

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

本SIMカードについての問い合わせ
株式会社ソラコム　SORACOMユーザーコンソール内サポートサイト（ユーザー登録が必要）
https://console.soracom.io/

第 1 章　SORACOM Air SD Special Version の使い方… ……………………PRE-2	 平 愛美

第 2 章　おうちで楽しむ家庭内IoT… ………………………………………………………………………PRE-6	 平 愛美

第 3 章　APIを使ってSORACOMの便利さを体感!………………………………………PRE-8	 小熊 崇

第 4 章　myThingsとSORACOM… …………………………………………………………………… PRE-12	 山本 学

第 5 章　SORACOMとさくらのIoT Platform……………………………………………… PRE-14	 松本 直人

特別SIMで始めよう！　
SORACOM AirでわかるIoT

本誌特別付録
SORACOM Air SD Special Version利用上の注意
●● �本SIMカードを利用する際は、本誌180ページからの「SORACOM
Airサービス契約約款」を精読し了解いただき、各種通信環境を準
備したうえで使用してください。
●● �本SIMカードは、株式会社ソラコムのデータ通信サービス「SORACOM
Air」専用です。それ以外は使用できません。
●● �本SIMカードの利用には、株式会社ソラコムのWebサイトにて登
録手続きが必要です。本SIMカードの登録期限は2016年5月
18日までです。登録手続きは、登録期限までに行ってください。
登録期限が切れたSIMは、使用できません。
●● �本SIMカードの登録には、クレジットカードが必要です。
●● �本SIMカードおよびSORACOM Airについての詳細は、●
https://soracom.jp/services/air/を参照ください。
●● �本SIMカードについての動作不良・不具合・技術的な質問、通
信料金などは株式会社ソラコムのサポートサイトに問い合わせくだ
さい。https://soracom.jp/contact/
●● �本SIMカードを使用したことによるいかなる損害にも株式会社技術
評論社および株式会社ソラコムは責任を負いません。
●● �万一、本SIMカードが物理的に破損していた場合には良品と交換

しますので、その特別付録SIMカードを下記までお送りください。
その際、「交換希望」ということと、トラブルの概要をお書き添えく
ださいますよう、お願いいたします。トラブルを確認したうえで、
良品と交換させていただきます。本誌購入時点での物理的な破損
以外の質問は、下記ソラコムサポートサイトでお問い合わせください。

〒162-0846
東京都新宿区市谷左内町21-13
株式会社技術評論社　雑誌編集部ソフトウェアデザイン編集部
FAX 03-3513-6179　Mail sd@gihyo.co.jp

SIMカード取り扱い上の注意
●● �本SIMカードに物理的に強い力を加えたり、水のような液体をか
けたり浸したりしないでください。故障の原因になります。
●● �高温多湿、直射日光のあたる場所で保管をしないでください。ま
た車のダッシュボードやストーブの上など極端な高温の場所に放置
しないでください。
●● �本SIMカードの金属部分・金属接点部分には、なるべく触れない
でください。また、金属部分を傷つけたり、ペンなどで書き込んだ
りしないでください。データの損失や故障の原因になります。
●● �小さいお子様や乳幼児の手の届かないところに保管ください。

巻頭
特集

mailto:sd@gihyo.co.jp
https://console.soracom.io/
https://soracom.jp/services/air
https://soracom.jp/contact/

PRE - 2 - Software Design

SORACOM Airとは

　SORACOM Airはソラコムが提供する IoT

向けのSIMカードです。いわゆるMVNOです。
NTTドコモの3G/LTE回線を利用しているた
め、日本全国だいたい人の住んでいるところで
あれば市街地でも山間部でもつながります。
SORACOM Airはダウンロードよりもアップ
ロード、日中よりも深夜時間帯の通信料金が安
価に設定されています。ダウンロードをほとん
ど行わずにセンサーデバイスから生成される小
さなデータを定期的にアップロードし続けたり、
昼間に貯め込んだデータを夜間に一括でアップ
ロードしたりするようなIoTデバイスに適した、
1MBあたり0.2円～の従量制の通信料金設定に
なっています。回線を維持するための料金は1

日あたり10円（SMS付きSIMだと1日あたり
15円）、月額300円で1回線を維持できます。

SORACOM Airの
アクティベーション方法

　付録のSIMカード「SORACOM Air SD Special

Version」は、利用する前にSORACOMアカウ
ントの作成と、SIMカードのアクティベーショ
ン作業が必要です。アクティベーション期限が
本誌発売日より1ヵ月以内となっており、アク
ティベーション作業は2016年5月18日までに
行う必要があります。また、利用に際してクレ
ジットカードの登録が必要となります。法人契
約の場合、ソラコムに直接問い合わせると請求
書払いも可能とのことです。
　これからSORACOMアカウント作成とアク
ティベーション方法について説明していきます。

・まずは次のURLにアクセスし、SORACOM

アカウントの作成を行います
　https://console.soracom.io/#/signup
・メールアドレスとパスワードを入力する（図1）

と、本人確認のメールが飛んできます
・本人確認のメール中に含まれるワンタイム

URLに1時間以内にアクセスしてください
・SORACOMのユーザーコンソールのログイ

ン画面（図2）に飛びますのでログインします
・ポップアップメッセージの「利用開始」をクリッ

クします
・右上の通知メッセージの「今すぐ設定してく

ださい。」（図3）をクリックし、支払方法を登
録します

・「新しいクレジットカードを登録」をクリック

SORACOM Air SD Special Version
の使い方

「特別SIMで始めよう!　SORACOMでわかるIoT」

さっそく使ってみよう

Author 平 愛美（たいら まなみ）　Linux女子部　 Twitter @mana_cat

巻頭特集

 ▼図1　SORACOMアカウントの作成

 ▼図2　SORACOMアカウントにログイン

https://console.soracom.io/#/signup

SORACOM Air SD Special Version
の使い方

さっそく使ってみよう
第 1 章

PRE - 2 - Software Design May 2016 - PRE - 3

 ▼図4　クレジットカードの情報を登録 ▼図5　IMSI番号とパスコードを入力

 ▼図3　右上のポップアップメッセージをクリック

します
・クレジットカードの情報を登録します（図4）
・次にタブから「SIM管理」をクリックし、SIM

カードを登録します
・「SIM登録」の青いボタンをクリックします
・登録にあたってはSORACOM Air SD Special

VersionのSIMカードの裏面に記載されてい
る15桁のIMSI番号と5桁のパスコードが必
要です。名前は空白でも結構です。あとでわ
かりやすい名前を付けられます（図5）

・SIMカードの登録が成功したら、「終了して元
の画面に戻る」をクリックします

・最後に使用開始処理を行います。対象となる

SIMカードのチェックボックスをクリックし、
「操作」→「使用開始」を選びます（図6）

・確認画面で「ステータスを変更する」をクリッ
クします

・あとはSIMカードを好きなデバイスに差し込
んでお使いください。次ページではRasp
berry Piから使う方法を紹介します

SORACOM Air設定情報

　NTTドコモもしくはSIMロックフリーのス
マホなどで設定したい場合には、表1の項目を
指定すると手動設定が行えます。

項目 設定

APN soracom.io

ユーザ名 sora

パスワード sora

認証方式 PAP

PDP Type IP

 ▼表1　手動設定のた
 めの設定情報

※ iPhoneや iPadの場合は
APNの設定ができないた
め、ソラコムが提供して
いる構成プロファイルを
インストールする必要が
あります。機器をWi-Fiな
どでつなぎ、「https://sora
com.jp/start/」よりダウン
ロードしてください。

 ▼図6　対象のSIMをチェックし「操作」→「使用開始」を選択

https://soracom.jp/start/

PRE - 4 - Software Design

「特別SIMで始めよう!　SORACOMでわかるIoT」巻頭特集

接続方法

　SORACOM AirはNTTドコモ系のMVNO

回線ですので、NTTドコモが販売していたス
マートフォン、Wi-Fiルータ、USBモデムな
どで利用可能です。もちろんSIMロックフリー
の端末でも利用できます。
　NTTドコモで販売されていたLG L-02Cな
どが好んで使われていますが、ヤフオク！や秋
葉原の中古市場で入手する必要があります。今
回は入手が容易で、かつ新品で購入できる富士
ソフト㈱のFS01BUと、メカトラックス㈱の
3GPIによる接続方法を紹介します。

FS01BUの接続方法

　FS01BUはUSBドングルタイプの3Gモデ
ム（写真1）で、PCやRaspberry PiのUSBポー
トに接続して使用できます注1。
　FS01BUを使う場合、Raspberry PiのOSか
らダイヤルアップすることでインターネットに
接続できます。OSがRaspbianなどの場合、
wvdialというコマンドラインからダイヤルアッ
プするツールがあります。今回はwvdialで使
うまでの手順を紹介します。

wvdialのインストール

　コマンドラインで次のとおり実行します。

 Debian/Raspbianの場合
apt-get install wvdial
 Fedora/Pidoraの場合
yum install wvdial

FS01BUの認識

　FS01BUを差し込むと、次のようなデバイ
スが lsusbコマンドで確認できます。

lsusb
Bus 001 Device 005: ID 1c9e:6801 OMEGA TECHNOLOGY

　このデバイスは、/dev/ttyUSB1に接続され
たUSBシリアルポートとして認識します。
　次に /etc/wvdial.confを編集します（リスト
1）。wvdialはもともと電話回線でインターネッ
ト接続をしていたころのツールで、3Gモデム
を利用する場合にはAPNを指定する必要があ
るため、ATコマンドと呼ばれる制御コマンド
を指定する必要があります。ユーザ名とパスワー
ドはsoraで共通となっているので、リスト1の
まま入力してかまいません。

wvdialで接続確認

　rootユーザでwvdialコマンドを実行します（図

注1） 現在、FS01BUはソラコムの直販サイト（SORACOMのユーザーコンソールにログインしたあとの「発注」をクリックすると出てき
ます）で、8,500円のところキャンペーン特価で6,900円にて購入可能です。

 ▼写真1　FS01BU

[Dialer Defaults]
Init1 = ATZ
Init2 = AT+CGDCONT=1,"IP","soracom.io"
Init3 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
Dial Attempts = 3
Stupid Mode = yes
Modem Type = Analog Modem
Phone = *99***1#
Dial Command = ATD
New PPPD = yes
Modem = /dev/ttyUSB1
Baud = 460800
ISDN = 0
Username = sora
Password = sora
Carrier Check = no
Auto DNS = 1
Check Def Route = 1

 ▼リスト1　/etc/wvdial.conf（FS01BUの場合）

SORACOM Air SD Special Version
の使い方

さっそく使ってみよう
第 1 章

PRE - 4 - Software Design May 2016 - PRE - 5

7）注2。

3GPIの接続方法

　3GPIはRaspberry PiのGPIO 40pinに接続す
るタイプで本体上部にスタックできます（写真2）。
GPIO 40pinは制御用に利用し、Raspberry Piと
はUSBケーブルで接続します。3GPIの接続設
定は、FS01BUよりも簡単でNetworkManagerで
ダイヤルアップ可能です。コマンドラインから設
定や接続制御を行う場合、nmcliコマンドを利用
します。図8を実行すると自動的に接続される
ので、その後に接続状態を確認します。

nmcli connection show

切断方法

　次のように実行すると切断できます。

nmcli connection down soracom

SIMカードアダプターの使い方

　本誌に付録するSORACOM Airは現在市販
されているスマートフォンと同じNano SIMサ
イズのものです。先に紹介したFS01BUや
3GPIのSIMスロットなどは標準SIMサイズで
すので、そのまま差し込むことができません。
　そこでNanoサイズから標準SIMサイズに変
換して大きくする必要があります。家電量販店
などでもSIMカードアダプターが500円程度
で販売されています。筆者の近所ではローソン
ストア100で売っていました。
　SIMカードアダプターは、SIMスロットに
差し込む際に外れてしまうとSIMカードスロッ
トを破損させてしまうこともありますので、取
り扱いには十分ご注意ください。心配な場合に
は標準SIMサイズのSORACOM Airも販売し
ているので検討すると良いでしょう。ﾟ

 ▼写真2　Raspberry Piと接続した3GPI

wvdial
--> WvDial: Internet dialer version 1.61
--> Initializing modem.
--> Sending: ATZ
OK
--> Sending: AT+CGDCONT=1,"IP","soracom.io"
AT+CGDCONT=1,"IP","soracom.io"
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
--> Modem initialized.
--> Sending: ATD*99***1#
--> Waiting for carrier.
ATD*99***1#
CONNECT 14400000
--> Carrier detected. Starting PPP immediately.
--> Starting pppd at Sat Mar 12 18:38:32 2016
--> Pid of pppd: 1315
--> Using interface ppp0
--> pppd: ???v
--> pppd: ???v
--> pppd: ???v
--> pppd: ???v
--> pppd: ???v
--> local IP address 10.164.181.156
--> pppd: ???v
--> remote IP address 10.64.64.64
--> pppd: ???v
--> primary DNS address 100.127.0.53
--> pppd: ???v
--> secondary DNS address 100.127.1.53
--> pppd: ???v

 ▼図7　wvdialコマンドを実行

nmcli connection add type gsm ifname "*" con-name soracom apn soracom.io user sora password sora

 ▼図8　nmcliコマンドを実行

注2） NetworkManagerサービスが稼働しているとwvdialと干渉するため、事前にNetworkManagerサービスを無効化しておきましょう。

PRE - 6 - Software Design

家庭内 IoTのススメ

　第 1章では、Raspberry PiにてSORACOM

Airを使う方法を紹介しました。本章では、小規
模で簡単に楽しめる我が家の家庭内IoTの活用
例について紹介しましょう。Internet of Things、
つまりモノがインターネットにつながっているこ
とが重要です。プロトコルとしてはHTTPや
MQTT（MQ Telemetry Transport）などがよく使
われますが、何を使ってもかまいません。今回は、
育児支援向け温湿度管理システム「IoTスーパー
こまち」と「SORACOM IoTクリスマスツリー」を
紹介していきます。

私が電子工作を始めたきっかけ

　きっかけは些細な出来事でした。夫が海外出
張中に、プラレールをリモコンで操作できる無
線コントローラが壊れてしまって、4歳の長男
が私に対してこのように言いました。
　「ママは直せないよね。パパじゃないと直せ
ないよね……パパが居なくて、寂しい……」
　私は「そんなことないよ。大丈夫！　ママだっ
て直せるよ」と息子に約束しました。そして、
子どもたちを寝かしつけてから夜な夜な電子工
作をするようになりました。はんだごてを手に
取った母ちゃんは息子との約束を果たすために、
プラレールのコントローラ自作を目指します。

IoTスーパーこまち

　IoTスーパーこまち（写真1）は、いわゆる
Twitterボットです。単なるボットではなく、
温湿度センサーのBME280からI2C経由で温度
と湿度を読み込んで、定期的にTwitter API経

由でツイートします。よって、このTwitterボッ
トをフォローしていれば、寝室の温度と湿度が
タイムラインに流れてきます。家庭内IoTを長
く続けるコツとしては、日ごろ定期的にチェッ
クするシステムに結果を混ぜ込む、結果を確認
するためだけにクライアントアプリを作らない、
管理負担となるシステム／サーバを極力増やさ
ないことがポイントです。

SORACOM IoT
クリスマスツリー

　SORACOM IoTクリスマスツリー（写真2）
は、SORACOM Advent Calendar 2015の企画
で期間限定で公開したシステムで、クリスマス
イブに公開予定だったのでコンセプト先行で着
手しました。
　秋葉原でLEDイルミネーションキットを購
入し、私が回路の配線を行い、息子が飾り付け
を担当しました。そして、夫がMQTTプロト
コルを使った本格的なアプリをプログラミング
してくれました。玄関のクリスマスツリーに設
置したRaspberry PiをSubscriber、OpenShift

Online上にデプロイしたアプリをPublisherと
して、MQTT BrokerはApache ActiveMQを
使っています。MQTT Brokerはグローバル
IPアドレスが必要だったので、GMOインター

「特別SIMで始めよう!　SORACOMでわかるIoT」巻頭特集

 ▼写真1　IoTスーパーこまち

おうちで楽しむ家庭内IoT
Raspberry Pi＋クラウドでこんなことができる！

Author 平 愛美（たいら まなみ）　Linux女子部　 Twitter @mana_cat

おうちで楽しむ家庭内IoT
Raspberry Pi＋クラウドでこんなことができる！

第 2 章

PRE - 6 - Software Design May 2016 - PRE - 7

 ▼写真2　SORACOM IoTクリスマスツリー

ネットのConoHa上で動かしました（図1）。
　実際に使っていたソースコードとAnsible

PlaybookをGitHubで公開しています注1。MQ

TT Brokerのサーバ名をexample.comから任意
のFQDNに書き換えて、デプロイすればお好
きな環境で簡単に動かせます。

次回作 IoTプラレール

　電子工作を初めて数ヵ月で、はてなブックマー

クのホットエントリーに取り上げられ、雑誌や
ムック本の執筆依頼が増えてしまい、そして次
男の保育園活動と忙しさにかまけて、本来の目
的が後回しになっていました。
　最近、ついに「IoTプラレールはマダー？」と
夫から突かれてしまい、Raspberry Pi Zeroを
使って、インターネット経由で制御できるプラ
レールを鋭意製作中です。完成したら、どこか
で公開したいと思います。お楽しみに！ﾟ

注1） https://github.com/htaira/mqtt-xmas-tree-subscriber
 https://github.com/htaira/mqtt-xmas-tree-webapp

 ▼図1　システム構成

Webアプリ
（PHP）

ConoHa

MQTT Broker
Apache ActiveMQ

MQTT Publisher

MQTT Subscriber

MQTTMQTT

OpenShift
Online

　MQTTはPub-Sub（Publish-Subscribe）型モデルと呼ば
れるシステム構成を組みます。メッセージの出版側を
Publisherと呼び、購読側を Subscriberと呼びます。
MQTT以外の Pub-Sub型モデルのプロトコルには、
AMQP、STOMPなどがあります。シンプルな実装となっ
ているため、どのプロトコルを使っても同じようなこ
とはできますが、MQTTのサポートを表明しているデバ
イスメーカーや、各OS、言語環境におけるライブラリ
の実装度合いが整っている点が魅力です。
　互いにPublisherとSubscriberの両方を兼ねることも
可能です。MQTTのPublisherと Subscriberの間は、直
接通信するわけではなく、MQTT Brokerと呼ばれる仲

介サーバを介して通信を行います。このようなしくみ
を取るため、Pub-Subとして見ると1:1、1:N、N:1、N:M
の双方向通信が可能となります。また、Publisherと
Subscriberはグローバル IPアドレスを持つ必要がなく、
NAT配下に存在していても、双方向通信が可能です。よっ
て、SORACOM Airのようにデバイス側にプライベート
IPアドレスしか付与されないタイプの回線であっても
かまいません。Brokerさえグローバル IPアドレスが振
られていれば、距離的に遠く離れている場所であって
も通信できます。MQTT Brokerの実装としては、
Apache ActiveMQ、RabbitMQ、Mosquitto Broker、
Paho MQTT Brokerなどがあります。

⹅⹅ IoTをささえるプロトコルMQTT
co l umn

https://github.com/htaira/mqtt-xmas-tree-subscriber
https://github.com/htaira/mqtt-xmas-tree-webapp

PRE - 8 - Software Design

IoTプラットフォーム
“SORACOM”とは

　本章では、SORACOM最大の特徴の1つで
ある「APIによる通信のコントロール」を体感い
ただきます。クーポンも付いていますのでお試
しください。

SORACOMの提供するサービス

　SORACOMには、本誌付録のデータ通信サー
ビス「SORACOM A

エアー

ir」のほかにも、全部で6つ
のサービスがあります。データ転送支援サービ
スの「SORACOM B

ビ ー ム

eam」、プライベート接続
サービスの「SORACOM C

カ ナ ル

anal」、専用線接続
サービスの「SORACOM D

ダイレクト

irect」、SIM認証サー
ビスの「SORACOM E

エ ン ド ー ス

ndorse」、クラウドリソー
スアダプタサービスの「SORACOM F

フ ァ ネ ル

unnel」。
いずれもクラウド連携をスムーズにセキュアに
利用する付加価値サービスです。
　本章では、そのうちのSORACOM Airの
API経由の操作を中心に解説します。そして、
SORACOM Endorseを利用した本誌限定クーポ
ンを読者全員にプレゼントします。SORACOM

Beamほかのサービスにご興味をお持ちの方は
ソラコムWebサイト（https://campaign.soracom
.jp/sd201605/）に試せる資料もご用意しまし
た。では、さっそく使ってみましょう。

モバイルデータ通信サービス
“SORACOM Air”

　SORACOM Airは IoTデバイス向けデータ
通信の基本となるサービスで、データ通信用の
SIMカードを提供します。データ通信の開始（ア
クティベート）や休止、通信速度の変更、現在

のデータ使用量の確認、データ使用量や状態の
変化に応じたイベント実行など、さまざまな処
理を、ユーザーコンソールもしくはAPIで行
うことができます。

“SORACOM Air”で
通信してみましょう

　では、実際にデータ通信をしてみましょう注1。
スマートフォンやタブレットの場合は、デバイ
スのWi-FiをOFFにして、モバイルデータ通
信に切り替わっていることを確認してからブラ
ウザなどで好きなアドレスにアクセスしてみま
しょう。
　無事インターネットに通信できていることが
確認できたら、本章のこのあとのパートでは主
にPCを使っていろいろ試していきますので、
PCとテザリングしてPC側でもインターネッ
ト通信ができるかどうかを試してみてください。
　Wi-FiルータやUSB 3G/LTEモデムをご利
用の場合は、最初からPCと接続してお試しく
ださい。

「特別SIMで始めよう!　SORACOMでわかるIoT」巻頭特集

注1） SORCOM Airを利用するために必要な、SORACOMアカウントの作成と、SIMカードのアクティベーションの手順については、
第1章を参照のこと。

APIを使って
SORACOMの便利さを体感！

“SORACOM Air”メタデータサービスで通信をコントロールしてみよう
Author 小熊 崇（おぐま たかし）　㈱ソラコム　シニアソフトウェアエンジニア

　ここでは本誌限定で特別にご用意した、データ通
信料金に使えるクーポンを取得してみましょう。クー
ポン取得には、2016年1月に開始した新サービス
SORACOM Endorseを利用します。
　クーポン取得は次のサイトから手順をご覧くださ
い。

https://campaign.soracom.jp/sd201605/

　取得したクーポンは、ユーザーコンソールのアカ
ウント名のボタンを押して、「クーポン登録」から登
録できます。

⹅⹅ �SIM認証サービス“SORACOM Endorse”
でクーポン取得

co l umn

https://campaign.soracom.jp/sd201605/
https://campaign.soracom.jp/sd201605/

APIを使ってSORACOMの便利さを体感！
“SORACOM Air”メタデータサービスで

通信をコントロールしてみよう

第 3 章

PRE - 8 - Software Design May 2016 - PRE - 9

“SORACOM Air”
メタデータサービスの利用

　SORACOM Airで通信ができるようになっ
ただけでは、ほかのSIMとの違いはあまりあ
りません。SORACOM最大の特徴の1つであ
る「APIによる通信のコントロール」をさっそく
試してみましょう。
　ただ、SORACOM APIを利用するには、認
証処理などの手順が少し必要です。初めて試し
ていただく方向けに、ここではより簡単に利用
できるSORACOM Airのメタデータサービスを
使って、APIの便利さを体感していただきます。

メタデータサービスとは

　メタデータサービスとは、SORACOM Air

のSIMを使って通信している場合に限り、そ
の通信しているSIM自身のAPIを認証不要で
呼び出せるようになるサービスです（図1）。
　SIMを用いてモバイルデータ通信を行って
いる場合、SIMを搭載したデバイスとドコモ
の設備との間で強力な相互認証が行われており、
ほかのSIMの IDを詐称したりすることが事実
上不可能となっています。そこで、そのような
強力な認証を利用し、SIM自身に関する操作
であれば簡単かつ安全にご利用いただくことが
できます。これがメタデータサービスです。

メタデータサービスを有効にする

　メタデータサービスを使うには、明示的に本
サービスを有効にする必要があります。有効／
無効はグループ単位で設定します。つまり、有
効に設定されているグループに属している
SIMはすべて本サービスを利用可能ですし、
そうでないSIMは本サービスを利用できません。
　また、メタデータサービスはデフォルトでは
読み取り専用です。SIM自身の情報を読み取
ることはできますが、変更はできません。たと
えば、現在の速度クラスの設定を読み取ること
はできますが、速度をより速いクラスやより遅
いクラスへ変更することはできません。変更を
可能にするには、これも明示的に読み書き可能
に設定する必要があります。
　それでは、ユーザーコンソールでメタデータ
サービスを有効化し、読み書きも可能としてみ
ましょう。おおまかな手順は次のとおりです。

①グループを作成し、そのグループの設定でメ
タデータサービスを有効化する

②SIMをそのグループに所属させる

　それでは、まずグループを作成してメタデー
タサービスを有効化しましょう。

・ユーザーコンソールにログインし、画面上部の
ナビゲーションから［グループ］を選択します

 ▼図1　メタデータサービス

インターネット
SORACOM Air

搭載デバイス

メタデータ（自分自身の情報）の
参照・更新は認証不要

外部からのAPI呼び出しは
認証が必要

PRE - 10 - Software Design

「特別SIMで始めよう!　SORACOMでわかるIoT」巻頭特集

・［＋追加］ボタンを押し、グループを作成しま
す。作成するグループ名は何でもかまいま
せんが、今回は「software-design-201605」
としてみました（図2）

・グループを作成したら、グループの一覧の中
にそのグループが現れますので、それをクリッ
クして詳細画面に入ります

・［基本設定］タブの［SORACOM Air設定］を開
き（図3）、［メタデータサービス設定］のスイッ
チをONにします。また今回は、メタデータ
を利用した設定変更も試すので［読み取り専用］
のチェックボックスをOFFにします。［保存］
ボタンを押して設定変更を反映します

・次に、今作成したグループにSIMを所属さ
せます。画面上部のナビゲーションから［SIM
管理］を選択します

・SIM一覧画面で、先ほど登録した本誌付属の
SIMを選択します

・［操作］ボタンを押して［所属グループ変更］を
選択します

・「新しい所属グループ」のドロップダウンメ
ニューから、先ほど作成したグループを選択
し（図4）、「グループ変更」ボタンを押します

SIM情報の確認

　準備が整いましたので、メタデータサービス
を使ってSIMの情報を取得してみましょう。

　SORACOM Air を
入れたデバイス自身、
もしくはそのデバイス
を使ってテザリングな
どでインターネットに
接続しているPCで、
図5のコマンドを実行
してみてください。
JSON形式で図6のよ

 ▼図4　SIMをグループに所属させる

 ▼図2　グループを作成する

$ curl -s http://metadata.soracom.io/v1/subscriber

 ▼図5　SIM情報を取得する

{"imsi":"44010xxxxxxxxxx","msisdn":"8180xxxxxxxx","ipAddress":"10.xxx.xx.xx","apn":"soracom.io","type":"s1.ｭ
fast", （略） }
 ※IMSIやMSISDNなどは、読者のSIMの情報が表示される

 ▼図6　取得したSIM情報の例

 ▼図3　メタデータサービスをONにする

APIを使ってSORACOMの便利さを体感！
“SORACOM Air”メタデータサービスで

通信をコントロールしてみよう

APIを使ってSORACOMの便利さを体感！
“SORACOM Air”メタデータサービスで

通信をコントロールしてみよう

第 3 章

PRE - 10 - Software Design May 2016 - PRE - 11

うな読者のSIM情報が表示されれば成功です。
　jqコマンドが利用できる環境であれば、デー
タを整形して表示したり、必要な部分だけ抜き
出したりすることも可能です。たとえば、現在
の速度クラスの設定は図7のようにして確認し
ます。

通信速度を変更する

　次に、メタデータサービスを使ってSIMの
設定変更を行ってみましょう。
　まず、s1.fastという速度クラスに変更しま
す（図8）。この速度クラスではアップロード・
ダウンロードともに2Mbpsの速度が出ます。
　この状態で本当に速度変更が反映されたか、
ダウンロード速度を判定してみましょう。図9
のようにダウンロードを実行します。ダウンロー
ドが完了したあとの“Average Speed Dload”の
下に現れている数は、単位がバイトですので、
これを8倍してみてください。電波状況の良い
場所で、ブラウザを閉じるなどしてほかの通信
が発生していないような状況では、およそ
2Mbps弱と設定どおりになっているはずです。
　次に速度をs1.slowに変更してみましょう（図
10）。この速度クラスではアップロード・ダウ
ンロードともに128kbpsに制限されます。

　この状態で本当に速度変更が反映されたか、
再度ダウンロード速度を判定してみましょう。
図9と同じコマンドでダウンロードを行います。
　先ほどよりダウンロードに時間がかかるよう
になったのではないでしょうか。今度はおよそ
128kbpsとなったはずです。メタデータを利用
したAPIでのコントロールは以上です。

終わりに

　SORACOMは、SORACOM Airだけではあ
りません。たとえば、SORACOM Beamは、
IoTデバイスにかかる暗号化などの高負荷処理
や接続先の設定を、クラウドにオフロードでき
るサービスです。Beamを利用することによって、
クラウドを介していつでも、どこからでも、簡
単にIoTデバイスを管理できます。大量のデバ
イスを直接設定する必要はありません。
　SORACOMは、IoTの通信を提供するだけ
ではなく、IoTシステムをスピーディにセキュ
アに構築するためのサービスも提供しています。
SORACOM Beam以降のサービスを試せる資
料を特設サイト（https://campaign.soracom.
jp/sd201605/）にご用意しました。引き続き
SORACOMでIoT通信をお試しください。ﾟ

$ curl -sX POST -d '{"speedClass":"s1.fast"}' -H 'Content-Type: application/json' ･
 http://metadata.soracom.io/v1/subscriber/update_speed_class

 ▼図8　速度クラスをs1.fastに変更する

$ curl -sX POST -d '{"speedClass":"s1.slow"}' -H 'Content-Type: application/json' ･
http://metadata.soracom.io/v1/subscriber/update_speed_class

 ▼図10　速度クラスをs1.slowに変更する

$ curl -O https://campaign.soracom.jp/sd201605/soracom.pdf

 ▼図9　ファイルをダウンロードする

$ curl -s http://metadata.soracom.io/v1/subscriber | jq .speedClass
"s1.standard"

 ▼図7　jqコマンドを使って速度クラスの設定情報だけを表示させる

https://campaign.soracom.jp/sd201605/

PRE - 12 - Software Design

myThingsとは

　myThingsはヤフー株式会社が構想している
Webサービスや市販のIoTデバイス、企業、人、
街といった世の中のありとあらゆるものを繋げる
ことを目指したプラットフォームです。そして、
その「ありとあらゆるもの」のうち、Webサービス
とIoTデバイスにフォーカスして、それらが持つ
機能をユーザ自身で組み合わせて便利に使うこ

とができるmyThings

アプリを2015年7月
に発表しました。現
在 iOS、Android 向
けに提供されていま
す（図1）。
　myThingsアプリで

は「○○が××だったら、△△を□□する」という形
式で、異なるサービス同士を連携させることがで
きます。連携可能なサービスは45個あります（図2）。
　また、myThingsでは、それら連携可能サー
ビスのことをチャンネル、連携のきっかけをト
リガー、連携時に実行する機能をアクション、
トリガーとアクションのセットを組み合わせと
呼んでいます（図3）。たとえば図4や図5のよ
うな組み合わせを作ることができます。また、
IDCFというチャンネルを活用することで（図
6）、自分で工作したデバイスもmyThingsと連
携させることができます（図7）。

SORACOMチャンネル

　2016年2月25日、myThingsの対応チャンネル
にSORACOMが追加されました。SORACOM

チャンネルを使えば、ノンプログラミングで
SORACOM Airと他サービスを連携させること
ができます。ここではSORACOMチャンネルで
利用可能なトリガー、アクションとその活用例を
紹介します。

SORACOMチャンネルのトリガー

・特定のSIMの通信量が指定した値を上回ったら

　SORACOMユーザコンソールの監視設定で
も通信量に閾

いき

値を設けてメール通知を行う
ことができますが、このトリガーを利用す

myThingsとSORACOM　
「特別SIMで始めよう!　SORACOMでわかるIoT」

――�myThingsを使ってノンプログラミングで�
SORACOMをより便利に使おう

Author 山本 学（やまもと まなぶ）ヤフー㈱　スマートデバイス推進本部　大阪開発室

巻頭特集

 ▼図1　myThingsアプリ

 ▼図4　TwitterとSlackの組
　　　み合わせ

 ▼図5　JawboneUPと
iRemoconの組み合わせ

 ▼図3　myThingsアプリの用語解説

組み合わせ

トリガー

チャンネル

が だったら●●

アクション を する▲▲

 ▼図2　myThingsアプリが連携可能なサービス（2016年
　　　3月15日時点）

myThingsとSORACOM
――myThingsを使ってノンプログラミングで

SORACOMをより便利に使おう

第 4 章

PRE - 12 - Software Design May 2016 - PRE - 13

るとSlackやプッシュ通知などメール以外の
手段でも通知が可能になります（図8）。

・特定のSIMが切断したとき／特定のSIMが

接続したとき

　SORACOM Airのセッション状態をトリガー
にすることができます。自作デバイスでこ
のトリガーを活用すれば死活監視に活用す
ることができそうです（図9）。

・指定した請求予定額を上回ったら

　通信量だけではなく、請求予定額に閾値を設け
てトリガーにできます。組み合わせの設定次第
では請求予定額を日々チェックできます（図10）。

SORACOMチャンネルのアクション

・特定のSIMの速度設定を変更する

　何らかのトリガーが発火した際に、指定した
SIMの速度設定を変更することができます。
直接SORACOM APIを活用することなく、
メールの件名に特定文字列があった場合に速
度変更を行ったり、位置情報チャンネルと組
み合わせて自宅や職場など自分のいる場所に

応じて速度を変更する、Jawboneチャンネル
と組み合わせて睡眠／起床に合わせて速度を
変更するといったことが可能です（図11）。

・特定のSIMを有効化する／特定のSIMを無

効化する

　何らかのトリガーが発火した際に、指定した
SIMの状態を変更することができます。決まっ
た金額内で自作デバイスを運用した際など、
前述の「特定のSIMの通信量が指定した値を上
回ったら」トリガーや、「指定した請求予定額を
上回ったら」と相性が良さそうです（図12）。

まとめ

　以上、SORACOMチャンネルでできること、
そしてその活用例を紹介しました。SORACOM

には便利なAPIがたくさん用意されており、それ
らを使いこなせばさまざまなことが可能になります。
ただ、直接APIを使うほどではない場面や、API

を実行する条件が複雑な場面（位置情報と連動し
たい、睡眠／起床といった人の状況と連動したい
など）では、myThingsを活用するとあっさりそれ
が実現できる場合があります。ぜひmyThingsを
活用してノンプログラミングでSORACOM Air

を便利に使いこなしてみましょう！ﾟ

 ▼図6　位置情報とIDCF
の組み合わせ

 ▼図7　家族の居場所を時計のようにマッピングできる自作
　　　デバイス

 ▼図8　SORACOMとプッ
シュ通知の組み合わせ

 ▼図9　SORACOMと
Slackの組み合わせ

 ▼図10　SORACOMと
Yahoo!メールの組み合わせ

 ▼図11　JawboneUPと
SORACOMの組み合わせ

 ▼図12　SORACOM同士
の組み合わせ

PRE - 14 - Software Design

はじまりはモバイル閉域網

　2016年2月8日に新サービスとなる「さくら
の IoT Platform」の記者発表が行われました。
この発表で述べられたことは、今回のシステム
はデータセンターのクラウド環境とモバイル閉
域網が直結した垂直統合型のしくみです（図1）。
　古くはトヨタ自動車㈱のテレマティクスサー
ビスなどでも使われているモバイル閉域網です
が、今回さくらインターネットでは、すでに
IoT向けモバイル閉域網サービスを手掛けてい
た㈱ソラコムからの全面協力のもとαサービス

の立ち上げることができました。
　モノのインターネット（IoT: Internet of Things）
で使われるセンサーやマイコンの多くは非力な性
能と制限されたメモリ空間のため制約条件が多く、
保護された安心安全なネットワーク環境で管理運
用する必要があると考えられています。モバイル
閉域網は広大なインターネットからの攻撃を受け
ることなく、またモバイル閉域網内部からの端末
同士への攻撃も抑止できるしくみを持っています。
今回さくらインターネットでは、これら優位点を
加味したうえで、モバイル閉域網とデータセンター
のクラウド環境を直結したシステム環境を構築す
るにいたっています。多くの企業が取り組みはじ

めたIoT向けサービスプラットフォー
ムですが、世界でも大きく技術的な動
きがみられています。ここからは先日
バルセロナで開催されたMWC（Mobile

World Congress）2016で発表された、
モバイル通信の技術的な地殻変動に
ついてみていきましょう。

MWC2016で起こった
モバイル通信の地殻変動

　筆者は、2年前のMWC2014にも研
究調査活動で参加しました。この会
場で描かれていた未来の1つに半導
体チップを使ったeSIMと呼ばれる構
想がありました。今回のMWC2016

では、このeSIMの最初の商用製品が
リリースされたのです。eSIMに対応
する製品は、スマートフォンの助けを
借りて通信キャリアのプロファイルを
インターネット経由で入手し、eSIM

内に書き込みます。その後eSIM対応
製品は単体で3Gモバイル通信網へ接
続することができるようになり、普段

SORACOMと
さくらのIoT Platform

「特別SIMで始めよう!　SORACOMでわかるIoT」

モノのインターネットとモバイル通信の未来
Author 松本 直人（まつもと なおと）　さくらインターネット㈱　さくらインターネット研究所　上級研究員

 ▼図1　データセンターのクラウド環境に直結するモバイル閉域網

閉域網

モバイルキャリアモバイル閉域網
プライベート領域
データの商用利用
API 利用料

BaaS

Rule
Engine

MQTT
Broker

Data
Router

Data
Lake

API

さくらの
IoT通信
モジュール

巻頭特集

 ▼図2　eSIM対応製品を設定するまでの流れ
QCコード（モバイル・キャリア発行）

スマートフォンアプリケーション

eSIM掲載スマートウォッチ
Samsung Gear S2 with 3G

選択したモバイルキャリア3G/LTE

Bluetooth

既存スマートフォンに依存するが柔軟にモバイルキャリア選択できるしくみ

SORACOMとさくらのIoT Platform
モノのインターネットとモバイル通信の未来

第 5 章

PRE - 14 - Software Design May 2016 - PRE - 15

使いのスマートフォンと同じように、その小さな
デバイスからインターネットを経由してデータ通
信ができるようになります（図2）。
　これにより、通信キャリアはプロファイルが
入ったSIMカードを事前に作成流通する手間
がなくなり、またユーザにとっては発行された
eSIM向けのバウチャー（引換券）が入手できさ
えすれば、すぐにeSIM対応製品をその国や地
域で利用できるようになるメリットがあります。
eSIM対応はまだまだ始まったばかりのサービ
ス領域ではありますが、モノのインターネット
のように多数のデバイスが、多国間にまたがり
流通することが想定されている状況を考えれば、
とても面白い取り組みだと筆者は感じています。

低消費電力で低速データ通信に
対応するLTE Cat.1の出現

　モバイル環境の通信規格にも変化が生まれて
きています。現在私たちが使っている3Gや
LTE回線には、それぞれ規格がありIoT対応の
ため、さまざまな規格が新たに生まれようとし
ています。その1つがMWC2016でも発表があっ
たLTE Cat.1です。現在、LTE向けにCat.1、
Cat.0、Cat.MそしてNB-IOT（Narrowband IoT）
が検討段階にあり2017年導入を目指して作業が
進んでいます。当然日本や各国において2017年
以降に、チップを起こし、通信キャリア設備が
対応し、サービス試験が行われ、通信モジュー
ルの量産化と技術基準適合証明を受け、市販化
が浸透して、やっと私たちの手元に届くことに

なります。筆者の感触としては、それはおそら
く2018年か2019年になるのではと考えていま
す（図3）。
　現在私たちが使っているスマートフォンやモ
ノのインターネット向けとして提供されている
通信モジュールのほとんどがLTE Cat.4に属し
ているものらしく、非常に小さなデータを送受
信するには、かなりオーバースペックであるこ
とは理解できます。それでも、モノのインターネッ
トが普及拡大するためには、市場に種としてイ
ンターネットへ接続する、なにがしかの手段を
広めていかなければいけません。「Connected」の
状態になってはじめてモノのインターネットと
しての最初の一歩を踏み出せるわけですから、
これは当然といえば当然です。
　日本国内のモバイル通信キャリアにおいては、
これに加えて相互接続性試験（Inter-Operability

Testing）と呼ばれる自社モバイル通信網とメー
カー製品の相互接続性を確認する試験も行われ
ており、これを通過した通信モジュールなどが
推奨されてきた歴史があります。昨今SIMフ
リー端末や海外製品の増加などもありますが、
電波を出す機器の取り扱いは、やはり各国の規
制等もあり悩ましいことが多くあります（図4）。

免許不要の
長寿命・長距離データ通信

　より低消費電力で長寿命を目指した規格として
LoRaWANがあります。LoRaはWide Area Net

works for IoTを掲げるLow Power Wide Area

 ▼図3　新たに開発が進む低消費電力／低速データ通信向けモジュール

LTE Cat.4 LTE Cat.1 LTE Cat.0 LTE Cat.M NB IOT LoRaWAN
Downlink 150Mbps 10Mbps 1Mbps 1Mbps ＜200Kbps 0.3-50Kbps
Uplink 50Mbps 5Mbps 1Mbps 1Mbps ＜200Kbps 0.3-50Kbps
導入予測 現在利用中 2016年 不明 2017年 2017年 2016年
利用用途 スマホ／自動車等 ウェアラブル等 ガス・電気等 ビル管理等 低消費／長寿命

出典：さくらインターネット株式会社／さくらインターネット研究所調べ（2016年03月）

PRE - 16 - Software Design

「特別SIMで始めよう!　SORACOMでわかるIoT」巻頭特集

Networkの規格であり“long range machine-to-

machine connectivity”に名称の由来があります。
前述のLTE Cat.1、Cat.0、Cat.M、NB-IOTは
いずれもセルラー通信を前提としたものでしたが、
LoRaWANは免許不要で長距離データ通信が行
える通信規格として海外ではすでにArduino向け
モジュールも売られています。データ通信速度は
0.3～50kbpsと低速でも、そのエリアは数km単
位に及び、ちょっとしたトランシーバー遊びをし
た世代にとっては、これほど面白いオモチャはな
いでしょう。
　MWC2016でも、すでに製品化されたもしく
は製品化目前のデバイスや基地局などが多数出
展されており、バルセロナ市内に展
開されたLoRaWAN対応デバイス
からリアルタイムでセンサー情報が
送信されマップに表示されているデ
モもありました（図5）。
　こうした免許不要の長寿命・長距
離データ通信には、まだまだ多くの
異なる規格があり、自社独自規格も
含めると、かなりの数があると筆者
は感じています。日本国内において
も920MHz帯がセンサーやスマート
メーター、電力メーターである
HEMSなどに開放されており、空
中線電力で1mW、20mWなど規制

はあれど、その用途に期待は広がってきていた
ところです。大きな問題としては、こういった
特定小電力向けに開放された電波は各国の周波
数が異なっており、前述のLoRaWAN向け通
信モジュールにも433MHz、868MHzが存在し
ています。今はまだ技適マークのついた日本向
け製品はまだ存在していませんので、これから
に期待したいところです。

まとめ

　ここまでモバイル閉域網から始まり、免許不
要の長寿命・長距離データ通信というIoTを取
り囲む大きな潮流を見てきました。筆者はモノ
が「Connected」な状態でパソコンやスマホを使
うように常に「I/O」を発生させる状態を作り出
すためには、さまざまな企業の努力が必要だと
考えています。
　PHSの初期導入のころ、端末はゼロ円で配
布していた過去を思い出すと、モノがしゃべり
だす世界をしっかりと形作るには、それ相応の
インフラ整備や考え方の転換が今後も重要になっ
てくるだろうと感じています。2020年、500

億のデバイスが全世界でつながる未来が近づい
てくるといわれて2年。これからの IoTを取り
巻く潮流に期待したいところです。ﾟ

 ▼図5　免許不要の長寿命・長距離データ通信 LoRaWAN

 ▼図4　参考 : Qualcommチップ搭載メーカー社製 IoT向け
　　　通信モジュール一覧 （技適マークは見られず）

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

技術評論社の本が電子版で読める！

https://gihyo.jp/dp

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

はじめてのLisp関数型プログラミング
̶̶ラムダ計算からリファクタリングまで一気にわかる

五味弘　著　
2,580円　 PDF EPUB

Lisp・関数型プログラミングのメリットとは何か̶̶副作用の
ないプログラミングがまず挙げられます。これでバグが圧倒
的に少なくなります。さらにはコードの再利用がしやすいこと，
並列処理が得意であるということも。それだけではありませ
ん。動的な型付けも特徴ですし，ラムダ計算もクロージャも，
さらにはオブジェクト指向までできます。数十年の時を越えて
現代にも通用する普遍的なアイデアがLispにはあります。本
書はさまざまなLispプログラム（ハノイの塔，エイトクイーン，
オンライン書店など）を解説し，さらにリファクタリングまで
いっきに学びます。本書で関数型プログラミングのエッセン
スを得ることができます。

https://gihyo.jp/dp/ebook/2016/978-4-7741-8062-5

ゴールからはじめるC#
～「作りたいもの」でプログラミングのきほんがわかる

EPUB PDF

改訂3版 サーバ／インフラエンジニア
養成読本
EPUB PDF

 ドキュメント作成システム構築ガイド
[GitHub，RedPen，Asciidoctor，CIによる
モダンライティング]

EPUB PDF

［iBeacon＆Eddystone］統計・防災・位置情報が
ひと目でわかるビーコンアプリの作り方

EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
https://gihyo.jp/dp/ebook/2016/978-4-7741-8062-5

https://gihyo.jp/site/inquiry/dennou

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

https://teratail.com/users/argius
https://teratail.com/users/ryunix
https://teratail.com/users/ShoheiTai

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には記事が掲載されていました。編集の都合上、
総集編では収録致しません。

http://teratail.connpass.com
http://teratail.com/
http://leverages.jp/

ED - 7 - Software Design

　「Eclipse Che」は、統合開発環境
「Eclipse」の提供元であるEclipse
Foundationが開発しているクラウド
ベースの新しい開発環境です。
Eclipse Cheでは、開発に必要となる
さまざまなツールやプラグイン、ワークス
ペースがサーバ上に展開され、開発
者はWebブラウザベースのIDE経由
でそこに接続して開発を行います。
　Eclipse Cheは“次世代のEclipse
IDE”とうたわれてはいますが、Eclipse
の次期バージョンがEclipse Cheにな
るというわけではなく、あくまでも独立し
た新しいIDEとして位置付けられていま
す。従来のEclipseの次期バージョン
は「Eclipse Neon」のコード名で開発
が進められており、2016年6月にリリー
スされる予定です。
　またEclipse Foundationが進めて
きた別のプロジェクトに、Webブラウザ
で動作する開発環境「Orion」の開
発がありますが、Eclipse Cheは
Orionとも異なります。Eclipse Cheは

クラウドベースのIDEの開発を手がけ
るCodenvyの主導によって開発された
もので、Orionからはエディタ機能など
の成果がEclipse Cheに取り込まれて
いるとのことです。

　Eclipse Cheでは、従来のEclipse
とは異なり、ワークスペースにアプリ
ケーションの実行環境（ランタイム）を内
包するというアプローチをとっています。
すなわち、ワークスペース自身がアプリ
ケーションを実行したりデバッグしたりで
きる単独の“マシン”として動作するとい
うことです。これによってワークスペース
単位でのライフサイクルの管理や、他
の環境への移行などを容易に行えると
いうメリットが生まれます。このワークス
ペースの実現にはDockerが利用され
ており、通常のDockerコンテナと同
様の手軽さで扱うことが可能です。
　ワークスペースの管理機能やチーム
コラボレーション機能などはChe
Serverによって提供されます。開発に
使用するIDEやAPIもChe Serverに

ホストされます。Che Serverはローカ
ルマシン上や自前のサーバにインストー
ルする以外に、クラウド上にSaaS型の
サービスとして展開することも可能です。
開発チームのメンバーはChe Server
を介してワークスペースにアクセスしたり、
他のメンバーとワークスペースを共有し
たりできます。
　開発者が実際に使用する環境として
は、WebブラウザベースのIDEが用
意されています。このIDEはHTML
とJavaScriptおよびCSSによって作られ
ているため、特定のブラウザに依存せ
ずに利用できます。前述のようにエディ
タ部分にはOrionの成果が取り込まれ
ており、コードのシンタックスチェックや
オートコンプリートといった高度なサポー
ト機能を備えています。IDE上で開発
されたコードは、プロジェクトのワークス
ペースとして動作するDockerコンテナ
にデプロイされます。また、Eclipse
Cheのワークスペースは、IDEを使う
以外にもSSHを利用したアクセスにも
対応しています。
　上記に加えてEclipse Cheはプラグ
イン機能を備えており、各種プラグイン
によって拡張が可能なほか、独自のプ
ラグインを開発するためのSDKも提供
されています。
　近年では、環境構築の手間を省く
目的や、チーム開発との親和性の高さ
などといった理由から、クラウドベース
の統合開発環境に対する注目が高まっ
ています。Eclipse Cheもそういった流
れの中で生まれたものですが、ワーク
スペースをコンテナ化して可搬性を高め
るというアプローチは極めて興味深いも
のと言えます。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 89回

Eclipse Che

言言言 すすす。。｢

Eclipse Che
https://eclipse.org/che/

ワークスペースWebブラウザ Che Server

IDE IDE

APIs

WS Master

エディタ

パネル

メニュー

ウィジェット

プラグイン

プラグイン

コマンド

プロジェクト

IntelliSense

同期

SDK

マシン（Docker）

プラグイン

コマンド

プロジェクト

IntelliSense

同期

SSH

新しいクラウド IDE
「Eclipse Che」

Eclipse Cheの
アーキテクチャ

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

▼図　Eclipse Che のアーキテクチャ（公式サイトより）

mailto:sd@gihyo.co.jp
https://eclipse.org/che/

DIGITAL GADGET

　最近注目のドローンレースではVR
ヘッドセットを装着し、ドローンから送ら
れてくるカメラ映像で操縦しており、
VR世界と現実の世界が融合したよう
な環境になっています。これらVR

（Virtual Reality）が盛り上がってき
ている1つの要因としては、旧来、数
千万円規模の特殊な機材がなけれ
ば、体験、研究、制作ができなかった
環境が、数十万円台、もしくは一般の
スマートフォンを活用するなど、とても
安価に実現できるようになったことが
挙げられます。
　期待のPlayStation VRは、映画
などの映像を見るためのシネマティッ
クモードを備え、2016年10月にリリー
ス、399ドル（日本では税別4万4980
円）と発表されました。性能に対して
の期待値が高かった最新のOculus
Riftがおおかたの予想以上に高額で
あったことからも、普及や浸透のため

には魅力的なVRコンテンツが出そろ
うことと、VR機器の価格の両方が影
響を与えてくるものと思われます。
　一方、安価なダンボールでできた
Google Cardboard、ハコスコなどの
VR装置は、スマートフォンを活用し手
軽に利用できつつも、継続して使って
もらうことが難しいと言われています。
1回目の体験ではすごいと思っても、
それを何度も体験したいと思うほどの
要素や、魅力をもったVRコンテンツが
まだまだ少ないのも1つの要因です。
　VRコンテンツで多い系統は、スリ
ラー、ホラー、ミュージックビデオ、ド
キュメンタリー、キャラクタアニメーショ
ン、ボクシングやサーフィンなどスポー
ツの映像など、VRならではの、体験し
なければわからない映像が注目されて
います。
　毎年1月に米国で開催される若手
作家達の作品を中心としたサンダン
ス映画祭に、2016年度は、新たに
VR映画の部門が開設されました。そ

こで出展されたVR作品の一部は次
のようなものです。

●6×9：囚人になって独房を体験す
るもの

●Across the Line：差別される
人物を体験するもの

●A History of Cuban Dance：
キューバのダンス映像

●Cardboard Crash：車の事故
を体験するもの

●Click Effect、theBlu：海中ダ
イビングを体験するもの

●Collisions、Condition One：
大自然のドキュメンタリー

●Defrost：未来を描いたSF映像
●fabulous wonder.land：ルイ
スキャロルの不思議な国の世界を
描いたもの

●Irrational Exuberance、
Sequenced、The Martian
VR Experience：宇宙空間を
描いたもの

●Sisters: A Mobile VR Ghost
Story：ホラー映画

●Stonemilker、Surge：ミュー
ジックビデオ

●Job Simulator：職業体験シ
ミュレーター

●The Rose and I：キャラクタア
ニメーション

　作品を手がける監督らも、遊園地
のアトラクションを手がける映像作家
や過去にアカデミー賞にノミネートさ
れたことのある人物など、単なるデモ
映像の粋を超えた、本気の作品群ば
かりです。映像演出の面で経験のあ
る有能な人材がかかわり始めている
一方で、単なる映像視聴だけではな
い、VRならではのインタラクティブな
体験を得るために、VR空間内での
ユーザインターフェースも重要な要素
としてとらえられています。

　VRの世界のユーザインターフェー
スの系統は、大きく4つに分かれると
考えられます。

●古くから研究されてきたバーチャル
リアリティの文脈で操作するもの

●3Dゲームで使われてきたヘッドアッ
プディスプレイやファーストパーソン
ゲームなどの操作を引き継いだも
の

●スマートフォン画面での操作の流
れをくんだもの

●現実世界における体の動きや、身
振り手振りなどの振る舞いを模倣
したもの

　現在多くのVRコンテンツでは、両
手で扱う使い慣れた家庭用ゲーム機
のゲームコントローラが利用されてい
ます。一番慣れていると思われるゲー
ムパッドでさえ、VR空間に没入してい
るときは手元を見ることはできず、触
覚と記憶で操作することになります。
一般的なマウスやキーボードはほとん
ど使い物になりません。現実世界で
は、手の操作を目で見て、それがフィー
ドバックになってさまざまな操作を調整
することができますが、VRの場合、目
が見えているのに手元が見えない状
態で、触覚のみを指針に操作しなけ
ればいけません。そのため握ったまま
で使えるVR専用の入力デバイスや、
LeapMotionのようなジェスチャを認
識するための機材、視線やまばたきと
いった、VRデバイスならではの入力方
法が考えられています。
　古いタイプのVRでは、ヘッドアップ
ディスプレイと呼ばれる四角い枠が三
次元空間内に唐突に表示され、それ
を操作することがよくありました。実際
は視野や焦点が分断されるのであま
りいい方法ではなく、理想は三次元
空間内のすべてのものがシームレス
に見られるよう、今見ている空間内に
操作できるものを配置するのが適切
です。
　その場合、何を選択したのかがわか
りにくい場合が多いので、色が変わっ
たり、サイズが大きくなったり、音で補
足したりと、二次元のユーザインター
フェース以上に配慮が必要です。選
択するオブジェクトやターゲットを指示
するマークか何かを目立たせるのでは
なく、ターゲットそのものが光ったり、印

がついたりしてわかるようにする工夫
も有効です。
　全体的に、あまり遠くにあるもの、あ
まり近くにあるものを見続けなくてもす
むように演出を考えることです。これら
の方策は、三次元空間内に自分の身
体の一部が映り込んでいるのか、全
体が映り込んでいて上から鳥瞰して
見ているのか、自分の身体はまったく
映り込んでおらず、無の状態なのかに
よっても変化します。ファーストパーソ
ンシューティングと呼ばれる一人称の
ゲームタイプのもの、少し上から俯瞰
して自分自身が見えるもの、建築物の
ウォークスルーのように視点や演出が
決まっており、ただ傍観しているだけ
のVRコンテンツなどもあります。
　Oculus Touch、SteamVR、
PlayStation MoveといったVR用と
して活用される入力デバイスで得られ
る入力系統は次のものが考えられて
います（すべてのデバイスが全部に対
応しているわけではありません）。

●手の動きのトラッキング
●人差し指トリガー（拳銃を打ったり

する際に利用）
●単純な押しボタン
●トラックパッド
●接触センサー

　実在感には、見られることと触れら
れることの2つの要素があり、手に
持った入力デバイスでは、単に操作を
入力するという意味だけではなく、つ
かむ、つまむ、動かす、つつく、といった
操作で、現実感を増すための役割を
果たします。

　一方、専用の入力デバイスではな
く、VR空間内での振る舞いそのもの
を操作のきっかけとして利用もできま
す。あるアイコンを画面の中央に持っ
てきて、しばらく同じ場所を注視すると
選択していることになるインターフェー
スや、普段あまり見ない、足下を見る
感じで下を向くと、何かの操作の代用
になるなどといった方法です。
　統合すると、VR空間内では次のよ
うな要素がユーザインターフェースに
なり得ます。

●頭の動き
●手で持つ何らかのコントローラ
●視線方向
●三次元空間内での立ち位置
●手の動きのトラッキング
●（コントローラで認識する）指の動き
●音や光で、意識的に考えさせる要素

　VR空間内での振る舞いを操作に
対応づける場合、視覚や視野方向を
リセットする手段を用意しておくと良い
でしょう。また、現実世界をできるだけ
模倣するのが得策で、現実世界にあ
る見慣れた物体が、VRの世界でも同
じような大きさで描かれていることが
重要です。さらに、通常考える以上
に、画面内のユーザインターフェース
の密度を少なくする配慮も必要です。
　一般的に、解像度や視野角の制
限により通常のコンピュータ画面上
の何分の一しか認知することができま
せん。悩んだときは、実際の世界での
立ち振る舞いを参考にし、判断できな
い部分やよくわからないときは、テスト
にテストを重ねるしか、いまのところ具
体的な解決策はないと考えます。
　スピルバーグが映画化を予定して
いる人気のSF小説で、2044年の未
来を描いた『Ready Player One』で
は、現実世界は荒廃してしまい、人類
は皆「オアシス」という仮想空間に逃
げこんでいる様子が描かれています。
VR世界は決して逃げ込む場所では
なく、現実世界を拡張する存在であっ
てほしいものです。｢

vol.209

何度目かのVRブーム到来

VR世界のユーザインターフェース

DIGITAL
GADGET
VR世界のユーザインターフェース

VR用の椅子

Gadget 1

VRGOは、VR映像の体験中に座る、バ
ランスボールのようなVR専用の椅子で
す。起き上がり小法師のような椅子で、
前後左右の動きをBluetooth経由でパ
ソコンへ送信します。通常、キーボードや
ゲームコントローラで操作していたもの
を、椅子の操作と対応づけることができま
す。主な動作としては、前進、後進、左
折、右折、回転などで、立って動くと不安
定ですが、椅子に座った状態であれば転
ぶこともありません。便利なのは、VR機
材を収納するボックスにもなる点です。

VR専用手袋

Gadget 2

GloveoneはVR専用グローブ（手袋）で
す。VR空間の物体を触った感触を手に
伝えるためのグローブです。各指5ヵ所と
手のひら5ヵ所の部分に振動素子が搭
載されており、震える周波数と強さによっ
て、擬似的な感触を伝えるしくみです。
230ドルで販売の予定です。旧来のVR
用グローブは仰 し々い機械式であったり、
振動センサーも大きく数が少ないものが
多いなか、軽量で安価であることが特徴
です。ただし、手の形状は動きなどをセン
シングできないので、ほかのデバイスと組
み合わせて活用する必要があります。

腕用フォースフィードバック
兼入力デバイス

Gadget 3

UnlimitedHandは、日本の大学発ベン
チャーが開発する、新しいタイプの入力
デバイスです。腕に巻くだけで操作でき、
ゲーム内の触感も得られるデバイスで
す。デバイスにはモーションセンサーと筋
変位センサーが搭載されています。また、
電気刺激によって装着者の筋肉を収縮
させて、フィードバックを与えています。ダ
ミーの振動ではなく、身体へのフィード
バックであることが最大の特徴です。

両手コントローラ

Gadget 4

Razer Hydraは左右の両手で持って使
うゲームコントローラです。VR専用に作ら
れたものではないですが、VR空間操作
用に適しています。WiiやPlayStation
Moveなどの家庭用ゲーム機における
モーションコントローラと同等の機能を持
ちます。球形のベースステーションから
ケーブルで接続された2本の棒状コント
ローラで操作します。親指で操作するア
ナログスティックと、5つのボタンが搭載さ
れています。実際の操作は慣れるまでな
かなか難しいそうです。599.99ドルで販
売されています。

The Marian VR Experience：
映画「オデッセイ」と同様、
火星でのサバイバル

fabulous wonder land：
ルイスキャロルの
不思議の国をVRで描いたもの

CARDBOARD CRASH：
車の衝突事故や、衝突回避の様子を
VRで再現したもの

http://www.razerzone.com/gaming-controllers/
razer-hydra-portal-2-bundle

LeapMotionで
両手のトラッキングをしている様子

6DOF（6軸）のセンサーを搭載した
Oculus Touch

Hovercast VRメニュー。両手の指をうまく
組み合わせて表示させる3Dメニュー

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

http://www.gloveonevr.com

http://unlimitedhand.com/http://www.vrgochair.com/

VRGO

Gloveone

UnlimitedHand

Razer Hydra

現実世界を模倣するVR

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 May 2016 - 1

http://www.andoh.org/

DIGITAL GADGET

　最近注目のドローンレースではVR
ヘッドセットを装着し、ドローンから送ら
れてくるカメラ映像で操縦しており、
VR世界と現実の世界が融合したよう
な環境になっています。これらVR

（Virtual Reality）が盛り上がってき
ている1つの要因としては、旧来、数
千万円規模の特殊な機材がなけれ
ば、体験、研究、制作ができなかった
環境が、数十万円台、もしくは一般の
スマートフォンを活用するなど、とても
安価に実現できるようになったことが
挙げられます。
　期待のPlayStation VRは、映画
などの映像を見るためのシネマティッ
クモードを備え、2016年10月にリリー
ス、399ドル（日本では税別4万4980
円）と発表されました。性能に対して
の期待値が高かった最新のOculus
Riftがおおかたの予想以上に高額で
あったことからも、普及や浸透のため

には魅力的なVRコンテンツが出そろ
うことと、VR機器の価格の両方が影
響を与えてくるものと思われます。
　一方、安価なダンボールでできた
Google Cardboard、ハコスコなどの
VR装置は、スマートフォンを活用し手
軽に利用できつつも、継続して使って
もらうことが難しいと言われています。
1回目の体験ではすごいと思っても、
それを何度も体験したいと思うほどの
要素や、魅力をもったVRコンテンツが
まだまだ少ないのも1つの要因です。
　VRコンテンツで多い系統は、スリ
ラー、ホラー、ミュージックビデオ、ド
キュメンタリー、キャラクタアニメーショ
ン、ボクシングやサーフィンなどスポー
ツの映像など、VRならではの、体験し
なければわからない映像が注目されて
います。
　毎年1月に米国で開催される若手
作家達の作品を中心としたサンダン
ス映画祭に、2016年度は、新たに
VR映画の部門が開設されました。そ

こで出展されたVR作品の一部は次
のようなものです。

●6×9：囚人になって独房を体験す
るもの

●Across the Line：差別される
人物を体験するもの

●A History of Cuban Dance：
キューバのダンス映像

●Cardboard Crash：車の事故
を体験するもの

●Click Effect、theBlu：海中ダ
イビングを体験するもの

●Collisions、Condition One：
大自然のドキュメンタリー

●Defrost：未来を描いたSF映像
●fabulous wonder.land：ルイ
スキャロルの不思議な国の世界を
描いたもの

●Irrational Exuberance、
Sequenced、The Martian
VR Experience：宇宙空間を
描いたもの

●Sisters: A Mobile VR Ghost
Story：ホラー映画

●Stonemilker、Surge：ミュー
ジックビデオ

●Job Simulator：職業体験シ
ミュレーター

●The Rose and I：キャラクタア
ニメーション

　作品を手がける監督らも、遊園地
のアトラクションを手がける映像作家
や過去にアカデミー賞にノミネートさ
れたことのある人物など、単なるデモ
映像の粋を超えた、本気の作品群ば
かりです。映像演出の面で経験のあ
る有能な人材がかかわり始めている
一方で、単なる映像視聴だけではな
い、VRならではのインタラクティブな
体験を得るために、VR空間内での
ユーザインターフェースも重要な要素
としてとらえられています。

　VRの世界のユーザインターフェー
スの系統は、大きく4つに分かれると
考えられます。

●古くから研究されてきたバーチャル
リアリティの文脈で操作するもの

●3Dゲームで使われてきたヘッドアッ
プディスプレイやファーストパーソン
ゲームなどの操作を引き継いだも
の

●スマートフォン画面での操作の流
れをくんだもの

●現実世界における体の動きや、身
振り手振りなどの振る舞いを模倣
したもの

　現在多くのVRコンテンツでは、両
手で扱う使い慣れた家庭用ゲーム機
のゲームコントローラが利用されてい
ます。一番慣れていると思われるゲー
ムパッドでさえ、VR空間に没入してい
るときは手元を見ることはできず、触
覚と記憶で操作することになります。
一般的なマウスやキーボードはほとん
ど使い物になりません。現実世界で
は、手の操作を目で見て、それがフィー
ドバックになってさまざまな操作を調整
することができますが、VRの場合、目
が見えているのに手元が見えない状
態で、触覚のみを指針に操作しなけ
ればいけません。そのため握ったまま
で使えるVR専用の入力デバイスや、
LeapMotionのようなジェスチャを認
識するための機材、視線やまばたきと
いった、VRデバイスならではの入力方
法が考えられています。
　古いタイプのVRでは、ヘッドアップ
ディスプレイと呼ばれる四角い枠が三
次元空間内に唐突に表示され、それ
を操作することがよくありました。実際
は視野や焦点が分断されるのであま
りいい方法ではなく、理想は三次元
空間内のすべてのものがシームレス
に見られるよう、今見ている空間内に
操作できるものを配置するのが適切
です。
　その場合、何を選択したのかがわか
りにくい場合が多いので、色が変わっ
たり、サイズが大きくなったり、音で補
足したりと、二次元のユーザインター
フェース以上に配慮が必要です。選
択するオブジェクトやターゲットを指示
するマークか何かを目立たせるのでは
なく、ターゲットそのものが光ったり、印

がついたりしてわかるようにする工夫
も有効です。
　全体的に、あまり遠くにあるもの、あ
まり近くにあるものを見続けなくてもす
むように演出を考えることです。これら
の方策は、三次元空間内に自分の身
体の一部が映り込んでいるのか、全
体が映り込んでいて上から鳥瞰して
見ているのか、自分の身体はまったく
映り込んでおらず、無の状態なのかに
よっても変化します。ファーストパーソ
ンシューティングと呼ばれる一人称の
ゲームタイプのもの、少し上から俯瞰
して自分自身が見えるもの、建築物の
ウォークスルーのように視点や演出が
決まっており、ただ傍観しているだけ
のVRコンテンツなどもあります。
　Oculus Touch、SteamVR、
PlayStation MoveといったVR用と
して活用される入力デバイスで得られ
る入力系統は次のものが考えられて
います（すべてのデバイスが全部に対
応しているわけではありません）。

●手の動きのトラッキング
●人差し指トリガー（拳銃を打ったり

する際に利用）
●単純な押しボタン
●トラックパッド
●接触センサー

　実在感には、見られることと触れら
れることの2つの要素があり、手に
持った入力デバイスでは、単に操作を
入力するという意味だけではなく、つ
かむ、つまむ、動かす、つつく、といった
操作で、現実感を増すための役割を
果たします。

　一方、専用の入力デバイスではな
く、VR空間内での振る舞いそのもの
を操作のきっかけとして利用もできま
す。あるアイコンを画面の中央に持っ
てきて、しばらく同じ場所を注視すると
選択していることになるインターフェー
スや、普段あまり見ない、足下を見る
感じで下を向くと、何かの操作の代用
になるなどといった方法です。
　統合すると、VR空間内では次のよ
うな要素がユーザインターフェースに
なり得ます。

●頭の動き
●手で持つ何らかのコントローラ
●視線方向
●三次元空間内での立ち位置
●手の動きのトラッキング
●（コントローラで認識する）指の動き
●音や光で、意識的に考えさせる要素

　VR空間内での振る舞いを操作に
対応づける場合、視覚や視野方向を
リセットする手段を用意しておくと良い
でしょう。また、現実世界をできるだけ
模倣するのが得策で、現実世界にあ
る見慣れた物体が、VRの世界でも同
じような大きさで描かれていることが
重要です。さらに、通常考える以上
に、画面内のユーザインターフェース
の密度を少なくする配慮も必要です。
　一般的に、解像度や視野角の制
限により通常のコンピュータ画面上
の何分の一しか認知することができま
せん。悩んだときは、実際の世界での
立ち振る舞いを参考にし、判断できな
い部分やよくわからないときは、テスト
にテストを重ねるしか、いまのところ具
体的な解決策はないと考えます。
　スピルバーグが映画化を予定して
いる人気のSF小説で、2044年の未
来を描いた『Ready Player One』で
は、現実世界は荒廃してしまい、人類
は皆「オアシス」という仮想空間に逃
げこんでいる様子が描かれています。
VR世界は決して逃げ込む場所では
なく、現実世界を拡張する存在であっ
てほしいものです。｢

vol.209

何度目かのVRブーム到来

VR世界のユーザインターフェース

DIGITAL
GADGET
VR世界のユーザインターフェース

VR用の椅子

Gadget 1

VRGOは、VR映像の体験中に座る、バ
ランスボールのようなVR専用の椅子で
す。起き上がり小法師のような椅子で、
前後左右の動きをBluetooth経由でパ
ソコンへ送信します。通常、キーボードや
ゲームコントローラで操作していたもの
を、椅子の操作と対応づけることができま
す。主な動作としては、前進、後進、左
折、右折、回転などで、立って動くと不安
定ですが、椅子に座った状態であれば転
ぶこともありません。便利なのは、VR機
材を収納するボックスにもなる点です。

VR専用手袋

Gadget 2

GloveoneはVR専用グローブ（手袋）で
す。VR空間の物体を触った感触を手に
伝えるためのグローブです。各指5ヵ所と
手のひら5ヵ所の部分に振動素子が搭
載されており、震える周波数と強さによっ
て、擬似的な感触を伝えるしくみです。
230ドルで販売の予定です。旧来のVR
用グローブは仰 し々い機械式であったり、
振動センサーも大きく数が少ないものが
多いなか、軽量で安価であることが特徴
です。ただし、手の形状は動きなどをセン
シングできないので、ほかのデバイスと組
み合わせて活用する必要があります。

腕用フォースフィードバック
兼入力デバイス

Gadget 3

UnlimitedHandは、日本の大学発ベン
チャーが開発する、新しいタイプの入力
デバイスです。腕に巻くだけで操作でき、
ゲーム内の触感も得られるデバイスで
す。デバイスにはモーションセンサーと筋
変位センサーが搭載されています。また、
電気刺激によって装着者の筋肉を収縮
させて、フィードバックを与えています。ダ
ミーの振動ではなく、身体へのフィード
バックであることが最大の特徴です。

両手コントローラ

Gadget 4

Razer Hydraは左右の両手で持って使
うゲームコントローラです。VR専用に作ら
れたものではないですが、VR空間操作
用に適しています。WiiやPlayStation
Moveなどの家庭用ゲーム機における
モーションコントローラと同等の機能を持
ちます。球形のベースステーションから
ケーブルで接続された2本の棒状コント
ローラで操作します。親指で操作するア
ナログスティックと、5つのボタンが搭載さ
れています。実際の操作は慣れるまでな
かなか難しいそうです。599.99ドルで販
売されています。

The Marian VR Experience：
映画「オデッセイ」と同様、
火星でのサバイバル

fabulous wonder land：
ルイスキャロルの
不思議の国をVRで描いたもの

CARDBOARD CRASH：
車の衝突事故や、衝突回避の様子を
VRで再現したもの

http://www.razerzone.com/gaming-controllers/
razer-hydra-portal-2-bundle

LeapMotionで
両手のトラッキングをしている様子

6DOF（6軸）のセンサーを搭載した
Oculus Touch

Hovercast VRメニュー。両手の指をうまく
組み合わせて表示させる3Dメニュー

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

http://www.gloveonevr.com

http://unlimitedhand.com/http://www.vrgochair.com/

VRGO

Gloveone

UnlimitedHand

Razer Hydra

現実世界を模倣するVR

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 2 - Software Design

DIGITAL GADGET

　最近注目のドローンレースではVR
ヘッドセットを装着し、ドローンから送ら
れてくるカメラ映像で操縦しており、
VR世界と現実の世界が融合したよう
な環境になっています。これらVR

（Virtual Reality）が盛り上がってき
ている1つの要因としては、旧来、数
千万円規模の特殊な機材がなけれ
ば、体験、研究、制作ができなかった
環境が、数十万円台、もしくは一般の
スマートフォンを活用するなど、とても
安価に実現できるようになったことが
挙げられます。
　期待のPlayStation VRは、映画
などの映像を見るためのシネマティッ
クモードを備え、2016年10月にリリー
ス、399ドル（日本では税別4万4980
円）と発表されました。性能に対して
の期待値が高かった最新のOculus
Riftがおおかたの予想以上に高額で
あったことからも、普及や浸透のため

には魅力的なVRコンテンツが出そろ
うことと、VR機器の価格の両方が影
響を与えてくるものと思われます。
　一方、安価なダンボールでできた
Google Cardboard、ハコスコなどの
VR装置は、スマートフォンを活用し手
軽に利用できつつも、継続して使って
もらうことが難しいと言われています。
1回目の体験ではすごいと思っても、
それを何度も体験したいと思うほどの
要素や、魅力をもったVRコンテンツが
まだまだ少ないのも1つの要因です。
　VRコンテンツで多い系統は、スリ
ラー、ホラー、ミュージックビデオ、ド
キュメンタリー、キャラクタアニメーショ
ン、ボクシングやサーフィンなどスポー
ツの映像など、VRならではの、体験し
なければわからない映像が注目されて
います。
　毎年1月に米国で開催される若手
作家達の作品を中心としたサンダン
ス映画祭に、2016年度は、新たに
VR映画の部門が開設されました。そ

こで出展されたVR作品の一部は次
のようなものです。

●6×9：囚人になって独房を体験す
るもの

●Across the Line：差別される
人物を体験するもの

●A History of Cuban Dance：
キューバのダンス映像

●Cardboard Crash：車の事故
を体験するもの

●Click Effect、theBlu：海中ダ
イビングを体験するもの

●Collisions、Condition One：
大自然のドキュメンタリー

●Defrost：未来を描いたSF映像
●fabulous wonder.land：ルイ
スキャロルの不思議な国の世界を
描いたもの

●Irrational Exuberance、
Sequenced、The Martian
VR Experience：宇宙空間を
描いたもの

●Sisters: A Mobile VR Ghost
Story：ホラー映画

●Stonemilker、Surge：ミュー
ジックビデオ

●Job Simulator：職業体験シ
ミュレーター

●The Rose and I：キャラクタア
ニメーション

　作品を手がける監督らも、遊園地
のアトラクションを手がける映像作家
や過去にアカデミー賞にノミネートさ
れたことのある人物など、単なるデモ
映像の粋を超えた、本気の作品群ば
かりです。映像演出の面で経験のあ
る有能な人材がかかわり始めている
一方で、単なる映像視聴だけではな
い、VRならではのインタラクティブな
体験を得るために、VR空間内での
ユーザインターフェースも重要な要素
としてとらえられています。

　VRの世界のユーザインターフェー
スの系統は、大きく4つに分かれると
考えられます。

●古くから研究されてきたバーチャル
リアリティの文脈で操作するもの

●3Dゲームで使われてきたヘッドアッ
プディスプレイやファーストパーソン
ゲームなどの操作を引き継いだも
の

●スマートフォン画面での操作の流
れをくんだもの

●現実世界における体の動きや、身
振り手振りなどの振る舞いを模倣
したもの

　現在多くのVRコンテンツでは、両
手で扱う使い慣れた家庭用ゲーム機
のゲームコントローラが利用されてい
ます。一番慣れていると思われるゲー
ムパッドでさえ、VR空間に没入してい
るときは手元を見ることはできず、触
覚と記憶で操作することになります。
一般的なマウスやキーボードはほとん
ど使い物になりません。現実世界で
は、手の操作を目で見て、それがフィー
ドバックになってさまざまな操作を調整
することができますが、VRの場合、目
が見えているのに手元が見えない状
態で、触覚のみを指針に操作しなけ
ればいけません。そのため握ったまま
で使えるVR専用の入力デバイスや、
LeapMotionのようなジェスチャを認
識するための機材、視線やまばたきと
いった、VRデバイスならではの入力方
法が考えられています。
　古いタイプのVRでは、ヘッドアップ
ディスプレイと呼ばれる四角い枠が三
次元空間内に唐突に表示され、それ
を操作することがよくありました。実際
は視野や焦点が分断されるのであま
りいい方法ではなく、理想は三次元
空間内のすべてのものがシームレス
に見られるよう、今見ている空間内に
操作できるものを配置するのが適切
です。
　その場合、何を選択したのかがわか
りにくい場合が多いので、色が変わっ
たり、サイズが大きくなったり、音で補
足したりと、二次元のユーザインター
フェース以上に配慮が必要です。選
択するオブジェクトやターゲットを指示
するマークか何かを目立たせるのでは
なく、ターゲットそのものが光ったり、印

がついたりしてわかるようにする工夫
も有効です。
　全体的に、あまり遠くにあるもの、あ
まり近くにあるものを見続けなくてもす
むように演出を考えることです。これら
の方策は、三次元空間内に自分の身
体の一部が映り込んでいるのか、全
体が映り込んでいて上から鳥瞰して
見ているのか、自分の身体はまったく
映り込んでおらず、無の状態なのかに
よっても変化します。ファーストパーソ
ンシューティングと呼ばれる一人称の
ゲームタイプのもの、少し上から俯瞰
して自分自身が見えるもの、建築物の
ウォークスルーのように視点や演出が
決まっており、ただ傍観しているだけ
のVRコンテンツなどもあります。
　Oculus Touch、SteamVR、
PlayStation MoveといったVR用と
して活用される入力デバイスで得られ
る入力系統は次のものが考えられて
います（すべてのデバイスが全部に対
応しているわけではありません）。

●手の動きのトラッキング
●人差し指トリガー（拳銃を打ったり

する際に利用）
●単純な押しボタン
●トラックパッド
●接触センサー

　実在感には、見られることと触れら
れることの2つの要素があり、手に
持った入力デバイスでは、単に操作を
入力するという意味だけではなく、つ
かむ、つまむ、動かす、つつく、といった
操作で、現実感を増すための役割を
果たします。

　一方、専用の入力デバイスではな
く、VR空間内での振る舞いそのもの
を操作のきっかけとして利用もできま
す。あるアイコンを画面の中央に持っ
てきて、しばらく同じ場所を注視すると
選択していることになるインターフェー
スや、普段あまり見ない、足下を見る
感じで下を向くと、何かの操作の代用
になるなどといった方法です。
　統合すると、VR空間内では次のよ
うな要素がユーザインターフェースに
なり得ます。

●頭の動き
●手で持つ何らかのコントローラ
●視線方向
●三次元空間内での立ち位置
●手の動きのトラッキング
●（コントローラで認識する）指の動き
●音や光で、意識的に考えさせる要素

　VR空間内での振る舞いを操作に
対応づける場合、視覚や視野方向を
リセットする手段を用意しておくと良い
でしょう。また、現実世界をできるだけ
模倣するのが得策で、現実世界にあ
る見慣れた物体が、VRの世界でも同
じような大きさで描かれていることが
重要です。さらに、通常考える以上
に、画面内のユーザインターフェース
の密度を少なくする配慮も必要です。
　一般的に、解像度や視野角の制
限により通常のコンピュータ画面上
の何分の一しか認知することができま
せん。悩んだときは、実際の世界での
立ち振る舞いを参考にし、判断できな
い部分やよくわからないときは、テスト
にテストを重ねるしか、いまのところ具
体的な解決策はないと考えます。
　スピルバーグが映画化を予定して
いる人気のSF小説で、2044年の未
来を描いた『Ready Player One』で
は、現実世界は荒廃してしまい、人類
は皆「オアシス」という仮想空間に逃
げこんでいる様子が描かれています。
VR世界は決して逃げ込む場所では
なく、現実世界を拡張する存在であっ
てほしいものです。｢

vol.209

何度目かのVRブーム到来

VR世界のユーザインターフェース

DIGITAL
GADGET
VR世界のユーザインターフェース

VR用の椅子

Gadget 1

VRGOは、VR映像の体験中に座る、バ
ランスボールのようなVR専用の椅子で
す。起き上がり小法師のような椅子で、
前後左右の動きをBluetooth経由でパ
ソコンへ送信します。通常、キーボードや
ゲームコントローラで操作していたもの
を、椅子の操作と対応づけることができま
す。主な動作としては、前進、後進、左
折、右折、回転などで、立って動くと不安
定ですが、椅子に座った状態であれば転
ぶこともありません。便利なのは、VR機
材を収納するボックスにもなる点です。

VR専用手袋

Gadget 2

GloveoneはVR専用グローブ（手袋）で
す。VR空間の物体を触った感触を手に
伝えるためのグローブです。各指5ヵ所と
手のひら5ヵ所の部分に振動素子が搭
載されており、震える周波数と強さによっ
て、擬似的な感触を伝えるしくみです。
230ドルで販売の予定です。旧来のVR
用グローブは仰 し々い機械式であったり、
振動センサーも大きく数が少ないものが
多いなか、軽量で安価であることが特徴
です。ただし、手の形状は動きなどをセン
シングできないので、ほかのデバイスと組
み合わせて活用する必要があります。

腕用フォースフィードバック
兼入力デバイス

Gadget 3

UnlimitedHandは、日本の大学発ベン
チャーが開発する、新しいタイプの入力
デバイスです。腕に巻くだけで操作でき、
ゲーム内の触感も得られるデバイスで
す。デバイスにはモーションセンサーと筋
変位センサーが搭載されています。また、
電気刺激によって装着者の筋肉を収縮
させて、フィードバックを与えています。ダ
ミーの振動ではなく、身体へのフィード
バックであることが最大の特徴です。

両手コントローラ

Gadget 4

Razer Hydraは左右の両手で持って使
うゲームコントローラです。VR専用に作ら
れたものではないですが、VR空間操作
用に適しています。WiiやPlayStation
Moveなどの家庭用ゲーム機における
モーションコントローラと同等の機能を持
ちます。球形のベースステーションから
ケーブルで接続された2本の棒状コント
ローラで操作します。親指で操作するア
ナログスティックと、5つのボタンが搭載さ
れています。実際の操作は慣れるまでな
かなか難しいそうです。599.99ドルで販
売されています。

The Marian VR Experience：
映画「オデッセイ」と同様、
火星でのサバイバル

fabulous wonder land：
ルイスキャロルの
不思議の国をVRで描いたもの

CARDBOARD CRASH：
車の衝突事故や、衝突回避の様子を
VRで再現したもの

http://www.razerzone.com/gaming-controllers/
razer-hydra-portal-2-bundle

LeapMotionで
両手のトラッキングをしている様子

6DOF（6軸）のセンサーを搭載した
Oculus Touch

Hovercast VRメニュー。両手の指をうまく
組み合わせて表示させる3Dメニュー

安藤 幸央
EXA Corporation
[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

http://www.gloveonevr.com

http://unlimitedhand.com/http://www.vrgochair.com/

VRGO

Gloveone

UnlimitedHand

Razer Hydra

現実世界を模倣するVR

※本記事で紹介しているものは国内未発表・未発売のものを含んでいます。 2 - Software Design May 2016 - 3

http://www.vrgochair.com/
http://www.gloveonevr.com
http://unlimitedhand.com/
http://www.razerzone.com/gaming-controllers/razer-hydra-portal-2-bundle

4 - Software Design

DSL——ドメイン固有言語

DSLとは

　DSLとは、Domain-Specific Languageの略
で、特定の分野や用途に限定した言語のことで
す。日本語では「ドメイン固有言語」や「ドメイ
ン特化言語」と呼びます。ここでいう「言語」と
はプログラミング言語の場合が多いですが、必
ずしもプログラミング言語とは限りません。
　DSLは ITの世界にたくさん存在します。た
とえば、正規表現は「文字列のパターンマッチ」
という用途に限定した言語と言えます。また、
CSS（Cascading Style Sheet）は「Webページ
のスタイル記述」という用途に限定した言語で
す。JSON（JavaScript Object Notation）は
「データ交換」という用途に限定した言語で、汎
用プログラミング言語であるJavaScriptのサ
ブセットとして作られています。

DSLの例：Makefile

　開発の自動化ツールとして使われるMakeで
は、Makefileと呼ばれるファイルを利用しますが、

その書式はDSLの一種と言えます。Makefile

の記述例をリスト1に示します。
　ここには、

¡fooというターゲットはfoo.cというソース
に依存すること

¡fooを foo.cから作るためには gcc -o foo
foo.cというコマンドを実行すること

という情報が書かれています。Makeを実行す
ると、ファイルfooとファイルfoo.cのタイム
スタンプを比較し、もしもfooのほうが古かっ
たらコマンドを実行してfooを作ります。
　「タイムスタンプを比較してソースよりもター
ゲットが古かったら、コマンドを実行してター
ゲットを作りなおす」というのは、プログラム
開発でよく起きることです。Makefileには、そ
の「よく起きること」のエッセンスとして「ファ
イルの依存関係と実行コマンド」を記述するの
です。
　先ほどのMakefileによる処理は、汎用のプロ
グラミング言語でも書くことができます。たと
えばRubyなら、リスト2のように記述できます。
　しかし、ファイルの数が何十何百のように
多い場合には、いちいちこのような記述をす

DSL

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 36

 ▼リスト2　Rubyで記述した例

if not File.exists?('foo') or
 File.new('foo').mtime < File.new('foo.c').mtime
 system("gcc -o foo foo.c")
end

 ▼リスト1　Makefileの例

foo: foo.c
 gcc -o foo foo.c

http://www.hyuki.com/

4 - Software Design May 2016 - 5

ることは困難ですし、間違う可能性も高いでしょ
う。
　Makefileの書式を使えば、「ファイルの依存
関係と実行されるコマンド」を非常に簡潔に記
述できます。簡潔に記述できるのは、Makefile

が「自動的な開発」という特定の用途に限定して
いるからです。Makefileは典型的なDSLと言
えるでしょう。

DSLのメリット

　DSLを使うと必要な情報を簡潔に記述でき
るので、生産性が高くなります。汎用プログラ
ミング言語では、広い用途に対応するため冗長
な記述が必要になることがありますが、DSL

では用途が限定されているため無駄のない記述
ができるのです。DSLでは必要な情報を端的
に記述できるので、手間を減らし、可読性を上
げることができます。
　「よく使う処理をまとめて効率化を図る」とい
うのはプログラミングでよく行われることです。
たとえば、関数やライブラリも、よく使う処理
をまとめていることになります。DSLの場合
には「言語」という形でまとめている点がおもし
ろいと言えるでしょう。
　当然のことですがDSLにも良し悪しがあり
ます。「よく使う処理」の切り出し方が不適切だっ
たり、DSLそのものの設計が悪かったりすると、
思ったほど生産性は高くなりません。
　また、DSLは1つの言語ですから、習得に
掛かる時間も無視できません。記述が簡潔にな
るといっても、自分がやりたいことの記述方法
を調べる時間が掛かり過ぎては困りますね。
　1つの用途に限定しても、DSLが1つに定ま
るとは限りません。たとえば、Makeのような
自動化ツールはAnt、Maven、Rakeなどたくさ
ん存在し、ファイルの依存関係を記述するそれ
ぞれ別の書式を持っています。

日常生活とDSL

　DSLはあくまで ITの世界の概念ですが、日

常生活にもDSLの発想を応用できるものがあ
ります。
　たとえば、病院で書く問診票があります。患
者は、問診票に住所、氏名、年齢、そして現在
の症状や体温などを書きます。医者が患者と対
話を行っても同じ情報は得られますが、問診票
に患者が記入すれば、短時間で必要な情報をも
れなく得ることができます。これは、用途を限
定することで、必要な情報を簡潔に表現できる
DSLと同じ発想にあります。
　また、作業員が毎日書く日報はどうでしょう
か。定型化された作業に限定して考えるなら、
日報の記述方法もある程度定型化できそうです。
つまりそれは、日報のための「言語」を考えるこ
とにつながります。
　あるいは、ファミリーレストランやファース
トフードの接客マニュアルもDSLに似ていま
す。接客マニュアルでは、繰り返し発生する状
況を適切に処理する定型化がなされていますか
ら、接客マニュアルを使って、教育の効率を上
げることができるでしょう。また、サービスの
品質を均一に保つ効果もあります。
　もちろん、問診票であれ、日報であれ、接客
マニュアルであれ、それが効果を発揮するのは
適切に設計されている場合だけです。問診票の
設計がまずければ情報がうまく整理されず、医
者と患者の対話の効率は上がりません。日報の
記述が形骸化してしまっては、報告の役目を果
たさなくなります。接客マニュアルの設計がま
ずければ、教育効果も上がらず、個人的に良い
接客ができる従業員の対応まで均一に悪くして
しまう場合もあるでしょう。

◆　◆　◆

　あなたの周りを見回して、記述に毎回手間取っ
ているものはありませんか。用途を限定し、簡
潔に記述できる「言語」を設計することで、その
手間を軽減することはできないでしょうか。
　ぜひ、考えてみてください。｢

36

6 - Software Design

　今回は「Gyaim注2」というMacの日本語入力シ
ステムを紹介します。
　この連載は、シンプルなのに便利な「コロン
ブスの卵」的なシステムを紹介する趣旨のもの
なのに、日本語入力システムのような複雑なも
のを取り上げるのは変だと思われるかもしれま
せんが、「G

ギ ャ イ ム

yaim」は単純な原理にもかかわらず
実用的に利用できる IMEですので、ここで紹
介したいと思います（図1）。私はこの連載をす
べてGyaimで書いています。
　現在のパソコンでは、「かな漢字変換システム」
で日本語入力を行うのが普通になっています。
かな漢字変換システムは、1978年に東芝から
販売された日本語ワープロで初めて導入された
ものですが、パソコンの黎明期から標準的に利
用されてきています。かな漢字変換システム以
外にもさまざまな日本語入力システムが提案さ
れてきましたが、それほど努力しなくても普通
のユーザがとりあえず使えるうえに、熟達すれ
ば高速に入力が可能だという特長があるため、

かな漢字変換システム
かな漢字変換方式の日本語入力が廃れることは
なさそうです。

連文節変換

　現在のパソコンのかな漢字変換システムでは、
いわゆる連文節変換が主流になっています。連
文節変換とは、文章の読みをすべて入力してか
ら、漢字混じりの日本語文字列に一気に変換す
る手法のことで、たとえば「わたしのなまえは
なかのです」という入力を「私の名前は中野です」
に変換するというものです。「私の」「名前は」の
ように、息継ぎできる場所で文を区切った単位
を「文節」と呼びますが、連文節変換では複数の
文節を含む文を一気に変換できるのが特長です。
　連文節変換は一見便利そうですが、実は次の
ようなさまざまな問題があります。

・正確な入力が必要
　watashinonamaeha...のような文字列を1文

字も間違えずに入力する必要がある
・完全な読みの入力が必要
・変換誤りの訂正が必須
・非力なマシンで利用しにくい

　これからのユビキタス社会においては、パソ
コンの熟練者だけが使える入力手法ではなく、
どこでも誰でも簡単に使えるシンプルで柔軟な
入力方式が必要で、次の要件が満たされる必要
があるでしょう。

・必要なキーやボタンの数が最小限
・操作の種類や量が少ない

増井ラボノート

注1） http://thinkit.co.jp/free/article/0709/19/
注2） http://masui.github.io/GyaimMotion/

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張って楽できるなら、それに越したことはないでしょ
う。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろんな
システムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用しているよ
うな単純かつ便利なシステムをたくさん紹介していきます。

第 7 回　Gyaim

 ▼図1　AtomでGyaimを使っているところ

http://thinkit.co.jp/free/article/0709/19/
http://masui.github.io/GyaimMotion/

NO.

