったため、有志で前夜祭を開催しまし
た。ドイツスタイルのビールや店内で大盛り上がり
でしたが、本番は翌日なのでほどほどでお開き。

　OSC浜名湖開催後の懇親会は、30名席に38名を
詰め込み身動きが取れないぐらい盛況でしたが、全
国の地酒が飲み放題という素敵な店でした。静岡の
地酒を飲み比べたり、東北地方の地酒を飲み比べた
り。その後、2次会、3次会と、浜松の夜は更けて
いくのでした。

12 - Software Design

　この連載のタイトルは、「なんでもネットにつ
なげちまえ道場」なのに、まだネットにつなげる
話がまったく出てきていませんでしたね。今回
は、mbed LPC1768についているEthernetイン
ターフェースの話をしてみたいと思います。

　LPC1768というマイコンには、Ethernet

MACが付いています。しかし、マイコンにその
ままRJ-45のコネクタを接続できるわけではあ
りません。LPC1768に内蔵されているのは、
Ethernetのうち、MAC（Media Access Control）、
メディアアクセス制御を行う部分までです。
EthernetのRJ-45コネクタとMACとの間には、
パルストランスという部品と、PHYと呼ばれる
チップが必要です。
　PHYは、OSI参照モデルでも登場する名前で
す。Physical layer（物理層）の頭文字を取って、
PHYと呼ばれています。PHYは物理層を担当

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

Ethernetにつないでみる第
10
回

し、EthernetのMACアドレスもPHYのチップ
に記録されています。mbed LPC1768には、
DP83848JというPHYのチップ（写真1）が搭載
されています。
　MACとPHYの接続インターフェースには、
よく使われるMII（Media Independent Interface）
という規格があります。LPC1768のMACには、
RMII（Reduced Media Independent Inter face）
というMIIの信号線を減らした規格のインター
フェースが付いていますので、このRMIIで
LPC1768とDP83848Jが接続されています。
　パルストランス（写真2）は、LANケーブルを
通じてパルス信号を伝送する役割と、LANコ

ネクタとマイコンボードの絶縁をして機器内

部の回路を守るという役割をしています。RJ-45

コネクタにパルストランスを内蔵した製品もあ
ります。先述のように、mbed LPC1768には
PHYまでが搭載されていますので、あとはパル
ストランスを用意すればEthernetに接続でき

ます。
　mbedアプリケーションボードには、パルスト

Ethernet！！！

RMIIってなに？

 ▼写真1　PHYのチップ ▼写真2　パルストランス

12 - Software Design Apr. 2016 - 13

Ethernetにつないでみる 第
10
回

ランスを内蔵したRJ-45コネクタが付いてい

ます。mbedアプリケーションボードをお持ち

の方はこれを使うのが手っ取り早い方法でしょ
う。あるいは、スイッチサイエンスの「mbed

用Ethernet接続キット注1」を使うと、写真3、4
のようにブレッドボードの上で手軽にmbedを
Ethernetにつなげられます。

　mbedのTCP/IPスタックには、lwIP（A Light

weight TCP/IP stack）注2が採用されていま

す。lwIPは、メモリが数十KBといった組み込
みシステム向けに設計された、オープンソース
のTCP/IPスタックです。mbedでは、Ethernet

Interfaceというライブラリから参照されている、
lwip注3というライブラリが使われています。
　lwIPはトランスポート層までを担っているの
で、HTTPなどのアプリケーション層を扱うた
めのライブラリもmbedには存在します。HTTP

Client注4というものです。アプリケーション層
のライブラリには、MQTT注5や、NTPClient注6

などがあります。

　では、mbed LPC1768のEthernetインター
フェースを使って、HTTP通信をしてみましょ
う。サンプルプログラムのHTTPClient_Hello

World注7を自身のオンラインコンパイラにイ

ンポートします（図1）。このとき、「Update all

libraries to the latest revision」にチェックを入
れておいてください。
　mbedのライブラリやコードのホスティング機

注1） http://ssci.to/555 （514円）
注2） http://savannah.nongnu.org/projects/lwip/

注3） https://developer.mbed.org/users/mbed_official/code/
lwip/

注4） https://developer.mbed.org/users/donatien/code/
HTTPClient/

注5） https://developer.mbed.org/teams/mqtt/code/MQTT/

注6） https://developer.mbed.org/users/donatien/code/
NTPClient/

注7） https://developer.mbed.org/users/donatien/code/
HTTPClient_HelloWorld/

能には、バージョン管理が付いていますが、プ
ログラムやライブラリどうしのバージョン依存
性を解決するしくみがありません。このため、
サンプルプログラムなどをそのままインポート
した状態では動かないことがあります。これは、
ユーザがそれぞれ開発をしているmbedにありが
ちな問題でした。現在開発が進められている
mbed OSのパッケージマネージャであるyotta

lwIP

なにはともあれ通信してみる

 ▼写真3　 mbed用Ethernet接続キット（組み立て済
み）

 ▼写真4　Ethernet接続キットの接続例

 ▼図1　サンプルプログラムのインポート

http://ssci.to/555
http://savannah.nongnu.org/projects/lwip/
https://developer.mbed.org/users/mbed_official/code/lwip/
https://developer.mbed.org/users/donatien/code/HTTPClient
https://developer.mbed.org/teams/mqtt/code/MQTT/
https://developer.mbed.org/users/donatien/code/NTPClient/
https://developer.mbed.org/users/donatien/code/HTTPClient_HelloWorld/

14 - Software Design

では、こういったライブラリどうしのバージョ
ン依存を整理するしくみが取り入れられてい

ます。
　ライブラリを最新版にしてサンプルプログラ
ムをインポートすると、Warningが出るものの、
ビルドできました。サンプルプログラムでは、
17行目を、

int ret = http.get("http://mbed.org/media/ｭ
uploads/donatien/hello.txt", str, 128);

として、HTTPのGETメソッドでアクセスを
しています。こうしてmbedでは簡単にHTTP

で通信を行うことができます。ちなみに、この
サンプルプログラムが作られたのは少し前です
ので、アクセスをするように指定しているURL

が古くなってしまっています。このURLにアク
セスすると「HTTPステータスコード 301、
Moved Permanently」が返ってくるのですが、ラ
イブラリにはWebブラウザとは異なりステータ
スコードを処理して再度アクセスをする機能は
実装されていません。ここでは、新しいURLで
ある「http://developer.mbed.org/media/
uploads/donatien/hello.txt」にコードを修
正してください。すると、正常にアクセスでき
ます。
　mbed LPC1768でとくに指定をせずに
printf()をすると、mbedに搭載しているUSB-

UARTブリッジにつながっているUARTから、
「9,600bps、8bit、パリティなし、ストップビッ
ト1」でテキストメッセージが出力されます。お
手持ちのシリアルターミナルをこの設定にして、

mbed LPC1768のUSBポートを開くと、上記
のメッセージを確認できます。

　HTTPClient_HelloWorldをインポートする
と、ワークスペースのツリーは図2のようになっ
ていて、mbedライブラリやEthernetInterface

ライブラリ、HTTPClientライブラリとともに
mbed-rtosというライブラリがインポートされ
ていることが確認できます。
　mbed-rtosは、mbedのRTOS（Real-time ope

rating system）です。RTOSは、組み込みシス
テムの限られたリソースの中で、資源管理を行
うソフトウェアです。具体的には、mbed-rtos

をインポートすることで、Thread、Mutexや
Semaphore、Queueなど、並列処理をするのに
必要であろう機能を使うことができるようにな
ります。mbedのRTOSについて詳しくは、
https://developer.mbed.org/handbook/
RTOSを参照してください。
　mbed OSも同様にRTOSですが、uVisorと
いったセキュリティ機能が追加されています。
uVisorは、Cortex-MについているMPU（メモ
リ保護ユニット）を使うなどして、ACL（Access

Control Lists）にしたがって入出力やメモリア
クセスを制限するといった資源管理を行うもの
です。今のところ、以前から提供されている
mbed SDK 2.xで説明をしている本連載ですが、
mbed OSが一般的になりつつあるタイミングで
mbed OSベースの記事に移行したいと考えてい
ます。

　ネットワークにつなげるとなると、Ethernet

以外の手段も検討したくなりますよね。mbed

LPC1768はUSBホストになることができるの
で、USBのWi-Fiインターフェースを接続した
くなるのですが、筆者の知る限りUSBでWi-Fi

を接続するライブラリは公開されていません。
　mbedをWi-Fiに接続するには、「ムラタ 無線

RTOS

 ▼図2　ワークスペースのツリー ほかの接続手段

アプリケーション層

トランスポート層

ネットワーク層

リンク層

HTTP

TCP

IP

Ethernet

http://developer.mbed.org/media/uploads/donatien/hello.txt
https://developer.mbed.org/handbook/RTOS

14 - Software Design Apr. 2016 - 15

Ethernetにつないでみる 第
10
回

LANモジュール Type YD注8」や、ESP-WROOM-

02注9（写真5）、CC3000注10など、Wi-Fiのドラ
イバやサプリカント（Wi-Fiの認証技術をサポー
トするソフトウェア）が搭載されたWi-Fiモ
ジュールを使います。こうしたモジュールは、3

～5千円近くしたのですが、昨年にESP-

WROOM-02という安価なモジュールが出て、一
気に千円を切る価格で買えるようになりました。
　こういったモジュールは、UARTなどのマイ
コンに一般的についているインターフェースを
使って接続するように作られています。たとえ
ばESP-WROOM-02の場合は、モジュールで採
用されているマイコンである、ESP8266用のラ
イブラリ注11を使って接続します。サンプルコー
ドのESP8266_Testを見ると、mbedのUART

のピンを使って接続をしていることが確認でき
ます。
　ほかにも、最近話題のWi-SUNのインター
フェースもあります。Wi-SUNは、スマートメー
ター（通信機能が付いた新しい世代の電力計のこ
と）の通信を目的として、IEEE802.15.4gとい
う規格を元に作られた無線通信規格です。ROHM

注8） http://ssci.to/1919

注9） http://ssci.to/2341

注10） http://ssci.to/1695

注11） https://developer.mbed.org/components/ESP8266-01/

のBP35A1というモジュールが手軽に使えるの
で、筆者も試しに使ってみたことがあります（写
真6）。BP35A1は、サブギガと呼ばれる1GHz

よりも低い周波数帯で通信を行うモジュールで
す。IPv6のアドレスを使って通信をします。こ
のモジュールもUARTで手軽にマイコンと接続
できます。
　USBに接続することのできるインターフェー
スとしては、携帯電話網に接続する3Gモデム
があります。mbedのWebサイトで紹介されて
いるのはイギリスのVodafoneのK3770や
K3772-Zという3Gモデムです注12。数年前の話
ですが、筆者はこのライブラリを改造して、NTT

ドコモの3GモデムとMVNOのSIMカードを
使ってインターネット接続ができるようにして
いました。

　今回は、ネットワーク接続の手始めとして
HTTPを使ってみました。次は、IoTで使われ
る MQTT（Message Queue Telemetry Trans

port）を使って「なんでもネットにつなげちまう」
話をしていきたいと思います。s

注12） https://developer.mbed.org/cookbook/Vodafone
USBModem

まとめ

 ▼写真5　 ESP-WROOM-02ピッチ変換済みモ
ジュール《シンプル版》

 ▼写真6　BP35A1を試用してみた

http://ssci.to/1919
http://ssci.to/2341
http://ssci.to/1695
https://developer.mbed.org/components/ESP8266-01/
https://developer.mbed.org/cookbook/VodafoneUSBModem

16 - Software Design

Wi-Fiホームルータ
「Aterm WF1200HP2」

IEEE802.11ac規 格 のWi-Fiホ ー ム ル ー タ で す。5GHz帯、
2.4GHz帯ともに2本のアンテナを利用する2ストリームへ対応
し、5GHz帯で最大867Mbps、2.4GHz帯で最大300Mbpsの
高速通信ができます。また、「こども安心ネットタイマー」機能に
よって、保護者がスマホなどから、Wi-Fi接続するスマホやゲーム
機の端末ごとに、接続スケジュールを設定できます。
提供元 	NECプラットフォームズ　http://121ware.com/aterm

ヘッドマウント
ディスプレイ
「DN-13539」

スマホに表示させた、左右に2分割された「ステレオペア」仕様の
画像・動画を、立体映像として観られるヘッドマウントディスプ
レイです。軽い素材で、頭に負担がかかりにくい仕様です。対応
のスマホはディスプレイサイズが3.5〜6インチのもの。
提供元 	ドスパラ上海問屋　http://www.donya.jp

提供元 	パラゴンソフトウェア
	 http://www.paragon-software.com/jp

1名

3名

2名

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2016年4月17日です。プレゼントの
発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

Gitは「どういうものか」から具体的に「ど
う使うか」までしっかり学べる1冊。分散
型バージョン管理システムのしくみから基
本操作、ブランチの設計・運用、といった
チーム開発手法まで解説しています。

提供元 	翔泳社
	 http://www.shoeisha.co.jp

エンジニアのためのGitの教科書
河村聖悟 ほか 著

2名

ネットワーク運用管理業務を「定常業務」
「非定常業務」「Q&A対応」「トラブル対応」
の4つに分け、それぞれの作業の進め方や
技術ポイントを、図解を使った具体例を挙
げて説明しています。

提供元 	マイナビ出版
	 http://pub.mynavi.jp

ネットワーク運用管理の教科書
のびきよ 著

2名

Pythonを知り尽くした著者が、より良い
Pythonコードを書くために何をすべき
か、すべきでないか、なぜこれが良い方法
なのかをPythonの流儀に従って教えてく
れます。

提供元 	オライリー・ジャパン
	 http://www.oreilly.co.jp

Effective Python
Brett Slatkin 著

2名

読者プレゼント
のお知らせ

Sambaの基礎的な知識から、具体的な
シーン別のサーバ構築の実例を挙げて解説
した1冊。前書からは、最新Samba4に
対応し、Ubuntu環境、Windows10の対応
などの解説が追加されました。

提供元 	技術評論社
	 http://gihyo.jp

【改訂新版】サーバ構築の実例がわかる
Samba［実践］入門 髙橋 基信 著

2名

MacとWindowsが共存しているBoot
Camp環境（HFS/NTFS）で、空き領域を
相互に移動することで、両OS間のパー
ティション比率を変更できるユーティリ
ティソフトです。対応OSは、OS X El
Capitan/Yosemite/Mavericks/Mountain
Lion/Lion、Windows 10/8.1/7。

Paragon Camptune X

http://gihyo.jp/magazine/SD/
http://gihyo.jp
http://121ware.com/aterm
http://www.donya.jp
http://www.paragon-software.com/jp
http://www.shoeisha.co.jp
http://www.oreilly.co.jp
http://pub.mynavi.jp

やればできる ！ ワンランク上のプログラミング

今すぐ実践できる
良いプログラムの書き方

　書籍やマニュアルを読めば、文法や基礎的なアルゴリズムは学べますし、一応、動くプログラム
は書けるようになります。しかし、プロが書くレベルのプログラムには遠く及びません。
　プロはコードを書くとき、どんなところに気を配っているのでしょうか。「読みやすいか」「処理
効率はいいか」「その言語の慣習に沿っているか」「セキュリティのことを意識しているか」など、
その視点は書く人や使う言語によってさまざまです。
　そこで本特集では、5つの言語のそれぞれのスペシャリストに良いコードを書くためのポイントを
伝授してもらいます。彼らの視点を取り入れて、脱初心者、脱レガシープログラマをめざしましょう。

第 1 特 集

第 章  C言語 編

enum、配列、浮動小数点を駆使して差をつけよう
「より良いプログラム書きのヒント」� P.18

 Author 星野 香保子 　

第 章  Java 編

良いコーディングのさいしょの一歩� P.24
 Author 石田 真彩、長澤 太郎 　

第 章  JavaScript＋HTML＋CSS 編

再考 ！ 今どきのWebアプリ開発のベストプラクティス� P.54
 Author 青木 裕一 　

第 章  C# 編

言語機能の進化から学ぶ「良いコードの書き方」� P.33
 Author 岩永 信之 　

第 章  Ruby 編

お作法を意識して可読性や保守性を高めよう� P.44
 Author 伊藤 淳一 　

18 - Software Design

　春は新人教育の季節でもあり、プログラミン
グ言語の学習者が増えるそうです。学び始めの
ころからよいコードを書く習慣を身につけると、
プログラミングの上達も早いのではないでしょ
うか。
　本章では、C言語のよいコードを書くための
ちょっとしたコツをいくつか紹介します。内容
はおもに初級者を対象とした基本知識が中心に
なります。C言語の基本はだいたい知っている、
という方は復習用または新人教育用として目を
通していただければ幸いです。

プログラミング
上達のために

　プログラムで定数を扱うとき、列挙型（enum）
を使うとすっきりと記述できる場合があります。

enumでラクラク定義

　リスト1は、四季の区別を定義した例です。
実行すると「春が来た！」と表示されます。
　リスト1の①の部分では #defineを使って、
SPRING、SUMMER、AUTUMN、WINTER

のそれぞれに0から3の数値を割り当てていま
すが、この数値自体に特別な意味はありません。
このような場合、列挙型（enum）を使うとより
簡潔に書けます。
　enumを使うように書き換えたのがリスト2

の①の部分です。実行結果は、リスト1と同じ
です。enumによる定義では、名前を列挙する
だけで、最初の名前から順に0,1,2……と整数
が自動的に割り当てられます。

enumで数値を指定

　列挙型は、「=」記号を使うことにより、明示
的に値を指定することもできます。図1のよう
に書くと、SPRINGに1が定義され、以降は1ず
つ加算した数値が割り当てられます。指定でき
る数値は int型整数の範囲であり、図2のよう

enumを活用しよう

 ▼リスト1　#defineで定数を定義

#include <stdio.h>

#define SPRING 0 /* 春 */
#define SUMMER 1 /* 夏 */
#define AUTUMN 2 /* 秋 */
#define WINTER 3 /* 冬 */

int main(void) {
 int season = SPRING;

 if (season == SPRING) {
 puts("春が来た！");
 }
 return 0;
}

①

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

C言語は、プログラミングの学習者が最初に覚えることの多い言語です。学び始めのころからよい
コードを書く習慣は、上達への早道です。本章では、enum、配列、浮動小数点を題材に、初級
者向けによいコードを書くコツをお伝えします。新人さんの教育や、中級者の復習用として、気楽
にご一読ください。

C言語編

enum、配列、浮動小数点を駆使して 
差をつけよう「より良いプログラム書きのヒント」

第 章 1

 Author 星野 香保子（ほしの かほこ）

18 - Software Design Apr. 2016 - 19

に負数を指定することもできます。

　同じ性質のデータを連続してまとめて扱うと
きは、配列を使うと便利です。以降では、配列
に初期値のデータを入れたり、要素の数を求め
たりするための記述方法について説明します。

試験結果を集計する例題

　説明のために例題を考えてみます。ここに5

人の生徒が受けた試験の結果の点数データがあ
るとします。図3のように点数の範囲により3

段階のランク分けを行い、ランクごとの人数を
求めるプログラムを作ります。まずは、リスト

3のようになりました。実行結果を図4に示し
ます。

配列を宣言して初期値を入れる

　リスト3の②と③では、配列を宣言すると同
時にデータ（初期値）を入れています。「=」記号
に続けて中括弧「{ }」を書き、初期値として入
れる値をカンマで区切って記述します。tensu
と shukeiはどちらも int型の配列で、配列
tensuの要素数は5、配列shukeiの要素数は3

です。

配列を使った処理
配列の初期化をもっとスマートに

　リスト3の①で、NINZU（人数）は5と定義し
ているので、②は次のような記述と同じです。

int tensu[5] = { 63, 75, 48, 92, 66 };

　もし生徒の数が7人に増えたら、次のように
なります。

int tensu[7] = { 63, 75, 48, 92, 66, ｭ
70, 59 };

enum Season {
 SPRING = 1,
 SUMMER,
 AUTUMN,
 WINTER
};

数値を明示的に指定しない場合「手前の値
+1」の値が設定される
この例では、SUMMERは2、AUTUMNは3、
WINTERは4になる

 ▼図1　列挙型（enum）で数値を指定

 ▼リスト2　列挙型（enum）で定数を定義

#include <stdio.h>

enum Season {
 SPRING, /* 春 */
 SUMMER, /* 夏 */
 AUTUMN, /* 秋 */
 WINTER /* 冬 */
};

int main(void) {
 int season = SPRING;

 if (season == SPRING) {
 puts("春が来た！");
 }
 return 0;
}

①

enum Season {
 SPRING = -10,
 SUMMER,
 AUTUMN,
 WINTER
};

SUMMERは-9、AUTUMNは-8、
WINTERは-7になる

 ▼図2　enumは負数も指定可

各生徒の点数

配列 tensu
Aさんの点数
Bさんの点数
Cさんの点数
Dさんの点数
Eさんの点数

63
75
48
92
66

ランクごとの人数集計結果

配列 shukei
2
3
0

良の人数
可の人数
不可の人数

ランクごとに人数を集計

ランク
良
可

不可

点数
70 ～ 100点
40 ～ 69点
 0 ～ 39点

 ▼図3　点数のランクごとに人数を集計

enum、配列、浮動小数点を駆使して 
差をつけよう「より良いプログラム書きのヒント」

第 章 1C言語編

20 - Software Design

　もちろん上記のように記述してもよいのです
が、次のように書くこともできます。

↓5人のとき
int tensu[] = { 63, 75, 48, 92, 66 };
↓7人のとき
int tensu[] = { 63, 75, 48, 92, 66, ｭ
70, 59 };

　このように、「[]」の中に要素の数を指定し
なければ、コンパイラが自動的に「{ }」の中の
データ数分の配列を用意してくれます。

配列を0で初期化

　リスト3の③では配列のすべての要素を0で
初期化しています。この例のように配列の要素
の数が決まっていて、すべての要素を0で初期
化するときは、より簡単な書き方ができます。

int shukei[3] = { 0 };

　C言語の配列の初期化では、「{ }」の中に書
いた初期値の数が「[]」で指定した数に満たな
い場合、残りの要素は0で初期化されます。上
記の例ではshukei[3]と書いているのに「{ }」
の中身が1つですので、残りの2つ分は自動的
に0の値になるのです。

配列の要素数をsizeofで求める

　リスト3の④以降では、生徒の人数分繰り返
して集計処理を行います。④では、forループ
の繰り返し条件を指定するためにNINZU、つま
り5という数値を指定しています。しかし、こ
のように固定的な数値を使わなくても、配列
tensuの要素数さえわかれば済むはずです。
　sizeof演算子を使って次のように記述すると、
配列の要素数を求めることができます。

sizeof(tensu) / sizeof(tensu[0])
 ▼リスト3　配列を使う処理（改良前）

#include <stdio.h>
#define NINZU 5 /* 生徒数 5人 */

int main(void) {
 /* 各生徒の点数 */
 int tensu[NINZU] = { 63, 75, 48, 92, 66 };

 /* ランク毎の人数集計結果 */
 int shukei[3] = { 0, 0, 0 };

 int i;
 /* 生徒数分繰り返す */
 for (i = 0; i < NINZU; i++) {
 if (tensu[i] >= 70) { /* 70点以上？ */
 shukei[0]++;
 }
 else if (tensu[i] >= 40) { /* 40点以上？ */
 shukei[1]++;
 }
 else{ /* 40点未満 */
 shukei[2]++;
 }
 }
 /* 集計結果を表示する */
 printf("結果 良: %d人 可: %d人 不可: %d人\n",
 shukei[0], shukei[1], shukei[2]);
 return 0;
}

①

②

③

④

結果 良: 2人 可: 3人 不可: 0人

 ▼図4　実行結果（リスト3とリスト4）

　sizeof(tensu)は配列全体のバイト数
を、sizeof(tensu[0])は 1つの要素の
バイト数を取得できます。したがって「全
体のバイト数÷1要素のバイト数」を計
算することで、配列の要素数が求められ
るのです。このように書いておくと、の
ちに配列の要素数が変わっても手直しし
ないで済みます。それでは、ここまでの
改良点を反映したプログラムをリスト4

に示します。なお、sizeof演算子で求め
たサイズは、size_t型（符号なし整数型
の1つ）で返ります。そのため、カウン
タ変数iもsize_t型とすると、より適切
なコードになります（リスト4の①）。

　double型などの浮動小数点の数値を

浮動小数点は
ちょっとクセモノ？

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

20 - Software Design Apr. 2016 - 21

使って計算を行うと、場合によって期待した結
果が得られないことがあります。例を挙げて、
その対策方法について説明します。

計算がうまくいかない！

　リスト5は、0.0から2.0まで0.1ずつ増やし
た数を表示するプログラムです。①で、変数d
が2.0を超えたらループを終了させているので、
図5のような実行結果を期待しました。しかし、
実際には図6の結果となり、2.0が表示されま

誤差が発生していて、図7の2行目を見るときっ
かり0.1でないことがわかります。

浮動小数点をカウンタとして
使わない

　浮動小数点の演算は誤差が発生する場合があ
るため、意図した結果が得られないことがあり
ます。回数を数える目的としては、浮動小数点
ではなく整数を使うようにしてください。整数
を使うように書き換えたのがリスト7です。実
行結果は図5のようになります。

 ▼リスト4　配列を使う処理（改良後）

#include <stdio.h>

int main(void) {
 /* 各生徒の点数 */
 int tensu[] = { 63, 75, 48, 92, 66 };

 /* ランク毎の人数集計結果 */
 int shukei[3] = { 0 };

 size_t i;
 /* 生徒数分繰り返す */
 for (i = 0; i < (sizeof(tensu) / sizeof(tensu[0])); i++) {
 if (tensu[i] >= 70) { /* 70点以上？ */
 shukei[0]++;
 }
 else if (tensu[i] >= 40) { /* 40点以上？ */
 shukei[1]++;
 }
 else{ /* 40点未満 */
 shukei[2]++;
 }
 }
 /* 集計結果を表示する */
 printf("結果 良: %d人 可: %d人 不可: %d人\n",
 shukei[0], shukei[1], shukei[2]);
 return 0;
}

①

せん。なぜこのような結果になるの
でしょうか？
　調べるために、リスト6のように
変更してみました。①で小数点以下
を20桁表示するようにして、②で
ループ終了後の変数dの値も見てみ
ることにしました。実行すると、図

7のような表示結果になりました。

浮動小数点の誤差に注意

　図7の結果を見ると、きれいに0.1

単位ずつ増えていないことがわかり
ます。20回目の加算後の値が2.0を
超えたため、繰り返し処理がそこで
終了したのです。
　このような動作を理解するには、
浮動小数点の特性を知る必要があり
ます。浮動小数点の内部構造は環境
により異なりますが、すべての実数
を正確に格納できる方式ではありま
せん。0.1という数値も内部的には

 ▼リスト5　浮動小数点のカウンタ（正しく動かない例）

#include <stdio.h>

int main(void) {
 double d;

 /* カウンタが浮動小数点(正しく動かない例) */
 for (d = 0.0; d <= 2.0; d += 0.1) {
 printf("%.1f\n", d);
 }
 return 0;
}

①

 ▼リスト6　 浮動小数点のカウンタ
（正しく動かない例の調査）

#include <stdio.h>

int main(void) {
 double d;

 /* カウンタが浮動小数点(正しく動かない例のｭ
調査) */
 for (d = 0.0; d <= 2.0; d += 0.1) {
 printf("%.20f\n", d);
 }
 printf("ループを抜けた後\n%.20f\n", d);
 return 0;
}

①

②

enum、配列、浮動小数点を駆使して 
差をつけよう「より良いプログラム書きのヒント」

第 章 1C言語編

22 - Software Design

　C言語はバージョンアップが頻繁に行われる
言語ではありません。C言語の主な規格を表1

に示します。最新の規格は通称C11と呼ばれ
るものですが、この規格に完全に対応するコン
パイラは現時点で多くありません。

やっとC99が広まってきた

　GNUコンパイラ（GCC）やMicrosft Visual

C++などが数年前からC99の仕様を搭載し始
めたことにより、C99を使う機会は広がってき
ました。しかし、組み込みシステムなどの開発
では長年実績のあるANSI Cもよく使われてい
ます。以降では、C99以降の機能について一部
を紹介します。

C++形式のコメント

　C99以降では、「/*」と「*/」で囲む形式のコメ
ントに加え、「//」形式のコメントが使えます（リ

スト8の①)。「//」以降行末までがコメントと
して扱われます。

C言語は進化してるの？ 変数の宣言位置

　ANSI Cでは、関数の中で使う変数はブロッ
クの先頭で宣言する必要がありました。これは
C言語の常識とも言えるルールでした。しかし、
C99以降では、ブロックの途中で変数を宣言で
きます（リスト8の④）。また、forループ本体
で使う変数を for文の記述時に宣言できます（リ

スト8の③）。for文で宣言した変数は forルー
プ内でのみ有効となります。

gets関数は使わないで

　C言語の規格の話からは外れますが、gets関
数の非推奨について説明します。gets関数は標
準入力から1行分の文字列を取得してメモリに
格納する関数ですが、格納先メモリのサイズを
指定できないため簡単にバッファのオーバーフ
ローを引き起こしてしまうという問題がありま
す。したがってgets関数は使わずに、fgets関
数を代用することが推奨されています（リスト

8の②）。C11規格ではgets関数は廃止されま
した。代わりにgets_s関数が追加されています。
ただし、gets_s関数はオプション扱いでコンパ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

 ▼図5　 リスト5で期待した実行結
果（リスト7の実行結果）

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

 ▼図6　 実際のリスト5の
実行結果

0.00000000000000000000
0.10000000000000000555
0.20000000000000001110
0.30000000000000004441
0.40000000000000002220
0.50000000000000000000
0.59999999999999997780
0.69999999999999995559
0.79999999999999993339
0.89999999999999991118
0.99999999999999988898
1.09999999999999986677
1.19999999999999995559
1.30000000000000004441
1.40000000000000013323
1.50000000000000022204
1.60000000000000031086
1.70000000000000039968
1.80000000000000048850
1.90000000000000057732
ループを抜けた後
2.00000000000000044409

 ▼図7　リスト6の実行結果

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

22 - Software Design Apr. 2016 - 23

イラによっては実装されない場合もあります。

C99で追加されたそのほかの機能

　そのほかにも多くの便利な機能が追加されて
います。主なものを挙げると、新しい型（論理型、
複素数型など）の追加、可変長配列、数学ライ
ブラリ（math.h）の大幅な機能向上などです。

　本章では、C言語のプログラミングにおける
よい書き方や注意点などをいくつか紹介しまし
た。コードを書くときから、読みやすさを考慮
したり、不具合を作り込まないように意識した
りすることは大切です。そうすることで、デバッ
グ、テスト、保守などの作業も、より効率よく
進められるでしょう。ﾟ

終わりに

 ▼リスト7　整数のカウンタ（良い例）

#include <stdio.h>

int main(void) {
 int i;

 /* カウンタが整数（良い例）*/
 for (i = 0; i <= 20; i++) {
 printf("%.1f\n", i / 10.0);
 }
 return 0;
}

 ▼リスト8　C99の仕様を取り入れたコード

#include <stdio.h>

#define BUFSIZE 128 // これはコメントです

int main(void) {
 char buf[BUFSIZE];

 printf("入力してください -> ");

 if (fgets(buf, sizeof(buf), stdin) != NULL) {
 for (int i = 0; i < 3; i++) {
 printf("%s", buf);
 }
 }

 int a;
 a = 2;

 printf("a * a = %d\n", a * a);

 return 0;
}

①

②

④

③

規格 制定年
ANSI C 1989年
ISO C99 1999年
ISO C11 2011年

 ▼表1　C言語の主な規格

フリーのコンパイラでC言語を始めよう

　C言語のプログラムを動かすにはCコンパイラが
必要です。以下に、無償で入手可能なCコンパイ
ラをいくつか紹介します。なお、コンパイラの動
作環境、ダウンロード方法、インストール方法の
詳細については、各Webサイトを参照してください。

・Microsoft Visual Studio Express for Desktop
	 http ://www.visualstudio .com/products/
mt238358

・MinGW - Minimalist GNU for Windows
	 http://sourceforge.net/projects/mingw/

・Borland C++ Compiler 5.5
	 http://www.embarcadero.com/jp/products/
cbuilder/free-compiler

・Xcode（Mac App Storeから統合開発環境の
Xcodeを入手可能）

	 http://www.apple.com/jp/osx/apps/app-store/

　上記のリンク先は2016年2月時点の内容であり、
変更される場合があります。コンパイラのインストー
ル、プログラムのコンパイル／実行については、
自己の責任に基づいて行ってください。

enum、配列、浮動小数点を駆使して 
差をつけよう「より良いプログラム書きのヒント」

第 章 1C言語編

http://www.visualstudio.com/products/mt238358
http://sourceforge.net/projects/mingw/
http://www.embarcadero.com/jp/products/cbuilder/free-compiler
http://www.apple.com/jp/osx/apps/app-store/

24 - Software Design

　本章ではJavaにおける「良いコード」につい
て説明をしていきます。ここでは「良いコード
＝保守性の高いコード」と定義することにしま
す。保守性の高いコードとはどのようなコード
のことを言うのでしょうか。本章では、時間を
あけてコードを読んだときに「何を行っている
のか理解しやすいコード」「不具合を発見しや
すいコード」と定義し、進めていきます。
　「良いコード」を書くためには、コード1つ1

つの意味と意図をできる限り明確に表すことが
重要です。意味や意図が伝わらないまま不具合
改修や機能追加を行うと、新たな不具合が生ま
れる可能性が高くなってしまいます。しかしな
がら、システムが「良いコード」で書かれていれ
ば、たとえば運用中に不具合が発生した場合も、
スピーディな原因の解明と改修に貢献すること
ができるでしょう。
　「良いコード」のアプローチはさまざまありま
すが、今回はその中からいくつかピックアップ
してご紹介します。また、「良いコードの“書き
方”“考え方”」にフォーカスして解説を行うため、
全体を通して文法についての説明は最小限になっ
ています。もし出てきた文法がわからない方は、
別途文法について詳細が書かれた本などを参照

はじめに
してみてくださいね。

　適切なタイミングで必要な処理だけを書くこ
とは「良いコード」の重要なアプローチの1つで
す。この節では、「不要な処理をなくしていく
こと」「必要最小限のスコープで処理を実行し
ていくこと」の2つの視点から、変数について
考えていきます。

その初期化、必要ですか

　まずは「不要な処理をなくしていくこと」とい
う観点から変数の初期化について考えていきま
しょう。
　リスト1が最初のサンプルです。よく見てみ
るとevaluationは、必ず何かしらの値が入力さ

れます。一番最初に設定した空文字が使用され
ることはありません。つまり、このコードでは
evaluationの初期化は不要な処理であるといえ
ます。使われていない初期化処理は記述しない
ようにしましょう（リスト2）。
　今回はStringを例に挙げましたが、Listや
Mapなども同様で、使っていないインスタン
スの生成をしてしまっているコードを見かける
ことがあります。とくに、実際に変数の宣言を
するコードと代入するコードが離れた場所にあ

変数の初期化と変数の
スコープ

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

動くコードが書けるようになったら、次はコードの読みやすさを意識してみましょう。本章では、
変数や構造をほんの少し工夫することで、処理内容を明確にできる指針をいくつか紹介します。ま
た、ラムダ式やOptionalも適所に活用できればワンランクアップです！

Java編

良いコーディングの
さいしょの一歩

第 章 2

 Author 石田 真彩（いしだ まあや）、長澤 太郎（ながさわ たろう）

24 - Software Design Apr. 2016 - 25

る場合は不要な初期化を書きがちです。一度書
いたコードを見直すときには注意して確認する
と良いでしょう。

最小限のスコープ

　次は「必要最小限のスコープで処理を実行し
ていくこと」について考えてみましょう。先ほど、
変数の宣言とその変数へ代入をするコードが離
れているときに、不要な初期化が起こりやすい
と書きました。そもそもこの宣言と代入が離れ
た状態を改善することはできないか、リスト3

で検討してみましょう。
　countriesは①で変数の宣言をした後、②ま
で使用されません。使用されないのであれば使
用する②の直前で変数の宣言をしましょう（リ

スト4）。直前で宣言をすることで、不要な処
理の介入を防ぐことができます。保守時のコー
ドの理解のしやすさにもつながりますね。
　このように変数のスコープを最小限にとどめ
られるように考えることは、「良いコード」を書
くにあたりとても重要です。スコープが広くなっ
てしまうと、その分考えなければいけないこと
が増えてしまいます。もちろんすべてのコード
が今回の例のようにまとめられるわけではあり
ませんが、できる限り最小のスコープで変数を
利用するよう心がけましょう。

　この節は「コードを理解しやすくする」アプ
ローチの1つである「処理単位を短くする」こと
について考えていきます。コードが理解しやす
ければ後で保守するときも楽になりますね。

処理単位を小さく

　たとえば、500行のコードからなるクラスが
あったとします。そのクラスの中に1メソッド
しかなかったらどうでしょう。想像してみてく
ださい。メソッドの先頭から読み始めたものの、
なかなかメソッドは終わりません。やっと終わ
りにたどり着いたころには、メソッドの始めに
書かれていた内容なんて忘れてしまっています。
メソッドの始めに使用した変数の値をメソッド
の終わりで使用していたら、「この変数には何
が入っているんだっけ……？」となっても不思
議ではありません。
　では、この500行のコードが20個のメソッ
ドに分かれていたらどうでしょうか。各メソッ
ドに長短はありますが、おおむね20～30行く
らいになっているはずです。この程度のメソッ
ドの長さであれば、読む意欲も湧きますし、変
数の値を忘れることもないでしょう。
　長いメソッドを読むと心が折れそうになる原

メソッドを短く保とう

 ▼リスト1　不要な初期化があるコード

String evaluation = "";
if (score > border) {
 evaluation = Judgment.getSuccess();
} else {
 evaluation = Judgment.getFailure();
}

 ▼リスト2　不要な初期化のないコード

String evaluation;
if (score > border) {
 evaluation = Judgment.getSuccess();
} else {
 evaluation = Judgment.getFailure();
}

 ▼リスト3　広いスコープ

List<Country> countries; ……①

String continent = getContinent(country.getName());
dialog(continent);

countries = getCountries(continent); ……②

 ▼リスト4　リスト3のスコープを最小限にしたコード

String continent = getContinent(country.getName());
dialog(continent);

List<Country> countries = getCountries(continent);
 ↑使う個所で宣言する

良いコーディングの 
さいしょの一歩

第 章 2Java編

26 - Software Design

因として、「その処理のゴールが見えない」とい
うことが挙げられます。長いメソッドは、どこ
まででひとまとまりなのかを再考しましょう。
ひとまとまりごとにメソッドにすることで、そ
の処理のゴールが見えやすくなります。たとえ
ば、for文の中で ifを使った分岐をしている場
合や、if文の中で長く複雑な処理をしている場
合はメソッド化を検討してみるべきです。
　本来ならば、長いメソッドの例を使いたいの
ですが、記事の分量制限もあるため今回は短い
コードを例にします（リスト5）。しかし、ここ
で示した手法は、長いメソッドを分割する場合
でも活用できるはずです。一緒に「ひとまとまり」
を探す練習をしてみましょう。
　リスト5のメソッドの中は次の処理に分ける
ことができます。

・名前を出力する処理
・今住んでいる国を判断し、文言を出力する処理
 - 今住んでいる国を判断する処理
 - 判断結果を出力する処理

　「自己紹介を出力する処理」として1つにまと
まっていたコードを、4つの処理に分けること
ができましたね。ではこれをそれぞれメソッド
にしてみましょう（リスト6）。
　今回は短いコードを分割しただけなので、た
だコードが長くなっただけのように見えます。
しかし、処理のまとまりを見つけ、メソッド化
することでコードの理解しやすさは向上します。
処理のまとまりによっては、クラス化すること
も検討してみるとよいでしょう。
　ちなみに筆者はだいたい10～20行、長くて
も30行に収まるよう実装を行っています。あ

くまで個人の例になります
が、参考にしてみてくださ
い。「この処理は分けられ
るかな？」という視点を持
ち続けながらコードを書く
ことが重要なのです。

 ▼リスト5　メソッド分割前

public void printSelfIntroductions(Profile profile) {
 System.out.println("私は" + profile.getName() + "です。");

 if (profile.getStay() == Country.JAPAN) {
 System.out.println("日本に住んでいます。");
 } else {
 System.out.println("日本以外の国に住んでいます。");
 }
}

 ▼リスト6　メソッド分割後

public void printSelfIntroductions(Profile profile) {
 //名前を出力
 printName(profile);
 //今住んでいる国を出力
 printStay(profile.getStay());
}

private void printName(Profile profile) {
 System.out.println("私は" + profile.getName() + "です。");
}

private void printStay(Country country) {
 System.out.println(getStayMessage(country));
}

private String getStayMessage(Country country) {
 return (country == Country.JAPAN)
 ? "日本に住んでいます。"
 : "日本以外の国に住んでいます。";
}

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

26 - Software Design Apr. 2016 - 27

　変数の値が変わらないことは良いことです。
なぜなら、値が変更されないことを知っていれ
ば、その変数を注意深く観察する労力が軽減で
きるからです。逆に言うと、変数が変更される
可能性があると、注意深く読み進める必要があ
るということです。メソッドを読み進める際に、
あるローカル変数が複数個所で参照されること
はよくありますが、それぞれの場所で異なる値
になっていたら、理解するために時間がかかり
ますし、誤りの元になります。
　ここで主張したいことは、ローカル変数に
finalを付けて変更を許可しないようにすること
です。これは変数への再代入をしないというこ
とと同じ意味です。finalが付いたローカル変数
は再代入される可能性がないので、複数個所で
参照されていても、どこでも常に同じ値です。
　リスト7はログイン処理を行うメソッドです。
ログイン IDを取得し、アカウント情報を取得
します。その後パスワードを取得し、該当アカ
ウントのパスワードと照合します。最後に、自
動ログインを有効にするかどうかのフラグを文
字列として取得し、アカウント情報に結びつけ
ています。
　このコードの中で、変数sは3度代入されて
います。リスト7の①のログイン IDを取得す
るために参照される個所と、リスト7の②のパ

finalな変数を検討する
スワード照合で参照される個所では、同じ変数
sでも値が異なります。コードを読む際には、
都度「s =」のように代入している部分を確認す
る必要があることを意味します。
　このコードから再代入を排除したバージョン
（リスト8）を見てみましょう。変数 loginId、
password、autoLoginEnabledを導入し、それ
ぞれ一度だけ代入を行っています。また、再代
入がされ得ないことを表明するために finalを
付けています。loginIdは最初に代入された値
から変更されません。このメソッド内のどこで
loginIdを参照しても、常に同じ値です。
　原則として finalなローカル変数を定義する
ようにしましょう。しかし、リストの各要素を
走査して1つの値にまとめあげるような処理（た
とえば整数リストから合計を計算するような処
理）では、変数への再代入を受け入れるべきです。
メソッドの再帰呼び出しをうまく使えば、再代
入を排除することは可能な場合もあります。し
かしこの場合はスタックオーバフローの危険性
があるため注意が必要です。
　コードを読み進めるうえで、変数の値が何回
も変更されることは、考慮すべきことが増えて
可読性低下につながります。再代入を避けて、
シンプルなコードに保ちましょう。finalを変
数に付けることで、再代入が不可能な変数であ
ることを保証できます。

 ▼リスト7　ログイン処理を行うメソッド

private LoginResult login() {
 String s = getLoginId();
 Account account = accountRepository.ｭ
findByLoginId(s); ①
 if(account == null)
 return LOGIN_ID_NOT_FOUND;
 s = getPassword();
 if(notEquals(s, account.getPassword())) ②
 return WRONG_PASSWORD;
 s = getAutoLoginEnabled();
 account.setAutoLoginEnabled(s.equals(AUTO_ｭ
LOGIN_ENABLED));
 return SUCCESS;
}

 ▼リスト8　再代入を排除しfinalな変数に

private LoginResult login() {
 final String loginId = getLoginId();
 Account account = accountRepository.ｭ
findByLoginId(loginId);
 if(account == null)
 return LOGIN_ID_NOT_FOUND;
 final String password = getPassword();
 if(notEquals(password, account.ｭ
getPassword()))
 return WRONG_PASSWORD;
 final String autoLoginEnabled = ｭ
getAutoLoginEnabled();
 account.setAutoLoginEnabled(autoLoginｭ
Enabled.equals(AUTO_LOGIN_ENABLED));
 return SUCCESS;
}

良いコーディングの 
さいしょの一歩

第 章 2Java編

28 - Software Design

　Java SE 8の大きな変更点の1つにラムダ式
があります。「->」という記法や今までのJava

と異なる考え方にとまどっている人も多いので
はないでしょうか。最初はとっつきにくいかも
しれませんが、慣れればコード作成の強い味方
になります。ラムダ式を使って、すっきりとし
たコードを目指しましょう。

ラムダ式

　ラムダ式は関数型インターフェースを関数と
して扱える記法です。関数型インターフェース
とは、実装が必要なメソッドが1つだけである
インターフェースです。既存のライブラリにも、
すでに関数型インターフェースは存在していま
す。たとえば java.lang.Runnableインターフェー
スや java.util.Comparatorインターフェースが
これに該当します。
　ラムダ式の記述は次のとおりです。

［様式例1　ラムダの式］

(引数) -> {実行したい処理}

　引数は2つでもいいですし、引数なしでも構
いません。引数が1つの場合は小かっこ()は
省略しても構いません。同様に、実行したい処
理が1つなのであれば中かっこ{ }は省略して
もよいです。

ラムダ式を使ってみよう
［様式例2　引数が2個の場合］

(x, y) -> {実行したい処理}

［様式例3　省略できるかっこ（引数が1個の場
合・実行したい処理が1つの場合はそれぞれかっ
こを省略できる）］

引数 -> 実行したい処理

ラムダ式に書き換えてみよう

　まずはJava SE 7までのRunnableインター
フェースのコード（リスト9）を見てみましょう。
匿名クラスで実行処理が記述されており、冗長
な印象を与えますね。
　では、リスト9をラムダ式にしてみましょう。
①にあるRunnableインターフェースに渡して
いる引数と②にある実行したいメソッドを使っ
てラムダ式を作ります。Runnableインター
フェースの場合はインターフェースに渡す引数
が存在しないため、空の小かっこ()を記述し
ます（リスト10）。
　newや@Overrideなどがなくなり、だいぶ
すっきりとし、かつ本当にやりたい処理だけが
残りましたね。

for文を書き換えてみよう

　Java SE 7まではインターフェースにメソッ
ドを追加することはできませんでしたが、
Java SE 8から追加できるようになりました。
この処理を利用して、コレクションや配列に使

 ▼リスト9　今までの実装

 ①（下線部）
Runnable threadTask = new Runnable() {
 @Override
 public void run() { ②（太字部）
 System.out.println("スレッドを実行します");
 }
};

 ▼リスト10　ラムダ式を使った実装

Runnable threadTask = () -> {System.out.println("スレッド実行します");};
 ①' ……リスト9の①に相当 ②' ……リスト9の②に相当

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

28 - Software Design Apr. 2016 - 29

用されている Iterableインターフェースには、
forEachメソッドが追加されています。forEach

メソッドはラムダ式を使うことで for文処理を
記述することができます。
　リスト11のラムダ式は、引数が1つ・実行
したい処理が1つのパターンです。様式例3の
パターンで記述されています。複雑な処理条件
が発生する場合などはほかの実装方法をするべ
きです。しかし、たとえば今回のようにList

全体に同じ処理を1つ行う程度の内容であれば、
forEachメソッドの利用を検討できます。
　このほかにもStream APIなどでラムダ式は
多用されます。覚えておいて損はない文法です。
今までJavaをやってきた方で、ラムダ式の考え
方にとまどっているのであれば、まずは今まで
の書き方をラムダ式に書き換える練習から始め
るととりかかりやすいです。ラムダ式を使い、
よりシンプルなコードを保てるようにしましょう。

Optional

　Stringや Integerなど、Javaで使える「型」
にはnullを設定することができます。しかし、
場合によってはNullPointerExceptionなどの
システムエラーを引き起こしてしまいます。
そのため、今までは@NotNullを使用したり、
値のチェック処理を都度実装したりしていま
した。
　Java SE 8で導入されたOptionalは、null

Optionalを使った
nullとの付き合い方

を取り扱わないようにしようという考え方を持
つクラスです。オブジェクトを1つだけ保持で
きるコンテナであり、保持したオブジェクトを
別のオブジェクトに置き換えることはできませ
ん。今までは、メソッドに何も返すものがない、
つまり値が存在しないということを表現するた
めにnullを返していました。しかしOptionalを
使用することで、nullを一切使用せずに値が存
在しないことを表現できます。たとえば、その
メソッドの返り値がOptionalであったならば、
その返り値は「nullではない」ということを明示
できるのです。
　想像してみてください。値が存在しないこと
があるメソッドの返り値がすべてOptionalで
返されます。また、必ず値が返されるメソッド
の返り値はOptional以外の型（StringやInteger）
が返されます。そんなシステムであれば、メソッ
ドを呼び出す側でnullが入ってくるか否かを気
にする必要はありません。気を付けなければい
けないことが減ることは、コードの読みやすさ
や理解のしやすさにつながります。
　実際にOptionalを使う例を見てみましょう（リ

スト12）。

 ▼リスト11　拡張 for文の書き換え

 今までの書き方
for (Profile profile : profiles) {
 ③ ④
 System.out.println("名前は" + profile.getName());
 ⑤
}

 forEachメソッドを使った書き方
 profiles.forEach(profile -> System.out.println("名前は" + profile.getName()));
 ④' ③' ⑤'

 ▼リスト12　Optionalを使用したコード例

interface User {
 Optional<String> getAddress();
}

private void showUserAddress(final User user) {
 Optional<String> address = user.getAddress();

 showDialog(address);
}

良いコーディングの 
さいしょの一歩

第 章 2Java編

30 - Software Design

　showUserAddressメソッドから呼び出した
とき、getAddressメソッドからは必ず値が返
るということをコード上に明示できたことにな
ります。nullが返えら「ない」ことをコードとし
て示しておくことは、システムの仕様をよく知
らない人がコードリーディングするにあたり、
貴重な情報となります。
　リスト12では、値が存在しない可能性があ
る値をOptionalで表しました。必ず何かしら
の値が返却されると決まっている（わかってい
る）値についてはOptionalにする必要はありま
せん。すべての値をOptionalにすればいいと
いうわけではないのです。
　リスト13では、addressのみOptionalになっ
ています。これはすなわち、firstNameと last

Nameは必ず値が入るものであり、addressは
値が設定されない可能性があるということを示
しています。値が設定されない可能性がある値
のみOptionalを使用することで、想定される
値の形（nullが設定されることがあるのか否か）
を伝えることができるのです。

Optionalの生成

　Optionalには3つのファクトリメソッドがあ
ります。値が存在しないことを表現する
Optionalを取得する場合はemptyメソッドを使
用します。値を保持したOptionalを生成した
い場合はofメソッドを使用します。ofメソッ

ドの引数にnullが指定されてしまった場合は
NullPointerExceptionが発生します。そして3

つめのofNullableメソッドは、ofメソッドと似
ていますが、nullを引数に取る点で異なります。
ofNullableメソッドの引数にnullが渡された場
合は、空のOptionalオブジェクトを返します。
すなわちemptyメソッドと同じ結果となります。
　たとえばリスト14のように、nullである可能
性があるuserOrNullをOptionalに包むことが
できます。

Optionalの利用

　Optionalの使い方について見ていきましょう。
Optionalに用意されている isPresentメソッド
は、Optionalの値の有無を確認できます。また
getメソッドでは、Optionalの値を取得するこ
とができます。この2つのメソッドを使うと、
リスト15のように「値が存在した場合にのみ処
理を実行する」という実装をすることができま
す。
　しかしgetメソッドは、値が存在しない場合
にNoSuchElementExceptionを投げるので注意
が必要です。値がないことによる例外の発生を
防ぎたいためにOptionalを利用するにもかか
わらず、例外が発生してしまう可能性のある
getメソッドを使うことは、今まで説明してき
たOptionalを使った良いコードの概念を覆す
恐れがあります。そのため、できれば利用を避
けたいメソッドです。
　そこで利用をお勧めしたいのが、ifPresent

メソッドです。ifPresentメソッドを使うと、
リスト15の処理と同じ処理をgetメソッドを使
わずに実装できます（リスト16）。
　getメソッドも使用せず、if文を使うことも

 ▼リスト13　Optionalの使い分け

public class User {
 String firstName;
 String lastName;
 Optional<String> address;
}

 ▼リスト14　生成

User userOrNull = findUser();
Optional<User> optionalUser = (userOrNull != null)
 ? Optional.of(userOrNull)
 : Optional.empty();
// ofNullableを用いて同じことができる
// Optional<User> optionalUser = Optional.ofNullable(userOrNull);

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

30 - Software Design Apr. 2016 - 31

ないのでリスト15より良いコードと言えます。
Optionalに値がある場合にのみ処理を実行した
い場合は利用を検討してください。
　このほかにもOptionalにはmapメソッドや
flatMapメソッドなどが用意されています。用
途に応じて使い分けてみてくださいね。今まで
Optionalを知らなかった方も、ぜひ用途に応じ
てOptionalを使って「良いコード」を作ってい
きましょう。

　Java SE 5で導入された列挙型（enum）は、同
じカテゴリに属した複数の定数を1つのまとま
りとして扱うことができるしくみです。この列
挙型を適切に使うことにより、後でコードを読
む人にそのコードが持っている意味が伝わりや
すくなります。

列挙型に置き換えてみよう

　「同じカテゴリに属した複数の定数」とはどん
な定数を指すのでしょうか。たとえば、リスト

17のようなコードを挙げることができます。
　この定数は、3つとも天気というカテゴリを
表す定数です。リスト17のような定数が定義
されていた場合、利用方法としてはリスト18

のようなコードが想定されます。
　リスト18の良くない点は、処理の判定が数
値で行われていることです。元々はただの数字
であり、意味を持っていません。数字に定数名
で半ば無理やり意味を持たせて判定を行ってい
ます。本来ならば天気が晴れなのか曇りなのか

enumのすすめ

を判定したいはずなのに、それ自体には意味の
ない数値が判定に介入してしまっているのです。
意味のない数値とはつまり、「WEATHER_

RAINY = 99」に変更したとしても判定処理そ
のものの意味や内容が変わらないということで
す。
　しかも、この定数が同じカテゴリとして扱わ
れているのだということを示せるものは定数名
だけです。残念ながら、文法的な制約はありま
せん。この例では「WEATHER_」という文字列
を付与してカテゴリをあらわそうとしています。
しかし、たとえば後からこの判定に「雪」という
条件を追加する場合に「SNOW」という定数名
で判定条件が追加されてしまっても、コード上
は警告やエラーにはなりません。
　このような意味のない値を取り除くことは「良
いコード」にするための1つの手段となります。
　上記例のように複数の定数を1つのカテゴリ
として明示したい場合に使えるのが列挙型です。
リスト17、18を列挙型に置き換えると、次の
問題点を改善することができます。

・意味のない値が介入すること
・複数の定数が同じカテゴリの定数であること

を文法的に示せないこと

 ▼リスト15　値が存在した場合にのみ処理を実行する

if (optionalUser.isPresent()) {
 User user = optionalUser.get();
 System.out.println(user);
}

 ▼リスト16　ifPresentメソッドを利用する

optionalUser.ifPresent(user -> System.out.println(user));

 ▼リスト17　intを使った定数

public static final int WEATHER_SUNNY = 1;
public static final int WEATHER_CLOUDY = 2;
public static final int WEATHER_RAINY = 3;

 ▼リスト18　int定数の利用例

int weather = getWeather();

if (weather == WEATHER_SUNNY) {
 return "晴れ";
} else if (weather == WEATHER_CLOUDY) {
 return "曇り";
} else if (weather == WEATHER_RAINY) {
 return "雨";
} else {
 return "観測不能";
};

良いコーディングの 
さいしょの一歩

第 章 2Java編

32 - Software Design

　では列挙型に置き換えた例を見てみましょう
（リスト19）。
　列挙型は任意の名前をつけることができます。
今回の例でいうとWeatherです。このため、
intの定数を使っていたときのような、都度名
前に「WEATHER_」とつけるといった規約を設
ける必要がありません。一度列挙型に名前を設
定してしまえば、命名に気をとられることがな
くなります。そのうえ「同じカテゴリの定数で
ある」ことも明示し続けることができるのです。
　また、最大の難点であった「意味のない値」を
持つ必要がありません。SUNNYはSUNNY、

と余計な値を持つことなく判定処理を行うこと
ができます。
　列挙型はswitch文の分岐にも使用できます（リ

スト20）。

　いかがでしたでしょうか。「良いコード」といっ
てもさまざまなアプローチがあります。小さな
改善も「良いコード」の大事な1アクションです。
改善を積み重ねて、より良いコードを作ってい
きましょう。ﾟ

終わりに

 ▼リスト19　列挙型に修正する

public enum Weather {
 SUNNY,
 CLOUDY,
 RAINY;
}

private String getWeatherName(Weather weather) {
 if (weather == Weather.SUNNY) {
 return "晴れ";
 } else if (weather == Weather.CLOUDY) {
 return "曇り";
 } else if (weather == Weather.RAINY) {
 return "雨";
 } else {
 return "観測不能";
 }
}

 ▼リスト20　switch文利用例

public enum Weather {
 SUNNY,
 CLOUDY,
 RAINY;
}

private String getWeatherName(Weather weather) {
 switch (weather){
 case SUNNY:
 return "晴れ";
 case CLOUDY:
 return "曇り";
 case RAINY:
 return "雨";
 default:
 return "観測不能";
 }
}

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

33 - Software Design Apr. 2016 - 33

　プログラミング言語は日々進化しています。
1つのプログラミング言語であってもバージョ
ンアップを重ねていますし、新しいプログラミ
ング言語も登場してきています。
　進化によってより良いコードが書けるように
なっているわけですが、では、そもそもより良
いコードとはどういうことなのでしょう。いく
つか指標はありますが、3点紹介しましょう。

債務分割
　1人の人間が一度に取り組める作業には限界
があります。複雑な問題に対しては、問題を小
さく分割して1つずつ解決していくしかありま
せん。複数人での分業になるかもしれません。
あるいは、1人での開発であっても過去の作業
は忘れていくものなので、他人が読み書きする
可能性のあるものと考えて作るべきです。そこ
で重要になるのは、（今の）自分のコード変更が
他人（あるいは過去の自分）のコードに影響しな
いようにすることです。

意図の記述
　何かの課題に取り組む際には、why（なぜ必
要かという理由）、what（何をしたいかという

はじめに
意図）、how（どう実現するかという手順）とい
う3段階のものを考える必要があります。低水
準（コンピュータのハードウェアに近いという
意味）なプログラミング言語ほどhow（手順）を
事細かに書く必要があります。しかし、重要な
のはむしろwhat（意図）で、それを伝えるために、
別途、自然言語での注釈（コード中のコメント
や外部ドキュメント）が必要になります。理想
的には、コードを見ただけでwhatがわかるべ
きです。whatを直接コードとして書けるべきで、
コメントなどにはwhyだけ残るのが理想形とな
ります。

性能
　現在では、前述の債務分割や意図の記述が重
要で、それを優先して性能が犠牲にされる場合
も多いです。しかし、ものには限度があります。
債務分割するうえでは良くても、数メガバイト
単位でメモリを余計に使ったり、プログラムが
数秒間フリーズしたりするようではさすがにつ
らいです。また、債務分割しやすさなどを犠牲
にせずに単純に性能を向上できるのなら、積極
的にそういう書き方をすべきでしょう。

　これらの重要性は今に始まったわけではなく、
大昔からずっと変わっていません。古いプログ
ラミング言語には、当然、言語機能が欠けてい

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

C#は時代とともに新たな機能を積極的に取り入れてきました。その中には、一般的に良いとされ
るコードの書き方のパターンが、言語機能として取り入れられたものも、たくさんあります。本章
ではC#の言語機能の進化を見ていきながら、良いコードの書き方とは何かをひも解いていきます。

C#編

言語機能の進化から学ぶ 
「良いコードの書き方」

第 章 3

 Author 岩永 信之（いわなが のぶゆき）

34 - Software Design

たわけですが、だからと言って何もしていなかっ
たわけではありません。良いとされるパターン
が議論され、定着してきました。構造化プログ
ラミングやオブジェクト指向プログラミングと
いうような、現代的なプログラミングでは当た
り前の概念も、かつてはパターンから始まり、
やがてプログラミング言語の機能として取り入
れられてきたものです。
　かつては、プログラミング言語の文法を覚え
たら、続いてパターンを学ぶ必要がありました。
「デザインパターン」と付く書籍は必読書と言わ
れていました。今は、その多くのものがプログ
ラミング言語自体の機能になっています。逆に
言うと、プログラミング言語を学ぶ中から、良
いとされるパターンを学ぶことができます。
　本章は、C#について次のものを取り上げます。

・パッケージ管理
・プロパティ
・イテレータ
・データ処理
・非同期メソッド
・nullの撤廃

　パッケージ管理は、コードを書く前に、まず、
そもそもコードを書かないことを考えるべきと
いう話です。プロパティは、C#の歴史ととも
に何度かの機能追加があったものです。パター
ンができ、それが言語構文として取り入れられ
る過程の繰り返しがよくわかると思い、ここで

紹介しています。残りは、2000年代後半から
の数年で急激に進歩した分野です。「モダンな
書き方」を目指すうえで外せないポイントでしょ
う。
　C#の現在の最新バージョンは6です。また、
C# 7に向けて、新機能の提案やディスカッショ
ンがGitHub上で行われています。本稿では一部、
このC# 7の機能を先取りして紹介しています
が、あくまで提案です。取りやめや延期（7で
はなく8や9）になる可能性もあるのでご注意く
ださい。

　本特集のテーマは「良いコードの書き方」です
が、コードを書き始める前にまず考えるべきこ
とは、「いかにコードを書かないか」です。同じ
ような問題に直面し、同じようなコードを過去
に書いたことがある人がいて、そのコードをラ
イブラリ化して公開してくれているかもしれま
せん。
　多くのプログラミング言語で、他人が書いた
コードを簡単に使えるように、パッケージ管理
システムが整備されています。ここで言うパッ
ケージとはライブラリ自体やその付属データ、
作者やバージョンなどに関する情報を梱包した
ものです。そして、パッケージ管理に必要な一
連のシステム、すなわち、作ったパッケージを
アップロードするサーバ、サーバ上のパッケー
ジを検索する機能、そのパッケージの作者やラ
イセンスを確認する機能、所望のパッケージの
所定のバージョンを依存先まで含めてダウンロー
ドする機能などが提供されています。
　.NETでは、NuGetと呼ばれるパッケージ管
理システムを使います。パッケージをアップロー
ドする先のサーバは設定変更もできますが、最
もよく使われるのはNuGet Gallery注1というサー
バです。まとめると、図1のようになります。

注1） https://www.nuget.org/

パッケージの利用

NuGetパッケージ
・ ライブラリ本体、作者／バージョンなどの情報を梱包する
 ための形式

NuGetサーバ
・ パッケージのアップロード先
・ NuGet Galleryというサーバがよく使われる

NuGetクライアント
・ 所望のパッケージの所定のバージョンを依存先まで含めて
 ダウンロード
・ Visual Studio拡張機能や、コマンドラインツール
 （nuget.exe）などがある

 ▼図1　NuGetパッケージ管理のしくみ

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

https://www.nuget.org/

34 - Software Design Apr. 2016 - 35

　誌面の都合で詳細は省きますが、現在では、
NuGet Gallery上のパッケージも充実し、NuGet

クライアントもこなれて、Web上でのNuGetに
関する情報も増えていて、とくに苦労すること
もなくNuGetを使えるでしょう。
　Visual Studioが標準で対応しており、ま
た .NET Core（クロスプラットフォーム向けの
オープンソースな .NET実装）では実行環境自
体や標準ライブラリも含めてNuGetでパッケー
ジ管理しています。その結果、NuGetは .NET

の根幹をなす重要な技術となっています。

　プロパティは、クラスの実装側にとってはメ
ソッドのような振る舞いを書け、クラスの利用
側にとってはフィールド（変数）の読み書きのよ
うに書けるメンバ（構成要素）です。
　C#のプロパティ構文は、C#のバージョンアッ
プに伴い何度か機能追加されています。時とと
もに徐々に、より良い書き方や、典型的な書き
方が明らかになった結果です。
　そこでここでは、C#のプロパティ構文の変
遷と、それがどういう要件に基づいているのか
を説明していきます。

getter/setter

　C#以前からある良いとされる習慣の1つに、
「クラスの持つデータは必ずメソッドを通して
返せ、フィールドを公開するな」というものが
あります。メソッドを通すことで次のような利
点があるためです。

・実装方法を選べる
・単純なデータの読み書きだけではなく、追加
の処理を挟める

・実装方法を後から変えても、クラス利用側へ
の影響が出ない

・virtualにすることで、派生クラスで挙動を変
更できる

プロパティ

　そこで、たとえばXというデータを読み書き
する際には、GetX、SetXというメソッドを介
する習慣ができました。これらのメソッドをそ
れぞれgetter/setterと言い、2つ合わせてアク
セサー（accessor）と呼びます。単純なデータの
読み書きであっても、次のようにGet/Setメソッ
ドを書くべきということです。

 例1 Get/Setメソッド
class Sample
{
 private int _x;
 public int GetX() { return _x; }
 public void SetX(int x) { _x = x; }
}

　このような書き方には前述のようなメリット
がある一方で、クラス利用側のコードが煩雑に
なるという問題があります。たとえば、Xの値
に1を加えるだけでも、次のような書き方が必
要になります。

 例2 クラス利用側のGet/Setメソッド
var s = new Sample();
s.SetX(s.GetX() + 1);

　そこで、C#では、プロパティという構文を
用意しました。次のように書きます。

 例3 C# 1.0のプロパティ
class Sample
{
 private int _x;
 public int X
 {
 get { return _x; }
 set { _x = value; }
 }
}

　get、setに続けて、メソッド的に振る舞いを
書けます。一方で、利用側のコードは例4のよ
うに、フィールドの読み書きと同じように書け
ます。

言語機能の進化から学ぶ 
「良いコードの書き方」

第 章 3C#編

36 - Software Design

 例4 クラス利用側のプロパティ参照
var s = new Sample();
s.X += 1;

アクセシビリティの変更（C# 2.0）

　データに対して、読む（get）のと書く（set）の
とではだいぶ重みが違います。一般に、書き込
みのほうが慎重に行う必要があります。多くの
場合、読み取り（get）だけを公開（public）し、
書き込み（set）はクラス内にとどめる（private）
ことになるでしょう。
　そこでC# 2.0で、プロパティのgetと setの
アクセシビリティを別々に設定できるようにな
りました。たとえばgetだけpublicにして、set

