

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://www.fujisan.co.jp/sd/
http://www.fujisan.co.jp/
http://gihyo.jp/magazine/SD

torikuchitoshinori
ノート注釈

技術評論社の本が電子版で読める！

https://gihyo.jp/dp

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

Slack入門
[ChatOpsによるチーム開発の効率化]
松下雅和，小島泰洋，長瀬敦史，坂本卓巳　著　
1,980円　 PDF EPUB

いま最も注目を集めるチャットコミュニケーションツールSlack
の解説書です。

本書では「ChatOps」というソフトウェア開発におけるタスク
管理の考え方に触れ，はじめてSlackを利用する方に向けて
基本操作をじっくり解説します。さらにボットツール（Hubot）
と連携したタスクの自動化やCIツールと連携したアプリの開
発方法を紹介しています。この1冊にSlackの基礎から実践
的な利用方法がまとまっています。

https://gihyo.jp/dp/ebook/2016/978-4-7741-8292-6

［改訂新版］Spring入門
̶̶Javaフレームワーク・
より良い設計とアーキテクチャ

EPUB PDF

プロのグラフ仕事
～伝えるためのExcelエッセンス～
EPUB PDF

アウトライナー実践入門
～「書く・考える・生活する」創造的アウトライン・
プロセッシングの技術～

EPUB PDF

Webサーバを作りながら学ぶ
基礎からのWebアプリケーション開発
入門
EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
https://gihyo.jp/dp/ebook/2016/978-4-7741-8292-6

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1 - Software Design

　「Eclipse OMR」（以下、OMR）は、
任意のプログラミング言語のランタイム
を開発するためのツールキットです。
もともとはIBMが開発してオープン
ソースソフトウェアとして公開したもので、
2016年3月よりEclipse Technology
Projectのサブプロジェクトになりました。
　独自のプログラミング言語を作る場
合、ランタイムをどのように用意するか
という点が大きな問題となります。理
想的な方法は、各言語に最適化され
た専用のランタイムを開発することです
が、それには膨大なコストが必要です。
　そこで、より現実的な選択肢として、
既存の言語のランタイムを活用するとい
う方法があります。その代表的な候補
が JVM（Java仮想マシン）です。現
在、JVMはさまざまなプログラミング言
語のための汎用的なランタイムとして採
用されています。JVMを利用した場合、
Javaプログラムとの相互運用性が高

いというメリットもある反面、ランタイム自
体の設計思想や提供される機能が
Java言語と密接に関わっており、汎用
性に欠けるという問題があります。
　これに対してOMRは、言語開発
者に対して新しい選択肢を提供するも
のです。OMRは独自のランタイムの
開発をサポートするツールキットであり、
それ自体はランタイムでもなければ、プ
ログラミング言語を開発するためのライ
ブラリでもありません。プログラミング言
語の開発者は、OMRを使うことで、
自前の言語に特化したオリジナルのラン
タイムを容易に実装できるようになります。

　OMRでは、ランタイムの実装に必
要となる共通的な機能が、特定の言
語に依存しない形で実装されています。
この共通部分の機能は、IBMが自社
で開発・採用していたJava仮想マシン
「J9」を元にして開発されたものです。
IBMの開発者はJ9からランタイムを構

成する共通的な機能をコンポーネントと
して抽出・リファクタリングすることで、
特定の言語に依存しないラインタイムの
基盤を作り上げました。これは同様の
機能を自前で実装する場合に比べて、
実績や性能の面で大きなアドバンテー
ジがあることを意味しています。
　この共通機能と、開発する言語と
の間でブリッジの役割を果たすのが「ラ
ンゲージグルー」と呼ばれるパーツで
す。ランタイムの開発者はこのランゲー
ジグルーを言語に合わせて独自に実装
する必要があります。OMRでは、ラ
ンゲージグルーを実装するためのイン
ターフェースも提供されます。
　OMRによって提供されるおもな機能
としては以下のようなものがあります（開
発途中のものも含みます）。

• クロス・プラットフォーム対応のス
レッド・ライブラリ

• 異なるプラットフォームに移植する
ためのポーティング・ライブラリ

• ガーベージコレクター
• IBM Health Centerと連携するト
レース・ライブラリ

• 言語非依存のテストフレームワーク
• 診断支援サービス
• JITコンパイラ
• ツール・インターフェース

　Eclipse OMRプロジェクトチームで
は、技術検証としてOMRを用いた
RubyやPython向けのランタイム実装
を進めており、成果物がGitHubなど
で公開されています。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 92回

Eclipse OMR

Eclipse OMR
https://www.eclipse.org/omr

OMRによるランタイムの構成

バイトコード／AST
コンパイラ

ソースコード インタプリタ

JIT グルー

OMR
JIT コンパイラ

OMR
ガーベージ
コレクター

GCグルー

OMR
診断サービス

診断
グルー

OMRプラットフォーム非依存レイヤー

ランタイムの開発をサポー
トする「Eclipse OMR」

OMRで提供される機能

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

▼図　Eclipse OMR の構成

mailto:sd@gihyo.co.jp
https://www.eclipse.org/omr

vol.212

1 - Software Design Aug. 2016 - 1

　SF作家、ウィリアム・ギブスンが「未
来はここにある。それはまだ広くいきわ
たっていないだけだ。」と発言してい
ます。昨今の先進的な家電製品など
を見るに、まだ自分が知らなかったり
持っていないだけで、すでにSF小説
のような、さまざまな未来的機器が存
在することに驚くばかりです。
　IDEA（International Design
Excellence Awards）は、米国工業
デザイナー協会による、優れたプロダ
クトデザインに与えられる賞です。ビジ
ネスや生活の質にかかわる工業デザ
インの価値をより広く伝えることを目
的に1980年に設立された由緒ある
デザイン賞です。製品として実際に販
売されているものでなければ対象とな
らないため、夢のようなありえないデザ
インでなく、先進的でありながらも実
現可能と証明されたものが評価され
ます。学生賞の部門では最近、実際
に製品になる前のアイデアや試作品
も扱われるようになりましたが、それに
しても実現可能性のあるものばかり
です。最近では、製品そのものが物体
として形があるわけではない、デジタ
ルデザインやコミュニケーションデザイ
ン、イベントのデザイン、店舗やミュー
ジカル、ホテルのデザインに関しても
受賞の対象となっています。

IDEA 公式サイト

受賞作一覧

　最近の傾向としては、単なる完成
品としての製品の素晴らしさだけでな
く、その製品が作られてきたストーリー、
使うときのストーリー、ひとひねり効い
た製品の工夫や細かなこだわりが評
価される傾向が強くなってきています。
その傾向の1つとして、商品とともに、
その商品パッケージのデザインも評
価の対象になっています。製品を購入
し手に入れた後、初めてパッケージを
開封して、製品を使い始める体験が
重視されています。実際の製品は、使
う前の期待、使い始め、使っている最
中、使い終わった後、使っていない期
間、さまざまな体験がその製品の評価
に影響します。
　SF映画に出てくる未来的な製品

は、消費者を傷つけたり、ライバル製
品としのぎを削ることもなく、ユーザサ
ポートも関係なく、すべてがトラブルな
くうまくいく前提で安全性やコストも
関係なく、腕が疲れることもなく、火傷
することもなく、ただただ「演出」のた
めに理想的な製品が描かれていま
す。実際の製品デザインはそのような
都合の良いことばかりではなく、法規
制も含め、さまざまな制約の中で最大
限新しく便利なものが苦労して考えら
れています。そのうえ大量生産されて、
多くの人に使われるべく世界中に広
がっていっているのです。

　IDEA過去の受賞作から、いくつか
先進的なものを紹介しましょう。

従来デジタル技術とは関係なかっ
た領域のデジタル化
●Edyn Garden Sensor：庭の様子

IDEAから読み解くガジェット製品

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

安藤 幸央
EXA Corporation

プロダクトデザインの
世界的アワード IDEA

受賞作あれこれ

※本記事で紹介しているものは
国内未発表・未発売のものを含んでいます。

Moley Roboticsが2017年に発売
を予定している、ロボットシェフ。一流
のシェフの動きを記録して再現する。

http://www.idsa.org/awards/

http://www.idsa.org/awards/idea/gallery

1969年頃のキッチンコ
ンピュータ（Computer
History Musiumの公
開資料より）。レシピを
記憶させて利用できる
形状の美しいコンピュー
タだが、使い方が難しす
ぎて1台も売れなかった
と言われている。

http://www.andoh.org/
http://www.idsa.org/awards/
http://www.idsa.org/awards/idea/gallery

2 - Software Design

写真4
Dolby Conference Phone &
BT MeetMe with Dolby Voice

写真9
Clasp Burner

写真14
MI Router Mini

写真1
Edyn Garden Sensor

写真6
RE Camera

写真11
Air Nut

写真2
RYOBI Phone Works

写真7
Roll-Di

写真12
Monstas

写真3
Digilock

写真8
Silk Road Enroute

写真13
v-alrt

を栽培している植物に合わせて監視
するセンサー（写真1）
●RYOBI Phone Works：スマート
フォンと組み合わせる工事用ツール

（連載193回でも紹介。写真2）
●Digilock：鍵や番号を覚えておかな
くとも解錠が可能な、指紋認証の自
転車やバイク用の鍵。コンセプトデザ
イン（写真3）

従来からある製品が技術革新に
よって新しい使い方ができるよう
になったもの
●Dolby Conference Phone &
BT MeetMe with Dolby Voice：
誰がどの方向からしゃべっているのか
が把握できる音声会議システム（写
真4）
●Flux Router：従来は筐体内に隠
蔽されていたアンテナや部品を見える
形にし、その働きを意識させるルータ
機器（写真5）
●RE Camera：自撮りに適したハン
ディタイプのカメラ（写真6）

デジタルとは無縁だが、デジタル
的考えの製品
●Roll-Di：ロールスクリーンをどちら
に引っ張ったらいいのか瞬時にわか
る印（写真7）
●Silk Road Enroute：血管疾患の
手術に利用する機器。血液を電気
のようにSTART/STOPし、流量を
LOW/HIに切り替えられる（写真8）
●Clasp Burner：折り畳んで携帯可
能な携帯用ガスバーナー。コンセプト
デザイン（写真9）
　
製品そのものは従来型のものであ
るが、その利用方法にネットやデジ
タル技術を活用したもの
●Casper：ベッドのマットを自分の好
みで試用したあとで購入できるサービ
ス（写真10）
●Air Nut：室内と室外の環境を監視
し、室内環境を快適に保つ空気清浄
機。コンセプトデザイン（写真11）
●Monstas：関節疾患を持つ子供の
リハビリ用のデジタルオモチャ（写真
12）

従来からも同等のことができたが、
より簡単に便利に使えるようにし
た製品
●v-alrt：緊急用の連絡ツール。病気
や事故などの際、瞬時に緊急連絡す
るためのペンダント型のボタン（写真
13）
●MI Router Mini：家庭用の小型
Wi-Fiルータ。さまざまなスペースに設
置できる（写真14）
●Intel WiDock：周辺機器やケーブ
ル類をスッキリ収めることのできるケー
ス。天板が操作パネルになっている

（写真15）

　プロダクトデザインでは液晶画面
の中で完結するデジタルなデザインと
は異なり、素材感も重視されます。表
面の素材感を担うのは、色、素材、表
面仕上げの要素があり、同じ色と同じ
素材でも、表面の加工の仕方や仕上
げ方によって、手に持ったときの感覚
や見た目の印象などが異なってきます。
Color、Material、Finishの頭文字を

IDEAから読み解くガジェット製品

プロダクトデザインの広がり

Gadget 1

Gadget 2

Gadget 3

Gadget 4

2 - Software Design Aug. 2016 - 3

写真5
Flux Router

写真10
Casper

写真15
Intel WiDock

http://www.adidas.com/us/
micoach-smart-ball/G83963.html

https://www.motorolastore.com/hint.html

http://www.post-it.com/3M/en_US/post-
it/ideas/plus-app/

IDEA受賞作。WeMo Insight Switch
は普通の100V電源コンセントを、ネッ
ト経由でリモートコントロール可能な電
源タップに変えてしまう製品です。この
タップに接続することで、ネット対応して
いない家電製品でも電源のON/OFF
が遠隔制御できてしまいます。WeMo
を家やオフィスのWi-Fiに接続するとス
マートフォン経由でコントロールすること
ができ、タイマー設定や電気使用量の
モニタリングもできます。さらにオプショ
ンとしてモーションセンサーが用意され
ており、人の動きに反応してON/OFF
を制御するようにもできます。日本での
正式販売は未定。49.99ドル。

IDEA受賞作。MICOACH SMART
BALLは回転数・軌道・キックポイントを
計測可能なスマートサッカーボールで
す。心拍数や走行距離データを活用し
たトレーニングツールとして利用できま
す。とくにフリーキックの際の癖や改善
ポイントがわかるそうです。ボールの中
に内蔵されているのは三軸の加速度
センサーで、キックの際のスピード、蹴
られた位置、ボールの回転、回転方向、
ボールが飛ぶ際の軌道などのデータを
取得し、スマートフォンの専用アプリと
連動してボールの状態を把握すること
ができます。一度の満充電で約1週間、
約2,000回のキックで利用できます。

IDEA受賞作。Moto Hintは音声操
作が可能な、耳栓型Bluetoothヘッド
セットです。現在は2世代目の新製品
Moto Hint+がリリースされています。
赤外線スイッチが搭載されており、耳に
装着するとONになり、音声による命令
を待ち受ける状態になります。耳に装
着した瞬間に、バッテリーの残量、残り
使用時間を音声で読み上げて教えてく
れます。本体は木製など、さまざまな色
と材質を選択してカスタマイズすること
ができます。待ち受け時間は約100時
間、本体だけで連続利用3.3時間、専
用の充電ケースと合わせて17時間。
149.99ドル。

IDEA受賞作。Post-it Plus Appは壁
などに大量に貼り付けたポスト・イットを
撮影することで、それぞれのポスト・イッ
トを取り込み認識し、再利用すること
のできるポスト・イット撮影用アプリです。
アイデアを発散させるためのアナログ
ツールであるポスト・イットと、そこで生ま
れたアイデアをデジタル化して保存し
再利用する、アナログとデジタルの間を
橋渡しするツールです。ポスト・イットの
色がビビッドな明るい色であることを活
用し、うまいこと背景から抜き出して認
識してくれます。

WeMo Insight Switch

MICOACH
SMART BALL

Moto Hint

Post-it Plus App

リモート電源

スマートボール

耳栓型ヘッドセット

ポスト・イット撮影専用アプリ

とってCMFと呼ばれる工業デザイン
の分野です。
　スマートフォンアプリやコンピュータ
画面上のデザインの場合、CMFの真
似ができるのは色までで、素材もどん
なにリアルに映し出されたとしても、液
晶画面やディスプレイ表示であること
には変わりありません。デジタルデザ
インの分野でも、動きや色の変化、操
作によって変化する事象で、質感的
なものをよりリアルに表現しようする
傾向が強くなってきており、その分野
の表現も少しずつ豊かになってきてい
ます。また、振動や微弱な電流で、指
で触ったときの質感を模倣しようとい
う技術的アプローチもあります。
　それでも、どんなに模倣しようとして
リアルに近づいたとしても、実物には
かなわないわけです。今後はデジタル
表現ならではの文脈や振る舞い、印
象、感覚の伝達、認識といった、従来
の表現とはまた違う表現を開拓してい
くのが、これからの課題かもしれませ
んね。｢

http://www.belkin.com/us/Products/
home-automation/c/wemo-home-
automation/

http://www.belkin.com/us/Products/home-automation/c/wemo-home-automation/
https://www.motorolastore.com/hint.html
http://www.adidas.com/us/micoach-smart-ball/G83963.html
http://www.post-it.com/3M/en_US/post-it/ideas/plus-app/

4 - Software Design

デファクトスタンダードとは

　デファクトスタンダード（de facto standard）

とは、標準化団体によって定められた標準規格
ではなく、多くの人が従っている「事実上の標準

規格」のことです（図1）。「デファクト」は、ラテ
ン語のデ・ファクト「事実に基づいて（de facto）」
という言葉から来ています。デファクトスタンダー
ドとして有名なものにはTCP/IPやEthernetが
あります。またPDFやTeXなどもデファクト
スタンダードと言えるでしょう。
　デファクトスタンダードではない、通常の標
準規格のことはデジュールスタンダード（de

jure standard）「法令上の標準規格」と呼ぶそう
です。筆者はこの言葉を使った経験はありませ
んが、対比に便利なので以下でもこう呼ぶこと
にします。たとえば、電源を機器に供給するた
めのいわゆる「コンセント」は日本工業規格（JIS）

として定められていますので、デジュールスタ
ンダードと言えます。
　デファクトスタンダードであれ、デジュール
スタンダードであれ、多くの企業が標準規格を
必要としています。そもそも標準規格が必要な
のは、複数の企業が好き勝手に製品を開発して
いては不利益が大きいからです。企業が類似し
た内容を研究しなければならなかったり、せっ
かく製品を作ったのに会社が異なると互換性が
確保できなかったりする不利益です。
　そのように考えると「標準化団体によって標
準規格を定め、各社はそれに従って製品開発を
する」というデジュールスタンダードが唯一の
正解のように見えます。しかしながら、実際に
はそうではありません。デファクトスタンダー
ドにもメリットがあるからです。

メリット

　デファクトスタンダードのメリットの1つは
スピードにあります。新しい技術に対応した製
品群を生み出そうとするときに、そのための標
準化団体を新たに起ち上げ、規格そのものを検
討／制定し、それが完了してから実際の製品開
発に入るというのでは、たいへん時間がかかっ
てしまいます。それに対して、標準化団体に頼
らず、現時点ですでに広まっている規格にみん
なが合わせるなら、スピーディに物事が進むで
しょう。これはデファクトスタンダードの大き
なメリットの1つで、技術的な変化が速い IT

業界ではとくに重要な意味を持ちます。

標準化団体

 ▼図1　デファクトスタンダード（左）とデジュールスタンダード（右）

デファクトスタンダード

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 39

http://www.hyuki.com/

4 - Software Design Aug. 2016 - 5

　デファクトスタンダードの別のメリットとし
て相互運用性の確保があります。これは通信の
分野でとくに大事なことです。たとえ標準化団
体が標準規格を定めても、実際にその規格が広
まって、多くの会社で採用されなければ意味が
ありません。1社だけが標準規格に従ったとし
ても、通信相手の多くが別の規格に従っていて
は役に立たないのです。それならば、デファク
トスタンダードになっている規格に合わせた開
発をするほうが理にかないます。
　さらに、デファクトスタンダードの大きなメリッ
トは実用性の担保です。標準化団体が規格を定
めても、それが本当に有効なのかは実際に試さ
なければわかりません。設計上はうまくいくは
ずだったのに、現実には役に立たず机上の空論
に終わることはままあります。その点、デファ
クトスタンダードは違います。実際に動いてい
る実績があって、みんなが使っているわけです
から、机上の空論になる危険性は低いでしょう。

デメリット

　デファクトスタンダードにもデメリットがあ
ります。まず考えられるのが競合の存在です。
デファクトスタンダードには強制力はありませ
ん。「多くの人から使われている規格」がもしも
複数個存在したなら、そのあいだで競合が起こ
り、トラブルに発展することもあるでしょう。
　また、逆に独占的な状況になる危険性もあり
ます。デファクトスタンダードとなった規格を
作り出したのが1社だった場合、改良が滞った
り、多数が望まない方向に規格が変化していく
危険性です。業界としてこれを避けるには、デ
ファクトスタンダードをデジュールスタンダー
ド化していく活動が必要でしょう。たとえば
AdobeのPDFはデファクトスタンダードとし
て広く使われていますが、現在は ISO規格と
してデジュールスタンダードにもなっています。
　先ほどメリットのところで、デファクトスタ
ンダードはスピーディに対応できると書きまし
たが、逆に進歩が止まる危険性もあります。そ

のような状況は、あまりにも多くの人が現在の
デファクトスタンダードで満足しているため、
大きな変更を好まない場合に起こります。

日常生活とデファクトスタンダード

　デファクトスタンダードは、標準化団体によ
る「お墨付き」に頼らない標準規格と言えます。
デジュールスタンダードに比べてスピード感が
ありますが、場合によっては1社の思惑でふら
ふらする危険性があります。
　私たちの日常生活でも、デファクトスタンダー
ド的な発想が役に立つことがあります。たとえ
ば開発会社で働くプログラマが、統一した開発
手法を社内に浸透させようとするのはよくある
ことです。それは会社という小さな範囲ではあ
りますが、「標準規格」を作ろうとしているもの
と見なせます。
　デジュールスタンダード的な発想は、開発手
法を社内に広めるときに、まず会社から「お墨
付き」をもらい、強制力を持ってオフィシャル
に展開するというものです。もちろん、これで
うまくいけば問題はありませんが、「お墨付き」
をもらうためにかかる時間でスピード感が鈍る
場合があります。
　それに対して、デファクトスタンダード的な
発想は「お墨付き」を待つことなく、「事実上の標
準規格」として現場にその開発手法を広めてし
まうものです。これなら、技術上の変化にもスピー
ド感を持って追従することが期待できますし、
現場の実情と乖

かいり

離した結果になる危険性も少な
いでしょう。その一方で、強制力がないために
うまく浸透できない危険性もあるでしょう。
　あなたの周りを見回して、集団における問題
解決の進め方を観察してみましょう。デジュー
ルスタンダードのように、オフィシャルな「お
墨付き」を確保してから進める場合が多いでしょ
うか。それともデファクトスタンダードのよう
に、「事実上行われている解決策」を手がかりに
して進める場合が多いでしょうか。
　ぜひ、考えてみてください。｢

39

6 - Software Design

　世の中にはさまざまな大規模データが存在しま
すが、きちんとした管理者が存在するデータは階
層的な構造で管理されているのが普通です。地名
や電話番号やドメイン名などは厳格に階層的に管
理されていますし、図書館の蔵書は分類番号を使っ
て階層的に管理されています。個人的なデータで
あっても、現在のPCのファイルシステムでは、フォ
ルダを使って階層的に管理しなければなりません。
　一方、世界最大のデータベースであるWeb

は階層的に管理されていませんし、手持ちの書
籍のような小規模データは手間をかけて階層的
に管理するほどでもないので、適当に管理して
いる人がほとんどだと思われます。しかし、管
理された大規模階層データは数も種類も圧倒的
に多いので、現在も将来もこれらを簡単に検索
したり閲覧したりする方法が重要であることは
間違いないでしょう。
　明示的な階層が存在しないリストのようなも
のでも、あたかも階層が存在するかのように扱
うことができる場合があります。たとえば辞書
の場合、「aで始まる単語」「bで始まる単語」のよ
うに分類を行い、その下に「aaで始まる単語」「ab

で始まる単語」のような階層を考えれば階層デー
タと同じように扱うことができます。つまり、ソー
トが可能なあらゆるデータは階層的なデータと
して扱うことができると言えるでしょう。

大規模データの
検索と閲覧

　Webのようにリンクで自由に結合された構
造のデータと比べると、階層的に管理された情
報は対話的に閲覧／検索するのが比較的簡単で
す。図書館で分類に基づいて本を捜したり辞書
で単語を捜したりといった作業は日常的なもの
ですし、計算機で階層メニューやフォルダ階層
などを操作することは一般的になっています。
　階層的な構造を持つ大規模データを閲覧する
ためにさまざまなインターフェース手法が利用
されています。小さな計算機画面に大量データ
を全部表示することは不可能ですから、なんら
かの方法でデータの一部だけを表示する工夫が
必要です。対話的に表示部分を変更しながら大
規模データを閲覧するために次のような方法が
広く使われています。

・少しずつ順番に見る（e.g. スクロール、辞書
や書籍をパラパラめくる）

・キーワードなどでフィルタリングして表示量
を減らす

・階層的に選択を繰り返してだんだん細部を表
示する（e.g. ファインダー、階層メニュー）

・注目点を部分的に拡大する
・なめらかに直線的にズーミングする（e.g. Goo

gleMaps）

　フィルタリングにより絞り込んだデータをス
クロールして閲覧するなど、これらを組み合わ
せた手法もよく用いられています。

階層データの閲覧

増井ラボノート

注1） http://thinkit.co.jp/free/article/0709/19/

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張って楽できるなら、それに越したことはないでしょ
う。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろんな
システムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用しているよ
うな単純かつ便利なシステムをたくさん紹介していきます。

第 10 回　DragZoom

https://thinkit.co.jp/free/article/0709/19/

NO.

6 - Software Design Aug. 2016 - 7

DragZoom

　階層メニューを使ったりフォルダ選択を繰り
返したりして大規模データを絞りこむ方法は、
データの一部分の選択を繰り返すことによる非
線型なズーミングの一種といえます。これに対し、
CGでよく使われる「Perlin Noise」で有名なKen

Perlinは、2次元画面上に表現したデータ全体
をなめらかに直線的に拡大したり縮小したりす
ることによって大規模データの閲覧をできるよ
うにする「Pad」というZUI（Zooming User Inter

face）システムを1993年に提案し、研究者の間
でかなり話題になりました（図1）。Padのよう
な単純な方法を使えば拡大／縮小操作と移動操
作だけであらゆる大規模な階層データを楽に閲
覧できるわけですから、CLI、GUIのつぎに来
るのがZUIだと期待され、さまざまなシステム
や製品プロトタイプが作成されました。
　ところが結果的にPadやその後継システムは
世の中で流行ることがなく、ZUIの試みはほと
んど忘れ去られてしまいました。流行らなかっ
た理由はいろいろあるのでしょうが、2次元画
面を自由に拡大縮小して目的の情報を得ること
は普通のユーザには難し過ぎたということが大
きな理由の1つでしょう。また当時はマウスホ
イールはまったく普及しておらず、ズーミング
のための標準的な操作が存在しなかったことも
関係しているかもしれません。

ZUI
　現在はGoogle Mapsなどでズーミング操作は
お馴染みになっています。地図の場合は操作対
象が具体的で誰にでも比較的わかりやすいため
ズーミング操作が問題なく利用されているよう
ですが、地図以外への応用は進んでいませんし、
スクロール操作とズーミング操作が衝突したり
操作を間違えることはよくあります。2次元画
面のズーミングを利用したインターフェースが
今後流行する可能性は低そうです。

　Padのような純粋なZUIは残念ながら普及に
成功しませんでしたが、スマホのような小さな
画面で大規模データを閲覧／検索するためにズー
ミングとフィルタリングが有効なことは間違い
ありませんから、これらを組み合わせて誰でも
使える簡単なインターフェースを工夫すればズー
ミングインターフェースが日の目を見ることが
あると思います。
　私はスクロールバーを拡張してズーミングやフィ
ルタリングを可能にした「LensBar」というシステ
ムを長年提案しているのですが、これを簡単に
した「DragZoom」というシステムを紹介します。

階層データのズーミング

　図2は、フィルタリングとズーミング操作によっ
てファイルを検索しようとしているところです。
最初はUNIXのファイル構造のうちrootに近い

部分だけが表示されています。灰
色の横線は、エントリが隠れてい
ることを示しています。
　libexecをクリックして右にド
ラッグするか、スマホなどの場合
は指でタッチしてから右にドラッ
グすると図3のようにリストが
ズーミングされます。
　さらに右にドラッグを行うと、
図4のようにすべてのファイルが

DragZoom

 ▼図1　 ZUI（Zooming User
Interface）システム

 ▼図2　 DragZoom（灰色部分に
はエントリが隠れている）

増井ラボノート

8 - Software Design

見えるようになります。
　階層構造の要素を選択して拡大してブラウジ
ングする方法はTreeViewや階層メニューなど
でもお馴染みですが、DragZoomでは左右ドラッ
グでなめらかにズーミングのレベルを調整して
いることになります。
　複数の指を利用できるスマホやタブレットで
はピンチ操作でもズームレベルを変えることが
できます。

ドラッギングによるスクロール

　上下にマウスドラッグを行うと、スマホのス
クロール操作と同じように画面をスクロールで
きます（図5）。
　スクロール操作とズーミング操作は完全に可
逆的なので、スクロールしたりズーミングした
りしたあとでカーソルや指をもとの位置まで戻
すと画面は最初の状態に戻ります。

フィルタリングと
ズーミングの組み合わせ

　テキスト入力枠に「ruby」と入力すると、図6の
ように「ruby」を含むファイルやディレクトリだけ
が表示されます。ファイル名の左側にはフォルダ
名も縦に表示されているので、どのフォルダのファ
イル名がマッチしたのかがすぐわかります。
　この状態では「ruby」を含まないファイル名はまっ
たく表示されていませんが、「/usr/bin/ruby」の
部分をズーミングすると図7のように「usr」「in

clude」なども見えるようになります。DragZoom

では、リストの各エントリに「重要度」を設定して
おり、マウスや指を移動したときは閾

いきち

値を変化さ
せて閾値より大きな重要度を持つ行を表示するよ
うになっています。「usr」や「include」のように階層
のrootに近いファイルには大きな重要度を与えて
いるため、キーワードにマッチされていなくても
表示されるというわけです。

階層がない場合

　辞書データのように階層構造が
存在しないデータでもズーミング検
索できるようにするため、Drag

Zoomでは仮想的な階層を利用して
います。たとえばa,b,c,d,e,f,gという
フラットなデータがあるときは、そ
れぞれに対して1,2,1,3,1,2,1のよう
な重み(重要度)を与えておきます、
ユーザが操作する閾値を超えたも

 ▼図3　リストがズーミングされる ▼図4　 すべてのファイルが見ら
れるようになる

 ▼図5　 マウスドラッグでスクロー
ル表示できる

 ▼図6　「ruby」を検索
 ▼図7　ズーミングしながらファイルを探す

NO.

8 - Software Design Aug. 2016 - 9

DragZoom

のだけ表示されますから、ユーザのズーミング操
作で閾値を変えることによってd,b/d/f,a/b/c/d/

e/fのように表示が変化することになります。
　DragZoomでフラットな英語辞書をブラウズ
すると初期画面は図8のようになります。
　ここでドラッグ操作でズームレベルを変化さ
せると表示は図9のようになります。
　さらにズームすると単語の意味が表示されま
す（図10）。
　キーワードマッチングにあいまい検索機能を
利用すると、多少間違ったキーワードを指定し
ても最も近いエントリが表示されます（図11）。

音楽ファイルの検索

　図12は私の手持ちの音楽ファイルで「day」を

検索してみたところです。このように、ファイ
ルでも辞書でも音楽ファイルでもDragZoomで
簡単に検索できることがわかります。

　スクロールバーを使わずズーミングとフィル
タリングだけで簡単に大規模データの閲覧や検
索ができることはたいへんメリットがあるはず
です。多くの大規模データは階層的に構造化さ
れていますからDragZoomは広範囲なデータの
検索に利用できるのですが、残念ながら私はま
だこの手法を普及させることに成功していません。
　有用性は十分なのに普及がうまくいかないの
は、左右ドラッグでズーミングを行うというイ
ンターフェースに慣れるのが難しいことと、従
来の方法でもとくにひどく困ることがないとい
う理由によると思われます。DragZoomを使わ
なくても普通のテキスト検索や階層メニューな
どで階層データをとりあえず眺めることができ
るのであれば、わざわざ新しい手法に乗り換え
ようとする人は少ないでしょう。
　しかしDragZoomの方法は慣れればかなり便
利なのはたしかです。いろいろなサービスで地
味に使えるようにしたうえで、今後これをはじ

めとするさまざまな
ズーミングインター
フェースが普及してほ
しいものだと願ってい
ます。
　DragZoomのデモお
よびソースコードは、
http://DragZoom.com/
およびhttp://GitHub.
com/masui/DragZoomで
公開しているのでご利
用ください。ﾟ

ズーミングシステムの
課題

 ▼図8　 フラットな英語辞書
をブラウズしてみる

 ▼図10　単語の意味が表示される

 ▼図9　ドラッグ操作

 ▼図11　あいまい検索

 ▼図12　「day」で検索

http://DragZoom.com/
https://github.com/masui/DragZoomDict

宮原徹の

10 - Software Design

宮原、酒やめるってよ
　突然ですが、断酒を始めました。
月1～2回開催されるオープンソー
スカンファレンス（OSC）に行く
と、前日、当日、翌日と飲み食い
して、気がつくと体重が！　そん
な矢先、偶然Facebookで4年前の
自分の写真が出てきて、「病気か？」
というぐらい痩せているのを見て、
一念発起し、体重が75kgになるま
で酒断ちをすることにしました。
　本稿執筆時点で断酒後2週間が
経過し、83.6kgあった体重が
81.6kgと2kg減しています。自分
は基礎代謝が高いので、カロリー
などの摂取量を減らせば体重は自
然と減っていきます。計算ではだ
いたい3ヵ月程度で75kgになる計
算です。ただ、計算どおりにはい
かないと思われるので、バッファ
としてプラス1ヵ月程度で4ヵ月と
見込んでおり、達成できるのは10

月ぐらいになりそうです。10月1

日（土）に酒所である新潟・長岡で
のOSC開催があるので、このタイ
ミングで美味しい日本酒が飲める
よう頑張ります（写真1）。

会場変更は
いつもたいへん
　さて、5月28日（土）にOSC名古
屋が開催されました。OSC名古屋
は昨年まで名古屋駅に近い名古屋
国際センターにて開催してきまし
たが、会場が手狭になったため今
回から吹上ホールという新しい会
場での開催です（写真2）。
　名古屋地域では、多くの地域コ
ミュニティが日々活動しています。
そのため、OSCではデモ展示のス
ペースがたくさん必要となります。
今回は従来の1.5倍の展示スペース
を用意できたので、ゆったりとし
た間取りにできて、出展者、来場
者からも好評でした。本当は、各
開催でゆったりした展示スペース
を用意したいのですが、広い会場
がなかったり、使用料が高額だっ

たりするため、いつも展示ブース
をぎゅうぎゅうに詰め込んでいる
感じになっています。一方で、1つ
のブース（幅150cm程度）を2つの
コミュニティで半分ずつ分け合っ
てもらうことは「袖すり合うも多生
の縁」ではありませんが、出展者同
士のつながりを強めるようで、「そ
れはそれでいいのかな」とも思って
います。
　普通のイベントですと、セミナー
中心でデモ展示がなかったり、あっ
てもセミナーの添え物程度という
ことが多いですが、デモ展示あっ
てのOSC。今後も頑張って展示ス
ペースを確保していこうと思いま
す。

セミナーを
最大活用するには
　OSCの企画はデモ展示を重要視
していますが、もちろん最新情報
が聴けるセミナーも重要です。で
は、セミナーを最大限活用するに
はどうすればよいでしょうか？
　セミナーで最も恩恵を受けるの
は、実は発表者です。新ネタであ
れば、試行錯誤した内容をアウト
プットとして発表資料にまとめら
れますし、持ちネタであればプレ
ゼンをブラッシュアップできます。
OSCでの発表はβテストと考える
と、来たるべき本番のために少し
冒険するよい機会でもあります。
　東京などの大規模なOSCでは、

OSC名古屋とイベント運営のキモ第6回

 ▼写真1　 こちらは断酒前の、OSC名古屋打ち上
げの様子。懇親会終了後、地元の地
ビール屋さんに集合してお疲れ様会

 ▼写真2　
スポンサーLTの様子。企
業の人がコスプレのままプ
レゼンしても、誰も何も思
わないようです（ちなみに
艦これの何かだそうです）

宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

10 - Software Design Aug. 2016 - 11

R e p
o r t

OSC名古屋とイベント運営のキモ第6回

スポンサー企業限定のLT大会を
開催しています。45分間のセミ
ナーほどのネタではない、あるい
は出展のみでセミナー枠がないス
ポンサー企業のみなさんに活用し
ていただいています。
　一方、聴講者の立場でセミナー
を活用するポイントは「共感度」に
かかっています。もし現在進行形
で取り組んでいる技術に関する内
容なら、「あるある！」や「お！そん
なことが？」といった共感を感じな
がら聴講できます。逆に、なんと
なく興味がある程度だと、共感が
得られず、実際に試してみようと
思えず、結局そのまま……という
ことが往々にしてあります。共感
度は人それぞれですから、共感度
が高くないセミナーを無理に聴講
せず、デモ展示をじっくりとみて
回ることをお勧めします。きっと、
何か新しい発見があるはずです。

立食形式は
炭水化物重視で
　OSC名古屋の懇親会は、会場の
1Fにあるレストランで立食形式で
開催されました（写真3）。
　立食形式の懇親会では、毎回た

いへんなのが食べ物の量です。時
間帯も6時半から7時、しかもセミ
ナーを聴いて脳が糖質を大量消費
したあとですので、摂食中枢が刺
激されまくりです。自然とお皿に
取り過ぎてしまって食べ物が瞬殺、
というのはIT系の懇親会でよく見
る光景です。
　そこでOSCの懇親会で工夫して
いるのが、炭水化物を多めに用意
することです。種類としてはおに
ぎりや太巻き、パスタ、焼きそば、
そしてみんな大好きカレーなどを
用意して、かつ先にそれらを食べ
てもらうようにしています。
　普通にケータリングを頼むと、
上品にサラダやオードブルなど見
栄えのよいメニューが提案されて
きますが、種類少なめ、炭水化物
多め、さらにたとえば唐揚げのよ
うに1個1個独立しているものにし
てもらうと、テーブルごとに取っ
てきたものをシェアしやすくなり、
全体の満足度が向上します。でき
るだけ食べ残しが少なくなるよう
にするのがポイントです。また、
事前にクッキーなど（写真4）のおや
つを配布して食べておいてもらう

だけでもずいぶんと空腹感が変
わってきます。懇親会を企画する
人はぜひ参考にしてください。｢

 ▼写真4
 OSCといえばカントリーマアム。大
阪の高校生がわざわざ神戸プリン味
を差し入れしてくれました。スタッフ
で美味しくいただきました

 ▼写真3
懇親会も後半。食べるものはなくなっ
ちゃったけど、カレーのおかげで満足
感は高かったらしく、たくさんの人が
話に花を咲かせていました

 ▲味仙 今池本店まで歩いて来
ました。外観はちょっと大
きめの中華料理屋さんとい
う感じで、台湾ラーメンの
元祖という感じはしません

 ▲こちら台湾ラーメン。
たしかにスープの色
が見ただけで汗が出
てきそうな赤い色をし
ていますね

B級グルメを楽しむ
〜名古屋編〜

　地元の名物を楽しむのも全国各地を廻る楽しみで
すが、B級グルメも含まれます。名古屋のB級グルメ
で食べたことがなかった「台湾ラーメン」を食べに行き
ました。
・台湾ラーメンの味仙
　OSC会場から歩いて15分、台湾ラーメンの元祖
「味仙」今池本店に。まずは普通に中華料理を楽し
み、シメに台湾ラーメンをいただきます。味は普通の
ものと、なぜか「アメリカン」という味を薄くしたもの
の2種類。けっこう辛いと事前に脅されていたのです
が、筆者は辛いのは比較的大丈夫な方なので、アメ
リカンでは物足りないぐらいでした。でも、さすがに

唐辛子たっぷりなので、あとからあとから汗が出てき
ます。

12 - Software Design

　読者のみなさんは、BBC micro:bit注1という
マイコンボードをご存じでしょうか（写真1）。昨
年 micro:bit は、BBC（British Broadcasting

Corporation、英国放送協会）が、イギリスの子
供たちがプログラミングやデジタルテクノロジ
に興味を持ってくれるよう、7学年（11歳）の子
供たちに100万台配布するという計画とともに
発表されました。BBCといえば、1980年代に
BBC Microというコンピュータをリリースして
いたことがあります。micro:bitは、昨年の夏～
秋から配布され、ついに今年の7月くらいから
一般販売が開始されそうです。
　このBBC Microを開発したAcorn Computers

という会社は、Acorn RISC Machineというプ
ロジェクトでプロセッサを開発し、それはARM1

と呼ばれる開発サンプルでした。最初の製品は
ARM2で、その後ARMアーキテクチャはmbed

注1） https://www.microbit.co.uk

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

BBC micro:bit第
14
回

に搭載されているCortex-Mへとつながってい
ます。
　micro:bitには、Cortex-Mアーキテクチャの
nRF51822というマイコンが搭載されています。
このチップは、Bluetooth Low Energy（BLE）の
無線機能も搭載していて、16MHzのCPUクロッ
クで動作し、16KBのRAMと、256KBのFlash

メモリを搭載しています。また、特徴的な5×
5ドットのLEDマトリックスのほか、加速度セ
ンサと地磁気センサも搭載されています。基板
の端のカードエッジコネクタには、マイコンか
らの信号線がつながっていますので、拡張性も
あります。
 このカードエッジコネクタを使うには、鰐

わにぐち

口ク
リップなどで接続するという方法（写真2）のほ
かに、カードエッジコネクタ用のコネクタ（写真
3）を使って基板に接続するという方法もありま
す。鰐口クリップではうまく接続できずに、ほ
かの端子とショートしてしまう危険もあります
ので、このようなコネクタを使ったほうがよい

はじめに

 ▼写真1　micro:bit（左：表面、右：裏面）

https://www.microbit.co.uk/

12 - Software Design Aug. 2016 - 13

BBC micro:bit 第
14
回

でしょう。
　micro:bitは、mbedのプラットフォームとして
も登録されています注2。micro:bitは、
これまで紹介してきたmbedと同様
に、mbedのオンラインコンパイラを
使い、「コンパイル→ダウンロード→
ドラッグ&ドロップで書き込み」とい
う手順で開発することができます。
　しかし、今回はmbedの話でなく、
micro:bitがどうおもしろいのかを説
明していきたいと思います。

開発言語、環境

　micro:bitはmbedですので、C++で
開発できます。しかし、子供たちに
いきなりC++でプログラミングを教
えるのには無理がありますよね。実
際、micro:bitには、ブロックをつなげ
てプログラミングを行うBlock Editor、
Microsoft Researchが提供するタッ
チデバイス向け開発環境のTouch

Develop、Code KindomsのJavaScript、
Python、とさまざまな選択肢が提供
されています注3（図1）。筆者もさっ
そく試しにBlock Editorを使ってみ

注2） https://developer.mbed.org/platforms/
Microbit/

注3） https://www.microbit.co.uk/create-code

たのですが、これがなかなかよくできています。

開発言語、環境

 ▼図1　micro:bitのサイトによる開発環境の紹介

 ▼図2　BlockEditor

 ▼写真2　鰐口クリップを使ってみたところ ▼写真3　専用のピッチ変換基板

https://developer.mbed.org/platforms/
https://www.microbit.co.uk/create-code

14 - Software Design

Block Editor

　Block Editorは、ブロックを組み合わせて手
軽にプログラミングを楽しめる開発環境です。
mbedと同じようにWebブラウザで開発環境に
アクセスします（図2）。ブロックを組み合わせ
て、「run」ボタンをクリックすると、画面中のシ
ミュレーターでシミュレーションが始まります。
ここで、「compile」ボタンをクリックすると、
micro:bitに書き込むHEXファイル（バイナリを
16進数の文字列としてテキストファイルにした
もの）がダウンロードされます。

　Block Editorの「convert」ボタンをクリックす
ると、Touch Developのスクリプトに変換され
ます（図3）。Block Editorは、このTouch Develop

のフロントエンドのような位置づけのようです。
このBlock Editorは、GoogleのBlocklyという
オープンソースのWebベースなビジュアルプロ
グラミング環境をベースに作られています。
Blocklyは、GitHubで公開されています注4。
　Block EditorやTouch Developのすごいとこ
ろは、オンライン開発環境なのですが、オフラ
インでコンパイルができる点にあります。たと
えばmbedの場合、Cortex-Mのバイナリをソー

スコードからコンパイルするとき、ク
ラウドにあるサーバの上でC++コンパ
イラが走っています。Touch Develop

では、一度Webブラウザがスクリプト
を読み込んでいれば、サーバと通信す
ることなく、ブラウザの上でコンパイ
ラが走ります。もちろん、ビジュアル
プログラミング環境やスクリプトで書
かれた単純なコードなので、ブラウザ
で走るスクリプトだけでバイナリを作
ることができるのでしょうが、コンパ
イラがスクリプトで書かれているとい
うのは驚くべきことです。
　筆者もワークショップなどでマイコ
ンの開発方法を説明することがあるの
ですが、インターネット接続が前提だ
とトラブルが生じたりすることがあり
ます。逆にオフライン開発環境では、
IDE（統合開発環境）をインストールし
てもらうときにトラブルが発生するこ
ともあります。micro:bitの開発環境の
しくみは、もしかすると、こういった
問題を回避できる、バランスのよいし
くみかもしれません。
　「ブラウザで走るスクリプト」と記し
たことからみなさんご想像のとおり、
Touch Developは JavaScriptで書か
注4） https://github.com/google/blockly

Block Editor Script

Block Editor
Touch Develop

Compile

Touch Develop Script

ARM
Touch Develop

Compile

ARM machine code
ARM runtime (precompiled)

C++ micro:bit runtime

C++
mbed SDK

ARM
Compile

HEX

 ▼図4　Block Editorのしくみ

※出典：https://www.touchdevelop.com/microbit

Block Editor

 ▼図3　スクリプトへの変換

https://www.touchdevelop.com/microbit
https://github.com/google/blockly

14 - Software Design Aug. 2016 - 15

BBC micro:bit 第
14
回

れています。正確には、TypeScriptという
Microsoftによって開発されたオープンソースの
プログラミング言語で、JavaScriptのスーパー
セットです。TypeScriptは、コンパイルすると
JavaScriptのソースコードを出力します。
　話が逸れました。当初、Touch Developのス
クリプトは、バイトコードにコンパイルされる
仕様だったそうです。バイトコードというのは、
特定のハードウェアでなく、仮想マシンで実行
可能なバイナリです。Javaのバイトコードが有
名どころでしょう。このころはコンパイル操作
をすると、生成したバイトコードに、コンパイ
ル済みのバイトコードインタプリタを結合して、
ダウンロード用のHEXファイルを生成していま
した。
　しかし、やはりバイトコード、スタック（メモ
リ）の利用を最適化していなかったために、メモ
リを多く消費してしまっていたそうです。この
ため、Microsoftのエンジニアは、バイトコード
を生成するのではなく、micro:bitに搭載されて
いるマイコンのコア、ARM Cortex-M0で直接
実行可能なARM Thumb命令セットを生成する
ように作り替えたのです（図4）。こうして、Java
ScriptによるThumb命令セットのコンパイラは
誕生しました。
　もうひとつ、Block Editorにはすごい機能が
あります。コンパイルして生成されたHEXファ
イルをインポートする機能です。Block Editor

で「my scripts」ボタンをクリックすると、自分
が作ったスクリプトの一覧のページに遷移でき
ます。そこに「Import Code」というボタンがあ
ります。これを使うと、HEXファイルを読み込
んで、そのHEXファイルを作ったときのブロッ
クを再現できます。リバースエンジニアリング
の機能もついていると知ったときには、びっく
りしました。これをどうやって実現しているか
は、まだ調査できていません。
　コンパイラが出力したファイルを元に戻せる
しくみというのは、とても合理的だと思います。
単一のファイルをやりとりするだけで、プログ

ラムを見せ合うことができるのは、お互いに刺
激し合って成長をする機会を提供できるように
思えます。

技適

　ここまで紹介してきたmicro:bitですが、冒頭
で紹介したようにイギリスでの使用が前提になっ
ています。このため、ヨーロッパの適合性評価
は受けています。しかし、日本の電波法はもち
ろん、アメリカのFCC Part 15などのほかの
国々での認証は受けていません。micro:bitは、
ドラッグ&ドロップによるプログラムの書き込
みのほか、OTA（Over-The-Air）、つまり無線
通信を利用した書き込みにも対応しています。
ですので、ユーザが書いたプログラムで無線機
能を使わなくても、無線機能が有効になってい
ます。
　これだけおもしろいmicro:bitを、日本で適法
に使うことができないのは残念です。とくに、
子供にプログラミングの楽しさを経験してもら
うのに、法を破らせるというのは教育的にもよ
くないように思います。そんなわけで、micro:bit

に搭載されているマイコンの、技適マークつき
モジュールを使用して、日本で適法に使える
micro:bit互換機を作ってみました（写真4）。筆
者にはスポンサーがいないので、micro:bitより
も高くなってしまいましたが、これで適法に遊
ぶことができます。｢

 ▼写真4　筆者らが作ったmicro:bit互換機の試作品

技適

16 - Software Design

テレビ用高音質スピーカー
Olasonic 「TW-D77OPT」
普段使いのテレビ用に特化した音作りが特徴のスピーカーで、
ニュースやドラマを観るときなど、人の声がクリアに聞こえるよ
うになります。操作ボタンが付いた本体をテレビと光ケーブルで
つなぎ、本体からミニケーブルでスピーカーをつなぎます。テレ
ビのほかに、ラジオ、ICレコーダー、スマートフォン、携帯ゲー
ム機など、イヤホンジャック搭載の機器と接続できます。
提供元 	東和電子　http://www.olasonic.jp

1名

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2016年8月17日です。プレゼントの
発送まで日数がかかる場合がありますが、ご容赦ください。

Type-C USBハブ
「USH-C02」

USB Type-Cコネクタから本体まで約10cmのケーブルでつな
いだ「ケーブル一体型」タイプのUSBハブで、複数の機器を接続
した場合でも取り回しが快適です。USB2.0ポートが3つ、
USB3.0ポートが1つの、計4ポートが搭載されています。
提供元 	ミヨシ　http://www.mco.co.jp

3名

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

システムの開発と運用を一体化するDev
Opsの実態とそのあり方を、ソフト・アー
キテクチャの面から詳述した解説書です。
マイクロサービスアーキテクチャ、AWS
のケーススタディなどを扱います。

提供元 	日経BP
	 http://www.nikkeibp.co.jp

DevOps教科書
レン・バス ほか 著／長尾 高弘 訳

2名

機械学習の諸分野をわかりやすく解説し、
それらの知識を前提として深層学習とは何
かを示す1冊。具体的な処理手続きやプロ
グラム例（C言語）が適宜示されており、具
体的な理解を助けてくれます。

提供元 	オーム社
	 http://www.ohmsha.co.jp

機械学習と深層学習
小高 知宏 著

2名

機能的なシステム構築に欠かせないインフ
ラとしてのネットワークについて、幅広く
実用的な情報を提供しています。初学者向
けに通信技術の基礎から解説し、セキュリ
ティ対策までカバーしています。

提供元 	翔泳社
	 http://www.shoeisha.co.jp

入社1年目からの「ネットインフラ」がわかる本
村上 建夫 著

2名

読者プレゼント
のお知らせ

Javaを利用したシステム開発の定番に
なった「Spring Framework」の入門書。
Springの使い方を基礎の基礎から、クラ
ウド環境への対応といった応用的・実践的
な開発まで広く解説します。

提供元 	技術評論社
	 http://gihyo.jp

［改訂新版］Spring入門
長谷川 裕一、大野 渉、土岐 孝平 著

2名

GitHub Tシャツ＆ステッカ＆コースター
第1特集でも取り上げたGitのリポジトリサービス「GitHub」の
ノベルティセットです。Tシャツのサイズは「L」です。
提供元 	ギットハブ・ジャパン　http://github.co.jp

1名

http://www.mco.co.jp/
http://www.olasonic.jp/
http://github.co.jp/
http://www.nikkeibp.co.jp/
http://www.shoeisha.co.jp
http://www.ohmsha.co.jp/
http://gihyo.jp
http://gihyo.jp/magazine/SD/

第1特集

はじめてのPull Requestから、チーム導入へ

GitHub
さいしょの一歩

　自分が作ったソフトウェアをGitHubに公開する——ITエンジニアの間ではそんな文化が当たり前
になりつつあります。しかし、成果物を公開することはGitHubの用途の一側面にすぎません。
　公開されている他者のコードを修正し、その修正を取り込んでもらう「Pull Request」という
機能を使って、複数のエンジニアが協力して1つのソフトウェアを作り上げる。それこそがGitHub
の醍醐味ではないでしょうか。
　ただ、このPull Requestが初心者には少々ハードルが高い。GitやGitHubを使いこなすには
学ぶべきことは多いですが、まずはPull Requestを出せることを目標にしましょう。本特集で、は
じめてのPull Requestを出す予行演習をしてみてください。

GitとGitHubとは何か
 Author 丸山 晋平

第1 章 � P.18

GitHubを使うための
Gitの基礎知識
 Author 丸山 晋平

第2 章 � P.21

GitHubでPull Request
を出せるようになろう
 Author 丸山 晋平

第3 章 � P.36

［事例紹介］ GitHubをチーム開発
に導入するときに考えること
 Author 福本 貴之

第4 章 � P.48

プ
ル
リ
ク

し
て
い
ま
す
か
？

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

18 - Software Design

GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

第1特集

Git、GitHubの
最初の一歩を踏み出そう

　本特集のテーマは「GitHubさいしょの一歩」
です。近年のソフトウェア開発では、バージョ
ン管理システム（Version Control System、以
後、VCS）は「当たり前」のように使われ、VCS

を扱うスキルは必須スキルとなっていると言っ
てもいい状況かと思います。一方で、VCSに
は独特の概念が多く、使い始めてみるまでは
「とっつきにくい」と思われてしまうのも無理も
ないことかと思います。しかし、いざ使い始め
てみれば、「もうVCSなしでは開発できない」
となってしまうほど便利であるのも、また事実
ではないでしょうか。
　この特集では、VCSの一種であるGitと、そ
の関連サービスであるGitHubの使い方を平易
なチュートリアル形式で説明していくことで、
その「さいしょの一歩」をサポートしたいと思い
ます。まずは、GitとGitHubの概要を眺める
ところから始めましょう。

バージョン管理システム
が解決する問題

　さて、これからGitとGitHubの概要を見て
いくのですが、そもそもGitとGitHubとはな
んなのでしょうか。簡単に言ってしまうと、
GitはVCS、GitHubはGitで扱うリポジトリの

ホスティングサービスです。とはいえ、これだ
けの説明ではちんぷんかんぷんだと思いますの
で、まずはGitに代表されるVCSとはなんな
のかから見ていきましょう。
　ソフトウェアの開発を行っていると、次のよ
うな状態が頻発します。

・AさんとBさんが同じファイルを編集する
・バグが発生した際、どの編集のタイミングで

発生したのか調べるために昔のソースコー
ドを参照したい

・場合によっては昔のソースコードの状態に戻
したい

・誰がいつどのような変更を行ったのかを記録
しておきたい

　これらの状況に対し、VCSなしで立ち向か
おうとした場合、「ソースコードを編集すると
きには必ずバックアップを取ってから編集する」
「編集した個所には、いつ誰が変更したのかを
必ずコメントで残す」など、人の手にたよった
方法で立ち向かわなければなりません。
　しかし、人間は間違える生き物ですので、人
力でこのようなことを行っていると必ずどこか
で事故が起こります。それだけではなく、この
ような方法では、AさんとBさんが同じファイ
ルを編集したときに、Aさんがすでに変更して
いたことにBさんが気づかず、せっかくAさん
が行った作業をBさんが上書きしてしまう、と

「GitとGitHubって同じものでしょう？」そんな誤解をしている人はいませんか？　GitHubを学ぶにあた
り、まずは「Gitとは何か」「GitHubとは何か」をきちんと整理しましょう。

GitとGitHubとは何か
 Author 丸山 晋平（まるやま しんぺい）　㈱リラク

 Twitter neko_gata_s

第 章1

18 - Software Design Aug. 2016 - 19

いうような状況は防ぐことができません。これ
では困ります。
　そこで、VCSの出番です。VCSのおもな機
能として、「ファイルの履歴を残す」という機能
と「競合（AさんとBさんが同じ部分を編集して
しまう、などの状況）の検出」という機能が挙げ
られます。具体的な利用方法については第2章
以降で触れますので、ひとまず今は「なるほど、
VCSを利用すると、ファイルリネームによる
バックアップ地獄や同時編集地獄、編集切り戻
し地獄などから解放されるのだな」くらいに思っ
ておいてください。

Gitの特徴

　VCSの概要をざっと確認してきたところで、
数あるVCSの中でGitにはどんな特徴がある
のかということに話を進めます。Gitのほかに
もさまざまなVCSが存在しますが、その中でも、
Git登場以前に主流だったSubversionという
VCSがあります。今回は、Subversionと比べ
た場合のGitの特徴を見てみます。
　Subversionと比べてみたとき、Gitの特徴と
して「分散VCSである」という点が挙げられます。
多くのVCSは「リポジトリ」という「今までのソー
スコードのバックアップや変更履歴が格納され
ている場所」を持っています。GitもSubversion

も例外ではないのですが、Subversionは、複数
人で開発するような場合にもそのリポジトリは
1つで、みんなが同じリポジトリに対して変更
履歴やソースコードを格納していきます（図1）。

一方、Gitの場合、各人が自分のリポジトリを
持っていて、各人はおのおののリポジトリに対
して変更履歴やソースコードを格納していきま
す（図2）。
　Subversionの場合、リポジトリに変更を格
納すると、「共同のリポジトリ」にその変更が反
映されるため、ただちにほかの開発メンバーに
影響を与えてしまいます。そのため、気軽にト
ライ＆エラーを繰り返すことが難しかったので
すが、Gitの場合、自分のリポジトリに対して
変更を格納しても、それがただちにほかのメン
バーに対して影響を与えるということがありま
せん。そのため、自分だけのリポジトリで気軽
にトライ＆エラーを繰り返すことができます。
　トライ＆エラーを繰り返したいときには、「前
のコード」をとっておいて、いつでも気軽にその
ときの状態に戻ったりしたいと思いますが、Git

のようにリポジトリを各人が持つようにしておけ
ば、VCSの恩恵を受けながらトライ＆エラーを
繰り返すことができてうれしい、というわけです。
　とはいえ、複数人で1つのソフトウェアを開
発するなら、各人がそれぞれ自分のリポジトリ
だけで作業していては結局「みんなで作業」をす
ることはできません。各人がそれぞれ持ってい
るリポジトリを統合していく必要があります。
Gitでは、リポジトリ同士で「この変更内容を

 ▼図1　Subversionの場合（リポジトリは1つ）

変更変更
変更

リポジトリ

 ▼図2　Gitの場合（各人のリポジトリとみんなのリポ
　　 ジトリがある）

反映反映
反映

リポジトリ

変更

リポジトリ

変更

リポジトリ

変更

リポジトリ

GitとGitHubとは何か
第 章1

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

20 - Software Design

取り込んでくれ」「取り込んだよ」というような
やりとりを行うことで、手元の「自分だけのリ
ポジトリ」の変更内容を「みんなのリポジトリ」
に対して反映したり、逆に「みんなのリポジトリ」
の変更内容を手元の「自分だけのリポジトリ」に
反映したりすることができます。
　具体的な方法は第2章以降で触れていくので、
ここでは「Gitを利用すると、みんなでリポジ
トリを共有する方法に比べると、気軽に自分だ
けのリポジトリに変更を格納していけて便利な
んだな」程度に思っておいてください。

Gitを使う前提となる
スキルや環境

　さて、そんな便利なGitですが、Gitを扱う
にはどのようなスキルや環境が必要なのでしょ
うか。Gitリポジトリを操作するためのアプリ
ケーションとして、さまざまなGUIアプリが
存在しますが、Gitは基本的にはUNIX系シス
テムのコマンドラインツールとして開発されて
います。やはりここはUNIX系コマンドライン
から利用するのが「素直」だと言えるでしょう。
　この特集でもUNIXのコマンドラインの環境
を使って解説していきます。そのため、基本的
なファイル操作（cd、pwd、ls、mkdirなど）を
コマンドラインからできることが、Gitを利用
するうえでの前提となります。

リポジトリホスティング
サービスが解決する課題

　Gitは、上述のとおり、VCSの一種、つまり
ソフトウェアです。一方、GitHubはGitリポ
ジトリのホスティングサービスであると説明し
ました。ではリポジトリのホスティングサービ
スとはどんなものでしょうか。
　リポジトリというのは、今までのソースコー
ドや変更履歴が格納されているものである、と
説明しました。ここで、複数人で開発するよう
な場合についてちょっと想像してみましょう。
自分1人で開発しているだけならば、リポジト

リが自分のPCの中に存在するだけでかまいま
せん。一方、複数人で開発する場合は、ほかの
人からも最新のソースコードや変更履歴が見え
ている必要があるでしょう。そうなってくると、
自分のPCの中だけにリポジトリがあっては困
ります。開発者全員がアクセスできるようなサー
バにリポジトリを置いておく必要が出てきます。
先ほど言った「みんなのリポジトリ」が、みんな
がアクセスできるところに置いてある必要があ
るわけですね。
　自分でそのためのサーバを立ててもいいので
すが、そのためのサーバ管理もひと手間です。
GitHubのようなホスティングサービスを利用
すると、そのホスティングサービスにリポジト
リを置いておくことができます。各開発者は
GitHub上に置いてあるリポジトリを参照する
ことで最新のソースコードや変更履歴にアクセ
スができる、という塩

あんばい

梅です。

GitHubの特徴

　ホスティングサービスにはGitHubのほかに
BitBucketなどがありますが、今回はGitHub

に的を絞って説明しましょう。GitHubの特徴
としては、次の点が挙げられます。

・誰でも閲覧できる公開リポジトリは無料でい
くつでも作成できる

・アクセス制限をかけたリポジトリも作成でき
るが、有料

・リポジトリごとに簡単なissue tracking system
（課題管理システム）が付いてくる

・あるリポジトリに対して「こういう変更をし
てみたから取り込んでくれない？」とお願い
する「Pull Request（プルリクエスト）」とい
う機能がある

　さて、以上がGitとGitHubについての概要
です。次の章からは、チュートリアル形式で実
際に利用しながら、GitやGitHubの操作に慣
れていきましょう。ﾟ

21 - Software Design Aug. 2016 - 21

GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

第1特集

　第1章では、GitやGitHubについての概要を
見てきました。この章からは実際にGitを触り
ながら、その使い方を見ていきます。

Gitの準備

導入方法

　何はともあれ、Gitをインストールしなければ
話は始まりません。今回は誌面の都合上Mac

OS XあるいはDebian系ディストリビューショ
ンに的を絞ってGitのインストール方法を説明し
ます。Windowsの場合は、VirtualBoxなどを利
用した仮想環境上にDebian系ディストリビュー
ションをインストールして読み進めてください。

Mac OS Xの場合
　Mavericks（10.9）以降のMac OS Xには標準
でGitがインストールされていますが、実際に使
い始めるためにはXcode Command Line Tools

というものが必要になります。まだXcode

Command Line Toolsをインストールしていない
場合は、ターミナルを開いてgitコマンドを実行
してみてください。すると、Xcode Command

Line Toolsをインストールするように促すメッセー
ジが表示されます。そのメッセージに従って
Xcode Command Line Toolsをインストールして
ください。これで、Mac OS XでGitが利用でき

るようになります。

Debian系Linuxの場合
　パッケージ管理ソフトであるaptを利用して
インストールするのが一番楽です。

$ sudo apt-get install git-all

を実行することでGitがインストールされ、
gitコマンドが利用できるようになります。

初期設定

　Gitをインストールしたあとは、初期設定と
して、メールアドレスと名前の設定をしておき
ましょう。ここで設定したメールアドレスと名
前は、VCSで管理する「作業履歴」に残るも
のです。「誰がいつどんな変更をしたか」の「誰
が」の部分に使われる情報だと思っていただけ
れば良いでしょう。
　では、実際に設定をしてみましょう。次のコ
マンドで設定できます。

$ git config --global user.name ｭ
'YOUR NAME'
$ git config --global user.email ｭ
'yourmail@example.com'

　YOUR NAMEの部分と yourmail@example.com
の部分については自分の名前とEmailアドレス

GitHubを使うためには、Gitの使い方を学ばなければなりません。ですが、数あるgitコマンドをいき
なりすべて覚える必要はありません。本章ではひとまず、「stageして、コミットして、マージする」とい
うGitでの開発における基本的な流れを行えるようにするためのコマンドを厳選して紹介します。

GitHubを使うための
Gitの基礎知識

 Author 丸山 晋平（まるやま しんぺい）　㈱リラク
 Twitter neko_gata_s

第 章2

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

22 - Software Design

に置き換えてください。

Gitの基本的な操作方法

　さて、Gitのインストールと初期設定が済ん
だところで、いよいよGitを利用してみましょ
う。今回は特定のプログラミング言語の知識に
依存しないよう、単なるテキストファイルで構
成されるプロジェクトのバージョン管理を題材
にしながら、Gitの利用方法を学んでいきます。

リポジトリを作る

　第1章で述べたとおり、Gitでは「リポジトリ」
と呼ばれるところにソースコードや変更履歴を
保存していきます。そのため、何はなくともま
ずはリポジトリを作成しなければ話は始まりま
せんので、そこからやっていきましょう。
　最初に、プロジェクトのファイルを置くため
に、my_first_projectというディレクトリを作
成し、そこに移動しましょう。今回は簡便のた
め、ホームディレクトリ直下にプロジェクト用
ディレクトリを作成しますが、好きなところに
作っていただいてかまいません。

$ cd $HOME
$ mkdir my_first_project
$ cd my_first_project

　さて、このディレクトリが今回のプロジェク
トの「作業ディレクトリ」になります。作業ディ
レクトリというのはその名のとおり、「作業中
のファイルを置いておくところ」です。作業用
のディレクトリができたので、このディレクト
リで作業をしたファイルや、作業履歴を残すた
めのリポジトリを作成しましょう。リポジトリ
を作成するためのコマンドは、

$ git init

です。このコマンドを実行すると、

Initialized empty Git repository in ｭ
/path/to/my_first_project/.git/

というメッセージが表示されます。「/path/to/

my_first_project/.git/に空のリポジトリを作り
ましたよ」くらいのメッセージですね。ここで、

$ ls -a
. .. .git

というようにカレントディレクトリの一覧を確
認してみると、「.git」という隠しファイルがで
きていることが確認できると思います。この .git

というディレクトリが、リポジトリの実体です。
今後は、作業ディレクトリで作業した内容を、
gitコマンドを通じてこのリポジトリに格納し
ていくことになります。
　さて、これで「作業ディレクトリ」と「リポ
ジトリ」の両方が用意できました。すぐに作業
を開始してしまいたいところですが、ちょっと
立ち止まって、「空っぽの作業ディレクトリ」
と「空っぽのリポジトリ」をGitというソフト
ウェアがどのように認識しているかをたしかめ
てみましょう。

$ git status

というコマンドを実行すると、現在の作業ディ
レクトリとそのリポジトリをGitがどのように
認識しているかを確認できます。出力は図1の
ようになるはずです。
　「masterというブランチにいるよ」「最初のコ
ミットだよ」「コミットすべきものがないよ
（……）」といったような情報が出ています。ブ
ランチについてはのちほど説明するので、今は
無視しておいてください。では、「コミット」
とはなんでしょうか。コミットというのは、「作
業ディレクトリで作業した内容をリポジトリに
格納すること」です。まだリポジトリを作成し
たばかりで、何もコミットしていないので、今

22 - Software Design Aug. 2016 - 23

何かをコミットするとそれが最初のコミットに
なります。ですので、「最初のコミットである」
という意味でInitial commitと表示されてい
るのは筋が通っています。また、現在は作業ディ
レクトリも空っぽですので、「コミットすべき
ものがない」というのも筋が通っていますね。

はじめてのコミット

　さて、話を戻します。今は、空の作業ディレ
クトリと空のリポジトリを用意したところまで
進んでいるのでした。では今から、この作業ディ
レクトリにテキストファイルを作成して、それ
をリポジトリにコミットしてみましょう。

ファイルを作成
　まずは、

hello! git

とだけ書いた、hello.txtというファイルをmy_

first_projectディレクトリ直下に作成してみて
ください。これで、空だった作業ディレクトリ
に新しいファイルが追加されました。この状態
で、再度git statusコマンドを実行してみま
しょう。Gitは作業ディレクトリとリポジトリ

をどのように認識しているのでしょうか。図2
のような出力が得られるはずです。
　変化がありましたね。Untracked files:以
下にいろいろな情報が出ています。詳しく見て
いきましょう。
　まずは一番下の行、nothing added to commit
...の部分です。「コミットするものは何も追
加されていないけど、『untracked files』が存
在するよ（trackするには云々）」というような
情報が出ています。そして、Untrakced files:
以下に、「untracked filesは以下のとおりだよ」
という形で、hello.txtが挙げられています。

gitに変更を追跡させる—git add
　作業ディレクトリにhello.txtファイルを作成
したのに、「コミットするものがない」とはどう
いうことなのでしょうか？　そして、「untracked」
や「track」というのはいったい何なのでしょ

うか？
　ここで、git statusが「Gitというソフトウェ
アが今の作業ディレクトリをどのように認識し
ているか」を表示するコマンドだったことを思
い出しましょう。「trackされていないファイル」
というのはつまり「Gitが trackしていないファ
イル」ということです。trackというのは「追

On branch master

Initial commit

nothing to commit (create/copy files and use "git add" to track)

 ▼図1　最初の「git status」の実行結果

On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 hello.txt

nothing added to commit but untracked files present (use "git add" to track)

 ▼図2　hello.txt作成後の「git status」の実行結果

GitHubを使うためのGitの基礎知識
第 章2

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

24 - Software Design

跡する」とかそういう意味ですね。つまり、こ
れは「Gitは作業ディレクトリに変化があった
ということ自体は認識しているのだけれど、こ
の変化をGitで追跡するようにはなっていない
よ」ということです。
　そこで、Untracked files:の下の行に書か
れている(use git add <file>...)の部分に注
目してみましょう。「コミットされるものに含
めるためには、git add <file>...を使ってね」
というようなことが書いてあります。
　では、実際に作成したファイルをgit addし
てみましょう。

$ git add hello.txt

　これで、Gitがhello.txtに加えられた変更を
追跡するようになったはずです。git status
で試してみましょう。図3のような出力が得ら
れるはずです。
　Changes to be commited:の下に new file:
hello.txt、つまり「新しくhello.txtというファ
イルができた、という変更がコミットされますよ」
という情報が出てきたことがわかると思います。

コミットする—git commit
　さて、これで変更をコミットする準備ができ
ました。では、いよいよ実際にコミットしてみ
ましょう。

$ git commit

というコマンドで、trackされている変更をコミッ
トできます。しかし、このコマンドを実行すると、
変更が即コミットされるわけではなく、なぜか
エディタが立ち上がります。エディタ上には、
リスト1のような表示が出ているはずです。

コミットメッセージ
　最初、いきなりエディタが立ち上がってびっ
くりしてしまうと思うのですが、これは「コミッ
トメッセージ」を記入するためです。では、コ
ミットメッセージとはなんでしょうか。
　リポジトリは今まで、「ソースコードや、変
更履歴が保存される場所」だと言ってきました。
このうち「変更履歴」について考えてみます。
変更履歴を参照するとき、どのような情報がほ
しいでしょうか。よく5W1Hと言われるうち、
「どこで」というのはソフトウェア開発におい

On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: hello.txt

 ▼図3　hello.txtを「git add」したあとの「git status」の実行結果

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
#
Initial commit
#
Changes to be committed:
new file: hello.txt
#

 ▼リスト1　「git commit」すると、エディタが立ち上がる

24 - Software Design Aug. 2016 - 25

て重要ではありませんが、「いつ」「誰が」「何を」
「なぜ」「どう」編集したのかは重要な情報です。
このうち、「いつ」「誰が」編集したのかは、コミッ
トするときに自動的に記録できます（最初に名
前とメールアドレスを設定したのを思い出して
ください）。さらに、「何を」「どう」編集した
のかは、編集前のコードと編集後のコードの差
分を取ることで機械的に判断できます。しかし、
「なぜ」そのような編集をしたのかについては、
機械的に判断できません。コミットメッセージ
は、その「なぜ」を書いておくための場所です。
　ところで、立ち上がったエディタにすでに書
かれているテキストはどんな内容でしょうか。

・コミットメッセージを記入してください
・#から始まる行は無視されます（要するにコ

メントアウト）
・メッセージが空だとコミットされません

というようなことが書かれた下に、Initial
commit や Changes to be committed:... と
いったように、今回コミットされるであろう変
更点がまとめられています。
　さて、実際にコミットメッセージを書いてい
きたいところですが、今回は最初のコミットで
すので「なぜ」の部分に書くべきことがそんな
にありません。ひとまず1行目に「はじめての
コミット」とでも書いて、保存してエディタを
終了させましょう。

[master (root-commit) 67260b7] はじめてのコミット
 1 file changed, 1 insertion(+)
 create mode 100644 hello.txt

というようなメッセージが表示されていれば、
無事にコミット成功です。念のためgit status
コマンドで現在の状況を確認してみましょう。

On branch master
nothing to commit, working directory clean

と表示されるはずです。作業ディレクトリで行っ
た変更をリポジトリに格納したばかりですので、

リポジトリに格納されている最新の状態と現在
の作業ディレクトリには差異がありません。そ
のため、「コミットすべきものはないよ」「作業
ディレクトリはきれいな状態だよ」という情報
が表示されています。

◆　◆　◆
　さて、コミットに成功したので、今までの流
れをあらためて確認しておきましょう。
　Gitでは、「作業ディレクトリ」で作業したソー
スコードや変更履歴を、「リポジトリ」というと
ころに保存していきます。作業ディレクトリで
何かしらの変更を行ったあと、git addコマン
ドを利用して「この変更はコミットしてほしい
情報である」というのをGitに伝えておきます。
変更点をすべてgit addしたら、git commitコ
マンドで実際に変更点をリポジトリにコミット
します。その際エディタが立ち上がるので、「な
ぜこのような変更を行ったのか」をコミットメッ
セージとして残しておきましょう。

2度目のコミット

　コミットまでの流れを一度体験したので、さ
らにコミットを重ねながらGitの便利さを体感
していきましょう。

ファイルを編集
　まずは作業ディレクトリのhello.txtを編集し
てみます。

hello! GitHub

Gitの操作方法について学んでいます。

　上記のように変更しました。念のため、また
git statusで状態を確認してみましょう（図4）。
　Changes not staged for commit:の下に、
modified: hello.txtとありますね。まだgit
addしていないので、hello.txtの編集内容はコ
ミットされない、というわけですね。

GitHubを使うためのGitの基礎知識
第 章2

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

26 - Software Design

差分を確認—git diff
　ところで、ソースコードを編集していると、「こ
のファイルって編集前はどんなふうに書いてあっ
たっけ」と思うことが頻繁にあります。Gitを
利用していると、git diffというコマンドを
利用することで、「以前のバージョン」からど
のような変更を自分が行ったかを確認できます。
ではやってみましょう。

diff --git a/hello.txt b/hello.txt
index a7b7233..7fd90d2 100644
--- a/hello.txt
+++ b/hello.txt
@@ -1 +1,3 @@
-hello! git
+hello! GitHub
+
+Gitの操作方法について学んでいます。

という出力が得られました。
　注目すべきは、3行目以降です。--- a/
hello.txtと書かれているのは、「以前のバー
ジョンのhello.txtから、行が削除されているよ」
という意味です。削除されたからマイナス記号、
というわけですね。+++ b/hello.txtと書かれ
ているのは、「以前のバージョンのhello.txtに
行が追加されているよ」という意味です。追加
されているからプラス記号です。
　さらに下のほうを見ていくと、-hello! git
という行、その直下に+hello! GitHubという
行がありますが、これは「『以前のバージョン
からhello! gitという行を削除したよ』『以前の
バージョンにhello! GitHubという行を追加し
たよ』」という意味です。行を書き換えるとい
うのは、言い換えれば「行を削除して新しく書
くこと」ですね。さらに、その下の行を見てい

くと、以前のバージョンに対して、空行と「Git

の操作方法について学んでいます。」という行
を追加したということが見て取れます。
　このように、Gitを利用すると、以前のバー
ジョンからどこをどのように変更したのかを確
認できます。git addする前にgit diffを確認
することで、「どんな変更をしたんだっけ」と
確認したり、意図していない変更をしていない
ことを確認できたりして便利ですね。実はgit
diffでは直近のバージョンからの変更だけで
はなく、さまざまなバージョン間の変更を確認
できるのですが、そのあたりを詳しく知りたい
方は、「Git - Book」注1を読んでみてください。

stageする—git add
　さて話を戻して、2度目のコミットに進みま
しょう。編集した内容をgit diffで確認した
結果、「これで良し」と思ったとしましょう。
git addでこの変更を「コミットする内容」と
してGitに認識させたいところです。
　ところで、このgit addすることをGit用語
で「stageする」と言ったりします。プロダクショ
ン環境でアプリケーションを実行する前に動作
確認するための環境を「ステージング環境」と
言ったりしますが、Gitでも「本番コミット」
する前にファイルを置いておくための「ステー
ジング環境」があると考えるとわかりやすいで
しょう。というわけで、変更をstageします。

$ git add .

