

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

技術評論社の本が電子版で読める！
https://gihyo.jp/dp

 GIHYO
 Digital Publishing

 GIHYO
 Digital Publishing

未来の“普通”を，今。

 Gihyo Digital Publishing

 GIHYO
 DIGITAL
 PUBLISHING

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

独習Python入門
̶1日でプログラミングに強くなる！
湯本堅隆　著　
2,580円　 PDF EPUB

いま最も注目を集めるチャットコミュニケーションツールSlack
の解説書です。

楽しく早くプログラミングを学びたいと思いませんか？　本書
はPythonを使ってプログラミングを独習できるようにさまざ
まな工夫を凝らしました。1つにはプログラミングのわかりに
くい概念をイラストで解説しました（小悪魔女子大生のサーバ
エンジニア日記のaicoさんが描きました）。2つめはソース
コードを図解で説明しました。そして未経験な読者でも自分
で読み進めることで，エディタを使ったコーディング方法や文
法に慣れ，オブジェクト指向やテスト方法，そしてWebアプ
リケーションの作り方までいっきに解説します。

https://gihyo.jp/dp/ebook/2016/978-4-7741-8357-2

伝わるデザインの基本 増補改訂版
よい資料を作るためのレイアウトのルール

EPUB PDF

これからはじめるプログラミング
作って覚える基礎の基礎
EPUB PDF

無料ではじめるBlender
CGイラストテクニック
～3DCGの考え方としくみがしっかりわかる

EPUB PDF

Slack入門
 [ChatOpsによるチーム開発の効率化]

EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
https://gihyo.jp/dp/ebook/2016/978-4-7741-8357-2

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

ED - 1 - Software Design

　「Rust」はMozilla Foundation
が中心となってオープンソースで開発
が進められているプログラミング言語
です。並列処理をサポートしたマルチ
パラダイムな言語を目指しており、手
続き型や関数型、オブジェクト指向、
並列アクターモデルなどのパラダイム
を取り込んだ静的型付けの言語として
設計されています。
　RustはC/C++のような低レベルな
言語としての性質を持っており、OS
やデバイスドライバといった、一般的
な高レベル言語が苦手とする分野を
サポートします。その一方で、不正な
メモリ操作によるエラーを防止する安
全なメモリ管理や、スレッド間のデー
タ競合を排除した高い並列処理性能
など、高レベル言語の安全性・利便
性も合わせ持っている点が大きな特
徴です。
　それに加えて、Rustの目標には「ゼ
ロコスト抽象化」という項目も挙げられ
ています。これは、高レベル言語の
ような抽象化を含めて、可能な限り
抽象化のコストを下げるということを意
味します。たとえば、最適化をすべて
コンパイル時に行い、実行時の高速
化にコストをかけないしくみなどが挙げ
られます。
　そのほか、Rustが備える特徴的な
機能としては次のようなものが挙げら
れています。

• 所有権システム
• トレイトベースのジェネリクス
• パターンマッチングによる分岐処理

• 型推論
• 最小限のランタイム
• 効率の良い Cバインディング

　「所有権システム」は、メモリ安全
性を実現するために極めて重要なしく
みです。Rustでは変数束縛によって
メモリ上のリソースに名前を付けるよう
になっています（一般的な言語で“変
数”と呼んでいるものに近い概念で
す）。この変数束縛は、束縛されて
いる対象リソースの「所有権」を保持
します。そして、Rustではリソースに
対する束縛が1つだけであることが保
証されるため、所有権もデフォルトで
は1つの束縛でしか保持できません。
このしくみによってメモリ操作の安全性
を高めているというわけです。
　「トレイト」は、ある型が提供しなけ
ればならない機能をコンパイラに伝え
る機能であり、型を定義する際にそ
の振る舞いを強制することが可能にな
ります。そしてRustのジェネリクスで
は、“特定のトレイトを実装する型”の
ような型パラメータを指定できるように
なっています。
　これら一連の特徴的な機能によっ
て、ハードウェアに近いレイヤのプロ
グラミングをサポートしつつ、同時に
安全性も担保するという難題をクリア
しています。

　このRustの採用例として注目を集
めているソフトウェアに「Servo」があ
ります。Servoは、Mozillaの研究
開発部門であるMozilla Research
によって開発が進められている新しい

Webレンダリングエンジンです。従来
のレンダリングエンジンにくらべて、並
列性やモジュール性に優れ、高いパ
フォーマンスや堅牢なセキュリティを備
えることを目標としています。また、モ
バイルデバイスも含めた幅広いハード
ウェアに対応するために、低い周波
数で動作するマルチコアプロセッサで
も高速な動作を実現しようとしています。
　Rustは並列処理に優れ、コンパク
トなランタイムでも高速に動作する一
方で、メモリセーフに設計されている
ことから、このようなServoのコンセプ
トに最も適した言語として採用されまし
た。長期的なロードマップとしては、
現在Firefoxで採用されているレンダ
リングエンジンGeckoのコンポーネン
トを、徐々にServoのコンポーネント
に置き換えることが計画されています。
　Mozilla Researchは、2016年7
月に初めてServoのデベロッパプレ
ビューを公開しました。本稿執筆時点
（7月中旬）で公開されているのは
Mac OS版とLinux版のみですが、
Windows版とAndroid版も近日中
に公開される予定とのことです。
　Rustは低レベルのシステム開発向
け言語としては比較的新しい存在で
すが、Servoの登場によってその評
価は大きく変わる可能性があります。
このまま順調に開発が進めば、C/
C++に代わる新しい選択肢としての
存在感が増してくることでしょう。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 93回

Rust

The Rust Programming Language
https://www.rust-lang.org/
Servo, the parallel browser engine
https://servo.org/

新プログラミング言語
「Rust」

Rust 製の新ブラウザ
エンジン「Servo」

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
https://www.rust-lang.org/
https://servo.org/

vol.213

1 - Software Design Sep. 2016 - 1

　

　広告キャンペーンにおいて、Twitter
やFacebook、Instagramといった
SNSや、専用アプリを活用したものが、
ごく普通に見られるようになりました。
　Twitterのハッシュタグを活用し
たペルー赤十字の「Hashtags for
Life」プロジェクトは、Twitterのハッ
シュタグに自分の血液型を投稿する
ことによって、それを献血登録のデー
タベースとして活用し、緊急に血液が
足りなくなった場合にSNS経由で献
血者を募るという運用をしています。
　最近日本にも上陸した米国の
タコスチェーン店のタコベルでは、
Unicodeの絵文字の新規採用分に
タコスの絵文字を採用してもらうよう
活動を行っていました。その採用を記
念して「Taco Emoji Engine」という
キャンペーンを実施しました。これは従
来のさまざまな絵文字とタコスを組み

合わせた変な合成絵文字をツイートし
て返してくれるというものです。
　さらに最近では、広告の分野でのテ
クノロジーの活用が顕著で、VR技術
を活用したもの、人工知能を活用した
展開も見られるようになってきました。

　New York TimesがGoogle Card
boardとGEとminiの協力を得て、報
道のためのVR映像を配信。新聞の
日曜版をとっている人全員に、VRカー
ドボードが届けられたそう。しくみはVR
映像を配信するVrse社の技術によ
るもので、GEとminiのVR広告もある。
新聞社だけあって、取り上げる題材
の社会性や臨場感が他のVRコンテ
ンツとは一線を画している。

　米国フロリダにあるダリ美術館の

展覧会のために作られたもので、ダリ
が描いたシュールな世界の中をVR体
験できるもの。ダリの「ミレーの晩鐘の
考古学的回想」という作品がもとに
なっている（pic.1）。

　アメリカ航空機・宇宙船の開発製
造会社Lockheed Martin社によるも
の。スクールバスの車窓全面にディス
プレイを搭載してVR的に火星の映像
を映し、バス通学を火星探索に変えて
しまうプロジェクト。単に風景が映し出
されているのではなく、バスの進行方
向や移動速度によって映像が切り替
わり、まさに火星の上を走るバスの景
色が窓から見えるかのよう（pic.2）。

　画像や動画を自動認識し、意味の
ある分類タグを自動付加するしくみ。

広告とデジタルの新しい関係性

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

安藤 幸央
EXA Corporation

広告のSNS活用、
VR活用、人工知能活用

※本記事で紹介しているものは
国内未発表・未発売のものを含んでいます。

Lockheed Martin
- The Field Trip To Mars
http://fieldtriptomars.com/

The Dalí Museum
 - Dreams Of Dalí
http://thedali.org/dreams-of-dali/

NYT VR
http://www.nytimes.com/marketing/nytvr/

Clarif.ai
https://www.clarifai.com/

pic.1
シュールレアリズムを代表するダリの
世界に没入できるVRコンテンツ

「Dreams Of Dalí」

pic.2
The Field Trip To Mars。
バスの窓に火星のVR映像を投影

pic.3
人工知能が描いた、
レンブラントのテクニックを模倣した絵画

http://www.andoh.org/
http://www.nytimes.com/marketing/nytvr/
http://fieldtriptomars.com/
http://thedali.org/dreams-of-dali/
https://www.clarifai.com/

2 - Software Design

物の認識はもとより、人の顔の表情
や、感情的な要素も読みとって、複数
のタグをつけて分類できるAPIサービ
ス。

　人工知能の活用で注目された本
作は、画家レンブラントが描いた絵画
を筆のタッチまでも機械学習し、レン
ブラント風の絵画をコンピュータが描
くというもの。絵の具のタッチの凹凸
まで3Dプリンタと絵の具の塗り重ね
で再現している（pic.3）。

　2016年6月に、広告を中心とした
国際クリエイティビティフェスティバル、
Cannes Lions（カンヌライオンズ）
2016が開催されました。単なる広告
からさまざまな製品やサービスにまで
分野を拡げており、今年のカンヌライ
オンズでは、VR技術、デジタル系の
演出、人工知能や機械学習を活用し
たサービスなどが注目を浴び、話題に
なりました。
　その一方、テクノロジーの活用とと
もに「クラフト」と呼ばれる、職人技や
人間味、芸術性なども重視されていま
す。テクノロジーの活用は当然のこと

で、テクノロジーそのものはもう特別な
話題や差別化事項にはならなくなっ
てきています。
　いわゆる「広告」の表現だったとし
ても、単に商品を売るための露骨な
ものではなく、社会貢献の評価や、ブ
ランドイメージの向上を意図した表現
も多くみられます。各部門の入賞作か
ら、とくにモバイル端末や最新テクノ
ロジーを活用した広告戦略のいくつ
かをデジタルガジェット視点で紹介しま
しょう。

サイバー部門（Webサイトやデジ
タル分野の広告）より
●ニュージーランドのASB銀行 -
Clever Kash：現金を使わない、子
供用貯金箱。お小遣いもアプリであ
げる時代に。子供がお手伝いをする
と、象さん型のデジタル貯金箱にお
小遣いが貯まる（pic.4）。
●Tourism Australia - Giga
Selfie：オーストラリア政府観光局の
広告キャンペーン。ある特定の位置で
セルフィー（自撮り）を撮影すると、遠く
離れた超望遠レンズで超高精細なセ
ルフィーを撮影してくれるサービス。特
殊な機材を用い、一眼レフ720枚分の
高解像度写真が見られる（pic.5）。

モバイル部門（スマートフォン、タ
ブレット端末向けの広告）より
●Canon - Photo Coach:
どういう場所で、どういう写真を撮れ
ばいいのか、街中のデジタルサイネー
ジで写真撮影のコツを教えてくれる
キャンペーン。単なるガイドブックには
載っていない、リアルなイベント、リア
ルな場所での撮影の解説を提供。カ
メラメーカーがカメラ機器そのものを
アピールするのではなく、本来の「写
真」に着目したキャンペーン（pic.6）。
●Samsung - Try On A Six:
ライバル社のスマートフォン端末を傾
けると自社のスマートフォン端末が同
じ方向に傾き、あたかも自分がその端
末を持っているかのような気持ちにさ
せるデジタルサイネージ。Galaxy S6
edgeという液晶画面の左右が曲面
になっているスマートフォンのためのも
の（pic.7）。

デザイン部門より
●Art Institute Of Chicago -
Van Gogh Bnb：ゴッホの絵画を
再現した部屋。シカゴ美術館の展示
会に合わせたプロジェクト。シカゴにあ
る部屋をAirbnbで実際に借りること
ができる（pic.8）。

広告とデジタルの新しい関係性

Cannes Lions 2016より

サイバー部門

デザイン部門

pic.4
Clever Kash

pic.8
Van Gogh Bnb

pic.5
Giga Selfie

pic.9
Art With Watson

pic.6
Photo Coach

pic.10
Google Shopping Insights

pic.7
Try On A Six

pic.11　Codeology
BrainTree Payments

The Next Rembrandt
https://www.nextrembrandt.com/

モバイル部門

デジタルクラフト部門

https://www.nextrembrandt.com/

Gadget 1

Gadget 2

Gadget 3

Gadget 4

2 - Software Design Sep. 2016 - 3

http://seriescommitment.com/

http://www.bizsys.com.br/#/
tokstok-pinterest-pinlist/

https://www.babolatplay.com/pop

カンヌライオンズ2016モバイル部門
金賞。従来、目の不自由な水泳選手は、
プールの端に来てターンする際、棒か
何かで誰かに教えてもらわなければなり
ませんでした。Samsungが現在ベータ
テスト中の通信機能内蔵の水泳帽で
は、プールの端に近づいてターンするタ
イミングになったら、プールの外で控え
ているコーチがスマートフォンで通知す
ると、選手は水泳帽からの振動でその
タイミングを知ることができます。現在は
練習で用いられているデバイスですが、
将来的にはより広く使われる可能性が
ある技術です。

カンヌライオンズ2016モバイル部門
銅賞。Commitment RingsはNFC内
蔵の指輪で、カップルの2人がそれぞれ
身につけ、あらかじめ観たい映画や番
組を登録しておきます。その後お互い
が承認しないと、ネット配信されている
動画を観ることができなくなるアプリで
す。この指輪があれば、一緒に観ようと
言っておきながら、抜け駆けすることが
できなくなります。実際に商品として販
売予定で、iOS版、Android版のアプリ
も予定されています。

カンヌライオンズ2016ダイレクト部門。
気に入った画像をコレクションするネット
サービスPinterestを現実世界にもって
きたサービス。ブラジルの家具メーカー
Tok&Stokは、ショールームに設置され
ている家具にPinterestの機能である

“Pin it”のボタンを取り付け、家具を気
に入ったユーザがそのボタン押すことで、
サイズや写真などを自分のコレクション
アルバムに保存できるしくみを構築しま
した。Pin itボタンはバッテリー内蔵で、
Bluetooth Low Energyでピンに一番
近いユーザが持っているスマートフォン
上のPinlistアプリと連動します。

カンヌライオンズ2016モバイル部門
銀賞。Babolat Popはテニス中のデー
タ記録を自動で行うためのデバイスで、
ラケットを持つ腕に装着します。プレイ
時間はもとより、フォアハンド、バックハ
ンド、サーブの回数、スマッシュなどの
スピード、最長ラリーの回数などを意
識することなく測りつつプレイできます。
Babolat Playというセンサーが内蔵さ
れたテニスラケットとともに利用すれば、
さらにさまざまな情報を記録することが
できます。米国では89.95ドルで販売中。

Samsung Blind Cap

Commitment Rings

Tok&Stok - Pinlist

Babolat Pop

スマートフォン連動の水泳帽

承諾機能付き指輪

リアル世界のPinterest

テニスセンサー

●IBM - Art With Watson：
IBMの人工知能システムWatsonを
活用したアート作品。たくさんのアート
作品の事例から機械学習して導き出
したもの（pic.9）。

デジタルクラフト部門（デジタル環
境においてブランドと消費者との
優れた体験を生み出したもの）より
●Google - Shopping Insights：
ECサイトのショッピングの状況を解析
し、可視化するサービスが受賞。業界
へのツールとしての意義とともに、専
門家でなくともわかりやすいグラフ表
現が逸品（pic.10）。
●Braintree - Codeology：ソー
スコード共有サイトGitHubのプロジェ
クトを分析し、可視化したもの。有機
的な形をもったコードで表現されたプ
ロジェクトは、どれ1つをとっても同じも
のはない（pic.11）。

　テクノロジーでさまざまなことが実現
できるとともに、テクノロジーやネットそ
のものは目新しさがなくなり、ごく当然
に扱われるものとなりました。また、た
いそうなコストがかかる最先端のテク
ノロジーではなく、使い古された枯れ
た技術であっても、ちょっとした工夫や
見せ方次第でおおいに役立つという
こともわかってきました。
　テクノロジーがどんなに進歩したと
しても、人の感情の動き、人が得る体
験、知らない場所への旅行や、人と人
とのコミュニケーションによって生まれ
る新しい発見や共感など、根源的なこ
とはあまり変わらずにあります。それら
の根源的な事柄をテクノロジーによっ
て強化できることは、まだまだたくさん
あるのだと思い知らされることが多く
なってきています。アイデアは誰でも
思いつくことであり、そのアイデアを実
行することこそに価値があるということ
ですね。｢

https://www.youtube.com/channel/
UCndYDWrz36zgT72kYzMYsoQ

この先の広告と
クリエイティブの形態

https://www.youtube.com/channel/UCndYDWrz36zgT72kYzMYsoQ
http://www.bizsys.com.br/#/tokstok-pinterest-pinlist/
http://seriescommitment.com/
https://www.babolatplay.com/pop

4 - Software Design

三路スイッチとは

　三路スイッチとは、2つの場所のどちらでも
オン・オフができるように設計されたスイッチ

のことです。通常のスイッチには「オン」と「オフ」
という2つの状態があります。そのスイッチを
使って、たとえば図1のような回路を作ると、
スイッチをオンにすれば照明が点灯し、スイッ
チをオフにすれば消灯します。
　ここで、「階段」に設置された照明を、階上と
階下のどちらでも点灯・消灯させたいとしましょ
う。階上と階下の両方にスイッチを設置すると
して、照明を制御しようとしたとたん、困った
ことになるでしょう。
　なぜなら、2つのスイッチが直列になってい
たら、片方のスイッチがオフの状態では、他方
でオンにできなくなるからです。これは論理演
算x and yで、xがfalseならyがtrueでもfalse
でも、結果がfalseになってしまうのと同じで
す。
　かといって、2つのスイッチを並列にするわ
けにもいきません。今度は、片方のスイッチが
オンになっていたら、他方でオフにできないか
らです。論理演算x or yで、xがtrueならyが

trueでもfalseでも、結果がtrueになってし
まうのと同じです。
　三路スイッチはそのような問題を解決します。
図2のように三路スイッチA、Bを階上と階下
に設置します。すると、階上でも階下でも、照
明を点灯・消灯させることができるようになり
ます。ただし、配線の数は増えてしまいます。
　個々の三路スイッチは、単純なオン・オフを
行うものではありません。図2の三路スイッチ
Aでいえば、左の電線を上につなぐか、下につ
なぐかを選択しています。三路スイッチAとB

の両方が上下の同じ側を選択すれば点灯し、異
なる側を選択すれば消灯することになります。
これは、xとyが「等しい」という論理演算に相
当します（not(x xor y)とも言えます）。
　階段の照明を三路スイッチで制御する話をし
てきましたが、三路スイッチは階段だけに使われ
るわけではありません。長い廊下の両端、ある
いは広い部屋の入口と出口など、人間がスイッチ
の制御のためにいちいち移動するのがたいへん
な場所や、移動することがそもそも無意味な場
所ならどこでも利用できるでしょう（階段を昇る
ために点灯したのに、昇ったあとで消灯のため
に降りるのは無意味です）。

電源 照明

スイッチ

 ▼図1　スイッチ

電源 照明

三路スイッチ
A

三路スイッチ
B

 ▼図2　三路スイッチ

三路スイッチ

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 40

http://www.hyuki.com/

4 - Software Design Sep. 2016 - 5

三路スイッチの拡張

　2ヵ所ではなく、3ヵ所で照明を点灯・消灯
することはできるでしょうか。もちろんできま
す。四路スイッチが存在します。図3では中央
部に四路スイッチを設置しました。四路スイッ
チは、電線同士を「そのまま」つなげるか、「ク
ロスして」つなげるかを選択します。3個のスイッ
チのどれでも、照明を点灯・消灯できるのです。
　さらにおもしろいのはスイッチの個数はもっ
と増やせるという点です。しかも新たに「五路
スイッチ」を作る必要はありません。四路スイッ
チを増やせばいいのです。図4はスイッチを全
部で5個設置した例です。

日常生活での三路スイッチ

　三路スイッチは私たちの日常生活で見かける
ものですから、「日常生活での三路スイッチ」と
いう表現は少しおかしいですね。でも、私たち
は「必要な機能の再確認」という発想を三路ス
イッチから学ぶことができます。
　「照明を点灯・消灯させる」という機能を実現
するため、私たちはスイッチを用意します。でも、
そのときに、点灯や消灯を明示的に指示する必
要はないのだという点がポイントです。通常の
スイッチの場合、「オン」と「オフ」が決まっていて、

それを使ってオンなら点灯、オフなら消灯とい
う指示をします。でも、三路スイッチは違います。
スイッチ自体ではオンもオフも決まっておらず、
ただ2つの状態を切り替えるだけなのです。言
い換えるなら、三路スイッチは、現在の点灯状
態を反転させていると言えるでしょう。四路ス
イッチもそうですね。そのままつなぐか、クロ
スするかを選択して、現在の点灯状態を反転さ
せています。
　別の考え方をしてみます。「照明を点灯・消
灯させる」という機能を実現するため、点灯と
消灯の両方のスイッチを用意する必要はないと
も気づきます。たとえば、消灯をタイマーにま
かせてしまうなら、人間に必要なのは点灯スイッ
チだけになります。
　さらに別の考え方をすれば、点灯と消灯のど
ちらも、人間が指示する必要はないとも言えます。
それに気がつけば、人感センサーを使って、自
動的に点灯・消灯させることもできるでしょう。
　三路スイッチについて考えているうちに「レ
ンタカー」のことを思い出しました。レンタカー
を借りるのは「別の場所に移動したい」からです。
でも、A地点からB地点へ移動したいのに、レ
ンタカーを返却するためにA地点に戻ってくる
のでは意味がありませんね。そう考えると、レ
ンタカーのワンウェイ（乗り捨て）オプションは
自然な発想になります。つまりワンウェイオプ
ションは、車を借りる場所と返す場所は同じで
ある必要はないという発想に立っているのです。
　公開鍵暗号の「閉める鍵」と「開ける鍵」は同じ
である必要はないというのも似ていますね。

◆　◆　◆
　あなたの周りを見回して、1ヵ所で制御する
のではなく、2ヵ所で制御したくなるものはな
いでしょうか。「必要な機能の再確認」をして、
2ヵ所で制御する方法を考えてみましょう。そ
れは3ヵ所に拡張することはできるでしょうか。
あるいはまた、そもそも人間が制御せずに済む
方法はあるでしょうか。
　ぜひ、考えてみてください。｢

40

電源 照明

三路スイッチ 四路スイッチ 四路スイッチ 四路スイッチ 三路スイッチ

 ▼図4　スイッチを全部で5個にした

電源 照明

三路スイッチ
A

四路スイッチ 三路スイッチ
B

 ▼図3　四路スイッチ

6 - Software Design

　前回は、大規模な階層情報をズーミング検索
するDragZoomというシステムを紹介しました。
DragZoomはパソコンやタブレット上のマウス
や指の操作でズーミングを行うことによって大
規模データの検索を行うシステムですが、ユビ
キタスコンピューティング環境ではいつでもポ
インティングデバイスが使えるとは限りません。
料理しているとき、歩いているとき、通勤電車
で立っているとき、車を運転しているときなど、
ポインティングデバイスを使いづらい状況はよ
くありますが、そういった状況でも大きな階層
情報をうまく検索できる方法があれば自由に音
楽や番組などを選択できるので便利です。今回
は、2個のボタンを使うだけで大規模な階層デー
タを簡単に検索できる「Gear」というシステム
を紹介します。

　DragZoomのようにGUIを使って階層データ
をなめらかに検索する方法はこれまでたくさん
研究されてきているのですが、残念ながらデス
クトップやブラウザ上で広く利用されているも
のはほとんど存在せず、階層構造を段階的にた
どりながらブラウズするやり方が一般的になっ
ています。たとえばMacのデスクトップ画面で

2つのボタンだけで
操作できるGear

階層データの段階的
なナビゲーション

ファイルを操作するプログラム（ファインダ）では、
ファイルの階層構造を視覚化してナビゲーショ
ンを可能にする方法がいくつか用意されていま
すが、どの方法でもマウスやキーを操作して階
層構造の親子関係や兄弟関係を段階的にたどっ
ていくことにより階層型ファイルシステムのナ
ビゲーションを行うようになっています（図1）。
　たとえば1つ下の階層のフォルダの内容を見
たい場合、マウスでダブルクリックしてフォル
ダを開いたり、矢印キーを使って注目行を移動
させてから©キーを押すといった方法が
よく使われています。
　現在のパソコンのファイルはすべて階層的に
管理されており、ほとんどのファイルにデスク
トップからアクセスできるようになっています。
パソコンの中の100万個のファイルの中から、
ファイルを1つ選ぶのはたいへんなはずですが、
実際のパソコン操作においてそれほど苦労して
いる人は多くないでしょう。
　データがきれいに階層的に管理されている場
合、それほどたくさんの操作をしなくても必要

増井ラボノート

注1） http://thinkit.co.jp/free/article/0709/19/

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張って楽できるなら、それに越したことはないでしょ
う。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろんな
システムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用しているよ
うな単純かつ便利なシステムをたくさん紹介していきます。

第 11 回　Gear

 ▼図1　 Macのファインダでアプリケーションを段階的に検
索しているところ

http://thinkit.co.jp/free/article/0709/19/

NO.

6 - Software Design Sep. 2016 - 7

Gear

な情報を見つけることができるのが普通です。
実際、パソコンのデスクトップ画面でマウスを
使って階層のトップから階層をたどって特定の
ファイルを捜すのに必要な操作は多くても10

回程度でしょう。

　図2のような階層を持つファイルシステムを
キーボードでナビゲーションすることを考えて
みましょう。
　これがファイルシステムの構造になっている場
合、Macのファインダでは▲▼◀▶という4個の
矢印キーでナビゲーションを行うことができます。
　「店リスト」をファインダで表示して、「本屋」
を選択すると、表示は図3のようになり、3回
▼を押すと、図4のように「食料
品店」が選択されます。
　「食料品店」は下位階層を持って
いるので、ここで▶キーを押すと
図5のように下位階層が表示され
ます。さらに▼キーを押すことに
よって「酒屋」を選択したり、「生
鮮食料品店」を選択してから▶を
押すことによって、図6のように
下位階層を表示できます。

キーボードで階層構造を
ナビゲーションする

　また、図6の状態で◀キーを押すと下位層の
表示を消し、図5のような状態に戻すことがで
きます。このように、Macのファインダでは▲
▼◀▶という4個のキーを使って階層データの
ナビゲーションを行うことができます。テレビ
のリモコンやジョグダイヤルでも階層構造デー
タのナビゲーションのためにほぼ同様の手法が
利用されていることが多いようです。

　前述のように4個のキーを使って階層データ
のナビゲーションを行うシステムはたくさんあ
りますが、実はキーを2つしか使わなくても同
様のナビゲーションを行うことができます。
　Gearでは▲と▼という2つのキーだけを利
用してナビゲーションを行います。Gearで「店
リスト」を表示すると、ファインダの場合と同
じリストが表示されます（図3）。▼を3回押す
と前の例と同じように「食料品店」が選択されま
すが（図7）、そこで操作を中断して一定時間待
つと「食料品店」の下位層が自動的に展開され、

Gear――2つのキーだけで
階層構造をナビゲーション

 ▼図2　あるファイルシステムの階層例

店リスト 本屋

文房具屋

薬屋

食料品店 酒屋

乾物屋

衣料品店 靴屋

洋品店

魚屋

肉屋

生鮮
食料品店

 ▼図3　 「店リスト」をファインダ
で表示して「本屋」を選択

 ▼図4　 3回▼を押して「食
料品店」を表示

 ▼図5　 「食料品店」で▶キーを押
して下位の階層を表示

 ▼図6　 「生鮮食料品店」で▶キー
を押して下位の階層を表示

増井ラボノート

8 - Software Design

図8のようにその最初の要素が選択されます。
　ここで▼を2回押して「生鮮食料品店」を選択
したまま一定時間待つと、図9のように下位層
が自動的に展開され、最初の要素である「魚屋」
が選択されます。
　つまり、▶のようなキーを押さなくても、一
定時間待つことによって同様の効果が得られる
ことになります。
　図7のように食料品店を選択した状態から時
間を置かずに▼を押すと、下位層は展開されず、
図10のように「衣料品店」が選択されます。ま
たここで操作を止めて一定時間待つと下位層が
自動的に展開され、図11のように「靴屋」が選
択されます。
　図9の状態から▲を押すと、下位層は自動的
に閉じられて図8の状態に戻ります。さらに▲
を押すと「食料品店」の下位の層も閉じられ、図
7の状態に戻ります。また、図9の魚屋が選択
されている状態から▼を2回押すと、「食料品店」
の下位層は自動的に閉じられて図10の状態に
なります。
　まとめると、

・選択した項目に下位層が存在するときキー入
力を行わずに待つと下位層が自動的に展開
され、下位層の最初の項目が選択される

・項目リストの端を選択しているとき、さらに
▲▼を押すと下位層は閉じられて1つ上の層
の項目が選択される

という2つの工夫により、▲と▼だけで階層デー

タを自由にナビゲーションすることが可能にな
るというわけです。

　前述の例は小さな階層的データの上での
Gearナビゲーションでしたが、実際には巨大
な階層データでも同様のナビゲーションができ
ます。図12のスクリーンショットはブラウザ
上に実装したGearを使って各種コンテンツを
ナビゲーションしているところです。

Gearの利点

　入力装置は単純であるにこしたことはありま

ブラウザでの実装

 ▼図7　 「店リスト」から「食
料品店」を選択する

 ◀図9
 一定時間で下位階
層である「魚屋」が
表示される

 ▼図10　 すぐに▼を押すと
「衣料品店」が表
示される

 ▼図11　 「衣料品店」で少
し待つと「靴屋」
が表示される

 ▼図12　 WebブラウザへのGear実装

 ▼図8　 一定時間で下位
階層が表示される

NO.

8 - Software Design Sep. 2016 - 9

Gear

せん。2個のセンサであらゆる操作が可能なの
であれば左右の回転操作や何かを押したり引い
たりする単純な装置でも操作が可能だというこ
とになるので、さまざまな環境で利用が可能だ
ということになります。Gearの操作は▲▼と
いう2つのキーしか必要としないため、圧力セ
ンサや回転ダイヤルなどを利用した各種の実装
ができます。
　たとえばMacの入力装置として写真1の「Hyper

Mate」という製品が市販されており、これをGear

の入力装置として利用できます。
　また写真2は、パドルに貼った2個の圧力セ
ンサの値を▲▼に割り当てています。板を押し
たり引いたりすることによってコンテンツのナ
ビゲーションができます。
　このように、現状のGUIでは利用されてい
ないような単純なデバイスでもGearの入力装
置として利用できるのが大きなメリットです。

　Gearの操作には2個の入力装置しか必要と
しませんから、普通の入力装置が使いにくいよ
うな場所でも利用できます。たとえば食卓の裏
にさりげなくスイッチや圧力センサを2つ並べ
ておけば、それらを操作するだけでBGMや番
組を切り替えることができるでしょう。テレビ
の前のソファの手すりにローラーを付けておけ
ば、それを回すだけであらゆるコンテンツを選

Gearの利用環境

択できるでしょう。
　私は自宅の机の前のサブモニタで常にGearブ
ラウザを動かしており、マウスホイールを使っ
てコンテンツを選択して視聴しています。パソ
コンで音楽や動画を再生しながら仕事をしてい
る人は多いと思いますが、手近にGear端末があ
ればマウスホイールを回すだけであらゆるコン
テンツを簡単に視聴できるのはとても快適です。
　たくさんのボタンを必要とする入力装置では
どうしてもボタンに合わせた設計が必要になり、
装置の形状が制約を受けてしまいますが、
Gearの場合にはそもそもどこでコンテンツを
視聴したいのかを最初に考え、その場所に最も
適した入力装置の形態を考え、それらをGear

のコントローラに利用するという順番でデザイ
ンができることになります。これまでの電子機
器は機械の都合にあわせて装置の形状がデザイ
ンされるのが普通でしたが、それを根本的に改
善できる可能性があると言えるでしょう。
　Gearを見たとき「これの何が面白いの？」と
いう顔をする人がいます。確かに、一度Gear

を使ってみるとGearの挙動はまったく自然に
感じられるので、どこが新しいのかわからなく
なってしまうのかもしれません。しかし、これ
までボタン2個だけで階層的データをナビゲー
ションする方法が普及していないことを考える
と、Gearはまさに「コロンブスの卵」のような
手法だと言えるでしょう。
　Gearは確かにコロンブス的要素を持つイン

タラクション手法であ
り、どこでも簡単に情
報検索を行うための強
い味方となります。
Gearのためのオシャ
レな入力デバイスを考
えていきたいと思って
います。ﾟ

 ▼写真1　HyperMate ▼写真2　 圧力センサを利用した入力装置

宮原徹の

10 - Software Design

北海道と沖縄は12回目
のOSC開催

　断酒して1ヵ月半が経ちました。

83.6キロから80.4キロと3.2キロ

減。おおむね予定に近いペースで減

量できています。ただ、この6月か

ら7月に、北海道、そして沖縄と、

文字どおり北へ南へ飛び回り、かつ

美味しい物をたくさん食べてしまっ

たりしたので、想定以上の減量とは

いきませんでした。

　北海道と沖縄は、OSC初開催の翌

年2005年から毎年開催されており、

今回で12回目の開催です。東京一

極集中を少しでも解消しようと、少

し極端ですが日本の北と南の端でス

タートしたOSCが、これまで順調

に開催されているのは感慨深いもの

があります。北海道は土曜日開催＋

金曜日に少しだけセミナーを開催す

る「1.5日開催」ですが、参加者は合

計で700名を超える、東京・京都に

続く規模の開催地域です。北海道の

みなさんがOSCを大事にしている

こと、さらに道外から「北海道なら

行ってみたい」と思えるところが魅

力です。そのようにして、どんどん

とほかの地域へと出かけて行って、

交流を深めてもらえればと思ってい

ます。

北海道といえば生ラムジ
ンギスカン
　北海道の魅力はやはり「食」でしょ

う。OSC開催前日にスタッフが集ま

る「石鍋亭」というお店があります

（写真1）。新鮮な生ラムジンギスカ

ンと、野菜タップリのモツ鍋が美味

しい店で、なぜかOSC北海道のス

ポンサーでもあります。2005年の

OSC北海道開催も、この石鍋亭で飲

んでいたことがきっかけとなった、

OSCとは縁の深い店でもあります。

すすきの交差点に近い好立地ですの

で、札幌への出張、観光の際にはぜ

ひお立ち寄りください。

　OSC北海道終了後の懇親会はサッ

ポロビール園でのジンギスカンパー

ティー（170名以上参加！）ですが、

前夜祭の石鍋亭、さらにその前日も

石鍋亭でジンギスカンを食べていて、

今回のOSC北海道はジンギスカン

三昧でした（写真2）。もう少しラー

メンやスープカレーを採り入れても

よかったかもしれませんね。その反

省を活かして、OSC翌日の朝は二条

市場に海鮮丼を食べに行きました（詳

細はコラムにて）。

旭川、富良野から高校生
を招待
　今回のOSC北海道では、旭川工

業高校から19名、富良野緑峰高校

から7名の高校生が招待参加してく

れました（写真3）。札幌から旭川ま

でバスで2時間、富良野はさらにそ

の南ですから、本当にはるばる参加

してくれました。

　参加したみなさんは、朝から夕方

までセミナー、展示に参加し、刺激

を受けて帰ってくれたようでした。

富良野緑峰高校からは4名が懇親会

まで参加し宿泊して、翌日は北海道

北奔南走!? OSC北海道と沖縄第7回

 ▼写真1　 お世話になっている石鍋亭
のマスターと。スタッフポ
ロシャツいただきました

 ▼写真2　 ジンギスカン懇親会終了後、会
場前で記念撮影。これでも参
加者のごく一部です

 ▼写真3　 懇親会終了後、富良野緑峰
高校のみなさんと。高校
生らしくジャージです（笑）

宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

10 - Software Design Sep. 2016 - 11

R e p
o r t

北奔南走!? OSC北海道と沖縄第7回

大学のキャンパス見学をさせても

らったとのこと。これをきっかけに、

いろいろなことに挑戦してもらえれ

ばと思います。

全国各地のOSC関係者
が沖縄に集結
　OSC沖縄の開催前日、「OSCサ

ミット＠沖縄」に全国各地のOSC実

行委員が集まり、各地域の現状報告

会を行いました（写真4）。各地域共

通の課題として、「コミュニティ活

動をどうやって活性化するか」「メン

バーをどうやって若返りさせるか」

ということが挙げられました。たし

かに、OSCで知り合ったアクティブ

な学生や若者が、就職や転職で東京

に出てくることが多いと感じます。

しかし筆者は、若いうちは東京など

で修行して、経験を積んだ後に地域

に戻ることはできないかと考え続け

ています。5〜10年という期間で考

えるので今、課題を感じている人に

は何の解決策にもなりませんが、

OSCを始めてまだ10年と少し。蒔

いた種が将来芽吹き、花咲くことを

期待しながら毎回全国を飛び回って

いるわけです。若者が挑戦する機会、

成長する場を与えて、将来故郷に貢

献できる、そんなサイクルを生み出

せたらいいですね。

夕陽を見ながらビーチ
パーティー
　OSC沖縄の会場は目の前に人工

ビーチがあり、泳いだり（写真5）、

バーベキューができるので、今回は

終了後にビーチパーティーを開催し

ました。当日は最高の天気で、最高

にきれいな夕陽を眺めながら泳いだ

り、美味しいオリオンビールやサッ

ポロクラシック（北海道からの差し

入れ）を飲みながら、交流を深める

ことができました。OSCサミットに

参加した各地域の実行委員は、お互

いの地域の開催に協力し合う密約

（？）を交わせたようで、大きな成果

が得られた2日間でした。｢

 ▼写真5　 OSC沖縄終了後、会場目
の前のビーチで泳ぎまし
た。沖縄開催ならではで
すね

 ▼写真4　 OSCサミット後の懇親会で
琉装の店員さんと。あれ？
沖縄でも石鍋亭？？

▲これが注文した「けいらん丼」。具▼

 がはみ出ていて、相当引かないと
　全部写りません

▲ 地元のお店なので、観光客相手っぽ
い店が苦手な私も納得の雰囲気です

どーんと北海道海鮮丼

　ジンギスカンばかり食べていたのを反省して、Face
bookで「朝から二条市場に行ってくるけど、いい店ないか
な？」と書いておいたら、石鍋亭のマスターが「近藤昇商
店がいいよ！」と教えてくれたので早起きして行きました。
二条市場はすすきのから歩いて10分ぐらいで、大通り
公園からも、ほど近い場所にあります。
　目的のお店を発見して、お勧めの「けいらん丼」を注文。

普通は「鶏卵」ですが、北海道では「鮭卵」、要するにイ
クラです。出てきてビックリ、北海の海の幸がどんぶ
りから完全にはみ出しています。「朝ご飯にこれでいい
の？」というぐらいのボリューム感です。また、「石鍋
亭のご紹介で」と伝えたところ、デザートに完熟メロン
をサービスしてもらえました。北海道といえばやっぱ
り海の幸。朝早くからやっているので、来年のOSC北

海道は朝、ここで海鮮丼を食べてから会
場に向かおうと誓ったのでした。

12 - Software Design

　Universal Serial Bus（USB）は、コンピュー
タの外部バスの中で、最も使われているもので
しょう。基本的にUSBは、パソコンと周辺機器
を接続する規格です。USBでは、「ホスト」であ
るパソコンと、「デバイス」であるキーボードや
マウス、プリンタなどの周辺機器、と役割が分
かれています。USBでの通信は、ホスト側から
の働きかけにより開始されます。ですので、デ
バイス同士やホスト同士を接続するといったこ
とはできません。
　最近のスマートフォンやタブレットは、パソ
コンなどのホストに接続することも、キーボー
ドやUSBメモリなどのデバイスを接続すること
もできます。これを実現しているのが、USB

On-The-Go（OTGと略されます）という規格で

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

Universal Serial Bus（デバイス編）第
15
回

す。標準的なUSBコネクタには、5VとGND、
D+とD-という信号線の合計4つの端子があり
ます（図1）。
　ミニやマイクロUSBコネクタでは、これに
IDという信号線を加えた5つの端子があります。
このIDはOTGに使われます。このIDという信
号がGNDにつながっていると、OTGに対応し
たデバイスはホストの役割をします。ですので、
OTGに対応したケーブルのホスト側は、図2の
ようにIDとGNDが接続されています。
　先ほどUSBの信号線はD+とD-という名前だ
ということを記しました。USBでは、このD+

とD-という2本の線の間の「差
さどうしんごう

動信号」で伝送を
します。差動信号は、「差動」というその名のと
おり、1つの信号をD+とD-という2つの信号線
の電位差で表します（図3）。
　1つの信号を、2本の信号線で送るという、一
見非効率な方法を採るのには理由があります。
大きな理由の1つはノイズです。信号線に外部
からノイズが加わったとき、D+とD-に同じよ
うなノイズが加われば、差動信号ではD+とD-

の電位差をみているため、ノイズがキャンセル
されます。図3中の赤い矢印の長さは、電位差
を表しています。同じ大きさのノイズが作動信

USB

Micro-A

Mini-A Mini-B

4 23 1
Type A

1 2

34
Type B

Micro-B

2345 1 2345 1

12345 12345

+5V
D+
D-
ID

GND

+5V
D+
D-
ID
GND

ホスト側 デバイス側

 ▼図1　USBコネクタの種類

 ▼図2　OTGケーブルの結線例

12 - Software Design Sep. 2016 - 13

Universal Serial Bus （デバイス編） 第
15
回

号に入った場合、矢印の長さ（電位差）は、元の
信号と変わりません（図3下）。
　この「差動」というしくみは、高速な伝送を行
う信号線で用いられており、USBだけでなく、
EthernetやHDMIなどにも用いられています。
　話がそれてしまいました。マイコンにも、こ
のUSBのインターフェースが搭載されているも
のがあり、デバイスにのみ対応しているマイコ
ンや、ホストにも対応しているマイコンなどい
ろいろな種類があります。mbed LPC1768にも
USBのインターフェースが搭載されていて、デ
バイスだけでなく、ホストやOTGにも対応して
います。今回は、mbed LPC1768のUSBイン
ターフェースを使ってみましょう。とりあえず、
今回はmbedにUSBのデバイスの役割をさせて
みようと思います。

デバイスクラス

　USBでは、周辺機器の機能によってグループ
分けされたデバイスクラスと呼ばれる仕様が定
義されています。キーボードやマウスであれば
ヒューマンインターフェースデバイス（HID）、
USBメモリはマスストレージデバイスといった
クラスがあることはみなさんご存じでしょう。
パソコンのOSには、この「クラス」に対応した
ドライバ、「クラスドライバ」があらかじめ含ま

れていますので、キーボードやUSBメモリを接
続したときに、あらためてドライバをインストー
ルする必要がないケースも多くあります。この
クラスドライバでは十分にデバイスをコントロー
ルできないデバイスの場合、個別にデバイスド
ライバが提供されています。
　マイコンでは、WindowsやLinuxのように多
くのクラスドライバを搭載したOSを使うこと
ができない場合がほとんどです。ですので、USB

のホスト機能を使うプログラムを作るときには、
それぞれのデバイスやクラスに対応したプログ
ラムも用意しなければなりません。mbedでは、
いくつかのクラスに対応しているライブラリが
提供されています注1。こうしたオフィシャルの
ライブラリとは別に、USBで接続するBluetooth

のアダプタのライブラリ、BlueUSB注2なども存
在します。
　今回はmbedにUSBのデバイスの役割をさせ
ます。デバイスも、デバイスクラスやホスト側
のドライバを開発するのであれば独自の振る舞
いをしなければなりませんので、振る舞いに応
じたソフトウェアを書かなければなりません。
mbedでは、デバイスとして動作するためのライ

注1） https://developer.mbed.org/handbook/USBHost

注2） https://developer.mbed.org/users/peterbarrett1967/
code/BlueUSB/

デバイスクラス

送信信号＋

送信信号ー

差動信号 信号

送信信号＋

送信信号ー

差動信号 信号

差を抽出する

ノイズは打ち消される

ノイズ

 ▼図3　差動信号の例

https://developer.mbed.org/handbook/USBHost
https://developer.mbed.org/users/peterbarrett1967/code/BlueUSB/

14 - Software Design

ブラリも提供されています注3。

マウスを作ってみる

　では、実際にmbed LPC1768をUSBデバイ
スにしてみましょう。ホスト側にドライバがい
らなく、簡単に試せるのはHIDデバイスでしょ
う。また、キーボードと違って、マウスはクリッ
クさせなければマウスポインタが動くだけです
から気軽に実験できます。USBMouse_Hello

World注4というサンプルプログラムがおあつら
え向きですので、これを試しに動かしてみま

しょう。
　まず、ハードウェアの準備をしましょう。今
回も、mbed LPC1768注5とmbedアプリケーショ
ンボード注6を使います。写真1のように、mbed

アプリケーションボードには、複数のUSBレセ
プタクル注7が搭載されています。これらのレセ
プタクルは用途が異なり、mbedにプログラムを
書き込むときなどに使用するUSBが1つ、mbed

をUSBホストやデバイスにするためのレセプタ
クルが1つずつあります（写真1）。
　と言っても、mbed LPC1768にUSBのバス
が2つあるわけではありません。プログラムを

注3） https://developer.mbed.org/handbook/USBDevice

注4） https://developer.mbed.org/users/samux/code/
USBMouse_HelloWorld/

注5） http://ssci.to/250

注6） http://ssci.to/1276

注7） レセプタクルというのは、基板や機器側のコネクタのこと
です。ケーブルの先端のコネクタは、プラグと呼ばれます。

書き込むために使うレセプタクルは、mbed

LPC1768の底面に付いているLPC1768とは別
のマイコンとつながっています。mbed LPC1768

の主要なマイコンであるLPC1768のUSBバス
は、アプリケーションボードの2つのUSBレセ
プタクルに接続されています。
　LPC1768にはUSBバスが1つなのに、レセ
プタクルは2種類付いていることには理由があ
ります。もともと、USBのA端子類はホスト機
器に、B端子類はデバイス側の機器に付いてい
ました。しかし、先ほど紹介したOTGの登場な
どにより、普段はデバイス側の機器がホスト側
の役割をでき、Micro-ABといった規格のレセ
プタクルも存在します。
　また、アプリケーションボードには、小型の
スライドスイッチが付いています。片方には
「USB Host」、もう一方には「USB Device」と書
かれています。これは、USBバスを15kΩの抵
抗でプルダウンするかどうかを切り替えるため
のスイッチです。規格で、USBのホスト側の機
器のD+とD-の信号線は、15kΩでプルダウン
すると決まっています。今回は、mbed LPC1768

をUSBのデバイス機器として使いますので、
「USB Device」と書かれているほうに切り替え
ておいてください。写真2の状態が、デバイス
に使うときの状態で、プルダウンが行われてい
ません。スイッチの切り替えは、ボールペンの
先端など、先がほどほどに細いものを使って行

マウスを作ってみる

 ▼写真1　mbedアプリケーションボードのレセプタクル ▼写真2　ホストとデバイスの切り替えスイッチ

 mbedにプログラムを転送するUSBレセプタクル mbedがホストになるときのUSBレセプタクル

 mbedがデバイスになるときのUSBレセプタクル

http://ssci.to/250
https://developer.mbed.org/users/samux/code/USBMouse_HelloWorld/
https://developer.mbed.org/handbook/USBDevice
http://ssci.to/1276

14 - Software Design Sep. 2016 - 15

Universal Serial Bus （デバイス編） 第
15
回

います。
　次にソフトウェアです。この連載をずっと読
んでくださっている方なら、すでに説明は不要
でしょう。先ほどのUSBMouse_HelloWorldの
ページを開き、「Import this program」というボ
タンをクリックします。すると、オンラインコ
ンパイラの自分の環境に、このプログラムを読
み込むことができます。このとき、Updateの
チェックボックスにはチェックを入れないよう
にしてください。あとは、オンラインコンパイ
ラの画面右上にあるターゲットが「mbed LPC

1768」になっていることを確認して、「コンパイ
ル」ボタンをクリックすれば、コンパイルが終わ
り、プログラムのバイナリファイルがダウンロー
ドされます。mbed LPC1768のUSBレセプタ
クルとパソコンを接続し、「MBED」というドラ
イブにダウンロードしたバイナリファイルをコ
ピーしてください。コピーを終えたら、「MBED」
ドライブを取り外して、USBケーブルも取り外
します。
　今回は、mbed LPC1768をUSBのデバイス
機器として使いますので、Temperatureと書か
れている温度センサの横にある、Mini-Bのレセ
プタクルを使います。先ほど外したUSBケーブ
ルを、このレセプタクルに差し込んでください。
すると、マウスのポインタが動きます。ここで、
このデバイスが手元のパソコンでどう認識さ

れているかを見てみると、図4のようになって
いました。「製造元ID」が0x1234、「製品ID」が
0x0001となっています。

VID、PID

　この製造元ID（ベンダID、VID）と製品ID（プ
ロダクト ID、PID）は、ホストが接続されたデ
バイスを識別するために使われます。Windows

などのOS用にデバイスメーカーから提供され
ているデバイスドライバには、これらのIDが書
かれています。製品IDは製造元が個別に割り振
るのですが、製造元 IDは、USBインプリメン

ターズフォーラム注8という団体に申し込んで割
り当ててもらいます。
　先ほどのサンプルプログラムでは、勝手に
0x1234というVIDが使われていましたが、こ
れはほかの企業に割り当てられているIDですの
で、このままデバイスを出荷したりしてはいけ
ません。先ほどのサンプルプログラムであれば、
4行目のコンストラクタで、次のように初期化
をします。

USBMouse mouse(REL_MOUSE, 0x2786, 0xf000);

　0x2786という製造元 IDはスイッチサイエン
スに割り当てられたもので、0xf000というプロ
ダクトIDは社内での評価用などに使っているも
のです。

まとめ

　このように、mbedを使えば手軽にUSBデバ
イスのプロトタイプも作れます。mbedに対応し
たボードはたくさんありますが、マイコンに
USBの機能が搭載されていなければなりません
し、また、mbedのSDKも対応している必要が
あります。このような都合で、手軽にUSBデバ
イスを作れるmbed対応ボードは、LPC1768、
LPC11U24、FRDM-KL25Zの3機種だけが掲
載されています。｢

注8） http://www.usb.org/developers/vendor/

VID、PID

まとめ

 ▼図4　今回作ったUSBデバイスをMacで確認してみた

http://www.usb.org/developers/vendor/

16 - Software Design

ザ・ワイヤレス サイレント
マウス&キーボード MK48367G
Windows用ワイヤレスキーボード＆マウス。キーボードにはサ
イレントキーキャップ、マウスにはサイレントスイッチを採用し
た静音仕様です。キーボードにはさらに排水機構も備え、飲みも
のをこぼしてもすぐに掃除可能。ユニークが規格した2.4GHz帯
のワイヤレス電波相互ペアリング機能「InteLink」を採用し、レ
シーバ1つで接続できます。電源は、ともに単3電池1本。
提供元 	ユニーク　http://www.uniqstyle.co.jp

裸族の頭
HDD/SSD引越キットCRAHK25U3
WindowsマシンのシステムドライブをUSB3.0経由で、外付け
2.5インチSATAのHDD/SSDにまるごと引っ越しできるキッ
ト。小容量⇔大容量のコピーも可能で、外付けドライブ接続用に
も利用できます。対応OSはWindows 10/8.1/8/7/Vista。
提供元 	センチュリー　http://www.century.co.jp

1名

1名

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2016年9月15日です。プレゼントの
発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

昨今の人工知能分野の盛り上がりにより、
機会学習の注目度が大きく上がっていま
す。本書では、機械学習の各理論を端的に
解説、各種ライブラリを使ったPythonに
よる実装を説明しています。

提供元 	インプレス
	 https://www.impress.co.jp

Python機械学習プログラミング
Sebastian Raschka 著

2名

Go言語は、Googleによって開発された新
しいコンパイラ言語で、エンジニアからの
人気を集めています。本書はGoの言語機
能と標準ライブラリの長所を、最大限活用
できるように書かれた1冊です。