をprivateにするには例5のように書きます。

 例5 getとsetで異なるアクセシビリティを指定
class Sample
{
 private int _x;
 public int X
 {
 get { return _x; }
 private set { _x = value; }
 }
 public Sample(int x) { _x = x; }
}

自動プロパティ（C# 3.0）

　あとから実装方法を変更するかもしれないの
でメソッド（のように振る舞えるプロパティ）を
使うべきといっても、実際のところ、例3や例
5がそうですが、ほとんどのプロパティは単純
なフィールドの読み書きです。このような書き
方は、「あとから変えるかもしれない」という心
配のためだけに書くには少し煩雑過ぎます。
　そこで、C# 3.0では、自動的に上記のよう
なフィールドとそれに対する読み書きを生成す
る「自動プロパティ」（auto property）という機
能が追加されました。例6のように、getやset

の後ろのブロックを省略することで自動プロパ

ティになります。

 例6 自動プロパティ
class Sample
{
 public int X { get; private set; }
 public Sample(int x) { X = x; }
}

　単純なフィールドの読み書きでいい間はこの
書き方をし、追加の処理が必要になった際には
自動実装ではない以前どおりのプロパティに変
更します。

get-onlyプロパティ（C# 6）

　繰り返しになりますが、一般に、データの書
き込みには慎重になるべきです。極端に言うと、
コンストラクタでだけ値を代入して、ほかの場
所では書き換えないほうがいいことが多いです。
こういう書き換え不能なデータのことを immu

table（変更不能）なデータと呼びます。
　C# 5.0までは、immutableであることを確実
に保証するには、例7のような書き方でプロパ
ティを作る必要がありました。

 例7 C# 5.0までのimmutableプロパティの書き方
class Sample
{
 private readonly int _x;
 public int X { get { return _x; } }
 public Sample(int x) { _x = x; }
}

　時代とともに、データを immutableにしてお
くことの良さが一般に広まってきました。C#

でも、プロパティを immutableに書くことが増
えています。
　そこで、C# 6では immutableなプロパティ
を書きやすくするため、get-onlyプロパティと
いう構文が追加されました。例8のように、
getだけを書くことで、前述のようなreadonly

フィールドを自動生成してくれます。書き込み
はコンストラクタ内でだけ行えます。

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

36 - Software Design Apr. 2016 - 37

 例8 get-onlyプロパティ
class Sample
{
 public int X { get; }
 public Sample(int x) { X = x; }
}

レコード型（C# 7）

　immutableなプロパティは、値の初期化をコ
ンストラクタで行う都合上、プロパティに対応
するコンストラクタ引数が必ず必要になります。
前項の例で言うと、プロパティXに対して引数
xがあります。これは、大文字／小文字が違う
くらいで、ほぼ同じものを何度も書かされてい
る状態です。
　そこで、C# 7では例9のような書き方で、
コンストラクタと immutableなプロパティを自
動生成する構文が追加される予定です。

 例9 レコード型（予定）
class Sample(int X);

　X以外のメンバを書きたいときだけ追加でク
ラス本体を書きます。immutableなプロパティ
だけでいい場合には、この例のように;だけを
書いて、本体を省略します。
　この構文をレコード型（record type）と呼び
ます。ここでのレコード（record：記録、1件
のデータ）という言葉は、単純なプロパティし
か持たず、純粋にデータを表現するための型と
いう意味です。

　プログラムを書く際に頻出するもの
の1つが、配列やリストなどのデータ
列（sequence）に対する操作です。C#

の場合、データ列を表す型（コレクショ
ン）にはIEnumerable<T>インターフェー
ス（System.Collections.Generic名前空

イテレータ

間）を実装しておくことが一般的です。IEnume

rable<T>を介することで、どんなデータ列に
対しても同じコードでデータ処理ができます。
リスト1に簡単な例を示します。
　このように、データ列を処理する側はきれい
に書けます。しかし、面倒なのはその逆で、デー
タ列を作る側です。

IEnumerable<T>の実装

　C#では、データ列を作る側を簡単化するた
めに、イテレータと呼ばれる機能が備わってい
ます。しかし、先に、イテレータを使わない場
合の説明をしておきます。簡単な例として、同
じ数字を指定した回数繰り返すことを考えてみ
ましょう。Repeatと名付けます。
　最も単純な実装は、リスト2に示すような、
指定した長さ分の配列を作ってしまうことです。
　コードはシンプルですが、この方法の問題は、

 ▼リスト1　IEnumerable<T>を介したデータ処理

using System;
using System.Collections.Generic;

class Program
{
 public static void Run()
 {
 Write(new[] { 1, 2, 3, 4, 5 });
 Write(new List<int> { 1, 2, 3, 4, 5 });
 }

 static void Write<T>(IEnumerable<T> data)
 {
 foreach (var x in data)
 Console.WriteLine(x);
 }
}

 ▼リスト2　配列を作ってデータ列を返すメソッド

public static IEnumerable<int> Repeat(int value, int count)
{
 var data = new int[count];
 for (int i = 0; i < count; i++)
 {
 data[i] = value;
 }
 return data;
}

言語機能の進化から学ぶ 
「良いコードの書き方」

第 章 3C#編

38 - Software Design

不要な配列が作られることです。データ列を処
理する側は、1度に1つのデータしか見ないこ
とが多いです。1つずつ返せばいいものを、全
データ分の長さの配列を作ってしまっています。
データの個数が少ないことがわかっている間は
こういう実装でもいいのですが、不特定多数だ
とそうはいきません。何百万／何千万という個
数になった場合に、これでは使用メモリ的に無
駄が大きすぎます。
　このような無駄をなくすために、リスト3に
示すような型を作るというパターンが知られて
います（Repeatメソッドはこの型を作って返す
だけにします）。
　これで、無駄な配列は作られず、ちゃんと1

つ1つデータが得られます。その一方で、IEnu

merable<T>インターフェースなどについての知
識が求められ少し難しくなりますし、余計なク
ラスを1つ作ることになるので面倒も増えます。
また、配列を作る場合と比べてかなり煩雑なコー
ドになりました。
　ちなみに、一応、リスト3のような型は、リ

スト2のコードから機械的なルールで作れます。
機械的に作れるのなら、コンパイラに自動生成
させればいいというのが、C#のイテレータの
基本的なアイデアです。

イテレータを使った実装

　データ列生成の問題を解消するのが、C# 2.0

で追加されたイテレータ（iterator）という機能
です。イテレータは、リスト2に近い書き方か

ら、リスト3に示すような型をコ
ンパイラが生成して、無駄なくデー
タ列を生成できるようにします。
リスト4に示すように、1つ1つの
データを返したい場所で yield
returnというものを書きます。
　yieldという単語は「譲り渡す」と
いう意味です。yield returnの行
に来るたびに一度このメソッドを
抜けて、呼び出し側に移ります（実
行権を譲り渡している）。そして、
「次の1データがほしい」となった
瞬間（リスト3で言うとMoveNext

メソッドが呼ばれた瞬間）に、処理
を再開して次の1データを作って
返します。

データ処理の
汎用化

　イテレータから引き続きデータ
処理の話をしましょう。データ処
理と言うと、C#にはL

リ ン ク

INQ（Langu

age Integrated Query）と呼ばれる
機能があります。LINQは、正確
に言うとデータ処理に関連する複

 ▼リスト3　データ列生成でよくあるパターン

struct Repeater : IEnumerable<int>, IEnumerator<int>
{
 public int Current { get; }
 readonly int _count;
 int _i;

 public Repeater(int value, int count)
 {
 Current = value;
 _count = count;
 _i = 0;
 }

 public bool MoveNext()
 {
 _i++;
 return _i <= _count;
 }
 // 後略
}

public static IEnumerable<int> Repeat(int value, int count)
{
 return new Repeater(value, count);
}

 ▼リスト4　イテレータを使ってデータ列を返すメソッド

public static IEnumerable<int> Repeat(int value, int count)
{
 for (int i = 0; i < count; i++)
 {
 yield return value;
 }
}

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

38 - Software Design Apr. 2016 - 39

数の構文やライブラリの組み合わせを指す言葉
です。
　「LINQとは何か」については割愛しますが、
重要なのは、「組み合わせ」という部分です。小
さな機能を組み合わせて大きな目的を実現した
り、汎用的な処理を組み合わせて複雑な処理を
作ったり、それぞれ別の担当者が書いた小さな
部品を組み合わせてシステム全体を構築したり、
さまざまな組み合わせが考えられます。ここで
は、C#でデータ処理を行ううえで、「組み合わ
せ」がどう活きているかという話をしていきま
しょう。

入力、加工、出力

　1つめは、データ列の入力元と出力先の組み
合わせです。少し恣意的な例になりますが、「入
力した整数列のうち、奇数のものだけを抜き出
して、2乗したものを出力する」という処理を
考えましょう。入力元／出力先が固定でいいな
らそう難しい話ではありません。たとえば、コ
ンソールからの入出力で考えると、リスト5に
示すようになります。
　問題は、入力元／出力先はコンソールとは限
らないことです。ファイルの読み書きで
あったり、ネット越しの受け渡しであっ
たり、さまざまな入出力が考えられます。
そのたびに、リスト5に類するコードを
書くのは非効率で、「奇数のものだけ抜き
出して、2乗」という加工する部分だけを

切り出して、さまざまな入出力と組み合わせて
使えるようにすべきです。
　これは、IEnumerable<T>を受け取り、IEnu

merable<T>を返すメソッドを作れば実現でき
ます。前節で説明したイテレータを使えばそう
難しくはありません。リスト6に示すような書
き方ができます。
　これで、図2に示すように、さまざまな入出
力の組み合わせが使えるようになります。

汎用処理の組み合わせ

　続いては小さな汎用処理の組み合わせで所望
の処理を実現することについて考えます。前項
の加工処理（リスト6のFilterメソッド）をさら
に細かく分けると、そこには次の処理が含まれ
ています。

コンソールから

入力

ファイルから

加工

条件：奇数だけ
変換：2乗

ネットから

コンソールに

出力

ファイルに

ネットに

 ▼図2　入力、加工、出力の組み合わせ

 ▼リスト5　 入力から出力までを1つのメソッドで実
装する例

while (true)
{
 var line = Console.ReadLine();
 if (string.IsNullOrEmpty(line)) break;
 var x = int.Parse(line);

 if ((x % 2) == 1)
 {
 var y = x * x;
 Console.WriteLine(y);
 }
}

 ▼リスト6　 入力（Read）、加工（Filter）、出力（Write）の分離

static IEnumerable<int> Read()
{
 while (true)
 {
 var line = Console.ReadLine();
 if (string.IsNullOrEmpty(line)) break;
 yield return int.Parse(line);
 }
}

static IEnumerable<int> Filter(IEnumerable<int> source)
{
 foreach (var x in source)
 if ((x % 2) == 1)
 yield return x * x;
}

static void Write(IEnumerable<int> source)
{
 foreach (var x in source)
 Console.WriteLine(x);
}

言語機能の進化から学ぶ 
「良いコードの書き方」

第 章 3C#編

40 - Software Design

・条件選択：奇数だけ取り出す
・変換：2乗を計算する

　そして、一般に、多くのデータ処理がこの類
型に当てはまります。すなわち、何らかの条件
を与えて選択を行い、何らかの式に従って変換
を行います。
　実は、.NETには標準で、条件選択や変換の
ためのライブラリが含まれています。Where

メソッドとSelectメソッド（いずれもSystem.

Linq名前空間のEnumerableクラスの静的メ
ソッド注2）です。

・Where：条件を与えてデータを選択する
・Select：式を与えてデータを変換する

　これらの名前は、SQLのキーワードに由来
します。このほかにも、Enumerableクラスには、
データ加工用のさまざまなメソッドが用意され
ています。
　これらを使ってリスト6と同じ処理を書き直
すと、（リスト6のRead、Writeに対して）リス

ト7のような書き方ができます。
　ちなみに、Where、Selectは、インスタンス
メソッドと同じようにx.Where(...)というよ
うな書き方をしていますが、実際に呼ばれるの
はEnumerableクラスのWhere静的メソッドで
す。これは、拡張メソッドと呼ばれる機能を使っ
ています。
　これで、図3に示すように、汎用処理の組み
合わせで所望の処理を実現できます。

注2） クラスに属するメソッドのこと。ちなみに、インスタンス
に属するメソッドはインスタンスメソッドと言う。

契約、実装、処理

　前項で説明したような IEnumerable<T>を中
心とした汎用処理には、図4に示すような3つ
の立場が絡みます。
　規約（contract）は、型が持つべきメンバが何
かを定めます。IEnumerable<T>の例で言うと、
「データ列を得るためにはCurrentプロパティ
やMoveNextメソッドが必要」というようなも
のです。これを定めるのがインターフェースで
す。
　実装（implementation）は、規約が定めるメン
バをどう実現するかです。同様の例で言うと、「配
列やリストなどのクラスは、IEnumerable<T>

を実装しているので、データ列を列挙できる。
列挙のしかたはそれぞれのクラスによって異な
る」となります。
　そして最後に、この規約に沿えば実現できる
処理（process）があります。今回の例で言うと、
「WhereやSelectなど、IEnumerable<T>から

 ▼リスト7　 標準の汎用的なメソッドでデータ列を加工
する例

Write(Read()
 .Where(x => (x % 2) == 1)
 .Select(x => x * x)
);

コンソールから

入力

ファイルから

条件選択

汎用処理の
組み合わせで加工

奇数だけ

変換

2乗

ネットから

コンソールに

出力

ファイルに

ネットに

 ▼図3　汎用処理の組み合わせ

どういうメンバを持っているかという
ルールだけを定める
C#の機能：インターフェース
例：IEnumerable<T>

規約（contract）

実装（implementation）

規約が定めるメンバを
具体的に実装する
C#の機能：クラス
例：T[]、List<T>

規約が定めるメンバがあれば
実現できる処理
C#の機能：拡張メソッド
例：Enumerableクラス内の
　 拡張メソッド

処理（process）実装（implementation） 処理（process）

 ▼図4　規約、実装、処理

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

40 - Software Design Apr. 2016 - 41

得られるデータ列を加工して、別の IEnume

rable<T>を返すメソッドを作る」といったもの
です。
　重要なのは、規約、実装、処理の3つは、そ
れぞれ別の担当者が書く（ということがあるし、
そうできるべき）ということです。これに対し
てありがちなミスは、実装クラス（ここで言う
配列やリスト）に処理（ここで言うWhereや
Select）を含めてしまうというものです。そう
やってしまうと、どんな実装にでも使えそうな
汎用的な処理が特定の実装にだけ含まれること
になって、組み合わせて使えなくなります。組
み合わせを増やすために、規約、実装、処理の
分離を意識しましょう。

文法の組み合わせ

　この節の冒頭で「LINQとはデータ処理に関
連する複数の構文の組み合わせ」という話をし
ました。データ処理はプログラミングにおいて
重要なテーマの1つですが、それでも、汎用プ
ログラミング言語へデータ処理専用の構文を導
入するのはやり過ぎでしょう（「汎用」でなくな
る）。しかし、それぞれ汎用に使える小さな構
文の組み合わせで実現できるなら話は別で、汎
用プログラミング言語に導入する価値が高くな
ります。
　誌面の都合で詳細は割愛しますが、LINQは
次のような構文の組み合わせで実現されていま

す。これらはすべて、C# 3.0で追加され、デー
タ処理以外のことに対しても有用です。

・オブジェクト初期化子
・ラムダ式
・拡張メソッド
・変数の型推論（var）
・匿名型

　ネットワーク越しにデータをダウンロードす
る場合など、完了までに時間がかかるのを待っ
ていないといけない処理があります。この手の
処理は、非同期に実行すべきとされています。
非同期（asynchronous）というのは、図5に示す
ように、時間がかかる処理を待たず、ほかの作
業ができる状態を保つことを言います。
　たとえば、Web上のコンテンツをダウンロー
ドする場合を考えましょう。C#ではWebアク
セスにHttpClientクラス（System.Net.Http名
前空間）を使います。同期実行であれば、リス

ト8に示すようなコードになります注3。
　この書き方では、ダウンロードが終わるまで
（通信状況やデータ量によっては数秒から数分
かかる場合もある）の間、ほかの処理が何もで
きません。この「ほかの処理」には、たとえばユー
ザのマウスやキーボード、タッチ操作に対する
応答も含まれていて、同期実行してしまうとア
プリケーションがフリーズします。
　そこで非同期実行が必要になるわけですが、

注3） 実際には、HttpClientクラスに同期実行できるメソッドは
なく、このコードはコンパイルできません。本節で説明す
るとおりWebアクセスの同期実行は非推奨なのですが、
推奨できないものは最初からAPI提供しないという方針です。

非同期メソッド

 ▼リスト8　同期でWebダウンロード

var c = new HttpClient();
var res = c.Get("http://ufcpp.net");
var content = res.Content.ReadAsString();
Console.WriteLine(content);

同期実行（通常のコード）

この間ただ待っていて
何もしない

待ちたい
処理

非同期実行

この間に別の
作業をする

待ちたい
処理

開始

完了通知

 ▼図5　同期処理と非同期処理の違い

言語機能の進化から学ぶ 
「良いコードの書き方」

第 章 3C#編

42 - Software Design

非同期実行できるコードを書くのは骨が折れる
作業でした。たとえば、C# 4.0以前の書き方
でリスト8の処理を非同期化するにはリスト9

のようなコードが必要でした。
　やりたいこと自体はリスト8と同じなのに、
これだけ面倒になります。これでもまだましな
ほうで、条件分岐や繰り返し、エラー処理など
が絡むとさらに大幅に複雑化します。
　そこで、C# 5.0で、非同期メソッド（asynchro

nous method）という機能が追加されました。リ

スト10のようなコードで非同期実行できる機
能です。
　awaitと書いたところを、コンパイラがリス

ト9のようなコードに展開してくれます（正確
に言うと、イテレータと同じようなクラスの生
成が行われます）。
　これで、同期実行とほとんど同じ書き方で非
同期実行できるようになります。一般に、非同
期実行にはここで説明したようなもの以外にも
さまざまなタイプのものがあり、C#の非同期
メソッドでそのすべてがカバーできるわけでは
ありませんが、多くのタイプの処理が大幅に簡
素化できます。

　プログラミング言語におけるnull（無効な参照）
の存在はbillion-dollar mistake（10億ドル規模
で損失を生んでいる失敗）と呼ばれることがあ
ります。無効であることを表すものがほしいこ

nullの撤廃

とも時にはありますが、無効なものがあり得な
い場合のほうが多いですし、少なくとも次のよ
うにすべきだったと言われています。

・既定動作としては「無効」を認めない
・「無効」があり得るかあり得ないかを一目で区
別できるようにする

　C#の場合、値型（整数や論理値、構造体など）
と参照型（文字列やクラスなど）があり、値型に
ついてはこの条件を満たしています。すなわち、
値型にはそのままではnullを代入できず、別途
null許容型（nullable type）というものを作って
初めてnullを使えます。また、通常の値型と
null許容型は明確に区別されるため、型を見た
だけでnullがあり得るかどうかがわかります。
リスト11に例を示します。
　型名の後ろに?がついているものがnull許容
型で、この場合だけnullを代入できます。null

許容型から普通の値型への変換は暗黙的には行
えません。

 ▼リスト10　C# 5.0以降の非同期実行の書き方

var c = new HttpClient();
var res = await c.GetAsync("http://ufcpp.net");
var content = await res.Content.ReadAsStringAsync();
Console.WriteLine(content);

 ▼リスト11　値型とnull許容型

int a = 10; // OK
int b = null; // コンパイルエラー

// 型名の後ろに?を付けるとnull許容型になる
int? c = 10; // OK
int? d = null; // これもOK

c = a; // int→int?の変換は常に成功
a = c; // 逆はコンパイルエラー

a = c ?? 0; // nullをなくす処理が必要

 ▼リスト9　C# 4.0以前の非同期実行の書き方

var c = new HttpClient();
c.GetAsync("http://ufcpp.net")
 .ContinueWith(res => res.Result.Content.ReadAsStringAsync())
 .ContinueWith(content => Console.WriteLine(content.Result));

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

42 - Software Design Apr. 2016 - 43

nullのない参照型（C# 7）

　問題は参照型についてです。C# 6までの範
囲では、参照型は常にnullを認めます。値型の
ように、nullの有無を区別する方法がありませ
ん。
　そこで、C# 7に向けて、参照型の仕様変更
が検討されています。参照型も、既定ではnull

を認めず、型名に?を付けたときだけnull許容
にしようという話です。
　ただし、C#としては過去のバージョンとの
互換性を非常に重要視しています。機能追加に
際しては、過去に書いたコードを破壊しないよ
うに細心の注意を払っています。単純に参照型
の仕様変更をしてしまうと、この方針に背くこ
とになるので、opt-in（オプションを変えるなど、
明示的に選択しない限り有効にならない）機能
として提供されることになりそうです。

nullへの対処

　nullに対する対処方法には3パターンありま
す。

①nullだったらエラーにする
②nullだったら代わりに別の有効な値を返す処
理を挟む

③nullを伝搬させる

　①は、できればコンパイルエラーになるべき
ものでしょう。たとえば次の例を見てください。

 例10 nullのチェックのタイミング 注4

static void Main() => X(null);

static int X(string s) =>
s.Length;

　このコードは、C# 6以前であれば、コンパ
イルできてしまい、実行すると例外を発生させ
ます。このような挙動は、ほとんどの場合バグ
で、バグを見つけにくいという意味で好ましく
ありません（これがbillion-dollar mistakeと呼
ばれる所

ゆえん

以です）。C# 7で提案されているのは、
これをそもそもコンパイルエラーとして検出で
きるようにしようというものです。
　②は、nullを認める文脈から、認めない文脈
への変換ということになります。「無効な値が
来た場合には、代わりにこの値を使う」という
ような値の指定を行います。C#には、例11に
示すように、??演算子（null合体演算子と呼び
ます）というものがあり、これを使って「代わり
の値」を与えられます（C# 2.0からの機能）。

 例11 null合体演算子
int? n = null;
int x = n ?? 0; // nullの代わりに0を使う

　③は、nullを許容する文脈内部において、「入
力が無効だったら出力も無効にする」というも
のです。C#には、例12に示すように、?.演算
子（null条件演算子と呼びます）というものがあ
り、入力がnullだったら出力もnullを返すこと
ができます（C# 6からの機能）。

 例12 null条件演算子
int? X(string s) => s?.Length;

◆　◆　◆

　ここまで、筆者が考えるC#における「良いコー
ドの書き方」を紹介してきました。C#の構文に
は、「良いコード」に関するノウハウが詰まって
います。また、C#のバージョンアップととも
により良いコードが書けるにようになっていま
す。本稿や、その他のC#入門文書などを、今後、
プログラミングする際に、参考にしていただけ
れば、幸いです。ﾟ

注4） void Main() => X(null);は、C# 6で追加されたメソッ
ド定義の構文です。returnステートメント1つだけのメソッ
ドなら、=>を使って returnキーワードや{}を省略するこ
とができます。

 void Main() { return X(null); } と void Main() =>
X(null); は同じ意味です。

言語機能の進化から学ぶ 
「良いコードの書き方」

第 章 3C#編

44 - Software Design

　Rubyはまつもとゆきひろ氏（通称Matz）に
よって開発されたオブジェクト指向スクリプト
言語です。Rubyは表現力豊かな文法と強力な
標準ライブラリを備えています。2004年には
Rubyを使ったWebアプリケーションフレーム
ワークであるRuby on Rails注1（以下、Rails）が
登場し、世界的にRubyが使われるようになり
ました。現在でもRailsはメジャーなWebアプ
リケーションフレームワークの1つです。きっ
とみなさんの中にも「Railsなら使ったことがあ
る」という人はたくさんいると思います。
　ところで、「単にRubyを動かすだけ」であれ
ばそれほど難しくはありません。むしろRuby

は1つのことを実現するのに多彩な書き方を許
容しているため、「こんな書き方」でも「あんな
書き方」でも動いてしまいます。とはいえ、
Rubyプログラマの中ではある程度の「お作法」
が存在しています。プログラミング初心者の人
や、ほかの言語を使っていた期間が長い人はつ
い「お作法」から外れたコードを書いてしまいが
ちです。
　そこで本章ではRuby初心者によくありがち

注1） http://rubyonrails.org/

はじめに
な「お作法から外れた書き方」と、それに対応す
る「お作法に則した書き方」を紹介していきます。
また、記事の後半ではお作法に沿ったRubyプ
ログラムを書くための考え方や学習方法を紹介
します。お作法の中には「なんか気持ち悪い」と
思うものもあるかもしれませんが、「郷に入れ
ば郷に従え」の精神で、まずはRubyらしい書き
方をマスターしていってください。

　Rubyのソースコードのインデントは半角ス
ペース2つが一般的です。半角スペース4つに
したり、タブ文字を使ったりするのはNGです。

 半角スペース2つでインデントさせる
class Person
 def hello
 puts 'hello'
 end
end

 半角スペース4つや、タブ文字は使わない
class Person
 def hello
 puts 'hello'
 end
end

ソースコードのインデン
トは半角スペース2つ

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

Rubyはコードの書き方にはかなり寛大な言語です。「生産的」でかつ「楽しく」プログラミングでき
ることが第一の目的とされていることからも、その懐の深さがうかがえます。その一方で、他人に
も読みやすいコードを書くには、いくつかのポイントを押さえておくことが重要になってきます。

Ruby編

お作法を意識して
可読性や保守性を高めよう

第 章 4

 Author 伊藤 淳一（いとう じゅんいち）　㈱ソニックガーデン　 Twitter @jnchito

http://rubyonrails.org/

44 - Software Design Apr. 2016 - 45

　Rubyのメソッド名や引数名、変数名は通常
スネークケース（アンダーバー区切り）で書きま
す。ほかの言語からやってきた人の中には、キャ
メルケースで書いてしまう人をときどき見かけ
るので注意してください。

class UserProfile
 phoneNumberのような
 キャメルケースの引数名・変数名はNG
 def initialize(name, phone_number)
 @name = name
 @phone_number = phone_number
 end

 firstNameのような
 キャメルケースのメソッド名はNG
 def first_name
 @name.split(' ').first
 end
end

　ちなみにRubyではインスタンス変数を@
nameのように@で始めます。

　Rubyではメソッド呼び出し時の丸括弧が省
略できます（ただし、文法上省略できないケー
スもあります）。とくに、引数なしでメソッド
を呼び出す場合は、丸括弧を省略することが多
いです。また、引数を伴うメソッド呼び出しで
も丸括弧が省略されることがよくあります。

 upcase()と書くことは少ない
'hello'.upcase => 'HELLO'

 puts('hello')でも良いが、
 丸括弧は省略されることが多い
puts 'hello'

　メソッドから戻り値を返す場合、Rubyでは

メソッド名や変数名は
スネークケース

引数がない場合はメソッド
呼び出しに丸括弧を使わない

メソッドの戻り値には
returnを付けない

returnを付ける必要がありません。これは最後
に評価された式がメソッドの戻り値になるため
です。
　たとえば、Fizz Buzz問題注2をRubyのメソッ
ドとして実装するとこうなります。

def fizz_buzz(n)
 if n % 5 == 0 && n % 3 == 0
 'Fizz Buzz'
 elsif n % 3 == 0
 'Fizz'
 elsif n % 5 == 0
 'Buzz'
 else
 n
 end
end

　上の例のように、Rubyではreturnを使わず
にメソッドの戻り値を書くスタイルが一般的で
す。ただし、メソッドの途中で処理を抜けたい
場合はreturnを使います。次のコードはreturn

を使ってメソッドを途中で抜けるコード例です。

def go_to_school
 today = Date.today
 if today.saturday? || today.sunday?
 土曜日と日曜日は何もせず
 メソッドを抜ける
 return
 end

 self.get_up
 self.eat_breakfast
 処理が続く...
end

　Rubyの条件分岐は実行されるコードの後ろ
に置いて1行で書くことができます（if修飾子）
（リスト1）。ただし、これは「絶対にこうすべき」
というお作法ではありません。コードの読みや
すさを考慮して、適宜普通の ifと使い分けてく

注2） https://ja.wikipedia.org/wiki/Fizz_Buzz

if修飾子を使って
行数を減らす

お作法を意識して
可読性や保守性を高めよう

第 章 4Ruby編

https://ja.wikipedia.org/wiki/Fizz_Buzz

46 - Software Design

ださい。

　Rubyの条件分岐には ifと逆の意味になる
unlessが使えます（つまり、結果が偽となった
場合に処理を実行します）（リスト2）。if＋否
定形で書いた条件分岐はunlessに書き換えると
意図がより明確になる場合があります。

　ここまでに挙げたサンプルコードの中にもと
きどき登場していますが、真偽値を返すメソッ
ド名は慣習として?で終わらせます。こういう
メソッドはほかの言語だと、is_adminや can_

editのようなメソッド名が付けられることが多
いです。

 is_adminよりもadmin?のように
 ?で終わらせるほうがベター
def admin?
 self.role == 'admin'
end

if＋否定形の条件は
unlessに置き換える

真偽値を返すメソッドの
名前は“?”で終わらせる

　Rubyでは+演算子を使って文字列を連結さ
せることもできますが、変数と組み合わせる場
合は式展開（#{ }）を使うことが多いです。

def hello(name)
 "Hello, " + name + "!"ではなく、
 式展開を使う
 "Hello, #{name}!"
end
hello 'Alice' => 'Hello, Alice!'

　なお、文字列内で式展開を使う場合はシング
ルクオート（'）ではなく、ダブルクオート（"）
を使う必要があります。

“+”ではなく、式展開（#{ }）
を使って文字列を組み立てる

 ▼リスト1　if修飾子を使った条件分岐

 普通のifを使った場合
if user.age < 20
 puts 'お酒は20歳になってから！'
end

 if修飾子を使った場合
puts 'お酒は20歳になってから！' if user.age < 20

 ▼リスト2　unlessを使った条件分岐

 userが管理者でなければ通知を送る
if !user.admin?
 send_notification_to(user)
end

 上の条件分岐をunlessで置き換える
unless user.admin?
 send_notification_to(user)
end

 ifと同様、後ろに置くこともできる
send_notification_to(user) unless user.admin?

　Rubyの真偽値は次のようなルールを持って
います。

・falseとnilは偽
・それ以外の値はすべて真

　nilは JavaやC#でいうところのnullです。真
偽値の評価を具体的なコードで説明すると次
のようになります。

if false
 puts '実行されません'
end

if nil
 puts '実行されません'
end

if true
 puts '実行されます'
end

if 0
 puts '実行されます'
end

　ほかの言語の経験が長いと、つい使い慣れ
た言語のルールでコードを読み書きしがちな
ので、この点には注意してください。

Rubyの真偽値を理解する

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

46 - Software Design Apr. 2016 - 47

　ハッシュはキーと値を関連づけてデータを格
納するオブジェクトです。ほかの言語では連想
配列やマップ、辞書（ディクショナリ）と呼ばれ
ることもあります。
　リスト3は国の名前と通貨を関連づけたハッ
シュの使用例です。
　ところで、リスト3の例ではキーに文字列を
使いましたが、特別な理由がなければリスト4

のように文字列ではなく、シンボルを使う方が
ベターです。
　文字列のキーと比較した場合、シンボルには
次のようなメリットがあります。

・{ key: value }のように簡潔なリテラルで
ハッシュを初期化できる

・文字列よりも速い
・文字列よりもメモリの使用効率が良い

　ほかの言語だと繰り返し処理は forループや
whileループを使うのが基本、という場合もあ
りますが、Rubyではeachや後述するmapといっ
た、繰り返し処理用のメソッドを使うことがほ
とんどです。forループやwhileループ使うロ
ジックを書いてしまったときは、eachやmap

ハッシュのキーには
なるべくシンボルを使う

繰り返し処理ではforや
whileではなく、eachを使う

で書き換えられないか確認してみましょう。
　次のコードは配列の中身を順番にコンソール
へ出力するコード例です。eachメソッドを使っ
た場合と、forループを使った場合の2パター
ンを記述しています。

fruits = ['apple', 'melon', 'banana']

 繰り返し処理は
 eachメソッドを使うのが一般的
fruits.each do |fruit|
 puts fruit
end

 単純な繰り返し処理で
 forループが登場することはまずない
for fruit in fruits
 puts fruit
end

 ▼リスト4　ハッシュのキーにシンボルを使った例

 ハッシュのキーにシンボルを使う
currencies = { japan: 'yen', america: 'dollar', italy: 'euro' }
currencies[:india] = 'rupee'
puts currencies[:japan] => 'yen'

　シンボルは:japanや:redのように、「コロ
ン＋文字列」のリテラルで生成されるオブジェ
クトです。一見するとシンボルは普通の文字
列によく似ています。ですが、内部的には1つ
の名前に対して1つのユニークな整数が割り当
てられており、文字列よりも高速に値の比較
ができます。
　こうした特徴から、シンボルはハッシュのキー
のように「ソースコード上では名前を識別でき
るようにしたいが、その名前が必ずしも文字
列である必要はない場合」によく利用されます。

そもそもシンボルって何？

 ▼リスト3　ハッシュのキーに文字列を使った例

currencies = { 'japan' => 'yen', 'america' => 'dollar', 'italy' => 'euro' }
currencies['india'] = 'rupee'
puts currencies['japan'] => 'yen'

お作法を意識して
可読性や保守性を高めよう

第 章 4Ruby編

48 - Software Design

　配列の全要素を加工して別の新しい配列を作
る場合はmapを使うと簡潔なコードが書けます。
例として、数値で構成された配列から16進数
で表現した文字列の配列へ変換するプログラム
を考えてみましょう。リスト5はmapを使わな
い場合です。
　mapを使うとリスト5をリスト6のように書
き直せます（ブロック内で返却された値を順に
集めた、新しい配列が作成されます）。

配列の全要素を加工する
場合はmapを使う

　空の配列を準備し、eachブロック内でその
配列に値を詰め込んでいくタイプの処理はほと
んどmapで書き換えることが可能です。mapで
置き換え可能な繰り返し処理はとても多いので、
mapを使いこなせていないと思う人は置き換え
可能な処理がないかどうか、注意深く自分のコー
ドを見直してみましょう。

　配列から条件に合う要素を抜き出す場合は
selectを使うと簡潔なコードが書けます。例と
して、数値が入った配列から奇数だけを抜き出
すプログラムを考えてみましょう。リスト7は
selectを使わない場合です。
　selectを使うとリスト7をリスト8のように
書き直せます（ブロック内で返却された値が真
になる要素を順に集めた、新しい配列が作成さ
れます）。

　配列から条件に合致する最初の1件だけを取
得する場合はfindを使うと簡潔にコードが書け

配列から条件に合う要素だけを
抜き出すときはselectを使う

配列から条件に合致する最初の
1件を取得するときはfindを使う

Rubyのブロックを理解する

　eachメソッドのサンプルコードで、do ... end
で囲まれている部分をブロックといいます。ブロッ
クは簡単に言うと「メソッドの内部から呼び出せる、
手続きのかたまり」です。メソッドの中にはブロッ
クを引数として受け取り、メソッドの実行中にブロッ
クを呼び出すものがあります。
　eachもブロックを受け取るメソッドの1つです。
eachメソッドの仕事は配列やハッシュの各要素を
最初から最後まで順番に取り出すことです。取り
出した要素をどう扱うかは、eachメソッドを呼び
だした側の仕事になるので、ブロック内で必要な
手続きを記述します。
　次のコードはeachメソッドの利用例です。この

場合は「配列から順に取り出した要素（fruit）をコン
ソールに出力（puts）すること」をブロックで記述し
たことになります。

fruits.each do |fruit|
 puts fruit
end

　ほかの言語で類似した機能を使ったことがない
人はピンとこないかもしれませんが、ブロックは
非常によく使われる機能の1つですので、早く慣れ
るようにしましょう。

 ▼リスト5　mapを使わない場合

numbers = [8, 9, 10, 11, 12]
hex_numbers = []
numbers.each do |n|
 hex_numbers << n.to_s(16)
end
puts hex_numbers => ['8', '9', 'a', 'b', 'c']

 ▼リスト6　mapを使った場合

numbers = [8, 9, 10, 11, 12]
hex_numbers = numbers.map do |n|
 n.to_s(16)
end
puts hex_numbers => ['8', '9', 'a', 'b', 'c']

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

48 - Software Design Apr. 2016 - 49

ます。例として、ランダムに数字が並んだ配列
から100より大きい数を1件だけ抜き出すプロ
グラムを考えてみましょう。リスト9は findを
使わない場合です。
　findを使うとリスト9をリスト10のように
書き直せます（ブロック内の戻り値が最初に真

 ▼リスト7　selectを使わない場合

numbers = [1, 2, 3, 4, 5]
odd_numbers = []
numbers.each do |n|
 if n.odd?
 odd_numbers << n
 end
end
puts odd_numbers => [1, 3, 5]

 ▼リスト8　selectを使った場合

numbers = [1, 2, 3, 4, 5]
odd_numbers = numbers.select do |n|
 n.odd?
end
puts odd_numbers => [1, 3, 5]

Rubyの言語機能を活用してコードをもっと短く！

　selectの説明で使ったリスト8のコードはRuby
の言語機能を活用することで、もっと短くするこ
とができます。Rubyに慣れてきたら次のようなリ
ファクタリングにもトライしてみましょう。
　まず、do ... endのブロックは改行せずに1行
で書くことができます（リストA）。ただし、この
ままだと読みにくいので、do ... endを中括弧（{
}）に書き換えます（リストB）。

　さらに、ブロックの引数として渡されるオブジェ
クト（ここではn）に対して、引数なしのメソッドを
呼び出す場合は、リストCのように“&:メソッド名”
と書くことができます（アンパサンドの意味を説明
すると長くなるのでここでは省略します）。
　リファクタリングはこれで完了です。selectを使
わない元のコードと比較すると、リストDのよう
に短くなりました！

 ▼リストA　リスト8のdo ... endを1行で書く

odd_numbers = numbers.select do |n| n.odd? end

 ▼リストB　リストAのdo ... endを中括弧で置き換え

odd_numbers = numbers.select { |n| n.odd? }

 ▼リストC　リストBの引数nを&:を使って書き換え

odd_numbers = numbers.select(&:odd?)

 ▼リストD　リファクタリング結果の比較

 selectを使わない場合
odd_numbers = []
numbers.each do |n|
 if n.odd?
 odd_numbers << n
 end
end

 selectを使う場合（リファクタリング後）
odd_numbers = numbers.select(&:odd?)

 ▼リスト9　findを使わない場合

numbers = [98, 90, 109, 94, 102]
target = nil
numbers.each do |n|
 if n > 100
 target = n
 break
 end
end
puts target => 109

 ▼リスト10　findを使った場合

numbers = [98, 90, 109, 94, 102]
target = numbers.find { |n| n > 100 }
puts target => 109

になった要素を返します）。
　なお、リスト10ではdo ... endの代わり
に中括弧を使ってブロックを書きました。中括
弧を使ったブロックの作成はコラム「Rubyの言
語機能を活用してコードをもっと短く！」を参
照してください。

お作法を意識して
可読性や保守性を高めよう

第 章 4Ruby編

50 - Software Design

　2015年12月にリリースされたRuby 2.3注3で
は 、さまざまな便利機能が追加されました。
本稿ではその中から利用頻度が高そうな&.演
算子（safe navigation operator）を紹介します。
　Ruby 2.2以前では、オブジェクトがnilの可
能性がある場合、そのままメソッドを呼び出す
とNoMethodErrorが発生するため、次のよう
に条件分岐させる必要がありました。

 userはnilの可能性があるので
 ガード条件を付ける
unless user.nil?
 user.say 'Hello!'
end

　Ruby 2.3から導入された&.演算子を使うと、
オブジェクトがnilでもNoMethodErrorが発生
しなくなります（nil以外のオブジェクトであれ
ば普通にメソッドが実行され、nilに対してメソッ
ドを呼びだした場合は nilが返ります）。

 userがnilでも気にせずに
 sayメソッドを呼び出せる
user&.say 'Hello!'

　さて、「こういう場合はこう書いた方が良い」
という事例を個別に挙げていくと、誌面がいく
らあっても足りません。個別の事例を挙げるの
はここまでにして、ここからあとはもう少し抽
象度を上げ、良いRubyプログラマ、いや、「良
いRubyist」（Rubyが好きなプログラマのこと
をRubyistと呼びます）になる方法を考えてみ
ましょう。

注3） https://www.ruby-lang.org/ja/news/2015/12/25/ruby-
2-3-0-released/

“&.”演算子でnilでもメソッドを
安全に呼び出す（Ruby 2.3以降）

　プログラミングの世界では、しばしば「車輪
の再発明」という慣用句が登場します。これは「す
でに用意されている解決策を使わずに自分でイ
チからプログラムを書いてしまうこと」を意味
し、通常はバッドプラクティスと見なされます。
もちろんRubyの世界でも車輪の再発明をやっ
てしまうのは好ましくありません！
　Rubyの標準ライブラリには非常に数多くの
便利メソッドが用意されています。前述のmap

やselectのような基本的なメソッドから、「こ
んな処理まで標準ライブラリでやってくれるの
か！」と驚くようなメソッドまで非常に幅広く
用意されています。標準ライブラリを活用すれ
ば、車輪の再発明をせずに簡潔で安全なコード
を書くことができます。
　とはいえ、標準ライブラリの内容を隅から隅
まで頭に入れるのはちょっと無理です。なので
Ruby初心者の人はまず、次に挙げる利用頻度
の高いクラスやモジュール（モジュールについ
てはコラム「モジュールって何？」を参照）の
APIドキュメントをひととおりチェックして
おきましょう。

・Stringクラス
	 http://docs.ruby-lang.org/ja/2.3.0/class/
String.html

・Arrayクラス
	 http://docs.ruby-lang.org/ja/2.3.0/class/
Array.html

・Hashクラス
	 http://docs.ruby-lang.org/ja/2.3.0/class/
Hash.html

・Enumerableモジュール
	 http://docs.ruby-lang.org/ja/2.3.0/class/
Enumerable.html

車輪の再発明をせず、既製品
（標準ライブラリやgem）を使う

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

https://www.ruby-lang.org/ja/news/2015/12/25/ruby-2-3-0-released/
http://docs.ruby-lang.org/ja/2.3.0/class/String.html
http://docs.ruby-lang.org/ja/2.3.0/class/Array.html
http://docs.ruby-lang.org/ja/2.3.0/class/Hash.html
http://docs.ruby-lang.org/ja/2.3.0/class/Enumerable.html

50 - Software Design Apr. 2016 - 51

　また、Rubyにはオープンクラスと呼ばれ
る機能があり、既存のクラスを自由に拡張で
きるようになっています。Railsではこの特
性を積極的に利用し、blank?や present?、

truncate、end_of_dayといった、さまざまな
便利メソッドをRubyの標準クラスに追加して
います。量が多いのでこちらもやはり隅から隅
まで頭に入れるのは無理だと思いますが、

モジュールって何？

　モジュールはクラスの継承を使わずに共通のメ
ソッドを再利用できる、ミックスインという機能
を実現するために使われます。たとえばリストEの
ように、Rubyでは配列でもハッシュでも、どちら
も findメソッドが使えるようになっています。
　これはArrayクラスやHashクラスがEnumerable
モジュールを「ミックスイン」している（厳密にいう
と includeしている）ためです。findメソッドは
ArrayクラスやHashクラスではなく、Enumerable
モジュール内で実装されています。
　言葉だけではピンとこないと思うので、コード
を使ってモジュールの定義とミックスインの使い

方（ただしイメージレベル）をリストFに示します。
　ほかにもモジュールは名前空間として使われる
場合があります。ただし、モジュールを完全に理
解しようと思うと誌面が足りなくなるので、今回
は割愛します。
　とりあえずここでは、「配列やハッシュで使える
便利メソッドを探すときは、Enumerableモジュー
ルも一緒に調べたほうが良い」ということを覚えて
おいてください。配列やハッシュには findメソッ
ド以外にもたくさんの便利メソッドがEnumerable
モジュールからミックスインされているからです。

 ▼リストE　配列とハッシュで使えるfind

 配列でfindを使う
numbers = [11, 12, 13, 14, 15]
target = numbers.find { |n| n % 3 == 0 }
puts target => 12

 ハッシュでfindを使う
currencies = { japan: 'yen', america: 'dollar', italy: 'euro' }
target = currencies.find { |key, value| value == 'dollar' }
puts target => [:america, 'dollar']

 ▼リストF　モジュールの定義とミックスインの使い方（イメージ）

 注：これは説明用に極端に単純化したコードです。
 実際のRubyの実装とは異なります。
module Enumerable
 def find
 findの実装コード
 end
end

class Array
 ミックスインにより配列で
 findメソッドが使えるようになる
 include Enumerable
end

class Hash
 ミックスインによりハッシュで
 findメソッドが使えるようになる
 include Enumerable
end

お作法を意識して
可読性や保守性を高めよう

第 章 4Ruby編

52 - Software Design

Railsを使うなら最低限、Railsガイドの「Active

Support コア拡張機能注4」に目を通しておくこ
とをオススメします。
　さらにいうと、Rubyの世界には標準ライブ
ラリやRailsだけではなく、gemと呼ばれるサー
ドパーティライブラリが無数にあります（厳密
にいえばRailsもgemの1つです）。わざわざ自
分で実装しなくてもgemを使えば一発で実現で
きた！ということも多いです。
　何か自分でロジックを書こうとしたときは、
まず「これをやろうとしているのは世界で自分
一人だけか？」と自問してください。答えが
NOであれば、ほかにも同じようなことを考え
ている人がたくさんいて、誰かがすでにgemを
作っている可能性があります。
　たとえば、Railsで“/users/123”のようなデー
タベースの IDを使ったURLではなく、“/

users/matz”のようにユーザ名でURLを作りた
いと考える人は世界であなた一人だけでしょう
か？　そうじゃないですよね。だからそういう
gemがすでにあります。こういうケースでは
friendly_id注5というgemを使うと簡単に実現で
きます。

　本稿では「Rubyのお作法に従おう」とか「自分
でロジックを書かずにgemを探そう」といった
内容を書いていますが、そもそもRuby初心者
の場合、「お作法に沿っているのか沿っていな
いのか、自分で判断がつかない」「gemを探した
けど、目的に合ったgemを見つけられない」と
いったように、「それ以前」の段階でつまづいて
しまう場合があります。
　こういうときは気軽に相談したり、コードレ
ビューしてもらったりできる「Rubyの師匠」が
身近にいるのが理想的です。RubyやRailsで長

注4） http://railsguides.jp/active_support_core_extensions.
html

注5） https://github.com/norman/friendly_id

「完全独学」を避け、
「師匠」を見つける

年開発をしている職場であれば、おそらくその
職場で師匠を見つけられると思います。日常的
に相談できる師匠がいない場合でも近くの
Ruby勉強会に参加したりすれば、師匠的な
Rubyistと知り合いになれる可能性があります。
それすらかなわないという場合は、スタック・
オーバーフロー注6のようなQ＆Aサイトを利用
して、適切なコードの書き方を質問するのも1

つの手です。
　また、良いコードかどうかはツールを使って
ある程度機械的に判定することもできます。
Rubyプログラムの静的解析ツールとしては、
RuboCop注7やrails_best_practices注8といった
gemがあります。ほかにも、脆弱性チェックを
したい場合はBrakeman注9というgemがありま
す。ただ、ツールを使うと大量の警告が出て圧
倒されてしまったり、メッセージが英語で修正
方法がぱっと理解できなかったりしがちなので、
こういうときもできれば「相談できる師匠」が近
くにいるのが理想的です。

　Rubyはプログラマが「生産的」でかつ、「楽し
く」プログラミングできることを第一の目的に
したプログラミング言語です（英語版Wiki

pedia注10を参照）。筆者もかれこれ4～5年Ruby

を使っていますが、Rubyのことを知れば知る
ほどまったくそのとおりだなと感じます。筆者
はもともとJavaやC#をメインで使っていたの
で、丸括弧なしでメソッド呼び出しができる点
や、falseだけでなくnilも偽として扱う点など
は「なんか気持ち悪いな～」と感じていました。
しかし、Rubyを使っているうちに「いや、こっ
ちのほうが便利だし、読み書きしやすいじゃな

注6） http://ja.stackoverflow.com/

注7） https://github.com/bbatsov/rubocop

注8） https://github.com/railsbp/rails_best_practices

注9） https://github.com/presidentbeef/brakeman

注10） https://en.wikipedia.org/wiki/Ruby_(programming_
language)

おわりに

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://github.com/presidentbeef/brakeman
https://github.com/railsbp/rails_best_practices
https://github.com/bbatsov/rubocop
http://ja.stackoverflow.com/
https://github.com/norman/friendly_id
http://railsguides.jp/active_support_core_extensions.html

52 - Software Design Apr. 2016 - 53

いか！」と思うようになりました。標準ライブ
ラリの機能も非常に豊富なので、「こんなこと
までRuby単体でできるなんてすごい！」と感動
するときがよくあります。
　また、言語そのものとは直接関係ありません
が、大小のRubyコミュニティが各地に数多く
存在し、活発に活動しているのも興味深い点で
す（筆者自身も兵庫県で西脇 .rb注11という地域
Rubyコミュニティを主催しています）。こうし
たコミュニティの勉強会やイベントに参加する
と、知り合いのRubyistがどんどん増えていき
ます。個人的にはこうした体験もRubyを「楽し

注11） https://nishiwaki-koberb.doorkeeper.jp/

い！」と思わせる要因の1つになっているんじゃ
ないかと思います。
　本稿は「お作法に沿ったRubyプログラムの書
き方」というテーマであれこれ書いてきました
が、知識だけ増やして頭でっかちになるのは望
ましくありません。それよりもどんどんRuby

のコードを書き、どんどんコミュニティに参加
して、「Rubyって楽しい！」という気持ちを実
際に体験してもらうのが、Rubyのプログラミ
ング力を向上させる一番の秘訣かもしれません。
　みなさんもRubyでプログラミングをエンジョ
イしてください！ﾟ

良いRubyのコードを書くための情報源

「Rubyスタイルガイド」
https://github.com/bbatsov/ruby-style-guide

　Rubyにはとくに公式のコーディング規約はあり
ません。ネットを検索するといくつかのコーディ
ング規約が見つかると思います。Rubyスタイルガ
イドは比較的有名なコーディング規約で、前述の
RuboCopでも静的解析時のガイドラインとして利
用されています（原文は英語ですが日本語訳注12も
あります）。

「プログラミング言語 Ruby」（オライリー・ジャパ
ン刊）
https://www.oreilly.co.jp/books/97848731139
44/

　Rubyに関する技術書は数多く出版されています。
筆者はすべての書籍をチェックしたわけではあり

ませんが、個人的にオススメしたいのがこの「プロ
グラミング言語 Ruby」です。Rubyの言語仕様がか
なり細かいところまで網羅されているため、「この
奇妙な記号の意味がわからない」とか「なぜか文法
エラーが発生して動かない」といったときに、この
本を開くと答えが載っていることが多いです。対
象となるバージョンは1.9までなので、Ruby 2.0以
降に登場したキーワード引数やprependなど、一
部の言語仕様はカバーされていませんが、大半の
内容は今でも有効です。

「［初心者向け］RubyやRailsでリファクタリングに
使えそうなイディオムとか便利メソッドとか」
http://qiita.com/jnchito/items/dedb3b889ab
226933ccf

　筆者がQiitaに投稿した記事です。今回紹介しき
れなかった「Rubyのお作法」や「初心者が見落とし
がちな便利メソッド」などを解説しています。

注12） https://github.com/fortissimo1997/ruby-style-guide/
blob/japanese/README.ja.md

お作法を意識して
可読性や保守性を高めよう

第 章 4Ruby編

https://nishiwaki-koberb.doorkeeper.jp/
https://github.com/bbatsov/ruby-style-guide
https://www.oreilly.co.jp/books/9784873113944/
https://github.com/fortissimo1997/ruby-style-guide/blob/japanese/README.ja.md
http://qiita.com/jnchito/items/dedb3b889ab226933ccf

54 - Software Design

意味と見た目を使い分ける

　Webページを作成するとき、個々の部分を
意味で考えるか見た目で考えるかは重要です。
たとえば、画面最上部をヘッダと考えるか、背
景色付きのバーと考えるかです。基本的に意味
を担当するのがHTML、見た目を担当するの
がCSSです。しかし、これらの担当がちゃん
と分離できていないWebページをたまに見か
けます。ここでは、そういう例とその対処方法
を説明します。

HTML、CSS編
tableレイアウトを使わない工夫
　table要素を単なる配置のために使用しては
いけないことは、昔から言われてきたことです。
それでも、不勉強からか代替案の難しさからか、
単なる配置のために table要素を使っているの
を見かけることがあります。table要素を使わ
ずに思ったとおりに配置するにはどうすればい
いのでしょうか？　複数の要素を縦に並べて配
置するのは、div要素などを並べて記述するだ
けでいいので簡単です注1。問題は横に並べる場
合で、これはCSSをうまく使う必要があります。
　最初に説明するのがposition: relative
の中にposition: absoluteを入れる方法で
す。本来、position: absoluteを指定した

注1） HTMLにて連続して書かれたdiv要素、h1～h6要素、ul要
素、li要素など（HTML4.1時代にブロックレベル要素と呼
ばれていたもの）は、CSSなどで指定しないかぎり、画面
上は縦に並んで配置されるため。

 ▼図1　positionの使用例（画面）

 ▼リスト2　positionの使用例（CSS）

.app-container {
 position: relative;
 padding-left: 120px;
}
.app-menu {
 position: absolute;
 top: 0;
 left: 0;
 bottom: 0;
 width: 120px;
 background-color: #EEEEEE;
}

親要素にposition:
relativeを指定

子要素にposition:
absoluteを指定（親要
素にposition:
relativeが指定されて
いるため、以下のtop、
leftは上位要素からの
相対位置になる）

 ▼リスト1　positionの使用例（HTML）

div class="app-container">
 <div class="app-main">
 メインコンテンツ
 </div>
 <div class="app-menu">
 サイドメニュー
 </div>
</div>

親要素

子要素

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

本章では、Webアプリケーション（以下、Webアプリ）を作るときの、HTML、CSS、JavaScript
の書き方を紹介します。Webページの見た目を整えるための書き方、不具合を生まないための書
き方のほか、Webアプリ開発では必須の複数ブラウザ対応やセキュリティ対応の観点からも解説を
行います。

JavaScript＋HTML＋CSS 編

再考！ 今どきのWebアプリ開発の
ベストプラクティス

第 章 5

 Author 青木 裕一（あおき ゆういち）　㈱ネオジャパン

54 - Software Design Apr. 2016 - 55

要素は画面全体を基準に配置されますが、上位
にposition: relativeを指定した要素を配
置すると、その要素からの相対位置に配置でき
ます。これを使えば、上位の要素（親要素）内に
子要素を好きな位置に配置できます。図1、リ

スト1、2のようにメインコンテンツの横にサ
イドメニューを配置したい場合に有用です。こ
の例ではメインコンテンツの左に幅120pxのサ
イドメニューを配置しています。
　次に説明するのがdisplay: inline-block
を使用する方法です。display: inline-block
を使えば、サイズ指定した要素を横に並べるこ
とができます。図2、リスト3、4のようにタ
ブメニューなどを横に並べたいときに有用です。
この例では線で囲ったタブ項目を横に並べてい
ます。display: inline-blockを指定した要
素と要素の間に空白文字があると、画面上でも
少しの空白が開くので、コメントか何かで埋め
ましょう。
　最後に説明するのが floatを使用する方法で
す。要素に floatを指定することで、親要素の
左側か右側に子要素を配置することができます。

図3、リスト5、6のように左に見出し、右に
ボタンを配置したいときに有用です。この例で
は変更ボタンをタイトルと同じ縦位置で右側に
配置しています。横に並べようとしていた要素
が上下に配置されたり（いわゆるカラム落ち）、
floatを指定した要素が親要素からはみ出たり（リ

スト6の overflow: hiddenはその対策）と、
結構クセは強いです。

CSSのクラス名は意味で命名する
　ところで、CSSのクラス名は意味と見た目、
どちらで記述したほうが良いのでしょうか。ど
ちらでもあまり変わらないように思うかもしれ
ませんが、意味に対する見た目はあとで変更さ
れる可能性があります。このとき、クラス名を
見た目で命名していると、設定先のHTML（Web

アプリの場合はプログラム）を変更することに
なります。クラス名を意味で命名していると、
CSSを変更することになります。両者を比較
した場合、CSSの変更のほうがコストが小さ
い場合が多いので、クラス名は意味で命名した
ほうがいいでしょう。たとえば、未読の場合は
boldではなくunread、重要な注釈の場合はred

ではなく importantをクラス名に付けるように
しましょう。

 ▼リスト3　inline-blockの使用例（HTML）

<ul class="app-items"><!--
-->タブ項目 1<!--
-->タブ項目 2<!--
-->タブ項目 3<!--
-->

要素間の空白をコメント
で埋める

 ▼リスト4　inline-blockの使用例（CSS）

ul.app-items {
 margin: 0;
 padding: 0;
}
ul.app-items > li {
 display: inline-block;
 padding: 2px;
 border: 1px solid black;
}

 ▼図2　inline-blockの使用例（画面）

 ▼リスト5　floatの使用例（HTML）

<div class="app-itembar">
 <div class="app-button"><button>変更</button></div>
 <h4 class="app-title">タイトル</h4>
</div>

 ▼リスト6　floatの使用例（CSS）

.app-itembar {
 background-color: #EEEEEE;
 overflow: hidden;
}
.app-itembar > .app-button {
 float: right;
}

 ▼図3　floatの使用例（画面）

再考！ 今どきのWebアプリ開発の
ベストプラクティス

第 章 5JavaScript＋HTML＋CSS 編

56 - Software Design

外部プログラムとの共存

　豪華なWebアプリのコードをすべて自分た
ちの力だけで製作するのはたいへんです。そん
なときに重宝するのが、便利な処理を集めたラ
イブラリや特定の画面機能を実現するウィジェッ
トなどの外部プログラムです。それらを取り込
むことにより、開発期間を短縮できるでしょう。
また、自分たちがそういったライブラリを作成
することもあるでしょう。そうすれば、ほかの
プロジェクトでも流用できて便利です。
　Webアプリ自体や外部プログラムのコード
は同じ画面上で動くため、互いに影響を与え合
います。そして、これらの作りが良くないと、
ほかに悪影響を及ぼし思わぬ不具合を招きます。
ほかに不必要な影響を与えないような作りにす
るには、いろいろとコツがあります。ここでは
そのコツを紹介します。

イベントを埋め込むときの注意
　要素の「on＋イベント名」のプロパティに関
数を指定することで画面にイベントを埋め込む
ことができます。これはJavaScriptができた
ころからある方法で、昔からよく使われてきま
した。
　しかし、この方法では、複数のプログラムを
組み合わせてWebアプリを作成する場合に、
問題が起こる危険性があります。たとえば、

JavaScript編
Webアプリがリスト7のような構成になってい
たらどうでしょうか？　このような場合、ライ
ブラリAの初期処理がライブラリBの初期処理
で上書きされてしまい、ライブラリAの初期処
理が実行されません。これは、「on＋イベント名」
でイベントを埋め込んだ場合には、要素とイベ
ントの組み合わせそれぞれにつき、1つのイベ
ントしか設定できないからです。
　リスト8のようにaddEventListener()を使え
ば、同じ要素に同じイベントを複数埋め込んで
もそれらすべてのイベント処理が実行されます。

名前空間を意識する
　JavaScriptにおいて、関数の外側でvar 変
数名やfunction 関数名(){ ... }と記述し
た場合、それらはwindow（ブラウザのウィンド
ウ全体を表すオブジェクト）に定義されます。
つまり、どの外部プログラムや自作スクリプト
でも、同じ場所に変数や関数が定義されること
になります。そして、同じ名前で変数や関数を
定義すると、あとから書いたほうで上書きされ
ます。Webアプリで、リスト9のように変数や
関数を定義していったらどうなるのでしょうか。
定義した変数や関数が外部プログラムのそれと
重複してしまうと、正しく動作しないことにな
ります。重複する名前の変数や関数を持つ外部
プログラムがなかったとしても、将来的にそう
いうものが導入されないとも限りません。
　これを回避するため、リスト10のように
windowにオブジェクトを1つ作っておき、変
数や関数をそこに作っておくようにしてくださ

 ▼リスト7　on＋イベントでの埋め込み

window.onload = function (){ /* ライブラリAの初期処理 */ }
 ...中略...
window.onload = function (){ /* ライブラリBの初期処理 */ }

 ▼リスト8　addEventListener()での埋め込み

window.addEventListener('load', function (event){ /* ライブラリAの初期処理 */ }, false);
 ...中略...
window.addEventListener('load', function (event){ /* ライブラリBの初期処理 */ }, false);

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

56 - Software Design Apr. 2016 - 57

い。windowに作るオブジェクトの名前は製品名、
サービス名にちなんだものが良いでしょう。こ
うすることにより、変数や関数の上書きの危険
性を最小限に抑えることができます。
　さらに変数や関数の定義を抑える方法があり
ます。リスト11のように(function(){ ...
})()で囲まれた部分にコード書くと、変数や
関数を定義してもローカル変数として扱われる
ので、windowでの変数や関数の定義を0にで
きます。ただし、(function(){ ... })()で
囲まれた部分で定義した変数や関数は外部から
は扱えないので、別ファイルのプログラムとの
やりとりに制限が出てきます。1ファイルに収
まる大きさの処理の場合に限り、こちらのやり
方を検討したほうが良いでしょう。

クロスブラウザ対応

　WebアプリのHTML、CSS、JavaScriptは
ブラウザ上で動作します。そして、そのブラウ
ザは各ユーザが用意します。そのため、どのブ
ラウザでWebアプリを動作させるかは、ユー
ザによって異なることになります。それゆえに、
Webアプリはユーザが使うと想定したあらゆ
るブラウザで正常に動作しなくてはなりません。
　基本的にブラウザはW3C（World Wide Web

Consortium）や WHATWG（Web Hypertext

Application Technology Working Group）で 決

められた仕様で動作するので、ブラウザ間で動
作が大きく違うことはありません。しかし、
HTML5やCSSの実装状況や、ブラウザの不
具合などにより、同じコードでも動作が違うこ
とがあります。古いバージョンのブラウザの場
合、W3CやWHATWGの仕様に準拠していな
いこともあります。ここでは、そういったブラ
ウザによる動作の違いへの対処方法を紹介しま
す。
　まずは、どのブラウザをサポート対象にする
かを考える必要があります。ごく一部のブラウ
ザしかサポートしないのは、ユーザにとって不
便になります。だからと言って、何でもかんで
もサポート対象にすると、開発者の負担になり
ます。その判断基準としてシェアとサポート状
況が挙げられます。使っている人がほとんどい
ないブラウザや、ベンダがサポートしていない
ブラウザは、サポートしなくていいと思います。
　その際に問題になってくるのは、古いバージョ
ンの Internet Explorer（以下、IE）です。2016

年1月13日に IE 8のサポートが外れたものの
シェアはそれなりにありますし、IE 9とIE 10

のサポートは完全に外れてはいません。IE 8～
10をサポートするかどうかはWebアプリの仕
様や対象ユーザによって変わってくると思いま
す。

特定ブラウザで機能が実装されていない場合
　HTML5の流れにより、さまざまな機能が追
加されました。しかし、Webアプリでサポー
ト対象にしているブラウザで、これらの機能が
実装されていない場合があります。当然、サポー

 ▼リスト9　変数／関数定義の例

var root, item;
function init(){ /* 初期処理 */ }
function getItem(){ /* 処理 */ }
function getList(){ /* 処理 */ }

 ▼リスト10　変数／関数定義の修正案
　　　　　（オブジェクト内に定義）

/* ライブラリAの処理 */
var myApp = {
 root: null,
 item: null,
 init: function (){ /* 初期処理 */ },
 getItem: function (){ /* 処理 */ },
 getList: function (){ /* 処理 */ }
}

 ▼リスト11　さらにwindowでの変数や関数の定義
　　　　 を抑える方法

/* ライブラリAの処理 */
(function(){
 var root, item;
 function init(){ /* Aの初期処理 */ }
 function getItem(){ /* 処理 */ }
 function getList(){ /* 処理 */ }
})();

再考！ 今どきのWebアプリ開発の
ベストプラクティス

第 章 5JavaScript＋HTML＋CSS 編

58 - Software Design

ト対象の機能が未実装のブラウザでもちゃんと
動作しなくてはいけません。しかし、機能が実
装されていない以上、その機能をそのまま実装
することはできません。そのときの対処方法は
場合によりけりですが、一例として表1のよう
な実装案があります。
　方針として、未実装のブラウザに少しの不便
を強いたり、重要でない機能が使えなかったり
するのはかまいませんが、重要な機能が使えな
かったり、おかしな動きになったりするのは避
けたほうがいいでしょう。
　機能の実装有無は該当機能のプロパティが実
装されているかどうかで判定できます。ファイ
ルドロップの有無を判定する場合、リスト12

のように実装します。JavaScriptの新機能は何
らかのオブジェクト、プロパティが増えている
ことがほとんどですので、それの存在有無を調
べれば、機能の実装有無を判定できます。
　機能の実装有無を調べる必要性が多数生じた
場合、Modernizr注2を使うのも手です。Moder

注2） ブラウザにHTML5などの機能が実装されているかどうか
を調査するためのJavaScriptライブラリ。

 https://modernizr.com/

nizrを使うとJavaScriptだけでなく、比較的
調べにくいHTMLやCSSの実装状況もプロパ
ティ参照のみで調べられます。リスト12と同
じ判定を、Modernizrを使って実装する場合、
リスト13のようになります。

特定ブラウザで変な動きをする場合
　Webアプリの開発をしていると、特定のブ
ラウザでほかのブラウザと違う動作をする状況
に遭遇してしまうことがたまにあります。Web

アプリの開発者が悪くない場合も多々あります
が、ユーザにサービスとして提供する以上、対
処しないわけにはいきません。こちらの動作の
違いの対処は、ブラウザの機能の実装有無の対
処に比べて難しいことが多いです。ここでは筆
者が実際に遭遇した状況を挙げて、対処方法の
例とします。
　比較的対処がしやすいのが、標準仕様に準拠
していない動作に遭遇した場合です。たとえば、
次のようなsplit()を使ったコード

'abc123def'.split(/(\d+)/);

機能 機能がない場合の対処方法
ファイルドロップ ファイル入力欄を設ける
クライアント側の入力値検証 クライアント側で行わない
デスクトップ通知 別の方法（たとえばタイトル）で通知する

 ▼表1　 HTML5の機能が実装されていない場合の対処例

 ▼リスト12　ファイルドロップ機能の有無を判定

if (typeof window.File != 'undefined' && typeof window.FormData != 'undefined') {
 // ファイルドロップの処理
} else {
 // ファイルドロップが実装されていない場合の代わりの処理
}

 ▼リスト13　 Modernizrによりファイルドロップ機能の有無を判定

if (Modernizr.filereader) {
 // ファイルドロップの処理
} else {
 // ファイルドロップが実装されていない場合の代わりの処理
}