注1） URL https://git-scm.com/book/ja/v2

On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: hello.txt

no changes added to commit (use "git add" and/or "git commit -a")

 ▼図4　hello.txtの編集後の「git status」の実行結果

https://git-scm.com/book/ja/v2

26 - Software Design Aug. 2016 - 27

　今回はhello.txtというファイル名ではな
く、カレントディレクトリを表す「.」を指
定しました。実はgit addコマンドは、ディ
レクトリを指定するとそのディレクトリの
ファイルの内容すべてを再帰的に（つまり
子ディレクトリ、孫ディレクトリも）stage
してくれます。一度にstageしたい場合などに
便利ですので、覚えておくと良いでしょう。
　さて、これでhello.txtへ行った変更がstage

されました。念のためgit statusで状況を確
認すると、図5のような出力が得られます。
「hello.txtの変更がコミットされるよ」と書か
れています。良いですね。

stageを取り消す—git reset
　ところで、先ほど「stageするのはステージ
ング環境で確認するようなものだ」と言いまし
たが、ステージング環境で確認したものは「やっ
ぱりやーめた」とできなければステージング環
境の意味がありません。ここで、一度stageし
た変更を「やっぱりやーめた」とするにはどう
すればいいかということを見てみましょう。
　実は、stageを取り消す方法はgit statusの
出力結果に書いてあります。(use "git reset
HEAD <file>..." to unstage)というのがそれ
です。stageを取り消すので「unstage」、とい
うわけですね。書いてあるとおり、git reset
HEAD hello.txt注2とすればhello.txtの変更を
stageしたものは取り消され、stageされていな
い状態に戻ります。
　unstageに限らず、git statusの出力にはし
ばしば「XをしたいときにはYコマンドを利用
してくださいね」といった情報が出ているので、
「コマンド全部覚えなきゃ！」と思って気負わず、
git statusの指示に従って利用していけば、
そのうち自然にコマンドを覚えられます。こま

注2） これはstageに乗っているhello.txtをHEADブランチの状
態に戻すという意味です。HEADブランチについてはp.32
で説明しますが、要するにこれでstageのhello.txtを直前
のコミットの状態に戻せる、ということです。

めにgit statusで現在の状況を確認する癖を
付けると良いでしょう。

コミットする—git commit
　さて、unstageの方法を確認したところで、
2度目のコミットをしてみてください。コミッ
トの方法はもうわかりますね。今回のコミット
メッセージは、

hello.txtの内容を修正

Gitの特集ではなくてGitHubの特集なので ｭ
s/git/GitHub/した

くらいにしておきましょう。コミットメッセー
ジの慣習として、1行目にEmailでいうところ
のSubject、3行目以降に本文を書くという慣
習があります。このようにしておくと、後述す
るgit logやGitHubが“いい感じ”に履歴を
表示してくれるので、なるべくこのフォーマッ
トを守ると良いでしょう。

履歴を確認する

　さて、これで無事2回コミットを行うことが
できました。Gitの機能の1つとして「履歴を
残す」というのがありましたが、残した履歴は
あとから参照できなければ意味がありません。
ここでは、リポジトリに残った履歴を参照する
方法を学んでいきましょう。

履歴を参照—git log
　履歴を参照するコマンドは、git logです。
実際にターミナルでgit logを実行してみてく
ださい。図6のような出力が得られます。
　git logの出力はページャ（lessなど）で展開

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: hello.txt

 ▼図5　編集済みのhello.txtを「git add」したあとの「git
　 　status」の実行結果

GitHubを使うためのGitの基礎知識
第 章2

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

28 - Software Design

されますので、ログを閉じたい場合はページャ
を終了させてください（lessの場合はqを入力）。
　今まで行ったコミットの詳細が、新しいもの
から順に書かれています。commitの横に書か
れている乱数のような文字列は「コミットハッ
シュ」と呼ばれるもので、そのコミットの ID

のようなものです。その下に「誰がいつ行った
コミットか」が続き、その下にコミットメッセー
ジが表示されています。このログを見ることで、
「いつ誰がどのようなコミットをなぜ行ったのか」
を知ることができます。

コミットの詳細を確認—git show
　ところで、たとえば2回目のコミットで「実
際にどのファイルにどういう変更を行ったのか」
ということを詳しく知りたくなったときにはど
うすればいいでしょうか。そういうときには

git showコマンドが便利です。git show
<commit hash>とすることで、そのコミットの
詳細を見ることができます。今回の筆者の環境
であれば、2回目のコミットのコミットハッシュ
は a84d2a3fd0c7fe1a7b87adddea193a92cf3
2b041ですので、次のコマンドを実行します。

$ git show a84d2a3fd0c7fe1a7b87adddea193ｭ
a92cf32b041

　すると、図7のような出力が得られるでしょう。
　コミットログのほかに、どのファイルに対し
てどのような変更を行ったかも出力されました。

ファイルの変更を確認—git diff
　単にファイルの変更だけ見たい場合は、git
diff <from commit hash> <to commit hash>

commit a84d2a3fd0c7fe1a7b87adddea193a92cf32b041
Author: shinpei maruyama <shinpeim@gmail.com>
Date: Fri Jun 3 20:36:03 2016 +0900

 hello.txtの内容を修正

 Gitの特集ではなくてGitHubの特集なので s/git/GitHub/した

commit 67260b7e75f60e2f2e02c44827c7afd66dc148a9
Author: shinpei maruyama <shinpeim@gmail.com>
Date: Fri May 27 16:35:41 2016 +0900

 はじめてのコミット

 ▼図6　「git log」の実行結果

commit a84d2a3fd0c7fe1a7b87adddea193a92cf32b041
Author: shinpei maruyama <shinpeim@gmail.com>
Date: Fri Jun 3 20:36:03 2016 +0900

 hello.txtの内容を修正

 Gitの特集ではなくてGitHubの特集なので s/git/GitHub/した

diff --git a/hello.txt b/hello.txt
index a7b7233..7fd90d2 100644
--- a/hello.txt
+++ b/hello.txt
@@ -1 +1,3 @@
-hello! git
+hello! GitHub
+
+Gitの操作方法について学んでいます。

 ▼図7　「git show」の実行結果

28 - Software Design Aug. 2016 - 29

を利用できます。今回であれば、最初のコミッ
トから2回目のコミットまでにどのような変更
が行われたかを知るためには、

$ git diff 67260b7e75f60e2f2e02c44827c7aｭ
fd66dc148a9 a84d2a3fd0c7fe1a7b87adddea19ｭ
3a92cf32b041

とすれば良いでしょう。
　今回は最初と2回目のコミットを比べました
が、<from commit hash> <to commit hash>の
ところに好きなコミットハッシュを指定するこ
とで、任意のコミット間の変更を確認できます。

ブランチを利用する

　さて、これまでで、コミットやコミット間の
差異を確認する方法を学んできました。ここか
らGitの本領、「ブランチ」の利用方法を見て
いきましょう。

ブランチが解決するもの
　とはいえ、いきなり利用方法だけ見ても何が
便利なのかわからないので、ブランチの利用方
法を見ていくその前に、「ブランチを利用する
ことでどんな問題が解決できるのか」というこ
とを把握しておきたいと思います。
　開発を行っていると、「Aの作業をしている途
中、緊急対応でBの作業が必要になってしまった」
というようなことが頻発します。このとき、A

の作業はまだ中途半端な状態ですのでリリース
できません。Aの作業を始める前の状態に一度
ソースコードを「巻き戻し」したあと、Bの作
業を行ってリリースしたいですよね。そしてそ
のあと、まだ途中だったAの作業をまた手元に
引き寄せて開発に戻る、ということをしなけれ
ばなりません。しかし、これを手動でやろうと
思うと、かなりたいへんです。たいへんなだけ
ならともかく、事故が起こりそうです。ブラン
チは、このような作業をサポートしてくれます。

ブランチを一覧—git branch
　では実際にブランチについて見てみましょう。
簡単に言うと、ブランチというのはあるコミッ
トを指すセーブデータのようなものです。百聞
は一見にしかずと言いますので、実際に操作す
ることでそれがどういうものなのか見てみたい
と思います。
　まずは、現在どのようなブランチ（＝セーブ
データ）があるのかを確認してみましょう。

$ git branch

とすることで、ブランチの一覧を表示できます。

* master

という出力が得られたかと思いますが、この
masterというのは、いわば「デフォルトのセー
ブデータ」です。masterの左に「*」がついて
いますが、これは「今進めているセーブデータ
はmasterだよ」ということを表しています。

ブランチを作成・選択—git checkout -b
　では、ここで、別のセーブデータ（＝ブラン
チ）を作成してみましょう。

$ git checkout -b branch_a

とコマンドを入力すると、

Switched to a new branch 'branch_a'

という表示が出たと思います。これは「新しく
branch_aというセーブデータを作って、そっ
ちに移りました」というような意味です。
　git branchで確認してみましょう。

* branch_a
 master

GitHubを使うためのGitの基礎知識
第 章2

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

30 - Software Design

という出力が得られたのではないかと思います。
branch_aとmasterというブランチがあり、現
在選択されているのがbranch_aであることが
わかります。
　このとき、git statusでGitの状態を確認すると

On branch branch_a
nothing to commit, working directory clean

となっています。今までOn branch masterと
書かれていたところがOn branch branch_aと
なっています。「選択しているセーブファイル
がbranch_aである」というような感じですね。

別のブランチでコミット
　では、branch_aを選択している状態でhello.

txtを編集してコミットしてみましょう。hello.

txtの内容はリスト2にしましょう。この変更
をコミットしてみてください。コミットメッセー
ジは「branch_aで作業してみた」くらいにし
ておきましょう。git logで確認して、無事に
新しくコミットできたことを確認してください。

ブランチにおける巻き戻し
　ところで今、branch_aというブランチで新し
くコミットをしましたが、これはbranch_aのセー
ブデータを「より進んだセーブポイント」でセー
ブしたようなものです。このとき、masterブラ
ンチはどのようになっているでしょうか。
branch_aで作業を行ってコミットしましたが、
masterブランチではコミットをしていません。
つまり、masterブランチにはbranch_aで作業
する前の状態が保存されているはずです。
　これを確かめるために、実際にmasterブラ
ンチを選択してみましょう。ブランチを選択す

るにはgit checkoutコマンドを利用します。

$ git checkout master

　さて、これでmasterブランチを選択できま
した。git branchで、masterの横に「*」が表
示されていることを確認してください。その状
態で、git logをしてみましょう。先ほど
branch_aでコミットした「branch_aで作業し
てみた」というコミットが見えなくなっている
はずです。さらに、作業ディレクトリ内の
hello.txtの内容を確認してみましょう。branch

_aで作業を行う前の状態に戻っているのが見
て取れると思います。
　これはいったいどういうことでしょう？　状
況を整理しましょう。
　セーブデータのたとえで言うと、branch_a

を選択したときにコミットした変更内容は、
branch_aセーブデータにセーブされましたが、
masterセーブデータにはセーブされていません。
繰り返しになりますが、masterにはbranch_a

で作業する前の状態が保存されています。ここ
でmasterブランチを選択するのは、そのmas

terセーブデータをロードするようなものです。
masterブランチにはbranch_aで作業する前の
状態が保存されているので、結果的に、作業コ
ピーの内容とgit logの内容がbranch_aセー
ブデータで作業する前の状態に巻き戻せた

4 4 4 4 4

とい
うことです。
　ここで、ブランチが解決してくれる問題がど
んなものだったか、思い出してみましょう。「A

の作業をしているときに緊急対応でBの作業が
入ってきた、Aの作業を巻き戻してBの作業を
行いたい」というような問題でした。
　実は、今までの手順がまさにこの問題を解決
する手順となっています。Aの作業をする前に
branch_aというブランチを作成し、そちらを
選択しました。masterというブランチには「そ
れまでの作業」が保存されています。そのあと、
作業Aの内容をbranch_aに保存しましたが、

hello! GitHub

Gitの操作方法について学んでいます。
branch_aを新しく作ってbranch_aで作業しています。

 ▼リスト2　hello.txtを編集

30 - Software Design Aug. 2016 - 31

masterには以前の状態が残ったままです。こ
こで、masterブランチを選択すれば、以前の
状態を手元に再現できたわけですね。
　これで「Aの作業を巻き戻す」ということが
実現できました。あとはここから作業Bを進め
ていけば良いです。作業Bを進めているあいだ
にも、branch_aには作業Aで行っていた内容
が保存されていますので、branch_aで行った
作業は無駄になっていません。

割り込み作業のためのブランチを作成
　さて、それでは実際に作業Bを行っていきま
しょう。master上で作業Bを行っても良いの
ですが、作業Bを行っている途中でまた割り込
みの作業が入ってくるかもしれません。念のた
め「作業B用のセーブデータ」をもう1つ作っ
て、そのブランチを選択しておきましょう。

$ git checkout -b branch_b

　さて、ここからは実際の作業です。作業Bと
して、新しいファイル「b.txt」を作りましょう。
内容は、

branch_bで作られたファイルです

くらいにしておきましょう。コミットメッセー
ジは「branch_bでb.txtを作成」で良いでしょう。
　これで作業Bは無事に終わりました。この内
容をリリースするために、メインであるところ
のmasterブランチに、今branch_bで行った変
更を取り込みたいところです。

ブランチに、別のブランチの変更を取り込む
—git merge
　あるブランチで行われた変更内容を選択して
いるブランチに取り込むためには、git mergeと
いうコマンドを利用します。今回ならばmaster

ブランチにbranch_bの内容を取り込みたいので、
masterブランチを選択し、git mergeを行います。

$ git checkout master
$ git merge branch_b --no-ff

　git mergeコマンドを実行すると、エディタ
が立ち上がったかと思います。
　git mergeは「あるブランチの変更を選択した
ブランチに取り込むコマンドである」と説明しま
したが、これは言い方を変えれば「masterブラ
ンチにbranch_bで行った変更をコミットする」
ということでもあります。このように、あるブラ
ンチで行った変更を取り込んでコミットするよう
なコミットのことを「マージコミット」と呼びます。
VCSの能力の1つとして「履歴を残す」という
ものがあると言いましたが、「branch_bの内容を
masterに取り込んだよ」という変更履歴を残す
ためのコミットである、と言ってもいいでしょう。
　というわけで、コミットメッセージは「緊急で
branch_bで作業した内容を反映」くらいにしてお
きましょう。これで、masterブランチに、branch_

bで作業した内容を取り込むことができました。
　ところで、--no-ffというオプションを付け
ていますが、この--no-ffというオプションは
何でしょうか。実はこのオプションを付けない
と、マージコミットが生成されず、単にmaster

がbranch_bと同じところに進んでしまう場合
があります。この--no-ffはちょっと複雑です
ので、のちほどあらためて詳述しますが、今は
ひとまず「マージするときに--no-ffを付ける
と確実にマージコミットを残すことができるん
だな」くらいに思っておいてください。

状況確認
　さて、git mergeを利用してmasterにbranch_

bの内容を取り込んだマージコミットを作成す
るところまでやってきたのでした。git logで
コミットの履歴を確認してみてください。branch

_bで作業した内容のコミットと、そのコミッ
トを取り込んだという内容のコミットが新たに
masterの履歴に生じているはずです。さらに、
作業ディレクトリ内の内容を見てみてください。

GitHubを使うためのGitの基礎知識
第 章2

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

32 - Software Design

branch_aで行った変更内容は反映されていな
い一方、branch_bで追加したb.txtはきちんと
存在しているはずです。
　ここで、現在の状況を整理しましょう。現在、
master、branch_a、branch_bの3つのブランチ
が存在しています。そして、それぞれ、

・branch_aには途中だった作業Aが保存され
ている

・branch_bには緊急で行った作業Bの内容が
保存されている

・masterには作業Bの内容を取り込んだ内容
が保存されている

という状況ですね。

コミットグラフ
　今回はそこまで複雑ではないですが、より状
況が複雑になってきたとき、各ブランチにどん
な内容が保存されているかを脳内だけで覚えて
おくのは現実的ではありません。そこで、各ブ
ランチがどのように進んでいるのかを確認する
のに便利なコマンドをこのあたりで覚えておき
ましょう。筆者のお勧めは図8に挙げるコマン
ドです。これを実行すると、図9のような出力
が得られると思います。

　各ブランチがどのように派生し、どのように
マージされたのか、線でつながれて表示されて
います。このようなものを「コミットグラフ」と

呼んだりします。便利ですね。
　しかし、毎回オプションだらけのコマンドを叩
くのは少ししんどいです。そこで、「エイリアス」
という機能を利用してgit graphと打つだけで同
様の出力を得られるようにしておきましょう。
　図10コマンドを入力すると、今度からgit
graphと入力しただけで図8で入力したコマン
ドと同じ結果を得られます。
　さて話を戻して、この形式のコミットグラフ
の読み方についてもう少し詳しく見てみましょ
う。「*」がコミットを表しています。その横に
は括弧があったりなかったりしますが、そのコ
ミットを指すブランチがある場合、括弧でブラ
ンチ名が表示されます。その横にはコミットの
概要が表示されています。

「HEAD」って何？
　図9にHEAD -> master注3という見慣れない
表示が出ていることに気づいたでしょうか。
masterはmasterブランチがここを指している、

注3） 環境によってはHEAD, masterとなっている場合があります。

$ git log --graph --date-order --all --pretty=format:'%h %Cred%d %Cgreen%ad %Cblue%cn ｭ
%Creset%s' --date=short

 ▼図8　ブランチの状況（コミットグラフ）を表示するコマンド

* 3333d1c (HEAD -> master) 2016-06-07 shinpei maruyama 緊急でbranch_bで作業した内容を反映
¦¥
¦ * 6963c6d (branch_b) 2016-06-07 shinpei maruyama branch_bでb.txtを作成
¦/
¦ * 393fc82 (branch_a) 2016-06-07 shinpei maruyama branch_aで作業してみた
¦/
* 50189e4 2016-06-07 shinpei maruyama hello.txtの内容を修正
* 67260b7 2016-05-27 shinpei maruyama はじめてのコミット

 ▼図9　「図8」のコマンド実行結果

$ git config --global alias.graph "log --graph --date-order --all --pretty=format:'%h ｭ
%Cred%d %Cgreen%ad %Cblue%cn %Creset%s' --date=short"

 ▼図10　「図8」のコマンドを「git graph」だけで実行できるようエイリアスを設定

32 - Software Design Aug. 2016 - 33

ということでいいと思いますが、HEADとはいっ
たい何なのでしょう。HEADというのは、簡単
に言うと「今選択しているブランチ」のことを
指します。現在はmasterブランチを選択して
いるので、HEADがmasterを指している、とい
うわけですね。
　HEADの動きを確認するために、実際に別の
ブランチを選択してみましょう。

$ git checkout branch_a

　上記コマンドを実行したのち、再度 git
graphしてみると、HEADがbnrach_aを指して
いるのが確認できるのではないでしょうか。

割り込み作業を終了、本作業へ
　さて、これで各ブランチの内容が一目で確認で
きるようになりました。branch_bはもういらないブ
ランチになったので、このブランチは消してしまい
ましょう。ブランチを消すにはgit branch -dです。

$ git branch -d branch_b

　これで、割り込みで発生した作業Bは完全に
完了ですね。おめでとうございます。
　さて、作業Bが完了したのは良いのですが、
作業Aがまだ途中で放置されていますね。そこで、
branch_aで引き続き作業を行っていきましょう。

$ git checkout branch_a

でbranch_aを選択し、hello.txtを次のように
書き換えます。

hello! GitHub

Gitの操作方法について学んでいます。
branch_aの作業を完了しました

　この内容をコミット（コミットメッセージは
「作業Aを完了」にしましょう）したら、master

を選択してbranch_aの内容をマージし（マージ
コミットのメッセージは「branch_aの作業をマー
ジ」でいいでしょう）、不要になったbranch_a

を削除してみてください。コマンドは示さない
ので、今まで学んだコマンドを駆使して自分で
やってみてください。最終的にコミットグラフ
が図11のようになっていれば成功です！

◆　◆　◆
　さて、以上がブランチの説明となります。ブ
ランチを利用することで、差し込みの作業など
にも対応できることが見て取れたと思います。
今回は、各ブランチが同じファイルの同じとこ
ろを修正してしまった場合に起こる「コンフリ
クト」や、各ブランチで行ったコミットをあと
から編集するようなことについては触れていま
せん。そのあたりについて知りたい方は「Git

- book」を参照してください。

落穂ひろい：--no-ff

　ところで、マージについて説明するときに、
--no-ffについてはのちほど詳述する、と言った
まま説明を続けてしまいました。このあたりで、

* d8c640c (HEAD -> master) 2016-06-07 shinpei maruyama branch_aの作業をマージ
¦¥
¦ * a98e583 2016-06-07 shinpei maruyama 作業Aを完了
* ¦ 3333d1c 2016-06-07 shinpei maruyama 緊急でbranch_bで作業した内容を反映
¦¥ ¥
¦ * ¦ 6963c6d 2016-06-07 shinpei maruyama branch_bでb.txtを作成
¦/ /
¦ * 393fc82 2016-06-07 shinpei maruyama branch_aで作業してみた
¦/
* 50189e4 2016-06-07 shinpei maruyama hello.txtの内容を修正
* 67260b7 2016-05-27 shinpei maruyama はじめてのコミット

 ▼図11　最終的なコミットグラフ

GitHubを使うためのGitの基礎知識
第 章2

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

34 - Software Design

--no-ffについてきちんと説明しておきましょう。

実験のための環境準備
　すでに軽く触れましたが、Gitではマージを
するときに、マージコミットを作る場合と作ら
ない場合があります。実際に試してみるのが一
番ですので、ここで適当な場所（今回はホーム
ディレクトリにします）に新しく ff_merge_
testというディレクトリとリポジトリを作成
して、実験してみましょう。
　ディレクトリにリポジトリを作成する方法は
もう大丈夫ですね。

$ cd $HOME
$ mkdir ff_merge_test
$ cd ff_merge_test
$ git init

でOKです。まずはここにあたらしくhello.txt

を作り、

Hello, ff-merge!

という内容で保存し、この内容をコミットして
ください。コミットメッセージは「最初のコミッ
ト」でいいでしょう。ここでgit graphを確認
すると、図12のようになっています。
　さてここで、新しい作業を行いたいと思って
branch_aを切ったとしましょう。

$ git checkout -b branch_a

　さらにそのブランチでhello.txtを次のように
編集します。

Hello, ff-merge!
ブランチAでの作業です。

　この内容を「ブランチAで作業」というコミッ
トメッセージでコミットしましょう。そのうえ
でgit graphを実行すると図13のようになっ
ているはずです。
　masterにはブランチAでの作業が保存され
ておらず、branch_aには保存されている、と
いう状況を作ることができました。

--no-ffの検証
　ここで、masterを選択したうえで、--no-ff
を付けずにbranch_aをマージしてみましょう。

$ git checkout master
$ git merge branch_a

　--no-ffを付けたときと異なり、エディタが
立ち上がらず、

Updating 328870b..3b66d5b
Fast-forward
 hello.txt ¦ 1 +
 1 file changed, 1 insertion(+)

というような表示が出てきたかと思います。こ
こでgit graphを確認してみましょう。図14
のようになっているはずです。
　マージコミットが作成されず、単にmaster

の位置がbranch_aと同じところに移動しました。
作業ディレクトリの内容を確認すると、hello.

txtの内容はbranch_aと同じになっています。

* 328870b (HEAD -> master) 2016-06-15 shinpei maruyama 最初のコミット

* 3b66d5b (HEAD -> branch_a) 2016-06-15 shinpei maruyama ブランチAで作業
* 328870b (master) 2016-06-15 shinpei maruyama 最初のコミット

 ▼図12　masterブランチでコミット後の「git graph」の実行結果

 ▼図13　branch_aブランチでコミット後の「git graph」の実行結果

34 - Software Design Aug. 2016 - 35

Fast forwardマージ
　このように、Gitは「単にブランチを進めるだ
けでマージしたいブランチにたどり着ける」と
いった場合、--no-ffオプションを付けなけれ
ばマージコミットを作成せず、単にブランチを
そこまで進める形で、マージしたいブランチの
内容を取り込みます。このようなマージの方式
を「Fast forwardマージ」と呼びます。--no-
ffは「no fast forward」の略だったわけですね。
　しかし、「あるブランチでの変更内容を取り
込んだ」というのは立派な履歴ですので、普通
はマージコミットがあったほうがうれしいはず
です。あえて履歴を残したくないパターンとい
うのはあるのでしょうか。
　実はいくつかあります。そのうちの1つは第3

章であらためて説明しますが、ほかにも次のよ
うなシチュエーションを考えてみてください。

　あなたは、新機能の開発のため、masterブ
ランチからnew_featureブランチを作成し、
new_featureブランチでいくつか作業を進め
ていました。その途中で使ったことのないラ
イブラリを使ってみようと思い立ちました。
しかし初めて使うライブラリですので、本当
に今回のユースケースにマッチするのかどう
か、自信がありません。そこで、「実験用」ブ
ランチとして test_new_libraryというブラン
チを new_featureから作成し、test_new_
libraryブランチで新しいライブラリを試して
みることにしました。こうしておけば、もし
も今回使ってみたライブラリが目的にうまく
マッチしなかったとしても、new_featureブ
ランチに戻り、test_new_libraryブランチを
捨ててしまえば、なんのリスクもなく新しい
ライブラリを試すことができます。
　一方「実験」がうまくいって、このままこの
ライブラリを利用したコードをnew_featureに
取り込みたいとなったときのことを考えてくだ

さい。プロダクトにとって、「新機能を作るブ
ランチを切って、その内容を取り込んだ」
というのは重要な情報ですが、「あなたが新
しいライブラリを試行錯誤するためにブラン
チを切った」というのはあまり重要でない情
報に思えます。ならば、その試行錯誤がうま
くいったなら、new_featureブランチを単に
test_new_libraryブランチのところまで進め
てしまえば良い、という考え方ができないで
しょうか。

　このようなときには、--no-ffを付けず、
Fast forwardマージを行うという選択をすれ
ば良いでしょう。
　まとめると、

・マージコミットに情報を残したいならば--no
-ffを付けてマージ

・マージコミットを残す必要がなければ--no-
ffを付けずにFast forwardマージ

とすれば良い、ということです。

まとめ

　この章では、Gitの基本的な使い方について
見てきました。基本的に、

・保存したい変更内容をgit addして
・git commitで保存
・何か作業を行う前はブランチを切ってそこで

作業する
・作業を行ったブランチの内容をgit mergeで

取り込む

という流れの繰り返しで、Gitを利用した開発
は進んでいくことを確認してください。
　次の章では、GitHubを利用して共同作業を
行う方法を学んでいきます。ﾟ

* 3b66d5b (HEAD -> master, branch_a) 2016-06-15 shinpei maruyama ブランチAで作業
* 328870b 2016-06-15 shinpei maruyama 最初のコミット

 ▼図14　「--no-ff」を付けずにマージしたあとの「git graph」の実行結果

GitHubを使うためのGitの基礎知識
第 章2

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

36 - Software Design

GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

第1特集

GitHubの導入

　1人でGitを使っているだけならば、自分の
ローカルにリポジトリを置いておくだけで十分
ですが、同じプロジェクトを複数人で進めてい
くなら、「みんながアクセスできるリポジトリ」
が必要となります。第1章で述べたとおり、自
前でサーバを用意しても良いのですが、GitHub

にリポジトリをホスティングすることで、手軽
にオープンなリポジトリを立てられます。この
章では、GitHubへのアカウント登録から、複
数人でGitHubを利用するやり方について見て
いきましょう。

GitHubのアカウントの作成

　GitHubを利用する
ためには、何はとも
あれアカウントを作
成する必要がありま
す。アカウントをす
でに作成している方
は、この節は読み飛
ばしていただいてか
まいません。

　まずは、GitHub注1にアクセスしてみましょう。
図1の❶のフォームに、取得したいユーザ名（英
数とハイフンが利用できますが、ハイフンで始
まったりハイフンで終わったりするユーザ名は
利用できません）と、メールアドレス、好きな
パスワードを入力し、「Sign up for GitHub」
をクリックしてください。入力したメールアド
レスに確認用のメールが届きます（図2）ので、
「Verify email address」と書かれたボタン（❷）
か、「Button not working? Paste the following

link into your browser:」と書かれた下に書か
れているURL（❸）にアクセスしてください。
これでユーザ登録は完了です。

注1） URL https://github.com/

 ▼図1　GitHubのトップページ

❶

前章までで、1人でGitを利用する方法を一通り見てきました。本章では、GitHubを利用して、1つ
のプロジェクトを複数メンバーで進めるやり方を見ていきましょう。

GitHubでPull Requestを
出せるようになろう

 Author 丸山 晋平（まるやま しんぺい）　㈱リラク
 Twitter neko_gata_s

第 章3

https://github.com/

36 - Software Design Aug. 2016 - 37

公開鍵の登録

　さて、アカウントが無事に作られたところで、
「ssh公開鍵」の登録をしておきましょう。公
開鍵を登録しておかないと、リポジトリにアク
セスするたびにパスワードを入力しなければな
りませんが、一度公開鍵を登録しておけば、煩
わしいパスワード入力なしで権限のあるリポジ
トリにアクセスできるようになります。公開鍵
をすでに登録している方はこの節は読み飛ばし
ていただいてかまいません。
　まずはsshキーペアを作成します（すでにキー
ペアを作成している場合は作成しなくてかまい
ません）。ホームディレクトリに「.ssh」とい
うディレクトリを作成し、そのパーミッション
を0700としてください。その後、ssh-keygen
というコマンドを実行すると、そのディレクト
リ内に id_rsaという秘密鍵と、id_rsa.pubとい
う公開鍵を作成できます。途中で「どこに秘密
鍵を作成するか」とパスフレーズを聞かれるの
で、お好きなパスフレーズを設定してください。
パスフレーズを設定したくない場合は何も入力
せずに©でOKです。

$ cd $HOME
$ mkdir .ssh
$ chmod 0700 .ssh
$ ssh-keygen

　さて、これで秘密鍵と公開鍵のキーペアが作
成できました。このうち、id_rsaというファイ
ル、つまり秘密鍵は厳重に管理し、どこにも漏
れないようにしてください。一方、id_rsa.pub

というファイル、つまり公開鍵は、「公開」鍵
というほどですので、公開しても良いものです。
　このあたりの話を簡単に説明すると、公開鍵
は「錠」、秘密鍵が「その錠を開けるための鍵」
のようなものです。GitHubに公開鍵、つまり
錠を預けることで、GitHubは機密情報に対し
てその錠を利用してアクセス制限をかけます。
このアクセス制限を突破できるのは、秘密鍵（つ
まり錠の対となる鍵）を持っている人だけ、と
いうわけです。錠をいくら他人に渡したところ
で問題にはなりませんが、鍵を他人に渡してし
まったら、その錠は開け放題になってしまいま
す。そのため、繰り返しになりますが秘密鍵は
厳重に管理してください。
　では、GitHubに対して公開鍵を登録しましょ
う。https://github.com/settings/keysにアクセ
スすると（図3）、「New SSH Key」というボ
タンがあります（❹）。そこをクリックすると
入力フォームが出現します。「Key」というと
ころ（❺）に、̃/.ssh/id_rsa.pubの内容をコピー
して貼り付けてください。「Add SSH key」と
書かれたボタン（❻）を押せば公開鍵の登録は
完了です。

 ▼図2　アカウント作成の確認用メール

❷

❸

 ▼図3　公開鍵を登録する

❹

❺

❻

GitHubでPull Requestを出せるようになろう
第 章3

https://github.com/settings/keys

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

38 - Software Design

GitHub上で新しいリポジトリを作成

　さて、これでGitHubを利用する準備が整い
ました。ここで、GitHub上に新しいリポジト
リを作ってみましょう。第2章までで利用して
きたmy_first_projectリポジトリをGitHub上
でホスティングしたいと思います。
　https://github.com/にアクセスし、「New Repo

sitory」と書かれたボタンをクリックしてみて
ください。これで新しいリポジトリの置き場を
作成するページに遷移します。
　ここで「Owner」とあるのは、「そのリポジ
トリの所有者は誰か」を設定する部分です。こ
こでは自分のユーザ名がOwnerになっている
と思いますので、そのままでOKです。実はGit

HubにはOrganizationという機能があり、それ
を利用していると、ここで自分のユーザ名以外
を指定できます（Organizationについてはコラ
ムを参照してください）。
　「Repository name」には作成するリポジトリ
の名前（今回ならばmy_first_projectで良いで
しょう）、「description」にはそのリポジトリを
端的に表す説明を入力しましょう。今回は「Soft

ware Design 2016年8月号のチュートリアル」

くらいにして、さりげなくSoftware Designの
宣伝をしておけば編集の方が喜ぶのではないで
しょうか（もちろん自由に設定していただいて
かまいません）。
　「Public」、「Private」という選択肢がありま
す。GitHubの有料ユーザとなると、Privateを
選択できるようになりますが、今回はPublic

を選択しておきましょう。Privateを指定すると、
リポジトリにアクセス制限をかけられます。具
体的には、Ownerと、Ownerが指定したユーザ
（コラボレータと呼びます）のみがリポジトリ
を閲覧したり編集したりできるようになります。
　「Initialize this repository with a README」
以下は、すでにローカルにリポジトリが存在す
る場合は無視しておきましょう。チェックを入
れたり、None以外を選んだりすると、READ

MEやLICENSEが置かれたリポジトリが作成
されてしまいます。
　最後に「Create repository」ボタンをクリッ
クすると、新しいまっさらのリポジトリ置き場
が作成されます。

ローカルのリポジトリをpushする

　リポジトリを作成すると、そのリポジトリの
トップへ遷移します（図4）。URLはhttps://git

hub.com/ユーザ名/my_first_projectとなって
いるはずです。このページからは、このリポジ
トリの状況が確認できます。
　現在はまっさらな状態ですので、「次にどう
するべきか」が書かれています。今回は手元に
あるリポジトリをインポートしたいので、「…or

push an existing repository from the command

line」の指示に従いましょう。
　図4の❼に示したボタンをクリックすると、
その左に書かれている一連のコマンドがクリッ
プボードにコピーされます。ローカルのmy_

first_projectにcdで移動したうえでそのコマ
ンドを実行すると、my_first_projectリポジト
リがGitHub上にホスティングされます。
　クリップボードにコピーされているものをい

Organization

　GitHubには「Organization」というしくみ
があり、ユーザは複数のOrganizationに属す
ことができます。Organizationはリポジトリ
の所有者となることができ、そのOrganization
に属したユーザが、権限に応じた操作をその
リポジトリに対して行えるようになります。
　たとえば、あるユーザはリポジトリの参照
はできるがリポジトリに対して新しいコミッ
トを登録できない、また別のユーザはその
Organizationに新しいリポジトリを作成でき
るし、そのOrganizationのどのリポジトリに
も自由にアクセスできるなど、細かいアクセ
ス制御が可能になるわけです。組織的な開発
をしたいときには便利な機能です。

https://github.com/

38 - Software Design Aug. 2016 - 39

きなりターミナルに貼り付けるの
が不安な方（まっとうな感覚です）
は、一度なんらかのテキストエディ
タなどに貼り付けて内容を確認す
るのも良いプラクティスだと思い
ます。
　さて、これでGitHub上に1つの
「リモートリポジトリ」と、手元の
マシンに「ローカルリポジトリ」
があるような状態となりました。
　リモートリポジトリとは、その
名のとおり「リモート」、つまり手
元のマシンではなくてどこかのサー
バに置いてあるリポジトリです。
Gitを利用して複数人で共同作業するためには、
ローカルリポジトリに対して行ったコミットをリ
モートリポジトリに反映したり、逆にリモートリ
ポジトリに誰かが反映したコミットをローカル
リポジトリに反映したりしながら作業すること
になります。第1章の内容を思い出してください。
　先ほど入力したコマンドを詳しく見ていくと、
さらにその内容がよくわかります。まずは1つ
目のコマンドから解説していきましょう。

$ git remote add origin git@github.com:ｭ
ユーザ名/my_first_project.git

　git remote addで、このリポジトリに対す
るリモートリポジトリを登録することができま
す。ここでは、git@github.com:ユーザ名/my_
first_project.gitという場所に存在するリポ
ジトリ（つまり、先ほどGitHub上で作った空
のリポジトリ）を、originという名前で登録し
ています。このコマンドを実行することで、
GitHub上に作ったリポジトリとローカルに作っ
たmy_first_projectリポジトリが関連付けられ
たと思えば良いでしょう。

$ git push -u origin master

で、ローカルに存在するmasterブランチの内
容を、origin（つまり、先ほど登録したリモー
トブランチ）に反映しています。git pushコ
マンドの詳細については後述しますが、ひとま
ず今は「pushコマンドでローカルリポジトリ
のコミットの内容をリモートリポジトリに反映
できる」くらいの理解をしておいてください。

複数人でGitを使うとき
の基本的な操作方法

　さて、ここまでで、公開されたリポジトリと、
それをリモートリポジトリとした手元のリポジト
リが用意できました。ここからは、一人二役をこ
なしながら実際のチーム開発を体験していきます。

リモートリポジトリをcloneしてくる

　今までmy_first_projectで作業してきたのを
Aさんとしましょう。今までは1人で作業して
いたAさんですが、Bさんがチームに加わった
としましょう。Bさんは、GitHub上にあるmy_

first_projectに対して新しいコミットを反映し
たり、Aさんによる作業を手元に持ってきたり
したいはずです。
　ここで、Gitではリモートリポジトリに対する
変更をローカルリポジトリから反映したり、そ
の逆にリモートリポジトリのコミットをローカ

 ▼図4　ローカルのリポジトリをpushする

❼

GitHubでPull Requestを出せるようになろう
第 章3

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

40 - Software Design

ルリポジトリに反映したりしながら作業を行う
ということを思い出してください。Bさんは、
なんとかしてGitHub上にホスティングされてい
るmy_first_projectをリモートリポジトリとした
ローカルリポジトリを作成しなければなりません。
　どこかのサーバに存在するリポジトリをリモー
トリポジトリとしたローカルリポジトリを作成
するには、git cloneコマンドが利用できます。
今回ならば、どこか適当なディレクトリ（今回
はホームディレクトリとします）に移動したう
えで図5のコマンドを実行してください。これは、

・git@github.com:ユーザ名/my_first_project.
gitに存在するリポジトリを

・my_first_project_for_bという名前のローカ
ルリポジトリにコピーし

・元のリポジトリをoriginという名前のリモー
トリポジトリとして登録する

というコマンドです。リポジトリのコピーとリ
モートリポジトリの登録を一度にやってしまう
コマンドだということですね。
　さて、これであなたのマシンの手元にはAさ
んが作業するためのmy_first_projectディレクト
リと、Bさんが作業するためのmy_first_project

_for_bディレクトリができあがったわけですが、
これだとちょっと一貫性がないので、my_first_

projectをmy_first_project_for_aにリネームし
ておきましょう。ディレクトリをリネームしても、
リポジトリに対して影響はありません（ディレ
クトリ内の .gitというディレクトリがリポジトリ
の正体だったことを思い出してください）。

ローカルリポジトリで
コミットを重ねる

　さて、ここで、Bさんになって新しい作業を
行いましょう。このリポジトリにはREADME

が存在しないので、README.mdを作るとい

う作業を行うこととします。Bさんの作業ディ
レクトリとローカルリポジトリはmy_first_pro

ject_for_bにありますから、まずはそのディレ
クトリに移動します。そして、何か作業すると
きにはまずは作業用のブランチを作成するので
したね。

$ cd my_first_project_for_b
$ git checkout -b add_readme

でブランチを切って、次のようなREADME.

mdを作成しましょう。

MY FIRST PROJECT

チュートリアル用のリポジトリです

　さて、この内容をコミットしておきましょう。
コミットメッセージは「READMEを作成」く
らいでいいでしょう。
　コミットしたら、git graphで現在のコミッ
トグラフを確認してみましょう（エイリアスを
設定していない方は第2章を読み返してくださ
い）。図6のような出力が得られたはずです。
　一番上に、今さっき行ったコミットが表示さ
れていますね。add_readmeブランチもそのコ
ミットを指していて、HEADもそこを指して
いるのは良いでしょう。ここがわからない方は
第2章を読み返してください。
　ところで、上から2つめのコミットに「origin
/master, origin/HEAD」という見慣れない表
示があります。これは、見てのとおりoriginと
いうリモートリポジトリのブランチがどこを指
しているかを表しています。
　そのため、このグラフを読み解くと、

・ローカルリポジトリのadd_readmeブランチ
が最新のコミットを指している

$ git clone git@github.com:ユーザ名/my_first_project.git my_first_project_for_b

 ▼図5　リポジトリのコピーとリモートリポジトリの登録を行う

40 - Software Design Aug. 2016 - 41

・HEADはadd_readmeを指している
・originというリモートリポジトリのmasterブ
ランチが最新の1個前のコミットを指している

・originというリモートリポジトリのHEADは
originのmasterブランチを指している

・ローカルリポジトリのmasterも最新の1個
前のコミットを指している

ということがわかります。

ローカルリポジトリの内容を
リモートリポジトリにpush

　さて、現在の状況を確認しましたが、add_

readmeブランチはローカルにしか存在しない
状態です。これをほかの人が確認できるように、
リモートリポジトリにもadd_readmeブランチ
があるようにしたいですね。というわけで、ロー
カルリポジトリに反映したコミットをリモート
リポジトリに対して反映してみましょう。ロー
カルリポジトリのコミットをリモートに反映す
るためにはgit pushです。
　git pushコマンドはオプションや引数をフルで
利用する場合、git push <options> <reposito
ry> <local branch>:<remote branch>となりま
す。今回であれば、ローカルのadd_readmeブ
ランチと同じものをリモートのoriginにも作り
たいので、

$ git push -u origin add_readme:add_readme

となります。しかし、add_readme:add_readmeの

部分が同じブランチ名の場合、省略可能となっ
ており、一般的には省略された形式で

$ git push -u origin add_readme

とすることが多いでしょう。
　ところで、この-uというオプションはなん
でしょうか。これは、「リモート側のブランチ
をローカル側のブランチの追跡ブランチにする」
というオプションです。追跡ブランチについて
は詳述しませんが、-uを付けることで、ロー
カルのブランチとリモートのブランチが関連付
けられた状態になる程度に思っておいてくださ
い（詳しく知りたい場合は、「Git - Book」注2を
参照してください）。
　それでは、実際に上記のコマンドを実行し、
ローカルリポジトリの内容をリモートリポジト
リに反映させてみてください。
　git pushでローカルリポジトリの内容をリ
モートリポジトリに反映したら、再度git graph
を確認しましょう。図7のような出力が得られる
かと思います。
　origin/add_readmeという新しいリモートブ
ランチができあがっているのが見えるかと思い
ます。これで、ローカルリポジトリのコミット
をリモートリポジトリに反映することができま
した。

注2） URL https://git-scm.com/book/ja/v2

* 1f0f5e3 (HEAD -> add_readme) 2016-06-14 shinpei maruyama READMEを作成
* d8c640c (origin/master, origin/HEAD, master) 2016-06-07 shinpei maruyama branch_aの作業をマージ
¦¥
¦ * a98e583 2016-06-07 shinpei maruyama 作業Aを完了
* ¦ 3333d1c 2016-06-07 shinpei maruyama 緊急でbranch_bで作業した内容を反映
¦¥ ¥
¦ * ¦ 6963c6d 2016-06-07 shinpei maruyama branch_bでb.txtを作成
¦/ /
¦ * 393fc82 2016-06-07 shinpei maruyama branch_aで作業してみた
¦/
* 50189e4 2016-06-07 shinpei maruyama hello.txtの内容を修正
* 67260b7 2016-05-27 shinpei maruyama はじめてのコミット

 ▼図6　add_readmeをコミットした直後の「git graph」の実行結果

GitHubでPull Requestを出せるようになろう
第 章3

https://git-scm.com/book/ja/v2

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

42 - Software Design

　実際にGitHub上の表示がどうなっているか、
リポジトリのトップページを見てみましょう。
図8のように、ブランチの数が2になっていて
（❽）、「your recently pushed branches：」と
いうところに、add_readmeブランチが表示さ
れており、「Compare & pull request」と書か
れたボタンが出現したのが見て取れると思いま
す（❾）。
　さて、このまま手元でadd_readmeブランチ
をマージしてしまっても良いのですが、せっか
くですのでGitHub上でPull Requestを出して
みましょう。Pull Requestというのは、「こう
いうブランチを作ったので、マージしてくださ
い」というリクエストをGitHub上で出すこと
です。先ほど出現した「Compare & pull requ

est」というボタンをクリックしてみてください。
すると、図9のようなPull Request作成画面に
移ります。

　上から順に、どのブランチをどのブランチに
マージしたいのか（compareと書かれている側
のブランチをbaseと書かれている側のブランチ
にマージしたい、という意味です）という情報
エリア（�）、Pull Requestの内容の入力エリア
（�）、このPull Requestに含まれるコミットの
内容（�）、このPull Requestで変更されたファ
イルの差分（�）が表示されています。では、
内容を「はじめてのpull requestです」と入力
して、「Create pull request」ボタンをクリック
してみましょう。
　Pull Requestが作成され、そのPull Request

のページに遷移したかと思います（図10）。�
のタブに注目してください。このタブの「Commits」
を選択すると、このPull Requestに含まれる
コミットの一覧が表示されます。また、「Files

changed」を選択すると、このPull Requestで
変更されるファイルの差分一覧が表示されます。

* 1f0f5e3 (HEAD -> add_readme, origin/add_readme) 2016-06-14 shinpei maruyama READMEを作成
* d8c640c (origin/master, origin/HEAD, master) 2016-06-07 shinpei maruyama branch_aの作業をマージ
¦¥
¦ * a98e583 2016-06-07 shinpei maruyama 作業Aを完了
* ¦ 3333d1c 2016-06-07 shinpei maruyama 緊急でbranch_bで作業した内容を反映
¦¥ ¥
¦ * ¦ 6963c6d 2016-06-07 shinpei maruyama branch_bでb.txtを作成
¦/ /
¦ * 393fc82 2016-06-07 shinpei maruyama branch_aで作業してみた
¦/
* 50189e4 2016-06-07 shinpei maruyama hello.txtの内容を修正
* 67260b7 2016-05-27 shinpei maruyama はじめてのコミット

 ▼図7　add_readmeをリモートに反映した直後の「git graph」の実行結果

 ▼図8　add_readmeをリモートに反映した直後のGitHubの表示

❾

❽

42 - Software Design Aug. 2016 - 43

 ▼図9　Pull Request作成画面

 ▼図10　作成したPull Requestのページ

�

�

�

�

�

�

�

GitHubでPull Requestを出せるようになろう
第 章3

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

44 - Software Design

Pull Requestを出された側は、GitHub上で「ど
んな変更内容が入ったブランチなのか」を確認
できるわけですね。
　また、�のフォームに入力すれば、このPull

Requestに対してコメントを残せます。ここの
コメントで「ここのコードはちょっと筋がよく
ない気がする」とか「ここの部分だけ直したら
マージするよ」といったようなコミュニケーショ
ンを行うことで、ブランチごとのコードレビュー
がとてもやりやすくなっています。
　今回は一人二役でやっているので、自らこの
Pull Requestをマージしてしまいましょう。�
の「Merge pull request」をクリックすると、
入力欄が出現します。ここには、このPull

Requestのブランチをマージすることで生じるマー
ジコミットのコミットメッセージを入力します。
今回はデフォルトで入力されているものをそのま
ま送信してしまいましょう。これで、このPull

Requestをマージすることができました。
　この状態で、リポジトリのトップページに戻っ
てみてください。すると、masterにマージさ
れた内容が反映されていると思います。また、
README.mdの内容が整形されて表示されて
いるかと思います。実は、GitHubには、READ

ME.mdをリポジトリのルートディレクトリに
置いておくと、その内容をよしなに表示してく
れるという機能があります。今、README.md

をコミットしたものをmasterにマージしたこ
とによって、その内容が表示されるようになっ
たわけです。

　README.mdには、ライブラリならばその
ライブラリのインストール方法や利用方法など、
そのリポジトリを閲覧している人にとって有益
なことを過不足なく書いておくと良いでしょう。

リモートリポジトリの内容に追いつく

　さて、これで、GitHub上のリモートリポジ
トリではmasterにadd_readmeブランチの内容
が反映された状態になりました。ここで、Aさ
んの気持ちになってみてください。Bさんが行っ
た作業の内容が、リモートリポジトリに反映さ
れました。AさんはBさんと一緒に開発をして
いるので、自分のローカルリポジトリにもBさ
んが行った変更内容を取り込みたいはずです。
　というわけで、今度はAさんになって、これ
らの変更をローカルリポジトリに取り込んでみ
ましょう。my_first_project_for_aに移動し、git
graphでコミットグラフを確認してみてくださ
い。図11のような出力が得られると思います。
　おや、おかしいですね。GitHub上のリモート
リポジトリのmasterはadd_readmeの内容を取
り込んでいるはずですが、origin/masterはadd_

readmeが取り込まれる前のままの状態です。
　実は、Gitのリモートリポジトリは、git log
やgit statusを実行するたびに自動でサーバ
を見にいって「今ローカルが知っているリモー
トリポジトリの状況」を更新するというような
気のきいたことをしてくれません。それもその
はずで、git logや git statusを叩くたびに
サーバにアクセスしないといけないとなれば、

* d8c640c (HEAD -> master, origin/master) 2016-06-07 shinpei maruyama branch_aの作業をマージ
¦¥
¦ * a98e583 2016-06-07 shinpei maruyama 作業Aを完了
* ¦ 3333d1c 2016-06-07 shinpei maruyama 緊急でbranch_bで作業した内容を反映
¦¥ ¥
¦ * ¦ 6963c6d 2016-06-07 shinpei maruyama branch_bでb.txtを作成
¦/ /
¦ * 393fc82 2016-06-07 shinpei maruyama branch_aで作業してみた
¦/
* 50189e4 2016-06-07 shinpei maruyama hello.txtの内容を修正
* 67260b7 2016-05-27 shinpei maruyama はじめてのコミット

 ▼図11　my_first_project_for_aでの「git graph」の実行結果

44 - Software Design Aug. 2016 - 45

無駄なトラフィックがたくさん発生してしまい
ますし、ネットワークにつながっていないとき
には作業ができなくなってしまいます。せっか
く手元にリポジトリがある分散型VCSなのに、
リモートリポジトリにアクセスできない環境で
は何もできなくなってしまっては元も子もあり
ません。
　そこで、まずはgit fetchコマンドを利用し
て、「ローカルが知っているリモートリポジト
リの状況」を最新の情報に更新する必要があり
ます。サーバから最新のリモートリポジトリの
状況をフェッチしてくる（取ってくる）、とい
うわけですね。git fetchコマンドにはとくに
引数は必要ありません。単に

$ git fetch

と実行してみてください。その後、git graph
でコミットグラフを確認すると、図12のよう
な出力が得られるはずです。
　origin、つまりGitHub上のリモートリポジ
トリのmasterは、手元のmasterより進んでお
り、add_readmeの内容が取り込まれているこ
とがわかります。
　さて、ここで手元のmasterブランチもorigin/

masterに追いつかせたいですね。そうしないと、
いつまでたっても手元のmasterはadd_readme

の内容が反映されていないままの状態です。
　ここで、第2章でやったgit mergeのときの
--no-ffを思い出しましょう。--no-ffを付けず
にマージすると、線をたどってそのブランチに
追いつけるような場合には、マージコミットを
作成せず、単に対象のブランチのところまでブ
ランチを進めるのでした。今回ならば、master

ブランチをorigin/masterブランチに追いつか
せたいわけですが、masterとorigin/masterブ
ランチの関係を見てみてください。一直線に上
に進んでいけば、masterはorigin/masterに追
いつくことができます。というわけで、

$ git merge origin/master

というコマンドを実行すると、手元のmaster

ブランチをorigin/masterブランチに追いつか
せることができます。実際に実行してみて、そ
の後git graphでブランチの状況を確認してみ
てください。
　ちなみに、この一連の流れを自動で行うgit
pullというコマンドもあるのですが、git pull
はあまりにいろいろなことを自動でやってくれ
過ぎるので、慣れないうちはgit fetchとgit
mergeを利用して、リモートリポジトリとロー
カルリポジトリがどのようになっているのか逐
一確認しながら作業を行うのをお勧めします。

* 7113fb9 (origin/master) 2016-06-14 GitHub Merge pull request #1 from Shinpeim/add_readme
¦¥
¦ * 1f0f5e3 (origin/add_readme) 2016-06-14 shinpei maruyama READMEを作成
¦/
* d8c640c (HEAD -> master) 2016-06-07 shinpei maruyama branch_aの作業をマージ
¦¥
¦ * a98e583 2016-06-07 shinpei maruyama 作業Aを完了
* ¦ 3333d1c 2016-06-07 shinpei maruyama 緊急でbranch_bで作業した内容を反映
¦¥ ¥
¦ * ¦ 6963c6d 2016-06-07 shinpei maruyama branch_bでb.txtを作成
¦/ /
¦ * 393fc82 2016-06-07 shinpei maruyama branch_aで作業してみた
¦/
* 50189e4 2016-06-07 shinpei maruyama hello.txtの内容を修正
* 67260b7 2016-05-27 shinpei maruyama はじめてのコミット

 ▼図12　リモートの状況を更新した直後の「git graph」の実行結果

GitHubでPull Requestを出せるようになろう
第 章3

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

46 - Software Design

ForkとPull Request

　さて、以上で、1つのリポジトリに対して複
数人で作業を行えるようになりました。
　ところで、いくら公開しているリポジトリと
はいえ、自分のリポジトリに他人が自由にコミッ
トできるとなってしまったら、さすがにまずい
ですよね。ご心配なく。実はGitHubのPublic

なリポジトリは、「閲覧は誰でもできるけど、
pushするにはそのリポジトリの所有者である
かコラボレータである必要がある」というアク
セスポリシーとなっています。
　では、自分がオーナーでもコラボレータでも
ないリポジトリに対して何か変更をしたい場合、
どのようにすればいいのでしょうか。その場合
には、GitHubのForkという機能を利用できま
す。
　まず、Forkしたいリポジトリにアクセスし
てください（図13）。すると、右上に「Fork」
というボタン（�）があるので、ここをクリッ
クして進めていくことで、Fork元のリポジト
リが自分のGitHub上にコピーされます。
　これで、Fork元をまるっとコピーした、自

分が所有者となったリモートリポジトリが作成
されました！　自分が所有者になったので、あ
とはこのリポジトリをgit cloneしてくれば、
自分が所有しているリポジトリをリモートリポ
ジトリとしたローカルリポジトリを手元にゲッ
トできます。
　リモートリポジトリをgit cloneする際には、
「どこからcloneするのか」を指定する必要が
ありますが、Forkされてできた自分のリポジ
トリの「Clone or download」ボタンを押すと、
そのリポジトリをどこからcloneすれば良いの
かが表示されます（図14の�）。
　というわけで、

$ git clone ⑱で表示されたもの ローカルで保ｭ
存したい場所

と実行してやれば、自分が所有者となったリモー
トリポジトリがローカルにcloneされます。
　あとは、cloneされたローカルリポジトリに
対して作業用ブランチを作成し、そこで行った
作業をコミットし、それをリモートリポジトリ
に対してpushしてやれば、自分が所有してい
る「Fork元のコピー」のリポジトリに対して

 ▼図13　「Fork」ボタンで他者のリポジトリを自分のGitHub上にコピーする

�

46 - Software Design Aug. 2016 - 47

修正内容を反映させられます。
　この「自分が所有しているリポジトリに存在
するブランチ」を「Fork元のリポジトリ」に
取り込んでほしい場合にも、Pull Requestを利
用できます。
　GitHubの自分のリポジトリ上から、Pull Req

uestを作成すると、図15のような画面が出て
きます。base（�）にFork元のリポジトリを指
定してやれば、自分が所有者でもコラボレータ
でもないリポジトリに対してPull Requestを
送ることができます。あとは、元のリポジトリ
の所有者がこのPull Requestを受け付けてく
れれば、無事にあなたのコミットが元のリポジ
トリに取り込まれる、というわけです！
　このとき、Pull Request内容には「なぜ、ど
のような作業を行ったのか」というのを端的に
書いておくと良いでしょう。

まとめ

　さて、以上で、GitHubを利用した複数人で
の開発の流れをざっと見てきました。これで、
一通りGitとGitHubを利用した開発ができる
ようになったのではないでしょうか。より詳し
いGitの利用方法については、何度も挙げてい
ますが「Git - Book」を参照してください。公
式のドキュメントであり、なおかつ非常にわか
りやすく日本語でまとまっています。
　より実践的に、チーム開発でどのように
GitHubを利用するのかについては、次の章を
ご覧ください。ﾟ

 ▼図14　「Clone or download」ボタンでclone元を確認する

�

 ▼図15　Fork元のリポジトリに対してPull Requestを送る

�

GitHubでPull Requestを出せるようになろう
第 章3

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

48 - Software Design

GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

第1特集

GaiaxとGitHub

　第1章から第3章まで、GitHubやGitの基本
的な使い方について説明をしてきました。本章
では、筆者が所属するGaiaxという会社におい
て、GitHubがどのように導入され、どのよう
に活用されているかについて、具体的な例を紹
介したいと思います。
　今回紹介するGaiaxでの経験は、会社やチー
ムの状況、文化など、読者のみなさんの環境と
違うところも多々あるかと思います。とはいえ、
本章で紹介するGitHub導入と活用の経験が、
みなさんが会社やチームへGitHubを導入する
にあたって、少しでも参考になればうれしいです。

Gaiaxの状況

　「GitHubをどのように導入したか」について
述べる前に、まず簡単ではありますがGaiaxの
状況について説明をしておこうと思います。
　Gaiaxは「主軸」と言えるような大きなプロ
ダクトを持たず、10以上の小規模から中規模
のプロダクトを開発、運用して利益を出すタイ
プの企業です。そして、その事業のそれぞれに
エンジニアによる開発チームがあり、日々プロ
ダクトの開発と運用に取り組んでいます。プロ
ダクトの規模にもよりますが、開発チームは1

～5人程度のエンジニアによって構成されるこ

とが多く、事業規模と同じく開発チームの規模
も小規模～中規模です。
　一方、Gaiaxには各事業の開発チームとそこ
に所属するエンジニアを横断的に支援するため
の「技術開発部」という部署があり、その中に
エンジニア文化の醸

じょうせい

成を担う「技術推進室」と
いうチームがあります。今回のGitHub導入も、
この技術推進室のメンバーと、社内の有志エン
ジニアが中心となって進めていきました。

GitHubを使い始めるまで

　Gaiaxは、バージョン管理システムとして
Gitを採用しており、GitHubを導入する前は、
リポジトリをホスティングするSaaSとして
BitBucketを活用していました。しかしながら、
とくに若手のエンジニアを中心として、Git

Hubへ移行したいという声が挙がり始めました。
　その理由としては、日常的に個人プロジェク
トやOSSなどでGitHubを使っていて、Bit

Bucketよりも使い慣れていること、Travis CI

やCircleCIのように、GitHubにしか対応し
ていないSaaSが多く存在すること、利用事例
や便利なツールなども、GitHubにのみ対応し
ているものが多いこと、などがありました。
　これらの声を受け、技術推進室が中心となっ
てGitHubへの移行プロジェクトがスタートし
ました。とはいえ実のところ、Gaiaxにおける
GitHubへの移行プロジェクトは、現時点でま

ここまでGitHubの基本的な使い方についてみてきましたが、「では企業やチームにおいてどのように
GitHubを利用すれば良いのか」を最後の章で紹介します。GaiaxでのGitHub導入・活用事例を参
考に、ユーザとリポジトリの管理、ブランチの運用において気を付けておくことを解説していきます。

［事例紹介］GitHubをチーム開発
に導入するときに考えること

 Author 福本 貴之（ふくもと たかゆき）　㈱ガイアックス
 Twitter @__papix__

第 章4

48 - Software Design Aug. 2016 - 49

だまだ移行途中です。これは、社内に開発チー
ムが多数存在しているため、それぞれの都合を
調整して一気に移行することが困難だったため
です。そのため、現在は各々の開発チームの状
況に合わせて、順次BitBucketからGitHubへ
の移行を進めています。
　とはいえ、GaiaxとしてはBitBucketとGitHub

を併用し続けるつもりはありません。締め切り
を定めつつ、GitHubをうまく活用するための
社内ルール作りはもちろん、各開発チームへの
アドバイスも行いながら、ゆっくりとGitHub

への移行を進めているという状態です。

ルール

　これまで説明してきたような、「BitBucketか
らGitHubへの移行」といったSaaSの載せ替え
という取り組みは、適当になりがちなSaaSの
利用ルールを整理する良い機会と言えるでしょ
う。
　Gaiaxの場合、GitHubを導入する前に利用
していたBitBucketにおいて、ユーザの集合を
意味する「User Group」の設定がかなり適当
になってしまっていたりと、いくつかの問題が
存在していました。そこで、GitHubへの移行
を進めるにあたって、事前に移行計画や利用ルー
ルを用意して、これに従いながら移行を進めて
いきました。
　個人的には、会社やチームで利用するSaaS

については、利用ルールなどは定めず、各々の
チームやエンジニアの裁量に任せて自由に使っ
てもらうというのが理想だと思っています。
　とはいえ、ルールが定まっていたほうが「ルー
ルに従って進めれば良い」という意味で、移行
への障壁が下がる部分があります。また、あと
からルールを定めてそれに適応するように設定
を変更していくより、最初はしっかりルールを
定めておいてから、チームやエンジニアが
GitHubに慣れてくるのに応じてルールを緩く
していくほうが良いのではないか、という判断
があり、今回はこのような方針でGitHub移行

を進めていくことになりました。
◆　◆　◆

　ここからは、具体的にBitBucketからGitHub

への移行を進めるにあたって、どのようなルー
ルを定めたかについて解説していきたいと思い
ます。読者のみなさんがGitHubへの移行を考
えるにあたっては、これから紹介する例はあく
まで参考にしつつ、それぞれの会社やチームの
状況と文化に沿ったルール策定を進めていくの
が大事になるでしょう。

GitHubの管理

　ここでは、GaiaxがGitHubにおけるアカウ
ントやリポジトリをどのように管理しているの
かを紹介していきます。

アカウント

　GitHubを会社やチームに導入するにあたっ
ては、

・GitHubのOrganizationアカウントを用意する
・GitHub Enterpriseを導入する

の2つの方法があります。
　GitHub Enterpriseを導入する場合、Azure

やAWSといったIaaS、もしくはオンプレミス
のサーバでGitHub Enterpriseを運用しなけれ
ばならないので、今回はGaiaxのOrganization

アカウントを用意し、このOrganizationアカウ
ントに各エンジニアのGitHubアカウントを所
属させる形で導入を進めました。
　また、各エンジニアのGitHubアカウントに
ついては、すでに趣味やOSSなどでGitHubを
活用しているエンジニアにはそのアカウントを
使ってもらうようにして、まだGitHubのアカ
ウントを持っていないエンジニアには個人でア
カウントを用意してもらうことにしました。
　各エンジニアのGitHubアカウントについて
は、趣味やOSS用のアカウントと、会社やチー
ムの業務のためのアカウントを別に用意すると

［事例紹介］GitHubをチーム開発に導入するときに考えること
第 章4

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

50 - Software Design

いう選択肢もあります。ただ、GitHubには公
式で複数のアカウントを切り替える機能はあり
ませんし、業務の一環としてOSSに関する活
動を行うこともありますので、今回はどちらも
同じアカウントを利用できるようなルールにし
ました。
　とはいえ、たとえばエンジニアの退職時に、
そのエンジニアのGitHubアカウントがOrgani

zationアカウントに所属したままではいけませ
ん。そのため、アカウントの管理については、
技術開発部の社内情報システムチームと連携し
て、Qiita:TeamやSlackなど、GitHub以外の
SaaSと併せて管理を行うようにしています。

ユーザのロール

　GitHubのOrganizationアカウントには、GitHub

アカウントを持つユーザをOrganizationの
「Member」として所属させることができます。
そして各ユーザには、「Owner」と「Member」
という役割（Organization role）を割り当てる
ことができます。
　「Owner」の権限を持つユーザは、「Member」
の権限を持つユーザとは異なり、Organization

の設定と、Organizationが持つすべてのリポジ
トリに関する設定を変更できます。そのため、
「Owner」のロールを持つユーザの数は、なる
べく少なくなるように制限しましょう。
　Gaiaxの場合、基本的に部長などの管理職と
技術推進室のユーザのみ「Owner」にしており、
それ以外のユーザはすべて「Member」のロー
ルに設定しています。

リポジトリの権限

　GitHubでは、リポジトリ単位で、各ユーザ

に対して「Admin」「Write」そして「Read」と
いう3つの権限を設定できます。リポジトリに
対して行える操作は、その操作を行うユーザが
操作対象となるリポジトリに対してどの権限を
持っているかによって変化します（表1）。
　Organizationに所属する各ユーザに、各リポ
ジトリに対する権限を与える方法は3つあります。

・「Default Repository Permission」を設定する
・ユーザをリポジトリの「Collaborators」にする
・ユーザの集合である「Team」を作り、Team

にリポジトリの権限を割り当てる

Default Repository Permission
　GitHubのOrganizationアカウントでは、Organi

zationの設定（Settings）の「Member privileges」
で、「Default repository permission」を設定で
きます。ここで設定した権限は、Organizationに
所属するすべてのユーザが、Organizationに存
在するすべてのリポジトリに対してデフォルトで
与えられる権限になります。
　「Default repository permission」では、先ほ
ど紹介した「Admin」「Write」「Read」に加え、
何も権限を与えない「None」のいずれかを選
択できます。この「None」を設定することで、
「Read」以上の権限を別途付与しない限り、
Organizationに存在するリポジトリをGitHub

上から閲覧できないようにできます。
　ちなみに、リポジトリの作成の許可について
は、「Member privileges」で「Allow members

to create repositories for this organization」
のチェックを入れることで、Organizationに所
属するすべてのユーザにリポジトリの作成を許
可することができます（後述の、リポジトリの

権限 できること

Admin GitHub上でのリポジトリの閲覧、Gitでのclone、pull、pushの操作、リポジトリの設定（Settings）
の変更

Write GitHub上でのリポジトリの閲覧、Gitでのclone、pull、pushの操作
Read GitHub上でのリポジトリの閲覧、Gitでのclone、pullの操作

 ▼表1　GitHubにおけるリポジトリに対する権限

50 - Software Design Aug. 2016 - 51

Collaboratorsによって関連付けられたOrgani

zationに所属していないユーザを除く）。
　Gaiaxでは、リポジトリの作成は全ユーザに
許可し、「Default repository permission」につ
いては「Read」を設定しています。そして
「Write」以上の権限を与える場合は、後述の
「Team」を利用して権限を設定するという方針
にしています。

Collaborators
　GitHubでは、リポジトリ単位で「Collaborators」
を追加できます。これは、Organizationに所属
するユーザはもちろんのこと、そうではないユー
ザをリポジトリに関連付けることができ、ユー
ザごとに「Admin」「Write」そして「Read」の
権限を与えることができます。
　Gaiaxでは、Organizationに所属するユーザ
（Gaiax社員）については、なるべく後述のTeam

を使って権限を与えるようにしており、「Collabo

rators」はGaiax社員ではないユーザに権限を
与えたい場合にのみ使うようにしています。
　実際にGaiax社員ではないユーザへ「Collabo

rators」を使ってリポジトリへの権限を付与し
た例としては、エンジニア新人研修を他社と合
同で開催した際、その相談や資料作成のための
リポジトリをGaiaxのGitHub Organizationア
カウントで作成し、他社の研修担当者をリポジ
トリのコラボレータとして追加して、共同作業
を行ったということがありました。

Team
　GitHubのOrganizationアカウントでは、Organi

zationに所属するユーザの集合を「Team」とし
て設定できます。そしてOrganizationアカウン
トに存在する各リポジトリに対して、チーム単
位で権限を割り当てることができます。
　たとえば、社内に「Reactio」という事業があ
り、その事業は「Reactio」と「Reactio-WebSite」
というリポジトリをOrganizationアカウント上
に保有しているとします。このとき、あるユー

ザにこれら2つのリポジトリ権限を与える場合、
前述の「Collaborators」を使って権限を設定す
ることもできます。ただしこの場合、「Reactio」
と「Reactio-WebSite」という2つのリポジトリ
に対して、それぞれ権限を設定しなければなり
ません。
　しかし、あらかじめ「Reactio-Developers」
のようなチームを用意して、「Reactio」と
「Reactio-WebSite」リポジトリでこのチーム
に対して適切な権限を設定しておけば、「Team」
にユーザを追加するだけで、そのユーザは
「Reactio」と「Reactio-WebSite」リポジトリ
に対して、設定された権限で操作を行うことが
できます。
　同様に、「Team」からユーザを削除すれば、
「Reactio」と「Reactio-WebSite」リポジトリ
に対して適用されていた権限は、すぐさま無効
になります。
　Gaiaxでは、事業に所属する開発チームや有
志のチーム（たとえば、社内で利用するツール
の開発チームや、新人研修の担当チームなど）
ごとに、GitHub上で「Team」を設定していま
す。そして、それらのチームが利用するリポジ
トリに対して、適切に「Admin」や「Write」
などの権限を与えるようにしています。

