

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

技術評論社の本が電子版で読める！
https://gihyo.jp/dp

 GIHYO
 Digital Publishing

 GIHYO
 Digital Publishing

未来の“普通”を，今。

 Gihyo Digital Publishing

 GIHYO
 DIGITAL
 PUBLISHING

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

仕事ですぐ役立つ
Vim＆Emacsエキスパート活用術
Software Design編集部　編　
2,480円　 PDF EPUB

Unix/Linuxの使い始めのころ，慣れないコマンドライン上で
設定ファイルを編集する際に使うテキストエディタがVim（Vi）
あるいはEmacsでしょう。本書はUnix/Linux初学者や，使
えるけれど仕事でなかなか活かし切れていないVim/Emacs
ユーザを対象に，使い方マニュアルとは違う，仕事で実用的
に使えるテクニックを集めました。

実務でそれぞれのエディタを長年愛用しているエキスパート
ユーザならではの知恵がつまっているので，気になったもの
から試してみれば，二大エディタの魅力が感じられること請け
合いです。

VimとEmacsを仕事で積極的に使っていきましょう！

https://gihyo.jp/dp/ebook/2016/978-4-7741-8111-0

詳解 Apache Spark
EPUB PDF

改訂3版 サーバ／インフラエンジニア
養成読本
EPUB PDF

 ドキュメント作成システム構築ガイド
[GitHub，RedPen，Asciidoctor，CIによる
モダンライティング]

EPUB PDF

［iBeacon＆Eddystone］統計・防災・位置情報が
ひと目でわかるビーコンアプリの作り方

EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
http://gihyo.jp/book/2016/978-4-7741-8007-6

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1 - Software Design

　ITシステムを構築するうえでクラウド
という選択肢はすでに当たり前になりつ
つありますが、そのクラウドの能力を最
大限に活用できるものとして「サーバレ
スアーキテクチャ」と呼ばれるコンセプト
に注目が集まっています。サーバレス
アーキテクチャとは、その言葉どおりア
プリケーションサーバを省略した形のIT
システムのアーキテクチャを指します。
　従来のアーキテクチャは、アプリ
ケーションサーバがクライアントからのリ
クエストを受け付け、データベースなど
のバックエンドサービスと連携してサー
ビスを提供するという3段階のレイヤで
構成されるのが一般的でした。しかしこ
の方式はシステムの規模が大きくなるに
したがって複雑化しやすく、インフラの
構築や運用管理といったビジネスに直
接かかわらない部分のコストが増大す
るという問題を抱えていました。
　これに対して、管理するべきアプリ
ケーションサーバそのものを省略し、必
要なときにだけ必要なプログラムを動
かすようにしようというのがサーバレス
アーキテクチャの考え方です。具体的
には、クライアントや他のサービスからの
リクエストなどをトリガーとして起動するイ
ベント駆動型のプロセスを用意すること
で、アプリケーションサーバに代わって
直接的にバックエンドのサービスに接続
できるようにします。実行プロセスは非
常駐で必要に応じて起動され、処理
が完了すると終了するため、運用管理
のための複雑なしくみが不要になるとい
うのがこの方式の強みです。
　サーバレスアーキテクチャを採用する

ことで得られる主なメリットとしては、次
のようなものが挙げられています。

• リソースの調達が容易
• サーバの運用管理コストを削減で
きる

• サーバのスケーラビリティやアベイ
ラビリティの維持をクラウド事業者
に任せることができる

• 自前のイベントを作成できるため、
自由度が高い

• リクエスト単位の課金体系によっ
て、コストを最適化できる

• 本来のビジネスに集中できる

　ここ最近でサーバレスアーキテクチャ
への期待が高まっているのは、パブリッ
ククラウドサービスにおいてこのようなしく
みを実現するための機能が提供される
ようになったからです。これによって、
前述のようなイベント駆動型のプロセス
を、既存のクラウドサービス上に簡単
に実装できるようになりました。本稿執
筆時点で提供されているサーバレス
アーキテクチャ向けの主要なサービスと
しては次のようなものがあります（プレ
ビュー段階のものも含みます）。

● AWS Lambda
　Amazonの「Amazon Web Services
（AWS）」で提供されるイベント駆動型
のマネージドサービス。サーバレスアー
キテクチャというトレンドを生み出すきっ
かけとなった。使用可能なプログラミン
グ言語としてJavaScriptだけでなく
Python、Javaをサポートしている。

Amazon API Gatewayとの連携によ
る独自APIの提供や、Amazon VPC
（Virtual Private Cloud）への対応な
ど、豊富な機能と高い利便性を備えて
いる。

● Google Cloud Functions
　Googleによる「Google Cloud
Platform」に追加されたサービス。
Node.jsベースのJavaScript実行環
境として実装されており、Google
Cloud StorageやGoogle Cloud
Pub/Subからのイベントや、HTTPの
呼び出しをトリガとして起動するサービス
を開発できる。

● OpenWhisk
　IBMの「Bluemix」で提供される
サービス。JavaScriptおよびSwiftを
利用してイベントを作成できるほか、イ
ベント駆動できる対象としてDockerコ
ンテナ内のアプリケーションをサポートし
ている点が大きな特長と言える。

● Azure Functions
　Microsoftの「Microsoft Azure」
向けに提供されるサービス。Java
Script、C#、Python、PHPといった
多数の言語をサポートしている。ランタ
イムやSDKなどがオープンソースで公
開される予定で、他社のクラウドサー
ビスやオンプレミスな環境でも実行可能
になるとのこと。

◆　◆　◆
　サーバレスアーキテクチャは、開発
の内容をビジネスの本質に直結させるこ
とができるしくみと言えます。これはIT
システムが市場の変化に追随していく
ための強力な武器になるでしょう。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 90回

サーバレスアーキテクチャ

クラウドをフル活用する
サーバレスアーキテクチャ

主要なクラウドサービス
がサポートを開始

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp

vol.210

1 - Software Design Jun. 2016 - 1

　機械学習や人工知能、自然言語
処理の技術が進化してきたおかげで、
メッセンジャーでなにか問いかけると、
人と話すかのように会話形式で自動
返信するチャットボットと呼ばれるシス
テムが台頭してきました。従来から、イ
ンターネットボット、Webボット、Slack
ボット、Twitterボットなど、ボット的なし
くみは存在していましたが、最近にな
り、既存の人気プラットフォーム上で
動き、平易に開発可能なボットが出
てきました。LINEのBOT APIベータ
版の発表、Facebook Messenger
Platformの発表、MicrosoftのMicro
soft Bot Framework、Skype Bots
の発表などが目白押しです。
　わざわざインストールしなければいけ
ないアプリの時代から、普段使ってい
るメッセンジャーで気軽に人と会話す
る気分でサービスを享受できるチャット
ボットが、次にくるコミュニケーションス
タイルだと注目を浴びています。
　たとえば、ピザが頼める、フライト情
報のチェックが行える、暇なときに会
話の相手になってもらえる、などのほ
かにも多様な用途が期待されます。
何か困ったときサポートに電話をかけ
ますが、そっけない機械音声にした
がって「#1, #2」などを入力させられ
たあげく延 と々待たされるサポート対
応も、チャットボットにするとスムーズに

やり取りができるようになるかもしれま
せん。実際、メールや電話で問い合わ
せや質問をするよりも、チャットで気軽
に問い合わせられることは、心理的障
壁やそれに費やす時間の軽減などが
見込まれ、注目されている分野でもあ
ります。
　現在でも、チャットベースのコミュ
ニケーションツールであるSlack上の
チャットボットや、IntercomやZoho
Chat、ChatCenterといったチャットを
基軸としたユーザサポートのしくみなど
が、これからはさらに一般的なメッセン
ジャーの中で使えるようになってくるこ
とが考えられます。

 これまでにもKik、Telegram、Slack、
wit.ai、botland.ioなど、独自のシステ
ムをもったチャットボットのフレームワー
クは存在しましたが、誰もが使ってい
るメッセンジャーのプラットフォームが
ボットのしくみを用意したことで、放っ
ておいても利用者が増え、ボット化す
るサービスの増加が期待されます。

アプリの次はボットの時代

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

安藤 幸央
EXA Corporation

ボットの波が押し寄せる

航空会社KLMのMicrosoft Botを活用したサービス。搭乗にまつわるさまざまな事柄を会話
形式で進めていくことができる。旧来もスマートフォンアプリでできたことではあるが、その場そ
の場の状況に応じて、より気軽に平易になったと言える

https://messengerplatform.fb.com/

https://developers.line.me/bot-api

https://dev.botframework.com/

※本記事で紹介しているものは
国内未発表・未発売のものを含んでいます。

Facebook Messenger Platform

LINE BOT API

Microsoft Bot Framework

http://www.andoh.org/
https://messengerplatform.fb.com/
https://developers.line.me/bot-api
https://dev.botframework.com/

2 - Software Design

　ボットで何ができるのだろう？とまだ
まだ疑問視している方は、すでに先行
しているKikの「bot shop」というサー
ビスのポータルストアをご覧になるとイ
メージが沸いてくると思います。
　また、botlist（https://botlist.co/）
では、スマートフォン用のアプリストア
のようなボット専用のストアとして対応
プラットフォームを増やしつつあります。
配信先として、メールやSMS、IFTTT
などにも対応しています。ボットのカテ
ゴリも、カスタマーサポート、ニュース、
ヘルスケア、マーケティング、セキュリ
ティ、旅行、コミュニケーション、支払
い、解析ツール、翻訳、タスクマネジメ
ントなど、多岐にわたっています。その
うち、“たくさんあるボットを管理するボッ
ト”が重宝されるようになるのかもしれ
ません。

　ボットのサービスを考える際、従来
のWebフォーム入力やメールによるコ
ミュニケーションをそのまま持って来て
もうまくいきません。また電話や人間
同士の会話を参考にしても、まだまだ
人間の持つ高度な状況判断能力を
超えられるものでもありません。実際、
すでにボット化されたサービスを営ん
でいる企業でも、定型文はボットにま
かせ、複雑なやり取りが発生したら人
が対応を引き継ぐなど、ボットと人のコ

ミュニケーションをうまく組み合わせて
実施しているところもあるようです。
　それでは、ボットで何かサービスを代
替したいと考えた場合、どのような観
点で考えれば良いのでしょうか？

1　コンテキスト重視
　ボットで重要視されるのは、できるだ
けコンテキスト（文脈、状態）を理解し
たうえで、適切にパーソナライズされ
たやり取りの部分です。たとえば直前
の話題や、前回した話題などを引き継
ぐと良いでしょう。また、位置情報や曜
日、時間なども、そのときの状況を示
す要素です。

2　実はプル型メディア
　ボットはサービス側からユーザ宛に
情報が発信されるプッシュ型メディア
のように思われていますが、実際は
ユーザの意志で情報を取りに行く、プ
ル型のメディアとして考えることが重
要です。何らかの要求があったときに、
適切なタイミングで適切な回答をしな
いと、単に迷惑なスパムだと思われて
しまいます。

3　ボットは会話
　コミュニケーションの文面ひとつひ
とつを、広告や宣伝としてではなく、会
話として有益な情報コンテンツになる
ように扱わなければ、親しみを持っても
らうことはできません。プッシュ通知以
上に、タイミングや回答の内容、そして

文面を吟味しなければいけません。最
初のうちはマヌケなボットとして大目に
見てもらえるかもしれませんが、使い
続けてもらうには、スムーズなやり取り
が重要です。この際、なんでもかんで
も自由奔放な要求に答えるのではな
く、人間側がある程度譲歩し、定型的
なコミュニケーションの枠にハマるよ
う、体験をデザインしてしまうのも1つ
の工夫です。

4　ボットは距離感
　ボットとのコミュニケーションをシン
プルな会話として設計することも大
切です。メッセンジャーによるやりとり
は、もともととても個人的なもので、本
来信頼している親しい人同士としかや
りとりしなかったものです。そういった
意識が強いため、当然メッセンジャー
を活用したサービスにも、信頼や親し
みを期待することでしょう。サービスの
頻度や文面によってコミュニケーショ
ンの距離感を適切に設計することも、
利用し続けてもらうために重要な要素
でしょう。距離感は近すぎても遠すぎ
てもいけません。

5　ボットでのパーソナライズ
　個人情報を勝手に取得する気味
の悪いものではなく、自分のことを良く
知ってくれている行きつけの美容室
や行きつけの居酒屋のように、好みを
知り、その人の履歴を知ることが重要
です。プライバシーを過度に心配する

Kikのbot shopの画面。エンターテインメントや
生活関係、ゲームなどが多数登録されている

wit.aiの設定画面。ピザを注文し、
トッピングを選択できるような流れになっている

アプリの次はボットの時代

ボットで
考えなければいけない
ユーザ体験

https://botlist.co/

2 - Software Design Jun. 2016 - 3

http://www.petbot.co/ http://tune-bot.com/

http://www.aidorobot.com/ https://ring.com/

Gadget 1

Gadget 2

Gadget 3

Gadget 4

PetBotは犬や猫といったペット向けの
ボットです。内蔵するカメラでペットの状
態を確認することや、遠隔で声をかける
こともできます。エサやオヤツを蓄えてお
くことができ、専用アプリで遠隔操作で
エサを与えることができます。家から離
れているときも、いつもと同じしつけをし
つつ、エサを与えることができるのが特
徴です。今はまだ飼い主がリモートで応
答しなければいけませんが、ペットとのコ
ミュニケーションは、あらたなるボットの
活躍領域かもしれません。

TuneBotは、従来機械的には計りづら
かったドラムの音程を調整するための
チューナーです。ドラムヘッドの張り具
合を計測するのではなく、音程そのもの
を計測して表示することができ、素早く
ドラムセッティングすることが可能です。
良い音が出たときのセッティングを記憶
させておくこともできます。音程はヘルツ

（Hz）と音階の両方で表示、調整する
ことができ、クリップによってさまざまな
打楽器に設置でき、設置したままでも
演奏のじゃまにならないよう考えられて
いるそうです。

Aidoは音声認識で対応できる、顔が
ディスプレイ画面になっている家庭用
ロボットです。バランスボールのような
足で移動し、自宅のホームセキュリティ
装置と連動したりすることもできます。
背丈は約90cm、顔の役目をするディ
スプレイ装置でお知らせをしてくれたり、
通知や警告などの役目を果たしてくれ
ます。オプションでプロジェクタ搭載の
機種もあり、まな板の上にレシピを投影
する機能も予定しているそうです。お休
み前に物語を読み上げてくれたり、アシ
スタントとしての役目をいろいろ果たす
そうです。

DoorBotは登場当初の名前で、現在
はringと名前を変更しています。デジタ
ル技術のつまったドアベルで、家に不
在のときにも専用アプリで訪問者と会
話することが可能です。モーションセン
サーとHD画質のカメラを搭載し、空き
巣対策を考えた機能が用意されていま
す。クラウドベースのビデオ監視サービ
スと連動していたり、モーションセンサー
の検知領域を細かく設定できる機能を
持つ上位機種も予定されています。

PetBot TuneBot

Aido DoorBot

ペット向けロボット ドラムチューニングロボット

次世代ホームロボット ドアベルロボット

ことなく、大切なのはその用途とバラ
ンスです。

6　ボットはブランド
　街にある店舗の店員の様相や態
度、お客への対応がそのブランドを形
作るように、ボットもその対応がブラン
ドイメージを顕著に形作ることを忘れ
ないようにしましょう。

　長いあいだ連れ添った夫婦のよう
に「おい。あれ」で通じたり、「いつもの
あそこに行きましょう」で通じたり、ボッ
トの核となるのはコンテキストと呼ば
れる状況や文脈の理解です。ある程
度自分を理解してもらえるボットに育
てあげることができれば、そのボット
サービスから離れられなくなるのではな
いでしょうか？
　これからものすごい数のボットが増
え、皆がボットに依存していくであろう
環境で、大量のボットからのメッセージ
を個々人がどう扱うかが、ひとつの課
題になってくると思われます。我先に
サービスを開始して最初のうちは物珍
しがられるかもしれません。しかし、毎
日、毎時間、興味のないメッセージで
メッセンジャーが埋め尽くされることが
ないように、押し付けがましくない、適
度で、適切で、対話したくなるボットと
は何なのかを考える必要がありそうで
す。｢

チャットボットに関するニュースを
毎週届けてくれるサービス
http://www.chatbotsweekly.com/

ボットのこれから

http://www.petbot.co/
http://tune-bot.com/
http://www.aidorobot.com/
https://ring.com/
http://www.chatbotsweekly.com/

4 - Software Design

カーソル

カーソルとは

　カーソルは、現在位置を示す印のことです。
テキスト入力のときには文字が入力される位置
を示し、GUIではマウスなどのポインティン
グデバイスの位置を示します。テキスト入力で
のカーソルは「キャレット」と呼び、GUIでのカー
ソルは「マウスカーソル」と呼ぶことがあります
（図1）。カーソルという言葉は、ラテン語で「走
る」という意味の言葉から来ているそうです。
ちなみに、英語のcurrent（現在）という言葉も
同じ言葉に由来しています。
　現在位置を示す印が「走る」という言葉に関
わっているのはちょっと不思議な気もしますが、
カーソルが画面を走っている様子を想像すれば
納得がいきます。カーソルは、画面上を絶えず
走り回って現在位置を教えてくれるからこそ、
その役目を果たすことができるのですね。
　カーソルという概念はキャレットやマウスカー
ソルのようなユーザインターフェースだけに出

てくるものではありません。データベースを取
り扱うSQLにもカーソルが登場します。クエ
リの結果得られた集合を1行ずつループ処理を
するときにカーソルを使います。この場合も、
カーソルは対象となっている行という「現在位
置を示す印」として使われています。
　カーソルは「現在位置を示す印」ですから、移
動する手段が必ずあります。キャレットは矢印
キーで移動できますし、マウスカーソルはマウ
スを動かせば移動できます。またSQLのカー
ソルも前後に移動させる命令があります。

カーソルの役割

　コンピュータでは、カーソルは当たり前の存
在ですが、あらためて「カーソルの役割」を考え
てみましょう。もっとも重要なのは「たくさん
並んだものの中から処理対象を指定する」役割
です。指をさして《これ》を処理せよと指定した
り、《ここ》で処理せよと指定したりするような
役割ですね。だからこそ、直接画面にタッチし
て操作できるタブレットのようなデバイスの場
合には、マウスカーソルを表示する必要がない
のです。
　カーソルは現在位置を示す印ですから、少な
い指示で処理を表現できます。「位置（325, 221）
にあるボタンを押下せよ」ではなく「カーソル位
置にあるボタンを押下せよ」という指示になる
という意味です。
　カーソルは、「たくさんのものをまとめて

4 4 4 4

処理」
するときではなく、「たくさんのものを順番に

4 4 4

カーソル

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 37

技術評論社 検索

 ▼図1　キャレットとマウスカーソル

http://www.hyuki.com/

4 - Software Design Jun. 2016 - 5

処理」するときに登場します。それは、問題解
決の手法で言えば分割統治の道具として使える
と言えます。まとめて処理できないほどの大き
な問題があったなら、

¡現在位置で処理すべきことをせよ
¡そして、次の位置まで移動せよ

ということです。この2ステップは、カーソル
位置での処理と、カーソルの移動に相当しますね。

カーソルは出力装置でもある

　カーソルは「現在位置を示す印」ですから、最
大のトラブルは、位置が不明確になることです。
ですからカーソルは、位置が明確になるような
工夫を凝らします。キャレットなら点滅して、
マウスカーソルなら軌跡を表示して位置をわか
りやすく示します。
　また、カーソルは位置以外の情報もユーザに
伝えます。キャレットは、挿入モードなのか上
書きモードなのかを幅の変化で示すことがあり
ますし、マウスカーソルは、ボタンの上にきち
んと乗ったことを矢印が指に変化して示すこと
があります（図2）。
　言い換えるなら、カーソルは自分の現在位置
やモードをユーザに対して伝える出力装置であ
るとも言えます。それらの情報がきちんとユー
ザに伝わってこそ、カーソルが入力装置として
の役割を果たすことができるのです。

日常生活とカーソル

　日常生活にカーソルのようなものはあるでしょ
うか。すぐに思いつくのは本のしおりです。読
んでいる現在位置を示す印として本のしおりを

使います。しおりの位置は、自分が読み進むご
とに移動していきます。
　電話やSNSで誰かと話すときも、カーソル
に似た概念が出てくることがあります。それは
あなた、今、どこにいるの？という問いかけで
す。たとえば筆者は仕事から帰るとき「今から
帰るよ」と妻にメールします。すると「あなた、
今、どこにいるの？」という問いかけが返って
きます。もしも帰り道でスーパーマーケットを
通り過ぎていなかったら、お豆腐を買ってきて
ほしいという買い物依頼が続いてやってきます。
このとき筆者は、自分がカーソルになったよう
な気持ちになります。幸い、マウスカーソルと
違って、スーパーマーケットに引き返してとい
う指示が出ることはありませんが。
　もっと抽象的な意味でカーソルに似ているも
のがあります。それは仕事の進捗状況です。進
捗会議で尋ねられる「現状はどうなっている？」
という問いかけは、カーソル位置を聞かれてい
るようなものですね。物理的な位置ではないけ
れど、1つのプロジェクトの中での現在位置が
問われているのです。
　人間は、大きな仕事を一気にまとめて処理す
ることができませんから、現在の状況に合わせ
て順番に小さな仕事を処理していきます。現在
の進捗状況というカーソル位置で直面している
課題に取り組むのです。
　マウスカーソルの位置を見失ったら、ユーザ
は適切なGUIの操作を行うことができません。
それと同じように、メンバーが進捗状況を正し
く報告できなければ、プロジェクトリーダーは
判断を誤り、大きなトラブルになるでしょう。「現
在位置を示す印」というのはとても大切な役割
を果たしているのです。
　あなたの周りを見回して、カーソルのように
「現在位置を示す印」を探してみましょう。その
印は、どんなときに変化するでしょうか。それ
が正しい位置を示さなくなったら、どんなトラ
ブルが起きるでしょう。
　ぜひ、考えてみてください。｢

37

検索 検索

 ▼図2　マウスカーソルの形が変わる

6 - Software Design

　さまざまなWebサービスでユーザ認証のた
めにパスワードが使われています。パスワード
はいろいろ問題が多いシステムであり、パスワー
ドにかわるさまざまな認証システムが提案され
てはいるものの、すべての点でパスワード認証
より優れたシステムは存在しないと言われてい
るので、パスワードによる認証がほかの方法で
置き換えられる時代はすぐには来ないでしょう。
　パスワードの最も嫌なところは、覚えておく
のがとてもたいへんなことだと思います。パス
ワードを忘れて困った経験がない人はいないで
しょう。いろいろなサービスで同じパスワード
を使い回すのは危険ですし、パスワードはとき
どき変更したほうが安全だと言われていますが、
複雑で長いパスワードをたくさん覚えておくこ
とは不可能ですから、仕方なく同じパスワード
を使い回している人は多いと思います。
　異なるパスワードをすべて記憶することが不
可能なのであれば、紙やファイルに書いておけ
ば良いかもしれませんが、パスワード文字列を
そのまま記録するのは危険なので、複数のパス
ワードを暗号化して覚えておくためのさまざま
なパスワード管理システムが利用されています。
たいていのパスワード管理システムは1つの「マ
スターパスワード」を利用してほかのすべての
パスワードを管理するようになっていますが、

パスワードの諸問題
マスターパスワードは覚えておかなければなり
ませんし、パスワード管理システムはどこでも
使えるとは限りません。できれば特殊なシステ
ムを使うことなく、複雑な多数のパスワードを
利用できるほうがうれしいでしょう。
　そもそも強力なパスワードを作成してからそ
れを覚えたり管理したりするというやり方が間
違っているのではないでしょうか。新しく作っ
たパスワードを覚えたり管理したりするのでは
なく、すでに知っていて忘れようがないような
秘密の記憶を基にして、複雑なパスワードを生
成して使うことにすれば、パスワードを覚えら
れない問題は解決するはずです。

　子供のころちょっと怪我をしたとか、イジメら
れた嫌な経験とか、うっかりした失敗を隠してい
たとか、他人に話したことはないけれども忘れる
ことがないような秘密の記憶というものが誰にも
たくさんあると思います。強い体験に基づく記憶
は、エピソード記憶と呼ばれ、時間が経っても
消えることがありません。一方、数式や電話番
号を記憶しようとしてもなかなか覚えられません
し、覚えていたつもりでも時間が経つとキレイに
忘れてしまっていたりするものです。このような
ものは意味記憶と呼ばれ、エピソード記憶に比
べると長期的な記憶が困難です。
　パスワードがエピソード記憶だったら良いの
ですが、体験的にパスワードを覚えるのは無理
でしょう。であれば逆に、忘れることがない秘

EpisoPass

増井ラボノート

注1） http://thinkit.co.jp/free/article/0709/19/

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張って楽できるなら、それに越したことはないでしょ
う。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろんな
システムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用しているよ
うな単純かつ便利なシステムをたくさん紹介していきます。

第 8 回　EpisoPass

http://thinkit.co.jp/free/article/0709/19/

NO.

6 - Software Design Jun. 2016 - 7

EpisoPass

密のエピソード記憶を基にして、パスワードを
生成するようにすれば、秘密で複雑で忘れない
パスワードを安心して使えるようになるはずです。
　EpisoPassは、ユーザが忘れることがない個
人的なエピソード記憶を、複雑な文字列に変換
することによって安全なパスワードを生成する
システムです。
　パスワード文字列は次の手順で生成されます。

・パスワード生成の「種」となる文字列（シード
文字列）を用意する

・忘れることがない個人的なエピソード記憶に基
づく秘密の質問をいくつか作成し、それぞれに
ついて1つの正答と複数の偽答を用意する

・質問と回答の組に基づいてシード文字列に換字
操作を行う。すべてに正しく回答したとき生成
される文字列をパスワードとして利用する

　問題文字列とユーザが選んだ回答文字列を結
合した文字列を生成し、そのMD5値を基にし
てシード文字列を換字することによりパスワー
ドを生成しています。

　図1は私がTwitterのパスワードを生成する
ために、ブラウザでEpisoPassを利用している
ところです。
　シード文字列として「Twitter123456」という
文字列を指定しており、4個の秘密の質問に対
する回答選択に応じて、「Mfveabn574923」の
ようなパスワード候補が生成されます。
　異なる答えを選択するとまったく異なる文字
列が生成されます。
　シード文字列を「Facebook123456」に変更す
ると、生成されるパスワードは図2のように変
化します。このように、サービスごとに異なる
シード文字列を利用することによってさまざま
なパスワードを簡単に生成できます。
　「いつのパスワードですか」のような質問を用

ブラウザでの利用

意しておき、「2016/5」「2016/6」のような選択
肢を用意しておけば、毎月異なるパスワードを
生成できます。
　シード文字列の8文字目が数字である場合は
パスワードの8文字目も数字になるなど、シー
ド文字列の文字種に対応したパスワード候補が
生成されるようになっています。パスワードと
して大文字／小文字／英数字／記号をすべて利
用しなければならないサービスの場合は、シー
ド文字列に「PassWord123!@」のような文字列
を指定します。
　最初の秘密の質問は私の小学校のときの体験
に基づくもので、最後の質問は数年前の体験に
関するものです。これらは古いエピソード記憶
になっているので、私が将来答を忘れることは
ほとんど考えられませんが、私以外の人間がこ
のような質問に答えることは難しいので、正し

 ▼図1　EpisoPassの利用例

 ▼図2　EpisoPassによるパスワード生成

増井ラボノート

8 - Software Design

いパスワードを得ることはできません。
　秘密の質問と答はブラウザで編集でき、右上
の［サーバにセーブ］ボタンを押すことにより、
シード文字列、秘密の問題、答のリストがサー
バにセーブされます。［ファイルにセーブ］ボタ
ンを押すとJSONデータをパソコンにダウン
ロードでき、パソコン上のJSONデータをブラ
ウザにドラッグドロップすると、サーバにアッ
プロードできます。ユーザはどれが正答かを指
定するわけではないので、問題データを見ても
ユーザのパスワードはわかりません。

　ブラウザからWebサービスを利用する場合、
ブラウザとサーバとの間の通信を盗み見された
り、パソコン上の操作を記録されたりする心配
を完全になくすことはできません。ブラウザで
EpisoPassを使う場合、パスワードはブラウザ
内部でJavaScriptにより生成されるので、一
度ページを表示したあとはネットワークを遮断
してもパスワード計算できるのですが、ブラウ

Android
アプリケーション

ザを使わずにパスワードを作成できるほうがよ
り安心でしょう。このため、通信をまったく行
わずにマシン単体でパスワード計算を行うため
のAndroidアプリも用意しています。ページの
右上の［Androidアプリ］ボタンを押すと、現在
表示している秘密の問題と答を内蔵した
Androidアプリが、サーバ上でビルドされてダ
ウンロードされます。Android端末でアプリを
実行すると図3のような画面が表示されます。
シード文字列を設定して［開始］ボタンを押すと
図3のように質問が1つずつ表示され、ボタン
を押してすべて回答するとパスワードが計算さ
れ図4のように表示されます。
　回答の選択とパスワード計算はAndroid端末
で実行されるため、端末を機内モードに設定す
るなどの方法でネットワーク接続を遮断した状
態でもパスワードを計算できます。EpisoPass

をインストールしたAndroid端末を持っていれ
ば常に各種のパスワードを計算できるので、他
人のマシンや公共の場所に設置されたパソコン
などでも、容易にTwitterなどのネットサービス
を利用できます。
　前述の方法でEpisoPassアプリをサーバから
ダウンロードする場合は、ブラウザ上で秘密の
問題をサーバに登録する必要がありますが、秘
密の問題をまったくネット上に露出することな
くアプリを利用することもできます。秘密の問
題を含まないEpisoPassアプリをGoogle Play

で公開しているので、これを端末にインストー
ルしたあと、ローカルマシンで作成した秘密の
質問を端末に転送すれば、EpisoPass.comから
ダウンロードしたアプリと同様に利用できます。
この手法を使うと秘密の質問が通信路を通るこ
とがないので安全ですが、アプリのセットアッ
プの手間は増えます。

　EpisoPassで選択枝が20個の質問を10個使

EpisoPassの安全性

 ◀図3
Androidアプリ
での使用例

 ◀図4
生成されたパス
ワード

NO.

8 - Software Design Jun. 2016 - 9

EpisoPass

用する場合、総当たりでパスワードを生成する
には約10兆（＝2010）通りの試行が必要になり、
大小英文字からランダムに8文字を並べた約
50兆（＝528）通りの文字列からパスワードを選
ぶ場合と同程度の強度になります。総当たり攻
撃が可能なオフライン運用ではこのような強度
は重要ですが、オンラインサービスでは、パス
ワード入力を何度か間違えるとサービスがブロッ
クされるのが普通なので、それほど長いパスワー
ドを用意する必要はないでしょう。
　秘密の質問を利用する認証は脆弱だと言われ
ることがあります。パスワードをリセットする
ために「母親の旧姓は？」「最初に飼ったペット
の名前は？」のような質問に対してユーザに答
えを登録させるサービスがありますが、このよ
うな問題は他人が調べたり推測したりすること
が簡単ですし、秘密の質問の数は一般的に少な
いので、パスワードよりも脆弱なのはたしかで
す。EpisoPassでは、他人には解くことが難し
く自分では忘れないような秘密の質問をたくさ
ん登録しておけば安全です。

秘密の質問の選択

　EpisoPassでは、他人が推測することが難し
く、自分は決して忘れないようなエピソード記
憶を秘密の質問として利用します。忘れないエ
ピソード記憶であっても、次のような性質を持
つものは秘密の質問として不適当です。

・自慢になるもの（何かの機会にうっかり他人
に自慢しまう可能性があるので）

・ネット上に記録が残っているもの
・他人と情報を共有しているもの
・趣味や嗜好に関連するもの（他人に推測され
やすいうえに嗜好が変化する可能性がある
ので）

　このようなものではなく、「わざわざ人に話
すことはないが自分の記憶に強く残っているよ
うな無難なエピソード記憶」を秘密の質問とし

て利用するのが良いでしょう。例に挙げた「鉄
条網で怪我した場所は？」という問題の場合、
私はこの経験について他人に話したことはあり
ませんし、今後自慢することがあるとは思えま
せんが、痛い思いをしたことは忘れませんから、
問題として適切だと言えるでしょう。

偽答の作成方法

　問題の種類によっては偽答の生成が難しかっ
たり、答えが予測できたりしてしまう場合があ
ります。たとえば「好きなスポーツは？」のよう
な質問の場合、たくさんの偽答を用意すること
が難しいですし、本人を知っていたら想像がつ
くかもしれませんので問題としては適切であり
ません。
　一方、答えが人名や地名の場合、正答に似た
人名や地名を並べることは簡単です。たとえば
「世田谷」が正答であるとき、「目黒」「杉並」の
ような偽答を用意するのは簡単です。例に挙げ
た「鉄条網で怪我した場所は？」という問題の場
合、似たような地名をたくさん並べることが簡
単なのでEpisoPassの問題として適切だと言え
るでしょう。
　ある単語と同じカテゴリに属する単語を探す「同
位語検索」と呼ばれる手法がいろいろ提案されて
いるので、これを利用して正答と同じカテゴリ
に属する単語を自動的にリストできれば、簡単
に偽答リストを作ることができるでしょう。
　私は数年前にEpisoPassを開発してから、
FacebookやTwitterなどさまざまなWebサービ
スのパスワードの管理にEpisoPassを使ってお
り、パスワードに関する悩みが完全に解消され
ました。パスワードで消耗している方はぜひご
利用ください。ﾟ

EpisoPassはhttp://EpisoPass.comで運用中です。ソー
スコードも公開しています（http://github.com/masui
/EpisoPass）。

「ソースコードも公開中」コラム

http://EpisoPass.com
https://github.com/masui/EpisoPass

宮原徹の

10 - Software Design

全国でOSCを開催するま
での経緯

　3月下旬からGW明けの5月中旬

ぐらいまでの間はOSCはほとんど

開催されないので、今月はOSCで

全国を渡り歩いている話をしておこ

うと思います。

　そもそも、全国各地を放浪するよ

うになったのは、15年前（2001年）

に会社を設立したときに「全国縦断

オープンソースセミナー」と題して、

北海道から福岡（沖縄ではない）まで

全国4ヵ所で開催したことに遡
さかのぼ

りま

す。「びぎねっと 社史」で検索する

と、10周年の際に作成した記録が

確認できます。

・2001年3月23日 大阪開催
・2001年3月30日 福岡開催
・2001年4月13日 札幌開催
・2001年4月23日 東京開催
　（以上サーバ構築）
・2002年1月18日 大阪開催
・2002年1月21日 福岡開催
・2002年1月25日 東京開催

　（以上Samba構築）
・2002年12月 福岡開催
・2003年1月17日 東京開催
・2003年1月24日 札幌開催
　（以上Postfix）

　各開催の結果からみると、頑張っ

て開催した割には集客に苦戦しまし

た。場合によっては数名しか参加し

ないこともありました。しかし、こ

のときにセミナーや終了後の懇親会

に参加してくれた各地域の人たちが、

2004年以降に全国でOSCを開催す

るときに大きな力となってくれたの

で、全国行脚をした成果はあったと

言えるでしょう。

なぜ全国をさすらうのか

　2年間、各地に赴いて現地のエン

ジニアのみなさんと交流してわかっ

たことは、「東京一極集中」の現状で

す。筆者は神奈川県出身なので、あ

まり深く考えずに東京で就職して仕

事をしてきていましたが、セミナー

などの情報提供も東京とせいぜい大

阪ぐらいです。一方、東京だけで見

ても、OSSコミュニティとし

ての情報発信力は企業のそれ

に比べると残念ながら弱いと

いうのが当時の状況でした。

　このような両面の課題を解

決するために、「OSCを全国で

開催しよう！」と思い立ちまし

た。そして開催2年目となる

2005年には、東京だけでなく北海

道と沖縄で開催することにしました。

「OSCは、北は北海道から、南は沖

縄まで開催しています。」と言ってい

ましたが、嘘はついてません。

　北海道は、地元コミュニティの

方々と飲みながら「OSCを北海道で

開催しよう！」という話になったこ

とがきっかけです（「石鍋会談」。札

幌・すすきのにある石鍋亭は6月の

OSC北海道開催時に紹介予定）。

　そして沖縄で開催したのは、北海

道も同様ですが、講師となる人が

「[沖縄|北海道]だったら行ってみた

い！」と思わせるのが狙いです。北

海道や沖縄から大挙して東京のセミ

ナーに参加するより、東京から講師

が北海道や沖縄に赴いてもらうほう

がトータルのコストが安く済む、と

いうわけです。

　そういえば、初の北海道開催のと

きは、Rubyの開発者であるまつも

とゆきひろ氏に島根から来てもらい、

講演していただいたのでした（写真

1）。前夜祭の際に、北海道大学の学

生がRubyの仕様についてアレコレ

提案しているのに真摯に耳を傾けて

いたのが印象的でした。

地域コミュニティのボトム
アップな盛り上がりを支援

　OSCを全国各地で開催する一番の

理由はその地域のコミュニティの活

性化ですが、その次に来るのは地域

OSCは、なぜ全国をさすらうのか第4回

 ▼写真1　 OSC2005北海道の前夜祭の後、
まつもとゆきひろ氏を囲んで

宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

10 - Software Design Jun. 2016 - 11

R e p
o r t

OSCは、なぜ全国をさすらうのか第4回

間の交流です。最初は東京と北海道、

沖縄の2点間で始まりましたが、そ

の後、徐々に開催地を増やしていま

す。2004年から2009年までの間

だけみても、次のように開催地を少

しずつ増やしていきました。

・2004年1月　 東京のみ
・2005年4月　 北海道、沖縄を追加
・2006年6月　 新潟を追加
・2007年8月　 京都、福岡を追加
・2008年11月　�大分、長岡、名古屋、

島根を追加
・2009年12月　仙台、高知を追加

　京都や福岡より先に新潟（写真2）

で開催されたり、名古屋はさらにそ

の後だったりしました。ビジネスで

あれば大都市圏から攻めていくのが

定石ですが、OSCは現地からの立

候補があってはじめて開催すること

にしているので、このような不思議

な順番になっています。

　地域コミュニティの活動はボトム

アップであるべきで、トップダウン、

東京から一方的に出向いていくので

は地域の自主的なコミュニティ活動

にはなりません。OSCはあくまで地

域コミュニティの人たちが自主的に

開催するもので、事務局はあくまで

そのお手伝いをさせてもらっている、

というのが基本的なスタンスとなっ

ています。

OSCは開催地域間での
メッシュ型トポロジー

　OSCでは東京以外の地域での開催

に、そのほかの地域のコミュニティ

の人たちが出向くことは珍しくあり

ません（写真3）。東京対そのほかの

地域という一極集中型のトポロジー

ではなく、すべての開催地域間での

メッシュ型のトポロジーが自然とで

きあがっていったところが、OSCの

魅力の1つかもしれません。

　前回、北陸・金沢に出かけて行っ

たのも、福岡での開催に金沢の大学

の先生が講師として参加しており、

懇親会の際に金沢でもOSCを開催

したいというお話をいただいたので、

まずは現地を視察に行ったという背

景があります。現在、プレイベント

として「8月末にアンカンファレンス

形式の集まりを開こう」という動き

になっているので、開催の暁にはぜ

ひ、ご報告したいと思います。｢

 ▼写真3　 「石鍋会談」にも参加して
いたサンビットシステム
佐々木さん。北海道から
OSC2015 京都にバイク
で参戦

 ▼写真2　 2006年OSC新潟。川越
を中心に活動する小江戸
らぐの皆さんも出展

 ▲OSC2015新潟の懇親会。参加
費を少し多めに徴収して、美味
しいお酒の用意も素敵です

飲み会開催のコツ
　教えます！

　OSCといえば懇親会ですが、勉強会や職場で飲み
会の幹事をするときのために、コツをいくつか伝授し
ます。キッチリやろうとエンジニア精神を出すのでは
なく、「ゆるふわ」で適当にやるのが幹事のコツです。

・ドタキャン率を見込む
　IT業界はドタキャンが多いので、ドタ
キャン率を見込んでおきましょう。OSCだ
と大体1割程度を見込んでおり、減った分
を当日飛び入りで埋めるようにしています。

・参加費は多めに取る
　お店に3,500円払うなら、キリよく4,000
円徴収しましょう。OSCでは差額残金を学
生の割引の原資などに活用しています。

・人数調整に融通が利く店を選ぶ
　ドタキャン、飛び入りで増減した人数を午後3時
ぐらいまでに伝えれば調整してくれるお店が望ましい
でしょう。また、人数が増えた場合、飲み放題のみ
差額追加でOKの店も使いやすいでしょう。

 ▲OSC沖縄の懇親会。幹事初
心者はこれぐらいの人数から
始めるといいでしょう

12 - Software Design

　本誌2016年5月号に、「SORACOM Air SD

Special Version」が特別付録としてつきました
が、今回はSORACOM Airと携帯電話通信網に
接続できるmbedを使って、インターネットに接
続してみましょう。

u-blox C027

　u-blox C027注1は、スイスのu-blox（ユー・ブ
ロックス）社が製造している、LISA-U2という
3G（UMTS）通信モジュールを搭載したmbedプ
ラットフォームの基板です（写真1）。
　この連載で題材に選択してきたmbed LPC

1768と同じ、NXPのLPC1768というマイコン
が、LISA-U2とUARTとUSBで接続されてい
ます。C027に搭載されているLISA-U2やGPS

受信モジュールは、C027_Supportというライ

注1） http://ssci.to/2342　43,200円（税込み）

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

携帯電話通信網でつなげてみよう第
12
回

ブラリ注2が提供されています。このライブラリ
のソースコードを読むと、LISA-U2とUART

を通じてLPC1768と通信をしています。
　C027にはマイコンに加えて3G通信モジュー
ルが搭載されているため、一般的にUSBから給
電できる500mAよりも多くの電力を消費しま
す。ですので、12Vで900mA以上を出力できる
ACアダプタを用意して給電してください。プ
ラグの外形が5.5mm、内径2.1mmでセンタープ
ラスのACアダプタを使うことができます。筆
者は手元にあった12V2AのACアダプタを接続
して使いました。
　u-blox C027のドラッグ&ドロップでプログ
ラムを書き込む機能を提供するファームウェア
は少々古く、筆者の手元のOS X 10.11.4ではう
まく書き込みができませんでした。このため、
今回はWindows 7を使って試してみています。
　では、さっそくC027にSORACOM Airの

注2） https://developer.mbed.org/teams/ublox/code/C027_
Support/

はじめに

u-blox C027

 ▼写真1　u-blox C027 ▼写真2　SIMカードスロットの蓋を開けたところ

http://ssci.to/2342
https://developer.mbed.org/teams/ublox/code/C027_Support/

12 - Software Design Jun. 2016 - 13

携帯電話通信網でつなげてみよう 第
12
回

SIMカードを差し込んで使ってみたいと思いま
す。本誌に付録していたSIMカードは、Nano-

SIMサイズのものでした。一方でC027のSIM

カードスロットは、Mini-SIMサイズ注3のもの
です。筆者は手元にあったアダプタを使って取
り付けてみました。C027のSIMソケットは
ちょっと変わっていて、ロックする金具をスラ
イドさせSIMカードスロットの蓋を開け、写真
2のように蓋側にSIMカードを挿し込み、写真
3のように蓋を閉じたところで金具をスライド
させて固定します。

HelloWorld

　まず、C027で携帯電話通信網を使ってHTTP

リクエストを出すサンプルプログラム、HTTP

Client_Cellular_HelloWorld注4を試しに実行し
てみたいと思います。まず、このサンプルプロ
グラムを自分のオンラインコンパイラ環境にイ
ンポートしてください。
　次に、mcin.cppの冒頭にあるAPNやユーザ名
の設定を、SORACOM Airに合わせて次のよう
に書き換えます。

注3） 余談ですが、実はSIMカードのサイズは、もともとはSIM
が付いている台紙のサイズで、我々がよく「標準SIM」と呼
んでいるのはMini-SIMサイズです。

 https://upload.wikimedia.org/wikipedia/commons/
thumb/8/8d/GSM_Micro_SIM_Card_vs._GSM_Mini_
Sim_Card_-_Break_Apart.svg/2000px-GSM_Micro_
SIM_Card_vs._GSM_Mini_Sim_Card_-_Break_Apart.
svg.png

注4） https://developer.mbed.org/teams/ublox/code/
HTTPClient_Cellular_HelloWorld/

#define SIMPIN NULL
#define APN "soracom.io"
#define USERNAME "sora"
#define PASSWORD "sora"

　また、main.cppの34行目にGETリクエスト
を発行するURLが書かれているのですが、これ
は古いmbed.orgのURLですので、筆者が自分
で立てているWebサーバのURLに書き換えま
した。

int ret = http.get("http://www.ytsuboi.ｭ
org/test.txt", str, 128);

　このようにソースコードを書き換え、コンパ
イルしたバイナリを書き込みます。Teratermな
どのシリアルターミナルを使いmbedのシリアル
ポートを9,600bpsで開いた状態でC027のリ
セットボタンを押すと、図1のようにデバッグ
メッセージが出て動くことが確認できました。
　サンプルプログラムは、通信を終えると、接
続を切ったうえにLISA-U2の電源も切るよう
に作られています。ですので、C027が通信をし

HelloWorld

 ▼写真3　蓋を閉じたところ

 ▼図1　サンプルプログラムを動かしてみた

https://upload.wikimedia.org/wikipedia/commons/thumb/8/8d/GSM_Micro_SIM_Card_vs._GSM_Mini_Sim_Card_-_Break_Apart.svg/2000px-GSM_Micro_SIM_Card_vs._GSM_Mini_Sim_Card_-_Break_Apart.svg.png
https://developer.mbed.org/teams/ublox/code/HTTPClient_Cellular_HelloWorld/

14 - Software Design

ている間にSORACOMのユーザコンソール側で
接続を確認してみました。筆者はSORACOM

Airを3回線登録しており、図2の一番下に表示
されているSIMを使って実験してみています。

Milkcocoa

　HTTPでGETするだけではおもしろくない
ので、クラウドプラットフォームにデータを送っ
てみましょう。今回は、日本の会社が提供して
いるサービスで、手軽に使い始めることができ
るMilkcocoa注5を使ってみたいと思います。
MilkcocoaはBaaS注6ということで、Webアプリ
ケーションや、IoT機器などの間のリアルタイ
ムなデータのやりとりや、保存や取り出しといっ
たバックエンドの機能を提供するサービスです。
MQTT（MQ Telemetry Transport）というシン
プルなメッセージ配信プロトコルをベースにし

注5） https://mlkcca.com

注6） Backend as a Service：バックエンド機能を提供するサー
ビス。

たプロトコルを採用しているとのことです。
　Milkcocoaは、同時接続数20まで、格納する
データ数が10万個までは無償で利用できます。
さっそく、Webサイトの「無料登録」ボタンをク
リックしてユーザ登録をしてみましょう。ユー
ザ登録を終えてログインをすると、ダッシュボー
ドの「アプリリスト」が表示されます（図3）。登
録した状態では何もアプリが登録されていない
ので、ここで「新しいアプリを作る」ボタンをク
リックし、アプリを1つ作ってみてください（図
4）。筆者はとりあえず「trial」と名付けて登録を
してみました。登録をすると、アプリリストに、
今回作ったアプリが表示されます（図5）。名前
の横に「app_id:」と表示されている値はデータを
送るときに使いますので、これを控えておいて
ください。
　次に、C027に書き込むアプリケーションを用
意しましょう。サンプルプログラムは、Milkcocoa

Sample_3G注7という名前で公開されています。

注7） https://developer.mbed.org/users/jksoft/code/
MilkcocoaSample_3G/

 ▼図3　ダッシュボード
 ▼図4　アプリの作成

Milkcocoa

 ▼図2　SIM管理画面

https://mlkcca.com
https://developer.mbed.org/users/jksoft/code/MilkcocoaSample_3G/

14 - Software Design Jun. 2016 - 15

携帯電話通信網でつなげてみよう 第
12
回

これをインポートし、先ほどと同様にmain.cpp

でSORACOM AirのAPNなどを設定します。
また、MILKCOCOA_APP_IDを定義している
行で、先ほど控えたapp_idを指定してください。
ソースコードの修正を終えたら、コンパイルし
て実行します。
　Milkcocoaのダッシュボードを開き、先ほど
作った trialというアプリを開きます。そこで
「データストア」を選択してデータストア名に
「mbed」と入力して「リスト表示」ボタンをクリッ
クしてください。すると、C027から送られた
データが表示されます（図6）。
　このデータストアの名前「mbed」は、先ほど編
集したC027のmain.cppに、MILKCOCOA_

DATASTOREとして定義されていた名前です。
main.cppに書いてあるように、値vと1を送っ
た後7秒待つというプログラムが実行されてい
ます。ですので、データストアにも約7秒ずつ
間隔を空けてデータが追加されていきます。セ
ンサから得た値をMilkcocoaに送っていけば、セ
ンサから収集したデータをMilkcocoaに保存で
きます。

まとめ

　携帯電話通信網を使えば、EthernetやWi-Fi

よりも自由な設置場所にノードを置くことがで
きます。昨今では、SORACOMのようなセンサ
ノードを設置するのに向いたMVNO（仮想移動
体通信事業者）も増えてきました。3G（UMTS）
通信の難点は、Wi-Fiと同様に通信時に比較的
電力を必要とすること、モジュールの価格が高
めであることくらいではないでしょうか。これ
も、LTEのカテゴリ0の登場によって変わって
いくでしょう。｢

 ▼図5　アプリリスト

 ▼図6　データストアの表示

まとめ

16 - Software Design

「動作の軽快さ」と「高い検出率」が特長のセ
キュリティソフトです。複数ユーザで5台
分、1年間利用できます。最新版では新た
に「インターネットバンキング保護」を搭
載。対応OSはWindows XP以上／Mac
OS X 10.6以上／Android 2.3以上と
なっています。

無線LANルータ
「WN-AX1167GR」

IEEE802.11ac規格に対応し、867Mbpsの高速通信が可能な
無線LANルータです。スマホやタブレットならQRコードを読
み取るだけで設定でき、パソコンやゲーム機なら「WPSボタン」
を押すだけで接続できます。全方向360度に電波の死角を作ら
ない「360コネクト」、以前使用していたルータの無線設定をボ
タンを押すだけでコピーできる「Wi-Fi設定コピー」機能を搭載。
提供元 	アイ・オー・データ機器　http://www.iodata.jp

Nimble Storageモバイルバッテリー
次 世 代 ハ イ ブ リ ッ ド ス ト レ ー ジ を 提 供 す る 企 業「Nimble
Storage」の社名ロゴが入ったスマホ用モバイルバッテリー

（2,200mAh容量）。Micro-USBで本体を充電、USBで給電し
ます。電池残量が、デジタル表示で一目に確認できます。
提供元 	Nimble Storage Japan　http://www.nimblestorage.com

提供元 	キヤノンITソリューションズ
	 https://eset-info.canon-its.jp

1名

1名

3名

ESETファミリー
セキュリティ1年版

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2016年6月16日です。プレゼントの
発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

毎日使っているFirefox、Chrome、Inter
net Explorerといった「Webブラウザ」を
ハッキングし、さらなる攻撃の足がかりと
して利用する方法を学ぶことで、攻撃から
の防御方法を考える1冊です。

提供元 	翔泳社
	 http://www.shoeisha.co.jp

ブラウザハック
Wade Alcorn ほか 著

2名

最新バージョン「Visual Studio Commu
nity 2015」上で、Visual Basicを使い、
GUIの「Windowsデスクトップアプリ」を
作るための方法を基礎から解説した入門書
です。

提供元 	インプレス
	 https://www.impress.co.jp

基礎Visual Basic 2015
羽山 博 著

2名

プログラミング言語Pythonの作者Guido
氏が書き下ろした、Python入門者のため
の手引き書。本書を読むことで、Python
の雰囲気とスタイルをつかめるようにな
り、次の学習につながることでしょう。

提供元 	オライリー・ジャパン
	 http://www.oreilly.co.jp

Pythonチュートリアル第3版
Guido van Rossum 著

2名

読者プレゼント
のお知らせ

Gitを用いたバージョン管理、GitHubによ
る共同編集、RedPenによる品質チェッ
ク、CIツールによる継続的改善といったソ
フトウェア開発の技法に基づいた、ドキュ
メント作成支援システムを構築する1冊。

提供元 	技術評論社
	 http://gihyo.jp

ドキュメント作成システム構築ガイド
伊藤 敬彦、吉村 孝広 著

2名

http://gihyo.jp
http://www.nimblestorage.com
https://eset-info.canon-its.jp
http://www.iodata.jp
http://www.oreilly.co.jp
http://www.shoeisha.co.jp
https://www.impress.co.jp
http://gihyo.jp/magazine/SD/

　「毎日使うシェルだからこそ、その扱いに長けていたい」、そんな思いはありませんか？
シェルを速く的確に使いこなすには、コマンドの知識以外に、効率的なキー操作、コマンドを
組み合わせるノウハウ、状況に応じたシェルスクリプトの書き方も知る必要があります。
　本特集では bash を取り上げます。bash はほとんどの Linux や Mac OS X の標準シェルです。
多くの技術者がたしなみとして使える必要があるでしょう。Microsoft 社もそれを意識して、
Windows 10 で bash を利用できるようにする計画を進めています。本特集で必要な知識を
詰め込んだら、明日からはさっそく実作業で実践です！

※記事中の ｭ は本来1行のものが折り返されていることを、í記号は©キーの入力をそれぞれ表しています。

bashとは何か〜古くて新しいシェル環境第 章 1
 Author くつなりょうすけ

P.18

［速報］Bash on Windowsのしくみ第 章 6
 Author 真壁 徹

P.58

bashならぬfishを知っていますか？番外編 
 Author 後藤 大地

P.61

最初につまづかないためのbashひとめぐり第 章 2
 Author くつなりょうすけ

P.21

仕事でシェルスクリプトを使うときに気をつけたいこと第 章 5
 Author 今泉 光之

P.53

シーンに応じたシェルスクリプトの
自在な書き方・使い方

第 章 3
 Author 上田 隆一

P.39

シェル芸問題で腕を磨け！
テキスト処理・計算・調査の定石

第 章 4
 Author 上田 隆一

P.47

第1特集

速く堅実に使いこなすための

エンジニアの道具を磨こう

18 - Software Design

まだまだ主流な
コマンドラインシェル

　オフィスや研究室、家庭ではGUI（Graphical

User Interface）が装備されたシステムの利用
が一般的ですが、サーバ分野でそれなりにシェ
アのあるUNIXやUNIX互換OSが利用される
システムでは非GUI環境がほとんどです。ク
ラウドサービスやVPSを契約しても、まず最
初に触れるのはGUIではなく非GUIのインター
フェースですよね。
　本特集では非GUIな、CUI（Character User

InterfaceまたはCharacter-based User Interface）
の代表的なソフトウェア、「bash」にフォーカス
を当てます。
　2016年夏に予定されているWindows 10の
Anniversary Updateでは、Windows 10上で
bashが動作するようになるとのアナウンスも
ありました。そんな今もチョベリグなインター
フェースの、トレンディなbashをもう一度見
つめなおして良さを確認しましょう。あまり
bashを触ったことがない人は、このシェルの
素晴らしさを共有し、楽しいbashライフを送
れるようにしましょう。

そもそもシェルって何？

　「Shell（シェル）」はコマンドライン・インタ

プリタという、入力されたコマンドを順次実行
するソフトウェアです。大きく見ると、ユーザ
が指定したコマンドをカーネルに実行してもら
い、結果をユーザに返す、ユーザとUNIXカー
ネルを橋渡しするソフトウェアです（図1）。
　カーネルを貝殻（シェル）のように包み込んで、
ユーザとのインターフェースになるシェルはお
もに次の機能があります。

❶	アプリケーションの起動と結果の出力
❷	プロセスの「停止」・「再開」・「背後で実行」

の切り替え
❸	変数の保持
❹	コマンド実行履歴の保持
❺	まとまった処理をスクリプトとして読み込

んで実行

　機能❶：ユーザがシェルに指示したコマンド
をシステムの中から探しだし、オプション
や引数をコマンドに渡して実行、その結果
の出力をします。ここで指定したコマンド
のファイルが見つからなかったり、実行す
る権限がない場合は「コマンドが見つかりま
せん」などのエラーメッセージを出力します。

　機能❷：1つのシェル環境で、複数のプロセ
ス（実行状態のコマンド）を起動することが
できます。実行しているプロセスを停止し
て他のプロセスを起動したり、停止してい

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

UNIXやUNIX互換OSを使うためには非GUI環境であるシェルでの操作は欠かせません。bash
を使う前のウォーミングアップとして、シェルの役割とその歴史から触れていきます。そんなに身
構えず、まずはのぞいてみましょう。

 Author くつなりょうすけ　㈱ネットワーク応用通信研究所　 Twitter @ryosuke927

bashとは何か
〜古くて新しいシェル環境

第 章 1

18 - Software Design Jun. 2016 - 19

るプロセスを実行状態に復帰させる、もし
くはユーザには見えないが背後で実行を継
続させることができます。いくつものシェ
ルを起動して画面を切り替えて動作確認する、
といった煩わしさはありません。

　機能❸：シェルの動作している環境で変数を
保持することで、実行したプログラムが参
照できたり、簡単な算術演算などに利用で
きます。

　機能❹：一度入力した長いコマンドを再度入
力しなくてもいいように、あるいは前に入
力したコマンドを少しの修正で実行できる
ように、実行履歴の保持・編集ができます。

　機能❺：あらかじめコマンドを記述したテキ
ストファイルを読み込ませると、それを逐
次実行することができます。 これは、シス
テム起動時に実行してシステム環境を整え
るのに利用されていたり、簡単なコマンド
を作るために利用します。シェルが持つifや
forなどの条件分岐・繰り返し処理が利用でき、
少し複雑なこともできます。このテキストファ
イルをシェルスクリプトと呼びます。

　LinuxなどのUNIX系OSにおいて、シェル
と言えばコマンドラインシェルというイメージ
が強くありますが、実はUnityやGNOMEデス
クトップ、Windowsのデスクトップも「グラフィ
カルシェル」と呼ぶシェルの一種です。
　ほら、カーネルを経由して「ファイルをオー

プンして表示する」を目的とした場合、Linux

でコマンド入力してテキストファイルをエディ
タで開くのと、Windowsでダブルクリックし
てプレゼンテーションファイルを開くのは、あ
まり変わりないですよね。
　この特集では、簡略化のために「シェル」とい
えば「コマンドラインシェル」のことを指すこと
にします。

UNIXコマンドライン
シェルの種類

　ここでは今使える主なシェルの種類を挙げて
説明します。それぞれのシェルの歴史も少し触
れておきましょう。
　最初のUNIX用コマンドラインシェルは、
1971年にUNIXの最初のバージョンに搭載さ
れたという「Thompson shell」です。これは後述
するパイプやリダイレクトの機能は持っていま
したが、スクリプトには不向きだったそうです。
　その後1977年にAT&Tベル研究所というア
メリカの電話会社の研究所にいたBourne氏が
開発した「Bourne shell」、1978年に「csh」が開
発され「Thompson shell」が置き換えられます。
Bourne shellからの派生を「Bシェル系」、csh

からの派生を「Cシェル系」と呼びました。これ
らの系譜を受け継ぐシェルにはおもに次のよう
なものがあります。

bash
　bashは「Bourne Again SHell」の略で、GNU

プロジェクトの1つとしてメンテナンスされて
います。それまでに存在したBourne shellに
換わるシェルとして1987年に登場しました。
ほとんどのLinuxディストリビューションと、
Mac OS Xでも標準シェル（後述）に採用され
ています。

tcsh
　Cシェルと呼ばれる流派のシェルです。BSD

系OSでは標準シェルとして採用されています。

Linux
Kernel

Shell
実行 結果出力

コマンド実行実行Commands

 ▼図1　カーネルとシェルとユーザの位置関係

bashとは何か
〜古くて新しいシェル環境 第 章 1

20 - Software Design

zsh
　bashやksh（Bourne shellを機能強化したシェ
ル）、tcshなどの機能を取り込んだシェルです。
自分好みにカスタマイズしやすいので多くのファ
ンがいます。

dash
　Debian GNU/Linuxや Ubuntuの /bin/shに
採用されているシェルです。ashというBSD系
OSでメンテナンスされているPOSIX sh（後述）
に近い実装が基になっています。dashは「Debian

版ash」という意味があります。
◆　◆　◆

　UNIXには標準規格POSIXがあり、シェル
について記載されているPOSIX shは拡張版
Bourne shellがそれにあたり、歴史的に/bin/

shで利用できました。どのUNIX互換OSでも
動作するシェルスクリプトを作成する場合は、
POSIX shとして動作するよう心がける必要が
あります。
　また、「標準シェル」にbashが採用されてい
るからといって、/bin/shもbashとは限りませ
ん。「標準シェル」と言う場合は、「標準で設定
されるログインシェル」のことを指します。
Debian GNU/Linuxでは2009年の version 5.0

（lenny）、Ubuntuは2006年の6.10から/bin/sh

はdashへのシンボリックリンク注1になってい
ます。/bin/shが指している実体のシェルは異
なることがあると認識しておきましょう。

bashを使うメリット

　zshや tcshも魅力的なシェルではありますが、
あえてbashをオススメするのには理由があり
ます。それはbashが現状Linuxの標準シェル
であることです。自分の利用するPCでbash以
外を利用することは自由ですが、ユーザのサー

注1） 特定のファイル、ディレクトリに別名でアクセスするしくみ。
Windowsのショートカットに似た機能。

バや稼働系サーバであれば、インストールでき
るパッケージの制限がある場合もあり、その際
は必然的にbashを使うことになるでしょう。
パッケージを自由にインストールできる環境で
も、ネットワークにつながっていない、インス
トールメディアを持っていない、といった場合
もbashを利用することになります。
　また、標準シェルなだけに情報があふれてい
ます。Webで検索すればbashの記事を簡単に
見つけることができます。
　そして、bashは今も進化を続けています。
bashはもともと入力時にファイル名やディレ
クトリ名を途中まで入力すれば予測入力する「補
完機能」がありましたが、zshで有名になった“コ
マンドのオプションも補完する機能”も最近（と、
言っても2008年頃から）プラグインとして追
加されています。他のシェル実装に対して
遜
そんしょく

色ない機能を提供するbashは、なかなかで
きるやつです。

bashの情報

　bashの最新情報は公式サイト注2を訪れるの
がいいでしょう。最新のリファレンスマニュア
ルもあります。
　Linuxディストリビューションで、manがイ
ンストールされているならば「man bash」でman

ページを参照するのも手軽でいいです。収録さ
れているbashの日本語manページの内容が少
し古いと感じれば「LANG=C man bash」として
英語manページも参照してみましょう。最新の
情報が日本語版に反映されていないだけかもし
れません。
　bashのmanページは結構なボリュームです。
ですが、一度流し読みして何がどのあたりに書
いてあるか、求める機能の用語と自己認識に不
整合がないかを確認しておくと、今後マニュア
ル内検索をする際に楽になります。｢

注2） http://www.gnu.org/software/bash/

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

http://www.gnu.org/software/bash/

21 - Software Design Jun. 2016 - 21

シェルの起動方法

　LinuxのようなUNIX系OSでは「login:」の文
字が表示されている状態で、ユーザ名とパスワー
ドを入力して認証が通ればシェルが起動します。
GUI環境が目の前にある方は「端末」や「Gnome-

terminal」のような名前のアプリケーションを
起動しましょう。これらは「ターミナルエミュ
レータ」、「端末エミュレータ」もしくは簡単に
「ターミナル」などと呼びます。ターミナルを起
動すると、そのウィンドウの中でシェルを利用
できます。あなたの目の前で、シェルはすでに
起動しているかもしれません。
　なお、本章執筆に用いた実行環境は、Debian

/GNU Linux 8（jessie）です。また以後本章では、
ユーザのアカウントを「ryosuke」として説明を
します。

自分が使っているシェルは何だろう？

　自身でインストールしたばかりのLinuxであ
ればbashが起動していると思いますが、すで
に稼働しているシステムにアカウントを追加し
てもらってログインしている場合は、利用して
いるシェルについて少なくとも2点把握してお
く必要があります。

・	ログインシェルは何か
・	/bin/shの実体シェルはなにか

　ログインシェルとは、ユーザのログイン直後
に起動するシェルです（第 1章参照）。/etc/

passwdの各ユーザエントリの行末に記載され
ているのがそれです。

$ grep ryosuke /etc/passwdí
ryosuke:x:1000:1000:ryosuke,,,:/home/
ryosuke:/bin/bash

　fingerコマンドが利用できるようであれば、
自身のアカウントを指定してShellの表示で確
認することもできます。

$ finger ryosuke | grep Shellí
Directory: /home/ryosuke Shell: /bin/bash

　第1章でも触れましたが、慣例上、シェルを
指定する際に/bin/shを指定しますが、この実
体がログインシェルと異なる場合があります。
「ls -l /bin/sh」で確認しておきましょう。

別のシェルへの変更方法

　LinuxのGUI環境で、GNOMEからUnityや
KDEへデスクトップ環境を変更できるように、
コマンドラインシェルもユーザが変更できます。
　まず、使いたいシェルがシステムにインストー

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

bashでの操作はキーボードから行いますが、ショートカットや履歴の使い方を覚えておくと長いコ
マンドを毎度ゼロから入力する必要がなくなり効率がよくなります。また、シェルの魅力の1つは
シンプルな機能のコマンドを組み合わせることで煩雑な処理を一気に片付けられることです。本章
で最初の一歩を踏み出しましょう。

 Author くつなりょうすけ　㈱ネットワーク応用通信研究所　 Twitter @ryosuke927

最初につまづかないための
bashひとめぐり

第 章 2

22 - Software Design

ルされていることが前提なので、パッケージ管
理ツールでインストールされているか、そして
/etc/shellsに記載があるかを確認しましょう。

 /etc/shellsを行番号付きで出力する
$ cat -n /etc/shellsí
 1 # /etc/shells: valid login shells
 2 /bin/sh
 3 /bin/dash
 4 /bin/bash
 5 /bin/rbash
 6 /usr/bin/tmux
 7 /usr/bin/screen
 8 /bin/zsh
 9 /usr/bin/zsh

　シェルの変更はchshコマンドを利用すると
コマンド一発で変更できて便利です。シェル変
更後の確認は前述したようにfingerコマンドか、
/etc/passwdを見るのが楽でしょう。
　ここで試しにログインシェルを上記9行目に
出力された/usr/bin/zshに変更してみましょう。
図1の順に実行・確認して、ログインしなおせ
ば変更したシェルが起動します。
　ログインシェルを変更せずに他のシェルを試
したい場合は、別のコマンドと同様に実行すれ
ば起動できます（図2）。exitで戻れます。

コマンドプロンプト

　使い始める前に、機能ではなく用語説明から。
シェルを起動すると見えるチカチカと点滅する
のは「カーソル」、その左隅に表示される文字列
を「プロンプト」と呼びます。
　図3では「ryosuke@mustain:~$」がプロンプト
になります。とくに設定していない標準のbash

では「ユーザ名@ホスト名 : 作業ディレクトリ
パス$」を表示します。「~（チルダ）」はユーザの
ホームディレクトリを意味する文字です。
　これからLinuxの入門書やマニュアルを読む
場合にはプロンプトの最後の文字「$」に注意を
しましょう。bashでは「$」は一般ユーザのプロ
ンプトを意味します。もうひとつ「#」になる場
合があります。図4ではユーザを切り替えるsu

コマンドを使って管理者rootになったところ

です。プロンプトのユーザ名の部分がryosuke
からrootに、プロンプトの最後の文字が「$」か
ら「#」に変わっています。
　書籍やマニュアルでは「$」は一般ユーザが実
行できるコマンド、「#」は管理者権限で実行す
るコマンドと区別して書かれます。管理者権限
で実行しなければならないコマンドを一般ユー
ザが実行してもエラーが出力されるだけで終わ
るかもしれませんが、一般ユーザで実行するコ
マンドを管理者権限で実行すると取り返しのつ
かないことが起こる場合があります。十分気を
つけましょう。

コマンド実行

　プロンプトの右側に、実行したいコマンドを
タイプしてíキーを押すとコマンドが実行さ
れます。コマンドの指定は次の形式になります。

$ コマンド名 ［オプション］... ［引数］...