提供元 	丸善出版
	 http://pub.maruzen.co.jp

プログラミング言語Go
Alan A.A. Donovan ほか 著

2名

「単なる技術書ではなく、インフラエンジ
ニアの仕事を支える現場の知識を多くのイ
ンフラエンジニア志望者に伝えたい」が、
本書のコンセプト。時代によるインフラの
変遷にも触れながら解説していきます。

提供元 	ソシム
	 http://www.socym.co.jp

インフラエンジニアになるための教科書
寺尾 英作 ほか 著

2名

読者プレゼント
のお知らせ

今最も注目を集めるチャットコミュニケー
ションツール「Slack」の入門書。ChatOps
の考え方に触れながら、初めてSlackを
利用する方に向けて、基本操作、Hubot・
CIツールとの連携方法を解説します。

提供元 	技術評論社
	 http://gihyo.jp

Slack入門
松下 雅和 ほか 著

2名

2016年6月にサンフランシスコ
で行われた、ビッグデータ処理基
盤Apache Sparkに関するイベン
ト「Spark Summit 2016」のノ
ベルティTシャツ。サイズはLと
なっています。

提供元 	Spark summit
	 https://spark-summit.org 1名

Spark Summit
Tシャツ

http://www.uniqstyle.co.jp
http://www.century.co.jp
https://spark-summit.org
https://www.impress.co.jp
http://www.socym.co.jp
http://pub.maruzen.co.jp
http://gihyo.jp
http://gihyo.jp/magazine/SD/

ベストプラクティス
ログ出力の

第1特集

　トラブルの調査やマーケティングのためにログを使おうと
思っても、必要な情報が取得・収集できていないと意味
がありません。適時適所で活用できるよう、今すぐログの
設定や設計を見直してみましょう。
　本特集では、サービスの基盤となる各種サーバで収集
できるログと、ユーザが利用するアプリケーションで収集
すべきログを整理し、一歩踏み込んだログ出力のしかた
を解説します。

第1章
Linuxのシステムログを知ろう
サーバ管理に欠かせないセキュリティログをチェック

P.18

中井 悦司Author

第2章
Webサーバのログ設定
ApacheとNginxのログ出力の基本と目的別手法

P.26

鶴長 鎮一Author

第3章
MySQL 4つのログの使いどころ
データベースの保全、性能評価で役立てる

P.37

とみたまさひろAuthor

第4章
Sambaの詳細なログ設定と活用
パフォーマンスと実益とのバランスをとって出力しよう

P.47

たかはしもとのぶAuthor

第5章
マーケティングにも使えるログ設計とは
アプリケーションログで何を記録し、どう可視化するか

P.55

吉野 哲仁Author

知りたい情報
集まっています

か？

本章ではLinuxサーバのシステムログについて、CentOS 7（systemd）を題材としてログ出力のしく
みを解説します。また、ログ確認において欠かすことのできないセキュリティの観点で、ログの見方
や設定方法を紹介します。

Linuxのシステムログを知ろう
サーバ管理に欠かせないセキュリティログをチェック

 Author 中井 悦司（なかい えつじ）　グーグル㈱
 Twitter @enakai00

第1章

18 - Software Design

Linuxのシステムログ

　本特集は、OS、ミドルウェア、アプリケーショ
ンなど、サーバ上で稼働するさまざまなコンポー
ネントの「ログ出力」がテーマです。最近は、
クラウドで大量の仮想マシンを起動するシーン
も増えたため、多数のマシンからのログをどの
ように収集・分析するかで頭を悩ますこともあ
ります。しかしながら、まずは、1台のサーバ
上でどのようなログが出力されるのか、あるい
は、どのようなしくみで出力されるのかを理解
することが大切です。
　第1章では、Linuxサーバのシステムログに
フォーカスして、Linuxにおけるログ出力の基
本的なしくみを説明します。さらに、OSが出
力するログの中でも、とくに重要となるセキュ
リティログを取りあげて、ログの見方やログ出
力の設定例を紹介します。
　なお、systemd導入以前のLinuxを使ってい
る方は、「rsyslogdのしくみ」以降の内容を実務
の参考にしてください。また、今後はsystemd

の環境が増えると思いますので、この機会に
journaldのしくみも理解しておくとよいでしょう。

rsyslogdとjournald
の連携

　Unix/Linuxのシステムログは、伝統的に

「syslogデーモン」によって管理されてきました。
ただし、Linuxの進化に伴って、syslogデーモ
ンの実装も進化しています。ここでは、
CentOSの最新バージョンであるCentOS 7が
採用する、journaldとrsyslogdによるシステム
ログ管理のしくみを説明します。
　CentOS 7では、図1に示した、journaldと
rsyslogdの連携処理によって、システムログの
管理が行われます。一般に、Linux上で稼働す
るさまざまなサービス（デーモン）やアプリケー
ションは、syslog関数（syslogライブラリコール）
を用いてログを出力します。このログは、
journaldが受け取って、独自のデータベースに
保存した後、rsyslogdに転送されます。その後、
rsyslogdは設定ファイル「/etc/rsyslog.conf」
に従って、各種のログファイルにメッセージを
記録します。従来、syslog関数で出力されたメッ
セージは、rsyslogdが直接に受け取っていまし
たが、その間に journaldが入る点がこれまでと
の違いになります。
　それでは、journaldが間に入ることにはどの
ような意味があるのでしょうか？　これは、
systemdが管理する各種サービスのログ出力と
関係があります。CentOS 7の環境では、シス
テム標準の各種デーモンやRPMパッケージで
提供される標準的なアプリケーションは、
systemdのサービスとして管理が行われます。
journaldはこれらのサービスから受け取ったロ

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

18 - Software Design Sep. 2016 - 19

グをデータベースに保存する際に、サービスの
種類やその他の独自の追加情報をメタデータと
して記録します。その結果、システム管理者は
journalctlコマンドを用いて、特定サービスの
ログを検索することが可能になります。

ログの使い分け

　rsyslogdでは、1つのログファイルに複数の
サービスのログが混在したり、あるいは逆に、
1つのサービスのログが複数のファイルに分か
れて記録されることがあります。「セキュリティ
に関連したログ」など、目的別にログを見る場
合はこのほうが便利なこともありますが、特定
サービスのログだけをまとめて見る際は少し不
便なこともありました。サービスが障害停止し
た際の問題判別など、特定サービスのログを詳
細に確認する際は、journalctlコマンドによる
ログ検索機能が役に立ちます。

journaldのログ活用

　journalctlコマンドを用いて、journaldがデー
タベースに保存したログを検索する方法を解説
します。まず、journalctlコマンドをオプショ
ンなしで実行すると、データベース内のすべて
のログをまとめて出力します。

journalctl í

　この際、デフォルトでは lessコマンドを用い
て結果が表示されますので、Ñàキーでログ
を上下にスクロールして閲覧することができま
す。画面の右端からはみ出した部分は、ÜÇキー
で左右に移動して確認します。lessコマンドが
不要な場合は、次のように、--no-pagerオプショ
ンを指定します。

journalctl --no-pager í

　特定のサービスのログだけを見るときは、-uオ
プションでサービス名を指定します。次は、sshd

（SSHデーモン）のログを確認する例になります。

journalctl -u sshd.service í

　また、tailコマンドの-fオプションのように、
ログに新しいメッセージが追加される様子を観
察する場合は、journalctlコマンドに-fオプショ
ンを指定します。

journalctl -f -u sshd.service í

　さらに前述のように、journaldはさまざま追
加情報をメタデータとして記録しています。「-o

 ▼図1　journaldとrsyslogdの連携処理

journald rsyslogd

syslog
メッセージ

syslogメッセージは
rsyslogdにも転送

・標準出力／標準エラー出力
・syslogメッセージ

サービス
プロセス

一般の
プロセス

ログ
データベース ログ

ファイル

Linuxのシステムログを知ろう
サーバ管理に欠かせないセキュリティログをチェック

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第1章

20 - Software Design

json-pretty」オプションを追加すると、これら
のメタデータをJSON形式で出力することが可
能です。図2の出力例を見ると、メッセージを
出力したプロセスのUID/GID（図2の❶、❷）
など、通常のログメッセージでは確認できない
情報が含まれていることがわかります。
　なお、先ほどの図1では、journaldは、syslog

メッセージ、すなわち、syslog関数で出力された
ログメッセージを受け取るように描かれています
が、実際にはこのほかのメッセージも受け取るよ
うになっています。1つは、systemdのサービス
として起動したプロセスが標準出力、もしくは、
標準エラー出力に書きだした内容です。もう1つ
は、journaldが独自のAPIで受け取ったメッセー
ジです。これまで、デーモンプロセスが標準出

力／標準エラー出力に書きだした内容はそのま
ま捨て去られることが多かったのですが、
systemd/journaldの環境では、これらの内容も
ログデータベースに記録されており、journalctl

コマンドで確認できるようになっています。

ログデータベースの
永続保存

　journaldのログデータベースは問題判別の際
はとくに有用な機能ですが、CentOS 7の環境
では注意点が1つあります。インストール時の
デフォルト設定では、ログデータベースの内容
はディレクトリ「/var/run/log/jounral」以下に
保存されており、これは一時ファイルを保存す
るRAMディスク領域にあたります。つまり、

journalctl -u sshd.service -o json-pretty --no-pager í

 ..省略..
{
 "__CURSOR" : "s=983ed0ac18074767abcf065afd0e013e;i=3ff;b=e9b62b84a9d04c4487afbaadcｭ

2707ac9;m=15315e4;t=5346b45a3d666;x=93ba269f21ce2698",
 "__REALTIME_TIMESTAMP" : "1465010218063462",
 "__MONOTONIC_TIMESTAMP" : "22222308",
 "_BOOT_ID" : "e9b62b84a9d04c4487afbaadc2707ac9",
 "PRIORITY" : "6",
 "_UID" : "0", ……❶
 "_GID" : "0", ……❷
 "_SYSTEMD_SLICE" : "system.slice",
 "_MACHINE_ID" : "ea103ae2d481cfdc698e47636b9fb861",
 "_CAP_EFFECTIVE" : "1fffffffff",
 "_TRANSPORT" : "syslog",
 "SYSLOG_FACILITY" : "10",
 "_HOSTNAME" : "etsuji-tfbook01",
 "SYSLOG_IDENTIFIER" : "sshd",
 "SYSLOG_PID" : "1325",
 "_PID" : "1325",
 "_COMM" : "sshd",
 "_EXE" : "/usr/sbin/sshd",
 "_CMDLINE" : "/usr/sbin/sshd -D",
 "_SYSTEMD_CGROUP" : "/system.slice/sshd.service",
 "_SYSTEMD_UNIT" : "sshd.service",
 "_SELINUX_CONTEXT" : "system_u:system_r:sshd_t:s0-s0:c0.c1023",
 "MESSAGE" : "Server listening on :: port 22.",
 "_SOURCE_REALTIME_TIMESTAMP" : "1465010218062336"
}
 ..省略..

 ▼図2　journaldが保存するログのメタデータ

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

20 - Software Design Sep. 2016 - 21

journaldのログデータベースはOSを再起動す
ると内容が失われてしまいます。あくまで、シ
ステム起動後に出力されたログしか参照するこ
とができません。
　ログデータベースの内容を永続保存する場合
は、ディレクトリ「/var/log/journal」を作成し
た後に、一度システムを再起動しておきます。
journaldは、このディレクトリが存在する場合
は、こちらにログデータベースを作成して、永
続保存するようになっています。ただし、永続
保存と言っても、無制限にログをためていくわ
けではありません。ログデータベースのサイズ
が、保存用ディレクトリが存在するファイルシ
ステムの全容量の10％以上になるか、あるいは、
該当のファイルシステムの空き容量が15％以
下になると、古いエントリーから順に削除され
ていきます。
　これらの保存容量を明示的に指定する場合は、
設定ファイル「/etc/systemd/jounrald.conf」の
「SystemMaxUse」（/var/log/journalの場合）と
「RuntimeMaxUse」（/var/run/log/journalの 場
合）で値を設定します。詳細については、
journald.conf(5)のmanページに記載があります。
　ちなみに、最近のバージョンのFedoraでは、
デフォルトではrsyslogdがインストールされな
くなっており、システムログは journaldだけで
管理されます。したがって、Fedoraではデフォ
ルトで「/var/log/journal」が用意されており、
ログデータベースは永続保存されるようになっ
ています。

rsyslogdのしくみ

　図1に示したように、journaldが受け取った
syslogメッセージは、そのまま、rsyslogdにも
転送されます。rsyslogdは従来と同様に、ログ
メッセージのファシリティ（Facility：種類）と
プライオリティ（Prioirty：緊急度）に応じて、
出力先のログファイルを決定します。表1は、
Linuxの主要なシステムログファイルの一覧で
すが、最初の3つがrsyslogdにより出力される
テキスト形式のログファイルになります。出力
先のログファイルは、メッセージのファシリティ
とプライオリティで決まるわけですが、これら
はアプリケーションがsyslog関数でログを出力
する際にオプションで指定されます。
　ファシリティは、メッセージの種類を分類す
るためのもので、次のいずれかが指定されます。

・auth、authpriv、cron、daemon、lpr、mail、
news、security（authの別名）、syslog、user、
uucp、mark：システムで規定のエントリー

・kern：カーネルメッセージ
・local0〜local7：規定のエントリーに該当し
ないメッセージについて、アプリケーショ
ンが任意に使用可能

　プライオリティは、メッセージの緊急度を示
すもので、次のいずれかが指定されます。

・debug、info、notice、warning、warn（warning

ログファイル 説明
/var/log/messages システム関連ログのデフォルトの出力ファイル

/var/log/secure ユーザのログイン認証など、セキュリティ関連情報を記録

/var/log/cron cronジョブの実行履歴を記録

/var/log/dmesg システム起動直後のカーネルログバッファの内容を記録

/var/log/wtmp ユーザのログイン履歴を記録するバイナリファイル。lastコマンドで参照

/var/log/lastlog ユーザの最終ログイン記録を保管するバイナリファイル。lastlogコマンドで参照

/var/run/utmp ログイン中のユーザ情報を保管するバイナリファイル。uptimeコマンド、wコマンドなどで参照

 ▼表1　Linuxの主要なシステムログファイル

Linuxのシステムログを知ろう
サーバ管理に欠かせないセキュリティログをチェック

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第1章

22 - Software Design

シェルスクリプトのログファイルを管理していますか？

　サーバ運用では、自作のシェルスクリプトを用
いて、バックアップなどの定形作業を自動化する
ことがよくあります。このとき、シェルスクリプ
トのログファイルをどのように管理しているでしょ
うか？　コマンド出力のリダイレクト機能を用いて、
独自のログファイルに記録する人もいるようですが、
筆者のお勧めは loggerコマンドを用いる方法です。
たとえば、シェルスクリプトの中で次のように記
載します。

{
 <...ここにバックアップ処理のコマンド群を記載...>
} 2>&1 ¦ logger -p local0.info -t "backup"

　これにより、{ }内のコマンド出力の内容がすべ
てまとめて、syslogメッセージとして送信されます。
-pオプションはファシリティとプライオリティの
指定で、-tオプションはログの先頭に付与するヘッ
ダーになります。この方法であれば、rsyslogdが
管理するシステムログ「/var/log/messages」に記
録することができて、ログファイルのローテーショ
ン注Aなどに気を使う必要がなくなります。もちろん、
rsyslogdの設定で、別ファイルに分けることも可
能です。

注A） 1つのログファイルのサイズが巨大になりすぎないように、
ログファイルを切り替える処理のこと。

Log all kernel messages to the console.
Logging much else clutters up the screen.
#kern.* /dev/console

Log anything (except mail) of level info or higher.
Don't log private authentication messages!
*.info;mail.none;authpriv.none;cron.none /var/log/messages

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail.* -/var/log/maillog

Log cron stuff
cron.* /var/log/cron

Everybody gets emergency messages
.emerg :omusrmsg:

Save news errors of level crit and higher in a special file.
uucp,news.crit /var/log/spooler

Save boot messages also to boot.log
local7.* /var/log/boot.log

 ▼リスト1　/etc/rsyslog.confの主要部分（デフォルト設定）

の別名）、err、error（errの別名）、crit、alert、
emerg、panic（emergの別名）：この順に緊
急度が高くなる（debugは緊急度が低く、
emergは緊急度が高いという順番）

　rsyslogdはこれらの情報を元に、設定ファイ
ル「/etc/rsyslog.conf」に従って、出力先のロ
グファイルを決定します。リスト1は設定ファ
イルの主要部分の抜粋ですが、各行でメッセー
ジのファシリティに対して、出力先のログファ

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

22 - Software Design Sep. 2016 - 23

イルをひも付けています。また、プライオリティ
の指定により、指定以上の緊急度のメッセージ
のみを書き出します。代表的な設定部分を説明
すると、次のようになります。

・	*.emerg：任意のファシリティで、emerg以
上の緊急度のメッセージを出力する

・mail.*：ファシリティがmailのすべてのメッ
セージを出力する

・	*.info;mail.none;authpriv.none;cron.
none：任意のファシリティで、info以上の
緊急度のメッセージを出力する。ただし、ファ
シリティがmail、authpriv、cronのものは除
外する

セキュリティに関連する
ログ収集

　ここではログの見方や出力設定を学ぶ例とし
て、セキュリティに関連するログを取りあげま
す。

ログイン認証のログ

　Linuxのセキュリティの基本は、なんと言っ
てもログイン認証の管理です。これまでサーバ
にログインしたユーザの情報は、表1の「/var/

log/wtmp」に記録されており、lastコマンドで
内容を確認できます。図3のように、現在ログ
イン中のユーザを含めて、過去にシステムにロ
グインしたユーザについて、ログイン時刻／ロ
グアウト時刻を確認できます。
　ただし、これだけでは“ログインに失敗した”
という事実はわかりません。不正ログインの試
みを検知するには、ログインに失敗したという
事実を確認することも大切です。これは表1の
「/var/log/secure」から確認します。このファ
イルには、OSのユーザ認証にかかわるログが
すべてまとめて記録されています。リスト2は
実際のサーバから取得した例ですが、同じユー
ザによる、ログイン失敗の記録が連続して何度
も記録されており、不正ログインを試みている

last í
nakai pts/0 192.168.122.1 Wed Jun 8 16:29 still logged in
reboot system boot 3.10.0-327.13.1. Wed May 25 09:00 - 16:29 (14+07:29)
root pts/0 192.168.200.1 Mon Apr 4 16:48 - 17:01 (00:12)
root tty1 Mon Apr 4 16:46 - 16:48 (00:01)
root tty1 Mon Apr 4 16:45 - 16:46 (00:00)
reboot system boot 3.10.0-123.20.1. Mon Apr 4 16:45 - 20:25 (28+03:39)
nakai pts/0 192.168.122.1 Wed Nov 18 14:07 - 15:02 (00:54)
 ..省略..

 ▼図3　lastコマンドの実行例

Jun 8 05:16:29 server01 sshd[988]: reverse mapping checking getaddrinfo for ip-11-171.ｭ
xxxx.xxx [xxx.xxx.xxx.xxxx] failed - POSSIBLE BREAK-IN ATTEMPT!
Jun 8 05:16:29 server01 sshd[988]: Invalid user xxxxxx from xxx.xxx.xxx.xxx
Jun 8 05:16:29 server01 sshd[988]: input_userauth_request: invalid user xxxxxx [preauth]
Jun 8 05:16:29 server01 sshd[988]: Received disconnect from xxx.xxx.xxx.xxx: 11: Bye Bye ｭ
[preauth]
Jun 8 05:16:31 server01 sshd[990]: reverse mapping checking getaddrinfo for ip-11-171.ｭ
xxxx.xxx [xxx.xxx.xxx.xxxx] failed - POSSIBLE BREAK-IN ATTEMPT!
Jun 8 05:16:31 server01 sshd[990]: Invalid user xxxxxx from xxx.xxx.xxx.xxx
Jun 8 05:16:31 server01 sshd[990]: input_userauth_request: invalid user xxxxxx [preauth]
Jun 8 05:16:32 server01 sshd[990]: Received disconnect from xxx.xxx.xxx.xxx: 11: Bye Bye ｭ
[preauth]
 ..省略..

 ▼リスト2　不正ログインの試行を示すログ（/var/log/secure）

Linuxのシステムログを知ろう
サーバ管理に欠かせないセキュリティログをチェック

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第1章

24 - Software Design

ことがひと目でわかります。リスト 2では
「xxxxx」の記号で伏せ字にしてありますが、ロ
グインユーザ名のほかにログイン元の IPアド
レスなども記録されていますので、不正ログイ
ンを試みた犯人を探しだす手がかりになります。
　ちなみに、ログに記載されている「reverse

mapping checking……」というメッセージは、
接続元サーバのホスト名がDNSに正しく登録
されていないことを示すものです。不正行為の
ために用意したサーバの場合、ホスト名を
DNSに登録せずに使用することも多いので、
このようなチェックが行われるようになってい
ます。
　あるいは、正しいユーザが正常にログインし
た場合においても、「/var/log/secure」を見る
と、その行動内容を確認できます。リスト3の
例を見て、どのようなユーザがどのような行動
をしたか、読み解くことができるでしょうか？
　答えは次のとおりです。ユーザ「nakai」は次
のような行動を取りました。

・① 〜 ③……パスワードを間違えてログイン
に失敗

・④ 〜 ⑤……正しいパスワードでログインに
成功

・⑥……sudoコマンドを用いて、root権限で
「docker info」コマンドを実行
・⑦ 〜 ⑧……ログアウト

　sshでログインするだけではなく、sudoコマ
ンドやsuコマンドでユーザ権限を昇格した際も、
その記録が残ります。

コマンド実行記録の保存

　ログファイル「/var/log/secure」から、sudo

コマンドの実行記録を確認できることがわかり
ましたが、そのほかの一般的なコマンドの実行
記録を確認することはできるでしょうか？　こ
れにはいくつかの方法があります。1つは、
psacctの利用です。次のコマンドでpsacctの
RPMパッケージを導入した後に、psacctサー
ビスを有効化して、起動します。

yum -y install psacct í í
systemctl enable psacct.service í í
systemctl start psacct.service í í

　これにより、システム上で起動したプロセス
の情報がバイナリ形式のログファイル「/var/

account/pacct」に記録されるようになります。
正確に言うと、あるプロセスが終了したタイミ
ングで、そのプロセスの稼働時間と終了時刻の
情報が記録されます。このログファイルの内容
は、lastcommコマンドで確認します。図4の例
では、ユーザ「nakai」が起動したプロセス、す
なわち、実行したコマンドの履歴を確認してい
ます。このほかにも、--commandオプションで
特定のコマンドの記録のみを検索するなども可

Jun 8 16:01:00 docker01 unix_chkpwd[16539]: password check failed for user (nakai)
Jun 8 16:01:00 docker01 sshd[16537]: pam_unix(sshd:auth): authentication failure; ｭ
logname= uid=0 euid=0 tty=ssh ruser= rhost=gateway user=nakai
Jun 8 16:01:02 docker01 sshd[16537]: Failed password for nakai from 192.168.200.1 port ｭ
34566 ssh2
Jun 8 16:01:04 docker01 sshd[16537]: Accepted password for nakai from 192.168.200.1 port ｭ
34566 ssh2
Jun 8 16:01:04 docker01 sshd[16537]: pam_unix(sshd:session): session opened for user ｭ
nakai by (uid=0)
Jun 8 16:01:14 docker01 sudo: nakai : TTY=pts/0 ; PWD=/home/nakai ; USER=root ; ｭ
COMMAND=/bin/docker info
Jun 8 16:01:18 docker01 sshd[16561]: Received disconnect from 192.168.200.1: 11: ｭ
disconnected by user
Jun 8 16:01:18 docker01 sshd[16537]: pam_unix(sshd:session): session closed for user nakai

 ▼リスト3　/var/log/secureからユーザの行動を確認

①
②

③

④

⑤

⑥

⑦

⑧

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

24 - Software Design Sep. 2016 - 25

能です。
　ただし、この方法の場合はプロセス名（コマ
ンド名）が表示されるだけで、コマンドのオプ
ションや実行結果などの詳細は確認できません。
場合によっては、ユーザがコマンド端末で行っ
た操作について、すべての記録を保存したいこ
ともあるでしょう。Puttyなど、SSH端末アプ
リケーションの機能で、端末上の画面表示をロ
グファイルに保存することもできますが、この
場合は作業者自身にログを取ってもらう必要が
あります。作業者の知らないところで自動的に
記録するには、どうすればよいのでしょうか？
　筆者は、作業ユーザのホームディレクトリに
ある「.bash_profile」の末尾に、リスト4の内
容を追加するという方法を用いています注1。
「.bash_profile」はユーザがログインした際に自
動的に実行されるスクリプトです。この中から
scriptコマンドを実行しており、これにより、
画面に表示された内容をそのままテキストファ
イルに保存します。この例では、ホームディレ
クトリ上の隠しディレクトリ「.termlog」の下に、
「termlog_<ユーザ名>.<日付>.<プロセス ID>.

注1） 「.bashrc」に記載すると正しく動作しないので注意してく
ださい。誤って .bashrcに記載すると、scriptコマンド実
行時に再度 .bashrcが呼び出されるために、無限にscript
コマンドが実行されてしまいます。

log」というファイル名で保存します。<プロセ
ス ID>の部分は、ログイン時に起動したbash

のプロセス IDで、同じ日に複数回ログインし
た場合でも、ログインごとにファイルが分かれ
るようにしてあります。2行目の findコマンド
では、30日以上前のログファイルを削除して
います。
　この方法の場合、ログインしたユーザが意図
的にログファイルを削除することもできるので、
厳格な監査目的には使えません。それでも、何
か問題が起きた際には過去の作業内容をすべて
確認できるので、なかなか便利な方法です。

まとめ

　第1章では、ログ管理の基礎として、Linux

のシステムログについて解説を行いました。と
くに、CentOS 7では journaldと rsyslogdが連
携したしくみに変わっているので、この点を押
さえておくとよいでしょう。またコラムでは、
自作のシェルスクリプトにおいても、syslogの
しくみが活用できることを説明しました。第2

章からのアプリケーションのログ出力において
も、syslogと連携する方法と、独自のログファ
イルを出力する方法のどちらを選択するかは、
ログ管理の1つのポイントになるでしょう。ﾟ

 .bash_profileの末尾に追加
mkdir -p ̃/.termlog
find ̃/.termlog -daystart -maxdepth 1 -name "*.log" -mtime +30 -exec rm {} ¥;
script -afq ̃/.termlog/termlog_$USER.$(date +%Y%m%d).$$.log
exit 0

 ▼リスト4　端末上の操作を記録するスクリプト

lastcomm --user nakai í
ls nakai pts/0 0.00 secs Wed Jun 8 23:29
w nakai pts/0 0.00 secs Wed Jun 8 23:29
ps nakai pts/0 0.01 secs Wed Jun 8 23:29
grep nakai pts/0 0.00 secs Wed Jun 8 23:29
bash F nakai pts/0 0.00 secs Wed Jun 8 23:29
dircolors nakai pts/0 0.00 secs Wed Jun 8 23:29
bash F nakai pts/0 0.00 secs Wed Jun 8 23:29
 ..省略..

 ▼図4　ユーザのコマンド実行履歴を確認

Linuxのシステムログを知ろう
サーバ管理に欠かせないセキュリティログをチェック

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第1章

本章では、Webサーバ（Apache、Nginx）におけるログ活用や、「アクセスログ」と「エラーログ」の
出力設定について解説します。通常では出力されないログを出力する方法や、フォーマットのカスタ
マイズ方法についても紹介します。執筆にあたり、CentOS 7.2.1511/Nginx 1.10.1/Apache
HTTPD 2.4.6を使用しています。

Webサーバのログ設定
ApacheとNginxのログ出力の基本と目的別手法

 Author 鶴長 鎮一（つるなが しんいち）

第2章

26 - Software Design

はじめに

　Webサーバを効率よく管理し、運用の負担
やセキュリティリスクを減らすには、サーバの
パフォーマンスをモニタし、問題が発生した際
にはいち早く検知するようにします。それには
ログの活用が欠かせません。
　Webサーバが出力するログはおもに2種類で
す。クライアントからHTTPリクエストを受
け取った際に出力する「アクセスログ」と、リ
クエストを処理している最中に発生したエラー
を出力する「エラーログ」です。本章では2大
Webサーバとされる「Apache HTTPD（以降、
単にApache）」と「Nginx」について、ログの出
力のしかたや、フォーマットの変更方法を解説
します。
　ApacheもNginxもログフォーマットを柔軟
に変えることができ、URL参照元やクライア
ント情報といった変数をログに加えることがで
きます。昨今ログ解析の重要性が高まり、標準
では出力されない値を追加することが多くなっ
ています。既存のフォーマットでは対応できな
いものでも、状況に応じてフォーマットをカス
タマイズすることで最適なログを出力できるよ
うになります。

Apache HTTPDの
ログ

Apache HTTPDログ設定の基本

　Apacheには柔軟なロギング機能が備わって
おり、syslogを経由することなく独自機構でロ
グを出力します。そのためログのフォーマット
や出力方法を自由に設定できます。設定は
httpd.confファイル（CentOS 7では「/etc/httpd

/conf/httpd.conf」）で行います。
　httpd.confでは行単位で設定を行い、1行で
1つの事柄を設定します。1行の先頭に設定項
目を記述し、空白文字をはさんで設定内容を記
述します。設定項目には、「LogFormat」や「Cus

tomLog」といった「ディレクティブ（Directive）」
と呼ばれる記述子を使います。おもに使用する
ディレクティブは、TransferLog/LogFormat

/CustomLog/ErrorLog/LogLevelといったも
のです（リスト1）。
　それぞれのディレクティブに応じてファイル
パスやフォーマットといった設定内容を指定し
ます。なおログのファイルのパスは「/」で始ま
らない限り、「ServerRoot」ディレクティブで
指定されたパスからの相対パスとして扱われ

ます。

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

26 - Software Design Sep. 2016 - 27

 ▼図1　CLF（Common Log Format）形式のログ

127.0.0.1 - frank [10/Jun/2016:13:55:36 -0700] "GET /apache ¥_pb.gif HTTP/1.0" 200 2326

%b%h %l %u %t %r %>s

 ▼リスト1　Apache HTTPDのログ出力基本設定

 ▼リスト2　Apacheオリジナルのcombined形式のログ

 # 拡張モジュールの読み込み
LoadModule log_config_module modules/mod_ｭ
log_config.so
LoadModule logio_module modules/mod_logio.so

 # アクセスログの設定（Common Log Format）
 # TransferLog ログのファイルのパス
TransferLog logs/access_log

 # ログフォーマットの定義
LogFormat "フォーマット定義" ニックネーム
LogFormat "%h %l %u...." combined

 # アクセログの設定（フォーマット指定）
 # CustomLog ログのファイルのパス ニックネーム
CustomLog logs/access_log combined

 # エラーログの設定
 # ErrorLog ログのファイルのパス
ErrorLog logs/error_log

 # エラーログのレベル
 # LogLevel ログレベル
LogLevel warn

172.16.55.1 - - [08/Jul/2016:12:00:12 +0900] "GET /index.html?key1=value1&key2=value2 ｭ
HTTP/1.1" 200 5 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/601.6.17 ｭ
(KHTML, like Gecko) Version/9.1.1 Safari/601.6.17"

アクセスログ

アクセスログのカスタマイズ
　ApacheはHTTPリクエストを受け取るごと
に、1行のログをアクセスログに記録します。
Apacheのロギング機能を拡張するには、拡張
モジュールの「mod_log_config」を使用します。
通常Apacheをインストールすれば一緒にイン
ストールされます。リスト1のように「Transfer

Log」ディレクティブでアクセスログを設定す
ると、「CLF（Common Log Format）」と呼ばれる、
図1のフォーマットでログが出力されます注1。
CLFで出力されたログの各フィールドの意味
は表1のとおりです。
　CLF以外のフォーマットのログを出力する
には、「CustomLog」ディレクティブを使って
次のように設定します。

CustomLog logs/access_log combined

　上の設定例では「combined」フォーマットでア
クセスログを出力しています。combinedフォー
マットはApacheオリジナルのフォーマットです。
デフォルトで定義されており、アクセスログの
書式として一般的に使われています。CLFで
出力されるログに、「参照元のサイト情報」と「ク
ライアントのブラウザ情報」が加わり、より詳
細なログを残すことができます（リスト2）。

注1） または一番最後に指定されたLogFormat ディレクティブ
で定義された、ニックネームを定義していないフォーマッ
トが使用されます。

定義済みフォーマットを利用する
　combinedのほか、「common」「combinedio」「refe

rer」「agent」といったフォーマットをデフォルトで
利用できます（リスト3）。「combinedio」は「combi

ned」ログに送受信バイト数のフィールドを追加
したものです。出力には「mod_logio」拡張モジュー
ルが必要になります。詳細な情報が必要な場合
は「combined」または「combinedio」を使用します。
Apacheのインストール方法によっては、「referer」
「agent」が定義されていない場合があります。

フォーマットを独自に定義する
　アクセスログのフォーマットを独自に定義す
ることで、詳細な情報を付加したり、必要な情

Webサーバのログ設定
ApacheとNginxのログ出力の基本と目的別手法

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第2章

28 - Software Design

 ▼表1　フォーマット文字列とその意味

フォーマット文字列 意味
%a リモート IPアドレス
%A ローカル IPアドレス
%B レスポンスのバイト数。HTTPヘッダは除く

%b レスポンスのバイト数。HTTPヘッダは除く。CLF書式。すなわち、1バイトも送られなかっ
たときは0ではなく、「-」になる

%{Foobar}C サーバに送られたリクエスト中のクッキーFoobarの値
%D リクエストを処理するのにかかった時間、マイクロ秒単位
%{FOOBAR}e 環境変数FOOBARの内容
%f ファイル名
%h リモートホスト
%H リクエストプロトコル
%{Foobar}i サーバに送られたリクエストのFoobar:ヘッダの内容

%l （identdからもし提供されていれば）リモートログ名。mod_identがサーバに存在して、
IdentityCheckディレクティブがOnに設定されていない限り、-になります

%m リクエストメソッド
%{Foobar}o 応答のFoobar:ヘッダの内容
%p リクエストを扱っているサーバの正式なポート
%P リクエストを扱った子プロセスのプロセス ID
%q 問い合せ文字列（存在する場合は前に?が追加される。そうでない場合は空文字列）
%r リクエストの最初の行

%s ステータス。内部でリダイレクトされたリクエストは、もともとのリクエストのステー
タス。最後のステータスは%>s

%t リクエストを受付けた時刻。CLFの時刻の書式（標準の英語の書式）
%T リクエストを扱うのにかかった時間、秒単位

%u リモートユーザ（認証によるもの。ステータス（%s）が401のときは意味がないものである
可能性がある）

%U リクエストされたURLパス。クエリ文字列は含まない
%v リクエストを扱っているサーバの正式なServerName
%V UseCanonicalNameの設定によるサーバ名

%I リクエストとヘッダを含む、受け取ったバイト数。0にはならない。これを使用するためには
mod_logioが必要

※http://httpd.apache.org/docs/2.4/ja/mod/mod_log_config.htmlをもとに作成

 ▼リスト3　combined、common、combinedio、referer、agentによって出力されるログの例

 ・combined
192.168.45.128 - - [05/Jul/2016:15:20:33 +0900] "GET / HTTP/1.1" 200 5039 "-" "Mozilla/5.0 ｭ
(Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/601.6.17 (KHTML, like Gecko) Version/9.1.1 ｭ
Safari/601.6.17"

 ・common
192.168.45.128 - - [05/Jul/2016:15:22:47 +0900] "GET / HTTP/1.1" 200 5039

 ・combinedio
192.168.45.128 - - [05/Jul/2016:15:22:47 +0900] "GET / HTTP/1.1" 200 5039 "-" "Mozilla/5.0 ｭ
(Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/601.6.17 (KHTML, like Gecko) Version/9.1.1 ｭ
Safari/601.6.17" 332 5237

 ・referer
http://192.168.45.148/ -> /icons/apache_pb.gif
http://192.168.45.148/ -> /icons/poweredby.png

 ・agent
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/601.6.17 (KHTML, like Gecko)
Version/9.1.1 Safari/601.6.17

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

http://httpd.apache.org/docs/2.4/ja/mod/mod_log_config.html

28 - Software Design Sep. 2016 - 29

報を限定しログのサイズを小さくしたりできま
す。アクセスログのフォーマットを独自に定義
するには、最初に「LogFormat」ディレクティ
ブを使って書式を設定します。定義したフォー
マットには一意なニックネームを付けます。

 #独自フォーマットの定義
LogFormat "書式" ニックネーム

　次に「CustomLog」ディレクティブの引数に
ログファイルのパスと、使用するフォーマット
のニックネームを指定します。

 #定義したフォーマットでアクセスログを出力
CustomLog ログファイルのパス ニックネーム

　リスト4は設定の一例です。書式には「%h」
や「%l」のような記述子を使用します。主な記
述子とその意味は表1のとおりです。書式は

「"（ダブルクォート）」で囲みますが、書式の中
に「"」を含める場合は、エスケープシーケンス
を使って「\"」と記述します。そのほか「\n（改
行）」や「\t（タブ）」といった制御文字を含める
こともできます。
　ニックネームの代わりに直接書式を設定する
こともできます。

CustomLog logs/access_log "%h %l %u %t ｭ
¥"%r¥" %>s %b"

　複数のフォーマットを使い分けることで、同
時に複数のアクセスログを出力するようになり
ます（リスト5）。

LTSV形式でアクセスログを出力する
　昨今ログ解析の重要性が高まっています。

Apacheの標準フォーマットでは各項目の区切
り文字にスペース文字を使うため、ログを解析
する際に思ったようにパースできなかったり、
抽出したい項目を取り出しづらかったりします。
自作スクリプトでログを解析したり、Fluentd

のような処理ツールでログを収集したりする際
は、プログラムで簡単に扱えるフォーマットで
アクセスログを出力するようにします。
　さまざまなフォーマットが提唱されています
が、中でも「LTSV（Labeled Tab-Separated

Values）」は扱いが容易で拡張性が高い簡易デー
タフォーマットとして人気です。またパーサー
も数多くそろっており、ログ解析には不自由あ
りません。LTSVは、その名のとおり、ラベ
ル（Label）と値（Value）のペアをタブ（Tab）
で区切った行指向レコードです。

ラベル1:値1 [TAB] ラベル2:値2 [TAB] ラベル3:値3

　タブで区切られているため、値にスペース文
字を含んでいても問題になりません。またラベ
ルと値は「:（コロン）」で区切られており、パー
スが容易です。CSV（カンマ区切り）やSSV（ス
ペース区切り）のようにフィールドの位置で値
の意味が決められたレコードだと、値が増えた
場合の拡張性や、値が出力されなかったときの
柔軟性が問題になりますが、LTSVなら各値
にラベルが付与されているため、必要な項目だ
けを任意の順番で記述できます。
　Apacheで一般的に使用される「combined」
フォーマットをLTSVにするにはリスト6のよ

 ▼リスト4　アクセスログのフォーマットを独自に定義する

 #独自フォーマット「custom01」の定義と出力
LogFormat "%h %l %u %t ¥"%r¥" %>s %b ¥"%{Referer}i¥" ¥"%{User-Agent}i¥" %T" custom01
CustomLog logs/access_log custom01

 ▼リスト5　同時に複数のアクセスログを出力

LogFormat "%h %l %u %t ¥"%r¥" %>s %b" common
CustomLog logs/access_log common
CustomLog logs/referer_log "%{Referer}i -> %U"
CustomLog logs/agent_log "%{User-agent}i"

Webサーバのログ設定
ApacheとNginxのログ出力の基本と目的別手法

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第2章

30 - Software Design

うに設定します。出力されたログを見ると、リ

スト7のようにLTSV化されています。
　出力されたLTSV形式のアクセスログを、
次のような簡単なワンライナーでパースすると、
リスト8のようにログを閲覧できます。

$ cat /var/log/httpd/access_log ¦ sed -eｭ
's/¥t/¥n/g'ｶ

　LTSV形式のアクセスログは、SSV形式に
比べるとラベル名が入るなどデータが冗長にな
るためサイズが大きくなります。なおラベルに
は推奨されているものを使うようにします。詳
細は「http://ltsv.org」を参考にしてください。

JSON形式でアクセスログを出力する
　構造化が容易なJSON形式のログもたびたび
利用されます。JSON形式では全体を「{...}」で
囲み、ラベルと値を「:（コロン）」で区切ったも

のを、「,（カンマ）」区切りで列挙します。文字列
の値は「"（ダブルクォート）」で囲み、数値は
そのまま記述します。

{ "ラベル1" : "値1", "ラベル2" : "値2", ｭ
"ラベル3" : "値3"}

　リスト9のように設定するとApacheのアク
セスログをJSON形式で出力できるようになり
ます。出力されたログを見ると、リスト10の
ようにJSON化されています。
　ログを見やすく整形すると次のようになります。

{
 "host": "172.16.55.137",
 "method": "GET",
 "query": "",
 "referer": "-",
 "remote_addr": "172.16.55.1",
 "request": "/index.html",
 "status": "200",

 ▼リスト6　LTSV形式でアクセスログを出力する

 # 元のcombinedフォーマット
LogFormat "%h %l %u %t ¥"%r¥" %>s %b ¥"%{Referer}i¥" ¥"%{User-Agent}i¥"" combined

 # LTSV化したフォーマットを定義
LogFormat "host:%h¥tident:%l¥tuser:%u¥ttime:%t¥treq:%r¥tstatus:%>s¥tsize:%b¥treferer:¥%ｭ
{Referer}i¥tua:%{User-Agent}i" combined_ltsv

 # アクセスログ出力設定
CustomLog logs/access_log combined_ltsv

 ▼リスト7　LTSV形式で出力されたアクセスログのサンプル

host:172.16.55.1 ident:- user:- time:[08/Jul/2016:02:41:52 +0900] req:GET /index.htmlｭ
HTTP/1.1 status:404 size:208 referer:¥- ua:Mozilla/5.0 (Macintosh; Intel Mac OS X ｭ
10_11_5) AppleWebKit/601.6.17 (KHTML, like Gecko) Version/9.1.1 Safari/601.6.17

 ▼リスト8　LTSV形式で出力されたアクセスログのパース結果

host:172.16.55.1
ident:-
user:-
time:[08/Jul/2016:02:41:52 +0900]
req:GET /index.html HTTP/1.1
status:404
size:208
referer:¥-
ua:Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/601.6.17 (KHTML, like Gecko)ｭ
Version/9.1.1 Safari/601.6.17

※次ページに続く →

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

http://ltsv.org/

30 - Software Design Sep. 2016 - 31

 "time": "[08/Jul/2016:03:45:44 +0900]",
 "userAgent": "Mozilla/5.0 (Mac ..省略.. "
}

エラーログの設定

エラーログの出力レベルを設定する
　Apacheのエラーログには、リクエストを処
理しているときに発生したエラーが記録されま
すが、それ以外にもApacheの診断情報など、
動作に関する重要なエラーが記録されます。サー
バの起動に失敗したときや、サーバの動作に問
題が起こったときの手がかりとしてたいへん重
要です。フォーマットを変更することはできま
せんが、「LogLevel」ディレクティブでログレ
ベルを変えることができます。通常は「warn」
レベルより深刻なエラーだけ出力しますが、ロ
グレベルを「info」に引き下げることで、より
詳細にエラーを記録できるようになります（リ

スト11）。

syslog経由でエラーログを出力する
　Apache独自のログ管理機構を使用せず、
「syslog（シスログ）」に集約することもできます。
ローカルホストのsyslogデーモンにApacheの
エラーログを出力するには、次のように設定し
ます。

ErrorLog syslog

　デフォルトでは、syslogファシリティに「local7」
を使用しますが、次のように、ほかのファシリ
ティを指定することもできます。

 #userファシリティを指定
ErrorLog syslog:user

全ての入出力データをダンプする
　拡張モジュールの「mod_dumpio」を使うと、
Apacheが受け取ったすべての入力（リクエスト）
データと、Apacheから送られたすべての出力（レ
スポンス）データをエラーログにダンプできま
す。GETメッセージのクエリ文字列はもちろん、
POSTメッセージのボディもログに出力します。
　mod_dumpioモジュールがインストールされ
ているか確認し、インストールされていなけれ
ば別途追加してください。

$ httpd -M ¦ grep dumpioｶ
 ..省略..
 dumpio_module (shared)

　リスト12のように設定すると、入出力デー
タをリスト13のようにダンプするようになり

 ▼リスト9　JSON形式でアクセスログを出力する

 # JSON化したフォーマットを定義
LogFormat "{ ¥"time¥":¥"%t¥", ¥"remote_addr¥":¥"%a¥", ¥"host¥":¥"%V¥", ¥"request¥":¥"%U¥",ｭ
¥"query¥":¥"%q¥", ¥"method¥":¥"%m¥", ¥"status¥":¥"%>s¥", ¥"userAgent¥":¥"%{User-agent}i¥",ｭ
¥"referer¥":¥"%{Referer}i¥" }" combined_json

 # アクセスログ出力設定
CustomLog "logs/access_json_log" combined_json

 ▼リスト10　JSON形式で出力されたアクセスログ

{ "time":"[08/Jul/2016:03:45:44 +0900]", "remoteIP":"172.16.55.1", "host":"172.16.55.137",ｭ
"request":"/index.html", "query":"", "method":"GET", "status":"200", "userAgent":"Mozilla/ｭ
5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/601.6.17 (KHTML, like Gecko) Version/ｭ
9.1.1 Safari/601.6.17", "referer":"-" }

 ▼リスト11　 ログレベルを引き下げ、より多くの情報
をエラーログに出力する

 # エラーログの出力設定
ErrorLog /var/log/httpd/error_log

 # ログレベルをinfoに引き下げる（warmがデフォルト)
LogLevel info

→

Webサーバのログ設定
ApacheとNginxのログ出力の基本と目的別手法

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第2章

32 - Software Design

ます。出力先はエラーログ（error_log）ファイ
ルになります。mod_dumpioモジュールは標準
では無効化されているため、「LoadModule...」
で有効化します。入力データ（リクエスト）の
ダンプをする場合は「DumpIOInput On」を、
出力データ（レスポンス）のダンプをする場合
は「DumpIOOutput On」を指定します。また必
ず「LogLevel」ディレクティブでエラーログの
出力レベルを「debug」に変更し、さらに引数
に「dumpio:trace7」を指定します。設定が完了
するとリスト13のようなログが出力されます。
　すべての入出力データをダンプすると、大量
のログが出力されるため、デバッグ作業が完了
したら、ダンプ出力を止めるようにします。

デバッグログを出力する
　特定のURLにアクセスしたときや、条件を満
たしたときだけエラーログにメッセージを出力す
るには、「mod_log_debug」モジュールを使ってリス

ト14のように設定します。mod_log_debugモジュー
ルがインストールされているか確認し、インストー
ルされていなければ別途追加してください。

$ httpd -M ¦ grep debugｶ
 ..省略..
 log_debug_module (shared)

　リスト14のように設定すると、リスト15の
ようなメッセージがエラーログの中に出力され
ます。mod_log_debugモジュールは標準では無
効化されているため、「LoadModule...」で有効
化します。また必ず「LogLevel」ディレクティ
ブで「debug:info」のように引数を追加してく
ださい。条件を設けたり、環境変数を引数に指
定することもできます。詳細は「https://httpd.

apache.org/docs/2.4/en/mod/mod_log_debug.

html」を参考にしてください。

そのほかのログ

フォレンジクス（forensic）ログを残す
　セキュリティインシデントの原因究明やアク
セス時に発生する問題への対処には、HTTP

 ▼リスト12　ダンプされた入力データ

 #拡張モジュール「/mod_dumpio.so」の読み込み
LoadModule dumpio_module modules/mod_ｭ
dumpio.so

 #入力データ（リクエスト）のダンプを有効化
DumpIOInput On

 #出力データ（レスポンス）のダンプを有効化
DumpIOOutput On

 #ログレベルを変更
LogLevel debug dumpio:trace7

 ▼リスト13　ダンプされた入力データ

Fri Jul 08 12:00:12.584409 2016] [dumpio:trace7] [pid 24854] mod_dumpio.c(140): [client ｭ
172.16.55.1:55129] mod_dumpio: dumpio_in [getline-blocking] 0 readbytes
[Fri Jul 08 12:00:12.584528 2016] [dumpio:trace7] [pid 24854] mod_dumpio.c(63): [client ｭ
172.16.55.1:55129] mod_dumpio: dumpio_in (data-HEAP): 50 bytes
[Fri Jul 08 12:00:12.584535 2016] [dumpio:trace7] [pid 24854] mod_dumpio.c(103): [client ｭ
172.16.55.1:55129] mod_dumpio: dumpio_in (data-HEAP): GET /index.
html?key1=value1&key2=value2 HTTP/1.1¥r¥n

 ▼リスト14　デバッグログを出力する

LoadModule log_debug_module modules/mod_log_debug.so

 #/foo/にアクセスした時にメッセージを出力
<Location /foo/>
 LogMessage "/foo/ has been requested"
</Location>

LogLevel warn log_debug:info

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

https://httpd.apache.org/docs/2.4/en/mod/mod_log_debug.html

32 - Software Design Sep. 2016 - 33

リクエストの全内容をフォレンジクス（forensic）
ログとして残すようにします。それにはApache

拡張モジュールの「mod_log_forensic」を使用し、
リスト16のように設定します。mod_log_foren

sicモジュールがインストールされているか確認
し、インストールされていなければ別途追加し
てください。

$ httpd -M ¦ grep forensicｶ
 ..省略..
 log_forensic_module (shared)

　リスト17のようなフォレンジクスログが出力
されます。フォレンジクスログは1リクエスト
に対して2行のログを出力します。1回目はリク
エストヘッダを受け取った時点で、リクエスト
行と受け取ったすべてのヘッダを「｜（パイプ）」
で区切ったものをログに出力します。2回目は
リクエストが処理されたあとに出力されます。
2行のログを紐

ひも

付けられるよう、リクエストご
とに割り振られた一意なフォレンジクスIDが、
各ログの第1フィールドに記述されます（リスト

17 の「V3845kq-1mG0IxIsl78ZWwAAAAQ」）。
1行目には「+フォレンジクスID」が、2行目に
は「-フォレンジクスID」と記述されるため、ID

の組を調べることで、完了していないリクエス
トがないか確認できます。

ログファイルのローテーション

　ログを有効に活用するには、単に記録するだ
けではなく、記録されたファイルを適切に保管
し整理しておくことも重要になります。Apache

のデフォルトでは永久に1つのファイルの末尾
に新たなログを追加し続けます。そのため稼働
時間が長くなれば、それに比例し巨大なログファ
イルを生成することになります。そのため
CentOSやUbuntuでは「Logrotate」のようなロ
グ管理ユーティリティでファイルを日ごとにロー
テーションし、古いものは削除しています。
　Logrotateを使わなくても、Apacheのログ管
理機構だけでローテーションさせることができま
す。それには「rotatelogs」コマンドを使用します。
Apacheをインストールするとrotatelogsコマン
ドも同時にインストールされます。rotatelogsの
引数にはファイル名とローテーション間隔秒数を
指定し、リスト18のように設定します。
　秒数のほか、ファイルサイズを指定すること
もできます。リスト19のように設定すると、ファ
イルサイズが指定したサイズ（5MB）に達する

 ▼リスト16　フォレンジクスログを残す

LoadModule log_forensic_module modules/mod_log_forensic.so
ForensicLog logs/forensic_log

 ▼リスト17　フォレンジクスログ（1リクエストに対し2行出力される）

 # 1回目
+V3845kq-1mG0IxIsl78ZWwAAAAQ|GET / HTTP/1.1|Host:172.16.55.137|Cache-Control:max-age=0|ｭ
Connection:keep-alive|Accept:text/html,application/xhtml+xml,application/xml;q=0.9,ｭ
/;q=0.8|User-Agent:Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/601.6.17ｭ
 (KHTML, like Gecko) Version/9.1.1 Safari/601.6.17|Accept-Language:ja-jp|Accept-Encoding:ｭ
gzip, deflate|DNT:1

 # 2回目
-V3845kq-1mG0IxIsl78ZWwAAAAQ

 ▼リスト15　デバッグログ

[Fri Jul 08 15:57:15.575031 2016] [log_debug:info] [pid 25457] [client 172.16.55.1:58511] ｭ
/foo/ has been requested

Webサーバのログ設定
ApacheとNginxのログ出力の基本と目的別手法

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第2章

34 - Software Design

と、ローテーションを実施するようになります。
　なお指定されたファイル名にタイムスタンプ
を付加したものが、ログのファイル名として使
用されます。タイムスタンプではなく「20160707」
のような日付を用いるにはリスト20のように
設定します。日付フォーマットの詳細は「$ man

rotatelogs」で確認してください。
　なおrotatelogsは、古くなったファイルを自
動で削除しないため、手動で削除する必要があ
ります。

Nginxのログ

Nginxのログ設定の基本

　Nginxにも柔軟なロギング機能が備わってお
り、ログのフォーマットや出力方法を自由に設
定できます。設定は「nginx.conf（通常は「/etc

/nginx/nginx.conf」）」で行います。設定したい
項目ごとに「ディレクティブ」と「値」を使って
指定し、行末に「;（セミコロン）」を置きます。
エラーログを設定するには「error_log」ディレ
クティブを使って次のように設定します。

error_log ログのファイルのパス ログレベル;