GitHubの使い方

　ここまで、GaiaxがGitHubのOrganization

アカウントをどのように管理しているかについ
て話してきました。ここからは、筆者が所属し
ているReactio注1という事業の開発チームを例
にして、どのようにGitHubを活用しているか
について、より具体的にお話したいと思います。

リポジトリ

　つい先日、GitHubの料金プランの変更が発
表されたのは、記憶に新しいことだと思います。

注1） URL https://reactio.jp

［事例紹介］GitHubをチーム開発に導入するときに考えること
第 章4

https://reactio.jp/

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

52 - Software Design

この新しいプランでは、リポジトリ数の制限が
撤廃された代わりに、Organizationアカウント
はユーザ1人につき毎月9ドル（ただし、5人
までの場合は毎月25ドル）という料金体系に
なりました。
　Gaiaxは、この料金プランの変更が行われる
前からGitHubを利用しており、現時点では古
い料金プランのまま利用を続けています。旧料
金プランでは、ユーザ数は無制限である代わり
にリポジトリ数によって料金が変化するため、
リポジトリの数はなるべく減らしたいところです。
　とはいえ、プロダクトを構成するさまざまな
コード（Webアプリケーション本体のコード、
iOS/Androidアプリケーションのためのコード、
ItamaeやAnsibleなどのインフラのためのコー
ド……）を1つのリポジトリにまとめてしまう
と、IssueやPull Requestの扱いがとても複雑
になってしまいます。そのため、プロダクトを

構成するコードを役割ごとに分離して、そのひ
とつひとつにリポジトリを割り当てていくこと
が重要です。
　次は、Reactioチームにおけるリポジトリ構
成の一例です。実際にはこのほかにも、いくつ
かのリポジトリがあります。

・Reactio……Webアプリケーション本体の

コード
・Reactio-WebSite……ReactioのWebサイト

のコード
・Reactio-Template……AWSのAMIを生成す

るためのPacker用テンプレート

ブランチ運用

　GitやGitHubを活用して開発を行っていく
にあたって、ブランチの運用は非常に重要です。
ここでは、代表的なブランチ運用の手法である
「Git Flow」と「GitHub Flow」について解説
します。

Git Flow
　Git Flowでは、次の5種類のブランチが登場
します。

・master
・develop
・feature
・hotfix
・release

　これらのブランチとそのコミットを図にする
と、図1のようになります。この図を使いなが
ら、Git Flowの流れを見ていきましょう。
　Git Flowにおいて、新しい機能の実装は、
developブランチと featureブランチを中心に行
います。開発者はdevelopブランチ（0）から
featureブランチを作成し、featureブランチで
プロダクトに追加する機能の実装を行います。
図のように、featureブランチは複数生成され、
同時にいくつかの実装が進行することがほとん

fea
tur

e

de
ve

lop

rel
ea

se

ho
tfix

mas
ter

Tag: v1

Tag: v1.1

Tag: v2

a

b

c

5

6

1

0

2

4

3

2'

1'

 ▼図1　Git Flow

52 - Software Design Aug. 2016 - 53

どです。
　featureブランチでの実装が終わると、fea

tureブランチからdevelopブランチへマージし、
実装をdevelopブランチに取り込みます（1）
（1'）。
　developブランチの内容をリリースする場合、
まずはdevelopブランチからreleaseブランチを
作成します（2）。細かな修正があればrelease

ブランチで修正を行い（2'）、リリース準備が終
わった段階でreleaseブランチをmasterブラン
チにマージして、リリースを行います（3）。ま
たこのとき、masterブランチのコミットには、
適切にバージョニングしたタグを付与するよう
にします（c）。
　releaseブランチで修正した場合、その変更
はdevelopブランチへ取り込みます（4）。この
developブランチから、また新たな featureブラ
ンチを作成して、機能の実装を進めていきます。
　一方、リリースにバグがあった場合、そのリ
リースのコミット（a）からhotfixブランチを
生成します（5）。バグ修正が終われば、hotfix

ブランチで行った変更はmasterブランチに取
り込み、リリースとタグ付けを行います（b）。
また、同時にdevelopブランチに対しても変更
の取り込みを行います（6）。
　これがGit Flowによるブランチ運用と、開
発の流れです。

GitHub Flow
　GitHub Flowは、GitHubの開発チームが用
いているブランチの運用方法です。Git Flow

とは異なり、GitHub Flowでは次の2種類のブ
ランチしか登場しません。

・master
・feature

　これらのブランチとそのコミットを図にする
と、図2のようになります。この図を使いなが
ら、GitHub Flowの流れを見ていきましょう。
　GitHub Flowでは、featureブランチはmaster

ブランチから生成し、Git Flowと同じくそれ
ぞれの featureブランチで実装を進めます。そ
して、masterブランチにfeatureブランチをマー
ジしたら、なるべくすぐさまリリースを行いま
す。これによって、Git Flowのdevelopブラン
チやreleaseブランチが必要なくなり、シンプ
ルなブランチ運用を実現できます。

◆　◆　◆
　なお、実際にブランチを運用していくにあたっ
ては、Git FlowやGitHub Flowなどの手法に
無理に合わせるのではなく、チームやプロダク
トにとって最適な運用方法を見つけていくこと
が重要です。
　実際Gaiaxでも、Reactioチームは基本的に
GitHub Flowを採用していますが、Git Flow

を採用しているチームもありますし、これらに
当てはまらない独自のブランチ運用ルールを採
用しているチームも存在しています。
　Git FlowやGitHub Flowを参考にしつつ、
チームの文化や状況に合わせて、適切なブラン
チ運用の方法を考えていきましょう。

fea
tur
e

ma
ste
r

 ▼図2　GitHub Flow

［事例紹介］GitHubをチーム開発に導入するときに考えること
第 章4

第1特集 GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

54 - Software Design

Pull Request

　第3章で、GitHubからPull Requestを出す
方法について解説をしました。ブランチをマー
ジする際、GitHub上でPull Requestを利用し
て手続きを進めることで、マージ前にほかの開
発者にレビューしてもらったり、アドバイスを
もらったりすることが簡単にできます。
　開発チームのメンバーと協力してプロダクト
の開発を進めていくにあたって、Pull Request

を作成する際の「Leave a comment」のテキス
トボックスに書き込む内容は非常に重要です

（図3）。
　ここにはPull Requestの詳細を記入できます
が、ここをしっかり書いておくことで、ほかのチー
ムメンバーがPull Requestをレビューする際、
その背景や概要をすぐ理解できるようになります。
結果として、レビュアはPull Requestのレビュー
に、スムーズにとりかかれるようになります。
少し手間ではありますが、詳細はしっかり書く
ようにしましょう。
　Reactioチームでは、次のような内容を記入
することが多いです。

・作業の目的（なぜその実装を行ったか）
・作業の詳細（どのような実装を行ったかにつ

いての概要）
・とくに見てほしいポイント（実装をしていて

悩んだところ、困っているところ）

　「作業の目的」については、関連するGitHubの
IssueやRedmineのチケットがあれば、その
URLを添付するとさらにわかりやすいでしょう。
ちなみに、Reactioチームでは開発する機能や
バグの管理は、GitHubの Issueではなく、esa.

io注2を使ってまとめることが多いです。そのた
め、esa.ioの該当記事へのリンクを記入するこ
とがほとんどです。
　さらに、Pull Requestではほかにも「Labels」
「Milestone」そして「Assignees」を設定できます。
Reactioチームでは、MilestoneについてはGitHub

以外のツールで管理しているため、基本的にPull

RequestではLabelsとAssigneesのみを活用して
います。その具体例を説明していきます。

注2） ドキュメント共有サービス　 URL https://esa.io/

 ▼図3　Pull Requestを作る

https://esa.io/

54 - Software Design Aug. 2016 - 55

Labels
　Pull Requestと Issueには、リポジトリごと
に任意のラベルを定義して、これを割り当てる
ことができます。適切にラベルを割り当てるこ
とで、Pull Requestや Issueの性質やステータ
スをわかりやすく示すことができます。
　具体的に、Reactioチームでは次のようなラ
ベルを用意しています。

・作業状況を示すラベル
　- 作業中
　- レビュー待ち
　- リリース待ち
・実装の内容を示すラベル
　- 新機能
　- バグ
　- リファクタ
　- 改善

 　たとえば、あるPull Requestのラベルが図4
のようになっている場合、このPull Requestは
「新機能を実装したPull Requestで、チームメ
ンバーによるレビューが終わって、リリース待
ちの状態である」ということがすぐにわかります。

Assignees
　Pull Requestと Issueには、複数人のユーザ
をアサインできます（図5）（2016年5月末の
アップデートまでは、1つのPull Requestにつ
き1人のユーザしかアサインできませんでした）。
　Reactioチームでは、Pull Requestを出す際、
Pull Requestを出すユーザ以外の全員を
Assigneesに指定してレビューを依頼するよう
にしています。そしてレビューが終わったタイ
ミングで、レビュアはAssigneesを、Pull Req

uestを出したユーザに変更するというルールに
しています。

GitHubにこだわらない

　せっかくGitHubを導入するのだから、なる
べくGitHubが提供する機能だけを使って開発
を進めていきたいと思うかもしれません。実際、
GitHubにはGitリポジトリのホスティングや
Pull Requestだけでなく、タスク管理などに活
用できる「Issue」、IssueやPull Requestの期
限を定めることができる「Milestone」、情報を
まとめることができる「Wiki」など、さまざ
まな機能が用意されています。
　とはいえ、これらの領域はGitHub以外にも
特徴のあるOSSやSaaSが多く存在しており、
それらの多くはGitHubとの連携にも対応して
います。
　GitHubを導入するにあたっては、開発のす
べてをGitHubだけで完結させようと考えず、
適材適所でほかのOSSやSaaSを組み合わせて
いくことが大事です。

さいごに

　GitHubを会社やチームに定着させるために
は、ただ単にOrganizationアカウントを用意す
れば良い、というわけにはいきません。何より
も大事なのは、会社やチームに「GitHubがあ
る文化」を定着させていくことではないでしょ
うか。そのためには、GitHubの導入を推進す
るメンバーが、GitHubの良いところや良い使
い方を、会社やチームに率先して示していくこ
とが大事だと思います。
　このGitHub特集が、これらを試みる際に、
少しでも参考になれば幸いです。ﾟ

 ▼図5　アサインの表示 ▼図4　ラベルの例

［事例紹介］GitHubをチーム開発に導入するときに考えること
第 章4

56 - Software Design

入社1年目からの
「ネットインフラ」
がわかる本

　ネットワーク技術の全体像をインターネット、イントラ
ネット、音声系ネットワークに分け、それぞれを構成する
技術要素を広く解説している。「入社1年目からの」と書名
にあるとおり基礎からの説明が心掛けられているが、ひと
つひとつの技術に対して概要にとどまらない解説がされて
おり、読み応えがある。ネットワーク系の書籍では疎かに
されがちな音声通信についても、加入者電話網と携帯電話
網、そしてIP電話について、それぞれで用いられている技
術と問題点が細かく説明されている。
　社内ネットワークの運用を任された若手社員にとって大
いに役立つ1冊だ。また、今後IoTが普及していく中で、
アプリエンジニアといった上流の開発者がネットワーク技
術について知っておくためにも、丁度良い本だと感じた。

村上 建夫 著
A5判／368ページ
2,380円＋税
翔泳社
ISBN＝978-4-7981-4609-6

機械学習と
深層学習

　本書は、2011年に刊行された同じ著者の『はじめての機
械学習』の続編で、機械学習をよりわかりやすくするために
C言語でのソースによる解説を試みたものである。C言語そ
のものの説明はほとんどないが、ポインタや構造体などは
使わず、配列を使って解説されているので最低限のC言語
の知識があれば理解できる。機能的学習、Q学習、遺伝的ア
ルゴリズム、ニューラルネット、深層学習などのプログラムと
動作の解説も載っているので、ソースリストに目を通すだけ
でも理解が深まる。ただ、掲載プログラムのインデントが
浅かったり、文字が細長くなってしまって見にくいところ
があるのが残念だ。書籍中にサンプルのダウンロードについ
ての記載はないが、出版社の該当ページからダウンロード
できるので、用意してから本書に向かうといいだろう。

小高 知宏 著
A5判／232ページ
2,600円＋税
オーム社
ISBN＝978-4-274-21887-3

［改訂新版］
Spring入門

　全盛期にたくさんあったJavaのミドルウェア。生き
残ったのはJBossとSpring Frameworkだけになってし
まった。SpringはVMwareから今話題のPivotalに買収さ
れ、同社のPaaSであるCloudFoundryとともに重要な製
品としてビジネス展開するようになった。Java 9のリリー
スに合わせて、今も精力的に開発が進められている。
　本書は2005年の『Spring入門』をSpring4に合わせて
改訂したもの。初版から10年以上が経過しているのだ。
しかしWebシステムの進化はクラウドという環境が変
わっただけで、基本的な技術は変化していない。本書でも
Spring Bootをはじめとして最新技術への対応を行ってい
る。WebとJava、変わらぬコア技術を学ぶために本書を勧
めたい。

長谷川 裕一、大野 渉、土岐
孝平 著
B5変形判／432ページ
3,800円＋税
技術評論社
ISBN＝978-4-7741-8217-9

DevOps教科書

　DevOpsと言えば、「開発と運用が連携する」「継続的イン
テグレーションを実践する」など手段の面から語られるこ
とが多いが、本書の中では「高品質を保ちつつ、システム
に変更をコミットしてからその変更が通常の本番システム
に組み込まれるまでの時間を短縮することを目的とした一
連の実践」と目的ベースで定義されている。そしてその目
標を達成するためのDevOps的な手法・文化を、どのよう
に導入・定着させるかといった課題を、「クラウド」「ITIL」

「デプロイパイプライン」「マイクロサービス」といったキー
ワードを使って解説していく。1〜3部は特定のツールや
サービスに依らない内容だが、第4部「ケーススタディ」で
は実際の企業での具体的なシステム構成やChefのレシピ
なども紹介され、参考にしやすい。

レン・バス、インゴ・ウェー
バー、リーミン・チュー 著／
長尾 高弘 訳
A5判／480ページ
3,000円＋税
日経BP
ISBN＝978-4-8222-8544-9

第2特集

案外知らなかった
YumとAPTの
しくみと活用

安全にパッケージ管理していますか？

　Red Hat Enterprise LinuxやCentOSでは「Yum」、DebianやUbuntuなどでは
「APT」によって容易にパッケージ管理ができます。簡便にアプリケーションやツールがイ
ンストールできるので、どんな動作をしているのかを意識せずにお使いの方も多いのでは
ないでしょうか。
　本特集では、この2つのパッケージ管理システムの背景やしくみ、そしてより実践的な
管理方法について紹介します。

パッケージ導入の知識
～ 開発の背景とRPMパッケージのしくみ～

序 章

 Author 橋本 直哉 P.58

Yumを使いこなそう
～ 構造や動作を知って管理の不安を解消～

第1章

 Author 橋本 直哉、佐藤 暁 P.63

APTを使いこなそう
～Debian/Ubuntu編～

第2章

 Author 柴田 充也 P.73

第2特集
安全にパッケージ管理していますか？

案外知らなかった YumとAPTのしくみと活用

58 - Software Design

はじめに

　Linuxディストリビューションにおけるパッ
ケージ管理と言えば、現在ではDebian系ディ
ストリビューションにおけるAPT（Advanced

Package Tool）注1やRed Hat系ディストリビュー
ションにおけるYum（Yellowdog Updater, Modi

fied）注2が主流です。それぞれ低水準のツール
dpkg（Debian Package）注3やrpm（RPM Package

Manager）注4をベースとしています。APTや
Yumは複雑なパッケージ間の依存関係を解決し
てくれるため、dpkgやrpmコマンドを用いて
パッケージをインストールする機会は非常に少
なくなったと言えるでしょう。
　この特集では、パッケージ管理の背景やしく
みを理解することで、より実践的なパッケージ
管理の知識やスキルを習得しやすくすることを
目的とします。

・ソフトウェアの配布形態やパッケージ管理シス
テムの歴史から、パッケージ管理のしくみや
課題、 APTやYumが生まれた背景を理解する

・Yumを正しく使いこなせるようにYumリポ
ジトリのしくみやYumのしくみ、基本的な
Yumコマンドの使い方を理解する

・rpmとyumコマンドを使い分ける際のポイン
ト、yumコマンドが推奨される理由や状況に
応じたさまざまなYumのトラブルシュート例
を通して、適切なパッケージ管理方法と実用
面を意識した対処方法を習得する

　まずはソフトウェアの配布形態の歴史を簡単
におさらいしましょう。その次に、本題である
パッケージ管理のしくみを確認していきます。

ソフトウェアの配布形態と
パッケージ管理システムの歴史
　APTやYumなどのパッケージ管理ツールが
生まれる前、一般的にUnixや初期のLinuxでは
ソフトウェアのソースコードを tarなどのアー
カイブファイルとしてまとめ、配布していまし
た。ソフトウェアのインストールにはソースコー
ドのビルドなどの手動のオペレーションが必要
でした。
　1991年にLinus Torvalds氏がLinuxをリ
リースし注5、その後、さまざまなLinuxディス
トリビューションが世の中に広まります。する
と多くのユーザはLinux KernelだけでなくUnix

ユーティリティやテキストエディタ、Apache

httpdなど、目的に応じて必要なソフトウェアを
選択してインストールするようになりました。
その結果、次のような要望や課題が出はじめま

パッケージ導入の知識
～ 開発の背景と

RPMパッケージのしくみ～

　パッケージ管理ツールが何をやっているかご存じで
しょうか。YumやAPTの各論に行く前に、本章で全体
像をつかんでおきましょう。パッケージ管理ツールが
できるに至った経緯と、そのしくみを理解して、なん
となく使っていたツールをしっかりと自分のものにし
ましょう。

序 章

 Author 橋本 直哉（はしもと なおや）
 Mail nhashimo@redhat.com

 URL http://blog.hashnao.info/
レッドハット株式会社

注1） https://wiki.debian.org/Apt
注2） http://yum.baseurl.org
注3） https://wiki.debian.org/dpkg
注4） http://www.rpm.org

注5） https://groups.google.com/forum/#!msg/comp.
os.minix/dlNtH7RRrGA/SwRavCzVE7gJ

http://blog.hashnao.info/
https://wiki.debian.org/Apt
http://yum.baseurl.org/
https://wiki.debian.org/dpkg
http://www.rpm.org/
https://groups.google.com/forum/#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ

パッケージ導入の知識
～開発の背景とRPMパッケージのしくみ～

序 章

58 - Software Design Aug. 2016 - 59

した。

・ソフトウェアはソースコードで配布されてお
り、ビルドの必要があるので、導入の敷居が
高い

・ソースコードのビルドに手間と時間がかかる
・ソフトウェアのバージョン情報やパッチの適

用、ソースコードのビルドと導入のプロセス
を標準化し、管理を容易にしたい

　これらの課題を解決し要望を満足するために、
ビルド済みのバイナリパッケージが配布される
ようになります。そしてその管理のために、1993
年に各Linuxディストリビューションでパッ
ケージ管理ツールの開発が始まり、Debianにお
けるdpkgやRed Hat LinuxにおけるRPMが開
発されることとなります（パッケージ管理システ
ムの歴史に関する詳細は、dpkgの歴史（表1）、
RPMの歴史（表2）とPMS、RPP、PMの特徴と
課題（表3）にまとめました）。

RPMパッケージ管理の
課題とゴール
　これまでバイナリパッケージとパッケージ管

理ツールが生まれた背景などを見てきましたが、
パッケージ管理ツールが目指すゴールとは何で
しょうか。ここではRPMの設計上のゴールを
詳しく見てみましょう。RPMのサイト（http://

rpm.org）注6やFedora RPM Guide注7では“RPM

Design Goals”というタイトルで設計上のゴール
が公開されています。これらを総合的に解釈す
ると、RPMの設計上のゴールは次のように考え
られます。

・	ソフトウェアの追加や削除を容易かつ安全に
管理するため、バイナリやデータファイルな
どのファイルの集合体を1つのパッケージと
して一元管理できる

・	バージョン情報を持ち、インストール済みの
パッケージを安全にアップデートできる

・	あるソフトウェアが複数のライブラリを必要
とする場合、パッケージ間の依存関係を定義
でき、依存関係を定義することで誤って特定
のソフトウェアを削除することを防げる

注6） http://www.rpm.org/max-rpm/s1-intro-to-rpm-rpm-
design-goals.html

注7） https://docs.fedoraproject.org/en-US/Fedora/24/html/
System_Administrators_Guide/ch-RPM.html

 ▼表1　dpkgの歴史

1993年8月 Ian Murdock氏がDebian Gnu/Linuxを開始 (Debian Linux Release)※1。Matt Welsh、Carl Streete、
Ian Murdock氏がPerlでdpkgを開発※2

1994年 Ian Jackson氏が開発を引き継ぎ、コア部分をC言語に置き換え※3

1995年3月 Debian 0.93R5をリリース。dpkgをベースシステムインストール後のパッケージ管理として利用※4

※1 https://groups.google.com/forum/#!msg/comp.os.linux.development/Md3Modzg5TU/xty88y5OLaMJ
※2 https://anonscm.debian.org/cgit/dpkg/dpkg.git/plain/scripts/perl-dpkg.pl?id=1b80fb16c22db72457d7a456ffbf1f70a8dfc0a5
※3 https://anonscm.debian.org/cgit/dpkg/dpkg.git/plain/main/main.c?id=1b80fb16c22db72457d7a456ffbf1f70a8dfc0a5
※4 https://www.debian.org/doc/manuals/project-history/ch-releases.en.html

 ▼表2　RPMの歴史

1993年12月 Rik Faith、Doug Hoffman、Kevin Martin 氏が開始した BOGUS Linux にて、パッケージ管理に
Package Management System（PMS）を採用※1

1994年11月 Red Hat Commercial Linux（Red Hat Linuxの前身）をリリース※2。パッケージ管理にRed Hat Soft
ware Program Packages（RPP）を採用

1995年5月 Rik Faith、Doug Hoffman 氏が Red Hat との契約のもと RPP と PMS の重要な機能をベースに
Package Manager（PM）を開発

1997年2月 Erik Troan、Marc Ewing氏がRed Hat Linux向けにPerlでRPMを開発※3。RPM 1.0をリリース※4

※1 http://bogus.org
※2 https://groups.google.com/forum/#!topic/comp.os.linux.announce/Optn4pqWFsw
※3 http://rpm5.org/roadmap.php
※4 http://rpm5.org/docs/max-rpm.html

https://docs.fedoraproject.org/en-US/Fedora/24/html/System_Administrators_Guide/ch-RPM.html
http://www.rpm.org/max-rpm/s1-intro-to-rpm-rpm-design-goals.html
https://groups.google.com/forum/#!msg/comp.os.linux.development/Md3Modzg5TU/xty88y5OLaMJ
https://anonscm.debian.org/cgit/dpkg/dpkg.git/plain/scripts/perl-dpkg.pl?id=1b80fb16c22db72457d7a456ffbf1f70a8dfc0a5
https://anonscm.debian.org/cgit/dpkg/dpkg.git/plain/main/main.c?id=1b80fb16c22db72457d7a456ffbf1f70a8dfc0a5
https://www.debian.org/doc/manuals/project-history/ch-releases.en.html
http://rpm.org
http://bogus.org
https://groups.google.com/forum/#!topic/comp.os.linux.announce/Optn4pqWFsw
http://rpm5.org/roadmap.php
http://rpm5.org/docs/max-rpm.html

第2特集
安全にパッケージ管理していますか？

案外知らなかった YumとAPTのしくみと活用

60 - Software Design

・	インストール済みのパッケージの名称、ライ
センス、配布元、概要説明などのソフトウェ
ア情報を簡単に確認できる

・	RPMパッケージのインストールやアップデー
トの際、RPMパッケージの妥当性（改ざんの
有無）を検証できる

・	パッケージが持つファイルの属性情報注8を
データベースに記録することで、パッケージ
のインストール後に、パッケージが所有する
ファイル情報の整合性を検証できる

・	バイナリとソースの 2 種類のパッケージを生
成することができ、バイナリパッケージはコ
ンパイルしたソフトウェアのインストールや
実行が可能であること。ソースパッケージは
バイナリパッケージを生成するためにソース
コードをコンパイルする手順を定義した文書
を含めること

RPMパッケージの構造
　ここまではソフトウェア配布形態の歴史や課

題と、RPMが生まれた背景やパッケージ管理が
目指すゴールを見てきました。それでは、RPM

パッケージの構造はどうなっていて、どのよう
な情報がパッケージに含まれるのでしょうか。
たとえば、rpmコマンドにオプションを与えて、
rpm -qi <package>を実行するとパッケージ
情報を参照することができますが、この情報は
どこに含まれるのでしょうか。ここからはRPM

パッケージの構造やパッケージに含まれる情報
を見ていきましょう。
　まず、RPMパッケージファイル名の構造を見
てみましょう注9。

	 name-version-release.architecture.rpm

　RPMパッケージファイルは4つのフィールド
で構成されており、ファイルの拡張子は .rpmと
なります。各セクションの要素は定義のとおり
前から、nameはパッケージの名称、versionは
バージョン番号、releaseはバージョンに対応す
るリリース番号、architectureはパッケージが

 ▼表3　PMS、RPP、PMの特徴と課題※1

特徴 課題

PMS

◦ Bogus Linuxで採用される
◦ RPM で 最 も 重 要 な 要 素 の 1 つ で あ る Pristine

Sourcesと呼ばれるコンセプトを採用している※2

◦ すべてのソフトウェアはオリジナルのソースからビ
ルド、変更点はパッチで管理し、ビルド中にパッチ
を適用する

◦ 変更個所をパッチとして管理することでリリース
管理が容易になり変更点を迅速に参照できる

◦ 検索機能が弱い
◦パッケージの検証機能がない
◦ 複数のマシンアーキテクチャに対応していない
◦パッケージ管理のためのデータベースのデザイン

が弱い

RPP

◦ Red Hat Commercial Linuxで採用される
◦ 多くの特徴をRPMに引き継ぐ
◦ 1つのコマンドでパッケージをインストール／アン

インストールできる
◦ パッケージをインストール／アンインストールす

る前後でスクリプトを実行できる
◦ パッケージの検証や検索ができる

◦ Pristine Sourcesのコンセプトを採用していない
◦複数のCPUアーキテクチャに対応していない
◦ 実行可能なファイルをパッケージに含めた際、ソー

スからビルドできるか保証できない

PM
◦ 商用ではリリースしていない
◦前身のPMSやRPPの主要な機能を採用している

◦ 複数のCPUアーキテクチャに対応していない
◦ パッケージ管理のためのデータベースのデザイン

が弱い
※1 http://www.rpm.org/max-rpm/s1-intro-to-rpm-package-management-how.html
※2 http://ibiblio.org/pub/historic-linux/distributions/bogus-1.0.1/bogus-1.0.1/notes/Announce

注8） グループ、所有者や権限モードなど。

注9） この構造はバイナリRPMパッケージを前提としています。
ソースRPMパッケージの場合、ファイル名の末尾が .src.
rpmとなります。

http://ibiblio.org/pub/historic-linux/distributions/bogus-1.0.1/bogus-1.0.1/notes/Announce
http://www.rpm.org/max-rpm/s1-intro-to-rpm-package-management-how.html

パッケージ導入の知識
～開発の背景とRPMパッケージのしくみ～

序 章

60 - Software Design Aug. 2016 - 61

サポートするCPUアーキテクチャとなります。
それぞれのフィールドが意味する内容はRPM

パッケージファイル名の構造（表4）にまとめま
した。
　次にRPMパッケージファイルのフォーマッ
トを見てみましょう。
　RPMパッケージファイルは主に4つのセク
ション（図1）で構成されています。各セクショ
ンの役割は次のようになります。

・	File Identifier：ファイルがRPMパッケージ
であることを示す識別子

・	Signature：RPMパッケージを検証するため
の電子署名

・	Header：パッケージ名称やバージョン番号な
どの基本情報を含むヘッダ

・	Payload：データ、実際にインストールする
ファイルの集合体

　File IdentifierセクションはファイルがRPM

パッケージであることを示す識別情報を含んで
います。
　Signatureセクションは取得したファイルが破
損していないか、パッケージ自体が第三者によ

り改ざんされていないかを確認するために利用
されます。PGP（Pretty Good Privacy）を利用
し、公開鍵で署名したことを保証することがで
きます注10。
　HeaderセクションはRPMパッケージを構成
する際、パッケージ名称やバージョン番号など
のメタデータをタグデータとして保持していま
す。
　Payloadセクションは、RPMパッケージをイ
ンストールする際に実際に指定パスに配置され

注10） RPMのPGPによる署名は開発者そのものの信頼性までは
保証しません。あくまでRPMパッケージに署名したこと
を保証するため、ユーザが署名者を信頼するかどうかは
ユーザ自身の判断によります。

 ▼表4　RPMパッケージファイル名の構造

name

◦一般的にパッケージ対象のソフトウェア、またはその一部のコンポーネントを差し示すような
名称を定義する

◦ソフトウェアの名称がパッケージ名に合致している例：systemd（systemd）、NetworkManager
（NetworkManager） ※（）内がRPMパッケージ名

◦ RPMパッケージに含むソフトウェアの名称を示す
◦ソフトウェアの名称がパッケージ名に合致していない例：Linux（kernel）、FirewallD（firewalld）

※（）内がRPMパッケージ名

version
◦RPMパッケージに含むソフトウェアのバージョン番号を示す
◦ バージョン番号の連番の規則はパッケージに依存する※1

◦例：firewalld-0.3.9、kernel-3.10.0、systemd-219

release

◦ RPMパッケージに含むソフトウェアバージョンのリリース番号を示す
◦リリース番号は該当するバージョンに対し、バグフィックスのパッチを適用した場合などにパッ

ケージ管理者がインクリメントする
◦ 例：firewalld-0.3.9-14.el7、kernel-3.10.0-229、systemd-219-19.el7_2.7

architecture
◦ RPMパッケージファイルが対応するCPUアーキテクチャやマシンタイプを示す
◦ 例：firewalld-0.3.9-14.el7.noarch 、kernel-3.10.0-229.el7.x86_64 、systemd-219-19.

el7_2.7.x86_64
※1 nameの命名規則が必ずしもソフトウェアの名称と合致していないように、version、releaseやepochいずれもRPMのバージョンを

示し、必ずしも含まれているソフトウェアのバージョンと一致しているとは限りません。たとえば、kernel-3.10.0-229 releaseとい
う releaseバージョンのkernelはupstreamでは存在しません。RPMのversion、release、epochはあくまでもRPMそのものの属性を
示し、たまたまupstreamと一致しているケースが多いだけであるとも言えます。場合によっては、glib2やgtk3のようにRPMの
nameにversionを含める例もあります。

PayloadHeader

SignatureFile Identifier
（lead or rpmlead）

RPM Package file

 ▼図1　RPMパッケージファイルの構造

第2特集
安全にパッケージ管理していますか？

案外知らなかった YumとAPTのしくみと活用

62 - Software Design

るバイナリファイルや設定ファイルなどを含み
ます。各セクションのうち、一般的に最もサイ
ズが大きくなるため、Payloadセクションに含
むデータ自体は圧縮されています。
　セクションの詳細は表5にまとめました。

まとめ

　この章では、ソフトウェア配布形態の歴史を
追いながら、パッケージ管理が生まれた背景や
RPMパッケージが目指すゴールやパッケージの
構造を見てきました。
　現在でもソフトウェアを配布する際の方法と
して、たとえばアップストリームでは最新版を
迅速に提供するため、従来どおりソースコード
をアーカイブファイルに含めてバージョンごと
に保持する、ビルド済みバイナリファイルを含

むRPMパッケージとして提供する、などがあ
ります。
　一方、近年はパッケージをインストールする
際、rpmコマンドを使うケースは少なくなり、
Yumなどが主流になっています。第1章では
Yumにスポットを当て、RPMの課題とYumが
生まれた背景、Yumリポジトリのしくみ、yum

とrpmコマンドをどのように使い分けるべきか、
実践を想定したyumコマンドの使い方やケース
別に見るYumのトラブルシュート例を紹介しま
す。また、最後に複雑な依存関係を解決するYum

がどのような課題を抱えているのか、そしてYum

の後継であるDNFについても紹介します。｢

 ▼表5　RPMパッケージファイルのセクション

File Identifier

◦ファイルがRPMパッケージであることをマジックナンバーを用いて証明する
◦fileコマンドでセクションの最初の数バイトを参照し、マジックナンバーのデータベース
（/usr/share/magic）と結果の値を比較することで、RPMファイルであることを検証する

◦RPMファイルのタイプを認識するためのフラグがあり、パッケージにバイナリやソースパッ
ケージを含むかを定義する

◦File Identifierは leadもしくはrpmleadとも呼ばれる

Signature

◦File Identifierセクションの次にSignatureセクションが現れる
◦Signatureはパッケージの完全性（取得したアーカイブが正当であることを保証）を検証するた

めに利用でき、オプションとして信頼性の検証も含まれる
◦GNU Privacy Guard（GnuPG）を用いてRPMパッケージに電子署名ができる

Header
◦パッケージ名、バージョン番号、ライセンスなどのメタデータをタグデータとして含む
◦HeaderセクションはさらにHeader record、Header index record structuresと Index record

structuresの3つのパートで構成する※1

Payload

◦RPMパッケージをインストールする際に実際にインストールするデータやバイナリファイル
などを含むアーカイブファイルを構成する

◦領域を節約するためPayloadセクションに含むデータはGNU gzipなど※2 で圧縮している
◦圧縮したアーカイブデータはcpioフォーマットで構成、cpioフォーマットのため、rpm2cpio

とcpioコマンドでファイルを抽出することができる※3

◦Payloadセクションはさらにcpio header、File name、Padding、File Data、Paddingの5つ
のパートで構成する※4

※1 RPM Headerであることを識別し、Index recordの件数やデータサイズを含むHeader record、パッケージ名やバージョン番号などの
タグ IDを含むHeader index record structures、これとタグ付けしたデータの実体である Index record structuresで構成します。

※2 Fedora 24からPayloadの圧縮データフォーマットをデフォルトでXZ（LZMA）に変更する予定です。
 https://fedoraproject.org/wiki/Features/XZRpmPayloads
※3 cpioフォーマットの制約により、RPMパッケージに含む個々のファイルサイズの制限は2GBでしたが、RPM 4.5.9の機能拡張により

4GBとなりました。http://www.rpm.org/wiki/Releases/4.5.90
 また、RPMパッケージファイル自体の容量制限が2GBから64bit上限まで緩和されたことも大きな変更です。これにより、たとえば

2GBを越えるKVMゲストイメージの配布などが可能となりました。
※4 Payloadセクションの主要な構造として、cpio headerはファイルの権限やパーミッション、File Dataは実際にインストールするファ

イルを含みます。

https://fedoraproject.org/wiki/Features/XZRpmPayloads
http://www.rpm.org/wiki/Releases/4.5.90

63 - Software Design Aug. 2016 - 63

RPMの課題と
Yumが生まれた背景
　YumはYellow Dog Linux向けに開発された
Yellowdog Updater（YUP）を前身として、Seth

Vidal注1氏がPythonで実装しました注2。Yumの
歴史（表1）を参照すると2002年から開発が始ま
り、2003年にFedora Core 1にYumパッケージ
が含まれました。YUPはMacintosh向けの
Yellow Dog Linuxディストリビューションだけ
で動作する一方、YumはRPMベースのシステ
ムを対象とし、RPMパッケージやリポジトリに
対する高レベルなインターフェースを提供する

ことで、パッケージのインストールや管理を自
動化することを目的としました。
　一方、APTの歴史（表2）はYumより古く、
1997年3月に当時のDebian Release Manager

であるBrian White氏がdpkgのフロントエンド
ツールとして動作するdselect注3をリプレースす
るためのプロジェクトを発足した後、1999年3

年にDebian 2.1に含まれました。
　Yum登場以前はユーザは依存するRPMパッ
ケージ群を自分でリポジトリから検索し、手動
でダウンロード、インストールする必要があり
ました。Yumはこの手間を省き、パッケージ間
の依存関係の解決や依存パッケージ群のダウン
ロード・インストールまでの一連の手順を自動
化し、パッケージ管理を簡単にすることを目的
として開発されました。YumリポジトリでRPM

パッケージの集合を一元的に管理、配布するこ
とで、大学や企業などで分散したLinuxホスト
を管理者が容易に管理できるようになりました。

Yumを使いこなそう
～ 構造や動作を知って
管理の不安を解消～

　本章ではYumに焦点を当て、リポジトリからのパッ
ケージ検索や依存関係の解決がどのように行われてい
るのかを解説します。実践面では、Yumの便利な使い
方やRPMの使いどころ、トラブルシュートが役立つは
ずです。また、Yumの後継ツールと目されているDNF
も押さえておきましょう。

第1章

 Author 橋本 直哉（はしもと なおや）
 Mail nhashimo@redhat.com

 URL http://blog.hashnao.info/
 Author 佐藤 暁（さとう さとる）

 Mail ssato@redhat.com
 URL https://github.com/ssato/

レッドハット株式会社

注1） Seth Vidal氏は2013年7月8日にノースカロライナ州
ダーラムで交通事故により、享年36歳の若さで亡くなり
ました。Fedora CommunityやRed Hatは氏の訃報と功績
をそれぞれ伝えています。https://fedoraproject.org/wiki/
User:Skvidal/Friend、https://www.redhat.com/ja/about/
blog/thank-you-seth-vidal

注2） Duke大学の物理学部はパッケージ管理にYUPを利用して
おり、YUPは依存関係の解決に課題がありました。Seth
Vidal氏はDuke大学の物理学部でシステム管理者を担当、
YUPに代わるYumの開発をはじめ、Michael Stenner氏
はPRMパッケージやheaderファイルを取得するurlgrabb
erの開発を担当、両名でYumの基礎開発をはじめました。 注3） https://wiki.debian.org/dselect

 ▼表1　Yumの歴史

2002年6月 Seth Vidal氏がYumのRPMをパッケージング※1

2003年11月 Fedora Core 1をリリース。Yumパッケージが含まれる※2、3

2003年12月 Robert G. Brown氏が“YUM: Yellowdog Updater, Modified”※4を発表
2006年3月 Fedora Core 5をリリース。up2dateは廃止され、Yumの利用を推奨※5

※1 ChangeLogやSpecfile（yum.spec）を参照した結果からの推測となります。
 http://yum.baseurl.org/gitweb?p=yum.git;a=blob;f=yum.spec;h=854baf3dd3fd7302a7e6b45a5602a6a1302330d3;hb=HEAD
※2 https://docs.fedoraproject.org/en-US/Fedora_Core/1/html/Release_Notes_for_32-bit_x86_Systems/
※3 http://www.fedorafaq.org/fc1/#InstallSoftware
※4 http://www.phy.duke.edu/~rgb/General/yum_article/yum_article.pdf
※5 https://docs.fedoraproject.org/en-US/Fedora_Core/5/html/Release_Notes/ar01s06s09.html

http://blog.hashnao.info/
https://github.com/ssato/
https://www.redhat.com/ja/about/blog/thank-you-seth-vidal
https://fedoraproject.org/wiki/User:Skvidal/Friend
https://fedoraproject.org/wiki/User:Skvidal/Friend
https://www.redhat.com/ja/about/blog/thank-you-seth-vidal
https://wiki.debian.org/dselect
http://yum.baseurl.org/gitweb?p=yum.git;a=blob;f=yum.spec;h=854baf3dd3fd7302a7e6b45a5602a6a1302330d3;hb=HEAD
https://docs.fedoraproject.org/en-US/Fedora_Core/1/html/Release_Notes_for_32-bit_x86_Systems/
http://www.fedorafaq.org/fc1/#InstallSoftware
http://www.phy.duke.edu/~rgb/General/yum_article/yum_article.pdf
https://docs.fedoraproject.org/en-US/Fedora_Core/5/html/Release_Notes/ar01s06s09.html

第2特集
安全にパッケージ管理していますか？

案外知らなかった YumとAPTのしくみと活用

64 - Software Design

Yumリポジトリのしくみ

　たとえば、yumコマンドでパッケージをイン
ストールする場合、その裏側ではどのようなし
くみでリポジトリからパッケージを検索し、依
存関係を解決しているのでしょうか。Yumの動
作を理解するにあたり、Yumリポジトリのしく
みについて表3をもとに順番に見ていきましょ
う。
　Yumリポジトリは「RPMパッケージファイル」
と「リポジトリメタデータ（以降はメタデータと
呼称）」で構成されます。メタデータを作成する
方法はおもに次の2通りがあります。

・上流となるYumリポジトリやインストールメ
ディア内のrepodata/をそのまま参照、もし
くはHTTPやFTPミラーにreposyncコマン
ドを実行する

・createrepoコマンドを実行し、RPMをスキャ
ン、RPMパッケージ情報を抽出する

　Yumリポジトリを作成するには、まずrepo

syncで外部のYumリポジトリを同期、もしくは
インストールメディアをマウントするなどして

RPMパッケージを取得します。そして、create

repoコマンドでメタデータを生成します注4。リ
ポジトリの作成は reposync(1)や yum.baseurl.

orgの“RepoTools注5”を参照、メタデータの生成
は createrepo(8)や同じく yum.baseurl.orgの
“RepoCreate 注 6”や Fedora の“Deployment

Guide注7”を参照するとよいでしょう。
　Yumリポジトリは、ftp、nfs、http［s］などで
外部に公開できます。
　そして、たとえばhttp［s］の場合、Basic認証
やSSLクライアント証明書による認証などを利
用できます。
　クライアントホストは .repoファイル（/etc/

yum.repos.d/<repository_name>.repo）に設定し
たリポジトリの情報を元に、指定したプロトコ
ル経由でリポジトリにアクセスします。

注4） リポジトリメタデータの一部はRPMパッケージファイル
内の情報を元に再構成できますが、できないものもいくつ
かあります。たとえば、comps.xml（RPMグループ定義）
やupdateinfo.xml（エラータ情報）が該当します。これら
はRPMパッケージファイル内に存在しない情報を含むた
め、外部から取得しリポジトリに加える必要があります。

注5） http://yum.baseurl.org/wiki/RepoTools
注6） http://yum.baseurl.org/wiki/RepoCreate
注7） https://docs.fedoraproject.org/en-US/Fedora/15/html/

Deployment_Guide/sec-Creating_a_Yum_Repository.
html

 ▼表2　Aptの歴史

1997年3月 dselect replacement projectが発足※1

1998年3月 ソフトウェアの名称がA Package Tool（APT）に決まる※2。Scott K. Ellis氏がApt 0.0.1をリリース※3

1999年3月 Debian 2.1にAptが含まれる※4

※1 https://lists.debian.org/debian-user/1997/04/msg00786.html
※2 https://lists.debian.org/deity/1998/03/msg00105.html
※3 ChangeLogからの推測となります。
 https://github.com/Debian/apt/blob/master/debian/changelog
※4 https://www.debian.org/doc/manuals/project-history/ch-detailed.en.html#s4.1

 ▼表3　リポジトリを構成するための要素

RPMパッ
ケージ

◦クライアントホストに配布するRPMパッケージファイル
◦ディストリビューションのインストールメディアをマウントする、reposyncコマンドで外部の

Yumリポジトリをローカルに同期するなど

リポジトリ
メタデータ

◦メタデータは複数のファイルから構成。フォーマットはXMLとSQLiteがあり、現在のデフォルト
はSQLiteとなる※1

◦一連のファイルの属性やパスを定義したインデックス（repomd.xml）、リポジトリに含まれるRPM
パッケージの一覧（primary.xml）やRPMパッケージに含まれるファイルの一覧（filelists.xml）など

◦createrepoコマンドを利用
※1 createrepoコマンドを実行するとXML（.xml）とSQLite（.sqlite）の双方を生成し、デフォルトでデータベースにSQLiteを利用します。

古いバージョンのYumを利用している場合、SQLiteを無視し、XMLを参照します。http://yum.baseurl.org/wiki/RepoCreate

http://yum.baseurl.org/wiki/RepoCreate
https://lists.debian.org/deity/1998/03/msg00105.html
https://lists.debian.org/debian-user/1997/04/msg00786.html
https://docs.fedoraproject.org/en-US/Fedora/15/html/Deployment_Guide/sec-Creating_a_Yum_Repository.html
http://yum.baseurl.org/wiki/RepoTools
https://github.com/Debian/apt/blob/master/debian/changelog
http://yum.baseurl.org/wiki/RepoCreate
https://www.debian.org/doc/manuals/project-history/ch-detailed.en.html#s4.1

Yumを使いこなそう
～構造や動作を知って管理の不安を解消～

第1章

64 - Software Design Aug. 2016 - 65

	 メタデータに含まれる要素
　リポジトリ内のrepodata/に含まれるリポジ
トリメタデータのファイルには、依存関係を解
決するための重要な情報が含まれています。そ
れぞれの要素を詳しく見ていきましょう。実際
のYumリポジトリに含むメタデータはCentOS

Mirror List注8などから参照できます。

　メタデータに含まれるファイル名や用途を表
4にまとめました。ここではCentOS 7.2のリポ
ジトリを参考に、それぞれのメタデータに含ま
れる要素を順番に見ていくことにします。
　まず最初に、repomd.xmlを見てみましょう。
repomd.xmlファイルはCentOS Mirror Listから
理研をたどり、リンク先注9を参照してください。

 ▼表4　メタデータファイルの概要

repomd.xml

◦repomdはそのほかのメタデータファイルを定義するインデックスの役割を持ち、たとえば
GPGで署名することでリポジトリの完全性を証明する意味合いを持つ

◦クライアントがrepomdをダウンロードすることでメタデータファイルの変更を認識できる
◦要素にファイルパス（location）、タイムスタンプ（timestamp）、チェックサム（checksum）、
サイズ（size）などを含む

primary.xml
（or .sqlite）

◦リポジトリに含まれるRPMパッケージのデータを含む
◦要素にパッケージ名（name）、ファイルパス（location）、バージョン（version）、チェックサ
ム（checksum）やフォーマット（format）などを含む

◦フォーマットの要素に、より詳細なRPMの情報（license、vendor、group、provides、requires
など）を含む

filelists.xml
（or .sqlite）

◦RPMパッケージに含まれるファイルやディレクトリパスのデータを含む
◦primary.xmlに記載されているパッケージ名をfilelists.xmlから参照する際、チェックサム
（pkgid）、パッケージ名（name）、アーキテクチャ（arch）やバージョンを元に認識

other.xml ◦RPMパッケージのChangelogに関するデータを含む
◦パッケージ名の参照はfilelists.xmlと同様

comps.xml ◦RPMパッケージを機能的なグループ名で分類
◦リポジトリによってはcomps.xmlを含まない場合もある

updateinfo.xml ◦CVE、セキュリティアドバイザリやBugzillaのErrataを含む
◦リポジトリによってupdateinfo.xmlを含まない場合もある

 ▼表5　repomdの要素

checksum ◦ locationに定義しているファイルのチェックサム値
open-checksum ◦ファイルをgzipで圧縮した場合のチェックサム値
location ◦メタデータファイルのパス
timestamp ◦メタデータファイルのタイムスタンプ
size ◦メタデータファイルのサイズ（Byte表記）
open-size ◦メタデータファイル圧縮時のサイズ（Byte表記）

注9） http://ftp.riken.jp/Linux/centos/7.2.1511/os/x86_64/
repodata/repomd.xml注8） https://www.centos.org/download/mirrors/

 ▼リスト1　repomd.xml（抜粋）

<data type="primary">
 <checksum type="sha256">0e54cd65abd3621a0baf9a963eafb1a0ffd53603226f02aadce59635329bc937ｭ
</checksum>
 <open-checksum type="sha256">52f3798031df49b1d185dff22af6de919981fdd50a9805c3e591caa4a3eｭ
c5d8b</open-checksum>
 <location href="repodata/0e54cd65abd3621a0baf9a963eafb1a0ffd53603226f02aadce59635329bc93ｭ
7.xml.gz"/>
 <timestamp>1449700524</timestamp>
 <size>2624357</size>
 <open-size>24141104</open-size>
</data>

http://ftp.riken.jp/Linux/centos/7.2.1511/os/x86_64/repodata/repomd.xml
https://www.centos.org/download/mirrors/

第2特集
安全にパッケージ管理していますか？

案外知らなかった YumとAPTのしくみと活用

66 - Software Design

　repomd.xmlには <data>タグ内にfilelistsや
otherなど、ほかのメタデータファイルの情報
が記述されています。Yumはこのファイルを最
初に読み込み、ほかのメタデータファイルの
URLを解決し、必要に応じてダウンロードしま
す。一例として、primaryセクションを抜粋し
ます（前ページリスト1）。それぞれの要素の名
称と概要は前ページの表5に記載しました注10。
　primary.xmlにはRPMパッケージ一覧が含ま
れ、パッケージ名やバージョン、依存関係など
の基本的なパッケージ情報が記述されていま
す。RPMパッケージの依存関係に関する重要な
情報は formatタグ内に記述されています。for

matタグ内の主な要素を表6に記載しました。タ
グの詳細な定義は、rpm.orgに公開している
“Tags: Data Definition注11”や“Manual Depend

encies注 12”、Fedora Draft Documentation の

“RPM Guide注13”に記載されています。
　次に filelists.xmlを見てみると、各RPMパッ
ケージに含まれるファイルやディレクトリパス
情報の一覧が記述されています。続いてother.

xmlを見てみると、各RPMパッケージの変更履
歴の情報が記述されています。続いてcomps.xml

を見てみると、RPMパッケージを機能的なカテ
ゴリなどで分類したグループ定義が記述されて
います。この情報はインストーラなどでパッケー
ジをグループ単位でインストールする際に利用
されます注14。パッケージのグループ定義の中の
主な要素を表7に記載しました注15。
　次に、updateinfo.xmlを見てみると、CVE注16、
セキュリティアドバイザリー注17やBugzilla注18

 ▼表6　primaryに含まれるformatの要素

rpm:provides
◦パッケージが提供する仮想パッケージ（virtual package）を定義
◦たとえばクライアントのアプリケーションがどのパッケージに依存するか意識せずに任意の
名称を定義したい場合に利用

rpm:requires ◦依存するRPMパッケージの名称、バージョンやリリース番号などを定義

rpm:conflicts ◦コンフリクトする対象のパッケージを定義
◦同時にインストールすると競合するパッケージを定義する場合などに利用

rpm:obsoletes ◦廃止（Obsolete）する対象のパッケージを定義
◦新しいバージョンをインストールする場合やパッケージの名称が変更になった場合などに利用

 ▼表7　compsに含まれる要素

id ◦グループ IDを定義
name ◦表示するグループ名を定義
description ◦グループの説明を定義
default ◦パッケージグループを選択する際、デフォルトでグループを有効にするか定義
uservisible ◦グループをユーザに表示するか定義

packagelist

◦グループに属すパッケージ名を定義
◦ type属性に次のいずれかを選択できる
◦optional：デフォルトでパッケージは有効にならず、GUIで選択したグループからパッケージ
の要否を指定できる

◦default：デフォルトでパッケージは有効になり、GUIで選択したグループからパッケージの要
否を指定できる

◦mandatory：グループを選択すると必ず含まれる
◦conditional：依存するパッケージをインストールする場合に含まれる

注10） 各メタデータファイルを取得し、shasumコマンドなどで
チェックサム値を圧縮／未圧縮の状態でそれぞれ取得する
とchecksumやopen-checksumの値と合致するはずです。

注11） http://www.rpm.org/max-rpm/s1-rpm-inside-tags.html
注12） http://www.rpm.org/max-rpm/s1-rpm-depend-

manual-dependencies.html

注13） https://docs.fedoraproject.org/en-US/Fedora_Draft_
Documentation/0.1/html/RPM_Guide/index.html

注14） yum groupinstallやインストーラを起動後、パッケージグ
ループを選択する際などに参照されます。

注15） comps.xmlの詳細はyum.baseurl.orgの“YumGroups”や
Fedora Hostedの“Fedora Comps”を一読いただくことを
お勧めします。http://yum.baseurl.org/wiki/YumGroups、
https://fedorahosted.org/comps/

注16） https://access.redhat.com/security/security-updates/#/
cve

注17） https://access.redhat.com/security/security-updates/#/
security-advisories

注18） https://bugzilla.redhat.com/

http://www.rpm.org/max-rpm/s1-rpm-depend-manual-dependencies.html
http://www.rpm.org/max-rpm/s1-rpm-inside-tags.html
https://fedorahosted.org/comps/
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/index.html
http://yum.baseurl.org/wiki/YumGroups
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/security-advisories
https://bugzilla.redhat.com/

Yumを使いこなそう
～構造や動作を知って管理の不安を解消～

第1章

66 - Software Design Aug. 2016 - 67

に関するバグ情報などが含まれていることがわ
かります。Yum security plugin注19はセキュリ
ティアップデートやエラータの表示、また該当
するパッケージのアップデート時にこのファイ
ルの情報を利用しています。

Yumのしくみと
プラグインによる機能拡張

	 Yumコマンドの流れ
　これまでYumリポジトリのしくみやメタデー
タファイルの内容などを見てきました。次に、
Yumのしくみや設定ファイルの記述方法を確認
していきます。
　まずyumコマンドを実行する際の流れを簡単
に追いながら、そのしくみを見ていきましょう。
ここでは、yum listとyum installを実行する例
をもとにYumの動作を解説します注20。

 ■ 例1．すべての利用可能（available）なRPM
とインストール済みRPMの一覧を表示：yum
list

①	/etc/yum下の設定ファイルと/etc/yum.
repos.d/内のYumリポジトリ定義ファイルを
読み込み、初期化

②	/var/lib/rpm/内のRPMデータベースファイ
ルを読み込み

③	有効なYumリポジトリについて順番にリポジ
トリメタデータのキャッシュファイルを読み
込み（もしキャッシュファイルが古ければリ
ポジトリからメタデータをダウンロード、
キャッシュファイルとして保存し読み込み）

④	読み込んだRPMデータベースとリポジトリ
メタデータを参照、インストール済みRPM
と利用可能なRPMを計算してそれぞれの一

覧を出力

 ■ 例2．RPMをインストール：yum install
<package>

①〜③はyum listを実行する場合と同様
④	リポジトリメタデータを参照し、インストー
ルするRPMを特定（バージョン指定がなけれ
ば利用可能な中の最新バージョンとなる）

⑤	リポジトリメタデータからインストールする
RPMが依存するRPMを順番に解決し、特定

⑥	依存するものも含めてインストールするRPM
をすべてダウンロードし、インストール

	 Yumプラグイン
　次にYumプラグインの特徴を見てみましょう。
　Yumはプラグインのしくみを実装しており、
機能を拡張できます。たとえば、yum-plugin-

security注 21や yum-plugin-downloadonly注 22な
どのプラグインがあります。プラグインはyum

コマンドのオプション（--noplugins）やyum.conf

の設定パラメータ（noplugins）で有効、無効化で
きます注23。
　Yumの内部構造について、デザインパターン
にSingletonパターンを採用しており、Yum

PluginsはPythonモジュール（.py）としてロード
され、importフックを用いて呼び出されます注24。

	 Yumの設定ファイル
　続いてYumの設定ファイル（yum.conf）とYum

リポジトリの設定ファイル（.repo）を見てみま
しょう。まず、設定ファイル は/etc/yum.conf、
/etc/yum.repos.d/<repository_name>.repo の
順に参照します。yum.confの [repository]セク

注19） RHEL7はyumパッケージに含まれ、RHEL6はyum-plugin-
security、RHEL5はyum-securityパッケージの名称です。
https://access.redhat.com/solutions/10021

注20） ソースコードの概要は yum.baseulr.orgの“YumCode
Snippets”に公開しています。

 http://yum.baseurl.org/wiki/YumCodeSnippets

注21） https://access.redhat.com/solutions/10021
注22） https://access.redhat.com/solutions/10154
注23） Yumプラグインの利用方法に関する詳細は“RHEL 7シス

テム管理者ガイド - 5.6. YUMのプラグイン”に公開してい
ます。http://red.ht/1UdK6Oi

注24） Yumプラグインの概要は yum.baseulr.orgの“Writing
YumPlugins”に公開しています。

 http://yum.baseurl.org/wiki/WritingYumPlugins

https://access.redhat.com/solutions/10021
http://yum.baseurl.org/wiki/YumCodeSnippets
https://access.redhat.com/solutions/10021
https://access.redhat.com/solutions/10154
http://yum.baseurl.org/wiki/WritingYumPlugins

第2特集
安全にパッケージ管理していますか？

案外知らなかった YumとAPTのしくみと活用

68 - Software Design

ションにリポジトリの設定を含めることもでき
ますが、個々のリポジトリ固有の設定は/etc/

yum.repos.d/ディレクトリ配下の .repoファイル
に記載します注25。
　詳細は yum.conf(5)やFedoraの“System Ad

ministration Guide”を参考にするとよいでしょ
う注26 注27。

YumとRPMのユースケース

　それでは、実際にyumコマンドを利用するに
あたり、サブコマンドやオプションとrpmコマ
ンドを実行するケースを見てみましょう。Yum

のユースケースとして、知っていると便利なサ
ブコマンドとオプションを解説します注28。

 ■ 利用可能なパッケージを対象にパッケージ名
に‘yum-plugin*’が含まれる一覧を取得

yum list available 'yum-plugin*'

　完全なパッケージ名がわからない、もしくは
類似パッケージも含めて検索する場合に利用し
ます。listサブコマンドのオプションとして
availableを指定しているので、利用可能なパッ
ケージのみが検索対象となります注29。

 ■ 指定したファイルを含むパッケージと該当する
リポジトリを表示

yum provides '*bin/yum'

　おおまかにわかっているファイル名やパスか

ら、それを提供するパッケージを探す場合に利
用します。providesを installに置き換えて、そ
のままそのパッケージをインストールすること
もできます。

 ■パッケージのURLを指定しインストール

yum install <URL>

　URLを指定することで依存するパッケージを
含めて直接リモートのパッケージをインストー
ルする場合に利用します。

 ■ 有効にしているリポジトリからリポジトリのメ
タデータを取得しキャッシュ

yum makecache

　リポジトリのメタデータをキャッシュして、
後でオフライン環境で問い合わせを行う場合な
どに利用します。

 ■ 指定のリポジトリのみを参照し、パッケージ
をインストール

--disablerepo='<repoidglob>' ｭ
--enablerepo='<repoidglob>'
例）yum --disablerepo='*' ｭ
 --enablerepo='dvd' install <package>

　--enablerepoオプションで指定したリポジト
リ（たとえばインストールメディアをマウントし
たDVDメディア）だけを参照させたい場合に利
用します。<repoidglob>にはリポジトリIDもし
くはリポジトリ名を指定します。

 ■ オフライン環境で問い合せ

--cacheonly
例）yum --cacheonly list <package>

　オフライン環境で、リポジトリのメタデータ
のローカルのキャッシュのみを参照して問い合
わせを行う場合に利用します。事前に前述のyum

makecacheコマンドを実行し、キャッシュを更

注25） Fedoraの場合、epel-releaseパッケージにepel.repoが、
RHELの場合、subscription-managerに redhat.repoがと
いったようにリポジトリ設定ファイルが含まれる場合もあ
ります。

注26） https://docs.fedoraproject.org/en-US/Fedora/18/html/
System_Administrators_Guide/sec-Configuring_Yum_
and_Yum_Repositories.html

注27） proxyを設定する場合、RHELはsubscription-managerを
利用します。http://red.ht/1S2cG0q。FedoraやCentOS
の場合は、yum.conf(5)を参考にするとよいでしょう。

注28） Yumコマンドのチートシートも参考になります。https://
access.redhat.com/ja/articles/1354533

注29） 検索対象を絞るほかのオプションについてはyum(8)のLIST
OPTIONS節を参照ください。

https://docs.fedoraproject.org/en-US/Fedora/18/html/System_Administrators_Guide/sec-Configuring_Yum_and_Yum_Repositories.html
http://red.ht/1S2cG0q
https://access.redhat.com/ja/articles/1354533

Yumを使いこなそう
～構造や動作を知って管理の不安を解消～

第1章

68 - Software Design Aug. 2016 - 69

新しておく必要があります。

	 rpmコマンドを実行するケース
　次に、yumでなくrpmコマンドを実行するケー
スを見てみましょう。rpmコマンドを利用する
典型的な例として、Yumでは行えない複雑な問
い合わせを行う場合などが該当します。

 ■ クエリフォーマットで複雑な書式を指定して問
い合せ結果を出力

rpm -qa --qf '%{n},%{e},%{v},%{r},ｭ
%{arch},%{buildhost}\n'

　出力結果を整形し、標準では出力されない
epochなどの情報を取得しています。

 ■ インストール済みパッケージに含まれる
ファイルの一覧を取得

rpm -ql yum

 ■ ファイルのパスからインストール済みの
RPMパッケージ名を取得

rpm -qf $(which yum)

Yumを推奨する理由
　yumでなくrpmコマンドを利用するケースを
いくつか見てきましたが、Yumが導入されてか
らRPMパッケージ管理にrpmコマンドを利用
することは推奨されていません。Fedora の

“System Administrator's Guide注30”に推奨しな
い理由を公開しています。この文書を総合的に
解釈すると、おもに次の理由であると考えられ
ます。

・	RPMは低レベルで処理を実行するため、パッ
ケージの依存関係やシステムの整合性を考慮
せず強制的に削除するといった危険な操作を
実行できてしまい安全ではない注31。一方、
Yumは複雑なシステムの整合性を記録し、
パッケージをインストールやアンインストー
ルする際、強制的にシステムの整合性をチェッ
クすることができる

・たとえばローカルにあるRPMパッケージをイ
ンストールする際、yumとrpmどちらのコマ
ンドでも対象のパッケージをインストールす
ることはできるが、yumは依存関係を解決す
る一方、rpmは解決しない注32

・	RPMパッケージをインストールやアップグ
レードする際、rpmコマンドに--aidオプショ
ン注33を使い、RPMトランザクションに指定
したパッケージを加えることである程度は依
存関係を解決するが、yumと同じレベルでは
解決しない注34

・“rpmコマンドを実行するケース”で提示した
例などを除く大半の場合はyumでカバーでき、
rpmコマンドを実行する必要性がない

Yumのトラブルシュート

　今までに、パッケージをYumでインストール
する際、依存関係を解消できずにインストール
に失敗し、rpmコマンドでパッケージを強制的
に削除した結果、今度は削除したパッケージの
依存関係を解決できないといった事象に直面し
た方もいるかもしれません。次にyumコマンド
を利用する際のトラブルシュートについても状
況別に順に確認していきましょう。
　なお、RHELを利用している場合、まずサポー

注30） https://docs.fedoraproject.org/en-US/Fedora/21/html/
System_Administrators_Guide/ch-RPM.html

注31） http://red.ht/1UdNj0l
注32） yumリポジトリ上にあるRPMパッケージのURLを指定し、

rpmコマンドでインストールする場合も同じことが当ては
まります。

注33） http://linux.die.net/man/8/rpm
注34） RPM 4.9.0からaidオプションは廃止されています。
 http://www.rpm.org/wiki/Releases/4.9.0

https://docs.fedoraproject.org/en-US/Fedora/21/html/System_Administrators_Guide/ch-RPM.html
http://red.ht/1UdNj0l
https://access.redhat.com/solutions/10021
http://www.rpm.org/wiki/Releases/4.9.0

第2特集
安全にパッケージ管理していますか？

案外知らなかった YumとAPTのしくみと活用

70 - Software Design

トに問い合わせてみるという観点も必要です。

 ■ "No package <package> available"が
出力され、パッケージがインストールできない

（a）yum list available '*package_name*'を実
行し、パッケージが利用可能どうか確認

（b）yum repolistを実行、実際に有効なリポジト
リの一覧を出力

（c）.repoに定義したYumリポジトリが有効
（enabled=1）になっているか

　（a）の確認には、Yumリポジトリの設定ファ
イルを生成するオンラインツールも参考になる
かもしれません注35。

 ■ リポジトリの定義に問題はないが、
何らかの理由でパッケージを取得できない

（a）	リポジトリにアクセスができるかどうか
（b）キャッシュを無効化、最新のキャッシュを

取得
（c）複数のリポジトリを有効にしており、リポ

ジトリ間で依存関係の競合が発生していな
いかどうか

　まずはクライアントからリポジトリにhttp［s］
でアクセスができるか確認します（a）。次にyum

clean allでキャッシュをクリアし、yum make

cacheでキャッシュを取得します（b）。キャッ
シュクリアで解決できない場合、特定のリポジ
トリを順番に有効にした状態でパッケージの取
得に問題がないか確認します注36（yum repolist
--disablerepo='*' --enablerepo='7-
server-extras-rpms'）（c）。

 ■ パッケージの依存関係を解決できず、
特定のパッケージをインストールできない

 （a）リポジトリにパッケージや該当するバージョ
ンのパッケージが存在するか

 （b）package-cleanupコマンドを実行し、依存
関係を解消

 （c）依存関係に競合しているパッケージを除外

　有効にしているリポジトリに要求するパッケー
ジ自体がない、もしくは該当するバージョンの
パッケージが存在しないなどの可能性が考えら
れます（a）。あるいはトランザクションが失敗、
パッケージの作りが悪いなど、何らかの理由が
想定されるため、たとえば次のオプションを利
用して、依存関係を解決できるか確認します（b）。

--orphans：有効なリポジトリから有効でないイ
ンストール済みのパッケージを出力

--problems：ローカルのrpmdbから依存関係の
問題を出力

--cleandupes：ローカルのrpmdbから重複して
いるパッケージの有無をスキャン、古いバー
ジョンを削除

　yum.confや .repoファイルの除外リスト

（exclude=<package_name>）に記載しているパッ
ケージがアップデートもしくはインストールさ
れても問題がないという前提のもと、指定した
リポジトリの除外を無視し、インストールする
こともできます（yum --disableexcludes='<
repository_id>' install <package_name>）
（c）。

 ■ Yumのトランザクションが正常に完了せず、
トランザクションが中止もしくは失敗

（a）	yum-complete-transactionを実行し、中断
したトランザクションを解消

　突然の電源断などでyumの実行を強制的に中
断させた場合は（a）によって中断されたトランザ
クションをyumに再度実行させます。

注35） https://access.redhat.com/labs/yumrepoconfighelper/
注36） 特定のリポジトリをどうしても利用したい場合、.repo

ファイルにpriority=<num>を記載し、リポジトリの優先
度を設定することもできます。詳細はCentOSの“yum-
plugin-priorities”やyum.conf(5)を参照ください。https://
wiki.centos.org/PackageManagement/Yum/Priorities

https://access.redhat.com/labs/yumrepoconfighelper/
https://wiki.centos.org/PackageManagement/Yum/Priorities

Yumを使いこなそう
～構造や動作を知って管理の不安を解消～

第1章

70 - Software Design Aug. 2016 - 71

 ■ Mirror listを定義しているが、
パッケージのダウンロードが速くならない

（a）	Mirror Listに定義したリポジトリのロケー
ションに問題がないか

　リポジトリの参照先が物理的に遠い場合など
が考えられるため、Mirror Listの設定先を確認
します。

 ■ yum-plugin-fastestmirrorを有効にした
が、パッケージのダウンロードが速くならない

（a）	yum-plugin-fastestmirrorを無効にする

　CDNとの相性が悪い場合があるため、プラグ
インを無効にした後、問題が解決するか確認し
ます（yum --disableplugin='fastestmirr
or'）。

 ■ プラグインのコンフリクトやプラグイン自体に
問題がある

　前述で説明した方法で該当するプラグインを
無効にします。

 ■ Yum Cacheに何らかの不具合が起きている

（a）	yum clean expire-cacheを実行

　（a）を実行することで過去に取得したメタデー
タの記録を削除し、ローカルのYum Cacheを再
検証します。expire-cacheで解決しない場合、
yum clean allですべてのキャッシュをクリアす
ることで解決するかもしれません。

Yumの後継「DNF」
　長くパッケージ管理ツールとして実績のある
Yumもいくつか課題をかかえています。たとえ
ばYumはRPMパッケージの依存関係を解決す
るため、個々の依存先を順番にたどり解決しま
すが、この処理のコードは非常に複雑で見通し

が悪くなってしまっています注37。また、大部分
がやや古いスタイルのPython 2のコードで書か
れているため、Python 3への移行が非常に困難
です。そしてpluginや内部APIなど、一部は文
書化されています注38が、残念ながら全体として
完全なものとはなっていません。
　Yumのこれらの問題点を改善するために過去
にいくつか試みがなされてきました注39が、つい
に課題を解決し、Yumを置き換えつつある注40

のがDNFです。DNFはユーザ向けにできるか
ぎりYumとの互換性を残しつつ、コードは抜本
的に見直して一部のYum由来のコードを除きほ
ぼ一から開発されています。
　DNFはYumと異なりCLIとは直接関連しな
い処理などをほかのライブラリに移譲していま
す。

・RPMパッケージの依存関係はhawkey注41経
由でlibsolv注42が解決

・RPMパッケージファイルやリポジトリメタ
データはlibrepo注43がダウンロードし、処理

・Compsデータ（RPM Group定義データ）は
libcomps注44が処理

　中でも一番特徴的なのは libsolvによるパッ
ケージ間の依存関係の解決でしょう。libsolvは
もともとOpenSUSEのRPMパッケージ管理
ツールzypperで、Yumと同様の問題の解決のた
めに開発されたSATソルバベースのライブラリ
です注45。libsolvはRPMだけでなくdebなどの

注37） 該当コード部分は http://yum.baseurl.org/gitweb?p=
yum.git;a=blob;f=yum/depsolve.py;hb=HEAD#l870 な
どで非常に複雑で入り組んだものとなっています。

注38） http://yum.baseurl.org/wiki/5MinuteExamplesや http://
yum.baseurl.org/wiki/WritingYumPluginsなど。

注39） https://people.freedesktop.org/~hughsient/zif/など。
注40） Fedora 22から標準パッケージ管理ツールとしてyumを置

き換え：https://fedoraproject.org/wiki/Releases/22/Cha
ngeSet#Replace_Yum_With_DNF

注41） https://github.com/rpm-software-management/
hawkey/

注42） https://github.com/openSUSE/libsolv/
注43） https://github.com/rpm-software-management/

librepo/
注44） https://github.com/rpm-software-management/

libcomps/
注45） https://en.opensuse.org/openSUSE:Libzypp_satsolver、

とくにリンク先のFosdem 2008 presentationなどを参照
のこと。

http://yum.baseurl.org/gitweb?p=yum.git;a=blob;f=yum/depsolve.py;hb=HEAD#l870
http://yum.baseurl.org/wiki/5MinuteExamples
http://yum.baseurl.org/wiki/WritingYumPlugins
http://yum.baseurl.org/wiki/WritingYumPlugins
https://people.freedesktop.org/~hughsient/zif/
https://fedoraproject.org/wiki/Releases/22/ChangeSet#Replace_Yum_With_DNF
https://github.com/rpm-software-management/hawkey/
https://github.com/openSUSE/libsolv/
https://github.com/rpm-software-management/librepo/
https://github.com/rpm-software-management/libcomps/
https://en.opensuse.org/openSUSE:Libzypp_satsolver

第2特集
安全にパッケージ管理していますか？

案外知らなかった YumとAPTのしくみと活用

72 - Software Design

ほかのパッケージ形式をサポートし、またrpmmd

（Yumが利用しているリポジトリメタデータ形
式）だけでなくOpenSUSEやArch Linuxなど
で使われているほかのリポジトリメタデータ形
式にも対応しています注46。libsolvはよく研究さ
れ、実績もあるSATソルバアルゴリズムを利用
することで依存関係解決の高速化などを実現し
ています。
　またDNFはYumと比較するとコードも非常
にわかりやすく注47、利用するライブラリなども
含めて文書が充実しています。

・DNF：http://dnf.readthedocs.io
・Hawkey：http://hawkey.readthedocs.io
・librepo：http://rpm-software-management.
github.io/librepo/

　DNFはYumとは少し挙動が違う部分なども
あります注48が、Fedoraで実績を重ね徐々に成
熟が進んでいるため、日常の基本的な用途では
ほぼYumと同じ感覚で使うことができます。｢