6 - Software Design May 2016 - 7

G y a i m

・ユーザがカスタマイズ可能
・さまざまな環境で同じ方式

が利用可能

　このような要件を満たすた
めには、単純なアルゴリズム
に基づいて単純な操作で入力を行えるようなコ
ロンブスの卵的な入力システムが必要だと思わ
れます。

SKK

　連文節変換を利用しない場合、かな漢字変換
は辞書を参照して読みを漢字に置き換える単純
な検索作業に近く、動詞の活用への対応などを
除けばそれほど難しいものではありません。
　単純なしくみで日本語入力を行うシステムの
例として、Emacs上のSKKというシステムがあ
ります。SKKは1987年ごろ、京都大学名誉教
授の佐藤雅彦氏が東北大学にいたとき開発した
Emacs用の日本語入力システムです（図2）。
　SKKには英数字モードと日本語モードがあ
ります。日本語モードでローマ字を入力すると
ひらがなが入力されますが、「書く」のような漢
字を含む動詞を入力したい場合は「KaKu」のよ
うに大文字と小文字を混ぜたローマ字を入力し
ます。最初の大文字「K」は変換の開始を意味し
ており、2つめの大文字「K」は送り仮名の開始
を意味しています。SKKの辞書には次のよう
なエントリが含まれており、

かく /核/格/各/角/画/確/:
かk /書/掛/欠/

「Kaku」と入力された場合は「核」「格」「各」のよ
うな漢字への変換が行われ、「KaKu」と入力さ
れた場合は「書く」や「欠く」のような文字列に変
換されるようになっています。つまり変換開始
場所や送りがなの場所をユーザが明示すること
によって、単純なアルゴリズムでの変換を可能
にしているわけです。

Gyaim

　SKKは単純なしくみで効率的な日本語入力
ができる、コロンブスの卵的な優れた日本語入
力システムなのですが、一般的なかな漢字変換
システムと同じように、すべての読みを正確に
入力する必要があるうえに、漢字や送り仮名に
ついてユーザが明示的に指定しなければならな
いためユーザの負担が大きく、万人向けとは言
い難いものでした。私は1990年代ごろはSKK

を愛用していたのですが、携帯電話の予測型テ
キスト入力システム「POBox注3」の開発後はあ
らゆる場所でPOBoxに準じた入力手法を使っ
ており、MacではGyaimを使っています。
　GyaimはMacで動くシンプルな日本語入力シ
ステムです。Gyaimは約1,000行のRuby（Ruby

Motion注4を使用）で記述されており、スマホの
予測入力システムと同じように利用できます。
　Gyaimは次の手順でインストールします。

・http://masui.github.io/GyaimMotion/
からGyaim.dmgをダウンロードして展開

・Gyaim.app を ̃/Library/Input Methods
に置く

　このように設定を行ったあと、環境設定画面
の［キーボード］→［入力ソース］でGyaimを選択し、
追加します（図3）。

Gyaimの実装

　IMEの作成には、ユーザインターフェース
とかな漢字変換アルゴリズムが必要です。

注3） https://ja.wikipedia.org/wiki/POBox
注4） http://www.rubymotion.com/jp/

 ▼図2　SKK利用例 ▼図3　日本語入力としてGyaimを選択

%E3%83%BBhttp://masui.github.io/GyaimMotion/
https://ja.wikipedia.org/wiki/POBox
http://www.rubymotion.com/jp/

増井ラボノート

8 - Software Design

 IMEのユーザインターフェース
　Macには、IMKit注5というIME作成用ライブラ
リが用意されており、それを利用してIMEを作
成できます。IMKitにはさまざまな機能が用意さ
れていますが、GyaimではIMKInputController
クラスのhandleEventというAPIのみを利用し
ています。候補を表示したり選択したりするには、
任意のCocoaライブラリを利用できます。

 かな漢字変換アルゴリズム
　ユーザインターフェースはシステムごとに用意
する必要がありますが、かな漢字変換アルゴリズ
ムはAndroidでもMacでも同じものを利用できま
す。GyaimではRubyでかな漢字変換アルゴリズ
ムを実装していますが、同じアルゴリズムをJava

やJavaScriptで実装すれば、Androidやブラウザ
などで利用できます。
　GyaimではSKKと同様に読みと漢字の対応
辞書を使ってかな漢字変換を行います。たとえ
ば日本語入力モードで「とうきょう」と入力され
たとき、辞書から「とうきょう」という読みを持
つ単語を検索して、リストして候補として表示
し、ユーザの操作で候補を選択してテキストに
貼り付けます。
　「東京」のあとには「駅」や「大学」のような単語
が続くことがあります。「東京駅」「東京大学」
のような単語をすべて辞書に登録しておくのは
たいへんですので、「東京は地名である」「地名
のあとには駅や大学が続くことがある」という
情報を辞書に登録しておくことにより、「東京駅」
が辞書に登録されてなくても「とうきょうえき」
を「東京駅」に変換できるようにしています。
　まったく同じ手法で動詞の変化形も扱うこと
ができます。たとえば辞書に、

・「書」の読みは「か」である
・「書」のあとにはカ行五段活用語尾がつながる

・「か」はカ行五段活用語尾である

といった情報を定義しておけば「かかない」を「書
かない」に変換できます。このように、単語の
読みと属性、接続情報を定義しておくだけで、
それなりに自然言語を入力できますし、日本語
以外の文字入力でも利用できます。

Gyaimの特殊機能

　Gyaimでは前述のような非常に単純な変換手
法を使っていますが、特殊な機能も用意してい
ます。自前の IMEだと好きな機能を自由に実
装できるのが楽しいところです。

 単語登録機能
　一般的なIMEは単語登録が面倒なことが多い
ので、頻繁に単語登録を行っている人は多くな
いでしょう。たいていのIMEにおいて、単語登
録は入力とはまったく異なるインターフェース
になっていますが、Gyaimでは入力操作と登録
操作をほとんど同じにすることにより簡単に単
語登録が行えるようになっています。Gyaimで
は「選択中の文字列があったりコピーバッファに
文字列があった場合は候補として表示する」と
いう単純な方法で単語登録を可能にしています。
　たとえば「＼ (^o^)／」という文字列を「owata」
という読みで登録したい場合（図4）、「＼ (^o^)／」
という文字列を選択またはコピーしておいてか
らGyaimで「owata」と入力すると「＼ (^o^)／」が
候補の先頭に表示され（図5）、これを選択して
確定することにより単語登録が終了します（図6）。

 画像変換
　Gyaimでは、辞書の中で文字列の代わりに
Gyazoの画像ファイル名を登録しておくと漢字
の代わりに画像を入力できます。たとえば私の
顔画像を「masui」という読みで登録しておくと、

注5） https://developer.apple.com/library/mac/documentation/Cocoa/Reference/InputMethodKitFrameworkRef/

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/InputMethodKitFrameworkRef/

NO.

8 - Software Design May 2016 - 9

G y a i m

Gyaimで「masui」と入力することにより顔画像
を入力できます（図7）。

 時刻の入力
　Gyaimでは「ds」と入力すると現在時刻が候補
に出るようになっており、文章やプログラムの
中に手軽にタイムスタンプを記録しておくこと
ができます。数式演算機能のような特殊な機能
を追加することも簡単です。こういったちょっ
とした機能が用意されているIMEはありますが、
GyaimはRubyを少し書くだけで特殊な機能で
も簡単に追加できるのがうれしいところです。

 秘密文字列の入力
　ブラウザなどでパスワードやクレジットカー
ド番号を入力するのは面倒なものですが、IME

でこれらを覚えておけば簡単に入力を行うこと
ができます。もちろんこれらを生テキストで単
語登録するのは危険ですが、秘密の文字列を変
換することによりクレジットカード番号が候補
に表示されて入力可能にしています。

 Google変換の利用
　Gyaimの辞書は貧弱ですのでうまく変換でき
ないこともよくありますが、そういうときは
Google入力ツールのようなWeb上の変換API

を利用して変換を行えるようにしています。

◆ ◆ ◆

　IMEは複雑な要素を含んでいるのでGyaim

の詳細について書くことはできませんでしたが、
とりあえず簡単な IMEをMacで作ることがで
きることが理解いただけたでしょうか。
　私のように単純な変換方式を好む人はGyaim

のような方法を工夫すれば良いでしょうし、連
文節変換が好きな人は Googleなどの変換API

を利用することもできます。IMEの作成がたい
へんだった昔と異なり、現在は IME用のAPI

／使いやすい強力な言語／Webの変換API／高
度な入出力機能などを利用できますから IME

作成のハードルは極めて低くなってると言える
でしょう注6。IMEを自分で作る試みが、今後もっ
と増えると良いと思っています。ﾟ

 ▼図4　「＼ (^o^)／」が登録されて
　　　いない状態

 ▼図5　「＼ (^o^)／」がコピーバッファ
　　　にある状態で「owa」と入力

 ▼図6　「＼ (^o^)／」を選択。確
　　　定すると単語登録される

 ▼図7　画像変換

注6） Gyaimのソースコードは https://github.com/masui/GyaimMotion で公開しています。

https://github.com/masui/GyaimMotion

宮原徹の

10 - Software Design

最大規模のOSC東京春
開催

　2016 年 2 月 26 日（金）・27 日

（土）の2日間、明星大学で開催され

たOSC東京春は、2日間で1,550名

（650名＋900名）もの参加者が集ま

りました（写真1）。

　開催期間中は人の出入りが見渡せ

る受付にいますが、久しぶりに会う

人、わざわざ遠方から出張と合わせ

て足を運んでくれる人（OSC東京に

合わせて東京出張の人が多い！）と

会話するのも楽しみの1つです。さ

らに、いろいろなお土産やお酒の差

し入れも多く、どんどん酒瓶が増え

ていきます。

懇親会も大規模です
　OSC東京の半分は懇親会でできて

いると思えるぐらい、200名近くが

参加する一大イベントです。今回は

事務局を受け持っているびぎねっと

（筆者の会社）15周年記念の感謝パー

ティーを兼ねるということもあり、

飲み物は発泡酒からビールに格上げ

して思う存分飲んでもらいました。

さらに有志からお祝いにベルギー

ビールを6リットル瓶（！）で寄贈し

てもらいました（写真2）。中身だけ

でも6キロ以上、瓶の重さも半端な

く、片手では持ち上げられないほど。

両手で抱えて会場内を歩き回り、み

なさんに振る舞わせていただきまし

た。

「Bar root」を出張開店
　懇親会でのもう一つの楽しみは、

臨時のバーを開店することです。

「Bar root」という店名は、私の名前

である「とーる（徹）」をひっくり返し

たのと、システム管理者rootを引っ

かけてのネーミング。普段はオフィ

スなどで親しい人を招いて開店して

いますが、OSCでは大々的にお酒を

振る舞います。持ち込んだお酒の由

来や味などを説明しながら飲んでも

らうと、本当にバーでお客さんを相

手にしているような気分になれます

ね（写真3）。

OSCはみんなでやるもの

　これだけ規模の大きいイベントと

なると、事務局スタッフだけでは人

手が足りないので、前日準備や当日

運営はたくさんのボランティアス

タッフに支えられています（写真4）。

ただし、OSCではボランティアス

タッフも自由にセミナーを聴講した

り、展示を見に行けるようにしてい

ます。OSCをシステムと考えると、

疎結合な自律分散型のアーキテク

チャで設計しています。たとえば、

展示スペースの配置決定や、セミ

ナーのスケジューリングなどは事務

局が行いますが、そのあとは割り当

てを受けた各出展者がそれぞれ自律

的にセミナーや展示を行います。例

外的な処理が発生したときのみ事務

局が対応する、というしかけです。

そのため、例外が発生していないか

常時ウォッチしておくことが重要で

すので、通常の参加者と同様にセミ

ナーや展示を見て回ることがスタッ

フの重要な仕事になります。

OSC東京春と金沢での勉強会第3回

 ▼写真1　 閉会式後、有志に残ってもらい記念撮影。
たくさん参加してくれました

 ▼写真2　 6リットル瓶。共同
設立者の濱野氏と

 ▼写真3　 Bar rootに並べ
られた酒瓶。今
回は焼酎、泡盛
多めです

宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

10 - Software Design May 2016 - 11

R e p o r t

OSC東京春と金沢での勉強会第3回

　大規模なイベントでも、システム

設計しだいで人手をかけなくても廻

るというよい例になっていると思い

ます。興味がある方は、ぜひOSC

にスタッフとして参加してみてくだ

さい。とくに学生のみなさんには、

交通費の支給やスタッフTシャツの

プレゼントなど特典がたくさんあり

ますので、たいへんお得ですよ。

北陸新幹線で金沢へ
　OSC未開催の地域の1つが北陸で

す。北陸新幹線が開通して1周年の

3月14日に、石川県金沢市で地元の

クラウド関係のユーザグループが合

同の勉強会を開催すると知り、勉強

会に参加してきました（写真5）。当

日は50名近くの参加

者が集まり、かなりの

熱 気 で す。AWS や

Azure、SoftLayer、

Bluemix、Docker な

ど、それぞれのサービ

スのエヴァンジェリス

トが最新情報を提供す

る、なかなか充実した勉強会でした。

ライトニングトークの時間もあった

ので、私もOSCの紹介をさせてい

ただき、OSC金沢を開催したいと思

う人は声をかけて、とお話したあと

に、懇親会へ。まずは会場で1時間

ほどお茶とお菓子で懇談したあとで、

市内の居酒屋へ移動して懇親会へ（写

真6）。

　北陸は海産物が美味しいのと、日

本酒も美味しいですね。すでに土日

でいくつかの日本酒銘柄は飲み比べ

していましたが、まだ飲んでいない

銘柄を一通り味わって、そのお店に

ある銘柄はすべて制覇したのでした。

北陸の日本酒はすっきりしていて飲

みやすく、翌日にも残らない、なか

なか素敵な味わいでした。OSC金沢

を開催したいというご意見もたくさ

んいただけたので、開催の際にはま

た美味しい日本酒が味わえそうです。

　懇親会のあとは、さらに東京から

来ていた講師陣と居酒屋で2次会、

さ ら に 謎 の レ ト ロ ゲ ー ム バ ー

「Hello,World!」でファミコンカセッ

トのコレクションを眺めながら、金

沢の夜は更けていくのでした。｢

 ▼写真4　 片付け終了後、スタッフ皆で記念撮影。
お疲れ様でした！

 ▼写真5　セミナーの様子

 ▼写真6　懇親会で記念撮影

 ▲生ハムを必死になって
切る筆者。段々と生ハ
ムカットスキルが上がっ
ていきます

 ▲生ハムを求めて列を作る人々。待
つから並ばないで～、と言っても並
びます

Bar root出張開店
生ハム原木で大盛り上がり

　OSC東京でのBar root出張開店の目玉が生ハム原
木。昨年秋の開催時に初めて出してみて、1回の懇親
会で全部食べきれたので、今回も用意してみました。
これが大好評で、生ハムを食べたいと大行列ができま
した。生ハムを1切れ切るのにもけっこう時間がかか

るのでしかた
がないんです
よね。最後尾
の人が生ハム
にありつける
まで5分待ち。
スライサーを
使って切れば
あっという間
なのですが、

手で切るからこその「味」
もある気がしています。参
加人数が少ないと食べき
れず、そのあとの保管が
たいへんですが、50人以
上集まるようなら食べきれ
ると思いますので、みなさ
んもお試しあれ。生ハム
原木1本（5キロ前後）に
固定する台、ナイフのセッ
トで1万5千円ぐらい。ナ
イフは別途切れ味の良い
ものを用意しておくとよい
でしょう。

12 - Software Design

___________IFTTT
　前回はmbed LPC1768をEthernetに接続し
て、HTTPで通信を行うところまでやってみま
した。マイコンから手元のスマートフォンに
ちょっとした通知を送りたいとき、通知を中継
するサーバの開発や、スマートフォンのアプリ
ケーションを開発するのは面倒です。そこで、
今回は、お手軽なサービスを使って、マイコン
から送った通知を受信できるしくみを作ってみ
ましょう。
　ところで、みなさんはIFTTT（イフト）注1とい
うサービスをご存じでしょうか（図1）。IFTTT

は、If This Then Thatの頭文字から名付けられ
たサービスで、その名のとおり「もしコレなら、
アレをする」といった単純なしかけを、レシピと
呼ばれる形式で保存して走らせることのできる
ものです。コレとかアレの部分には、Evernote

やFacebook、Twitterといったほかのサービス、
あるいはスマートフォンの機能、BMWの車（日
本では未対応）やPhilipsのHueという多機能電
注1） https://ifttt.com

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

クラウドサービスにつないでみる第
11
回

球といった製品など幅広い選択肢が提供されて
います。こういったコレやアレに当てはめるこ
とができるものは、チャンネルという名前で登
録されていて、記事執筆時点では286個のチャ
ンネルが登録されています。
　IFTTTを使うと、翌日の天気予報が雨であれ
ば、iOSやOS Xのリマインダに、傘を忘れな
いように自動的に記入をさせるといったことが
できます（図2）。
　同様のサービスに、Zapier（ザピエル）注2とい
うものがあります。IFTTTはすべて無償で提供
されていますが、Zapierには有償プランがあり
ます。筆者は、無償だけど機能がシンプルな
IFTTT、あるていど使うならば有償プランが欲
しくなるけれどもより多機能なZapier、だと
思っています。

Maker Channel

　そんな IFTTTに、自分が作った機器などを
コレとかアレの部分に当てはめることが手軽に
注2） https://zapier.com

IFTTT

Maker Channel

 ▼図1　IFTTT

 ▼図2　リマインダ

https://zapier.com

12 - Software Design May 2016 - 13

クラウドサービスにつないでみる 第
11
回

できるMaker Channelというチャンネルが追加
されました。何のことはなく、HTTPやHTTPS

で IFTTTのコレ（This）にトリガを送ることが
でき、また、アレ（That）としてHTTPやHTTPS

リクエストを発行させることができます。
　たとえば、IFTTTに何かを処理するための
きっかけ（トリガ）を作るには、マイコンから、

https://maker.ifttt.com/trigger/ｭ
{event_name}/with/key/{secret_key}

にアクセスをするだけです。{event_name}は、
自分が設定する名前で、{secret_key}は、
IFTTTのWebサイトで自動的に発行される値
です。マイコンから情報を渡したいときには、3

つまでJSONで渡すことができます。

Maker Channelを使えるようにする

　Maker Channelを使えるようにするには、ま
ず IFTTTのアカウントを作ってください。
IFTTTのWebサイトにアクセスすると、右上
に「Sign Up」というボタンがあります（図1）。こ
こから、簡単にアカウントを登録できます。
　ログインしたところで、画面右上の「Cha

nnels」をクリックすると、チャンネルの一覧が
表示されます（図3）。ここで「Search Channels」
の欄に「Maker」と入力してMaker Channelを見
つけて、選択します（DIY Electronicsというカ
テゴリにあります）。Maker Channelに入ると大
きなMのロゴの右側にConnectというボタンが
あるので、クリックします（図4）。
　Maker ChannelをConnectすると、図5のよ
うな画面になります。「Your key is」の下に、こ
のチャンネルを使うときに{secret_key}とし
て用いるキーが記されています。このキーをク
リックすると、このキーを使ってどのように
IFTTTのMaker Channelを使うか説明が表示
されます。
　次に、レシピを作りましょう。今回は、マイ
コンからトリガされたら、プッシュ通知を行う
レシピにします。先ほどのMaker Channelの

 ▼図5　Maker ChannelをConnectしたところ

 ▼図3　チャンネルの一覧

 ▼図4　Connectをクリックする

Maker Channelを使えるようにする

14 - Software Design

ページなどの上部に、「My Recipes」というボタ
ンがありますので、これをクリックしてくださ
い。すると、自分のレシピの一覧が表示されま
す。ここで、「Create a Recipe」ボタンをクリッ
クして、レシピ作成画面に移ります（図6）。こ
こで「this」をクリックすると、トリガに使うチャ
ンネルの一覧が表示されますので、Maker

Channelをクリックします。
　ここで、チャンネルのどの機能をトリガに用
いるかを確認されるので、「Receive a web

request」（Webリクエストを受信）を選択します
（図7）。といっても、今のところ、これしか選
択肢がありません。次にイベント名の入力です
（図8）。ここに入力した値は、先ほどの{event_
name}の部分に使います。今回は「test」にして
おくことにします。
　トリガを作ることができました。ここからは、
アレ（That）、アクションの部分の設定です。
「that」をクリックしてください（図9）。するとア
クションに用いるチャンネルを選択する画面（図

10）になるので、「IF Notifications」を選択しま
す。これは、IFTTTのアプリ、IFを使って通
知を送るというものです。チャンネルのどの機
能をアクションに用いるかを確認されるので、
ここで唯一の選択肢である「Send a notifi

cation」をクリックします。
　だいたい設定ができました。今度は通知文の
内容を編集する画面です（図11）。とりあえずテ
ストですので、編集せずに進みます。最後にレ
シピのタイトルを確認されますが、これも編集
せずに進めます（図12）。
　これでレシピが完成しました（図13）。このレ
シピはIFTTTのアプリであるIFに通知を送る
ものですので、IFアプリをお手元のスマートフォ
ンにインストールする必要があります。アプリ
へのリンクは、このページにありますので、お
手持ちのスマートフォンのOS用のアプリをイン
ストールしてください。

 ▼図6　レシピ作成画面

 ▼図8　イベント名の入力

 ▼図10　アクションに使うチャンネルの選択

 ▼図11　通知文の編集

 ▼図9　アクションの設定

 ▼図7　トリガに使う機能の選択

14 - Software Design May 2016 - 15

クラウドサービスにつないでみる 第
11
回

mbedのプログラム

　IFTTTのMaker Channelを利用するライブ
ラリは、mbed.orgで公開されています注3。これ
を使えば、簡単にmbedからIFTTTをトリガで
きます。サンプルコードは、https://develop
er.mbed.org/users/ytsuboi/code/IFTTT-
Example/に置いておきました。いつものよう
に、ご自分のオンラインコンパイラにImportし
てコンパイルすれば、手軽に試せます。
　main.cppにある、

ifttt.addIngredients("hogehoge");

のように記述することで、トリガと同時に
IFTTTにデータを送ることができます。送られ
たデータを通知に使うには、

注3） https://developer.mbed.org/components/If-This-Then-
That-IFTTT/

The event named "{{EventName}}" occurred ｭ
on the Maker Channel. Value 1 is ｭ
"{{Value1}}".

といった具合に、レシピのアクションの項を書
き換えるだけです（図14）。
　mbedをアプリケーションボードに取り付け、
オンラインコンパイラからダウンロードしたバ
イナリファイルをコピーして、リセットボタン
を押すと数秒でお手元のスマートフォンに、図
15のように通知が届きます。

最後に

　IFTTTのMaker Channelを使えば、このよう
に手軽にスマートフォンに通知を送ることがで
きます。ちょっと工夫すれば、ドアが開いたと
きに通知を送るなどのしくみに簡単に応用でき
るでしょう。通知を送るにも、IFアプリを使う
ほかにPushBulletというサービスを使うという
手もあります。また、IFTTTの豊富なチャンネ
ルとの組み合わせで、SNSへのポストなど、さ
まざまなWebサービスへの接続ができるように
なります。s

 ▼図12　レシピのタイトルを編集

 ▼図13　レシピの完成

 ▼図14　アクションの設定

 ▼図15　通知の様子

mbedのプログラム

最後に

https://developer.mbed.org/users/ytsuboi/code/IFTTT-Example/
https://developer.mbed.org/components/If-This-Then-That-IFTTT/

16 - Software Design

名刺サイズのコンピュータボードです。Ethernet／4基の
USB2.0／HDMI／micro SDのソケットを持ち、さまざまなデ
バイスと接続して自分だけのガジェットを作れます。前モデルか
らCPUが強化され（1.2GHz・64bit）、無線LAN機能（2.4GHz
帯・11b/g/n）とBluetooth （4.1）が新たに搭載されました。
提供元 	アールエスコンポーネンツ　http://jp.rs-online.com

Raspberry Pi 3 Model B

Power Plus 3
13400mAh DANBOARD version
漫画作品「よつばと!」に出てくる『ダンボー』のデザインのモバイ
ルバッテリー。付属のmicroUSBケーブルで本体を充電し、
AUTO-IC機能搭載のUSBにて給電します（2A出力、2ポート）。
ゴールド／レッドのどちらかをプレゼントします。
提供元 	ティ・アール・エイ　http://www.cheero.net

2名

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2016年5月17日です。プレゼントの
発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

一般のRDBエンジニアを対象に、NoSQL
の基礎知識とエンタープライズ視点での活
用方法を解説したテキストです。Cas
sandraやMongoDBといったプロダクト
の最新情報やユースケースを多数掲載。

提供元 	秀和システム
	 http://www.shuwasystem.co.jp

RDB技術者のためのNoSQLガイド
河村 康爾 ほか 著

2名

iPhone/iPadアプリ開発にも、Swift学習
にも便利な1冊です。iOSのフレームワー
クから、3D Touchまで幅広く解説してい
ます。逆引き形式で、目的からすぐ機能を
探せます。

提供元 	技術評論社
	 http://gihyo.jp

Swiftポケットリファレンス
WINGSプロジェクト　片渕 彼富 著

2名

アルゴリズムの入門書です。擬似コードを
使わず、少ない数式と日本語でアルゴリズ
ムを解説しています。名著『Introduction
to Algorithms』の著者が、同書のエッセ
ンスをまとめたものです。

提供元 	日経BP
	 http://www.nikkeibp.co.jp

アルゴリズムの基本
トーマス・H・コルメン 著、長尾 高弘 訳

2名

読者プレゼント
のお知らせ

Lispで関数型プログラミングを学ぶ1冊。
さまざまなLispプログラム（ハノイの塔、
エイトクイーン、オンライン書店など）を
実装しながら、高階関数や再帰といった関
数型プログラムの肝を習得します。

提供元 	技術評論社
	 http://gihyo.jp

はじめてのLisp関数型プログラミング
五味 弘 著

2名

microSDカード
「TS16GUSDHC10V」

防水性、温度耐性、静電耐性、X線耐性、衝撃耐性に優れた高耐
久microSDHCカード（32GB）。ドライブレコーダー、セキュ
リティカメラ、監視システムといった書き込み頻度の高いアプリ
に最適です。最大12,000時間のフルHD録画を実現します。
提供元 	トランセンドジャパン　http://jp.transcend-info.com

2名1名

http://gihyo.jp/magazine/SD/
http://gihyo.jp
http://gihyo.jp
http://www.shuwasystem.co.jp
http://jp.rs-online.com
http://jp.transcend-info.com
http://www.nikkeibp.co.jp
http://www.cheero.net

フリーのテキストエディタの中では圧倒的な人気を誇る「Vim」。システム／インフラエンジニ
アの第一歩として、また自分のコーディングのさらなる高速化／効率化のために、新たに Vim
を選択する人は多いのではないでしょうか。本特集では、Vim業界で著名な 5人が、初心者に
向けた「Vimのはじめかた」、プログラマに役立つ「高速編集術」「正規表現」「GitHub連携」、
さらには「Vim開発の最新事情」まで解説します。そして章末には、Vim初学者向けにコマン
ドを厳選した「Vimチートシート」も付属！　明日からの「実戦」に耐え得る大特集です。

　表記注釈　　本特集では、一部キーの入力について次のように表記します。

・Ctrlキー……lまたは<Ctrl> ・Escキー……jまたは<Esc>	
・Ctrlキーを押しながらaキーを押す……<Ctrl-a>または<C-a>

Vimとの長い付き合いのはじめかた18
 Author 氏久 達博

Part 1

Vimだからできる、一歩先行く編集術26
 Author thinca

Part 2

Vimの強力な正規表現を使いこなそう34
 Author tyru

Part 3

VimでGitHubをもっと使いやすくする46
 Author 林田 龍一

Part 4
Vimの今昔
〜Neovimと新しくなったVimについて57

 Author mattn

Part 5

Vim［超］ベーシックチートシート65Appendix

Contents

Vim［実戦］投入
コード編集の高速化からGitHub連携まで

第1特集

 Author mattn

18 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　Vim特集にようこそ。はじめはまず、読者
のみなさんの前提知識をとくに何も仮定せず、
テキストエディタ「Vim」そのものの導入につい
て説明していくことにしましょう。
　Vimの導入は非常に簡単です。と言うのも、
世のソフトウェア開発用に使われるOSのほと
んどにはすでにVimがインストールされており、
ターミナルからvimと入力するだけでいきなり
Vimを使うことができるからです。しかしな
がら、最初からインストールされているVim

はかなり古いバージョンで、かつGUI版がな
くCUIでのみ動作というものがほとんどです。
　そこで、まずはどのようなVimの配布が利
用できるかを整理し、筆者お勧め構成でのイ
ンストール方法について解説していくことに
しましょう。

　インストール対象となり得るVimは、次の
ような観点で大雑把に分類できます（2016年3

月現在の情報）。

・古いバージョンか新しいバージョンか（例：
Vim 7.3系、Vim 7.4系）

・ターミナル上のみで動作するCUIか、専用

はじめに

どのVimを
導入するか

のウィンドウを持つGUIか
・VimかNeovimか
・特定OS固有のVimか（例：Mac OS X用の

MacVim/MacVim-KaoriYa、Windows用の
香り屋Vim）

・ビルド済みのバイナリ配布か、自分でビル
ドしたものか

　古いVimを積極的に選択する理由はありま
せん。自分でインストールするならば、少な
くともVim 7.4以上のものを使いましょう。
　CUI版とGUI版のどちらを使うかについて
は、GUI版をお勧めします。CUI版はスクロー
ルが遅く、またmなどをVim内のカスタマ
イズに利用できないなど、ターミナル固有の
制限を受けます。CUI版を使う方がモテると
考えている方もいるかもしれませんが、GUI

版の使用も同程度にモテますので、これを理
由にCUI版を選択する必然性はありません。
リモートサーバにてファイルを編集するとき、
sshのX11 ForwardingやVNCなどを用いる
のではなくターミナルからsshを使用するなら
ば、CUI版のVimをリモートで起動する程度
にし、あとはなるべく、ローカルではGUI版
のVimを積極的に活用していきましょう。
　どの形態で配布されているVimを用いるか。
Vimの開発最新版は新しい機能に関する実装・
仕様が日々変更されており、それを追ってい
くのは確かに知的好奇心をそそられるもので

　千里の道も一歩から。まずはVimのインストールから始めましょう。vimtutorで基本操作を押さえたあとは、
Vimの必須知識、.vimrc・Vim plugin・Vim scriptについて学びます。最後はVimのカスタマイズについて。あ
なたはデフォルト教？　それともカスタマイズ派？

Vimとの長い付き合いの
はじめかた

 Author 氏久 達博（うじひさ たつひろ）　
 URL https://github.com/ujihisa　 Twitter @ujm

Part

1

https://github.com/ujihisa

18 - Software Design May 2016 - 19

Vimとの長い付き合いのはじめかた Part 1

はあります。しかし、まさにこれからVimを
初めて学習していこうという方には不向きで
しょう。そういう意味で、自分で最新版の
Vimのソースコード持ってきて手動でビルド
するよりは、導入のラクなバイナリ配布や、
あるいはすでに手元にあるPortage/Home

brew/Portsなどの既存のパッケージマネージャ
にお任せすることから始めることをお勧めし
ます。
　特定OS固有のVimについて。「香り屋Vim」
はKoRoNさんが作成・メンテナンスをしてい
る、“進化したイケてるヤバイ”便利版です。
任意の環境で利用できるためのパッチと、
Windows用にパッチが適用され、ビルドされ
た結果のバイナリが公式に配布されています。
また、splhackさんによるMac OS X用の香り
屋Vimも、MacVim-KaoriYaとして配布され
ています。
　Neovimについて。これ、かなり特殊です。
詳しくはPart5を参照ください。

◆　◆　◆
　ざっとそれぞれについて説明しましたが、
ここで著者のお勧めをまとめると、

・Macなら最新安定版MacVim-KaoriYa
・Windowsなら最新安定版香り屋Vim
・それ以外なら少なくとも7.4系であるgvim

となります。

　前述のお勧めに沿って、環境ごとのインストー
ル方法について簡単に解説します。

・Mac
①	MacVim-KaoriYa GitHubのページ注1の説明

を読む
②	説明に沿って、リリースページから最新版

注1） https://github.com/splhack/macvim-kaoriya

OS別のインストール

をダウンロード
③	ほかのMac OS Xのアプリケーションと同

様、ダウンロードした.dmgファイルの中の
MacVimアイコンをApplicationsディレク
トリにドラッグ

・Windows
①	香り屋Vimの配布ページ注2の説明を読む
②	使用しているWindowsのバージョンに対応

する最新版のバイナリをダウンロードする

・Linuxなど
①ディストリビューションごとに配布されて

いる最新版gvimをインストールする注3

②そのバージョンが、少なくともVim 7.4以
上であることを確認する

　実際にGUIのVimを起動してみましょう。
　MacではVimをDockに入れておくか、Mac

Vim-KaoriYa の /Applications/MacVim.app/

Contents/MacOS/にPATHを登録したうえで
mvimコマンドで起動します。
　Windowsの場合は、ダウンロードしたVim

プログラムフォルダ内のgvimをダブルクリッ
クして起動します。
　Linuxなどの場合は、gvimコマンドを用い
ます。
　余談ながら、筆者はGentoo Linuxを使用し
ているので、gvimをPortage経由でインストー
ルし、OS起動後ログインされた状態になると
gvimが自動で立ち上がるようにしています。
このgvimをOS終了の最後の瞬間まで使い続
けるというスタイルです。

注2） http://www.kaoriya.net/software/vim

注3） ここでは、Linux版は香り屋版ではないことに注意してく
ださい。香り屋版を容易にインストールできるLinuxディ
ストリビューションは2016年3月現在整備されておりま
せん。ここでは簡単のため、非香り屋版の導入の解説にと
どめました。

http://www.kaoriya.net/software/vim
https://github.com/splhack/macvim-kaoriya

20 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　本章でもっとも力強く主張したいことは、
vimtutorの重要性です。vimtutorはVimが公
式に配布するチュートリアルで、Vimをイン
ストールすると必ず付いてきます。つい先ほ
どインストールしたGUIのVimだけでなく、
100万人のユーザに毎秒大量のリクエストをさ
ばいているような運用のサーバにすら、Vim

が入っているならばvimtutorも入っています。
vimtutorには必要な内容が簡素にまとまって
おり、実際にこれを起動して自分の手を動か
しつつ読み進めるだけで、Vimの基本の基本
をスムーズに習得できます。
　香り屋系Vimでは、まずGUIのVimを起動
し、

:Tutorial

とすると起動できます。最後に©が必要
です。
　香り屋以外のVimの場合、さまざまな起動
方法がありますが、一番簡易なのはコマンド
ラインのvimtutorコマンドを使うことでしょ
う。この場合CUI版が起動します。

$ vimtutor

　vimtutorの本文はログインユーザの言語設
定が使われます。もし特定の言語を指定した
い場合は、引数で言語を指定します。

日本語
$ vimtutor ja

ポーランド語
$ vimtutor pl

　余談ながら、筆者はvimtutor esをスペイン
語の学習のために活用しました。
　vimtutorの起動は確認できましたか？　も

Vimの基本の基本：
vimtutor

し今手元にパソコンがあるならば、次の節を
読み進める前に少なくとも起動だけはしてお
きましょう。本文中にあるように、25～30分
程度で完了できますし、いつでも中断／再開
できます。今すぐ試してみましょう。今手元
にパソコンがないならば、パソコンのあると
ころに物理的に移動しましょう。
　vimtutorはVimのあるとき、いつでもどこ
でもできます。一度ですべてを理解して覚え
られなければ、不定期に“vimtutorって”みま
しょう。Vimの基本操作、モード遷移につい
ては、章末のチートシート（P.65）もご利用く
ださい。

　Vimそのもののインストールが終わったと
ころで、次にVimの初期設定に入ります。
Vimの個人用の設定は .vimrcと呼ばれるファ
イルに記述していきます。.vimrcファイルの
位置としては、すべての環境で $HOME/.

vimrc、ただしWindowsのみ _vimrcが使われ
ます注4。たとえば、ユーザ名がujihisaの場合、

・Linux：/home/ujihisa/.vimrc
・Mac OS X：/Users/ujihisa/.vimrc
・Windows：C:\Users\ujihisa_vimrc

となります。
　.vimrcの中身はVim scriptで記述します。
Vim scriptはVimの中で使われるプログラミ
ング言語で、現在普及しているモダンなプロ
グラミング言語と比べるとちょっとクセがあ
るものの、よくできたかわいい言語です。
　.vimrcには先人が書いた人気のVim script

の文を記述できますが、多くの場合はロジッ
クではなく、Vimの挙動を上書きする設定ファ
イルのような見ための文を書くことになるで

注4） 厳密には、$HOME/.vim/vimrcなども許可されます。
詳しくはお使いのVim内で:h vimrcして参照ください。

初期設定：.vimrc

20 - Software Design May 2016 - 21

Vimとの長い付き合いのはじめかた Part 1

しょう。実際、複雑なロジックを記述するな
らば、後述のVim plugin側で行ったほうが良
いです。
　余談ながら、Vimの中で動作するVimのた
めに作られたプログラミング言語の正式な名
前は、「Vim script」です。JavaScriptのよう
に「VimScript」と呼んだり、あるいはスペース
を除去して「Vimscript」と呼んだり、あるいは
GitHubのようにそれ以外の独自の呼び方
「VimL」などと誤って呼んでしまわないよう注
意してください注5。
　さて、実際に .vimrcを編集するにあたって、
まずは手元にある .vimrcファイルを覗

のぞ

いてみ
ましょう。そう、多くのVim配布パッケージ
には最初からそれぞれの .vimrcが付いてきて
いるのです。しかし、これらは前述した規定
の位置ではなく、別の位置にあることが多い
です。これがどこにあるのかを誌面で説明し
てしまっても良いのですが、せっかくですので、
とっておきの技をお伝えしておきましょう。
　Vimに関するほとんどすべての情報はVim

内で得られます。先ほど手元で実際に確認し
たvimtutorで説明されているとおり、:helpの
あとに適当なキーワードを入れることで、そ
れに関する公式のドキュメントをいつでもど
こでもVimで見ることができます。今回
は .vimrcについて調べたいわけですので、さっ
そく :help vimrcと入力しましょう。なお、
毎回:help<Space>と入力するのはたいへんで
すから、短縮名の :h<Space>を用いることに
して、キーボード打鍵数を50％削減しましょう。
　というわけで、さっそく:helpを活用し、最
初から入っている .vimrcの位置を:h vimrcで
確認し、そのファイルを実際に読んでみましょ
う。初めて読む場合、わからない部分がほと
んどだと思います。そこにでてくる単語をそ

注5） GitHub側もこの問題を認識しており、GitHub内での
VimLという誤表記を修正しようとする動きはあるものの、
2016年3月現在は技術的な問題で修正作業が頓挫してい
る模様です（http://ow.ly/ZhAqN）。

の場で:helpで引くことで、実用的な学びを得
ることができます。
　標準で入っていて、すでに動作している
Vimで有効になっている設定を読むだけでなく、
インターネット上に存在する多くのVim使い
の方々の .vimrcファイルを見てみるのも楽し
いです。GitHub上で公開されている .vimrcを
輪読するオンラインの定期的イベントなども
ありますので、詳しくはPart5を参照ください。
このときも:helpが大活躍します。余談ながら、
著者の .vimrcも公開しています注6。
　しかしながら、他人の .vimrcをそのまま使
うのは簡単ではありません。実際、著者の .vimrc

は他人が使うことを想定した作りにはなって
おらず、部分的にコードの再利用をする程度
をお勧めします。世には、一般に配布するた
めの汎用の .vimrcファイルや、簡単な .vimrc

ファイルジェネレータなどもあります。しか
し筆者としては、それらをそのまま使うので
はなく、初期提供された最低限の .vimrcを基に、
自分が理解できる範囲内で少しずつ機能の追加、
既存機能の置き換えなどを行っていくことを
お勧めします。
　“初期設定”といいましたが、.vimrcファイ
ルなどは今後ずっといじり続けることになり
ます。自分の .vimrcを書き換えることは、俗
に“Vimを育てる”と表現されます。

　.vimrcに key mappingを追加するよりも、
もっと大掛かりな機能追加を行うには、.vimrc

に大量のVim scriptを書くのではなく、複数
のVim scriptを標準のディレクトリ構成に配
置したパッケージを利用します。これをVim

pluginといいます。
　実は、Vimは最初から、たくさんのVim

pluginを含んでいます。.vimrcファイルを開い

注6） http://github.com/ujihisa/config

Vim plugin

http://github.com/ujihisa/config

22 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

たときに、Vim scriptがいい感じにシンタッ
クスハイライトされていたと思いますが、そ
れは syntax/vim.vimで定義されています。
Vim内 で :new $VIMRUNTIME/syntax/vim.vim
とすると、そのファイルを実際に見ることが
できます。こちらも中身はVim scriptで記述
されています。
　Vim pluginの役割はさまざまです。役割

ごとに分類され、それぞれ特別な名前を付け
たディレクトリに保存されています。前述の
syntax/vim.vimはシンタックスハイライトを
提供するという役割でしたが、中身を見るま
でもなくそのファイルが保存されているディ
レクトリ名から役割がわかります。ほかに、
表1のようなディレクトリと役割があります。

$VIMRUNTIMEディレクトリには、これらが
標準ですべて入っていますが、自分でインター
ネット上にあるVim pluginを導入するとき、
あるいは自分で新しくVim pluginを作りたい
といったときは、ほかのファイルと一緒に
$VIMRUNTIMEディレクトリにばらして配置
するのではなく、まとめて別個のディレクト
リに保存すると整理がラクです。
　Vim pluginの整理や、あるいは具体的なイ
ンストール作業を行ってくれるツールがいく
つか存在します。ここでは「neobundle」注7とい
うツールの使い方を紹介しましょう。GitHub

注7） https://github.com/Shougo/neobundle.vim

 ▼表1　Vim pluginのおもなディレクトリと役割

ディレクトリ 役割
autoload/ 関数を定義するのみ。ほかのファイルからライブラリとして動的に読み込まれる
colors/ シンタックスハイライトなどに用いる色の一覧を定義した「カラースキーム」を設定する

compiler/ C言語などを書くときのコンパイラのエラーメッセージを解析してVim内で便利に使うためのも
の

dict/ 入力補完に用いるためのキーワードの辞書。これだけVim scriptではなく .datという形式で記述
される

ftplugin/ 特定ファイルタイプ（例：vim、haskell、clojure）専用の機能を提供するためのもの

plugin/ ファイルタイプに依存しない、Vim全体の挙動を変更するためのもの。:で始まるコマンドの提
供もここで行う

doc/ もっとも重要なディレクトリ。Vim独自の検索機能が利用できるドキュメントを提供する
※ このほか、indent/・lang/・syntax/・macros/・spell/などがある

　neobundleのような Vim用のツールのことを、
一般にVim plugin managerなどと言います。歴史
的には「vimball」という長らく唯一の存在として君
臨していたものや、RubyGemsのような気分で使
えるperlによる実装の「Vimana」、インストールは
行わないがディレクトリ構成のサポートだけを行
う「pathogen」、そしてneobundleの前身となった
「vundle」などがありました。
　あまり普及はしなかったものの、独自の思想に

基づいた力強いものもあり、「vim-addon-manager」
「vim-plug」「VimJolts」なども根強い人気がありま
す。neobundleは、実は2016年3月時点で開発は
完了しており、作者は今「dein」というツールの開
発に取り組んでいます。本誌発売時点ではまだ
neobundleを利用するほうが安定安心に使えます
が、数ヵ月後には少し事情が異なってくるかもし
れません。

Vim plugin managerColumn

https://github.com/Shougo/neobundle.vim

22 - Software Design May 2016 - 23

Vimとの長い付き合いのはじめかた Part 1

のページの指示に従い、git cloneして .vimrc

にneobundle用の最低限の設定を記述しましょ
う。vimを再起動して:NeoBundleInstallすれ
ば、neobundleがVim pluginを勝手にインス
トールしてくれます。

　これから先のVim力の高め方の方針について。
すでにそこにあるVimに合わせて自分側を改
変していくのを重視するか（デフォルト教）、
あるいはVimをどんどんカスタマイズして自
分の手により馴染むようVim環境側を育てて
いくのを重視するか（カスタマイズ派）。Vim

はどちらのタイプの人にも優しくできており、
インストール後のデフォルトの状態でも、い
きなり主戦力として使えるような設計になっ
ていると同時に、強力かつ簡単に行えるカス
タマイズのサポートがあります。今後のVim

学習の大まかな方針を考えるにあたって、自
分のタイプを認識すると良いかもしれません（図
1）。

デフォルト教
　なるべくカスタマイズせず、デフォルトの
挙動のまま各種ツールを使うことを重視する
人たちはデフォルト教注8などと呼ばれます。
この方針には、

・	カスタマイズする行為そのもの
・	ツールのアップデート時の自分のカスタマ

イズの互換性の保持
・	ツールのバグレポート時、実は自分のカス

タマイズが原因であるかどうかの判別

などといった、本来の作業目的以外に煩わさ
れないというメリットがあります。Vimの場

注8） 高林哲さんの「年を取ると環境設定がどうでもよくなる現象」
（http://0xcc.net/blog/archives/000170.html）や、同氏に
よる「bkノート」（https://plus.google.com/101463981
287086074128）より

はじまるVimの道

合は（後述の理由によって）、互換性について
はそれほど考慮しなくても良いという一方、
デフォルトの挙動がなかなかに悪くないとい
う特徴があります。香り屋Vimを配布してい
るKoRoNさんはスパルタンVim注9という概念
を提唱しており、人間がツール側に適応して
いくことの重要性を主張しています。

カスタマイズ派
　著者がこのタイプです。Vimのおもしろい
ところは、自分で行ったカスタマイズの互換
性が保たれることが重要視されるという文化
にあります。カスタマイズを行うには .vimrc

にVim scriptを記述することになりますが、
これはほかの IDEたち――XMLやバイナリ
フォーマットでGUIのインターフェースから
自動生成されたデータを保持することでカス
タマイズを行うもの――と大きく異なります。
　この性格は、Vim本体が提供する機能のキー
マッピングの上書きなどに限らず、第三者が
作成したVim pluginにも当てはまります。こ
ういった背景があることから、安心してカス
タマイズを行い、それに依存した“いきいきと
した”生活をすることができます。

注9） 「スパルタンVim」（http://www.kaoriya.net/blog/2012/01
/19/）。ほかにもバージョンがあり、2016年3月現在スパ
ルタンVim 4.0まで公開済み。

デフォルト教
自分を道具に合わせる

カスタマイズ派
道具を自分に合わせる

 ▼図1　デフォルト教とカスタマイズ派の違い

http://0xcc.net/blog/archives/000170.html
https://plus.google.com/101463981287086074128
http://www.kaoriya.net/blog/2012/01/19/

24 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　余談ながら、Vim本体の進化における互換
性の重視の姿勢に関しては、良くもあり悪く
もありです。互換性の名の下に、一貫性のな
いバグにしか見えないような挙動が仕様とし
て受け継がれてしまっている例がいくつかあ
ります。
　確かに、Vimのカスタマイズは本来の作業
の目的そのものと合致しないかもしれませんが、
そもそも本来の作業の目的がVimのカスタマ
イズならば問題ありません。うれしい副作用
として、カスタマイズの過程でVimそのもの
への理解が自然と深まっていきます。また自
分のカスタマイズを一般化できそうならば、
それをVim pluginとして公開することもでき
ます。このようにしてモテるVim使いになる
ことは、人生に大いなる彩

いろどり

を与えることにな
るでしょう。

◆　◆　◆

　いずれの方針にせよ、Vimが標準で提供す
る機能についての理解が必要です。次章では
その具体例として、基本的な編集についてと、
それらを調べるための:helpなどについて解説
していきましょう。
　なお、個別のVim pluginやそのエコシステ
ムについては、時とともにゆっくりと陳腐化
していくものがあります。自動補完を行う
Vim pluginである neocomplcacheなどはその
大きな例でしょう。neocomplcacheに置き換わ
るものとして開発・メンテされた自動補完プ
ラグインである neocompleteも、今後Neovim

がメインストリームになるならば、Neovim用
に開発されたdeopleteによって陳腐化される
ことになります。より低レイヤなライブラリ
に関しても、現在ほぼ必須であるvimprocが、
Neovimまたはchannel（詳しくはPart5）によっ
て陳腐化される可能性が示唆されています。

 ▼図2　LingrのVim部屋

24 - Software Design May 2016 - 25

Vimとの長い付き合いのはじめかた Part 1

　これら日々変化していく情報はどのように
して把握すればいいのでしょうか。また、自
らがこれらの動向に関与することはできるの
でしょうか。実は簡単にできてしまいます。
これらの技術の進化に関する議論や実際の開
発はすべてオープンに行われており、誰でも
見たり参加したりできます。日本国内のVim

コミュニティで今もっとも活発に情報交換が
行われているのがオンラインチャットサービ
スLingrにあるVim部屋注10でしょう（図2）。
LingrのVim部屋への新規登録は次のURLか
ら行えます。

・Vim部屋への登録ページ

http://goo.gl/LdPDBx（短縮URL）

注10） http://lingr.com/room/vim

　Vimとは過程です。一般にチームでのソフ
トウェア開発では、ほとんどの場合書いたコー
ドを必ず相互にレビューすることでしょう。
どのような過程でコードを書くかは人それぞ
れですが、その結果得たソースコードの品質
を保つための努力は、自然と継続的に行われ
ます。一方、その過程として用いたVim捌

さば

き
そのもののレビューを受けることは、意識し
ない限り起こり得ません。同僚とペアプログ
ラミングをしたり、帰宅後のプライベートの
ソフトウェア開発時に作業の様子をインター
ネットで生放送したり……、どのようにVim

を使っているかを見せることで情報交換する
ことは非常に有意義です。｢

おわりに

氏久 達博（ujihisa）

・カナダのバンクーバーで Hootsuite Media Incに勤務し、Vimで Scalaなどを書くソフトウェア開発者
・世界最大規模の Vimのカンファレンスである VimConfの発起人、運営者の 1人
・Vim pluginのための汎用 Vim scriptライブラリ「vital.vim」などのメンテナ

Profile

　Vimの標準のKey mappingには、lを用いた
ものも多くあります。Insert modeでかなり多用さ
れるほか、Normal modeでもVim内Windowの移
動に<C-w>がプリフィックスとして使われるなど、
Vimの幅広い操作に慣れれば慣れるほどlの利
用率が高まることでしょう。一般的なUS配列のキー
ボードでは、lはキーボードの一番左下、左
¡の下というとんでもない僻地に配置されて
います。これをそのまま使うよりは、素直にAの

左に配置されているÍを潰してlに割り当
てましょう。これはVim内ではなく、その外側の
レイヤで行いましょう。LinuxではX.orgの設定や
autokey で、Mac で は Karabiner（旧 KeyRemap4
MacBook）で、Windowsで は autohotkeyな ど の
ツールを用いて再割り当てしましょう。なお、JIS
配列のキーボードの一部は最初からlがAの左
に配置されているため、安心してデフォルトのま
ま快適なVimライフを送ることができます。

Vimのためのキーマップを考えるColumn

http://goo.gl/LdPDBx
http://lingr.com/room/vim

26 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　Vimのモードの1つにビジュアルモードとい
うものがあり、Vimの持つ多彩なカーソル移
動コマンドを使用してテキストを選択できます。
ビジュアルモードには、文字単位選択、行単
位選択、そして矩形選択の3つの選択方式があ
ります。この節では矩形選択の便利な使い方
について紹介していこうと思います。

矩形選択とは何か
　矩形選択は、テキストを連続した文字の単
位ではなく、行を跨いだ四角形の範囲でテキ
ストを選択する機能です。テキストエディタ
としては定番の機能と言えるでしょう。Vim

の場合は、ノーマルモードから<C-v>を入力す

矩形選択
ることで矩形選択モードに入れます（図1）。
　Vimの矩形選択は、ほかの選択方式と同様
にdによる削除やyによるコピーはもちろん、
一般的なテキストエディタではあまり見ない
機能も備えています。

列にまとめて文字列を追加
　矩形選択中にIやAを押すと、それぞれ範囲
内の一番上の行の先頭や末尾にカーソルが移
動して挿入モードになります。この状態で文
字列を入力して挿入モードを抜けることで、
選択範囲の同じ列にまとめて同じ文字列を入
力できます（図2～4）。またこのとき、$で行
の末尾までの範囲を矩形選択で指定してからA
を使うことで、すべての行の末尾に文字列を
挿入することもできます。
　Iでの挿入とAでの挿入には、選択範囲内に
範囲に届いていない

4 4 4 4 4 4

短い行がある場合に、微
妙な違いがあります。Iの場合は短い行に対し
て何も行われないのに対し、Aの場合は同じ位
置に文字が挿入されるように空白が挿入され
ます（図5～7）。

文字をまとめて変更
　cを押すことで、選択範囲の削除とAによる
挿入が一度に行えます（図8～10）。

選択範囲内だけを検索／置換
　選択範囲内だけを置換したい場合、行単位

 ▼図1　矩形選択　

　本章では、ほかのテキストエディタにはあまりない、矩形選択・モーションとオペレータ・テキストオブジェ
クト・ドットコマンド・gnコマンドといった、Vimならではの編集機能について見ていきます。どの機能も強
力ですので、使いこなせれば編集効率がアップするのは間違いないでしょう。

Vimだからできる、
一歩先行く編集術

 Author thinca　 URL https://github.com/thinca　 Twitter @thinca

Part

2

https://github.com/thinca

26 - Software Design May 2016 - 27

Vimだからできる、一歩先行く編集術 Part 2

であれば、ビジュアルモードからそのまま:を
押すことで、:'<,'>という入力となり、ビジュ
アルモードで選択した行のみの範囲を指定し
たことになります。しかしこれは行単位であり、
矩形選択の範囲の場合はこの方法は使えません。

　そこで、¥%Vという正規表現を使用します。
これは選択範囲内にのみマッチする特別な正
規表現で、検索パターンを ¥%Vabc¥%Vのよう
に¥%Vで囲うことで、検索範囲内のパターンに
のみマッチさせることができます。

 ▼図3　Iで挿入モードに入り文字を入力

 ▼図5　短い行を含む範囲を矩形選択　

 ▼図2　矩形選択　

 ▼図4　<Esc>で抜けると文字列が挿入される　

 ▼図7　Aで挿入した場合　 ▼図6　Iで挿入した場合　

28 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　モーションとオペレータはVimを使ううえ
で重要な概念です。正しく理解して使いこな
しましょう。

モーションとは何か
　モーションとは、移動コマンドのことです。
お馴染みの h j k lや、w $ %、果ては検索コ
マンド/も、カーソルが移動するものは基本的
にモーションと考えてかまいません。モーショ
ンコマンドにはものすごく多くの種類がある
ため、ここですべては解説しません。

モーションと
オペレータ

 ▼図9　cを押してからfixupを入力 ▼図8　pickをまとめて矩形選択　

 ▼図10　<Esc>で抜けると、すべてfixupに変換される
オペレータとは何か

　オペレータは、後にモーションを続けて入
力することで、モーションによってカーソル
が移動する範囲に対して操作を行うことがで
きます。言葉だけで説明してもわかりにくい
ので、例を使って説明します。次のようなテ
キストがあるとします（反転部分がカーソル位
置）。

Vim is a difficult text editor.

　dは削除を行うオペレータです。wは次の単
語の先頭まで移動するモーションです。ここ
でdを押し、続けてwを押すと、次のようにな
ります。

Vim is a text editor.

　これで、「単語を削除する」という操作を行
うことができました。

組み合わせによるメリット
　なぜモーションとオペレータに分かれてい
るのでしょうか。続けて例を見てみましょう。
先ほどの編集前のテキストに、同じオペレー
タdと、今度は別のモーション、行末まで移動
する$を適用してみましょう。

28 - Software Design May 2016 - 29

Vimだからできる、一歩先行く編集術 Part 2

方もいるでしょう。確かにそれで済む場合も
ありますが、オペレータとモーションの組み
合わせにはもう1つ大きなメリットがあります。
それは後述する「ドットコマンド」の節で解説
します。

　オペレータは、続けてモーションを入力す
ることでオペレータの対象を指定できました。
このとき、モーションの代わりにテキストオ
ブジェクトというものを使うこともできます。

テキストオブジェクトとは何か
　テキストオブジェクトを使うと、操作対象
を論理的に意味のある単位で指定できます。
　たとえば、前述の単語を表すモーションwは
次の単語へ移動するものでした。ただし、カー
ソルが単語の先頭にない場合でも、カーソル
は次の単語の先頭へ移動します。モーション
で操作対象を指定した場合、それは現在のカー
ソル位置から移動先のカーソル位置の範囲に
なるので、単語の途中からの操作になってし
まいます。

Vim is a difficult text editor.
↓ dw
Vim is a difftext editor.

　しかしそうではなく、単語内のどこにカー
ソルがあっても「現在の単語」を対象として指
定できると便利でしょう。それを可能にする
のがテキストオブジェクトです。

テキストオブジェクトの使い方
　テキストオブジェクトは基本的にaもしくは
iから始まります。先ほど例に挙げた単語を表
すテキストオブジェクトは、awとiwになりま
す。それぞれ、境界を含むか含まないかの違
いがあり、境界が何になるかはテキストオブジェ
クトによって異なります。両者の違いがない

テキストオブジェクト

Vim is a

　「行末まで削除する」操作が行われました。
　また最初のテキストに戻り、今度はモーショ
ンwはそのままにして、dの代わりに別のオペ
レータであるgUを使った場合を見てみましょ
う。gUは、アルファベットを大文字にするオ
ペレータです。

Vim is a DIFFICULT text editor.

　削除されずに、単語が大文字になりました。
　さて、それでは「行末まで」の「アルファベッ
トを大文字に」したいとすれば、どうすればい
いでしょうか。あなたはもうその方法を知っ
ているはずです。新しいコマンドを覚える必
要はいっさいありません。gU$と入力します。

Vim is a DIFFICULT TEXT EDITOR.

　「行末まで」の「アルファベットを大文字にす
る」ことができました。
　このようにモーションとオペレータが分か
れていることで、その組み合わせによってで
きることが増えていきます。あなたが新しいモー
ションやオペレータを覚えれば、あなたの使
える操作は乗算式に増えていくのです。

ビジュアルモードで
オペレータを使う

　ビジュアルモードでオペレータを実行すると、
選択範囲に対してオペレータの操作を実行で
きます。vでビジュアルモードに入り、モーショ
ンを使って選択範囲を指定、最後にオペレー
タのキーを押すだけです。自由に対象を指定
できるので、単一のモーションでは対応でき
ないような場合に使うと良いでしょう。
　これだけ聞くと、常にビジュアルモードを
使用すれば複雑なオペレータ＋モーションと
いうしくみは必要ないのではないか、と思う

30 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

場合もあるなど厳密なルールがあるわけでは
なく、各テキストオブジェクトは「aは境界を
含む／iは境界を含まない」という方針で定義
されている、と考えておけば良いでしょう。
　あらためてawとiwについて見てみましょう。
これら2つのテキストオブジェクトの境界は、
周囲の空白文字になります。具体的には、そ
れぞれ次のような範囲になります。

 iw

Vim is a difficult text editor.

 aw

　たとえば、単語を削除したい場合は、dawと
入力することで実現できます。

Vim is a text editor.

　別の例を挙げましょう。cを使って単語を別
のものに書き換えたい場合は、ciwが使えます。
たとえば、ciweasy<Esc>のようにします。

Vim is a easy text editor.

　また、テキストオブジェクトはノーマルモー
ドでのモーションとしてカーソルを移動する
ことには使えませんが、ビジュアルモードで
使用することで対象を選択できます。

どんなテキストオブジェクトが
あるのか

　表1によく使うテキストオブジェクトを掲載
します。これがすべてではありません。詳し
く知りたいときは、:help text-objectsを見
てみてください。

　ドットコマンドは、ドットリピートと呼ば
れることもあります。一度使い方を覚えれば、
手放せなくなる便利な機能です。

ドットコマンドとは
　ドットコマンドは、ドットキー「.」を押すこ
とで、最後に行った変更を繰り返す機能です。
具体的にどのような動作をするのか、例を見
てみましょう。次のようなテキストがあります。

Vim is a very simple text editor.

　ここで、dawを実行してみましょう。

Vim is a simple text editor.

　dは削除、awは単語を表すテキストオブジェ
クトですので、「単語を削除する」コマンドが
実行されました。
　ここで次に、textを消したいとしましょう。

ドットコマンド

 ▼表1　おもなテキストオブジェクト

キー入力 対象 境界 例
aw / iw 単語 周囲の空白 word

aW / iW WORD（非空白文字の連続） 周囲の空白 foo,bar

a(,a),ab / i(,i),ib 丸括弧で囲まれた範囲 () (foo)

a{,a},aB / i{,i},iB 波括弧で囲まれた範囲 {} {foo}

a[,a] / i[,i] 角括弧で囲まれた範囲 [] [foo]

a<,a> / i<,i> 山括弧で囲まれた範囲 <> ＜ foo＞

a" / i" ダブルクォートで囲まれた範囲 "" "foo"

a' / i' シングルクォートで囲まれた範囲 '' 'foo'

at / it htmlタグで囲まれた範囲 <tag></tag> ＜ tag＞ foo＜ /tag＞

30 - Software Design May 2016 - 31

Vimだからできる、一歩先行く編集術 Part 2

　オペレータやテキストオブジェクトは、プラグ
インや自作で増やすこともできます。次にプラグ
インの例を挙げます。気になるものがあったらイ
ンストールしてみてください。
　表Aはオペレータプラグイン、表Bはテキスト

オブジェクトプラグインです。中でも「operator-
user」「textobj-user」はフレームワークとなってお
り、これに依存しているプラグインもあるので、
インストールしておくと良いでしょう。

オペレータやテキストオブジェクトはプラグインで増やせるColumn

 ▼表B　テキストオブジェクトプラグイン

プラグイン名 操作 GitHubのページ 作者
（敬称略）

textobj-user テキストオブジェクトを簡単に定義す
るためのフレームワーク kana/vim-textobj-user kana

textobj-indent 同じインデントレベルの範囲を扱う kana/vim-textobj-indent kana
textobj-entire バッファ全体を扱う kana/vim-textobj-entire kana
textobj-line 改行を含まない行全体を扱う kana/vim-textobj-line kana
textobj-parameter 関数の引数部分を扱う sgur/vim-textobj-parameter sgur

textobj-between 任意の指定した文字で囲まれた範囲を
扱う thinca/vim-textobj-between thinca

 ▼表A　オペレータプラグイン

プラグイン名 操作 GitHubのページ 作者
（敬称略）

operator-user オペレータを簡単に定義するためのフ
レームワーク

kana/vim-operator-user kana

operator-replace 対象をレジスタの中身で置き換える kana/vim-operator-replace kana

operator-surround テキストオブジェクトの境界部分自体
を追加／置き換え／削除する

rhysd/vim-operator-surround rhysd

operator-camelize snake_case と CamelCase を相互に
変換する

tyru/operator-camelize.vim tyru

そのためには、まずwでカーソルをtextの上
に持っていきます。次に、同じようにdawを実
行しても良いですが、これは先ほどと同じコ
マンドです。ここでdawの代わりに.を押しま
す。

Vim is a simple editor.

　無事、現在のカーソル位置に対して「単語を
削除する」コマンドが再実行されました。これ
がドットコマンドです。

操作の単位について
　ドットコマンドで繰り返されるのは、最後
に行ったテキストを変更する操作になります。
前述のオペレータの実行もそうですし、挿入モー
ドでのテキストの挿入やpでのテキストの貼り
付け、ほかにも<C-a>／<C-x>による数値の変
更や̃による大文字小文字の変換なども含まれ
ます。
　ここで、Vimのコマンドの豊富さに関する
話をしましょう。Vimには一見、既存のコマ
ンドを組み合わせれば不要となるように思え

32 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

るコマンドがあります。これらが提供されて
いるのは、単純によく使われるからという理
由だけではなく、別のメリットがあるのです。
　たとえば、テキストを変更するcオペレータ
は、実行すると対象範囲を削除したあと挿入モー
ドに移行し、代わりのテキストを挿入できます。
これは一見するとdによる削除を行ったあとに
iでテキストを挿入すれば済みそうに思えます。
しかし、実際にはそうではありません。cは「対
象を削除し、代わりのテキストを挿入する」オ
ペレータであり、.で繰り返す場合もそのよう
に動作します。
　実際に例を見てみましょう。次のようなテ
キストがあります。

var one = 1;
var two = 2;
var three = 3;

　テキスト中のvarをletに置き換えたいとし
ます。矩形選択、一括置換コマンド……、Vim

で行うならば、いくつか方法が考えられます。
今回はドットコマンドを使ってみましょう。
　最初の varにカーソルを持っていき、
ciwlet<Esc>と入力します。

let one = 1;
var two = 2;
var three = 3;

　「単語をletに変更する」コマンドが実行され、
最初のvarが置き換わりました。残りのvarに
も適用するために、j.j.と入力します。

let one = 1;
let two = 2;
let three = 3;

　無事、目的を達成できました。削除と挿入
を別々に実行していた場合、これは.で繰り返
すことはできませんでした。
　ほかにも、挿入モードに入るコマンドとし
てIやAがあり、これらを使うと行頭／行末か

ら挿入モードに入ることができますが、これ
らを.で繰り返すことで、複数の行の行頭／行
末に同じテキストを挿入していくことが簡単
にできます。

ビジュアルモードとドットコマンド
　オペレータがビジュアルモードでも利用で
きることはすでに説明しました。これは便利
ではあるのですが、通常のオペレータとモーショ
ンを使って実行した場合とは、実行されるコ
マンドが異なります。
　例を見てみましょう。次のようなテキスト
があります。

let nums = ["zero", "one", "two"]

　ここで、各文字列を空文字にしたいとします。
ビジュアルモードで削除してみます。vi"dで
すね。

let nums = ["", "one", "two"]

　zeroが選択され、削除されました。ここで、
oneの先頭にカーソルを持っていき、.で繰り
返してみましょう。

let nums = ["", ", "two"]

　"が1つ余計に消えてしまいました。
　実は、ビジュアルモードでは文字数で操作
対象が記録されています。つまり、最初の操
作は「4文字消す」というように記録されていま
した。よって、.での繰り返しも「4文字消す」
操作が行われ、"が1つ余計に消えてしまった
というわけです。
　この例では、ビジュアルモードを使わずに
di"と操作すれば、「"の内側を消す」操作となり、
繰り返しがうまくいきます。繰り返しを利用
したい場合は、ビジュアルモードでの挙動に
注意する必要があります。

32 - Software Design May 2016 - 33

Vimだからできる、一歩先行く編集術 Part 2

　ちょっと変わった便利機能であるgnコマン
ドを紹介したいと思います。この機能は、Vim

7.3.610で追加されました。2012年7月にリリー
スされているので、最近のVimであれば利用
可能だと思います。
　gnは、検索の次のマッチへ移動するnの亜
種です。ノーマルモードで使うと、次のマッ
チへ移動し、対象をビジュアルモードで選択
します。これだけだと大したことはないので
すが、このコマンドはオペレータに続けて使
うと、テキストオブジェクトのように動作し
ます。つまり、次の検索のマッチに対してオ
ペレータを実行できるのです。
　たとえば、「操作の単位について」で挙げた
コード例では、まず /varで検索を行い、
cgnvar<ESC>で「次のマッチを letに変換する」
コマンドを実行すれば、あとは..と繰り返す
だけで終わらせられます。カーソルを動かす
必要はありません。ちょっとしたことですが、
とても便利ですのでぜひ使ってみてください。

　誌面の都合上詳しく紹介ができませんが、
VimにはほかにもVimならではの機能があり
ます。いくつか触りだけ紹介します。

マクロ
　.では直前の操作を繰り返せましたが、もっ
と長い操作を繰り返したい場合には、一般的

gnコマンド
にマクロと呼ばれる機能を利用できます。
　qに続けて任意のアルファベットを入力する
と、記録モードに入ります。その状態で操作
を行い、最後に再びqを押すことで、アルファ
ベットに対して操作を記録できます。
　記録した操作を実行したい場合は、@に続け
て記録したアルファベットを入力するだけです。
記録している最中に行ったキーボード操作が
そのまま実行されます。あらゆる操作をキーボー
ドのみで行える、Vimらしい機能だと言えます。
　この機能は非常に強力ですが、慣れるまで
は使い道に戸惑うかと思います。ここでは紹
介しきれませんので、使用例や応用方法など
を調べてみると良いでしょう。

数値の増減
　<C-a>と<C-x>を使うと、カーソル下もしく
はカーソル以降にある数値の値を増減できます。
事前に数値を入力してから使うことで、たと
えば 5<C-a>のように入力すれば、数値を「5」
増やすといったこともできます。
　この機能はドットコマンドやマクロと非常
に相性が良いです。意外に使えるシーンはあ
るので、覚えておくと便利です。

　いかがでしたでしょうか。Vimには本当に
多くの機能があり、ここで紹介したのはほん
の一部にすぎません。いきなりすべてを使い
こなすのは難しいですが、少しずつ物にして
いけば大丈夫です。自分のペースで身に付け
ていくと良いでしょう。｢

thinca

・多数の Vimプラグインを開発、公開している。代表作に quickrun.vimなど
・vimrc読書会主催　http://vim-jp.org/reading-vimrc/
・C#開発環境の OmniSharpの Vim向けプラグイン「omnisharp.vim」のメンテナ

Profile

まだまだある
便利な機能 少しずつ

身に付けよう

http://vim-jp.org/reading-vimrc/

34 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　Vimで正規表現を扱う一番多い操作は検索
です。Vim以外のエディタでは検索といえば
入力した文字列をそのまま検索しますが、Vim

の検索コマンドである/や?は正規表現のパター
ンを入力しなければなりません。よって正規
表現を知らないと「なぜ入力した文字列が検索
にヒットしないのかわからない」となってしま
います（ちなみに正規表現ではなく文字列で検
索するには、後述する¥Vを使います）。
　では正規表現を習得しようとなったとき、
先に気をつけておかなければならないことが
あります。正規表現にはさまざまなツールや
プログラミング言語などによって、微妙な差
異（方言）があるという点です。図1のものはそ
の一例です。
　現在多くのプログラミング言語やツールで
は後者の拡張正規表現がデフォルトの正規表
現になっています。そのためVimデフォルト

Vimと正規表現
の基本正規表現は慣れない方もいるでしょう（ち
なみに完全ではありませんが、¥vをパターン
の冒頭に付けることでVimでも拡張正規表現
が使えます）。

 Vimでの拡張正規表現の表記例
¥v(V(im¦isual Studio Code)¦E(macs¦clipse))

　ここまで聞くと正規表現はなんて面倒なん
だろうと思うでしょう。確かに正規表現には
初心者がつまずきやすい個所がたくさんあり
ます。しかし、正規表現によるファイルをま
たぐ検索と一括置換を実際に経験してしまうと、
逆になぜ使わずに作業できていたのか不思議
に思うほどの恩恵にあずかれます。例として
Vimの引数で指定されたファイルにある、す
べてのpatternをstringに置き換える（一括置
換する）には、コマンドラインで図2のように
実行します。
　筆者は実は仕事ではVimを使っていません。
しかし正規表現はVimに限らずさまざまなエ
ディタ、ツール、プログラム、日常的なシェ

　Vimでの編集作業を効率良くするには「検索」と「置換」がカギを握っています。そしてこの検索に大きくかかわっ
ているのが本章で取り上げる「正規表現」です。正規表現の強力なパターンマッチングの書き方を覚えれば、いろ
いろなところで応用も利きます。

Vimの強力な正規表現を
使いこなそう

 Author tyru　 URL https://github.com/tyru　 Twitter @_tyru_

Part

3

 ▼図1　正規表現の方言の例

●検索対象：「Vim」「Visual Studio Code」「Emacs」「Eclipse」のいずれか
基本正規表現（Vim, grep）　　　¥(V¥(im¥¦isual Studio Code¥)¥¦E¥(macs¥¦clipse¥)¥)
拡張正規表現（Perl, grep -E）　(V(im¦isual Studio Code)¦E(macs¦clipse))

 ▼図2　複数ファイルの一括置換の書き方例

$ vim -c 'argdo %s/pattern/string/gce ¦ update' {file1} {file2} ...

https://github.com/tyru

34 - Software Design May 2016 - 35

Vimの強力な正規表現を使いこなそう Part 3

ルスクリプトやPowerShellスクリプト、OS

を問わずどこでも使えます。そして正規表現
を身に付ける一番の近道は、日常的に使うエディ

タで実際にトライ＆エラーを繰り返すことです。
正規表現を身に付ければ新人の方に限らず確
実に1つの武器になるでしょう。
　本記事はリファレンス的に使えるよう、わ
かりやすい見出しでまとめてありますので、
皆様の正規表現への理解に少しでも力になれ
ば幸いです。またできればSoftware Design

2016年4月号の連載「Vimの細道」の「第7回
Vimの正規表現をマスターする」も併せてご覧
ください。

　まず正規表現による検索を行う前に、次の
設定を .vimrcに書いておくと便利です（.vimrc

の場所については氏久氏によるPart1を参照
してください）。

set hlsearch
set incsearch

　それぞれhlsearchオプションはハイライト
を有効、incsearchオプションはパターンを入
力中に次にマッチするテキストをハイライト
します注1。

　冒頭でVimの正規表現には方言があると述
べました。この方言を緩和するため、初心者

の方はまずパターンの最初に\vを付けて検索

することをお勧めします。¥vを含めないほう
が場合によっては見やすくなりますが、その
ほうがほかの正規表現エンジンで正規表現を

注1） incsearch.vim（ https://github.com/haya14busa/
incsearch.vim）や prompter.vim（https://github.com/
mattn/vim-prompter）というプラグインを使うことにより、
リアルタイムで画面上のすべての文字列がハイライトされ
るようにもできます。

Vim正規表現の
ハイライト

Vim正規表現の
方言

書く際に混乱することが少なくなるからです
（「正規表現エンジン」とは正規表現の各実装の
ことです）。ちなみに¥vを付けない場合は、次
のように+や()といったメタ文字（正規表現で
の特殊な文字）の前にバックスラッシュを付け
る必要があります。

 ¥vを付ける場合 ¥vVim?
 ¥vを付けない場合 Vim¥?