　アクセスログを設定するには、「httpコンテキ
スト」と呼ばれる「http{……}」で囲まれたブロッ

ク内で「access_log」ディレクティブを使って行
います（リスト21）。
　最初に「log_format」ディレクティブでアクセ
スログの書式を設定します。このあとの「access_

log」ディレクティブで、ここで定義したアクセス
ログのニックネームを指定することで実際にログ
ファイルが出力されるようになります。設定例で
はニックネームを「main」とし、

$remote_addr - $remote_user [$time_local]ｭ
"$request" $status $body_bytes_sent ｭ
"$http_referer" "$http_user_agent" "$httpｭ
_x_forwarded_for"

といった内容のログを定義しています。書式内

の「$」で始まる文字列は、Nginxの組み込み変

数です。表2のような意味を持っています。実際
にリスト22のようなアクセスログが出力されま

す。なおNginxには、Apache互換ログフォーマッ
トの「combined」が組み込まれています（リスト

23）。
　アクセスログのパスやファイル名、使用する
フォーマットを設定するには「access_log」ディレ
クティブを使用します。リスト21では「/var/log/

nginx/access.log」ファイルに、先ほど log_format

ディレクティブで定義したmainフォーマットを適
用し出力します。書式を省略するとデフォルト書
式の「combined」が適用されます。アクセスログ
を出力しないようにするには「off」を指定します。

 ▼リスト18　httpd.conf（1日（86,400秒）ごとにローテーションを実施する場合）

CustomLog "¦rotatelogs log/access_log 86400" combined
ErrorLog "¦rotatelogs /var/log/httpd/error_log 86400" （※注A）

 ▼リスト19　httpd.conf（ログファイルが5Mを超えたときにローテーションを実施する場合）

CustomLog "¦rotatelogs /var/log/httpd/access_log 5M" combined （※注A）

 ▼リスト20　httpd.conf（ログファイル名にYYYYMMDDを用いる場合）

CustomLog "¦rotatelogs /var/log/httpd/access_log.%Y%m%d 86400" combined （※注A）

注A） Apacheのインストール方法によっては rotatelogsをフルパスで指定する必要があります。

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

34 - Software Design Sep. 2016 - 35

access_log off

　access_logディレクティブはhttpコンテキス
トのほか、server/location/ifといったコンテ
キスト内でも利用できるため、バーチャルサー
バやURIに応じてアクセスログを変更するこ
とができます。

ログ出力時に圧縮する
　Nginxはログを出力するタイミングでログを圧
縮できます。リスト24の
ように設定すると前回圧縮
してから3秒以上経過した
あとにログを圧縮します。
圧縮レベルはデフォルトの
「1」です。圧縮レベルは最
大9まで指定できますが、
圧縮率が高くなると、出力
にかかる時間やCPUの負
担が増えます。

　圧縮機能を利用するためにはNginxの「ngx_

http_gzip_module」と「zlib」モジュールが必要
になりますが、デフォルトで組み込まれていま
す。圧縮レベル1でも1/10に圧縮され、30,000
行のアクセスログであれば、2.7MBが28KBに
圧縮されます。圧縮されたログを見るには「zcat」
コマンドを使用します。

$ zcat /var/log/nginx/access.log.gz ¦ moreｶ

 ▼リスト21　Nginxのログ基本設定

 ..省略..
error_log /var/log/nginx/error.log warn;
 ..省略..
http {
 ..省略..
 log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';

 access_log /var/log/nginx/access.log main;
 ..省略..
}

 ▼リスト22　実際に出力されたアクセスログ

192.168.3.17 - - [14/May/2015:12:09:12 +0900] "GET / HTTP/1.1" 200 612 "-" "Mozilla/5.0 ｭ
(Macintosh; Intel Mac OS X 10_10_3) AppleWebKit/600.6.3 (KHTML, like Gecko) Version/8.0.6 ｭ
Safari/600.6.3" "-"

 ▼リスト23　Apache互換ログフォーマットの「combined」の定義

log_format combined '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent"';

 ▼表2　アクセスログのフォーマット定義に使用したNginxの組み込み変数

変数名 意味
$remote_addr クライアントアドレス
$remote_user Basic認証時のユーザ名
$time_local Common Log形式のローカルタイム
$request 完全なオリジナルのリクエストURI
$status レスポンスのステータスコード
$body_bytes_sent レスポンスボディ（ヘッダを含まない）のバイト数
$http_referer Refererリクエストヘッダの値
$http_user_agent User-Agent リクエストヘッダの値
$http_x_forwarded_for X-Forwarded-Forリクエストヘッダの値

Webサーバのログ設定
ApacheとNginxのログ出力の基本と目的別手法

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第2章

36 - Software Design

syslog経由でアクセスログを出力する
　Linuxの標準的なログ管理システムである
syslogにエラーログを出力するには、次のよう
に設定します。

access_log syslog:server=localhost;

　リモートのsyslogサーバやデフォルト以外の
ポート番号（デフォルトはUDP 514番）を指定
することもできます。

access_log syslog:server=192.168.0.10:515;

　syslogでログを出力する際に、次のようにシ
ビアリティやタグを設定することもできます。

access_log syslog:server=192.168.0.10:515,
 severity=debug,tag=web main;

　この例ではシビアリティに「debug」を、タ
グに「web」を、ログフォーマットに「main」を
指定しています。なおシビアリティをdebugに
指定しても、デバッグログが出力されるわけで
はありません。

LTSV形式やJSON形式でアクセスログを出
力する
　よりパースしやすい、LTSV形式やJSON形
式でアクセスログを出力できます。LTSVや
JSONについての解説はApacheパートを参考
にしてください。NginxでLTSV形式のアクセ
スログを出力するにはリスト25のように、
JSON形式でアクセスログを出力するにはリス

ト26のように設定します。

エラーログの設定

デバッグログを出力する
　エラーログにデバッグ情報が出力されるよう
にするには、ログレベルに「debug」を指定し
ます。「error_log」ディレクティブを使って次
のように設定します。

error_log /var/log/nginx/error.log debug;

　デバッグログをリモートのsyslogサーバに出
力するには次のように設定します。ﾟ

error_log syslog:server=192.168.0.10 debug;

 ▼リスト24　Nginxでログを圧縮する例

 #圧縮レベル1（デフォルト）、最少3秒ごとに圧縮
access_log /var/log/nginx/access.log.gz main gzip flush=3s;

 #圧縮レベル9、最少3秒ごとに圧縮、最少5分ごとに圧縮
access_log /var/log/nginx/access.log.gz main gzip=9 flush=5m;

 ▼リスト25　LTSV形式でアクセスログを出力する

log_format ltsv "host:$remote_addr¥t"
 "user:$remote_user¥t"
 "time:$time_local¥t"
 "req:$request¥t"
 "status:$status¥t"
 "size:$body_bytes_sent¥t"
 "referer:$http_referer¥t"
 "ua:$http_user_agent";

access_log /var/log/nginx/access.log ltsv;

 ▼リスト26　JSON形式でアクセスログを出力する

log_format json '{'
 '"remote_addr": "$remote_addr",'
 '"remote_user": "$remote_user",'
 '"time_local": "$time_local",'
 '"request": "$request",'
 '"status": "$status",'
 '"body_bytes_sent": "$body_bytes_sent",'
 '"http_referer": "$http_referer",'
 '"http_user_agent": "$http_user_agent"'
 '}';

access_log /var/log/nginx/access.log json;

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

本章ではMySQLを題材にデータベースのログを考えます。MySQLの運用で確認すべき4つのログ
では、ユーザがデータベースに対して行った記録のほかに、パフォーマンスの問題を探るヒントとなる
情報や、レプリケーションでも使われるデータがあります。それぞれの役割とログの残し方を知ってお
きましょう。

MySQL 4つのログの使いどころ
データベースの保全、性能評価で役立てる

 Author とみたまさひろ　日本MySQLユーザ会　 Twitter @tmtms

第3章

37 - Software Design Sep. 2016 - 37

MySQLでチェック
すべき4つのログ

　MySQLで「ログ」というとさまざまな種類
のものがあります。システム変数で「log」とい
う文字を含むものは76個もありました。ログ
と言ってもこれらの中には人間が見るものでは
なく、MySQLの動作のために内部的に必要な
ものも含まれています。
　今回は、これらの中から人間が見ることがで
きるログとして、代表的な次のものについて説
明します。

・エラーログ：mysqldの起動／終了メッセージ
と実行中のエラーメッセージが記録される

・一般クエリログ：クライアントから発行され
たすべてのクエリが記録される

・スロークエリログ：実行に時間がかかったク
エリが記録される

・バイナリログ：クライアントから発行された
更新系のクエリが記録される

　まず各ログがどのようなものかを説明し、そ
の後に各設定方法を説明します。

エラーログ

　エラーログにはmysqldの起動中に発生した

エラーメッセージと、mysqldの起動時と終了
時の情報が出力されます。デフォルトでは
mysqldの標準エラー出力に出力されます。
　mysqldが異常終了した場合の調査などに役
立つメッセージが出力されるので、ファイルに
保存するようにしておいたほうが良いでしょう
（後述の「エラーログの設定」で解説）。

ファイル形式

　エラーログの形式はMySQLのバージョンに
よって異なります。
　MySQL 5.6のログファイルは、「時刻」「my

sqldのプロセスID」「メッセージのレベル」「メッ
セージ」が記録されます（リスト1）。時刻は“年
-月 -日 時 :分 :秒”の形式です。タイムゾーン
はローカル時刻でシステムの設定に依存します。
日本のサーバでは通常は日本時間になります。
　MySQL 5.7のログファイルは、「時刻」「ス
レッドID」「メッセージのレベル」「メッセージ」
が記録されます（リスト2）。時刻は ISO8601

の形式“年-月-日T時 :分 :秒Z”でマイクロ秒
まで記録されます。タイムゾーンはシステムの
設定によらずUTC（Coordinated Universal

Time：協定世界時）です。日本時間とは9時間
ずれます。

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

38 - Software Design

 ▼リスト1　MySQL 5.6の起動時のエラーログ

 ▼リスト2　MySQL 5.7の起動時のエラーログ

2016-06-18 21:31:07 13069 [Note] Plugin 'FEDERATED' is disabled.
2016-06-18 21:31:07 13069 [Note] InnoDB: Using atomics to ref count buffer pool pages
2016-06-18 21:31:07 13069 [Note] InnoDB: The InnoDB memory heap is disabled
2016-06-18 21:31:07 13069 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins
2016-06-18 21:31:07 13069 [Note] InnoDB: Memory barrier is not used
2016-06-18 21:31:07 13069 [Note] InnoDB: Compressed tables use zlib 1.2.3
2016-06-18 21:31:07 13069 [Note] InnoDB: Using Linux native AIO
2016-06-18 21:31:07 13069 [Note] InnoDB: Using CPU crc32 instructions
2016-06-18 21:31:07 13069 [Note] InnoDB: Initializing buffer pool, size = 128.0M
2016-06-18 21:31:07 13069 [Note] InnoDB: Completed initialization of buffer pool
2016-06-18 21:31:07 13069 [Note] InnoDB: Highest supported file format is Barracuda.
2016-06-18 21:31:07 13069 [Note] InnoDB: 128 rollback segment(s) are active.
2016-06-18 21:31:07 13069 [Note] InnoDB: Waiting for purge to start
2016-06-18 21:31:07 13069 [Note] InnoDB: 5.6.31 started; log sequence number 1625997
2016-06-18 21:31:07 13069 [Note] Server hostname (bind-address): '*'; port: 3306
2016-06-18 21:31:07 13069 [Note] IPv6 is available.
2016-06-18 21:31:07 13069 [Note] - '::' resolves to '::';
2016-06-18 21:31:07 13069 [Note] Server socket created on IP: '::'.
2016-06-18 21:31:07 13069 [Note] Event Scheduler: Loaded 0 events
2016-06-18 21:31:07 13069 [Note] ./bin/mysqld: ready for connections.
Version: '5.6.31' socket: '/tmp/mysql.sock' port: 3306 MySQL Community Server (GPL)

2016-06-18T12:32:57.658948Z 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please ｭ
use --explicit_defaults_for_timestamp server option (see documentation for more details).
2016-06-18T12:32:57.659027Z 0 [Warning] Insecure configuration for --secure-file-priv: Current value ｭ
does not restrict location of generated files. Consider setting it to a valid, non-empty path.
2016-06-18T12:32:57.659056Z 0 [Note] ./bin/mysqld (mysqld 5.7.13) starting as process 13127 ...
2016-06-18T12:32:57.663629Z 0 [Note] InnoDB: PUNCH HOLE support not available
2016-06-18T12:32:57.663656Z 0 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins
2016-06-18T12:32:57.663662Z 0 [Note] InnoDB: Uses event mutexes
2016-06-18T12:32:57.663667Z 0 [Note] InnoDB: GCC builtin __sync_synchronize() is used for memory ｭ
barrier
2016-06-18T12:32:57.663672Z 0 [Note] InnoDB: Compressed tables use zlib 1.2.3
2016-06-18T12:32:57.663677Z 0 [Note] InnoDB: Using Linux native AIO
2016-06-18T12:32:57.663868Z 0 [Note] InnoDB: Number of pools: 1
2016-06-18T12:32:57.663943Z 0 [Note] InnoDB: Using CPU crc32 instructions
2016-06-18T12:32:57.665021Z 0 [Note] InnoDB: Initializing buffer pool, total size = 128M, instances ｭ
= 1, chunk size = 128M
2016-06-18T12:32:57.672652Z 0 [Note] InnoDB: Completed initialization of buffer pool
2016-06-18T12:32:57.674123Z 0 [Note] InnoDB: If the mysqld execution user is authorized, page ｭ
cleaner thread priority can be changed. See the man page of setpriority().
2016-06-18T12:32:57.685565Z 0 [Note] InnoDB: Highest supported file format is Barracuda.
2016-06-18T12:32:57.722680Z 0 [Note] InnoDB: Creating shared tablespace for temporary tables
2016-06-18T12:32:57.722753Z 0 [Note] InnoDB: Setting file './ibtmp1' size to 12 MB. Physically ｭ
writing the file full; Please wait ...
2016-06-18T12:32:57.906883Z 0 [Note] InnoDB: File './ibtmp1' size is now 12 MB.
2016-06-18T12:32:57.910757Z 0 [Note] InnoDB: 96 redo rollback segment(s) found. 96 redo rollback ｭ
segment(s) are active.
2016-06-18T12:32:57.910798Z 0 [Note] InnoDB: 32 non-redo rollback segment(s) are active.
2016-06-18T12:32:57.912642Z 0 [Note] InnoDB: Waiting for purge to start
2016-06-18T12:32:57.963009Z 0 [Note] InnoDB: 5.7.13 started; log sequence number 2526561
2016-06-18T12:32:57.965000Z 0 [Note] InnoDB: Loading buffer pool(s) from /usr/local/mysql-5.7.13-ｭ
linux-glibc2.5-x86_64/data/ib_buffer_pool
2016-06-18T12:32:57.965500Z 0 [Note] Plugin 'FEDERATED' is disabled.
2016-06-18T12:32:57.969173Z 0 [Note] InnoDB: Buffer pool(s) load completed at 160618 21:32:57
2016-06-18T12:32:57.983855Z 0 [Note] Plugin mysqlx reported: 'X plugin tcp connection enable at port ｭ
33060.'
2016-06-18T12:32:57.984179Z 0 [Note] Plugin mysqlx reported: 'Scheduler "work" started.'
2016-06-18T12:32:57.984337Z 0 [Note] Plugin mysqlx reported: 'X plugin initialization successes'
2016-06-18T12:32:57.986085Z 0 [Warning] Failed to set up SSL because of the following SSL library ｭ
error: SSL context is not usable without certificate and private key
2016-06-18T12:32:57.986725Z 0 [Note] Server hostname (bind-address): '*'; port: 3306
2016-06-18T12:32:57.986794Z 0 [Note] IPv6 is available.

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

38 - Software Design Sep. 2016 - 39

一般クエリログ

　一般クエリログはクライアントから発行され
るクエリを記録します。デフォルトでは有効に
なっていません。サーバ起動中に、動的に有効
と無効を切り替えることができます。すべての
クエリが記録されるので、常時有効にしておく
と膨大な量になってしまうため、必要なときだ
け有効にするのがよいでしょう。
　たとえば、アプリケーションの操作で予期し
ない結果が得られた場合、操作の間だけログ記
録を有効にすることで、アプリケーションが発
行したクエリを知ることができます。O/Rマッ
パーがクエリの組み立てを行っていて、実際に
どのようなクエリが発行されるのかアプリケー
ション開発者も知らない場合の調査にも役に立
ちます。
　サーバで実行されるクエリはすべて記録され
ますが、構文エラーになるようなクエリはログ
に記録されません（図1）。

ファイル形式

　一般クエリログファイルには、「時刻」「スレッ
ド ID」「コマンド」「引数」が記録されます。時
刻の形式はバージョンによって異なります。
　MySQL 5.6の時刻形式は年月日（年は下2桁）
とローカル時刻（秒単位）で、前の行と同じ時
刻の場合は時刻は出力されません。1秒以内に

多くのクエリが発行される場合は、grepなど
である行だけ抽出してもそのクエリの発行時刻
がわかりません。
　MySQL 5.7の時刻形式はエラーログと同様に
UTCで ISO8601の形式（年 -月-日T時 :分 :秒
Z）となっており、マイクロ秒単位まで記録され
ます。5.6と異なり各行に時刻が出力されます。
　スレッド IDはクライアントからの接続ごと
に割り当てられる番号です。スレッド IDが同
じレコードは同じクライアントからのコマンド
であることがわかります。
　コマンドはクエリのことではなく、サーバ－ク
ライアント間のプロトコルで定義されているコマ
ンドで、Connect、Query、Quitなどがあります。
　クライアントからクエリが発行された場合コ
マンドはQueryとなり、引数にクエリが記録さ
れます。

一般クエリログの見方
　mysqlコマンド内で実行する命令の中には
mysqlコマンド自身に対する命令もあります。
これらの命令はサーバにクエリとしては送られ
ないため、一般クエリログには記録されません。
たとえばpager命令は、mysqlコマンドがクエ
リ結果表示のために使用する外部コマンドを指
定する命令なので、サーバには送られません。
　また、useはカレントのデータベースを切り
替えるための命令ですが、サーバに対しては
USEクエリではなく、Init DBというコマンド

mysql> SELECT MAX(id) FROM t; í ←記録される
+---------+
| MAX(id) |
+---------+
| 123 |
+---------+

mysql> SELECT MAX(unexist) FROM t; í ←エラーだが記録される
ERROR 1054 (42S22): Unknown column 'unexist' in 'field list'

mysql> SELECT MAX() FROM t; í ←構文エラーなので記録されない
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that ｭ
corresponds to your MySQL server version for the right syntax to use near ') FROM t' at line 1

 ▼図1　ログの記録例

MySQL 4つのログの使いどころ
データベースの保全、性能評価で役立てる

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第3章

40 - Software Design

が送られるように実装されているため、ログ上
にもInit DBとして記録されます。
　リスト3、4は、mysqlコマンドを使って
root@localhostがサーバに接続し、testデータ
ベースを選択、テーブル tの作成、tにレコー
ドの挿入、tからの検索を実行、接続を切断し
たという一連の動作が記録された、5.6、5.7そ
れぞれの一般クエリログの例です。
　これらのリストでは同じスレッド IDがまと
めてありますが、本来は時系列で記録されてい
るためさまざまなスレッド IDが入り交じって
います。あるクエリがどのユーザで発行された
か、どのデータベースで発行されたかを調べる
には、該当クエリのスレッド IDと同じスレッ
ド IDのログをさかのぼって、Connectや Init

DBコマンドを見つける必要があります（リス
トのようにスレッドIDで抽出）。

　クライアントが接続を切断するとQuitが記
録されますが、厳密には接続が切断されたこと
ではなく、クライアントからQuitコマンドが
送られたことを表しています。Quitを送らず
に接続を切断するような行儀の悪いプログラム
や、クライアントプログラムが不意に落ちてし
まった場合はQuitはログには記録されません。

テーブルへの出力

　一般クエリログはファイルだけでなく、テー
ブルに出力することもできます。ログをテーブ
ルに出力するメリットは、SELECTクエリを
使用してログの集計を行えることです。
　また、テーブルのストレージエンジンはCSV

なので、mysqlデータベースディレクトリにCSV

ファイルがそのまま置かれています（図2）。PC

にファイルをコピーしてExcelなどの表計算ソ

 ▼リスト3　5.6の一般クエリログ

 ▼リスト4　5.7の一般クエリログ

160702 10:57:45 3 Connect root@localhost on
 3 Query select @@version_comment limit 1
160702 10:57:46 3 Query SELECT DATABASE()
 3 Init DB test
 3 Query show databases
 3 Query show tables
160702 10:57:47 3 Query CREATE TABLE t (id INT, value VARCHAR(100))
 3 Query INSERT INTO t (id, value) VALUES (123, 'hoge')
 3 Query SELECT id, value FROM t
160702 10:57:49 3 Quit

2016-07-02T01:30:25.862001Z 5 Connect root@localhost on using Socket
2016-07-02T01:30:25.862172Z 5 Query select @@version_comment limit 1
2016-07-02T01:30:29.093836Z 5 Query SELECT DATABASE()
2016-07-02T01:30:29.094107Z 5 Init DB test
2016-07-02T01:30:29.095425Z 5 Query show databases
2016-07-02T01:30:29.096108Z 5 Query show tables
2016-07-02T01:30:29.992895Z 5 Query CREATE TABLE t (id INT, value VARCHAR(100))
2016-07-02T01:30:30.246081Z 5 Query INSERT INTO t (id, value) VALUES (123, 'hoge')
2016-07-02T01:30:30.290345Z 5 Query SELECT id, value FROM t
2016-07-02T01:31:07.003081Z 5 Quit

ls -l /usr/local/mysql/data/mysqlí
 ..省略..
-rw-r----- 1 mysql mysql 4218 7月 3 11:42 general_log.CSV
 ..省略..

 ▼図2　general_logテーブルはCSV

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

40 - Software Design Sep. 2016 - 41

フトに読み込ませて処理することもできます。
　テーブル出力は便利なのですが、MySQLの
データディレクトリと異なる場所に出力するこ
とはできませんし、後述するログのローテーショ
ンはファイルとは異なる方法になります。すで
にログ収集のしくみがある場合は、簡単にはそ
の運用に乗せられないかもしれません。設定に
よってファイルとテーブルの両方に出力するこ
ともできるので、両方に出力しておいて用途に
よって扱いやすいほうを使うというのも良いで
しょう（後述の「ログ出力先を切り替えるには」
で解説）。
　一般クエリログをテーブルに出力するように設
定すると、mysqlデータベースのgeneral_logテー
ブルに記録されます（図3）。general_logテーブル
のカラム「event_time」「thread_id」「command_

type」「argument」はファイル出力時の情報と同
じです。「user_host」カラムはユーザです。ファ
イル出力時には、あるレコードだけを見てもユー
ザがわかりませんでしたが、テーブル出力時に
は各レコードのカラムに記録されます。

スロークエリログ

　スロークエリログはクライアントから発行さ
れるクエリのうち、実行に一定時間以上かかっ
たものを記録します。デフォルトでは10秒以
上かかったログが出力されます。サーバ起動中
に動的に有効と無効を切り替えることができま
すが、常に有効にしておいても良いでしょう。

ファイル形式

　リスト5のように、先頭が「#」の行で、「ク
エリの終了時刻（Time）」「クエリ実行ユーザ
（User@Host）」「クエリにかかった時間（Query_

time）」「ロックにかかった時間（Lock_time）」
「クエリ結果の行数（Rows_sent）」「クエリ実行
時に走査した行数（Rows_examined）」が出力さ
れます。終了時刻の形式は一般クエリログと同
様にMySQL 5.6と5.7で異なります。
　実際に発行したクエリのほかに「use」や「SET

timestamp」が記録されます。useはそのデータ
ベースで最初に出力されるクエリの前に出力さ

mysql> SELECT * FROM mysql.general_log; í
+----------------------------+---------------------------+-----------+-----------+--------------+--+
| event_time | user_host | thread_id | server_id | command_type | argument |
+----------------------------+---------------------------+-----------+-----------+--------------+--+
2016-07-02 14:45:11.752609	[root] @ localhost []	6	0	Connect	root@localhost on using Socket
2016-07-02 14:45:11.753041	root[root] @ localhost []	6	0	Query	select @@version_comment limit 1
2016-07-02 14:45:22.319805	root[root] @ localhost []	6	0	Query	SELECT DATABASE()
2016-07-02 14:45:22.320315	root[root] @ localhost []	6	0	Init DB	test
2016-07-02 14:45:22.323684	root[root] @ localhost []	6	0	Query	show databases
2016-07-02 14:45:22.324346	root[root] @ localhost []	6	0	Query	show tables
2016-07-02 14:45:28.546195	root[root] @ localhost []	6	0	Query	CREATE TABLE t (id INT, value VARCHAR(100))
2016-07-02 14:45:28.547592	root[root] @ localhost []	6	0	Query	INSERT INTO t (id, value) VALUES (123, 'hoge')
2016-07-02 14:45:28.585006	root[root] @ localhost []	6	0	Query	SELECT id, value FROM t
2016-07-02 14:45:30.786595	root[root] @ localhost []	6	0	Quit	
+----------------------------+---------------------------+-----------+-----------+--------------+--+

 ▼図3　general_logテーブル

 ▼リスト5　スロークエリログ（MySQL 5.7）

Time: 2016-07-02T07:21:26.477273Z
User@Host: root[root] @ localhost [] Id: 9
Query_time: 10.000544 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0
use test; ←カレントデータベースをtestに切り替え
SET timestamp=1467444086; ←時刻を合わせる
SELECT SLEEP(10); ←時間のかかったクエリ

MySQL 4つのログの使いどころ
データベースの保全、性能評価で役立てる

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第3章

42 - Software Design

れます。SET timestampはクエリの終了時刻
を設定します。「#」で始まる行以外の行をその
まま再実行することで、時刻も合わせて同じク
エリを再現できるようにするために、これらの
情報が出力されていると思われます。

テーブルへの出力

　一般クエリログと同様に、ファイルだけでな
くテーブルに出力することもできます。テーブ
ルに出力する際のメリットや注意事項も一般ク
エリログと同様です。
　mysqlデータベースのslow_logテーブルに記
録されます（図4）。slow_logテーブルのカラム
「start_time」「user_host」「query_time」「lock_

time」「rows_sent」「rows_examined」「thread_

id」は、ファイル出力時の情報と同じです。「db」
カラムはクエリが実行されたデータベースで、
ファイル出力時にはuseで表されていたもので
す。「sql_text」カラムは実行されたクエリです。

バイナリログ

　バイナリログには更新系のクエリが記録され
ます。更新系のクエリは一般クエリログにも記
録されますが、一般クエリログには参照系クエ
リも含まれるので膨大な量になってしまうこと
があります。参照系クエリの履歴は必要なく、デー
タベースの更新履歴だけを保存しておきたい場
合はバイナリログを取得するのも良いと思います。
　ただし、バイナリログは通常のログとかなり
異なります。ログファイル名も自由にはつけら
れませんし、名前のとおりバイナリで記録され
るため、そのままではログの内容を確認するこ
とはできません（mysqlbinlogというツールを

使うことでログファイルの内容を表示できます）。
　通常、バイナリログは異なるサーバへのデー
タのレプリケーションのために使用されます。
MySQLのレプリケーション機構は、あるサー
バで実行された更新系のクエリを他のサーバで
実行すれば同じデータになるはずだというアー
キテクチャに基づいています。
　バイナリログはレプリケーションだけではな
く、ディスク故障などでデータが失われたとき
に元に戻すために使用することもできます。フ
ルバックアップとそれを取得した以降のバイナ
リログがあれば、フルバックアップからデータ
をリストアした後に、バイナリログを適用すれ
ば最新状態までデータを戻すことができます。
　バイナリログはデフォルトではMySQLのデー
タ領域と同じディスクに出力されますが、ディ
スククラッシュに備えるためのバックアップ用
途に使用する場合は、異なるディスクに出力さ
れるように設定しておかないと意味がありません。
　なお、バイナリログは一般クエリログやスロー
クエリログと異なり、動的に有効／無効を切り
替えることはできません。mysqld起動時に設
定しておく必要があります。

MySQLログの設定

　MySQLの設定は、コマンドラインオプショ
ン、オプションファイル、システム変数による
設定の3通りあります。
　コマンドラインオプションはmysqld起動時
にmysqldコマンドの引数として指定するオプ
ションです。
　オプションをファイルに書いておく（オプショ
ンファイルにする）ことで毎回同じオプション

mysql> SELECT * FROM mysql.slow_log; í
+----------------------------+---------------------------+-----------------+-----------------+-----------+---------------+-------+----------------+-----------+-----------+------------------+-----------+
| start_time | user_host | query_time | lock_time | rows_sent | rows_examined | db | last_insert_id | insert_id | server_id | sql_text | thread_id |
+----------------------------+---------------------------+-----------------+-----------------+-----------+---------------+-------+----------------+-----------+-----------+------------------+-----------+
| 2016-07-02 16:21:26.477273 | root[root] @ localhost [] | 00:00:10.000544 | 00:00:00.000000 | 1 | 0 | test | 0 | 0 | 0 | SELECT SLEEP(10) | 9 |
+----------------------------+---------------------------+-----------------+-----------------+-----------+---------------+-------+----------------+-----------+-----------+------------------+-----------+

 ▼図4　slow_logテーブル

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

42 - Software Design Sep. 2016 - 43

で起動することができます。同じオプションがファ
イルとコマンドラインの両方に指定された場合は、
コマンドラインオプションが有効化されます。
通常は、設定はオプションファイルに記述して
おき、一時的に変更したい場合にはコマンドラ
インオプションで指定するのが良いでしょう。
　また、オプションによってはmysqld実行中
にシステム変数として動的に変更することがで
きます。変更するにはSETクエリを使用します。
これが3つめの設定方法です。

コマンドラインオプション
　図5のように、mysqld起動時にオプションを
指定します。有効／無効（真偽）を指定するオ
プションの値は、有効（真）はON/TRUE/1、
無効（偽）はOFF/FALSE/0で指定します。
値を指定しない場合は有効（真）になります。

オプションファイル
　オプションファイル中の[mysqld]グループに
オプションを記述しておくと、mysqldが起動時

にそれを読み込み、コマンドラインオプション
に指定されたのと同様に動作します（リスト6）。
　オプションファイルは /etc/my.cnf、/etc/

mysql/my.cnfなど、複数のファイルが有効です。
mysqldがどのファイルから設定を読み込むかは
mysqld --help --verboseで確認できます（図6）。

SETクエリ
　mysqld起動中にSETクエリでシステム変数
を設定することにより、動的に設定を変更する
ことができます（図7）。システム変数名はオプ
ション名の「-」を「_」に置き換えたものです。
変更できないシステム変数もあります。また、
システム変数を変更するにはクエリを実行する
ユーザに管理者権限が必要です。

エラーログの設定

　エラーログは log-errorオプションで設定しま
す。log_errorシステム変数で値を参照すること
はできますが、値を変更することはできません。
　log-errorオプションに値を指定した場合は
それがファイル名として使用されます（図8）。
値を指定しない場合はデータディレクトリ
（datadirシステム変数の値）の下の「ホスト
名 .err」が使用されます。常に有効にしておく

mysqld --general-log --general-log-ｭ
file=/var/log/mysql.log í

 ▼図5　オプションで一般クエリログを有効にする例

mysqld --help --verbose í
 ..省略..
Usage: /usr/local/mysql/bin/mysqld [OPTIONS]

Default options are read from the following files in the given order:
/etc/my.cnf /etc/mysql/my.cnf /usr/local/mysql/etc/my.cnf ~/.my.cnf
 ..省略..

 ▼図6　有効なオプションファイルの確認

mysql> SET GLOBAL general_log = ON;í
mysql> SET GLOBAL general_log_file = '/var/log/mysql.log';í

 ▼図7　SETクエリで一般クエリログを有効にする例

 ▼リスト6　ファイルで一般クエリログを有効にする例

[mysqld]
general-log
general-log-file = /var/log/mysql.log # mysqld --log-error=/var/log/mysql.err í

 ▼図8　 コマンドラインオプションでエラーログの出
力先を設定する例

MySQL 4つのログの使いどころ
データベースの保全、性能評価で役立てる

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第3章

44 - Software Design

ために、オプションファイルに設定しておくの
が良いでしょう（リスト7）。

一般クエリログの設定

　一般クエリログの有効／無効はgeneral-log

オプションまたはgeneral_logシステム変数で
設定します。ログファイル名は general-log-

fileオプションまたはgeneral_log_fileシステ
ム変数で設定します。general_log_fileが設定
されていない場合は、データディレクトリの下
の「ホスト名 .log」が使用されます。
　通常はデフォルトのままログ出力は無効の状
態にしておき、必要なときにSETクエリで
general_logのON/OFFを切り替えるのが良い
でしょう（図9）。
　sql_log_offセッション変数を真に設定する
ことで、そのセッション（接続）でだけ一時的
にログを記録しないようにできます（図10）。
パスワードのような機密にすべき文字列を含む
クエリなど、ログに記録させたくないようなク
エリを実行する場合に使用できます。

スロークエリログの設定

　スロークエリログの有効／無効はslow-query-

logオプションまたはslow_query_logシステム変
数で設定します（図11、リスト8）。スロークエ
リログのファイル名はslow-query-log-fileオプ
ションまたは slow_query_log_fileシステム変
数で設定します。slow_query_log_fileが設定さ
れていない場合は、データディレクトリの下の
「ホスト名-slow.log」が使用されます。
　long_query_timeシステム変数でクエリ実行時
間の閾値を指定します。デフォルトでは10秒です。

ログ出力先を切り替えるには

　一般クエリログとスロークエリログの出力先は
ファイルかテーブル、またはその両方に設定でき
ます。log-outputオプションまたは log_outputシ
ステム変数で指定します。FILEを指定するとファ
イル、TABLEを指定するとテーブル、FILE,TABLE
を指定するとファイルとテーブルの両方にログを
出力します（図12、リスト9、図13）。

mysql> SET GLOBAL general_log = ON;í

 ▼図9　SETで一般クエリログを有効にする

mysql> SET sql_log_off = ON;í
mysql> この間のクエリはログに記録されない
mysql> SET sql_log_off = OFF;í

 ▼図10　一時的に一般クエリログを記録しない

mysqld --slow-query-log=ON --slow-query-log-file=/var/log/mysql-slow.log --long-query-time=1 í

 ▼図11　コマンドラインオプションでスロークエリログの出力先を設定する例

 ▼リスト7　 オプションファイルにエラーログの出力先
を記述する例

[mysqld]
log-error = /var/log/mysql.err

 ▼リスト8　 オプションファイルにスロークエリログの
出力先を記述する例

[mysqld]
slow-query-log = ON
slow-query-log-file = /var/log/mysql-slow.log
long-query-time = 1

mysqld --log-output=FILE,TABLE í

 ▼図12　 コマンドラインオプションでファイルとテー
ブル両方に出力を設定する例

mysql> SET GLOBAL log_output = 'FILE,TABLE';í

 ▼図13　 SETクエリでファイルとテーブル両方の出力
を有効にする例

 ▼リスト9　 オプションファイルにファイルとテーブル
両方の出力を記述する例

[mysqld]
log-output = FILE,TABLE

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

44 - Software Design Sep. 2016 - 45

バイナリログの設定

　バイナリログは log-binオプションで設定し
ます（図14、リスト10）。単純に log-binだけ
を指定するとデータディレクトリの下の「ホス
ト名-bin」がファイル名のベース名として使用
されます。log-binオプションに値を与えると
その値がファイル名のベース名として使用され
ます。実際のファイル名は「ベース名 .000001」
となり、拡張子部分は必要に応じてカウントアッ
プされていきます（図15）。log_binシステム変
数で有効か無効かの状態を、log_bin_basename

システム変数でベース名を参照することはでき
ますが、変更することはできません。
　バイナリログはもともとレプリケーション機
能の一部なので、ログ取得とは直接関係ない
server-idというオプションも指定する必要が
あります。レプリケーションで使用するにはサー
バ間でユニークになる数値を指定する必要があ
りますが、単にバイナリログを取得するためだ
けであれば値は何でもいいので、server-id=1

などを指定しておけばよいでしょう。
　binlog-format=STATEMENTは人間が読ん
でもわかるように、レコードデータではなくク
エリを記録するためのオプションです。レプリ
ケーションやバックアップ用途では指定する必
要はありません。

ログファイルの切り替え

　同じファイルにログを出力し続けていると、
ディスク使用量を圧迫しますし、1ファイルの
サイズが大きくなるとファイルの中から何かを
探し出す処理も大変になります。そのため、期
間やサイズで出力先ファイルを切り替えるよう
な運用が一般的だと思います。
　エラーログファイル、一般クエリログファイ
ル、スロークエリログファイルを切り替えるに
は、リネームしてからログファイルのフラッシュ
をします（図16）。ログファイルが新しく作成
され、これ以降のログは新しいファイルに出力
されます。古いファイルは使用されなくなるの
で、ほかの場所に移動するなり、削除するなり
自由に扱うことができます。

ログのフラッシュ方法

　FLUSH LOGSクエリを使用すると、すべ
てのログファイルをクローズして再オープンし
ます。特定のログファイルだけをフラッシュす

mysqld --log-bin=/var/log/mysql/mysql-bin --server-id=1 --binlog-format=STATEMENT í

 ▼図14　コマンドラインオプションでバイナリログの出力を設定する例

 ▼リスト10　 オプションファイルにバイナリログの出
力を記述する例

[mysqld]
log-bin = /var/log/mysql/mysql-bin
server-id = 1
binlog-format = STATEMENT

ls -l /var/log/mysqlí
-rw-r----- 1 mysql mysql 154 7月16 10:04 mysql-bin.000001
-rw-r----- 1 mysql mysql 32 7月16 10:04 mysql-bin.index

 ▼図15　バイナリログファイル

mv mysql-error.log mysql-error.log-20160818 í
mysql -uroot -e 'FLUSH ERROR LOGS'í

 ▼図16　エラーログファイルを切り替える例

MySQL 4つのログの使いどころ
データベースの保全、性能評価で役立てる

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第3章

46 - Software Design

ることもできます（図17）。
　mysqladminコマンドの flush-logsサブコマン
ドでも同様の操作が可能です（図18）。なお、
MySQL 5.7より前のバージョンでは特定のロ
グファイルだけを指定することはできません。
　mysqldに対してSIGHUPシグナルを発行す
るとすべてのログファイルをフラッシュします。
ただしSIGHUPはログファイルのフラッシュ
だけでなく、権限テーブルのリロードや、スレッ
ドキャッシュ、ホストキャッシュのフラッシュ
なども行われるので、ログファイルのフラッシュ
のためだけに使用するべきではありません。

バイナリログの切り替え

　バイナリログはフラッシュするとカウントアッ
プした新しいファイル名に出力するため、手動
でリネームする必要はありません（図19）。
　バイナリログは古いものも含めてmysqldに

管理されているため、勝手に移動したり削除し
てはいけません。不要になったバイナリログを
削除するにはPURGE BINARY LOGSクエリ
を使用します（図20）。
　expire_logs_daysシステム変数に日数を設定
しておけば、その日数以上経過した古いバイナ
リログはフラッシュ時に自動的に削除されます。

テーブルに出力している場合

　ログをテーブル出力している場合はファイル
のように簡単にはいきません。ログ出力先のテー
ブルはTRUNCATEですべてをクリアするこ
とはできますが、一部をDELETEすることは
できません。
　古いログを残したままテーブルを切り替える
には、ログテーブルと同じ型の新しいテーブル
を作成し、テーブルをリネームします（図21）。
このようにすれば古いログはoldテーブルに残
り、新しいログは新しく作られたログテーブル
に出力されるようになります。ﾟ

mysql> FLUSH LOGS; ←すべてのログファイル
mysql> FLUSH ERROR LOGS; ←エラーログ
mysql> FLUSH GENERAL LOGS; ←一般クエリログ
mysql> FLUSH SLOW LOGS; ←スロークエリログ
mysql> FLUSH BINARY LOGS; ←バイナリログ

 ▼図17　フラッシュの方法一覧

mysqladmin flush-logs ←すべてのログファイル
mysqladmin flush-logs error ←エラーログ
mysqladmin flush-logs general ←一般クエリログ
mysqladmin flush-logs slow ←スロークエリログ
mysqladmin flush-logs binary ←バイナリログ

 ▼図18　mysqladminコマンドでのフラッシュ方法一覧

lsí
mysql-bin.000001 mysql-bin.index
cat mysql-bin.indexí
/var/log/mysql/mysql-bin.000001
mysql -uroot -e 'FLUSH BINARY LOGS'í
lsí
mysql-bin.000001 mysql-bin.000002 mysql-bin.ｭ
index
cat mysql-bin.indexí
/var/log/mysql/mysql-bin.000001
/var/log/mysql/mysql-bin.000002

 ▼図19　バイナリログのフラッシュ

lsí
mysql-bin.000001 mysql-bin.000003 mysql-bin.000005 mysql-bin.000007
mysql-bin.000002 mysql-bin.000004 mysql-bin.000006 mysql-bin.index
mysql -uroot -e "PURGE BINARY LOGS TO 'mysql-bin.000003'"í
lsí
mysql-bin.000003 mysql-bin.000005 mysql-bin.000007
mysql-bin.000004 mysql-bin.000006 mysql-bin.index

 ▼図20　古いバイナリログの削除

mysql> USE mysql;í
mysql> CREATE TABLE general_log_new LIKE general_log;í
mysql> RENAME TABLE general_log TO general_log_old, general_log_new TO general_log;í

 ▼図21　一般クエリログテーブルを切り替える

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

本章では、Windowsファイルサーバの機能を提供するSambaのログ設定と、その活用法について
解説します。

Sambaの詳細なログ設定と
活用
パフォーマンスと実益とのバランスをとって出力しよう

 Author たかはしもとのぶ　 Mail monyo@monyo.com　 Twitter @damemonyo

第4章

47 - Software Design Sep. 2016 - 47

Sambaについて

　SambaはWindowsファイルサーバの機能を
提供するプロダクトとして、一般的なLinuxディ
ストリビューションには必ずパッケージが用意
されているソフトウェアです。執筆時点での最
新版は7月7日にリリースされたSamba 4.4.5

で、現在も活発に開発が行われています。
　Sambaのアーキテクチャは何度か大きく変
更されていますが、今回解説するログ機構につ
いては、細かい機能強化はあるものの、基本的
には昔から変わっていません。

Samba標準の
ログファイルの活用

　Sambaのログファイルは、標準ではsmbdや
nmbdといったデーモンプロセスごとに log.

smbdや log.nmbdといったファイル名となって
います。ログの記録例をリスト1に示します。
　図1からもわかるとおり、Sambaのログは
Apacheでいうところのアクセスログよりはエ
ラーログに近い位置づけの内容となっています。
　ログの内容は、定型的なヘッダ行と非定型の
メッセージ行の2行セットで構成されています。
ヘッダ行の形式については、図1のようになっ

 ▼リスト1　smbd起動時に log.smbdに記録される内容

[2016/07/11 07:40:33, 0] ../source3/smbd/server.c:1241(main)
 smbd version 4.2.10 started.
 Copyright Andrew Tridgell and the Samba Team 1992-2014
[2016/07/11 07:40:33, 2] ../source3/lib/tallocmsg.c:124(register_msg_pool_usage)
 Registered MSG_REQ_POOL_USAGE
[2016/07/11 07:40:33, 2] ../source3/lib/dmallocmsg.c:78(register_dmalloc_msgs)
 Registered MSG_REQ_DMALLOC_MARK and LOG_CHANGED
[2016/07/11 07:40:33.002931, 3] ../source3/param/loadparm.c:3653(lp_load_ex)
 lp_load_ex: refreshing parameters
[2016/07/11 07:40:33.003015, 3] ../source3/param/loadparm.c:544(init_globals)
 Initialising global parameters
※ここでは後述するログレベル3のログの一部を例示しています。

 ▼図1　ヘッダ行の形式

[2016/07/11 07:40:33.003015, 3] ../source3/param/loadparm.c:544(init_globals)

日付と時刻
（YYYY/MM/DD HH:MM:SS.nnnnnn

※nnnnnn はナノ秒）

ログレベル 相対パスによる
ソースファイル名

行数 関数名

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

48 - Software Design

ています。
　メッセージ行についてはメッセージそのもの
になります。とくに定型的な形式はありません。

ログファイルの文字コードについて

　メッセージ行に日本語ファイル名など、英語
以外の文字列などが含まれる場合の文字コード
は、Sambaのunix charsetパラメータで制御さ
れます。パラメータのデフォルト値はUTF-8

です。値を変更することもできますが、このパ
ラメータはファイル名の文字コードをはじめ、
各所に影響しますので慎重に行ってください。

ヘッダ行のチューニング

　Sambaにはヘッダ行の記録内容を増減させる
パラメータがいくつか用意されています注1。次の
設定を行うことで、各ヘッダ行ごとにプロセス
のPIDとログ記録時のプロセスの実行権限（euid、
egid、uid、gid）を記録させることができます。

debug pid = yes
debug uid = yes

※ これ以降の設定も含め、明示的に解説しない限りパラメータは
globalセクションに設定します。

　この設定を行った際のログの記録例をリスト

注1） これ以外にもいくつかのパラメータがありますが、あまり
有用でないため解説は割愛します。

2に、ヘッダ行の形式を図2に示します。
　Sambaを構成するsmbdプロセスはクライア
ントからのアクセスごとに1プロセスが起動さ
れるため、デフォルトの記録では、Sambaが
多数のクライアントからアクセスされている際
に、複数のsmbdプロセスの記録が入り混じっ
てしまい、解読が困難です。またsmbdプロセ
スは基本的に認証されたユーザの権限で動作し
ますが、一時的にroot権限で実行されること
もあり、アクセス権がらみのトラブルシューティ
ングで重要な要素となってくることもあります。
先ほどの設定により、これらの情報がログに記
録されます。

ログ詳細度の設定

　図1のとおりSambaのログには、メッセージ
の重要度（詳細度）を示すログレベルが必ず設
定されます。最も重要とされるログはログレベ
ル0となり、以下重要度の順にレベル10まで
の値が割り当てられています。
　log levelパラメータ（debug levelという別名
があります）により、記録するログレベルを制
御します。このパラメータのデフォルト値は0

ですので、最重要のログ以外は記録されません。
より詳細なログを記録するためには、1以上の
値を明示的に指定する必要があります。たとえ
ば次の設定を行うことで、ログレベル3まで（レ

 ▼リスト2　smbd起動時に log.smbdに記録される内容（ヘッダ行のチューニング後）

[2016/07/11 07:50:33, 2] ../source3/lib/dmallocmsg.c:78(register_dmalloc_msgs)
 Registered MSG_REQ_DMALLOC_MARK and LOG_CHANGED
[2016/07/11 07:50:33.902445, 3, pid=10446, effective(0, 0), real(0, 0)] ../source3/param/ｭ
loadparm.c:3653(lp_load_ex)
 lp_load_ex: refreshing parameters
[2016/07/11 07:50:33.902487, 3, pid=10446, effective(0, 0), real(0, 0)] ../source3/param/ｭ
loadparm.c:544(init_globals)
 Initialising global parameters

 ▼図2　ヘッダ行の形式（ヘッダ行のチューニング後）

[2016/07/11 07:50:33.902487, 3, pid=10446, effective(0, 0), real(0, 0)] ../source3/param/loadparm.c:544(init_globals)

PID 情報 実ユーザ
情報

(uid, gid)

実効ユーザ
情報

(euid, egid)

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

48 - Software Design Sep. 2016 - 49

ベル0から3）のログが記録されます。

log level = 3

　値としては、0から10を指定します注2。
　このパラメータの値を大きくすればするほど
詳細な情報を記録できますが、その分ログファ
イルの容量が増加することに加え、書き込みの
オーバーヘッドでSamba自身の動作も顕著に
遅くなります。このため通常運用時には、この
パラメータの値は0または1程度に留めておき、
重要度の高いメッセージのみが記録されるよう
にしておくことをお勧めします。

ログレベルの一時的な変更

　前述したとおり、実運用環境でログレベルを
むやみに上げることはお勧めできません。一方
でトラブル発生時にはなるべく詳細な情報を記
録させたいところです。ログレベルを恒久的に
変更する場合は、前述した log levelパラメー

注2） passwd chatパラメータのデバッグの際にパスワード文字
列を平文で記録させたい場合など特殊な状況では、より大
きい値を指定することが必要な場合もあります。

タを設定すればよいのですが、設定を反映する
にはプロセスの再起動などが必要なため気軽に
は行えません。
　こうしたときには、smbcontrolコマンドによ
りログレベルを一時的に変更する機能が便利で
す。実行例を図3に示します。
　この例ではログレベルを10に変更後、すぐ
に0に戻しています。コマンドの文法を次に示
します。

smbcontrol pid debug N

　pidとしては、PIDを示す数値のほか、smbd

やnmbdといったプロセス名を指定することも
可能で、その場合は該当するプロセスすべてが
対象となります。
　図4のようにdebuglevelオプションを指定す
ることで、現在のログレベルを表示することも
できます。
　「all:1」という文字列から、現在のログレベ

ログクラスの設定

　Sambaのログにはログクラスという概念があり、
ログのカテゴリごとにログレベルを指定できるよ
うになっています。設定例を次に示します。

log level = 3 passdb:5 auth:10 winbind:2

　ただし、どのメッセージがどのログクラスに属
しているかはソースコードを参照するか、

debug class = yes

を設定してログクラスをログに記録させるように
してしばらく様子を見たうえで設定していく必要
があります。実質的には、ソースコードを参照で
きる方でないと活用は難しいでしょう。

smbcontrol smbd debug 10ｶ
smbcontrol smbd debug 0ｶ

 ▼図3　smbcontrolコマンドによるログレベル変更

smbcontrol smbd debuglevel
PID 13973: all:1 tdb:1 printdrivers:1 lanman:1 smb:1 rpc_parse:1 rpc_srv:1 rpc_cli:1 ｭ
passdb:1 sam:1 auth:1 winbind:1 vfs:1 idmap:1 quota:1 acls:1 locking:1 msdfs:1 dmapi:1 ｭ
registry:1

 ▼図4　現在のログレベルの表示

Sambaの詳細なログ設定と活用
パフォーマンスと実益とのバランスをとって出力しよう

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第4章

50 - Software Design

ルが1であることを確認できます注3。
　トラブルの再現手順が確立している場合は、
再現直前にログレベルを10にして、再現後す
ぐに元の値に戻すようにすればよいでしょう。
　なかなか再現しないような場合、とりあえず
ログレベルを3にして様子を見ることをお勧め
します。ログレベル3は（開発者でなく）シス
テム管理者用として十分詳細なログが記録され
ます。

ログファイル名の変更

　log fileパラメータにより、ログファイル名
を変更できます。これにはSamba変数を設定
できるので、たとえば次のように設定すること
で、すべてのクライアント（IPアドレス）ごと
に個別のログファイルを作成できます。

log file = /var/log/samba/log.smbd.%I

注3） それ以外の文字列はコラムで解説したログクラスごとのロ
グレベルになります。

　この場合はクライアントの IPアドレスごと
にファイルが別に作成されることにより、多数
のログファイルが作成されますので、注意して
ください。

syslogとの連携

　Sambaの標準では、Samba固有のログファ
イルへの記録と併せてsyslogへのログ記録も行
われます。syslogへのログ記録は、syslogパラ
メータにより制御されます。
　デフォルトは、

syslog = 1

となっており、log levelが1未満、つまり0の
ログのみがSambaのログファイル以外にsyslog

にも記録されます。
　syslogにはログの種類を表す「ファシリティ」
と、ログの緊急度を表す「レベル」という概念
があります。ファシリティについてはdaemonに
なっていますので、ログは/var/log/messages

特定のクライアント間の通信に限って詳細なログを取得する

　トラブルシューティングの際には、Sambaサー
バ全体のパフォーマンスを落とさないためにも、
問題のあるクライアントとの間のログだけを詳細
に記録したいこともあると思います。
　こうした場合に、たとえばクライアントの IPア
ドレスを意味する Samba変数「%I」を用いてリス
ト3のような設定を行ったうえで、リスト4のよう
なsmb.conf.192.168.1.1というファイルを別に
作成しておくことで、192.168.1.1のクライアント
からのアクセスのみログレベルを3にするといった
設定を行うことができます。
　リスト3の設定が行われていると、192.168.1.1の