　「コマンド名」に指定するのは実行したい実行
ファイル名です。実行ファイル名の後ろには「オ
プション」と「引数」を任意で指定します。オプ
ションは実行ファイルの動作を変えるためにユー
ザが指定する文字列です。引数はプログラムの
操作対象やプログラムに渡す文字列などを指定
します。例を見てみましょう。
　図5では lsコマンドをオプションと引数を切
り替えて実行しています。
　①はオプション・引数なしで実行しています。
結果は何も出力されず次のプロンプトが出てい
ます。続けて②は「-a」オプションを、③では「-al」
と指定しています。「-a」は「.」で始まるファイ
ルを表示するオプションです。「.」で始まるファ
イルは設定ファイルなどに利用されるために隠
しファイルとなっており、指定がないとリスト
表示されません。「-l」オプションはファイルの
詳細情報をリスト形式で表示するオプションで
す。このディレクトリには隠しファイルだけが
あったようですね。④では「/var」という引数を

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

22 - Software Design Jun. 2016 - 23

渡して実行しています。これは lsコマンドに、
/varを操作対象とするよう司令を出しています。
結果、/var以下のディレクトリ・ファイル名が
リスト出力されていますね。
　lsコマンドのオプションは「-文字列」のよう
に、「-」から始まる文字列をオプションと認識
しますが、コマンドによっては「-」なしでもオ
プションとして解釈する場合があります。たと
えば、tarコマンドでは圧縮ファイルを伸長す

る「-x」オプションを指定するのに「x」だけでも
解釈してくれます。コマンドによって若干作法
が変わるので、使い方がわからない場合は積極
的にコマンドマニュアル（manコマンド）や『［改
訂三版］Linuxコマンドポケットリファレンス』
（技術評論社刊）などの書籍を参照しましょう。

$ lsí ①
$ 何も出力されずにプロンプトが表示される
$ ls -aí ②
. .. .dotfile
$ ls -alí ③
合計 20
drwxr-xr-x 2 ryosuke ryosuke 4096 4月 7 01:02 .
drwxrwxrwt 18 root root 12288 4月 7 01:02 ..
-rw-r--r-- 1 ryosuke ryosuke 17 4月 7 01:02 .dotfile
$ ls /varí ④
backups cache games lib local lock log mail opt run spool tmp

 ▼図5　オプションや引数を入れたコマンド実行例（ls）

 現在実行中のプロセスIDのプログラム名を表示する
$ ps $$í 「$$」は実行中のシェルプロセスID
 PID TTY STAT TIME COMMAND
 6148 pts/1 Ss 0:00 -bash
 /usr/bin/zshを実行する
$ /usr/bin/zshí
 現在有効になっているシェルがzshであることが確認できる
% ps $$í
 PID TTY STAT TIME COMMAND
 6550 pts/1 S 0:00 /usr/bin/zsh

 ▼図2　一時的に別シェルを実行する

 ▼図4　suコマンドを実行してプロンプトが変わる例

 1：fingerで自身のシェルを調べる。「$USER」は自分のアカウント名が入った変数
$ finger $USER | grep Shellí
Directory: /home/ryosuke Shell: /bin/bash
 2：/etc/passwdから自身のシェルを調べる
$ grep $USER /etc/passwdí
ryosuke:x:1000:1000:ryosuke,,,:/home/ryosuke:/bin/bash
 3：ログインシェルを/usr/bin/zshに変更する
$ chsh -s /usr/bin/zshí
パスワード: ユーザのログインパスワードを入力する
 4：fingerで再度自分のシェルを調べる
$ finger $USER | grep Shellí
Directory: /home/ryosuke Shell: /usr/bin/zsh
 5：/etc/passwdから自身のシェルを再度調べる
$ grep $USER /etc/passwdí
ryosuke:x:1000:1000:ryosuke,,,:/home/ryosuke:/usr/bin/zsh

 ▼図1　ログインシェルの変更例

 ▼図3　ターミナル起動画面

プロンプト カーソル

最初につまづかないためのbashひとめぐり 第 章 2

24 - Software Design

 実行ファイルのありか
〜パスを探して三千里

　シェルはコマンドとして指定された実行ファ
イル名を探します。実行ファイルが格納されて
いる複数のディレクトリパスを環境変数PATH

として保持しており、そのパスのみを探します。
たとえば/opt/bin/mkfugaという実行ファイル
がインストールされているとして、環境変数
PATHにこの/opt/binディレクトリが登録さ
れていないとユーザはmkfugaだけでは実行で
きず、「/opt/bin/mkfuga」と指定しなければシェ
ルはコマンドを実行できません。
　一般ユーザと管理者権限で環境変数PATH

が異なることがあるので、「あれ？　インストー
ルされてるはずなのに実行できないな」という
場合はPATHの値をechoコマンドで出力して
確認し、その実行ファイルが本当にインストー
ルされているかを locateコマンドなどで調べま
しょう。図6では、visudoというコマンドのあ
りかにパスが通っているかを確認しています。

ビルトインコマンド

　シェルにはシステムにイン
ストールされる実行ファイル
のコマンドとは別に、「ビル
トインコマンド」もしくは「組
み込みコマンド」と呼ばれる、
シェル自身が持っているコマ
ンドがあります。代表的なビ
ルトインコマンドにはcd（作
業ディレクトリを変更する）、

pwd（作業ディレクトリを表示する）、exit（シェ
ルを終了する）などがあります。
　pwdやkill（プロセスにシグナルを送る）など
は、ビルトインコマンドと同名の実行ファイル
があります。両方存在するコマンドは、/bin/

killのように指定して実行しない場合、ビルト
インコマンドが優先されます。実行されるコマ
ンドがビルトインか実行ファイルかは、ビルト
インコマンドの typeで確認できます。

$ type killí
 killだけ指定するとビルトインコマンドが使われる
kill はシェル組み込み関数です
$ type /bin/killí
 PATHを指定するとビルトインコマンドが使われない
/bin/kill は /bin/kill です

シェル変数・環境変数

　実行中のシェルで変数を保持することができ
ます。変数には数値や文字列を代入できます。
変数に代入された値を参照する場合は変数名の
前に「$」をつけます。
　実行中のシェルで利用する変数は「シェル変

$ visudoí
visudo: command not found
 ↑実行したらコマンドが見つからないとエラーになった
$ echo $PATHí 変数名の前に「$」をつけてechoに渡すと代入されている値を参照できる
/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games
$ locate visudo | grep biní 実行ファイルはbinディレクトリにインストールされる、と当たりをつけて「grep bin」でフィルタする
/usr/sbin/visudo
 ↑環境変数PATHに入っていないディレクトリに配置されているので「not found」になったとわかる

 ▼図6　パスの確認

$ cat var_test.shí 変数VALを出力するスクリプト「var_test.sh」の中身を表示
#!/bin/bash

echo VAL is ${VAL}.
$ echo $VALí
 ←echoコマンドで出力しても空行になることで変数VALが空っぽであることを確認
$ VAL=valí 変数VALに「val」を代入する
$ echo $VALí 変数VALの中身を出力する
val 代入した文字列が出力される
$ bash ./var_test.shí 先程作ったスクリプトを実行する
VAL is . 変数VALに「val」が入ってないのがわかる
$ export VALí exportコマンドを使って変数VALを環境変数にする
$ bash ./var_test.shí 再度実行する
VAL is val. 「val」が表示される

 ▼図7　シェル変数を環境変数にするexportの使い方

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

24 - Software Design Jun. 2016 - 25

数」と言いますが、別のシェルやスクリプトを
実行する際に、その変数を共有する場合は「環
境変数」に変更する必要があります。シェル変
数を環境変数にするには、ビルトインコマンド
のexportコマンドを利用します。図7の例を見
てみましょう。
　変数値は$VALでも${VAL}でも同じように参
照できます。「${}」で囲うほうが変数名の区切
りがわかりやすいので可読性も上がりますし、
ほかの変数名に似たものがある場合、事故にな
らないのでオススメです。ここでは簡単に参照
する用途として囲わない書式を利用しました。

データ入力、結果の出力、それを
つなげるもの

　「単純な機能のコマンドを組み合わせて目的
を達成する」というUNIXの考え方があります。
例として「ある時間、特定の IPからWebサー
バへのアクセス数をカウントしてファイルに出
したい」という目的を達成するとしましょう。
これを簡単な機能で分割させると次になります。

・	httpdサーバのアクセスログを開く
・	探したい日時の行を探して抽出する
・	アクセス元IPを選ぶ
・	カウントする
・	アクセス数をファイルに出力する

　これから、探したい日時を2016年3月20日、
アクセス元 IPをAA.BB.CC.DDとすると、次
のようなコマンドライン［1］が構築できます。

［1］$ cat /var/log/apache2/access.log | ｭ
grep '20/Mar/2016' | grep AA.BB.CC.DD | ｭ
sort | wc -l > /tmp/count.txt

　上記コマンドからcatは単独で実行すると画
面にファイルの内容や検索結果を出力しますが、
grepとsort、wcを実行する場合は対象ファイ
ル名を引数に指定する必要があります。ですが、
ここではあえて指定しません。
　これは各コマンドの出力を別のコマンドの入
力として渡しているからです。1つのコマンド

で簡単な結果を出力し、別のコマンドにその結
果をさらに処理させることで目的を達成させま
す。これらのコマンドの組み合わせは自由で、
次のコマンドライン［2］では［1］の最初のcatと
grepを1つにまとめていますが、同じ結果を得
られるはずです。

[2]$ grep '20/Mar/2016' /var/log/apache2ｭ
/access.log | grep AA.BB.CC.DD | sort | ｭ
wc -l > /tmp/count.txt

　このような“コマンドの出力を別のコマンド
の入力に連結させるしくみ”を「パイプライン」
と言い、「|」をコマンドの間に挟むことでつな
ぐことができます。
　コマンドは、実行してプロセスになった際に
標準入力・標準エラー出力・標準出力の3つの
入出力チャネルが用意されます。標準入力はプ
ロセスへの入力、標準出力はプロセスの出力、
標準エラー出力はプロセスのエラーメッセージ
をそれぞれ入出力します（図8）。
　図9の（1）のように、標準入力はキーボード、
標準出力はディスプレイになります。grepの
ようにテキストファイルからパターンの存在す
る行をディスプレイや端末に出力する場合は図

9の（2）になります。図9の（3）はキーボードか
らの入力を受け、プロセスが出力用ファイルを
作成し、そこに結果を書き出します。wgetの
ようにキーボードからURLを受け取り、URL

末尾のファイル名と想像されるファイルを作成
してそこに出力する場合がこれに当たります。
図9の（4）はプロセスの出力と入力をつなぐ「パ
イプライン」を利用するイメージです。
　コマンドライン［2］の最後、wcの後にある「>
/tmp/count.txt」は標準出力をファイルに出力

標準入力（0） プロセス 標準出力（1）

標準エラー出力（2）

 ▼図8　標準入力・標準出力・標準エラー出力

最初につまづかないためのbashひとめぐり 第 章 2

26 - Software Design

した例です。プロセス同士をつなぐ場合はパイ
プライン「|」、プロセス以外のファイルやデバ
イスに入出力を変える場合はリダイレクト「<」
「>」を使います。
　シェルはコマンドラインにリダイレクトの文
字があれば入出力チャネルを切り替えます。
grepに渡すファイルを標準入力から流す例を
見てみましょう。テキストファイルを用意し
（例：stdin.txt）、「<」でコマンドにファイル名
を引数に渡す指定をします。ファイルを左側に
持ってくるとシェルはコマンドと解釈し実行す
るので注意しましょう。「>」は標準出力のリダ
イレクトです。

$ cat stdin.txtí
愛知
岐阜
三重
$ grep 岐阜 < stdin.txtí
岐阜
$ stdin.txt > grep 岐阜í
-bash: stdin.txt: コマンドが見つかりません

　grepの標準出力をテキストファイルに同時
に出してみましょう。

$ grep 三重 < stdin.txt > stdout.txtí
$ cat stdout.txtí
三重

　リダイレクトの記号「<」「>」が矢印に見える

ので、コマンドラインだけみて
ると「はて？　stdin.txtが grep

にも stdout.txtにも行ってるよ
うにみえるような……」と思う
ことがありますが、「コマンド
ラインは左から解釈される」ルー
ルを覚えていれば怖くありませ
んよ。
　標準エラー出力をリダイレク
トする際は「2>」と、数字をつけ
る必要があります。エラーが出
るコマンドを実行（権限のない
ファイルを表示しようとしてみ

る）するとメッセージがでます。次のように「2>」
でファイルに標準エラー出力をリダイレクトす
ると画面にエラーメッセージは表示されず、ファ
イルに書き込まれていることが確認できます。

$ less /var/log/syslogí
/var/log/syslog: 許可がありません
$ less /var/log/syslog 2> stderr.txtí
$ cat stderr.txtí
/var/log/syslog: 許可がありません

　「2」はファイルディスクリプタ番号です。ファ
イルディスクリプタは、プロセスがアクセスす
るファイル情報の番号です。標準入力は「0」、
標準出力は「1」とそれぞれ割り当てられていま
すし、実は標準出力リダイレクトは「<0」、標準
出力は「1>」と書くべきところを、ファイルディ
スクリプタ番号を省略できるだけです。
　標準出力はプロセスの出力、標準エラー出力
はエラーメッセージと出力を分けてあることは
結果にノイズが入らないという意味ではありが
たいのですが、デバッグ時など出力をそれぞれ
分けて見るのは手間と感じることがあります。
その際は、標準出力と標準エラー出力を同時に
出力することで対応できます（図10）。
　シェルはコマンドラインを左から解釈します。
まずコマンドを見て（図10ではfind /var/log
/samba）、「> /tmp/find.txt」から標準出力を

/tmp/find.txtに換えます。次に、「2>&1」で標

（1）

（2）

（3）

（4）

ファイル

キーボード

キーボード

ファイルA ファイルB

ファイル

ディスプレイ

標準入力

標準入力 標準出力

標準出力標準入力標準出力

パイプ
プロセスA

プロセス

標準入力 標準出力

プロセス

ディスプレイ

標準入力 標準出力

プロセス

プロセスB

 ▼図9　標準入出力とパイプ

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

26 - Software Design Jun. 2016 - 27

準エラー出力（2）に標準出力（1）の出力先をコ
ピーする意味があります。ここではコマンド
ラインの行末までくると、2つの出力先が

/tmp/find.txtになります。
　順番を間違えると期待どおりにいかない場合
があります。次の順番ではエラーメッセージが
ファイルに記録されていません。

$ find /var/log/samba/ 2>&1 > /tmp/find.txtí
find: `/var/log/samba/': 許可がありません

　シェルはコマンドラインを左から解釈する（2

度目）ので、コマンドとオプションの後の「2>&1」
がまず解釈されて標準出力先を標準エラー出力
にコピーします。とくに標準出力を変更してい
ないので2つの出力先は標準出力である「画面」
になります。その後標準出力を「/tmp/find.txt」
に変更するのですが、ここで標準エラー出力は、
先ほどの標準出力のコピーのままなので画面に
出力されます。
　出力リダイレクトは「>」と別に「>>」も使えま
す。「>」は実行ごとにファイルを新しく作成する、
つまり前に同名のファイルがあれば削除されま
すが、「>>」でリダイレクトすると既存ファイル
を削除せずに追加で出力を記録していきます。
　リダイレクトに似た機能で「ヒアドキュメン
ト」というのも覚えておきましょう。コマンド
ラインから複数行をプロセスの入力にすること
ができます。「<<文字列」をコマンドに向けて

記述し、入力する文字列を入力、最後に指定し
た「文字列」を記載すると入力終了の合図になり
ます。次の例では、PREFを終了文字列に指定
してcatコマンドにテキストを入力しています。
catの-nオプションは行番号を含めて出力する
ので期待どおりの結果が出ていますね。

$ cat -n <<PREFí
東京í
神奈川í
千葉í
埼玉í
PREFí
 1 東京
 2 神奈川
 3 千葉
 4 埼玉

ジョブ制御して複数プロセスを同
時実行する

　コマンドを実行するとプロセスになります。
このプロセスはシェルから見ると1つのジョブ
です。複数のコマンドを「|」などで組み合わせ
て実行した場合、それぞれはプロセスですが、
まとまった1つのジョブとして扱われます（図

11）。

$ find /var/log/samba/í 標準出力、エラー出力をそのまま画面に出す
/var/log/samba/
find: `/var/log/samba/': 許可がありません
$ find /var/log/samba/ > /tmp/find.txtí 「>」では標準出力だけが記録される
find: `/var/log/samba/': 許可がありません
$ cat /tmp/find.txtí
/var/log/samba/
$ find /var/log/samba/ 2> /tmp/find.txtí 「2>」では標準エラー出力だけが記録される
/var/log/samba/
$ cat /tmp/find.txt í
find: `/var/log/samba/': 許可がありません
$ find /var/log/samba/ > /tmp/find.txt 2>&1í これなら両方記録される
$ cat /tmp/find.txtí
/var/log/samba/
find: `/var/log/samba/': 許可がありません

 ▼図10　標準出力と標準エラー出力を同時に出力する

 ▼図11　プロセスとジョブの関係

$ lsíí プロセスであり、ジョブ
$ tail -f /var/log/syslog | grep namedí

プロセス

ジョブ

プロセス

最初につまづかないためのbashひとめぐり 第 章 2

28 - Software Design

　シェルはこのジョブを「停止」「フォアグラウ
ンドで実行」「バックグラウンドで実行」するこ
とができます。
　ユーザがシェルを使えるようにプロセスを止
めるのは「停止」、ユーザから見える・ユーザか
らの入力を受け付けるジョブを「フォアグラウ

ンドジョブ」、ユーザから見えない・入力も受
け付けないが処理を継続するジョブを「バック
グラウンドジョブ」と言います。
　このジョブの切り替わりを図12で追ってみま
しょう。viエディタでファイルを編集しようと
開いてみます①。viが動いてるところでCtrl-z

（lキーを押しながらzキーを押す操作）を
入力するとそのプロセスが一時停止します②。
次に「dd if=/dev/zero of=/tmp/zerotest count
=1024000」を実行してみましょう③。このコマ
ンドは512byteを1,024,000回書き込んで5GB

の/tmp/zerotestを作成します。これも実行中
にCtrl-zを押して一時停止します④。今回は停
止しただけではなくて、bgコマンドでバックグ
ラウンドジョブとして処理を継続させましょう⑤。
次に「sudo tail -f /var/log/syslog」を実行し
ましょう⑥。これもCtrl-zで止めます⑦。この

$ vi test.txtí viを起動①
[1]+ 停止 vi test.txt Ctrl-zを入力してviを停止②
$ dd if=/dev/zero of=/tmp/zerotest bs=1024 count=1024000í ③
^Z ddコマンドを実行してすぐにCtrl-zして停止④
[2]+ 停止 dd if=/dev/zero of=/tmp/zerotest bs=1024 count=1024000
$ bg 2í ddを止めたときの[2]でジョブIDが2とわかったのでバックグラウンドで再開⑤
[2]+ dd if=/dev/zero of=/tmp/zerotest bs=1024 count=1024000 &
$ sudo tail -f /var/log/syslogí tailコマンドを新たに実行⑥
Apr 9 03:54:07 mustain smartd[666]: Device: /dev/sda [SAT], SMART Usage Attribute: 190
Airflow_Temperature_Cel changed from 64 to 63
Apr 9 03:54:07 mustain smartd[666]: Device: /dev/sda [SAT], SMART Usage Attribute: 194
Temperature_Celsius changed from 111 to 110
^Z Ctrl-zで停止⑦
[3]+ 停止 sudo tail -f /var/log/syslog
$ jobsí ジョブ一覧を表示
[1]- 停止 vi test.txt
[2] 実行中 dd if=/dev/zero of=/tmp/zerotest bs=1024 count=10240000&
[3]+ 停止 sudo tail -f /var/log/syslog
$ ls -lh /tmp/zerotestí バックグラウンドで動いているジョブID2の結果を確認
-rw-r--r-- 1 ryosuke ryosuke 2.3G 4月 9 05:41 /tmp/zerotest
$ ls -lh /tmp/zerotestí もう一度確認
-rw-r--r-- 1 ryosuke ryosuke 2.4G 4月 9 05:41 /tmp/zerotest
 ↑出力ファイルが大きくなっているのでバックグラウンドで動作が継続しているのを確認できる

 ▼図13　プロセス起動と停止・復帰のコマンドライン例

 ▼図12　プロセス起動と停止・復帰の例

vi① Ctrl-z stop②

tail⑥ Ctrl-z stop⑦

dd③ Ctrl-z stop④ bg ⑤

 ▼図14　プロセス起動と停止・復帰のサイクル図

実行(フォアグラウンド) Ctrl-z 停止

[fg]

[fg]

[bg]

バックグラウンド

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

28 - Software Design Jun. 2016 - 29

一連の動作はコマンドラインで図13のようにな
ります。
　このように、ジョブを実行（フォアグラウンド）
→停止→バックグラウンド→実行（フォアグラ
ウンド）を循環することで、1つのシェルで複
数のプロセスに司令を出したり、出力を観察す
ることができるのです（図14）。

便利に使おうbash

bashが読み込むファイル

　シェルは2種類の起動モードがあります。シ
ステムのログイン画面でユーザ名とパスワード
の認証を通過した後に起動する「ログインシェ
ル」と、それ以外の「対話的シェル」があり、起
動時に読み込むファイルが異なります。ログイ
ンシェルとして bashが起動した場合、まず

/etc/profileが読み込まれます。起動後に読み
込まれるファイルは次の順番になります。

1.	 /etc/profile
2.	 ~/.bash_profile
3.	 ~/.bash_login
4.	 ~/.profile

　一方、対話的シェルでは/etc/bash.bashrcか
̃/.bashrcだけを読み込みます。

コマンドラインを快適に動こう

　シェルはシステムに向かって一番長く使うツー
ルです。使う時間が長い分、快適に・ストレス
なく利用することが健全な業務・趣味への第一
歩になります（たぶん）。快適な環境を手に入れ
るためにシェルの操作方法を体に覚えこませま
しょう。
　表1はシェル内のカーソル移動や編集に使え
る主なショートカット一覧です。移動や編集以
外にも便利なショートカットキーがあるので章
の最後で紹介します。こちらもあわせて覚えた
いですね。

知ってると使いたくなる
画面クリアと入力補完キー操作

　移動や編集以外のショートカットキーもあり
ます。使いこなせているとモテるかもしれない
ので覚えておきましょう（保証はしません）。
　まずは画面をclearする機能です。コマンド
入力や結果出力後の表示文字を、書き込んだ紙
を破って捨てるようにキレイにする機能です。
これをCtrl-lと入力するとサッパリできます。
　bashの入力補完機能はぜひおさえておきた
い機能です。入力補完とはユーザの入力を補助
することですが、bashの入力補完機能はコマ
ンドの途中まで入力してkを押すと、その
後の入力を自動で補ってくれます。

$ genik
 ↓
$ genisoimg

　kを押したところで複数の候補がある場
合は、予想変換のようにその後に続く候補を表
示してくれます。

$ sudo mkfs.extk
mkfs.ext2 mkfs.ext3 mkfs.ext4 mkfs.ext4dev

　ファイルだけではなく、/etc/hostsに記述し

コマンド 操作
Ctrl-a 行頭へ移動
Ctrl-e 行末へ移動
Ctrl-b 一文字左へ移動
Ctrl-f 一文字右へ移動
Alt-b 一単語左へ移動
Alt-e 一単語右へ移動
Ctrl-d カーソルの文字を消す
Ctrl-h カーソルの左の1文字を削除
Ctrl-w カーソルのある位置一単語カット。単語

の中にいる場合は単語先頭まで削除
Ctrl-k カーソルより右にある文字を全てカット
Ctrl-u カーソルより左にある文字を全てカット
Ctrl-y カットして保持している文字をペースト
※Ctrl-aはCtrlキーを押しながらaを押す操作

 ▼表1　 シェル内移動・削除・カット＆ペーストのショー
トカット

最初につまづかないためのbashひとめぐり 第 章 2

30 - Software Design

ているホスト名について補完することもできま
す。/etc/hostsはホスト名と IPアドレスの関
係を記述する設定ファイルの1つで、DNSへ
の名前解決前に参照するのでシステム起動時、
ネットワーク未接続でDNSに問い合わせでき
ない場合などに記述して利用します。
　何も入力していない状態でAlt-@をタイプす
ると、/etc/hostsに記述されているエントリす
べてを候補として表示します。

$ Alt-@を入力
::1 ff02::1 oakley
axl ff02::2 oakley.example.com
 (..略..)

　途中まで入力した文字列にマッチするホスト
名があれば、Alt-@を一度タイプするとホスト
名が、2回タイプするとホスト名とFQDNが候
補として表示されます。

$ oak Alt-@
oakleykk
$ oak Alt-@ Alt-@
oakley oakley.example.com

　インストールされていないコマンドを実行し
ようとすると、「そのコマンドはＸＸＸという
パッケージにあるのでインストールしてくださ
い」と補完（？）してくれる機能もあります。ディ
ストリビューションによってはパッケージ名を
教えてくれたり、直接インストールしてくれる
場合もありますが、DebianとUbuntuではcom

mand-not-foundという名前のパッケージをイ
ンストールすれば同様の機能が利用できます。
command-not-foundパッケージをインストール
する前は、不明なコマンドを入力すると冷たく
あしらわれますが、

$ apgí
-bash: apg: コマンドが見つかりません

　インストール後は、ちょっと優しくなります。

$ apgí
The program 'apg' is currently not
installed. To run 'apg' please ask your
administrator to install the package 'apg'
apg: command not found

　bash-completionパッケージをインストール
すると、̃/.ssh/configを見てsshコマンドの後
に続くホスト名を補完してくれます。また、コ
マンドオプションの候補表示、補完もできます
（図15）。著者の記憶が確かなら、bash-comp

letionはzshの補完機能からポーティングされ
たと認識しています。違ってたらごめんなさい。
でもこれも便利な機能ですよね。

コマンド履歴利用で、もう長い
コマンドなんて打たないよ絶対

　希望する処理によっては数多くの長いオプショ
ン、長い引数を指定することがあります。再度
同じコマンドを実行すればすむ場合はコマンド
履歴を利用しましょう。
　直前のコマンドを再実行したい場合はたった
2文字の「!!」で実行できます（図16）。
　historyコマンドで履歴を出力すると行頭に
履歴 IDが表示されるので、これを使って再実
行もできます（図17）。
　ちょっとした間違いの後でもう一度そのコマ
ンドラインを入力するかと思うと……二度とシェ
ルを使いたくないですね。それなら履歴を使っ
てコマンドラインを呼び出し、カーソルを移動
して間違ったところをなおせばいいのです。
　単純に直前の実行履歴なら、上矢印キーか、
Ctrl-pを打つことでコマンドラインに出てきま

$ ls -kk オプション指定時の「-」だけ入力してTabを2回押せばオプション候補が表示される
--all --directory --ignore= --show-control-chars
--almost-all --dired --indicator-style= --si
 （..略..）

 ▼図15　bash-completionによるオプションの補完例

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

30 - Software Design Jun. 2016 - 31

す。数回押すことでさらに前の履歴にもさかの
ぼれます。さかのぼり過ぎたら、Ctrl-nか下矢
印キーで新しい履歴のほうに戻ることができます。
　矢印キーを押し続けるにはつらいぐらい昔の
履歴の場合は検索が楽ですね。Ctrl-rを押して
検索文字列を入力すると履歴から表示されます。
さらにCtrl-rを続けて押せば次に古い検索結
果にマッチする実行履歴が表示されます。目的
の履歴までたどり着いたらíを押せば実行で
きます。íではなくkを押せば、そのコマ
ンド履歴を編集して実行できるようになります
（図18）。
　検索結果をたどりすぎた場合は、Ctrl-sで新
しいほうの検索結果に戻ることができます。た
だし、Ctrl-sはターミナルのロックキーに割り
当てられていることがあり、この機能を利用す
る場合はsttyなどでロックしないように設定変
更する必要があります（図19）。

　検索結果の履歴から新しいほうに戻る場合は
プロンプトの表示が変わります（図20）。
　直前のコマンドがわかっていて、少しだけ訂
正して再利用する場合は「^」で置換して実行で
きます（図21）。ただし、この「^」を利用した履
歴置換は、 コマンドライン左側から最初に見つ
かった文字のみが置換対象になります。
　行すべてを対象とする場合はちょっと入力数
が増えるのですが図22のように行います。直
前の履歴である「!!」で、「:」の後に行全体に置
換を適用する「g」スイッチを指定し、置換オプ
ション「s/置換前/置換後/」と指定します。最

$ ssh -l ryosuke -i ~/.ssh/id_rsa-prime -p 10022 -6 primeí コマンド例
$!!í 再実行
ssh -l ryosuke -i ~/.ssh/id_rsa-prime -p 10022 -6 prime

 ▼図16　直前のコマンドを再実行

$ history 3í
 2243 ssh oakley
 2244 ssh endeaver
 2245 history 3
$!2244í 履歴ID 2244は「ssh endeaver」。これを再実行
ssh endeaver

 ▼図17　historyコマンドの履歴から再実行

$ Ctrl-r
(reverse-i-search)`': 検索の入力プロンプト
(reverse-i-search)`ssh': ssh -l ryosuke srv01.example.com
 ↑「ssh」と入力して検索結果から一番新しいコマンドが表示される
(reverse-i-search)`ssh': ssh -l ryosuke prime さらにCtrl-rを押すと、もうひとつ古い検索結果履歴が表示される

 ▼図18　検索を使った履歴利用

$ stty -a
↑出力の中に「stop = ^S」があれば、ターミナルがCtrl-sでロックされる
$ stty stop undef stopを未定義に設定する
$ stty stop ^S stopを戻す場合は「^S」を定義する

 ▼図19　 Ctrl-sがロックキーになっていた場合の設定変更

$ ssh srv01.example.comí
$ ^1^2^í
ssh srv02.example.com
$ scp arch.tgz ryosuke@192.168.1.22:/tmp/í
$ ^.1.^.5.^í
scp arch.tgz ryosuke@192.168.5.22:/tmp

 ▼図21　^を使った置換

$ cp img_016.jpg img_016-01.jpgí
$!!:gs/16/17/í
cp img_017.jpg img_017-01.jpg

 ▼図22　高度な置換
$ Ctrl-r
(reverse-i-search)`': Ctrl-rの検索の入力プロンプト
(reverse-i-search)`ssh': ssh prime
 ↑「ssh」と入力して検索結果を古いほうにたどる
(i-search)`ssh': ssh prime
 ↑Ctrl-sを押して新しいほうの検索結果をたどる

 ▼図20　Ctrl-rからCtrl-sへの切り替え

最初につまづかないためのbashひとめぐり 第 章 2

32 - Software Design

初の「!!」は履歴IDさえわかれば「!2024:gs/16/
20/」のように変更することもできます。
　ここで紹介したコマンド履歴の操作一覧を表

2にまとめます。

「展開」して入力数を減らして
楽しよう

　コマンドラインはどれだけ入力数を減らせる
かが仕事を楽にすることにつながります。
kでのファイルやコマンドの補完はそれを
実践する例ですが、特別な文字を使って入力文

字数を減らすこともできます。「覚えたもん勝ち」
の「展開」を極めてみませんか？
　とくに意識せずによく利用しているのは「*（ア
スタリスク）」を使ったパス名展開だと思います
（表 3）。「任意の文字列」に展開される「*」は
「*.jpg」や「*.txt」など特定パターンと組み合わせ
て利用すると思います。パス名展開にはほかに
任意の1文字に添加する「?」や、「[]」で囲んだ
内の任意の1文字に展開するパターンがあります。
　まず、すでに出てきた「~（チルダ）」はホーム

例 展開前 展開後
cpの例 cp script_01.txt{,.bak} cp script_01.txt script_01.txt.bak
mkdirの例 mkdir -p rpm/{RPMS,SOURCES,SPECS,

SRPMS}
mkdir -p rpm/RPMS rpm/SOURCES rpm/SPECS rpm/
SRPMS

mvの例 mv example.txt{.bak,} mv example.txt.bak expample.txt
touchの例 touch {1,11,111,1111} touch 1 11 111 1111

 ▼表5　ブレース展開の例（1）

検索 ショートカットキー 備考
直前のコマンド実行 !! －
直前の実行コマンド検索 Ctrl-pもしくは上矢印 さらに前の履歴に行く場合は同じキーを叩く
履歴を新しい方に戻る Ctrl-nもしくは下矢印 Ctrl-pや上矢印キーでたどった履歴を戻る
最新実行履歴を複数表示 history ［数値］ 指定した数値だけ履歴を表示する
履歴 IDから再実行 !［履歴 ID］ historyコマンドで調べた履歴 IDを指定する
履歴の検索 Ctrl-r 続けて検索文字を入力する。求めるコマンド

ラインが表示されたらTABを押せばそれを編
集できる

履歴検索を戻る Ctrl-s 検索結果でたどった履歴を戻る。Ctrl-sがター
ミナルのロックに割り当てられている場合は
sttyなどで解除する必要がある

直前のコマンドを置換して実行 ^置換対象文字^変更文字列^ 複数対象文字の左隅しか置換されない
直前のコマンドの文字列置換を
行全体対象にして実行 !［履歴 ID］:gs/置換前 /置換後 / －

 ▼表2　コマンド履歴操作

チルダ 意味 用途例
~ ホームディレクトリ cd ~は引数なしのcdコマンド実行結果と同じ
~- 直前にいた作業ディレクトリ cd ~-はcd -と同じ
~+ 今の作業ディレクトリ pwdの実行結果と同じ

 ▼表4　チルダ展開

特殊文字 意味 用途例

* 任意の文字列 IMG_*.jpgと指定すると先頭が IMG_で始まり、拡張子が .jpgで終わる
ファイル名に展開される

? 任意の1文字 IMG_0?.jpgと指定すると IMG_01.jpgから IMG_09、IMG_0a.jpgから
IMG_0z.jpgなどに展開される

[] 囲まれた中の任意の文字 IMG_[0-9][0-9].jpgでは IMG_00.jpgから IMG_99.jpgまで展開される

 ▼表3　パス名展開

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

32 - Software Design Jun. 2016 - 33

ディレクトリPATHに展開されます（表4）。「~-」
とすると環境変数OLDPWDに入っている1つ
前にいた作業ディレクトリ、「~+」とすると環境
変数PWDに入っている今の作業ディレクトリ
PATHに展開できます。1～4文字も節約でき
るなんて儲けモンですね。
　「{」「,」「}」でcpやmv、複数ディレクトリ作
成などがすこぶるはかどるブレース展開も便利
です。書き方は2通りあります。

［前置詞］{文字と「,」}［後置詞］

　省略可能な「前置詞」と「後置詞」の間に「{ }」
と文字例と「,（カンマ）」を使うと、前置詞＋文
字列＋後置詞を展開します。この場合のブレー
ス展開の例を表5に示します。

［前置詞］{始..終}［後置詞］

　省略可能な「前置詞」と「後置詞」の間に「{ }」
で指定された範囲の文字列で、前置詞＋文字列
＋後置詞を展開します。この場合のブレース展
開の例を表6に示します。
　「展開」はちょっと使い慣れるとコマンドする
のが楽しくなるスパイスだと思っています。

bashをカスタマイズし
たい

　bashの設定ファイル .bashrcを編集して使い
やすい環境に変更してみましょう。

プロンプトのカスタマイズ

　見た目が味気ない（と思う人もいる）プロンプ
トを変更してみましょう。ユーザ名、ホスト名、

作業ディレクトリが表示されているプロンプト
が出ていると思います。これは環境変数PS1

に指定されている値を編集することで柔軟に変
えることができます。色をつけたり、時刻を表
示したり、複数行にすることもできます。
　簡単な例として、自分の今のPS1の値を確
認し、時計を表示するようにしてみましょう。

ryosuke@mustain:~$ echo $PS1í
 現在のPS1を表示する
¥u@¥h:¥w¥$
ryosuke@mustain:~$ PS1="¥u@¥h:¥w:¥t¥$ "í
 ↑途中に「\t」を挿入する
ryosuke@mustain:~¥:03:28:38$
 プロンプトに時刻が表示されるようになった

　エスケープする文字が多かったりで非常に編
集しにくいですが、一度凝り始めるとなかなか
諦められなくなりますので時間があれば試して
みましょう。
　rootユーザを使っている場合はユーザへの警
告にユーザ名部分を赤色にしてみましょう。
rootユーザのbash設定ファイル/root/.bashrc

にPS1を設定すればrootユーザになった際に
反映されます。プロンプトの色はASCIIカラー
コードを指定します。

PS1="¥[¥e[0;31m¥]¥u¥[¥e[m¥]@¥h:¥w¥$ "

　最初と@前の「¥[」と「¥]」はプロンプト場所調

例 展開前 展開後
touchの例（1） touch hello_{1..5} touch hello_1 hello_2 hello_3 hello_4 hello_5
touchの例（2） touch hello_{a-f} touch hello_a hello_b hello_c hello_d hello_e hello_f
touchの例（3） touch hello_{{1..3},{a..c}} touch hello_1 hello_2 hello_3 hello_a hello_b hello_c
forの例 for i in {1..3}; do echo $i done for I in 1 2 3; do echo $i done

 ▼表6　ブレース展開の例（2）

 ▼図23　 rootユーザの .bashrcにカラープロンプトを
設定してわかりやすくする（グレー部分が赤字）

最初につまづかないためのbashひとめぐり 第 章 2

34 - Software Design

$ while ["$i" -le 100]; do mv IMG_$i.jpg img_$(printf %03d $i).jpg; i=$((i+1)); done

 ▼図24　一行で書いたwhile文の例

整用です。色は「¥e[色指定¥]」と「¥[¥e[m¥]」で
囲みます。¥uはユーザ名、¥hはホスト名、¥w
は作業ディレクトリを表示します（図23）。
　Arch Linuxのbashプロンプト資料がとても
わかりやすくて有用だったので、参考にすると
良いでしょう。

・Bash カラープロンプト（Arch Linux）

https://wiki.archlinuxjp.org/index.php/Bash_
カラープロンプト

別名設定でオプション忘れるぐら
い楽しよう

　よく使うコマンドがある、しかもオプション
もいつも変わらない。そんなときには別名を設
定できるaliasを設定しましょう。たとえば著
者はdateの日時出力フォーマットをいつも忘
れるので、簡単aliasにして便利に使ってます。
　いつも使うならば ̃/.bashrcに記述しましょ
う。一例をリスト1に挙げます。printdateは日
付を「2016-02-29」形式で出力するので、「cp
-a /etc ./backup-etc-$(printdate)」でバッ
クアップする際に便利です。ytdlmp3は you

tube-dlという動画サイトから動画をダウンロー
ドするコマンドを使いますが、音声だけをmp3

で変換出力するaliasです。
　̃/.bashrcに記述した後は「source ~/.bashrc」
を実行すると編集したaliasが有効になります。
「alias -p」でalias一覧を表示して確認もしま
しょう。ちなみに、aliasを解除する場合は、
unaliasコマンドを使います。

自作コマンドをインストールされた
コマンドのように実行したい

　bashの設定ファイルのPATHに特定のディ
レクトリを作り、そこに実行ファイルを配置し
ましょう。最近のLinuxディストリビューショ
ンの一部では、bashの設定ファイルにリスト2

の数行が入っています。
　もし入ってなければ追記しておきましょう。
これは、環境変数HOMEで参照できるユーザ
のホームディレクトリ以下にbinディレクトリ
が存在すれば、環境変数PATHにそのbinディ
レクトリを追加する処理です。これにより、̃/

bin/ディレクトリに作成したスクリプトや実行
ファイルを配置し、chmodコマンドで実行権を
付加（例：chmod +x 実行ファイル）すること
で「/home/ryosuke/bin/実行ファイル」と絶対
パスを指定しなくてもプログラムを実行できる
ようになります。

条件制御・繰り返し実行

forで繰り返す

　シェルは条件制御や繰り返しもカジュアルに
使えます。このような処理は、CやJava、Ruby

のほうが効率が良いかもしれません。100個程

alias printdate='date +%Y-%m-%d'
alias ytdlmp3="youtube-dl -x --audio-ｭ
format mp3"

 ▼リスト1　aliasの設定例

set PATH so it includes user's private ｭ
bin if it exists
if [-d "$HOME/bin"] ; then
 PATH="$HOME/bin:$PATH"
fi

 ▼リスト2　bash設定ファイルの一部抜粋

$ for i in {1..100}; do
 if [$(($i % 3)) -eq 0]; then
 mv IMG_$i.jpg img_$(printf %03d $i)-AHO.jpg
 else
 mv IMG_$i.jpg img_$(printf %03d $i).jpg
 fi
done

 ▼図25　if文を使って3の倍数に「-AHO」を入れる

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

https://wiki.archlinuxjp.org/index.php/Bash_%E3%82%AB%E3%83%A9%E3%83%BC%E3%83%97%E3%83%AD%E3%83%B3%E3%83%97%E3%83%88

34 - Software Design Jun. 2016 - 35

度のファイルの名前を変えるといった、プログ
ラムを書くほどでもないただの繰り返し対応が
可能な場合など、状況によってはシェルで処理
できるのが便利ですよ。
　たとえば、あるディレクトリにある画像ファ
イルIMG_1.jpgからIMG_100.jpgを全部小文字
に、3桁数値のファイル名にしたいと思ったら
次のように実行します。

$ for i in {1..100}; do
 mv IMG_$i.jpg img_$(printf %03d $i).jpg;
done

　forは次の書式で繰り返し処理を指定できる
構文です。

for 変数名 [[in 単語リスト] ;] do ｭ
処理 ; done

　上記の例では、変数名は「i」です。inの後に
続くリストを展開し、それを処理で利用できま
す。ここでは「{1..100}」をリストとして指定
します。これは1から100までをリストする書
式です。処理はmvコマンドを実行します。
「printf %03d $i」は、有効桁数 3桁で前の空
白は0で埋めて出力するprintfコマンドを利
用して3桁数値を使います。これにより「mv
IMG_001.jpg img_001.jpg」が順番に1から100

まで繰り返されます。
　forはC言語風にも書けるので次のものでも
同じ処理になります。

$ for ((i=1; i<=100; i++)); do
 mv IMG_$i.jpg img_$(printf %03d $i).jpg
done

whileで繰り返す

　forに続き、whileも繰り返しする構文です。

while リスト; do 処理; done

　リストが、終了ステータス0を返せば「処理」

を実行します。次のものは forで処理したのと
同じ内容です。ここでリストは「["$i" -le
100]」です。変数 iが100以下なら「処理」のmv

コマンドを実行します。

$ i=1
$ while ["$i" -le 100]; do
 mv IMG_$i.jpg img_$(printf %03d $i).jpg
 i=$((i+1))
done

　この例では見やすいように改行していますが、
各行を「;」で区切れば図24のように1行で実行
することもできます。

ifで思いとどまってみる

　ifで、条件にマッチした場合に処理を行うこ
とができます。

if リスト1; then リスト2; else リスト3; fi

　リスト1を実行した結果が0ならばリスト2

を処理、0以外ならばリスト2は処理せずにリ
スト3を実行します。本来ならばもう少し詳し
く「elif」も説明しなければならないと思います
が、ここはbash再入門の場、気になった方は
マニュアルを見てください。
　さて、せっかく条件分岐ができるわけなので、
先程から処理している画像ファイル名の変更で、
3の倍数だけ「-AHO」の文字を入れることにし
ましょう（図25）。もうこのネタ知ってる人い
ないんじゃないかと不安ですが。
　for文の中に ifとelseの文が入っています。
if直後の「[$(($i % 3)) -eq 0]」は、変数 i

を3で割った剰余が0とイコール（-eq）だった
場合に続くリストを処理します。

小技集

「-」で始まるファイルを作ってしまっ
たので削除したい

　うわぁぁぁー。何かの手違いで記号が混じっ

最初につまづかないためのbashひとめぐり 第 章 2

36 - Software Design

たファイルを作ってしまった～。「#」や「$」な
どが混じったファイルができてしまっています
ね（図26）。ホント、タイプミスかなんかでしょ
うけど、どうやってこんなの作ったの？と過去
の自分を呪い殺したくなることが2日に1回ぐ
らいあります。そういうときも慌てないで調べ
ることが大切です。
　「#」や「$」、空白などが混じったファイルは
比較的容易に対応でき、「\（バックスラッシュ）」
でエスケープするか「'（シングルクォート）」で
クォートすると対応できます。厄介なのは「-」
で始まるファイル名です。

$ rm -help

とすれば当然rmコマンドのヘルプが出力され
ます。このケースは「\」も「'」も効きません。こ
の場合は「--（ハイフン2つ）」を使います。次の
ように実行すると「--」以降はオプションではな
いので「--help」は引数として扱われます。

$ rm -- --help

引数文字数制限を超える大量の
ファイルを操作したい（どちらかと
いうとcpやmvの小技）

　うっかり、あるディレクトリにファイルをポ
ンポン作っていたら大量になってしまった。こ
うなると lsしても表示に時間がかかってしまい
ます。さすがに扱いにくくなったので整理整頓
としていったん別のディレクトリに移動しよう
と思い、「mv * ../bak」とやろうとすると次の

ようにエラーが出ました。

$ mv * ../bakí
-bash: /bin/mv: 引数リストが長すぎます

　あらら。ファイルを移動できません。1つ1

つ移動しないといけないでしょうか。
　これはシェルの機能ではないのですが、シェ
ルを使っているうえでぶつかりやすい障壁なの
でここで押さえておきます。
　mvを使う際、引数に移動する対象ファイル
を指定しますが、「*」を利用するとシェルは実
行前に実ファイル名に展開します。たとえば「mv
* ../bak」は「mv gihyo-001.txt gihyo-002.
txt （略） ../bak」と展開されます。この引数が
ARG_MAXを超えるとエラーが出ます。
　Linuxは引数制限値ARG_MAXを持ってい
ます。手元のLinuxでは2,097,152文字でした。
これはgetconfコマンドで参照できます。

$ getconf ARG_MAXí
2097152

　この場合は対象ファイルを lsからxargsコマ
ンドに預けて、mvコマンドの移動先ターゲッ
トディレクトリ指定オプション「-t」を使うとエ
ラーが出ません。

$ ls | xargs mv -t ../bak

　lsコマンドでは「*」などの引数を指定してい
ないので先ほどの引数展開のエラーは出ません。
xargsは指定されたコマンド（ここではmvコマ

ンド）を、入力された引数を適
切に分割して実行するので、分
割払いのイメージで処理が進め
られます。
　mvコマンドは「mvｽ元ファイ
ルｽ移動先ファイル」の書式で、
移動先ファイルだけを指定する
ことはできません。xargsから

$ ls -lí
合計 4
-rw-r--r-- 1 ryosuke ryosuke 0 4月 7 15:41 #comments
-rw-r--r-- 1 ryosuke ryosuke 0 4月 7 15:40 $$fuga
-rw-r--r-- 1 ryosuke ryosuke 0 4月 7 15:39 --help
-rw-r--r-- 1 ryosuke ryosuke 0 4月 7 15:40 >hoge
-rw-r--r-- 1 ryosuke ryosuke 0 4月 7 15:41 Program Files
-rw-r--r-- 1 ryosuke ryosuke 33 4月 7 02:16 var_test.sh

 ▼図26　記号が混じったファイル例

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

36 - Software Design Jun. 2016 - 37

のファイル指定を受けるために「-t」オプション
を使って移動先ディレクトリを指定することで
「mvｽ -tｽ移動先ｽ元ファイル」の書式を利用でき
るようになります。これはcpコマンドでも利
用できます。

ディレクトリを行ったり来たりする
のにPATHを指定するのがつらい

　直前にいた作業ディレクトリに戻りたいとき
は「cd -」を実行すると、環境変数OLDPWDを
参照して戻ることができます。移動した後には
OLDPWDには「cd -」を実行していた作業ディ
レクトリが入っているので再度「cd -」を実行す
ることで2つのディレクトリを行ったり来たり
できますね。
　ワンライナーでディレクトリ移動してプロセ
ス起動して戻ってくることもできます。図27は、
bashのディレクトリスタックに追加・削除し
て移動・処理する方法です。これならば戻るディ
レクトリを指定する必要なく、移動先で処理し
て戻ってこられますね。
　pushd、popdはbash独自の内部コマンドなの
で、POSIX準拠を目指す場合は図28のサブシェ
ルを利用する方法もあります。「(」「)」でコマ
ンドを囲むとサブシェルという子プロセスを起
動して処理されます。

プログラム実行後にプロンプトが
帰ってこない

　重い処理をさせるとプロンプトが戻るまでに
時間がかかることがあります。実行中のプロセ
スを止めるにはCtrl-cを押すと、プロセスを
終了（停止ではなくて）することができます。し
かし、処理中の場合もありますので、Ctrl-zで
停止して操作対象ファイルに変化があるか、ロ

グに実行記録があるかなど、様子を見るのがい
いでしょう。

ログインしていたリモートセッション
が切れたがプロンプトが帰ってこない

　リモートホストにSSHなどでログインして、
しばらく放置しておくと、SSHサーバ側でタ
イムアウトして切れてしまったにもかかわらず
プロンプトが帰ってこないことがあります。こ
の場合、入力した文字が表示されないし、
Ctrl-cでの終了も効かないことが多々あります。
シェルの機能ではありませんが「~.」を入力する
ことでプロンプトを「こちら」に持ってくること
ができるようになります。

突然入力を受け付けなくなった

　なにかのタイミングでCtrl-sを押してしまい、
ターミナルをロックした可能性があります。
Ctrl-qでロックを解除しましょう。ターミナル
をCtrl-sでロックしないよう設定する方法は、
前述の「コマンド履歴利用で、もう長いコマン
ドなんて打たないよ絶対」で明かしたので試し
てみるのもいいでしょう。

bashで書いたスクリプトが
POSIX sh準拠か調べたい

　bashに慣れてしまった体でシェルスクリプ
トを書いていると、bash専用の文法や機能を使っ
てしまうことがあります。うっかりそのスクリ
プトがほかのUNIX系OSで稼働することになっ

$ pushd /tmp/í ディレクトリスタックに現在のディレクトリを入れて指定した場所に移動
/tmp /home/ryosuke/ ディレクトリスタックが表示される
$ pwdí /tmpにいることを確認（処理）
/tmp
$ popdí ディレクトリスタック先頭を削除してそこに移動（戻る）
/home/ryosuke

 ▼図27　 bashのディレクトリスタックに追加・削除して移動・処理する

$ (cd /tmp; pwd); pwdí
/tmp /tmpに移動した後の1回目のpwdの実行結果
/home/ryosuke (cd /tmp)後のpwdの実行結果

 ▼図28　サブシェルを利用した図27と同等の処理

最初につまづかないためのbashひとめぐり 第 章 2

38 - Software Design

た際、スクリプトの先頭に「#!/bin/sh」とあれ
ば「ああ、動くかもな」と思ってしまいます。
　書いたスクリプトがbashの機能を使わずに
POSIX準拠か調査してみましょう。調査方法
はcheckbashismsを使います。Debian系Linux

ではdevscriptsというパッケージに含まれます。
　例として、ディレクトリスタックに入れる・
出すを行うpushd・popdを使ったスクリプト
「pushd-popd.sh」を用意します。pushd/popdは
bashの機能なので、図29のとおり checkbash

ismsにかけると、「((push|pop)d)は bash専用」
との警告が出力されます。この警告がなくなる
ように編集するか、もうbashでしか動かしちゃ
ダメ、と「#!/bin/bash」にスクリプトの先頭を
変更するかは自由です。

ちょっと知ってると便利
コマンドライン編集ショートカットキー

　カーソル移動以外の、ちょっと知っていると
便利な編集ショートカットキーを表7にリスト
アップしておきます。
　bashはreadlineライブラリを利用するので、
気軽にあなただけのショートカットキーを作成
できます。システム全体で有効にするショート
カットは/etc/inputrcに記述、個人のショート

カットキーはホームディレクトリに .inputrcを
用意します。
　ショートカットキーの記述形式は「キーシー
ケンス：機能名もしくはマクロ」です。キーシー
ケンスは「control-」や「\C」でlキー、「Meta-」
や「\M」でmキーを指定することができます。
マクロはreadlineで用意している機能を指定す
るか、入力する文字列を指定します。
　たとえば個人用に、Ctrl-oをタイプしたら「>
/dev/null」が表示されるショートカットを作っ
てみましょう。.inputrcファイルを用意したら
新しいシェルを開くか、ログインしなおします。
「bind -s」で確認することができます。

$ cat ~/.inputrcí 個人用ファイル用意
control-o: " > /dev/null"
$ bind -sí 新しいシェルで確認
"¥C-o": " > /dev/null"
$ ps ax ここでCtrl-oを入力
$ ps ax > /dev/null 期待どおりの表示がされる

　bashやreadlineのマニュアルを参照して、さ
らに凝ったショートカットを作ってみてはいか
がでしょうか。

第1章、2章のまとめ

　bashは現役でLinuxのフロントエンドです。
Mac OS Xもターミナルを開けばbashが起動
します。UNIX系OSを使っていれば、なんだ
かんだで使わないといけない道具なので、少し
でも便利に使えるようになれば幸いです。ﾟ

コマンド 操作
Alt-u 単語のカーソルより右を大文字にする
Alt-l 単語のカーソルより右を小文字にする
Ctrl-t カーソルのある文字と左の文字を入れ替

える
Alt-c カーソルのある単語の先頭文字だけ大文

字にする

 ▼表7　 コマンドライン編集のショートカット

$ cat pushd-popd.shí
#!/bin/sh
pushd /tmp/
popd
$ checkbashisms pushd-popd.shí
possible bashism in pushd-popd.sh line 2 ((push|pop)d):
pushd /tmp/
possible bashism in pushd-popd.sh line 3 ((push|pop)d):
popd

 ▼図29　POSIX準拠のスクリプトかを調べる

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

39 - Software Design Jun. 2016 - 39

はじめに

　ご無沙汰しております。シェル芸おじさんこ
と上田です。本章はシェルスクリプトの書き方
について扱います。このテーマ、ベテランの人
に話をさせると、それぞれ全然違うことを言い
ます。何で違うことを言うのかというと、シェ
ルスクリプトは用途が広すぎて、書き方が用途
に応じて変わるからだと筆者は考えています。
入門者には文法も大切ですが、最初に偏りすぎ
るのも防ぐ必要があります。そこで、本章では
文法を紹介しつつも、用途に応じたシェルスク
リプトの書き方について一緒に考えていきたい
と思います。今回の特集はbashですが、shの
話も出てきますので混乱しないように適宜説明
します。
　本章の内容は、初心者と言っても、ある程度
UNIX系OSの知識を持つ人が対象となります。
本章がギブアップだという方は、次章のめくる
めくシェル芸の世界に飛んでいただければと。

シェルスクリプトって何？

　まず、シェルスクリプトとは、シェル上でコ
マンドを呼び出していく手順を、まとめてファ
イルに書いて実行できるようにしたものです。
次の例は、ファイル／ディレクトリの一覧から

ディレクトリを除いて、ファイルの容量だけを
出力して、小さい順に並べるという処理です。

　もっと簡単な方法があるかもしれませんが、
とりあえず筆者はこれくらいしか思いつきませ
んでした。ちなみに環境はUbuntu 14.04 LTS

のbash上です。
　これが1回で済むならシェルで上記のように
打ち込んで終わりですが、何かのディレクトリ
の監視をしていて頻繁に打たなければならない
状況を考えてみましょう。この場合、図1のよ
うに filesizerankというファイルに今のコマン
ドを保存しておき、図1の②のようにbashと
いうコマンドに読み込ませてやると、同じ処理
が何度もできるようになります。このようなファ

$ ls -la ¦ grep ^- ¦ awk '{print $5,ｭ
$NF}' ¦ sort -ní

 ▼図1　シェルスクリプトを作って実行する

↓①エディタなどで次のようなファイルを作っておく
$ cat filesizerankí
ls -la ¦ grep ^- ¦ awk '{print $5,$NF}' ¦ ｭ
sort -n
↓②実行する
$ bash filesizerankí
18 .gnuplot_history
26 a.bash
49 filesizerank
 （..中略..）
50269 .bash_history
310911150 TESTDATA.gz
1157730515 imgs.tar.gz

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

ファイルに複数のコマンドを書き並べて保存しておくと、シェルスクリプトとして一度の指示でまと
めて実行できます。同じ処理を繰り返すとき、自動化するときに便利です。多くの場面で使われる
シェルスクリプトですが、自由度が高く、汎用性や即興性、実行時間などのトレードオフで書き方
も変わります。実際のスクリプトを読んでその違いを考えましょう。

 Author 上田 隆一　（うえだ りゅういち）　千葉工業大学／USP友の会

シーンに応じたシェルスクリプトの
自在な書き方・使い方

第 章 3

40 - Software Design

イルは、「シェルで実行するスクリプト」であり、
これを我々は「シェルスクリプト」と言っていま
す。シェルはash、bash、csh、tcsh、dash、zsh、
……といろいろありますが、これらを使って実
行するスクリプトはすべてシェルスクリプトと
呼んで良いでしょう。ただし、場合によっては
bashのスクリプトを「bashスクリプト」と明示
的に言う場合があります。
　シェルスクリプトでのコマンドの呼び出し方
はパイプでつなぐ方法だけではありません。た
とえばリスト1は、あまり使い道はないかもし
れませんが、2つのファイルの名前を交換する
ためのシェルスクリプトを雑に書いたものです。
ファイルを移動するためのmvというコマンド
を3回呼び出しています。図2はこのchangeと
いうシェルスクリプトを使っている様子を示し
ています。②でchangeと書いたあとにa、bと
ファイル名を指定していますが、これがリスト
1のシェルスクリプト内の$1、$2に置き換わり
ます。
　この2例でわかるように、シェルスクリプト
とは「コマンドを使う手順をそのままファイル
に書いたもの」と言えます。コンピュータに作
業をさせる手順を書いたものなので、プログラ
ムの一種ということになります。ただ、プログ
ラムと言っても呼び出すのは関数ではなくコマ
ンド（プロセスが違う別のプログラム）なので、
普通のプログラミング言語とはしくみも役割も
書き方も違います。「シェルの代わりに○○を
使いたい」という発言をTwitterでよく見ますが、
それでは済まない場合はまだ多いと言えます。

さまざまな使い方を
されるシェルスクリプト

　代わりのないものなのでシェルスクリプトは
さまざまな用途で使われます。筆者の主観です
が、用途は次の3つに分かれるようです。

・	システム用（OS起動時のサービスの立ち上げ、
インストーラなど）

・	ユーザ用1（よく行う作業の自動化）
・	ユーザ用2（その場限りの作業の即興プログ
ラミング）

　本章では最初の2つについて、実例を読みな
がら解説します。3つめはワンライナーか、ス
クリプトにしてもすぐ捨てるようなもので、第
4章で扱うような類のものです。
　冒頭にも述べましたように、上記3用途のシェ
ルスクリプトはいずれも「シェルスクリプト」な
のですが、書き方や気をつけなければならない
ことが大きく違います。この違いは「汎用性」と
「時間（スクリプトを書く時間と計算時間）」のど
ちらを重視するかで変わってきます。

システム用スクリプト
（rcスクリプト）を読む

　まず、システム用のものの例として、OSが
立ち上がるときに動作するシェルスクリプトを
見てみましょう。OSの起動時には、Webサー
バのようにコンピュータに常駐するプログラム
がいくつも立ち上がりますが、UNIX系OSで
は伝統的にこの処理にシェルスクリプトが使わ
れており、今も使われています。
　筆者が使っている某所のサーバ（Ubuntu

 ▼リスト1　 ファイルの名前を交換するシェルスクリプト
（changeという名前のファイルに保存）

mv "$1" "$1.backup"
mv "$2" "$1"
mv "$1.backup" "$2"

 ▼図2　シェルスクリプトchangeを使う

↓①次の2つのファイルa、bを交換してみる
$ cat aí
これはファイルa
$ cat bí
これはファイルb
↓②実行
$ bash change a bí
↓③名前が入れ替わっている
$ cat aí
これはファイルb
$ cat bí
これはファイルa

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

40 - Software Design Jun. 2016 - 41

Server 14.04.1 LTS）を例にとると、/etc/init.

dの下に図3のようなファイルがあります。こ
れらはrcスクリプトと呼ばれるシェルスクリ
プトで、コンピュータが起動するときにあるルー
ルに従って実行されます。
　この中でも短い部類に入る/etc/init.d/sudo

ファイルを、リスト2にすべて示します（rcス
クリプト特有のヘッダは除きました）。これを
読むのは筆者でもたいへんで、初心者の方は必
ずしもすべて理解することはありません。しかし、
最初のうちに知っておくと良いことが散りばめ
られていますので、ちょっと読んでみましょう。
　まず、1行目ですが、#! /bin/shとあります。
#!やこの行自体は「シバン（shbang）」と呼ばれ
ます。図1では、bash filesizerankというよ

うにbashにシェルにスクリプト filesizerankを
渡して実行していたのですが、シバンの行があ
ると、図4のように filesizerank自体をプログ
ラム扱いして実行できるようになります注1。
　シバンを見るとわかりますが、/etc/下のシェ
ルスクリプトはshのものが多いです。この手
のスクリプトはさまざまな環境で動作する必要
があり、bashがインストールされていない環
境で使われる場合も考えるべきだからです。本
特集で扱っているのはbashなので補足してお
くと、shの文法はbashでも使えます。逆は成
り立たないことがあるので、注意が必要です。
　次にリスト2の3行目ですが、. <ファイル（ス
クリプト）名>という文になっています。これは、
スクリプトを読み込んで実行するという意味で
す。端末から、

$. filesizerankí

注1） 実はシバンがなくても使っているシェルがbashならbash
で動作します。ただ、別の環境だと別のシェルで動きますし、
パッと見て何のスクリプトかわからなくなるのであまりシ
バンは省略されません。

 ▼図4　filesizerankにシバンを付けて実行

↓このようにシバンで/bin/bashを使うと明示
$ cat filesizerankí
#!/bin/bash
ls -la ¦ grep ^- ¦ awk '{print $5,$NF}' ¦ sort -n
↓ファイル自体を実行できるようにパーミッションを変える
$ chmod +x ./filesizerankí
↓実行
$./filesizerankí
 （..図1と同じ結果..）

 ▼図3　/etc/init.d下のシェルスクリプト

$ ls -1 /etc/init.d ¦ headí
README
apache2
apparmor
automaked
console-setup
 （..略..）

01 #! /bin/sh
02
03 . /lib/lsb/init-functions
04
05 N=/etc/init.d/sudo
06
07 set -e
08
09 case "$1" in
10 start)
11 # make sure privileges don't persist across reboots
12 if [-d /var/lib/sudo]
13 then
14 find /var/lib/sudo -exec touch -d @0 '{}' ¥;
15 fi
16 ;;
17 stop¦reload¦restart¦force-reload¦status)
18 ;;
19 *)
20 echo "Usage: $N {start¦stop¦restart¦force-reload¦status}" >&2
21 exit 1
22 ;;
23 esac
24
25 exit 0 ※左の2桁の数字は、説明用の行番号（リスト3、4も同様）

 ▼リスト2　/etc/init.d/sudo

シーンに応じたシェルスクリプトの
自在な書き方・使い方 第 章 3

42 - Software Design

とやってみると filesizerankが実行されるので
試してみましょう。ところで/lib/lsb/init-func

tionsでは何を実行しているのか気になるとこ
ろですが、これは何も実行していません。この
スクリプトには関数がいくつか定義されていて、
それを実行できるように読み込んでいるのがリ
スト2の3行目です。
　リスト2の5行目はNという変数に文字列

/etc/init.d/sudoを代入しています。シェルス
クリプトの変数はすべて文字列です。変数Nは、
$Nあるいは${N}というように、頭に$を付け
ると中の文字列を参照できます。20行目で使
われていますね。$Nと${N}では、後者のほう
が丁寧な書き方で、変数名に数字や記号が入っ
ていると、このように書かなければならない場
合もあります。
　7行目のset -eはshに -eオプションをセッ
トするという意味です。-eは、コマンドがエラー
を返したらその場で止めるためのオプションで
す。Pythonなど、普通のスクリプト言語の場合、
何か例外があるとその場で止まりますが、シェ
ルスクリプトは基本的に止まりません。何が起
きてもだらだらと実行されてしまうので、それ
を抑制しています。
　コマンドのエラーは、コマンドが終了したと
きに残す「終了ステータス」で確認できます。図
5に例を示します。このようにコマンドを実行
した直後に$?を見ると、終了ステータスの値
を確認できます。基本的に、何か異常がある場
合は終了ステータスには0でない数が入ります。
　ただし、-eを指定しても、パイプの途中のコ
マンドのエラーは捕捉できず、エラーが起きて
もスクリプトは止まりません。bashの場合は、
set -eに加えて set -o pipefailと書くと、
その問題を解決できます。図6のようにbash

で打つと挙動がわかります。pipefailを指定し
たあとに、パイプに false（常に非0の終了ステー
タスを返すコマンド）を混ぜて実行すると、
bash自体が終了します。
　シェルスクリプトで終了ステータスを指定し

たい場合は、リスト2の21行目のようにexit
<終了ステータス>と書きます。この行に制御
が来ると、シェルスクリプトは終わります。
　さて、リスト2の9行目に行きましょう。制
御構文のcase文が出てきました。case文は、

case <文字列> in
 パターンA) 処理 ;;
 パターンB) 処理 ;;
 （..中略..）
 *) デフォルト処理 ;;
esac

という構造になります。ほかの言語と比べてお
もしろいのは、シェルのcase文は文字列のパター
ンマッチングで条件分岐していることです。
　リスト2のcase文では、文字列の$1（$1の意
味についてはリスト1を参照）について、10、
17、19行目で調査をしています。10行目では
$1が startなら12～15行目の処理をして、17

行目では stopあるいはreloadあるいは……と
いうように|で区切られた単語のいずれかなら
何もしないというコードになっています。19

行目の*は10、17行目の条件をすべてすり抜
けた場合すべてに当てはまり、この場合は20

行目でこのスクリプトの使い方を出力して21

 ▼図6　パイプの途中のエラーで処理を止める

$ set -eí
$ false ¦ false ¦ trueí ←Enterキーを押下し
 ても何も起こらない
$ set -o pipefailí
$ false ¦ false ¦ trueí ←Enterキーを押下し
 た瞬間、シェルが終了

 ▼図5　lsコマンドの終了ステータスを観察

↓存在するファイルを指定してlsを実行
$ ls memoí
memo
↓すぐに?という変数の値を確認（0は正常終了）
$ echo $?í
0
↓存在しないファイルをlsしてエラーを出す
$ ls momoí
ls: momo にアクセスできません: そのようなｭ
ファイルやディレクトリはありません
↓終了ステータスが0でない値となる
$ echo $?í
2

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

42 - Software Design Jun. 2016 - 43

行目で終了しています。
　端末でコマンドを使っていると、たまに
yes/noや[Y/n]のように聞かれることがありま
すが、このような入力をシェルスクリプトでさ
ばく場合にはcase文が便利です。パターンには、
[Yy][Ee][Ss]のように、大文字小文字の区別
をなくすような書き方も用意されています。
　リスト2にはもう1つ制御構文があります。
12～15行目の if文です。if文の構造は

if コマンド ; then
 処理
elif
 処理
else
 処理
fi

というものです。
　if文は文字列のパターンでなく、実行したコ
マンドの終了ステータスで条件分岐をします。
これも筆者は過去よく書いてきたことですが、
リスト2の12行目で使われている[は実はコマ
ンドで、これが引数である -dと/var/lib/sudo

と]を読み込んで、終了ステータスを返します。
-dというのは次の引数に指定した文字列がディ
レクトリを指しているかを判断するという意味
です。このようなオプションはほかにもあり、
man [で確認できます。]は単なる飾りです。
　最後にリスト2の14行目について。findとい
うのは、基本、指定したディレクトリ以下にあ
るファイルやディレクトリをひたすら列挙して
出力するコマンドです。また、-exec <コマ
ンド>という引数を渡すと、列挙したファイル
に、指定したコマンドを実行させることができ
ます。ですので、、最初のfind
/var/lib/sudo -exec で、
/var/lib/sudoディレクトリの
ファイルに何かを実行すると
読めます。次の touch -d @0
が、その実行する何かです。
これは筆者も何だろうと思っ
たのですが、「ファイルの更新

時刻をUNIX時刻の0秒（1970年1月1日0時0

分0秒）にする」という意味になります。次のよ
うに試してみるといいでしょう。

$ touch -d @0 aí
$ ls -l aí
-rw-r--r-- 1 ueda ueda 23 1月 1 1970 a

　その後の'{}' ¥;は、findに渡す引数です。
本当に findに渡したいのは{}と;なのですが、
{};はシェルが見つけると記号で別のものに置
き換えてしまうので、{}はシングルクォート、;
はバックスラッシュでエスケープして、置き換
わりを防いでいます。{}は findが見つけたファ
イル名に置き換わります。;はコマンドの終わ
りを findに教える引数です。ほかには+という
終わり方もありますが、man findに説明を譲
ります。
　最後に挙動を調べておきましょう。結局この
シェルスクリプトは、sudoというコマンド（root

になるためのコマンド）が時刻を管理するため
に使うファイルの時刻を初期化するためのもの
だったようです（図7）。
　さて、rcスクリプトの例を見てきましたが、
このようなシステム用シェルスクリプトを書く
ときはかなり多くの制約を気にしなければなり
ません。シェルは shが基本ですが、shには
pipefailがないので、あまり調子に乗ってパイ
プを使うこともはばかられます。
　さらに面倒なことに、「sh」が指すものが環境
によってdashだったりbashだったりashだっ
たりして挙動が変わってしまうので、場合によっ
てはこの点も考慮して共通の書き方をしなけれ
ばなりません。これについては第5章で今泉さ

 ▼図7　/etc/init.d/sudoを実行してみる

↓まずsudoを使ってrootになる
$ sudo -sí
↓時刻が1970年の正月でないものを探す
ls -l /var/lib/sudo/ueda/0í
-rw------- 1 root ueda 40 4月 2 06:52 /var/lib/sudo/ueda/0
↓実行
/etc/init.d/sudo startí
ls -l /var/lib/sudo/ueda/0í
-rw------- 1 root ueda 40 1月 1 1970 /var/lib/sudo/ueda/0

シーンに応じたシェルスクリプトの
自在な書き方・使い方 第 章 3

44 - Software Design

んが扱います。

ユーザ用の
シェルスクリプト

　次に、ユーザ用のシェルスクリプト
の例を見てみましょう。個人で何かを
自動化したい場合、シェルスクリプト
を書けるとログイン時や決まった時刻
にバックアップを取ったり、電子メー
ルを飛ばしたり、Webサービスに投げ
たりということがてっとり早くできてしまいま
す（もちろん、それなりに習熟しないと時間は
かかりますが）。この使い方は基本、自分用な
ので好きなコマンドをインストールして呼び出
しても良いということになるので、制約はシス
テム用のものより緩くなります。コメントはな
いに越したことはありませんが、スクリプトの
長さや個人の力量、他人に使わせるかどうかで
分量や内容は変わるでしょう。

Slackに結果を投げる	 	
監視スクリプト

　例として読むのは、いくつかのWebサイト
がちゃんと稼動しているかを調べて結果を
Slack（最近流行っているチャットサービス）に
投げるシェルスクリプトです。Slackの設定方
法などはWeb注2などに詳しいので割愛しますが、
シェルスクリプト側は文字列を作ってインター
ネット上に放り投げるだけです。
　コードより先に、このシェルスクリプトの出
力をSlackで見たものを図8に示します。4つ
のサイトを監視し、正常な反応があったらOK

注2） 「［10分で出来る］シェルスクリプトの結果をslackに投稿」
http://qiita.com/tt2004d/items/50d79d1569c0ace118d6

のアイコンを出し、何か異常があったらHTTP

ステータスコード（404 Not Foundなどのあの番
号のことですね）を出すようにしてあります。こ
の例ではUSP友の会のサイト（https://www.usp

tomo.com）のURLを意図的に間違えて接続でき
なくして、（本来はステータスコードではないで
すが）未接続を表す「000」を表示しています。
　さてコードを見ていきましょう（リスト3）。
このコードはRaspbianとOS Xのbashで動作
確認をしています。Ubuntuでも動きます。まず、
3～5行目で変数をいくつか定義しています。3

行目の$$は、このシェルスクリプトが動作し
ているプロセス番号が入っている特殊変数です。
7、14行目に$tmp-url-listという記述があり
ますが、これが、たとえばプロセス番号が100

番なら/tmp/100-url-listという文字列に置き
換わります。4行目のslackurlはデータを投げ
る窓口で、ここではSlackで指定されたURL

を指定します。このURLはお見せできないの
でダミーのxxxxxを入れています。5行目の
curlstrはcurlコマンドの出力フォーマットです。
　curlstrを使っているのは15行目です。curl
-Is……の部分を端末で試してみると図9のよ

 ▼図8　 シェルスクリプトの出力をチャットで
受ける

 ▼リスト3　シェルスクリプトWEB_CHECK

01 #!/bin/bash -xv
02
03 tmp=/tmp/$$
04 slackurl=https://hooks.slack.com/services/xxxxx
05 curlstr='<%{url_effective}> %{http_code}@'
06
07 cat << FIN > $tmp-url-list
08 https://blog.ueda.asia/
09 http://at-home.cit-brains.net/
10 https://www.usptomo.co/
11 https://lab.ueda.asia/
12 FIN
13
14 cat $tmp-url-list ¦
15 xargs -n 1 curl -Is -o /dev/null -w "$curlstr" ¦
16 sed -e 's/200@/:ok:@/g' -e 's/@/¥¥r¥¥n/g' ¦
17 (
18 echo 'payload={"text":"'
19 cat
20 echo '"}'
21) ¦
22 curl -X POST -d @- $slackurl
23
24 rm -f $tmp-*

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

https://www.usptomo.com/
http://qiita.com/tt2004d/items/50d79d1569c0ace118d6

44 - Software Design Jun. 2016 - 45

うになります。オプションについてはman curl
で調べていただきたいのですが、出力を見ると
<>で囲まれたURLとステータスコードが得ら
れていることがわかります。<>はSlackで
URLにリンクを張るための方言です（図8の
URLはリンクになっています）。
　7行目の cat << FIN > $tmp-url-listは、
「次にFINという文字列が出てくるまで、書い
た中身をファイル$tmp-url-listに書き出すぞ」
という意味です。8～11行目に書いたURLの
リストがファイル$tmp-url-listに保存されま
す（第2章のヒアドキュメントの説明を参照）。
　ところで、このコードを見て、実行するごと
にファイルにURLを書き出しているのを無駄
だと思う人がいるかもしれません。スクリプト
の外にファイルを準備したり、変数にURLを
入れたりするほうが普通ではないかと。動けば
それでも全然問題はないのですが、筆者がこう
するのは次の理由からです。

・	外にファイルを準備すると管理するファイ
ルが増える

・	データはなるべく標準入出力で扱いたい

　ここではとくに後者について話をしておきま
す。コマンドの多くは標準入力からデータを受
けて標準出力からデータを出すように作られて
おり、しかも多くが行単位でデータを処理する
ことを前提にしています。このことを考慮する
と、コマンドに何かを入力する標準的なフォー
マットは、コマンドの標準入力に接続しやすく
行単位でデータが書かれたファイルということ
になります。筆者の場合、変数にはファイル名
やコマンドのオプションなどの定数を記録して
おくに止めるようにしています。bashは配列
が使えますが、基本、筆者は使いません。
　ただし、この議論は先ほどのシステム用シェ

ルスリプトでは事情が変わります。システム用
だと、スクリプトがエラーを起こして/tmpに
中間ファイルが残るのも、パイプ中のエラーが
捕捉できないのも、嫌なことなので、変数にデー
タを記録しながら1つずつコマンド（サブルー
チン）を呼ぶような書き方をしたほうが良いと
いう判断になることがあります。
　ミスなくコマンドを呼び出すための手順書と
して見るか、データフロー言語として見るかで、
シェルスリプトはまったく違った顔を見せます。
　また、この例には当てはまりませんが、シェ
ルスクリプトで扱うデータの量が大きい場合、
いちいち変数にデータを格納したり、変数に格
納したデータごとにコマンドを呼び出したりす
ると、極端に処理が遅くなります。逆にパイプ
と標準入出力を使うスタイルの場合、うまくや
ればコマンドが並行に動いて計算が早く終わり
ます。
　さてリスト3の続きを。14行目以降のパイプ
ラインでは、14行目でURLリストをパイプに
流し、15行目でxargsというコマンドを使って
URLのリストの1行1行をcurlコマンドの引数
にしてcurlを実行しています。16行目ではsed

を使い、ステータスが200番の場合に:ok:（Slack

で絵文字になる）に置き換え、@を改行コード
に変換しています。これはSlackのためにやっ
ている処理です。
　17～21行目の()は、複数のコマンドをひと
まとめにしてパイプにつなげるためのものです。
ここではパイプから流れてきたデータをcatし
て、その前後にpayload={"text":"と"}をくっ
つけています。これでcurlの出力がJSON形式
のデータに変換されます。できたJSON形式の
データは、22行目のcurlでSlackに向けて投げ
られ（POSTされ）ます。このJSONの作り方は
無理やり感があるので、もう少し凝ったJSON

 ▼図9　 Webサイトに接続してURLとステータスコードを出力する

$ curl -Is -o /dev/null -w '<%{url_effective}> %{http_code}@' https://blog.ueda.asiaí
<https://blog.ueda.asia/> 200@

シーンに応じたシェルスクリプトの
自在な書き方・使い方 第 章 3

46 - Software Design

のデータを作るときは jqコマンドを使うか、
別の言語を使うという選択肢も考えないといけ
ません。ただ、筆者はちまちまプログラミング
するより、パイプラインで一気に加工したいの
で、これくらいならシェルスリプトで済ませて
しまいます。
　こうしてできたシェルスリプトは手で叩くと
実行できますが、自動化して定期実行させるほ
うが良いでしょう。cronというしくみを使う
とこれが可能となりますが、説明は拙著『シェ
ルプログラミング実用テクニック』に譲ります。
宣伝でした。

まとめ

　シェルは、もともとコマンド（つまり別のプ
ロセス）を呼び出すためのもので、言語として
見たとき、プロセスの中の処理を記述するほか
の言語とはまったく用途が異なるものです。
　また、シェルスクリプトの用途を説明すると
きに、筆者はユーザが何かをする前の準備のた
めのシステム用と、ユーザが便利にコマンドを
使うためのユーザ用とに分けて説明しました。
偏った意見に毒されないために、「シェルスク
リプト」にもいろいろあるんだと知っておくの
も必要かと考えて書いたしだいです。
　最後にちょっとだけ私的な紹介をします。結
局、システム用のシェルスクリプトでもパイプ
の途中のエラーで止めたり、下手に中間ファイ
ルを残さないようにしてやれば楽に書けるので
はないかと考えた筆者は、昨年あたりにシェル

を書いていました（シェルスクリプトではなく、
GlueLangというシェルを）。コードは「https://

github.com/ryuichiueda/GlueLang」にあり、個
人的事情で現在、絶賛開発ストップ中です。
　リスト4に、現時点で動作するGlueLangの
スクリプト（勝手にGlueスクリプトと呼んでい
る）を示します。このように中間ファイルを気
軽に作れて勝手に消してくれたり、図10のよ
うにエラーへの対応を親切にしたり、がんばっ
ていました。いや、がんばっています。ただ、シェ
ル自体を書いてみてわかったことですが、

・	終了ステータスで条件分岐させるというシェ
ルのしくみを踏襲しながら、if文やwhile文
の文法をきれいに保つ

・	シェル本体を小さく保つことと多機能のバ
ランスを取る

・	マルチプロセスで動かしつつ変数のスコー
プをわかりやすく設計する

・	普及しきったshのあとに普及させる

等々のことがたいへんです。シェルは古いです
が、やはり今まで代替のものが出てこないのも
わかります。シェルスクリプトは不格好かもし
れませんが、少なくともプロセス内で処理を済
ますことを最重視している一般的な言語とは用
途も書き方も違うものです。シェルスクリプト
が何なのか理解して、書けるようにはしておい
ていただければと。
　あ、GlueLang、手伝ってくださる方募集中
です。｢

 ▼リスト4　 Glueスクリプトの例（手軽に使えて勝手に
消える中間ファイル）

01 #!/usr/local/bin/glue
02 import PATH
03
04 # seq 1 100 ¦ head -n 3 の結果を
05 # 中間ファイル「f」に入力
06 file f = seq 1 100 >>= head -n 3
07 # ファイルをcat
08 cat f
09 #fは勝手に消えます

 ▼図10　 リスト4のスクリプトのseqをsecにわざと
間違えて実行

$./hoge.glueí

Parse error at line 4, char 10
 line4: file f = sec 1 100 >>= head -n 3
 ^

 Command sec not exist

 process_level 0
 exit_status 1
 pid 38049

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

https://github.com/ryuichiueda/GlueLang

47 - Software Design Jun. 2016 - 47

はじめに

　第4章は、引き続きシェル芸の人がお送りし
ます。というか、「第4章はシェル芸をお願い
します」と正式に依頼されてしまったのですが、
関係者各位、大丈夫でしょうか。
　「シェル芸」というのは筆者が勝手に作ってし
まった言葉です。㈱ハートビーツさんが主催す
るインフラエンジニア勉強会hbstudyで2012

年10月に「GUIに慣れてしまった現代人に足り
ないのはシェル芸だ！」とスライドに書いたの
が最初です。それ以来、2ヵ月に1度、「シェル
芸勉強会」と銘打って定期的に勉強会を開いて
きました。hbstudyから数えて2016年4月30

日で22回になりました。
　この章では、いつもの雰囲気そのままに、誌
上でシェル芸勉強会をやってみます。

シェル芸って何？

　まず、「シェル芸って何だ」ということですが、
定義は「マウスも使わず、ソースコードも残さず、
GUIツールを立ち上げる間もなく、あらゆる
調査・計算・テキスト処理をCLI端末へのコ
マンド入力一撃で終わらすこと。あるいはその
ときのコマンド入力のこと。」注1です。CLIと

いうのはCommand Line Interfaceの略で、コ
マンドを打ち込む字だけの「黒い画面」と一部で
恐れられているあれのことです。つまり、シェ
ル芸というのは、黒い画面にコマンドを打ち込
むだけで、手持ちのデータから何か自分のほし
い情報やデータを作ることを指します注2。
　たとえば、第3章の

$ ls -la | grep ^- | awk '{print $5, ｭ
$NF}' | sort -ní

もシェル芸です。「ファイル／ディレクトリの
一覧からディレクトリを除いて、ファイルの容
量だけを出力して、小さい順に並べたい（そして、
それを見て大きなファイルがないか調べたい）」
という「ニッチだけど日常では無数に存在する
細かい需要」を、ls、grep、awk、sortという、
たいていの環境に存在するコマンドを組み合わ
せて満たしています。この例は些細だと思われ
るかもしれませんが、これがパッとできないと
調査に時間がかかったり、諦めてしまったりと、
いろいろストレスのかかる状況に陥ります。こ
ういうとき、最近はワンライナーを教えてくれ
る優しくこわい先輩が少なくなってしまったの

注1） https://blog.ueda.asia/?page_id=1434

注2） ベテランの人には、「それはコマンドのワンライナーだろ」
という指摘をされますが、そのとおりです。ただ、「コマ
ンドのワンライナー」だとあんまりキャッチーではないの
で、シェル芸と名付けたしだいです。また、「なんで、もっ
とかっこいい名前にしないんだ」という意見もありますが、
IoTやFinTechなど、意識高い名前に釣られる面倒臭い集
団が寄って来ないので結果オーライです。

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

UNIX系OSで、CLI（Command Line Interface）を使っているなら、ちょっとしたテキストデー
タの加工、数値データの計算、調べものもCLIで済ませたくなります。「シェル芸」と呼ばれるコマ
ンドのワンライナーのテクニックには、コマンドで自在にデータを操作するための定石がいくつか存
在します。その定石を知るためにシェル芸の問題に挑戦してみましょう。

 Author 上田 隆一（うえだ りゅういち）　千葉工業大学／USP友の会

シェル芸問題で腕を磨け！
テキスト処理・計算・調査の定石

第 章 4

https://blog.ueda.asia/?page_id=1434

48 - Software Design

で、「シェル芸」と騒ぐことでちょっとでも状況
が好転しないかと活動しています。

今回の内容

　ということで、本稿では普段のコマンドをよ
り自在に使えるように、シェル芸の問題を解い
てみます。シェル芸勉強会では実用的な問題を
解く回とパズルを解く回をだいたい交互にやっ
ていますが、今回はパズルをやってみます。ロ
グ解析など、実用的な内容も検討しましたが、
そのような特集は本誌ではたびたび取り扱われ
ているので、ちょっと変わったことをというこ
とでパズルにしました。パズルを解くのは、た
だ単に（一部の人に）楽しいからというだけでは
ありません。メタな問題を解いておくと実用の
際に機転が利くという効用もあります。
　問題を解くにあたって約束事を。まず使うシェ
ル、端末、コマンドなどですが、これは自分が
普段使っているものをお勧めします。普段使っ
ている端末を便利にという意図なので、とくに
指定はしません。自身の環境で解答例が動かな
いことがありますが、それも自身の環境を知る
良い機会ととらえて別解を考えてみましょう。
本章では図1のようにUbuntu上のbashを使い
ます。おっと思わずシェル芸が出てしまいまし
た（早く本題にいきたいので、図1のワンライ
ナーの解説はしません……）。もしUNIX系OS

や端末は普段使わないという場合は、この環境
を仮想マシンなどで作って試してみましょう。
　また、シェル芸の場合は問題が解けてしまえ
ば解が一般的でなくても良いという約束があり
ます。あくまで「あるときに発生した仕事をい

かに早く片付けるか」が目的です。シェル芸で
出てきた答えは基本的に拙速なものなので間違
えることがあります。ですので、重要な仕事の
場合はしっかり検算を行う必要があります。
　問題に使うデータは、「https://github.com/

ryuichiueda/ShellGeiData/tree/master/

sd201606」に置きました。

第1問　「ファイル内の
数字を合計する」

　さて、第1問です。次のようなファイルがあ
ります。まず、ファイルにカンマ区切りで書い
てある数字を足してみましょう。先を読む前に
ちょっと考えてみてください。すぐわかる人は
いくつも解法を考えてみましょう。

$ cat dataí
1,2,34,4
43,43,5,751,16,21,2,3,4
43,1453,9,117,6,2

　筆者がまず思いついたのは図2です。trは基
本的なコマンドで、標準入力からの文字列から
特定の字を消したり、別の字に入れ替えたりす
るために使われます。numsumはインストール
しないと使えないコマンドです。「numをsum」
ということで、縦に1列に並んだ数字を足しあ
げます。numsumをUbuntuでは次のようにイ
ンストールします。

$ sudo apt-get install num-utilsí

Macでも、homebrewでbrew install numutils
と実行するとインストールできました。
　cat data | tr ',' '¥n'だけを実行してそ
の出力を見てから、{を押して注3 | numsumと

 ▼図1　本章で使用する環境

$ cat /etc/lsb-release | ｭ
tr '=' ' ' | xargs -n 1 | tail -n 1í
Ubuntu 14.04.1 LTS
$ env | grep SHELLí
SHELL=/bin/bash
$ echo $LANGí
ja_JP.UTF-8

 ▼図2　第1問の解答例

$ cat data | tr ',' '¥n' | numsumí
2559

注3） 一度打ち込んで実行したコマンドやワンライナーは、
{キーを押すことで再度表示させて実行することができ
ます。また、コマンドやファイル名を打っている途中で
kキーを押すと、そのあとの文字列の補完ができます。
かなりあとに知ったという人が多いので、念のため。

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

https://github.com/ryuichiueda/ShellGeiData/tree/master/

48 - Software Design Jun. 2016 - 49

追記して実行してみてください。ワンライナー
のそれぞれの記述がどんな処理を担っているの
かがよくわかります。また、numsumはオプショ
ンを使うと横並びなどでも足せますので、man
numsumで確認をお願いします。
　別解もいくつか思いついたので、図3に挙げ
ておきます。
　図3の別解3で使っているxargsは第3章で
も使いましたが、もともとは「標準入力からやっ
てきたデータを別のコマンドの引数として渡し
て、その別のコマンドをデータが来るごとに実
行する」というように使うものです。ただ、コ
マンドを指定しないと内部でechoを呼ぶ仕様で、
結果として、図4のようにデータを横に並べた
り縦に並べたりすることができます。ただし、
いちいちechoすることになるので、AWKで折
り返すよりは速くはありませんし、図4の最後
の例のように -nや -eをechoへのオプションと
して扱うなど、制限があります。

　図3の別解4では、図2のように、まず trで,
を+に変換しています。<ですが、これはファ
イル（data）の中身を trの標準入力に流すという
意味です。この処理で次のように式が3つでき
ます。

 trで数式を作る
$ tr , + < dataí
1+2+34+4
43+43+5+751+16+21+2+3+4
43+1453+9+117+6+2

　これをbcコマンドに突っ込むと各行の式を
順に解いてくれて、次のような出力になります。

 bcの出力
$ tr , + < data | bcí
41
888
1630

　そして、（最後の出力例は省略しますが）num

sumに通すと各行の数字を足して出力してくれ
ます。
　ここでちょっと重要なことを言いますが、bc

もnumsumも行単位でデータを考えていること
に気づいたでしょうか。図2もいち早く数字を
縦に並べていますが、解き方がよくわからない
ときは、データを掃除しながら縦に並べてから
考えると、その後のコマンドを思いつく場合が

あります。

第2問　「英字と日本語
文字を分離する」

　第2問は、次のようなファイルを扱います。
問題は、「日本語と英語の作文に分離してくだ
さい」というものです。出力は多くの人が見て
妥当ならOKとします。さて、どう解きましょう。

$ cat textí
恥の多い生涯を送This
isってa来ました。pen.
自分には、There
is人間のnothing生活
というものが、more
見当toつかないのです。
say.