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

https://modernizr.com/

58 - Software Design Apr. 2016 - 59

を IE 8とモダンブラウザで同じ値で実行して
みたところ、次のようになりました。

 IE 8の実行結果
["abc", "def"]

 モダンブラウザの実行結果
["abc", "123", "def"]

　このように IE 8の split()は独自の仕様で実
装されているようでした。そのため、Webア
プリでは、split()が仕様どおりの結果になる場
合は split()を使い、そうでない場合は Java

Scriptの自作関数を実行するラッパー関数を作
成し、それを使うようにしました（リスト14）。
　対処しにくいのが、HTMLやCSSを同じよ
うに変更しても、変更が反映されなかったり、
見た目がおかしくなったりする場合です。決まっ
た対処方法はないのですが、変更処理の方法を
変えたり、該当部分のCSSの書き方を変えた
りすると直ることがあります。いろいろ試行錯
誤してみるしかないのかもしれません。
　最後にブラウザの種類自体で判定する方法を
紹介します。リスト15ではブラウザごとの固

有の文字列であるユーザエージェントをもとに
判別しています。ブラウザのバージョンアップ
があったときに問題が起こりやすいのでお勧め
はできませんが、これまでに紹介した方法で対
処できない場合は、この方法を使うしかありま
せん。最終手段としてとらえてください。

セキュリティ対応

　Webアプリはいろいろな人物からアクセス
されます。当然、悪意ある人物からの攻撃を受
けることもあります。Webアプリとして公開
する以上、こういうものからユーザの情報を守
らなくてはなりません。

クロスサイトスクリプティング注3対策
　サーバで生成されるHTMLが例に出される
ことが多いクロスサイトスクリプティング（XSS）
ですが、JavaScriptでデータを出力する場合で
も、これと無縁ではいられません。たとえば、

注3） Webサイト上でユーザから受け付けた入力をもとに、動的
にHTMLを生成するWebアプリ（掲示板など）で起こりや
すい脆弱性の1つ。あるユーザがサイトの入力フォームに
何らかのコードを入力すると、それがそのままHTMLに埋
め込まれ、そのサイトを閲覧したコンピュータ側でそのコー
ドが実行されてしまうというもの。

 ▼リスト14　split()の動作の違いの解決方法

sample.split = function (text, expression, limit) {
 if (typeof this._testRegExpSplitResult != 'boolean') {
 // split()が仕様どおりか確認
 this._testRegExpSplitResult = 'a'.split(/(a)/).length == 3;
 }
 if (this._testRegExpSplitResult) {
 // split()が仕様どおりならsplit()を実行
 return String(text).split(expression, limit);
 }
 // split()が仕様どおりでないブラウザ用の処理
 this.splitWithJs(text, expression, limit);
}

 ▼リスト15　 ブラウザの種類自体による分岐（IEを判定する例）

var isIE = navigator.userAgent.indexOf('MSIE') >= 0;
 ...中略...
if (isIE) {
 // IEの場合のコード
} else {
 // IE以外の場合のコード
}

再考！ 今どきのWebアプリ開発の
ベストプラクティス

第 章 5JavaScript＋HTML＋CSS 編

60 - Software Design

次のようにサーバから取得した値を inner

HTMLなどでそのまま埋め込んだ場合、どう
なるでしょうか？

element.innerHTML = textFromServer;

　
　通常は何の問題もありませんが、textFrom

Serverにほかのユーザが入力した値<script>
［任意のコード］</script>のような値が設定
されていると、それがHTMLとして挿入され
るため、そのユーザが仕込んだコードが自分の
アカウント上で実行されてしまいます。サーバ
から取得した値に文字列を連結して設定しても、
同様の問題があります。
　サーバから値に埋め込む際のXSS対策の常
套手段はHTMLのエスケープですが、Java

Scriptではテンプレートエンジンを除き、その
手段が使われることはまずありません。よく使
われるのは、リスト16のように文字データを
要素に追記する方法です。この場合、挿入した
文字列はあくまで文字列であるため、
<script>［任意のコード］</script>のような
値が設定されていても、そのまま表示されるだ
けです。

evalを使用しない
　使われているのをたまに見かけるeval、また
は文字列をスクリプトとして実行する処理です
が、原則として使ってはいけません。リスト

17－①のようにsetTimeout()やsetInterval()の
第1引数を文字列で設定しているサンプルプロ
グラムをたまに見かけますが、これは昔の書き
方ですので、やらないようにしてください。リ

スト17－②のように文字列の代わりに関数を
設定すれば、同じことができます。
　evalを使ってしまいがちなもう1つの例は、
リスト18－①のようにプロパティ名を文字列
変数で指定するときです。この場合、action

Nameにx; ［任意のコード］のような値が設定
されていると、そのコードが実行されてしまい
ます。リスト18－②のように、[]で囲まれた
変数を使ってそのオブジェクトのプロパティを
参照すれば、リスト18－①と同じことができ
ます。しかもこの場合、actionNameは appの
プロパティでしかないので、任意のコードが実
行されることはありません。

クロスドメイン対応
　よく知られていることですが、Ajax（Asynchro

nous JavaScript＋XML）では、HTMLの取得
元のドメインとは違うドメインへのリクエスト
に制約（クロスドメイン制約）がかけられていま

 ▼リスト17　setTimeout()の例

 ①悪い例
setTimeout('action()', 1000);
 ②良い例
setTimeout(function () { action(); }, 1000);

 ▼リスト18　プロパティ名を文字列変数で指定する例

 ①悪い例（evalを使用）
var page = eval('app.' + actionName);
 ②良い例（eval未使用）
var page = app[actionName];

 ▼リスト16　文字データを要素に追記する方法

var textNode = document.createTextNode(textFromServer);
element.innerHTML = '';
element.appendChild(textNode);

す（図4）。なぜなら、この制約がな
ければ、Ajaxを使って罠

わな

サイトに
アクセスしたユーザの個人データを
盗むことができるからです。ただ、
この制約によりマッシュアップ注4が
やりづらくなっているのも事実で、
さまざまな回避策が生まれました。
　最初に紹介するのは JSONP

（JSON with Padding）で、昔 か ら
あった方法です。これは、script要
素からの参照にはクロスドメイン制

注4） Web APIにより複数のWebサービスを統
合して、新しいサービスを提供すること。

やればできる！　ワンランク上のプログラミング
今すぐ実践できる良いプログラムの書き方
［C、Java、C#、Ruby、JavaScript］

第
1
特
集

60 - Software Design Apr. 2016 - 61

約がかかっていないことを利用します。実際に
は、リスト19のような値を出力するURLを、
リスト20のようにscript要素で読み込むこと
によって実装します。ただし、Ajaxと同じよ
うに罠サイトを使って外部からデータを盗むこ
とができるので、非公開情報を扱ってはいけま
せん。
　次に紹介するのはCORS（Cross-Origin Re

source Sharing）です。ドメインを超えてデー
タのやりとりをする場合、こちらを使うことを
お勧めします。マッシュアップ先のサーバが、
レスポンスでアクセスを許可するドメインを指
定することにより、そのドメインとのクロスド
メインのAjax通信ができるしくみです。ちな
みに、レスポンスでクロスドメイン通信を許可
されなかった場合には、ブラウザが強制的に通
信を失敗扱いにします。
　詳細なやり方の説明は省略しますが、マッシュ
アップ先のサーバがレスポンスの際に、リスト

21のようなヘッダでアクセス可能なドメイン
を返す以外、普通のAjaxと同じです。ドメイ
ンの代わりに*を返せばどこからでもアクセス
できるようになりますが、アクセス可能なドメ
インはできるだけ少なくしたほうがいいでしょ
う。
　公開情報を扱う場合はこれだけでいいのです

 ▼リスト19　JSONPの出力例

callback({
 'key1': 'value1',
 'key2': 'value2'
});

 ▼リスト20　JSONPのアクセス方法

var element = document.
createElement('SCRIPT');
element.src = '/path/to/list20';
document.body.appendChild(element);

リスト20
のURL

が、非公開情報を扱う場合は認証にも気をつけ
なければなりません。認証の方式としてはとく
に理由がない限り、OAuth 2.0を使うべきでしょ
う。図5はWebアプリでOAuth 2.0を使う場合
のシーケンスです。OAuth 2.0の認証が成功す
るとアクセストークンがWebページ側に渡り
ますので、それを使ってユーザを認証すれば、
安全に非公開情報をやりとりできます。少し複
雑なしくみですが、非公開情報を扱う以上、必
要なコストだと思います。ﾟ

クライアント Webサーバ マッシュアップ先
サーバ

リクエスト

画面表示

認可リクエスト

ログイン画面表示

ログイン

認可リクエスト

ログイン画面表示

ログイン

リダイレクト

トークン取得リクエスト

トークン取得レスポンス

 ▼図5　OAuth 2.0のシーケンス

 ▼リスト21　アクセスを許可するドメインを指定するためのHTTPレスポンスヘッダ

Access-Control-Allow-Origin: http://external.com

①リクエスト

②画面表示
（HTMLなど）

③リクエスト③リクエスト

クライアント Webサーバ
www.mysite.co

マッシュアップ先
サーバ

www.mashup.com

①②でやりとりしていたサーバのドメインと
異なるドメインのサーバには、リクエストできない

 ▼図4　クロスドメイン制約

再考！ 今どきのWebアプリ開発の
ベストプラクティス

第 章 5JavaScript＋HTML＋CSS 編

バックナンバーのお知らせ

デジタル版のお知らせD I G I T A L

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％割引になります。デジタル版はPCのほかに iPad／ iPhoneにも
対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

62 - Software Design

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

 第1特集
多層防御や感染後対策を汎用サーバに実装
攻撃に強いネットワークの作り方
 第2特集

Webメールの教科書
クラウドサービス利用か？　自社で構築か？

 特別付録
・創刊300号記念　Vim&Emacsチートシート

2015年10月号

定価（本体1,220円＋税）

 第1特集

すいすいわかるHTTP/2
HTTP/1.1から変わること・変わらないこと

 第2特集
攻撃を最前線で防ぐ
ファイアウォールの教科書
 特別企画
・SMB実装をめぐる冒険
 File System for Windowsの作り方

2015年11月号

定価（本体1,220円＋税）

 第1特集

［決定版］Docker自由自在
実用期に入ったLinuxコンテナ技術

 第2特集
ネットワーク・システム管理の定石
SNMPの教科書
 短期連載
・クラウド時代のWebサービス負荷試験再入門

2015年12月号

定価（本体1,220円＋税）

 第1特集

はじまっています。ChatOps
導入を決めた7社の成功パターン

 第2特集
手軽さとコード化しやすさが人気！
Ansibleでサーバ管理構成を
省力化
 新連載
・Androidで広がるエンジニアの愉しみ

2016年1月号

定価（本体1,220円＋税）

 第1特集

［最新］MySQLと
PostgreSQL徹底比較
 第2特集

1Gbps超ネットワーク高速化
時代の適切なLANケーブリン
グの教科書
 一般記事
・Android Studioのスタイルで効率アップ！

2016年2月号

定価（本体1,220円＋税）

 第1特集

チーム開発をまわす現場の
アイデア
 第2特集

あなたの知らないCOBOLの
実力
 一般記事
・iPad Proのさきに見えてくるもの
・Webサイトが改ざん！　サイトオーナがとるべき行動
 と注意点

2016年3月号

定価（本体1,220円＋税）

Webで

購入 ！
家でも

外出先でも

http://www.fujisan.co.jp/product/1535/
http://www.fujisan.co.jp/product/1535/
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

オブジェクト
ストレージの教科書

第2特集

OSSと３つの製品事例から学ぶ、
新しいデータ管理のしくみ
　大量のファイルをAPIでシンプルに出し入れできる「オブジェクトストレージ」。
とくにWebエンジニアからの注目が大きいこの新しいストレージについて、基本
から応用までとことん解説します。
　Part1では、オブジェクトストレージ全般の話題として、従来のファイルサー
バやFTPサーバとは何が違うのかというところから解説をはじめ、オブジェクト
ストレージの概要と機能、メリットを紹介します。Part2では、オブジェクトストレー
ジ の 大きな特 徴である分 散 保 存 のしくみをひも解きながら、2 つ の OSS
「OpenStack Swift」「Ceph」について解説していきます。そしてPart3で
は、3つのオブジェクトストレージサービスについて、開発にかかわったエンジニ
アが内部のしくみを公開しつつ、利用者目線でのTipsを紹介します。

1pa r t
中井 悦司Author

オブジェクトストレージとは何か？
ファイルサーバ／FTPサーバとの違いから考える

p.64

2pa r t
中井 悦司Author

オブジェクトストレージの分散処理を理解しよう
OpenStack SwiftとCephを支える技術

p.69

3pa r t
国内・オブジェクトストレージサービス紹介
NTTコミュニケーションズ、IDCフロンティア、
GMOクラウドのエンジニアが語るサービスや実装の勘所

Cloudn Object Storage［Case 1］ 石津 晴祟Author

p.76

IDCフロンティアのオブジェクトストレージサービス［Case 2］ 佐藤 博之Author

p.78

GMOクラウドオブジェクトストレージ［Case 3］ 片柳 勇人Author

p.83

c o n t e n t s

64 - Software Design

オブジェクトストレージって
何がすごいの？

　みなさんが「オブジェクトストレージ」という
言葉を初めて聞いたのは、いつごろだったでしょ
うか？　Amazon Web Services（AWS）によって、
オンラインストレージサービス「Amazon S3」の
提供が開始されたのが 2006年、そして、
Amazon S3に類似の環境を自前で構築するオー
プンソースソフトウェア「OpenStack Swift」が公
開されたのが2011年です。これらのサービス／
技術をきっかけに、オブジェクトストレージに
興味を持った方も多いことでしょう。
　そして、初めてこれらの機能を聞いて、どの
ように感じたでしょうか？　さまざまなスト
レージ技術を知っているインフラエンジニアで
あれば、「え？　それだけ？」と感じた方も
少なくないかもしれません。オブジェクト
ストレージの機能を端的に説明すると、
「ファイル単位でデータを出し入れするネッ
トワーク上のストレージサービス」です。
NFS（Network File System）サーバのよう
に、ストレージ上のファイルを直接に読み
書きするというわけではなく、あくまでファ
イルを出し入れするだけの機能になります。
言ってみれば、FTPサーバにファイルを
アップロード／ダウンロードするようなも
のです（図1）。
　実際のところ、筆者も最初は同じように
感じました。「画像や動画など、さまざま
なオブジェクトが保存できる未来のスト
レージ！」というような宣伝文句を耳にす

ることもありますが、「画像や動画」と言っても、
その実体はただのファイルです。ファイルが保
存できることを自慢してどうしようというので
しょうか？――この理解は、間違っているとい
うわけではありませんが、もちろんこれでは、
オブジェクトストレージがこれほど広く活用さ
れるようになった理由は説明できません。

オブジェクト
ストレージの真価とは

　オブジェクトストレージが単なるFTPサー
バと異なる点は、大きく2つあります。1つは、
多数のファイルを分散保存するアーキテクチャ
により、大量のファイルに対するアクセスを高
いスループットで処理するという点です。
　Web上で提供されるサービスの多くは、大

 ▼図1　オプジェクトストレージとFTPサーバは何が違う？

オブジェクトストレージ

FTPサーバ

オブジェクトストレージの教科書第２特集 OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

1
pa r t

Author 中井 悦司（なかい えつじ）　レッドハット株式会社　　 Twitter @enakai00

オブジェクトストレージ
とは何か？
ファイルサーバ／FTPサーバとの違いから考える
　Amazon S3に代表される「オブジェクトストレージ」ですが、その特徴はズバリ「大量のファ
イルを高いスループットでやりとりできること」「インターフェースがシンプルであること」。
本章ではオブジェクトストレージの概要と機能について紹介し、利用するうえでどのような
メリットがあるのかをみていきます。

64 - Software Design Apr. 2016 - 65

量の画像・動画ファイルを取り扱う必要があり
ます。2012年には、AWSから、Amazon S3

に保存されたオブジェクト（ファイル）の総数が
１兆個を超えたという発表もなされています注1。
オブジェクトストレージが画像や動画の保存だ
けに最適化されているわけではありませんが、
一般的なファイルサーバやFTPサーバではな
く、オブジェクトストレージを利用することで
初めて実現できたサービスも多いと想像されま
す。インフラエンジニアの視点では、このよう
な分散保存のしくみが最も興味を引かれる点と
なるでしょう。
　そして、もうひとつの違いは、アプリケーショ
ン開発の視点から見えてきます。
　FTPサーバは、UNIX/Linuxのディレクト
リにファイルを保存するというしくみが外から
も見えており、利用者はUNIX/Linuxのディ
レクトリ構造を意識して操作する必要がありま
す。たとえばFTPサーバに保存したファイル
の総数や総容量を知りたい場合、みなさんはど
うするでしょうか？　年季の入ったシステム管
理者であれば、FTP接続したあとに、cdコマ
ンドと lsコマンドを駆使して、ファイルの個数
や容量を計算していくシェルスクリプト（もし
かしたら、Perlやawkのスクリプト）を書いた
思い出があることでしょう。
　しかしながら、Webアプリケーションを開
発するプログラマにとって、そんなことはどう
でもよい話です。オブジェクトストレージは
「ファイル単位で出し入れする」という機能に特
化すると同時に、アプリケーションプログラム
にとって必要なインターフェースを“厳選して”
提供しています。たとえばOpenStack Swiftの
場合、プログラマが意識するのは、「アカウント」
「コンテナ」「オブジェクト」の3種類の操作対象
です。これらは、REST API注2の用語として「リ

ソース」とも呼ばれており、それぞれの役割は
表1のとおりです。
　アプリケーションプログラマは、これらのリ
ソースを操作するコードを書くことで、オブジェ
クトストレージを利用したアプリケーションを
開発していきます。それぞれのオブジェクトス
トレージは、アプリケーションから利用するた
めのライブラリをRuby、Python、Java、C言
語といった主要なプログラム言語に対して用意
しており、コード内ではこれらのライブラリが
提供する関数やメソッドを呼び出します。アプ
リケーションとオブジェクトストレージの間は
REST API、すなわちHTTPプロトコルによ
る通信が行われますが、プログラマ自身がその
ようなプロトコルを意識する必要はありません。
　このように、アプリケーションプログラム、
とりわけWebアプリケーションと連携して使
用する際に、開発の利便性を高めるように配慮
されている点が、オブジェクトストレージのも
うひとつの特徴になります。

オブジェクトストレージの
API

　オブジェクトストレージの背後にある分散保
存のしくみについては、このあとのPart2で解
説することにして、ここではAPIの概要、す
なわちアプリケーションプログラムから利用で
きる機能を確認しておきます。代表例として、
OpenStack SwiftのAPIを紹介しますが、その
ほかのオブジェクトストレージでも基本的な機

注1） 「Amazon S3―オブジェクト数が1兆個に！」
URL http://aws.typepad.com/aws_japan/2012/06/amazon-s3-the-first-trillion-objects-.html

注2） REST APIは「REST（Representational State Transfer）」の原則に従って設計されたAPI（アプリケーション間の通信規約）で、HTTPプ
ロトコルを用いて通信を行い、URLで操作対象のリソースを識別します。

リソース 説明

アカウント ストレージサービスを利用するテナント

コンテナ オブジェクトを保存する入れ物

オブジェクト コンテナに保存するファイルの実体

 ▼表1　OpenStack Swiftの操作対象リソース

1p a r t
オブジェクトストレージとは何か？

ファイルサーバ／FTPサーバとの違いから考える

http://aws.typepad.com/aws_japan/2012/06/amazon-s3-the-first-trillion-objects-.html

66 - Software Design

能はほぼ同じです。
　前述のように、OpenStack Swiftを利用する
アプリケーションは、表1に示した3種類のリ
ソースに対して各種の操作を行います（図2）。

アカウントに対する操作

　OpenStack Swiftが提供するストレージサー
ビスはマルチテナント型になっており、複数の
テナントから使用できます。「アカウント」はス
トレージサービスを利用するテナントを表すも
ので、アプリケーションは特定のアカウントを
指定して、オブジェクトストレージにアクセス
します。それぞれのアカウントは、オブジェク
ト（ファイル）を保存する入れ物となるコンテナ
を自由に作成できます。アカウントに対する主
要な操作は次のとおりです。

・アカウントが所有するコンテナの一覧を取得
・アカウントが所有するコンテナ数、バイト数、
メタデータを取得

・アカウントのメタデータを設定／更新

　メタデータというのは、Key-Value形式の任
意のテキストデータで、アプリケーションが必
要とする情報を自由に設定できます。アカウン
ト、コンテナ、オブジェクトのそれぞれに対し
て、複数のメタデータを設定できます。また、
このあとで説明するオブジェクトの有効期限設
定のように、メタデータを用いてリソースの管
理設定を行うこともあります。

コンテナに対する操作

　コンテナは、オブジェクトを保存する入れ物
です。UNIX/Linuxのディレクトリのような階
層構造は作れません。階層的にファイルを保存
したい場合は「directory01_file01」のように、
オブジェクト名に対して擬似的にディレクトリ
名を含めて利用します。コンテナに対する主要
な操作は次のとおりです。

・コンテナを作成
・空のコンテナを削除
・コンテナに含まれるオブジェクトの一覧を取得
・コンテナに含まれるオブジェクト数、バイト
数、メタデータを取得

・コンテナのメタデータを設定／更新

　コンテナのメタデータには、コンテナの使用目
的やアプリケーションからみたコンテナの状態を
設定するといった使い方が考えられます。たと
えば画像共有アプリケーションにおいて、ある
コンテナに対して「状態＝無効」というメタデータ
をセットすると、そのコンテナのファイルは利用
者からは参照できなくなる、といった機能を実
装できるでしょう。REST APIでコンテナを操
作する際は、「アカウント／コンテナ」の形式で、
どのアカウントのコンテナを対象とするのかを示
します。

　オブジェクトは、コンテナに保存するファイ

オブジェクトに対する操作

 ▼図2　OpenStack Swiftの操作体系

オブジェクトストレージWebアプリケーション

アカウント

コンテナ

オブジェクト

アカウント、コンテナ、
オブジェクトを操作

第２特集 オブジェクトストレージの教科書
OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

66 - Software Design Apr. 2016 - 67

ルの実体です。REST APIでオブジェクトを
操作する際は、「アカウント／コンテナ／オブ
ジェクト」の形式で、どのアカウントのどのコ
ンテナに含まれるオブジェクトであるのかを示
します。オブジェクトに対する主要な操作は次
のとおりです。

・オブジェクトをダウンロード
・オブジェクトをアップロードして、メタデー
タを設定

・オブジェクトを削除
・オブジェクトを別の名前でコピー
・オブジェクトのメタデータを取得
・オブジェクトのメタデータを設定／更新

　OpenStack Swiftではオブジェクトのメタデー
タを利用して、有効期限も設定できます。メタデー
タ「X-Delete-At」で指定された日時、あるいは
「X-Delete-After」で指定された時間が経過する
と、自動的にオブジェクトが削除されます。

オブジェクトストレージの
管理機能

　ここまでの説明で、オブジェクトストレージ
とFTPサーバの違いがつかめたのではないで
しょうか。「ファイル単位で出し入れする」とい

う点は同じですが、オブジェクトストレージの
場合は、アプリケーションから利用しにくいディ
レクトリ構造の概念を思い切って削除する一方、
オブジェクト数／バイト数の取得やメタデータ
の設定など、アプリケーションの作成に便利な
機能が追加されています。またOpenStack

Swiftでは、オブジェクトの有効期限設定のよ
うな管理機能も用意されています。
　このような管理機能は、各種オブジェクトス
トレージの差別化ポイントにもなります。たと
えばOpenStack Swift、あるいはAmazon S3

では、オブジェクトのバージョン管理機能が提
供されており、同一のオブジェクトを上書きで
アップロードした場合に、古いオブジェクトを
削除せずに保存したままにできます。オブジェ
クトのバージョン番号を指定することで、過去
のオブジェクトを取り出すことができるように
なります。
　そのほかには、保存したオブジェクトに
URLを割り当てて、Webブラウザからアクセ
ス可能にするような機能もあります。HTML

ファイルを保存して静的なWebサイトを作っ
たり、あるいはほかのWebサイトからリンク
可能な形で画像ファイルを公開するといった使
い方ができます。

　本文では、追加の管理機能がオブジェクトストレージの差別化ポイントになると説明しましたが、世の中には余計
な追加機能を持たないことを差別化ポイントとするおもしろいオブジェクトストレージがあります。分散ファイルシ
ステム「GlusterFS」のオリジナル開発者である、Anand Babu（AB）が開発を進める「Minio」注Aです。
　Minioが提供するAPIは、基本的にはコンテナの作成とオブジェクトのアップロード、ダウンロード、そしてコンテ
ナとオブジェクトの一覧表示、ただそれだけです。メタデータの設定や有効期限の設定などはありません。これは、追
加機能を実装していくと、オブジェクトストレージの処理が段々と複雑になっていき、本来の特徴であるスケーラビリ
ティ、すなわち大量のアクセスを高速に処理するという特性が失われてしまう、という考え方に基づきます。オブジェ
クトストレージは、あくまでもその本来の機能に特化して、それ以外の追加機能はオブジェクトストレージを使用する
アプリケーション側で実装したほうが効率的で柔軟性も高くなるはずだ、というのが開発者であるABの主張です。
　彼はGlusterFSを開発する中で、分散型のストレージソフトウェアにおいて、処理性能を犠牲にせずに高度な機能を
実現することがいかに困難であるかを学んだと言います。その経験を最大限に活かして開発されたMinioがどのよう
なものになるのか、筆者は興味を持って開発の進捗を見守っています。

コラム

ミニマム機能に特化したオブジェクトストレージ「Minio」

注A） URL https://www.minio.io

1p a r t
オブジェクトストレージとは何か？

ファイルサーバ／FTPサーバとの違いから考える

https://www.minio.io/

68 - Software Design

ファイルの冗長保存と
注意点

　オブジェクトストレージでは一般に、サーバ
障害時に保存したファイルを失わないための冗
長化もなされています。OpenStack Swiftの場
合、ストレージサービスを利用するクライアン
トは、フロントにある「プロキシノード」を経由
して、データのやりとりを行います（図3）。プ
ロキシノードは、受け取ったファイルを、背後
にあるストレージノードに保存するわけですが、
この際複数のストレージノードに対してファイ
ルの複製を保存します。一方ファイルを読みだ
すときは、複製されたファイルのどれか1つを
選んで読み出すことで、負荷分散を行います。
また、プロキシノード自体の障害にも対応する
ため、複数のプロキシノードを並べて、ロード
バランサで負荷分散するような構成も可能にな
ります。
　そして、このしくみに関連して注意しないと
いけないことは「Eventual Consistency（結果整
合性）」の考え方です。たとえばあるストレージ
ノードが障害停止している間、プロキシノード
は代替のストレージノードに複製を保存します。

そのあと、停止していたストレージノードが復
旧すると、このノードには古いファイルが残っ
たままになっています。しばらくすると、新し
い複製が自動的にコピーされて正しい状態に戻
りますが、それまでの間に、クライアントは古
いファイルを読みだしてしまう可能性がありま
す。つまりクライアントは、必ずしも最新のファ
イルが読み出せるとは限らないのです。
Eventual Consistencyというのは、このような
「しばらくすると正しい状態になる」という動作
を表します。
　アプリケーションの特性上、確実に最新のファ
イルを取得する必要がある場合は、APIリクエ
ストに「X-Newestヘッダ」をセットします。こ
の場合プロキシノードは、すべての複製を読み
込んでその中で最新のものを返送します。当然
ながらアクセス性能は悪くなりますので、本当
に必要な場合にのみ使用してください。

　本パートではオブジェクトストレージの特徴
として、分散保存型のアーキテクチャに加えて、
アプリケーションプログラムからの利用に特化

したAPI設計があることを説
明しました。SNS（ソーシャル
ネットワーキングサービス）に
代表される、大量の画像や動画
ファイルを扱うWebアプリケー
ションの増加と相まって、オブ
ジェクトストレージの需要が高
まっていることが理解できたも
のと思います。
　このあとに続くPart2では、
オープンソースとして内部仕様
が公開されているOpenStack

SwiftとCephを例として、オ
ブジェクトストレージの分散保
存アーキテクチャを解説してい
きます。ﾟ

 ▼図3　OpenStack Swiftの複製保存のしくみ

クライアント プロキシノード

ストレージノード

読み出すときは
どれか1つを選択

書き込むときは
複数ノードに保存

まとめ

第２特集 オブジェクトストレージの教科書
OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

Apr. 2016 - 69

分散ストレージの歴史

　Part1では、オブジェクトストレージの特徴
の1つとして、多数のファイルを分散保存する
という点を紹介しました。分散保存する目的と
しては、1台のサーバでは保存しきれない大量
のファイルを保存することに加えて、アクセス
性能の確保が挙げられます。
　ご存じのように、コンピュータが利用する記
憶装置はCPU内部のレジスターから始まり、
キャッシュメモリ、メインメモリ、ハードディ
スクという形でアクセス速度の順番に階層化さ
れています（図1）。そして、物理的な可動部分
を持つハードディスクのアクセス速度は、メイ
ンメモリの100万倍ほども遅くなります。そこ
で、ハードディスクとのデータのやりとりを高
速化するために利用されるのが、多数のハード
ディスクに同時にアクセスするという手法です。
　典型例として挙げられるのが、ハードディス
クのストライピング構成です。サーバにRAIDコ

ントローラを搭載すると、コントローラの機能に
よって複数のハードディスクを束ねたRAIDアレ
イを構成して、OSに対しては単一のハードディ
スクであるかのように見せかけられます。OSか
らのデータアクセスを複数のハードディスクで
並列処理することにより、単位時間あたりのデー
タ転送量（スループット）を向上できるのです。こ
のしくみには、OS、あるいはその上で稼働する
アプリケーションからみたときに、背後のしくみ
を意識せずとも、単体のハードディスクと同じ
方法で扱えるというメリットがあります。
　ただしこの方法の場合、複数サーバでの共用
ができない、あるいは1台のサーバに搭載可能な
ハードディスクの容量を超えてデータを保存で
きないといった限界があります。そこで、一般
的な企業システムで広く利用されるようになった
のが、SAN（Storage Area Network）ストレージ
システムです。これは大量のハードディスクを
搭載した専用のストレージ装置をファイバーケー
ブルを介して複数サーバから共用する技術です。
　SANストレージシステムは現在でも広く利
用されていますが、その一方で専用のストレー

ジ装置を用いるのではなく、
一般的なサーバの内蔵ディス
クを束ねることで、大容量ス
トレージを構成するという考
え方も生まれてきました。現
在オブジェクトストレージと
して利用されているものは、
その大部分がこちらの考え方
になります。サーバ上のソフ
トウェアでストレージを構築

 ▼図1　記憶装置の階層構造

レジスター

キャッシュメモリ

：数百ピコ秒～数ナノ秒

：数ナノ秒～数十ナノ秒

メインメモリ

ハードディスク

：数十ナノ秒～数百ナノ秒

：数十ミリ秒～数百ミリ秒

百万倍の性能差

オブジェクトストレージの教科書第２特集 OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

2
pa r t

Author 中井 悦司（なかい えつじ）　レッドハット株式会社　　 Twitter @enakai00

オブジェクトストレージの
分散処理を理解しよう
OpenStack SwiftとCephを支える技術
　複数の場所にファイルをどのように分散保存するのか、またそれらへのアクセスをどのよ
うに振り分けるのか。本章ではオブジェクトストレージの大きな特徴である分散保存のしく
みを扱います。また、OSSのオブジェクトストレージOpenStack SwiftとCephについて、
両者の違いに触れながら解説していきます。

70 - Software Design

するので、「ソフトウェアストレージ」と呼ばれ
ることもあります。

分散ストレージソフト
ウェアのアーキテクチャ

　複数サーバの内蔵ディスクを束ねるタイプの
「分散ストレージソフトウェア」では、一般にディ
スク領域を提供するサーバを「ストレージノード」、
そしてこれらのディスクにアクセスして使用す
る側のサーバを「クライアントノード」と呼びます。
このとき、クライアントノードから多数のストレー
ジノードへのアクセスを仲介する役割がどこか
に必要となります。この「仲介役」のしくみを理
解することが、分散ストレージソフトウェアのアー
キテクチャを理解するポイントになります。
　分散ストレージソフトウェアには、大きく2

つのタイプがあります。それぞれのタイプにつ
いて、「仲介役」がどこにあるのか確認しておき
ましょう。
　1つは、ネットワーク経由でファイルシステ
ムをマウントして利用する「分散ファイルシス
テム」と呼ばれるタイプです。オープンソース
として開発されているものには、GlusterFSや
CephFSなどがあります。このタ
イプでは、ファイルシステムをマ
ウントするクライアントノード側
に仲介役の機能が存在します（図

2）。アプリケーションがファイ
ルシステム内のファイルにアクセ
スすると、OS上で稼働するクラ
イアントモジュールがファイルの
実体があるストレージノードを判
断して、該当のストレージノード
に対するアクセスを行います注1。
　一方、本特集のテーマであるオ
ブジェクトストレージの場合は、
クライアントノードのOSに特別
なモジュールは必要ありません。

Part1で説明したように、HTTPプロトコルを
用いたREST APIでアクセスしますので、ク
ライアントノードからは特定のサービスの
URLに対してアクセスリクエストを送信する
ことになります。このリクエストを受け取るサー
バは、一般にプロキシノード（もしくは、ゲー
トウェイノード）と呼ばれており、その背後で
複数のストレージノードに分散アクセスを行い
ます。

◆　◆　◆

　次節からはまず、OpenStack Swiftの場合を
例として、プロキシノードが分散アクセスを行
うしくみを解説します。またもう1つの興味深
い例として、Cephのしくみを解説します。
Cephは、RADOSと呼ばれるオブジェクトス
トレージの機能を持っており、これをベースと
して、オブジェクトストレージに加えてブロッ
クデバイス（RBD：Rados Block Device）や分
散ファイルシステム（前述のCephFS）の機能を
実現しています。ここではとくに、Cephの中
核となるRADOSのしくみを解説します。

注1） GlusterFSの場合はユーザランドで稼働するFUSEモジュール、CephFSの場合はカーネルモジュールがこの機能を提供します。

 ▼図2　分散ファイルシステムのアーキテクチャ

クライアントノード

ストレージノード

クライアントモジュール

ファイルシステム

クライアントモジュールが
データの保存場所を判断して
アクセス

第２特集 オブジェクトストレージの教科書
OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

70 - Software Design Apr. 2016 - 71

OpenStack Swift

　ここからは、オブジェクトストレージの具体
例として「OpenStack Swift」を紹介します。なお、
OpenStack Swiftの内部構造は、バージョンアッ
プとともにより複雑になっています。ここでは
その本質を理解するために、まずは少し前のバー
ジョンであるGrizzlyリリースでの実装を基に解
説します。最新バージョンにおける構造の違い
については、別途、補足説明を加えてあります。

　OpenStack Swiftの全体像は、図3のように
なります。REST APIによるリクエストを受
け付けるプロキシノードが複数あり、フロント
のロードバランサによって負荷分散が行われま
す。さらに、プロキシノードの背後に多数のス
トレージノードが存在します。Part1で説明し
たように、OpenStack Swiftでは「アカウント」
「コンテナ」「オブジェクト」の3種類のリソース
を扱いますが、これらのリソースは、すべて複
数のストレージノードに分散保存されます。

アーキテクチャについて

　アカウントやコンテナが分散保存されるとい
うと妙な感じがしますが、たとえばコンテナで
あれば、それぞれのコンテナに保存されたオブ
ジェクトの一覧といった管理情報を保存する必
要があります。このような管理情報が分散保存
されていると考えてください。
　そしてこれらの管理情報、あるいはオブジェ
クトの実体となるファイルをどのストレージノー
ドに保存するかを決定するルールが必要になり
ます。これは「リング」と呼ばれる静的なハッシュ
テーブルで実現されます。――と言うと難しそ
うですが、実際にはとてもシンプルでわかりや
すいしくみです。順を追って説明していきましょ
う。
　まずはじめに、論理的な保存場所を示す多数
の「パーティション」を用意して、それぞれのパー
ティションをストレージノードに搭載されたハー
ドディスクに割り当てます注2。図4のように、
1つのハードディスクに対して複数（一般には
数百個程度）のパーティションが割り当てられ
ます。そして、保存対象とするリソースの名前
（アカウント名、コンテナ名、オブジェクト名）
のハッシュ値から保存先のパーティションを決

 ▼図3　OpenStack Swiftを構成するサーバ群

ストレージノード

プロキシノード

クライアント

ロードバランサ

注2） オブジェクトストレージでは、一般にストレージノードのハードディスクに対してRAIDを構成することはしません。個々のディ
スクを個別にオブジェクト（ファイル）の保存領域として使用します。

2p a r t
オブジェクトストレージの分散処理を理解しよう

OpenStack SwiftとCephを支える技術

72 - Software Design

定する「対応表」を用意します。リングというの
はこの対応表のことで、アカウント、コンテナ、
オブジェクトのそれぞれに対して個別のリング
が用意されます。OpenStack Swiftでは、デー
タを冗長保存するために、標準で3つのレプリ
カ（複製）を異なるストレージノードに保存する
ようになっており、図5のように3つのレプリ
カに対して、それぞれに保存先のパーティショ
ンが決まります。
　ここまでの準備ができれば、このあとの動作
はそれほど難しくはありません。図5に示した
リング情報を記録した「リングファイル」をプロ
キシノード、およびすべてのストレージノード
に配布しておき、それぞれのノードは、リングファ
イルを見てリソースの保存先となるパーティショ
ンを判断します。たとえば、新たなオブジェク
ト（ファイル）の保存リクエストを受け取ったプ
ロキシノードは、オブジェクト名のハッシュ値
を計算したあとに、リングファイルを参照して
このオブジェクトを保存する3つ
のパーティションを決定します。

リング作成のしくみ

　これまでの説明からもわかるよう
に、図5に示したリングの構造が
OpenStack Swiftを理解するポイ
ントになります。それでは、このリ
ングはどのようにして作成するので
しょうか？――ここにOpenStack

Swiftの最大の特徴があります。
　リングファイルは、「リングビ
ルダー」と呼ばれるツールで事前
に作成しておきますが、その際ス
トレージノードとそれらに搭載さ
れた個々のハードディスクの情報、
そして各ハードディスクの「ゾー
ン」と「重み」を指定します。する
とリングビルダーは、それぞれの
ハードディスクに対して、重みに
比例した数のパーティションを割

り当てます。各パーティションには均一にデー
タが割り当てられるので、結果として重みの大
きいハードディスクにはより多くのデータが保
存されます。一般には、個々のハードディスク
の容量に応じて、重みの値を調整します。
　さらに3つのレプリカには、異なるゾーンの
ハードディスクを割り当てます。たとえば、複
数のラックにストレージノードを配置する場合、
ラックごとにゾーンを分けておけば、3つのレ
プリカは必ず別々のラックに分配されます。ネッ
トワークスイッチの障害で、特定ラックのスト
レージノード全体がアクセス不能になった場合
でも、プロキシノードがすべてのレプリカにア
クセスできなくなる事態は避けることができま
す。リングビルダーには、このような制約条件
を満たすよう“うまいぐあいに”リングを作成す
るアルゴリズムが組み込まれています。
　ストレージノードをあとから追加する場合は、
リングビルダーを用いてリングを作成しなおし

 ▼図4　ハードディスクに対するパーティションの割り当て

ストレージ
ノード

ハード
ディスク

パーティ
ション 1 2 3 4 5 6 7 8

 ▼図5　リング（ハッシュテーブル）の構造

ハッシュ値

レプリカ＃１

レプリカ＃２

レプリカ＃３

xxx

1

3

7

yyy

4

2

6

zzz

3

5

9

…

9

8

4

…

5

7

6

…

2

5

1

…

1

2

4

それぞれのレプリカを保存する
パーティションの番号

第２特集 オブジェクトストレージの教科書
OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

72 - Software Design Apr. 2016 - 73

ます。その際、既存のオブジェクトについて、
配置先のパーティションが変更される可能性が
あります。作成しなおしたリングファイルを各
ノードに配布すると、新たな配置情報に基づい
て既存のオブジェクトを再配置する「リバラン
ス」の処理が行われます。リバランスの実施中
であっても、オブジェクトストレージへのアク
セスは継続できるように考慮した設計がなされ
ています。
　最後に、最新バージョンでの構造の違いを補
足しておきます。現在のバージョンでは、地理
的に離れた場所のストレージノードを組み合わ
せられるよう、「ゾーン」に加えて「リージョン」
の指定ができるようになっています。これによ
り、複数地域にまたがってレプリカを配置した
り、あるいは異なる地域間でのファイル転送時
には、ファイルを圧縮してから転送したりする
などのオプション設定が可能になります。その
ほかには、ハードディスク容量の使用効率を上
げるために、ファイルを完全に複製するのでは
なく、冗長性を持たせた形で分割配置する
「Erasure Coding」と呼ばれるしくみも利用で
きるようになっています。

Ceph

　つづいて、オブジェクトストレージのもうひ
とつの具体例として「Ceph」を紹介します。前
述のように、CephはRADOSというオブジェ
クトストレージの機能をベースに、ブロックデ
バイス（RBD）や分散ファイルシステム
（CephFS）の機能も提供するというユニークな
アーキテクチャを持っています。ここでは、そ
の基礎となるRADOSのしくみを中心に解説し
ます。なお、Cephをオブジェクトストレージ
として使用する際は、プロキシノードに相当す
る「RADOSゲートウェイ」が稼働するノードを

用意します。クライアントからのリクエストを
受け取ったRADOSゲートウェイが、その背後
にあるストレージノードとのデータのやりとり
を行います。

　OpenStack Swiftは、1つのディスクに対し
て複数の論理的な保管場所（パーティション）を
割り当てる構造でしたが、RADOSの場合は1

つのディスクが1つの保管場所になります。ス
トレージノードではそれぞれのディスクに対し
て、ファイルを読み書きするプロセスとなる
「OSD（Object Storage Daemon）」が起動しま
す。
　またOpenStack Swiftの場合は、リソース名
のハッシュ値に対してリングを参照して対応す
るパーティションを決定しました。一方
RADOSでは、リソース名のハッシュ値から「プ
レースメントグループ」を計算したあと、さらに
プレースメントグループに対応するOSDを決定
するという2段階構成になります（図6）。このとき、
プレースメントグループはハッシュ値の単純計
算で決まりますが、プレースメントグループを
OSDに紐付ける部分では、RADOSに特有の高
度な処理が行われます。Cephのオリジナル開発
者であるSage Weilが博士論文で発表した
「CRUSHアルゴリズム」による計算です注3。
　Cephの管理者は、まずそれぞれのOSDが管
理するディスクがどのストレージノードに搭載
されていて、さらに各ストレージノードがどのラッ
クに搭載されていて……という、物理機器の配
置情報、さらに複数のレプリカを配置する条件（2

個目のレプリカは異なるストレージノードに配
置して、3個目のレプリカは異なるラックに配
置するなど）を「クラスタマップ」として登録して
おきます注4。CRUSHアルゴリズムは、クラス
タマップを参照して、それぞれのレプリカに対

RADOSのしくみ

注3） 「CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data」
URL http://www.crss.ucsc.edu/media/papers/weil-sc06.pdf

注4） 正確には、クラスタマップの中に含まれる「CRUSHマップ」という部分になります。

2p a r t
オブジェクトストレージの分散処理を理解しよう

OpenStack SwiftとCephを支える技術

http://www.crss.ucsc.edu/media/papers/weil-sc06.pdf

74 - Software Design

して指定された条件にあったOSDを決定します。
CRUSHアルゴリズムは非常に高速に計算でき
るという特徴があります。そのため、リングの
ように計算済みの配置表をファイルに保存して
おくのではなく、配置先のOSDを知る必要があ
る場合は、その都度CRUSHアルゴリズムによ
る計算を行います。たとえば、RADOSゲートウェ
イはCRUSHアルゴリズムで1つめのレプリカ
を保存するOSDを決定して、オブジェクト（ファ
イル）を転送します。これを受け取って保存した
OSDは再度、CRUSHアルゴリズムで2個目、
3個目のレプリカの保存先を決定して、該当の
OSDにオブジェクトを再転送します。
　それでは、プレースメントグループとOSD

の対応をその都度計算することには、どのよう
なメリットがあるのでしょうか？　ひとつには、
クラスタマップの動的な変更に対応するという
目的があります。たとえばCephでは、障害によっ
てストレージノードが停止した際にそれを検知
して、自動的にクラスタマップを更新するよう
になっています。RADOSゲートウェイやOSD

は、新しいクラスタマップを参照してCRUSH

アルゴリズムの計算を行い、オブジェクトの再
配置を自動的に行います。あるいは1つのCeph

環境を複数の目的で使用する場合、複数の「プー
ル」を定義して、プールごとにクラスタマップ
を用意するということができます。これにより、

プールごとにデータを保存するストレージノー
ドを分けるといった使い方が実現できます。

　RADOSでは、ストレージノードの障害時に
クラスタマップを自動更新するという話をしま
したが、実際のところ、どのようなしくみで障
害検知やクラスタマップの更新が行われるので
しょうか？　このしくみの全体像は図7のよう
になります。Cephの環境では、モニターデー
モン「MON」が最新のクラスタマップを管理／
保存しています。冗長化のために3台以上のス
トレージノード上で稼働しており、Paxosと呼
ばれるプロトコルで、お互いに同一のクラスタ
マップを保持していることを確認し合います。
そしてRADOSゲートウェイやOSDは、起動
時にMONからクラスタマップを取得して、そ
の内容をメモリ上に保持しておき、これを用い
てCRUSHアルゴリズムの計算を行います。
　さらに、それぞれのOSDはお互いの稼働状
況をチェックしており、あるOSDが停止して
いることを検知すると、その情報をMONに通
知します。この通知を受けたMONは、停止し
たOSDを除いた新しいクラスタマップを作成
して、その内容をOSDに配信していきます。
クラスタマップにはバージョン番号が振られて
おり、新しいクラスタマップには新しいバージョ

クラスタ管理と
データ冗長化のしくみ

 ▼図6　RADOSにおけるオブジェクトとOSDの対応付け

オブジェクト
（ファイル）

CRUSHアルゴリズムで配置先のディスクを決定

リソース名のハッシュ値でプレースメントグループを決定

クラスタ
マップ

オブジェクト
（ファイル）

オブジェクト
（ファイル）

プレースメントグループ#1 プレースメントグループ#2

OSD#1 OSD#2 OSD#3

ディスク ディスク ディスク

第２特集 オブジェクトストレージの教科書
OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

74 - Software Design Apr. 2016 - 75

ン番号が付与されます。MONから新しいクラ
スタマップを受け取ったOSDは、自身が保持
しているオブジェクトについて、新しい配置先
をCRUSHアルゴリズムで計算しなおして、必
要な際はオブジェクトの移動や再レプリケーショ
ンを行います。
　このとき新しいクラスタマップは、MONから
すべてのOSDに直接配信されるわけではなく、
一般に「ゴシッププロトコル」と呼ばれる動作に
よって、OSD間で順次伝達されていきます。そ
のためタイミングによっては、OSDごとに参照
するクラスタマップが異なる可能性もあります。
OSD間でレプリケーションなどの処理を行う際は、
お互いにクラスタマップのバージョン番号を確
認して、必ず新しいクラスタマップを利用して、
矛盾なく処理を行うように設計されています。
　なお、図7においてRADOSゲートウェイは、
クライアントから受け取ったファイルをそのま
まOSDに転送しているように描かれています
が、実際には巨大なファイルをそのまま転送す
ることは行いません。一定サイズのファイルに
分割したうえで、それぞれのファイルに個別の
リソース名を付けて、別々のOSDに分散保存
するようになっています。分割ファイルのそれ

ぞれについて、3つのレプリカが作成される形
になります。またOpenStack Swiftと同様に、
「Erasure Coding」を利用することもできます。

まとめ

　本パートではOpenStack SwiftとCephを題
材として、オブジェクトストレージがファイル
を分散保存するしくみを解説しました。配置ルー
ルを事前に生成してリングファイルとして配布
するOpenStack Swift、そして、クラスタマッ
プを参照してCRUSHアルゴリズムで配置ルー
ルをその場で計算するCephと、対照的なしく
みであることがわかりました。このような配置
ルールを管理するしくみこそが、オブジェクト
ストレージの土台となるわけです。そしてオブ
ジェクトストレージの環境を構築する際は、ス
トレージノードの台数や構成、利用目的に応じ
て、リングやクラスタマップを適切に設計する
ノウハウが必要となります。
　次のPart3では、サービス環境で実際に使用
されているオブジェクトストレージの事例を通
して、このようなノウハウの一端を紹介してい
きます。ﾟ

 ▼図7　MONによるクラスタマップの管理

クラスタマップを取得

クラスタマップ
を取得

最新のクラスタマップを保存

CRUSHアルゴリズムで配置先のディスクを決定

CRUSHアルゴリズムで
レプリカ先を決定

OSD#1

ディスク

OSD#2

ディスク

OSD#3

ディスク

MON#1

RADOS
ゲートウェイ

MON#2 MON#3

クラスタ
マップ

クラスタ
マップ

クラスタ
マップ

2p a r t
オブジェクトストレージの分散処理を理解しよう

OpenStack SwiftとCephを支える技術

76 - Software Design

冗長化に重点を
おいたシステム構成

　当社が提供しているCloudn Object Storageを
紹介します。Cloudn Object Storageではハードウェ
アはストレージサーバ、ロードバランサ、レイヤ
2/3スイッチを利用し、ソフトウェアはクラウディ
アン社のCloudian HyperStoreを利用しています。
また、各機器は冗長化し、専用線で接続された複
数のデータセンターに分散して設置しています。
　ここで各機器の役割と特徴を紹介します。ス
トレージサーバはユーザからのリクエスト受け
付けと実際のデータを保管しています。このサー
バは汎用的な IAサーバですが、ハードディス
クを数多く搭載し、ユーザからのリクエストを
受け付けるネットワークとサーバ間通信を行う
ネットワークを分離しています。さらにCloud

ian HyperStoreは Cassandraと Redisを活用
し、併用することでストレージサーバを増やし、
保管可能な総容量を増やしたり、処理性能を向
上させることを可能にしています。
　ロードバランサはユーザからのリクエストを
受け付けストレージサーバに処理を振り分けて
います。さらにデータセンターごとに冗長化さ
れて設置されており、GSLB（グローバルサー
バロードバラシング）によりデータセンター間
の冗長化も行っています。各種スイッチは冗長

化に加えてストレージサーバの増加に備えて多
段構成としています（図1）。

堅牢性・低コストを
両立させたサービス構成

　Cloudn Object Storageは、①高い堅牢性、
②大容量、③低価格、④Amazon S3とAPI互換、
という特徴があります。
　高い堅牢性を実現するために保管するファイ
ルを3冗長化し、データセンターを跨いで異な
るストレージサーバに広域分散保存しています。
そのため、ストレージサーバの単一故障だけで
なく、データセンター設備に故障が発生しても
保管しているファイルを取得できます。
　大容量を実現するためにはストレージサーバ
を増やす必要があります。しかし増設されたスト
レージサーバはシステムに自動的に組み込まれる
のでユーザは保管先を変えるといった変更作業
をすることなく無制限に保管することができます。
　CloudnのObject Storageは保管容量だけが課
金対象のため、ファイルの転送量、リクエスト数
には課金されず安価になります。またコストの変
動要素が容量だけですのでコストを見積もりや
すいというメリットもあります。一方、Cloudn

Computeを利用して仮想サーバを作成し、ファ
イルをObject Storageに保存すると約10MB/s

程度注1の速度になり、よく利用されているUSB

注1） 保存する際の性能は参考値であり、性能を保証するものではありません。

オブジェクトストレージの教科書第２特集 OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

3
pa r t 国内・オブジェクトストレージ

サービス紹介
NTTコミュニケーションズ、IDCフロンティア、GMO
クラウドのエンジニアが語るサービスや実装の勘所

Cloudn Object Storage［Case1］
by 石津 晴崇（いしづ はるたか）　NTTコミュニケーションズ㈱ クラウドサービス部 ホスティングサービス部門 第三グループ
Twitter @h_ishizu

　オブジェクトストレージサービスは、日本国内でもいろいろな企業が始めています。その
サービスの実装方法には定型パターンがありますが、ユーザ企業にとってのメリットを追求
した結果、各社ごとに特徴があります。Part3では、オブジェクトストレージの開発や運用
などについて現場のエンジニアが本音も交え紹介します。

76 - Software Design Apr. 2016 - 77

メモリと同程度の速度になります。すなわち性能
よりも保管コストや保管容量を重要視する使い
方に向いています。とくに一度保管したファイル
を変更することがないバックアップやインターネッ
トを利用して多数のユーザにファイルを配布する
場合が最適です。
　一方で、保管するたびにファイルを直接転送
する必要があるため、保管しているデータを直
接変更して保存しなおすといった利用には向い
ていません。
　最後にObject Storageのインターフェース
について紹介します。公開中のインターフェー
スはGUIとAPIがあり、簡単な操作と他シス
テムとの容易な連携を可能としています。とく
にAPIはAmazon S3と互換性があるため、
Amazon S3向けに作られたソフトウェアの中

でエンドポイントが変更可能なものがCloudn

対応とうたわれていなくても利用できます。

お勧めの
利用パターンの紹介

　Object Storageに向いている使い方を紹介しま
す。Object Storageに適した利用シーンとしてバッ
クアップ、インターネット向け公開ファイル置き
場があります。バックアップする際に最も簡単な
使い方は、弊社が提供しているGUIを利用し保
管したいファイルを指定するだけです。ほかには
Cyberduck注2などのクライアントソフトウェアを
利用することです。バックアップしたいファイル
の指定方法が異なるだけでどちらの方法でも手軽
にファイルをObject Storageに保管できます。ク
ライアントソフトウェアについてはCloudnの技術

注2） Cyberduck（ URL https://cyberduck.io/）

 ▼図1　Cloudn Object Storageシステム構成

Cloudn Object Storage

http
https

データセンター1

イ
ン
タ
ー
ネ
ッ
ト

ロード
バランサ

スイッチ

ユーザ向け
通信用

ネットワーク

サーバ間
通信用

ネットワーク

データセンター2

利用者

利用者

他システム

ロード
バランサ

スイッチ

ストレージサーバ

ストレージサーバ

ストレージサーバ

ストレージサーバ

ストレージサーバ

ストレージサーバ

3p a r t
国内・オブジェクトストレージサービス紹介

NTTコミュニケーションズ、IDCフロンティア、GMOクラウドのエンジニアが語るサービスや実装の勘所

https://cyberduck.io/

78 - Software Design

ブログ注3でも数種類を紹介しています。
　Object Storageに保管したファイルはイン
ターネット向けに公開できるので、画像ファイ
ル、動画ファイルなどのテキストファイルより
も容量の大きなファイルの保存先とすることで
Webサーバのディスク容量を心配する必要が
なくなります。
　また、写真共有サービスなどでファイルを管
理するしくみと保管するしくみが分離できる場
合、公開されているAPIを利用してファイル
保管先をObject Storageにすることで、保管
容量やコストのメリットを得ることができます。
たとえばownCloud注4といったソフトウェアを
利用すればアカウント管理が可能な共有ファイ
ルサーバ注5が比較的気軽に構築できますし、
Cloudnの各種サービスを利用することで冗長
化や負荷分散もできます。
　このようにObject Storageは自分がユーザと
して利用するだけでなく、他システムと連携さ
せることでB2B、あるいはB2B2Cのサービス

の基盤の一部分として利用することができます。

ファイルの安全な
保管にお勧め

　CloudnではこのObject Storageを提供する
だけでなく実際に利用しています。具体的には
RDBのバックアップファイルやLoggingのロ
グファイルといった利用者のデータ、Compute

のログファイルといった内部データを保管する
目的で利用しています。また電子メールで送れ
ないようなファイルを共有する場合にも利用し
ています。
　安心、安全なシステムを構築してサービスを
提供したい場合に、Object Storageはファイル
を保管するという点において大きなメリットが
提供できますので一度利用してみていただきた
いと思います。
　ここで取り上げた以外にもさまざまな利用法
があり、Cloudnの技術ブログ注6で紹介してい
ますのでそちらも、ぜひ参考にしてください。

IDCFクラウドのオプション
サービスとして簡単に利用できる

　当社のオブジェクトストレージサービス（以
下、IDCFオブジェクトストレージ）は2014年
4月からサービス提供しています。当社が提供
しているIaaSサービス IDCFクラウド（http://

www.idcf.jp/cloud/）のオプションサービスと
しての位置づけです。コントロールパネルが標
準で提供されており、コントロールパネルから
申し込み、オブジェクトストレージの利用が簡
単にできるようになっています。

　IDCFオブジェクトストレージは、一般的なオ
ブジェクトストレージサービスの要件である、
「データ容量の制限がない」、「高い堅牢性」、
「REST APIでの接続可能」以外に、次の特徴が
挙げられます。

1.インターネットを介さないセキュアな接続が
可能

2.サービス間トラフィック課金が無料
3.従量、定額（10TBパック）の選べる料金プラン

　1、2について本稿で説明します。
　3については IDCFオブジェクトストレージ

注3） Object StorageをGUIクライアントから簡単に利用する（ URL http://www.cloudn-service.com/blog/?p=466）
注4） ownCloud（ URL https://owncloud.org/）
注5） Cloudn上にownCloudを構築する（ URL http://www.cloudn-service.com/blog/?p=1385）
注6） Cloudn技術ブログ（ URL http://www.cloudn-service.com/blog/）

第２特集 オブジェクトストレージの教科書
OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

IDCフロンティアのオブジェクトストレージサービス［Case2］
by 佐藤 博之（さとう ひろゆき）　㈱ IDCフロンティア 技術開発本部 分散プラットフォームグループ グループリーダー

http://www.cloudn-service.com/blog/?p=466
https://owncloud.org/
http://www.cloudn-service.com/blog/?p=1385
http://www.cloudn-service.com/blog/

78 - Software Design Apr. 2016 - 79

の紹介ページ注7を参照ください。

　IDCFオブジェクトストレージへの接続は
HTTP/HTTPSで行います。インターネット
からの接続の他、閉域網経由での接続もできま
す。機密性の高いデータをオブジェクトストレー
ジに保存する際にインターネットを経由するこ
とがなく、安全にデータ転送が可能です（図2）。

　IDCFオブジェクトストレージの課金対象は、
オブジェクトストレージに保存したデータ容量

インターネットを介さない
セキュアな接続が可能

サービス間データ転送量
課金が無料

とオブジェクトストレージからのデータ転送量
（OUTトラフィック）になります。ただし、
IDCフロンティアのデータセンターにハウジ
ングしているサーバや IDCFクラウドなどのク
ラウド上に構築した仮想サーバとのデータ転送
量は無料になります（図3）。つまり、図3の場
合は、データセンター内のサーバそしてクラウ
ド上の仮想サーバとオブジェクトストレージ間
のデータ転送量が無料になります。

IDCFオブジェクト
ストレージの適合分野

　IDCFオブジェクトストレージの適合分野は

注7） URL http://www.idcf.jp/cloud/storage/spec.html

 ▼図2　閉域網内で安全なデータ転送（※閉域網経由での利用には、別途プライベートコネクトの契約が必要）

閉域網

インターネット

プライベート
IPアドレス

IDCFオブジェクトストレージ

クラウド お客様拠点など

閉域網内で安全に
データ転送

 ▼図3　サービス間データ転送量課金が無料

In/Out

データ転送料金
無料 有料

In/Out

In/Out

In

In/Out

Out

プライベートコネクト

データセンターサービス

インターネット

IDCFオブジェクトストレージマネージドクラウドIDCFクラウド

IDCフロンティアサービス

課金対象は、IDCF外部への
アウトバウンドトラフィックのみ

3p a r t
国内・オブジェクトストレージサービス紹介

NTTコミュニケーションズ、IDCフロンティア、GMOクラウドのエンジニアが語るサービスや実装の勘所

http://www.idcf.jp/cloud/storage/spec.html

80 - Software Design

図4のとおりです。ファイル数の制限を考慮す
ることなく、安価に大容量を利用できることに
加え、堅牢性が高いため、ログやアーカイブを
長期保管することに適したストレージとなって
います。また、動画や画像ファイルを配信する
ストレージとしての利用にも向いています。一
方で、オブジェクトストレージへはHTTP/

HTTPSを使ってインターネット経由で接続す
るため、高いIOPSを求められるストレージと
しての利用は不向きとなっています。

IDCFオブジェクト
ストレージの利用用途

　次のように大きく3つの用途で使われています。

1.データのバックアップ先としての利用
2.データ配信サーバとしての利用
3. Hadoop基盤としての利用

データのバックアップ先
としての利用

　ストレージの利用として最も多いのが、デー

タのバックアップ先として利用するケースです。
　IDCFオブジェクトストレージはAmazon S3

API互換となっており、Amazon S3で使える
アプリケーションはほぼそのままで利用可能で
す。たとえば、s3cmdや s3syncを使ってログ
やアーカイブデータの保存が可能です。
　s3cmdを使って IDCFオブジェクトストレー
ジへデータをアップロードする例を次に示しま
す。はじめにバケットを作成します。バケット
はデータを保存する箱のようなもので、フォル
ダのような概念になります。次ではバケット
「sample」を作成します。

$ s3cmd mb s3://sample/
Bucket 's3://sample/' created

　次に、作成したバケット「sample」に保存し
たいログファイルをアップロードします。次で
は「hoge.log」をアップロードします。

$ s3cmd put hoge.log s3://sample/
hoge.log -> s3://sample/hoge.log [1 of 1]
 5 of 5 100% in 0s 9.30 B/s done

 ▼図4　IDCFオブジェクトストレージに適した使い方

書き込み／読み出し

更新

ログ保管、
アーカイブ

オブジェクト
ストレージ

仮想マシン
ボリュームや
専用物理サーバ

・ 容量が増え続ける、ログ、アーカイブなどのデータは、スケーラ
ブルかつ安価に利用できる

・ 閉鎖網経由でユーザ社内、データセンターなどから機密性の高
いデータをセキュアに転送できる

コンテンツ
保管・配信

・ 大容量の動画や画像などの静的コンテンツをオブジェクトスト
レージで保管／配信し、サーバの容量や処理負荷を軽減できる

・ CDNやキャッシュと組み合わせ、オブジェクトストレージをオ
リジンサーバとして使うことで、さらなるパフォーマンス向上
を実現

オンライン
ストレージ

・ オンラインストレージサービスなど、不特定多数のユーザから
のアップロード、ダウンロードにもスケーラブルに対応するイ
ンフラ環境として利用できる

ファイルサーバ
・ツールを介してファイルシステムとしてマウントし、ファイル

サーバとして利用することも可能だが、機能や性能はツールや
アプリケーションに依存する

データベース ・ 高いI/O性能が要求されるデータベースやトランザクション処
理のストレージとしては、パフォーマンス面で不向き

第２特集 オブジェクトストレージの教科書
OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

80 - Software Design Apr. 2016 - 81

　ログファイルがIDCFオブジェクトストレー
ジにアップロードされたかを確認します。

$ s3cmd ls s3://sample/
2016-02-10 13:20 5 s3://sample/ｭ
hoge.log

　MySQLのdumpデータをmysqldumpとs3cmd

で IDCFオブジェクトストレージへ保存する方
法を IDCフロンティアのエンジニアブログ注8

で紹介しています。
　またログ転送を行うオープンソフトウェア

fluentdを使ってIDCFオブジェクトストレージ
にApacheのアクセスログを保存する方法注9も紹
介しております。ぜひ参考にしてみてください。

データ配信サーバ
としての利用

　IDCFオブジェクトストレージはオブジェク
トストレージ内に保存したデータをHTTP/

HTTPSで公開できます。たとえば上記でアッ
プロードした「hoge.log」をHTTP/HTTPSで
公開するには、

$ s3cmd setacl --acl-public s3://sample/ｭ
hoge.log
s3://sample/hoge.log: ACL set to Public ｭ
[1 of 1]

とACLを変更するだけです。同じ要領で、画
像や動画をオブジェクトストレージに保存し、
簡単に公開することが可能になっています。
　公開されたファイルには次のような形式でア
クセス可能です。

http://バケット名.IDCFオブジェクトストレージｭ
エンドポイント/ファイル名

　IDCFオブジェクトストレージにはECサイ
トの画像、動画やゲーム会社のゲームコンテン
ツが保存され、日々配信用に使われています。

また、弊社のCDNサービスであるコンテンツ
キャッシュサービス注10のオリジンサーバとし
て IDCFオブジェクトストレージを利用し、
CDNからオブジェクトストレージ内のデータ
を高速に配信することも可能です。

Hadoop基盤としての利用

　IDCFオブジェクトストレージはIDCフロン
ティアが提供するビックデータ分析基盤である
Yahoo!ビックデータインサイトのHadoop基

盤注11として利用されています。Yahoo!ビック
データインサイトはビックデータの収集・保存・
分析をワンストップで提供するクラウド型のデー
タマネージメントサービスです。
　Yahoo!ビックデータインサイトではREST

APIを使ってIDCFオブジェクトストレージに
データを蓄積し、データ解析のために利用して
います。

◆ ◆ ◆

　上記で挙げた3つの用途以外でも、例えばネッ
トプリントサービスの写真の保管やオンライン
ストレージサービスとしての利用など、さまざ
まな用途で使われています。
　今後IoTが普及し、爆発的にデータ量が増え
ていく上で、容量／ファイル数に制限のないオ
ブジェクトストレージはますますニーズが高ま
ると考えています。

IDCFオブジェクトストレージ
のシステム構成

　IDCFオブジェクトストレージは大容量ディス
クを多数搭載したIAサーバを使って構成してい
ます。サーバ台数は数百大規模となっており、デー
タ容量、性能状況に応じてサーバを追加してい
ます。オブジェクトストレージは、サーバを追

注8） URL http://blog.idcf.jp/entry/storage/mysqldump/
注9） URL http://blog.idcf.jp/entry/storage/log_fluentd/
注10） URL http://www.idcf.jp/cloud/cache/
注11） URL http://www.idcf.jp/bigdata/

3p a r t
国内・オブジェクトストレージサービス紹介

NTTコミュニケーションズ、IDCフロンティア、GMOクラウドのエンジニアが語るサービスや実装の勘所

http://www.idcf.jp/bigdata/
http://www.idcf.jp/cloud/cache/
http://blog.idcf.jp/entry/storage/log_fluentd/
http://blog.idcf.jp/entry/storage/mysqldump/

82 - Software Design

加することで、全体容量が増え、また性能を向
上させることができます。サーバ追加時はオブジェ
クトストレージ内のデータの再配置が行われま
すが、サービスを停止することなく行われます。
また、サーバやディスク故障時についてもサー
ビス停止することなく、メンテナンスを行える
ような設計になっています。