注46） libsolvはsolvという独自の形式でリポジトリメタデータを
扱い、各種形式のリポジトリメタデータは内部的にsolv形
式に変換される。

注47） ただし関数型プログラミングのスタイル（map、curry化な
ど）を多用しているので、そのスタイルへの慣れが必要。

注48） 主なCLIの違いについては、http://dnf.readthedocs.io/en/
latest/cli_vs_yum.htmlにまとまっている。

　Linux Kernelのコンテナ関連機能をうまく活用したDockerやソフトウェアコード履歴管理ツール
Gitの急速な普及、そしてinitのみならずLinuxシステム管理の基本的で重要な部分を整理統合しつつある
systemdの浸透などの影響も受け、ソフトウェアのパッケージ形式や管理システムにも旧来の方法を補完
する、または置き換えも視野に入れた他の方法が現われはじめています。
　NixOS注Aとその影響を強く受けたOSTree注Bでは、パッケージ操作（インストールなど）の際にRPMなど
のように既存ファイルを置き換えません。NixOSはこのしくみを『純粋な関数型パッケージ管理システム』
であり、アップグレードなどの操作はロールバック可能で安全だと述べています。
　Flatpak注Cはコンテナ関連機能やD-Bus、OSTreeなどの最新技術を活用し、ランタイムとアプリケーショ
ン本体を分離可能にしながら、同時にランタイムの複数バージョンの同居やアプリケーションの安全な実
行を実現しています。もともとGNOMEでのアプリケーション配布時の問題解決などを目的に開発され利
用されていますが、GNOMEだけでなくKDEでもflatpak形式でのソフトウェアの配布が検討されはじめて
います注D。
　SSDS（Server Side Dependency Solving）プロジェクト注EではDNFと同様にhawkey/libsolvを利用し、
依存関係解決をYumリポジトリサーバ側で行うという試みを行っています。これによりたとえばDockerイ
メージなどで、内部では最小限のSSDSクライアントプログラムだけでRPM管理を行うといったことが実
現できるようになります。

注A） https://nixos.org
注B） https://ostree.readthedocs.io
注C） http://flatpak.org（http://flatpak.org/developer.htmlにより技術的な詳細な情報）
注D） https://community.kde.org/Flatpak
注E） http://developers.redhat.com/blog/2016/02/18/project-remote-dependency-solving/、https://github.com/rh-lab-q/

server-side-dependency-solving/

ソフトウェアパッケージ管理の未来column

http://dnf.readthedocs.io
http://hawkey.readthedocs.io
http://rpm-software-management.github.io/librepo/
http://dnf.readthedocs.io/en/latest/cli_vs_yum.html
https://nixos.org
https://ostree.readthedocs.io
http://flatpak.org
http://flatpak.org/developer.html
https://community.kde.org/Flatpak
http://developers.redhat.com/blog/2016/02/18/project-remote-dependency-solving/
https://github.com/rh-lab-q/server-side-dependency-solving/
https://github.com/rh-lab-q/server-side-dependency-solving/

73 - Software Design Aug. 2016 - 73

Debian/Ubuntuの
「要」であるAPT
　APT（Advanced Packaging Tool）はパッケー
ジ管理システムとして次の機能を提供します。

・リポジトリからパッケージのダウンロード
・パッケージのインストール・削除
・パッケージ間の依存関係の解決
・リポジトリ上のパッケージの検索・情報表示
・新しいバージョンへの更新
・ディストリビューションのバージョンアップ

　DebianやUbuntuではパッケージのフォー
マットとして「Debianパッケージ」を採用してい
ます。リポジトリはこのDebianパッケージを保
存している場所です。APTでパッケージをイン
ストールするということは、依存関係に従って
必要なパッケージを自動的に選別し、リポジト
リから取得しインストールするということなの
です。

	 APT登場前後の歴史
　序章でも紹介されているように、太古のGNU/

Linuxシステムでは自分で必要なソースコード
を取得し、コンパイルしてインストールするこ
とが当たり前でした。今でもそのやり方をもっ
とスマートなしくみのうえで、踏襲しているディ
ストリビューションも存在します。しかしなが
ら皆が皆、豊富な計算資源を持っているわけで

はありません。各自でコンパイルした結果がほ
ぼ同じでほかのマシンでも流用できるのであれ
ば、ぜひとも流用したいところです。
　1994年1月に公開されたDebian 0.91には、
パッケージ管理スクリプトとして「dpkgコマン
ド」を同梱していました（表1）。これはDebianの
創設者であるIan Murdockが作ったシェルスク
リプトです。このdpkgコマンドは、コンパイル
済みのバイナリパッケージをインストールや削
除するだけでなく、インストール済みのパッケー
ジのリストアップやコンテンツの表示といった、
まさしくパッケージ管理システムと言える機能
も有していました注1。

APTを使いこなそう
～Debian/Ubuntu編～

　APTはDebianやUbuntu、およびそれらの派生
ディストリビューションで利用しているパッケージ管
理ツールです。本章では、APTが提供するツールやラ
イブラリ、さらにはAPTに対応したリポジトリやバッ
クエンドで動くdpkgツールも含めたパッケージ管理
システムとしてのAPTについて説明します。

第2章

 Author 柴田 充也（しばた みつや）
 mail mty.shibata@gmail.com

Ubuntu Japanese Team／株式会社 創夢

注1） dpkgのスクリプトには「StopALOPにインスパイアされた」
とあります。このStopALOPはWettstein博士が開発した
パッケージングシステムで、名前の由来は「脱毛症の阻止」
なんだそうです。ソフトウェアのインストールは、当時か
ら毛髪に優しくない作業だったのかもしれませんね。

 ▼表1　DebianとUbuntuの年表

1994年1月
Debian 0.91リリース
dpkgコマンドの採用

1994年3月 パッケージングガイドライン作成

1995年10月
Debian 0.93R6リリース
deslect採用

1996年6月
Debian 1.1 Buzzリリース
パッケージフォーマットが2.0に

1997年 deslectに変わるdeityの開発開始
1998年4月 aptの最初のリリース

1999年3月
Debian 2.1 Slinkリリース
aptの正式採用

2004年 Ubuntuの開発開始
2004年10月 Ubuntu 4.10リリース
2014年4月 apt 1.0のリリース

第2特集
安全にパッケージ管理していますか？

案外知らなかったYumとAPTのしくみと活用

74 - Software Design

　当時のDebianパッケージは拡張子こそ「.deb」
ではあるものの、そのフォーマットは現在とまっ
たく異なります。a.out形式のバイナリや/var/

adm/dpkg以下のメタデータなどをcpioで固め
ただけだったのです。dpkgコマンドはcpioを展
開してファイルをインストールするスクリプト
でした。
　0.93系の正式版である0.93R6が1995年の10

月にリリースされます注2。0.93R6ではdpkgの
フロントエンドであるdselectが追加されまし
た。0.93R6のdebファイルは tar.gzファイルの
前に独自ヘッダを追加したDebian固有のバイナ
リに変わりました。また個々のパッケージに責
任を持つメンテナー制も導入しています。
　1996年にはELFバイナリへの移行を行った
Debian 1.1 Buzzがリリースされました注3。パッ
ケージングシステムの有用性を証明するかのよ
うにパッケージの数が474個まで増えています。
debファイルも独自形式からar形式となり、メ
タデータに依存関係などが追加されるなど、よ
り今風なフォーマットになっています。
　1999年3月のDebian 2.1 Slinkでは、dselect

に代わる新しいパッケージ管理ツールとして
「apt」を使用するようになりました注4。Aptはも
ともと「Deity」という名前で1997年あたりから
開発が始まっていました。dselectは依存関係の
解決をユーザが行う必要があるなど初心者には
使いにくいUIでした。その問題を解消するため
に立ち上がったのがDeityチームなのです。
　Deityは直訳すると「神」です。宗教的リスク
を伴う名前ということで、改名することになり
ます。いくつかの名前が提案されたようですが、
結果的に「APT（A Package Tool）」になりまし
た。そう、Advanced Package Toolではなかっ
たのです。これが1998年4月ごろの話です。
　それから18年。APTはDebianだけでなくそ

の派生ディストリビューションでも広く使われ
るようになりました。APTの利便性に惹かれて
Debian系を使っている読者も多いことでしょう。
さらにAPTはパッケージ管理用ライブラリも提
供しており、より高機能なフロントエンドとし
てのaptitudeや、GUI向けのSynapticなども開
発されました。aptのリリースから16周年を迎
えた2014年の4月には、Deistyチームから「apt

1.0」のリリースがアナウンスされました注5。機
能カテゴリごとにわかれていたコマンドが「apt」
という統一されたインターフェースになるなど、
18年たった今も進化を続けています。これから
もapt先生のご活躍にご期待ください注6。

	 DebianとUbuntuの関係
　UbuntuはDebianの「派生ディストリビュー
ション」の 1つです。つまりDebianと同じ
Debianパッケージフォーマットを使用し、パッ
ケージ管理システムとしてAPT/dpkgを使用し、
そのパッケージの多くはDebianと同じものを使
用しています。ただし特定のバージョンの
Debianとのバイナリ互換性を謳

うた

っているわけで
はありません。DebianとUbuntuの間で同じバ
イナリパッケージを使えるとは限りませんし、
ソースパッケージレベルですら修正が必要な場
合もあります。あくまでDebianの成果物を流用
した別のディストリビューションなのです。
　Ubuntuでは半年ごとの開発期間の最初の段階
で、その時点におけるDebianの開発版のリポジ
トリと同期します（図1）。ソースパッケージレ
ベルで差分がないものについては新しいバージョ
ンを自動的にコピーしますし、差分があるもの
については手作業でマージ作業を行います。同
期したソースパッケージはすべて、Ubuntuの開
発インフラ上でバイナリパッケージとしてビル
ドされます。1つ前のリリース日からおよそ数

注2） https:// l ists.debian.org/debian-announce/1995/
msg00007.html

注3） https:// l ists.debian.org/debian-announce/1996/
msg00021.html

注4） https:// l ists.debian.org/debian-announce/1999/
msg00005.html

注5） https: / / l i sts .debian.org/debian-devel /2014/04/
msg00013.html

注6） Debianリリースの歴史は「Debian小史」が詳しいです。
https://www.debian.org/doc/manuals/project-history/
index.ja.html

https://lists.debian.org/debian-announce/1995/msg00007.html
https://lists.debian.org/debian-announce/1996/msg00021.html
https://lists.debian.org/debian-announce/1999/msg00005.html
https://lists.debian.org/debian-devel/2014/04/msg00013.html
https://www.debian.org/doc/manuals/project-history/index.ja.html

APTを使いこなそう
～Debian/Ubuntu編～ 第2章

74 - Software Design Aug. 2016 - 75

日程度で、これらの作業を完了しUbuntuの次期
開発版の環境を整えています。
　こんな短期間でディストリビューション間の
同期作業を行えるのは、ひとえにDebianパッ
ケージの品質の高さのおかげです。品質が高く
充実したパッケージインフラがあるからこそ、
Debianには数多くの派生ディストリビューショ
ンが存在するのです。

aptコマンドの使い方
　本節ではUbuntu 16.04 LTSを元に、パッ
ケージ管理ツールであるaptコマンドやその周
辺ツールの使い方について解説します。Debian

やより古いUbuntuでは事情が異なる部分も存在
しますが、おおよそ同じように使えるはずです。

	 パッケージの検索とインストール、
削除

　aptコマンドを使う最大の用途は、パッケージ
の検索とインストールでしょう。ここでは削除
方法と併せて、パッケージのライフサイクルに
ついて説明します。

 ■リストの更新（update）
　パッケージを検索する前にあらかじめやって
おくべきことが、パッケージリストの更新です。
/var/lib/apt/lists/以下にあるパッケージリス
トには登録済みのリポジトリからインストール
できるパッケージの情報がリストアップされま
す。パッケージリストが古いと、リポジトリに
は存在しないバージョンのパッケージをインス
トールしようとしたり、アップデートが通知さ
れなかったりします。
　更新するには「sudo apt update」を実行してく
ださい。Ubuntuではsystemdもしくはcronを用
いて、最大で1日に2回程度パッケージリスト
を更新するようにしています。よってユーザが
明示的に更新する必要はほとんどありません。
リポジトリを変更したりシステムの構築を自動
化する際に、ソフトウェアのインストールを行
う前にやっておく、ぐらいのつもりでよいでしょ
う。
　更新に失敗した場合はできるだけすぐにはパッ
ケージをインストールせず、時間を置いてもう
一度リストを更新したうえでインストールして
ください。もしくは別のミラーリポジトリを試
すという方法もあります。

 ■検索と情報表示（search、show）
　パッケージを検索する場合は「apt search 単
語」を実行します。管理者権限は不要です。検索
対象はパッケージ情報のうちパッケージ名とパッ
ケージの説明（Description）になります。単語は
複数並べるとAND検索となります。また単語に
正規表現を使うこともできます。インストール
済みのパッケージは「インストール済み」と表示
されます。なおインストール済みのパッケージ
をリストアップしたい場合は「apt list --inst
alled」と実行します。
　パッケージの詳細な情報を表示したい場合は
「apt show パッケージ名」を実行します。パッケー
ジ名やバージョン、説明だけでなく依存関係や
開発元のURL、パッケージメンテナーなども表

testing

old-stable
stable

LTS LTS

(freeze)unstable

Debian

Ubuntu
non-LTS

non-LTS

non-LTS

 ▼図1　 DebianとUbuntuのリリースサイクルの簡易
模式図

※ Ubuntuは半年ごとにDebianのunstableのパッケージを
同期して、次の開発版を作る。

第2特集
安全にパッケージ管理していますか？

案外知らなかったYumとAPTのしくみと活用

76 - Software Design

示されます。図2をもとに、重要なフィールド
をいくつか紹介しましょう。
　Package、Version、Descriptionはそれぞれ
パッケージの名前、バージョン、説明です。バー
ジョンの一般的な書式は次のとおりです。

オリジナルバージョン[-Debianリビジョンｭ

[Ubuntuリビジョン]]

　オリジナルバージョンはソフトウェア本体の
バージョンです。DebianリビジョンはDebian側
での修正回数になります。Ubuntuオリジナルの
パッケージなら0です。Ubuntuリビジョンは
「ubuntu数字」の形で、Ubuntu側の修正回数を示
します。Debianリポジトリから同期しただけの
パッケージの場合は存在しません。パッケージ
によっては書式が異なる場合もあります。Des

criptionは1行目が短い概要で、2行目以降は詳
細な解説です。
　Depends、Conflicts、Breaks、Replacesは依
存関係を示すフィールドです。Dependsがその
パッケージが依存しているパッケージを示しま
す。Depends以外は競合状態を表現するために
使用しており、ユーザが意識することはほぼな
いでしょう。例以外にも、一般的に同時に利用
することが多いパッケージを示すRecommends

や、同時に利用することで便利になるパッケー
ジを示すSuggestsも存在します。なおUbuntu

では、とくに指定しないとRecommendsもイン
ストールします。
　Maintainerはパッケージのメンテナーの名前
と連絡先を示すフィールドです。Ubuntuは原則

としてメンテナー制を採用していないため、
Ubuntu開発者のメーリングリストが入っていま
す。Debianのリポジトリから修正せずに同期し
たパッケージについては、オリジナルのメンテ
ナーが記載されていることもあります。修正し
た場合は、DebianのメンテナーはOriginal-

Maintainerフィールドに記載されます。

 ■インストール（install）
　パッケージのインストールは「sudo apt install
パッケージ名」です。Depends、Recommendsをも
とに同時にインストールするパッケージや使用
するストレージ容量を表示しますので、問題な
ければ「y」（もしくは©）を入力してくださ
い。指定したパッケージのみインストールする
場合は、とくに問い合わせは行いません。
　「-y」オプションをつけると「y」と答えたと判断
します。非対話的にインストールしたい場合に
便利でしょう。「--no-install-recommends」オプ
ションは、Recommendsをインストールしたく
ない場合に指定します。容量を節約したい場合
に使うとよいでしょう。
　インストール時はまずリポジトリから/var/

cache/apt/archives/以下にパッケージをダウン
ロードします。ダウンロードしたパッケージか
らメタデータを/var/lib/dpkg/info/以下に展開
し、メンテナースクリプトであるpreinstの実
行、コンテンツの展開、postinstの実行という
手順をたどります。/var/lib/dpkg/info/以下に
あるメンテナースクリプトにはパッケージのイ
ンストール・削除前後に実行するコマンドが記
載されています。インストール後にデーモンが
起動しないなど、何かトラブルが発生したらそ
ちらも調べてみるとよいでしょう。インストー
ルが成功するとダウンロードしたパッケージファ
イルは削除されます。

 ■パッケージの削除（remove、purge）
　パッケージの削除は「sudo apt remove パッ
ケージ名」です。指定したパッケージと、指定し

 ▼図2　パッケージの情報（一部抜粋）

$ apt show hello
Package: hello
Version: 2.10-1
Maintainer: Ubuntu Developers <...>
Original-Maintainer: Santiago Vila <...>
Depends: libc6 (>= 2.14)
Conflicts: hello-traditional
Breaks: hello-debhelper (<< 2.9)
Replaces: hello-debhelper (<< 2.9), ...
Description: example package based on...

APTを使いこなそう
～Debian/Ubuntu編～ 第2章

76 - Software Design Aug. 2016 - 77

たパッケージに依存しているパッケージが削除
されます。依存関係によって一緒にインストー
ルされたパッケージは削除されませんので注意
してください。それらのパッケージを削除した
い場合は「sudo apt autoremove パッケージ名」と
します。パッケージ名を指定しなかった場合は、
自動的にインストールされたものの必要なくなっ
たパッケージを一通り削除します。このとき、
パッケージのメンテナースクリプトのprerm、
postrmがそれぞれ実行されます。
　removeは「設定ファイル」として指定された
ファイルは削除しません。設定ファイルとはお
もに/etc以下のユーザが変更し得る設定ファイ
ルです注7。誤ってパッケージを削除したとして
も、再度インストールしたら同じ設定で利用で
きるように設定ファイルは削除しないのです。
もし設定ファイルも含めてすべて削除したい場
合は「sudo apt purge パッケージ名」とします。な
おソフトウェアが自動的に生成したファイル、
とくにホームディレクトリ以下のファイルは、
パッケージ管理ツールの管轄外ですので、purge

であっても削除されません。

 ■パッケージの更新（upgrade、full-upgrade）
　インストール済みパッケージに対して新しい
バージョンが存在する場合、「sudo apt upgrade」
でパッケージを更新できます。どのパッケージ
が更新されるかは「apt list --upgradable」で確
認できます。
　カーネルの更新時は「新しいカーネルパッケー
ジをインストール」します。これは何かあったと
きに古いカーネルパッケージに簡単に戻すため
の措置です。古いカーネルが不要になったら、
autoremoveで削除してください。とくに/boot

を小さめのパーティションにしている場合、古
いカーネルパッケージが残っていると/bootが
溢れる可能性があります。
　更新に伴いほかのパッケージを削除しなけれ

ばならないとき、upgradeコマンドはそのパッ
ケージの更新を「保留」します。通常リリースの
状態ではまず起こり得ませんが、開発版の
Debian/UbuntuやPPAなどサードパーティのリ
ポジトリを使っているなら、それなりの頻度で
発生します。保留状態のパッケージを更新した
い場合は、「sudo apt full-upgrade」を実行して
ください。

 ■ debファイルのインストール
　手動でダウンロードしたdebファイルをイン
ストールしなければならないことがあるかもし
れません。比較的新しいバージョンのaptであ
れば、「sudo apt install ./ファイル名」でイン
ストールできます。パス名であることを明示す
るためにファイル名はフルパスないし「./」が必
要です。この方法なら依存パッケージも一緒に
インストールしてくれます。

 ■その他の便利なコマンド
　ここまで説明したコマンドを使えば、日常的
な作業は一通り行えるはずです。ここではさら
にいくつかの便利なコマンドを紹介します。

・パッケージ更新履歴の取得
　/usr/share/doc/パッケージ名の下にはパッ
ケージの更新履歴が保存されています。ただし
容量の都合上、記録されているのは最新の数バー
ジョンです。もし完全な履歴がほしい場合は「apt
changelog パッケージ名」としてください。

・パッケージキャッシュの削除
　/var/cache/apt/archivesにはダウンロード

したパッケージファイルが残っています。こ

のキャッシュを削除したい場合は「sudo apt
clean」とします。また最新のキャッシュのみは
残しておきたい場合、「sudo apt autoclean」も
使えます。

注7） 設定ファイルのリストは「dpkg-query --control-show
パッケージ名 conffiles」で取得できます。

第2特集
安全にパッケージ管理していますか？

案外知らなかったYumとAPTのしくみと活用

78 - Software Design

・依存関係の逆引き
　あるパッケージが依存しているパッケージは
そのパッケージのDependsを見ればわかります。
逆にあるパッケージに依存しているパッケージ
のリストを取得したい場合は「apt rdepends パッ
ケージ名」とします。

・ファイルからパッケージを特定
　あるファイルが属するパッケージを探したい
場合、「dpkg -S ファイル名」で検索できます。見
つからなかった場合は、動的に生成されたファ
イルか、シンボリックリンクかもしれません。
インストールしていないパッケージに属するファ
イルを検索したい場合はapt-fileコマンドを使
用してください。

・ソースコードの取得
　あるパッケージのソースコードを取得したい
場合は「apt source パッケージ名」を実行します。
Debian由来のパッチが適用された状態で展開さ
れますので、アップストリームとの違いを確認
する際に便利でしょう。ただしsources.listに
deb-srcタイプのリポジトリを登録している必要
があります。

・パッケージ構築に必要なパッケージ
　あるパッケージを構築するために必要なパッ

ケージは、そのソフトウェアをビルドする場合
に必要になるソフトウェアのリストでもありま
す。自前でビルドしたい場合は「sudo apt build-
dep パッケージ名」とすると、構築に必要なパッ
ケージ一式をインストールできます。

・スーパー牛さんパワー
　スーパー牛さんパワーを得たい場合は「apt
moo」とします。「moo」の数を増やすとパワーが増
大します。

	 GUIでのパッケージ管理ツール
　デスクトップ環境とセットで使っている場合
は、GUIからパッケージ管理システムを使える
と便利です。APTのフロントエンドとしていく
つかのソフトウェアが存在します。最近は
GNOMEにおけるGNOME SoftwareやKDEに
おけるPlasma Discoverなど、各デスクトップ
環境ごとにAppStreamに対応したストアアプリ
を用意する傾向にあるので、まずは最初からイ
ンストールされているものを使ってみるのがよ
いでしょう。
　Ubuntu 16.04 LTSでは、「Ubuntuソフトウェ
ア」というストアアプリが導入されました。これ
は従来のUbuntuソフトウェアセンターを廃止
し、GNOME Softwareに置き換えたものです。
GNOME Softwareがソフトウェア名としては

　リポジトリにはパッケージファイルのほかにパッケージリストやパッケージ情報の翻訳といった
さまざまなデータが置かれています。aptはどのようにこれらのデータを安全に取得しようとしているので
しょうか。
　まずPackagesファイルは「apt show」で表示されるデータの一部やパッケージのハッシュ値などが記録
された重要なファイルです。インストール時のパッケージファイルの妥当性はPackagesに記録された情報
をもとに検証します。パッケージリスト更新時に最初にダウンロードされるのは、InReleaseと呼ばれる
GPG鍵で署名されたファイルです。このInReleaseにはPackagesを含むメタデータファイルのハッシュ
値がすべて記録されています。よってInReleaseをGPG鍵で検証し、そこにあるハッシュ値からほかのメ
タデータファイルの正当性を検証するという手順を踏んでいるのです。
　InReleaseを検証するGPG鍵は、最初からOSに含まれています。Ubuntuの場合はubuntu-keyringパッ
ケージがそれです。またapt-keyコマンドで、リポジトリ用の公開鍵を管理できます。

リポジトリの公開鍵column

APTを使いこなそう
～Debian/Ubuntu編～ 第2章

78 - Software Design Aug. 2016 - 79

「Software」という一般名詞を採用しており、混
乱を避けるために「Ubuntuソフトウェア」という
名前に変更しています。ただし開発途上のソフ
トウェアを導入したので、まだまだ荒削りです。
　よりAPTよりのツールとしては、Synapticが
存在します（図3）。こちらはアプリストアとい
うよりは、APTのGUIフロントエンドという実
装です。よってアプリストアでは表示されない
ような、個別のライブラリパッケージなども
Synapticなら検索できます。

	 APTの設定
　APTの設定は、/etc/apt以下の次のファイル
を編集することで行います。

・sources.list、sources.list.d
　リポジトリ（パッケージの取得元）を設定する
ファイルです。詳細は「man sources.list」を参
照してください。

・apt.conf、apt.conf.d
　APTツール全般の設定が格納されたファイル
です。詳細は「man apt.conf」を参照してくださ
い。

・preferences、preferences.d
　インストールするパッケージのバージョン制
御を行うファイルです。詳細は「man apt_prefe
rences」を参照してください。

 ■リポジトリの設定を行うsources.list
　sources.listではパッケージファイルの取得元
であるリポジトリを設定します。sources.list.d

ディレクトリには複数の設定ファイルを置くこ
とができます。書き方自体はsources.listと同じ
です（図4）。何かリポジトリを追加したい場合
は、できるだけ sources.list.d以下に追加し、
sources.listはオリジナルのままにしておきま
しょう。
　sources.listの書式は新旧2つの書式が存在し

ます。古い書式は拡張子
が .listであり、1行に1リポ
ジトリの情報を記述しま

す。新しい書式は拡張子が

.sourceであり、複数行に
渡ってキーと値を「:」で区切
りながら記述します。世に
出回っているDebian系ディ
ストリビューションのほと
んどは古い書式で、今後は
少しずつ新しい書式に移行
していく予定です。今回は
古い書式のみを紹介します。

 ▼図4　sources.listの書式

 書式：
type [option1=value1 option2=value2] uri suite [component1] [component2] [...]

 例：
See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
newer versions of the distribution.
deb http://jp.archive.ubuntu.com/ubuntu/ xenial main restricted universe multiverse
deb-src http://jp.archive.ubuntu.com/ubuntu/ xenial main restricted universe multiverse

 ▼図3　Synapticパッケージマネージャー

第2特集
安全にパッケージ管理していますか？

案外知らなかったYumとAPTのしくみと活用

80 - Software Design

　「#」で始まる行はコメントとして解釈されま
す。debタイプはバイナリパッケージの、deb-

srcはソースパッケージの取得元を記述します。
typeの後ろには角括弧でオプションを記述でき
ます。たとえば特定のアーキテクチャの情報の
みを取得したい場合にこのオプションを使用し
ます。uriはリポジトリのURIです。httpやhttps

はもちろんのこと、fileやcdrom、sshなどのス
キームも使用できます。suiteには多くの場合、
ディストリビューションのコードネームが入り
ます。Debianの最新リリース版ならstableです
し、開発版なら sidや unstableになります。
Ubuntu 16.04 LTSならxenialになります。特
定のディレクトリをリポジトリとして使うなら、
URIの下のパス名を指定します。componentは
リポジトリによって異なります。Debianや
Ubuntuの公式リポジトリであれば、ライセン
ス・サポート状況によって異なるコンポーネン
トを用意しています。図4の例だと「main restri
cted universe multiverse」はいずれもコンポー
ネントです。
　sources.listを更新した場合は、「sudo apt
update」でパッケージリストを再取得してくださ
い。

 ■ APT全般の挙動を変更するapt.conf
　apt.confではAPTの挙動に関する設定を行い
ます。この設定はaptコマンドだけでなくAPT

をバックエンドとするすべてのツールに影響し
ます。

　「//」で始まる行はコメントとして扱われます。
また行中の「/* コメント */」も同様です。APT

の設定はカテゴリごとのツリー構造となってい
ます。図5の2行目の例のようにノード間を「::」
で区切って1行で設定することもできますし、リ
スト1の「//ブロックで記述する」以下のように
「{}」を用いて複数行に渡ったブロック構造とし
て設定することもできます。
　ただし、apt.confの設定がすべてAPTで解

釈されるというわけではありません。たとえば
50unattended-upgradesにあるUnattended-

Upgradeカテゴリは、unattended-upgradeプロ
グラムでのみ解釈します。ちなみにこの設定ファ
イルはunattended-upgradesパッケージのメン
テナースクリプトである/var/lib/dpkg/info/

unattended-upgrades.postinstによってインス
トールされるファイルです。
　APTの設定を確認したい場合は、apt-config

コマンドを使います。「apt-config dump APT::
Install-Recommends」で指定したキーの値を表示
します。「apt-config shell VAL APT::Install-
Recommends」とするとVAL変数に指定したキー
を代入するシェルスクリプトを表示します。後
者はスクリプトからAPTの設定を取得したい場
合に便利です。具体的な使用例は/usr/lib/apt/

apt.systemd.dailyなどが参考になるでしょう。な
お、apt-configに設定を変更する機能はありま
せん。

 ■特定のバージョンを固定化できるpreferences
　APTは基本的にすべての有効なリポジトリの
中から、一番新しいパッケージをインストール
しようとします。しかしながら、あるバージョ
ンからアップグレードしたくない場合や、特定
のリポジトリからは明示的に指定したパッケー
ジのみインストールしたい場合もあるでしょう。
preferencesでは、そのようなバージョンやリポ
ジトリの優先度を設定できます注8。

 ▼リスト1　apt.confの書き方

// 1行で記述する
APT::Authentication::TrustCDROM "true";

// ブロックで記述する
APT
{
 NeverAutoRemove
 {
 "^firmware-linux.*";
 "^linux-firmware$";
 };
};

注8） https://help.ubuntu.com/community/PinningHowto

https://help.ubuntu.com/community/PinningHowto

APTを使いこなそう
～Debian/Ubuntu編～ 第2章

80 - Software Design Aug. 2016 - 81

　たとえばパッケージ fooのバージョンを1.0に
固定したい場合はリスト2のように設定したファ
イルを/etc/apt/preferences.d/fooとして作成
します。ここでPackageにはパッケージ名を、
Pinには適用したいルールを設定しています。今
回はバージョン番号で固定ですので「version
バージョン番号」としています。「*」でワイルド
カードにすることもできます。Pin-Priorityに
はルールに合致したときのパッケージの優先度
を指定します。大きな数字であれば優先的にイ
ンストールされます。一般的なリポジトリにあ
るパッケージの優先度が500ですので500より
大きければ優先してインストールされますし、
小さければ明示的に指定しない限りはインストー
ルされません。1000より大きい場合はバージョ
ンのダウングレードを許容します。今回はバー
ジョンが小さくなったとしてもそのまま維持し
てほしいので1001としています。
　「apt policy foo」と実行すると、優先度と実

際にインストールされるバージョンが表示され
ますので設定が正しいかどうか確認しておきま
しょう。

 ■ GUIによる設定
　システム設定にある「ソフトウェアとアップ
デート」は、上記で説明したsources.listやapt.

confの一部をGUIから設定できるツールです
（図5）。リポジトリのミラーの変更や光学ディ
スクからのインストール、アップデートのタイ
ミングぐらいであればこのツールから設定でき
ます。
　たとえばUbuntuの場合、16.04からはセキュ
リティアップデートに対して自動的に適用する
ようになりました。自動適用されると困る場合
はアップデートタブの「セキュリティアップデー
トがあるとき」を「ダウンロードを自動的に行う」
ぐらいに変更しておきましょう。

APTを使った便利な機能
　APTそのものの機能以外にも、APTシステ
ム上で使うと便利なツールやしくみがいくつも
存在します。本項ではその一端を紹介します。

	 PPA
　PPA（Personal Package Archive）は Launch

pad上に簡単にパッケージリポジトリを作るた
めのシステムです。Launchpadのアカウントを
持っていて、規約に同意した人であれば誰でも
FLOSSなソフトウェアのリポジトリを作るこ
とができます。PPAではDebianパッケージの

 ▼リスト2　preferencesの例

Package: foo*
Pin: version 1.0*
Pin-Priority: 1001

 ▼図5　ソフトウェアとアップデート

第2特集
安全にパッケージ管理していますか？

案外知らなかったYumとAPTのしくみと活用

82 - Software Design

書式にしたがって作ったパッケージをアップロー
ドします。するとLaunchpadがバイナリパッ
ケージへとビルドし、署名を行い、アカウント
やプロジェクトごとに異なるリポジトリにて公
開してくれます。
　ユーザはPPAを追加するだけで、公式リポジ
トリよりも新しいバージョンのパッケージやそ
もそも公式リポジトリにないパッケージ、テス
ト版のパッケージなどを試せるということもあっ
て、今日では広く使われるようになりました。
ただしPPAはUbuntuマシン上でビルドするた
め、Ubuntu専用の機能となっています。
　必要なPPAを見つけたら、あとはコマンドで
追加するだけです（図6）。「ソフトウェアとアッ
プデート」でも追加できますが、PPAを必要と
するユーザであればコマンドの方が手っ取り早
いでしょう。
　add-apt-repositoryがやっていることは/etc/

apt/sources.list.d/以下にリポジトリを追加し、
リポジトリの公開鍵を追加しているだけです。
なおPPAは非公式なリポジトリですので、追加
する場合は本当に必要かどうか慎重に判断した
うえで利用してください注9。

	 32bit版ライブラリのインストール
　DebianやUbuntuは多くのパッケージがマル
チアーキテクチャ（MultiArch）に対応していま
す。たとえば64bit版のシステム上でも32bit版
のパッケージをインストールして動かすことが
できるということです。とくにMultiArchに対
応したライブラリパッケージであれば、複数の
アーキテクチャ用パッケージを同一システム上
で共存できます。これはとくに32bit版のバイ
ナリしか提供していなプロプライエタリなソフ

トウェアを動かしたい場合に便利です。
　システムとは異なるアーキテクチャのパッケー
ジをインストールしたい場合は、「package:i386」
のようにパッケージ名の後ろにアーキテクチャ
名を指定します。

	 Backportパッケージ
　DebianもUbuntuも、一度リリースしたら原
則としてパッケージの不具合修正のみを行い、
機能を大きく変更するようなバージョンアップ
は行いません。機能追加よりも安定性を重視す
ることによる措置です。しかしながら、特定の
パッケージのみより新しいバージョンを使いた
いこともあります。DebianもUbuntuもその用
途のために「Backportsリポジトリ」を用意して
います。これは開発版も含めてより新しいリリー
スのリポジトリにあるパッケージを、古いリリー
スにも提供するしくみです。ただし十分にテス
トされているわけではないので、扱いには注意
してください。
　Ubuntuは最初からBackportsリポジトリが有
効化されています。Debianの場合は、明示的に
リポジトリを追加する必要があります注10。原則
としてどちらも「コードネーム -backports」が
sources.list上の suiteになります。たとえば
16.04（xenial）上でBackportsから fooパッケー
ジをインストールするには、図7のように実行
します。依存パッケージをどこから取得するか
によって書式が若干異なります。

	 パッケージ設定システムdebconf
　Debianパッケージには、インストール時に
ユーザに設定を求めるパッケージが存在します。

 ▼図7　Backportsからのインストール

 そのパッケージのみをBackportsから取得する方法
$ sudo apt install foo/xenial-backports

 依存パッケージも含めてBackportsから取得する方法
$ sudo apt install -t xenial-backports foo

注9） PPAの注意点は次のURLでも紹介しています。 http://
gihyo.jp/admin/serial/01/ubuntu-recipe/0419

注10） https://backports.debian.org/Instructions/

 ▼図6　PPAの追加方法

$ sudo add-apt-repository ppa:ユーザ名/PPA名
$ sudo apt update

http://gihyo.jp/admin/serial/01/ubuntu-recipe/0419
https://backports.debian.org/Instructions/

APTを使いこなそう
～Debian/Ubuntu編～ 第2章

82 - Software Design Aug. 2016 - 83

たとえばmysql-serverパッケージは、インス
トール時にデータベースのrootパスワードの設
定を要求します。また、このような設定をイン
ストール後に再度行いたい場合もあります。こ
のようなパッケージごとの設定を管理するシス
テムがdebconfです。
　設定自体は単なるスクリプトとデータファイ
ルの組み合わせです。debconf用の設定ファイル
があるパッケージは、/var/lib/dpkg/info/以下
に「パッケージ名.config」という名前で設定スク
リプトを保存します。このスクリプトはインス
トール時に実行されます。インストール後に再
度設定したい場合は、「sudo dpkg-reconfigure
パッケージ名」と実行してください。
　各設定ごとにプライオリティが用意されてい
ます。普段は妥当なデフォルト値が存在しない
high以上のプライオリティのみが表示されます
が、mediumないし lowプライオリティの設定も
行いたい場合は、「--priority プライオリティ」
のオプションを渡してください。medium以下で
あればデフォルト値が設定されていますので、
必要な設定だけ変更して残りはそのままにして
おくとよいでしょう。

	 ローカルリポジトリを作る
　dpkg-devのdpkg-scanpackagesコマンドを使
うと、debファイルが保存されたディレクトリ
を簡易的なパッケージリポジトリとして利用で
きます（図8）。複数のバイナリパッケージファ
イルをAPTから一元的にインストールしたい場
合に便利でしょう。
　dpkg-scanpackagesは指定したディレクトリに
あるバイナリパッケージのリストを作るコマン
ドです。ローカルリポジトリにおいてリストは

圧縮されている前提ですのでgzipに渡していま
す。なお第一引数はリポジトリURIからの相対
パスであることが推奨されています。最後にパッ
ケージリストを更新したら、aptコマンドでロー
カルパッケージをインストールできます。なお、
apt-ftparchiveコマンドを使うとより簡単にリポ
ジトリと同等のメタデータファイル群を生成で
きます。

	 リポジトリの簡易ミラーを作る
　複数のホストでDebian/Ubuntuを運用してい
るとき、個々のホストが個別にリポジトリまで
パッケージを取得しにいくのは非効率です。と
くにアップデート時は同じパッケージを取りに
いくわけですので、1台のホストがパッケージ
を取得したら、残りのホストはローカルネット
ワーク内部で取得できた方が便利でしょう。そ
のような目的のためにAPT用のプロキシサーバ
を構築するツールがapt-cacher-ngです。
　導入手順は非常に簡単です。まずプロキシサー
バとなるホストにapt-cacher-ngパッケージをイ
ンストールします。このホストは初期設定だと
3142番ポートで待ち受けることになります。次
に、プロキシサーバを利用したいホスト側の

/etc/apt/apt.conf.d/以下に適当な名前の設定
ファイルを作って、次の内容を記述するだけ

です。

Acquire::http::Proxy "http://プロキシの ｭ
アドレス:3142/";

　ちなみに上記のアドレスにWebブラウザから
アクセスすると、apt-cacher-ngの管理画面が表
示されます。

 ▼図8　ローカルリポジトリの作成

 debファイルのあるディレクトリを"/usr/local/debs"とします
$ cd /usr/local/debs
$ dpkg-scanpackages . | gzip -9c > Packages.gz
$ echo "deb file:///usr/local/debs ./" | sudo tee -a /etc/apt/sources.list.d/local.list
$ sudo apt update

第2特集
安全にパッケージ管理していますか？

案外知らなかったYumとAPTのしくみと活用

84 - Software Design

トラブルシューティング

　パッケージ管理システムは、ソフトウェアの
インストールに関わる諸々の作業からユーザを
解放してくれます。ただし残念ながらトラブル
がまったくなくなるわけではないのも事実です。

	 パッケージリスト更新時のエラー
　パッケージリスト更新時「ハッシュサムが適合
しません」などのエラーメッセージとともに、更
新に失敗することがあります。たとえばリポジ
トリから取得したファイルがハッシュサムリス
ト（Releaseファイル）の値と異なるときなどで
す注11。原因はいくつか考えられます。

・リポジトリ内部で不整合が起きている
　独自に運用しているリポジトリやミラーリポ
ジトリの場合、コンテンツの更新時ないし上流
との同期時にReleaseファイルの生成が正しく
行われないことがあります。この場合はリポジ
トリ側で解決するまで待つか、別のミラーリポ
ジトリを使うしかありません。

・経路の途中に問題がある
　経路の途中でどこかで改

かいざん

竄されているという
ケースもあります。あまりに頻発するようなら
こちらを疑ってください。プロキシを経由して
いるのであれば、リスト3のようにapt.confで
キャッシュさせない設定にすると状況が改善す
る可能性があります。

	 「以下のパッケージは認証されて	
いません」

　公開鍵が正しく登録されていないリポジトリ
からパッケージをインストールしようとすると、
「以下のパッケージは認証されていません」と警

告が表示されます。そのまま警告を無視してイ
ンストールすることも可能ではありますが、中
間者攻撃によって不正なパッケージに差し変わっ
ている可能性も否めません。安全な方法でリポ
ジトリの公開鍵を取得し、apt-keyコマンドで取
り込めば解決します。一般的には、そのリポジ
トリを運用しているサイトに公開鍵の情報が記
載されているはずです。

	 「未解決の依存関係があります」
　dpkgコマンドでdebファイルを直接インストー
ルしたものの依存パッケージはインストールさ
れていない場合、「未解決の依存関係がありま
す」と表示されます。これは依存パッケージのイ
ンストールに失敗した場合も同様です。たいて
いの場合は「sudo apt install -f」を実行するこ
とで自動的に解決します。このコマンドを実行
しても同様のエラーが出る場合は、端末に表示
されるエラーをもとに解決してください。
　運がよければ「sudo apt install --reinstall
問題のパッケージ名」で再インストールするだけで
解決する場合もあります。

	 「弱いアルゴリズム」
　特定のリポジトリにアクセスしたとき、署名
が弱いアルゴリズムを使用している旨の警告が
表示されることがあります。より新しいaptコ
マンドでは、MD5/SHA1といった比較的弱い
アルゴリズムを使った署名のサポートを廃止す
るための措置です。現時点でこの警告は無視で
きますが、今後も表示されるようであればリポ
ジトリの管理者に対応を依頼してください。｢

注11） 新しいAPTとリポジトリの組み合わせでは、ハッシュサム
ごとにURLを変えること（by-hash機能）によりこの問題の
ほとんどを解消しています。

 ▼リスト3　キャッシュしない設定

Acquire::http::No-Cache "true";
Acquire::https::No-Cache "true";
Acquire::ftp::No-Cache "true";

Aug. 2016 - 85

日本語のファイル名を含むZIP圧縮ファイルを、Linuxのunzipで展開すると文字化けするんですよね。unzipにこだわらなければ日本
語ファイルに対応できるunarが便利ですよ。簡単に調べたらいくつかの最新ディストロではaptやyumでインストールできるみたい。
これで窓の人と仕事しても平気だね。最近の若者は圧縮ファイル内の1つのファイルを取り出すためにとりあえず全部展開する人が多
いみたい。unzipも tarも、「unzip 圧縮ファイル名 欲しいファイル」のように、展開対象圧縮ファイル名の後に取り出したいファイル
を指定すればそれだけ「抽出」できるから時間とストレージを大切に使い……なんか老害みたいだね……あっち行きますね。

圧
縮
と
聞
い
て
L
H
A
と
か
M
A
G
と
か
思
い
出
し
た
担
当
は
ま
さ
に
老
害
の
お
手
本
。

老
害
タ
ッ
グ
が
生
み
出
す『
ひ
み
つ
の
L
i
n
u
x
通
信
』が
読
め
る
の
は
本
誌
だ
け
!

作）くつなりょうすけ
@ryosuke927

うう……もうやだ。
こんな不自由な
世の中嫌いだ。

Windowsの人が送って
きた日本語ファイル名の
入ったZIPファイルを
展開するのが辛くて。

ああ、Windowsだと
S-JISを使っていて、
LinuxだとUTFを使う
ヤツな。

unzipに
-Ocp932
オプションを
付ければ？

じゃあ、
unarを使えば？　
unrarじゃなくて
unarコマンドな。

ねぇ、
目的の
ファイルは……？

今、展開中なので
少し待ってください。
でかいんですよ、これ。
欲しいのは1つの
ファイルなんです
けどね……。

アーカイブから
指定したファイル
だけ抽出できるのは
知っている？

そんなことできるん
だったら、早く教えてよ！　
こんな不自由な
世の中大嫌いだ。
manに
書いてあります。

日本語が見える。

うぉぉ！
すげぇ。

読める！　
読めるぞ！

ラピュタ王になれる
ぐらい読めるぞ！

目的の
ファイルは
取り出せたか？

それは、Ubuntuの
unzipにしか使えないん
ですよ。僕はDebianを
使っているんです。

convmvコマンドで
ファイル名を
変換したら？

あれは、期待どおりに
ならないほうが
多くないですか？

お、詩人だな。
どうした？

圧縮ファイルあれこれ第30回

①②

③④

⑤⑥
⑦

⑧⑨

86 - Software Design

乱数とは何か

　乱数とは一言でいえば「規則性のない（ランダ
ムな）数」であり、それを並べたものを「乱数列」
と言います。「規則性がない」（あるいは「ラン
ダムな」）という表現にはいろいろな意味が含ま
れていますが、具体的には次の性質にまとめる
ことができます注1。

 乱数の偏り
　乱数列に含まれるそれぞれの数がどのような
確率で出てくるかは決まっています。たとえば
1から6までの整数がそれぞれの面に書いてあ
る直方体のサイコロを振ったとき、1から6まで
のそれぞれの数が出てくる確率は、1/6です注2。
この確率に偏りが生じると、規則性が出てきて
しまうため、シミュレーションで誤った結果が
出たり、セキュリティ上の脆弱性となることが
あります（図1）。

 乱数列の性質
　しかし、具体的にどの数
がいつ出てくるかは事前に
予測することが非常に困難
か、予測する方法がないか
のどちらかです。この性質
を利用して、乱数列を使っ
て第3者に予測されにくい
情報を必要とするセキュリ

author 力武健次技術士事務所　所長 力武 健次（りきたけ けんじ）
URL http://rikitake.jp/

はじめに

　この連載ではシミュレーションやセキュリティ
確保に欠かせない乱数に関する技術について紹
介します。連載は次の内容で3回を予定してい
ます。

・第1回「コンピュータと乱数」：乱数、とくに
シミュレーション用の疑似乱数についての
基礎的事項の説明

・第2回「物理乱数ハードウェアを作る」：物理
乱数を生成するためのハードウェアの製作

・第3回「物理乱数をOSで使ってみる」：OS
での乱数生成の機能としくみ、そしてそこ
に第2回で作った物理乱数ハードウェアをど
う組み合わせるかについての方法の紹介

　本連載を通して、乱数はどう作り、どう使えば
いいのかについて親しんでいただければ幸いです。

注1） 本連載ではコンピュータで扱う乱数列を説明しますので、とくに注釈のない場合は、乱数列の各要素は有限かつ離散的な値を取る
集合と仮定します。具体的には、0と1の2つの値を取るビットの列や、0から255の整数値を取るバイト列などを想定して話を進
めます。

注2） 本連載では問題を簡単にするため、とくに注釈をしない場合は、離散一様分布、つまり乱数として取り得るそれぞれの数の出てく
る確率がすべて同じであることを仮定して話を進めます。サイコロを振ったときに出てくる目はこの分布に従っているとみなすこ
とができます。

 ▼図1　サイコロに見る乱数の偏り

発生確率

目の数1 2 3 4 5 6
理想的なサイコロでは、すべての
目の発生確率が同じ

発生確率

目の数1 2 3 4 5 6
しかし現実のサイコロでは、発生確率が目に
よって変わる。この例では明らかに奇数の目
が出やすくなっている。このような偏りは、
ゲームでは不正につながるため好ましくない

「コンピュータと乱数」第1回

短期
集中連載

http://rikitake.jp/

86 - Software Design Aug. 2016 - 87

ティ確保のための秘密情報（パスワードなど）を
得ることができます。別の言い方をすれば、乱
数列が十分予測困難でない場合、パスワードを
攻撃者に見破られてしまうなどの実害が生じる
ことがあります。

 物理乱数
　乱数列の中で、物理現象のみによって生成さ
れたもの（物理乱数）については、再現する方法
が存在しません。この性質は、秘密を守るうえ
でセキュリティ確保の目的に役立ちます。

 一方向性関数で決まる乱数の性質
　一方、コンピュータで一方向性関数注3を計
算して生成する疑似乱数の場合は、関数に与え
たパラメータ（seed注4）が再現できれば、過去の
乱数列そのものの再現ができます。この性質か
ら、シミュレーションの追試や再現を行うため
に、疑似乱数を使うことができます。また、一
方向性関数に高い暗号学的強度を持たせれば、
セキュリティ確保のうえでより予測されにくい
秘密情報を生成できます（図2）。
　今回は、シミュレーション用の疑似乱数（以下
単に「疑似乱数」）について紹介します。今回扱う
疑似乱数は、偏りを可能な限り抑えていますが、
暗号学的強度は考慮していません。また、シミュ
レーション用のため、同一のseedを与えれば同

じ乱数列を再現できることを仮定しています。

疑似乱数の
応用分野

　疑似乱数を使うと、予測の難しい現実社会の
諸要素について、コンピュータでシミュレーショ
ンを行えるようになります。よくある例として
は、ゲームがどのように進むかを決めるのに疑
似乱数を使うという方法があります。そのほか
にも次に述べる応用例があります。

 モンテカルロ法
　乱数を使って各種パラメータを無作為に変え
ることで、最適解を見つけていく「モンテカル
ロ法」は、機械学習などで効率良い処理を行う
のに使えます。一例として、ランダムに多数の
点を正方形の中に置いて、それが円の中に含ま
れているかどうかを調べることで、円周率の近
似推定ができます（図3）。

 乱択アルゴリズム
　クイックソートやスキップリストなど、リス

注3） 一方向性関数とは、関数 fについてy = f(x)としたときに、x = g(y)となるような fの逆関数gが存在しないか、あるいは存在したと
しても計算量が膨大になり、計算することが困難なもののことを言います。

注4） 疑似乱数を生成するための関数に与えられるパラメータのことをseed（種）といいます。同じアルゴリズムに同じseedを与えれば、
同じ疑似乱数列を作り出すことができます。

 ▼図2　一方向性関数で決まる乱数の性質

seed（初期状態）が同じであれば、同じ乱数列が再現できる

一方、現在より過去に向かって状態をさかのぼることは、
一方向性関数の性質により困難

seed ひとつ前の状態から次の状態が計算
され、疑似乱数の生成が続いていく

 ▼図3　モンテカルロ法の例

一辺の長さがxである正方形の中に半径xである円
の4分の1を含めた場合、両者の面積の比は4:π（円
周率）である。仮にこの正方形の中に多数の点を乱
数で座標を決めてランダムに取ると、円の中に含ま
れる点の個数を全体の個数で割れば、結果はπ/4に
個数が増えるほど近づいていく。このような乱数に
よってランダムに問題を解決していく手法を「モン
テカルロ法」と呼ぶ

x

x

「コンピュータと乱数」第1回

88 - Software Design

トの並べ替えや検索に際しランダムな要素を取
り入れることで、平均処理時間の高速化を行う
アルゴリズムもあります。モンテカルロ法を含め、
これらを「乱択アルゴリズム」と呼んでいます。

 疑似乱数のD/A変換
　雑音をサンプリングしてデジタル値に直すと
乱数同様の性質を持ちます。これを逆に応用す
れば、疑似乱数をD/A変換することで、デジ
タル信号処理を使った高速な雑音の生成が可能
になります。

 属性テスト
　プログラムのテストを行う場合、一定の値の
範囲や性質を満たしたランダムな値をパラメー
タに設定して正常な動作をしているかどうかを
検証する「属性テスト」という手法があります。
商用ツールとしてはErlangでよく使われる
QuickCheck［1］があります。

疑似乱数の
品質評価と検定

　疑似乱数のような「ランダムな数列」を、あら
かじめ決められた方法で数学的に判断するとい
うのは自己矛盾を含みます。予測できてしまう
ものは本物の乱数とは言えないからです。です
から疑似乱数の品質評価は簡単ではありません。
しかしながら、乱数が満たすべき数学的性質を
計算によって調べることで、偏りなどの既知の
問題を見つけることはできます。具体的には次
の方法で乱数列の検定注5を行います。

 統計的に疑似乱数を検証
　疑似乱数生成で得られた乱数列に対して平均

値や分散などの統計的特徴値を計算します。こ
れらは分布注6に固有の値を取ります。乱数列
の要素の数が大きくなるほど、そこから出てく
る特徴値は理論的な値に近付いていきますから、
その収束していく様子を見ることで、乱数かど
うかの判断ができます。

 疑似乱数の距離分布
　一様分布の場合の検定手法としては上記の統
計的特徴値だけではなく、より発見的手法で乱数
としての性質を維持しているかを調べる手法が多
数提案されています。一例として、乱数の値を座
標として2次元や3次元の点を多数作り、複数点
間の距離の分布を調べるなどの手法があります。

 データ圧縮による検定
　乱数には規則性がないので、無損失のデータ
圧縮によってサイズが変わることはないという特
徴があります。現在普及しているgzip、bzip2、
xzなどのデータ圧縮ツールを使えば、サイズが
変わるかによって乱数の検定ができます。

◆　◆　◆
　一様分布の乱数の検定を行うためのツールとし
ては、ent［2］、Diehard［3］、Dieharder［4］、TestU01［5］

などが普及しています。また、これらの背景にあ
る理論の説明は参考文献［6］［7］を参考にするとよい
でしょう。

疑似乱数ライブラリ
設計の失敗例

　現在普及している言語の大多数はそれぞれ疑
似乱数生成を行うためのライブラリを備えてい
ます注7。しかし、昔からある疑似乱数ライブラ
リには古いアルゴリズムを使っているものがあ

注5） 検定とは、ある数列が何かの法則に従っているかについて、その法則に従っていない確率がある小さな値（有意水準、一般には1%
あるいは5％）以下であることを示すことで、結果としてその法則に従っている可能性が十分高いことをテストするための統計的手
法です（「検定」というのは統計固有の難しい響きの言葉ですが、「テスト」と読み替えても良いでしょう）。

注6） 分布（あるいは確率分布）とは、数列の中に出てくる値と、それぞれの出現確率との関数のことです（離散値と連続値では定義は違
いますが、本稿では詳細は割愛します）。

注7） プログラミング言語に限らず、OSの機能として予測の困難な暗号学的強度の高い疑似乱数を生成するデバイスを用意するのも一
般的になりつつあります。たとえばLinuxやFreeBSDでは /dev/randomあるいは /dev/urandomといった名前のデバイスを用意し
ています（詳細は連載第3回で解説予定）。

短期
集中連載

88 - Software Design Aug. 2016 - 89

り、周期注8が短か過ぎて全数
探索による攻撃（結果の予測）が
可能になったものもあります注9。
たとえば、Cの標準ライブラリ
に入っているrand()（周期231）
やrandom()（周期235）、rand48()
（周期248）といった関数やJavaの
クラスjava.util.Random（周期
248）は周期が短く、シミュレーショ
ン用には適していません。後述
するSFMTなどの長周期の疑似
乱数を使う必要があります。周期の長い疑似乱
数はseedである内部状態の量も多く必要とし、
計算が遅くなるという欠点はありますが、大規模
シミュレーションでは可能な限り偏りのない疑似
乱数が必要であることを考えると、できるだけ周
期の長いものを使っておいたほうが無難でしょう。
　また、検定が不十分な疑似乱数ライブラリを放
置していた例もあります。JavaScriptのV8エン
ジンでは、バージョン4.7のクラスMath.random()
で使用していたアルゴリズムMWC1616（周期232）
が、2次元の点の座標を描画する検定で一見して
目で見てわかる横筋が出てしまうという問題が発
見され（図4）、バージョン4.9でXorshift128+（周
期2128-1）に改められました［8］。同様に2008年に
Windows上のPHPバージョン5でも同様の問題
が報告されています［9］。

より良い疑似乱数
ライブラリを選ぶには

　シミュレーション用の乱数は、長い周期であ
ると同時に、高速・大量に使われるため速く生
成できることが必要です。その意味で1997年
に登場したMersenne Twister（メルセンヌ・ツ
イスター、MT）［10］は、219937-1という超長周期

を実現し、かつ高速な生成を意識した画期的な
乱数生成アルゴリズムでした。MTはRや
Pythonを始めとする多くのオープンソースの
言語やライブラリに採用されています。現在は
MTを改良したSFMT［11］が、大規模シミュレー
ションの分野で広く使われています。SFMT

はBSDライセンスを採用しており、多くの言
語で使うことができます。
　一方、MTやSFMTほどの長周期を必要とし
ない分野でも、より高速で偏りの少ない乱数が
開発されています。本稿で紹介したXorshift*/+

というアルゴリズムは、2003年に発表された
Xorshiftアルゴリズムを元にしています。これ
はXorshiftのアイデアであったシフト演算と
XOR演算だけを使った生成法から、MT/SFMT

の作者達が考案したXSadd［12］による改良を経て、
TestU01検定のBigCrushテストによって発見さ
れた問題項目の数を可能な限り減らしつつ、乱
数列の生成速度を向上させるという2つの難し
い目標を同時に追求した結果として生まれたも
のです。現在Xorshift*/+は、さらにビット回転
演算を追加しXoroshift+アルゴリズムを加えて
実験されています［13］。Xorshift*/+およびXoro

shift+はリファレンスコードがCC0（パブリック

注8） アルゴリズムによる疑似乱数では、有限長の seedである限り、乱数列の生成を続けていけばいつかは同じ値が再度現れる可能性
があります。同じ値が再度現れるまでの試行回数のことを「周期」といいます。

注9） 筆者はErlangの randomライブラリで使われているAS183というアルゴリズムの全数検索（周期243）に成功しています（https://
github.com/jj1bdx/as183-c）。この全数探索結果の公開後、Erlangではバージョン18.0からXorshift*/+をベースとしたより周期
の長い乱数ライブラリの randモジュールが用意されました。バージョン19.0ではAS183を使った randomモジュールは
deprecated（非推奨）の扱いになりました。バージョン20では廃止される予定です。

 ▼図4　JavaScript V8エンジンで起こった問題の例（参考文献［8］）

「コンピュータと乱数」第1回

https://github.com/jj1bdx/as183-c
https://github.com/jj1bdx/as183-c

90 - Software Design

ドメイン相当）のライセンスで公開されており、
自由に使うことができます。
　また、SFMTやXorshift*/+といった最近の
アルゴリズムでは、特定の回数乱数生成を行っ
たあとのseedをより高速に求めるためのジャ
ンプ関数が用意されています。このジャンプ関
数を使えば、同じアルゴリズムを使っても結果
が重複しないように複数のseedを設定できる
ため、並行処理あるいは並列計算のときに結果
の独立性を保証できます（図5）。

疑似乱数ライブラリの
出力で注意すべきこと

　疑似乱数生成ライブラリの多くは、既定の動
作として一様分布の疑似乱数を生成します。出

力は整数あるいは実数（浮動小数点数）のいずれ
かです。この両者を変換する際は、変換する値
の範囲に注意が必要です注10。
　また、離散一様分布の場合、値の範囲の広い
離散乱数列（1からP）から値の範囲の狹い離散乱
数列（1からQ）を作る場合は、PがQで割り切れ
ない限りそのまま変換してしまうと確率が均等に
ならないため、PがQの倍数であることを満たす
範囲にある場合のみ変換を行い、余った部分は
捨てて使わないという工夫が必要になります（図6）。
　実際の用途では、さらに出力の確率分布を変
えることが必要になる場合があります。たとえ
ばゲーム中のアイテムの当選確率をアイテムご
とに変えるという例を考えてみます。簡単な方
法としては、乱数の出力の取り得る値の範囲を

 ▼図5　並行処理あるいは並列計算でのseedの選び方

seedの選び方によっては、複数の乱数
列が重複して独立性が保たれない場合が
ある

seedを事前にジャンプ関数で十分に大
きな回数分先送りして割りあてれば、並
行あるいは並列する計算での乱数列の重
複を予防できる

左から右に進んでいく矢印は、内部状態の変化の様子を表しており、横軸の位置が同じだと内部状態も同じで結果の独立性を失うことを示している

 ▼図6　要素数の違う離散乱数列の変換

1から10までの離散乱数列から、1
から4までの離散乱数列を新たに作
り出すことを考えてみる。
この場合10は4では割り切れないた
め、新しい乱数列の各要素の生成確
率を偏りなく同じにすることはでき
ない。
左の図のような変換を行う場合は、
元の乱数列で9と10が出てきた場
合、それらを捨てて、1から8までの
要素が出てくるまで再試行を繰り返
す必要がある。この方法を使えば、変
換結果の偏りをなくすことができる。

1

1 2 3 4

1

5

9

2

6

10

3

7

4

8
2 3 4 5

6 7 8 9 10

注10） 離散乱数列と実数の0から1の乱数列を相互に変換する際、実数の側には4とおりの選択肢（結果Xの範囲が 0.0 ≦X ≦1.0, 0.0 < X
< 1.0, 0.0 ≦ X<1.0, 0.0 < X ≦1.0）があります。このため、実装に応じてすべての可能性を網羅しないと、小さいながら変換誤差のバ
グが発生し、大規模シミュレーションで利用する場合などの問題となることがあります。

短期
集中連載

90 - Software Design Aug. 2016 - 91

単純に比例分割して大小比較をするという方法
があります。しかしこの方法では乱数の発生ご
とに比較演算を行わなければならないため、n

個に対して最悪でO(n)、二分探索でもO(log (n))

の演算が必要です。この作業をより効率的にす
るために、分割のしかたを工夫して、検索キー
の整数部と小数部を分割してO(1)の探索を実現
したもの（Walker's Alias Method［14］、図7）が実
現されています。また、より一般化して各種分

割手法を比較した論文もあります［15］。

次回予告

　今回は乱数のうち、シミュレーション用の偏
りの小さい疑似乱数について紹介しました。次
回は物理乱数を生成するハードウェアの製作手
法について紹介する予定です。ﾟ

［1］ http://www.quviq.com/products/erlang-quickcheck/
［2］ "ENT: A Pseudorandom Number Sequence Test Program",http://www.fourmilab.ch/random/
［3］ "The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness", http://stat.fsu.edu/

pub/diehard/
［4］ Robert G. Brown, "Dieharder: A Random Number Test Suite", https://www.phy.duke.edu/~rgb/General/dieharder.php
［5］ Pierre L’Ecuyer, Richard Simard, "TestU01", http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
［6］ 平岡和幸、堀玄、『プログラミングのための確率統計』、オーム社、2009、ISBN-13: 978-4-274-06775-4
［7］ 伏見正則、『乱数』（UP応用数学選書12）、東京大学出版会、1989、ISBN-10: 4-13-064072-0
［8］ "There's Math.random(), and then there's Math.random()", http://v8project.blogspot.jp/2015/12/theres-mathrandom-

and-then-theres.html
［9］ "PHP rand(0,1) on Windows < OpenSSL rand() on Debian", http://cod.ifies.com/2008/05/php-rand01-on-windows-

openssl-rand-on.html
［10］ 松本眞、『あなたの使っている乱数、大丈夫？―危ない標準乱数と、メルセンヌ・ツイスター開発秘話―』、http://www.math.

sci.hiroshima-u.ac.jp/~m-mat/TEACH/ichimura-sho-koen.pdf
［11］ 松本眞、齋藤睦夫、「SIMD-oriented Fast Mersenne Twister (SFMT)」、http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/

SFMT/index-jp.html
［12］ 松本眞、齋藤睦夫、「XORSHIFT-ADD (XSadd)」、 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/XSADD/index-jp.html
［13］ Sebastiano Vigna, "xoroshiro+ / xorshift* / xorshift+ generators and the PRNG shootout", http://xoroshiro.di.unimi.it/
［14］ 「重み付きランダム抽出 :Walker's Alias Method」、http://qiita.com/ozwk/items/6d62a0717bdc8eac8184
［15］ Marsaglia, G., Tsang, W., & Wang, J. (2004). Fast Generation of Discrete Random Variables. Journal of Statistical

Software, 11(3), 1 - 11. doi:http://dx.doi.org/10.18637/jss.v011.i03

 ▼図7　一様分布の乱数から任意の重みを付けて選択する方法

A ～ Eの5つの選択肢を、実数の疑似乱数X (0.0 ≦ X < 5.0) を使って選ぶことを考える。
一例として出現確率は A:B:C:D:E = 60%:15%:10%:10%:5% = 3.0:0.75:0.5:0.5:0.25 を考える。

X の整数部 = 0 ならば A
X の整数部 = 1 で X の小数部 < 0.75 なら B, ≧ 0.75 なら A
X の整数部 = 2 で X の小数部 < 0.5 なら C, ≧ 0.5 なら A
X の整数部 = 3 で X の小数部 < 0.5 なら D, ≧ 0.5 なら A
X の整数部 = 4 で X の小数部 < 0.25 なら D, ≧ 0.25 なら A
整数部の値をインデックスとして小数部の閾値をテーブルから求めることで、比較演算は一度で済む。
この場合、閾値のテーブルを作るのはO(n)だが、整数部によるテーブル検索の比較演算はそれぞれO(1)で済む。

この場合最大で4回の比較演算が必要である。選択肢n個の場合は最悪O(n)、二分探索でもO(log (n))になる。

A (0.0 ≦ X < 3.0)

A B A A A E ADC

0.0 3.0 3.75 4.25 4.75 5.0

0.0 3.53.02.52.01.751.0 4.0 4.25 5.0

B (3.0 ≦ X
≦3.75)

C (3.75
≦ X <
4.25)

D (4.25
≦ X <
4.75)

E

単純比較による方法

Walker’s Alias Methodを使った方法

E (4.75 ≦ X < 5.0)

参考文献

「コンピュータと乱数」第1回

http://www.quviq.com/products/erlang-quickcheck/
http://www.fourmilab.ch/random/
http://stat.fsu.edu/pub/diehard/
https://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
http://v8project.blogspot.jp/2015/12/theres-mathrandom-and-then-theres.html
http://cod.ifies.com/2008/05/php-rand01-on-windows-openssl-rand-on.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/ichimura-sho-koen.pdf
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index-jp.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/XSADD/index-jp.html
http://xoroshiro.di.unimi.it/
http://qiita.com/ozwk/items/6d62a0717bdc8eac8184
https://www.jstatsoft.org/article/view/v011i03

92 - Software Design

はじめに

　RRRSpec（トリプルアールスペック）は、クッ
クパッド㈱が開発したオープンソースの分散テ
スト実行システムで、Rubyのライブラリ（gem）
として提供されています。
　筆者が所属するピクスタでは、サービスが成
長するにつれてRuby on Railsを使ったアプリ
ケーションの自動テストの実行に時間がかかる
ようになり、日々のリリースが滞ってしまう課
題を抱えていました。この課題を解決するため
にRRRSpecを導入したところ、テストの実行
時間を大幅に短縮することができ、併せてコス
ト削減を実現できました。しかし、導入にあたっ
て参考となる事例や情報がまだまだ少なく、苦
労した点もありました。
　そこで本記事では、ピクスタでの導入事例を
紹介したうえで、RRRSpecの概要とその有効
性、および環境構築や実運用時のポイントを説
明したいと思います。

導入の経緯

　ピクスタでRRRSpecを導入するに至った背
景、導入時の検討事項、導入後の効果を説明し
ます。

背景

　ピクスタは、写真・イラスト・動画のデジタ
ル素材をオンライン上で販売するマーケットプ
レイスサイト「PIXTA注1」を開発・運営していま
す。同サイトは、「本体」と呼ばれるモノリシッ
クなRailsアプリケーションと、そこから切り
だされた複数のマイクロサービスで構成されて
います。そして、これらの自動テストをRubyの
テスティングフレームワークの1つである
RSpecを用いて記述しています。
　サービスが成長するにつれてアプリケーショ
ンの自動テストの規模も大きくなり、現在、「本
体」だけで3万を超えるテスト項目が存在します。
これをマシン1台で実行すると完了まで数時間
かかるので、CI（Continuous Integration）サービ
スの並列実行機能を利用していましたが、それ
でもなお70分程度かかっていました。これでは
リリース可否の判断に遅れが生じます。サービ
スの機能追加・改善を素早く継続的に行うため
に、テストの高速化が課題となっていました。

アプローチの検討

　テストの高速化にあたって、次の3つのgem

の利用を検討しました。

注1） URL https://pixta.jp

アプリケーションテストに
時間がかかりすぎてませんか？

RRRSpecによる
分散テストの効果

Ruby on Railsへの
導入でわかった

 Author 	後藤 優一（ごとう ゆういち）　
	 ピクスタ㈱
 Twitter 	@_yasaichi

https://pixta.jp/

Aug. 2016 - 9392 - Software Design

・マシンのシャットダウンやプロセス停止から
の自動復帰

・失敗したテストの自動再実行
・テスト実行順序の最適化
・無反応のプロセスに対するタイムアウト

などの機能を備えています。
　test-queueにも分散実行のためオプションが
ありますが、リモートマシンに障害があった場
合などが考慮されておらず、分散実行において
はRRRSpecのほうが優れていると感じました。
　ピクスタではまず、test-queueを導入して1

台のマシンでの高速化を試みましたが、期待す
る実行時間を達成できませんでした。そこで分
散実行によるアプローチを採用することにし、
RRRSpecを導入しました。

導入効果

　RRRSpecを導入することで、「本体」のテスト
実行時間を70分から15分程度まで短縮できま
した。これによって大幅にリリースサイクルが
短縮され、サービスの機能追加・改善を素早く
行えるようになりました。またAmazon EC2の
スポットインスタンスを利用することで（後述）、
CIサービス利用時よりもコストを10％程度削減
できました。

RRRSpecの概要

　いくつかの用語を定義したあと、RRRSpecの
システムアーキテクチャとgemの構成について
説明します。

用語の定義

　RRRSpecのシステムが取り扱う対象として、
次の3つを定義します。

・タスク：1つのテストファイル（＝＊_spec.
rb）

・タスクセット：タスクの集合で、RRRSpec

・parallel_tests注2

・test-queue注3

・RRRSpec注4

　これらはすべてテストを並列実行することで
高速化を実現しますが、アプローチがそれぞれ
異なります。
　parallel_testsは3つの中で最初に開発された
gemで、実行時間が均等になるようにテストファ
イルを各プロセスに割り振ったあと、テストを
並列実行します。初回実行時はファイルサイズ
をもとに割り振りを行いますが、それ以降は前
回の実行時間を記録したログを用います。シン
プルで良いアプローチなのですが、実行前にテ
ストファイルの割り振りを行うので、プロセス
間で実際の実行時間にどうしても偏りが出てし
まうことが欠点です。
　test-queueは後発のgemで、いわゆるMaster-

Workerパターン注5で実装されています。
Workerはキューからテストファイルを取り出
して順次実行していくので、parallel_testsより
も効率的に並列実行することができます。よっ
て、数十分程度で終了する規模のテストなら、
test-queueを導入することで簡単に高速化でき
ます。しかし、マシンのCPUのコア数という制
約がある以上、高速化の度合いには一定の限界
があります。
　RRRSpecは test-queueと同様にMaster-

Workerパターンを採用していますが、Worker

としてリモートのマシンを使い、テストを分散
実行する前提で設計されている点が異なります。
したがって前述の2つのgemよりも導入に手間
がかかりますが、一度導入してしまえばテスト
の規模に応じて柔軟にスケールアウトすること
ができます。
　また、それ以外にも、

注2） URL https://github.com/grosser/parallel_tests
注3） URL https://github.com/tmm1/test-queue
注4） URL https://github.com/cookpad/rrrspec
注5） 一般的にはMaster-Slaveパターンという名称で呼ばれる

ことが多いと思われますが、ここでは後述するRRRSpec
のシステム構成に合わせてこちらの名称を用いました。

torikuchitoshinori
取り消し線

https://github.com/grosser/parallel_tests
https://github.com/cookpad/rrrspec
https://github.com/tmm1/test-queue

94 - Software Design

❶テスト対象のアプリケーションからRRRSpec
のコマンドを実行すると、rsyncによってソー
スコードがMasterに転送され、Redis上に対
応するタスクセットが新規作成される

❷Masterはタスクセットを処理するWorkerを
決定する

❸WorkerはMasterからrsyncによって対象の
ソースコードを取得する

❹Workerは（デフォルトで）マシンのCPUのコ
ア数だけ子プロセスを生成する

❺各プロセスはタスクセットからタスクを取り
出して実行し、トライアルの情報を記録する

❻トライアルが失敗し、かつ失敗回数が指定の
値未満であれば、Masterは対応するタスクを
タスクセットに戻す

❼ ❺～❻をタスクセットが空になるまで繰り返
す

❽Masterはタスクセットの終了処理を行い、実
行結果をRDBMSを用いて永続化する

の実行単位
・トライアル：タスクの実行結果

システム構成

　「アプローチの検討」の項でも述べたように、
RRRSpecはMaster-Workerパターンで実装さ
れています。
　これに、タスクセットの実行を依頼するClient

と、その実行結果を保持するデータベースを加
えたシステム構成図を図1に示します。図中の
矢印はタスクセットの処理を開始してから終了
するまでに生じるデータの流れを示しています。
　図1からわかるように、RRRSpecではテスト
対象のソースコードの共有にrsyncが用いられ
ています。また、実行中のタスクセットに関す
る情報はRedisで保持され、その実行結果は
RDBMSを用いて永続化されます。