 ▼図4　 xargsでデータを並べる（-n <数字>で一度
にechoする数を調整）

$ echo 1 2 3 4 | xargs -n 1í
1
2
3
4
$ echo 1 2 3 4 | xargs -n 2í
1 2
3 4
$ echo 1 2 3 4 | xargsí
1 2 3 4
↓ただしechoのオプションとデータが一致すると使えない
$ echo -n -e 3 4 | xargsí
3 4

 ▼図3　第1問の別解

 別解1
$ tr ',' '¥n' < data | numsumí
2559
 別解2
$ cat data | tr ',' '¥n' | ｭ
awk '{a+=$1}END{print a}'í
2559
 別解3
$ xargs < data | tr ', ' '+' | bcí
2559
 別解4
$ tr ',' '+' < data | bc | numsumí
2559

シェル芸問題で腕を磨け！
テキスト処理・計算・調査の定石 第 章 4

50 - Software Design

　1つ、ワンライナーにこだわらないなら（念
のため言っておくと、こだわる必要はありませ
ん）、まず英語の文字を消して、次に日本語の
文字を消すという2回の操作でできてしまいま
す。やってみましょう。
　まず、英語の文字を消してみます。「英語の
文字」というのは口語的ですが、ここでは「ASCII

コードの文字」を意味します。これらの文字を
除去すれば、日本語だけが残ります。図5のよ
うに trの-d（delete）オプションを使います。
　¥000-¥177というのは、8進数で表した
ASCIIコードの範囲（10進数で0～127）です。
10進数の127が8進数でどんな数になるかは、

$ printf '%o¥n' 127í
177

で確認できます。
　次に英語だけを抽出する方法ですが、こ

れはもう一捻り必要です。trに -dのほか、-c

（complement、補集合）を付けると結果が反転
します。が、これだけだと図6のように複数の
単語がくっついてしまいます。

　どうするかというと、削除ではなくて第1問
のように置換で trを使えばうまくいきます。
図7のようにASCII文字でない文字をすべて
半角スペースにして、その後xargsで余計なス
ペースや改行を取り払います。
　さて、普通はこれで十分ですが、パズルなの
でワンライナーでこれを片付けるという問題も
考えてみましょう。2回に分けていた操作を

1回でしなければなりません。これには第1問
の最後に言ったことを実践してみるとうまくい
きます。このデータの英単語ひとつひとつとそ
のほかの部分を、1行1個にしてみます。
　図8にsedを用いた例を示します。sed（stream

editor）はストリーム（パイプ）に文字列を通し
てその文字列を編集するためのコマンドです。
文字列の置換をするときは、引数に's/<置換
対象の文字列・正規表現>/置換後の文字列/g'
を指定します。図8では置換対象を正規表現で
指定しており、[¥x0-¥x7f]が16進数でASCII

文字を表し、その後ろの+が1文字以上の繰り
返しを意味します。¥+と書いてあるように、+
はエスケープしないと使えません。置換後の文
字列の¥n&¥nは、&が置換対象の文字列を表し、
¥nが改行を表します注4。つまりこれで、ASCII

 ▼図6　単にASCII文字以外を削除すると単語がくっつく

$ tr -cd '¥000-¥177' < text
This
isapen. ←is a pen.がくっつく
（..略..）

 ▼図7　ASCII文字でない文字を空白に置換

$ tr -c '¥000-¥177' ' ' < textí
 This
is a pen.
 There
is nothing
 more
 to
say.
$ tr -c '¥000-¥177' ' ' < text | xargsí
This is a pen. There is nothing more to say.

 ▼図5　 英語の文字（ASCIIコードに含まれる文字）を
消す処理

$ tr -d '¥000-¥177' < textí
恥の多い生涯を送って来ました。自分には、ｭ
人間の生活というものが、見当つかないのです。

 ▼図8　英単語や日本語要素を1行1個にする

$ cat text | sed 's/[¥x0-¥x7f]¥+/¥n&¥n/g'í
恥の多い生涯を送
This

is
って
a
来ました。
（..略..）
↓grepで「任意の1文字」を検索すると空行が消える
$ cat text | sed 's/[¥x0-¥x7f]¥+/¥n&¥n/g' | ｭ
grep .í
恥の多い生涯を送
This
is
って
（..略..）

注4） Linuxに入っている sedは、たいていがGNU sedで、ほ
かの環境（MacやBSD系のOS）のsedとは異なるものです。
GNU sedは高機能で、本章で使っている機能はほかの
sedでは使えない場合があります。

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

50 - Software Design Jun. 2016 - 51

文字のシーケンス（単語や単語にピリオドを付
けた文字列）の前後に改行が入ります。
　次に、日本語と英語を分けていきますが、図
9に分け方の例を1つ示します。これもシェル
芸ではよく出てくる定石なのですが、ソートし
たい順に各行に番号を付けて、そ

の後、sortに入力するという方法
をとります。図9の最初のワンラ
イナーは、①のsedでアルファベッ
トで始まる行の頭に1と付けて、
②のsedで頭が1でない行に2を付
けています。②のsedの^[^1]は、
「行の最初の1字が1で始まらない」
という意味です。その後、図9の
下のワンライナーのようにsortに
入力しますが、引数の-k1,1は「1

列目をキーにする」、-sは「安定ソー
ト」という意味です。安定ソート
というのは、キーが同じなら最初
に並んでいた順番を変えないとい
う意味で、ここでは出てきた語順
を変えないために指定しています。
　さて仕上げましょう。筆者は図
10のように持ち込みました。説明
は図のキャプションのとおり
です。say.恥のところにスペー
スを入れたいところですが、
これはお任せいたします。

第3問　「最長
の 重 複 文 字 列
を調べる」

　さて、最後の問題です。図
11のようなデータがあるとし
ます。問題は、「この中の重
複する文字の並びで最長のも
のはどれでしょう」というも
のです。たとえばこの中でよ
く見ると「ctgg」という並びは
3回登場しますが、5文字以上

でこのような並びがないならば、「ctgg」が正解
となります。改行は無視して考えましょう。
　この問題も、攻略は1行1データに加工する
ことから始まります。図12に、筆者がこの問
題を解くためにまずやったことを示します。tr

 ▼図10　ソート後のデータを横に並べて数字と余計なスペースを消去

$ cat text | sed 's/[¥x0-¥x7f]¥+/¥n&¥n/g' | ｭ
grep . | sed 's/[A-Za-z]/1 &/' | sed 's/^[^1]/2 &/' | ｭ
sort -s -k1,1 | xargs | sed 's/1 //g' | sed 's/ 2 //g'í
This is a pen. There is nothing more to say.恥の多い生ｭ
涯を送って来ました。自分には、人間の生活というものが、ｭ
見当つかないのです。

 ▼図9　各行にインデックスを付けて安定ソートする

$ cat text | sed 's/[¥x0-¥x7f]¥+/¥n&¥n/g' | ｭ
grep . | sed 's/[A-Za-z]/1 &/' | sed 's/^[^1]/2 &/'í
2 恥の多い生涯を送
1 This
1 is
2 って
1 a
（..略..）
$ cat text | sed 's/[¥x0-¥x7f]¥+/¥n&¥n/g' | ｭ
grep . | sed 's/[A-Za-z]/1 &/' | sed 's/^[^1]/2 &/' | ｭ
sort -s -k1,1í
1 This
1 is
（..中略..）
2 恥の多い生涯を送
2 って
2 来ました。
（..略..）

 ① ②

 ▼図11　某ウイロイドのゲノム
 （http://www.ncbi.nlm.nih.gov/nuccore/J02050.1）

$ cat cccvdí
ctggggaaatctacagggcaccccaaaaaccactgcaggagaggccgcttgagggatccc
cggggaaacctcaagcgaatctgggaagggagcgtacctgggtcgatcgtgcgcgttgga
ggagactccttcgtagcttcgacgcccggccgcccctcctcgaccgcttgggagactacc
cggtggatacaactcacgcggctcttacctgttgttagtaaaaaaaggtgtccctttgta
gcccct

 ▼図12　 AWKで1文字ずつシフトして5文字ごとに出力

$ cat cccvd | tr -d '¥n' | ｭ
awk '{for(i=1;i<=length($0);i++){print substr($0,i,5)}}'í
ctggg
tgggg
gggga
（..中略..）
gcccc
cccct
ccct
cct
ct
t

シェル芸問題で腕を磨け！
テキスト処理・計算・調査の定石 第 章 4

http://www.ncbi.nlm.nih.gov/nuccore/J02050.1

52 - Software Design

は改行をとるためで、次のawkに1行で文字列
を送り込むために使っています。AWK（コマン
ド名はawk）はC言語風の文法を持つ最古のス
クリプト言語で、ここでは、読み込んだ1行の
データを for文で1字ずつずらしながら5文字
出力するという処理をしています。$0が読み
込んだ行全体を表し、substr($0,i,5)が i番目
から5文字の部分文字列を返す関数です。C言
語と異なり、文字列を数えるときは0番でなく
1番から始めます。
　このあと、図13のようにsort | uniq -dと
やると、重複した文字の並びだけ出てきます。
uniq -dの -dは「重複して存在する行のみを出
力」という意味です。
　そして、図13のsubstr関数の第3引数（文字

列の長さ）を重複がなくなるまで増やしていく
と、求めるべき答えが出てきます。図14にそ
の様子を示します。答えは7で、長さ7の文字
列が3種類、重複しています。
　さて、これだと何回もコマンドを実行しなけ
ればならないので、ワンライナーでやってみま
しょう。いや、何回もコマンドを実行したほう
が楽ですが……。図15に結果を示します。要
は手で変えていた数字を変数にして、for文で
変えているだけです。文字列には、文字列の長
さを頭にくっつけて出力していますが、これが
ないとうまくいきません。図12の最後の数行
を見るとわかりますが、各長さの文字列を出力
した最後に、指定した長さより短い文字列が（し
かも同じものが何度も）出てくるからです。

まとめ

　本章では3つ、シェル芸の
問題を出して解答例を説明し
ました。出した問題はパズル
でしたが、「データを行ごと
にそろえる」など、実戦でも
使える定石を紹介しました。
　ワンライナーを見ただけだ
と、とても書こうという気に
はならないかもしれませんが、
データの加工の手順が頭の中
で整理できるようになれば書
くのはそんなにたいへんでは
なくなり、「ちょっとした調
べ物」の効率が飛躍的に向上
します。
　シェル芸勉強会の過去問は
「 https://blog.ueda.asia/?

page_id=684」に置いてあり
ますので、ぜひ楽しんでワン
ライナーを書く力を付けてい
ただければと。｢

 ▼図14　文字列の長さを増やしていく

$ cat （中略） substr($0,i,6)}}' | sort | uniq -dí
aaaaaa
aggaga
（..中略..）
tacctg
$ cat （中略） substr($0,i,7)}}' | sort | uniq -dí
ccgcttg
ggagact
ggggaaa
$ cat （中略） substr($0,i,8)}}' | sort | uniq -dí
$

 ▼図13　重複した文字列を出力

$ cat cccvd | tr -d '¥n' | ｭ
awk '{for(i=1;i<=length($0);i++){print substr($0,i,5)}}' | ｭ
sort | uniq -dí
aaaaa
aaacc
aatct
（..略..）

 ▼図15　 AWKで for文を1つ増やし、文字列の長さを可変にして実行

$ cat cccvd | tr -d '¥n' | ｭ
awk '{for(j=1;j<=length($0);j++)ｭ
for(i=1;i<=length($0);i++){print j,substr($0,i,j)}}' | ｭ
sort -n | uniq -dí
（..中略..）
6 ggggaa
6 tacctg
7 ccgcttg
7 ggagact
7 ggggaaa

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

https://blog.ueda.asia/?page_id=684

53 - Software Design Jun. 2016 - 53

　本章で言う「仕事」とは製品の開発ではなく製
品そのものを示します。製品として配布される
ソフトウェアにはシェルスクリプトが付属する
場合が多くありますが、ここではそのようなシェ
ルスクリプトを作成する際の留意点などを取り
上げたいと思います。

可読性について

　シェルスクリプトをはじめとするスクリプト
言語は、コンパイラ言語と異なりソースがその
まま読めてしまうので、できればきれいで読み
やすいコーディングを心がけましょう。きれい
なコーディングについては諸説あり、決定的な
結論は出ていませんが、まずはインデントや改
行をそろえること、変数名や関数名などの命名
規則をそろえることを心がけると良いでしょう。

共通関数化

　シェルスクリプト中での関数定義は賛否両論
ですが、筆者は単機能の関数を定義して呼び出
す方法をお勧めします。単機能の関数に処理単
位を分けることで可読性が向上しますし、製品
の仕様変更などによる修正も、関数化したほう
が容易に対応できるからです。
　また、ログの出力処理なども関数化しておく
ことにより、次のメリットがあります。

・	出力メッセージのフォーマットが共通化可能
・	ログの出力先をsyslogもしくは指定された
ファイルに容易に変更可能

　シェルスクリプトで関数を定義する方法は
POSIX（後述）に次の記述があります。

fname() compound-command[io-redirect ...]

　ここで compound-commandは、(compound-
list;)か{compound-list;}と定義されてい
るので、ある関数 fooは、

foo() { コマンド; … }

もしくは、

foo() (コマンド; …)

とすることで定義できます。
　{compound-list;}形式の場合はカレント
シェル（スクリプトを実行しているシェル）で実
行されますが、(compound-list;)形式の場
合はサブシェルで実行されるようになります。
サブシェルとは、カレントシェルから起動され
た子プロセスのシェルで、シェル変数などはカ
レントシェルから引き継がれますが、サブシェ
ルで変更したシェル変数はカレントシェルでは

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

多くのユーザや、ビジネスにおける顧客に配布する「製品」にシェルスクリプトを組み込むとき、ど
んな点に気をつけて作成すれば良いのでしょうか？　「可読性」「堅牢な設計」「汎用性」の3つの要
件を満たすためにどんな心構えと具体的なコーディングが必要なのかを解説します。

 Author 今泉 光之（いまいずみ みつゆき）　USP友の会　幹事　 Twitter @bsdhack

仕事でシェルスクリプトを
使うときに気をつけたいこと

第 章 5

54 - Software Design

参照できないので注意が必要です。
　通常の場合、関数はカレントシェルで実行す
ることになりますので、前者の形式で関数を定
義することになります。

入出力はUNIX標準

　関数を定義する場合、入出力は可能であれば
標準入出力を利用すると良いでしょう。標準入
出力を利用することで関数はフィルタ処理が可
能となるので、入出力をパイプ¦で連結できる
ようになります。またフィルタコマンドとして
効率良く動作させるために、出力には余計な情
報や装飾などを付加せずに、必要最低限な情報
のみを出力するようにすると良いでしょう。エ
ラーメッセージや診断メッセージなどを出力す
る必要がある場合は標準エラー出力に出力する
ようにすれば、パイプによる処理を妨げること
はありません。

ヒアドキュメント

　複数行の固定データを出力するときにecho

を複数回実行すると、途中行を修正するときに、
>>をついうっかり>にしてしまうといった間
違いをする危険性があります。

echo "1行目" >> ${outputfile}
echo "2行目" >> ${outputfile}
echo "3行目" > ${outputfile}
　 ↑この行の修正をするときに>>を>にしてしまった
echo "4行目" >> ${outputfile}
echo "5行目" >> ${outputfile}

　ヒアドキュメントを利用するとファイルのオー
プンクローズが一度で済むので効率的ですし、
各行のクォートが不要になるので可読性も高ま
るでしょう（詳細は第2章P.27を参照）。

cat << EOF > ${outputfile}
1行目
2行目
3行目
4行目
5行目
EOF

スペース区切りのデータの
構文解析

　スペースで区切られた複数データの構文解析
には、setコマンドの利用も検討する価値があ
ります。シェル組み込みのsetコマンドに引数
を指定すると、それぞれの引数を位置パラメー
タに代入できます。組み込みコマンドにより複
数の値を一度に処理でき、効率が良いのでお勧
めです。ただし、位置パラメータは上書きされ
てしまうので、あらかじめ保存しておくなど注
意が必要となります。

set -- $(LANG=C date '+%Y %m %d')
year=$1
month=$2
day=$3

　setコマンドの直後に指定している--は、
setコマンドにオプションの処理を終了させ、
以降の語を引数として解釈することを指示して
います。--を指定することで、最初の引数が-
で開始されていてもオプションとしては解釈さ
れなくなります。
　この例で利用している$(コマンド)はコマ
ンド置換と呼ばれるシェルの機能で、全体がコ
マンドの実行結果（この場合ですとLANG=C date
'+%Y %m %d'の実行結果）に置き換えられます。
このコマンドは現在の日付を2016 4 1のよう
にスペース区切りで出力するので、結果として
set -- 2016 4 1が実行されることになり、
それぞれの値が位置パラメータにセットされま
す。

変数スコープ

　シェルスクリプトでは原則として変数のスコー
プはスクリプト全体となります。ループ変数な
どでよく利用される変数iなども、呼び出され
た関数内部で呼び出し元と同じ値を保持します
し、関数の内部で変更された場合は当然、呼び
出し元の値も変更されてしまいます。そこで各
関数の先頭で localコマンドを利用することで、
変数のスコープを関数内に限定できます。

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

54 - Software Design Jun. 2016 - 55

foo()
{
 # 関数に局所的な変数i, jを定義する
 local i j

 # ローカル変数の初期値は空の値
 echo $i

 for j in *
 do
 :
 done

 # 呼び出し元の変数を直接変更する
 k="……"
}

　また、前述のサブシェルを利用して関数を定
義しても変数のスコープはすべて関数内に限定
できますが、変数の値はカレントシェルから引
き継がれ、関数内で呼び出し元の変数は変更で
きないので注意が必要です。

foo()
(
 # サブシェルなのですべての変数は局所的な変数となる

 # 変数の値はカレントシェルから引き継がれる
 echo $i

 for j in *
 do
 :
 done

 # 呼び出し元の変数は直接変更できない
 k="……"
)

堅牢な設計について

　想定している環境とは異なった環境でも正し
く動作し、万が一スクリプトの不具合などがあっ
た場合も回復が困難／不可能な状態に陥らない
ようにすることが大切です。

シェルオプション

　シェルには動作を変更するためのオプション
がたくさん用意されていますが、製品としてシェ
ルスクリプトを作成するにあたっては、次のオ
プションは設定しておくことをお勧めします。

-e
　テスト状態にないコマンドの実行に失敗した
場合、直ちにシェルを終了します。テスト状態
とはifやwhile構文の制御、&&や¦¦の左辺
値としてのコマンドを言います（下のコラム参
照）。それ以外でエラーが発生した場合はスク
リプトを終了しますので、スクリプト自体の構
文エラーや、存在しない外部コマンドを実行し
ようとした場合などに想定外の挙動を防止でき
ます。

-u
　値が設定されていない変数を参照しようとし
た場合、直ちにシェルを終了します。タイプミ
スなどで値が設定されていない変数を参照する
ことで発生する想定外の挙動を防止きます。

◆　◆　◆
　シェルオプションはsetコマンドで設定でき
ます。

set -eu

外部コマンドの実行パス

　シェルスクリプト中で実行される外部コマン
ドはコマンド検索パス（$PATH 環境変数）に
従って検索されますが、個人の環境の場合は独
自のコマンド検索パスが定義されている場合が

短絡リスト演算子

　&&や ¦¦は短絡リスト演算子（short-circuit
list operators）と呼ばれる制御構造で、ifなど
と同様、コマンドの終了ステータスを検査し
て制御する演算子です。それぞれ command1
&& command2、command1 ¦¦ command2の型
式で使われます。&&は最初のコマンド
（command1）を実行し、終了ステータスが0な
ら次のコマンド（command2）を実行します。¦¦
は最初のコマンド（command1）を実行し、終了
ステータスが 0以外なら次のコマンド
（command2）を実行します。

仕事でシェルスクリプトを
使うときに気をつけたいこと 第 章 5

56 - Software Design

多く、別ユーザにより実行される場合や cron

などから実行される場合では、コマンド検索パ
スの違いから実行される外部コマンドが異なる
などの影響が考えられます。
　また、故意もしくは偶然によりカレントディ
レクトリがコマンド検索パスの先頭付近に含ま
れる場合は、重大なセキュリティホールにつな
がる恐れもあります。
　対策として、スクリプト内で実行する外部コ
マンドをすべてフルパスで指定するという方法
が考えられます。その際、外部コマンドを同名
のシェル変数に格納することで、可読性を損な
うことなく、より一層安全なスクリプトになり
ます。

ls="/bin/ls"
wc="/usr/bin/wc"

　さらに開発の初期段階では、rmやmvなどの
コマンドをechoに置き換えておくことで、非
可逆的な作用を伴うコマンドの実行を抑制でき
るので意外と便利です。

rm="echo /bin/rm"
mv="echo /bin/mv"

　想定される環境によっては、すべての外部コ
マンドのフルパスを指定することが困難な場合
もあります。そのような場合はスクリプトの先
頭でコマンド検索パス（$PATH）を明示的に初
期化して指定するだけでも有効です。その場合
は、コマンド検索パスに格納するディレクトリ
を厳選する必要があるでしょう。
　コマンド検索パスにヌルパス（連続するコロ
ン::）がある場合はカレントディレクトリとし
て解釈されてしまうので、設定するパスにシェ
ル変数を利用する場合は注意が必要になります。

汎用性について

　シェル（/bin/sh）は、すべてのUNIXやUNIX

風のシステムに共通に存在する唯一のスクリプ

ト言語といっても過言ではないでしょう。その
ため、シェルスクリプトはすべてのUNIXや
UNIX風のシステムで共通に動作すると言え

ます。
　しかし、実際にはそのシェルにもいくつもの
バリエーションが存在していて、それぞれで機
能や仕様が微妙に異なっています。今回の特集
で取り上げられているbashもシェルのバリエー
ションの1つで、オリジナルのシェルと比較す
ると数多くの拡張が施されている高機能なシェ
ルです。たとえば、シェル変数に配列が利用で
きる機能や、プロセス置換機能など、とても便
利な機能があります。
　自分だけ、もしくは自分のプロジェクトのメ
ンーなど、実行する環境がある程度特定できる
環境では、それらの機能を利用した高機能なシェ
ルスクリプトを作成することは、悪いことでは
ありません。しかし、製品として配布する場合
は、どのようなシェルか特定できない場合もあ
ります。
　そこで、どのようなシェルでも正しく動作す
るように共通の機能のみを利用したスクリプト
を作成すれば良いのですが、世の中に数多く存
在するシステム上で動作するすべてのシェルの
機能を包括的に調べることは現実的には不可能
です。
　そこで、共通の機能を定義したのがPOSIX

です。

POSIXとは

　POSIXとはさまざまなOSに共通のAPIを
定義して、移植性の高いアプリケーションソフ
トウェアの開発を容易にすることを目的として、
IEEEが策定した規格です。カーネルへのイン
ターフェース（システムコール）、プロセス環境
など多くの規定がありますが、ここではシェル
とユーティリティに対する規定であるXSH項
目について説明します。

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

56 - Software Design Jun. 2016 - 57

　POSIXはIEEEのサイト注1からPDF形式で
無料でダウンロードできます。また、The

Open Groupのサイト注2でいつでも自由に閲覧
できます。とくにThe Open Groupのサイトに
は簡単な検索機能も備わっていますので、シェ
ルの機能や外部コマンド、オプションが
POSIXで定義されているかどうかを簡単に検
索できます。

POSIXの限界

　共通のAPIを規定しているPOSIXに準拠す
れば多くの（POSIX互換の）システムで動作す
ることは規格が保証してくれます。それでは
POSIXに完全に準拠したシェルスクリプトを
作れば良いのでしょうか？
　実は、POSIXには一般的に利用されるコマ
ンドが定義されていないことが多々あります。
たとえば、curlやwgetといったリモート環境
へのアクセスコマンドをはじめとして、ifconfig

やnetstatといった基本的なネットワークコマ
ンドさえ定義されていません。
　前述の localなどもPOSIXでは定義されてい
ないので、関数内ローカルな変数の定義もでき
なくなってしまいます。ですので、POSIXの
範囲内だけでスクリプトを作成することは、現
実的には困難だったり不可能だったりする場合
があります。もちろん、とくに製品としてのシェ
ルスクリプトを開発する場合にPOSIXを意識
するのは良いことではありますが、盲目的に
POSIXにこだわるのは現実的ではなく、良策
とは言えないでしょう。
　POSIXは今までにも何度も改訂されてきま
したし、今後もニーズに合わせて改訂されるこ
とでしょう。そして改訂をうながすために、新
しく便利な機能を積極的に利用して広めていく
ことも大切だと思います。

注1） http://www.techstreet.com/ieee/products/vendor_
id/5219

注2） http://pubs.opengroup.org/onlinepubs/9699919799/

現実的な解決策

　それでは、製品として配布するシェルスクリ
プトはどのように開発すれば良いでしょうか。
　まず、シェルの機能はPOSIXで定義された
範囲だけを利用するようにします。外部コマン
ドは、POSIXで定義されているコマンドの場
合は、オプションを含めてPOSIXの範囲で利
用するようにします。ifconfigなどPOSIXで
定義されていないコマンドに関しては、製品が
ターゲットとしているシステムで利用可能かど
うかをある程度情報収集したうえで、利用でき
そうであれば利用するようにします。どうして
も標準以外のシェル機能や外部コマンドを必要
とする場合は、シェルスクリプトによる実装で
はなく、ほかの言語による実装を検討してみる
のも良いと思います。
　本来的にはシェルスクリプトは単純な処理を
簡単に効率良く実施する用途に向いているので、
あまりに複雑な処理はシェルスクリプトの範囲
を超えている可能性もあります。

なぜ汎用性が必要なのか

　たとえば、bash固有の機能を使ったシェル
スクリプトは、bashでないと動作しません。
共通のスクリプト言語ではなく、動作させるた
めの特定のスクリプト言語（bash）が必要になり
ます。「bashのインストールなんて簡単」とい
う意見もありますが、金融機関など監査が非常
に厳しい環境などでは、bashに限らずソフトウェ
アを導入すること自体が非常に困難な場合があ
ります。それ以外にも、同種の競合ソフトウェ
アが複数存在する場合に、依存するソフトウェ
アの有無が決め手となる場合も実際にありまし
た。
　製品としてシェルスクリプトを作成する場合、
特定のシェルや環境、システムに依存した機能
を使用せず、汎用的なシェルスクリプトとした
ほうが、より一層ビジネスチャンスにつながる
機会が増えるでしょう。ﾟ

仕事でシェルスクリプトを
使うときに気をつけたいこと 第 章 5

http://www.techstreet.com/ieee/products/vendor_id/5219
http://pubs.opengroup.org/onlinepubs/9699919799/

58 - Software Design

Windowsの上で
bashが動く？

　Microsoftの開発者向けカンファレンス「Build

2016」で、"Bash on Ubuntu on Windows"（以降
Bash on Windows）が発表されました。その名
のとおり、Windowsの上でUbuntu、bashを動
かすしくみです。
　はじめにお断りしておきます。この記事は発
表直後、2016年4月時点の情報に基づいており、
その段階ではまだプレビュー版で、insiderプ
ログラム登録者に限って配布されています。で
すので、今後変化していくであろう内部実装の
細部や仕様、制約ではなく、提供にいたった背
景や狙いを中心にまとめたいと思います。

誰のニーズに
応えるため？

　Bash on Windowsは、アプリ開発者のニーズ
に応えるべく開発されています。近年、OSS

を活用したシステムやモバイルアプリ開発では、
WindowsではなくMacを使うアプリ開発者が
増えています。それはMac OS XがUNIXに
ルーツを持つOSで、Linux向けアプリが開発
しやすいこと、また、iOSアプリが開発できる
こと注1、この2点が大きな理由です。Bash on
注1） Build 2016では、iOSやAndroid向けアプリをWindows

上のVisual Studioで開発できる「Xamarin」の無償提供も
発表されました。

Windowsでは、前者のニーズに応えようとい
うわけです。
　裏を返せば、Bash on WindowsはLinuxアプ
リの本番実行環境を意図していません。また、
現在PowerShellが担っているWindows管理者
向けスクリプティングツールのポジションも狙っ
ていません。Windows Serverではなく、あく
までデスクトップ／ラップトップ向けOSであ
るWindows 10の機能です。insiderプログラム
登録者に配布されているWindows 10では、
OS設定で開発者モードを有効にして、明示的
に機能追加する必要があります。

Windows上で
bashを動かすしかけ

　では、どのようにWindows上でUbuntu、bash

を動かすのでしょうか。そのしかけを見ていき
ましょう。
　コンピュータリソースをコントロールする
OSカーネルはあくまでWindowsです。ですが、
その上でユーザモードのUbuntuが動きます。
Windowsで bash.exeを起動するとUbuntuが
ロードされ、コンソールから利用できるように
なります。
　図1からわかるように、UbuntuとWindows

カーネルの間に中間層があります。この層で、
LinuxのシステムコールをWindowsカーネル
へと橋渡しします。これが新たに開発された、

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

Windows 10の上でUbuntu、bashが動くというニュース、気になっている人も多いのではない
でしょうか？　本章ではBash on Windowsが動くしくみについて整理し、WindowsでUbuntu、
bashが動くことで開発者目線で何が変わるかについて考察します。

 Author 真壁 徹（まかべ とおる）　日本マイクロソフト㈱

［速報］Bash on
Windowsのしくみ

第 章 6

58 - Software Design Jun. 2016 - 59

Windows Subsystem for Linux

（WSL）です。
　Hyper-VやVirtualBoxのよう
に、仮想マシンの上でUbuntu

を動かしているわけではありま
せん。よって必要リソースが少
なくて済みます。また、Cygwin

のようなWindowsアプリではな
いので、動かしたいアプリを
Bash on Windows向けにリコン
パイルする必要もありません。
Linux向けExecutable and Link

able Format（ELF）バイナリ形
式で動きます。
　WindowsはWindows NTの時代に、サブシ
ステムの考え方を取り入れました。使用するサ
ブシステムによって振る舞いを変えることがで
きます。過去にはOS/2やUNIX向けサブシス
テムなどもありましたが、このたび新たなサブ
システムとして、Linux向けサブシステム注2の
提供を開始した、というわけです。
　なおBash on Windowsは、Ubuntuの開発を
リードしているCanonicalとのパートナーシッ
プのもと、商用製品としてサポートできる体制
を作っています。技術的にほかのディストリ
ビューションが動く可能性は否定しませんが、
製品として責任を持って提供するため、現在の
サポート対象はUbuntuのみです。

できることと、
対応の「優先度」

　ELFバイナリが動くということで、あらゆ
るLinux向けアプリが動くことを期待したくな
りますが、そこはやはり新たな中間層をはさん
だゆえの制約があります。実際、不具合も見つ
かっています。すべてを早期に解決することは
難しいため、そもそもの目的である「アプリ開
発者」のニーズを判断基準に、開発と対応の優

先度を、たとえば次のように決めています。

優先度の高い機能
・	標準的な*nixコマンドラインツール（sed、
awkなど）

・	ニーズの多い言語向け開発、実行環境（Ruby、
Pythonなど）

・	人気のある開発ツール（Gitなど）

優先度の低い機能
・	GUI（GNOME、KDEなど）
・	サーバ向けデーモン（MySQL、Redisなど）

　もちろん、開発用途でMySQLなどのサーバ
向けプロセスを動かしたいというニーズはある
ので、そのようなケースでは長時間連続稼働へ
の対応の優先度を下げて改善します。

ファイルシステム

　bashからWindowsのファイルシステムへア
クセスできます。たとえばCドライブは/mnt/

c/と見えます（図2）。
　ただし、現時点ではbashからWindows管理
下のファイルシステムへアクセスすると、パー

注2） ちなみに、WSLにLinuxのコードは含まれていません。

注3） 簡略化した図ですので、詳細はhttps://blogs.msdn.micro
soft.com/wsl/2016/04/22/windows-subsystem-for-
linux-overview/をご覧ください。

Windows Subsystem for Linux

Ubuntu（User Mode）

Git、Ruby、Python、sed、awk など
Linux ELF バイナリ

Windows Subsystem

Windows Kernel

Windows Application

Cygwin など
従来の *nix 疑似ツール

※シェルとしてのbashはubuntuに含まれています。

 ▼図1　Windows Subsystem for Linux概念図注3

［速報］Bash on Windowsのしくみ 第 章 6

https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/

60 - Software Design

ミッションが777である、シンボリックリンク
が張れない、特殊ファイルのエラーが出る、な
どの課題があります。改善を期待しつつも、生
まれが違うのでしかたない、という割り切りも
必要でしょう。

期待される変化

　では、開発者目線で、Bash on Windowsによっ
てどのような変化が起こりそうなのかを考えて
みましょう。

開発環境が、より軽量に、
サクサクと

　これまでWindowsでLinux向けアプリを開
発するには、サーバに telnet/sshするか、ロー
カルにLinux向け仮想マシンを作っていたと思
います。それが不要になります。ネットワーク
に不自由な場所でも開発しやすく、また、仮想
マシン用のメモリやディスク容量で悩まされる
ことも少なくなります。起動も速いです。そし
て、Windowsと仮想マシンの間のファイル共
有でSMBを駆使して、なんていう苦労もなく
なります。Windows向けRubyやPythonでの“あ
るある”――パッケージ未対応やファイルパス
の扱いでイラっとすることもありません。

OSSを企業が活用しやすくなる

　Macを使うユーザが増えたとは言え、管理や

ガバナンスの観点から、Windowsに社内端末
を統一している企業は多いでしょう。その
Windowsが製品機能としてbashを提供して環
境が整うと、OSSを活用した開発がしやすく
なるはずです。これは大きな変化だと思います。
　なお、「そんなことをしてMicrosoftのビジ
ネスは大丈夫なの？」と言われることがありま
すが、心配はご無用です。なぜならMicrosoft

はLinux、OSSを新しいビジネスの1つの柱と
考えているからです。たとえばMicrosoftのク
ラウドサービスであるAzureでは、すでにLinux

仮想マシンの比率が全体の25％を超えており、
その勢いは日々増しています。

フィードバック歓迎

　Bash on Windowsは始まったばかりのプロ
ジェクトです。ということは、みなさんの要望
が製品に反映される可能性、余地が大きいと言
えます。要望や不具合を、フィードバックして
みませんか。要望はUser Vioce Portal注4、不
具合はGithub Issue Tracker注5からお願いしま
す。｢

 ▼図2　bashコンソールからWindowsファイルシステムがみえる

注4） https: / /wpdev.uservoice.com/forums/266908-
command-prompt-console-bash-on-ubuntu-on-
windo/category/161892-bash

注5） https://github.com/Microsoft/BashOnWindows/issues

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

https://wpdev.uservoice.com/forums/266908-command-prompt-console-bash-on-ubuntu-onwindo/category/161892-bash
https://github.com/Microsoft/BashOnWindows/issues

61 - Software Design Jun. 2016 - 61

bashもいいけど
「fish」もね

　Linuxのシェルと言えばbashです。多くの
Linuxディストリビューションが、bashをデフォ
ルトのインタラクティブシェルに採用していま
す。一部のディストリビューションを除いて、
シェルスクリプトにもbashが使われています。
Mac OS Xもそのあたりは同じです。この夏の
アップデートからWindows 10でもbashが利用
できるようになる予定ですし、今後ますます
bashに触れる機会は増えるでしょう。
　シェルにさらなる機能を求める場合、またラ
イセンス的にbashが利用できない環境ではzsh

が使われることもありますし、メンテナンス性
や軽量であることを最優先してkshが使われる
オペレーティングシステムもあります。歴史的
にcshや tcshがデフォルトになったものもあり
ますが、デスクトップやサーバで使われている
インタラクティブシェルは、数の上でbashが
圧倒的と言えると思います。
　ここで1つ、日本ではまだあまり名前が知れ
ていない「fish」注1というインタラクティブシェル
を紹介したいと思います。主要なインタラクティ
ブシェルの中ではもっとも後発のもので、bash

の代わりを検討するのであれば有力な候補です。

注1） https://fishshell.com

便利で簡単！　
お手軽最強シェル

　fishは最後発だけあってよくできています。
bashもzshも似たような機能は実現できるので
すが、fishではそれがデフォルトで提供されて
いるという特徴があります。簡単に特徴をまと
めるとすれば次のようになります。

・設定せずとも効果的に利用できる状態になっ
ている

・補完機能がbashやzshを超える便利さ
・ハイライトが多用されていて便利
・制御構文がシンプルで覚えやすい

　bashやzshは開発された時代背景もあって、
デフォルトの状態ではすべての機能が有効には
なっていません。fishが開発された時代はもっ
と後で、インタラクティブシェルがマシンパワー
をすべて持っていってしまうといったことがな
い状況でしたので、デフォルトですべての機能
を利用しようとします。しかも提供する機能は
取捨選択されていて、とくに気にしなくてもい
つの間にか使えている、といったところまで洗
練されています。
　Mac OS X、Linux、*BSDのどのプラット
フォームでも fishのパッケージが提供されてい
るようですので、それぞれの環境に合わせてイ
ンストールして一度使ってみてほしいと思いま

番外編 
第1特集

エンジニアの道具を磨こう
速く堅実に使いこなすための

fish（friendly interactive shell）は、高機能・設定いらず・シンプルが売りの最先端インタラクティ
ブシェルです。本章はbash特集の番外編として、そのfishを紹介。大きな特徴である強力な補
完・ハイライト機能から、bashとの違いまで解説します。

 Author 後藤 大地（ごとう だいち）
 BSDコンサルティング（株）　取締役／（有）オングス　代表取締役／ FreeBSD committer

bashならぬfishを
知っていますか?

番外編

https://fishshell.com

62 - Software Design

す。覚えるのは、困ったらkを押すという
ことと、うっすらと補完候補が出てきたら
lを押しながらFを押すということです。
このl＋Fがとくに強力で、一度慣れてし
まうと、もうこの機能なしでは生きていけない
体になってしまいます。

fishの便利な機能を
見てみよう

　fishをインストールしたらさっそく使ってみ
ましょう。端末で fishとコマンドを実行すれば
fishに変わりますし、気に入ったらchsh(1)注2

コマンドなどでデフォルトのシェルをfishに変
更すれば良いと思います。
　fishを起動すると次のようなプロンプトが表
示されます。「ユーザ名@ホスト名 短縮パス >」
がデフォルトのプロンプトです。コマンドを入
力すると、次のようにコマンド部分に色がつき
ます（モノクロページですのでグレーですが）。

　間違ったコマンド名が入力されると、入力し
た文字の色が赤のままになり、入力ミスしてい
ることに気づけます。
　bashや zshのように、fishでもkが補完
処理のフックキーになっています。たとえば、
次のようにコマンドを入力した状態でkを
押します。

　次のように補完候補が表示されます。

注2） 各コマンドの後ろについている括弧書きの数字は、manコ
マンドで見ることができるマニュアルに記載されている章
番号を表しています。

　この場合コマンドとしてcdを入力してある
ので、候補としてはディレクトリが表示されま
す。fishがおもしろいのはここからさらに先で
す。ここで再度kを押します。

　今度は補完候補の中から入力すべきものが選
択できるようになります。候補の選択はカーソ
ルキーで選択できますし、ここで文字列を入力
するとその文字列で絞り込みを実施して表示さ
せる候補を絞り込めます。とても便利です。
　コマンドの出力結果に加工を行えます。次の
ようにgrep(1)コマンドで特定のキーワードを
検索すると、その結果に対してキーワードに色
が付くようになります。どの部分で一致したの
かが一目瞭然です。

　そしてここからが真骨頂です。fishではコマ
ンド履歴や文脈を加味して入力の補完候補が表
示されます。前述のgrepコマンドのあとで、
もう一度grepと入力を始めると、その先に入
力すると考えられる内容が、うっすらと先行表
示されるようになります。

　この状態でl＋Fを押すと自動的に補完
候補が入力されます。

　l＋Fの機能はとても便利で、一度この
キーが手になじんでしまうと、もうこの機能の
ないインタラクティブシェルは使えなくなって

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

62 - Software Design Jun. 2016 - 63

しまいます。
　この機能だけだと、たとえばcdのように頻
用するコマンドでは、直前に入力したディレク
トリが候補として表示されるため役に立たない
のではないかと思うところですが、fishは文脈
を加味して補完候補を表示します。たとえば、
次のようにcdコマンドでカレントディレクト
リを移動したとします。

　移動した先でさらにcdコマンドを入力すると、
そのカレントディレクトリに適したディレクト
リを候補として表示してくれます。

　このように、fishではユーザが迷うことなく
各種の補助機能を利用できるように工夫がされ
ています。新しい設定をする必要があるとか、
それらを特定のキーに割り当てる必要があると
か、そういった必要性がありません。kと
l＋Fだけ覚えておけばユーザに便利で強
力な環境を与えてくれます。

bashとの大きな違い

制御構文

　fishとbashの大きな違いは制御構文にあり
ます。bashからzshに移行した場合は、それほ
ど違いに困りません。zshはBourne Shell系の
制御構文を採用しているためbashと同じ書き
方が利用できるからです。
　fishではこの部分をばっさり切っています。
　最終的には慣れの問題だと思いますが、fish

の制御構文はbashのそれよりもかなりシンプ
ルです。すでにbashの制御構文に慣れている

なら、fishの制御構文を飲み込むのにほんと時
間はかからないでしょう。bashがベースとし
ているBourne Shellは、制御構文がALGOL

に類似しているため現在主流のプログラミング
言語と比較して独特ですし、変数の展開と文字
列のクォート規則はお世辞にも簡単とは言えま
せん。そのあたり、fishはシンプルです。
　次に fishの基本的な機能や制御構文の代表的
な使い方をまとめておきます。

　Bourne Shell系との大きな違いは、

・	まず変数を設定するにあたって=を使わない
・	コマンド置換が$()ではなく()である
・	グルーピングの{}を使わない
・	do〜doneや if then〜fi、case〜esacの
ような表記ではなくendで閉じるだけである

・	1つ前のコマンドの結果が0かそれ以外かで

・変数代入　　・コマンド置換からの変数代入

set a b 　 set a (コマンド)

・関数

function 名前
 コマンド
end

・or構文　	 ・and構文	 ・not構文

or コマンド and コマンド not コマンド

・if構文	 ・switch構文

if コマンド
 コマンド
else if コマンド
 コマンド
else
 コマンド
end

switch $変数
case 項目 項目
 コマンド
case 項目
 コマンド
case '*'
 コマンド
end

・for構文	 ・while構文

for i in リスト
 コマンド
end

　
while コマンド
 コマンド
end

bashならぬfishを知っていますか? 番外編 

64 - Software Design

コマンドの実行可否を変えるor、andがある
・	コマンドの成否結果を反転させるnotがある

と、いったところです。
　fishの配布物にshareというディレクトリが
あり、この下に補完設定やエイリアスなどに相
当する機能が実装されています。とくに
functionsディレクトリ以下のスクリプトが参
考になると思います。

tree -L 1 shareｶ
share
¦-- completions
¦-- config.fish
¦-- functions
¦-- man
¥`-- tools

4 directories, 1 file

　どのオペレーティングシステムでもこれらが
インストールされるはずですので、ls.fishファ
イルを locate(1)コマンドや find(1)コマンドで
探すなどして、その周辺の fishスクリプトを読
んでみてください。いくつか読めば、fishスク
リプトの書き方はほぼ把握できると思います。

エイリアスではなく関数

　fishでは機能の種類もシンプル化されていま

す。エイリアスは存在しておらず、関数を定義
することがエイリアスに相当しています。bash

やzshでは変数を定義したり組み込み関数を実
行したりと、さまざまな方法で機能の変更・設
定をすることになりますが、fishでは関数を定
義するだけです。
　問題といえば、bashやzshで使っているエイ
リアスがそのままでは fishで使えないというこ
とです。これについては、たとえばbashやzsh

で使っているエイリアス設定を ̃/.aliasesといっ
たファイルにまとめておいて、リスト1のよう
に fishで自動的に関数に変換して取り込むよう
にすれば共有できます。fishの設定ファイルは
̃/.config/fish/config.fishですので、このファ
イルに共有の設定を書き込んでおきます（下の
コラム参照）。

まずは使ってみようfish

　インタラクティブシェルはユーザの慣れが出
る部分ですので使い始めには違和感を覚えると
思いますが、いったん慣れてしまうと fishはも
うほかのインタラクティブシェルに戻る気が起
こらないような便利なシェルです。ぜひ一度使っ
てもらえればと思います。ﾟ

 ▼リスト1　bashやzshとエイリアスを共有する設定

if [-f ̃/.aliases]
 sed -e 's/$(/(/g' -e 's/&&/; and /g' ̃/.aliases ¦ source
end

fishはパイプ中の組込みコマンドに対してサブシェルを生成しない

　エイリアス共有のためのスクリプト（リスト1）を見て、シェルの構造に詳しい方なら1つ疑問を感じた
はずです。あのコード、bashや zshでは思ったように機能しません。これはパイプに接続された source
組み込みコマンドがサブシェルで実行されるため、本体のシェルには影響を及ぼせないからです。
　fishはパイプに接続されていても、組み込みコマンドの実行時にはサブシェルを生成しません。その
ままシェルで処理を行います。このため、source組み込みコマンドによる処理がシェル本体に反映され
ています。シェルのプロセス実行構造に詳しくないユーザにとっては、この挙動のほうが親しみやすい
ものだと思います。

第1特集
エンジニアの道具を磨こう

速く堅実に使いこなすための

MySQLのしくみを探る ... 066

MySQLをインストールしてみよう 077

MySQLでデータベースを作ってみよう！ 095

MySQLを武器に
SQLを始めよう！

第1章

第2章

第3章

ソフトウェア開発の基礎の基礎

RDBの学び方

第2特集

yoku0825

yoku0825、kk2170、hito_asa

とみたまさひろ

ソフトウェア開発になくてはならないRDB。この操作にはSQLを学ぶことが必要です。
もっとも身近なオープンソースRDBMSであるMySQLをベースに、SQLの基礎の基礎を
しっかり学びましょう。最初はMySQLの歴史を振り返り、そのしくみと流れを理解しま
す。プラガブルストレージエンジンという本質の1つを押さえてください。そのあとは
MySQLのインストールです。Mac、Windows、Linuxの各環境ごとに解説をしました。
最後の章は、実際にデータベースを操作してみます。電子掲示板システムを例に取り上げ、
実際に手を動かして試してみてください。MySQLについて疑問が出てきたらユーザグ
ループを頼りましょう。そのためのリンクもまとめました。SQLは一生使える技術です。
これを機会にぜひマスターしておきましょう！

第2特集 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

66 - Software Design

 MySQLのしくみ

　MySQLはRDBMS（Relational DataBase

Management System：リレーショナルデータ
ベース管理システム）です。SQLと呼ばれる言
語で問い合わせを行うことで、データの格納や
データの取り出しを行います。
　とあるORM（Object-Relational Mapping：オ
ブジェクト関係マッピング）の作者が「RDBは
アプリケーションからすると一番アクセスしや
すい永続化できるグローバル変数」と言ってい
たことがありますが、筆者にはこれは正

せいこく

鵠を射
ていると思われ、「永続化を保証する（クラッシュ
してもコミットに成功したデータは失われない）」
「複数のサーバから同じ値に（場合によっては排
他制御をしながら）アクセスできる」「複数の言
語で対応するライブラリがある」など、アプリ
ケーションで実装するには骨の折れる機能を提
供してくれます。
　RDBMSはこれらの（本来複雑な）実装を抽象
化するためのレイヤとして機能します（もう1つ、
述語論理に基づいた演算を提供することも
RDBMSの重要な機能ですが、これについては
SQLの側面が強いため今回は置いておきましょ
う）。しかし、SQLの向こうの側、隠蔽された
MySQLの内部の世界に興味はないでしょうか。
　本章では、MySQL内部のアーキテクチャを
ざっと説明していきます。

 フォアグラウンドスレッドと
バックグラウンドスレッド

　MySQLはシングルプロセスマルチスレッド
モデルを採用しています。1つのmysqldプロセ
スの内部に、いくつかのバックグラウンドスレッ
ドと、1コネクションあたり1つのフォアグラウ
ンドスレッドを起動します（Unix、Linux系の
OSでMySQLを動かしたことがあればmysqld_
safeというプロセスを見たことがあるかもしれ
ませんが、これはmysqldをラップしているシェ
ルスクリプトであり、RDBMSの機能を提供し
ているプロセスではありません）。
　バックグラウンドスレッドの多くはInnoDB

の非同期スレッドです。数で言えばMySQLの
ほとんどのスレッドはフォアグラウンドスレッ
ドで占められます（繰り返しになりますが、1コ
ネクションが1つのフォアグランドスレッドを
占有しますので、MySQLに100のコネクション
があれば100本のフォアグラウンドスレッドが
存在します）。レプリケーション関連のスレッド
（マスタのBinlog Dumpスレッド、スレーブのI/

Oスレッド、SQLスレッドとも）もフォアグラウ
ンドスレッドと位置付けられています。
　コネクションをハンドルするフォアグラウン
ドスレッドのライフサイクルは、図1のように
なっています。SELECTステートメントをベース
にしているため記述が偏っていますが、INSERT
やUPDATEステートメントでもほぼ同様の動きに

MySQLの
しくみを探る

　この章ではMySQLの内部で、フォアグラウンドスレッドとバックグ
ラウンドスレッドがどのように動作しているかを解説します。また、
MySQLのパラメータについても実例を挙げてグローバルスコープと
セッションスコープの動作やその違いについて解説します。

第1章

MySQL内部のアーキテクチャ

 Author yoku0825

MySQLのしくみを探る
MySQL内部のアーキテクチャ

第1章

66 - Software Design Jun. 2016 - 67

なります。

コネクションをハンドルする
スレッドの動作

　まず、TCPの3306番ポート、UNIXソケット
ファイルなどMySQLへの通信を待ち受けるの
はmysqldのメインスレッドです。メインスレッ
ドが待ち受けているところにクライアントから
の接続要求があると、メインスレッドは自身を
cloneし、作成された子スレッドを接続要求に割
り当てます（そしてメインスレッド自身は再び待
ち受けループに戻ります）。
　ここで作成された子スレッドがフォアグラウ
ンドスレッドとなり、接続要求の続きの処理か
ら結果セットを返送するところまで、その接

続元からの要求に対するすべての処理を担当し
ます。
　少し詳しく見ていきましょう。

MySQLのユーザ認証
　MySQLの認証はOSの認証機能とは独立して

おり、アカウントの情報はMySQLの内部にテー
ブルとして保管されています（厳密には認証に利
用されるアカウント情報はmysqldのメモリ上に
展開されており、mysql.userを始めとするテー
ブル群はアカウント情報をメモリ上にリロード
するためのスナップショットなのですが、ここ
では同じものとしておきましょう）。
　MySQLのアカウント情報は「ユーザ名」と
「接続元ホスト」の組で一意に識別されます。

“myuser@192.168.0.1” と “myuser@192.168.0.2”
は別のアカウントです。この2つのアカウント
しか存在しない場合に192.168.0.3の IPアドレ
スを持つサーバからmysql -umyuserでログイ
ンしようとした場合、「接続元ホスト」がマッチ
しないため接続できません。「ユーザ名」と「接
続元ホスト」がアカウント情報にマッチした場
合のみ、パスワードの検証に進みます（詳細は割
愛しますが、デフォルトではチャレンジ・レス
ポンス認証を行います）。

SQL構文解析とアクセス権のチェック
　アカウントの認証が済んだらSQLの構文解析
を行います。ここではSQLの構文が正しいかど
うかのチェックに加え、アクセスするオブジェ
クト（スキーマ、テーブル、ストアドプロシー
ジャなど）を決定します。
　ここでMySQLは「現在のユーザは対象のオ

ブジェクトに対する必要な権限を持っているか」
をチェックします。MySQLはカラム、テーブ
ル、スキーマ、グローバル（すべてのスキーマに
対する権限）の4レベルでSELECT、INSERT、

 ▼図1　フォアグラウンドスレッドのライフサイクル

クライアントからの
接続要求 MySQL アカウント認証

コネクションハンドラー

統計情報

データ取り出しメソッド

データストレージ

ストレージエンジン

エグゼキューター

SQL 構文解析

アクセス権チェック

パーサー

最適化、実行計画作成

データ取り出し フィルタリング ソート 結果セットの送信

オプティマイザー

第2特集 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

68 - Software Design

UPDATE、DELETEなどの権限をそれぞれ設
定できます。
　クエリキャッシュ、ジェネラルログ（一般クエ
リログ）はこの段階で処理されます。

SQLの最適化と実行計画の作成
　SQLは宣言型の言語です。データを「どのよ
うに」取り出すかを記述することはありません。
　しかし実際問題データは「どこかに」格納さ
れており、それを「どうにかして」「なるべく速
く」取り出さなければなりません。
　オプティマイザーと呼ばれるこのステージで
は「要求された処理をなるべく速く実行するに
はどのようにデータを取り出すのが良いか」を
計算します。
　インデックスを利用した方が良いのか、利用
しない方が良いのか。このインデックスとそち
らのインデックスではどちらがより速いのか。
クエリを（数学的な等価性に基づいて）書き換え
ることで高速化はできないか。結合の順番はど
ちらを先にした方が速いのか。
　これらを計算するために、オプティマイザー
は「統計情報」を利用します。ここでいう統計
情報とは、「テーブルに含まれるデータは全体で
どの程度なのか」「インデックスのカーディナリ
ティー（含まれる値のバリエーション）はどの程
度なのか」などの情報です。
　図1でも示したとおり、この統計情報は「ス
トレージエンジン」により提供されます。

データの取り出しから結果セットの返却まで
　オプティマイザーで実行計画を決定したら、
その実行計画に従ってデータを取り出します（あ
まり一般的な呼ばれ方ではなさそうですが、ソー
スコード上このステージはエグゼキューターと
呼ばれていますので、本章でもそう呼ぶことに
します）。
　エグゼキューターはストレージエンジンに「ど
のインデックスを利用して（あるいは利用せず
テーブルスキャンで）」「そのインデックス上か

らどの値を探しカーソルを合わせ」「最初の行を
読み取り」「カーソルを次のリーフに移動し」「そ
の行を読み取り」……という実行計画を指示し、
指示を受けたストレージエンジンはエグゼキュー
ターに対してデータを返却します。
　ストレージエンジンからデータを集めながら、
エグゼキューターは独自に結果をフィルタリン
グします。ストレージエンジンにできることは
テーブルスキャンまたはインデックス単位での
動作だけのため、インデックスだけで解決でき
ないWHERE句やORDER BY句の処理はエグゼ
キューターが行います。
　SQLで指示されたフィルタ処理とソート処理
まですべてを適用し終えれば、最後はその結果
セットをクライアントに返却します。
　ここまでの複数のステージが、1つのフォア
グラウンドスレッドによって行われています。
バイナリログやスロークエリログの出力はこの
ステージで行われます。

レプリケーション関連スレッドの
動作

　MySQLは古く（バージョン3.23系列、2000年
のリリースです）から長きに渡って非同期レプリ
ケーションをサポートしてきました。レプリケー
ションとは「あるサーバで実行された更新ステー
トメントを」「別のサーバに転送する」ことで
「データを同期する」しくみです。更新ステート
メントを受け付けるサーバを「マスタ」、マスタ
への更新ステートメントを転送されるサーバを
「スレーブ」と呼びます（図2）。
　マスタには「スレーブからのレプリケーショ
ン要求を受け付けるBinlog Dumpスレッド（また
はsenderスレッド）」、スレーブには「マスタか
ら更新情報を受け取る I/Oスレッド（または
receiverスレッド）」と「更新情報を自身に適用
するSQLスレッド（またはapplierスレッド）」が
存在します。
　また、コネクションスレッドが発行した更新
ステートメントをシリアライズしてBinlog Dump

MySQLのしくみを探る
MySQL内部のアーキテクチャ

第1章

68 - Software Design Jun. 2016 - 69

スレッドに渡すためのキューとして「バイナリ
ログ」、I/Oスレッドが受信したバイナリログイ
ベントをSQLスレッドに渡すためのキューとし
て「リレーログ」がそれぞれファイルとして存
在します。
　レプリケーションの構成方法はもう少し後に
説明するとして、運用状態のレプリケーション
構成は図2のようになっています（マスタ1台、
スレーブ1台の構成の場合）。

運用中のレプリケーションの状態
　図2中の“clientA”はマスタに接続し、更新ス
テートメントを実行するクライアントを表して
います。先に説明したとおり“clientA”はマスタ
上のフォアグラウンドスレッド（図2中では“コ
ネクションスレッド”）とやりとりし、マスタ上
のデータを更新するSQLを実行します。
　マスタ上のコネクションスレッドは先の説明
のように認証を行い、SQLをパースし、実行計
画に従ってマスタ上のデータストレージを更新
するとともに、バイナリログへの書き込みを行
います。コネクションスレッドが責任を持つの
はここまでで、データストレージとバイナリロ
グへの書き込みが成功した時点で“clientA”はス
テートメントのOK応答を受け取ります。ここ
までがまず1つめのブロックです。

　次に、マスタ上にはBinlog Dumpスレッドが
常駐しており、これはバイナリログを監視して
います。バイナリログへの書き込みを検知する
と、書き込まれたイベントを読み込み、スレー
ブの I/Oスレッドに対してイベントを転送しま
す。MySQLのレプリケーションはスレーブか
らのポーリングではなく、マスタからの自発的
なプッシュです。Binlog Dumpスレッドはレプ
リケーション中のスレーブと1対1で存在し、ス
レーブの台数分Binlog Dumpスレッドが存在し
ます。
　スレーブに移ると、マスタからバイナリログ
のイベントを受け取る役割として I/Oスレッド
が存在します。I/OスレッドはBinlog Dumpス
レッドからイベントを受け取り、リレーログに
それを書き込むところまでがその役割です。
MySQL 5.7では複数のI/Oスレッドが稼働でき
ますが、MySQL 5.6とそれ以前では 1つの
mysqldには1つのI/Oスレッドしか存在できま
せんでした（スレーブから見たマスタは常に1台
しかありませんでした）。I/OスレッドとBinlog

Dumpスレッドは常時接続し続け、マスタに更
新ステートメントが実行されるたびにイベント
がリレーログに記録されていきます。
　最後の処理ブロックはスレーブのSQLスレッ
ドを中心としたブロックです。SQLスレッドは

バイナリログ

clientA

コネクションスレッド

binlog_dump

データストレージ

master

リレーログio_thread

コネクションスレッドsql_thread clientBデータストレージ

slave

 ▼図2　マスタとスレーブの役割

第2特集 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

70 - Software Design

（マスタのBinlog Dumpスレッドがバイナリログ
に対してそうするように）リレーログを監視し、
書き込みを検知するとそれをパースしてスレー
ブ自身のデータストレージに書き込みます。
　図2中の“clientB”はスレーブに接続しデータ
を参照するクライアントです。このレプリケー
ションのしくみを通してデータの更新差分が伝

搬され適用されるため、“clientA”が書き込みを
行ったのはマスタのみであるにもかかわらず、
スレーブに接続した“clientB”でも同じデータを
読み込むことができます。

レプリケーションの構築
　レプリケーションの構成にはいくつかのステッ

　ここまでの説明で何度か出てきましたが、「ストレージエンジン」はMySQLの中
で「データの格納、保存、取り出しに責任を持つ」コンポーネントです。「統計情報
の取得」や「1行を読み取る」「カーソルを次に進める」「1行を書き込む」などのAPI
を持っています。

　バージョン5.7.11現在のMySQLにはMyISAM、InnoDB、CSV、Merge、BlackHole、Memory、
Archive、performance_schema、Federatedの9つのストレージエンジンがバンドルされており、そ
れぞれ違ったフォーマットでデータを格納、保存、取り出します（データをいっさい格納しないストレー
ジエンジンも含まれていますが）。
　ストレージエンジンが分離されていることで得られるメリットは何でしょうか。それは、ストレージ
エンジンの差はエグゼキューターに隠蔽されている（さらには、エグゼキューターからもストレージエン
ジンを隠蔽するためのハンドラーというレイヤがあります）ため、SQLパーサーはストレージエンジン変
更の影響を受けません。つまり、SQLを書き換えることなく複数のストレージエンジンを渡り歩くこと
ができます。
　たとえばMyISAMは旧来から長く使われているストレージエンジンで「少ないメモリ量でも軽快に動
く」「排他制御がテーブル単位で並列性能が低い」「トランザクション非対応でクラッシュアンセーフ」「転
置索引、空間索引に対応」などの特性を備え、InnoDBは「トランザクション対応」「排他制御はインデッ
クス単位」「フォアグラウンドスレッドとバックグラウンドスレッドが協調して動作する」「転置索引、空
間索引に対応」「クラッシュセーフを実現するための複雑な機構」などの特性を備えています。
　Memoryストレージエンジンは「データ、インデックスをメモリ上にのみ格納する」ストレージエン
ジンです。そのため小さなテーブルをスキャンして少数の行を取り出す処理は非常に高速ですが、MySQL
を停止させるとデータはすべて消えてしまいます。また、トランザクションにも非対応です。デメリッ
トばかりのように思えますが、この特性はテンポラリーテーブルと非常に相性が良いです（集計関数の中
間処理結果を格納するため小さなテーブルとなることが多く、ほかのスレッドから参照されないためク
ラッシュ後にデータが存在する必要はない）。
　アプリケーションの特性に合わせて適切なストレージエンジンを選択することもDB設計上重要なこと
……のように思えますが、2016年現在ではこれはさほど重要なことではありません。MyISAMはトラン
ザクション非対応であり、本章の冒頭でRDBMSの利点として挙げた「永続化を保証する」ことができな
いからです。RDBMS側で永続化を保証できないとなると、それはアプリケーション側で保証しなければ
なりません。MyISAMへの書き込み命令はすべて行われたのか？　行われた更新はクラッシュ後もすべて
適用されているか？　適用されていない更新がデータとして残っていないか？　それらを逐一チェックする
ロジックを書くことは（少なくとも筆者には）とても面倒で困難です。せっかくのRDBMSを使うメリット
を1つ手放すこともありませんので、ストレージエンジンはInnoDBを利用することをお勧めします。

プラガブルストレージエンジン

MySQLのしくみを探る
MySQL内部のアーキテクチャ

第1章

70 - Software Design Jun. 2016 - 71

プがあります。ここではCHANGE MASTER TOス
テートメントとSTART SLAVEステートメントを
利用してレプリケーションを構築する時点で起
こることについて説明しましょう。
　まず大前提として、マスタとなるmysqldでバ
イナリログが出力される設定になっている（log_

binオプション注1が有効にされている）必要があ
ります（デフォルトでは無効になっています）。
　また、バイナリログに「このクエリはどのサー
バで最初に実行されたか」を識別するための
server_id注2を、マスタ、スレーブで一意になる
ように指定します。マスタとスレーブで同じ
server_idを指定した場合や、同じマスタに接
続する複数のスレーブで同じserver_idを設定
されたMySQLがある場合、レプリケーション
が正しく動きません。MySQL 5.6とそれ以降で
はserver_uuidもマスタとスレーブで異なる必
要があります。server_uuidはデータディレク
トリ（yumリポジトリを利用してインストールし
た場合のデフォルトは/var/lib/mysqlです）の
auto.cnfファイルに記録されています。mysqld
の起動時にauto.cnfが見つからなければ、
server_uuidを自動生成してauto.cnfに書き
込みますので、データディレクトリを丸ごとコ
ピーした場合は複製先のデータディレクトリの
auto.cnfを削除することを忘れないでくださ
い。
　次に、マスタに対して「レプリケーション用
のユーザ」を作成します。マスタから見るとス
レーブは通常のクライアントと同じ扱いであり、
レプリケーションの開始シーケンスの中でアカ
ウント認証とコマンドパース、権限チェックが
行われます（通常のSQLではないため、実行計

画の計算などは行われません）。レプリケーショ
ンスレーブとなり、Binlog Dumpスレッドから
バイナリログを受け取るためにはReplica
tion_slave権限が必要です。図3のコマンド
は、接続元ホスト“172.17.42.1”の“repli cator”
ユーザを作成し、Replication_slave権限を
割り当てる例です。Replication_slave権限
はグローバル権限（ON *.*で表されます）のみが
存在し、データベース単位、テーブル単位で指
定することはできません（権限上データベース単
位やテーブル単位での指定ができないだけで、
別途レプリケーション設定のパラメータを利用
してデータベース単位やテーブル単位でのレプ
リケーションを構築することはできます。この
機能は「レプリケーションフィルタ」と呼ばれ
ます）。
　マスタ上でユーザを作成したあとは、スレー
ブから接続をテストしてみましょう（図4）。
CHANGE MASTER TOステートメントを実行する
前にmysqlコマンドラインクライアントで認証
が行われることを確認しておくことをお勧めし
ます（図4のコマンド例では、マスタの IPアド
レスは“172.17.1.116”としています）。
　MySQLのレプリケーションは「同じデータ
に対し」「同じ更新ステートメントを実行すれば」
「再び同じデータに戻る」という考え方をベース
にした結果整合性モデルで実装されています。
　そのため、レプリケーション構成をスタート
する前に、マスタとスレーブの両サーバのデー
タを同じものにしておく必要があります。デー
タディレクトリのコピーやmysqldumpコマンド
を利用したバックアップ／リストアの手順を用
いてデータをそろえます。マスタ、スレーブと
も新規構築の場合はアカウント情報を除いて同
じデータ（＝お互い何もデータが入っていない）
状態になっていますのでそのまま手順を進める

注1） http://dev.mysql.com/doc/refman/5.6/ja/replication-
options-binary-log.html#sysvar_log_bin

注2） http://dev.mysql.com/doc/refman/5.6/ja/server-system-
variables.html#sysvar_server_id

 ▼図3　“replicator”ユーザを作成し、Replication_slave権限を割り当てる例

mysql> CREATE USER replicator@172.17.42.1 IDENTIFIED BY 'replication_password';
mysql> GRANT REPLICATION SLAVE ON *.* TO replicator@172.17.42.1;

http://dev.mysql.com/doc/refman/5.6/ja/replication-options-binary-log.html#sysvar_log_bin
http://dev.mysql.com/doc/refman/5.6/ja/server-system-variables.html#sysvar_server_id

第2特集 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

72 - Software Design

こともできますが、アカウント情報の差異がま
れにレプリケーションの停止を引き起こす（マス
タにしか存在しないアカウントをIF EXISTS
キーワードなしでDROP USERした場合など）場
合がありますので、本番環境でレプリケーショ
ンを構築する場合ではお互い初期状態でもダン
プ、リストアの手順を踏むようにしましょう。
　データがそろったところで、まずはマスタの
MySQLでバイナリログの情報を確認します（図
5）。
　バイナリログが無効になっている場合は、SHOW
MASTER STATUSには空の結果が返ってきますの
で設定を確認してください。
　戻ってきた結果のうち、Fileは現在アクティ
ブなバイナリログファイル名、Positionはアク
ティブなバイナリログの現在のポジション（アク
ティブなバイナリログの先頭からのオフセットバ
イト数）、Binlog_Do_DBとBinlog_Ignore_DB
はレプリケーションフィルタの設定項目、
Executed_Gtid_Setはマスタ上で実行済の
GTIDの情報を表します（本章で説明するセット
アップ手順ではGTIDを利用しないため、説明
は割愛します）。このうち、FileとPositionの
値がレプリケーションの構成に必要です。
　バイナリログの情報が得られたら、今度はス

レーブにログインしてCHANGE MASTER TOス
テートメントを実行します（図6）。
　master_hostにはマスタのIPアドレス（また
はホスト名）を、master_portにはマスタのポー
ト番号（明示しない場合は3306と見なされます
ので、ポート番号を変更していない場合は指定
しなくてもかまいません）を、master_userに
は作成したレプリケーション用ユーザ名を、
master_passwordにはレプリケーション用ユー
ザのパスワードを、master_log_fileには先ほ
ど確認したマスタ上のアクティブなバイナリロ
グファイル名を、master_log_posにはアクティ
ブなバイナリログの現在のポジションを、それ
ぞれ指定します。
　これは「master_hostのmaster_portに
master_userとmaster_passwordを使用して
接続し、master_log_fileのmaster_log_pos
以降のイベントを受信するようにレプリケーショ
ンを構築する」という意味です。
　バイナリログは、マスタ上で更新がコミット
されるたびに後ろに書き込まれていき（図7）、遡

さかのぼ

ることはありません（バイナリログファイルも連
番のサフィックスがついています）。バイナリロ
グファイルとポジションは一意であり、最初に
データを同期した時点のポジション以降のイベ

 ▼図4　スレーブからの接続テスト

$ mysql -h 172.17.1.116 -u replicator -p
Enter password:
mysql> SHOW GRANTS;
+--+
¦ Grants for replicator@172.17.42.1 ¦
+--+
¦ GRANT REPLICATION SLAVE ON *.* TO 'replicator'@'172.17.42.1' IDENTIFIED BY PASSWORD <secret> ¦
+--+
1 row in set (0.00 sec)

 ▼図5　バイナリログの情報を確認

mysql> SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+-------------------+
¦ File ¦ Position ¦ Binlog_Do_DB ¦ Binlog_Ignore_DB ¦ Executed_Gtid_Set ¦
+------------------+----------+--------------+------------------+-------------------+
¦ mysql-bin.000002 ¦ 2035312 ¦ ¦ ¦ ¦
+------------------+----------+--------------+------------------+-------------------+
1 row in set (0.00 sec)

MySQLのしくみを探る
MySQL内部のアーキテクチャ

第1章

72 - Software Design Jun. 2016 - 73

ントをすべて適用していくことで、最終的に同
じデータがスレーブでも再現できます（データを
同期する以前のイベントを受信してしまうと、

スレーブですでに同期されたデータを再度作成
するSQLが実行されることになりますので、マ
スタとスレーブの間でデータの不整合が発生し

 ▼図6　スレーブでCHANGE MASTER TOステートメントを実行

mysql> CHANGE MASTER TO master_host = '172.17.1.116', master_port = 3306, master_user = ｭ
'replicator', master_password = 'replication_password', master_log_file= 'mysql-bin.000002', ｭ
master_log_pos= 2035312;
Query OK, 0 rows affected, 2 warnings (0.02 sec)

mysql> SHOW WARNINGS;
+-------+------+---+
¦ Level ¦ Code ¦ Message ¦
+-------+------+---+
¦ Note ¦ 1759 ¦ Sending passwords in plain text without SSL/TLS is extremely insecure. ¦
¦ Note ¦ 1760 ¦ Storing MySQL user name or password information in the master info repository is
not secure and is therefore not recommended. Please consider using the USER and PASSWORD
connection options for START SLAVE; see the 'START SLAVE Syntax' in the MySQL Manual for more
information. ¦
+-------+------+---+
2 rows in set (0.00 sec)

mysql> START SLAVE;
Query OK, 0 rows affected (0.01 sec)

binlog_dump_thread io_thread relay_log sql_thread

認証 OK

バイナリログ
更新待ち

バイナリログ
更新待ち

データベース更新

イベント転送

リレーログ書き込み

リレーログ読み取り

イベント転送待ち

イベント転送待ち

認証要求

 ▼図7　ログの伝搬

第2特集 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

74 - Software Design

ます。また、データを同期した以降のイベント
を取り漏らしてしまうとマスタとスレーブに同
じ更新操作をすれば最終的にデータは同じにな

るという前提から外れることになりますので、
これもデータの不整合が発生します）。
　マスタへのトラフィックをすべて停止した状
態（または新規構築でありまだトラフィックが流
れてこない場合）であれば間違えることはないか
と思いますが、マスタが稼働中の状態でレプリ
ケーションスレーブを構築する場合はこの点に
注意する必要があります。
　MySQL 5.6とそれ以降のバージョンでは、
CHANGE MASTER TOステートメントにmaster_
userとmaster_passwordを指定した場合、セ
キュリティに関連するNoteを出力するようにな
りました。レプリケーション構築そのものに影
響することはありませんが、パスワードが平文
でレプリケーション構成のファイルに記録され
ることが許容できない場合はNoteのメッセージ
に従ってSTART SLAVEステートメントでユーザ
名とパスワードを指定するようにしてください。

 パラメータのスコープ

　代表的な2種類（コネクションをハンドルする
スレッドとレプリケーション関連スレッド）の動
作を紹介しましたので、次にそれらのスレッド
が利用するパラメータについて紹介したいと思
います。
　一般的に「MySQLのパラメータ」「MySQLの
オプション」と呼ばれるものはリファレンスマ
ニュアル上ではサーバシステム変数注3と呼ばれ
ています。これらのパラメータは「オプション
形式」（mysqldの起動時にオプションの形で指定
するもの）と「変数形式」（mysqldの起動後にSET
ステートメントで指定できるもの）があり、片方
の形式でしか指定できないもの、両方の形式で
指定できるものがあります（ただし、変数形式で

あっても読み取り専用のパラメータがあり、実
質オプション形式しか受け付けないようなもの
もあります）。またパラメータごとに「グローバ
ルのみ」（サーバ全体で1つの値を共有するも
の）、「セッションのみ」（SET SESSIONステート
メントでのみ設定可能）、「グローバルとセッショ
ンの両方」（単にSET GLOBALステートメントで
もSET SESSIONステートメントでも指定ができ
るという意味ではありません。後ほど説明しま
す）のスコープを持っています。

グローバルスコープと
セッションスコープについて

　MySQLのパラメータには3つのスコープがあ
り、それぞれ反映のタイミングと影響範囲が違
います。
　グローバルスコープしか持たないパラメータ
はシンプルです。SET GLOBALステートメント
でパラメータを変更した時点から、MySQLに
接続しているすべてのスレッドでその設定が有
効になります（厳密には個々のスレッドに依存し
ない個所でそのパラメータが判定されている、
というべきでしょうか）。たとえばSET GLOBAL
innodb_flush_log_at_trx_commit= 0とい
うステートメントを実行した場合、SETステー
トメントの完了以降すべての処理がinnodb_
flush_log_at_trx_commit = 0として振る舞
います。ほかのスレッドがトランザクションの
途中であろうが、クエリ処理の真っ最中であろ
うが、ただ1つの値が使われます。
　セッションスコープしか持たないパラメータ
も同様にシンプルです。SET SESSIONステート
メントでパラメータを変更した時点から、その
セッションでのみ変更されたパラメータが有効
になります。セッションスコープしか持たない
パラメータは多くなく（timestamp、last_
insert_idなどいくつかありますが）使う機会
は少ないでしょう。
　そしてMySQLのパラメータの多くを占める
グローバルスコープとセッションスコープの両

注3） http://dev.mysql.com/doc/refman/5.6/ja/server-system-
variables.html

http://dev.mysql.com/doc/refman/5.6/ja/server-system-variables.html

MySQLのしくみを探る
MySQL内部のアーキテクチャ

第1章

74 - Software Design Jun. 2016 - 75

方を持つパラメータは、

・コネクションの確立時にグローバルスコープ
からスレッドごとのセッションスコープに値
がコピーされる

・個々のスレッドの振る舞いはスレッドがすで
に保持しているセッションスコープのパラ
メータに支配される

という動作をします。この動作により、SET
SESSIONステートメントはグローバルスコープ
の値にかかわらずセッション単位でパラメータ
を上書きできますが、SET GLOBALステートメ
ントはすでに接続済みのスレッドには反映され
ないという点に注意が必要です。アプリケーショ
ンの処理ごとにMySQLとのコネクションを張
りなおすタイプのアプリケーションはSET
GLOBALステートメントが（おそらく多くの人が）
期待するとおりに動きますが、コネクションプー
リングを利用している場合はそれらのセッショ
ンを一度解放して再接続しなければいけません。

グローバルスコープと
セッションスコープの動作の違い

　例を見てみましょう。あらかじめ接続された
conn1というコネクションとconn2というコネク
ションがあります。変数形式のパラメータは、
SELECTステートメントで変数としてアクセスで
きます。これらにはglobalとsessionという
名前空間が割り当てられており、グローバルス
コープの値とセッションスコープの値を参照で
きます（図8）。
　SET SESSIONステートメントでconn1のセッ
ションスコープの変数を変更しました。これに
より、conn1のソートバッファのサイズは1MB

が実効値になりますが、conn2のソートバッファ
のサイズはデフォルトの256kBのままです（図
8）。
　次にconn2でSET GLOBALステートメントを利
用して（グローバルスコープのパラメータのセッ
トには“SUPER”権限が必要になります）グロー
バルスコープのソートバッファサイズを128kB

に変更しました。conn2
からもconn1からも@@
global.sort_buff
er_size変数は設定変
更後の値が見えます
が、実効値である@@se
ssion.sort_buffer_
size変数は conn2が
256kB、conn1が1MB

と、SET GLOBALステー
トメント前と変更があ
りません（図9）。
　SET GLOBALステー
トメントの実行後に接
続してきた新しいconn3

のコネクションは、@@
session.sort_buff
er_size変数が@@gl
o b a l . sort_buff

 ▼図8　グローバルスコープの値とセッションスコープの値

conn1> SELECT @@global.sort_buffer_size, @@session.sort_buffer_size;
+---------------------------+----------------------------+
¦ @@global.sort_buffer_size ¦ @@session.sort_buffer_size ¦
+---------------------------+----------------------------+
¦ 262144 ¦ 262144 ¦
+---------------------------+----------------------------+
1 row in set (0.00 sec)

conn1> SET SESSION sort_buffer_size= 1 * 1024 * 1024;
Query OK, 0 rows affected (0.00 sec)

conn1> SELECT @@global.sort_buffer_size, @@session.sort_buffer_size;
+---------------------------+----------------------------+
¦ @@global.sort_buffer_size ¦ @@session.sort_buffer_size ¦
+---------------------------+----------------------------+
¦ 262144 ¦ 1048576 ¦
+---------------------------+----------------------------+
1 row in set (0.00 sec)

conn2> SELECT @@global.sort_buffer_size, @@session.sort_buffer_size;
+---------------------------+----------------------------+
¦ @@global.sort_buffer_size ¦ @@session.sort_buffer_size ¦
+---------------------------+----------------------------+
¦ 262144 ¦ 262144 ¦
+---------------------------+----------------------------+
1 row in set (0.00 sec)

第2特集 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

76 - Software Design

er_size変数と同じになります。また、接続済
みのコネクションでも明示的にdefaultキー
ワードを使ってSET SESSIONステートメントを
利用することでグローバルスコープのパラメー
タから再度値をコピーできますが、あまり一般
的な方法ではなく、アプリケーションサーバを
再起動する方法がよく利用されます（図10）。

 まとめ

　本章ではMySQLのベースアーキテクチャで

あるシングルプロセスマルチスレッドモデルの
代表的なスレッドの動作と、パラメータのスコー
プについての説明をしました。
　サーバサイドアプリケーションのエンジニア
となるとSQLの向こう側はブラックボックスと
なりがちですが（そのための抽象化レイヤとして
SQLが存在しているので、このこと自体は悪い
ことではありません）、MySQLの基本的なしく
みを知ることで、エンジニアリングの世界が広
がることの助けになれば幸いです。｢

 ▼図9　グローバルスコープを変更しても、セッションスコープには影響はない

conn2> SET GLOBAL sort_buffer_size= 128 * 1024;
Query OK, 0 rows affected (0.00 sec)

conn2> SELECT @@global.sort_buffer_size, @@session.sort_buffer_size;
+---------------------------+----------------------------+
¦ @@global.sort_buffer_size ¦ @@session.sort_buffer_size ¦
+---------------------------+----------------------------+
¦ 131072 ¦ 262144 ¦
+---------------------------+----------------------------+
1 row in set (0.00 sec)

conn1> SELECT @@global.sort_buffer_size, @@session.sort_buffer_size;
+---------------------------+----------------------------+
¦ @@global.sort_buffer_size ¦ @@session.sort_buffer_size ¦
+---------------------------+----------------------------+
¦ 131072 ¦ 1048576 ¦
+---------------------------+----------------------------+
1 row in set (0.00 sec)

 ▼図10　 SET SESSION sort_bu�er_size = defaultでセッションパラメータの値にグローバルパラメータの値が反映
される

conn3> SELECT @@global.sort_buffer_size, @@session.sort_buffer_size;
+---------------------------+----------------------------+
¦ @@global.sort_buffer_size ¦ @@session.sort_buffer_size ¦
+---------------------------+----------------------------+
¦ 131072 ¦ 131072 ¦
+---------------------------+----------------------------+
1 row in set (0.00 sec)

conn1> SET SESSION sort_buffer_size = default;
Query OK, 0 rows affected (0.00 sec)

conn1> SELECT @@global.sort_buffer_size, @@session.sort_buffer_size;
+---------------------------+----------------------------+
¦ @@global.sort_buffer_size ¦ @@session.sort_buffer_size ¦
+---------------------------+----------------------------+
¦ 131072 ¦ 131072 ¦
+---------------------------+----------------------------+
1 row in set (0.00 sec)

第2章

77 - Software Design Jun. 2016 - 77

MySQLをインストール
してみよう

　この章ではMySQLを各RHEL系、Ubuntu、Debianなどのディスト
リビューション、WindowsやMac OSにインストールする方法について
解説します。また、MySQLのメジャーバージョン以外のインストール方
法、バイナリパッケージの利用についても触れます。

第2章

RHEL、Ubuntu、Debian、
Windows、Mac OSにおける手順

 Author yoku0825、kk2170、hito_asa

 MySQLをインストール
するにあたって

　2016年3月現在、MySQLの最新リリースは
2016年2月にリリースされたMySQL 5.7.11で
す。MySQLには最新版以外にもメンテナンス
が継続されるリリースが存在します。まずはど
のMySQLのリリースをインストールするかを
決めるためにも、MySQLのバージョン体系に
ついて知っておきましょう。

MySQLのバージョンについて
　MySQL x.y.zと書いた場合、xがメジャーバー
ジョン番号、yがリリースレベル、x.yが1つの
リリース系列となり、zがリリースシリーズ内で
のバージョン番号になるとされています注1。たと
えばMySQL 5.7.11はメジャーバージョン5、リ
リースレベル7、5.7系列の11番めのバージョン
という意味です。
　しかし実際のところ、互換性の単位やドキュ
メントの単位としてほぼx.yの「リリース系列」
が単位となることから、開発元のOracleで開催
されるセミナーなどで語られる際は、リリース
系列とされているx.yが（メジャー）バージョン、
zがマイナーバージョンとして呼ばれることが
多くなっています。筆者も慣習的に「ドキュメ
ント上のリリース系列」＝「（メジャー）バージョ

ン」、「リリース系列内でのバージョン番号」＝
「マイナーバージョン」と呼んでいますので、今
回の説明の中でもその呼び方を使いたいと思い
ます。
　メジャーバージョンをまたぐバージョンアッ
プをメジャーバージョンアップ、同一メジャー
バージョン内でマイナーバージョンのみ変更さ
れるバージョンアップをマイナーバージョンアッ
プと呼びます注2。

互換性の単位について
　先ほど「互換性の単位」という言い方を用いま
したが、ここでいう互換性とはmysql_upgrade
コマンドを用いたアップグレードの後方互換性
のことを意味します（ただし、後ほど説明します
が、GA（General Availability）版以前のマイナー
バージョンではこれらは保証されません）。
　MySQLではメジャーバージョン（リリース系
列）ごとにmysqlスキーマを始めとするシステム
用のスキーマに含まれるテーブルの構造に変化
があり、これを解消する（古い形式のシステム用
スキーマから新しいシステム用のスキーマに変
換する）ためにmysql_upgradeというコマンド
が同梱されています。このコマンドを利用した
アップグレードは原則「同じ、あるいは1つ前の
バージョンのシステム用スキーマを、現在のバー

注1） ドキュメント上の記載は、https://dev.mysql.com/doc/
refman/5.6/ja/which-version.htmlです。

注2） 余談ですが、たとえば「MySQL 5.6」は「マイエスキューエ
ル ごーてんろく」と呼ばれることが多く、たまに「マイエ
スキューエル ごーろく」、英語圏に行くと「マイエスキュー
エル ファイブシックス」と呼ばれることが多いようです。

https://dev.mysql.com/doc/refman/5.6/ja/which-version.html

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

78 - Software Design

ジョンのシステム用スキーマに変更する」こと
を意図して設計されていたため、2つ以上のバー
ジョンをまたいだmysql_upgradeは失敗する
ことがあります（成功することもあります。筆者
が試した限りでは、MySQL 5.1.73からMySQL

5.6.29へのメジャーバージョンアップはmysql_
upgradeコマンドで実施可能、MySQL 5.0.96

からMySQL 5.6.29へのメジャーバージョンアップ
は失敗（MySQL 5.6がクラッシュする）でした。
ドキュメント上の記載も「not recommended or

supported（推奨されない、またはサポートされ
ない）」となっています注3）。
　また、大きな機能追加や機能の廃止、SQL構
文の変更（まれです）などは原則メジャーバー
ジョン単位で行われます。

バージョンのステータスについて
　MySQLのメジャーバージョンは、大きく分
けて3つの状態に分けられます。
　「サポートが終了したバージョン」「サポート
されているバージョン」「開発が進められている
バージョン」の3つです。2016年3月現在、My

SQL 5.5とそれより以前のバージョンは「サポー
トが終了したバージョン」で、これ以上マイナー
バージョンのリリースはありません。MySQL

5.6、5.7が「サポートされているバージョン」で、
バグフィックスなどによる新しいマイナーバー
ジョンが提供されることが期待できます。
MySQL 5.7が製品リリースされたため現在は
「開発が進められているバージョン」はありませ
んが、このままの予定でいけば、いずれMySQL

5.8が次の「開発が進められているバージョン」
としてリリースされるのではないでしょうか（公
式にはMySQL 5.8という名前はまだ出てきてい
ませんが、バグレポートなどでMySQL 5.8の片
鱗が見え始めています）。
　また、「開発が進められているバージョン」に

は別の形態もあり、“lab”版、「実験室」版など
と呼ばれています。これはMySQL Labs注4にて
配布されている文字どおり「実験中」のリリース
で、「本番環境での使用はやめてほしい」
（“Please, DO NOT USE THESE BINARIES

IN PRODUCTION”）とダウンロードページに
記載があります（図1）。これらは今後の「開発が
進められているバージョン」に取り入れられる
可能性のある新機能を試すためのリリースであ
り、開発中のバージョンのツリーとは独立して
開発が進められています。
　また、MySQLはマイナーバージョンによっ
ても大きく3つの状態に分けられます。
　DMR（“Development Milestone Release”、か
つては「ベータ版」と名前が付けられていました）
版、RC（“Release Candidate”、「リリース候補」
の名のとおり、DMRとGAの間に位置します。
かつて「ガンマ版」と呼ばれていた時期もあった
ようですが、あまり流行らなかったようです）
版、GA（“General Availability”、か つ て は
“Production”版とも名前が付けられていました。
MySQLでは“stable”版という言い方は耳にしま
せんが、ほかのプロダクトで言う“stable”版に
相当するのがこれです）版です。
　各メジャーバージョンの最後のマイナーバー
ジョンのステータスをもって、メジャーバージョ
ン全体のステータスを呼ぶことも多々あります
（たとえばMySQL 5.7のGA前の2015年9月時

 ▼図1 “Please, DO NOT USE THESE BINARIES IN
 PRODUCTION”の記載があるMySQL Labs

注3） MySQLのメジャーバージョンアップに関するドキュメン
ト上の記載は、https://dev.mysql.com/doc/refman/5.6/ja/
upgrading.htmlです。

注4） http://labs.mysql.com/

https://dev.mysql.com/doc/refman/5.6/ja/upgrading.html
http://labs.mysql.com/

MySQLをインストールしてみよう
RHEL、Ubuntu、Debian、Windows、Mac OSにおける手順

第2章

78 - Software Design Jun. 2016 - 79

点で言えば、MySQL 5.5（5.5.45-GA）と5.6（5.6.