クライアントからアクセスがあった場合に include
パラメータにより smb.conf.192.168.1.1というファ
イルの内容がその位置に読み込まれます。リスト4
では log levelパラメータの値を3に設定しています。
同一のパラメータを複数回設定した場合は、最後に
設定したパラメータの値が有効となりますので、こ
れにより、当該クライアントからアクセスした場合
のみ log levelパラメータの値が3に設定されます。
　それ以外の IPアドレスの場合は includeパラメー
タで指定したファイルが存在しないため、このパ
ラメータ自体が無視され log levelパラメータの値
は1が設定されます。

 ▼リスト3　smb.confファイルの設定

log level = 1
include = smb.conf.%I

 ▼リスト4　smb.conf.192.168.1.1ファイルの内容

log level = 3
log file = /var/log/samba/log.smbd.192.168.1.1

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

50 - Software Design Sep. 2016 - 51

など標準のログファイルに記録されます注4。レ
ベルについてはSambaのログレベルに対応し
ています。詳細は表1を参照してください。
　Samba固有のログファイルを活用する場合、
syslogへ同じ内容を記録してもあまり有用では
ないと思います。

syslog = 0

と設定することで、この機能を無効にすること
をお勧めします。

ログファイルの活用

　ログに記録される情報はSambaの内部動作
に関する情報ですので、基本的にはトラブル発
生時の使用が想定されています。
　トラブル発生時には、発生時刻周辺のログの
メッセージ行の内容を確認していく形で個別に
切り分けを行っていくことになります。ソース
コードが読める方であれば、ヘッダ行にメッセー
ジを記録したソースコードの部位に関する情報
もあるので参考になります。
　とはいえ、これらのメッセージはSambaの
内部動作についての情報ですので、英語のメッ
セージから意味が自明である場合をのぞき、正
攻法で原因を追っていくのは難しいと思います。
そのため、安直ではありますが、次のような作
業を行ってみることをお勧めします。

①	ログファイルから怪しそうな行（Errorといっ
た文字列があるなど）を抽出する

②	そこに記録されているメッセージ行の内容
を検索エンジンで検索してみて、類似のト
ラブルに関する情報がないかを確認する

　ありがちなトラブルであれば、これで解決す
ることも多いと思います。残念ですが、解決し
なかった場合はメッセージの内容や記録してい
るソースコードの部位から原因を類推していく

注4） コンパイル時以外には変更できません。

しかありません。

ファイルサーバへの
アクセスログを取得する

　ファイル共有の監査機能を提供する full_

auditモジュールを活用することで注5、Samba

で構築したファイルサーバに対する詳細なアク
セスログ（監査ログ）を取得できます。このモ
ジュールは標準では有効化されていないため、
以降で設定を有効化する手順について解説しま
す。なお、ファイル共有の一般的な設定につい
ては、誌面の都合上解説を割愛していますので
ご注意ください。

full_auditモジュールの有効化と
syslog設定

　full_auditモジュールを有効化するには、該
当の共有で次の設定を追加します。

 vfs objects = full_audit

　すでにvfs objectsパラメータが設定されて
いる共有の場合は、パラメータ行の末尾に
full_auditというキーワードをスペースで区切っ
て追加します。
　full_auditモジュールは syslogにログを出力
しますので、syslogの設定も意識する必要があ
ります。デフォルトではuser.noticeというファ
シリティとレベルでログが出力されますので、
/var/log/messagesや/var/log/syslogといった
標準のログファイルに大量のログが出力されま

注5） Sambaでアクセスログを記録するモジュールとしてはほ
かにもauditとextd_auditというものがありますが、機能
が不十分なため解説は省略します。

 ▼表1　log levelとsyslogのレベル

log level レベル
0 error
1 warning
2 notice
3 info
4以上 debug

Sambaの詳細なログ設定と活用
パフォーマンスと実益とのバランスをとって出力しよう

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第4章

52 - Software Design

す。このままではほかのログが埋もれてしまっ
て見づらくなってしまうため、アクセスログは
別のファイルに切り出しておきましょう。
　まずは full_auditモジュールの設定で、ログ
を出力するファシリティを local1など未使用の
ものに設定します。

 full_audit:facility = local1

　ついでsyslog設定ファイル（CentOSでは/etc

/rsyslog.conf）に次のような行を追加して
local1ファシリティのログを適切なファイル（た
とえば/var/log/samba/access.log）に出力する
ように設定します。

local1.* /var/log/samba/access.log

　最後に、標準のログファイルにSambaのア
クセスログが出力されないよう、除外設定を行
います。CentOSの場合は rsyslog.confの次の
個所に local1.noneというキーワードを設定す
ることで、ファシリティが local1のメッセージ
の出力を抑止できます（図5）。
　そのほかのディストリビューションでも同様

の設定を行います。設定を行ったら、次のよ

うにして忘れずにログファイルを作成してくだ
さい。

touch /var/log/samba/access.logｶ

　ファイルを作成したら、設定を反映させるた
めに設定ファイルの再読み込み（もしくは
syslogサービスの再起動）を行います。これで
リスト5のようなアクセスログが/var/log/sam

ba/access.log（だけ）に出力されるようになり
ます。
　ここでは解説しませんが、実際に運用するう
えではローテーションやバックアップの設定も
忘れずに行ってください。

アクセスログの形式

　アクセスログの各行の形式は図6のようになっ
ています。smbd_audit: に続いてフィールド
が「｜」で区切って記録されます。

・プレフィックス

　デフォルトでユーザ名と接続元IPアドレス
が¦で区切った形式で記録されます。

 ▼リスト5　アクセスログの出力例

Jul 11 08:57:32 centos70 smbd_audit: monyo¦192.168.135.1¦connect¦ok¦monyo
Jul 11 08:57:32 centos70 smbd_audit: monyo¦192.168.135.1¦realpath¦ok¦/home/monyo
Jul 11 08:57:32 centos70 smbd_audit: monyo¦192.168.135.1¦realpath¦ok¦/home/monyo
Jul 11 08:57:32 centos70 smbd_audit: monyo¦192.168.135.1¦stat¦ok¦/home/monyo

 ▼図5　除外設定の例

*.info;local1.none;mail.none;authpriv.none;cron.none /var/log/messages

追加

 ▼図6　アクセスログの形式

Jul 11 08:57:32 centos70 smbd_audit: monyo¦192.168.135.1¦realpath¦ok¦/home/monyo

syslog のヘッダ情報
（日付と時刻、ホスト名）

smbd_audit: プレフィックス 操作の名称 対象のパス名結果

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

52 - Software Design Sep. 2016 - 53

　複数の共有でこの設定を有効化し、かつ同一
のファイルにアクセスログを記録するよう
に設定した場合は、たとえば次のようにし
てログに共有名も記録しておいた方がよい
でしょう

 full_audit:prefix=%u¦%I¦%S

・操作の名称

　表2のような名称が記録されます。これらは
一部をのぞきLinuxのシステムコール関数名
に対応していますので、非常に詳細な挙動
を記録できることがわかります

・操作の結果

　okもしくはfailが記録されます

・対象のパス名

　操作の対象となるパス名が、共有トップから
の相対パスで記録されます。操作の種類によっ
てはこのフィールドが存在しない場合もあ
ります

　デフォルトでは各操作の成功、失敗がすべて
記録されるため、膨大なログが出力されます。
このため運用を行ううえでは、次で説明するカ
スタマイズを行い、記録する操作を制限するこ
とがほぼ必須です。

アクセスログのカスタマイズ

　full_audit:successと full_audit:failure
パラメータにより、記録する操作を制限します。
設定例をリスト6に示します。
　ここでは、アクセスログとしての使用を想定し、

・	共有への接続と切断（connect、disconnect）
・	ファイル、ディレクトリの作成、削除、リネー

ム（ただしファイルの作成は含まない）（mkdir、
rmdir、rename、unlink）

・	ファイルの読み書き（read、pread、write、
pwrite、sendfile）

の成功と、共有への接続と切断の失敗のみを記
録しています。
　ファイルの作成やオープンも記録したい場合
は、次のような設定を行えばよいでしょう。

項目 操作の名称 説明
all すべての操作を含む
none すべての操作を除外

ファイル
共有の操作

connect ファイル共有へのアクセス
disconnect ファイル共有からの切断

ディレクトリ
の操作

opendir ディレクトリのオープン

readdir ディレクトリエントリの読
み取り

mkdir ディレクトリの作成
rmdir ディレクトリの削除
closedir ディレクトリのクローズ

ファイルの
操作

open ファイルのオープン
close ファイルのクローズ
create_file ファイルの作成
read ファイルの読み取り
pread 同上
write ファイルの書き込み
pwrite 同上
rename ファイルのリネーム
unlink ファイルの削除

chmod ファイルのパーミッション
変更

fchmod 同上
chown ファイルの所有者変更
fchown 同上
ftruncate ファイルサイズの切り詰め
symlink シンボリックリンクの作成
link ハードリンクの作成

ACLの操作

fset_nt_acl
ACLの設定

set_nt_acl
chmod_acl

ACLの変更
fchmod_acl

 ▼表2　監査可能な主要な操作

 ▼リスト6　アクセスログの設定例

full_audit:failure = connect disconnect
full_audit:success = connect disconnect mkdir rmdir rename read pread write pwrite sendfileｭ
Tunlink

Sambaの詳細なログ設定と活用
パフォーマンスと実益とのバランスをとって出力しよう

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第4章

54 - Software Design

full_audit:success = connect disconnect ｭ
open close mkdir rmdir rename create_file ｭ
read pread write pwrite sendfile unlinkｭ

　ただし、とくにディレクトリのオープン操作
はディレクトリを一覧するたびに発生しますの
で、かなりの量のログが記録されます。
　リスト6の設定を行った状態で、共有トップ
にある testフォルダ内にある test.txtファイル
に書き込んだ際に記録されたログの一部をリス
ト7に示します。
　これでもかなり大量のログが出力されますが、
何とか読み解くことはできるのではないかと思
います。

　ここでは、パフォーマンスと実益とのバラン
スをとった設定例としてリスト6の設定を示し
ましたが、もちろんセキュリティを優先する場
合はより取得する操作を増やしてもかまいませ
ん。究極的にはログの容量とSamba、syslogサー
ビス、ディスクI/Oなどのパフォーマンスに問
題が発生しなければ、すべての操作を記録する
ことも仕様上はできます。
　実際の環境で記録する項目を決めるうえでは
試験環境で擬似的にアクセスを行ってどのよ

うなログがどの程度の量出力されるかを確認し
つつ、試行錯誤しながら決めていくのがよいで
しょう。ﾟ

 ▼リスト7　アクセスログの例

Jul 11 13:20:45 centos70 smbd_audit: monyo¦192.168.135.1¦monyo¦pread¦ok¦test/test.txt
Jul 11 13:20:47 centos70 smbd_audit: monyo¦192.168.135.1¦monyo¦pread¦ok¦test/test.txt
Jul 11 13:20:47 centos70 smbd_audit: monyo¦192.168.135.1¦monyo¦pwrite¦ok¦test/test.txt

アクセスログを簡易に取得する

　実は、Sambaサーバへのアクセス履歴だけであ
れば本文で解説した full_auditモジュールを使わな
くても簡易に取得できます。

utmp = yes

という設定を追加することで、Sambaサーバへの
アクセスが、Linux標準のログイン履歴に記録され
るようになります。この情報は lastコマンドで参照

できます。実行例を図7に示します。
　-wオプションを省略した場合、ユーザ名やホス
ト名などで8バイトを超える部分は省略されます。
2列目の仮想端末名が「smb/」から始まっている行
がSambaサーバへのアクセスとなります。
　lastコマンドから取得できるのは「誰がいつどこ
からアクセスしたか」だけですが、パラメータ1つ
で情報が取得できますので、最低限のアクセス履
歴を取得したいという場合は検討する価値がある
と思います。

 ▼図7　lastコマンドの実行例

$ last -wｶ
monyo smb/24053837 192.168.135.1 Mon Jul 11 10:33 still logged in
monyo smb/78103915 192.168.135.1 Mon Jul 11 10:31 - 10:33 (00:01)
monyo smb/27333739 192.168.135.1 Mon Jul 11 10:31 - 10:31 (00:00)
monyo smb/14568390 192.168.135.1 Mon Jul 11 10:31 - 10:31 (00:00)

ユーザ名 仮想端末名 ログイン元ホスト ログイン時間帯

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

よく大手のWebサービスでは、ユーザの行動分析やマーケティングのためにログ分析が行われてい
ます。そのような用途で活用されるのは、OSやWebサーバのログよりも、むしろアプリケーションで
独自に出すログです。しかし、何を記録し、どのように活かせば良いのでしょう。Yahoo! JAPANの
ノウハウの一端を紹介します。

マーケティングにも使える
ログ設計とは
アプリケーションログで何を記録し、どう可視化するか

 Author 吉野 哲仁（よしの てつひと）
ヤフー㈱ ショッピングカンパニー テクニカルディレクター

第5章

55 - Software Design Sep. 2016 - 55

ログはマーケティングで
も活用される時代に

　最近では、“ビッグデータ”や“DevOps”のキー
ワードがもてはやされていることもあり、ログの
重要性がますます大きくなってきています。今や
システムの安定稼働だけでなく、行動分析、マー
ケティングなど、ログの活用範囲は多岐に渡ります。
　本章ではアプリケーションのログをどのよう
に残すべきか、Yahoo!ショッピングの事例を
交えながら紹介していきます。

どのようなログを
残すべきか

基本は“5W1H”

　ログを記録するうえで、基本となる考え方は
“5W1H”です。「いつ（When）」「どこで（Where）」
「誰が（Who）」「何を（What）」「なぜ（Why）」「ど
のように（How）」。ログを設計するときには、
まずこのポイントが押さえられているかチェッ
クしましょう。

いつ（When）
　“いつ”とは、基本的には“時間”のことですが、
ひとことで時間と言っても、目的によって記録
のしかたは異なります。たとえば時間の精度の
場合、アクセスログであれば「秒」までで良い
ですし、多くのトランザクションが同時に集中
するシステムでは、前後関係を厳密に見るため
に「ミリ秒」まで記録する必要があるかもしれ
ません。また、システムのパフォーマンスを計
るためであれば「マイクロ秒」まで必要なこと
もあるでしょう（表1）。
　目的に応じて、正しい精度の時間を残すよう
にしましょう。

どこで（Where）
　Webサービスにおいては、URLがベースと
なります。エラーログを出す際には発生位置（ス
タックトレース）が出ているといいでしょう。

誰が（Who）
　ユーザ ID、IPアドレスなど、“誰が”を識別
する情報はさまざまです。“誰が”の情報は不

 ▼表1　目的に応じた時間の精度の例

精度 目的
秒 アクセスログ、バッチの処理ログの場合

ミリ秒 在庫システム、カートシステムなど多量のトランザクションを処理するシステムの場合。APIの
レスポンスを計測する場合

マイクロ秒 ネットワークやCPUのパフォーマンスを計測する場合

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

56 - Software Design

正対策、行動分析、トラブルシューティ
ングを行う際にとくに重要な情報です。
目的に応じて必要な情報を選択しましょ
う。例として、次のものが挙げられます。
　
・ユーザID
・セッションID
・Cookie
・端末ID
・IPアドレス
・MACアドレス
・User-Agent

何を（What）
　「どんな情報が送信（処理）されたか」を記録
します。とくにトラブルシューティングにおい
ては重要な情報です。リクエスト情報やアプリ
ケーションのオブジェクト情報をそのままダン
プ（Dump）するケースが多いですが、情報量
がたいへん多いため、慣れてきたら出力情報を
適切に選定しましょう。
　ただし、情報によってはセキュリティの観点
からログに記録するべきでないものもあります
（詳細は後述）ので、これらのポイントも同時
にチェックが必要です。

なぜ（Why）
　アプリケーションのエラーログにおいては、
エラーIDやAPIのエラーレスポンスなど、エ
ラーの原因を出力します。

どのように（How）
　どういった内容の操作（アクション）をされ
たかを記録します。「どのボタンを押したか」「ど
のリンクをクリックしたか」「（APIやバッチの
場合）どこからCallされたか」が押さえてあれ
ばいいでしょう。

◆　◆　◆
　あらためて整理すると、Webサービスの場
合は表2のような情報を記録することになるで
しょう。

ログに残してはいけない情報

個人情報
　個人情報はログ出力しない。これはまず原則
として必要な考え方です。「どの情報が個人情
報に該当するか」はデータベースの構成などに
よって違うため、まずはセキュリティポリシー
などの自社の定義を確認しましょう。
　次のように、何らかのロジックでハッシュ化
すれば、ログ出力してもOKとなる場合もあり
ます。
　

矢風太郎
 ↓ ハッシュ化
rPiFpYF3U_ruk6Le9M6eGvHB

　Yahoo! JAPANにおいて、一般の社員が業務
の中で個人情報を扱う場合は、厳格なセキュリ
ティルールのもとに行われています。Yahoo!

JAPANでは、通常のネットワーク内で動くア
プリケーションサーバでは、次のような情報の
ログ出力は禁止しています。
　
Yahoo!ショッピングにおける個人情報の例
・顧客の住所
・顧客の氏名
・顧客の電話番号
・顧客のクレジットカード番号
・顧客のメールアドレス
・注文の要望欄

　上記の情報は、ログ上では*でマスクされま
す（リスト1）。

 ▼表2　Webサービスにおける5W1Hの例

5W1H 記録すべき情報
いつ（When） 時間
どこで（Where） URL
誰が（Who） ユーザ IDまたはセッション ID
何を（What） リクエスト情報
なぜ（Why） エラーID
どのように（How）アクション（ボタン押下、クリックなど）

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

56 - Software Design Sep. 2016 - 57

企業秘密
　おもに「売上データ」や「課金データ」など内
部情報にあたるものです。「個別の計算結果は
良いが、合算した値は出力NG」など、細かい
取り決めがある企業も存在します。また、バッ
チの計算結果の整合性チェックにも使う場合が
あるため、出力の必要性をよく検討しましょう。

そのほか決めておいたほうが
良いこと

日付／時刻の形式
　プログラミング言語やソフトウェアによって
微妙にフォーマットが違うので、見やすさを重
視するなら、できるだけ統一しましょう。
　

 見やすさを重視した日付、時刻形式の例
yyyy/MM/dd hh:mm:ss

　ログ収集システムに連携する場合は、UNIX

TIME（1970年1月1日0時0分0秒からの形式
的な経過秒数）のほうが都合が良い場合もあり
ます。

文字コード
　開発者はあまり意識しませんが、他システム
と連携する際には、意外と問題になります。

ログ保管場所
　これも言語やソフトウェアによってデフォル
トのパスが違うので、できるだけ同じディレク
トリの下で管理できるようにするのが理想です。

 ログ保管場所（パス）の例
/var/log/[hoge]/[アプリケーション名]/ｭ
[ファイル名].log

ログファイル種類
　ログの用途によって、出力ファイルを分けま
しょう。アクセスログ、バッチログ、スローロ
グ、エラーログなど、最近はログの用途が多く
なってきたため、出力ファイルの種類も多様に
なってきています。

ローテート間隔
　ログファイルをどのような間隔でローテート
するかを決めます。基本的には日次で行うこと
が多いですが、サイズが大き過ぎると解析にも
時間がかかるので、サイズ単位や数時間ごとの
ローテーションも考えましょう。
　また、ローテートしたあとは圧縮することも
忘れずに。ただ、ローテートの間隔設定を間違
えると1つのログファイルが巨大になってしま
い、gzipなどのデータ圧縮処理でCPUを使い
過ぎてサービスに影響が出てしまうこともある
ので気をつけましょう（以前、Yahoo!ショッピ
ングでも同じことがありました）。

保存期間
　ローテート後のファイル名はどうするか、ロー
テートしたファイルはいつまで保存されるかを
決めましょう。企業によっては、内部統制で最
低限の保存期間が決められている性質のログも
あるため、確認が必要です。
　この設定を怠ると、ログがあふれてディスク
容量を圧迫し、サービスが継続できなくなる危
険性があります（こういったことは現によくあ
ります）。

ログフォーマット
　ログのフォーマットは、まず監視システムや

 ▼リスト1　ログ出力イメージ（個人情報は*でマスクされる）

[2016-07-04 12:00:23] [info] Change order order_time (=> 20160704120022)
[2016-07-04 12:00:23] [info] Change order total_price (0 => 670)
[2016-07-04 12:00:23] [info] Change order seller_id (=> 'test-store')
[2016-07-04 12:00:23] [info] Change order bill_first_name (***** => *****)
[2016-07-04 12:00:23] [info] Change order bill_last_name (***** => *****)

マーケティングにも使えるログ設計とは
アプリケーションログで何を記録し、どう可視化するか

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第5章

58 - Software Design

ログ収集システムの仕様に合わせて設計するの
が基本です。しかし、自由入力となるメッセー
ジフィールドの仕様は、ある程度決めておいた
ほうが良いでしょう。その際は“5W1H”を意
識しましょう。

サーバ配置によるログ出力制限
　Yahoo! JAPANでは、ログを出力するサーバ
がどのネットワークに属しているかで、出力で
きるログのレベルが違ってきます。基本的にす
べてのサーバは外部ネットワークにポートを開
放しておらず、ファイアウォールの内側にいま
す。外部にサービスを提供するサーバのみ、外
部ネットワークに一部のポートを開放していま
す。
　外部ネットワークにポートを開放しているサー
バは、開放していないサーバと比べ、侵入やア
タックに対するセキュリティリスクは高くなり
ます。そのようなサーバでは、サーバ内に出力
できるログは制限されています（図1）。ここま
でやっている企業もあまりないかもしれません
が、大規模なサーバとネットワークを構築して
いるYahoo! JAPANでは、セキュリティ強化
のためこのようなルールがあります。

運用担当者との認識合わせ
　ログの仕様について、運用担当者と認識合わ
せをしましょう。これは地味ですが、結構大事
な作業です。実際に認識合わせをしてみると、「こ
のタイミングでこういうログを出してほしい」
など、運用の立場からの要望が出てきます。

　運用フェーズに入ったあとに、「これはどう
いう意味のログですか？」という問い合わせが
運用担当者から来ることもよくあります。これ
は対応の時間ロスになりますので、運用担当者
とのコミュニケーションは事前に行っておきま
しょう。

ログレベルはサービスの
SLAに直結する

　ログレベルの定義は非常に重要です。レベル
に応じて「今すぐに対応するべきか」「明日、出
社してから対応するべきか」が決まるからです
（表3）。つまり、ログレベルの定義は、そのサー
ビスのSLA（Service Level Agreement、サー
ビス品質保証）を大きく左右します。
　一口にログレベルと言っても、使用する言語

 ▼図1　サーバ配置によるログ出力制限

外部ネットワーク
ファイアウォール

一部ポートを
外部に開放

ポート未開放

ログ出力
制限あり

個人情報
保存NG

個人情報
保存OK

個人情報以外
ログ出力OK

セキュアネットワーク
ファイアウォール

個人情報
ログ出力OK

 ▼表3　Yahoo!ショッピングでのレベル別対応表

ログレベル 対応 出力基準例
info 不要 バッチの正常終了報告、解析に必要な情報を出すログ
notice 不要 正常とは違うルートで終了したログ
warn 営業時間内 一定の間隔でn回以上発生した時点で対応が必要になるログ
err 営業時間内 1回発生した時点で対応が必要になるログ

crit 即時 一定の間隔でn回以上発生した時点で対応が必要になるログ。サービス継続に影響が
出る場合に使用

alert 即時 1回発生した時点で対応が必要になるログ。サービス継続に影響が出る場合に使用

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

58 - Software Design Sep. 2016 - 59

やライブラリによって微妙に違いがあります（表

4）ので、個人個人で認識のズレがないように、
ログレベルの対応表は作っておいたほうが良い
でしょう。

一歩先のことを考えた
ログ設計

ログ出力がボトルネックに？

　非常に大量のトランザクションを処理する場
合、大きめのログを一度に大量に出力すると、
ログファイルへの書き込み処理がボトルネック
となり、それが積もりに積もって全体の処理レ
イテンシに影響が出てしまうケースがあります。
　その場合、Fluentdなどログ転送技術を活用
すると、ログ出力処理自体を本体の処理から切
り離して非同期にすることができ、かつ目的に
応じて効率よくログを振り分けることができま
す（図2）。

JavaScriptでのエラー収集

　クライアントサイドでのJavaScriptエラーは、
サーバサイドでは検知ができません。しかし、
JavaScriptのエラーを検知することは、UX

（User experience）改善には重要な手がかりと
なります。たとえば、フォームのバリデーショ

ンエラーのログは、チェックの方法や入力方式
を改善させるヒントとなります。
　Yahoo!ショッピングでは、一部のツールに
JavaScriptエラーをサーバに送信するしくみ（図

3）を導入し、ログの解析をしています。
　JavaScriptのエラーメッセージをサーバに送
信する際に重要なのは、なるべく多くのユーザ
環境の情報（OSバージョン、User-Agent、デ
バイス）を集めることです。
　現在は、ブラウザの種類、バージョン、デバ
イス、OSなど、環境が多過ぎてすべてのパター
ンをテストすることはほぼ不可能に近いです。

 ▼表4　おもな言語、ライブラリでのログレベル

言語／
ライブラリ syslog Log4j PHP Ruby

ログレベル

TRACE
debug DEBUG DEBUG DEBUG
info INFO INFO INFO
notice
warn WARN WARN WARN
err ERROR ERROR ERROR
crit FATAL FATAL FATAL
alert UNKNOWN
emerg

 ▼図2　Fluentdを使ったのログ出力処理非同期化

他サーバに転送

ここは非同期で
書き込まれる

アプリケーション

Fluentd

Fluentd

log

 ▼図3　JavaScriptエラーログ収集のしくみ

window.onerror = ～～～

 // エラー送信処理

エラーメッセージ
User-Agent
デバイス

JS エラー発生

エラー受信 API

log

マーケティングにも使えるログ設計とは
アプリケーションログで何を記録し、どう可視化するか

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第5章

60 - Software Design

このしくみを使って、テストではカバーできな
いユーザ固有環境でのエラーをいち早くキャッ
チし、改善につなげることができます。

アプリケーションでのログ収集

　アプリケーションでログを収集する方法は、
すでにたくさんのサービスが世に出ています。
Yahoo!ショッピングのアプリケーションでは、
ユーザの行動ログは社内ツールやAdobe

Analyticsを組み合わせて利用し、エラーやク
ラッシュログは子会社のツールを使っています。
　アプリケーションにおいてはとくにクラッシュ
ログは重要で、当社子会社であるFROSK㈱の
SmartBeat（図4）を利用して収集しています。
このツールではエラーの内容から端末情報、影
響のあったユーザ数までかなり詳細に見ること
ができてたいへん便利なツールです。

ログの活用事例

　ここからはYahoo!ショッピングでのログの

活用事例をいくつか紹介します。

新規ユーザ向けレコメンド

　Yahoo! JAPANは多くのサービスを提供して
いるため、Yahoo!ショッピングをまだ利用し
たことのないユーザもたくさんいます。

 ▼図4　SmartBeat

 ▼図5　他サービスのログを有効活用

オークション入札ログ

広告クリックログ

ニュース閲覧ログ

検索ログ

新規ユーザ向け
レコメンド

特徴抽出

ショッピング
サービス以外
のログを活用

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

60 - Software Design Sep. 2016 - 61

　Yahoo!ショッピングを利用したことのある
ユーザであれば、閲覧ログや注文ログから別の
商品をお勧め（レコメンド）することができま
すが、新規ユーザではそうはいきません。その
新規ユーザ向けにどう商品をお勧めするか。答
えは他サービスにあります。Yahoo! JAPANが
提供しているほかのサービスのログを活用する
ことで、新規ユーザにも精度の高いお勧めを実
現できます（図5）。

エラー状況の可視化

　次に、エラー状況の可視化です。Yahoo!ショッ
ピングの一部機能では、Fluentd＋Elasticsearch

＋Kibanaでエラーを可視化します。定番の形で
すね。
　例としては、ショッ
ピングのお問い合わせ
フォームでエラーと
なった数を可視化し、
さらにエラー番号単位
で集計をかけ、日々の
改善に役立てています
（図6、7）。

サービスの健康状態監視

　ログはシステムの状態監視だけでなく、“サー
ビスの健康状態”監視にも使えます。Yahoo!

ショッピングでの“健康状態”とは、ズバリ「取
扱高（Yahoo!ショッピング全体の注文金額の総
合計）」です。
　この取扱高をリアルタイムで監視できるツー
ルを自前で作成しています（図8）。このツール
では日々の目標取扱高が設定されており、その
目標に対して現在どのような状態なのかをリア
ルタイムで閲覧できます。また、前日・前々日・
前週と比較してグラフで可視化することで、現
在の取扱高が目標どおりに推移しているかを1

 ▼図6　Fluentd＋Elasticsearch＋Kibanaを使用したエラー状況の可
 視化（1）

 ▼図7　Fluentd＋Elasticsearch＋Kibana
 を使用したエラー状況の可視化（2）

 ▼図8　取扱高チェックツール

マーケティングにも使えるログ設計とは
アプリケーションログで何を記録し、どう可視化するか

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集 第5章

62 - Software Design

時間単位で確認することができます。さらに、
1時間ごとにアラートが設定され、前日の同時
間比で異常値が出ていないか（取扱高が大幅に
ずれていないか）をメールで速報する機能もあ
ります。
　たとえば、ある商品がテレビで紹介された場
合、取扱高は想定より高く推移をします。逆に
想定よりも低く推移していた場合、システムの
どこかに障害が発生している可能性があります。
そういった変化をいち早くキャッチするために、
システムだけでなく、“サービスの健康状態”
を監視する必要があるのです。

ユーザへのフィードバック

　ログを集計した結果をユーザにフィードバッ
クしているところもあります。たとえば、ショッ
ピングカート画面では、カートへの商品の出し
入れログを集計し、何人がカートに入れている
かを表示しています（図9）。
　また、受注した注文ログをリアルタイムで配
信し、今売れたものを見せるモジュールにも使っ
ています（図10）。

ログをマーケティングに活かすには

　一般的には、ログを扱うエンジニアと、マー
ケティング担当者は分かれているケースが多く、
かつマーケティング担当者は非エンジニアであ
ることがほとんどです。
　非エンジニアに対しては、ログそのものを見
せるよりも、やはり可視化してビジュアルで見

せるほうがイメージしやすく、発想が広がりま
す。「ログをどう集めるか」ももちろん大事で
すが、「ログをどう見せるか」もセットで考え
ることが必要です。そのためには、エンジニア
とマーケティング担当者が密に連携することが
重要です。
　最近ではKibanaをはじめ、多くのログ可視
化ツールが出ていますので、まずはフリーのツー
ルから導入してみましょう。

まとめ

　一口にログと言っても、非常に奥が深く、設
定が面倒くさいと感じるところもあるかもしれ
ません。しかし、数字を伸ばしている企業は間
違いなくログを有効活用していますし、運用レ
ベルが高いサービスは質の高いログを出力し、
かつ、わかりやすく可視化しているはずです。
　ログは単なる文字列ではなく「宝の山」です。
みなさんもログを有効活用していきましょう。
ﾟ

 ▼図9　同じ商品を何人の人がカートに入れているか
 をユーザに示す

 ▼図10　今売れた商品をユーザに示す

ログ出力のベストプラクティス
知りたい情報集まっていますか？

第1特集

　RubyやScalaなどが注目されるなか、PHPはその安定性と開発の容易さで、Web開発の分野では今も
高いシェアを誇っています。本特集は、PHPを使ううえでのメリット・デメリットを明確にしながら、初心者が
Web開発を行えるようになるためのヒントを提供します。
　導入方法と基本文法を押さえたら（第1章）、ライブラリを使ってより高度な機能を簡単に実装しましょう（第
2章）。アプリケーションの規模が大きくなりそうならフレームワークを導入して、開発を体系化・効率化しま
しょう（第3章）。そして最後の第4章では、参加するとPHPの学習がますます捗る、ユーザコミュニティを
一挙に紹介します。

第2特集

効率よく選んでいますか？

PHPのライブラリの選び方・使い方
——Composerをお勧めする理由� P.72

 Author 後藤 知宏

基本、押さえていますか？

PHPのはじめ方と学び方
——環境構築からコーディングまで� P.64

 Author 濱田 侑弥

本命はBEAR.Sundayか

PHPフレームワークの選び方
——システムの目的から振り返る� P.80

 Author はやしりょう

参加しませんか？

PHPのユーザコミュニティ
——チャットルームからハッカソンまで� P.86

 Author 小山 哲志

Sep. 2016 - 6564 - Software Design Sep. 2016 - 6564 - Software Design

PHPとは

　PHPは、もっとも使われているWebプログ
ラミング言語と言っても過言ではありません。
PHP 7もリリースされ、さらに長く使われてい
く言語となるでしょう。
　PHPは、最初Webの便利スクリプトとして
使われていたものが、PostgreSQLやMySQL

といったリレーショナルデータベースとの親和
性の高さから少しずつ実績を積んで信頼を勝ち
取っていき、今の地位にまで上り詰めたのだと
思います。また日本では、いわゆる「ガラケー」
で使われる絵文字や、Shift_JISやEUC-JPな
ど、早くから「全角文字（マルチバイト）」に対す
る処理がたくさんあったことも、PHPを大きく
進化させた要素の1つではないでしょうか。
　本稿では、PHPを通じてプログラミングを学
んでいく手がかりを解説します。XAMPP

（Windows or Linux、Apache、MySQL、PHP）
環境の構築から、言語のおさらい、Webアプリ
ケーション開発まで一通りやっていきましょう。

PHPの
環境構築について

「開発環境」について

　Webアプリケーションを作成する際に重要に
なってくるのは、「『本番環境』と『開発環境』を区

別しましょう」ということです。開発環境を用意
することで、状況を把握するための「トライアン
ドエラー」を行うことができますから、システム
や事業の全体が把握しやすくなります。
　技術者にとって、「トライアンドエラー」は非常
に重要です。動かしてダメだった部分がなぜダメ
だったのか、試行錯誤を重ねていくことでエンジ
ニアとして成長ができます。緻密な計画を立てて
その計画を忠実に実行するやり方も否定はしませ
んが、Web系においては“とりあえずやってみる”
ということが重要である、と個人的には思います。
　本番環境しかない場合、「バグが発生したとき
直接手を入れてしまい、サービスがエラーで動
かなくなった」「飛んではいけない個人情報が飛
んでしまった」などのインシデントが発生しかね
ません。開発環境においても個人情報などの貴
重なデータが入っている場合は、本番環境での
運用を想定して、慎重になってください。もし
も、慎重になるべき場所がわからなかったら、
納得いくまで先輩・上司に聞いてください。

PHPのはじめ方

　PHPの環境を整えたい場合には、いくつかの
方法が存在します。お手軽なのが、XAMPPと
呼ばれるPHPに必要なプログラム一式がすべて
そろっているパッケージを用意することです。
しかしこの方法には弱点があり、Windowsで動
くPHPバイナリはLinux/UNIXのPHPと比べ
て挙動が多少異なっていることがあるのです。

 Author 	濱田 侑弥（はまだ ゆうや）
 Twitter 	@youkidearitai
 URL 	 http://tekitoh-memdhoi.info

PHPは、Web開発の定番プログラミング言語。本章ではプログラミング初心者を対象に、XAMPPを使った環
境の構築、文法の基本・データ型とそのハマりどころを解説したあと、「悪いPHP」の例として、Webフレーム	
ワークを使わずにCRUDアプリを作ってみます。実行結果をブラウザで確かめながら読み進めましょう。

基本、押さえていますか？
PHPのはじめ方と
学び方
——環境構築からコーディングまで

http://tekitoh-memdhoi.info

Sep. 2016 - 6564 - Software Design Sep. 2016 - 6564 - Software Design

PHPの動かし方

phpinfo

　PHPはWebプログラミング言語として扱わ
れるのが一般的です。ここからは、HTMLが書
けることを前提として話を進めていこうと思い
ます。ApacheのDocumentRootに次のような内
容の index.phpを置いてみましょう。お好きなテ
キストエディタやIDEを開いて書いてみてくだ
さい。XAMPPであれば、C:¥xampp¥htdocsが
DocumentRootに設定されています。

<?php phpinfo();

　これでXAMPP Control Panel注2でApache

を起動させ、ブラウザから http://localhost

:8000/index.phpにアクセスすれば、phpinfoが
表示されるはずです（図1）。phpinfoとは、イ
ンストールされているPHPのバージョン、設
定、環境変数などの情報を一通り眺めることの
できる関数です。サーバの重要な情報を表示す
る関数ですから、外部に公開してはいけません。

XAMPPが開発環境として
きっちり動いたことを確認
できた、よし本番でLinux

サーバをデプロイ（反映）し
ようとしたら、あれ、挙動
が違うぞと困ってしまうこ
とにつながります。
　入門の範囲が外れてしま
うため詳しくは触れません
が、もしもVagrantを使う
などして仮想Linux環境を
構築できるのであれば、そ
れがベターです。こちらは、
本番環境と大きく挙動が違
うことはないでしょう。
　もしもできるならば、余ったパソコンにLinux

を入れてLANで自宅サーバを組んでみるのも1

つの手かもしれません。やはり実物があると人
間理解がしやすいです。

開発環境の用意

　LinuxにPHPをインストールするには、次の
ようにディストリビューションごとに提供され
ているパッケージを使用する方法があります。

#Debian
$ sudo apt-get install php5
#Centos
$ sudo yum install php

　Windowsの場合には、XAMPPをインストール
するのが手軽です注1。本稿では、初心者のために
XAMPP（PHP 5.6.23）で動かすことを前提に進め
ていきます。Linuxが動かせるという方は適宜読
み替えてください。Windowsの場合、ほかのアプ
リケーションが80番ポートを使用しているという
ことも少なからずあるので、Apacheを8000番な
どに変更するのが良いでしょう。展開先の
C:¥xampp¥apache¥conf¥httpd.conf の「Listen

80」を「Listen 8000」に変更してください。

 ▼図1　phpinfo（一部抜粋）

注2） 展開したXAMPパッケージのxampp-control.exeから起動
できるGUIツール。

基本、押さえていますか？
PHPのはじめ方と
学び方
——環境構築からコーディングまで

注1） URL https://www.apachefriends.org/jp/download.html

https://www.apachefriends.org/jp/download.html

Sep. 2016 - 6766 - Software Design

<h1><?php echo "Hello World"; ?></h1>

をhelloworld_html.phpとしてXAMPP Control

Panelのshellで実行すると、次のように出力さ
れます。

php helloworld_html.php
<h1>Hello World</h1>

　タグの外側はそのまま出力されていることが
わかります。また、プログラムだけの場合、終
了タグ?>は、プログラムの中に含めないほうが
良いとされています。?>のあとに余計な文字列
（空白や改行など）があるとそれが出力されてし
まい、エラーの原因を見つけるのがたいへんだ
からです。

データ型

計算させてみる

　さて、Hello Worldのほかにも動きを加えた
いですね。そこで、簡単な計算をやらせましょ
う。PHPは計算させることもできます。

<?php
echo 1 + 3;

　これをone_plus_three.phpとして保存し、実
行すると、次のようになります（以降、とくに説
明のないかぎりXAMPP Control Panelのshell

での実行結果です）。

php one_plus_three.php
4
#

Hello World

　お馴染みHello Worldを書くのはリスト1の
ような感じです。これを先ほどと同じように
helloworld.phpと保存して、http://localhost:

8000/helloworld.phpで実行すればHello World

が出力されます。

入力の受付

　リスト2は、ブラウザからアクセスするとき、
http://localhost:8000/input_html.php?hoge=huga

とすれば、<?php ?>で囲まれている部分がhuga

と表示されます。また、「huga」を好きな文字に
入れ替えると、いろいろな文字が表示されるよ
うになったことでしょう。

<?php ?>というタグ

　PHPでは、開始タグである<?phpと終了タ
グ?>の中にプログラムを書いていきます。ほか
のプログラミング言語と違ってオリジナルのタ
グがあるのです。ユニークですね。HTMLを出
力するテンプレートにもPHPのプログラムを書
けるところがすごくいいですよね。たとえば、

 ▼リスト1　PHPのHello World（helloworld.php）

<!DOCTYPE html>
<html lang="ja">
<head>
</head>
<body>
<?php
echo 'Hello World';
?>
</body>
</html>

 ▼リスト2　PHPの入力受付（input_html.php）

<!DOCTYPE html>
<html lang="ja">
<head>
<meta charset="utf-8">
</head>
<body>
<p><?php echo isset($_GET['hoge']) ? htmlspecialchars($_GET['hoge'], ENT_QUOTES, 'utf-8') : ""; ?></p>
</body>
</html>

Sep. 2016 - 6766 - Software Design

trueとなるのはなぜでしょうか。この理由は
「暗黙の型変換」と呼ばれるPHPの機能にありま
す。==や!=で比較をしようとするときや、echo
やprintで出力するときに自動的に型変換して
くれます。先ほどのone_plus_three.phpのよう
な「文字列や数値を連結させる」ことも、この機
能によってなされています。
　このようにさまざまな場面で、暗黙の型変換
が“よしなに”やってくれます。使いこなせれば
便利です……が、プログラマの意図しない動作
も引き起こしやすいのです。
　PHPではとくに、データ型ではまりやすい罠
が多いため、ここでは基本的に使うデータ型を
紹介していきます。まずはスカラー型（大小の比
較が可能な型）のデータ型です

論理型（boolean）

　値が「真」であればTRUE、「偽」であればFALSE

です。論理型はこの2つのみです。

整数型（integer）

　値が「整数」である型です。10進数で指定でき
るほかに、8進数、16進数、2進数で表現でき
ます。また、+と-の符号を付けることもできま
す。最大値はC言語の long型に依存しているの
で、32bitで231－1、64bitで263－1となります。
最小値はそれぞれ－231、－263です。Windowsで
はPHP 7以外では231－1が最大値、最小値は

－231になります。
　ご自身の環境で最大値を検証してみたい場合
には、次のようにPHP_INT_MAXを見てみてくだ
さい。

　改行を加えるなら次のように書きます。

<?php
echo 1 + 3 . PHP_EOL;

　これを実行すると、次のようになります。

php one_plus_three.php
4

#

　PHPのすごいところに、「数値で計算したあ
と、文字列としてくっつけることができる」とい
うことがあります。なぜなのかはあとで説明し
ましょう。
　PHPには変数もあります。

<?php
$value = 1 + 3;
$value = $value + 8;
echo $value . PHP_EOL;

　出力は12となります。もちろん、PHPでは、
条件分岐もできます。if文ですね。リスト3を
実行すると、次のようになります。

php value_expected.php
 == 0 is true

#

　もうちょっと見てみましょうか。リスト4を
実行すると、次のようになります。

php helloworld_value.php
Hello World == 0 is true

#

　さて、Hello World（文字列） == 0（数値）が

 ▼リスト4　リスト3を少し変更

<?php
$value = 'Hello World';
$expected = 0;
if ($value == $expected) {
 $output = "$value == $expected is true";
} else {
 $output = "$value == $expected is false";
}
echo $output . PHP_EOL;

 ▼リスト3　PHPの if文

<?php
$value = '';
$expected = 0;
if ($value == $expected) {
 $output = "$value == $expected is true";
} else {
 $output = "$value == $expected is false";
}
echo $output . PHP_EOL;

基本、押さえていますか？
PHPのはじめ方と
学び方
——環境構築からコーディングまで

Sep. 2016 - 6968 - Software Design

とある場合があります。これは、PHPを作って
いるC言語の仕様として、文字列の末端には「ヌ
ル文字」が入っていることと関係しています。も
し、PHPにヌル文字が入ってきても、PHPで
はヌル文字そのものとして扱いますが、C言語
では文字列の末端と認識します。バイナリデー
タに対応していない関数では、ヌル文字で文字
の処理をやめてしまいます。それの何が問題な
のか。ヌル文字以降をチェックしなくなるわけ
ですからチェックをすり抜けたり、想定しない
挙動を引き起こすことになります。なるべく「こ
の関数はバイナリデータに対応しています」とい
う関数を使ってください。

非スカラー型

　ここからは、これまでに紹介したスカラー型
を複数扱うための便利な複合型を紹介します。

配列（array）

　PHPにも配列があります。

<?php
$array = array(
 'hoge',
 'huga',
 'bar',
);
foreach($array as $value) {
 echo $value . PHP_EOL;
}

　配列と言いましたが、実際には「順番付けられ
たリスト」です。キーを指定することもできます
から、いったんコードをリスト5のように書き
換えてみましょう。これを実行した結果は次の
ようになります。

1 => hoge
0 => huga
2 => bar

　配列ではないため、さまざまな値をキーにす
ることができます（リスト6）。数値にできるも
のは暗黙の型変換で整数に変換されます。実行
してみると、図2のようになります。

<?php
var_dump(PHP_INT_MAX);
var_dump(PHP_INT_MIN); // PHP 7以降のみ

　値が「浮動小数点数」である型です。実装は倍
精度浮動小数点です。整数型の範囲外の値を指
定した場合でもこの型になります。浮動小数点
数ですので、丸め誤差が発生します。PHPに
限ったことではありませんが、厳密な比較に用
いるのはお勧めしません。ある程度の桁を許容
して比較することが一般的です。

文字列型（string）

　一文字8bitの集合体、文字の集まりである型
です。バイナリを扱うこともできます。つまり、
画像などのデータを読み込んで処理することも
できます。マルチバイト文字列を扱う場合には、
mbstringというモジュールを使用します。
　画像のサイズを測りたいときにはstrlen関
数が使えます。

<?php
$image = file_get_contents('image.png');
var_dump(strlen($image));

　マルチバイトの文字列の長さを測りたいとき
にはmb_strlen関数を使います。

<?php
mb_internal_encoding('UTF-8');
$mbstr = 'こんにちは、世界！';
var_dump(mb_strlen($mbstr, 'UTF-8'));

　文字列型を扱う関数のマニュアルを読むと、
「この関数はバイナリデータに対応しています」

 ▼リスト5　キーを指定した配列

<?php
$array = array(
 1 => 'hoge',
 0 => 'huga',
 2 => 'bar',
);
foreach($array as $key => $value) {
 echo $key . ' => ' . $value . PHP_EOL;
}

浮動小数点数（float or double）

Sep. 2016 - 6968 - Software Design

　$strのパラメータについて、本来文字列にす
るべきところを配列にした場合、file_get_

contents関数はE_WARNING（警告）を鳴らし
ながらNULLを返してきます。しかし、これはお
かしいです。file_get_contents関数はファ
イルの読み込みに失敗したらFALSEが返ってく
るはずです注4。でも、実際にはNULLが返って
くるのです。では、もっと悪いケースを見てみ
ましょう。

<?php
$str = array();

if (@file_get_contents($str) !== FALSE) {
 echo "ファイルが読み込めました！";
}

　返り値のデータ型の厳格なチェックを行った
にもかかわらず、なぜか「ファイルが読み込めま

オブジェクト（object）

　クラスからnew命令を使って作成したインス
タンスを格納できます。このときのデータ型を
オブジェクト型と言います……普段こういう言
い方をしないのでなんだか不自然ですね。

<?php
$obj = new stdClass();
$obj->a = 1;
$obj->b = 'abc';

var_dump($obj);

　これを実行すると、次のようになります。

$ php obj.php
object(stdClass)#1 (2) {
 ["a"]=>
 int(1)
 ["b"]=>
 string(3) "abc"
}

　初心者向けを大きく逸脱してしまうのでここ
では最低限、「newを使ったら変数にオブジェク
トが入る」くらいの認識でいてください。オブ
ジェクト指向を使わずともプログラムは書けま
す。もし、オブジェクト指向での開発が必要な
プロジェクトの規模になったら、必要に応じて
学習してください。

なぜデータ型の話をしたのか

　PHPはデータ型を強く意識することのない、
動的型付けと呼ばれるプログラミング言語に分
類されます。もともと、そんなに意識すること
のないはずのものを、どうして誌面を割いて紹
介したのか。これには理由があります。
　PHPのマニュアルのビルトイン関数のページ注3

に図3のような説明があります。
　これはいったいどういうことなのでしょうか。
例を使って説明してみましょう。

<?php
$str = array();
file_get_contents($str);

 ▼図2　リスト6を実行

$ php array.php
array(6) {
 ["hoge"]=>
 string(4) "hoge"
 ["huga"]=>
 string(4) "huga"
 ["foo"]=>
 string(3) "bar"
 [3]=>
 int(8)
 [-4]=>
 string(1) "x"
 ["3.8"]=>
 int(9)
}

内部（ビルトイン）関数
注意：関数へのパラメータとして関数が想定
しているのとは異なるものを渡した場合、例
えば文字列を想定しているところに配列を渡
した場合などの場合は関数の返り値は未定義
となります。たいていの場合はNULLを返す
でしょう。しかしこれはあくまでも規約にす
ぎず、これに依存することはできません。

 ▼図3　ビルトイン関数についてのマニュアル

 ▼リスト6　いろいろな値
　　　　 をキーに

<?php
$array = array(
 'hoge' => 'hoge',
 'huga' => 'huga',
 'foo' => 'bar',
 '3' => 8,
 '-4' => 'x',
 '3.8' => 9,
);
var_dump($array);

基本、押さえていますか？
PHPのはじめ方と
学び方
——環境構築からコーディングまで

注4） URL http://php.net/file_get_contents注3） URL http://php.net/manual/ja/functions.internal.php

http://php.net/manual/ja/functions.internal.php
http://php.net/file_get_contents

Sep. 2016 - 7170 - Software Design

マッパーを使ったほうが便利なケースが多いた
めです。今回は初心者向けということでせっか
くですし使ってみましょう。
　ひとまず、SQLiteを使ってみましょう。XAMPP

Control Panelのshellから次のコマンドを実行
します。

mkdir sqlite
sqlite3 sqlite/db.sqlite

　そうすると、SQLiteの操作画面になるので、
次のSQLをたたいてみましょう。

CREATE TABLE crud_sample (
 id INTEGER PRIMARY KEY , text text NOT NULL
);

　これでcrud_sampleというテーブルができあ
がりました。

サンプル作成

　さて、これまでの知識を使ってWebブラウザ
を介したCRUD（Create、Read、Update、Dele

te）のサンプルを作成してみましょう。サンプル
コードを本誌Webサポートページ注5に置きまし
た。ただし約束してほしいのは、これは自分の
パソコン、ローカル環境上で動かすということ
です。先に言っておきます。これは「悪いPHP」
です。筆者の、Webエンジニアとしての人権を
失う覚悟で書きました。理由は後述します。

セキュリティ

　このサンプルコードでは、図4のようにcurl

を使ってリクエストを投げたのちに、ブラウザ
に戻ると不思議なことに「hoge from curl」とい
う項目が追加されています（図5）。
　Webアプリケーションはブラウザからのリク
エストのみならず、このようにHTTPでの通信
ができるのならば、どんなクライアントでも通

した！」という画面が出力されるでしょう。ま
た、@というエラー抑制指定演算子を用いてE_

WARNINGを取り除いているので、どこにバグが
あるのかもはやわからないですね。
　関数の引数には、きちんとマニュアルどおり
の型を指定しましょう。データ型を保証できな
いときはきちんと型チェックを行いましょう（リ
スト7）。
　また、これはPHPに限ったことではありませ
んが、エラーを無視してはいけません。間に合わ
せで作ったらあとあとにツケがやってきます。そ
うならないためにも、エラーが発生したらログを
取り、できればユニットテストを行いましょう。

CRUDができるアプリ
ケーションを書こう

データベースを用意する

　SQLiteというデータベースを使ってみましょ
う。ここでは、PDO（PHP Data Objects）と呼
ばれる、データベースの接続を共通化（抽象化）
した拡張モジュールを使用します。PDOにはプ
リペアドステートメントが装備されており、確
実にデータベースからほしい情報をアクセスで
きます。
　ただし、現状では直接PDOを使うことはあま
りありません。フレームワークなどにあるO/R

 ▼リスト7　マニュアルどおりの型を渡す。型チェック
 も行う

<?php
$str = "hoge.png";

if (!is_string($str)) {
 exit("不正な引数です");
}

if (file_get_contents($str) !== FALSE) {
 echo "ファイルが読み込めました！";
}

 ▼図4　項目を追加するリクエストを投げる

curl -X POST http://localhost:8000/crud_sample.php?mode=add -F "text=hoge from curl"

注5） URL http://gihyo.jp/magazine/SD/archive/2016/201609/
support

http://gihyo.jp/magazine/SD/archive/2016/201609/

Sep. 2016 - 7170 - Software Design

いか、と考えると、先輩や上司をなんとか捕ま
えて頼ること、迷惑をかけてしまうことが必要
ではないかと考えるのです。
　もしもそうした、助けてくれる人がいない、
という状況でしたらPHP勉強会（第4章参照）に
顔を出してみてください。え、早く帰れない？
　「勉強会のために早退します」とか、奥の手と
して「体調悪いので早退します」とか言って、な
んとか時間を作っちゃいましょう。新入社員が
1日くらい早退したところでダメになることは
ありませんよ。