 ¥vを付ける場合 ¥v(GitHub¦BitBucket)
 ¥vを付けない場合 ¥(GitHub¥¦BitBucket¥)

　詳しい違いについては :help /¥v を参照し
てください。本記事では \vを付けると意味が

違う場合のみ比較のため両方記載することに
します。また上記を読んで¥vを付けようと決
めた方は、次のようなマッピングを .vimrcに
書いておくと便利かもしれません。

nnoremap / /¥v
nnoremap ? ?¥v

　これで常に¥vを含めた状態で検索パターン
を入力することができます。

　さて、前置きが長かったですが、実際に正
規表現のパターンを書いてみましょう。「abc」
という文字列にマッチさせたい場合はそのま
ま「abc」と書きます。

●検索対象：abc
 パターン abc

　こういった正規表現の特殊ではない文字を「リ
テラル」と呼びます。

　先頭にある文字をマッチさせたい場合は^を
使います。

初めての正規表現

行頭・行末^、$

https://github.com/haya14busa/incsearch.vim
https://github.com/mattn/vim-prompter
https://github.com/haya14busa/incsearch.vim
https://github.com/mattn/vim-prompter

36 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

●検索対象：先頭に「#」が付いた行
 パターン ^#

　逆に行末にマッチさせたい場合は$を使います。

●検索対象：行末に「;」が付いた行
 パターン ;$

　パターンの繰り返しには*または+を使いま
す。*は0個以上の繰り返し、+は1個以上の
繰り返しを表します。¥vを付けない場合は*
または¥+と書きます。

●検索対象：String str
 パターン（¥vあり） ¥vString¥s+str
 パターン（¥vなし） String¥s¥+str

　こういった¥sや+のような特殊な文字を「メ
タ文字」と呼びます。また*や+のようなマッ
チの個数を指定するメタ文字を「量指定子」と
呼びます。まず冒頭で述べた¥vを先頭に付け
ています。次に¥sは空白文字を表します。¥s
はVimでは半角スペースとタブ文字にマッチ
します。¥s+と書くことで「半角スペースかタ
ブ文字の1文字以上の繰り返し」という意味に
なります。

　?または=は0個または1個の量指定子です。

●検索対象：「function foo(」
　　　　　　または「function(」
 パターン（¥vあり）
¥vfunction(¥s+¥w+)?¥(
 パターン（¥vなし）
function¥(¥s¥+¥w¥+¥)¥?(

　Vim以外の正規表現エンジンでは?と表され
ることが多いですが、Vimでは=も?と同じ意
味のメタ文字です。

量指定子：繰り返し
*、+

量指定子：0個
または1個?、=

　回数指定の繰り返しには{n}や{n,m}を使い
ます。次のものは少し複雑な例ですが、日付
にマッチする正規表現です。

●検索対象：2016/01/31
 パターン（¥vあり）
¥v¥d{4}¥/¥d{2}¥/¥d{2}
 パターン（¥vなし）
¥d¥{4}¥/¥d¥{2}¥/¥d¥{2}
 ↑「{」の前にバックスラッシュを付ける

　ちなみに¥dは正規表現エンジンによっては
使えない場合もあるので、そういう場合は文
字クラスを使い[0-9]と書きます（文字クラス
については「文字クラス」の節で解説）。しかし
検索するためにわざわざ長いパターンを入力
するのも面倒です。Vimでは¥dが使えるので
すからどんどん使っていきましょう。
　また次節の「/のエスケープ」で述べますが、
/を検索するためにバックスラッシュでエスケー
プしています。
　上記の正規表現では「2016/1/31」のような
日付にマッチしません。なぜなら月の部分が2

文字の数値ではないからです。月や日が0埋め
されない場合も考慮するなら次のように書き
ます。

●検索対象：2016/1/31
 パターン（¥vあり）
¥v¥d{4}¥/¥d{1,2}¥/¥d{1,2}
 パターン（¥vなし）
¥d¥{4}¥/¥d¥{1,2}¥/¥d¥{1,2}

　¥d{1,2}とすることで、1文字から2文字ま
での数字（¥d）にマッチします（1が最小の繰り
返し回数、2が最大の繰り返し回数です）。ち
なみに先ほど述べた *と +はそれぞれ {0,}、
{1,}のように書くこともできます。このよう
に最小の繰り返し回数や最大の繰り返し回数
を省略することもできます。

量指定子：回数指定
{n}、{n,m}

36 - Software Design May 2016 - 37

Vimの強力な正規表現を使いこなそう Part 3

　文字の/を検索したい場合は¥/のようにエ
スケープする必要があります。これは正規表
現というよりVimの/コマンドと?コマンドの
仕様によるものです。本記事では解説しませ
んので、詳しくは :help search-offsetを参
照してください。
　ちなみにSoftware Design 2016年4月号の
記事「Vimの正規表現をマスターする」にもあ
りましたが、次のようなマッピングを .vimrc

に書いておくと自動でエスケープされて便利
かもしれません。

cnoremap <expr> / getcmdtype() == '/' ? ｭ
'¥/' : '/'

　しかし自動エスケープを好まない人もいる
ため、お好みで設定してみてください。エスケー
プの具体例については「量指定子：回数指定」
の解説を参照してください。

　正規表現のメタ文字を無視して固定文字列
で検索したいとしましょう。その場合は¥Vを
パターンの先頭に付けることで固定文字列検
索が可能です (¥vと逆の意味を持つため¥vは
指定しません)。

●検索対象：1*2+3
 パターン ¥V1*2+3

/のエスケープ¥/

固定文字列を検索
¥V

　しかし¥Vを含めた場合でも/と¥だけはエス
ケープする必要があるので注意してください。

　Vimで大文字と小文字のケースを無視する
には¥cをパターンに含めます。逆に無視しな
いようにするには¥Cをパターンに含めます。
どちらも含めない場合はignorecaseオプショ
ン、smartcaseオプションの値によって決めら
れます。ignorecaseオプションがオンだとケー
スを無視しますが、smartcaseオプションがオ
ンだと大文字が含まれる場合はignorecaseオ
プションがオフのように振る舞います。表1に
それぞれのオプション値がオン／オフだった
場合の挙動を記載します（Vimのhelpからの引
用です）。
　表1のとおり、¥cと¥Cは¥vと違い、パター
ンのどこに含めても全体で有効になります。
¥vは含めた個所以降にのみ効果が現れます。
ちなみに ignorecase、smartcase、¥c、¥Cは、
いずれも文字クラス内部には影響しません。
文字クラスについては次節で解説します。

　a、b、cのいずれかの文字にマッチさせたい
場合は[abc]のように書きます。この記法は「文
字クラス」と呼びます。そのほかにも文字クラ
ス内ではさまざまな指定ができます。いくつ
か分けて紹介しましょう。

大文字と小文字のケース
を無視・区別する¥c、¥C

文字クラス

 ▼表1　 ignorecase、smartcaseの有効／無効による挙動

パターン ignorecase smartcase マッチするもの
foo オフ - foo
foo オン - foo, Foo, FOO
Foo オン オフ foo, Foo, FOO
Foo オン オン Foo

¥cfoo - - foo, Foo, FOO

foo¥C - - foo

38 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

文字クラス：範囲[x-y]
　文字コードのある特定の範囲にマッチさせ
たい場合があります。たとえば数字を表す場
合は[0-9]と書きますが、これは文字コード上
で0～9の文字が連続しているためこのように
書くことができます。ほかにも16進数の文字（0
～9、A～F、a～f）にマッチする正規表現は
[0-9A-Fa-f]のように書くことができます。こ
のように複数の範囲を含めることもできます（ち
なみにVimでは16進数は文字クラスを使う代
わりに¥xと書いても構いません）。
　文字クラスに-（ハイフン）を含めたい場合は
どうすればいいでしょうか？　いくつか方法
があります。1つは¥でエスケープする方法です。

●検索対象：数字またはハイフン
　　　　　　または「A」から「F」までの文字
 パターン [0-9¥-A-F]

　もう1つは-を文字クラスの先頭か最後に持っ
てくる方法です。

●検索対象：数字またはハイフン
 パターン [-0-9] あるいは [0-9-]

文字クラス：否定 [^...]

　たとえば、バッファにマルチバイト文字が
含まれているかどうかを検索したい場合はど
うすればいいでしょうか？　ASCIIコードに
含まれない範囲（1～255）の文字と考えると次
のように書けます。

●検索対象：マルチバイト文字
 パターン [^¥x01-¥x7f]

文字クラス：POSIXブラケット
表現 [:...:]

　本記事でいくつか出てきた¥sですが、これ
は[[:space:]]というふうにも書くことがで
きます。ややこしい書き方ですが、¥sは文字
クラス内では¥とsを表しますが、[[:space:]]

の場合はちゃんと半角スペースとタブ文字と
して扱われます。

[¥s] これは¥とsにマッチしてしまう！
[[:space:]]
 ↑これは半角スペースとタブ文字にマッチする

　上記の例だと単純に¥sと書けばいいのです
が、POSIXブラケット表現を使うことでほか
の文字と合わせて使えるという利点がありま
す（また文字クラスの否定などとも組み合わせ
られます）。

●検索対象：半角スペース、タブ文字、
　　　　　　数字のいずれか1文字
 パターン [[:space:]0-9]

　このように角カッコで囲んだ文字クラス表
現を「POSIXブラケット表現」と呼びます。

文字クラス：メタ文字や]の
エスケープ

　*や+や.などのメタ文字は文字クラス内だ
と特殊な文字とはみなされません。

●検索対象：「*」「+」「.」のいずれか1文字
 パターン [*+.]

　また文字クラス内に]を含めたい場合は、終
了の]とみなされないようにエスケープする必
要があります。

●検索対象：「(」「)」「[」「]」の
　　　　　　いずれか1文字
 パターン [()[¥]]

　文字クラスを使うといずれか1文字にマッチ
させることができますが、1文字ではなく2文
字以上のいずれかの文字列にマッチさせたい
場合には¦を使います。

選択子
foo¦bar¦...

38 - Software Design May 2016 - 39

Vimの強力な正規表現を使いこなそう Part 3

●検索対象：fooまたはbar
 パターン（¥vあり）
¥vfoo¦bar
 パターン（¥vなし）
foo¥¦bar

　(...)で囲むことでひとまとまりにできます。
これは実際に例を見たほうが早いでしょう。
次のように選択子（¦）と組み合わされる場合が
多いです。

●検索対象：「foo =」または「bar =」
 パターン（¥vあり）
パターン（¥vあり）：¥v(foo¦bar)¥s*¥=
 パターン（¥vなし）
パターン（¥vなし）：¥(foo¥¦bar¥)¥s*=
 「(」「)」「¦」の前にバックスラッシュを付ける、「=」はメタ文字
と解釈されないようそのまま入力

　=および¥=はVimではメタ文字のためエス
ケープしていることに注意してください。ま
た¦は^より優先順位が低いため、^foo¦barと
すると「先頭にあるfoo、または（先頭にあると
は限らない）bar」という意味になってしまいま
す。barも先頭にあるものとしてマッチさせた
ければ^(foo¦bar)と書きます。このような優
先順位の落とし穴もあるため、選択子を使う場
合はグループと併せて使うことが多いでしょう。

　ここまでいくつかメタ文字を紹介しましたが、
文章中にあるメタ文字を検索したい場合はバッ
クスラッシュを付けてエスケープする必要が
あります。またバックスラッシュ自身を検索
したい場合もエスケープする必要があります。

●検索対象：¥s+
 パターン（¥vあり） ¥v¥¥s¥+
 パターン（¥vなし） ¥¥s+

●検索対象：/etc/hosts
 パターン ¥/etc¥/hosts

グループ(...)

メタ文字の
エスケープ¥

●検索対象：C:¥Windows¥system32
 パターン C:¥¥Windows¥¥system32

　しかし¥vの有無でバックスラッシュがエス
ケープになったり別の意味に変わってしまう
ので注意してください（詳しくは:help /¥v）。

　たとえばhostsやhostnameではなくhostの
みを検索したい場合はどうすればいいでしょ
うか？　そういう場合には単語検索を使います。

●検索対象：host
 パターン（¥vあり） ¥v<host>
 パターン（¥vなし） ¥<host¥>
 「<」と「>」の前にバックスラッシュを付ける

　<と>は単語の境界にマッチします。単語と
はVimでは「iskeywordオプションに含まれる
文字で構成される1文字以上の文字列」という
定義になっていますが、だいたいの正規表現
エンジンでは次のような定義になっています。

・	a〜z（小文字）
・	A〜Z（大文字）
・	0〜9（数字）
・	_（アンダーバー）

　これは ¥wまたは文字クラスを使って、
[0-9A-Za-z_]のように表すことができます。
よって http://localhost/というテキストが
あるとき、単語の境界とは次の¦で表した部分
を意味します（単語の境界は¥v<.¦.>というパ
ターンで検索すれば確認できます）。

¦http¦://¦localhost¦/

　また、hostsや hostnameにはマッチさせた
くないけど、localhostやroyalhostなどhost
の前に単語が付けられている文字列にマッチ
させたい場合は次のように書きます。

単語の境界<...>

40 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

●検索対象：localhostやroyalhost
 パターン（¥vあり） ¥v¥w+host>
 パターン（¥vなし） ¥w¥+host¥>

　¥wは先ほど紹介した単語（[0-9A-Za-z_]）を
表すメタ文字です。このように単語境界は片
方だけにも付けることができます。実際に
Vim以外の正規表現エンジンでは括弧で表さ
れず、¥bを使って¥b...¥bのように表される
ことが多いです。

　このメタ文字はVimの独自機能です。これ
に関しては例を見てもらったほうがわかりや
すいでしょう。

●検索対象：testまたはtesまたはteまたはt
 パターン（¥vあり） ¥vt%[est]
 パターン（¥vなし） t¥%[est]

　このように括弧の中の文字列を省略していっ
たすべての候補にマッチします。
　ちなみにVimのExコマンド注 2は helpに

:gr[ep]のように表記されていますが、これは
gr、gre、grepのどのコマンドでも同じコマン
ドを表すという意味です。上記3つのコマンド
を%[...]を使ってマッチさせようとするなら、
ほぼそのまま ¥vgr%[ep]または gr¥%[ep]で
マッチできます。

　肯定先読み、肯定後読み（戻り読み）とは簡
単に言うと「○○の前後に現れる△△」を表現
できる記法です。ちなみに本記事では解説し
ませんが否定先読み、否定後読み（戻り読み）
というものもあります。

注2） Vimのコマンドラインで実行するコマンド（例：":quit",
":write"）

短縮されたすべての候
補にマッチする%[...]

肯定先読み、肯定
後読み¥@=, ¥@<=

●検索対象：「Visual」と「<半角スペース>Code」に
挟まれた「Studio」
 パターン（¥vあり）
¥v(Visual)@<=Studio(Code)@=
 パターン（¥vなし）
¥(Visual¥)¥@<=Studio¥(Code¥)¥@=

　何だかとても複雑で面倒そうですね。先読み、
後読み（戻り読み）という名前もどっちが先か
後か混乱しやすいところです。しかしVimに
はもっと読みやすく素晴らしいメタ文字があ
ります。それが次節で解説する¥zsと¥zeです。

　このメタ文字はVimの独自機能です。前節
では肯定先読みと肯定後読みについて解説し
ましたが、Vimでは¥zsと¥zeというメタ文字
を使うと「○○の前後に現れる△△」にマッチ
するパターンをもっと気軽に書けます。

●検索対象：「Visual」と「<半角スペース>Code」に
挟まれた「Studio」
 パターン Visual¥zsStudio¥ze Code

　「¥zsの sは startの s」「¥zeの eはendの e」と
覚えましょう。置換する場合は(...)によるグ
ループを使うのもいいですが、グループの対
象が1つだけなら¥zsや¥zeが便利です。また
置換する場合はグループとキャプチャを使っ
て次のようにも書けます。

Visual Studio Community 2015をVisual Studio Code
に置換
●検索対象：「Visual」と「<半角スペース>Code」に
挟まれた「<半角スペース>Studio」
 パターン（¥vあり）
¥v(Visual Studio) Community 2015
 パターン（¥vなし）
¥(Visual Studio¥) Community 2015
 置換後文字列 ¥1 Code

　しかし置換には使えても、やはり「Visual

Studio」だけ検索・ハイライトさせたい場合は
肯定先読みや肯定後読み、¥zsや¥zeを使う必

マッチの開始地点・
終了地点¥zs、¥ze

40 - Software Design May 2016 - 41

Vimの強力な正規表現を使いこなそう Part 3

要があります。
　さて、ここで置換の話題に触れたので、そ
ろそろ検索だけではなく置換も試してみたく
なったのではないでしょうか？　次節ではい
よいよ置換の解説をします。

　{パターン}に関してはこれまで紹介してき
たパターンを指定するだけなのでとくに解説
はしません。しかし「Vim正規表現の方言」や「/
のエスケープ ¥/」の節で挙げたマッピングを
行っている場合は:s[ubstitute]コマンドに
は適用されないので、手動でエスケープなど
を入力する必要があることに注意してください。
{置換後文字列}は置換した後の文字列ですが、
いくつか特殊な文字が使えます。詳しくは:help
s/¥&とその周辺を見てもらうとして、本節で
もいくつか解説します。
　また、:s[ubstitute]コマンドの実行方法は
コマンドラインモードで図3のように実行しま
す。ちなみに//のようにパターンが指定され
なかった場合は、直前に /コマンドや :s[ub
stitute]コマンドで検索した際の検索パター
ンが使われます。この挙動は本記事でも解説
する:vim[grep]コマンドや:gr[ep]コマンド
と同じです。

{置換後文字列} マッチした
パターン全体&、¥0

　現在行をダブルクォートで囲みたい場合は
次のように書けます。

:s/.*/"&"/ または「:s/.*/"¥0"/」

置換:s[ubstitute]/{パター
ン}/{置換後文字列}/[フラグ]

　&に置換したい場合は¥&のようにエスケー
プします。

{置換後文字列} n番目にマッチした
()内の文字列¥1, ¥2, ..., ¥9

　¥1と書くことで1番目の括弧の中身、¥2と
書くことで2番目の括弧の中身、というふうに
マッチした文字列を参照できます。たとえば
CSVファイルでfoo,bar,bazというレコード
（行）をfoo,hoge,bar,bazというレコードに変
更したいとします。その場合は次のようなコ
マンドを実行します（CSVファイルに,を含ん
だレコードはないものとします）。

:s/¥v^([^,]*)(,.*)/¥1,hoge¥2/

{置換後文字列} 前回の
置換後文字列̃

　次のようにすると直前の置換を繰り返すこ
とができます（直前の検索パターンと直前の置
換後文字列で置換）。

:s//̃/

　上記は例として挙げましたが、同様のこと
をする&コマンドというものがあります（ノー
マルモードで&を入力）。また:sでも同様のこ
とができます。
　ですので中級者以上の方も普段はほぼ存在
を忘れていて、ふと置換後文字列に̃を指定し
たら期待どおりにいかなかったという場合が
多いでしょう。そういう場合は¥̃のようにエ
スケープすると̃に置換できます。

{置換後文字列} 改行
¥r

　改行に置換したい場合は¥rを使います。次
のコマンドはCSVファイルの1レコード（行）
のコンマを改行に変換する例です。

:s/,/¥r/g

 ▼図3　:s[ubstitute]コマンドの実行方法

 現在行を置換
:s/{パターン}/{置換後文字列}/[フラグ]
 現在のファイルのすべての行を置換
:%s/{パターン}/{置換後文字列}/[フラグ]
 (vかVか<C-v>で選択したあと、:を押して)選択された行を置換
:'<,'>s/{パターン}/{置換後文字列}/[フラグ]

42 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

{置換後文字列} Vim scriptの
式で置換¥=

　¥=を先頭につけるとVim scriptの式として
評価し、その結果の文字列に置換します。具
体例として、4タブのインデントを2タブに修
正するには図4のように実行します注3。
　まず、置換後文字列のVim script式に/を含
むため、区切り文字として:を使っています。:s
コマンドの区切り文字は/以外にも英数字、¥、
"、¦以外の文字であればどの文字でも使えま
す（:help E146）。次にパターンは¥v^ +です。
これによって先頭の連続している半角スペー
スにマッチします。
　置換後文字列はVim scriptの式です。¥=に
よって後続する文字列がVim scriptの式であ
ることを示しています。submatch(0)で（¥=を
使わない場合の）¥0と同じ結果が取得でき、そ
の文字列の長さを4で割って2で掛けています。
これにより修正後のインデント数を取得でき
るので、その回数をrepeat(" ", {回数})で
半角スペースを{回数}回繰り返して連結した
文字列を生成しています。このようにVim

scriptが書けるようになると、より高度な置換
を行うことができます。

[フラグ] 行中のすべての
マッチを置換/g

　行が foo,bar,fooのとき、:s/foo/hoge/だ
とhoge,bar,fooになりますが、:s/foo/hoge/
gだとhoge,bar,hogeになります。

[フラグ] 置換前に確認する/c
　すべてのマッチ対象を置換する前に「...に置
換しますか？（y/n/a/q/l/\^E/\^Y）」のように

注3） ちなみにこれと同じようなことをhttps://github.com/
tyru/codingstyle.vimの :CSChangeSpaceIndentコマンド
で実行しています。

確認します。それぞれの文字の意味について
は:help :s_cを参照してください。

[フラグ] マッチの個数を
表示する/n

　バッファ中でパターンにマッチした個数を
表示して実際には置換を行いません。:help
count-itemsからいくつか紹介します（表2）。
　%s/¥v¥w+/&/gnと実行すると、

905 箇所該当しました (計 368 行内)

のように表示されます。

　複数のファイルや特定ディレクトリ以下か
ら正規表現にマッチするファイルを検索した
い場合、:vim[grep]コマンドと :gr[ep]コマ
ンドを使います。前者はVimが、後者は実際
にgrepprgオプションに指定されたプログラ
ムを起動して検索します。後者のほうが高速
ですが、前者はVim組み込みのため、どのOS

でも使え、grepprgオプションに指定されたプ
ログラムの引数解釈などの違いを意識せずに
済みます。
　:vim[grep]コマンドは図5のように使用し
ます。:vimgrep /{パターン }/ {パス }のよ
うにパターンを/でくくることに注意してくだ
さい。ちなみに//のようにパターンが指定さ

ファイルをまたぐ検索
:vim[grep]、:gr[ep]

 ▼表2　マッチする個数を表示する書き方の例

実行するExコマンド 意味
:%s/./&/gn 文字

:%s/¥v¥w+/&/gn 英単語

:%s/^//n 行

:%s/¥v<the>/&/gn "the"（単語一致）

 ▼図4　4タブのインデントを2タブに修正する例

%s:¥v^ +:¥=repeat(" ", strlen(submatch(0)) / 4 * 2):

https://github.com/tyru/codingstyle.vim

42 - Software Design May 2016 - 43

Vimの強力な正規表現を使いこなそう Part 3

れなかった場合は:s[ubstitute]コマンドと
同じく直前に検索した際の検索パターンが使
われます。また、##を使うことで引数リスト
のファイルに置き換えることができます。こ
の機能は図6の:gr[ep]コマンドでも使うこと
ができます（引数リストについて詳しくは:help
arglist）。
　次に、:gr[ep]コマンドは次のような順序で
実行されます。

❶ %や#などの文字をカレントファイル名や代
替ファイル名に置き換える（詳しくは:help
cmdline-special）

❷ そのままgrepprgで指定したプログラムに
渡す

 ・�その際Linuxではシェルを介するため*は
展開されます注4

 ・�しかし**/*はLinuxでデフォルトでインス

注4） 展開を抑制するためには第二引数をシングルクォートで囲
みます。

トールされていることの多いshやbashなど
のシェルでは展開されないため使えません

 ・�Windowsではシェルにあたるものはない
ので*も**/*も展開されません

　何だか面倒そうですが、❶の %や#などの

特殊文字をエスケープする必要があることだ

け気を付ければコマンドラインで grepprgオ
プションに指定されたプログラムを起動する
のと同じ感覚で実行するだけです。
　コマンドラインに指定するのとほぼ同じな
ので、文字によってはエスケープしたりダブ
ルクォートあるいはシングルクォートで囲む
必要があります（図7）。
　:vim[grep]コマンドや:gr[ep]コマンドで
検索を実行したあとに検索結果を見るに
は:cope[n]コマンドか:cw[indow]コマンドを
使います。:cope[n]コマンドが常にウィンド
ウを開くのに対し、:cw[indow]コマンドは検
索結果が1件以上存在する場合のみウィンドウ
が開きます。

 ▼図5　:vim[grep]コマンドの使い方

 /path/to/dir 直下のみを検索
vimgrep /^[^#]/ /path/to/dir/*
 /path/to/dir 配下を再帰的に検索 (「:vim」は「:vimgrep」の省略形)
vim /^[^#]/ /path/to/dir/**/*
 /etc/cron.*/ 配下からコメントアウト以外の行を再帰的に検索
vim /^[^#]/ /etc/cron.*/**/*

 ▼図7　 :gr[ep]コマンドの使い方
（Windowsではデフォルトで findstrコマンドが使われるため本コマンドは動きません。詳しくは findstrコ
マンドのヘルプを参照してもらうか、コラムで紹介する jvgrepコマンドを使用してください）

 /path/to/dir 直下のみを検索 (# をエスケープしていることに注意！)
grep '^[^¥#]' /path/to/dir/*
 /path/to/dir 配下を再帰的に検索
gr -r '^[^¥#]' /path/to/dir/
 /etc/cron.*/ 配下からコメントアウト以外の行を再帰的に検索
gr -r '^[^¥#]' /etc/cron.*/

 ▼図6　##による引数リストの参照

args /etc/cron.*/**/*
vim /^[^#]/ ##
 パターンが空の場合は直前の検索パターンが使われる
vim // ##

44 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　ディレクトリをまたぐ横断検索ツールとして、
grepコマンドより高速に動作するagコマンドなど
がありますが、Vimから使えるようにするには
ag.vimというプラグインをインストールする必要
があります。
　ちなみに筆者のお勧めはVim、日本語、マルチ
プラットフォームとの親和性が高い jvgrepです。

日本語grepが出来る jvgrepというのを作った。
http://mattn.kaoriya.net/software/lang/go/2011
0819203649.htm

　jvgrepコマンドをインストールしたら set
grepprg=jvgrepのように指定するだけで動作し
ます。jvgrepコマンドがインストールされている
かのチェックと併せて、.vimrcに次のように記載す

るといいでしょう。

if executable('jvgrep')
 set grepprg=jvgrep
endif

　jvgrepの素晴らしい点は次のとおりです。詳し
くは上記URL先を参照してください。

❶ �*と **/*を展開してくれる（Windowsと
Linuxでの差異を意識しなくていい）

❷ �日本語を含む正規表現も正しく解釈して
くれる

❸ �Vimでプラグインを入れなくても、set
grepprg=jvgrepだけで認識する

ag.vim, jvgrepColumn

　最近GitHub製のエディタAtomにこんなバグが
ありました。

私がどのようにしてAtomの奇妙なバグを修正した
か：正規表現が暴走を起こすとき
http://postd.cc/how-i-fixed-atom/

　ネストした*が開いているファイルの文字列に
マッチしようとして失敗するのを何度も繰り返し、
特定の状況で改行しようとすると30分もかかって
しまったそうです。この問題は Catastrophic
Backtracking（壊滅的なバックトラック）と呼ばれて
おり、ReDoS（正規表現によるDoS攻撃）と呼ばれ
るDoS脆弱性の原因にもなり得ます。
　正規表現をユーザからそのまま受け付けたり、
動的に生成するようなプログラムを書くのは止め

ましょう。また上記記事の正規表現のように量指
定子を安易にネストさせてはいけません。だいた
いの場合ネストさせることなく書けるはずです。
　また最適化された正規表現なら素早くマッチさ
せることができますが、十分な最適化を行うには
正規表現エンジンがどのように正規表現を解釈・
実行しているかの理解が必要となります。
　速度ももちろん重要ですが、何より正規表現は
わからない人にはまったく読めないうえ、少し複
雑なパターンを書いただけで簡単に見づらくなっ
てしまいます。検索や置換で使う分には便利ですし、
正規表現なしでプログラムの文字列加工処理を行
うのも面倒ですが、プログラミング言語から正規
表現を使う際は見やすさを意識して、なるべく乱
用は避けましょう。

プログラムで正規表現を使うときはメンテナンス性を重視しようColumn

http://mattn.kaoriya.net/software/lang/go/20110819203649.htm
http://postd.cc/how-i-fixed-atom/

44 - Software Design May 2016 - 45

Vimの強力な正規表現を使いこなそう Part 3

　:g[lobal]または:v[global]を使うことで、
特定のパターンにマッチする行にのみ指定さ
れたExコマンドを実行させることができます。

g/^#/d

　この例では^#というパターンにマッチする
行を探し、見つかった行に対して :d[elete]

バッファ内を検索してExコマンド
を実行:g[lobal]、:v[global]

コマンドを実行しています。:d[elete]コマ
ンドは現在行を削除するコマンドなので、
:g[lobal]コマンドと組み合わせることで「特
定のパターンを含む行を削除」することができ
ます。
　逆に「特定のパターンを含まない行を削除（＝
特定のパターンを含む行を残す）」をしたけれ
ば、:g[lobal]コマンドの代わりに:v[global]
コマンドを使ってください。
　パターンが指定されなかった場合は直前に
検索した際の検索パターンが使われます。｢

tyru

・都内のシステム会社に勤務しさまざまな現場に赴き働く（おもに）Javaと JavaScriptなエンジニア
・ 仕事では Vimを使っていないが「Vim以外の開発環境について勉強する良い機会」と割り切って（開き直っ
て）仕事している
・休日は vital.vimや自作プラグインのメンテナンス、最近は Vim本体の開発にも口を出している

Profile

　/コマンドや :s[ubstitute]コマンドで複雑な正規
表現を書くとき「hjklで移動できないので挿入モー
ドで編集したい！」と思ったことはないでしょうか？
コマンドラインウィンドウという機能を使うと普
通のウィンドウでテキストを編集するのと同じよ
うにコマンドラインを編集できます。

:%s/(ここで<C-f>を押す)

　すると図のようにバッファが開きます。

　コマンドラインウィンドウを開くキーはデフォ
ルトで<C-f>になっていますが、ceditオプショ
ンで変えられます。

:set cedit=<C-l>

　最初からコマンドラインウィンドウが開いてほ
しい場合は以下のようにマッピングするという手
もあります。

nnoremap : q:

　しかし通常の操作体系と大きく変わってしまう
のでお好みで設定してみてください。

コマンドラインウィンドウColumn

46 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　ここではGitやGitHubに触れたことがない
方に向けて、それらの概要を紹介し、より深
く知るためのリンクをご紹介します。本稿で
はこの2つとコマンドの実行方法や簡単な設定
の書き方などのVimの基礎は習得済みとして
話を進めますので、まだ知らないという方は
下記で紹介しているサイトをのぞいてみたり、
検索してみてください。

Gitとは
　GitはVCS（＝Version Control System；バー
ジョン管理システム）のうちの1つです。ソフ
トウェアをリポジトリという単位で管理し、
いつ誰がどんな変更をコードに加えたかを記
録し、変更をやり直すなどの操作が行えます。
VCSは昨今のソフトウェア開発（とくに複数
人による開発）においてはほぼ必須となってい
ます。
　Gitはとても複雑なソフトウェアでたくさん
のサブコマンドがありますが、「とりあえず使っ
てみる」ためにはそのうちいくつかを知ってい
るだけで大丈夫です。Gitの基礎を学ぶには
GitHubが公開しているGitチュートリアルサー
ビスTry Git注1をやってみると少し感覚がつか

注1） https://try.github.io/levels/1/challenges/1

GitHubとGit入門
めるでしょう。また、Pro Git注2という無料の
書籍も公開されており、Gitについて深く学ぶ
ことができます。

GitHubとは
　GitHubとはソフトウェアプロジェクトをホ
ストすることができるWebサービスです。Git

のリポジトリをGitHub上に置くことができ、
ソフトウェア開発の拠点として利用できます。
好きなときにGitHub上に置かれたリポジトリ
を手元に複製（clone）することができます。公
開リポジトリは無料で置くことができるため、
趣味のソフトウェア開発で利用している方が
大勢いる一方、有料で非公開リポジトリをつ
くりビジネスのためのソフトウェア開発も多
く行われています。GitHubではGitHub Train

ing注3というGitHubの基本的な使い方がわか
る学習サイトを公開しています。

VimとGitHubとGit
　VimもGitHubもソフトウェア開発にとても
便利ですが、Vimでコードを書きながら
GitHubやGitを使っているとVimとブラウザ
やコマンドラインの往復になってしまい、作
業効率が下がってしまうこともあります。本
稿ではそういった問題を解決していきます。

注2） https://progit-ja.github.io/

注3） https://training.github.com/classes/

　本章ではVim初級者～中級者を対象にGitHubでの開発をより効率的にするためのVimの使い方やプラグイン
についてご紹介します。プラグインについては簡単に使えて初心者の方でもすぐに効果を実感していただけるよ
うなものをチョイスしました。

VimでGitHubを
もっと使いやすくする

 Author 林田 龍一（はやしだ りゅういち）　 URL https://rhysd.github.io/

Part

4

https://rhysd.github.io/
https://rhysd.github.io/
https://try.github.io/levels/1/challenges/1
https://progit-ja.github.io/
https://training.github.com/classes/

46 - Software Design May 2016 - 47

VimでGitHubをもっと使いやすくする Part 4

　GitHubを使うにはGitを使う必要がありま
す。Gitを多用する場合、ターミナルやGUIな
Gitアプリとの行き来が発生します。そういっ
た無駄な作業をなるべく減らし、コードを書
きながらVimからすぐにGitを使えるようにす
るためのVimのコマンドや設定をいくつか紹
介します。

:!コマンド
　VimにはターミナルのコマンドをVimの中
から直接実行する:!というコマンドがありま
す。:!の後にシェルコマンドを指定すると、
そのコマンドをVim内から直接実行できます。
よって表1のようにすると、直接Gitのコマン
ドを実行することができます。Vimの中でgit
コマンドを使うことで、gitコマンドにも徐々
に慣れていくことができます。もちろんGUI

のVimからも使えます。
　:!git add %で編集中のファイルをaddでき
るのは、Vimの:で始まるコマンドライン内で
は、%は現在編集中のファイルのパスになるた
めです。
　なお、GUIのVimを使っている場合はコミッ

基礎編：
VimからGitを使う

トで使うエディタをGUIのVimにするために、
あらかじめ次のようにGitの設定を済ませてお
きましょう。

$ git config --global core.editor 'vim -g'

　これでgit commitした際にGUIのVimでコ
ミットメッセージを書くことができます。

お勧めのVim設定
　VimからGitを使う方にお勧めの設定を2つ
紹介します。

runtime ftplugin/man.vim
nnoremap gc :<C-u>!git<Space>

　1行目はVimからmanを使うための設定です。
たとえばgit addのマニュアルが読みたくなっ
た場合は:Man git-addとすると、色のついた
manコマンドの出力を見ることができます。
　2行目はお勧めのマッピングです。次のよう
にマッピングを割り当てると、gcと入力する
と:!git まで自動で入力されるため、すぐに
Gitのサブコマンドを入力できます。
　最後にコミット時に便利な設定について紹
介します。Gitのコミットメッセージを書くと
き、英語で書かれる方も多いのではないでしょ
うか？　Vimにはスペルチェック機能があり、
設定を有効にするだけで利用できます。また、
git commit時はすぐにコミットメッセージを
書き始めたいと思いますので、:startinsert
でデフォルトで挿入モードにしておくのも便
利です（図1）。

 ▼表1　:!コマンドを使ったGitコマンド実行例

コマンド 説明
:!git status 現在のリポジトリの状態を確認

:!git log コミット履歴を確認

:!git add % 現在開いているファイルをadd

:!git commit コミットする

 ▼図1　コミットメッセージを書くのに便利な設定

 英語のスペルチェックを有効にする
set spelllang=en,cjk
 Gitのコミット時に自動でスペルチェックを有効にする
autocmd FileType gitcommit setlocal spell
autocmd FileType gitcommit startinsert

48 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　ここからはGitHubやGitで開発を行ううえ
で便利なVimプラグインを紹介していきます。
プラグインのインストール方法については
Part1や:help add-pluginを参考にしてくだ
さい。

VimからGitのコミットを
閲覧する

　Gitを使って開発を行っていると、どこでど
んな変更を入れたのかコミットのログを見た
いことが多々あります。git log --oneline
を使って一覧表示をしても良いですが、コミッ
トメッセージだけではどんな変更が実際に加
わったのかを見ることができません。また、
かといってgit log -pのように出力に各コミッ
トでのコードのdiff情報を追加してしまうと、
それだけで場所を取ってしまいログを見渡す
ことができません。
　そこで、Gitのコミットを簡単に見ることが

応用編：プラグインでVim＋Git
＋GitHubをもっと便利にする

できるagit.vim注4をご紹介します。agit.vimは
“コミットブラウザ”に分類されるツールです。
コマンドラインで使えるコミットブラウザと
しては tig注5が人気ですが、agit.vimはVim内
で直接コミット履歴を確認できます。Gitによ
る変更履歴を追いながら各変更点における変
更内容（diff）を見ることができます。
　インストールしたらGitリポジトリ内でVim

を開いて:Agitとしてみましょう。図2のよう
な画面が表示されるはずです。
　画面左半分のウィンドウがGitの変更履歴、
画面右上の小さいウィンドウが現在カーソル
がある行のコミットのファイル変更情報、画
面右下のウィンドウがその変更diffです。コミッ
トは普通のVimの操作のように、jとkで自由
にたどることができ、カーソルが左側のウィ
ンドウ内で移動すると右側のウィンドウは自
動で更新されます。yhでカーソルがある行の
コミットのハッシュ値をコピー（yank）するこ
とができます。コピーしたハッシュ値はその

注4） https://github.com/cohama/agit.vim

注5） https://github.com/jonas/tig

 ▼図2　agit.vimメイン画面

https://github.com/jonas/tig
https://github.com/cohama/agit.vim

48 - Software Design May 2016 - 49

VimでGitHubをもっと使いやすくする Part 4

コミットを指す一意な値ですので、:!gitなど
によってさまざまなコマンドでそのコミット
を指す値として使えます。最後にqを押すこと
でバッファを閉じ、元いた場所にカーソルを
戻すことができます。
　これでVimからサッとコミット履歴を確認
できるようになりました。
　また、編集中のファイルや特定のファイル
だけに関連する履歴を追いたいときは

:AgitFileコマンドを利用できます（表2）。
　すでに tigなど別のコミットブラウザを使っ
ている場合は、前章の:!コマンドと組み合わ
せて:!tigとして使うのもお勧めです。

Vimで編集中のファイルを
ブラウザで開く

　Vimでコードを書いていると、Vimから現
在編集しているリポジトリのGitHubページを
開きたいことがよくあります。たとえばVim

で開いているファイルのカーソルがいる行あ
たりのコードをほかの人と共有するために、
編集中のファイルに対応するGitHubのページ
のURLがほしいときなどです。
　そのような用途で使える open-browser-

github.vim注6というプラグインを紹介します。
　まず、このプラグインはopen-browser.vim注7

の拡張ですので、こちらも一緒にインストー
ルする必要があります。open-browser.vimは
カーソル下のURLやWeb検索結果をブラウザ
で開くといった機能を提供してくれるとても
便利なプラグインです。open-browser-github.

注6） https://github.com/tyru/open-browser-github.vim

注7） https://github.com/tyru/open-browser.vim

vimは open-browser.vimの機能を利用して
GitHubのページをブラウザで開きます。
　さっそくセットアップしてみましょう。
:OpenGithubFileコマンドで現在のファイル
のページを開くことができますが、次のよう
にマッピングしておくと開きたいと思ったと
きにすぐに開けます。

nnoremap go :<C-u>OpenGithubFile<CR>
xnoremap go :OpenGithubFile<CR>

　この設定によりノーマルモードでgoと入力
すると対応するファイルのGitHubページがブ
ラウザで開かれます。これだけでも十分に便
利ですが、ビジュアルモードで使うとさらに
便利です。
　図3のスクリーンショットを見てください。
左のVim内でビジュアルモードで範囲選択し
goと入力すると、右のブラウザ内で対応する
範囲がハイライトされた状態のページが開か
れます。
　ビジュアルモードのVimで選択している範
囲がブラウザ上でもそのままハイライトされ
ているのがわかります。範囲や行を指定する
ことで自動でその位置までスクロールされる
だけでなく、「（特定行を指して）この行でおか
しくなってます」や「（関数全体を指して）この
関数長過ぎませんか？」など、ファイルのうち
特定の場所を示すことができます。
　また、現在のGitのコミットに対応したペー
ジを開いてくれるのも地味ながら重要な点です。
通常GitHubの特定ファイルを表示するページ
は、https://github.com/user/repo/blob/

 ▼表2　agit.vimの主なコマンド

コマンド 説明
:Agit 現在Vimが実行されているリポジトリでコミットブラウザを開く

:Agit --dir=/path/to/repo リポジトリのパスを指定したいとき

:AgitFile 編集中のファイルの変更履歴を見る

:AgitFile --file=file-path 特定のファイルの変更履歴を見る

https://github.com/tyru/open-browser-github.vim
https://github.com/tyru/open-browser.vim

50 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

master/...のようなURLになるのですが、
open-browser-github.vimで開くURLはhttps:
//github.com/user/repo/blob/{コミットハッ
シュ}/...となります。前者のURLは常にリ
ポジトリの最新を指すため、URLを開いた後
に対象のファイルが更新されてしまうと行数
などがずれてしまうことがありますが、後者
のURLはコミットが固定されているためその
心配がありません。

GitHubのissueを
Vimから確認する

　GitHubを使って仕事をしたりオープンソー
ス開発をしている方はGitHubの issue機能を
活用していると思います。ワークフローによっ
ては、不具合報告だけでなくタスク管理など
を issueで行っている場合もあるようです。
issueの本文やコメントにはURLリンクや画
像などが含まれるため、基本的にはそれらは
ブラウザで見るのが一番適当です。ですが、「あ
の不具合どんな内容だったっけ」や「今実装中
の機能の要件は……」といった、ちょっと
issueを確認したいときに毎回GitHubの該当
リポジトリの issueページを開くのは面倒です。
　そこで、そんなときに使えるgithub-issues.

vim注8を紹介します。

注8） https://github.com/jaxbot/github-issues.vim

　github-issues.vimは名前のとおりGitHubの
issuesにVim内でアクセスできるプラグイン
です。リポジトリ内の issueを一覧表示し、そ
れぞれの issueの詳細（本文・コメント）をVim

内で直接確認できます。画像を見ることはで
きませんが、少し文面を確認する程度であれ
ばこれで十分です。
　インストールしたら早速使ってみましょう。
使い方は至ってシンプルで、:Gissuesコマン
ドを入力します。すると図4のように issueの
リストが表示されます。続いて、見たい issue

の上にカーソルを移動して©を押すと、
issueの中身が図5のように表示されます。な
お図4、5は筆者の開発したプラグインclever

-f.vim注9を対象にした例です。

VimでGitHub Flavored
Markdownを書く

　GitHubではドキュメントをいくつかのマー
クアップ形式（もしくはプレーンテキスト）で
記述できます。中でもMarkdown形式は人気
があり、GitHub Flavored Markdownという拡
張された記法で、多くのREADMEやAPIド
キュメントが書かれています。ファイルの拡
張子は.mdや.markdownが多いようです。
　GitHubユーザはREADMEを始め多くのド

注9） https://github.com/rhysd/clever-f.vim

 ▼図3　Vimでの範囲選択（左）がGitHubページを開いた際に反映される（右）

https://github.com/jaxbot/github-issues.vim
https://github.com/rhysd/clever-f.vim

50 - Software Design May 2016 - 51

VimでGitHubをもっと使いやすくする Part 4

キュメントをMarkdownで書いており、これ
らをVimで効率よく編集するのは作業の効率
アップにつながるでしょう。
　ここではMarkdownテキストを効率よく編
集するための2つのプラグインをご紹介します。

Markdownドキュメントのプレビュー
　Markdownで書かれたテキストはテキストの
ままでも読みやすいですが、画像やリンクな
ども含めて書いたテキストがGitHub上でどの
ように表示されるかもプレビューしたいこと
があります。
　そこでご紹介するのがprevim注10です。これ

注10） https://github.com/kannokanno/previm

もopen-browser.vimに依存し
ています。使い方は非常にシ
ンプルで、

❶	�VimでMarkdownファイル
を開く

❷ Vimのウィンドウの隣にブ
ラウザのウィンドウを開く

❸ :PrevimOpenコマンドを実
行

の3ステップだけです。❸の
実行後にブラウザの新しいタ

ブが自動で開かれ、その中で現在編集中のファ
イルのプレビューが表示されます。図6がその
実行例です。Vim側でテキストを変更すると
自動でプレビューも更新されるため、ブラウ
ザを手動で更新する必要はありません。また、
ブラウザを開く処理はopen-browser.vimを使っ
て行われるため、余分な設定は不要です。

GitHub Flavored Markdownの表記法
　本来Markdownには表を書く記法はありま
せんが、それでは不便なのでGitHub Flavored

Markdown拡張として表の記法が定義されてい
ます（図7）。
　HTMLの<td>や<tr>タグを使って書くより
ははるかに良いのですが、新しい行を追加し

 ▼図4　リポジトリの issueをリスト表示

 ▼図5　issueの中身を表示

https://github.com/kannokanno/previm

52 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

たときに表のレイアウトを修正したりするの
が手間です。
　そこでご紹介するのがvim-table-mode注11で
す。vim-table-modeを使うと簡単に表を記述・
整形できます。さっそく使ってみましょう。
vim-table-modeは汎用的な表記法のためのプ
ラグインですので、GitHub Flavored Markdown

の表記法に合わせるために次の設定を.vimrc
に書いておきます。

let g:table_mode_corner = "¦"

　Markdownテキストを開いたら、まずは

:TableModeToggleというコマンドを実行しま
す。デフォルトで<Leader>tmというマッピン
グも定義されているので、そちらを使っても
良いでしょう。これだけでは何も変化はあり

注11） https://github.com/dhruvasagar/vim-table-mode

ませんが、試しに ¦foo¦bar¦と入力してみま
しょう（空白は一切不要です）。入力してみる
とこのプラグインの便利さに気付くはずです。

¦ foo ¦ bar ¦

　上記のようにマージンとなるスペースが自
動的に適切に挿入されました。次に改行して
¦¦と入力してみましょう。

¦ foo ¦ bar ¦
¦-----¦-----¦

　ヘッダ行が自動で生成されたと思います。
次に、表の本体部分を書いてみましょう。ま
た改行し、¦this is foo¦this is not foo¦
と入力してみましょう。

¦ foo ¦ bar ¦
¦-------------¦-----------------¦
¦ this is foo ¦ this is not foo ¦

　入力したセルの幅に応じて、表全体のレイ
アウトが自動で整形されています。続けて必
要な行を記述していけば表の完成というわけ

 ▼図7　作表例

¦ Variable ¦ Type ¦ Description ¦
¦-----------¦--------¦------------------¦
¦ v:version ¦ number ¦ Version number. ¦
¦ v:errmsg ¦ string ¦ Error message. ¦

 ▼図6　左にVimでMarkdownテキストが、右にブラウザでそのプレビューが開かれている

https://github.com/dhruvasagar/vim-table-mode

52 - Software Design May 2016 - 53

VimでGitHubをもっと使いやすくする Part 4

です。これで、表のレイアウトを調整しなが
ら表を書いていく必要がなくなりました。
　さらに、<Leader>tddマッピングで行を削除
したり、<Leader>tdcで列を削除したりするこ
とができ、表の修正も簡単です。もし何かの
拍子にレイアウトが壊れてしまったら、
:TableModeRealignコマンドを使ってカーソ
ルがある場所の表のレイアウトを整えること
ができます。まさに至れり尽くせりですね。
　さらにさらに、上級者向けに表のセルを選
択できるテキストオブジェクトや、セルの中
身を式で指定できる:TableAddFormulaといっ
た機能もあります。デフォルトでマッピング
を定義されてしまうのが気に入らない場合
は:help table-modeでドキュメントを見なが
ら設定しましょう。また、vim-table-modeの
READMEに載っている紹介用のYouTube動
画注12はとても参考になるので、目を通してお
くと良いでしょう。

GitHubの絵文字、issue番号、
リポジトリ名などを補完する

　READMEやコミットメッセージをVimで書
いていると、GitHub上のリポジトリへのリン
クやユーザ名、絵文字記法、issueやPull

Request（PR）の番号を記述することが多くな
ります。これらは忘れやすく、毎回ブラウザ
で確認しているとせっかくVimで効率よく編
集していたはずが、いつの間にかブラウザと
Vimの往復で非効率になってしまいます。
　そこで、github-complete.vim注13という補完
プラグインをご紹介します。Vimにはオムニ
補完という、コンテキストを考慮した賢い補
完を提供するための機能があります。github-

complete.vimはこの機能を利用し、GitHubの
さまざまな要素を補完する機能を提供します。
　それではインストールしたら試しに使って
みましょう。Gitリポジトリの中のMarkdown

注12） https://www.youtube.com/watch?v=9lVQ0VJY3ps

注13） https://github.com/rhysd/github-complete.vim

ファイルを新たに生成するか開いてください。
　GitHubでは:dog:のように特定のワードを
コロンで挟むと絵文字になる機能があります。
絵文字は種類が多く、なかなか覚えることが
できません。そこで:と入力した後、挿入モー
ドのまま<C-x><C-o>（l＋x l＋o）と
入力してみてください。<C-x><C-o>はオムニ
補完を発動する一般的なキーマッピングです。
すると図8のように、絵文字が補完候補に表示
されます。
　候補として絵文字が表示できるかどうかは
環境によって決まります。絵文字が表示でき
ない環境の場合は、絵文字の説明がテキスト
で表示されます。そのような環境では次のよ
うに設定すると、絵文字の説明を日本語に変
更できます。

let g:github_complete_emoji_japanese_ｭ
workaround = 1

　次に issue/PR番号を補完してみましょう。
試しに issueやPRが存在するリポジトリの
Markdownファイルを開いてください。開いた
ら、#と入力し、その直後にまた <C-x><C-o>
としてみてください。図9のように、issue/

PR番号とそのタイトルが補完候補に表示され
ました。候補を選択すると該当の issue/PR番
号が入力されます。GitHubでは#の後に数字
を入力すると、その番号の issue/PRへ自動的
にリンクされます。

 ▼図8　GitHubの絵文字を補完

https://github.com/rhysd/github-complete.vim
https://www.youtube.com/watch?v=9lVQ0VJY3ps

54 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　また、これとほぼ同様にユーザ名も補完で
きるようになっています。ユーザ名は@名前と
いう形式で、たとえば @rhと入力した後に
<C-x><C-o>を入力するとrhで始まるユーザ名
が補完候補として列挙されます。
　最後にリポジトリへのリンクの補完機能に
ついて紹介します。GitHub上のドキュメント
では、依存関係にあるパッケージへのリンク
など、[名前](https://github.com/user/repo)
といったGitHub上のリポジトリへのリンクを
記述したいことがよくあります。ですが、毎
回GitHub上のページをブラウザで探して入力
していたのでは面倒です。そこでgithub-com

plete.vimではそれを補完できるようになって
います。
　たとえば、[clever-f](https://github.com
/clever-f.vim)というプラグインへのリンク
を書きたいとします。その場合、[clever-f](ま
で入力して<C-x><C-o>を入力すると、github-

complete.vimはラベル部分の clever-fでGit

Hubを検索し、その検索結果のURLを補完候
補にして出してくれます。図10がその様子です。
後は候補からリンクを選ぶだけです。
　これらの補完機能はデフォルトでGitのコ
ミット時のバッファとMarkdownドキュメン
ト編集時に有効になっています。また、上記
のgithub-issues.vimと一緒に使う場合は機能
が一部コンフリクトしてしまっていますので、
次のように設定してください。

let g:github_issues_no_omni = 1

　github-complete.vimはAPI tokenを使った
プライベートリポジトリへの対応や neocom

pleteサポート、オムニ補完ではなく独自の補
完マッピングを提供するといった機能も持っ
ています。カスタマイズしたいときはドキュ
メントやREADMEを読んでみてください。

GistをVimから使う
　Gist注14はGitHubの姉妹サービスで、GitHub

のリポジトリ管理よりも細かいgistという単
位でコードを管理できます（図11）。たとえば、

・	ちょっとスクリプト書いてみた
・	こんなエラーログが出たんだけど……
・	メモ置き場

注14） https://gist.github.com/

 ▼図10　リンク記法中のリポジトリURLを補完

 ▼図9　issue/PR番号を補完

https://gist.github.com/

54 - Software Design May 2016 - 55

VimでGitHubをもっと使いやすくする Part 4

といった用途で、ちょっとしたコードやテキ
ストを保存しておけます。URLを教えること
でほかの人と共有したり、コードスニペット
をメモしたりできます。もちろんコードはす
べてGitでバージョン管理されており、ほかの
人からも検索できるpublic gistと、検索でき
ないprivate gistがあります。
　ちょっとしたコードやメモを共有したいと
きに、Vimで編集したテキストをわざわざブ
ラウザを開くことなく直接Gistにアップロー
ドしてURLをクリップボードにコピーしたり、
すでにGist上にあるファイルをダウンロード
してくることなく手元のVimで編集したりし
たいですよね？
　それを可能にするVimプラグイン gist-

vim注15をご紹介します。依存しているwebapi-

vim注16と一緒にインストールしたら早速遊ん
でみましょう。
　Gistにアップロードしたとき、URLがクリッ
プボードにコピーされているとすぐにURLが
共有できて便利なので、図12のように.vimrc
に設定しておきます。
　また、GitHubのユーザ名をGitの設定とし
て登録しておきましょう。

$ git config --global github.user <username>

　準備が済んだら何かファイルを用意して、
それをVimで開いたら、:Gistコマンドでアッ

注15） https://github.com/mattn/gist-vim

注16） https://github.com/mattn/webapi-vim

 ▼図11　Gistメインページ

https://github.com/mattn/webapi-vim
https://github.com/mattn/gist-vim

56 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

プロードしてみましょう（表3）。
　編集中のファイルがGistへアップロードさ
れます。gistを誰かと共有したい場合はクリッ
プボードに入っているURLをどこかに貼り付
けるだけです。また、この後も引き続き編集
し、:Gist -eでgistを更新することもできます。
　アップロードの仕方はわかったので、次は
VimからGistを閲覧する方法について見てい
きましょう。
　表4のいずれかのコマンドを実行すると、対
応するgistがリストで一覧表示されます。さ

らに各gistの閲覧・編集を行
いたければ、カーソルを開
きたい gistの上に移動して
©キーを押すと、自動
でそのファイルを手元のVim

で開いてくれます。これで
「Gistにメモ上げといたから
見といて」などと言われても

わざわざブラウザを開く必要すらありません。

そのほかにもいっぱい
　今回は誌面の都合上紹介できませんでしたが、
まだまだGitやGitHubを便利にするプラグイ
ンはたくさんあります。

・	gitコマンドのwapperである「vim-fugitive注17」
・	git commitのときに開くウィンドウをリッチ
にする「committia.vim注18」

・	Gitの操作を独自のUIで行う「vimagit注19」
・	高速なgistのリスト表示や編集ができる
「vim-gista注20」
・	GitHubのアクティビティが見られる「vim-git	
hub-dashboard注21」

・	リッチなUIでGit操作が行える「vim-gita注22」

　ぜひ、自分なりのGitの使いこなしやお気に
入りのプラグインなどを見つけて、GitHubで
の開発を楽しんでください！｢

注17） https://github.com/tpope/vim-fugitive

注18） https://github.com/rhysd/committia.vim

注19） https://github.com/jreybert/vimagit

注20） https://github.com/lambdalisue/vim-gista

注21） https://github.com/junegunn/vim-github-dashboard

注22） https://github.com/lambdalisue/vim-gita

 ▼図12　URLをクリップボードに自動コピーする設定

 Linuxの場合
let g:gist_clip_command = 'xclip -selection clipboard'
 OS Xの場合
let g:gist_clip_command = 'pbcopy'
 アップロード時にブラウザで開きたい場合
let g:gist_open_browser_after_post = 1
 :w! でgistを自動更新
let g:gist_update_on_write = 2

 ▼表3　gist-vimのアップロードコマンド

コマンド 説明
:Gist publicなgistとしてアップロードする

:Gist -p privateなgistとしてアップロードする

:Gist -a 匿名ユーザとしてアップロードする

:Gist -m Vimで開いているすべてのバッファの
ファイルを一度にアップロードする

 ▼表4　gist-vimの閲覧コマンド

コマンド 説明
:Gist -l 自分のアップロードしたgist一覧

:Gist -l rhysd @rhysdさんのアップロードした
gist一覧

:Gist -ls starを付けたgist一覧

林田 龍一（はやしだ りゅういち）

・都内でテスト自動化の QAエンジニアとして働いています。犬とプログラミングツールが好きです
・趣味で LLVMを使って自作言語のコンパイラをつくったり、Vimプラグインを書いたり
・最近は Electron＋ TypeScriptでデスクトップアプリもつくってます。もちろん Vimで

Profile

https://github.com/rhysd/committia.vim
https://github.com/junegunn/vim-github-dashboard
https://github.com/lambdalisue/vim-gista
https://github.com/jreybert/vimagit
https://github.com/tpope/vim-fugitive
https://github.com/lambdalisue/vim-gita

57 - Software Design May 2016 - 57

　みなさんはもちろんご存じだと思いますが、
Vimはとても古い歴史のあるテキストエディ
タです。Bram Moolenaar氏がAmigaにviを移
植し始めたのが1988年ですから、もう25年も
昔に誕生した骨董品です。ソースツリーには、
いまだにAmiga向けのコードが含まれています。
「UNIXエンジニアが使うテキストエディタの
鉄板として、よく今まで残ってきたな」そう思
うことすらあります。
　今回はそんなVimの歴史を、筆者の昔話も
交えながら話していきたいと思います。

Vimとの出会い
　筆者が初めてVimを知ったのはバージョン
2.0のとき、viと比べてまだそれほど機能が足
されていないころでした。UNIXで開発をして
いた筆者はHP-UX上でVimをビルドし、その
目新しさにワクワクしました。しかし、viと
大して変わらなかったことに加え、マルチバ
イト文字列を正しく扱えなかったので、常用
は諦めざるを得ませんでした。
　そのころから筆者は vi注1を使っており、vi

のキビキビとした動作の虜になっていました。

注1） 実際には、elvisのマルチバイト対応版 jelvisだったと思い
ます。

Vimの黎明期

そんなとき、Vimのバージョン2.0を日本語化
した有志の方が現れ、JVimが誕生しました。
日本語入力機能としては、Cannaを扱えるよ
うに作られたonewというライブラリを取り込
み、JVim+onewと呼ばれていました。もちろ
ん筆者もJVimのビルドにチャレンジし、なか
なかうまくいかなくて苦労した記憶があります。
しかし、それでも筆者はviとの機能差に魅力
を感じなかったため、JVimに移行することは
ありませんでした。
　それから 1年か 2年が過ぎたころ、Vimが
Windows対応してとても驚いたのを覚えてい
ます。Windowsでそれほどプログラミングを
したことがなかった筆者にとってVimのソー
スコードはとても新鮮で、その目まぐるしい
開発スピードに毎日ワクワクしながら、時間
が空いたらVimのソースコードをビルドする、
といったことをやっていました。

JVimに抱いていた疑問
　そのころのテキストエディタ界はとても賑
わっており、Emacsやその派生版のXEmacs、
MeadowやngといったEmacsクローンの誕生
を始め、viにおいてもElvisのWindows対応な
ど、とにかく日々新しい何かが起こっていた
時代でもありました。その後、JVimが2.0か
ら3.0に移行し、筆者もある時期はJVimを使っ
ていました。しかし2000年ごろから筆者の中
に疑問が生まれ始めます。

　最後の章は、キーボードから少し手を離して、Vimの歴史と今後についてみていきましょう。『Vimの細道』の
筆者が、Vimの誕生から流行、ユーザコミュニティの役割や性格、そしてVim開発のウラガワについて語ります。
章の最後では急成長するNeovimと、変わりはじめたVimについても紹介していきます。

Vimの今昔〜Neovimと
新しくなったVimについて

 Author mattn　 URL https://github.com/mattn　 Twitter @mattn_jp

Part

5

https://github.com/mattn

58 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

「どうして JVimはVimの後追いなのだろう。
なぜ、JVimの良い機能はVimにフィードバッ
クされないんだろう」

　そんなフラストレーションを抱きながら、
あるときVimの開発者メーリングリストvim-

devで1人の日本人らしき名前を見つけます。
「香り屋」というWebサイトでVimのWindows

バイナリを配布しているKoRoNさんです。そ
のころKoRoNさんは、Vimの正規表現のマル
チバイト文字対応を行っており、とても活発
にパッチを送っておられました。筆者がvim-

devにパッチを送り出したのもそのころだった
と思います。

「そうだ、JVimが変わらないのなら、自分で
変えていけばいい」

そう気づいたのもこのころです。
　その後、KoRoNさんが提供していた日本人
向けVimのメーリングリストvim-jpに参加し、
中平さんはじめいろいろな方を知りました。
そのメーリングリストはその後閉じられてし
まいましたが、vim-users.jpというサイトで
kanaさん、thincaさん、Shougoさん、ujihisa

さんほか、多くの日本人によって情報共有が
行われていました。
　そのころの筆者とKoRoNさんはというと、
Vimのマルチバイトに関するバグを見つけて
はパッチを送り、「どっちが多くパッチを送るか」
といった背比べをやっていました（意識してい
たのは筆者だけだと思いますが）。

vim-jp誕生
　そして2011年、筆者とKoRoNさんの思い
つきで始まった vim-jp.orgという日本人向け
情報共有サイトがオープンし、VimのTips共
有やパッチの作成、カンファレンスの開催など、
コミュニティとしての活動が始まりました。

今もなお、vim-jpからは多くのパッチがvim-

devに提供され、現在ではvim-devに流れるパッ
チのおよそ半分が、日本人が作ったパッチとなっ
ています。k-takataさんや h-eastさんほか、
いろいろな方がとても活発的に活動しています。

　vim-jpにはいろいろな人が集まってきます。
Vimのプラグイン作者やVimにコードで貢献
したい人、やたらと端末に詳しい人、MacVim

に詳しい人、Windowsに詳しい人、翻訳が上
手な人……。皆がそれぞれの得意分野から知
恵を持ち寄って、足りない機能に対する議論
やバグの修正方法、vim-jpの方向性について
検討しています。いろいろな人の力でいろい
ろなことができています。そのいくつかを紹
介します。

翻訳マニュアル
　:helpで表示されるVimのマニュアルも、
vim-jpの有志の力で翻訳されています注2。Vim

プラグインを管理するプラグインマネージャ
をお使いの方であれば、これをそのままチェッ
クアウトしていただければ、:helpで日本語訳
を表示できます。次はvim-plugでの設定方法
です。

Plug 'vim-jp/vimdoc-ja'

　また、この翻訳リポジトリで変更された内
容は自動でHTMLに変換され、vim-jpのサイ
ト注3に反映されます。最近では表記の揺れ対
策にも力を入れており、品質がとても良くな
りました。実はVimに付属しているチュート
リアルプログラムvimtutorの日本語訳を行っ
たのは筆者なのですが、今読み返すとけっこ

注2） https://github.com/vim-jp/vimdoc-ja

注3） http://vim-jp.org/vimdoc-ja

vim-jpは
開発者集団

http://vim-jp.org/vimdoc-ja/
https://github.com/vim-jp/vimdoc-ja

58 - Software Design May 2016 - 59

Vimの今昔〜Neovimと新しくなったVimについて Part 5

う恥ずかしくなってしまうような訳が多く、
よくこれを皆の目にとどまるところに公開し
たなと、昔の自分のアクティブさに嫉妬して
しまいます。

vim-cpp
　Vimに同梱されているsyntaxファイルには、
新しいものもあれば古いものも存在します。
中にはオリジナルのメンテナに連絡が取れな
くなってしまったものもあります。その中の1

つがC++用の syntaxファイルでした。C++の
予約語が追加された場合や、修正が必要となっ
た場合にオリジナルのメンテナにメールを送っ
ていましたが、いっこうに返事がいただけなかっ
たので、vim-jpがメンテナの代役を名乗り出
ました。現在C++用の syntaxファイルは、
vim-jp管理のリポジトリ注4でメンテナンスさ
れています。C++用 syntaxに問題があった場
合は、GitHubから issueを登録してください。

reading-vimrc
　Part1でも触れられていますが、Lingrとい
うオンラインチャットサービスに「vim」という
部屋があります。こちらにはVimに精通した
人たちが頻繁に集まります。有名なVimプラ
グイン開発者もたくさんやってきます。この
チャットルームでは毎週土曜日の夜23時から、
「vimr読書会」というオンラインの勉強会イベ
ントを行っています注5。
　GitHub上にあるいろいろな人たちの vimrc

をお題に、設定内容の間違いを見つけたり、
良い設定を参考にしたり、プラグインについ
て情報交換したり、わからない設定内容につ
いて質問し合ったりします。このイベント、
実は開始されたのが2012年の7月ですが、今
まで一度も欠かすことなく続けられています。

注4） https://github.com/vim-jp/vim-cpp

注5） http://vim-jp.org/reading-vimrc

vimconf
　Vimに関する国際カンファレンスで、2013

年から開催されています。昨年は15名のVim

有識者による発表が行われ、約60名の一般参
加がありました。サイト注6もプロのフロント
エンジニアの方が有志で作成し、とてもカッ
コいいデザインのサイトができあがりました。
もちろん、その方もVim使いです。

vital.vim
　vital.vim注7はVim plugin開発者向けに提供
されるライブラリ群です。とても巨大なライ
ブラリ群なのですが、モジュール形式になっ
ており、必要なモジュールのみをインポート
して使用します。また、vital.vimのバージョ
ン差異によって問題が発生しないように、特
定のVimプラグインに必要なモジュールのみ
同梱させられるようになっています。

issues
　そしてvim-jpと言えば、issues注8を欠かすこ
とはできません。2011年から2016年現在まで、
数えきれないほどのパッチがvim-jpからvim-

devに送り込まれました。
　issuesは単なるBTS（バグトラッキングシス
テム）ではありません。Vimでおかしな挙動に
遭遇したとき、バグかどうか判別できない人
へのアドバイスも行います。そして質疑の結果、
それがVimのバグであることがわかると有識
者がパッチを作成し、vim-devへ送付する、と
いう流れを作っています。このパッチを書く
人たちはよく「パッチ職人」と呼ばれています。
2011年当初から比べると、ずいぶんパッチを
書いていただける方が増えたように思います。
とてもうれしいことです。

注6） http://vimconf.vim-jp.org

注7） https://github.com/vim-jp/vital.vim

注8） https://github.com/vim-jp/issues

https://github.com/vim-jp/vital.vim
https://github.com/vim-jp/issues
http://vimconf.vim-jp.org
http://vim-jp.org/reading-vimrc
https://github.com/vim-jp/vim-cpp

60 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

　このように、日本のVimコミュニティは時
代とともに小さくなっていくのではなく、実
は2000年あたりからどんどんと大きくなって
きているのです。骨董品のようなテキストエディ
タで、なぜそのようなコミュニティが継続し
ているのかと思うかもしれませんが、その原
動力はVimの豊富な機能と抜群の編集能力に
あると筆者は思っています。

　2015年、Googleはコードリポジトリのホス
ティングサービスGoogle Codeをシャットダ
ウンすることを発表しました。Vimのソースコー
ドはGoogle Codeでホスティングされていた
ため、シャットダウンまでの数ヵ月間、リポ
ジトリの移転先について検討しました。
有名なリポジトリホスティングサービスの社
員から「ウチのサービスを使うといいよ」とい
う持ち掛けがきたこともありました。議論の
結果、Bram Moolenaar氏はGitHubへの移行
を決めました。それまでGoogle Code上では、
Mercurialを使ってソースコードが管理されて
いましたが、GitHubに移ったことでGitによ
る管理となりました。Google Codeだったこ
ろと比べると、開発者からのコントリビュー
トが増え、vim-devにとっての良い潤滑油になっ
たようです。
　Vimの開発スタイルは一風変わっています。
GitHubに移行する前はメーリングリストでパッ
チがやりとりされ、コミットされていました。
VimのリポジトリへのコミットはBram

Moolenaar氏だけが行います。その際、変更
内容を1ファイルに書いたパッチファイルが、
新しいバージョン番号のファイル名でリリー
スされます。ftp.vim.orgには、メジャーリリー
スされた際の tarボールと、それ以後にリリー
スされたパッチファイルがホスティングされ
ており、Vimをビルドしたい人はその両方を持っ
てきては、自分でパッチを適用するという運

Vimの開発事情

用が行われていました。ずいぶんと昔の開発
手法のように見えますが、リポジトリが
GitHubに移行した今でも、このスタイルは変
わりません。ftpにはパッチファイルが置かれ、
メーリングリストに新しいバージョンのアナ
ウンスが行われています。
　このパッチファイルには冒頭にリスト1のよ
うな文章が書かれています。それぞれ、このパッ
チをリリースするにあたっての問題点と解決策、
そして修正ファイル一覧となります。この
Solution部にはパッチを提供した人の名前が
記載されます。GitHubなどでプルリクエスト
がマージされ、コミット一覧に名前が載るこ
とも開発者にとってはとてもうれしいことな
のですが、この名前が記載されたパッチファ
イルがメーリングリストに流れる瞬間が、我々
パッチ職人にとって誇らしい瞬間であったり
もします。

 ▼リスト1　パッチファイルの冒頭部分

Patch 7.4.1468
Problem: Sort test doesn't test with ｭ
"1" argument.
Solution: Also test ignore-case ｭ
sorting. (Yasuhiro Matsumoto)
Files: src/testdir/test_sort.vim

　2003年、筆者は「Vimからソケット通信をす
るためのパッチ」を書いてvim-devに送りまし
た。残念ながらそのパッチが取り込まれるこ
とはなかったのですが、そのときにBram

Moolenaar氏にこう言われました。

I think this is not something that is directly

related to text editing.（テキストを編集するこ
とには直接関係するものではない）

　この時点で筆者は、Vimには今後もこういっ
たパッチが取り込まれることはない、そう確

Neovimの登場

60 - Software Design May 2016 - 61

Vimの今昔〜Neovimと新しくなったVimについて Part 5

信しました。しかし、ユーザがVimに期待し
ている内容も時代の流れによって変わってき
ました。そんな中2013年から2014年に掛けて、
vim-devにタイマーを実行するためのパッチと、
非同期でタスクを実行するためのパッチが流
れました。Bram Moolenaar氏はこのパッチの
議論に参加することはありましたが、結局こ
のパッチも取り込まれることはありませんで
した。それから数ヵ月後、Vimを forkした新
しいVim「Neovim」が現れます。
　これまで多くのパッチでツギハギを当て続
けてきた結果、Vimのソースコードはお世辞
にも良いとは言えない状態になっていました。
そのソースコードをリファクタリングし、Vim

に取り込まれることがなかった次の機能を
Neovimが開発し始めました。

・	Vim scriptではなく、Luaによるエディタの
拡張

・	分離されたGUI
・	プロセス間通信を使用したプラグイン拡張
・	msgpack-rpcを使ったプラグイン間連携
・	viminfoの再実装（shada）

　Neovimは、Thiago Arruda氏がユーザに資
金援助を募ってフルタイムで開発を行ってい
ます。その援助だけでなく、GitHub上であら
ゆる開発者からのコントリビュートを受ける
ことで俊敏な開発スピードを獲得し、その目
新しさもあってか、一部のユーザはVimから
Neovimへ移行していきました。しかし、ボラ
ンティアウェアであるVimに対して、資金を
受けて開発を行うNeovimのスタイルが気に入
らないとするユーザも一部にはいます。
　Neovimが流行った要因の 1つとして、
terminal機能があります。terminal機能は、
Neovimの分割ウィンドウに仮想端末を表示す
るというものです（図1）。たとえば、nginxの
設定ファイルを修正しながら端末ではnginxを
再起動するといったことがシームレスに行え
るようになります。なお、Vimにおいてもこ
の端末機能はTODOリストに入っているため、
いずれ実装されるかもしれません。
　Neovimが流行っているもう1つの要因は、
GUIの分離にあります。GUIを分離してAPI

を提供することで、サードパーティによるユー
ザインターフェースの実装が行えるようにな

ります。
　たとえば、Neovim自身はPython

で実装されたGTKのユーザイン
ターフェースしか提供していませ
んが、コミュニティにより表1の
ユーザインターフェースが扱える
ようになっています。とくに、本
特集Part4を執筆しているrhysdさ
んが開発しているNyaoVimについ
ては、Electron UI上でNeovimが
動作しており、HTML/CSSによる
拡張性に富んだテキストエディタ
になっています。レンダラが
canvasであり、HTML/CSSの上
で動作しているので、ポップアッ
プメニューやMarkdownプレビュー
といったダイナミックなユーザイ

 ▼図1　Neovimの terminal機能

62 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

ンターフェースを簡単に実装できています（図
2）。

　Neovimは確かに先進的で、ワクワクするプ
ロダクトであるのは間違いない事実です。「こ
のままVimは、Neovimとユーザを二分してい
くのかな」と筆者も思っていました。しかしあ
る日突然、Bram Moolenaar氏がVimにソケッ
ト通信を実装するためのパッチをリリースし
ました。2003年に筆者がソケット通信パッチ
を送ってから、実に14年の歳月を経てVimが
変わり始めたのです。
　もちろん、Vimはテキストエディタです。
テキストを編集している最中にソケット通信
でブロッキングするわけには行きません。そ

Vimが
変わりはじめる

こ で Bram Moolenaar氏 は、
channelという通信路のしくみ
を取り入れ、また job-control

というプロセス間通信のしく
みを実装しました。

 channel
　リスト2のVim scriptを実行
す る と、Vim は localhost の
5000番ポートで稼働するサー
バに接続してソケット通信を
行います。その後サーバに対

して「hello world」という文字列を送信します。
サーバから非同期にデータを受信したときは、
Callbackという関数が呼ばれます。modeを指
定することで、JSONの送受信もできます。

job-control
　リスト3のVim scriptを実行すると、Vimは
「python app.py」を実行し、コマンドの標準入
力に「hello world」を書き込みます。起動した
プロセスの標準出力からデータが得られると、
そのメッセージをVimで表示したあとにプロ
セスを停止します。これらのスクリプトは
UNIXでもWindowsでもほぼ同じように動作
します。また、標準入力をバッファやファイ
ルから入力させたり、標準出力を特定のファ
イルやバッファに指定したりすることもでき
ます。

 ▼図2　NyaoVimのアーキテクチャ

spawn
<neovim-editor>

<markdown-
preview>

<popup-
tooltip>

Electron

OS

Neovim

<mini-
browser>

 ▼表1　Neovimで使えるUI（コミュニティ提供）

Platform Project（GitHubのページ）
Atom Integration carlosdcastillo/vim-mode
Electron UI coolwanglu/neovim-e
Electron UI rhysd/NyaoVim
GTK/Python UI neovim/python-gui
Mac OS X qvacua/nvox
Mac OS X rogual/neovim-dot-app
Mac OS X stefan991/NeoVimX
Qt 5 equalsraf/neovim-qt
Rust IDE oakes/SolidOak
gnome-terminal fmoralesc/neovim-gnome-terminal-wrapper
Konsole-wrapper harish2704/neovim-konsole

62 - Software Design May 2016 - 63

Vimの今昔〜Neovimと新しくなったVimについて Part 5

　リスト4を実行すると「pipe-output」という
バッファに非同期でテキストが追加されます。
ちょうど tailコマンドのような動作になります。
たとえば、筆者が作ったコンソール向け
Twitterクライアント twty注9のストリーミング
機能を使うと、リスト5を実行するだけで
Twitterのタイムラインが非同期にVimのバッ
ファに流れ続けます。その間も、Vimでは異
なるファイルを編集できます。

timer
　リスト6のVim scriptを実行すると、Vimは

注9） https://github.com/mattn/twty

テキスト編集が可能な状態に戻りますがバッ
クグラウンドでタイマーが実行され、1秒置き
に現在時刻が表示されます。オプションで
repeatを「-1」に指定すると繰り返しのタイマー
が作成できます。Vimプラグイン開発者にとっ
ては、これが一番欲しかった機能とも言えます。

json
　プロセス間通信のフォーマットとして、
Neovimではmsgpackを使用していますが、
Vimでは可読性のあるJSONが採用されてい
ます。これまでVim scriptで扱える型は、

・	数値
・	文字列
・	関数リファレンス
・	配列
・	辞書
・	浮動小数点

のみでしたが、新たに、

 ▼リスト4　「pipe-output」というバッファに非同期でテキストを追加する

let job = job_start('python app.py', {'out_io': 'buffer', 'out_name': 'pipe-output'})

 ▼リスト5　Twitterのタイムラインを非同期にVimのバッファに流す

let job = job_start('twty -S', {'out_io': 'buffer', 'out_name': 'Twitter'})

 ▼リスト3　job-controlを使う

function! Callack(ch, msg)
 echo a:msg
 call job_stop(job, "hup")
endfunction

let job = job_start('python app.py')
let ch = job_getchannel(job)
call sendraw(ch, 'hello world')

 ▼リスト2　channelを使う

function! Callack(ch, msg)
 echo a:msg
endfunction

let ch = ch_open('localhost:5000', {'callback', 'Callback'})
call sendraw(ch, 'hello world')

 ▼リスト6　timerを使う

function! Callback(timer)
 redraw ¦ echo strftime('%c')
endfunction

let t = timer_start(1000, function('Callback'), {'repeat': -1})

https://github.com/mattn/twty

64 - Software Design

Vim［実戦］投入 コード編集の高速化からGitHub連携まで第1特集

・	真偽値（v:true/v:false）
・	無効値（v:null, v:none）
・	Job オブジェクト
・	Channel オブジェクト

が追加され、データ型については JSONと
Vim scriptを相互に変換できるようになりま
した。これまでVim scriptでJSON を扱う場
合は、筆者が開発していたwebapi-vim注10や、
そのvital.vim版であるWeb.JSONが使われて
きましたが、Vimがネイティブにサポートす
ることになり、たとえば設定ファイルから
JSONオブジェクトを生成するのであれば、
リスト7のような短いコードでできるようにな
りました。

gtk3対応
　Linux版gvimのユーザインターフェースは、
これまでgtk2という若干古いユーザインター
フェースライブラリが使われてきましたが、
gtk3を使ってビルドできるようになりました。

CIの導入
　リポジトリがGitHubに移ってからvim-jpの
メンバが積極的に活動し、継続的インテグレー
ションCI（Continuous Integration）のしくみと
して、Travis CIとAppVeyorを使った自動

注10） https://github.com/mattn/webapi-vim

テストが実行されるようになりました。これ
により、既存の機能がコードの変更に伴って
壊れていないか調べるチェックが、自動的か
つ継続的に行われるようになり、Bram

Moolenaar氏も積極的にソースコードを修正
できるようになりました。

MS-DOS、Win16の
コードを削除

　これまでVimのリポジトリにはMS-DOSや
16bit Windowsに対応するための古いソース
コードが含まれていましたが、もはや使用し
ている人はいないだろうという判断がなされ、
コードベースから削除されました。これらは、
筆者がVimを初めて見たときには現役のソー
スコードだったこともあり、感慨深く感じま
した。

　リポジトリがGitHubに移行して以来、Vim

はかなりの速度で成長を続けています。2016

年3月時点ではパッチ数が1,500を超えてしま
いました。取り込まれるとは思っていなかっ
た機能がどんどん追加されていっています。
それに合わせて、Vimプラグイン開発者も job-

controlや channelを使ったダイナミックな
Vimプラグインの開発が行えるようになって
いくでしょう。筆者も、今からワクワクして
います。｢

Vimはこれからも
変わり続ける

mattn

・SIerという仕事の側ら、Vimや golangなど、あらゆる OSSにパッチを投げ続けるエンジニア
・本誌では毎月「Vimの細道」を連載中
・vim-jpの発起人。emmet-vim、gist-vimなどの作者でもあり、vital.vimのメンテナも務める

Profile

 ▼リスト7　設定ファイルからJSONオブジェクトを生成

let obj = json_decode(join(readfile("config.json"), "\n"))

https://github.com/mattn/webapi-vim

65 - Software Design May 2016 - 65

Vim［超］ベーシックチートシート Appendix

フ
ァ
イ
ル
操
作（
コ
マ
ン
ド
）

フ
ァ
イ
ル
を
開
き
直
す

:e, :e!
フ
ァ
イ
ル
を
開
く

:e フ
ァ
イ
ル
名

ウ
ィ
ン
ド
ウ
を
消
す

:q, :q!
上
書
き
保
存

:w, :w!
上
書
き
保
存
し
て
ウ
ィ
ン
ド
ウ
を
消
す

:wq（
も
し
く
は
:x, ZZ）, :wq!

す
べ
て
上
書
き
保
存
し
て
終
了

:wqall, :wqall!
保
存
せ
ず
に
ウ
ィ
ン
ド
ウ
を
消
す

ZQ
モ
ー
ド
切
り
替
え

イ
ン
サ
ー
ト
モ
ー
ド

i
行
頭
で
イ
ン
サ
ー
ト
モ
ー
ド

I
カ
ー
ソ
ル
直
後
で
イ
ン
サ
ー
ト
モ
ー
ド

a
行
末
で
イ
ン
サ
ー
ト
モ
ー
ド

A
行
を
追
加
し
て
イ
ン
サ
ー
ト
モ
ー
ド

o
上
に
行
を
追
加
し
て
イ
ン
サ
ー
ト
モ
ー
ド

O
ノ
ー
マ
ル
モ
ー
ド

<ESC>
ウ
ィ
ン
ド
ウ
操
作

新
し
い
ウ
ィ
ン
ド
ウ
を
開
く

:new, :new フ
ァ
イ
ル
名

新
し
い
タ
ブ
を
開
く

:tabnew, :tabnew フ
ァ
イ
ル
名

ウ
ィ
ン
ド
ウ
を
分
割
し
て
フ
ァ
イ
ル
を
開
く

:split フ
ァ
イ
ル
名

ウ
ィ
ン
ド
ウ
を
横
分
割
し
て
フ
ァ
イ
ル
を
開
く

:vsplit フ
ァ
イ
ル
名

ウ
ィ
ン
ド
ウ
を
隠
す

:hide
ウ
ィ
ン
ド
ウ
を
閉
じ
る

:close
現
在
の
ウ
ィ
ン
ド
ウ
の
み
を
表
示

:only
1つ

前
の
ウ
ィ
ン
ド
ウ
に
移
動

CTRL-w w
ウ
ィ
ン
ド
ウ
を
閉
じ
る

CTRL-w c
ウ
ィ
ン
ド
ウ
を
消
す

CTRL-w q

イ
ン
サ
ー
ト
モ
ー
ド

補
完

前
の
候
補（

も
し
く
は
バ
ッ
フ
ァ
内
補
完
）

CTRL-p
次
の
候
補（

も
し
く
は
バ
ッ
フ
ァ
内
補
完
）

CTRL-n
フ
ァ
イ
ル
内
の
行

CTRL-x CTRL-l
フ
ァ
イ
ル
内
の
キ
ー
ワ
ー
ド

CTRL-x CTRL-n
フ
ァ
イ
ル
内
の

includeフ
ァ
イ
ル

CTRL-x CTRL-i
タ
グ

CTRL-x CTRL-]
フ
ァ
イ
ル
名

CTRL-x CTRL-f
ユ
ー
ザ
定
義
補
完

CTRL-x CTRL-u
om

ni補
完

CTRL-x CTRL-o
ス
ペ
ル
修
正

CTRL-x CTRL-s

移
動

上
／
下
／
左
／
右

k／
j／

h／
l

ペ
ー
ジ
ア
ッ
プ
／
ダ
ウ
ン

CTRL-u／
CTRL-d

行
頭
／
行
末

0／
$（
^は

最
初
の
文
字
へ
）

次
の
単
語
／
前
の
単
語

w／
b（
W／

Bで
空
白
区
切
り
で
ジ
ャ
ン
プ
）

文
字

xま
で
ジ
ャ
ン
プ

fx
逆
方
向
へ
文
字

 x ま
で
ジ
ャ
ン
プ

Fx
(や

 {、
[の

対
へ
移
動

%
先
頭
行
へ
移
動

gg
最
終
行
へ
移
動

G検
索

textを
検
索

/text
textを

逆
方
向
に
検
索

?text
次
を
検
索

n
逆
方
向
に
次
を
検
索

N
カ
ー
ソ
ル
下
の
単
語
を
検
索

*置
換

行
内
で
置
換（

fooを
barに

置
換
）

:s/foo/bar/
全
置
換（

fooを
barに

置
換
）

:s/foo/bar/g
編
集

カ
ー
ソ
ル
下
の
文
字
を

xで
置
換

rx
行
を
連
結

J
カ
ー
ソ
ル
下
の
文
字
を
削
除

x
大
文
字
／
小
文
字
に
変
更

‾, gU／
guの

あ
と
に
モ
ー
シ
ョ
ン（

★
）を

指
定

行
を
ヤ
ン
ク（

コ
ピ
ー
）

yy, Y
ヤ
ン
ク（

コ
ピ
ー
）

yの
あ
と
に
モ
ー
シ
ョ
ン（

★
）を

指
定

貼
り
付
け

p
前
方
向
に
貼
り
付
け

P
削
除

dの
あ
と
に
モ
ー
シ
ョ
ン（

★
）を

指
定

行
を
削
除

dd
カ
ー
ソ
ル
位
置
か
ら
行
末
ま
で
を
削
除

D
指
定
の
部
分
を
変
更

cの
あ
と
に
モ
ー
シ
ョ
ン（

★
）を

指
定

イ
ン
デ
ン
ト

==, 選
択
し
て
=

や
り
な
お
し

u
繰
り
返
し

.