26-GA）がGA、MySQL 5.7（5.7.8-rc）はRCで
した。GAの中でも最新のものを“GA”、最新で
ないGAは“Previous GA”などと呼び分ける場
合もあります）が、「サポートが終了したバージョ
ン」に関してはGAとは呼ばれなくなります。

入門者が選ぶべきMySQLの
バージョン

　現在サポートされているバージョンのMySQL

はMySQL 5.6とMySQL 5.7です。本来であれ
ば、最新のMySQLであるMySQL 5.7の利用を
勧めたいところなのですが、勉強用に初めて導
入するMySQLということであれば、"Previous

GA"であるMySQL 5.6をお勧めします。
　これは、MySQLのドキュメントはリリース系列
ごとに分冊されており（MySQL Documentation注5

のページを参照してください）、2016年3月現
在では日本語訳が存在するのはMySQL 5.6のみ
となっていることが大きな理由です。ちなみに、
2016年3月現在、アーカイブ以外で現在公開さ
れているMySQLの公式ドキュメントとしては
MySQL 5.6の日本語版が唯一の英語以外のド
キュメントです。入門者向けという意味では、
最新に近い（日本語ドキュメントがリリースされ
た当時は最新でした）バージョンの母国語訳のド
キュメントが存在するのはありがたいことです。
　もう一つの消極的な理由は、MySQL 5.6から
MySQL 5.7にかけては150を超える新機能が追
加注6されており、ユーザによって公開された
Web上の情報の多くはまだそれに対応していま
せん。新機能のみならず変更された仕様も存在
するため、入門用としては情報が多いバージョ
ンの方がよいでしょう。
　このため、本章で説明するインストールの手
順はすべて2016/03現在のMySQL 5.6系列の
最新版であるMySQL 5.6.29をベースに説明し
ます。

 インストール

　MySQLのインストールの方法はいくつかあ
りますが、ここでは次の、4つのOSとLinux汎
用バイナリパッケージ、CentOS上でのソース
コードからのコンパイルについて説明します。

①RHEL（Red Hat Enterprise Linux）およびそ
の互換OS（CentOS、Oracle Linuxなど）

②Ubuntu、Debian
③Windows（Windows 10）
④Mac OS X
⑤Linux用の汎用バイナリパッケージ（.tar.gz

パッケージ）を使用したインストール
⑥ソースコードからコンパイル（CentOS）

　ここで紹介するプラットフォーム以外にも、
MySQLがサポートしているプラットフォーム
はいくつかあります（図2）。
　ダウンロードページ注7からダウンロードでき
るのはその時点での最新シリーズの最新ビルド
のみです。今回のように前世代のGAをダウンロー
ドする場 合は、“Looking for previous GA

versions?”のリンクから、ダウンロード対象の
メジャーバージョンを選択します（図3）。
　また、最新ビルド以外のマイナーバージョン
をダウンロードする場合は、ページ上ほどにあ
る“Archives”のリンクからアーカイブを探すこ
とができます（図4）。

 ▼図2　 ダウンロードページからダウンロードできるプ
ラットフォーム別のパッケージ

注5） http://dev.mysql.com/doc/
注6） https://yakst.com/ja/posts/3037

注7） http://dev.mysql.com/downloads/mysql/

http://dev.mysql.com/doc/
https://yakst.com/ja/posts/3037
http://dev.mysql.com/downloads/mysql/

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

80 - Software Design

　インストールの手順はMySQLのリファレン
スマニュアル注8にも記載がありますので、その
ほかのプラットフォームでのインストールや、
詳細にインストールの内容を確認したい場合は
合わせて参照してください。

RHELおよびその互換OS
（CentOS、Oracle Linuxなど）

　RHELおよびその互換OSに特有のインス
トール方法としては、次の2つがあります。

①yumリポジトリを使用したインストール
②rpmパッケージを使用したインストール

　どちらもほぼ同じ構成でインストールされま
すが、MySQL 5.6まではyumコマンドでインス
トールする際とrpmファイルをダウンロードし
てきてインストールする際でパッケージの名前
やサービス名などが一部違いますので、別とし
てカウントしてあります（MySQL 5.7からはこ
の差異はなくなります）。
　どちらの方法を用いてインストールしても、
一般的に利用するぶんには提供されるMySQL

の機能はほぼ変わりません。以前はMySQL

公式のyumリポジトリが存在しなかったため、
yumコマンドでMySQLをインストールしよう
とするとどうしても古いバージョンのものやサー
ドパーティービルドのものになってしまう問題
がありましたが、現在はその問題を気にする必
要もありません（2016年3月現在、MySQL 5.5、
MySQL 5.6、MySQL 5.7のバージョンをyum

リポジトリからインストールできます）。

yumリポジトリを使用したインストール
　yumリポジトリを利用する場合はインストー
ル、アップグレードともにとても簡単ですが、
インストールされるパスが固定されている（たと
えば、mysqldは/usr/sbin/mysqldにインストー
ルされます）ため、1台のサーバに複数のMySQL

サーバを同居させることはできません。また、
ほかのパッケージのアップグレードのために頻
繁にyum upgradeを実行する機会がある場合、
MySQLサーバも同時にマイナーバージョンアッ
プされてしまうことがあるため（ただし、メ
ジャーバージョンアップはされないように、メ
ジャーバージョンごとに違うリポジトリ名が割
り当てられています）、それが許されない場合は
インストール後に自身でMySQLのリポジトリ
を無効化しておく必要があります。
　図5はCentOS 6.x上でMySQLの yumリポ
ジトリをインストールし、最新のMySQLサー
バをインストールするコマンドの例です（URL

などは2016年3月現在のもので、今後変更にな
る可能性があります）。MySQLのyumリポジト
リのダウンロード先は https://dev.mysql.com/

downloads/repo/yum/から確認できます。
　パッケージファイル名が示すとおり、このyum

リポジトリはデフォルトでMySQL 5.7をインストー
ルするように設定されています。今回は練習用に、
あえて1世代前のMySQL 5.6をインストールしま
すので、/etc/yum.repos.d/mysql-community.

注8） http://dev.mysql.com/doc/refman/5.6/ja/installing.html

 ▼図3　前世代のGAをダウンロードする場合

 ▼図4　マイナーバージョンをダウンロードする場合

https://dev.mysql.com/downloads/repo/yum/
http://dev.mysql.com/doc/refman/5.6/ja/installing.html

MySQLをインストールしてみよう
RHEL、Ubuntu、Debian、Windows、Mac OSにおける手順

第2章

80 - Software Design Jun. 2016 - 81

repoを編集して（図6）mysql57-communityリポ
ジトリを無効化、mysql56-communityリポジト
リを有効化します（MySQL 5.7でチャレンジし
たい方はそのままでOKです）。
　編集が終わったらyum installでインストール
します（図7）。Repositoryがmysql56-community、
Versionが5.6.xになっていることを確認してく
ださい。
　インストールが終わったらMySQLを起動し
ます。CentOS 6.xの場合はserviceコマンド、
CentOS 7.xの場合はsystemctlコマンドで起
動できます。MySQLをインストール後、初め
て起動する際に、データベースの初期化（MySQL

5.6ではmysql_install_db、MySQL 5.7では
mysqld --initialize）が実行されます。

$ sudo service mysqld start
..
 [OK]
Starting mysqld: [OK]

rpmパッケージを使用したインストール
　rpmパッケージを利用する場合もyumリポジ
トリを利用する場合とほぼ同等ですが、wgetで
ファイルをダウンロード後に（または、yumや
rpmコマンドで直接ダウンロード先のURLを指
定して）インストールすることになるため、設定
ファイルを編集しなくとも自動でマイナーバー
ジョンアップされてしまう問題はありません。
また、本番環境が直接外部のyumリポジトリと
通信できないように遮断されている場合でも利
用できます。

 ▼図5　CentOS 6.x上で最新のMySQLのリポジトリをインストールする

$ sudo yum install http://dev.mysql.com/get/mysql57-community-release-el6-7.noarch.rpm
..
==
 Package Arch Version Repository Size
==
Installing:
 mysql57-community-release noarch el6-7 /mysql57-community-release-el6-7.noarch 7.8 k

Transaction Summary
==
Install 1 Package(s)

Total size: 7.8 k
Installed size: 7.8 k
..

 ▼図6　MySQL 5.6をインストールするように変更する

$ sudo vim /etc/yum.repos.d/mysql-community.repo
..
Enable to use MySQL 5.6
[mysql56-community]
name=MySQL 5.6 Community Server
baseurl=http://repo.mysql.com/yum/mysql-5.6-community/el/6/$basearch/
enabled=1 ← 0から1に変更
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

[mysql57-community]
name=MySQL 5.7 Community Server
baseurl=http://repo.mysql.com/yum/mysql-5.7-community/el/6/$basearch/
enabled=0 ← 1から0に変更
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

82 - Software Design

　MySQL 5.6までは、rpmパッケージを利用し
た場合とyumリポジトリを利用した場合では
パッケージ名や構成に若干の違いがあります（表
1）。注意するべきはyumリポジトリではmysql-

community-libs（および-compat）だったものが、
MySQL-shared（および -compat）になっている
ことくらいでしょうか。ほかはそれほど違いは
ありません。MySQL 5.7でこれらはyumリポジ
トリの命名規則に統一されました。
　rpmパッケージの取得は http://dev.mysql.

com/downloads/mysql/から行います。MySQL

5.6とそれ以前は「Red Hat Enterprise Linux /

Oracle Linux」と「Linux - Generic」それぞれに
rpmファイルがありCentOSではどちらも利用
できましたが、MySQL 5.7ではrpmファイルは
「Red Hat Enterprise Linux / Oracle Linux」か
らのみダウンロードできるようになっています
（筆者の試した限りでは、問題なくインストール
できました）。
　ここでは「Linux - Generic」からMySQL 5.6

用のrpmファイルをダウンロードしてインストー
ルする手順を紹介します（図8）。

 ▼図7　MySQL 5.6のインストール

$ sudo yum install mysql-community-server
..
==
 Package Arch Version Repository Size
==
Installing:
 mysql-community-server x86_64 5.6.29-2.el6 mysql56-community 53 M
Installing for dependencies:
 libaio x86_64 0.3.107-10.el6 base 21 k
 mysql-community-client x86_64 5.6.29-2.el6 mysql56-community 18 M
 mysql-community-common x86_64 5.6.29-2.el6 mysql56-community 308 k
 mysql-community-libs x86_64 5.6.29-2.el6 mysql56-community 1.9 M
 numactl x86_64 2.0.9-2.el6 base 74 k
 perl-DBI x86_64 1.609-4.el6 base 705 k

Transaction Summary
===
Install 7 Package(s)

Total size: 74 M
Total download size: 74 M
Installed size: 330 M
..

 ▼図8　「Linux - Generic」からMySQL 5.6用の rpmファイルによってインストールする

$ wget http://dev.mysql.com/get/Downloads/MySQL-5.6/MySQL-5.6.29-1.linux_glibc2.5.x86_64.ｭ
rpm-bundle.tar

$ tar xvf MySQL-5.6.29-1.linux_glibc2.5.x86_64.rpm-bundle.tar
MySQL-embedded-5.6.29-1.linux_glibc2.5.x86_64.rpm
MySQL-test-5.6.29-1.linux_glibc2.5.x86_64.rpm
MySQL-server-5.6.29-1.linux_glibc2.5.x86_64.rpm
MySQL-devel-5.6.29-1.linux_glibc2.5.x86_64.rpm
MySQL-shared-5.6.29-1.linux_glibc2.5.x86_64.rpm
MySQL-shared-compat-5.6.29-1.linux_glibc2.5.x86_64.rpm
MySQL-client-5.6.29-1.linux_glibc2.5.x86_64.rpm

$ sudo rpm -i MySQL-*.rpm
$ sudo service mysql start

http://dev.mysql.com/downloads/mysql

MySQLをインストールしてみよう
RHEL、Ubuntu、Debian、Windows、Mac OSにおける手順

第2章

82 - Software Design Jun. 2016 - 83

・「Linux - Generic」プラットフォームを選択（図
9）

・「RPM Bundle」パッケージを選択（図10）
・「Download」をクリックするとOracle Web

Accountでのログインまたは登録を求める
ページに遷移するが（図11）、「No thanks, just

start download」のリンクをクリックするこ
とで、登録不要でダウンロードできる

　OSインストール時などに“mysql-libs”に依存
するパッケージをインストールしている場合、
“MySQL-shared”と競合してしまいインストー

 ▼表1　rpmパッケージを利用した場合とyumリポジトリを利用したときの差異

rpmパッケージ
5.6とそれ以前

yumリポジトリ
5.6とそれ以前

5.7
rpmパッケージ、

yumリポジトリ共通

CentOS 6.6 Base
リポジトリ

（MySQL 5.1.73）
MySQLサーバ
（mysqld） MySQL-server mysql-community-

server mysql-community-server mysql-server

MySQLコマンドラ
インクライアント
（mysqlなど）

MySQL-client mysql-community-
client mysql-community-client mysql

MySQLライブラリ
（libmysqlclient.

soなど）
MySQL-shared mysql-community-

libs mysql-community-libs mysql-libs

旧バージョンの
MySQLライブラリ

MySQL-shared-
compat

mysql-community-
libs-compat

mysql-community-libs-
compat なし

MySQLヘッダファ
イル（mysql.hなど）MySQL-devel mysql-community-

devel mysql-community-devel mysql-devel

MySQL単体テスト
スイート（mysql_
test_run.plなど）

MySQL-test mysql-community-
test mysql-community-test mysql-test

サービス名
（serviceコマンド
で参照する名前）

mysql mysqld mysqld mysqld

データディレクトリ
の初期化

mysql_install_db
インストール時

mysql_install_db
service mysqld
start時

mysqld --initialize
service mysqld start時

mysql_install_db
service mysqld
start時

エラーログファイル
名

/var/lib/mysql/ホ
スト名 .err /var/log/mysqld.log /var/log/mysqld.log /var/log/mysqld.

log

初期ユーザ root@localhostな
どrootのみ

root@localhostなど
と匿名ユーザ root@localhostのみ root@localhostな

どと匿名ユーザ
rootアカウントの
仮パスワード

/ r o o t / . m y s q l _
secret 生成しない /var/log/mysqld.log 実装なし

validate_
passwordプラグイ
ン

バンドルされてい
るが有効化されて
いない

バンドルされている
が有効化されていな
い

有効化されている
英大文字小文字数字記号の4種
を含んだ8文字以上

実装なし

ユーザ作成 GRANTステートメ
ント

GRANTステートメン
ト

CREATE USERステートメント
パスワード設定時はGRANTス
テートメントでワーニング（作成
可）
パスワード未設定時はGRANTス
テートメントがエラー（作成不
可）

GRANTステートメン
ト

LOAD DATA
INFILEに対する
制限
（secure_file_
privオプション）

なし なし /var/lib/mysql-filesディレクト
リの中のみ なし

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

84 - Software Design

ルできません。この場合は、“MySQL-shared-

compat”をインストールしてから“mysql-libs”を
削除、あらためてそれ以外のパッケージをイン
ストールしてください（依存関係は“MySQL-

shared-compat”が受け継ぐため、エラーになる
ことはないはずです）。
　インストールが終わったらMySQLを起動し
ます。CentOS 6.xの場合はserviceコマンド、
CentOS 7.xの場合はsystemctlコマンドで起
動できます。rpmパッケージ版のサービス名は
“mysql”で、yumリポジトリ版と違いdがつきま
せん。シェルの補完機能を使っている分にはそ
れほど違いを意識することはありませんが、Chef

やVagrantなどでプロビジョニングスクリプト
を書くときには気をつけましょう。
　rpmパッケージでインストールした場合は、
MySQL-serverのインストール時にデータベー
スの初期化処理が実行されます。

Ubuntu、Debian
　Ubuntu、Debianおよびその派生ディストリ
ビューションのOSに特有のインストール方法
としては次の2つがあります。

①aptリポジトリを使用したインストール
②debパッケージを使用したインストール

　これらはインストール方法や管理方法が異な
るだけで、インストールされるパッケージは同
じものになります。MySQL 5.6/5.7の最新のマ
イナーバージョンがインストールできればよい、
という場合はaptリポジトリを使用したインス
トールをお勧めします。それ以外のバージョン
を指定してインストールしたい場合や、ほかの
パッケージのアップグレード時にMySQLのマ
イナーバージョンがアップグレードされてしま
うのを避けたい場合はdebパッケージを使用し
たインストールをお勧めします。

aptリポジトリを使用したインストール
　MySQL公式のaptリポジトリを使用すること
で、とても簡単にインストールできます。ただ
し、yumリポジトリを使用したインストールと
同様に、ほかのパッケージをアップグレードす
るための作業によってMySQLのマイナーバー
ジョンもアップデートされてしまう可能性があ
ります。それが許されない場合はインストール
後にdpkg --set-selectionsでバージョンを
固定する必要があります。
　図12はMySQL公式のaptリポジトリをイン
ストールし、最新のMySQLサーバをインストー
ルするコマンドの例です（URLなどは2016年3

月現在のもので、今後変更になる可能性があり
ます）。MySQLのaptリポジトリのダウンロー
ド先は、https://dev.mysql.com/downloads/

repo/apt/から確認できます。この手順は
Ubuntu 15.10で実行した際のものですが、
Ubuntu 14.04 LTSおよびDebian 8でも同様で
す。

 ▼図9　プラットフォーム選択

 ▼図10　RPM Bundleパッケージの選択

 ▼図11　かの有名なNo Thanks

https://dev.mysql.com/downloads/repo/apt/

MySQLをインストールしてみよう
RHEL、Ubuntu、Debian、Windows、Mac OSにおける手順

第2章

84 - Software Design Jun. 2016 - 85

　ここでインストールする対象を選択できます
（図13）。1番のMySQL Serverを選択するため
1ｶと入力します。

　続いてバージョンを確認されるので、1番の
mysql-5.6を選択するため1ｶと入力します（図
14）。

 ▼図12　MySQL公式のaptリポジトリからMySQLサーバをインストールする

$ wget https://dev.mysql.com/get/mysql-apt-config_0.7.2-1_all.deb
... 'mysql-apt-config_0.7.2-1_all.deb' saved [19006/19006]
$ sudo dpkg -i mysql-apt-config_0.7.2-1_all.deb
Selecting previously unselected package mysql-apt-config.
(Reading database ... 13964 files and directories currently installed.)
Preparing to unpack mysql-apt-config_0.7.2-1_all.deb ...
Unpacking mysql-apt-config (0.7.2-1) ...
Setting up mysql-apt-config (0.7.2-1) ...
debconf: unable to initialize frontend: Dialog
debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot ｭ
be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76.)
debconf: falling back to frontend: Readline
Configuring mysql-apt-config

MySQL APT Repo features MySQL Server along with a variety of MySQL components. You may select
the appropriate product to choose the version that you wish to receive.

Once you are satisfied with the configuration then select last option 'Apply' to save the
configuration. Advanced users can always change the configurations later, depending
on their own needs.

 1. MySQL Server (Currently selected: mysql-5.7) 2. MySQL Tools & Connectors (Currently
selected: Enabled) 3. MySQL Preview Packages (Currently selected: Disabled) 4. Ok
Which MySQL product do you wish to configure?

 ▼図14　バージョンの確認

Which server version do you wish to receive? 1ｶ

MySQL APT Repo features MySQL Server along with a variety of MySQL components. You may ｭ
select the appropriate product to choose the version that you wish to receive.

Once you are satisfied with the configuration then select last option 'Apply' to save the ｭ
configuration. Advanced users can always change the configurations later, depending
on their own needs.

 1. MySQL Server (Currently selected: mysql-5.6) 2. MySQL Tools & Connectors (Currently ｭ
selected: Enabled) 3. MySQL Preview Packages (Currently selected: Disabled) 4. Ok
Which MySQL product do you wish to configure?

 ▼図13　インストール対象を選択

Which MySQL product do you wish to configure? 1ｶ

This configuration program has determined that no MySQL Server is installed on your ｭ
system, and has highlighted the most appropriate repository package. If you are not sure
which version to install, do not change the auto-selected version. Advanced users can ｭ
always change the version as needed later.

 1. mysql-5.6 2. mysql-5.7 3. None
Which server version do you wish to receive?

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

86 - Software Design

　再度インストールする対象を選択するプロン
プトに戻るので、MySQL Server (Currently
selected: mysql-5.6)となっていることを確
認し（図14）、4ｶと入力します（図15）。
　これでaptリポジトリのインストールが完了

しました。続いてapt-getコマンドでMySQL

をインストールします（図16）。
　ここでMySQLのrootユーザに設定するパス
ワードを要求されるので、任意のパスワードと
ｶを確認も含めて2回入力します。これでイン
ストールは完了です。
　インストールが終わったらserviceコマンドで
MySQLを起動します。名前はmysqldではなく
mysqlですので注意してください。

 ▼図16　apt-getでMySQLをインストール

$ sudo apt-get update
...
Reading package lists... Done
$ sudo apt-get install -y mysql-community-server
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 apparmor busybox-initramfs cpio init-system-helpers initramfs-tools initramfs-tools-bin ｭ
klibc-utils kmod libaio1 libapparmor-perl libklibc libnuma1 mysql-client
 mysql-common mysql-community-client psmisc
Suggested packages:
 apparmor-profiles apparmor-profiles-extra apparmor-docs apparmor-utils libarchive1 ｭ
bash-completion
The following NEW packages will be installed:
 apparmor busybox-initramfs cpio init-system-helpers initramfs-tools initramfs-tools-bin ｭ
klibc-utils kmod libaio1 libapparmor-perl libklibc libnuma1 mysql-client
 mysql-common mysql-community-client mysql-community-server psmisc
0 upgraded, 17 newly installed, 0 to remove and 18 not upgraded.
Need to get 24.7 MB of archives.
After this operation, 169 MB of additional disk space will be used.
...

Data directory found when no MySQL server package is installed

A data directory '/var/lib/mysql' is present on this system when no MySQL server package ｭ
is currently installed on the system. The directory may be under control of server
package received from third-party vendors. It may also be an unclaimed data directory ｭ
from previous removal of mysql packages.

It is highly recommended to take data backup. If you have not done so, now would be the ｭ
time to take backup in another shell. Once completed, press 'Ok' to continue.

Please provide a strong password that will be set for the root account of your MySQL ｭ
database. Leave it blank if you do not wish to set or change the root password at this
time.

Enter root password:

Now that you have selected a password for the root account, please confirm by typing it ｭ
again. Do not share the password with anyone.

Re-enter root password:

 ▼図15　確認画面（図14からの続き）

Which MySQL product do you wish to ｭ
configure? 4ｶ

OK

MySQLをインストールしてみよう
RHEL、Ubuntu、Debian、Windows、Mac OSにおける手順

第2章

86 - Software Design Jun. 2016 - 87

$ sudo service mysql start
......
 * MySQL Community Server 5.6.29 is ｭ
started

debパッケージを使用したインストール
　debパッケージを使用してインストールする
場合、事前に依存するパッケージがインストー
ルされている必要があります。
　MySQL 5.6のdebパッケージの取得はhttp://
dev.mysql.com/downloads/mysql/5.6.htmlか
ら行います。ここでは「Ubuntu Linux」から
MySQL 5.6用のdebファイルをダウンロードし

てインストールする手順を紹介します。
　Select Platformから「Ubuntu Linux」を選択
（図17）します。Debianの場合は「Debian Linux」
を選択します。
　「Download」をクリックすると（図18）Oracle

Web Accountでのログインまたは登録を求める
ページに遷移しますが、「No thanks, just start

download」のリンクをクリックすることで、登
録不要でダウンロードできます（rpmパッケージ
のダウンロードと同様です）。コマンドラインで
ダウンロードすることもできます（図19）。
　ダウンロードが完了したら tarファイルを展
開し、debパッケージをすべてインストールし
ます（図20）。
　aptリポジトリからのインストール時と同様、
インストール中にrootユーザのパスワードを確
認されるので任意のパスワードを入力してくだ
さい。またインストール中に図21のようなエ
ラーが出た場合は、必要な依存パッケージがイ
ンストールされていないため、apt-get -f
installを実行して不足しているパッケージを
インストールしてください。
　以上でインストールは完了です。インストー
ルが終わったらserviceコマンドでMySQLを起
動します（図22）。

 ▼図17　「Ubuntu Linux」を選択

※Download Packagesのリストから利用している環境に合わせ
た「DEB Bundle MySQL Server」パッケージを選択

 ▼図18　 「DEB Bundle MySQL Server」パッケージを選択

※ ここではUbuntu 15.10のx86 64
bit環境を利用している前提で
「Ubuntu Linux 15.10 (x86, 64-
bit), DEB Bundle MySQL Server」
を選択

 ▼図19　コマンドラインでのダウンロード

$ wget http://dev.mysql.com/get/Downloads/MySQL-5.6/mysql-server_5.6.29-1ubuntu15.ｭ
10_amd64.deb-bundle.tar
... 'mysql-server_5.6.29-1ubuntu15.10_amd64.deb-bundle.tar' saved [110888960/110888960]

http://dev.mysql.com/downloads/mysql/5.6.html

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

88 - Software Design

Windows（Windows 10）
　WindowsへのMySQLのインストール方法と
しては次の2つがあります。

①MySQL Installer
②zipパッケージ

MySQL Installerを使用したインストール
　少しややこしいのですが、“MySQL Installer”
とはMySQLのインストーラではなく、“MySQL

Installer”という製品を指します（MySQL Installer

の実態はMySQLと周辺製品のインストーラで
すので、特段気にすることはないかもしれませ
んが）。MySQL InstallerはWindows用の製品
であり、ほかのプラットフォーム向けのサポー
トはありません。ちなみに、MySQL 5.5とそれ
以前ではWindows向けMySQLサーバのパッ
ケージとしてmsi形式のインストーラがダウン

ロードできましたが、MySQL 5.6とそれ以降で
はMySQL Installerに変更されました（そのた
め、MySQLのダウンロードページの“Microsoft

Windows”を選択してもzipパッケージのみ表示
されます）。
　Windows向けのMySQLとしてはどうもこの
MySQL Installerが推奨されているようですが、
筆者は（5.5とそれ以前のmsiパッケージ時代か
ら）あまりよい思いをした経験がないため、zip

パッケージの方が無難です。
　MySQL Installerのダウンロードページは今
までのダウンロードページとは別に用意されて
おり、dev.mysql.comの左のペインから“MySQL

on Windows”→“MySQL Installer”を選択しま
す。“Looking for previous GA versions?”を選択
することでMySQL 5.6系列のMySQL Installer

をダウンロードできます（図23）。

 ▼図20　ファイルを展開し、debパッケージをインストールする

$ tar xvf mysql-server_5.6.29-1ubuntu15.10_amd64.deb-bundle.tar
libmysqlclient-dev_5.6.29-1ubuntu15.10_amd64.deb
mysql-community-source_5.6.29-1ubuntu15.10_amd64.deb
libmysqld-dev_5.6.29-1ubuntu15.10_amd64.deb
mysql-server_5.6.29-1ubuntu15.10_amd64.deb
mysql-common_5.6.29-1ubuntu15.10_amd64.deb
mysql-testsuite_5.6.29-1ubuntu15.10_amd64.deb
mysql-client_5.6.29-1ubuntu15.10_amd64.deb
mysql-community_5.6.29-1ubuntu15.10_amd64.changes
mysql-community-test_5.6.29-1ubuntu15.10_amd64.deb
mysql-community-server_5.6.29-1ubuntu15.10_amd64.deb
mysql-community-bench_5.6.29-1ubuntu15.10_amd64.deb
libmysqlclient18_5.6.29-1ubuntu15.10_amd64.deb
mysql-community-client_5.6.29-1ubuntu15.10_amd64.deb

$ sudo dpkg -i *.deb

 ▼図21　依存パッケージが足りないときのエラー

dpkg: error processing package mysql-community-server (--install):
 dependency problems - leaving unconfigured

 ▼図22　MySQLの起動

$ sudo service mysql start
......
 * MySQL Community Server 5.6.29 is started

 ▼図23　 MySQL Installerの
ダウンロード

MySQLをインストールしてみよう
RHEL、Ubuntu、Debian、Windows、Mac OSにおける手順

第2章

88 - Software Design Jun. 2016 - 89

　MySQL Installerは“x86, 32-bit”のアーキテ
クチャしかないように見受けられますが、これ
は「32bit版のMySQL Installer」を表しており、
「MySQL Installerによってインストールされる
MySQL Serverは32bit, 64bitとも対応」してい
ます（ややこしい……）。mysql-installer-web-

communityはそれ自体にMySQLのバイナリを
含まず、msiの実行時にMySQLをインターネッ
トからダウンロードします（図24）。mysql-

installer-communityはそれ自体にMySQLのバ
イナリを含んでおり、インターネットに接続さ
れていない環境にもMySQLをインストールで
きます。
　MySQL Installerのmsiファイルを起動する
と、図25のような画面が表示されます。既にイ
ンストールされたMySQL関連の製品があった
場合はここに表示されます。メニュー右側の
“Add”を選択します。
　使用許諾を確認したあと、インストールする

コンポーネントを選択する画面になります

（図26）。“Developer Default”に含まれている
MySQL For ExcelやMySQL for Visual Studio

はMicrosoft ExcelやMicrosoft Visual Studio

がインストールされていないとインストールで
きないため、 環境がそろっていない場合は
“Server Only”を選択するか（Server Onlyと言
いつつも、mysql.exeコマンドラインクライア
ントはインストールされます。ややこしい……）、
後述するzipパッケージでインストールする必
要があります。
　インストール自体はよくある形式で進みます
ので、とくに問題なく進むと思います。インス
トールの終了後に設定ウィザードが続けて開始
され、利用するポート番号やrootのパスワード、
Windowsサービスとして登録するかどうかなど
が確認されます。ちょっと試す程度であれば、
デフォルトのままとくに変更せず設定すれば
“MySQL56”というWindowsサービスとして
mysqld.exeが起動します。

 ▼図24　2つのインストーラ

 ▼図25　MySQL Installerの実行 ▼図26　コンポーネント選択画面

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

90 - Software Design

zipパッケージを使用したインストール
　Windows用のzipパッケージは、MySQLのダ
ウンロードページからダウンロードします（繰り
返しになりますが、MySQLのダウンロードペー
ジとMySQL Installerのダウンロードページは
別です）。
　zipパッケージはダウンロードして解凍するだ
けで簡単に利用が始められます。Windowsサー
ビスとしてインストールすることも可能ですが、

そうでない場合はレジストリの更新も必要あり
ません。解凍先のフォルダで ÌShiftÔキーを押しな
がら右クリックし、“コマンド ウィンドウをこ
こで開く”を選択します（図27）。
　コマンドプロンプトでmysqld.exeを実行す
ることで、MySQLが起動します（図28）。
--consoleオプションは、mysqld.exeの出力
をコンソールに出力するためのオプションです。
MySQL 5.6とそれ以前のバージョンでは、解凍
したフォルダにはすでにデータベースの初期化が
終わったdataフォルダが入っているため、解凍
後すぐにmysqld.exeを起動できます（MySQL

5.7では変更され、mysqld.exe --initialize
を実行する必要があります）。MySQL 5.6とそ
れ以前ではWindows上でデータベースの初期化
を行うことは考慮されていないため、データを
初期状態に戻したい場合はzipパッケージを解
凍しなおしてdataフォルダを上書きします。
　binフォルダにはmysql.exeコマンドライン

 ▼図27　“コマンド ウィンドウをここで開く”を選択

 ▼図28　mysqld.exeの起動

C:\Users\yoku0825\Desktop\mysql-5.6.29-winx64>bin\mysqld.exe --console
2016-04-14 06:23:59 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. ｭ
Please use --explicit_defaults_for_timestamp server option (see documentation for more
details).
2016-04-14 06:23:59 0 [Note] bin\mysqld.exe (mysqld 5.6.29) starting as process 11256 ...
2016-04-14 06:23:59 11256 [Note] Plugin 'FEDERATED' is disabled.
2016-04-14 06:23:59 11256 [Note] InnoDB: Using atomics to ref count buffer pool pages
2016-04-14 06:23:59 11256 [Note] InnoDB: The InnoDB memory heap is disabled
2016-04-14 06:23:59 11256 [Note] InnoDB: Mutexes and rw_locks use Windows interlocked ｭ
functions
2016-04-14 06:23:59 11256 [Note] InnoDB: Memory barrier is not used
2016-04-14 06:23:59 11256 [Note] InnoDB: Compressed tables use zlib 1.2.3
2016-04-14 06:23:59 11256 [Note] InnoDB: Not using CPU crc32 instructions
2016-04-14 06:23:59 11256 [Note] InnoDB: Initializing buffer pool, size = 128.0M
2016-04-14 06:23:59 11256 [Note] InnoDB: Completed initialization of buffer pool
2016-04-14 06:23:59 11256 [Note] InnoDB: Highest supported file format is Barracuda.
2016-04-14 06:23:59 11256 [Note] InnoDB: 128 rollback segment(s) are active.
2016-04-14 06:23:59 11256 [Note] InnoDB: Waiting for purge to start
2016-04-14 06:23:59 11256 [Note] InnoDB: 5.6.29 started; log sequence number 1625977
2016-04-14 06:23:59 11256 [Warning] No existing UUID has been found, so we assume that ｭ
this is the first time that this server has been started. Generating a new UUID: 0988f30b-
01be-11e6-9e38-00059a3c7a00.
2016-04-14 06:23:59 11256 [Note] Server hostname (bind-address): '*'; port: 3306
2016-04-14 06:23:59 11256 [Note] IPv6 is available.
2016-04-14 06:23:59 11256 [Note] - '::' resolves to '::';
2016-04-14 06:23:59 11256 [Note] Server socket created on IP: '::'.
2016-04-14 06:23:59 11256 [Note] Event Scheduler: Loaded 0 events
2016-04-14 06:23:59 11256 [Note] bin\mysqld.exe: ready for connections.
Version: '5.6.29' socket: '' port: 3306 MySQL Community Server (GPL)

MySQLをインストールしてみよう
RHEL、Ubuntu、Debian、Windows、Mac OSにおける手順

第2章

90 - Software Design Jun. 2016 - 91

クライアントやmysqldump.exeなども配置さ
れており、ほかのOS版とほぼ同じ機能が利用
できます。

Mac OS X
　Mac OS XへのMySQLのインストール方法
としては次の2つがあります。

①ネイティブパッケージ
②Homebrew注9を使用したインストール

　②のHomebrewというパッケージマネー
ジャーを使うことでLinuxで言うところのyum

やaptのように簡単にインストール、アップグ
レードが行えますが、Homebrewのインストー
ルが必要となるため今回は詳しく説明しません。
CUIの操作に慣れている方やとくにこだわりが
ない場合は②のHomebrewを使用したインス
トールをお勧めします。

ネイティブパッケージを使用したインストール
　MySQL公式のネイティブパッケージ（.dmg

ファイル）をダウンロードしてインストールを行
う方法です。MySQLの公式ページにある
http://dev.mysql.com/downloads/mysql
/5.6.html#downloadsからダウンロードを行いま
す（図29）。この中からお使いのMac OS Xの
バージョンに近いMySQLのDMG ARCHIVE

を選択してダウンロードします。

　ダウンロードしたDMGファイルをクリック
すると図30のようなパッケージが見つかるの
で、クリックをしてインストールをしていきま
す。
　インストーラが起動すると図31のような画面
が開きます。ここでは、使用許諾契約を確認し
たりインストール先などを変更できます。とく
に問題がなければ次へを押していきます。デフォ
ルトでは/usr/local/mysql配下にインストール
がされます。
　インストールが完了したところで、忘れずに
/usr/local/mysql/binにパスを通しておきま
しょう。

 .bashrcの例
export PATH=$PATH:/user/local/mysql/bin

　ネイティブパッケージを使用してインストー
ルを行ったMySQLサーバの操作はシステム環
境設定から行うことができます。図32のように
MySQLサーバの状態、MySQLサーバの起動・

 ▼図31　インストーラー起動画面

 ▼図29　DMG パッケージの選択 ▼図30　DMGファイルを展開

注9） http://brew.sh/index_ja.html

http://dev.mysql.com/downloads/mysql/5.6.html#downloads
http://brew.sh/index_ja.html

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

92 - Software Design

停止・自動起動に関するオプションなどを操作・
設定することができます。
　またネイティブパッケージを使用した場合、
データディレクトリへのパスはデフォルトでは

/usr/local/mysql/data配下にあります。データ
のバックアップや初期化を行う際にはそちらの
ディレクトリを参照するようにしましょう。

Homebrewを使用したインストール
　この手順でインストールする場合Homebrew

が必要ですのであらかじめインストールしてお
いてください。Homebrewの公式ページのトッ
プにあるインストール用のコマンドを実行する
と、対話的に必要なソフトウェアの導入や権限
を求められますのでコマンドラインに表示され
たメッセージをよく読んで指示に従って進めて
ください。
　Homebrewのインストールが終わった方は図
33のコマンドを実行してMySQL 5.6をインス

トールしましょう（コマンドは2016年3月現在
のもので、今後変更になる可能性があります）。
ここで実行したMySQLのインストールコマン
ドの詳細はGitHub上のHomebrewのリポジト

リ注10で確認できます（MySQL 5.7で挑戦したい
人はbrew install mysqlでMySQL 5.7がイ
ンストールできます）。
　インストールが完了するとMySQLの簡単な
使い方が表示されます。ほかにもMySQLでイ
ンストールされるコマンドの大半がHomebrew

によってpathが通っている場所にインストール
されるため、mysqlクライアントなどもpathの
設定をあらためて指定せずに、そのまま使用す
ることができます。MySQLの起動コマンドは
上記のインストール時の説明に書かれているコ
マンドを使用します。deamon化したい場合は
launchctlコマンドでdeamon化し、今すぐ起
動したい場合はmysql.serverを使って起動し
ましょう。データディレクトリへのpathはデ
フォルトでは/usr/local/var/mysql配下にあり
ます。また、yumやaptと同様にアップデート
やアップグレードを行った際にアップグレード
されてしまう問題がありますが、brew pin
homebrew/versions/mysql56とすることで
バージョンを固定化することができます。

 ▼図32　MySQLの操作パネル

 ▼図33　MySQL 5.6のインストール

$ brew install homebrew/versions/mysql56
...
server starting up correctly.

To connect:
 mysql -uroot

To have launchd start homebrew/versions/mysql56 at login:
 ln -sfv /usr/local/opt/mysql56/*.plist ~/Library/LaunchAgents
Then to load homebrew/versions/mysql56 now:
 launchctl load ~/Library/LaunchAgents/homebrew.mxcl.mysql56.plist
Or, if you don't want/need launchctl, you can just run:
 /usr/local/opt/mysql56/bin/mysql.server start
==> Summary
 /usr/local/Cellar/mysql56/5.6.29: 9,931 files, 313.9M

注10） https://github.com/Homebrew/homebrew-versions/
blob/master/mysql56.rb

https://github.com/Homebrew/homebrew-versions/blob/master/mysql56.rb

MySQLをインストールしてみよう
RHEL、Ubuntu、Debian、Windows、Mac OSにおける手順

第2章

92 - Software Design Jun. 2016 - 93

Linux用の汎用バイナリパッケージ（.tar.gz
パッケージ）を使用したインストール（CentOS）

　ここでバイナリパッケージと呼んでいるもの
は、コンパイル済みの実行ファイルを .tar.gz形
式でアーカイブしたものを指しています。tarコ
マンドで任意のパスに展開できますので、1つ
のサーバに複数バージョンのMySQLを同居さ
せることが容易ですが、コンパイル時オプショ
ンとして/usr/local/mysqlに展開されるものと
して暗黙のデフォルトが設定されていますので、
慣れない場合は暗黙のデフォルトに苦しめられ
ることがあります。また、mysql_install_dbや
useraddのような付帯的にインストールに必要
になる処理は自分で実行する必要があります。
　バイナリ版はhttp://dev.mysql.com/down
loads/mysql/ の「Linux - Generic」プラット
フォームの「Compressed TAR Archive」を取得
します。
　図34の例は、MySQL 5.6.29のバイナリパッ
ケージをダウンロードし、/usr/local/mysql5629

に展開し、/data/mysql1ディレクトリをデータ
ディレクトリとして初期化し、MySQLサーバ
を起動するまでの例です。

・「Compressed TAR Archive」パッケージを選
択（図35）

　これ以外に、MySQLのバイナリが内部的に
依存しているパッケージがインストールされて
いない場合は別途自身でインストールする必要
があります（libaioパッケージやperlコマンドが
必要です）。この方法の利点としては、アップグ
レードが比較的準備しやすい（あらかじめ/usr/

local/mysqlxxxxにアップグレード先のバイナリ
を用意しておき、古いバイナリのMySQLサー
バを停止したあと、新しいバイナリで起動して
mysql_upgradeをかければそれで済むケースが
多いです）こと、1つのサーバに複数の異なる
バージョンのMySQLサーバを起動させやすい
（たとえばバックアップ専用のサーバを作る際
に、1マスタに対して1プロセスを紐付けてス
レーブにすることでサーバ数の削減が図れます）
ことが挙げられます。ただし、バイナリのパッ
ケージは「/usr/local/mysql」に展開されること
を前提に暗黙のデフォルトが設定されているた
め、違うパスに展開する場合は--basedirなどの
オプションで明示的に指定してやる必要があり
ます。
　筆者がプロダクション環境で利用するMy

SQLをインストールするときは、もっぱらこの
方法を利用しています。展開先のパスの命名規
則やデータディレクトリの命名規則を考慮して
おけば、自動化もそれほど面倒なことではあり
ません。

 ▼図34　MySQL 5.6.29バイナリパッケージのダウンロードからサーバの起動まで

$ wget http://dev.mysql.com/get/Downloads/MySQL-5.6/mysql-5.6.29-linux-glibc2.5-x86_64.tar.gz
$ tar xf mysql-5.6.29-linux-glibc2.5-x86_64.tar.gz
$ sudo mv mysql-5.6.29-linux-glibc2.5-x86_64 /usr/local/mysql5629
$ sudo useradd mysql
$ sudo su - mysql
$ cd /usr/local/mysql5629
$./scripts/mysql_install_db --datadir=/data/mysql1
$./bin/mysqld_safe --datadir=/data --port=3306 --socket=/tmp/mysql1.sock &

 ▼図35　TAR Archiveパッケージの選択

http://dev.mysql.com/downloads/mysql/

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

94 - Software Design

ソースコードからビルドしてインストール（CentOS）
　MySQLはソースコードが公開されています
ので、ソースコードをビルドしてMySQLのバ
イナリを得ることもできます。ですが、あまり
他人にお勧めできるビルド方法ではないと思っ
ています。ソースコードビルドが役に立つのは、
「デバッグビルドのMySQLをビルドする」
「ソースコードにパッチを当て、独自の機能を
追加する」「標準ビルドには含まれない機能を有
効にしてMySQLをビルドする」「デバッガーで
mysqldにアタッチし、内部処理を追う」「サード
パーティー製のストレージエンジンを組み込ん
でMySQLをビルドする」のようなケースです。
あまり一般的なユースケースには当てはまらな
いと思います。
　ソースコードは http://dev.mysql.com/
downloads/mysql/の「Source Code」プラット
フォームからダウンロードできます。パッケー
ジ化されたソースコードのほか、「Generic Linux

(Architecture Independent)」が純粋にソース
コードのみを含んだ .tar.gzファイルです。また、
最近ではGitHub（https://github.com/mysql
/mysql-server）にソースコードが公開されてお
り、マイナーバージョンごとにタグが打ってあ
るので、そちらからダウンロードしてくること
もできます。
　図36の例は、MySQL 5.6.29の「Generic Linux

(Architecture Independent)」ソースコードをダ
ウンロードし、/usr/local/mysql5629にインス
トールする手順です（make installのあとは .tar.

gz版と同じため、起動までの部分は省略しま
す）。cmakeオプションなど詳細リファレンスマ
ニュアル注11を参照してください。なお、筆者の

お気に入りのcmakeオプションは-iです。
　MySQLの接続ライブラリの文字コードのデ
フォルトを latin1以外の文字コードに固定した
いので、ソースからビルドしたライブラリを作
る、という使い方もあります。ソースコードか
らのビルドはそれほど難しいものではありませ
んが、MySQL 5.6以降ではサイズも大きくな
り、ビルドに多少の時間やそれなりのメモリを
必要とするようになってきているので、必要が
なければあえてソースコードビルドを選ぶ理由
はないと思います。

 まとめ

　本章では、複数のOS上でMySQLをインス
トールする方法を説明しました。
　MySQL 5.1やそれ以前のバージョンでは、
MySQLはもっぱらLinux上で稼働することを
念頭に開発されていたため、それ以外のOSに
対する最適化はあまり行われていませんでした
（現在も、十分最適化されているとは言いがたい
環境もありますが）。MySQL 5.5とそれ以降で
はLinux以外のOS上でのパフォーマンスも改
善されているため、選択肢としても十分にあり
得るのではないでしょうか。また、開発マシン
はMacでお手軽に、本番環境はLinuxというケー
スでも、複数OS上でMySQLを利用する機会は
十分あると思います。
　自身の使いやすいOSでお手軽にMySQLを利
用してください。｢

 ▼図36　MySQL 5.6.29のGeneric Linuxをダウンロードしインストールする手順

$ wget http://dev.mysql.com/get/Downloads/MySQL-5.6/mysql-5.6.29.tar.gz
$ tar xf mysql-5.6.29.tar.gz
$ cd mysql-5.6.29
$ cmake -DCMAKE_INSTALL_PREFIX=/usr/local/mysql5629 -DBUILD_CONFIG=mysql_release .
$ make
$ sudo make install

注11） http://dev.mysql.com/doc/refman/5.6/ja/source-
installation.html

http://dev.mysql.com/doc/refman/5.6/ja/source-installation.html
http://dev.mysql.com/downloads/mysql/
https://github.com/mysql/mysql-server

第3章

95 - Software Design Jun. 2016 - 95

 テーブル

　MySQLに限りませんがRDBMS（Relational

Data Base Management System）はデータを
テーブルに格納して管理します。テーブルは行
（ロー／レコード）と列（カラム／フィールド）で
構成される二次元の構造を持っています。図で
表現される場合は、通常は行が縦に列が横に描
かれます（図1）。
　ただしテーブルは単なる二次元の表ではあり
ません。行と列は可換でなく明確に役割が異な
ります。行はデータを、列はデータの属性を表

します。列（属性）には型や制約があります。同
じテーブル内の各データは同じ属性であれば同
じ型を持っています。
　つまりテーブルは同じ構造を持ったデータの
集まりなのです。「ほぼ同じ構造だけどあるデー
タだけ属性が1つ多い（または少ない）」という場
合であっても、構造が異なるので同じテーブル
にすべきではありません。
　また、「今は問題ないが、もしかしたら将来何
か属性が増えるかもしれないから、予備用にカ
ラムを作っておく」というのも悪手です。

 データベース

　MySQLでは複数のテーブルをまとめて管理
するための構造をデータベースと呼んでいます
（図2）。データベースをまたがって、異なるデー
タベース間のテーブルを同時に扱うこともでき
ます。ほかのRDBMSとはデータベースの概念
が異なる場合があります。

MySQLでデータベースを
作ってみよう！

　この章では実際にMySQLでデータベース「電子掲示板」を作ってデー
タを操作してみます。その前にまずはデータの管理について説明します。
そしてユーザの作成、権限の付与のやりかた、データベースそのものの
作成方法を解説します。レコードの登録／取り出し、更新／削除など基
本的な操作においてSQL構文を実行し、その動作を学びます。

第3章

自分で考える・学ぶ・やってみる

 Author とみたまさひろ
日本MySQLユーザ会

　 twitter @tmtms

　たとえばPostgreSQLでは
MySQLのデータベースに相当
するものはスキーマと呼ばれま
す。PostgreSQLは複数のス
キーマをまとめたものをデータ
ベースと呼んでいます。MySQL

にはPostgreSQLのデータベー
スに相当するものはありません。

レコード1 カラム1 カラム2 カラム3 カラム4

レコード2

レコード3

レコード4

 ▼図1　RDBMSにおけるテーブル

テーブルテーブルテーブル
テーブルテーブルテーブル

テーブルテーブルテーブル

MySQL

データベース

PostgreSQL

データベース

スキーマ スキーマ

 ▼図2　MySQLにおけるデータベース

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

96 - Software Design

 電子掲示板データベース

　電子掲示板アプリケーションを想定したデー
タベースを作ってみます。

ユーザ作成
　MySQLのデータベースにアクセスするため
にはユーザを作る必要があります。
　ユーザごとにシステムやデータベース／テー
ブル／カラムに対する権限を設定できます。イ
ンストール直後はrootというユーザが作られて
いますが、このユーザはすべての権限を持つ
MySQLのスーパーユーザですので、MySQL自
体の管理以外には使用すべきではありません。
　電子掲示板アプリケーションのための専用ユー
ザを作りましょう。ユーザを作成するにはroot

でMySQLに接続し、CREATE USER命令を
使用します（図3）。
　図3では tmtms@localhostユーザをパスワー
ドabcdefgで作成しています（実際に作成する場
合はパスワードは強固なものにしてください）。
　ユーザはユーザ名とクライアント名（ホスト名
／IPアドレス）の組で指定します。MySQLの
ユーザ名はOSのユーザ名とは直接は関係あり
ません注1。クライアント名が異なればユーザ名
が同じでも異なるユーザとして扱われます。ど
のクライアントからのアクセスでも許可したい
場合は、クライアント名として%を指定します。
　なお、この例で使用した localhostは、IPアド
レス127.0.0.1のことではありません。TCP/IP

ではなくソケットファイル（/tmp/mysql.sock
など）を使用したローカルホストからのアクセス
を意味します。

権限の付与
　CREATE USERで作成したばかりのユーザ
には何の権限もありません。GRANT命令で権
限を付与できます。

mysql> GRANT ALL ON bbs.* TO ｭ
tmtms@localhost;

　この例ではbbsデータベースに対する全権限
を tmtms@localhostユーザに与えています。こ
れはbbsデータベースの作成／削除の権限も含
みます。権限には、テーブルの作成／破棄やレ
コードの参照／登録／更新／削除などの種類が
あり、データベース／テーブル／カラムごとに
細かく設定することもできます。詳しくは
MYSQLのマニュアル「MySQLで提供される権
限注2」を参照してください。

データベース作成
　データベースを作りましょう。MySQLにroot

で接続中の場合はQUIT命令で切断して、先ほ
ど作成したユーザで接続してください。

mysql> QUIT
Bye
% mysql -utmtms -p --default-character- ｭ
set=utf8mb4
Enter password: abcdefg
mysql>

　「--default-character-set=utf8mb4」は接続の
文字コードをUTF-8に設定するオプションで
す。
　CREATE DATABASE命令でデータベース
を作成します。

mysql> CREATE DATABASE bbs CHARSET ｭ
utf8mb4;
mysql> USE bbs;

 ▼図3　CREATE USER命令

% mysql -uroot -p
Enter password: rootのパスワードを入力
mysql> CREATE USER tmtms@localhost IDENTIFIED BY 'abcdefg';

注1） Linuxではauth_socket認証プラグ
インを使用することでOSと同じユー
ザを使用できます。

注2） URL https://dev.mysql.com/doc/
refman/5.6/ja/privileges-provided.
html

https://dev.mysql.com/doc/refman/5.6/ja/privileges-provided.html

MySQLでデータベースを作ってみよう！
ソフトウェア開発の基礎の基礎

第3章

96 - Software Design Jun. 2016 - 97

　ここではbbsという名前のデータベースを作っ
ています。データベース名はOSのディレクト
リとして用いられるため、大文字小文字が区別
されるかどうかはシステムに依存します。Linux

の場合は大文字小文字は区別されます。
　「CHARSET utf8mb4」はそのデータベース配
下で使用する文字コードをUTF-8に指定してい
ます。テーブルに日本語データを格納したい場
合は、とくにこだわりがなければutf8mb4を指
定しておくのがよいでしょう（コラム「文字コー
ド」参照）。

　2行目のUSE bbsはbbsデータベースの選択
です。これ以降のテーブルに対する命令はbbs

データベース内のテーブルが対象となります。
　先に進む前にsql_modeを設定しておきます
（図4）。詳しくはコラム「sql_mode」を参照して
ください。

テーブル作成
　電子掲示板システムについて必要なデータを
考えます。まずは投稿データしかない非常に単
純なシステムにしてみます。

　MySQLは複数の文字コード（character set、charset）に対応しています。執筆時
点（MySQL 5.7.11）では41個の文字コードがあります（SHOW CHARSET命令で見
ることができます）。その中で日本語で使えるものは次の6個ですが、

ujis, sjis, cp932, eucjpms, utf8, utf8mb4

　新しく作成するデータベースではutf8mb4を選んでおけば問題ないでしょう。
　各charsetと、文字セットとエンコーディングの関係を表Aに示します。
　文字セットは文字の集合で、エンコーディングは文字に番号を割り当てる方法のことです。JIS X 0201、
JIS X 0208文字セットには「①」「㈱」「髙」などの文字が含まれていません。Windows-31J文字セットに
はそれらの文字は含まれていますが、「♡」「 」などの記号が含まれていません。
　ユニコードは、日本語だけではなくすべての言語の文字が含まれています。ただし、utf8はU+10000
以降の文字（4バイトUTF-8文字）を扱えません。そのため「 」「 」などの絵文字を扱うことができませ
ん。utf8mb4はすべてのユニコード文字を扱うことができます。
　シフトJIS系エンコーディングはWindowsでよく使用されているため、以前はcp932が使用される
こともあったのですが、現在はユニコードが普及したため、過去の経緯や1バイトでも節約したいな
ど注Aの特別な事情がなければcp932を使用する理由はないでしょう。

文字コード

 ▼表A　charsetと文字セットとエンコーディングの関係
文字セット＼エンコーディング シフトJIS系 EUC系 UTF-8

JIS X 0201、JIS X 0208 sjis ujis -
Windows-31J cp932 eucjpms -
ユニコード（～U+FFFF） - - utf8
ユニコード - - utf8mb4

 ▼図4　sql_modeの設定

mysql> SET sql_mode='TRADITIONAL,NO_AUTO_VALUE_ON_ZERO,ONLY_FULL_GROUP_BY';

注A） UTF-8エンコーディングでは、ほとんどの日本語の文字は3バイトで表現されますが、シフト JIS系エンコーディングで
は、2バイトで表現できます。

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

98 - Software Design

　MySQLは標準では、指定された値のままレコードに格納できなくても、なるべく
エラーにならないように処理を続けようとします（エラーではなく警告になります）。
　たとえば、NULLを許さずデフォルト値も設定されていないカラムを指定せずに
INSERTしてもエラーにならず、型に応じた暗黙のデフォルト値が設定されます。

　また、DATE型のカラムに0000-00-00や2016-04-00などの0を含む値が許されています。
　ほかにも、文字列カラムで最大長を超えた長さの文字列を格納しようとしてもエラーにならずに切り
捨てられたり、文字コード変換で正しく変換処理ができなかった場合などにもエラーになりません。
　これらは一般に期待する振る舞いではないと思われます。
　sql_modeを設定すれば、このようなMySQL特有の振る舞いを変更できます。
　クライアント接続ごとにSET sql_mode=...を発行するのではなく、すべての接続でsql_modeの設
定を有効にしたい場合は、mysqldの起動時オプションや設定ファイルで指定することができます。
　sql_modeについて、詳しくはMySQLのマニュアル「サーバSQLモード注B」を見てください。

sql_mode

注B） URL https://dev.mysql.com/doc/refman/5.6/ja/sql-mode.html

　投稿データの属性は、通し番号、投稿者名（最
大30文字）、投稿時刻、投稿内容（最大1000文
字）の4つにします（表1）。
　テーブルを作成するには、CREATE TABLE

命令を使用します。CREATE TABLEの構文
はCREATE TABLE テーブル名 (カラム名 型,
...);です。
　今回のテーブルを作成するには次のようにし
ます。

mysql> CREATE TABLE posts (
 -> id INT,
 -> name VARCHAR(30),
 -> timestamp DATETIME,
 -> message VARCHAR(1000)
 ->);

　テーブル名は大文字小文字が区別されますが、
カラム名は区別されません。なお、MySQLの
テーブル名とカラム名には日本語も使用できま
す。日本語のテーブル名／カラム名はわかりや

すくて良いのですが、扱いにくいので個人的に
は英数字だけで作成したほうが良いと思います。
　あまりお勧めしませんが、「`」でくくると空
白や記号を含むテーブル名／カラム名を使用で
きます。
　MySQLにはさまざまな型がありますが、INT

（整数）、VARCHAR（文字列）、DATETIME（日
時）がよく使用されます。詳しくはマニュアル
「データ型注3」をご覧ください。

レコード登録
　作成したテーブルにレコードを登録してみま
す。レコードを登録するには、INSERT命令を
使用します。
　INSERTの構文はINSERT INTO テーブル名
(カラム名,...) VALUES (値,...)です（図5）。

 ▼表1　電子掲示板システムのテーブル例
属性 カラム名 型

通し番号 id INT
投稿者名 name VARCHAR(30)
投稿時刻 timestamp DATETIME
投稿内容 message VARCHAR(1000)

 ▼図5　INSERT命令でレコードを登録

mysql> INSERT INTO posts (id,name,timestamp,message) ｭ
VALUES (1,'名無し','2016-04-11 12:34:56','はじめまして');
mysql> INSERT INTO posts (id,name,timestamp,message) ｭ
VALUES (2,'名無し','2016-04-11 12:44:33','こんにちは！');

注3） URL https://dev.mysql.com/doc/refman/5.6/ja/data-
types.html

https://dev.mysql.com/doc/refman/5.6/ja/data-types.html
https://dev.mysql.com/doc/refman/5.6/ja/sql-mode.html

MySQLでデータベースを作ってみよう！
ソフトウェア開発の基礎の基礎

第3章

98 - Software Design Jun. 2016 - 99

レコード取り出し
　テーブル内のデータを取り出すにはSELECT

命令を使用します。
　SELECTの基本的な構文は、SELECT カラム
名,... FROM テーブル名 WHERE レコード抽
出条件です。カラム名を並べる代わりに*を指
定すると、テーブルの全カラムを取り出します。
WHEREを指定しない場合は全レコードを取り
出します（図6）。
　mysqlコマンドはSELECTの結果を1行1レ
コードの表形式で出力します。末尾の;の代わ
りに\Gを使用すると1行1カラムの形式で出力

できます（図7）。
　カラムに長いデータが格納されている場合は
標準の表形式では見にくくなるので、その場合
は\Gを使うと見やすくなると思います。

更新
　カラムの値を更新するには UPDATE命令を
使用します。UPDATEの構文は、UPDATE テー
ブル名 SET カラム名 =値 , ... WHERE レ
コード特定条件です。
　WHEREを指定しない場合は全レコードが対
象となります。id=2のレコードのmessageカラ
ムの内容を変更してみます（図8）。

 ▼図7　\Gで1行1カラム形式で出力した例

mysql> SELECT * FROM posts\G
*************************** 1. row ***************************
 id: 1
 name: 名無し
timestamp: 2016-04-11 12:34:56
 message: はじめまして
*************************** 2. row ***************************
 id: 2
 name: 名無し
timestamp: 2016-04-11 12:44:33
 message: こんにちは！

 ▼図8　カラムの値を更新する例

mysql> UPDATE posts SET message='こんばんは！' WHERE id=2;
mysql> SELECT * FROM posts;
+----+-----------+---------------------+--------------------+
| id | name | timestamp | message |
+----+-----------+---------------------+--------------------+
| 1 | 名無し | 2016-04-11 12:34:56 | はじめまして |
| 2 | 名無し | 2016-04-11 12:44:33 | こんばんは！ |
+----+-----------+---------------------+--------------------+

 ▼図6　SELECT命令でデータを取り出す

mysql> SELECT name,message FROM posts;
+-----------+--------------------+
| name | message |
+-----------+--------------------+
| 名無し | はじめまして |
| 名無し | こんにちは！ |
+-----------+--------------------+
mysql> SELECT * FROM posts WHERE id=1;
+----+-----------+---------------------+--------------------+
| id | name | timestamp | message |
+----+-----------+---------------------+--------------------+
| 1 | 名無し | 2016-04-11 12:34:56 | はじめまして |
+----+-----------+---------------------+--------------------+

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

100 - Software Design

削除
　レコードを削除するにはDELETE命令を使
用します。DELETEの構文は、DELETE FROM
テーブル名 WHERE レコード特定条件です。
WHEREを指定しない場合は全レコードが削除
されます。id=2のレコードを削除してみます（図
9）。

NOT NULL制約
　RDBには値が未定の状態を表すNULLとい
うものがあります。0や空文字列とも異なりま
す。
　使いようによっては便利なのですが、カラム
がNULLになると困ることもあります。何も指
定しないとカラムはNULLになり得るように作

成されてしまいます。
　たとえば、INSERTでカラムを指定しないと
そのカラムはNULLになります（図10）。
　NULLにしたくないカラムは、CREATE

TABLE時にNOT NULLを指定します。今回
の場合はNULLになると困るカラムばかりです
ので、すべてのカラムに指定します。
　いったんテーブルを削除して作り直します。

mysql> DROP TABLE posts;
mysql> CREATE TABLE posts (
 -> id INT NOT NULL,
 -> name VARCHAR(30) NOT NULL,
 -> timestamp DATETIME NOT NULL,
 -> message VARCHAR(1000) NOT NULL
 ->);

　これでカラムを指定しないで INSERTすると
エラーになるようになります（図11）。

 ▼図9　データの削除方法の例

mysql> SELECT * FROM posts;
+----+-----------+---------------------+--------------------+
| id | name | timestamp | message |
+----+-----------+---------------------+--------------------+
| 1 | 名無し | 2016-04-11 12:34:56 | はじめまして |
| 2 | 名無し | 2016-04-11 12:44:33 | こんばんは！ |
+----+-----------+---------------------+--------------------+
mysql> DELETE FROM posts WHERE id=2;
mysql> SELECT * FROM posts;
+----+-----------+---------------------+--------------------+
| id | name | timestamp | message |
+----+-----------+---------------------+--------------------+
| 1 | 名無し | 2016-04-11 12:34:56 | はじめまして |
+----+-----------+---------------------+--------------------+

 ▼図10　カラムをNULLにしてしまう例

mysql> INSERT INTO posts (id,name) VALUES (3,'名無し');
mysql> SELECT * FROM posts WHERE id=3;
+----+-----------+-----------+---------+
| id | name | timestamp | message |
+----+-----------+-----------+---------+
| 3 | 名無し | NULL | NULL |
+----+-----------+-----------+---------+

 ▼図11　カラムが指定されていないときにエラーになる例

mysql> INSERT INTO posts (id,name) VALUES (3,'名無し');
ERROR 1364 (HY000): Field 'timestamp' doesn't have a default value
Error (Code 1364): Field 'timestamp' doesn't have a default value
Error (Code 1364): Field 'message' doesn't have a default value

MySQLでデータベースを作ってみよう！
ソフトウェア開発の基礎の基礎

第3章

100 - Software Design Jun. 2016 - 101

　テーブル構造を変更するのに毎回テーブルを
破棄して作りなおすのはやってられません。
　データを残したままテーブル構造を変更する
のは ALTER TABLE命令を使用します。

・カラムの追加：ALTER TABLE テーブル名 ADD
カラム名 型;

・カラムの削除：ALTER TABLE テーブル名
DROP カラム名;

・カラムの型変更：ALTER TABLE テーブル名
MODIFY カラム名 新しい型;

・カラム名と型変更：ALTER TABLE テーブル
名 CHANGE 古いカラム名 新しいカラム名
新しい型;

　idカラムの型をINT NOT NULLに変更する
には次のようにします。

mysql> ALTER TABLE posts MODIFY id INT ｭ
NOT NULL;

　エラーにせず、指定されていないカラムはデ
フォルト値になるようにすることもできます。
とくにDATETIME型の場合は現在時刻を設定
できます（図12）。

一意性制約と自動採番
　現在のpostsテーブルの idカラムには制約が
ないので、idカラムの値がレコード間で重複し
たとしてもエラーになりません（図13）。
　テーブル内で一意であるべきカラムにはUNI

QUEを指定することで一意性制約（UNIQUE制
約）を設定できます（図14）。
　また、idの値をいちいち指定しなくてもカラ
ムにAUTO_INCREMENTを指定すると自動的
に連番を割り当てることができます（図15）。

 ▼図12　指定されていないDATETIME型のカラムに現在時刻が設定される

mysql> ALTER TABLE posts
 -> MODIFY timestamp DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
 -> MODIFY message VARCHAR(1000) NOT NULL DEFAULT '';
mysql> INSERT INTO posts (id,name) VALUES (3,'名無し');
mysql> SELECT * FROM posts WHERE id=3;
+----+-----------+---------------------+---------+
| id | name | timestamp | message |
+----+-----------+---------------------+---------+
| 3 | 名無し | 2016-04-11 13:11:03 | |
+----+-----------+---------------------+---------+

 ▼図13　idカラムの値が重複していてもエラーにならない例

mysql> INSERT INTO posts (id,name,message) VALUES (1,'太郎','1げっと');
mysql> INSERT INTO posts (id,name,message) VALUES (1,'花子','2げっと');
mysql> SELECT id,name,message FROM posts;
+----+--------+------------+
| id | name | message |
+----+--------+------------+
| 1 | 太郎 | 1げっと |
| 1 | 花子 | 2げっと |
+----+--------+------------+

 ▼図14　カラムに一意性制約（UNIQUE制約）を設定する例

mysql> DELETE FROM posts;
mysql> ALTER TABLE posts MODIFY id INT NOT NULL UNIQUE;
mysql> INSERT INTO posts (id,name,message) VALUES (1,'太郎','1げっと');
mysql> INSERT INTO posts (id,name,message) VALUES (1,'花子','2げっと');
ERROR 1062 (23000): Duplicate entry '1' for key 'id'

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

102 - Software Design

テーブル分割とJOIN
　現在のpostsでは毎回ユーザ名を入力してい
るため、同じ名前であっても同一人物が書き込
んだメッセージかどうかわかりません。自分の
書いたメッセージを削除するという機能を持た
せることもできません。あらかじめ登録をした
ユーザだけメッセージを投稿できるようにして

みましょう。まずはusersテーブルを作成し、
ユーザを登録します（図16）。
　usersテーブルと関連付くようにpostsテーブ
ルを作り直します（図17）。ユーザに関する情報
はusersテーブルで管理し、postsテーブルでは
ユーザIDで関連付けるようにします（図18）。こ
うすることで、ユーザ名が途中で変更されたと
しても、過去のメッセージが誰のものかがわか

 ▼図18　postsテーブルにはユーザ名を持たずユーザ IDのみ

mysql> DROP TABLE posts;
mysql> CREATE TABLE posts (
 -> id INT NOT NULL AUTO_INCREMENT UNIQUE,
 -> user_id INT NOT NULL,
 -> timestamp DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
 -> message VARCHAR(1000) NOT NULL DEFAULT ''
 ->);
mysql> INSERT INTO posts (user_id,message) VALUES (1,'はじめまして'); -- 太郎のメッセージ
mysql> INSERT INTO posts (user_id,message) VALUES (2,'こんにちわ'); -- 花子のメッセージ
mysql> INSERT INTO posts (user_id,message) VALUES (1,'よろしくお願いします'); -- 太郎のメッセージ
mysql> SELECT id,user_id,message FROM posts;
+----+---------+--------------------------------+
| id | user_id | message |
+----+---------+--------------------------------+
1	1	はじめまして
2	2	こんにちわ
3	1	よろしくお願いします
+----+---------+--------------------------------+

users
id

name

posts
id

user_id

timestamp

message

 ▼図17　テーブルのJOINの概念

 ▼図15　自動的に連番を付ける例

mysql> DELETE FROM posts;
mysql> ALTER TABLE posts MODIFY id INT NOT NULL AUTO_INCREMENT UNIQUE;
mysql> INSERT INTO posts (name,message) VALUES ('太郎','1げっと');
mysql> INSERT INTO posts (name,message) VALUES ('花子','2げっと');
mysql> SELECT id,name,message FROM posts;
+----+--------+------------+
| id | name | message |
+----+--------+------------+
| 1 | 太郎 | 1げっと |
| 2 | 花子 | 2げっと |
+----+--------+------------+

 ▼図16　usersテーブルを作成し登録する

mysql> CREATE TABLE users (
 -> id INT NOT NULL AUTO_INCREMENT UNIQUE,
 -> name VARCHAR(30) NOT NULL
 ->);
mysql> INSERT INTO users (name) VALUES ('太郎'),('花子');
mysql> SELECT id,name FROM users;
+----+--------+
| id | name |
+----+--------+
| 1 | 太郎 |
| 2 | 花子 |
+----+--------+

MySQLでデータベースを作ってみよう！
ソフトウェア開発の基礎の基礎

第3章

102 - Software Design Jun. 2016 - 103

らなくなることはありません。
　アプリケーションで投稿一覧を表示する際は
ユーザ名とメッセージが必要ですが、毎回users

テーブルとpostsテーブルそれぞれからデータ
を取得するのは面倒です。
　1回のSELECTで複数のテーブルから値を取
得することもできます。SELECTのFROMで
FROM テーブルA JOIN テーブルB ON 結合条
件という構文で記述します。
　異なるテーブルに同じ名前のカラムがある場
合（今回の場合は idカラム）は、テーブル名.カ
ラム名と記述してどちらのテーブルのカラムか
あいまいにならないようにする必要があります。
　図19の例ではusersテーブルの idカラムと
postsテーブルのuser_idカラムを用いてusers

テーブルとpostsテーブルを結合しています。

外部キー制約
　usersとpostsはユーザIDで関連付けられてい
ますが、これはあくまでもアプリケーションが
そのように利用しているだけで、データベース
としてはそのような制約はありません。
　usersに登録されていないIDを指定してposts

にレコードを作成することもできてしまいます
し、usersからユーザを削除してもpostsのメッ
セージはそのままです。

外部キーで関連を明示する
　外部キーを設定することで、テーブル間の関
連を明示できます（図20）。
　FOREIGN KEYは、そのカラムの値が外部
のテーブルの指定したカラムに値が存在するこ
とという制約を設定します。この例ではposts

テーブルのuser_idカラムに入る値は、必ず
usersテーブルの idカラムに存在している値で
ないといけないということを意味しています。

親テーブルと子テーブルの関連
　FOREIGN KEYを設定したテーブル（この例
ではposts）を子テーブル、参照先の外部のテー
ブル（この例ではusers）を親テーブルとも呼びま
す。
　試してみると、usersテーブルに値が存在する
user_id=1のレコードは登録できますが、存在
しないuser_id=3のレコードはエラーになるこ
とがわかります（図21）。

 ▼図19　テーブルを結合した例

mysql> SELECT posts.id,name,message FROM posts JOIN users ON posts.user_id=users.id;
+----+--------+--------------------------------+
| id | name | message |
+----+--------+--------------------------------+
1	太郎	はじめまして
2	花子	こんにちわ
3	太郎	よろしくお願いします
+----+--------+--------------------------------+

 ▼図20　外部キーでテーブル間の関連を明示する例

mysql> ALTER TABLE posts ADD CONSTRAINT fk_user_id FOREIGN KEY (user_id) REFERENCES users ｭ
(id);

 ▼図21　外部キーによりエラーになる

mysql> INSERT INTO posts (user_id,message) VALUES (1,'てすと');
mysql> INSERT INTO posts (user_id,message) VALUES (3,'てすと');
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails
(`bbs`.`posts`, CONSTRAINT `fk_user_id` FOREIGN KEY (`user_id`) REFERENCES `users` (`id`))

 RDBの学び方 MySQLを武器にSQLを始めよう！
 ソフトウェア開発の基礎の基礎

第2特集

104 - Software Design

　また、子テーブルから参照されているレコー
ドを親テーブルから削除しようとしてもエラー
になります（図22）。
　親テーブルから削除したときに子テーブルの
関連するレコードを自動的に削除するようにす
ることもできます。FOREGIN KEYにON DEL

ETE CASCADEを指定します。
　usersから該当ユーザを削除すると、そのユー
ザが所有していたpostsレコードが削除される
ことが確認できます（図23）。

インデックス
　データが少ないうちは良いのですが、データ
が大量に溜まってくると、特定のレコードを探
し出す処理が遅くなります。分厚い本の中から
特定のキーワードが書かれているページを先頭
から順番に探すようなものです。末尾に索引が
ある本の場合は、キーワードが何ページにある
かを指し示してくれるので、すぐに見つけ出す
ことができます。
　RDBで本の索引に該当するものはインデック
スです。カラムにインデックスを設定しておけ
ば、そのカラムを条件に指定した検索が高速に
なることが期待できます。