IDCFオブジェクトストレージの
堅牢性

　IDCFオブジェクトストレージのデータ堅牢
性はサービス仕様上で99.999999999％（11ナイ
ン）となっており、極めて安全性の高いストレー
ジとなっています。この堅牢性を実現するため
に、お客様のデータは異なるサーバに3重コピー
しています。さらにデータの完全性が定期的に
確認され、データの不整合が発生した場合は自
動的に修復するしくみが備わっています。

IDCFオブジェクトストレージのリ
ソース監視（Ganglia、Grafana）

　IDCFオブジェクトストレージではリソース
監視ツールとしてGangliaとGrafanaを利用し
ています。
　Gangliaは大規模システムのリソース状況を可
視化するのに優れたツールとなっており、IAサー
バを大量に扱うオブジェクトストレージに向い
ている監視ツールになっています。Gangliaを使っ

て、サーバのCPU、メモリ、ディスクなどの
OSリソース状況の他、オブジェクトストレージ
で使われているKVS（Key Value Store）のリソー
ス状況などを含め、50以上のメトリックを監視
しています（図5）。
　またGrafanaでIDCFオブジェクトストレージ
のPUT/GET性能値、リクエスト数、エラー数
などをリアルタイムで可視化しています（図6）。

 ▼図5　Gangliaで個々のサーバのメトリックを積み
　　　上げグラフとして確認することもできるため、
　　　クラスタ単位のリソース状況も一目でわかる

 ▼図6　Grafanaによるデータの可視化

第２特集 オブジェクトストレージの教科書
OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

82 - Software Design Apr. 2016 - 83

GrafanaはInfluxDBに投入したデータをグラフ化
できることから、あらゆる数値をInfluxDBに投入
し、Grafanaで可視化することで、障害予兆や性
能低下をいち早く検知できるようにしています。

◆ ◆ ◆

　IDCフロンティアでは「データ集積地構想」の

名のもと、データを集め、データやサービスが
有機的に結合することで、お客様の新しい価値
を作り出すことを目指しています。IDCFオブ
ジェクトストレージサービスはその構想を担う
中核のストレージとして、機能追加、品質向上
に努めています。

GMOクラウドALTUSオブジェク
トストレージの全体構成

KVSとしてRiak CSを
採用したシンプル構成

　ストレージサービスの基幹部分にあたるオブ
ジェクトストレージのアプリケーションをどう
するかが最も重要だと考えますが、当社では可

用性、拡張性を重視してRiakCS注12を採用し
ています。これにより図7のようにシンプルな
構成でシステムを構築することが可能でした。
当社システム内のオブジェクトストレージは、
アプリケーションサーバがS3準拠のクラウド
ストレージAPIを提供し、PUTされたデータ
は3複製された状態でKVSに格納されます。
KVSはクラスタ化されており、システムのリ

 ▼図7　GMOクラウドオブジェクトストレージの全体構成

ストレージノード

LB

オブジェクトストレージ

APP

KVS

ストレージノード

APP

KVS

アクセスを
各ノードに分散

REST API（http/https）
S3準拠のストレージAPI

REST API（https）
Usageデータを取得、
アカウント操作など

APP …… APIサーバ
KVS …… データの格納

集計システム

注12） 東京エレクトロンデバイス株式会社から「Riak S2, Riak KV Enterprise」という名称で販売、サポートされており、当社サービスが
事例紹介として掲載されています（ URL http://cn.teldevice.co.jp/case/detail/gmo_cloud2）。

3p a r t
国内・オブジェクトストレージサービス紹介

NTTコミュニケーションズ、IDCフロンティア、GMOクラウドのエンジニアが語るサービスや実装の勘所

GMOクラウドオブジェクトストレージ［Case3］
by 片柳 勇人（かたやなぎ はやと）　GMOクラウド㈱ サービス運用部

http://cn.teldevice.co.jp/case/detail/gmo_cloud2

84 - Software Design

ソース・パフォーマンスが逼
ひっぱく

迫した際にはスト
レージノードを追加することで容易にシステム
の拡張が可能となっています。

GMOクラウドALTUS
オブジェクトストレージの特徴

　クラウドストレージサービスとして「GMOク
ラウドA

ア ル タ ス

LTUSオブジェクトストレージ」を提
供しています。パブリック向けのストレージサー
ビスは、お客様の重要なデータをお預かりする
性質上データの堅牢性が求められる一方で、そ
のストレージ利用量の予測が立てにくいという
問題があります。そこで、当社は本システムを
構築する上で下記に重点を置いています。スター
トアップから中小企業まで幅広く利用いただい
ているパブリッククラウドサービスとなってい
ます。

・ストレージサービスとして高い可用性を提供
できること

・スモールスタートでき、ストレージ容量の拡
張性があること

・管理・運用が容易なこと

GMOクラウド
Simplemailへの応用

　「GMOクラウド Simplemail」大容量ファイル
添付メールゲートウェイサービスでのオブジェ
クトストレージ活用を紹介します。

Simplemailの生い立ち

オブジェクトを利用したソリューション
　オブジェクトストレージの大きなアドバンテー
ジとして、ビットあたりのコスト（ビット単価）
が一般のストレージシステムより安価であるこ
とが挙げられます。またオブジェクトストレー
ジのシステムとして、基本的にデータの二重、
三重のレプリケーション（複製）が行われるので、
ストレージに保存したデータの保全性が高いこ
とも長所として挙げられます。
　長所があれば短所もあり、検索性や高速性を

追求するアプリケーションには向きません。こ
のようなオブジェクトストレージの特性上、高
速アクセスや検索性はさほど必要ではなく、長
期にわたり大量のデータを安全に格納する分野
のアプリケーションによく利用されます。すぐ
に思い付くのはログやバックアップデータの保
管、クラウド事業を営んでいる弊社の場合では、
VM作成用のテンプレートファイルや、VMの
スナップショットなど、サイズが大きくて、一
度作成されればその後変更されることがない物
が代表的になります。

クラウドストレージでは不便
　同様のアプリケーションとして、BOXや
Dropbox、Amazon CloudDrive、Google

Drive、Microsoft OneDriveなどに代表される
クラウドストレージと呼ばれる一群があります
が、自分用のファイルをこれらクラウドストレー
ジに保管して利用するぶんには申し分ないシス
テムですが、これを利用して他の人にファイル
を送りたいような場面ではいかがでしょうか？
　共有設定をするためには、先方も同じクラウ
ドストレージシステムにアカウントが無ければ
いけませんし、ファイルの授受が完了したら共
有を解除しておかないと、情報漏えいにつなが
るセキュリティホールになりかねません。
　AmazonS3を「素」でお使いの方であれば、
S3上にファイルを保存して、そのファイルを
示すURLを先方に通知する方法をご存じかも
しれませんが、その際にはファイルのACLを
設定したり、先方がダウンロードしたのを確認
してファイルを削除するなどの作業が必要とな
ります。
　また授受するファイルの機密性が高い場合は、
そのファイルをダウンロードしたのが、本当に
送りたい相手だけだったのか、URLを盗まれ
て別の人にもダウンロードされてしまったのか
判別が難しいことも難点です。
　おそらく多くの人がこのような問題を認識し
ており、その結果として宅ふぁいる便のような

第２特集 オブジェクトストレージの教科書
OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

84 - Software Design Apr. 2016 - 85

システムが広く使われているのが現状だと言え
ます。

 メールから直接オブジェクトへ
　弊社ではこのような状況を鑑み、直接メール
からオブジェクトストレージへファイルを保管
し、受け手の方に安全・確実にファイルを届け
られるシステムを昨年開発し Simplemail とし
て提供を開始しました。Simplemailを開発す
るときに心がけたのは次の点です。

 利用者に簡単であること
　実際のシステム利用者の方は、普段メールに
ファイルを添付して送るという作業に慣れてい
る方、別の言い方をすれば、クラウドストレー
ジはおろか、宅ファイル便の存在もご存じない
方が、いかに今までと同じ作業でシステムを利
用できるかにこだわりました。

 運用者にやさしいこと
　導入にあたって、メールシステムの運用者の
方の労力が極力少なくなるようにシステム構成
を考えました。メールサーバの設定変更が最小
限で済むように、システム構成はメールのリレー
サーバの形でお客様のメールサーバと送信先の
メールサーバの間に割って入ります。このため
利用するにあたって必要な設定変更は、SMTP

ルートの変更（リレーサーバの設定）だけとなり
ます。
　余談ですが、筆者がメールサーバの管理をし
ていたころは、まだMTAとしてはsendmailし
かない時代で、当時は sendmailの設定ファイ
ルであるsendmail.cfの変更・修正は「一子相伝」
などと揶揄されていました。今ではm4や
sendmail.mcのお陰でずいぶんわかりやすくなっ
ていますが、MTAの設定変更は、筆者にはあ
る意味トラウマに近い感覚があります。

 メールサーバを選ばないこと
　現在のメール環境は昔に比べてはるかに多様

化されています。前述のsendmailだけでなく、
Postfix、QMail、Exim4などのメールサーバだ
けではなく、GmailやOffice365などのクラウ
ドメールシステムを利用している方も相当数に
のぼります。これらのシステムをご利用の方々
にも、問題なく利用できるシステムでないと提
供する価値がないと考えました。

 落ちないこと
　今日、メールシステムはビジネスの根幹を支
えていると言っても過言ではないと言えます。
お客様の大切なメールトラフィックを中継する
以上、システムダウンは絶対に許されません。
　このため、サービスを提供するサーバ群は三
重化、ネットワークは完全二重化したシステム
を構築しています。サーバを多重化しても、単
一障害点（SPF：Single Point of Failure）で全
体が機能しなくなっては意味がないので、その
ようなSingle Pointがないように全体を構成し
ています。
　とくにデータベースへのアクセス障害は致命
的ですので、データベースはMySQL HAで多
重化しつつ、アプリケーションサーバからのア
クセス経路は図8のように構成してSingle

Pointを作らないように工夫しています。
　さらに各ソフトウェアモジュールも多重化し、
モジュール間は、Message Queueを用いた疎結
合として、単一モジュールに障害が発生しても、
その影響がシステム全体に広がる可能性を低く
しています。また肝心のオブジェクトストレー
ジへの経路も、経路が違う2種類の回線で接続
しています。

 安全であること
　このようなサービスを提供する以上、当然で
すがセキュリティ上のリスクを下げる実装を行っ
ています。ただし高いセキュリティと使いやす
さは、相反する面がありますので、ご利用者の
方がオブジェクトからファイルをダウンロード
する際のパスワードの長さや、パスワードに使

3p a r t
国内・オブジェクトストレージサービス紹介

NTTコミュニケーションズ、IDCフロンティア、GMOクラウドのエンジニアが語るサービスや実装の勘所

86 - Software Design

われる文字種はお客さま自身で
設定してもらうようになってい
ます。

　Simplemailのシステム（図9）
は、大きく次のモジュールに分
かれています。

・管理／監視
・メールインターフェース
・オブジェクトアップローダー
・オブジェクトダウンローダー

 管理／監視系
　システム全体で使用できるオ
ブジェクトストレージの容量や、
各お客様がご利用できるオブ
ジェクトストレージの容量管理
や、容量を超過しそうな場合に
アラートメールを送信するなどSimplemail全
体の動きをコントロールしています。お客様の

システム構成

アカウントごとの設定（生成するパスワードの
複雑さや、パスワード通知メールの文言など）

 ▼図8　単一障害点を作らないためのメールサーバ構成

SPFで全体が機能不全

 今回の構成
経路制御

死活監視

コント
ローラ

通常の構成

アプリケーションサーバ

データベースサーバ

コントローラ／HAProxy

データベースサーバ

アプリケーションサーバHAProxy

 ▼図9　Simplemailのシステム

パスワード
通知メール

添付ファイル

管理・監視
モジュール

ダウン
ロード

モジュール

メールインター
フェース

モジュール

アップロード
モジュール

一時
ディレクトリ

MTAMTA

MySQL

Postfix

Milter I/F

ALTUS
オブジェクト
ストレージ

AMQP

削除

アップロード

ダウンロード

第２特集 オブジェクトストレージの教科書
OSSと3つの製品事例から学ぶ、新しいデータ管理のしくみ

86 - Software Design Apr. 2016 - 87

管理もここで行っています。また、保存期間が
過ぎた添付ファイルのオブジェクトストレージ
からの削除や、各処理のロギングもこのモジュー
ルで行われています。

 メールインターフェース
　メールインターフェースの部分は、Milterと
して機能しています。MTAにPostfixを設置し
て受け取ったメールをMilterとして処理します。
添付されたファイルを処理する前に、システム
に登録されたドメインから来たものか、処理し
て良いメールなのかを判断して、処理するべき
メールであれば添付ファイルを分離して一時ディ
レクトリに保存、メッセージ・キューを通じて
オブジェクトアップローダーへ通知します。

 オブジェクトアップローダー
　メールインターフェースから通知を受け、当
該ファイルをオブジェクトストレージにアップ
ロードします。アップロードと同時にダウンロー
ドに必要なパスワードの生成を行い、それを受
信者へ送信します。

 オブジェクトダウンローダー
　メール受信者が添付ファイルをダウンロード
するインターフェースです。
　入力された受信者メールアドレスと、ダウン
ロードパスワードの確認を行ったあと、ファイ
ルの最大ダウンロード回数が指定された値を超
えていなければ、オブジェクトストレージから
のダウンロードを許可します。ダウンロードは
オブジェクトストレージから直接ではなく、本
モジュールがいったん終端して中継する形をと
ります。
　この形を取ることで、ダウンロード回数の制
限や、ダウンロードできるファイルが複数有っ
た場合、ZIPファイルにまとめて1回のダウン
ロードで済むようになっています。
　将来的には、ここにアンチウィルス機能を組
込み、ダウンロードしようとしているファイル

がウィルスに感染している場合、警告を出す・
ダウンロードをさせないなどのオプションも追
加する計画です。

　開発が完了し最終試験の工程で、巨大なファ
イルを添付した場合、ときどきオブジェクトス
トレージへのアップロードに失敗することがあ
り、原因の特定に時間がかかりました。同じサ
イズのファイルを分割して、1メールに複数ファ
イルの添付の形にすると問題は発生せず、どう
やらオブジェクトストレージにアップロードす
るときのチャンクサイズがかかわっていると目
星を付けて調査していくと、max_siblingsと
いうパラメータで、オブジェクトストレージ全
体でアップロード時に張れるセッション数が制
御されていることがわかりました。
　このパラメータはオブジェクトストレージの
ノード数と密接な関係があり、むやみに増やす
と最悪の場合オブジェクトストレージのノード
ダウンを引き起こします。
　とりあえず安全値最大まで引き上げ、前述の
オブジェクトアップローダーモジュールがファ
イルをアップロードする際のチャンクサイズを
大きくして、セッションの全体数を減らすこと
で対応しました。弊社の場合オブジェクトスト
レージを自社で運用しているので、今回オブジェ
クトストレージの設定そのものを変更すること
ができましたが、他社のオブジェクトストレー
ジを利用したサービスを利用する場合には、こ
のようなところが問題になるかもしれません。

おわりに

　オブジェクトストレージは速度を要求されな
いアプリケーションであれば、信頼性・大容量
などまだまだ使いどころがあるサービスだと思
います。読者の皆さんの「こんなことにも使え
るのでは？」という声を、ぜひ私どもにお知ら
せください。ﾟ

はまったところ

3p a r t
国内・オブジェクトストレージサービス紹介

NTTコミュニケーションズ、IDCフロンティア、GMOクラウドのエンジニアが語るサービスや実装の勘所

適切なLANケーブリングの教科書［番外編その1］特別企画

88 - Software Design

はじめに

　本誌2016年2月号の第2特集では、「適切な
LANケーブリングの教科書」と題してツイスト
ペアケーブルによる配線の解説を行いました。
本章はその続きとして、光ファイバを中心に解
説します。

光ファイバとコネクタ

	光ファイバの規格

　光ファイバは、大きく分けて2種類あります。
MMF（マルチモードファイバ）とSMF（シングル
モードファイバ）です（表1）。

　具体的に光ファイバを使ったシステムについ
て考えてみましょう。MMFは近距離で安価な
システムに最適、SMFは近距離から長距離まで
幅広くシステムを構築できますが、高コストで
す（表2）。近年高速大容量通信を必要とするデー
タセンターでは、MMFを用いたシステムが増
えてきました。

ネットワーク／サーバエンジニアに求められる

光ファイバの知識
 Author 佐伯 尊子（さえき たかこ）　（株）ブロードバンドタワー

その1

MMF
（マルチモー
ドファイバ）
種類

単位：μm
単位：MHz・km 単位：dB/km

帯域 VCSELレー
ザによる帯域 損失

コア径 クラッド径 波長850nm 波長1,300nm 波長850nm 波長850nm 波長1,300nm
OM1 62.5 125 200 500 — 3.5 1.5
OM2 50 125 500 500 — 3.5 1.5
OM3 50 125 1,500 500 2,000 3.5 1.5
OM4 50 125 3,500 500 4,700 2.5 0.8

SMF（シングルモード
ファイバ）種類

単位：μm
単位：dB/km

損失
MF径 クラッド径 波長1,310nm 波長1,550nm

OS1 9 125 1 1
OS2 9 125 0.4 0.4

 ▼表1　TIA-568（光ファイバ抜粋）

項目 MMFシステム SMFシステム

伝送距離 速度にもよるが、100m
～2kmくらいまで

ラック間から国際海底
ケーブルの長さまで多
種多様に対応可能

システム
コスト

ツイストペアと比べる
と高価だが、SMFシス
テムと比べると安価

高価だが、いろいろな
使い方が可能

消費電力 SMFと比べると少ない MMFより多い

利用光源 LED もしくは VCSEL
レーザ LD

 ▼表2　MMFシステムとSMFシステムの違い

ネットワーク／サーバエンジニアに求められる
光ファイバの知識 その1

88 - Software Design Apr. 2016 - 89

	光ファイバの判別

　次にそれぞれの光ファイバの見分け方につい
て説明します。新しく購入する際は明らかに
「MMF」なのか「SMF」なのか判別して発注する
ため、明確に分けることができますが、すでに
在庫もしくは利用中の光ファイバについては、
光ケーブルの表面の文字（表面印刷）で判別しま
す。そこには「MMFかSMFか？」「どんな種類
か？」などの情報が盛り込まれていることが多い
です。ケーブル表面の色から判断する方もいらっ
しゃるようですが、表面色はいろいろあって、
必ずしもMMFやSMFを判別しているわけでは
ありません（表3）。必ず表面印刷を確認しましょ
う。そして、保管の際には長さやコネクタ種類
だけで分けるだけでなく、光ファイバの種類も
きちんと分けて保管しましょう。

	コネクタの種類

　次に、光ファイバで利用されるコネクタにつ
いて確認します。光ファイバコネクタとは、光
ファイバ同士を接続する場合、コネクタ先端
（フェルール）を突き当てて接続するために用い
るものです。図1に光LANでおもに利用してい
るコネクタを示します。
　ツイストペアケーブルのコネクタはRJ-45一
種類でしたが、光ファイバはコネクタが3種類
（以上）あります。光ファイバはツイストペアの
ように一意に「ケーブル」と「コネクタ」が定まら
ないところに難しさがあります。

	光コネクタ研磨方法

　同じコネクタであっても、さらに種類があり
ます。それはフェルールの研磨方法の違いです
（図2）。研磨方法によって突き当てたときの接
続部の反射減衰量が変化します。この数字は大
きければ大きいほど、接続点での光の漏れと光
の逆戻りを防ぐため、コネクタの特性が良くな
ります。接続するコネクタの研磨方法が、接続
する左右のフェルールで異なっている場合、下
位互換となるため、その接続点における反射減
衰量は小さい方に依存します。
　1Gbps位までは、この反射減衰量は気になら

MPOコネクタ

突起部（キー）

突起部
（キー）

コネクタ
ブーツ

コネクタブーツ

フェルール フェルール

LCコネクタ

SCコネクタ

 ▼図1　光コネクタ種類と名称［1］

光ファイバ
種類 日本 北米（TIA-598）

OM1 若草 黒、灰、ベージュ、橙
OM2 若草 黒、灰、ベージュ、橙
OM3 若草、空色 空色
OM4 空色 空色、紫
OS1 黄色 黄色、青
OS2 黄色 黄色、青

 ▼表3　光ファイバコードの主な表面色

適切なLANケーブリングの教科書［番外編その1］特別企画

90 - Software Design

なかったのですが、10GbE以上のシステムでは
この反射減衰量を考慮しない線路（機器間すべて
のケーブルや、コネクタの意味）の場合、回線が
不安定になりやすいことが知られています。さ
らに、SCコネクタやLCコネクタは光ファイバ
1芯につき1つのフェルールから成っています
が、MPO多芯コネクタを使う機会が増えてきま
した。今は明示されていませんが、将来、多芯
コネクタも単芯同様反射減衰量について規定が
設けられることが予想されます。

	光モジュール

　光コネクタの形状は、接続する光モジュール
やパッチパネルの構造に依存します。Ethernet

で利用する光モジュールと、光コネクタの関係

について、表4に示します。
　いくつかパターンがありますが、利用する光
モジュールの形状によって機器と接続するコネ
クタは一意で決まります。そのため、どの光ファ
イバやコネクタを利用するかは、必ず光モジュー
ルの光ファイバ挿し込み口を確認しましょう。
　
	光ファイバの構造化配線

　ツイストペアケーブル同様に光ファイバの場
合の構造化配線についても確認します。10GbE

まではMMFシステムであれSMFシステムであ
れ、Ethernet通信では必ず2芯を使って配線し
ます。1芯が送信、1芯が受信です。これは、同
じ光ファイバを用いていますが1芯しか使わな
いFTTH（Fiber To The Home）配線と大きく異
なる点です。

　「光ファイバは髪の毛ほど細いの
で、1芯で大容量が伝送できます。」
という話は、通信事業者の光ファイ
バサービスの話であって、構内で利
用するEthernetとは考え方が違いま
す。同じ光ファイバを使うのに、違
和感があるかもしれませんが、LAN

が2芯を利用するのは、ケーブルを
配線するスペースが通信事業者と比
べ、余裕があること。配線距離が短

通信速度 光モジュール コネクタ 利用光ファイバ

1000MbE
GBIC SC2芯 MMF・SMF
SFP LC2芯 MMF・SMF

10GbE XENPAK SC2芯 MMF・SMF
10GbE SFP+ LC2芯 MMF・SMF

40GbE CFP、CFP2、QSFP+
MPO8芯 MMF
LC2芯 SMF

100GbE
CFP、CFP2、CFP4

MPO10芯×2 MMF
LC2芯 SMF

QSFP28 LC2芯 SMF

 ▼表4　光モジュールと光コネクタ

フェルール

光アダプタ

光ファイバ

コネクタブーツ

 ▼図2　コネクタ接続とフェルール研磨方法

種類 フラット研磨 PC研磨 AdPC研磨 APC研磨
接続損失｢dB｣ 0.7 0.5 0.5 0.5
反射減衰量 [dB] 規格無し 22以上 40以上 60以上
形状

ネットワーク／サーバエンジニアに求められる
光ファイバの知識 その1

90 - Software Design Apr. 2016 - 91

いこと。送信／受信で分けた方がシステム全体
のコストは通信事業者のそれと比べ安価に構築
できること。などから2芯を利用しています。最
近は一部1芯で送受信できる光モジュールも販
売されていますが、IEEEの規格外のため必

ずそのメーカーが推奨する製品を利用してくだ
さい。
　それでは、光ファイバのEthernetは、どのよ
うな配線になるか見てみましょう。まず、図3

に示すように、光モジュール側の決まりを確認
します。実はコネクタに付いている突起という
のは、その突起の右か左かを示す重要な手掛か
りになります。機器に挿入したとき、突起が上
（キーアップ）になるか、下（キーダウン）になる
か？　キーアップであれば、左が送信、右が受
信になります。キーダウンであれば、左が受信、
右が送信になります。この決まりは、LCコネ
クタであれ、SCコネクタであれ共通です。す
なわち、GBICとSFP、XENPAKとSFP+、そ
れぞれ形状は異なりますが、キー溝に対する送
信と受信は同じ配列になっているのです。
　次に、この送信と受信はどのように接続され
るのかを確認します。2016年2月号の特集では、
パーマネントリンクとチャネルの話をしました
が、光ファイバであってもツイストペアケーブ

ルと同様にパーマネントリンクとチャネルが存
在します（図4）。

	極性の確認

　先ほど説明したように、コネクタのキー溝を
キーにして、送信と受信が分かれます。これを
光配線の「極性」と呼んでいます。光ファイバの
構造化配線の場合、気を付けて配線しないと、
送信同士、もしくは受信同士がぶつかってしま
います。規格では全てのリンクをクロスで配線
するように定義しています。しかし日本の場合、
パーマネントリンク部分はストレートで配線し、
機器コードの部分だけクロス配線を使う配線も
多く存在します。また、幹線ケーブルはストレー
トであっても水平配線にクロス配線を用いたり、
全てストレート配線にしたりと、クロス配線部
分とストレート配線部分が混在していることが
多く、機器間の接続を行う場合は、2芯一括の
光コネクタを使うと、思わぬところで送信同士
／受信同士がぶつかることがあります（図4参
照）。LAN配線の固まりであるデータセンター
であっても、データセンター毎にキー溝と極性
がバラバラなことが多いため、利用開始前に光
ファイバの極性について確認しておく必要があ
ります。

GBIC の例 SFP, SFP+ の例

受信部
（RX）受信部

（RX）

送信部
（TX）送信部

（TX）

 ▼図3　単芯光モジュールの送信／受信の例

適切なLANケーブリングの教科書［番外編その1］特別企画

92 - Software Design

光ファイバの品質

　光ファイバの品質についても、確認しましょう。

	購入

　ツイストペアケーブルと比べ、専門メーカー
から購入することがほとんどかと思います。品
質に関しては各社ばらつきが少なく、規格どお
りの製品が流通しているかと思います。ただ、
光ファイバのグレードに関しては、表1に示す
規格よりも性能が低いものしかないというケー
スがあります（数字が小さいほど性能が低い）。
購入の際には、規格をよく確認の上発注してく
ださい。また、コネクタ端面の研磨方法につい
ても、同様によく確認の上発注してください。

	測定

　ツイストペアケーブルは、たくさんの測定項
目がありますが、光ファイバは「光損失」1つだ
けが測定項目となります。そのため、現場で比
較的手軽に測定ができると思われがちです。し
かし、適切な値を得るためには、測定用コード
の用意や基準値の取り方など、原理の十分な理
解と慣れが必要になります。まずは、図5に示
す光源とパワーメータを用意すること、適切な
波長を選択して測定することなど、初歩的な部
分をしっかり押さえましょう。

	端面の清掃と、光源の危険性

　そして、もう1つ忘れてはいけないのは、光
コネクタ端面（フェルール先端）の清掃です。図

6に示すように、フェルール先端を顕微鏡で覗
のぞ

くと、たとえ工場出荷時であっても汚れていま
す。さらに現場で一度コネクタのキャップを取
り外したら、汚れが必ず付着しています。その
ため、光ファイバコネクタを用いて接続する際
には、必ず専用のクリーナーでフェルール先端
を拭いてから接続します。また清掃時、フェルー
ル先端や、パッチパネルを覗いてしまいがちで
すが、通信に利用する波長は近赤外光で、可視
光ではありません。また高速伝送になればなる
ほどMMFもSMFも大容量レーザを用いますの
で出力パワーが大きくなっています。そのため、
知らぬ間に眼球を傷つけることがあるかもしれ
ません。そのため、絶対に覗き込まないことで

ネットワーク機器

光モジュール

パッチパネル

T

R

T

R

R

T

R
T

ネットワーク機器

光モジュール

パッチパネル

チャネル

パーマネントリンク

T

R

T

R

R

T

R
T

 ▼図4　光ファイバによる構造化配線

 ▼図5　光損失測定（光源とパワーメータ）［2］

光源例 パワーメータ例

ネットワーク／サーバエンジニアに求められる
光ファイバの知識 その1

92 - Software Design Apr. 2016 - 93

す。また、パッチパネルやコードのキャップは
利用する直前まで必ず蓋

ふた

をして、無意識であっ
ても光が目に入らないように注意するなど、作
業時に工夫が必要になります。

光ファイバ配線の注意事項

　光ファイバを安定した品質で配線するための
大事なポイントは2つです。
　1つは、フェルール先端はひたすらきれいに
することです（図6）。単に機器間やパッチパネ
ルと接続するコード側だけでなく、パッチパネ
ルの穴の先にある既設光ファイバのフェルール
部分も必ず拭きます。このひと手間で驚くほど
配線の品質が安定します。このとき、ちょっと
高いですが、必ず専用のクリーナーを利用、か
つ毎回使い捨てして清掃してください。市販の
ティッシュやアルコール綿などで拭いたり、同
じ面で何度も清掃したりしても、端面がきれい
になるどころか、返って汚れを広げてしまい、
端面の状態を劣化させる恐れがあります。高速
の伝送を支える光ファイバのために、ぜひ専用
のクリーナー（図7）を用いて清掃を行い、安定
した通信品質を目指しましょう。
　そして、もう1つは、光ファイバにストレス
を与えないことです。ストレスとは、必要以上
に小さく曲げないよう注意（ペットボトルの底く
らいの曲げ直径を確保）しましょう。無理にねじ
らず、ねじれのない状態で機器やパッチパネル
と接続しましょう。電力ケーブルやほかのケー

ブルの重さを支えるような配線にならないよう
にしましょう。

まとめ

　光ファイバを用いたLANは2芯で1組として
利用すること、コネクタのキー溝は、実は送信
／受信の大切な印であること、そしてコネクタ
端面はとにかく専用のクリーナーでオスメス両
方とも清掃すること、余計なストレスを与える
配線はしないこと。そして光ファイバやパッチ
パネルは絶対覗きこまないこと。これさえ守れ
ば、光ファイバは怖くありません。｢

■参考

［1］ザ・シーモン・カンパニー

 http://www.siemon.co.jp/
［2］グレイテクノス株式会社

 http://www.graytechnos.com/
　 株式会社三喜

　 http://miki-fiberoptics.co.jp/
handyopm.html

［3］株式会社フジクラ　端面検査装置、ワン
クリッククリーナー

 http://www.fujikura.co.jp/

 ▼図6　フェルール先端の汚れ［2］

不良

合格

 ▼図7　光ファイバクリーナー例［3］

http://www.fujikura.co.jp/
http://miki-fiberoptics.co.jp/handyopm.html
http://www.graytechnos.com/
http://www.siemon.co.jp/jp/index.html

適切なLANケーブリングの教科書［番外編その2］特別企画

94 - Software Design

ラック選定

　本章ではラックの選定について考えてみます。
ラックと言うと、データセンターにそびえ立つ
壁のイメージがありますが、オフィスで数ラッ
クを立てて社内利用することもけっして少なく
ありません。オフィスのサーバ室に何気なく設
置してあるラック、誰がどう決めて、どうやっ
て設置していたのか？　また、追加で新しいラッ
クが必要になったときに、どういう基準で何を
選べばよいのか？　ここであらためて、ラック

の選定から、機器の搭載のしかた、電源まわり
について細かく見ていきましょう。

	ラック各部の名称

　一般的に呼ばれているラック各部の名称を図

1に示します。
　サーバやスイッチなど、ネットワーク機器は
19インチラックと呼ばれるラックを選定します。
19インチとは、具体的にマウントフレーム間の
長さになります（図2参照）。また、マウントフ
レームの項で詳しく説明しますが、ネットワー
ク機器やサーバを搭載する場合は、EIA

（Electronic Industries Alliance：電子機械工業
会）ラックを選びます。

	ラックの設置方法

　ラックは、縦長でかつサーバやストレージな
ど重量物を搭載するため、単に床に設置するの

ネットワーク／サーバエンジニアに求められる

ラック選定や電源の知識
 Author 佐伯 尊子（さえき たかこ）　（株）ブロードバンドタワー

その2

天井板フレーム
フカサ

フレームヨコ

フレーム
タテ

マウント
アングル

キー付き
ハンドル

ドアパネル
（ブルースモーク

アクリル）
ドア ベース

レール取り付け
アダプタ

側板

ブランク
パネル

マウント
レーン

ホールド
ラック

ヒンジ

背面板

 ▼図1　ラック各部名称［1］

19インチ

ラック穴

ラック

 ▼図2　19インチラック

ネットワーク／サーバエンジニアに求められる
ラック選定や電源の知識 その2

94 - Software Design Apr. 2016 - 95

ではなく、転倒防止対策や耐震固定をしなけれ
ばなりません。これはデータセンターであって
も一般オフィスであっても同じです。免震ビル
の場合は、このような固定は不要かと思われが
ちですが、免震ビルは「地震そのものの揺れを吸
収して、ゆっくり揺れる」構造です。したがっ
て、免震ビルであっても転倒防止対策や耐震固
定が必要となります注1。また、ラック仕様の中
で耐震性能を活かすには、耐震固定する必要が
あります。
　具体的に転倒防止対策や、耐震固定をするた
めのツールについて確認しましょう。転倒防止
金物（スタビライザー）は、L字または板状のも
のがあります。L字タイプは、ラックの前後も
しくは左右に取り付け、床と固定して使います。
必要に応じて床タイルに穴をあけてボルト固定
などを行います。また、図3に板状のタイプの
取り付け方について示します。こちらも必要に
応じて床タイルに穴をあける作業が必要になり
ます。
　転倒防止金物は、暫定的な利用や利益に直結
しない用途、また2m程度の高さのラックであっ
ても、上部まで機器を搭載しない（もしくは軽い
機器やパッチパネルなどの）利用では、専用の工
事をせずに設置できて手軽ですが、収益に直結
するサービスなど、ラック内の機器に対して安

定した稼働を要求する場合は、面倒でもしっか
り耐震固定することが望ましいです。
　次に、耐震固定の方法について確認してみま
しょう。まず、ラックの下に架

が

台
だい

とか基台と呼
ばれる金属の枠を用意し、床スラブ（厚板）と架
台を固定させます（図4参照）。
　通常のオフィス床は、床スラブの上に10cm程
度の高さを設けて、そこを通常歩く床にしてい
ます（二重床）。架台は床スラブから二重床まで
の高さとし、二重床上にラックが搭載されるよ
うにします。床スラブと架台をボルトで固定し
たのち、ラックと架台をボルトで固定します。
この時金属の架台と金属のラックの間に「スペー
サー」と呼ばれるプラスチックの板を挟み込み、
架台とラックの絶縁を図ります。このようにし
てラックを立てることを立

りつ

架
が

と言います。
　転倒防止金物の取り付けのため床に穴を開け
る加工や、架台設置は、総務部や情報システム
部でできる仕事ではありません。ラックメーカー
に相談する、もしくは自分たちで工事会社に依
頼する必要があります。

ラックの購入方法

　次に、ラックを選びましょう。ラック選びは、
スーツのイージーオーダーと似ています。既製
服のように店先で吊るしているわけではないた
め、まずはカタログや展示会、また設置予定場
所から、おおよそのイメージを固めることから

 ▼図3　転倒防止金物例［1］

床スラブ

ボルト架台（基台）

 ▼図4　架台（基台）固定方法［2］

注1） 免震ビルでラックを免震固定できる台を利用する場合は、
共振の恐れがあるため、必ず免震台メーカーに相談してく
ださい。

適切なLANケーブリングの教科書［番外編その2］特別企画

96 - Software Design

始めます。購入から機器を設置するまでに必要
なポイントを見ていきましょう。

	搭載機器をまとめる

　まずは何を搭載するのかを洗い出します。漠
然と「ラックに機器を搭載したいなぁ」というだ
けでラックを購入すると、「思った以上に奥行き
のある機器で、機器を搭載するために、後ろの
ドアを外す羽目になった（機器サイズとラックサ
イズが合致しない）」「機器を搭載するのに、追
加オプションが必要になった（棚板が必要）」
「思った以上に搭載物がかさばり、設置スペース
が足りなくなった」など、思わぬところで予想し
ていなかった事実にぶつかることがあります。
そのためには、まずは具体的に何を搭載するの
か？　ラックの傍には設置するが、ラックには
搭載しないもの、などを整理して考えることが
重要です。
　搭載する機器は、サーバ（機種名）○台、スイッ
チ（機種名）△台、などと具体的に書き出してみ
ましょう。また、機器のほかにも通信事業者の
ONU（光終端装置）や、パッチパネル（2月号の第
2特集参照）など、日頃気にしていなくても、な
いと困るものなども忘れず洗い出しておきましょ
う。ONUなどラックに直接取り付けられないも
のは、棚板が必要になる場合もあります。そう
すると、棚板も何枚かラックと併せて発注しな

くてはならないことがわかります。

	実装例

　それでは、具体的に機器を書き出してみましょ
う。図5に搭載例を示します。
　まず、ラック内にいろいろな機器を混在させ
て搭載する場合は、ラック前面と背面のマウン
トフレームの位置に注意しましょう。今回はネッ
トワーク機器とサーバ機器、回線終端装置を混
在させて収容することを想定します（図6参照）。

⿟⿟奥行：
　搭載機器の最大奥行寸法＋前面130mm＋背面
300mm程度を考慮します。サーバの寸法が支配
的ですので、

750＋130＋300＝1,180mm＜1,200mm

の奥行のラックを選定すればよいことがわかり
ます。

⿟⿟高さ：
　搭載機器の高さについては、U（もしくはRU：
Rack Unit）という考え方を用います。ラックに
は、マウントフレーム穴が等間隔のJISラック
と、3つの穴が1単位で数えるEIAラックの2つ
があります。ネットワーク機器、サーバ機器を
搭載する場合は、EIAラックを選びます（図7）。
　この中で、1U＝44.45mmですので、ラック
の高さは、 ▼図5　ラック搭載機器例

・サーバ（○○社製 型番XXXX、YYYY）×2台
　—寸法：幅435mm、高さ44mm、奥行き：750mm
　—消費電力：500W
　—重さ：15kg
・スイッチ（△△社製 型番ZZZZ）×1台
　—寸法：幅435mm、高さ44mm、奥行き：160mm
　—消費電力：12W
　—重さ：3kg
・ストレージ（◇◇社製 型番 AAAA）×1台
　—寸法：幅170mm、高さ230mm、奥行き：200mm
　—消費電力：60W
　—重さ：10 kg
・通信事業者ONU 1つ
　—寸法：幅40mm、高さ150mm、奥行き：120mm
　—消費電力：5W以下
　—重さ：0.2kg

 ▼図6　搭載機器と空きスペースの関係［1］

ネットワーク／サーバエンジニアに求められる
ラック選定や電源の知識 その2

96 - Software Design Apr. 2016 - 97

　サーバ：440×2＝880…2U
　ネットワーク機器：440×1＝440…1U
　NAS：230÷44＝5.2…6U
　ONU：150÷44＝3.4…4U

　したがって、13U以上の高さを持つラックが
必要なことがわかります。ただ、ラックの高さ
方向の自由度はあまりなく、2,000mm程度のフ
ルラック、もしくは1,000mm程度のハーフラッ
クの2種類から選ぶことになります。今回必要
な高さは、ハーフラックで十分ですが、今後の
拡張性などを考慮して、2,000mmのフルラック
をオーダーすることにしましょう。

⿟⿟ラック幅：
　幅を考えるときはラック設置場所のスペース
を考えます。ラック内の使い勝手を考慮すると
700mmの幅を選びたいのですが、この幅がラッ
ク扉の開閉半径になります。したがって、設置
する場所のラック前面と背面にドア幅700mmの
スペースを確保できるかを検討します。無理な
場合は、観音扉（左右に開くタイプ）など、ドア

の形状で工夫します。ただ、パンチングドアの
場合は、観音扉タイプで対応できないこともあ
りますので、ラックメーカーに相談してくださ
い。今回は700mmの幅のドアを取り付けても開
閉がスムーズであるという前提で、700mmとし
ましょう。
　ここまでで、決定した内容として、ラックサ
イズは、

　幅700mm×高さ2,000mm程度×
　奥行1,200mm

となりました。
　さあ、これで発注できるでしょうか？　ラッ
クの寸法だけではラックのすべてが決まったわ
けではありません。さらに取り決めなければな
らない内容を示します。

	マウントフレームとねじ

⿟⿟マウントフレーム
　ネットワーク機器は前面の2つのマウントフ
レームだけで固定できるため、2柱ラックと呼
ばれるラックに搭載できますが、サーバは専用
レールを前後のマウントフレームに固定させて
取り付けるため 4柱ラックと呼ばれるラックが
必要になります。面倒がらずにラック図面に

4つのマウントフレームがあることを確認しま
しょう。

⿟⿟穴形状
　ラックに搭載する機器によって、角穴か丸穴
かを選びます（図8）。ネットワーク機器は、ね
じの切られている丸穴に、直接ねじで留めるこ
とができますが、サーバ機器は専用のレールを
マウントフレームの両端に設置し、そのレール
に機器を乗せるため、角穴が必要になります。
　1本のラックで丸穴と角穴を共存させること
はできないので、サーバ機器を1台でも設置す
るならば、おのずと角穴のマウントフレームを
選ぶことになります。
　ラックにネットワーク機器を搭載するには、

 ▼図7　ラック内のサイズ［1］

450min

483.4min

ワイルドピッチ

M6またはM5

ユニバーサルピッチ

465±1.6

482.6±0.4

14.7

7.
1±
0.
3

7.
9

31
.75

12
.7

12
.7

12
.7

12
.715

.87
5

15
.87

5
15

.87
5 12

.7
12

.731
.75

31
.75

7.
9

パネル取付部詳細

適切なLANケーブリングの教科書［番外編その2］特別企画

98 - Software Design

ねじが必要です。丸穴はすでにねじが切られて
いるため、そのままねじ固定ができます。しか
し角穴の場合、ねじ山がありません。そこでケー
ジナットを用います（図9）。ねじ／ケージナッ
トにはM5 、M6等異なるサイズが存在していま
す。ケージナットには表記がありますが、ねじ
側には表記がありません。混同させて利用する
と、ねじ山を潰したり、機器をラックに固定で
きなかったりします。安定した機器設置のため
にも、それぞれ分けて利用／保管しましょう。

	ドアの選定

　ドアは、搭載する機器の総発熱量から判断し
ます。図5で示した搭載機器の総発熱量は、

サーバ：500W×2＝1,000W
スイッチ： 12W×1＝12W
ストレージ：60W×1＝60W
ONU：5W×1＝5W
合計：1077W

となります。

　オフィス内の一角をサーバ室にする場合、サー
バ室の場所によっては、オフィス空調だけで十
分な冷却ができないこともあります。そのとき
は追加空調の増設などを実施し、機器の冷却に
努めます。
　総発熱量が、3,000W以下の場合はパンチン
グドアで対応できます。

	エアフロー

　次に、エアフローについて考えます。エアフ
ローとは「空気の流れ」です。サーバ室やデータ
センターでは、冷たい空気と機器の排熱の暖か
い空気の流れを管理することで、機器の冷却と、
省エネルギーを実現します。
　データセンターなどでは、機器の冷却は必須
であるため、エアフローのコントロールにとて
も神経をとがらせますが、1～2ラックかつ社内
用など利用が限定されているサービスの場合は、
機器が稼働温度範囲で動作するようにユーザレ
ベルで気をつける程度で、運用上は問題ないか
と思います。そうは言っても、全然気にしなく
て良いわけではありません。
　具体的には、次のことに気をつけましょう。

・サーバ室の前後のドアはきちんと解放できる
ようにする（機種にもよりますが、ドアを取
り外すことができるラックが多いです）

・ラック回りのデッドスペースは常に片づけて、
冷風が取り込みやすいように、排熱を廃棄さ
せやすいようにする

　ただし、ラック数とラック内機器などの発熱
量の合計が、既存のオフィス空調の能力を上回
る場合は、ラック設置場所をオフィスのほかの
スペースと分離し、独立した部屋にさらに能力
の高い空調設備を用意する必要があります。し
かし、ここまで本格的に実施するとなると、大
規模な工事と維持管理費が発生しますので、ま
ずは、オフィスに置くことが本当に必要なのか
を吟味しましょう。場合によっては機器をデー
タセンターに持って行く、ないしはサービスを

丸穴 角穴

 ▼図8　マウントフレームの穴形状

ねじ

ケージナット

 ▼図9 　ねじとケージナット［1］

ネットワーク／サーバエンジニアに求められる
ラック選定や電源の知識 その2

98 - Software Design Apr. 2016 - 99

クラウド上で利用することも検討したうえで、
結論を出すことが望ましいと思われます。
　また、空調とは直接関係はありませんが、サー
バの数が増えるとそれだけ騒音も大きくなりま
す。騒音防止を目的としてサーバ室を設けると
きは、天井まで壁で塞ぎ、独立した部屋にする
ことが望ましいです。
　
	適切なエアフローのためのラック付属品

　データセンターのように、適切なエアフロー
を設計したサーバ室にラックを設置し機器を搭
載するときは、機器によって暖められた空気と
空調機の冷たい空気が混ざらない工夫が必要で
す。暖気と冷気が混ざることで、空調機を必要
以上に稼働させることになり、結果余計な電気
代が掛かってしまいます。そのため、サーバ室
内のエアフローをきちんと管理することが大切
です。ラック列の暖気側を「ホットアイル」冷気
側を「コールドアイル」といいます（図10）。この
ホットアイルとコールドアイルをきちんと分離
させることで、効率よく機器を冷却することが
できます。
　ホットアイルの暖気をコールドアイル側に流
入するのを防ぐツール紹介します。
　まず、思いつくのが、ブランクパネルかと思
います（図11参照）。これは、ラックの横幅に対
して背面から排出した温かい空気が前面の冷風
側に戻るのを防ぎます。高さ固定タイプのブラ

ンクパネルは、機器の入れ替え頻度が高くない
場合にはとても有効です。固定方法も、マウン
トフレームの穴に取り付けるタイプがほとんど
です。このとき、マウントフレームの穴形状が、
角穴か丸穴かで、取り付け方法も変わってくる
場合があるので、取り付け方法について、十分
確認しましょう。
　次に、ブラインドタイプのブランクパネル（図

12参照）を確認しましょう。こちらは、空きU

数が頻繁に変化する場合に適しています。とく
にサーバ専用のラックの場合は、機器の入れ替
えの際、そのまま引っ張って自由にU数を変え
ることができるためとても便利です。図11で示
すような高さ固定式のブランクパネルを用いる
よりも、1ラックに1枚常備しておけば、わざわ
ざいくつものブランクパネルを用意する必要が

ホット
アイル

ホット
アイル

ホット
アイル

コールド
アイル

コールド
アイル

 ▼図10　ホットアイルとコールドアイル

 ▼図11　ブランクパネル例［1］

U単位で折って使います

適切なLANケーブリングの教科書［番外編その2］特別企画

100 - Software Design

ないため、置き場にも困りません。
　次にラックのマウントフレームの外側の縦方
向の空きスペースにおける背面の熱の前面戻り
を防ぐツールについて紹介します。
　ブラシタイプやパネルタイプの遮断方法があ
ります。パネルタイプの場合は、ケーブルの前
後を行き来する通信ケーブルの場所や量を考慮
する必要があるため、ある程度機器の搭載イメー
ジがないとなかなか選びづらいため、放置され
やすいですが、エアフローを管理する上で、忘
れてはならない場所です。また、ブランクパネ
ルと異なり、空きスペースの大きさや取り付け
位置がさまざまなため、設置されているラック
メーカーに依存する製品も多く、選定には吟味
が必要です（図13）。

	ラックPDU

　続いて、ラック内に設置するラックPDU

（Power Distribution Unit）を決めましょう注2。
ラック内に設置するサーバやスイッチなどの機
器に電力を供給するための電源コンセントのこ
とを指します。一定数のコネクタのメスの口が
並んだものです。

⿟⿟電源コネクタ形状のまとめ
　まずは、機器と接続する電源プラグの形状で
すが、機器側の仕様を満足させるものを選ぶこ
とが大切です。大きく分けて100V系と200V系

に分かれます。100V系であれば、NEMA

5-15P/5-15Rが一般的です。アースつきの縦2

本の形状です。また、サーバをおもに搭載する
場合は、200V電源にも対応できる IEC 320で
規格化されているC13（メス）C14（オス）を利用
することも増えてきました（表2、図14）。
　なお、NEMA規格の各記号の末尾のPとRは、
それぞれオス（Plug）とメス（Receptacle）の略

ですので、発注の際間違えないように注意しま
しょう。
　また、L6-30の場合、標準的にはアメリカン
電機のものを指しますが、同じL6-30と称しな
がら互換性のないメーカーのものもあるので、
機器側がL6-30の場合、念のため発注の際、メー
カーに仕様を確認することをお勧めします。
　日本の場合は、電極部分はNEMA 5-15Pの形
状と変わりませんが、アース極の代わりに緑色
のアース線が付いているタイプがあります。こ
の電源コードは、家庭用機器のみの利用だと考
えてください。サーバ室やデータセンターでこ
の形状のコネクタプラグをそのまま使用すると、
アース線の先端がほかの機器の電源部分に接触
したり、ラックPDUの電源部分に触ったりする
可能性があります。むき出しの導体部分に接触
した場合、最悪、短絡事故を起こしかねません。

ブランクパネル
（枠状）

 ▼図13　縦方向のブランクパネル例［1］

注2） 同じPDUという略語が電気設備では「分電盤」という意味
で使われています。ここでは区別するために「ラックPDU」
と呼ぶことにします。

 ▼図12　可動式ブランクシェードパネル（FLBSIM-51）［3］

ネットワーク／サーバエンジニアに求められる
ラック選定や電源の知識 その2

100 - Software Design Apr. 2016 - 101

めんどうくさくてもNEMA 5-15Pの形状のもの
と取り替えて利用しましょう（図15）。
　また、電源コードについても、機器に標準で
付属されているケーブルは黒色で2m程度の長さ
がありますが、実際にラックの中で配線すると、
2mは長く、ケーブルの取り回しが難しく、サー
バなどの機器の排熱のエアフローを邪魔してし
まいがちです。そのため最近は短い長さの電源
ケーブルを扱っているメーカーも増えてきまし
た。また、単に短いだけでなく、コネクタ先端
部分に抜け止め対策したもの、さらに電源コー
ド自体も色分けできるような製品が出てきまし
た。このように電源系統を色で明確に分けるこ
とにより、視認性の高い電源システムが構築で
きるかと思います。そして、この視認性を上げ
ることによって、電源系統が明確になり、運用
時の間違いを減らすことが可能になるかと思わ
れます。
　ラックPDUを選択する際、適切なコネクタ形
状で、必要な口数（接続数）が確保できれば、何
を選択してもよいわけではありません。家庭用

の延長コード、OAタップのような電源タップ
を用いても電源を供給することはできますが、
サービスを提供するには向きません。とくに安
価な電源タップを利用すると、機器に供給する
電圧が不安定になったり、すべての口に電源ケー
ブルを接続したときに、十分な電圧が供給でき
なかったりなど、不具合が発生する可能性があ
ります。また、ラック内にしっかりと固定でき
ず、不安定な状態で電源を供給することになる
こともあります。高価に感じるかもしれません
が、ラックに取り付けるタイプの純正品を選ぶ
ことが、機器の安定稼働には大切です（図16）。

	電源設備

　最後に、このラックPDUを経由してオフィ

スに供給される商用電源について説明します。
とくにデータセンターでラックを借りて利用す
る電源と、オフィスにラックを立てて利用する
電源の違いについて、ここで簡単に見てみま

しょう（図17）。
　同じ「電源設備」であっても、ビルに引き込む
方法、ビルの中でラックまで給電する方法がまっ
たく違います。一般的なオフィスビルの場合、
高圧6,600Vを1ラインで引き込み、変圧器で
200Vまたは100Vに降圧して各フロアのコンセ
ントに分配しています。ビル設計時に、「各フロ
ア、各ゾーンに対して提供できる電力」を一意に

オス メス 電流 電圧
NEMA 5-15P NEMA 5-15R 15A 125V
NEMA L5-20P NEMA L5-20R 20A 125V
NEMA L6-20P NEMA L6-20R 20A 250V
NEMA L6-30P NEMA L6-30R 30A 250V
IEC60320 C14 IEC60320 C13 15A(UL,CSA) 250V

 ▼表2　電源コネクタ仕様例

 ▼図15　アース線付5-15P
 ▼図14　電源コネクタ形状例

L5-20P

5-15P C13

適切なLANケーブリングの教科書［番外編その2］特別企画

102 - Software Design

決めていますので、それ以上必要な場合は、テ
ナント側の費用で電気設備を増設することにな
ります。ビルの受電設備から増強するような大
規模な工事になることや、さまざまな制約のた
めに提供不可となる場合もあります。
　また、予備の受電設備や電源設備は通常あり
ませんので、1個所でも不具合が発生した場合、
ラックPDUに電源が来ない恐れがあります。防
災用の非常発電機は法律上設置されていますが、
それはあくまで防災時にビルの最低限の設備を
動かすためであって、各テナントに電気を提供
することは想定されていません。さらに、法定
の電気設備点検が標準的には年に1回あります。
これはビルすべての電気を止めて、電気設備の
異常がないかどうかを確認し手入れを行うもの
です。だいたいまる1日点検日が設定されます。

当日はビルが全館停電しますので、当然ながら
サーバ室も停電します。それに備えて、事前に
ラック内の機器をシャットダウンさせることが
必要です。
　それと比べて、データセンターは、まず変電
所からビルまでの引き込みを2つ以上用意する
ことが一般的です。また、建物内の電源設備も
各段階で二重化されていますので、受電や内部
のどこかが停止することになっても、適切に切
り替えわって給電し続けるしくみがあります。
もう少し詳細に見てみましょう。データセンター
は大量の電力を必要とするため、契約電力が
2,000kW以上（ラック数での規模感では、おお
よそ300ラック以上）の場合は、特別高圧での受
電が一般的です。それをラックまで分配するた
めの電源構成は二重化されていることが多く、
どこか一ヵ所または一系統に不具合が発生して
もほかの系統から供給し続けることができます。
また、万が一商用電源が停電した場合でも、無
瞬断でUPSのバッテリーを用いてラックへの給
電が止まらないようになっています（図18）。そ
の間に非常用発電機が自動的に起動し、そのあ
とはこの発電機から長時間に渡って各ラックや
空調などに電源を供給し続けます。このUPSは
大型のもので、オフィス用にサーバと一緒に購

 ▼図16　ラックPDU例［4］

変電所

分電盤

照明など

分電盤

照明など

200V or 100V

分電盤

IT 機器

小型 UPS

大型 UPS

IT 機器

200V or 100V

200V or 100V

400V or 200V

200V or 100V

分電盤 分電盤

大型 UPS

分電盤

空調機

分電盤

空調機

分電盤

照明など
200V

高圧受電
6,600V

変電所

発電機 発電機

本線 予備線

特別高圧受電
2.2 万 V、6.6 万 V など

特別高圧変圧器

高圧母線 6,600V

高圧変圧器
分電盤

高圧変圧器

発電機
200V

一般的なオフィスビルの電源構成 データセンターの
電源構成の例

 ▼図17　一般オフィスビルとデータセンターの電源設備の違い

※出典：大谷技術士事務所

ネットワーク／サーバエンジニアに求められる
ラック選定や電源の知識 その2

102 - Software Design Apr. 2016 - 103

入する小型のものとは仕様や構成がまったく異
なります。この設備はデータセンター側で電源
設備の一環として設置されています。
　こうして商用電源と非常用発電により継続的
に供給する電源ですが、データセンター内では
前述のとおり2系統に分けており、必要に応じ
てラックに両系統の電気を供給できるようになっ
ています。A系／B系や1系／2系といった表記
になっているかと思いますので、データセンター
を利用する場合はデータセンター側に確認しま
しょう。利用者の要求に応じてラックPDUもこ
の2系統分が用意され、ラック内の機器と接続
しています。この系統を色で分ける工夫もされ
ていることがあります。先に説明した電源ケー
ブルやラックPDUによる色分けです。ケーブル
もラックPDUも黒が多いのですが、最近はカ
ラーバリエーションが増えてきました。このよ
うに色分けすることで電源系統の間違いや、誤
抜を防ぐことが期待できます。

	UPS

　最近は前にも増してUPSの導入を検討してい
るユーザが増えているかと思います。ここで、
UPSについてまとめておきましょう。
　UPS（Uninterruptible Power Supply/Sys

tem）は無停電原電装置です。ただし、留意して
おきたいのは、サーバやPCとセットで使う小
型のもの（おおよそ数kVAまで）と、データセン
ターにあらかじめ設置されている大型のものと

では、中身や用途および動作が異なります。
　小型UPSは、ノートPCなどのバッテリーを
想像するかもしれませんが、ノートPCなどの
バッテリーと大きく違うのは、UPSは以下の目
的で作られていることです。

・長時間の停電の場合に備えて、機器を安全に
シャットダウンさせるためのもの

・瞬停や電圧変動から機器を守るもの

　要は、「○時間商用電源が止まっても動き続け
る」ためのものではないということです。そもそ
も一般的な小型UPSは、バッテリーの容量や負
荷の消費電力にもよりますが、最大でも15分程
度しか電力を供給できません。もしUPSに接続
された大規模バッテリーで何時間も機器を駆動
させようとした場合、バッテリーに関する初期
費用・メンテナンス費用・更新費用・設置場所
などでかなりのコストアップとなってしまいま
す。したがって長時間の停電でも電源を確保す
る必要がある場合には、非常用発電機が現実解
となり、それを備えた大型電気設備が必須にな
ります。これは一般的なオフィスビルにほんの
少しの改造を施した程度では賄えません。その
ため、このような設備を備えたデータセンター
の利用が現実的な選択肢となります。
　次に、UPSの種類について説明します。大き
く3種類あります。それぞれ特徴がありますの
で、自分たちの利用する用途に合わせて最適な
UPSを選ぶ必要があります。

商用電源

商用電源復電

商用電源
停電

商用電源
復旧

UPS電池給電
（無瞬断）

UPS電池給電
（無瞬断）

非常用発電機
起動

非常用発電機
出力断

非常用発電機
停止

非常用発電機
給電（長時間）

 ▼図18　データセンターにおける商用電源の停電から復旧まで

※出典：大谷技術士事務所

適切なLANケーブリングの教科書［番外編その2］特別企画

104 - Software Design

・常時商用給電方式（オフライン方式）（図19）
・常時インバーター給電方式（図20）
・ラインインタラクティブ給電方式（図21）

　この方式は、通常時は商用電源をそのまま機
器に供給し、一方で商用電源からバッテリーに
充電していますが、商用電源が止まったときに
のみ、バッテリーからインバーターを介して機

器に電力を供給します。切り替え時に、ほんの
数msec～10数msecの瞬断が生じますが、サー
バ機器などは通常20msec程度までの瞬断であれ
ば、機器の電源回路中のコンデンサに一時的に
溜まっている電気で動き続けるため、機器動作
には影響ありません。日本など、商用電源の質
がよい国であれば、通常時、商用電源からの供
給で問題なく動作します。

　基本的には、オフィスな
どに設置するサーバやPC

などにセットで用い、この
UPSとRS-232Cなどで接
続して停電が通知され、頃
合いを見計らって電池が給
電できる時間内で自動的に
シャットダウンをかけるた
めに使われます。先に説明
したとおり、長時間稼働を
目的としているものではな
いことに注意する必要があ
ります。
　この方式は、通常時も商
用電源が止まったときもイ
ンバーターから電力を供給
するしくみです。インバー
ターで制御された正確な電
圧・周波数の交流を作るた
めに、電源からの交流は一
度整流器で直流にされ、こ
こにバッテリーが直結され
ています。そのため、商用
電源が止まった際もまった
くの無瞬断でバッテリーか
らインバーター経由で電力
が提供されます。ただ、整
流器とインバーターを介す
ため、商用電源利用時で
あっても、常時商用給電方
式よりもロスが大きくなり
ます。基本的には大型であ

整流器 インバータ STS
またはリレー

バッテリー 停電時のみ
インバータ経由で給電

停
電
時

常時商用給電方式

通常
通常

（充電）

 ▼図19　常時商用給電方式

※出典：大谷技術士事務所

整流器 インバータ STS
（ACスイッチ）

バッテリー 停
電
時

常時インバータ方式

通常

メンテナンス・故障

通常（充電）

 ▼図20　常時インバーター給電方式

※出典：大谷技術士事務所

整流器 インバータ STS
またはリレー

自動電圧
調整器（AVR）

バッテリー 停
電
時

ラインインタラクティブ方式

通常

通常
（充電）

停電時のみ
インバータ経由で給電

 ▼図21　ラインインタラクティブ給電方式

※出典：大谷技術士事務所

ネットワーク／サーバエンジニアに求められる
ラック選定や電源の知識 その2

104 - Software Design Apr. 2016 - 105

り、データセンターの設備の一部として、発電
機給電と商用給電とのつなぎ役を果たすために
使われます。データセンターでは非常用発電機
とセットで用意されるため、各サーバへの停電
通知は必要ありません。
　なお、オフィスの一角に設けられるサーバルー
ムでも数10kVA程度の常時インバーター方式が
採用されることがあります。この場合、非常用
発電機が併設できないことも多いので、停電時
の自動シャットダウンのしくみを検討する必要
があります。
　電圧が安定しない国や地域で用いられる、常
時商用給電方式に代わるものです。通常時は自
動電圧調整器で電圧のみある程度調整された商
用電源が給電され、並行して整流器からバッテ
リーに給電、商用電源が止まったときのみイン
バーターを介してバッテリーから電力を供給し
ます。切り替え時には常時商用給電方式と同様
に数msec程度の瞬断が発生しますが、サーバ機
器の動作には問題ありません。
　これらの中から、停止の可否や予算・供給時
間・供給される電源の性質などの要件をまとめ、
どの機器や容量を選ぶか決定します。必要な電
力は、WもしくはVAで計算します。

　W（有効電力）＝VA（皮相電力）×力率

　力率は、IT機器では一般的に1に近い値です
ので、概算であればW＝VAとみても大きな差
異はありません。厳密に計算したい場合は、低
めに見積もっても95％程度としてよいでしょう。
USPから給電する機器すべての電力を同じ単位
（WまたはVA）になるようにそろえ、すべての
電力の和と、必要な供給時間から、UPSの機種
やバッテリーの容量を選定します。最近はUPS

メーカー各社のサイトを通して購入する際、W

かVAかを選んで見積ることができるようになっ
ています。くれぐれも電力の単位をそろえるこ
とを間違わないようにしてください。
　また、供給される電源の品質・安定性という
意味では最も優れている常時インバーター方式

は、おおむね10kVA以上のものとなります。こ
のタイプのUPSを選んだ場合、商用電源との接
続のための電源工事を要しますし、設置スペー
スも必要になます。さらに定期的メンテナンス
が必須で、その費用も必要になるため、容易に
導入できるものではありません。導入に際して
は、慎重な検討が必要です。
　こうして選択したUPSですが、さらに大切な
ことがあります。UPSのバッテリーは数年で劣
化する化学製品のため、一度導入したら未来永
劫使い続けられるというものではなく、利用の
有無にかかわらず5～7年に一度は交換が必要に
なります（機種に依存しますので、詳しくは選定
したUPSの仕様を確認しましょう）。バッテリー
の電池は交換することを前提としてUPSを選ぶ
ことです。
　交換時にIT機器への給電が止まるか否か？　
止まるなら、止めてよいIT機器用としてのUPS

なのか？　ということです。単に供給時間の長
さや性能だけで選んでも、給電するIT機器の用
途や利用条件を考慮しない選択は無意味なもの
となり、どんなに優れたUPSであっても正しい
選択とは言えません。接続する機器の電源に対
する条件をきちんと整理して、それに見合う最
適なUPSを選ぶことが大切です。｢

■参考

［1］日東工業株式会社
　 http://www.nito.co.jp/

［2］株式会社ハイアーネット
　 http://higher.co.jp/

［3］パンドウィットコーポレーション日本支社
　 http://www.panduit.co.jp/

［4］ラリタン・ジャパン株式会社
　 http://www.raritan.com/jp/

※執筆・図版協力：株式会社大谷技術士事務所

http://www.nito.co.jp/
http://higher.co.jp/
http://www.panduit.co.jp/
http://www.raritan.com/jp/

――TKC、U-NEXTの2社が考える開発のあり方とは

春の嵐呼ぶ！
DevOps座談会

DevOpsは
日本に定着するのか？

106 - Software Design

ソフトウェア開発のあり方は変わるのか？
―今起きている問題は何か

――TKCさん、U-NEXTさんのビジネスそして
ソフトウェアの開発スタイルについて簡単に教
えてください。

三坊：TKCは、会計事務所とその関与先企業、
地方公共団体、中堅・大企業をお客様として、

情報サービスを展開しています。社員が約2,300

名、そのうちソフトウェア開発とインフラの管
理などで800名ぐらいですね。当然ですが、扱っ
ているソフトウェアが会計や税務ということも
あって非常に厳密な開発体制というか、ソフト
ウェア開発のスタイルをとっています。ウォー
ターフォールモデルをベースにした開発手法を
採用しています。たとえば、税制が変わったり
すれば、その内容をキチンと仕様書に落とし込

i
n

t
e

r
v

i
e

w

「Amazonというシアトルのブックストアは11秒に1回、本番環境にコー
ドをデプロイする」と、Pivotal社のアンドリュー・クレイシャファーが
Amazonの事例を紹介し、そこで「DevOps」という言葉を盛んに強調
していたのが、およそ2年ほど前のPivotalジャパンのイベントでした。
それから2016年になり、DevOpsは本当に日本のIT部門で実現されて
いるのでしょうか？　
実際には欧米のツールベンダーが盛んに自動化やテストのためのツール
を宣伝しているだけで実際の企業における実践は進んでいないのでは
……。
そこで今回は、ITをビジネスの原動力として業界をリードしている、㈱
TKC、㈱U-NEXTに集まっていただき「DevOpsは日本に定着するの
か？　そのヒントは？」というテーマで座談会を行いました。
かたや会計ソフト、かたや動画配信と組織の成り立ちも対照的な2社で
すがITの力でビジネスを推進してきたことには違いはないでしょう。
また、Pivotal Labs Tokyoで実際にアジャイル開発を企業に推進する
役割であるPivotalジャパン㈱の技術統括部テクニカルディレクター仲
田聰氏にも同席いただきました。

●モデレータ　
松下 康之（まつした やすゆき）
フリーランス・ライター／マーケティング
スペシャリスト

●参加者
㈱TKC �
経営管理本部システムエンジニアリング
センター　クラウド化推進部　課長　
三坊 鉄平（さんぼう てっぺい）氏

㈱U-NEXT �
NEXT事業本部　事業戦略室　
マネジャー　
柿元 崇利（かきもと たかとし）氏
NEXT事業本部　システム開発部　
秋穂 賢（あきほ すぐる）氏