ノ
ー
マ
ル
モ
ー
ド

以
下
の
コ
マ
ン
ド
は
ノ
ー
マ
ル
モ
ー
ド
か
ら
入
力
も
し
く
は
タ
イ
プ
し
ま
す
。
<ESC>は

j
、
CTRL-で

始
ま
る
も
の
は

l
を
押
し
な
が
ら
次
の
キ
ー
を
タ
イ
プ
し
ま
す
。

: / ? で
始
ま
る
コ
マ
ン
ド
は
最
後
に
リ
タ
ー
ン
キ
ー
を
タ
イ
プ
し
ま
す（

:e!や
:q!な

ど
末
尾
に

!が
付
く
コ
マ
ン
ド
は
強
制
実
行
）。

★
モ
ー
シ
ョ
ン

上
／
下
／
左
／
右

k／
j／

h／
l

次
の
単
語
／
前
の
単
語

w／
b（
W／

Bで
空
白
区
切
り
で
ジ
ャ
ン
プ
）

文
字

xが
見
つ
か
る
ま
で

tx
行
頭
／
行
末

0／
$（
^は

最
初
の
文
字
へ
）

文
字

xま
で

fx
逆
方
向
で
文
字

xま
で

Fx
ヴ
ィ
ジ
ュ
ア
ル
選
択

領
域
選
択

v
矩
形
選
択

CTRL-v
行
選
択

V
す
べ
て
の
行
を
選
択

ggVG

コ
マ
ン
ド
モ
ー
ド

挿
入
操
作

レ
ジ
ス
タ

aの
中
身
を
貼
り
付
け

CTRL-r a（
CTRL-r +で

ク
リ
ッ
プ
ボ
ー
ド

か
ら
ペ
ー
ス
ト
）

編
集
中
カ
ー
ソ
ル
下
の
単
語

CTRL-r CTRL-w（
CTRL-r CTRL-a

で
空

白
区
切
り
の
単
語
）

編
集
中
カ
ー
ソ
ル
下
の
フ
ァ
イ
ル
名

CTRL-r CTRL-f
特
別
文
字

現
在
の
フ
ァ
イ
ル
名

%（
例
：
:w % .bakで

.bakを
付
け
て
フ
ァ

イ
ル
を
バ
ッ
ク
ア
ッ
プ
）

編
集
中
の
別
の
フ
ァ
イ
ル

#
N
番
目
の
別
の
フ
ァ
イ
ル

#N
す
べ
て
の
引
数（

オ
プ
シ
ョ
ン
以
外
、

空
白
区
切
り
）

##

<ESC>
i

<ESC>
:

V
im

 C
H

EA
T

 SH
EET

By m
attn

66 - Software Design

アルゴリズムの
基本

　アルゴリズムの本というと、具体的なプログラミング言
語や擬似コードを使った実装例を見ながら処理の流れを追
う、“カロリー”の高いものが多いが、本書はその点、少な
い数式と日本語でアルゴリズムの手続きの流れを表してお
り、プログラミングに疎い人でも親しみやすい。それぞれ
の章では、中華料理の作り方やホッケーの防具を着る順番
といったエピソードを使ってアルゴリズムを解き明かして
いく。扱う領域としては、ソートと探索、最短経路、文字
列操作、暗号の基礎、そしてデータの圧縮である。最後の
章では「ハードな問題」として、巡回セールスマン問題など
も扱っている。解説するアルゴリズムがどんな分野でどの
ような役割を担っているのかという導入と、参考文献が示
されており、学習の次の一歩につながる1冊と言える。

トーマス・H・コルメン 著／
長尾 高弘 訳
A5判／288ページ
2,400円＋税
日経BP
ISBN＝978-4-8222-8543-2

Swiftポケット
リファレンス

　オープンソース化が発表されてから人気を伸ばし続ける
Swift。興味を持っている読者も多いだろう。Swiftはnull
参照によるトラブルを防ぐOptional型や、実行結果を即
時確認できるplaygroundなど、生産性向上に寄与する多
くの特徴を備えている。文法もモダンで、経験が浅くても
理解しやすいのも利点だ。Linuxでも活用できる可能性が生
まれた今、これからプログラミングを始める人も、すでに
習得している言語がある人も、一度は触っておくべき将来
有望な言語と言える。本書は逆引き形式で、実装したい機
能を短いコードで紹介し、気軽に試せるようになってい
る。解説はコンパクトだが躓

つまず

きやすいポイントは押さえて
あるので、iOS開発の経験がなくても困ることはないはず
だ。ぜひ本を片手に洗練されたSwiftを体感してほしい。

WINGSプロジェクト　片渕
彼富 著／山田 祥寛 監修
四六判／512ページ
2,780円＋税
技術評論社
ISBN＝978-4-7741-7984-1

はじめての
Lisp関数型
プログラミング

　関数型プログラミングのメリットとして、コードの再利
用性・並列処理・バグの少なさが挙げられる。しかし、手続
き型やオブジェクト指向に慣れてきた人にとっては、これ
らメリットを担保する「副作用のない」という特性が大きな
障壁となり、書きながらその感覚を身に付けていくほかな
い。本書は、Lispで関数型プログラミングを学ぶというコ
ンセプトの1冊。なぜLispかというと、「言語仕様が小さ
い」「インタプリタ型」「おまじない不要」「動的型付け」とい
うのが著者の挙げるメリット。言語自体の障壁が低いの
で、関数型の学習に専念できるのだ。本書の中核の演習の
章では、ハノイの塔やエイトクイーンなどをLispで書きな
がら、再帰プログラム、高階関数、イミュータブルデー
タ、遅延評価といった関数型のエッセンスを学べる。

五味 弘 著
B5変形判／272ページ
2,580円＋税
技術評論社
ISBN＝978-4-7741-8035-9

RDB技術者のための
NoSQLガイド

　NoSQLと聞いても、ピンとこない人は多いのではない
だろうか。本書は、そもそも「NoSQLとは何なのか」から、
現在どのようなプロダクトがあるのかまで解説しており、
NoSQL分 野 の 全 体 像 を 概 観 で き る。 本 書 に よ れ ば、
NoSQLという言葉はRDB以外のすべてのデータベースを
指すものではなく、「KVS」「ドキュメントDB」「グラフDB」
へと細分される、ターンアラウンドタイムを重視したDB
の総体を指すものである、とのこと。この分類に基づい
て、RDBとの比較、NoSQL同士の比較が細かく行われて
いる。プロダクトとしては、Redis、Cassandra、HBase、
Amazon DynamoDB、MongoDB、Couchbase、
Microsoft Azure DocumentDB、Neo4jの概要と用例が
書かれており、製品選定の際に役立つだろう。

河村 康爾、北沢 匠、佐伯 嘉
康、佐藤 直生、原沢 滋、平山
毅、李 昌桓 著／渡部 徹太郎
監修
A5判／568ページ
3,400円＋税
秀和システム
ISBN＝978-4-7980-4573-3

第2特集

安定の
Ubuntu 16.04の

新機能

2年ぶりのLTS

　本特集では、Linuxディストリビューションの中でもデスクトップOSとして一番利用されているUbuntu
の最新バージョン16.04の新機能、派生する各フレーバー、最新情報を紹介します。今回はLTS（Long
Term Support：長期サポート版）で5年間サポートされます。前のLTSである14.04から2年が経過
し、半年に1度のバージョンアップを追いかけていない方も、そろそろ本バージョンに乗り換えることを
考えてみてはいかがでしょうか。
　序章では、Ubuntuの概要や現在の立ち位置について解説します。そして第1章では、16.04での
新機能や変更点について、第2章では、Ubuntuから派生する各フレーバー（Kubuntu、Xubuntu、
Lubuntu、Ubuntu GNOME、Ubuntu MATE、Ubuntu Studio）と日本語入力メソッドについて
の解説、第3章では、サーバ用途として使われるUbuntu Serverについて独自機能（Juju、MAAS、
LXD）を交えて紹介します。

さまざまな分野で活躍する
Ubuntuの魅力

序 章
　水野 源 …… P.68

GNOMEソフトウェア採用、Python 3への移行など多岐にわたる
Ubuntu 16.04 LTSの新機能の概要

第1章
　柴田 充也 …… P.70

デスクトップで比較する
Ubuntu 16.04 LTSとそのフレーバー

第2章
　あわしろいくや …… P.75

Juju、MAAS、LXDなどの独自機能で際立つ
Ubuntu Server 16.04 LTSの特徴

第3章
　吉田 史 …… P.83

68 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

さまざまな分野で活躍する

Ubuntuの魅力

第2特集
2年ぶりのLTS

安定のUbuntu 16.04の新機能

序 章

使いやすいデスクトップを
目指したLinux

　UbuntuはDebian GNU/Linuxをベースに開発さ
れているLinuxディストリビューションです。
Ubuntuは「世界中のあらゆる人が利用できる、高品
質なデスクトップ環境を提供すること」を目標に掲
げ、2004年10月に最初のバージョンである4.10が
リリースされました注1。
　現在、UbuntuはWindows、OS Xに続く第3のデ
スクトップ用OSとして名前が挙げられるほどに成
長しました。これはUbuntuがデスクトップOSとし
て機能的に優れているだけでなく、見た目の華やか
さや、初心者でも簡単に設定が行えるインターフェー
スといった部分を重視している点が、コンピュータ
の専門家ではない人々にも受け入れられたためです。
　現に海外では、UbuntuプリインストールのPCが
さまざまなメーカーから販売されています。また公
的機関に採用されるケースも増えています。Intel

Compute Stickのような小型PCにもLinux搭載モデ
ルがラインナップされていますが、そのような用途
でも、多くのケースでUbuntuが利用されています。
　Ubuntu 16.04 LTSのデスクトップと各種フレー
バーの特徴、そしてUbuntu Japanese Teamがリリー
スしている「日本語Remix」については、第2章であ
わしろいくや氏が解説します。

サーバ、クラウド分野での
活用

　使いやすいデスクトップLinuxとして確固たる地
位を築いたUbuntuですが、そのイメージが先行する
ためか、サーバには不向きであると誤解されること
があります注2。しかしUbuntuはサーバ用のOSとし
ても広く使われています。たとえば、Dockerの
Ubuntuイメージは3,500万回以上起動されており、
2015年にはAWSをはじめとする各種クラウドサー
ビス上で、少なくとも2,000万以上のUbuntuインス
タンスが起動されたとするレポートもあります注3。
日本国内でも、多くのクラウドサービスやVPSで、
Ubuntuサーバのマシンイメージが標準で用意されて
います。
　Ubuntuがサーバ分野でも人気なのは、「Canonical

社による強力な開発支援」「有償サポート」「定期的な
リリース」「明確なサポート期間注4」といった、サー
バ運用に適した環境が整っていることが大きな理由
です。またMaaS注5やJuJu注6といった、サービスの
構築運用をサポートする各種ソフトウェアの開発整

Ubuntu Japanese Team
 Author 水野 源（みずの はじめ） Twitter @mizuno_as

　2016年4月21日、Ubuntuプロジェクトは最新の長期サポート版となるUbuntu 16.04 LTSをリリースします。本特
集ではUbuntu 16.04 LTSの新機能や特徴を解説していきますが、その前にそもそもUbuntuとはどんなOSで、どん
な魅力があるのかを、あらためておさらいしておきましょう。

注1） Ubuntuのバージョンはリリースされた西暦の下2桁と月2桁
をドットで区切って表します。今回のリリースは2016年4月
にリリースされたから16.04というわけです。

注2） ごく初期のリリース（4.10～5.10）においてはサーバ版が存在
しなかったことも、この誤解のもとになっているかもしれま
せん。

注3） http://blog.dustinkirkland.com/2015/12/more-people-use-
ubuntu-than-anyone.html　Ubuntu は Windows や RHEL
と異なり、正確なユーザ数を把握することは困難なため、数
字の信憑性については微妙な部分もあります。しかしそれで
もサーバ、クラウド分野でUbuntuが広範囲に渡り利用され
ていることは間違いないでしょう。

注4） Ubuntuのサポート期間は通常9ヵ月ですが、2年に一度リリー
スされる「LTS」は5年のサポートが約束されています。タイム
ベースリリースと明確なサポート期間によって、導入やリプ
レースの計画が立てやすいのがメリットです。

注5） http://maas.io/
注6） http://www.ubuntu.com/cloud/juju

http://blog.dustinkirkland.com/2015/12/more-people-use-ubuntu-than-anyone.html
http://maas.io/
http://www.ubuntu.com/cloud/juju

68 - Software Design May 2016 - 69

さまざまな分野で活躍する

Ubuntuの魅力序 章

備を進めているところも、Ubuntuならではの魅力と
言えるでしょう。
　サーバOSとしてのUbuntu 16.04 LTSの特徴につ
いては第3章で、Ubuntuの国内ミラーの管理者でも
ある吉田史氏が解説します。

IoT、スマートデバイス
分野への進出

　パーソナルコンピューティングのメインストリー
ムは、もはやPCからスマートフォンやタブレット
へ移ったと言ってよいでしょう。Ubuntuもこの流れ
に乗り、デスクトップPCやサーバだけでなく、ス
マートデバイスや流行りの IoTの分野にも進出して
います。Ubuntuでは「Ubuntu Touch」と呼ばれるモ
バイルデバイス向けのOSを開発しており、すでに
海外ではこのOSを搭載したスマートフォンやタブ
レットが登場しています。
　もちろん、単にモバイル向けのOSをリリースす
ることがUbuntuのゴールではありません。Ubuntu

は、モバイルデバイスとデスクトップにおいて同じ
アプリケーションが、統一されたインターフェース
と操作性の下で、それぞれの環境に合わせた形で利
用できる環境を実現することを目指しています。こ
の概念は「Convergence」と呼ばれています。たとえ
ばUbuntu PhoneにBluetoothマウスを接続すると、
それまで全画面で動作していたアプリケーションが
マルチウィンドウ表示に変化します。このような「デ
スクトップとモバイルの融合」がすでに実現されてい
ます。
　IoT分野では「Snappy Ubuntu Core」の利用も進ん
でいます。また定番のロボット開発プラットフォー
ムである「ROS」はUbuntuをベースにしていること
もあり、ロボット開発の分野ではUbuntuがデファク
トスタンダードとなっています注7。ホワイトボック
ススイッチといったネットワーク機器上でもUbuntu

は動作していますし、さらにジョークのようですが、
Ubuntuを搭載した冷蔵庫注8といった事例も発表さ

れています。個人レベルでは、教育用の低価格ARM

ボードの代名詞であるRaspberry Pi上でも、Ubuntu

を動かすことができます注9。
　このように、Ubuntuは単なるPC、サーバ向けOS

の枠にとどまらず、より多くの分野で利用されはじ
めています。Ubuntu 16.04 LTSとスマートデバイ
スについては、本誌連載中のUbuntu Monthly Report

において、柴田充也氏が解説しています。こちらも
本特集と併せてご覧ください。

オープンなコミュニティと
企業サポートの両立

　Ubuntuの開発はコミュニティによって行われてい
ます。Ubuntuコミュニティは開発プロセスや情報を
オープンにしており、誰もがUbuntuの開発、アプリ
ケーションの翻訳、新機能の提案、不具合の報告、
不具合の修正、ほかのユーザのサポート、世界各地
でのプロモーションといった活動に参加できます。
　そしてそのUbuntuコミュニティをサポートしてい
るのが、英国に本社を置くCanonical社です。Ubuntu

プロジェクトの創始者であるマーク・シャトルワー
ス氏によって設立されたCanonical社は、Ubuntuを
資金、技術の両面で強力に支援し、Ubuntuの品質向
上に大きな役割を果たしています。
　オープンなコミュニティによる開発と、企業によ
るサポートが非常に高いレベルで両立しているのも、
Ubuntuの魅力の1つです。

Ubuntuを使ってみよう

　このようにUbuntuは、初心者にもやさしいデスク
トップを提供し、エンタープライズ向けのサーバと
しての使用にも耐え、教育用や組み込み用途でも広
く使われはじめている、そんなOSです。
　すでにUbuntuを利用している人はもちろん、これ
からUbuntuを始める人も、本特集を読んでUbuntu

16.04 LTSの世界を体験してみてください ! ｢

注7） Ubuntuが搭載されたドローンも登場しています。
注8） 実用性はとりあえず置いておくとして、Ubuntuのこれから

の可能性を示す発表の1つではあるでしょう。
注9） ただし搭載しているSoCの都合上、Raspberry Pi 2以降のモ

デルに限られます。

70 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

GNOMEソフトウェア採用、
Python 3への移行など多岐にわたる
Ubuntu 16.04 LTSの
新機能の概要

第2特集
2年ぶりのLTS

安定のUbuntu 16.04の新機能

第1章

Ubuntu 16.04 LTSの
新機能

　ここ数年、Ubuntuの開発リソースはスマートフォ
ン／タブレット向けのTouchや、IoT向けのSnappy、
クラウドまわりのツールに集中していました。その
ためここ数回のリリースでは、とくにデスクトップ
ユーザがはっきりと実感できるような大きな変更点
はそこまでなかったのが実状です。
　Ubuntu 16.04 LTSの開発期間も、TouchやSnappy

に比べると変更点は少なめです。しかしながら2年
ぶりのLTSであること、そして何より今後5年間サ
ポートしなくてはいけないことを見据えて、いろい
ろな機能の整理が行われています。
　そこで、まずはUbuntu 16.04 LTSで登場する予
定の新機能や変更点について紹介します。

GNOMEソフトウェア

　デスクトップユーザにとって最も大きな変更点は
「Ubuntuソフトウェアセンター」から「GNOMEソフ
トウェア」への移行でしょう。「Ubuntuソフトウェア
センター」は9.10から導入されたアプリケーション
ストアです。単純なアプリケーションの検索とイン
ストールだけでなく、アプリケーションの評価やコ
メント、スクリーンショットの表示、商用アプリや
書籍の購入といった、スマートフォンであれば当た
り前の機能を、デスクトップにも提供するために開
発されたのです。これに対してGNOMEはUbuntu

以外のディストリビューションでも使われます。そ

こでより汎用的なストアアプリとして、2013年ごろ
からGNOMEに導入されたのが「GNOMEソフト
ウェア」です（図1）。
　GNOMEソフトウェアは、パッケージ管理機能と
してAPTだけでなくDNF/yumやZYppなどにも
対応しています。またアプリケーションのメタ情報
は、AppStreamに従って作られたデータを参照し
ています。このAppStreamはLinuxディストリ
ビューションやデスクトップ環境に依存しない形
で、アプリケーションのメタ情報を作成できるよう
にFreedesktop.orgが策定した規約です。これによ
りGNOMEソフトウェアは、ディストリビューショ
ンをまたいで同じUIや同じ機能を提供できるように
なりました。
　今のところUbuntuで採用するGNOMEソフト
ウェアはまだカテゴリ機能がなかったり、デスクトッ
プアプリケーション以外の情報が用意されなかった
りと、ソフトウェアセンターに比べると機能的に足

Ubuntu Japanese Team／株式会社 創夢
 Author 柴田 充也（しばた みつや）

　2年ぶりの長期サポート版であるUbuntu 16.04 LTSは、前回の14.04と比べると下まわりが大きく変わっています。
そこでこの章では総称的な「Ubuntu」においての概要を紹介しつつ、14.04からの変更点も併せて解説します。

 ▼図1　新しいストアアプリであるGNOMEソフトウェア

70 - Software Design May 2016 - 71

GNOMEソフトウェア採用、Python 3への移行など多岐にわたる

Ubuntu 16.04 LTSの新機能の概要第1章

りない部分がまだまだたくさん存在します。しかし
ながらLTSが5年間サポートされることを考慮して、
あえてソフトウェアセンターではなくGNOMEソフ
トウェアを採用することになりました。
　なおUbuntuではPackageKitではなく直接APT

を使用し、ソフトウェアセンター時代の評価・コメ
ントを引き継いで表示するようにGNOMEソフト
ウェアを改変しています。UnityのDash画面から直
接インストールする方法も引き続き提供されていま
す。
　ちなみにUbuntuはデスクトップ向けとは別に、ス
マートデバイス向けのアプリケーションストアとし
て「Ubuntu Store」を、また IoT向けとして「Web

DM」を開発しています。将来的にはデスクトップの
ストアもUbuntu Storeに統合される見込みです。

Python 3への移行

　Ubuntu 16.04 LTSの大きな目標の1つは「デスク
トップにおけるPython 3への移行」でした。16.04は
2021年の4月までサポート予定ですが、Python 2系
のサポート期間は2020年までの予定です。このた
め、すでにサーバやTouchは初期状態だとPython 3

のみがインストールされるようになっていました。
しかしながらデスクトップイメージのみ、まだ
Python 2にも依存していたのです。そこで標準アプ
リケーションの構成を見直したうえで不要なパッケー
ジは削除し、必要なパッケージのうちまだPython 2

に依存しているものは修正する作業を、ここ数回の
リリースで少しずつ進めていました。
　3月上旬の時点で、残る依存関係はNautilus関連
のみとなっています。正確にはNautilusで各種デバ
イスのマウントを担当している gvfs-backendが
Sambaに依存しています。このSambaパッケージに
Python 2への依存が残っていることが原因です。プ
リンタ設定のように、必要に応じてユーザがSamba

をインストールするためのUIを追加できればよいの
ですが、まだ結論が出ていない状態です。
　標準でPython 3のみインストールされるだけで、
Python 2パッケージが削除されるわけではありませ

ん。16.04でもパッケージをインストールさえすれ
ば、引き続きPython 2を利用できます。ちなみに

/usr/bin/pythonは常にPython 2を向いています。
Python 3のみの環境になったからといって、/usr/

bin/pythonがPython 3を示すわけではありません。

標準アプリケーションの
選別や更新

　Python以外では、CD/DVD書き込みツール
「Brasero」、メッセージングツール「Empathy」が、ど
ちらもあまりメンテナンスされていないことを理由
に、標準ではインストールされなくなりました。ま
たスケジューラーとして「GNOMEカレンダー」が追
加されています。
　AMDGPUドライバに対応したX.orgモジュールで
あるxf86-video-amdgpuも最初からインストールさ
れます。このモジュールとMesa 11.1の組み合わせ
により現行世代のミドルレンジ以上のAMD向けグ
ラフィックボードやノートPC向けAPUであれば、
インストール後に何もしなくてもUnityを快適に利
用できます。AMDGPUドライバについては、より
新しいカーネルからもいくつかのコードを取り込ん
でいます。
　AMDGPUの導入とAMD側の都合により、AMD

向けのプロプライエタリなビデオドライバを提供す
る fglrxパッケージは削除されました。AMDGPUで
動かないAMD製のGPUを使っている場合は、当分
は14.04を使い続けた方がよいでしょう。来年頭ぐ
らいにリリース予定の16.04.2まで待てば、解消され
る可能性があります。
　ちなみにCirrusやTrident、Savageといった古

いグラフィックチップ向けのX.orgモジュールは、標
準ではインストールされなくなりました。必要であ
ればDashから「追加のドライバ」を検索・起動し、リ
ストアップされるドライバをインストールしてくだ
さい。

Unityの変更点

　Ubuntu標準のデスクトップUIであるUnityは、引

72 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

き続き7.x系を採用しています。このためUbuntu

15.10はもとより、14.04と比べてもそこまで大きな
変化はありません。ただし細かい機能追加や修正は
行われています。

・Dash画面からの電源操作

　Dash画面で「shutdown」や「reboot」「logout」と入
力することで、シャットダウン／再起動／ログアウ
トなどのダイアログを表示できるようになりました
（図2）。これによりマウスやファンクションキーに
手を伸ばすことなく、電源管理系の操作を行えます。

・Launcherアイコンの中クリック機能

　Launcherに表示されているデバイスファイルやゴ
ミ箱アイコンを、マウスの中ボタンでクリックする
と、新規ウィンドウでファイルブラウザが起動する
ようになりました。

・ウィンドウ切替中にウィンドウを閉じる

　ÌAltÔ＋ ÌTabÔキーでウィンドウを切り替えている間
に、特定のウィンドウに対して ÌAltÔ＋ ÌQÔを入力する
とそのウィンドウが閉じるようになりました。切り
替え中に不要なウィンドウがあることに気がついた
ときに便利です。

・スクロールバーの見た目の変更

　Dashの右端に表示されるスクロールバーが、Unity

独自の実装からGtk+ベースの実装に変更となりまし
た。これによりほかのウィンドウと操作性が同じに
なります。

・プライバシー機能の有効化

　システム管理の「セキュリティとプライバシー」で
設定できる「オンラインの検索結果を含める」がイン
ストール直後の状態ではオフ（含めない）になりまし
た。これはDashで検索したときに、Canonicalのサー
バに検索文字列を送りAmazonなどのオンライン検
索結果をDash上に表示するかどうかの設定です。実
装当時から、オンライン検索を標準で有効化するこ
とはプライバシー的に問題があるのではないかとい
う指摘があり、数年越しにようやく安全側に寄せる
ようにしたということになります。この変更に合わ
せて、メンテナンスがされていないオンライン検索
系Scopeも削除されています。

Ubuntu 14.04 LTS
からの変更点

　今はUbuntu 14.04 LTSを使い続けており、16.04

のリリースを機にLTS間のアップグレードを考えて
いるユーザも多いことでしょう。そんなユーザのた
めの注意点や、14.04からの変更点もまとめておき
ます。
　まず初めに16.04へのアップグレードのタイミン
グですが、16.04の評価をするなど特別な場合を除
いて16.04.1がリリースされるまで待つようにしてく
ださい。これまでの慣例から考えると、16.04のリ
リース直後には利用者が一気に増えることでさらに
多くの不具合が洗い出されるため、1ヵ月程度は頻
繁な修正アップデートが続くからです。実際、新規
リリースを通知するソフトウェアもデスクトップや
サーバの両方で、16.04.1がリリースされて初めて
LTS間のアップグレードが可能になった旨を通知す
る予定です。よって通知が行われるまでは引き続き
14.04を使い続けた方が無難でしょう。
　もちろん不具合を洗い出すために16.04を使う場
合はこの限りではありませんし、利用者が増えない
と十分に不具合を修正できません。安定性を求める
場合以外は、積極的に新しいリリースを利用してく
ださい。
　14.04からの主だったパッケージのバージョンの
違いを表1にまとめました。この表は2016年3月現

 ▼図2　Dashからシャットダウン可能に

72 - Software Design May 2016 - 73

GNOMEソフトウェア採用、Python 3への移行など多岐にわたる

Ubuntu 16.04 LTSの新機能の概要第1章

在のバージョンを元にしています。リリース時はさ
らに更新されている可能性があります。ちなみに
FirefoxやThunderbird、OpenJDKなどは、アップ
ストリームのリリースに合わせて最新のバージョン
に更新されるため、表には掲載していません。
　なおAPTの更新により古いアルゴリズムで署名さ
れたリポジトリは警告が出ます。3月時点で
VirtualBoxなどのリポジトリに警告が出ていますの
で注意してください。

Upstartからsystemdへ

　16.04にアップグレードする際に最も注意すべき

は、initデーモンがUpstartからsystemdに変わった
ことです。これはDebianに追随した変更で、すでに
15.04では標準の initデーモンが systemdに置き換
わっていました。14.04から16.04にアップグレード
した場合、独自に作成したUpstart用のサービスは
起動しません。必要に応じてsystemdのサービスファ
イルを作成してください注1。
　ちなみにデスクトップの場合は、ユーザセッショ
ンで使われるアプリケーションの起動にUpstartを
使っています。このためUpstartそのものがなくなっ
たわけではありません。

ソフトウェア 14.04 LTS 16.04 LTS
基本パッケージ
Kernel 3.13 4.4
Kernel（HWE） 4.2 4.4
Upstart 1.12 1.13
systemd 204 229
Coreutils 8.21 8.25
vim 7.4.052 7.4.963
GNU Emacs 24.3 24.5
Git 1.9.1 2.7.4
APT 1.0.1 1.2.9
byobu 5.77 5.104
デスクトップアプリケーション
Unity 7.2.6 7.4.0
X.org Server 1.15.1 1.18.1
Mesa 10.1.3 11.1.2
LibreOffice 4.2.8 5.1.1
LightDM 1.10.6 1.18.0
Network Manager 0.9.8.8 1.0.4
IBus 1.5.5 1.5.11
Fcitx 4.2.8.3 4.2.9.1
Mozc 1.13.1651.102 2.17.2116.102
Nautilus 3.10.1 3.14.3
Gedit 3.10.4 3.18.3
GNOME Terminal 3.6.2 3.18.3
PulseAudio 4.0 8.0
BlueZ 4.101 5.37

サーバアプリケーション
Apache 2.4.7 2.4.18
Nginx 1.4.6 1.9.12
Node.js 0.10.25 4.2.6
MySQL 5.5.47 5.7.11
SQLite 3.8.2 3.11.0
PostgreSQL 9.3+154 9.5+172
Samba 4.1.6 4.3.6
livbirt 1.2.2 1.3.1
QEMU/KVM 2.0.0 2.5
Docker 1.5 1.5
LXC 1.0.8 2.0.0
rsyslog 7.4.4 8.16
OpenStack 2014.1.5 13.0.0
MAAS 1.7.6 2.0.0
開発言語やドキュメンテーション
GCC 4.8.2 5.3.1
Python 2 2.7.3 2.7.11
Python 3 3.4.0 3.5.1
Ruby 1.9.3 2.3.0
Perl 5.18.2 5.22.1
Rakudo 2013.12 2015.11
PHP 5 5.5.9 5.6.17
PHP 7 - 7.0.4
Go 1.2.1 1.6
Qt 5.2.1 5.5.1
TeX Live 2013.20140215 2015.20160320
Sphinx 1.2.2 1.3.6
Pandoc 1.12.2.1 1.16.0.2

 ▼表1　14.04 LTSと16.04 LTSの主だったパッケージのバージョンの違い

注1） http://gihyo.jp/admin/serial/01/ubuntu-recipe/0358

http://gihyo.jp/admin/serial/01/ubuntu-recipe/0358

74 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

IBus/Anthyから
Fcitx/Mozcへ

　Ubuntu標準の入力メソッドフレームワークがIBus

からFcitxに移行しました。日本語環境における、か
な漢字変換システムもAnthyからMozcに変わってい
ます。これにより日本語Remixを使わなくても、イ
ンストール直後からより快適な日本語入力環境を構
築できます。詳しくは第2章を参照してください。
　余談ではありますが、絵文字グリフを提供する
fonts-symbolaが最初からインストールされるように
なりましたので、インストール直後から絵文字の表
示や入力ができるようになりました（図3）。また、
GoogleとAdobeが共同開発した高品質なフォントで
あるNoto Sans CJKも fonts-noto-cjkパッケージと
して提供されています。

デスクトップ関連

　前述のとおりGNOME関連のパッケージが大幅に
アップデートされています。とくにGNOME端末は
長年の懸案だった、「あいまいな文字幅（East Asian

Width）」を調整できるUIが追加されています（図4）。
　比較的多くのユーザに影響する部分としては、
Network Manager、PulseAudio、BlueZのメジャー
バージョンが上がっています。それぞれ無線・有線
ネットワーク、サウンド、Bluetoothに影響しますの
で、アップグレード前にライブ環境でこれらのデバ
イスが動作することを確認しておきましょう。
　X.orgやMesaの更新により、Intel Skylakeマシン

でもとくに不自由なく3Dアクセラレーション機能
を利用できるはずです。
　デスクトップの新機能、とくにほかのフレーバー
の状況については第2章を参照してください。

日本語Remixの
リリースは？

　Ubuntu 16.04 LTSでも日本語Remixを提供する
予定です。開発リソースの都合でリリースできるの
は64ビット版のみとなるでしょう。
　以前の日本語Remixは、本家には取り込まれてい
ない日本語環境向けパッケージを提供したり、標準
の日本語入力環境をより使いやすくするなどのカス
タマイズを行っていました。しかしながら、最近は
これらのカスタマイズのほとんどは本家に取り込ま
れています。たとえば日本語入力環境はインストー
ルした段階でFcitx・Mozcを利用します。不具合も
できるだけ本家のリリース前に洗い出し、本家のイ
メージで修正されるように努めています。
　インストールイメージの中に日本語言語パックが
入っているなど、日本語Remixならではのメリット
がないわけではありません。よって今後も日本語
Remixをリリースし続ける可能性はあります。しか
しながら普通にUbuntuをインストールするだけな
ら、あえて日本語Remixを待つ必要はありません。
本家のUbuntuをインストールしたうえで、インス
トール時に日本語を選択するだけで、日本語Remix

と変わらない状態になるはずです。｢

 ▼図3　絵文字フォントの導入

 ▼図4　あいまい幅の設定

75 - Software Design May 2016 - 75

デスクトップで比較する

Ubuntu 16.04 LTSとそのフレーバー第2章

デスクトップで比較する

Ubuntu 16.04 LTSと
そのフレーバー

第2特集
2年ぶりのLTS

安定のUbuntu 16.04の新機能

第2章
Ubuntu Japanese Team

 Author あわしろいくや

　本章ではデスクトップ向けUbuntuの紹介と、その公式派生版であるフレーバーの特徴を、14.04との変更点を交
えて紹介します。

Ubuntuデスクトップ

　Ubuntuデスクトップは、その名のとおりUbuntu

の中核となるデスクトップ向けLinuxディストリ
ビューションです。正式な名称は“Ubuntu”ですが、
Ubuntuには意味するものがいろいろとあるので、本
稿では“Ubuntuデスクトップ”と表記します。
　Ubuntuデスクトップの特徴は何といってもUnity

です（図1）。Unity Dashは検索主体のインターフェー
スでアプリケーションの起動やファイル検索などが
行えます。左側に表示されるLauncherではショート
カットの追加や削除はもちろん、現在起動している
アプリケーションの表示や進捗アニメーションの表
示といった機能まであります。インジケーターには
独自のライブラリ（libappindicator）を開発していま
したが、現在はKDE PlasmaやCinnamonなど、ほ
かのデスクトップ環境にも採用され、広く普及して

います。

●Unityのバージョン

　16.04のUnityのバージョンは7.4で、14.04の7.2

からあまり大きな変更は行っていません。その理由
は現在新バージョンであるUnity 8の開発を精力的
に行っているからです注1。デスクトップとスマート
デバイスで同じデスクトップ環境を使用するという
大きな野望を達成するために、ディスプレイサーバ
（Mir）から開発するという大掛かりなことをやって
おり、もともとの予定では16.04はUnity 8にバー
ジョンアップした最初のLTSになる予定でしたが、
やはり作業が遅れて、実際のリリースはもう2年後
の18.04が最初のLTSになってしまいそうです。言
い換えれば、16.04はUnityがデスクトップとスマー
トデバイスを統合する前にリリースした最後のLTS

となる予定です。
　UnityのウィンドウマネージャーはCompizで、動
作には3Dアクセラレーションが必須です。現在は
3Dアクセラレーションが使用できない場合はソフト
ウェアエミュレーションでも動作しますが、非常に
遅いです。また、そういった場合はハードウェアス
ペックが低いことが多く、いずれにしてもまったく
実用的ではありません。ですから、現在3Dアクセ
ラレーションが動作しないRaspberry Piシリーズで
は、Unityは使用しません。

 ▼図1　 Unityは下にあるアイコン（レンズ）で検索対象を
切り替える

注1） 詳しくは158ページのUbuntu Monthly Reportをご覧くださ
い。

76 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

●GNOMEのアプリケーション

　Ubuntuデスクトップを構成するアプリケーション
は、基本的にはGNOMEデスクトップ環境のものを
採用しています。ファイルマネージャーであるファ

イル（Nautilus）、エディタであるgedit、端末である
GNOME端末、音楽プレーヤであるRhythmboxな
どが代表格です。設定ツールと設定デーモンは、
GNOMEのもの（gnome-settings-daemon/gnome-

control-center）をフォークし、独自にメンテナンス
しています（unity-settings-daemon/unity-control-

center）。WebブラウザはFirefoxで、常に最新バー
ジョンに更新されます。オフィススイートはもちろ
んLibreOfficeです。こちらは常に最新バージョンに
なるわけではありませんが、マイナーバージョンアッ
プには追随します。たとえば16.04のLibreOfficeは
5.1で、最終的にはマイナーバージョンアップの最後
（予定では5.1.6）までは追随しますが、5.2には上が
りません。メジャーバージョンアップを行いたい場
合はPPAを追加するというのが定石になってい

ます。
　GNOMEデスクトップ環境は、Ubuntuデスクトッ
プと同じく半年に一度リリースされています。Ubuntu

は可能な限り開発中にリリースされているGNOME

の安定版にアップデートするようにしています。具
体的には、16.04ではGNOME 3.18相当にアップ
デートしています。しかし、Ubuntuで採用するのに
都合が悪い点がある場合はバージョンを据え置きま
す。それによって不都合が発生する場合だけフォー
クをします。前述の設定ツールと設定デーモンはこ
のパターンです。しかし、そうしているものはあま
り多くありません。

●UIガイドラインとその他

　実例を挙げますと、geditは長らくバージョンが
3.10に据え置かれていましたが、このたび3.18にな
りました。一方ファイル（Nautilus）は3.14のまま据
え置かれています。このようになる理由は割とシン
プルで、GNOMEはUIガイドライン（GNOME

Human Interface Design）があり注2、これに合わせる
べく開発を行っているためです。しかし、このガイ
ドラインは従来のアプリケーションとはまったく異
なり、Unityには合わない部分があります。それを
すり合わせる作業はUbuntu自身でやる必要があり、
できた場合、あるいはやる必要がない場合はバージョ
ンアップ、できない場合は見送りとなります。
　たとえば、「geditはすり合わせ作業が無事にでき
たものの、ファイル（Nautilus）はできなかった」とい
うことになります。後者は実際試みられたものの、
やっぱりできないということでバージョンが差し戻
されました。パッケージのバージョンが“1:3.18.4.is.

3.14.3-0ubuntu2”になっているところからもわかり
ます（3月中旬現在）。
　もちろんUbuntuデスクトップを構成するアプリ
ケーションはバージョンごとに微調整が入り、あら
かじめインストールされていたアプリケーションが
追加されたり削除されたりといったことはよくあり
ます。第1章ですでに紹介しているので繰り返しま
せんが、16.04ではUbuntuソフトウェアセンターが
なくなり、ソフトウェア（gnome-software）になった
のが大きな変更点です。
　Ubuntu Japanese Teamは「Ubuntu 日本語Remix」
という、Ubuntuデスクトップに日本語環境で使用す
る際に便利な機能を付加したインストールイメージ
を配布しています。とはいえ、最近は変更点が減っ
てきているうえ、変更点のみのインストールも可能な
ため、積極的に利用する必要性は減ってきています。
　LTSということで、サポート期間は長めに設定さ
れています。Ubuntuデスクトップは5年、フレー
バーは3年というのが原則ですが、例外もあり、フ
レーバーであっても5年サポートのものもあります。

Kubuntu

　KubuntuはUbuntu初のフレーバーであり、紆余曲
折がありながら、現在も精力的に開発が継続してい
ます（図2）。デスクトップ環境はKDEで、構成して

注2） https://developer.gnome.org/hig/stable/

https://developer.gnome.org/hig/stable/

76 - Software Design May 2016 - 77

デスクトップで比較する

Ubuntu 16.04 LTSとそのフレーバー第2章

いるアプリケーションはほぼUbuntuデスクトップと
は異なります。例外はFirefoxで、これはほかのフ
レーバーでも同じですが、Webブラウザはセキュリ
ティサポートが重要で、UbuntuにはFirefoxほど迅
速にアップデートを行っているWebブラウザがない
ので、ほかに選択肢がないというのが実情です。
Google Chromeのオープンソース版であるChro

miumもuniverse注3にあるパッケージにしてはこま
めに対応していますが、数日遅れならまだいいほう
で、過去にはアップデート自体をスキップしてしま
うことすらありました。
　以前のKDEは1つのデスクトップ環境としてリ

リースされていましたが、4以降はKDE Plasma、
KDE Frameworks、KDE Applicationの3つに分割
されてリリースされ、それらを総合してKDE SC

（Software Compilation）と呼んでいます。16.04のリ
リース時点で、KDE Plasmaはバージョン5.4.4、KDE

Frameworksはバージョン5.18.0、KDE Applications

は15.12.1です注4。
　14.04のKubuntuはKDE SC 4だったので、16.04

では大幅に変わったことになります。KDEのバー
ジョンはツールキットであるQtのバージョンに依存
しており、KDE SC 4だとQt 4、5だとQt 5となり

ます。Qt 4は昨年末でEOL（End of Life）を迎えて
いますが、14.04はLTSですので5年間サポートさ
れます。すなわち、あと3年間は使用できるので、ど
うしてもKDE SC 5に馴染まない場合はそちらを使
用するのも手です。
　残念ながらKDEの日本コミュニティは活動が活発
とはいえず、メニューは英語のままのところが圧倒
的に多いので、使いこなすのであればそれなりの英
語力を必要とします。個人的にはKDEユーザが増
え、それに伴って翻訳者も増えるといいと思うので
すが、それはさておき簡単に使うのであればとっつ
きはさほど悪くありません。左下のメニューもカテ
ゴリごとにわかれており、直感的に起動できます。
しかし、さらに変更したい場合は、左下のアイコン
を右クリック-［Alternatives］-［アプリケーションメ
ニュー］-［切り替え］で、Windows 7のようなメニュー
に 変 更 で き ま す。［Alternatives］-［Application

Dashboard］-［切り替え］にすると、メニューが画面
いっぱいに表示されるようになります。
　KDEを使用するのであれば、ウィジェットを活用
すると便利です。これはその名のとおり、デスクトッ
プまたはパネルにシンプルな機能のウィジェットを
貼り付けます。デスクトップを右クリックして［Add

Widgets］をクリックするか、左上のボタンをクリッ
クして［Add Widgets］をクリックするとウィジェッ
ト一覧が表示されます。また、KDE Plasmaの［Get

Hot New Stuff（日本語訳は［ホットな新しい物を取
得］）］機能を利用して、［新しいウィジェットを入手］
からインストールされていないウィジェットも使用
できるようになります。

Xubuntu

　Xubuntuは、デスクトップ環境にXFCEを採用し
たフレーバーです（図3）。これも結構歴史がありま
す。Xubuntu自体は活発に開発されていますが、
XFCE自体は活発に開発されているとはいい難い状
況です。14.04ではXFCEのバージョンは4.11とい
う開発版だったのですが、16.04ではこれのリリー
ス版である4.12であり、あまり大きな違いはありま

注3） Ubuntuのリポジトリはmain/universe/restrected/mutiverse
に分かれており、mainと restrictedはCanonicalによるサポー
トがあり、セキュリティ修正も行われます。universeと
multiverseにはなく、コミュニティによる対応がなければセ
キュリティ修正が行われないこともあります。

注4） リリースの前後でバージョンアップする可能性はあるので、
このバージョンは目安だと思ってください。

 ▼図2　 Kubuntuのデスクトップ。右上にあるのはメモ
ウィジェット

78 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

せん。14.04から16.04にアップグレードしても、壁
紙が変わったことぐらいしか気づかないかもしれま
せん。余談ですが、14.04の壁紙に変更することも
できます。
　変更されたパッケージもあまり多くはありません。
14.04との大きな差としては、AbiWordとGnumeric

の代わりにLibreOffice Writer/Calcが採用されまし
た。LibreOfficeはAbiWordとGnumericのファイル
が読み込めるため、あまり大きな問題にはならない
はずです。もちろんAbiWordとGnumericはリポジ
トリから削除されたわけではないため、必要な場合
は別途インストールすることはできます。
　音楽プレイヤーであるgmusicbrowserと、知る人
ぞ知るGIMPも削除され、使用する場合は別途イン
ストールする必要があります。後者はXubuntuの特
性を考えると削除されるのも納得できるのですが、
前者は理由がよくわかりません注5。ただ、いずれに
せよ音楽プレイヤーであればAudaciousを使ったほ
ういいでしょう。
　14.04以降新たに追加されたのはいずれも設定ツー
ルで、LightDM GTK+ GreeterとXfce Panel Switch

です。どちらも名前を見たらどういったものなのか
予測できます。前者はデスクトップマネージャーで
あるLightDMの設定ツールであり、後者はXFCEの
パネルのデザインを切り替えます。
　XFCEの将来性には大きな心配があるものの、現
在軽量なデスクトップ環境として使用するのであれ

ばベストな選択といえます。Raspberry Piシリーズ
や仮想環境で使うのであれば、軽さと機能のバラン
スを考えた場合、採用を検討するべきです。

Lubuntu

　Lubuntuはデスクトップ環境にLXDEを採用した
フレーバーです（図4）。LXDEは現在、その後継と
なるLXQtを開発中です（図5）。LXQtはその名のと
おり、ツールキットをGTK+ 2ではなくQt 5に変更
しています。開発の主力はそちらに移っていますが、
LXDEも開発を停止したわけではなく、活発に開発
されています。
　LXDEはとにかくシンプルかつ軽量で、機能もプ
リミティブです。ウィンドウマネージャを独自に開
発しないという変わった方針のデスクトップ環境で
あり、徹底しています。なお、これはLXQtも同様

 ▼図3　Xubuntuのデスクトップと［Xfce Panel Switch］

 ▼図4　 LubuntuのデスクトップとLubuntuソフトウェア
センター

 ▼図5　LxQtのデスクトップとバージョン情報

注5） おそらくクラッシュバグが修正できなかったからだとは思わ
れます。

78 - Software Design May 2016 - 79

デスクトップで比較する

Ubuntu 16.04 LTSとそのフレーバー第2章

であり、いずれもOpenboxと組み合わせて使われる
ことが多く、Lubuntuもそのようになっています。
　LXDEの方針を受け、Lubuntuもほかのフレーバー
にはない特徴があります。それは、いまだにテキス
トベースのAlternativeインストールイメージを配布
していることです。これはすなわちGUIインストー
ラ（Ubiquity）が動作しないようなPCにもインストー
ルすることを意図しています。目安としてはメモリ
512MBのPCです。インストールイメージもCDサ
イズを死守すべく相当な努力をしていますが、テキ
ストベースのインストーラではCDサイズをなんと
か維持しています。しかし、GUIインストーラでは
DVD-Rが必須となっています。
　以上の理由により、Lubuntuは次のような場合に
お勧めです。

・メモリが512MBしかないPC

・DVDドライブがなく、CDドライブしかないPC

・用途が極めて限定される場合

　これらに該当しない場合はXubuntuがお勧めです。
　古いPCだとCPUがPAE（Physical Address

Extension）に対応しておらず、Lubuntu（を始めとし
たUbuntuデスクトップまたはそのフレーバー）が起
動しないということがあります。その場合、一部の
CPUではブートオプションに“forcepae”を追加する
と起動できます。詳しくはWiki注6をご覧ください。
　LubuntuがLXQtに移行するのは16.10以降です
が、16.04でもインストールして試してみることぐ
らいはできます。詳しくはWiki注7をご覧ください。
　Ubuntuデスクトップやほかのフレーバーでは
Ubuntuソフトウェアセンターがソフトウェアになっ
たのが大きなトピックであることはすでに述べまし
たが、これはLubuntuには該当しません。なぜなら、
独自のLubuntuソフトウェアセンターがあるからで
す。とはいえ、検索ができず、カテゴリごとに並べ
ているだけですのでお世辞にも使いやすいとはいえ
ません。

Ubuntu GNOME

　Ubuntu GNOMEは、その名のとおりデスクトッ
プ環境にGNOMEを採用したフレーバーです（図6）。
比較的新顔で、14.04に続き2回目のLTSリリース
です。Ubuntuのリポジトリにあるパッケージででき
る限り純粋なGNOMEデスクトップを提供すること
を目的としており、事実そうなのですが、前述のと
おりUbuntuのリポジトリではGNOMEのバージョ
ンがそろっているわけではありません。
　14.04のUbuntu GNOMEはGNOME 3.10ベース
です。そして、16.04はGNOME 3.18ベースで、か
なり大きな変更があります。GNOME Shellの拡張
機能はバージョンアップによって動かなくなるもの
も多いので、アップデートする場合は事前に自分が
愛用している拡張機能が新しいGNOME Shellに対
応しているかを確認する必要があります。
　なお、16.04のリリース時点でGNOMEは3.20が
最新版になっている見込みです。すなわち、Ubuntu

の開発サイクルで最新だったバージョンが採用され
ており、Ubuntu GNOMEの最新バージョンイコー
ルGNOMEの最新バージョンとはなっていません。
最新の純粋なGNOMEを使用したいのであれば、
Fedoraをインストールするのがベストです。とはい
え、中にはGNOMEの最新版に含まれているアプリ
ケーションがUbuntuのリポジトリにも入ることはあ
り、16.04のサイクルではソフトウェアとカレンダー

 ▼図6　 GNOME Shellのアクティビティ画面。右側にあ
るのはワークスペース

注6） https://help.ubuntu.com/community/Lubuntu-fake-PAE
注7） https://wiki.ubuntu.com/Lubuntu/LXQt

https://wiki.ubuntu.com/Lubuntu/LXQt
https://help.ubuntu.com/community/Lubuntu-fake-PAE

80 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

とシンプルスキャンが相当します。とくにソフトウェ

アは、Ubuntuソフトウェアセンターを置き換えるべ
く、Canonical社員も精力的に開発に参加していま

した。
　最近のGNOMEは新しいアプリケーションを続々
と追加しており、それがUbuntu GNOMEでもあら
かじめインストールされるようになっているので、
そのあたりが14.04との違いにもなっています。具
体的には地図・天気・音楽・写真・ソフトウェア・
カレンダー・ログです。GNOMEのアプリケーショ
ンは一般的な名前を付けるようになっているので、
パッと見どんな役割なのかはわかりやすいのですが、
そもそもそれがGNOMEのアプリケーションなのか
どうかがわかりにくいというデメリットもあります。
一方、写真が入ったことによりShotwellはインス
トールされなくなりました。しかし、実際に触って
みるとわかりますが、写真はShotwellを置き換える
にはちょっとシンプル過ぎるので、必要であれば
Shotwellをインストールしてください。音楽は入っ
てもRhythmboxはそのまま残されました。
　GNOME Shellの操作性は、筆者としてはすごく優
れていると思うのですが、とっつきにくいのは事実
です。それが影響してか、初回ログイン時にヘルプ
が表示され、基本的な操作はビデオで見ることがで
きるようになっています。もう一度見たい場合は、［ヘ
ルプ］-［GNOMEを初めて使う方へ］をご覧ください。
　GNOMEはシンプルで、あまりカスタマイズでき
ないことで有名です。しかし、これはあらかじめイ

ンストールされているTweak Toolを使えば、ある
程度のカスタマイズはできます。たとえばタイトル
バーに最大化や最小化のボタンをつけたい場合は、
［ウィンドウ］タブにある［最大化］と［最小化］をオン
にしてください。
　Red Hat Enterprise Linux 7あるいはCentOS 7

をGUIつきでインストールすると、GNOMEクラ
シックになります。これはGNOME Shellに昔の
GNOMEっぽい拡張機能を適用したもので、もちろ
んUbuntu GNOMEにもあります。ログイン時に歯
車アイコンをクリックし、［GNOMEクラシック］を
選択するだけです。また、ディスプレイマネージャー
としてX.orgを置き換えるべく開発中のWayland/

Westonを試用してみたい場合は、“gnome-session-

wayland”パッケージをインストールし、デスクトッ
プマネージャー（GDM）を再起動してから歯車アイコ
ンのGNOME on Waylandをクリックしてください
（図7）。ただし、今のところ仮想マシンでは動作せ
ず、実機である必要があります。また、その場合も
プロプライエタリなドライバをインストールしてい
ると動作しません。このとおり、現在はかなり制限
が強いですが、いざ使ってみると割と普通に動きま
す。

Ubuntu MATE

　MATE（マテ）はGNOME 2.xからフォークしたデ
スクトップ環境です（図8）。GNOME 2.xのルック＆

 ▼図8　Ubuntu MATEのデスクトップとWelcome ▼図7　ログイン時に選択できるセッション

80 - Software Design May 2016 - 81

デスクトップで比較する

Ubuntu 16.04 LTSとそのフレーバー第2章

フィールや機能はあまり変えず、可能な限り古いラ
イブラリの使用をやめ、最近のものを使用するよう
に書き換えるべく開発を行っています。現在の最新
バージョンは1.12で、次のバージョンあたりでGTK+

3へのポーティングが完了しそうです。
　MATEはGNOME 2.xのライブラリやアプリケー
ションをまるごとフォークしており、それぞれ独自
の名前を付けています。たとえばファイルマネー
ジャー（Files/Nautilus）はCaja、テキストエディタ
（gedit）はPluma、ドキュメントビューア（Evince）が
Atrilなどです。GNOME 端 末はMATE 端 末と、
“GNOME”がついているものはそのまま“MATE”に
置き換えています。
　GNOMEは3になってからすべての翻訳が見直さ
れ、今どきのポリシーで統一されました。しかし、
MATEはその前にフォークされたものであり、古い
翻訳と新しい翻訳が混在しています。ものによって
は統一されたものもありますが、多くはそうなって
いません。よって、若干見にくい部分があります。
　Ubuntu MATEは、そんなMATEをデスクトップ
環境にしたフレーバーです、公式フレーバーとなっ
たのが 15.04ですので、初のLTSとなります。
MATEデスクトップ環境のアプリケーションは一通
り収録しており、それ以外は原則としてはUbuntuと
同じになるようにしています。例外的に、動画再生
ソフトとしてQtアプリケーションであるにもかかわ
らずVLCが採用されています。
　Ubuntu MATEには大きく2つの独自アプリケー
ションがあります。1つはWelcomeで、その名のと
おりログイン時に自動的に起動し、Ubuntu MATE

の紹介やアプリケーションのインストールなどが（英
語で）行えます。
　もう 1つはMATE Tweakで、その名のとおり
MATEのカスタマイズツールです。このツールのお
もしろいところは、パネルのレイアウトを簡単に変
更できるところです。Windows風、OS X風はもち
ろん、懐かしのGNOME 2風やUnity風なんてのも
あります。Unity風は、メニューを画面上部に表示
することまでやってしまうという凝りようです。
　Ubuntu MATEから派生したプロジェクトとして、

“Ubuntu Pi Flavour Maker”というのがあります。こ
れについては先月号のUbuntu Monthly Reportで詳
しく解説したので、そちらをご覧ください。
　GNOME 2.xに慣れている人であればこれほど使
いやすいものはないでしょう。また、3Dアクセラ
レーションも必要ないので、仮想環境などにも適し
ています。ただ、アプリケーションのチョイスから
も軽量なLinuxディストリビューションを目指して
いるわけではないので、ハードウェアのスペックが
潤沢でない場合は避けたほうがいいかもしれません。

Ubuntu Studio

　これまで紹介したフレーバーはいずれもデスクトッ
プ環境の違いが特徴になっていました。中にはそう
ではないフレーバーもあり、そのうちの1つがUbuntu

Studioです（図9）。これは映像・音楽・デザインな
どのクリエイター向けアプリケーションが大量に用
意されています。そればかりか、カーネルもレイテ
ンシが少なくなるコンフィグにした特別なものになっ
ています。大量のアプリケーションがあるため、イ
ンストーラのイメージのサイズもほかのものよりか
なり大きくなっており、フルインストールする場合
はより多くの空きスペースが必要です。なお、デス
クトップ環境はXFCEです。
　レオナルド・ダ・ヴィンチのような万能人はとも
かく、映像・音楽・デザインなどすべてを行う人は
なかなかいないわけで、すべてのパッケージを必要

 ▼図9　 Ubuntu Studioのデスクトップと独自のパッケー
ジインストーラ

82 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

とすることはあまり多くないのではないかと思いま
す。そういった場合、インストールの段階で何をイ
ンストールするかを選択できます。また、あとから
追加したくなった場合に簡単にインストールできる
ツールもあるので安心です。
　何か作りたいものがあるとき、とりあえずUbuntu

Studioをインストールしてみて、そのジャンルにど
んなアプリケーションがあるのか確認し、実際に使
用してみて手に馴染むものを探す、というのが正し
い使い方だと思います。

インプットメソッド
（日本語入力）

　Ubuntuデスクトップとそのフレーバーでは、イン
ストール時に日本語を選択するとFcitxとMozc一式
がインストールされます。14.04では IBusとAnthy

一式でしたが、日本語Remixでは先行して16.04と
同様にFcitxとMozc一式がインストールされていま
した。原則としては各種フレーバーでも同じパッケー
ジがインストールされますが、Kubuntuでは“kde-

config-fcitx”という専用の設定モジュールがインス
トールされます。
　ではIBusは削除されたのかというとそのようなこ
とはなく、Fcitxとともにインストールされていま
す。これまでは“ibus-anthy”がインストールされて
いましたが、16.04からは“ibus-mozc”がインストー
ルされるようになったため、IBusに切り替えても使
い勝手が変わるようなことはありません。
　IBusに切り替える方法は簡単で、言語サポートが
インストールされている場合はこれを起動し、［キー
ボード入力に使うIMシステム］を［IBus］に変更して
一度ログアウトし、再ログインするだけです。言語

サポートがない場合、あるいはコマンドから行う場
合は、端末を起動して“im-config -n ibus”を実行し、
一度ログアウトして再ログインしてください。Fcitx

に戻す場合は、前述のコマンドの“ibus”を“fcitx”に
するだけです。
　Ubuntu GNOMEでは IBusがデフォルトになり、
Fcitxに変更したい場合は別途設定が必要になる予
定です。GNOMEではUnityと異なり、システム設

定の［地域と言語］あるいは［入力ソース］からFcitx

の入力ソース（AnthyやMozcなど）が設定できないと
いう理由からです。また、Fcitxだとアイコンが左下
に表示されてしまうという点もあります。これは
FcitxがGNOME Shellのトレイアイコンに対応して
おらず、またGNOME Shellが libappindicatorに対
応していないから起こることです。このままでも問
題ないといえばそうなのですが、Fcitxを使用したい
場合は拡張機能注8をインストールして右上に表示す
るといいでしょう。
　Kubuntuの独自設定ツールを見てみましょう（図

10）。設定できる項目はデフォルトの設定ツールと
同様ですが、スキンの管理というFcitx用スキンの
インストーラが付いており、ほかの設定ツールより
も高機能です。
　Ubuntuデスクトップだけですが、接続してもいな
い英語キーボードを登録してしまいます。これは現
在の制限事項となっているので、英語キーボードを
接続していないのであれば削除してしまってもいい
ですし、何もしなくても問題ありません。Fcitxの仕
様上、［入力メソッド］の一番上が普段使用している
キーボードでなくてはなりませんが、これを入れ替
えるようなことはしないでしょうし、またMozcか
らほかの入力メソッドに切り替えるようなことがな
ければ邪魔にもならないでしょう。｢

 ▼図10　 KDEのFcitx設定ツール。一番右に［スキンの
管理］タブが見える

注8） https://extensions.gnome.org/extension/1031/topicons/

https://extensions.gnome.org/extension/1031/topicons/

83 - Software Design May 2016 - 83

Juju、MAAS、LXDなどの独自機能で際立つ

Ubuntu Server 16.04 LTSの特徴第3章

Juju、MAAS、LXDなどの独自機能で際立つ

Ubuntu Server 16.04
LTSの特徴

第2特集
2年ぶりのLTS

安定のUbuntu 16.04の新機能

第3章
Ubuntu Japanese Team／（株）創夢

 Author 吉田 史（よしだ ふみひと）

　本章ではUbuntu Serverの紹介と、JujuやMAAS、LXDなどの紹介、16.04で更新された機能などを紹介します。

Ubuntu Server 16.04
LTSの機能

　近年のUbuntu Serverは、「Debianに近似したパッ
ケージ構成と、5年間のコミットされたサポートが
提供される、無償でも利用できるディストリビュー
ション」であるだけでなく、JujuやMAAS、LXDな
どの独自の機能が提供されるようになっています。
16.04で更新された機能を含め、Ubuntu Serverの特
徴を見ていきましょう。

●Cloud Images

　Ubuntu Serverの大きな特徴の1つが、インストー
ル媒体としてISOイメージだけでなく、各種クラウ
ドサービス・仮想化環境向けに「すでにインストール
済みの」マシンイメージであるCloud Imagesもリ
リースされることです。
　16.04でもこれまでと同様、Cloud Imagesがリリー
スされています。https://cloud-images.ubuntu.
com/からリンクをたどり、https://cloud-images.
ubuntu.com/releases/16.04/release/から利用し
てください。
　これらは、Ubuntu Serverを最小構成でインス
トールし、cloud-initをインストールしたものに相
当します。16.04では、QCOW2（QEMU・KVM用）、
VHD（HyperV・Azure用）、Vagrant box・OVAと、
LXD用 tarball、tar（/を単純に tarballにしたもの）
が提供されます。ユーザが自分でダウンロードし

て利用するほかに、パブリッククラウド上に準

備されているイメージもあります。Cloud Image

Finder注1で検索し、必要なテンプレート名・マシン
名などを確認してください。

●IBM LinuxONEのサポート

　Ubuntu 16.04 LTSのサポートアーキテクチャは
i386・amd64・armhf・arm64・ppc64です。本稿の
校正時点（2016年3月）では未リリースですが、16.04

LTSはIBM z13をベースにした『LinuxONE』向けに
もリリースされる予定です（s390x）。これにより、メ
インフレーム上にUbuntuをインストールし、Jujuや
LXDを活用できるようになります。
　基本的にすべてのバイナリは再コンパイルされ、
なんらかのコンパイル上の問題でパッケージが作成
できないものを除き、x64比で約95％のパッケージ
が利用できる予定です。

LXD/LXC

　14.04から16.04への更新において、大きなポイン
トとなるのがLXDです。LXDを用いることで、仮
想マシンのような操作感覚でコンテナを利用できま
す。

●LXD

　LXD注2は、Ubuntu/Canonicalによって開発され
る、liblxcベースのコンテナを扱うためのソフトウェ
アで、しばしば「コンテナのハイパーバイザー」と表
現されます。
注1） https://cloud-images.ubuntu.com/locator/
注2） 「エルエックスディー」ではなく、“lex‐ dee”と発音します。

カタカナ表記では「レクスディー」です。

https://cloud-images.ubuntu.com/locator/
https://cloud-images.ubuntu.com/
https://cloud-images.ubuntu.com/releases/16.04/release/
https://cloud-images.ubuntu.com/
https://cloud-images.ubuntu.com/releases/16.04/release/

84 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

　Ubuntu上で動作するデーモン（lxd）と、REST

APIで操作を行うコマンドラインツール（lxcコマン
ド）によって構成されます。「ゲスト」にあたるコンテ
ナは、liblxcがサポートするLinuxディストリビュー
ションであれば、たいていのものが利用できます。
　また、単なる仮想マシン的な用途だけでなく、nova-
compute-lxdパッケージを利用してOpenStack Nova

のcompute driverとしても利用できます。

●既存の実装との違い

　LXDは、コンテナ技術を利用して「仮想マシンに
近い環境」を、作り出すソフトウェアです。コンテナ
技術の代名詞になりつつあるDockerとは、いくつか
の点で異なります。
　DockerとLXDは、どちらも「コンテナを管理す
る」ソフトウェアです。
　Dockerは「特定のデーモンを実行するための環境
を隔離して構成する」ことが主眼にあります。Docker

を利用することで、特定のサービスを実現するため
のデーモンを、隔離した環境で動作させることがで
きるのが狙いです。
　これに対して、LXD/LXCは、「initデーモンを含
めたOS全体を動作させる」「複数のデーモンを同じ
コンテナ内で動作させる」方向の実装です。カーネル
を共用する、複数のマシンが動作するイメージです。
FreeBSDのJailやSolarisのZoneに近い機能です。
操作感覚としては、Vagrantによる仮想マシンの操
作に似ています。
　LXDで動作する「コンテナ」はごく普通のLinux環
境です。たとえば、Dockerで走らせるコンテナに対
話的にログインすることは通常はほとんどありえま
せんが、LXDでは珍しくありません。Dockerのよ
うに根本的な発想の転換を必要とせず、仮想化環境
のメタファで操作でき、複数のマシンで構成される
環境から、設計変更を伴わずに移行できる、という
点がメリットです。また、Dockerと同様、必要最低
限のサービスだけを動かす環境として利用すること
もでき、仮想化の代替からコンテナによる隔離まで、
幅広く対応します。
　こうした点ではLXDは、Dockerだけではなく、

VMwareやESXi、KVMといった仮想化ハイパーバ
イザーを置き換える目的にも利用できます。既存の
仮想化に比べると、ホストマシンのカーネルをその
まま利用できるため、オーバーヘッドがほとんどな
く、大量の仮想マシンを動作させることができるこ
とも特徴です。LXDは基本的に「親」環境のプロセス
をcgroupなどで隔離して動作させるだけですので、
マシン台数を増やしてもメモリ使用量がほとんど増
えないためです。8GB程度のメモリがあれば、（単
にマシンが上がるだけでよければ）数百台程度のマシ
ンを動作させることができます。

●16.04 LTSのLXD

　LXDはUbuntu 15.10で搭載された新機能で、
「ネットワークごしに利用できるLXC」とも言えるコ
ンテナ環境です。LXDを使うことで、手軽にコンテ
ナを作成できます。
　16.04 LTSではmainコンポーネントに移動され、
かつ、Ubuntu Server環境ではプリインストールさ
れるパッケージに含まれるようになりました。内部
的には、taskselで利用される「server」「cloud-image」
タスクに含まれるようになっています注3。この
taskselへの登録により、CDからUbuntu Serverを
インストールした場合だけでなく、Cloud Images上
でもデフォルトで利用できるようになっています。
ある種のプレビュー段階から、実用モードに切り替
わったと言えるでしょう。

●LXCとLXD

　既存のLXC注4との違いは次のとおりです。

・REST APIを経由して、ほかのマシンにコンテナ

を展開できる

・コンテナはイメージベースで管理される（LXCで

は「ディストリビューションテンプレート」をもと

に、コンテナ起動時にマシンを生成するアプロー

注3） tasksel は、「ubuntu-desktop」や「server」「samba-server」な
どといった、「ある役割を果たすときに必要と考えられるパッ
ケージ」をまとめてインストールするためのしくみです。

注4） 「LXC」という単語には、「Linux Containerの省略名」（liblxcな
ど）と、「LXCというコンテナ管理ソフトウェア」（以前のLXC）
と、「LXDのクライアント層」という3つの異なる意味があり
ます。

84 - Software Design May 2016 - 85

Juju、MAAS、LXDなどの独自機能で際立つ

Ubuntu Server 16.04 LTSの特徴第3章

チを取っていました）

・各種プログラムがGoで書き直された

●LXDの使い方

　16.04環境では、LXDは（図1）のように利用しま
す。前述のとおり、Ubuntu Server環境であればLXD

は初期状態でインストールされており、追加インス
トールは不要です注5。
　lxd initは、LXDの初期設定を行うラッパーです。
lxd initは、2016年3月時点ではストレージバックエ
ンドとして、ディレクトリ・ZFSを利用する環境を
サポートしています。
　16.04以前の環境でLXDを利用することもできま
す。この場合は、（図2）のように操作してPPA経由
で最新版のLXDを取り込んでから lxd initを実行し
ます。16.04環境でもこの手順を利用できます。
　初期設定が終了したら、利用するイメージを選択

します。LXDでは、「イメージ」ファイルを読み込ん
でコンテナを起動するため、イメージを登録する必
要があります。イメージの登録方法は、大きく分け
て2つあります。リモートサーバからの入手と、手
動インポートです。
　リモートサーバから入手する場合、16.04のLXD

には、linuxcontainers.org上の各種Linuxディスト
リビューションのイメージと、Ubuntu Cloud Images

（リリース版とデイリービルド）が事前に登録されて
います（図3）。これら以外に、すでに作成され、イ
メージを保持しているLXDが動作するマシンを登録
することもできます注6。
　リモートサーバ上にあるイメージからコンテナを
起動するには、「lxc launch ubuntu:16.04 xenial」な
どとします。このコマンドラインの意味は、「remote

listの“ubuntu”にある16.04のイメージを用いて、
“xenial”という名前のマシンを起動する」です。
　イメージのダウンロードが実行され、しばらくす
るとコンテナが起動します。起動したコンテナは、
「lxc list」コマンドで一覧できます。起動したコンテ

ナ上でコマンドを実行する「lxc

exec」や、ファイルをやりとりする
「lxc file」コマンドを利用してコンテ
ナをカスタマイズします。「lxc exec

xenial -- /bin/bash」などとすること
で、シェルを取得することもできま
す。

◆◆ストレージバックエンド
　LXDは、ストレージバックエンド

注5） ただし、LXDは非常に進歩が早いため、PPA経由で最新版を
用いる方が安全なことが多いでしょう。

注6） lxc remoete addコマンドを使います。

 ▼図1　LXDでの実行例

$ sudo lxd init
Name of the storage backend to use (dir or zfs): dir
 ※ ストレージバックエンドを選択する
Would you like LXD to be available over the network (yes/no)? no
 ※ ネットワーク経由での利用をするかどうかを選択する
 　 単一ホストで利用する場合はno
LXD has been successfully configured.

 ▼図3　リモートサーバのリスト表示

$ lxc remote list
+-----------------+--+---------------+--------+--------+
| NAME | URL | PROTOCOL | PUBLIC | STATIC |
+-----------------+--+---------------+--------+--------+
| images | https://images.linuxcontainers.org | lxd | YES | NO |
+-----------------+--+---------------+--------+--------+
| local (default) | unix:// | lxd | NO | YES |
+-----------------+--+---------------+--------+--------+
| ubuntu | https://cloud-images.ubuntu.com/releases | simplestreams | YES | YES |
+-----------------+--+---------------+--------+--------+
| ubuntu-daily | https://cloud-images.ubuntu.com/daily | simplestreams | YES | YES |
+-----------------+--+---------------+--------+--------+

 ▼図2　PPA経由で最新版のLXDを取り込んでから実行する

add-apt-repository ppa:ubuntu-lxc/lxd-stable
apt-get update
apt-get dist-upgrade
apt-get install lxd

86 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

としてBtrFS・LVM・ZFSをサポートしています。
いずれも利用できない場合に、ディレクトリバック
エンドが利用されます。効率よく多数のマシンを格
納・生成したい場合、ディレクトリ以外のバックエ
ンドを選択する必要があります注7。

◆◆ZFSサポート
　LXDで利用することも含め、16.04 LTSでは
「ZFSのサポート」が追加されています。これは、
ZOL（ZFS on Linux）の成果物を取り込んだもので
す。
　これまでのUbuntuでもZOLを利用できたものの、
zfs-dkmsをインストールし、カーネル更新時などに
動的にカーネルモジュール（zfs.ko）をコンパイルす
る、という手間のかかる手順が必要でした。16.04で
はカーネルパッケージの一部としてzfs.koが同梱さ
れるため、この手間を省略できるようになっていま
す注8（図4）。
　ただし、ZFSを扱うためのユーティリティ
（zfsutils-linux）はuniverseパッケージとして提供さ
れるため、Canonicalによるセキュリティアップデー
トなどの対象はカーネルモジュールのみとなります。
　ZFSはrootdiskには利用できず、また、64bit環
境専用です。

●snapパッケージとしてのLXD

　LXDは、「snap」パッケージでも提供されます。

「snap」パッケージは、“Snappy” Ubuntu Coreや
Ubuntu Phone、Ubuntu Personalで利用されるパッ
ケージ形式です。/以下を原則として編集できない
“Snappy”環境であっても、コンテナ内に自分の必要
なソフトウェアを導入することで目的を達成できる
でしょう。
　Snappy環境でのLXDのインストール方法は、
https://linuxcontainers.org/lxd/getting-
started-cli/を参照してください。

Juju

●Juju 1.x

　Jujuは、「パッケージをインストールするように」
サーバ環境を準備するためのしくみです。
　JujuはChefやPuppet、Ansibleなどといった構成
管理フレームワークと、それをラップするフレーム
ワークとして登場し注9、現時点では、AWSの
CloudFormation や Azure の Azure Resource

Managerに近い、クラウド環境向けのテンプレート
ベースのオーケストレーションツールとなっていま
す。
　Jujuの基本的な動作は、「必要なホストを起動し、
そしてシェルスクリプトやChef・Puppetなどの構
成管理フレームワークを用いてサービスを設定し、
複数のサービスを紐

ひも

付けることで1つの『アプリケー
ション』を立ち上げる」というものです。ここで言う
『アプリケーション』は、たとえばLAMPスタックを注7） 詳細は、https://github.com/lxc/lxd/blob/master/specs/stora

ge-backends.mdを参照してください。
注8） ただし、ZFSのライセンス（CDDL）とGPLv2の間には非互換が

あり、「静的にリンクされていないとはいえ、ディストリビュー
ションとしてLinuxカーネルとセットで配布してよいのか」と
いった議論が存在します。http://vlog.dustinkirkland.com
/2016/02/zfs-licensing-and-linux.html

注9） このあたりの差異がわかりにくいため、FAQに「Can I use Juju
with Puppet or Chef or Ansible?」（https://jujucharms.
com/docs/devel/about-juju#can-i-use-juju-with-puppet-
or-chef-or-ansible?）という項目が追加されています。

 ▼図4　zfs.koパッケージとZFS関連モジュール

$ dpkg -S /lib/modules/4.4.0-9-generic/kernel/zfs/zfs/zfs.ko
linux-image-4.4.0-9-generic: /lib/modules/4.4.0-9-generic/kernel/zfs/zfs/zfs.ko

$ lsmod |grep zfs
zfs 2801664 0
zunicode 331776 1 zfs
zcommon 57344 1 zfs
znvpair 90112 2 zfs,zcommon
spl 102400 3 zfs,zcommon,znvpair
zavl 16384 1 zfs

https://jujucharms.com/docs/devel/about-juju#can-i-use-juju-with-puppet-or-chef-or-ansible?
http://blog.dustinkirkland.com/2016/02/zfs-licensing-and-linux.html
https://github.com/lxc/lxd/blob/master/doc/storage-backends.md
https://linuxcontainers.org/lxd/getting-started-cli/

86 - Software Design May 2016 - 87

Juju、MAAS、LXDなどの独自機能で際立つ

Ubuntu Server 16.04 LTSの特徴第3章

含むWordPressや、OpenStack・Hadoopなどが該
当します。
　こうした動作を記載するテンプレートファイルを、
「Charm」と呼びます。Charmにサービスを起動する
ために必要なパッケージ名や初期設定ファイルなど
を定義しておき、Jujuが起動したホストに必要な設
定を行う、というしくみで動作します。Charmは、
「Charm Store」（https://jujucharms.com/store）
と呼ばれる集積サイトに集められ、簡単に利用でき
ます。
　Jujuの特徴は次のとおりです。

・特定のクラウドに依存せず、複数のIaaS環境で利用

できる（EC2、Azure、Google Compute Engine、

Joyent、Rackspace、DigitalOcean（ベータ））

・MAAS＋OpenStackを利用することで、プライ

ベートクラウド上にデプロイすることもできる

・LXCを使うことで、ローカルマシン上にデプロイ

することもできる

・サービスごとの「Relationships」を設定することで、

複数のサービスを連携させて動作させることがで

きる

・「Bundles」と呼ばれる、複数のレシピ（Charm）を

まとめた定義も行える。これにより、Hadoopや

OpenStackのような複雑な構成を必要とするソフ

トウェアスタックを数操作でデプロイできる

・Juju GUIと呼ばれる、ブラウザベースのインター

フェースが提供されている

　「Relationships」というのは、たとえば「WordPress

のバックエンドでMySQLが動作し、動作をNagios

で監視する」といった、ソフトウェアの関係性のこと
です。通常であれば管理者がひとつひとつ設定を追
加していく必要がありますが、Jujuではこうした「ソ
フトウェアを連携させる」ための設定をCharmにあ
らかじめ記載し、「このWordPressのインスタンス
はこのMySQLを利用する」といった指定を行うだけ
でソフトウェアを動作させることができます。
　また、Jujuには「Scaling」という概念もあります。
これは、Web環境におけるエッジサーバのような、
スケールアウト可能なサービスを扱うためのもので

す。まとめて10台のWordPressフロントエンドを
デプロイし、MySQLサーバと紐付ける、といった
操作が簡単に行えます。

◆◆Jujuの利用
　Jujuをセットアップするには、https://jujuchar
ms.com/docs/stable/reference-releasesにある
手順のとおりに操作します。2016年3月時点での操
作は次のとおりです。juju-quickstartにより、必要
な初期設定が一括で行われます。GUIのセットアッ
プも自動で実行されます（Juju GUIのデプロイにも
Jujuが用いられます）。
　Ubuntuでの操作例は図5のとおりです注10。OS X

ではbrewを、WindowsやUbuntu以外のLinux環境
ではインストールパッケージを用いてセットアップ
を行います。具体的な操作方法は前述のURLを参照
してください。
　デフォルト設定の『ローカル』環境で動作させる場
合、クラウドイメージのダウンロードが行われます。
日本国内で実施する場合はダウンロードに1時間程
度かかるので注意してください。iftopなどの通信状
態を確認できるソフトウェアを併用して動作状態を
確認するとよいでしょう。
　なお、操作手順の中でadd-apt-repositoryコマン
ドでPPAを追加しています。これは、JujuはUbuntu

のリリースよりも速いペースで更新されるため、リ
リース版に含まれるパッケージではなく、PPAにあ
るパッケージを利用するのが原則となるためです。
　quickstartの実行後、図6のように操作すると、

注10） Jujuは進歩が非常に早いため、PPAからの利用が強く推奨さ
れています。

 ▼図5　Jujuのセットアップ

sudo apt-get install python-software-properties
sudo add-apt-repository ppa:juju/stable
sudo apt-get install juju-quickstart juju-core
juju-quickstart

 ▼図6　 バックエンドにMySQLを持つWordPressのセッ
トアップ

juju deploy wordpress
juju deploy mysql
juju add-relation wordpress mysql
juju expose wordpress

https://jujucharms.com/store
https://jujucharms.com/docs/stable/reference-releases

88 - Software Design

2年ぶりのLTS

安定のUbuntu 16.04の新機能第2特集

「バックエンドにMySQLを持つWordPress」を簡単
にセットアップできます。この例が示すように、Juju
の操作は、「パッケージをインストールするように」
という謳

うた

い文句のとおり、APTに似たものになって
います。
　Jujuは、Juju GUIを用いてブラウザから操作する
こともできます。デモサイトが用意されているので、
http://www.ubuntu.com/cloud/jujuからアクセス
してみてください。

●Juju GUI 2.0

　16.04のJujuには、「Juju GUI 2.0」と呼ばれる新
しいWebインターフェースが搭載されています。Juju
GUI 2.0では、CharmがアップロードされたCharm

Storeが統合され、必要なCharmを簡単に追加でき
るようになっています。また、ドラッグ&ドロップ
でRelationshipsを指定できるようになったこと、
GUI上での操作が高速化されています。

●Juju 2.0

　16.04世代でのJujuは、Juju 2.0系へのメジャー
バージョンアップが行われ、以下のような大きな変
更が行われる予定です。前述のとおり、Jujuのリリー
スタイミングはUbuntuとは完全には同期していない
ため、PPA経由での提供となる見込みです。なお、
「Juju 2.0」と「Juju GUI 2.0」は別物で、後者はJuju

1.x系にも対応する新世代のWebインターフェース
です。

・CLIコマンドの整理

・『ローカル』環境向けにLXDをサポート

・「ノード」の名称変更

◆◆CLIコマンドの整理
　Jujuは猛烈なスピードで開発が続けられてきたた
め、無数のサブコマンドとそのオプションを把握し
ないと操作できない状態になりつつあります。Juju

2.0ではこれらが整理され、わかりやすい形に統合さ
れる予定です。
　たとえば、Juju環境のバックアップを行うコマン

ドは「juju backups」サブコマンドに含められていた
ため、「juju backups create」「juju backups restore」
でした。同様の、サブコマンドを用いたさまざまな
操作が存在しています。
　Juju 2.0ではこれらが「juju cretae-backup」「juju

restore-backup」といった形式になります。https://
jujucharms.com/docs/devel/command-changes に
現時点でのコマンド変更が準備されています。

◆◆LXDのサポート
　Jujuは、IaaS的な環境を利用しない『ローカル』環
境（自マシンだけを使った環境）でも動作させること
ができます。1.x系ではLXCをサポートしており、
自マシン上でコンテナとして仮想マシンを稼働させ
てIaaS環境の代替としていました。しかし、この環
境は「ブートストラップ」にあたるmachine-0として、
Jujuを実行する自マシンそのものが提供される必要
がありました。このことは、『ローカル』環境には
Ubuntuマシンが必須であることを意味します。
　2.x系ではLXDを使ってネットワーク越しにコン
テナが利用できるため、自マシン以外のUbuntu環境
を使って環境を構成できます。

◆◆「ノード」の名称変更
　Juju 1.0では、「ブートストラップノード」と「実環
境」という2つの概念が扱われていました。「ブート
ストラップノード」はJujuそのものの各種設定を保
持し、これをIaaSなどのホスト上にデプロイしたも
のが「実環境」です。これはほぼ1：1の関係で、「1つ
のブートストラップノードにつき、1つの実環境」と
いう構成でした。たとえばEC2にデプロイしたブー
トストラップノードを使うと、そのノードに紐付い
たEC2上の実環境にアクセスできる、というモデル
です。
　Juju 2.0ではこれらが「コントローラ」と「モデル」
という概念に置き換わります。「コントローラ」にJuju

そのものの設定を保持することは変わりませんが、1

つのコントローラから複数の「モデル」を制御できる
ようになります。

http://www.ubuntu.com/cloud/juju
https://jujucharms.com/docs/devel/command-changes

88 - Software Design May 2016 - 89

Juju、MAAS、LXDなどの独自機能で際立つ

Ubuntu Server 16.04 LTSの特徴第3章

サーバの新機能

●MAAS 2.0

　MAAS（Metal As A Service）は、「物理マシンを、
IaaS的なAPIやGUIで扱う」ためのソフトウェアで
す。Webインターフェースからの簡単な操作を行う
だけで、「Wake On LanやIPMIで物理マシンの電源
を投入し、PXEでOSインストーラをブートして
KickstartでOSをインストールするとともにリモー
トログインできるように設定する」という一連の操作
を行うことができます。
　16.04では、MAAS 2.0が搭載されます。Juju 2.0