　投稿した日時でレコードを絞り込みたい場合
を考慮して、postsテーブルの timestampにイン
デックスを設定してみます。

テーブル作成時にインデックスを指定する場合:
mysql> CREATE TABLE posts (
 -> id INT NOT NULL AUTO_INCREMENT ｭ
UNIQUE,
 -> user_id INT NOT NULL,
 -> timestamp DATETIME NOT NULL ｭ
DEFAULT CURRENT_TIMESTAMP,
 -> message VARCHAR(1000) NOT NULL ｭ
DEFAULT '',
 -> INDEX (timestamp)
 ->);

既存のテーブルにインデックスを追加する場合:
mysql> ALTER TABLE posts ADD INDEX ｭ
(timestamp);

 まとめ

　本章ではMySQLでのSQLの基本的な使い方
を具体的な例とともに説明しました。
　SQLは奥が深くここで説明したことはほんの
入り口にしか過ぎませんが、この記事がRDBに
初めて触れる方の一助になれば幸いです。｢

 ▼図22　子テーブルから参照されているレコードを親テーブルから削除するとエラー

mysql> DELETE FROM users WHERE id=1;
ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint fails
(`bbs`.`posts`, CONSTRAINT `fk_user_id` FOREIGN KEY (`user_id`) REFERENCES `users` (`id`))

 ▼図23　子テーブルで参照しているデータを自動的に削除する例

mysql> ALTER TABLE posts DROP FOREIGN KEY fk_user_id;
mysql> ALTER TABLE posts ADD CONSTRAINT fk_user_id FOREIGN KEY (user_id) REFERENCES users
(id) ON DELETE CASCADE;
mysql> SELECT id,message FROM posts;
+----+-----------+
| id | message |
+----+-----------+
| 1 | てすと |
+----+-----------+
mysql> DELETE FROM users WHERE id=1;
mysql> SELECT id,message FROM posts;
Empty set

MySQLでデータベースを作ってみよう！
ソフトウェア開発の基礎の基礎

第3章

104 - Software Design Jun. 2016 - 105

日本MySQLユーザ会
 URL http://mysql.gr.jp/

　日本MySQLユーザ会は、当時は日本でマイナーだったMySQLの普及と、MySQL
で日本語を使用できるようにするのを目的として、2000年に発足しました。略称はMyNA（マイナ）で
す。メーリングリストをおもな活動の場としていましたが、現在はメーリングリストの流量はかなり減
少しています。各地で開催されているオープンソースカンファレンスにも参加しています。また、不定
期に「MyNA会」と称して、日本MySQLユーザ会独自のセミナーイベントも開催しています。

MySQL Casual
 URL http://mysql-casual.org/

　MySQL Casualは「もっと深く浅く、広く狭くMySQLを使っていこうと思っている趣旨の人とのつな
がりを作っていくための緩めのコミュニティ」です。MySQL Casual Talksというセミナーイベントを年
に数回開催しています。カジュアルという名前に反して濃い話が多く、「カジュアルではなくガチュアル」
という声もよく聞かれます。

メーリングリスト
 URL http://www.mysql.gr.jp/ml.html

　日本MySQLユーザ会のメーリングリスト。ユーザ会発足前から存在するメーリングリストです。過去
のアーカイブも参照できます。普段はほとんど流量がありませんが、何か質問があった場合はメーリン
グリストに投稿すれば、1日2日くらいで有識者からの返事がつくと思います。

Slack
 URL http://mysql-casual-slackin.herokuapp.com/　アーカイブページ　http://mysql-casual.slackarchive.io/

　MySQL CasualのSlackチャネルがあります。チャットですので気軽にMySQLについて会話できま
す。

公式ドキュメント
 URL http://dev.mysql.com/doc/refman/5.6/ja/

　MySQLのリファレンスマニュアルはWebページを参照ください。バージョン5.0、5.1、5.5、5.6、
5.7のマニュアルが用意されていて、5.6は日本語化もされています。
　MySQLのマニュアルは非常に詳しいです。その分、量も多いため最初から最後まで通して読もうとす
ると厳しいものがありますが、目次だけでも眺めて、どこに何が書かれているかくらいは把握しておく
と、少しわからないことが出てきたときに調べるのが楽になります。

本家メーリングリスト
 URL https://lists.mysql.com

　MySQLの公式メーリングリストは当然ながら英語です。ジャンルごとに複数のメーリングリストがあ
ります。Announcementsメーリングリストに入っておくと、新しいバージョンがリリースされたとき
にメールが届くので最新リリース情報を知りたい人には便利です。

MySQLのコミュニティと情報源
̶̶ひとりで悩むよりも仲間に相談

http://mysql.gr.jp/
http://mysql-casual.org/
http://www.mysql.gr.jp/ml.html
http://mysql-casual-slackin.herokuapp.com/
http://mysql-casual.slackarchive.io/
http://dev.mysql.com/doc/refman/5.6/ja/
https://lists.mysql.com

106 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

ます）は、Google I/O 2014にて、対応デバイス、
およびアプリを開発するためのSDKが発表さ
れてからもうすぐ2年が経ちます。皆さんは、
Wear実機をお持ちでしょうか？ Wearはユー
ザが常に腕につけているという、スマホやタブ
レット（以降「Handheld」と総称します）にはな
い特徴を持っています（図1）。Wearならでは
の良さを活用したアプリを開発すれば、これま
でにない価値をユーザに提供できる可能性があ
ります。Wearを搭載した新しい実機も「Casio

Smart Outdoor Watch」「Tag Heuer Connect

ed」「ASUS ZenWatch 2」など続々とリリース
されています（写真1）。
　また、Wear搭載OSの最初のバージョンは
“Android 4.4（KitKat）”ベースでした。その後
バージョンアップにより進化を遂げ、現在は
“Android 6.0（Marshmallow）”ベースになりま
した（表1）。これにより、Wearで実現できる
世界はさらに広がりました。本稿では、Wear

の最新機能について、特徴に加え、具体的な使
い方やコード例をご紹介します。これらを活用
することで、より面白いWearアプリを開発す
るヒントにしていただけると幸いです。

Android Wearの
最新機能

　WearはAndroid 6.0ベースとなり、冒頭で
紹介した新しい機能が追加されています。ユー

はじめに

　ご無沙汰しております。本誌2015年8月号
で連載をいったんお休みさせていただいてから、
Android Wear（スマートウォッチなどのウェア
ラブルデバイスを対象としたAndroidプラット
フォーム）を取り巻く状況は大きく変化してき
ました。Android Wear（以降「Wear」と表記し

Android Wear

アプリ開発入門
特別編 （第7回） Android Wear最新動向

～より生活に密着するスマートデバイスの世界～

 ▼写真1　Android Wear搭載の最新スマートウォッチ

バージョン 主な特徴 リリース時期

Android
4.4W

Android Wearリリース時の最初のバー
ジョン

2014年
6月

Android
4.4W.2

Wear単体での音楽再生、時間表示の
改善、バッテリー省電力化ほか

2014年
10月

Android
5.0

Lollipopベース、映画館・太陽光モー
ドのサポート、Watch Face APIの公式
提供ほか

2014年
12月

Android
5.1

Wear単体でのWi-Fi接続、手首ジェス
チャー操作、画面常時表示、絵文字
入力機能、Wearの画面ロックほか

2015年
5月

Android
5.1 対話型Watch Faceのサポート 2015年

8月

Android
6.0

新パーミッション対応、新ジェスチャー
対応、円形・非円形別レイアウト、ス
ピーカー対応、 Intel x86サポートほか

2016年
2月～
順次

 ▼表1　Android WearのOSの変遷

iplatform.orgにて情報発信するかたわら、「セカイフォン」などを開発。Droidconなどでのカンファレンス講
演、MWC/CES/IFAでのプロダクト展示、執筆などの活動も実施。NTTソフトウェア株式会社テクニカルプロフェッ
ショナル。現在はAndroid以外のモバイルOSにも取り組み、公私にわたってモバイルアプリの世界に没頭中。

神原 健一（かんばら けんいち ）　　　　 http://blog.iplatform.org　　　　　　@korodroidWeb Twitter

http://blog.iplatform.org

Jun. 2016 - 107106 - Software Design

特別編 Android Wear最新動向

ザにとっては便利な機能が、開発者にとっても
魅力的な機能が提供されました。同時にアプリ
開発時に考慮すべきポイントが増えています。
それでは、これらの特徴や活用方法など、具体
的な内容を解説していきます。

新機能1：新パーミッションモデル
　Androidアプリを6.0以上に対応させる場合、
新パーミッションモデルの考慮が必須となりま
した。正しく実装されていないと、機能が正常
に動作しない原因となります。
　Wearの話に入る前に前提知識として、
HandheldアプリをAndroid 6.0以上に対応させ
るときの注意点を簡単に紹介します。新パーミッ
ションモデルとは、Android 6.0にて採用され
たもので、アプリが利用するパーミッションの
利用可否をユーザがコントロールできるしくみ
を指します。Android 5.xまでは、Playストア
からアプリをダウンロードする契機で、利用す
るパーミッションをユーザが確認し、インストー
ルするかどうかを判断していました。
　一方Android 6.0以上では、危険度が高いパー
ミッションを必要とする機能（連絡帳の読み込
みや、位置情報取得など）については、各アプ
リごとにその利用許可を原則、ユーザから明示
的に得ることが必須となりました（図2左）。許
可を得ない限り、アプリが同機能を利用するこ
とはできません。また、ユーザは一度許可した
後でも、自らの意思でその可否をいつでも変更
可能です。Androidの設定内の各アプリの詳細
画面で変更できます（図2右）。パーミッション
を剥奪すると、アプリはその機能を利用するこ
とができなくなります。ユーザにとっては便利
な機能である一方、開発者はその影響を考慮し
た実装が必要であるというのが大事なポイント
です。
　次に、Wear搭載のOSがAndroid 6.0以上で
ある場合、パーミッションに関する考慮を
Wearアプリでも行う必要があります。Wear

ならではの注意点を交えて解説します。

　Handheldアプリの場合と同様に、該当する
機能を利用するには、実行時にユーザから許可
を得る必要があります（図3）。この振る舞いは、
リスト1のようなコードにより実現できます。
　まず、リスト1の（1）でパーミッションの取
得状況を確認します。未取得の場合は、ユーザ
への許可依頼が必要となります。そこで、リス
ト1の（2）を実行します。これにより図3の画
面が表示され、ユーザに意思確認を行うことが
できます。許可もしくは拒否をユーザが選択す
ると、リスト1の（3）がコールバックされ、選
択された結果を取得できます。許可された場合
は、当然ながら、そのパーミッションを必要と
する機能を利用できるようになります。
　Wearの場合も、Handheldと同様、設定から
パーミッションの利用許可状況を確認したり、
変更することも可能です（図4）。
　ここまでは、WearアプリがWearデバイス

①通知 ②音声入力 ③独自アプリ

 ▼図1　Wearの代表的な3つの特徴

 ▼図2　Handheldアプリにおける新パーミッションモデル

▶図3
Wearアプリにおける
新パーミッションモデル①

108 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

▶▶（A）Wearアプリ→
　　Handheldアプリ側の許可取得

　Wearアプリ上で心拍数を取得後、そのデー
タをHandheldアプリ側に送信し、外部ストレー
ジに格納したいとします。Handheldアプリが
外部ストレージへの書き込みを行うには、その
許可をあらかじめ得る必要があります。そのた
め図5のとおり、Wearアプリ→Handheldアプ
リを起動し、必要に応じてHandheldアプリ側
でユーザにパーミッションを必要とする理由を
提示し、許可取得ダイアログを通じて、許可を
得るという流れです。このような機能を実現し
ておけば、Wearアプリ→Handheldアプリの連
携動作時にも外部ストレージを利用できます。

▶▶ （B）Handheldアプリ→
　　Wearアプリ側の許可取得

　続いて、HandheldアプリからWearアプリに
対して、ボディセンサー情報を取得するための
要求を送信したいとします。Wearアプリがボ

上で機能を実行するときの話です。Wearアプ
リにおいて、ほかに注意すべきポイントは、
Handheldアプリと連携動作するケースです。
HandheldアプリとWearアプリが同一アプリだ
としても、ユーザからのパーミッション利用許
可はそれぞれ別に取得する必要があります。
HandheldもしくはWearのいずれか一方でのみ
許可を得ていたとしても、他方では許可を得た
ことになりません（許可を得ていない機能をア
プリが利用することはできません）。
　ここでは例として、健康管理アプリ（Wear

上でボディセンサーにより心拍数を測定し、
Handheld上の外部ストレージにデータを格納
して表示するもの）を題材として、連携動作時
の振る舞いを解説します。

 ▼図4　Wearアプリにおける新パーミッションモデル②

private void reqPermission() {
 // （1）パーミッション取得状況の確認
 if (ActivityCompat.checkSelfPermission(this, Manifest.permission.ACCESS_FINE_LOCATION)
 != PackageManager.PERMISSION_GRANTED) {
 // （2）パーミッションの利用許可依頼
 ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.ACCESS_ｭ
FINE_LOCATION}, MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION);
 } else {
 // 位置情報取得に関する処理
 // ...
 }
}

// （3）パーミッション利用許可結果のコールバック
@Override
public void onRequestPermissionsResult(int requestCode,
 String permissions[], int[] grantResults) {
 switch (requestCode) {
 case MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION: {
 // パーミッション取得：同意
 if (grantResults[0] == PackageManager.PERMISSION_GRANTED) {
 // 位置情報取得に関する処理
 // ...
 }
 }
 }
}

 ▼リスト1　ユーザからの利用許可取得

Jun. 2016 - 109108 - Software Design

特別編 Android Wear最新動向

ディセンサー情報を取得するには、その許可を
あらかじめ得る必要があります。そのため図6
のとおり、Handheldアプリ→Wearアプリを起
動し、Wearアプリ側で許可を得るという流れ
です。Wearは画面が小さいこともあり、今回
のようにHandheldアプリ経由で許可を取得す
る場合、Handheldアプリ側で許可が必要な理
由を細かく説明しておくのも良いでしょう。こ
のような機能を実現しておけば、Handheldア
プリ→Wearアプリへの連携動作時にもボディ
センサーを利用できるようになります。

◆　◆　◆

　新パーミッションについて、もう1つ注意し
ておくことがあります。ここまでは、Handheld

とWearがいずれもAndroid 6.0（APIレベル
23）以上である場合の挙動について解説しまし
た。ただ市場には、現時点ではHandheldと

Wearのいずれについても、Android 6.0以上
も6.0未満も両方とも存在します。それゆえ、
これら4つの組み合わせ（表2）を考慮した開発・
テストを実施しておくことが望ましいでしょう。

新機能2：サウンド出力
　Wear実機の一部にはスピーカーを搭載して
いるものがあります（Zen Watch 2、Huawei

Watchなど）。これらの機種では、Wear単体
でサウンド再生が可能となりました。これによ
りWearアプリにおいて、情報を受信したとき
のサウンドや、ゲームの効果音の出力などに利
用できます。開発者が本機能を活用すれば、よ
りリッチなWearアプリを開発できます。また、
本機能に対応している実機では、設定内から音
の有効・無効や音量をカスタマイズできます（図
7）。
　それでは、サウンドを再生するコードを実装
しましょう。今回はサウンドファイルとして、
アプリのリソース（res/raw）フォルダ内に、
mp3ファイル（sample.mp3）を入れておき、こ
れを再生する実装を紹介します。リスト2のコー
ドにより実現できます。
　Handheld向けのサウンド再生と同様です。
詳細は割愛しますが、MediaPlayerを用いて実
装しています。公式サイトの解説注1も参考にし
てください。
　最後にサウンドの停止処理です。先ほどと同
様に、リスト3のコードにより実現できます。

新機能3： マルチスクリーン
　　　 （円形・非円形）対応補助

　ご存じのとおり、Wear実機のスクリーンに
は円形もあれば矩形もあります。アプリを開発
するときは、いずれの形状でもレイアウトが崩
れることなく画面が表示されるよう配慮する必
要があります。しかし、Android 6.0以上では、
“-round”と“-notround”という新しいリソース

注1） Media Playback
　　　http://developer.android.com/guide/topics/media/

mediaplayer.html

 ▼図5　Wearアプリ→Handheldアプリの許可取得例

Wearアプリ

Wearアプリ

Handheldアプリ

Handheldアプリ

 ▼図6　Handheldアプリ→Wearアプリの許可取得例

Handheld
6.0未満 6.0以上

Wear
6.0未満 ○ ○
6.0以上 ○ ○

 ▼表2　考慮すべきバージョンの組み合わせ

http://developer.android.com/guide/topics/media/mediaplayer.html

110 - Software Design

Android Wearアプリ開発入門
～より生活に密着するスマートデバイスの世界～

修飾子をリソースフォルダに利用できるように
なりました。
　具体的には、円形と非円形で異なる画像やレ
イアウト、文字列を利用するといったことが容
易に実現できます（図8）。開発者が本機能を活
用することで、アプリのマルチスクリーン対応
を実施しやすくなったと言えるでしょう。具体
的な例として、リスト4のとおり、TextView

と ImageViewを含む画面を用いて実装を紹介
します。
　円形と非円形で内容を切り替えるには、図9
のとおりファイルを格納します。文字列につい
ては、strings.xmlを“values-round”と“values-

notround”フォルダに格納します。画像につい
ては、image.pngを“mipmap-round-○○”と“mip

map-notround-○○”フォルダに格納します。
○○には ldpi/mdpi/hdpi/xhdpiなどを設定しま
す（round/notroundと併用できます）。これに
より、リスト4内の "@string/textChangable"

と "@mipmap/image"は、実行デバイスの形状
により円形か非円形のうち該当する内容が設定
されることになります。

　円形と非円形の両サポートと言えば、Watch

ViewStubやBoxInsetLayout、WearableFrame

LayoutなどのWear用UIライブラリを思い浮
かべる方がいらっしゃるかもしれません。こ
れらはAndroid 6.0においても以前のバージョ
ンと同様に利用可能です。今回の“round/

notround”修飾子は、容易にリソースを切り替
え可能とするしくみです。そのためさまざまな
画面形状をサポートする場合、従来のWear用
UIライブラリと併用するのが良いでしょう。
　注意すべきことが1つあります。本修飾子は、
Android 6.0（APIレベル23）以上でしか利用で
きません。本稿執筆時点では、すべてのWear

実機がAndroid 6.0にアップデートされている
訳ではありません。APIレベル22以下の端末
が存在する間は、本機能は補助的な利用にとど
め、下位バージョンの端末でもアプリが正常に
動作するよう配慮しておきましょう。

そのほかの新機能
　そのほかにも、Intel x86（TAG Heuer Conne

ctedなどで採用されているCPUのアーキテク

 ▼図7　Wearのサウンド設定

private MediaPlayer mMediaPlayer;

private void playMusic() {
 if (mMediaPlayer == null) {
 mMediaPlayer = MediaPlayer.create(this, R.raw.sample);
 mMediaPlayer.setOnCompletionListener(new MediaPlayer.OnCompletionListener() {
 @Override
 public void onCompletion(MediaPlayer mp) {
 Log.d(TAG, "再生が完了しました。");
 }
 });
 }
 mMediaPlayer.start();
}

private void stopMusic() {
 if (mMediaPlayer != null) {
 mMediaPlayer.stop();
 mMediaPlayer.release();
 mMediaPlayer = null;
 }
}

 ▼リスト2　サウンド出力（開始）の実装

 ▼リスト3　サウンド出力（停止）の実装

Jun. 2016 - 111110 - Software Design

特別編 Android Wear最新動向

チャ）がサポートされました。Javaコードだけ
でWearアプリを実装する場合は考慮不要です
が、NDKを用いた実装が含まれる場合は、各
CPUアーキテクチャに対応したライブラリを
それぞれ準備するといった対応が必要なことに
注意しましょう。
　ほかにもWear実機で新しいジェスチャー操
作に対応しました。具体的には、腕を振り下げ
ることで通知の詳細情報を表示（タップ操作に
相当）したり、腕を振り上げることで通知から
ウォッチフェイスに戻る（前の画面に戻る操作

Android Wearでアプリを作ってみようと感じ
ていただけた方がいらっしゃるとうれしいかぎ
りです。またWearアプリ開発をする際は、拙
著『Android Wearアプリ開発入門』（技術評論
社刊）をあわせて参照いただけると幸いです。
同書には、今回誌面の都合で紹介できなかった
Wearアプリ開発の具体的な作り方や、Wear

ならではの注意点、具体的なコード例を豊富に
掲載しています。読者の皆さまもWearアプリ
を開発して、この世界を一緒に盛り上げていた
だけると大変うれしいです。では、またお目に
かかる日まで！s

に相当）といった操作が可能となりまし
た。ユーザがこれまで以上にWear端末
を便利に使えるようになりましたね。

おわりに

　Android Wearの概要に加え、Wear

のAndroid 6.0対応に伴うさまざまな新
しい機能について紹介しました。

 ▼図8　円形・非円形別の画面

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.ｭ
android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:gravity="center">

 <TextView
 android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/textChangable" />

 <ImageView
 android:id="@+id/image"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="fitCenter"
 android:src="@mipmap/image" />
</LinearLayout>

 ▼リスト4　円形・非円形共通のレイアウトXML

 ▼図9　リソースファイルの配置

<string name="textChangable">円形用</string>

<string name="textChangable">非円形用</string>

image.png

image.png

画像（円形・非円形用）

文字列（円形・非円形用）

112 - Software Design

フリーでやろうぜ！
セキュリティチェック

　前編はNmapによるポートスキャンについて紹
介しました。後編はサーバやネットワーク機器な
どに対するOpenVASを用いた脆弱性スキャンに
ついて紹介します。脆弱性スキャンは、対象とす
る機器に存在するセキュリティ上の問題点を洗い
出すために行います。脆弱性スキャンは一般的に
2つの方法から存在する脆弱性を洗い出します。

①疑似攻撃などを行い、その挙動から脆弱性の
有無を判定する方法

②レスポンス中に含まれるアプリケーションの
バージョン情報をもとに脆弱性の有無を判
定する方法

　①は脆弱性ごとの検証用コードなどを用いて、
脆弱性の有無を判定します。検証用コードがな
い脆弱性も多く存在し、その場合は①の方法で
の検出はできません。②は、①で検出できない
脆弱性も検出することが可能です。製品にもより
ますが、製品の提供元サイトのセキュリティ関連
ページなどに脆弱性情報が記載されている場合
があります。National Vulnerability Database注1

やSecurity Focus注2、JVN iPedia注3などのサイ
トで製品に存在する脆弱性が公開されており、
製品名およびバージョンなどの条件で検索でき

ます。①、②のどちらの方法も既知の脆弱性を
洗い出すためのもので、ゼロデイ（未知の脆弱性）
は検出できません。
　洗い出された脆弱性を優先度に応じて対応す
るために、どの機器でどのような脆弱性が検出さ
れたのか適切に管理する必要があります。共通
脆弱性識別子CVE（Common Vulnerabilities and

Exposures）などの識別子を利用することで効率
よく管理できます。多くの脆弱性はCVEが割り
当てられており、一意に特定できます。CVE以
外にもIPAとJPCERT/CCが共同で運営してい
るJVN iPedia（JVNDB）で利用されている識別子
などもあります。JVNDBは、日本国内で利用さ
れている製品の脆弱性情報を中心に蓄積してい
ます。これらの識別子を用いて、脆弱性を管理し
ていくことで、対応すべき脆弱性を可視化でき、
対応漏れが起こる可能性を軽減できます。
　後編では、脆弱性スキャンにOpenVASを用
います。OpenVASは、前編で紹介したNmap

と同様にオープンソース（GNU GPL）のソフト
ウェアです。ブラウザで設定や操作ができ、脆
弱性スキャンだけではなく、スキャン対象機器
で検出された脆弱性を管理する機能も有してい
ます。「http://www.openvas.org/」からソース、
パッケージやOVAイメージがダウンロードで
きます。新バージョンはOpenVAS-8です。

どんな環境が必要？

　前編同様、次の2つの仮想環境を使用します。

注1） URL https://web.nvd.nist.gov/view/vuln/search
注2） URL http://www.securityfocus.com/bid
注3） URL http://jvndb.jvn.jp/

ご注意　本稿に記載された内容を管理下または許可された環境以外に実施した場合に不正アク
セス行為と判断され、法的措置をとられる可能性があります。ご自身の管理下または管理者よ
り許可を取った環境に対してのみ実施してください。また、セキュリティチェックにより、対
象となる環境でサービス停止などの影響が出てしまう可能性があります。事前に環境のバック
アップを行うなど、何か問題が発生した場合に即時対応できるように注意を払ってください。

Author 小河 哲之（おがわ さとし） Twitter @number3to4 三井物産セキュアディレクション㈱

https://web.nvd.nist.gov/view/vuln/search
http://www.securityfocus.com/bid
http://jvndb.jvn.jp/
http://www.openvas.org/

112 - Software Design Jun. 2016 - 113

¡	Kali Linux注4

	 セキュリティチェックを実施する環境。IPア
ドレスを192.168.1.1とする

¡	Metasploitable2注5

	 セキュリティチェックの対象となる環境。IP
アドレスを192.168.1.100とする

　OpenVASは表1のとおり、大きく4つの機
能から構成されています。
　Kali Linux 2016.01でのインストールは次の
手順で行います。

apt-get update
apt-get upgrade
apt-get install openvas

　インストール完了後、Open

VASのセットアップを行いま
す（図1）。セットアップが完了
すると管理者ユーザである
adminのパスワードが表示され
るので、一時的にひかえておい
てログイン後変更してください。
もし、パスワードをひかえるの
を忘れた場合は、openvasmdコ
マンドでパスワードを再設定で
きます（図2）。
　また、Webインターフェース
はデフォルトではループバック

機能名 概要
OpenVAS Scanner 脆弱性スキャンを行うための機能
OpenVAS Manager Scannerの制御や脆弱性情報の管理、OpenVASのユーザ管理などを行う機能
Greebone Security Assistant Webインターフェースを提供する機能
OpenVAS CLI Managerを操作するバッチプロセスを生成するためのコマンドラインを提供する機能

 ▼表1　OpenVASのおもな機能

注4） Debianベースのディストリビューショ
ンで最新バージョンは 2016.01。
「 URL https://www.kali.org/」からダ
ウンロード可能。Kali Linux 64 bitを
使用する。

注5） 複数の脆弱性が包含された環境で、
脆弱性診断などのテスト環境として
活用される。VMwareのイメージが
公開されており、「 URL https://sou
rce fo rge .ne t /p ro je c t s /me ta
sploitable/」からダウンロードできる。

アドレス（127.0.0.1）の9392ポートで稼働してい
ます。外部からアクセスする場合、「/lib/systemd

/system/greenbone-security-assistant.service」
ファイルの9行目をリスト1のように変更する必
要があります。リッスンするIPアドレスは状況
に合わせて変更してください。
　インストールされたOpenVASは図3のとおり
起動します。
　セットアップが完了したら、openvas-check-

setupコマンドで正常に終了したかを確認して
ください（図4）。“It seems like your OpenVAS-8

installation is OK.”が表示されれば正常にセッ
トアップが完了しています。

 ▼図2　パスワードの再設定

openvasmd --user=admin --new-password=パスワード

 ▼リスト1　外部からWebインターフェースにアクセスするための設定
 （greenbone-security-assistant.service）

 変更前
ExecStart=/usr/sbin/gsad --foreground --listen=127.0.0.1 ｭ
--port=9392 --mlisten=127.0.0.1 --mport=9390
 変更後
ExecStart=/usr/sbin/gsad --foreground --listen=リッスンするｭ
IPアドレス --port=9392 --mlisten=127.0.0.1 --mport=9390

 ▼図3　OpenVASの起動

/etc/init.d/redis-server start
openvas-start
Starting OpenVas Services

 ▼図1　OpenVASのセットアップ

openvas-setup
[i] This script synchronizes an NVT collection with the ｭ
'OpenVAS NVT Feed'.
[i] The 'OpenVAS NVT Feed' is provided by 'The OpenVAS ｭ
Project'.
 （..中略..） adminのパスワード
Rebuilding NVT cache... done.
User created with password 'e562cdd0-afbc-4579-a7af-ｭ
794ab6faf85d'.

https://www.kali.org/
https://sourceforge.net/projects/metasploitable/

114 - Software Design

　CentOS 7でのインストールは図5の手順に
なります。CentOS 7では、デフォルトでSELinux

が有効になっていますが、無効にする必要があ
ります。有効になっている場合、openvas-check-

setupコマンドでSELinuxを無効にするようエ
ラーが出力されます。

Let's脆弱性スキャン

　OpenVASを用いた脆弱性スキャンを行うた
めに、Webインターフェースにログインします。
「https://設定したIPアドレス:9392」にアク

セスします。自己署名証明書を使用しているた
め、ブラウザでアクセスした際に警告が表示さ
れます。自己署名証明書を使用することのリス
クについては本稿では割愛しますが、今回は警
告を無視して進みます。ログインすると図6の
画面が表示されます。
　OpenVASでは画面上のアイコンを使って各
種の操作を行います。使用するおもなアイコン
を表2に挙げます。
　OpenVASでの脆弱性スキャンはImmediately

scan（方法①）とカスタマイズされたスキャン（方
法②）の2つがあります（図7）。Immediately scan

は、IPアドレスまたはホスト名を指定するだけ
で脆弱性スキャンを実施できます。とてもシン
プルに実施できますが、UDPに対する脆弱性ス
キャンを行わず、あらかじめ登録されたTCPの
4481ポート分のみのスキャンになります。カス

 ▼図4　セットアップが正常終了したかの確認

openvas-check-setup
openvas-check-setup 2.3.3
 Test completeness and readiness of OpenVAS-8
 （..中略..）
It seems like your OpenVAS-8 installation is ｭ
OK.
 （..略..）

 ▼図5　CentOS 7でのインストール手順

yum install wget bzip2
wget -q -O - http://www.atomicorp.com/ｭ
installers/atomic ¦ sh
yum upgrade
yum install openvas
openvas-setup
openvasmd --rebuild
openvas-check-setup

 ▼図6　OpenVASのログイン後

アイコン アクション

新規登録

変更

コピー

一覧表示

削除

ダウンロード

更新

 ▼表2　OpenVASで使用するお
 もなアイコン

方法①
Immediately
scan の設定

脆弱性
スキャン

結果の
確認

対策の
実施

脆弱性
スキャン

Task の
設定
OpenVAS を用いて実施
スキャン結果を確認し、実施
省略可能

結果の
確認

対策の
実施

方法②
Credential

の設定
Port の

設定
Scan Config

の設定
Target
の設定

 ▼図7　脆弱性スキャンの方法

114 - Software Design Jun. 2016 - 115

タマイズされたスキャンは、Credential（認証情
報）やスキャン対象のPortの設定などを個別に
定義し、脆弱性スキャンを行う方法です。Cre

dentialの設定は省略することが可能です。また、
Portの設定やScan Configの設定も、テンプレー
トを用いることで個別に設定しなくても脆弱性
スキャンを行えます。

Immediately scan
によるスキャン

　Immediately scanは IPアドレスまたはホス
ト名を入力し、“Start Scan”をクリックすると
開始されます（図8）。“Status”カラムに脆弱性
スキャンの進捗状況が表示されます（図9）。完
了すると“Done”と表示されます。
　図9の“Name”カラムのリンクをクリックす

ると実施した日時や実施した脆弱性スキャンの
設定を確認できます（図10）。スキャン結果を
見るには、“Results”項目の数字をクリックし
てください。検出された脆弱性が一覧表示され
ます（図11）。各カラム名をクリックすること
で項目ごとにソートできます。検出された脆弱

 ▼図8　Immediately scan

 ▼図9　Immediately scanの進捗状況

 ▼図10　Taskの詳細

 ▼図11　検出結果

タスクの詳細を見るにはここをクリック

スキャン結果を見るにはここをクリック

脆弱性の内容を
見るにはここを
クリック

116 - Software Design

性の内容を参照するには、“Vulnerability”カラ
ムの脆弱性名をクリックします。脆弱性の概要
や対策、参考URLなどを確認できます（図12）。
　脆弱性の結果を俯瞰して確認することに適し
た機能としてReportsがあります。“Scan Mana

gement”－“Reports”をクリックすると、脆弱性
スキャンの結果サマリを一覧で確認できます（図
13）。

　結果の分析を補助する機能も用意されていま
す。“Date”カラムの日付をクリックし、左上に
ある“Report Results”をフォーカスするとサブ
メニューが表示されます（図14）。ここから検出
された脆弱性や稼働しているポート、アプリケー
ションなど一覧で確認できます。 をクリッ
クすれば、横のメニューで指定した出力形式で
レポートを出力できます（図15）。

 ▼図12　脆弱性の詳細

 ▼図13　脆弱性のサマリ

 ▼図14　結果の分析

 ▼図15　レポートの出力

116 - Software Design Jun. 2016 - 117

カスタマイズされた
スキャン

　Immediately Scanは簡単に脆弱性スキャンを
実施できますが、スキャン範囲やシグネチャ注6

は一部のみとなります。スキャン範囲やシグネ
チャをすべて実施するためには、設定をカスタ
マイズする必要があります。設定をカスタマイ
ズするには、Taskを定義する必要があります（図
16）。Taskは、Target（スキャンを行う対象ホ
スト）とScan Config（シグネチャ）を設定するこ
とで定義します。TargetはさらにCredential（認
証情報）とPort List（対象ポート）を設定するこ
とで定義します。

 Credentialの設定

　Credentialを設定すると、OpenVASは設定
されたCredentialを使用して認証を行い、シス
テム情報を確認します。設定したCredentialは
SSH、SMB、ESXiで利用できます。Credential

の設定は省略することが可能ですが、Credential

を設定して脆弱性スキャンを実施した場合、外
部からでは検出が困難な脆弱性も洗い出すこと
ができるため、脆弱性の検出数は増える可能性

が高まります。
　Credentialの設定を行うには“Configuration”
－“Credentials”をクリックし、図17の をク
リックします。図18の画面が開いたら、“Name”
には適当な名前を入力し、“Login”にユーザ名
を“Password”にパスワードを入力します注7。

 Port Listの設定

　Portの設定では、スキャン対象とするポー
ト範囲を指定します。OpenVASではいくつか
テンプレートが用意されています。テンプレー
トを直接変更することはできませんが、コピー
して変更することは可能です。また、テンプレー
トを使用せずに新しく作成することも可能です。
“Configuration”－“Port Lists”をクリックする
と図19の画面になります。テンプレートは9

つあり、それぞれのスキャンを行うポート数が
一覧で表示されます。
　新しく登録する場合は をクリックしてくだ
さい。テンプレートをコピーする場合、該当の
テンプレートの をクリックしてください。図
20の画面になったら、“Name”には適当な名前
を入力し、“Port Ranges”にはスキャンするポー
トを入力します。TCPはT:以降に、表3のよう
にカンマ区切りかハイフンで指定します。UDP

はU:以降にTCP同様に指定します。

 Scan Configの設定

　Scan Configは実施する脆弱性スキャンのシ
グネチャセットを管理するための機能で、

Scan ConfigCredentialPort List

Target

Task

 ▼図16　Task定義に必要な設定項目の関係性（イメージ図）

 ▼図17　Credentialの一覧 ▼図18　Credentialの設定

注6） 脆弱性を検知するためのルールや定義。

注7） mkdir /var/lib/openvas/gnupgを事前に実行する必要が
あります。

118 - Software Design

“Configuration”－“Scan Configs”をクリック
すると内容が確認できます（図21）。デフォル
トで8つテンプレートが用意されていますが、
Port List同様、テンプレートを直接変更する
ことはできません。そのため、Scan Configを
カスタマイズする場合は、テンプレートの
をクリックし、コピーしたものを変更してくだ
さい。通常、“Full and very deep”を使用する
ことを推奨します。“Full and very deep ultimate”
は、“Full and very deep”に危険なシグネチャ
を追加したテンプレートであるため、“Full

and very deep ultimate”を実施する場合は細心
の注意を払ってください。
　テンプレートに登録されているポートスキャ
ンはConnect Scanで実施されます。これを
SYN Scanに変更する場合、Scan Configをカ
スタマイズする必要があります。ベースとする
テンプレート“Full and very deep”をコピーし、
コピーされたScan Configの をクリックし
ます。Scan Configは複数の設定項目から構成
されており、その中のLaunch Nmap for Network

ScanningおよびNmap（NASL wrapper）のTCP

 ▼図20　Portのカスタマイズ

 ▼図21　Scan Configの一覧

複数対象の
指定方法 指定例

カンマ区切りによ
る複数指定 T:21,22,25,80,443,U:53,123,161

ハイフンによる範
囲指定 T:1-65535,U:1-1023

 ▼表3　ポートの指定方法

 ▼図19　Port Listの一覧

118 - Software Design Jun. 2016 - 119

scanning techniqueのオプションを変更します。
それぞれの をクリックし、“TCP scanning

technique”を“connect()”から“SYN”に変更し
ます（図22）。

 Targetの設定

　Targetの設定は、脆弱性スキャンを行う対
象に関する設定になります。“Configuration”
－“Targets”をクリックし、Targetの一覧画面
の をクリックすると、図23の画面になりま
す。“Name”は適当な名前を入力してください。
“Hosts”にはスキャン対象のIPアドレスまたは
ホスト名を入力します。複数の対象を指定する
場合、CIDRやカンマ区切り、ハイフンなどで
指定もできます。“Port List”は、一覧の中か
ら選択します。事前にCredentialを設定してい
る場合は、“SSH”、“SMB”、“ESXi”のそれぞ
れで選択します。

 Taskの設定

　Taskの設定は、脆弱性スキャンを行うタス

クを作成します。“Scan Management”－“Tasks”
をクリックし、Taskの一覧画面の をクリッ
クすると、図24の画面になります。“Name”は
適当な名前を入力します。“Scan Targets”は
Targetの設定で作成した対象を選択します。
“Scan Config”は、スキャンのテンプレートま
たはカスタマイズしたものの中から選択します。
　Taskを登録したらTask一覧画面に追加され
ます。一覧の“Name”カラムのリンクをクリッ
クするとTaskの詳細を確認できます（図25）。
図25の をクリックすると脆弱性スキャンが
開始されます。スキャン結果やレポートの参照
方法はImmediately scanと同じため割愛します。

脆弱性の管理

　OpenVASには検出された脆弱性を管理する
ための機能が用意されています。“Asset Mana

gement”－“Hosts”で脆弱性スキャンを実施し
たホストごとに検出された脆弱性をサマリで確
認できるため、対象の優先度、脆弱性の重大度

 ▼図22　Scan Configの変更

 ▼図23　Targetの登録 ▼図24　Taskの登録

120 - Software Design

に応じて対応する際にとても便利な機能です（図
26）。“Last Report”カラムの日付部分をクリッ
クすると該当機器で実施された一番新しいレポー
トを参照できます。
　検出された脆弱性に対して、メモを残したり
脆弱性の重大度を再評価したりすることができ
ます。脆弱性一覧画面（図11）の“Actions”カラ
ムにある をクリックすると、該当の脆弱性
に対してメモを残せます（図27）。たとえば「サー
ビスを利用していないのでアンインストール予
定」などの対応方針を記載し、複数名での共有
や対応したログとして保存できます。メモがあ

る脆弱性は脆弱性一覧に が表示されます。
該当の脆弱性をクリックすると記載したメモを
確認できます（図28）。
　OpenVASが誤って、稼働しているアプリケー
ションとは異なるアプリケーションの脆弱性を
検出する場合があります。その場合、検出され
た脆弱性を誤検知（False Positive）として再設
定することができます。“Actions”カラムにあ
る をクリックし、図29の“New Severity”を
“False Positive”に変更します。また、あとで
変更した理由がすぐわかるように“Text”に変更
した理由などを記載しておくことを推奨します。

 ▼図26　ホストごとのサマリ ▼図27　メモの登録

 ▼図28　メモの確認

 ▼図29　脆弱性の再評価

 ▼図25　Taskの詳細

120 - Software Design Jun. 2016 - 121

コマンドライン（CLI）による
スキャン

　OpenVASには一部の機能でCLIが用意され
ています。Credentialの設定やPortの設定な
どはブラウザで実施する必要がありますが、
Taskの登録や脆弱性スキャンはCLIで実施で
きます（図30）。
　まずはOpenVAS内でのTargetの内部キーを
確認します（図31）。次にScan Configの内部
キーを確認します（図32）。
　TargetとScan Configの内部キーの確認を終
えたら、Taskを登録します（図33）。この場合、
Targetの内部キーは“071c1b78-b67a-4141-a6bd

-a0e86c1f1860”を、Scan Config は Full and

very deep Customを使用するため、内部キーは
“c1101209-bb41-422e-8dae-1a5b1ef37275”を
指定します。タスク名は任意の名前を
指定します。内部キーの値を間違えて
いるなどして登録が失敗した場合は、
“Failed to create task.”が出力されま
す。登録が成功するとTaskの内部キー
が出力されます。
　登録されたTaskを実行
します（図34）。この場合、
Taskの内部キーは“bb40a

233-8d8e -4e8e -93b3-

c9cf8026d438”を指定し
ます。正常に実行された
場合、Reportの内部キー

脆弱性
スキャン

Task の
登録

ブラウザで設定する必要がある
CLI での実施が可能

結果の
確認

設定しない、またはテンプレートを
用いることで省略可能

Credential
の設定

Port の
設定

Scan Config
の設定

Target
の設定

 ▼図30　CLIでの対応範囲

 ▼図33　Taskの登録

[root@localhost ̃]# omp -u admin -C -n タスク名 --target=071c1b78-b67a-4141-a6bd-a0e86c1f1860 ｭ
-c c1101209-bb41-422e-8dae-1a5b1ef37275 Scan Configの内部キー
Enter password: Targetの内部キー
bb40a233-8d8e-4e8e-93b3-c9cf8026d438 Taskの内部キー

 ▼図34　Taskの実行

[root@localhost ̃]# omp -u admin -S bb40a233-8d8e-4e8e-93b3-c9cf8026d438
Enter password: Taskの内部キー
1202b02f-71fa-419b-b30d-0a8c2b519bb0 Reportの内部キー

 ▼図31　Targetの内部キーの確認

root@kali:̃# omp -u admin -T
Enter password:
b493b7a8-7489-11df-a3ec-002264764cea Localhost
071c1b78-b67a-4141-a6bd-a0e86c1f1860 metasploitable2
 （..略..）

Target「metasploitable2」の内部キー

 ▼図32　Scan Configの内部キーの確認

[root@localhost ̃]# omp -u admin -g
Enter password:
 （..中略..）

Scan Config「Full and very deep Custom」の内部キー

c1101209-bb41-422e-8dae-1a5b1ef37275 Full and very deep Custom
74db13d6-7489-11df-91b9-002264764cea Full and very deep ultimate
 （..略..）

が出力されます。
　-GオプションでTaskの状況を確認できます
（図35）。また、-Gオプションの引数にTaskの
内部キーを指定するとTaskの詳細情報を参照
でき、Reportの内部キーも確認できます。
　-Rオプションで脆弱性スキャンの結果を確認
できます（図36）。デフォルトではXML形式で
出力されます。ReportのFormat（出力形式）を
変更することもできます（図37）。まず、-Fオプ

122 - Software Design

ションで変更したいFormatの内部キーを確認
します。-fオプションで指定されたFormatの内
部キーの形式で結果が出力されます。

運用について

　ここまでOpenVASを用いた脆弱性スキャン
を紹介してきましたが、うまく活用するための
3つのポイントを見ていきましょう。

・スキャン対象を決める
・スキャンの実施タイミングを決める
・スキャン結果の対応方針を決める

　まずは、スキャン対象を決めます。すべての
サーバおよびネットワーク機器を対象とするこ
とを推奨しますが、スキャン対象が多い場合、
DMZ（DeMilitarized Zone）にあるサーバなど
を対象とし、それ以外は重要度に応じてスキャ
ン対象を決定することが良いでしょう。
　次に、スキャンの実施タイミングですが、公
開前の機器はカットオーバー前に実施し、検出
された脆弱性に対して適切に対応する必要があ
ります。すでに公開済みの機器は定期的なスキャ
ンを推奨します。DMZにある機器は4半期に1

回、それ以外の機器は年1回など重要度に応じ
て実施するなど検討してください。また、Open

 ▼図36　脆弱性スキャン結果の確認

[root@localhost openvas]# omp -u admin -R 1202b02f-71fa-419b-b30d-0a8c2b519bb0
Enter password: Reportの内部キー
<report id="1202b02f-71fa-419b-b30d-0a8c2b519bb0" format_id="a994b278-1f62-11e1-96ac-ｭ
406186ea4fc5" extension="xml" type="scan" content_type="text/xml">
 （..略..）

 ▼図37　ReportのFormatの変更（CSV形式で出力する例）

 ↓Formatの内部キーの確認
[root@localhost openvas]# omp -u admin -F
Enter password:
 （..略..）
c1645568-627a-11e3-a660-406186ea4fc5 CSV Results
6c248850-1f62-11e1-b082-406186ea4fc5 HTML
 （..略..）
 ↓Formatの内部キーを指定してスキャン結果を出力
[root@localhost ̃]# omp -R 1202b02f-71fa-419b-b30d-0a8c2b519bb0 ｭ
-f c1645568-627a-11e3-a660-406186ea4fc5 -u admin
Enter password:
IP,Hostname,Port,Port Protocol,CVSS,Severity
 （..略..）

Reportの内部キー

Format「CSV Results」の内部キー

Format「CSV Results」の内部キー

 ▼図35　Taskの状況確認

[root@localhost openvas]# omp -u admin -G
Enter password:
bb40a233-8d8e-4e8e-93b3-c9cf8026d438 Running 42% task1
[root@localhost openvas]# omp -G bb40a233-8d8e-4e8e-93b3-c9cf8026d438 -u admin
Enter password: Taskの内部キー
bb40a233-8d8e-4e8e-93b3-c9cf8026d438 Done task1
 1202b02f-71fa-419b-b30d-0a8c2b519bb0 Done 10 19 3 51 2016-04-05T14:13:11Z
 Reportの内部キー

122 - Software Design Jun. 2016 - 123

VASのシグネチャの更新は不定期であるため、
脆弱性スキャンを実施する前に“Administration”
の“NVT Feed”、“SCAP Feed”、“CERT Feed”
でシグネチャを更新してください。
　3番目に、スキャン結果の対応方針について
述べます。検出された脆弱性すべてに対して適
切に対応することが好ましいのですが、現実的
に困難なことが多いため、事前に指標を決めて
おくことが良いでしょう。たとえば、OpenVAS

で検出されたHigh、Mediumの脆弱性について
は対応するというように一定の水準を決めてお
くことを推奨します。

最後に

　多くの脆弱性は、バージョンのアップデート、
セキュリティパッチの適用または設定変更を実
施することで対策できます。具体的な対策方法
は脆弱性ごとに異なるため、対応するべき脆弱
性の対策を確認のうえ、適切に実施してくださ
い。根本的な対策ではありませんが、攻撃を受
けるリスクを低減できるため、可能な範囲でア
クセス制限することを推奨します。
　新しく発見された脆弱性はOpenVASでシグ
ネチャが作成されるまで検出できないため、
IPAやJPCERT/CCのサイトで注意喚起され
ているものを個別に対応してください。
　使用しているソフトウェアのサポート期限に
ついても適切に管理する必要があります。一般
的なソフトウェアにはサポート期限が設定され
ており、期限の切れたソフトウェアは重大な脆
弱性が発見されたとしても、開発元からセキュ
リティパッチなどの対策が提供されません。そ
のため、サポート期限の切れたソフトウェアを
使用することがリスクになります。期限が切れ
る前に、別なソフトウェアに切り替える必要が
あります。設計、構築時にソフトウェアのライ
フサイクルについても考慮し、スケジュールな
どを計画することが重要です。すでにサポート
期限が切れたソフトウェアを使用している場合、
ソフトウェアの切り替えを計画し早急に対応し

てください。また、切り替えが完了するまでの
間、アクセス制限を厳しくするなどの軽減措置
も併せて実施することを推奨します。
　診断ツールも完璧ではないため、誤検知（False

Positive）や検知漏れ（False Negative）が発生し
ます。誤検知は脆弱性がないにもかかわらず脆
弱性を報告することです。使用していないソフ
トウェアの脆弱性やすでに対策されている脆弱
性を検出する場合があります。検知漏れは、脆
弱性があるのに報告されていないことです。診
断ツールの診断内容や判定方法が不十分である
ために起こる場合があります。
　誤検知を軽減するためには、検出された脆弱
性の内容や、開発元のサイト、IPAなどから公
開されている脆弱性情報を確認し、個別に該当
するのか判断する必要があります。検知漏れを
軽減するためには、複数の診断ツールを組み合
わせるなどして総合的に判断する必要がありま
す。これは非常にハードルが高いため、厳密に
実施する必要がある場合などはセキュリティベ
ンダに任せるなどの方法を検討したほうが良い
と言えます。

◆　◆　◆
　前編および後編でサーバのフリーで始めるセ
キュリティを紹介しましたが、セキュリティで
重要なことの1つとして、適切な運用を継続す
ることが挙げられます。これは非常に難しいこ
とですが、紹介したツールなどを活用いただき、
少しでもお役に立てれば幸いです。｢

 参考サイト
¡	OpenVAS　http://www.openvas.org/

¡	Kali Linux　https://www.kali.org/

¡	IPA　https://www.ipa.go.jp/

¡	JPCERT/CC　https://www.jpcert.or.jp/

¡	National Vulnerability Database

 https://web.nvd.nist.gov/

¡	Security Focus　http://www.securityfocus.com/

¡	JVN iPedia　http://jvndb.jvn.jp/

¡	フリーでやろうぜ！セキュリティチェック！

	 http://www.slideshare.net/zaki4649/free-securitycheck

http://www.openvas.org/
https://www.ipa.go.jp/
https://www.kali.org/
https://www.jpcert.or.jp/
https://nvd.nist.gov/
http://jvndb.jvn.jp/
http://www.securityfocus.com/
http://www.slideshare.net/zaki4649/free-securitycheck

124 - Software Design

　大阪を中心に20年間システム開発に携わった
あと、現在は東京で仕事をしている「SQLの伝
道師」ことジーワンシステムの生島です。RDB

への問い合わせ言語のSQLは一般的な手続き型
言語とは設計思想が違うため、間違った使い方
をしてしまっているケースが多いことに長年問
題意識を感じており、SQLへの理解を広めるた
めにこの連載を書いています。
　前回まで書いてきたように大量データの抽出、
集計、結合のような集合操作は本来SQLで処理
するべきなのですが、このことが今でもあまり
理解されていません。そして、その理解度を測
るのに役立つのが「ぐるぐる系SQL」があるかど
うかをチェックすることです。
　「ぐるぐる系SQL」という言い得て妙な表現は
『SQL実践入門』注1を出されているミックさんが
ブログで書かれていたもので、当連載でも前回
までに書いてきたとおり「単純なSQL文をぐる
ぐる回すように呼び出してAP（アプリケーショ

注1） ミック 著『SQL実践入門̶̶高速でわかりやすいクエリの
書き方』技術評論社、2015年

ぐるぐる系SQL、使って
ませんか？

ン）サーバ側のループ処理で集合操作をする用
法」のことです。SQLを理解していない人はよ
くこれをやってしまうので、自社のシステムで
も使っていないかどうかチェックしてみると良
いでしょう。ぐるぐる系SQLに対して、集合操
作をRDB側でやらせる方式を一発系SQLと呼
ぶと、両者には図1のような違いがあります。

SQLから「逃げる」ほど問題は
悪化する

　一発系はSQLが複雑化するため、SQLをよ
く理解していないとメンテナンスができなくな
ります。そこで「わからないから使いたくない」
と思ったときの逃げ道がぐるぐる系SQLで、こ
れをすると仕様書とコードが複雑化し、当然そ
の結果バグが増え工数もかさみ性能も出ない、
という三重苦を引き起こすわけです。
　要するに「逃げる」からかえって問題が起きま
す。本気で勉強すればSQLの集合指向の概念も
それほど難しいものではないし、そのほうが簡
単になるので本来はきちんと学んで一発系SQL

を使うべきです。会社としてもそんな技術者を
育てなければいけないのですが、それをさぼっ
て手続き型言語の延長で考えようとするから理
解できないのが現実です。純粋に技術的に言え

生島氏
DBコンサルタント。性
能トラブルの応援のた
め大道君の会社に来た。

大道君
浪速システムズの新米
エンジニア。素直さと
ヤル気が取り柄。

五代氏
大道君の上司。プロ
ジェクトリーダーで
もある。

登
場
人
物

紹
介

 原案 生島 勘富（いくしま さだよし） info@g1sys.co.jp ㈱ジーワンシステム
 構成・文 開米 瑞浩（かいまい みずひろ）　 イラスト フクモトミホ

アプリケーション（AP）サーバでのループ処理の問題は今回で一段落。しかし、SQL一発でほしいデータを取得す
るようにしても、SQLのしくみを理解した書き方ができていないと、ほかで思わぬ失敗をします。そんなときの
原因分析に役立つのが実行計画です。

実行計画の確認はSQLチューニングの基本中の基本第4回

124 - Software Design Jun. 2016 - 125

ばぐるぐる系SQLを使ったほうがいい理由など
1つもないのです。しかし、その主張がそのま
ま組織内で通用するとは限りません。

「わかっていない」ベテランの理
解を得る方法とは？

　「あんたSQLわかってませんやろ、なんて言っ
たらケンカになりますわ……」
と五代さんが悩んでいるのはそこです。浪速シ
ステムズの社内で別チームのリーダーが「SQL

はよくわからんから使いたくない」という、一発
系SQLから逃げるタイプでした。大道君のよう
な若者は技術を素直に吸収してくれることが多
いのですが、プライドだけが高いベテランは聞
く耳を持たないことがあります。それをどう納
得させるかは頭の痛い問題でした。
　「ですんで……こんな方針でどうですか？」
と、五代さんがある提案を切り出しました。

・【状況提示】……一発系SQLを使えば「こんな
お困りを解決できますよ」というありがちな
ケースを示す

・【根拠説明】……「手続き型言語とSQLを適材
適所で使い分けるべきである」という技術的
な理由は淡々と説明する

・【友好姿勢】……困ったときはご相談ください、
とにこやかに言う

　五代さんが言うには、人は敵対的な相手の言

うことは聞かないので、とにかく味方だと思わ
せること。そのためには「困ったときに役に立っ
てあげる」ことが大事で、それにはタイミングよ
く相談してもらう必要があるので、「こんなとき
は」という、いかにもありがちなケースをにこや
かに伝えておく。今の段階では、技術的な理由
については説明はするがゴリ押しはしない、と。
　「困って泣きついてくるのを待つということで
すか。時間がかかりますよね……」
　「しゃあないです。人って本気で困らんうちは
考えを変えませんから」
　「泣きついてくるときって、デスマーチになっ
てもう相当なダメージ食らっちゃってるときじ
ゃないですか？」
　「そうならないように根拠説明はしますよ。で
もきっと聞く耳もたんでしょう。それで痛い目
見るのは彼の自己責任ってもんです。幸いと言っ
ちゃ何ですが、向こうは別チームです。うちら
は困ったときにすがりつける手を用意しとけば
いいんです」
　冷たいようですが、それが一番現実的な考え
に思えました。我々は彼が間違った判断をして
も、直接すぐに被害を被るわけではありません。
気長に考えてその方針でいくことにしました。
　そして、「困って泣きついてくる」機会は実際、
すぐにやってきたのです。

実行計画の確認はSQLチューニングの
基本中の基本第4回

複雑なSQL文を一発だけ呼び出して
DBサーバ側で集合操作をし、
その結果だけをAPサーバ側に取得する

SQLが複雑化
仕様書が複雑化

バグ増加 工数増加 性能悪化

手続き型プログラムが複雑化

SQLをよく理解していないと
メンテナンスできない

一発系SQL

単純なSQL文をぐるぐる回すように
呼び出して大量のデータをAPサーバ側に
取得し、手続き型言語で集合操作をする

ぐるぐる系SQL

・手続き型言語とは感覚が違う
・よくわからないから使いたくない

使いたくないからといって
SQLから逃げると、問題続出

 ▼図1　一発系SQLとぐるぐる系SQLの比較

126 - Software Design

　五代さんの方針に沿ってSQL嫌いのチーム
リーダーに「状況提示」「根拠説明」をしたものの、
予想どおり一発系SQLの採用には難色を示した
ため、「友好姿勢」でいったん話を収めたその数
日後のこと。再び大道君を通じてヘルプコール
がかかってきました。
　「今度はなんやねん？」
　「月次請求処理だそうです」
　バッチ処理の一部が遅いので調べてほしいと
いうことでした。いくつものSQLを発行する複
雑なプログラムでしたが、少し調べてみると原
因は1ヵ所に絞り込めました。問題が起きてい
たSQLの細部を削って単純化したエッセンスだ
けを載せたものがリスト1です。
　「なるほどこれか。さて、こいつが遅いのはな
ぜだと思う？」
　「これは、ぐるぐる系じゃないですよね？」
　そのとおりで、2つのテーブルにJOINをかけ
て一発で結果セットを引いてくるものですから、
ぐるぐる系ではありません。
　「サブクエリが問題なんでしょうか」
　「まあ、これなら本来はサブクエリ使わんでも
いいSQLだからそれで解決するやろな」
　サブクエリでパフォーマンス劣化が起きやす
いことはよく知られていますし、ここまで単純
化していれば誰でも見つけられることでしょう。

しくみを理解せずに使えば
一発系も遅くなる

しかし実際に使われていたSQL文はもっと複雑
で、それがわかりにくくなっていました。だか
らこそ「複雑なSQLを嫌う」考え方が出てきやす
いのでしょうが、それこそが「SQLを理解して
いないから逃げようとする」本末転倒な発想です。
　「で、どうしてサブクエリ使うと遅くなる
ん？　理由は？」
　「えっと……」
　この理由がわからないと、本来サブクエリが
役に立つときでもかたくなに使おうとしないケー
スもあります。やはりしくみをきちんと知るこ
とが大事です。
　「これは今までとは違う問題やけど、RDBと
SQLを理解するには重要なポイントやから知っ
ておくとええよ。ほな、実行計画見てみよか」

実行計画の確認は
SQLチューニングの基本！

　SQL文がDBサーバで処理される基本の流れ
は図2のようになります。発行されたSQL文（図
中のSQL（1））はパーサーによる冗長部分のカッ
トなどの加工を経て単純化され（SQL（2））、そ

 ▼リスト1　月次請求処理のSQL（単純化したもの）

SELECT *
FROM 売上データ U
 LEFT OUTER JOIN
 (SELECT * FROM 顧客マスタ WHERE 削除FLG <> 1) C
 ON U.顧客ID = C.ID
WHERE
 -- 売上データに対する絞り込み条件;

統計情報

テーブル
＋

インデックス

SQL（2）

パーサー

SQL（1）

オプティマイザ

実行計画

結果セット

実行エンジン

 ▼図2　SQL文の処理の流れ

126 - Software Design Jun. 2016 - 127

れをもとにオプティマイザが実際のデータ処理
アルゴリズムを組んだものが実行計画です。「実
行計画」は手続き型言語で言うところのソース
コードに該当するため、遅いSQLがあったら実
行計画を確認するのは基本中の基本です。
　「実行計画はあんまり見たことなくて……」
　「これ読むとクエリの実行ロジックが推測でき
るようになるから、いろいろ見てみるとええよ。
まずはリスト2とリスト3を比べてみると、何
が違う？」
　リスト2、3はそれぞれあるSQL文と実行計
画（MySQL 5.6.1で生成）の組を掲載しました。
SELECT文の下の表形式の部分が実行計画で
す。詳しい読み方はMySQLのリファレンスに
任せて、本稿ではポイントのみ触れます。
　「違いは顧客マスタテーブルの絞り込みでのサ
ブクエリの有無ですよね。えーと……サブクエ
リを使うとインデックスが使われない？」

　「そのとおり！　サブクエリの結果テーブルへ
のアクセスにはインデックスが使われない。だ
から注意が必要なんよ。まあ、今回のリスト1

についてはそもそもサブクエリを使わないよう
にすれば、それで解決すると思うよ」
　リスト3の実行計画最下行、DERIVED 顧客マ
スタ～の部分がSQLの削除FLG<>1で顧客マス
タを抽出するサブクエリで、その上のPRIMARY
<derived2>～の部分がその結果の読み込みで
す。注目すべきはどちらもtypeがALLになって
いることで、これはインデックスを使わずにテー
ブルを全件読み込んでいることを意味します。
　「サブクエリを使うと遅くなる、というのはそ
れが理由だったんですか」
　「実行計画を読むと、実際どんなアルゴリズム
でテーブルにアクセスするかがわかるから、性
能トラブルシューティングするときは必ず確認
するとええよ。複雑なSQLでも実行計画を見れ

実行計画の確認はSQLチューニングの
基本中の基本第4回

 ▼リスト3　MySQL実行計画　サブクエリあり

SELECT *
FROM 売上データ U
 LEFT OUTER JOIN
 (SELECT * FROM 顧客マスタ WHERE 削除FLG <> 1) C
 ON U.顧客ID = C.ID
WHERE　U.売上日 = '2016/04/01'

¦ id ¦ select_type ¦ table ¦ type ¦ possible_keys ¦ key ¦ key_len ¦ ref ¦ rows ¦ Extra

¦ 1¦PRIMARY ¦U ¦ref ¦売上データ_IDX1¦売上データ_IDX1¦3 ¦const ¦ 829¦NULL
¦ 1¦PRIMARY ¦<derived2> ¦ALL ¦NULL ¦NULL ¦NULL ¦demo.U.顧客ID ¦ 10¦NULL
¦ 2¦DERIVED ¦顧客マスタ ¦ALL ¦NULL ¦NULL ¦NULL ¦NULL ¦ 20083¦Using where

サブクエリで顧客マスタテーブルを
全件読み込み、その結果のテーブルに
インデックスを使わず全件アクセス

 ▼リスト2　MySQL実行計画　サブクエリなし

SELECT *
FROM 売上データ U
 LEFT OUTER JOIN 顧客マスタ C
 ON U.顧客ID = C.ID
 AND 1 <> C.削除FLG
WHERE U.売上日 = '2016/04/01'

¦ id ¦ select_type ¦ table ¦ type ¦ possible_keys ¦ key ¦ key_len ¦ ref ¦ rows ¦ Extra

¦ 1¦SIMPLE ¦U ¦ref ¦売上データ_IDX1¦売上データ_IDX1¦3 ¦const ¦ 829¦NULL
¦ 1¦SIMPLE ¦C ¦eq_ref¦PRIMARY ¦PRIMARY ¦4 ¦demo.U.顧客ID ¦ 1¦Using where

売上データが絞り
込まれている

顧客テーブルの検索にインデックスを使用

売上データテーブルの絞り込みに
インデックスを使用

128 - Software Design

ば遅くなるところは見つけやすいんよ。とくに
type=ALLには注意する」
　「はい！」
　「ただし、実行計画はDBの製品、バージョン、
データの状態で変わるから、実環境と同じ環境
でやらんと意味ないんでそこは注意してな」
　実は近年MySQLも賢くなっていて、バージョ
ン5.6.3からはサブクエリの結果に対して自動的
にインデックスを生成して使用しています。も
ちろん、インデックスを作りなおすため、もと
もとあるインデックスを使うよりは遅いですが。
　また、たとえばテーブルのデータ件数が少な
い場合はインデックスがあっても使わずに全件
読み込みをしたほうが速い場合もあるため、オ
プティマイザが実行計画を生成する際は、読み
込むテーブルのデータ量やインデックスの有無
などについての統計情報をヒントにしています
（図2）。そのため、SQL文が同じでも、データ
が違えば異なる実行計画になることがあります。
　「そうなんですか」
　「DB製品によっての違いも大きくて、Oracle

はこのへんの処理が賢いんよ」
　Oracleではリスト3のようなSQL文を、パー
ス処理の段階でサブクエリを使わない形に書き
換えてしまいます。また、MySQLにはないア
ルゴリズムを利用して、インデックスなしでも
高速JOINが可能なのもOracleの特徴です。
　「インデックスがなくても高速にJOINできる

というのは、どんなしくみなんですか？」
　「じゃあ、この機会に3種類のJOINアルゴリ
ズムについてやっとこうか」

　大きなテーブルを結合するとDBに負荷を与
えがちなため、何かと敬遠されることも多い
JOIN機能の実装アルゴリズムは大まかにネス
テッドループ、ソート／マージ、ハッシュの3

種類があります。Oracleはこの3種類すべてを
実装しているのに対して、MySQLではネステッ
ドループ方式だけが実装されています。
　本稿ではそれぞれの動作ロジックが性能面で
どのような影響を与えるか、という点に絞って
チャート（図3〜5）を用意しました。

ネステッドループ結合

　ネステッドループ結合の処理イメージは図3

です。「外部表（売上データ）」の全件に対して、
「内部表（顧客マスタ）」の中からマッチするもの
を探して結合する処理であると考えてください。
インデックスがない場合は外部表と内部表の全
件について結合条件値を2次元に展開した表を
作り、そのすべてについて結合判定を行うと考
えるとわかりやすいです。1段目、2段目……と
ループが重なるのでネステッドループ結合と言
います。○と×の両方をチェックしていくため、

件数が増えると爆発的に負荷
が増えるのが直観的にわかる
ことでしょう。基本的には外
部表の一部をインデックスの
ある内部表に結合する場合に
向いています。インデックス
があるとマッチするデータを
直接探すことができるため、
「×」のチェックが不要にな
り、高速に処理することがで
きます。

3種類の
JOINアルゴリズム

 ▼図3　ネステッドループ結合

内部表の結合条件列

1段目

2段目

3段目

4段目

5段目

6段目

外
部
表
の
結
合
条
件
列

 1 9 2 6 4 7

 × × × × × 〇

 × × × × × ×

 × × × × 〇 ×

 〇 × × × × ×

 × × 〇 × × ×

 × 〇 × × × ×

インデックスなし インデックスあり

 7

 5

 4

 1

 2

 9

内部表の結合条件列

外
部
表
の
結
合
条
件
列

 1 9 2 6 4 7

インデックス

 〇

 〇

 〇

 〇

 〇

 7

 5

 4

 1

 2

 9

128 - Software Design Jun. 2016 - 129

ソート／マージ結合

　ソート／マージ結合の処理イメージは図4で
す。外部表と内部表の結合条件列の双方をソー
トしたうえで、双方の値を少しずつ増やしなが
らマッチングをかけます。図4のように対角線
上の部分だけをチェックするイメージになるた
め、インデックスなしのネステッドループに比
べてチェック件数が減り、表の大部分のデータ
同士でも高速に結合することができます。非等
価結合でも使用可能です。ただし、いったんソー
トする負荷がかかるため、基本的には結合する
カラムの双方にインデックスがあって改めての
ソートが不要なときに使われます。

ハッシュ結合

　ハッシュ結合の処理イメージは図5です。内
部表の結合条件列の値をハッシュ関数にかけて
ハッシュ表を作ったうえで、外部表の値を同じ
ハッシュ関数にかけてマッチングの候補となる
内部表の値を探します。ハッシュ表はすべての
結合条件値をできるだけまんべんなく散らばる
ように分類したもの、と考えることができます。
分類ですので1つの分類には複数の値が属しま
すが、「全件」に比べればはるかに少ないため、
結合一件あたりに必要な等価条件チェック数が
激減します。しかも重いソート処理が不要のた
め、インデックスのないテーブルを効率よく結

合することができます。ただし、等価結合の場
合のみ使用可能です。

SQLはしくみを理解して使うこ
とが重要

　一発系SQLを嫌ってぐるぐる系SQLを使い
たがる理由の1つとしてよくあがるのが、「複雑
なSQLはDBに負荷がかかるから」というもの
です。しかし、実際に複雑な一発系SQLで高負
荷なものを調べてみると、本稿で触れたような
インデックス、サブクエリ、結合操作といった
しくみを理解せずに下手なSQLを書いているこ
とが原因の場合がほとんどです。
　SQLはゴールを示す仕様書のようなもので、
実際のデータ処理ロジックを作るオプティマイ
ザがプログラマ（PG）にあたります。データの件
数や分散具合をヒントにして、SQLが示すゴー
ルを得るための実行計画を作るのがPG（オプ
ティマイザ）の役割です。このため、同じSQL

でもデータの状況が違えば違う実行計画を生成
しますし、DBMSのバージョンが上がれば賢く
なり、ベンダによっても性格が違います。ギリ
ギリのチューニングをするなら、その性格を見
越してSQLを書く必要があるわけです。
　これらのしくみは一見取っつきにくそうに見
えますが、落ち着いて考えればけっして難しい
ものではありません。しくみを理解して、「逃げ
ずに」SQLを使ってみませんか？　実行計画を
見ることはそのための第一歩なのです。｢

実行計画の確認はSQLチューニングの
基本中の基本第4回

 ▼図4　ソート／マージ結合

内部表の結合条件列

外
部
表
の
結
合
条
件
列

ソ
ー
ト

ソート

 1 9 2 6 4 7

 1 2 4 6 7 9

〇

 × 〇 ×

 〇

 × ×

 × 〇 ×

 〇

 7

 5

 4

 1

 2

 9

 1

 2

 4

 5

 7

 9

 ▼図5　ハッシュ結合

内部表の結合条件列

外
部
表
の
結
合
条
件
列

ハッシュ値 結合条件値

 1 9 2 6 4 7

 7

 5

 4

 1

 2

 9

ハッシュ関数

ハ
ッ
シ
ュ
関
数

 A5B1 1 4

 B32E 2 6

 CD14 7

 D7AF 9

ハッシュ表

130 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

Androidでロボットを
操作してみよう

　最近の技術動向では、人工知能（以下、AI）
やそれに関する技術が注目を集めています。ロ
ボットと人工知能の組み合わせは、SF映画の
世界が再現されるようでワクワクする気持ちに
なります。今回は、身近な掃除ロボットの「ル
ンバ」とAndroidをつないで操作してみたいと
思います。
　ルンバには、プログラミングをして自由に操
作するための「Create」と呼ばれるシリーズが
販売されています注1。ですが今回はCreateでは
なく、市販のルンバを使ったデモを動かしてみ
たいと思います（図1）。
注1） iRobot Create
　　　http://www.irobot.com/About-iRobot/STEM/Create-2.

aspx

ルンバとAndroidの
つなぎ方

　　iRobot社のロボット掃除機ルンバにはミ
ニDINコネクタの外部シリアルポートがつい
ており、500以降のシリーズではRoomba Open

Interfaceとして仕様が公開されています（図2）。
このポートにシリアル通信機能のあるマイコン
などをつないで、外部から簡単にルンバを制御
することが可能です注2。

・Roomba Open Interface仕様書

http://irobot.lv/uploaded_files/File/iRobot_
Roomba_500_Open_Interface_Spec.pdf

注2） ルンバ980からはRoomba Open Interfaceはなくなって
おり、アイロボットサービスセンターに問い合わせても状
況を確認することはできませんでした（2016年3月末時点）。

 ▼図1　想定するシステム概要

第6回 ルンバにAndroidスマホで命令だ!

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

金 祐煥（きん ゆうかん）
日本Androidの会
神戸支部・京都電創庵

takagig
日本Androidの会
神戸支部・GDG神戸所属

Androidは世界で出荷される8割のスマートフォンに搭載※される、事実上
スマートフォンの標準OSです。このOS上で動くアプリケーションを開発す
ることは、自分のアイデアを世界に発信し、最も多くのスマートフォン上で
動かしてもらえる可能性がある行為です。このAndroidの最新情報と、そ
れを取り巻くコミュニティを知って、魅力的な開発をはじめませんか?