新入社員を教える
先輩・上司のみなさんへ

　とくに、「初めて部下を持つ」先輩や上司の方
にお願いしたいのは、わからないことだらけで
戸惑っている新入社員の方をフォローしてあげ
てほしい、ということです。
　やはり、Webの技術1つとってもどれもが高
度になってきている昨今、PHPのシステムを動
かすとなったらセキュリティ、データベース、
文字エンコーディング、フロントエンド、クラ
ウドやVPSなどのホスティングサービス……
と、1人でカバーできるほどのものではなくなっ
てきていると思います。
　とは言っても、現実には数字（KPI）などの目
標と、後輩が思いどおりに動かないことの板挟
みになってしまうことがあるかもしれません。
しかし、そこで後輩の成長にかけてみてほしい
のです。ﾟ

信ができるようになっています。
　セキュリティに関しては、IPAの記事「安全な
ウェブサイトの作り方」注6や、書籍『体系的に学
ぶ安全なWebアプリケーションの作り方　脆弱
性が生まれる原理と対策の実践』注7を参照して
みてください。

これは悪いPHPです

　このサンプルコードを使えば、基本的な
CRUD操作は可能になりますが、ログイン機能
やセキュリティに関してはほとんど何も考えて
いません。また「MVC」注8のように、テンプレー
トとプログラムの分離がなされていません。
　そもそも、LaravelやCakePHPなどのフレーム
ワークを使ってWebアプリケーションを作るべき
です。それでも、フレームワークを使わずにこの
アプリケーションを作ったのは、ひとまずは基本
的なしくみを理解してほしいと思ったからです。

新入社員のみなさんへ

　すでにみなさんは、研修が終わって、プログ
ラミングを業務で本格的に行っている段階に入っ
ているのかもしれません。そうしたときに必要な
のは、技術力よりも“他人に頼ること”だと思って
います。これは、筆者が他人に頼ることが下手
で、1人で抱え込んでたくさんの失敗をしてし
まったという経験から得た考えです。
　新入社員という立場で、プログラミングにつ
いても、もちろん業務についてもわからないこ
とだらけだと思います。ときにはルールにがん
じがらめになってうまく動けないといったこと
もあると思います。とくに、Webアプリケー
ションの開発というのはさまざまな分野に渡り、
それぞれが非常に専門的になっています。それ
を1人でカバーするのはほぼ不可能なのではな

 ▼図5　ブラウザでサンプルコードを表示

基本、押さえていますか？
PHPのはじめ方と
学び方
——環境構築からコーディングまで

注6） URL https://www.ipa.go.jp/security/vuln/websecurity.
html

注7） 徳丸 浩 , SBクリエイティブ , 2011,ISBN＝978-4-7973-
6119-3

注8） Model View Controllerの頭文字をとったデザインパターン。

https://www.ipa.go.jp/security/vuln/websecurity.html

Sep. 2016 - 7372 - Software Design Sep. 2016 - 73

ライブラリを
導入する理由

　プロジェクト開発を進めるにあたり、すべて
の機能を自分でゼロから開発していくのは非常
に骨の折れる作業です。プログラミングの世界
では、特定の機能を持ったひとまとまりのコー
ド群をライブラリという形でまとめることがあ
り、さまざまな機能のライブラリがGitHubなど
のサービスを通じてWeb上で公開されています。
　無償で利用可能なオープンソースライブラリ
は、数多くのプロジェクトで利用されるととも
に、動作検証として数多くのフィードバックが
ライブラリ開発者のもとに集められます。多数
の動作検証を経たライブラリは、品質も信頼性
も非常に高く、プロジェクト開発に大きなメリッ
トをもたらしてくれます。よく言われる「車輪の
再発明」といった無駄を減らすこともメリットの
１つですし、それに加えて品質の向上にも効果
があると言えます。
　PHPのライブラリでも同様です。多数のユー
ザに利用され、動作検証などを経たライブラリ
は、Webアプリケーションの開発においても大
きな導入上のメリットがあります。
　しかし、ライブラリのような「いわゆる他人の
書いたコード」を無作為にプロジェクト内に取り
込み続けると、運用上での問題が生じて来るで

しょう。ライブラリ内部にはバグが含まれてい
るケースなどもあるため、更新の対応に備えて
おく必要があります。ライブラリ内部の動作を
気軽に検証してみたり、必要に応じた更新作業
を行うためにも、ライブラリとして外部から取
り込んだコードは、プロジェクト固有のコード
と明確に区別して管理されるべきです。

Composerによる
ライブラリの管理

　多くのプログラミング言語では、ライブラリ
を管理するためのツール、いわゆる依存管理ツー
ルが提供されています。RubyにBundler、Node.

jsにnpmといったツールがあるようにPHPには
Composerと呼ばれるツールがあります。
　Composerを通じてライブラリを管理するこ
とで、ライブラリの利便性を損なうことなく、
柔軟にライブラリの管理を行うことができるよ
うになります。
　実際のComposerの利用の流れをふまえなが
ら、ライブラリ管理の重要性を確認していきま
しょう。

Composer
の導入

　PHPでライブラリを使用する場合、最近では
Composerと呼ばれるツールを用いたライブラ
リ運用を採るのが一般的です。Composerはコ

 Author 	後藤 知宏（ごとう ともひろ）
 Mail 	 t.goto@chatbox-inc.com
 Twitter 	@mkkn_info
	 ㈱chatbox（http://chatbox-inc.com/）

PHPによるWebアプリケーション開発で、ライブラリの存在は欠かすことができません。Webアプリケーション
開発歴史の成果がPHPのライブラリ群と言えますので、実にさまざまなライブラリが公開され使用されています。
それらを導入するにあたり管理ツールとしてPearが用いられていましたが、現在ではComposerが使用されて
います。本稿ではComposerの導入から使用方法までいっきに解説します。

効率よく選んでいますか？
PHPのライブラリの
選び方・使い方
——Composerをお勧めする理由

http://chatbox-inc.com/

Sep. 2016 - 7372 - Software Design Sep. 2016 - 73

スの通ったフォルダに配置して準備は完了です
（図3）。

ライブラリのダウンロード

　composerコマンドが使用可能になったら、サ
ンプルプロジェクトとして、空のディレクトリ
を作成し、Composerのセットアップを行いま
しょう（図4）。
　composer initコマンドを実行するといくつ
かの質問が画面上に表示されます。ライブラリ
を利用するだけの場合デフォルトの値でも問題
ありません。　　　キーを押して質問を進めま
す。質問が終わるとcomposer.jsonというJSON

形式のファイルが作成されます（リスト1）。こ
のcomposer.jsonファイルはComposerでライブ
ラリ管理を行うために必要になるファイルで、
初期の状態ではプロジェクトや管理者の名前な
どが含まれています。
　リスト1に記載されたプロジェクトや管理者の
名前は、デフォルトの設定ではPCの設定が反映
されますが、ライブラリをダウンロードするだけ

Enter

マンドツールとして提供されており、コマンド
プロンプトやターミナル上から、ライブラリの
インストールなどの管理作業を行うツールです。
そのため、まずは開発環境でComposerコマン
ドを使用するための、セットアップが必要にな
ります。
　Composerの導入手順は、公式サイトにて詳
しい手順が掲載されています。公式サイトから
「Getting Started」のリンクをクリックすると

インストールの方法を確認できます（図1）。
WindowsとMac OS/Linuxで方法が異なります
ので、環境に合わせた方法を選択してください。

Composerの導入：
Windows編

　Windows環境に向けては exe形式のインス
トーラが提供されています。図1よりダウンロー
ドを行い展開すると、composerコマンドの展開
とパスのセットアップもしてくれます。そのま
まコマンドプロンプトからcomposerコマンドを
実行できるようになります。

Composerの導入：
Linux/Mac OS編

　Linux/Mac OS環境ではコマンドラインから
セットアップ用のダウンローダを用いてセット
アップできます（図2）。
　これを実行してダウンロードできる
composer.pharという名前のファイルが
Composerの本体です。ダウンロードができた
らcomposer.pharを/usr/bin/localなどパ

 ▼図1　Composer公式サイト（英文）https://getco
 mposer.org/

 ▼図2　composer.pharのダウンロード

$ curl -s https://getcomposer.org/installer | php

 ▼図3　composer.pharの移動

$ mv composer.phar /usr/local/bin/composer

 ▼図4　Composerのセットアップ

$ mkdir sample
$ cd sample
$ composer init

 ▼リスト1　composer.jsonの例

{
 "name": "t_goto/sample",
 "authors": [
 {
 "name": "t_goto",
 "email": "t.goto @chatbox-inc.com"
 }
]
}

効率よく選んでいますか？
PHPのライブラリの
選び方・使い方
——Composerをお勧めする理由

https://getcomposer.org/

Sep. 2016 - 7574 - Software Design

　試しにvendorディレクトリを削除し、図7の
コマンドを叩いてみてください。
　削除したはずのvendorディレクトリがふた
たび作成されます。その中を確認してみると
Carbonのフォルダも作成されているのがわかる
かと思います。
　1人の開発者がcomposer.jsonファイルを作成
して共有すれば、vendorディレクトリを共有せ
ずとも、ほかの開発者の環境ではinstallコマ
ンドを実行するだけでライブラリを導入できる
わけです。
　Composerを利用したライブラリ管理を行う
場合、vendorディレクトリは各開発者が各自の
環境でそろえる運用が推奨されています。
vendor以下のライブラリ本体は、開発者間で共
有せず、代わりにcomposer.jsonファイルを共有
し、それぞれの環境でライブラリをダウンロー
ドするのが一般的です。
　Gitなどのバージョン管理ツールを使用する
場合、vendorディレクトリは.gitignoreファ
イルなどを利用してバージョン管理外のファイ
ルに指定してしまうのが良いでしょう。

ライブラリを用いた
コーディング

　Composerを使ってライブラリの使用準備が
できたらライブラリを使ったコーディングに挑
戦してみましょう。さまざまなライブラリを利
用した処理を確認するために、サンプルアプリ
ケーションを用意しました。次のURL注1より

の利用ケースではこれらが影響するケースはな
いため、デフォルトのままでかまいません。
　準備が整ったところで、実際にライブラリを
ダウンロードしてみましょう。時刻ライブラリ
として一般的に用いられるCarbonをダウンロー
ドするためには、図5のコマンドを実行します。
　composer requireコマンドを実行すると
vendorディレクトリが作成され、ライブラリの
ダウンロードが始まります。しばらくすると
vendorディレクトリ内にnesbot/carbonとい
うディレクトリが作成され、内部にライブラリ
の本体ファイルが格納されます（図6）。
　ダウンロードが完了するとcomposer.jsonファ
イルにダウンロードしたCarbonに関する記述が
追記されているのが確認できます（リスト2）。

メンバーとの共有

　このようにComposerによるライブラリのダ
ウンロードでは、ダウンロードされたライブラ
リの種類とバージョン番号とが、composer.json

へ自動で記録されていきます。このcomposer.

jsonによるライブラリの一覧管理は、ほかの環
境で同じライブラリをダウンロードする際に非
常に役立ちます。必要なライブラリの列挙され
たcomposer.jsonが共有されている環境では、記
述されているライブラリの一括ダウンロードが
可能になるのです。

 ▼図5　Composerによるダウンロード

$ composer require nesbot/carbon

 ▼図7　ライブラリの一括ダウンロード

$ composer install

 ▼リスト2　composer.json ファイルの中身

"require" : {
 "nesbot/carbon" : "^1.21"
}

 ▼図6　require後のファイルパス

vendor/

composer

symfony

carbon

nesbot

注1） URL http://github.com/chatbox-inc/composer_sample

http://github.com/chatbox-inc/composer_sample

Sep. 2016 - 7574 - Software Design

サンプルアプリケーション内のpublic/car

bon.phpをブラウザで確認してみると図8のよ
うな画面が表示されるはずです。
　carbon.phpにおける2行目の require文が
Composerのオートローダの読み込みです。個別
にCarbonのライブラリファイルを読み込むこと
なく、autoload.phpのファイルを読み込むだけで
Carbonライブラリの使用を可能にしています。
　Carbonライブラリでは、現在の時刻を
Carbon::now()で取得できるほか、生成された
Carbonオブジェクトをベースに時刻関連の演算
を行うことができます。
　13行目のsubDay関数など生成された時刻を
基準とした減算・加算の処理や（リスト3）、21

行目の現在時刻を基準とした未来判定（リスト
4）が直感的に行えるのが特徴です。
　このほかにも、時刻操作に関する直感的な操
作が豊富に用意されているため、時刻を処理す
る多くの場面でCarbonライブラリが用いられて
います。より詳しい使い方は、公式ドキュメン
ト注2を参照してください。

HTTPクライアントライブラリ
「Guzzle」

　GuzzleはHttpクライアントとしての機能を提
供するPHPのライブラリです。サンプルアプリ
ケーション内のpublic/guzzle.phpをブラウザで
確認してみると図9のような画面が確認できま
す。
　このサンプルアプリケーションでは、IT系の
イベント情報サイトConnpassからPHPをキー

ダウンロードし、composer installコマンド
を実行してライブラリのセットアップを行って
ください。

オートローダのしくみ

　PHPで外部ファイルに書かれたプログラムを
利用する場合、require命令を用いてファイル
を読み込むのが一般的です。
　Composerを利用してダウンロードされたラ
イブラリもvendorディレクトリの中にファイ
ルが配置されるため、ライブラリ本体のファイ
ルをrequireすればその機能を利用できるので
すが、それではライブラリの数が増えてきた際
に、requireが非常に多くなり何かと不便です。
　Composerにはオートロードと呼ばれるしく
みが用意されており、vendorディレクトリ内の
autoload.phpと呼ばれるファイルを読み込む
だけでvendor内のすべてのライブラリが個別
のrequireなしで利用可能になります。

時刻操作ライブラリ「Carbon」

　CarbonはPHP標準のDatetimeクラスを拡張
したライブラリで、さまざまな時刻処理を直感
的なインターフェースで行えるのが特徴です。

注2） Carbon公式ドキュメント（ URL http://carbon.nesbot.
com/docs/）

 ▼リスト3　現在時刻からの減算

$now = Carbon::now();
$now->subDay(1000)->format("Y-m-d")

 ▼リスト4　未来判定の関数

if($birthDayInThisYear->isFuture()){
 ...
}

 ▼図8　サンプルアプリケーション（public/carbon.
　　 phpの実行）

 ▼図9　HTTPクライアントライブラリ「Guzzle」

効率よく選んでいますか？
PHPのライブラリの
選び方・使い方
——Composerをお勧めする理由

http://carbon.nesbot.com/docs/

Sep. 2016 - 7776 - Software Design

Monolog

　MonologはPHPのログ機能を提供するライブ
ラリです。サンプルアプリケーション内の
public/monolog.phpをブラウザで確認してみる
と図10のような画面が確認できます。
　このサンプルアプリケーション内では、app.
logへのログ出力を行っています。ブラウザか
らアプリケーションへアクセスするたびに、
app.logファイル内にデータが追記されていく
のが確認できます。
　Monologで記録されたアプリケーションログ
は、必要に応じて設定からログレベルに応じた
ログのON/OFFが行えたり、ファイルやメー
ル、DBといった複数の宛先へのログの配信な
どを切り替えることができるのが特徴です。
　サンプルアプリケーション内の18～20行目が
ログレベルの設定となります（リスト6）。コメ
ントアウトされている19行目の記述をコメント
解除するとログレベルが変更され、ファイルに
記録されるログの量が変わるのが確認できると
思います。
　開発環境では多くのログ出力を行いたいが、
本番環境では不要なログ出力を絞り、重要なエ
ラーログに絞った監視を行いたい、といったケー
スは多く見受けられます。
　Monologによるログ配信では、ログ記述部分
のコードに手を加えることなく、ログ側の設定
で柔軟にログ記録のしくみを変更できるため、
環境に応じたログ配信仕様の変更にも柔軟に対
応できるのが特徴です。このほかの詳しい使い

ワードにマッチするイベントの情報を一覧で抽
出しています。
　PHPによるHTTP通信は、file_get_cont

ents関数やcurlによって実装することもでき
ますがGuzzleを用いた記述はより直感的に理解
できます。
　サンプルファイル6行目からの処理がHTTP通
信に関する記述です（リスト5）。Guzzleによる
HTTP通信はメソッド名、URLによるシンプルな
記述で、ステータスコードやボディなどの応答デー
タはすべて戻り値の$resを通じて取得できます。
　AWSやTwitter、Slackなどシステム開発で
外部サービスと連携する機会は増えており、こ
うした外部サービスとの連携ではREST APIに
よるHTTP通信を利用するのが一般的です。
　Guzzleを使ったREST API発行のコードは直感
的で理解しやすいうえ、asyncによる非同期での
リクエストをサポートするという点も魅力的です。
　処理に時間がかかりがちなAPIリクエストな
どを非同期に実行することで、全体としてのリ
クエスト時間を短縮できます。
　詳しい使い方などはサンプルコードのほか、
公式ドキュメント注3を参照してください。

注3） Guzzle、PHP HTTP client（ URL http://docs.guzzlephp.
org/en/latest/）

 ▼図10　Monolog

 ▼図11　Packagist（https://packagist.org/）

 ▼リスト5　GuzzleによるHTTP通信

$client = new GuzzleHttp\Client();
$res = $client->request('GET',$url);

 ▼リスト6　loglevelを変更してログを調整する

$loglevel = Logger::DEBUG;
$path = __DIR__.'/../app.log';
$handler = new StreamHandler($path, $loglevel);
$log->pushHandler($handler);

https://packagist.org/
http://docs.guzzlephp.org/en/latest/

Sep. 2016 - 7776 - Software Design

コードであるため、その運用には十分に気を配
らなければなりません。
　Composerが一般的に用いられるより前の、古
いPHP開発の体制下では、手作業でのライブラ
リ管理が行われてきました。
　ライブラリ配布者のHPなどからライブラリ
をダウンロードし、プロジェクト内にコピー＆
ペーストして使用する方法は、単純で簡単な反
面、運用上で多くの問題を引き起こしてきまし
た。

ライブラリとプロジェクトの混合

　プロジェクト本体とライブラリのコードをま
とめて管理した場合、チーム開発などにおける
ソース共有はライブラリを含む全体の配布にな
ります。
　複数のライブラリを使用する場合、小規模な
プロジェクトでもライブラリのファイルによっ
て全体として大きなサイズの配布になってしまっ
たり、SVNなどのバージョン管理ツールを用い
ている場合、多数のadd履歴が追加されるなど
好ましくない結果をもたらします。
　またプロジェクト内にライブラリ本体のファ
イルが含まれている場合、誰かがライブラリの
ファイルを変更してしまうかもしれません。ラ
イブラリはバグ修正などの更新に耐えられるよ
う、必ず配布時の状態を維持しておくのが望ま
しいはずです。
　もしライブラリ本体のコードへ次々に変更が
加えられてしまったら、ライブラリ本来の動き
は次第に失われていき、配布サイトで提供され
ているようなドキュメントやサポートなどの情
報も意味を持たなくなってきます。

ライブラリの更新

　ライブラリは、プロジェクト本体とは平行し
て開発・メンテナンスが進められるため、日々
仕様変更や更新などが追加されます。
　プロジェクトで使用するライブラリにこれら
の更新を取り込む際に、ライブラリに独自の変

方はMonologのGitHub注4ページを参照くださ
い。

さまざまなライブラリ

　PHPの世界では、紹介した以外にもさまざま
なライブラリが公開されています。Composer経
由で手軽に導入可能なライブラリの一覧は
Packagistというサイト上で管理されています
（図11）。
　Packagistはすべての開発者に開かれており、
GitHubを通じて誰でも気軽に自分のライブラリ
を登録できます。最近では多くのライブラリが
Packagistに登録されComposer経由で気軽に

ダウンロードできるようになっていますが、
Packagistに登録のないライブラリでもプロジェ
クトに導入できる、というのもComposerの魅
力の1つです。
　GitHubやBitbucket上に登録された個人リポ
ジトリのライブラリやPEARのライブラリなど
に加え、zip形式のライブラリも設定しだいで
Composer経由の導入が可能なため、必要なラ
イブラリがPackagistに登録されていなくても
対応可能、という点は古いライブラリを利用す
るケースなどで非常に重宝する機能です。

ライブラリ運用の
落とし穴

　Composerを通じたライブラリ管理では、
vendorディレクトリを共有することなく、ライ
ブラリのコードは各自でセットアップする方法
が推奨されています。このような運用は一見手
間のように見えるかもしれません。誰かがセッ
トアップしたvendorディレクトリを共有、ま
たはバージョン管理に含めてしまうという方が、
各自でcomposer installを実行する手間も省
けていいのに……という声はしばしば耳にする
ことがあります。
　しかし、ライブラリはあくまで他人の書いた

注4） Monolog（ URL https://github.com/Seldaek/monolog）

効率よく選んでいますか？
PHPのライブラリの
選び方・使い方
——Composerをお勧めする理由

https://github.com/Seldaek/monolog

Sep. 2016 - 7978 - Software Design

ては、PEARと呼ばれるツールが知られていま
す（図12）。今でも一部の古いライブラリを利用
する際には目にする機会があるかもしれません。
PHPにおけるPEARは、古くからPHP向けの
依存管理ツールとして提供されてきましたが、
ライブラリのインストールにinclude_pathの
しくみを用いてグローバルにライブラリをイン
ストールするなど、複数の開発環境を並行で動
作させるのに不便な点があり、また配布される
ライブラリの種類も豊富ではなかったため、あ
まり一般的に利用されているとは言えない状態
でした。
　こうした問題を解決してくれたのがComposer

です。Composerではプロジェクトごとに閉じ
たライブラリ管理を行えるほか、ライブラリの
公開もGitHubなどのサービスを通じて、誰でも
簡単に行えるようになっており、現在、数多く
のライブラリがComposer経由で導入できるよ
うになっています。

ライブラリと
フレームワーク

Composer対応のフレームワーク

　最近のPHP開発では、フレームワークを用い
た開発が主流となっていま
す。プロジェクト内で利用
される特定の機能に関する
コードを提供するライブラ
リと異なり、フレームワー
クはアプリケーション全体
の大きな動きを制御する働
きを持っています。
　今では、LaravelやCaka

PHP3、SymfonyなどCo

mposer対応のフレームワー
クが数多く存在します。
Composer対応のフレーム
ワークでは、ライブラリを
追加することにより、機能

更が加えられていると問題が生じるのは言うま
でもありません。
　ライブラリの更新に対応するためには、ライ
ブラリのバージョン管理とライブラリ本体のコー
ドの維持が必要になります。
　プロジェクトとライブラリをまとめて管理す
る運用では、思わぬ事故でライブラリ本体に変
更を加えてしまったり、ライブラリ導入時点の
バージョンがわからなくなったりと、ライブラ
リの柔軟な更新運用が妨げられてしまうケース
が多々あり、結果として古いライブラリがいつ
までも使われ続けてしまうといった問題が起こ
りがちです。

依存管理ツールの活用

　こうした手運用でのライブラリ管理の問題を
解決してくれるのが、依存管理ツールと呼ばれ
るツールの存在です。依存管理ツールは、ライ
ブラリのダウンロードやインストール、バージョ
ン番号の管理の手法を提供してくれます。プロ
ジェクトメンバーは、ツールを通じてライブラ
リの導入を手軽に行えるため、プロジェクト内
にライブラリの本体をまとめて頒布する必要が
なくなります。
　古くから存在するPHPの依存管理ツールとし

 ▼図12　PEAR（https://pear.php.net/）

https://pear.php.net/

Sep. 2016 - 7978 - Software Design

がら細かい挙動を思い思いにカスタマイズでき
るようになりつつあります。それがSymfony

Componentsです（図13）。

ライブラリを用いた開発スタイル

　ライブラリを用いた開発スタイルは、特定の
機能に関する実装の手間を省き、スムーズに開
発を続けていくことができます。長期的なコー
ドのメンテナンスも視野に入れ、Composerを
用いた適切なライブラリ管理を行うことでライ
ブラリは非常に便利なものとなります。また
Composerでは自分で気軽にライブラリを公開
することもできるため、複数のプロジェクトで
頻繁に利用するコードなどをGitHubを通じて
Packagistへ登録してみるのも、プロジェクト
開発の大きな助けとなるかもしれません。ライ
ブラリを公開することで、ほかの誰かの役に立っ
たり、Pull Requestなどを通じてコードに関す
るアドバイスや改良のアイデアをもらえるかも
しれません。ライブラリ運用を通じて再利用性
の高いコードをメンテナンスし続けることはプ
ログラミング技術の向上に役に立つはずです。
　さまざまなライブラリの利用を通じて、高速
なシステム開発のノウハウや柔軟なコーディン
グのテクニックをぜひ身に付けてください。ﾟ

の追加や拡張が簡単に行えるため、プロジェクト
の必要に合わせて柔軟にフレームワークの姿を
拡張することができます。

ライブラリの学習効果

　開発効率を上げるためにフレームワークを学習
するのは非常に大事なことですが、ライブラリに
関する学習もまた重要な意味を持っています。
　フレームワークは、それぞれに特有の文化を
持っているケースが多く、新しいフレームワー
クの学習は何かと大変なものです。
　Composer対応のフレームワークが多く登場
する現在、ライブラリに関する知識は多くの開
発現場で役立つPHP開発共通のコードテクニッ
クとして役立たせることができます。

フレームワークのライブラリ化

　Symfonyなどのフレームワークでは、フレー
ムワークの機能の一部をライブラリとして切り
分けて提供しているケースもあります。Symfony

フレームワークにおけるSymfony Components

は、フレームワーク内部で提供しているユーティ
リティ関数やサブ機能などをライブラリとして、
ほかのフレームワークなどでも利用可能にした
ものです。
　コマンドラインでのPHP実行をサポートする
Consoleやファイル操作を
サポートするFilesystem/

Finderなどのコンポーネン
ト は FuelPHPや Laravel

など多くのフレームワーク
でも利用されています。
　フレームワークの一部を
部品化するコンポーネント
化の動きは、Composer対
応のほかのフレームワーク
でも見られるようになって
きています。フレームワー
クベースの開発でも自由に
ライブラリを組み合わせな

 ▼図13　Symfony Components（http://symfony.com/components）

効率よく選んでいますか？
PHPのライブラリの
選び方・使い方
——Composerをお勧めする理由

http://symfony.com/components

Sep. 2016 - 8180 - Software Design

フレームワークって
なに？

　そもそもフレームワークとは何でしょうか。
アプリケーションを開発するうえでフレームワー
クが担う役割について知ることで、開発するア
プリケーションに適切なフレームワークを選ぶ
方法を理解しましょう。

フレームワーク＝工法

　建築工事の世界ではドアの大きさから壁の厚

さ、果ては釘の長さにまで、およそ考えつくあ
らゆる物の材質やサイズとその使い方に厳格な
ルールがあります。このようなルールのことを
工法と言い、道具や資材をどう使うべきか明示
します。工法に従って建築工事を進めることで
作業工程は画一化します（図1）。
　アプリケーションにおけるフレームワークは、
建築の世界における工法と言えます。一般的な
アプリケーションに必要とされる機能が標準で
備わっていたり、開発を効率的に進められるよ
う実装方法を手順化していたり、およそアプリ

<?php namespace\App\Http\Controllers;

use App\Http\Controllers\Controller;

class UserController extends Controller {

 public function getIndex()
 {
 return $this->view('user.index');
 }

}

アプリケーションロジックの

HTTP に関する

基になるコントローラー

何をどうするのか

何を表示するのか

コントローラー

壁際にあっても手をこすらない位置
最も耐久性のある蝶番の位置

フレームワーク = 工法
工法もフレームワークも全てが
ルールに基いて決められている

両
方
に
負
荷
が
分
散
す
る
位
置

頭
が
当
た
ら
な
い
高
さ

立
っ
て
い
る
状
態
で
握
り
や
す
い
位
置

 ▼図1　フレームワークは「工法」である

 Author 	はやしりょう
 Twitter 	@ryo88c

Webアプリの開発とは切っても切れない深い関係にあるフレームワーク。オープンソースとして公開されているも
のに絞っても、さまざまなものがあります。本稿ではフレームワークの選び方と使い方、その特徴を解説します。

本命はBEAR.Sundayか
PHPフレームワークの
選び方
——システムの目的から振り返る

Sep. 2016 - 8180 - Software Design

ば、備わっている機能の多くは改修に関するも
のとなるでしょう。つまり、フレームワークは
対象とするアプリを開発するうえで起こるであ
ろう問題への解決方法の集合であると言えます。

ライブラリとの違い

　フレームワークと同じように語られるものに
ライブラリがあります。フレームワークとライ
ブラリは何が違うのでしょうか。これらの違い
を理解することで、アプリケーション開発にお
けるフレームワークの役どころが見えてきます。

ライブラリとは

　フレームワークは工法のようなものであると
述べましたが、それに対してライブラリは工法
を構成する道具や作業手順そのものと言えるで
しょう。フレームワークが文法であるならばラ
イブラリは単語です。単語は単語だけで何らか
の事象を示すことができるよう、ライブラリも
それ単体で何らかの機能を提供しています。

ライブラリとフレームワークの関係

　第２章でも紹介されているSymfony component

は、Symfonyを構成する任意の機能を取り出して
単体で使えるように作られています。Zend

frameworkも同様に機能を単体で使えます。この
ように、ライブラリとフレームワークの関係は択
一的なものではなく、むしろ相補的です（図2）。
　PHPにはComposerというパッケージ管理シ
ステムがあります。依存関係の解決といって、
あるライブラリを使ううえで必要なほかのライ
ブラリを自動的にインストールするようなしく
みがあり、近年のアプリケーション開発には欠
かせないツールとなっています。
　ここ数年の間にリリースされているフレーム
ワークのほとんどはこのComposerを導入して
おり、フレームワークとライブラリの連携が促
進されています。Composerが導入されている
フレームワークは、フレームワークに標準で備

ケーションの開発に必要とされる要素が体系化
されています。また、作業工程が画一化される
副次的な効果として、フレームワークを使った
開発工数の見積もりをより確かなものにします。

問題解決方法の集合

　フレームワークの種類は実にさまざまです。
たくさんの機能を標準で備えているものもあれ
ば、ほとんど何も機能が備わっていないものも
あります。機能が少ないから役に立たないとい
うわけではなく、フレームワークのコンセプト
に基づき「機能を実装しない」ことを選択してい
ます。機能に関するこのような特徴は、どのよ
うなWebアプリを開発するかによりメリットに
もデメリットにもなります。
　たとえばメールアドレスとパスワードでログイ
ンする機能を備えたアプリケーションを開発す
るとします。ログイン時にはフォームに入力され
たメールアドレスが、メールアドレスとして正し
い書式のものかどうかを評価しなければなりま
せん。そのような評価機能のことをバリデーショ
ン（Validation）と言いますが、この機能を自分で
一から実装するのは非常に手間がかかりますし、
メールアドレスの仕様や、正規表現といったさ
まざまな技術への知識が求められます。
　アプリケーションの開発はこのような問題を
解決することの繰り返しで、フレームワークは
開発者に解決方法を提供しますが、その内容に
は一定のルールがあります。
　たとえばLaravelはより多くの種類のデータ
ベースを扱えるようにするため、データベース
の種類によらず一定の方法でテーブルを操作で
きるSchemaというクラスが実装されています。
これにより異なるデータベースを利用している
アプリ同士でも、テーブル操作の実装は近似し
たものになります。
　このような解決方法は、フレームワークが対
象としているアプリがどのようなものであるか
によって決定されます。頻繁に改修されるよう
なアプリを対象としているフレームワークなら

本命はBEAR.Sundayか
PHPフレームワークの
選び方
——システムの目的から振り返る

Sep. 2016 - 8382 - Software Design

ルーティングという機能が備わっています。
たとえば/foo/barというURLをリクエス
トするとFooController::bar()というメ
ソッドが実行されるようなしくみで、URL

を知っていれば対応するクラスとメソッド
名がわかりますし、逆もまた然りです。
　このようなしくみによってプログラムの
読みやすさは向上しますが、読みやすさは
説明的な構文によってもたらされることが
多く、必然的にコード量が増えます。プロ
グラムの品質を一定に保ち保守性を高めな

くてはならないような場合に真価を発揮します
が、実験的なアプリケーションを手早く作らな
ければならない場合には冗長に感じられること
もあるでしょう。

機能を組み合わせて
アプリケーションが開発できる

　フレームワークには、フォーカスしている問
題があり、その問題が解決できるよう最適化さ
れていますので、高機能なフレームワークの場
合フレームワークに備わっている機能を組み合
わせるだけでアプリケーションの大部分ができ
あがるようなものもあります。
　これはプラスチックのレールを組み合わせて
つくった線路の上で電車を走らせるおもちゃの
ようなもので、レール自体を作る手間が省ける
分開発速度が向上し、フレームワークを使う大
きなメリットであると言えます。
　しかし反面、提供されているレールの組み合
わせでは実現できないかたちの線路を作ろうと
すると、既存のレールが持っている特徴を深く
理解し、それらと統合できるレールを自分で作
らなければなりません。フレームワークで考え
るならば、フレームワークを構成しているプロ
グラムを熟読して、フレームワークの内部仕様
に沿った独自の機能を実装しなければならない
ということになります。
　また、このような場合フレームワーク自身の
バージョンアップに伴う後方互換性の管理も必
要となり、フレームワークを使う大きな負担で

わっている機能の交換が比較的容易で、アプリ
ケーションの要件に合わせてライブラリを交換
することでフレームワーク自体をカスタマイズ
するような使い方を可能にしています。また、
このしくみを利用することでフレームワーク標
準の機能を自分が使い慣れているライブラリに
切り替えることもできます。

フレームワークの
メリットとデメリット

　本章ではフレームワークのメリットとデメリッ
トを、フレームワークが持つ特徴の説明を通じ
て述べます。フレームワークが持つ特徴のメリッ
トとデメリットを知り、フレームワークを選ぶ
際の判断材料としましょう。

プログラムを
より読みやすいものとする

　「計算機プログラムの構造と解釈」という本の
序文に次の一節があります。

　プログラム言語は人間が読むために発案された
ものであり、プログラムは人間が読みやすいもの
となるよう書くべきであると提言されています。
フレームワークも同様の考えに基づき、プログラ
ムの理解を助けるさまざまな機能を備えています。
　MVCアーキテクチャのフレームワークには

“プログラムは、人間に読まれるために書くべ
きであり、それがたまたま機械でも実行可能
であるにすぎない。”

ライブラリはフレームワークを構成する機能として
動作するほか、ライブラリ単体でも動作する

ライブラリライブラリ ライブラリ

ライブラリ

フレームワーク

 ▼図2　フレームワークとライブラリの関係

Sep. 2016 - 8382 - Software Design

　進化論には次の有名な一節があります。

　立案された新機能が実装できないということ
は、アプリが事業の成長を制限していることを
意味します。他サービスと競い合っているよう
なWebサービスのアプリに最も求められる性能
は変化への柔軟性です。

受託開発をするシーンで

　受託案件の場合、あらかじめ合意した工数で作
らなければなりません。したがって、フレーム
ワークに最も求められる性質は工数見積もりのし
やすさです。しかし、工数見積もりのしやすさを
フレームワークだけで成立させるのは非常に難し
く、設計をシンプルにすることも大事です。
　たとえば、データベースの設計をフレームワー
クに備わっているO/Rマッパーが解釈できるリ
レーションだけで解決できるようにするなどの工
夫が必要です。また、フレームワークに由来する
問題が起きた時、初めて使うようなフレームワー
クでは解決にどの程度の時間が必要か予測が難
しい場合がありますので、1つのフレームワーク
を繰り返し使い熟練度を高めることも大事です。

開発チームの構成で考える

　他の選び方とは観点が異なりますが、開発チー
ムの構成はほとんどのケースで考慮すべき重要
な指標です。人数はもちろんですが、コミュニ
ケーションの取り方から参加者間の技術力の差
など、開発チームの構成はさまざまな要素によっ
て分類ができます。
　たとえば、全員がリモートで開発を行ってい
る場合、参加者間の技術力の差が気になるよう
なことは稀です。これはリモートで開発をして
いる以上分業が徹底されるからです。反面全員
が同じ場所で開発するような場合には技術力の
差は非常に大きな意味を持つことになります。

◆　◆　◆

“強い者が生き延びたのではない。変化に適応
したものが生き延びたのだ。”

あり、デメリットであると言えます。
　スタートアップのWebサービスがリリースさ
れた直後はピボット（路線変更）が頻繁に起こり、
その内容の予測はつきにくいです。これは、事
前の分析では適切であると判断されたフレーム
ワークがそうではなくなる可能性があることを
意味しています。豊富な機能による開発速度の
向上には、柔軟性が犠牲になる場合が多いと理
解しておくことが肝要です。

フレームワークの
選び方

　これまでフレームワーク自身の役割、ライブ
ラリとの関係性、フレームワークが持つメリッ
トとデメリットを紹介してきましたが、本節で
は状況に応じたフレームワークの選び方につい
て説明をします。

継続開発の有無

　アプリケーションには実際に作ってみなけれ
ばわからないことが数多くあります。そのため、
実験的にパイロット版を作ることなどもありま
すが、このような場合継続して使うことはほと
んどありません。
　そのようなアプリケーションを開発する場合
はフレームワークに高い柔軟性を求める必要は
なく、いかに少ない工数でイメージするものを
作ることができるかが重要です。O/R マッパー
やテンプレート、フォームのバリデーション、
URLのルーティングなど一般的なWebアプリ
に求められる機能がすぐに利用でき、かつ少な
いコード量で実装できるフレームワークが良い
でしょう。

内製で開発する

　「社内の会議で立案された新機能がアプリケー
ションの仕様上実装できない！」というような状
況は避けねばなりませんので、そのような状況
において最も重要なのはフレームワークの柔軟
性です。

本命はBEAR.Sundayか
PHPフレームワークの
選び方
——システムの目的から振り返る

Sep. 2016 - 8584 - Software Design

ワークと大きく異なり、ほとんどすべての機能が
単体でも利用できるようコンポーネント化されて
います。それらのコンポーネントは非常に多くの
フレームワークやライブラリで活用されています
ので、非常に学習効果の高いフレームワークで
あると言えます。

Symfony

　開発や保守の効率化にフォーカスされており、大
規模な開発案件で真価を発揮するフレームワーク
です注3。Zend frameworkと同様に機能がコンポー
ネント化されており、とくにO/Rマッパーであ
るDoctrineは非常に有名で、単体で利用される
ことも頻繁にあります。Zend frameworkと同様、
学習効果の高いフレームワークと言えます。

Laravel

　スキャフォールドや単体テストなど、従来の
フレームワークがフォローしている機能はもち
ろん、Gulpベースのフロントエンドのタスクラ
ンナーが同梱されているなど、昨今のWebアプ
リケーションに求められているデリバリースタ
イルが踏襲されている、非常に高機能なフレー
ムワーク注4です。

CakePHP

　スタンダードでかつ学習コストが低く、フレー
ムワークというもののしくみに慣れるのに適した
フレームワーク注5です。また、日本人の利用者
が非常に多く、日本語で書かれたユースケース
が多いという特徴もあります。

CodeIgniter

　軽量で速度重視であることで知られているフ
レームワーク注6で、比較的自由度が高いことでも
知られています。1人で実験的なアプリケーショ

　このように、開発チームの構成によってあら
われるチームの性質はさまざまですが、基本的
には人数と距離感で考えると良いでしょう。人
数が多いならばシンタックスシュガー注1がしっ
かりとしていて誰が書いても似たような実装に
なるフレームワークが適していますし、技術力
の差が大きかったり、リモートでの参加が多数
を占めたりするような距離感のあるチームであ
れば、機能同士を疎結合できるような機能を持っ
たフレームワークの方が開発しやすいでしょう。

開発の現場がおかれている
状況を見極めよう

　繰り返しになりますが、これらの選び方は択
一的なものではなく相補的なものです。
　受託案件でもリリース後に継続的な開発が求
められるケースもあるでしょうし、技術力に大
きな開きのある編成の開発チームでパイロット
版のアプリケーションを開発することもあるで
しょう。大事なのはそれぞれの状況でフレーム
ワークに求められている性質を見極めることで
す。たとえ状況に見合ったフレームワークを選
べなくても、状況に見合っていないという事実
を認識すること自体が重要です。なぜならば、
その認識を踏まえて体制や心の準備ができるか
らです。

フレームワークの紹介

　最後に、PHPで実装されているフレームワー
クを紹介します。ここで紹介されていないフレー
ムワークだからといって、それが有用ではない
ということではありません。

Zend framework

　現在のPHPパーサであるZend Engineの開発
チームが前身であるZend Technologies注2が開発
しているフレームワークです。ほかのフレーム

注1） 説明的な構文体系とすることで、プログラムに一定の読み
やすさを与えるしくみ。

注2） URL https://framework.zend.com/）

注3） URL https://symfony.com/
注4） URL https://laravel.com/
注5） URL http://cakephp.jp/
注6） URL http://codeigniter.jp/

https://framework.zend.com/
https://symfony.com/
https://laravel.com/
http://cakephp.jp/
http://codeigniter.jp/

Sep. 2016 - 8584 - Software Design

最後に

　いかがでしたでしょうか。今の時代において
Webアプリをフレームワーク抜きで開発するこ
とは考えにくく、初学者であろうと熟練した技
術者であろうと等しく知識が求められます。駆
け足で説明したのでフレームワークを普段から
使いこなしているような人にとっては既知の話
ばかりで物足りなかったかもしれません。
　フレームワークを使うと、フレームワークを
使う前には想像もできなかったほどに開発作業
が効率化されます。しっかりとしたマニュアル
が用意されているフレームワークがほとんどで
すので、中身をすべて理解していなくとも使う
ことができます。
　筆者はWebアプリの受託開発を生業としてい
るため、これまで非常に多くのフレームワーク
を利用してきました。どのフレームワークでも
言えることは、たくさんの開発者の苦労や工夫
が反映されているということです。つまり、フ
レームワークのソースコードはそれ自体が多く
の知見によって成り立っているノウハウの塊と
言えます。
　自分の手に馴染むようなフレームワークと出
会うことができたら、ぜひ一度ソースコードも
読んでみてください。きっと使っているだけで
は得られない新たな発見があります。
　PHPのフレームワークはほとんどがオープン
ソースで、世界中の開発者が協力しあって改善
を続けています。フレームワークを使い、ソー
スコードを読むことであなたもその協力の輪の
中に入ることができるのも、フレームワークを
使う魅力の1つです。
　筆者もフレームワークを通してさまざまな開
発者と出会い、刺激を受けています。あなたと
もそのような関係になることができればと思い、
今回フレームワークというものを紹介しました。
うまく紹介できたかわかりませんが、あなたの
開発環境がより良いものになれば幸いです。ﾟ

ンを開発するような場合に適しているでしょう。

FuelPHP

　FuelPHPで実装されたアプリケーションを、
FuelPHPで実装された、ほかのアプリケーショ
ンからライブラリのように扱うことができる
HMVC注7という珍しいアーキテクチャが採用さ
れているフレームワーク注8です。一度実装した
機能をほかのアプリケーションでも流用したい
というようなニーズのある状況において真価を
発揮します。

BEAR.Sunday

　BEAR.Sundayは、これまで述べたフレーム
ワークとは根本的に思想が異なります注9。ほか
のフレームワークが提供するような、たとえば
フォームのバリデーションですとか、O/R マッ
パーのような機能はいっさい持っていません。
　BEAR.Sundayそれ自体は接着剤のようなもの
で、自身で実装を持たない代わりにあらゆるライ
ブラリを内包することが可能です。バリデーショ
ンやO/Rマッパーもライブラリを導入することで
利用できます。また、上述したフレームワークの
アーキテクチャはすべてMVC（Model View

Controller）モデルですが、BEAR.Sundayはリ
ソース指向アーキテクチャによって実装されてい
ます。
　設計に対する自由度が非常に高く、ほかのフ
レームワークに見られるようなモデルの構造に
対する制約などはいっさいありません。そのた
め、設計に重きが置かれているような現場で非
常に力を発揮します。ちなみに筆者が個人的に
最も好んで使っているフレームワークです。加
えてアスペクト指向でプログラミングできるの
で、業務プロセス上には現れないメタ処理を実
装から分離できるというメリットもあります。

注7） Hierarchical model–view–controllerの略で、従来のMVC
モデルに階層構造を与えた派生的なアーキテクチャ。

注8） URL http://fuelphp.jp/
注9） URL https://bearsunday.github.io/

本命はBEAR.Sundayか
PHPフレームワークの
選び方
——システムの目的から振り返る

http://fuelphp.jp/
https://bearsunday.github.io/

Sep. 2016 - 8786 - Software Design Sep. 2016 - 87

日本PHPユーザ会

　日本PHPユーザ会は2000年に発足した、日
本で最も古いPHPのユーザ会です。ユーザ会と
言っても会員名簿があるわけではなく、実態は
不確定なゆるふわユーザ会です。現在はほとん
ど流量がありませんが、php-usersなどのメーリ
ングリストを運用しています注1。

PHPユーザーズ（日本語）on Slack

　2016年2月に@msngさんが立ち上げた、日本
語でPHPの話をするSlackです。各種勉強会や
カンファレンスでの宣伝効果もあって、参加者
は着実に増え続けています注2。

CakePHP

　おそらく、日本で最も大きいフレームワーク
のコミュニティはCakePHPだと思われます。ド
キュメントの日本語翻訳を共同で行ったり、
CakeFestなど海外カンファレンスの報告会など
も開催されています注3。

日本Symfonyユーザ会

　Symfonyもファンの多いフレームワークです。
日本Symfonyユーザ会は定期的にミートアップを
開催して、ノウハウの共有をはかっています注4。

Laravel Meetup Tokyo

　最近ユーザ数を増やしている新進気鋭のフレー
ムワークがLaravelです。実際の案件でLaravel
注1） URL http://www.php.gr.jp/
注2） URL https://slackin-phpusers-ja.herokuapp.com/
注3） URL http://cakephp.connpass.com/
注4） URL http://www.symfony.gr.jp/　https://symfony.

doorkeeper.jp/

注5） URL https://laravel.doorkeeper.jp/　https://www.
facebook.com/groups/laravel.jp/

注6） URL https://atnd.org/events/70728　https://groups.
google.com/forum/#!forum/fuelphp_jp

注7） URL https://phpstudy.doorkeeper.jp/
注8） URL http://phpblt.connpass.com/

を使っているという話も多く聞くようになりま
した。関連書籍の出版やリアルイベントの活動
も、それらに貢献しているのだと思います注5。

FuelPHP＆CodeIgniterユーザの集い

　CodeIgniterと、そこから派生する形で生まれ
たFuelPHPも、シンプルな構造で人気のあるフ
レームワークです。ここ最近はミートアップの
開催は止まっていますが、ドキュメント日本語
翻訳などの活動は継続中です注6。

PHP勉強会東京

　2005年に第1回が開催され、途中幾度かの中
断を挟みながら、先日めでたく100回目を迎え
た老舗の勉強会です。ここ数年は毎月定期的に
開催されており、毎回50名程度の参加者を集め
ています。驚くのは、これだけの回数を開催し
ているにもかかわらず、常に1/3から半分程度
が初参加だということです注7。

PHPBLT

　2015年末に始まった、参加者全員がライトニ
ングトークをするというコンセプトで始まった
東京の勉強会で、現在まで5回開催されていま
す。比較的“濃い”人たちの“濃い”話題がたっぷ
り聞けます注8。

関西PHPユーザーズグループ

　関西のPHPコミュニティも歴史が古く、何度
か活発化と停滞を繰り返していましたが、2011

総合

PHPプロダクト

地域コミュニティ

 Author 	小山 哲志（こやま てつじ）
 Twitter 	@koyhoge

現在のPHPコミュニティ
は、さまざまなものがゆる
く広く繋がっているという
状態です。本章ではその主
なものを紹介しましょう。

参加しませんか？
PHPのユーザ
コミュニティ
——チャットルームからハッカソンまで

https://slackin-phpusers-ja.herokuapp.com/
http://cakephp.connpass.com/
http://www.symfony.gr.jp/
http://www.php.gr.jp/
https://phpstudy.doorkeeper.jp/
https://groups.google.com/forum/#!forum/fuelphp_jp
https://atnd.org/events/70728
https://laravel.doorkeeper.jp/
https://symfony.doorkeeper.jp/
https://symfony.doorkeeper.jp/
https://www.facebook.com/groups/laravel.jp/
https://www.facebook.com/groups/laravel.jp/
https://groups.google.com/forum/#!forum/fuelphp_jp
http://phpblt.connpass.com/

Sep. 2016 - 8786 - Software Design Sep. 2016 - 87

PHPカンファレンス福岡 2016

　福岡のPHPカンファレンスは、@cakephper

さんのとあるつぶやきから物事が転がるように
動き始めて、ついに昨年開催されたという経緯
があります。さて2回目となる今年のPHPカン
ファレンス福岡は、さらに規模を拡大して開催
されました。2トラック20個の発表に2つのス
ポンサーセッション、8つのLT、さらに懇親会
でも8つ程度のLT発表がありました注14。

PHPカンファレンス関西 2016

　2011年に始まったPHPカンファレンス関西
は、今年で6回目を迎えました。ここ数年は、東
京のカンファレンスよりも積極的にPHP以外の
分野の発表を取り上げていた印象があります。
このような各カンファレンスの微妙な味付けの
違いを楽しむのも、また楽しいものです。
　さて今年のPHPカンファレンス関西では、3

トラック17個の発表、6つのLT、懇親会では
10個のLT発表がありました注15。

PHPカンファレンス 2016（東京）

　17回目となる東京のPHPカンファレンス

2016は11月3日の開催が決まっていて、現在準
備が進んでいるところです。発表やLTの募集、
当日スタッフの募集もまだこれからですので、
興味がある方はインターネット上の情報に注意
していてください（11月3日（木・祝）@大田区産
業プラザPiO）注16。

PHP Matsuri

　カンファレンスではありませんが、PHP

Matsuri（祭り）のことも紹介しておきましょう。
これは泊まり込みで行われる合宿形式のハッカ
ソンです。各人がおのおのテーマを決めて、ま
る一日開発三昧を行い、最後にショートプレゼ
ンをするという形です。開発だけではなく、途
中さまざまな講演や企画もあります。永らく開
催が途切れていましたが、来年初頭を目指して
現在準備中だそうで、すごく楽しみです注17。ﾟ

年に現在の形に落ち着き安定した活動が定着し
ています。ほぼ毎月開催される勉強会はすでに
34回を数え、あとで紹介するPHPカンファレ
ンス関西の主催団体でもあります注9。

Sapporo.php

　札幌はオープンソースカンファレンスが東京
以外の土地で初開催された場所であり、ITコ
ミュニティの古い歴史があります。札幌のPHP

コミュニティは、人の入れ替わりによりアクティ
ブな時期とそうでない時期がありましたが、昨
年あたりからまた活発な活動が始まっているよ
うです。あとで紹介するPHPカンファレンス北
海道の共催団体です注10。

Fukuoka.php

　最近、IT関係がとみに活発で熱い地域が福岡
です。福岡のPHPコミュニティであるFukuoka.

phpでは、20～30人規模の勉強会を不定期に開
催しています。PHPに限らず、他言語やセキュ
リティ、インフラなどさまざまなトピックを扱っ
ていて、誰でも歓迎する和やかな雰囲気だそう
です。あとで紹介するPHPカンファレンス福岡
の主催団体です注11。

Nagoya.php

　名古屋のPHPコミュニティがNagoya.phpで
す。不定期に勉強会が開催されているようです。
内容は初心者向けから深い話まで、多岐に渡っ
ています注12。

PHPカンファレンス北海道 2016

　かつて2012年に一度開催されましたが、その
後途絶えていたPHPカンファレンス北海道が今
年4年ぶりに開催されました。200人の参加者
が集まり、2トラック13個の発表と、7つのス
ポンサーセッション、そして5つのLTが行われ
ました注13。

注9） URL http://www.kphpug.jp/ https://kphpug.doorkeeper.jp/
注10） URL http://sapporo-php.net/
注11） U R L https://www.facebook.com/groups/35555763

4510818/
注12） URL https://nagoyaphp.doorkeeper.jp/
注13） URL http://phpcon.sapporo-php.net/2016/

カンファレンス

注14） URL http://phpcon.fukuoka.jp/
注15） URL http://conference.kphpug.jp/2016/
注16） URL http://phpcon.php.gr.jp/2016/
注17） URL http://www.phpmatsuri.net/