と同様、Ubuntu本体のリリースタイミングとは必ず
しも同期しない形で開発が行われているため、リリー
ス時点では開発版が搭載されている可能性があり

ます。
　MAAS 2.0の新機能は次のとおりです。

・前提となる環境をPython 3.5 + Django 1.8へ変

更

・MAASの管理ノードにあたる「クラスタコントロー

ラ」を、冗長化サポートやネットワークの分割をサ

ポートする「ラックコントローラ」で置き換え

・APIバージョンを2.0へ更新

・DNS管理機能を搭載

・Fan注11を含めた、複雑なネットワーク環境のサ

ポート

・物理マシンのストレージのパーティショニング指

定と、bcacheサポートを追加

●OpenStack Mitaka

　16.04では、OpenStack Mitakaが利用できます。
Mitakaのリリース時期が16.04のリリース日と近過

ぎるため、リリース後のアップデートでリリース版
への差し替えが行われます。

◆◆OpenStack Autopilot
　Ubuntu Serverに搭載された特筆すべき機能の1

つが、OpenStack Autopilotです。OpenStack Auto

pilotは、MAASとJujuの組み合わせでOpenStack

をデプロイし、Landscapeによる一括管理ができま
す。必要な操作は、前提となるいくつかのPPAを追
加し、APTでパッケージをインストールしてMAAS

の初期設定を行い、物理マシンを登録し、インストー
ル指定を行うだけです注12。
　初期セットアップさえ完了すれば、電源投入や
PXEによるOSインストールを含め、ほとんどの手
順をAutopilotが処理します。ハードウェアさえあれ
ば、OpenStackベースのプライベートクラウド環境
を「クラウド的な操作だけで」構築できます。
　OpenStack AutopilotはCanonicalによる商用サー
ビスですが、物理ノード10台＋仮想ノード10台ま
では無償で利用できます。

●pagemon

　16.04で追加されたソフトウェアの中で、とくに
サーバのトラブルシューティングに利用できるツー
ルが「pagemon」です。pagemonは ncursesベースの
（つまりターミナルで動作する）メモリモニタで、メ
モリページの利用種別（アノニマスページ・Dirty・
Swap）を俯瞰しつつ、その中身をバイナリエディタ
に近いインターフェースで確認できます。メモリが
逼
ひっぱく

迫したサーバの動作状態の確認や簡易デバッグに
利用できます。
　pagemonパッケージとして提供されます。基本的
な使い方は、「pagemon -p （プロセスID）」として起動
するだけです。｢

注11） Fanは、「プライベート IPアドレスを分割し、一定の規則で
ルーティングを構成することで、利用可能なネットワーク空
間を拡張する」ための実装です。詳細はgihyo.jpのUbuntu
Weekly Topics2015年 6月 26日号（http://gihyo.jp/admin/
clip/01/ubuntu-topics/201506/26）と、https://wiki.ubuntu.
com/FanNetworkingを参照してください。

注12） http://www.ubuntu.com/download/cloud/instal l-
openstack-with-autopilot参照。MAASを利用する場合、各
ホストの起動設定を「PXEのみ」に設定するなど、若干の手作
業による準備が必要です。通常は数時間程度で終了するでしょ
う。

http://gihyo.jp/admin/clip/01/ubuntu-topics/201506/26
http://www.ubuntu.com/download/cloud/install-openstack-with-autopilot
https://wiki.ubuntu.com/FanNetworking
https://wiki.ubuntu.com/FanNetworking
http://gihyo.jp/admin/clip/01/ubuntu-topics/201506/26

90 - Software Design

フリーでやろうぜ！
セキュリティチェック

　脆弱性診断というものをご存じでしょうか。
あまり聞きなれない言葉かと思いますが、脆弱
性診断とは、システムやアプリケーションの脆
弱性（セキュリティ上の問題点）を探し、どこに
どのような脆弱性があるのかということと、そ
の検出された脆弱性に対する対策を報告するサー
ビスです。
　脆弱性診断は、一般的に2つの方法を組み合
わせて実施しています。セキュリティツールを
用いたチェックと、セキュリティエンジニアに
よる手動での診断です。セキュリティツールは
有償のものや自社開発したもの、オープンソー
スのものなど数多くあります。セキュリティベ
ンダが提供する脆弱性診断では検出精度を上げ
るために、複数のセキュリティツールを組み合
わせることが多いですが、ツールは完璧ではな
く誤検知や検出漏れの可能性があるため、セキュ
リティエンジニアによる診断を行うことで脆弱
性診断の網羅性を高めています。
　ただ、セキュリティベンダに脆弱性診断を依
頼する場合、当然費用がかかります。また、診
断対象数が多いと、診断が終了するまでに多く
の時間がかかり、当初の開発スケジュールに影
響が出てしまう場合もあります。筆者は、予算
やスケジュールなどの理由から脆弱性診断を実
施せずにリリースを迎えてしまうケースを、こ
れまでも多く見てきました。しかし、これは脆

弱性を包含したままリリースしている可能性も
あり、非常に危険です。そのため、セキュリティ
ベンダに依頼しなくても簡易的なセキュリティ
チェックを自分たちで行い、少しでもリスクを
軽減することの一助になればと思い、今回およ
び次回でフリーツールを用いたセキュリティ
チェックの方法を紹介します。
　次に挙げるように、脆弱性診断は複数の種類
があります。

①プラットフォーム診断
②Webアプリケーション診断
③ペネトレーションテスト
④ソースコード診断

　これらの脆弱性診断がどのようなものかを簡
単に説明します。①はサーバやネットワーク機
器のOSやミドルウェアに存在する脆弱性や設
定上の不備を確認するためのものです。②は
Webアプリケーションに存在する脆弱性や設
定上の不備を確認するためのものです。③はシ
ステム全体を対象に実際の攻撃手法を用いてど
こまで侵入できるかという観点で確認するもの
で、①や②などを組み合わせたものです。しか
し、これは1つの問題に対してどこまで侵入で
きるかを確認するため、診断範囲や項目の網羅
性の点でいうと①や②よりも低くなります。④
はプログラムソースから問題の有無を確認する
もので、一般的に①②③はブラックボックス注1

注1） 内部情報を把握せずに実施するテスト手法。

ご注意　本稿に記載された内容を管理下または許可された環境以外に実施した場合に不正アク
セス行為と判断され、法的措置をとられる可能性があります。ご自身の管理下または管理者よ
り許可を取った環境に対してのみ実施してください。また、セキュリティチェックにより、対
象となる環境でサービス停止などの影響が出てしまう可能性があります。事前に環境のバック
アップを行うなど、何か問題が発生した場合に即時対応できるように注意を払ってください。

Author 小河 哲之（おがわ さとし） Twitter @number3to4　三井物産セキュアディレクション㈱

90 - Software Design May 2016 - 91

での実施ですが、④はホワイトボックス注2で
の実施となります。
　今回と次回で取り上げるのは、①のプラット
フォーム診断を対象とした内容です。プラット
フォームでのセキュリティチェックでは、ポー
トスキャンによる稼働サービスの確認を行い、
稼働確認ができたサービスに対して脆弱性スキャ
ンを行います。今回は、ポートスキャンによる
稼働サービスの確認について記載します。
　セキュリティ上、外部に対して公開するサー
ビスは必要最小限にすることが好ましいです。
そのため、ポートスキャンを実施し、不要なサー
ビスが稼働していないかを確認する必要があり
ます。

どんな環境が必要？

　今回および次回の解説では、2つの仮想環境
を使用します。

¡	Kali Linux
　	セキュリティチェックを実施する環境。IPアドレ
スを192.168.1.1とする。Debianベースのディ
ストリビューションで最新バージョンは2016.01。
「https://www.kali.org/」からダウンロード可
能。今回はKali Linux 64 bitを使用する

¡	Metasploitable2
　	セキュリティチェックの対象となる環境。IPア
ドレスを192.168.1.100とする。このディスト
リビューションは複数の脆弱性が包含された
環境で、脆弱性診断などのテスト環境として
活用される。VMwareのイメージが公開され
ており、「https://sourceforge.net/projects/
metasploitable/」からダウンロードできる

　使用するソフトウェアはNmapとOpenVAS

です。OpenVASについては次回で説明します。

¡	Nmap
　	ポートスキャンを行うためのツール。最新バー

ジョンは7.12（2016年３月末時点）で、「https:	
//nmap.org/」からダウンロードできる。Kali
Linuxにはバージョン7.01がインストール済
みであるため、ダウンロードは不要

¡	OpenVAS
　	脆弱性スキャンを行うためのツール。最新バー

ジョンはOpenVAS-8で「http://www.open
vas.org/」からダウンロードできる

　NmapはWindowsやCentOS、Ubuntuなどで
も利用できます。NmapはCUIのソフトウェア
ですが、GUIのソフトウェアとしてZenmapが
用意されており、ZenmapはGUIの操作だけで
なくNmapと同じコマンドも利用できます（図1）。
　Nmapは、CentOSやUbuntuにはデフォルト
でインストールされていません。次のように、
パッケージ管理ツールからインストールします。

 CentOSの場合
yum -y install nmap
 Ubuntuの場合
$ sudo apt-get install nmap

　インストールされるNmapのバージョンは
6.47注3ですが、本稿で使用する7.01と大きな
差はありません。

 ▼図1　Zenmapでのスキャン

注3） CentOS 7、Ubuntu 15.10の場合。

注2） 内部情報を把握したうえで実施するテスト手法。

https://www.kali.org/
https://sourceforge.net/projects/metasploitable/
https://nmap.org/
http://www.openvas.org/

92 - Software Design

Let's ポートスキャン

　ポートスキャンとは、TCPまたはUDPのパ
ケットをスキャン対象のサーバやPCに送り、
スキャン対象の挙動からポートの稼働状況を調
査する行為です。
　TCPとUDPではプロトコルが異なるため、
ポートスキャンの方法も異なります。そのため、
どちらのプロトコルでスキャンを行うのかは、
スキャンタイプとしてコマンドラインオプショ
ンから指定します。また、TCPに対するポー
トスキャンでもいくつか方法があり、一般的に
よく使われるのは、CONNECTスキャンと
SYNスキャンです（図2）。CONNECTスキャ
ンは3 Way Handshakeを行うことで、ポート
の稼働を確認します。一方、SYNスキャンは
スキャン対象からSYN/ACKパケットが返っ
てくるかだけで、ポートの稼働を確認します。
SYNスキャンはCONNECTスキャンに比べて、
パケット量が少なく早く終わるため、SYNス
キャンでのポートスキャンを推奨します。
　一般ユーザでは権限上の理由からSYNスキャ
ンができません。そのため、CONNECTスキャ
ンのみとなります。管理者ユーザは両方とも利
用できますが、明示的にオプションでCONNECT

スキャンを指定しない限り、SYNスキャンが
実行されます。

 nmapの書式
nmap [スキャンタイプ] [オプション] {スキャン対象}

 スキャンタイプ……-sS、-sUなどで指定（省略可）
 オプション……-sV、-Oなどで指定（省略可）
 スキャン対象……IPアドレスなどで指定（必須）

　オプションを何も指定せずに実施した結果（図

3）と、Metasploitable2にログインしてnetstat

を実行した結果（誌面での掲載は省略）を比べて
みてください。いくつかのポートがNmapでは
検出できていません。その理由は、オプション
を指定しない場合にNmapは、一般的によく利
用されている上位1,000ポートのみしかスキャ
ンを行わないためです。すべて検出するための
オプションについては次節で紹介します。
　ポートスキャンの結果はポートごとに「STATE」
に出力され、open、closed、filtered、unfiltered、

SRC DST
SYN

ACK
RST

SYN/ACK

CONNECTスキャン
SRC DST

SYN

RST
SYN/ACK

SYNスキャン

 ▼図2　CONNECTスキャンとSYNスキャン

 ▼図3　オプションを何も指定せずに、nmapを実施した結果

nmap 192.168.1.100 ←Kali Linuxで、管理者権限
で実行（以降の実行例も同様）

Starting Nmap 7.01 (https://nmap.org) at ｭ
2016-02-14 15:19 JST
Nmap scan report for 192.168.1.1
Host is up (0.00010s latency).
Not shown: 977 closed ports
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
 （..中略..）

一部の結果は中略とし
ているが、実際には23
個のポートの情報が出
力される6667/tcp open irc

8009/tcp open ajp13
8180/tcp open unknown
MAC Address: 00:0C:29:A6:09:47 (VMware)

Nmap done: 1 IP address (1 host up) ｭ
scanned in 0.09 seconds

STATE 状態
open 該当ポートは稼働している
closed ポートへアクセス可能だが、アプリケーションが稼働していない
filtered ファイアウォールなどでフィルタされたため、該当ポートまでたどり着いていない
unfiltered ポートへアクセス可能だが、ポートが開いているか閉じているか判別できない
open|filtered ポートが開いているかフィルタされているか判別できない
closed|filtered ポートが閉じているかフィルタされているか判別できない

 ▼表1　ポートスキャンの結果

92 - Software Design May 2016 - 93

open|filtered、closed|filteredのいずれかになり
ます（表1）。
　オプションを指定しないときにスキャンされ
る1,000ポートは、「nmap-servicesファイル」
の「頻度」の高い順に実施されます。nmap-

servicesには「サービス名」「ポート番号・プロ
トコル」「頻度」が記載されています（リスト1）。
「頻度」は数値の大きいほうが優先度が高くなり、
0から1未満の範囲で設定されています。

これを押さえれば大丈夫、
Nmapのオプション

　Nmapのオプションは70以上あり、すべてを
紹介できませんが、有用なものをいくつか紹介
します。

 スキャン対象の指定

　スキャン対象の指定方法はいくつかあります。
スペース区切りで複数のスキャン対象を同時に
指定する方法やCIDR（Classless Inter-Domain

Routing）でセグメントを指定することも可能です。

nmap 192.168.1.100 10.1.1.100 ←複数指定
nmap 192.168.1.0/24 ←セグメントで指定
nmap 192.168.1.100-110 ←範囲指定

　ファイルにスキャン対象を記述し、-iLオプ
ションでそのファイルを指定することで、一括
でスキャンを行うことも可能です。

 list.txt
192.168.1.100-254
19.1.1.0/24

nmap -iL list.txt

　--excludeオプションを合わせて指定するこ
とで、指定した範囲をスキャン対象から除外す
ることも可能です。一時的に特定のサーバやネッ
トワークをスキャン対象から除外する場合に、
有用です。

nmap -iL list.txt --exclude ｭ
192.168.1.200-254

 スキャン対象の探索

　-snオプションは、スキャン対象となるホスト
の探索に活用することが可能です（図4）。管理
が行き届いていないセグメントに、どのくらいネッ
トワークに接続された機器があるかを確認する
ときなどに有用です。特定セグメントに対して
pingやTCP/80、TCP/443などによる探索を

行います。TCP/80、TCP/443に
ついては、サービスが稼働してい
なくても、Resetパケットの有無
で存在の確認を行っています。以
前のバージョンでは-sPオプショ
ン（Ping Scan）でしたが、現在の
バージョンでは両方のオプション
が使用できます。
　Nmapは通常、スキャン対象が
稼働しているかを確認し、稼働し
ている場合にポートスキャンなど
を行いますが、-Pnオプションを
指定すると、稼働状況の確認を行
わずにポートスキャンなどを実施
します。そのため、ホストが存在
しない場合でもポートスキャンを

 ▼リスト1　nmap-services（抜粋）

 （..略..）
finger 79/tcp 0.006022
finger 79/udp 0.000956
http 80/sctp 0.000000 # World Wide Web HTTP
http 80/tcp 0.484143 # World Wide Web HTTP
http 80/udp 0.035767 # World Wide Web HTTP
 （..略..）

 ▼図4　-snオプションでホストの探索を行った結果

nmap -sn 192.168.1.0/24

Starting Nmap 7.01 (https://nmap.org) at 2016-02-15 ｭ
20:30 JST
 （..中略..）
Nmap scan report for 192.168.1.100
Host is up (0.00018s latency).
MAC Address: 00:0C:29:A6:09:47 (VMware)
 （..略..）

94 - Software Design

試みます。

nmap -Pn 192.168.1.0/24

　-nオプションは、スキャン対象である IPア
ドレスのDNSによる逆引きを行わないための
ものです。DNSの逆引きによる時間を短縮す
る効果が期待できます。

nmap -n 192.168.1.0/24

 スキャンプロトコルの指定

　-sTオプションはTCPのCONNECTスキャ
ンです。

nmap -sT 192.168.1.100

　-sSオプションはTCPのSYNスキャンです。

nmap -sS 192.168.1.100

　-sUはUDPに対するスキャンオプションです。

nmap -sU 192.168.1.100

 スキャン対象ポートの指定

　-pオプションはスキャンするポートを指定
するもので、指定方法は複数あります。ある範
囲をハイフンで指定するか、ポートをカンマ区
切りで複数指定することが可能です。

nmap -p 1-1023 192.168.1.100 ←範囲指定
nmap -p 21,22,23,25,53,80,443 ｭ
192.168.1.100 ←複数指定

　フルポートに対してスキャンを実施する場合、
1-65535、または -p-オプションを指定する必
要があります。

nmap -p 1-65535 192.168.1.100

　では、もう一度Metasploitable2に対して、
フルポート指定でポートスキャンを実施してみ
てください。図3の結果よりも8ポート多く検

出されています（図5）。先ほどは1,000ポート
のみだったのに対して、今回はフルポート指定
でポートスキャンを行ったために、より多く検
出されるようになりました。一部ループバック
アドレスや IPv6でLISTENされているサービ
スがありますが、netstatの実行結果と一致し
ます。
　T:1-65535,U:1-1023というように、TCPに
対するポート範囲はT:を、UDPに対するポー
ト範囲はU:を指定することで、TCP、UDPを
同じタイミングでポートスキャンすることがで
きます。ただし、-sSや-sTなどでTCPへのス
キャンを明示的に指定されていない場合、
TCPに対するポートスキャンは行われません。
同様に、-sUで明示的に指定されていない場合は、
UDPに対するポートスキャンは行われません。

nmap -sS -sU -p T:1-65535,U:1-1023 ｭ
192.168.1.100

　ポートスキャンするポートを指定しない場合、
頻度の高い1,000ポートが対象になりますが、
--top-portsオプションで対象のポート数を変
更できます。頻度の高い2,000ポートの場合は
次のようになります。

nmap --top-ports 2000 192.168.1.100

　また、-Fは高速オプションですが、これは
頻度の高い100ポートを実施します。

 ▼図5　フルポート指定で、nmapを実施した結果

nmap -p- 192.168.1.100

Starting Nmap 7.01 (https://nmap.org) ｭ
at 2016-02-15 22:28 JST
Nmap scan report for 192.168.1.100
Host is up (0.000091s latency).
Not shown: 65504 closed ports
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
 （..中略..）

一部の結果は中
略としているが、
実際には31個の
ポートの情報が
出力される51671/tcp open unknown

53075/tcp open unknown
MAC Address: 00:0C:29:A6:09:47 (VMware)
 （..略..）

94 - Software Design May 2016 - 95

 バージョンスキャン、OSの検出

　Nmapには、稼働しているポートのより詳細な
情報を収集するバージョンスキャンやOSの検
出を行う機能があります。「nmap-service-probes

ファイル」には、サービスごとの特徴が保存さ
れています。バージョンスキャンは、その特徴
をもとに稼働しているサービスと照合させるこ
とで、サービスを特定することができます。そ
のため、一般的なポート番号から変更している
サービスも検出できます。たとえば、通常
FTPはTCP/21番で稼働していますが、TCP

/2121番に変更している場合も検出できます。
　-sVオプションでバージョンスキャンが行わ
れます（図6）。バージョンスキャンはポートスキャ
ンを実施し、稼働しているポートに対してバー
ジョン情報の収集を行います。そのため、ポー
トスキャンのみを行うよりも時間はかかってし
まいます。TCP/9100～9107のポートがバージョ
ンスキャンの対象に含まれている場合、ポート
スキャンは実施されますが、バージョンスキャ
ンは該当ポートに対しては実施されません。
TCP/9100～9107のポートはプリンタで利用さ
れており、バージョンスキャンにより大量の印
刷が行われる可能性があるため、バージョンス
キャンから除外されています。--allportsオプショ

ンを指定すれば、強制的にTCP/9100～9107の
ポートもバージョンスキャンが行われるように
なりますが、よほどの必要性がない限りは実施
しないことを推奨します。
　OSの検出は、-Oオプションを指定します（図

7）。ICMP、TCP、UDPの稼働ポートおよび
稼働していないポートへの通信を試みて、挙動
などからOSの種類を検出します。OSの検出
は挙動からの推測となるため、特定されないこ
とが多々あります。
　-Aオプションは、バージョンスキャン（-sV）や
OSの検出（-O）や後述するNmap Script Engine

の一部（-sC）、traceroute（--traceroute）を組み合
わせたものです。

 ポートスキャンのパフォーマンス

　Nmapには、ポートスキャンのスピードなど、
パフォーマンスをカスタマイズするためのオプ
ションが用意されています。
　--min_rtt_timeoutオプション、--max-rtt-time

outオプション、--initial-rtt-timeoutオプション
は、応答時間のタイムアウトをミリ秒単位で設
定するものです（これらを明示的に指定しない場
合、タイムアウトになる時間はそれまでのレスポ
ンス時間をもとに算出されます）。ただ、ネットワー
ク環境によりますが、基本的にこれらのオプショ

ンを個別に設定する必要性は低い
です。
　--min-parallelismオプション、
--max-parallelismオプションは、

 ▼図7　OSの検出の結果

nmap -O 192.168.1.100
 （..中略..）
MAC Address: 00:0C:29:A6:09:47 ｭ
(VMware)
Device type: general purpose
Running: Linux 2.6.X
OS CPE: cpe:/o:linux:linux_ ｭ
kernel:2.6
OS details: Linux 2.6.9 - 2.6.33
Network Distance: 1 hop
 （..略..）

 ▼図6　バージョンスキャンの結果

nmap -sV 192.168.1.100
 （..中略..）
Not shown: 977 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 2.3.4
22/tcp open ssh OpenSSH 4.7p1 ｭ
Debian 8ubuntu1 (protocol 2.0)
 （..中略..）
2121/tcp open ftp ProFTPD 1.3.1
3306/tcp open mysql MySQL 5.0.51a-3ubuntu5
5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7
5900/tcp open vnc VNC (protocol 3.3)
6000/tcp open X11 (access denied)
6667/tcp open irc Unreal ircd
8009/tcp filtered ajp13
8180/tcp open unknown
MAC Address: 00:0C:29:A6:09:47 (VMware)
 （..略..）

一部の結果は中略としている
が、実際には23個のポートの情
報が出力される

96 - Software Design

ポートスキャンやスキャン対象の探索を行うときの
並列処理数を指定します。--max-parallelismを1

とすると、並列処理はされなくなります。何も指定
がない場合、ネットワーク状況に応じて変動します。
　--max-retriesオプションは、パケットがフィ
ルタされている場合やネットワーク上で喪失した
場合に、再送する回数を指定します。デフォル
トは10回で、1を指定した場合、再送されません。
　--scan-delayオプションは、パケットの送信を
指定された時間分遅延させます。ただし、ここ
で指定された遅延時間は、ポートスキャンのみに
適用されます。バグのため現在のバージョンで
はバージョンスキャンには適用されません。
--max-scan-delayオプションは、最大遅延時間を
指定するもので小さい値にすることでスキャンに
かかる時間は短縮されますが、その分、スキャ
ン対象への負担は大きくなります。

nmap --scan-delay 500ms 192.168.1.100

　この場合、ポートスキャンが1,000ポートに
対して行われるため、スキャンを行う側（Kali

Linux）から送信されるSYNパケットが1,000

個注4で、1パケットを送信するごとに0.5秒遅
延を発生させるため、スキャンには理論上500

秒かかります。実際に10回の統計を平均する
と502.725秒となっており、若干の誤差はあり
ますが理論上の時間に近い結果となっています。
　このように --max-rtt-timeoutや --max-scan-

delayなどで個別に値を指定し、パフォーマン

スを最適化することは可能ですが、ネットワー
ク環境や経験に基づくため、うまく制御するの
は非常に困難です。そのため、Nmapではパ
フォーマンス設定のテンプレートが用意されて
います（表2）。テンプレートは -T0から -T5の
6段階になっており、数字が増えるほどスキャ
ンにかかる時間は短くなりますが、その分負担
も大きくなります。Nmapのデフォルト（何も
指定しない場合）は-T3で、Zenmapは-T4が指
定されています。一般的に -T3（デフォルトの
設定値）が好ましく、-T5でスキャンをかける
ことはスキャン対象に影響が出てしまう可能性
が高まるため、避けるべきです。また、-T0や
-T1はスキャンに非常に多くの時間がかかるた
め、特殊な事情がない限りはあまり向かないオ
プションです。

 スキャン結果出力

　スキャン結果は標準出力に出力されますが、
オプションにより特定の形式で出力することが
できます。
　-oNオプションは指定したファイルにスキャ
ン結果を出力します。出力結果の最初の行に実

オプション オプションのおもな内容
-T0 平行処理数は1で、遅延時間は5分（5分に1回送信する）、再送回数は10回
-T1 平行処理数は1で、遅延時間は15秒、再送回数は10回
-T2 平行処理数は1で、遅延時間は0.4秒、再送回数は10回
-T3 平行処理数および遅延時間はネットワーク状況に応じて変動、再送回数は10回

-T4 平行処理数はネットワーク状況により変動、応答時間の最大タイムアウトは1250ミリ秒、
遅延時間は10ミリ秒、再送回数は6回

-T5 平行処理数はネットワーク状況により変動、応答時間の最大タイムアウトは300ミリ秒、遅
延時間は5ミリ秒、再送回数は2回

 ▼表2　パフォーマンス設定のテンプレート

 ▼リスト2　-oNで出力したファイルの例（output.txt）

Nmap 7.01 scan initiated Thu Mar 3 08:48:10 ｭ
2016 as: nmap -oN output.txt 192.168.1.100
Nmap scan report for 192.168.1.100
Host is up (0.00028s latency).
Not shown: 977 closed ports
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
 （..略..）

注4） パケット自体は、SYNパケットが1,000個とRSTパケット
が23個（Metasploitable2で稼働しているポートが23ある
ため）の計1,023個送信されます。

96 - Software Design May 2016 - 97

行したコマンドが出力されるので、どのコマン
ド結果なのかをあとで確認できます。

nmap -oN output.txt 192.168.1.100
 （output.txtの内容はリスト2のとおり）

　-oXオプションは出力形式がXMLで出力さ
れます。

nmap -oX output.xml 192.168.1.100

　-oNや-oXに、--append-outputオプションを付
与することで、出力ファイルへの追記を行えます。

nmap -oN output.txt -oX output.xml ｭ
--append-output 192.168.1.100

Nmap Script Engine

　Nmapには、Nmap Script Engine（以降、NSE）
というLua言語ベースのスクリプトを実行するた
めの機能があります。この機能によりポートスキャ
ンだけではなく、一部の脆弱性スキャンも実施で
きます。実行されるスクリプトは、拡張子がnse

であるNSEファイルが用意されています。Kali

Linuxの場合、/usr/share/nmap/scripts/以下
にあり、2016年3月5日時点で515ファイル存在

します。NSEファイルは表3のカテゴリに分類
され、各NSEファイルがどのカテゴリに属する
のかは、/usr/share/nmap/scripts/script.dbに
記載されています。1つのNSEファイルが属す
るカテゴリは1つだけではなく、複数のカテゴリ
に属している場合もあります。
　--scriptオプションにカテゴリ名を指定する
ことで、カテゴリに属するNSEファイルが実
行されます。カンマを入れることで、複数のカ
テゴリを指定できます。また、-sCオプションは、
--scriptでdefaultを指定するのと同じ意味にな
ります。

nmap --script auth,default 192.168.1.100

　特定のNSEファイルを指定することも可能
です。たとえば、OpenSSLの脆弱性である
HeartBleed（CVE-2014-0160）をチェックする
ssl-heartbleed.nseを用いてスキャンを実施し
ます。脆弱性が存在している場合、ポート情報
の下に詳細情報が表示されます（図8）。Heart

Bleedが存在しない環境の場合は、脆弱性スキャ
ンの結果は表示されません。
　--script-helpは、NSEファイルの概要を確
認するためのオプションです。NSEファイル
名やカテゴリを指定することで、1つまたは複
数のNSEファイルの概要を確認できます（図9）。

カテゴリ 説明
auth 認証に関連するスクリプト
broadcast ローカルネットワークで、ブロードキャストによるホスト探索をするスクリプト
brute 認証情報の推測のためのブルートフォースを行うスクリプト
default 明確な基準はないが、さまざまな観点からデフォルトで実行されるべきスクリプト
discovery SNMPやディレクトリサービスのように、稼働しているサービスから情報を収集するスクリプト
dos DoSを引き起こす可能性のあるスクリプト
exploit 脆弱性を試すスクリプト
external whoisなどのデータベースやネットワークリソースから情報を取得するスクリプト
fuzzer 予期しないパケットまたはランダムなパケットを送るためのスクリプト
intrusive ターゲットに影響が出てしまうリスクの高いスクリプト
malware マルウェアやバックドアに感染した環境かどうかをテストするスクリプト

safe サービスに影響を与えたり、ネットワーク帯域を大量に使用したり、脆弱性を悪用したりするよ
うなことがないスクリプト

version -sVのバージョンスキャンを選択したときに実行されるスクリプトで、バージョンの検出を行う
vuln 既知の脆弱性をチェックし、脆弱性があったら結果を報告するスクリプト

 ▼表3　NSEファイルのカテゴリ

98 - Software Design

　--script-updatedbは、NSEファイルのアッ
プデートを行うためのオプションです（図10）。

運用について

　いろいろなオプションを紹介しましたが、具
体的にどのように使用すれば、Nmapをうまく
活用できるのでしょうか。うまく活用するため

の3つのポイントを見ていきましょう。

¡	スキャン対象を決める
¡	スキャンの実施タイミングを決める
¡	スキャン結果の対応方針を決める

　まず、スキャン対象をどこまでにするのかを
決めます。DMZ（DeMilitarized Zone）にある
サーバのみを対象とするのか、DMZ以外も含

 ▼図9　NSEファイルの概要確認の結果

nmap --script-help ssl-heartbleed.nse

Starting Nmap 7.01 (https://nmap.org) at 2016-03-05 19:27 JST

ssl-heartbleed
Categories: vuln safe
https://nmap.org/nsedoc/scripts/ssl-heartbleed.html
 Detects whether a server is vulnerable to the OpenSSL Heartbleed bug (CVE-2014-0160).
 The code is based on the Python script ssltest.py authored by Jared Stafford (jspenguin@ ｭ
jspenguin.org)

 ▼図10　NSEファイルのアップデートを実施

nmap --script-updatedb

Starting Nmap 7.01 (https://nmap.org) at 2016-03-05 16:28 JST
NSE: Updating rule database.
NSE: Script Database updated successfully.
Nmap done: 0 IP addresses (0 hosts up) scanned in 1.04 seconds

 ▼図8　HeartBleedの脆弱性スキャンの結果（脆弱性があった場合）

nmap -p 443 --script ssl-heartbleed.nse 192.168.1.215

Starting Nmap 7.01 (https://nmap.org) at 2016-03-03 02:51 JST
Nmap scan report for 192.168.1.215
Host is up (0.00019s latency).
PORT STATE SERVICE
443/tcp open https
¦ ssl-heartbleed:
¦ VULNERABLE:
¦ The Heartbleed Bug is a serious vulnerability in the popular OpenSSL cryptographic ｭ
software library. （..中略..）
¦ State: VULNERABLE
¦ Risk factor: High
¦ OpenSSL versions 1.0.1 and 1.0.2-beta releases (including 1.0.1f and ｭ
1.0.2-beta1) of OpenSSL are affected by the Heartbleed bug. （..中略..）
¦
¦ References:
¦ http://www.openssl.org/news/secadv_20140407.txt
¦ https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
¦_ http://cvedetails.com/cve/2014-0160/
MAC Address: 00:0C:29:73:19:B8 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 0.23 seconds

脆弱性スキャンの結果（脆弱性の詳細情報）

98 - Software Design May 2016 - 99

めて対象にするのか、優先度に応じて実施範囲
を決めます。すべてのサーバ、ネットワーク機
器などを極力網羅的に実施することを推奨しま
す。対象数が多い場合、複数のグループに分け
て実施するなどして1回のスキャンにかかる負
担を減らすほうがいいでしょう。TCPについ
てはフルポートで実施し、UDPについてはよ
く使われる1,000ポートを対象として行うのが、
効果的です。

nmap -sS -p- -sV -oX output_tcp.xml IPアドレス
nmap -sU -sV -oX output_udp.xml IPアドレス

　次にスキャンの実施タイミングですが、定期
的な実施を推奨します。たとえば、DMZや重
要なサーバは4半期に1回とし、それ以外は年
に1回実施するなど、優先度に応じて実施回数
を変更するのがいいでしょう。現在稼働してい
る環境だけではなく、これから構築する環境に
ついてもカットオーバー前にスキャンを実施し、
事前に問題点に対応することを推奨します。ま
た、スケジュールを立てる際には、スキャンや
それに対する改修も前もって計画しておくこと
が重要となります。
　Nmapの結果は、ndiffを利用することで効率
良く分析が行えます。ndiffは、Nmapの結果
（XML形式）の差分を出力してくれます（図11）。
そのため、前回の実施結果からどのような変化

があったのかを簡単に把握できます。
　3点目のスキャン結果の対応方針を決定する
には、「どのサービスが稼働していることが正
常なのか」を事前に把握しておく必要がありま
す。そのうえで、不要なサービスは停止します。
稼働しているサービスでも、不特定多数の人へ
の公開が不要なものであれば、アクセス制限を
かけることが好ましいです。また、アプリケー
ションによってはバージョン情報などを出力す
るものがあり、外部に対して公開する情報は必
要最小限にしたほうがよりセキュアになるため、
アプリケーションで出力されているバージョン
情報などは可能な限り秘匿することを推奨しま
す。ただし、バージョン情報を消したからといっ
て、攻撃を受けないというわけではないので、
脆弱性がある場合は適切に対応する必要があり
ます。
　今回は、ポートスキャンによるサービスの稼
働状況を把握する方法について紹介しました。
次回は稼働するサービスへの脆弱性スキャンに
ついて紹介します。｢

 参考サイト
¡	Nmap　https://nmap.org/

¡	Nmap リファレンスガイド（日本語）

	 https://nmap.org/man/jp/

¡	Kali Linux　https://www.kali.org/

 ▼図11　ndiffによるスキャン結果の差分出力

 ↓ポートスキャンを実施
nmap -oX first.xml -sS -p- -sV 192.168.1.100
nmap -oX second.xml -sS -p- -sV 192.168.1.100

 ↓スキャン結果の差分を出力
ndiff first.xml second.xml
-Nmap 7.01 scan initiated Sat Mar 05 22:26:07 2016 as: nmap -oX first.xml -sV 192.168.1.100
+Nmap 7.01 scan initiated Sat Mar 05 22:36:53 2016 as: nmap -oX second.xml -sV 192.168.1.100

 192.168.1.100, 00:0C:29:A6:09:47:
-Not shown: 979 closed ports
+Not shown: 977 closed ports
 PORT STATE SERVICE VERSION
-25/tcp open smtp Postfix smtpd
+25/tcp filtered smtp
+80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)
+3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

https://nmap.org/man/jp/
https://nmap.org/
https://www.kali.org/

100 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

「仮想化」とは？

定義

　一般的な「仮想」とは現実ではないものを想像
して作ることですが、ICT（情報通信技術）にお
いては物理的なリソースを論理的に組み合わせ
て、あたかも1つの物理的なものに見せかける
しくみのことです。もう少し具体的に言うと、
複数の物理的なシステムやディスクなどを、あ
るいは、1つの物理的なシステムやディスク、
ネットワークの中のリソース／構成要素を、論
理的に組み合わせて、1つのシステムやディスク、
あるいは1つのネットワークとして実現し、利

用するしくみです。
　前者のように物理的なもの「それ自体」を組み
合わせる形態（図1①）と、後者のように物理的
なもの「の中のリソース」を組み合わせる形態（図
1②）と、仮想化の実現形態には2通りあります。

歴史

　1964年の IBMのSystem/360上で稼働した
CP-67/CMS注1が仮想化の始まりです。以降、
IBMは仮想化OSのVM/CMS注2として、最近
ではz/VM注3となっています。
注1） Control Program-67/Cambridge Monitor System →

Conversational Monitor System（CP-67/CMS）、仮想化
OSはVM/CMS。

注2） VM/CMS：Virtual Machine/Conversational Monitor
System、仮想機械 /対話モニタシステム

注3） z/VM：zアーキテクチャ/Virtual Machine（仮想機械）

仮想化の知識、再点検しませんか？

使って考える
仮想化技術

第1回 仮想化の現状を見てみよう

本連載は「仮想化を使う中で問題の解決を行いつつ、残される課題を整理する」
ことをテーマに、小さな仮想化環境の構築・運用からはじめてそのしくみを学
び、現実的なネットワーク環境への実践、そして問題点・課題を考えます。仮
想化環境を扱うエンジニアに必要な知識を身につけてください。

笠野 英松（かさの ひでまつ）
有限会社 ネットワーク・メンター

Author

URL http://www.network-
mentor.com/indexj.html

 ▼図1　仮想化のイメージ

①物理的ハードウェア群の論理的システム化

物理的リソース

②物理的ハードウェア内要素の論理的システム化

論理的リソース 「仮想化」

http://www.network-mentor.com/indexj.html

May 2016 - 101100 - Software Design

仮想化の現状を見てみよう
第1回

　現在、利用されている仮想化の初めは、1998

年のVMware注4 Workstationです（VMwareは
その後サーバ製品リリースへ続く）。
　2008年にはマイクロソフトのWindows

Server 2008に搭載されたHyper-V注5が、また、
Xen注6の開発は、2002年からケンブリッジ大
学の研究プロジェクトXenoServer Projectと
して始まり、最初のリリースは2003年でした。
　Linuxカーネル2.6.20以降に標準添付される
ようになったオープンソースのKVM注7は少し
遅れて 2006年ですが、2011年 5月 17日に、
IBMや Intel、HP、Red Hatを中心としてオー
プンコンソーシアムOVA注8が立ち上がり、
KVMの利用が広がりました。
　一方、Xen Projectも 2013年 4月 15日に
Amazon や Google、AMD、Cisco、Citrix、
Oracleなどが参加するLinux Foundation協業
プロジェクトとなりました。XenはRHEL注95

まではOS同梱でしたが、RHEL6からは非同
梱になり、一方、KVMはLinux OSに同梱となっ
ています。

エミュレータ

　仮想化と同じように、あるプラットホーム上
で別システムを稼働させるしくみとして「エミュ
レータ」があります。エミュレータは、あるシ
ステム（ハードウェアやソフトウェア）の機構や
機能、動作などを別のシステム上で可能にする
しくみです。

注4） http://www.vmware.com/jp

注5） https://www.microsoft.com/ja-jp/server-cloud/local/
hyper-v-server/default.aspx

注6） http://www.xenproject.org/

注7） KVM：Kernel-based Virtual Machine
 http://www.linux-kvm.org/page/Main_Page

注8） OVA：Open Virtualization Alliance

注9） RHEL：Red Hat Enterprise Linux

「仮想化」はどんなしくみで
提供されるのだろうか？

完全仮想化と準仮想化

　仮想化の方式には、完全仮想化（FV注10）と準
仮想化（PV注11、Xenがサポート）の2つの方式が
あります。
　完全仮想化方式では、仮想マシン上ですべて
のゲストOSを通常の実ハードウェア上と同様
に動作させることができますが、ハードウェア
（CPU）の仮想化技術VT注12機構を使用しなけ
ればなりません。
　一方、準仮想化技術方式では、CPUのVT

機構がない場合にも可能な方式ですが、仮想マ
シン上で動作するためのコード修正済みのOS

でなければゲストとして動作しません。Xenの
準仮想化では、ゲストOSはLinuxなど一部の
OSに限定されます。
　なお、準仮想化方式では完全仮想化方式に比
べて、ハードウェアエミュレーションを行わな
いためCPUの消費量が少なく、性能低下を抑
えることができますが、先述のようにゲスト
OSの変更が必要になります。

VT機構を装備したプロセッサ

　VT装備のプロセッサは、執筆現在「Intel-VT」
と「AMD-V」です。これらのプロセッサは
2005、6年ころ以降に出荷されたPCに搭載さ
れています。Core 2プロセッサなどが代表的
です。また、こうしたVT機構を利用する際には、
BIOSでもこの仮想化機能を有効にしなければ
なりません。
　Linux上のコマンドでCPUの仮想化機能が

注10） fullvirtualized

注11） paravirtualized

注12） Virtualization Technology（仮想化技術）

http://www.linux-kvm.org/page/Main_Page
http://www.xenproject.org/
https://www.microsoft.com/ja-jp/server-cloud/local/hyper-v-server/default.aspx
http://www.vmware.com/jp

102 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

つめがSAN注17やRAID注18、NAS注19です。また
3番めがクラスタリングと呼ばれるサービス形
態で、製品としてはLVS注20などがあり、物理
的な多重化やNICを束ねるチャネルボンディ
ング、IPルーティング（経路）制御、ストレージ・
データ同期・共有、さらにはデータサービスな
どの技術を統合して提供します。
　論理的な実現形態については、表1でさらに
それに対応した技術形態、製品例、そして備考
をまとめています（表1中、「論理的」欄より右
の欄は論理的実現形態にのみ対する項目です）。
　システム仮想化には、いわゆる「サーバ仮想化」
（表1中、網がけ太枠内）と、単一システムOS

上でアプリケーションサーバやドメインサーバ
を複数論理的に実現する、言わば「単体仮想シ
ステム」とがあります。
　ストレージ仮想化はI/Oの物理的リソースを
論理的にI/Oの単位に「再」構成する仮想化のし
くみで、その I/O単位としてボリューム（ディ
スク）やブロック、ファイルシステム（やファイ
ル）での仮想化があります。代表的な製品も表
1に挙げました。
　ネットワーク仮想化は、VPN注21やVLAN注22

を使用する仮想化のしくみで、製品の総称とし
ては（VPNやVLANのほかに）SDN注23やOpen

Flow注24などがあります。
　多少変わったところでは、Linux Network

NameSpaceというものもあります。Linuxシ
ステム上で、複数の仮想インターフェースに
IPアドレス空間を割り当てて、複数の仮想的
なネットワーク空間を構築することができます。
SDN/OpenFlowは物理的なネットワーク（やデ
バイス）の設定や管理制御などをソフトウェア
注17） Storage Area Network（ストレージ・エリア・ネットワー

ク）
注18） Redundant Arrays of Independent/Inexpensive Disks

注19） Network Attached Storage（ネットワーク接続ストレージ）
注20） Linux Virtual Server（Linux仮想サーバ）
注21） Virtual Private Network（仮想プライベート・ネットワーク）
注22） Virtual LAN（仮想LAN）
注23） Software Defined Network（ソフトウェア定義ネットワー

ク）
注24） OpenFlowによるアプリケーションのネットワーク管理

有効か無効かを判別することができます注13。

PAE

　PAE注14とはX86-32ビットプロセッサ、ま
たはホストOSが 32ビットで、4GB以上
（64GB）の物理メモリサイズを利用可能にする
OSの拡張機能です。IntelではPentium Pro

（1995年11月）以降に搭載されています。Xen

の準仮想化を利用する場合には、このPAEが
装備されていなければなりません。
　このPAEもLinux上のコマンドで確認でき
ます注15。

「仮想化」にはどのような
ものがあるのだろうか？

仮想化のさまざまな形態

　表1は仮想化の全体像です。仮想化は、プラッ
トホームのタイプとその上での実現形態および
技術形態で全体像が見えてきます。
　仮想化の実現形態には物理的な形態と論理的
な形態がありますが、最近の仮想化とはこのう
ち、論理的な形態でネットワーク仮想化やスト
レージ仮想化、システム仮想化（「システムでの
仮想化注16」）を指します。
　物理的な実現形態には利用するプラットホー
ムに応じて、ハードウェアラックになったコン
ピュータボード複数で論理的にサーバ化したり、
ストレージを複数で論理的にストレージ化した
り、システムやストレージおよびネットワーク
を統合して複数論理的にクラスタ化したりといっ
た方法があります。最初のハードウェアラック
のボードがBlade Serverと呼ばれるもので、2

注13） コマンド＝egrep -e 'vmx|svm' /proc/cpuinfo
（vmx：Intel-VT、svm：AMD-V）このコマンドで表示があ
れば、そのVT機構が有効になっています。何も表示され
なければハードウェアのVT機構が使用できないので、
Xenでは準仮想化方式しか使用できません（ゲストOSが限
られてくる）。

注14） Physical Address Extension

注15） コマンド＝grep pae /proc/cpuinfo
表示＝ flags : fpu tsc msr PAE cx8 apic mtrr cmov pat
clflush acpi mmx fxsr sse sse2 ss ht up cid

注16） ここでは便宜的に記述していて、正式な用語ではない。

May 2016 - 103102 - Software Design

仮想化の現状を見てみよう
第1回

※最太枠網がけ部分が「サーバ仮想化」

で論理的に一元化処理するしくみで、ネットワー
ク全体の仮想化ともいえます。
　さて、今回の連載のテーマは以上のような仮
想化の中の「サーバ仮想化」で、仮想化基盤の
VMM（仮想マシンモニタ注25）を物理デバイス上
に配置する「ハイパーバイザ型注26」とOS上に
配置する「ホスト型」とがあります（図2）。
　従来の「サーバ仮想化」は表1の網がけ太枠内
の複数仮想化システムの欄の「ハイパーバイザ
型」のことでした。ハイパーバイザ型は、物理
システム（ホスト）上でその物理リソースを使用
する複数のVM（仮想マシン注27）を稼働させる
ので、そのために必要な十分なCPU能力、メ
モリ容量、そしてディスク容量など使用リソー
スを確保しておかなければなりません。
　代表的な製品例に、マイクロソフトの
Hyper-V、VMware 社 の VMware ESXi 注 28、
XenプロジェクトのXen、linux-kvm.orgのKVM

注25） VMM：Virtual Machine Monitor（仮想マシンモニタ）
注26） 「ベアメタル（ハードウェアに直結した、という意味）」ハイ

パーバイザ型ということもある。
注27） VM：Virtual Machine（仮想マシン）
注28） http: / /www.vmware.com/jp/support /vsphere-

hypervisor.html

があります。CitrixのXenServerやOracle VM

はXenベースの仮想化製品です。サーバ仮想化
製品については次項で説明します。
　「ハイパーバイザ型」の欄の下の「ホスト型」は
クライアントPCのOS上で仮想化を実現する
もので、VMware PlayerやVirtualBox、Win

dows 7 の Virtual PC、Windows 8 以 降 の
Client Hyper-Vが代表的な製品です。
　なお、「デスクトップ仮想化」とは仮想マシン
上でデスクトップOSを構築し、iPadなどの携
帯端末BYOD注29から利用する形態で、仮想マ
シン上にサーバOSを稼動させる利用形態を、
とくに「サーバ仮想化」という場合もあります。
　最新では、ハイパーバイザ上のゲスト／仮想
マシン内にハイパーバイザを配置し、さらにそ
のゲスト／仮想マシン内にハイパーバイザを配
置し、……という、ゲストをも仮想化する「ネ
スト化（Nested、入れ子の）ハイパーバイザ型」
が出てきています。
　「ネスト化ハイパーバイザ型仮想化」を最初に
実装したのはLinuxカーネル3.2のKVMです。

注29） Bring Your Own Device、仮想マシンの利用端末として自
分の携帯端末を利用すること。

 ▼表1　さまざまな仮想化

プラット
ホーム

仮想化の実現形態
技術形態 製品例 備考

物理的 論理的

システム Blade
Server

システム
仮想化
（サーバ
仮想化）

単体仮想
システム

仮想ドメイン・
アプリケーション
サーバ

Apache仮想ホスト、Sendmail/popdom、
Java VM

仮想ドメイン・
システム chrootバーチャルサーバ、Virtual Services

複数仮想
システム

ハイパーバイザ型
（サーバ仮想化）

Hyper-V、VMware ESXi、XEN（Citrix
XenServer、Oracle VM）、KVM

利用形態
（「サーバ仮想化」、
「デスクトップ
仮想化」-BYOD）

ホスト型
（ワークステーション
仮想化）

VMware Player、VirtualBox、Virtual PC
（Win 7）、Client Hyper-V

多重仮想
システム

ネスト化
ハイパーバイザ型
（ゲスト仮想化）

KVM、Vmware ESXi/Player、Hyper-V、
XEN 「ネスト化仮想化」

ストレージ
RAID,
SAN,
NAS

ストレージ
仮想化

ボリューム、ファイル
システム、ブロック

HPE StoreVirtual VSA、Scale-Out File
Server（SOFS）、EMC ScaleIO Node、
Vmware Virtual SAN（VSAN）

ネットワーク クラスタ
リング

ネット
ワーク
仮想化

VPN、VLAN
VPN、VLAN、Linux Network Namespace
SDN（Northband/Southband API）、
OpenFlow

ゲートウェイ中核

http://www.vmware.com/jp/support/vsphere-hypervisor.html

104 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

クライアントからの運用管理が主となります。
　KVMについてはこの連載の第2回以降の実
践の中で詳しく説明していきます。

仮想化環境の運用管理

　一般的な仮想化管理は「仮想化インフラと仮
想マシンの、個々およびそれぞれの間の、性能
や障害、リソースなどの運用管理」になりますが、
実際には一般の運用管理やネットワーク管理に
加えて、仮想化システム内での①階層化管理と
②仮想ネットワーク管理、③セキュリティ管理、
そして、④仮想環境と仮想マシンの運用管理が
あります。具体的なイメージは図3のようなも
のです（次回に概説します）。
　階層化管理はサーバ内のVMMとその上の
VM、そしてこれに接続する実端末、および、
実際の利用者という４階層の階層間（縦、上下）
および階層内（横）のアクセス・運用管理です。
　仮想ネットワーク管理は仮想環境ネットワー
クと実・仮想ネットワークの運用管理です。
　セキュリティ管理では、実環境と仮想環境の
インターフェースと仮想環境内の各構成要素間
のインターフェースの2つのインターフェース
でのアクセス制御です。

現在ではVMware ESXi（バージョン5.0以降）
や、Hyper-V Server（2016以降）、そして Xen

でも利用可能になっています。
　ネスト化ハイパーバイザ型仮想化では仮想化
環境内で、仮想化環境のテストや仮想化環境全
体のバックアップやコピーを含めた運用管理、
セキュリティ管理などを高速かつ効率的に処理
することが可能になります。
　ただし、もちろん、ベースとなる物理システ
ムではネスト化ハイパーバイザ型仮想化の運用
に耐えうるに十分な性能や容量などがなければ
なりません。

サーバ仮想化製品の概要

　主なサーバ仮想化製品の、Xen、KVM、VM

ware ESXi、 Hyper-Vについては次号以降であ
らためて紹介する予定ですが、簡潔にまとめて
おきます。
　XenとKVMはLinuxベースにサポートされ
る仮想化プラットホームで、ほぼ同じCUI（コ
マンド・操作）とGUI（仮想マシンマネージャ）
で運用管理を行います。リモートからはVNC

などを使います。
　VMware ESXiとHyper-Vサーバはリモート

 ▼図2　サーバ仮想化の形態

AP
ゲストOS

仮想ハードウェア
VM

VMM

VMM

ホストOS

実ハードウェア実ハードウェア

ハイパーバイザ型

AP：アプリケーションプログラム
VM：Virtual Machine（仮想マシン）
VMM：Virtual Machine Monitor（仮想マシンモニタ）

ホスト型

AP

AP

ゲストOS

ゲストOS

仮想ハードウェア

仮想ハードウェア

VM

VM
AP

AP

ゲストOS

ゲストOS

仮想ハードウェア

仮想ハードウェア

VM

VM
一般
AP

May 2016 - 105104 - Software Design

仮想化の現状を見てみよう
第1回

　仮想環境と仮想マシンの運用管理は、具体的
には、管理者が行う仮想環境の運用管理と仮想
マシン上のシステム（サーバ、デスクトップ）の
運用管理です。仮想マシンを利用する者、つま
り利用者自身に任せるしくみ、それが「利用者
自身運用管理」です。一般には、仮想化管理者
が利用者や利用者端末の運用管理を行いますが、
仮想マシンについては利用者自身がよく知って
いるわけなので利用者自身に任せることができ
ます。これによって仮想環境管理者の負担を軽
減でき、より効率的な仮想化管理が可能になり
ます。

次回以降：「サーバ仮想化」
を実践していきましょう

　次回以降の本連載は、ハイパーバイザ型サー
バ仮想化を題材に、CentOS 6.7上のKVMを
使って、ホストシステムや仮想環境の構築から
仮想マシン／ゲストシステムの利用まで実際に

使ってみながら仮想化の問題を考えてみます。
　連載の前半では、デフォルト最低限の仮想環
境、つまり、単一仮想マシンシステムとしての
利用から進めて、後半で現実の使い方である、
複数仮想マシン／ゲストシステムの仮想ネット
ワークと物理ホストを含む実ネットワークから
構成されるネットワーク環境での仮想化を試し
てみます。s

 ▼図3　仮想化管理の位置づけ

連載各回では、読者皆さんからの簡単な「ひとく
ち質問（QA）コーナー」や「何かこんなこともしてほ
しい要望（トライリクエスト）コーナー」を設けて「双
方向連載」にできればと思っていますので、質問
や要望をお寄せください。

宛先：sd@gihyo.co.jp
件名に、［仮想化連載］とつけてください

VM：Virtual Machine（仮想マシン）
VMM：Virtual Machine Monitor（仮想マシンモニタ）

仮想化環境

仮想化管理者ネットワーク管理者

運用管理

実ネットワーク管理

（一般・平面型）ネットワーク管理

①
階
層
化
管
理

②

仮
想
化
管
理レイヤ4

レイヤ3

レイヤ2

レイヤ1VMM
サーバ仮想化

利用者自身運用管理

③
セ
キ
ュ
リ
テ
ィ
管
理

端末端末端末

VMVMVM

仮想ネットワーク管理

mailto:sd@gihyo.co.jp

106 - Software Design

　大阪を中心に20年間システム開発に携わった
あと、現在は東京で仕事をしている「SQLの伝
道師」ことジーワンシステムの生島です。多くの
開発現場で、「SQLをきちんと使えていない」こ
とによってさまざまな問題が多発しているのを
あまりにもよく見かけるので、「SQLをまとも
に理解しよう運動」を呼びかけるために、この連
載を書いています。
　前回までに、浪速システムズに勤める大道君
という若いエンジニアの相談を受けて、いくつ
か確認したことをまとめたものが、図1です。
　たとえば、あるテーブルから一部のデータを

「ループ」が引き起こす
3つの問題

抽出したり、集計したり、複数のテーブルを結
合したりする場合、これらはいずれも「データの
集合に、定型的処理を加えて、別な集合を作る」
操作です。そして重要なのは、この「定型的処
理」をする際にSQLなら「①：ループが不要であ
る」ということです。
　「毎回ループを強調していますけど、どうして
そんなに重要なんですか？」と大道君。
　「ループを使うといろいろ困った問題が起こる
んよ。ざっくり言うとこの3つやな」

・バグが増える
・工数がかさむ
・性能が出ない

　「それぞれどうしてか、リスト1を見比べてみ
れば想像つくやろ？」
　リスト1は本連載の第
1回でも載せた、Javaと
SQLで似た集計処理をす
るコードの例です。
　「Javaプログラムのほ
うはループなんですよね。
つまり……バグが増える
のは、ループを使うと

生島氏
DBコンサルタント。性
能トラブルの応援のた
め大道君の会社に来た。

大道君
浪速システムズの新米
エンジニア。素直さと
ヤル気が取り柄。

五代氏
大道君の上司。プロ
ジェクトリーダーで
もある。

登
場
人
物

紹
介

 原案 生島 勘富（いくしま さだよし） info@g1sys.co.jp ㈱ジーワンシステム
 構成・文 開米 瑞浩（かいまい みずひろ）　 イラスト フクモトミホ

アプリケーション（AP）サーバでのループ処理は、システムの性能を急激に悪化させる一因ですが、いったいルー
プの何が悪いのでしょうか。今回、大道君はAPサーバとデータベース（DB）サーバの役割を整理することで、ルー
プが良くない理由と、集計はできるだけSQLでやったほうが良い理由が、見えてきたようです。

DBサーバとAPサーバの役割分担を知っておこう第3回

データの
集合に

2
2

3

7

定型処理を
加えて結合抽出 集計

集合を作る

①ループ不要
②意外に複雑な
　操作も可能

 ▼図1　SQLは集合指向の言語

106 - Software Design May 2016 - 107

maxとか iのような作業変数、制御変数が必要に
なる分、間違えて書くリスクが増えるからで……
そうすると書く量が増えてバグも出やすいから
工数がかさむのは当然で……」
と、大道君は自分で考えたうえで答えを返して
きます。頼もしい。
　「そのとおり！　性能は？」
　「性能が出ないのは……あれ？　ええと？」
　おっと、これがわからないということは、大
道君もコードの上だけで考えていて、実機のハー
ドウェア上でどこをどうデータが処理されて流
れていくかというイメージを持てていないのか
もしれません。

DBとAPの役割分担を考える

　「性能の件も含めて、こういう構造は知っとい

たほうがいいよ」と私は図2を見せました。
　通常、DBサーバとAPサーバ、Webサーバは
別ですので、ここではAPとWebを一緒にして
DBサーバと分けてあります。アプリケーショ
ン側のプログラムは「プレゼンテーション」「ビ
ジネス・ロジック」「データ・アクセス」の3層に
分けて考えることができます。データ・アクセ
ス層がDBサーバにSQLを投げて取得した実行
結果をデータ・セットとしてAPサーバ内に保
持し、それにビジネス・ロジックで適当な加工
を施してプレゼンテーションでユーザに対して
表示するわけです。
　DBサーバがSQL文を受け取るとパーサー、
オプティマイザが解析して実行計画を作り、そ
れを実行して結果をAPサーバに返します。
　こうした構図の中でDB性能に影響する要素

DBサーバとAPサーバの役割分担を
知っておこう第3回

 ▼リスト1　集計処理（本連載第1回のものを再掲）

 手続き型言語（Java）での集計処理（orders配列のBillingの合計、最大、平均値を算出）
 int sum = 0, max = 0, avg = 0;
 for(int i=0; i < orders.length ; i++){
 sum += orders[i].Billing;
 max = (max > orders [i] .Billing) ? max : orders [i] .Billing;
 }
 if(orders.length > 0) avg = sum/orders.length;

 集合指向言語（SQL）での集計（orderテーブルのBillingの合計、最大、平均値をcustomer_idごとに算出）
 SELECT customer_id, sum(Billing) , max(Billing), avg(Billing)
 FROM order
 GROUP BY customer_id;

 ▼図2　DBとAPの役割分担を考えるための見取り図

統計情報

ストレージメモリCPU

実行結果

データセット

テーブル
＋

インデックス

パーサー

オプティマイザ

ビジネス・
ロジック

プレゼン
テーション

実行計画

SQL

実行エンジン

DBサーバ

リソース
DB性能への影響要素
①SQLが呼ばれる回数
 パーサー、オプティマイザ負荷、通信オーバーヘッド
②実行負荷
 ストレージアクセス数、メモリ消費量、CPU負荷
③実行結果データ転送量

AP/Webサーバ

データ・アクセス

108 - Software Design

は大まかに3つあります。まず①SQL文が呼ば
れる回数が多いと、SQL文を実行計画に変換す
るパーサーとオプティマイザの処理、および通
信プロトコルによるオーバーヘッドがかさむた
め、できるだけ少ないほうが良いわけです。
　「単純なSQLをループで何千回も投げてAP

側で集計するなんてのは、論外ってわけですね」
　「そういうこっちゃ」
　次に②実行負荷に影響するのは、DBサーバ
の物理リソースであるストレージ、メモリ、CPU

をどれだけ使うかです。CPUよりもストレージ
へのアクセス回数とメモリ消費量がボトルネッ
クになる場合が多く、これを減らすためには、
テーブルとインデックスの設計、およびそれを
ふまえた効率の良いSQL文の設計が重要です。
　「ここはSQLをよく理解していないとできな
いところでしょうか？」
　「そうなんよ。SQLが苦手なエンジニアはた
いていこれができないんよね」
　最後に③実行結果データ転送量ですが、ネッ
トワークの転送速度はどうしてもメモリバスの
帯域幅よりも遅いので、使いもしないデータを
DB－APサーバ間で大量に転送するとその分遅
くなります。
　「やっぱり、集計値しか必要ないのに、明細
データを全部転送してAP側で集計するなんて
のは論外、と……」
　「論外もええとこや。リスト1のコードでも、

実際の業務APだとJavaのループ内でDBにク
エリを投げるわけやろ？　そうするとループの
回数分だけネットワーク越しにSQLを投げて大
量のデータを転送することになるわけで、①と
③に該当して遅くなる。SQLで集計すれば、ク
エリは1回で済むしネットワークを転送するの
は集計結果の小さなデータだけ」
　「じゃあ、この種の処理は必ずSQLでやるべ
きで、手続き型言語のループでやったほうがい
い場合というのは存在しないんですか？」
　「そんな場合があるんやったら教えてほしいわ
ホンマ、もちろん例外はあるけどね」
　「あ、でも、SQLでやれるのは『定型的な処理』
だけですよね？　その処理の部分が複雑になっ
てきたら、どうなんでしょう？」
　「ところが実は『定型的な処理』と言っても、結
構複雑なことができるんよ」
　「え、そうなんですか」
　「なのに、SQLが苦手なエンジニアはそれを
知らんか、知っててもやりたがらへん。ほんで、
本来SQLで書くべき処理を図2の『ビジネス・
ロジック』に載せてたりする」
　「そうすると……①、②、③の全部にひっか
かって遅くなりますか……」
　「そういうことやね～。大道君はそんなSQL

嫌いになったらあかんで～」
　ところがそんな「SQL嫌い」の開発者が私たち
の前に立ちはだかる機会は意外に早くやって来
たのです。

　それから数日後のこと、大道君から私にある
相談がありました。浪速システムズ社内の別チー
ムで作っている機能がやはり遅くて困っている
ので、意見を聞きたいとのこと。なんでも、受
注生産品の生産指示をする画面だそうで、在庫
の部品で生産可能な製品のリストと生産可能個
数を出すのだそうです。これもやはりSQLを使
わず、ものすごく複雑なループ処理で書かれて

生産計画を彩る
超絶技巧的ループ処理！

明細を大量に転送 集計値だけを転送

108 - Software Design May 2016 - 109

いました。ただ、あまりにも複雑過ぎてそのま
までは本連載では書き切れませんので、バッサ
リ大幅に単純化してエッセンスだけ示すと概要
は図3のようなものでした。なお通常は部品表
と在庫のひもづけはIDで行い、製品名や材料名
はIDでマスタテーブルから引いてくるのが普通
ですが、本記事では、やはり単純化のためマス
タテーブルを省略し、IDではなく名称で結合す
る形で示してあります。
　「要するに、在庫の部品を使って生産可能な製
品のリストを、生産可能個数つきで出すという
わけやな。まあ、こういうのは大したことない
な。SQLでやれば簡単だよ。わかる？」
　「うーん……ちょっと難しいです」
　「手続き型言語のロジックならわかるかな？」
　「わかりますけど、ソートして集計しながら製
品名が変わったのを判断して……図4みたいな
処理が必要ですよね。めんどくさいですね」
　「それがSQLきちっと使えば一発になる」
　「そこなんですけど……どう書くんですか？」
　ここは正解のSQL文を教えてあげるより、こ
の機会にSQLの考え方を応用させるほうが良さ
そうです。
　「それじゃ、前回やったみたいに、カタマリを
切り出す絵を描いてみてや？」

　「はい、それじゃ……えーと、……こんな、感
じ？（図5）」
　「おお！　めっちゃええやん。大道君もだいぶ
わかってきたで！」
　「ほんとですか？　でもまだSQL書けてない
んですけど」
　「まあ、とりあえず流れを説明してみてや」
　「じゃあ、番号順にいきますと……」
　以下、大道君の説明を箇条書きにしました。

❶結果セットの製品名の部分を部品表から切り
出す。製品ごとに集約して出すので、ここは
GROUP BYでグループ化する

❷部品表テーブルの必要量と、在庫テーブルの
在庫数を比較したいので対照表を作る。ここ
はINNER JOINで行う

❸その対照表から、「在庫数／必要量」を計算し
て小数点以下を丸めると、部品ごとに見た生
産可能数が出る

❹1つの製品についての部品ごとの生産可能数
の最小値が、その製品の生産可能数になる

❺それを「生産可能数」として結果セットに入れ
てやる

　「よーし、じゃあそれをSQLにしたってや！」
　「……あ、こうすればいいのかな？」と大道君
が書いたSQL文がリスト2でした。

DBサーバとAPサーバの役割分担を
知っておこう第3回

 ▼図4　ループ処理のためには複雑なコードを書く必要がある

作業変数

カウンタを加算しながら製品名をチェックし、製品名が変わったら
新しい製品のデータが始まったと判断して、それまでの最大値、
最小値、合計値などを保存、リセットして次の製品の処理を
始める……というコードを書く必要がある

カウンタ

製品名 部品

TV台 ガラス

TV台 ネジ

TV台 板

机 ネジ

机 板

製品名

最大値

最小値

合計値

部品表配列

 ▼図3　生産可能品一覧

 製品名 材料名 必要量
 TV台 ガラス 2
 TV台 ネジ 6
 TV台 板 8
 机 ネジ 4
 机 板 3
 食器棚 板 8
 食器棚 ネジ 32

 材料名 在庫数
 ガラス 5
 ネジ 20
 板 24

部品表
在庫

 材料名 生産可能数
 TV台 2
 机 5

結果セット

110 - Software Design

　「おっ、なかなかええやんか、これでもう一工
夫して、生産可能数がゼロの製品は出さないよ

うにするとしたら？」
　「絞り込むなら、WHERE句を付けて……」
　「WHERE句はGROUP BYした結果の絞り込みに
は使えないんよ」
　「あ、そうか、じゃあHAVINGですか。生産可
能数はTRUNCATE(MIN(…))で出るわけだから、
それが1以上という条件を付けて……」と、大道
君はリスト3を追加しました。
　「そうそう、それでリスト2とリスト3をつな
げてやればええんよ」
　「あ、これでいいんですか……」
　「単純やろ？」
　「なんだ、単純ですね……なんなんでしょう、
このシンプルさ（笑）。　ほんと、手続き型言語と

 ▼図5　生産可能品一覧生成ロジック（SQL版）

 製品名 材料名 必要量
 TV台 ガラス 2
 TV台 ネジ 6
 TV台 板 8
 机 ネジ 4
 机 板 3
 食器棚 板 8
 食器棚 ネジ 32

 材料名 在庫数
 ガラス 5
 ネジ 20
 板 24

部品表

 製品名 材料名 必要量 在庫数
 TV台 ガラス 2 5
 TV台 ネジ 6 20
 TV台 板 8 24
 机 ネジ 4 20
 机 板 3 24
 食器棚 板 8 24
 食器棚 ネジ 32 20

必要量・在庫数対照表 部品別生産可能数

在庫

 材料名 生産可能数
 TV台 2
 机 5
 食器棚 0

結果セット
 生産可能数
 2
 5
 0

 生産可能数
 2
 3
 3
 5
 8
 3
 0

最小値

❶

❷
❷

❸

❹

❺

 ▼リスト2　生産可能品一覧生成SQL文

SELECT b.製品名, TRUNCATE(MIN(z.在庫数 / b.必要量), 0) AS 生産可能数
FROM 部品表 b 　INNER JOIN 在庫 z
 ON b.材料名 = z.材料名
GROUP BY b.製品名

 ▼リスト3　生産可能品のみ絞り込むHAVING句

HAVING TRUNCATE(MIN(z.在庫数 / b.必要量), 0) >= 1

110 - Software Design May 2016 - 111

は全然違う」
　「さっきのループで書くロジックのめんどくさ
さと比べたら、月とスッポンやろ」
　「何かこう、気持ちいいんですけど（笑）」
　「そやろ？　だからSQLをちゃんと使おう、
言うてんねん。このほうがよっぽど楽や！」

ループをなくすことはSQLの設
計目標の1つだった

　「実はSQLはもともとこういう処理をループ
を使わずに書けるように、という設計思想で作
られてるから、できて当然なんよね」
　「そうなんですか！」
　「図4でそのへんがわかるけど、手続き型言語
で集計処理を書こうとすると、カウンタとか最
大／最小値とかの作業変数を用意して、それを
判断して更新するコードを書かなあかんやろ？　
その分バグも入るし工数もかかるし、遅くなる
しで、いいことは1つもない。ところがこうい
う集計処理、業務システムではよく使う。ナン
トカ一覧画面とか帳票とかを出そうとすると、
たいていこういう『集合→定型処理→集合』のパ
ターンが出てくるわけよ。だったらもうループ
を使わんで書けるようにしよう！ってんで生ま
れたのがSQL」
　「そうなんですか……ほんと、ループ使ってる
ところには要注意！なんですね」
　「そういうこっちゃ！」
　これでこの話も一件落着……と、私たちはそ
う思っていたのです。SQLをまともに使わず、
手続き型言語の死ぬほどめんどくさいループで
書かれている処理を、SQLに変えれば楽だよ、
ということで変えたものを作ってあげました。
しちめんどくさいコードがシンプルになり、わ
かりやすくなり性能も上がる。良いことづくめ
じゃないか。良かった良かった、と。

　そう思っていた数日後、五代さんがちょっと
重い表情で口を切りました。

SQL嫌いのボス登場？

　「先日の生産計画機能の件なんですけど、あ
れ、向こうの担当さんが、SQL見せられてもわ
からん、わかるように仕様書書いてくれ、と言
うんですわ……それも何かすごく不愉快そうに
言うんで、こら～、向こうと直接話をしてもら
うとケンカになりそうな気もしましてね、その
前にご意見うかがっとこうと思いまして」
　「ははあ、仕様書ですか……以前お話ししたと
おり、SQL使うときは、ゴールを示す以外の仕
様書はいらん場合が多いんですが」
　「そうなんですがね、どうもSQL自体あまり
使いたくないと思ってそうでして……」
　「ああ、よくいます、そういう人。ひょっとし
て、SQLで処理させるとDBサーバの負荷が高
くなるとか言うてませんでしたか」
　「ええ、言ってました」
　実際はSQLでやるべき処理をビジネス・ロ
ジックに載せることによる負荷のほうが大きい
し（図2）、本来帳票のような一括データ処理に
向くSQLを使わず、手続き型言語のループ処理
で書いていたら（図4）、大局的にはバグ、工数、
性能を悪化させるだけです。
　「下手なSQLを書いてるだけなんですけどね。
あと、複雑なSQL使ったら、メンテできるメン
バーがいない、とかも言うてませんか」
　「ああ、それも」
　「やっぱりSQLわからん人なんですね……」
　「それ言ったらケンカになりますわ……」
　ということで、私たちの前に難題が立ちふさ
がってきました。大道君のような若者は技術を
素直に吸収してくれることが多いのですが、経
験だけを積み重ねてきたタイプのベテランは、
自分がわかる範囲に固執して聞く耳を持たない
ことがあります。一覧・帳票処理にSQLを使わ
ない、なんて私に言わせれば風呂の水をスプー
ンで掻き出すようなものなのですが、それをス
トレートに言ってはいけないのでしょう。
　それにしても、ではどう言えばいいのでしょ
う。私たちは3人で考え込んでしまいました。
｢

DBサーバとAPサーバの役割分担を
知っておこう第3回

112 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

画像表示の悩みを

解決しよう
　Androidアプリを開発していると、画面上に
画像を表示したいケースがさまざまな場面で出
てきます。ほかにはない使いやすさやわかりや
すいコンテンツを提供しようとすると、いずれ
かの場面で画像表示が必要になります。
　画像表示はAndroidでも標準でUIコンポー
ネントが用意されており、ImageViewを活用す
れば比較的簡単に画像が表示できます。しかし、
端末上やアプリ内のリソースとして用意した画
像を表示する場合であればいいのですが、Web

上に置かれた画像をHTTP通信などを介して
取得しようとすると途端に難易度が上がります。
　取得自体はリスト1のような実装をすれば可
能ですが、この実装では同期処理となってしま
い、ネットワークが遅延したときなどにANR

（Application Not Responding）が発生し、アプ
リケーションが異常終了する原因となってしま
います。
　このようなときの解決策は、Handlerや
Thread、AsyncTaskなどを利用して、UIスレッ
ドと別スレッド上で非同期に画像を取得するこ

とで解決できます。とはいえスレッドの実装は
タイミングの調整などが必要になり、バグが潜
り込みやすい箇所となります。なるべく安全に、
ほかのエンジニアも活用している資産を利用し
たい……と考えると、オープンソースで公開さ
れている、次のような便利なライブラリの利用
が望ましいでしょう。

●Picasso
●Glide
●Fresco

　今回はそれらライブラリの中から国内で人気
がある「Picasso」について、基礎から実践的な
利用方法までを通して見ていきます。

Picassoとは

　まずはじめに、Picassoについて簡単に解説
しましょう。PicassoとはSquare社が提供する
オープンソースの画像ライブラリです注1。build.

gradleでライブラリの取り込みを行えば（リス

ト2）、loadメソッドで対象の画像を読み込み、
注1） http://square.github.io/picasso/

第5回 Picassoとキャッシュの上手な使いこなし

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

重村 浩二（しげむら こうじ）
日本Androidの会
中国支部長
Mail k-shigemura@

android-group.jp

Androidは世界で出荷される8割のスマートフォンに搭載※される、事実上
スマートフォンの標準OSです。このOS上で動くアプリケーションを開発す
ることは、自分のアイデアを世界に発信し、最も多くのスマートフォン上で
動かしてもらえる可能性がある行為です。このAndroidの最新情報と、そ
れを取り巻くコミュニティを知って、魅力的な開発をはじめませんか?