※IDC Worldwide Mobile Phone Tracker, August 7, 2013

ルンバ

スマホ

スマホアプリ

USB接続

Physicaloid
Library

Speech
Recognizer声で命令

http://www.irobot.com/About-iRobot/STEM/Create-2.aspx
http://irobot.lv/uploaded_files/File/iRobot_Roomba_500_Open_Interface_Spec.pdf
http://www.android-group.jp/

Jun. 2016 - 131130 - Software Design

ルンバにAndroidスマホで命令だ!第6回

　ルンバにUSBシリアル変換アダプタを介し
てAndroid端末を接続し、外部からコントロー
ルしてみます。今回は次の機材を利用します。

使用した機材
・ルンバ871
・Android端末（Nexus 6）
・USBシリアル変換アダプタ
・USBホストケーブル
・USBケーブル
・ジャンパワイヤ（オス−オス）

　ルンバのシリアルポートは5V動作のため、
USBシリアル変換アダプタは5V動作可能なも
のを使います。今回はスイッチサイエンスの
「FTDI USBシリアル変換アダプタ（5V/3.3V

切り替え機能付き）注3」を使用しました。
　USBシリアル変換アダプタには、DTR、
RX、TX、VCC、CTS、GNDの6つの端子が
ありますが、ルンバとシリアル通信するために
は、RX、TX、GNDの3つを使用します。USB

シリアル変換アダプタの電圧切り替えジャンパ
は写真1のように5V側にしておきます。
　USBシリアル変換アダプタとルンバをオス
－オスのジャンパワイヤで接続しますが、TX

注3） https://www.switch-science.com/catalog/1032/

とRXD、RXとTXD、GNDとGNDを接続し
ます（表1）。
　配線は絶対に間違えたりショートしないよう

に気をつけてください、とくにルンバのPin1

とPin2はバッテリーに直結しているため危険

です。

　TX、RXはそれぞれTXD、RXDと同じ意味
ですので、図3のように互い違いにつなぐこと
になります。
　配線はこれだけ、ハンダ付けも不要です。全
体としては図4のように接続されているはずで

 ▼写真1　FTDI USBシリアル変換アダプタ
 （写真提供：スイッチサイエンス）

 ▼表1　USBシリアル変換アダプタとルンバのピン対応

USBシリアル
変換アダプタのピン ルンバのピン

TX RXD（Pin3）

RX TXD（Pin4）

GND GND（Pin6かPin7）

 ▼図2　外部シリアルポートミニDINコネクタのピン配列　　
　　 （Roomba Open Interface仕様書より作図）

6

12
34
5

電圧切り替えジャンパ

7

Pin Name Description
1 Vpwr Roomba battery + （unregulated）

2 Vpwr Roomba battery + （unregulated）

3 RXD 0 - 5V Serial input to Roomba

4 TXD 0 - 5V Serial output from Roomba

5 BRC Baud Rate Change

6 GND Roomba battery ground

7 GND Roomba battery ground

 ▼図3　シリアル配線図

USBシリアル
変換アダプタ ルンバ

DTR

RX

TX

VCC

CTS

GND

1 Vpwr

2 Vpwr

3 RXD

4 TXD

5 BRC

6 GND

7 GND

https://www.switch-science.com/catalog/1032/

132 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

 　① libsにライブラリファイルを追加

　Android Studioでプロジェクトを作成したら、
libsフォルダにPhysicaloid Libraryからphysi

caloidlibrary.jarとd2xx.jarの2つのファイル
をコピーします。

 　②build.gradleを修正

　build.gradleの dependenciesに「compile files

（'libs/physicaloidlibrary.jar'）」を追加します（リ

スト1）。
　
③AndroidManifest.xmlに

　　 パーミッションを追加

　USBホスト機能を有効にするために、And

roidManifest.xmlにパーミッションを追加しま
す（リスト2）。

Physicaloid Libraryの利用方法

　次にPhysicaloid Libraryの使い方を見てい
きましょう。表2に記載されているPhysicaloid

す。ルンバのシリアルポートへの接続はよく見
て絶対に間違えないように、くれぐれもショー
トさせないように気をつけてください。ハンダ
付けのできる方は7ピンもしくは8ピンのミニ
DINプラグを使用すると良いでしょう。

制御アプリ説明

　Android端末とルンバを接続できたら、制御
アプリを作ります。今回は音声でルンバに命令
をして走らせてみます。

プロジェクトの準備

　Android端末からUSBシリアル変換アダプ
タを利用できるようにするため、ksksue氏が
作成したPhysicaloid Library注4を使用します。
Physicaloid Libraryは次のようにしてAndroid

Studioのプロジェクトへ組み込んでください。

注4） https://github.com/ksksue/PhysicaloidLibrary

 ▼表2　Physicaloidクラスのコンストラクタと主なメソッド

コンストラクタ 説明

public Physicaloid(Context context) インスタンス生成

メソッド 説明

public boolean open() シリアルポートをオープン

public boolean close() シリアルポートをクローズ

public int read(byte[] buf, int size) データ読み込む

public boolean addReadListener(ReadLisener listener) 読み込みリスナを登録

public void clearReadListener() 読み込みリスナをクリア

public int write(byte[] buf, int size) データを書き込む

 ▼図4　接続図

USBケーブルUSBホストケーブル

ジャンパワイヤ

USBシリアル
変換アダプタ

https://github.com/ksksue/PhysicaloidLibrary

Jun. 2016 - 133132 - Software Design

ルンバにAndroidスマホで命令だ!第6回

クラスのメソッドを利用して開発していきます。
　Physicaloid Libraryでデータをシリアルポー
トから送信する例をリスト3に示します。この
例では「hello」という文字列をバイトデータ列
に変換し、シリアルポートに送っています。
　このようにUSBシリアル変換アダプタと
Physicaloid Libraryを使うと簡単にAndroid

でシリアル通信ができるようになります。

Roomba Open Interfaceの確認

　次に、ルンバの仕様を見てみます。
Roomba Open Interfaceには表3に示
す4つのモードがあります。
　Roomba Open Interfaceにはルン
バを制御するコマンドが多数用意さ
れていますが、今回作成するサンプ
ルで使用するコマンドを表4に示し
ます。このほかにも、掃除を開始す
るコマンドや音楽を鳴らすコマンド
などがあります。詳しくはRoomba

Open Interface仕様書を参照してく
ださい。
　Roomba Open Interfaceのコマン
ドは1バイトのオペコードで始まり、
その後にパラメータとして必要な数
のバイトデータが続きます。
　たとえば直接ドライブコマンドは、
先頭にオペコードとして145を送っ

た後、2つの符号付き16bit数値を2バイトのデー
タに分解し、上位、下位の順番に送ります。少
しわかりにくいかもしれませんので、リスト4

にあるサンプルコードもあわせてご覧ください。
　ルンバにコマンドを送るときは、まずスター
トコマンドを送ります。スタートコマンドを受
信するとルンバはパッシブモードとなりますが、
ルンバを制御するためにはセーフモードかフル
モードにする必要があるので、フルコマンドを
送ってフルモードにしてから、直接ドライブコ

 ▼リスト1　build.gradleの修正個所

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 testCompile 'junit:junit:4.12'
 compile 'com.android.support:appcompat-v7:23.3.0'
 compile files('libs/physicaloidlibrary.jar')
}

 ▼リスト3　Physicaloid Libraryでのデータ送信実装例

// Physicaloidのインスタンスを生成
Physicaloid mPhysicaloid = new Physicaloid(this);
// オープン
if(mPhysicaloid.open()) {
 // 通信速度設定
 mPhysicaloid.setBaudrate(115200);
 // データを書き込み
 byte[] buf = "hello".getBytes(“UTF-8”);
 mPhysicaloid.write(buf, buf.length);
 // クローズ
 mPhysicaloid.close()
}

 ▼リスト2　パーミッションの追加

<uses-feature android:name="android.hardware.usb.host" />

 ▼表3　Roomba Open Interfaceのモード

モード 説明

オフ 電源投入後はオフモードとなる

パッシブ

スタートコマンドやクリーニングコマン
ドを送るとパッシブモードとなる。セン
サーコマンドを使用して、センサーデー
タを受け取ることができる。ルンバを制
御するには、フルかセーフモードに切り
替える必要がある

セーフ
セーフコマンドを送るとセーフモードと
なる。セーフモードでは、いくつかの安
全条件の範囲内でルンバを制御できる

フル フルコマンドを送るとフルモードとなる。
ルンバを完全に制御できる

 ▼表4　Roomba Open Interfaceのコマンド

名称 コード（バイト） 説明

スタート 128

パッシブモードに変更する。
ほかのコマンドを開始する前
に、常にこのコマンドを送
信する必要がある

フル 132 フルモードに変更する

直接
ドライブ

145,
右速度上位バイト ,
右速度下位バイト ,
左速度上位バイト ,
左速度下位バイト

左右の車輪に独立して速度
を 指 定 す る。符 号 付き
16bit数値をバイトごとに与
える。数値範囲は -500～
500mm/s

134 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

マンドを送ります。

①スタートコマンド（128）を送る
②フルコマンド（132）を送る
③直接ドライブコマンド（145）とパラメータを

送る

　リスト4にルンバの車輪を制御するメソッド
の例を示します。

Speech Recognizerの利用方法

　音声認識の処理についても簡単に解説します。
onCreateで音声認識処理用の Intentを準備し
ます。ボタンを押下されると startListen処理
が呼び出されます。その結果、Speech Recog

nizerの機能が呼び出され、音声認識処理が実
行されます。音声認識の結果は、文字列の配列
として取得されます。今回のサンプルでは、
ArrayList<String> candidates変数に処理結果
を格納して、配列のいずれかにコマンドに相当
する認識結果が含まれているかどうかを判定し
ています（リスト5）。

サンプルアプリの使い方

　サンプルアプリのプロジェクトを用意してい

ます。次のサイトからダウン
ロードしてください。

https://github.com/titoi2/
RoombaVoiceControlSample

　ダウンロードしたら、And

roid StudioでビルドしてAnd

roid端末にインストールしてく
ださい。音声入力を使っている
ため、Android 6では許可設定
が必要です。Android 6端末の
場合、［設定］→［アプリ］→本ア
プリを選択→［許可］→［マイク］
をオンにしてください。
　アプリを起動したら、図4の

接続図のとおりにAndroid端末とルンバを接続
しますが、USBホストケーブルとUSBケーブ
ルを最後につなぎます。すると「USBデバイス
へのアクセスを許可しますか？」というダイア
ログが出ますので、OKを押してください。こ
れで準備が整いました。
　入力開始ボタンを押すと、音声入力のダイア
ログが表示されるので話しかけてください。「前」
「後」「右」「左」を含む音声を認識するとその方
向にルンバが動きます。入力開始ボタンを押す
とルンバが停止しますので、また話しかけてく
ださい。ルンバが止まらなくなった場合は、ル
ンバをリセットしてください。800/700シリー
ズの場合はCLEANボタンを10秒以上、600/

500シリーズの場合はSPOTボタンを押したま
まDOCKボタンを10秒以上押します。

まとめ

　今回は音声操作でルンバを動かしてみました。
思ったよりも簡単にスマホからロボットが操作
できたのではないでしょうか。音声認識の技術
は成熟してきており、Google Cloud Speech

/**
 * 車輪制御コマンドを送信する
 *
 * @param l 左車輪パラメータ、-500～500 (mm/s)
 * @param r 右車輪パラメータ、-500～500 (mm/s)
 */
private void sendDriveDirect(int l, int r) {
 byte[] commands = new byte[7];
 commands[0] = (byte) 128; // Start

 commands[1] = (byte) 132; // Full

 commands[2] = (byte) 145; // Drive Direct
 commands[3] = (byte) (r >> 8); // Right velocity high byte
 commands[4] = (byte) r; // Right velocity low byte
 commands[5] = (byte) (l >> 8); // Left velocity high byte
 commands[6] = (byte) l; // Left velocity low byte

 // バイト列をシリアルに送信
 sendCommand(commands);
}

 ▼リスト4　ルンバの車輪を制御するメソッドの例

https://github.com/titoi2/RoombaVoiceControlSample

Jun. 2016 - 135134 - Software Design

ルンバにAndroidスマホで命令だ!第6回

API注5のリリースにもあるように、精度が高い
認識処理をアプリにどんどん組み込んでいける
時代になっています。声を使ったロボットの操
作は、仕事やゲームなどの幅広い領域で使える
技術になるはずです。
　また、Androidを使っているので、音声だけ
ではなく、画像認識による操作やメール受信に
注5） https://cloud.google.com/speech/

よる操作などさまざまな機能と組み合わせるこ
とができます。今話題のVRメガネと組み合わ
せて、仮想現実の世界で動かせば、現実のロボッ
トも動くようなMixed Reality（MR：複合現実）
を実現できるかもしれません。ぜひ今回のサン
プルを試してみて、未来の活用方法に思いを馳

は

せてはいかがでしょうか。s

（..略..）
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

（..略..）
 mButtonStart = (Button) findViewById(R.id.buttonStart);
 mButtonStart.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 // 開始ボタン押下処理
 roombaStop();
 startListen();
 }
 });

（..略..）
 // 音声認識のIntentインスタンスを生成
 mSpeechIntent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 mSpeechIntent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL, RecognizerIntent.ｭ
LANGUAGE_MODEL_FREE_FORM);
 mSpeechIntent.putExtra(RecognizerIntent.EXTRA_MAX_RESULTS, 10);
 mSpeechIntent.putExtra(RecognizerIntent.EXTRA_PROMPT, "音声を入力");
 }

（..略..）
 private void startListen() {
 // インテント発行
 startActivityForResult(mSpeechIntent, REQUEST_CODE);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 Log.v(TAG, "onActivityResult");
 super.onActivityResult(requestCode, resultCode, data);

 if (requestCode == REQUEST_CODE) {
 if (resultCode == RESULT_OK) {
 // 認識結果を取得
 ArrayList<String> candidates = data.getStringArrayListExtra(Recognizerｭ
Intent.EXTRA_RESULTS);
 // コマンド解析
 String command = commandAnalyze(candidates);
 mTvLog.setText(command);
 } else {
 roombaStop();
 }
 }
 }

（..略..）

 ▼リスト5　Speech Recognizerを利用するメソッドの例

https://cloud.google.com/speech/

136 - Software Design

Vimでファイルを開くとき

　みなさんはVimでファイルを開く際に、コマ
ンドラインからファイル名を指定して起動する
ほうが多いでしょうか？　それとも、とりあえ
ずVimを起動したあと、:eコマンドやほかの方
法でファイルを開くほうが多いでしょうか。も
ちろん、編集したいファイルの数が多いかどう
かで使い分けるという方もいるでしょう。人に
よっては毎回シェルに戻って、別のファイルを
開き直すのを好む人もいます。
　とくに昔のviに慣れていた人達には、viでの
編集は1ファイルに限るといった習慣があり、筆
者もあまりVimを常駐したままにはしないほう
です。これは、プロジェクト内でファイルを探
すための手段が、昔は findやgrepしかなかった
ことが原因で、頭の中でファイルを探したいな
らシェルに戻るという意識が染みついてしまっ
ているからです。しかし現代ではVimも、そし
てそれを取り巻くツール群も発達してきており、
Vimを起動したままIDEのように扱ったほうが、
何かと便利な場面が増えてきました。
　昔はソースコードが1枚岩で書かれているこ
とも多かったのですが、近代では1クラス1ファ
イルに分割する管理方法も当たり前になってき
ています。そして1つのプロジェクトに10個や

20個、多くなれば数百個のファイルがあるなん
てことも珍しくはなくなってきました。
　大規模な開発では当然、EclipseやVisual

Studioといった IDEが使われます。もちろん、
これらのIDEにはプロジェクト内のファイルを
簡単に開く方法が提供されています。Visual

StudioであればCTRL-,とタイプすると、［移動
コマンド］のウィンドウが表示されます（図1）。
　ここにファイル名の一部分だけ入力して

　　　をタイプすると、マッチしたファイルが
開かれます。EclipseであればCTRL-SHIFT-rで
同様のウィンドウが開きます（図2）。
　とても便利な機能なのですが、Vimには標準
では備わっていません。しかし、CtrlP 注1とい
うプラグインを利用することで、同様の機能が
実現できます。最近のVimユーザにはけっこう
認知されてきたとは思いますが、あらためて
CtrlPの使い方やカスタマイズ方法を紹介した
いと思います。

Enter

注1） URL https://github.com/ctrlpvim/ctrlp.vim

 ▼図1　Visual Studioの［移動コマンド］

一歩進んだ使い方
のため

のイロハ

ファイル操作を
柔軟にするCtrlP

　今回紹介するのは、ViｍでVisual StudioやEclipseといったIDEの持つファイル検索機能を実現するプ
ラグイン「CtrlP」。そのCtrlPについて、基本的な使い方とより便利になるカスタマイズ方法、CtrlPをさらに
プラグインで拡張する方法について解説します。

mattn
twitter:@mattn_jp

第 回8

https://github.com/ctrlpvim/ctrlp.vim

136 - Software Design Jun. 2016 - 137

います。基本的なキー操作は表1のとおり。
　画面下部のコマンドラインに文字を入力して
一覧を絞り込みます。絞り込んだ内容の中から
選択してファイルを開きます。コマンドライン
のキー操作は表2のとおり。
　ファイル操作はUNIXのシェルと同じ感覚で
操作します（表3）。これに合わせてCTRL-jと
CTRL-kで一覧のカーソルを上下できます。
CTRL-zで一覧の中から現在の行を選択できま
す。複数選択もできます。
　なお、端末版（CUI）のVimからCtrlPを使う
場合はCTRL-sが効きません。これはCTRL-sが

CtrlPとは

　本連載でも幾度かその名前を紹介してきまし
た。CtrlPは kien氏が開発を始め、現在は
ctrlpvimというグループで開発しており、筆者
を含む数名がメンテナを務めています。CtrlP

はその名のとおり、CTRL-pをタイプして起動し
ます。CtrlPの特徴は次のとおりです。

・Vim scriptだけで書かれている
・Vim の正規表現を使った検索
・MRU（Most Recently Used）ファイルモニタ

リングおよび検索
・ルートディレクトリ検知
・複数ファイルの同時オープン
・ファイルおよびディレクトリの作成
・開いているファイル上でのExコマンド実行
（行や文字列へジャンプ、もしくはほかの動作）

・キャッシュと履歴を使ったクロスセッション
と高速な初期化

・マッピングとVimとの親和性

CtrlPの基本的な使い方

　起動すると図3の画面が表示されます。CtrlP

はデフォルトでファイル検索、バッファ検索、
MRU（Most Recent Used）検索が有効となって

 ▼図2　Eclipseの［リソースを開く］ ▼図3　CtrlP起動

キー 動作
CTRL-a カーソルを行頭に移動
CTRL-e カーソルを行末に移動
CTRL-u コマンドラインをクリア

CTRL-nまたはCTRL-p コマンド入力履歴をたどる
CTRL-\ コマンドラインに挿入※

ディレクトリ名を補完
※カーソル上の単語、カーソル上のファイル名、検索パターン、
　ビジュアル選択内容、クリップボード、レジスタから選択

 ▼表2　CtrlPのコマンドラインのキー操作

キー 動作
CTRL-p CtrlPを起動

 CTRL-cまたは　　 CtrlPを終了

CTRL-d
パスモードを切り替え（絶
対パス／ファイル名のみ）

CTRL-r
検索モード切り替え（正規
表現／あいまい検索）

CTRL-fまたはCTRL-b
機能切り替え（ファイル／
バッファ／MRU）

 ▼表1　CtrlPの基本操作

ESC

Tab

ファイル操作を柔軟にするCtrlP

第 回8

一歩進んだ使い方
のため

のイロハ

138 - Software Design

　CtrlPでは、このようにコマンドに対してマッ
ピングを行います。

除外ファイル

　CtrlPでファイル一覧から特定のファイルを
除外したい場合は、g:ctrlp_custom_ignore

を使用します。リスト1のようにファイル、ディ
レクトリを個別に設定できます。linkには実際
に除外したいシンボリックリンクのパスを記述
します。

ファイル検索ユーザコマンド

　ファイルの一覧を表示する際、CtrlPはデフォ
ルトでVim scriptのglob関数を使っています。
しかし、巨大なディレクトリツリーを扱うには
Vim scriptの機能では若干不利になります。こ
れをVimの機能で実現するためには、あるディ
レクトリ配下のファイルをすべて検索し、ドッ
トファイルや拡張子が .exeのものを除外しなけ
ればいけません。しかしながらこれらは本来、
検索する過程で対象から除外できるはずです。
そこでCtrlPではこのファイル検索機能を、外
部コマンドに任せられるようになっています。
　筆者の場合はファイルを一覧するためだけに
作った自作コマンド files 注2を使っています。次
のように設定します。

let g:ctrlp_user_command = 'files %s'

　ただし、このg:ctrlp_user_commandを使っ
てファイル一覧を得る場合には、前述のg:

ctrlp_custom_ignoreは適用されません。外
部コマンド側で除外ファイルを指定しなければ

端末のサスペンド動作になっているからです。
サスペンドを使わないのであれば .bashrcなどに
次の行を追加しておくと、CtrlPでCTRL-sが使
えるようになります。

stty stop undef

CtrlPのカスタマイズ方法

まずは起動方法

　CtrlPは標準で、ファイル一覧機能にのみマッ
ピングが行われます。ほかの機能にはマッピン
グが行われません。しかし、ファイル一覧と同
じくらいよく使う機能があります。MRU（Most

Recent Used）です。CtrlPは表示する情報を
ファイルにキャッシュすることで高速に一覧を
表示し、ユーザが開きたいファイルへ簡単にア
クセスできるようになっています。筆者もとく
にこの機能はよく使っており、,,というマッピ
ングを割り当てています。

nnoremap ,, :<c-u>CtrlPMRUFiles<cr>

キー 動作
カレントウィンドウで開く

CTRL-t タブで開く
CTRL-v 垂直分割で開く

CTRL-sまたは
CTRL-ENTER

水平分割で開く

CTRL-y
コマンドラインに入力中のファイル
名を開く

CTRL-o
現在の行もしくはマークされている
行のファイルを開く※

※タブ、垂直分割、水平分割、入れ替え、非表示、ユーザ指定
（設定がある場合のみ）から選択

 ▼表3　CtrlPのファイル操作

 ▼リスト1　 CtrlPで、ファイル一覧から特定のファイルを除外

let g:ctrlp_custom_ignore = {
 \ 'dir': '\v(^|[\/])(\.git|\.hg|\.svn|\.settings|target|bin|node_modules)$',
 \ 'file': '\v\.(exe|so|dll|png)$',
 \ 'link': '/path/to/some_bad_symbolic_links',
 \ }

注2） URL https://github.com/mattn/files

Enter

https://github.com/mattn/files

138 - Software Design Jun. 2016 - 139

たとえばマルチバイト文字などを入力しても何
も挿入されません。英語圏の人々にはそれでも
良いのですが、ファイル一覧にマルチバイト文
字が含まれている場合には絞り込みができなく
なります。次の設定を行うことで、キー入力待
ちによる実装に切り替わり、きちんとマルチバ
イト文字が扱えるようになります。

let g:ctrlp_key_loop = 1

マッチャー

　ファイル一覧で何か文字を入力した場合、通
常はあいまい検索で一覧が絞り込まれます。し
かしこの機能はVim scriptの正規表現で実装さ
れているため、大量のファイル名を扱う場合に
はパフォーマンスが悪くなり、また速度を優先
しているためマッチング精度も褒められるほど
ではありません。CtrlPではこの絞り込み機能
（マッチャー）を拡張できるようになっています。
サードパーティからいろいろ提供されています
（表4）。筆者はこの中でもCPSMを愛用してい
ます。ビルドにboostやcmakeが必要で導入の
敷居が若干高いですが、入れるだけの価値はあ
ると思っています。インストール後、次の設定
で有効となります。

ならず、その指定方法はコマンドにより異なり
ます。たとえば filesコマンドであればリスト2

のように設定します。また、すでにctrlp_
custom_ignoreの設定をたくさんしているので
あれば、リスト3のように設定することもでき
ます。
　またag（the silver searcher）を使う場合は、リ
スト4のように設定します。ユーザの中には、
agを使うときはリスト4のようにキャッシュを
無効にして使う人もいるようです。

スクロール

　通常、CtrlPで表示されるファイル一覧では、
CTRL-jとCTRL-kで移動する際に表示範囲外へ
移動できません。次の設定を追加することで、
「パス」を提供するモードのみでスクロールが有
効になります。

let g:ctrlp_path_nolim = 1

日本語入力

　CtrlPのコマンドラインは、実はキーマッピ
ングにより実装されており、可視文字に対しそ
の文字を挿入する関数呼び出しがマッピングさ
れます。つまりこのマッピングがされていない、

 ▼リスト3　�leでの除外ファイル指定（ctrlp_custom_ignoreの設定がすでにされている場合）

let g:ctrlp_custom_ignore = {
 \ 'dir': '\v(^|[\/])(\.git|\.hg|\.svn)$',
 \ 'file': '\v\.(exe|so|dll)$',
 \ 'link': '/path/to/some_bad_symbolic_links',
 \ }

let g:ctrlp_user_command = printf('files -i %s %%s',
 \ shellescape(join(map(['dir', 'file'],
 \ 'substitute(g:ctrlp_custom_ignore[v:val],''\\v'',"","")'), '|')))

 ▼リスト2　�leでの除外ファイル指定

let g:ctrlp_user_command = 'files -i "(^|[\/])(\.git|\.hg|\.svn)$|\.(exe|so|dll)$" %s'

 ▼リスト4　agでの除外ファイル指定

let g:ctrlp_use_caching = 0
let g:ctrlp_user_command = 'ag %s -i --nocolor --nogroup -g ""'

ファイル操作を柔軟にするCtrlP

第 回8

一歩進んだ使い方
のため

のイロハ

140 - Software Design

まま　　　をタイプすると、実際にカレントディ
レクトリが ̃/.vim/pluggedへ移り、ファイル一
覧が更新されます。

MemoListとの連携

　筆者はメモ取りにmarkdown記法を使うよう
にしています。何か記録する必要があると思っ
たときには、VimからMemoList 注3というプラ
グインを使ってメモを記述しています。どんな
状態でも、どんなディレクトリにいてもメモが
書き始められるように、リスト6の設定をして
います。メモを取りたくなったら、\mfをタイ
プします。

CtrlP拡張

　CtrlPはファイルの一覧を選択するためだ
けのプラグインではありません。拡張を作
るためのAPIを公開しており、そのルール
に従った処理を実装すると、CtrlPに表示す
る一覧をプラグイン側から提供でき、かつ
選択した際のアクションにも独自の処理を
実装できます。

ctrlp-launcher

　ctrlp-launcher 注4はVimからいろいろな
ものを起動するためのランチャーです。イ
ンストール後、

Enter
let g:ctrlp_match_func = ｭ
{'match': 'cpsm#CtrlPMatch'}

省略入力

　CtrlPのコマンドラインはVimのコマンドラ
イン（:）と同様に、Vimのコマンドが入力できま
す。このコマンドラインではVimのabbr（省略
入力）と同様の機能が用意されています。誌面の
都合で内容の説明は省略しますが、リスト5を
行ったあと、コマンドラインにcd pを入力する
とcd ~/.vim/pluggedに展開されます。その

名前 特徴 URL

ctrlp-py-matcher Python のみで実装。Python の正規表現を
使ってマッチ https://github.com/FelikZ/ctrlp-py-matcher

ctrlp-cmatcher C言語で書かれたPython拡張。いくぶん高
速 https://github.com/JazzCore/ctrlp-cmatcher

fzf Go言語で書かれた実行モジュール。いくぶ
ん高速 https://github.com/junegunn/fzf

CPSM C言語で書かれたPython拡張。スレッドを
使って多重検索。高速 https://github.com/nixprime/cpsm

 ▼表4　マッチャーの拡張プラグイン

 ▼リスト5　CtrlPでの省略入力

let g:ctrlp_abbrev = {
 \ 'gmode': 't',
 \ 'abbrevs': [
 \ {
 \ 'pattern': '^cd p',
 \ 'expanded': '@cd ~/.vim/plugged',
 \ 'mode': 'pfrz',
 \ },
 \ {
 \ 'pattern': '\(^@.\+\|\\\@<!:.\+\)\@<! ',
 \ 'expanded': '.\{-}',
 \ 'mode': 'pfr',
 \ },
 \ {
 \ 'pattern': '\\\@<!:.\+\zs\\\@<! ',
 \ 'expanded': '\ ',
 \ 'mode': 'pfz',
 \ },
 \]
 \ }

 ▼リスト6　\mfですぐにメモを取れる（mapleaderがデフォル
　　　　トの場合）

nnoremap <leader>mf :<c-u>CtrlP ~/memo<cr>
nnoremap <leader>mc :<c-u>MemoNew<cr> 注3） URL https://github.com/glidenote/memolist.vim

注4） URL https://github.com/mattn/ctrlp-launcher

https://github.com/FelikZ/ctrlp-py-matcher
https://github.com/JazzCore/ctrlp-cmatcher
https://github.com/junegunn/fzf
https://github.com/nixprime/cpsm
https://github.com/glidenote/memolist.vim
https://github.com/mattn/ctrlp-launcher

140 - Software Design Jun. 2016 - 141

Daemonで管理されている音楽ファイルを簡単
に再生できるctrlp-mpc 注6や、GitHubリポジト
リのローカルクローンへ簡単にアクセスできる
ctrlp-ghq 注7などがあります。前述のMemoList

の例のように、ファイルブラウザとして連携す
るだけでも普段使いのVimが便利になります。
アイデアが浮かんだらぜひGitHubで公開してみ
てください。ﾟ

nmap <c-e> <plug>(ctrlp-launcher)

のように設定してからCTRL-eをタイプすると
「--edit-menu--」という行が表示されるので、
　　　で開いたあと、次の書式で設定します。

項目名 [タブ文字] コマンド

　筆者はリスト7のように設定しています。
GIMPやコマンドプロンプト、そのほかVimで
使うユーティリティなどを登録しています。

ctrlp-funky

　ctrlp-funky注5はあらゆるプログラミング言語
の関数をナビゲートするためのCtrlP拡張です。
編集中ソースファイルの関数を一覧表示し、簡
単にジャンプできるようになります。ctagsなど
を使わず独自の関数名抽出処理を行っており、
38種類ものファイル種別をサポートしています。

可能性はたくさんある

　そのほかおもしろいところでは、Music Player

Enter

 ▼リスト7　ctrlp-launcherの設定例

cmd :!start cmd
gimp :!start C:\Program Files\GIMP 2\bin\gimp-2.8.exe
synid :echo synIDattr(synID(line("."), col("."), 1), "name")

 ▼図4　ctrlp-funky

注5） URL https://github.com/tacahiroy/ctrlp-funky
注6） URL https://github.com/lucidstack/ctrlp-mpc.vim
注7） URL https://github.com/mattn/ctrlp-ghq

 今年の頭、「How I Vim」というサイトに注目が集

まりました。

・How I Vim

　http://howivim.com

　インターネット上で有名なVimmerへのインタ

ビュー記事が集まっており、各VimmerのVimの使

い方やお気に入りの設定、プラグインが紹介され

ています。筆者もインタビューの依頼を受け、つ

たない英語ですが記事が掲載されています。日本

人VimmerだとほかにもShougoさん、tyruさんへ

のインタビュー記事が掲載されています。すべて

英語ですが、各VimmerのVimに対する考え方の違

いがわかって、とても参考になります。

有名Vimmerに学ぶ

ファイル操作を柔軟にするCtrlP

第 回8

https://github.com/tacahiroy/ctrlp-funky
https://github.com/lucidstack/ctrlp-mpc.vim
https://github.com/mattn/ctrlp-ghq
http://howivim.com

142 - Software Design

Emacsにおける
シェルコマンド活用

　ども、るびきちです。前回はEmacsでシェル
コマンドを呼び出す基本的なコマンドを紹介し
ました。
　M-x shellやM-x eshellはEmacs内でシェ
ルを動かします。画面指向のプログラムを直接
実行できなかったり、補完や履歴が弱いといっ
た欠点はあるものの、バッファ内でシェルが動
くことにより次の恩恵を受けられます。

①出力を遡
さかのぼ

れる
②消さない限り実行結果が残る
③同時に複数のシェルを実行できる
④実行結果をバッファに貼り付けられる
⑤端末に切り替えなくても済む

　シェルコマンドの実行結果を貼り付けたい場

合は、手始めにバッファ内シェルを使えば良い
でしょう（図1）。M-!（shell-command）はその場
でシェルコマンドを実行し、実行結果を表示し
ます。シェルバッファとは違い、バッファ切り
替えを伴いません（図2）。C-u M-!とすると、実
行結果をバッファに貼り付けます。M-&（async-

shell-command）は、シェルコマンドを実行して
もEmacsの動作が停止しません。実行に時間が
かかるプログラムやユーザ入力を伴うプログラ

 ▼図1　M-x shell

 ▼図2　M-! ifconfig lo

 ▼図3　 M-& vmstat 1で1秒ごとにリソースの状況を
表示

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

シェルコマンドを活用しよう（中編）
　前回に続き、Emacs上で使える基本的なシェルコマンドについてみていきます。ネットワーク系コマンドか
らPythonやRubyの対話環境を起動するコマンド、さらにはコンパイルのためのコマンドからgrepまで、外
部プログラムと連携する幅広いコマンドがEmacsには取り揃えられているのです。

Writer

第26回

http://rubikitch.com/

142 - Software Design Jun. 2016 - 143

M-x run-ruby や M-x inf-ruby（要 inf-ruby

パッケージ）は irbやpryを実行します。これら
もM-x shell同様の操作感覚です。
　M-x manは内部でmanプログラムを実行し、
manpageを開きます。強調文字などがハイライ
トされ、ファイルやほかのmanエントリへのハ
イパーリンクも作成されます（図5）。
　これらは基本的にはプログラムを実行し、場
合によっては後処理をするものの、実行して終
わりというものです。

vc

　vcの各コマンドは、カレントディレクトリで
使われているバージョン管理システムを自動判
別して、適切なプログラムを実行します。
　リポジトリへのコミット、前バージョンとの
差分の閲覧、履歴の閲覧、古いバージョンのファ
イルを開くなどのEmacsコマンドが用意され、
リポジトリに応じたプログラムを内部で実行し
ます。
　vcは、実行するプログラムを適切なインター
フェースによって隠蔽するタイプです。vcの詳
細については、本連載2016年3月号をご覧くだ
さい。

dired

　実はdiredでは、内部で ls -lを実行していま
す（Windowsなどで lsプログラムがインストー
ルされていない場合は、elispによる lsエミュ

ムを実行するときなどに使います（図3）。
　M-|（shell-command-on-region）はregionを標
準入力としてシェルコマンドを実行します（図4）。
C-u M-|とすると、regionを実行結果に置き換
えます。このC-u M-|は、Emacsのコマンドの
能力を超えた処理をシェルコマンドに任せると
きに便利です。
　前回紹介したこれらのコマンドは、どれも
「シェルコマンドを実行して終わり」です。今回
は、用途に特化した標準コマンドを紹介してい
きましょう。

専用Emacsコマンド

ネットワークから対話環境まで！

　シェルコマンドを扱う基本的なEmacsコマン
ドは以上ですが、特定のプログラムに特化した
Emacsコマンドは本当にたくさん存在します。
　たとえば、ネットワーク関係のプログラム
（ifconfig、iwconfig、netstat、arp、
route、ping、nslookupなど）は同名の
Emacsコマンドがあります。これらは
M-&同様に非同期に実行されます。
　M-x nslookupはシェルのように対
話モードで実行されますが、M-x

shell同様すぐに入力できるようにカ
レントバッファが選択されます。
　スクリプト言語の対話モードを実行
するEmacsコマンドがあります。M-x

run-pythonは「python -i」を実行し、

 ▼図4　regionを指定し、M-| sort -n -k2

 ▼図5　上：M-x man cp／下：M-x run-python

第26回 シェルコマンドを活用しよう（中編）

144 - Software Design

ジャンプできます（図6）。エラー
メッセージの出力形式はソフトウェ
アによってまちまちですが、多く
の形式を自動判別してくれます。
　M-x compileを実行すると、コ
ンパイルのためのシェルコマンド
の入力が求められます。デフォル
トでは「make -k 」となっています
が、変数compile-commandを設定
すれば変更できます。
　コンパイルエラーの行にジャン

プするには、*compilation*バッファのエラー行
で　　　を押すか、エラー行にジャンプするコ
マンドを使います。C-x `あるいはM-g M-n

（next-error）で次のエラーにジャンプします。
M-g M-p（previous-error）は、前のエラーにジャ
ンプします。
　これらのコマンドを使えば、わざわざ

*compilation*バッファに移動することなくエ
ラー行に移動できて便利です。ちなみに、next-

error/previous-errorコマンドは、後述するM-x

grep、M-x executable-interpretでも使え
ます。

grep

　多数のファイルの中から特定の文字列や正規
表現を検索するには、昔からgrepが使われてい
ます。
　grepを実行したあと、マッチしたファイルを
開き、その行に移動したいこともしばしばあり
ます。そんなときシェルでgrepを実行しても、
わざわざ手動でファイル名と行番号を入力する
必要があります。ましてや、マッチした行を順
次たどるのはかなり骨が折れます。
　M-x grepはM-x compileと同系列のコマン
ドですので、コンパイルエラーにジャンプする
コマンド（next-error/previous-error）を使って
マッチした行にジャンプできます（図7）。
　grepプログラムにはさまざまな実装が存在す
るので細かいオプションは異なりますが、それ

Enter

レーションが使われます）。これは、diredの画
面が ls -lそっくりなことからも予想がつくこと
でしょう。
　カレントディレクトリのファイルに何がある
のかを知るために、シェルで頻繁に lsとタイプ
する癖がある人もいるとは思いますが、diredを
使えばそれ以上のことができます。シェルバッ
ファにおいては、lsする代わりにC-x d RETあ
るいはC-x C-f RETでdiredを開けばディレク
トリの内容がわかります。あとはご存じのとお
り、現在行が指し示すファイルを開いたり、コ
ピー・移動・削除などの各種ファイル操作やシェ
ルコマンドの実行ができます。また、マークを
使えば複数のファイルに対してコマンドが作用
します。
　diredはシェルコマンド実行結果を基に、次に
続く処理を実現するタイプです。

コンパイルコマンドと
その亜種

コンパイル

　開発中のプログラムをコンパイルするときは
Emacsを使うと便利です。シェルでコンパイル
してコンパイルエラーが起きた場合は、わざわ
ざ手動でそのファイルを開き、該当行に移動す
る必要があります。
　M-x compileを使うと、Emacsの中でコンパ
イル処理が走り、コンパイルエラー行に簡単に

 ▼図6　M-x compileでコンパイルエラー

るびきち流
Emacs超入門

144 - Software Design Jun. 2016 - 145

イル系列コマンドです。M-x compileでもスク
リプトを実行できますが、M-x executable-

interpretはユーザ入力を伴うスクリプトも実
行できます。
　デフォルトのコマンドはカレントバッファの
ファイル名になっていますので、実行属性が付
いていればコマンドライン変更なしに実行でき
ます。M-x executable-set-magicで「#!行」と
実行属性を付けられます。
　M-x executable-interpretでは、コンパ
イルエラーにジャンプするコマンドも使えます。

◆　◆　◆
　前回と2回に渡ってシェルコマンド実行関係
の標準コマンドを紹介しました。次回は、さら
に便利にする外部パッケージを紹介します。
　筆者のサイト「日刊Emacs」は日本語版Emacs

辞典を目指しています。手元でgrep検索できる
よう全文をGitHubに置いています。またEmacs

病院兼メルマガのサービスを運営しています。
Emacsに関すること関しないこと、わかる範囲
でなんでもお答えします。「こんなパッケージ知
らない？」「挙動がおかしいからなんとかして
よ！」はもちろんのこと、自作elispプログラム
の添削もします。集中力を上げるなどのライフ
ハック・マインド系も得意としています。ﾟ
登録はこちら➡ http://www.mag2.com/m/

0001373131.html

はEmacs側がうまく吸収して
くれます。実際M-x grepを実
行したときに出てくるデフォ
ルトのコマンドラインは、ど
のバージョンのgrepが使われ
ているのかを自動判別し、適
切なオプションを用意してく
れます。筆者の環境（Debian

GNU/LinuxでのGNU grep）
では「grep -nH -e」と出ます。
ユーザ側はとくに設定をしな
いでも、すぐにM-x grepを使
えます。
　「-n」オプションはM-x grepを実行するうえ
で必須条件となるもので、出力行に行番号を含
めます。このおかげで、正確に該当行にジャン
プできます。
　「-H」オプションは出力行に必ずファイル名を
含めます。grepは指定されたファイルが1つの
場合はファイル名を出力しないようになってい
るので、このオプションも必要となります。こ
のオプションが存在しない grep実装では、
Emacs側が/dev/null（ヌルデバイス）を付加して
強制的にファイル名も出力させます。
　「-e」オプションのあとでパターンを指定する
のですが、多くの場合このオプションはなくて
もかまいません。ハイフンから始まるパターン
を指定する場合などには必要となります。
　M-x grepで実行できるプログラムはgrepに
限らず、出力形式が「ファイル名 :行番号 :～」で
あれば何でも良いです。たとえば、ソースコー
ドに特化した超高速grepであるag（the silver

searcher）を「ag --nogroup PATTERN」で実行
すれば、実行結果にジャンプできます。grepや
agをパイプで数珠つなぎした絞り込み検索もで
きます。

スクリプト実行

　M-x executable-interpret は Perl や
Rubyなどのスクリプトの実行に特化したコンパ

 ▼図7　M-x grep（GREP_OPTIONSの警告はEmacs 25.1で修正されます）

第26回 シェルコマンドを活用しよう（中編）

http://www.mag2.com/m/0001373131.html

146 - Software Design

文字列

　今回はいよいよ文字列を扱います。文字列。
最も多用されるデータ型でもあり、Swiftを含め、
およそありとあらゆるプログラムも文字列で表
記されています注1。にもかかわらず、筆者は今
までSwiftにおける文字列を扱うのにモジモジ
してきました。それには深いわけがあります。

> Swift ’s String and Character types
provide a fast, Unicode-compliant way to
work with text in your code. -- The Swift
Programming Language

「SwiftのStringおよびCharacter型は、高速で
Unicode準拠したテキスト処理を提供します」。「高
速」はとにかく、「Unicode準拠」というのがなか
なかの難物なのです。なぜ難物なのか。それを
知るためには、コンピュータにおける文字列処
理の歴史を紐とかねばなりません。

A Brief History of
Characters

　文字列＝＝文字の列。前世紀までは、文字列
というものの理解はその程度で間に合っていま
した（表1）。
　0と1という2種類の数値しか根源的に扱え
ない電子計算機（あえてこう書く）において文字
を扱うにあたり、先人たちがやったのは基本的

に次のものでした。

・各文字に番号を振り
・その番号を並べる

　往時のプログラマたちにとって幸いなことに、
当初扱わなければならない文字列は英語のみ。
そして英語というのは必要な文字種がとても少
ない言語でした。アルファベット26文字、大
文字と小文字を区別しても52文字。アラビア

書いて覚える 入門Swift

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

文字列の扱い15第 回

注1） ScratchやPietのように画像として表記するプログラミング言語もないわけではありませんが。

Year Event Comment

1963 EBCDIC 初の文字コード規格

1963 ASCII 最も普及した文字コード規格

1969 JIS X 0201
初の日本語文字コード (カタ
カナのみ)

1978 JIS C 6226 (JIS X 0208) かな漢字を含む文字コード

1982 Shift_JIS

1985 EUC-JP

1991 Unicode 1.0 現在のデファクトスタンダード

1992 UTF-8 拡張ASCIIとしてのUnicode

1993 ISO-2022-JP
電子メールにおける標準日本
語文字コード

1995 Java 1.0 16bit Character

1995 JavaScript 1.0

1996 Unicode 2.0 サロゲートペア標準化

2000 Python 2.0 バイト列 != 文字列

2002 Perl 5.8
Unicodeを言語としてフルサ
ポート

2007 Ruby 1.9

2008 Python 3.0 UCS2事実上の廃止

2010 Unicode 6.0 絵文字追加

2014 Swift 1.4
Version 1.0 からUnicodeをフ
ルサポート

 ▼表1　文字列の扱いの歴史

146 - Software Design Jun. 2016 - 147

文字列の扱い第 回15

数字を加えても62文字。これにスペースやタ
ブや改行などを加えても、7bits＝128種類にら
くらく収まったのです。これが、現在でも使わ
れているASCII。量産されているCPUで扱え
る最も小さなデータ型である1byte＝8bits注2に
そのまま入れても1bitあまります。

2byte文字の誕生と混乱

　文字とは1byteに収まるものであり、それを
並べたものが文字列である。

　そのような時代が長いこと続きました。
　その原則を破ったのが、日本です。カナだけ
でも48文字、しかもカタカナとひらがなと2種
類。これだけでも8bitに収まらないのに、さら
に数千種類の漢字も扱いたいとなると1つの文
字を表現するのに12～13bitsは必要。しかも漠
然と並べるのではなく、ASCIIとの共存も考え
ると1つの文字を表記するのに2bytesは必要
……こうして登場したのがShift-JISであり
EUC-JPであり ISO-2022-JPです。ここで注
目すべきは、各文字に振られた番号はJIS X

0208 という単一の規格なのに、それをどう並
べるかで複数の規格が乱立したことです。それ
ぞれ一長一短あるのですが、そうなってしまっ
た理由は、「最後に正しいものではなく、今す
ぐ使えるものを」という「電子立国日本の現場圧
力」ではなかったかと思われます。インターネッ
トどころかパソコン通信すらまだ一般的ではな
く、データ互換性はせいぜいメーカーがそれぞ
れ自社製品のみ担保されていた時代、まず大事
だったのはパソコン、いやワープロ（もはや死
語？）で入力できて出力できることだったのです。

Unicodeの誕生

　その状況は、ネットの登場で一変します。コ
ンピュータは単独で使用するものから、他のコ

ンピュータ、強いてはそのコンピュータのユー
ザ同士をつなげるものとなったのです。そんな
時代、各国ごとにバラバラの規格を使っていた
のではメーカーはたまったものではありません。
各国ごとに乱立していた「ASCII＋自国語文字
コード」から、世界共通の文字コードへの移行
の機運は高まっていたのです。「世界共通の文
字コード」、それがUnicodeです。
　最初に登場した段階におけるUnicodeは、過
去との互換性はほとんど気にかけていませんで
した。Shift-JISやEUC-JPといったASCII互
換の日本語文字コードが可変長だったのに対し、
1.0段階のUnicodeは16-bit固定長。ここにカ
ナもハングルも日中韓の漢字も全部収める予定
だったのです。そのためには、各国で用いられ
ている文字コードをまとめて割り振るのではな
く、並べ替えが必要となりました。それが（悪
名高き）Han Unificationです。それの何が問題
だったかといえば、文字コード変換。Unicode

以前の日本語文字コードの相互変換は、元にな
る「背番号」が共通だったこともあり単純計算で
OKだったのが、変換表が必要になったのです。

Unicodeの不幸

　その一方で、Unicode陣営も1.0の「ゼロベー
スで文字列を再定義する」やり方がそのままで
はうまく行かないことに気づいてきました。ま
ず、「同じ文字に同じ番号」という原則が破られ
ます。Unicodeコンソーシアムのベンダ自身が、
それまでの文字コードからUnicodeに変換した
あとの逆変換がきちんと成立することを求めた
からです。かくして半角カナも生き残りました。
次に、16bitではとても足りないことに気がつ
きました。それを解決すべく、Surrogate Pair

というものが登場しました。16bitで1文字から、
「文字によっては16bit、2つで1文字」というわ

注2） 厳密にはbyteというのは「あるCPUで扱える最小のデータ型」のことでCPUごとに異なるものですが、現在量産されている
CPUはほぼすべて1byte = 8bitsになっています。ちなみに峻別したい場合、8bitsは1 octetと呼びます。

148 - Software Design

書いて覚える 入門Swift

けで、固定長という原則がここに崩れたのです。
その代償として、Unicodeでは最大(16 + 1) *
2**16 == 1,114,112 文字まで扱えるようにな
りました。そしてASCII互換性も、UTF-8で
解決されました。1文字の長さは1～4bytesの
可変長になる代わりに、ASCIIはこれまでどお
り1byte。ASCIIを前提としていた数多のソフ
トウェア、とくにCコンパイラでもそのまま扱
えます。
　我々にとって不幸だったのは、「使える
Unicode」である2.0が登場する直前に、「インター
ネット爆発」が起こってしまったこと。とくに
JavaとJavaScriptが1文字16bitとしてしまった
のは今もなお尾を引いているのは本誌の読者で
あればご存じでしょう。おかげで絵文字の長さ
はそのままでは2文字になっちゃうとか ...

文字コード統一の奇跡

　Han Unificationのような「理念の押し付け」のあ
とに、Surrogate PairsやUTF-8のような「日

ひよ り み

和見」。
それだけの犠牲を払って、世界をUnicode化するだ
けの価値はあったのでしょうか？
　私自身、Perl 5.8のUnicode化という形でそ
の片棒を担いだ以上、中立の立場とはとても言
えないということをあらか
じめお断りしたうえで言え
ば、その価値は確かにあっ
たと断言します。Unicode

以前の世界、小はワンライ
ナーから大はOSに至るま
で、ソフトウェアには各国
語版がつきものでした。
EmacsにはNemacs、Perl

には JPerl、Mac OS には
漢字Talk……。しかし今
や、世界中で使用されるソ
フトウェアは真の意味で世
界的です。EmacsもPerl

もOS Xも日本語版はもは

や不要。iOSやAndroidにいたっては、その誕
生時点からUnicodeを前提にできています。イ
ンターネットの普及によりTCP/IP以外の通信
プロトコルは事実上滅亡しましたが、それによっ
て世界が画一化したようにはとても思えません。
我々の遺伝子だって、RNA-DNA-タンパク質
というシングルアーキテクチャであることを考
えれば、文字コードのように基礎的なデータ構
造が（およそHan Unificationの混乱を除けば）
統一できたのは奇跡なのではないでしょうか。

Swiftにおける
文字 [列]?

　ずいぶんと前置きが長くなりました。それで
はSwiftの文字を実際に見てみましょう。次の
コードをplaygroundかREPLで実行してみて
ください（図1）。

var str = "Swift"
str += "スウィフト"
str = "\(str)"
let = str
print()

　Swiftスウィフトとprintされたはずです。
たった5行のコードでも、これだけのことがわ

 ▼図1　Swiftにおける文字コードの出力結果

148 - Software Design Jun. 2016 - 149

文字列の扱い第 回15

かります。

・型宣言は不要。リテラルから適切に推論される
・ちなみに型の名前はString。Xcodeなら識

別子をoption+clickすれば確認できる
・文字列リテラルは""で囲まれた内部
・\()で変数展開（interpolation）
・識 別 子（identifier）に ASCII 以 外 の Unicode

を用いることもできる

　もっともこのレベルのサポートは、Perl 5.8

がもう12年以上前に実現していました。Swift

がすごい――熟練プログラマの多くがやりすぎ
ると感じるかも――のはここからです。次のコー
ドをご覧ください。

let me = "だん"
let me2 = "\u{3060}\u{3093}"
let nfd = "\u{305f}\u{3099}\u{3093}"
me == me2
me == nfd

　me == me2がtrueなのは当然としても、me ==
nfdまでもtrueになるのです。なぜ等しいか？
　ひらがなの「だ」一文字と「た」＋濁点が等しいと
Swift（正確にはfunc ==(_:String,_:String)-
>Bool）がみなしているからです。
　文字とは何か？　等しい文字とは何か？　文
字列を文字にバラして見てみましょう。

for c in "\u{305f}\u{3099}\u{3093}".characters {
 print(c, String(c).unicodeScalars.count, ｭ
String(c).utf8.count)
}

　結果は次のとおりになるはずです。

だ 2 6
ん 1 3

　Swiftにおける「文字」=Characterは、1byte

ではもちろんなく、1 code pointですらなく、
1 graphemeなのです。graphemeというのは難

しい言葉ですが、OS Xの辞書によると「書記
素（書き言葉の最小単位）」だそうです。「文字列
の比較はgraphemeをもってせよ」というのは確
かにUnicode Consortiumの文書注3[tr15]にある
のですが、これをきちんと言語レベルで実装し
ているのは筆者の知る限りSwiftだけです。
　これはある意味、1.0 時点でのUnicodeの理
念を実現した格好にもなっているのですが、そ
の後 Unicode が現実に対してずいぶん妥協し
たのは前述のとおりで、実際"ﾀﾞﾝ" == "ダン"、
半角カナの "ﾀﾞﾝ "と全角カナの "ダン "を==で
比較してもfalseとなります。

「Unicode潔癖症」?

　2.2におけるSwiftの「Unicode潔癖症」は、添
字（Subscript）にも見られます。たとえばJava

Scriptでは（ES5以降は正式に）、

"JavaScript"[4] // "S"

という具合に文字列を文字の配列とみなして文
字を取り出すことができますが、

"Swift"[4]

は "t"ではなく（そのままでは）エラーです。だ
からと言って添字を使えないわけではなく、次
のようにすれば似たようなことはできます。

let str = "Swift"
let idx = str.startIndex
str[idx.advancedBy(4)]

　これを利用すれば、extensionを使ってInt
による添字を後付けすることは一応できます。

extension String {
 subscript(idx:Int)->Character {
 return self[self.startIndex.ｭ
advancedBy(idx)]
 }
}
"Swift"[4] // "t"

注3） http://unicode.org/reports/tr15/

http://unicode.org/reports/tr15/

150 - Software Design

書いて覚える 入門Swift

　しかし、デフォルトでそうしようとすればでき
るのに、今のところはそうなっていません。文字
列を文字に分解する際も、わざわざ.characters
というメソッドを経由しています。Swiftに限ら
ずありとあらゆるソフトウェアは理念と現実の狭
間にありますが、Swiftの組込み型の中で、文字
と文字列の扱いは突出して理念が先行しているよ
うに筆者は感じています。

String... the final
frontier?

　前回「Swiftの 'ミステリー'」として、一重引
用符''がSwiftではまだ使われていないことを
指摘しました。このことはSwiftの現在の文字
列の振る舞いに対し、中の人がまだ試行錯誤し
ている証なのかもしれません。実際Swiftの文
字列処理は、C/C++/Objective-Cよりずっと

マ シ と は い え Perlや Rubyは お ろ か、
JavaScriptにも劣るというのが実感です。
Swiftの当初の「檜舞台」がモバイルアプリケー
ション開発であることを考えれば、それでも
Objective-Cしかなかったころに比べればずっ
とマシではあるでしょうし、最悪ややこしい処
理はサーバに丸投げしちゃっても良いとはいえ。
　しかしオープンソース化され、Linuxにも移
植され、サーバサイドでも使われるようになる
ごく近い将来、現状のSwiftの文字列処理の貧
弱さが気がかりです。
　裏を返せば、そこが宝の山という見方もできな
くもありません。Swiftライブラリで一旗上げる
なら、文字列処理を狙うのもよさそうです。ﾟ

Unix/Linuxの使い始めのころ，慣れないコマンドライン上で設定
ファイルを編集する際に使うテキストエディタがVim（Vi）あるいは
Emacsでしょう。
本書はUnix/Linux初学者や、使えるけれど仕事でなかなか活
かし切れていないVim/Emacsユーザを対象に，使い方マニュア
ルとは違う、仕事で実用的に使えるテクニックを集めました。
実務でそれぞれのエディタを長年愛用しているエキスパートユー
ザならではの知恵がつまっているので、気になったものから試して
みれば、二大エディタの魅力が感じられること請け合いです。
VimとEmacsを仕事で積極的に使っていきましょう！

Software Design編集部 編
B5判／200ページ／
綴じ込み付録つき
定価（本体2,480円＋税）
ISBN 978-4-7741-8007-6

・Unix/Linux初学者（Vim/Emacs未経験者）
・VimとEmacsどちらを使ったら良いか悩んでいる方
・使っているけれど仕事でなかなか活かし切れていないと
 感じているVim/Emacsユーザ

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Jun. 2016 - 151

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の割引になります。デジタル版はPCのほかに iPad／ iPhone
にも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

渋谷区 紀伊國屋書店　新宿南店 03-5361-3315 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 書泉ブックタワー 03-5296-0051

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

千代田区 丸善　丸の内本店 03-5288-8881 広島市中区 丸善　広島店 082-504-6210
中央区 八重洲ブックセンター本店 03-3281-1811 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111

 第1特集

［決定版］Docker自由自在
実用期に入ったLinuxコンテナ技術

 第2特集
ネットワーク・システム管理の定石
SNMPの教科書
 短期連載
・クラウド時代のWebサービス負荷試験再入門

2015年12月号

定価（本体1,220円＋税）

 第1特集

はじまっています。ChatOps
導入を決めた7社の成功パターン

 第2特集
手軽さとコード化しやすさが人気！
Ansibleでサーバ構成管理を
省力化
 新連載
・Androidで広がるエンジニアの愉しみ

2016年1月号

定価（本体1,220円＋税）

 第1特集

［最新］MySQLと
PostgreSQL徹底比較
 第2特集

1Gbps超ネットワーク高速化
時代の適切なLANケーブリン
グの教科書
 一般記事
・Android Studioのスタイルで効率アップ！

2016年2月号

定価（本体1,220円＋税）

 第1特集

チーム開発をまわす現場の
アイデア
 第2特集

あなたの知らないCOBOLの
実力
 一般記事
・iPad Proのさきに見えてくるもの
・Webサイトが改ざん！　サイトオーナがとるべき行動
 と注意点

2016年3月号

定価（本体1,220円＋税）

 第1特集
やればできる！　ワンランク上のプログラミング
今すぐ実践できる
良いプログラムの書き方
 第2特集

オブジェクトストレージの教科書
 特別企画
・適切なLANケーブリングの教科書［番外編］
・春の嵐呼ぶ！　DevOps座談会

2016年4月号

定価（本体1,220円＋税）

 第1特集
コード編集の高速化からGitHub連携まで
Vim［実戦］投入
 第2特集
2年ぶりのLTS
安定のUbuntu 16.04の新機能
 巻頭特集
・特別SIMで始めよう！　SORACOMでわかるIoT
 特別付録
・SORACOM Air SD Special Version

2016年5月号

定価（本体1,420円＋税）

Webで

購入 ！
家でも

外出先でも

http://www.fujisan.co.jp/product/1535/
http://www.fujisan.co.jp/product/1535/
http://www.e-hon.ne.jp
http://www.fujisan.co.jp/sd
http://www.zasshi-online.com/

152 - Software Design

終了ステータス 状態

0 OK

1 WARNING

2 CRITICAL

0,1,2以外 UNKNOWN

 ▼表1　チェックプラグインの仕様

ロセスの死活監視、ポート監視、接続監視、
URLのステータス監視などがチェック監視に
適しています。また、数値を取るにしても継続
的に可視化する必要がないものに関しても、
チェック監視で十分な場合があるでしょう。

　少しおさらいになりますが、チェックプラグ
インの仕様についてあらためて説明します。
　多くの監視システムで使われている、チェッ
ク監視プラグインのための共通仕様があります。
それは、プログラムの終了コードで、監視対象
の状態を表現するものです。これはPOSIXで、
終了コードが0だと正常終了、それ以外だと異
常終了であるという仕様を拡張したものです。
終了コードと状態の対応は表1のとおりです。
　プラグイン実行時の標準出力は、補助的なメッ
セージとして利用されます。このようにシンプル
な仕様であり、bashやPerl、Python、Rubyなど
あらゆる言語で記述できます。このチェック監視
プラグインの共通仕様はMackerelのチェック監
視だけではなく、次のソフトウェアでも採用され
ています。

・�Nagios NRPE（Nagios Remote Plugin Executor）
・Sensu check plugin
・Consul script check

　つまり、NagiosやSensuのチェックプラグ

チェックプラグインの仕様

Mackerelではじめる
サーバ管理

Mackerelではメトリックの監視以外にも、単にOKかNGかでアラートを出すような
「チェック監視」も行えます。前回のカスタムメトリックプラグインの書き方に続いて、
今回はそのチェック監視を行うためのプラグインを自作する方法を解説します。良い
プラグインが完成したら、ほかのMackerelユーザと共有しましょう！

Writer 松木 雅幸 （まつき まさゆき） ㈱はてな
Twitter @songmu

　前回は、Mackerelのプラグインの仕様と、
カスタムメトリックプラグインの書き方につい
て説明しました。今回はチェックプラグインの
仕様と作り方について説明していきます。

チェックプラグイン
とは

カスタムメトリックプラグインとの
使い分け

　前回紹介したカスタムメトリックプラグイン
とチェックプラグインはどのように使い分けれ
ば良いのでしょうか。
　継続的にメトリックを取得し、閾

しきいち

値設定を行っ
て監視したい場合には「メトリック監視」が適し
ており、任意の値を投稿したい、グラフ定義を
指定したいといった場合、カスタムメトリック
プラグインを使います。
　逆に、定期的に単なるOK/NGのチェックだ
けをしたいものに関しては「チェック監視」が適
しており、これにはチェックプラグインを使い
ます。具体的にはログのキーワード監視や、プ

第16回 mackerel-agentの
チェックプラグインを書いてみよう

152 - Software Design Jun. 2016 - 153

インを、そのままMackerelのチェックプラグ
インとして利用できるということです。これは
既存の監視システムからMackerelに監視設定
を移行したいといったときに、非常に便利です。

　たとえば、サイコロのように1～6のランダムな
数値を返し、その数値が1～3であればOK、4か
5であればWARNING、6の場合はCRITICAL、
というチェックプラグインは次のように書けます。

#!/bin/sh
dice=$((($RANDOM%6) + 1))
echo "Roll a dice and get a $dice!"
case "$dice" in
 [1-3]) exit 0;;
 [45]) exit 1;;
 "6") exit 2;;
esac

　実際にこれをdice.shという名前で保存して、
実行権限を付けて実行してみると次のような出
力が表示されます。

% ./dice.sh
Roll a dice and get a 3!

　この場合、3の目が出ています。終了コード
がどうなっているかecho $?として確かめてみ
ましょう。

% echo $?
0

　1～3は正常終了ですので、終了コードは0と
なっています。ちゃんと動いてそうです。では、
dice.shを6が出るまで何度か実行し、その後終
了コードを確かめてみましょう。

% ./dice.sh
Roll a dice and get a 6!
% echo $?
2

　終了コードはちゃんと2（CRITICAL状態）に

シェルスクリプトによる例

なっていました。

公式のヘルパーライブラリを用いた
カスタムメトリックプラグインの作成

　さて、いよいよ実際のプラグインの作成方法
を解説していきます。チェックプラグインの作
成には、github.com/mackerelio/checkers注1と
いうユーティリティライブラリを利用すると便
利です。公式プラグインはすべてこのライブラ
リを利用して作成されています。また、公式の
チェックプラグインでは、コマンドライン引数
のパースに github.com/jessevdk/go-flags注2を
統一的に利用しています。

❶package宣言とimport文
❷コマンドライン引数用のstructの定義
❸main()関数の定義
❹run()関数の実装

　ここでは、check-uptime注3を例にとってそ
れぞれを見ていくことにしましょう。

❶package宣言とimport文（リスト1）

　そのまま実行コマンドとなるのでpackageは
mainで宣言します。そのほか必要なライブラ
リのimportを行います。

チェックプラグインのソースコード構成

package main

import (
 "fmt"
 "os"
 "time"

 "github.com/jessevdk/go-flags"
 "github.com/mackerelio/checkers"
 "github.com/mackerelio/golib/uptime"
)

 ▼リスト1　package宣言とimport文

第16 回
mackerel-agentのチェックプラグインを書いてみよう

注1） URL https://github.com/mackerelio/checkers
注2） URL https://github.com/jessevdk/go-flags
注3） URL https://github.com/mackerelio/go-check-plugins/tree/master/check-uptime

https://github.com/mackerelio/checkers
https://github.com/jessevdk/go-flags
https://github.com/mackerelio/go-check-plugins/tree/master/check-uptime

154 - Software Design

 Mackerelではじめるサーバ管理

❷�コマンドライン引数用のstructの定義（リス

ト2）

　プラグインが受け取るコマンドライン引数の
設定を行います。この設定方法は、github.

com/jessevdk/go-flagsの仕様に準じますので、
詳しくは、go-flagsのドキュメント注4をご覧く
ださい。
　コマンドライン引数では、閾値の設定やミド
ルウェアのポートなどを指定します。check-

uptimeの場合、uptimeが一定の時間を下回っ
ていた場合、上回っていた場合それぞれのため
に、warn-under、critical-under、warn-
over、critical-overという4つのオプション
の設定を可能にしています。

❸main()関数の定義（リスト3）

　main()関数はコマンドのエントリポイント
ですが、3行だけと非常にシンプルです。
run()関数により、*checkers.Checkerオブ
ジェクトを受け取り、それにNameの設定を行っ
て終了しています。Nameは、プラグイ
ン実行時に先頭に表示される単語を統
一的に指定するためのものです。たと
えば、check-uptimeを実行すると図1

のような出力が表示されますが、この出力の先
頭のUptimeがそれにあたります。

❹run()関数の実装（リスト4）

　check-uptimeの処理は、ほとんどこのrun()関
数の中で実装されています。run()関数のシグ

ネチャはfunc run(args []string) *checkers.
Checkerとなっています。これは、コマンドライ
ン引数を受け取り、監視結果オブジェクトである
*checkers.Checkerを返すという処理になります。
　コメントで補足していますが、このrun()関
数も、おおまかに次の4つの部分に分けられます。

（1）コマンドライン引数の処理
（2）uptimeの取得
（3）閾値比較と終了ステータスの決定
（4）出力メッセージの組み立て

 ●コマンドライン引数の処理
　コマンドライン引数の処理では、flags.
ParseArgs()によりコマンドライン引数の内容
がoptにマッピングされます。

 ● uptimeの取得
　github.com/mackerelio/golib/uptimeパッケー
ジのuptime.Get()を利用してuptimeを取得し

func main() {
 ckr := run(os.Args[1:])
 ckr.Name = "Uptime"
 ckr.Exit()
}

 ▼リスト3　main()関数の定義

% check-uptime
Uptime OK: 0 day(s) 3 hour(s) 17 minute(s) (11877 second(s))

 ▼図1　check-uptimeを実行

var opts struct {
 WarnUnder *float64 `short:"w" long:"warn-under" value-name:"N" description:"Trigger a warningｭ
 if under the seconds"`
 CritUnder *float64 `short:"c" long:"critical-under" value-name:"N" description:"Trigger a critialｭ
 if under the seconds"`
 WarnOver *float64 `short:"W" long:"warn-over" value-name:"N" description:"Trigger a warningｭ
 if over the seconds"`
 CritOver *float64 `short:"C" long:"critical-over" value-name:"N" description:"Trigger a criticalｭ
 if over the seconds"`
}

 ▼リスト2　コマンドライン引数用のstructの定義

注4） URL https://godoc.org/github.com/jessevdk/go-flags

https://godoc.org/github.com/jessevdk/go-flags

154 - Software Design Jun. 2016 - 155

ています。

 ●閾値比較と終了ステータスの決定
　opt内の閾値と比較しながら、終了ステータ
スの決定を行います。終了ステータスには、
checkers.OK/WARNING/CRITICAL/UNKNOWN 定
数を用います。

 ●出力メッセージの組み立て
　出力メッセージを組み立て、最後に*checkers.
Checkerオブジェクトを返しています。ここでは

return checkers.NewChecker(checkSt, msg)の
ようにして、returnしていますが、終了ステータ
スが決まっている場合、return checkers.
Critical("message")と、簡潔に書ける機能も
checkersには備わっているので、状況に応じて使

い分けてください。
　これで一通り、チェックプラグインの作成方
法を説明しました。みなさんもぜひチャレンジ
してみてください。

プラグインをより
洗練させる

　これまでで、Go言語でのカスタムメトリック
プラグインとチェックプラグインそれぞれの書き
方についてざっと説明しましたが、よりしっかり
したプラグインを書くための方法を最後に説明し
ます。具体的には、テストの書き方と、公式のプ
ラグイン集へのcontribute方法についてです。

　Go言語でのテストの作法に従って、plug

テストを書く

func run(args []string) *checkers.Checker {
 _, err := flags.ParseArgs(&opts, args) //（1）コマンドライン引数の処理
 if err != nil {
 os.Exit(1)
 }
 ut, err := uptime.Get() //（2）uptimeの取得
 if err != nil {
 return checkers.Unknown(fmt.Sprintf("Faild to fetch uptime metrics: %s", err))
 }

 //（3）閾値の比較と終了ステータスの決定
 checkSt := checkers.OK
 if opts.WarnUnder != nil && *opts.WarnUnder > ut {
 checkSt = checkers.WARNING
 }
 if opts.WarnOver != nil && *opts.WarnOver < ut {
 checkSt = checkers.WARNING
 }
 if opts.CritUnder != nil && *opts.CritUnder > ut {
 checkSt = checkers.CRITICAL
 }
 if opts.CritOver != nil && *opts.CritOver < ut {
 checkSt = checkers.CRITICAL
}

 //（4）出力メッセージの組み立て
 dur := time.Duration(ut * float64(time.Second))
 hours := int64(dur.Hours())
 days := hours / 24
 hours = hours % 24
 mins := int64(dur.Minutes()) % 60
 msg := fmt.Sprintf("%d day(s) %d hour(s) %d minute(s) (%d second(s))\n", days, hours, mins, int64ｭ
(dur.Seconds()))
 return checkers.NewChecker(checkSt, msg)
}

 ▼リスト4　run()関数の実装

第16 回
mackerel-agentのチェックプラグインを書いてみよう

156 - Software Design

 Mackerelではじめるサーバ管理

inname_test.goなどのようなファイル内に
テストを書くと良いでしょう。標準の
testingパッケージだけでかまいませんが、
github.com/stretchr/testify注5などを補助
的に使っても良いと思います。
　Mackerelのプラグインは、コマンドを実行
するなどして外部から値を取得することが多い
ため、テストが書きづらい場合があります。
　そういった場合は、コマンド実行処理とパー
ス処理を分けて、パース処理のテストを書くの
が定石です。つまり、コマンド実行処理が文字
列を返し、その文字列をパース処理に受け渡す
ようにすれば良いのです。具体的にはリスト5
のような形です（エラー処理は簡単のために省
略してあります）。
　このようにして、parseOut()のテストをしっ
かり書くと良いでしょう。環境やミドルウェア
のバージョンによって、出力が異なる場合もあ
るので、それを留意してテストを充実させられ
るとなお良いです。テストの書き方は、ほかの
公式プラグインのテストも参考にしてみてくだ
さい。

　便利なプラグインができたら、ぜひ公式プラ
グイン集にpull requestを送ってください。そ
のためのガイドラインを説明します。独自にプ
ラグインを作成する場合でも、このガイドライ
ンに沿っておくと良いでしょう。

 ● forkして開発する
　カスタムメトリックプラグインであれば、
https://github.com/mackerelio/mackerel-agent-

plugins、チェックプラグインであれば、https://

github.com/mackerelio/go-check-pluginsをそれ
ぞれforkしてください。
　作りたいプラグインに応じて、カスタムメト
リックプラグインの場合はmackerel-plugin-*、

公式プラグイン集に
contributeするために

チェックプラグインの場合はcheck-*というディ
レクトリを作り、その中でプラグインの開発を
行ってください。

 ●テストと構文チェック
　クオリティ担保のために最低限のテストを書
いてください。また、gofmtによるコードフォー
マットと、go vet、golintによる構文チェック
を行うようにしてください。構文チェックは、
それぞれのリポジトリのCIでテストされるよ
うになっており、エラーがある場合はマージが
できないようになっています。

 ● READMEを書く
　README.mdをプラグインディレクトリに
配置してください。README.mdのフォーマッ
トは自由ですが、DescriptionとUsageは含む
ようにしてください。ほかのプラグインの
README.mdを参考にするのもお勧めです。
　これでプラグインの体裁は整ったので、あと
は、pull requestを送ってみてください。お待
ちしています。

　前回と今回でプラグインの書き方を説明しま
した。最初は複雑に思えるかもしれませんが、
慣れてくると非常に簡単です。ぜひ、自分でプ
ラグインを書いてみて、便利な使い方をどんど
ん共有してください。ﾟ

out, _ := exec.Command("/path/to/cmd", args...).Output()
result := parseOut(string(out))

 ▼リスト5　コマンド実行処理とパース処理を分ける

おわりに

注5） URL https://github.com/stretchr/testify

https://github.com/mackerelio/mackerel-agent-plugins
https://github.com/mackerelio/mackerel-agent-plugins
https://github.com/mackerelio/go-check-plugins
https://github.com/mackerelio/go-check-plugins
https://github.com/stretchr/testify

157 - Software Design Jun. 2016 - 157

Python
チュートリアル
第3版

　Pythonは汎用のプログラミング言語ながら、データサ
イエンスに適した言語ということで近年注目されている。
その理由としては、データ分析ツール「pandas」、ディー
プラーニングのためのライブラリ「Chainer」といった外部
機能が充実している点が挙げられる。またスクリプト言語
なので、「アイデアをすぐに実現できる」「データ分析のタス
クに集中できる」という利点も影響しているという。本書
はチュートリアルと銘打っているだけあって、言語仕様と
基本的な文法といった初歩の初歩を解説している。最初か
ら最後まで、書かれているコードを実行しながら読み通す
ことで、基礎を十分にカバーできるだろう。データ分析に
Pythonを使いたいと思っている人も、まずは基礎を固め
るために、この1冊を読破することをお勧めする。

Guido van Rossum 著／鴨澤
眞夫 訳
A5判／256ページ
1,800 円＋税
オライリー・ジャパン
ISBN＝978-4-87311-753-9

基礎
Visual Basic
2015

　Visual Studio Community 2015上で、Visual Basic
を使い、GUIの「Windowsデスクトップアプリ」を作るため
の方法を解説した入門書である。Visual Studioのインス
トールを行い、コントロールの配置、プロパティの設定、
イベントハンドラーの作成という開発の大きな流れを説明
したあとは、Visual Basicの言語仕様・文法についての解
説が続く。
　Windows 10が登場し、Windows Phoneがメーカーか
ら続々と発表されたことで、その上で動く「ユニバーサル
Windowsアプリ」は今後大いに注目されるだろう。本書に
はユニバーサルアプリ開発についての記載はないが、それ
に応用できるVisual Basicの基礎部分の習得には役立つ
はずだ。

羽山 博 著
B5変型判／416ページ
3,200円＋税
インプレス
ISBN＝978-4-8443-8020-7

ドキュメント
作成システム
構築ガイド

　作成した技術文書が読みにくいと、エンジニアがせっか
く制作した成果物の使用方法がわからなかったり、サポー
ト対応が増えたりしてしまう。わかりやすい技術文書を作
成するスキルは今やエンジニアに必須と言える。そこで本
書では、ソフトウェア開発で取り入れられている技法を用
いてドキュメント作成システムを構築する。Gitを用いた
バージョン管理、GitHubによる共同編集、RedPenによる
品質チェック、CIツールによる継続的改善など、エンジニ
アが普段使用しているツールを本書にならって利用すれ
ば、 技 術 文 書 の 品 質 は 上 が る だ ろ う。 応 用 と し て
Asciidoctorによるドキュメントのスタイル調整について
も解説している。技術文書を作成する際にはぜひこの書籍
を参考にしてみてほしい。

伊藤 敬彦、吉村 孝広 著
A5判／208ページ
2,480円＋税
技術評論社
ISBN＝978-4-7741-8036-6

ブラウザハック

　本書は、Webブラウザをハッキングし攻撃に利用する方
法を解説する。攻撃とはつまり、他者のブラウザに任意の
コードを送りこみ、実行させる手段のこと。標的となる人
物に、コードを埋め込んだWebサイトを開かせる手法が一
般的なようだ。そのためには、標的者が閲覧しそうなサイ
トにコードを埋め込む、偽サイトを作りフィッシングで誘
導するなどが挙げられる。偽サイトがばれないように、URL
を難読化しよう、QRコードで誘導するのも効果的……。そ
んな調子で、本格的な攻撃手法（セッションを奪い他者にな
りすます、証明書を改ざんするなど）を次々に扱う。もちろ
ん本書の目的は、ブラウザのリスクを理解し、セキュリ
ティに活かすこと。理論でしか学んだことのない攻撃手法
を、実際のコードレベルで理解するのに役立つ。

Wade Alcorn、Christian
Frichot、Michele Orru 著／
園田 道夫、はせがわようすけ、
西村 宗晃 監修／株式会社プロ
システムエルオーシー 訳
B5変型判／496ページ
4,600円＋税
翔泳社
ISBN＝978-4-7981-4343-9

158 - Software Design

　前回の本連載では、Sphinxの国際化機能を
使ってドキュメント翻訳を行うメリットと手順
を紹介しました。今回は、翻訳を複数人で行う
ための環境の作り方と、その手順を自動化する
方法を紹介します。
　Sphinxの国際化機能を使えば、gettextのメッ
セージカタログ形式（.po）で翻訳できます。この
しくみを使うことで、複数の言語に翻訳しやす
く、原文の更新への追従が簡単になります。そ
のため、翻訳しているドキュメントの翻訳済み
文章の維持や、新たに追加された部分の翻訳が
しやすくなります。また、支援ツールsphinx-
intlによってgettextの煩雑な作業からも解放

「みんなで翻訳」に
必要なこと

され、ドキュメントの翻訳に集中できます。
　前回は、次の手順を紹介しました（図1）。

①�make gettextコマンドで元ドキュメントか
ら.potファイルを生成

②�sphinx-intl updateコマンドで.potファイ
ルから日本語用に.poファイルを生成

③ .poファイルを編集して翻訳
④�make html SPHINXOPTS=-D language=ja
コマンドで言語を指定してHTMLをビルド

　上記の手順で煩雑な作業はなくなります。し
かし、翻訳そのものにかかる時間は短くなりま
せん。また、一度翻訳が終わっても原文の更新
は続いていきます。このようなドキュメントの
翻訳を長期間維持し、最新の翻訳を提供し続け
るには、ほかの人の協力が必要になることも多

いでしょう。
　しかし、いざ「みんなで
翻訳しよう！」と思って複
数人で翻訳する方法を考
え始めると、ファイルの
受け渡しや分担をスムー
ズに行うのが意外と難し
いことに気がつきます。
　ファイルの受け渡し方
法としてまず思いつくの
は、.poファイルをメール
などで渡して翻訳しても
らう方法です。一見わか
りやすい方法に思えます

Sphinxで始める
 ドキュメント作成術

ドキュメント翻訳フローの自動化第15回

清水川 貴之 SHIMIZUKAWA Takayuki　 Twitter @shimizukawa

Sphinxで始める
 ドキュメント作成術

元ドキュメント

ドキュメント作者

執筆する

アップロードする

①make gettext

②sphinx-intl

④make html

メッセージカタログ
テンプレート

メッセージ
カタログ

③翻訳する

.rst / .md .pot

.po

.html
翻訳者

翻訳者

翻訳者

翻訳者

clone

翻訳者
翻訳者

 ▼図1　Sphinxでの翻訳に必要な手順

158 - Software Design Jun. 2016 - 159

が、大きな単位での依頼となるため、お願いし
づらかったり、協力しづらいという問題があり
ます。また、進捗の共有をリアルタイムに行え
ないため、作業範囲の行き違いなどの問題が起
きやすい方法です。
　では、バージョン管理ツールのGitを使う方
法はどうでしょうか。Gitはソースコードの管
理ツールとしてとても優秀ですが、誰もがすぐ
に使える簡単なツールではありません。みんな
にGitの操作を覚えてもらったとしても、編集
個所がコンフリクト（競合）したらマージが必要
ですし、間違えてほかの人の翻訳を上書きして
しまうこともあります。Dropboxなどのファイ
ル共有サービスは比較的わかりやすいツールで
しょう。競合や上書きの問題はまだ残りますが、
始めやすいのが良いところです。
　ファイルの受け渡し以外にも課題があります。
ドキュメントに翻訳を反映して確認するには、
Sphinxのビルド環境を用意する必要があります。
しかし、make htmlを実行してHTML出力をビ
ルドするには、PythonやSphinxをインストー
ルしなければなりません。翻訳を分担している
みんなが環境を整えるのは「簡単」とは言えない
でしょう。
　環境を整えるためにツールのインストール方
法や使い方、手順などをどこかにまとめておく
と負担が少なくなります。しかし、翻訳を始め
るまでの準備作業が多いほど、協力しようとい
う気持ちはしぼんでしまいます。多くの人に気
軽に協力してもらうためには、必要な事前準備
は最小限にして、翻訳だけに集中できる環境が
あると良いでしょう。
　そこで、多人数で翻訳を進めるためのサービ
スとして、Transifex注1を紹介します。

　TransifexはSphinxの公式ドキュメントの翻

注1） https://www.transifex.com/

翻訳支援サービス
Transifex

訳注2でも使用されている翻訳支援サービスです。
Sphinx以外にも、Python公式ドキュメント注3

や、Django公式ドキュメント注4の翻訳に使用さ
れています。
　Sphinx公式ドキュメントの翻訳でTransifex

を利用したのは次のメリットがあったからです。

・サービス提供されているので翻訳者がすぐに
参加できる

・複数の翻訳者が同時に翻訳する前提で作られ
ているので、トラブルが起こりづらい

・API／クライアントツールが提供されていて、
メッセージカタログのアップロードとダウン
ロードができる

・オープンソースプロジェクトの翻訳には無料
で利用できる

・翻訳支援機能が充実している

　一般的な翻訳支援機能について少し詳しく説
明します。翻訳支援は大きく2つの機能に分け
られます。1つはGoogle Translateなどの機械
翻訳です。もう 1つはTransifexなどのコン
ピュータ翻訳支援（CAT：Computer Assisted

Translation）です。CATツールの代表的な機能
に翻訳メモリ（Translation Memory）と用語集が
あります。
　翻訳メモリは、すでに翻訳された文章を記憶
しておいて、似たような原文があれば提示して
くれます（図2）。この機能によって、似たよう
な文章を何度も翻訳する労力をかけなくてよく
なります。さらに、複数人で作業しても翻訳の
ゆれが少なくなり、文章全体の一貫性や品質が
向上します。
　また、gettextでは1文字変更しただけでも既
存の翻訳文には fuzzyフラグが立ちSphinxにお
いて無効扱いとなりますが、Transifexでは過去
の翻訳文を提示し、どこに差分があるのかハイ
ライト表示してくれます。そのため、翻訳しな

注2） https://www.transifex.com/sphinx-doc/sphinx-doc-1_4/

注3） https://www.transifex.com/python-doc-ja/public/

注4） https://www.transifex.com/django/django/

ドキュメント翻訳フローの自動化 第15回

https://www.transifex.com/
https://www.transifex.com/python-doc-ja/public/
https://www.transifex.com/sphinx-doc/sphinx-doc-1_4/
https://www.transifex.com/django/django/

160 - Software Design

Sphinxで始める
 ドキュメント作成術

 ▼図2　翻訳メモリからの提案（似ているけど少し異なる文章）

CATツール
　世の中にはさまざまなCATツールがあります。
ローカル環境にインストールするもの、OSSで公
開されておりサーバを自分で立てて利用するもの、
サービス提供されていてすぐに使えるもの、扱え
るファイル形式が豊富なもの、有料なもの、無料
なもの、など特徴もさまざまです。
　Transifex以外にもよく使われるCATツールを表

Aに挙げます。なお、Sphinxと連携するには
gettextのメッセージカタログ形式を扱える必要が
あります。
　また、ツールや翻訳の一般的な話題について紹
介しているサイト「http://localization-guide.
readthedocs.org/」（英語）があります。こちらも
参考にしてみてください。

COLUMN

名称 ツールの形態・ライセンス・サポートする形式など

OmegaT
Javaで実装されたデスクトップアプリケーション。GPLライセンスで提供されている。ファ
イルの入出力はgettextやHTMLなど非常に多くの形式をサポートしている。
http://www.omegat.org/

Pootle
Pythonで実装されたサーバアプリケーション。GPLライセンスで提供されている。ファイ
ルの入出力はgettextやXLIFFなど多くの形式をサポートしている。
http://pootle.translatehouse.org/

Wordfast
デスクトップアプリケーション。Word、Excel、PowerPoint、などのMicrosoft製品のファ
イルを扱える。gettextフォーマットも変換ツールを使って扱える。
http://www.wordfast.com/

Trados プロ向けの有償ツール。高い品質で効率的に翻訳を進めることができる。
http://www.sdl.com/jp/

 ▼表A　Transifex以外のCATツール

 ▼図3　翻訳メモリからの提案。単語を1つ変更した文章

原文が更新されたので、翻訳した
文章が無効化されている

以前の翻訳文章 差分表示ボタンで、
差分が表示される

http://www.omegat.org/
http://pootle.translatehouse.org/
http://www.wordfast.com/
http://www.sdl.com/jp/
http://localization-guide.readthedocs.org/

160 - Software Design Jun. 2016 - 161

おす個所を見つけるのに時間をかけずに済みま
す（図3）。
　それでは、Transifexを使ってどのように翻訳
を進めていくのか見ていきましょう。

SphinxとTransifexを
連携する

　Transifexはメッセージカタログ形式のファイ
ルを、TransifexのWebページやAPIを通じて
アップロード、ダウンロードできます。また、
公式のコマンドラインツール transifex-
client注5を使えば複数ファイルのアップロー
ド、ダウンロードを手軽に行えます。
　transifex-clientのインストールは次のように
行います。

　これで txコマンドが使用でき
るようになります注6。txコマンド
では、.potファイルをTransifex

にアップロードするtx push -s
コマンドと、指定した言語の .po

ファイルをTransifexからダウン
ロードするtx pull -l jaコマ
ンドの2つをおもに利用します。
　Sphinxの国際化機能と txコマ
ンドを組み合わせると、手順は

注5） http://docs.transifex.com/client/

注6） Windowsでは、Pythonの Scripts
ディレクトリにある txを「python
Path¥To¥Scripts¥tx」のように実行す
る必要があります。

$ pip install transifex-client

図4、5のようになります。
　この一連のコマンドを自動的に実行すること
で、翻訳作業以外の手順を自動化できます。自
動化を実現するにはCI（継続的インテグレーショ
ン）環境の利用が有効です。自前でサーバを用意
しJenkins注7などで定期的に実行する方法や、
Drone.io注8やTravis CI注9などのサービスを利用
する方法などがあります。
　Sphinx-users.jpでは、Drone.ioを使用して
Sphinx公式ドキュメントの日本語訳を自動ビル
ドしています注10。また、筆者がPyCon JP 2015

で発表した資料注11でも自動化の例を紹介してい

注7） https://jenkins.io/

注8） https://drone.io/

注9） https://travis-ci.org/

注10） https://drone.io/bitbucket.org/shimizukawa/sphinx-
doc14/admin

注11） http://www.slideshare.net/shimizukawa/sphinx-
53764167

ドキュメント翻訳フローの自動化 第15回

元ドキュメント

❶make gettext
❷sphinx-intl

❸transifex-client

❺sphinx-intl
❻transifex-client

Transifex

自動反映

❼make html

メッセージカタログ
テンプレート

メッセージカタログ

❹翻訳

.rst / .md .pot

.pot

.po

.po

.html

 ▼図4　SphinxとTransifexを連携して翻訳する手順（図解）

▼前準備
・sphinx-intl create-transifexrcでtransifexの接続設定を行う
・sphinx-intl create-txconfigでtransifexのプロジェクト設定を行う

▼手順（番号は図4中の番号を指す）
❶ make gettextで元ドキュメントから.potファイルを生成
❷ sphinx-intl update-txconfig-resourcesでTransifexと連携するファイル一覧を設定
❸ tx push -sで.potファイル群をTransifexにアップロード
❹ TransifexのWebコンソールでメッセージを翻訳
❺ ❷と同じコマンドで連携ファイル一覧を更新
❻ tx pull -l jaで日本語に翻訳した.poファイル群をダウンロード
❼ make html SPHINXOPTS=-D language=jaで翻訳したドキュメントのHTMLをビルド