参加しませんか？
PHPの
ユーザコミュニティ
——チャットルームからハッカソンまで

http://www.kphpug.jp/
https://kphpug.doorkeeper.jp/
http://sapporo-php.net/
https://www.facebook.com/groups/355557634510818/
https://nagoyaphp.doorkeeper.jp/
http://phpcon.sapporo-php.net/2016/
http://phpcon.fukuoka.jp/
http://conference.kphpug.jp/2016/
http://phpcon.php.gr.jp/2016/
http://www.phpmatsuri.net/

88 - Software Design

はじめに

　多くのプログラミング言語で、プログラムの
処理や構造を記述する「コード」のための文法以
外に、自由な文章を記述できる「コメント」のた
めの文法が用意されています。コメントはおも
に、コードを読みやすくする目的で使われます。
読みやすいコードのためには、良いコードを書
くことはもちろんですが、コメントを適切に書
くことも大きな助けになります。
　コメントには文法の制約がほとんどないので、
自由に書けます。そのため、プログラマのセン
スや個性が表れやすい部分であるとも言えます。
　本記事では、どのようにコメントを書いて考
えを書き残せば、コードを読みやすくし、作業
をしやすくし、ひいては良いプログラムが作れ
るのかということを考えていこうと思います。
なお本稿で示すコード例は、Javaをベースにし
た仮の言語です。

良いコード >
だめなコード + 良いコメント

　コメントの話をする前提として、だめなコー
ドにどれだけ良いコメントを付けても良いコー
ドにはかなわない、ということを挙げておこう
と思います。
　コメントはあくまでコードの補足であり、コー
ドだけで十分に読みやすく必要なことがわかる

のであれば、コメントは不要です。だめなコー
ドは、読み手を戸惑わせたり読む量を増やした
りと、読みにくくする要素を持っています。そ
こをコメントで補おうとしても、良いコード並
みの読みやすさにはなりません。
　極端な例を挙げましょう。

// この処理は不要
a = ((4 * a + 6) / 2 - 3) / 2;

　この処理は、計算すると結局は元のaになる
のだとすれば不要です。不要なコードというの
はだめなコードの代表です。読まなくていい処
理を読ませるということになるので、コードを
読みにくくさせています。ここに「不要」という
コメントを書いたとしても、このコードを読ま
なくてよくなるわけではありません。単に読む
べき量を増やしています。不要な処理であれば
処理自体を削除し、読みやすくしましょう。
　もちろん、最初から良いコードを書けるわけ
ではないので、補足としてコメントが必要にな
ることもあるでしょう。しかし、コードが最も
読みやすいのは、当然“良いコードに良いコメン
トが付いた状態”です。本稿で考えるコメント
は、「良いコードをさらに読みやすくするための
もの」という前提で進めます。

コメントは必要か

　良いコードを書けばコメントは必要ないとい

「良いプログラム」
 Author 	きしだなおき
 Blog 	 http://d.hatena.ne.jp/

nowokay/

 Twitter 	@kis

コードを読みやすくするための
6つの書き方

のための
「良いコメント」

http://d.hatena.ne.jp/nowokay/

88 - Software Design Sep. 2016 - 89

ば、読みやすくするという目的を達成できます。

// 下位4ビットを反転させる
a = a ^ 0b1111;

　別の例を考えてみましょう。次のような例で
あれば、関数の導入によって読みやすくすると
いうことは難しくなります。

openDevice();
openDevice();

　びっくりするコードです。普通にみると、単
なる作業ミスです。ここでは確実に動作できる
ように、同じ処理を繰り返しているのです。
　本誌の読者にはデバイスに近いコードを書く
人も多いようですので、こんなコードが必要に
なった経験がある方もいらっしゃるかもしれま
せん。カスタムハードウェアを制御するコード
を書くとき、ハードウェア自体もデバイスドラ
イバも市販のものより不安定なために、このよ
うなコードが必要になることもあります。
　このコードを説明するような関数を導入する
としたら、次のようになるのでしょうか。

void openDeviceTwiceToMakeSure() {
 openDevice();
 openDevice();
}

　しかしこれは、関数名として良くないと思い
ます。関数は処理を抽象化するものであり、関
数名には実装の詳細を含めるべきではないから
です。もし二度でも失敗するから三度にしよう
というときには、関数名を付け替える必要も出
てきます。
　この関数は次のようにしたほうがいいでしょう。

/**
 デバイスを確実にオープンする
 */
void openDeviceCorrectly() {
 // 念のため2度オープンする
 //(現状では1度では失敗することがある)
 openDevice();
 openDevice();
}

う話について、もう少し考えてみましょう。
　適切に関数や変数などを導入し、関数名や変
数名をわかりやすく付けることで、コメントが
必要なくなるという考え方があります。しかし、
コメントのほうが表現力は高いので、コードを
どれだけうまく書いても、コメントの表現力を
すべて補うことはできません。またコードは、
動作やパフォーマンス、動作の追いやすさに直
接つながるものなので、単に読みやすさのため
だけにコードを書き換えるということができな
い場合もあります。
　たとえば、次のようなコードがあるとします。

a = a ^ 0b1111;

　これは、変数aの値の下位4ビットを反転させ
るコードです。しかし、多くのアプリケーショ
ンではビット演算が必要になることがあまりな
いので、XOR演算「^」の振る舞いに不慣れな人
も多いと思います。
　これをコメントを使わずに読みやすくしよう
と思うと、関数を導入するという手段が考えら
れます。たとえば、次のようになります。

int invertLower4bit(int n) {
 return n ^ 0b1111;
}
a = invertLower4bit(a);

　関数名によって、下位4ビットを反転させる
処理だということが示されました。けれども、
処理系によってはパフォーマンスに影響するこ
ともあるでしょう。このようなコードが必要に
なる状況では、パフォーマンスにも気を使う必
要があることが多いかと思います。
　反転するビットパターンが増えると、そのパ
ターンごとに関数を定義することにもなります
が、これは現実的ではありません。同じ関数を
複数定義するということは避けないといけない
ので、すでにそのビットパターンを反転する関
数が定義されているかどうか、いちいち確認す
る必要も出てしまいます。
　このコードは、次のようにコメントを入れれ

90 - Software Design

　このようなコメントは、関数名などが適切で
あればなくてもかまいません。もし英語でコメ
ントを書く必要があると、次のようにまったく
コードと同じものにもなります。

// open file.
openFile();

　また、次のように構文を説明するものは、記
述に慣れてくれば不要になるので、その言語の
初学者を対象とするコード以外ではほとんど意
味がありません。

// iを1増やす
++i;

　単にコードの直訳であれば、読むべき量を増
やしているだけということにもなりがちなので、
そのようなコメントは減らしていきましょう。
　ただ、コード中のキーワードやシンボル名の
多くは英語をベースにして記述するため、英語
が非ネイティブであれば日本語に比べて一瞬で
識別しにくく、日本語でコメントを書くことで
読みやすくなるという効果はあると思います。

　 コードの要約
　何行かのコードについて、そこで行っている
ことをまとめるコメントです。

// 三角を描画
graphics.moveTo(100, 10);
graphics.lineTo(150, 70);
graphics.lineTo(50, 70);
graphics.lineTo(100, 10);

　関数に付けるコメントも、要約の1つと言え
ます。代表的なコメントでしょう。

コードからはわからない
コメント

　コードからはわからないコメントとしては、
次のようなものが挙げられます。

・コードの意図
・コードの使い方

　関数は処理を抽象化するために定義し、実装
の説明はコメントで行っています。もしハード
ウェアやデバイスドライバが安定して、一度だ
けのopenDevice関数の呼び出しで確実に動作す
るようになったときには、重複する関数呼び出
しを削除すればいいでしょう。
　このように、コードの説明のためにはコメン
トを付けるほうが適切である場面は多くありま
す。コードはあくまで処理について記述し、コー
ドの意図や制約など、処理に関する情報はコメ
ントで書くようにしたほうがいいでしょう。

コメントの分類

　ここで、コメントを分類してそれぞれについ
て考えてみます。もちろんこのような分類は境
界があいまいであるため、はっきりと分けられ
るものではないですが、考え方の基準として分
類があるとわかりやすくなると思います。
　最初に、コメントの種類を大きく分けると、
コードからわかるものとコードからはわからな
いものがあります。

コードからわかるコメント

　コードに書いてあるコメントというのは、コー
ドをよく読めばわかることを記述したもので、
次のようなものが挙げられます。

・コードの直訳
・コードの要約

　このようなコメントは、変数や関数をうまく
導入するなどしてコードをうまく書くことや、
同じようなコードに慣れることで、不要になっ
たり減らせたりする可能性があります。

コードの直訳
　コードの直訳というのは次のようなものです。

// ファイルを開く
openFile();

「良いプログラム」
のための「良いコメント」

コードを読みやすくするための
6つの書き方

90 - Software Design Sep. 2016 - 91

コードの使い方
　おもにクラスや関数、変数に付けるコメント
で、その使い方をコメントとして書きます。

/**
 読み書きする前にopenを呼び出し、
利用が終わったらcloseを呼び出す
 */
class Device {
 void open();
 void close();
 ...
}

　設定情報を表す変数には、使い方を表すコメ
ントが必要になることも多いように思います。

// 出力先を、fileかdatabaseで指定する
output = file;

　言語によっては、コメントの書き方によって
ドキュメント生成ツールが解釈できるようにな
ることもあり、その場合にはツールに対応した
書き方でコメントを書くほうが良いでしょう。

コードのメタ情報
　コードからはわからないコメントとして代表
的なのが、著作権表示やライセンスなどコード
自体の情報を表すメタ情報です。オープンソー
スプロダクトのソースコードには必ずといって
いいほど、コードの先頭にこのようなコメント
が埋め込まれています。たとえば、OpenJDKの
ソースコードには、リスト1のような著作権表
示が埋め込まれています。
　ライセンスや組織のルールによってソースファ
イルへの記述が求められていることもあり、工
夫によって代替することが難しいコメントです。

文法を補完する
　構文として用意されていない情報で、「こう
いった構文があれば表せるのに」というものをコ

・コードのメタ情報
・文法を補完する
・作業情報

　コードからはわからない情報がコメントとし
て記述してあると、コードを読むときに大きな
助けになるでしょう。このような内容は、あと
から復元することが難しいため、できる限りコ
メントなどで残しておく必要があります。

コードの意図
　コードからはわからないコメントの代表とし
ては、コードの意図があります。このコードで
実際に何をしたいのかという意図です。
　よく、「コメントには、やっていることではな
くやりたいことを書くべき」ということが言われ
ます。コードというのは何かがやりたくて書く
ものですが、やりたいこととその実装が一致し
ないことも多くあります。そのような場合は、
何をやりたくてそのコードを書いたのかという、
コードの意図をコメントとして残しておいたほ
うが良いでしょう。たとえば次のコメントは、
単なるコードの直訳です。

if (line == null) { // 読み込んだ行がnullのとき

　次のようにコメントを書き換えて、nullの判
定によって実際に何をやろうとしているのかを
書くほうが、役に立つコメントだと言えます。

if (line == null) { // 読み込みが終了したとき

　コードの前後や利用のされ方、ライブラリの
仕様などから意図を把握できることも多いです
が、コードやドキュメントの確認に時間がかか
ることも多く、コメントとして残しておけばコー
ドの読みやすさが格段に上がります。

 ▼リスト1　OpenJDKの著作権表示

/*
 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
...（略）...

92 - Software Design

　カウントを半分にすると書いてありますが、
実際の処理としてはカウントを倍にしています。
　このようなコメントが良くないのは、これで
はコードが正しいのかコメントが正しいのかわ
からないということです。
　多くの場合はコメントのほうを信じて、コー
ドが間違っていると思ってしまうでしょう。そ
れを確認するには、前後の処理を見直して整合
性がとれているかを確認し、動かしてみて意図
どおりに動いてみるか確認し、コードの意図を
確認するために仕様を確認するというように、
いろいろなものを確認していく必要が出てきま
す。コメントのせいで無駄な作業が発生するの
は本末転倒です。
　もちろん、最初からこのようなコメントを書
くということは少ないと思います。このように、
コメントとコードがかけ離れてしまうのは、コー
ドを修正したときが多いでしょう。そして、処
理を書き換えたのに関数の説明を書き換え忘れ
るということは本当によく発生します。作業時
はもちろんですが、コードレビューなどでも、
処理が変わったときに対応するコメントがない
か気をつけましょう。

関係ないコメント

　処理とは関係ないコメントも、読む側を戸惑
わせてしまいます。コメントに対応する処理が
そこにないという意味では、ウソの一種と言え
るかもしれません。たとえば次の例です。

// 牛乳を買う
openFile();

　コードに買い物メモを書いてはいけません。
思いついたときに目の前に開いてあったのがそ
のコードだとしても。
　これはあくまで冗談ですが、実際によく起こ
るのは、コードを大きく削除したときにコメン
ト部分の削除を忘れたり、コードの一部を移動
したときにコメント部分を移動し忘れたときな
どです。これも作業時やコードレビューで気を

メントとして表すことがよくあります。
　たとえば、JavaScriptやPHPなど、関数の引
数や戻り値に型を表す構文がない言語では、次
のようなコメントを埋め込んで型を明示すると
いうことがあります。

function /* int */ countWord
 (/* string*/ text)

　このようなコメントは、その情報からコード
の検査を行うためのツールに対応していること
も多く、うまく使えばコードのミスを減らし、
品質を上げることができます。

作業情報
　作業のための情報をコメントとして埋め込む
こともよく行われます。よくあるのが、これか
ら作業する予定を書いておくTODOです。

if (status == 404) {
 // TODO NotFound画面を表示する
 throw new Exception();
}

　IDEによってはコメント中の「TODO」を一覧
できる機能を持つものもあり、そのような機能
を活用すると作業の効率を上げることができま
す。ただ、これらの情報はコメントではなくほ
かのツールで表すほうが適切な場合も多く、大
きなものはタスク管理ツールなど、なんらかの
ツールの利用を検討したほうがいいと思います。

書いてはいけないコメント

　書いてはいけないコメントも挙げましょう。

誤ったコメント

　誤った情報は困ります。つまり、実際の処理
とは異なった説明をするコメントです。
　たとえば次のようなものです。

// カウントを半分にする
count *= 2;

「良いプログラム」
のための「良いコメント」

コードを読みやすくするための
6つの書き方

92 - Software Design Sep. 2016 - 93

　普段はLombokというライブラリを使ってい
るが、このようなコードが必要ないプロジェク
トの一部で、何らかの事情でLombokが使えな
いのでこのようなコードが必要になっている、
ということを表しています。実際は、そのよう
な事情がどのようなものかも書いておいたほう
がいいでしょう。

4 テストに対するコメント

　テストコードでは、確認したい事柄に対して
代表的な値を選んで処理を呼び出し、振る舞い
を確認するようにコードを書きます。そのとき、
コードに残るのは代表として選んだ値だけで、
何を確認したかったのかという情報は残りませ
ん。そのため、何をテストしているのかという
ことがコードからはわかりにくくなります。こ
の場合、たとえばリスト2のようなコメントを
書けます。テストコードとコメントの内容はほ
とんど同じですが、ここでは、このテストが処
理の境界になる値についてのテストであること
を記述しています。すべての値をチェックする
のではなく境界だけを選んだということを示し
ているわけです。このように、どのような方針
でテストを行っているかということも、コメン
トとして書いておいたほうがいいでしょう。

5 コードを書く前に
コメントを書く

　コメントは、コードを書くのと同時か、その
あとで書くことが多いと思います。そうではな
く、コードを書く前にまずコードの概要をコメ
ントとして書くというやり方です。
　混み入った処理を書く場合や、まとまった量
のコードを書く必要がある場合に、まずはコメ
ントとして日本語や仮コードで処理を書いてお
くというやり方で、筆者は心の中で「コメント

つけましょう。

どのようにコメントを
書けば良いのか

　本稿の本題、良いコメントを書くときのやり
方や方針をいくつか挙げてみます。

　コードが実行されるときに暗黙の前提条件が
あれば、記述しておいたほうがいいでしょう。

// 成功率を求める。totalが0の場合はこの処理は
// 呼び出されない。
rate = success / total;

　ここでは、割り算の分母が0になることがな
いことを示して、あらためてチェックを行う必
要がないことを示しています。

2 変更時にはまりそうな
ところに注意書きを書く

　コードを不用意に変更するとうまく動作しな
くなることに、そのコードの記述中に気づく場
合があります。そのときはあとでそのような条
件にはまってしまうことがないよう、コメント
を残しておいたほうがいいでしょう。

// 警告を出す閾値。
// 小さくすると警告が出やすくなるが、
// 5以下だと負荷が高くなり動作に影響する
warningThreshold = 30;

　このような値の設定の条件以外にも、処理の
順番を変えると不具合が出るとわかっている、
といった場合もあります。あとでハマるのは時
間の浪費になります。気づいたときにコメント
を残すようにしましょう。

3 いつもと違うコード

　いつもと違うコードを書く必要があれば、コ
メントでその理由を書いておきましょう。

// Lombokが使えないのでgetterを定義
public int getCount() {
 return count;
}

1 暗黙の条件を記述する

 ▼リスト2　テストコードに含まれない情報をコメントで表す

//境界のテスト
assertThat(checkAge(19)).isFalse();// 19まではFalse
assertThat(checkAge(20)).isTrue(); // 20からはTrue

94 - Software Design

や関数の導入では、

LINE_WIDTH = 80;// 一行の文字数

のように、それぞれに対するコメントを付けて
おいたほうがいいので、コメントの総量は減り
にくいように思います。

メタ情報（アノテーション）

　Javaのアノテーションのように、メタ情報が
付けられるしくみがある場合には、それを活用
することでコメントの代替になります。また、
対応しているツールがあれば、アノテーション
によってコードの品質や実行時のデータの内容
を検証できるようになります。
　たとえばJavaでは、@Deprecatedというアノ
テーションが用意されているので、「非推奨」の
ようなコメントを書くよりもいいと思います。

@Deprecated
void calc() {
 ...
}

　関数の具体的な値に対する結果を例示する場
合には、テストを書くことでコメントの代わり
になり得ます。テストとして書いておけば、品
質の保証にもなります。たとえば次のように、
どのような値を与えるとどのような値が返るか
をコメントに書くことがあります。

/**
 メールアドレスの形式をチェック
 OK:aa@bb.cc
 NG:aa@bb
 */
boolean validateEmailAddress(String address)

　これをテストとして表すとリスト3のように
なります。
　ただこの場合、ドキュメントになるようなテ
ストと、動作確認のテスト、その初期化コード
などが入り交じることになります。動作がわか
りにくい部分についてはコメントとしても書い

ファースト」と呼んでいます。そうすると自然
に、実装に依存しないコメントを書くことにな
り、コードの意図に対するコメントになります。

6 書いたほうがいいかどうか
迷ったときには書く

　さまざまな方針を考えて、コメントを書いて
おいたほうがいいかどうか迷うことがあります。
　書いたコメントが不要だった場合にあとから
消すことは簡単ですが、それに比べると、コメ
ントがなくてわかりづらいことに気づいたとき
にあらためてコメントを書くことは難しいです。
書くかどうか迷ったときには、書いておいたほ
うがいいでしょう。

コメントを書かずに済ます

　ここまで、コメントを書くことについて説明
しましたが、“コメントを書かない”という方針
も考えてみましょう。いくつか、コメントの代
わりになるものを挙げていきます。

シンボル名を適切に指定する

　関数名や変数名、クラス名など、プログラム
中で付ける名前によって、プログラムを読みや
すくできます。コメントとして書こうとしてい
たことをシンボル名にしておけば、コメントが
不要になるということはよくあります。

関数や定数の導入

　次のように、数値が埋め込まれている場合に
は、定数を導入したほうがいいでしょう。

line = total / 80;// 一行は80文字

　次のようになります。

LINE_WIDTH = 80;
line = total / LINE_WIDTH;

　また、関数の中の処理が増えて、コードのま
とまりが複数あるときは、そのまとまりを関数
にしたほうが読みやすくなります。ただ、変数

代わりにテストを書く

「良いプログラム」
のための「良いコメント」

コードを読みやすくするための
6つの書き方

94 - Software Design Sep. 2016 - 95

ブラリの場合には関数の使い方や制
約を詳しくコメントに書く必要も出
てきます。
　例として挙げたように、デバイス
に近いコードでは説明が必要な不思
議なコードも増えます。

　このように、どのようなコメントが必要にな
るかは、コードの種類によって変わっていきま
す。そのため、コードの一部をみてコメントに
対する全体の方針を決めるのは避けましょう。

なるべくコメントの量を
ルールにしない

　コメントに対する全体の方針として代表的な
ものに、「コメントの量」が挙げられます。
　たとえばある調査で、コードを読みやすくす
るコメントの分量はコード10行に対してコメン
ト1行だという結果が出たとします。しかし、だ
からといって、コード10行に対してコメント1

行書くということをルールにしないほうがいい
でしょう。また、コメントを禁止するのも、コ
メントの量に関するルールの一種と言えます。
　このようなルールは、コメントが適切に書け
ていないときに発生しやすいと思います。コー
ド10行に対してコメント1行というルールは、
コメントが少な過ぎるときに発生します。その
ような場合、ルールによってコメントを書くよ
うに仕向けるわけです。
　ただ先ほども説明したように、コメントの必
要量はコードの性質によっても変わります。基
準として設定するというのもありですが、あま
り強制せず「ムダなコメントは書かない」「必要
なコメントは書く」とした結果として、コード
10行に対してコメント1行になったり、まった
くコメントがなかったりとなるのが理想です。

◆　◆　◆
　コードを読みやすくするための良いコメント
の書き方について説明しました。この記事が、
良いコメントを書いて、より良いプログラムを
作るための助けになれば幸いです。ﾟ

ておいたほうがいいと思います。

外部のツールを使う

　昔、ソースコード管理ツールがあまり普及し
ていなかったり高価であったりしたときには、
ソースコードの変更はすべてコメントとして残
すということが行われていました。
　けれども、今はGitなどのツールが使いやす
くなっていて、そのような目的でコメントを付
ける必要はほとんどなくなりました。変更の理
由についても、コミットのコメントに書いてお
けます。まとまった量の説明はWikiなどでド
キュメント化するということもあります。コー
ドの仕様については別のファイルで管理するこ
とも多いでしょう。
　このように、コメントではなく外部のツール
を活用することでより管理しやすくできます。
ただ、コードと別のツールを同時にみるという
ことは煩わしくもあり、また長い間メンテナン
スしているうちに、ツールが使われなくなるこ
ともあります。

コメントの特性について

　最後に、コメントの特性について書いていき
ます。

コードの種類によって
コメントの必要性は変わる

　アプリケーションのコードであれば、コード
の書き方しだいでコメントが不要になっていく
ことも多いでしょう。コメントが必要な部分は、
ライブラリなどで抽象化されて隠されていくか
らです。逆にライブラリには、コメントが必要
な処理が集まっていくとも言えます。またライ

 ▼リスト3　テストとして表す

@Test
public void testValidateEmailAddress() {
 assertThat(validateEmailAddress("aa@bb.cc").isTrue();
 assertThat(validateEmailAddress("aa@bb") .isFalse();
}

96 - Software Design

で発生する雑音などによって、発振回路の出力
のタイミング（周波数や位相）がランダムに変化
する現象です。デジタル回路で実装が容易なた
め、CPU内部の物理乱数発生器に広く使われ
ています。

◆　◆　◆

　これらの他にも、半導体レーザカオス［1］や量
子力学の不確定性に基づくゆらぎを使ったもの
などによって、さらなる高速化が進められてい
ます。これらの装置では、Gbps級の性能を目
指しています。
　本稿では、入手の容易な電子部品を使って製
作できる、数十～数百kbpsの生成速度を持つ
物理乱数ハードウェアを3つ紹介します注1。こ
れらのハードウェアは、組み込み用のマイクロ
コントローラ（MCU）などを使い、物理現象に
よる雑音源を集め簡単なソフトウェア処理を行っ
て物理乱数を得るという構成を取っています。

物理乱数の課題

　物理乱数はランダム性という点では優れてい
ますが、実際に乱数として使うためには次に述
べる問題を解決する必要があります。

 問題その1
　物理現象を電気信号として測定し得られた振
幅（信号の大きさ）やタイミングの情報から0と
1の2進数の乱数列に変換する際、できるだけ
0と1の出現確率がそれぞれ0.5に近くなるよ
うに振幅やタイミングの分布を考えておかない
と、結果に偏りが生じてしまいます注2。

author 力武健次技術士事務所　所長 力武 健次（りきたけ けんじ）
URL http://rikitake.jp/

前回からの流れ

　この連載ではシミュレーションやセキュリティ
確保に欠かせない乱数に関する技術について紹
介します。前回第1回「コンピュータと乱数」（本
誌2016年8月号）では、乱数の一般的性質と、シ
ミュレーション用の疑似乱数について紹介しまし
た。今回第2回は物理乱数の応用と、手頃な物
理乱数ハードウェアの製作例について紹介します。

物理乱数の性質と応用

　物理乱数とは、予測不能な物理現象を観測し
て得られる情報をもとに作られる乱数列のこと
です。広く利用されている物理現象としては、
次のものがあります。

 熱雑音
　電気抵抗を持つ物質中の自由電子が熱によっ
てランダムな（規則性のない）振動を起こす現象
です。A/Dコンバータや高周波増幅器の入力
雑音などの形で観測できるため、比較的容易に
使うことができます。

 ダイオードのなだれ降伏による雑音
　逆方向接続されたダイオードに一定以上の電
圧をかけると広帯域にわたってランダムな雑音
が発生する現象です。オーディオ機器や無線機
器の測定などに利用されています。

 発振回路のタイミングのゆらぎ
　外部と同期させていない発振回路の構成部品

注1） 今回紹介するハードウェアは、あくまで実験用であり、結果に対する一切の保証はありません。筆者および本誌は、運用に使った
場合の結果について、一切の責任を負いません。

「物理乱数ハードウェアを作る」第2回

短期
集中連載

http://rikitake.jp/

96 - Software Design Sep. 2016 - 97

 問題その2
　物理現象は外部の要因で変化します。電子回
路では接続している電源や信号線などから混入
する雑音の影響を受けるため、悪意の第3者が
いれば妨害電波を照射することなどで出力を意
図的に偏らせてしまうことも可能です。これら
を防いで外部の影響を受けにくくするためには、
銅板などで覆ってシールドすることや安定した
電源の確保など、物理的な攻撃を受けにくくす
る対策が必要です注3。

 問題その3
　物理現象で得られた乱数列は、そのままでは
理想的な一様分布からほど遠いもので、その結
果を情報セキュリティの用途にそのまま使うこ
とは推奨できません。統計的な一様性を確保す
るために出力にハッシュ関数などを使ったり、
環境の影響を取り除くため複数の生成装置の
XORを取るなどの後処理が必要です。MCUは
このような演算を行うのに適しています。

ランダム性と
情報セキュリティ

　現在のOSの多くは、予測が非常に困難な乱
数列を発生するしくみを備えています。これら
のしくみの多くは、コンピュータの中で発生す
る各種イベントに付随するゆらぎ注4を利用し
ています。これらのゆらぎの情報を物理乱数列
として扱い、それをseed（連載第1回参照）とし
て暗号学的強度の高い疑似乱数生成注5［2］を行う
ことで、予測が困難な乱数列を大量かつ高速に
生成できます。生成結果はパスワードや暗号鍵
の生成など、情報セキュリティを高める目的に
広く使われています。
　しかし、コンピュータの中で起こる現象はあ

る程度は予測可能であるため、そこから得られ
るゆらぎの量は実用上十分とは言えません。外
部からの悪意をもった操作、あるいはソフトウェ
アの動作の影響などでゆらぎの程度が少なくなっ
てしまうと、ランダム性の高い疑似乱数を作り
続けることができなくなります。擬似乱数の種
（seed）としての情報は、どんな状態でも十分な
量を得られるようにしておく必要があります。
　今回紹介する物理乱数ハードウェアは、コン
ピュータの他の部分とは独立してランダムな情
報を継続的に生成することで、それを利用する
OSのセキュリティを結果としてより高めるこ
とを主たる目的にしています。また、設計と製
作の過程がわかっている実装を使うことで、悪
意の第3者に乱数列を歪められることを防ぎ、
セキュリティ上の問題を防ぐねらいもあります。

今回紹介する物理乱数
ハードウェアの概要

　今回紹介する物理乱数ハードウェアは次の3

つです。関連情報はすべて公開されています。

 avrhwrng［3］

　筆者の製作したArduinoボードを使ったものです。
80Kbps程度の出力が得られます。ハードウェアは
CC-BYライセンス、ソフトウェアはMITライセンス
です。

 NeuG（ノイジー）［4］［5］

　飛石技術（Flying Stone Technology、FST）の
新部裕さんによるものです。STMicroelectronics

社（以下STM社）のSTM32F103 MCU（ARM Co

rtex-M3アーキテクチャ）を使用し、FSTの小型
USBデバイスFST-01や、STM社の評価ボー
ドNucleoで動きます。出力は640Kbps程度です。

注2） 今回も前回同様、一様分布あるいは離散一様分布の乱数を得ることを想定しています。
注3） これらのほかにも、接続用の配線が物理的に抜けたりしないように考慮されているか、第3者が触れたりできないような場所にあ

るか、機器がすり替えられないか、などの一般的なセキュリティの原則は当然守る必要があります。
注4） 例えばマウスやキーボード、タブレットなどの人間による入出力機器の操作や、ネットワーク上のパケットの到着間隔、ハードディ

スクのアクセス時間などには、一定のゆらぎが観測できます。
注5） 参考文献［2］には、FreeBSD 11.0以降で採用された暗号学的強度の高い疑似乱数生成アルゴリズムFortunaが詳しく解説されてい

ます。

「物理乱数ハードウェアを作る」第2回

98 - Software Design

ソフトウェアはGPLv3ライセンスです。

 rtl_entropy［6］

　ソフトウェアラジオR820Tで採取した雑音
を処理するためのソフトウェアの名称です。
2.4Mbps程度の出力が得られます。ライセンス
はGPLv3です。

Arduinoボードを使った物理
乱数生成装置avrhwrng

　筆者の設計開発した avrhwrngは最初に
Arduino Duemilanove上に実装し［7］、2015年に
はArduino UNO R3でも動作することを検証
しました。2016年からはFreeBSDシステムに
接続して運用実験を続けています（次回第3回
で紹介予定）。本体の写真を写真1に
示します。
　avrhwrngは、トランジスタの一部
を逆方向接続したダイオードとして使
い、そのなだれ降伏による雑音を増幅
して5V系のデジタル信号にする雑音
信号生成器を独立して2つ備えていま
す。雑音信号生成器部の回路図を図1
に示します。左側の2つのトランジス
タ（1つはベースとエミッタの間を逆
方向接続したダイオードとして使って
います）が雑音信号を生成し、右側の
増幅器（74HCU04の中のインバータ
を3つ直列にしたもの）でデジタル信
号として増幅を行います。
　avrhwrngのトランジスタ部分の出

力を図2に示します。この出力を増幅してデジ
タル信号とし、2系統分まとめた結果を図3に
示します。2つの系統の間に相関がないことが
わかります。これらの雑音信号をArduinoボー
ド上のMCUであるATmega328Pを使ってサン
プリングとフィルタ処理を行い出力します。
　avrhwrngで行っているダイオードの逆方向
接続による雑音の生成には12V程度の直流電
源が必要なため、外部からACアダプタで
Arduinoボードの動作電源を兼ねて供給する必
要がありました。現在は5Vから12Vへ変換す
るためのDC-DCコンバータを備えており、
USB電源のみで動作させることができます。
このDC-DCコンバータ部分の回路を図4に示
します。写真1の左側にある8ピンDIPパッケー

 ▼写真1　avrhwrngの全体写真

 ▼図1　avrhwrngの雑音信号生成器部分の回路図

 ▼図2　 avrhwrngのトランジスタ部から出力されたアナログの雑
音信号

短期
集中連載

98 - Software Design Sep. 2016 - 99

ジがこのDC-DCコンバータの部分で
す。
　avrhwrngのATmega328Pでは、そ
れぞれの雑音源からの出力を2.875μ
秒の周期で動く内部タイマに同期させ
てサンプリングし、2ビット得られた
ところでフォン・ノイマン・フィルタ
（図5［18］［19］）にかけて連続した2ビット
が同じ状態になることを防ぎます。そ
してこの結果から得られた2バイト（16

ビット）をバイト毎にXORして、結果
を出力します（図6）。これによって毎
秒約10KBの物理乱数を得ることがで
きます。出力はArduinoボードのUSB

インターフェースを介して送ります。
ホスト側からはランダムなバイト列を
送るUSBシリアルデバイス（速度は
115,200bps）に見えます。
　ATmega328Pのソフトウェア開発は、
8bit AVR MCUの代表的な開発環境で
あるavr-gccとavr-libc［8］を使って、直
接C言語のみで行っています。Arduino

IDEのライブラリを使用しなかったのは、

 ▼図5　フォン・ノイマン・フィルタの動作原理 ▼図6　avrhwrngの処理の流れ

Arduino PD7端子のデジタル雑音源

タイマによるサンプリング ※1

フォン・ノイマン・フィルタ
その1 ※2

各フィルタから有効な結果が得られ
次第、バッファに溜めて出力

フォン・ノイマン・フィルタ
その2 ※2

タイマによるサンプリング※1

Arduino PD6端子のデジタル雑音源

出力結果が16ビット分
溜まったら8ビットごと
に分けて2バイトとし各
バイト同士にXOR演算
を行って8ビット（1バ
イト）の結果を出力

※1）PD6とPD7両端子のサン
プリングは同時に行う

※2）フォン・ノイマン・フィ
ルタの結果が無効だった
場合は何も出力せず、さら
に入力をサンプリングし
再試行する

 ▼図3　 avrhwrngの雑音信号生成部2系統が最終的に出力する
デジタル信号を並べたもの

 ▼図4　 avrhwrngの5Vから12Vへ変換するDC-DCコンバータ
部分の回路図

　0と1の2進数で示されるランダムな信号に対
し、2回サンプリングを行い、両方の値が同じ場
合は結果を捨てて再試行し、違う場合は有効な
値として1ビットの有効な結果とする。
　この方法を使えば、サンプリング元の0と1の
発生確率が同じでなくても、有効な結果につい
ては、0と1の出現確率を同じにすることができる。
1951年に提案されたこのアルゴリズムを「フォン・
ノイマン・フィルタ」（参考文献［18］［19］）という。
　ただしこの方法では、意図的に1回目の値と2
回目の値を違うものに変えた場合には、偏りを
なくす効果はまったくなくなる。つまり、1回目
と2回目の結果の間の相関が一切存在しない（独
立試行である）ことが前提であることに注意が必
要。

1回目の値 2回目の値 得られる結果
0 0 無効（再試行）
0 1 0
1 0 1
1 1 無効（再試行）

（※注：上の表では結果には1回目の値を取ってい
るが、2回目の値を取っても確率的性質は変わらない）

「物理乱数ハードウェアを作る」第2回

100 - Software Design

極力高速化を目指したから
です。
　avrhwrngはホストなしで
も独立して動作できるため、
他のArduinoのハードウェ
アと組み合わせることも可
能です。筆者は外部電源供
給だけで動く1～6までのサ
イコロ同様の数字を物理乱
数を元に表示する装置
avrdice［9］（写真2）注6を開発しました。この装置
ではLCDとLEDで同じ内容を重複して表示す
るようにし、サイコロの値の変化がわかるよう
にしています。

STM32F103による物理
乱数生成装置NeuG

　飛石技術が設計販売しているSTM社の
STM32F103 MCUを使ったハードウェアFST-

01［10］は、GNU Privacy Guard（GnuPG）の秘密鍵
保持と暗号計算をするための暗号トークン用とし
て開発され、そのソフトウェアとしてGnuk［11］が
提供されています。NeuGはGnukの中の物理乱
数生成部分を独立して実装したもので、概念図［12］

によればSTM32F103に内蔵されているA/Dコン
バータを使い、基準電圧や外部温度、未使用入
力端子の電圧などから得られるゆらぎの情報を内
蔵のCRC32計算ユニットでハッシュ処理し、さ
らにその結果をSHA256を使ってより一様性を高
めた情報を出力します。NeuGはUSBのCDC/

ACMデバイスであり、ホストからはモデムとして
見えるため、avrhwrng同様にシリアルデバイスと
して扱うことができます。
　NeuGの動くハードウェアとしてはFST-01に
限らず、STM社の提供するSTM32 Nucleo

F103RB注7など市販のボードが利用可能です［13］。

また、STM32 Nucleoのデバッガ部分（ST-Link/

V2-1）はSTM32F103で動作しているため、こ
の部分のファームウェアを書き直すことでNeuG

を動かすことができます（写真3[20]）。筆者は数
台この方法でNeuGを動かしてFreeBSDへの物
理乱数供給源として使っていますが、数週間以
上にわたって安定して動作した実績があります。
　なお、NeuGとGnukはGPLv3ライセンスで公
開され、USBのベンダーID/プロダクトID（VID/

PID）は特定非営利活動法人フリーソフトウェアイ
ニシアティブ（FSIJ）［14］が管理しています。FSIJ

のUSB VID/PIDは個人の利用、あるいは実験用
の再配布を伴わない利用だけが既定の条件として
許可されているため、その他の商用利用には別の
方法でUSB VID/PIDを取得することが必要です。

rtl_entropyとソフトウェアラジオ
を使った物理乱数生成装置

　無線信号を直接デジタル処理して受信するソ
フトウェアラジオは技術の普及に伴い各種製品
が入手できるようになりました。R820Tという
チューナーと、RealTekのRTL2832Uという解
読器を使ってUSB2.0で接続できるUSBドング
ル製品が比較的安価にて購入できます注8。この
受信機はFM放送を聞くためなどのラジオとして
も活用できますが、無線受信部の熱雑音を利用

注6） 本稿執筆時ではまだ予定ですが、2016年8月6日 /7日の両日に開かれるMaker Faire Tokyo 2016の「理科教育研究フォーラム」に
て展示される予定です。

注7） 本稿執筆時（2016年7月上旬）には秋月電子通商（通販コード M-07724）、スイッチサイエンス (PLU# 1618）で入手可能です。
注8） 本稿執筆時（2016年7月上旬）にはAitendoにて「ワンセグRX DVB-T+DAB+FMR820T高性能受信機 ［R820T］」という名称で入手可

能です。

 ▼写真2　 avrhwrngを応用した電子サ
イコロ装置avrdice

 ▼写真3　STM32 Nucleoのデバッ
　　　　ガ部を使ったNeuGの実
　　　　装例 [20]

短期
集中連載

100 - Software Design Sep. 2016 - 101

した物理乱数発生器としても使うことが可能です。
　rtl_entropyという生成ソフトウェアでは、ソ
フトウェアラジオ機器を接続するためのライブラ
リrtl-sdr［15］を使い、内部でさらにフォン・ノイ
マン・フィルタ、FIPS 140-1に基づく検定［16］、
そしてKaminsky debiasing［17］のテストを通った
もののみを出力することで、物理乱数としての品
質を高めています。筆者の実験では、毎秒
300KB相当の出力を得ることができました。
　なお、R820Tを使ったソフトウェアラジオ
を乱数生成器として使う際は、アンテナ端子に
ダミーロード注9を接続しないと、十分なレベ
ルの雑音を得ることができませんでした（写真
4）。また、この機器は電波の受信機として動
作していますので、周囲の電磁雑音などの影響
を受ける可能性があります。得られる乱数列の
量も多いため、ホスト側のCPUの負荷も大き
くなります。筆者は数日間の動作は検証してい
ますが、それ以上に安定した物理乱数を生成し
続けられるかどうかについては長期動作による

検証が必要と考えます。

次回予告

　今回は物理乱数発生器の原理と、そのハード
ウェアの製作例について紹介しました。次回は
今回紹介した物理乱数ハードウェアをOSで活
用するために必要な知識であるOSの乱数生成
の機能としくみ、そしてそれらの利用の仕方に
ついて紹介します。ﾟ

［1］ 内田 淳史、「光のランダム現象を応用した超高速物理乱数生成器の研究開発の最新動向」、レーザー研究、Vol. 39、No. 7、pp.
508-514、https://www.jstage.jst.go.jp/article/lsj/39/7/39_508/_pdf

［2］ Niels Ferguson, Bruce Schneier, Tadayoshi Kohno, "Cryptography Engineering: Design Principles and Practical
Applications", Wiley, 2010,ISBN-13: 978-0-470-47424-2

［3］ https://github.com/jj1bdx/avrhwrng
［4］ http://git.gniibe.org/gitweb/?p=gnuk/neug.git;a=summary
［5］ 筆者によるNeuGのクローンレポジトリ : https://github.com/jj1bdx/neug
［6］ https://github.com/pwarren/rtl-entropy
［7］ 船田 巧、「乱数生成シールド」、http://makezine.jp/blog/2009/04/random_number.html
［8］ http://www.nongnu.org/avr-libc/
［9］ https://github.com/jj1bdx/avrdice
［10］ http://no-passwd.net/fst-01-gnuk-handbook/fst-01-intro.html
［11］ http://git.gniibe.org/gitweb/?a=project_list;pf=gnuk
［12］ http://www.gniibe.org/memo/development/gnuk/rng/neug.html
［13］ 新部 裕、「NeuG USB Device を STM32 Nucleo F103でみんなで作ろう」、http://www.gniibe.org/memo/development/gnuk/

hardware/stm32-nucleo-f103.html
［14］ http://www.fsij.org/
［15］ http://sdr.osmocom.org/trac/wiki/rtl-sdr
［16］ http://csrc.nist.gov/publications/fips/fips140-1/fips1401.pdf（Section 4.11.1 と 4.11.2）（ただし現在は規格としての意味は持

たない）
［17］ https://dankaminsky.com/2012/08/15/dakarand/
［18］ John von Neumann, "Various Techniques Used in Connection with Random Digits", Notes by G E Forsythe, National

Bureau of Standards Applied Math Series, 12 (1951), pp. 36-38. (Reprinted in von Neumann's Collected Works, 5 (1963),
Pergamon Press, pp. 768-770.） PDFファイルの

 URL:https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf
［19］ D. Eastlake 3rd, J. Schiller, S. Crocker, "Randomness Requirements for Security" (RFC4086), June 2005,
 https://www.rfc-editor.org/rfc/rfc4086.txt, Section 4.2 "Using Transition Mappings to De-Skew".
［20］ 力武 健次、「STM32 Nucleo ボードのST Dongle部にプログラムを新たに書き込むには」、

http://qiita.com/jj1bdx/items/2f32d8c8649d7825a9a3

参考文献

注9） 伝送路のインピーダンスを合わせるための電気抵抗。R820Tの場合は75Ωのものが必要です。実際には1/4Wのカーボン抵抗で
十分でしょう。

 ▼写真4　 ソフトウェアラジオを搭載したUSBドング
ルにダミーロードをつけたもの

「物理乱数ハードウェアを作る」第2回

https://www.jstage.jst.go.jp/article/lsj/39/7/39_508/_pdf
http://git.gniibe.org/gitweb/?p=gnuk/neug.git;a=summary
https://github.com/jj1bdx/avrhwrng
https://github.com/jj1bdx/neug
https://github.com/pwarren/rtl-entropy
http://makezine.jp/blog/2009/04/random_number.html
http://www.nongnu.org/avr-libc/
https://github.com/jj1bdx/avrdice
http://no-passwd.net/fst-01-gnuk-handbook/fst-01-intro.html
http://git.gniibe.org/gitweb/?a=project_list;pf=gnuk
http://www.gniibe.org/memo/development/gnuk/rng/neug.html
http://www.fsij.org/
http://www.gniibe.org/memo/development/gnuk/hardware/stm32-nucleo-f103.html
http://csrc.nist.gov/publications/fips/fips140-1/fips1401.pdf
http://sdr.osmocom.org/trac/wiki/rtl-sdr
https://dankaminsky.com/2012/08/15/dakarand/
https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf
https://www.rfc-editor.org/rfc/rfc4086.txt
http://qiita.com/jj1bdx/items/2f32d8c8649d7825a9a3
http://www.gniibe.org/memo/development/gnuk/hardware/stm32-nucleo-f103.html

102 - Software Design

なぜインフラ構成管理を
するのか

　アプリが複雑化する今日では、インフラが1

台のサーバのみという構成はほとんど見当たり
ません。場合によっては何十台何百台ものサー
バを、適切に設定して改善していく必要があり
ます。今回はサーバなどのインフラの構成管理
について、その必要性や概念をあらためて振り
返り、導入の流れなどについて説明します。

Infrastructure as Code

　プロビジョニングツール注1などを使った構成
管理は、インフラ管理を簡易化・自動化するこ
とで管理者の負担やリスクを少なくし、継続的
な改善が可能な状態にすることが目的です。
　その中に、Infrastructure as Codeというイン

フラの状態や更新をコード化して管理を行おう
という考え方があります。ChefやAnsibleなど
をはじめとする多くのプロビジョニングツール
はこの考えをもとにして作られており、すべて
の要件（Configuration）を人間にもわかりやす
いコードにして管理をします。リスト 1は
Chefにおいて「recipe」と呼ばれる、サーバの
要件を記述した簡単な例です。

注1） プロビジョニングとは、サーバなどのインフラを、すぐに
提供できるように設定しておくこと。構成管理の１つ。

　これらをサーバ群に適用するという流れで、
インフラに変更を加えていきます。「動く手順書」
や「動く仕様書」と言うとイメージがつきやすい
と思います。

インフラをコード化する利点

　サーバの設定や状態をコードで記述する最大
の利点は、GitHubなどを使って容易にバージョ
ン管理と共有ができるようになる点です。
　サーバの設定を手動で行う体制では、その作
業を行うのは一部のサーバにログインできる権
限を持った人間に限られるため、管理が属人的
になってしまいます。またインフラがブラック
ボックス化され、管理者が異動や退職などでい
なくなった場合に、中がどうなっているか誰も
わからないということになりかねません。コー
ドによる構成管理をしておけば、誰もがその「動
く仕様書」を読んでサーバがどういう状態になっ
ているかを知ることができます。

　連載第3回目は、サーバなどインフラの構成管理を取り上げます。インフラの構成管理はそれ自
体がすなわちDevOpsと呼ばれることもあり、開発者（Dev）と運用者（Ops）が密接に協力して開
発を進めることで、価値を生み出しやすい部分です。

 ▼リスト1　Chefの recipe例

パッケージマネージャでvimをインストールする
package "vim" do
 action :install
end
httpdデーモンを起動・自動起動設定する
service "httpd" do
 action [:start, :enabled]
end

 Author 出川 幾夫（でがわ いくお）　レバレジーズ株式会社　teratail開発チーム　 Twitter @ikuwow

第　　回3 インフラ構成管理入門

102 - Software Design Sep. 2016 - 103

　またアプリのコードと同様に、プルリクエス
トによるレビューやCIツールによるテストの
自動化が可能です。変更をアプリエンジニアが
書いて、それをほかのエンジニアがレビューし
てテストし、本番環境への適用まで行うという
フローが可能になるのです。
　またコード化することで、まったく同じイン
フラ構成を簡単に再現できます。これは、本番
とほぼ同一の構成のアプリ開発環境やステージ
ング環境も容易に構築できるということです。
これでテストが容易になり、設定の差分を十分
検証したうえで本番の構成に適用させられます。
　手作業が必要なくなり、ミスが起こりづらく
なるのも大きな利点です。管理対象が多くなれ
ばなるほどその手順は煩雑になり、人間が作っ
た手順書に沿って人間が実行するとなると、ど
んどんミスのリスクが上がっていきます。自動
化が行われることで継続的なインフラの開発が
可能になるのです。
　以上の理由から、構成管理を行うことは今や
必須であると言えます。「うちのシステムは小
規模だから構成管理は不要なのでは？」と思う
方もいるかもしれませんが、構成管理をせずに
属人化しているとスケールすることも難しくな

ります。近年では、小さく導入して始められる
ツールも登場してきていますので、システムが
小規模な場合も他人事ではありません。
　構成管理をしていない状態をアプリの開発に
例えると、バージョン管理ツールを使わずに、
共有サーバなどにある1つのソースコードをみ
んなで触るような状態です。今となっては怖く
て開発できたものではないというのは、よくわ
かるかと思います。

構成管理のツール

　インフラの構成管理にはさまざまなツールを
利用します。数も種類も非常に多いため、サー
バのプロビジョニングに注目して主要なツール
の位置づけや利点を整理します。

インフラの開発を補助するツール

　インフラをコード化すると、「インフラを開
発する」というとらえ方をすることになります
（図1）。開発するためにはVirtualBoxやVMware

など、仮想マシンの管理ができるソフトウェア
を利用することが多いです。またVagrantは、
それらのプロバイダ（仮想化ソフト）のマシンを

コードレビュー
テスト

インフラの
開発

Chef, Ansible, etc.

Serverspec

AWS, DigitalOcean, etc.

本番構成

CircleCI

GitHub

テスト環境

VirtualBox, Chef, Ansible, Serverspec, etc.