※IDC Worldwide Mobile Phone Tracker, August 7, 2013

 ▼リスト1　ImageViewでの画像情報取得（避けたい実装）

ImageView imageView = (ImageView) findViewById(R.id.imageView);
imageView.setImageURI("http://example.co.jp/hoge.jpg");

http://square.github.io/picasso/
http://www.android-group.jp/

May 2016 - 113112 - Software Design

Picassoとキャッシュの上手な使いこなし第5回

intoメソッドで描画を行うImageViewのインス
タンスを指定することで、画像を描画すること
ができます（リスト3）。
　Picasso自体が遅延読み込みにも対応してい
るため、Web上から画像が取得できるまでは
リスト3のplaceholderメソッドで指定した画
像を初期画像として表示し、取得できたら画像
を差し替える、といったことも自動でやってく
れます。また、Picassoを利用すれば簡単な画
像の回転や加工（サイズ変更や角丸画像への変
更）も可能になっていますので、アプリで実現
したい表現に沿って柔軟な対応が可能です。た
とえば図1のように画像を回転したい場合には、
リスト4にあるようにrotateメソッドを指定す
ることで画像を右方向に回転させることができ
ます。
　より詳細な情報が確認したい場合には、次の
サイトもあわせて確認を行ってください。

・JavaDoc

http://square.github.io/picasso/2.x/picasso/

・StackOverflow

http://stackoverflow.com/questions/tagged/
picasso?sort=active

　では、実際にPicassoを利用するときのポイ
ントを見ていきましょう。

いま表示している

画像の情報源はどこ?
　Google Playに公開するような、製品として
のアプリを開発する場合には、とくに画像の情

 ▼リスト2　Picassoの初期設定

// build.gradleに追記します(2016/03/08時点の最新版)
dependencies {
 :
 compile 'com.squareup.picasso:picasso:2.5.2'
}

 ▼リスト3　Picassoを用いた実装例

// Activity#onCreate()で呼び出した場合の例
ImageView imageView = (ImageView) findViewById(R.id.sampleImageView);

Picasso.with(this)
 .load("http://example.co.jp/hoge.jpg")
 .placeholder(R.drawable.loading_image) // 読込中に表示する画像
 .into(imageView);

 ▼リスト4　右方向に回転させる実装例

Picasso.with(this)
 .load("http://example.co.jp/hoge.jpg")
 .rotate(225) // 画像を225度、右回転します
 .into(imageView);

 ▼図1　右方向に回転した表示例

http://stackoverflow.com/questions/tagged/picasso?sort=active
http://square.github.io/picasso/2.x/picasso/

114 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

●メモリ経由：緑

　図2の表示例のように、最初に実行したとき
には画像の左上角部分が赤色になります。アプ
リを一度終了し、再度立ち上げれば青色になり、
ディスク上のキャッシュが利用されていること
が確認できるという具合です。
　Picassoがキャッシュを判別できるのは、
Web上からデータを取得するためのURLが固
定となっている場合です。言い換えると、load

メソッドで呼び出すURLが静的な、一意とな
るキーの場合にPicassoはキャッシュから画像
を表示することが可能です。このURLが可変
になると、キャッシュをPicasso任せにするわ
けにはいかなくなります。

URLが固定でないときの処方箋

　では、キャッシュが効かない場合にはどうす
べきでしょうか。
　たとえばAmazon S3（ストレージサービス）
では、データをダウンロードするために取得用
のURLを要求する必要があります。このしく
みが採用されているおかげで、発行されてから

報源がどこなのかが重要になります。おもに
Web上にある画像データを通信を通して取得
して描画を行うアプリでは、毎回通信を行うと
通信環境によって画像データの取得までに時間
がかかってしまう場合があります。画像の表示
までに時間がかかるわけですから、ユーザにとっ
て使いにくいアプリと言えるでしょう。データ
サイズが小さければ許容されるケースもありま
すが、カメラで撮った写真などを扱おうとすれ
ばサイズは大きくなりますので、毎回Webか
ら取得するというのは避けるべきでしょう。
　そんな課題を解決するための手段として、ロー
カルに画像をキャッシュして保存しておき、描
画したい画像が同じデータであればキャッシュ
から表示をするという戦略が考えられます。
　Picassoでもデフォルトでキャッシュを行っ
ており、読み込んだ画像が同一であれば
Picassoが自動で判別し、デバイス上にキャッ
シュとして保存しておいた画像を表示してくれ
ます。現在表示されている画像がキャッシュな
のか、Webから取得してきたものなのかは、
Picassoのデバッグ設定を有効にすることで確
認ができます。
　Picassoのデバッグ機能はリスト5にあるよ
うに、Picasso.BuilderでPicassoのインスタン
スを生成する際、リスト5の①にあるindicators

Enabledメソッドに trueを渡して有効化する必
要があります。有効化すれば画像がどこから取
得されているのかを確認できるようになります。

●ネットワーク経由：赤
●ディスク経由：青

 ▼リスト5　Picassoのデバッグ設定例

// PicassoのインスタンスをPicasso.Builderで生成する。
Picasso picasso = new Picasso.Builder(this)
 .indicatorsEnabled(true) // ①インジケータの有効化
 .build();

// 画像を読み込み、表示を行う。
picasso.load("http://example.jp/hoge.jpg")
 .into(imageView);

 ▼図2　Picassoのインジケータ表示例

May 2016 - 115114 - Software Design

Picassoとキャッシュの上手な使いこなし第5回

一定時間内のみデータが取得できるような
URLにすることができ、セキュアな設計となっ
ています。しかし、データを取得するときの
URLは毎回変更となるため、Picassoの標準の
キャッシュ機能は利用できません。
　この場合、ここまでに紹介した実装方法では
毎回ネットワーク経由で画像を取得することに
なってしまいますが、Picassoは標準では対応
できないようなケースにも対応できるように、
機能を拡張するためのしくみを豊富に持ってい
ます。リスト5ではインジケータの有効化を行
いましたが、ここで出てきたPicasso.Builder

を使うことで、そのほかにもさまざまな設定が
行えます。可変URLを扱う場合にはその中の
1つ、Downloaderの変更を利用します（リスト6、

7）。
　OkHttpDownloaderは内部でOkHttpClientと
いうSquare社製のライブラリを利用している
ため、リスト6のようにbuild.gradleに追記し
てライブラリを読み込む必要があります。そう
すればリスト7のようにOkHttpDownloaderの
インスタンスを生成し、downloaderメソッド
に渡すことで、Picassoが取得してきたデータ
をプログラム上で取り扱うことができるように
なります。
　okHttpDownloaderはリスト8のキャッシュ
タイミングで利用します。まずキャッシュが存

在するのかどうかで条件分岐を行います。キャッ
シュがあれば対象のFileインスタンスを元に
画像を読みこんで表示を行い、キャッシュがな
ければURLから画像の表示を行います。
　このときに呼び出すPicasso#intoメソッドに
は、第二引数でCallbackインターフェースを
引数として渡すことができます。Callbackイン
ターフェースにはonSuccessメソッドとonError

メソッドが用意されているので、それらをオー
バーライドしてやれば、画像の読み込み処理の
成功と失敗が判別できます。
　画像の取得に成功したときにOkHttpDown

loader#loadメソッドでレスポンスの情報を取
得し、OkHttpDownloader.Response#getInput

Streamメソッドを呼び出せば InputStreamの
インスタンスが取得できるので、後はファイル
IDをキーにしてキャッシュすればよいでしょう。
リスト8ではgetCacheDirメソッドに指定した
ファイル名で保存するようにしています。

キャッシュ時の注意点と
ライブラリのさらなる活用

　キャッシュを適切に行うことでオフライン時
にもある程度は情報が閲覧できることは、ユー
ザの満足度を向上させることにもつながるかと
思います。今回のサンプルでは触れませんでし
たが、実際にユーザに提供する際には、キャッ

 ▼リスト6　build.gradleにOkHttpClientライブラリの読み込みを追記

 ▼リスト7　ダウンローダ（Downloader）の設定込みを追記

// build.gradleに追記します（2016/03/08時点）
dependencies {
 :
 compile 'com.squareup.okhttp:okhttp:2.7.4'
}

// ダウンローダの設定
final OkHttpDownloader okHttpDownloader = new OkHttpDownloader(this);

Picasso picasso = new Picasso.Builder(this)
 .indicatorsEnabled(true)
 .downloader(okHttpDownloader)
 .build();

116 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

シュの確保に用いるディスク容量も上限を設け、
一定サイズ以上になったら古いものから削除す
るしくみを導入したほうが好ましいでしょう。
　対応方法としては、スクラッチで書く方法も
あるかと思いますが、オープンソースで提供さ
れている「DiskLruCache」のようなライブラリ
を活用するのもまた一案でしょう。また、リス

ト7で設定したOkHttpDownloaderの引数には、
OkHttpClientのインスタンスを渡すことも可
能です。異なるレイヤーでキャッシュを実現す
ることも一つの方法として検討してみるのも良
いでしょう。
　いずれにしても、キャッシュをするうえで必
要なインターフェースはPicasso周辺のライブ
ラリで補完ができることから、Picassoの主要
機能を含めてさまざまな応用方法があることが
読者の皆さんに伝われば幸いです。s

ライブラリのバージョンにはご注意を

COLUMN

　オープンソースで公開されているライブラリは、
最新版を活用することでたいていは問題ありません。
むしろ最新バージョンのほうがバグフィックスが行
われていたり、安定性が増していることが多いので、
積極的に検証を行い、更新をかけていくべきかと思
います。しかし、ライブラリ間の依存関係がある場
合には、注意が必要な場合があります。
　今回のダウンローダ内で使われているOkHttp
Clientは、執筆（2016年3月8日）時点ではバージョ
ン3が最新版として公開されていますが、Picasso
側がそのアップデートに追いついていないため旧バー
ジョンの2系でしか利用できません。そのため、今
回のサンプルでもリスト6で読み込んでいるバージョ
ンが古いものとなっています。
　ライブラリ間の依存関係は見た目だけではわかり
にくいものです。コンパイラから「クラスは存在し
ません」などとエラーが出てきた際には、ライブラ
リ間の依存関係も疑ってみてください。

 ▼リスト8　ImageViewへの画像設定時のコールバック処理

/* 画像のファイルIDをキーにして、キャッシュのFileインスタンスを取得 */
if (/* キャッシュの存在チェック */) {
 picasso.load(/* キャッシュのFileインスタンス */)
 .into(imageView);
} else {
 // キャッシュが存在しなければ、URLから画像を取得し、成功したときにキャッシュしておく
 picasso.load(/* 画像取得URL */)
 .into(imageView, new Callback() {
 @Override
 public void onSuccess() {
 OkHttpDownloader.Response response = okHttpDownloader.load(Uri.parse(url), -1);
 // ファイル名をつけてキャッシュを行う（fileNameは一意に識別できるファイルIDを含むこと）
 BufferedInputStream bufferedInputStream =
 new BufferedInputStream(response.getInputStream());
 BufferedOutputStream bufferedOutputStream =
 new BufferedOutputStream(new FileOutputStream(new File(getCacheDir(),
 fileName)));

 int c;
 while ((c = bufferedInputStream.read()) != -1) {
 bufferedOutputStream.write(c);
 }
 bufferedOutputStream.flush();

 bufferedInputStream.close();
 bufferedOutputStream.close();
 }

 @Override
 public void onError() {
 /* 画像が取得できなかった旨のエラーをToastなどで表示 */
 }
 });

May 2016 - 117116 - Software Design

Picassoとキャッシュの上手な使いこなし第5回

コミュニティの運営ノウハウ

COLUMN

■勉強会の開催ノウハウを公開
　これまで筆者は中国地方を拠点として、30回超
の勉強会を開催してきました。これから勉強会の開
催に興味がある方に向けて、開催方法と実際に開催
するときの注意点を簡単ですが紹介します。

■勉強会を開催するタスクリスト
　勉強会の開催のためにやることは次のとおりです。

・日程、会場、講師決定
・タイムテーブル決定
・勉強会アナウンス（ML、ブログ、SNSなど）
・懇親会会場の決定＆アナウンス
・当日運営

　毎月勉強会をやっているような積極的なコミュニ
ティでしたら、大体3～4週間前（イベントが終わっ
た直後や、その前）から講師や会場の調整などを進
めているのが一般的です。日程は、可能であれば毎
月いつ開催するのかを運営メンバー内で決めておく
とやりやすいと思います。

■会場は有料？　無料？
　会場は、有料の会場と無料の会場ではどちらを選
ぶべきでしょう？　20～30名程度集まるイベント
であれば、大学などに協力してもらい、無料で開催
することを模索すると良いでしょう。難しいようで
あれば、半日4,000円程度で貸し出してくれている
会議室を活用するのも手です。筆者が開催したとき
には1人あたり200～300円の参加費とし、会場費
を参加者全員で割り勘していました。継続して開催
していく中で、勉強会でつながった方から、大学な
どとのネットワークを作っていくのが良いかと思い
ます。

■一番の悩みは講師
　勉強会を開催するときに一番悩むのは講師の調整
です。日程や会場はある程度しくみが出来上がって
くると簡単に回るようになりますが、講師だけは毎
回同じ人が登壇していると、徐々に疲弊してきます
し、内容がマンネリ化してしまうことにつながりか
ねません。筆者の場合は、基本的に土曜日の午後1
時からの開催で、講師が3～4名登壇するというス
タイルで1人50分の枠で話してもらっています。
たとえ筆者が1人分の枠をやるとしても、残りの2

～3人の講師を見つけてくる必要があり、時には同
じ人にたびたびお願いすることもありました。講師
の選定は今も大きな課題の1つです。
　筆者がこれまで実践してきた解決策としては、参
加してくれている方の中から話してくれそうな方を
見つけつつ、全員参加型のイベント（ハッカソンや
ハンズオン）を行ったり、近隣で開催されている別
のコミュニティと合同で勉強会を開催するなどして、
ネットワークを広げていきました。1人でも多く、
講師を担当してくださる方とつながっていく努力を
積み重ねることが大事かと考えています。

■継続していくために
　講師の問題を解決できれば、勉強会を開催する課
題はほぼほぼ解決した状態かと思います。しかし、
継続していくのは思った以上にパワーを使うもので
す。長く勉強会を続ける秘訣は、一緒に勉強会の開
催をしてくれる仲間を見つけることでしょう。参加
者の中には、継続して参加してくれる人が必ず1人
はいるはずです。その人を巻き込んで、一緒にコン
テンツを考え、勉強会を作っていくことができれば、
うまくしくみが回り始めるかと思います。
　そしてぜひ参加者の方へのアンケートを取ってみ
て、どんな人が来てくれているのかを定量的に確認
していくと良いでしょう。筆者が開催していたとき
には、初めて来てくれた方が毎回2～3割はいる状
態を維持するようにコンテンツの調整をしていまし
た。同じ方だけが集まってスキルを高めていくとい
うのもやり方の1つだと思いますが、常に新しい発
見をもたらしてくれる方が参加し続けてくれること
を考えると、新しい人の流入が続いている状態がコ
ミュニティとしては健全であると考えています。回
を繰り返せば参加者のレベルは高くなり、難易度の
高い内容が求められるようになっていくかと思いま
すが、ぜひその中に初心者向けのコンテンツなども
含めるようにして、新しい人を取り込むようにして
いってください。
　コミュニティの運営はとても地味で、細かい調整
事ばかりが発生し面倒なものです。いろんな雑用を
一手に引き受けることの労力はありますが、それ以
上に新しい知見が得られることと、さまざまな方と
コミュニケーションを取ることで主催者側も大きく
成長できることを思えば、決してやって損はありま
せん。ぜひ運営にチャレンジしてみてください。

118 - Software Design

　ども、るびきちです。新年度が始まりました
ね。というわけで、Emacsの基本的な内容を取
り上げていこうと思います。
　今回のテーマは「シェルコマンド（外部プログ
ラム）」です。Emacsの優れた点の1つとして外
部プログラムとの連携があります。ただ呼び出
すだけでなく、バッファの内容を外部プログラ
ムの入力にしたり、出力をバッファに挿入した
りできます。それだけでなく、実行時間のかか
るプログラムを並列で動かしたり、対話的プロ
グラムを実行したりもできます。さらに推し進
めたものとして、特定のプログラム専用インター
フェースもたくさん存在します。「Emacsは環
境」と言われるのは、elispでできることが多い
こともそうですが、外部プログラムによるとこ
ろも大きいです。

シェルバッファ

　Emacsでシェルコマンドを実行するもっとも
簡単な方法は、専用のシェルバッファを使用す
ることです。既存のシェルを動かすM-x shell

とelispで書かれたシェルを動かすM-x e
3

shell

があります。

M-x shell

　M-x shellを実行すれば、お使いのシェルを

*shell*バッファで動かします。シェルのプロン
プトが現れるので、端末と同様にそのままシェ
ルコマンドを入力・実行してください（図1）。
　複数のシェルバッファを立ち上げるには、C-u
M-x shellを実行するか、*shell*バッファをリ
ネームしてからM-x shellを実行します。バッ
ファ名をリネームするには、M-x rename-

bufferやM-x rename-uniquelyを使います。
前者は任意の名前にリネームし、後者は
「*shell*<2>」のような数字サフィックスが付きま
す。
　M-x shellでは、シェルがEmacsのバッファ
で動いているので一長一短です。次の長所があ
ります。　

①出力を遡
さかのぼ

れる
②消さない限り実行結果が残る
③同時に複数のシェルを実行できる
④実行結果をバッファに貼り付けられる
⑤端末に切り替えなくても済む

　もっとも、①～③はGNU Screenや tmuxとい
う端末マルチプレクサを使えば実現できますが、
Emacsで完結しているのは快適です。
　M-x shellはシェルの位置付けを変えました。
元来テキストエディタはシェルのプロンプトか
ら実行され、対象ファイルの編集が終わればシェ
ルに戻ってきます。この使い方では「まずはシェ

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

シェルコマンドを活用しよう（前編）
　今月来月と、Emacs上で使えるシェルコマンドについてみていきます。端末をいちいち起動しなくても高度
な機能が呼び出せるのが強みです。今回はM-x shellとM-x eshellの違いから、region（リージョン）に
関する便利コマンドまで紹介します。

Writer

第25回

http://rubikitch.com/

118 - Software Design May 2016 - 119

タマイズできます。もちろん、足りない機能を
付け足すこともできます。また、M-x shellと
同様の方法で複数のeshellを立ち上げられます。
　M-x shellの欠点もいくつか克服しています。
画面指向のプログラムは、プログラム名を指定
して端末（M-x term）で実行でき、eshell専用の
コマンドもあります。
　筆者はzsh/eshellのコマンドライン全履歴に
helm/anythingでアクセスできるようにしたうえ
で、eshellを使っています。補完が弱いという
欠点は長年溜めてきた履歴でカバーできるので
気にしていません。

単発シェルコマンド
呼び出し

実行結果をエコーエリア／
別ウィンドウで表示する

　その場でシェルコマンドを実行するのに、わ
ざわざM-x shell/M-x eshellを使うのは面倒
に思うことがあります。そういうときは、その
場でシェルコマンドを実行する M-!（shell-

command）を使いましょう。
　実行結果がある程度長い場合は、別ウィンド
ウ（*Shell Command Output*バッファ）で表示さ
れ（図2）、短い場合はエコーエリアで表示され
ます（図3）。数行の結果を表示するためにウィ
ンドウ構成が崩されないのはうれしいですね。
エコーエリアで表示される場合でも *Shell

Command Output*バッファを見れば実行結果が
格納されています。

ルありき」です。一方、M-x shellはEmacsか
ら実行されるので、Emacsの管理下にあります。
Emacsを立ち上げている限り、いくつでも内部
でシェルを実行できることになります。
　とはいえ、端末上のシェルにかなわない点も
あり、次のような短所があります。

❶画面志向のプログラムを実行できない
❷補完が弱い
❸コマンドライン履歴が共有できない
❹シェル専用のコマンドが使えない

　画面指向のプログラムとは、画面全体を使う
プログラムのことです。top（プロセスモニター）
やw3m（テキストブラウザ）やpeco（helmの端末
バージョン）などが該当します。これらのプログ
ラムをM-x shellで実行すると、動作がおかし
くなります。実行したい場合は、urxvt -e top
などと端末エミュレータを立ち上げて実行して
ください。
　そもそも、対話的シェルは端末で実行される
ことが前提となっているので、端末ではない
Emacsでシェルを実行しても、シェル本来の力
を発揮しきれないのです。とくにzshはEmacs

を思わせる拡張性を持ち、テトリスも実装され
ているほどです。zshはそれ自体が画面指向の
プログラムなのです。
　M-x shellの補完は基本的なプログラム名・
ファイル名補完＋αしかできないため、bash/

zshで作り込まれた補完設定よりも貧弱です。
シェル独自の補完設定はEmacsからは使えませ
ん。コマンドライン履歴についても同じです。
　筆者は、初級者時代はM-x shellを愛用して
いましたが、これらのような欠点があるため、
いつしか使用をやめてしまいました。

M-x eshell

　M-x eshellはフルelispで書かれたシェルで、
M-x shellの利点をすべて継承しています。フ
ルelispですのでプラットフォームを選ばないう
え、シェルそのものの挙動を思いどおりにカス

 ▼図1　M-x shell

第25回 シェルコマンドを活用しよう（前編）

120 - Software Design

止させるときは、*Async Shell Command*バッ
ファにてC-c C-cを押してください。
　M-&ではユーザ入力を伴うプログラム（シェル
など）も実行できます。入力するときは、*Async

Shell Command*のウィンドウを選択してくださ
い（図5）。
　なお、M-!でもシェルコマンド末尾に&を付
ければM-&と同じ挙動になります。ちょうど、
シェルのバックグラウンド実行を連想させます。

実行結果をバッファに挿入する

　Emacs上でシェルコマンドを実行する意義は、
それ自体を編集作業の一環とすることにありま
す。たとえば、C-u M-!はシェルコマンドの実
行結果をバッファの現在位置に挿入します。seq

プログラムは連番を出力するのでテキストエディ
タと相性が良いです（図6）。

regionを標準入力にする

　M-!の亜種M-|（shell-command-on-region）は
regionを標準入力にしてシェルコマンドを実行
します（図7）。

　M-!ではユーザ入力を伴うプログラムと画面
指向のプログラムは実行できません。前者は次
項のM-&（async-shell-command）を使い、後者は
端末エミュレータで実行してください。

並列（バックグラウンド）実行する

　M-!はシェルコマンドの実行終了を待つので、
実行中はEmacsの動作が停止します。ですので、
時間がかかるプログラムを実行すると、その間
待たされてしまいます。
　M-!の代わりにM-&を使うと、シェルコマン
ドを実行してもEmacsの動作は継続されます。
プロンプトは、M-!の「Shell Command:」から
「Async Shell Command:」になります。実行する
と別ウィンドウで *Async Shell Command*バッ
ファがポップアップし、そこに実行結果が表示
されます。
　たとえば、vmstatプログラムは一定時間ごと
にメモリやCPUの使用状況を表示し、C-cで強
制終了するまで実行され続けます。これをM-!

で実行するとEmacsがフリーズ（C-gで解除可
能）してしまうので、M-&の出番です（図4）。停

 ▼図2　M-! ifconfig eth0

 ▼図4　 M-& vmstat 1で1秒ごとにリソースの状況を
表示

 ▼図3　M-! date

 ▼図5　M-& python -iで対話モードのPythonを実行

るびきち流
Emacs超入門

120 - Software Design May 2016 - 121

　実行結果が意図するものではない場合は、C-/
（undo）で元に戻してください。ほかにもたくさ
んの装飾方法が定義されているので、興味があ
る方はM-! boxes -lを実行してたしかめてみ
てください。
　Emacsでできるテキスト処理方法を増やすに
は、elispをインストールしたり自作したりする
のが一般的です。それに加えて、フィルタプロ
グラム（標準入力を加工して標準出力に出力する
プログラム）を他言語で記述し、それをC-u C-|

で呼び出す方法もあるということを覚えておい
てください。
　Emacsを拡張する方法は、elispに限らないの
です。

おわりに

　筆者のサイト「日刊Emacs」は日本語版Emacs

辞典を目指しています。手元でgrep検索できる
よう全文をGitHubに置いています。またEmacs

病院兼メルマガのサービスを運営しています。
Emacsに関すること関しないこと、わかる範囲
でなんでもお答えします。「こんなパッケージ知
らない？」「挙動がおかしいからなんとかして
よ！」はもちろんのこと、自作elispプログラム
の添削もします。集中力を上げるなどのライフ
ハック・マインド系も得意としています。ﾟ
登録はこちら➡ http://www.mag2.com/m/

0001373131.html

regionを置き換える

　C-u M-|はregionを標準入力にしてシェルコ
マンドを実行し、実行結果に置き換えます。図

7においてC-u M-| sort -n -k2を実行すれ
ば、regionは数値順にソートされた結果に置き
換わります。C-u 2 M-x sort-numeric-fie

ldsでも同じ結果が得られますが、こちらはシェ
ルコマンドさえ知っていれば実現できることに
意味があります。
　筆者はC-u M-|はもっと知られるべきコマン
ドだと思っています。シェルコマンドの習得が
重要であることは今さら言うまでもありません
が、応用範囲の広いシェルコマンドの知識をそ
のままEmacsの世界に持ち込めることに意味が
あります。たとえばsortプログラムは、Emacs

のソートコマンドよりも混み入った条件でのソー
トができます。
　特定の加工をするEmacsのコマンドが存在し
なくても、シェルコマンドがあればそれを呼び
出してEmacsで加工できます。たとえば、標準
入力で渡されたテキストをアスキーアートで装
飾して出力するboxesというプログラム注1があ
ります。「Hello world!」という文字列をregionに
してC-u M-| boxes -d shellを実行すると、
次のように四角で囲んでくれます。

################
Hello world!
################

注1） URL http://boxes.thomasjensen.com

 ▼図6　 C-u M-! seq 1 5 ▼図7　regionを指定し、M-| sort -n -k2

第25回 シェルコマンドを活用しよう（前編）

http://www.mag2.com/m/0001373131.html
http://boxes.thomasjensen.com

122 - Software Design

　本稿を書いている真っ最中の3月22日未明、
iPhone SEや9.7-inch iPad Proの発表直後に
Apple製品用の春のアップデート祭りが始まり
ました。Xcodeも7.3に、そしてSwiftも2.2に
アップデートされました。「このクソ忙しいと
きになんてことを」という気持ちが2割、「Swift

2.2が本稿に間に合ってよかった」が8割と言っ
たところでしょうか。

Xcode 7.3 with
Swift 2.2

　Swift 2.2と2.1の違いは、ソースコード無変
更で警告を出しつつも、なんとかコンパイルし
てくれる程度の違いではありましたが、Xcode

用のSwiftがオープンソース版になったという
意味で感慨もひとしお。リリース版のバージョ
ンがLinuxも含めてそろったのは、これが初め
てということになります（図1）。
　しかし無変更でコンパイルが通
るとはいえ、手元のプロジェクト
ではXcodeが警告でかなり黄色く
なりました :-p。Swift 2.2では単
なる警告でも、Swift 3.0では廃止
予定のものが、わんさかdeprected

と警告されます。たとえば「PONS

（Protocol Oriented Number Sys

tem）」では、

typealias UIntType:POUInt

が、

associatedtype UIntType:POUInt

になったり、「enum Bitが廃止予定なのでInt
に変更しろ」とあれこれ20ヵ所前後警告されま
したが、Linux版が先行して2.2だったことも
あり、Xcodeを7.3にアップグレードして30分
足らずで、2.2への移行を完了できました。
　性能、とくにArrayまわりの速度が改善された
のは非常にうれしい点で、とくにPONSでは任
意精度数値を実装するのに配列を使いまくって
いるだけあってその効用は大きく、64ビットでも
オーバーフローしない20!/19!の計算で、任意精
度のBigIntとの速度比較で500倍近くあった速
度差が100倍を余裕で切るところまできました。
PONSのもくろみはあくまでProtocol-Oriented

な数値型を実現することにあり、任意精度数値
は「とりあえず動けばOK」だったのですが、これ
でかなり実用性が増したのではないでしょうか。

書いて覚える 入門Swift

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

型にまつわるプロトコルとLiteral Convertible14第 回

 ▼図1　Swift 2.2リリース

122 - Software Design May 2016 - 123

型にまつわるプロトコルとLiteral Convertible第 回14

Literal
Convertible

　Swift 2.2の紹介はこれくらいにし
て、前号の続きです。さっそくです
が問題です。iの型は何でしょうか?

var i = 1

　正解は Intです。なぜ？　1は
Intですから。では次のdは？

var d = Double(1)

　正解はもちろんDouble。1はIntで
もDouble()に食わせているのですか
ら、最終的にDoubleになるのはごく
自然です。では、次のxは？

var x:Double = 1

　やはりDoubleです。print(x)してみると、確
かに1.0と表示されます。1ではなくて。これは
どうでしょう?

var y:Double = "1"

　今 度 は error: cannot convert value of
type 'String' to specified type 'Double'
というエラーを出して止まります。しかし、

var z = Double("1")

とすると……、　zには無事、Doubleの1.0が
代入されるではありませんか。これはいったい
どういうことなのでしょう？
　「DoubleはIntegerLiteralConvertibleプロトコ
ルに準拠しているが、StringLiteralConvertible
プロトコルには標準では準拠していない」というの
が、その答えになります。
　え？　答えになっていない？
　では実際にvar d:Double = "1"を受け付ける
ようにしてみましょう。リスト1のようなコード
をvar d:Double = "1"の前にペーストしてみて

く ださい。するとあら不思議。今度はエラーに
ならずにdに42.195が代入されています（図2）。
　リスト1中のLiteral Convertibleとは、その
型からの暗黙的な変換をサポートしているという
意味なのです。IntegerLiteralConveribleなら整
数リテラルからの、StringLiteralConvertible
なら文字列リテラルからの、という風に。「暗黙的」
というのがポイントです。暗黙的ですので、初
期化以外の目的にも使えます。たとえば、

42.0 + "0.195"

はエラーとはならずに、42.195になってしま
うのです。
　便利といえば便利ですが、濫用するとコード
がわかりにくくなってしまいます。標準状態で
はDoubleはIntegerLiteralConvertibleであっ
ても、StringLiteralConvertibleでないという
仕様は、賢明な判断と言えるでしょう。おかげで、

42 + 0.195

はエラーとならずに42.195になる一方、

var i = 42 + 0.195

extension Double:StringLiteralConvertible {
 public init(stringLiteral: String) {
 self.init(stringLiteral)!
 }
 public init(unicodeScalarLiteral: String) {
 self.init(stringLiteral: "\(unicodeScalarLiteral)")
 }
 public init(extendedGraphemeClusterLiteral: String) {
 self.init(stringLiteral: extendedGraphemeClusterLiteral)
 }
}

 ▼リスト1　StringLiteralConvertible

 ▼図2　Doubleの変数をStringで初期化

124 - Software Design

書いて覚える 入門Swift

はエラーとなるわけです。
　ちなみに、Swift 2.2には現在で次のLiteral
Convertibleプロトコルが存在します。

・ArrayLiteralConvertible
・BooleanLiteralConvertible
・DictionaryLiteralConvertible
・ExtendedGraphemeClusterLiteralConvertible
・FloatLiteralConvertible
・NilLiteralConvertible
・IntegerLiteralConvertible
・StringLiteralConvertible
・StringInterpolationConvertible
・UnicodeScalarLiteralConvertible

　PONSでは、任意精度整数であるBigIntと
BigUIntは IntegerLiteralConvertibleと String
LiteralConvertibleに、実数であるBigFloatと
Rationalは IntegerLiteralConvertibleと Float
LiteralConvertibleにそれぞれ準拠しています。
おかげでリスト2のように、整数型リテラルでは大
き過ぎて表現できない数値の初期化も可能ですし、
var bq:BigRat = 42.195 ｭ
// (5938418321153065/140737488355328)

という具合に小数で分数を初期化することも可
能になっています。
　ちなみにリスト2のbiですが、実は100の階
乗です。import PONSされた状態であれば、

(1...100).reduce(BigInt(1),combine:*)

として手軽に生成できます。もしIntegerLiteral
Convertibleでなければ、

(1...100).map{ BigInt($0) }.reduce(BigInt(1)ｭ
,combine:*)

のように、ひとつひとつのIntを明示的に変換し

たうえで.reduceしなければならなかったでしょう。
　フィボナッチ数を計算する総称関数も、リス
ト3のように書けます。最初の if文のn < 2の2
は、IntではなくTなのですが、わざわざT(2)と
書く必要はないのです。

Swiftの 'ミステリー '

　リテラルといえば、記号が欠かせません。たと
えば Stringのリテラルは、""（double quotation

mark）で囲まれた部分ですし、{}で囲まれた部分
がブロック＝関数リテラル、[]で囲まれた部分が
添字またはArray/Dictionaryリテラルという具合
に。「（̀backtick）」ですら「予約語（keyword）を普
通の識別子（identifier）として扱う」ための引用符
としての役割を担っています。
　その中にあって異彩を放つのが、「'（Single

quotation mark）」です。PerlやRubyをはじめ、
多くの言語では「変数展開なし（non-interpolating）
引用符」としての役割を与えられているのですが、
Swift 2.2時点では単なる文字にすぎません。将
来使われるようになるのでしょうか？
　そうやって見てみると、あらゆる言語の良い
とこ取りをしてきたように見えるSwiftにも、
まだまだ一層の発展の余地があるように見えま
す。どうなっていくのか、お楽しみはまさにこ
れからでしょう。ﾟ

var bi:BigInt =
"933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761565182862536 ｭ
97920827223758251185210916864000000000000000000000000"

 ▼リスト2　整数型リテラルでは表現できない数値を初期化

func fib<T:POInteger>(n:T)->T{
 if n < 2 { return n }
 var (a, b):(T, T) = (0, 1)
 for _ in 2...n {
 (a, b) = (b, a + b)
 }
 return b
}

 ▼リスト3　フィボナッチ数を計算する総称関数

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

May 2016 - 125

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

 第1特集

すいすいわかるHTTP/2
HTTP/1.1から変わること・変わらないこと

 第2特集
攻撃を最前線で防ぐ
ファイアウォールの教科書
 特別企画
・SMB実装をめぐる冒険
 File System for Windowsの作り方

2015年11月号

定価（本体1,220円＋税）

 第1特集

［決定版］Docker自由自在
実用期に入ったLinuxコンテナ技術

 第2特集
ネットワーク・システム管理の定石
SNMPの教科書
 短期連載
・クラウド時代のWebサービス負荷試験再入門

2015年12月号

定価（本体1,220円＋税）

 第1特集

はじまっています。ChatOps
導入を決めた7社の成功パターン

 第2特集
手軽さとコード化しやすさが人気！
Ansibleでサーバ構成管理を
省力化
 新連載
・Androidで広がるエンジニアの愉しみ

2016年1月号

定価（本体1,220円＋税）

 第1特集

［最新］MySQLと
PostgreSQL徹底比較
 第2特集

1Gbps超ネットワーク高速化
時代の適切なLANケーブリン
グの教科書
 一般記事
・Android Studioのスタイルで効率アップ！

2016年2月号

定価（本体1,220円＋税）

 第1特集

チーム開発をまわす現場の
アイデア
 第2特集

あなたの知らないCOBOLの
実力
 一般記事
・iPad Proのさきに見えてくるもの
・Webサイトが改ざん！　サイトオーナがとるべき行動
 と注意点

2016年3月号

定価（本体1,220円＋税）

 第1特集
やればできる！　ワンランク上のプログラミング
今すぐ実践できる
良いプログラムの書き方
 第2特集

オブジェクトストレージの教科書
 特別企画
・適切なLANケーブリングの教科書［番外編］
・春の嵐呼ぶ！　DevOps座談会

2016年4月号

定価（本体1,220円＋税）

Webで

購入 ！
家でも

外出先でも

http://www.fujisan.co.jp/product/1535/
http://www.fujisan.co.jp/product/1535/
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

126 - Software Design

カスタムメトリック
プラグインの作り方

　今回は、カスタムメトリックプラグインの仕
様と作り方について解説していきます。

カスタムメトリックプラグインの仕様

　カスタムメトリックプラグインは、標準出力
の各行に次のフォーマットの出力をすることが
期待されます（\tはタブ文字）。

{metric name}\t{metric value}\t{epoch seconds}

詳細

・名前の最後のドットまでが共通するメトリッ
クがMackerel上で1つのグラフにまとめら
れ、ホスト詳細で閲覧できる

・mackerel-agentにより、メトリック名の先
頭には自動的に"custom."という文字列が
付与される

・メトリック名に使える文字は英数字もしくは
ハイフン（-）、アンダースコア（_）、ドット（.）
のいずれか（/[-a-zA-Z0-9_.]/）

　たとえば、example.fooとexample.barとい
う名前のメトリックを投稿した場合、custom.
example.*と名付けられたグラフが、ホスト詳
細に現れます。このグラフにはexample.foo
とexample.barの系列データが描画されます。

Mackerelではじめる
サーバ管理

Mackerelの監視エージェントである「mackerel-agent」はプラグインによる拡張がで
きます。プラグインは公式で提供しているものもありますが、もちろん自分で書く
こともできます。今月と来月の2回で、mackerel-agentのプラグインの書き方につ
いて説明します。

Writer 松木 雅幸 （まつき まさゆき） ㈱はてな
Twitter @songmu

プラグインは2種類

　mackerel-agentのプラグインは、カスタムメ
トリックプラグインとチェックプラグインの2

種類に分類されます。
　カスタムメトリックプラグインはホストのメ
トリックを取得するメトリック監視用のプラグ
インであり、チェックプラグインはチェック監
視用のプラグインです。
　プラグインはいずれも、単なる実行可能なファ
イルやスクリプトです。プラグインはmack

erel-agentから1分おきに実行され、その標準
出力や終了ステータスがプラグインの実行結果
として利用されます。公式のプラグインはGo

言語で書かれていますが、BashやPerlや
PythonやRubyなど、あらゆる言語で記述がで
きます。シンプルでUNIX的な考え方に即して
いると言えるでしょう。この考え方はMackerel

オリジナルのものではなく、多くの監視ツール
で採用されてきたもので、mackerel-agentのプ
ラグインはそれらのツールのプラグインとも互
換性があります。実際、カスタムメトリックプ
ラグインはSensuのメトリックプラグインと互
換性があり、チェックプラグインはNagiosや
Sensuのチェックプラグインと互換性がありま
す。

第15回 mackerel-agentのカスタムメトリック
プラグインを書いてみよう

126 - Software Design May 2016 - 127

シェルスクリプトによる例

　たとえば、1～6のランダムな数値を返すカス
タムメトリックプラグインは、リスト1のように
たった1行で書けます。実際にこのスクリプトを
dice.shという名前で保存して、実行権限を付け
て実行してみると次のような出力が表示されます。

% ./dice.sh
random.dice 2 1458477767

　この場合、2の目が出ていることになります。
これだけでもれっきとしたプラグインと言えます。

グラフ定義の指定（任意）

　Mackerelのカスタムメトリックプラグイン
独自の追加仕様として、任意でグラフ定義を指
定できる機能があります。これは、投稿した時
系列データをMackerel上でどのように表示し
たいかをJSONで指定するものです。これによっ
て、カスタムメトリックの表示設定をWeb上
で行わずに、あらかじめ指定しておけます。
　mackerel-agentは起動時に、MACKEREL_AGE
NT_PLUGIN_META環境変数を「1」に設定した状
態でプラグインを実行し、その出力をグラフ定
義として利用します。出力の 1行目は、#
mackerel-agent-pluginである必要がありま
す。最初の行がこの内容ではなかった場合、
mackerel-agentはこのプラグインがグラフ定義
を出力しないものとして、グラフ定義の設定を

行いません。2行目以降に続けてJSONフォー
マットでグラフ定義を出力します。プラグイン
のグラフ定義出力はリスト2のようになります。
それぞれの項目は、表1のような意味を持ちま
す。表1におけるメトリック定義は、表2のよ
うなキーを持ちます。

メトリック名のワイルドカード

　あるメトリックの階層に不特定のキー名でメ
トリックが出力され、それらをMackerelに投
稿したいといった場合、ワイルドカードを用い
てグルーピングできます。
　ワイルドカード（*または#）は2つのドット（.）

#!/bin/sh
echo "random.dice\t$((($RANDOM%6) + 1))\t$(date +%s)"

 ▼リスト1　1～6のランダムな数値を返すカスタムメトリッ
　　　　 クプラグイン

mackerel-agent-plugin
{
 "graphs": {
 {graph}: {
 "label": GRAPH_LABEL,
 "unit": UNIT_TYPE
 "metrics": [
 {
 "name": METRIC_NAME,
 "label": METRIC_LABEL
 },
 ...
]
 },
 GRAPH_NAME: ...
 }
}

 ▼リスト2　プラグインのグラフ定義出力の例

項目 説明

graphs.{graph}.label ユーザ定義メトリック{graph}.*に対応するグラフの表示名。{graph}にはドット（.）を含むことができる

graphs.{graph}.unit ユーザ定義メトリック{graph}.*に対応するグラフの値の種類。可能な値は"float", "integer",
"percentage", "bytes", "bytes/sec", "iops"のいずれか

graphs.{graph}.metrics ユーザ定義メトリック{graph}.*に対応するメトリック定義の配列

 ▼表1　グラフ定義における各要素

キー 説明

name
このメトリックがユーザ定義メトリック{graph}.{name}に対応することを表す。この値にドット（.）を含むことはできない。
使用できる文字は英数字もしくはハイフン（-）、アンダースコア（_）のいずれか（/[-a-zA-Z0-9_]/）。また、ワイルドカード#,
*を使用することもできる

labal ユーザ定義メトリック{graph}.{name}に対応する時系列の表示名
stacked ユーザ定義メトリック{graph}.{name}に対応する時系列を積み上げ表示するかどうか。たとえばfalseなら線分で表示する

 ▼表2　メトリック定義におけるキー

第15 回
mackerel-agentのカスタムメトリックプラグインを書いてみよう

128 - Software Design

% MACKEREL_AGENT_PLUGIN_META=1 ./mackerel-plugin-uptime
mackerel-agent-plugin
{
 "graphs": {
 "uptime": {
 "label": "Uptime",
 "unit": "float",
 "metrics": [
 {
 "name": "seconds",
 "label": "Seconds",
 "type": "",
 "stacked": false,
 "scale": 0
 }
]
 }
 }
}

 ▼図2　mackerel-agent-uptimeのグラフ定義を出力

 Mackerelではじめるサーバ管理

の間、または最後のドット（.）の後ろに単独で使
用できます。先頭には使えません。ワイルドカー
ドはドットを除く文字の連続[-a-zA-Z0-9_]+に
マッチします。
　ワイルドカード#は1つまでしか使えません。
#を使った場合は、メトリック名の#にマッチし
た部分でグラフの凡例がグループ化されます。
たとえば、custom.docker.cpu.#.user、custom.
docker.cpu.#.systemという2つの定義があり、

- custom.docker.cpu.f5240a.user
- custom.docker.cpu.f5240a.system
- custom.docker.cpu.e866aq.user
- custom.docker.cpu.e866aq.system
- custom.docker.cpu.e552ad.user
- custom.docker.cpu.e552ad.system

のように6つのカスタムメトリックを送信した
場合の凡例は図1のようになります。ちなみに、
ワイルドカードを含むグラフ定義のカスタムメ
トリックは一定時間（およそ6～8時間以上）送
信がない場合、自動的に削除されます。

グラフ定義の出力例

　公式プラグインのmackerel-agent-uptime
のグラフ定義は図2のように出力させることが
できます。手元で出力を確認するために、
MACKEREL_AGENT_PLUGIN_META=1を付けてプラ
グインを実行しています（実際には2行以降の
JSONの部分は1行で表示されます）。

公式のヘルパーライブラリを使う

　さて、いよいよ実際のプラグインの作成方法
を解説していきます。公式プラグインでも利用
しているGo言語でのカスタムメトリックプラ

グイン作成用のヘルパーライブラリである、
go-mackerel-plugin-helper注1を利用したプラ
グインの開発方法を説明します。Go言語の基
本的な文法を理解していることを前提として解
説しますが、それほど難しい構文は出てきませ
んのでご安心ください。
　このヘルパーの作法に従って開発することで、
グラフ定義の出力や前回取得した値との差分値
計算などを簡単に行うことができます。またこ
のヘルパーを使えば、自ずと公式プラグインと
同じ作法でプラグインを書くことになるので、
公式プラグインとして採用される可能性もあり
ます。

go-mackerel-plugin-helper
利用時の構成

　go-mackerel-plugin-helperを利用した場合、
プラグインのソースコードは次の5つの部分で
構成されます。

❶package宣言とimport文
❷プラグイン用structの定義
❸グラフ定義出力メソッドGraphDefinitionを
structに定義

❹メトリック取得用メソッドFetchMetricsを
structに定義

 ▼図1　6つの項目をワイルドカードでグルーピング

注1） URL https://github.com/mackerelio/go-mackerel-plugin-helper

https://github.com/mackerelio/go-mackerel-plugin-helper

128 - Software Design May 2016 - 129

❺main()関数の定義

　ここではmackerel-agent-uptime注2を例に
とって、それぞれ見ていきましょう。

❶package宣言とimport文（リスト3）

　packageは mainで宣言します。また、go-

mackerel-plugin-helperではmpというエイリア
スでインポートすることが慣例となっています。

❷プラグイン用structの定義（リスト4）

　プラグイン用のstructを定義しています。こ
のstructにはPrefixというフィールドが定義さ
れています。これは、グラフ定義出
力時に、そのメトリックの名前空間
の先頭を決めるためのものです。
uptimeプラグインの標準ではPrefix
は uptimeであり、uptime.seconds
というキーでメトリックを出力します
が、この中のuptimeを、たとえば
uptime2に変更したいといった場合
に利用するフィールドです。
　uptimeプラグインでは Prefix
フィールドはとくに有益ではありま
せん。ただ、たとえばミドルウェア
用のプラグインの場合、1台のホス
トの中で同じミドルウェアを複数起
動してそれぞれのメトリックを取得
したい場合に、メトリックの名前空
間を分ける必要が出てくるので、こ
のフィールドを定義しておくことが
推奨されています。
　uptimeプラグインでは、このPrefix
フィールドのみが定義されていますが、
一般的なミドルウェアのプラグインで
あれば、PortやHostといったフィー
ルドも必要になるでしょう。
　また、このプラグイン用structは

mp.Pluginのinterfaceを満たす必要がありま
す。interfaceの定義はリスト5のようになっ
ています。これらが、グラフ定義出力メソッド
とメトリック取得用メソッドです。

�❸グラフ定義出力メソッドGraphDefinitionを�

　structに定義（リスト6）

　この、GraphDefinitionを定義することで、グ
ラフ定義のJSONやメトリックが正しく出力され
るようになります。uptimeプラグインでは、
u.Prefixをキーとした1つのグラフ定義しか返し
ていませんが、多くのプラグインはu.Prefix +
"runtime"、u.Prefix + "memory"といったよう

注2） URL https://github.com/mackerelio/mackerel-agent-plugins/tree/master/mackerel-plugin-uptime

package main

import (
 "flag"
 "fmt"
 "strings"

 mp "github.com/mackerelio/go-mackerel-plugin-helper"
 "github.com/mackerelio/golib/uptime"
)

 ▼リスト3　package宣言とimport文

func (u UptimePlugin) GraphDefinition() map[string](mp.Graphs) {
 labelPrefix := strings.Title(u.Prefix)
 return map[string](mp.Graphs){
 u.Prefix: mp.Graphs{
 Label: labelPrefix,
 Unit: "float",
 Metrics: [](mp.Metrics){
 mp.Metrics{Name: "seconds", Label: "Seconds"},
 },
 },
 }
}

 ▼リスト6　グラフ定義出力メソッドGraphDefinitionをstructに定義

 type UptimePlugin struct {
 Prefix string
 }

 ▼リスト4　プラグイン用structの定義

 type Plugin interface {
 GraphDefinition() map[string]Graphs
 FetchMetrics() (map[string]interface{}, error)
 }

 ▼リスト5　interfaceの定義

第15 回
mackerel-agentのカスタムメトリックプラグインを書いてみよう

https://github.com/mackerelio/mackerel-agent-plugins/tree/master/mackerel-plugin-uptime

130 - Software Design

 Mackerelではじめるサーバ管理

なキーで複数のグラフ定義を返します。
　LabelはMackerel上で表示されるグラフ名、
Unitはグラフの単位で、グラフ定義API同様に
"float", "integer", "percentage", "bytes",
"bytes/sec", "iops"が指定可能となっています。
　Metricsにはそのグラフ内に描画する複数の
Metrics定義を指定します。mp.Metricsに指
定できるフィールドは表3のとおりです。

 ❹メトリック取得用メソッドFetchMetricsを�

　structに定義（リスト7）

　Fetchmetrics() は map[string]interface{}
の形式で値を返します。interface{}になって
ますが、実際は何らかの数値となります。uint64
とfloat64を統一的に扱うために、このようになっ
ています。ここでは、
secondsをキーにuptime

の値が格納されたmapを
返しています。

�❺main()関数の定義

　（リスト8）

　プラグインのメインの処
理です。コマンドラインオ
プションのパース、プラグ
インヘルパーオブジェクト
の作成、そしてプラグイ
ンの実行を行っています。
　helperに指定されてい
るTempfileは、差分値計
算用に前回取得した値を
保持しておくためのファ
イルです。ほかのプラグ

インや、同じプラグインであっても引数が異な
る複数の設定がある場合などに重複しないよう
に指定する必要があるので、気を付けてください。

　これで、mackerel-agentのカスタムメトリッ
クプラグインの構成を一通り説明しました。み
なさんも実際に作ってみて、動作をたしかめて
みてください。
　今回は、おもにカスタムメトリックプラグイ
ンの作成方法について解説しました。次回は
チェックプラグインの作成方法などについて解
説していきます。ﾟ

フィールド 型 説明
Name string 必須事項。メトリックの名前。FetchMetrics()で取得するmapのキー名と対応する
Label string Mackerel上での表示名
Diff bool plugin上で差分値計算をするかどうか（Default：false）

Type strint
"float64", "uint32"もしくは"uint64"。おもに整数値のカウンターでDiff計算が必要な場合に、上限値
の決定のために用いられる（Default：float64）

Stacked bool Mackerel上で積み上げ表示されるかどうか（Default：false）

Scale float64
指定された場合、取得した値にこのScaleの値を乗じてから出力を行う。たとえば、KBで取得した値を
Byteに補正したい場合は「1024」を指定する

 ▼表3　mp.Metricsに指定できるフィールド

 func (u UptimePlugin) FetchMetrics() (map[string]interface{}, error) {
 ut, err := uptime.Get()
 if err != nil {
 return nil, fmt.Errorf("Faild to fetch uptime metrics: %s", err)
 }
 return map[string]interface{}{"seconds": ut}, nil
 }

 ▼リスト7　メトリック取得用メソッドFetchMetricsをstructに定義

func main() {
 optPrefix := flag.String("metric-key-prefix", "uptime", "Metric keyｭ
prefix")
 optTempfile := flag.String("tempfile", "", "Temp file name")
 flag.Parse()

 u := UptimePlugin{
 Prefix: *optPrefix,
 }
 helper := mp.NewMackerelPlugin(u)
 helper.Tempfile = *optTempfile
 if helper.Tempfile == "" {
 helper.Tempfile = fmt.Sprintf("/tmp/mackerel-plugin-%s", *optPrefix)
 }
 helper.Run()
}

 ▼リスト8　main()関数の定義

おわりに

May 2016 - 131

システムに問題が発生した場合、ログなどを見て状況を把握したあと、発生した原因などを推測・検証し、再発しないための対策を実
施して運用再開につなげます。発生原因などが不明な場合や新手の攻撃方法が使われた場合などは推測・検証が難しくなりますが、こ
ういうときには先人が実は良きアドバイザーになりますよ。先人のアドバイスには踏んだ場数や経験がこもっています。相談は大事で
すよ。先人がまわりにいないなら書籍に頼りましょう。Webもいいですが、書籍も先人の経験と叡智の集合と言えます。このタイミ
ングなら言えそうだ！　これからLinuxを使う新人さんは『改訂3版Linuxコマンドポケットリファレンス』が超便利だそうですよ（ステマ）。

犯
罪
者
プ
ロ
フ
ァ
イ
リ
ン
グ
な
ら
ば
ご
飯
三
杯
い
け
る
く
つ
な
先
生
に
、

愛
の
未
解
決
事
件
を
!

作）くつなりょうすけ
@ryosuke927

うう……。
まったく
わからない……。

おう、
どうした？

あッ、誰？

元スゴイ捜査
機関にいたらしい
……という
スゴイ人です。

来てくれ
たンですか？

宮田さン
だ!!

顧客のサーバが
クラックされたンですが、
その侵入経路が
わからないンです。

敵の国籍は、
日本人か、隣国か、
もしくはそれ以外の
国の人間だな。

敵の手口は、SQLmap
のような自動ツールか、
手動でSQLをインジェク
ションしていたな。

最高のプロファイリング
です!　さすが諜報機関
にいただけありますね！

トップガンですよね！

あの人が来ても、
解決どころか進捗
もないじゃないか。

たまに言い当てるん
ですよね……1割
くらいの打率で。
今回はまったくダメ
でしたね。

おい
……。

するどい
洞察 !!

敵のレベルは、
スクリプトキディか、
プロのクラッカーか、
ただのSEだな。

もう、絶対
そいつだ!
犯人は
ヤスや!!

は？

どれ、
見せてみろ。

敵は、127.0.0.1
のIPアドレスを
持つホストから
 来たな！

おお!!
それは考えて
みなかった!!

え

ヤス？

宮田さん第27回

①

②

③

⑨⑩

⑥⑦⑧

⑤
④

132 - Software Design

　オープンソースソフトウェア（OSS）のライブ
ラリやツールを使っていると、多くの英語ドキュ
メントに触れる機会があります。日本人であれ
ば、日本語で読めたほうが理解が早いので、翻
訳されたドキュメントがあれば楽なのに……と、
筆者もいつも思ってしまいます。
　そこで今回は、ドキュメントを翻訳する方法
の1つとして、Sphinxの国際化機能を紹介しま
す。翻訳そのものは人間が行う必要があります
が、翻訳を進めるうえでSphinxを使うと楽にな
ること、うれしいこと、について紹介します。
　Sphinxをインストールしていない場合は、
Sphinxユーザ会の手順注1を参照してインストー
ルしておいてください。

　日本語に翻訳されたドキュメントが必要にな
るのは、次のような場合だと思います。

・自分のため：英語のドキュメントをそのまま
読んでも、正確な意図が読み取りづらい

・みんなのため：多様な人に使ってもらうには、
英語では読んでもらえない。日本語が必須

　これ以外にもいろいろな動機があると思いま

注1） http://sphinx-users.jp/gettingstarted/index.html

翻訳もSphinxを
使って

翻訳しよう

すが、「よっしゃ、自分が翻訳しよう！」と思い
立って翻訳を始めてみても、「勝手に翻訳して公
開しても良いんだろうか？」「みんなはどうやっ
て翻訳してるんだろう？」といった心配も出てき
ます。
　OSSのドキュメントは多くの場合、ソース
コードと同様にオープンなライセンスが適用さ
れています。ライセンスはGPL、BSD、MIT、
Apacheなどがよく採用されていますが、このよ
うなオープンなライセンスであれば、翻訳して
公開するのに作者の許可などは必要なく、翻訳
した文章を自由に公開して大丈夫です。翻訳し
ようとしているドキュメントがどのようなライ
センスで公開されているのか確認しておきましょ
う。また公開したら、原作者に連絡するととて
も喜ばれます。

本文書き換え翻訳の良いところ、
つらいところ

　ドキュメントを翻訳する手順として一番始め
やすい方法は、原文のパラグラフとその翻訳が
対になるように、原文の直後に翻訳文を書き込
んでいく方法です。翻訳が完了した原文を順次
コメントアウトしていけば、ドキュメントが徐々
に翻訳された文章に置き換わっていく、という
流れです。原文がWebサイトで公開されている
場合には、ブラウザの機能でHTMLを保存して
手元で書き換えてしまうという方法が、「とりあ
えず翻訳したら、すぐにその結果を見たい」とい
うときには良さそうです（リスト1）。
　この方法は、ブラウザとエディタだけあれば

Sphinxで始める
 ドキュメント作成術

Sphinxで楽々ドキュメント翻訳第14回

清水川 貴之 SHIMIZUKAWA Takayuki　 Twitter @shimizukawa

Sphinxで始める
 ドキュメント作成術

http://sphinx-users.jp/gettingstarted/index.html

132 - Software Design May 2016 - 133

手軽に始められるうえに、元のドキュメントと
同じ体裁で結果を確認できます。ただ、HTML

タグだらけなので、翻訳したいテキストを判別
するのに手間がかかりそうですね。
　原文が reStructuredText（以下、reST）や
Markdownの場合も、同じアプローチで翻訳で
きます。元のドキュメントと同じ体裁で確認す
るためには、ドキュメントソースをHTMLなど
に変換してください（リスト2）。
　HTML書き換えと、ソース書き換え、どちら
の方法も手軽に始められますが、このように書
き換えて翻訳していく方法は、あとあとの手間
が増える原因になります。とくに、OSSのド
キュメントのように原文がどんどん更新されて
いく場合、追従する手間が大きいのです。その
結果、更新が面倒になって放置されてしまった
り、手間のかかる作業を誰かに引き継ぐのもた

いへん、ということになってしまいます。また、
複数の言語に翻訳したい場合、各言語の翻訳者
がそのようなたいへんな作業をそれぞれで行う
のは時間の無駄です。
　これに対して、国際化のための共通フォーマッ
トを使う方法であれば、原文への追従がしやす
く、共同作業や引き継ぎはスムーズに行えます。
そのような共通のフォーマットとして有名なも
のの1つに、GNU gettext注2で扱う“メッセージ
カタログ”形式があります。メッセージカタログ
は、msgid（一意な ID）とmsgstr（表示するメッ
セージ）の集まりを記録したファイルです。
Sphinxはこのフォーマットを使って、msgidに
原文の各パラグラフの文章を割り当て、msgstr

を翻訳文として利用します（リスト3）。

注2） https://www.gnu.org/software/gettext/

Sphinxで楽々ドキュメント翻訳 第14回

<!--
<h1>Requests: HTTP for Humans<a class="headerlink" ... （中略）
-->
<h1>Requests: 人間のためのHTTP<a class="headerlink" ... （中略）

<!--
<p>Release v2.9.1. (<a class="reference internal"
href="user/install/#install">Installation)</p>
-->
<p>リリース v2.9.1. (<a class="reference internal"
href="user/install/#install">インストール)</p>

 ▼リスト1　Requestsライブラリ（後述）のHTMLをコメントアウト方式で翻訳する例

..
 Requests: HTTP for Humans
 =========================

Requests: 人間のためのHTTP
==========================

.. Release v¥ ¦version¦. (:ref:`Installation <install>`)

リリース v¥ ¦version¦. (:ref:`インストール <install>`)

 ▼リスト2　Requestsライブラリの index.rstをコメントアウト方式で翻訳する例

msgid "Requests: HTTP for Humans"
msgstr "Requests: 人間のためのHTTP"

msgid "Release v¥¥ ¦version¦. (:ref:`Installation <install>`)"
msgstr "リリース v¥¥ ¦version¦. (:ref:`インストール <install>`)"

 ▼リスト3　gettextのメッセージカタログ（.po）の例

https://www.gnu.org/software/gettext/

134 - Software Design

　Sphinxの国際化機能（図1）は、Sphinxドキュ
メントからgettextのメッセージカタログテンプ
レートファイル（拡張子 .pot）を生成する機能と、
翻訳文が書かれたメッセージカタログファイル
（拡張子 .po）を取り込んでドキュメントを生成す
る機能の2つで構成されています。
　図2はSphinx国際化機能を使った翻訳の流れ
です。はじめにドキュメントの原文から .potファ
イルを作成し、このテンプレートから各言語の
翻訳文を書き込むための .poファイルを用意し
て、.poファイルに翻訳文を書き込んでいきま
す。.poファイルを用意する作業は、サポート
ツールsphinx-intlで簡単に行えます。翻訳者

は、翻訳が適用されたHTMLをブラウザで確認
しながら翻訳を進め、原文に更新があれば、.po

ファイルに差分を適用して再度翻訳を進めます。

　それでは、Sphinxを使ってドキュメントの翻
訳を行ってみましょう。今回は、実際にOSSラ
イブラリのドキュメントを翻訳する例として、
Pythonの「Requests」注3のドキュメントを使用し
ます注4。

Requestsのドキュメントを
make html

　Requestsのサイト（注 3参照）のDownload

ZIPボタンからソースコードをダウンロードし
て展開してください。取得したディレクトリ
「requests-master」には、「docs」というSphinx

プロジェクトのディレクトリがあります（図3）。
　コマンドラインでdocsディレクトリに移動し、
make htmlを実行してHTMLを生成してみま
しょう（図4）。
　生成されたHTMLは「_build/html」ディレク

注3） https://github.com/kennethreitz/requests

注4） Sphinxの国際化機能は、Python用ライブラリのドキュメン
トでなくても使用できます。

ドキュメント翻訳
クイックスタート

Sphinxで始める
 ドキュメント作成術

requests-master/docs/
 _build/
 gettext/
 api.pot
 index.pot
 …
 locale/
 fr/
 it/
 ja/
 LC_MESSAGES/
 api.po
 index.po
 …

② .potを元に翻訳用の .poを言語ごとに用意

④原文が更新されたら、
　make gettextで .potを更新

⑥.poの更新差分を確認し、
　翻訳を見直して更新する

⑤.potが更新されたら差分を .poにも反映

① make gettextで .potを生成

③.poを翻訳

 ▼図2　Sphinxドキュメントとメッセージカタログによる翻訳の流れ

元ドキュメント

make gettext

make html

メッセージカタログ
テンプレート

sphinx-intl update

メッセージカタログ

翻訳する

.rst / .md .pot

.po

.html

翻訳者

 ▼図1　Sphinxの国際化機能

https://github.com/kennethreitz/requests

134 - Software Design May 2016 - 135

トリ以下に出力されます。「_build/html/index.

html」をブラウザで開いてみてください。図5の
ように、Requestsの公式サイト注5と同じ内容が
表示されました。
　それでは、このドキュメントを国際化してい
きましょう。

国際化機能の設定と補助
ツールのインストール

　翻訳文を書き込んだ .poファイ
ルを置くディレクトリの場所と構
造をSphinxプロジェクトの設定
ファイル「conf.py」に指定します。
次の内容をファイルの末尾に追加
してください。

　これで、.poファイルはconf.py

からの相対パスで localeディレク
トリ以下から読み込まれます。
　次に、国際化機能の補助ツール
sphinx-intl注6を次のようにイン
ストールします。

注5） http://docs.python-requests.org/
en/master/

注6） https://pypi.python.org/pypi/sphinx-intl

locale_dirs = ['./locale']
 ↑.poファイルを置くディレクトリ

$ pip install sphinx-intl

　これで国際化機能を使う準備ができました。

メッセージカタログの準備

　それでは、翻訳を行うためのメッセージカタ
ログ（.po）ファイルを作成しましょう。ここで使
用するコマンドは次の2つです。

Sphinxで楽々ドキュメント翻訳 第14回

$ make html
Running Sphinx v1.3.6
making output directory...
loading pickled environment... not yet created
loading intersphinx inventory from http://urllib3.readthe... （中略）
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 18 source files that are out of date
 （..中略..）
dumping search index in English (code: en) ... done
dumping object inventory... done
build succeeded.

Build finished. The HTML pages are in _build/html.

 ▼図4　make html

requests-master/
 docs/ ……Sphinxプロジェクトのディレクトリ
 _static/ ……ロゴや cssなどを格納
 _templates/ ……カスタム HTMLテンプレートを格納
 _themes/ ……HTMLテーマディレクトリ
 　 … …….rstを含むいくつかのディレクトリ
 api.rst ……apiページ
 conf.py ……Sphinxプロジェクトの設定ファイル
 index.rst ……トップページ
 make.bat ……Windows用 makeコマンド
 Makefile ……Linux/Mac用 Makefile

 ▼図3　Requests用のSphinxプロジェクトディレクトリ

 ▼図5　Requestsのドキュメントから生成したページ

http://docs.python-requests.org/en/master/
https://pypi.python.org/pypi/sphinx-intl

136 - Software Design

・make gettextで、メッセージカタログテンプ
レート（.pot）を生成

・sphinx-intl updateで、.potからメッセージカ
タログ（.po）を生成

　はじめにSphinxのmake gettext
でメッセージカタログテンプレート
（.pot）ファイルを生成します（図6）。
実行が完了すると、図7のように

「_build/locale」ディレクトリ以下に

.potファイルが生成されます注7。

注7） 出力先はMakefile（またはmake.bat）に書
かれているため、異なる場合があります。

　生成された .potファイルの内容を見てみま
しょう。リスト4は index.rstから抽出された
index.potの内容です。msgidとmsgstrがパラグ
ラフごとにペアで出力されていますね。この .pot

Sphinxで始める
 ドキュメント作成術

requests-master/docs/
 _build/
 locale/ ……gettextビルダーの出力ディレクトリ
 … ……いくつかのディレクトリと *.potファイル
 api.pot ……api.rstドキュメントのメッセージカタログテンプレート
 index.pot ……index.rstドキュメントのメッセージカタログテンプレート
 html/

 ▼図7　生成されたgettextのメッセージカタログテンプレートファイル

#: ../../index.rst:7
msgid "Requests: HTTP for Humans"
msgstr ""

#: ../../index.rst:9
msgid "Release v¥¥ ¦version¦. (:ref:`Installation <install>`)"
msgstr ""

 ▼リスト4　index.pot

MarkdownでSphinxの国際化機能を利用する
　Sphinxは、ドキュメントソースのフォーマット
として reSTとMarkdownのどちらでも利用できま
す。Markdownの場合、国際化機能に一部制約が
あります。
　リンク先URLがパラグラフ外で定義されている

場合、国際化機能を使うとリンクされないため、
翻訳文側でパラグラフ内にURLを書いてあげる、
という一時的な回避策で対処しなければなりませ
ん（リストA）。将来的にはこの制約も解消してい
きたいと考えています。

COLUMN

msgid "CommonMark [spec][the spec] and implementations."
msgstr "CommonMark [仕様](http://spec.commonmark.org/) と実装。"

 ▼リストA　翻訳文でリンク先URLを明示する

$ make gettext
Running Sphinx v1.3.6
making output directory...
loading pickled environment... not yet created
loading intersphinx inventory from http://urllib3... （中略）
building [gettext]: targets for 3 template files
 （..中略..）
writing message catalogs... [100%] dev/philosophy
build succeeded.

Build finished. The message catalogs are in _build/locale.

 ▼図6　make gettext

136 - Software Design May 2016 - 137

ファイルはテンプレートですので、このファイ
ルのmsgstrに翻訳文を書き込んでいってはいけ
ません。もう少しお待ちください。
　翻訳を書き込むための .poファイルをsphinx-
intl updateコマンドで生成します（図8）。
　sphinx-intl updateを実行すると、.pot

ファイル群をもとに、日本語用の .poファイル
群が図9のようなディレクトリ構造で作成され
ます。
　これでメッセージカタログが準備できました。
それでは実際に .poファイルを書き換えて翻訳を
進めていきましょう。

翻訳してビルド

　index.poには、ドキュメント内のパラグラフ
ごとにmsgidとmsgstrのセットが生成されてい
ます。翻訳する際はmsgidと対になるように、
msgstrに翻訳文を書き込んでいきます。この際、
msgidの行は変更する必要はありません。また、
強調やロールなど、reSTによるマークアップが
行われている場合は、そのマークアップを維持

したまま翻訳を進めると良いでしょう（リスト5）。
　それでは、翻訳した .poを適用したHTMLを
生成しましょう。localeディレクトリには、言
語ごとに別々のディレクトリでメッセージカタ
ログを用意できるので、ドキュメント生成時に
はどの言語でビルドしたいのかを指定する必要
があります。そのために、conf.pyの末尾に、次
のように表示言語指定を追加してください。

　これで、再度make htmlコマンドを実行すれ
ば、「locale/ja」ディレクトリ以下の .poファイル
が自動的に適用され、翻訳されたHTMLが生成
されます（図10）。

language = 'ja'

Sphinxで楽々ドキュメント翻訳 第14回

requests-master/docs/
 locale/ ……国際化の言語ごとのカタログを置くディレクトリ
 ja ……日本語のディレクトリ
 LC_MESSAGES ……国際化のメッセージを置くディレクトリ
 … ……いくつかのディレクトリと *.poファイル
 api.po ……api.rstドキュメントのメッセージカタログ
 index.po ……index.rstドキュメントのメッセージカタログ

 ▼図9　国際化ディレクトリの構成

$ sphinx-intl update -l ja
Create: ./locale/ja/LC_MESSAGES/api.po
Create: ./locale/ja/LC_MESSAGES/index.po
Create: ./locale/ja/LC_MESSAGES/community/faq.po
Create: ... （以下略）

 ▼図8　sphinx-intl update で日本語用の .poファイルを生成

#: ../../index.rst:7
msgid "Requests: HTTP for Humans"
msgstr "Requests: 人間のためのHTTP"

#: ../../index.rst:9
msgid "Release v¥¥ ¦version¦. (:ref:`Installation <install>`)"
msgstr "リリース v¥¥ ¦version¦. (:ref:`インストール <install>`)"

 ▼リスト5　index.poの翻訳例

 ▼図10　翻訳を適用した indexページ

138 - Software Design

　翻訳中に、ドキュメントの原文が更新される
ことがあります。Sphinxの国際化機能を利用し
ている場合、手間をかけずに原文の更新に追従
できます。
　まず、元のドキュメントファイルを更新しま
す。たとえば「docs/index.rst」が更新されたと
します（ここでは説明のために、文中の for

Humansを for Catsに変更しました）。次に図11

のようにコマンドを実行します。これによって、
ドキュメントソースから .potファイルが再生成さ
れ、.potファイルをもとに .poファイルが更新さ

元ソースが更新されたら
れます。
　原文が更新されると、図11のように各ファイ
ルの更新状況と更新行数が表示されます。この
例では、index.po +1, -1となっているので、
index.poの翻訳メッセージが1行減って1行増え
たようです。
　そこで index.poファイルを見てみると、リス

ト6のように fuzzyとなっている行が見つかりま
す。これは、原文の更新によってこの翻訳メッ

Sphinxで始める
 ドキュメント作成術

conf.pyを編集しない方法
　今回の例では、conf.pyに3つの行を追加してい
ます。しかし、ソースコードの所有者が自分でな
い場合、このようにconf.pyを書き換えてしまうと
管理しづらくなってしまいます。そこで、conf.py
を編集せずにコマンドラインから設定値を指定す
る方法を紹介します。
　SphinxプロジェクトのMakefile（またはmake.
bat）には、Sphinxの実行オプションを設定するた
めの変数が用意されています。この変数にコマン
ドラインから値を指定して、conf.pyの設定を図A

のように変更してください。
　sphinx-intlもconf.pyを参照しています。こ
こでは環境変数での指定方法を紹介します。UNIX
系ではexport、Windowsでは setで指定してくだ
さい。

 UNIX系の場合
$ export SPHINXINTL_LOCALE_DIR=./locale
$ export SPHINXINTL_POT_DIR=./_build/locale
$ sphinx-intl update -l ja

COLUMN

 UNIX系の場合
$ make html SPHINXOPTS='-D language=ja -D gettext_compact=0 -D locale_dirs=./locale'

 Windowsの場合
> set SPHINXOPTS=-D language=ja -D gettext_compact=0 -D locale_dirs=./locale
> make html

 ▼図A　コマンドラインから設定値を指定する

$ make gettext ←.potファイルを再生成
 （..以下略..）

$ sphinx-intl update ←言語無指定ですべての既存カタログを更新
Not Changed: ./locale/ja/LC_MESSAGES/api.po ←カタログ変更なし
Update: ./locale/ja/LC_MESSAGES/index.po +1, -1 ←カタログが1行増減している
Not Changed: ... （以下略）

 ▼図11　sphinx-intl updateで .poを更新

#: ../../index.rst:7
#, fuzzy
msgid "Requests: HTTP for Cats"
msgstr "Requests: 人間のためのHTTP"

 ▼リスト6　更新された index.po

138 - Software Design May 2016 - 139

セージの原文（msgid）が変更になったけれど、翻
訳文（msgstr）が正しい状態かどうかわからない、
ということを示しています。
　原文を見直してみて、翻訳に影響がある変更
の場合は、msgstrを修正してください。修正し
てもしなくても、確認が終わったら fuzzyと書
かれた1行を削除してください。翻訳メッセー
ジに fuzzyが付くのは、誤字の修正や、複数形
の sを変更するような文法上の修正、URLの
ちょっとした修正などです。それらの中には変
更に気づきにくい場合もあります。
　なお、原文が半分近く修正された場合、fuzzy

マークは付かず、新しいmsgidとして追加され
ます。
　翻訳がどのくらいできているかを確認するに
は、sphinx-intl statを実行します（図12）。
fuzzyがいくつあるかもこのコマンドで確認で
きます。

　Sphinxの国際化機能ではできないこともあり
ます。パラグラフやコラムの追加といった、原
文にない文章構造の追加はできません。これは、
原文と1対1で翻訳文を用意するしくみでは実
現できない機能です。
　画像ファイルを言語ごとに差し替える機能は
Sphinx-1.4から利用できます注8。

　Sphinxのconf.pyには、ここまでに紹介した

注8） http://www.sphinx-doc.org/ja/master/config.html の
figure_language_filenameの説明を参照。

注意点

gettext関連の設定

以外に、gettext関連の設定もあります。ここで
少し紹介します注9。
　今回の例のRequestsのドキュメントは、dev

ディレクトリ以下に4つの .rstファイルを持っ
ています。しかし、メッセージカタログファイ
ルとしては、devディレクトリ以下のすべての
文章がdev.potにまとめられます。gettext_com

pactオプションをFalseに設定すれば、ドキュ
メントソースがサブディレクトリを持つ場合に
1ファイルに集約せず、ソースと同じディレク
トリ構造を維持します。
　ほかにも、gettext_additional_targetsオプ
ションでソースコードサンプル内のコメントや
画像の代替文字列を翻訳するかどうかを指定で
きます。翻訳の対象にするには次のようにconf.

pyに設定します。

　今回は、Sphinxの国際化機能について紹介し
ました。.poファイルの翻訳支援ツール、サービ
スを併用すれば、さらに煩雑な手作業から解放
されてドキュメント翻訳そのものに集中できる
と思います。
　次回は、Sphinxの国際化機能を使った翻訳の
手順を自動化して、複数人で翻訳を行う方法を
紹介します。｢

注9） 各オプションについての詳細は、http://www.sphinx-doc.
org/ja/stable/config.htmlを参照。

gettext_additional_targets = ['literal-block']

次回予告

Sphinxで楽々ドキュメント翻訳 第14回

$ sphinx-intl stat
./locale/ja/LC_MESSAGES/api.po: 198 translated, 0 fuzzy, 65 untranslated.
./locale/ja/LC_MESSAGES/index.po: 7 translated, 1 fuzzy, 38 untranslated.
 （..以下略..）

 ▼図12　sphinx-intl stat

http://www.sphinx-doc.org/ja/master/config.html
http://www.sphinx-doc.org/ja/stable/config.html

140 - Software Design

サイバー攻撃で社会インフラが物理的な被害を受けるということは、フィクションで描かれるこ
とはあっても、現実の世界ではそう起こるものではありません。しかし、2015年末に、マルウェア
の攻撃により電力システムが麻痺し、大規模な停電を引き起こした事件が発生しました。今回は、
その事件の背景を取り上げます。

物理的な被害をもたらし
たマルウェア

　これまでマルウェアによる攻撃は情報を盗む、あ
るいは情報を破壊するといった、情報という形のな
いものへの攻撃でした。しかし、2015年12月23日、
ウクライナの電力会社がマルウェアを使った攻撃に
さらされ、地域への電力供給が停止し、140万人の地
域住民の半分が停電被害にあうという事態が起こり
ました。
　変電所を運用するシステムにマルウェア「Black

Energy」が感染したために、送電が停止し（図1）、
イヴァーノ＝フランキーウシク地域の住民世帯の半
分へ電力供給が停止、停電しました注2。電力会社
のエンジニアが変電所を手動で操作し、電力を復旧
させるという手順をふみました。

ウクライナだけの
問題ではない

　BlackEnergyはトロイの木馬タイプのマルウェア
です。侵入後、C&Cサーバ（Command and Control

Server）と通信し、目的に合わせたマルウェアを呼
び込むリモート制御の役割を果たします。ボット

ネットを構築するために、2007年ごろから使われて
いることが知られています。また、2011年当時の報
道注3で、ロシアのサイバー犯罪市場で生み出され

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第三二回】

すずきひろのぶ
suzuki.hironobu@gmail.com

BlackEnergyによるリアルな世界への攻撃

注1）	 First known hacker-caused power outage signals troubling escalation（Jan 5, 2016）	 	
http://arstechnica.com/security/2016/01/first-known-hacker-caused-power-outage-signals-troubling-escalation/

注2）	 Ukraine to probe suspected Russian cyber attack on grid（Dec 31, 2015）	 	
http://www.reuters.com/article/us-ukraine-crisis-malware-idUSKBN0UE0ZZ20151231

注3）	 進化するDDoSボットネット 第1回：BlackEnergyボット（2011年５月20日）　http://blogs.mcafee.jp/mcafeeblog/2011/05/1215.html

◆◆図1　停電がマルウェアBlackEnergyによるものであ◆
 ることを伝える報道 注1

http://arstechnica.com/security/2016/01/first-known-hacker-caused-power-outage-signals-troubling-escalation/
http://www.reuters.com/article/us-ukraine-crisis-malware-idUSKBN0UE0ZZ20151231
http://blogs.mcafee.jp/mcafeeblog/2011/05/1215.html

May 2016 - 141

【第三二回】 BlackEnergyによるリアルな世界への攻撃

ていた可能性があると指摘されています。
　工業生産現場に導入されている制御システムは、
広くはICS（Industrial Control System）と呼ばれま
すが、そのICSを対象としたマルウェアとしても
使われています。
　とくに2011年以降は攻撃が顕著となり、米国の
制御向けCERTであるICS-CERTからも繰り返し
警告が出ています。今回のウクライナの攻撃にも
BlackEnergyが使われたため、再度情報をアップ
デートした形で警告が出ています注4。細かいこと
を言うと、ICS-CERTのドキュメントには「攻撃」と
いう意味よりさらに軍事色の強い「軍事行動」という
意味の“Campaign”という単語が使われています。
　ウクライナの事例は、電力網という社会インフラ
への攻撃が成功するという深刻な事態であったた
め、米国のCERTチームであるICS-CERTとUS-

CERTが、Ukrainian CERTと組んで共同で解析を
行っています。
　これまでの連載で何度も取り上げてきましたが、
ICS-CERTやUS-CERTといった組織は、米国の
国家安全保障の観点から作られた米国国土安全保障
省傘下のCERTチームです。このようなCERT

チームが前面に出てきているということは、ウクラ
イナの事案は非常に深刻であり、将来において重要
な意味を持つものであるという視点で見なければい
けないでしょう。
　BlackEnergyは、人間が使うコンソールである
HMI（Human-Machine Interface）システムの部分に
影響を与える形になっています。今回のウクライナ
の場合は、HMIは外部とインターネットで接続して
いることを条件としていると報告されています。
BlackEnergyも世代が進み、ウクライナで使われた
ものはBlackEnergy 3と呼ばれています。

通常のPCと変わらない

　1世代前のBlackEnergy 2は、標的型攻撃として
Microsoft Wordのアタッチとして送られてきて、

感染するようになっていました。そのような攻撃を
しかけてくるということは、プラントなどの制御用
端末として使っているPCは、「インターネットに接
続されており、Microsoft Officeも同時に扱えるよ
うな通常のデスクトップPCと変わらない構成のも
のを、HMIのコンソールとして使っている」と想定
しているようです。それがメール経由なのかブラウ
ザ経由なのかはわかりませんが、そこからBlack

Energy 2が感染することになります。
　これはイランの核開発施設を狙ったマルウェア
「Stuxnet」と比べるとレベルは低いと言えるかもし
れませんが、逆にこのようなインターネットに接続
している端末を制御系のコンソールに使っているも
のは、いつでも餌

えじき

食になる可能性があることを意味
しています。
　現在使われているメジャーな制御システムには、
GE Cimplicity、Advantech/Broadwin WebAccess、
SIMATIC WinCCなどのシステムがありますが、い
ずれもHMIはPCベース（Windowsベース）なので、
理屈のうえでは今回と同じような攻撃が可能です。
　たとえば、2016年3月25日時点で、Siemens社の
日本語サイトで紹介している「SIMATIC WinCCプ
ロセスビジュアライゼーションシステム 日本語版
カタログ」を参照してみると、SIMATIC WinCC

V7.0の推奨動作環境は次のとおりです。

●●Windows Vista 32-bit Ultimate、Businessおよ

びEnterprise
●●Windows XP Professional
●●Windows Server 2003およびWindows Server

2003 R2

　つまり、これらのプラットフォームを麻痺させる
ことができれば、制御システムのHMIが麻痺して
しまい、HMI経由でコントロールできなくなるとい
うことにつながります。
　具体的には、たとえば2014年10月にJPCERT/

CCから告知された「Microsoft OLEの未修正の脆
弱性に関する注意喚起（JPCERT-AT-2014-0043）」

注4）	 Ongoing Sophisticated Malware Campaign Compromising ICS（Update E）（March 2, 2016）	 	
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-14-281-01B

https://ics-cert.us-cert.gov/alerts/ICS-ALERT-14-281-01B

142 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

（CVE番号ではCVE-2014-4114）注5を使った攻撃
が行われれば、極めて危険です。
　これは攻撃側がMicrosoft Officeファイルをユー
ザに送り付けるなり、ダウンロードさせるなりして
ドキュメントを読み込ませると（ファイルを開かせ
ると）、任意のコードを実行させられる脆弱性です。
しかも、この脆弱性に対する攻撃はベンダから修正
版が出る前に確認されました。いわゆる「ゼロデイ
攻撃」です。OLEは、Windowsファミリではサーバ
でもデスクトップでも共通に搭載されていますの
で、この脆弱性は多くのWindowsのバージョンに
影響を与えていました。
　HMIのコンソールとなっているPC上で、ドキュ
メントファイルを開けるような環境であることを
知っているならば、狙うのは難しいことではありま
せん。また、HMIのコンソールだと知らなくても、
たまたまオペレータが不注意でドキュメントを開い
てしまうかもしれません。その瞬間にマルウェアに
感染してしまいます。
　もちろんこのような運用をしているところは極め
て少数でしょう。ですがゼロではないはずです。

ウクライナのケースは
もっとひどい

　ICS-CERTのレポートによれば、被害にあったウ
クライナの電力会社はGE Cimplicity HMIを利用して
おり、さらに直接インターネットに接続していまし
た。直接インターネットに接続していて、しかも外
部から直接アクセス可能だなんて、そんなバカなと
思うでしょう。しかし、本当のようです。そして、GE

Cimplicity HMIのコンポーネンツであるCimplicity

CimWebServerの10212/tcpポートに細工をしたメッ
セージを送ると、任意のコードが実行できるという
危険性の高い脆弱性を放置していました。
　この脆弱性に関しては、2014年1月にCVE-2014-

0751（ICS-CERTからはICSA-14-023-01として公
開）の脆弱性情報が公開されています。そして、GE

Cimplicity HMIは少なくとも2012年1月から脆弱
性を抱えていることがわかっています。CVSS v2

（共通脆弱性評価システム）での深刻度の値は6.8と
なっています。電力会社はシステムのアップデート
をしていなかったようで、この脆弱性を狙った攻撃
が有効となりました。
　BlackEnergyはC&Cサーバと通信を行い、命令
に従って外部からマルウェアをダウンロードしま
す。必要なマルウェアはもちろんのこと、外部から
ファイルをダウンロードするのも自由自在です。た
とえば、GE Cimplicity HMIの設定スクリプト（拡
張子は .cim）を外部からダウンロードし入れ替える
ようなこともできます。つまり、実質的にそのコン
ソールから制御している電力システム全体を乗っ取
ることも可能です。
　もちろん、その制御システム全体がどのような構
成になっているかの知識がなければ、コントロール
するためのスクリプトは作成できないので、ハード
ルは高いでしょう。しかし、ハードディスクの中を
きれいに消去してシステムを麻痺させることは簡単
です。いくつかのセキュリティベンダによると、今
回の事件では、KillDiskをダウンロードし、それを
使ったとあります。KillDiskという名前から簡単に
機能は想像がつきますが、きれいさっぱりハード
ディスクの中身を消去してしまえば、システムが麻
痺してしまうのは当然です。

電力会社だけでは
なかった攻撃対象

　トレンドマイクロ㈱のセキュリティブログには、
たいへん興味深いことが書かれています注6。ウク
ライナの大手鉱業会社や大手鉄道会社での感染情報
を調べると、電力会社への攻撃に使われていたもの
と同じものが検出されたそうです。
　つまり、特定の電力会社を集中的に狙ったのでは
なく、CVE-2014-0751の脆弱性をターゲットにし
て、かなり広範囲に10212/tcpポートをスキャン

注5）	 Microsoft OLEの未修正の脆弱性に関する注意喚起（JPCERT-AT-2014-0043）　https://www.jpcert.or.jp/at/2014/at140043.html
注6）	 エネルギー業界だけが標的ではなかった「BlackEnergy」の攻撃（2016年2月12日）　http://blog.trendmicro.co.jp/archives/12828

https://www.jpcert.or.jp/at/2014/at140043.html
http://blog.trendmicro.co.jp/archives/12828

May 2016 - 143

【第三二回】 BlackEnergyによるリアルな世界への攻撃

はさぞかしたいへんだったと思いますが、爆発や火
災といった惨事が発生したり、死者が出たりはして
いないようですので、その点に関しては不幸中の幸
いかと思います。
　これまで、「情報」＝「形のないもの」への攻撃だっ
たものが、今や物理的なダメージに直結した危険な
攻撃が出てきました。ウクライナのケースは極端な
例のように思えますが、必然的に、このような攻撃
は今後も増えるでしょう。また、これまでコン
ピュータセキュリティ、ネットワークセキュリティ
など考慮していなかった制御系システムを、意図せ
ず攻撃が可能となる形でネットワークに接続して運
用されてしまうことも出てくるでしょう。完全に
ネットワークから切り離されていても、Stuxnetの
ようにUSBメモリなど外部から持ち込まれるもの
もあるでしょう。
　今回のウクライナの停電は、けっして遠い国のお
話ではないのです。s

し、一斉に攻撃した可能性も高いということです。
　それがたまたまウクライナでたくさん症状が出た
のか、それともウクライナを集中的に狙ったのか
は、現状では判断がつきません。なぜならば、まと
もな運用をしているところならば、ICSのシステム
をファイアウォール的な防御もなく、あるいは
VPNを使ってネットワーク的に閉鎖空間にするこ
ともなく、直接インターネットにつなぎ、簡単に第
三者が10212/tcpポートにアクセスできるような環
境にはしないからです。その意味ではウクライナの
電力会社は、ネットワークセキュリティに対して無
頓着であったと言わざるを得ません。
　……と、言ってしまいましたが、ウクライナをそ
んなふうに言いきれるほど日本は安全なのかどう
か。たまたま運がいいだけなのかもしれません。

一歩間違えば大惨事

　12月23日という冬の季節に、長時間停電したの

2014年刊行した『インフラエンジニア教本』の続編として、
SoftwareDesignの人気特集記事を再編集しまとめました。今回
は、サーバの運用管理を中心に今すぐ使える技術をピックアップ。
ITインフラの管理と運用、そして構築を学ぶことができます。お勧
めは「ログを読む技術」「ログを読む技術・セキュリティ編」をはじめ
として盛りだくさん。大事なインフラをささえるサーバの選び方か
ら、無線LAN構築までがっちりサポート。最強のインフラエンジニ
アになるための1冊です。書き下ろし「エンジニアのための逃げな
い技術̶̶幸せなエンジニアになるための３つの条件」もあり！

Software Design編集部 編
B5判／344ページ
定価（本体2,580円＋税）
ISBN 978-4-7741-7782-3

・ITインフラ（ネットワーク、サーバ、クラウド）に関わる
 エンジニアの皆さん

144 - Software Design

はじめに

　今号から新連載Unixコマンドライン探検隊
が始まります。我らがSoftware Designは、コ
マンドラインインターフェース（CLI）をとても
重視しているコンピュータ専門誌です。これま
でにも、CLIを取り上げた「開眼シェルスクリ
プト」などの名連載がありました。この連載は、
これらの偉大な業績を継承してUnixのCLIを
使ったコマンド操作を中心に紹介し、それらを
通してOSのしくみも楽しみながら理解しよう
という欲張り企画です。
　本連載での中心ターゲットは初心者です。執
筆にあたって、入門者ができるだけふるい落と
されないように、記事の全体が難しくなり過ぎ
ないように注意します。加えて、熟練のエンジ
ニアにとっても、知識の再確認や、ちょっとし
た作業効率改善に役立つものにしたいと考えて
います。Unixは長きにわたって発展を続けて

いるOSです。筆者自身が、CLIを操作してい
ていまだに不思議に思うことや知らなかったこ
ともたくさんあります。この連載を通して、み
なさんと一緒にUnixへの理解をさらに深めて
いきたいと思っています。

　記事の一部分は深く掘り下げた内容になるか
もしれませんが、わからなければ気にせず斜め

に読み飛ばしてください。本当には理解してい
なくても、使われている言葉や対象を眺めて知っ

た気になるのも対象を本当に理解するための第
一歩になります。ただ可能なら読んで知るだけ
でなく、動作を確認するための環境も手近に用
意し、実際にキーボードを叩いて確認してくだ
さい。安全な環境注1を用意して、たくさんの試
行を繰り返しましょう。成功はもちろん、失敗

の経験がとても大切です。
　実践してみると、記事に書かれているのとは
違う動作をする環境もあるかもしれません。そ
うした場合は、何が同じで何が異なっているか
も考えてみるようにしてください。きっと理解
が深まり、技術は向上するはずです。実践は、

エンジニアリング力強化の王道です。

　「Unixって何？」という比較的若い？方、「いまさら」
という古のころからコンピュータを知っている方もい
らっしゃることでしょう。Unixは、1969年にAT&T
のベル研究所で開発が始まったオペレーティングシス
テムです。現在に至るまでさまざまな経緯を経て、
LinuxやMacintoshのOS XなどのUnixの流れを汲
むオペレーティングシステムが開発されました。
UNIXはAT&Tの登録商標ですが、本連載では、これ
らのUnixの流れを汲むオペレーティングシステムを
まとめてUnixと呼ぶことにします。本連載で対象と
する環境は、主としてOS XとLinuxです。

注1） ファイルを消してしまったり、システムを落としてしまっ
たりと、失敗しても大丈夫なように、プライベートなマシ
ンや仮想環境が安心です。

今年の夏に実施予定のWindows 10 Anniversary Updateにて、“Bash on Ubuntu on
Windows”の提供計画がMicrosoftから発表されて注目の集まるShell環境。本連載は、
UnixのShellの実践的な操作とさまざまなコマンドを通じて、OSへの理解を深めていきます。
第1回目は、端末操作の基本とオンラインマニュアルの使い方を紹介します。

 Author 中島 雅弘（なかじま まさひろ）　㈱アーヴァイン・システムズ

第　　回1 Unixコマンドを探す旅

144 - Software Design May 2016 - 145

まずは端末アプリケーション

　CLIをご存じでない方もいらっしゃるかもし
れませんね。とりあえず、画面キャプチャをご
覧ください（図1）。
　OSや使っている言語によってさまざまな端
末アプリケーションがありますが、端末、ター

ミナル、Terminalなどと呼ばれているアプリ
ケーションを起動した状態です。図1では黒い
ウィンドウですが、いろいろとカスタマイズし
て色やフォントを変更することができる端末も
あります。みなさんもOS XやLinux上で端末
アプリケーションを実行してみてください。

　ウィンドウシステムが動いていない状態でも、（端
末アプリケーションではありませんが）このコマンド
ラインインターフェースは使うことができますので、
クラウドやサーバ環境でも同様の操作が可能です。

　図2の状態で、入力プロンプトの後ろにさま
ざまなコマンドを入力しコンピュータを操るの
です。
　よくこの画面を揶

や

揄
ゆ

して「黒い画面」とか呼ば
れて素人筋からは敬遠されていますが、GUI

のきらびやか？なインターフェースに対して、
男らしく突き放した感じが素敵じゃないですか

;-) 。みなさんも、CLIを操る上級コンピュー
タ職人を目指してください。

CLIは魔法の呪文！？

　CLIとスクリプト言語環境は、ソフトウェア
エンジニアにとってはプログラミングから実行

テストまでが俊敏に実施できる軽量性、また熟
練したシステム管理技術者にとってはボタンを
押すだけの定型的な操作よりもシステムの深淵

まできめ細かく操作できることに実践的な価値
があります。1つ1つの機能を簡潔に見通しよ
くすることで、長い期間安全・安定的に使い続
けることができます。また、軽量なツールであ
れば、CPU、メモリなどのリソース消費が少

なく、限られたリソース環
境においても最大の性能を
引き出すことが可能です。
　このように、小さな機能
を組み合わせて問題を解決
する手法は、Unixの基本
的な考え方です。この考え
方は、Agile（アジャイル）
やXPなどのソフトウェア
プロセスで重視される簡潔
さ、つまり「ニーズを満た
す解決策の中で最も簡潔な
ものを開発すること」そし
て「簡潔であることを維持
すること」と符合します。

第　　回1 Unixコマンドを探す旅

coco-mac:̃ coco$

Terminal を実行すると、標準で最終 login の日時と端末が表示される

Last login: Sun Jan 11 10:38:35 on ttys000

入力受付行：　標準では、

 ： ユーザー名　＄　入力プロンプトカレントワーキング
ディレクトリ

Login している
ホスト名

が表示される

 ▼図2　Terminal画面の説明（OS X）

 ▼図1　CLIの画面

146 - Software Design

　CLI上の短い文によって人が一生かかっても
できないような仕事をコンピュータが一瞬でやっ
てしまうので、まるで魔法の呪文のように見え
るかもしれません。ですが我々探検隊は、それ
らのしくみとその秘密を科学の視点注2で探って
いきましょう。

さあ、旅立とう！

　Unixコマンドを知る冒険に出発するにあたり、
冒険の対象となる世界を知ることが重要です。
これから私達が体験するコマンドは、どこにあ
るのでしょう。コマンドだけでなく、関連する
ファイルの場所も知っておくべきです。
　実行可能なコマンドの多くは、/bin、/usr/
bin、/usr/local/bin、/sbin、/usr/sbin、
/usr/local/sbin、/opt注3などのディレクト
リ注4に入っています。
　試しに、lsコマンドでどのようなファイル
があるのか確認してみてください（図3）。たく
さんのコマンドが表示されました。みなさんの
環境でも、同様に多くのファイルが表示された
ことと思います。さすがに連載の中で、これだ
けたくさんのソフトウェアをすべて紹介するこ
とはできません。重要なコマンドや便利なコマ
ンド、楽しいコマンドを紹介していこうと思い
ます。
　これらのコマンドは、単純な仕事をこなすだ
けのものも、スクリプト言語やコンパイラ、
DBMS、コンパイラやスクリプト言語を記述
することもできるすごく強力なツールも含んだ、
たくさんの英知の蓄積です。Unixの、小さなツー
ルを組み合わせて使うという考え方にそって、
これらのツールを組み合わせて使えば、さらに
できることは広がります。

注2） OSやプログラムの動作原理や背景を知ること。
注3） /で始まる名前がディレクトリです。ディレクトリは階層

的な構造になっているので、/usrの中に /binなどのサブディ
レクトリを含むことができ、その場所を示すには /usr/bin
と続けて記述します。

注4） Unixではディレクトリ、Mac OS＝OS Xなどではフォル
ダと呼んだりしますが同じ意味です。

Googleの前にman

　ところで、コンピュータの操作をしていてわ
からないことがあった場合、どうしていますか。
最近ではほとんどの人が「Google先生」に尋ね
るのではないでしょうか。
　使っている環境の体系だった最も確からしい
情報源はマニュアルです。そのシステムに付属
しているものですから、バージョンの微妙な違
いによる情報の食い違いなども心配する必要は
ありません。もちろん、外部の動作だけを見て
「なんとなくうまく行ったよ」などという頼りな
い情報でもありません。
　経験の長いエンジニアであれば、以前は
Unixの印刷されたマニュアルを手にしながら
作業していたかもしれませんね（写真1）。最近
では、これらのほとんどのドキュメントがデジ
タル化されてPDFやHTMLで読めるようにな
り、冊子になったものは見かけなくました。
　Unixでは、エンジニアリングの現場ですぐ
に必要な情報はオンラインマニュアルで参照で
きます。オンラインマニュアルは、manという
コマンドで参照します。manはとても便利で、
個別のコマンドなど後に紹介する情報のほとん
どを確認することができます。
　早速、使ってみましょう。図4はmanコマン

$ ls /bin /usr/bin /usr/local/bin /sbin /usr/ｭ
sbin /usr/local/sbiní

/bin:
[df launchctl pwd tcsh
bash domainname link rcp test
cat echo ln rm unlink
chmod ed ls rmdir wait4path
cp expr mkdir sh zsh
...中略...