ワークフロー

　RRRSpecにおいて、タスクセットは次のよう
なフローに沿って処理されます。

…

Client Master

Redis

RDBMS

Worker

Worker

Worker

Worker

ソースコード転送
（rsync）

ソースコード転送
（rsync）

タスクセットの
実行結果を保存

タスクセットの
割り振り・監視

タスクセットの作成
タスクの取得と
トライアルの記録

 ▼図1　RRRSpecのシステム構成

RRRSpecによる
分散テストの効果

Ruby on Railsへの導入でわかった

Aug. 2016 - 9594 - Software Design

用いて1台のマシンで動作させるサンプル注8が
提供されています。しかし、このサンプルから
実運用時の構成をイメージするのは難しいと思
います（実際に筆者はここで苦労しました）。
　そこで本記事では、より実運用時の状態に近
くなるよう独自に再構成したものを用いて、
チュートリアル形式で環境構築を行います。お
手元の環境で試してみてください。なお、完成
したコードは筆者のGitHubリポジトリ注9にホ
ストしてあります。紙幅の都合上、一部のコー
ドを省略していますので、適宜こちらのリポジ
トリを参照しながら読み進めてください。

必要なもの

　本節では、次の4つがマシンにインストール
されていることを前提としています。

・Ruby（2.3.1）
・Bundler（1.12.4）
・MySQL（5.7.12）
・Redis（3.2.0）

　すべてのコードは上記がインストールされた
MacBook Pro（OS X El Capitan）で動作確認を
行っています。なお、括弧内の数字は動作確認
を行った際のバージョン番号を示しています。

Client

　テスト対象となるサンプルアプリケーション
を作成し、これにClientとしての設定を行いま
す。まず、clientというディレクトリを作成
し、この中でbundle initコマンドを実行しま
す。生成されたGemfileを次のように編集し、
bundle installコマンドを実行します。

source "https://rubygems.org"

gem "rspec"
gem "rrrspec-client", "0.4.3"

　このワークフローの制御にもRedisが用いら
れています。Redisのリスト型にはRPUSH（Right

PUSH）とBLPOP（Blocking Left POP）というコ
マンドがあります。RRRSpecではこれらを組み
合わせて用いることで、Redis上にいくつかの
キューを構成しています。
　そして、MasterとWorkerはこれらのキュー
にアイテムがエンキュー注6されるのを待ち、ア
イテムが追加されたらすぐにデキュー注7して処
理するというプロセスを繰り返し行っています。
このプロセスの中で、次に実行したい処理の
キューにアイテムを適宜エンキューすることで、
前述のようなフローを実現しています。

gemの構成

　「はじめに」の節でも述べたように、RRRSpec

はRubyのgemとして提供されています。gemは
機能別に次の3つに分割されています。

・rrrspec-client
・rrrspec-server
・rrrspec-web

　rrrspec-clientはクライアント用のgemで、テ
スト対象のアプリケーションにClientとしての
機能を提供します。rrrspec-serverはサーバ用
のgemで、MasterとWorkerを動作させるのに
用います。最後のrrrspec-webは、タスクセッ
トの実行状態や結果を表示するWeb UIを提供
するためのgemです。ClientのCLIから同様の
情報を確認することもできますが、Web UIの
ほうが使いやすいのでこちらをお勧めします。

環境構築

　「アプローチの検討」の項でも述べたように、
RRRSpecは分散実行を前提に設計されています
が、1台のマシンで動作させることもできます。
RRRSpecのGitHubリポジトリでは、Dockerを

注8） URL https://github.com/cookpad/rrrspec/tree/master/
local_test

注9） URL https://github.com/yasaichi/rrrspec-tutorial
注6） キューにデータを格納すること。
注7） キューからデータを取り出すこと。

https://github.com/cookpad/rrrspec/tree/master/local_test
https://github.com/yasaichi/rrrspec-tutorial

96 - Software Design

❷）。なお、動作確認の際には
必要ありませんが、実運用の
際にはパスワードなしで
MasterにSSH接続できるよ
うに鍵の設定を行っておく必
要があります。
　rsync以外にもさまざまな
設定項目があり、その1つが
トライアル回数の上限値であ
るmax_trialsです（リスト1
の❸）。今回は「1」としていま
すが、実運用の際にはWorker

に障害が起きることも考慮し
て、2以上の値を設定してお

くといいでしょう。

MasterとWeb UI

　MasterとWeb UIを提供するアプリケーショ
ン（以下、Web）を動作させるための環境を構築
します。まず、serverというディレクトリを作
成し、この中でbundle initコマンドを実行し
ます。生成されたGemfileを次のように編集し、
bundle installコマンドを実行します。
　今回はWebのアプリケーションサーバとして
Unicornを用いていますが、Rackアプリケー
ションに対応しているものなら何でも構いませ
ん。

source "https://rubygems.org"

gem "mysql2"
gem "rrrspec-server", "0.4.3"
gem "rrrspec-web", "0.4.3"
gem "unicorn"

　
　必要な gemがインストールできたので、
MasterとWebの設定を行いましょう。config

というディレクトリを作成し、この中に、前述
のリポジトリを参考に次の3つのファイルを配
置してください。

・database.yml：データベースの接続設定ファ

　必要なgemがインストールできたので、テス
ト対象のアプリケーションを作成しましょう。
最初に、次のコマンドを実行してRSpecのセッ
トアップを行います。

$ bundle exec rspec --init

　生成されたspecディレクトリ内に、samples
というディレクトリを作成します。この中に、
前述のリポジトリを参考に次の3つのファイル
を配置してください。

・fail_spec.rb：必ず失敗するタスク
・success_spec.rb：必ず成功するタスク
・timeout_spec.rb：必ずタイムアウトするタス
ク

　サンプルアプリケーションの作成ができたの
で、Clientとしての設定を行いましょう。client
ディレクトリの直下に、.rrrspec（リスト1）と
いう設定ファイルを作成します。
　「ワークフロー」の項でも述べたように、Client

はrsyncによってアプリケーションのソースコー
ドをMasterに転送します。この転送先のパスを
環境変数を介して設定しています（リスト1の
❶）。転送時のオプションはrsync_optionsで
指定でき、転送時間短縮のためにバージョン管
理関連のファイルを除外しています（リスト1の

 ▼リスト1　client/.rrrspec（一部抜粋）

RRRSpec.configure(:client) do |config|
 #❶ rsyncのパス
 config.rsync_remote_path = ENV["RRRSPEC_RSYNC_REMOTE_PATH"]

 config.rsync_options = %w(
 --compress
 --times
 --recursive
 --links
 --perms
 --inplace
 --delete
 --cvs-exclude #❷ バージョン管理関連のファイルを除外する
).join(" ")

 #❸ トライアル回数の上限
 config.max_trials = 1
end

RRRSpecによる
分散テストの効果

Ruby on Railsへの導入でわかった

Aug. 2016 - 9796 - Software Design

動時に読み込まれます。
　これで必要な設定が終わったので、最後に
MySQL上に必要なデータベースとテーブルを
作成しましょう。専用のコマンドがRakeタスク
としてgemに定義されているので、これを利用
するためにRakefile（リスト3）を作成します。
そして、次のコマンドを実行してください。

$ bundle exec rake rrrspec:server:db:ｭ
create rrrspec:server:db:migrate

　RRRSPEC_CONFIG_FILESは設定ファイルのパ
スを渡すための環境変数です（リスト3の❶）。実
行時に省略できるように、コード上で値を設定
しています。そして、loadメソッドを呼び出す
ことで、rrrspec-serverに定義されたRakeタス
クを読み込んでいます（リスト3の❷）。

Worker

　Workerを動作させるための環境を構築しま
す。Masterの作業と重複する部分が多いため、
新たに作成する必要があるのはWorkerの設定
ファイルであるserver/config/worker.rbの
みです。このファイルの一部を抜粋したものを
リスト4に示します。

イル注10

・master.rb：MasterとWebの設定ファイル
・redis.rb：Redisの接続設定ファイル

　master.rbの一部を抜粋したものをリスト2
に示します。
　persistence_dbにはデータベースの接続情
報、execute_log_text_pathにはトライアル
のログを保存するディレクトリのパスを設定し
ます。これらの値はMasterとWebで同一でな
ければならないので、ループを使って同じ設定
を適用しています（リスト2の❶）。
　また、動作確認の際には必要ありませんが、
実運用の際にはMasterのプロセスをデーモン化
して常に起動しておく必要があります。そのた
め、pidfileに書き込み権限のあるディレクト
リのパスを設定しています（リスト2の❷）。
　続いて、WebをUnicornで起動するための設
定を行います。serverディレクトリの直下に、
前述のリポジトリを参考にconfig.ruという
ファイルを配置してください。これはRackアプ
リケーションの設定ファイルで、Unicornの起

 ▼リスト2　server/con�g/master.rb（一部抜粋）

#❶ MasterとWebで同じ設定を適用する
%i(server web).each do |type|
 RRRSpec.configure(type) do |config|
 config.persistence_db = db_config[env].symbolize_keys
 config.execute_log_text_path = root.join("tmp/rrrspec-log-texts")
 end
end

RRRSpec.configure(:server) do |config|
 #❷ デーモン化した際のPIDファイル
 config.pidfile = root.join("tmp/pids/rrrspec-master.pid")
end

 ▼リスト3　server/Rake�le（一部抜粋）

#❶ 設定ファイルのパスを環境変数を介して渡す
ENV["RRRSPEC_CONFIG_FILES"] = File.expand_path("../config/master.rb", __FILE__)

#❷ rrrspec-serverに定義されたRakeタスクを利用できるようにする
load "#{Gem::Specification.find_by_name('rrrspec-server').gem_dir}/tasks/db.rake"

注10） パスワードなしの rootユーザを想定しています。当ては
まらない場合には適宜usernameやpasswordを追加・修
正してください。

98 - Software Design

$ mkdir -p "${PWD}/tmp/rrrspec-rsync"
$ export RRRSPEC_RSYNC_REMOTE_PATH= ｭ
"${PWD}/tmp/rrrspec-rsync"

　準備ができたら、次の3つのコマンドを実行
してMaster、Worker、Webを起動します。

$ bundle exec rrrspec-server server ｭ
--config config/master.rb --no-daemonize
$ bundle exec rrrspec-server worker ｭ
--config config/worker.rb --no-daemonize
$ bundle exec unicorn -p 3000

　この状態でclientディレクトリに移動し、次
のコマンドを実行して処理を開始します。

$ bundle exec rrrspec-client start ｭ
--rsync-name=sample_app

　http://localhost:3000にアクセスすると、
Active Tasksetsに--rsync-nameで指定した
名前のタスクセットが追加されています（図2）。
　2分程度経つと、処理が終了してRecent

　「ワークフロー」の項でも述べたように、
Workerはrsyncによってテスト対象のソース
コードをMasterから取得します。この転送元の
パスを環境変数を介して設定しています（リスト
4の❶）。なお、ClientからMasterへの転送の際
にバージョン管理関連のファイルは除外されて
いるため、--cvs-excludeオプションの指定は
不要です（リスト4の❷）。
　また、Clientの場合と同様に、実運用の際に
はあらかじめ鍵の設定を行う必要があります。

動作確認

　正しく環境構築ができたかどうかを確認する
ために、RRRSpecを起動してテストを実行して
みましょう。まず、serverディレクトリに移動
し、Redisを起動します。

$ redis-server

　また、rsync用のディレクトリを作成し、その
パスを環境変数に設定しておきます。

 ▼図2　タスクセットの一覧

 ▼リスト4　server/con�g/worker.rb（一部抜粋）

RRRSpec.configure(:worker) do |config|
 #❶ rsyncのパス
 config.rsync_remote_path = ENV["RRRSPEC_RSYNC_REMOTE_PATH"]

 #❷ --cvs-excludeオプションは不要
 config.rsync_options = %w(
 --compress
 --times
 --recursive
 --links
 --perms
 --inplace
 --delete
).join(" ")
end

RRRSpecによる
分散テストの効果

Ruby on Railsへの導入でわかった

Aug. 2016 - 9998 - Software Design

マルチコアのマシンでは、2つ以上の子プロセ
スが生成されることになります。このとき、各
プロセスで同じデータベースを用いると、デー
タの競合が発生してテストが不安定になってし
まいます。そのためプロセスごとに異なるデー
タベースを用いる必要があります。
　RRRSpecでは、これらのプロセスに一意な非
負整数が割り振られており、その値はSLAVE_

NUMBERという環境変数から参照できます。これ
を利用することで前述の問題を回避できます。
たとえばRailsアプリケーションの場合、デー
タベースの接続設定（config/database.yml）
を次のように書き換えます。

test:
 <<: *default
 database: rails_app_test<%= ENV["SLAVE_
NUMBER"] %>

　そして、.rrrspecのslave_commandにデー
タベースの初期化処理を加えます。

config.slave_command = <<-SLAVE
 bundle exec rake db:migrate:reset --trace
 bundle exec rrrspec-client slave
SLAVE

Workerのスケーリング

　「アプローチの検討」の項でも述べたように、
RRRSpecはテストの規模に応じてWorkerを柔軟

Tasksetsにタスクセットが移動します注11。タス
クセットのキー名をクリックすると詳細ページ
に遷移し、実行結果を確認することができます
（図3）。
　サンプルアプリケーションは必ず失敗するタ
スクを含んでいるので、タスクセットの実行結
果はFAILEDになっています。成功した場合の
画面も見てみたい方は、これらのタスクをテス
ト対象から除外して再実行してみてください。

実運用時におけるポイント

　RRRSpec導入時に直面した問題とその対処法
や、実運用時における工夫を紹介します。

データベースに関する設定

　「環境構築」の節では、データベースのない簡
単なアプリケーションを用いて説明を行いまし
た。しかし、通常はデータベースを用いるアプ
リケーションを扱うことがほとんどだと思いま
す。この際、いくつかの注意が必要です。
　「ワークフロー」の項でも述べたように、
WorkerはマシンのCPUのコア数だけ子プロセ
スを生成してテストを並列実行します。よって、

 ▼図3　タスクセットの実行結果

注11） 2分以上経っても処理が終了しない場合、キャンセル用の
コマンド「bundle exec rrrspec-client cancel キー名」を実
行後、再試行してみてください。

100 - Software Design

トブランチへのpushをフックにして、自動でテ
ストを実行できます。しかし、RRRSpecには同
様の機能がないので、CIサービスからの移行時
には何らかの対応が必要です。
　ピクスタでは、Node.jsで専用のアプリケー
ションを実装し、GitフックでこのAPIを呼び
出すことで対処しました。APIでは次のような
処理が行われます。

❶テスト対象のソースコードを取得し、push時
の状態にする

❷必要なgemをインストールする
❸RRRSpecのコマンドを実行し、テストを開
始する

　❸のコマンドの実行時には--rsync-nameと
いうオプションを指定でき、指定した値がWeb

での表示に用いられることは「動作確認」の項で
述べたとおりです。この値にアプリケーション
名とコミットIDを含めることで、各タスクセッ
トとの対応がわかるようにしています。

まとめ

　本記事では、次のような内容を取り上げまし
た。

・ピクスタでのRRRSpecの導入事例
・テスト高速化のためのライブラリの比較
・RRRSpecのシステムアーキテクチャ
・RRRSpecのgemの構成
・環境構築の手順とポイント
・導入時に直面した問題とその対処法
・実運用時における工夫

　本記事の内容が、RSpecを用いた自動テスト
の高速化に取り組んでいる方や、他の言語やフ
レームワークにおいて同様の課題を抱えている
方の参考になれば幸いです。ﾟ

にスケールアウトできることが長所の1つです。こ
の長所を十分に生かすために、Workerのデプロ
イをいかに簡略化するかがポイントになります。
　ピクスタでは、アプリケーションの環境構築
とデプロイの自動化にAWS（Amazon Web

Services）のOpsWorksを用いています。
　Workerも環境構築はOpsWorksで行います
が、デプロイはせずにインスタンスのAMI

（Amazon Machine Image）を作成しています。そ
して、AWSのAuto Scalingを用いて、このマ
シンイメージからスポットインスタンスを作成
しています。Auto Scalingにはインスタンスの
起動時に任意のスクリプトを実行できる機能が
あるので、これを利用してWorkerのデプロイ
に必要な処理を行っています。
　起動するマシンの数やスペックの変更、起動
時間のスケジューリングなどはすべて管理画面
上から行えるので、使用状況に応じて柔軟に運
用することができます。また、「導入効果」の項
でも述べたように、スポットインスタンスを用
いることで高速化と同時にコスト削減ができま
した。

SSHにおける同時接続要求数の制限

　Auto Scalingを用いることでWorkerを簡単
にスケールアウトできるようになりましたが、
今度はマシンを一定以上の台数にすると、rsync

が頻繁に失敗するようになってしまいました。
　原因を調査したところ、ブルートフォースア
タック対策のために、同時にSSH接続を要求で
きるマシンの数が制限されていることがわかり
ました。この制限はsshd_configファイル内の
MaxStartupsという項目から変更できるので、
Workerマシンの数に応じて適切な値を設定し
ておきましょう。

CIサービスからの移行

　現在ほとんどのCIサービスには、GitHubを
はじめ、さまざまなホスティングサービスとの
連携機能があります。これを利用すれば、リモー

RRRSpecによる
分散テストの効果

Ruby on Railsへの導入でわかった

101 - Software Design Aug. 2016 - 101

エンジニアの必須科目

　今やあらゆるアプリケーションがインターネッ
トに接続され、何らかの形で外部のサーバなど
と通信をします。またIoTという言葉も一般的
に使われるようになり、パソコンだけでなくあ
りとあらゆるものがインターネットにつながる
時代が来ています。
　とくにWebの技術は、多くのネットワーク
技術から成り立っています。非常に複雑な
Webの世界を理解するためには、ネットワー
クの基礎知識は必須です。
　筆者はWebアプリケーションのパフォーマ
ンス分析の際に、プロトコルの仕様を詳細に調
べたり、パケットキャプチャをして通信のモニ
タリングを行ったりしたことがあります。また
大きなネットワーク構成を構築する場合や、ト
ラブルが起こった際の原因の特定も、ネットワー
ク階層やプロトコルの理解があると便利です。
　ネットワークの技術は非常に広範囲に渡りま
す。本稿では基本的な概念と身近な部分を中心
に紹介していきます。

ネットワークの階層モデル

　ネットワークの大きな特徴が階層構造です。

ネットワーク全体の理解のためには、階層モデ
ルと通信の流れをはじめに理解しておくのが近
道です。

OSI参照モデル

　ネットワーク技術はおもに「プロトコル」と呼
ばれる通信規則を基に成り立っています。ネッ
トワークを学ぶことはプロトコルを学ぶことと
同義と考えても良いかもしれません。
　プロトコルには、HTTP、FTP、SMTP、DNS、
SIP、TCP、IEEE802.11など本当にさまざま
な種類があります。これらを整理するために便
利なのが「OSI参照モデル（Open System Inter

connection reference model）」です。OSI参照
モデルでは、ネットワークとその技術を7つの
階層に分類しており、それぞれの層に、通信に
おける役割が定義されています（表1）。プロト
コルの役割も、これらの層のいずれかに当ては
めることができます。
　この中でセッション層とプレゼンテーション
層はアプリケーション層との役割分担があいま
いで、TCP/IPの範

はん

疇
ちゅう

では、この3つを合わせ
てアプリケーション層と呼ぶこともあります。

パケットの流れ

　インターネットでは基本的にデータを「パケッ
ト」という小さな区切りに分割して伝送します。

　「現場でDevOpsを実現させるには、まずアプリエンジニアがインフラを知る必要がある」とい
う前提に立ち、アプリの視点からインフラを広く学んでいく本連載。第2回では、インターネット
を支えるネットワーク技術の全体像を、「階層構造」「プロトコル」「アドレス」をキーワードに概観
してみましょう。

 Author 出川 幾夫（でがわ いくお）　レバレジーズ株式会社　teratail開発チーム　 Twitter @ikuwow

第　　回2 ネットワーク入門

102 - Software Design

パケットはこの7階層を上から下へ降りながら、
順にその階層の通信に必要なヘッダを付与され
ていき、さらに下の層へ送られます。ヘッダは
プロトコルごとに固有の形式をしていて、宛先
やデータのサイズなど、そのプロトコルの通信
に必要な情報が含まれています。最終的に物理
層で情報が電気信号まで変換され、宛先へ流れ
ていきます。
　逆に受信側では、そのパケットのヘッダを1

つ読み取って外しては上の層に渡します。この
ようにして受信データは最終的にアプリケーショ
ンに到達し、通信が完了します（図1）。
　この階層構造の良いところは、階層それぞれ
の役割がはっきり分かれていて、それぞれ独立
した通信として扱うことができる点です。図2
のように、クライアントPCとサーバはトラン

スポート層以上の通信に関してはルータのこと
を意識する必要はなく、一対一の通信として扱
うことができます。
　また、ルータはネットワーク層までの通信を
制御する装置ですが、トランスポート層以上で
どのような通信が行われようが、その役割や処
理は変わりません。
　同じインターネットというしくみでも、まっ
たく同じ形状のケーブルでも、この階層構造が
あることによって、さまざまなアプリケーショ
ンがさまざまな種類の通信を行うことができる
というわけです。この柔軟性と適度な独立性が、
インターネットを柔軟で強力なものにし、世界
中のあらゆる人々のインフラとして普及させた
理由の1つではないかと筆者は思います。
　プロトコルや機器の名前を聞いたら「どの階

階層 名称 役割 プロトコル

第7層 アプリケーション層 特定のアプリケーション間の通信 HTTP、FTP、SMTP、
DNS、SNMPなど

第6層 プレゼンテーション層 機器やデータに固有のフォーマットの違いを吸収

第5層 セッション層 通信のコネクションの確立・切断

第4層 トランスポート層
送信元アプリケーションから宛先アプリケーショ
ンへデータを伝送する。アプリケーションごとに
ポート番号というアドレスが割り振られる

TCP、UDPなど

第3層 ネットワーク層 送信元ホストから宛先ホストへデータを伝送。経
路を管理し、IPアドレスを用いて場所を識別 IP、ARP、ICMPなど

第2層 データリンク層 スイッチングハブ間など、直接接続された機器間
での通信

Ethernet、PPP、IEEE802.11
など

第1層 物理層 電気信号の物理的な通信。ケーブルやコネクタの
形状を策定。ビット列を電気信号へ変換する

 ▼表1　OSI参照モデル

H：ヘッダ

M：メッセージ

論理的な通信

ヘッダが取り外されて上位層へ行くヘッダが付加されて下位層へ行く

MH MHトランスポート層 トランスポート層

MHH MHHネットワーク層 ネットワーク層

MHHH MHHHデータリンク層 データリンク層

物理層 物理層

 ▼図1　パケットの流れ

102 - Software Design Aug. 2016 - 103

層の技術か？」という問いを立てて整理するこ
とで、個々の技術の理解が深まります。ネット
ワークの議論はこの階層モデルを前提として行
われることが多いので、OSI参照モデルの7階
層はぜひ暗記しておきましょう。

TCP/IP

　TCP/IPという言葉を一度は聞いたことがあ
ると思います。これはインターネットに関わる
プロトコルの総称のことです。TCPと IPはそ
れぞれ個別のプロトコルの名前なのですが、イ
ンターネットの根幹を成すプロトコルのため、
このような名前になっています。
　インターネットのしくみは、すべてこのTCP/IP

で説明できると言っても過言ではありません。
ここでは最も重要な IP、TCP、UDPの3つに
ついて簡単に説明していきます。

IP

　IP（Internet Protocol）は第3層のネットワー
ク層のプロトコルで、host-to-hostの通信を実
現します。「Internet」という名前のように、ネッ
トワーク間を飛び越えて通信を行うことができ
ます。終端のクライアントPCやサーバのほか
に、ルータがこのネットワーク層の通信を制御

します。
　IPは経路制御といい、宛先 IPアドレスまで
到達可能な経路を探索して、その方向にパケッ
トを送り出すのがおもな役割です。現在広く普
及しているのは IPバージョン4（IPv4）ですが、
32bitで表すIPv4アドレスの数が枯渇したため、
アドレスを128bitで表すIPバージョン6（IPv6）
へ少しずつ移行が進んでいます。
　IPはコネクションレス型で、通信の開始の
際に宛先ホストと接続の確立を行いません。ベ
ストエフォート型とも呼ばれ、「精一杯がんば
るが結果は保証しない」というプロトコルです。
そのためパケットを紛失した場合に再送するし
くみなどはありませんし、宛先サーバの電源が
落ちていても、問答無用でデータを送信すると
いう単純な動作をします。

TCP

　TCP（Transmission Control Protocol）は第4

層のトランスポート層のプロトコルです。IP

の上位層に位置します。
　TCPの通信は「コネクション型」です。通信
の初めに3ウェイハンドシェイクという処理を
行って接続を確立してから、データの送受信を
開始します。送信中にパケットの順番が入れ替
わってしまった場合の順序制御や、パケットに

各層ごとに独立な通信と捉える

ルータ サーバクライアントPC

アプリケーション層 アプリケーション層

プレゼンテーション層 プレゼンテーション層

セッション層 セッション層

トランスポート層 トランスポート層

ネットワーク層 ネットワーク層

データリンク層 データリンク層

物理層 物理層

ネットワーク層

データリンク層

物理層

 ▼図2　層ごとに独立して実現するインターネットの通信

第 回2 ネットワーク入門

104 - Software Design

紛失があった場合の再送制御、流量制御や輻
ふくそう

輳
制御など、通信の品質やネットワークの効率を
上げるしくみが多数用意されています。HTTP

やFTP、SMTPなど、多くのプロトコルが
TCPの上に成り立っています。

UDP

　UDP（User Datagram Protocol）も第4層の
トランスポート層のプロトコルの1つです。
UDPはTCPとは対照的に、「コネクションレ
ス型」の通信をします。パケットの構造が非常
に単純なため、高速な動作をします。これは
DNSやSNMP、SIPなど、おもに信頼性より
も高速な通信が求められるプロトコルで利用さ
れます。動画や音声のストリーミングなども
UDPが得意な分野です。
　TCPとUDPはどちらが良い悪いという話で
はなく、それぞれ得意な分野があるのです。

場所を表す
さまざまなアドレス

　インターネット上の場所を表すのに、さまざ
まなアドレスが利用されます。URLもアドレ
スの1つと言えますし、アプリケーションから
データベースサーバを参照するなど、インター
ネット上の場所を指定する機会は多々あります。
どのアドレスもそれぞれ属している階層があり、
役割が違います。

ホスト名、ドメイン名

　たとえば今、それぞれfirst.example.com、
second.example.comという名前が割り当てら
れたホスト（ここではそれぞれ1台のサーバ）が
あるとします。ドメイン名とはexample.comの
部分を指します。これは個人や会社が購入して
取得するもので、ICANNという組織とそこか
ら委託された組織が管理しています。
　ホスト名はfirstやsecondの部分を指しま
す。同じドメイン内で、どのホストかを区別す
るための名前です。またfirst.example.comや

second.example.com全体をホスト名と呼ぶこ
ともあります。このような形式は、FQDN（Fully

Qualified Domain Name）とも呼ばれます。

IPアドレス

　ホスト名は人間が認識しやすくするための形
式ですので、通信を行う際にはDNSというし
くみによって IPアドレスに変換され、通信を
行います。
　IPアドレスはネットワーク層のプロトコル
の IPにおけるアドレスで、ネットワーク上の
1ノードを表すのに用いられます。
　IPv4では IPアドレスは 202.241.189.71の
ように、3つのドットで区切られた4つの数字
で表されます。ネットワークの範囲を表すサブ
ネットマスクを合わせて「CIDR」という形式
（192.168.252.52/24）でも表現されます。
　IPアドレスには、ローカルIPアドレスとグロー
バルIPアドレスの2種類があります。ローカル
IPアドレスは、CIDRで表すと 10.0.0.0/8、
172.16.0.0/12、192.168.0.0/16の範囲のアド
レスを指し、ローカルネットワーク内で自由に
用いていいアドレスです。グローバル IPアド
レスは世界中で通用する IPアドレスで、IPア
ドレスを指定できれば世界中のどこにあるホス
トでも通信を始めることができます。

ポート番号

　ポート番号とは、TCPとUDPにおいて、ア
プリケーションを区別する番号のことを言いま
す。送信元ポート番号と宛先ポート番号があり
ます。ポート番号はホスト名や IPアドレスと
合わせて exmample.com:8888や 192.168.252.
52:9200という形式で表すこともできます。
　ポート番号は、0～65535の範囲で表されます。
とくに0～1023まではウェルノウンポートとい
い、ICANNによってそれぞれの用途が定めら
れています。たとえば、HTTPは「TCP80番」、
SMTPは「TCP25番」、DNSの名前解決リクエ
ストは「UDP53番」、というふうにです。

104 - Software Design Aug. 2016 - 105

　http://example.comというアドレスをブラ
ウザのアドレスバーに入力して©を押す
と、暗黙の内にexample.comというホストの
TCP80番ポートに、HTTPのリクエストを送っ
ていることになります。

MACアドレス

　MAC（Media Access Control）アドレスとは、
ネットワークインターフェースごとに一意に付
けられているアドレスのことで、ハードウェア
アドレスとも呼ばれます。たとえば、有線
LANコネクタと無線LANのあるPCは、MAC

アドレスを2つ持っているということになりま
す。
　IPアドレスはネットワーク層のアドレスで
すので、データリンク層以下の通信しか行わな
いスイッチングハブなどを指し示すことには使
えず、どの機器を通れば宛先の IPアドレスを
持つホストに到達できるかがわかりません。
ARP（Address Resolution Protocol）によって、
宛先IPアドレスからどのMACアドレスを持つ
機器に送るべきかを探します。

アドレスを調べてみよう

　MACアドレスや IPアドレスは、Unix系の
OSではifconfigコマンドを使うことで簡単に
調べられます。

　図3におけるHWaddrの後の12桁の16進数で
表されるものがMACアドレスです（1）。また、
inetの行の addr:の後が IPv4アドレス（2）、
inet6の行のaddr:の後が IPv6アドレス（3）を
それぞれ指します。
　loと書かれているのはループバックインター
フェースと言い、ホスト自身を指すインター
フェースです。その IPアドレスは IPv4だと
127.0.0.1となっています（4）。また複数のネッ
トワークインターフェースがあるマシンではも
ちろん、仮想マシンを立ち上げている場合でも、
その数だけ仮想的なインターフェースが作られ、
それぞれにIPアドレスやMACアドレスが割り
振られます。

おわりに

　ここで紹介したネットワーク技術はほんの一
部です。インターネットは基本的に世界のどこ
にも中心がない分散型の構造になっており、小
さくシンプルなプロトコルの組み合わせで成り
立っています。実用のためだけでなく教養とし
ても非常におもしろい分野だと思います。興味
のある人はぜひ『マスタリングTCP/IP注1』など
の書籍などを参考にしてみてください。｢

注1） 竹下隆史 , 村山公保 , 荒井透 , 苅田幸雄 著 , オーム社 ,
2012.

$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:0D:5E:50:E6:9D
 inet addr:192.168.252.52 Bcast:192.168.252.255 Mask:255.255.255.0
 inet6 addr: fe80::20d:5eff:fe50:e68d/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:50016781 errors:0 dropped:0 overruns:0 frame:0
 TX packets:71994847 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:13032908299 (12.1 GiB) TX bytes:89221435291 (83.0 GiB)
 Interrupt:18
...（略）...

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
...（略）...

 ▼図3　ifconfigコマンドの例

（1）（2）

（3）

（4）

第 回2 ネットワーク入門

106 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

　今回は、ホストシステムとして前回構築した
デフォルト設定のCentOS 6.7上のKVM（コラ
ム参照）を使って、仮想マシン（ゲストシステム
のハードウェア）の作成とゲストシステムのOS

とネットワーク環境のインストールを行います。

仮想マシン／
ゲストシステムの作成

　仮想マシンの作成は（今回は）仮想マシンマネー
ジャーで5ステップで行います。
　CentOSのメニューから、［アプリケーション］
→［システムツール］→［仮想マシンマネージャー］
で仮想マシンマネージャーを起動します。これ
は前回説明しているので、ここで問題が発生し
たならば前回の記事を参考にしてください。
　最初に、仮想マシンマネージャー画面の
「localhost（QEMU）」上でマウスを右クリックし
て「新規」を選ぶか、またはメニューアイコンの
「新しい仮想マシンの作成」ボタン（図1）をクリッ
クして仮想マシンの作成を開始します。

ステップ1：
仮想マシン名とOSメディア

　最初の画面（ステップ1）では仮想マシン名と
OSのインストール元／メディアを設定・選択
します（図2）。

仮想化の知識、再点検しませんか？

使って考える
仮想化技術

第3回 仮想環境の構築（その2）〜仮想マシンの作成

本連載は「仮想化を使う中で問題の解決を行いつつ、残される課題を整理する」
ことをテーマに、小さな仮想化環境の構築・運用からはじめてそのしくみを学
び、現実的なネットワーク環境への実践、そして問題点・課題を考えます。仮
想化環境を扱うエンジニアに必要な知識を身につけてください。

笠野 英松（Mat Kasano）
有限会社 ネットワーク・メンター

Author

URL http://www.network-
mentor.com/indexj.html

 ▼図1　新しい仮想マシンを作るウィザードを起動

 ▼図2　新しい仮想マシンを作るステップ1

 ▼図3　新しい仮想マシンを作るステップ2

http://www.network-mentor.com/indexj.html

Aug. 2016 - 107106 - Software Design

仮想環境の構築（その2）〜仮想マシンの作成
第3回

　仮想マシン名は、仮想マシンマネージャーや
仮想マシン管理ユーザインターフェース（仮想
マシン管理コマンド）の管理対象（「ドメイン」
という）の名前で、仮想マシンの設定ファイル

（/etc/libvirt/qemu中のxmlファイル）の名前に
もなります。本連載では仮想マシンのOSとし
てWindows 7とFreeBSD 10.3をインストール
し、それぞれkvm1、kvm2という仮想マシン名
をつけることにします。
　インストールメディアとしては図2のように、
CD/DVDドライブもしくは ISOイメージファ
イルというローカルデバイス／ファイル、URL

指定のネットワーク先、PXEネットワークブー
ト、そして既存のディスクイメージ（.imgファ
イル）の4種類があります。手持ちのものにあ
わせて選択しますが、今回は後述するように
Windows 7は DVD、FreeBSD 10.3は ISOイ
メージファイル注1でインストールを行います。

ステップ2：メディア場所とOS

　次のステップ2で、そのインストールメディ
アの場所とOSの種類／バージョンを指定しま

注1） FreeBSD 10.3の提供元
 https://www.freebsd.org/ja/where.html

サーバ仮想化製品「KVM」について
　KVM※1はOVA※2で注目を浴びており、RHEL6からOSパッケージに同梱されています。完全仮想化マシ
ンHVM※3を提供するもので、パッケージのインストールを除けば、運用管理はサーバ上で、Xenとほぼ同
様なコマンド・操作を「仮想マシンマネージャー（virt-manager）」で行えます（仮想マシンの I/Oパフォーマ
ンスを上げるvirtioという、仮想マシン上の準仮想化ドライバもある）。なお、KVMではハードウェア仮想
化支援機構（VT機構）が必要になります。Xenと同様にリモートからの運用管理機構はなく、VNCなどを利
用します。KVMはLinux OSに同梱されており、仮想化（KVM）パッケージ（パッケージグループ：仮想化、
仮想化クライアント、仮想化プラットフォーム）の同時インストールが可能です。KVMとXenにほぼ共通な
運用管理については、本連載のKVM実践の中で解説していく予定です。

※1）Kernel-based Virtual Machine（http://www.linux-kvm.org/page/Main_Page）
※2）Open Virtualization Alliance（2011年5月17日発足。https://openvirtualizationalliance.org/）
※3）Hardware Virtual Machine（http://www.linux-kvm.org/page/FAQ#What_is_Intel_VT_.2F_AMD-V_.2F_hvm.3F）

Column

OS種別 バージョン

Windows
Microsoft Windows 2000/XP/Vista/7以降
Microsoft Windows Server 2003/2008以降

Unix
OpenBSD 4.x以降
FreeBSD 6.x/7.x/8.x以降

Solaris
Sun Solaris 9/10以降
Sun OpenSolaris以降

Other
Novell Netware 4/5/6以降
MS-DOS
Generic

Linux

Red Hat Enterprise Linux 2.1/3/4/5/5.4/6/7以降
Fedora Core 5/Core 6/7/8/9/10/11/12/13/14/15/16/17/18以降
Debian Etch/Lenny/Squeeze/Wheezy以降
Mageia 1以降
Mandriva Enterprise Server 5.0/5.1以降
Mandriva Linux 2009 or earlier/2010以降
Suse Linux Enterprise Server 11以降
openSuse 11/12以降
Ubuntu 8.04 LTS/8.10/9.04/9.10/10.04 LTS/10.10/11.04/11.10/12.04 LTS/12.10以降
Generic 2.4.x カーネル/2.6.x カーネル/2.6.25以降（virtioによる）

 ▼表1　KVMで指定可能なOS一覧

http://www.linux-kvm.org/page/Main_Page
https://openvirtualizationalliance.org/
http://www.linux-kvm.org/page/FAQ#What_is_Intel_VT_.2F_AMD-V_.2F_hvm.3F
https://www.freebsd.org/ja/where.html

108 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

す（図3）。インストールメディアの場所は「ネッ
トワークブート（PXE）」を選択する以外は指定
する必要があります。
　OSの種類とバージョンは前ページにある表
1のものが選択可能です。OSの種類では「全般」
「Windows」「UNIX」「Solaris」「Other」「Linux」
の中から、バージョンは「全般」から多数のOS

が選択できます。OSの種類で「Show all OS

options」を選択すると全表示されます注2。
　OSの種類は仮想マシンのACPIやAPIC、マ
ウスドライバ、I/OインターフェースなどOS

注2） 詳細なOSの一覧は、端末コマンドのman virt-installまた
は、virt-install --os-variant listで調べることもできる。

の機能特性をOSメディアから取得して最適化
するのに使用されます。もしOSの種類を（バー
ジョンも）「全般」にした場合、この最適化が行
われません。なお、URL指定（「ネットワーク
インストール」）の場合のみ、「インストールメ
ディアに応じてOSの種類を自動判別する」によ
りこれを自動検出することができます。
　今回は、Windows 7のDVDインストール（図
3）とFreeBSD 10.3のISOイメージインストー
ルを選択します。ISOイメージインストールで
はその ISOイメージファイルの物理ホストの
ファイルシステム内のパスを設定する必要があ
ります（図4の（a）〜（f））。

ステップ3：メモリとCPU

　ステップ3は仮想マシンに割り当てるメモリ
サイズとCPU数の設定です（図5）。
　指定可能な数は灰色文字で選択欄下に表示さ
れていますが、並行稼働させる仮想マシン台数
と物理ホストを考慮して決めます。なお、今回
の処理では、並行処理ではなくWindows 7また
は、FreeBSD 10.3のどちらか一方を稼働させ、
他方は停止しておく前提の設定です。

 ▼図4　ISOイメージファイルの指定手順

 ▼図5　新しい仮想マシンを作るステップ3

（a）（a）

（d） （e） （f）

（b） （c）

Aug. 2016 - 109108 - Software Design

仮想環境の構築（その2）〜仮想マシンの作成
第3回

ステップ4：ストレージ

　ステップ4は仮想マシンストレージの設定で
す（図6）。ストレージは物理ホスト内のハード
ディスクや接続デバイスから選択します。
　ディスクイメージを作成する場合、この時点
でディスク全体を割り当てるかどうかを選択可
能です（「今すぐディスク全体を割り当てる」を
チェック）。ここで大きなサイズを割り当てた
場合、仮想マシン作成時に時間がかかりますが、
OSインストール時にはその時間が不要になり
ます。これを選択しない場合、ディスクサイズ
を割り当てる仮想マシン利用時に時間がかかり
ます。また、割り当てサイズが利用可能なサイ
ズを越えていると、このオプションを選択して
いる場合には仮想マシン作成時にエラーとなり
ます。逆にこのオプションを選択していない場
合には、仮想マシン利用時に問題が発生する可
能性があります。

ステップ5：最終確認

　ステップ5では今までの設定の最終確認を行
います（図7）。ここではデフォルト設定で作成
するため、「インストールの前に設定をカスタ
マイズする」を選択していません（運用管理の回
に「設定のカスタマイズ」として取り上げる予定
です）。また、「詳細なオプション」で各種オプショ
ンの追加設定が可能ですが、ここもそのままに
しています。

　図7では「仮想ネットワーク 'default' : NAT」
しか有効になっていませんが、ほかの接続、た
とえばブリッジも仮想マシンマネージャーの「接
続」に加えることで利用可能になります（別の回
で解説します）。
　ほかには、MACアドレスや仮想化の種類
（KVM）、32/64ビットアーキテクチャの設定・
選択が可能です。なお、MACアドレスは変更
可能ですが、基本的にKVM（仮想マシン）では
ベンダー識別子（OUI）注3は「52:54:00」を使用し
注3） Organizationally Unique Identifier。管理組織（ベンダー）

識別子の詳細はhttp://standards-oui.ieee.org/oui/oui.txt
を参照。IEEEが規定するMACアドレスの先頭3オクテッ
トがOUI。KVMのOUIは IEEEに登録されていないが、
qemu/kvmでは「52:54:00」と規定されている。

 ▼図6　新しい仮想マシンを作るステップ4 ▼図7　新しい仮想マシンを作るステップ5

 ▼図8　新しい仮想マシンを作成中

http://standards-oui.ieee.org/oui/oui.txt

110 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

BSD 10.3（図10）の2つをそれぞれ単独でイン
ストールしています。

・仮想マシン1（kvm1）：Windows 7
・仮想マシン2（kvm2）：FreeBSD 10.3

　紙幅の都合でインストール手順は割愛します
が、FreeBSD 10.3はデフォルトインストール
としています。ですのでCUI（Character User

Interface：テキスト表示・入力）のシステムと
して作成されます。

ゲストOSインストール後の状態

　ゲストOSのインストール後、仮想マシンマ
ネージャー画面で仮想マシンの状態を見ると図
11のように「実行中」であることがわかります。
これは次のコマンドでも確認できます。

仮想マシンイメージ

　インストール完了後、仮想マシンのイメージ
が図12のように作成されています。その所在
パス名は仮想マシンの設定xmlファイル（/etc/

libvirt/qemu/kvm1.xmlおよびkvm2.xml）中の
domain/devices/disk/sourceセクションの file

に記述されています。

ています（デフォルトで自動設定される）。
　以上で仮想マシンの作成設定が終了し、「完了」
をクリックすると仮想マシンが実際に作成され
ます（図8）。

◆　◆　◆
　このあと、ゲストシステムのOSインストー
ルを開始します。

ゲストシステムのOSと
ネットワーク環境のインストール

　ゲストシステムのOSインストールは、仮想
マシンの作成後、「完了」ボタンで自動的に引き
続いて開始されます。
　ステップ2で指定したゲストシステム用OS

の所在場所から、そのOSのDVDや ISOファ
イルイメージなどによりインストール実行とな
ります。本稿では、Windows 7（図9）とFree

 ▼図11　 仮想マシンマネージャーによる
ゲストマシン状況の確認

 ▼図9　Windows 7をインストール

 ▼図10　FreeBSD 10.3のインストール

[root@vm1 ̃]# virsh list í
 Id 名前 状態

 1 kvm1 実行中

Aug. 2016 - 111110 - Software Design

仮想環境の構築（その2）〜仮想マシンの作成
第3回

仮想マシン作成中に
起こる問題と対策

　仮想マシン作成中に起こる問題はインストー
ル元が見つからないとか、OS選択の詳細画面
が表示されないなどの問題です。概して、処理
の手順や操作の誤りからくるものです。

仮想インストールのDVD
メディアが選択できない

　DVDインストールの場合は、あらかじめそ
のDVDメディアを物理ホスト上にマウントし
ておく必要があります。さもないとDVDメディ
アが選択できないので、図3の「CD-ROMまた
はDVDを使用」の選択欄を使おうとしても「メ
ディアがありません（/dev/sr0）」と表示されて
しまいます。
　マウントしてあれば図13のようにデスクトッ
プ上にDVDメディアのアイコンが表示される
ので、この状態にしてから仮想マシンの作成へ
と進んでください。

仮想インストールの ISOイメージ
ファイルが選択できない

　このISOイメージファイルは仮想マシン作成
開始前にあらかじめ指定するパスに提供元から
ダウンロードして、適当な場所に格納しておか
なければなりません。

ゲストOSが選択できない

　「OSの種類」の選択欄では、最初は、全般、
Windows、Linuxだけしか表示されませんが、
「Show all OS options」をクリックするとすべて
のOSの種類が表示され、選択できるようにな
ります。バージョンの「全般」以外は、OSの種
類を「全般」以外を選択することで表示されるよ
うになります。

次回予告

　次回は今回作成／インストールした仮想マシ
ンを仮想マシンマネージャーから使用する方法
を解説します。また、仮想マシンの初期状態を
確認して、問題がないかを調べます。s

 ▼図12　仮想マシンイメージファイル

 ▼図13　DVDメディアがマウントされた状態

連載各回では、読者皆さんからの簡単な「ひとく
ち質問（QA）コーナー」や「何かこんなこともしてほ
しい要望（トライリクエスト）コーナー」を設けて「双
方向連載」にできればと思っていますので、質問
や要望をお寄せください。

宛先：sd@gihyo.co.jp
件名に、［仮想化連載］とつけてください

[root@vm1 ̃]# ls -al /var/lib/libvirt/images í
合計 20971724
drwxr-xr-x. 2 root root 4096 6月 11 19:14 2016 .
drwxr-xr-x. 9 root root 4096 6月 11 22:17 2016 ..
-rw-------. 1 root root 10737418240 6月 12 18:24 2016 kvm1.img
-rw-------. 1 root root 10737418240 6月 11 22:10 2016 kvm2.img

mailto:sd@gihyo.co.jp

112 - Software Design

　大阪を中心に20年間システム開発に携わった
あと、現在は東京で仕事をしている「SQLの伝
道師」ことジーワンシステムの生島です。いつも
は既存のあるいは開発中のシステムに関してパ
フォーマンスの相談を受ける取引先、浪速シス
テムズの五代さんから今回は新規開発案件の相
談を受けました。
　「生島さん、ウチが依頼を受けたお料理レシピ
投稿サイトの開発について、技術アドバイザと
いう立場でご協力お願いしたいんですが」
　今でいうならクックパッドのようなサイトで
すね。料理のカテゴリ（和・洋・中など）、使っ
ている食材、所要時間や用途（パーティ用、お弁
当用、子供向け、減塩・糖質制限など）といった
さまざまな条件で検索できるもの。コンシュー
マー向けサービスですので、当たれば利用者数
は100万単位で増えることが予想されます。ち
なみにクックパッドは現在有料会員が100万人
を超え、月間ユーザ数も5,000万人に達する巨
大サービスに成長しています。
　当然、下手な作り方をすると性能問題を起こ

新規開発やりますよ！
すでしょう。
　「性能トラブルを起こしてから手を打つより、
最初から意識して作ったほうがえぇと思いまし
て、生島さんにご協力してもらいたいんです」と
五代さん。確かにそのとおりなので、大道君を
含む開発チームに対して私がコンサルタントと
してサポートする、ということで依頼を受ける
ことにしました。
　そこで、真っ先に提案したのがこの方針です。
　「極めて複雑なというほどじゃないにしても、
そこそこ複雑なユーザインターフェース（以下、
UI）が必要ですね……でしたら、テーブル設計
は後まわしにしましょ！」
　「えっ」「えっ」大道君と五代さんが同時に驚き
の声を上げました。無理もないことで、ほとん
どの会社では普通そういうやり方はしないはず
です。しかし、あるやり方をすれば、このほう
がうまくいくのです。どういうことか、詳しく
説明しましょう。

　典型的なウォーターフォール・モデルの開発
工程は図1のようになり、基本設計の段階でテー

テーブル設計は後まわし！
の真意とは？

生島氏
DBコンサルタント。性
能トラブルの応援のた
め大道君の会社に来た。

大道君
浪速システムズの新米
エンジニア。素直さと
ヤル気が取り柄。

五代氏
大道君の上司。プロ
ジェクトリーダーで
もある。

登
場
人
物

紹
介

 原案 生島 勘富（いくしま さだよし） info@g1sys.co.jp ㈱ジーワンシステム
 構成・文 開米 瑞浩（かいまい みずひろ）　 イラスト フクモトミホ

ウォーターフォール・モデルの新規開発案件で悩ましいのが、開発の後半でUIが変更になった場合に、DBのテー
ブル設計およびシステム開発全体に手戻りが発生すること。五代さんと大道君も新規開発に取り組むようですが、
やはりそのことに頭を悩ませているようです。

「テーブル設計は後まわし！」にするやり方もある第6回

112 - Software Design Aug. 2016 - 113

ブル設計とUIを含む機能設計を行います。現在
では早めにプロトタイプを作って利用者に操作
感を確認してもらい、必要に応じて修正を加え
ながら進めるアジャイル的なスタイルを取り入
れている開発案件も増えているとはいえ、基本
はウォーターフォールというケースがまだまだ
多く、五代さんたちもそう考えていたようです。
しかしすでによく知られているように、この方
式ではどうしても「手戻り」が多発します。
　「新人ITエンジニアへの教育をやってるとき
だったら、手戻りが起きるのは要件定義や基本
設計をいいかげんにやってるからや！　きっち
りやれ！　とうるさく言うことにも意味があり
ますけど、実際のところそれで手戻りがなくな

ると思いますか？」
　「お客さんが仕様をきっちり決めてくれたら
……」
　「確かにそうなんですけど、お客様も、自分で
もわからへんものは決められへんでしょ」
　「確かに、やってみんとわからんもんはいろい
ろありますね。こういうコンシューマー向けサー
ビスはとくにそういう面がキツイし……」
　「問題は、UIの仕様変更があとになるほど、そ
の修正がシステム全体に影響することが多くな
るってことです」

テーブル設計の変更はシステム
全体に影響する

　図2に挙げたとおり、本来（1）バックエンドの
仕様はフロントエンドのニーズに応じて決める
ものです。ここで言うフロントエンドとはユー
ザ体験（UX：User experience）およびそのため
に用意されるUIのこと、バックエンドとはビジ
ネスロジックモジュールやデータベースのこと
です。ところが、（2）フロントエンドには仕様
変更がどうしてもよくあります。UXなんか使っ
てみないとわかりませんから、動くシステムが
できて使ってみてようやく「ああしたい、こうし
たい」という具体的なニーズが出てくるわけで
す。
　「現実的にはそうやねぇ……」と五代さん。
　困るのは、それによって（3）テーブル設計も

変更が必要になり、（4）そ
の影響がシステム全体に波
及しやすいということで
す。画面のボタンの位置を
変えるといった修正は一画
面だけにとどまりますが、
新しい情報項目を増やすよ
うな修正はそのテーブルを
使う全モジュールに影響し
ます。
　「そうなりますね……」と
大道君。
　「これを防ぐには、どう

「テーブル設計は後まわし！」にする
やり方もある第6回

フェーズ

要件定義

テーブル設計

基本設計

詳細設計

実装／テスト

たいてい、実装を終えてからでも
手戻りがある

 ▼図1　典型的ウォーターフォール・モデルの開発工程

114 - Software Design

したらいいですか？」
　「要件定義でしっかりヒアリングを……」
　「無理言うてますやん……客のせいにしない方
向で！」
　「ガハハ。結局のところ、使ってみんとUI/

UXが決まらんいうことは、とっとと使わせて
決めてもらうしかないんとちゃいますか。要す
るにプロトタイピング、アジャイル的なやり方
で」
　「そう、それをやろうってことです。そのため
にウチで採用してきた実績のある簡単な方法が
あるんですよ」
　「おお、どうやるんですか？」

登録

検索

削除

（1）バックエンドの仕様はフロントエンドの
　 ニーズに応じて決めるもの

RDBMS

Business Logic

画面1

画面2

table

table

User Interface UX
（User experience）

（3）テーブル設計も
　　 変更が必要になる

（2）フロントエンドの仕様は
　 変更されやすい

（4）テーブル設計の変更はシステム全体に波及しやすい

 ▼図2　UIの仕様変更がシステム全体に影響する理由

RDBMS

RDBMS
AP

AP

AP

スタブ

RDBMS

tabletable

テーブル構造の
確定は後まわし

自動生成

バックエンドのアジャイル開発
テーブル設計／SQL開発

フロントエンドの
アジャイル開発

インターフェース仕様書
（Excel）

 ▼図3　Excelでインターフェース仕様書を書いてDBスタブを自動生成

114 - Software Design Aug. 2016 - 115

　おおまかな手順は図3です。まず1段目、AP

（アプリケーション）側からDB（データベース）
へのインターフェース仕様書（以下、I/F仕様書）
をExcelで書きます。
　「DBへのI/F仕様書？」
　「どんなパラメータを渡すとどんな結果が返っ
てくるか、を定義するわけ。詳しくはあとで説
明するね」
　そして、その I/F仕様書からDBのスタブを
自動生成します。自動生成はマクロでやります。
スタブはDBのストアドプロシージャとして実
装するもので、AP側からは本当のDB呼び出し
と同様に使えます。で、図3の2段目ですが、こ
のスタブを使ってアジャイル式にAPの画面を
作り、フロントエンドの仕様を確定させます。
ユーザはこの段階で、データはダミーですが実
際に動く画面を使ったうえでいろいろな要望を
出せますから、ウォーターフォール型よりもずっ

I/F仕様書を書いてスタブ
自動生成

と早くUI/UX要件を固めることができます。
　そして3段目、フロントエンドの仕様が固まっ
たら、バックエンドを作ります。テーブル、ス
トアドプロシージャ、SQL文などを確定させて
いくわけです。
　「それで……うまくいく、と？」
　「ウチでは実際これでやってきましたんで」
　「I/F仕様書ってどういうものを書くんです
か？」
　実例としては図4のようなものです。プロシー
ジャ名とその機能概要、引数、戻り値、ダミー
データをそれぞれ書きます。これを使ってリス

ト1、2のようなスタブを自動生成します。これ
を使って生成したスタブはストアドプロシージャ
になり、AP側からはCALL文で呼び出せます
（SELECT文と同じ扱い）。本番時にはそのスト
アドプロシージャの中身を、実テーブルを使う
ように置き換えればいいので、AP側の修正は
不要です。
　「これは……SQLの知識なくても書けます？」
　「そのとおーり !!　そこが大事なとこなんよ！」

「テーブル設計は後まわし！」にする
やり方もある第6回

（a）プロシージャ名、機能概要
プロシージャ名 機能概要
TEST_PROC 名前と住所で顧客を検索する

（b）引数定義
 項 引数名 区分 必須 型 テーブル名 フィールド名 比較演算子 備考
 1 PARM1 IN TEXT NAME LIKE 1つ目のパラメータ
 2 PARM2 IN TEXT ADDRESS LIKE 2つ目のパラメータ

（d）ダミーデータ定義
 ID NAME Bdate ADDRESS TEL FAX
 1000 山田 太郎 1970/11/7 大阪府大阪市住之江区1 06-6666-7777 06-6666-8888
 1001 佐藤 二郎 1970/11/8 東京都大田区蒲田2 06-6666-7777 06-6666-8888
 1002 鈴木 一郎 1970/11/9 愛知県名古屋市中区4 06-6666-7777 06-6666-8888

（c）戻り値定義
 戻り値
 項 フィールド名 型 備考
 1 ID NUMBER 主キーです
 2 NAME TEXT 名前
 3 Bdate DATE 誕生日
 4 ADDRESS TEXT 住所
 5 TEL TEXT TEL
 6 FAX TEXT FAX

スタブを生成したあと、AP側からは次のようなコードで呼び出す
CALL TEST_PROC(“佐藤”, “東京”)

 ▼図4　Excelで作る DB インターフェース仕様書

116 - Software Design

DB関連の設計／開発工程を
合理化できる

　図1のようなウォーターフォール型でよくあ
るやり方をDB屋から見ると、こんな欠点があ
ります。

①テーブル設計がなかなか確定しない
②全工程でDBのスキルが必要

　①については先ほど書いたとおり、ユーザが
実際に使えるのがあとになってしまうのが原因
なので、プロトタイピングをすることによって
解決できます。

　②はAP側から生のSQLを使うことによって
起きる問題です。当連載でもこれまで書いてき
ましたが、SQLは通常フロントエンド側で使わ
れる言語とは設計思想が違うため学びにくく、
苦手としているエンジニアが多いものです。に
もかかわらず生のSQLを使うと、苦手だからシ
ンプルなSQLで済まそうとして「ぐるぐる系」と
呼ばれる無駄に複雑な手続き型コードを書くよ
うになり、開発工数もかさむし性能も落ちるし
バグも出やすくなる結果を招きます。
　ではどうしたら良いのか？　その答えの1つ
が本稿で紹介するExcelインターフェース仕様
書→スタブ生成方式です。

　大道君が言うように、図4のような
I/F仕様書はSQLの深い知識がなくて
も書けます。スタブは自動生成できる
ので、フロントエンドの開発工程には
DBのプロはいりません。それがある程
度進んでI/F仕様書がそろってくると、
「AP側がどのようにDBを使うのか」が
具体的にわかります。生のSQLではパ
ラメータと戻り値がSQLの中に埋もれ
てしまってわかりにくくなりますが、
Excelで分離して書いてあれば一目瞭然
です。それをDBのプロが見れば、適切
なテーブル設計をしたうえで合理的な
SQL文を作ることができるわけです。
　「DBのプロって、なかなかいないで
すからね……」
　「僕も勉強はしていますけど、まだま
だですし……」
　「だから、DBとAPの開発をきっち
り分離したほうがいいんですよ。これ

CREATE OR REPLACE VIEW xTEST_PROC_VIEW AS
SELECT '1000' AS ID, '山田 太郎' AS NAME, CONVERT('1970/11/7', date) AS Bdate, '大阪府大阪市ｭ
住之江区1' AS ADDRESS, '06-6666-7777' AS TEL, '06-6666-8888' AS FAX
UNION ALL SELECT '1001', '佐藤 二郎', CONVERT('1970/11/8', date), '東京都大田区蒲田2', '06-6666-ｭ
7777', '06-6666-8888'
UNION ALL SELECT '1002', '鈴木 一郎', CONVERT('1970/11/9', date), '愛知県名古屋市中区4', '06-6666-ｭ
7777', '06-6666-8888'
;

 ▼リスト1　スタブ（ダミーデータ定義）

DROP PROCEDURE IF EXISTS TEST_PROC;

DELIMITER $$
/* ■□■□ TEST_PROC　 名前と住所で顧客を検索する　 */
CREATE PROCEDURE TEST_PROC
 (
 PARM1 TEXT -- 1つ目のパラメータ
 , PARM2 TEXT -- 2つ目のパラメータ
)
BEGIN

 -- 本番時は以下のSQLを修正し、このコメントを削除する。
 SELECT
 ID AS ID
 , NAME AS NAME
 , Bdate AS Bdate
 , ADDRESS AS ADDRESS
 , TEL AS TEL
 , FAX AS FAX
 FROM xTEST_PROC_VIEW
 WHERE
 1 = 1
 AND (NAME LIKE PARM1 OR PARM1 IS NULL)
 AND (ADDRESS LIKE PARM2 OR PARM2 IS NULL)
 ;

End
$$
DELIMITER ;

 ▼リスト2　スタブ（プロシージャ）

116 - Software Design Aug. 2016 - 117

はそれを可能にする方法の1つなんです」
　ほかにはO/Rマッパーを使うことによっても
似た効果が得られますが、O/Rマッパーは、手
続き型（オブジェクト指向）がSQL（RDB）を取り
込む形で作られています。そのため手続き型か
ら見たら効率が良くなりますが、DB側の性能
については考慮されておらず、RDB本来の性能
を出してくれるわけではありません。DB側に
インターフェースを作り、そのインターフェー
スのマッピングをするためにO/Rマッパーを利
用すれば、手続き型とRDBの両方の性能を十分
に活かせます。

　この手法の1つのカギが、DBのI/F仕様書を
書くことです。
　「こういうドキュメント、書いたこと／見たこ
とありますか？」
　「ありませんね……」
　「私も、ウチ以外で作ってるところを見たこと
がありません」
　DBはAPに対してデータ管理機能を提供する
プラットフォームです。プラットフォームには
普通APIがあり、インターフェース仕様書があ
ります。そしてAPIはAP側の必要に応じてだ
んだんと進化していくものです。それはたとえ
ばJavaのAWTやSwingをイメージしてもらえ
ばわかると思います。
　ところが、なぜかDBについては
インターフェース仕様書を書かずに
使う会社がほとんどです。RDBMS

はSQLとストアドプロシージャでか
なり複雑な機能を提供できるので、
「テーブルはこうなってるから、あと
は自由に使ってや」とSQLを生で使
わせるのではなく、APにとって使い
やすい形のAPIを提供してあげたほ
うが、トータルでの開発効率が良く
なります。

なぜDBの I/F仕様書を書
かないの？

　本稿で紹介したような I/F仕様書を書けば、
「ああ、このAPは、こんな形でDBを使いたい
んだな」ということがわかります。わかったら、
それに合わせてDBのエキスパートがテーブル
設計をし、どんなに複雑であっても最適なSQL

／ストアドプロシージャを組んでAPIとして提
供できます。そのためにはUI/UXのプロトタイ
ピングを先行させ、あとでテーブル／SQL／ス
トアドプロシージャの設計／開発をしたほうが
良いわけです。
　「なるほど……」
　「ということです。こんな形でやってみません
か？」
　「僕はやってみたいです」
　「お客さんの了解も取らなアカンので、今すぐ
結論は出せませんけど……」
　「要件定義は『張りぼて』ですが動くプログラ
ムで行います、と言われて嫌がるお客様は少な
いと思います」
　「そやな……わかりました！　その方向で話し
てみましょう！」
　そうして始まったお料理レシピ投稿サイトに
ついてもまたいろいろと性能問題が起きるので
すが、それについてはまたの機会に書くことに
します。｢

「テーブル設計は後まわし！」にする
やり方もある第6回

DBを API を通して利用させるイメージ（右）と
DBを直接利用させるイメージ（左）

APIAPI を通したほうがデータベース（倉庫）から
効率よく情報を取ってきてくれる……。

118 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

Google I/O

　今年もGoogle I/Oが開催されました（写真

1）。Googleが開催する開発者向けイベントの
Google I/Oは、毎年Googleからの新しい製品
や技術の情報が発表される場所であり、エッジ
の効いた開発者にとって重要な情報元となるイ
ベントです。今年は例年開催されていたサンフ
ランシスコではなく、なんとGoogle本社のあ
るマウンテンビューで開催されました。しかも、
まるで夏フェスのような屋外での開催となり、
多くの人を驚かせました。
　キーノートでは数々の発表が行われました。
Google HOMEという宅内家電を連携させて音
声認識で動かすデバイスや、コミュニケーショ
ンツールのAlloとDuo、Android Nの新しいプ
レビュー情報、Android Wear 2.0の発表、ア
プリをインストールせずに実行することができ

るAndroid Instant Appsなどの新技術が紹介さ
れています。
　それら中でも開発者としてインパクトが大き
いのが、Android Studio 2.2のリリースと、バッ
クエンドシステムであるFirebaseのAndroid

対応でしょう。今回はGoogle I/Oに参加した
fkm氏から、この2つを掘り下げて紹介しても
らいます（著：嶋是一）。

Android Studio
2.2 Preview

　Android Studio 2.1の正式版が4月26日にリ
リースされたばかりですが、Google I/O 2016

では次バージョンとなるAndroid Studio 2.2の
Preview版が発表されました。 主な変更点を
表1に示します。とくに、新しいレイアウトエ
ディタとConstraintLayoutはAndroidアプリ開
発の方法を大きく変えるものとなりそうです。

新しいレイアウトエディタと
ConstraintLayout

　Android Studio 2.2で追加された機能のうち、
一番大きなものはこの新しいレイアウトエディ
タとConstraintLayoutでしょう。Constraint

Layoutはサポートライブラリとして提供され、
API Level 9以上で利用可能なレイアウトです。
特徴は子Viewの配置を制約注1を基に決定する

注1） ここでいう「制約（Constraint）」とは「指定した条件」といっ
た意味合いです。

第8回 Google I/O 2016で注目すべき開発環境の進化

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

嶋 是一（しま よしかず）
NPO日本Androidの会　
理事長

fkm
日本Androidの会

Androidは世界で出荷される8割のスマートフォンに搭載※される、事実
上スマートフォンの標準OSです。このOS上で動くアプリケーションを開発
することは、自分のアイデアを世界に発信し、最も多くのスマートフォン上
で動かしてもらえる可能性がある行為です。このAndroidの最新情報と、
それを取り巻くコミュニティを知って、魅力的な開発をはじめませんか?