 ▼図5　SphinxとTransifexを連携して翻訳する手順

http://docs.transifex.com/client/
https://jenkins.io/
https://drone.io/
https://travis-ci.org/
https://drone.io/bitbucket.org/shimizukawa/sphinx-doc14/admin
http://www.slideshare.net/shimizukawa/sphinx-53764167

162 - Software Design

ますので、参考にしてみてください。

翻訳に参加する

　翻訳者は、Transifexにホスティングされてい
るメッセージカタログをWeb画面上で翻訳しま
す。このとき必要になるのは、インターネット
接続とブラウザ、Transifexのアカウントです。
手元のコンピュータにソフトウェアをインストー
ルする必要はありませんし、メッセージカタロ
グのダウンロードやアップロード、ドキュメン
ト原文の更新や、翻訳の競合についても考える
必要はありません。
　Transifexでの翻訳は図6のようにWebコン
ソールで行います。翻訳者は、図6の（1）～（3）
の手順で翻訳を進めていきます。

（1）メッセージ一覧から翻訳対象のメッセージ
を選択し、

（2）原文フォームに表示された内容を読み、
（3）翻訳文フォームに入力し、保存ボタンで保
存する

　これを繰り返します。Transifexの場合、外部
サービスと連携することでこのフォーム上で機

械翻訳もできます。機械翻訳した結果をそのま
ま使うと、おかしな日本語になってしまうこと
がほとんどですが、翻訳作業の助けになること
もあります。メッセージによってはほかの翻訳
者や翻訳メモリからの提案が表示されるので、
内容を確認して使用するのも良いでしょう。
　Transifexでは、翻訳がどのくらい進んでいる
かが一覧で表示されます（図7）。最終目標はこ
の達成率を100％にすることですが、100％にな
れば翻訳に誤りがあっても良いというわけでも
ありません。オープンソースのドキュメントを
翻訳していておかしな翻訳文を見つけたなら、
遠慮することなく修正していきましょう。
　もし間違った翻訳文を採用しないようにチェッ
クしたいのであれば、Transifexのレビュー機能
が使えます。Transifexは .poファイルのダウン
ロード時に、未レビューのメッセージを含める
かどうかを選択できます。レビュー担当者を決
めて、すべてのメッセージをレビューすること
で間違った翻訳文が採用されないようにできま
す。翻訳の進捗率（図7）には、レビュー済み率
も濃い色で表示されています。
　ちなみに、Sphinx公式ドキュメントの翻訳で

Sphinxで始める
 ドキュメント作成術

Transifexの翻訳画面

並列作業

翻訳者

翻訳済み

未翻訳

原文
（.pot）

翻訳文
（.po）

（1）

ほかの翻訳者や
翻訳メモリ（TM）からの
レコメンド

（3）
翻訳文（reST文法を
壊さないように！）

（2）
原文

 ▼図6　TransifexのWebコンソールでの翻訳作業

162 - Software Design Jun. 2016 - 163

は、未レビューを含むすべての翻訳文をそのま
ま採用しています。ときどき間違っている翻訳
文がそのまま公開されていますが、レビューの
ためのコストをかけるよりも、気づいた人が直
せば良い、という運用にしています。
　なお、Sphinx-users.jpでは、公式ドキュメン
トの翻訳を手伝ってくれる方を募集しています。
本記事の練習がてらやってみたいという方は、
Transifexのページ注12にある「sphinx-1.4の翻訳
にご協力ください」注13から参加登録してみてく

注12） https://www.transifex.com/sphinx-doc/sphinx-doc-1_4/

注13） 英語ページの場合は、「HELP TRANSLATE "sphinx-doc-1.4"」。

ださい注14。

　次回は、Sphinxで運用ドキュメント、作業手
順書を書いていきます。Sphinxの includeディ
レクティブやreplaceの記法を使ってドキュメン
トを変数化する方法について紹介します。｢

注14） Sphinx-users.jpのSlackでチャットによるサポートも行っ
ています。チャット参加はこちらからどうぞ。　http://
sphinxjp.herokuapp.com/

次回予告

ドキュメント翻訳フローの自動化 第15回

 ▼図7　Transifexで翻訳率の一覧を表示（Sphinx公式ドキュメントの日本語翻訳率）

Sphinx-1.4.1リリース
　2016年4月12日に、Sphinx-1.4.1をリリースし
ました注A。1.4系は1年ぶりのメジャーバージョン
アップで、1.3.6から49の新機能、17の非互換性、
40のバグ修正があります注B。
　新機能のいくつかを紹介します。

・ドキュメントの国際化で、言語ごとに別の画像
ファイルを使用可能。画像に文字が書かれてい
る場合などに便利。conf.pyの languageと

figure_language_filenameを設定することで
利用できる
・2つのビルダー「dummy」と「epub3」を追加。

dummyは何も出力せず、文法のチェックだけ
を行う。epub3はまだ実験的な実装

・日本語検索に分かち書きアルゴリズムとして
Janomeを選択可能

・Sphinx拡張「sphinx.ext.githubpages」を追加。
GitHub Pages用にドキュメントを生成する

・Sphinx拡張「sphinx.ext.autosectionlabel」を追
加。:ref:のターゲットにセクションタイトル
を指定できる

COLUMN

注A） https://pypi.python.org/pypi/Sphinx/1.4.1

注B） 不具合報告はメーリングリスト（http://sphinx-users.
jp/howtojoin.html）、またはSphinxのGitHub（https:
//github.com/sphinx-doc/sphinx）へお願いします。

https://www.transifex.com/sphinx-doc/sphinx-doc-1_4/
http://sphinxjp.herokuapp.com/
https://pypi.python.org/pypi/Sphinx/1.4.1
http://sphinx-users.jp/howtojoin.html
http://sphinx-users.jp/howtojoin.html
https://github.com/sphinx-doc/sphinx
https://github.com/sphinx-doc/sphinx

164 - Software Design

2016年3月号の本連載「セキュリティを意識したソフトウェア開発」では、ソフトウェアのライフサ
イクルと脆弱性について言及しましたが、今回は、QuickTime for Windowsの脆弱性の事例をもと
に、ソフトウェアのライフサイクルとセキュリティについてもう少し深く考えてみます。

QuickTime Windows版
にゼロデイ攻撃

　2016年4月15日、JVN（Japan Vulnerability

Notes）のサイトに「JVNTA#92371676　QuickTime

for Windowsに複数のヒープバッファオーバフロー
の脆弱性」という情報が載りました注1。US-CERTで
は「Alert(TA16-105A)　Apple Ends Support for

QuickTime for Windows; New Vulnerabilities

Announced」という形で報告が出ています注2。
　このヒープバッファオーバフローの詳細に関して
は、ゼロデイ・イニシアティブのサイトで公開され
ています注3。
　今回のケースは、QuickTime for Windows（以下、
QuickTime Windows版）の製品開発元であるApple

社が、同製品のサポートを終了させたために、対策
としてはソフトウェアのアップデートをするという
選択肢はなく、QuickTime Windows版を使わない
（アンインストールする）という選択肢のみが示され
ています。
　あまり普及していないソフトウェアの場合や、代
替品がすでにあってそれなりに旧式で時間が経って
いるようなソフトウェアの場合、サポートを終了す

るということはこれまでにもありました。しかし、
QuickTime Windows版のように普及していて、か
つまだ一線で使われているようなソフトウェアでは
珍しいと言えるでしょう。
　一般的にゼロデイ攻撃とは、ベンダがその攻撃に
対応するアップデートを提供する前に攻撃が発生す
るという、ユーザ側には守ることができない攻撃を
意味しており、ある種の奇襲攻撃とも言えます。
　今回は、ベンダがアップデートを提供しないた
め、ユーザ側は守ることができない攻撃になってい
ます。もちろんアンインストールすることはできま
すが、形式的にはこれはゼロデイ攻撃と同様と言え
るでしょう。筆者はそう考えますが、ゼロデイ・イ
ニシアティブの見解でも同様です。

ヒープバッファオーバフローの影響

　ゼロデイ・イニシアティブは、QuickTime Windows

版で任意の悪意のコードが実行可能である、複数の
ヒープバッファオーバフローの存在を指摘していま
す。
　ヒープバッファオーバフローを使って任意のコー
ドを実行する細工をしたQuickTimeファイルを開
くと発現するわけですが、ファイルを開くという動

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第三三回】

すずきひろのぶ
suzuki.hironobu@gmail.com

ソフトウェアのライフサイクルとセキュリティ

注1）	 JVNTA#92371676 QuickTime for Windowsに複数のヒープバッファオーバフローの脆弱性　https://jvn.jp/ta/JVNTA92371676/
注2）	 US-CERT Alert TA16-105A　https://www.us-cert.gov/ncas/alerts/TA16-105A
注3）	 (0Day) Apple QuickTime moov Atom Heap Corruption Remote Code Execution Vulnerability	 	

http://zerodayinitiative.com/advisories/ZDI-16-241/
(0Day) Apple QuickTime Atom Processing Heap Corruption Remote Code Execution Vulnerability	 	
http://www.zerodayinitiative.com/advisories/ZDI-16-242/

https://jvn.jp/ta/JVNTA92371676/
https://www.us-cert.gov/ncas/alerts/TA16-105A
http://zerodayinitiative.com/advisories/ZDI-16-241/
http://www.zerodayinitiative.com/advisories/ZDI-16-242/

Jun. 2016 - 165

【第三三回】 ソフトウェアのライフサイクルとセキュリティ

作は、Webサイトに掲載されているQuickTimeの動
画を観賞するということでもあります。
　たとえば、メールに動画が添付されているなら
ば、怪しいので捨てることは可能です。しかし、
Webサイトをブラウジングしていて不意にどこか
のサイトに飛んでしまい、そこにしかけられた
QuickTimeを不意に見てしまった（自動的に動画が
スタートするなど）だけでも同じことが起こるで
しょう。これまでもAdobe Flash Playerの脆弱性
などで見られた攻撃方法なので、目新しい攻撃方法
ではないのですが、攻撃側にはさらに選択肢が増え
たということは理解しておかなければなりません。
　重要度はCVSSv3では6.3、CVSSv2では6.8と

なっています。アップデートがされない以上、Quick

Time Windows版がインストールされているならば
アンインストールすることが妥当です。

アンインストールにも問題が

　QuickTime Windows版をそのままアンインス
トールして問題がなければ良いのですが、Quick

Timeを組み入れているソフトウェアを使っている
場合があります。ソフトウェアがWindows環境で
のQuickTimeを使っているが、代替品がなかった
り、あるいはデータフォーマットの関係で利用しな
ければいけないケースもあるでしょう注4。
　QuickTimeは、Apple製品上では動画／画像に関

　QuickTime Windows版（QuickTime 7 for
Windows）の製品開発元のApple社が、同製品のセ
キュリティアップデートをしないという情報は、Trend
Micro社のセキュリティブログ“Urgent Call to Action:
Uninstall QuickTime for Windows Today”注Aと、そ
れを参照しているUS-CERT Alert TA16-105Aの告
知だけです。
　QuickTime 7 for Windowsを明示的に「サポートし
ない」とか、「セキュリティアップデートをしない」と
いったことを示しているドキュメントやアナウンス
は、少なくとも筆者は見つけることができませんでし
た（2016年4月18日現在）。
　Apple社のサイトのドキュメント“Uninstall Quick
Time 7 for Windows”注Bでは、“Most recent media-
related programs for Windows—including iTunes
10.5 or later—no longer use QuickTime to play
modern media formats.”と書かれてはいます。しか
し、これが今後は「サポートしない」「セキュリティ
アップデートをしない」と同等な意味に解釈すべきか
どうかは微妙に判断が分かれるところです。
　ただ、現実にはアップデートできないわけですか
ら、US-CERTやJVNが示すように当面はアンインス

トールして安全性を高めておくべきでしょう。このド
キュメントには、タイトルどおり、アンインストール
手順が書かれているので、アンインストールの際は
参考にすると良いでしょう。
　さて、筆者の手元にあるWindows 10の上の
QuickTime Playerをチェック（ただし、最後に立ち上
げたのは1ヵ月以上前）すると、QuickTime Playerの
バージョンは7.7.7、QuickTime自体のバージョンも
7.7.7となっていました。確認している最中にiTunes
12.3.3とApple Software Update 2.2のインストー
ルを指示するアップデータが自動的に立ち上がった
ので、その指示に従いソフトウェアをアップデートし
ましたが、その後もQuickTimeのバージョンはその
ままでした。
　Windowsの検索機能でキーワード“QuickTime”を
入力し、検索した際にメニューに出てきた「Quick
Timeアンインストーラ」を選択しました。そうやって
インストーラを立ち上げ、削除を選び、「Quick
Time for Windowsを完全に削除する」を選択したと
ころ、QuickTime 7およびQuickTime Playerが削除
されました。筆者の環境では、その後の問題はあり
ませんでした。

◉QuickTime 7 for Windowsをアンインストールしてみた

注A）	 Urgent Call to Action: Uninstall QuickTime for Windows Today	 	
http://blog.trendmicro.com/urgent-call-action-uninstall-quicktime-windows-today/

注B）	 Uninstall QuickTime 7 for Windows　https://support.apple.com/en-us/HT205771

注4）	 一例として、Adobe社の製品の例が挙げられます。	 	
Adobe社QuickTime Windows版のサポート終了について	 	
https://blogs.adobe.com/creativestation/video-apple-ends-support-for-quicktime-windows

https://blogs.adobe.com/creativestation/video-apple-ends-support-for-quicktime-windows
http://blog.trendmicro.com/urgent-call-action-uninstall-quicktime-windows-today/
https://support.apple.com/en-us/HT205771

166 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

する標準的なソフトウェアです。そのため、別のプ
ラットフォームでも、Apple社がそのプラット
フォーム向けに出しているQuickTimeを使うとい
うのも、理解できます。サードパーティーが提供す
るソフトウェアを使うよりも、あるいは自社で開発
するよりも、優先されるのも当然かと思います。
　というのも、このような画像処理や動画処理を扱
う商用ソフトウェアには数々の特許がかけられてお
り、それらを使うためには（たとえ、コードをゼロ
から自社で作ろうとも）特許料を払うなどの手続き
が必要になるケースがあるからです。なるべくベン
ダが直接提供しているものを使うというのも、無理
からぬ話かと思います。
　今回の問題で露呈したように、一方的にベンダ側
がソフトウェアを打ち切った場合の影響は大きいの
です。単純にソフトウェアを作成する工数が必要と
いうだけではありません。特許などを保持して、そ
の技術を囲い込んでいるような場合は、互換のソフ
トウェアを作るにしても手続きや契約、あるいはラ
イセンス料の支払いなど、いろいろな制約が出てき
ます。「なければ作る」とは簡単にはいきません。

ソフトウェアのライフサイクル
としては特殊

　今回の例は、準備期間がない、あるいは極めて短
い準備期間しかないベンダの一方的な打ち切りです
ので、雑誌などを細かくチェックしている人ならわ
かるでしょうが、一般のPCユーザがこのような情
報をチェックしているかどうかは、疑問です。
　AppleのQuickTimeというメジャーな製品ならま
だ良いですが、これがWindows系PCを購入した際
にプレインストールされているような存在さえよく

わかっていないソフトウェアだったらどうでしょう
か？　気がつかないままサポート終了になっている
ソフトウェアもあるはずです。

ソフトウェアの
ライフサイクルを意識する

　仕事で使うPCであっても、つい最近までは「使
えるまで使う」というのが一般的な考え方だったと
思います。「ベンダがサポートを終了するのと同時
に利用を控える」という受動的なケースはあっても、
「ベンダのサポート期間の残存を考えて利用する」と
いう能動的なケースはまれだったように思います。
　ところが今は、ライフサイクルを前提としない
と、今度はサポートが切れてしまった状態で、脆弱
性が現れた場合に対応できない（利用を放棄するし
か方法がない）という時代になってしまいました。
　ソフトウェアも時間とともに「劣化」する時代だと
言えます。もちろんソフトウェアはデジタルなので、
物理的に何かが劣化するわけではありません。しか
し、今回のQuickTimeのように、ベンダが脆弱性に
対応せずサポートを中止してしまったソフトウェア
を使い続けるのは、金属疲労を起こしていつ壊れる
かわからない機械と同様な扱いになるはずです。

Microsoftのライフサイクル

　Microsoft社では、2002年から同社のプラット
フォームのライフサイクルを明確化し、ユーザに告
知しています。2016年4月現在の主力商品のライフ
サイクルは表1のとおりです。
　2014年にWindows XPの延長サポートが終了と
なる前後は話題になりました。しかし、セキュリ

ティ的にはWindows XPのラ
イフサイクルだけを議論して
も意味がなく、その上で動作
しているアプリケーションの
ライフサイクルも一緒に議論
しなければ意味はありません。
そして、それがプラットフォー

◆◆表1　Windowsのライフサイクル注5

注5）	 Microsoft社　Windowsライフサイクルのファクトシート　http://windows.microsoft.com/ja-jp/windows/lifecycle

オペレーティングシステム メインストリームサポート終了 延長サポート終了

Windows XP 2009年 4月14日 2014年 4月 8日

Windows Vista 2012年 4月10日 2017年 4月11日

Windows 7 2015年 1月13日 2020年 1月14日

Windows 8 2018年 1月 9日 2023年 1月10日

Windows 10 2020年10月13日 2025年10月14日

http://windows.microsoft.com/ja-jp/windows/lifecycle

Jun. 2016 - 167

【第三三回】 ソフトウェアのライフサイクルとセキュリティ

ンの一覧を確認することができます。
　ちなみに、linuxlifecycle.comで確認すると、Red

Hat Enterprise Linux、CentOS、SUSE Linux

Enterprise Serverといったサーバ系のディストリ
ビューションは10年で、さらにオプションで2年
あるいは3年延長することが可能のようです。

減価償却資産の
耐用年数

　個人でPCを購入している方には関係ないのです
が、職場でPCを導入する場合、減価償却資産の耐
用年数が関係してきます。PCとして使うものに関
しては4年です。PCソフトウェアのライフサイクル
が3年程度ですから、微妙にかみ合いません。減価
償却資産の耐用年数がまだ来ていないので、ライフ
サイクルが過ぎた古い機材を使わざる得ないという
状況もあるのではないかと筆者は心配しています。
今日的な減価償却資産の耐用年数は、ソフトウェア
のライフサイクルを勘案して最長でも3年程度、あ
るいはそれ以下が妥当なのではないかと思います。

まとめ

　脆弱性の対応は、問題があって、その都度対応す
るという事後対応的な性質になりがちです。経営戦
略というと大げさですが、ソフトウェアのライフサ
イクルを勘案しながら、新しいPC環境にアップグ
レードしていくことで積極的な脆弱性対応も可能か
と思います。
　みなさんも、これからはソフトウェアのライフサ
イクルを意識するようにしてはどうでしょうか。s

ム（ここではWindows XPのこと）ときちんと連動
していなければ意味がありません。この連載で繰り
返して説明しているバレルセオリーと同じで、一部
でも弱い部分があれば、セキュリティはその弱い部
分からほころんでしまうのです。
　また、Windows 7や8からWindows 10への自動
アップグレードは、いつの間にかアップグレードの
ためのパッケージがダウンロードされていて、アッ
プグレードを勧められることで有名です。しかし、
脆弱性をそのままにされてしまう可能性などを考え
ると、ここまで強制的とも言えるユーザへの働きか
けも必要なのではないでしょうか。
　Windows 8のメインストリームのサポート終了
は実質的に2017年いっぱいなので、だいたい残り
19ヵ月です。筆者としてはかなり短いと思ってい
るのですが、現在でもWindows 8へのダウング
レード可能なプレインストールPCが売られている
ことを考えると、ライフサイクルを考えつつアップ
グレードするというのは難しいものだと思います。

GNU/Linuxのライフサイクル

　GNU/Linuxの中でも、このライフサイクルを非
常にわかりやすく提供しているのがUbuntuです。
Ubuntuには、バージョン番号の後ろに“LTS”と付
く5年を目処とした長期サポートバージョン（Long

Term Support）と、1年程度の短いサイクルでサ
ポートを終了させるものを組み合わせてリリースし
ています（表2）。次期バージョンのLTSの間隔は2

年ですので、あまりソフトウェアのバージョンが古
くなることもなく、かつ、サポートも5年間保証し
ているので、非常にライフサイクルを考えやすく
なっています。
　ライフサイクルについては、
Ubuntu以外のメジャーなGNU/

Linuxディストリビューションで
も強く意識しています。近年では
linuxlifecycle.com注6というサイト
があり、各ディストリビューショ

注6）	 linuxlifecycle.com　Support Life Cycles for Enterprise Linux Distributions　http://linuxlifecycle.com/

◆◆表2　Ubuntuのライフサイクル

コードネーム バージョン リリース日 サポート期限

Xenial Xerus 16.04 LTS 2016年 4月21日 2021年 4月

Wily Werewolf 15.10 2015年10月22日 2016年 7月

Vivid Vervet 15.04 2015年 4月23日 2016年 1月

Trusty Tahr 14.04 LTS 2014年 4月17日 2019年 4月

Precise Pangolin 12.04 LTS 2012年 4月26日 2017年 4月

http://linuxlifecycle.com/

168 - Software Design

　コンピュータ技術者といっても多種多様です。
クラウド化が進む今日、マネージドサービスを
担えるエンジニアが不足しています。マネージ
ドサービスは、さまざまなシステムやソフトウェ
アを組み合わせてアーキテクチャ設計をおこな
い、性能、可用性などを維持・運用するサービ
スです。エンジニアにはソフトウェアからネッ
トワーク、ハードウェアまでの総合的な知識や、
不明の問題にあたったときの問題解決能力など、
高い技術やコミュニケーション能力が要求され
るやりがいのある仕事です。
　みなさんも本連載でコマンドライン、シェル
を通じてOSの深淵を理解し、一歩進んだエン
ジニアを目指してみてはどうでしょうか。

ファイルと
ファイルシステム

　前回は、CLIと小さなツールを組み合わせて
使うUnix的な考え方と魅力、manコマンドと
その周辺ついて紹介しました注1。調べたいこと
があったら「Googleの前にman」でしたね。
　それでは、ファイルとディレクトリのお話を
しましょう。

注1） 紙幅のせいで泣く泣く掲載を見送った内容を、補足情報と
してWebに公開しました。ぜひあわせて読んでください。

 http://gihyo.jp/magazine/SD/archive/2016/201605/
support

　使っているOSによって、複数のファイルを入れて
おくしくみをフォルダ＝OS Xとか、ディレクトリ＝
Unixなど別の呼び方をすることがあります。

　PCを使っていると「Excelのファイルを編集
する」、「このファイルをフォルダに入れて」、
「ファイルをバックアップする」など当たり前の
ように「ファイル」という単語を使います。でも
ファイルってなんでしょうか。筆者の社内でも、
新人のエンジニアさんに同じ質問をしてみました。
　結果は、「a.ファイル=データ？」、「b.フォル
ダに入れるもの？」、「c.情報が書かれたもの？」、
「d.編集するもの？」など曖

あいまい

昧な返答が出ました。
　少し議論をしてから考えると、

e. ただのデータではなくて、アプリケーション・
プログラムが使う「データの集まり」（Dataと
いう単語自体複数形ですが）とか「意味のあ
る形式のデータ」などではないか

という意見が出ました。
　コンピュータを離れて考えると、ファイルは
文書や写真などを集めて管理する対象です。ファ
イルを複数入れておくのがフォルダだったり、
棚だったりします。紙の上に書かれたインクの
シミに、意味を見出しているのは人間様ですし、
それらを分類整理しているのも人です。
　コンピュータの内部（CPUやメモリ、HDD）
ハードウェアレベルでは「これはExcelのファ

Unixのファイルシステムが階層構造であること、CLIでのファイル操作やプログラミング／
スクリプティング時にも基本となるパスの指定方法、基本的なコマンドを使ってファイルやディ
レクトリの確認方法を紹介します。操作は簡単ですが、大切な情報をさまざまな視点から確認
できる重要なコマンドを解説します。

 Author 中島 雅弘（なかじま まさひろ）　㈱アーヴァイン・システムズ

第　　回2 ディレクトリとファイルの構造・属性

http://gihyo.jp/magazine/SD/archive/2016/201605/support

168 - Software Design Jun. 2016 - 169

イル」、「鈴木さんのファイル」などといった区
別があるわけではありません。あちこちに散ら
ばった0と1を一塊の情報として名前を付け、
意味を与え、さまざまな機能を提供しているの
はOSです。この整理や管理のしくみをファイ
ルシステムと呼び、Unixにかぎらず一般的な
OS（もしくは周辺のサブシステム）が提供する
重要な役割の1つです。
　e.の意見のように、私達が操作の対象とする
ファイルとは、OSによって意味付けされ管理
されているデータの集まりです。続いてUnix

はどのようにファイルを管理・整理しているの
かを見ていきましょう。

ファイルシステムの基本
～階層構造のファイルシステム

　図1のように、Unixのファイルシステムは
階層構造になっています。ファイルシステムは、
一般的なファイルに加えて、ディレクトリと呼
ぶファイルやディレクトリを入れられる器、ス
ペシャルファイルなどを階層的な木構造で管理
します。図1の一番上の/をルートディレクト
リと呼び、以下にファイルやディレクトリを持
つことができます。各ファイルやディレクトリ
の位置は、パスネーム（各ディレクト
リを/で区切って並べたもの）で特定
できます。

絶対パスと相対パス
　パスの指定方法は、ルートディレ
クトリから指定する/bin/ls、/usr/
bin/rubyなどの絶対パス方式と、自
分のワーキングディレクトリ（.で表
します）を起点に/で始まらない記法

で指定する相対パス方式があります。
　ディレクトリ名には、表1のような特別な意
味の名前がありますので覚えておきましょう。
　図2中のディレクトリ/usr/localをワーキン
グディレクトリとすると、絶対パス/usr/bin
/javaへの相対パスは、../bin/javaとなります。
　相対パス指定で自分のワーキングディレクト
リを明示的に示す場合は、./をパス名の最初
に付けますが、図2中の/usr/local/etcディ
レクトリを、/usr/localから参照する場合は、
単にetcを記述しても、./etcと記述してもか
まいません。同じしくみで、../bin/javaは、
./../bin/javaと同じことです。

 大文字と小文字の区別など、ファ
イルシステムによって異なること
　MS-DOSをルーツとするWindows系のOS

では、ファイル名の大文字と小文字の区別はあ
りません。MS-DOSの時代にはすべてのファ
イル名が、小文字で命名したものも大文字に変
換されてしまいました。Windows 10などでは
命名したとおりのファイル名が保存されますが、
内部的には大文字と小文字を同一視しています。

 ▼表1　特別な意味を持つディレクトリ
表記 名前 意味

/※ ルートディレクトリ ファイルシステム（ 複数のファイルシステムがマウントしてあっても、現在利用しているOSにおいて）
の最上層のディレクトリ

. カレントワーキングディレクトリ 現在のディレクトリ

.. ペアレントディレクトリ 1つ上のディレクトリ。親ディレクトリ

~ ホームディレクトリ 環境変数$HOMEで設定されているディレクトリ（ユーザによってそれぞれ異なる）
※/の前に何もつかないことに注意

第　　回2 ディレクトリとファイルの構造・属性

/

dev etcusr

bin local

man

passwd group

java ディレクトリ

通常ファイル

スペシャルファイル

 ▼図1　ディレクトリ階層構造

170 - Software Design

たとえば、“Work”という名
前のディレクトリがすでに存
在している場合、“work”と
いう名前のディレクトリを作
ろうとしても、すでに同一の
項目が存在しているのでディ
レクトリの作成は失敗します。
　こうした、文字の扱いは、
ファイルシステムによってそ
れぞれ異なります。OS X に
おいても、OSがインストー
ルされるファイルシステムは、大文字小文字を
区別しないフォーマットになっています。その
一方で外付けのドライブなどは、大文字小文字
を区別するように指定してフォーマットするこ
ともできます。
　英語では、大文字小文字を区別する場合を
“case-sensitive”と言い、区別しない場合を
“case-insensitive”と言います。エラーメッセー
ジや、新たにファイルシステムをフォーマット
する際の選択肢に現れることがあるので覚えて
おいたほうが良い単語です。
　Linuxのext4ファイルシステムや、Unixの
伝統的なファイルシステムであるUFSなどで
は大文字小文字が区別されます。同じOS上で
使うファイルシステムでも、Unix系のLinux、
OS XはもちろんWindowsなどであっても複数
の種類のファイルシステムを扱えます。ファイ
ルシステムの違いは、コマンドの動作などにも
違いを生じさせることがありますので、操作の
対象となるファイルシステムがどういった形式
なのか知っておくことは重要です。

ファイルの種類

　私達がUnix上で扱う標準的なファイルには、
ファイル、ディレクトリ、シンボリックリン
ク注2などがあります。通常のファイルであって
も、実行可能なバイナリファイルやシェルスク

注2） 別の機会に説明します。

リプトなど、ファイルの用途や目的はさまざま
です。

�le ̶ FILE ̶ ファイルの種類を知る
　そのファイルが何なのか確認したくて、ファ
イルをエディタで開いたり実行してしまうと、
思わぬ結果になってしまうことがあります。こ
んなときには、便利なコマンドfileが用意さ
れています。たとえば、/bin/lsと/etc/passwd
がどんなファイルなのか確認してみましょう。

 OS X 10.11.4の例
$ file /bin/ls /etc/passwdí
/bin/ls: Mach-O 64-bit executable x86_64
/etc/passwd: ASCII English text

　/bin/lsは、64bitのバイナリ実行可能なファ
イルであることと、/etc/passwdがアスキー文
字セットを使った英語のテキスト形式であるこ
とがわかりました。
　このようにfileコマンドは、ファイルを実
行したり開いたりしなくても、ある程度のあた
りをつけてくれます。ただ、万全にすべての形
式を区別しているわけではないので、まず
fileコマンドを使って識別してから次の段階で、
たとえばテキスト形式と判定されたらエディタ
で開いてみるなど、きちんと確認をするように
しましょう。

lsコマンドを使いこなす

　lsはさまざまな視点からファイルの情報を

/

dev homeusr

bin masalocal

etcjava

.. 1つ上のディレクトリ

. ワーキングディレクトリ

絶対パス：/usr/bin/java

相対パス：../bin/java

̃ ホームディレクトリ

 ▼図2　相対パスと絶対パス

170 - Software Design Jun. 2016 - 171

表示してくれます。そのため、とても多くのオ
プションのあるコマンドでもあります。ここで
は、これだけは知っておきたいという基本的な
操作を紹介します。

ls ̶ LiSt ̶ ファイルやディレクトリをリスト
アップする
　/etcディレクトリにあるファイルやディレ
クトリをlsで確認してみましょう。図3はOS

Xでの例です。アルファベット順に段組みされ
て表示されます注3。
　次は、-Fオプションを付けてみます。この
オプションは、ディレクトリには「/」、通常ファ
イルは無印、シンボリックリンクには「@」など
のタイプ別に「印」をファイル名の後ろに付けて
くれるオプションです。

 OS X 10.11.4の例
$ ls -F /etcí
/etc@

　「あれ、/etcの中にはたくさんファイルがあっ
たはずなのに……/etc@だけ？」

注3） ここでは、lsにターゲットを/etcとして指定しています。
lsは、ターゲットを指定しなければカレントワーキングディ
レクトリの内容を表示します。

　-lのロング表示オプションを付けて、もう
少し詳しく見てみましょう。
　すると図4のように、ls出力の最後のフィー
ルドが/etc@ -> private/etcとなっています
ね。このことから /etcは確かに、/private/
etcへのシンボリックリンクであることが確認
できました注4。
　さらにシンボリックリンク先を図5のように
確認してみましょう。/private/etcに図3で
表示されていたものがきちんと入っていること
が確認できました。aliasesがシンボリックリ
ンク（@）、apache2がディレクトリ（/）、他のファ
イルはおそらく通常ファイルであることなども
さらにわかりました。fileコマンドを使わな
くても、これらの区別はできます。
　lsの引数で指定した対象がディレクトリの
ときは、その中身が表示されます（図6）。ディ
レクトリを中身ではなく、そのまま表示させた
いときには-dオプションを指定します。

$ ls -d /biní
/bin

注4） 新しいOS Xでは、セキュリティ上の理由から/etcは実体
ではなくシンボリックリンクです。Linuxなど他の環境では、
/etcはシンボリックリンクではありません。

第　　回2 ディレクトリとファイルの構造・属性

$ ls /etcí
afpovertcp.cfg hosts~orig pf.conf
aliases irbrc pf.os
aliases.db kern_loader.conf php-fpm.conf.default
apache2 krb5.keytab php.ini.default
 ...後略...

 ▼図3　ls（OS X 10.11.4の例）

$ ls -lF /etcí
lrwxr-xr-x@ 1 root wheel 11 10 11 07:41 /etc@ -> private/etc

 ▼図4　ls -lF（OS X 10.11.4の例）

$ ls -F /private/etcí
afpovertcp.cfg hosts~orig pf.conf
aliases@ irbrc pf.os
aliases.db kern_loader.conf php-fpm.conf.default
apache2/ krb5.keytab php.ini.default
 ...後略...

 ▼図5　/private/etcの中身を確認（OS X 10.11.4の例）。図3の結果と同じであることが確認できます

172 - Software Design

-lについて
もう少し詳しく
　-lは最も使うオプショ
ンですので、表示の内容
を図7で解説しておきます。
　ファイルやディレクト
リには「所有者グループ、
その他のユーザ」という所
有権限があります（詳細は
別の回で）。それぞれに“r：
読み取り”、“w：書き込み”、
“x：実行／ディレクトリの場合はディレクトリ
内に入る”権限があります。これらを「rwx

bits」と呼びます。-lオプションを付けたlsの
出力で、r、w、xが表示されているところはそ
の権限があることを示し、-と表示されていれば、
その権限がないことを示しています。ファイル
やディレクトリにはrwx bitsのほかにも属性が
付いていますが、それらについても別の回で説
明します。

lsとカラー
　UbuntuやCentOSでは、lsを実行するとタ
イプ別に色が付いています。もちろん、端末が
色を表示できる設定・状態でなければ色は付き
ません。もし色が付く環境を使っていれば、い
ちいち-Fオプションを付けなくても、一目で
区別がついて便利ですね。これは、lsのオプショ
ンで色が付くように指定してあるんです。
Linux系のOSを使っているなら、確認してみ
ましょう。

$ alias lsí
ls --color=auto

　aliasコマンドはシェルの機能注5で、別名を
定義できる便利なしくみです。この例では、ls
というalias（別名）が定義されているかを表示
させました。lsと入力されたら、ls --color
=autoと置き換えるという指示が定義されてい
ます。つまり、仮にこのaliasが定義されてい
ないとしても、Linux系のOSでlsに色を付け
るには、--color=autoというオプションを指
定してあげればいいのです。
　OS Xは、BSD系Unixなのでlsのオプショ
ンがLinux系とは一部異なります。OS Xでls
に色を付けるには、-Gオプションを指定します。
OS Xの方は試してみましょう。

$ ls -G

　OS Xでもaliasを指定して、標準で-Gオプ
ションが付いている状態にすることはできます。

$ alias ls='ls -G'

　「ターミナル」アプリケーションの環境設定で、
色を含む挙動をいろいろと選べますので、そち

注5） 組み込み機能＝builtin：OS X、CentOSでman aliasする
とbuiltin(1)が表示されます。Ubuntuなどではmanペー
ジはありません。シェルのプロンプトでhelp aliasもし
くは、man bashで確認しましょう。

$ ls /biní
[cp df expr launchctl mkdir pwd sh tcsh zsh
bash csh domainname hostname link mv rcp sleep test
 ...後略...

 ▼図6　lsでディレクトリを指定した場合（OS X 10.11.4の例）

$ ls -l /etc/apache2
total 200
drwxr-xr-x 15 root wheel 510 10 11 07:50 extra
-rw-r--r-- 1 root wheel 20785 10 11 07:43 httpd.conf
-rw-r--r-- 1 root wheel 20785 7 3 2015 httpd.conf.pre-update
-rw-r--r-- 1 root wheel 20785 8 24 13:04 httpd.conf‾previous
-rw-r--r-- 1 root wheel 13077 8 23 08:53 magic
-rw-r--r-- 1 root wheel 53258 8 23 08:53 mime.types
drwxr-xr-x 4 root wheel 136 8 23 08:53 original
drwxr-xr-x 3 root wheel 102 8 23 08:53 other
drwxr-xr-x 3 root wheel 102 10 11 07:47 users

このディレクトリの合計ブロック数

権限情報 リンクカウント 所有者名 グループ名 サイズ 最終更新日時 ファイル名

 ▼図7　ls -lの実行例と意味（OS X 10.11.4の例）

172 - Software Design Jun. 2016 - 173

らも確認してみてください。

隠されたファイル！？̶デフォルトでは表示
されないファイルとディレクトリ
　じつは、lsはデフォルトでは.で始まるファ
イル名を表示しないのです。Unixでは.で始ま
るファイルやディレクトリは、慣用的に管理目
的など一般には使わないものの名前として使っ
ています注6。これらを表示させるには、-aオプ
ションを使いましょう。
　図8の上下で比較してみるとわかるとおり、
たくさんの.で始まる名前のファイルが表示さ
れました。カレントディレクトリである.や、
親ディレクトリ..も表示されていますね。

結果をファイルに
　次は、ファイルに保存してみましょう注7。

$ ls > ls_log.txt

　次に、catコマンドで内容を確認します。

$ cat ls_log.txtí
Applications
Applications (Parallels)
Creative Cloud Files
Creative Cloud Files (unknown)
Desktop
 ...後略...

注6） .で始まるファイル名は、あくまで名前であり、隠しファ
イル属性ではありません。

注7） >は出力をリダイレクトするための表記です。これによって、
これまで画面に出力されていた内容がファイルに出力され
るようになります。

　このようにターミナル（tty）以外に出力させ
ると、マルチカラムだったものが1行に1ファ
イルになります。
　ファイルにリダイレクトしたり別のプログラ
ムにパイプで接続してもマルチカラムで出力さ
せたいときは-Cオプションを付けます。

$ ls -C > ls_log.txt

　逆にターミナル（tty）に対してでも、マルチ
カラムではなくて1行に1ファイルを表示した
いときは、-1オプションを用います。
　これらレイアウトを指定するオプションは、
画面での見やすさや、出力結果を別ツールで処
理するなどで、適宜使い分けるとよいでしょう。
　lsにはほかにもたくさんの機能があります。
そのほかのさまざまなオプションについては、
man lsで調べてみてください。

今回のまとめと
次回について

今月の確認リスト
【manで調べるもの（括弧内はセクション番号）】
ls(1)、file(1)、cat(1)

　今回はファイルシステムが木構造になってい
ること、ファイルやディレクトリの確認方法を
紹介しました。 次回は、プロセスの操作につ
いて解説しようと思います。｢

第　　回2 ディレクトリとファイルの構造・属性

 -aオプションなし
$ lsí
Applications Downloads Movies Work
Applications (Parallels) Dropbox Music backup_log
 ...後略...

 -aオプション付き
$ ls -aí
. .config .ssh Games
.. .cups .subversion Git
.CFUserTextEncoding .dropbox .viminfo Googleドライブ
.DS_Store .dvdcss .vimrc Library
.Rapp.history .fontconfig .wine Movies
.Trash .games.txt.un~ .xbmc Music
 ...後略...

 ▼図8　OS X 10.11.4でホームディレクトリを表示した例（上が -aオプションなし。下が -aオプション付き）

174 - Software Design

ディレクトリやファイルの
配置を表すmtree

　UNIXでは、ファイルやディレクトリの配置、そ
れぞれのパーミッション情報などを表す方法として
mtreeという表記方法を使っています。FreeBSDで
は/etc/mtree/にmtree(5)形式のファイルがあり
ます。mtree(5)はかなり古くから使われている
フォーマットなのですが、この形式をよく知らない
ユーザが少なくないように思います。mtree(5)は、
ファイルやディレクトリの構造とそのパーミッショ
ンなどをまとめて保持しておけますので、配布物を
適切なパーミッションでインストールしたり、構築
したシステムを適正な状態に保ったり、または変更
などをチェックしたりといった目的で利用します。
今回はこのmtreeについて説明しようと思います。
　リスト1の/etc/mtree/BSD.sendmail.distファイ
ルはsendmail関係のディレクトリ構造とパーミッ
ション、持ち主などの情報を表したファイルです。
実際のディレクトリは図1のようなパーミッション
になっています。mtreeの記載どおりになっている
ことを確認できます。
　故意にパーミッションを変更して、それをmtree

ファイルを使って元に戻すということをやっている
のが図2の操作です。mtree(5)フォーマットの総合
的な操作はmtree(8)コマンドで実施します。4行目
に実行したコマンドで、/etc/mtree/BSD.sendmail.

distファイルに記載されているものと違う持ち主に
なっていることを発見し、これを修正していること
を確認できます。
　mtree(5)で適切な情報を表現し、mtree(8)コマン
ドでその状態をチェックしたりキープしたりできま
す。またmtree(8)コマンドは、既存のディレクト
リやファイル構造から自動的にmtree(5)フォー
マットのデータを生成する機能も提供しています。
このコマンドを活用することで、構築するシステム
を想定した、適切な状態を保てるようになります。

mtree(5)フォーマット

　mtree(5)フォーマットのルールを簡単に説明
しておきます。mtree(5)はディレクトリやファ
イルの階層構造、それらの属性を表現すること
を目的とした、テキストベースのフォーマット
です。もともとは4.3BSD-Renoのタイミング
で導入されたフォーマットで、それ以降、随時
機能拡張が取り込まれてきました。FreeBSD

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第31回 ❖使ってみようmtree(8)コマンド

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

...（略）...
/set type=dir uname=root gname=wheel mode=0755
. nochange
 var nochange
 spool nochange
 clientmqueue uname=smmsp ｭ
gname=smmsp mode=0770
 ..
 ..
 ..
..

▼▼リスト1　/etc/mtree/BSD.sendmail.dist▼
　　　　 （FreeBSD 10.2-RELEASE）

Jun. 2016 - 175

▶第31回◀
使ってみようmtree(8)コマンド

●●印刷可能なASCII文字95個分以外の文字列は

バックスラッシュから始まる3桁の8進数表記で

表現される

　言葉でまとめるとちょっとわかりにくいですが、
基本的に「空行」「コメント行」「デフォルト設定の行」
「ディレクトリの行」「ファイルの行」「親ディレクト
リに移動する行」の6種類の行で構成されたフォー
マットだと考えるとわかりやすいかもしれません。
　たとえば、次のような構成のディレクトリとファ
イルを考えます。

.
├── Makefile
├── commands
│ ├── 001
│ ├── 002
│ └── 003
├── sources
│ ├── 001
│ ├── BSD.root.dist
│ └── BSD.sendmail.dist
└── typescript.xml

2ディレクトリ、8ファイル

　これをmtree(5)フォーマットで表現すると、た
とえばリスト2のようになります。ファイル名や
ディレクトリ名の書いてある行に、キーと値が記載

2.1でMD5ダイジェスト機能、FreeBSD 4.0でファ
イルフラグとSHA-1/RIPEMD160ダイジェスト機
能、FreeBSD 6.0でSHA-256ダイジェスト機能が
取り込まれています。
　mtree(5)のフォーマットのおもな規則は次のと
おりです。

●●行頭のホワイトスペース（空白）は無視される
●●空行は無視される
●● #から始まる行は無視される
●● 1行ごとにファイルやディレクトリの情報を示し

ている
●● /setから始まる行は特殊コマンド。キーと値の指

定が空白区切りで指定される。以降の行にこの

行の設定がデフォルト値として適用される
●● /unsetから始まる行は特殊コマンド。1つ前の●

/setで設定されたデフォルト値を削除する。削除

するキーが空白区切りで指定される
●● ..から始まる行はカレントディレクトリを親ディ

レクトリへ変更。この行に指定されたオプション

は無視される
●● /または..以外から始まる行はカレントディレク

トリにあるファイルまたはディレクトを表す。対

象がディレクトリだった場合にはカレントディレ

クトリをそのディレクトリへ変更する

% ls -dl / ｶ
drwxr-xr-x 24 root wheel 1024 Mar 9 08:40 /
% ls -dl /var ｶ
drwxr-xr-x 25 root wheel 512 Mar 11 17:01 /var
% ls -dl /var/spool ｶ
drwxr-xr-x 8 root wheel 512 Nov 12 2014 /var/spool
% ls -dl /var/spool/clientmqueue ｶ
drwxrwx--- 2 smmsp smmsp 512 Mar 12 05:20 /var/spool/clientmqueue

▼▼図1　/etc/mtree/BSD.sendmail.distで指定されているディレクトリのパーミッション

% chown daichi:daichi /var/spool/clientmqueue ｶ
% ls -ld /var/spool/clientmqueue ｶ
drwxrwx--- 2 daichi daichi 512 Mar 11 03:13 /var/spool/clientmqueue
% mtree -deU -f /etc/mtree/BSD.sendmail.dist -p / ｶ
var/spool/clientmqueue:
 user (25, 501, modified)
 gid (25, 501, modified)
% ls -ld /var/spool/clientmqueue ｶ
drwxrwx--- 2 smmsp smmsp 512 Mar 11 03:13 /var/spool/clientmqueue

▼▼図2　/etc/mtree/BSD.sendmail.distの内容にしたがいパーミッションなどを元に戻す

176 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

したmanifest.mtreeというファイルを使うことで、対
象となっているファイルとディレクトリがmtree(5)
データに指定されたものと同じであるかをチェック
できます。次のようにmtree(8)コマンドを実行する
と、mtree(5)データと異なる設定になっているファイ
ルやディレクトリが報告されます。

% mtree -f manifest.mtree -p freebsd ｶ
commands/001:
 permissions (0644, 0666)
commands/002:
 permissions (0644, 0666)
commands/003:
 permissions (0644, 0666)

　この出力では、パーミッションが0644となって
いるべきファイルが0666になっている、と報告が
あります。次のようにmtree(8)に-Uオプションを
指定すると、検出した内容に従ってファイルやディ
レクトリの設定を更新してくれます。

% mtree -U -f manifest.mtree -p freebsd ｶ
commands/001:
 permissions (0644, 0666, modified)
commands/002:
 permissions (0644, 0666, modified)
commands/003:
 permissions (0644, 0666, modified)
% mtree -U -f manifest.mtree -p freebsd ｶ
% ←すでに修正されたので何も出力されない

されている行があるかと思いますが、ここに指定で
きるのが表1のようなキーワードです。どのキー
ワードが使用できるかは実装しているコマンドに
よって異なりますが、代表的なキーワードはだいた
い実装されています。

mtree(8)コマンドの使い方

　次の構造のファイルとディレクトリがあるとします。

% tree freebsd ｶ
freebsd
├── Makefile
├── commands
│ ├── 001
│ ├── 002
│ └── 003
├── sources
│ ├── 001
│ ├── BSD.root.dist
│ └── BSD.sendmail.dist
└── typescript.xml

2 directories, 8 files

　図3のようにmtree(8)コマンドを実行すると、
キーとしてファイルの種類、ユーザID、グループ
ID、パーミッションの情報が記載されたmtree(5)
データを作成できます。仮に、この出力をmanifest.

mtreeというファイルに保存したとしましょう。保存

. ←コメント
/set type=file uid=501 gid=20 mode=0644 ←ファイルのデフォルト設定を指定
. type=dir mode=0755 ←カレントディレクトリとそのパーミッションの指定
 Makefile ←ファイル Makefileがある
 typescript.xml ←ファイル typescript.xmlがある
 ←空行
./commands ←コメント
commands type=dir mode=0755 ←ディレクトリcommandsがある。その設定とcommandsへ移動
 001 ←ファイル 001がある
 002 ←ファイル 002がある
 003 ←ファイル 003がある
./commands ←コメント
.. ←親ディレクトリに移動
 ←空行
./sources ←コメント
sources type=dir mode=0755 ←ディレクトリsourcesがある。その設定とsourcesへ移動
 001 ←ファイル 001がある
 BSD.root.dist ←ファイル BSD.root.distがある
 BSD.sendmail.dist mode=0444 ←ファイル BSD.sendmail.distがある。そのパーミッションの設定
./sources ←コメント
.. ←親ディレクトリに移動

▼▼リスト2　mtree(5)によるディレクトリとファイルの構造

Jun. 2016 - 177

▶第31回◀
使ってみようmtree(8)コマンド

　mtree(5)データに記載されていないファイルを
検出して削除する、といったこともできます。次の
ように記載されていないファイルが存在している
と、mtree(8)はそれを検出して報告してくれます。

% mtree -f manifest.mtree -p freebsd
extra: commands/004

　mtree(8)に-Uではなく-rを指定すると、この存
在していないファイルを削除してくれます。

% mtree -r -f manifest.mtree -p freebsd ｶ
extra: commands/004, removed
% mtree -r -f manifest.mtree -p freebsd ｶ
% ←すでに削除されたので何も出力されない

　このようにmtree(5)データとmtree(8)コマンド
を使うことで、ファイルやディレクトリを本来ある
べき状態に保持する、といった操作を実施できま
す。パーミッションや持ち主設定は、管理者が操作
している間に変わったまま放置されていることがあ
ります。ですので、パーミッションが変更されると

問題がある場合などは、cron(8)に登録して定期的
にチェックして不整合が見つかった場合に管理者に
メールで報告する、といったことを実施できます。

◆　◆　◆
　FreeBSDではmtree(8)コマンド以外に、bsdtar(1)、
install(1)、makefs(8)などのコマンドがmtree(5)
フォーマットのデータに対応しています。しかし、
実装はそれぞれのコマンドやライブラリが持ってい
て、サポートしている機能やキーワードにばらつき
があるというのが実態です。
　FreeBSDプロジェクトでは現在、mtree(5)デー
タを操作する統一されたライブラリの開発が進めら
れています。プロジェクトの詳細は「mtree parsing

and manipulation library」注1で確認できます。実装
はGitHub注2にまとまっています。
　これら実装がFreeBSD 11.0-RELEASEまでに
マージされるかどうかは執筆段階では未定ですが、
順調に作業が進めば11.0Rに、遅くとも11.1Rには
マージされるのではないかとみられます。s

注1	 https://wiki.freebsd.org/SummerOfCode2015/mtree
ParsingLibrary

注2	 https://github.com/mratajsky/libmtree

キーワード 内容
uid ユーザID
uname ユーザ名
gid グループID
gname グループ名
mode ファイルパーミッション（数値または文字列）
size ファイルのサイズ（バイト）

time 最終更新時刻。「秒.ナノ秒」で表現。ナノ秒
は9桁の数字

type ファイルの型を指定。block、char、dir、
fifo、file、link、socketを指定可能

link シンボリックリンクの数
nlink ハードリンクの数

nochange ファイルかディレクトリが存在するかどうか
のみをチェックしてほかの属性は無視する

cksum chsum(1)コマンドが出力するチェックサ
ム値

md5 MD5メッセージダイジェスト
md5digest md5の別名
sha1 SHA-1メッセージダイジェスト

sha1digest sha1の別名
sha256 SHA-256メッセージダイジェスト

sha256digest sha256の別名
rmd160 RIPEMD160メッセージダイジェスト

rmd160digest rmd160の別名
ripemd160digest rmd160の別名

flags chflags(1)で指定できるフラグ名
ignore このファイル以降の階層構造は無視する指定

▼▼表1　mtree(5)で使用するキーワード

% mtree -c -p freebsd -k type,uid,gid,mode ｶ
...（略）...
.
/set type=file uid=501 gid=20 mode=0644
. type=dir mode=0755
 Makefile
 typescript.xml

./commands
commands type=dir mode=0755
 001
 002
 003
./commands
..

./sources
sources type=dir mode=0755
 001
 BSD.root.dist
 BSD.sendmail.dist ¥
 mode=0444
./sources
..

▼▼図3　mtree(8)でmtreeフォーマットテキストを生成する例

https://wiki.freebsd.org/SummerOfCode2015/mtreeParsingLibrary
https://github.com/mratajsky/libmtree

178 - Software Design

36 Debian Developer　やまねひでき　henrich@debian.org

ライセンス問題は
ディストリビューションの悩みどころ!?

MicrosoftのSDNは
Debian上で動作！

　Microsoft社のSDN（Software Defined Net

work）である「SONiC（Software for Open Net

working in the Cloud）」がGitHub上でオープン
ソースとして公開されました……とだけ書くと、
「なんでDebianの記事に？」と疑問を持たれる
方も多いかと思います。
　ですが、なんとこのSDNは、Debian上で動
かしている（“Today SONiC runs on Debian”注1）
ということなのです。ユーザが目に触れること
のない、クラウド内部のごく一部とはいえ、
Microsoftが自社のビジネスの核となるMicro

soft Azure内でDebianを利用しているという事
実は衝撃的だったようで、一部のメディアは
「Microsoft has crafted a switch OS on Debian

Linux. Repeat, a switch OS on Debian Linux

（MicrosoftはDebian上で動作するネットワーク
スイッチOSを作成した！　繰り返す、Debian

で動作するネットワークスイッチOSだ！）」と
いう驚きを表す見出しを付けていました注2。

nvidia「バイナリ」
モジュールの削除

　これまでDebianのnon-freeリポジトリに入っ

注1） SONiCのGitHubにて公開されているFAQより。
 URL https://github.com/Azure/SONiC/blob/gh-pages/

FAQ.md

注2） U R L http:/ /www.theregister.co.uk/2016/03/09/
microsoft_sonic_debian/

ていた nvidia-graphics-modulesパッケージ
（NVIDIAのグラフィックチップ用のドライバ）
は、Linuxカーネルのライセンスとの非互換か
ら、Bug#815060にて削除が提案されていまし
た。そして議論の結果、リポジトリから削除さ
れました注3。
　では、NVIDIAのグラフィックチップのハー
ドウェアを持っていて、オープンソースの
Nouveauドライバ注4ではなく、NVIDIA純正の
プロプライエタリドライバが使いたいユーザは
どうするの？というと、同じくnon-freeリポジ
トリに含まれているnvidia-kernel-dkms、ある
いはnvidia-kernel-sourceパッケージを利用す
ることで、今までと同様に利用可能となってい
ます（今回の削除は、あくまでコンパイル済み
のバイナリパッケージの削除、ということです）。
　dkms（Dynamic Kernel Module Support）と
は、ユーザがパッケージ導入時にソースを手元
でコンパイルするという形で利用ができるよう
にしているものです。NVIDIAのドライバのよ
うに、ライセンスがプロプライエタリなカーネ
ルモジュールについては、「バイナリ形式での
配布」はGPL v2（GNU General Public License

2.0）との非互換性により問題があるものの、こ
のdkmsのようにユーザ自身がソースからバイ
ナリをビルドして使う範囲においては問題とな

注3） U R L https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=815060

注4） 「ぬーぼー」と読む。X.Org Foundationと freedesktop.org
によって開発されているフリーなNVIDIAのグラフィックチッ
プ用ドライバ。

https://github.com/Azure/SONiC/blob/gh-pages/FAQ.md
http://www.theregister.co.uk/2016/03/09/microsoft_sonic_debian/
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=815060

178 - Software Design Jun. 2016 - 179

ライセンス問題は
ディストリビューションの悩みどころ!? 36

りません。
　当該バグの議論の中で、ZFS注5も引き合い
に出されていましたが、Debianプロジェクト
リーダーのNeil McGovern氏のブログ注6によ
れば、こちらもdkmsを使ったパッケージを予
定しているようです。

GPLとCDDLを巡るお話

　Debianはディストリビューションなので、
さまざまなソフトウェアライセンスの話を避け
て通ることはできません。さて、今回取り上げ
たNVIDIAドライバやZFSのライセンスは、
Linuxカーネルに使われているフリーソフトウェ
アの代表的ライセンスであるGPLとの組み合
わせでどのような点で問題になるのでしょうか？
　NVIDIAドライバのほうは、ガチガチのプロ
プライエタリライセンスです。これは、Debian

では「non-free」に分類されるもので、改変再配
布ができないなど、GPLと複数の点で明らか
な矛盾があります。
　一方、ZFSは、旧Sun Microsystems社（以下、
Sun）・現Oracle社が所有するSolaris用のファ
イルシステムとして開発されました。オープン
ソース寄りな姿勢になっていたSunがSolaris

を始めとする各種ソフトウェアを独自のオープ
ンソースライセンスで公開した時期があり、こ
の際に作成／適用されたライセンスがCDDL注7

で、ZFSもCDDLの下で提供されています。

GPLとCDDLの違い

　CDDLはオープンソースライセンスである
ことは間違いないのですが、残念ながらCDDL

注5） Solarisで使われているファイルシステム。一時期ソースコー
ドがオープンソースライセンスの下で公開されていた際に、
LinuxやFreeBSDなどほかのOSに移植された。現在は最
新版のソースコードはライセンスが再びプロプライエタリ
なものに変わり、非公開となっている。安定して使いたい
場合はSolarisを使うのが無難で、Linux版で使うとどの程
度うれしいのかは未知数……。

注6） U R L http://blog.halon.org.uk/2016/01/on-zfs-in-
debian/

注7） Common Development and Distribution Licenseの略。
Mozilla Public License（MPL）1.1をベースに策定された。

とGPLの組み合わせには問題があります。
　どのような部分かというと、CDDLの3.1項
で は、「Any Covered Software that You

distribute or otherwise make available in

Executable form must also be made available

in Source Code form and that Source Code

form must be distributed only under the terms

of this License」とあります。この文章のポイ
ントは「only」です。「CDDLライセンスで配布
するバイナリは、ソースコードでも入手できな
ければいけないし、ソースコードはCDDLラ
イセンスの条件のもと『のみ』で配布する必要が
ある」という内容になります。
　このCDDLの文言と、GPL v2の2.b項「You

must cause any work that you distribute or

publish, that in whole or in part contains or is

derived from the Program or any part thereof,

to be licensed as a whole at no charge to all

third parties under the terms of this License」
（プログラムまたはその一部を含む著作物、あ
るいはプログラムかその一部から派生した著作
物を頒布あるいは発表する場合には、その全体
をこのライセンス（＝GPL v2）の条件に従って
第三者へ無償で利用許諾しなければならない）
が矛盾することになります。
　ほかにも、サブライセンス注8はGPL v2では
明確に禁止されているのにもかかわらず、
CDDLでは可能となっている点などもあります。
ZFSのもともとのライセンスであるCDDLに
従いつつ、GPL v2にも従うというのは結構な
無理筋です。
　この矛盾によって、GPLとCDDLの2つの
ライセンスからなるソースコードを組み合わせ
たバイナリは再配布ができません注9。
　この見解は一般的なもので、2010年にOpen

Solarisの公開が停止して以来、ZFS開発を
フォーク（分岐）して進めているOpenZFSプロ

注8） ライセンスを受けた者が、ライセンスされた特許や商標を
さらに第三者にライセンスすること。

注9） 決定的なところは法廷に出て判例が確定しないと言えませ
んが、少なくともそう解釈するのが妥当だと筆者も考えます。

http://blog.halon.org.uk/2016/01/on-zfs-in-debian/

180 - Software Design

ジェクトのFAQには、このライセンス非互換
性の問題が明記されています注10。また、GPL

を策定しているGNUプロジェクトを支援する
フリーソフトウェア財団のFAQでは、CDDL

をGPLと互換性がないライセンスであると紹
介しています注11。
　なお、CDDLでライセンスされたものであっ
ても、Java EEアプリケーション・サーバの
GlassFishのようにGPLの「Classpath例外条
項」注12を明示的に適用して、GPLで配布され
ているJavaライブラリにリンクされるコード
にGPLが適用されないような形にして、
CDDLと矛盾が起きないように回避していた
ものもありました。

UbuntuのZFS問題

　ところが先日、Ubuntu開発元のCanonical社
の開発者Dustin Kirkland氏が突如、「Ubuntu

16.04のコンテナではZFSを使う」旨をブログ
でぶちあげて話題となりました注13。「Ubuntuシ
ステムに、ZFSのカーネルモジュールが自動
的にビルド／インストールされる。DKMSで
ビルドされるモジュールは不要だよ！（You'll

find zfs.ko automatically built and installed on

your Ubuntu systems. No more DKMS-built

modules!）」と、dkmsを使わないことを示唆し
ており、確かにUbuntuのLinuxカーネルのGit

リポジトリにはZFSが含まれています注14。
　これに対して、SFLC注15やSoftware Freedom

注10） URL http://open-zfs.org/wiki/Talk:FAQ

注11） U R L http:/ /www.gnu.org/ l icenses/ l icense- l ist .
html#GPLIncompatibleLicenses

注12） URL http://www.gnu.org/software/classpath/license.
html

注13） URL http://blog.dustinkirkland.com/2016/02/zfs-is-fs-
for-containers-in-ubuntu-1604.html

注14） URL http://kernel.ubuntu.com/git/ubuntu/ubuntu-
xenial.git/tree/zfs

注15） The Software Freedom Law Center。弁護士などの法律の
専門家らがボランティアでFLOSS活動に対する支援を行う
組織。GPL v3の策定に携わったEben Moglen氏らが参加し
ている。今回の件は、 URL https://www.softwarefreedom.
org/resources/2016/linux-kernel-cddl.htmlを参照。

Conservancy注16など、GPLに関するアドバイス
／是正／訴訟を専門に扱う複数の団体が、ZFS

モジュールをバイナリ配布するのは不適切であ
る旨を表明しています。
　彼いわく、「Canonicalでのリーガルレビュー
の結果、問題ないという結論になった。不適切
であるという意見はあくまでも意見だ」注17との
ことなのですが、詳細なロジックが出されてい
ないので、「Ubuntuユーザを無用のリスクに晒

さら

すのではないか」などと、疑念は晴れていない
ようです。
　それにもかかわらず、その後 4月 22日の
Ubuntu 16.04のリリース時点ではカーネルモ
ジュールにZFSが含まれているようです。手
元で確認したところ、zfs.koがしっかりと
Linuxカーネルパッケージ内に存在しています。
　今後、Linuxカーネルの著作権者やZFSの
権利者であるOracleがどのようなアクション
を取るのか（あるいは取らないのか）、争いになっ
たとしてどのようなロジックでこれを退けよう
とするのかに注目が集まります（カーネルモ
ジュールは独立した著作物である、というよう
な論理あたりになるのでしょうか？）。

◆　◆　◆
　Debianでは、先に紹介したようにzfs-linux

パッケージについては、「ソースコードをユー
ザの手元でビルドする」形として配布を予定し
ており、矛盾したライセンスを持つバイナリの
配布を明示的に避けています。早く利用できる
ようになると良いですね。
　なお、DebianでZFSを今すぐ使ってみたい
という場合は、GPLのLinuxカーネルではなく、
BSDライセンスのFreeBSDカーネルを使った
「Debian GNU/kFreeBSD」があり、そちらを
使うという変化球もありますので、ご検討くだ
さい。｢

注16） FLOSS向けの法的援助組織。 URL https://sfconservancy.
org/blog/2016/feb/25/zfs-and-linux/

注17） U R L http://blog.dustinkirkland.com/2016/02/zfs-
licensing-and-linux.html

http://open-zfs.org/wiki/Talk:FAQ
http://www.gnu.org/licenses/license-list.html#GPLIncompatibleLicenses
http://www.gnu.org/software/classpath/license.html
http://blog.dustinkirkland.com/2016/02/zfs-is-fs-for-containers-in-ubuntu-1604.html
http://kernel.ubuntu.com/git/ubuntu/ubuntu-xenial.git/tree/zfs
https://www.softwarefreedom.org/resources/2016/linux-kernel-cddl.html
https://sfconservancy.org/blog/2016/feb/25/zfs-and-linux/
http://blog.dustinkirkland.com/2016/02/zfs-licensing-and-linux.html

Jun. 2016 - 181

普段使っているシェルはbashです。たまにzshを試みますが、やっぱりbashに戻って来てしまいます。他のシェルも魅力的ですが、
変えてみようと思うたびに設定方法調べたり、設定ファイルを作る・試すのが激しく面倒になったり、ある機能が使いたくて移行して
みたら数ヵ月後にbashでも同じ機能が使えるようになったとか……。こういうことが続くとLinuxを触ってる間はbashにココロを捧
げたほうがむしろ楽ではないかと思うわけです。UNIX互換OSを使ううえで一番触れるのがコマンドラインです。zshや tcshをカジュ
アルに選ぶのもイイですし、「一番肌に触れるもの」と肌着を選ぶように慎重にシェルを探すのもLinux環境を使う楽しみの1つですね。

シ
ェ
ル
と
い
え
ば
、「
武
田
久
美
子
の
貝
殻
ビ
キ
ニ
」を
思
い
出
す
傍
若
無
人
な
編
集
長
に

脅
さ
れ
て
、シ
ェ
ル
に
ま
つ
わ
る
マ
ン
ガ
を
書
き
ま
し
た（
そ
ん
な
僕
に
愛
の
メ
ッ
セ
ー
ジ
を
）。

作）くつなりょうすけ
@ryosuke927

先輩、
エスエイチ
（sh）は
何を使って
います？

手放せ
なくって
しばらくは
zshだなー。

ボクのshは
これですよ！　
これこれ！

じつは
f lashです！

いやいや、

やっぱり
世の中cash
やでぇ!!

ところでチミは
「エスエイチ」
って
読むんだね。

えっ？
先輩は
何て読んで
いますか？

「シェ」
かな？

シェル
でも
いいけど。

それじゃ
アーキテクチャ
やん。

「スーパー
エイチ」
とか。

少し
変態

絶対違うし、
読み方じゃ
ないよ！

背景と言っている
ことが全然
合ってないな。

すでにヤケクソ
じゃないですか。
かわいそうに。

いつもアップデート
してそうだな、
ソレ。

脆弱性対応の
アップデート
でね。

何を言って
いるンだ？

dashと
いいたんじゃ
ないですかね？

そういう
チミは
何を使って
いるのかね？

ずっと
bash
一筋
ですね。

shはやっぱり第28回

①③ ②④

⑩ ⑧⑨

⑤

⑥

⑦

182 - Software Design

Ubuntu Monthly Report第74回 Ubuntu Monthly Report

Ubuntu Touchの
日本語入力

Ubuntu Japanese Team／（株）創夢
柴田 充也（しばた みつや）　mail：mty.shibata@gmail.com

Ubuntu Touchの最新リリースであるOTA-10から、待望の日本語入力をサポートするようになりまし
た。今回はこの日本語入力機能が取り込まれるまでの流れと、その簡単なしくみについて紹介します。

　「Ubuntu Touch」はスマートフォン／タブレット向
けに開発しているUbuntuです。本連載ではこれま
でに何度か紹介していますが、簡単にまとめておく
と次のような機能を持っています。

・	 PC向けUbuntuと同等の機能を持つように設定し
たLinuxカーネル

・	コアシステム部分のイメージベースのアップデート
・	次世代ディスプレイサーバであるMirとQt5/QML
ベースのUnity8を使ったインターフェース

・	アプリごとに隔離環境を構築するClickパッケージン
グシステム

・	 Click用のアプリストア
・	デスクトップモードとのシームレスな切り替え

　基本的には用語が異なるだけで、AndroidやiOSの
ような今風のスマートフォンと同じしくみを作ろうと
しています。ただしコアシステムは従来のUbuntuと
同じで、bashもvimもpython3もインストールされてい
ます。もちろん光学ドライブをつなげればejectだっ
て実行できます。管理者権限が必要ならsudoを使い
ますし、SSHサーバも動かせます。APTによるパッ
ケージのインストールは原則として無効化されていま
すが、フル機能のglibcが存在するので必要なバイナ
リをコピーして動かすことぐらいならできます。現在

Ubuntu Touchの
入力メソッド

はまだ実験的ではあるものの、LibreOfficeやMikutter

といったGUIアプリもそのまま動かせます。
　すでにヨーロッパや中国ではUbuntu Touchイン
ストール済みのスマートフォンが販売されています
し、本誌が店頭に並ぶころにはタブレットも販売さ
れていることでしょう。日本でもベンダのオンライ
ンショップから購入可能ではあるのですが、電波法
という制約のためにこれらのデバイスを使うことは
できません。現時点で日本でTouchを使いたいな
ら、Nexus 4やNexus 7（2013）にインストールするし
かありません。
　スマートフォン／ダブレット向けのOSとして開
発を始めたので、普段の入力手段はソフトウェア
キーボードです。正確には「Maliit注1」と呼ばれる入
力メソッドフレームワークをUbuntu用にカスタマイ
ズして使用しています。MaliitはNokia N9をはじめ
としたMeeGo端末で採用されていたフレームワーク
で、もともとプラグインという形で日本語キーボー
ドも開発されていました。しかしながらUbuntu用に
カスタマイズする過程でそれらのプラグインは取り
込まれず、またUbuntu側ではより新しいQt5に移行
したこともあって、プラグインをそのまま使うこと
はできません。
　日本語キーボードがほしいという要望はおもに海
外ユーザから上がっていたものの、誰も手をつけて

注1） http://maliit.github.io/

http://maliit.github.io/

182 - Software Design Jun. 2016 - 183

Ubuntu Touchの日本語入力 第 74 回

いない状態でした。しかも2013年当時、ほかの「第
3のOS」と比較すると日本でUbuntu Touchを使用し
ているユーザはかなり限られていたので、日本人に
よる自発的な実装はあまり期待できません注2。そこで
一念発起して、筆者が実装することにしました（図
1）。イベントで「Ubuntu Touchでは日本語入力でき
ない」ことを伝えるたびに、慈愛と哀れみが相半ばし
た微笑みを返されるのはもう嫌だったのです。

　日本語入力の機能はおもに次の3つのパーツに大
別できます。

① ユーザがかなやローマ字を入力するUI
② 入力した、かなを変換するかな漢字変換機能
③ ①と②の橋渡しをする入力メソッドエンジン（IME）

　たとえばデスクトップ版Ubuntuの場合、①が
Fcitxとツールキットの組み合わせで、②がMozc、
③はfcitx-mozcが担当します。このうちIMEは①と
②を自由に組み合わせられるように作るレイヤです。
よって入力メソッドフレームワークによっては不要
な場合もあります。
　Ubuntu Touchでは①をMaliitが担当し、②と③
は各言語ごとに実装する必要がありました。ただし
②については、既存のかな漢字変換プログラムを使
うため、最低限実装しなくてはならないのは①と③
になります。

かな漢字変換ライブラリの選定

　入力メソッドエンジンの実装内容は、使用するか
な漢字変換ライブラリに依存します。そこでまずは
かな漢字変換ライブラリの選定から始めました。
　当時のUbuntuが標準で使用していたかな漢字変
換ライブラリはAnthyです。また日本語Remixは
13.10ぐらい、本家も15.10からより新しく人気のあ
るMozcを使っています。機能面だけ見るとTouch

注2） 国内でも比較的人気のあったTizenやFirefox OSにSailfish
は、いずれもUbuntuよりだいぶ前に日本語入力機能が実装
されていたようです。

日本語入力部分の
実装

でもMozcを使えるとベストなのですが、おもに実
装までの作業量が多くなりそうだったので、早い段
階から採用を断念していました。
　さらに当時はAnthyの代替として、新しくlibkkc注3

というプロジェクトが現れた時期でもありました。
libkkcは変換精度もよく、Fedoraの標準かな漢字変
換ソフトウェアとして採用されるなど、将来性も十
分でした。実際、Maliitの開発者が来日されたときに
日本語キーボードの実装について相談したのです
が、そのときも「Anthyよりは libkkcの方がいいので
はないか」とアドバイスされました。
　libkkcについてはそもそもDebianパッケージ化さ
れていなかったため、Touchで使うとなるとまずは
Debianパッケージにして公式リポジトリに取り込ん
でもらう必要があります。

MARISA/libkkcのパッケージング

　libkkcは辞書データの保存形式としてMARISA注4

を使用しています。これもDebianパッケージ化され
ていなかったので、まずはこのパッケージングから
始める必要がありました。これ自体は2013年に行わ
れた大統一Debian勉強会で作業して、本誌Debian

注3） https://github.com/ueno/libkkc

注4） https://github.com/s-yata/marisa-trie

図1　設定画面から日本語を選択できる

https://github.com/s-yata/marisa-trie
https://github.com/ueno/libkkc

184 - Software Design

Ubuntu Monthly Report

Hot Topicsでもお馴染みのやまねさんにsponsorに
なってもらって、2014年の1月ぐらいにはリポジトリ
に取り込まれたのです。MARISAはswigを用いて
Python、Ruby、Perlのバインディングも生成してい
ます。それぞれの言語のパッケージングルールや、
MultiArch対応のためのビルドスクリプトのカスタ
マイズに苦労しました。
　MARISAの次はlibkkcのパッケージングです。し
かしながら、そこからリポジトリに取り込まれるまで
は時間がかかりました。ちょうどDebian側の新規パッ
ケージの審査キューがたまっていたこと、リジェクト
されてもすぐに対応できる時間がとれなかったことな
どから、最終的にリポジトリに取り込まれるまで半年
近く経過しています。これが2014年の初夏ぐらいの
話です。
　結果として libkkcが取り込まれるのを待たずに、
Anthyを使ってUIとIMEの実装を先に進めることに
しました。あくまで暫定的な先行実装です。本番で
はあらためて libkkcで実装しなおします。そう心に
誓ったのです。

ビルド環境構築

　まずはMaliitのビルド環境を構築します注5。
Ubuntu Touch用の構築方法はほぼドキュメントがな
い状態だったので、トライアンドエラーで対応する
ことになりました。Maliitはコアコンポーネント部分
をQt5/C++で、UI部分をQMLで実装しています。
C++の部分はクロスコンパイルなりネイティブビル
ドが必要ですが、QMLの部分はアーキテクチャ非依
存ですのでただのコピーでも問題ありません。当初
は実機上でビルドしていましたが、途中からx86エ
ミュレーターが動くようになったので、そちらで試
すようになりました。
　Maliitのフレームワーク部分はmaliit-framework、
UIとIME部分はubuntu-keyboardという名前のパッ
ケージです。今回はUIとIMEの修正だけですので、
ubuntu-keyboardパッケージのみを変更しています。

注5） 本記事での「Maliit」は「Ubuntu Touchのソフトウェアキー
ボード」も意味することとします。

フリック入力の実装

　スマートフォン向けの日本語入力は50音をテン
キーに配置したフリック入力が一般的です。ただし、
とくにタブレットの場合、英字キーボードを用いた
ローマ字入力もそれなりに利用されています。可能
であれば両方実装したいと考えているのですが、今
のところはフリック入力のみ実装しています（図2）。
　もともとUbuntu Touchに実装されていたソフト
ウェアキーボードは英字配列で、記号類はレイアウ
トを切り替えるというタイプでした。また、フリッ
ク入力のような十字のポップアップ機能はありませ
ん。ただし、キーを長押しすると選択肢が出てダイ
アクリティカルマークありの文字を選べるしくみは
存在しました。そこで日本語キーボードではこのし
くみを参考にフリック入力部分を実装しています。
　フリック入力やレイアウト切り替えについては
QMLのみで実装しています。入力したキーに対す
る濁点・半濁点の追加や小書き文字への変更は、
JavaScriptを使いました。レイアウトのカスタマイ
ズだけであれば、テキストエディタでQMLファイ
ルを編集し、システム上のQMLファイルを置き換
えるだけですのでとても簡単です。ただ、Ubuntuデ
ザインを継承しつつ日本語入力に適したデザインに
する部分は苦労しました（図3）。
　とくに未確定文字列（プリエディット）領域の扱い
は、日本語とそれ以外の言語で異なります。たとえ
ば英語の場合、プリエディットは自動補完・自動校正
でのみ使っています。英数字を入力するとプリエ
ディット領域を校正しつつ、補完候補が表示され、
候補を選ぶか英数字以外を入力すると確定というし
くみです。
　つまり日本語のようにプリエディット状態で文字列
の途中を編集できません。編集しようとカーソルを移
動した段階で、確定します。また英語では、一度確
定した単語を編集した場合は未確定状態になります。
この未確定にする単語の区切りは半角空白ですので、
日本語の場合入力した一連の文字を未確定状態にし
ようとして、「長過ぎる」とエラーになります。つまり
そのままだと未確定の文字列も確定した文字列も編

184 - Software Design Jun. 2016 - 185

Ubuntu Touchの日本語入力 第 74 回

集できないのです。タイピングは常に一発勝負とい
う、なかなかスリルのある入力方式です。
　実際のところこのままでは使い物にならないので、
日本語キーボードの場合は自動補完設定の有無にか
かわらずプリエディットを有効にし、プリエディッ
ト状態でのカーソル移動や文字の追加と削除ができ
るように変更しました。また確定文字列を未確定に
変更する機能は無効化しています。

マージリクエストの送付

　2日で1時間ぐらいの作業を1ヵ月ほど続けて、フ
リック入力とAnthyを用いた最低限の日本語入力は
できるようになりました。しかしながら、まだ足り
ない機能があったのと将来的にlibkkcに移行するつ
もりだったのもあって、先にフリックによるかな入
力だけ取り込んでもらうことにしました。Ubuntuキー
ボードのソースコードはLaunchpad上のBazaarで管
理されています。このためGitHubでいうところの
フォーク／プルリクエストのように、Launchpad上で
はブランチマージリクエストを送ります。このマー
ジリクエストを送ったのが2014年の3月ぐらいです。
　リクエストから数日で開発者から「レビューするの
で待ってて」という返事をもらいました。しかしそこ
から12月ぐらいまで、とくに反応がない状態が続き
ます。さらに間の悪いことに、ツールキットの大き

な更新があって、実装を見直す必要が出てきました。
　そのあと、なかなか時間がとれなかったのですが
2015年の夏ごろにようやく再実装が完了し、8月15

日に再度リクエストを出すことができたのです。今
度は前回の状況をふまえて、一度にマージしてもら
えるようAnthy対応部分もセットで提出しました。
前に「本番では libkkc」と書いてあるかもしれません
が、見なかったことにしてください。
　そこからは問題点の指摘とその修正の繰り返しで
す。だいたい1ヵ月に一度ぐらいの頻度でレビュー
があり、指摘事項の修正を行いました。なんか文通
をしている気分です。通算9度の再提出を経て、よ
うやく2月22日に本家に取り込まれました。最初に
リクエストを送付してから1年が経とうとしていま
した。

日本語入力のこれから

　無事にUbuntu Touchでも日本語入力をサポート
するようになったものの、機能としては全然足りて
いません。
　文節の長さの変更やアンドゥといった当たり前の
機能も未実装ですし、記号や絵文字の入力も一手間
必要です。タブレット向けにフルキーボードによる
ローマ字入力も対応しなくてはなりません。Anthyで
はどうしても変換精度が劣るため、libkkcに移行した

いとも考えています。またインターネッ
トを使った変換機能もほしいところです。
　Ubuntu TouchにBluetoothキーボード
を接続すること、デスクトップのような
マルチウィンドウのインターフェースに
切り替わります。このときの入力はハー
ドウェアキーボードを使うことになるの
ですが、このときの日本語入力はまだ未
対応です。
　このようにやらなくてはならないこと
はまだまだ山積みです。もし日本語入力
やソフトウェアキーボードの実装に興味
があるなら、ぜひ開発に参加していただ
ければうれしいです。｢

図2　フリック入力 図3　QMLによるポップアップ

186 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

プ単位でperfのイベントの記録を行うperf_

events Controllerや、グループ内のプロセス
をまとめて freezeする freezer Controllerのよ
うにグループ内のプロセスに対して一定の操作
を行うためのものもあります。
　2008年にLinux 2.6.24で cgroupが初めて
マージされてから、さまざまなsubsystemが導
入されてきましたが、プロセスのグループ分け
を行うコア部分は長らく大きな変化はありませ
んでした。しかし、Linux 4.5においてcgroup v2