/sbin:
autodiskmount fstyp mount mount_ntfs pfctl
disklabel fstyp_hfs mount_acfs mount_smbfs ping
dmesg fstyp_msdos mount_afp mount_udf ping6
 ...中略...

/usr/bin:
2to3 mdls
 ...後略...

 ▼図3　lsの出力例

146 - Software Design May 2016 - 147

ドの使い方をOS X 10.11.3で参照した例の一
部分です。表示された情報をmanページとい
います。
　「おいおい、英語じゃないか。」……そうなん
です。環境によって異なりますが、標準では英
語のマニュアルしか入っていないシステムがほ
とんどです（日本語マニュアルについては後述
します）。
　コンピュータ関係の情報全般に言えることで
すが、最も迅速にアップデートされる正確な情
報はたいてい英語ですので、一歩上のレベルの
エンジニアを目指すべく、できるだけ英語のも
のも読みましょう。学校の英語の授業のように
翻訳する必要もなければ、辞書を片手に悶絶す
る必要もありません。筆者もそうでしたが、学
生時代英語が苦手だった人でも技術英語であれ
ば、専門用語はわかりますし、文も曖昧さのな

い形式がほとんどですので、慣れてしまえばス
ラスラと読めるようになります。日本語マニュ
アルがあれば、それも参照しつつ（とはいえ自
動翻訳はあまりお勧めできませんが）実践的に、
必要な情報を読み取ってください。日本語の
manページに書かれていないことが、英語の
manページには書かれていることが意外とある
ものです。

manを読む

　manで参照する際、どのような情報が記載さ
れているのか知っておく必要があります。マニュ
アルの章立て（セクションの構成）は、Unix系
のOSではおおむね共通です。

1. 一般的な実行可能コマンドとシェル・コマ
ンド

2. システムコール
3. ライブラリファンクション
4. スペシャルファイル（/devの下のデバイスド

ライバーなど）
5. ファイルフォーマットとその約束事
6. ゲームとスクリーンセーバー
7. その他の情報
8. システム管理コマンドとデーモン
9. カーネル開発者向けのマニュアル

　個々の環境でどのような章立てになっている
かは、次のmanページで確認できます。

第　　回1 Unixコマンドを探す旅

 ▼写真1　 印刷されたUnixのマニュアル。System V
とBSD

$ man passwdí

PASSWD(1) BSD General Commands Manual PASSWD(1)

NAME
 passwd -- modify a user's password

SYNOPSIS
 passwd [-i infosystem [-l location]] [-u authname] [user]

DESCRIPTION
 The passwd utility changes the user's password. If the user is not the super-
 user, passwd first prompts for the current password and will not continue unless
 the correct password is entered.
 ...後略...

 ▼図4　manの実行例（OS X）

148 - Software Design

 Ubuntu
$ man man-pages

 CentOS、Ubuntu（先の方法に加えて）共通で
$ man man

 OS X
$ man manpages

　コマンドとして実行できるものは、おおむね
セクション1に書かれています。管理系のコマ
ンドはセクション8、ゲームのマニュアルはセ
クション6にあります。
　このように、manがカバーしているのはコマ
ンドだけではなく、プログラミングやシステム
管理に必要な「システムコール（2）」や「ライブ
ラリファンクション（3）」など多くの情報を含
んでいます。同じ名称で異なるセクションに情
報がある場合には、明示的にセクションを指定
してページを参照します。
　例として、/usr/bin/passwdコマンドと/etc
/passwdの形式について調べてみましょう。
manでセクションを指定しない場合には、セク
ション1のpasswdコマンドの情報が表示され
ます。
　セクション1については、先出の「図4　man
の実行例（OS X）」をもう一度見てください。
これは、次のように明示的にセクション1を指
定した場合と同じです。

$ man 1 passwd

　/etc/passwdの形式を確認したい場合はセク
ション5を指定します（図5）。

manの探し方
　どのセクションか、明確なファイルやコマン
ドの名前がわからない場合、本文中に含まれて
いるキーワードを指定することもできます。
　aproposコマンドは、manページのユーティ
リティです。引数に正規表現を指定してmanペー
ジ名と“説明（DESCRIPTION）”中を検索する
ことができます。また、manに次のオプション
を指定して、manページ内のワードを検索する
こともできます。

キーワード検索のオプション
-k……オプションに続くキーワード（正規表現；別の
回であらためて解説します）を、manページ名と“説明

（DESCRIPTION）”の中から検索する。一致するすべ
てのmanページが表示される。aproposコマンドを使
うのと同じ意味
-K……オプションに続くワードがmanページに含まれ
ているかページの全文を検索するのですごく遅い。見
つかったmanページを表示するか、次を検索するかな
どを対話的に確認しながら検索する。Linux系では
--regexオプションを指定すれば、正規表現も使える

	
　aproposコマンドの実体は、Ubuntuではwhatisコ
マンドへのシンボリックリンク、OS Xではシェルス
クリプト注5です。OS Xのwhatisは、これもまたほと
んどaproposと同じ内容のシェルスクリプトです。

　たとえば、“file open”というキーワードを探
してみましょう（図6）。これは、次と同じこと
です。

注5） 興味のある人は中をのぞいてみましょう。

$ man 5 passswdí

PASSWD(5) BSD File Formats Manual PASSWD(5)

NAME
 passwd, master.passwd -- format of the password file

DESCRIPTION
 The /etc/passwd file is a legacy BSD 4.3 format file. It is mostly unused, but
 is updated by some utility programs. Its format is similar to the /etc/mas-
 ter.passwd file, except that it does not contain the class, change, and expire
 fields described below.
 ...後略...

 ▼図5　セクション5のpasswdマニュアル

148 - Software Design May 2016 - 149

$ apropos "file open"

　次は、-Kオプションで全文検索を試してみ
ます（図7）。
　Linux（Ubuntu/CentOSなど）では、一度man
ページが開いてから、PAGERをぬけた後に、
対話オプションを選択します（図8）。

見出しについて
　ここで、manページの形式を確認しておきま
しょう。もう一度「図4　manの実行例（OS X）」
を見てください。大文字の見出し＋内容という
書式体裁になっていますね。ほかのコマンドを
調べても、ほぼ似たような形式です。

	
　OS Xのmanページは、いずれもヘッダ部分に“BSD ...
Manual” という記述があると思います。OS X は、
FreeBSDというUnixのディストリビューションをベー
スにして作られたOSですので、マニュアルもBSDの
ものが流用されているのですね。

　見出しに注目すれば、だいたい目的の情報が
見つかるはずです。コマンド（セクション1）に
ついての主要な見出しを紹介しておきましょう。

・NAME　名前
・SYNOPSIS　書式
・DESCRIPTION　説明
・EXAMPLES　例
・SEE ALSO　関連項目

今回のまとめと
次号について

今回の確認リスト
【manで調べるもの】
man、apropos、more、less、ls、groff、nroff、zcat、
printenv、env、apt-get（Ubuntu な ど の Debian 系
Linux）、yum（CentOSなどRedHat系Linux）

　今回は、Unixとコマンドラインインター
フェースについての紹介と、manコマンドにつ
いて紹介しました。本編では十分に紹介しきれ
ませんでしたが、1つのコマンドに見えるmanは、
groffやless、aproposなど外部のコマンドな
どとも連携して動いています。興味のある方は、
これらについても調べてみましょう。次回は、
ファイルシステムのお話と、実際にファイル操
作を体験します。｢

第　　回1 Unixコマンドを探す旅

$ man -k "file open"í
TIFFSetField(3tiff), TIFFVSetField(3tiff)
- set the value(s) of a tag in a TIFF file
open for writing
opensnoop(1m) - snoop file
opens as they occur. Uses DTrace

 ▼図6　キーワード検索の例（OS X）

$ man -K "file open"í
masa-air:‾ masahiro$ man -K "file open"í
/usr/local/share/man/man1/gnutls-serv.1? [ynq] n
/usr/local/share/man/man3/TIFFSetField.3tiff? [ynq] y
/usr/share/man/man1/authopen.1? [ynq] n
/usr/share/man/man1/fuser.1? [ynq] q

 ▼図7　 全文検索の例（OS X）。実行に時間がかかります

$ man -K "file open"í
masahiro@ubuntu0:‾$ man -K "file open"í
--Man-- next: pager(1) [view (return) | skip (Ctrl-D) | quit (Ctrl-C)]
next
--Man-- next: x509(1ssl) [view (return) | skip (Ctrl-D) | quit (Ctrl-C)]

--Man-- next: HTML::TreeBuilder(3pm) [view (return) | skip (Ctrl-D) | quit (Ctrl-C)]
--Man-- next: IO::InnerFile(3pm) [view (return) | skip (Ctrl-D) | quit (Ctrl-C)]
--Man-- next: PerlIO::gzip(3pm) [view (return) | skip (Ctrl-D) | quit (Ctrl-C)]
 上記で、manページの表示と入力文字は割愛しています。

 ▼図8　全文検索の例（Ubuntu）。実行に時間がかかります

150 - Software Design

OpenBSD on FreeBSD
——NAT／双方向変換／
 ポートフォワーディング

　FreeBSDハイパーバイザでOpenBSDを動作さ
せ、そこでOpenBSDネイティブのパケットフィル
タリング／ファイアウォール機能の最新版pf(4)を
使ってみよう、というシナリオでここ数回にわたっ
てpf(4)を取り上げてきました、NATとポートフォ
ワーディングを取り上げる今回で、pf(4)シリーズ
もファイナルです。
　企業でも仮想環境でも家庭でもそうですが、イン
ターネットにサービスを提供しているサーバ以外の
マシンに直接IPv4のグローバルアドレスを振ると
いったことは、それだけ費用がかかるのであまりし
ません。たいていはISPから単一のグローバル
IPv4アドレスがランダムに割り当てられ（実際には
だいたい同じIPv4アドレスが割り当てられること
が多いみたいですけれども）、これを複数のマシン
やスマートフォン、タブレットデバイスなどで共有
しています。
　こうした場合に使われる技術がNAT（Network

Address Translation）と呼ばれる技術です注1。NAT

ではネットワークに所属しているマシンから送付さ
れるIPパケットを単一のIPアドレスにマッピング
し、あたかも単一のマシンからIPパケットが送信
されているのように見せかける技術です。通常は
ルータでこの処理を行っています。
　たとえば、LANの中ではグローバルIPではなく
次のようなプライベートIPが使われます。

●● 10.0.0.0〜10.255.255.255

注1	 参照：RFC 1631 The IP Network Address Translator
（NAT）および以降の改訂版

●● 172.16.0.0〜172.31.255.255
●● 192.168.0.0〜192.168.255.255

　仮にLANで192.168.1.*といったアドレスが使わ
れていて、ルータはLAN側が192.168.1.1、WAN側
が特定のグローバルIPになっているとします。
ルータはLANから送られてくるパケットの次の情
報をルータのグローバルIPのものに書き換えてか
らインターネット側に送信します。

●●送信元IPアドレス
●●送信元TCP/UDPポート番号

　書き換わったIPパケットが送信されていきます
ので、外のマシンからはこのルータの存在しか見え
ません。ルータは戻ってくるIPパケットを監視し
てIPアドレスとポート番号をチェックし、送付し
たパケットの返信パケットに一致した場合には記録
しておいた送信元IPアドレスとTCP/UDPポート
番号に戻し、ファイアウォールを華麗にスルーして
LANの中に戻します。LAN内のマシンには変換後
のIPパケットが届きますので、こいつはIPパケッ
トが途中で書き換わったことは知りません。
　これがNATの基本的な動作です。ping(8)で使わ
れるICMPも、NATでの扱いはポート番号の変換が

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第30回 ❖bhyveでOpenBSDファイアウォール on FreeBSDを構築（その5）

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

May 2016 - 151

▶第30回◀
bhyveでOpenBSDファイアウォール on FreeBSDを構築（その5）

　ルールで記述する中身を説明すると次のようにな
ります。

●● match……ここに一致したオプションパラメータ

はpassで一致した場合などに適用されるように

なる
●● pass……通過許可。matchに一致している場合

にはそこで指定されたオプションパラメータがこ

ちらにも適用される
●● out……外方向の指定。nat-opはoutが設定され

たルールでのみ使用可能
●● log……一致したパケットに関する情報をログに

出す指定。logは通常通信の最初のパケットのみ

記録するので、一致したすべてのパケットのログ

を取りたければlog allと指定する
●● interface……パケットが通過するネットワークイ

ンターフェース名またはそのグループ名
●● af……アドレスファミリーを指定。IPv4の場合は

inet、IPv6の場合はinet6を指定するが、通常は

pf(4)が自動判定するため不要
●● protocol……プロトコルtcp/udp/icmpを指定。

ポート番号を指定した場合にはプロトコルも必ず

指定する必要がある
●● src_addr……送信元アドレス

ない以外は基本的に同じです。pf(4)はNATの機能
を提供していますので、ルータで設定するようなこ
とはそのままpf(4)で指定できます。

IPフォワーディングを有効化

　NATを使うということは、OpenBSDのネット
ワークインターフェースの間を IPパケットが行っ
たり来たりすることを意味しています。こうした機
能はルータやゲートウェイで使われる機能で、
OpenBSDで利用するにはオペレーティングシステ
ム側の設定を変更して、IPフォワーディングと呼ば
れる機能を有効化してあげる必要があります。
　設定は/etc/sysctl.confファイルに記述します。
IPv4とIPv6でそれぞれ設定する項目値が異なりま
す（リスト1、2）。
　設定を/etc/sysctl.confに追加したらシステムを
再起動するか、図1および2のようにsysctl(8)コ
マンドを実行して手動でIPフォワーディングの機
能を有効化します注2。

NATルールセット

　NATの設定は外側に向かうpassパケットルール
においてnat-toパラメータを使って指定します。原
理的にはpassで指定することになりますが、これ
だとすべてのpassにnat-toを付けることになって
煩雑です。ですから、通常はmatchというルールの
ほうでnat-toを指定し、これを自動的にpassルー
ルのほうに適用させます（リスト3）。
　matchに一致するとそこで指定されているオプ
ションが記憶され（今回はnat-toがここに該当しま
す）、passに一致したときにmatchに指定されている
内容が自動的に適用されるようになります。

注2	 こうした設定はOpenBSDに限らず多くのOSで似たような設
定が必要です。

net.inet6.ip6.forwarding=1

▼▼リスト2　�/etc/sysctl.conf IPv6のIPフォワーディン
グ有効化設定

match out on vio0 from 192.168.1.0/24 to any nat-to 外側の IPアドレス
pass on vio0 from 192.168.1.0/24 to any

▼▼リスト3　match/passを使ったNATルールセット

net.inet.ip.forwarding=1

▼▼リスト1　�/etc/sysctl.conf IPv4のIPフォワーディン
グ有効化設定

sysctl net.inet.ip.forwarding=1

▼▼図1　IPv4 IPフォワーディングを有効化するコマンド

sysctl net.inet6.ip6.forwarding=1

▼▼図2　IPv6 IPフォワーディングを有効化するコマンド

152 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

　これでだいたい設定に手を入れることなく、通常
のNATに求められる機能はこなせると思います。
現在アクティブになっているNAT変換については、
pfctl(8)をpfctl -s stateのように実行すれば一
覧表示させることができます。

双方向マッピング

　LAN内部で運用しているサーバを外部から直接
利用できるようにしたい、といった場合にもこの
NATの機能が利用できます。指定するパラメータ
はbinat-toにかわります。たとえばリスト7のよう
に設定します。
　たとえばこの場合であれば、LANの中にある
192.168.1.50は設定した外部のIPアドレスに相互
に変換されることになるので、あたかも非武装地帯
に設置しているマシンのように振る舞うことになり
ます。似たような機能は、名前はいろいろあります
が、ルータの設定画面などで見たことがあると思い
ます。

ポートフォワーディング

　双方向マッピングのようにマシンごと外側に設置
されているように見せるのでなく、特定のポート
（つまりWebサーバだけといったように特定のサー
ビス）だけをLAN内のマシンに変換して通したいと
いうことがあります。この機能はリダイレクション

またはポートフォワー
ディングと呼ばれ、リ
スト8のように指定し
ます。
　fromで指定する内容
をanyから特定のIPア
ドレスに設定すればア
クセスしてくる適用対
象を絞り込むことがで
きますし、port 番号:
番号のように記述すれ
ばポート番号を範囲指

●● src_port……送信元TCP/UDPポート番号
●● dst_addr……送信的アドレス
●● dst_port……送信先TCP/UDPポート番号
●● ext_addr……送信元アドレスはここで指定したア

ドレスへ書き換え（static-portの指定がなければ

ポート番号はランダムな値に変換される）
●● pool_type……変換に使用するアドレスプールの

タイプを指定
●● static-port……この指定があるとTCP/UDPポー

ト番号は変換されずにそのまま使われる

　アドレスやポート番号の記述はこれまで紹介して
きたものと同じです。かなり柔軟に指定することが
できます。
　matchを使わないでpassだけで書くとすればリス
ト4のようになります。
　ただし、この書き方はIPアドレスの変更がある
とルールも書き換えないといけないので、あまり推
奨されていません。たいていの場合はリスト5のよ
うにインターフェースを指定してpf(4)に自動的に
設定してもらうようにします。これでLAN側のIP

アドレスの変更を気にしなくてもよくなります。
　外側のインターフェースのIPアドレスはpf.conf

の読み込み時に決定されますので、外側のインター
フェースのアドレスがDHCPで振られていてとき
どき変わるといった場合にはリスト5の書き方だと
対処できません。その場合はリスト6のように記述
します。

pass out on vio0 from 192.168.1.0/24 to any nat-to 外側の IPアドレス

▼▼リスト4　passだけで書いたNATルールの例

pass out on vio0 inet from vio1:network to any nat-to vio0

▼▼リスト5　推奨されるNATルールの書き方の例

pass out on vio0 inet from vio1:network to any nat-to (vio0)

▼▼リスト6　外側のIPアドレスがDHCPで振られている場合のNATルールの書き方の例

pass on tl0 from 192.168.1.50 to any binat-to 外側の IPアドレス

▼▼リスト7　LAN内部のサーバを外部から利用できるようにするルールの例

May 2016 - 153

▶第30回◀
bhyveでOpenBSDファイアウォール on FreeBSDを構築（その5）

定でフォワーディングさせることもできます。この
機能もたいていのルータには搭載されているので、
Webの管理画面などで似たような設定を見たこと
があると思います。

もっと知りたいpf(4)のルール
の記述方法

　これまで数回にわたってpf(4)の機能を紹介して
きましたが、ここで取り上げた内容は本当に基礎の
部分です。アドレスプールやロードバランシング、
ポリシーフィルタリング、ファイアウォールリダン
ダンシ、リンクアグリゲーションなど、pf(4)はほか
にもさまざまな機能を提供しています。
　そういった機能はどうやって設定すればよいのか
（いくつかの機能はpf(4)のルールだけではなく
OpenBSD側でいくつかの設定も必要になったりす
るのですが）知りたくなると思うのですが、ドキュ
メントを使う以外に、ちょっとばかり慣れない方法
ですが、pfSenseやOPNsenseのルールを真似する
という方法があります。

■pfSense

　https://www.pfsense.org/
■OPNsense

　https://opnsense.org/

　pfSenseやOPNsenseはFreeBSDベースのルー
タ／ファイアウォールソリューションです。pf(4)
がベースになっており、どちらも開発が活発に続い
ています。OPNsenseがフォークしたあとはOPN

senseに開発が流れるかと思いましたが、どちらも
バックグラウンドに企業があり、現在でもともに活
発に開発が続いています。
　これらソフトウェアアライアンスでは、WebのUI

を経由してさまざまな設定を行うことができます。
pfSenseやOPNsenseをインストールしてブラウザ
経由で設定を行い、その設定結果をサーバにログイ
ンして確認します。こうすることで設定内容を見る

ことができますので、書き方を学んで自分のルール
セットに適用するといったことができます。それな
らpfSenseやOPNsenseをそのまま使えばよいので
はないかということになりますが、たしかにそうだ
と思います。
　ただ、とくにOPNsenseは開発が活発で頻繁にリ
リースがでています。安定した環境で運用したいな
ら、アップデートなどが自由に管理できる環境で、
自分でpf(4)ルールを書いて運用するというのは1

つの方法だと思いますし、インターフェース任せで
はなく実際の書き方を知っておくと技術の幅が広
がってよいので、いったんは書き方を学んでみるこ
とをお勧めします。

広がるpf(4)ワールド

　pf(4)はOpenBSDのみならずFreeBSDやほかの
OSでも使われているので、ファイアウォールの
ルール記述のスキルを共有しやすいという特徴もあ
ります。代表的なところでは次に挙げるOSで利用
できます。

●●Mac OS X 10. 7（Lion）およびこれ以降のバー

ジョン
●● FreeBSD 5.3およびこれ以降のバージョン
●● FreeBSDをベースに開発されているファイア

ウォール／ルーティングソリューション pfSense/

OPNsense
●● NetBSD 3.0およびこれ以降のバージョン
●● DragonFly BSD 1.2およびこれ以降のバージョン
●● iOS
●● QNX

　OpenBSD以外のOSで使用できるpf(4)の機能は
常に最新版と同じ（つまり、最新のOpenBSDと同
じ）というわけではありませんが、基本的な書き方
は通じますので、共通技術として使い回しが効くと
いう利点もあります。s

pass in on vio0 proto tcp from any to any port 80 rdr-to 192.168.1.50

▼▼リスト8　特定のポートをLANの中の特定のマシンにフォワードする設定の例

https://www.pfsense.org/
https://opnsense.org/

154 - Software Design

35 Debian Developer　やまねひでき　henrich@debian.org

10年かけて解決
DebianのFirefox問題

Debian開発の近況

squeezeはLTS終了、
WheezyはLTSへ

　Debian 6 「squeeze」のLTS（Long Term Sup

port）が2月29日に終了し、squeezeのパッケー
ジはミラーサイトから削除されてarchive.deb

ian.orgへ移動しました。いまだに squeezeを
使っているという方は、一刻も早く現在の安定
版Debian 8 「Jessie」への移行を推奨します。
　Debian 7 「Wheezy」・Debian 8 「Jessie」のポ
イントリリース（7.10および8.4）が4月2日に
行われました。内容としては、いつもどおりの
これまでのセキュリティ修正＋バグ修正で、格
段変わった点はありません。
　なお、Debian 7 「Wheezy」のリリースは2013

年5月4日でしたので、そろそろ通常のサポー
トは終了を迎え、LTSへ引き継ぎとなります。
関係者間の調整の結果、1つ前のsqueezeとは
違い、Wheezyは設定を変更する必要なくLTS

サポートを受けられるようになっています。詳
細な設定の確認については、Debian Wikiの該
当のページ注1を参照ください。

Debian 9「Stretch」のリリース

　そして、現在開発中のDebian 9 「Stretch」の
リリース作業ですが、LTSであるカーネル4.10

注1） URL https://wiki.debian.org/LTS/Using

を採用するためにフリーズ開始時期を遅らせるよ
うです注2。2016年11月5日から徐々にフリーズを
開始し、2017年2月5日には完全フリーズ。そし
て、そこからバグを潰してリリースとなります。
　Debianの場合、事前にリリース日は決定さ
れず、バグの収束速度から直前にリリース日が
決まります。代わりに新しいバージョンの流入
を止める「フリーズ」の日程が決まっていて、だ
いたいのスケジュールが読めるようになってい
ます。前回のリリースなどから推測すると、フ
リーズは5ヵ月半から6ヵ月ほどかかっていた
ので、「Stretch」のリリースは2017年7月末か
8月になるものと思われます。

お疲れ様Iceweasel、
お久しぶりFirefox

　ロゴやアートワークのライセンスの問題が解
決され、FirefoxがDebianに戻ってきました注3。
不安定版（unstable、sid）あるいはテスト版を使っ
ている場合、インストールされている icewea

selは、firefox-esrパッケージで置き換えられ
ています注4。なお、firefox-esrで採用されてい
るものよりも新しいバージョンのFirefoxを使

注2） U R L https://l ists.debian.org/debian-devel-anno
unce/2016/03/msg00000.html　ここでのLTSとは「Linux
KernelのLTS」を指します。Upstreamの長期メンテナンス
サポート期間に歩調を合わせることで、Debian側での作
業負担を軽減しようという意図ですね。

注3） URL https://bugs.debian.org/cgi-bin/bugreport.cgi?
bug=815006

注4） ESRは、Extended Support Releaseの略。おもに法人企
業などでの利用を念頭に置いて、Debianでの安定版のよ
うに、バグ修正のみを中心に適用するリリース。

 URL https://www.mozilla.jp/business/参照

https://wiki.debian.org/LTS/Using
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=815006
https://www.mozilla.jp/business/
https://lists.debian.org/debian-devel-announce/2016/03/msg00000.html

154 - Software Design May 2016 - 155

10年かけて解決
DebianのFirefox問題

35

いたい場合は、不安定版（unstable、sid）では、
firefox-esrではなく firefoxパッケージのほう
を利用すれば良いなど、選択肢の幅が広がりま
した（安定版リリースでは firefoxパッケージは
利用できず、firefox-esrのみになる予定です）。
　さて、今回はなぜDebianにはFirefoxではな
く Iceweaselが入っていたのか（図1）、という
歴史的な経緯を振り返ってみましょう。

Iceweasel誕生までの経緯

　まずこの話の前提として、Firefoxのアイコ
ン・ロゴなどのアートワークのライセンスが、
本体とは違いプロプライエタリなものであった
という点が挙げられます注5。ライセンスが違っ
ていたのは、Mozillaが「商標としてのFirefox

を守るための措置」でした。
　よって、Debianではこの部分がディストリ
ビューションのポリシーであるDFSG注6に合
致しないため、アートワークを削除したFire

foxパッケージとして配布すると、2005年半ば
に決定していました。このアートワークを削除
した形でのFirefoxの配布は、Mozilla側の担
当者と話し合って「OKだよ」という言質を得て

注5） URL http://lxr.mozilla.org/mozilla/source/other-licenses/
branding/firefox/LICENSEによると、

 「貴方はFirefoxの名称あるいはロゴに留まらず、Mozilla
Foundationあるいはその他の団体の商標の利用権またはラ
イセンスを得てはいません。詳細は http://www.mozilla.
org/foundation/licensing.htmlを参照のこと」

 （You are not granted rights or licenses to the trade
marks of the Mozilla Foundation or any party, including
without limitation the Firefox name or logo. For more
information, see: http://www.mozilla.org/foundation/
licensing.html）

 とあります。
注6） Debian Free Software Guidlineの略。Debianがフリーだ、

と考えるソフトウェアの基準で「オープンソースの定義」の
もとになった。

いました。
　ところが、半年ほど過ぎた2006年2月に突
如Mozilla CorporationのMike Connor氏 が、
「このような形での配布は認められない」と、“Uses

Mozilla Firefox trademark without permission”
というバグ注7を登録したところから話はこじれ
てきます。
　このバグに対して、「Firefoxという名前を使
うのに（ロゴは使わなくてかまわないと）Mozilla

Foundationの人から以前に許可もらってるよ」
とDebian関係者が返します。確かに当時の
Mozilla Foundation側の関係者であるGervase

Markham氏は、「Firefox/Thunderbird trade

marks: a proposal」というメールで始めたスレッ
ドの中で（@mozilla.orgのアドレスで）、次のよ
うに述べています注8。

¡	Mozilla FoundationはMozilla製品について、
Debianおよび公式Debianパッケージの再
配布者に対して、そのパッケージについて
商標を含む名称を付ける権利を与える

¡FirefoxとThunderbirdの公式ロゴは、異なる
ライセンスでカバーされており、これはDeb	
ianにとって制約が大き過ぎる。ロゴはダウン
ロード可能なソースコードには含まれておらず、
ロゴ削除の作業は必要ない。ここまでの議論
はこのロゴについてではなく、ロゴを使わない
ことが双方にとって幸せであるという考えを
共有している（と少なくとも私は認識している）

注7） U R L http://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=354622

注8） URL https://lists.debian.org/debian-legal/2005/01/
msg00503.html

 ▼図1　IceweaselとFirefox

http://lxr.mozilla.org/mozilla/source/other-licenses/branding/firefox/LICENSE
http://www.mozilla.org/foundation/licensing.html
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=354622
https://lists.debian.org/debian-legal/2005/01/msg00503.html

156 - Software Design

　これで一見落着……かと思いきや、Mike

Connor氏は強硬でした。彼はこう続けます。
　「確かに彼はそう言った。そのときは、我々
はあまり深く考えてなかったんだ。そして今は、
OKではないと言っている」注9

　つまり、合意をひっくり返したというわけで
す。
　さらに「Firefox」の配布条件として、次のよ
うな項目を出してきました。

¡ディストリビューションが加えたすべての
変更について、なぜ変更が必要なのかの説
明をきちんと付けたうえで、Mozilla側に提
出してレビューを受けること

¡リリースするのは、CVSのタグあるいはリ
リースされたtarballに許可されたパッチの
みにすること

¡ビルド設定（configure）についても許可を得
ること

¡ロゴと商標（名称）は不可分なので必ず合わ
せて使うこと

　そもそもFirefoxのソースコードは、ロゴと
アイコンを除いてはOSSライセンスで配布さ
れているものですから、どのようにパッチを当
てようが、ビルド設定を変更しようが自由……
ではあるものの、この際のMike Connor氏の
言い分は、ソフトウェアのライセンスではなく
商標権（トレードマーク）を盾にしたものである
と考えられます。
　商標権とは「事業者が、自己の取扱い商品（サー
ビス）を他人のものと区別するために使用する
マークで独占的に使用できる権利。商標を他人
が許可なく使った場合はその商品を排除するこ
とが可能」というものです。よって、ソースコー
ドのライセンスが何であろうと、それとは別の
次元での制約である「名称」＝「Firefoxという名
前」でMozillaが意図しないソフトウェアを配

注9） Fair enough, he did make that statement. At the time,
we obviously weren't taking that part seriously. We
are now, and we're saying its not ok.

布しようとするのであれば、Mozilla側は異議
を申し立てて配布差し止めが可能になる、とい
うわけです。かなり強力な権利ですね。
　これを受け、「ロゴを含めないと『Firefox』と
しては配布してはいけない」というのに、「『ロゴ』
などのアートワークは改変不可の別ライセンス
として配布されている」ため、結局Debianとし
ては、Firefoxという名称での配布をあきらめ
ざるを得ませんでした。そこで選ばれたのが
「Iceweasel」̶ ̶炎ではなく氷、キツネではな
くイタチ、というわけです（ここでFirefoxに
似た名前を採用すると、商標に抵触するという
ことで訴えられる可能性があります）。
　この問題、最初から「ロゴを含んで公式とし
て認められたものはFirefoxと呼ばれ、ロゴを
含んでないものは○○と呼ばれます」というよ
うに名称を分けておけば良かったのではないか
……と筆者は思います（同様の事柄はChrome

にもありますが、こちらはきちんとオープンソー
ス版はChromiumとして名称が分かれています
ね）。

「Firefox」の復活

　それから時は流れて2014年、Debian開発者
でもあるSylvestre Ledru氏注10がFirefoxのリ
リースマネージャに就任し、2016年 2月に
Iceweaselへのバグとして「Renaming Iceweasel

to Firefox」注11を投稿したところから話は再度
大きく動き出します。
　このバグでSylvestre氏は（@mozilla.comの
アドレスで）次のことを述べています。

¡問題となったロゴのライセンスがDFSGに
合致したもの（本体と同じMPL注12）になった
ので、ライセンス問題は解決したこと

注10） gccではなくclang（LLVM）でDebianの全パッケージを再
ビルドして問題を見つけるclang.debian.netの人、という
とおわかりになる方もいるかもしれません。

注11） URL https://bugs.debian.org/cgi-bin/bugreport.cgi?
bug=815006

注12） Mozilla Public Licenseのこと。現在のFirefoxはMPL2.0
のもとで提供されている。

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=815006

156 - Software Design May 2016 - 157

10年かけて解決
DebianのFirefox問題

35

¡Mozilla側が提議していたパッチなどのクオ
リティ問題については、Iceweaselのメンテ
ナMike Hommey氏はMozilla内でもトップ
10に入るコントリビュータ、かつMozilla
の被雇用者であり、その作業クオリティに
疑念の余地はないこと

¡Debianで適用されているパッチについては、
常にMozilla側へ可能な限り修正をフォワー
ドしていて、Debianとして必要なものであ
ると認識していること

　このように、以前のバグ登録で述べた結論は
もはや適切でなくなり、現在はFirefoxの名称
を使うのに支障はなくなったと宣言し、Icewea

selからFirefoxへ名称を戻すことを提案した
のです。
　そして、以前のバグでFirefoxの名称を使う
のに反対したMike Connor氏も「当時を振り返っ
てみると、DFSGの観点からは、Firefoxは
EULA注13を持つなどロゴマークのライセンス
以外も問題だった。幸いなことに、少し前に双
方とも問題を解決できている」と、以前の反対
姿勢とは打って変わった発言を寄せます。
　これらのコメントを受け、複数のDebian開
発者から IceweaselをFirefoxに改名すること
についての歓迎の言葉が寄せられます。しかし、
慎重派からは「これはDFSG第8項『ライセンス
はDebianに限定されない』注14に抵触しないの
か？」という質問も出ました。これについても
Sylvestre氏が「これは例外と呼ばれる類のもの
ではない、という一点を明確にしておきたい」
と回答。Debian派生ディストリビューション

注13） End User License Agreementの略で、利用許諾条件のこと。
多くのソフトウェアに付随しているが、OSSの場合はOSS
自体のライセンスと二重になり、矛盾が生じる可能性がある。

注14） 「プログラムに付随する権利は、プログラムがDebianシス
テムの一部であるかどうかに左右されてはいけません。プ
ログラムがDebianから取り出されDebianとは別に使用ま
たは配布されるとしても、その他の点でそのプログラムの
ライセンス条項を満たしているならば、プログラムが再配
布されたすべての当事者はDebianシステムにおいて付与
されたのと同じ権利を与えられなければなりません」……
要は「Debianだけが特別扱いされているならダメだよ」と
いうこと。

についての扱いはどうなるかというと、「Debian

のパッチを利用している限りは、Firefoxのブ
ランドを使っても問題ないと見なす（Ubuntuは
別のパッチを適用しているのでここには含まれ
ない）」と明言しました。
　さらに「Debianやほかのディストリビューショ
ンが行っている変更と配布は、現状のMozilla

の商標ポリシーとは矛盾しているけど？」とい
う質問に対しても、Sylvestre氏は、「確かにそ
れを商標ポリシー内で明確にしたほうが良いと
思う。ただ、ご想像のとおり、（Debianでも同
様だけれども）この類の変更については時間が
かかる。その変更が行われるまでは、Mike

Connor氏のコメントと私のバグレポート（@

debian.orgのメールアドレスではなくて@

mozilla.comのアドレスを使ってバグレポート
をしているのに注意）で、Debianのftpmaster注15

に対しては十分な説明になっているだろう」と
返答して、疑問点をクリアにしてくれました。
　これで、Debianは、晴れてFirefoxという名
称のもとでDebianパッケージとして適切なも
の注16を配布できるようになったのです。

終わりに

　IceweaselとFirefoxの問題は、著作権を根
拠とする「ライセンス」と商標権「トレードマー
ク」についての取り扱いの難しさ注17、そして両
団体を取り巻く人間関係など、いろいろと興味
深い一件だったように感じます。解決までに
10年もかかってしまったものの、問題の1つ
が終わりを迎えうれしい限りです。関係者の努
力に感謝します。｢

注15） Debianのパッケージリポジトリの管理者。どのパッケー
ジを入れる／削除するのかについての作業権限を持つ。

注16） ちなみにMozillaの配布するFirefoxパッケージとDebian
のFirefoxパッケージではいくつかの点が違います。たと
えば、CiscoのOpenH264ビデオコーデックアドオンを、
「ソースがない不明瞭なバイナリblobである」との理由から、
Debianではデフォルトで無効にしています。

 URL https://bugs.debian.org/cgi-bin/bugreport.cgi?
bug=769716参照。

注17） 現状でも、Firefoxを改変したうえでFirefoxの名称で配布
した際に、Mozilla側がこれを不適切だと考えた場合には、
商標権をもとにMozillaから配布差し止めを受ける可能性
が残っている点にはご注意ください。

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=769716

158 - Software Design

Ubuntu Monthly Report

　Ubuntu 16.04 LTSがリリースされたことで、Ubuntu開発者は本格的に16.10の開発に携わることに
なります。この16.10やそれ以降の最も大きな目標が、通常のUbuntuと IoT・スマートデバイス向け
のUbuntuの統合です。

UbuntuとIoT・
スマートデバイスの状況

Ubuntu Monthly Report第73回

Ubuntu Japanese Team
（株）創夢 柴田 充也（しばた みつや）　mail：mty.shibata@gmail.com

　本誌の第2特集でも水野氏やあわしろいくや氏が
書いていたように、Ubuntu（とその母体である
Canonical）は、一般的なPCだけでなく、スマート
フォンやタブレット、IoTといったあらゆる情報機器
でUbuntuを利用できるようにしようという「野望」を
抱いています。
　ただ「Ubuntuをインストールできる」というだけで
はありません。GUIやCUIを含めてすべてのデバイ
スで「同じような操作性」を提供することが重要です。
ディスプレイが接続されたデバイスであればUbuntu

デスクトップと同様にUnityをベースにしたデスク
トップシェルを提供しますし、ディスプレイのない
デバイスならUbuntuサーバと同じようにログインし
て操作できるCUIを提供します。しかもただ提供す
るだけではなく、利用者の環境に合わせて適切な
ユーザ体験をもたらす必要があります。
　たとえばデスクトップシェル1つとっても、サイ
ズの大きなモニタにつなげばPCのようにマルチ
ウィンドウモードで使いたいでしょうし、スマート
フォンのようなサイズは小さいけれども高解像度な
ディスプレイならAndroidや iOSのようにシングル
ウィンドウモードの方が使いやすいでしょう。さら
にスマートフォンを外部モニターにつなぐ可能性も

Covnergence：あらゆるデバ
イスで同じUbuntuを

考えると、このモードは動的かつスマートに切り替
わらなくてはなりません。
　「Convergence（集中・収斂など、一点に集まってい
くという意味）」は複数のデバイスに渡るユーザ体験
を1つにまとめ、「Ubuntuの使い方がわかればどのデ
バイスでも使える」ことを目指しています。言ってし
まうとUbuntu Phoneは、このConvergence戦略の
最初の一手でしかないのです。

　Convergenceを最も実現しているのが、スマート
フォン・タブレット向けの「Ubuntu Touch」です。も
ともとはタッチデバイス向けだったのでこのような
名前が付いていますが、「Ubuntu Phone」の方が有名
かもしれません。
　Ubuntu TouchもUbuntuベースです。Linuxカーネ
ルの上でsystemdやそのほかのプロセスが動いてい
ますし、sudoコマンドで管理者権限を取得できます。
Ubuntuの最小環境で入っているパッケージ、vimや
pythonはもちろんejectコマンドもあります。通常の
Ubuntuと大きく異なるのは、ルートファイルシステ
ムが読み込み専用でマウントされていることでしょ
う。初期状態ですとホームディレクトリといくつか
の設定ファイルのみ書き込みできます。
　Touchでは「イメージベースのアップデート」を採

スマートフォン・
タブレットのUbuntu

158 - Software Design May 2016 - 159

UbuntuとIoT・スマートデバイスの状況 第 73 回

用しています。Androidなどと同じく、ベースシステ
ムを更新する場合はカーネルやルートファイルシス
テムを固めたイメージをダウンロードし、そっくり
そのまま置き換えるというわけです。このためapt

コマンドを使ってパッケージをインストールするこ
とはできません注1。
　アプリはUbuntu独自のアプリストアを用意してい
ます。アプリは通常のルートファイルシステムとは
隔離された領域に保存されるため、イメージベース
のアップデートの影響は受けません。将来的にはデ
スクトップでもこのアプリをインストールできる予
定です。逆にデスクトップアプリをスマートデバイ
ス上で動かすこともできるようになります。こちら
は今のところ開発版では実現しているものの、まだ
まだ解決すべき問題が多いという状態です。デスク
トップとスマートデバイスで同じアプリを使える、
これが1つ目のConvergenceです。
　もうひとつのConvergenceは「スマートフォン・タブ
レットをデスクトップPCとして使える」ことです。前
述したように画面サイズの小さなデバイスはアプリは

注1） 開発用という位置づけではありますが、ルートファイルシス
テムを書き込み可能にすることでaptコマンドで追加パッ
ケージをインストールできます。

全画面で表示した方が何かと便利です（図1）。しかし
ながら外部ディスプレイにミラーリングした場合はそ
の限りではありません。とくに画面の半分を専有する
ソフトウェアキーボードは邪魔ですし、外部キーボー
ドで直接入力した方が何かと便利でしょう（図2）。

図1　シングルウィンドウモード

図2　同じスマートフォンがマルチウィンドウにもなる

160 - Software Design

Ubuntu Monthly Report

そこでTouchでは「Ubuntu Pocket Desktop（ubuntu-

pd）」というプロジェクトを立ち上げました。これに
よりUbuntu PhoneにBluetoothキーボード・マウス
をつないだらデスクトップ版のUbuntuのようなUI

になるように調整を進めています。現在のUbuntu

デスクトップはX.orgとUnity7を使用していますが、
TouchはMirとUnity8です。Pocket Desktopとは、
Mir・Unity8の組み合わせでマルチウィンドウモード
にしたりデスクトップアプリを起動するための作り
こみを行うプロジェクトなのです。
　イメージベースのアップデートではバージョン名
を「OTA-xx」としています。3月上旬時点の最新版は
OTA-9で、本誌発売までにOTA-10がリリースされ
る予定です。OTA-10では待望の日本語入力が導入さ
れる予定です注2（図3）。OTA-10までは15.04ベース
での開発で、OTA-11からは16.04ベースになる見込
みです。

注2） 実装しました。ただし足りない機能がまだまだたくさんあり
ます。このあたりの苦労話は将来のMonthly Reportで書きた
いな、と思っています。

　UbuntuではIoT・クラウド向けの小さなイメージ
として「Snappy Ubuntu Core」を開発しています。
SnappyではTouchでの知見をもとにしたイメージ
ベースのアップデートやアプリ単位での隔離環境に
加えて、組み込みでは一般的なロールバック可能な
ルートイメージの冗長化やミドルウェアの導入に便
利なフレームワーク機能も実装しました。しくみや
機能そのものはDockerでよく使われているCore

OSのUbuntu版といった感じです。
　Snappyではパッケージングシステムも一新し、apt
コマンドではなくsnappyコマンドを使うようになり
ました。Snappy上で普通のUbuntuシステムを使用し
たい場合は、LXDパッケージを導入してその上に
Ubuntu環境を構築します。現在はsnappyパッケー
ジの作成環境の開発が活発で、とくにパッケージ作
成ツールであるsnapcraftは、debファイルからだけ
でなく、GitHub上のプロジェクトなどからもsnappy

パッケージを簡単に構築できるようになりました。
　組み込み向けとしてはロボット用OSとして一般
的になりつつある「ROS」がSnappyをサポートして
います。今年の2月にスペインで開催されたMWC

では、Snappy＋ROSで動作するヒューマノイドロ
ボットがサッカーをするデモが、非常に注目を集め
ていたようです。
　これだけだとただの組み込み向けのOSなのです
が、このSnappyシステムは実はデスクトップユーザ
にも影響します。なぜならUbuntuは将来的にデス
クトップもTouchもSnappyベースに移行する予定
だからです。「Ubuntu Personal」とも呼ばれるプロ
ジェクトでは、来年10月にリリースされる16.10を
目処に、Snappy化したデスクトップイメージを提供
する予定になっています（図4）。
　Ubuntu Personalではスマートデバイス向けの
Touchも統合し、デスクトップ環境はMirとUnity8

を採用します。また半年ごとのリリースではなく、
Snappyと同じくローリングリリースを採用する見込
みです。少なくともアプリとベースシステムは独立

IoT向けのUbuntu

図3　日本語入力も可能

160 - Software Design May 2016 - 161

UbuntuとIoT・スマートデバイスの状況 第 73 回

したリリーススケジュールとなるでしょう。
　ちなみにKubuntuを始めとするほかのフレーバー
は、従来どおりの環境を提供する予定です。また
Ubuntu Personal上でもLXDなどを利用して普通の
システムを構築できるようにするため、通常のパッ
ケージリポジトリはそのまま維持されます（図5）。

　今のところConvergenceの対象になっているのは、

将来はサーバも？

GUIに関わるコンポーネントのみです。しかしなが
ら、Ubuntu Personalのようにシステムイメージレベ
ルでの統合が進んでくれば、サーバのようなCUI環
境もSnappy化の波が押し寄せる可能性もあります。
とくにUbuntuサーバはJuju・MAASというデプロイ
ツールが存在するので、そちらとの統合がポイント
となってくることでしょう。開発の進み具合によっ
ては、「現在のUbuntu」のLTSリリースは16.04が最
後ということになるかもしれませんね。｢

図5　 Ubuntu PersonalによってMikutterやLibreO�ceも起動できる

図4　Ubuntu Personalの画面切り替え

162 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

はこういった仮想デバイスにどういったものが
あるのか、どのようにデバイスは振る舞うのか、
そしてゲストのドライバはデバイスとどのよう
にデータをやりとりするのかを定めています注1。
　virtioデバイスにはネットワークカードやブ
ロックデバイスといったお馴染みのものから、
コンソールや9pプロトコルを使ったファイル共
有、それぞれLinux 4.1や4.2で導入された入力
デバイス（キーボードやマウス）・GPUなどさま
ざまなものがあります。こうしたデバイスがど
のように初期化され、どのようにデータをやり
とりし、動作しているのかを見ていきましょう。

virtio PCI
　まずはvirtio deviceの初期化を見ていきましょう。
ゲストにとってvirtio deviceはPCIのデバイスと
して見えます注2。lspciコマンドで見てみると、
“00:02.0”にネットワークカードが、“00:04.0”と
“00:06.0”にブロックデバイスが、“00:05.0”にメモ
リバルーン用のデバイスが、そして“00:08.0”と“00:

09.0”とに9pfsによるファイル共有用通信経路とな

注1） http://docs.oasis-open.org/virtio/virtio/v1.0/csprd01/
virtio-v1.0-csprd01.pdf

注2） PCIがないような場合にはMMIOなど、ほかの手段が使わ
れます。

　3月14日にLinux 4.5がリリースされ、Linux

4.6の開発が始まっています。3月末ごろまで
Merge windowが開いていて、さまざまな新機
能が導入されているところです。今回はvirtio

ドライバがどのようにロードされ、どのようにデー
タをやりとりするかについて紹介します。

virtioとは
　仮想マシンをセットアップしたことがある方は、
virtioの名を見かけたことがあるかと思います。
virtioというのは仮想マシン用の準仮想化デバイ
スドライバのフレームワークとみることができます。
　仮想マシンのカーネルで実際のデバイス用の
ドライバを使う場合を考えてみましょう。この
方法では仮想マシン側はただ物理デバイスで動
いているように動作すればよいのでカーネルの
変更を必要としません。しかし、ハイパーバイ
ザ側では実際のデバイスの動きをエミュレート
することになります。これは複雑かつ非効率です。
　実際にやりたいことはホスト・ゲスト間でデー
タをやりとりし、ネットワーク通信やディスク
の読み書きなどを行うことだけです。ホスト・
ゲストが共同して動作すれば、ホスト側のデバ
イスの実装はよりシンプルにできます。virtio

仮想マシン用の準仮想化
デバイスドライバのフレームワーク
virtioドライバのしくみ
Text：青田 直大　AOTA Naohiro

第50回第50回

http://docs.oasis-open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-csprd01.pdf

162 - Software Design May 2016 - 163

仮想マシン用の準仮想化デバイスドライバのフレームワーク
virtioドライバのしくみ

第50回第50回

るデバイスが挿さっていることがわかります（図1）。
　PCIデバイスにはconfiguration spaceという
ものがあり、ここの情報をもとにデバイスを識
別し、適切なドライバを読み込んでいます。
virtioのネットワークデバイスとブロックデバイ
スについて、どのようなconfigurationになって
いるかと、どのドライバが読み込まれているか
を“lspci -kx”で見てみましょう（図2）。
　最初の2byteがVendor IDでどちらも0x1af4

となっており、次の2byteがDevice IDでネット
ワークデバイスでは0x1000で、ブロックデバイ
スでは0x1001となっています。このように
Vendor IDが 0x1af4でDevice IDが 0x1000か
ら0x103fまでのデバイスがvirtio deviceとして
認識されます。さらに、Device IDによってそ
のデバイスがどのような種類のデバイスであるか、
すなわちネットワークデバイスであるのか、ブロッ

クデバイスであるのかなどが識別されます。
　図2の“Kernel driver in use”の行を見るとわか
るように、どちらのデバイスに対しても“virtio-pci”
のドライバが読み込まれています。では、2つの
デバイスの違いを処理するはずの“virtio_net”ドラ
イバと“virtio_blk”ドライバはどこでロードされて
いるのでしょうか。virtio-pciのprobe関数を追って、
固有のドライバのロード部分を見ていきましょう。

virtio driverのロード
　PCIサブシステムからvirtio pciのprobe関数が
呼び出されるところから見ていきましょう。PCI

のドライバはid_tableというものを持ち、ここにそ
のドライバがサポートするデバイスのVendor ID

とDevice IDとを記述しています。PCIサブシス
テムはこのテーブルを参照して、PCIデバイスに

lspci
00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)
00:02.0 Ethernet controller: Red Hat, Inc Virtio network device
00:03.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #1 (rev 03)
00:03.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #2 (rev 03)
00:03.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #3 (rev 03)
00:03.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #1 (rev 03)
00:04.0 SCSI storage controller: Red Hat, Inc Virtio block device
00:05.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory balloon
00:06.0 SCSI storage controller: Red Hat, Inc Virtio block device
00:07.0 VGA compatible controller: Cirrus Logic GD 5446
00:08.0 Unclassified device [0002]: Red Hat, Inc Virtio filesystem
00:09.0 Unclassified device [0002]: Red Hat, Inc Virtio filesystem

 ▼図1　PCI デバイス一覧

lspci -kx -s 00:02.0
00:02.0 Ethernet controller: Red Hat, Inc Virtio network device
 Subsystem: Red Hat, Inc Device 0001
 Kernel driver in use: virtio-pci
00: f4 1a 00 10 07 05 10 00 00 00 00 02 00 00 00 00
10: 01 c1 00 00 00 00 bd fe 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 f4 1a 01 00 # Subsystem Vendor ID, Subsystem ID
30: 00 00 b8 fe 40 00 00 00 00 00 00 00 0a 01 00 00

lspci -kx -s 00:04.0
00:04.0 SCSI storage controller: Red Hat, Inc Virtio block device
 Subsystem: Red Hat, Inc Device 0002
 Kernel driver in use: virtio-pci
00: f4 1a 01 10 07 05 10 00 00 00 00 01 00 00 00 00
10: 01 c0 00 00 00 20 bd fe 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 f4 1a 02 00 # Subsystem Vendor ID, Subsystem ID
30: 00 00 00 00 40 00 00 00 00 00 00 00 0b 01 00 00

 ▼図2　PCIのcon�guration spaceのダンプ

164 - Software Design

Linuxカーネル観光ガイド

対応するドライバを発見しprobeを呼び出します。
virtio-pciの場合、リスト1のように“Vendor ID =

0x1af4”でDevice IDはどんなものでも対応すると
いうテーブルになっています。先ほど見たように
Vendor IDがテーブルに適合するので、virtio-pci

のvirtio_pci_probe()関数が呼び出されます。
　virtio_pci_probe()はVirtio PCIデバイスの情
報を管理する“struct virtio_pci_device *vp_dev”
をallocateします（リスト2）。
　virtio_pci_modern_probe()関数（またはvirtio_

pci_legacy_probe()関数）で、データの設定を行
います。virtio_pci_modern_probe()ではDevice

IDが前述したVirtIOデバイスの範囲であるか
を確認し、“vp_dev->vdev.id”を設定しています。
ここで“vp_dev->vdev”は“struct virtio_device”
でvirto deviceの情報を管理する構造体です。
設定されている“subsystem_vendor”と“subsys

tem_device”とは先ほどの
PCIconfiguration space の
0x2cからの2byteと0x2eか
らの2byteとにそれぞれ対応
しています。すなわち、“id.

vendor”にはどのタイプの
virtioデバイスでも0x1af4が
設定される一方で、“id.

device”にはデバイスの種類
によって違う値が設定されま
す。たとえば、ネットワーク
デバイスでは“1”が、ブロッ
クデバイスでは“2”が設定さ
れることになります。
　“vp_dev->vdev”の設定が
終わったところで、register_

virtio_device()を呼び　出し
てVirtioデバイスをシステム
に登録していきます（リスト
3）。この関数の中では、
Virtioデバイスの busを vir

tio_busに設定して、device_

register()を呼び出します。
device_register()から先は一
般的なデバイス登録の関数
になります。
　device_register()はごく小
さな、device_initialize()で

static cons
t struct pci_device_id virtio_pci_id_table[] = {
 { PCI_DEVICE(0x1af4, PCI_ANY_ID) },
 { 0 }
};

 ▼リスト1　 VirtIO PCIの IDテーブル
（linux/drivers/virtio/virtio_pci_common.c）

static int virtio_pci_probe(struct pci_dev *pci_dev,
 const struct pci_device_id *id)
{
 struct virtio_pci_device *vp_dev;
 int rc;

 /* allocate our structure and fill it out */
 vp_dev = kzalloc(sizeof(struct virtio_pci_device), GFP_KERNEL);
…
 rc = virtio_pci_modern_probe(vp_dev);
 if (rc == -ENODEV)
 rc = virtio_pci_legacy_probe(vp_dev);
 if (rc)
 goto err_probe;
…
 rc = register_virtio_device(&vp_dev->vdev);
 if (rc)
 goto err_register;

 return 0;
…
}

int virtio_pci_modern_probe(struct virtio_pci_device *vp_dev)
{
 struct pci_dev *pci_dev = vp_dev->pci_dev;
…
 /* We only own devices >= 0x1000 and <= 0x107f: leave the rest. */
 if (pci_dev->device < 0x1000 || pci_dev->device > 0x107f)
 return -ENODEV;

 if (pci_dev->device < 0x1040) {
 /* Transitional devices: use the PCI subsystem device id as
 * virtio device id, same as legacy driver always did.
 */
 vp_dev->vdev.id.device = pci_dev->subsystem_device;
 } else {
 /* Modern devices: simply use PCI device id, but start from 0x1040. */
 vp_dev->vdev.id.device = pci_dev->device - 0x1040;
 }
 vp_dev->vdev.id.vendor = pci_dev->subsystem_vendor;
…
}

 ▼リスト2　virtio-pciのprobe関数（linux/drivers/virtio/から）

164 - Software Design May 2016 - 165

仮想マシン用の準仮想化デバイスドライバのフレームワーク
virtioドライバのしくみ

第50回第50回

データの初期化を行ったあと、device_

add()を呼び出しているだけの関数です。
device_add()の中では/sys下のファイル
の作成を行う関数などが呼び出されてい
ます。抜粋している2行がvirtioデバイ
スのドライバが読まれる処理に関連する
コードです。
　kobject_uevent()は登録されたデバイス
について“uevent”をuserlandに通知しま
す。virtioデバイスでは（virtio busによっ
て）“add_uevent_var(env, "MODALIAS

=virtio:d%08Xv%08X", dev->id.device,

dev->id.vendor);”のコードが実行され、
uevent に“MODALIAS=virtio:dXXXXX

XXXvXXXXXXXX”といった形式の値
が設定されます。“dev->id.device”と“dev
->id.vendor”が引数にとられているように、
この値はドライバの識別に使うことができます。
userlandのプログラムは、このイベントを受け
取り、この値とリストのような/lib/modules/

<kernel version>/modules.alias（リスト4）を参照
して、デバイスに対応するモジュールを発見し、
ロードします。
　一方のbus_probe_device()は、デバイスとド
ライバとを結びつける役割を果たします。
virtio_netなどのvirtioドライバもPCIドライバ
と同じような IDテーブルを持っています。
virtio busはこのテーブルに指定された IDと、
先ほどの“virtio_pci_modern_probe()”で設定し
たIDが一致するかを調べて、一致する場合ドラ
イバのprobe関数を呼び出します。ここまでで
やっとvirtio_netやvirtio_blkなどの固有のドラ
イバのコードにたどり着くわけです。

virtioドライバの
probe

　virtioドライバによるデバイスの初期化につい
て見ていきましょう。ここでドライバがやるべ
きことはもちろんドライバの種類によって異なっ
ていますが、設定の読み込みと、データの通信

経路であるvirtqueueの作成の2つになります。
　設定の読み込みは、たとえばネットワークデ
バイスにおけるMACアドレスなどを設定します。
これらの値はI/O空間からロードされます。
　virtqueueはその名のとおりデータ通信に使わ
れるキューです。ドライバは、デバイスの I/O

空間からキューのサイズや数といった設定を読
み込み、ゲストのメモリ空間にキューのための
領域を確保します。

virtqueue の構造
　virtqueueのメモリ領域は3つの領域に分かれ
ています。1つめはDescriptorTableという領域
で転送データがあるバッファのアドレスや長さを
記述する部分です。2つめはAvailable Ringでデ
バイスが使うことができるバッファをDescriptor

Tableのエントリを参照して指定しています。3っ
つめはUsed Ringでデバイスが使用したバッファ

Descriptor Table
Desc Indirect Desc Indirect
Available Ring

int register_virtio_device(struct virtio_device *dev)
{
 int err;

 dev->dev.bus = &virtio_bus;
…
 /* device_register() causes the bus infrastructure to look for a
 * matching driver. */
 err = device_register(&dev->dev);
…
}

int device_add(struct device *dev)
{
…
 kobject_uevent(&dev->kobj, KOBJ_ADD);
 bus_probe_device(dev);
…
}

 ▼リスト3　virtio デバイスの設定と追加

alias virtio:d00000001v* virtio_net
alias pci:v00001AF4d*sv*sd*bc*sc*i* virtio_pci
alias virtio:d00000005v* virtio_balloon
alias virtio:d00000012v* virtio_input

 ▼リスト4　module.alias

166 - Software Design

Linuxカーネル観光ガイド

をAvailable Ringと同様に指定している領域です。
　デバイスとドライバはそれぞれこれらの領域
を読み書きし、また適宜I/O空間への書き込みや、
割り込みによってRingの更新を相手に通知する
ことで、データのやりとりを行います。

inputの送受信
　具体的にvirtio inputでのデータのやりとりを
見ていきましょう（図3）。virtio inputはキーボー
ドやマウスといった入力デバイスのための
virtioデバイスです。Linuxでの汎用的な入力デ
バイスのフレームワークであるevdevのイベン
トをそのままvirtioで転送するので、evdevに対
応しているデバイスであればなんでもエミュレー
トできますし、evdev対応デバイスのパススルー
も可能となります。
　virtio inputは2つのvirtqueueを使います。1

つはevent用のvirtqueueで、デバイスからドラ

イバへと入力のevdevが流れます。もう1つは
status用のvirtqueueで、ドライバからデバイス
へのevent（LEDの点灯やサウンドの再生など）
が流れます。
　まずはevent virtqueueのほうから見ていきま
しょう。こちらはデバイスからデータが送られ
てくるほうですので、まずすべてのバッファを
デバイスからの書き込み専用にしてAvailable

Ringに登録します。キーボードのキーが押され
るなどの eventが発生すると、デバイスは
Available Ringからバッファを1つ使ってevent

を格納し、Used RingにDescriptorを登録して、
割り込みを発生させます。割り込みが起きると、
ドライバのコールバック関数が呼び出されます。
コールバックの中では、Used Ringを参照して
eventが書き込まれたバッファを取り出し、ゲス
ト内にevdevのeventを流してから、バッファを
再びAvailable Ringへと戻します。
　次に、読み書きが逆になるstatus virtqueue

event virtqueue

Descriptor Table

Available Ring Used Ring

⇩

buf

next

buf buf buf

next

はじめから
入力用の
バッファが
積まれている

Desc
Write

Desc
Write

Desc
Write

Desc
Write

Available Ring Used Ring

buf buf buf bufドライバから
入力 event が
読み込まれる

Desc Desc Desc Desc

Descriptor Table

Descriptor Table

Available Ring Used Ring

⇩

buf buf buf bufデバイスから
入力 event が
書き込まれる

Desc Desc Desc Desc

nextnext

status virtqueue

Available Ring

Available Ring

Used Ring

⇩
nextnext

Available Ring Used Ring

buf
デバイスは
event を読む

Desc
Read

Descriptor Table

Descriptor Table

Descriptor Table

Used Ring

⇩

buf

nextnext

ドライバは
LED 点灯などの
event を書く

Desc
Read

nextnext

nextnext

 ▼図3　virtio inputでのデータのやりとり

166 - Software Design May 2016 - 167

仮想マシン用の準仮想化デバイスドライバのフレームワーク
virtioドライバのしくみ

第50回第50回

を見てみましょう。LEDの点灯などの status

eventが発生するとゲストのevdev subsystemか
らドライバのコールバックが呼び出されます。
コールバックはバッファにデータを埋めて、デ
バイスからの読み込み専用のバッファとして
Available Ringに登録し、デバイスに新たなイ
ベントが入ったことを通知します。通知を受け
たデバイスはAvailable Ringを参照して、バッ
ファからデータを読み込みLEDを点灯するなど
の処理をして、Used RingにDescriptorを登録
します。ここでstatus virtqueue用のコールバッ
クも呼ばれますが、こちらはただバッファを読
み捨てるだけの関数です。

chainとindirect
descriptor

　virtio inputではDescriptor 1つに対してバッ
ファを1つ使用していました。virtio blkでは、
より高度なDescriptorの機能である buffer

chainと indirect tableを使用しているのでそれ
についても紹介します（図4）。
　virtio blkはブロックデバイスの入出力を行う
virtioデバイスです。ブロックの入出力におい
ては、最低でも読み書きしたいセクタなどの情
報と、読み書きデータ用バッファと、I/Oの状
態を返してくるバッファと3つのバッファを一
度のI/Oリクエストでやりとりします。このよ
うな複数のバッファを一度にやりとりしたい場

合にbuffer chainが使われ、さらにDescriptor

Tableの節約のために indirect descriptorが使
用されることもあります。
　chainとはDescriptorのnextフィールドでほ
かのDescriptorを参照し、複数のバッファをま
とめる機能になります。Ringは、こうした
chainの先頭を参照していて、デバイスやドライ
バはnextをたどって複数のバッファを認識する
ことになります。
　indirect descriptor は、Descriptor Table か
ら直接データをやりとりするバッファを指定す
るのではなく、もう一段Descriptor Tableとな
るバッファを指定して、一段目のDescriptor

Tableを節約する機能です。Descriptor Table

が埋まるとそれ以上の通信はできなくなるので、
複数のバッファを高頻度にやりとりするような
場合にはこの機能が役に立ちます。

まとめ
　virtioはOASISで標準化もされてOSやハイ
パーバイザに依存しないホスト・ゲスト間の通
信経路としてネットワークやブロックデバイス
を超えて入力デバイスやGPU、乱数発生源など
さまざまな用途で使われるようになっています。
今回はvirtioデバイスがどのようにゲストに見
えて、どのようにデータをやりとりしているか
について紹介しました。｢

chain を使って複数のバッファをまとめて参照する Indirect Descriptor Table を使って、
全体の Descriptor Table を節約する

Available Ring

セクタ
情報

データ
読み込み ステータス

Descriptor Table Desc
Read

Desc
Write

Desc
Write

Available Ring

セクタ
情報

データ
読み込み ステータス

Indirect Descriptor Table
Indirect
Descriptor Table

Desc
Read

Desc
Write

Desc
Write

Desc
Indirect

Desc
Indirect

 ▼図4　bu�er chainとindirect table

168 - Software Design

■「第1回man bash読書会 展開（expansion）編

	 - シェル芸を支える7つの展開-」 石井久治

　続いて石井さんが、bashの機能をmanを使いなが
ら調べる方法について紹介されました。はじめに
bashコマンドのマニュアルの構成を説明したあと、
今回は展開（expansion）の章に絞って解説されまし
た。展開は、コマンド行に書かれた文字列を単語に
分割したあとに行うもので、たとえばa{d,c,b}eは
ade ace abeに展開されます。展開にはブレース展
開やパラメータ展開など全部で7種類あります（図
1）。一部の展開については演習問題を用意し、参
加者が実際にプログラムを書いて動作を確認しまし
た。石井さんの資料は次のURLにあります。

¡	http://bit.ly/manbash20151226

■「シェル芸勉強会」 上田隆一(USP友の会)

　午後の部は、USP友の会がいつも開催している

　今回は、2015年12月と2016年2月に行った、
シェル勉強会の模様をお伝えします。

	 ■jus・USP友の会共催シェル勉強会

	【日時】2015年12月26日（土）10:00〜19:00

	【会場】㈱KDDIウェブコミュニケーションズ

　昨年12月26日に、USP友の会と共催でシェルス
クリプトおよび周辺技術についての初心者向け勉強
会を開催しました。年末の時期にもかかわらず、46

名の参加がありました。午前はおもに初心者向けに
テーマを絞ったセミナーを2本、午後はシェル芸勉
強会という構成でした。

■「もっと簡単にAWKを使おう

	 - 10文字プログラミング」

	 斉藤博文（日本GNU AWKユーザー会）

　最初は斉藤さんによるAWKに関するセミナーで
した。AWKはシェルスクリプトだけでなく、日常
的によく使われるコマンドです。今回はこのAWK

の使い方を基本から解説されました。また、恒星や
星座のデータをサンプルとして使用し、AWKのさ
まざまな技法を実際のプログラム例を見せながら紹
介されました。斉藤さんの資料は次のURLにあり
ます。

¡	http://gauc.no-ip.org/20151226_usptomo_

presentation_handout.pdf

2015年12月開催　シェル芸勉強会

図1　展開の種類（石井久治氏のスライド資料 p54 より）

寒中シェル芸勉強会

NO.55
May 2016

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp
りゅうちてつや　RYUCHI Tetsuya　ryuchi@ryuchi.org

http://gauc.no-ip.org/20151226_usptomo_presentation_handout.pdf
http://www.jus.or.jp/
http://bit.ly/manbash20151226

May 2016 - 169168 - Software Design

シェル芸勉強会を行いました。講師の上田会長によ
る眠気覚ましを含んだスライドから始まり、ご自身
の近況についても報告がありました。そのあとシェ
ル芸についての説明や進め方、問題を解くときの着
目点などについて一通りの説明がありました。その
後、実際に問題に取り組みましたが、今回は全部で
8問の課題がありました。数字のソート、端末の操
作、最大公約数を求める、漢数字からアラビア数字
への変換などが出題されました。上田さんの資料は
次のURLにあります。

¡https://blog.ueda.asia/?p=7332

■懇親会

　午後の部が終了したあとは、同じ部屋で有志によ
る懇親会を行いました。懇親会はビアバッシュ形式
で、用意されたビール、ソフトドリンクやピザ、ス
ナック菓子などをつまみながら、自己紹介が行われ
ました。また、ライトニングトーク形式の発表も行わ
れ、お互いに楽しい時間を過ごすことができました。

	 ■jus・USP友の会共催シェル勉強会

	【日時】2016年2月13日（土）10:00〜19:00

	【会場】㈱KDDIウェブコミュニケーションズ

　12月に引き続き2月にも、USP友の会と共催で
シェルスクリプト関連の勉強会を開催しました。今
回は44人が参加しました。構成は前回と同じで、
午前は初心者向けセミナーを2本、午後はシェル芸
勉強会を行いました。

■「正規表現」 今泉光之(USP友の会)

　セミナーの1本目は今泉さんによる正規表現の講
座でした。sed、grep、trなどのコマンドでUNIXの
初期から利用されている基本正規表現と、awkや
egrepなどで利用される拡張正規表現について、そ
れぞれで使えるメタキャラクタを一通り説明されま

した。その後、実際によく使われる正規表現の実例
を、単純な文字列にマッチする簡単なものから、任
意のURLやメールアドレスにマッチする長大な正
規表現に至るまでを解説されました。

■「シェルがコマンドを実行する前にしていること」

	 鳥海秀一(USP友の会)

　2本目のセミナーは、シェルのコマンド処理の様
子を鳥海さんに解説していただきました。シェルが
コマンド行に入力された文字列を解釈して実行する
までの処理を、トークン分割、エイリアス展開、そ
の他の展開（ブレース展開やチルダ展開など）、コマ
ンド検索に分けて順番に解説されました。また、講
師からは「手を動かすことが技術習得の近道である」
というメッセージがあり、それを実践するためにコ
マンド検索の優先順位を確認する課題に取り組みま
した。

■「シェル芸勉強会」 上田隆一(USP友の会)

　午後の部は恒例となっている上田さんによるシェ
ル芸勉強会です。今回も8問の課題が用意され、1問
あたり15分ぐらいで解答案を考えたあとに、上田
さんによる問題解説と解答例が示されました。今回
の問題は、PDFからのテキストの抽出、Shift JIS

の固定長データをUTF-8に変換、日曜日の列挙、
シェルスクリプトのデバッグ、拡張正規表現を基本
正規表現に変換、添付ファイルの抽出と画像の復
元、などでした。上田さんの資料は次のURLにあ
ります。

¡	https://blog.ueda.asia/?p=7608

■終わりに

　シェル勉強会は毎回好評で、参加登録ページを公
開すると早々に多数の申し込みがあります。継続的
に開催していることにより、知名度が上がっている
効果だと思います。こうした活動を続けることで、
シェルに慣れ親しむ人が増えるのは喜ばしいことで
す。jusとしても引き続き協力していく予定です。｢

2016年2月開催　シェル芸勉強会

寒中シェル芸勉強会 May
2016

https://blog.ueda.asia/?p=7332
https://blog.ueda.asia/?p=7608

170 - Software Design

まずは課題と向き合う

　おもに東日本大震災の被災三県である宮城・福島・
岩手を中心に、その他全国各地の団体で活動してい
る方々が、ICTの分野でできること・気をつけるこ
となどを理解しながら、2日間にわたって課題解決
方法を探ることを目的とした今回の研修。この研修
は武田薬品工業株式会社の寄付により日本NPOセ
ンターが行っている「タケダ・キャパシティ・イニ
シアチブ」の一環として開催されました。このプロ
グラムでは東日本大震災の復興を目的に、NPOなど
の組織基盤強化のための支援を行っています。
　日本NPOセンターとはNPOの基盤強化の支援を
行う中間支援組織で、本研修では、ICTを活用して
NPOの支援を行う「NPOのためのICT支援者ネッ
トワーク」と岩手県、宮城県、福島県の県域のNPO

支援センター、発災後ICTを使って現地を支援さ
れていた方からのアドバイスをとりまとめ、練られ
た企画とのことです。
　1日目はそれぞれの団体が抱える問題を見つめな

おすため、マンダラート注1などの手法を用いなが
らディスカッションを行いました（写真1）。まず現
状の問題点を書き出し、その問題に対処できず放置
するとどうなるのかを広げていく形でシートを埋め
ていきます（写真2）。
　筆者と同じグループになったのは、日本NPOセ
ンターの中川馨さん、南三陸町の一般社団法人さと
うみファームの金籐克也さん、そして一般社団法人
ワタママスマイルでの菅野芳春さん。金藤さんはお
もにスタッフ間の「情報共有」を、菅野さんは団体の
「情報発信」をそれぞれ課題として挙げていました。
　共通して話題になったのはICTに強い人材がい
ないということ。2団体ともにWebサイトは持って
いますが、管理できるスタッフがもっと多ければよ
り頻繁に更新できると話していました。過去にボラ
ンティアでブログやサイトを作ってくれた人はいた
ものの、継続して情報発信することの難しさを日々
実感しているようでした。

注1	 3×3に9分割したマスを用意し、中央に主となるテーマを
書き込み、その周りにそれに起因したものを書き込んでいく
ルールで発想を広げていく手法。

Hack For Japan
エンジニアだからこそできる復興への一歩

NPOが抱える課題に
ITはどこまで協力できるか

第53回
2月20日から21日にわたって、仙台市にて日本NPOセンター主催の「情報・ICT利活用を通じた組織基盤
強化・課題解決型研修」が行われました。技術を人に届けるためにはどうすればいいのか。エンジニア
として問答した2日間をレポートします。

●Hack For Japanスタッフ
　清水 俊之介　SHIMIZU Shunnosuke
　 Twitter @donuzium

◆◆写真2　課題を整理するためのシート◆◆写真1　会場の様子

May 2016 - 171

NPOが抱える課題に
ITはどこまで協力できるか第53回

情報共有

　そのほかのグループでも課題として多く挙げられ
ていた「情報共有」という問題。組織を運営して時間
が経つとともに、どうしても皆さんこの問題にぶつ
かってしまうようです。NPOや一般社団法人という
形態に限らず、どんな組織においても障壁になる大
きな問題だと思います。そして多くの情報共有ツー
ルはネット利用を前提としたものであり、1人1台
PCを持たない団体では導入が難しいという話も。
　そんな話を聞かせてくれたのはNPO法人にじい
ろクレヨンで働く中田心さん。この団体は石巻市で
活動をしており、最初は避難所や仮設住宅に住む子
どもたちのケアからスタートし、現在では自分たち
の施設を持って、いわゆる学童クラブのような事業
も行っています。中田さんは団体の中では「ITに強
い」ということで広報としてメールマガジンの配信
なども担当されているそうですが、本人曰く「あま
り得意ではない」とのこと。
　にじいろクレヨンはパートを含めて17名規模の
団体ということですが、事業と拠点が増えていくに
連れコミュニケーションに齟齬が生まれてきている
ようです。たとえばスタッフのシフト管理には
Excelを用い、そのファイルをDropboxで共有して
いたため、オンラインで複数人が同時編集できる
Googleスプレッドシートを提案したところ「PCを
全員持っているわけではない」「セキュリティが不
安」という2つの問題が挙がりました。ただ話を聞
いてみるとスタッフはほぼスマートフォンを持って
いるようで、実際にスマートフォンからスプレッド
シートを使っている様子をその場で見せると、少し
興味を持ってもらえたようです。しかし同時に「難
しい」という印象も持たれたようで、今後ICTの分
野で支援を続けるに当たっては、こういった障壁を
取り除いていくことも課題の1つです。

羊が死ぬ

　これはアイデアソンで一緒のグループになった金

藤さんが、自分たちが抱える情報共有の問題が放置
されると最終的にどうなるかという結果の例として
挙げたものです。筆者も同じ問題で想像してシート
を埋めていきましたが、これほど具体的な結果は出
てきません。本当に現場で必要とされている声には
重みがあります。
　待ちに待った夕食の時間になり、仙台ではどんな
美味しいものが食べられるのかと考えながら指定さ
れた場所に集合すると、エンジニアチームの目の前
にごっそりと置かれた紙の束が。アイデアソンでの
課題の掘り下げやアイデアがまとめられたシート
で、参加された方の数だけ紙はあります。この課題
やアイデアを元にハッカソンでアプリケーションを
作ることが目的です。そんなことで少しだけ楽しみ
だった時間を忘れ、食事をしながら1日目の成果を
確認していく時間になりました。その後夜に改めて
ラーメンを食べに行ったのはさておき。

求められるアプリ

　石巻市から来たイトナブの津田恭平さんと一緒に
内容を見ていくと、各団体が抱える切実な問題や必
死に練られたアイデアなどがびっしりと。エンジニ
アとして期待されていることがとても伝わり、紙を
めくるごとに気合が入ります（写真3）。
　そしてシートを見ている間、筆者らにはわからな
いNPOなどが持つ特有の事情を、横について丁寧
に解説してくださったのは一般社団法人ICTCカウ
ンシルあおもりの三澤章さん。三澤さんからは問題
を解決できそうな、すでにあるNPO向けのサービ

◆◆写真3　悩める津田さん

172 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

スなどのガイドもしてもらいました。

資金面の課題

　シートに書かれたアイデアはとても現実的で、す
ぐに実装できそうなものが多くありました。当初は
この中から実現できそうなアプリを開発しようとし
ていましたが、課題のほうには挙げられていた「資
金」という問題についてのアイデアがあまり見つけ
出せず、エンジニアとして資金問題をサポートする
アイデアを捻り出すことに方針を変えました。
　今回はメンターとして参加していたHack for

Japanスタッフでもある小泉勝志郎さんも、自身の
クラウドファンディングの経験から資金集めの方法
論や重要性をアドバイスしていました。小泉さん曰
く「クラウドファンディングを成功させる秘訣は、
資金集めのために新たなプロジェクトを立ち上げる
よりも、すでにやっていることに対して支援しても
らうという考え方が大切」とのこと。本来行ってい
ないプロジェクトを無理やり立ち上げてしまうと、
手に余るばかりか失敗したときに余計に苦しくなっ
てしまうというアドバイスを送っていました。

ありがとうまでの時間

　現場ではさまざまなことが起こり、人手も充分で
ない。するとデスクワークは後でまとめてやること
になり、自分たちの団体を訪ねてくれた人々への
フォローに時間がかかってしまう。この問題を解決
することで資金集めの問題に取り組もうと、津田さ
んと株式会社セカイネットの中園良慶さんとの3人
でチームになり、2日目の朝はどんなアプリケーショ
ンを作るかの話し合いでスタートしました（写真4）。
　まずは一概に「支援を多く集める」と言っても、ど
のように行うかという方向性はいろいろあるという
ことを話し合いました。広報を充実させてより自分
たちを周知し、支援の輪を広げていく方法もその1

つです。一方で支援者になり得る人々とのコネク
ションを太くしていくことで、より多くの支援を集
めることもまた1つだと考えました。

　前者の広げていく方法を考えると、人材が充実し
ていれば広報担当者を専任に置き、今よりも多くの
人とのコミュニケーションを取ることができるかも
しれません。しかしこれまで課題として挙がってい
た“人手不足”という状況を鑑みると、適切な方法と
は思えませんでした。ブログを書く十分な時間がな
く、広報の知識を持った人材も少ないという声を実
際に聞いていたこともあり、後者の方法を模索する
ことに。
　そこで筆者らのチームでは、名刺をスキャンする
とすぐにメールを送れるアプリを作ることになりま
した。受け取った名刺をスキャンをすることで、自
動でメールアドレスを判別し、定型文とともにメー
ルフォームが立ち上がり、編集・送信を行うことが
できます。できる限りスタッフのタスクを増やさず
に、今まで不便だったことを解消することを目的と
しています。新しいツールを作ったとしても、それ
が逆に手間を増やす結果になっては本末転倒です。
　援助をたくさん受けるために自分たちのところに
来てくれた人は、今後大切な支援者となる可能性が
非常に高く、現地を訪れたばかりで体験をまだ共有
しているタイミングでコミュニケーションを取るこ
とができれば、より自分たちに興味を持ってもらえ
るかもしれません。そういったタイミングを逃さな
いうちに、まずその組織のファンになってもらうこ
とをサポートできるツールになればという想いとと
もに開発が始まりました。

◆◆写真4　悩める中園さん

May 2016 - 173

NPOが抱える課題に
ITはどこまで協力できるか第53回

完成はラスト5分で

　メイン会場から駆けつけてくれた小泉さんの力を
借りながら、粘って不慣れな iOSと格闘していた
津田さん（普段はAndroidの開発がメイン）。終了5

分前でなんとかひととおりの流れを確認できまし
た。ハッカソンが終わると、メイン会場へ移動して
成果発表に。
　デモで読み込んだ最初の名刺では、メールアドレ
スのアカウント名が途中で切れてしまいましたが、
2枚目の名刺では無事成功。会場でお借りした名刺
から、メールアドレスだけ抽出し、定型文の入った
メールフォームが立ち上がるところまで無事にデモ
をすることができました（写真5）。

挙がった手

 「このアプリを使ってみたい人！」
　最後に会場にそう問いかけてくれたのは日本
NPOセンターの三本裕子さん。同センターの山本
朝美さんと一緒に、かなり内容の深いものとなった
この研修を最初から最後まで支えていました。お陰
さまで多くの方々に笑顔で手を挙げていただくこと
ができました（写真6）。普段接する機会もなく得体
が知れなかっただろうエンジニアという職業の人間
が、会場の中で共に課題を解決するための仲間であ
ると受け入れられたような気がしました。
　まだ寒い2月の仙台で、笑顔とともに挙げられた
手を思い出しながら、一刻も早く皆さんに使ってい
ただけるようにと開発を続けています。s