※IDC Worldwide Mobile Phone Tracker, August 7, 2013

 ▼写真1　Google I/O 2016でのワンショット

http://www.android-group.jp/

Aug. 2016 - 119118 - Software Design

Google I/O 2016で注目すべき開発環境の進化第8回

UIデザイナーもXMLの文法を習得する必要が
あり、AndroidアプリのUI設計はハードルの
高いものとなっています。Android Studio 2.2

ではこの問題を解決し、制約に基づいたレイア
ウトを実現するための新しいレイアウトエディ
タが導入されます。もちろん、Constraint

Layoutを用いない従来のレイアウトに対する
サポートも強化されています。
　図1はAndroid Studio 2.2の新しいレイアウ
トエディタの画面です。「Language」の2つ右
にあるボタンをクリックすると、図2のように

点で、iOSのAuto LayoutによるViewのレイ
アウトに近いものになっています。
　「iOSのAuto Layoutのようなもの」と書くと、
「使うのが非常に難しいのでは？」と心配する方
もいると思います。Android Studio 2.2では、
レイアウトエディタもConstraintLayoutによ
る変更に合わせて大幅に強化されました。これ
までのレイアウトエディタは使い勝手が良いと
は言えず、レイアウトXMLを直接編集したほ
うが思ったとおりのレイアウトを実現しやすい
という力不足の面もありました。そのため、

 ▼図1　新しいレイアウトエディタ ▼図2　設計図（blueprint）モード

デザインに関する変更点

新しいレイアウトエディタ 設計図モードが追加され、後述のConstraintLayoutのための機能強化が行われた

ConstraintLayout 子Viewを、指定した条件を満たすように配置するレイアウト。レイアウトのネストを浅
くしたまま、フレキシブルな配置が可能となった

レイアウトインスペクタ アプリ実行中のレイアウト状態を取得し、レイアウトの階層や属性値を確認できるよう
になった

開発・ビルドに関する変更点

Firebaseプラグイン Firebaseの機能（Analyticsなど）をすぐアプリに実装できるようになった

サンプルブラウザ サンプルコードの確認が容易になった

C++サポートの強化 デバッガがJavaとC++の両方を同時に扱えるようになった

Jackコンパイラの強化 アノテーション処理がサポートされた

Merged Manifestビューワ マージ後のAndroidManifestを確認するためのビューワが追加された。これにより、
どのライブラリがどのパーミッションを追加したかなどの判別が容易になった

テストに関する変更点

Espressoテストレコーダー UI操作を記録し、Espressoテストコードを生成する機能が追加された

APKアナライザー apkファイルに含まれるクラスやリソースなどがサードパーティのツールなしで確認できる
ようになった

 ▼表1　主な変更点

120 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

設計図モード（blueprint mode）になります。
　試しに画面の左上にボタンを配置してみましょ
う。するとAndroid Studioは「ボタンの左端は
親Viewの左端から16dpにする」という制約と、
「ボタンの上端は親Viewの上端から16dpにす
る」という制約を自動で設定してくれます。こ
のとき、（誌面では伝わりづらいですが）図3の
ようにボタンの該当する位置にアニメーション
で「ここに制約を追加するよ」を教えてくれます。

　次に、このボタンの下に48dpほど間隔をあ
けてTextViewを配置してみましょう。すると、
Android Studioは左端に関する制約と、「この
TextViewはボタンの下に配置し、マージンは
48dp」という制約を自動で追加します。追加さ
れた制約は図4のように矢印で示され、制約の
有無が一目でわかるようになっています。
　ConstraintLayoutは制約を基にレイアウトを
行うので、たとえばボタンをドラッグし、図5

 ▼図3　アニメーションで上端と左端に制約が
　　 追加されようとするのを表す

 ▼図5　ボタンをドラッグで移動させると、
　　 下のTextViewも制約にしたがって移動する

 ▼図4　制約は矢印で表される

 ▼図6　上から1/3の位置に配置してみる

Aug. 2016 - 121120 - Software Design

Google I/O 2016で注目すべき開発環境の進化第8回

のように移動させた場合には、下のTextView

も制約にしたがって自動で移動します。
　ここまでの説明ではRelativeLayoutとの違
いがないように見えますが、ConstraintLayout

では「バイアス」という制約を用いることができ
ます。図6はバイアスを用いて、TextViewのy

座標を親Viewの上から3分の1の位置に配置
した例になります。

Firebaseの機能強化

　Firebaseとは、2014年10月にGoogleが買
収したBaaS（Backend as a Service）です。買
収された当時はデータのリアルタイム同期を得
意とするサービスでしたが、Google I/O 2016

で多くの機能を追加したことが紹介されました。
表2に追加された主な機能を示します。もちろ
ん、リアルタイムデータベースやストレージ機
能は引き続き提供されます。
　表2で示した機能はどれもモバイルアプリ開
発において重要な機能です。そしてその多くが
無料で利用可能なため、多くのアプリが
Firebaseの機能を利用することになると思わ
れます。

Cloud Messagingと
Noti�cationを使ってみた

　Cloud MessagingとNotificationの機能を確

認するため、新規AndroidアプリにFCMを導
入し、Notificationを使って通知を送ってみま
した。結論から先に言うと、Javaプログラム
を1行も書かずに通知機能を実装することがで
きました。
　まず、Android Studioで新規アプリプロジェ
クトを作成します。Application IDを com.

mokelab.sddemoとし、最もシンプルなEmpty

Activityのテンプレートでプロジェクトを作成
しました。
　次に、Firebaseのコンソール注2で新規プロ
ジェクトを作成します（図7）。プロジェクト作
成にはGoogleアカウントが必要となることを
注2） https://console.firebase.google.com/

 ▼図7　Firebaseにプロジェクトを作成する

機能 説明

Analytics アプリ内分析機能。分析結果からユーザセグメントを作成し、Push通知などのサービスに利
用することが可能

Cloud Messaging Push通知サービス。GCM（Google Cloud Messaging）がFCM（Firebase Cloud Messag
ing）に改名された。iOSのAPNsもサポートされている

Notification Cloud Messagingの機能を用いて、指定した時刻やユーザセグメントに通知を送るサービス。
開封率の測定なども行ってくれる

Authentication 認証機能。Googleだけでなく、Facebook/Twitter/GitHubによる認証もサポートされている

Remote Config アプリ内の設定をサーバ側で制御するためのサービス。たとえば新機能を最初は一部のユー
ザにのみ解放するといった使い方ができる

Test Lab Androidアプリのテスト支援サービス。Cloud Test Labと呼ばれていたサービスがFirebase
Test Labに改名された

Crash Reporting アプリクラッシュ時のレポート収集サービス

 ▼表2　Firebaseに追加された主な機能

https://console.firebase.google.com/

122 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

お忘れなく。プロジェクトを作成した後は
「AndroidアプリにFirebaseを追加」をクリック
します。ここで、先ほど新規作成したAndroid

アプリのApplication ID（パッケージ名）を入力
します（図8）。「アプリを追加」ボタンをクリッ
クすると、自動でgoogle-services.jsonのダウ
ンロードが始まるので、Androidアプリプロジェ
クトのappフォルダに入れてください。これで

Firebaseコンソールでの準備は完了です。
　google-services.jsonの配置が完了したら、
Androidアプリプロジェクトに設定項目を追加
していきます。まず、プロジェクト直下のbuild.

gradleを開き、buildscriptの dependenciesに
“classpath 'com.google.gms:google-services:

3.0.0'”を追加します（リスト1）。
　次に、app配下の build.gradleを開きます。
まず、dependenciesに“compile 'com.google.fire

base:firebase-messaging:9.0.2'”を追加。また、
build.gradleファイルの最下行に“apply plugin:

'com.google.gms.google-services'”を追加しま
す（リスト2）。本稿執筆時点ではライブラリの
バージョンは9.0.2でしたが、実際に導入する
際は最新バージョンを指定してください。ライ
ブラリ名とバージョンはFirebaseのAvailable

libraries注3で確認できます。
　最後に、build.gradleファイルを編集してい

注3） https://firebase.google.com/docs/android/setup#
available_libraries

 ▼リスト1　プロジェクト直下のbuild.gradleを編集する

 ▼リスト2　app配下のbuild.gradleを編集する

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:2.2.0-alpha2'
 classpath 'com.google.gms:google-services:3.0.0' // この行を追加

 // NOTE: Do not place your application dependencies here; they belong
 // in the individual module build.gradle files
 }
}

apply plugin: 'com.android.application'

android {
 // 中略
}

dependencies {
 // 中略
 compile 'com.google.firebase:firebase-messaging:9.0.2' // この行を追加
}

apply plugin: 'com.google.gms.google-services' // ファイルの最下行にこの行を追加

 ▼図8　AndroidアプリにFirebaseを追加する

https://firebase.google.com/docs/android/setup#available_libraries

Aug. 2016 - 123122 - Software Design

Google I/O 2016で注目すべき開発環境の進化第8回

るので、Android Studioの「Sync Project with

Gradle Files」で編集内容をAndroid Studioに
反映させましょう。このとき「firebase-messag

ingが見つからない」という旨のエラーメッセー
ジが表示されたら、SDK Managerを起動し、
Google Repositoryを更新してください。Fire

baseのライブラリは jCenterではなく、Google

Repositoryで提供されているためです。
　Androidアプリ側の準備は以上になります。
実機でアプリを起動し、端末のバックボタンで
バックグラウンド状態にします。この状態で
Firebaseのコンソールを開き、左ナビゲーショ
ン内の「Notifications」を選びます。すると、図

9の画面が表示されるので「最初のメッセージ
を送信」をクリックします。
　次に、通知メッセージ文とラベルを入力し、
ターゲットとしてアプリを選択します（図10）。
ラベルはFirebaseコンソール内で識別するた
めのものなので適当なものを入力してかまいま
せん。

　詳細オプションで通知音や有効期限などを指
定することもできます。入力が完了したら「メッ
セージを送信」ボタンをクリックすることで、
先ほど起動したアプリに対し、通知が表示され
ます（図11）。なお、アプリがフォアグラウン
ドにいる場合はライブラリの機能で通知は表示
されないので、送信を試す場合はバックグラウ
ンドに移動させておいてください。

まとめ

　FirebaseのAndroid対応が発表されたことに
より、Androidを用いた開発が、バックエンド
まで含めてますます行いやすくなった印象です。
Google I/Oでは、Android Nの「Androidの自
身の進化」も発表されていますが、それ以上に
開発者のための「開発しやすさ」の進化のほうが
大きい進化を遂げていると感じます。また来年
のGoogle I/Oに向けてこの傾向は進むでしょ
う。この動向を追える開発者のみ、進化の御利
益を得ることができます。楽しんで開発をしま
しょう。s

 ▼図9　最初のメッセージを送信 ▼図11　通知が表示された

 ▼図10　メッセージ文とラベル、
　　　 ターゲットとしてアプリを設定

124 - Software Design

　Sphinxには、プログラム言語ごとにクラスや
関数のリファレンス（説明文）を記述するために、
「ドメイン」と呼ばれるしくみが用意されていま
す。ドメインは、Sphinxが提供するディレクティ
ブとロールを分野ごとに分けて整理し、まとめ
たものです注1。たとえば、Pythonの関数説明や
クラス説明はPythonドメインを、C言語の説明
はC言語ドメインを使用してそれぞれ記述しま
す。

ドメインが存在しないことによる
問題点

　ドメインが導入される前のSphinxには、次の
ような問題がありました。
　Sphinxの開発当初は、クラスを説明するclass

ディレクティブや、関数を説明する functionディ
レクティブなど、一般的な用語を使用したディ
レクティブはすべてPythonのために提供されて
いました。その後、C言語向けのディレクティ
ブが追加されることになりましたが、cfunction

やctypeなどの名前で追加されています。これ
らのディレクティブは、Python向けのディレク
ティブとの名前の重複を避けるため、「c」という
プレフィックスが付けられています（リスト1）。
同様に、ほかの言語のドキュメントを書くには
ディレクティブやロールの名前の衝突を避ける

注1） ドメインに属さないディレクティブもあります。

ドメインとは
ための工夫が必要な状態でした。
　この問題を解決するためにドメインというし
くみが導入されました。ドメインによって名前
空間が分けられ、どの言語向けに作られたディ
レクティブでもclassや functionなどの一般的な
用語を使用できるようになりました（リスト2）。
Sphinxでは、PythonのほかにはC言語、C++、
JavaScript、reStructuredText（以下、reST）の
ドメインを組み込みドメインとして提供してい
ます。

ドメインがもたらすメリット

　名前空間が分けられたことにより、新しい分
野の説明を記述するためのディレクティブやロー
ルを追加することが容易になりました。ドメイ
ン単位での拡張が可能になり、言語リファレン
ス以外の用途で利用することも簡単になってい
ます。Ruby、Goなどの各種言語向けのドメイ
ンや、HTTP（REST API）や運用ドキュメント
など、プログラム言語以外の分野のドメインな
どが公開されています。

　ドメインに属するディレクティブとロールは
「ドメイン名:ディレクティブ」のように、コロ
ン（:）で区切って記述します。Pythonドメイン
のドメイン名はpyですので、ディレクティブは
「.. py:function:: keyword」（リスト3）、ロー
ルは「:py:func:`keyword`」（リスト4）となり

ドメインを使用した
ドキュメントの記述

Sphinxで始める
 ドキュメント作成術

ドキュメントの種類に応じた
表現ができる「Sphinxドメイン」

第17回

川本 安武　KAWAMOTO Yasutake　 Twitter @togakushi

Sphinxで始める
 ドキュメント作成術

124 - Software Design Aug. 2016 - 125

ます。
　ドメインによって提供されるディレクティブ
やロールは、その分野の説明のためだけに追加
されます。たとえば、関数の説明を書くための
ディレクティブでは、その言語の文法規約に従っ
て解釈が行われます。Sphinxでは通常、*は強
調マークアップとして解釈されますが、引数に
*が含まれていてもエスケープすることなく記
述できます。
　また、ドキュメントを変換した際にもその言

語の文法を解釈します。図1の例では、関数名
の識別 (❶)、モジュール名の識別 (❷)、引数や
キーワードの識別 (❸)、引数やキーワードの説
明 (❹)が行われています。クロスリファレンス
を生成する際には、関数名の最後に引数を含ま
ない形で括弧を追加します（図2の❺）。
　ドメインで提供されるディレクティブとロー
ルは、それぞれのドメインによって異なります
ので、各ドメインのドキュメントを確認してく
ださい。

ドキュメントの種類に応じた表現ができる
「Sphinxドメイン」 第17回

 Pythonの場合

.. function:: sqrt(value)
 ↑functionというディレクティブを使う

 C言語の場合

.. cfunction:: sqrt(value)
 ↑cfunctionというディレクティブを使う

 ▼リスト1　 関数用ディレクティブの記述例
（ドメイン導入前）

===
:py:mod:`turtle` --- Tkのためのタートルグラフィックス
===

.. py:module:: turtle
 :synopsis: Tkのためのタートルグラフィックス

.. py:function:: dot(size=None, *color)

 :param size: 1 以上の整数 (与えられる場合には)
 :param color: 色を表わす文字列またはタプル

 直径 *size* の丸い点を *color* で指定された色で
 描きます。
 size が与えられなかった場合、pensize+4 と
 2*pensize の大きい方が使われます。

 ▼リスト3　ドメインを利用したディレクティブの記述例

 ▼リスト2　 関数用ディレクティブの記述例
（ドメイン導入後）

 Pythonの場合

.. py:function:: sqrt(value)

 C言語の場合

.. c:function:: sqrt(value)

どちらでもfunctionという
ディレクティブが使える

Turtle および Screen のメソッド概観
===================================

Turtle のメソッド

Turtle の動き
 移動および描画
 ¦ (...省略...)
 ¦ :py:func:`dot`
 ¦ (...省略...)

 ▼リスト4　ドメインを利用したロールの記述例

 ▼図1　リスト3をHTMLに変換した様子

❶

❷ ❹
❸

 ▼図2　リスト4をHTMLに変換した様子

❺

126 - Software Design

デフォルトのドメイン名

　ドメインを利用してC++ライブラリのドキュ
メントを書いている場合、cppドメインのディ
レクティブやロールを中心にして記述していく
ことになります。そのため、cpp:functionの
ように何度もcpp:と書くことになります。そこ
で、デフォルトドメインを設定すると、ディレ
クティブ、ロールに指定するドメイン名を省略
して記述でき、書き手の負担を減らせます。
　デフォルトドメインは次の2通りの方法で設
定します。

 ■primary_domain
　primary_domainは、conf.pyに設定するオプ
ションです。
　ドメインは1つのプロジェクトの中で、いく
つもの種類が利用できます。primary_domainに
は、複数あるドメインの中から主となるドメイ
ンを指定します注2。ディレクティブなどを記述す
る際にドメイン名が省略されている場合は、こ
の設定値がデフォルトドメインとして使用され
ます。primary_domainのデフォルト値はPython

注2） ドメインを1つしか利用していない場合でも、primary_
domainは指定できます。

ドメインのpyです。sphinx-quickstartが生成する
conf.pyにはprimary_domainが記載されていま
せんので、追記してください。

 ■default-domainディレクティブ
　default-domainディレクティブは、ページ内
のデフォルトドメインについての設定を行いま
す。このディレクティブで指定したデフォルト
ドメインは、primary_domainより優先されます。

ドメインのインデックス（索引）

　ドメインで提供されるディレクティブには、
定義した用語を自動的に索引に追加するものが
あります。リスト3で使用しているPythonドメ
インの functionディレクティブであれば、図3

のようになります。
　また、一部のドメインはドメイン独自の索引
を作成します。たとえば、Pythonドメインでは、
moduleディレクティブによってモジュールイン
デックスが作成されます（図4）。
　Sphinxでは、indexディレクティブやglossary

ディレクティブ、前述のドメインが提供するディ
レクティブによって追加される索引（全体インデッ
クス）と、ドメイン専用のインデックスを生成し
ます。それぞれのインデックスへのリンクは、
HTMLテーマによって若干異なる位置にあった
りしますが、基本的にはドキュメントの右上と右
下にあります。なお、全体インデックスへのクロ
スリファレンスは、:ref:`genindex`で作成で
きます。ドメイン独自のインデックスへのクロス
リファレンスはドメインごとに異なりますが、
Pythonドメインのモジュールインデックスであ
れば、:ref:`modindex`で作成できます。

標準ドメイン

　標準ドメインは、どのドメインにも属さない
汎用的なディレクティブを集めたものです。標
準ドメインの名前はstdです。標準ドメインは、
デフォルトドメインに設定しなくても、ドメイ
ン名を省略して記述できます。

Sphinxで始める
 ドキュメント作成術

 ▼図3　リスト3によって追加される全体インデックス

 ▼図4　 リスト3によって追加されるドメイン専用イン
デックス（Pythonドメインによるモジュールイ
ンデックス）

126 - Software Design Aug. 2016 - 127

　標準ドメインのprogramディレクティブは、
コマンドラインで利用するプログラム（コマン
ド）の説明を書く場合に使用します。optionディ
レクティブと組み合わせて使用し、そのプログ
ラム（コマンド）のオプションの説明を記述でき
ます（リスト5、図5）。全体インデックスにはプ
ログラム（コマンド）と、そのオプションについ
て双方向で追加されます（図6）。

　ドメインはSphinxの拡張機能で追加できま
す。PyPIを検索すると多くの拡張ドメインが見
つかります。PHPを始め、Go、Erlang、Scala、
Common Lispなどの言語ドメインや、HTTPド
メインのようにWeb APIのドキュメントを書き
やすくするドメインもあります。
　ドメインの追加は、過去の連載で紹介した拡
張と同様にpipコマンドを使用します（図7）。

Sphinx拡張による
ドメインの追加

　ここまでは言語リファレンスを作成するため
のドメインばかりが登場しましたが、Sphinxで
は言語リファレンス以外のドキュメントも書け
ます。次節では運用ドメインを例に、言語リファ
レンス以外のドメインの利用例を紹介します。

ドキュメントの種類に応じた表現ができる
「Sphinxドメイン」 第17回

sl

.. program:: sl

.. option:: -l

 長いSLが走る。

.. option:: -a

 車内の客が「HELP!」と叫んでいる。

.. option:: -F

 空(画面の上のほう)へ飛んでゆく。

 ▼リスト5　 標準ドメイン（programディレクティブと
optionディレクティブ）の使用例

全体インデックスの分割
　全体インデックスは、conf.pyの設定で分割され
たインデックスページも生成できます。html_split_
indexオプションがTrueに設定されると、Sphinx
はすべての索引が載っている全体インデックスと
アルファベットごとにページを分けた全体インデッ
クスの2通りを作成します。
　また、ドキュメントをHTMLに変換する際に、
html_use_indexオプションがFalseに設定されて
いると全体インデックスが、html_domain_indices

オプションがFalseに設定されているとドメイン専
用のインデックスページが、生成されなくなりま
す。html_domain_indicesオプションは、生成す
べき索引のリストを持たせることもできます
（HTMLだけではなく、EPUBやLaTeXにもインデッ
クスに関するオプションが存在します）。
　インデックスにある情報が多くなると逆に見に
くくなるので、必要に応じて分割された全体イン
デックスも利用すると良いでしょう。

COLUMN

 ▼図5　リスト5をHTMLに変換した様子

 ▼図6　リスト5によって追加される全体インデックス

128 - Software Design

運用ドメイン

　運用ドメインは、筆者が仕事上で利用する運
用ドキュメントをSphinxで活用するために作成
しました注3。筆者の職場環境では顧客に納品する
ドキュメントとは別に、内部で利用する目的で
書かれたドキュメントが数多く存在します。こ
れらのドキュメントはプロジェクトごとや担当
者ごとに分かれて作成、管理されています。
　これは意図的に分けたのではなく、プロジェ
クト固有の情報が記載されていたり、担当者が
ドキュメント化する必要があると感じる部分が
異なっていたりするため、自然と分かれて管理
されるようになりました。このような状況です
ので、プロジェクトAで作成したOracleの導入
手順書と、プロジェクトBで作成したOracleの
導入手順書が存在したりしています注4。
　内部で使う技術的なドキュメントはすべて
Sphinxで管理すると決めたとき、前述のように
「同じことについて書かれているドキュメント」
が大量に発掘されました。さらに「プロジェクト
固有の情報が記載されている」ため、一ヵ所に集

注3） インストール方法と設定方法は、https://bitbucket.org/
togakushi/sphinxcontrib-operationdomain/を参照。

注4） この2つのドキュメントの差分はインストール対象のホス
ト名が違う、作業に使うSSHクライアントやユーザ名が違
う、といった程度なのです！

約して管理するには不都合なことも多く、また
汎用的な内容になるように修正する必要もあり
ました。ひとつひとつドキュメントの内容を精
査して重複を排除したり、汎用的に利用できる
ように書き換えたりするには多くの時間が必要
な状況でした。
　この状況から抜け出すために、まず、どこに
何があり、何が書かれているのかを把握する必
要がありました。筆者はこれを運用ドメインを
作成することで解決しました。
　運用ドメインでは install、setting、command、
howtoというディレクティブが追加されます。こ
れらのディレクティブを使用することで、その
ドキュメントが「インストール手順」や「設定手
順」、「コマンドの使い方」「その他の雑多な手順」
であることを明示します。また、ディレクティ
ブによってそれぞれの専用インデックスが作成
されます。つまり、運用ドメインによってドキュ
メントの種類が分類され、Sphinxで管理した際
にインデックスで整理されることになるのです。
　ドキュメントのreST化をするにあたって、ま
ずはメンバーにreSTの文法を覚えてもらいま
した。運用ドメインで記述する内容をテンプレー
ト（リスト6）として用意し、ドキュメントには
それを追加してもらいました。
　インストール手順は install、コマンドの使い

方を述べたものはcommand、そ
の他雑多なものはすべてhowto

にするという、大雑把なルール
で既存のドキュメントのreST化
を進めました。幸いテキストで
書かれたドキュメントが多く、
reST化にはそれほど苦労はしま
せんでしたが、時折、体裁が大
きく崩れ、reSTとしてSphinxが

Sphinxで始める
 ドキュメント作成術

$ pip install sphinxcontrib-httpdomain
 （..中略..）
Collecting sphinxcontrib-httpdomain
 Downloading sphinxcontrib_httpdomain-1.5.0-py2.py3-none-any.whl
 （..中略..）
Installing collected packages: sphinxcontrib-httpdomain
Successfully installed sphinxcontrib-httpdomain-1.5.0

 ▼図7　pipコマンドでHTTPドメインを追加する例

xxxxxx導入手順書
================

.. op:install: xxxxxx導入手順書
 :synopsis: このドキュメントに書いてある概要を超簡単に。省略可能。(例:xxxxxxのインストール)
 :platform: RHEL,Solarisなど、特定プラットフォーム向けの内容なら、対象を書く。省略可能。

 :書いた人: 誰が書いたか書く(?は必ず1行空ける)
 :書いた日: いつ書いたか書く(わからなければ空欄でよい)

 ▼リスト6　ドキュメントを整理するためのテンプレート

https://bitbucket.org/togakushi/sphinxcontrib-operationdomain/

128 - Software Design Aug. 2016 - 129

処理できないものもありました。そのようなも
のは、時間短縮のためにreST化する前のドキュ
メントを丸ごと literalincludeで取り込むという
乱暴な変換も行っています。
　このやり方で、プロジェクトごとに分かれた
ディレクトリ構成のままドキュメントをreST

化しました。運用ドメインによってドキュメン
トが分類され、それぞれの分類ごとに専用イン
デックスが作成されるので、どのプロジェクト
でどのようなドキュメントが作成されたのかが
把握できるようになりました。
　重複が多いものは、利用頻度が高い傾向にあ
るドキュメントですので、優先的に汎用的なド
キュメントへ書き直していきます。汎用的になっ
たものは、プロジェクトごとのディレクトリと
は別に管理し、構造化を進めています。前回の

本連載で紹介された運用ドキュメントの部品化
までは進められていませんが、運用ドメインと
Sphinxによって、ドキュメントを探す時間、書
く時間を減らすことに成功しています。

　ドメインで提供されるマークアップ（ディレク
ティブとロール）により、ドキュメントで表現で
きることが増えます。Sphinxはドキュメントを
汎用的に書くことができるツールですが、ドメ
インを使用すれば目的に特化した専用のドキュ
メントも作成できます。
　次回はPythonコードから自動的にリファレン
スドキュメントを生成する、autodoc機能につい
て紹介します。｢

まとめ＆次回予告

ドキュメントの種類に応じた表現ができる
「Sphinxドメイン」 第17回

anyロールとデフォルトロールによるクロスリファレンス
　Sphinxには指定されたキーワードが ref、doc、
term注Aやドメイン（組み込みドメイン、拡張ドメ
インを含む）などのロールとして解釈できるかを自
動的に探索して試すanyロール注Bがあります。
　anyロールは、「:any:`キーワード`」と記述す
るだけでキーワードがラベルなのか rstファイルを
指しているのかなどを自動的に判別し、クロスリ
ファレンスを生成します。指定されたキーワード
がロールとして解釈できない場合や、複数の候補
が見つかった場合には警告を出力します。
　また、ロールに関する設定としてデフォルトロー
ルがあります。デフォルトロールの設定は、default
_role（conf.pyで指定）注C、または、default-roleディ
レクティブ（reST内に記述）注Dで行います。デフォ
ルトロールを設定しておくと、「`keyword`」のよ

うに「:ref:」や「:doc:」などを省略して記述した際
に、デフォルトロールが指定されているものとし
て解釈します。default_roleはプロジェクト全体、
default-roleディレクティブは記述されている reST
内で有効です。
　この2つを組み合わせ、デフォルトロールにany
を指定することで、クロスリファレンスを生成す
るためのロールを省略でき、書き手の負担を大幅
に減らせます。
　ただし、Sphinx-1.4.2未満のバージョン注 Eを
Python 2.7で利用している環境では、anyロール
に日本語が指定された場合、UnicodeEncodeError
が発生してドキュメントの変換が失敗します。こ
れは、組み込みドメインのC++ドメインが日本語
のロールを受け付けないために発生します（Sphinx
-1.4.2で修正済み）。また、使用している拡張ドメ
インによっては、日本語を受け付けずに同様の問
題が発生する可能性があります。UnicodeEncode
Errorが発生した場合は、明示的にロールを指定し
てエラーを回避し、ドメインの作成者に報告して
あげてください。なお、Python 3ではこの問題は
発生しません。

COLUMN

注A） refは指定されたラベルへリンクするときに使うロー
ル。docは指定したファイルパスにリンクするときに
使うロール。いずれも本連載第2回（本誌2015年5月
号）を参照。termはglossaryディレクティブで作った
用語集へリンクするときに使うロール。本連載第5回
（本誌2015年8月号）を参照。

注B） http://www.sphinx-doc.org/ja/stable/markup/inline.
html#cross-referencing-anything

注C） http://www.sphinx-doc.org/ja/stable/config.
html#confval-default_role

注D） http://docutils.sourceforge.net/docs/ref/rst/
directives.html#default-role 注E） 執筆時点（2016年6月）の最新版はSphinx-1.4.4。

http://www.sphinx-doc.org/ja/stable/markup/inline.html#cross-referencing-anything
http://www.sphinx-doc.org/ja/stable/config.html#confval-default_role
http://docutils.sphinx-users.jp/docutils/docs/ref/rst/directives.html

130 - Software Design

静かなること
WWDC2016のごとく

　フロリダ銃乱射事件注1の犠牲者への黙祷か
ら始まった今年2016年のWWDCは、例年に
もまして静かでした。ハードウェアはおろか、
ソフトウェアも毎年恒例のOSアップデートを
除けば「新製品」はなし。macOSは iOSが10に
なることを考えれば、OS X（オーエステン）と
いう名前をそのままにしておけないのは自明と
いうものでしょう。Apple製品用のOSにマッ
チする正規表現も ((watch¦tv¦i)OS¦OS ?X)
だったのが(watch¦mac¦tv¦i)OSとなってずい
ぶんとすっきりしましたが、あくまでヴァージョ
ンは“10.12”。灰色のバックグラウンドにアス
キーアートのリンゴというロゴは、そんな地味
なWWDCを実によく象徴しています。開発者
ではないプレスの皆さんはさぞ退屈されたので
はないでしょうか。
　しかし本誌の読者にとって、WWDC2016は
あくびしてスルーするにはあまりに重要な知見
に満ちています。

Learn Different＝
Differencial Privacy？

　その最たるのが、AppleのAIに対する姿勢
です。キーノートでも“Deep Learning”という
バズワードが、ご丁寧にもLSTM注2というア

ルゴリズムの名前まで含めて登場しましたが、
重要なのは「Appleも取り組んでますよ」という
ことではなく、Appleは何をしないのかという
メッセージです。
　OS X改めmacOSではずいぶん前から標準
搭載されていた顔認識が、iOS 10でついに標
準装備されます。それも顔だけでなく背景など
も含めた包括的な画像認識という形で。そこで
使われるのがAIで、そのこと自体はすでに
Google PhotoやFacebookなどを通して日常触
れているであろう本誌の読者にとってはこれま
た「何をいまさら」といったところでしょう。問
題は「何をやるか」ではなく「どこでやるか」。
　Appleは、端末にそれをやらせると言ってい
ます。クラウドではなくて。
　これは2つの点においてかなり不利な選択で
す。1つは処理能力。クラウドであれば必要な
処理能力を必要なときに必要なだけ増やせます
が、端末はそうも行きません。すでに iPhone

6/SEや iPad ProがMacBookに匹敵する処理
能力を備えている以上、現在のMacのPhotoア
プリケーションに標準装備されている程度の画
像認識処理であれば問題なくそれをこなしそう
ですが、同様のことをたとえば動画に対して行
うとしたら？
　しかし、それ以上に重要なのは、データの蓄
積。プログラムの質はソースコードが書かれた
時点で決定しますが、AIの質を決めるのは、デー

書いて覚える 入門Swift

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

WWDC2016の誤算17第 回

注1） https://ja.wikipedia.org/wiki/フロリダ銃乱射事件
注2） https://en.wikipedia.org/wiki/Long_short-term_memory

https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%AD%E3%83%AA%E3%83%80%E9%8A%83%E4%B9%B1%E5%B0%84%E4%BA%8B%E4%BB%B6
https://en.wikipedia.org/wiki/Long_short-term_memory

130 - Software Design Aug. 2016 - 131

WWDC2016の誤算第 回17

タの質量。どれほど優れた母と父のもとに生ま
れた赤子でも生まれたてでは母国語すら話せな
いように、どれほど計算資源を用意しようが生
まれたてのAIはそれ以上に非力です。生まれ
で決まるプログラムに対し、育ちで決まるAI

というのはその点においても「ウェットウェア」
たる我々に似ているのですが、そのAIを育て
るデータが「オレ」の分しかないのと「オレタチ」
全員分あるのでは勝負にすらならないように感
じられます。
　しかしプライバシーを考慮に入れると、その
印象は逆転します。Facebookでは他人が撮っ
た写真に自分がタグづけされていることがしば
しばあって、友人同士のパーティの写真だとか
なり重宝するのですが、もし同じことが街角の
監視カメラで行われていたとしたら？　Google

もFacebookも当然のごとく「悪用はしない」と
主張していますが、それを証明しようとしても
悪魔の証明になってしまいます。何しろすでに
彼らの手元でデータは解析されているのですか
ら。ちなみに、単にデータを保管している場合
は「盗み見していない」証明は簡単です。伝送系
路とストレージが暗号化されていることさえ示
せば良いのですから。クラウドにデータを上げ
るのとクラウドでデータを処理することには本
質的な違いがあるのです注3。
　パーソナルコンピューター製造販売会社とし
て産声を上げたAppleは、今後も変わらずパー
ソナルということにおいて首尾一貫しています。
　しかし、プライバシーというのは“All or

nothing”なものなのでしょうか？　いくらクラ
ウドAIが不安でも、パーソナルAIだけでは不
便なのは前述のとおり。両者のいいところ取り
はできないのでしょうか?

　それを成そうというのが、“differencial privacy”。
The Verge は“probably the most bewildering

part of Apple’s WWDC Keynote注4”と言ってい
ますが、とまどったのは筆者も同様です。微分プ
ライバシー？　差分プライバシー？
　1つの例として、文字変換を挙げます。かな
漢字変換のクラウド化は今や日常茶飯事となっ
ていますが、どうすれば文章をクラウド側にさ
らさずに実現できるでしょうか？
　「誰が」変換しているのかは知らせずに、「何を」
変換しているかだけ知らせて、その「何」だけを
集めて統計処理し、変換中の「みんな」に候補全
部を送ってしまえばいい。iOS 10には欧文か
らの絵文字変換も搭載されるのですが、まさに
そのように実装されています。
　プライバシーの本質は、「誰」と「何」の紐付けな
のですから、この紐さえ切ってしまえば、「何」だ
けクラウド処理するようにすればいいのではないか。

> differential privacy 注5 aims to provide means
to maximize the accuracy of queries from
statistical databases while minimizing the
chances of identifying its records

「記録自体を特定される可能性を最小化しつつ、
統計的情報精度を最大化する」という言葉の定
義に確かに合致しています。

Virtual Private Cloud
――もう1つの方法

　誰かが特定できる情報はなるべく端末で処理
し、誰かが特定できないようにできる情報は
（differencial privacyで）クラウド処理する。そ
れが、Appleのクラウドに対する方針というこ
とでよさそうです。実にAppleらしい落としど

注3） 「iTunes Match はどうよ？」という読者は鋭い。確かに「パーソナルデータをクラウド処理」しているように見えます。が、マッ
チした楽曲自体は、楽曲の著作権保持者が使用権をライセンスしている意味でパーソナルなデータではなく、パーソナルな
のはマッチしない楽曲と楽曲のリストというメタデータというのがポイントです。

注4） http://www.theverge.com/2016/6/17/11957782/apple-differential-privacy-ios-10-wwdc-2016
注5） https://en.wikipedia.org/wiki/Differential_privacy

http://www.theverge.com/2016/6/17/11957782/apple-differential-privacy-ios-10-wwdc-2016
https://en.wikipedia.org/wiki/Differential_privacy

132 - Software Design

書いて覚える 入門Swift

ころではありますが、不満もあります。たとえ
ばSiri。現在Siriは、iPhoneや iPadやApple

TVやApple Watch（さらにmacOSからはMac）
の持ち主以外の声にも反応してしまいますが、
differencial privacyの観点からはそれは当然と
いうことになります。声色を聞き分けられると
したら、クラウドの中のSiriが「誰」を知って
いるということなのですから。
　differencial privacy以外に、プライバシーと
クラウドのいいとこ取りをする方法はないので
しょうか？
　たとえば、こんな方法もありえます。クラウド
処理したいユーザの問い合わせがきたら、その
都度クラウド上でそのユーザ専用の仮想マシン
インスタンスを立ち上げるのです。その際仮想
マシンのイメージをユーザごとに暗号化しておけ
ば、クラウド提供者はユーザのことをいっさい知
ることなくユーザにクラウド資源を提供できます。
　しかし理論的に可能なこの方法は、現在のマ
シン仮想化ではまだ高くつき過ぎるかもしれま
せん。Siriに話しかける都度、仮想マシンが起
動しては会話が終わるやいなやシャットダウン
というのは確かに重過ぎるように感じます。し
かし仮想マシンではなくコンテナであれば、セッ
ションごとに起動しては終了しても十分な速度
を確保できるかもしれません。実際Webブラウ
ザでコードを実行する、いわゆるWeb REPL

サービスの多くは、IBM Swift Sandbox注6を含
めそのように実装されています。
　しかし十分なパフォーマンスだけではこの方法
を導入する十分な理由にはなりません。この方法
は「こちら側」のAppleデバイスごとに「あちら側」
にももう1台のデバイスを用意するようなもので
すから、クラウドという名の（見かけ上は）1台の
デバイスを共有するよりはるかにコストがかかり
ます。AWSやAzureやGoogle Cloud Platform

はそれ自体がれっきとした商品なのに、基本「ハー
ドウェアのおまけ」であるiCloudで現時点でそこ
までできるかは疑問ですが、損益分岐点を下回る
のは時間の問題でしょう。
　しかしどのような実装を採用するにせよ、そ
の生い立ちから「パーソナル」を売り物にしてき
たAppleが、「ネットワーク」を売り物にしてい
る他者よりもプライバシーを気にするのは自然
かつ必然な帰結だと筆者は感じます。

Swift Playground for
iPad

　「新製品なき」WWDCにおいて、もっともそれ
に近いのが Swift Playground for iPad でしょ
う（図1）。Xcode for iPad でないところが、実
にAppleらしい。「タブレットでコードを書く」と
いうのであれば、タブレットとPCを統合しよう
とした――そしてWindows 8で痛い目にあった
――Windowsタブレットですでに実現している
とも言えます。C#が好きなら、今すぐSurface

Bookを買ってXamarin三昧すべきだと筆者でも
認めるのにやぶさかではないのですが、しかし
そこにおける開発環境は、あくまでPCであって
タブレットではないというのもたしかです。
　では、Swift Playground for iPadは何なのか。
「enchantMOON注7じゃん！」と読者の皆さんには

注6） https://swiftlang.ng.bluemix.net/#/repl
注7） http://enchantmoon.com/ja/

 ▼図1　Swift Playground for iPad

https://swiftlang.ng.bluemix.net/#/repl
http://enchantmoon.com/ja/

132 - Software Design Aug. 2016 - 133

WWDC2016の誤算第 回17

お馴染みの清水亮さんの心の声が聞こえてきま
した。ヴィジュアルな言語ではないSwiftを、ヴィ
ジュアルなScratch注8やMOONBlock注9のよう
に動かせたり、課題が iBooksのように本棚に登
録されていたり、変数名をタップするとその変
数のプロパティが補完されたり……。これなら、
キーボードがない環境でもかなり使えそうです。
　Swift Playground for iPadを見てしまうと、
欲も出てきます。JavaScriptCoreに相当する
Swiftランタイムがモジュール提供されないか、と。
実はiBooksは、すでにJavaScriptの実行をJava

ScriptCore経由でサポートしています。これと同
様のことができれば、ブラウザで <script
lang="swift">とかまではあと一歩ですし、shell

scriptを超えた真のスクリプト言語にSwiftはな
り得るでしょう。

Swift 2.3から
Swift 3へ

　なんだかSwift 3の話題に入る前に誌面が尽
きてしまいそうですが、一番重要なことだけ今
号で。Swiftの次のバージョンは、3だけでは
ありません。2.3も出ます。Xcode 8は、どち
らもサポートしています（図2）。
　で、Swift 2.3とは何かというと、Swift 2.2

＋New SDKとのこと。Swift 1からSwift 2へ
の移行は問答無用だったのが、Swift 2から3

への移行は、プロジェクト全体ではなくソース
ファイルごとに段階的に行えます（図3）。
　あと、Swift 2.2から#if swift(>=version)が
使えるので、ソース内での切り替えも一応できます。

func xyz(x:Double, y:Double, z:Double)->Double {
 return x*y*z
}

#if swift(>=3)
xyz(x:2, y:3, z:4) // more swifty
#else
xyz(2, y:3, z:4) // like Objective-C
#endif

　そのようにしたのは、Swiftの資産が往時よ
り格段に増えたからでしょう。過去をバッサリ
捨てるにはあまりにも。Xcode 7登場時にはい

まだObjective-C主でSwift従だっ
たのが、今やすっかり逆転している
感があります。Swift 2のコードベー
スは、すでに技術的遺産となりつつ
あるのです。その遺産を段階的に継
承できるという点で、Swift 2.3の
発表は筆者にとって今回のWWDC

でもっともうれしい誤算でした。
　次回はいよいよSwift 3で何が変
わったかを解説します。ﾟ

注8） https://scratch.mit.edu/
注9） http://moonblock.jp/

 ▼図2　Xcode 8はSwift 2.3もSwift 3もサポートする

 ▼図3　Swift 2からSwift 3へのコード変換

https://scratch.mit.edu/
http://moonblock.jp/

134 - Software Design

Vimでgitを使うには

　GitHubの登場とともにgitの利用ユーザが爆
発的に増え、今や開発者でなくてもgitを使うよ
うになってきました。デザイナさんと協業する
場合でも、最近は開発者・デザイナともにgitを
使って作業し、各々が加えた変更をマージしな
がら作業しています。しかしもちろん、端末で
の作業が苦手な人もいます。そのため、世の中
にはgitを扱うためのフロントエンドがいくつか
あります。

・gitk（git付属）
・TortoiseGit
・SourceTree

　ほかにもいくつかありますが、詳しくは公式
サイト 注1を参照してください。
　このようにいろいろなツールがありますが、
Vimにおいては、その使い手によって十人十色
のやり方が存在します。まず、gitで管理された
プロジェクトをVimから扱う場合、次に挙げる
ようなパターンがあります。

①別の端末でgitコマンドを実行する
②:shでシェルを起動し、そこからgitコマンド

を実行する
③Vimを終了してコマンドを実行する
④Vimからgitコマンドを実行する

　まず①ですが、編集中のVimの状態を何も変
えずにいられるという点では最高の方法だと思
います。ただし画面を切り替える必要があり、
編集中のVimで変更内容を確認しながらコミッ
トメッセージを書くといった場合には向かない
かもしれません。Linux Desktopできれいにウィ
ンドウ分割したり、tmuxを使って端末を分割し
たりする人もいます。ただ、Vimのウィンドウ
を分割して複数のソースを一度に編集する場合
には、その領域すらも惜しく感じてしまうこと
もあります。
　②はVimのウィンドウがいったん消えてしま
いますし、Vim本体がサスペンドしてしまうの
であまりシームレスではありません。
　③もウィンドウが消えてしまううえに、Vim

の再起動が必要になるのでVimの起動が遅い人
には向きません。
　そこで④の出番ですが、みなさんはVimから
gitの機能を使う方法をいくつご存じでしょう
か？　実はいろいろ存在し、目的別に問題を解
決する何種類もの方法があります。

注1） URL https://git-scm.com/downloads/guis

一歩進んだ使い方
のため

のイロハ

Vimからgitを使い倒す

　今回はVimからバージョン管理ツール「git」を便利に使う方法を解説。fugitive、gitv、agit、vim-gita、
unite-gitといった、Vimの中だけでgitの操作を行えるパッケージをどんどん紹介していきます。気に入った
ものはぜひインストールして試してください。

mattn
twitter:@mattn_jp

第 回10

https://git-scm.com/downloads/guis

134 - Software Design Aug. 2016 - 135

Gdiff
　git diffを分割ウィンドウでわかりやすく
表示します（図1）。Vimのdiff機能をすでに使っ
ており、横方向に分割表示したい方は、diffopt
オプションにverticalを追加します。

:set diffopt+=vertical

　また、変更された位置を行き来するにはdiff

の表示内で[c（上方向）と]c（下方向）をタイプし
ます。Gdiffコマンドは引数にブランチ名を指
定できるので、トピックブランチと現行のブラ
ンチとの差分も簡単に表示できます。

:Gdiff feature-branch

Gcommit
　Vimからコミットが行えます。:Gwriteコマ
ンドを使ってあらかじめステージングしておく
必要があります。いったんどのファイルがステー
ジングされているかを確認したい場合は、次に
説明する:Gstatusコマンドで状況を把握し、C
をタイプしてコミット画面へ移ることもできま
す。エディタを開いたままコミットできるので、
とてもシームレスに開発を進められます。

Gstatus
　現在の状態を表示するコマンドです。ファイ
ル名部分にてDをタイプするとdiff差分が表示さ

gitのためのパッケージ

fugitive

　fugitive 注2は、Vim界隈で知らない人はモグ
リと言われるくらい有名人のTim Pope氏が開
発しているVimプラグインです。:Gitというそ
のままのコマンド名が用意されており、基本的
にすべてのgitコマンドをVimから実行できま
す。git logを実行するには、次のようにコマ
ンドします。

:Git log

　コマンドは必要に応じてページャで結果が表
示されます。

Gwrite
　gitの変更をステージングするにはgit addを
使いますが、fugitiveでは:Gwriteコマンドを
使います。少し理解しづらいかもしれませんが、
ファイルに対して書き込むコマンドが:write

であり、gitのステージに書き込むのが:Gwrite

と覚えると、そのほかのコマンドも理解できる
ようになります。
　引数なしで実行するとカレントバッファが、
引数を指定すると対象のファイルがステージン
グされます。ディレクトリ名を渡すと、その配
下が一括でステージングされます。

Gread
　Gwriteの意味を理解いただけたら、こちらも
わかるかと思います。最終コミットから変更を
加えたあと:Greadを実行すると、行った変更が
破棄されて最終コミットのバージョンに戻りま
す。gitではチェックアウトの意味になります。

注2） URL https://github.com/tpope/vim-fugitive

 ▼図1　「:Gdi�」の実行結果

Vimからgitを使い倒す

第 回10

https://github.com/tpope/vim-fugitive

一歩進んだ使い方
のため

のイロハ

136 - Software Design

ステータス行連携
　現在編集中のブランチがわかりやすいように、
fugitiveではステータス行で使用するための関
数を用意しています。statuslineオプション
に次を追加することで表示できます。

%{fugitive#statusline()}

gitv

　gitにはgitkというGUIツールが付属します。
現在のリポジトリのログや変更内容をGUIで確
認できます。
　このgitkの動作をVimで実現したのがgitv 注3

です（図4）。:Gitvで起動します。gitvは fugitive

の拡張プラグインですので、動作には fugitive

が必要です。
　gitvの操作は単純明快です。コミットログ
ビューアですので、基本はコミットログから差
分を閲覧するのがメインの機能です。oやO、s

でウィンドウの分割方法を変えられます。詳し
くは:help gitvを参照してください。
　このコミットログ画面ではcoをタ
イプすると閲覧対象のブランチを閲覧
できます。ただし起動時に、:Gitv!

のように!（バングと言います）を指定
して起動した場合には、閲覧モードで
はなく変更モード（ファイルモードと
呼ばれています）となり、coをタイプ
した際は、実際にカレントブランチを
変更できます。
　とても便利なプラグインなのです

れます。またCをタイプするとコミット画面が
表示されます。なお、ステージングするファイ
ルを登録または解除する場合はファイル名部分
で-をタイプします。すると、追加と解除がト
グルします（図2、3）。

Gblame
　fugitiveを有名にさせた一番の機能はこの
Gblameだと思っています。
　コミットの詳細を確認したいファイルを開
き、:Gblameを実行します。すると左側に分割
ウィンドウが作成され、その行を編集した際の
コミット名がコミット作者の名前とともに表示
されます。
　分割されて画面が狭く感じるかもしれません。
その場合Cをタイプすると可能な限り分割ウィ
ンドウが小さくなります。元に戻す場合はDを
タイプします。分割ウィンドウ側に移り、コミッ
トID部分で　　　をタイプするとそのコミット
時点でのソースコードが右側のウィンドウに表
示されます。

Enter

 ▼図2　ステージング予定 ▼図3　ステージング解除

 ▼図4　gitv

注3） URL https://github.com/gregsexton/gitv

https://github.com/gregsexton/gitv

136 - Software Design Aug. 2016 - 137

りもサクサクとgit操作が行えます。

vim-gita

　先に紹介した fugitiveは、Tim Pope氏のプラ
グインということもあり多くのユーザから評価
を得ているプラグインですが、その反面次のよ
うな不満を持っているユーザもいます。

・インターフェースが統一されていない
・コマンドが直感的ではない（例：Gread＝git

checkout、Gwrite＝git add）
・コマンドが覚えられない

　そこで登場したのが vim-gita 注5です。vim-

gitaでは、各コマンドがそれぞれの機能と連携
しています。たとえば差分一覧からのblameや
コミットなど、ユーザが期待している多くのgit

機能が連携されています。いったんgitaのコマ
ンドを起動すれば、git作業のほとんどをgitaの
中で完結でき、かつそれぞれにマッピングが用
意されています。
　vim-gitaを使った開発ワークフローは次の手
順です。

❶新しくファイルを編集する
❷:Gita statusを実行する（図5）
❸<<をタイプしてステージングする（>>で解除）
❹<C-^>（Windowsのコマンドプロンプトでは

が、Windowsでは日本語交じりのコミットログ
を正しく表示できない、また遅い、さらにカス
タマイズが容易ではないなどの問題点がありま
す。

agit

　gitvの問題点を解決し、不足している機能を
足したものがagit 注4です。gitvに比べて高速に
動作し、j/kによるコミットログの閲覧もサク
サクと動作するようになっています。
　agitもgitv同様にコミットログビューアです
ので、操作は簡単です。起動は:Agitもしくは
カレントバッファのファイルに対して履歴を閲
覧する:AgitFileのどちらかで起動します。
　:Agitで起動した場合はリポジトリ全体の履
歴一覧が表示され、カーソルの移動（j/k）によっ
て、右側のウィンドウにそのコミットで行われ
た変更がdiff形式で表示されます。
　現在表示しているファイルに対して:Agit

Fileで起動すると、そのファイルの履歴が表示
されます。:AgitFileで実行したモードではコ
ミットログのカーソル行が示すリビジョンで加
えられた変更をdiff形式で表示します。
　gitvでは、リポジトリに対して行える変更コ
マンドがチェックアウトだけでしたが、agitで
は表1の操作が可能です。
　このように、gitを使った一連のブランチ制御
が一通りできるので、コマンドラインを使うよ
注4） URL https://github.com/cohama/agit.vim 注5） URL https://github.com/lambdalisue/vim-gita

キー 説明

C
指定のブランチをチェックアウト（git
checkout）

cb
新しいブランチを作成する（git checkout
-b）

D ブランチを削除する（git branch -d）
rs ソフトリセット（git reset --soft）
rm リセット（git reset）
rh ハードリセット（git reset --hard）
rb リベース（git rebase）
ri （対話的に）リベース（git rebase -i）

 ▼表1　agitでの操作 ▼図5　「:Gita status」の実行結果

Vimからgitを使い倒す

第 回10

https://github.com/cohama/agit.vim
https://github.com/lambdalisue/vim-gita

一歩進んだ使い方
のため

のイロハ

138 - Software Design

　このコマンドでステータスを確認し、アクショ
ン（　　 をタイプ）を選択し追加（git add）や
削除（git rm --cached）、リセット（git reset）
やコミット（git commit）が行えます（図6、7）。
それぞれのコマンドを手打ちすることなくUnite

の候補選択で実行できるので、覚えないといけ
ないことが少なくなります。

CtrlPとgitの連携

　CtrlPにはUniteほど充実したgit連携プラグ
インは存在しませんが、gitで管理されたプロ
ジェクト内のファイルを選択する場合、簡単な
設定でそれを実現できます（リスト1）。
　この設定を使うと、gitの管理フォルダ内であ
ればgit管理しているファイルのみを、gitで管
理されていないフォルダであれば通常のファイ
ル一覧を表示します。何も考えずに<leader>f 注7

をタイプすれば、良い感じにファイル一覧を開

TAB

<C-6>）でコミットメッセージ編集
❺さらにほかのファイルも編集
❻:Gita diffで変更内容確認
❼:Gita statusから:Gita commitでコミット

　このように、おおよその操作をgitaの中で完
結できるようになっています。
　基本的なインターフェースは fugitiveに似て
いるので、fugitiveを使っていて不満のある方、
とくにインターフェースが気に入らないという
方はgitaを試してみてはいかがでしょうか。

unite-giti

　unite-giti 注6は、Shougo氏が開発している
Uniteというプラグインで使用できるgit向け拡
張プラグインです。Uniteを常用している方で
あれば、操作感がイメージできるはずです。

:Unite giti/status

注7） mapleaderを設定していないのであれば\f。

 ▼図6　「:Unite giti/status」の実行結果 ▼図7　unite-gitiで「ad」と検索

 ▼リスト1　CtrlPのgit連携設定

nnoremap <Leader>f :call <SID>CtrlPFilesWithGit()<Return>

function! s:CtrlPFilesWithGit()
 if exists('b:ctrlp_user_command')
 unlet b:ctrlp_user_command
 endif
 call system('git rev-parse --is-inside-git-dir')
 if v:shell_error == 0
 let b:ctrlp_user_command = ['.git', 'cd %s && git ls-files']
 exe 'CtrlP'
 elseif v:shell_error == 128
 exe 'CtrlPCurFile'
 else
 exe 'CtrlP'
 endif
endfunction

注6） URL https://github.com/kmnk/vim-unite-giti

https://github.com/kmnk/vim-unite-giti

138 - Software Design Aug. 2016 - 139

 Vim scriptを一度でも触ったことがある人ならわ

かると思いますが、Vim scriptはほかの言語と異な

り、非常に厄介な問題を持っています。

　ひとつは関数リファレンスを格納するための変

数名が小文字で始まってはいけないというルール

です。

" エラーになる
" E704: Funcref variable name must ｭ
start with a capital: f
let f = function('system')

　小文字で統一したい開発者にとっては、なんと

もモヤモヤするルールです。なぜこのようなルー

ルがあるかというと、Vimのビルトイン関数（たと

えば system）を勝手に書き換えてしまうことがで

き、ほかのプラグインで誤動作しかねないためで

す。こればっかりはしかたないと諦めてください。

　もうひとつは、一度値を代入された変数が型拘

束を持ってしまうということ。

let v = 2
let v = 'hello' " これはOK
let v = 3.14 " これもOK

" 以下はエラーになる
" E706: Variable type mismatch for: v
let v = {} " これはNG
let v = [] " これはNG
let v = function('system') " これもNG

　Vimで扱えるスカラ値（数値、文字列）を格納し

た変数にはあとから辞書、配列、関数リファレン

スを再代入できないのです。再代入するためには、

一度unletを使って変数を削除しなければなりま

せんでした。この問題は、たとえば何が格納され

ているかわからない配列を forでループする際に問

題となります。

let a = [1, ["foo", 3], {"foo": "bar"}]
for v in a
 echo v
endfor

　変数vは1回目のループではスカラ値を格納しま

すが、2回目は配列が格納されます。よってこの問

題に遭遇し、実行時にエラーとなります。これを

回避するためには次のように書かないといけませ

んでした。

let a = [1, ["foo", 3], {"foo": "bar"}]
for v in a
 echo v
 unlet v
endfor

　しかし、Patch 7.4.1546にてこの制約が外されま

した。これによりVimプラグイン開発者を長年悩

ませていた問題が1つなくなりました。しかしな

がら、世界中にはいろいろなバージョンのVimを

使っているユーザがいます。しばらくの間は、前

述のようにunletで変数を削除するコードを書く

ことになりそうです。

Vim scriptにおける制約

いてくれるので便利です。

どれを使ったらいいのか

　このように、Vimからgitを扱う方法は、紹介
しきれなかったものも含めるとかなり多いです。
実を言うと筆者はこれらのプラグインを常用せ
ず、tmuxで端末を分割してgitをコマンドライ

ンで操作しています。しかしこれは単に、筆者
がそのほうが速く操作できるからであって、gita

やuntie-gitiのほうが速いという方はそちらを使
うべきだと思います。
　GitHubを探せば、まだまだたくさん見つかる
と思います。自分に合ったgitの連携方法を見つ
け出してください。ﾟ

Vimからgitを使い倒す

第 回10

140 - Software Design

コンパイルをもっと
便利にするパッケージ

コンパイルはEmacsでもっと便利に

　前々回から、Emacsでコンパイルを行うM-x

compileについて掘り下げてきました。開発中
のプログラムをコンパイルするとエラーや警告
が出るのは日常茶飯事ですので、M-g M-n/M-g

M-pによるエラージャンプ機能は便利です。
　一方、多くのプロジェクトに関わってくると
コンパイルコマンドが異なってくるので、それ
を切り替えるのが面倒という問題があります。
compile-commandをファイルローカル変数・ディ
レクトリローカル変数にする方法もありますが、
smart-compileパッケージによってファイル・プ
ロジェクトごとにcompile-commandを設定する
ほうが管理しやすいでしょう。その発展形とし
て、multi-compileは複数のコンパイルコマンド
が登録でき、テストやデプロイなども可能にな
ります。

*compilation*ウィンドウを自動で閉じる

　Emacsでコンパイルすると、別ウィンドウに

*compilation*バッファがポップアップしてきて、
ウィンドウ構成が崩れてしまいます。*compilation*
バッファの情報を見たいのは、エラーや警告が
出ているときくらいのものです。正常にコンパ

イルが終了した場合は、わざわざウィンドウ構
成を戻す必要があって面倒に思います。
　そこで、bury-successful-compilationパッ
ケージを使えば、コンパイルが正常終了した場
合は自動で *compilation*ウィンドウが閉じられ、
元のウィンドウ構成に戻るようになります。パッ
ケージをインストールし、次の設定を加えれば
有効になります。

(bury-successful-compilation 1)

　こんな名前ですが、マイナーモードです。

ファイル保存後に
処理を実行させる

ファイルの変更をシステムに反映させる

　ファイルを保存したあとに、シェルコマンド
を実行したいケースがあります。設定ファイル
を編集したあとに、そのプログラムに設定を反
映させたいといった場合などです。
　保存後に自動で反映コマンドを実行させるこ
とで、反映忘れで余計な時間を消費することが
なくなります。たとえば、個人用cron設定ファ
イル ̃/.crontabを編集後、crontab -e ̃/.crontab

を実行するといった具合です。
　また、保存後にコンパイラやテストプログラ
ムを実行させたいといった場合もあります。M-x

compileなどを手動で実行する手間は省けます

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

シェルコマンドを活用しよう（発展編）
　シェルコマンド4部作の最終回では、作業をさらに自動化するパッケージを紹介します。コンパイル時の
ウィンドウのポップアップを制御したり、ファイルを保存したときに特定のプログラムが動くよう設定したり、ま
たアクセス権を自動で付与したり……。手間を少しずつ減らすことで、日々の作業を大きく効率化できます。

Writer

第28回

http://rubikitch.com/

140 - Software Design Aug. 2016 - 141

保存後に自動的にシェルコマンドを実行させる
ことができます。これだけだと、各自がafter-

save-hookを設定すれば済む話のように思えま
すが、このauto-shell-commandはとてもうまく
できています。次の特徴があります。

・非同期実行なのでシェルコマンド実行中でも
Emacsを操作できる

・ファイル名の正規表現によってシェルコマン
ドを指定できる

・自動実行を一時的に中止することもできる
・特定のファイルのみ一時的にシェルコマンド
を設定できる

・Emacs外のファイル書き換えには影響されな
い

・自動実行シェルコマンド実行中に実行命令が
来たときは前の実行終了後に実行される

・対話的にシェルコマンドを設定でき、それを
永続化する設定がキルリングに格納される

・シェルコマンドが異常終了したときのみ実行
結果が表示される

・作者が日本人で日本語マニュアルがある

　非同期に実行されるので、実行に時間がかか
るシェルコマンドも指定できます。たとえば、
テストやコンパイラを走らせることだって可能
です。
　ただし前述のとおり、自動保存パッケージに
より中途半端な状態で保存された場合はエラー
が通知されてしまいます。その辺はうまく折り
合いをつけてください。

◆基本的な使い方
　自動実行の設定はM-x ascmd:addで対話的
に行うのが基本です。
　たとえば、̃/.crontab にcronの設定を書いて、

が、エラージャンプ機能が使えなくなるという
トレードオフがあります。

自動保存との兼ね合い

　ただし、自動保存パッケージと併用するとき
には注意が必要です。
　第17回（2015年9月号）で紹介したauto-save-

buffers-enhancedパッケージや real-auto-save

パッケージは、ファイルを変更後一定時間後に
自動で保存し、手動でC-x C-sする手間を省け
ました。これらの自動保存パッケージと、これ
から紹介する自動シェルコマンド実行パッケー
ジを組み合わせた場合、ファイルの変更が中途
半端な状態でシェルコマンドが自動実行される
場合があります。その場合はエラーが通知され
てしまいます。
　自動保存パッケージを使いつつ、中途半端な
状態によるエラーを防ぐには2つの選択肢があ
ります。

①自動保存までの間隔を長くする（5秒など）
②自動シェルコマンド実行を設定しているファ
イルを自動保存対象外にする

　auto-save-buffers-enhancedパッケージではど
ちらも可能です（リスト1）。
　real-auto-saveパッケージには、執筆時点で
ファイル単位で自動保存を無効にする機能はあ
りません（リスト2）。

auto-shell-command

　auto-shell-commandパッケージは、ファイル

 ▼リスト1　auto-save-bu�ers-enhancedにて、①と②を実現する設定

(require 'auto-save-buffers-enhanced)
(setq auto-save-buffers-enhanced-interval 5)
;; not-save-fileと.ignoreは除外する
(setq auto-save-buffers-enhanced-exclude-regexps '("^not-save-file" "･･.ignore$"))

 ▼リスト2　real-auto-saveにて、①を実現する設定

(require 'real-auto-save)
(setq real-auto-save-interval 5)

第28回 シェルコマンドを活用しよう（発展編）

142 - Software Design

　実はEmacsでは#!行が含まれる場合に実行属
性を付けてくれる機能があります。リスト3の
設定で、保存後に自動で実行属性を付けてくれ
ます。一度設定すれば、二度と実行属性につい
て注意する必要がなくなります。

　これまで4回に渡り、シェルコマンドを扱う
コマンド・パッケージを紹介してきました。
　M-!など任意のシェルコマンドを実行するコ
マンド、M-x ifconfigなどの単発シェルコマ
ンド実行のための専用コマンド、さまざまなコ
ンパイルコマンド、保存時に実行するシェルコ
マンドの設定など、多くの種類がありました。こ
こでは紹介しきれませんでしたが、独自インター
フェースを用意しているパッケージもあります。
　M-x compileに似ていますが、バックグラウ
ンドで実行し、異常終了したときのみ結果をポッ
プアップしてくれるbprパッケージもあります。
これは経過時間をリアルタイムに教えてくれま
す。筆者のサイト注1で紹介しています。
　筆者のサイト「日刊Emacs」は日本語版Emacs

辞典を目指しています。手元でgrep検索できる
よう全文をGitHubに置いています。またEmacs

病院兼メルマガのサービスを運営しています。
Emacsに関すること関しないこと、わかる範囲
でなんでもお答えします。「こんなパッケージ知
らない？」「挙動がおかしいからなんとかして
よ！」はもちろんのこと、自作elispプログラム
の添削もします。集中力を上げるなどのライフ
ハック・マインド系も得意としています。ﾟ
登録はこちら➡http://www.mag2.com/m/000

1373131.html

保存後に crontab ̃/.crontab を実行する場合は
M-x ascmd:add RET ~/.crontab RET

crontab $FILE RETを実行します。なお、$FILE
はファイル名、$DIRはディレクトリ名に置換さ
れます。するとエコーエリアに、

(ascmd:add '("~/.crontab" "crontab $FILE"))

と出て、同じ内容がキルリングに格納されます。
　init.el上でM-x ascmd:addを実行してC-yで
貼り付ければ永続化することもできます。初期
設定時には、その操作を繰り返すことになるで
しょう。
　ascmd:addは、自動実行の設定を格納する変
数ascmd:settingにpushされていくので、あ
とから実行したほうが優先度が高くなります。

◆そのほか制御コマンド
　M-x ascmd:addには、自動実行を制御するコ
マンドがいろいろと用意されています（表1）。た
だ、使用頻度が低いのならば、わざわざキーに
割り当てる必要はないでしょう。

実行属性を自動で付ける

　実行可能なスクリプトファイルを作成すると
き、わざわざシェルでchmod +xを実行していま
せんか？

コマンド 機能

M-x ascmd:toggle 自動実行を一時的に無効化
／有効化する

M-x ascmd:popup 自動実行の出力バッファが
ポップアップされる

M-x ascmd:exec

ファイル名を指定すること
で、ファイルを変更するこ
となく自動実行シェルコマ
ンドを実行する

M-x ascmd:remove 直前の自動実行の設定を解
除する

M-x ascmd:remove-all すべての自動実行の設定を
解除する

 ▼表1　M-x ascmd:addの自動実行を制御するコマンド

 ▼リスト3　ファイル保存後、自動で実行属性を付与する

(add-hook 'after-save-hook 'executable-make-buffer-file-executable-if-script-p)

注1） URL http://rubikitch.com/2015/11/03/bpr

おわりに

るびきち流
Emacs超入門

http://www.mag2.com/m/0001373131.html
http://rubikitch.com/2015/11/03/bpr/

Aug. 2016 - 143

天網恢恢とはまさに
インターネットのこと

　「天
てん

網
もう

恢
かい

恢
かい

疎
そ

にして漏
も

らさず」という中国の古い言
葉があります。「悪いことを行えば必ず天罰を受け
る」という意味で使われます。
　「天網恢恢疎にして漏らさず」という言葉を直訳す
ると「天の網は広く大きくて目が粗いように思うが、
その網から逃れることはできない」となります。
　この言葉をこう解釈してはどうでしょうか。「天
網」の意味は「天に張り巡らされている網」で、そし
て「恢恢」とは「広い」「大きい」というわけですから、
「天網恢恢」とは、まさに世界中に張り巡らされてい
るインターネットのことです。
　「疎にして」とは「網の目が粗い」つまり、インター
ネットは広大なネットワークですので、どこに何が
どうつながっているかはわからない、ということに
します。「漏らさず」は、もともとの意味でもある
「漏れなくすべては把握されている」と解釈します。
つまり……、

「広大なインターネットの空間に接続されていても、
アクセス可能となってる機器は漏れなくすべて把握
されている」

疎にして漏らさず

　2015年12月23日、ウクライナの電力会社がマ
ルウェアを使った攻撃を受けて、イヴァーノ＝フラ
ンキーウシク地域の140万人住民の半分が停電被害
に遭うという事件がありました注1。
　この停電は、制御コンソールがマルウェアにより
使えなくなったことが引き金になって起こりまし
た。このマルウェアが侵入に使った脆弱性は、2014

年1月にCVE-2014-0751として告知されている脆
弱性で、10212/tcpポートに細工をしたメッセージ
を送ると任意のコードを実行できるという危険性の
高い脆弱性です。
　約2年前から脆弱性情報が出されている既知の脆
弱性を修正もせずに動かしているのもどうかと思い
ますが、それ以上に、その制御コンソールがPC

ベースであること、さらにインターネットに接続し
ていて外部から直接アクセス可能な状態になってい
たということも信じがたい事実です。招いた結果は
大規模な地域停電という重大なものですが、その背
景は極めてお粗末です。
　脆弱性情報が出ていても、このPCを誰かがわざ
わざ探したりするとは思わなかったのかもしれませ
ん。あるいは、広大なインターネット空間の中でこ

「これだけ膨大な数のコンピュータがつながっているインターネットなのだから、自分のコンピュータに
脆弱性があったとしても、それほど簡単に他者から見つかるものではない。」そう考えているとしたら、
その考えは改めなければなりません。いまや、インターネットにつながるコンピュータの情報はすべて
把握されています。今回はそれを示す事例をいくつか紹介します。

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第三四回】

すずきひろのぶ
suzuki.hironobu@gmail.com

電力施設から家電クーラーまでセキュリティを考える時代

注1）	 詳しくは本連載第32回（本誌2016年5月号）をご覧ください。

144 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

のようなマイナーなシステムを探し当てるのは、藁
わら

の山の中から1本の針を見つけるのと同じで、極め
て稀
まれ

なことだと考えたのかもしれません。もちろん
ウクライナのシステムを計画、設計して導入した人
たちに直接聞いたわけではないので、本当のところ
はわかりませんけれども。
　しかし、この広大なインターネットで見つけられ
る可能性は極めて小さい、あるいはずっと隠れてい
られると思う人は少なからずいるはずです。
　20年前、30年前ならばいざ知らず、SHODAN注2

やCensys（後述）のようなサービスが存在している
2016年では、問題がある機材がインターネットに
接続していれば、見つかるのは時間の問題でしかあ
りません。現代のインターネットの世界は、まさに
「天網恢恢疎にして漏らさず」なのです。

現状のIoT製品を
見てみると

　では、今後増えていくIoTデバイスはどうなので
しょうか。今でも、インターネット経由でモニタリ
ング可能な監視カメラなどはビルや街角、あるいは
家庭のレベルでも使われています。今後は、本格的
に家電をインターネットにつなぎ、外部からコント
ロールするようになっていくでしょう。このとき、
製品側としては、外部からの攻撃を想定したシステ
ムにしたり、あるいは脆弱性があったときに自動的
にセキュリティ・アップデートが行われたり、はた
またネットワーク的に安全にするためにわざわざ小
規模ネットワーク向けのファイアウォールを用意し
たりするでしょうか。
　現在、PCを買うとデフォルトでマルウェアを検
知するようなセキュリティソフトウェアが付いてき
て、最低限な機能といえども最初から安全性には配
慮しています。しかし、昔は、マルウェア対策セ
キュリティソフトウェア、当時の呼び方ではウィル
スチェッカーと言っていましたが、それを導入する
のも別途自分で購入しなければなりませんでした。
今はマルウェア対策が当たり前でも、昔はオプショ

ナルで別途購入し、自らインストールするといった
作業が必要でした。
　今後、雨後のタケノコのようにIoTと呼ばれるよ
うな製品が、ぞくぞくと現れるはずですが、昔の
PCのようにセキュリティは考慮されずに、「流行り
に取り残されないように、とりあえず作って売って
みた」レベルのものが続出するはずです。そして、
そのセキュリティの問題が社会一般に影響を及ぼ
し、大きな社会問題として表面化しない限り、その
流れは止めようがありません。それはちょうど、PC

に入れると処理が遅くなるウィルスチェッカーのよ
うなソフトウェアにわざわざお金を払う必要性を感
じなかったころと同じだと言えるでしょう。
　しかし、IoT製品のセキュリティ問題が表面化し
たときには、すでに多くの製品が広がっており、そ
れをアップデートするにしても時間がかかる、ある
いはアップデートすることも難しくなる、そんな問
題があるのが現実です。家庭向けインターネット接
続のためのルータというネットワーク専用機器です
ら脆弱性があった場合、十分にアップデートできな
い現状ですから、ましてや「とりあえず作ってみた」
レベルの初期段階のIoT製品にどれだけ期待できる
のかという不安は残ります。

スマホでエアコン操作

　2012年の夏、大手家電メーカーが家庭向けのエ
アコンにスマートフォンからインターネット経由で
エアコンをON/OFFできる機能を搭載しようとし
ていました。一方で、国内法の基準では、「危険が
生ずる恐れがない」家電以外で、電源をネットワー
クを経由してONにすることは認められていません
でした。
　たとえば、ビデオの録画予約などは火事になった
りするような「危険が生ずる」ことはないので、この
ような規制の範囲には入りません。諸条件があるの
ですが、電力消費量もかなりあるエアコンをONに
する場合は規制外とはなりませんでした。

注2）	 インターネットに接続されている機器を検索できるWebサービス。詳しくは本連載第18回（本誌2015年3月号）をご覧ください。

Aug. 2016 - 145

【第三四回】 電力施設から家電クーラーまでセキュリティを考える時代

を読むかぎりにおいては、「規制緩和」ではなく「明
確化」と言ったほうが正しい表現です。
　また、2016年3月に、電気用品調査委員会から
「『解釈別表第四に係わる遠隔操作』に関する報告書
の追加検討報告書」注4などが、さらに追加され検討
が続いています。
　筆者の目からみると、ネットワーク経由での「安
全である」というロジックを明確化したことによっ
て、あいまいだった規制を強化しています。また、
重要な点なのですが、遠隔操作について消費者にメ
リットだけではなくデメリットも明確に伝え、そし
て理解してもらうことを前提にしています。この点
は非常に評価すべきものだと思っていますし、その
ため経済産業省のWebサイト注5には次の文言が明
示されています。

消費者の皆様におかれましては、警告表示等の内容
を十分に確認するなど、配線器具の遠隔操作に伴う
リスクを十分に理解された上で、安全にご利用いた
だきますようお願いいたします。

　このエアコンの件から派生した「規制緩和」に関し
て、これまでいくつかのメディアで「規制緩和によ
りエアコンの遠隔操作が可能となった」という記事
は見かけましたが、「安全を明確化した」と報道した
り、「使う前にリスクがあることを十分に理解する
べき」という啓発を行ったりしている記事は見かけ
た記憶がありません。その意味では、2013年の規制
の見直しは本来の目的を達成したとは言えないのか
もしれません。なぜならば言うまでもなく毎年、
IoTのリスクは上がっているからです。

SHODANに続く
Censysの登場

　インターネットに接続しているサーバやクライア
ントといったコンピュータだけではなく、ルータな
どのネットワーク機材、IoT機器と言われる情報家

　メーカー側が安全装置をビルトインするなどして
「危険が生ずる恐れがない」ことを示せれば問題はあ
りません。しかし、その解釈は作った側のメーカー
と、経済産業省の家電製品の安全対策などを担当す
る製品安全課との間でずれがあり、2012年の時点で
は、メーカーはエアコンを遠隔操作でONにする機
能を削除することになりました。当時、話題になっ
たので、記憶にある方も多いかと思います。
　この件に関して、2012年時点ですでに似たような
機能を持ったスマートホームのHEMS（Home Energy

Management System）が存在し、リモートからON/

OFFできることも指摘されました。これは、HEMS

が製品安全課ではなく情報経済課の担当であるとい
う縦割りで、また電気用品安全法の外にあり、法整
備がなされていない分野のため規制されませんでし
た。これもおかしい話です。
　また、SNS上では、「新しい商品を認めないこと
でイノベーションを阻害している」という批判が出
ていました。確かに、安全対策として何をすべきか
の環境の整備が遅れているのは批判されるべきです
が、一方で、安全の検討を十分にしていないことを
見逃せば「イノベーションが進む」というわけではあ
りません。むしろ、一定の安全基準をきちんと設け
て、その基準を技術的にクリアすることこそ正しい
イノベーションです。何の基準もなく検討もなく安
全性を示すことなく、楽観的に、あるいは無邪気
にとでも言うのでしょうか、「やってみた」のレベル
でインターネットから接続して機器をコントロール
できるようにするのは、ルーズになっただけであ
り、それをイノベーションとは呼ぶことには、筆者
は抵抗を覚えます。
　2013年に規制の条件が見直され、従来の「危険が
生ずる恐れがない」から、「通常の使用状態において
危険が生ずる恐れがない」かつ「動作が円滑である」
という条件になりました。この件に関しては、規制
緩和という報道がなされていますが、解説資料注3

注3）	「遠隔操作に対する技術基準の解釈について」電気環境安全研究所、平成25年5月		
http://www.jet.or.jp/common/data/new/new143_semi_2.pdf

注4）	「『解釈別表第四に係わる遠隔操作』に関する報告書の追加検討報告書」電気用品調査委員会、平成28年3月22日	 	
http://www.eam-rc.jp/pdf/result/remote_control_4_2.pdf

注5）	 http://www.meti.go.jp/policy/consumer/seian/denan/topics.html

http://www.meti.go.jp/policy/consumer/seian/denan/topics.html
http://www.eam-rc.jp/pdf/result/remote_control_4_2.pdf
http://www.jet.or.jp/common/data/new/new143_semi_2.pdf

146 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

電や組み込み機材、あるいは制御系システムなど、
外部に公開する意図があるか否かにかかわらず、外
部からアクセス可能なネットワーク機材の存在をス
キャンしデータベース化して、それらの情報などを
ユーザに提供しているサイトが、現在、いくつか存
在しています。最も有名なのが、これまでの連載で
も何度か取り上げたSHODANです。
　SHODANによりPCやサーバなど従来のイン
ターネット接続機器だけではなく、IoTに分類され
るようなインターネットに接続されている機材もく
まなくスキャンされ、蓄積され、検索できるように
なっています。
　そしてもう1つ、Censysという、米国ミシガン大
学と米国イリノイ大学アーバナ・シャンペーン校の
研究者が作った、インターネット全体をスキャンす
るシステムと、その情報をデータベース化して提供
するサービスがあります（図1）。
　特徴はデフォルト設定のNmapより1,300倍も高
速にインターネット空間をスキャンするZMapを開
発して使っていることです注6。ZMapはC言語で書
かれた約8,900行のサイズのプログラムでGNU/

Linux上で動作します。その性能は、1Gbpsのネッ
トワークに接続すればIPv4空間を45分ですべてス
キャンしてしまいます。

　現在、一般の人だけではなく、ある程度のネット
ワークの知識のある人でも、何の保護もなくネット
ワークに接続している機材がいつの間にかスキャン
されるということを意識している人はそんなにいな
いと思います。
　しかし、実際には、IPv4空間すべてを45分でス
キャンする能力のあるスキャナーが存在しており、
そのスキャン結果をデータベース化し、条件に合わ
せて柔軟に検索できるようになっています。今はも
うそんな時代です。IoTセキュリティを考えると、
脆弱性はもとより、設定ミスがあったままインター
ネットに接続していれば、確実にSHODANやCensys

のようなサイトに捕捉され、データベース化され記
録に残される、ということです。

SHODAN や Censys の
脅威の見える化

　Censysのデータベース検索は、ゲスト（登録な
し）では少ない回数しか使えませんが、登録を行い
メールアドレスが確認できればログインして使える
ようになります。
　使い方は極めてわかりやすく、たとえばシンプルに

8.8.8.0/24

と検索すると、8.8.8.0/24に接続されているサーバ
と、標準的なポートに関してのスキャン結果を返し
てきます（図2）。ちなみに、図2の検索結果に表示
されている8.8.8.8は有名なGoogleのネームサーバ
サービスです。
　雑誌に結果の詳細を掲載することはさすがにため
らわれるので、概要だけに留めておきますが、「ビ
ルディングオートメーションと制御ネットワークの
ためのデータ通信プロトコル」であるBACnetプロ
トコルに反応を返しているサーバが日本国内にどれ
くらいあるか検索してみたところ、30件ほど検索さ
れて出てきました。
　BACnetプロトコルを使うサーバが見えるような
形で運用することは、あまり良いことだと思いませ

注6）	 https://zmap.io/

◆◆図1　Censysのサイト（https://censys.io）

シンプルに検索できるだけの、まさに検索サイトとなっている。

https://censys.io/
https://zmap.io/

Aug. 2016 - 147

【第三四回】 電力施設から家電クーラーまでセキュリティを考える時代

注7）	 現状のIoTノード端末機材類は安全性のモデルや実装が不十分です。そのため、グローバルに開かれているインターネットに直接アクセス
することでリスクを大きくするより、VPNなどを用いてプライベートな閉じたネットワーク空間で利用し、リスクを最小限にすべきだと、
筆者は考えています。

ん。VPNで接続を確保し、内部ネットワークとして
アクセスする形を採るべきでしょう。
　ウクライナの電力会社の話をしましたが、あれは
ウクライナの話で日本では関係ない、と強く言える
ような状況ではないことがわかっていただけたで
しょうか。
　これもまた何度目かの繰り返し
になりますが、SHODANやCensys

はネットワークの脅威を見える化
してくれており、その警告を我々
が知ることができるたいへん有用
なサービスであり、研究です。
　SHODANやCensysと同様な、
あるいはさらに強力な（あからさま
に悪意のある攻撃目的のための、
と言ったほうがいいのかもしれま
せんが）スキャンツールおよびデー

タベースが存在していると我々は考えるべきで、そ
れを前提としたうえで、議論を始めなければいけな
い時代になっています。
　問題のあるIoT機材を不用意にインターネットに
接続してしまったら、確実に見つけられてしまうこ
とを理解したうえで使うべきなのです注7。s

◆◆図2　Censysでの検索結果

2014年刊行した『インフラエンジニア教本』の続編として、
SoftwareDesignの人気特集記事を再編集しまとめました。今回
は、サーバの運用管理を中心に今すぐ使える技術をピックアップ。
ITインフラの管理と運用、そして構築を学ぶことができます。お勧
めは「ログを読む技術」「ログを読む技術・セキュリティ編」をはじめ
として盛りだくさん。大事なインフラをささえるサーバの選び方か
ら、無線LAN構築までがっちりサポート。最強のインフラエンジニ
アになるための1冊です。書き下ろし「エンジニアのための逃げな
い技術̶̶幸せなエンジニアになるための３つの条件」もあり！

Software Design編集部 編
B5判／344ページ
定価（本体2,580円＋税）
ISBN 978-4-7741-7782-3

・ITインフラ（ネットワーク、サーバ、クラウド）に関わる
 エンジニアの皆さん

148 - Software Design

Ansible Towerの概要

　Ansible TowerはオープンソースのAnsibleに
よる、構成管理／アプリケーションのデプロイ
メント／オーケストレーションといった各種自
動処理を管理するための企業向けソリューショ
ンです。CUI/GUI/REST APIといったイン
ターフェースのほかに、ジョブスケジューラ、
ロールベースの権限管理、Ansibleによる自動処
理の操作記録といった機能を備えています。執
筆時点での最新バージョンは2.4.5であり、2016

年4月にリリースされました。今回はこのバー
ジョンをベースに技術的な側面からAnsible

Towerをご紹介します。なお、Ansibleそのも
のについては過去の特集 注1を含めさまざまな媒
体ですでに紹介されていることもあり、本記事
ではとくに紹介しません。
　Ansible TowerはもともとAnsible社（旧名称
はAnsibleWorks社）が開発・提供していたプロ
プライエタリ・ソフトウェアです。オープンソー
スのAnsibleプロジェクトを立ち上げたMichael

DeHaanが中心となって、2013年7月にAnsible

AWXという名前の製品としてリリースしたの

が始まりです。このときのバージョンは1.2.2で
あり、2013年 11月リリースの 1.4.0までは
Ansible AWXという名前でしたが、2014年2月
リリースの1.4.5からAnsible Towerという名前
に変更されました。しかし、2015年10月に
Ansible社がRed Hatに買収されてからは、Red

HatがAnsible Towerを提供するようになりま
した。2016年 6月現在においてもAnsible

Towerはプロプライエタリ・ソフトウェアです
が、今後オープンソース化されていく予定です。
　ちなみに、執筆時点ではRed Hat製品ドキュ
メント一覧 注2にAnsible Tower by Red Hatと
いう名前が記載されていますが 注3、本記事では
単にAnsible Towerと記述します。
　Ansible/Ansible TowerはChefやPuppetと
比較すると、まだ歴史が浅いソフトウェアです。
しかし、Ansibleの利便性や学習コストの低さの
ために注目度は高く、日本国内ではDMM.com

ラボ社 注4、海外ではNASA 注5やBinckBank（オ
ンラインバンク）での採用実績が報告されていま
す 注6。また、Red HatでもOpenShift（PaaS基

注2） URL https://access.redhat.com/documentation
注3） Red Hat社内製品ページではRed Hat Ansible Towerとも

記載されています。
注4） URL http://time.levtech.jp/article/a-dmmcom_labo_

20150831
注5） URL https://www.ansible.com/blog/nasa-automation
注6） URL https://www.ansible.com/case-studies注1） Software Design 2016年1月号の第2特集など。

SOURCES
 Author 小島 啓史（こじまひろふみ）
	 mail：hkojima@redhat.com

レッドハット㈱ テクニカルセールス本部 ソリューションアーキテクト

Ansible TowerはオープンソースのAnsibleを基盤
とした企業向けソリューションです。今回はAnsible
Towerの基本を紹介します。

Ansible Tower

第1回

レッドハット系ソフトウェア最新解説 新連載

https://www.ansible.com/blog/nasa-automation
http://time.levtech.jp/article/a-dmmcom_labo_20150831
https://access.redhat.com/documentation/
https://www.ansible.com/case-studies

Aug. 2016 - 149148 - Software Design

　Ansibleパッケージをインストールしたあとに、
入手したインストーラ（tarball）を解凍します。

tar xf ansible-tower-setup-latest.tar.gz
cd ansible-tower-setup-2.4.5
ls
README.md backup.yml group_vars ｭ
install.yml restore.yml setup.sh
ansible.cfg configure host_vars ｭ
 licenses roles

　解凍したファイルの中身を見るとhost_vars、

group_vars、ansible.cfgといったファイル
名が確認できますので、Ansible Towerのイン
ストールにもAnsibleを利用していることが分
かります。そこでSSH鍵を作成して、ローカル
ホストに作成したSSHの公開鍵を登録しておき
ます。

ssh-keygen -f /root/.ssh/id_rsa -N ''
ssh-copy-id root@localhost

　Ansible Towerインストールを実行するため
の設定を行います。インストール対象のホスト
（ローカルホストを指定）、利用するデータベー
ス（内部データベースを指定）、Ansible Tower

のadminユーザとMunin（Ansible Towerと一緒
にインストールされるサーバ監視ツール)のパ
スワードの入力が求められるので、入力してい
きます。その後、Ansible Towerのインストー
ルスクリプトを実行します（図1）。
　これでAnsible Towerのインストールが完了
です。FirefoxなどのWebブラウザでAnsible

TowerのWebページにアクセスできます。
http://localhostにアクセスすると、ログイ
ン画面が表示されるので、

・Username；admin
・Password；�設定時（./configure実行時）に指

定したパスワード

でログインできます。
　最初にAnsible Towerにログインすると、ラ
イセンス情報の入力画面が表示されます。図2

の "Get a Free Tower Trial License"をクリッ

盤を構築するための製品）のインストーラとし
て、Ansibleを活用しています。

Ansible Towerの
インストール
　Ansible Towerを入手するには、ほかのRed

Hat製品と同様に、年次のサブスクリプション
契約が必要です。しかし、執筆時点ではプロプ
ライエタリ・ソフトウェアであるため、もし試
用する場合には評価用ライセンスが別途必要に
なります。
　まず評価版のAnsible Towerを入手します。
Ansible TowerはLinux/Vagrant/Amazon EC2

に対応したインストールプログラムが用意され
ていますが、今回はRHEL7へのインストール
を想定し、Linux版のAnsible Tower 注7を利用
します。
　Ansible Towerをインストールするには、ま
ず最新版のRHEL7 for x86_64（執筆時点では
RHEL7.2 for x86_64）をインストールしておき
ます。インストール終了後、Ansible Towerの
インストール準備をします。最初にターミナル
を起動してsubscription-managerコマンドを利
用してシステム登録を実行します。このとき、
保有しているRHELサブスクリプションをシス
テムに自動付与しておきます。

subscription-manager register --usernameｭ
=redhat_account --password=account_passwd ｭ
 --auto-attach

　次に、Ansible Towerが必要とするAnsible

パッケージをインストールします。執筆時点で
はAnsibleパッケージはRed Hat公式リポジト
リではなくEPELリポジトリで提供しています
ので、EPELリポジトリを利用してAnsibleパッ
ケージをインストールします。

yum -y install http://dl.fedoraproject.ｭ
org/pub/epel/epel-release-latest-7.oarch.ｭ
rpm
yum -y install ansible

注7） URL https://www.ansible.com/tower-trial

Ansible Tower第1回

https://www.ansible.com/tower-trial

150 - Software Design

介しましたが、Playbook/Inventoryの登録など
を実施していないため、このままでは何もでき
ません。次回はAnsible Towerのコンポーネン
トやPlaybookの登録・実行などを解説していき
ます。｢

クすると、評価版ライセ
ンスを申請できますので、
“ENTERPRISE SUP

PORT”付きのライセンス
を申請してください 注8。
申請するとライセンス情
報が記載されたメールが
届きますので、ライセン
ス情報を入力してから
［Submit］をクリックしま
す。
　入力したライセンスの
認証が正常に完了すると、
次の図3が表示されます。
以降、この画面がログイ
ン時に表示されるWeb

ページとなります。
　まだAnsibleによる処
理を実行していないため、
ログなどは表示されてい
ません。

次回は

　今回はAnsible Towerのインストールまで紹

注8） 管理画面だけ少し触ってみるなどの場合は、“SELF
SUPPORT”でもOKです。

 ▼図1　Ansible Towerのインストールスクリプトの実行

./configure

Welcome to the Ansible Tower Install Wizard

... snip ...
Enter the hostname or IP to configure Ansible Tower
(default: localhost): localhost
... snip ...
Will this installation use an (i)nternal or (e)xternal database? i
... snip ...
Enter the desired Ansible Tower admin user password:
Enter the desired Munin password:
... snip ...
FINISHED!
./setup.sh
... snip ...
The setup process completed successfully.