という新しい“バージョン”のcgroupが導入されま
した。それまでのcgroup（cgroup v1）と cgroup

v2とではmountの方法も違えば、可能なツリー
の構成も違いますし、同じリソースを制限する
ためにアクセスするファイルの名前も変わって
います。今回は cgroup v1について見たあと、
cgroup v1にあった問題点とv2での解決策、そ
してcgroup v2の使い方を紹介します。

cgroup v1
　では、cgroup v1について見ていきましょう。
前述したようにcgroupではプロセスをツリー
状にグループ分けでき、そのグループはファイ
ルシステムツリーでアクセスできるようになっ

　3月26日にLinux 4.6-rc1がリリースされ4.6

シリーズのデバッグが続き、4月10日に4.6-rc3

がリリースされています。順調にいけば、この
号が出ているころにはLinux 4.6がリリースさ
れているでしょう。
　今回は、Linux 4.5におけるcgroupのv2への
変化を中心にcgroupについて紹介します。

cgroupとは何か
　cgroupとはControl Groupsの略で、プロセ
スをグループ分けし、各グループにリソース割
り当ての制限や、デバイスへのアクセス制限と
いったグループごとのさまざまな制御を可能と
するシステムです。
　グループは階層的構造をとり、グループ階層
はファイルシステムとしてユーザ空間から見え、
mkdirやechoを使ってグループの作成、プロセ
スのグループへの割り当てを行うことができます。
　分類された各グループに、リソース制限など
何らかの操作を行うモジュールをsubsystemと
呼びます。subsystemには、グループの使用メ
モリを制限するMemory Controller、ブロック
I/Oを制限する IO Controllerといった各種リ
ソースを制限するものもあれば、あるいはグルー

Linux 4.5で新たに導入された
cgroup v2への変化
Text：青田 直大　AOTA Naohiro

第51回第51回

186 - Software Design Jun. 2016 - 187

Linux 4.5で新たに導入された
cgroup v2への変化

第51回第51回

ています。まずは、そのファイルシステムツリー
がどこにmountされるのかを見てみましょう。
本来はcgroupのツリーは自分でmountするもの
ですが、現在多くのディストリビューションで採
用されている systemdは自動的に cgroupのツ
リーをmountしています。mountコマンドの出力
からcgroupのものを抽出すると図1のようになっ
ています。
　/sys/fs/cgroupはデフォルトで用意されてい
るcgroupのmountポイントです。1つのツリー
だけをmountするときはここに直接mountすれ
ばよいです。systemdのように複数のツリーを
mountする場合は、ここに tmpfsをmountし、
その下にツリーごとのディレクトリを作成して
それぞれmountするのが一般的です。
　/sys/fs/cgroupの下には systemdによって
“blkio”から“systemd”まで複数のディレクトリ
が作られています（図1）。“systemd”ディレク
トリ以外は cgroupの各 subsystemに対応して
いて、mount optionにもそれぞれのディレクト
リで有効なsubsystemが表示されています。た
とえば、“/sys/fs/cgroup/devices”の行を見る
とoptionが“(rw,nosuid,nodev,noexec,relatime,d

evices)”となっていてdevices subsystemが有効
なツリーであることがわかります。cgroup v1

では、このように各mount pointで有効な sub

systemを選択できます。
　systemdによるmountではほとんどの sub

systemに個別のツリーを割り当てていますが、

中には“/sys/fs/cgroup/cpu,cpuacct”、“net_cls,net

_prio”のように複数のsubsystemが同時に有効
になっているものもあります。これらは役割が
似通っているsubsystemに行われているもので、
たとえば“cpu”は各グループにどれだけのCPU

時間を割り当てるのかを設定できるsubsystem

で、“cpuacct”は各グループが実際にどれだけ
のCPU時間を使っているのかを計測するsub

systemとなっています。
　mount pointの下はどうなっているのか見て
みましょう。/sys/fs/cgroup/devicesの中は図
2のようになっています。“cgroup.*”および“tasks”、
“notify_on_release”、“release_agent”はどのsub

systemにも共通のファイルで、たとえば“cgroup.

procs”は各グループに分類されているプロセス
の IDを保持／設定するファイルで、“tasks”は
各グループに分類されているスレッドの IDを
保持/設定するファイルです。
　“devices.allow”、“devices.deny”、“devices.list”
がdevices subsystemに固有のファイルです。
“devices.allow”と“devices.deny”がそれぞれ、
そのグループのスレッドからアクセス可能なデ
バイスのホワイトリストを設定するためのファ
イルで“devices.list”がそのホワイトリストを読
み出すためのファイルになっています。
　そのほかに“init.scope/”、“system.slice/”、“user.

slice/”の3つのディレクトリがあり、それぞれ
systemdによってグループが作成されています。
“init.scope/”と“user.slice/”の下には systemd

mount | grep cgroup
tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,mode=755)
cgroup on /sys/fs/cgroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/usr/lib/
systemd/systemd-cgroups-agent,name=systemd)
cgroup on /sys/fs/cgroup/memory type cgroup (rw,nosuid,nodev,noexec,relatime,memory)
cgroup on /sys/fs/cgroup/hugetlb type cgroup (rw,nosuid,nodev,noexec,relatime,hugetlb)
cgroup on /sys/fs/cgroup/devices type cgroup (rw,nosuid,nodev,noexec,relatime,devices)
cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatime,freezer)
cgroup on /sys/fs/cgroup/cpu,cpuacct type cgroup (rw,nosuid,nodev,noexec,relatime,cpu,cpuacct)
cgroup on /sys/fs/cgroup/perf_event type cgroup (rw,nosuid,nodev,noexec,relatime,perf_event)
cgroup on /sys/fs/cgroup/net_cls,net_prio type cgroup (rw,nosuid,nodev,noexec,relatime,net_cls,net_prio)
cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,blkio)
cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset)
ls /sys/fs/cgroup
blkio cpuacct cpuset freezer memory net_cls,net_prio perf_event
cpu cpu,cpuacct devices hugetlb net_cls net_prio systemd

 ▼図1　mountされているcgroupツリー

188 - Software Design

Linuxカーネル観光ガイド

の serviceごとにグループが作られています。
そのほとんどは“devices.list”が“a *:* rwm”と
なっていて、すべてのデバイスについて読み／
書き／device fileの作成ができるという状態に
なっています。制限がついている例を見てみる
と、たとえば“systemd-timesyncd”は、/dev/

nullなどの character device（1:3など）と 5:0、
5:2、136:*といった端末のデバイスにだけアク
セスできるように設定されています。
　では、ほかのsubsystemのツリーはどのよう
になっているのでしょうか。cpu subsystemの
ツリーを見てみると、ディレクトリが何も作ら
れていないことから、こちらでは何のグループ
も作られていないことがわかります（図3）。
　このようにcgroup v1では各mount pointでまっ
たく別のグループ分けを行えるようになってい
ます。各subsystemごとにグループを作れるこ
とから、柔軟なポリシー作りが可能となります。
たとえば大学のマシンで、学生にはCPU時間

の30％、教員にはCPU時間の70％を与えるポ
リシーがある状態を想定してみましょう。ここ
に大規模なデータ処理を行うプロジェクトが発
足し、そのプログラムにはメモリの80％が使
えることを保障したくなった場合、1つのツリー
ではうまくグループを作るのが困難です。しか
し、それぞれのsubsystemで別のツリーがあれ
ば簡単にこのポリシーを実現できます（図4）。
　さて、このようにプロセスはそれぞれの
subsystemごとに別のグループに分類され得る
ことがわかりました。この環境では、これらの
ツリーの中で一番細かく分類されているのは
“name=systemd”のツリーになっています。
　“name=systemd”のツリーは“release_agent=

/usr/lib/systemd/systemd-cgroups-agent,

name=systemd”のoptionでmountされていて、
どのsubsystemも有効になっていません。name

=systemdはこのツリーを識別するための
optionで、release_agentはあるグループのス

$ ls -F /sys/fs/cgroup/devices
cgroup.clone_children cgroup.sane_behavior devices.deny init.scope/ release_agent tasks
cgroup.procs devices.allow devices.list notify_on_release system.slice/ user.slice/
$ cd /sys/fs/cgroup/devices
$ ls -F init.scope user.slice
init.scope:
cgroup.clone_children cgroup.procs devices.allow devices.deny devices.list notify_on_release tasks

user.slice:
cgroup.clone_children cgroup.procs devices.allow devices.deny devices.list notify_on_release tasks
$ ls -F system.slice
boot-efi.mount/ devices.allow -.mount/ systemd-fsck-root.service/ systemd-udevd.service/
cgroup.clone_children devices.deny nfs-idmapd.service/ systemd-journald.service/ systemd-udev-trigger.service/
cgroup.procs devices.list nfs-mountd.service/ systemd-journal-flush.service/ systemd-update-utmp.service/
dbus.service/ dev-mqueue.mount/ nfs-server.service/ systemd-logind.service/ systemd-user-sessions.service/
…
$ grep . system.slice/libvirtd.service/devices.list
a *:* rwm
$ grep . system.slice/systemd-timesyncd.service/{cgroup.procs,devices.list}
system.slice/systemd-timesyncd.service/cgroup.procs:707
system.slice/systemd-timesyncd.service/devices.list:c 1:3 rwm
system.slice/systemd-timesyncd.service/devices.list:c 1:5 rwm
system.slice/systemd-timesyncd.service/devices.list:c 1:7 rwm
system.slice/systemd-timesyncd.service/devices.list:c 1:8 rwm
system.slice/systemd-timesyncd.service/devices.list:c 1:9 rwm
system.slice/systemd-timesyncd.service/devices.list:c 5:0 rwm
system.slice/systemd-timesyncd.service/devices.list:c 5:2 rw
system.slice/systemd-timesyncd.service/devices.list:c 136:* rw

 ▼図2　devices subsystemのcgroups

$ ls -F /sys/fs/cgroup/cpu,cpuacct
cgroup.clone_children cpuacct.stat cpu.cfs_period_us cpu.rt_runtime_us notify_on_release
cgroup.procs cpuacct.usage cpu.cfs_quota_us cpu.shares release_agent
cgroup.sane_behavior cpuacct.usage_percpu cpu.rt_period_us cpu.stat tasks

 ▼図3　cpu subsystemのcgroups

188 - Software Design Jun. 2016 - 189

Linux 4.5で新たに導入された
cgroup v2への変化

第51回第51回

レッドが終了し、結果なんのスレッドもそのグ
ループに所属しなくなったときに呼び出される
プログラムです。すなわち、このプログラムを
使って空になったグループを検出し、グループ
の削除を行うことになります。“devices”では
user.sliceの下が分かれていなかったのが、
“name=systemd”ではさらに細かく“user-1000.

slice/session-1.scope”と分かれているように、
このツリーはシステムの全体的なグループ分け
を担当しているようです。
　このようにsystemdではデフォルトではsub

systemによっては細かいグループ分けをして
いませんが、リソースの使用状況を見る設定を
行うとグループ分けが行われます。たとえば
“systemctl edit”で適当なサービスに設定を行
い、該当サービスをrestartするとdevices以外
のツリーにも 各serviceに対応するグループが
作られます。リソースの使用状況は“systemd-

cgtop”コマンドで見ることができます。

cgroup v2
　さて、このようにさまざまなsubsystemが実

装され発展してきたcgroupですが、その進展
のうちにさまざまな問題を抱え、cgroup v2と
して大きな変更が入ることとなりました。まず
はcgroup v1にどのような問題点があったのか
を見ていきましょう。
　最も重要な問題点は、cgroup v1において柔
軟な運用が可能になるといわれていた、システ
ム全体で複数のツリーを持てることにありまし
た。複数のツリーを持てるといっても、あるツ
リーで有効なsubsystemはほかのツリーでは

有効にできないという制限があることから、
freezerやperf_eventのようなどのようなツリー
でも本来使えていいはずの機能もどれか1つの
ツリーでしか有効にできません。もちろん、一
度有効になったsubsystemはツリーが有効な間
は、ほかのツリーでは有効にできないので、結
局systemdがやっているように（いくつかの似
たようなものだけをくっつけて）subsystemご
とに1つのツリーを作るようになってしまいま
す。さらにsubsystemごとに別々のツリーを持
ち得るために、ほかのsubsystemのツリー情報
を使うsubsystemを実装することは難しく、た
とえばメモリと I/Oなどのように関連するsub

CPU root

教員CPU：70% 学生CPU：30%

Mem root

Project A
Mem：80%

CPU+Mem
root

その他
Mem：20%

CPU root

教員CPU：70% 学生CPU：30%

Project A
CPU：100%
Mem：80%

教員
CPU：70%

Mem：100%

学生
CPU：30%

Mem：100%

その他
CPU：100%
Mem：20%

教員
CPU：70%

Mem：100%

学生
CPU：30%

Mem：100%

既存のツリー

単一ツリーの場合

複数ツリーの場合

このような構成で
動く……？

簡単に構成することが
できる

 ▼図4　単一ツリーと複数ツリーの比較

190 - Software Design

Linuxカーネル観光ガイド

systemをきれいに実現するのが困難となって
しまいます。
　2つめの問題はツリーの途中のノードにもプ
ロセスを分類できてしまうことです。途中のノー
ドのプロセスをどのように扱うのかは難しい問
題でそれぞれのsubsystemが別の対応をしてい
ます。たとえば、図5のようなツリーを考えて
みましょう。cgroup v1ではAにもA-1にもプ
ロセスが所属できます。では、AとA-1のプロ
セスにはそれぞれどのようにリソースを割り当
てるべきでしょうか ?　io subsystem 1つとっ
てもその挙動は変化し、使うスケジューラや設
定によって、すべてのノードがフラットである
かのように扱うこともあれば、見えない leaf

nodeを作ってちゃんと階層構造が反映される
ように動くこともあります。このように途中の
ノードにプロセスがあると実装に混乱を招くこ
とになります。
　また、そのほかにもスレッド単位でグループ
分けができるがsubsystemによってはそれに意
味がなく無視されていたり、subsystemごとに
リソース統計用のファイルの名前が変わったり、
その表示方法が変わるなどのインターフェース
の混乱があるという問題もあります。
　この問題点を解決するため、cgroup v2では、

①	システム全体でただ1つのcgroupツリーを

持てるようにする
②	中間ノードにはプロセスを割り当てられな
いようにする

③	スレッド単位ではなく、プロセス単位のグルー
プ分けにする

④	インターフェースの統合と整理

といった変更が行われています。一番大きな違
いが複数のツリーを持てなくなったことである
ことからか、cgroup v2のことを“unified cgroup

hierarchy”と呼ぶこともあります。

cgroup v2の使い方
　cgroup v2にはまだ cgroup v1にあったすべ
ての機能が移植されているわけではありません。
Linux 4.5の時点では I/O、メモリ、プロセス
数制限のみが実装されています（CPUがまだな
んですね……）。そのため、cgroup v1とv2と
は共存できるようになっていて、v1で使われ
ていないものだけがv2で使えるようになって
います。
　カーネルのコマンドラインに“systemd.uni

fied_cgroup_hierarchy”をつけると、systemd

-230以降（執筆時点ではまだ開発中で未リリー
ス）であれば、cgroup v1の代わりにv2でツリー
がmountされます。
　cgroup v2はファイルシステムタイプcgroup2で

root
weight：125

root
weight：125

5%

A
weight：500

21%

A-1
weight：500

21%

A-2
weight：1000

42%

B
weight：250

11%

A
weight：500

leaf_weight：750

A-1
weight：500

13%

root leaf
weight：125

14%

B
weight：250

29%

A-2
weight：1000

25%

A leaf
Weight：750

19%

B
weight：250

A
weight：500

root

A-1
weight：500

A-2
weight：1000

Aの下全体で57% 125÷(500+250+125)=14%

フラットな計算方法：単順にweightで分配

ツリーを尊重する方法：leaf_weightを使って
計算用のツリーを構成

 ▼図5　2つのリソース割り当ての計算方法

190 - Software Design Jun. 2016 - 191

Linux 4.5で新たに導入された
cgroup v2への変化

第51回第51回

mountされます。すべてのsubsystemが1つのツリー
で動作するようになるのでそのほかのmount

optionはありません。ツリーの中を見てみると、
systemdによってグループが作られています。
　“cgroup.controllers”には、そのディレクトリ
までで有効なsubsystemが書かれており、“cgroup.

subtree_control”にはそのディレクトリより下
（subtree）で有効なsubsystemが書かれています。
ここでは“io”、“momory”、“pids”の3つのsubsystem

が利用可能で、subtreeでは“memory”と“pids”
だけが有効になっています。“user.slice/”の中
には、たしかに“memory.*”や“pids.*”といった
ファイルがあるのが見えます。ここで“+<name>”
や“-<name>”を“cgroup.subtree_control”に書く
ことで、subtreeで有効なsubsystemを追加／削
除できます。たとえば“+io”を
書いてみると、“user.slice/”
の下に“io.max”などの io sub

systemのファイルができるこ
とがわかります（図6）。
　上のディレクトリの“cgroup.

subtree_control”を変更しても、
そこから下のディレクトリの
“cgroup.subtree_control”に
は影響はありません。すなわ

ち、現在ツリーのリソース制限は図7のように
働くことになります。また、前述したように
cgroup v2では中間のノードにはプロセスを所
属させることはできませんから、“user.slice/

cgroup.procs”は空ですし、プロセス IDを書こ
うとしてもエラーになっています。
　現状では I/Oとメモリ、プロセス数しか
cgroup v2では動かないため、実用には厳しい
面もありますが、v2での大胆な変更によって
インターフェースが統一され、cgroup v1にあっ
たさまざまな問題が解決しています。これから
どんどん subsystemのv2への移植が進んでほ
しいところです（とくにCPUはドキュメントに
は載っているのに、実物はない状態ですので早
くほしいですね :-)）。｢

root
subtree:io mem pids

system.slice
subtree:mem pids

user.slice
subtree:mem pids

init.scope
subtree:mem pids

user-1000.slice
subtree:mem pids

user-119.slice
subtree:mem pids

たとえば、User.slice下全体
でI/Oは30%、メモリは50%、
プロセス数は1,024個までと
制限できる

user.sliceのsubtreeではI/Oが有効では
ないので、各グループのプロセスはI/Oに
関してはuser.sliceの設定範囲内で自由
に動くことができる

 ▼図7　現在ツリーのリソース制限

mount|grep cgroup
cgroup on /sys/fs/cgroup type cgroup2 (rw,nosuid,nodev,noexec,relatime)
ls -F /sys/fs/cgroup
cgroup.controllers cgroup.procs cgroup.subtree_control init.scope/ system.slice/ user.slice/
cd /sys/fs/cgroup
grep . cgroup.{controllers,subtree_control}
cgroup.controllers:io memory pids
cgroup.subtree_control:memory pids
ls user.slice/
cgroup.controllers cgroup.procs memory.current memory.high memory.max memory.swap.current
pids.current user-1000.slice
cgroup.events cgroup.subtree_control memory.events memory.low memory.stat memory.swap.max
pids.max user-119.slice
echo +io > cgroup.subtree_control
cat cgroup.subtree_control # IO subsystemが有効になった
io memory pids
ls -F user.slice/ # io.max などが増えている
cgroup.controllers cgroup.procs io.max memory.current memory.high memory.max memory.swap.
current pids.current user-1000.slice/
cgroup.events cgroup.subtree_control io.stat memory.events memory.low memory.stat memory.swap.
max pids.max user-119.slice/
cat user.slice/cgroup.procs # 中間ノードにはプロセスが入らない
echho $$ > user.slice/cgroup.procs
-bash: echo: write error: Device or resource busy

 ▼図6　cgroup v2のツリー

192 - Software Design

らモバイル、インフラからサービス、およびビッグ
データ処理と幅広い要素技術が必要となり、さまざ
まな分野やレイヤのプレイヤー同士が協力しあうこ
とが求められます。そこで、プレイヤー間で状況や
課題の共有を図ることを目的としてワークショップ
が開催されました。
　今回のワークショップは、IoTに関連する各分野
の方におもにそれぞれの分野における要素技術につ
いて講演いただき、最後に全員でディスカッション
を行うことで分野を越えた共通の課題を共有すると
いう形で進められました。会場の定員60名はほぼ
埋まり、参加者は技術者が中心でした。しかし、そ
の所属は通信事業者、SI事業者、ハードウェア／ソ
フトウェア製造業、教育機関と多彩で、各方面から
の関心の高さがうかがえました。

■IoTシステム開発とビッグデータ処理

　ワークショップはアラクサラネットワークス㈱の
新善文さんの司会で始まり、はじめに東京大学の江

　今回は、3月に一般財団法人日本インターネット協
会（IAjapan）と一般社団法人日本ネットワークイン
フォメーションセンター（JPNIC）の主催で行った
「IoTネットワークプログラミングワークショップ」
（写真1）について報告します。
　jusは、本イベントの協力団体であるIPv4アドレ
ス枯渇対応タスクフォースに参加している立場か
ら、イベントの告知や講師の推薦という形で貢献し
ました。

	 ■IoTネットワークプログラミングワークショップ

	【日時】2016年3月16日（水）13:30〜17:00

	【会場】東京大学 電気系会議室5

　昨今注目を集めるInternet of Things（IoT：モノ
のインターネット）の世界においては、クラウドか

写真1　会場の様子 写真2　開会の挨拶　新氏（左）と江崎氏（右）

IoTネットワークプログラミング
ワークショップ

多分野の技術者が集結、これからのIoTを議論する

NO.56
June 2016

日本UNIXユーザ会　http://www.jus.or.jp/
松山 直道　MATSUYAMA Tadamichi　ko@soum.co.jp

http://www.jus.or.jp/

Jun. 2016 - 193192 - Software Design

崎浩さんから、開会の挨拶としてワークショップ開
催の背景と目的が説明されました（写真2）。
　続いてアマゾンウェブサービスジャパン㈱の福井
厚さんから、AWS（Amazon Web Services）が提供す
るサービスを活用したIoTシステム開発について、
最初の講演をいただきました。IoTでは各ノードとの
通信を担う中心的な役割としてクラウド上にサービ
スを構築することが多く、IoTが求める要件を満たす
サービスであるAWS IoTの概要を中心に、AWSの
取り組みが紹介されました。
　引き続きビッグデータ処理システムである
Hadoop/Sparkシステムの構築と運用について、
Cloudera㈱のテクニカル・エバンジェリストの嶋内
翔さんにお話いただきました。講演の冒頭で嶋内さ
んが会場に問いかけたところ、すでに実際にIoTに
取り組んでいるという人は会場内にはまだほとんど
おらず、ビッグデータを扱っている人もまだ少数と
いうことにやや驚いておられました。多くの参加者
は、これから取り組むための情報収集を目的として
参加したものと思われます。

■IoTにおける物作りとセルラー通信

　次の講演は少し雰囲気を変えて、Raspberry Piを
使ったIoTの物作りと題して、Japanese Raspberry

Pi Users Groupの太田昌文さんからRaspberry Pi

の紹介と、Raspberry PiでIoTをやってみる際の
Tipsやユースケースなどのお話をいただきました。
おもに学生向けの教育用PCであるRaspberry Pi

は、高性能とは言えませんが低価格かつ頑丈であ
り、IoT用ノードを作る際の入門用としては最適な
素材と言えそうです。
　休憩を挟み、㈱ソラコムの安川健太さんからIoT

におけるセルラー通信活用ということで、ソラコム
が提供する安全なモバイル通信網についてのお話を
いただきました。ソラコムはMVNO（Mobile Virtual

Network Operator：仮想移動体通信事業者）として、
1日あたり10円の基本料金に従量料金を加えた安価
なSIMを販売しており、個々の通信トラフィックは
多くないが多数となるノードを扱うためのIoTプ

ラットフォームを構築するソリューションを提供し
ています。また、モバイルノードの接続先であるソ
ラコムから専用線でAWSほかのクラウドサービス
に直結しており、インターネットを経由せず比較的
セキュアな閉域IoTシステムを作れるところが魅力
と言えそうです。

■IoTとセキュリティ

　最後の講演は、「未来のIoTの姿とあるべきセ
キュリティを考える」と題し、国立研究開発法人産
業技術総合研究所の大岩寛さんから、15年後を見据
えたIoTのセキュリティについてのお話をいただき
ました。今のIoTの形はノードとクラウド上のサー
ビスによるクライアント／サービス型のシステムが
多数並立するものであり、それら相互の横方向の通
信は考えられていないため、IoTというよりは
「Internet of Intranet」となってしまっているのでは
ないか、またプライベートネットワークならセキュ
アだという想定は正しいのか、という問題提起が行
われました。IoTシステム同士が相互に通信しあう
ことで新たな可能性が埋まれることがIoTの本質で
あり、そういった環境をスケーラブルかつセキュア
に実現する方法を考えることが今後15年間の課題
となるだろうという主旨のお話となりました。
　また、この講演のあと、すぐにディスカッション
に入り、IoT機器に設定されたデフォルトパスワー
ドの問題や、長期に渡って設置されるIoT機器に対
するソフトウェア自動更新の問題、IPv6の必要性や
プライベートネットワークの安全性神話などがおも
な課題として共有されました。

■終わりに

　今回は多岐に渡る講演テーマが集まり、いろいろ
な視点の人が意識を共有できた有意義な3時間半
だったと感じました。第一歩として、当初の目的は
達成できたように思います。
　引き続き活動を継続していきたいということで、
最後にIAjapan/ISOC-JPの藤崎智宏さんから挨拶
をいただいて閉会となりました。｢

多分野の技術者が集結、これからのIoTを議論する June
2016

194 - Software Design

開催までの経緯

　小高フリーペーパー制作委員会注1と会津大学
OpenAppLab注2の主催、南相馬市の後援で、会場は
常磐線の小高駅（この付近の常磐線はまだ運行を再
開していません）のすぐ近くにある双葉屋旅館にて
開催されました。
　南相馬市の小高区は福島第一原発から10kmから
20kmの場所にあり、これまで避難指示の対象と
なっている地域です。近いうちに避難指示が解除さ
れる予定になっており、住民の皆さんの帰宅が始ま
ろうとしています。今回のハッカソンはそれにあ
たっての課題を解決するものを作ろうという意図で
企画されました。地元の皆さんに加えて、同じ福島
県の会津若松、宮城県の石巻、そして東京などから
30名ほどの参加者が集まりました。
　「小高区での帰宅後の生活を支援するITサービ
ス」というテーマで、一度住民がすべて避難してし
まった街に再び戻ってくるという特殊な状況の中
で、現地の生活や住民間のコミュニケーションを便
利にするためのWebサービスやアプリを開発しよ
うと参加者が奮闘した2日間でした。

注1	 http://odaka.shosuriki.jp/
注2	 http://www.u-aizu.ac.jp/research/uarc/oal/

　ちなみに、初日のお昼ごはんには地元の小高商業
高校の皆さんが考えたお弁当「復興味わい弁当」が供
されました。豚の生姜焼き、小松菜の煮びたしなど
福島県産の食材が使われたものでした。2日目のお
昼にはおにぎりとカニ汁が供され、カニ汁には相馬
の試験操業で取れたカニと、相馬松川浦の海苔が使
われていました。おいしいごはんは、ご当地ハッカ
ソンの楽しみの1つです。

チームビルディング、
そして開発スタート！

　事前のアイデアソンにて課題抽出が行われてお
り、会場には交通・インフラ、コミュニティ、地域
の情報や観光などの課題について19ものアイデア
の種が貼りだされていました。その中から興味のあ
るものの場所に集まることでチームビルディングが
行われました。こういった課題解決のためのハッカ
ソンでは実際の開発ができるエンジニアの比率が低
いということもよくあるのですが、今回はエンジニ
アの参加も多く、バランスの良いチームビルディン
グになったと思います。
　初日午後の時点では4つのチームができ、各チー
ムごとに部屋に別れて開発が始まりました。まずは
コンセプトを詰めて、場合によっては地元の方にヒ
アリングを行い、開発するものの内容を決めていき

Hack For Japan
エンジニアだからこそできる復興への一歩

南相馬小高ハッカソン第54回
2016年3月5日と6日に福島県南相馬市の小高区にて開催された帰宅支援ハッカソンについてレポートしま
す。Hack For Japanからは及川がメンターおよび審査員として、高橋がプレイヤーとして参加しました。

●Hack For Japanスタッフ
　及川 卓也　OIKAWA Takuya
　 Twitter @takoratta
　高橋 憲一　TAKAHASHI Kenichi
　 Twitter @ken1_taka

ハッカソン参加のいきさつColumn

　2016年の3月でHack For Japanの活動を始めてから5
年が経ち、これまでの活動でさまざまなところでつながり
ができています。今回のハッカソンも2011年4月に会津大
学でミーティングを開催したときのご縁、そして2014年2

月に行われたRace for Resilienceハッカソンの石巻会場
（2014年9月号の本連載にてレポートを掲載）で知り合った
森山貴士さんがその後南相馬に移住して活動されており、
その森山さんが企画したイベントということもあって参加
してきました。このようなつながりを広げ、継続していく
こともHack For Japanの活動の1つだと考えております。

http://odaka.shosuriki.jp/
http://www.u-aizu.ac.jp/research/uarc/oal/

Jun. 2016 - 195

南相馬小高ハッカソン第54回

ます。
　夕食後は引き続き開発を続けるチームや、お酒を
飲みながら歓談する人たちなどさまざまな様子が見
られました。会場が旅館だっため眠くなったら寝る
場所があり、お風呂もあるというのは移動の手間が
なく、また、運営にかかわった皆さんのきめ細やか
な気配りのおかげもあって参加者は安心して開発に
集中することができました。

成果発表

　2日目の午後2時から行われた発表会は数多くの
地元の皆さんも見守る中で行われました。
　実質開発にかけることができた時間は約24時間
で、途中で合体したり、1日目の夜になってから発
生したチームもあり、最終的に発表までこぎつけた
チームは次の5つです。

●●e-またないタクシー
　すでにある「e-まちタクシー注3」をさらに良くし
て「待たない」タクシーにしようと考えたもので、高
齢の方の出かけたい希望をかなえます。電話をかけ
ると自動音声の応答にしたがって「行き先が原町な
ら1」というように電話のボタンを押すことで呼び
出すことができます（写真1）。
　ご近所の信頼基盤を元に隣近所で登録制にしてあ
り、登録した人のところに通知が行き、呼び出した
人と通話をして確認してから行くことになります。
有料だと白タクになってしまうのですが、あくまで

注3	 http://www.shokokai.or.jp/07/0756310003/index.htm

知り合いの互助がテーマなので法律には抵触しませ
ん。本当の目的は車で地域をつなぐことで、世代
間、ニーズ、地域の話題をつなぎ、コミュニケー
ションの交差点となることです。

●●プロジェクトおだかびと
　空き家問題の解決を目指したもので、貸す側には
地域とのつながりがない、すなわち信用のない人に
貸すことへの不安、借りる側には不動産屋がない、
市のサイトの空き家バンクでは情報が少ないという
問題についての取り組みです。
　おだかびとカードと名付けた住民カードで借り手
の信用を担保し、貸し手の不安を解消します。カー
ドにはおだかびとポイントが記録されており、ポイ
ントはたとえば消防団に入ったり、地元のお店で買
物をしたりすることで増えていくようにすること
で、ポイントが高いと信頼できる人ということにな
ります。この住民カードを使ってログインするとよ
り多くの物件情報が得られるしくみを提供すること
ができます（写真2）。

●●シェア馬
　南相馬には、相馬野

の ま お い

馬追のために馬がたくさん飼
われています。その中には気軽に乗馬させてくれる
ような飼い主さんもいたり、G1レースに出場してい
たような名馬もいるのですが、知られていないため
ほとんどの人が関係ない出来事になっているという
現状です。こうした馬の情報を公開したり、乗馬を
予約したりすることで、町の活性化を狙うサービス
として考えられました（写真3）。馬情報シェアリン
グサービスで性別、血統、経歴、競争成績などを表

◆◆写真1　電話の自動応答による呼び出しのデモ ◆◆写真2　住民カードでのログインのデモ

http://www.shokokai.or.jp/07/0756310003/index.htm

196 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

示して乗馬予約のしくみを提供して、機会が少ない
割に維持費が大きく、大きな費用がかかっていると
いう問題を解決するものです。

●●防犯ジョギングツール
　南相馬市では「防犯ジョギング」という活動が始
まっています。見回りを兼ねてジョギングするので
すが、みんなが見回りしたところ、あまり行けてい
ない場所などを可視化して、きめ細かいパトロール
に役立てるしくみです。今回開発した範囲はジョギ
ング時の位置情報を計測、表示するAndroidアプリ
とデータを保存するサーバサイドのAPIで、より多
くの人が通ったメッシュは色を濃く表示することで
可視化しています（図1）。

●●チーム五十嵐 - Hack For Low
　そのままではわかりづらい法律、条例の例文を身
近に感じることができるしくみです（写真4）。
　何かをやろうとしたときに、やって良いことなの
か、許可がいることなのかがわからない……そんな
ときに判例をコンピュータに調べてもらったり、意
見を提案できるものです。処理系にSWI-Prolog注4

を用いて実現しています。

各賞と受賞チーム

　今回のハッカソンでは、審査員を務めた小高ワー
カーズベースの和田智行さんと加賀谷友典さん、そ
してHack For Japanスタッフの及川の3名の名前
を冠した賞と最優秀賞が用意されました。

注4	 http://www.swi-prolog.org/

　各賞の受賞チームは
次のようになりました。

●●小高ワーカーズベー
ス賞

　この賞は、より生活
に密着した近々に困っ
ている課題に取り組ん
だチームに、というこ
とで、「e-待たないタク
シー」に送られました。
賞品は小高ワーカーズ
スペースで作っているガラスアクセサリーでした。
魅力的な仕事と楽しい職場を作ることで若者に戻っ
てきてほしいという、このガラスアクセサリー作り
に賭ける思いとともに賞品が贈られました。

●●加賀谷賞
　この賞は、タイトルの面白さもさることながら、
実際のサービス内容がユニークで面白いということ
で、「チーム五十嵐」に贈られました。審査員の加賀
谷さんは、難しい文章を読むのが苦手なところがあ
るというお母さんの話を例に出し、条文や規約など
とっつきにくい文章をわかりやすく、簡単な問いで
判定してくれるところを高く評価しました。
　賞品は加賀谷さんがプロデュースしたnecomimi

です。本誌の読者ならご存じの方も多いと思います
が、これは脳波で動作する猫耳の形状をした頭に装
着するデバイスです。

●●及川賞
　この賞は、小高で実際に起きている課題を解決で
きることと他地域などへの発展性もあるということ
で、「プロジェクトおだかびと」に贈られました。
　日本のどこの地方都市も人口減少が課題であり、
他地域からへの移住者を誘致しているのですが、地
元に住んでいる人とどのように融和していくかが課
題となっています。まだよく知りもしない人に、た
とえば自分の家を貸すことに対して抱く不安と、地
域にどのように馴染んでいくかその方法がわからな

◆◆写真3　シェア馬の予約画面のデモ

◆◆図1　メッシュ情報の
色の違いによる可視化

http://www.swi-prolog.org/

Jun. 2016 - 197

南相馬小高ハッカソン第54回

期待が述べられました。
　受賞チームメンバーからは、地元の方々と実際の
事業化に向けての話し合いも持ちたいと、今後に向
けての意気込みが語られました。
　なお、最優秀賞の賞品としては、菜種油の石鹸、
ホッキ飯のもと、地元の銘菓、福島県産の米「天の
つぶ」5kgが送られました（写真5）。

総評

　最後に審査員を務めた及川と加賀谷さんから総評
が寄せられました。
　及川は、過去のHack For Japanなどが行った
ハッカソンなどで、実際のニーズを把握できないこ
とがあったことを振り返り、今回住民の皆さんから
の声を反映させて開発を進められたことの意義を改
めて強調しました。また、震災前と同じ街を作るの
ではなく、新しい魅力のある街にするための、この
ような地域外の人と地域の人が継続してかかわって
いく取り組みを高く評価しました。
　加賀谷さんは南相馬出身で今でも南相馬にご実家
があります。小高駅前に来るのは1年半振りだった
そうなのですが、当時と比べると格段に綺麗に明る
くなったと復旧の進展を振り返りました。また、開
催中に安倍首相が訪問したり、NHKでも特集を組ま
れているなど、小高に流れが来ているように感じる
と感想をお話されました。加賀谷さんは、ハッカソ
ンと並行して地元高校生などとともに10年後を見
据えた企画会議を開催していたのですが、この会議
をさらに多くの地域の方や地域外の方と継続してい
きたいと抱負を語られました。s

いという移住者の双方の課題を、日々の活動の中か
ら信用を蓄積していくというユニークなアプローチ
で解決しようという点を及川は評価しました。
　賞品は及川が過去に執筆や監訳などでかかわった
書籍の中からメンバーそれぞれに選んでもらい、そ
れを贈ることになりました。

●●最優秀賞
　最優秀賞は「シェア馬」に決定しました。
　審査は審査員3名で行われましたが、参加者と会
場にいらした地元の方からも最も良かったチームを
選んでいただきました。このシェア馬は会場の方々
からも最も支持されたチームでした。
　「南相馬と言えば野馬追」と言われるくらいに全国
的にも知られている、野馬追のために飼われている
馬の有効活用としてのアイデアが秀逸でした。馬好
きにとっては野馬追に出ている馬に乗れるだけでも
魅力的ですが、その中に過去にJRA所属の馬がお
り、重賞レースでの入賞馬もいるということはかな
りアピールできる点です。さらには、とくに昨今増
えているインバウンドの外国人ツアー客はこのよう
な日本の歴史を感じさせるものを好みます。このよ
うにトータルで考えた場合の可能性は大きく、また
実現可能性も高いということで最優秀賞に選ばれま
した。Webのシステムもすでに実績のある類似サー
ビスを開発したメンバーがいたこともあり、完成度
が高かったことも評価されました。
　審査員の及川からは商品価値の高い野馬追の馬を
活用し、南相馬の魅力を訴え、人を呼び寄せてほし
いとコメントしました。同じく審査員の加賀谷さん
からも、未来に希望を抱かせると今後へのさらなる

◆◆写真5　�審査員の2人と優勝景品を手にするシェア馬チー
ムの皆さん◆◆写真4　南相馬市の条例を例にしたしくみの解説

198 - Software Design

はじめに

　デバッガは、ソフトウェア開
発になくてはならない支援ツー
ルです。1980年代前半のマシン
語開発ではデバッグの開発環境
が十分には整わず、作成→実行
→暴走を繰り返して、苦労して
マシン語プログラミングを行っ
ていました。80年代中盤になっ
てMS-DOSが一般に普及する
と、アセンブラはマクロアセン
ブラM

エムアセム

ASMで、デバッグはDE
BUG.COMとそれに続くSYM
DEB.EXE（シンボリック・デバッ
ガ。以下、S

シ ム デ ブ

YMDEB）を使うこ
とで、なんとかx86アセンブラ
の壁に立ち向かうことができま
した。今回は、このSYMDEB
のお話をしましょう。

マシン語モニタ
からSYMDEBへ

　1980年代の8bitマイコンは
BASIC-ROMの中にモニタ機
能注1を有しており、MONコマン
ドでモニタモードにして利用で
きました。16進データのマシン
語をキーボードから入力し、ダ

注1） マシン語などを直接入力／セーブ／
ロード／実行するモード。

ンプコマンドでデータを確認し
て、実行コマンドで実行すると
入力ミスがどこかにあり暴走。
まず間違いなくデータは消滅し
てしまい、セーブを忘れている
と悲惨で、毎度、そんなことを
繰り返していました。
　当時のマイコン雑誌では、貧
弱なMONコマンドの機能を拡
張したユーザプログラムが数多
く公開されていました。その中
には、簡易なアセンブラや逆ア
センブラの機能を持つものもあ
りましたが、デバッグ機能を持
つものは少なかったようです。
　1983年にMD-DOS 2.0が日
本の16bitパソコンにも搭載され、
MASMを中心としたLINKや
LIBなどの開発ツールが普通に
使えるようになり、デバッグ機
能を持つDEBUG.COMが標準
でMS-DOSツールに入りました。
ただしDEBUG.COMは、前述し
た高機能モニタ程度の機能しか
なく、ステップ実行機能やレジ
スタ表示機能はあるものの、実
行途中で止めて状態を表示する
ブレークポイントがなく、デバッ
ガとしては非力でした。
　1985年にMS-DOS 3.1が登場
すると、そこにはDEBUG.COM
を機能アップしたSYMDEBが

あり、コマンド名のとおりラベ
ルやグローバル変数などのシン
ボルを扱う機能とブレークポイ
ンタ（一時停止位置）機能も追加
され、コマンドラインながら使
えるデバッグツールになってい
ました注2。

SYMDEBの
機能

　EXE形式の実行ファイルは、
SYMDEBでロードするとアド
レスが再配置され、またプログ
ラム修正を行うとアドレスが変
化するので、常にアセンブルリ
ストと首っきりでブレークポイ
ントの設定やメモリ内容の確認・
設定をしなければなりません。
　SYMDEBは、16進数のアド
レスの代わりにラベルや変数名
などのシンボルをそのまま使用
できたので、デバッグ作業の効
率が大きくアップしました。
　ただしシンボルを扱うために
は、プログラム作成時に若干の
操作が必要になります。SYM
DEBでうまくデバッグができる

注2） PC-9801用 のMS-DOS 3.1で は
MASMが拡張ツールとして切り離さ
れ、SYMDEBも標準MS-DOSディス
クには含まれなくなりました。IBM-
PC用のMS-DOS 3.1でも、MASM
ツールとしてMASMとともに
SYMDEBは別売になっています。

温故知新
ITむかしばなし

速水 祐（HAYAMI You） 　http://zob.club/ Twitter : @yyhayami

DEBUGとSYMDEB〜x86
アセンブラの強力な支援ツール〜

第55回

http://zob.club/

198 - Software Design Jun. 2016 - 199

ような、シフトJIS漢字文字列
を表示するプログラムを作成し
てみました。
　MASMでアセンブルしたあと、
ファイル.OBJからファイル.EXE
を作成するためにLINKコマン
ドを使います。その際、/MAP
オプションをつけてシンボリッ
クファイルの元となるファイ
ル .MAPを生成します。

>MASM HELLO.ASM
>LINK HELLO /MAP

　このあと、MAPSYMコマン
ドで、ファイル .SYMを作成し、
このシンボリックファイルを
EXEファイルと同時にSYM
DEBに読み込むことで、シンボ
リックデバッグが可能になります。

>MAPSYM HELLO
>SYMDEB HELLO.SYM HELLO.EXE

　PC-9821Np注3でSYMDEBを
実行しました。逆アセンブルを
したあと、プログラムを実行し
NEXTラベルの位置でプログラ
ムを停止して、レジスタの内容
を表示しています（図1）。
　ここまでできると、かなり楽
にデバッグ機能を使いこなせる
ことになります。

Windowsの中に
あるDEBUG.EXE

　Windows 7（32bit版）まで、DE
BUG.EXEが入っています。コ
マンドプロンプトから、

注3） PC-9821Np。筆者が最近復活させ
PC-9821の調査のために活用してい
るノートパソコン。Intel DX4 75
MHz 640×480 PEGC:プレーンア
クセスモードとパックドピクセルモー
ドという2種類のモードを持つ数少
ないPC-98です。

>debug

で起動します。簡単なx86マシ
ン語プログラミングを試してみ
ることができます。?コマンドで
使用できるコマンド一覧が表示
されます。また、aコマンドで直
接、アセンブラプログラムを入
力できるようになります。

-a
0B14:0100 mov ah,9
0B14:0102 mov dx,10c
0B14:0105 int 21
0B14:0107 mov ax,4c00
0B14:010A int 21
0B14:010C db 41,42,43,24
0B14:0110 ｶ
-g

　数値はすべて16進数注4です。
「int 21」は、MS-DOSのファン
クションコール（機能呼び出し）
でWindows上でも動作します。
ahレジスタにファンクションコー
ルのコードを入れてからint 21
を実行することで、さまざまな
MS-DOSの機能を呼び出せま
す。たとえば「ah=9」は文字列表
示のファンクションコールでdx
レジスタに文字列の先頭アドレ
スを入れてからコールします。
文字列の最後は「$」（コード：
0x24）になります。プログラムを
終了するには、「ah=0x4C」を入
れ、alレジスタに終了コード（正
常終了は0）を入れて実行します。
　プログラムの入力が完了した
ら、改行キーだけを入力すると
プロンプトに戻ります。gで実行
できます。プログラムが暴走し
てリセットしなければならないと
いう悲惨な目に遭わないように（短
いプログラムなので入れ直せば
注4） 各行の先頭の「0B14」はコードセグメ

ントでマシン環境によって異なりま
す。

よいが）、uコマンドで逆アセン
ブラ表示をすることで正しく入
力できたかどうかを確認してか
ら実行した方がよいでしょう。
　文字列「ABC」が表示されれば
正常に動作しています。30年前
のアセンブラプログラムを経験
することに、ぜひチャレンジし
てみてください。

SYMDEBの
その後

　x86系のデバッガは、Windows
の前に一時期流行ったテキスト
ベースの統合環境で動作する
「CodeView」へ発展して、Win
dowsの時代になってからは
「Visual Studio」へとつながり、
デバッガを意識しないデバッグ
環境が当たり前になったのです。

終わりに

　現在は便利に使えるデバッグ
環境がありますが、それに大き
く頼るようなコーディングは改
める必要があるかもしれません。
仕様・設計をしっかり固めて、
資料を深く理解して慎重に見通
しの良いプログラムを記述すれ
ば、デバッガの必要度は低くなり、
信頼性の高いプログラム作成に
つながるはずです。｢

 ▼図1　SYMDEB画面

温故知新 ITむかしばなし
DEBUGとSYMDEB〜x86アセンブラの強力な支援ツール〜

第55回

200 - Software Design

うまくいく チーム開発のツール戦略

 Author リックソフト㈱　阿部 賢一（あべ けんいち）、大塚 和彦（おおつか かずひこ）

Bitbucket Server＋SourceTreeで快適Git環境！第 回2

前回はメールとJIRAとの連携によるプロジェ
クト管理を説明しました。今回は、ソースコー
ド管理・バージョン管理について説明します。
最近、「D

デ ブ オ プ ス

evOps」という言葉を耳にします。こ
れは「開発（Development）」と「運用（Operations）」
を組み合わせた言葉であり、開発と運用が連携
して協力する開発手法の1つです。DevOpsを
実現する要素として「ソースコード管理」「バー
ジョン管理」「構成管理」などが必要といわれて
おり、これらの要素をカバーするのが「バージョ
ン管理システム」です。近年では集中型リポジ
トリのSubversionから、分散型のG

ギット

itが主流に
なりつつあるので、まずはGitのメリットや有
効に活用する方法の紹介をします。

Gitのメリット

Subversionに対するGitの最も大きな利点は、
ローカルリポジトリで作業できることと、マー
ジが簡単なことです。

●	ローカルリポジトリ上で作業できる
各個人は、リモートリポジトリをクローン（リ
ポジトリをまるごと複製すること）したローカ
ルなリポジトリで作業します。これにより、ほ
かのメンバーを気にせず作業でき、外部にアク
セスしなくてよいので軽快に作業ができます。
コミットツリー編集機能を使えば、最終的
に共有する前に作業内容を整理できるため、コ
ミットやブランチの作成などを気軽に行えます。
またGitは分散型なので、リモートリポジトリ

の負荷集中を避けられるというメリットもあり
ます。

●	マージが簡単
Gitではブランチ作成とマージがとても簡単

です。ブランチを作る目的の1つは、メジャー
バージョンアップやカスタマイズ案件などに向
けた開発ツリーの分岐です。このケースはあま
りマージが発生しないため、Subversion時代
も普通に行われていました。
もう1つはチーム開発で重要な目的で、複数
の開発者が安全に効率よく並行開発できるよう
にすることです。機能追加、修正のときに必ず
ブランチを切るようにすることで、ほかのメン
バーによる変更との衝突チェックの煩わしさな
しに、頻繁にコミットできます。積極的なコミッ
トは、コードレビュー時や不具合個所の追跡時
にとても役立ちます。

SubversionからGitへの
スムーズな移行

GitはもともとSubversionの使いにくいとこ
ろを改良し、良いところを伸ばす方針で開発さ
れたものなので、Gitを利用するとコードを書
くことにより集中できるようになります。
とはいえ従来のバージョン管理システムに慣

れた開発者が乗り越えなければならない壁（考
え方の違い）が確かに存在します。チームや社
内全体にひろめていくためには、Gitの使い勝
手を良くするツールは必須と考えてよいでしょ
う。次に紹介するBitbucket Server（Gitリポジ

うまくいく
チーム開発のツール戦略

Catch Up Trend

200 - Software Design Jun. 2016 - 201

Bitbucket Server＋SourceTreeで快適Git環境！ 第 回2

トリ管理）、SourceTree（Gitクライアント）の
ようなサポートツールを使うことで、移行のハー
ドルはずいぶんと低くなります。

Bitbucket Server

Bitbucket ServerはマスタGitリポジトリの
管理などの機能を備えた便利なツールです。
Gitリポジトリにプロジェクト階層を導入し、
開発プロジェクト単位で管理できるようにしま
す。プロジェクトにはアクセス権限を設定でき、
さまざまな関係者が混在する大規模プロジェク
トでもセキュリティを確保した開発が可能です。
開発者目線で注目したいのは、プルリクエス
ト（通称プルリク）やコードレビューの支援機能
です。プルリクとは、プライベート環境で行っ
た変更のマージをマスタに要求することです。
これはコードレビューを行うのにちょうどよい
タイミングであり、レビュー対象としてもほど
よい粒度です。また、コードレビューの支援機
能としては、レビュアの承認機能やインライン
ディスカッション機能があります。ソースコー
ドにインラインでコメントを追加し議論するこ
とで、ソースコードと紐づいた形で議論が残る
ため、将来の修正で役に立つでしょう。

Bitbucket Serverはプロジェクト管理システ
ム（JIRA）と統合されており、よく使われる機
能をJIRAの課題上から操作できます。課題画
面の開発セクションには、ブランチやコミット、
プルリクなどの情報、操作リ
ンクがあり、課題ごとの実装
状況（実装中、レビュー中など）
が一目でわかります。問題発
生時には、課題→プルリク→
頻繁なコミット→ソースコー
ドの該当個所と、段階的な追
跡が可能になります。
ほかにもセキュリティの考
慮などさまざまなサポートが
ありますが、詳しくは過去記
事（http://gihyo.jp/dev/seri

al/01/project_manager_tool/0003）をお読み
ください。

SourceTree

ローカル環境でGitを用いてソースコードを
管理する方法の1つはコマンドライン操作です
が、それなりに覚えることが多く、Gitの概念
をよく理解していないと扱いづらいです。ここ
では、アトラシアン社が無料で提供している
GitクライアントアプリケーションであるSource

Treeを紹介します。
SourceTreeはBitbucket Serverと親和性が

高く、グラフィカルなUIを持っています。単
体としてもよくできたGitクライアントで、コー
ドを書くことに集中できます。
たとえば実装を始める際は、まずサーバにあ

るリポジトリをローカル環境にクローンします
が、SourceTreeではクローン作成操作時にリ
ポジトリ一覧が表示されるので、それを選ぶだ
けで準備が完了します。よく使う機能はツール
バーとして前面に出ているので、基本的な操作
に迷うことはないでしょう。使用頻度の低い機
能ももれなくサポートしているので、入門者だ
けでなく熟練者にもお勧めです。

SourceTreeの画面には、ブランチ構造やブ
ランチ名、コミット履歴などが見やすい形で表
示されます（図1）。チーム開発ではコミットツ
リーの出入りが激しくなるので、状況を逐一理

 ▼図1　SourceTree

http://gihyo.jp/dev/serial/01/project_manager_tool/0003
http://gihyo.jp/dev/serial/01/project_manager_tool/0003

202 - Software Design

うまくいく チーム開発のツール戦略

解するための視覚化は重要です。
また、SourceTreeは変更内容を一時的に保

存するスタッシュコマンドもサポートしていま
す。Git操作が正しいか不安になりがちな入門
者にとっては、とりあえず変更個所を保存でき
るスタッシュコマンドはたいへん心強い存在で
す。スタッシュ一覧や、保存内容の差分表示な
どは便利で手放せません。

使ってみる

バージョン管理システムとプロジェクト管理
システムの連携によって実装作業がどのように
効率化されるかを、実際に少人数のアジャイル
開発を行っている現場の開発作業の実例を交え
て説明します。まずは、実装準備フェーズです。

0. 今やるべき課題を見つける

始めに、課題の一覧やカンバン、スクラムボー
ドから次に手を付ける課題を選び、課題を表示
します（図2）。

1. JIRAチケットからトピック
	 ブランチを切る

トピックブランチを切り、選択したJIRA課
題を解決する実装を行います。JIRA課題の開
発セクション（課題画面右下）にある「開発」→「ブ
ランチを作成」をクリックすると、Bitbucket

Serverのブランチ作成ページが表示されます。
Bitbucket Serverから課題をたどれるように、

課題キー（ここではGY-1）をブランチ名に残し
ておきましょう。ブランチの作成が成功すると、
新規に作成されたブランチのファイル一覧画面
が表示されます。JIRA課題からBitbucket

Serverへの移動を意識せずにブランチを切る
ことができます。

2. SourceTreeでブランチを	
	 チェックアウト

次に、サーバ側に作成したブランチをローカ
ル環境にチェックアウトします。SourceTree

のツリー画面で、リモート階層以下にあるブラ
ンチGY-1を右クリックし、チェックアウトを
選びます（ブランチが表示されない場合は、メ
ニューから「リモートのステータスを更新」を実
行します）。チェックアウトしたファイルの場
所は、サイドバーでリポジトリを選択し、ツー
ルバーのExplorer（Windows環境の場合）をク
リックすると取得できます。
これで実装の準備が整ったので、ローカル環

境で実装を行っていきます。

3. ソースコードを編集&コミット

ソースコードを IDEやエディタで編集して
いきます。意味ある変更ができたら積極的にコ
ミットします。コミット一覧画面上の「コミッ
トされていない変更があります」を選択すると、
未コミットの変更内容が表示されます。コミッ
ト対象に含めたいファイルにチェックを入れる
と「Indexにステージしたファイル」に項目が移

動します。差分表示画面の「Hunkをス
テージへ移動」ボタンで、ファイル内の
変更の一部のみをコミット対象とする
こともできます。
コミットは、「ファイルステータス」

タブでコミットメッセージを入力し、
コミットボタンを押すと実行されます。
サーバにプッシュされたコミットは、
JIRA課題画面にすぐに反映されます。
課題の要件を満たす実装を終えたら、

次に、レビューの準備のためにプルリ

 ▼図2　JIRA課題画面と開発セクション

202 - Software Design Jun. 2016 - 203

Bitbucket Server＋SourceTreeで快適Git環境！ 第 回2

クを作成します。

4. Bitbucket Server：
	 プルリク発行

SourceTreeのブランチを右クリッ
クして表示されるメニューから、プ
ルリクエスト作成画面へ移動します
（JIRA課題からもプルリクを発行で
きます）。プルリクエスト作成画面
では、このブランチで行った作業内
容を記述し、レビューを依頼するメ
ンバーを指定して、「作成する」ボタ
ンをクリックします。これでオンラインレビュー
の準備が完了しました。
もしマスタ側と衝突が発生していれば、プル
リク画面に目立つ形で警告表示されます。その
場合は、SourceTreeでマスタを選択して作業
中のブランチにいったんマージし、衝突個所を
修正します。プルリク画面をリロードすると、
衝突が解消されたかどうかがわかります。

5. Bitbucket Server：
	 レビュー実施

プルリクエスト全体に対するコメントのやり
とりや、ソースコードが差分表示されたビュー
へのインラインコメント機能を通してレビュー
を行います。私たちはBitbucket Serverでオ
ンラインレビューした後に、必要があれば
Face-to-Faceで追加レビューします。オンラ
インレビューで問題点、問題個所が明確になっ
ているので、Face-to-Faceレビューに必要な
時間はわずかです。

6. Bitbucket Server：
	 プルリクの承認

レビューメンバーは、プルリクエストに対し
て最終的に承認または却下の意思表示を行いま
す。最後に承認したメンバーが「マージ」ボタン
を押して、マージを行います。これで実装作業
の1サイクルが終了します。
チーム開発では、このサイクルを複数個同時
に走らせることになりますが、このプロセスは
破綻することなく機能します（図3）。

最後に特殊なプルリクについて紹介します。
私たちは実験や調査のために、最終的にマージ
を目的としない、一般にWIPプルリクと呼ば
れるプルリクを作成することがあります。この
プルリクを使って、実装前に調査結果について
議論したり、実装方法について助けを求めたり
といった使い方をします。軌道修正を早めに行
える、衝突の発生を早めに知ることができるな
どのメリットがあります。

まとめ

Gitによって手軽になったブランチやマージ
を活用することで、複数のチーム開発者が迅速
かつ安全に並行開発できます。さらに、
Bitbucket Serverでプルリク時にオンライン
コードレビューを行うことによって、大幅なレ
ビューコストの削減、品質向上が得られます。
実装工程で蓄えたコミットコメント、レビュー
コメントなどの資産は、問題発生時の原因追跡
にもたいへん効果があります。ソフトウェア開
発のみならず、コードレビューを含めた効率の
良いチーム開発が必須となる、たとえばハード
ウェアのフロントエンド設計などの分野でも有
効でしょう。
次回は、開発中に蓄積したチケットとブランチ、

コミットとの紐づけ、細かなコミットを活かして、
現行サービスに問題が発生した場合に、いかに
解決するかについて説明していきます。ﾟ

 ▼図3　複数開発者による並列開発

204 - Software Design

　「U-22プログラミング・コンテスト2016」の開催が決
定、Webサイトがオープンした。
　本コンテストは、優れた才能を持ったイノベイティブ
なIT人材の発掘と育成、単にプログラムのできる人材で
はなく、アイデアに富んだソフトウェア開発に取り組む
人材の発掘を目的として開催されてきた。今年のキャッ
チフレーズは「未来を拓く創造力！　プロをうならせる
アイデアと技術」。昨年に引き続き、「プロダクト」「テ
クノロジ」「アイデア」の3つの評価ポイントにより審査
される。
　参加資格は日本国内に居住する1994年4月2日以降に
生まれた個人やチーム（チーム参加の場合、同じ学校に

所属する学生であれば23歳以上のメンバも参加可）で、
募集する作品は、未発表または2015年9月1日以降に発
表したオリジナル作品。

「U-22プログラミング・コンテスト2016」開催決定

U-22プログラミング・コンテスト2016
URL http://www.u22procon.com

CONTACT

グレープシティ㈱　URL http://www.grapecity.com
CONTACT

アイレット㈱　URL http://www.iret.co.jp
CONTACT

　グレープシティは複数のExcelファイルを1つにまとめ
る集約作業を自動化するクラウドサービス「Masume（ま
すめ）」を4月20日に提供開始した。
　Masumeでは、集約したいExcelファイルをブラウザ
からアップロードするだけでExcelシート内の集計対象
となるセルを認識し、1つのテーブル（表）に集約、デー
タ集計まで行う。そして集計結果は、再利用可能な
ExcelファイルとしてMasumeからダウンロードできる。
従来の運用フローやフォーマットとして使っている
Excelを変更する必要はなく、Webブラウザだけですぐ
に利用できる。さらに、操作体系や画面はExcelに合わ
せられているため、学習負担も少ない。

　本サービスはInternet Explorer、Microsoft Edge、
Chrome、Safariなどの最新ブラウザに対応している。
料金体系は月額制で、3,980円／月のライトプラン（5ユー
ザでストレージを500MBまで利用可能）と、7,980円／
月のスタンダードプラン（10ユーザでストレージを
10GBまで利用可能）の2つがある。
　同社が提供している、Excel感覚で手軽にWebアプリ
を開発・運用できるツール「Forguncy（フォーガンシー）」
とともに、社内のExcel業務をカイゼンできるだろう。

グレープシティ、
クラウドサービス「Masume」を提供開始

　4月15日、dots.イベントスペース（東京都渋谷区）にて、
オンプレミスのシステムエンジニア向けの座談会形式セ
ミナー「システムエンジニアの『キャリアを考える』座談
会」がアイレット㈱cloudpack事業部主催で開催された。
　週刊BCN編集長の畔上文昭氏による基調講演から始ま
り、アイレットディビジョンリーダの石田知也氏がこれ
までの実体験に基づいたクラウド導入の奮闘の歴史を講
演した。その後、週刊BCN編集委員の谷畑良胤氏をファ
シリテータに「クラウド環境で働くエンジニアに必要な
スキルは何か」「オンプレミスとクラウドでのスピード
感の違い」など現場ならではの話題をテーマに座談会が
行われた。

アイレット、
「システムエンジニアが、クラウド業界で活躍するには？」
座談会開催

▲▲左からcloudpack事業部　
菊池 康之氏、岸上 健太郎氏

●●開催スケジュール（予定）

4月1日 応募要領発表／2016年版公式Webサイト開設

7月1日～8月25日 応募受付期間

8月～9月 事前審査、一次審査

10月2日 最終審査会・特別講演・各賞発表

10月3日 経済産業大臣賞・商務情報政策局長表彰式

▲▲左からcloudpack事業部　比嘉 東一郎
氏、武川 努氏、㈱BCN　谷畑 良胤氏

http://www.u22procon.com
http://www.grapecity.com
http://www.iret.co.jp

204 - Software Design Jun. 2016 - 205

Vivaldi Technologies　URL https://vivaldi.com
CONTACT

日本電信電話㈱　URL http://www.ntt.co.jp
CONTACT

ウェブルート㈱　URL http://www.webroot.com/jp/ja
CONTACT

　Vivaldi Technologiesは4月6日、同社が開発するWeb
ブラウザの正式版「Vivaldi1.0」をリリースした。
　Vivaldiは、Opera Softwareの創設者兼CEOであったヨ
ン・スティーブンソン・フォン・テッツナー氏によって
立ち上げられたVivaldi Technologiesが開発を行ってい
る、ChromiumベースのWebブラウザ。おもな特徴は次
のとおり。

・タブの位置や移動の挙動などをカスタマイズできる
・タブをグループ化できる「タブスタック機能」
・ショートカットが豊富で、キーボードでの操作も快適
・「Webパネル」で複数のWebページを同時に閲覧可能

Vivaldi Technologies、
Webブラウザ「Vivaldi1.0」をリリース

　日本電信電話㈱（NTT）のネットワークサービスシス
テム研究所は4月12日、新サーバアーキテクチャ
「MAGONIA」を発表した。
　MAGONIAはNTTの通信系システムのノウハウを活か
した基盤技術（ミドルウェア）で、分散処理に強みを持つ。
分散サーバ（物理サーバ、VM、コンテナ含む）上に本ミ
ドルウェアを導入することで、その上に載せるアプリ
ケーションを大きく変更することなく、スケーラビリ
ティや信頼性、リアルタイム性に優れたシステムを開発
できる。MAGONIAは現状、Linuxのうえで稼働するこ
とを前提としており、公開されているAPIをアプリから
呼び出す形での利用となる。

　MAGONIAの分散処理基盤では、現用系（処理中）の
サーバが同時にほかのサーバのデータを冗長化して持つ
予備系も兼ねる「N-ACT型クラスタ」を採用しており、
あるサーバが故障してもすぐにほかのサーバが処理を引
き継ぐことができる。㈱NTTデータが開発を進める「渋
滞予測・信号制御システム」の処理基盤に採用され、交
通シミュレーション中にサーバが故障しても、複数の
サーバに迅速にフェイルオーバーして分析を継続できる
ことが確認できているという。

日本電信電話、
サーバアーキテクチャ「MAGONIA」を発表

　ウェブルートは4月19日、「ウェブルート脅威レポー
ト2016」を発表した。
　「ウェブルート脅威レポート」は同社が毎年発行して
いるセキュリティレポート。「Webroot Threat Intelli
gence Platform」が検知する270億以上のURL、6億以上
のドメイン、40億以上のIPアドレスの分析結果を基にし
ている。おもな調査結果は次のとおり。

・ マルウェアやPUA注1の圧倒的多数がポリモーフィック
型で占められるようになり、マルウェアの97%がエ
ンドポイントごとにユニークな形に姿を変える

・ ウェブルートのユーザが1年間にゼロデイフィッシン
グサイトの攻撃を受ける確率は約50%で、2014年の
約30%から上昇

・ 2015年後半の新規または更新アプリのうち52%が
PUAもしくは不正なアプリであり、その割合は21%
に過ぎなかった2014年から大幅に上昇

・ 不正なIPアドレスが最も生成されている国のトップ
10に日本がランクイン（3位）、全体に占める割合は
6％に大きく上昇

ウェブルート、
「ウェブルート脅威レポート2016」を発表

▲▲公式ページを閲覧。サイドバーにあるWebパネルではGoogleを閲覧

注1） Potentially Unwanted Applications：ユーザの個人情報やセキュ

　　
リティを侵害する可能性があるプログラム。

https://vivaldi.com
http://www.ntt.co.jp
http://www.webroot.com/jp/ja

206 - Software Design

SD読者アンケートについてご注意！
読者アンケートに答えていただくには弊社サイト「gihyo.jp」でのアカウント登録、または
Google・Yahoo!Japan・Facebookといった外部サービスからの認証が必要なのですが、
「名前が苗字のみ／ローマ字表記である」「住所が途中まで」など、登録情報が不完全の読者の
方は、コメント採用・プレゼント抽選から外れてしまいます……。心当たりのある方は、お
手数ですが登録情報の確認・更新をお願いします。

C言語、Java、C#、Ruby、フロントエ
ンド言語（JavaScript+HTML+CSS）につ
いて、それぞれの言語のベテランエンジ
ニアが、“今すぐ実践できる”プログラミ
ングのテクニックを紹介しました。脱初
級者、目指せ中・上級者！

普段はJavaでしか開発をしていませ
んが、ほかの言語でも参考になること
が多いので勉強になりました。
 binaさん／東京都

最近Rubyを触っているので「他言語か
らRubyに来たユーザのハマりどころ」
というテーマはとてもタイミング良く、
勉強になりました。あとはJavaのラム
ダ式。そして最近の流行らしい、null
で死なない言語仕様。C99での「//」の
コメントやgetsの廃止などがおもしろ
かった。いろいろ進化するものですね。
 atachibanaさん／東京都

良い書き方って人によって違うから、
教育する立場だと書き易さよりも可読
性を優先してるけど、それで良いのかなっ
て思ってる。 ももんがさん／静岡県

Javaの章を読みました。基本的な事項

ですが、ためになりました。
 山崎さん／神奈川県

Javaの仕事は1.4時代のメンテばかり
なので仕様の変化を追いかけていな
かったが、いろいろ仕様が変わってい
て勉強になった。この特集は、言語仕
様に左右される部分はあるものの、言
語を問わず本質的に伝えたいことは変
わらないと思うので、今年の新人に読
ませたい。 隼さん／岩手県

メインで使っているPHPがないのが残
念でしたが、C#もJavaScriptも書
くので参考にさせていただきました。
 hiroさん／神奈川県

ただの書き方ではなく、“良い”書
き方ということで、ためになった

という声が多く寄せられました。ただ、
PHPの章も欲しかった……という声が（本
当に）多かったです。

オブジェクトストレージは、APIでファ
イルをシンプルに出し入れできる新しい
ストレージの形。本特集では、オブジェ
クトストレージのしくみ、OpenStack

Swift・Cephのアーキテクチャを解説し、

そして3つのオブジェクトストレージ
サービスを紹介しました。

基本から書かれていて、わかりやすく
て良い。 田伏さん／愛知県

大容量データの保存に適しており、いず
れ活用したいと思っていたところだった
ので、グッドタイミングでした。
 オミオさん／宮城県

Amazon S3などのオブジェクトスト
レージについて、そろそろ使いたいなと
思っていたところでしたので、ちょうど
ぴったりでした。 菊地さん／愛知県

オブジェクトストレージという単語を
聞いたことはあったのですが、よく知
らなかったため、概要を知る良い機会
になりました。 橿山さん／埼玉県

名前を聞いたことがある、まさに
今使いたいと思っていたなど、エ

ンジニアの中でも認知度が高まっている
ようでした。システムを開発するとき、
0から何かを作り上げるのはできるだけ
避け、積極的に外部サービスを利用しよ
うとするのは最近のトレンドですね。

2016年4月号について、たくさんの声が届きました。

第1特集
良いプログラムの書き方

第2特集　オブジェクトストレー
ジの教科書

206 - Software Design Jun. 2016 - 207

2016年2月号第2特集「適切なLANケー
ブリングの教科書」で紹介しきれなかっ
た「光ファイバ」「ラック・電源」につい
て、あらためて特集しました。

◆その1　光ファイバの知識
光ファイバの規格、光モジュールと光
コネクタの関係、配線の注意事項につ
いて解説しました。

自分では触らないので、むしろ興味があ
りました。 タブレットほしいさん／奈良県

ちょうど仕事で関係する分野なので、た
いへん助かりました。 中山さん／東京都

Software寄りの雑誌で物理エンジニ
アの知識が学べるのは良い。
 raihennさん／東京都

◆その2　ラック選定・電源の知識
ラックについては、その各部の名称、購
入方法、機器搭載の注意事項を、電源に
ついてはPDU、給電方式、UPSなどに
ついて解説しました。

使い勝手が改善される点、興味深い。
 鳥居さん／愛知県

データセンターのラック内に機器が配置
されるまでには、いろいろな考察を経て

いるのだと実感しました。
 永作さん／東京都

ラックの設置にまで議論がおよぶので
あれば、「接地」についても触れてほし
いと感じました。 鈴木さん／熊本県

仕事に関係がある／まったく関
係がないと読者の声が割れまし

た。IT系企業でも、社内ラックを持た
ない、データセンターに立ち入らない
といったところが増えているのでしょ
うか。ただ、仕事に関係がないという
人からも、知識としてためになったと
いう声が多く寄せられました。

DevOpsとは、開発と運用が連携して高
頻度のデプロイを実現するアプローチ。
今回はTKC、U-NEXT、Pivotalジャパン
の各システム部門に在籍する方々に、
「DevOpsは日本に定着するのか」をテー
マに議論していただきました。

現場で働いている生の人の意見を読む
と勉強になります。今使われているの
はどういったものなのか、なぜそれが
使われているのか、今後は何が必要になっ
てくるのかというのが見えてくるから
おもしろいです。 りょうじさん／東京都

企業におけるDevOpsに対する考え方

が垣間見えて興味深かったです。
 村橋さん／北海道

DevOpsに限らず、ツールよりも「考
え方」というところが響きました。実践
は難しいですが。
 NGC2068さん／愛知県

DevOpsは情報が少ないので、もっと
取り上げてほしい。 かずさん／千葉県

名前が独り歩きしている感もある
DevOps。企業で実際にどう取り

組まれているのか、隣の様子が気になる
という読者の方が多いようです。明確な
ルールがない以上、企業によって色が出
やすいということがわかりましたね。

特別企画　LANケーブリングの
教科書［番外編］

特別企画　春の嵐呼ぶ！DevOps
座談会

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① Wi-Fiホームルータ「Aterm WF1200HP2」
人儚 由夢様（福岡県）

② ヘッドマウントディスプレイ「DN-13539」
大澤和宏様（香川県）、佐藤法子様（千葉県）、
Game-Maker様（東京都）

③ Paragon Camptune X
ＹＹ様（神奈川県）、Tayu様（千葉県）

④ 『エンジニアのためのGitの教科書』
藏谷滋様（大阪府）、山口禎二様（青森県）

⑤ 『E�ective Python』
加納一輝様（千葉県）、原田誠史様（神奈川県）

⑥ 『ネットワーク運用管理の教科書』
とーふや様（神奈川県）、石内博子様（福岡県）

⑦ 『【改訂新版】サーバ構築の実例がわかる Samba
［実践］入門』
中山周様（宮城県）、Age Project.様（高知県）

4月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

mailto:sd@gihyo.co.jp
http://sd.gihyo.jp/

Software Design
2016年6月号

発行日
2016年6月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6179
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2016年7月号
定価（本体1,220円＋税）

192ページ

July 2016
6月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2016 技術評論社

●今年の表紙写真は猫。なぜ猫かと問われれば、犬も

やったしそろそろ猫かなと深い意味はありません。昨年

末には決めていたのですが猫ブームが来ているので、そ

れに乗ったと思われると辛い。本誌を持っていて、なご

めるのが目論見なのです。冬の表紙はミカンとコタツ猫と

かそのあたりまで決めています。（本）

●今はタケノコが旬。週末に朝掘りの大きめのものを調

理する。若竹煮や筍御飯、煮付けなど旨い。自宅庭に

は何年か前に植えたアスパラが生えてきていて、採れた

てはすごく甘い。山菜のコシアブラも取り寄せておひた

しや天ぷらで初夏の香りを楽しむ。あっ、GW前に庭と

水耕の栽培計画を立てなくては……。（くいしんぼ幕）

●今年度の健康診断は追加検査が2つも。1つは過

去経験済みの胃カメラ。もう1つは胸部レントゲン撮

影。胃カメラは「喉元過ぎれば熱さを忘れる」で割と

気楽に受けたんですが、喉元を過ぎるとき……涙出

ました。つらかった。レントゲン撮影では人生初のCT

スキャンを体験。身体は大事にしないと。（キ）

●前々号の「良いプログラム」特集の企画の際、言語

の選択に悩みました。読者アンケートの使用言語に関

する回答では、いつもC#よりPHPのほうが多いので

すが、SD読者の中では利用者が少なめのC#を載せ

るほうが新たな発見もあるのでは？と思い、あえてC#

にしてみました。どうだったでしょう？（よし）

●休日に創作料理を作ることにハマっています。暇も

潰せて腹もふくれて一石二鳥です。この間作ったのは

『塩鮭サラダ』！　焼いた塩鮭をほぐし、生のベイビー

リーフ・きゅうり、茹でたジャガイモ・アスパラと絡め、

オリーブオイルと塩コショウで味付けしたものです。

ギリギリ食べられる生臭さでした。（な）

●1年間PTA役員を務めた広報では、4月の年度始まり

についての広報誌をＧＷ明けに発行し終えたら、新役員

さんに引き継ぎして交代！　年間2回発行とわりとゆるや

かだったけれど、次の締め切りに追われることもなくなる

し、ちょっと一息つけそう♪　、、、と思ったら、年賀状

素材集のお仕事依頼がそろそろ来る時期でわ…！？　（ま）

S D S t a f f R o o m

［第1特集］ ネットワークは怖くない！

「プログラマが知っておくべきTCP/IP」
プロトコルとコードで本質的理解
［第2特集］ 　

手を動かし結果を見て学ぼう
正規表現入門
～プログラミング／エディタ作業の効率大幅アップ～

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

■2016年5月号
●P.36　第1特集「Vim［実戦］投入 Part3」 （量指定子：0個または1個？、＝）
　［正］¥vfunction(¥s+¥w+)?¥(［誤］¥vfunction(¥s+¥w+)¥(
　［正］function¥(¥s¥+¥w¥+¥)¥?(［誤］function¥(¥s¥+¥w¥+¥)(
●P.58　第1特集「Vim［実戦］投入 Part5」右段最終行、注3）
　［正］http://vim-jp.org/vimdoc-ja ［誤］https://vim-jp.org/vimdoc-ja
　

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

休載のお知らせ
　「使って考える仮想化技術」（第2回）は都合によりお休みさせていただきます。

208 - Software Design

mailto:sd@gihyo.co.jp
http://vim-jp.org/vimdoc-ja

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	Software Design 2016年6月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 速く堅実に使いこなすためのbash再入門　エンジニアの道具を磨こう
	第1章：bashとは何か 古くて新しいシェル環境くつなりょうすけ
	第2章：最初につまづかないためのbashひとめぐりくつなりょうすけ
	第3章：シーンに応じたシェルスクリプトの自在な書き方・使い方上田 隆一
	第4章：シェル芸問題で腕を磨け！　テキスト処理・計算・調査の定石上田 隆一
	第5章：仕事でシェルスクリプトを使うときに気をつけたいこと今泉 光之
	第6章：［速報］Bash on Windowsのしくみ真壁 徹
	番外編：bashならぬfishを知っていますか？後藤 大地

	■第2特集 RDBの学び方　MySQLを武器にSQLを始めよう！　ソフトウェア開発の基礎の基礎
	第1章：MySQLのしくみを探る MySQL内部のアーキテクチャ　......yoku0825
	第2章：MySQLをインストールしてみよう　RHEL、Ubuntu、Debian、Windows、Mac OSにおける手順yoku0825、kk2170、hito_asa
	第3章：MySQLでデータベースを作ってみよう！　自分で考える・学ぶ・やってみるとみたまさひろ

	■一般記事
	Android Wearアプリ開発入門［特別編］Android Wear最新動向神原 健一
	セキュリティ対策はまずここから！フリーで始めるサーバのセキュリティチェック【後編】OpenVASによる脆弱性スキャン小河 哲之

	■Catch up trend
	うまくいくチーム開発のツール戦略【2】Bitbucket Server＋SourceTreeで快適Git環境！熊井 亮輔、大塚 和彦

	■連載：Column
	digital gadget【210】アプリの次はボットの世界安藤 幸央
	結城浩の再発見の発想法【37】カーソル　......結城 浩
	増井ラボノート　コロンブス日和【8】EpisoPass増井 俊之
	宮原徹のオープンソース放浪記【4】OSCは、なぜ全国をさすらうのか宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【12】携帯電話通信網でつなげてみよう坪井 義浩
	ひみつのLinux通信【28】shはやっぱりくつなりょうすけ
	Hack For Japan　エンジニアだからこそできる復興への一歩【54】南相馬小高ハッカソン及川 卓也、高橋 憲一
	温故知新 ITむかしばなし【55】DEBUGとSYMDEB　x86アセンブラの強力な支援ツール　　......速水 祐

	■連載：Development
	RDB性能トラブルバスターズ奮闘記【4】実行計画の確認はSQLチューニングの基本中の基本生島 勘富、開米 瑞浩
	Androidで広がるエンジニアの愉しみ【6】ルンバにAndroidスマホで命令だ！金 祐煥、takagig
	Vimの細道【8】ファイル操作を柔軟にするCtrlPmattn
	るびきち流Emacs超入門	【26】シェルコマンドを活用しよう（中編）るびきち
	書いて覚えるSwift入門【15】文字列の扱い小飼 弾
	Mackerelではじめるサーバ管理【16】mackerel-agentのチェックプラグインを書いてみよう...... 松木 雅幸
	Sphinxで始めるドキュメント作成術【15】ドキュメント翻訳フローの自動化　......清水川 貴之
	セキュリティ実践の基本定石【33】ソフトウェアのライフサイクルとセキュリティ　......すずきひろのぶ

	■連載：OS/Network
	Unixコマンドライン探検隊【2】ディレクトリとファイルの構造・属性中島 雅弘
	Be familiar with FreeBSD　チャーリー・ルートからの手紙【31】使ってみようmtree(8)コマンド後藤 大地
	Debian Hot Topics【36】ライセンス問題は ディストリビューションの悩みどころ!?やまねひでき
	Ubuntu Monthly Report【74】Ubuntu Touchの日本語入力　......柴田 充也
	Linuxカーネル観光ガイド【51】Linux 4.5で新たに導入されたcgroup v2への変化　......青田 直大
	Monthly News from jus【56】多分野の技術者が集結、これからのIoTを議論する　......松山 直道

	■アラカルト
	ITエンジニア必須の最新用語解説【90】サーバレスアーキテクチャ　......杉山 貴章
	読者プレゼントのお知らせ
	バックナンバーのお知らせ
	SD BOOK REVIEW
	SD NEWS & PRODUCTS
	Readers’ Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内