Pivotalジャパン㈱ �
技術統括部テクニカルディレクター
仲田 聰（なかだ さとし）氏

●会場提供　Pivotalジャパン㈱

――TKC、U-NEXTの2社が考える開発のあり方とは

春の嵐呼ぶ！
DevOps座談会

DevOpsは
日本に定着するのか？

106 - Software Design Apr. 2016 - 107

しました。

――U-NEXTさんのシステム刷新はかなり大胆
な決断だったと思いますが、逆算という発想が
ユニークですよね。

柿元：そうかもしれないですね。実際にはシス
テムの設計をやりながら、人を採用して、どん
どん開発をしてもらってテスト……というのを
繰り返していたという感じです。今回同席させ
ていただいた秋穂も、このプロジェクトのスター
ト直後に入社してもらったエンジニアですし、
私も比較的最近入った人間です。うちの役員が
とにかく書き直す、全面的に刷新すると決めた
というのが大きかったですね。

三坊：そういう決断ができたのが大きかったん
ですね。TKCの場合は毎年の税制改正への対応
も含めて常にシステムを維持していかなければ
いけないので、なかなかそういう思い切ったこ
とが簡単ではありません。実際にシステムの開
発に際しては仕様を決めるチームが法律や税制
変更の内容を検討して仕様に落とし込むという
作業が発生しますし、仕様書も非常に大きくなっ
てしまうんですよね。その仕様作成が完了して
から実際の開発に進むという感じで。実際には
開発チームはそれを待っているのではなくて税
制改正とは別のレベルアップ機能を先行して開
発して、後から税制改正部分を結合するスケ
ジュールとして効率化を図っています。

仲田：実際にお話を伺うとTKCさんのソフト

んでから開発に取り掛かる、という感じですね。
インフラもデータセンターを自前でもっていま
す。24時間365日、当社社員が交代制でサービ
スの稼働状況を監視するなどのサービス体制を
とっているところが特長です。これもクラウド
でお客様のデータを預かっているので当たり前
のことですけども。あと弊社のサーバはほぼ
100％Windows OSでデータベースもSQL

Serverを使っています。開発はVisual Studio

や Delphiを使用しています。開発言語はC#や
Delphi XEをサービスの要件に応じて使い分け
ています。

柿元：U-NEXTは日本では最も早い時期、2007

年から専用セットトップボックス（STB）による
TV向け定額制見放題動画サービスを開始し、そ
のあとPCやスマートフォン、タブレット向け
へとデバイスを拡張しています。IT部門は約50

名です。
　今回は、約1年かけてこれまで使ってきた動
画配信のシステムを全面的に刷新しましたので、
その話ができればよいかと思います。当時のシ
ステムでは今後目指すべき成長に合わなそうだ
ということで、とにかく全部書き換える、サー
ビスインから逆算するとこの辺から始めないと
間に合わないという発想でこの刷新プロジェク
トをやりきりました。実際には動画配信にはい
ろいろなステークホルダーが絡んでいます。動
画ファイルそのものからDRM（デジタル著作権
管理）のしくみ、Web、データベース、アプリ、
他社サービスとのつなぎ込みなど多くのシステ
ムがあるのですが、それらを含めて全部作り直

㈱TKC　経営管理本部
システムエンジニアリング
センター　
クラウド化推進部　課長　
三坊 鉄平（さんぼう てっぺい）氏

㈱U-NEXT　NEXT事業本部
事業戦略室　マネジャー　
柿元 崇利（かきもと たかとし）氏

――TKC、U-NEXTの2社が考える開発のあり方とは

春の嵐呼ぶ！
DevOps座談会

DevOpsは
日本に定着するのか？

108 - Software Design

ロッパーがほとんどのソースコードを共有できる
環境にあります。たとえばあるプロジェクトで
困ったことがあっても、この件に詳しいのは誰
か？――というのは簡単にわかるんですよね。非
常に有機的にプロジェクトを共有して、自然に知
識の集約を共有できていくというしくみです。

開発と運用が仲良くすることが
DevOps成功への鍵か

――そうすると開発するソフトウェアの性格に
よって、やはりアジャイル開発というかDevOps
というのは難しいということなんでしょうか？

ウェア開発は非常にキチンとしたやり方で本当
にITILの教科書どおりという感じなんですね。
でも実際には……。

三坊：まぁ、製品のリリース直前に前工程に戻
ることもありますし、緊急で懸命に開発してデ
バッグして……というのを繰り返すこともあり
ます。なかなか製品を超えた知見の共有という
のも進みづらいんですよね。ソースコードのア
クセスも厳密に制限されていますし。

秋穂：U-NEXTの場合ですと、すべてのデベ

　進化論の基礎理論を組み立てたダーウィンの言

葉に「変化に最もよく適用した種が生き残る」とあ

りますが、激化する競争環境を生き抜くために、と

にかく素早く反応

できるU-NEXTの

組織、文化づくり

を考えた結果選ん

でいた思想がまさ

にDevOpsだった

んだ、と図らずも

発見できたのが、

この座談会でした。

　動画配信ビジネ

スの世界は今まさ

に戦国時代、群雄

割拠の様相を呈しています。みな生き残りをかけ

て必死に戦っています。技術面でもとにかくスピー

ドが速く、つい最近まで標準だった要素技術が1～

2年ですっかり時代遅れ、なんてことも当たり前で

す。変化することを前提にしないとそもそもサー

ビスの安定運営すらおぼつかないんです。仲田氏

の「開発が早くなってもビジネスに反映されないと

意味がない」という言葉は最前線の肌感覚としても

正にそのとおりで、アジャイルとDevOpsは思想的

に切り離せるものではなく、両方セットで導入し

て初めて意味を持つ、「真に変化に強くなる」こと

ができるととらえて定着のため力を入れています。

ソフトウェア開発の世界は北米圏から学ぶことが

多いですが、これらの考え方はもとをただせば日

本の製造業から発祥しているもの。我々が実践で

きない理由はないですよね。謙虚に学んで改善を

重ね、世界最高レベルのDevOpsを持つチームにな

りたいと意欲を燃やしています。

座談会感想　

U-NEXT（柿元）
1

㈱U-NEXT　NEXT事業本部
システム開発部　
秋穂 賢（あきほ すぐる）氏

Pivotalジャパン㈱
技術統括部テクニカルディレクター
仲田 聰（なかだ さとし）氏

108 - Software Design Apr. 2016 - 109

――「混ぜるな危険!」みたいな話ですね（笑）

柿元：U-NEXTでもだいぶ素早く開発と本番環
境へのデプロイができるようにはなってきまし
たが、それでも1日に数回という感じです。と
ころで、社員に以前北米企業に在籍していた人
がいまして、彼いわくその会社はDevOpsをや
り過ぎていたと言うんですね。つまり年に数回
しか実行しないようなジョブでも全部ガチガチ
に自動化してとにかく何でもかんでも自動化だ
と。デベロッパーが10人に対してDevOps専任
が3名もいるような感じで、自分の権益という
か居所を守るために仕事をするようになってし
まう。そういう知見もありますので、U-NEXT

の中ではDevOps担当は開発と運用からそれぞ
れ人を出していこう。兼任で行こうと話してい
ます（笑）。

仲田：DevOpsについて言えば、運用の仕事が
なくなるということではありません。つまり仕
事の性格が変わるという部分がなかなか伝わっ
ていないと思いますね。これまでオペレータと
いう形で「操作」していたものが「プログラムで自
動化」するということになると操作そのものはな
くなるかもしれませんが、それをプログラムす
る仕事は残る、その部分に運用サイドの仕事は
残るので。

三坊：兼任ということではないですが、運用の
オペレータもシニアな人は運用の業務全体が理
解できていますので「どこかに無駄はないか？　

仲田：すべてをアジャイル開発にす
る必要はないんですよね。レガシー
なコードを無理矢理変えようとする
必要もありません。どちらかと言え
ばこれから作るアプリケーション、こ
れからの変化に対応したビジネスを
支えるアプリをアジャイルで作りま
しょう、ということだと思います。さ
らに言えば実際にアジャイル開発で
開発そのものが速くなってもそれを本番環境、
つまりビジネスの現場に導入できなければ意味
がないんです。なので当社のアンドリュー・ク
レイシャファーがイベントで言っていたように
とにかくコードを書いたら、即本番環境にプッ
シュして使ってみる、変更が少なければ手戻り
も少なく済む、それを毎日毎日回すというのが
DevOpsの本質です。単に「自動化ではなくてビ
ジネスに活かせるかどうか？」ですから、ビジネ
スとDevOpsはつながっていないとおかしいん
ですよ。アンドリューには前に「そもそも
DevOpsという言葉が悪い」と言ったら「オレも
いいとは思わなかったけどいまさらしょうがな
い」と言ってました（笑）。

三坊：実際にDevOpsの説明やプレゼンテーショ
ンを聞いてもやっぱりツールの話が多くて開発
サイドの話ばかりなんですよね。開発と運用を
一緒にといってもそれぞれ目的も違うし、同じ
話でも聞こえ方が違う。運用サイドにとってみ
れば「DevOpsをやると私たちの仕事がなくなる
の?」みたいな話にしか聞こえてこない。なので
DevOpsを進めるのであれば運用側がハッピー
になるシナリオでないと。

仲田：実際に私たちがDevOpsの話をしている
のはおもに開発サイドですね。運用側とはなか
なか話が進まない。弊社としては運用の人と開
発の人を一緒にして説明しないようには心がけ
ています。

――TKC、U-NEXTの2社が考える開発のあり方とは

春の嵐呼ぶ！
DevOps座談会

DevOpsは
日本に定着するのか？

110 - Software Design

DevOpsを考える手掛かりは、
ツールではなく考え方の変化

　会計ソフトと動画配信、ビジネスも違えば開
発スタイルも正反対な2社ですが開発から運用
までのスピードアップはゴールとして共通でしょ
う。DevOpsは単なるツールの導入ではなくい
かにビジネスにインパクトを与えるのか?　組織
はビジネスのゴールを達成するためにどうある
べきか?　などにもつながるキーワードであると
言うことが実感できた座談会でした。今回の座
談会を通じてDevOpsの実践につながるヒント
になれば幸いです。ﾟ

自動化できる部分はないか？」を見つけることが
できるんですよね。……なのでそういう人に運
用業務だけをさせるのではなく、自動化や効率
化の方向に向かって徐々に方向転換していけば
運用の自動化も進むし、開発部門とも話ができ
るようになる、そして上級オペレータとしての
キャリアパスとしても進む方向が見えてくるん
です。それがDevOpsにつながるのではないか、
そのような構想を社内で話しています。

――その辺になるとITの技術論ではなくて組織
論、人事論になったりしますよね。

　DevOpsという言葉に最初に出会ったのは2011

年ごろです。当時は開発部門と運用部門でお互い

にストレスなくサービスを提供していくための流

行り言葉という程度のイメージしか持っていませ

んでした。アジャイル開発やソフトウェアの品質

において新しいムーブメントの予感はありました

が、ウォーターフォールモデルをベースにした開

発手法を採用している当社では、縁のない言葉と

してとらえていました。

　本格的にDevOpsを意識し始めたのは2014年ご

ろです。MicrosoftやVMwareによるDevOpsに関

連するソリューションに触れる機会が増えてきま

した。2015年夏の VMware社のイベント（VM

World2015）においても、DevOpsのソリューショ

ン、コンテナ技術との連携を強くアピールしてい

ました。

　これまで私たちには遠いと思っていた言葉が身

近に感じるようになったとともに、DevOpsの目的

は何か、その本質はどこにあるのか、自分の中で

確立させたい、と考えるようになりました。

　最近、DevOpsに関するイベントに参加して、次

のような話を聞きました。「DevOpsは『開発者に力

を与える動き』である。これまでの運用主体の時代

から開発主体への時代に移り変わっていく。開発

者の視点で話がす進むようになる」そして、Hashi

CorpなどのOSSを積極的に利用しこう！　マイク

ロサービスとコンテナ技術は熱い！　という内容

でした。非常に盛り上がっている雰囲気を感じな

がら、DevOpsはツールや開発の話だけなのか、と

いう疑問が残っている状況でした。

　今回の座談会で、Pivotal社の事例やU-NEXT社の

話をうかがうことができました。OSSなどのツール

に囚われることなく、会社ごとのこれまでの文化や

サービスレイヤごとの要件にあわせたDevOpsへの

取り組みがあっていいと感じています。ウォーター

フォールでの開発やオンプレミス環境で提供する

サービスには、それに見合ったDevOpsがあり、10

deploys per dayの世界もあれば、テストありきの

リリース後の戻りを

少なくするDevOps

があるのだと。ビジ

ネスと開発と運用が

協力して、早く頻繁

に安全にサービスを

提供・改善していく

世界を構築できた

ら、それがDevOps

だった、という夢を

抱いています。

座談会感想　

TKC（三坊）
2

110 - Software Design Apr. 2016 - 111

　この座談会をしてみたかったきっかけは、

Pivotalのサンフランシスコのラボを訪れた体

験にあります。オープンなスペースに細長い島

状に配置されたデスクと椅子、大きめのモニ

ターに向かってプログラマたちが隣り合って話

をしながらキーボードを叩く。大きなフロアの

一部では勉強会のようなものが開かれていてプ

ロジェクターから映しだされたエディタの画面

を見ながら何かの解説が行われていました。そ

の脇にある大きめのキッチンではインド料理の

ケータリングが広げられて、エンジニアと思わ

しき人たちが紙皿に盛った料理を食べながら質

疑応答に参加したりしています。そう、なぜか

全体的にザワザワしているのです。これまで筆

者が欧米の IT企業で見てきた様子とだいぶ違い

ます。筆者はアメリカの企業に在籍していたこ

とがありますが、そこでは1人ずつ個室が用意

され、個人のスペースが確保されていました。

なのに最新のアジャイル開発をしているこのエ

ンジニアたちは昔の日本のオフィスのように隣

り合って話をしながら開発をしています。これ

はかつての日本のオフィスのようではないか

――プログラマたちが話をしながら開発する、

それがアジャイル開発にそしてDevOpsにつな

げられるのか？　そんな疑問を日本の企業に

ぶつけてみたい、それがこの座談会のきっか

けでした。TKCとU-NEXTはソフトウェアをビ

ジネスに活かしているといっても両極端と言っ

ていいでしょう。ビジネスを変革するソフト

ウェア開発、システム運用はどうしたら良い

のか？――今回の座談会が、わずかでも IT部

門の皆さんの手がかりになればと思います。

C o l u m n

 ▼卓球台も設置されており、気分転換にいつでもプ
レイできる

 ▼Pivotalジャパンオフィス内にあるオープンキッチ
ンスペース

DevOpsを実践する環境を考えるには、
Pivotalのやり方が面白い

フリーランスライター＆
マーケティングスペシャ
リスト。DEC、マイクロ
ソフト、アドビ、レノボ
などでのマーケティン
グ、ビジネス誌の編集委
員などを経て ICT関連の
トピックを追うライター
に。オープンソースとセ
キュリティが最近の興味
の中心。松下 康之（まつした やすゆき）

――TKC、U-NEXTの2社が考える開発のあり方とは

春の嵐呼ぶ！
DevOps座談会

DevOpsは
日本に定着するのか？

112 - Software Design

Pivotalの成り立ちとは
　Pivotalという会社名に読者のみなさん、馴染みが

ないと思いますが、Pivotalのミッションステートメ

ントは「世界のソフトウェアの在り方を変えましょう」

という高
こうまい

邁なものです。Pivotalは2013年の4月に

EMC、VMwareの複数の事業部をスピンオフして統合

し、いわゆる「Cloud Native Applicationを実現する」

会社として設立されました。2016年1月現在で2千人

強の社員と2千社以上のお客様に製品やサービスを提

供しています。主なソフトウェア製品はPaaS（Platform

as a Service）を実現する“Pivotal Cloud Foundry”と

Hadoop、DWH（Data Warehouse）、インメモリデー

タグリッド製品などを統合した“BDS（Big Data Suite）”

です。

Pivotalのビジネスの柱は何か？
　Pivotalにとって戦略的に重要なアジャイル開発の

支援サービスを提供するPivotal Labsがあります。

Pivotal Labsは現在Pivotalの一部門ですが、その生い

立ちは古くて、1989年にRob Mee（現在のPivotalの

CEO）が設立した会社です。Kent Beckが中心となり

「アジャイル開発宣言」が公表されたのが2001年です

から、その前にPivotal Labsは誕生していたわけです。

現在、東京を含め世界16ヵ所で総勢600名の技術者

がお客様と一緒にソフトウェアを開発しています。

PaaS製品もBig Data製品も魅力的に価値のあるソフ

トウェアを創造

するための道具

でしかありませ

ん。最も重要な

ことはいかに魅

力的でビジネス

価値の高いソフ

トウェアを作り

上げるかです。

Pivotal Labsはスキル移転の場
　Pivotal Labsは単にアジャイル開発の専門集団とい

うだけでなく、リーンスタートアップとアジャイル

開発を統合したコンセプトと実践的な方法論でほか

に類のない価値を世界の大企業に提供している専門

家集団です。ちなみに2016年に入ってからですが、

日本でもベストセラーになった『リーンスタートアッ

プ』の著者でリーンスタートアップの第一人者のEric

Riesと戦略的パートナーシップを発表しました。

　アジャイル開発という言葉の概念は広くて、人そ

れぞれのとらえられ方をされていると思いますが、

Pivotal Labsの特徴はXP（Extreme Programming）、お

客様とPivotal Labsのエンジニアがペアーで開発をす

る「ペアープログラミング」、アプリケーションを開

発する前にまずはテストケースを開発する、TDD（Test

Driven Development）など、まさに「アジャイル開発

宣言」で宣言したすべてを徹底的に基本に忠実に実施

するところでしょう。それに加えてPivotal Labsのオ

フィスにお客様に来ていただいて作業をすることで

Pivotal Labs流の仕事の進め方をお客様にOJT的にス

キル移転することです。Pivotal Labsのビジネスゴー

ルはお客様がPivotal Labsの助けを不要として自らの

力だけで自社内でアジャイル開発を実践できるよう

になっていただくことです。

ウォーターフォールからアジャイルへの
実践的転換
　アジャイル開発宣言の原点を踏まえてソフトウェ

ア開発をあらためて考えると、これまで（現在もです

が）大企業で主流であるウォーターフォール開発とい

う方式は、完成度の高い「要件定義」ができることを

大前提に考えられた開発プロセスととらえることが

できると思います。一方アジャイル開発はビジネス

要件は不確かで変化し続けるものということを前提

にしていかにして価値の高いソフトウェアを作りあ

げるかということで提唱されている取り組みだと思

います。このようにとらえると「ウォーターフォール」

の考え方のほうが傲慢で、「アジャイル開発」の考え

方のほうが「謙虚」に思えます。「ウォーターフォール」

の考え方は製造業における同一製品を機械的に大量

生産する発想に似ていて、開発に携わる個人の人格、

尊厳、自主性などを排除したうえでいかにソフトウェ

アを一定の品質で生産するかということを実現する

なぜ、PivotalはDevOpsを
リードできるのか？

特
コ

別
ラ ム

112 - Software Design Apr. 2016 - 113

ための手法に見えてきます。一方、アジャイル開発

の取り組みは開発に携わるプロダクトマネージャ、デ

ザイナ、デベロッパの一人一人の創造性、自主性を

尊重していてソフトウェアを開発することがエンジ

ニアにとって「創造的で楽しい」、「自己実現の実感を

もたらしてくれる」取り組みではないかと思います。

ソフトウェア開発者としてプロフェッショナルたら

んとすれば、魅力的なソフトウェアを開発するメン

バの一員となり、自らが開発したソフトウェアが一

般消費者あるいは企業内ユーザに受け入れられて活

用されてこそ達成感も生まれてくるわけで、そのた

めの自己研鑽は必要なことだと思います。

PivotalとDevOps
　PivotalのCEOのRob Meeは2015年に来日した際

に日本のお客様に「シリコンバレーの本質は単なる地

名ではなく心の持ち方です」とお話しました。新しい

取り組みをするためにシリコンバレーにオフィスを

開設することが重要なのではなくて「リーンスタート

アップ」、「アジャイル開発」などのシリコンバレー精

神と具体的な手法を社内に取り込み定着させること

が重要だという日本に対する応援メッセージだと私

は理解しています。

　ここまでアジャイル開発に関して思うところを述

べさせていただきましたが、今回のテーマはDevOps

です。DevOpsの全体の文脈から考えるとアジャイル

開発は非常に重要ではありますが、開発フェーズに

限った話でありDevOpsの一部でしかありません。ア

プリケーションの開発が俊敏にできたとしても、そ

の前の過程のインフラの用意、ミドルウェアなどの

アプリケーション開発にとって必須の作業に数週間、

数ヵ月かかっていたり、アプリケーションの開発が

完了しても、アプリケーションを本番リリースする

までに期間を要するようであればビジネスの価値は

失われてしまいます。

継続的デリバリー／インテグレーション
の重要性
　昨今DevOpsの議論に注目が集まったり、アジャイ

ル開発という四半世紀以上の積み重ねのあるテーマ

が今日熱く語られるようになった背景は「継続的デリ

バリー」（CD：Continuous Delivery）、継続的インテ

グレーション（CI：Continuous Integration）について

ビジネス的な重要性の認識の高まりがあるのではな

いでしょうか。CI、CDはGoogle、Amazonなどイン

ターネットジャイアントだけでなくUber、AirBNBな

どのソフトウェアを武器に従来の業界に破壊的イン

パクトを与えている企業では当たり前のように実現

されています。従来型企業においても彼らと同じス

ピードでソフトウェアを武器とした製品、サービス

を開発するスキルとプロセスを企業内に築き上げな

いとビジネス優位を維持できない、最悪なシナリオ

としては市場からの撤退という事態すら起きかねな

いという認識が欧米の経営者に明確にあります。

CD/CIよりも重要なこと
　今日のグローバル経済の

状況を考えれば日本企業に

おいても多少の時間差はあ

れ同様のことが起きるはず

です。金融の分野では米国

Googleが個人の損害保険の

ビジネス市場に参入してい

ますし、ご存じのように

Squareはすでに日本でも

サービスを展開しています。

CD、CIを実現するために必

要なコンポーネントの一部としてアジャイル開発が

あり、アプリケーションの開発に必要なハードウェ

アリソースを直ちに用意できるために IaaS（Infra

structure as a Service）が存在し、ミドルウェアを含め

て開発、テスト、実行環境のデプロイを支えるため

にPaaS（Platform as a Service）が存在し、CD、CIの全

体プロセスを支えるためにソースコード変更管理な

どのさまざまなツール群がすでに市場に投入されて

きているととらえると全体が見てえくるのではない

でしょうか。DevOpsを実現するためのテクノロジや

方法論はすでに利用できますがそれらは道具でしか

ありません。最も重要なのはそれを実現するビジネ

スコミットでしょう。テクノロジや方法論の導入と

同時に社内プロセスの変更、組織の見直し、大げさ

になるかもしれませんが IT部門だけではなく、ビジ

ネス部門や人事などの関連部門含めた企業文化の変

革が求められるテーマがDevOpsであり、企業の競争

力を強化するという大きなテーマです。

114 - Software Design

　それはXX年前の春、大阪城公園で咲き始め
た桜が窓から見えるオフィスでのこと。浪速シ
ステムズ㈱（仮名）が開発中のECサイトのレス
ポンス問題を解決するため、私、生島は若手エ
ンジニアの大道君と話をしていました。
　問題は商品一覧画面での在庫数表示に時間が
かかるというもので、当連載の第1回では、そ
の原因を探りながら大道君とともに次のような
ポイントを確認したところでした。

（1）本来DB側で処理すべき集計をAP側での多
重ループ処理で行っているのが遅くなる原因

（2）AP側での多重ループ処理をやめて、DB側
で集計させるように全力で考えるべき

（3）DB側で集計させようとすると、発行する
SQL文はどうしても複雑なものになる

　「そうなんですね……」と大道君。
　「気になることは遠慮せんと聞いてな」
　「実は、複雑なSQL文はできるだけ書くな、
と前の上司から言われたことがあるんです。も
う辞めちゃった人なんですけど」

複雑なSQLを書いてはい
けないのか？

　「そら困った指示やな。本来は、複雑なSQL

も使いこなせるようにキッチリ勉強せえ！が正
しいんやけどな」
　ハッキリ言えば「複雑なSQLを書くな」という
のは、よくある本末転倒な間違った指示です。
実際はSQLをきちんと理解せずに適当に書くか
ら遅いうえに保守もできないものができるだけ
のことで、「複雑なSQL」自体を敵視するのは筋
違いです。
　しかし似た考え方をする技術者は大勢います。
手続き型言語の発想では複雑なSQLを使うとわ
けがわからなくなるため、SQLを使うこと自体
を避けるようになり、できるだけAP側で処理
しようとするわけです。多重ループはその結果
として起きる問題です。
　と、そこへ新しい声が響きました。大道君の
上司でプロジェクトリーダーの五代さんです。
　「どうも～、はじめまして、五代です。よろ
しゅうお願いします」
　五代さんを含めて話を聞いてみると、いろい
ろわかりました。今回の案件は、すでに稼働し
ているECサイトのマイナーな仕様変更の1つ。
大道君の前の上司が基本設計とプログラム仕様
書を書いて急に辞めてしまったそうです。それ

生島氏
DBコンサルタント。性
能トラブルの応援のた
め大道君の会社に来た。

大道君
浪速システムズの新米
エンジニア。素直さと
ヤル気が取り柄。

五代氏
大道君の上司。プロ
ジェクトリーダーで
もある。

登
場
人
物

紹
介

 原案 生島 勘富（いくしま さだよし） info@g1sys.co.jp ㈱ジーワンシステム
 構成・文 開米 瑞浩（かいまい みずひろ）　 イラスト フクモトミホ

前回、システムのレスポンス悪化の原因を調査し、本来データベース（DB）側で処理すべき集計をアプリケーショ
ン（AP）側で処理していたことを突き止めた生島氏と大道君。今回は、設計工程までさかのぼって真の原因を追求
します。

SQLのための仕様書は書くだけムダ第2回

114 - Software Design Apr. 2016 - 115

でも、在庫表示を加えるだけのちょっとした変
更なので簡単と思っていたら、性能トラブルに
見舞われて困った困った、という状況だったそ
う。五代さん自身は顧客との折衝、要求仕様の
調整といった役割が主で、DB技術には詳しく
ないので、ぜひ大道君を指導してやってほしい
……とのこと。これは「間違った考え方に凝り固
まった上司がいなくなり、残ったのは学ぶ意欲
のある若者と、それをサポートする姿勢のある
上司」という組み合わせなので、案外、災い転じ
て福となすかもしれません。大道君なら急速に
成長できそうです。……よし、やってみよう。

　「ほな聞くけど、俺がさっきSQL書くとこ見
てて、どう思った？」
　「えっ……あんな複雑なのをスラスラっと書い
てしまうなんて、すごいなあ、と」
　ちなみにリスト1に示したのがそのSQL文で

SQLの発想で考えるとは？

す。確かに初心者には複雑に見えそうです。
　「いやいや、君もできるようになるんやで！」
　「慣れればできるようになりますか？」
　「慣れだけじゃあかんな……」
　「ほかに何が……？」
　「そやな……ほな、まず、この理論在庫算出が
どういう処理なのか、イメージ湧くような絵を
描いてみ？」
　「え、絵？　ですか？」
　「理論在庫はこう出すんです、いうて、素人さ

SQLのための仕様書は書くだけムダ第2回

 ▼リスト1　理論在庫算出SQLサンプルコード

SELECT
 商品マスタ.商品CD
 , 商品マスタ.商品名
 , 商品マスタ.定価
 , (SELECT COALESCE(SUM(棚卸数), 0) FROM 在庫データ WHERE 在庫データ.商品CD = 商品マスタ.商品CD)
 + (SELECT COALESCE(SUM(入庫数), 0)
 FROM 入庫データ
 WHERE 入庫データ.商品CD = 商品マスタ.商品CD
 AND NOT EXISTS (SELECT * FROM 在庫データ
 WHERE
 在庫データ.商品CD = 入庫データ.商品CD
 AND 在庫データ.倉庫CD = 入庫データ.倉庫CD
 AND 在庫データ.棚卸日 > 入庫データ.入庫日)
)
 - (SELECT COALESCE(SUM(出庫数), 0)
 FROM 出庫データ
 WHERE 出庫データ.商品CD = 商品マスタ.商品CD
 AND NOT EXISTS (SELECT * FROM 在庫データ
 WHERE
 在庫データ.商品CD = 出庫データ.商品CD
 AND 在庫データ.倉庫CD = 出庫データ.倉庫CD
 AND 在庫データ.棚卸日 > 出庫データ.出庫日)
)
 AS 理論在庫数
FROM
 商品マスタ
WHERE
 画面からの検索条件(例えばカテゴリーで絞る);

116 - Software Design

んに説明するときに使えるような絵や」
　「えっ……と」
　「ダジャレやのうて、絵！」
　くだらないボケツッコミはやめておきますが、
少し考え込んで大道君が描いたのはざっくり言っ
て図1のようなものでした。
　「これは、その、仕様書を思い出して、そのイ
メージで書いてみたんですけど」
　辞めてしまった上司が書いたという仕様書は

リスト2でした。こうした仕様書がたいへん多
いのですが、実はSQLには役に立たない、無駄
なものです。
　「やっぱりこれは手続き型言語のループで書く
発想やなあ。SQLを使うときはSQLの発想で
考えたほうが楽やで。そうすれば今さっき見た
ようにスラスラ書けるようになる」
　「SQLの発想って……」
　「まあそんだけ言われてもわからんよな。ほ

 ▼リスト2　理論在庫算出処理仕様書

在庫数は倉庫ごとに管理している。
商品検索をされたとき、以下のとおり、理論在庫数を算出して表示する。

1 画面からの条件で商品マスタを抽出する。 ※
2 倉庫マスタを読み込み、配列に保存する。 ※
3 抽出された商品マスタをループする。
 3.1 倉庫マスタ配列をループする。
 3.1.1 在庫データを以下の条件で抽出し、棚卸数を変数棚卸数に加算する。 ※
 在庫データ.商品CD ＝ 商品マスタ.商品CD
 AND在庫データ.倉庫CD ＝ 倉庫マスタ配列.倉庫CD
 3.1.2 入庫データを以下の条件で抽出し、入庫数を変数入庫数に加算する。 ※
 入庫データ.商品CD ＝ 商品マスタ.商品CD
 AND入庫データ.倉庫CD ＝ 倉庫マスタ配列.倉庫CD
 AND入庫データ.入庫日 ＞＝ 在庫データ.棚卸日
 3.1.3 抽出された入庫データを変数入庫数に加算する。
 3.1.4 出庫も入庫と同様に処理し、変数出庫数に加算する。 ※※
 3.2 倉庫マスタ配列のループがなくなったとき、理論在庫数を算出し、画面に出力する。
 理論在庫数 ＝ 変数棚卸数 ＋ 変数入庫数 － 変数出庫数

※ の部分にはSQLのイメージも入ります。
※※ の部分は、実際は「同様に処理」と省略せずに書きます。

 ▼図1　理論在庫算出処理イメージ

倉庫マスタから集計対象の
倉庫リストを抽出

商品コードごとに
ループ

前回棚卸時の
在庫データを取得

前回棚卸時以後の
入庫データを取得（複数）

前回棚卸時以後の
出庫データを取得（複数）

変数の初期化

理論在庫算出

ゼロクリア

作業変数

棚卸数

入庫数

棚卸数 入庫数 出庫数

棚卸数 入庫数 出庫数

出庫数

加算

加算

加算

理論在庫 ＝ ＋ －

商品マスタから集計対象の
商品リストを抽出

倉庫コードごとに
ループ

116 - Software Design Apr. 2016 - 117

な、今度はそれを説明しよか！」

カタマリを切り出す考え方を身
につける

　「SQLで考える」ための発想術として、まず大
事な原則は「カタマリを切り出す」ように考える
ことです。在庫の話だと複雑になるので、簡単
な社員名簿の例を図2に書きました。名前、年
齢、地域、IDが載っている簡単な「社員名簿」
テーブルが大元の「カタマリ」です。このカタマ
リから「一部の行を切り出す」のがAの操作で、
切り出す行をWHERE句で指定します。一方、
「名前、年齢」という「一部の列を切り
出す」のがBの操作で、切り出す列を
SELECT句で指定します。もしAと
Bの両方をやると右下のようなカタ
マリが切り出せます。
　カタマリを切り出したものもやは
りカタマリ、つまりテーブルになっ
ているので、さらにSELECT操作を
することができる、ということに注
意してください。それを重ねていく
ことで、ループなしでの複雑なデー
タ処理が可能になります。具体的に
は図3を見てください。
　社員の販売数を記録した「販売」

テーブルを集計してみましょう。たとえば千葉
の社員のみの販売実績を集計して、図3の下部
にある「千葉の社員の販売合計」テーブルがほし
いとします。ベースになるのは「社員名簿」です
ので、①FROM句で「社員名簿」、SELECT句
で「名前,地域,ID」を指定します。「販売合計」は
社員名簿には存在せず、集計して出すため、いっ
たん括弧に入れておきます。また、②WHERE

句には「地域='千葉'」を指定します。
　次に社員別の「販売合計」を出します。社員
ID=2の場合を例示すると、③「販売」テーブルか

SQLのための仕様書は書くだけムダ第2回

 ▼図2　行と列のカタマリ切り出しイメージ

‘社員名簿’テーブル

 名前 年齢 地域 ID
 田中 25 東京 1
 鈴木 32 千葉 2
 近藤 27 千葉 3
 吉田 41 東京 4

 名前 年齢
 田中 25
 鈴木 32
 近藤 27
 吉田 41

 名前 年齢

 鈴木 32
 近藤 27

 名前 年齢 地域 ID

 鈴木 32 千葉 2
 近藤 27 千葉 3

行の切り出し操作
SELECT *
FROM 社員名簿
WHERE 地域='千葉'

列の切り出し操作
SELECT 氏名, 年齢
FROM 社員名簿

A

A&B
B

 ▼図3　サブクエリーを使った切り出し・集計処理イメージ

‘社員名簿’テーブル

 名前 年齢 地域 ID
 田中 25 東京 1
 鈴木 32 千葉 2
 近藤 27 千葉 3
 吉田 41 東京 4

千葉の社員の販売合計
名前 地域 ID 販売合計
鈴木 千葉 2 20
近藤 千葉 3 19

 社員ID 販売数 日付
 1 5 …
 3 12 …
 3 7 …
 4 6 …
 2 9 …
 2 11 …

 3 12 …
 3 7 …

 2 9 …
 2 11 …

 9
 11

SELECT SUM(販売数)
 FROM 販売
 WHERE 社員ID=社員名簿.ID

‘販売’テーブル

WHERE 社員ID=2
③

④

⑤

①

② SUM(販売数)

SELECT 販売数
FROM 販売

WHERE 地域=’千葉’

SELECT 名前,地域, ID, (販売合計)
 FROM 社員名簿

118 - Software Design

ら「社員ID=2」の行を切り出し、④そこから「販
売数」の列を切り出し、それを⑤「SUM(販売数)」
で集計すれば販売合計になります。この③④⑤
を1つのSQL文として組み立てると右下の
SELECT文になりますので、これを①の括弧
内の「販売合計」の欄に入れてやれば、サブクエ
リを使った集計処理になるわけです。
　「あ、そうか……つまり、①②も③④も、全部
カタマリの切り出しをやってるんですね？」
　「そういうこと！」
　「⑤は集計ですけど、これだって1行1列のカ
タマリを作ってると思えば同じか……」
　「そやね」
　「理論在庫の算出でやってることも、カタマリ
切り出しの段数が増えるだけで、本質的にこれ
と同じですよね……？」
　「そのとおり！」

全体像のイメージを持てばSQL
は書ける

　「なんだ、そうか、単純な話なんだ……こう書
けば全体像が見えますね。そしてSQL文にその
まま対応するんですね、これ？」
　「そこなんよ！」
　大道君、大事なことに気がついてくれました。
脳内に全体像のイメージを描ければ、1つ1つの
「カタマリを切り出す」ステップをそのまま
SELECT句やWHERE句などのSQL文の句と
して表現することができます。句ができれば後
はそれをペタペタと組み合わせるだけですので、

一見どんなに複雑に見えても中身は単純なSQL

文として理解できるのです。
　「なんだかできそうな気がしてきました」
　「一見複雑そうなSQLでも、1つ1つのステッ
プは単純なんよ。イメージをもってトップダウ
ンで考えるのに慣れれば、頭の中でサクサクっ
と組めるようになるよ」
　「なんか、元気が出てきました（笑）」
　それは私も同じでした。筋のいい若者が成長
していく姿は本当に気持ちがいいものです。
　「でも、そうすると……リスト2みたいな仕様
書って書く意味あるんですか？」

　鋭い疑問です。実際そこが問題なのです。
　「率直に言えば、意味ないね、というか、むし
ろマイナスしかない」
　「じゃあ……どんな仕様書なら役に立つんで
しょうか？」
　仕様書と言ってもいろいろですので、意味あ
いを整理するために図4を見てください。左側
の「成果物」の欄は、成果物として要求される文
書類の名前、「例」でそこに書く情報の例を示し
ました。「役割」の欄にあるのは、それぞれを象
徴する言葉として私が選んだものです。
　「要求仕様書」のおもな役割は、利用者にとっ
ての「ゴール」を示すことです。今回の案件では
「在庫数量の表示」がゴールです。そしてプラモ
デルがパーツを組み立てて作るように、そのゴー
ルを達成するために必要な手順や情報、たとえ
ば在庫数量なら「棚卸数」「入庫数」「出庫数」など
は「パーツ」とみなせます。システムの利用者は
パーツを意識しませんが、開発者は考える必要
があるので、その仕様を記載するのが「基本設計
書」です。今回のような小さな変更案件では、要
求仕様書と基本設計書を区別せずまとめて書く
場合もあります。
　また、「パーツ」を実装するための「アルゴリズ
ム」を書いた仕様書を、しばしばプログラム仕様

仕様書は書いてもムダ？

 ▼図4　「仕様書」の役割

商品ごとに在庫数量を
表示すること ゴール

コード

パーツ

アルゴリズム

ソースコード

要求仕様書

基本設計書

プログラム仕様書
（詳細仕様書）

static void calculate(..){
......

在庫数量は全倉庫の
棚卸在庫・入庫・出庫データを

集計して算出する

入庫データを読み出して
作業変数に格納し加算する
処理を件数分行う……

成果物 例 役割

118 - Software Design Apr. 2016 - 119

書や詳細仕様書のように呼びます。
　最後にそのアルゴリズムをソースコードとし
て実装して初めてシステムが稼働します。
　そこまで説明して、大道君に1つ尋ねてみる
ことにしました。
　「さて、SQL文の役割は図4のゴール、パー
ツ、アルゴリズム、コードのどれだと思う？」
　「えっ……コードですよね？」
という回答。予想どおりです。そこが実は極め
てよくある誤解なのです。
　「じゃあ、図3はどれに該当すると思う？」
　「図3は、千葉の社員の販売合計がゴールで、
そこに至る手順の部分はパーツ……ですか？」
　「そのとおり。図3はゴールとパーツに該当す
る。ところで、図3の各部ってそのままSQLの
句に置き換えられたよね？」
　「……そうですね」
　「てことは？」

SQL自体が仕様書のようなもの

　「あっ……まさか？」
　そのまさかです。実はSQL文というのは「コー
ド」ではなく、ゴールとパーツを表している、つ
まり要求仕様／基本設計レベルのことを表して
いると考えたほうがいいのです。
　「え、じゃあ、リスト2は？」
　リスト2のような仕様書は、「アルゴリズム」
を書いています。しかしコードとして動くSQL

自体がゴールとパーツの役割を兼ねているので、
実は中間の「アルゴリズム」はそもそも書く必要
がありません。つまり、リスト2のような「アル
ゴリズム」を示す仕様書は、SQLを書くための
仕様書としては意味がないのです。
　すると、そこで今まで黙っていた五代さんが
大声を上げました。
　「な、なんやって !!」
　「実はもともとSQLの設計思想の1つが、ア
ルゴリズムをなくすことなんですゎ。残念なこ
とに、リスト2のレベルの仕様書を書けば書く
ほど、SQLの実力を潰してしまいます。

　デスマーチになったとき、『仕様書の不備（仕
様書が足りなかった）』という理由にされて、あ
れも書け、これも書けとなるでしょ。それこそ
工数が増えてパフォーマンスが落ちる最大の原
因ですゎ。
　その証拠に、私が直したときはテーブル定義
（ER図）とソースしか見てへんし、逆に、直し
たSQLが出てくる詳細設計書は書かれへんで
しょう？」
　「ほんまかいな……」
　リスト1、2をじっくり見た五代さんは
　「確かに、このSQLのためにリスト2みたい
な仕様書を書くのは無駄やな……。ちゃんと
SQLを使えば、仕様書が減って、ソースコード
が短くなって、テストパターンが減って……、
工数的にもめっちゃおいしいやん！」
と、今後の開発では「無駄な仕様書は書かない」
方針に同意してくれました。必要なのは図3の
ように「カタマリを切り出す」イメージがわかる
資料と、SQL文そのものです。
　「よし……ほな、大道君やろうか？　RDBと
SQLをきちっと勉強して、自分でトラブル解決
できるようになろうな！」
　「はい！」
　とはいえ、「詳細仕様書を書かない」ことを実
践するためには社内ルールを変える必要があり、
社内の意識を変える必要があり、たいへんな困
難が待ち構えているのでした。｢

SQLのための仕様書は書くだけムダ第2回

120 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

今回のテーマ

　横浜支部の嶋崎です。今回はAndroid 6.0か
らAPIレベルで対応が行われたMIDIデバイス
のコントロールを使ったアプリを紹介します。
iOSではかなり早い段階からMIDIデバイスへ
の対応があり、Androidはその点で一歩遅れて
いた印象がありましたが、今回の対応によりほ
ぼ iOSと同様の機能への対応が行われています。
まずは対応の第一歩ということで、外部MIDI

デバイスをつないで使う1トラック16ステッ
プシーケンサを作りました。MIDI OUTのみ
の簡単な構成ですが、音を出す部分を中心に作っ
ています。

MIDI対応

　6.0以前でMIDIを利用する場合、USB Host

機能を使ってドライバで対応されている例はあ
りました。6.0からは「android.media.midi」とし
て、APIが用意されました。
　android.media.midiクラスでは、USB接続で
のMIDI IN/OUTとBluetooth Low Energy（以
下、BTLE）を使ったMIDI over Bluetooth LE

（以下、MIDI BTLE）も利用できます。MIDI

BTLEは低遅延＋ケーブルレス接続というこ
とで注目されている技術で、iOSのCoreAudio

の目玉として発表されてから現在まで、徐々に
対応するハードウェアが増えてきています。
Androidでも正式対応したことで今後ますます
増えてくるのではないでしょうか。
　このほかに注目したい点として仮想MIDIデ
バイスを使ったソフトウェアによるシンセサイ
ザー（以下、ソフトシンセ）の作成支援やソフト
ウェア間でのMIDIデータのルーティングなど、
現状考えられる必要な機能はひととおり装備さ
れています。とくに内部のルーティングが可能
になったことで、アプリ間の同期が可能になり
ます。アプリ側の対応によるところはあります
が、アプリに搭載されているソフトシンセの外
部利用ができたり、単体アプリでPCのVSTi

（Virtual Studio Technology instrument）プラ
グインのような音源が登場するかもしれません。

簡単なシーケンサを作る

　AndroidからMIDIデバイスをコントロール
するとしたら、ということでシーケンサを作り
ました。さすがに最初から規模の大きいものは
いろいろと無理だったので、無難なところから
1小節4拍（4/4）を16分音符で表現するリズム
マシンのようにしました。

テスト用機材

　今回、筆者が用意した環境はNexus 5、ポケッ

第4回 MIDI音源から音を出す

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

嶋崎 聡（しまざき さとし）
よこいど／
日本Androidの会 横浜支部
Twitter @sato_c

Androidは世界で出荷される8割のスマートフォンに搭載※される、事実上
スマートフォンの標準OSです。このOS上で動くアプリケーションを開発す
ることは、自分のアイデアを世界に発信し、最も多くのスマートフォン上で
動かしてもらえる可能性がある行為です。このAndroidの最新情報と、そ
れを取り巻くコミュニティを知って、魅力的な開発をはじめませんか?

※IDC Worldwide Mobile Phone Tracker, August 7, 2013

http://www.android-group.jp/

Apr. 2016 - 121120 - Software Design

MIDI音源から音を出す第4回

トミク NSX-39、USB OTG Hubです。
　ポケットミクは、音源チップと電源、スピー
カーが一体化された音源です。数年前に雑誌注1

の付録として販売されていたときに入手したも
ので、これだけで音が出るので実験にちょうど
いいものです（写真1）。
　この音源にはeVocaloidとGM音源がワンチッ
プになっているNSX-1というチップが使われ
ています。eVocaloidは、初音ミクなどのVoca

loid技術を1チップで実現したものです。雑誌
のほうも販売が続いているようですので、興味
がある方は探してみてください注2。
　Nexus 5との接続には、Hubを通してmicro

USBケーブルを使います（写真2）。音源の電
源をUSB経由で供給する必要があるため、今
回は端末の充電に対応したHubを使いました。
これでNexus 5本体にも充電しながら利用でき
ます。Hubがない場合でもUSB OTGケーブル
とmicroUSBケーブルを使えば接続できます。

シーケンサ仕様

　音源をコントロールするのであれば音階の指
定ができるほうがいいのですが、今回はまず基
本となる部分を作りたかったのでリズムマシン
風のものにしました。リズムマシンの本体での
打ち込みは、1小節を16分音符に分けたものに

注1） 『大人の科学マガジン 特別編集　歌うキーボード　ポケッ
ト・ミク』（学研マーケティング刊）

注2） 出版社のオンラインショップからも購入できるようです。
http://otonanokagaku.net/nsx39/

なっています。1拍を4分割した1つ分を1ス
テップと数えて、4ステップ×4拍で16ステッ
プです。再生する音はドラムでも比較的わかり
やすいハイハットの音にしました。
　ポケットミクはGM音源を内蔵しています。
GM音源ではリズムはMIDIチャンネルの10に
割り当てられていますので、このシーケンサで
も出力チャンネルは10としました。
　使う音を画面で変更できるようにもしたかっ
たのですが、今回はクローズハイハット（キー
ナンバー42／ファ#）固定で出力しています。
音を出すときに鍵盤を押した強さ（ベロシティ）
が必要になりますが、ハイハットなので最大の
127で固定しました。ピアノなどの楽器音に変
更する場合は、指定する楽器によっては100ま
で落としたほうが音色の変化が起きずに自然な
音が出ると思います。こうした値についてはプ
ログラムで定数定義していますので、違う音を
出すには内容を変更してビルドしなおす必要が
あります。

画面仕様

　画面構成は次ページの図1のようになってい
ます。画面上部から、16ステップ分のスイッ
チと演奏中の位置を示すマーカー、5段階のテ
ンポ指定、再生／停止ボタンになっています。
停止ボタンは1回押すと一時停止、もう一度押
すと完全に停止（演奏マーカーが最初に戻る）と
なっています。

 ▼写真1　ポケットミク NSX-39の本体 ▼写真2 USB OTG Hubを介して実験用に機材を接続

http://otonanokagaku.net/nsx39/

122 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

プログラムの解説

　今回作るものは、アプリ単体ではなくUSB

Hostで外部デバイスを利用するので、ADB

（Android Debug Bridge）をネットワーク経由
で使う必要があります。手順についてはAnd

roid Developerサイトなどを参照するのがいい
ですが、簡単にコラムにもまとめましたので参
考にしてください。
　なお、プロジェクトファイルはGitHubに載
せてありますのでcloneして使ってください注3。

画面表示

　画面表示にはSurfaceViewを使いました。描
画については、drawというメソッドの中で
Canvasの図形および文字描画メソッドを利用
しています。基本は四角で描画していて、各パー
ツの色の切り換えは複数のPaintを状況によっ
て切り換えています。
注3） https://github.com/sato-c/sd_midiplay

　再生ボタンを押すと指定されているテンポで
マーカーが動き、マーカーのある位置のスイッ
チ状態によって音を鳴らします。音を鳴らすた
めに必要なMIDIデータはキーオンのコマンド
にキーナンバーとベロシティで、これらを組み
合わせたものをデバイスに対して送信します。
ドラム系の音を使っているので、止めるコマン
ド（キーオフ）はとくに送信していません。楽器
音に変更する場合は、キーオンしたあとでしば
らく待ってからキーオフを送る処理が必要にな
ることもあります。

ADBをネットワーク経由で利用する手順

COLUMN

　PCとAndroid端末が同じネットワーク内に
あることが前提です。次の❶～❼を実行します。

❶通常どおりUSBケーブルでPCと端末を接続
します。
❷コマンドラインから、adbコマンドを入力し
ます（ポート番号は5555～5559の範囲で変更
できます。変更した場合は読み替えてください）。

$ adb tcpip 5555

❸これでTCP/IPのポート5555で接続できる設
定になったので、adbサーバを再起動します。

$ adb kill-server
$ adb start-server

❹Android端末の IPアドレスを調べます（端末
設定の端末情報や本体設定で IPアドレスが確
認できます）。
❺コマンドラインから、次のadbコマンドを
入力します。

$ adb connect [IPアドレス]:5555

❻コマンドラインから、次のadbコマンドを
入力します。端末が表示されるのを確認してく
ださい。

$ adb devices

❼あとはAndroid Studioの端末選択画面で
ネットワーク経由の端末が表示されれば利用で
きます。

 ▼図1　シーケンサの画面構成

https://github.com/sato-c/sd_midiplay

Apr. 2016 - 123122 - Software Design

MIDI音源から音を出す第4回

　描画およびタッチ位置は、表示物の座標を起
動時に一括生成して使っています（リスト1）。
表示に倍率補正が入っていると使えませんが、
Nexus 5ではそうした補正が入っていなかった
のでこの方法を使いました。表示とタッチのず
れがでないおかげでプログラムがわかりやすく
なりました。

MIDIデバイスの準備

　MIDIデバイスの準備や設定については、
android.media.midiの解説に載っている内容を

順に実装していきます注4。リスト2が実装した
プログラムです。アプリが起動して画面の準備
が終わってから、MIDIデバイスの準備をする
部分です。
　処理の流れとしてはほかのAPIの準備と変
わりません。MIDI APIが対応しているかを調
べて（リスト2-001行目）、MIDIマネージャサー
ビスを取得します（リスト2-002行目）。
　次にマネージャが持っているデバイスの接続
状態を取得します（リスト2-003行目）。起動前

注4） http://developer.android.com/intl/ja/reference/android/
media/midi/package-summary.html

 ▼リスト1　タッチ位置の検出

 ▼リスト2　MIDIデバイスの確認と準備

001: private int checkTouchPosition(ArrayList<Rect> rectList, int x, int y) {
002: Rect r = rectList.get(0);
003: if (r.top <= y && r.bottom >= y) {
004: for (int i = 0; i < rectList.size(); ++i) {
005: r = rectList.get(i);
006: if (r.left <= x && r.right >= x) {
007: return i;
008: }
009: }
010: }
011: }

001: if (context.getPackageManager().hasSystemFeature(PackageManager.FEATURE_MIDI)) {
002: MidiManager manager = (MidiManager)context.getSystemService(Context.MIDI_SERVICE);
003: MidiDeviceInfo[] instruments = manager.getDevices();
004: if (instruments.length > 0) {
005: for (int i = 0; i < instruments.length; ++i) {
006: MidiDeviceInfo instInfo = instruments[i];
007: Bundle properties = instInfo.getProperties();
008: String manufacturer = properties.getString(MidiDeviceInfo.PROPERTY_NAME);
009: if (instInfo.getInputPortCount() > 0) {
010: manager.openDevice(instInfo, new MidiManager.OnDeviceOpenedListener() {
011: @Override
012: public void onDeviceOpened(MidiDevice device) {
013: useMIDI = true;
014: inputDevice = device;
015: inputPort = device.openInputPort(0);
016: noteBuf = new byte[32];
017: noteBuf[noteBufSize++] = (byte)(0x90 + MIDI_CH - 1);
018: noteBuf[noteBufSize++] = MIDI_NOTE;
019: noteBuf[noteBufSize++] = MIDI_VELOCITY;
020: }
021: }, new Handler(Looper.getMainLooper()));
022: }
023: }
024: }
025: }

http://developer.android.com/intl/ja/reference/android/media/midi/package-summary.html

124 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

行目）、getPortsメソッドでポートの配列を取
得して、情報を保存します（リスト2-010〜021

行目）。今回は配列の最初のデータを使うよう、
0を指定していますが、MIDI IN/OUTポート
が複数ある場合は使うポートを決定するための
処理が必要になるでしょう。また、MIDI OUT

ポートが必要な場合は、同じようにgetOutput

PortCountでポート数を調べてポート情報を保
存する処理が必要です。
　これらのメソッドで使われているMIDIポー
トの指定方法は、APIの指定がAndroidデバイ
スのポートではなく、MIDIデバイス側のポー
トMIDI IN/OUTを基準にしています。そのた
め、アプリからの出力

3 3

が input、アプリへの入
3

力
3

がoutputとなっています。今回のプログラ
ムもSDKサンプルと同じように命名していま
すので、この向きに注意してください。
　使えるポートがあった場合はMIDIマネージャ
からデバイスのオープン処理をします。この処
理は非同期で行われます。呼び出すときにオー
プンできた場合のためのコールバック関数とコー
ルバック関数を処理するスレッドを指定します。
とくに理由がなければメインスレッドで処理す
るように指定しておけばいいでしょう。接続、
切断のコールバックを利用する場合はほかのス
レッドを用意する必要がでてくるかもしれません。

から接続されているデバイス数分、情報を取得
できます（リスト2-004、005〜024行目のルー

プ）。今回は接続時にデバイスがある場合のみ
を想定しています。
　シーケンサアプリを作るときはアプリ起動中
にMIDIデバイスをつないだり外したりする場
面が出てきますので、MIDIマネージャのコー
ルバックを設定して、デバイスの状況を取得す
るよう実装します。コールバックを使うことで
デバイスの状況が変わるたびにonDeviceAdded/

onDeviceRemovedが呼び出されます。これら
のイベントで接続、切断の処理を行うことにな
ります（MidiManager.DeviceCallback）。コール
バックが呼ばれるときにはMidiDeviceInfoク
ラスでデバイス情報が送られます。その情報を
もとに接続、切断の確認や準備を行います。お
おざっぱに分けるとonDeviceAddedイベント
ではデバイスの初期化、onDeviceRemovedイ
ベントではデバイスの破棄を行います。どちら
の処理も演奏している、していないにかかわら
ず、影響がでないようにする必要がでてきます。
　取得したデバイス情報は、コールバックでの
処理と同じようにMidiDeviceInfoクラスです。
この情報を元にgetInputPortCountメソッドで
MIDI INポートの数を調べます。ポートが1つ
以上あることがわかったら（リスト2-006〜009

 ▼リスト3　Handler処理

001: public void handleMessage(Message msg) {
002: if (playing && msg.what == PLAYSEQUENCE) {
003: long nexttime = (long)(60 * 1000 / tempoList[speedPosition] / BEATS);
004: if (keyOn[markPosition] == 1) {
005: if (useMIDI) {
006: try {
007: inputPort.send(noteBuf, 0, noteBufSize);
008: } catch (Exception ioException) {
009: }
000: }
011: }
012:
013: draw(mHolder);
014:
015: markPosition = (markPosition + 1) & 0x0f;
016: sendMessageDelayed(obtainMessage(PLAYSEQUENCE), nexttime);
017: }
018: }

Apr. 2016 - 125124 - Software Design

MIDI音源から音を出す第4回

　デバイスのオープンに成功したら、利用する
デバイスの inputポートの準備と保存をしてから、
MIDIデータ送信のためにバッファを作成して
います（リスト2-013〜019行目）。ここまでが
MIDI出力を行うための初期設定となります。

定期的な呼び出し

　MIDIデバイスの準備ができたら、定期的に
画面更新とMIDIデバイスへの出力を行う必要
があります。今回はHandlerでメッセージ処理
する方法を使いました（リスト3）。この中では
MIDIデータの送信と描画、1ステップの待ち
時間の計算を行っています。
　1ステップの待ち時間をHandler内で実行し
ているのは、演奏中にもテンポ切り換えができ
るようにしてあるためです。音楽のテンポは1

分間にどれだけの音符を演奏するかなので、
60,000msをテンポで割れば1拍あたりの待ち
時間が計算できます。今回は1拍を4個の音符
に分割していますので、さらに4で割ることで
1ステップあたりの待ち時間を計算しています
（リスト3-003行目）。
　MIDIデータの送信は、デバイスの準備の際
に作ったbyteのバッファを送信しています。バッ
ファとそのサイズが必要になるのでデータバッ
ファを組み立てる際には気をつけてください（リ

スト3-007行目）。
　描画については、SurfaceViewを使っている
のでHandler内から呼んでも正常に画面が更新
されます。演奏中は演奏位置マーカーを更新す
るために毎回呼び出しています。
　また画面タッチでデータが更新された場合に
も描画が呼ばれています。いつでも描画指定で
きるのでとくに描画のタイミングを計っていな
いため、データ更新で描画が行われた後に
Handler側の処理でも描画が行われたり、その
反対にHandler側で処理が終わったタイミング
でタッチ側が描画を呼び出すといったことが起
こるかもしれません。速度を気にする処理が増
えてくると、どのような理由であっても描画処

理が何度も呼ばれてしまうのはあまりうれしく
ありません。そこで、タッチ処理側は演奏中か
どうか判定を行い、なるべく描画を省略すると
いった対策を行えば、必要ないタイミングの描
画によるロスが減るでしょう。

まとめ

　今回は1トラックのリズムマシンのようなシー
ケンサを作りました。出力しか使っていないた
め、APIの機能をすべて紹介できたわけではあ
りません。実行時のつけ外しやMIDI入力など
出力以外の機能については機会があればまとめ
たいと思います。
　音楽アプリは、Androidでもシーケンサと音
源が統合されたアプリは結構な数出ていました
が、外部の音源なども使えるものは iOSのほう
が数が豊富でした。Android 6.0での対応が始
まったことで、今後はAndroidでこうしたアプ
リが増えてくるでしょう。加えて、国内で
Nexus以外の高速な6.x端末や、Androidを組
み込んだMIDIワークステーションなどが出て
くるのではないかと期待しています。
　MIDIと聞くと鍵盤や音源などの楽器を演奏
するためのものというイメージが強いと思いま
すが、最近は照明などの舞台装置をコントロー
ルする規格も制定されています。今回のAPI

ではこうしたデータの取り扱いもできるように
なっていますので、舞台装置のコントロール用
コンソールにAndroidが組み込まれた機器が出
てくる可能性もありそうです。
　YAMAHAが iOS用として、既存のMIDIデ
バイスを手軽にMIDI BTLE対応にできるよう
にするMD-BT01注5やUD-BT01注6のようなイ
ンターフェースを出してきましたので、モバイ
ル端末とハードウェアシンセを使ったライブを
する人も出てくるのではないでしょうか。s

注5） http://jp.yamaha.com/products/music-production/
accessories/interfaces/md-bt01/

注6） http://jp.yamaha.com/products/music-production/
accessories/interfaces/ud-bt01/

http://jp.yamaha.com/products/music-production/accessories/interfaces/md-bt01/
http://jp.yamaha.com/products/music-production/accessories/interfaces/ud-bt01/

126 - Software Design

正規表現 or Excel？

　世の中にあるほとんどのテキストエディタは、
検索や置換が行えます。またそのほとんどは、
正規表現が扱えます。正規表現はパターンによ
り文字列をマッチさせるための表現方法であり、
エンジニアであれば親しみのある機能だと思い
ます。
　たとえば、文章の中で行の先頭が「しかし」と
書かれている部分を探すのであれば、^しかし

というパターンを使うことで目的の文字列にジャ
ンプできるでしょう。また、置換文字列に「され
ども」を設定することで置換も行えるでしょう。
　もう少し例を示します。

　このテキストの中央の列「重量」で、「kg」とい
う単位の付け忘れがあったとします。みなさん
であればどのように修正するでしょうか？　
たった2行だから手で書き直しますか？　確か
にそのほうが早いと思います。しかしこの行が
50行あり、なおかつ単位が付いていない行が入
り乱れていたらどうしますか？　スクリプトを
書きますか？

品目,重量(kg),金額
人参,1,100円
白菜,3kg,300円
トマト,3,350円

　このようなテキストの置換を行うためには、
置換の対象となる文字の前後も合わせてマッチ
させる必要があります。単純な正規表現であれ
ば、検索文字列は次のように書けます 注1。

^([^#,]+),([0-9]+),(.*)$

　また、置換文字列は次のように書けます。

$1,$2kg,$3

置換を実行すると、

というテキストに修正できます。正規表現を知っ
ている方々には釈迦に説法ですが、念のため解
説しておきます。
　まずパターンの^は行頭を、$は行末を意味し
ます。このどちらかがないと、行の途中部分に
マッチしてしまいます。今回であれば、先頭が
#で始まる行は無視する必要もありますし、中
央の数字にマッチしないといけません。また「,」
の個数が限定されます。よって、̂ と$を付けて
厳密にマッチさせる必要があります。今回の例
であれば、パターンが1行分になっているのが

品目,重量(kg),金額
人参,1kg,100円
白菜,3kg,300円
トマト,3kg,350円

注1） この正規表現は一般的なパターンです。Vimでは若干異な
ります。

一歩進んだ使い方
のためのイロハ

Vimの正規表現を
マスターする

　検索／置換に便利なVimの正規表現ですが、一般的な正規表現とは表記方法が一部異なるなど注意が
必要です。今回は、一般的な正規表現について復習したあと、Vim特有の正規表現事情について解説しま
す。Vim月報では、ソケット通信機能の追加について深掘りします。

mattn
twitter:@mattn_jp

第 回7

126 - Software Design Apr. 2016 - 127

そうなるとみなさんも、Excelを起動してしま
うかもしれませんし、スクリプトを書いてしま
うかもしれません。
　でもVimを使うと、簡単にこれを実現できて
しまうのです。今回はこのように不可能を可能
にする、魔法の「Vimの正規表現」を紹介します。

Vimと正規表現

　実は、Vimと正規表現はとても密接につながっ
ており、シンタックスハイライト機能において
も正規表現がふんだんに使われています。さら
にはその特殊な機能を実現するために、Vimは
正規表現エンジンを独自にカスタマイズした形
で実装しており、一般的な正規表現にはない記
法も存在します。

正規表現をサポートする機能

magic機能
　Vimでは、() + |といった、パターンで使
用する制御文字をエスケープする必要がありま
す。これはシェル上で実行するgrepやsedなど
でも同じですね。次は、Vimで/（検索）を行う
ときのパターンです。

/^\([^#,]\+\),\([0-9]\+\),\(.*\)$

　一見、\が並んでいて入力がたいへんそうで
す。あらかじめ\を入力する数が多いとわかっ
ている場合は、パターンの先頭に\vを入力して
おくことで、一般的な正規表現と同じ扱いにで
きます。

/\v^([^#,]+),([0-9]+),(.*)$

　これは「very magic」と呼ばれる機能で、正規
表現のメタ文字をエスケープしなくてもいいよ
うに切り替えられます。そのほかにも、very

magicと逆の動作をする\V（very nomagic）や、
一部の文字だけmagic動作を行う\m（magic）、そ
の逆の\M（nomagic）があります。詳しくは:help

magicを参照してください。

わかるかと思います。
　次に、()は後方参照のためのキャプチャと呼
ばれます。これにより、置換文字列内で$1、$2
といった表記で、キャプチャ部分にマッチした
文字列を引用できるようになります。
　[]は文字クラスを示します。[0-9]と書くこ
とで0から9の数字1文字が表せます。また、
[^#,]のように初めに^を書くことで、#や「,」
ではない文字にマッチします。
　そして正規表現では、「.」は任意の文字にマッ
チします。実際の「.（ドット）」にマッチさせた
いのであれば、\.のようにエスケープする必要
があります。
　最後に*と+ですが、量指定子と呼ばれるも
のです。B*は「B」が0個以上の文字列にマッチ
し、B+は「B」が1文字以上の文字列にマッチし
ます。AB*Cは「ABBC」にも「AC」にもマッチし
ますがAB+Cは「AC」にはマッチしません。
　これらパターンを使うことで、最初の#が付
いた行は無視され、かつ中央が数字だけで作ら
れている行だけがマッチする対象となり、それ
を$1,$2kg,$3に置換することで目的のテキス
トに置き換えられる、というしくみです。正規
表現の書き方は1つではありません。人の癖も
ありますし、速度重視やメンテナンスコスト重
視といった理由によって合理的に作られるため、
正解は1つだけではないのです。
　正規表現はテキストエディタだけの機能では
なく、多くのプログラムでも使用されます。正
規表現が不得意なエンジニアの方は、ぜひ克服
することをお勧めします。しかしながらまれに、
このようなテキストの一括編集にExcelを使う
人を目にします。それはそれですごいなとは思
いますが、なぜ正規表現を使わないのかと不思
議に思います。
　一見、万能な魔法のように思えますが、正規
表現をサポートしているテキストエディタであっ
ても、できることには限界があります。たとえ
ば、先ほどできあがったテキストに対して、今
度は右端の金額に消費税率を掛けたいとします。

Vimの正規表現を極める

第 回7

一歩進んだ使い方
のため

のイロハ

128 - Software Design

換わって便利かもしれません。ただし、すでに
\/でエスケープする癖が付いてしまっている人
には若干使いづらかったりします。
　ここでさらに「そのディレクトリは『n』から始
まり3文字から5文字」という検索を行いたい場
合、Vimでは、

/^\/usr\/share\/n.\{3,5}\/README$

のように書けます。詳しくは:help \{を参照
してください。

\%V
　Vimで矩形を選択して、その矩形内でのみ置
換を行いたい場合、そのまま:をタイプして、

:'<,'>:s/foo/bar/g

を実行しても、期待どおりには動作しません（図

1）。
　確かに矩形の開始行から終了行内では置換さ
れますが、矩形の右側や左側にある「foo」も「bar」
に置換されてしまいます。期待どおりに矩形内
のみで置換を行いたい場合は次のように実行し
ます。

:'<,'>:s/\%Vfoo/bar/g

　\%Vは、矩形選択された中のパターンだけに
マッチさせるおまじないです。

//e
　テキストを編集していると、ある文字列を検
索したあとでその検索語の次の位置から文字を
タイプしたいときがあるかと思います。たとえ
ば、「ヨーデル」の次の位置からタイプしたい場
合は、

/ヨーデル/e+1

と入力します。//eはマッチ文字列の末端の文
字「ル」に移動するコマンドです。さらにオフセッ
トを1つ進めるには//e+1と入力します。逆に、
マッチ文字列の先頭を指すにはsを使います。そ