 ▼図2　Ansible Towerのライセンス情報入力画面

 ▼図3　Ansible Towerのダッシュボード

SOURCES レッドハット系ソフトウェア最新解説

151 - Software Design Aug. 2016 - 151

Ubuntu 16.04 LTSでCinnamon 3.0を使用する 第 76 回第76回 Ubuntu Monthly Report

Ubuntu 16.04 LTSで
Cinnamon 3.0を使用する

Ubuntu Japanese Team／あわしろいくや

今回は、あえてLinux MintではなくUbuntuでCinnamonデスクトップ環境を使ってみます。

　本誌2016年5月号の第2特集第2章でも解説しま
したが、Ubuntuにはフレーバーという公式派生版が
多数あります。主な違いはデスクトップ環境です。
しかし、すべての著名なデスクトップ環境がフレー
バーとしてリリースされているわけではありません。
その中でも代表的なのはCinnamonデスクトップ環
境（以下Cinnamon）でしょう。
　Cinnamonは、Ubuntuの派生版であるLinux Mint向
けに開発されていますが、もちろん単独でも使用で
き、たくさんのLinuxディストリビューションでデ
スクトップ環境として採用されています。しかし、
なぜかUbuntuのフレーバーとしてはリリースされて
いません。やはりLinux Mintがあるからなのかもし
れませんが、Linux MintはUbuntuとリポジトリを共
有しているものの、特徴がかなり異なるので、Cinna

monをUbuntu上で使いたい場面も多いと思います。
　UbuntuのリポジトリにCinnamonは存在しないの
かと言われるとそのようなことはなく、Debian由来
のパッケージが一式そろっています。16.04では
Cinnamon 2.8相当のパッケージがありますが、現在
のCinnamonの最新版は3.0であり、やはり新しい
バージョンを使用したいものです。
　最新版のCinnamonを配布しているリポジトリ
（PPA）はいくつかあるようですが、筆者も独自のも

UbuntuとCinnamon
のを用意しています。純粋にDebianのリポジトリに
入ったパッケージをリビルドしたもので、アップグ
レードがスムーズに行えるということにメリットを
感じています。パッケージ数がさほど多くないので、
管理が比較的容易なのもあります。
　というわけで今回は、Ubuntu 16.04 LTSにCinnamon

3.0をインストールし、活用する方法を紹介します。

　インストールは、Ubuntu Minimalを使用して一か
ら行ってもいいのですが、今回は16.04にCinnamon

を追加インストールすることにします。このほうが
簡単なのと、同時にインストールしても干渉しない
のと、通常最初からCinnamonを使用するというこ
とはなく、Unityを使用してみたものの、ほかのもの
も触ってみたいというリクエストのほうが多いだろ
うと考えてのことです。
　16.04のインストール方法の紹介は省略します。
不安があるなら最初は仮想マシンのゲストOSとし
てインストールしてみるといいでしょう。
　16.04のインストール完了後アップデートをすべ
て適用したうえで次のコマンドを実行します。

$ sudo apt install --no-install-recommends ｭ
cinnamon-desktop-environment gksu

　インストール完了後ログアウトし、名前の横にあ

インストールとログイン

152 - Software Design

Ubuntu Monthly Report

るUbuntuロゴをクリックすると、Cinnamonが増えて
います（図1）。これを選択してログインすると
Cinnamonが起動します（図2）。
　メニューが日本語になっていないのは意図しての
動作です。Cinnamonは翻訳状況にかなりの問題があ
り、英語のまま使ったほうがいいからです。今回も
英語のメニューを想定して解説しますが、日本語に
したい場合は次のコマンドを実行後ログアウトして
再ログインしてください。

$ sudo apt install cinnamon-l10n

　続けて初歩的なカスタマイズを行います。可能な
限りUbuntu（Unity）に似せるをポリシーにします。

初歩的なカスタマイズ

壁紙

　デスクトップを右クリックして、［Change Desktop

Background］をクリックします。［Wallpapers］に
［Ubuntu］があるので、これをクリックします。

テーマ

　Cinnamon用のUbuntuっぽいテーマ（Ambiance）は
ないことはないのですが、外部リポジトリからイン
ストールしたほうがより「それっぽい」ので、そのよ
うにします。次のコマンドを実行してください。

$ sudo add-apt-repository ppa:noobslab/themes
$ sudo apt update
$ sudo apt install ambiance-crunchy

　その後システム設定（System Settings）を起動し、
［Themes］をクリックします。［Window borders］を
［Crunchy-orange］に、［Icons］を［Humanity］に、
［Controls］を［Crunchy-orange］に、［Desktop］も
［Crunchy-orange］にします（図3）。

インジケーター

　Unityが対応しているインジケーター（App Indi

cator）を採用するデスクトップ環境が少しずつ出て
きています。代表的なのがKDE SCですが、この
Cinnamonも対応しています。［System Settings］-
［General］-［Enable support for indicators（Requires

Cinnamon Restart）］を［オン］にし、指示どおり一度
ログアウトして再ログインするとインジケーターに

図1　セッションの選択

図2　Cinnamonの初期表示 図3　テーマの変更する個所

152 - Software Design Aug. 2016 - 153

Ubuntu 16.04 LTSでCinnamon 3.0を使用する 第 76 回

対応した表示になります。ログアウト前と再ログイ
ン後にFcitxのキーボードアイコンをクリックして
みると、違いがわかりやすいでしょう。

　Cinnamonを使用する際に知っておくと便利な操
作を解説します注1。

l＋m＋矢印キー

　Cinnamonの操作の特徴の1つは、このl＋

m＋矢印キーではないでしょうか。l＋m

＋左右矢印キーで仮想デスクトップの切り替えとい
うのはよくありますが、l＋m＋上矢印キーで
ワークスペースの増減と名称の変更ができます（図
4）。右端の［＋］でワークスペースを増やすことがで
き、各ワークスペースにマウスのポインターを合わ
せたときに右上に表示される［－］でワークスペース
を減らすことができます。ワークスペースの名称に
マウスのポインターを合わせると、ワークスペース
名を変更できます。
　l＋m＋下矢印キーで、現在表示している
ウィンドウ一覧を表示できます（図5）。矢印キーで
アクティブなウィンドウを変更することも、右上の
バツボタンでウィンドウを終了することもできます。
　ワークスペースの切り替えはループせず、ひとつ
ひとつ戻る必要がありますが、ループさせたい場合
は［System Settings］-［Workspaces］-［Settings］タ
ブ-［Allow cycling through workspaces］を［オン］に
します。

m＋kキー

　m＋kキーでウィンドウの切り替えができ
るのはわりと普通に見られますが、ウィンドウの切
り替えの表示方法をカスタマイズできます。［System

Settings］-［Windows］-［Alt-Tab］タブの［Alt-Tab

switcher style］を表示してください。［Timeline

（3D）］はWindows 7のAeroフリップ3D風の表示に

注1） もうひとつおもしろい機能として［ホットコーナー］があるの
ですが、今回は紙幅の関係上省略します。

操作

なります（図6）。［Coverflow（3D）］はCompiz風の表
示になります。さらにシンプルなものもありますの
で、お好みに合わせてカスタマイズしてください。

タイル機能とスナップ機能

　ウィンドウを特定の場所に移動させるとそのウィ
ンドウを全画面化させたり、あるいは画面半分の大
きさに変更させたりする機能がタイル機能です。ほ
とんどの場合はガイドが表示されるので、その場所
でボタンを離すとその大きさになります（図7）。
Cinnamonでは、さらにこの状態で数秒待っていると
［Hold <Ctrl> to enter snap mode. Use the arrow

keys to shift workspaces］という説明が表示され、
その指示に従ってlキーを押すと領域の色が濃
くなり（透過度が低くなり）、スナップ機能に切り替
わります。そしてその場所でボタンを離すとウィン

図4　ワークスペースの切り替えと増減

図5　そのワークスペースにあるウィンドウの一覧表示

154 - Software Design

Ubuntu Monthly Report

ドウの大きさが変更されます（図8）。
　結果的にはウィンドウの大きさがガイドされている
状態に変更されるという点ではタイル機能もスナッ
プ機能も同様ですが、この2つには明確な違いがあり
ます。タイル機能の場合、特定の条件でほかのウィ
ンドウが邪魔をしなくなります。具体的には、スナッ
プ機能で画面の上半分にウィンドウを表示させた場
合、ほかのウィンドウを最大化すると画面の下半分
に表示されるだけになります。タイル機能の場合は、
最大化するとそのままウィンドウを画面いっぱいに最
大化します。すなわち、スナップ機能を使用した場
合はその領域を避けてくれるということです。
　もうひとつの［Use the arrow keys to shift work

spaces］は、そのとおりこの状態で矢印の左右キーを
使用すると、ワークスペースを移動できます。タイ
ル機能やスナップ機能を使用しない場合、l＋

m＋`＋左右矢印キーで現在アクティブな
ウィンドウをほかのワークスペースに移動すること
もできます。

　Cinnamonの特徴として、アプレットとデスクレッ
トがあります。アプレットはパネルに常駐するもの、
デスクレットはデスクトップに常駐するものと区別
するとわかりやすいでしょう。いずれもインター
ネット経由で追加できるのがおもしろいです。
　また、今回は使用しませんが拡張機能（Extensions）
もあります注2。

アプレット

　アプレットは［System Settings］-［Applets］-
［Available applets（online）］で追加できます。今回は
［SmallCalc］を追加してみましょう。その名のとおり
小さな電卓のアプレットです。［SmallCalc］にチェッ
クを入れ、［Install or Update selected Items］をク
リックし、インストールします。その後［Installed

applets］タブに移動して［SmallCalc］を選択して［Add

to panel］をクリックするとパネルに追加されます。削
除する場合は［Installed applets］タブを表示し、
［SmallCalc］を右クリックして［Uninstall］をクリック
します。

注2） 執筆段階で最新の拡張機能でもCinnamon 3.0と互換性がな
かったので見送ります。

アプレットと
デスクレット

図7　タイル機能で画面上半分のガイドが表示されている状態

図6　見覚えのあるウィンドウの切り替え

図8　 スナップ機能で画面上半分のガイドが表示されている状
態。図7とは色の濃さが異なる

154 - Software Design Aug. 2016 - 155

Ubuntu 16.04 LTSでCinnamon 3.0を使用する 第 76 回

デスクレット

　デスクレットは［System Settings］-［Desklets］-
［Available desklets（online）］で追加できます。今回
は［Weather Desklet］を追加してみましょう。その
名のとおり天気を表示します。［Weather Desklet］に
チェックを入れ、［Install or Update selected Items］
をクリックし、インストールします。その後［Install

ed desklets］タブに移動して［Weather Desklet］を選
択して［Add to desktop］をクリックするとデスク
トップに追加されます。デスクレットを右クリック
して［Configure］をクリックし、［Location］に数値を
入力します。この数値はBBC WeatherのWebサイ
ト注3を開いて［Find a Forecast］の欄に表示したい地
名を入れ、候補がある場合はそこから選択すると個
別ページを表示します。そのURLにある数値が
［Location］に入力する数値です。大阪の場合は
［1853909］です。正確かどうかはよくわかりません
が、［Data service］から複数のサービスが選択できる
ので、いろいろと試してみてください。削除する場
合は［Installed desklets］タブを表示し、［Weather

Desklet］を右クリックして［Uninstall］をクリックし
ます。

パネルに日付を表示する

　パネルに日付を表示したい場合、時計のアプレッ
トを右クリックして［Configure］をクリックします。
［Use a custom date format］にチェックを入れると好
きなフォーマットに変更できます。GNOME Shellに
準じて“%B %e日 (%a) %H:%M”としておくのがいい
でしょう。

注3） http://www.bbc.com/weather/

その他

メニューの表示項目を変更する

　メニューを表示すると［その他］が一番上に来て目
障りなので、これを非表示にする方法です。メ
ニューアプレットを右クリックして［Configure］をク
リックします。一番下に［Open the menu editor］が
あるので、これをクリックしてメニューエディター
を起動します。項目を非表示にする場合はチェック
を外します。すなわち、今回は［その他］の左横にあ
るチェックを外せば非表示になります。

nemo-fileroller

　NemoはCinnamonのファイルマネージャーです
が、これをアーカイブマネージャーであるfile-

rollerと統合するパッケージが提供されています。
次のコマンドを実行してインストールしてください。

$ sudo apt install nemo-fileroller

　一度ログアウトして再ログインすると使用できる
ようになっています。たとえばファイルやフォルダ
を選択した状態で右クリックすると、［圧縮］という
項目が増えています。

ownCloudクライアントとの統合機能

　16.04のリポジトリにあるownCloudクライアント
にはNemoでも状態アイコンを表示する機能があり
ますが、残念ながらパッケージにはなっていません。
半ば強引ではありますが、この機能を有効にしてみ
ましょう。図9のコマンドを実行してください。
　この状態で一度ログアウトして再ログインし、さ
らにownCloudクライアントを起動して設定完了後
同期を開始すると、アイコンの右下にステータスを
表示するアイコンが利用できるようになっています。
｢

$ sudo apt install nemo-python nautilus-owncloud
$ sudo cp /usr/share/nautilus-python/extensions/syncstate.py /usr/share/nemo-python/extensions/
$ sudo sed -i.org -e 's/autilus/emo/g' /usr/share/nemo-python/extensions/syncstate.py

図9　Nemoで状態アイコンを表示する

http://www.bbc.com/weather/

156 - Software Design

Microsoft♥FreeBSD

　2016年6月8日からカナダの首都オタワで開催さ
れた「BSDCan」に併設する形で、FreeBSD開発者
会議が開催されました。今回の開発者会議では、
MicrosoftとIntelから自社のサービスや技術におい
てどのようにFreeBSDをサポートしているかの発
表が行われたのですが、とくにMicrosoftから行わ
れたMicrosoft Azure（以下Azure）におけるFree

BSDのサポートに関する話に、参加者から高い関
心が集まりました。
　Microsoftは数年前から、同社の仮想化環境であ
るHyper-VにおけるFreeBSDのサポートを進めて
きました。ここ数年では、AzureにおけるFreeBSD

の正式サポートに向けて取り組みを進めてきたので
すが、このタイミングでMicrosoftから正式に
「FreeBSD 10.3仮想環境」の提供が始まるととも
に、その正式なアナウンスが行われました。今回は
このあたりの事情を説明するとともに、Azureで
FreeBSDをデプロイする方法を紹介します。

なぜ、Microsoftが
FreeBSDを……?

　MicrosoftとFreeBSDコミュニティはこれまで、
それほど仲の良い関係を築いていませんでした。
Hotmailのサービスが始まった当初、サーバには
FreeBSDが使われていたものの、のちにWindows

Serverに代わっています。当時のMicrosoftは、
オープンソースコミュニティに対して比較的敵対的
な態度だったと思います。
　状況が変わり始めるのは、Microsoftが仮想化技術
やクラウドプラットフォームサービスに注力し始め
るあたりからです。現在Microsoftはオペレーティ
ングシステムやオフィススイートを販売するという
ビジネスモデルから、クラウドサービスの提供と
いったビジネスモデルへの転換を進めています。こ
れはアプライアンスベンダからの要望に応えると
いった意味も持っています。
　FreeBSDはさまざまな産業で活用されているの
ですが、そうした産業の1つに組込み産業がありま
す。中でも高性能／高機能アプライアンス（スト
レージ、ネットワーク機器など）を開発しているベ
ンダが、そのプラットフォームを物理的なハード
ウェアからクラウドプラットフォームに移し始めて

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第33回 ❖Microsoft loves FreeBSD

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

▼▼写真1　カナダで開催されたFreeBSD DevSummitで▼
　　　　Azureについて発表するMicrosoft

Aug. 2016 - 157

▶第33回◀
Microsoft loves FreeBSD

FreeBSDの仮想環境が提供されているサービスは
ほかにもありますが、それらはFreeBSDプロジェ
クトがイメージを提供していたり、個人が自分の責
任でデプロイする必要があります。Azureではその
あたりのお膳立てをMicrosoftが行ってくれます。
後発のサービスだけあってダッシュボードも扱いや
すいものです。
　FreeBSD開発者会議では、FreeBSD 10.3を
Azureにデプロイする方法が紹介されましたが、今
後のリリースでさらに性能が向上することがわかっ
ています（ドライバの改善による性能向上、現在は
まだサポートしていない機能の実装など）。すでに
動作に必要になる基本的な部分はマージされていま
すので、FreeBSD Updateでバイナリアップデート
が可能ですし、いったんデプロイしたFreeBSDは
アップグレードして使い続けることができます。
FreeBSDをサーバとして運用する場合、今後は
Azureが重要な候補になることは間違いのない状況
です。

FreeBSD on Azure

　AzureでFreeBSDをセットアップする方法はと
ても簡単です。すでにアカウントを持っているな
ら、4つのステップを経て数分でデプロイできます。
慣れたら1分といったところでしょう。
　とりあえず試してみたいという場合には、無償サ
ブスクリプションで利用できます。同様のサービス
での無償サブスクリプションには、利用期間に制限
があったり、クーポンを使い切ると以降は料金が発
生したりしますが、執筆現在（2016年6月）、Azure

の無料サブスクリプションはそのまま支払なくサー
ビスを利用し続けることができます。明示的に支払
うサブスクリプションに変更しない限り、そのまま
利用可能です（その代わり選択できる環境や性能は
限られています）。
　以降でAzureにFreeBSDをセットアップする方
法を紹介します。
　まず、Azureのアカウントのセットアップは各自
終わらせておいてください。

います。これまで物理的なハードウェアとソフト
ウェアをセットで販売していたものが、すべてクラ
ウド上にセットアップしてサービスのみを提供する
といった形に変わりつつあります。過渡期には
Hyper-Vなどの仮想環境を利用するといったもので
したが、現在ではAzureへ移行する様子をみせてい
ます。
　こうしたアプライアンスベンダの要求に応えるに
は、MicrosoftとしてはHyper-VでFreeBSDをサ
ポートする必要があります。完全仮想化であれば
FreeBSDは動作しますが、それではHyper-Vの性
能をフルに発揮できません。Hyper-Vでフル性能を
発揮できるようにドライバを開発する必要があるほ
か、そのほかHyper-Vと連動して便利なサービスを
提供するために各種サービス（デーモン）の開発と運
用が必要になります。このあたりから、Microsoftは
FreeBSD FoundationやFreeBSDプロジェクト、
FreeBSDを利用しているベンダと協力関係を構築
するようになります。Microsoftにとって、Free

BSDのサポートは必要不可欠だったわけです。

Microsoftから直接提供される
FreeBSD仮想環境

　Hyper-Vで性能を発揮するにはHyper-Vで必要に
なるバスに対応したドライバを実装する必要がある
ほか、準仮想化に必要になるドライバをいくつか
持っておく必要があります。これに加えてユーザラ
ンドで動作するデーモンを動作させ、Hyper-Vのホ
ストと通信して動作させる必要があります。
　このあたりの成果物はすでにFreeBSDカーネル
にマージされ、パッケージとしてサービスが提供さ
れています。Microsoftは上海にオープンソース系の
チームを抱えていますが、彼らはすでにFreeBSD

コミッタにも就任しており、Microsoftから直接成果
物がマージできる体制が構築されています。
　ほかのサービスとAzureのもっとも大きな違い
は、Microsoftがゲストオペレーティングシステムと
して正式にFreeBSDをサポートしている点と、
Microsoftから直接FreeBSD仮想環境のイメージが
提供されている点にあります。Amazon EC2など、

158 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

　FreeBSD仮想環境を選択してセットアップ
を開始します。ステップ1では仮想環境の名前、
最初に作成するユーザ名、そのユーザのパス
ワードまたはSSHの公開鍵、サブスクリプション

の選択（無料サブスクリプションの場合にはこ
こが「無料試用版」になっている）、クラウドの
場所の選択、などを行います（図2）。パスワー
ドを設定すればログインは簡単ですが、セキュ
リティ上好ましいとはいえません。SSH公開鍵
のほうを選択して、利用しているSSH公開鍵
を入力して、この鍵を使ってログインするよう
にしてください。
　次に仮想環境のハードウェアを選択します。
ここでさまざまなリソースの仮想環境を選択で
きるのですが、無料のサブスクリプションには
上限がありますので、「お勧め」として表示され
ている中からどれかを選択してください（図3）。
実質的に、設定することはこれで終わりです。
　次にストレージやネットワークについて設定
するページが表示されますが、ここはとくに変
更することなく次の画面にいきます。
　最後に設定内容を確認します（図4）。これで
セットアップ完了です。

　セットアップした環境にssh経由でログインする
と図5のようになります。この環境はFreeBSD

10.3をデプロイしたあとに、FreeBSD Updateを実
行してカーネルとユーザランドを最新のパッチセッ
トにアップグレードしてあるほか、いくつかパッ
ケージをインストールして利用しています。はじめ
からAzureのホストと連携するためのサービスが動

　次に、ダッシュボードから検索をかけてFree

BSD仮想環境を探します（図1）注1。現在ならFree

BSD 10.3の仮想環境が見つかるでしょうし、今後
はFreeBSD 11.0も現れることになるでしょう。

注1	 ダッシュボードはタブレットデバイス（Surfaceを意識したも
のだと思います）を意識したUIにもなっていて、PCから操作
するだけではなく、Surface ProやiPad Proからも便利に
扱えそうです。

▼▼図1　FreeBSDの仮想環境を検索する

▼▼図3　利用する仮想環境リソースを選択

▼▼図4　設定内容の確認▼▼図2　基本情報を設定

Aug. 2016 - 159

▶第33回◀
Microsoft loves FreeBSD

作しているほか、FreeBSD Updateでカーネルと
ユーザランドをアップグレードしても使い続けられ
る点がポイントです。
　dmesg(8)でシステムメッセージを確認すると、
「Hypervisor: Origin = "Microsoft Hv"」の出力を
確認できます（図6）。
　開発者はいつでもログインできるマイ・サーバを
いくつか持っているものですが、Azureはその最新
の候補になったと言えます。簡単にデプロイできる
ので、とりあえず作成して使ってみるというのはあ
りだと思います。使い勝手が良ければ、本番環境へ
の適用なども評価してみてはいかがでしょう。

変わり続けるベンダ
とコミュニティ

　ユーザのニーズや産業業界が変わり続けるよう
に、FreeBSDが求められる業界も時間とともに変化
しています。もともとISPやエッジサーバでの
ニーズが高かったFreeBSDですが、現在では組込
みや動画配信、仮想環境といった分野でのニーズが

伸びていますし、協力関係を結ぶ企業もそういった
業界の企業へシフトしています。
　MicrosoftがFreeBSDのサポートへの取り組み
を開始したことはすでに数年前から報道されていま
すが、今回MicrosoftからFreeBSD仮想環境の正
式公開がアナウンスされたことは1つのマイルス
トーンとなるものです。今後、FreeBSDを利用する
環境としてAzureはそのシーンを広げることになる
ものとみられます。実際、FreeBSD開発者会議では
Microsoftから、FreeBSDのデプロイ率が増えてい
るといった発表もありました。
　ほかの *BSDへサポートが広がっていくのかはこ
れからの取り組みによりますけれど、すでにFree

BSDで取り組んだ成果物があることから、動作さ
せること自体はそれほど難しくないように思いま
す。セキュリティが重要視されるシーンでは
OpenBSDに高い注目がありますし、今後、ほかの

*BSDにも適用が広がっていくかもしれません。今
後のMicrosoftの取り組みに注目しておきたいとこ
ろです。s

▼▼図5　Azureで動作するFreeBSD 10.3（セキュリティアップデート済み）

▼▼図6　Microsoft Hyper-Vで動作していることを確認できる

160 - Software Design

38 Debian Developer　やまねひでき　henrich@debian.org

NMプロセス変更、GitLab利用ほか、
Debianプロジェクト改善の動き

「最小限」Debianの
パッケージダウンロードサイズ
　「init」パッケージの優先度が requiredから
importantに引き下げられました。それに伴い、
debootstrapコマンドを利用して最小限のDebian

環境（minbase）を作成した場合、ダウンロード
されるパッケージのサイズが29MBとさらに少
なくなっています注1（実際にパッケージが展開
されるとディスク消費量は175MBとなります）。
実験用のchroot環境や昨今流行りのコンテナ
環境のイメージを作る際にはサイズが小さいほ
うが有利ですので、それらの作業を頻繁にされ
る方にはうれしい話ですね。
　この環境を作成するには、次のように--variant
=minbaseオプションを付けてdebootstrapコマ
ンドを実行します。

OpenSSL 1.1.0対応

　Debian 9“Stretch”では、OpenSSLもアップ
デートして1.1.0を導入する予定になっていま
すが、こちらの導入に対して長大なFTBFS（Fails

To Build From Source、ビルドエラー）のパッ

$ sudo debootstrap --variant=minbase sid ｭ
/srv/chroot/sid http://ftp.jp.debian.ｭ
org/debian/

ケージリスト注2が流れてきました（筆者も含め
られてしまって頭が痛いです）。
　OpenSSL 1.1.0を入れることでビルドができ
なくなるソフトウェアは、パッケージの問題と
いうよりソフトウェアそのものの対応が必要で、
Upstream（ソフトウェアの開発元）側での修正が
必要なものばかりです。対応のためにはDebian

パッケージメンテナからUpstreamへの働きか
けが重要になりますね（この原稿が終わったら、
かけ声だけでなくて自分もやらないといけませ
ん……がんばります……）。

NMプロセスの変更

　現在まで、Debian開発者になるには、「NM

プロセス」注3という官僚的事務手続きのやりと
りをひとつひとつ経て、開発者として認定される、
という長い処理が必要でした。長い間、不満が
こぼされながらもずっと手つかずだったのですが、
この処理作業を管理するサイト「nm.debian.org」
に対して、Enrico Zini氏が改善をしたこと注4

によって、大幅に変更が加わりました。
　今後は「応募者自身が必要な作業を実施して
サイトに入力していく」という形になり、処理

注1） URL https://lists.debian.org/debian-devel-announce　
/2016/06/msg00002.html

注2） URL https://lists.debian.org/debian-devel/2016/06/
msg00205.html

注3） 「New Memberプロセス」の略。以前は「New Maintainer
プロセス」と呼ばれていました（そのため、一部ドキュメ
ントもそのように記載していることがあります）。Debian
開発者において、パッケージのアップロード権限を持た
ないNon-uploading developerという区分ができたこと
もあり、「Member」という呼び方に変わっています。

注4） U R L https://l ists.debian.org/debian-devel-anno
unce/2016/06/msg00003.html

https://lists.debian.org/debian-devel-announce/2016/06/msg00002.html
https://lists.debian.org/debian-devel/2016/06/msg00205.html
https://lists.debian.org/debian-devel-announce/2016/06/msg00003.html

160 - Software Design Aug. 2016 - 161

NMプロセス変更、GitLab利用ほか、
Debianプロジェクト改善の動き 38

のスピードアップが期待されています。これま
でとの違いは「シーケンシャルに1つずつ手続
きをしていくのか（図1）」、「できる作業から随
時、ハブ＆スポーク的に進めていくのか（図2）」
というところです。これで応募者の待ち時間に
対するフラストレーションがかなり軽減されそ
うです。
　ちなみに、Debianの公式開発者になるには、
次のようなステップを経る必要があります。プ
ロセスの進捗はhttps://nm.debian.org/process

から閲覧できます。

¡	Alioth注5の登録ページ注6にてユーザアカウ
ントを作成する

¡	登録したユーザ情報で、Debian Single Sign
Onのページ注7にログインすると、クライア
ント証明書が作成されてブラウザにインストー
ルされる

¡	nm.debian.orgに移動し、ログインする
¡	自身のプロファイルを変更（存在しなければ
作成）する

¡	登録ページ注8で簡単な質問に答えて登録を行
う。質問内容はDebian社会契約／Debianフ

リーソフトウェアガイドライン／Debianマシ
ン利用規則の順守に同意するかどうか、名前
と希望するアカウント名、GPGキーについて
など。さらに、自身の自己紹介とこれまでに
Debianにcontributeしてきた内容やこれから
Debianで実現したいことなどを記入する。
これは公開メーリングリスト注9に送付される

¡	投稿された内容の確認（confirm）のリンクが
送られてくる。これは自身のGPG鍵で暗号
化されており、ほかの人は読めない（これを
もって本人確認としている）

¡	ほかのDebian公式開発者にプロファイルペー
ジから推薦（Adovocate）をしてもらう

¡	Application Manager（AM）から与えられた
スキルチェックなど、必要なプロセスを並
行してこなす

¡	すべてのプロセスを完了すると、AMの許可
がおり、DAM（Debian Account Manager）に
よってアカウントが作成され、GPGで暗号化
された説明メールが送られてくる（以上で完了）

　また、リニューアルされたサイトnm.debian.

orgは、今回発表されたNew Memberプロセス
以外の作業、たとえば「移植作業用マシンの利
用申し込み注10」「引退からの復帰」作業など、に
ついても対応が可能なインフラになることが期
待されています。

Step A

Step B

Step C

Step D

Step E

応募

応募から始まり、完了まで
1ステップずつ進んでいく

完了

 ▼図1　従来のDebian開発者になるまで
 の流れ（シーケンシャル方式）

Step A

Step B

Step CStep E

Step D

各ステップが独立しており、
応募者が中心となって個別に
手続きを進めていける。
どこかのステップが停滞して
いても、ほかのステップは問
題なく進められるため効率が
良い

応募者

 ▼図2　今後のDebian開発者になるまでの流れ（ハブ&スポーク方式）

注5） alioth.debian.orgのこと。SourceForgeと源流をともに
する FusionForgeというソフトウェアを使っている
Debianプロジェクト向けの開発ホスティングサービス。

注6） URL https://alioth.debian.org/account/register.php
注7） URL https://sso.debian.org/sso/login
注8） URL https://nm.debian.org/public/newnm

注9） debian-newmaint@lists.debian.org
注10） 現状の移植作業用マシンの利用申し込みについては、㈱

クリアコードの林健太郎さんのブログ記事が参考になり
ます。 URL http://www.clear-code.com/blog/2016/2/24.
html

https://nm.debian.org/process/
https://alioth.debian.org/account/register.php
https://sso.debian.org/sso/login
https://nm.debian.org/public/newnm
http://www.clear-code.com/blog/2016/2/24.html

162 - Software Design

Debianでの
GitLabサービスの議論

　先だってDebianでの公式gitlabパッケージ
についてお伝えしているとおり、gitlabパッケー
ジメンテナの1人であるPirate Praveen氏が
「GitLabをDebianでの開発サービスとして利
用したい」という意思表明をdebian-develメー
リングリストで行いました。すると、さまざま
な視点から質問／疑問／賛成が寄せられる事態
となっています。長大な議論になっていますが、
争点としては次の3点が肝でしょうか。

①サービスはdebian.org配下の公式サービス
とするのか、debian.net配下の試験サービ
スという位置づけにするのか

②DebianでのGitリポジトリサービスをAlioth
から移管するのか、しないのか

③移管するとしたらGitLabが最適な代替サー
ビスなのか。ほかのソフトウェアを使った
ホスティングはどうか

　①の議題については、debian.orgドメイン配
下のマシン群は基本的にDebian System Admi

nistratorチーム（略してDSA）の管理下にあり
ます注11。こちらで運用する場合にはDSAが要
求する条件を満たさなければなりません。たと
えば、security.debian.orgのミラーを日本に置
いた際には、

¡	最低400GBのディスクと4GB RAM
¡	2、3個の静的IPv4アドレス（追加でIPv6ア
ドレスも歓迎）

¡	仮想マシンではないこと
¡	リモートコンソール（HP iLO、DRAC、IBM

RSA、SuperMicro IPMIなど）か、リモート
からアクセス可能なシリアルコンソールが
あること

注11） 「基本的に」というのは、パッケージリポジトリの ftp.*.
debian.orgサーバはDSA管理下ではないからです。たと
えば、ftp.jp.debian.orgの場合は、複数のミラーサーバを
参照するようになっています。

¡	ファイアウォールでの制限がないこと
¡	データセンターで稼働していること

というように、昨今のVPS／クラウド全盛時
代には厳しい要求（とくに「仮想マシンではない
こと」）が課せられました。しかし、このときは
さくらインターネット㈱の協力により無事クリ
アでき、晴れて設置が完了しました（これ以来、
アジア圏からのセキュリティアップデートで速
度の不満を感じることはなくなったはずです）。
　対してdebian.netドメイン注12の場合は、Debian

公式開発者ならば自由に利用でき、サーバもと
くに制限なく指定ができます（単なるDNSエイ
リアス設定のため）。仮に、「softwaredesign.

debian.net」というドメインで筆者が何か実験を
したいとしたら、今日明日にでも利用が可能です。
　Pirate氏は当初gitlab.debian.netの利用を希
望していたのですが、ほかの開発者からの「git

lab.debian.orgのほうがいいのでは」という声や、
DSAの一部から「foobar.debian.netから foobar.

debian.orgに将来的に移行するのは、かなりの
手間だ」という声から、debian.orgでのホスティ
ングもありか……という話になってきました。
それに対して「DSAとしては、あまりメンテナ
ンスするサーバを増やしたくない。1サービス
あたり1ドメインという原則でやっているので、
それなら現在のgit.debian.orgをマージするの
が良いのでは」という意見が出され、②の問題
に続きます。
　②については、現状のAliothのメンテナであ
るAlexander Wirt氏から「“Open Core”注13なア
プローチのソフトウェアだと自分たちで必要な
部分をスクラッチで書く必要がある。しかも、
商用版と競合する機能であれば、Upstreamにマー
ジされない可能性が高く、ずっとアップデート

注12） URL https://wiki.debian.org/DebianNetDomains

注13） ベースとなるバージョンはOSSライセンスで提供するが、
追加機能はプロプライエタリなライセンスで提供する、と
いう形。今回の場合、全開発者書き込み可能なリポジトリ
を持つ、という機能はGitLab CEでは存在せず、商用版で
あるGitLab EEにしかない。

https://wiki.debian.org/DebianNetDomains

162 - Software Design Aug. 2016 - 163

NMプロセス変更、GitLab利用ほか、
Debianプロジェクト改善の動き 38

に合わせてメンテナンスをしていくコストが生
じるので、あまりやりたくない（Aliothでは採用
したくない）」という意見が出されます。これに
対しては、「マージについて、Upstreamは耳を
傾ける姿勢があると思う」とPirate氏が意見を
述べました。
　また、「gitlabはとても複雑なので避けたほ
うがいいんじゃないか？」という意見には「gitlab

は巨大なRubyパッケージ群だから嫌だってい
うけど、FusionForgeをメンテナンスし続けた
いの？（FusionForgeも巨大なソフトウェアだ
よね）」という反論が寄せられています。どっち
に転んでもたいへんな道には変わりないなら、
もっとモダンなサービスを提供できる基盤＝
GitLabなどにしたほうが良いだろう、という
意見ですね（筆者も同じ考えです）。そして「Git

Labの以外のalternativeなものも試してみた
ら？」という意見から③の問題に続きます。
　③についてはhttps://wiki.debian.org/Alioth/

GitNextに比較表が作られ、Gitホスティングサー
ビスに利用できるソフトウェアが検討されてい
ます。「Gitoliteはシンプル過ぎて今回のGitLab

との比較にならない。Merge Requestが使えない」
「Gogs注14は使っているが、現在のDebianにある
20,000超のGitリポジトリは扱えないと思う」
「Pagure注15はどうだろうか。Fedoraが作ってい
る」「Kallithea注16はGitとMercurialが扱えるよ」
などの情報が出されています。
　3つの議題とも結論は出ていませんが、①に
ついてはdebian.orgで始めるよりはdebian.net

で始めてしまっていいのではないか、という方
向のようです。GitLab社のCEOからのオファー
で「GitLabがホストするVMでgitlab.debian.net

を動かす」という話が出ていたので、おそらくは
こちらを受け入れてgitlab.debian.net（あるいは、
Pirate氏が「GitLabだとgit.debian.orgと名前が
似通っていて混乱する」と言われたときに案とし

注14） URL https://gogs.io/

注15） URL https://pagure.io/

注16） URL https://kallithea-scm.org/

て挙げていたshukra.debian.net注17）でテスト運
用を開始するのではないかと思います。
　②については、そもそも論として今回のGit

Lab採用の話からちょっと飛躍させ過ぎですの
で、まずはGitLabを使ってみてからインフラ
の統合をテストするのではないでしょうか。
　③については、今のところ未知数です。長い
歴史から過去のしがらみ（レガシーインフラ）が
多いDebianですので、機敏に新しいインフラを
追加……とはいかないところがあります注18。と
はいえ、GitLabのようなモダンなWebインター
フェースを持ち、Pull Request（Merge Request）
という手法に対応できる開発用インフラは今後
必要性を増していきますので、いい方向に向かっ
てほしいですね。

DebConf16開催

　本誌が出るころには終了しているのですが、
7月2～9日に、南アフリカのケープタウン大学
にて、DebConf16が開催されます注19。筆者は
「Microsoftが本当に『MS♥Linux』と言うなら、
DebConfのスポンサーになってくれたらなー」
などと自身のブログで書いていたのですが、本
当にスポンサーになっていたのにはちょっと驚
きました注20。
　詳細は次号以降でお伝えできればと思います
が、公式サイト注21を覗いて雰囲気などを想像
していただければと思います。｢

注17） URL https://en.wikipedia.org/wiki/Shukra　ヒンドゥーの
神様の名前のようです。

注18） もう1つの理由として、プロジェクトの目的が「自由なOS
の作成」ですので、フリーソフトウェアではないインフラに
は極力頼らないという方針があるからです（そのため、昨今
のクラウドも、各ベンダーのプロプライエタリなコードの
上に成り立っているので第一の選択肢にはなりえません）。
正直「面倒くさい」という側面があるのは否めないですが、
その意義を見失ったらプロジェクトが存在する意味も消え
失せますので、「こだわり」は捨てるわけにはいきません。

注19） 初のアフリカ大陸での開催です。アジア地域、とくに日本
でも開催したいので、ご協力いただける組織／団体／個人
の方はご連絡ください。

注20） Microsoftに勤めているDebian開発者がいるのは知ってい
たのですが、実際にスポンサーになることまでは想像しな
かったのです。

注21） URL https://debconf16.debconf.org/

https://wiki.debian.org/Alioth/GitNext
https://gogs.io/
https://pagure.io/
https://kallithea-scm.org/
https://en.wikipedia.org/wiki/Shukra
https://debconf16.debconf.org/

164 - Software Design

　「勇者殿、はじめての冒険なら北の村をめざ
すがよい。西には恐ろしいモンスターがいる。
東は険しい山、南は海じゃ。南国との交易船は、
後3ヵ月戻らぬ。」
　はじめに、どこに行けばいいのか。モンスター
との戦い方も、サービスバトルで安全に覚えら
れます。RPGだったら、マニュアルなんて読
まなくても冒険をはじめられます。死んでしまっ
てもやり直しができますが……。

ファイル操作

　ファイル操作の演習を開始すると間もなく、
当社の新人エンジニアさんは何度もファイルシ
ステムの中で迷子になってしまいました。GUI

を使えば、俯瞰でファイルシステムを見ること
ができますが、CLIでは勝手が違います。初心
者が文字の情報だけをたよりに、ファイルシス
テムの中を歩きまわるのは難しいことかもしれ
ません。迷わないようにするにはどうしたらよ
いのでしょうか、実際に作業しながらコツをつ
かみましょう。
　案ずるより産むが易し。早速システムにログ
インして作業開始です。はじめは、コマンドの
意味がわからなくてもあまり気にせず、動作を
確認しながら一歩ずつ進んでいきましょう。こ
の小さな冒険を終えたら、きっとファイル操作

の基本はばっちりです。まずは以下のようにホー
ムディレクトリに作業環境を準備します。

旅立ちの前に

 ●環境の準備
$ cd ; mkdir Work ; cd Workí

cd̶Change Directory̶ディレクトリの移
動（シェル内部コマンド）
　cdコマンドは、ワーキングディレクトリを移
動します。上記「環境の準備」の最初のように引
数なしなら、ホームディレクトリに移動します。
cdは、ls以上に頻繁に使うコマンドでしょう。
　シェルは;を改行と同じように解釈します。
つまり、;はコマンドの区切りとして認識する
区切り文字ですので、1行に複数のコマンドを
書くことができます。コマンドは、左側のもの
から順番に実行され、実行されたコマンドの終
了を待ってから次のコマンドを実行します。

mkdir̶MaKe DIRectory̶ディレクトリを
作る
　mkdirで、ディレクトリを作ります。
　つまり上記の1行（環境の準備）で、作業用の
ディレクトリ（Work）をホームディレクトリに
作成し、ワーキングディレクトリをWorkとし
て移動しました。

コンピュータを使ううえでもっとも頻度が高い作業といえるファイル操作の基本を2回連続で
紹介します。1回目は、ファイルとディレクトリの作成、複製、削除と、シェルのグロビング
とbrace expansionを理解します。

 Author 中島 雅弘（なかじま まさひろ）　㈱アーヴァイン・システムズ

第　　回4 ファイル操作の基本（その1）

164 - Software Design Aug. 2016 - 165

pwd̶Print Working Directory̶ワーキン
グディレクトリを確認する
　pwdコマンドで、今いるディレクトリの位置
を確認してみましょう。

$ pwdí
/Users/masa/Work

　OS Xの場合、通常一般ユーザのホームディ
レクトリはデフォルトで /Usersの下に作ら
れるので、/Users/ユーザ名/Workでしょう。
UbuntuなどのLinuxでは、ホームディレクト
リはデフォルトで/homeの下に作られるので、
/home/ユーザ名/Workとなっているのではない
でしょうか。

グロビングと
brace expansion

　OSとユーザの間に入って、やり取りを仲介
するのがシェルの役割です。シェルは、ターミ
ナルでキーボードからの入力を受け、結果を画
面に出力します。LinuxでもOS Xでも最近の
ほとんどの環境で標準的なシェルは“bash注1”で、
古典的なUnixで標準だったsh注2の直系と位置
づけられ機能を大幅に拡張したものです。
　シェルには、ファイル名を効率よく表現する
ためのglob（グロブ）注3という機能があります。
グロブは、表1に示すような特別な意味を持つ
グロブ文字を使った式で、文字列式にマッチす
るファイルがあれば、それを展開するしくみで
とても便利ですが、理解が不十分だと予期しな
い動作をさせてしまうことがあります。
　たとえば、カレントディレクトリに次のよう
なファイルがあるとします。

＜カレントディレクトリにあるファイル＞
aac aAc abc Abc bc c

　このディレクトリにあるファイルを対象にし
た、基本的なグロブによる文字列の置き換えは、

注1） バッシュと読みます。
注2） ボーンシェルとか単にシェルと呼びます。
注3） ワイルドカードとも呼ばれることがあります。

表1のようになります。
　bashでグロブに加えて便利でよく使うのが、
文字列を生成する { }（波括弧）の展開（brace

expansion）と呼ばれる表記です。こちらも併せ
て確認しておきましょう。

echo̶ECHO̶文字列を表示する
　brace expansionは、,で区切った文字列を生
成します。括弧{ }を入れ子にすることもでき
ます。早速文字列を表示するechoコマンドを
使ってbrace expansionの動作を見てみましょう。

 ●brace expansionの例
$ echo {xxx,yyy,zzz}í
xxx yyy zzz

$ echo *.{htm{l,},jp{e,}g}í
*.html *.htm *.jpeg *.jpg

　brace expansionでは、{a..z}と昇降順序が
ある連続する任意の文字・数字の、斜字体aか
らzまでの範囲と指定できます。このように記
述すると、aとzの間連続する文字や数字を生
成します。

 ●..の例
$ echo {a..d}í
a b c d

$ echo {12..8}í
12 11 10 9 8

　*、?、[、]、{、}、,などの特別な意味を持
つ文字を通常の文字としてbashに認識させる
には、\（バックスラッシュ）でエスケープします。

 ▼表1　「カレントディレクトリにあるファイル」に対し
　　　てグロビングをする
グロブ文字 説明 表記 展開結果

*
任意の0 文字以上の文
字列とマッチ a* ac aAc abc

? 任意の1文字とマッチ ?b? abc Abc

[abc]
[] 内のa、b、cどれか
1文字とマッチ a[abc]c aac abc

[!abc]
[] 内のa、b、cいずれ
の1 文字ともマッチしな
い1文字

a[!abc]c aAc

第　　回4 ファイル操作の基本（その1）

166 - Software Design

 ●\によるエスケープの例
$ echo {abc,def,d\,ef}í
abc def d,ef

$ echo *.\{htm{l,},jp{e,}g}í
*.{html,jpeg} *.{html,jpg} *.{htm,jpeg}
*.{htm,jpg}

　シェルは、brace expansionやグロビング、シェ
ル変数の展開など、さまざまな変換を順番に処
理します。これらの処理の中でもbrace expan

sionは、最初に展開されます。

冒険再開

　グロブとbrace expansionを理解したところ
で、作業を続けましょう。作業ディレクトリの
下に、図1のようにディレクトリを作ってみま
しょう。
　mkdirは、一度に複数のディレクトリを作る
ことができますので……

 ●失敗例
$ mkdir d1 d2/{d1,d2}í
mkdir: d2: No such file or directory
mkdir: d2: No such file or directory

$ ls -FCí
d1/

　エラーが生じます。まだ存在していないd2

ディレクトリの下にディレクトリを作ろうとし
て失敗しました。このように、まだディレクト
リが存在していない階層にも作る場合は、
mkdirに-pオプションを付けて実行します。

 ●成功例　:d1はまだ存在していないとして
$ mkdir -p d1 d2/{d1,d2}í

　うまくいきましたので、今度はファイルを作
りましょう。

touch̶TOUCH̶空ファイルを作る
　touchは、空のファイルを作るときによく使
います。touchコマンドは、本来はファイルの
内容を変更せずに最終更新日を変更するための
コマンドで、makeやrsyncなど、対象ファイル
のタイムスタンプによって動作を決定するプロ
グラムと併せて使うツールです。存在していな
いファイルを指定してtouchすると、0bytesの
ファイルができます。

 ●touchの例
$ touch d1/f{1..3} d2/f1 d2/{d1,d2}/{f1,f2}í

$ ls d2/d?í
d2/d1:
f1 f2

d2/d2:
f1 f2

　この例では、brace expansionを使って、狙い
どおりうまくファイルができました。確認のた
めのlsで、引数にグロビングの?を使っている
ところにも注目してみてください。この例での
touchをbrace expansionを使わずに書くと次
のようになります。brace expansionを使うほ
うが短くてシンプルですね。

$ touch d1/f1 d1/f2 d1/f3 d2/f1 d2/d1/f1 ｭ
d2/d1/f2 d2/d2/f1 d2/d2/f2

	 グロビングとbrace expansion
を一緒に使ったときに失敗するケース
　上と同じ狙いですが、次のやり方だとファイルを作
る操作の一部は失敗します。これは、先ほど解説した
ようにbrace expansionがグロビングに優先して実施
されてから、グロビングの処理がされるためです。

　touchの最後の引数部分d2/d?/{f1,f2}だけに注目
してください。brace expansionが終了した状態では、
d2/d?/f1、d2/d?/f2となります。これに対してグロビ
ングを期待しても、d2/d1/f1、d2/d1/f2、d2/d2/f1、
d2/d2/f2はまだ存在していませんので、グロビングを
期待した ?は展開されずそのままです。もちろん、
d2/d1/f1……d2/d2/f2が存在していれば、グロビング
されて?は置き換えられます。

$ touch d1/f{1..3} d2/f1 d2/d?/{f1,f2}í
touch: d2/d?/f1: No such file or directory
touch: d2/d?/f2: No such file or directory

Work

d2d1

d1 d2

. ワーキングディレクトリ

 ▼図1　ディレクトリを作る

166 - Software Design Aug. 2016 - 167

ディレクトリマップを作る

　CLIの操作では、視覚的にディレクトリ構造
を捉えにくいために、作業対象のパスや現在作
業している位置がわからなくなってしまうこと
で挫折してしまう人がいます。いわゆるファイ
ルシステム内で迷子になってしまうわけです。
この対策に、迷子にならないためのベストプラ
クティスを3つあげておきます。

【ファイルシステムで迷わないベストプラクティス】
1. 操作対象の、マップを描く
2. むやみにcdしない 歩きまわらない
3. コマンドを発行する前に、対象のパス指定（文

字列）とマップ（図）を照合

　GUI環境ならオートマップともいえる、視
覚化されたファイルマネージャがあるので迷う
ことはありません。しかし、CLI（テキストに
よる情報のみ）の環境では自分でマッピングし
なければなりません。次は、これまでに作った
ディレクトリとファイルのディレクトリマップ
を作ってみましょう。たった今自分で作ったの
で、構造はすっかり頭の中に入っていると思い
ますが、まったく未知の環境を調査していると
いう想定で行きましょう。;-)
　手順としては、まずpwdで自分の位置を確認
します。そしてlsによって構造を調べていきま
す（ディレクトリ階層を俯瞰で見る方法につい
ては、別の機会に紹介します）。相対パス指定
を使いましょう。むやみにcdしないのがポイ
ントです。慣れてしまえば、マッピングをしな
くても、視覚化したマップが諳

そら

んじられるよう
になりますので、たくさん経験を積みましょう。
　では実際にやってみましょう。

 ①カレントワーキングディレクトリを確認
$ pwdí
/home/masa/Work ←Workの前のホームディレクトリ部分は、

自分のディレクトリになっているはずです。

 ②ワーキングディレクトリの直下にあるものを確認
$ ls -FCí

d1/ d2/

 ③d1、d2はディレクトリであるので、まとめてそれぞれの中にある
ものを確認
$ ls -FC * í
d1:
f1 f2 f3

d2:
d1/ d2/ f1

 ④d2/d1、d2/d2の中を確認
$ ls -FC d2/d?í
d2/d1:
f1 f2

d2/d2:
f1 f2

　これで、すべてのサブディレクトリの中も確
認できました。図を描いてみます。図2のよう
に描けましたか？　うまくいかなかったら、ど
こが違っているのか見なおしてください。
　うまくいったら、次にファイルを消してみま
しょう。ディレクトリマップ上に対象と、手順
を記します。図3を見れば明らかですが、ここ
ではファイルは消して、ディレクトリは消さず
に残していることに注意してください。

rm̶ReMove ̶ 削除する
　この目的を達成するためにはいろいろな表記
の仕方がありますが、たとえば次のようにグロ
ビングを使ってみましょう。

 ●図3のStep1.
$ rm d2/d2/*í

　次はbrace expansionを使って、d1の中にあ
るf2とf3を削除します。

 ●図3のStep2.
$ rm d1/{f2,f3}í

　最期に、残っているd1/f1とd2/f1をまとめ
て……

 ●図3のStep3.
$ rm */*í
rm: d2/d1: is a directory
rm: d2/d2: is a directory

第　　回4 ファイル操作の基本（その1）

168 - Software Design

　rmはデフォルトではディレクトリを削除し
ません。グロビングでマッチしたディレクトリ
d2/d1、d2/d2の削除でエラーを出力しましたが、
狙いのとおりファイルはすべて消し去り、ディ
レクトリは残すことができました。このように、
実践の現場では、エラーが生じることを利用し
ながら余計なコマンド発行をしないようにする
こともあります。Unix系のコマンドは、エラー
はもちろんメッセージが少ないのが特色ですが、
コマンドが出力するメッセージには注視して狙

いどおりの動作をしているか冷静に判断します。
エラー即「いけないこと」と早計に判断しないよ
うにしましょう。
　さて、次はディレクトリの削除をしてみましょ
う。こちらも現在のディレクトリマップ図4に
手順を示しますので、挑戦してみてください。

rmdir̶ReMove DIRectory̶ディレクトリ
を削除する
　rmdirコマンドはディレクトリを削除するコ
マンドです。ディレクトリの中が空っぽでなけ
ればディレクトリを削除することはできません。

 ●図4のStep1.
$ rmdir d1 d2/d2í

 ●図4のStep2.
$ rmdir d2/d1í
rmdir: d2/d1: Directory not empty

　rmdirは、空でないディレクトリを削除する
ことはできないので失敗しました。
　このような場合は、中身をきちんと消してか
らディレクトリの削除をおこなうか、rmの-r
オプションを使って指定したディレクトリ以下
のすべてのファイルとディレクトリを削除しま
す。実行すると、確認もなく取り消しが効かな
い操作ですので、十分慎重に実行するようにし
ましょう。

 ●図4のStep2. 成功例
$ rm -r d2/d1í

　rm、rmdirは一度実行してしまうと取り消しが効き
ません。ゴミ箱に一度入るということもありませんの
で注意が必要です。
　rmを使うとき、一度に消してしまう自信がないとき
には、-iオプションを指定します。そうすれば削除対
象のファイルやディレクトリを削除するかどうか、1
つずつ確認のプロンプトが出ますので、消していい場
合にはyを入力します。

　さて、次はファイルのコピーです。今、すべ
てのディレクトリの中にファイルはありません。
次のようにd1の中にf1、f2、f3を作っておき

f2 f1f3f1

f2f1 f2f1

Work

d2d1

d1 d2

. ワーキングディレクトリ

 ▼図2　ディレクトリマップを作った

f2 f1f3f1

f2f1 f2f1

Work

d2d1

d1 d2

. ワーキングディレクトリ

Step2. これら2つ

Step1. これら全部

Step3. これら 2 つ

 ▼図3　ファイルを消す

f2f1

Work

d2d1

d1 d2

. ワーキングディレクトリ

Step1. これら 2 つ

Step2. これ

 ▼図4　ディレクトリを消す

168 - Software Design Aug. 2016 - 169

ましょう。

$ touch d1/f{1..3}

　図5の状態になったはずです。この状態で、
図5の指示のようにワーキングディレクトリ
を./d2に移動してからコピーをおこないます。

cp̶CoPy̶ファイルのコピー
　cpコマンドは、ファイルをターゲットとな
るファイルにコピーします。ターゲットがディ
レクトリである場合は、複数のコピー元ファイ
ルを、ディレクトリ内にコピーすることができ
ます。
　cpに-rオプションを指定すれば、コピー元
がディレクトリである場合は、ディレクトリの
中もすべて階層的にコピーします。

 ●複数のコピー先を指定した失敗例
$ cp ../d1/* {d1,d2}í
cp: d1 is a directory (not copied).
$ ls *í
d1:

d2:
f1 f2 f3

　上のやり方では失敗します。狙いは、コピー
先にd1とd2の2つのディレクトリをまとめて
指定したかったのですが、d2にのみコピーさ
れました。d1は../d1と同様、コピー元と判断
され、コピー元がディレクトリであるためにエ

ラーが表示されました。cpのコピー先は、1つ
のディレクトリかファイルでなければならない
ことに注意しましょう。
　この操作は1度にはできませんので、次のよ
うに;で区切って2回のcpとして処理します。

$ cp ../d1/* d1 ; cp ../d1/* d2í

今回のまとめと
次回について

　今回は、ファイルとディレクトリの作成、複
製、削除といった基本的な操作を見てきまし
た。そして、コマンドライン上で効率よくファ
イル操作をするには、シェルのグロブやbrace

expansionを理解することが重要ということを
解説しました。
　ファイルの削除や移動注4は、重大なシステム
への変更を加えることになる場合があります。
慎重に作業を進めたいときは、実際に変更を加
えるコマンドを実行する前にechoコマンドで
対象と指示が適切であるか確認しておけば、間
違いを減らすことができます。
　次回は、引き続きファイルの移動、リンクと
いった操作と権限について紹介します。

今回の確認コマンド
【manで調べるもの（括弧内はセクション番号）】
mkdir(1)、pwd(1)、echo(1)、touch(1)、rm(1)、
rmdir(1)、cp(1)

【以下はbashのhelpコマンドを使って確認】
cd、echo

　よく使う、rm、mkdir、rmdir、cpなどにも
便利なオプションがたくさんあります。また、
一般ユーザで使う場合とスーパーユーザで使う
場合に振る舞いが異なるオプションなどもあり
ますので、しっかりとmanで確認しておくとよ
いでしょう。echoには、コマンド/bin/echoと
bashの内部コマンドのechoの両方があります
が、この手のお話はあらためて…… ;-) ｢
注4） 移動については次回解説します。

第　　回4 ファイル操作の基本（その1）

これらを

f2 f3f1

ここにコピー

f2 f3f1

ここにコピー

f2 f3f1

Work

d2d1

d1 d2

. ワーキングディレクトリ

 ▼図5　コピーする

170 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

nowledge）が来ない場合、一定のタイムアウト
後にパケットを再送するようにできていますが、
ここでまた一度に送るパケット量を変えずに送
信していると、混雑状況はより悪化していきます。
　そこでTCPでは、輻輳の発生を自分で検出し、
通信量を調整する輻輳制御という機能が古くか
ら実装されています。輻輳の検出には大きく分
けて2つの方法があります。1つの方法ではパケッ
トロスを用い、もう1つの方法ではパケットの
遅延を用いて輻輳の検出を行う方法です。

パケットロスを用いた
輻輳制御

　まず、パケットロスを用いた輻輳制御アルゴ
リズムの1つであるTCP NewRenoについて見
てみましょう。これは多くの環境で実装されて
いる輻輳制御アルゴリズムで、FreeBSDでは
デフォルトとなっています。
　通信開始時の輻輳ウィンドウサイズ（cwnd）は
1となっています。そのあと、SlowStartという
モードでウィンドウサイズを増やしていきます（図
1）。Slow StartではACKが返ってくるごとに
このウィンドウサイズを2倍にしていきます。
SlowStartには“ssthresh”という閾

しきいち

値が設定さ
れており、ウィンドウサイズがssthres以上にな

　6月20日にLinux 4.7-rc4がリリースされてい
ます。うまく進めば、本誌発売のころには
Linux 4.7がリリースされているのではないで
しょうか。
　今回は、Linux 4.2で追加された新しいTCP

の輻
ふくそう

輳制御手法であるCAIADelay-Gradient

（CDG）について解説します。

TCPの輻輳制御
　通信では、その経路上の帯域を可能な限り多
く使うのが望ましいです。しかしTCPでは経路
上の帯域について何も仮定を置きませんし、仮
に帯域がわかっていたとしてもほかの通信と経
路上の機器を共有することから、自分だけがそ
の帯域をフルに使うわけにはいきません。好き
勝手に大量にデータを送信してしまうと、経路
上で問題が発生してしまいます。
　たとえば、経路上にあるルータに大量のパケッ
トが入ってきているとします。ルータはパケッ
トを処理し送信するためのバッファを持ってい
ますが、大量のパケットが来て混雑してくると、
やがてバッファにパケットを保持できなくなり、
パケットを破棄してしまいます。こうしたパケッ
トの混雑を輻輳と呼びます。TCPはACK（ACK

Linux 4.2の新機能
〜CDGによるTCPの輻輳制御

Text：青田 直大　AOTA Naohiro

第53回第53回

170 - Software Design Aug. 2016 - 171

Linux 4.2の新機能
〜CDGによるTCPの輻輳制御

第53回第53回

るとよりゆっくりウィンドウサイズを増やして
いく輻輳回避モードに切り替わります。通信開
始時にはssthreshはかなり大きく設定されてい
るため輻輳回避モードには入ることなく、ウィ
ンドウサイズは指数的に増大し、やがて回線が
いっぱいになってパケットロスが発生します。
　ウィンドウに余裕があれば、送信側はロスが
発生したパケットよりも後にも、ACKを待たず
にパケットを送信しています。これら後続パケッ
トが破棄されずに受信側に到着すると、受信側
は最後に受け取ったパケットに対応するACK

を送り返します。このACKは送信側には重複
したACKとして観察されます。重複したACK

を3度受け取ると、送信側はパケットロスが発
生したと認識します。
　後続パケットがない場合や、後続パケットも
破棄されてしまった場合には、重複したACK

も帰ってきません。その場合、RTO（Retransmissi

on Time Out）で設定された時間待ってもACK

が帰ってこないことをパケットロスの発生とみ
なします。
　パケットロスが起きた場合、通信経路の転送
量上限は現在のウィンドウサイズから前回のウィ
ンドウサイズの中間のどこかにあるということ
ができます。そこでssthreshを現在のウィンド
ウサイズの半分に設定します。ここから処理は
パケットロスを検出した方法によって分かれます。
タイムアウトが起きた場合、多くのパケットロ
スが発生していることが予測されます。そこで
ウィンドウサイズを1まで戻して、Slow Start

をやりなおします。
　今度はssthreshが設定されているので、前回
のパケットロス発生時の1つ前のウィンドウサ
イズまで来ると輻輳回避モードに入ることにな
ります。一方、重複ACKによりパケットロスを
検出した場合、後続のパケットが受信できてい
ることからそれなりに回線の容量が空いている
ことが予想されます。この場合、ウィンドウサ
イズを1まで戻してしまうと利用できる帯域を
無駄にしていることになります。そこで重複

ACKの場合には次のウィンドウサイズを
ssthreshと同じく現在のウィンドウサイズの半
分に設定してSlow Startモードをスキップし、
輻輳回避モードを開始します。
　輻輳回避モードでは、ACKごとにウィンドウ
サイズを“ウィンドウサイズ分の1”（1/cwnd）ず
つ増やしていきます。これによってウィンドウ
サイズは線形に増えていくことになります。

パケット遅延を用いた
輻輳制御

　輻輳を検出するもう1つの方法では、RTT

（Round-Trip Time）の増加により輻輳の判定を
行います。通信経路が混雑してくると、通信経
路上のルータのバッファが埋まってくるのでパ
ケットがバッファ内で保持されている時間が長
くなり、RTTが増加します。
　おもにパケット遅延を輻輳制御に用いる方法
の1つであるTCP Vegasについて見ていきま
しょう（図2）。全体的な構成はNewRenoと同じ
で、ssthreshまではSlow Startモードで、ssth

resh以上になると輻輳回避モードになります。
ポイントは、

❶	Slow Start時にどのようにウィンドウサイズ
を変化させるか

❷	どのようにssthreshを設定するか
❸	輻輳回避時にどのようにウィンドウサイズを

変化させるか

Slow Start 輻輳回避

パケットロス発生

パケットロス発生

 ▼図1　パケットロスを用いた輻輳制御

172 - Software Design

Linuxカーネル観光ガイド

の3点になります。
　まずSlow Start時の挙動からみていきましょ
う。VegasにおいてもACKごとにウィンドウサ
イズを倍にしていきます。ただしNewRenoのよ
うにパケットロスが起きるまで増大させていく
のではなく、RTTを監視して遅延が始まると倍
増を止めてssthreshを設定し、輻輳回避モード
に入るようになっています。
　具体的にLinuxのコードを見てみましょう。
Linuxに実装されたVegasでは、次の式でdiffを
計算します。

diff = cwnd * (rtt-baseRTT) / baseRTT;

　cwndは現在のウィンドウサイズ、rttは前回
ウィンドウサイズを計算した時点以後に受信し
たACKのRTTの最小値になります。baseRTT

は、通信期間全体でのRTTの最小値です。
baseRTTが通信経路が一番空いていたときの
RTTを示し、rttは現在のウィンドウで通信経
路が一番空いているときのRTTを示すことにな
ります。したがって、diffは最速の状態で保持
できるパケット数と比較して、どれだけ多くの
パケットがネットワーク上に乗っているのかを
示すことになります。
　このdiffがパラメータgamma（Linuxで、デフォ
ルトは1）より多くなると、ネットワークが混雑
してきたと判断し、ssthreshを設定して輻輳回
避に入ります。このとき、次のウィンドウサイ