名刺からメールを
瞬時に送る

　メインの会場でICTの研修が行われている中、
別室でエンジニアチームは黙々と作業を続けていま
した。
　アプリのしくみは、まず津田さんが開発を担当す
る iOSアプリで画像を撮影し、中園さんが担当す
るWebサーバに投げます。Webサーバでは画像を受
け取り、筆者の担当するOCRの処理に投げて返却
された解析済みの文字からメールアドレスを抽出
し、iOSアプリ側に戻すという流れです。開発が始
まるとそれぞれの担当に分かれて静かに作業が進ん
でいきます。
　筆者はOCRの処理を担当するにあたり、いくつ
かのAPIを使用して精度を比べていきました。無
料で使える海外製のものから、国内の企業が開発者
向けに提供しているものまで。どれも一長一短で、
アルファベットに強いけれど漢字に弱かったり、あ
るいはその逆だったり。今回はメールアドレスのみ
の抽出ということで英数字のみ解析できればよかっ
たのですが、ピリオドが日本語の読点や中黒として
認識してしまったりと試行錯誤を繰り返しているう
ちにお昼になってしまいました。
　もう時間がないなと思ったときに使い始めたのが
GoogleのVision APIでした。Vision APIは非常に
優秀で、一般的な名刺であればほぼすべての文字
（半角カナも！）を認識していました。テストに用い
た名刺でも、認識できなかった個所は6ピクセル程
度のピリオド1つのみ。Vision APIは今年に入って
ベータ公開されたまだ新しいサービスです。

◆◆写真5　メールアドレスのスキャンに成功した様子 ◆◆写真6　笑顔で手を挙げてくれた皆さん

174 - Software Design

はじめに

　1980年代中盤は、8bitマイコ
ンの黎明期が過ぎ、PC-9801を
代表とする16bitのパソコンが
主流になりつつ性能アップしま
したが、まだ実行速度とメモリ
の容量に不満が残る時代でした。
　MS-DOSが使われるようにな
ると、そのうえで動作するC言
語やPascalのコンパイラでプロ
グラミングすることが普通にで
きるようになり、初期のBASIC
言語+マシン語のプログラム環
境は廃れていきました。しかし、
より高速性やメモリの効率を図
るため、マシンを密接に制御で
きるアセンブラ・プログラムは、
まだ歩みを続けていました。そ
こに大きく立ちはだかったのが
16bit CPUであるIntel 8086（以
下 i8086）のわかり難さの壁でし
た。今回は、この壁に立ち向か
うためのツールであるMicrosoft
Macro Assembler（以下MASM）
についてのお話をしましょう。

16bitCPU
i8086

　1978年にインテル社から登場
した i8086は、8bit CPUである

Intel 8080との互換性を有する
ことを目指して、同じ名前のレ
ジスタを8bitから16bitに拡張
しています。
　その1年後にザイログ社から
発表されたZ8000は、Z8001/
Z8002の2種類があり、Z80と
のレジスタの互換性を排除して
理想的な16bit CPUを目指して
いました。Z8002は割り切って、
アドレスは16bitのままで64KB
のアクセスしかできないものの、
Z8001は、7bitのセグメントを
上位に加えることで、16bitのオ
フセットと併せて23bit、8MB
のメモリアクセスが可能になっ
ていました。
　また、モトローラ社は1979年
末にMC68000を発表し、デー
タバスは16bitなのですが、デー
タ／アドレスレジスタを4倍の
32bitに拡張し、24本のアドレ
スバスにより当時としては広大
な16MBのメモリのアクセスが
可能でした。
　当時8bitのCPUのアドレス
バスは16bitであり、2本の8bit
レジスタをペアにするなどして
16bitのアドレスレジスタとして
使い、メモリアクセスを行って
いました。
　i8086は、16bitのセグメント

と16bitのオフセットを4bitずら
して足し合わせることで20bit
のアドレスを示し、1MBのメモ
リ空間にメモリアクセスできる
ようになっています（図1）。しか
し、これがくせ者で、1つのセ
グメント区間は64KBですが、
4bitのずれにより16byte配置で
セグメントを指定できることで、
4,096個（64KB/16）のセグメン
ト区間が重なり合ってしまうの
です。セグメントの設定を間違
えると、大きなバグが発生する
ことになります。また、i8080か
ら引き継がれた4個のレジスタ
は、命令により使えるレジスタ
が制限されるなど汎用レジスタ
とは呼べないものでした。4つ
のセグメントレジスタ注1をいか
注1） CS：コードセグメント、DS：データ

セグメント、SS：スタックセグメン
ト、ES：エクストラセグメント

 ▼図1　セグメントと実アドレス

0 0 0 0

OFFSET (16bits)

SEGMENT (16bits)

ADDRESS (20bits)

15

19

0

0

15 0

+

温故知新
ITむかしばなし

速水 祐（HAYAMI You） 　http://zob.club/ Twitter : @yyhayami

MASM〜x86のアセンブラ
障壁を越えられるか〜

第54回

http://zob.club/

174 - Software Design May 2016 - 175

に管理するかが、i8086のアセ
ンブラ・プログラムのテクニッ
クでした。そのセグメントのテ
クニックをサポートするツール
がMASMだったのです。

MASMとは

　MS-DOS上で動作するMASM

は、CP/M上の i8080/Z80用マク
ロアセンブラ MACRO-80の延長
上にあり、リンク、ライブラリなど
の機能を引き継いでいます。
　さまざまな疑似命令（いわゆる
ディレクティブ）を使って、セグメ
ントの設定を自動化します。ただ、
その設定状況を把握しておかない
と思わぬ動作になってしまいます。
例として、PC-9801のVRAMに文
字（A～E）を直接転送するプログラ
ムを作ってみました（リスト1）。

アセンブラ
を使う意味

　1991年3月号パソコン情報誌
「The BASIC」創刊100号（写真
1）、から筆者の「Advanced Asse
mbler」の連載が始まりました。

当時はすでにコンパイラ環境が
十分に普及し、「アセンブラでわ
ざわざ苦労してまでプログラミ
ングを行うのか」という風潮もで
てきた時代です。しかし、マシ
ンの立場で会話できるアセンブ
ラ言語（以下、アセンブラと略）
は、次の点において力を発揮で
きると考えていました。

❶速度を追及する
　アセンブラでは1命令がマシ
ン語の1命令に対応するため、
命令のマシンクロックを考えな
がらスピードのアップをねらっ
たプログラム作成が可能になり
ます。ただ、1993年にPentium
が登場するとスーパースケーラ
構造により、1クロックで1つ以
上の命令が実行可能となり、そ
のようなテクニックは難しくな
りました。
❷コードサイズの適性化
　命令のサイズがわかるため、
コードサイズを適切に調整する
ことが可能になります。とくに
常駐プログラムやROM内のコー
ドのようにコードサイズを追及

するような、プログラム作成で
は欠かせなかったのです。
❸独特なCPU命令のサポート
　i8086→V30→i80286→i8038
6→ i486→Pentiumと続く新し
いCPUが持つ新規に加わった
命令、機能を利用するためには、
アセンブラが必要不可欠でした。
❹データとコードのアドレス設定
　デバイスドライバのように、
特定のアドレスにデータやコー
ドを配置しなければならない場
合においてアセンブラの力を借
りる必要がありました。

　現在でも、組み込みの分野な
どでは、上記の点からアセンブ
ラが必要なところもあるはずで
す。また、コンピュータ科学の
分野における学習において、
CPUの基本的な理解を深める
ためにアセンブラはかかせない
ものとなっているはずです。ただ、
そこで使用するCPUは、わかり
難いx86であってはいけないと
思います。｢

 ▼写真1　TheBASIC ▼リスト1　PC-9801のVRAMにA～Eを直接表示するアセンブラプログラム

TITLE PC9801
 0000 .MODEL small ;SMALLメモリモデル
 0000 .STACK 100h ;スタックエリアを256バイト確保
 0000 .DATA ;データセグメントエリア設定
 0000 41 00 42 00 43 00 44 + msg db 'A',0,'B',0,'C',0,'D',0,'E',0
 00 45 00
 000A .CODE ;コードセグメントエリア設定
 0000 B8 0000s start: mov ax,@DATA
 0003 8E D8 mov ds,ax ;データセグメント設定
 0005 B8 A000 mov ax,0a000h ;PC9801 VRAMセグメント
 0008 8E C0 mov es,ax
 000A BE 0000r mov si,OFFSET msg
 000D 33 C0 xor ax,ax
 000F 8B F8 mov di,ax
 0011 B9 0005 mov cx,5 ;文字数
 0014 FC cld ;増加方向
 0015 F3> A5 rep movsw ;ブロック転送
 0017 B8 4C00 mov ax,04c00h ;0:エラーレベルで終了
 001A CD 21 int 21h
 END start ;スタート位置ラベル設定

温故知新 ITむかしばなし
MASM〜x86のアセンブラ障壁を越えられるか〜

第54回

176 - Software Design

　3月30日、Bluetoothの規格策定・技術利用に対する
認証を行う団体であるBluetooth Special Interest Group
（以下Bluetooth SIG）は、新サービスおよび2016年の技
術ロードマップを発表した。

 Transport Discovery Service
　Transport Discovery Service（以下、TDS）は、使用さ
れている無線技術の種類にかかわらず、IoTデバイス間
の認識と接続を可能にする共通フレームワーク。デバイ
スの休止状態中は低電力消費のBluetoothで接続してお
き、高消費電力や高帯域幅を特徴とするその他の無線技
術が必要になればそちらに切り替える、というしくみを
実現できる。本技術は現在、他の標準化機関および提携
団体に対して提案がなされている。

 Bluetoothインターネットゲートウェイ
　アーキテクチャ
　BluetoothゲートウェイはBluetoothセンサーからク
ラウドへ、そしてクラウドからセンサーへデータを中継
するしくみ。本アーキテクチャは、Bluetoothゲートウェ

　独立行政法人情報処理推進機構（IPA）は3月24日、IoT
製品の開発者が開発時に考慮すべきリスクや対策を指針
として明確化した、「つながる世界の開発指針」を公開
した。
　本開発指針は、IoTの普及とそれに伴うセキュリティ
リスクの高まりという背景を受け、2015年8月に産業界
や学界の有識者で発足された「ワーキンググループ」が
策定した。特定の製品分野・業界に依存しないことを念
頭に策定されており、IoTに関連するさまざまな製品分
野・業界においての分野横断的な活用が想定されている。
特徴は次のとおり。

・ IoT製品を開発する企業全体の「方針」の策定、つなが
る場合のリスクの「分析」、リスクへの対策を行うた
めの「設計」、製品導入後の「保守」や「運用」といった
製品の開発ライフサイクル全体において考慮すべき
ポイントを全17の指針として明示

・ それぞれの指針ごとに、取り組むための背景や目的、
具体的なリスクと対策の例を解説

・ 指針一覧はIoT製品開発時のチェックリストとしても

イを迅速に作成できる方法を開発者に提供する。本アー
キテクチャにより、遠隔地からのBluetoothセンサー監
視制御などを簡易に実現できる。
　Bluetoothゲートウェイのためのスターターキットは
次のURLから入手できる。
・https://www.bluetooth.com/develop-with-
bluetooth/developer-resources-tools/gateway

 2016年技術ロードマップを発表
　Bluetoothは2016年、IoT向けの機能拡張を目的とし
たアップデートを行う。おもな機能強化は「通信範囲の
拡大」「通信速度の向上」「メッシュネットワーク」の3つ
で、スマートホームや位置情報サービスといった分野で
の活用が見込まれる。現在のBluetoothの最新バージョ
ンは「4.2」だが、これら機能強化は「4.3」以降で実現さ
れていくとのこと。

活用が可能。またIoT製品を調達する利用者側におい
ても自社の要件確認時のチェックリストとしても活
用が可能

・ 開発者に限らず、経営者層がIoT製品に想定されるリ
スクや対策を自社が取り組むべき課題と認識し、理解
を深めてもらうためのガ
イドとしても活用が可能

　資料は以下のURLでPDF
として公開されている。

「つながる世界の開発指針
～安全安心なIoTの実現に
向けて開発者に認識してほ
しい重要ポイント～」
・http://www.ipa.go.jp/
�les/000051411.pdf

Bluetooth SIG、
2つの新サービスと2016年技術ロードマップを発表

独立行政法人情報処理推進機構、
「つながる世界の開発指針」を公開

独立行政法人情報処理推進機構　URL https://www.ipa.go.jp
CONTACT

▲▲ 「つながる世界の開発指針」表紙

Bluetooth Special Interest Group
URL https://www.bluetooth.org

CONTACT

https://www.bluetooth.org/ja-jp
http://www.ipa.go.jp/files/000051411.pdf
https://www.ipa.go.jp
https://www.bluetooth.com/develop-with-bluetooth/developer-resources-tools/gateway

176 - Software Design May 2016 - 177

　㈱センチュリーは8インチのUSB接続サブモニター
「LCD-8000U2B」を2月23日に発売した。
　LCD-8000U2Bは、USBケーブル1本で手軽にデュアル
ディスプレイができるUSB接続サブモニター「plus one」
シリーズの新製品。液晶には、写り込みや反射しにくい
ノングレア（非光沢）パネルを採用。解像度はSVGA 800
×600ピクセルとなっている。電源はUSBバスパワーで、
持ち運びの際に液晶を傷付けないための「専用液晶保護
カバー」も付属するので、外出先など、持ち運んで使う
のにも便利な製品となっている。また、上下左右反転、
ミラーリング、回転など、多彩な表示が可能となってい
る。参考価格は19,224円（税込）。

センチュリー、
8インチUSB接続サブモニター「LCD-8000U2B」発売

「攻殻機動隊 REALIZE PROJECT the AWARD」開催

　2月11日、渋谷ヒカリエ（東京都渋谷区）にて、人気ア
ニメシリーズ「攻殻機動隊」の近未来テクノロジーを具
現化した作品を展示、表彰する「攻殻機動隊 REALIZE
PROJECT the AWARD」が開催された。
　「攻殻機動隊 REALIZE PROJECT」は「攻殻機動隊」に描
かれている数々の近未来テクノロジーの実現を追究する
プロジェクト。今回のイベントでは、2015年10月～11
月に「義体部門：東京大会」「電脳部門：神戸大会」、「都
市部門：福岡大会」の各大会から選出された「攻殻×コ
ンテスト」優秀作品6チーム、「攻殻×ハッカソン」優秀
作品4チームの中から、最優秀の2チームが選ばれた。

 攻殻×コンテスト the AWARD
　「攻殻機動隊の義体を支える臓器設計技術」
　：横浜市立大学　小島伸彦研究室
 攻殻×ハッカソン the AWARD
　「空圧式人工筋肉身体防御スーツCyber Protection Suit」
　：チームShift

　また、当日は大会審査に関わった各大学・大学院の教
授陣による、「日頃の研究テーマと攻殻機動隊」をテー
マとした特別講義（攻殻ユニバーシティ）および、映画
監督の神山健治氏（『攻殻機動隊S.A.C.』シリーズ監督・
脚本）と小説家の冲方丁氏（『攻殻機動隊 新劇場版』脚本、
「攻殻機動隊ARISE」シリーズ構成・脚本）を迎えたトー
クショー（攻殻シンポジウム）も催された。
　イベントの最後には、作品に登場する多脚思考戦車「タ
チコマ」を開発する2つのプロジェクトが発表された。
1/2スケールのタ
チコマを開発する
のは海内工業㈱×
karakuri products。
スマホと連携する
1/10スケールのタ
チコマを開発する
のは㈱Cerevoだ。

▲▲左：チームShift、右：小島伸彦研究室

▲▲LCD-8000U2B

▲▲攻殻ユニバーシティと攻殻シンポジウムのメンバー（情報通信研究機構
井上 大介氏、神戸大学 塚本 昌彦氏、筑波大学 岩田 洋夫氏、はこだて未
来大学 松原 仁氏、小説家 冲方 丁氏、ほか）

▲▲1/2タチコマ（プロトタイプ）と神山 健治氏

攻殻機動隊 REALIZE PROJECT
URL http://www.realize-project.jp

CONTACT

㈱センチュリー　URL http://www.century.co.jp
CONTACT

http://www.century.co.jp
http://www.realize-project.jp

178 - Software Design

SORACOM Ai r S IM、あなたは何に使いますか？
本号特別付録の「SORACOM Air SIM」、いったいどのような使い方があるのでしょうか？
インターネットでレビューを見てみると、センシングデータをツイートしたり、ラジコンの
遠隔コントローラを作ったり、はたまたスマホに挿してみたりと、さまざまな形で利用され
ています。「IoT」と言われてもいまいちピンとこない人も、実際に自分で『make』すること
で、勘所がつかめるのではないでしょうか。

Webサービス／スマホアプリを高頻度
でデプロイするには、どのようなチーム
作り、環境づくりが必要なのか。
SUUMO、Retty、Qiitaを開発・運営す
るチームに、それぞれの現場で培われた
アイデアを訊きました。

現場から出る改善提案って大きいよ
ねっ、て印象。 tekitoizmさん／東京都

IT雑誌と言う枠を超えて役立つスキル。
 ジャンボ団さん／長崎県

Qiitaは最近よく利用しているので、
興味深い内容で楽しめた。
 山添さん／東京都

今までの失敗など、かなりぶっちゃけ
たことが書いてあって期待以上でした。
 G_famiさん／島根県

テスト自動化による開発スピードアッ
プはどこの現場でも必要だと思う。
 ほまれさん／千葉県

今回は技術というよりは、システ
ム工学に近いお話でしたね。華や

かなイメージのあるWeb業界やアプリ

業界ですが、エンジニアが最大限の力を
発揮するために、草の根のルール作りが
なされていました。

広く使われている割には苦手意識が持た
れている印象のCOBOL。そもそも
COBOLとはどのようなニーズから生ま
れ、どんな特徴を持つ言語なのか。
「COBOLを知る」ことからはじめる特集
でした。

元COBOLerとしてはとても興味深く
読めました。実は手元にCOBOLの環
境があるので、たまには触ってみよう
かな、と思ってます。
 ROMEOSHEARTさん／長崎県

連綿と生き残っているんですね。
 杉浦さん／愛知県

若者はなんのことかと思うでしょうが、
COBOLを特集するなんて斬新です。
 目からウロコさん／埼玉県

まさかのCOBOLか、と読む前は思い
ましたが、筆者の方々の熱い思いが伝
わってくる良い記事でした。
 山下さん／東京都

第3章は、COBOLだけではなく今で
も一般的な開発に通じることではと感
じました。目的のための手段であるは
ずが、手段を適切に変化させていくこ
とができないのは対応が難しいですね。
 出玉のタマさん／大阪府

最古のプログラミング言語にも
数えられるCOBOLですが、金融

を支えるシステム開発においてはまだま
だ現役。表紙の「COBOL」の文字に動揺
された方が多かったようですが、読んで
みるとCOBOLの印象が変わった、とい
う声が多く寄せられました。

「enchantMOON」の開発者がペンコン
ピューティングについて、誕生から隆盛、
iPad Pro・Apple Pencil発売までの歴
史を紐解き、そしてその先の展望を論
じた読みもの記事でした。

個人的には、よく考えたら手書きペン
を使うことってなかったですね。
 クラウド1号さん／京都府

歴史系はおもしろい。大好き。なかな
かネットで得られない情報で重宝する。
 田中さん／大阪府

2016年3月号について、たくさんの声が届きました。

第1特集
チーム開発を回す現場のアイデア

第 2特集　あなたの知らない
COBOLの実力

一般記事　iPad Proのさきに見
えてくるもの

178 - Software Design May 2016 - 179

ある技術を概観するような内容は個人
的に好みでした。 ぴんぐさん／東京都

iPad Proは全然注目していなかった
が、記事を読んでほしいと思ってしま
いました。 英輔さん／東京都

技術の歴史は、さまざまなエン
ジニアの試行錯誤を見ることが

できて興味深いですね。マウス・キー

ボードに続く次のインターフェースとし
て、「ペン」が台頭する日は来るのでしょ
うか？

「運営するWebサイトが突然改ざんされ
た！」というシナリオの下、被害を広げ
ない・再発を防ぐために何をすべきかを
考える特別企画。どのような手順を踏む
べきか、各手順で注意することは何かを
詳細に解説しました。

好きな話題の記事。もう少しボリュー
ムがほしい。 嶋田さん／三重県

この記事をふまえ、社内の運用マニュ
アルを再検討したい。 加納さん／千葉県

セキュリティ関係の記事は防御や攻撃
についてのものが多い印象で、事後の
対応についての記事は新鮮でした。
 虹コン大好きマンさん／神奈川県

うちの会社ではこういうものをプロジェ
クトごとに作成させられるが、活字に
なっていると周囲を説得するのに効果
的だ。 わっしゃさん／宮城県

情報セキュリティの管理者として参考
になりました。セキュリティ対策はも
ちろん重要ですが、改ざん被害に遭っ
た際に適切な対応をすることで被害を
最小限に抑えることができるので、事
前の対策にさっそく取り掛かろうと思
います。 サファイアさん／茨城県

読者の間でもせキュリティに対
する意識が高まっているようで、

「たいへん参考になった、」という声が多
く寄せられました。Webサイトは企業、
あるいは個人の“顔”となる重要なものな
ので、とくに注意する必要がありますね。

ITインフラの中心がオンプレミスから
クラウドへ移るに伴って、システムに
対する負荷試験も変える必要があります。
本連載ではクラウドに載せたWebサー
ビスの「スケーラブル」を担保するため
の負荷試験について見ていきます。最
終回は2月号に続いて、負荷試験の具体
的な段取りについてみていきました。

クラウド環境ではオンプレミス以上に
見えにくいボトルネックがある。それ

らを確実に切り分けてテストを実施す
る手法がよくわかった。
 tack41さん／愛知県

だんだんと難易度が上がってきましたが、
その分学びがいがあります。
 羊毛布団さん／神奈川県

ほかの試験に活かせそうな話が多くた
めになります。 モモンガさん／滋賀県

「クラウドファースト」という言
葉も出現し、クラウドサービス

は当たり前の基盤技術となりました。
負荷試験に限らず、クラウドの特徴を
ふまえたうえで、従来の手法をアップデー
トする必要がありそうです。

一般記事　サイトオーナがとるべ
き行動と注意点

短期連載　クラウド時代のWeb
サービス負荷試験再入門【4】

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① 洗える防水キーボード　「SKB-BS3W」
佐久間捷矢さま（東京都）

② GitHub Tシャツ&ステッカー
藍ちゃんさま（兵庫県）、ダイオウグソクムシさま（東
京都）、清水邦晃さま（兵庫県）、中村夏実さま（大阪府）、
binaさま（東京都）

③ McAfee LiveSafe
オミオさま（宮城県）

④ 『Docker 実践ガイド』
匿名希望さま（山形県）、木村勇太さま（鳥取県）

⑤ 『ネットワーク・デザインパターン』
鈴木浩さま（熊本県）、tomato360さま（東京都）

⑥ 『リモートチームでうまくいく』
西村駿人さま（神奈川県）、さくらますさま（東京都）

⑦ 『ITインフラ監視［実践］入門』
横田敏一さま（静岡県）、田代勝久さま（埼玉県）

3月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

mailto:sd@gihyo.co.jp
http://sd.gihyo.jp/

180 - Software Design

SORACOM Air サービス契約約款
（2016年３月31日時点）

第1章　総則
第1条　約款の適用
株式会社ソラコム（以下、｢当社｣といいます。）は、SORACOM
Airサービスに関する本契約約款及びこれに関連する個別規約

（以下、総称して｢本約款｣といいます。）を定め、本約款に基づ
き締結されるSORACOM Airサービス契約（以下、「本契約」
といいます。）に基づき、SORACOM Airサービスを提供しま
す。

第2条　約款の変更
当社は、本約款を変更することがあります。かかる変更を実施
する場合、当社は、当社のウェブサイト又は当社が別途定める
方法で契約者に対して告知するものとし、当該告知が行なわれ
た後に契約者がSORACOM Airサービスを利用した場合には、
契約者は、かかる変更に同意したものとみなします。本約款が
変更された後のサービスに係る料金その他の提供条件は、変更
後の約款によります。

第3条　用語の定義
本約款においては、次の用語はそれぞれ次の意味で使用します。

用語 用語の意味
電気通信設備 電気通信を行うための機械、器具、線路そ

の他の電気的設備
電気通信回線 送信の場所と受信の場所との間を接続する

伝送路設備
IMEI International Mobile Equipment Identifier：

国際移動体装置識別番号（端末識別番号）
VPG 閉域網等接続サービスに係る電気通信回線

との接続を行うために当社が設置する接続
点である仮想ゲートウェイ

第2章　サービスの種類等
第4条　サービスの種類
SORACOM Airサービスには、次の種類があります。

種類 内容
s1プラン 端末と当社間の上下の通信速度が対称なデー

タ通信サービス

第5条　サービスの提供区域
SORACOM Airサービスの提供区域は、日本国の全ての地域
とします。ただし、個別規約において別段の定めが規定されて
いる場合にはこの限りではありません。また、その提供区域内
であっても電波の伝わりにくいところでは、SORACOM Air
サービスを利用することができない場合があります。

第3章　本契約の締結
第6条　契約の単位
当社は、1の申込者と1の本契約を締結します。

第7条 アカウント
1. SORACOM Airサービスを利用するためには、契約者は、
有効な電子メールアドレスに関連づけたアカウント（以下、「ソ
ラコムアカウント」といいます。）を作成しなければなりません。
サービス条件で明示的に認められている場合を除き、契約者は
一つの電子メールアドレスにつき、一つのソラコムアカウント
のみ作成することができます。
2. 当社は、契約者に対し、前項に基づき作成されるソラコム
アカウントに当社が提供するシステムにログインするための
IDであるログインID（以下｢本ログインID｣といいます。）及び
ログインパスワード（以下｢本ログインパスワード｣といいます。）
を付与します。
3. 契約者は、自己の責任において本ログインID及び本ログイ
ンパスワードを管理するものとし、本ログインID及び本ログ
インパスワードを第三者に貸与、譲渡若しくは使用許諾又は第
三者の利益のために使用してはならないものとします。また、
契約者は、ソラコムアカウントの不正使用若しくはそのおそれ
を認識した場合又はソラコムアカウント情報の紛失若しくは盗
難があった場合、直ちに当社にその旨通知するものとします。
4. 契約者は、自らのソラコムアカウントに基づき生じるあら
ゆる事象につき、かかる事象が契約者、契約者の役員若しくは
従業員、又は第三者による不正使用若しくは誤使用のいずれに
よるものかを問わず一切の責任を負うものとし、かかるソラコ
ムアカウントの使用に基づき当社に損害が発生した場合、当社
は、契約者に対し、当該損害の賠償を請求できるものとします。
また、当社は、かかるソラコムアカウントの使用に基づき契約
者に損害が生じた場合であっても何らの責任も負担しないもの
とします。

第8条　申込の方法
SORACOM Airサービスの利用申込者（以下、｢申込者｣とい
います。）は、本約款を承認した上で、当社所定の手続に従って
オンラインサインアップによる申込（以下、｢申込｣といいます。）
行うものとします。

第9条　申込の承諾
1. 当社は、申込があったときは、これを承諾するものとします。
2. 当社は、前項の規定にかかわらず、通信の取扱上余裕がな
いときは、その申込みの承諾を延期することがあります。

3. 当社は、申込者に対して、申込者がSORACOM Airサービ
スの提供に関し負担すべき金額の支払いを怠るおそれがあるか
否かを当社が判断するために必要な情報の提出を求めることが
あります。
4. 前項の規定により当社が提出を求める情報のうち、貸借対
照表及び損益計算書等財務の状況を示すものとして当社が別途
定める情報の提出を求められた申込者は、その情報を書面によ
り速やかに当社に提出することを要するものとします。
5. 当社は、第1項の規定にかかわらず、次に掲げる事由に該
当する場合には、当該申込を承諾しないことがあります。

（1） 申込者が本契約上の債務の支払を怠るおそれがあると当
社が判断したとき。

（2） 申込者に対するSORACOM Airサービスの提供により、
当社の事業運営上支障が生じるなど当社の信用又は利益を損な
うおそれがあると当社が判断したとき。

（3） SORACOM Airサービスに係る他の契約者の利益を損な
うおそれがあると当社が判断したとき。

（4） 申込者に対するSORACOM Airサービスの提供により、
当社若しくは第三者の知的財産権、所有権、その他法令等によ
り保証された権利を害するおそれがあると当社が判断したとき。

（5） 申込者に当社との信頼関係を著しく損なう行為があった
とき又は申込者若しくはその役員等が反社会的勢力に該当する
等当社が不適当と判断したとき。

（6） 申込者が第18条（利用停止）各号の事由に該当するとき。
（7） 申込者が、申込より以前に、当社が提供するサービスに
つき当社と契約を締結したことがあり、かつ、当社から当該契
約を解除したことがあるとき。

（8） 申込者が当社に対し虚偽の事実を通知したとき。
（9） 申込に際し、申込者が支払手段として正当に使用するこ
とができないクレジットカードを指定したとき。

（10） 申込者がSORACOM Airサービスを適切に利用する意
思が無いと当社が判断したとき。

第10条　契約の成立
申込者の申込を当社が第9条（申込の承諾）に基づき承諾した時
点で本契約が成立するものとし、以降は申込者を契約者と称す
るものとします。

第11条　契約者識別番号
1. 契約者識別番号は、当社が定めることとします。
2. その契約者識別番号については、契約者がSORACOM Air
サービスを継続的に利用できることを保証するものではありま
せん。
3. 当社は、技術上及び業務の遂行上やむを得ない理由がある
ときは、SORACOM Airサービスの契約者識別番号を変更す
ることがあります。

第4章　契約者の変更等
第12条　契約者の氏名等の変更の届出
1. 契約者は、氏名、名称、住所若しくは居所又は当社に届け
出たクレジットカードその他の当社が指定する事項に変更があっ
たとき又はかかる変更の予定を認識したときは、当社に対し、
直ちに当該変更の内容について通知するものとします。 2. 前
項の届出があったときは、当社は、その届出のあった事実を証
明する書類を提示していただくことがあります。

第13条　名義変更（契約上の地位の移転又は承継）
1. 契約者はSORACOM Airサービスの提供を受ける権利を第
三者に譲渡、承継、名義変更、質権その他担保に供する等の行
為をすることはできません。ただし、SORACOMシステムの
利用状況が「利用開始前」の状態のSORACOM Airサービスの
回線に限り、ソラコムコンソールから所定の操作を行うことで
SORACOM Airサービスの提供を受ける権利を第三者に譲渡
できるものとします。
2. 前項の規定にかかわらず、契約者が死亡した場合、その契
約者の法定相続人（相続人が複数あるときは、最初に申し出た
相続人）は、当社が定める手続きに従い当社に届け出ることに
より、引き続き当該契約に係るSORACOM Airサービス（当
社が別途定めるものに限ります。）を受ける権利を承継すること
ができます。この場合、当該相続人は、元契約者の当該契約上
の地位（元契約者の当該契約上の債務を含みます。）を引き継ぐ
ものとします。

第5章　利用の制限、中断、中止及び停止等
第14条　利用の制限
1. 当社は、電気通信事業法（昭和59年法律第86号。その後
の改正を含みます。）第8条に基づき、天災、事変その他の非常
事態が発生し、又は発生するおそれがあるときは、災害の予防
若しくは救援、交通、通信若しくは電力の供給の確保、又は秩
序の維持に必要な通信その他の公共の利益のために、緊急を要
する通信を優先的に取り扱うため、SORACOM Airサービス
の利用を制限することができます。
2. 当社は、帯域を継続的かつ大量に占有する通信手順又はア
プリケーションを用いて行われる当社所定の電気通信を検知し、
その電気通信に割り当てられる帯域を制御すること等により、
その電気通信の速度や通信量を制御することができます。
3. 当社は、契約者が当社所定の基準を超過したトラヒック量
を継続的に発生させることにより、SORACOM Airサービス
用に使用される設備又はシステムに過大な負荷を生じさせる行
為、その他その使用若しくは運営に支障をきたす行為、又は契
約者若しくは第三者による迷惑メール等送信行為があった場合

又はこれらの行為が相当な確度をもってなされる可能性を当社
があらかじめ察知した場合には、通信の利用を制限し、
SORACOM Airサービスの利用を制限することができます。
4. 当社は、児童買春、児童ポルノに係る行為等の規制及び処
罰並びに児童の保護等に関する法律（平成11年法律第52号。
その後の改正を含みます。）において定める児童ポルノを閲覧又
は取得するための通信を制限することができます。

第15条　通信の切断
当社は、SORACOM Airサービスの通信に関して、次の措置
をとることがあります。

（1） セッション（データ通信を行うことができる契約者回線の
状態をいいます。以下この条において同じとします。）の設定が
長時間継続されたと当社が認める場合において、その通信を切
断することがあります。

（2） 同一セッション内に大量の通信があったと当社が認める
場合において、その通信を切断することがあります。

第16条　利用の一時中断
当社は、契約者から請求があったときは、SORACOM Airサー
ビスの利用の一時中断（その契約者識別番号を他に転用するこ
となく一時的に利用できないようにすることをいいます。）を行
います但し、一時中断の期間は1年を超えることはできず、か
かる期間経過後は、当社は契約者のソラコムアカウントその他
の契約者情報を保管、維持又は提供する義務を負いません。

第17条　利用中止
1. 当社は、次の場合にはSORACOM Airサービスの提供を中
止することができます。

（1） 当社の電気通信設備又はシステムの保守上又は工事上や
むを得ないとき。

（2） 当社が契約している電気通信事業者（以下「通信キャリア」
といいます。）が当社への携帯電話サービスの提供を停止する
とき。

（3） 当社が契約しているクラウド提供業者が当社へのクラウ
ドサービスの提供を停止するとき。

（4） 第11条（契約者識別番号）第3項の規定により、契約者識
別番号を変更するとき。
2. 当社は、前項の規定によりSORACOM Airサービスの利用
を中止するときは、あらかじめそのことを当社のウェブサイト
等において掲示します。ただし、緊急やむを得ない場合は、こ
の限りではありません。

第18条　利用停止
当社は、契約者が次に掲げる事由に該当するときは、当該契約
者の利用に係る全てのSORACOM Airサービスについてその
全部若しくは一部の提供を停止又は利用を制限することができ
ます。

（1） 料金その他の債務について、支払期日を経過してもなお
支払わないとき、又は支払いを怠るおそれがあることが明らか
であるとき。

（2） SORACOM Airサービスに係る契約の申込みに当たって、
事実に反する申込みを行ったことが判明したとき。

（3） 第37条（禁止行為）の規定に違反したと当社が認めたとき。
（4） 第9条（申込の承諾）に定める申込の拒絶事由に該当するとき。
（5） 契約者が指定したクレジットカードを使用することがで
きなくなったとき。

（6） 前各号に掲げる他、当社が不適切と判断する態様におい
てSORACOM Airサービスを利用したとき。

第19条　SORACOM Airサービスの廃止
当社は、技術上及び業務の遂行上やむを得ない場合は、
SORACOM Airサービスの全部又は一部を廃止することがあ
ります。

第6章　本契約の解除
第20条　契約者が行う契約の解除
1. 契約者は、当社に対し、当社所定の方式により通知をする
ことにより、本契約を解除することができます。この場合にお
いて、当該解除の効力は、当社が当該通知を受領した日から
SORACOM Airサービスの種類毎に定める日を経過する日又
は契約者が当該通知において解除の効力が生じる日として指定
した日のいずれか遅い日に生じるものとします。
2. 前項の規定にかかわらず、第14条（利用の制限）、第15条（通
信の切断）、又は第17条（利用中止）第1項の事由が生じたこと
によりSORACOM Airサービスを利用することができなくなっ
た場合において、本契約の目的を達することができないと認め
るときは、契約者は、当社に通知することにより、当社が当該
通知を受領した日をもって本契約を解除することができます。
3. 第19条（SORACOM Airサービスの廃止）の規定により
SORACOM Airサービスの全部が廃止されたときは、当該廃
止の日に本契約が解除されたものとします。

第21条　当社が行う契約の解除
当社は、契約者が次に掲げる事由に該当するときは、本契約を
解除することができます。その場合、当社は、合理的な時期に
契約者にその旨を通知します。

（1） 第18条（利用停止）の規定によりSORACOM Airサービ
スの利用を停止された契約者が、なお当該利用停止の原因事実
を解消しないとき。

（2） 第18条（利用停止）各号の規定のいずれかに該当する場合

180 - Software Design May 2016 - 181

で、その事実が当社の業務の遂行に特に著しい支障を及ぼすと
当社が判断したとき。

（3） 当社と通信キャリアとの契約に基づき、当社への携帯電
話サービスの提供に関する契約が通信キャリアによって解除さ
れたとき。

（4） 当社とクラウド提供業者との契約に基づき、当社へのク
ラウドサービスの提供に関する契約がクラウド提供業者によっ
て解除されたとき。

第7章　責務等
第22条　守秘義務
当社及び契約者は、第8条（申込の方法）に基づく申込以降、相
互に知り得た当社又は契約者の技術上、経営上及びその他一般
に公表していない一切の事情に関する秘密を厳守し、本約款又
は本契約に定める場合を除き、これをSORACOM Airサービ
スの提供又は使用の目的以外に使用しないこととします。ただ
し、法令等上必要とされる場合、相手方の書面による同意を得
た場合又は主務官庁より報告を要請された場合は、この限りで
はありません。なお、本条は本契約の締結に至らなかった場合
又は本契約が解除された場合若しくは終了した場合であっても
有効に存続するものとします。

第23条　信用の維持
契約者は、SORACOM Airサービスの提供又は使用にあたり、
当社の信用を損なう行為を行わないように努めるものとします。

第24条　必要事項の通知
1. 契約者は、次の各号に定める事項について、当該事項発生
後速やかに当社に対して書面により通知することとします。

（1） 名称、住所若しくは居所、請求書の送付先又は法人の代
表者の変更

（2） 第42条（期限の利益喪失）第（2）号乃至第（5）号に定める
事由のいずれかが発生した場合においてはその事実
2. 当社は、次の各号に定める事項について、当該事項発生後
速やかに契約者に対して通知することとします。

（1） 電気通信事業の休止若しくは廃止又は法人の解散
（2） 電気通信事業の登録、届出又は変更登録の取消し
（3） 電気通信事業法第8条第2項に規定する電気通信業務の一
部停止

（4） 提供条件に影響がある電気通信設備の変更、増設又は廃止
3. 第1項第（1）号に規定する変更の通知があったときは、当社
は、その届出のあった事実を証明する書類の提示を求めること
ができます。
4. 契約者において第1項第（1）号に規定する変更があったにも
かかわらず、当社に届出が無いときは、第21条（当社が行う
契約の解除）に規定する通知については、当社が届出を受けて
いる名称、住所若しくは居所への郵送あるいはソラコムアカウ
ントへの電子メール等の通知をもってその通知を行ったものと
みなします。

第25条　情報の提出
当社は、契約者に対して、契約者がSORACOM Airサービス
の提供に関し負担すべき金額の支払いを怠るおそれがあるか否
かを当社が判断するために必要な情報の提出を求めることがあ
り、この場合は第9条（申込の承諾）第4項の規定を準用します。

第8章　再提供
第26条　再提供の前提条件
契約者は、SORACOM パートナースペースへの登録その他当
社が指定する契約の締結及び手続の履行を行った上で
SORACOM Airサービスに基づく電気通信サービスを自己の
電気通信サービスとして第三者に提供することができます。た
だし、その場合、かかるサービスの提供に関する一切の責任は
契約者が負担するものとします。

第27条　利用者数等の報告
契約者は、SORACOM Airサービスに基づく電気通信サービ
スを自己の電気通信サービスとして提供する場合において、当
社が必要とする場合は、かかる電気通信サービスの利用者との
間で締結しているSORACOM Airサービスに基づく電気通信
サービスに関する契約の数を、当社が定める方法により報告を
行うことを要します。

第28条　商標の使用
契約者は、SORACOM Airサービスに基づく電気通信サービ
スを自己の電気通信サービスとして提供する場合において、当
社の登録商標又は商標の使用を希望するときは、当社の承諾を
得るものとし、当社が別途定める条件を遵守するものとします。

第29条　本人確認
契約者は、自らの責任により、SORACOM Airサービスに基
づく電気通信サービスを自己の電気通信サービスとして提供す
るときは、その電気通信サービスの申込者に対して、本人確認

（携帯音声通信事業者による契約者等の本人確認等及び携帯音
声通信役務の不正な利用の防止に関する法律（平成17年法律
第31号。その後の改正を含みます。）第3条で定める本人確認
をいいます。）及び利用者に係る本人確認（同法第9条で定める
契約者確認をいいます。）を行うことを要し、当社はその違反等
に基づく一切の責任を負いません。

第30条　提供条件等の説明等

1. 契約者は、自らの責任により、SORACOM Airサービスに
基づく電気通信サービスを自己の電気通信サービスとして提供
するときは、かかる電気通信サービスの利用者に対して、その
電気通信サービスに係る提供条件等の説明を行うことを要し、
当社はその不順守等に基づく一切の責任を負いません。
2. 契約者は、前項の規定によるほか、自らの責任により、
SORACOM Airサービスに基づく電気通信サービスを自己の
電気通信サービスとして提供するときは、かかる電気通信サー
ビスの利用者その他当社又は契約者以外の者からの契約者への
通信料金若しくはサービス内容に関する問合せ、SORACOM
Airサービスに基づく電気通信サービスに係る故障修理の請求
等又はその他の苦情の受付及び対応等を行うことを要します。

第9章　SIMカードの貸与等
第31条　SIMカードの貸与
1. 当社は、契約者が自ら使用するため、又は契約者が第8章（再
提供）に従って再提供する電気通信サービス利用者へ転貸与す
るために、契約者へSIMカードを貸与します。この場合にお
いて、貸与するSIMカードの数は、1のSORACOM Airサー
ビス回線につき1とします。
2. 当社は、技術上及び業務の遂行上やむを得ない理由がある
ときは、当社が貸与するSIMカードを変更することがあります。
この場合は、あらかじめそのことを契約者に通知します。この
場合において、契約者は、自らの責任により、変更後のSIMカー
ドを契約者が提供する電気通信サービスの利用者へ転貸与する
ものとします。
3. 契約者は、当社が契約者に対して提供するSIMカードにつ
き通信キャリアが当社に対して課す管理義務その他の義務を遵
守するものとし、また、契約者が提供する電気通信サービスの
利用者をしてこれらの義務を遵守させるものとします。また、
契約者又は契約者が提供する電気通信サービスの利用者による
SIMカードの管理不十分、使用上の過誤等による損害は契約者
が負担するものとし、当社は一切責任を負わないものとします。

第32条　SIMカードの返還
当社からSIMカードの貸与を受けている契約者は、次の場合
には、当社が別に定める方法によりそのSIMカードを当社が
指定する場所へ速やかに返還していただきます。

（1） 契約者が提供する電気通信サービスの利用者が、当該サー
ビスに係る契約の休止若しくは解除し又は契約を終了したとき。

（2） 第31条（SIMカードの貸与）第2項の規定により、当社が
SIMカードを変更するとき。

（3） 当社が契約者識別番号を変更するとき。
（4） 本契約が解除又はその他の理由により終了した場合。
（5） その他SIMカードを利用しなくなったとき。

第10章　通信
第33条　通信時間等の測定
1. SORACOM Airサービスに係る課金対象（契約者回線との
間において伝送されるデータをいいます。以下同じとします。）
の情報量は、当社の機器により測定します。この場合において、
回線の故障等発信者又は着信者の責任によらない理由により、
課金対象データ（当社が定めるものを除きます。）が通信の相手
先（その通信が相互接続点への通信であるときは、その相互接
続点を通信の相手先とします。）に到達しなかった場合には、そ
のデータについては、情報量の測定から除きます。
2. SORACOM Airサービスに関する課金対象については、前
項の規定により測定した情報量を、それぞれの1料金月（各月
1日の日本時間午前9時から翌月1日の午前8時59分までの
間をいいます。以下同じとします。）における総情報量について、
1のSORACOM Airサービス回線契約ごとに、1メガバイト
までごとに1の課金対象として算出します。
3. SMSに係る通信回数は、当社の機器により測定します。
4. SORACOM Beamサービス（当社が第57条（SORACOM
Beam）に基づき提供する、契約者からの請求により、当社が
設置した電気通信設備において、通信の暗号化や当社宛通信を
契約者の指定する送信先に変更して送出するサービスをいいま
す。以下同じとします。）に係る課金対象（当社と契約者回線と
の間及び当社と契約者が設定した送信先の間においてそれぞれ
要求されるリクエスト数をいいます。以下同じとします。）の情
報量は、当社の機器により測定します。この場合において、回
線の故障等発信者又は着信者の責任によらない理由により、課
金対象データ（当社が定めるものを除きます。）が通信の相手先
に到達しなかった場合でも、そのデータは課金対象として算出
します。
5. SORACOM Beamサービスに関する課金対象については、
前項の規定により測定した情報量を、それぞれの1料金月にお
ける総情報量について、1のSORACOM Air サービス回線契
約ごとに、1リクエストごとに1の課金対象として算出します。
6. SORACOM Funnelサービス（当社が第62条（SORACOM
Funnel）に基づき提供する、契約者からの請求により、当社
が設置した電気通信設備において、当社宛通信を契約者の指定
する送信先クラウドサービスに変更して送出するサービスをい
います。以下同じとします。）に係る課金対象（当社と契約者が
設定した送信先の間において要求されるリクエスト数をいいま
す。以下同じとします。）の情報量は、当社の機器により測定し
ます。この場合において、回線の故障等発信者又は着信者の責
任によらない理由により、課金対象データ（当社が定めるもの
を除きます。）が通信の相手先に到達しなかった場合でも、その
データは課金対象として算出します。
7. SORACOM Funnelサービスに関する課金対象については、

前項の規定により測定した情報量を、それぞれの1料金月にお
ける総情報量について、1のSORACOM Air サービス回線契
約ごとに、1リクエストごとに1の課金対象として算出します。

第11章　SORACOMシステムの利用
第34条　ソラコムコンソールの提供
当社は、契約者に対し、SORACOM Airサービスのために、
ソラコムアカウントにより使用可能となる同サービスのコンソー
ルシステム（以下、「SORACOMシステム」といいます。）を、
SORACOMシステムに係るWEBサイト（以下、｢SORACOM
サイト｣といいます。）を通じて提供します。

第35条　ソラコムコンソールへの接続
SORACOMサイトへの接続は、契約者が自らの費用と責任で
行うものとします。SORACOMサイトへの接続中、回線・無
線LANの環境等の都合で接続が中断した場合であっても当社
は一切の責任を負いません。

第36条　ソラコムコンソールの利用条件
1. 契約者は、法令等を遵守し、善良な管理者の注意をもって
通常の用法に従って、SORACOM Airサービス使用の目的の
範囲でのみSORACOMシステムを利用するものとします。
2. 当社は、契約者に事前に連絡することなく、SORACOM
サイトの内容、SORACOMシステムにより提供する情報（以下、
｢SORACOM 提 供 情 報｣と い い ま す。）の 内 容 そ の 他 の
SORACOMシステムの内容を変更することができます。当該
変更が重要なものである場合は、当社は、契約者に対して契約
者に事前に通知します。
3. SORACOMシステムの所有権及びSORACOMシステムに
関する発明、考案、意匠、商標、著作物等に係る一切の知的財
産権（著作権法（昭和45年法律第48号。その後の改正を含み
ます。）第27条及び第28条の権利を含む。）その他の権利は当
社に帰属します。また、SORACOMシステム上のテキスト情
報及びデジタル情報はすべて当社の著作物であり、当社は、契
約者によるテキスト情報及びデジタル情報の利用行為で当社が
不適当と判断する行為を禁止することができます。
4. SORACOM提供情報に係る一切の権利は当社に帰属します。

第12章　禁止行為
第37条　禁止行為
契約者は、次の各号に掲げる行為を行うことはできません。

（1） 当社所定の基準を超過したトラヒック量を継続的に発生
させることにより、SORACOM Airサービス用に使用される
設備又はシステムに過大な負荷を生じさせること

（2） 迷惑メール又はSMS等の送信
（3） SORACOM Airサービス又はSORACOMシステムの利
用者資格を第三者に販売、譲渡し若しくはその再利用権を設定
し、又はSORACOM提供情報の全部若しくは一部を第三者に
販売、譲渡、転貸すること。

（4） 第三者の使用に供する目的でSORACOM提供情報の全部
若しくは一部を複製すること。

（5） 第三者にSORACOM提供情報を取扱わせ、又はその占有
を移転すること。

（6） 第三者にSORACOM Airサービス若しくはSORACOM
システムの利用者資格又はSORACOM提供情報を担保として
提供すること。

（7） SORACOM提供情報を改変又は改竄すること。
（8） 第三者が販売する商品又はサービスに対してSORACOM
提供情報を活用すること。

（9） 当社の知的財産権を侵害する商品又はサービスに対して
SORACOM提供情報を活用すること。

（10） SORACOM提供情報を基にして特許その他の知的財産
権を取得すること。

（11） 不正なアクセス、コンピューターウィルス等を用いて当
社がSORACOM提供情報を格納するサーバーに対して攻撃を
行うこと。

（12） SORACOMシステムに対し、リバースエンジニアリング、
逆コンパイル、逆アセンブルその他一切の解析を行うこと。

（13） 前各号の行為を第三者に行わせること。

第13章　料金等
第１節　サービス利用料及び支払義務
第38条　サービス利用料
当 社 が 提 供 す る SORACOM Air サ ー ビ ス の 料 金（以 下、

「SORACOM Airサービス料金」といいます。）は、基本使用料、
通信料、付加機能使用料及びその他の手続に関する料金とし、
その額及び計算方法は、料金表第1表（料金）（以下、「本料金表」
といいます。）に定めるところによります。

第２節　サービス利用料の支払義務
第39条　基本使用料等の支払義務
1. 契約者は、本契約に基づいて当社が契約者回線の提供を開
始した日から、本料金表に規定するSORACOM Airサービス
料金を支払う義務を負います。
2. 契約者が、付加機能の提供を受ける場合、かかる付加機能
の提供開始日から、本料金表に規定する料金を支払う義務を負
います。
3. 契約者は、本契約に基づいて当社が契約者回線の提供を開
始して以降は、第16条（利用の一時中断）、第17条（利用中止）
又は第18条（利用停止）によりSORACOM Airサービスを利
用することができない又は利用しない状態が生じたときであっ

182 - Software Design

ても、基本使用料（ユニバーサルサービス料を含みます。）及び
付加機能使用料を支払う義務を負います。

第40条　SORACOM Airサービス料金の支払方法
契約者は、SORACOM Airサービス料金を、当社が指定する
日までに、当社が指定する方法により支払うものとします。

第41条　延滞利息
契約者は、SORACOM Airサービス料金その他の債務（延滞
利息を除きます。）について支払期日を経過してもなお支払いが
ない場合には、支払期日の翌日から支払いの日の前日までの日
数について、年14.5%の割合で計算して得た額を延滞利息と
して支払っていただきます。

第42条　期限の利益喪失
契約者は、次の各号に定める事由のいずれかが発生したとき（第

（4）号、第（5）号又は第（6）号に該当する場合においては、契
約者が負担すべきSORACOM Airサービス料金その他の債務
の支払を怠るおそれがないことを契約者が明らかにしたときを
除きます。）は、当社に対して負担するSORACOM Airサービ
ス料金その他の債務の全てについて、当然に期限の利益を失い、
当社に対して直ちにそのSORACOM Airサービス料金その他
の債務を弁済しなければならないものとし、以後発生する債務
については、その事由が解消されない限り、期限の定めのない
ものとします。

（1） 契約者が負担する債務の全部又は一部について履行不能
状態に陥ったと当社が認めたとき。

（2） 契約者について、破産手続開始、会社更生手続開始又は
民事再生手続開始その他法令に基づく倒産処理手続の申立てが
あったとき。

（3） 契約者に係る手形又は小切手が不渡りとなったとき。
（4） 契約者の資産について、法令に基づく強制換価手続の申
立てがあったとき、契約者を債務者とする差押え若しくは仮差
押え、金銭債権保全のための仮処分又は税等の滞納処分があっ
たとき。

（5） 契約者について電気通信事業の登録又は届出が取り消さ
れたとき。

（6） 契約者が電気通信事業の全部を廃止したとき。
（7） 契約者の所在が不明なとき。
（8） その他契約者の業務継続に重大な支障を及ぼすと認めら
れる状態が発生した場合であって、契約者がその負担すべき債
務を履行すると認められないとき。

第14章　保守
第43条　当社の維持責任
当社は、当社の設置した電気通信設備を事業用電気通信設備規
則（昭和 60年郵政省令第30号）に適合するよう維持します。

第44条　修理又は復旧
1. 当社は、当社の設置した電気通信設備又はシステムが故障
し又は滅失した場合は、速やかに修理し又は復旧するものとし
ます。ただし、24時間未満の修理又は復旧を保証するもので
はありません。
2. 当社は、当社の電気通信設備又はシステムを修理又は復旧
するときは、契約者識別番号を変更することがあります。

第15章　知的財産権
第45条　権利等の非許諾
SORACOM Airサービス、SORACOMシステム及びこれら
に付帯するサービスに関する特許権、実用新案権、意匠権、著
作権等の知的財産権及びノウハウ等の一切の権利並びに実証実
験のデータその他の記録は当社に帰属するものであり、本約款、
SORACOM Airサービス、SORACOMシステム又はこれら
に付帯するサービス提供の過程での当社による契約者に対する
情報の開示は、明示、黙示を問わず、いかなる意味においても、
当社による契約者に対する、特許権、実用新案権、意匠権、著
作権、ノウハウ等に基づく実施権その他のいかなる権利の許諾、
付与、又は譲渡を構成するものではありません。

第16章　保証の否認
第46条　保証の否認
契約者は、SORACOM Airサービス、SORACOMシステム
及びこれらに付帯するサービスは現状のままで提供されること
に合意するものとします。当社は、提供されるSORACOM
Airサービス、SORACOMシステム及びこれらに付帯するサー
ビスが中断されないこと、誤りがないことの保証を含め、明示
であると黙示であるとを問わず、いかなる種類の表明も保証も
行いません。また、法令等により禁止される場合を除き、当社
は、SORACOM Airサービス、SORACOMシステム及びこ
れらに付帯するサービスに関し、品質、特定目的への適合性に
関する黙示の保証ならびに取引過程又は取引慣行により生じる
保証を含め、一切の保証を行いません。

第17章　損害賠償
第47条　損害賠償
本約款に別段の定めがある場合を除き、当事者は、本約款に定
める義務に違反したことにより相手方に損害を与えた場合には、
本約款に別途定める場合を除き、当該義務違反により相手方が
被った損害を賠償する責任を負うものとします。

第48条　責任の制限

1. 当社は、法令等で求められる場合を除き、第三者の帰責事
由による本サービス利用不能の場合、責任を負わないものとし
ます。
2. 当社は、SORACOM Airサービスを提供すべき場合におい
て、当社の責に帰すべき事由によりSORACOM Airサービス
が全く利用できない状態（全く利用できない状態と同程度の状
態となる場合を含みます。以下同じとします。）にあることを、
当社が認知した時刻から連続して24時間以上の時間（以下｢利
用不能時間｣といいます。）当該状態が継続したときで契約者か
ら請求があった場合、当社は、契約者に対し、その請求に基づ
き、利用不能時間を24で除した数（小数点以下の端数は、切
り捨てます。）に応じた日額のSORACOM Airサービス料金額
を減額しますが、当社はそれを超えては責任を負いません。た
だし、契約者が当該請求をし得ることとなった日から3ヶ月を
経過する日までに当該請求をしなかったときは、契約者は、そ
の権利を失うものとします。ただし、当社の故意又は重大な過
失による場合はこの限りではありません。
3. 事由の如何を問わず、当社が契約者に対して損害賠償責任
を負う場合、当該損害が発生した日に属する月の月額の
SORACOM Airサービス料金を上限とします。ただし、当社
の故意又は重大な過失による場合はこの限りではありません。
4. 前各項の規定にかかわらず、通信キャリア・クラウド提供
業者の帰責事由によるSORACOM Airサービスの利用不能の
場合には、当社は、通信キャリア・クラウド提供業者から受領
した損害賠償額を限度として契約者に生じた損害（但し、現実
に発生した通常損害に限られ、逸失利益、間接損害は含みませ
ん。）につき責任を負います。
5. 当社は、SORACOM Airサービスの提供が行われなかった
ことによる逸失利益及び契約者の顧客、契約者が提供する電気
通信サービスの利用者その他の当社又は契約者以外の者から契
約者への問合せ対応、故障修理の請求等その他の苦情の受付又
は対応等に要した費用等について一切責任を負わないものとし、
契約者はかかる逸失利益又は費用等を当社へ請求しないものと
します。

第49条　免責
電気通信設備又はシステムの修理、復旧等に当たって、その電
気通信設備又はシステムに記憶されている内容等が変化又は消
失することがあります。当社はこれにより損害を与えた場合に、
それが当社の故意又は重大な過失により生じたものであるとき
を除き、その損害を賠償しません。

第18章　雑則
第50条　約款の掲示
当社は、本約款（変更があった場合は変更後の約款）を当社のウェ
ブサイトにおいて掲示することとします。

第51条　プライバシーポリシー
当社は、契約者に関する個人情報の取扱いに関する方針（以下「プ
ライバシーポリシー」といいます。）を定め、これを当社のウェ
ブサイト等において公表します。

第52条　通信キャリアへの情報の通知
契約者は、SMSの送信を行った場合であって、そのSMSの接
続先の電気通信回線を設定した通信キャリアが、その電気通信
回線に係る利用者からの申出に基づき、そのSMSの送信をそ
の通信キャリアが規定する禁止行為に該当すると判断したとき
は、その通信キャリアが当社及び当社以外の通信キャリアへ、
SMSの送信を行った契約者回線に係る契約者識別番号、SMS
の受信時刻及びSMSの内容等の情報を通知することに予め同
意するものとします。

第53条　反社会的勢力の排除
1. 当社及び契約者は、自己が反社会的勢力（｢企業が反社会的
勢力による被害を防止するための指針（平成19年6月19日犯
罪対策閣僚会議幹事会申合せ）｣において、暴力、威力又は詐欺
的手法を駆使して経済的利益を追求する集団又は個人である旨
定められている｢反社会的勢力｣、以下同じとします。）又は次の
いずれかに該当する者（以下併せて｢反社会的勢力等｣といいま
す。）に該当しないことを表明及び保証し、現在及び将来におい
て反社会的勢力又は次の事項に該当しないことを確約するもの
とします。

（1） 役員等（役員のほか、支配人、営業所の代表者その他いか
なる名称によるかを問わず役員と同等以上の職権又は支配力を
有するものをいい、非常勤の者を含みます。）に、暴力団員によ
る不当な行為の防止等に関する法律（平成3年法律第77号。
その後の改正を含みます。）第2条第6号に規定する暴力団員（以
下｢暴力団員｣といいます。）又は同条第2号に規定する暴力団（以
下｢暴力団｣といいます。）と関係を持ちながら、その組織の威力
を背景として同条第1号に規定する暴力的不法行為等を行なう
おそれがある者（以下｢暴力団関係者｣といいます。）がいること。

（2） 暴力団、暴力団員又は暴力団関係者（以下これら三者を｢
暴力団等｣と総称します。）が経営に関与していること。

（3） 暴力団等から名目を問わず資金提供、出資などの便益を
受けていること。

（4） 暴力団等に対し名目を問わず資金の供給などの便益を供
与していること。

（5） 反社会的勢力との間に、利用、協力、交際など社会的に
非難されるべき関係を有していること。
2. 当社又は契約者が、相手方が第1項の規定に反すると疑う
事実のあるときは、相手方に対し当該事項に関する報告を求め

ることができ、報告を求められた相手方は指定された期日まで
に報告書を提出するものとします。
3. 当社又は契約者は、相手方が次の各号のいずれかに該当し
た場合は、即時本契約を解除し、解除によって生じた損害を相
手方に請求することができるものとします。

（1） 第1項の表明、保証又は確約に反し、又は反すると疑うに
足る相当の理由があるとき。

（2） 第2項の規定に違反して報告書を提出せず、又は虚偽の記
載をした報告書を提出したとき。

第54条　分離可能性
本約款のいずれかの条項が何らかの理由により無効又は執行不
能とされた場合であっても、本約款の他の条項が無効又は執行
不能となるものではなく、また、かかる場合には、当該規定は、
有効かつ執行可能となるために必要な限度において限定的に解
釈されるものとします。

第55条　合意管轄
本契約に起因し又は関連する一切の紛争については、東京地方
裁判所を第一審の専属的合意管轄裁判所とします。

第56条　準拠法
本約款の成立、効力、解釈及び履行については、日本国法に準
拠するものとします。

第19章　その他のサービス
第57条　SORACOM Beamサービス
1. 契約者は、SORACOM Airサービスにおいて、SORACOM
Beamサービスを利用することができます。
2. 当社は、SORACOM Beamサービスに関する契約者の損
害については第48条（責任の制限）の規定に該当する場合に限
り、その規定により責任を負うものとし、端末設備又は通信内
容に係る情報の変化若しくは消失、動作不良又は第三者との紛
議により生じた損害その他の損害については、一切の責任を負
いません。
3. SORACOM Beamサービスの利用方法その他の提供条件
については、当社がウェブサイトに掲示するところによります。

第58条　カスタムDNSサービス
1. 契約者は、SORACOM Airサービスにおいて、独自にDNS
サーバを設定することができるカスタムDNSサービスを利用
することができます。
2. 当社は、カスタムDNSサービスに関する契約者の損害につ
いては第48条（責任の制限）の規定に該当する場合に限り、そ
の規定により責任を負うものとし、端末設備又は通信内容に係
る情報の変化若しくは消失、動作不良又は第三者との紛議によ
り生じた損害その他の損害については、一切の責任を負いません。
3. カスタムDNSサービスの利用方法その他の提供条件につい
ては、当社がウェブサイトに掲示するところによります。

第59条　メタデータサービス
1. 契約者は、SORACOM Airサービスにおいて、SORACOM
Airサービスを利用しているデバイスの情報（IMEI）の取得及び
デバイス自身が使用しているSORACOM Airの情報を取得、
更新することができるメタデータサービスを利用することがで
きます。
2. 契約者は本サービスの利用にあたり、利用者から適切な許
諾を得るものとします。
3. 当社は、メタデータサービスに関する契約者の損害につい
ては第48条（責任の制限）の規定に該当する場合に限り、その
規定により責任を負うものとし、端末設備又は通信内容に係る
情報の変化若しくは消失、動作不良又は第三者との紛議により
生じた損害その他の損害については、一切の責任を負いません。
4. メタデータサービスの利用方法その他の提供条件については、
当社がウェブサイトに掲示するところによります。

第60条　端末情報取得サービス
1. 契約者は、SORACOM Airサービスにおいて、SORACOM
Airサービスを利用しているデバイスの情報（IMEI）を取得する
ことができる端末情報取得サービスを利用することができます。
2. 契約者は本サービスの利用にあたり、利用者から適切な許
諾を得るものとします。
3. 当社は、端末情報取得サービスに関する契約者の損害につい
ては第48条（責任の制限）の規定に該当する場合に限り、その
規定により責任を負うものとし、端末設備又は通信内容に係る
情報の変化若しくは消失、動作不良又は第三者との紛議により
生じた損害その他の損害については、一切の責任を負いません。
4. 端末情報取得サービスの利用方法その他の提供条件につい
ては、当社がウェブサイトに掲示するところによります。

第61条　SORACOM Canalサービス
1. 契約者は、SORACOM Airサービスにおいて、SORACOM
Canalサービスを組み合わせて利用することができます。その
場合、SORACOM Air VPG利用オプションの契約が必要とな
ります。
2. SORACOM Canalサービスの利用方法その他の提供条件
については、閉域網等接続サービス契約約款および当社がウェ
ブサイトに掲示するところによります。

第62条　SORACOM Directサービス
1. 契約者は、SORACOM Airサービスにおいて、SORACOM

182 - Software Design May 2016 - 183

Directサービスを組み合わせて利用することができます。その
場合、SORACOM Air VPG利用オプションの契約が必要とな
ります。
2. SORACOM Directサービスの利用方法その他の提供条件
については、閉域網等接続サービス契約約款および当社がウェ
ブサイトに掲示するところによります。

第63条　SORACOM Endorseサービス
1. 契約者は、SORACOM Airサービスにおいて、SORACOM
Endorseサービスを利用することができます。
2. 契約者は本サービスの利用にあたり、利用者から適切な許
諾を得るものとします。
3. 当社は、SORACOM Endorseサービスに関する契約者の
損害については第48条（責任の制限）の規定に該当する場合に
限り、その規定により責任を負うものとし、端末設備又は通信
内容に係る情報の変化若しくは消失、動作不良又は第三者との
紛議により生じた損害その他の損害については、一切の責任を
負いません。
4. SORACOM Endorseサービスの利用方法その他の提供条
件については、当社がウェブサイトに掲示するところによりま
す。

第64条　SORACOM Funnelサービス
1. 契約者は、SORACOM Airサービスにおいて、SORACOM
Funnelサービスを利用することができます。
2. 当社は、SORACOM Funnelサービスに関する契約者の損
害については第48条（責任の制限）の規定に該当する場合に限
り、その規定により責任を負うものとし、端末設備又は通信内
容に係る情報の変化若しくは消失、動作不良又は第三者との紛
議により生じた損害その他の損害については、一切の責任を負
いません。
3. SORACOM Funnelサービスの利用方法その他の提供条件
については、当社がウェブサイトに掲示するところによります。

第65条　クーポン
1. 契約者は、次の各号に定める内容を当社所定の条件、方法に
より利用することができます。なお、ご利用にはSORACOM
Airサービスの契約が必要です。

（1） クーポンの設定金額にて、当社の基本使用料、通信料、各
サービス料などの月々の料金を支払うための電子データを登録
すること
2. 契約者は1料金月あたり2つまで、有効なクーポンを同時
に登録しておくことが可能です。
3. クーポンの適用は1料金月単位に実施します。なお、無料
利用枠がクーポンに優先して適用されます。
4. クーポンの適用状況等は、当社指定のサイト上でご確認い
ただくことができます。
5. クーポンはコンソールからの登録後、譲渡することができ
ません。
6. クーポンの有効期限は発行日から180日を超えることは無
く、資金決済法の対象外であることを確認します。
7. 契約者が、クーポンを盗難、滅失、毀損、紛失した場合や、
その他いかなる理由であっても、当社はクーポンを再発行でき
ず、また、その義務を負わないものとします。
8. 当社は、クーポンの残高の払い戻し、換金を行わないもの
とします。

料金表
通則

（料金の計算方法等）
1. 当社は、この料金表において、消費税相当額を含まない額（以
下「税抜額」といいます。）で料金を定めるときは、その額に消費
税相当額を加算した額（以下「税込額」といいます。）を併記します。
この場合において、当社は税抜額により料金を計算することと
します。

（注）この料金表に規定する税込額は消費税法（昭和63年法律
第108号。その後の改正を含みます。）第63条基づき表示す
るものであり、税込額で計算した額は実際に支払いを要する額
と異なる場合があります。
2. 当社は、契約者がその契約に基づき支払う料金について、1
料金月単位で計算します。なお、日額で課金される料金につい
ては、当日の日本時間午前9時を起算時とする24時間以内に
1回の通信が生じた場合は当日の利用があったものとみなしま
す。
ただし、当社が必要と認めるときは、料金月によらず随時に計
算します。

（注）料金月に従って通信量を計算する場合において、通信又は
セッションを開始した料金月と終了した料金月が異なるときは、
当社が定める方法により計算するものとします。
3. 当社は、当社の業務の遂行上やむを得ない場合は、料金月
に係る起算日を変更することがあります。

（端数処理）
4. 当社は、料金その他の計算において、その計算結果に1円
未満の端数が生じた場合は、その端数を切り上げます。

（料金等の支払い）
5. 契約者は、料金について、第7項に規定する場合を除き、
所定の支払期日までに支払っていただきます。
6. 料金は支払期日の到来する順序に従って支払っていただき
ます。

（料金の一括後払い）
7. 当社は、1料金月の料金が50円に満たない場合及び当社に

特別の事情がある場合は、2月以上の料金を当社が指定する期
日までにまとめて支払っていただくことがあります。また、全
回線の解約を行った場合等で1料金月の料金が50円に満たな
い場合、料金を50円に切り上げて支払っていただくことがあ
ります。

第1表　SORACOM Airサービス料金
第1　基本使用料
1. 料金プラン

1契約ごとに
料金プラン 日額料金の額　次の税抜額（カッコ内は税込額）
s1プラン 10円　（10.8円）

基本使用料にはユニバーサルサービス料を含みます。
ユニバーサルサービス料が値上がりする場合、又はキャリアが
約款にて規定するMVNO向け料金における基本料等を値上げ
する場合には、当社はかかる値上げに対応して、基本料を値上
げ（又は新たな利用料金を設定）することができるものとします。

2. SORACOMシステムの利用状況に応じた割引
SORACOM Airサービスの基本使用料については、別途当社
が定めるSORACOMシステムの利用状況に応じて、次表の日
額料金を適用します。

1契約ごとに
利用状況 日額料金の額　次の税抜額（カッコ内は税込額）

利用開始前 5円　（5.4円）

第2　通信料
1. 料金プラン
本約款第33条（通信時間等の測定）に基づき測定された課金対
象の情報量に応じて以下の通信料を適用します。

1契約･1MBごとに
料金

クラス
通信
速度

料金額（上り・下り）
次の税抜額（カッコ内は税込額）

minimum 32kbps 0.2円・0.6円	 （0.216円・0.648円）
slow 128kbps 0.22円・0.7円	 （0.2376円・0.756円）
standard 512kbps 0.24円・0.8円	 （0.2592円・0.864円）
fast 2Mbps 0.3円・1円	 （0.324円・1.08円）

なお、上りは契約者の端末から当社、下りは当社から契約者の
端末への通信を意味します。
ただし、午前2時から午前6時までに行われた通信は以下のと
おりとします。

1契約･1MBごとに
料金

クラス
通信
速度

料金額（上り・下り）
次の税抜額（カッコ内は税込額）

minimum 32kbps 0.2円・0.2円　（0.216円・0.216円）
slow 128kbps 0.2円・0.2円　（0.216円・0.216円）
standard 512kbps 0.2円・0.2円　（0.216円・0.216円）
fast 2Mbps 0.2円・0.2円　（0.216円・0.216円）

なお、本項における通信速度の数値は実際の伝送速度の上限を
示すものではありません。通信の伝送速度は通信の状況等によ
り変動します。

2. 無料利用枠
ソラコムアカウントを新規に作成した月を含む作成後12ヶ月
間は、通信料に対し、1ソラコムアカウントあたり各月30円（税
込み32.4円）分を無料通信分として減算するものとします。
なお、基本使用料の減算は行わず、また、月末に残った未使用
分の無料利用枠が翌月に持ち越されることはありません。
本無料利用枠の有効期間が終了した後のSORACOM Airサー
ビスのご利用に対しては、1.「料金プラン」に定める通信料が課
金されます。また、本無料利用枠を超えた通信に対しても、1.「料
金プラン」に定める通信料が課金されます。
本無料利用枠の項目が新たに追加された場合は、有効期間が終
了するまでの間ご利用いただけます。ただし、新しい無料提供
項目が追加されても、既に無料利用枠をご利用いただいている、
又はソラコムアカウントを新規に作成した月を含む作成後
12ヶ月間の有効期間を経過したSORACOM Airサービスの
既存のサービス利用者の有効期間が延長されることはありま
せん。

第3　付加機能使用料
1. SMS機能

項目 料金　次の税抜額（カッコ内は税込額）
SMS機能利用料 1契約（SIMカード）あたり日額5円（税

込み5.4円）
SMS通信料 本約款第33条（通信時間等の測定）に基

づき測定された通信回数及び通信文字数
に対し、ドコモが定めるFOMAサービス
契約約款及びXiサービス契約約款におい
てショートメッセージ通信モードに係る
料金として定められた額と同額（国外へ
の送信においては、消費税は課税されま
せん）の通信料を適用します。

2. SORACOM Beamサービス

項目 料金　次の税抜額（カッコ内は税込額）
Beam料金 1リクエストあたり0.0009円（税込み

0.000972円）

3. カスタム DNS サービス

項目 料金　次の税抜額（カッコ内は税込額）
カスタム
DNS 料金

カスタムDNS機能を有効にしたグルー
プに所属する1契約（SIMカード）あたり
日額3円（税込み3.24円）

4. 端末情報取得サービス

項目 料金次の税抜額（カッコ内は税込額）
端末情報取得
サービス料金 無料

5. VPG利用オプションサービス

項目 料金　次の税抜額（カッコ内は税込額）
VPG利用
オプション料金

SORACOM Canal / SORACOM Direct
を利用するにあたり、SORACOM Airに
おいてVPG利用オプション機能を有効
にしたグループに所属する1契約（SIM
カード）あたり日額5円（税込み5.4円）

6. SORACOM Endorseサービス

項目 料金　次の税抜額（カッコ内は税込額）
Endorse料金 Endorse機能を有効にしたグループに所

属する1契約（SIMカード）あたり日額5
円（税込み5.4円）

7. SORACOM Funnelサービス

項目 料金　次の税抜額（カッコ内は税込額）
Funnel料金 1リクエストあたり0.0018円

（税込み0.001944円）

8. 無料利用枠
ソラコムアカウントを新規に作成した月を含む作成後12ヶ月
間は、Beam料金に対し1ソラコムアカウントあたり各月
50,000リクエスト分を、Endorse料金に対し1ソラコムア
カウントあたり各月155円（税込み167.4円）分を、Funnel
料金に対し1ソラコムアカウントあたり各月50,000リクエス
ト分をそれぞれ無料通信分として減算するものとします。なお、
基本使用料の減算は行わず、また、月末に残った未使用分の無
料利用枠が翌月に持ち越されることはありません。
本無料利用枠の有効期間が終了した後のSORACOM Beam
サービス、SORACOM Endorseサービス及びSORACOM
Funnel サ ー ビ ス の ご 利 用 に 対 し て は、2.「SORACOM
Beamサービス」、5.「SORACOM Endorseサービス」及び
6.「SORACOM Funnel サ ー ビ ス」に 定 め る Beam 料 金、
Endorse料金、Funnel料金がそれぞれ課金されます。また、
本無料利用枠を超えた通信に対しても、2.「SORACOM
Beamサービス」、5.「SORACOM Endorseサービス」及び
6.「SORACOM Funnel サ ー ビ ス」に 定 め る Beam 料 金、
Endorse料金、Funnel料金がそれぞれ課金されます。
本無料利用枠の項目が新たに追加された場合は、有効期間が終
了するまでの間ご利用いただけます。ただし、新しい無料提供
項目が追加されても、既に無料利用枠をご利用いただいている、
又はソラコムアカウントを新規に作成した月を含む作成後
12ヶ月間の有効期間を経過したSORACOM Airサービスの
既存のサービス利用者の有効期間が延長されることはありま
せん。

第4　手続きに関する料金
1. 手続きに関する料金の種別

種別 内容
契約事務手数料 SORACOM Airサービスの申込みをし、

その承諾を受けた時に支払いを要する
料金

SIM再発行手数料（自然故障であるか否かを問わず）故障・
紛失等の場合、SIMカードのサイズ変更
を行う場合、SORACOM Airサービス
の種別変更に伴うSIM再発行を行う場合
にあって、1SIMカードあたりSIM再発
行手数料として支払いを要する料金

2. 料金額

料金種別 単位 次の税抜額
（カッコ内は税込額）

契約事務手数料 1契約ごとに 560円	 （604.8円）
SIM再発行手数料 1枚ごとに 2,000円	 （2,160円）

Software Design
2016年5月号

発行日
2016年5月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6173
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2016年6月号
定価（本体1,220円＋税）

192ページ

June 2016
5月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2016 技術評論社

●今月は入稿中にインフルエンザA型に罹患。地獄を味

わう。人生も半分を過ぎようというのに初めてインフルエ

ンザにかかった。風邪とは違うヤバイ「雰囲気」のする病

気で、これでは老人はひとたまりもないと思った。しかし

ながらイナビルという薬であっというまに治療は終わった。

これはスゴイことだ。（本）

●自宅玄関に新しいネットカメラ（2台目）を設置したら1

週間もしないうちに警察官が来た。「何か困ったことがあ

りましたか？」と聞かれ「庭に入るネコの動向を調べるた

め」と回答し、笑われた。1台目の時は、登録して事件

が起きた時に協力して欲しいと言われたっけ。リアル「ね

こあつめ」。お巡りさんまで集める。（幕）

●マンションが大規模修繕中。14階建てでも結構短

期間に骨組み作っちゃうんですね。こんな高所でお仕

事をする職人の皆さんには恐れ入ります。しかし平日

8:30から17:00まではベランダに洗濯物が干せず、工

事の人がいつ来るかわからないからカーテンは閉めっ

ぱなし。こりゃストレスたまるわ。（キ）

●今どきは、新たな知り合いができたときに「携帯の

メールアドレスを教えてください」と言うと驚かれるそ

うです（みんなLINEだから）。そして、アドレスを教

えてもらう際には、赤外線通信がないスマホも多いの

で、アドレスを口頭で読み上げ、手打ち入力すること

になるそう。ひと昔前に戻ったの？ （よし）

●最近ハンバーグにハマってるんだ。会社の近くに

『らいむらいと』とか『ABO』みたいなおいしい店が結

構あって、食べ比べを楽しんでいるよ。食事は1人よ

りも2人のほうが楽しいんだが、ハンバーグは1人で

食べるに限るね。なぜかってそう、逢引（合い挽き）

は好きじゃないから。ハンバーーー（ry（な）

●編集部のあるビルと本社との間にある小路の脇には樹

木がたくさん植わっていて、この時期、春の陽気で一気

に芽吹いた花々が美しくていつも見惚れてしまいます。

先日、植込みの陰に小さなタンポポの花を見つけまし

た。それも珍しいニホンタンポポ。こんな都会の片隅で

出逢えるなんて ! ちょっと嬉しい出来事なのでした。（ま）

S D S t a f f R o o m

［第1特集］ 新人エンジニア養成特別企画
使いこなしていますか？

Bash入門＋再入門
エンジニアの道具を磨こう
　エンジニアにとってUnixシェルは道具の中の道具です。しかし、皆さん使いこな
していますか？　シェルのなかで使用頻度の高いbashを取り上げ、多面的にエンジ
ニアの道具を見直します。もちろんシェルスクリプトの書き方から、シェル芸の極め
方までみっちりサポート。さらに発表されたばかりのbash on Windowsについても
速報解説！

［第2特集］ RDBの学び方　

MySQLを武器にSQLを始めよう！
ソフトウェア開発の基礎の基礎
　ソフトウェア開発になくてはならないRDB。この操作にはSQLを学ぶことが必要で
す。もっとも身近なオープンソースRDBであるMySQLをベースに、SQLの基礎の
基礎をしっかりおさえ、一生使える技術を習得しましょう!

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
　「Vimの細道」（第8回）は都合によりお休みさせていただきます。

184 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design 2016年5月号
	表紙
	目次1
	目次2
	目次3

	■第1特集　コード編集の高速化からGitHub連携まで Vim［実戦］投入
	Part1：Vimとの長い付き合いのはじめかた氏久 達博
	Part2：Vimだからできる、一歩先行く編集術thinca
	Part3：Vimの強力な正規表現を使いこなそうtyru
	Part4：VimでGitHubをもっと使いやすくする林田 龍一
	Part5：Vimの今昔〜Neovimと新しくなったVimについて......mattn
	Appendix：Vim［超］ベーシックチートシート......mattn

	■第2特集 2年ぶりのLTS 安定のUbuntu 16.04の新機能
	序章 ：さまざまな分野で活躍する Ubuntuの魅力水野 源
	第1章：GNOMEソフトウェア採用、PYTHON 3への移行など多岐にわたる　Ubuntu 16.04 LTSの新機能の概要柴田 充也
	第2章：デスクトップで比較する Ubuntu 16.04 LTSとそのフレーバーあわしろいくや
	第3章：JUJU、MAAS、LXDなどの独自機能で際立つ Ubuntu Server 16.04 LTSの特徴吉田 史

	■巻頭特集　特別SIMで始めよう！　SORACOMでわかるIoT
	第1章：さっそく使ってみよう SORACOM Air SD Special Versionの使い方平 愛実
	第2章：おうちで楽しむ家庭内IoT Raspberry Pi＋クラウドでこんなことができる！......平 愛実
	第3章：APIを使ってSORACOMの便利さを体感！ “SORACOM Air”メタデータサービスで通信をコントロールしてみよう......小熊 崇
	第4章：myThingsとSORACOM —— myThingsを使ってノンプログラミングでSORACOMをより便利に使おう......山本 学
	第5章：SORACOMとさくらのIoT Platform モノのインターネットとモバイル通信の未来......松本 直人
	付録約款：SORACOM Air サービス契約約款

	■Special Report
	エンジニア特化型Q&Aサイト「teratail」のトップランカーたちが語る、確実な力を付けるための“質問力”編集部

	■一般記事　
	セキュリティ対策はまずここから！フリーで始めるサーバのセキュリティチェック【前編】Nmapによるポートスキャン小河 哲之

	■連載：Column
	digital gadget【209】VR世界のユーザインターフェース安藤 幸央
	結城浩の再発見の発想法【36】DSL　......結城 浩
	増井ラボノート　コロンブス日和【7】Gyaim増井 俊之
	宮原徹のオープンソース放浪記【3】OSC東京春と金沢での勉強会宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【11】クラウドサービスにつないでみる坪井 義浩
	ひみつのLinux通信【27】宮田さん......くつなりょうすけ
	Hack For Japan〜エンジニアだからこそできる復興への一歩【53】NPOが抱える課題に ITはどこまで協力できるか清水 俊之介
	温故知新 ITむかしばなし【54】MASM〜x86のアセンブラ障壁を越えられるか〜速水 祐

	■連載：Development
	使って考える仮想化技術【新連載】仮想化の現状を見てみよう笠野 英松
	RDB性能トラブルバスターズ奮闘記【3】DBサーバとAPサーバの役割分担を知っておこう生島 勘富、開米 瑞浩
	Androidで広がるエンジニアの愉しみ【5】Picassoとキャッシュの上手な使いこなし......重村 浩二
	るびきち流Emacs超入門【25】シェルコマンドを活用しよう（前編）......るびきち
	書いて覚えるSwift入門【14】型にまつわるプロトコルとLiteral Convertible小飼 弾
	Mackerelではじめるサーバ管理【15】mackerel-agentのカスタムメトリックプラグインを書いてみよう......松木 雅幸
	Sphinxで始めるドキュメント作成術【14】Sphinxで楽々ドキュメント翻訳　......清水川 貴之
	セキュリティ実践の基本定石【32】BlackEnergyによるリアルな世界への攻撃　......すずきひろのぶ

	■連載：OS/Network
	Unixコマンドライン探検隊【新連載】Unixコマンドを探す旅......中島 雅弘
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【30】bhyveでOpenBSDファイアウォール on FreeBSDを構築（その5）後藤 大地
	Debian Hot Topics【35】10年かけて解決 DebianのFirefox問題......やまねひでき
	Ubuntu Monthly Report【73】UbuntuとIoT・ スマートデバイスの状況　......柴田 充也
	Linuxカーネル観光ガイド【50】仮想マシン用の準仮想化デバイスドライバのフレームワーク〜virtioドライバのしくみ　......青田 直大
	Monthly News from jus【55】寒中シェル芸勉強会　......法林 浩之、りゅうちてつや

	■アラカルト
	ＩＴエンジニア必須の最新用語解説【89】Eclipse Che　......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW
	バックナンバーのお知らせ
	SD NEWS & PRODUCTS
	Readers’ Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内