ハイライト機能と省略機能
　set hlsearchを設定しておくと、マッチし
た部分がハイライト表示されるため、とてもわ
かりやすくなります。また、set incsearchを
設定しておくと入力中の正規表現に対してもハ
イライトが行われるため、とても直観的に正規
表現を入力できます。
　なおVimでは、いったん検索を確定しておい
たあとに、

:s//# &/g

のように実行することで、前回入力したパター
ンを省略できます。先の例であれば、単位「kg」
が入力されていないすべての行の先頭に#が付
与されます。

ちょっと特殊なVimの正規表現

\{n,m}
　一般的な正規表現では?を使うことで最短マッ
チを表せます。たとえば、UNIX上のパス/usr/

share/の下に存在するとあるディレクトリと、
その直下にあるREADMEファイルをパターン
としてマッチさせたい場合、一般的な正規表現
だと、

^/usr/share/.*?/README$

と書けます。もちろんここで最短マッチを使わ
ないと、さらに下の階層のフォルダにある
READMEにもマッチしてしまいます。一方、
Vimの/検索では、次のようになります。

^\/usr\/share\/.\{-}\/README$

　Vimでは.*?というパターンが.\{-}となり
ます。ところで、\/が多くてちょっと煩わしい
ですね。Vimの検索時には、/は必ず\/にエス
ケープする必要があるので、

:cnoremap <expr> / getcmdtype()ｭ
 == '/' ? '\/' : '/'

のように設定しておくと、/が勝手に\/に置き

128 - Software Design Apr. 2016 - 129

\(吾輩は\)\@<=\(猫\|犬\)\(である\)\@=

と、直観的でない正規表現になってしまいます。
また既出の、野菜の価格表テキストの重量部分
のみキャプチャするのであれば、

^[^#,]\+,\zs[0-9]\+\ze,

と書くことができ、パターンをそれほど壊さず
にキャプチャ対象を変更できます。
　また、\zsよりも前の部分、\zeよりも後ろ
の部分はキャプチャ対象からは外れているため、
$1や$3を検出するためにキャプチャする必要
もありません。Vimでは置換文字列に&を使う
とマッチした部分全体に置き換えられるため、
\zsと\zeを使った場合の置換文字列は&kgと
だけ書けばよくなります。まとめると、「抜けた
単位kgを入れる」置換コマンドは次のようにな
ります。

:%s/^[^#,]\+,\zs[0-9]\+\ze,/&kg/g

　最初は難しいかもしれませんが、慣れるとこ
ういったパターンがさらさらと出てくるように

のほか便利なオフセット機能が用意されていま
す。詳細は:help search-offsetを参照して
ください。

\zsと\ze
　正規表現には先読み／後読みというマッチ方
法があり、それぞれ肯定と否定という条件指定
ができます（表1）。
　表現方法は異なりますが、Vimの正規表現で
もこれらは同様に使用できます。しかしこれら
は直観的とはとても言えず、入力についてもリー
ズナブルではありません。そこでVimの正規表
現には\zsと\zeという特殊な識別が用意され
ており、これを使用することで、簡単にキャプ
チャ対象を部分的に適用できます。たとえば、
「吾輩は猫である」という文章を「吾輩は犬であ
る」でもマッチさせ、かつ実際にキャプチャする
のは「猫」か「犬」という文字だけとしたい場合、

吾輩は\zs\(猫\|犬\)\zeである

と書けます。これを、表1の肯定先読みと肯定
後読みで書き直すと、

名称 パターン Vimでのパターン マッチする対象
肯定先読み foo(?=bar) foo\(bar\)\@= 直後にbarがある foo
否定先読み foo(?!bar) foo\(bar\)\@! 直後にbarがない foo
肯定後読み (?<=bar)foo \(bar\)\@<=foo 直前にbarがある foo
否定後読み (?<\!bar)foo \(bar\)\@<\!foo 直前にbarがない foo

 ▼表1　先読み／後読みマッチング

 ▼図1　矩形の外側にある「foo」も置換されてしまった

Vimの正規表現を極める

第 回7

一歩進んだ使い方
のため

のイロハ

130 - Software Design

\<と\>
　通常の正規表現の\bに相当します。\<と\>

で囲うことで、単語の区切りにマッチさせられ
ます。Vimのノーマルモードで*をタイプする
と、カーソル配下のキーワードが検索できます
が、実際にはこれは\<カーソル配下のキーワー

ド\>という正規表現検索が行われています。

アトム

　Vimの正規表現で使用できるアトム文字は表

2のとおりになります。たとえば、プログラミ
ング言語で用いる変数名は一般的に、

・アルファベット文字、もしくは「_」で始まり
・2文字目以降はアルファベット文字、数字、
「_」のいずれか

となります。よって、

\<[a-zA-Z_][a-zA-Z0-9_]*\>

のように書けもしますが、アトム文字を使うこ
とで、

\<\I\i*\>　 または 　\<\h\w*\>

と短く書けます。

submach()

　Vimでは置換文字列にて\=...と書くことで、
「式」を書けます。たとえば、今回何度も登場し
てきた野菜の価格表のテキストで、金額に消費
税率を掛ける置換コマンドは、リスト1のよう
になります。
　submatchには、キャプチャした結果の文字
列が返ります。submatch(0)はマッチした文字
列全体が得られ、1以降はパターンの中で\(\)

によりグループ化させた結果の文字列が得られ
ます。Vim scriptは文字列の連結を「.」で行いま
すが、浮動小数点は「.」で連結できないので
float2nrで整数化しています。結果として、小
数の切り捨てにもなって良いですね。

なり、テキスト編集が楽しくなります。

\%[]
　たとえば、あるテキストの中にある書きかけ
の文章を、単語「read」で検索したいとします。
「r」「re」「rea」「read」のどれかにマッチしたい場
合は、\%[read]と書くことで文字クラスをシー
ケンシャルにマッチするパターンを記述できま
す。日本語でも扱えるので、

本当に\%[ありがとうございました](ry$

と書くことで、「本当にあり (ry」といった中途半
端な日本語にもマッチさせられます。

アトム 意味
\i 識別文字（isindentオプションに依存）
\I 数字を除いた識別文字

\k キーワード文字（iskeywordオプションに依
存）

\K 数字を除いたキーワード文字

\f ファイル名で使える文字（isfnameオプショ
ンに依存）

\F 数字を除いたファイル名で使える文字
\p 表示可能な文字（isprintオプションに依存）
\P 数字を除いた表示可能な文字
\s スペースやタブといった空白文字
\S 空白文字以外
\d 数字：[0-9]
\D 数字以外：[^0-9]
\x 16進文字：[0-9A-Fa-f]
\X 16進文字以外：[^0-9A-Fa-f]
\o 8進文字：[0-7]
\O 8進文字以外：[^0-7]
\w 単語：[0-9A-Za-z_]
\W 単語でない文字：[^0-9A-Za-z_]
\h 単語の先頭文字：[A-Za-z_]
\H 単語の先頭文字以外：[^A-Za-z_]
\a アルファベット文字：[A-Za-z]
\A アルファベット文字以外：[^A-Za-z]
\l 小文字：[a-z]
\L 小文字以外：[^a-z]
\u 大文字：[A-Z]
\U 大文字以外：[^A-Z]

 ▼表2　Vimの正規表現におけるアトム文字

130 - Software Design Apr. 2016 - 131

で何度でも元に戻せます。何度も書き直して何
度も実行し、正しい正規表現パターンが書ける
までいくらでも繰り返せば良いのです。
　そうやって繰り返すことで、この“思いつきの
力”が養われていくのです。Vimの正規表現や置
換機能を使えば、ちょっとしたデータの加工に
わざわざスクリプトを書く必要はない、そう思
えてくるはずです。ﾟ

必要なのは発想力

　Vimに限らず、正規表現を扱う場合に必要と
なるのは“発想力”です。「3列目をキャプチャし
てsubmatchを使えば、消費税込みの金額に置
換できる」といった思いつきの力、それこそが
Vimの正規表現をうまく使えるかどうかの決め
手です。Vimは置換してしまったあとでも、undo

 ▼リスト1　submatchを使って正規表現の式を書く

%s/^\(.*\),\(\d\+\)円$/\=submatch(1) . "," . float2nr(1.08 * submatch(2)) . "円"/g

 13年前、筆者はVimにソケット通信機能を追加

するパッチを書き、Vimの開発グループに送りま

した。その際、Vimの作者Bram Moolenaar氏から

受けたのがこの言葉です。

　それから時は流れ、現在ではVimユーザのほと

んどは何かしらのVim pluginを使っています。み

なさんがVimに期待しているものも、あの時とは

変わってきました。そして今年の1月末、パッチ

7.4.1191にて、Vimにchannelと呼ばれるソケット

通信機能が追加されました。あのメールを送って

以来、テキストエディタVimにソケット通信機能

なんか付いたりはしない、そう思い込んでいた筆

者には目が飛び出るかのような思いでした。

確かに、筆者が書いたソケット通信機能は

ブロッキング通信であり、テキストエディ

タの編集操作に支障をきたす酷い物だった

かもしれません。

　今回Vimに追加されたchannelは、データ

を受信したタイミングでコールバックが呼

ばれる非同期通信方式を採用しており、テ

キスト編集中でも通信が行えるようになっ

ています。

　リストAはソケット通信相手からのデータ

を都度表示するスクリプトです。また、外部プロ

セスを扱うための、job-controlという機能も追加

されました。リストBは teeコマンドに「echo

something」という文字列を書き込み、その結果を

読み取って表示するスクリプトです。本記事執筆

時点ではまだ安定しておらず、APIの名称について

も変わってしまうかもしれません。しかしながら

今後、Vimの非同期処理はchannelと job-control

へと置き換わっていき、テキストを編集しながら

別のバッファでは異なる情報が自動で更新されて

いくといった、Vimの近未来がやって来ることに

なるでしょう。

「その機能はテキストの編集には関係ない」

 ▼リストA　通信相手からのデータを都度表示

function! Callback(handle, msg)
 echo a:msg
endfunction
let handle = ch_open("127.0.0.1:8888", "json")
call ch_sendexpr(handle, "GET", "Callback")

 ▼リストB　コマンド結果を読み取って表示

let job = job_start("tee")
let handle = job_getchannel(job)
echo ch_sendraw(handle, "echo something\n")
call job_stop(job)

Vimの正規表現を極める

第 回7

132 - Software Design

迫るEmacs25

　ども、るびきちです。先月末にEmacs25の
pretestがリリースされました。正式リリースが
真近に迫っているのは間違いありません。
Emacs25は、webkit埋め込み機能とダイナミッ
クリンク（拡張ライブラリ）がサポートされます。
webkit埋め込み機能を使えば、グラフィカルな
WebブラウザをEmacsのバッファで表示させる
離れ業が可能になります。もともと規格外なテ
キストエディタであるEmacsで、さらにブッ飛
んだ芸当ができるようになるのです。ダイナミッ
クリンク機能によりユーザはC言語でEmacsの
関数を記述できるようになります。elispやプロ
セス間通信だと遅くて実用的でなかったことが
実現できます。楽しみになってきましたね！

◆　◆　◆
　あなたは、Emacsがゲームプラットフォーム
であると聞いたら驚くでしょうか？　実は
Emacsはインストールした時点でいろいろな
ゲームが遊べます。ファイラー（dired）やメーラ
（gnus）やシェル（eshell）がelispで実装されてい
るのですから、ゲームがあってもおかしくはあ
りません。今回はEmacsで遊べるゲームについ
て採り上げていきます。

テトリス

　落ちものパズルゲームの元祖テトリスも
Emacsで遊べます。Emacsでは任意のテキスト
に色が付けられることを知っていれば当たり前
かもしれませんが、本家さながらの色付きブロッ
クでテトリスができるのはすばらしいことです
（図1、2）。
　M-x tetrisで起動します。ブロックは左右
キーで動かし、上下キーで回転させ、　　　 で
落下させます。　　　 で落下するとすぐに固ま
るので、落下直後に移動させるテクニックは使
えません。
　スコアの算出方法は本家とはまったく異なり
ます。本家テトリスでは複数行消しに対してボー
ナス得点が加算 注1 されますが、Emacsのテトリ
スでは実装されていません。また、行を消すよ
りも高い位置から落下させることによる得点の
ほうが多いです。よって、Emacsのテトリスで
高得点を出すには本家とは異なる戦略が必要に
なります。本家では積極的にテトリスを狙うこ
とで高得点が出せますが、Emacsでは落下を使
いつつ地道に消していったほうが良いです。

Space

Space

注1） たとえば、シングル（1行消し）500点に対して、テトリス
（4行消し）10,000点など。

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

少し休憩。Emacsでゲームを遊ぼう
　今回は箸休め。Emacsで遊べる5つのゲーム、テトリス・五目並べ・ヘビゲーム・精神科医と相談・ハ
ノイの塔を紹介します。どれもインストールの必要なし、かつ簡単操作ですぐに遊べますが、歯ごたえのある
ものばかりで熱中してしまうかも！？

Writer

第24回

http://rubikitch.com/

132 - Software Design Apr. 2016 - 133

五目並べ

　M-x gomokuを実行すれば、五目並べが遊べ
ます（図3）。五目並べとは、ボード上に相手と
交互に石を並べ、先に連続5つの石を並べたほ
うが勝ちとなるゲームです。石を置く位置はカー
ソル移動コマンドで指定します。Emacs式（C-p/

C-n/C-b/C-f）と vi式（h/j/k/l）が使えます。
石は　　　 　　　　 のいずれかで置きます。
　M-x gomokuを実行すると、まず先攻後攻を
決定します。「Do you allow me to play first? (y

or n)」と出てくるので、　 と答えて先攻を選ぶの
が無難です。
　正直、Emacsの五目並べAIはめちゃくちゃ強
いです。勝利のスクリーンショット（図4）を載
せていますが、筆者では20回対戦して1回勝て
るかどうかです。決着がついたあと再戦を要求
（「Another game? (y or n)」）してくるのですが、
そこで　 と答えて断ると、「Chicken!（この腰抜
けが！）」と罵ってきます（笑）。

Space Enter x

n

n

デモプレイ

　autotetris-modeパッケージをインストールす
れば、テトリスのデモプレイが楽しめます。M-x

autotetrisを実行すればEmacs自身がテトリ
スをプレイします。地道に消していくスタイル
ですので、プレイの参考になるでしょう。

解像度を下げよう

　M-x tetrisや、あとに紹介するM-x snake

を高解像度でプレイすると、ゲーム画面が小さ
くなってしまいます。しかも、テキストのフォ
ントを変更しても変わりません。その原因は内
部で使用しているgamegrid.elです。これはグ
リッドベースのゲームを作成するためのライブ
ラリですが、あいにくグリッドの大きさが16

ドットに固定されています。見やすい大きさに
するには、解像度を下げれば良いです。helmを
インストールしていればM-x helm-xrandr-

setで対話的に解像度を変更できます。

 ▼図1　テトリスをプレイ ▼図2　棒が来た！！

 ▼図3　五目並べスタート！ ▼図4　勝った！

第24回 少し休憩。Emacsでゲームを遊ぼう

134 - Software Design

ムです（図5）。ヘビは動き続け、壁や自分自身
にぶつかったらゲームオーバーです。最初は体
長が短いのでとても簡単ですが（図6）、しばら
くすると長く成長した自分自身が邪魔になって
くるので（図7）、通り道を塞がないように気を
付ける必要があります。止まって休めばいいの
に、などという突っ込みは無用です（笑）。

精神科医と相談

　M-x doctorを実行すると、Emacsに内在す
る精神科医さんにあなたの悩みを相談できます。
これは、ELIZAという初期の素朴な自然言語処
理の人工知能（人工無脳）プログラムを基にした
ものです。EmacsといえばLisp、Lispといえば

ヘビゲーム

　M-x snakeを実行すると、ヘビゲームが遊べ
ます。ヘビゲームとは、エサを食べるようにヘ
ビを操作して自分自身を成長させる古典的なゲー

 ▼図5　ヘビゲームスタート ▼図6　どんどんエサが配置される

 ▼図7　エサを食べるとものすごく体長が長くなる

 ▼図8　精神科医と会話（アミ掛け部分がユーザの入力）

I am the psychotherapist. Please, describe your problems. Each time
you are finished talking, type RET twice.

My Emacs does not work well
Emacs? Hah! I would appreciate it if you would continue.

My text editor
Why do you say your text editor?

I use it everyday
Is it because of your plans that you say you use it everyday?

what?
Can you elaborate on that?

I cannot use other text editors
Maybe your life has something to do with this.

yes
I see... Well, what makes you believe this is so?

（続く）

るびきち流
Emacs超入門

134 - Software Design Apr. 2016 - 135

ですが、数多く用意されているので暇潰しには
もってこいです（表1）。もし「GNU/Linuxでの
ゲームって何がある？」と聞かれたら「Emacs」と
答えるのも、あながち間違っていません。

　筆者のサイト「日刊Emacs」は日本語版Emacs

辞典を目指すべく日々更新しています。手元で
grep検索できるよう全文をGitHubに置いてい
ます。またEmacs病院兼メルマガのサービスを
運営しています。Emacsに関すること関しない
こと、わかる範囲でなんでも御答えします。「こ
んなパッケージ知らない？」「挙動がおかしいか
らなんとかしてよ！」はもちろんのこと、自作
elispプログラムの添削もします。集中力を上げ
るなどのライフハック・マインド系も得意とし
ています。ﾟ
登録はこちら➡ http://www.mag2.com/m/

0001373131.html

人工知能、それならば人工知能がelispで実装さ
れても不思議ではありません。しょせんはオモ
チャですが、ときにあまりにも人間的な会話を
することもあるので侮れません（図8）。

ハノイの塔

　M-x hanoiでハノイの塔のデモを見られます。
ハノイの塔とは、3本の杭が用意され、左端の
杭にある円盤をすべて中央の円盤に移動させる
パズルゲームです。円盤は1回につき1枚ずつ
ほかの杭に移動できますが、そのとき小さい円
盤の上に大きい円盤を乗せることはできません。
プログラミングの学習で再帰呼び出しの例題に
よく採り上げられます。
　円盤の数は数引数で指定します。C-u M-x

hanoiだと4枚、C-u 6 M-x hanoiだと6枚に
なります。n枚の円盤をすべて移動させるには
2n－1手必要になりますので、大きくし過ぎる
と延々と時間がかかります（図9、10）。

そのほかのゲーム

　ほかにもEmacs上ではいろいろなゲームが遊
べます。ゲームのelispファイルはlisp/play/

以下（例：/usr/local/share/emacs/24.5/lisp/
play/）に置かれています。そのディレクトリを
簡単に開くには、M-x find-functiontetris

などのゲームコマンドの定義を開き、そこから
diredを立ち上げてください。Emacsは、基本的
にテキストエディタですので地味なものばかり

 ▼図9　ハノイの塔スタート ▼図10　完成！

パッケージ 内容
2048-game 2048
sokoban 倉庫番
gnugo GNU Go（碁）
minesweeper マインスイーパー
typing-game タイピングゲーム
slime-volleyball バレーボール

 ▼表1　 MELPAパッケージからインストールできる
ゲーム

おわりに

第24回 少し休憩。Emacsでゲームを遊ぼう

http://www.mag2.com/m/0001373131.html

136 - Software Design

前回に引き続き POP

　今回はProtocol-Oriented Programmingが、
実際どれほど使い物になるかを実例とともに紹
介していきます。

PONS＝Protocol-
Oriented Number
Systemの紹介

　前回取り上げた実例は、複素数（complex

numbers）の実装、swift-complex注1でした。記
事にはこうあります。

・誰かが任意精度の数値ライブラリを用意すれ
ば、それを使うことも可能

でもそれって本当？
　それが、今回紹介するPONS＝Protocol-

Oriented Number Systemを書くことになった
きっかけです（図1）。
　使い方は簡単。

① git cloneして PONS.xcworkspaceを開いて、
Framework-OSXをビルドしたらOSX Playground
の実例が実際に動くようになります。試しに
(1...100).reduce(BigInt(1),combine:*) と
打ってみてください。

②もちろんREPLでも動きます。make replする
とREPLが立ち上がるので、import PONSして

から(1...100).reduce(BigInt(1),combine:*).
descriptionとか打ってみてください。

③読者ご自身のプロジェクトで使いたい場合も、
Frameworkをコピーしてもよし、ソースファ
イルをコピーしてもよしです。

　これで、次のようなことができます。

・RubyやPythonやHaskellではおなじみの任
意精度整数（BigInt）が、GMP注2などの外部
ライブラリなしで使えるようになります。

　→素数判定メソッドも付いてきます。いや、
同じく任意精度整数が組込みのPerl6にも組
込みだったので。

・有理数型（Rational）もついてきます。分子と
分母の型を引数とする総称型ですので、も
ちろん任意精度有理数＝Rational<BigInt>
も使えます。よく使うのでBigRatととして
typealiasしてあります。

・任意精度浮動小数点数（BigFloat）もついて
います。BigRatだけでも好きなだけ小さな
数も実現されているのですが、より高速か
つ省スペースです。

　→総称的に定義された初等関数（elementary
functions）の実装も付いてきます。たとえば
Float128とか、新たな数値型を実装したと
きにexpやlogやsinやcosを書き直す必要

書いて覚える 入門Swift

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

Protocol-Oriented Programming13第 回

注1） https://github.com/dankogai/swift-complex
注2） https://gmplib.org

https://github.com/dankogai/swift-complex
https://gmplib.org/

136 - Software Design Apr. 2016 - 137

Protocol-Oriented Programming第 回13

はありません。実際BigRatとBigFloatはそ
れぞれまったく別の型なのに、これらの関
数のソースは共通です。

　しかし、PONSの本当のウリはそこじゃな
いんです。

1つで十分ですよ、
わかってくださいよ！

　古のCの時代、同じことをするコードは、型ご
とに必要でした。試しにman cosしてみると……、

NAME
 cos -- cosine function

SYNOPSIS
 #include <math.h>

 double
 cos(double x);

 long double
 cosl(long double x);

 float
 cosf(float x);

　倍精度double用にcos()、単精度float用に
cosf()、そして拡張精度long double用にcosl
と、標準で用意されているだけで3種類もあり
ます。四倍精度（float128）とかが標準装備になっ
たらcosq()でも加えるんですか？　昨今GPU

で採用されはじめている半精度（float16）は
cosh()ですか？　でも待って、coshはもう双曲
線コサイン（hyperbolic cosine）に取られちゃって
ますよ？
　ぶっちゃけ付き合ってられませんよね？
　Swiftは、はじめからこの問題にある程度対
処されています。

#if os(Linux)
import Glibc
#else
import Darwin
#endif

　された状態でXcodeにてcosと打つと……、
図2のように、Doubleも Floatも CGFloatも、
どれも同じcosで呼び出せることがわかります。
　しかし、自分でこのような同名別型関数を用
意しようとした場合、どうしたらよいでしょう？

 ▼図1　swift-pons（https://github.com/dankogai/swift-pons）

BigUInt

PONumber

POComparableNumber

POSignedNumberPOinteger

POReal

POCmplex

POComplexReal

PORational POInt

POUInt

UInt UInt64 UInt32 UInt16 UInt8 Bool

Complex

GaoussianInt

BigInt

BigFloat

POFloat Rational Int

Float Double

Int8 Int64 Int32 Int16

https://github.com/dankogai/swift-pons

138 - Software Design

書いて覚える 入門Swift

　こうですか？

func fib(n:Int8)->Int8 { return n < 2 ? ｭ
i: fib(n-2)+fib(n-1) }
func fib(n:Int16)->Int16 { return n < 2 ? ｭ
i : fib(n-2)+fib(n-1) }
func fib(n:Int32)->Int32 { return n < 2 ? ｭ
i : fib(n-2)+fib(n-1) }
func fib(n:Int64)->Int64 { return n < 2 ? ｭ
i : fib(n-2)+fib(n-1) }

　だが断る！
　だがしかし、Swiftには総称型があります。
こうは書けないのでしょうか？

func fib<T>(i:T)->T { return i < 2 ? i :ｭ
fib(n-2)+fib(n-1) }

　でもTを足したりTどうしを比較する方法を
Swiftは知りませんから、残念！　よろしい。
ならばプロトコルだ。比較できて足せる型
Hogeがあれば、

func fib<T:Hoge>(i:T)->T { return i < 2 ?ｭ
i : fib(n-2)+fib(n-1) }

　で行けるはずだ。でもそのHogeってどこに
あるの？　PONSは、まさにそのためにある
のです。実際に試してみましょう。PONSでは、
上記のHogeはPOIntegerが相当します。

import PONS

func fib<T:POInteger>(n:T)->T {
 if n < T(2) { return n }
 var (a, b) = (T(0), T(1))
 for _ in 2...n {
 (a, b) = (b, a+b)
 }
 return b
}

　で、実際に下記がそのまま動けば、公約が果
たされたことが確認できるわけです。

let F11 = fib(11 as Int8)
let F13 = fib(13 as UInt8)
let F23 = fib(23 as Int16)
let F24 = fib(24 as UInt16)
let F46 = fib(46 as Int32)
let F47 = fib(47 as UInt32)
let F92 = fib(92 as Int64)
let F93 = fib(93 as UInt64)

　ぜひご自身でご確認を。
　しかし、このプロトコルは既存の型だけでは
なく、どこからか持ってきた別の型にも適用で
きるのでしょうか？
　BigIntでやってみましょう。

let F666 = fib(666 as BigInt)

　6859356963880484413875401302176431788073ｭ
21423453572526486043772015797214210889451ｭ
12648983661455286225430826466261405270977ｭ
39556699078708088

になりましたか？
　でも、プロトコルなら運命を変えられる。避
けようのない重複コードも、嘆きも、すべて君
が覆せばいい。だからPONSと契約して、数
学ガールになってよ！
……失礼しました。SEGVです。Xcodeで
Protocolを多様したプログラムを書いている
と本当によくお目にかかれます :-(。
　しかし数値は整数だけではありません。整数だ
けで満足できるのは小学生とクロネッカー注3先生

 ▼図2　COSの呼び出し

注3） ドイツの数学者（https://ja.wikipedia.org/wiki/レオポルト・クロネッカー）

https://ja.wikipedia.org/wiki/%E3%83%AC%E3%82%AA%E3%83%9D%E3%83%AB%E3%83%88%E3%83%BB%E3%82%AF%E3%83%AD%E3%83%8D%E3%83%83%E3%82%AB%E3%83%BC

138 - Software Design Apr. 2016 - 139

Protocol-Oriented Programming第 回13

だけです。有理数も浮動小数点数もあるんだよ。
　とはいえこれらを漠然と並べただけでは、体
系（system）とはいえません。同じ/だって、整
数型と実数型で違いますし。しかも、ただ符号
なし整数→符号付き整数→実数→複素数とトッ
プダウンにするわけにもいかないのです。確か
に複素数は、四則演算と冪

べきじょうこん

乗根に対して閉じて
いますが、大小比較ができないというほかの数
値型にはない特徴があります。
　向き合った結果が、冒頭のグラフになります。
ご覧いただければわかるとおり、複素数は実数
からできているけど、大小比較はできないとい
う関係が確かに成立しています。
　だから、きちんとこのようになります。

Double.sqrt(-1) // NaN
Complex.sqrt(-1) // (0.0+1.0.i)
// そもそも比較できない
1.0+0.0.i < 2.0+0.0.i
// 絶対値を見ればおk
(1.0+0.0.i).abs < (2.0+0.0.i).abs

　これが、「本当の数値と向き合えますか？」の
筆者なりの回答になります。

Protocol-Oriented
Programming = 正しい
ものが報われる世界

　PONSが目指したもの、それは「正しいもの
が報われる世界」ということに尽きます。掛け
算1つとっても、固定長の数値型では、その半
分の型におさまる数値しか安全にできません。
63357を自乗するだけで、32ビット整数はオー
バーフローするのです。『C言語によるアルゴ
リズム辞典注4』というロングセラーがあります。
PONSの実装でも大いに参考にさせていただ
いたのですが、intやdoubleの制約を回避する
のに涙ぐましいほどの努力をしていて時代を感
じさせます。正しい世界とは、そうではなくて
アルゴリズムをそのまま書き下せばそのまま動

く世界のはずです。
　たとえばモンゴメリー乗算というアルゴリズ
ムがあります。これを使うと割り算なしで冪剰
余を計算できたりするので素数が捗ったりしま
す。PONSにも実装されているのですが、普
通に実装すると簡単に整数オーバーフローして
しまいます。そのため固定整数のみで実装しよ
うとするとたいへんなのですが注5、BigIntが
あれば「オーバーフローしそうならそこだけ
BigInt使って」ということがとても簡単に実現
できます。実際に現時点におけるPONSの冪
剰余はそのように実装されています。
　その一方、BigIntは自分では文字列化メソッ
ドを持っていません。整数の文字列化には、整
数型に依存するアルゴリズムがすでに存在する
からで す。PONSでは、そのメソッドは
POIntegerでこう実装されています（リスト1）。
　元の数を底（base）で割っていき、その余りを
まとめるという操作は、その整数型の実装には
まったく依存しません。つまりPOIntegerに準
拠した数値型は、何も加えなくても文字列化で
きるということです。
　そもそもBigIntがあればほかの整数型はいら
ないという意見もあり得ます。大は小を兼ねるじゃ
ないかという意見もごもっともですが、しかし
Swiftを含め、多くの言語で整数型が固定なのに
は立派な理由があります。任意精度整数はとて
も重いのです。軽くベンチマークしてみると、64

ビットにおさまる20! = 2432902008176640000を
計算するのに、PONSのBigIntではSwift組込
みIntのなんと500倍も時間がかかるのです。こ
れはPONSの実装がしょぼいから、ではなく実
は相場どおりで、Perl 5標準装備で、ただし組
込みではないMath::BigIntもネイティブな64bit

整数の250倍でした。ちなみにPONSのBigInt
は世界最速の任意精度整数からはほど遠いので
すが、それでも、Swiftがネイティブコードコン

注4） 奥村晴彦 ISBN978-4874084144
注5） http://www.hackersdelight.org/MontgomeryMultiplication.pdf

http://www.hackersdelight.org/MontgomeryMultiplication.pdf

140 - Software Design

書いて覚える 入門Swift

パイラーということもあってかMath::BigIntの5

倍の速度が出ています。
　コードを使い分けずとも、型は使い分けられる。
　PONSでそのことを示せたと自負しています。

予告

　実はPONSのようなものは、Swiftの中の人
もTodoにしていたようです。Swift-Evolution

メーリングリストに、次のような書き込み注6

がありました。

 I have been working for some time on a
rewrite of all the integer types and protocols
https://github.com/apple/swift/blob/
master/test/Prototypes/Integers.swift.gyb.
One goal of this effort is to enable operations
on mixed integer types, which as you can
see is partially completed. In-place arithmetic
(anInt32 += aUInt64) is next. Another
important goal is to make the integer
protocols actually useful for writing generic
code, instead of what they are today:
implementation artifacts used only for code
sharing. As another litmus test of the
usefulness of the resulting protocols, the plan
is to implement BigInt in terms of the
generic operations defined on integers, and
make BigInt itself conform to those protocols.

「現在数値型の書き直しに取り組んでいる。そ
の次には（anInt32 += aUInt64 のような）異な
る型通しの演算が控えている。もう1つのゴー
ルは、整数型プロトコルが総称的なコードを
書くのに実際に役立つようにすること。実際
にプロトコルに準拠したBigIntを実装すると
いうのは、そのためのリトマス試験紙となり
うる」

　Swift 2.1でもできちゃいましたが、何か？
　ただし、現 時 点で 組 み 込まれ ている
IntegerTypeとかはそのまま使えませんでした。
見てのとおり、現在の組込みプロトコルでは、複
素数のように「整数や実数のできることはほとん

ど何でもできるけど、比較はできない」といった
ような関係を反映させるのが困難だったからです。
とはいうものの、ComparableやHashableといった、
準拠していないと利便性があまりに下がるプロト
コルは控えめに導入しています。たとえばBigInt
で も (1...100).reduce(BigInt(1),combine:*)で
きるのは、POIntegerが RandomAccessIndexType
でもあるからです。
　次回はそんな「隠れプロトコル」を取り上げま
す。それがわかれば、なぜsin(1.0)と書かな
くてもsin(1)で型エラーを起こさないかが見
えてきます。ﾟ

注6） https://lists.swift.org/pipermail/swift-evolution/Week-of-Mon-20151214/002445.html

public func toString(base:Int = 10)-> String {
 guard 2 <= base && base <= 36 else {
 fatalError("base out of range. \(base) is not within 2...36")
 }
 var v = self
 var digits = [Int]()
 repeat {
 var r:Int
 (v, r) = Self.divmod8(v, Int8(base))
 digits.append(r)
 } while v != 0
 return digits.reverse().map{"\(POUtil.int2char[$0])"}.joinWithSeparator("")

 ▼リスト1　PONSの実装例

https://lists.swift.org/pipermail/swift-evolution/Week-of-Mon-20151214/002445.html

Apr. 2016 - 141

本連載ではこれまで、バレルセオリーという概念や、情報セキュリティの中で最も脆弱な部分は人
間である、ということを考えてきました。今回は、このように今まで学んできたことが、現実の世
界ではどのような形で現われているかというケーススタディをしてみます。

英国在住16歳少年が
逮捕される

　2016年2月中旬から、欧米の各メディアは「米国
CIAトップのメールをハッキングした英国在住の
ティーンエージャーが逮捕される」という内容で溢
れました。
　まず筆者が最初に見つけた2016年2月12日付け
のWeb版のThe Washington Post紙に掲載された
“British teen arrested in hacking of top U.S.

intelligence officials”という記事注1から重要な点を
挙げてみます。

●●英国で16歳の少年が、米国諜報部局高官の個人

メールのアカウントをクラックした容疑で逮捕さ

れた
●●少年は自らを“Crackas With Attitude（CWA）”の

一員と名乗っていた
●●逮捕したことをFBIと米国司法省も認めた
●● FBIと連邦検事らが数ヵ月に渡り捜査していた
●● CWAはDHS（Depar tment o f Homeland

Security：米国国土安全保障省）とFBIの勤務者

の名前、メールアドレス、電話番号を大量に

リークしていた

　今回の逮捕劇の第一報はCNN注2です。CWAに関
しては、すでに2015年10月にNew York Post紙が
コンタクトを取り、相手が米国高校生だと名乗って
いること、またその手口を報道していました注3。
また今年に入ってからも、雑誌Motherboardにイ
ンタビューが掲載されています注4。こちらはDNI

（Director of National Intelligence：アメリカ合衆国
国家情報長官）の、Verizon FiOSというサービスの
ネットアカウントをクラックしていたずらをしたと
語っています。DNIは本連載のスノーデン事件の話
題の際（本誌2014年5月号）にも説明しましたが、
米国のすべての諜報部局を取りまとめている諜報部
局の頂点です。
　しかし、仮にもCIAのトップやDNIの個人メー
ルのアカウントをクラックしているわけですから、
「高校生の自分がやりました」という言葉を鵜呑みに
できるわけもなく推移を見守っていました。
　日本ではあまり興味が持たれていないようでした
が、海外、とくに米国ではトップシークレットを扱
うクラスからの情報流出ですから、たいへんな騒ぎ
になっていました。FBIやDHSに勤務する人間へコ
ンタクトできる情報だけではなく、ソーシャル・セ
キュリティ・ナンバー（社会保障番号）も流出してい
ます。ですから、連絡先のリストが漏れたという話

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第三一回】

すずきひろのぶ
suzuki.hironobu@gmail.com

米国CIA長官のメールを盗んだ16歳の少年

注1）	 British teen arrested in hacking of top U.S. intelligence officials（February 12, 2016）　http://wpo.st/tHlD1
注2）	 First on CNN: FBI, British police nab alleged 'crackas' hacker（February 12, 2016）　http://cnn.it/1QZeUQT
注3）	 Teen says he hacked CIA director's AOL account（October 18, 2015）　http://nyp.st/1QKgc1f
注4）	 Teen Who Hacked CIA Email Is Back to Prank US Spy Chief（January 12, 2016）	 	

http://motherboard.vice.com/read/teen-who-hacked-cia-email-is-back-to-prank-us-spy-chief

http://motherboard.vice.com/read/teen-who-hacked-cia-email-is-back-to-prank-us-spy-chief
http://cnn.it/1QZeUQT
http://wpo.st/tHlD1
http://nyp.st/1QKgc1f

142 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

ではないのです。FBIでなくても一般企業のレベル
でも秘匿すべき内容を持つリストが流出しているわ
けですから、米国政府の国家安全保障上の問題だと
いっても大げさではありません。
　実際にあったかどうかは別として、内容が内容だ
けに「敵国スパイの仕業なのではないか」とか、
「ティーンエージャーのふりをするのは捜査の撹

かくらん

乱
なのではないのか」といった疑念が出てきても不思
議ではありません。
　しかし、今回、実際に英国でティーンエージャー
が逮捕されたという事実が広く報道されたことで、
過去にCWSが語っていた手口の信憑性も増したと
言えるでしょう（少なくともティーンエージャー
だったのは、本当だったわけですから）。

CIA長官のメールを盗む

ジョン・ブレナンCIA長官

　ジョン・ブレナン氏はCIA分析官と
して1980年にキャリアを開始し、一
貫して諜報（Intelligence）に携わって
きました。サウジアラビアの現地責任
者として赴任、ビル・クリントン大統
領時代には毎日諜報に関しての報告を
行う担当者（daily intelligence brie

fer）、そしてジョージ・テネット長官
時代（1996～2004年）にはCIAの主席
副長官をしていました。オバマ政権で
国家安全保障担当補佐官としてホワイ
トハウス入りして注5、2013年からCIA

長官となります注6。諜報に携わる人
物としてはエキスパート中のエキス
パートであり、名実ともに諜報の世界
のトップクラスにいる1人でしょう。
　そのような人物の個人メールアドレ

スがクラックされ、情報が盗み出されたわけですか
ら、尋常ならぬ出来事であるのは誰の目にも明らか
です。

2015年10月時点での情報

　犯人の少年（達）は、Twitterのアカウント「cracka」
（ユーザ名は@phphax）で、情報を公開しています。
当然ながら、すでにアカウントは凍結されており、
現在は見ることはできませんが、Cryptome Archive

のサイトにcrackaのツイートの痕跡をPDFにして
記録注7してありました（図1）。また、このPDFの
中には、crackaがどのようなファイルを入手し公開
していたかの記録も入っています。ジョン・ブレナ
ンCIA長官のAOL（米国の大手インターネット
サービス会社）のメールアカウントをクラックした
のがよくわかる資料となっています。
　図1ツイートを見てみると、まさにティーンエー

注5）	 North Bergen man is homeland security assistant for President Obama（December 5, 2009）	 	
http://www.northjersey.com/news/north-bergen-man-is-homeland-security-assistant-for-president-obama-1.264084

注6）	 John O. Brennan - Director, Central Intelligence Agency（March 8, 2013）		
https://www.cia.gov/about-cia/leadership/john-o-brennan.html

注7）	 https://cryptome.org/2015/10/cracka-phphax.pdf

◆◆図1　crackaのツイート

Cryptome Archiveにアーカイブされているcrackaの記録より。
これを見ると、「ちょっとこれはどうかな」と思うティーンエージャーにしか見えない
が、それもディスインフォメーション（撹乱情報）という可能性もある。今でもFBIがミ
スをしていて最後の最後でどんでん返しがくる可能性もある。

http://www.northjersey.com/news/north-bergen-man-is-homeland-security-assistant-for-president-obama-1.264084
https://www.cia.gov/about-cia/leadership/john-o-brennan.html
https://cryptome.org/2015/10/cracka-phphax.pdf

Apr. 2016 - 143

【第三一回】 米国CIA長官のメールを盗んだ16歳の少年

ジャーにしか見えません。ちなみに図1のツイート
でリンクしているのは次のURLです。

http://news.sky.com/story/1572482/teen-
brags-of-hacking-cia-directors-email

　これはcrackaの公開したリストを、ニュース記
事にしているページです。それを見せびらかして
「スノーデンは死んだ（Dead @Snowden）」とツイー
トしているわけですから、どうみても精神年齢は
ティーンエージャーです。しかし、CIA長官のメー
ルアカウントをクラッキングし、情報を盗むことが
できた人材なわけですから、このようなティーン
エージャーのふりをすればするほど、犯人のプロ
ファイリングを避けるためのカモフラージュなので
はないかと言う人がいたとしても、筆者は不思議に
思いません。
　この当時はまだ、crackaがティーンエージャーか
どうかは確実ではありませんでしたが、1つだけ確
実に言えることがありました。入手したリストを安
易に公開したということは、この情報をマネタイズ
する方法を持っていなかったか、はじめからマネタ
イズする気がなかったと考えられます。つまり、プ
ロではないということです。
　2015年10月時点で、CWAは少なくとも2つのメ
ディアにコンタクトを取っていました。1つは先ほ
ど述べたNew York Post紙、もう1つはMother

board注8というWebメディアです。
　これらの記事の要点は次のとおりです。

●●オンラインのチャットやフォーラムで知り合った

ティーンエージャーが6人集まってできたのが

CWA。そのうち、メディアにコンタクトを取っ

ている（そして「cracka」のアカウントを使ってい

る）のは、15歳の米国の高校生である
●● 2015年10月12日にブレナンCIA長官のメール

アカウントに侵入し、40通のメールに添付され

ていたドキュメントを盗み出した
●●我々は政治的な意図はないし、敵対する国の人

間でもない。ブレナンCIA長官を懲らしめること

を狙ったわけではなく、辱めるためである
●● Verizon（米国の携帯電話会社）のコールセンター

に連絡を取り、同社の顧客対応担当（live chat

department）のふりをして「顧客情報を確認する

ツールがうまく動かないので、顧客の対応をす

るために情報を確認したい」と言ってブレナン

CIA長官の個人情報を入手した
●●次にAOLに電話をかけ、入手した情報を使うこ

とで、ブレナンCIA長官の使っているアカウント

のパスワードをリセットした

　これらを実行するために、本格的な学習を必要と
する基礎知識も特別な技術も必要ありません。極端
なことを言えば、英語が流

りゅうちょう

暢に話せれば良いだけで
す。

犯行の手口を
推測してみる

どのようにターゲットを決めたか

　ここで最もクリティカルなのは、Verizonから顧
客情報を抜き出したことです。
　まず、なぜVerizonに狙いを定めたのかというこ
とを考えてみます。Verizon（正式名称はVerizon

Wireless）は、米国最大手のモバイル電話会社です。
米国で全米をカバーしているモバイル電話会社は、
Verizon Wireless、AT&T Mobility、T-Mobile US、
Sprint Corporationの4社です。Verizon Wireless、
AT&T Mobilityが2強で、それ以外のT-Mobile US

はドイツの会社であるT-Mobile International AG

の傘下で、Sprint Corporationはソフトバンクの傘
下です。米国の政府要人が使っているのは、米国資
本の会社であることはほぼ間違いないでしょうか
ら、VerizonかAT&Tかの2分の1の確率でヒット
します。まず、Verizonに問い合わせることになる
でしょう。
　末端の販売店や顧客対応担当からかかってくるト

注8）	 Teen Hackers: A '5-Year-Old' Could Have Hacked into CIA Director's Emails（October 19, 2015）	 	
https://motherboard.vice.com/read/teen-hackers-a-5-year-old-could-have-hacked-into-cia-directors-emails

https://motherboard.vice.com/read/teen-hackers-a-5-year-old-could-have-hacked-into-cia-directors-emails
http://news.sky.com/story/1572482/teenbrags-of-hacking-cia-directors-email

144 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

して、オペレータが迅速に大量に問い合わせをこな
すことが、評価の基準であることがよくわかります。
　ブレナンCIA長官は政府高官だけあって広々と
した郊外の住宅地に住んでいるので、近所に同姓同
名（さらにミドルネームも同じの）John O. Brennan

という人が偶然に住んでいるとは思えません。オペ
レータが名前と住所（あるいは郵便番号）を入力した
時点でデータベースの情報が画面に現れるでしょ
う。あとは効率のため、自分の成績のために、ソー
シャル・セキュリティ・ナンバーという重要な個人
情報であっても、オペレータは問われれば躊

ちゅうちょ

躇なく
表示されている情報を答えるでしょう。
　Verizonのコールセンターがインドにあったとし
て、さらにそこのオペレータが受け答えしたとし
て、John O. Brennanなる人物が何者なのか、気が
つくとしたらそれは奇跡に近いと思います。もしか
すると、これはインドに限らず、どの米国国内のオ
ペレータでも同じかもしれません。
　余談になりますが、現状のEUデータ保護規則で
は、EU域内から「十分な保護措置」を備えていない
国や地域に、EU内の個人データを移転するのは違
法となっています。現在、EUから認定を受けてい
る国は11ヵ国・地域です。2015年末においては日
本も米国も認定されていません。EUとUSの間では
双方の合意の新しいフレームワークを作り、その範
囲でプライバシー情報の移転を許すという方向にな
るようです。日本政府とEU間に関して具体的にど
う進んでいるかは調べたのですが、見つけたのは調
査やかけ声的なものばかりで、具体的なものは見つ
けられませんでした。

AOLのアカウント

　そもそもVerizonに問い合わせたのは、AOLのパ
スワード・リセットの際に、ソーシャル・セキュリ
ティ・ナンバーが必要なためでした。ここから先は、
すでに必要なものが手に入っているので、問題なく
パスワードをリセットできます。
　2015年10月12日（月）にパスワードをリセットし

ラブルシューティング窓口（コールセンター）につい
ては、一般に公開されていないといっても国家安全
保障レベルの秘密の電話番号というわけではありま
せん。その手のマニアの集まるフォーラムで、簡単
に知ることができるでしょう。
　では、なぜブレナンCIA長官を狙ったのか、あ
るいは狙えたのか、です。窓口に問い合わせるとき
に、どんな確認をされるかを想像してみました。通
常は名前、住所、年齢、そして電話番号だと思いま
す。ですが、データベースから検索するには、最低
限の情報として名前と郵便番号あれば検索できま
す。ここには情報は載せませんが、実はブレナン
CIA長官の自宅の住所はすでに知られています。で
すので、本人が住んでいるかどうかは別として、電
話登録しているであろう公式の住所は今や誰でも知
ることができます。

Verizonコールセンター

　次に、オペレータの作業を考えてみます。効率を
考えた検索システムでは、名前、郵便番号／住所、
年齢、電話番号を入れていくことで次々に絞り込ん
でいって、1人に絞れた段階で終了させ、余計な入
力をさせることはないでしょう。
　ここからは筆者の想像なのですが、この電話対応
をしていたコールセンターは、米国内ではなく国外
にあった可能性があります。実際に、American

Express、Dellといった米国会社はコールセンター
をインドにアウトソーシングしていますし、
Verizonも同様です注9。
　インドのコールセンターがどのようなものか、日
本人には、いやインドのコールセンターで働いてい
る人以外には、想像がつかないと思います。ですが、
非常にわかりやすい参考になるものがあります。映
画「スラムドッグ$ミリオネア」（2008年）です。
　この映画の中でも、英国女性が英国でかけた電話
がインドのコールセンターにまわされています。顧
客の個人情報がインドに持ち出されて利用されてい
ることが、よくわかるような演出をしています。そ

注9）	 The Truth Behind Indian Call Centers	 	
http://www.marieclaire.com/culture/news/a2961/outsourcing-indian-call-centers/

http://www.marieclaire.com/culture/news/a2961/outsourcing-indian-call-centers/

Apr. 2016 - 145

【第三一回】 米国CIA長官のメールを盗んだ16歳の少年

て侵入、そして金曜日（10月16日）に使えなくなっ
たとありますから、最低でも12～15日の4日間は
ログインできたということです。個人アカウントが
クラックされての4日間は十分に長い時間です。
　たぶんメールに添付された資料は、zipされ暗号化
されていたと思います。しかし、これもまたよく見
かける風景ですが、次のメールでパスワードを送る
という手順だったのではないかと考えるほうがいい
でしょう。一般的なメールサービスでしょうから、
侵入者の振る舞いによる異常検知といった特殊なセ
キュリティもないでしょうし、そうなればあとは取
られ放題です。

■クリントン元国務長官の問題
　これより約半年前の2015年3月に、クリントン
元国務長官が任期中（2009～2013年）に個人の電子
メールアカウントを使い、公務のメールをやりとり
していたことが発覚し、大きな問題になりました。
この問題には大きく2つの問題がからんでいます。
　プライバシーや国家安全保障に関して以外、米国
政府の文書は国民が所有するもので、一定の期間が
過ぎれば公開されます。電子メールも例外ではな
く、政府のメールシステムでやりとりされるもの
は、すべてがアーカイブされ保管されています。
　もう1つはやはりセキュリティの問題です。メー
ルはクリントンの個人事務所で管理されていたそう
ですが、上級の技術者がついていたとしても、米国
政府の専門部局が責任をもって管理するのはミリタ
リークラスですから、民生品とは一段違うレベルで
管理されます。

CIA長官と
バレルセオリー

　CIA長官が政府で使っているメールシステムの
安全性に関して疑問をはさむつもりはありません。
ですが、現実には民生用のメール環境であるAOL

を使い、そこから情報が漏れ出しているわけです。
　バレルセオリーとは、樽を作っている木の板の一
番低いところまでしか水がたまらないという事象
を、セキュリティに当てはめて、「いくら部分的に

セキュリティレベルを高度にしても、またお金をか
けたとしても、最もセキュリティレベルの低い部分
以上のセキュリティは望めない」とする考え方です。
まさに今回のケースがこれに当てはまるわけです。
　また、最も弱かった部分はどこかというと、コン
ピュータの技術などまったく関係ない、電話で応対
するオペレータです。システムの中で最も脆弱なの
は人間であるということの典型例です。これが素人
のおじさんのメモ帳程度なら笑い話になるのです
が、CIAに25年間勤務して、のちにCIA長官になっ
たという諜報のエキスパート中のエキスパートが
ターゲットになり、まんまとメールを盗まれ、そこ
にあった情報が盗まれたのです。
　今回AOLのパスワードのリセットでソーシャル・
セキュリティ・ナンバー使われていたように、盗ま
れた個人情報のリストの中にはソーシャル・セキュ
リティ・ナンバーが入っているわけですから、それ
らを使って2次、3次の被害が出てくる可能性も大き
いでしょう。
　CWAは、DNIであるジェームス・クラッパー氏
が使っているVerizon FiOSという総合ネットサー
ビスのアカウントをクラックし、家の電話にかかる
通話をすべてFree Palestine Movementの事務局に
転送するという設定もしました。Verizonですので、
たぶん同じような問題があって、似たような手口で
突破したのでしょう。クラック自体はDNIオフィ
スの広報官が認めています。また、妻であるスーザ
ンさんの持つYahoo!のメールアカウントも同様に
クラックされています。ただし、アカウントが使わ
れていなかったのか、こちらからはメールなどの流
出はないようです。
　筆者は「アメリカだから」や「アメリカですら」なの
ではなく、「アメリカでも」だと思います。どんな状
況でもバレルセオリーが適用できると思います。
　どんなに高度な技能を持つセキュリティ・エンジ
ニアを投入しても、どんなに高価なセキュリティ機
材を導入しても、全体を見回してバランスが悪いと
きには、そこが穴となってしまうことがよくわかる
事例かと思います。そこが情報セキュリティの一筋
縄ではいかない難しいところなのです。s

146 - Software Design

　本連載も今回から2年目に突入します。今回
は、新しいSphinxの使い方の1つである、Mark

down記法を使ったドキュメントの書き方を紹介
します。
　最近では、多くのシーンでMarkdown記法を
見かけるようになりました。GitHubが公式の記
法として採用し、日本でも、はてなブログ注1や
Qiita注2がMarkdown記法を採用しています。こ
のように、「ドキュメントを書くと言えばMark

down」という世の中の流れもあり、ドキュメン

注1） http://hatenablog.com/

注2） http://qiita.com/

Sphinxは
Markdownも使える

テーションツールがMarkdown記法に対応して
いるのは、必須と言えるかもしれません。
　今回は、これからSphinxをはじめる方も試し
やすいように、Sphinxでできることや、Sphinx

のインストール手順にも、あらためて触れてい
きたいと思います。

　SphinxはPythonで作成されたドキュメン
テーションジェネレータで、1つのドキュメン
トソースから、HTMLやPDFなどの複数の
フォーマットのドキュメントを生成できます。
Sphinx拡張（プラグイン）によって、出力フォー
マットの追加、HTMLテーマの追加、拡張記法

Sphinxでできること

Sphinxで始める
 ドキュメント作成術

MarkdownではじめるSphinx第13回

清水川 貴之 SHIMIZUKAWA Takayuki　 Twitter @shimizukawa

Sphinxで始める
 ドキュメント作成術

Sphinxを使っているPython以外のプロジェクト
　SphinxはPythonのドキュメントを書くために
生まれてきたツールですが、さまざまな要望をも
とに改良が重ねられ、汎用的に使えるようになっ
ています。Pythonで作成されているツールのド

キュメントはSphinxで作成されたものが多く見ら
れますが、Pythonとは関係ないところでも利用さ
れています（表A）。

COLUMN

ソフトウェア／サービス URL
Chef https://github.com/chef/chef-web-docs
Symfony https://github.com/symfony/symfony-docs
CakePHP https://github.com/cakephp/docs
Varnish https://github.com/varnish/Varnish-Cache/tree/master/doc/sphinx
OpenCV http://docs.opencv.org/3.0-last-rst/
MathJax https://github.com/mathjax/MathJax-docs
Selenium https://github.com/SeleniumHQ/selenium/tree/master/py/docs

 ▼表A　Sphinxで作成されているドキュメント（Python以外）

http://hatenablog.com/
https://qiita.com/
https://github.com/chef/chef-web-docs
https://github.com/cakephp/docs
https://github.com/symfony/symfony-docs
https://github.com/varnish/Varnish-Cache/tree/master/doc/sphinx
http://docs.opencv.org/3.0-last-rst/
https://github.com/SeleniumHQ/selenium/tree/master/py/docs
https://github.com/mathjax/MathJax-docs

146 - Software Design Apr. 2016 - 147

の追加などが行えます。Sphinx-1.3からは拡張
子別のパーサーを指定できるようになりました。
これによって、Markdown記法のソースも読み
込めるようになりました。

　Sphinxを使うには、Python-2.6以上が必要で
す。Sphinxは安定版の最新である1.3.6をイン
ストールするのが良いでしょう。ここではイン
ストール手順を簡単に紹介します注3。

　Pythonがインストールされていない環境の場
合、まず初めにPythonをインストールして、pip

コマンドを使えるようにしてください。Python-

2.7.9以降であればPythonのインストーラにpip

が含まれるため、新規インストールする場合は
Python-2.7.9以降をお勧めします。
　Sphinxのインストールにはpipコマンドを利
用します。また、SphinxがMarkdownドキュメ
ントを読み込めるようにするため、サードパー
ティ製Markdownパーサーのrecommonmark注4

も同時にインストールします。コマンドは次の

注3） 日本のSphinxユーザ会では、インストール手順を詳しく紹
介しています。　http://sphinx-users.jp/gettingstarted/

注4） http://recommonmark.readthedocs.org/

Sphinxのインストールと
Markdownを使う設定

ように実行します。

Sphinxプロジェクトの作成

　Sphinxでドキュメントを作成するには、まず
「Sphinxプロジェクト」を作ります。そのための
コマンドがsphinx-quickstartです。sphinx-

quickstartの実行は、コマンドラインで行いま
す。Windowsの場合はコマンドプロンプト、Mac

OS XやLinuxの場合は端末エミュレータ（ター
ミナルなど）を起動させます。sphinx-quickstart

を実行すると、Sphinxプロジェクトを構成する
基本的なファイルやディレクトリが生成されま
す（図1）。
　Sphinxプロジェクトは、sphinx-quickstartの
引数で指定されたディレクトリに図2の構造で
生成されます。

Markdownを使う設定

　Markdownを使うには、Sphinxプロジェクト
の設定ファイルであるconf.pyをエディタで開い
て、source_suffixの行をリスト1のように書
き換えてください。
　この設定により、拡張子が「.md」のファイルは

$ pip install sphinx recommonmark

MarkdownではじめるSphinx 第13回

 ▼図2　sphinx-quickstartで生成されるファイルとディレクトリ

project_dir/
 _build/ ……ビルドした結果の出力先
 _static/ ……ロゴや cssなどを格納
 _templates/ ……カスタム HTMLテンプレートを格納
 conf.py ……Sphinxプロジェクトの設定ファイル
 index.rst ……デフォルトのトップページ
 make.bat ……Windows用 makeコマンド
 Makefile ……Linux/Mac用 Makefile

$ sphinx-quickstart -m -q -p project_name -a kawamoto -v 1.0 project_dir
Creating file project_dir/conf.py.
Creating file project_dir/index.rst.
Creating file project_dir/Makefile. ディレクトリを指定
Creating file project_dir/make.bat.

Finished: An initial directory structure has been created.
 （... 以下略 ...）

 ▼図1　sphinx-quickstartの実行例

 conf.py
source_suffix = '.rst' ←もとの設定をコメント化
source_suffix=['.rst','.md'] ←この設定を追加
source_parsers={ ←source_parsersの設定も追加
 '.md': 'recommonmark.parser.CommonMarkParser'
}

 ▼リスト1　Markdownを読み込む設定

http://sphinx-users.jp/gettingstarted/
http://recommonmark.readthedocs.org/

148 - Software Design

recommonmarkパーサーで読み込まれるように
なります。

　それでは、Markdown記法を使ってドキュメ
ントを書いてみましょう。ここでは本連載第2

回（本誌2015年5月号）でも利用した議事録のサ
ンプルをMarkdown記法で書きなおしたものを
利用します。リスト2の内容をSphinxプロジェ
クトのディレクトリに「sample.md」というファ
イル名で保存します。
　このサンプルでは画像の埋め込みを行ってい
ます。「sphinx-flow.png」というファイル名で画

MarkdownでSphinx
ドキュメントを書こう

像を用意して、sample.mdと同じディレクトリ
に置いてください。
　次に、このsample.mdをトップページからリン
クするために、index.rstを開いて.. toctree::
と書かれている部分に、sampleという行を次の
ように追加します。

　この.. toctree::という記述はドキュメン
トの構造を定義します。ここに先ほど作成した
ファイル名（拡張子を除く）を加えることで、議
事録をドキュメントの一部として組み込むこと
ができます。別のファイルを新たに作成した場
合は、ここにファイル名を並べていきます。
　これで変換の準備が整いました。make html
コマンドを実行してHTMLを生成してみましょ
う（図3）。

 index.rst
.. toctree::
 :maxdepth: 2

 sample

Sphinxで始める
 ドキュメント作成術

Sphinxサイト ミーティング 6/30
===============================
* 日時: 2000/06/30 10:00 - 12:00
* 参加者: shimizukawa, tk0miya, usaturn, r_rudi

進捗状況について

まず進捗状況の共有を行いました。
前回ミーティング [Sphinxサイト ミーティング 5/13](meeting-0513.html)
からの進捗確認。

* サイト概要: 未着手
* Sphinxの紹介: 大まかに完了。 *肉付けと見直しが必要*
* インストールページ: **完了**

<!--
公式ドキュメント翻訳については省略
-->

検討課題

1. Sphinxの紹介で、以下の絵のような、Sphinxの全体像を
 表すイメージ図が必要

 ![sphinx-flow.png](sphinx-flow.png "入力から出力までの全体像、名称")

2. [sphinx-doc.org] の紹介とリンクを追加しよう

3. [進捗状況について](#進捗状況について) で確認したような進捗を自動的に
 確認する方法

議事録に補足があればbitbucketの
[ここ](https://bitbucket.org/user/path) でコメントを
付けてください。

[sphinx-doc.org]: http://sphinx-doc.org/

 ▼リスト2　sample.md

148 - Software Design Apr. 2016 - 149

　生成されたHTMLは「_build/html/」ディレク
トリ以下に出力されます。「_build/html/index.

html」をブラウザで開いて、閲覧してみてくださ
い（図4）。 　オリジナルのMarkdown注5はJohn Gruber氏

が開発しました。Markdownは、
HTMLマークアップを覚えなくて
も、読み書きしやすいテキストベー
スのシンプルな記法からHTML文
書を簡単に生成できるようにする
ために作られました。HTMLは文
章に対して「マークアップ」して装
飾や意味を「書き加えていく」こと
で、デザインや構造などを表現し
ます。これに対して、Markdownは
装飾や意味を表す記述をそぎ落と
して、できるだけ簡単な記述で書
きつつ、同様の結果を得られるよ
うになっています。
　このように、オリジナルのMark

downはシンプルな記法を目指して
作られました。その後、多くの派
生Markdown記法が生まれ、テー

ブル記法などオリジナルでは
提供されていない記法をそれ
ぞれ独自に追加しました。有
名なのはGitHub Flavored

Markdown（GFM）注6やPHP

Markdown Extra注 7などで
しょう。そして、Markdown

の標準化と機能強化を目指す
CommonMark 注 8の策定が
2014年に始まりました。現在
のところ、CommonMark記法
はオリジナルの記法よりも表

注5） http://daringfireball.net/pro
jects/markdown/syntax

注6） https://help.github.com/arti
c les /g i thub-f lavored-mark
down/

注7） https://michelf.ca/projects/php-
markdown/extra/

注8） http://spec.commonmark.org/

Sphinxで使える
Markdown記法

MarkdownではじめるSphinx 第13回

 ▼図4　Markdownから生成したHTML

$ make html
Running Sphinx v1.3.6
making output directory...
loading pickled environment... not yet created
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 2 source files that are out of date
updating environment: 2 added, 0 changed, 0 removed
reading sources... [50%] index
reading sources... [100%] sample

looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [50%] index
writing output... [100%] sample

generating indices... genindex
writing additional pages... search
copying static files... done
copying extra files... done
dumping search index in English (code: en) ... done
dumping object inventory... done
build succeeded.

Build finished. The HTML pages are in _build/html.