ズは次の式で計算され、新しいウィンドウサイ
ズでのRTTがbaseRTTと同じ程度になるよう
に調整されます。また、ssthreshは新しいウィ
ンドウサイズの1つ下に設定されます。

cwnd = min(cwnd, cwnd * baseRTT / rtt);
ssthres = cwnd - 1;

　次に輻輳回避時の動きを見ていきましょう。
輻輳回避時も先ほどと同様に、最速状態に比べ
てどれだけ多くのパケットがネットワーク上に
乗っているのかを示すdiffを計算します。この
値がパラメータalphaとbeta（Linuxではデフォ
ルトで2と4）の間にあれば現在のウィンドウサ
イズを保持します。diffがalphaよりも少なければ、
ウィンドウサイズを1増やしてネットワークに
より多くのパケットを乗せるようにします。逆
にdiffがbetaよりも多くなっていれば、ウィンド
ウサイズを1減らしてネットワーク上にあるパ
ケット数を減らします。ウィンドウサイズを減
らした結果、ssthreshと新しいウィンドウサイ
ズが一致した場合にはssthreshの方も1つ減ら
します。

パケットロス方式とパ
ケット遅延方式の比較

　ここでパケットロスを用いるNewRenoとパ
ケット遅延を用いるVegasについて比較してみ
ましょう。NewRenoはパケットロスを輻輳の判
定に使うために、破棄されたパケットとその再

送の分だけスループットが悪化することに
なります。一方でVegasではRTTを観察
することでロスなしに輻輳を検出するので、
NewRenoよりもよいスループットを実現
すると言われています。
　一方でVegasはNewRenoと同じ環境で
動かした場合にNewReno側に帯域を食わ
れてしまう問題があります。この2つが同
じルータ上で競合し混雑してきた場合、
VegasはRTTの遅延を検出し、ウィンド
ウサイズを減少させますが、NewRenoで

RTT悪化を検出

 ▼図2　TCP Vegasにおける輻輳回避のイメージ

172 - Software Design Aug. 2016 - 173

Linux 4.2の新機能
〜CDGによるTCPの輻輳制御

第53回第53回

はパケット破棄が起こるまではウィンドウサイ
ズを増加させるのでVegasが減らした分を奪い
とるように振る舞います。
　また、パケットロス方式は無線環境下におい
て問題を起こし得ることが指摘されています。
無線LANなどの環境では、エラーレートが低
い有線環境とは異なり輻輳以外での原因でパケッ
トが破棄されることがあります。するとパケッ
トロス方式ではこれを輻輳発生とみなしてウィ
ンドウサイズを縮小し、スループットを低下さ
せてしまいます。さらに、パケット破棄を前提
とした方式ではVoice over IPのようなパケッ
ト破棄に対して敏感なアプリケーションに悪影
響をおよぼします。

CAIA Delay-
Gradient（CDG）

　Linux 4.2で追加されたCAIA Delay-Gradient

（CDG）は、その名のとおりパケット遅延をベー
スにした輻輳制御です。CDGの特徴は、

❶	パケット遅延の変化の勾配を用いて輻輳を検
出する

❷	確率ベースで平均的にはRTTと独立して、ウィ
ンドウの縮小を行う方法を採用

❸	パケットロス方式のフローと共存できる
❹	輻輳以外の原因によるパケットロスへの耐性

の4つが挙げられます。
　「❶パケット遅延の変化の勾配を用いる特徴」
について見ていきましょう。VegasではRTTの
値をそのまま使って輻輳の判定を行っていました。
一方でCDGではRTTの変化を使って輻輳を検
出しています。すなわち、一回のRTT期間ごと
に、その期間中のRTTの最大値・最小値を記
録し、その差分が大きくなれば輻輳が発生して
いるとみなします。さらに一回分の変化だけを
見ると急な変動に弱くなってしまうので、過去
数期間分（Linuxのデフォルトでは8期間）の移
動平均を用います。
　CDGをVegasと比較してみましょう。Vegas

ではbaseRTTとalpha、betaの値がその動きを
制御します。TCPの特性上、真のbaseRTTを
知ることはできないので、通信中のRTTの最小
値で推定し得るという弱点があります。同様に
どれだけ多くのパケットをネットワーク上に乗
せてよいかを示すalphaとbetaの値も適切な設
定はその通信経路によって変わってくるはずです。
こうした弱点からRTTを直接使う手法はイン
ターネット規模でのデプロイは難しいと指摘さ
れています。一方で遅延の勾配であれば経路上
のbaseRTTに依存せず値を取得できますし、経
路上の状況の変化に強くなります。
　次に「❷確率ベースのウィンドウ縮小」につい
て見ていきましょう。CDGでは次の確率Pでウィ
ンドウの縮小を決定します。

　ここでgは、❶で計算されるRTTの変動分の
移動平均で、Gは変動分に対する確率を調整す
るパラメータになります。この確率Pが変動分
gに対して指数的に変化することから、小さい
RTTの経路（変動も小さいことが予想される）で
も、大きなRTTの経路（変動も大きいことが予
想される）でも、平均的にはPが同等になると
CDGの論文中では主張しています。
　たとえばg/Gの変動がaからbの間で起きる
場合、縮小が起きる確率の平均Pavgは次の式で
与えられます。

　変動の中心をxとしてa=x/2、b=3x/2として
Pavg(x/2, 3x/2)をx=0.001からx=1の範囲で計算
すると、その確率は0から0.6まで変動し、平均
的に確率が一致しているようには見えません。
　おそらくポイントはこの確率評価がRTTごと
に起きることにあるかと思われます。ある一定
の期間T内にウィンドウ縮小が少なくとも1回
起きる確率Ptを考えるとRTTが短いものは先
ほどの平均確率が低い一方で、確率評価される

TEX Sample

Fujio Kaneda

June 25, 2016

P (g) = 1− e−(g/G)

Pavg(a, b) =
1

b− a

∫ b

a

(
1− e−x

)
dx

Pt(T, a, b) = 1− (1− Pavg(a, b))
(T/b)

1

TEX Sample

Fujio Kaneda

June 25, 2016

P (g) = 1− e−(g/G)

Pavg(a, b) =
1

b− a

∫ b

a

(
1− e−x

)
dx

Pt(T, a, b) = 1− (1− Pavg(a, b))
(T/b)

1

※eは自然対数の底

174 - Software Design

Linuxカーネル観光ガイド

回数が増えて結果としてPtは大きくなります。
Ptは次の式で与えられます。

　期間T=1として、先ほどと同様にしてx=0.001

からx=1までプロットすると図3のようになり、
RTTの変動が1,000倍違っていても確率は1％
ほどしか変動していないことになります。直感
的に解釈するとRTT変動が10倍になることで
確率評価回数が1/10になり、それと指数関数が
打ち消しあって一定期間中の平均確率が一定に
近付くということになります。
　経路のRTTに依存して、挙動が変わらない
というのも重要な性質です。たとえばNewReno

ではSlow Start時でも輻輳回避時でもRTTご
とにウィンドウが2倍または1増えていきます。
RTTが大きく違うフローが共存していると、まっ
たく同じタイミングでパケットロスが発生した
としてもRTTが短いフローの方が先にウィンド
ウを拡大し帯域を奪っていくことになります。
　「❸パケットロスとの共存」について見ていき
ましょう。Vegasではパケットロスベースで動
く輻輳制御に対して帯域を食われてしまう問題
がありました。CDGでは2つの手法でこの問題
を回避しています。
　1つは Ineffectual backoff detectionという方
法です。先ほどのルールにしたがってウィンド
ウを縮小すると通常はその分帯域の使用量が削
減され、RTTが減少することが予想されます。

TEX Sample

Fujio Kaneda

June 25, 2016

P (g) = 1− e−(g/G)

Pavg(a, b) =
1

b− a

∫ b

a

(
1− e−x

)
dx

Pt(T, a, b) = 1− (1− Pavg(a, b))
(T/b)

1

その予想に反してRTTが増加している場合、
ほかのフローによって自分が減らした分の帯域
が食われてしまったと予測できます。そのよう
な状況を観測したときは、ウィンドウの縮小を
行わず、ロスベースの方式に対抗します。
　もう1つはShadow windowと呼ばれる方法で
す。これはRTT変動によるウィンドウ縮小を行っ
たあとに、もし自分がNewRenoであればどのよ
うにウィンドウサイズが変化していたのかを
shadow windowとしてトラッキングし、パケッ
トロス発生時には実際のウィンドウサイズでは
なく、shadow windowの半分を新しいウィンド
ウサイズとして設定する方法です。
　CDGとNewRenoのフローが同じタイミング
で同じウィンドウサイズになったとして、その
あとのウィンドウサイズの変化を見ていきましょ
う（図4）。

①�初期はまだネットワークが混雑しておらず、
CDGもNewRenoも同様にウィンドウサイズ
を拡大していきます。

②その後、どこかでRTTが悪化しCDGはウィ
ンドウサイズを縮小します。一方でNewReno
は、その後もウィンドウを拡大していきます。
このときShadow WindowはNewRenoと同
様に増えていきます。

③	CDGは、NewRenoに食われた分さらにウィ
ンドウを縮小する一方で、NewRenoはまだ
ウィンドウを拡大します。

④	やがてパケットロスが発生します。

　ここで、もしCDGがウィンドウを実際のサイ
ズの半分にしてしまうと、ずっとNewRenoに敗
け続けてしまいます。代わりにShadow Window

を使えば、NewRenoに追い付くことができます。
ある種、RTT悪化によるウィンドウ縮小で失っ
た分をパケットロスで取り返しているとみなす
ことができます。
　最後に、「❹輻輳以外の原因によるパケット
ロスへの耐性」について見ていきましょう。先ほ
ど述べたようにCDGはパケット遅延だけでなく

0.620

0.2 0.4 0.6 0.8 1.0

0.625

0.630

 ▼図3　ウィンドウ縮小が少なくとも1回起きる確率

174 - Software Design Aug. 2016 - 175

Linux 4.2の新機能
〜CDGによるTCPの輻輳制御

第53回第53回

パケットロスでもウィンドウサイズ
を調整します。しかし、すべてのパケッ
トロスに反応するわけではなく、輻
輳に対応するパケットロスにだけ反
応するようになっています。
　では、どうやって輻輳によるパケッ
トロスを見分けているのでしょうか。
その鍵はRTTの最大値・最小値の変
動、gmax、gminを監視していることに
あります。パケットロスが起きるルー
タに注目して考えてみましょう。ほ
かの部分をひとまず無視すると、RTTはこのルー
タのバッファ量に依存して増減します。すると
RTTの最大値の上限は、このルータのバッファ
がいっぱいになっているときのRTTになること
がわかります。すなわちルータのバッファがいっ
ぱいになりかけている状況ではRTTの最大値
はバッファがいっぱいのときの上限は貼りつく
一方で、RTTの最小値はまだ増加する余地があ
るということになります。輻輳によるパケット
ロスが起きるときには、ルータのバッファがほ
とんどいっぱいになっているはずですので、
RTTの最大値の変化が止まっているのに、最小
値はまだ変化しているかどうかであるパケット
ロスが輻輳によるものかどうか判別できるわけ
です。
　特徴を一通り見たので、全体的な動きについ
てまとめます。通信開始後はSlowStartでウィ
ンドウを拡大しつつ、RTTの変動を監視します。
変動が大きくなってくれば、変動量に応じた確
率でウィンドウを縮小します。縮小量は実装に
よりますが、新しいウィンドウをおおよそ元の
7割に設定します。このとき、縮小後のサイズ
がssthreshに設定されます。ssthresh以上の領
域ではNewRenoと同様にウィンドウサイズを
ACKごとに1つ増やしていきます。

Linuxにおける
CDGの実装

　最後に簡単にLinuxにおけるCDGの実装につ

いてまとめます。Linuxの実装では Ineffectual

backoff detection、Shadow Window、および輻
輳以外のパケットロスの検出機能がパラメータ
でオン／オフできるようになっています。デフォ
ルトでは、Ineffectual backoff detection は5回
分のRTTの増加を無視する、Shadow Window

は有効、輻輳以外のパケットロスの検出は無効
に設定されています。
　また、Slow Startの部分にはHyStartという
アルゴリズムを使用しています。これはLinux

のデフォルトの輻輳制御であるCUBIC TCPの
Slow Startに実装されているものと同じアルゴ
リズムで、高帯域の環境において従来のSlow

Startが起こす問題を回避するものです。
　従来のSlow StartではACKごとにウィンド
ウサイズを2倍にしてきました。SlowStartは
パケットロスによって初めて停止するので、ウィ
ンドウサイズは最大で帯域の2倍まで成長し得
ることになります。高帯域になるほど最初のパ
ケットロス時に発生するロスの量は指数的に増
大していくことになります。また、この時送受
信両方で大きなCPU usageが発生します。
HyStartはACK Trainという方法で回線の帯域
幅を推定し、またRTTを観測し最小のRTTよ
りある程度遅くなってきたところでSlow Start

を早めに離脱するという方法をとります。後者
はVegasと似たところがありますね。｢

RTT悪化を検出

RTT悪化を検出

NewReno
パケットロスが発生

CDG
Shadow
Shadowなしの
場合

 ▼図4　ウィンドウサイズの変化

176 - Software Design

ントを知るのか？」について議論になりました。
　You&Iさんは申込サイトのconnpassでアンケー
トをとっており、イベントを知った先はFacebook

が多く、最近ではdots.などもあるそうです。アン
ケート結果は回によって違うようで告知方法の決め
手はなさそうでした。dots.のようにさまざまな申込
サイトからイベント情報を収集して掲載するサイト
が増えてきたので、申込方法を以前のメールから外
部サイトのconnpassに切り替えたそうです。今回
のOSCはどこで知ったかを会場に挙手で調査した
ところ、いつも参加している方が多かったのです
が、ほかの勉強会で知った、法林さんのツイートで
知った、という方もいました。
　You&Iさんは、わんくま同盟の名古屋ディレク
ターでもありますが、昨年10周年と歴史のある勉
強会であるせいか、告知はTwitter程度とサボって
いても名古屋での集客は20名程度だったそうです。
一方、名古屋アジャイル勉強会は告知をがんばって
みても10名以下であり、告知への力の入れ具合と
集客数とは必ずしも比例していません。最近参加者
が減っている理由はアジャイルが普及したせいかも
しれませんが原因はつかみきれていないそうです。
　筆者（榎）もLibreOfficeの知名度UPや、そのイ
ベントの告知に苦戦しており、最近では告知目的で
Facebookイベントを立てて興味がありそうな方を
選んで招待していることを紹介しました。
　会場からは「何ができるのかが明確なほうが行き
やすいのではないか」というコメントがありました。
法林さんからは「行く側は何かが得られるのかなと
いう意識かもしれないが、運営側はそこを気にして

　今回は5月に名古屋で行った研究会の模様をお伝
えします。

	 ■ITコミュニティの運営を考える

	【講師】You&I（名古屋アジャイル勉強会）

	 	 マツモトサトシ（名古屋ギークバー）

	 	 榎 真治（日本UNIXユーザ会/

	 	 	 LibreOffice日本語チーム）

	 	 法林 浩之（日本UNIXユーザ会）

	【日時】2016年5月28日（土）14:00〜14:45

	【会場】名古屋中小企業振興会館 吹上ホール 4F

　jusではこの1年間、「ITコミュニティの運営」を
テーマに全国各地で研究会を行っています。講師全
員がコミュニティ運営に関する課題や疑問を1つず
つ挙げて、それに対して全員が回答してディスカッ
ションします。今回は名古屋のITコミュニティ運
営で活躍されているお二人を招いて開催しました。
オープンソースカンファレンス2016 Nagoya（以下
OSC）の中での開催で、参加者は30名でした。

■勉強会の存在をいかに伝えるか

　1つ目のお題はマツモトさんからで「勉強会の存
在をいかに伝えるか？」でした。Doorkeeperや
Twitterでしか告知できていないこともあるそうで
すが、OSCでブース出展し、さまざまなイベントを
開催していても、「名古屋で勉強会がないですね」と
言われるそうです。そこで、「参加者はどこでイベ

jus研究会 名古屋大会

IT勉強会共通の悩み？　集客の工夫／長く続ける秘訣

NO.58
August 2016

日本UNIXユーザ会　http://www.jus.or.jp/
榎 真治　ENOKI Shinji　enoki-s@imail.plala.or.jp

http://www.jus.or.jp/

Aug. 2016 - 177176 - Software Design

いない場合もあり、ギャップがあるかもしれませ
ん」とコメントがありました。

■勉強会で勉強しているか

　次のお題は、You&Iさんの「勉強会で勉強していま
すか？」でした。名古屋アジャイルでは、実際にや
らないと身につかないので、講師を呼ばずにワーク
ショップスタイルにこだわっているそうです。運営
側としてどう意識しているかという問いかけでした。
　マツモトさんの場合、イベントによって違うとの
ことで、次のような話がありました。

¡	ギークバーは週のあと4日間を生き延びるために

月曜に集まり楽しくやれるもの、Ruby東海もミー

トアップでありわいわい楽しくするもの、どちら

も身にならないこともあった

¡	スタートアップウィークエンドは3日間で起業家を

育てるプログラムなので、しっかり作られていた

¡	CSNagoyaという読書会は心が折れないためのも

ので勉強になっていたが、効率は悪いものだった

　筆者からは、関西LibreOffice勉強会は集まりで
あって、勉強が目的ではないことを話しました。役
立つ話も多いですが、運営側も聞いてみるまで勉強
になるかどうかはわかりません。スピーカーは立候
補で募るスタイルであり、運営側は場の提供に徹し
てコンテンツをコントロールしていないからです。
　マツモトさんからは、確実に勉強になるにはス
ピーカーをやることというコメントがありました。ス
ピーカーは調べる必要があり勉強になります。これ
にはほかのパネリストからも賛成の声がありました。
　法林さんからは運営側は話を聞けないこともあ
り、それが割り切れるかどうかが運営に関われるか
どうかかもしれないとのことでした。
　また、会場からは勉強になっても活用する機会が
ないこともある、というコメントもありました。

■長く続ける秘訣

　3つ目は、筆者から「長く続けられている秘訣は？」
という質問をしました。

　You&Iさんは、スタッフとして参加するコミュニ
ティを3つに決めているそうです。モチベーション
としては、発表者をすることで勉強になる、その場
を自分で作っているというものだそうです。自分1

人でできるようになるとスタッフが減ってしまった
ので、やり過ぎは良くないという話もありました。
　マツモトさんは、毎週やっているのでリズムとし
て楽であること、準備がとくに不要なことが続いて
いる理由だそうです。毎週でないイベントのほうが
逆に続けられていないそうです。
　法林さんは、学生のころにライブをやっていたこ
ともあり、人に見てもらう、集まってもらうのが好
きというのが続けられている理由、とのことでした。
　筆者は、LibreOfficeへの関わりはライフワーク的
なもので、イベントに対してモチベーションを高め
る意識はありません。続けられている理由は、会場
担当の方と最低2名でできていることが大きいです。
2名以上いると心が折れることがないと話しました。
　名古屋アジャイル勉強会ではスタッフもアジャイ
ルで回しており、内容の質を上げるため、あるいは
発表者が参加できないというトラブルを防止するた
めに、スタッフレビューをしているそうです。

■運営に向いている人／向いていない人

　最後は、法林さんの「運営に向いている人と向い
ていない人がいると思うか？」というお題でした。
　マツモトさんは、自分自身は向いてないと思う
が、やったら続けられているそうです。You&Iさん
によると、やるかやらないかの覚悟の問題が大きい
そうです。筆者は、やりたいかやりたくないかのほ
うが大きいのではないとコメントしました。
　会場からは、スキルセットのうち、モチベーショ
ンが一番大事ではないかとのコメントがありました。

◆　◆　◆
　本研究会の動画が以下に公開されています、詳し
い内容に興味を持たれた方はご覧ください。｢

 URL https://www.youtube.com/watch?v=Gsf

W8Nv_MoY

IT勉強会共通の悩み？　集客の工夫／長く続ける秘訣 August
2016

https://www.youtube.com/watch?v=GsfW8Nv_MoY

178 - Software Design

情報支援レスキュー隊

　一般社団法人情報支援レスキュー隊（略称：IT

DART）については、この連載でも何度か紹介させ
ていただいています。災害発生直後より情報支援の
立場からITで被災地を支援する活動を目指し、検
討や訓練を重ねてまいりましたが、2015年8月に一
般社団法人として正式に発足いたしました。
　その後、昨年9月に発生した関東・東北豪雨災害
において、IT DARTは茨城県守谷市のサポートや、
栃木県小山市および茨城県常総市のニーズ調査を行
いました。

熊本地震への初動

　2016年4月14日の夜、後に前震とされた地震が
発生した後、IT DARTでは支援を志す人たちのた
めのFacebookグループを設置しました。IT DART

に関係する方々だけではなく、広く支援を考える人
たちの情報共有の場となり、メンバーは4,000人を
超えるまでになっています。
　4月16日には4名からなる先遣隊を派遣しました。

支援体制

　今回の支援は、現地入りするメンバーとそれを支
える後方支援チームという体制で行われました。4

月16日と17日の先遣隊派遣の後も、IT DARTのメ
ンバーが代わる代わる現地入りしましたが、そこで
汲み上げられたニーズを元に、後方支援チームとと

もに調査や開発を行いました。
　昨年秋の関東・東北豪雨災害までは、活動は IT

DARTの理事と運営委員だけで行っていましたが、
今回は隊員も後方支援活動に参加しました。
　活動を支えるためにおもに用いたツールがSlackで
した。現地入りしたメンバーと後方支援チームが連
携し、多様なタスクを迅速にこなす必要がありまし
たが、情報量が多く、内容も多岐にわたるため、
メーリングリストや1つしかカテゴリを持たないよう
なチャットやグループサービスだと恐らく情報が埋
もれてしまっていたでしょう。Slackの持つ複数チャ
ンネル機能、投稿ごとにユニークなURLが付与され
る機能、高度な検索機能などを活用しました。
　Slack上では、プロジェクトやタスクごとに15の
チャンネルが作られ、その状況を運営委員2名が毎
朝まとめ、熊本地震のメインチャンネルに投稿する
ようにしました。

支援活動

　IT DARTでは次の3種類の支援活動を行いました。

●●情報流通の支援
●●情報システムの開発
●●通信環境整備の支援

情報流通の支援

　情報流通の支援は、災害対応を行う組織や個人に
対して、情報の収集と利用そして発信という運用を
支援する活動です。具体的には次のようなプロジェ
クトが行われました。

Hack For Japan
エンジニアだからこそできる復興への一歩

情報支援レスキュー隊の熊本地震対応第56回
4月14日の夜および16日深夜に発生した地震を代表とする一連の熊本地震は、熊本県と大分県を中心に九
州各地に甚大な被害をもたらしました。本原稿執筆時もまだ予断を許さない状況であり、復旧もまだ始
まったばかりですが、この地震に対し、ITがどのように活用されたかを筆者がスタッフを務める一般社団
法人情報支援レスキュー隊の活動を通じてご紹介します。

●Hack For Japanスタッフ
　及川 卓也　OIKAWA Takuya
　 Twitter @takoratta

Aug. 2016 - 179

情報支援レスキュー隊の熊本地震対応第56回

●●災害ボランティアセンター募集状況一覧作成
　IT DARTでは、熊本県や大分県のNPOや災害ボ
ランティアセンターによるボランティアの募集状況
を収集し、一覧を作成しました。最新の情報は毎日
IT DARTのTwitterアカウントから発信しています。
　2011年の東日本大震災では、タイムリーに正し
い情報が発信されないことが原因で、ボランティア
が集まり過ぎたり、逆にまったく集まらなかったり
する地域が出てきてしまいました。
　そのときの経験を教訓とし、災害ボランティアセ
ンターやNPOなど、これまでに計35ヵ所の募集情
報を一覧表にして毎日更新するとともに、@it_dart

から毎日約30件をツイートしています。

●●自治体HPレスキュープロジェクト注1

　これは、被災者および支援に必要な自治体Web

サイトからの情報発信をバックアップするためのプ
ロジェクトです。
　災害発生後、自治体のWebサイトがダウンしたり、
つながらなくなることが多くあります。今回の熊本
地震においても、複数の自治体や公共団体のサイト
がアクセス不能に陥りました。理由は停電などの電
源の問題からアクセス過多までいろいろありますが、
必要なときに必要な情報が得られないことは、とも
すれば生死にかかわる問題に発展しかねません。
　そこでIT DARTでは、熊本県と大分県の自治体
Webサイトを定期的にモニターし、サイトがダウ
ンしていないか、また更新されているかをチェック
するしくみを作り上げました（図1）。更新されてい
るかどうかは、HTTPヘッダの最終更新日（Last-

modifiedフィールド）を用いましたが、このフィー
ルドをサポートしていないサイトやサポートしてい
ても実態に即していないサイトが多かったため、こ
れに加えて、実際にトップページの差分を取るとい
うアプローチもあわせて行うようにしました。ま
た、レスポンスタイムも取得してサイトの状態を類
推しようとしましたが、こちらはあまり参考にする

注1	 HPはホームページの略です。本来ならば、Webサイトとす
べきところですが、ITに詳しくない人たちの間では、HP＝
ホームページのほうが理解されやすいため、対外的な呼称と
してはHPを用いることにしています。

ことはありませんでした。
　現在のところ幸いにして出番はありませんが、も
し自治体サイトがダウンしていた場合にはJimdoな
どの簡易サイト制作サービスを用い、最低限の情報
を掲載した暫定サイトを立ち上げる準備もしてあり
ます注2。
　なお、このプロジェクトはさくらインターネット
㈱からサーバを支援いただきました。

●●「詐欺に注意」チラシの作成と配布
　残念な話ですが、被災地では詐欺が横行します。
不届きな輩

やから

が善意のふりをして、被災地の方々を騙
だま

そうとします。IT DARTではこういった詐欺への
注意を喚起するチラシを準備しました（図2）。
FacebookページやTwitterアカウントから拡散す
るとともに、現地のコンビニエンスストアでも直接
印刷できるよう、ネットプリント（セブン-イレブ
ン）とネットワークプリント（ローソン、ファミリー
マート、サークルKサンクス、セイコーマート）に
もファイルを登録し、それぞれを用いた印刷の仕方
とともに公開しました。
　このチラシの情報はFacebookで5万人を超える
方にリーチはしたのですが、一方で実際にコンビニ
エンスストアで印刷された件数は大変少なく、また
被災地でもこのチラシを見かけることはほとんどあ
りませんでした。ソーシャルメディアなどを通じて
の情報共有と実際の支援を結びつけることが次の課
題と感じています。

注2	 そのためには、事前に自治体と約束を取り交わします。

◆◆図1　�自治体ホームページレスキュープロジェクトの
Webサイト（http://klgmonitor.itdart.org/）

180 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

情報システムの開発

　情報システムの開発は、災害対応を行う組織や個
人が情報の収集や利用に活用するためのツールを提
供する活動です。具体的には次のようなプロジェク
トが行われました。

●●ExcelGeo
　災害時にはさまざまな情報を地理空間情報として
整理することがよくあります。避難場所や避難所、
炊き出しの場所などを地図上に配置するのがわかり
やすい例でしょう。その際に意外に面倒なのが、場
所の緯度・経度を指定することです。
　住所から緯度・経度を調べることをジオコーディ
ングと呼びます。このジオコーディングはMaps系
のAPIにはたいがい備わっています。Googleにも
Geocoding APIとして用意されているのですが、残
念ながらGoogle Mapsと組み合わせて利用する場
合のみ使用が認められています。つまり、住所から
緯度・経度を調べたいという目的のためだけには使
えないのです。他社のジオコーディングAPIも利
用規約が不明だったり、品質が期待値に達していな

かったりで使えず、規約的にも問題なく高品質なジ
オコーディングは、地理空間情報に携わる人にとっ
ては以前より強く要望されているものでした。
　また、大量の住所の緯度・経度を一括処理で取得
することもそうたやすいことではありません。ITに
明るくない人たちにとっても使いやすいインター
フェースを持つサービスは待ち望まれていました。
　今回、IT DARTでは、ExcelGeoという形でそれ
を実現しました（図3）。これはExcelファイル（xlsx

およびxls）をドラッグ＆ドロップするだけで、ファ
イルに書かれている地名や住所の緯度経度を一括で
取得します。結果は、元のExcelファイルにマージ
するか、JSON形式で返されます。
　使っているのは、GeoNLPという大学共同利用機
関法人情報・システム機構と国立情報学研究所が共
同で開発したジオコーディングサービスです。これ
には、Google Geocoding APIのような制約もありま
せん。
　このプロジェクトもさくらインターネット㈱から
サーバを支援いただきました。

●●マークシートを用いた災害ボランティア登録シ
ステムの開発

　災害ボランティアとして活動する人はボランティ

◆◆図2　�「詐欺に注意」チラシ（https://drive.google.com/
file/d/0B_0uoQjpPS6aUmFFZ1lGc19nZ2c/view）

◆◆図3　ExcelGeo（http://excelgeo.itdart.org/）

https://drive.google.com/file/d/0B_0uoQjpPS6aUmFFZ1lGc19nZ2c/view
http://excelgeo.itdart.org/

Aug. 2016 - 181

情報支援レスキュー隊の熊本地震対応第56回

●●PCやWi-Fiルータなどの貸与・支援
　13の支援団体に、レノボ・ジャパン㈱（NECパー
ソナルコンピュータ㈱からの紹介）とITで日本を元
気に！注5から提供されたPCやWi-Fiルータ（KDDI

㈱からの提供）、タブレット（㈱NTTドコモからの
提供）の環境を整え、各団体に配布しました。
　提供されたPCが中古PCの場合は、OSやOffice

を再インストールする必要があります。IT DARTで
は、効率よくセットアップするため、災害復旧・復
興支援用中古PC設定手順書を作成しました。この
手順書作成および講習会、中古PCにインストール
するOfficeのライセンスについては、日本マイクロ
ソフト㈱から支援いただいています。また、PCの
セットアップは福岡県にあるシステムラボラトリー
㈱注6にも協力いただきました。

●●現地での環境構築サポート
　地元NPOと県外支援組織との連携調整会議であ
る「熊本地震支援団体火の国会議」事務局をはじめと
するいくつかの支援団体の拠点で、IT環境の構築を
サポートしました。モバイルルータを使ってのネッ
トワーク環境の構築やプリンタの共有設定など、限
られたリソースを活用してのIT環境構築は、なか
なか骨の折れる作業です。モバイルルータに接続で
きるPCの台数に制限があったり、型式の古いプリ
ンタをネットワーク内で共有するための設定が複雑
だったり、さまざまな制約がある中での作業となり
ました。

今後に向けて

　熊本や大分の被災地の復旧や復興はまだこれから
が本番です。IT DARTとしては、継続して熊本や
大分の支援をしつつ将来発生する次の災害に備え、
今回の経験をもとに、さらにITで情報支援を行う
べく体制を整えていきたいと考えています。s

注5	 http://revival-tohoku.jp/
注6	 http://www.syslabo.co.jp/

ア活動保険に入っている必要があるのですが、その
加入の有無やセンターでの加入の要否などを受付時
に確認する必要があります。また、後日の集計や検
索も必要となりますが、多い日には数百人を超える
ボランティアが訪れることがあるため、2015年の関
東・東北豪雨災害の際には災害ボランティアセン
ターに大きな入力の負荷がかかりました。
　この業務をマークシートを用いて軽減するシステ
ムを開発しました。当初は電話番号や生年月日など
はすべて手書きで入力してもらい、それを手書き文
字認識OCRで処理する予定だったのですが、オー
プンソースのOCRエンジン注3ではどうしても精度
が低く、その部分も数字をマークしてもらう形式と
しました。

●●kintoneを使用した物資管理帳システム
　支援団体からの依頼を受け、支援物資管理システ
ムの構築および運用を行いました。このシステム
は、現地チームで物資管理票を撮影した画像をアッ
プロードし、後方支援チームが画像の情報をデータ
ベースに入力することで物資管理を行います。現地
での作業を“撮影”という簡単な作業に限定すること
で、多様なメンバーが関与する現場でもITシステ
ムを活用できる体制としました。
　このシステムは、サイボウズ㈱のkintoneを用い
ることで、迅速な開発とイテレーションを数度繰り
返しながら完成度を高めることが可能となりまし
た。サイボウズからはこのシステムだけではなく、
り災証明書発行システムの試作においても、kintone
を無償提供いただきました。開発はkintone Café注4

の方々にご協力いただいています。

通信環境整備の支援

　災害対応を行う組織に対して、必要なIT環境の
提供および設定支援も行いました。

注3	 ImageMagicで画像を切り出し、tesseractというGoogle
が公開しているオープンソースOCRエンジンを使ったので
すが、どうしても認識率を期待値まであげることができませ
んでした。

注4	 http://kintonecafe.com/

http://www.syslabo.co.jp/
http://revival-tohoku.jp/
http://kintonecafe.com/

182 - Software Design

はじめに

　ハンダ付けを不要とする電子
工作の方法として、アポロ宇宙
船のコンピュータ回路に用いら
れたワイヤラッピングやブレッ
ドボードなどがあります。最近
では、ブレッドボードの電子回
路にArduinoなどのマイコンボー
ドを接続してさまざまな電子回
路実験も行われています。1970
年代、ハンダ付けを行わない簡
易な電子回路組み立て方法とし
て電子ブロックが広く使われて
おり、80年代になると電子ブロッ
クとマイコンを組み合わせた製
品もでてきました。今回は、電
子ブロックと、そこに使われた
4bitマイコンのお話をしましょう。

電子ブロック
とは

　電子ブロックは、縦横17mm
高さ23mmの半透明なプラスチッ
ク製のブロック内に電子部品が
ハンダ付けされて入っており、
四角の4辺の一辺ずつに端子が
あり、隣同士のブロックの端子
が接触することで電気的な接続
が行われるしくみになっていま
す（写真1）。電子ブロックの原

型となる製品は1960年代からあ
りましたが、70年代になり容易
にブロックの抜き挿しのみで配
線でき、当時広く購読されてい
た「子供の科学」の発行元の学習
研究社（現・学研ホールディン
グス。以下、学研）から発売さ
れてブームになりました。
　ブロック内の電子部品は、抵抗、
コンデンサー、コイル、ダイオード、
トランジスタを基本として、配線
用のブロックやスイッチが用意
されていました。これらを組み
合わせることになるのですが写
真1のように容量や抵抗値の違
いだけでなく異なる配線のブロッ
クもあるため、置き方に工夫が
必要でした。したがって、付属
している詳細なマニュアルに説
明されている電子回路をそのと
おりになぞって工作することが
主な使い方だったと思います。
　復刻版が発売された当時の最
上位機種のEX-150では、横8
×縦6=48のブロックが配置でき
る筐体になっており、ブロック
を取り囲む周辺には端子が複数
あります。端子には、電池4本
から供給される6Vとグラウンド、
アンプに接続してスピーカーか
ら音を出すサウンド入力、光セ
ンサー端子、ラジオのアンテナ

回路との接続端子があり、ブロッ
クの4つの端子とうまく接続す
れば多用途な電子回路が実現で
きたのです。
　筐体の本体には、この端子か
ら接続された電池ボックス、光
センサー、ボリュームアンプ付
きのスピーカー、アンテナ回路
が備わっていました。

電子ブロック
の限界

　容易に電子回路が組める大き
なメリットを有した電子ブロッ
クですが、問題となる限界があ
りました。
電子ブロックの部品種類が一定
のものしかない
　それぞれのシリーズで用意さ
れている部品しか使えないため、
マニュアルに載っていない回路を
作成しようとする際、部品の使
い回しの工夫が必要で、独自の

温故知新
ITむかしばなし

 ▼写真1　

速水 祐（HAYAMI You） 　http://zob.club/ Twitter : @yyhayami

電子ブロックと4bit CPU

第57回

http://zob.club/

182 - Software Design Aug. 2016 - 183

回路を簡単には実装できません。
　電子部品の種類だけでなく、
ブロック内部の配線に種類の違
いがあるため適切な電子ブロッ
クを使い、限られた箱庭のよう
な筐体にうまくはめ込むために
は独特のテクニックが必要とさ
れました。
電子ブロック間の接続が不安定
　ブロックの4つの端子は板バ
ネ状になっていますが、接触不
良が多く発生します。最近のハ
ンダ付け不要な教育用電子機器
であるLittleBits注1は、見た目
の接続と実際の接続が一致して
確実な接続ができるのに比べて、
大きく信頼性の差があります。
　ちょうど、1960年代のデンマー
ク製のレゴと日本製のダイヤブ
ロックの工作精度の差と同じよ
うな感があります。
アナログ回路の動作が安定しない
　電子ブロックで作成できる回
路の多くがアナログ回路であり、
接触の安定性と相まって、確実
に動作する回路を作成できない
こともありました。

4bitCPU
ユニット

　NEC PC-8801や富士通FM-
8などのマイコンが登場した
1981年、電子ブロックにもマイ
コンユニットが付属したFX-マ
イコンR-165（以下FX-R165）が
登場します。165の数字が示す
とおり65種類の電気回路と100
種類のマイコン実験ができます。
　マイコンユニット（写真2）は
4bitCPUを搭載し16進キーボー
注1） 磁石でさまざまな電子回路をつない

で電子工作を行うキット。http://
jp.littlebits.com/

ド（クリック音つき）、7個の赤色
LEDそして16進数を表示する
7セグメントLEDが付いており、
ユニットだけでプログラミング
や動作が行われるTK-80などと
同じような（表示は少なくプログ
ラムの保存もできない）マイコン
ボードとなっています。このユニッ
トと電子ブロックの組み合わせ
は、1＋1が2以上になる絶好の
ものだと思われたのですが……。
　写真2のようにマイコンユニッ
トは筐体の縦6×横11のうち縦
5×横8を占有します。接続端
子は9V電源とグランドおよびス
ピーカー出力を接続することに
なります。
　ほかにも出力1bit、入力2bit
がありますが光センサーのデー
タを受け取るアナログ入力はあ
りません。マニュアルのプログ
ラム集にはマイコンユニットのみ
を使用するプログラム例が100
種類あり、電子ブロックとの接
続例はおまけの2例しかありま
せん。内容的には電子ブロック
とのつながりは、電源供給とス
ピーカー出力だけだったのです。
　マイコンユニットのCPUは、
テキサス・インスツルメンツ社
のTMS-1100が元になっていま
す。この4bitのCPUは電卓用
に特化しており、10キーボード、
7セグメントLEDの表示機能は
優れていますが、汎用的に使う
には相応しくないものでした。
それを、マイコンボードとして
使えるように、独自の4bitCPU
をエミュレートするコードを作
成して、CPU内ROMに書き込
んでカスタム化したようです。
　マイコン時代に期待を込めて

発表されたFX-R165ですが、
その後5年間新しい機種は出ず
1986年に学研の電子ブロック全
シリーズは生産中止になります。
　2009年に学研から「大人の科
学マガジン」Vol.24 4bitマイコ
ンが発売されました。このマイコ
ンGMC-4は、8bit CPUでエミュ
レートしたFX-R165のマイコンユ
ニットとまったく同じ命令コード
だったのです。

終わりに

　ハンダ付けなしの電子回路と
マイコンの組み合わせのアイデ
アは、Arduinoとブレッドボード、
LittleBits、mCookie注2のように
現在では教育現場で広まってい
ます。1980年代初めにこのよう
なアイデアを製品化したことは
過去のすばらしい実績だった思
います。しかし、そのあとの進
展は復刻版に止まるレベルで満
足できるものではありません。
現在の高い技術で作られたデジ
タル電子ブロックの出現を期待
したいと思います注3。｢

注2） レゴのように重ねて電子回路を作成
するキット。https://www.microdu
ino.cc/store

注3） 電子ブロック機器製造株式会社では、
新しい電子ブロックの開発、販売も
行われているようです。http://www.
denshiblock.co.jp/

 ▼写真2　

温故知新 ITむかしばなし
電子ブロックと4bit CPU

第57回

https://www.microduino.cc/store
http://www.denshiblock.co.jp/
http://jp.littlebits.com/

184 - Software Design

うまくいく チーム開発のツール戦略

 Author リックソフト㈱　廣田 隆之（ひろた たかゆき）

備えあれば憂いなし！
JIRAとBitbucket Serverに記録を残そう第 回3

前回はGitのメリットを紹介しつつ、アトラ
シアン社の開発ツールであるBitbucket Server

やSourceTreeの使い方を説明しました。中で
も、ブランチを使った開発手法や、プルリクエ
ストによるコードレビューやマージはチーム開
発を支える強力な機能です。まだ記事をご覧に
なっていない読者の皆さんは、ぜひバックナン
バーをご一読ください。
今回は、ソフトウェア開発で避けることので
きない不具合対応やトラブル対応において、
JIRAやBitbucket Serverをどのように活用し
ていくかについて説明します。

トラブル発生！

不具合の報告は、いつも突然やってきます。
メール、電話、最近ではチャットやSNSかも
しれません。障害の報告というのはけっして気
持ちの良いものではありませんが、ソフトウェ
アの品質を上げる、そして何より開発チームの
手腕が問われるチャンスでもあります。筆者自
身、長年にわたってソフトウェア開発に関わっ
ていると、何度もピンチに見舞われることがあ
りましたが、そのときの対応次第でソフトウェ
アの良い改善機会になったこともありますし、
結果的にお客様から対応内容についてお褒めの
言葉をいただき、バグを作りこんでしまったに
も関わらずたいへん恐縮したこともあります。
不具合の連絡を受けたときは、できるだけ速
やかにチームの課題管理システムに登録しましょ
う。どんな形であれ、記録を残すのは重要です。

幸い、JIRAは組織やプロジェクトに合わせて
柔軟にカスタマイズでき、Webブラウザから
手軽に課題を入力できます。また、JIRA

Service Deskというアプリケーションを導入
すれば、より簡単にバグチケットを起票できる
インターフェースが提供されます（図1）。この
連載の第1回ではメールによるチケット起票に
ついても書いているので、興味のある方はそち
らをご覧ください。JIRAは元来バグトラッキ
ングシステム（BTS）として生まれたというこ
ともあり、ソフトウェアのバグを記録するため
のシステムと思われがちですが、けっしてそん
なことはありません。ちょっとした改善項目や
問い合わせなど、何でも記録していくことがう
まく使いこなす第一歩だと思います。
さて、トラブル対応時はトラブルシューティング
に必要な情報を漏れなく速やかに集めることが
重要です。JIRAはそのための窓口でもあり、デー
タベースとして機能します。トラブルシューティ
ングに必要な情報は、扱っているソフトウェアや
システム、また組織によってさまざまです。たと
えば、モバイル関連のサービスであれば、端末
のオペレーティングシステムの情報や解像度な
どの環境情報が重要になることもあるでしょう。

JIRAには標準で課題の要約、優先度、担当者、
期限などのフィールドが用意されていますが、
カスタムフィールドを自由に追加することもで
きます。このJIRAの柔軟性を活かして、トラ
ブルシューティングに必要な情報を効果的に収
集できるように、業務に応じてフィールドを自
由にカスタマイズしてください。

うまくいく
チーム開発のツール戦略

Catch Up Trend

184 - Software Design Aug. 2016 - 185

備えあれば憂いなし！ JIRAとBitbucket Serverに記録を残そう 第 回3

情報を入力するときは、その内容も大切です。
「○○が動きません」といった情報だけでは調査
は困難なものになります。「再現手順」「期待す
る結果」「実際の結果」「再現率」といった情報の
ほか、スクリーンショットやログがあれば問題
解決に役立つでしょう。組織で簡単なルールを
作ったり、チケットの起票の負担を軽減するた
めに必須フィールドを減らしたりといった工夫
も必要かもしれません。

調査開始

調査に必要な情報がそろったら、問題解決に
向かっていよいよ作業開始です。報告を受けた
時点ですぐに原因がわかれば良いのですが、原
因が不明な場合は、問題解決への第一歩は再現
テストです。現象を再現できたら、原因を追及
していきます。環境の問題かもしれませんし、
単にソフトウェアの使い方の問題かもしれませ
ん。プログラムの問題が疑われるならば、ソー
スコードを解析していくことになります。その
とき助けになるのが、バージョン管理システム
に蓄積してきたソースコードであり、コミット
ログの歴史です。目的のソースコードをすぐに
見つけられるように、日ごろからBitbucket

Serverのように信頼のおけるツールを活用し、

ソースコードの管理
はしっかりやってお
きたいところです。
報告のあった不

具合内容からソース
コードの場所をピン
ポイントで特定でき
ると良いのですが、
原因がすぐには判明
しないこともしばし
ばあります。たとえ
ば、利用しているフ
レームワークやライ
ブラリに原因がある

ときなどです。ソフトウェアの、あるバージョ
ンを境に不具合が起きるようになった場合は、
バージョン間の差分を調べる必要があります。
Bitbucket Serverにはブランチ間の差分をグラ
フィカルに表示する機能が備わっており、Web

ブラウザ上でソースコードのdiffを見ることが
できます（図2）。また、コミットログを追うこと
で、「いつ」「誰が」変更を行ったかもひと目でわ
かります。Bitbucket Server 4.6ではBlame表
示という機能が追加され、ソースコードの1行1

行について変更を行った開発者を表示できるよ
うになりました。チーム開発では1つのファイ
ルを複数の開発者が修正することも多いので、
このような機能は非常に役立つでしょう。

SourceTreeやBitbucket Serverを日常的に
使っていれば、「いつ」「誰が」という情報は自動
的に記録されていきます。しかし、ソースコー
ドの変更履歴で最も重要な情報は「なぜ？」、つ
まり変更した理由です。1人の開発者だけで開
発している場合でも、これは重要です。1年前
に自分自身がコードを修正した理由をすぐに言
える人は少ないのではないかと思います。優れ
たツールを使っていても、せっかくたどりつい
たコミットログに「変数名を変更した」とか「API

をfoo()からbar()へ変更」といったコメントしか
残されていなかったらどうでしょうか。変更内

 ▼図1　JIRA Service Deskのインターフェース

186 - Software Design

うまくいく チーム開発のツール戦略

容はソースコードを見ればわかります。大切な
のは「変更した理由」です。たとえば、「グローバ
ルスコープと名前が衝突する可能性があるため、
変数名を変更した」となっていれば、衝突の可能
性を回避するための改善なのだな、ということ
がわかります。同様に、「パフォーマンス向上の
ため、APIをfoo()からbar()へ変更」とあれば、
性能向上のために利用するAPIを変えたことが
わかります。このように、コミットログはソース
コードのコメントと同様に、開発者にとって貴
重な情報源であることを覚えておきましょう。
とはいえ、コードのコメントやコミットログだ
けではすべてを書き残すことは難しいです。
JIRAを使っているのであれば、コミットログに
JIRAの課題キーを記載することを忘れずにした
いものです。こうしておけばBitbucket Serverの
コミットとJIRAのチケットが紐

ひも

付けられ、より詳
しい変更理由を知ることができるようになります。
追跡の際、開発者はソースコードのコメント→コ
ミットログ→チケットの順に見ていくはずです。
ソースコードをメンテナンスするときも、この順
番で記録していくのが良いと思います。

より良いコミットログを	
残すための工夫

良いコミットログを書くには、日ごろからの
訓練が大切です。BitbucketやGitHubでホスト
されているオープンソースソフトウェアや、う
まくいっているチームのコミットログを見て真
似をしてみましょう。長文のコミットログを目
にすることもあるはずです。日ごろのプルリク
エストのコードレビューでも、コミットログに
も注意を払うように心がけてください。さらに、
適切なJIRAの課題キーが書かれているかどう
かをチェックするしくみの導入も検討しましょ
う。Gitではコミットフックをカスタマイズし、
コミットログが指定した書式のとおりに書かれ
ているかどうかをチェックしてコミットを拒否
することもできます。興味のある方はhttps://
www.atlassian.com/git/tutorials/git-hooks/

を参考にしてみてください。
集中型リポジトリであるSubversionの時代で

あれば、コミットのフックはサーバ1個所で実
行すればよく、導入も比較的容易だったのです

 ▼図2　ブランチ間の差分の比較

https://www.atlassian.com/git/tutorials/git-hooks/

186 - Software Design Aug. 2016 - 187

備えあれば憂いなし！ JIRAとBitbucket Serverに記録を残そう 第 回3

自社製品のJIRAアドオンを開発してAtlassian

Marketplaceに公開していますが、masterを開
発用ブランチとして使うシンプルなブランチモ
デルを採用しています。
コードの修正後は、ビルドとテスト、リリース
を行います。アトラシアン社のCIサーバである
Bamboo注2（図3）を使えば、ビルドの自動化か

ら配備の自動化まで、ソフトウェア開発に関わ
るさまざまなタスクを自動化できます。Bamboo

はBitbucket Serverでブランチが作られたこと
を自動的に検知してビルドを走らせるため、プ
ルリクエストでマージされる前の成果物をレ
ビュー承認前にテストしたり検証環境へ配備し
て動作を確認したりといったことができます。
開発のインフラをアトラシアン社のツールチェ
インでそろえることにより、課題管理、バージョ
ン管理、ビルド、配備といったシステム連携が
スムーズになります。

終わりに

サービスやプロダクトが成長していく中で、
ソースコードの変更は避けられません。次回は、
品質を保ちながらコードを改善していくコツや
技術的負債の賢い返済方法について説明する予
定です。ﾟ

注2） https://www.ricksoft.jp/atlassian/bamboo/

が、分散型リポジトリのGitでは開発者自らが
ローカルリポジトリを持つため、コミット時の
チェックを導入するのはハードルが高いという
ジレンマもあります。また、自分でスクリプトを
書くのがたいへんという方もいらっしゃるでしょ
う。こういった場合は、Bitbucket Serverにア
ドオンを導入して、プッシュやマージでチェッ
クを実行するというしくみを検討してはいかが
でしょうか。Atlassian Marketplaceで公開され
ている「Jira Hooks for Bitbucket」注1というア
ドオンを使えば、プッシュやマージのタイミン
グでのJIRAのチケットのチェックが可能です。
ステータスがルールどおりでないときは、プッ
シュやマージを拒否することもできます。ただ
し、このアドオンは無償で提供されているため、
ベンダからのサポートは受けられないことにご
注意ください。

コード修正とリリース

ソースコードの修正が必要になった場合は、
前回の記事で紹介したBitbucket Serverと
SourceTreeの使い方を参考にしながらブラン
チを作成し、コードをコミット、プッシュして、
プルリクエストでコードレビューを実施し、マー
ジします。
不具合修正の場合は、bugfixブランチを作成

して作業することになるでしょう。Bitbucket

Serverはリポジトリごとにブ
ランチモデルをカスタマイズ
でき、さまざまなブランチモ
デルに柔軟に対応します。
git-flowブランチモデルなど、
チームやプロジェクトに最適
なブランチモデルを適用して
ください。ちなみに筆者らは

注1） https://marketplace.atlassian.
com/plugins/com.lb.software.
stash.jira.connector.lb-software-
stash-j i ra-connector/server/
overview

 ▼図3　Bamboo

https://marketplace.atlassian.com/plugins/com.lb.software.stash.jira.connector.lb-software-stash-jira-connector/server/overview
https://www.ricksoft.jp/atlassian/bamboo/

188 - Software Design

　Tableau Japan㈱は6月16日、データ分析ツール
「Tableau」の最新バージョン「10」を発表した。
　Tableauは、ドラッグ&ドロップでデータの集計、グ
ラフ化が簡単に行えるBIツール。製品のラインナップと
しては、デスクトップアプリの「Tableau Desktop」、
Tableau Desktopで作成したダッシュボードをWebアプ
リ化する「Tableau Server」、クラウドでTableau Server
を利用する「Tableau Online」などがある。
　新バージョン「10」のおもな新機能は次のとおり。

・ Googleスプレッドシート、Quickbooks Online、Kognito、
memSQL、OData、Webデータ⽤WDC2.0に接続可能に

・異なるデータソースのデータを結合、統合可能に
・ドラッグ&ドロップでのクラスタ分析が可能に

Tableau Japan、
データ分析ツールの新バージョン「Tableau 10」を発表

　アイレット㈱は6月23日、各種スマートデバイスやOS
のバージョンごとにおけるアプリの動作テストの自動化
を支援するサービス「devicepack」を8月1日から提供開
始することを発表した。
　devicepackでは、iOS/Android/Kindleを含む285種類
もの膨大なスマートデバイスへの対応テストを一度に行
えるサービス「AWS Device Farm」を利用し、同社の
cloudpackチームがテストシナリオの作成や環境構築お
よびテスト自動化の支援を行う。プラットフォームの利
用料は月額50,000円からで、テストの実施回数などによ
り従量課金が発生する。
　そのほかの特徴は次のとおり。

・ 多様な端末の言語設定に対応可能
・ テスト結果を確認できる独自のダッシュボードをブラ

ウザ上で確認可能
・ 実行中のテスト状況を、スクリーンキャプチャで確認

可能
・ テスト実行中のCPU使用率、描画性能（FPS）、メモ

リ利用料、スレッド数などパフォーマンス計測の結果
を閲覧可能

アイレット、
端末動作テストサービス「devicepack」を提供開始

　ヒューレットパッカードエンタープライズは5月10
日、「HPE Universal IoT Platform」の提供開始を発表した。
　HPE Universal IoT Platformは、デバイスとアプリの相
互運用と管理を効率化するプラットフォームで、自社の
オンプレミスもしくはプライベートクラウド環境へ導入
し、ユーザはas-a-Serviceモデルとして利用する。
　本プラットフォームは業界標準のoneM2Mに準拠し
ており、個別の業界やベンダには依存しない設計となっ
ている。これによってIoT事業者は、異種混在のセンサー
の組み合わせを管理し、マシンツーマシン（M2M）デバ
イス上で業種別アプリケーションを運用すると同時に、
単一のセキュアなクラウドプラットフォーム内で収集さ

れたデータを処理、分析、収益化できる。また本プラッ
トフォームは、LoRaおよびSIGFOXのほか、モバイルネッ
トワーク、そのほかの無線、Wi-Fi、Bluetoothといった
接続プロトコルもサポート可能とのこと。センシング
データに対しては「HPE Vertica」「HPE Haven OnDe
mand」を活用して意味のあるパターンを発見、さらに
外部からのデータを組み合わせることで「コンテキスト
データ」へと価値を高めることができる。

ヒューレットパッカードエンタープライズ、
「HPE Universal IoT Platform」を発表

▲▲Tableauのダッシュボード

Tableau Japan ㈱　URL http://www.tableau.com/ja-jp
CONTACT

アイレット㈱　URL http://www.iret.co.jp
CONTACT

ヒューレットパッカードエンタープライズ
URL https://www.hpe.com/jp/ja

CONTACT

http://www.tableau.com/ja-jp
http://www.iret.co.jp/
https://www.hpe.com/jp/ja/home.html

188 - Software Design Aug. 2016 - 189

　6月25日、秋葉原通運会館
（東京都千代田区）にて技術
書限定の同人誌即売会「技術
書典」が開催された。主催は、
同人誌サークル「TechBooster」
と技術系電子書籍の制作・
販売を行う「達人出版会」。
当日の一般参加者数は1,300
名。関係者やサークル入場
の100人を含めると総計
1,400人が来場した。参加サークル数は個人が48、企業
が9、委託販売が2。

 イベントレポート
　同人誌のテーマとしてはスマホアプリやWeb開発の
同人誌が多く、言語系ではCrystalやElixirなど、比較的
新しいものが取り上げられていた。変わり種では、量子
コンピュータを扱う同人誌も頒布されていた。そのほか、
R:VIEWやIndesign、XMLやLaTexで組版を行うといった
DTP系の同人誌も目立った。
　また会場では、リクルートテクノロジーズの伊藤敬彦
氏による「RedPen」についてのセッション、技術書や出
版社のグッズが当たる抽選会が行われた。

 主催者インタビュー
　技術書典の主催の1人、達人出版会の高橋征義氏にお
話を伺った。

――技術書に限った同人誌即売会という珍しいイベント
でしたが、開催の動機やきっかけはどのようなものだっ
たのでしょうか？
　これは2015年9月ごろ、TechBoosterの日高さんから
「こういうイベントをやりたい」という話をもらって、
それから協力することになりました。個人的には小説系
の同人誌を作ったりコミケで売り子をしたりしたことも
あったのですが、同人誌は商業書籍やネット上のコンテ

ンツとは違う文化があるので、それをうまく伝えられた
ら……という気持ちがありました。

――会場の確保や参加サークルの調整といった事前の準
備で、苦労されたことや工夫されたことなどあればお聞
かせください
　私のほうはスポンサー対応や、ほかの人からこぼれて
いるところを拾ったりしていた程度で、おもなところは
日高さんはじめTechBoosterのみなさんが尽力されてい
たので、私自身が苦労したところは正直あまりありませ
ん。イベント自体の一番の課題はやはり会場の確保で、
会議室としては使えても即売会には使わせていただけな
いところもあって、サークル参加者や一般参加者の方に
は手狭になってしまったのは申しわけなかったです。

――当日の会場の雰囲気、来場者数など、振り返ってみ
てのイベントの手応えはいかがでしょうか？
　参加者としては1,000人という目標を掲げていたもの
の、実際にどれだけ来るかまったく予想できていなかっ
たのですが、最終的にはサークル参加者含めて1,400名
ほどの方に来場いただけて、あらためて技術書の力を感
じました。来てくださった方々、また応援していただい
たみなさんには感謝しています。一方で、一時期入場が
スムーズにいかなかったときがあったようで、ご迷惑を
おかけした参加者の方にはこの場を借りてお詫びいたし
ます。

――本イベント、来年以降の開催の予定はございますで
しょうか？　もしあるようでしたら、新たに挑戦したい
こと、改善したいことなどあればお聞かせください
　今後の具体的な予定はまだ何もありませんが、今回の
イベントで技術書を手に取られた方が、今度は書くほう
にチャレンジする機会を提供できると良いなと思ってい
ます。

技術書オンリーイベント「技術書典」、
イベントレポート＆主催者インタビュー

技術書典　URL https://techbookfest.org
CONTACT

▲▲抽選会で参加者とジャンケンを行う達人出版会の高橋征義氏

▲▲ 会場入り口の立て看板

▲▲DevLOVE Pub
技術雑誌「Far East Developer
Review」の総集編を頒布

▲▲㈱翔泳社
CodeZineの連載記事を書籍化したも
のを中心に、自社の技術書を販売

https://techbookfest.org/

190 - Software Design

Windows 10への無償アップグレード、期限迫る
何かと話題になっていた、Windows 7/8.1からWindows 10への無償アップグレードサー
ビスが、7月29日をもって終了するようです。「慣れていたUIが一新され、戸惑う」「一部の
ドライバやソフトが動かなくなる」など不安点がある一方、「CortanaやEdgeが動く」
「Ubuntuやbashも動くようになる」という魅力的なメリットもあります。アップグレード
がまだの方は、大きな決断に迫られますね。

bashについて、コマンドの使い方、シェ
ルスクリプトの組み方をとことん解説し
ました。さらに、仕事でシェルスクリプ
トを使うときの注意事項、Bash on

Windowsのしくみ、新しいシェル「fish」
の紹介まで、盛りだくさんの特集でした。

（ページデのデザインは）バスケット
シューズのダジャレかな？
 ahsgrimm192さん／大阪府

シェル芸を勉強したくなりました。
 tack41さん／愛知県

第2章にbashの知らなかった機能が
たくさん載っており、勉強になりました。
 橿山さん／埼玉県

組込みLinux機器でbashを使うこと
になるので、非常に勉強になります。
 エゾモモンガさん／滋賀県

bashを使っていましたが中身は全然
わかってなかったので、今回の特集は
とても参考になりました。
 WATさん／石川県

ちょうどWindowsでもbashが動く

ということで、良い特集だと思いまし
た。 n0tsさん／東京都

cat [原稿ファイル] | grep -o 'シェル
芸 ' | grep -c '' # を実行してみたいで
す。 ginさん／愛知県

bashはエンジニアにとって必須の知識
なので、とてもいい特集だった。
 りょうじさん／東京都

fishの紹介が良かったです。
 近藤さん／静岡県

bashは多くのディストリビュー
ションで採用される標準シェルと

いうことで、復習・再発見に活用された
読者の方が多いようです。「Bash on

Windows」の発表もあったということで、
あらためて勉強しなおしても良いのでは
ないでしょうか。

　オープンソースのRDBMSであるMy

SQLを使って、SQLの基礎を学ぶ特集。
MySQLの歴史、Mac、Windows、Linux

の環境ごとのインストール方法を押さえ
たあとは、実際にデータベース操作を実
践してみました。

文字コードのコラムがおもしろかった。
日本語こわい。 藤田さん／東京都

以前から興味があったので、この機会
に手を出してみようかと思った。
 ナタリーさん／福岡県

社内でMySQLが稼働しているので、
新人などに読ませた。
 松崎さん／千葉県

SQLを理解することの重要性を認識し、
勉強しようという気持ちになった。
 小山さん／福岡県

MySQLを使用したちょっとした社内
システムを開発する予定なので、本特
集が役に立ちそうです。
 山添さん／東京都

6月号ということで初心者向けの記事
かと思いましたが、読んでみると意外
とわかっていない自分がいました。
 齋藤さん／神奈川県

開発においてDBMSとSQLは避
けて通れないものですが、勉強す

る範囲も広く、また奥も深いので、敷居
が高いですよね。今回はオープンソース
のMySQLを使って「とりあえず動かし

2016年6月号について、たくさんの声が届きました。

第1特集
bash再入門

第2特集　MySQLを武器にSQL
をはじめよう

190 - Software Design Aug. 2016 - 191

てみる」がテーマの特集でしたので、次
の学習の入り口になれば幸いです。

実機が続々と登場し、またベースとなる
Androidがバージョンアップしたことで
「Android Wear」が盛り上がりを見せて
います。今回は、Wearに新しく追加さ
れた「パーミッション」「サウンド出力」
「マルチスクリーン対応」の3つの機能に
ついて、アプリの開発者が注意しておく
べきことを解説しました。

異なる見え方になる点を再確認できてよ
かった。 とーふやさん／神奈川県

デバイスを持っていないが、興味深い。
 人儚 由夢さん／福岡県

スマートウォッチアプリの開発は楽し
そうですが、肝心のスマートウォッチ
を持っておりません……。ぜひとも読
者プレゼントで……。
 NGC2068さん／愛知県

現在、Android端末用にアプリ開発を
行っているので非常に興味を持ちまし
た。私の身の周りではAndroid Wear
を所有している方はいないのですが、
一度手にして、アプリ開発を行ってみ
たくなりました。
 ぶうううんさん／山形県

もうただのアンドロイドアプリの時代は
終わったのかもしれませんねぇ。
 lipgtxさん／東京都

ぜひ実機を手に入れて実践してみたい、
とは思います。実機さえあれば……。
 村橋さん／北海道

注目度は非常に高いようですが、
実機を持っていないという方が

まだまだ多いようです。デバイスが超進
化したり、キラーアプリが登場したりと、
何か普及するきっかけが出てきてほしい
ですね。

セキュリティベンダなどに頼らず、手元
で行おうとすると敷居が高い「脆弱性診
断」。これをフリーのソフトを使って比
較的手軽に行おう、というのが本短期連
載。後編では「OpenVAS」を使ってGUI

とCLI両方から脆弱性スキャンを行う方
法を解説しました。

フリーでできるんだって印象。
 tekitoizmさん／東京都

診断ツールの使用では誤検知よりも検
知漏れが怖いので、複数の診断ツール
を組み合わせて使うことが大事だと思
いました。 永作さん／東京都

まだまだセキュリティに関しては勉強
が足らないので、良い勉強になります。
 ArrayMonsterさん／東京都

セキュリティについては、積極的に理
解しておかないと、忘れてしまったり、
何か事故を起こしたりするので、しっ
かりこういう記事を読んでおきたい。
 ももんがさん／静岡県

セキュリティ対策といっても、
どんなツールを使ってどこから

対策していけばいいのか迷いますよね。
今回は「脆弱性診断」ということで、ふ
だん使っているサーバに弱点がないか
をまず調べることで、具体的な対策を
考える前準備が整えられました。

一般記事　Android Wearアプ
リ開発入門［特別編］

一般記事　フリーで始めるサーバ
のセキュリティチェック【後編】

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① 無線LANルータ「WN-AX1167GR」
井上敬利様（福岡県）

② Nimbelストレージモバイルバッテリー
宮田哲雄様（東京都）

③ ESETファミリーセキュリティ1年版
キャボさん様（埼玉県）、伊集院伸幸様（東京都）、
中村昭博様（石川県）

④ 『ブラウザハック』
jo7oem様（山形県）、lin様（新潟県）

⑤ 『Pythonチュートリアル第3版』
中村財蔵様（神奈川県）、白井太郎様（東京都）

⑥ 『基礎Visual Basic 2015』
眞鍋裕二様（香川県）、田中良明様（滋賀県）

⑦ 『ドキュメント作成システム構築ガイド』
斉藤和芳様（北海道）、水谷典子様（愛知県）

6月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

mailto:sd@gihyo.co.jp
http://sd.gihyo.jp/

Software Design
2016年8月号

発行日
2016年8月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6179
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2016年9月号
定価（本体1,220円＋税）

192ページ

September 2016
8月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2016 技術評論社

［第1特集］ ログ出力のベストプラクティス　

役立つログを残していますか？
システムログからアプリのログまで徹底検証
［第2特集］

「良いPHP、悪いPHP」
※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

■2016年7月号
●P.46　第1特集 第3章
　Software Design 2016年7月号 第1特集 第3章の記事およびサンプルプログラムについて、輻輳制御をしないまま
UDPパケットをインターネットに流すことに問題があるのではないか、というご指摘を頂戴しました。
　本稿ではTCPとの違いをあえて明確にすることや、スクリプト言語の特性を活かしたプログラムをできるだけシンプル
にして、構造の理解しやすさや機敏な開発のプロセスを伝えるのが目的でした。
　しかしご指摘のようにUDPの例は、インターネットに対して実施するには配慮にかけています。とくに初心者であって
も、配布したソースコードをもとに、 IPレベルでのDOS攻撃とかわらないことができ、インターネットを混乱させてしまう
ことになるかもしれません。
　実際にインターネットでUDPの通信をする場合には、インターネット上の経路を飽和させてしまうことがないようにしな
ければならないむね、記事中でもあくまで誌上での実験であることと、実際に通信する場合に配慮・注意をするように記
述するべきだったと思います。
　ご指摘くださった方に感謝を申し上げるとともに、ご指摘を重く受け止め、この場を借りて読者の皆様へのお詫びと、
サンプルプログラムの実施おけるご注意をお願い申し上げます。

【サンプルプログラムを利用する際のご注意】
インターネットに対してUDPで全力の送受信をすると、各経路において帯域を独占してしまうことがあります。サ
ンプルプログラムには、輻輳制御など、帯域を飽和させないためのしくみが組み込まれていません。同プログラム
をインターネットで用いることは、帯域の独占をしてしまうことがあります。動作の確認は、できるだけ閉じたLAN
環境内でのみおこなうようご注意願います。

●P.40　第1特集「第2章　実践ネットワークプログラミング～C言語編～」 リスト3 右段上から11行目
　［誤］inet_ntop(serv.sin_family, &serv.sin_serv_name, sizeof(serv_name));
　［正］inet_ntop(serv.sin_family, &serv.sin_addr, serv_name, sizeof(serv_name));
●P.58　第1特集「第3章　実践ネットワークプログラミング～スクリプト言語編～」左段上から8行目
　［誤］udp_receive_server.rbでは、selectを使ってマルチプレクス処理をおこなっています。
　［正］udp_receive_server.rbでは、マルチスレッドを使った多重化（マルチプレクス）処理をおこなっています。
●P.103　「使って考える仮想化技術」注1）のURL（旧バージョンのリンク変更に伴う修正）
　［誤］例）http://ftp.riken.jp/Linux/centos/6.7/isos/x86_64/
　［正］http://archive.kernel.org/centos-vault/6.7/isos/x86_64/

■2016年1月号
●P.79　第2特集「第2章　InventoryとPlaybook、2つのファイルを理解する」リスト31
［誤］ ［正］

tasks: tasks:
 - name: Ubuntuの場合 main_ubuntu.yml を読み込む - name: Ubuntuの場合 main_ubuntu.yml を読み込む
 include: main_ubuntu.yml include: main_ubuntu.yml
 - name: CentOSの場合、 main_centos.yml を読み込む when: ansible_distribution == "ubuntu"
 include: main_centos.yml - name: CentOSの場合、 main_centos.yml を読み込む

 include: main_centos.yml
 when: ansible_distribution == "centos"

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

休載のお知らせ
　「Mackerelではじめるサーバ管理」（第18回）は都合によりお休みさせていただきます。

192 - Software Design

mailto:sd@gihyo.co.jp
http://archive.kernel.org/centos-vault/6.7/isos/x86_64/

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	SD2016年8月号
	表紙
	目次１
	目次２
	目次３

	■第1特集 プルリクしていますか？ GitHubさいしょの一歩 はじめてのPull Requestから、チーム導入へ
	第1章：GitとGitHubとは何か丸山 晋平
	第2章：GitHubを使うためのGitの基礎知識丸山 晋平
	第3章：GitHubでPull Requestを出せるようになろう丸山 晋平
	第4章：［事例紹介］GitHubをチーム開発に導入するときに考えること福本 貴之

	■第2特集 安全にパッケージ管理していますか？　案外知らなかった YumとAPTのしくみと活用　
	序章：パッケージ導入の知識?開発の背景とRPMパッケージのしくみ?橋本 直哉
	第1章：Yumを使いこなそう?構造や動作を知って管理の不安を解消?橋本 直哉、佐藤 暁
	第2章：APTを使いこなそう?Debian/Ubuntu編?柴田 充也

	■一般記事
	乱数を使いこなす【短期集中連載】コンピュータと乱数力武 健次
	アプリケーションテストに時間がかかりすぎてませんか？　Ruby on Railsへの導入でわかったRRRSpecによる分散テストの効果後藤 優一

	■Catch up trend
	うまくいくチーム開発のツール戦略【3】備えあれば憂いなし！ JIRAとBitbucket Serverに記録を残そう......廣田 隆之

	■連載：Column
	digital gadget【212】IDEAから読み解くガジェット製品安藤 幸央
	結城浩の再発見の発想法【39】デファクトスタンダード　......結城 浩
	増井ラボノート　コロンブス日和【10】DragZoom増井 俊之
	宮原徹のオープンソース放浪記【6】OSC名古屋とイベント運営のキモ宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【14】BBC micro:bit......坪井 義浩
	ひみつのLinux通信【30】圧縮ファイルあれこれ......くつなりょうすけ
	Hack For Japan〜エンジニアだからこそできる復興への一歩【56】情報支援レスキュー隊の熊本地震対応及川 卓也
	温故知新 ITむかしばなし【57】電子ブロックと4bit CPU　......速水 祐

	■連載：Development
	アプリエンジニアのための［インフラ］入門【2】ネットワーク入門出川 幾夫
	使って考える仮想化技術【3】仮想環境の構築（その2）〜仮想マシンの作成......笠野 英松
	RDB性能トラブルバスターズ奮闘記【6】「テーブル設計は後まわし！」にするやり方もある生島 勘富、開米 瑞浩
	Androidで広がるエンジニアの愉しみ【6】Google I/O 2016で注目すべき開発環境の進化嶋 是一、fkm
	Sphinxで始めるドキュメント作成術【17】ドキュメントの種類に応じた表現ができる「Sphinxドメイン」　......川本 安武
	書いて覚えるSwift入門【17】WWDC2016の誤算......小飼 弾
	Vimの細道【10】Vimからgitを使い倒すmattn
	るびきち流Emacs超入門【28】シェルコマンドを活用しよう（発展編）るびきち
	セキュリティ実践の基本定石【34】電力施設から家電クーラーまでセキュリティを考える時代　......すずきひろのぶ

	■連載：OS/Network
	SOURCES〜レッドハット系ソフトウェア最新解説【新連載】Ansible Tower小島 啓史
	Ubuntu Monthly Report【76】Ubuntu 16.04 LTSでCinnamon 3.0を使用する　......あわしろいくや
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【33】Microsoft loves FreeBSD後藤 大地
	Debian Hot Topics【38】NMプロセス変更、GitLab利用ほか、Debianプロジェクト改善の動きやまねひでき
	Unixコマンドライン探検隊【4】ファイル操作の基本（その1）中島 雅弘
	Linuxカーネル観光ガイド【53】Linux 4.2の新機能〜CDGによるTCPの輻輳制御　......青田 直大
	Monthly News from jus【58】IT勉強会共通の悩み？　集客の工夫／長く続ける秘訣　......榎 真治

	■アラカルト
	ＩＴエンジニア必須の最新用語解説【92】Eclipse OMR　......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW
	SD NEWS & PRODUCTS
	Readers’ Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内