ローカルPC

VirtualBox,VMwareなど

 ▼図1　インフラ開発の流れの例

第 回3 インフラ構成管理入門

104 - Software Design

CUIで管理するためのソフトウェアです。
Vagrantfileに仮想マシンの状態を書くことで、
仮想マシンの利用がより便利になります。
　アプリにテストコードを書くように、インフ
ラにもテストが必要です。テストフレームワー
クで有名なものにServerspecがあります。立
ち上がっているべきデーモンや、listenしてい
るポート番号、設定ファイルの内容など、イン
フラの望む状態を記述してテストを実行できま
す。ServerspecはRSpecというRubyのテスト
ツールをもとに書かれており、記述の方法はリ

スト2のように非常に直感的です。Chefや
Ansibleとの連携も簡単です。
　またGitHubや、CircleCIのようなCIツール
もよく利用されます。構成管理の際にはこれら
の機能も享受して開発を進めるのが便利です。

サーバのプロビジョニング

　構成管理のメインとなるのがサーバのプロビ
ジョニングです。これもさまざまなツールがあ
りますが、中でもChefとAnsibleが有名です。
　ChefはInfrastructure as Codeを実現するため
の代表的なツールです。エージェントソフトウェ
アであるchef-clientを管理対象のサーバに入れ、
定期的にそれがChef Serverにアクセスして自
らの状態を収束させる、という動作をします（図

2）。インフラを記述するコードは、おもに
Rubyの文法で書ける recipeとして記述され、
cookbookという単位で再利用や配布が行われ
ます。中央のChef Serverに管理を一元化する
構成を基本としていて、大規模なインフラで威
力を発揮します。

　Ansibleも、できることではChefと似ていま
すが、大きな違いはchef-clientのようなエージェ
ントをインストールしたり、Chef Serverのよ
うな中央を作る必要がない点です。SSHでの
接続さえ可能ならサーバのプロビジョニングが
できるため、小規模から大規模までさまざまな
インフラに利用できます。コードはYAML形
式でplaybookに記述し、roleという単位で再
利用します。
　ChefもAnsibleもホストごとにパラメータを
変えられるので、特別に一部サーバを変更した
り、検証環境を構築することも容易です。
　これらのツールの特徴は冪

べきとうせい

等性です。これは
「同じことを何度しても結果は同じになる」とい
う性質のことです。たとえばPostgreSQLの
デーモンを立ち上げておくという命令を書いた
ときに、すでにデーモンが立ち上がっていれば
何もしませんし、立ち上がっていなければ立ち
上げる動作をします。変更内容を書くというよ
りも、インフラの望ましい状態（要件）を書き、
ツールがサーバ群をその状態に収束させる、と
いうイメージのほうが適しているでしょう。こ
こが、シェルスクリプトなどで設定作業を自動
化する場合と大きく異なる点です。
　ここで紹介した以外にもさまざまなツールが
ありますが、注意すべきことは「構成管理ツー
ルはインフラをブラックボックス化してくれる
ツールではない」ということです。わからない
ことを代わりにやってくれるわけではありませ
ん。それぞれのコードで、だいたいどういう処
理が裏で実行されているのかを理解しておくの
が理想です。

　またプロビジョニングツールは、
JenkinsやCapistranoなどのデプ
ロイを自動化できるツールとも異
なります。Dockerによるコンテ
ナ仮想化や、Terraformによるク
ラウド全体の構成管理ツールとも
やや立ち位置が違います。ツール
の得意分野を理解し、適宜組み合

 ▼リスト2　Serverspecの例

OSがRHELの場合、httpdデーモンを自動起動設定、起動状態にする
describe service('httpd'), :if => os[:family] == 'redhat' do
 it { should be_enabled }
 it { should be_running }
end
80番ポートが開いている
describe port(80) do
 it { should be_listening }
end

104 - Software Design Sep. 2016 - 105

わせてしくみを作る必要があります。

使いやすい構成管理
を実現するまで

　構成管理のしくみを新しく作った
り変えたりする場合は、新しいツー
ルの導入をほぼ確実に行うことにな
ります。このとき、ツールを導入す
る目的を明確化し、複数のことを一
度にやらず、1つずつ変えていくの
が大切です。
　これから新たに構成管理のしくみ
を導入する場合は、まずチームメン
バーの理解をしっかりと得る必要があります。
基本的に、構成管理されたインフラは手動で変
更を行わないので、作業のフローが大きく変わ
ります。構成管理はチームにとって確実に必要
なものといえど、ツールを1つ選定したり、実
際にインフラをツールの管理下に移行するまで
に、多くの手間と時間がかかります。チームを
巻き込んでおかないと、手作業を行うのと同様
に“孤独なインフラ管理者”が現れ、ツールの利
点が活きなくなります。
　筆者が以前いた職場では、短期間しかいない
サーバ管理者によってアドホックに変更が行わ
れていたので、サーバ設定の全貌がまったくわ
からず、ビクビクしながら改善を行っていまし
た。やっと全貌を理解できた自分も近々別の職
場に移動することが決まっていたため、このま
まではまずいと思い、インフラ状態の共有を第
一の目的としてChefを導入しました。
　現状稼働しているサーバ群は、少しずつ切り
出しながら構成管理ツールで作りなおしていく
のがベストです。このとき、稼働し始めてしば
らくしてから構成管理を始めるという選択が必
要な場合もありますが、再現可能なインフラが
実現できていない状態を脱するために、なるべ
く早くにこれを行う必要があります。
　バージョン管理の単位によって再利用のしか
たが変わり、管理のしやすさも異なってきます。

Chefでは cookbook、Ansibleでは role単位で
バージョン管理をするのがベストプラクティス
とされています。オープンソースとして公開さ
れているcookbookやroleなどもあるので、ぜ
ひ使っていきましょう。
　導入時にはDigitalOceanやAWSなどのクラ
ウド環境を使って、自動テスト（CI）の環境も
同時にセットアップすると良いでしょう。なる
べく本番環境とまったく同じ環境を作って、検
証に利用するのをお勧めします。ここまでしっ
かりと構成管理を導入すれば、基本的にアプリ
の開発と同様の流れで、インフラの開発が行え
ることでしょう。

◆　◆　◆
　今回はインフラの構成管理とプロビジョニン
グのしくみの基礎についてまとめました。構成
管理は導入して終わりではなく、随時そのしく
みも含めて改善していくものです。インフラを、
ビジネスの現場に近いアプリエンジニアにも触
れやすい状態にすることで、ビジネスで必要と
なるインフラを構築することが容易になります。
　最近ではAnsibleを始めとして手軽に構成管
理が行えるツールが増えてきており、日本語の
情報も集まってきています。個人でサーバの構
成管理をセットアップしたり、すでにプロジェ
クトで利用されている構成管理ツールのコード
を読むと、学習の助けになるでしょう。｢

recipeにしたがってサーバの状態を変更

定期的に最新の
cookbookを取得

cookbook,
node情報,

ポリシー, etc.

chef-client

ローカルPC

Chef Server

chef-client

サーバ サーバ

 ▼図2　Chef Serverを使った構成管理の例

第 回3 インフラ構成管理入門

106 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

　これまでの連載で、次の準備までできました。

・ホストシステム（デフォルト設定のCentOS
6.7上でKVMが動作）

・仮想マシン「kvm1」（Windows 7をOSとし
たゲストシステム）

・仮想マシン「kvm2」（FreeBSD 10.3をOSと
したゲストシステム）

　今回は、仮想マシンkvm1、kvm2の起動／
シャットダウン操作および、ホストと仮想マシ
ンのネットワークの設定状況を確認します。

仮想マシンの起動とOSの
シャットダウン

　作成した仮想マシンを起動／シャットダウン
する方法をまとめておきます。シャットダウン
の方法は2通りあり、仮想マシンマネージャー
画面で「シャットダウン」するか、仮想マシンの
ゲスト内で「シャットダウン」します。

仮想マシンの起動

　仮想マシンの起動はデフォルトでは手動で行
います注1。図1のように仮想マシンマネージャー
画面の「仮想マシンの電源を入れる」アイコン（右
向き三角）か、または仮想マシンのアイコン上
でマウスを右クリック→［実行］で行います。

注1） ホストシステムの起動時に自動的にゲストシステムも起動
させる自動起動は次回以降に解説。

　また、仮想マシンを起動したままホスト
（CentOS 6.7）を停止させると、仮想マシンは起
動状態のまま保持され、ホスト再起動時にその
状態が再現されます注2。

仮想マシンマネージャーでの
「シャットダウン」

　仮想マシンマネージャー画面でシャットダウ
ンを行う場合は、図2のように「仮想マシンを
シャットダウン」アイコンからか、または仮想
マシンのアイコン上でのマウス右クリックから
の［シャットダウン］で行います。

ゲストOSでの「シャットダウン」

　仮想マシンのゲストOS内でシャットダウン
を行う場合、Windows 7では通常の［スタート］
→［シャットダウン］で行います。
　FreeBSD 10.3（CUI）では、rootでログイン
後のコマンドプロンプト状態（図3）から次のコ
マンドで電源停止まで行います。

　なお、FreeBSDではLinuxでのように、

を行うと、キー入力reboot待ち（halt）状態にな

注2） これについての詳細も次回以降。

仮想化の知識、再点検しませんか？

使って考える
仮想化技術

第4回 仮想環境の構築（その3）〜仮想マシンの操作と状態確認

本連載は「仮想化を使う中で問題の解決を行いつつ、残される課題を整理する」
ことをテーマに、小さな仮想化環境の構築・運用からはじめてそのしくみを学
び、現実的なネットワーク環境への実践、そして問題点・課題を考えます。仮
想化環境を扱うエンジニアに必要な知識を身につけてください。

笠野 英松（Mat Kasano）
有限会社 ネットワーク・メンター

Author

URL http://www.network-
mentor.com/indexj.html

shutdown -p now ｶ

shutdown -h now ｶ

http://www.network-mentor.com/indexj.html

Sep. 2016 - 107106 - Software Design

仮想環境の構築（その3）〜仮想マシンの操作と状態確認
第4回

ります（図4）。ここで何かキーを入力すると
reboot（再起動）します。この状態のとき、仮
想マシンマネージャーの画面（および、virsh
listコマンド）では仮想マシンの状態は「実行中」
となります。仮想マシンマネージャーのメニュー
アイコンの［強制的に電源OFF］で終了できま
すが、このとき図5のように確認メッセージが
表示されます。このまま「はい」と答えてもいい
ですが、「-p」オプションでの通常終了をお勧め
します。

ゲストOSインストール後の
確認

　OSインストール後、物理ホストおよび各仮
想マシンのそれぞれのシステムで（ログオン／
ログインして）、仮想マシンのネットワーク設
定（アドレス設定）を確認する必要があります。
本連載でのデフォルト処理（前回行った仮想マ
シン作成とOSインストール）のネットワーク接
続はNAT/DHCP接続となります。つまり、ゲ
ストシステムでは自動的に IPアドレスが割り

当てられていることになります注3。
　DHCPの割り当ては物理ホスト内の仮想ネッ
トワーク設定（リスト1）で、192.168.122.2～
192.168.122.254までの範囲となっています。
なお、192.168.122.1は物理ホストの仮想イン
ターフェースに割り当てられていて、192.168.

122.0はネットワークアドレスに、192.168.

122.255はブロードキャストアドレスに、それ
ぞれ予約されています。

注3） dnsmasq/DHCPのアドレスリース時間は、/etc/dnsmasq.
confの「dhcp-range」またはdnsmasqコマンドの「--dhcp-
range」オプションの、最後のパラメータで指定するが、両
方とも無指定の場合は、デフォルト１時間（man 8 dns
masq参照）となる。なお、libvirtのネットワーク設定XML
「/etc/libvirt/qemu/networks/default.xml」にはリース時間
のパラメータはない。

 ▼図1　仮想マシンの起動方法 ▼図2　仮想マシンのシャットダウン方法

 ▼図4　halt状態のFreeBSD

 ▼図5　強制終了の確認メッセージ

 ▼図3　FreeBSD（kvm2）にrootでログインした画面

108 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

物理ホスト側での確認

　物理ホスト側（CentOS）からの仮想マシン
（Windows、FreeBSD）への自動アドレス割り
当ての実際を確認します。
　図6のように、dnsmasqプロセスが起動して
いてDHCP自動 IPアドレス割り当てを行って
いることがわかります。なお、割り当てた IP

アドレスとMACアドレスの対応はリースファ
イル（/var/lib/libvirt/dnsmasq/default.leases）
に格納されていて（リース時間――デフォルト

１時間――を過ぎると再割り当てまで消える）、
MACアドレスは仮想マシン設定ファイル（/

etc/libvirt/qemu/*.xml）の内容を見るコマンド
（virsh dumpxml）でも確認できます。MACアド
レスは仮想マシン作成時に指定（選択）したもの
です。
　図7のコマンド実行で、パケットフィルタ
iptablesの INPUT（着信）チェインではDHCP

サーバ（ホストの bootpsポート）宛着信の、
FORWARD（転送）チェインでは仮想マシンか
らの発信およびその応答の、それぞれのパケッ

 ▼図6　新しい仮想マシンを作るステップ4

 ▼リスト1　仮想ネットワークの設定とホストネットワークインターフェースの設定

<network>
 <name>default</name>
 <uuid>e0a58970-3ef3-4b9d-af36-14b2a6820962</uuid>
 <bridge name="virbr0" />
 <mac address='52:54:00:7B:8F:80'/>
 <forward/>
 <ip address="192.168.122.1" netmask="255.255.255.0">
 <dhcp>
 <range start="192.168.122.2" end="192.168.122.254" />
 </dhcp>
 </ip>
</network>

eth0 Link encap:Ethernet HWaddr 00:17:42:65:C4:A9
 inet addr:192.168.0.111 Bcast:192.168.0.255 Mask:255.255.255.0

virbr0 Link encap:Ethernet HWaddr 52:54:00:7B:8F:80
 inet addr:192.168.122.1 Bcast:192.168.122.255 Mask:255.255.255.0

[root@vm1 ̃]# ps ax ¦ grep -v grep ¦ grep dnsmasq ｶ
 2768 ? S 0:00 /usr/sbin/dnsmasq --strict-order --pid-file=/var/run/libvirt/ ｭ
network/default.pid --conf-file= --except-interface lo --bind-interfaces --listen-address ｭ
192.168.122.1 --dhcp-range 192.168.122.2,192.168.122.254 --dhcp-leasefile=/var/lib/libvirt/ ｭ
dnsmasq/default.leases --dhcp-lease-max=253 --dhcp-no-override --dhcp-hostsfile=/var/lib/ ｭ
libvirt/dnsmasq/default.hostsfile --addn-hosts=/var/lib/libvirt/dnsmasq/default.addnhosts

[root@vm1 ̃]# more /var/lib/libvirt/dnsmasq/default.leases ｶ
1465647904 52:54:00:21:f2:d8 192.168.122.194 user1-PC 01:52:54:00:21:f2:d8
1465647886 52:54:00:4c:a7:44 192.168.122.131 vm2fbsd 01:52:54:00:4c:a7:44

[root@vm1 ̃]# virsh dumpxml kvm1¦grep "mac " ｶ　
 <mac address='52:54:00:21:f2:d8'/>
[root@vm1 ̃]# virsh dumpxml kvm2¦grep "mac " ｶ　
 <mac address='52:54:00:4c:a7:44'/>

 ①仮想ネットワークの設定（/etc/libvirt/qemu/networks/default.xml）

 dnsmasqプロセスの確認

 ↑リース満了日時（1970年1月1日00:00:00からの経過秒数）、MACアドレス、IPアドレス、システム名、
 　クライアントID（ハードウェアタイプ－01＝ethernet：MACアドレス）

 設定名
 識別子
 仮想ブリッジ名
 仮想I/F MACアドレス

 仮想LANから物理LANへの転送設定（デフォルト：NATモード）
 ホスト仮想IPアドレス
 DHCP設定
 192.168.122.2～254割り当て

 ②ホストネットワークインターフェースの設定（ifconfigの出力抜粋）
 実インターフェース

 MACアドレス
 IPアドレス

 仮想インターフェース
 MACアドレス
 IPアドレス

 kvm1のMACアドレス

 kvm2のMACアドレス

Sep. 2016 - 109108 - Software Design

仮想環境の構築（その3）〜仮想マシンの操作と状態確認
第4回

ト許可を行っていることがわかります。
　図8のように、DHCPサーバポートは/etc/

servicesファイル内に記述されていますが、
BOOTP注4ポートはDHCPポートと同じです。
BOOTPは固定・半永続設定で IPアドレスを
割り当て、DHCPは動的・期間設定で IPアド
レスを割り当てる、という違いです。
　図9では、ホストの仮想インターフェース側
から仮想マシンにpingを行いながらtcpdumpで
パケットの流れを見ています。ホストから仮想
マシンにpingを打つと自動的に（ルーティング

注4） BOOTP（BOOTSTRAP PROTOCOL、RFC951）：ディスク
レス IPデバイスのための IPアドレス配布プロトコル。
BOOTPサーバのデータベースで、クライアントのホスト
名／IPアドレス／MACアドレスなどの対応表を持ち、ク
ライアント起動時にその情報を提供する。

情報（図10）にしたがって）仮想インターフェー
スvirbr0から発信します。また、そのMACア
ドレスをarpキャッシュで確認しています。
　仮想マシンの設定ファイルの保存場所は

/etc/libvirt/qemuで、kvm1.xml、kvm2.xmlと
いうファイルで保存されています。各仮想マシ
ンの設定ファイルは本連載で参照するさまざま
な情報を含んでいるので見ておくことをお勧め
します。今回はMACアドレスやイメージパス
の確認で十分です。

仮想マシン1－Windows 7での
確認

　仮想マシン1（KVM1）のWindows 7での確認
は、ログオン後の「コマンドプロンプト」で、次

 ▼図7　DHCPサーバ宛着信と仮想マシン側発のパケット許可

 ▼図8　DHCPサーバポートの確認

[root@vm1 ̃]# iptables --list ｶ
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT udp -- anywhere anywhere udp dpt:domain
ACCEPT tcp -- anywhere anywhere tcp dpt:domain
ACCEPT udp -- anywhere anywhere udp dpt:bootps

ACCEPT tcp -- anywhere anywhere tcp dpt:bootps

ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED
ACCEPT icmp -- anywhere anywhere
ACCEPT all -- anywhere anywhere
ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:ssh
REJECT all -- anywhere anywhere reject-with icmp-host-prohibited

Chain FORWARD (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere 192.168.122.0/24 state RELATED,ESTABLISHED

ACCEPT all -- 192.168.122.0/24 anywhere
ACCEPT all -- anywhere anywhere
REJECT all -- anywhere anywhere reject-with icmp-port- unreachable
REJECT all -- anywhere anywhere reject-with icmp-port- unreachable
REJECT all -- anywhere anywhere reject-with icmp-host-prohibited

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

[root@vm1 ̃]# more /etc/services ¦ grep bootps ｶ
bootps 67/tcp # BOOTP server
bootps 67/udp

 ↑仮想マシン宛応答転送許可

 ↑DHCP/udpサーバ宛着信許可

 BOOTPポートはDHCPポートと同じ。BOOTPはstatic設定で、DHCPはdynamic設定

 ↑DHCP/tcpサーバ宛着信許可

 仮想マシン発転送許可

110 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

存システムIPアドレス）

仮想マシン2－FreeBSD 10.3での
確認

　仮想マシン2（kvm2）のFreeBSD 10.3の場合
には、rootでログインしてから次のコマンドで
ネットワーク設定（I/Fアドレス）を確認します。

　また、/var/db/dhclient.leases.em0（I/F名）内
「option dhcp-lease-time」にリース時間3,600秒
（1時間）を得ています。

のように（DHCP設定による）アドレスと接続確
認を行っています。

・ネットワーク設定の確認（DHCP割り当てア
ドレスや「リース取得」、「リースの有効時間」
がわかる）

　C:¥Users¥user1> ipconfig /all
・物理ホストの仮想インターフェースへのping
　C:¥Users¥user1> ping 192.168.122.1
・物理ホストの実インターフェース側へのping
　C:¥Users¥user1> ping 192.168.0.111
・物理ホストの実ネットワーク側へのping
　C:¥Users¥user1> ping 192.168.0.1（既

 ▼図9　pingとtcpdump/MACアドレス（arpキャッシュ）確認

[root@vm1 ̃]# ping -c 5 192.168.122.194 ｶ
PING 192.168.122.194 (192.168.122.194) 56(84) bytes of data.
64 bytes from 192.168.122.194: icmp_seq=1 ttl=128 time=0.708 ms
64 bytes from 192.168.122.194: icmp_seq=2 ttl=128 time=0.574 ms
64 bytes from 192.168.122.194: icmp_seq=3 ttl=128 time=0.652 ms
64 bytes from 192.168.122.194: icmp_seq=4 ttl=128 time=0.570 ms
64 bytes from 192.168.122.194: icmp_seq=5 ttl=128 time=0.580 ms

--- 192.168.122.194 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4001ms
rtt min/avg/max/mdev = 0.570/0.616/0.708/0.063 ms

[root@vm1 ̃]# tcpdump -i virbr0 ｶ
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on virbr0, link-type EN10MB (Ethernet), capture size 65535 bytes
13:25:00.113266 IP 192.168.122.1 > 192.168.122.194: ICMP echo request, id 6926, seq 1, ｭ
length 64
13:25:00.132825 ARP, Request who-has 192.168.122.1 tell 192.168.122.194, length 46
13:25:00.132853 ARP, Reply 192.168.122.1 is-at 52:54:00:7b:8f:80 (oui Unknown), length 28
13:25:00.133492 IP 192.168.122.194 > 192.168.122.1: ICMP echo reply, id 6926, seq 1, ｭ
length 64
13:25:01.114708 IP 192.168.122.1 > 192.168.122.194: ICMP echo request, id 6926, seq 2, ｭ
length 64
13:25:01.115514 IP 192.168.122.194 > 192.168.122.1: ICMP echo reply, id 6926, seq 2, ｭ
length 64
13:25:05.343119 ARP, Request who-has 192.168.122.1 tell 192.168.122.194, length 46
13:25:05.343141 ARP, Reply 192.168.122.1 is-at 52:54:00:7b:8f:80 (oui Unknown), length 28
^C
25 packets captured
25 packets received by filter
0 packets dropped by kernel

[root@vm1 ̃]# arp -a 192.168.122 ｶ
? (192.168.122.131) at 52:54:00:4c:a7:44 [ether] on virbr0
? (192.168.122.194) at 52:54:00:21:f2:d8 [ether] on virbr0

 ※以下は別端末で上記ping実行中にtcpdumpで記録

 仮想インタフェースでのtcpdump

 arpキャッシュ情報の確認

root@vm2fbsd:̃ # ifconfig -aｶ

Sep. 2016 - 111110 - Software Design

仮想環境の構築（その3）〜仮想マシンの操作と状態確認
第4回

ゲストシステム構築中・
後の問題と対策

　ゲストシステムの構築中あるいは後のトラブ
ルをまとめます。基本的に、構築中は前号のス
テップ4で説明したストレージの問題を除けば、
ほぼそのOS関連のものです。構築後および利
用時は仮想マシン管理が関係するものもありま
す。これについては次回以降に解説します。

Windows 7を仮想マシンマネージャー
画面からシャットダウンできない

　Windows 7で入力待ち（メッセージウィンド
ウが開いている状態）のとき、仮想マシンマネー
ジャー画面の「仮想マシンをシャットダウン」を
行ってもシャットダウンできないことがありま
す。この場合、Windows 7上で対応する入力を
行う必要があります。

物理ホスト側のネットワークから
仮想マシンへアクセスできない

　仮想マシン宛のパケットは物理ホストの仮想
マシンインターフェース発信でしかアクセスで
きません。物理ホストの実ネットワーク上のシ
ステムから仮想マシンにアクセスするためには、
物理ホストのパケットフィルタ（iptables）の
INPUTチェインやFORWARDチェインを変更
する必要があります。
　これについては、仮想マシン利用の回に解説
します。

仮想マシン、仮想マシン
マネージャーの終了

　ゲストOSのシャットダウンではなく仮想マ
シンや仮想マネージャーの終了を行う場合、仮
想マシン画面や仮想マシンマネージャー画面に
ある「ファイル」メニューの「閉じる」や「終了」で
行いますが、仮想マシン画面での「ファイル」メ
ニューからの実行には注意が必要です。
　仮想マシン画面メニューの「閉じる」は「仮想
マシンを閉じる」の意で、「終了」は「仮想マシン
マネージャーを終了する」の意です。ただし、
いずれも仮想マシンの状態をそのまま保持しま
す。

次回予告

　次回はこれまでで作成／インストールした仮
想マシンを2つ（Windows 7とFreeBSD 10.3を
個別に）使って発生する問題や不都合などにつ
いて、その原因や対応策などを考えてみます。
ｴ

 ▼図10　仮想マシンのルーティング情報

連載各回では、読者皆さんからの簡単な「ひとく
ち質問（QA）コーナー」や「何かこんなこともしてほ
しい要望（トライリクエスト）コーナー」を設けて「双
方向連載」にできればと思っていますので、質問
や要望をお寄せください。

宛先：sd@gihyo.co.jp
件名に、［仮想化連載］とつけてください

[root@vm1 ̃]# route -nｶ
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.122.0 0.0.0.0 255.255.255.0 U 0 0 0 virbr0
169.254.0.0 0.0.0.0 255.255.0.0 U 1002 0 0 eth0
0.0.0.0 192.168.0.100 0.0.0.0 UG 0 0 0 eth0

virbr0 Link encap:Ethernet HWaddr 52:54:00:7B:8F:80
 inet addr:192.168.122.1 Bcast:192.168.122.255 Mask:255.255.255.0

 ……★

 ★＝192.168.122.1
 MACアドレス
 IPアドレス

mailto:sd@gihyo.co.jp

112 - Software Design

　大阪を中心に20年間システム開発に携わった
あと、現在は東京で仕事をしている「SQLの伝
道師」ことジーワンシステムの生島です。今回は
取引先の浪速システムズが開発していて、私が
技術アドバイザーとしてかかわっているお料理
レシピ投稿サイトの「月末締め処理」に関するお
話です。
　締め処理というのは、期間中のすべての取引
を走査するようなバッチ処理が走ることが多く、
性能問題が起きやすい場面です。というわけで、
いつものように相談を受けることになりました。
　お料理レシピ投稿サイトというとクックパッ
ドが有名ですが、要するに一般消費者が会員登
録をして、料理のカテゴリ（和・洋・中など）、
使っている食材、所要時間や用途（パーティ用、
お弁当用、子供向け、減塩・糖質制限など）と
いったさまざまな条件で検索できるサービスで
す。
　「生島さん、月末の会員ランク更新処理につい
てご相談したいんですが」と大道君。
　ということで会員ランク制度の概要について

月末の会員情報更新処理、
どうしよう？

聞いてみると、ざっと図1のようなものでした。
　ユーザの会員ランクはA～Dの4階層があり、
会員登録時はDランクですが、レシピを投稿し
て人気が出ればランクが上がっていき、何もし
ないと下がっていくしくみです。ランクが上が
ると便利な機能が使えるようになります。
　「つまり毎月末に、その月のレシピ投稿数と、
それがほかの会員から支持された数を集計して
翌月のランクを決める、というわけやね」
　「そういうことです」

生島氏
DBコンサルタント。性
能トラブルの応援のた
め大道君の会社に来た。

大道君
浪速システムズの新米
エンジニア。素直さと
ヤル気が取り柄。

五代氏
大道君の上司。プロ
ジェクトリーダーで
もある。

登
場
人
物

紹
介

 原案 生島 勘富（いくしま さだよし） info@g1sys.co.jp ㈱ジーワンシステム
 構成・文 開米 瑞浩（かいまい みずひろ）　 イラスト フクモトミホ

これまで本連載では、「複雑なSQLを使って、DBサーバ側で集合操作をして、その結果だけを取得する方法」の効
能をいろいろと述べてきました。更新処理でも同様のことが言えます。今回紹介するCASE式とパラメータテーブ
ルはまさにそんなテクニックと言えます。

SQLに小回りの効く記述力を与えてくれるCASE式第7回

A

B

C

D

・ユーザはA～Dまでの会員ランクを持つ
・登録時はDランク
・1ヵ月単位のレシピ投稿数と、他会員からの支持数を
 基準に1ランクずつランクアップ／ダウンする　

（5、200）以上

（5、100）以上

（5、50）以上

（レシピ投稿数、支持数）

（1、100）以下

（0、50）以下

（0、25）以下

 ▼図1　会員ランク制度概要

112 - Software Design Sep. 2016 - 113

　なるほど、下手に作るといかにも単純なSQL

文を多重ループで発行する「ぐるぐる系」で作っ
てしまいそうなケースです。もちろん大道君な
らそこはわかっているので、そんなことはしな
いでしょう。

FULL SCANを伴うUPDATE
は減らしたい

　「それで、何か気になることがあるんかな？」
　「図1を見てもらうと、ランクの変化が起きる
条件が6種類ありますよね。ということは、
UPDATE文を6回発行すればいいのかな……と
思ったんですが、それでいいんでしょうか？」
　「ああ、なるほど。それは良いとこに目をつけ
たね。逆に聞くけど、UPDATEを6回発行する
ことに欠点があるとしたら、何か思い当たるか
な？」
　「そうですね……こういう条件のUPDATEだ
と、インデックスが効かないFULL SCANが走
ると思うんですよ。で、それを6回やるのは
ちょっと無駄が多いんじゃないかな、と……」
　「そうやね。全部キャッシュメモリに載ってく
れたらまだマシだけど、載らないと毎回HDDを

読みにいくしね」
　「これ、1回で済ませる方法は何かないんで
しょうか？」
　「うん、あるよ」
　「あるんですね！　教えてください！」

条件項目更新型UPDATEの分
割実行に注意

　大道君の言うとおり、これを1回で処理する
方法はあります。しかしそれだけでなく、実は
この種の処理でUPDATEを複数回に分けて行
うことは、別な問題も引き起こすのです。
　「どんな問題ですか？」
　「更新結果が期待と違ってくることがあるん
よ」
　図2は「部門」というテーブルの「年間予算」項
目を一定の条件で更新する処理の例です。case1

は「人数」を判断して20人未満なら1.2倍に、20

人以上なら1.1倍に更新するもので、このタイ
プは「条件」判断にダブリがないように設定して
おけば問題は起きません。
　一方、case2は「年間予算に応じて年間予算を
更新する」というもので、よく考えると部門Bは

SQLに小回りの効く記述力を与えて
くれるCASE式第7回

 部門 人数 年間予算
 A 10 200000

 B 19 350000

 C 21 410000

case1：人数に応じて年間予算を変更する
‘部門’テーブル

条件項目 更新項目

UPDATE 部門
 SET 年間予算= 年間予算 * 1.2
 WHERE 人数 < 20;

UPDATE 部門
 SET 年間予算= 年間予算 * 1.1
 WHERE 人数 >= 20;

case2：年間予算に応じて年間予算を変更する（条件項目更新型UPDATE）

 部門 人数 年間予算
 A 10 200000

 B 19 350000

 C 21 410000

‘部門’テーブル

条件項目 更新項目

UPDATE 部門
 SET 年間予算= 年間予算 * 1.2
 WHERE 年間予算 > 0 AND 年間予算 < 400000 ;

UPDATE 部門
 SET 年間予算= 年間予算 * 1.1
 WHERE 年間予算 >= 400000;

両方の条件に当てはまり、
UPDATEが2度行われてしまう

 ▼図2　UPDATEを複数回に分けて行う場合に起こりうる問題

114 - Software Design

35万円を1.2倍すると42万円になり、これは「40

万円以上」という条件にも当てはまってしまうた
め、次のUPDATEでさらに1.1倍されてしまい
ます。
　このように条件項目と更新項目が重複してい
るUPDATEを複数回行うと、意図せぬ結果を
起こしやすいため、それを防ぐためにもUP

DATEを1回で行えるならそのほうがいいので
すね。
　「なるほど……『条件項目更新型UPDATEの
分割実行』には注意が必要なんですね」と大道君。
　「そうそう、そういうこと！」
　「じゃあその解決は……？」

　CASE式という、SQL-92から導入された仕
様を使います。まずは図3を見てください。部
門テーブルの年間予算項目を更新するなら、ま
ず①部門Aの1レコード分を読み出し、更新ロ
ジックのどの条件に当てはまるかを判断し、②
その結果を部門Aのレコードに書き戻す、とい
う処理を③全レコードについて繰り返す必要が
あります。これを1回のUPDATEで済ませるた
めには、「更新ロジック」を1つの式で表現でき
なければなりません。それを可能にするのが
CASE式で、図3の左下のような形で使います。
「SET 年間予算 = 値」の「値」の部分にCASE式
を使うことで、条件に応じて違う値をSETする
ことができるわけです。
　なお、条件と値の組み合わせをSQL文中に
ハードコーディングすると保守しにくくなるた
め、実際にはそれらを定義した「パラメータテー
ブル」を作ってそこから条件と値を引いてくるよ
うにします。
　「おお……こんな書き方ができるんですね！」
と大道君。
　「一見かなり複雑な処理でも、このCASE式

CASE式とパラメータ
テーブルを活用する

 部門 人数 年間予算
 A 10 200000

 B 19 350000

 C 21 410000

更新ロジック

条件1なら 値1
条件2なら 値2
条件3なら 値3

‘部門’テーブル

①読み出し

②書き戻し

③全レコード
　繰り返し

CASE式とパラメータテーブルで表現する

UPDATE ～
SET 年間予算 =
 CASE
 WHEN 条件式 THEN 値
 WHEN 条件式 THEN 値
 ELSE 値
 END
;

パラメータテーブル
（条件と値の組み合わせを
テーブル化したもの）

 ▼図3　CASE式による操作

114 - Software Design Sep. 2016 - 115

とパラメータテーブルの組み合わせで劇的に単
純化できることがあるから、使い慣れておくと
ええよ」
　OracleではDECODE関数で代用されること
もありますが、CASE式はSQLの標準仕様であ
り、ほかのDBMSでも使用可能ですので、CASE

を基本として知っておくことをお勧めします。

会員ランク更新処理を
実装しよう！

　「今回のレシピ投稿サイトでCASE式を使う
なら、どんな処理になるんでしょうか？」
　「まあ、まずは条件判断に使うテーブルの構造
を見ようか」
　必要な部分だけ簡略化して示すと図4になり

ます。ユーザがレシピを投稿し、そのレシピに
評価がつく、という構造のため、ユーザ対レシ
ピが1対N、レシピ対評価も1対Nの関係です。
　ユーザテーブルの「現」は現在の会員ランク、
「前」は前月の会員ランクを表します。
　月末の会員ランク更新処理の概要を構造化す
ると図5のようになります。図5の上半分では
ユーザ、レシピ、評価テーブルのそれぞれ IDの
数字だけを表示して1対Nの関係がわかるよう
にしてあります。
　「いったん“当月集計”というテーブルを作るん
ですか」
　「そう、その当月集計テーブルに、ユーザごと
のレシピ投稿数と、他会員からの支持評価数を

SQLに小回りの効く記述力を与えて
くれるCASE式第7回

 ID 現 前
 1 A B

 2 B C

 3 C C

‘ユーザ’テーブル
 R_ID U_ID 投稿日時
 101 1 ****

 102 2 ****

 103 1 ****

‘レシピ’テーブル
 H_ID R_ID U_ID 評価日時
 201 101 25 ****

 202 102 37 ****

 203 103 62 ****

‘評価’テーブル

1対N 1対N

 ▼図4　ユーザ／レシピ／評価テーブルの関係

 ID 現
 1 B

 2 A

 3 C

‘ユーザ’ ‘当月集計’
 現 投稿数 評価数
 B 6 250

 A 0 3

 C 1 4

‘ユーザ’
 R_ID

 101

 102

 103

 104

 105

 106

‘レシピ’
 H_ID

 201

 202

 203

 204

 205

 206

 207

 208

‘評価’

JOIN,
GROUP BY,
COUNT

JOIN,
GROUP BY,
COUNT

UPDATE

UP/DOWN
判断

ランク
昇降基準

 新
 A

 B

 C

‘新ランク’

 ID

 1

 2

 3

 ▼図5　レシピ／評価集計、ランク判断ロジック

116 - Software Design

集計しておく。UPDATEのためのワークテー
ブルやね」
　「はい、集計自体はJOINしてGROUP BYし
てCOUNTすればいいわけですね」
　「そこはJOINを2段でかけるからちょっと複
雑なSQLになるけど、やってることは要するに
ただの集計だから、難しくはないはずだよ」
　「はい、わかると思います」
　いったん当月集計をすると、ユーザごとの当
月投稿数と評価数（支持を獲得した数）がわかる
ので、それを「ランク昇降基準」に照らしてラン
クUP/DOWNの判断をし、新ランクを算出して
その値でユーザテーブルの「現ランク」を更新し
ます。
　「UP/DOWN判断にCASE式を使うんです
か」
　「そう。具体的にはリスト1のように書けばい
い」
　リスト1のUPDATE文末尾のu.現ランク =
CASE～以下がそのコードです。
　「これは……現ランクに対して、上がるか、下
がるか、そのままか、の判断をしてるわけです
よね？」
　「そういうこと。2つのWHENでそれぞれ『上
がる』『下がる』条件を表し、どちらにも該当し

なかったらELSEに来るから現ランクのまま、
変わらない」
　「ランクのUP/DOWN条件は6種類あります
けど……」
　「そこはランク昇降基準を表すパラメータテー
ブルで吸収する」
　図6がそのためのランクパラメータテーブル
です。「現ランク」ごとに、ランクUP条件、UP

後の新ランク、ランクDOWN条件、DOWN後
の新ランクの設定値を保持しています。そのう
えで現ランクをキーにして当月集計テーブルと
ランクパラメータテーブルをJOINすると、現
ランクに関係するUP条件とDOWN条件だけが
残るわけです。

集計と更新の一発化はできない？

　「なるほど……こんなやり方ができるんです
ね！　おもしろいです！　でもこれ、『一発系
SQL』を追求するなら、当月集計テーブルを作
るのもやめて、一気にUPDATEしてしまうわ
けにはいかないんでしょうか？」
　「残念ながらそれはできないんよ」
　というのは、集計するSELECT文に「ユーザ」
テーブルが入ってしまうからです。集計元に入っ
たテーブルにはロックがかかってしまうため、1

CREATE TABLE ユーザ
 (ユーザID INT NOT NULL
 , 現ランク CHAR(1) NOT NULL
 , 前ランク CHAR(1) NULL
 -- 以下略
 , PRIMARY KEY (ユーザID)
);

CREATE TEMPORARY TABLE 当月集計
 (ユーザID INT NOT NULL
 , 現ランク CHAR(1) NOT NULL
 , 当月投稿数 INT NULL
 , 当月支持数 INT NULL
 , PRIMARY KEY (ユーザID)
);

UPDATE ユーザ u
 INNER JOIN 当月集計 s
 ON u.ユーザID = s.ユーザID
 INNER JOIN ランクパラメータ r
 ON s.現ランク = r.現ランク
SET u.前ランク = u.現ランク
 , u.現ランク =
 CASE
 WHEN s.当月投稿数 > r.U投稿数 AND s. 当月支持数 > r.U支持数 THEN r.Uランク
 WHEN s.当月投稿数 < r.D投稿数 AND s. 当月支持数 < r.D支持数 THEN r.Dランク
 ELSE u.現ランク END
;

 ▼リスト1　CASE式を使った会員ランクUPDATE処理

116 - Software Design Sep. 2016 - 117

文で同時にUPDATEすることができません。そ
こでいったん「当月集計」というワークテーブル
を作り、その情報をもとにUP/DOWNを判断し
てユーザテーブルを更新する、という処理を行
うわけです。

CASE式はSQLに小回りの効く
記述力を与えてくれる

　「できないんですか、それは残念です。でも、
CASE式っておもしろいですね！　SQLって
データの集合にまとめて同じ操作をするための
言語とばっかり思ってましたけど、『同じ操作』
のところで意外に細かいロジックも書けるって
ことですよね、これ？　ますます、SQLでやれ
ることが増えますね！」
　さすが大道君、カンがいいです。CASE式を
使うと、手続き型言語で if文やswitch文を入れ
子にした複雑なロジックを組んでいた部分を大
幅に単純化できることがあります。しかも今回
のように「パラメータテーブル」と組み合わせる
と、条件を変更するときも設定データを変える
だけで、コードには変更が及ばずに済むため、
保守作業コストを大きく減らすことができます。
　簡単に言うと、一定のパターンでの条件判断
がいくつもある場合は、こうしたパラメータテー
ブル方式が使えることが多いのです。しかし、
基本設計の段階でテーブルを決めてしまうウォー
タフォール式の開発スタイルでは、「目に見える
項目の洗い出し」が精いっぱいのことが多く、な

かなか「パラメータテーブルを作っておこう」と
いう発想が出てこないようです。その意味でも、
前回紹介した「テーブル設計を後回し」にする手
法をお勧めします。後まわしで良いなら、処理
を実装しながら「ここはパラメータテーブル化し
たほうが良い」と気がついたときに、躊

ちゅうちょ

躇なくそ
れを採用することができます。その意味でも、
「テーブル設計後まわし」方式をお勧めします。
　SQLをきちんとわかっていれば、こんな方法
でも開発効率および実行速度の両方を向上でき
ますので、一定のパターンでの条件判断が多発
するコードを見つけたら、ぜひ、CASE式とパ
ラメータテーブルを使ってみてください。｢

SQLに小回りの効く記述力を与えて
くれるCASE式第7回

 現ランク U投稿数 U支持数 Uランク D投稿数 D支持数 Dランク
 A NULL NULL NULL 1 100 B

 B 5 200 A 0 50 C

 C 5 100 B 0 25 D

 D 5 50 C NULL NULL NULL

※U（ランクアップ）とD（ランクダウン）を同時に満たすことがないように注意して仕様を決めること

ランクUP条件
UP後の
新ランク ランクDOWN条件

DOWN後の
新ランク

 ▼図6　ランクパラメータテーブル

118 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

Google VRとは

　Googleが年に1度、技術者向けに「Google

I/O」という大規模なカンファレンスを実施し
ています。2016年の今回は、「Daydream」とい
う、スマートフォンを使って高品質な没入感を
得られるVRプラットフォームを発表しました。
このDaydreamとCardboardをまとめたカテゴ
リを「Google VR」と言っています。
　今後はこのDaydreamに対応したスマート
フォンが普及していくのではないかと思います
が、まだ発表されたばかりで、端末は発売され
ていません（今秋あたりから発売予定）。しかし、
Daydreamと Cardboardは同じ Google VR

SDKを使ってアプリを作ることができます。
そのため、今回は従来のCardboardアプリの作
成の仕方を説明していこうと思います。

　AndroidはKitkat（API19）以降の端末が必要
です。Cardboardは1,500円くらいで、Amazon

などで入手できます。5インチ端末まで対応し
たバージョン1と、6インチ端末まで対応した
バージョン2があり、どちらでも構いませんが、
バージョン2のほうが扱いやすいと思います。

Unityを
インストールする

　Cardboardアプリは、UnityやUnreal Engine

といったゲームエンジンを使うと楽に作成でき
ます。今回はUnityを使用します。
　2016年6月の執筆時点では5.3.5が最新バー
ジョンになります。しかし、Canvas（ボタンな
どのUIを配置するもの）で不具合が上がってい
るため、今回は1つ前の5.3.4を使用します注1。

注1） Unity 5.4（7月28日時点）ではこの不具合は解消されてい
ます。

第9回 VRアプリをつくろう!

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

野田 悟志（のだ さとし）
日本Androidの会 神戸支部、
GDG神戸
URL

Mail

http://kobegdg.
blogspot.jp/
scarviz@gmail.com

Androidは世界で出荷される8割のスマートフォンに搭載※される、事実上
スマートフォンの標準OSです。このOS上で動くアプリケーションを開発す
ることは、自分のアイデアを世界に発信し、最も多くのスマートフォン上で
動かしてもらえる可能性がある行為です。このAndroidの最新情報と、そ
れを取り巻くコミュニティを知って、魅力的な開発をはじめませんか?

※IDC Worldwide Mobile Phone Tracker, August 7, 2013

 ▼図1　インストールする対象 ▼図2　上部のNewボタン

 ▼図3　新規プロジェクト作成

 ▼図4　Preferencesを選択

http://www.android-group.jp/
http://kobegdg.blogspot.jp/

Sep. 2016 - 119118 - Software Design

VRアプリをつくろう!第9回

ンロードしたGoogleVRForUnity.unitypackage

を開いてください。Importダイアログが表示
され、デフォルトですべてチェックが入ってい
ると思います（図7）。そのままの状態で Import

ボタンを押してください。

簡単なCardboard
アプリを作ってみる

　AssetStoreから「Low Poly: Free Pack」とい
うAssetをベースにしてアプリを作成しようと
思います。該当アプリのAssetStore注4をブラウ
ザで開き、「Unityで開く」ボタンを押します。

注4） https://www.assetstore.unity3d.com/jp/#!/content/
58821

「Unityダウンロードアーカイブ注2」から5.3.4の
インストーラをダウンロードしてください。
　インストーラを起動し、ダイアログに従って
進めていくと、図1のようなリストが表示され
ます。デフォルトでチェックが入っているもの
に加えて、「Android Build Support」にチェッ
クを入れるようにしてください。
　インストールが終わったらUnityを起動しま
す。最初にUnityアカウントでログインする必
要があります。まだアカウントを持っていない
場合は新規登録し、ログインしてください。
　上部にあるNEWボタン（図2）を押し、新規
に作成するプロジェクト名とディレクトリパス、
3Dを指定し、Create projectボタンを押して
ください（図3）。
　次にAndroid SDKとJDKのパスを設定しま
す。Unityのメニューから、［Edit］→［Preferen

ces］を選択（図4）し、Preferencesダイアログを
表示します。External Toolsを選択し、Android

SDKディレクトリパスと、JDKのバージョン
名ディレクトリをそれぞれ設定します（図5）。

Google VR SDK for
Unityのインポート

　Google VR SDK for Unityをインポートする
ために、GitHub上の gvr-unity-sdk注3へ行き、
「GoogleVRForUnity.unitypackage」をダウン
ロードしてください。
　メニューの［Assets］→［Import Package］→
［Custom Package］を選択（図6）し、先ほどダウ

注2） https://unity3d.com/jp/get-unity/download/archive

注3） https://github.com/googlevr/gvr-unity-sdk/

 ▼図5　External ToolsのAndroid設定 ▼図6　パッケージのインポート

 ▼図7　Importダイアログ

 ▼図8　AssetStoreの「Low Poly: Free Pack」

https://unity3d.com/jp/get-unity/download/archive
https://github.com/googlevr/gvr-unity-sdk/
https://www.assetstore.unity3d.com/jp/#!/content/58821
https://unity3d.com/jp/get-unity/download/archive

120 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

　もし図8のように警告ダイアログが表示され
た場合は、「アプリケーションの起動」ボタンを
押します。Unity側でAssetStoreタブが表示さ
れるので、その中から Importボタンを押し、
先ほどと同じようにインポートしてください。
　Projectビューの［Assets］→［AxeyWorks

Low Poly］→［DemoScene］→［DemoScene］を
ダブルクリックして開きます（図9）。いったん
このSceneを別名で保存します。メニューの
［File］→［Save Scene as］からMainという名前
で保存してください（図10）。

画面を二画面にする
（カメラのステレオ化）

　メニューから［GameObject］→［Create Empty］
を選択し、空のGameObjectを追加します（図

11）。名前をPlayerに変更してください。
Projectビューから［Assets］→［GoogleVR］→
［Prefabs］→［GvrMain］をPlayerの中に入れま
す（図12）。
　Playerを選択し、InspectorビューでPosition

をX：590、Y：20.5、Z：478に変更します（図

13）。PlayerをダブルクリックするとScene

ビューに、周りに物がある状態で表示されるよ

 ▼図11　空のGameObjectを追加

 ▼図12　GvrMainの追加

 ▼図14　Main Cameraの無効化

 ▼図15　ステレオカメラ化の確認 ▼図16　GvrReticleの追加

 ▼図18　Event Trigger
　　　 コンポーネントの追加

 ▼図17　Physics Raycaster
　　　 コンポーネントの追加

 ▼図13　Playerの位置の設定

 ▼図9　DemoScene ▼図10　Sceneの別名保存

Sep. 2016 - 121120 - Software Design

VRアプリをつくろう!第9回

うになると思います。
　HierarchyビューのMain Cameraを選択し、
Inspectorビューでチェックボックスのチェッ
クを外して無効化します（図14）。
　では早速、再生ボタンを押してステレオカメ
ラ化しているか確認してみましょう（図15）。
止める場合はもう一度再生ボタンを押します。

視線（Gaze）による操作
（ワープ移動する）

　今の地点から移動するために、視線の先にワー
プする処理を入れてみます。

　レチクル（視線の照準の点）の表示

　Projectビ ュー の［Assets］→［GoogleVR］→
［Prefabs］→［UI］→［GvrReticle］を［Player］→
［GvrMain］→［Head］に入れます（図16）。再生
ボタンを押し再生してみると、中央に白い点が
表示されていると思います。mキーを押し
た状態でマウスを動かすと、ヘッドトラッキン
グしているように動かせますが、中央の白い点
はそのまま中央にあることが確認できると思い
ます。これがレチクルという視線の照準点にな
ります。

　視線（Gaze）によるレチクルの反応
　（レイキャスト）

　ワープ先のGameObjectにレチクルが当たっ

Raycaster］でPhysics Raycasterコンポーネン
トを追加します（図17）。
　ワープ先として、Well_Stone_Water_01（井
戸）にしましょう。HierarchyビューのWell_

Stone_Water_01を選択し、Inspectorビュー
でAdd Componentボタンを押し、［Event］→
［Event Trigger］でEvent Triggerコンポーネ
ントを追加します（図18）。
　メニューから［GameObject］→［UI］→［Event

System］を選択してEvent Systemを追加しま
す。Event Systemを選択し、Inspectorビュー
でAdd Componentボタンを押し、［GoogleVR］
→［GazeInputModule］でGazeInputModuleコ
ンポーネントを追加します（図 19）。同じく
Inspectorビューで、Standalone Input Module

のチェックボックスを外します（図20）。
　再生して、レチクルを井戸に当てると、点か
ら円に変わることがわかります（図21）。

　視線（Gaze）の先にワープ移動する

　Well_Stone_Water_01（井戸）の Inspector

ビューのEvent Triggerで、Add New Event

Typeボタンを押し、Pointer Enter、Pointer

Exit、Pointer Clickの3つを順番に追加しま
す（図22）。
　ProjectビューのAssetsを選択し、右クリッ
ク→［Create］→［Folder］でScriptsフォルダを

た場合、点から円に変化するよ
うに処理を加えます。
　［Player］→［GvrMain］→
［Head］→［Main Camera］を選
択し、Inspectorビューで最下
部にあるAdd Componentボタ
ンを押し、［Event］→［Physics

 ▼図19　GazeInputModule
　　　 コンポーネントの追加

 ▼図20　Standalone Input Moduleの無効化

 ▼図21　レチクルが円に変わる

122 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

作成し、その中で右クリック→［Create］→［C#

Script］でWarp.csを追加します。Warp.csを
開き、リスト1のように、IGvrGazeResponder

インターフェースを実装します。OnGazeEnter、
OnGazeExitは対象にレチクルが入ったとき、
出たときに呼ばれます。今回はデバッグログを
出力するように実装しました。OnGazeTrigger

は対象にレチクルが当たった状態で、クリック
した場合に発生します。ここでWarpPointと
いうGameObjectの手前に移動するように実装
します。WarpPointはこの後、井戸に紐

ひも

づけ
るようにします。
　Well_Stone_Water_01（井戸）の Inspector

ビューでAdd Componentボタンを押し、［Scri

pts］→［Warp］を追加します（図23）。
　同じく井戸の Inspectorビューで、Event

Triggerの各イベントの＋マークを押し、表示
されるボックス（Noneと表示されている）の右
横の丸をクリックします。ダイアログが表示
されるので、検索Boxで「Well_Stone_Water

_01」を入力し、SceneタブのWell_Stone_

Water_01を選択します（図24）。各イベント処
理のコンボボックスで、Warpスクリプトのメ
ソッドを、Pointer EnterにはOnGazeEnter、
Pointer ExitにはOnGazeExit、Pointer Click

にはOnGazeTriggerを設定します（図25）。
　井戸の InspectorビューのWarpスクリプト
で、PlayerとWarp Pointのボックスの右横の

 ▼リスト1　視線の先にワープする処理（Warp.cs）

public class Warp : MonoBehaviour, IGvrGazeResponder {
 [SerializeField] private GameObject Player;
 [SerializeField] private GameObject WarpPoint;

 public void OnGazeEnter() {
 Debug.Log("OnGazeEnter");
 }

 public void OnGazeExit() {
 Debug.Log("OnGazeExit");
 }

 public void OnGazeTrigger() {
 // ワープポイントの位置
 var warpPos = WarpPoint.transform.position;
 // 高さの調整
 warpPos.y += 3;
 // 距離の調整（井戸の手前になるようにする）
 warpPos.z -= 5;
 // ワープポイントの位置に移動する
 Player.transform.position = warpPos;
 }
}

 ▼図24　Warpスクリプトを追加した
　　　 GameObjectを選択する

 ▼図23　Warpスクリプトの追加

 ▼図25　各イベント処理にWarpスクリプトの
　　　 メソッドを設定する

 ▼図22　Event Triggerへ追加

Sep. 2016 - 123122 - Software Design

VRアプリをつくろう!第9回

丸を押し、ダイアログを表示し、それぞれ
SceneタブのPlayerとWell_Stone_Water_01

を選択します（図26）。
　再生ボタンを押し、レチクルを井戸に当て、
クリックをしてみると、井戸の手前にワープ移
動することができるようになりました。

Androidに
インストールする

　メニューの［File］→［Build Settings］を選択
します（図27）。
　Build Settingsダイアログで Add Open

Scenesボタンを押し、Platformのリストから
Androidを選択し、Switch Platformボタンを
押します（図28）。Player Settingsボタンを押
し、InspecterビューのResolution and Pre

sentationの Default Orientationを Landscape

Leftに変更します（図29）。Other Settingsで、
Bundle Identifierに任意のパッケージ名、Mini

mum API Levelを19（Android 4.4）に設定しま
す（図 30）。Android端末を PCにつなげ、
Build SettingsダイアログのBuild and Runボ

タンを押し、apkファイルのファイル名と出力
先を聞かれるので任意の値を入力し続行すると、
Androidにインストールされます。ぜひCard

boardにセットして、まわりを見渡したり、ワー
プ移動してみてくださいね。s

　今回の移動手段はワープでした。もっと
リアルに人が歩いているような、少し上下
しながら前進するモーションで移動させた
ほうが良いのではないかと思う人もいるか
もしれません。しかし、その場合、実際の
体が動いていないのに、視界は体が動いて
いるように見えるため、そのズレから気持
ち悪く感じます。このことを「VR酔い」と
言います。これは車酔いに似ています。よ
り良いVR体験をしてもらうためには、な
るべくVR酔いが起こりにくいコンテンツ
の作成が求められますので、みなさんも意
識してみてください。

VR酔いについてCOLUMN

 ▼図26　PlayerとWarp Pointの設定

 ▼図28　Build Settingsダイアログ ▼図30　Bundle Identi�erと
　　　 Minimum API Levelの設定

 ▼図27　Build Settingsの選択

 ▼図29　Orientationの設定

124 - Software Design

IDE最新ランキング

　Googleサーチエンジンで検索された回数や
Googleトレンドでの動向を基に、開発者が使用
する人気の開発環境のランキングを提供する
「TOPIDE（Top IDE index）」が 2016 年 7 月、
IDE（統合開発環境）のランキング情報を公開し
ました 注1。
　「VimはIDEなのか」という議論もありますが、
なんとVimが4位にランクインしました（図1）。
最初のリリースからもう二十年以上も経ってい
るテキストエディタVimがほかの開発環境を抑
えて4位にランクインしたことに、驚くと同時
に複雑な気持ちにさえなりました。二十数年前
からVimを使っている人もいれば、2016年から
Vimを始める新入社員もいるのです。二十数年
前と言えばその新入社員も生まれていなかった
かもしれません。もちろん当時のVimはとても
貧弱で、設定できる項目も少なかったかと思い
ます。しかしそれから二十年もの間、Vimはい
ろいろな機能を取り込みながら、休まずに改良
が続けられてきました。
　現代でもTraditional viを好む人は数多くいま
す。Vimを使っていながらも、ほとんど設定し