 ▼図3　make htmlを実行

http://daringfireball.net/projects/markdown/syntax
https://michelf.ca/projects/php-markdown/extra/
https://help.github.com/articles/github-flavored-markdown/
http://spec.commonmark.org/

150 - Software Design

現力はあるものの、テーブル記法はまだサポー
トされていません。これからの議論で仕様が標
準化されていくことが期待されています。表1

は、マークアップによって表現できることの差
異についてまとめたものです。
　本記事ではrecommonmarkパーサーを使用し
ています。このパーサーは、名前のとおりCommon

Mark記法をサポートしています。

　すでにMarkdownでドキュメントを書いてい
る人は、Sphinxを使ってビルドすることによっ
て、HTMLやPDFなどの各種フォーマットへ
の変換注9や、gettextを利用した他言語への翻訳
出力、といったSphinxの機能をすぐに利用でき
ます。また、MarkdownとreStructuredText（以
下、reST）のどちらも書いたことがない人にとっ

注9） 前回紹介したmake epubを実行すれば「_build/epub/」ディ
レクトリにEPUBファイルが生成されます。

SphinxでMarkdown
記法を利用するメリット

ては、Markdownは記法が少なく覚えやすいの
で、最初のハードルが低いというメリットがあ
ります。
　これまでのSphinxはreSTでしか記述できな
かったため、Sphinxを使ううえでのハードルと
なっていました。Markdownは最初のハードル
が低く、よく知られているため、Markdown記
法から始めることでSphinxを導入しやすくなる
でしょう。

ではreST記法のメリットは？

　reSTは、1つのドキュメントソースをさまざ
まな出力形式に変換することを目標に作られて
います。このため、表現の幅はとても広く、そ
のぶん数多くの記法が用意されています。これ
までの連載で紹介してきた範囲だけでも、目次
記法、ページ間の相互参照、テーブル記法、図
表への自動採番、図表番号の参照、用語集、索
引の自動生成、Graphvizによる図の描画などが
あります。ほかにも外部ファイルの埋め込みや

Sphinxで始める
 ドキュメント作成術

表現 CommonMark GFM reStructuredText
強調、斜体、インラインリテラル ○ ○ ○
絵文字、チェックボックス、打ち消し線 × ○ ×
箇条書き ○ ○ ○
定義リスト、フィールドリスト、オプ
ションリスト × × ○

引用ブロック ○ ○ ○
画像表示 ○ ○ ○
URLリンク △（専用記法が必要） ○（直接記述も可能） ○（直接記述も可能）
ページ内リンク △ △ ○
ページ内目次 × × ○
相互参照 × × ○
テーブル表記 × ○ ○
脚注 × × ○
番号付き参照 × × ○

HTMLタグ ○（直接記述） ○（直接記述） ○（rawディレクティブ
で可能）

コメントアウト △（HTMLのコメントア
ウトを使う）

△（HTMLのコメントア
ウトを使う） ○

外部ファイル include × × ○（include、
literalinclude）

role、ディレクティブによる記法拡張 × × ○
テキストからの図生成 × × ○（Sphinx拡張で可能）

 ▼表1　マークアップごとの記法の違い

150 - Software Design Apr. 2016 - 151

脚注など、多くの記法があります。
　また、reSTプラグインによって記法を拡張で
きます。Sphinxはこのしくみを使って、オリジ
ナルのreSTでは提供されていないいくつかの
記法を追加しています。前述の.. toctree::
もそのうちの1つで、複数あるドキュメントソー
スファイルを1つのツリー構造に連結すること
で、ドキュメントの論理構造を決定します。
　ほかにも有志が作成したSphinx拡張を利用す
ることで、さまざまな機能が使えるようになり
ます。たとえば、「sphinxcontrib-cacoo」や「sphinx

contrib-visio」などによる外部から
の図の埋め込み、「sphinxcontrib-

seqdiag」の専用記法によるシーケ
ンス図の描画（図5）などが挙げられ
ます。
　こういった機能を利用するには、
Markdownではなく、reSTで記述
する必要があります。そこで、ま
ずはCommonMark記法でドキュメ
ントを書いていき、それ以上の表
現力が必要になった場合には、reST

で記述することを検討してみてください。

　次回は、Sphinxの国際化機能について紹介し
ます。gettextを利用した他言語への翻訳出力は、
ドキュメントソースがreSTでもMarkdownでも
利用できます。英語ドキュメントの日本語への
翻訳などを検討している方は、ぜひご参照くだ
さい。｢

次回予告

MarkdownではじめるSphinx 第13回

 ▼図5　sphinxcontrib-seqdiagの出力結果

recommonmarkの拡張記法
　recommonmarkは独自の拡張記法を持っていま
す。これを利用すれば、Markdownドキュメント
の中に reST記法でディレクティブを記述したり、
数式を記述したりといったことも可能です。ただ
し、拡張記法は「新しいMarkdownの派生」なので、

ほかのCommonMarkと互換性がなくなることに
注意してください。使い方については recommon
markのドキュメント注Aを参照してください。

COLUMN

注A） http://recommonmark.readthedocs.org/

Sphinx-1.4 alpha1リリース
　Sphinx開発チームは、Sphinx-1.4のalpha1をリ
リースしました。本誌が発売されているころには
1.4の正式版もリリースされている予定です。
　最新のSphinxでは、多くの機能が追加されてい
ます。たとえば、用語集でのカテゴリ指定、EPUB3
ビルダー、日本語検索に Janomeを選択可能、

Sphinx拡張に sphinx.ext.githubpagesと sphinx.
ext.autosectionlabelを追加など、35個の機能が追
加されました。
　使ってみて感想や不具合などがありましたら、
ぜひメーリングリストまでご連絡ください。よろ
しくお願いします。

COLUMN

http://recommonmark.readthedocs.org/

152 - Software Design

・memcachedのキャッシュヒット率
・loadavg5の過去と現在の値の比較
・fluentdの各プラグインの最大キュー長

　これらの値は、投稿された複数のメトリック
を対象に四則演算を行ったり、読み込みの対象
時間帯をずらしたり、複数のメトリック値から
最大値を取得したりすることで計算できます。
Mackerelではこれら計算を柔軟に行うための
関数を提供し、式に組み込めるようにしています。

式の仕様と利用例

　式によるグラフは、「https://mackerel.io/

orgs/<オーガニゼーション名>/advanced-graph

?query=<メトリック>&unit=<単位>&title=

<タイトル>」のようなURLで利用できます。
式は<メトリック>部分に書いていきます。ま
た titleとunitのパラメータは省略できます。
　たとえば、memcachedのキャッシュヒット
率のグラフはリスト1のURLとなります。式
の部分を取り出すとリスト2のようになります。

Mackerelではじめる
サーバ管理

Mackerelの肝となる機能「メトリックのグラフ化」を発展させ、「式」を組んで値を計
算し、グラフ化する方法を解説します。過去のグラフを同時に表示して変化を見たり、
差分グラフを作って変化量を把握したりと、監視対象に何が起きているか、より詳
しい分析が可能になります。

Writer 田中 慎司 （たなか しんじ） ㈱はてな
Twitter @stanaka

メトリックを
式で計算する

　Mackerel注1では、さまざまなメトリックを
投稿し、それらをグラフとして可視化できます。
今回は、単純に投稿したものを表示するだけで
はなく、式を利用して投稿したメトリックをさ
まざまに加工してグラフ化する方法を紹介しま
す注2。
　サーバの負荷の可視化を行っていると、初期
のころはCPU使用率やMySQLのクエリ数な
どの値を直接投稿してグラフ化するだけで一定
の効果は得られるのですが、徐々にそれらの値
を組み合わせて、一歩進んだ分析・可視化を行
いたくなってきます。Mackerelではそのため
の機能として、式を定義することでメトリック
の値を計算し、グラフとして可視化する機能を
備えています。
　式を利用することで、たとえば次のような値
をグラフ化できるようになります。

https://mackerel.io/orgs/<オーガニゼーション名>/advanced-graph?query=divide(host(%272tf8ZhkzGfu%27,ｭ
%27custom.memcached.hitmiss.get_hits%27),host(%272tf8ZhkzGfu%27,%27custom.memcached.cmd.cmd_ｭ
get%27))&unit=&title=memcached

 ▼リスト1　memcachedのキャッシュヒット率のグラフのURL

第14回 式を使って柔軟なグラフを書こう

注1） URL https://mackerel.io
注2） この式を利用したグラフ描画は、現在は実験的機能として提供されています。

URL http://help-ja.mackerel.io/entry/advanced/experimental-features-config

http://help-ja.mackerel.io/entry/advanced/experimental-features-config
https://mackerel.io/ja/

152 - Software Design Apr. 2016 - 153

この式は、host関数で取得した2つのメトリッ
クに対してdivide関数で除算をしています。
host関数は第一引数で指定した IDのホストか
ら第二引数で指定したメトリックを取得します。
　ここでは、「2tf8ZhkzGfu」というIDのホスト
から、custom.memcached.hitmiss.get_hitsとcus
tom.memcached.cmd.cmd_getのメトリックを取得
しています。前者のメトリックはmemcachedの
GET命令実行時のヒット数で、後者はGET命
令の実行数になります。前者を後者で割ること
でヒット率の計算ができますので、その除算を
divide関数で実行しています。この式をそのま
まqueryパラメータに埋め込むことでグラフを描
画させることができます（図1）。
　次に、この系列に名前を付けるためにalias
関数を利用して「hitrate」とい
う名前を付けます（リスト3）。
こうすることで、マウスオーバー
した際のラベルを適切なものに
変更できます（図2）。

　執筆時点（2016年2月）では、
式を組み立てるためのUIはま
だサポートできておらず、自力
で適切なqueryパラメータを組
み立てる必要があります。
　ただ、この試行錯誤を人手

で行うのはかなり煩雑であるため、簡単なヘル
パーページ注3が公開されています。
　ヘルパーページを利用すると、テキストエリ
ア上でインデントさせつつ式を構築できます（図

3）。式を書き終えて［submit］ボタンを押すと、
下に iframeで埋め込まれたグラフが表示され
ます。式が正しくない場合は空のグラフになっ
てしまいますので、適切に修正してください注4。

divide(
 host('2tf8ZhkzGfu', 'custom.memcached.hitmiss.get_hits'),
 host('2tf8ZhkzGfu', 'custom.memcached.cmd.cmd_get')
)

 ▼リスト2　リスト1の「式」部分

 ▼図1　キャッシュヒット率の計算 ▼図2　ラベルを付与

 ▼図3　式組み立てヘルパー

alias(
 divide(
 host('2tf8ZhkzGfu', 'custom.memcached.hitmiss.get_hits'),
 host('2tf8ZhkzGfu', 'custom.memcached.cmd.cmd_get')
),
 'hitrate'
)

 ▼リスト3　alias関数で名前を付ける
式の組み立て方

第14 回
式を使って柔軟なグラフを書こう

注3） URL https://gist.github.com/stanaka/eae027169de6a35dd76a
注4） このあたりはまだまだ不親切ですので、今後改善していきます。

https://gist.github.com/stanaka/eae027169de6a35dd76a

154 - Software Design

 Mackerelではじめるサーバ管理

　前述の利用例ではdivideとhostを紹介しま
したが、ほかにもさまざまな関数が使用できます。
使用可能な関数の一覧を表1に示します。すべ
ての関数はメトリック型（metrics）を返します。
また関数の引数の要素は表2のとおりです。

具体例：
過去の値との比較

　式の利用例として、あるメトリックを過去の

利用可能な関数 ものと比較する方法を紹介します。timeShift
関数を利用することでメトリックの過去の値を
取得できます。
　たとえば1週間前の値との比較を行い、同じ
曜日でのメトリックの挙動の差分を見る、とい
うことができます注5。具体的に1週間前の値と
比較する場合はリスト 4のようにします。
roleSlots関数は第一引数で指定されたロール
に所属するホストの、第二引数で指定されたメ
トリックを表示します。次に、timeShift関数
で第一引数に先ほどのメトリックを指定し、第

関数 説明 例

host(hostId, metricName) ホストメトリックを返す host('22CXRB3pZmu', 'memory.*')

service(serviceName, metricName) サービスメトリックを返す service('Blog', 'access_count')

role(roleFullname, metricName) ロールに現在所属しているホストのメトリック
を返す

 role('Blog:db', 'memory.*')

roleSlots(roleFullname, metricName)
ロールのメトリックを返す。過去にロールに
所属していたホストから送られた一部のメト
リック※も取得できる

 roleSlots('Blog:db', 'loadavg5')

avg(metrics) 各時刻ごとに引数のメトリックの平均値を
返す

 avg(group(host('22CXRB3pZmu','loadavg5'),ｭ
 host('22CXRB3pZmu','loadavg5')))

max(metrics) 各時刻ごとに引数のメトリックの最大値を
返す

 max(host('22CXRB3pZmu','custom.foo.ｭ
 jobs.*'))

min(metrics) 各時刻ごとに引数のメトリックの最小値を
返す

 min(host('22CXRB3pZmu','custom.foo.ｭ
 jobs.*'))

sum(metrics) 各時刻ごとに引数のメトリックの合計を返す
 sum(host('22CXRB3pZmu','custom.foo.ｭ
 jobs.*'))

product(metrics) 各時刻ごとに引数のメトリックを掛け合わせ
た値を返す

 product(group(service('Blog:db','foo.ｭ
 bar'), service('Blog:db','foo.baz')))

diff(metrics, metrics) 各時刻ごとに1つめの引数のメトリックから
2つめのメトリックを引いた値を返す

 diff(service('Blog:db','foo.bar'), ｭ
 service('Blog:db','foo.baz'))

divide(metrics, metrics) 各時刻ごとに1つめの引数のメトリックを2
つめの引数のメトリックで割った値を返す

 divide(service('Blog:db','foo.bar'), ｭ
 service('Blog:db','foo.baz'))

scale(metrics, factor) 定数倍したメトリックを返す scale(service('Blog:db','foo.bar'), 10.0)

timeShift(metrics, duration) 指定した期間分時刻をずらしたメトリックを
返す

 timeShift(service('Blog:db','foo.bar'),ｭ
 '1d')

movingAverage(metrics, duration) 移動平均
 movingAverage(service('Blog:db','foo.ｭ
 bar'), '1d')

group(metrics, metrics, ...) 引数のメトリック列を1つにまとめる
 group(service('Blog:db','foo.bar'), ｭ
 service('Blog:db','foo.baz'))

stack(metrics) グラフをスタック表示 stack(service('Blog:db','foo.bar'))

alias(metrics, displayName) メトリックの表示名をカスタマイズ
 alias(service('Blog:db','foo.bar'),ｭ
 'blog:db:bar')

※ loadavg5, processor_queue_length, cpu.user.percentage, cpu.iowait.percentage, cpu.system.percentage, interface.rxBytes.
delta, interface.txBytes.delta, disk.reads.delta, disk.writes.delta, memory.used, memory.cached

 ▼表1　使用可能な関数

注5） この手の比較を行う場合は、同じ曜日でも祝日のときには挙動が異なることが多いため、注意してください。

154 - Software Design Apr. 2016 - 155

二引数で遡
さかのぼ

りたい時間を指定します。そして、
avg関数によりそれらのメトリックの値の平均
を計算します。さらにalias数でメトリックの
名前を指定し、group関数でこれらのメトリッ
クをまとめて表示できるようにします（図4）。
　過去の値と重ね合わせるのではなく、差分を
計算したい場合はdiff数を利用します（リスト5）。

　今回は式を利用して、メトリック同士を計算
してグラフ化する方法を紹介しました。現在は
グラフ化までですが、近日中に計算結果を対象
に監視を行えるようにする予定です。
　式を利用することで、サーバ／インフラの挙
動がより把握しやすくなります。障害の兆候を先
取りでつかんで先回りで対処するためにも、ぜ
ひ式によるグラフ化を試してみてください。ﾟ

引数 型 説明 例

hostId string ホスト ID '22CXRB3pZmu', "22CXRB3pZmu"

metricName string メトリック名 'loadavg5'

serviceName string サービス名 'Blog'

roleFullname string サービス名とロール名を:で連結したもの 'Blog:db'

metrics metrics メトリック列 alias(host('22CXRB3pZmu', 'loadavg5'), 'L5')

displayName string 表示名 'blog max loadavg5'

duration string
整数に続けて単位を指定した期間。使用できる単
位はm（分）、h（時間）、d（日）、w（週）、mo（月）、y（年）

'5m', '1d'

factor float 係数 1.5, 200

 ▼表2　関数の引数の要素

group(
 alias(
 avg(
 timeShift(
 roleSlots('some:app','loadavg5'),
 '1w'
)
),
 'avg-lastweek'
),
 alias(
 avg(
 roleSlots('some:app','loadavg5')
),
 'avg'
)
)

 ▼リスト4　1週間前の値と比較し、グラフを重ね
　　　　 合わせる式

alias(
 diff(
 avg(
 timeShift(
 roleSlots('some:app','loadavg5'),
 '1w'
)
),
 avg(
 roleSlots('some:app','loadavg5')
)
),
 'diff'
)

 ▼リスト5　1週間前の値と比較し、差分を計算する式

 ▼図4　1週間前の値との比較

まとめ

第14 回
式を使って柔軟なグラフを書こう

156 - Software Design

OpenBSD on FreeBSD
——ステートの重要性

　FreeBSDハイパーバイザでOpenBSDを動作さ
せ、そこでOpenBSDネイティブのパケットフィル
タリング／ファイアウォール機能の最新版pf (4)を
使ってみよう、というシナリオで、ここ数回にわ
たってpf (4)の概要、マクロ、リスト、テーブル、
基本的なシンタックスなどを紹介してきました。
　pf (4)はステートテーブルにコネクションごとの
情報を保持しています。この情報を利用すること
で、たとえばすでに接続が完了したパケットでルー
ルセットを経由する必要がないものに関しては、即
座にファイアウォールを通過して通信を行うといっ
たことが可能になります。この機能によってルール
セットをシンプルに保つことが可能になるほか、パ
フォーマンスを向上させることにもつながります。
　パケットフィルタではステートの保持やステート
を加味した処理が重要になってきます。pf (4)では
ネットワーク接続の状態や進捗状況をステートテー
ブルに保持しており、この情報を使った処理が可能
です。今回はステートを中心に説明します。

keep state/
modulate state/
no state

　pf (4)のpassルールはそのルールに一致したパ
ケットに関して自動的にステートエントリを作成す
るしくみになっています。たとえば次のように、
vio0（VirtIOネットワークデバイス）を経由した外
側へのTCPパケットを許可した場合、自動的にこ
のパケットの返信パケットに関しても通行が許可さ
れるようになります。

pass out on vio0 proto tcp all

　これは次のようにkeep stateオプションを指定し
たことと同じ処理になります。

pass out on vio0 proto tcp all keep state

　このようにステートを保持することで毎回ルール
セットをチェックしにいく処理を回避できるため、
結果的に処理速度の向上につながっています。この
ステート保持を明示的に避けたいのであれば、次の
ようにno stateオプションを指定します。

pass out on vio0 proto tcp all no state

　keep stateと似たような処理をするオプションに
modulate stateがあります（リスト1）。これはkeep
stateと同じように動作しますが、適用対象がTCP

パケットだけに限定されることと、外に出て行く
TCPパケットの初期シーケンス番号（ISN；Initial

Sequence Number）がランダム化されるという特徴
があります。
　modulate stateはTCPパケットにのみ適用され
ますが、記述を簡単にする目的からリスト2のよう
にほかのプロトコルと組み合わせても記述できるよ
うになっています。リスト2のルールセットはリス

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第29回 ❖bhyveでOpenBSDファイアウォール on FreeBSDを構築（その4）

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

Apr. 2016 - 157

▶第29回◀
bhyveでOpenBSDファイアウォール on FreeBSDを構築（その4）

指定できるようにするオプション。ruleが指定さ

れている場合にはルールごとの指定、globalが指

定されている場合にはグローバルな指定となる
●● max-src-nodes number……同時にステートを作

成することができるソースIPアドレスの上限数

を指定する。source-track ruleと同時にのみ指定

できる
●● max-src-states number……ソースIPアドレスに

対して同時に作成できるステートエントリの上限

数を指定する。制限の範囲はsource-trackオプ

ションの指定に依存する
●● no state……ステートを自動的に作成しないよう

にする

※numberは任意の数値

　TCPコネクションに対してはさらに次のオプ
ションによる規制を指定することができます。

●● max-src-conn number……単一のホストにおいて

同時に3-wayハンドシェイクを完了させることが

できるTCPコネクションの上限数を指定する

（source-track ruleが有効になる。source-track

globalとは非互換）
●● max-src-conn-rate number（またはinterval）……

指定された期間において作成できる新しいコネク

ションの上限を指定する（source-track ruleが有

効になる。source-track globalとは非互換）
●● overload <table> flush……上限を超えたIPアド

レスに対してすべてのステートをフラッシュする

※intervalは任意の数値、tableは任意のテーブル名

ト3のように個別のルールセットを記述したのと同
じになります。
　modulate stateはTCPパケットに限定した指定
ですが、pf(4)では通常のステートはUDPに対して
も作成されます。UDPそのものはステートレスなプ
ロトコルであるためUDPに対してはステートは作
成されないと思われがちですが、pf(4)ではUDPに
対してステートを作成することができます。pf(4)は
ルールセットに一致した段階でステートを作成し、
タイムアウトになるまでステートを保持します。タ
イムアウトの時間もpf(4)で設定できます。

ステートオプション

　ステートはpassルールで自動的に作成されるわ
けですが、ルールにはステートに関するオプション
が指定できるようになっています。たとえばno
stateはステートを作成しないようにするというス
テートオプションの1つです。次のようなオプショ
ンが用意されています。

●● max number……ルールに対して保持できるス

テートの数の上限を指定する。作成されたステー

トが上限数に到達している場合、それ以降で

ルールに一致したパケットに対してステートは保

持されなくなる。保持しているステート数が上限

値を下回ると、以降はまたルールに一致したパ

ケットに対してステートが作成されるようになる
●● source-track rule（またはglobal）……ソースIPア

ドレスごとに作成するステートに関して上限数を

pass out on vio0 proto tcp all modulate state
pass out on vio0 proto udp all
pass out on vio0 proto icmp all

▼▼リスト3　リスト2と同じ意味の複数のルールセット

pass out on vio0 proto {tcp,udp,icmp} all modulate state

▼▼リスト2　TCP以外のプロトコルと組み合わせた記述も可能

pass out on vio0 proto tcp all modulate state

▼▼リスト1　modulate stateを指定した場合

158 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

　しくみとしてはこうなっていますが、通常 flags

を明示的に指定することはないでしょう。flags S/
SAFRのように指定することもできますが、2つ目の
引数のFRは結果的に不要ですので、S/SA（デフォル
ト）で充分ということになります。

TCP SYN flood攻撃対策

　keep stateやmodulate stateと似たような指定に
synproxy stateがあります。これはTCP SYN flood

攻撃に対する防御壁として利用できる機能です。
synproxy state指定がない場合、pf(4)はTCP接続
の最初の段階であるハンドシェイクをすべてサーバ
に対して透過的に渡します。synproxy stateを指定
するとハンドシェイク部分はpf (4)が担当するよう
になり、接続が確立した段階で処理をサーバにまで
持っていくようになります。
　TCP SYN flood攻撃を受けるとサーバ側で接続
がさばけないという事態が発生するわけですが、こ
の前段階でpf(4)がTCP SYN flood攻撃を落とす
ようになりますので、サーバをその分だけ保護する
ことにつながります。TCP SYN flood攻撃を受けて
いる場合にはいちど試してみるとよい機能です。

IPスプーフィング対策

　送信元IPアドレスを詐称してパケットを送信す
るといった攻撃を受けることがあります。pf(4)には
こうした攻撃をブロックするためのantispoofとい
うルールが用意されています。

antispoof for vio0 inet

　たとえば上記ルールは、インターフェースに割り当
てられているIPアドレスを用い、リスト5のような
ルールに展開されて使用されます。展開される内容は

　これらのオプションはたとえばリスト4のように
指定します。この指定によって、このルールに対し
て同時に作成されるノードの最大数は100個、ソー
スIPごとに同時に作成できるステートの上限数は
3個に制限されます。

TCPフラグ

　pf (4)ではTCPパケットに対してデフォルトで
flags S/SAというルールが指定されたのと同じ状態
に設定されています。flagsの最初の指定はヘッダで
指定されているTCPフラグ、2つ目の指定は指定さ
れたフラグのみをチェックするというものです。
　次の2つのルールは同じことを意味しています。

pass out on vio0 proto tcp all
pass out on vio0 proto tcp all flags S/SA

　flagsで指定できるフラグは次のとおりです。

●● F……	FIN（セッションの終了）
●● S……	SYN（セッションの開始要求）
●● R……	RST（コネクションのリセット）
●● P……	PUSH（パケットを即座に送信）
●● A……	ACK（ACKパケット）
●● U……	URG
●● E……	ECE
●●W……	CWR

　flags S/SAがデフォルトで指定された状態になっ
ているため、passのルールは基本的にセッションの
開始要求時、さらにSYNとACKが指定されたもの
のみが対象となります。セッションのスタートでも
ACKのみの場合には対象となりません。つまり、
通信の最初のパケットが一致の対象となり、一致し
たあとはステートによって処理が行われることにな
ります。

pass in on vio0 proto tcp ¥
 from any to 192.168.1.24 port = 80 ¥
 keep state ¥
 (source-track rule, max-src-states 3, max-src-nodes 100)

▼▼リスト4　オプションを指定したステート指定の例

Apr. 2016 - 159

▶第29回◀
bhyveでOpenBSDファイアウォール on FreeBSDを構築（その4）

割り当てられているIPアドレスによって変わります。
　antispoofというキーワードで自動的に展開される
ため、簡単にIPスプーフィング対策が記述できます。

オペレーティングシステム
フィルタリング

　pf (4)には、オペレーティングシステム（OS）の
TCP SYNパケットの特性に基づいてリモートホス
トのOSを判別し、フィルタの対象とする機能
（OSFP；パッシブOSフィンガープリント）を提供
しています。どのOSをフィルタリングできるかは
/etc/pf.osファイルを見るとわかります。
　または指定として記述しやすい出力がほしいな
ら、図1のようにpfctl(8)コマンドを実行してリス
ト表示させることができます。
　たとえばリスト6のように指定できます。条件に
よっては検出できなくなるほか、新しいOSは検出
できません。古いOSからのアクセスを拒否すると
いった場合に使うことになると思います。

パケットフィルタリングの基本

　これまでの記事でパケットフィルタリングの機能
の基本的な部分はほぼ網羅しました。あとはNAT

とポートフォワーディングが使えるようになると、
ファイアウォールとしての基本はおさえられます。

発展系としてポリシーフィルタリングやロードバラ
ンシング、CARPとpfsyncを使った冗長性構成など
もありますが、そこまでの話題はこの連載の範囲を
超えますので別の機会に譲ります。
　次回、NATとポートフォワーディング、ランタイ
ムオプションとルールのショートカット表記あたり
を取り上げて、OpenBSD pf(4)の説明をいったん切
り上げようと思います。s

pfctl -s osfp ¦ head
Class Version Subtype(subversion)
----- ------- -------------------
AIX
AIX 4.3
AIX 4.3 2
AIX 4.3 2-3
AIX 4.3 3
AIX 5.1
AIX 5.1-5.2
AIX 5.2
pfctl -s osfp ¦ tail
Windows NT
Windows NT 4.0
Windows Vista
Windows XP
Windows XP cisco
Windows XP RFC1323
Windows XP SP1
Windows XP SP3
Zaurus
Zaurus 3.10

▼▼図1　�OSFPで指定できるオペレーティングシステム一覧
の表示

block in on vio0 proto tcp from any os "Windows 98"
block in on vio0 proto tcp from any os "Windows ME"
block in on vio0 proto tcp from any os "Windows 2000"
block in on vio0 proto tcp from any os "Windows XP"
block in on vio0 proto tcp from any os "Cisco"
block in on vio0 proto tcp from any os "Contiki"
block in on vio0 proto tcp from any os "DOS"
block in on vio0 proto tcp from any os "FortiNet"
block in on vio0 proto tcp from any os "Linux 2.0"
block in on vio0 proto tcp from any os "Linux 2.2"
block in on vio0 proto tcp from any os "NMAP"
block in on vio0 proto tcp from any os "Novell"
block in on vio0 proto tcp from any os "SymbianOS"

▼▼リスト6　OSFP機能の使用例

block drop in on ! vio0 inet from 192.168.1.0/24 to any
block drop in inet from 192.168.1.36 to any

▼▼リスト5　展開されたantispoofルール

160 - Software Design

34 Debian Developer　やまねひでき　henrich@debian.org

Hyper-VでDebianをフルサポート
相当にするための挑戦

最近のホットトピック

デバッグ用パッケージ
“-dbgsym”の自動生成

　利用しているプログラムの動作に問題があっ
てクラッシュしたときなどに、GDB注1を使っ
てスタックトレースを追う、ということをされ
たことのある方も多いかと思います。Debian

で同様にクラッシュするソフトウェアのパッケー
ジに対してGDBを使って……とやろうとする
と、残念ながらうまくいきません。この理由は、
Debianパッケージのポリシーにより、デフォ
ルトではスタックトレースを追うのに必要なデ
バッグシンボル情報が削られるようになってい
るからです。
　ではDebian上ではどうやってデバッグを行
うかと言うと、<package>に対してデバッグシ
ンボルを含んだ別パッケージである<package>-

dbgをインストールします。これでデバッグで
きるようになるので、万事解決です……と言い
たいところなのですが、残念なことに、すべて
のパッケージにデバッグパッケージが存在して
いるわけではなかった（パッケージメンテナが
明示的にソースパッケージに記述しないと作成
されません）ので、パッケージに含まれている
プログラムをデバッグしたいときに困るという

注1） The GNU Project Debugger。CやC++などで書かれたプ
ログラムのデバッグで利用されるスタンダードなツール。

 URL https://www.gnu.org/software/gdb/

ことがままありました。
　これに対し、debhelper注2の新機能として、
特別な設定をしなくても自動でデバッグ用パッ
ケージ「<package>-dbgsym」が生成されるよう
になりました。たとえば、筆者がメンテナンス
している libxmlbirdのパッケージであれば
「libxmlbird1-dbgsym」というような名称になり
ます。
　また、これまでデバッグパッケージがデフォ
ルトでは作成されていなかった理由として、そ
のサイズの大きさからパッケージリポジトリを
圧迫する、という点が挙げられていましたが、
この問題は分離したリポジトリとミラーを使う
ことで解決するようです。dbgsymパッケージ
の取得をしたい場合はapt lineを

deb http://debug.mirrors.debian.org/ ｭ
debian-debug/ unstable-debug main

という形で追加します。この記事を書いている
段階では、ビルドされたdbgsymパッケージの
数はまだ少ないですが、徐々に充実してくるこ
とでしょう。

GitLab、
Debian公式パッケージになる

　本誌2015年12月号で取り上げたgitlabパッ
ケージですが、無事に依存関係にあるすべての

注2） Debianパッケージの作成の肝になるツール。Perlで実装
されている。

https://www.gnu.org/software/gdb/

160 - Software Design Apr. 2016 - 161

Hyper-VでDebianをフルサポート
相当にするための挑戦 34

パッケージ（300個超らしいです……）がDebian

公式パッケージとなり、unstableへアップロー
ドされました。これで別途リポジトリを追加し
なくてもgitlabが使えるようになりましたので、
興味のある方は試してみてください。

Hyper-Vと「サポート」
ディストリビューション

　現在の市場にはさまざまな仮想化プロダクト
があります（表1）が、シェアは意外なことに、
Microsoft社のHyper-Vが2012年ごろからトッ
プだそうです（おそらくWindows Serverの出
荷数も含まれるからだと思いますが）。
　Hyper-V上でLinuxがサポートされ始めたこ
ろは、ゲストOSであるLinux側でサポート用
のドライバを別途インストールする必要があり
ました。しかし今では、このドライバがLinux

カーネルのmainline（本体）にマージされ、最新
バージョンであればどのディストリビューショ
ンでも手間をかけずに利用できるようになりま
した。「Hyper-V上でDebianをとりあえず使っ
てみる」という点では、とくに不具合はありま
せん（Debianでは、Debian 7「Wheezy」からサ
ポートされています）。
　しかし、Hyper-Vの説明によると「フルサポー
トするディストリビューション」は限られてお
り、その中にはDebianはありません。よくよ
く見ていくと、サポートされるディストリビュー
ションでは「LIS（Linux Integration Services）」

というものがあり、Windows向けのHyper-V

サポート（「統合サービス」）と同様の機能を
Linux向けに提供しています。本稿執筆時点で
は、LISのバージョンは 4.0が最新ですが、
Debian用にはリリースされていません注3。LIS

の機能は表2のようになります。
　表2にある機能をフルで利用したい場合は、
カーネル組み込みのドライバと、追加のデーモ
ンパッケージが必要となるにもかかわらず、
Debian 8にはLIS 4.0で提供されているデーモ
ンが存在しないために「一部機能のみサポート」
となってしまいます。

Debianも
サポート（相当）にしたい

　ここでDebianを愛する筆者的には「サポート
外とされてしまうのは、ちょっと悔しいな」と
思いました。そして、「LISに含まれるデーモ
ン相当のパッケージを作って、Debianに放り
込めば、サポートディストリビューション相当
として取り扱われるだろう」ということで、何
とかできないかと調査を始めました。

¡	Ubuntuはサポートされているので、Ubuntu
用のLISでインストールされるパッケージの中
身をもってくれば良いだろう

¡	Ubuntuでのサポートパッケージ相当は、
Debianではなんだろう？　どうやら、Debian

 ▼表1　仮想化プロダクトと特徴

プロダクト 特徴

VMWare プロプライエタリ。x86アーキテクチャ上での仮想化のはしりであり、現在も最大の
仮想化基盤製品

KVM Red Hat社が買収したQumranet社により開発された。現在はLinuxカーネルに組み
込まれている

Xen
ケンブリッジ大学で開発が始まり、XenSource社が開発を進めた。後に Citrix
Systems社が買収したが、現在はXen ProjectがThe Linux Foundationへ寄贈され
て開発が継続されている（有名どころだとAWSもXenベース）

VirtualBox
当初はドイツの Innotek社が開発、これをSun Microsystems社が買収し、さらに
Oracle社に買収された。OSSだが一部機能はプロプライエタリ。昨今では仮想化環
境構築ツール「Vagrant」のバックエンドとして利用されることが多い

Hyper-V プロプライエタリ。Microsoft社のWindows Server製品やWindowsのProfessional
Edition以上で利用可能

注3） URL https://www.microsoft.com/en-us/download/
details.aspx?id=46842

https://www.microsoft.com/en-us/download/details.aspx?id=46842

162 - Software Design

では「linux-tools」というソースパッケージ注4

のようだ。ここで何か足りないものがある
のだろう

¡	linux-toolsパッケージをいじくって、ソース
内のtools/hvディレクトリ以下をビルドし
て、Hyper-Vサポート用の別パッケージにイ
ンストールするようにすれば良さそうだ

¡	ほかのディストリビューションパッケージ
と名称を合わせたほうがユーザにやさしい
だろうと確認して、名称は「hyperv-daemons」
に決定（Ubuntuは「hv-kvp-daemon-init」と
いう名前でわかりづらかった）

¡	CentOS/Red Hat Enterprise Linuxの該当
のパッケージにはsystemd対応が入ってい
たので、こちらを流用することにして手間
を省こう

　上記のような手順を経て、linux-toolsソース
パッケージに「hyperv-daemons」パッケージを
追加するパッチを作りました。
　パッチを作成している最中に linux-toolsパッ
ケージのバグレポートページ注5を確認したと
こ ろ、「Please include tools/hv daemons in a

binary package」というバグレポート注6が出て
いたので、そちらに対して何度か投稿を繰り返
しました（何度も投稿したのは、「まずは取りか
かっているよ」、「作業しているよ」というのを
示しておいたほうがいいな、と判断したからで
す）。
　ある程度のところで、バグの報告者に「試し
てみて」とお願いしたところ「動作しているよ」
ということだったので、さらにパッケージの修
正を加えて「新規パッケージの登録には時間が
かかるからアップロードしてほしい」とメンテ
ナに要望を送りました。

 ▼表2　Debian7/8でのLIS機能サポート比較

　　機能 Windows Serverバージョン Debian 7 Debian 8 ※1
コア部分 2012 R2、2012、2008 R2 ◎ ◎

Jumbo frames 2012 R2、2012、2008 R2 ◎ ◎
VLAN tagging and trunking 2012 R2、2012、2008 R2 ◎ ◎
Live Migration 2012 R2、2012、2008 R2 ◎ ◎

ネットワーク機能 Static IP Injection 2012 R2、2012 × ×
vRSS 2012 R2 × ×
TCP Segmentation and
Checksum Offloads 2012 R2、2012、2008 R2 × ×

VHDX resize 2012 R2 ◎ ◎

ストレージ機能 Virtual Fibre Channel 2012 R2 × ◎
Live virtual machine backup 2012 R2 × ×
TRIM support 2012 R2 × ×
Configuration of MMIO gap 2012 R2 ◎ ◎

メモリ機能 Dynamic Memory - Hot Add 2012 R2、2012 × ×
Dynamic Memory - Ballooning 2012 R2、2012 × ×

ビデオ機能 Hyper-V-specific video device 2012 R2、2012、2008 R2 × ◎
Key-Value Pair 2012 R2、2012、2008 R2 × ×

その他 Non-Maskable Interrupt 2012 R2 ◎ ◎
PAE Kernel Support ◎ ◎
File copy from host to guest 2012 R2 × ×

Generation 2 virtual Boot using UEFI 2012 R2 × ◎
machines Secure boot 2012 R2 × ※2 × ※2

※1　Debian 8.0～8.2

注5） URL http://bugs.debian.org/src:linux-tools
注6） URL https://bugs.debian.org/782761

参考　 URL https://technet.microsoft.com/en-us/library/dn614985.aspx

注4） linux-toolsのソースは linuxカーネルパッケージに含まれ
ているものと同じなのですが、Debianパッケージとして
は linuxパッケージとは分けられて、別物の linux-toolsパッ
ケージとして扱われています。通常であれば linuxパッケー
ジの一部になるはずなのですが、何らかの意図で別物に
しているようです。ややこしいですね。

※2　今のところサポート予定なし

https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=linux-tools
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=782761
https://technet.microsoft.com/en-us/library/dn614985.aspx

162 - Software Design Apr. 2016 - 163

Hyper-VでDebianをフルサポート
相当にするための挑戦 34

　こうして、「linux-toolsパッケージのリポジ
トリにコミットしたから、動作確認の報告をし
て」とメンテナからの返信をもらったのですが、
あいにく筆者の手元のマシンではHyper-Vを
動作させられるようなものがなかったため、こ
こで若干作業が滞ることになりました。
　とはいえ、悩んでいてもしかたがない、と
Debian JPのメーリングリストに協力者の募集
をしたところ、本誌のSamba記事でもお馴染
みの、たかはしもとのぶさんに検証をお願いす
ることができました。
　検証内容を添えてメンテナに返信したところ、
並行して検証目的のexperimentalリポジトリに
アップロードしてもらえ、さらにunstableリポ
ジトリを経て testingリポジトリまでたどり着
きました。
　これで、Debian 9「stretch」ではHyper-Vサ
ポートが充実した形で利用できるようになるこ
とが、ほぼ確定しました。

現在の安定版でも使えるように

　いったん testingに入った linux-toolsパッケー
ジは、Debian 8でも利用できるように jessie-

backportsリポジトリにも追加されました。
　しかし、linux-toolsのバージョンが上がった
のを機に、Debian 8ではカーネルとの不整合
が起こってbackportsのバージョンではエラー
になってしまう、と利用者からの報告がありま
した。
　これに対して、メンテナがDebian 8のバー
ジョンの linux-toolsにhyperv-daemonsを追加
する形で対応が行われました。そして2015年
12月末に、ポイントリリースの候補リポジト
リであるproposed-updatesにアップロードさ
れ、無事に8.3リリースに追加となりました。

mission (almost)
complete！

　こうして最終的に、Hyper-V対応の「hyperv-

daemons」パッケージがDebianの公式リポジト
リに追加されることとなりました。hyperv-

daemonsパッケージは現在開発中のDebian 9

「strech」のみならず、Debian 8「Jessie」でも利
用できるようになります。
　さらに、このことをBTS（Bug Tracking Sys

tem）上で情報をシェアすることで、Debianに
詳しい人だけが知っているのではなく、Micro

softが提供するHyper-V公式情報の方にも反映
するようにお願いしました注7。
　ただ、1点だけ残念なことがあります。先に
hyperv-daemons相当のパッケージが入ってい
たUbuntuからもらってきたスクリプトが、メ
ンテナから「スクリプトがbashとPythonで複
数実装があるし、Pythonもコーディング規約
に従っていない。これは受け入れられない」と
いうことで蹴られてしまい、まだ一部の機能が
使えない状況にあります。こちらについては、
別実装の提案が必要になります。

最後に

　ある企業が公式な情報として発信している事
柄を改善しよう、というのはなかなか難しく思
えます。「Microsoftが自社の仮想化環境でサポー
トしているディストリビューション」などと聞
くとなおさらそれは絶対であり、覆すことので
きない決定事項であるように思えてしまうかも
しれません。
　しかし、実際に必要な作業は些細なものだっ
たりして、OSSにうまく参加（Contribute）で
きれば変えることもできたりする、ということ
を、本稿を読むことで少しでもお伝えできたら
……と思います。
　とくにトップダウンで物事を決めない、コミュ
ニティベースのOSSであれば、「やってやる！」
という気力とほんの少しの技術力と、できる人
に素直に頼ることで、意外とエイヤッと叶って
しまうものです。恐れずにチャレンジしてみて
ください。｢

注7） Microsoftテクノロジに精通している人が、Debianにも
詳しいとは限りません。必要な情報が見つからなければ
存在しないも同然です。

164 - Software Design

Ubuntu Monthly Report

　Raspberry Pi 2に簡単な方法でXubuntuをインストールし、デスクトップPCの代わりとして使用
する方法を紹介します。

Raspberry Pi 2を普通の
デスクトップとして使用する

Ubuntu Monthly Report第72回

Ubuntu Japanese Team
あわしろいくや

　Ubuntu 14.04 LTSのRaspberry Pi 2用イメージ
は以前より配布されており、インストール自体はで
きますが、環境構築は一からする必要があり、手間
がかかります。
　Ubuntu Pi Flavour Maker注1というプロジェクト
が2015年11月に開始されました。これはUbuntu

MATEのスピンアウト企画で、Raspberry Pi 2用の
Ubuntu（おもにそのフレーバー）イメージを作成する
というプロジェクトです。このプロジェクトでは、
注1） https://ubuntu-pi-flavour-maker.org/

Ubuntu Pi Flavour Maker
で環境構築が簡単に

イメージ作成用のスクリプトと作成したイメージを
公開しています。このイメージは一通り必要な環境
構築が済んでおり、起動後OEMインストール注2の
開始と同じく使用する言語やユーザ名とパスワード
などの設定を一通り済ませればすぐに使える、とい
うお手軽さです。OEMインストールに関してはご存
じない方も多いと思いますので、Raspberry Pi 2の
ものではないもののスクリーンショットを掲示する
ことにします（図1）。
　デスクトップPCの代わりにするのであれば、無
線LANが使用できると便利です。また、プリンタか
ら印刷したいこともあるでしょう。本稿では、Rasp

berry Pi 2でそれらを行いたい場合は、どのような
ところに気をつければいいのかも紹介します。

　Raspberry Pi 2のインストールイメージ転送に
は、Ubuntuなどがインストールされた母艦PCが必
要です。Ubuntu 14.04 LTS以降がインストールされ
たPCと8GBのmicroSDカードが用意されているの
を前提としていますが、BitTorrentでイメージのダ
ウンロードができ、それをmicroSDカードに転送で
きればUbuntuでなくてもけっこうです。

注2） http://gihyo.jp/admin/serial/01/ubuntu-recipe/0001

イメージのダウンロードと
インストール

図1　OEMインストールの開始画面

https://ubuntu-pi-flavour-maker.org/
http://gihyo.jp/admin/serial/01/ubuntu-recipe/0001

164 - Software Design Apr. 2016 - 165

Raspberry Pi 2を普通のデスクトップとして使用する 第 72 回

　何はなくともイメージのダウンロード注3を行いま
す。Xubuntuのロゴをクリックするとtorrentファイ
ルがダウンロードできるため、これをTransmission

などのBitTorrentクライアントで開き、ダウンロー
ドを開始します（図2）。
　ダウンロードしたイメージは、［ディスク］（gnome-

disks）で開くと、簡単にmicroSDカードに転送でき
ます（図3）。
　イメージは4GBのmicroSDカードに合わせて作
成されているため、8GB以上のmicroSDカードだと
すべての領域を使用できません。そういった場合
は、GPartedを使用して領域を拡大するのが簡単で
すが、詳細は割愛します。

　イメージを転送したmicroSDカードをRaspberry

Pi 2に挿入し、起動します。そのあと、使用する言
語やユーザ名とパスワードなどの設定を一通り済ま
せればログインできるようになります。

　Raspberry Pi 2のメインメモリは1GBと心もとな
注3） https://ubuntu-pi-flavour-maker.org/download/

起動

最低限必要なパッケージと
使用感

いため、スワップ領域を作成します。これはとても簡
単で、dphys-swapfileというパッケージをインストー
ルし、再起動するだけです。デフォルトでは2GBの
スワップファイルが作成されますが、/etc/dphys-
swapfileを編集することによって変更できます。
　Raspberry Pi 2の初回起動時にインターネット接
続が行われていない場合、日本語の入力に必要な
パッケージがインストールされていません。［設定］-
［言語サポート］からインストールしてもいいのです
が、コマンドからインストールしたい場合は次を実
行してください。

$ sudo apt-get install $(check-language-support)

　デフォルトのリポジトリだと遅いため、ミラー
サーバに変更するのもいいでしょう。その場合は

/etc/apt/sources.listの“http://ports.ubuntu.
com/”を“http://jp.archive.ubuntu.com/ports/”に
書き換えてください。
　カーネルをアップデートしたい場合は、次のコマ
ンドを実行してください。

$ sudo rpi-update

　ここからもわかるとおり、このイメージはUbuntu

のリポジトリにあるカーネルを使用しているわけで
はありません。

図2　 インストールイメージはBitTorrentで
ダウンロードする

図3　 ディスク（gnome-disks）を使用すると簡単にイメージの転送がで
きる

https://ubuntu-pi-flavour-maker.org/download/

166 - Software Design

Ubuntu Monthly Report

　最低限必要な設定はこれだけですが、ほかにも必
要なパッケージがあればインストールしてください。
VimとかEmacsとかいろいろあるのではないかと思
います。
　ちなみに筆者は、今回この原稿の大部分を実際に
Raspberry Pi 2で執筆しています。Markdownエディ
タとしてReTextをインストールしました。詳細は
Ubuntu Weekly Recipe 第390回注4を参照いただき
たいのですが、Qt5を使用した軽快なMarkdownエ
ディタです。ファイルはGigoloというリモートファ
イルシステムをマウントするアプリケーションを使
用し、ownCloudのWebDAV機能を経由してサーバ
に直接保存しています。Raspberry Pi 2はmicroSD

カードで運用せざるを得ず、信頼性には疑問がある
のでこのようにしました。リポジトリのMozcはやや
古いため、自前でビルトした最新のMozc（非公開）に
アップデートしてはいるのですが。
　たしかに引っかかりを感じる部分はあるものの、
割に快適に執筆ができました。十分に実用的といえ
ます。

　Raspberry Pi 2で無線LANが使えれば便利です
が、筆者が知る限りでは残念ながらUSBポートに接
続しただけで即使用できるようになる無線LANアダ
プタは現在市販されておりません。過去にはあり、
筆者はいくつか所有しています。詳しくは本連載第
注4） http://gihyo.jp/admin/serial/01/ubuntu-recipe/0390

無線LANアダプタ

61回（2015年5月号）をご覧ください。
　安価で容易に入手が可能であり、かつコンパクト
でドライバの設定も簡単なものがいいという我がま
まを満たすものも探せば存在しており、今回は
Planex GW-450S注5を例にします。型番がよく似て
るGW-450D/D2注6は使用しているチップが異なる
ため、今回の内容を流用することはできません。し
かし、Planex自身がRaspberry Pi 2で使用する方法
を公開注7しています。
　インストール方法は図4のとおりです。
　まず、今回のイメージにはLinuxカーネルのヘッ
ダファイルが含まれていません。よって、別途取得
する必要があります。もちろんカーネルをアップ
デートするたびに必要であり、手間がかかります。
　GW-450S用のカーネルモジュールのソースはい
ろいろと配布されていますが、紹介したGitHubリポ
ジトリのものを使用するのが最も簡単でしょう。た
だ、これはPC用の設定になっているので一部
Makefileを書き換えています。あとはDKMSで自動
的に再コンパイルするようにしてあります。
　数日間放置してフリーズなどが起きなかったか確
認しましたが、安定して動作していたようです。

　筆者が知る限りでは、ARM用のプロプライエタリ

注5） http://www.planex.co.jp/products/gw-450s/

注6） http://www.planex.co.jp/products/gw-450d/

注7） http://www.planex.co.jp/articles/RaspberryPi_GW-450D/

プリンタ

$ sudo apt-get install git-core dkms
$ mkdir temp
$ cd temp/
$ wget https://www.niksula.hut.fi/~mhiienka/Rpi/linux-headers-rpi/linux-headers-$(uname -r)_$(uname ｭ
-r)-2_armhf.deb
$ sudo dpkg -i (ダウンロードしたdebファイル)
$ sudo apt-get -f install
$ git clone https://github.com/gnab/rtl8812au.git
$ sed -i 's/CONFIG_PLATFORM_I386_PC = y/CONFIG_PLATFORM_I386_PC = n/' rtl8812au/Makefile
$ sed -i 's/CONFIG_PLATFORM_ARM_RPI = n/CONFIG_PLATFORM_ARM_RPI = y/' rtl8812au/Makefile
$ sudo cp -r rtl8812au/ /usr/src/8812au-4.2.2
$ sudo dkms add -m 8812au -v 4.2.2
$ sudo dkms build -m 8812au -v 4.2.2
$ sudo dkms install -m 8812au -v 4.2.2

図4　無線LANアダプタをインストールする

http://www.planex.co.jp/products/gw-450s/
http://www.planex.co.jp/products/gw-450d/
http://www.planex.co.jp/articles/RaspberryPi_GW-450D/
http://gihyo.jp/admin/serial/01/ubuntu-recipe/0390

166 - Software Design Apr. 2016 - 167

Raspberry Pi 2を普通のデスクトップとして使用する 第 72 回

なバイナリドライバを配布しているプリンタメー
カーは存在しないため、Ubuntuのリポジトリにドラ
イバが存在するプリンタ、あるいはPPDを配布して
いるプリンタから選択する必要があります。レー
ザープリンタの場合はPostScriptまたはその互換プ
リンタにしておくのが無難でしょう。最近はPCLに
対応したプリンタも増えているので、そちらでもい
いです。インクジェットプリンタの場合はHPある
いはEPSONがいいでしょう。Canonのプリンタは、
ドライバの都合上Ubuntuで使う場合はレーザープ
リンタでもインクジェットプリンタでも避けるのが
無難です。
　EPSONのプリンタを使用したい場合は、事前に
“printer-driver-escpr”パッケージをインストール
しておきます。残念ながら15.10でインストールで
きる1.4.5だと非対応ですが、16.04 LTSの1.5.2だと
昨年発売された最新モデルにも対応しています。ま
た、オープンソース版のドライバは基本的な印刷機
能しかないのは注意点ですが、Raspberry Pi 2でそ
れほど凝った印刷をするとは思えないので、それほ
ど強い制限ではないでしょう。
　筆者が所有するEPSON EP-805Aではまったく
問題なく印刷できました。そればかりか、律儀にイ
ンクが少なくなっていることを告知してくれました
（図4）。

　冒頭にも書いたとおり、イメージを作成するため
のスクリプトは公開されています。どうしても
BitTorrentからイメージをダウンロードできない場
合、最新のパッケージにしたい場合、あらかじめ転
送するmicroSDカードのサイズを4GBから8GBま
たは16GBに変更したい場合などに便利です。
　もちろんイメージの作成には時間がかかります。
それなりのマシンパワーが必要ですので、Raspberry

Pi 2でセルフビルドは現実的ではありません。筆者
のあまり速くないCPUとあまり速くない回線で1時
間ほどかかりました。
　母艦となるPCにgitをインストールし、次のコマ

インストールイメージの作成

ンドを実行してビルドスクリプトを入手します。

$ git clone https://git.launchpad.net/ｭ
ubuntu-pi-flavour-maker

　URLをよくよく見ると少々驚きます。Launchpad

はいつの間にかBazaarだけではなくgitもサポート
していました。gitが使えないことでLaunchpadを敬
遠している人にはうれしいニュースです。
　ビルド方法はBUILD.mdに書かれているのでさほ
ど混乱することもないと思いますが、まずはbuild-

settings-xubuntu.shをbuild-settings.shに変更しま
す。あと変更すべきなのは“FS_SIZE”くらいのもの
でしょう。8GBのmicroSDカード用イメージにした
い場合は“8”にします。
　あとはbuild-image.shをroot権限で実行するだけ
です。やはりパッケージはports.ubuntu.comから取
得しているため、ミラーサーバに書き換えたほうが
ダウンロードは速くなります。
　作成したイメージは、デフォルトでは“$HOME/
PiFlavourMaker/（コードネーム）/”に作成されます。
｢

図4　 エプソン製のドライバなので、プリンタのステータ
スも表示できる

168 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

の統計情報を記録するといった処理もeBPFで
書くことができるようになります。
　またBPFでは、もともとパケットのフィルタ
リングを対象としていましたが、eBPFではパ
ケットフィルタリングのほかにもkprobeの
traceの選択や、通信パケットのクラス分け、
iptablesのマッチにも使うことができるように
なっています。今回はperfコマンドを使った
kprobe用のeBPFの読み込みと、tcコマンドを
使ったフローの通信パケットのクラス分け用の
eBPFについて見ていきます。

kprobeと記録と
フィルタ

　kprobeはカーネルコードの任意の場所に、デ
バッグ用のコード（probe）を動的に埋め込みデ
バッグやパフォーマンス用の情報を集めるため
のシステムです。probeを埋め込むにはperfコ
マンドを使うのが便利です（図1）。“perf probe
-L”で対象関数のコードを見ながら、埋め込め
る行を確認します。ここではread()システムコー
ルに相当するsys_read()関数の0行目にファイ
ルデスクプタ番号も記録するように“perf probe
-a 'sys_read:0 fd'”で probeを追加します。
perf recordコマンドを使い、追加されたprobe

　1月にリリースされたLinux 4.4に引続き、
Linux 4.5の開発が進んでいます。2月20日に
Linux 4.5-rc5がリリースされているので、3月
末ごろにはLinux 4.5がリリースされるでしょう
か。今回はLinux 4.1から4.4までのeBPFに関
する開発についてまとめて見ていきます。

eBPFとは
　本連載でも何度か取り上げていますが、
eBPFとはBPF（Berkeley Packet Filter）とい
うもともとパケットのフィルタリングに使われ
る機能を拡張したものです .BPFでは、（1）パケッ
トから任意のアドレスのデータを読み込み、（2）
そのデータを算術計算やビット操作などを行って、
（3）フィルタするかどうかを判断し返すという3

つの機能が実行可能となっています。拡張され
たeBPFでは、これに加えて（あらかじめ指定さ
れた一部の）カーネル関数を呼び出す機能、マッ
プ（いわゆる「辞書」や「連想配列」のようなデータ
構造）にデータの読み書きを行う機能を追加し
たものです。これらの機能を使うことで、たと
えばカーネルのprandom_u32（）関数を使ってあ
る条件の通信のパケットをランダムに落とすと
いうような処理や、あるsocketを通るパケット

Linux 4.1から4.4までの
eBPFに関する開発
Text：青田 直大　AOTA Naohiro

第49回第49回

168 - Software Design Apr. 2016 - 169

Linux 4.1から4.4までのeBPFに関する開発 第49回第49回

をイベントとして指定するとデフォルトで“perf.
data”というファイルにprobe dataが記録されま
す。記録はrecordのあとに指定したコマンドが
実行されている間、行われます。記録された情
報は“perf script”コマンドで記録されたイベン
トのリストを見ることができます。どのプロセ
スがどんなファイルデスクリプタ番号のファイ
ルを読んでいるかがわかります。
　“perf record”コマンドでは、フィルタで指定
された条件に一致するものだけを記録するよう
に設定できます。フィルタには“fd == 0”のよう
な単純な数値比較もできますし、図2にあるよ
うに“~”を使ってglobパターンマッチを行うこ
ともできます。ここではchromeらしきプロセス
のread()のみを記録しています。

kprobeとeBPF
　さて、より複雑な処理をしたい場合にはどう
したらよいでしょうか。たとえば各プロセスが
連続して同じファイルデスクリプタ番号から
readした場合は記録したくないというときは、
上記のフィルタでは書くことができません。も
ちろん、すべてを記録しておいて後で処理する
こともできますが、その場合多くのデータを一
時的に蓄積することになります。
　こうした複雑な処理をeBPFであれば書くこ
とができます。BPFは以前であればバイトコー
ドで書いていましたが、eBPFではLLVMを使っ
て（一部機能が制限された）CでeBPFバイトコー

$ sudo perf probe -L sys_read
<SyS_read@/usr/src/linux-4.4.2-gentoo/fs/read_write.c:0>
 0 SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf, size_t, count)
 {
 struct fd f = fdget_pos(fd);
 3 ssize_t ret = -EBADF;

 5 if (f.file) {
 6 loff_t pos = file_pos_read(f.file);
 7 ret = vfs_read(f.file, buf, count, &pos);
 8 if (ret >= 0)
 file_pos_write(f.file, pos);
 fdput_pos(f);
 }

$ sudo perf probe -a 'sys_read:0 fd'
Added new event:
 probe:sys_read (on sys_read with fd)

You can now use it in all perf tools, such as:

 perf record -e probe:sys_read -aR sleep 1

$ sudo perf record -e probe:sys_read -aR sleep 1
perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 1.457 MB perf.data (914 samples)]
$ sudo perf script
 perf 20336 [000] 9494.636661: probe:sys_read: (ffffffff811a82a0) fd=9
 sleep 20337 [001] 9494.637040: probe:sys_read: (ffffffff811a82a0) fd=4
 chrome 6477 [002] 9494.643328: probe:sys_read: (ffffffff811a82a0) fd=18
 chrome 6477 [002] 9494.648551: probe:sys_read: (ffffffff811a82a0) fd=18
 chrome 6477 [002] 9494.649550: probe:sys_read: (ffffffff811a82a0) fd=18
 Chrome_IOThread 6509 [003] 9494.649862: probe:sys_read: (ffffffff811a82a0) fd=51
 chrome 6563 [003] 9494.649945: probe:sys_read: (ffffffff811a82a0) fd=10
 Chrome_IOThread 6509 [003] 9494.650119: probe:sys_read: (ffffffff811a82a0) fd=51
 chrome 6563 [003] 9494.650163: probe:sys_read: (ffffffff811a82a0) fd=10
 Chrome_IOThread 6509 [001] 9494.650323: probe:sys_read: (ffffffff811a82a0) fd=51

…

 ▼図1　readシステムコールへのprobe埋め込み

170 - Software Design

Linuxカーネル観光ガイド

$ sudo perf record -e probe:sys_read --filter 'comm ~ *hrome*' -aR sleep 1
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 1.439 MB perf.data (717 samples)]
$ sudo perf script
 chrome 6477 [002] 10451.034512: probe:sys_read: (ffffffff811a82a0) fd=18
 chrome 6477 [002] 10451.034533: probe:sys_read: (ffffffff811a82a0) fd=18
 chrome 6477 [002] 10451.034641: probe:sys_read: (ffffffff811a82a0) fd=18
 chrome 6477 [002] 10451.043879: probe:sys_read: (ffffffff811a82a0) fd=18
 Chrome_IOThread 6509 [003] 10451.045177: probe:sys_read: (ffffffff811a82a0) fd=51
 chrome 6563 [003] 10451.045261: probe:sys_read: (ffffffff811a82a0) fd=10
 Chrome_IOThread 6509 [003] 10451.045492: probe:sys_read: (ffffffff811a82a0) fd=51
 chrome 6563 [003] 10451.045538: probe:sys_read: (ffffffff811a82a0) fd=10
 Chrome_IOThread 6509 [000] 10451.045712: probe:sys_read: (ffffffff811a82a0) fd=51
 chrome 6563 [003] 10451.045792: probe:sys_read: (ffffffff811a82a0) fd=10

…

 ▼図2　perf recordへの�lterの設定

 1 #include <linux/types.h>
 2 #include <asm/ptrace.h>
 3
 4 #define BPF_ANY 0
 5 #define BPF_MAP_TYPE_HASH 1
 6 #define BPF_FUNC_map_lookup_elem 1
 7 #define BPF_FUNC_map_update_elem 2
 8 #define BPF_FUNC_get_current_pid_tgid 14
 9
 10 static void *(*bpf_map_lookup_elem)(void *map, void *key) =
 11 (void *) BPF_FUNC_map_lookup_elem;
 12 static void *(*bpf_map_update_elem)(void *map, void *key, void *value, int flags) =
 13 (void *) BPF_FUNC_map_update_elem;
 14 static __u64 (*bpf_get_current_pid_tgid)(void) =
 15 (void *) BPF_FUNC_get_current_pid_tgid;
 16
 17 struct bpf_map_def {
 18 unsigned int type;
 19 unsigned int key_size;
 20 unsigned int value_size;
 21 unsigned int max_entries;
 22 };
 23
 24 #define SEC(NAME) __attribute__((section(NAME), used))
 25 struct bpf_map_def SEC("maps") pid_table = {
 26 .type = BPF_MAP_TYPE_HASH,
 27 .key_size = sizeof(int),
 28 .value_size = sizeof(int),
 29 .max_entries = 256,
 30 };
 31
 32 SEC("func=sys_read:0 fd")
 33 int bpf_func__sys_read(void *ctx)
 34 {
 35 int pid = bpf_get_current_pid_tgid() & 0xFFFF;
 36 int *last = bpf_map_lookup_elem(&pid_table, &pid);
 37 struct pt_regs *regs = ctx;
 38 int fd = regs->di;
 39
 40 bpf_map_update_elem(&pid_table, &pid, &fd, BPF_ANY);
 41 if (!last || *last != fd) {
 42 return 1;
 43 }
 44 return 0;
 45 }
 46 char _license[] SEC("license") = "GPL";
 47 int _version SEC("version") = LINUX_VERSION_CODE;

 ▼リスト1　proc-read-�rst.c

170 - Software Design Apr. 2016 - 171

Linux 4.1から4.4までのeBPFに関する開発 第49回第49回

ドを出力できます。さっそく、Cで上記のよう
なフィルタを書いてみましょう。
　proc-read-first.cを見ていきましょう（リスト

1）。4行目から8行目ではプログラム中で使うマッ
プ用の定数と、eBPFから呼ぶことができる関
数の番号をdefineしています。10行目から15

行目はdefineした番号を使って、eBPFの関数
を宣言しています。17行目から30行目ではフィ
ルタで使うマップであるpid_tableの設定を記述
しています。perfはこの値を“maps”セクション
から読んでマップを作成します。ここではハッ
シュテーブルを作っていますが、BPF_MAP_

TYPE_ARRAYを使った配列型マップにするこ
ともできます。
　その次がフィルタの本体となるbpf_func_

map_lookup_elem()関数です。イベントの対象は、
“perf probe -a”のときと同様の形式でセクショ
ン名として設定します。この関数は、まず35行
目でbpf_get_current_pid_tgid()を使ってプロセ
スIDを取得します。これは下位32bitにプロセ
スIDが、上位32bitに tgidが返ってくる関数で
す。pid_tableからプロセス IDをキーにして、
前回のファイルデスクリプタを読みだします。
ここではポインタが返ってきていて、指定した
キーに対応するデータがマップにない場合は

NULLが返ってきます。現在のファイルデスク
リプタ番号はレジスタから取得します。kprobe

の場合、ctxに“struct pt_regs”型のポインタが
入っているので、あとはどのレジスタにfdが入っ
ているのかが問題となります。これはちょっと
トリッキーなのですが、先ほど“perf probe -a”
して追加されたイベントを/sys/kernel/debug/

tracing/kprobe_eventsから調べてみるとよいと
思います。最後にbpf_map_update_elem()でマッ
プを更新し、イベントを記録する場合は1を、
記録しない場合は0を返します。
　では、このeBPFコードを読み込ませてみま
しょう（図3）。eBPFのロードには“perf record
-e”を使います。これは先ほどイベント名を指定
していた引数ですが、.cファイルが指定される
とLLVMがCコードをeBPFバイトコードへと
コンパイルし、その結果が自動的にロードされ、
イベントの記録が開始されます。記録されたデー
タを表示してみると、たしかに上記条件のとお
りに記録されていることがうかがえます。

パケットのクラス分け
　前述したようにeBPFはパケットのクラス分
けにも使うことができます。しかし、そもそも

$ cat /sys/kernel/debug/tracing/kprobe_events
p:probe/sys_read _text+1737376 fd=%di:s64 # fdは“di”レジスタに入っている
$ sudo perf record -e ~/proc-read-first.c -aR sleep 1
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 1.414 MB perf.data (15 samples)]
$ sudo perf script
 perf 9548 [000] 16223.211229: perf_bpf_probe:func: (ffffffff811a82a0) fd=11
 sleep 9805 [002] 16223.212054: perf_bpf_probe:func: (ffffffff811a82a0) fd=3
 Nozbe 8271 [000] 16223.252993: perf_bpf_probe:func: (ffffffff811a82a0) fd=14
 Chrome_ChildIOT 7340 [001] 16223.343621: perf_bpf_probe:func: (ffffffff811a82a0) fd=23
 Chrome_ChildIOT 8895 [002] 16223.343856: perf_bpf_probe:func: (ffffffff811a82a0) fd=23
 Chrome_ChildIOT 9064 [000] 16223.344060: perf_bpf_probe:func: (ffffffff811a82a0) fd=23
 Chrome_ChildIOT 8521 [000] 16223.344090: perf_bpf_probe:func: (ffffffff811a82a0) fd=23
 Chrome_ChildIOT 8470 [001] 16223.344471: perf_bpf_probe:func: (ffffffff811a82a0) fd=23
 Chrome_ChildIOT 625 [001] 16223.702691: perf_bpf_probe:func: (ffffffff811a82a0) fd=23
 Nozbe 8349 [000] 16223.739254: perf_bpf_probe:func: (ffffffff811a82a0) fd=15
 Chrome_ChildIOT 6789 [003] 16223.905824: perf_bpf_probe:func: (ffffffff811a82a0) fd=23
 Chrome_IOThread 6509 [002] 16223.905890: perf_bpf_probe:func: (ffffffff811a82a0) fd=42
 Chrome_IOThread 6509 [002] 16223.939824: perf_bpf_probe:func: (ffffffff811a82a0) fd=51
 Chrome_IOThread 6509 [002] 16224.043263: perf_bpf_probe:func: (ffffffff811a82a0) fd=205
 Chrome_IOThread 6509 [002] 16224.064700: perf_bpf_probe:func: (ffffffff811a82a0) fd=51

 ▼図3　eBPF によるイベントフィルタリング

172 - Software Design

Linuxカーネル観光ガイド

パケットのクラスとはなんでしょうか。
　アプリケーションの通信は、多くの場合1つ
のネットワークデバイスを通じて行われます。
すなわち、もし1つのアプリケーションが多く
の帯域を使ってしまえば、ほかのアプリケーショ
ンの通信も影響を受けることになります。この
問題を解決する手段の1つがTraffic Controlで
す。Traffic Controlは、アプリケーションのパ
ケットをどのようにネットワークデバイスに送
信するかを制御します。たとえばデフォルトで
はシンプルにpfifoという単純にFIFOで送信す
る qdisc（queuing discipline）が使われますし、
systemd環境においてはデフォルトが fq_codel

になるようです。そうした様々なqdiscの中には
“クラス”ごとに流量制御を行うものもあります。
たとえば、DRR（Deficit Round Robin Scheduler）
では分類されたクラスごとにround robinにパ
ケットを送信します。
　すると次はパケットをクラス分けするシステ
ムが必要となりますが、これは filterと呼ばれ
ています。filterにはcgroupを使うものや、経
路情報を使ってたとえばLAN内への通信と外
への通信を別クラスにするものがあります。そ
んなfilterの1つとしてeBPFを使うことができ

るようになっています。

eBPFによるパケットの
クラス分け

　では、eBPFによるパケットのクラス分けの
コードを見ていきましょう。リスト2は“man
tc-bpf”に掲載されている、クラス分けのeBPF

コードの抜粋です。kprobeのSECと同様に、
__section("cls")でセクションが切られている
関数が、クラス分けのメイン関数になります。
kprobeでは引数としてレジスタ情報が来ていま
したが、こちらは“struct __sk_buff *”とある
ようにソケットバッファが引数となっています。
　ここではソケットバッファから事前に付けら
れたマーク（skb->mark）を読み取り、単純にそれ
をそのままクラス分けに使っています。戻り値の
“TC_H_MAKE(TC_H_ROOT, mark)”がこのパケット
が所属するクラスを示しています。ここで0を
返すとこのfilterに適合しなかったことを意味し、
別のfilterが使われます。また、-1を返すとデフォ
ルトのクラスを使うという意味になります。
　また、この filterコードではクラス分けだけ
でなく、cls_update_stats()関数内で累計パケッ
ト数と累計パケットサイズをクラスごとに集計

static inline void cls_update_stats(const struct __sk_buff *skb,
 uint32_t mark)
{
 struct tuple *tu;

 tu = bpf_map_lookup_elem(&map_stats, &mark);
 if (likely(tu)) {
 __sync_fetch_and_add(&tu->packets, 1);
 __sync_fetch_and_add(&tu->bytes, skb->len);
 }
}

__section("cls") int cls_main(struct __sk_buff *skb)
{
 uint32_t mark = skb->mark;

 if (unlikely(mark >= BPF_MAX_MARK))
 return 0;

 cls_update_stats(skb, mark);

 return TC_H_MAKE(TC_H_ROOT, mark);
}

 ▼リスト2　クラス分けのeBPFコード（抜粋）

172 - Software Design Apr. 2016 - 173

Linux 4.1から4.4までのeBPFに関する開発 第49回第49回

しています。このようにクラス分け以外の操作
も行うことができます。

eBPFによる
パケット操作

　filterではもっと変わったことをすることもで
きます。もう1つのmantc-bpfのサンプルコード
（リスト3）は80番に来たパケットを8080から
8087番ポートで動くサーバに振り分け、ロード
バランシングするというものです。これまでと
同様にセクションが設定されている lb_mainが
エントリポイントとなります。ソケットバッファ

からプロトコルの部分を取り出し、IPv4であれ
ば lb_do_ipv4()関数を呼び出しています。lb_

do_ipv4()関数はTCP通信の80番ポートへのパ
ケットであるかどうかを確認し、set_tcp_

dport()で宛先ポート番号の書き換えを行ってい
ます。set_tcp_dport()関数は、ポート書き換え
および、それに応じたチェックサムの更新を行っ
ています。ここでもbpf_l4_csum_replaceやbpf_

l4_csum_replaceといった、eBPFの外部関数を
呼び出せる機能が活かされています。｢

static inline void set_tcp_dport(struct __sk_buff *skb, int nh_off,
 __u16 old_port, __u16 new_port)
{
 bpf_l4_csum_replace(skb, nh_off + offsetof(struct tcphdr, check),
 old_port, new_port, sizeof(new_port));
 bpf_skb_store_bytes(skb, nh_off + offsetof(struct tcphdr, dest),
 &new_port, sizeof(new_port), 0);
}

static inline int lb_do_ipv4(struct __sk_buff *skb, int nh_off)
{
 __u16 dport, dport_new = 8080, off;
 __u8 ip_proto, ip_vl;

 ip_proto = load_byte(skb, nh_off +
 offsetof(struct iphdr, protocol));
 if (ip_proto != IPPROTO_TCP)
 return 0;

 ip_vl = load_byte(skb, nh_off);
 if (likely(ip_vl == 0x45))
 nh_off += sizeof(struct iphdr);
 else
 nh_off += (ip_vl & 0xF) << 2;

 dport = load_half(skb, nh_off + offsetof(struct tcphdr, dest));
 if (dport != 80)
 return 0;

 off = skb->queue_mapping & 7;
 set_tcp_dport(skb, nh_off - BPF_LL_OFF, __constant_htons(80),
 __cpu_to_be16(dport_new + off));
 return -1;
}

__section("lb") int lb_main(struct __sk_buff *skb)
{
 int ret = 0, nh_off = BPF_LL_OFF + ETH_HLEN;

 if (likely(skb->protocol == __constant_htons(ETH_P_IP)))
 ret = lb_do_ipv4(skb, nh_off);

 return ret;
}

 ▼リスト3　eBPFによるパケット書き換え

174 - Software Design

ウド事業者の動向（提供者側の変化）の紹介がありま
した。利用者側の変化としては、従来は低コストを
理由に利用されていたクラウドが、最近は可用性や
安定性、迅速性について積極的な評価を受けてお
り、ITインフラエンジニアの主要な価値とされてい
た「物理的なIT資産に関連する業務」にコモディ
ティ化の波が押し寄せていることが紹介されまし
た。一方で提供者側にも大きな変化があり、従来は
サーバやネットワークなどのいわゆる IaaSがクラ
ウドコンピューティングそのものでしたが、最近は
各種マネージドサービスに主戦場が変化しており、
物理的なIT資産だけでなく「サーバやOSに関連す
る業務」についてもコモディティ化が進むだろう、
との展望が紹介されました。
　次に、荒木靖宏さん（アマゾン ウェブ サービス

ジャパン㈱）から、クラウド提供者の視点からの変
化について、「クラウドネイティブ」というキーワー
ドを軸とした話がありました。クラウドネイティブ
とは、クラウドで提供されるサービス利用を前提に
構築するシステムおよびアプリケーションのことを
指し、それらの多くは将来的にはサーバレスアーキ
テクチャに移行するとのことでした。これにより開
発コストや運用コストが最小化し、スケーラビリ
ティやキャパシティ、セキュリティについて心配す
ることなくビジネスにフォーカスできるようになっ
ていくと言います。そのときには今のネットワーク
エンジニアのコア・コンピタンス（独自の強み、得
意分野）の多くは消失し、「ユーザがほしいのはサー
ビスであり、テクノロジそのものではない」時代に
なっているだろう、という言葉が印象的でした。

　JPNIC（日本ネットワークインフォメーションセ
ンター）主催のInternet Weekが、2015年11月に開
催されました。今回も jusは後援団体として参加
し、プログラムの企画や告知などの協力を行いまし
た。4日間で約40本のプログラムが実施され、約
2,600人の参加者を集めました。実施したプログラ
ムの中から、jus幹事が企画にかかわったセッション
について報告します。

	 ■Internet Week 2015

	【日時】2015年11月17日（火）〜20日（金）

	【会場】富士ソフト アキバプラザ

■クラウドネイティブ時代のインフラエンジニア
	（11月17日16:15〜18:45、6F セミナールーム6）

　本セッションでは、クラウドサービスを牽引して
いるAmazon Web Services（AWS）を具体的な参考
事例として、「クラウドサービス」の変化がもたらす
次の2点

¡	企業や組織のITインフラの設計、構築、および

運用への影響

¡	企業やインフラエンジニアが直面するであろう

変化

について、クラウド提供者の視点およびクラウド利
用者の視点を交えて紹介が行われました。
　最初に、波田野裕一さん（運用設計ラボ合同会社）
から、クラウド利用の動向（利用者側の変化）、クラ

Internet Week 2015

これからのエンジニアのあり方、コミュニティのあり方

NO.54
April 2016

日本UNIXユーザ会　http://www.jus.or.jp/
波田野 裕一　HATANO Hirokazu tcsh@tcsh.csh.sh
榎 真治　　　ENOKI Shinji enoki-s@imail.plala.or.jp
法林 浩之　　HOURIN Hiroyuki hourin@suplex.gr.jp

http://www.jus.or.jp/

Apr. 2016 - 175174 - Software Design

　続いて、小早川知昭さん（ソニー㈱）から、クラウ
ド利用者の視点からの変化についての話がありまし
た。同社の基盤システムを刷新するにあたり、自社
で保有運用していたプライベートクラウドを閉鎖
し、AWSへの移行を実施した事例が紹介されまし
た。そして、クラウド利用者として実感したことと
して、がんばってプライベートクラウドを実装して
も利用者からは「当たり前程度」にしか評価されず、
インフラレイヤで付加価値を付けることは難しく
なっていることを挙げました。今後は一般企業での
インフラエンジニアの活躍の場は縮小し、ソフト
ウェアの素養が求められていくだろうとのことでし
た。
　最後に波田野さんから、クラウドネイティブ時代
に求められるエンジニアスキルの紹介があり、イン
フラエンジニアの専門性の変化や求められるスキル
について紹介がありました。
　立場の異なる登壇者3人が三者三様にインフラエ
ンジニアを取り巻く環境の変化と、現在置かれてい
る状況への危機感を語り、共通した認識のもとで現
状からの脱却や将来への展望を紹介する貴重なセッ
ションだったと思います。満員の会場では聴講者が
熱心にメモを取る姿が印象的でした。

■ITコミュニティの運営を考える
	（11月19日19:00〜20:30、6F セミナールーム5）

　jusでは各地で「ITコミュニティの運営を考える」
をテーマとするセッションを行っていますが、それ
をInternet WeekでもBoFという形で実施しまし
た。はじめに、参加者が6人と少なかったので、全
員に自己紹介やコミュニティとのかかわりを話して
いただきました。その後、こちらで用意したいくつ
かのお題と、そこから派生した話題について自由に
討論しました。用意したお題ごとに、印象に残った
コメントをお伝えします。

——みなさんが参加されているコミュニティの特

色は何ですか？

　参加者それぞれが日ごろかかわっているコミュニ

ティを例に特色を挙げていただきましたが、それに
付随して出てきたコメントとしては、「目的がはっ
きりしているコミュニティのほうが参加しやすい」、
「新しいコミュニティは新しいことができそうなの
で新しい人が入ってきやすい」、「長年活動している
コミュニティは人が滞留して、まったりした活動に
なりがち」、「新しい人に参加してもらうには自分も
何か手伝えそうと思わせる雰囲気作りが必要」と
いったものがありました。

——良い運営をしていると思うコミュニティは？

　この質問に対しては、特定コミュニティを取り上
げた意見よりも、時代に応じて話題を転換できてい
るコミュニティや、人材の新陳代謝があるコミュニ
ティが良いという、コミュニティの体質に関する意
見が多く聞かれました。また、ここから派生した話
題として、業務でコミュニティ運営にかかわること
についての議論がありました。日本には寄付する文
化がないことや、利用しているから貢献しなければ
ならないという考えが根づいていないため、業務で
コミュニティ運営にかかわることが認められにくい
傾向があるようです。

——ほかのコミュニティと手を取り合うことにつ

いてどう思いますか？

　これについては、ほかのコミュニティとの交流を
望んでいる団体は多いのですが、きっかけがなかっ
たり、業種やレイヤをまたいだ連携の機会が少な
かったりと、なかなか実際に交流するところまでは
いかないようです。解決策として、「共通点を見つ
けてそこから交流を始めると良いのではないか」と
か、「ITコミュニティを総合的に紹介するサイトが
ほしい」といった意見が出ました。

　同時間帯にコミュニティ主催によるBoFが多く
重なったため、こちらに参加してくださる方が少な
かったのは残念ですが、参加者のみなさんが積極的
に意見を出してくださったので、有意義な議論がで
きたと思います。ありがとうございました。｢

これからのエンジニアのあり方、コミュニティのあり方 April
2016

176 - Software Design

「エフスタ!!」とは

　初めて「エフスタ !!」というコミュニティを目にす
る読者の方のために、簡単にこのコミュニティにつ
いて紹介しようと思います。「エフスタ !!」では「IT

業界で働く人たちが楽しんで仕事ができるよう身の
回りのIT業界を変えたい」「夢と希望をもった技術
者を育てたい」「そのために教育に力を注ぎたい」と
いう願いが根底にあります。であれば、まず「エフ
スタ !!」の地元である福島のITが変われば、面白く
なれば、夢と希望を持った技術者が増え、やがて世
界を変える技術者が福島から誕生するという発想で
す。そのような理念を実現するためのきっかけ作り
の場として「エフスタ !!」というコミュニティは運営
されています（図1）。
　また、「エフスタ !!」の語源は「福島のスタイルを変

える」から「エフスタイル」に略され、語呂の良さか
ら今の「エフスタ !!」というコミュニティ名に落ち着
いたそうです。

デザインとエンジニアリング

　さて、今回紹介する「エフスタ !! TOKYO」のテー
マは「デザインの流儀 ～ITエンジニア×デザイ
ナー」でした。ITエンジニアとデザイナーが一緒に
なってシステム開発を行うシーンが増えてきている
最近の流れの中で、お互いの仕事の間にある隔たり
や、それぞれの仕事上のこだわるポイントが異なっ
ている点で相互に理解し合えていない状況がありま
す。こういった状況でなかなかうまく仕事が進めら
れない現場の課題を解決するために、デザイナーの
方やデザイナーとエンジニアの間で活躍されている
方達に登壇いただき、双方がうまく仕事を進めてい

Hack For Japan
エンジニアだからこそできる復興への一歩

エフスタ!! TOKYOで
デザインと開発を考える

第52回
本連載でたびたび登場している、ITエンジニアのためのスキルアップ応援コミュニティ「エフスタ!!」。今
回は東京で開催された「エフスタ!! TOKYO」の様子をレポートします。福島を拠点とするエンジニア達
がどのような思いで活動しているのか、その一端が見えれば幸いです。

●Hack For Japanスタッフ
　鎌田 篤慎　KAMATA Shigenori
　 Twitter @4niruddha

人と出会うことで
刺激を受ける

技術者が夢と
目標を持つ 子供達へ IT 教育

目標となれる
人との出会い

コミュニティ

世界を変える技術者が育つ

福島から未来の ITを創る

◆◆図1　「エフスタ!!」活動理念

Apr. 2016 - 177

エフスタ!! TOKYOでデザインと
開発を考える第52回

くためのポイントや、デザイナーはどういった発想
で物作りに当たっているかという観点からのお話を
していただきました。

デザインをする際に考えて
いることとその視点

　最初にフリーランスのデザイナーとして活躍され
ているTIMING DESIGN代表の北村崇さんより、
デザイナー目線から見た、物作りのうえでのこだわ
りのポイントを紹介いただきました（写真1）。北村
さんはデザイナーがアーティストだと勘違いされ、
ディレクターやエンジニア、営業といった職種の人
たちから、見た目優先で作っていると誤解されやす
い現状に警鐘を鳴らします。デザインという作業の
本質やデザイナーが何を考え、何をゴールとしてデ
ザインをしているのか、またはするべきなのか。デ
ザインの基礎のお話を踏まえたうえで、構築側が
知っているとやり取りがスムーズになる「デザイ
ナーのこだわりポイント」などのお話がありました。
　まず「デザインは本能に忠実」というのが前提にあ
り、視線の動きであったり、心理学や社会学も含め
た形でデザインについて包括的に人間の行動に沿っ
た形を意識して考えられているという点がありま
す。また、デザインは目的を持って提供していくと
いう観点から、アクセシビリティのしっかりしてい
るサイトはタブ移動にも意味が感じ取れるが、人間
の行動を考慮せずに目的を持たないようなデザイン
になってしまっているサイトは使いづらいという指
摘は会場からも納得の声も多く挙がりました。

　デザインの工夫でユーザの負担を大きく下げると
いう話では、「いつ」「どこで」「誰が」「なにを」「どう
する」「どのようにする」というのを考えると、それ
ぞれの状況でユーザが置かれている状況が変わるこ
とが理解できるとのこと。そのような状況を議論の
前提に置くことで、相手のやっていることを理解す
る、自分のやっていることを理解してもらう、と
いったコミュニケーションをはかる能力があがりま
す。これがデザイナーとエンジニアがうまく仕事を
進めていくうえでも非常に大切なものになるとい
う、当たり前のようで、なかなかできていない部分
にフォーカスしたお話でした。

異なるアプローチで
同じゴールへ向かうチーム

　続いては、インフラジスティックス・ジャパン代
表取締役の東賢さんによる「デザイナーとデベロッ
パー：異なるアプローチで同じゴールへ向かうチー
ム」というテーマのお話で、デザイナーとエンジニ
アがうまく仕事を進めるうえで前提となる考え方を
確かめる問いとして「デザイナーとエンジニアは目
的が本当に一緒になっているか？」というものを挙
げられました（写真2）。そして、実際にデザイナー
とエンジニアが一緒になって作っているプロダクト
について、目的が一致しているかどうかを確かめる
手段として、エレベーターピッチをエンジニアもデ
ザイナーも同じように伝えられるかどうか？という
ものを紹介いただきました。
　エレベーターピッチとは、自分たちが開発してい

◆◆写真2　�東さんによるデザイナーとエンジニアの双方に必
要な姿勢のお話◆◆写真1　北村さんによるデザイナーの考え方の紹介

178 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

るプロダクトが、どういった顧客向けで、なんとい
う製品名で、どのようなカテゴリに属していて、そ
のプロダクトの重要な利点や対価に見合う説得力の
ある理由、競合製品と差別化する決定的な特徴は何
かなどといった説明を、エレベーターに乗っている
短い間で同乗する出資候補者に対して行うプレゼン
テーションのことを言います。このエレベーター
ピッチを通して、エンジニアとデザイナーが目的を
1つに取り組めているかどうかが測れるというお話
はたいへんうなずけるものでした。
　また、デザイナーとエンジニアの間のギャップを
埋めるアーキテクチャとして「ここから先は変えて
いい、ここから先はダメという線引」「デザインを実
装しやすくするための共通言語を利用する」「デザイ
ンは想定した仕様を維持できる、さらに良くでき
る」「UIのアーキテクチャについてはいくつかの検
討要素がある」といったキーワードを挙げました。
これらを軸にして、デザインをしていくうえでの制
約の整理を行うのがエンジニアの仕事、というふう
にお互いの職務領域を明確にしてからコミュニケー
ションすることの重要性を唱えられました。

デザイン・開発の両立から
見えること

　講演の最後は我々、Hack for Japanのメンバーでも
ある株式会社dott 共同代表取締役の清水俊之介さん
による、デザインという仕事と開発という仕事の両
立を通じて見えてきた、デザイナーとエンジニアが一
緒になって働くコツをお話いただきました（写真3）。

　清水さんは絵画修復技術士という経歴から、シス
テム開発の道に入られた異色の経歴を持つ方で、背
景として芸術があったことからシステム開発の道に
入ってからもデザインから実際のコーディングま
で、一人で作業することが多かったそうです。この
ことから、双方の立場に立って相手の求めているも
のを歩み寄って知ることの大切さを伝えてもらいま
した。

ライトニングトークで知る
福島

　さて、「エフスタ !!」のイベントでは参加者による
ライトニングトークが恒例となっています。「エフ
スタ !! TOKYO」では東京に住む人たちに向けて、
福島の現状を伝えるお話も過去数回にわたりライト
ニングトークの場で聞くことができました。今回は
直接参加者の方が福島の現状を伝えるといった内容
から趣を変えて、今、福島で行われている一つの試
みが紹介されました。

福島を伝える
ドキュメンタリー

　「エフスタ !!」のスタッフでもある山中英治さんの
ライトニングトークで紹介されたのは「1/10 Fuku

shimaをきいてみる注1」という福島の今を切り取って
伝えるドキュメンタリー映画でした（写真4）。震災
から数年が経ち、福島県外に住んでいる人たちには

注1	 http://fukushima-ask.info/

◆◆写真3　清水さんによるデザインと開発の間のお話
◆◆写真4　�「1/10 Fukushimaをきいてみる」を紹介する山

中さん

http://fukushima-ask.info/

Apr. 2016 - 179

エフスタ!! TOKYOでデザインと
開発を考える第52回

のおやつが配られるおやつタイム（「エフスタ !!

TOKYO」では東京のおやつも合わせて配られます）
もあり、リラックスしながら参加者同士で交流し、
新しい人達とつながりが生まれています。また、メ
リハリを付けたトークセッションではゲストの真剣
な技術の話と参加者を交えて面白おかしいトークを
織り交ぜることで、参加者のみなさんは真剣に聴講
することと、会を楽しんでリラックスして参加する
ことの両方ができているのです。そして、参加者の
スキル、マインドを高め、リラックスした後に福島
の現状を語る場も合わせて用意することで参加者に
福島にも興味を持ってもらうのが定番のスタイルと
なっています。
　7回目の東京開催となった今回はもう1つ大きな
ニュースがありました。「エフスタ !! TOKYO PJ」立
ち上げメンバーでもある代表の大久保仁さんは当日
に業務が重なってしまい参加が叶いませんでした
が、同じく「エフスタ !!」初期から参加し「エフスタ !!

TOKYO」の責任者でもある影山哲也さんより、運
営スタッフの中から誕生したカップルがご結婚され
たというニュースが発表がされました（写真5）。
　明るく福島の未来のために活動する「エフスタ !!」
も長い時間をかけて、コミュニティとしても大きく
育っているうれしいニュースでした。こうして福島
を飛び出して大きく活躍する人たちと共にこれから
長い時間をかけて復興していく福島を、みなさんも
どうぞ応援してください。s

現地の実際の情報が正しく伝わって来ることがあり
ません。読者のみなさんも福島原発での除染の話や
子育ての話、福島での食事の話や帰宅困難地域に住
んでいた人たちのニュースを耳にすることは少なく
なったのではないでしょうか？　また、聞いたとし
てもそれが本当の話なのかどうか、福島に住む知人
がいなければ確かめることもできません。このド
キュメンタリーは福島の現地に住む人の声をひたす
ら集めて1年単位で公開していくスタイルで、監督
の古波津陽さん、出演は福島県出身の女優である佐
藤みゆきさん、撮影が柏崎佑介さんといった3人で
2013年から始まった企画として紹介されました。
　ドキュメンタリーの中で取り上げられている話を
少しだけ山中さんより紹介いただきましたが、除染
袋を引き取っている住職の話や成人式を迎える新成
人に関する話など、今の福島を伝えるドキュメンタ
リーとして、大変興味深いものがありました。福島
県外での上映や海外での上映なども予定されていま
す。ご興味をお持ちの読者のみなさんもぜひホーム
ページにアクセスして、上映情報をご覧ください。

「エフスタ!!」と
Hack For Japan

　さて、「エフスタ !! TOKYO」も今回で数えて7回
目を迎えました。2012年12月8日に都内にて第1回
が開催された際には、Hack For Japanからは及川卓
也さんによる「見る前に跳べ～ギークの工夫で社会
を変えよう～2012年冬」と題した「Developers

Summit 2012」で発表された内容のアップデート版
での発表がありました。これを皮切りに、「エフス
タ !!」の勉強会では毎回IT業界のプロフェッショナ
ルを招いて講演をしてもらうことで「エフスタ !!」に
集まるエンジニア達のスキル、マインドの底上げと
いう理念の一部実現を狙っています。
　「エフスタ !!」に参加されたことのない方から見る
と、ITプロフェッショナルの講演や福島の話となる
と非常に固い勉強会という印象を持たれてしまうか
もしれませんが、これは実際に参加していただくと
わかるとおり、「エフスタ !!」の勉強会はどこかアッ
トホームな雰囲気となっています。毎回、福島名物

◆◆写真5　�エフスタ!!スタッフ同士の結婚の立会い人となっ
た大久保さん

180 - Software Design

はじめに

　プログラム言語を用いてソフ
トウェアを記述するのが主流の
現在では、コンピュータが直接
実行するマシン語は、人の目に
触れない存在になっています。
表に見えないマシン語ですが、
低機能なマイコンボードを扱う
場合には、少し姿を現します。
今回は、大きく表面の舞台で活
躍していたころの「マシン語」に
ついてお話ししましょう。

マシン語が脚光を
浴びていた時代

　1970年代後半から80年代の
前半のパソコンは8bit CPUで、
BASIC言語をシステムとして動
かしているものがほとんどでし
た。そもそもCPU自体のスピー
ドが遅いうえに、その上で動作
するBASICインタプリタの実行
速度はさらに非常に遅く、動作
状況が目で追えるレベルでした。
メモリ空間の狭さも相まって、
BASICのみで実用的なプログ
ラムを作成することは難しかっ
たのです。とくにホビーユーザ
の目指していたゲームプログラ
ミングにおいては、BASICプロ

グラミング以外の方法が必要で
した。そこで登場するのがマシ
ン語です。高速性が必要な処理
は、BASICからマシン語を呼び
出して実行することが、重要な
テクニックになっていたのです。

8bit CPUの
マシン語

　自分でマシン語プログラムの
作成にチャレンジすることにな
ると、このプログラミングのハー
ドルはかなり高く、ハードルを
越えるのに苦労したユーザが多
くいたようです。
　ハードルを乗り越え、わずか
でもマシン語プログラムができ
ると、その処理部分のスピード
アップはすさまじいもので、プ
ログラミングの苦労が報われる
気分を味わうことができました。
　当時、マイコンに搭載されて
いた8bit CPUは、MZ-80（シャー
プ）、PC-8001（NEC）などがザ
イログ社のZ80、ベーシックマ
スターLEVEL3（日立）とFM-8
（富士通）がモトローラ社の
MC6809を搭載していました。

マシン語の
プログラミング

　当初のマシン語のプログラミ

ングは、ハンドアセンブルが基
本でした。CPUの独自のマシン
語（16進数）を、人にわかりやす
いニーモニックに置き換えたア
センブリ言語を紙面の上に手書
きし、CPU命令表を見ながら
16進数に変換するという作業（こ
れが当時のプログラミング）を
行ったこともありました。その
作業に慣れてくると、よく使う
命令はCPU命令表を見なくて
もマシン語に変換することがで
きるようになりました。長いプ
ログラミングになりますと、ハ
ンドアセンブラは限界です。そ
こで使用したのが、1パス・ア
ブソリュート・セルフアセンブ
ラでした。

Z80と6809の
プログラミング

　Z80は、インテル社 i8080か
ら発展し、その互換性を有して
いました。レジスタが豊富にあり、
命令の種類も多種多様に備えて
おり、実用的なプログラムを作
成しやすく設計されていました。
しかし、レジスタと命令とメモ
リにアクセスするアドレッシン
グとの組み合わせの直交性が低
いため、レジスタ利用に特殊性
を覚えてからプログラミングを

温故知新
ITむかしばなし

速水 祐（HAYAMI You） 　http://zob.club/ Twitter : @yyhayami

マシン語
〜高速なプログラムを目指して〜

第53回

http://zob.club/

180 - Software Design Apr. 2016 - 181

する必要がありました。
　PC-8001（写真1上）を使用し
てマシン語プログラミングにチャ
レンジしてみました。リスト1は、
テキストVRAMに文字AからZ
を表示するもので、この程度の
プログラミングは、ハンドアセ
ンブラで簡単に組むことができ
ます。その中で使用したDJNZ
命令注1のような便利な命令も多
くあり、慣れれば楽にプログラ
ミングすることができました。
　次に、6809でプログラミング
をするためにLEVEL3を使っ
てみました（写真1下）。同じ動
作をするプログラムを作成した
ところ、そのハンドアセンブル
作業が非常に簡単でした。6809
は、マシン語コードを形成する
オペコード、オペランド、ポスト
バイトがきちんと整理されてお
り、その法則性を理解すること
で命令をマシンコードに簡単に
変換できます。豊富なアドレッシ
ングモードは、その多様さに理
解するのはたいへんですが、理
解したあとは便利に利用するこ
とが可能になります。STA ,X+注2

などのようにアドレッシングを
効果的に利用することで、見や
すくて小さなコードサイズを実
現できます。
　ここでのプログラミングサイ
ズ は、Z80が 13byte、6809が
14byteとほぼ同じになりました。
それぞれのCPUの特徴を活か
すことで、効果的なプログラミ
注1） レジスタBの内容を1だけ減じて、レ

ジスタBの値がゼロであれば次の命
令に進み、ゼロでない場合は、相対
ジャンプする。

注2） 16bitインデックスレジスタXの値が
示すアドレスにレジスタAの値を格
納し、その後インデックスレジスタ
の値を1増やす。

ングが可能になります。しかし、
実際に大きなプログラミングを
行うと考え方の違いに戸惑うこ
とが多々あり、当時のユーザは、
Z80派と6809派に分かれてい
たようです。

マシン語の
実行スピード

　筆者が実際にPC-8001とLE
VEL3で同じ処理を行う2つの
プログラムを、ループ回数を増
やして実行したところ、予想ど
おりほぼ同じ実行時間でした。
　同じ処理をBASIC言語のみ
で作成したものを実行してみた
ところ、PC-8001では約60倍、
LEVEL3では約80倍の差があ
りました。

16bit CPUへ

　時代は、8bitマイコンから16

bitパソコンへ移っていきます。
　16bitパソコンが登場した当
初は、まだBASICは遅く、MS-
DOS上で動作する優れたコンパ
イラも手に入りづらい状況にあ
り、クリティカルな処理をプロ
グラミングする場合などのよう
にしばらくはアセンブラ言語が
使用される時期が続きました。
　マシン語プログラミングは、
I/Oポートを直接制御してタイ
ミングをとる際やコンピュータ
の基本を理解する場合などには
重要なプログラミング技術です。
最近Arduinoに搭載されている
Atmel社AVRなどのように優れ
た設計の8bit CPUがあります
が、より教育的な効果が高くマ
シン語プログラミングにおいて
効率の良い、独自の8bit CPU
があってもよいのではないかと
考えます。｢

 ▼リスト1　Z80と6809の機械語の比較

 ▼写真1　PC-8001（上）とベーシックマスターLEVEL3（下）

Z80--------------------------------+6809--------------------------
D000 06 1A LD B,26 7900 C6 1A LDB #26
D002 3E 41 LD A,41H 7902 86 41 LDA #$41
D004 21 00 F3 LD HL,F300H 7904 8E 04 00 LDX #$0400
D007 77 L1: LD (HL),A 7907 A7 80 L1: STA ,X+
D008 3C INC A 7909 4C INCA
D009 23 INC HL 790A 5A DECB
D00A 10 FB DJNZ L1 790B 26 FA BNE L1
D00C 36 RET 790D 39 RTS

温故知新 ITむかしばなし
マシン語 〜高速なプログラムを目指して〜

第53回

182 - Software Design

うまくいく チーム開発のツール戦略

 Author リックソフト㈱　熊井 亮輔（くまい りょうすけ）、大塚 和彦（おおつか かずひこ）

メールベースでの進行管理の限界、ツール活用による変革第 回1

メールによるプロジェクト内
コミュニケーションの限界

メールによる情報伝達によって摩擦が生じた
ことはありませんか？ 進行状況の把握はメー
ルで十分にできていますか？ そろそろメール
では限界ではないだろうか？と、ふと感じたこ
とがあると思います。
メールは手軽に相手に依頼を行い、情報提供
できるツールですが、相手に伝わっているか確
認することはできません。送信者が気軽にメー
ルを送る一方で、大量の受信メールに埋もれて
相手は気づいていない場合も多いです。これで
は円滑なコミュニケーションは成り立たず、結
果としてプロジェクトの情報共有や意思疎通が
十分にできずに、プロジェクトが失敗に至るこ
ともあるでしょう。
しかし、慣れてしまったメール文化を変えろ！
と言われても、早々に変えるのは難しいです。
ツールを導入するので今日からすべてツールを
使って作業しなさいと言われても、すぐには慣
れないのが現実でしょう。メールの手軽さを残
しつつ、進行管理（プロセス管理）や履歴管理（ト
ラッキング）を行う方法があれば、このような
問題は解決すると考えられます。

プロジェクト管理ツール「JIRA」
とアドオンの組み合わせで解決

プロジェクト管理ツールであるアトラシアン
製品「JIRA（ジラ）」は多くの企業で利用されて
います。JIRAにはメールを課題（チケット）と

して取り込む機能や、チケットへの更新やコメ
ントをメールで通知する機能がありますが、
JIRAにメール送信者となるユーザが登録され
ていない場合には利用できません。
そこで今回は、このようなケースも補うため

のアドオンと組み合わせる方法を紹介します。
JIRAとメールを統合するアドオンはいくつか
ありますが、その中でも一番実績があって使い
やすい「Email This Issue」を利用します。

「Email This Issue」
アドオンの特徴

「Email This Issue」アドオンには次のような
特徴があります。

●	誰にでもメールでチケットを送信できる
ユーザがJIRAに登録済みかどうかにかかわ
らず、ロールやグループ、カスタムフィールド
を利用して、チケットやコメント、添付ファイ
ルをメールで送信できます。各チケットには
「Email」ボタンが表示され、ここから直接メー
ルを送信することもできます。JIRAがメール
クライアントになるので、今まで利用されてい
たメールクライアントとのやりとりは不要とな
ります。また、チケットの「Emails」タブから
はチケットで受信、送信したメールの履歴を確
認できます。

JIRAに関しては次の記事をお読みください。
　
http://gihyo.jp/dev/serial/01/project_

manager_tool/0001

うまくいく
チーム開発のツール戦略

Catch Up Trend

http://gihyo.jp/dev/serial/01/project_manager_tool/0001

182 - Software Design Apr. 2016 - 183

メールベースでの進行管理の限界、ツール活用による変革 第 回1

●	何かが発生したタイミングで通知できる
チケットの作成、編集、コメント追加といっ
たさまざまなイベントが発生したタイミングで、
メール通知ができます。とくに優れているのは、
通知の条件としてJQL（JIRA Query Language）
を利用できる点です。チケットのステータスや
コンポーネント、担当者などの条件によって、
通知する／しない、メールの内容を変える、と
いった細かな指定が可能になります。JIRAチ
ケットとして登録されたタイミングで、あらか
じめ用意したメールテンプレートで自動応答す
るといったことも容易です。

●	メールを受信してメールアドレスを保存で
きる
受信したメールからチケットを作成、コメン
トを追加するだけでなく、メールの送信元や
Cc:、Bcc:といったメールアドレスもカスタム
フィールドへ登録できます。メールのCc:も保
存できるので、依頼者はチームのメンバー間で
やりとりを共有できます。

●	送信メールがカスタマイズできる
JIRA管理者は、あらかじめ用意された送信

メールのフォーマットを選び、それをカスタマ
イズしてメールテンプレートとして設定できま
す。メールはメールテンプレート（Apache

JakartaのVelocity）で作成でき、保存する前に
プレビューで確認できます。メールテンプレー
トはカテゴリ分類が可能で、チケットからメー
ルを直接送信する際にも利用でき、無駄な手入
力を極力減らすことができます。また、Field

pickerを利用することで、チケットの項目をよ
り手軽にメールの件名や本文に値として埋め込
めます。

設定概要

実際の設定を見てみましょう。ここでは最小
の設定で動作するようにしているので、お好み
に合わせて変更してください。

ユーザ、プロジェクト、
カスタムフィールドを用意する

まずは依頼者とメールでやりとりするため、
「JIRA管理」＞「ユーザー管理」＞「ユーザー」か
らユーザをJIRAへ追加します。このユーザ（こ
こでは「セールス」とします）を、メールから作
成されたチケットの暫定の担当者、報告者とし
て利用します。
次に、依頼者からの作業依頼を受け付けてチ

ケットを登録するプロジェクトを作成します。
ここでは「プロジェクトタイプ」として“JIRA規
定スキーム”を選択し、「名前」を“販売業務”、
「キー」を“SALES”とします。プロジェクトリー
ダーには先ほど登録したユーザ「セールス」を指
定し、規定の担当者とします。
さらに、JIRAから依頼者へメールで返答す
るため、送信元メールアドレス（From:、Cc:）
を登録するカスタムフィールドを作成します

（図1）。送信元メールアドレスは対象のチケッ
トへ登録されます。
「Email This Issue」アドオンには、担当者が
チケットに添付されたファイルの中から指定し
たものだけを依頼者へ送るための便利なカスタ
ムフィールドである、“Issue Attachment Selector

Field”が用意されています。このフィールドを
「フィールドタイプ」に追加しておくと、メール
の添付ファイルの容量を気にする必要がなくな
り、無駄なファイルのやりとりもなくなるので
便利です。

 ▼図1　カスタムフィールドの作成

184 - Software Design

うまくいく チーム開発のツール戦略

「Email This Issue」の設定

ここからようやく、「Email This Issue」の設
定です。インストールするには「JIRA管理」＞
「アドオン」＞「Find new add-ons」から“Email

This Issue”と検索します。評価目的なら“無料
トライアル”が利用できます。
インストール後、「JIRA管理」＞「アドオン」

＞「JIRA EMAIL THIS ISSUE」＞「Configuration」
から設定を開始します。

メール通知の設定
まず、依頼者へのメール通知に関するイベン
トを設定します。「Add」ボタンからテンプレー
トを追加し、そのテンプレートに対してイベン
トを登録します。ここでは「問合せ通知」という
テンプレートを追加し、依頼者に自動応答した
り返答したりするためのイベントを登録します。
「Recipients(To:)」は先ほど登録したカスタム
フィールドの“問合せメール (From:)”、「Copy

recipients(Cc:)」は“問合せメール (Cc:)”とし、
「Email Settings」には送信するメールのフォー
マットとして、"Text email"を選択します。

プロジェクトとメール通知の関連付け
アドオンには、メール通知をプロジェクトや
課題タイプといった条件と関連付けるための
「Contexts」という設定が用意されています

（図2）。「Add」ボタンによって追加可能で、

「Notifications」に登録済みのメール通知、「Sender

Name」に送信者の名前、「From Address」に依
頼者へのメールの送信元メールアドレスを指定
します。

受信したメールからのチケット作成設定
「Mail Handlers」では、受信したメールから
チケットを作成する先となるプロジェクトや課
題タイプを指定します。具体的には、依頼者か
ら受信したメールの処理方式や、チケットを作
成した際の自動応答を設定できます。
新しくハンドラーを作成し、「Project」は

“販売業務”、「Issue Type」は“問合せ”、「Email

Processing Strategy」は“Create or Comment

Issues (Supports Split Regex)”とします。

送信メールサーバの設定
依頼者への回答をメールで送信するために、

「JIRA管理」＞「システム」＞「送信メール」から
SMTPメールサーバを設定します。各項目を
設定し、「Test Connection」で接続が成功する
ことを確認してください。

受信メールサーバとメールハンドラーの設定
作業の依頼をメールで受信するために、「JIRA

管理」＞「システム」＞「受信メール」からPOP/

IMAPメールサーバを設定します。送信メール
サーバの設定と同様に各項目を設定し、テスト
接続が成功することを確認します。依頼者には、

作業を依頼するメールを
POP/IMAPメールサー
バに指定したアドレスへ
送信してもらうことにな
ります。
続けて、同じ画面に

ある「受信メール ハンド
ラーの追加」から「Email

This Issue Mail Handler」
を選択して追加します。

 ▼図2　「販売業務」に「問合せ通知」を関連付ける

184 - Software Design Apr. 2016 - 185

メールベースでの進行管理の限界、ツール活用による変革 第 回1

「プロジェクト」に“販売業務”、「課題タイプ」
に“問合せ”、「規定の報告者」に最初に登録して
おいたユーザを指定します（図3）。「ユーザー
の作成」は、メールの送信者がJIRAに登録さ
れていないユーザのメールアドレスだった場合
に、自動的にユーザを登録してしまうオプショ
ンなので、チェックを入れないでください。

実際に利用してみる

設定が完了したら、実際に利用してみましょ
う。依頼者として、作業を依頼するメールを
POP/IMAPメールサーバに指定したアドレス
へ送信します。JIRAがメールを受信すると自
動でチケットが作成され、要約としてメール件
名や送信元メールアドレスといった情報が登録
されます。依頼者がJIRAにユーザ登録されて
いる場合は、チケットの報告者として割り当て
られます。受け取ったらすぐに検知できるよう
に、JIRAの通知スキームやHipChatのルーム
への通知を設定しておくとよいでしょう。あと
は、タスクの優先度や担当者を割り当て、作業
をこなし、終わったらステータスをクローズし
ていくことになります。
担当者がチケットへコメントすると、メール
を通じて依頼者と情報共有ができます。また、

依頼者は必要に応じてメールに返信することで、
チケットのコメントを通じて担当者へ情報発信
できます。これにより、それぞれが作業に集中
できるのです。

改善

メールを中心にタスク管理を行っていると、
タスク内容を確認するたびに該当メールをスレッ
ドから探し出したり、最後までフォローできて
いたかスレッドを追って確認したりする必要が
あります。1日数千通のメールが来るような状
況では必要なスレッドを見つけ出すだけでもか
なりの時間を要し、膨らみ続けるメールボック
スによって作業の効率は悪くなる一方です。

JIRAの場合、タスクはすべてチケットとし
て登録し、その後は進捗に応じてステータスや
担当者を変更していきます。これだけで、プロ
ジェクト、チーム、人ごとに、現在抱えている
タスクや状況を、JIRAの優れた検索やガジェッ
トによってリアルタイムに追うことができ、プ
ロジェクトや会社全体で情報を共有できるよう
になります（図4）。
情報共有、可視化、意思疎通、これらがJIRA

の利用による大きな改善ポイントとなります。
ﾟ

 ▼図3 「Email This Issue Mail
 Handler」の追加

 ▼図4　プロジェクトなどの単位で課題やステータスを可視化できる

186 - Software Design

　パラレルス㈱は2月17日、Parallels Remote Applic
ation Serverの最新版である「version 15 日本語版」の発
売を開始した。
　Parallels Remote Application Serverは、企業などの
従業員が使用するあらゆるデバイスに仮想Windowsア
プリケーション、および仮想化デスクトップを配信する
ための、企業向け製品。version 15ではおもに、ユーザ
の自動登録機能の追加、操作性の向上が図られた。
　企業がBYOD（個人端末の業務利用）やCYOD（企業が
選定した複数の端末から従業員が選んで利用すること）
を実践していると、企業内にはさまざまな種類の端末が
存在することになる。その端末に、Windowsおよび

Windowsアプリケーションを配信するにあたり、本製
品を導入することで、IT管理者は非常に柔軟な対応がで
きるようになる。また本製品には、レポーティング、
HA（高可用性の提供）、二要素認証、Windowsクライア
ントマネージメントといった、リモートデスクトップお
よびアプリケーション配信における機能が通常オプショ
ンとして備わっている。
　料金はサブスクリプション形式で、同時利用ユーザ1
人あたり12,000円／年となっている。

パラレルス、
Parallels Remote Application Serverの最新版
「version 15」を発表

　㈱翔泳社が行う、「ITエンジニアに読んでほしい！技
術書・ビジネス書大賞」の技術書部門大賞、ビジネス書
部門大賞、ゲストによる特別賞が2月18日のDevelopers
Summit 2016（以下デブサミ）にて決定し、発表された。
　本大賞では、Webからの投票によって選出された技
術書・ビジネス書のそれぞれベスト3について、デブサ
ミのセッション内で著者または担当編集者がプレゼンを
行い、会場の観覧者・特別ゲストの投票によって受賞書
が決定される。結果は次のとおり。

 技術書大賞
『プログラマ脳を鍛える数学パズル シンプルで高速な

コードが書けるようになる70問』

 ビジネス書大賞
『人工知能は人間を超えるか ディープラーニングの先に
あるもの』

 ゲスト特別賞　
『ワーク・ルールズ！』（大塚 弘記さん推薦）
『ハッカーの学校』（長田 絵理子さん推薦）
『HARD THINGS』（倉貫 義人さん推薦）

ITエンジニアに読んでほしい！技術書・ビジネス書大賞、決定

　㈱アイ・オー・データ機器は2月24日、セイコーソ
リューションズ㈱が提供する長期署名クラウドサービス
「eviDaemon」を組み込んだアプライアンス製品「WE1-

TS5/PACK」を発表した。
　「eviDaemon」は、デジタルデータの存在証明と、そ
のデータが改ざんされていないことを証明するタイムス
タンプを付与する、クラウド型のエビデンスソリュー
ション。標準規格「PDF長期署名（PAdES）」に準拠し、長
期署名データの生成や検証ができる。eviDaemonが組
み込まれたWE1-TS5/PACKを社内に配置して監視フォル
ダを設定することで、そのフォルダにファイル（おもに
PDFが対象）がコピーされると、自動的にタイムスタン

プが押されるしくみ。タ
イムスタンプが重要とな
る、特許出願といった業
務を行う企業にはとくに
重宝する製品と言える。
　価格はオープン。発売
は3月下旬を予定してい
る。

アイ・オー・データ機器、
存在証明のためのタイムスタンプ付与機能を組み込んだ
アプライアンス製品「WE1-TS5/PACK」を発表

▲▲WE1-TS5/PACK

㈱翔泳社　URL http://www.shoeisha.co.jp
CONTACT

パラレルス㈱　URL https://www.parallels.com/jp
CONTACT

㈱アイ・オー・データ機器
URL http://www.iodata.jp

CONTACT

http://www.iodata.jp/
http://www.shoeisha.co.jp/
https://www.parallels.com/jp/

186 - Software Design Apr. 2016 - 187

　さくらインターネット㈱は2月8日、新サービス「さく
らのIoT Platform」を2016年度中に提供開始することを
発表した。
　さくらのIoT Platformは、通信環境とデータの保存や
処理システムを一体型で提供するIoTのプラットフォー
ム。ハードウェア製品である「さくらのIoT通信モジュー
ル」と、キャリアネットワークをL2接続した閉域網を用
意し、ストレージ、データベース、ルールエンジンを含
むバックエンド、外部のクラウドやサービスと連携でき
るAPIまでを垂直統合型で提供する。
　さくらのIoT通信モジュールは、UART/SPI/I2Cでマイ
コンなどからセンシングデータを取得し、キャリアネッ
トワーク（ソフトバンク㈱または㈱ソラコム）を通じて
さくらインターネットの閉域網にのみデータを送信す
る。送信先としてはパブリックな領域、プライベートな
領域を選択でき、ユーザはAPIを通じてデータを利用す
る。将来的には、ユーザが収集したデータが第3者に利
用される際、収集者に利益が還元されるしくみも構築し
ていくとのこと。料金は月額・従量課金制ではなく、デー
タのやりとり、プライベート領域への保存、インターネッ

　2月10日、「F5 Japan Security Forum 2016」が、F5ネッ
トワークスジャパン合同会社主催で開催された。その中
の2つのセッションを紹介する。

 BIG-IP APMとPassLogicで実現する高セ
　キュア＆高パフォーマンスのマルチデバイス認
　証インフラ
　パスロジ㈱の酒井寛庸氏が紹介したのは、2月8日に
同社から発表された、SSL-VPN業界初となるスマートデ
バイスの端末固有情報自動登録機能。本機能はF5ネッ
トワークスジャパンとの共同開発で、リモートアクセス
装置「BIG-IP APM（Access Policy Manager）」と連携する
形で提供される。
　端末の多様化・BYODの普及によって、1人の社員が
複数の端末を使ってさまざまな場所から企業のネット
ワークにアクセスするという場面が格段に増えたが、場
合によっては数万台にもおよぶような端末の固有情報を
認証のためのDBに登録するのは、運用担当者にとって
非常に手間のかかる作業となる。
　今回発表されたソリューションにおいてはユーザは、

トとつなぐAPIの利用に対して課金される。
　同社の代表取締役社長である田中氏によると、本サー
ビスがイメージしているものは「モノのTwitter」。ネッ
トワークにつながったモノが情報をつぶやき続け、デー
タの送信者・受信者以外の第3者も、情報を利用できる
エコシステムを目指すとのこと。今後の流れとしては、
2016年4月より「さくらのIoT Platform α」、9月より「さ
くらのIoT Platform β」を提供する。

当該端末でBIG-IP APMに一度アクセスするだけで認証
DB内に端末固有情報が自動登録されるので、担当者に
よる登録の手間が大幅に削減される。

 総SSL通信化に備える。SSLの技術動向とセ
　キュリティ対策
　F5ネットワークスジャパンの桐谷彰一氏からは、SSL
の普及と問題点についてのセッションが行われた。
　現在、インターネットの全通信の1/4がすでにSSL化
済みで、フリーのSSL/TLS証明書発行サービス「Let's
Encrypt?」の登場などにより、今後も毎年30%の増加が
見込まれている。しかし、SSLの増加には「セキュリティ
対策製品が通信を検査できない」「証明書の運用・管理
で業務が煩雑になる」といった問題点もある。
　これら問題に対して桐谷氏は、BIG-IPのようなロード
バランシング機能を持った製品でSSLを終端し、証明書
を一括管理するといった方法が有効であると語った。

さくらインターネット、
「さくらの IoT Platform」を発表

F5ネットワークスジャパン、
「F5 Japan Security Forum 2016」開催

さくらインターネット㈱　URL http://www.sakura.ad.jp
CONTACT

F5ネットワークスジャパン合同会社　URL https://f5.com/jp
CONTACT

▲▲さくらインターネット㈱ 代表取締役社長 田中邦裕氏

http://www.sakura.ad.jp/
https://f5.com/jp

188 - Software Design

エンジニアのための
Gitの教科書

　Gitの初級者・中級者に向けたGitの本。本書まえがきに
よると、「古くならないGitの普遍的な知識」「検索しても見
つからない現場のノウハウ」を伝えることを念頭に置いて
いる1冊である。第1章では、初級者がつまずきやすい
ワーキングディレクトリ、ステージングエリア、リポジト
リの位置関係やインストール方法、基本コマンドを解説し
ている。第2章では、基本操作は覚えたが運用はこれから
という中級者に向けて、git-flowなどのブランチの運用手
法、運用戦略といった、Gitを活用したチーム開発手法を解
説している。最後の第3章ではそのさらに発展として、
GitHub-flowというブランチ運用戦略、GitやGitHubの
フック機能を活用した継続的インテグレーション／デリバ
リも紹介している。

株式会社リクルートテクノロ
ジーズ、株式会社リクルート
マーケティングパートナーズ、
河村 聖悟 ほか 著
B5変型判／200ページ
2,200円＋税
翔泳社
ISBN＝978-4-7981-4366-8

Effective
Python

　Pythonの人気がこれほどまでになるとは、隔世の感あ
りではなかろうか。今やPythonは、ブームになっている
機械学習の分野でよく使われることもあり、若い人にとっ
てもはや当然かつ必須の言語の1つになっている。本書の
内容は、最初はかなり基礎的に項目1「Pythonのバージョ
ンを知っておく」から始まり、項目2「PEP 8スタイルガイ
ドに従う」と続き、中ほどでは項目37「スレッドはブロッ
キングI/Oに使い、並列性に使うのは避ける」などのように
次第に難易度が上がっていく構成である（全部で59項目）。
本書に入門書的な内容を期待する読者は少ないと思われる
が、Pythonのスペシャリストの工夫や考え方を見ることが
できるので、より優れたコーディング能力を得たいと考え
る方にとって良い手本になるだろう。

Brett Slatkin 著／黒川 利明 訳
／石本 敦夫 技術監修
B5変型判／256ページ
3,200円＋税
オライリー・ジャパン
ISBN＝978-4-87311-756-0

ネットワーク
運用管理の
教科書

　ネットワーク運用管理業務を「定常業務」「非定常業務」
「トラブル対応」「Q&A対応」の4つに分け、前から3つに
ついて章を設けて、必要とされる技術ポイントを解説して
いる。定常業務の章では、日々のルーチンワークをこなす
ためのネットワークの構成、各機器の特性といった基本知
識を解説している。非定常業務の章では、業務システム変
更に伴う経路の変更やIPv6の導入など、その多くは手順
書がない中での作業ノウハウを紹介している。そして、ト
ラブル対応の章では、問題の切り分け方やログ解析につい
て深掘りしている。そのほか、ユーザの突発的な頼みを安
易に受けない、小さなトラブルでも上長とコンセンサスを
とってから対応するといった仕事面でのケーススタディも
紹介されており、企業での実業務を志向した本と言える。

のびきよ 著
B5変型判／272ページ
2,980円＋税
マイナビ出版
ISBN＝978-4-8399-5780-3

【改訂新版】サーバ構
築の実例がわかる
Samba［実践］入門

　2010年に出版された『サーバ構築の実例がわかる
Samba［実践］入門』の改訂版である本書は、最新の
Samba 4.xとWindows 10に対応したものだ。前書に
あったNTドメインの章がなくなり、その分、Active
Directoryのドメインコントローラ機能の解説が追加され
ている。元々のコンセプトである「GUIを使わず設定ファ
イルを直接修正し、コマンドラインから設定を行い、具体
例を掲載する」という方針はそのままで、現行のLinuxディ
ストリビューション（CentOS 7/Ubuntu 14.04 LTS/
FreeBSD 10）での解説が行われている。
　現在ではWebを検索すれば、smb.confの設定は多く見
つけられるが、「何がどうなってこういう設定なのか」とい
う部分を理解をするために、本書は役立つだろう。

髙橋 基信 著
A5判／256ページ
2,680円＋税
技術評論社
ISBN＝978-4-7741-8000-7

Apr. 2016 - 189

あるプロセスにメッセージを送るシグナルという仕組みがあります。キーボードのc＋Cを押せば「INT」シグナルが送られて実行中
のプロセスが終了、c＋Zを押せば「TSTP」が送られて一時停止します。キーボードの他に、killコマンドで、シグナルと送信先プロ
セスを指定して送ることもできます。killは「プロセスを殺すコマンド」なんて物騒なものではなく、実は「プロセスにシグナルを送る
コマンド」なんですよ。「man kill」を見ると好奇心爆発してソースコードに飛び込みたくなりますね。「kill -1 -9」の例も実行してみ
たくなり、趣き深い。他にもpkill、skill、killallなどのシグナルコマンドがあります。これらでも6つ子できるかな？

ア
レ
ほ
ど
B
L
展
開
は
ダ
メ
よ
と
釘
を
挿
し
た
の
に
作
画
し
よ
う
と
し
た
裏
乙
女
な

く
つ
な
先
生
の
連
載
が
読
め
る
の
は
本
誌
だ
け
!

作）くつなりょうすけ
@ryosuke927

先輩、今度提案
するうちの新ユニット
見てもらえます？

まぁ、近いですが
『技術』をアピールする
ユニットですね。
おーい入ってこーい！

お、けっこうな
人数がいるんだな。
しかも野郎
 ばっかか……

長男はHUP松！
端末を閉じたときに、
端末で起動した
プロセスに連絡する
律儀なヤツ！

デーモンに
停止と再起動
させてファイル
リロードさせる
面倒見のいい
リーダー！

特技は
遠慮ない横入り！
爆買いの人も

次男はINT松！

ビックリだ！

三男は
TERM松！
遺書・遺品を
片付けるまでは
殺さない！

慈悲深い
優しい
暗殺者！

四男
KILL松！
躊躇なく殺す、
遠慮ない
殺人鬼！

五男は
TSTP松！
c＋Zで
プロセスを
一時停止だ！

6男は
SEGV松！

実は手厳しい
メモリ
違反警察！

ムツゴのシグナル兄弟！
その名も
「シグ松さん」!!

将来的には64のシグナルを
全部集めて、「シグナル64」
というユニットに育てようと
企画しています

ウチの会社は
どこに
向かってんだ？

二重人格者で、
CONT松になって
プロセス再開も
マッチポンプで
できちゃうぞ！

実は
ゾンビ
以外は
逃がさ
ない！

キーボードから
c＋Cで
カジュアルに
プロセスを止め
ちゃうよ！

ユニット？
ウチの会社は
アイドル養成とか
始めたのか？

シグ松さん第26回

①
⑤

⑧

⑦

⑩

⑥

⑨

②

④

③

190 - Software Design

シンギュラリティがやってくる？
2045年に到来すると言われるシンギュラリティ（技術的特異点）。Wikipediaによると「未来
研究において、正確かつ信頼できる、人類の技術開発の歴史から推測され得る未来モデルの
限界点」とのことで、この時点を境に人間がテクノロジの発展を予測できなくなると言われて
います。2045年というと本誌は創刊55周年になりますが、月刊発行では追いきれなくなる
スピードで IT技術が発展し続けてしまう、編集者泣かせの世界がやってくるのでしょうか？

OSSの2大データベース管理システム
「MySQL」「PostgreSQL」について、利用
シーン・アーキテクチャ・ライセンス・
SQL構文・機能性・拡張性・新追加機能・
コミュニティといった観点から徹底的に
比較しました。

基本的にMySQLしか使ったことがな
かったので良い勉強になった。
 tokichieさん／東京都

実は第1特集の著者の知り合いで、「特
集読んだよ！」と教えてあげたところ、
たいそう喜んでいました。
 福名一さん／岡山県

何に気を付ければ良いか、わかりやす
く書かれていた。 桑村さん／兵庫県

Tips的な内容も詰まっていて良かった
です。MariaDBの紹介もライセンス
のとこであったほうが良かったかもし
れません。 コメットさん／兵庫県

MySQLとPostgreSQLにこんなに
違いがあるとは知りませんでした。
 psiさん／東京都

会社での比較検討の材料として使えそ
う。	 🐸くんさん／石川県

仕事ではいつもPostgreSQLしか使っ
ておらず、MySQLを使用するモチベー
ションがいまいち湧かなくて違いもわ
からなかったのですが、この特集で
MySQLに興味を持つことができまし
た。今回の特集ではなかったのですが、
レプリケーションなどの機能も深堀り
した記事が読みたいです。
 今井さん／千葉県

「こんな違いがあったなんて……」
という声が多く寄せられました。

DBMSの性能はシステムの性能に直結す
ると言っても過言ではないため、扱うデー
タや利用シーンによってうまく使い分け
ができれば良いですね。

1Gbps超時代を迎えるにあたり、通信ケー

ブルの選択やラック内の配線といった、ネッ

トワークエンジニアに求められるケーブリン

グ技術を特集しました。ケーブルの規格から

PoEのしくみまで盛りだくさんの内容でした。

敷設してしまうと忘れられがちなもの
ですが重要です。 下平さん／東京都

openDCIMは知らなかったですが、
便利そうなので使ってみます。
 橿山さん／埼玉県

ケーブルの性能が上がった分、扱いも
大分デリケートになったと感じる。エ
アフローへの影響も大きい。
 隼さん／岩手県

とっても参考になりました。社内サー
バ室も同じ問題になりがちなのでよかっ
たです。 引田さん／埼玉県

有線LANの特集記事はたいへんわか
りやすかったです。次回は、ぜひ無線
LANを有線並みに安定して使用する方
法などをお願いします。
 中村さん／大阪府

今回は最初から最後までハード
ウェアのお話でした。クラウドが

普及しても社内サーバは残り続けると思
うので、ケーブルやラックについてのノ
ウハウは、会社の中で誰かが知っておか
なくてはならない知識と言えますね。

Androidアプリ開発に最適な統合開発

環境「Android Studio」の特集です。お

2016年2月号について、たくさんの声が届きました。

第 1特 集　MySQLと Postgre
SQL徹底比較

第2特集　適切なLANケーブリ
ングの教科書

一般記事　Android Studioの
スタイルで効率アップ！

190 - Software Design Apr. 2016 - 191

もにAndroid Developer Toolsからの移
行者に向けて、Android Studioでの効
率的なアプリ開発の方法を解説しました。

自分も使っているので、とても関心を
持てた。 宮嵜さん／大阪府

開発環境はもの凄く効率に影響すると
思います。IDEをいくつか渡り歩いて
ますが、ちょっと便利なエディタ（jEdit）
が一番使用頻度が高いかもしれません。
 NGC2068さん／愛知県

Android Studioの性能・魅力を最大
限に活用するヒント満載で良かったで
す。 オミオさん／宮城県

けっこう、今まで効率が悪かったのが
わかりました。 佐伯さん／熊本県

Androidアプリの開発にはマスト
とも言えるAndroid Studioです

が、IntelliJ IDEAがベースとなっている
だけあってやや癖があるようです。特徴
を押さえて、機能に振り回されないよう
になることが肝心ですね。

ITインフラの中心がオンプレミスから
クラウドへ移るに伴って、システムに
対する負荷試験も、それに合わせたも
のを用意する必要があります。本連載

ではクラウドに載せたWebサービスの
「スケーラブル」を担保するための負荷
試験について見ていきます。第3回では
実際の負荷試験の進め方を解説しました。

自社の運営しているサービスと構成が
似ているため非常に参考になりました。
段取りや目的についてあいまいになる
ことが多く、負荷試験をすること自体
が目的になることもあったため、とく
に留意したいです。
 yurakawaさん／東京都

個人的には、10数年以上前から（Web
ではないもので）似たような負荷試験み
たいなことをしていました。その当時
からの方法や考え方とほぼ同じだった
ので、自分で考えていたことがまちが
いではなかったと安心できました。
 福田さん／神奈川県

負荷試験においては、想定され
る実際の負荷を再現することが

大事ですね。TVで取り上げられたり、
有名人にSNSでつぶやかれたりといっ
た「○○効果」「○○砲」と呼ばれる事態
を具体的にイメージして、負荷試験を
進める必要があります。

Windows共有フォルダをChromeOSの
ファイルアプリにマウントするアプリ。

その開発には「SMBプロトコル」の理解
とJavaScriptでの実装が必要でした。最
終回では、アプリ側にファイル操作を実
現していきました。

探索って、辛いけれどもおもしろい作
業ではあります。 鈴木さん／熊本県

どれだけ苦労したのか、考えさせられ
る記事。 とーふやさん／神奈川県

本連載で4回に渡って開発の過程
を解説したアプリは、「File System

for Windows」という名前でChromeウェ
ブストアに公開されています。気になっ
た読者の方は、ぜひ使ってみてください。

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① ハンディ洗濯機「COTON」
尾曲克己様（愛知県）

② Lexar JumpDrive M20i（32GB）
まっきー様（東京都）

③ ExcelCreator 2016
梅田嗣也様（愛知県）

④ プログラマのためのDocker教科書
勇和博様（大阪府）、d_kawakawa様（茨城県）

⑤ 『新・明解C言語 実践編』
田村拓哉様（大阪府）、横山良英様（神奈川県）

⑥ 『サイバーリスクの脅威に備える』
橋本裕一郎様（埼玉県）、永作肇様（東京都）

⑦ 『お金をドブに捨てないシステム開発の教科書』
澤崎敏幸様（富山県）、n0ts様（東京都）

2月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

短期連載　SMB実装をめぐる冒
険【最終回】

短期連載　クラウド時代のWeb
サービス負荷試験再入門【3】

mailto:sd@gihyo.co.jp
http://sd.gihyo.jp/

Software Design
2016年4月号

発行日
2016年4月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2016年5月号
特別定価（本体1,420円＋税）

192ページ

May 2016
4月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2016 技術評論社

●2月某日、いきなりノロウィルスに感染し、たいへんヤ

バイことに。嘔吐発熱下痢。私から娘へ感染し、数日遅

れて家内に感染して、家庭機能ダウン。あやうく幼子を

誰もみれない危機に。その間に仕事は遅延し、いろいろ

な方に迷惑をかけてしまいました。国家予算を投じてノロ

ウィルスワクチンを開発すべきだ！（本）

●2月末に「かまぷの部屋」の打ち上げをやりました。登

場20人中12人が参加。

ありがとうございます。

編集後記に写真載せろと

いう提案されましたが、

いかがですか？（幕）

●ただいま人身事故にて電車停車中。あと2駅なの

でそのまま乗って待つか、動き始めた反対方面の電

車に乗って3駅戻って別の路線に乗り換えるか。お、

反対側の電車が入ってきたぞ。チャレンジする？　1

本スルーして次？　いやそれこそ失敗する選択だ、ど

うする！　プチ・“未来の分岐点”を堪能。（キ）

●久しぶりにNHK大河ドラマ（今年は「真田丸」）を見

ています。ちゃんと続けて見られているのは、2008

年の「篤姫」以来です。大河ドラマは、歴史を楽しく

学ぶには良いのですが、所詮は史実をもとにしたフィ

クションなので、どこが史実でどこが作り話なのかが

わからないところが難点です。（よし）

●本誌過去記事をまとめた『オブジェクト指向をきちん

と使いたいあなたへ』が発売中です。著者は計13人

と大所帯！　1つのテーマについていろいろな人の考

えが読めるのは、ムック本ならではです。書店で見つ

けたときは、ぜひ手に取ってみてください。“組み木

で形作った矢印（↑）”が目印です。（な）

●手縫いで小さなぬいぐるみを作っていて、先日初めて

自己企画ではないグループ展にお呼ばれして参加させて

いただきました。会期中、たくさんの出逢い、温かいお

言葉をいただけたのが何よりも嬉しかったです。これを

励みに今後も頑張ります。（弊社某誌で執筆されていた

イラストレータさんも参加されていてびっくりぽん ! （ま）

S D S t a f f R o o m

［特別付録］
IoTを始めよう！　SORACOM SIM限定バージョン
［第1特集］ すべての道はエディタに通ず

［超定番］Vim入門
——ステップアップのための特別講座
　インフラエンジニアも、プログラマーも、Webデザイナーも、先輩達はみんな
Vimを使っていませんか？　新年度の今、初心者からデキる人にステップアップしま
しょう。まずはWindows/Linux/Macで環境設定を盤石にするノウハウを紹介しま
す。初心者が押さえておくべきVimのテクニックを押さえてから中級者になるための
実技を紹介、そして覚えておくとよいVimキーバインドをまとめ、Git/GitHubとの
連携についてももちろん言及します。Vimでエンジニアの世界に仲間入りしましょう！
［第2特集］ 2年ぶりのLTS

安定のUbuntu 16.04の新機能
　2年に一度のUbuntu長期間サポート版（LTS）がリリースされます。Ubuntuの基
礎知識から16.04 LTSの変更点の概要、Ubuntuとそのフレーバー（Ubuntuをベー
スとし、デスクトップ環境を変更した公式派生版）、そして広く使われるようになった
サーバの、Ubuntu独自機能を中心とした使い方を、Ubuntu Japanese Teamの
メンバーが総力を挙げてお届けします。

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

192 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design2016年4月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 やればできる！　ワンランク上のプログラミング　今すぐ実践できる良いプログラムの書き方　きれいなコード／モダンなコードが書きたい　［C、Java、C#、Ruby、JavaScript］
	第1章：C言語編 enum、配列、浮動小数点を駆使して差をつけよう「より良いプログラム書きのヒント」　
	第2章：Java編 良いコーディングのさいしょの一歩石田 真彩、長澤 太郎
	第3章：C#編 言語機能の進化から学ぶ「良いコードの書き方」 岩永 信之
	第4章：Ruby編 お作法を意識して可能性や保守性を高めよう伊藤 淳一
	JavaScript+HTML+CSS編 再考！ 今どきのWebアプリ開発のベストプラクティス......青木 裕一

	■第2特集 オブジェクトストレージの教科書 OSSと3つの製品事例から学ぶ新しいデータ管理のしくみ
	Part1：オブジェクトストレージとは何か？ ファイルサーバ／FTPサーバとの違いから考える中井 悦司
	Part2：オブジェクトストレージの分散処理を理解しよう OpenStack SwiftとCephを支える技術中井 悦司
	Part3：国内・オブジェクトストレージサービス紹介　NTTコミュニケーションズ、IDCフロンティア、GMOクラウドのエンジニアが語るサービスや実装の勘所
	 〔Case 1〕Cloudn Object Storage石津 晴崇
	〔Case 2〕IDCフロンティアのオブジェクトストレージサービス佐藤 博之
	〔Case 3〕GMOクラウドオブジェクトストレージ片桐 勇人

	■特別企画　適切なLANケーブリングの教科書　......佐伯 尊子
	［番外編その1］ ネットワーク／サーバエンジニアに求められる光ファイバの知識
	［番外編その2］ ネットワーク／サーバエンジニアに求められるラック選定や電源の知識

	■特別企画　DevOpsは日本に定着するのか？ 春の嵐呼ぶ！　DevOps座談会　——TKC、U-NEXTの2社が考える開発のあり方とは　......松下 康之、三坊 鉄平、秋穂 賢、仲田 聰
	■Catch up trend
	うまくいくチーム開発のツール戦略【新連載】メールベースでの進行管理の限界、ツール活用による変革熊井 亮輔、大塚 和彦

	■連載：Column
	digital gadget【208】デジタル楽器のガジェット視点　......安藤 幸央
	結城浩の再発見の発想法【35】Scope　......結城 浩
	増井ラボノート　コロンブス日和【6】Dynamic Macro　......増井 俊之
	宮原徹のオープンソース放浪記【2】一般向け／ビジネス向けのOSC　......宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【10】Ethernetにつないでみる　......坪井 義浩
	Hack For Japan〜エンジニアだからこそできる復興への一歩【52】エフスタ!! TOKYOでデザインと開発を考える　......鎌田 篤慎
	温故知新 ITむかしばなし【53】マシン語〜高速なプログラムを目指して〜　......速水 祐
	ひみつのLinux通信【26】シグ松さん......くつなりょうすけ

	■連載：Development
	RDB性能トラブルバスターズ奮闘記【2】SQLのための仕様書は書くだけムダ......生島 勘富、開米 瑞浩
	Androidで広がるエンジニアの愉しみ【4】MIDI音源から音を出す嶋崎 聡
	Vimの細道【4】Vimの正規表現をマスターするmattn
	るびきち流Emacs超入門	【24】少し休憩。Emacsでゲームを遊ぼうるびきち
	書いて覚えるSwift入門【13】Protocol-Oriented Programming　......小飼 弾
	セキュリティ実践の基本定石【31】米国CIA長官のメールを盗んだ16歳の少年　......すずきひろのぶ
	Sphinxで始めるドキュメント作成術【13】Markdownで始めるSphinx　......清水川 貴之
	Mackerelではじめるサーバ管理【14】式を使って柔軟なグラフを書こう　......田中 慎司

	■連載：OS/Network
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【29】bhyveでOpenBSDファイアウォール on FreeBSDを構築（その4）......後藤 大地
	Debian Hot Topics【34】Hyper-VでDebianをフルサポート相当にするための挑戦　......やまねひでき
	Ubuntu Monthly Report【72】Raspberry Pi 2を普通のデスクトップとして使用する　......あわしろいくや
	Linuxカーネル観光ガイド【49】Linux 4.1から4.4までのeBPFに関する開発　......青田 直大
	Monthly News from jus【54】これからのエンジニアのあり方、コミュニティのあり方　......波田野 裕一、榎 真治、法林 浩之

	■アラカルト
	ＩＴエンジニア必須の最新用語解説【88】TensorFlow　......杉山 貴章
	読者プレゼントのお知らせ
	SD NEWS & PRODUCTS
	SD BOOK REVIEW　
	バックナンバーのお知らせ
	Readers’ Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内