ない状態を好む人もいます。しかしせっかくVim

を使うのですから、設定のしかたくらいは覚え
ておいて損ではありません。今回はVimの設定
方法をおさらいし、陥りやすいミスについて紹
介したいと思います。

Vimの設定ファイルとは

理解しながら設定する

　実はVimの設定方法を知らない人はけっこう
多く、それを調べるためにGoogle検索を使う人
も多いと思います。その結果として、TOPIDE

 ▼図1　TOPIDE（2016年7月）

注1） URL https://pypl.github.io/IDE.html

一歩進んだ使い方
のため

のイロハ

Vimの設定ファイル再点検

　今回は初心に立ち返り、Vimの設定ファイルを取り上げます。vimrcとgvimrcの違い、設定時に気をつ
けるべきオプション（エンコーディングに関する3つのオプション、ambiwidth、autocmd）について解説しな
がら、どのような方針で設定を加えていくべきなのかを考えましょう。

mattn
twitter:@mattn_jp

第 回1 1

https://pypl.github.io/IDE.html

124 - Software Design Sep. 2016 - 125

のではありません。
　またvimrc/gvimrcは、Vimが動作するOSに
よって異なるファイル名になります。UNIX系
のOSでは「.vimrc」および「.gvimrc」となります。
Windowsでは「_vimrc」と「_gvimrc」です。以降
ではvimrc/gvimrcと記載します。
　設定ファイルはテキスト形式で記述し、set構
文もしくは、Vim scriptというVimが内部で実
装している制御構文を使って記述します。以降
では、vimrcの記述で気を付ける個所について
説明していきます。

実は知らなかった
オプションの意味

nocompatible

　インターネット上に転がっているvimrcの多
くで、先頭部分に付いているのがこの行です。

set nocompatible

　Vimのset構文はオプション名の先頭にnoを付
けることで、「そのオプションを無効にする」とい
う働きをします。このオプションはcompatible

オプション、つまりvi互換を無効（no）にして
Vimの独自機能を有効にする、という意味にな
ります。あまり知られてはいませんが、実はこ
れ、正しい記述ではありません。nocompatible

オプションはvimrcもしくはgvimrcファイルを
見つけた時点で自動的にnocompatibleとなり
ます。ですので、vimrcファイルを置いている
のであれば書く必要がありません。
　また、vimrcをVimで編集中に、変更した内
容を反映すべく、

:source ~/.vimrc

とすることがありますが、set nocompatibleの
指定があると、いくつかのオプションがデフォル
ト値に戻ってしまいます。たとえば、historyオ
プション（コマンドライン履歴）の値を増やしてい
る人もいるかと思いますが、set nocompatible

の結果になったとも言えるでしょう。皆がVim

の設定方法を知っているのであれば、あえて検
索しようとは思いませんからね。
　GitHubが登場したことで、Vimの設定ファイ
ルをGitHubに置く人も多くなってきました。
GitHubの検索ボックスに「vimrc」と入力して検
索すると、執筆時点（2016年7月）で9,821個の
リポジトリがマッチし、775,379個ものファイ
ルが登録されているようです。設定ファイルを
分割して管理しているリポジトリも合わせると
もっとあるでしょう。
　それだけの数があると、知らないユーザのよ
くわからない設定を、ちゃんと理解しないまま
自分の設定ファイルに取り込んでしまう人も、
実は多いんじゃないかと思います。現に、毎週
土曜日にオンラインで行われる「vimrc読書会」
で題材にする設定ファイルでは、「これおそらく
どこからかコピーしたんじゃないか？」といった
内容もまれに見られます。設定ファイルのコピー
&ペーストをするなとは言いませんが、ちゃん
と理解したうえで設定を行うと、今後その設定
を変更する際に問題になりにくいだけでなく、
その設定がもたらす副作用にも対処できるよう
になります。

vimrcとgvimrc

　最近のテキストエディタであれば、設定用の
ユーザインターフェースが用意されているもの
が当然になってきました。画面のチェックボッ
クスにポチポチとチェックを入れるだけの便利
なものもあります。しかしながら、VimはUNIX

の、しかも化石のように古いテキストエディタ
です。すべての設定はvimrcという設定ファイ
ルで行います。
　Vimの設定ファイルは2種類あります。vimrc

とgvimrcです。vimrcはCLI（Command Line Inter

face）とGUIの両方から読まれる設定ファイル
です。かたやgvimrcは、GUI版のみがvimrcの
あとに読み込む設定ファイルです。よく間違わ
れるのですが、GUI版はgvimrcだけを読み込む

Vimの設定ファイル再点検

第 回1 1

一歩進んだ使い方
のため

のイロハ

126 - Software Design

にeuc-jpへ変換できない文字が含まれていた場
合、Vimはファイルの保存時にエラーを発生さ
せます。euc-jpやcp932よりも、utf-8のほうが
扱える文字の数が多いので、encodingはutf-8

にしておいたほうが良いということになります。
　Vimは、encodingオプションが示すエンコー
ディングで文字の検出を行います。カーソルを
1つ動かしたときにマルチバイト文字を正しく
1文字ずつ移動しているのは、この処理による
ものです。以前であれば、WindowsではOSの
ANSIエンコーディングであるシフトJIS、つま
りcp932を設定するのが良いとされていました
が、最近のWindow版はencodingをutf-8にし
ていても、とくに問題が起きることがなくなり
ました。

fileencodingsは順序が大事
　前述したように、Vimはファイルを開く際に
fileencodingsに列挙されたエンコーディング
名を順に試します。しかし、ファイル内にマル
チバイト文字の数が少ないと誤検知してしまう
場合があります。fileencodingsの設定で、
cp932よりも後にutf-8を書いている設定があり
ますが、cp932は取り得るバイトのパターンが
単純でかつ範囲が大きいのです。
　iso-2022-jpのように漢字やカタカナの前に
マーカーが入ったり、utf-8のようにバイト列に
決まったシーケンスがあると誤検知することは
少ないのですが、cp932はとても誤検知を生み
やすいエンコーディングです。
　たとえば、Linuxの端末で次を実行してみま
す。

$ echo あかさたな | iconv -f cp932 -t utf-8

　最近のLinuxの端末はutf-8ですので、このコ
マンドは「utf-8な文字列をcp932な入力として
utf-8へ変換する」というものです。一見このコ
マンドはエラーになりそうですが、実は正常終
了してしまいます。xxdコマンドでバイト列の
内容を確認します。

が実行されると、その瞬間にhistoryの値がデ
フォルト値である50に戻ります。その後、vimrc

の記述のとおり自分の設定内容が実行され、元
の増やした値になるのですが、historyオプ

ションは一度減ってしまうと、その瞬間50より
も多く蓄積されていたはずのコマンドライン履
歴が50まで削除されてしまいます。
　モダンな書き方をするのであればset nocom

patibleの記述は削除すべきです。

Vimのエンコーディング設定のハマりどころ

　encoding/fileencoding/fileencodings
4

の設定を正しく理解していない人がたまに見受
けられます。簡単に説明すると表1のようにな
ります。

fileencodingとencodingの関係
　Vimは内部のエンコーディングを変更できる
テキストエディタです。fileencodingsにカン
マ区切りで列挙されたエンコーディング名に従っ
て、encodingオプションが示すエンコーディ
ングへの変換を試みます。すべてのエンコーディ
ング変換に失敗した場合、Vimはfileencoding

の値を空に設定します。また、途中に変換可能
なエンコーディングを見つけた場合、そのエン
コーディング名をfileencodingオプションに
設定します。
　ファイルのエンコーディングを変更したい場
合、たとえばutf-8のファイルをeuc-jpとして保
存するときは、次を実行して:wで保存します。

:set fileencoding=euc-jp

　これにより、以後そのファイルはeuc-jp形式
として扱われます。しかし、もしファイルの中

オプション名 オプションの意味
encoding Vimの内部エンコーディング
fileencoding ファイルのエンコーディング

fileencodings ファイルを開く際に試すエンコーディング群

 ▼表1　エンコーディングに関するオプション

126 - Software Design Sep. 2016 - 127

か編集に適した設定を有効にできますが、まれ
にfileencodingを指定しているものがありま
す。しかし、fileencodingオプションはVim

が検出するオプションです。Vimが検出するエ
ンコーディングと異なる値が設定されている場
合、Vimは、ファイルのエンコーディングが変
更されたと判断してしまいます。よってファイ
ルを開いた瞬間に、ファイルが変更されるとい
う変な動作になります。

 Vimプラグインを書くならscriptencoding
はマナー

　また、これらのオプションとは別にscripten

codingというコマンドが用意されています。こ
れは、vimrcやVim pluginがどのエンコーディ
ングで記述されているかを明示するためのコマ
ンドです。encodingとファイルのエンコーディ
ングが同じ場合はとくに必要ありませんが、
ほかのencodingを使用している場合には、次
のようにこのコマンドを使います。

scriptencoding utf-8

let g:foobar = 'こんにちわ世界'

　ファイルにマルチバイト文字が含まれていな
い場合には、とくに必要ありません。ただしマ
ルチバイト文字が含まれている場合で、かつほ
かのユーザにそのファイルを公開する場合には
encodingがutf-8でない人のために、このコマ
ンドをファイルの先頭に付けておくのがマナー
となります。

ambiwidth

　こちらも、間違って認識されがちなオプショ
ンです。Vimのように端末で起動するアプリケー
ションでよく問題となるのが文字幅問題です。
東アジア各国で使われる文字の中には、文字幅
があいまいに扱われているもの（East Asian

Ambiguous Width）がいくつもあります。端末の
ように固定幅の文字で表現すべき環境では、こ
れらの文字を1セルで描画するか2セルで描画

$ echo あかさたな | xxd -u
00000000: E381 82E3 818B E381 95E3 819F ｭ
E381 AA0A ...

　cp932の第 1バイトは 0x81～0x9Fおよび
0xE0～0xFC、第2バイトは0x40～0x7Eおよび
0x80～0xFCです。ちょうどこの範囲に収まっ
てしまっています。Vimでファイルを開く際に
fileencodingsの前の方にcp932があると、本
当はutf-8であるにもかかわらず、cp932として
開かれてしまいます。とくに必要がないのであ
れば、cp932は最後に持ってくるべきです。
　次は筆者のfileencodingsの設定です。

set fileencodings=ucs-bom,iso-2022-jp,ｭ
euc-jp,cp932

fileencodingのグローバルな意味
　ここで気を付けておくべきポイントがありま
す。fileencodingオプションには2つの意味
があるということです。1つは現在のバッファ
に対して設定される、「編集中のファイルのエン
コーディング」を示すもの。もう1つはグローバ
ルに働くものです。このグローバルな値は新し
い空のバッファが作成された際に、そのバッファ
のエンコーディングを何にするかを決定します。
vimrcで次のように設定します。

set fileencoding=utf-8

　こうすると新規に開いた空のバッファは、編
集後に:wで保存するとutf-8で保存されます。
たとえば、encodingをutf-8に、かつグローバ
ルなfileencodingをeuc-jpにした場合、euc-

jpに存在しない文字を含んだテキストを:wで保
存するとエラーになります。オプションの正し
い意味を理解しておくことで、保存時にエラー
となっても対応できるようになります。

fileencodingの変更はファイルの変更
　Vimにはmodelineというマジックコメント機
能があり、Vimでファイルを開いた際にいくら

Vimの設定ファイル再点検

第 回1 1

一歩進んだ使い方
のため

のイロハ

128 - Software Design

待しない動作になります。そのためVimではコ
マンドの解除を行うコマンドも用意しています。
　まず、autocmdはaugroupと一緒に使います
（リスト1）。autocmd!が解除コマンドになりま
す。augroupの中で実行すると、augroupで名
付けられたグループのみに作用します。つまり
この例の場合、グループ「MyVimrc」内で登録し
たイベントのみが解除されます。こうすること
で、vimrcを何度も読み直してもイベントが複
数登録されることはなくなります。
　同じグループ名で異なるイベントの登録をす
ることはできますが、その都度autocmd!を実
行してしまうと、毎回イベントが解除され最後
のイベントしか残らなくなってしまいます。
　リスト2のように同じグループ名を使いまわ
して冒頭ですべてを解除するか、リスト3のよ
うにカテゴリごとにグループ名を設定し、その
カテゴリごとに解除を実行するのが良いです。

コピーする情報源も選ぶ

　これまで説明したように、Vimの設定は知ら
ずにコピーすると失敗する要因が多々あります。
誤解を恐れず言うならば、コピーする、参考に

するかが決まっていないため、描画が崩れる問
題があります。次の例を見てください。

こんにちわＸＹです。

　例として「Ｘ」と「Ｙ」は文字幅があいまいな文
字とします。環境によっては、次のように2通
りの描画のされ方になってしまうことになりま
す。

こんにちわXYです。
こんにちわＸＹです。

　もし、絶対座標でカーソルが「Y」の位置に移
動するとした場合、それは行頭から見て何セル
目になるのでしょうか。1行目であれば12セル
目、2行目であれば14セル目になります。つま
り、端末があいまいな幅の文字を2セルで描画
するのか1セルで描画するのかによって、Vim

が想定している幅と差異が生まれ、結果として
描画が崩れるのです。
　ambiwidthはこれらのあいまいな幅の文字に
対して端末が1セルで描画するのか2セルで描
画するのかをVimに教えてあげるオプションで
す。端末が2セルで描画しているならdouble

を、1セルで描画しているならsingleを設定し
ます。

autocmd

　そして、一番多く見かけ
る間違いがこのautocmdで
す。autocmdは、Vimが用
意したイベントに対して
ユーザ指定のコマンド実行
を登録するコマンドですが、
このコマンドを複数回実行
すると、その分だけイベン
トが登録されます。vimrcを
再読み込みするとイベント
が複数回登録されるので、イ
ベントが発動してしまうと
処理が複数回実行され、期

 ▼リスト1　autocmdの使用例

augroup MyVimrc
 autocmd!
 autocmd FileType java setlocal omnifunc=javacomplete#Complete
augroup END

 ▼リスト2　グループ名を使いまわす場合

augroup MyVimrc
 autocmd!
augroup END

" java の設定
augroup MyVimrc
 autocmd FileType java setlocal omnifunc=javacomplete#Complete
augroup END

" python の設定
augroup MyVimrc
 autocmd FileType python silent setlocal ts=2 sw=2 sta et sts ai
augroup END

128 - Software Design Sep. 2016 - 129

する設定ファイルもでき
るだけVimスキルが高い
人のものを選ぶべきです。
ただし完全にコピーする
のではなく、自らのもの
にするためにも、意味を
きちんと理解して自分専
用の vimrcを組み立てる
べきです。ﾟ

 ▼リスト3　カテゴリごとにグループ名を設定する場合

" java の設定
augroup MyVimrcJava
 autocmd!
 autocmd FileType java setlocal omnifunc=javacomplete#Complete
augroup END

" python の設定
augroup MyVimrcPython
 autocmd!
 autocmd FileType python silent setlocal ts=2 sw=2 sta et sts ai
augroup END

lambdaが使えるようになった

　パッチ「7.4.2044」から lambdaが使えるようにな

りました。これまでsort()の比較処理を指定する

際、直接「比較式」を書くことができなかったため、

別途比較関数を用意する必要がありました。

function! s:CompareItem(lhs, rhs)
 return a:lhs["値段"] - a:rhs["値段"]
endfunction

let s:items = [
･ {"名前": "りんご", "値段": 100},
･ {"名前": "みかん", "値段": 180},
･ {"名前": "バナナ", "値段": 90},
･]

let s:items = sort(s:items, "s:CompareItem")
echo s:items
" 【結果】
"
" [{"名前": "バナナ", "値段": 90},
" {"名前": "りんご", "値段": 100},
" {"名前": "みかん", "値段": 180}]

　lambdaの登場により上記のコードがリストAの

ように簡単に記述で

きるようになりまし

た。->の前に引数を

列挙し、後に式を記述

できます。関数を用意

しなくてもよくなっ

たので便利にはなっ

たのですが、lambda

は式（expression）しか書けません。文（statement）

を使うためには本パッチの少し前の「7.4.2008」で

入った execute()関数を使うのが便利です。

lambda、execute()関数についてはもう少し説明

が必要ですが、それはまた別の回で紹介します。

vimrc読書会の開催場所が変更されました

　毎週土曜夜11時からオンラインで開催されてい

るvimrc読書会ですが、開催場所が lingrからgitter

に変更となりました。

・vimrc読書会

https://gitter.im/vim-jp/reading-vimrc

　gitterになったことで参加もしやすくなり、Bot

が改良されて読書会に適した機能が追加され、便

利になりました。Vimに関する知識がそれほどな

い方でも参加していただいてかまいません。どう

ぞご参加ください。

Vim scriptとvimrc読書会のアップデート

 ▼リストA　lambdaを使う

let s:items = [
･ {"名前": "りんご", "値段": 100},
･ {"名前": "みかん", "値段": 180},
･ {"名前": "バナナ", "値段": 90},
･]

let s:items = sort(s:items, {lhs,rhs->lhs["値段"] - rhs["値段"]})
echo s:items

Vimの設定ファイル再点検

第 回1 1

https://gitter.im/vim-jp/reading-vimrc

130 - Software Design

M-x executable-
interpret

　前回までは4回に渡って、Emacs内でシェル
コマンドを実行するあらゆる方法を紹介しまし
た。今回はその流れに引き続いてquickrunパッ
ケージを紹介しようと思います。その名のとお
り、カレントバッファを「即実行」するものです。
カレントバッファの実行と言えば標準機能のM-x

executable-interpretがありますが、その進
化形ともいえます。
　M-x executable-interpretを実行すると
カレントバッファのファイル名がプロンプトに
出てきます。　　　を押すとそのまま実行でき
（図1）、引数を入力することもできます。引数
を入力したときは、以後同じ引数を使い回しま
す。
　また、M-x compile系列のコマンドですので
M-g M-n/M-g M-pによってエラー行にジャンプ

Enter

することもできます。「#!」が指定してあるスク
リプト言語においては十分便利な機能です。

quickrunとは

便利な機能

　使っているプログラミング言語がおもにスク
リプト言語であれば、M-x executable-inter
pretでも十分かもしれません。けれどもquick

runは、コンパイル言語やマークアップ言語で
さえも「即実行」できるよう進化しています。し
かも、その実行には多くの方法が用意してあり
ます。
　quickrunには次の特徴があります。

・40を超えるプログラミング言語に対応
・60もの処理系について初期設定
・自分用のコマンドや他言語にも対応可能
・regionのみを部分的に実行可能
　―実行結果を直下にコメントで出力可能
　―実行結果に置き換えることも可能
・文法チェック
・対話的コマンドはeshellを用いて実行可能
・標準入力ファイルを用意して実行可能
・一定時間（デフォルトで10秒）で終了しない場
合は強制終了

・出力方法を指定できる

 ▼図1　M-x executable-interpret

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

カレントバッファを即実行！　quickrun（前編）
　カレントバッファやregionのコードをすぐに実行できる「quickrun」。プログラムを書いていて、その挙動を
すぐに確かめたいといった場合に便利です。今回はquickrunの概要を説明したあと、処理系を選択しての
実行や、helmとの連携などを紹介します。

Writer

第29回

http://rubikitch.com/

130 - Software Design Sep. 2016 - 131

を実行します。M-x executable-interpret

と同じように実行結果が表示されましたが、
フォーカスは *quickrun*ウィンドウにあります
（図2）。そこでqを押せば *quickrun*ウィンドウ
は消滅します。実行中のプログラムの場合はC-c

C-cで強制終了できます。
　とはいえ、基本形だと M-x executable-

interpretとあまり変わらないので、わざわざ
導入するべきかどうか迷うと思います。それに
M-x executable-interpretでは引数も指定
でき、*interpretation*バッファでは入力も受け
付けるので、スクリプト言語においてはそれで
十分ではないでしょうか。
　もちろんquickrunを本稿で取り上げる以上、

　―ブラウザで表示させる
　―エコーエリアで表示させる
　―ファイルに出力させる
　―バッファに出力させる
　―変数に代入させる
　―それらすべてを組み合わせ可能
　―何も出力しないことも可能
・helmまたはanythingインターフェースですべ
ての機能にアクセス可能

対応言語

　quickrunは多くの言語に対応しています（表

1）。Emacs Lispはバッチモードでの実行となり
ます。Markdownなどのマークアップ言語の設
定もあります。

とりあえず
使ってみよう

そのままM-x quickrun

　それでは、さっそくquickrunを使ってみま
しょう。M-x package-install quickrunで
インストールしてください。おもな言語にはほ
ぼ対応しています。ここではquickrun-sample.

sh（リスト1）というシェルスクリプトを例にし
ます。
　引数も入力もないので、そのままM-x quickrun

 ▼図2　M-x quickrun

C（gcc/clang/cl） C++（g++/clang++/cl） Objective-C（gcc -objc） D（dmd）
Fortran（gfortran） Java（javac and java） Perl（perl） Perl6（perl6）
Ruby（ruby/mruby） Python（python） PHP（php） Emacs Lisp（emacs）

Scheme（gosh） Common Lisp（clisp/
sbcl/ccl） Clojure（jark/clj-env-dir） Javascript（node/v8/js/jrun

script/cscript）

Coffee Script（coffee）JSX（jsx）
Markdown（Markdown.pl/blue
cloth/kramdown/pandoc/red
carpet）

Haskell（runghc）

Go（go/gccgo） Io（io） Lua（lua） Groovy（groovy）
Scala（scala） HAML（haml） SASS（sass） LESS（lessc）
Erlang（escript） OCaml（ocamlc） F#（fsharpc） ShellScript（shebangによる）
AWK（awk） Rust（rustc） Dart（dart） Elixir（elixir）
TypeScript（tsc） Tcl（tclsh） Swift（swift/xcrun） ATS2（patscc）
R（Rscript） Nim/NimScript（nim） Julia（julia） Gnuplot（gnuplot）

 ▼表1　quickrunの対応言語（括弧内はEmacsで使うコマンド）

 ▼リスト1　quickrun-sample.sh

#!/bin/sh
echo Hello
date

echo bye

第29回 カレントバッファを即実行！　quickrun（前編）

132 - Software Design

Ruby以外にもmrubyという処理系がquickrun

で登録されています。ここでは処理系・バージョ
ン・コマンドライン引数を表示するRubyスクリ
プトquickrun-sample.rb（リスト2）を例にして
実行してみます（図5）。ほかの処理系で実行さ
せるには、C-u M-x quickrunを使います（図6）。

C-u C-u M-x quickrunで文法チェック

　C-u C-u M-x quickrunあるいはM-x quick

run-compile-onlyで文法チェックを行います。
　Rubyのようなスクリプト言語の場合は文法が
正しいかどうかの静的なチェックを行うだけで
すが（図7）、コンパイラ言語の場合は実際にコ
ンパイルしてエラーが出るか否かをチェックし
ます。コンパイラ言語の文法チェックにはM-x

compileのインターフェースを使っており、M-g
M-n/M-g M-pでエラー行にジャンプできます。

引数を付けて実行する
M-x quickrun-with-arg

　quickrunにおいて、コマンドライン引数を指
定するにはM-x quickrun-with-argを使う必
要があります。先ほどのquickrun-sample.rbで
「foo bar」というコマンドライン引数を付けて実
行すると、図8のような結果になります。

劣化版ではありません。quickrunにはquickrun

の哲学がありますので、どうか読み進めていた
だきたいと思います。

regionを実行する2つのコマンド

　quickrunにはregionのみを実行する機能が存
在します。
　M-x quickrun-regionはregionのみを実行
して結果を表示し（図3）、M-x quickrun-eval-
printは結果をコメントとしてカレントバッ
ファに挿入します（図4）。これらの機能はシェ
ルスクリプトでとくに有用です。

quickrunの応用機能

C-u M-x quickrunでほかの処理系で実行

　同じ言語でも、複数の処理系が存在するもの
があります。たとえば、Rubyにおいては本家

 ▼図3　dateの行を指定してM-x quickrun-region

 ▼図5　そのままM-x quickrun

 ▼図4　dateの行を指定してM-x quickrun-eval-print

 ▼図6　C-u M-x quickrun RET ruby/mruby

 ▼リスト2　quickrun-sample.rb

#!/usr/bin/ruby
-*- coding: utf-8 -*-
puts RUBY_ENGINE # 処理系
puts RUBY_VERSION # バージョン
p ARGV # コマンドライン引数

るびきち流
Emacs超入門

132 - Software Design Sep. 2016 - 133

◆　◆　◆
　ここまでquickrunの大まかな機能を紹介しま
した。次回はquickrunの実行を細かく制御した
り、カスタマイズする方法を紹介する予定です。
　quickrunは開発中のプログラムをすばやく実
行するためのあらゆる方法を提供します。筆者
のサイトでもquickrunの紹介 注2をしています。
また、quickrunの機能を自分なりに再整理して
より使いやすくする設定 注3も紹介しています。
　毎日更新している筆者のサイト「日刊Emacs」
は日本語版Emacs辞典を目指しています。手元
でgrep検索できるよう全文をGitHubに置いて
います。またEmacs病院兼メルマガのサービス
を運営しています。Emacsに関すること関しな
いこと、わかる範囲でなんでもお答えします。
「こんなパッケージ知らない？」「挙動がおかし
いからなんとかしてよ！」はもちろんのこと、自
作elispプログラムの添削もします。集中力を上
げるなどのライフハック・マインド系も得意と
しています。ﾟ
登録はこちら➡http://www.mag2.com/m/000

1373131.html

helm/anythingインターフェース

　quickrunには、anythingとhelmのインター
フェースが用意されています。
　anythingは筆者が9年前から開発・メンテナ
ンスしているパッケージで、強力な絞り込み検
索と複数のアクションで1つのコマンドが無数
の機能を持つようになり、話題となりました。
　helmはanythingの後継版で、とても活発に開
発されている超人気パッケージです。本連載で
も第11・12回（本誌2015年3月号・4月号）で紹
介しました 注1。
　M-x helm-quickrunあるいはM-x anything

-quickrunからはquickrunの全機能にアクセス
できます。実行すると、まずすべての処理系が
候補となって登場しますので、使いたい処理系
を絞り込んでください（図9）。そのまま　　　
を押すとその処理系でquickrunが実行されま
す。　　 を押すとアクションリストが出てき
て、多種多様な実行方法を選択できます（表2）。

Enter

TAB

 ▼図7　C-u C-u M-x quickrun ▼図8　M-x quickrun-with-arg foo bar

 ▼図9　M-x helm-quickrun

注1） anythingは、筆者としては完成していると思っているの
で、かなり前に機能拡充を停止しました。helmは仕様変
更が激し過ぎていきなり動かなくなることがよくあるた
め、anythingは安定志向・elispプログラミングツールと
して再興予定です。anythingはまだ死んでいません。

注2） URL http://rubikitch.com/2014/11/06/quickrun
注3） URL http://rubikitch.com/2016/07/12/my-quickrun

アクション名 相当するコマンド
Run this cmd-key quickrun
Compile only quickrun-compile-only
Run with shell quickrun-shell
Run with argument quickrun-with-arg
Replace region quickrun-replace-region
Eval and insert as comment quickrun-eval-print

 ▼表2　helm-quickrunのアクション

第29回 カレントバッファを即実行！　quickrun（前編）

http://www.mag2.com/m/0001373131.html
http://rubikitch.com/2014/11/06/quickrun
http://rubikitch.com/2016/07/12/my-quickrun

134 - Software Design

APFS― 3度目の正直

　いよいよSwift 3の解説……の前にOne More

Thing。「新製品なきWWDC」と前回言いまし
たが、実は正真正銘の新製品が1つありました。
APFS注1。現在のHFS+注2に代わる新しいファ
イルシステムです。ファイルシステムという
ものの重要性を考えれば、これをスルーする
わけにはいかないでしょう。

ファイルシステムの歴史

　Apple製品のファイルシステムと言えば、
1998年以来一貫してHFS+でした。Jobsの復
帰は、技術的には買収元であるNeXTが買収先
であるAppleを乗っ取っていく歴史でもあり、
macOSは（9までの）Mac OSではなくNextStep

の子孫なのですが、唯一乗っ取れなかったのが
HFS+です。
　HFS+が受けた最初の挑戦が、NextStep由
来のUFS(Unix File System)であるのはごく
自然とも言えます。OS X登場当時はUFSが
HFS+を置き換えると思われていたのですが、
HFS+はその挑戦を退けます。HFS+にはユー
ザごとの所有権やパーミッションといった、
OS XというUnixに必要な機能をすべて備え
ていたからです。UFSにあってHFS+にない
のは、スパースファイルやファイル名の大文

字小文字の区別ぐらいで、それらは必須では
なかったのです。
　次の挑戦はZFSの登場でした。ZFSはこれ
までのファイルシステムの常識を覆す画期的
なファイルシステムでした。fsckを不要にす
るトランザクション、パーティションという
概念を過去のものにするデータセット、ファ
イルシステム自体のundoを可能にするスナッ
プショット、エラーを自動検知し、可能であ
れば自動修復するチェックサム、RAIDホール
がないRAID-Z……「Z=最後のファイルシステ
ム」という自信がその名に込められたZFSは、
今は亡きSun Microsystemsの最後の遺産でも
あります。

ZFSオープン化の理由

　画期的だったのは技術にとどまりません。同
社はZFSをオープンソースしたのです。おか
げでSolaris以外のOSにも移植が進みました。
最も熱心だったFreeBSDは、今やZFSが最大
の売りの1つにもなっていますし、ライセンス
がGPLと非互換ということで公式サポートで
きないはずのLinuxすら、カーネルモジュール
をカーネル本体とは別配布にすることで利用可
能になっています。そしてOS Xも、いったん
は公式サポートしたのです。OS X v10.5には
リードオンリーとはいえZFSが追加されまし
た。しかしAppleは、v10.6でZFSサポートを

書いて覚える 入門Swift

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

APFSとSwift318第 回

注1） APFS（https://developer.apple.com/videos/play/wwdc2016/701/）
注2） https://en.wikipedia.org/wiki/HFS_Plus

https://developer.apple.com/videos/play/wwdc2016/701/
https://en.wikipedia.org/wiki/HFS_Plus

134 - Software Design Sep. 2016 - 135

APFSとSwift3第 回18

打ち切ってしまいます。
　例によってAppleはその理由をつまびらかに
していませんが、最も人気がある仮説はSunが
Oracleに買収されたことで、OracleがAppleへ
のライセンスを蹴ったというものです注3。かな
りの説得力もあり、筆者自身ほとんど説得され
ていた一方、ZFSがオープンソースであり、
OS Xを含む複数OSのサポートがOpenZFS注4

として結実していることを考えると鵜呑みにし
難くもあります。
　HFS+がUFSとZFSを退けた話は、拙著『コー
ドなエッセイ注5』も取り上げたのでそちらでも
確認していただくとして、APFSの登場で、な
ぜZFSではダメだったのか、筆者にもやっと
納得できる理由が得られたように思います。
　HFS+をZFSにライブアップグレードするの
は不可能だからです。技術的にはさておき、既
存のAppleデバイスのユーザが受け入れられる
形では。
　ファイルシステムのライブアップグレードは、
大きなところでは二度行われています。1つは

1998年の、MacにおけるHFSからHFS+への
アップグレード。もう1つはWindowsにおけ
るFATからNTFSへのアップグレード。どち
らも共通しているのは、新ファイルシステムが
旧ファイルシステムのすべての機能を上位互換
としてサポートしていること、そしてアップグ
レードするのはメタデータのみで、データはそ
のままだということ（表1）。
　たとえば最長ファイル名。ZFSは255バイ
トなのに対し、HFS+は（実はNTFSも）UTF-

16で255文字。バイト長で倍も違います。255

バイトでも長過ぎに一見思えますが、Twitter

のつぶやきをそのままファイル名にペーストす
るユーザがいないと誰が断言できるでしょうか。
　その一方、ZFSではストレージに書き込む
情報すべてにチェックサムを付けていますが、
APFSではメタデータのみ。もしZFS同様に
APFSもデータのチェックサムを付けようと
するとどうなるか？　ファイルシステムのアッ
プグレードの際に、使用ブロックの情報をすべ
て読む必要があります。それはアップグレード

注3） http://dtrace.org/blogs/ahl/2016/06/15/apple_and_zfs/
注4） http://open-zfs.org/wiki/Main_Page
注5） 『コードなエッセイ』当社刊行、ISBN:978-4774156644

機能 HFS+ ZFS APFS コメント

Copy-on-write × ◯ ◯ 新世代FSの要

スナップショット × ◯ ◯

クローン × ◯ ◯

RAID × ◯ ×

データセット × ◯ ◯ 既存FSのパーティション相当

チェックサム × ◯ △ APFSはメタデータのみ

暗号化 ◯ x ◎

SSD最適化 △ △ ◯

タイムスタンプ粒度 秒 ナノ秒 ナノ秒

最長ファイル名 UTF-16で255文字 255バイト HFS+以上 ZFSでは互換性不足

旧FSからのアップグレード NA × ◯ ZFSでは困難

 ▼表1　ファイルシステムの機能比較

http://dtrace.org/blogs/ahl/2016/06/15/apple_and_zfs/
http://open-zfs.org/wiki/Main_Page

136 - Software Design

書いて覚える 入門Swift

に数分ではなく数時間を要するということであ
り、古くからのパソコンユーザなら何とか耐え
られてもスマフォやタブレットのユーザにそこ
までの忍耐力は期待できないでしょう。

APFSの真意

　APFSのことを最初に耳にした時点での筆者
の感想は、「それってZFSと何が違うの?」でし
た。とくにその要となっているのが表1で挙げ
たようにcopy-on-writeがZFSの真髄でもあり
ます。しかしAppleははっきり表明しました。
「18ヵ月後、すべてのAppleデバイスのデフォ
ルトファイルシステムをAPFSに移行する。既
存デバイスはそのままアップグレードする」と。
　あらためて見てみると、ZFSとAPFSは要
となっている技術は共通していても、ユースケー
スは180度異なるとも言えます。ZFSが威力
を発揮するのは、サーバの大規模ストレージ。
APFSはパーソナルデバイスの内部ストレージ。
ZFSにとってのSSDの役どころはディスクア
レイのキャッシュ、APFSにとってのSSDは
唯一のストレージ。ZFSにとって暗号化は「あ
ればうれしい」機能、APFSにとって暗号化は
「欠かせない機能」……。

APFSはオープン
ソース化されない ?

　1つ気になるのは、「APFSはApple製品に
最適化」されていることを強調していること。
これまでAppleはOSの基礎部分をDarwinと
してオープンソースしてきました注6。HFS+ま
わりのコードもその一環として公開されていま
す。ファイルシステムなきOSというのが現状
ありえない以上当然とも言えますが、HFS+と
APFSのどちらでもブートできるとしたら、
APFSのコードはDarwinに含める必要はなく

なります。
　残念ながらその可能性は低くないでしょう。
残念でないことに、ファイルシステムの違いは
ネットが当然のように吸収してくれます。フロッ
ピー、CD-ROM、DVD……リムーバブルドラ
イブはMacからも消えてしまいました。そし
てUSBメモリすら、iPhoneや iPadにはそのま
ま刺さらない。そしてそれをほとんど誰も気に
しないとあっては、Apple製品に最適化された
ファイルシステムをサポートするインセンティ
ブはさほど高くはない。オープンソースな
HFS+すら、Appleの外ではほとんどサポート
されているとは言えないのに……。
　それでも、Apple製品向けにソフトウェアを
開発する我々は、APFSの機能を学ばざるを得
ないでしょう。とくにクローンやスナップショッ
トのようなHFS+にはない特長を活かすとした
ら。1つ確かなのは、APFSのAPIはSwiftで
も提供されるであろうということ。どんなふう
になるか、今から楽しみです。

swift.version++ //
廃止される機能

　それではいよいよSwift 3の紹介を。といっ
ても、実はSwift 2.2 をお使いの皆さんはすで
に触れているといっても過言ではありません。
Swift 3で廃止が予定されている機能に関しては、
すでに警告が出るからです。Swift 3へすぐに
移行せずにとりあえずSwift 2.3にとどまるに
しろ、警告は今のうちに消しておきましょう。

++ / --

　おそらく一番知られているのは［SE-0004］注7。
ほとんどのケースで、+= 1とするだけで対処
できるでしょう。どうしても欲しかったら、あ
らためてオレ演算子として定義してしまえば良

注6） https://opensource.apple.com
注7） ［SE-0004］https://github.com/apple/swift-evolution/blog/master/proposals/0004-remove-pre-post-inc-decrement.md

https://opensource.apple.com/
https://github.com/apple/swift-evolution/blob/master/proposals/0004-remove-pre-post-inc-decrement.md

136 - Software Design Sep. 2016 - 137

APFSとSwift3第 回18

いのです。Swift 3でも警告なしで使えます。

prefix func ++(i: inout Int) -> Int {
 i += 1
 return i
}

postfix func ++(i: inout Int) -> Int {
 let o = i
 i += 1
 return o
}

C-Styleのfor

　［SE-0007］注8もSequenceType、あらためSe

quenceプロトコルがあるSwiftではほとんど不
要でしょう。

for var i = 0; i < 10; i++ {
 let elem = array[i]
 // …
}

より、

for elem in array {
 // …
}

のほうがはるかにわかりやすいですし、iも欲
しければ、

for (i, elem) in array.enumerate() {
 // …
}

とするだけです。

パラメータvar

　［SE-0003］注9のパラメーター中のvar禁止と
はどういうことかというと、こういうコードが
書けなくなるということです。

・Swift2

func gcd(var a: Int, var _ b: Int) -> Int {
 a = abs(a); b = abs(b)
 if (b > a) { (a, b) = (b, a) }
 while (b > 0) { (a, b) = (b, a % b) }
 return a
}

　varしたかったら、ブロック内であらためて
やれ、と。

・Swift(2|3)

func gcd(a: Int, _ b: Int) -> Int {
 var (x, y) = (abs(a), abs(b))
 if (x > y) { (x, y) = (y, x) }
 while (y > 0) { (x, y) = (y, x % y) }
 return x
}

カリー化構文

　「インド人は右へ」ではなくて、［SE-0002］注10

は次のようなコードが書けなくなるということで
す。

・Swift2

func logWithBase(b:Double)(_ x:Double)-
>Double {
 return log(x)/log(b)
}

let log2 = logWithBase(2)
print(log2(8)) // 3.0

　Swiftにはブロックがあるので、こう書けば
OKですし、そのほうがわかりやすいでしょう。

・Swift(2|3)

func log(base b:Double)->(Double)->Double {
 return { x in log(x)/log(b) }
}

let log2 = log(base:2)
print(log2(8)) // 3.0

注8） ［SE-0007］https://github.com/apple/swift-evolution/blog/master/proposals/0007-remove-c-style-for-loops.md
注9） ［SE-0003］https://github.com/apple/swift-evolution/blog/master/proposals/0003-remove-var-parameters.md
注10） ［SE-0002］https://github.com/apple/swift-evolution/blob/master/proposals/0002-remove-currying.md

https://github.com/apple/swift-evolution/blob/master/proposals/0002-remove-currying.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0003-remove-var-parameters.md

138 - Software Design

書いて覚える 入門Swift

　実際のところ、カリー化構文を――とくにプ
ロダクションコードで――使っている方は少な
いかと思われますが念のため。

パラメータのタプル渡し

　ほとんど知られていなかった機能ですが、
Swift 2では次のコードがOKでした。

・Swift2

func distance(_ x:Double, _ y:Double)-
>Double {
 return sqrt(x*x + y*y)
}
let p = (3.0, 4.0)
print(distance(p)) // 5.0

　パラメータ全体をタプルにして、そのタプル
を1つ渡すとすべてのパラメータを渡したのと
同等で、言語的には一貫してはいるのですが、

バグを引き寄せやすい機能ということで、
［SE-0029］注11で廃止されることになりました。

・Swift(2|3)

func distance(_ x:Double, _ y:Double)-
>Double {
 return sqrt(x*x + y*y)
}
let p = (3.0, 4.0)
print(distance(p.0, p.1)) // 5.0

次回に向けての予習

　というわけでSwift 3で廃止される機能の紹介
だけで今号の誌面が尽きてしまったようですが、
オープンソース化されたおかげで、Swift 3 の変
更はGitHubのswift-evolution注12でも事前に確
認できます。さらにうれしいことに、すでに実装

済みの機能に関しては、
IBM Swift Sandbox 注 13

で実際に動かしてみる
こともできます（図 1、

図2）。
　パソコンはもちろん、
スマートフォンからでも。
Swiftのバージョンを切
り替えて試せる点も素
晴らしい。
　というわけで、次回
はいよいよSwift 3の核
心に迫っていく予定で
す。ﾟ

注11） ［SE-0029］https://github.com/apple/swift-evolution/blob/master/proposals/0029-remove-implicit-tuple-splat.md
注12） swift-evolution（https://github.com/apple/swift-evolution）
注13） IBM Swift Sandbox（https://swiftlang.ng.bluemix.net/#/repl）

 ▼図1　 IBM Swift Sandboxでの実行例
（コード編集）

 ▼図2　 IBM Swift Sandboxでの実行例
（複数バージョンのSwiftを指定）

https://github.com/apple/swift-evolution/blob/master/proposals/0029-remove-implicit-tuple-splat.md
https://github.com/apple/swift-evolution
https://swiftlang.ng.bluemix.net/#/repl

139 - Software Design Sep. 2016 - 139

　今回は、Pythonソースコードから自動的に
APIリファレンスを生成する、autodocについ
て紹介します。
　もともとSphinxの開発は、プログラミング言
語Pythonのドキュメントを作るうえで発生した
さまざまな課題を解決するために始まりました。
そのときの課題の1つが、ソースコードからのド
キュメント自動生成でした。当時のPythonのド
キュメントは、Pythonのソースコードに書かれ
ているdocstring（ドキュメント文字列、リスト1

の①のように書きます）をツールでパースして、
LaTeXに埋め込める形式に変換していました注1。
　docstringを元にドキュメントを自動生成す

るツールは、Sphinx以外にもいくつかありま

注1） ドキュメントはPDF版とHTML版とがあり、HTMLはさら
に別のツールでLaTeXからHTMLに変換していたそうで
す。　http://sphinx-users.jp/event/20121200_sphinx-
advent-calendar/day25-sphinx-past-and-future.html

ドキュメント自動生成に
おける課題

す注2。これらのツールは、APIリファレンスの自
動生成が主目的で、チュートリアルや機能別の
ドキュメントなど、リファレンス以外のナラティ
ブ注3なドキュメントの生成には不向きです。
　APIリファレンスだけでなく、チュートリア
ルなどのドキュメントもあったほうがうれしい
ですよね？　Sphinxを使えば、これまでに本連
載で紹介してきた方法で、ナラティブなドキュ
メントを書けます。さらに、Sphinx本体に同梱
されているSphinx拡張sphinx.ext.autodocを使
えば、docstringから自動生成されたリファレン
スをドキュメントの好きな位置に埋め込めます。

　Python製のツールやライブラリのドキュメン
トは、その多くがSphinxで作成されています。
autodocを使うと、とても簡単にAPIリファレ
ンスを作成できるのがその理由の1つでしょう。
はじめに、autodocを活用したドキュメントはど
んな出力になるのか、そのときのソースはどう

書かれているのかを紹介します。
　多くのライブラリのドキュメ
ントは図1のように、ページ全
体の目的を説明するナラティブ

注2） Sphinxが登場する以前から、Pydoc、
Epydocなどがありました。Python
以外の言語ではJavadoc、Doxygen、
ESDoc、RDocなどがあります。

注3） 説明的、物語的。ストーリーのある
ドキュメント形式。「リファレンス」
（辞書的）の対義語。

autodocを活用した
ドキュメント作り

ドキュメントを自動生成する
autodoc

第18回

清水川 貴之　SHIMIZUKAWA Takayuki　 Twitter @shimizukawa

Sphinxで始める
 ドキュメント作成術

def fib(n):
 """
 n番目のフィボナッチ数を返します。以下は実行例です。

 >>> fib(5)
 8

 :param int n: n番目のフィボナッチ数を指定。nは0以上の整数。
 :return: n番目のフィボナッチ数。
 :rtype: int
 """
 return 1 if n < 2 else fib(n - 2) + fib(n - 1)

 ▼リスト1　docstring

①
②

③

http://sphinx-users.jp/event/20121200_sphinx-advent-calendar/day25-sphinx-past-and-future.html

140 - Software Design

な部分と、関数やクラスを説明するリファ
レンス部分とで構成されます。
　このようなページを出力するには、リ

スト2のようなドキュメントソースを書き
ます。このファイルでは、autodocが提供
しているautofunctionとautoclassディレ
クティブを使用しています。これらを使
うと、関数やクラスの定義（シグネチャ）と
説明文（docstring）をソースコードから自動
的に抽出して、ドキュメントに埋め込ん
でくれます。リスト2の❶のautofunction

で参照している deep_thought.calc.calc_

answerのソースコードにはリスト3のよ
うに書かれています。
　一般的に、ドキュメントの自動生成は、
ソースコードに書いたのと同じことをド
キュメントにも書く煩わしさから解放し
てくれます。しかし、自動生成だけで作
成されたドキュメントはたいていの場合、
巨大で読みづらい固まりになってしまい、
よく知っているソフトウェアでなければ
読むのが困難なものになります。また、
ソースコードと直接関係がないドキュメ
ントは書けません。

Sphinxで始める
 ドキュメント作成術

======================================
開発者向けインターフェース
======================================

このセクションでは、Deep Thoughtの全てのインターフェースについて説明します。
Deep Thoughtの一部は外部ライブラリに依存していますが、ドキュメントには
ここで紹介するべき重要な部分だけ紹介して、適切なドキュメントへリンクします。

計算関数群
=====================

Deep Thought は計算機能として1つの関数を提供しています。

.. autofunction:: deep_thought.calc.calc_answer ←❶

ユーティリティ関数群
=========================

Deep Thought はいくつかのユーティリティ関数を提供しています。

.. autofunction:: deep_thought.utils.dumps

.. autoclass:: deep_thought.utils.Question

 ▼リスト2　interface.rst

 ▼図1　autodocを利用して作成したドキュメント例（一部抜粋）

❶

❷

ソースコード（リスト
3の❶）から抽出して
埋め込まれている

リスト3の❷の情報
フィールドリスト
記法により出力

140 - Software Design Sep. 2016 - 141

　自動生成ドキュメントとは反対に、すべてを
手書きで記述する場合、全体を自由に構成でき
ます。ソースコードに書くのが適切ではないよ
うなナラティブな記述、たとえば、チュートリ
アル、インストール手順、システム構成なども
ドキュメントに含められます。デメリットとし
て、関数シグネチャから引数の説明まですべて
を手書きでドキュメント側に書く必要がありま
す。そしてこれは、関数の説明は関数のコード
の近くに書いておきたい、というプログラマの
直感に反しています。実際の問題として、関数
の説明をコードの近くに書いておかないと、関
数仕様の変更があったときに、その変更内容を
漏れなく説明に反映することが難しくなります。

　autodocを使うと、ドキュメントの自動生成と
手書きのそれぞれの良いところを同時に享受で
きます。ドキュメント全体の構造は手で書きま
す。そのため、必要に応じて全体像や使い方の
解説文を書き、読者の観点からAPIの説明をわ
かりやすく並べて提供できます。各APIの詳細
な説明は、ソースコードのdocstringから自動的
に取得してドキュメントに埋め込みます。

　docstringはPython 1系のころから言語機能
として組み込まれています注4。リスト1の①のよ

注4） https://docs.python.org/release/1.6/tut/node6.html

autodocのための
docstring入門

ドキュメントを自動生成するautodoc 第18回

def calc_answer(question):
 """
 疑問の答えを導き出します。 **もし疑問が明確でない場合、答えを計算するのに
 とても長い時間がかかることに注意して下さい。**

 >>> calc_answer(Question('曖昧な質問'))
 42

 正確な答えを得るためには、 :py:class:`deep_thought.utils.Question` クラスを
 継承した疑問クラスを実装して下さい。

 :param deep_thought.utils.Question question: 疑問インスタンス
 :return: 答え
 :rtype: int
 """
 time.sleep(750 * 10000 * 365 * 24 * 60 * 60)
 return 42

 ▼リスト3　deep_thought/calc.py

❷

❸ ❶

doctestでドキュメント更新漏れを防ぐ
　docstring内には、Pythonコードの対話形式で
の実行例（DocTest記法、リスト1の②）を記述でき
ます。これによって、ユーザはその関数をどのよ
うに実行すればどんな結果を得られるのか、簡単
に把握できます。また、DocTest記法で実行例を
書いておくと、doctestと連携できます。doctest
はPythonの標準ライブラリです。これを使用する
と、DocTest記法を検出して、実行し、期待する
値と実際の結果が一致しているかを検査してくれ
ます（図A）。doctestによって、そのドキュメント
が関数の実装そのものとかけ離れてしまっていな

いか、関数仕様が変わったときにドキュメントの
更新を忘れていないかをチェックできます。

COLUMN

$ python -m doctest -v fib.py
Trying:
 fib(5)
Expecting:
 8
ok
1 passed and 0 failed.
Test passed.

 ▼図A　doctest実行例

https://docs.python.org/release/1.6/tut/node6.html

142 - Software Design

うに関数やクラスのシグネチャの次の行に、イ
ンデントして文字列リテラルを1行または複数
行で記述すれば、Pythonインタプリタがこれを
docstringとして解釈します。docstringとは何
か、そこにどんな情報が含まれるべきかについ
てはPEP-0257注5で決められていますが、doc

stringにどんな記法が使われるべきかは決めら
れていません。
　Pythonの言語仕様では、たとえば fib関数の
docstringは、import inspect; inspect.get
doc(fib)のようにして取得できます。また、
Pythonインタラクティブシェルでhelp(fib)と
入力すれば、docstringが表示されます。
　ほかにもPythonに対応したエディタや統合開
発環境では、関数のドキュメントを簡単に見る
ための機能が提供されているなど、docstringは
さまざまなツールで活用されています。
　Sphinxは、docstringに書かれたテキストを
reSTとして解釈します注6。前節で紹介したよう
に、docstringに書かれた内容は自動的にソース
コードから抜き出されてドキュメントに出力さ
れます。reSTで書けるので、強調の記法やリン
クの記法なども使用でき、HTMLなどに出力し
たときにより便利な内容を提供できるでしょう。
　ただし前述のとおり、docstringの記法は決
まっていません。Sphinx以外にもhelp(fib)の
ように参照したり、統合開発環境で表示したり
する場合もあり、そういったツールはdocstring

のreST記法を解釈しないでしょう。docstring

がそのまま表示されても読みやすいように、マー
クアップし過ぎないようにしましょう。
　Sphinxでは、DocTest記法（p.141のコラム参
照）で記述した利用例も自動的にコードハイライ
トされます。また、doctestビルダーは、DocTest

記法を一括で検査する機能を提供しています。
doctestビルダーを使用するには、Sphinx同梱
のsphinx.ext.doctestを有効にしてください。

注5） https://www.python.org/dev/peps/pep-0257/

注6） Googleスタイルの記法を解釈するsphinx.ext.napoleonも
あります。

 http://www.sphinx-doc.org/ja/stable/ext/napoleon.html

　autodocを利用するための設定と、ドキュメン
トの書き方、そしてautodocのしくみについて
紹介します。
　autodocを利用するには、conf.pyで sphinx.

ext.autodocを有効にしたうえで、Sphinxが対象
のPythonソースコードを読み込める必要があり
ます。Pythonのモジュールインポートパスが
通っていればどこにあっても良いのですが、た
いていは図2のようなディレクトリ構造で、自
作ライブラリのドキュメントにautodocを使用
すると思います。リスト4では、sys.pathにconf.

pyからみた親ディレクトリを設定して、deep_

thoughtパッケージをPythonで importできるよ
うに調整しています。また、autodocを有効にし
ています。これでautodocを使用する準備が整
いました。
　あとは、リスト2の❶のようにautofunction、
autoclassといったディレクティブを使ってド

autodocでdocstring
の価値を引き出そう

Sphinxで始める
 ドキュメント作成術

import os
import sys

sys.path.insert(0, os.path.abspath('..'))

extensions = [
 'sphinx.ext.autodoc',
]

 ▼リスト4　conf.pyでautodocを有効化

deep_thought
 __init__.py
 calc.py
 utils.py
doc
 _build
 html
 conf.py
 index.rst
 interface.rst
 make.bat
 Makefile

setup.py

Sphinx
プロジェクト

ライブラリの
ソースコード

Sphinxの
ビルド出力

 ▼図2　プロジェクトのファイル構成

https://www.python.org/dev/peps/pep-0257/
http://www.sphinx-doc.org/ja/stable/ext/napoleon.html

142 - Software Design Sep. 2016 - 143

キュメントに埋め込みたい関数やクラスを指定
します。そこまで実施できたら、make htmlで
HTMLドキュメントを生成して確認してみましょ
う。図1の❶ような出力が得られます。
　autofunctionは、Pythonの関数定義とdocstr

ingから、リスト5のようなPythonドメイン注7

（前回紹介）を活用した記述（reST）を内部的に自
動生成します。autodocのディレクティブを使え
ば、ドキュメントを書く時間を大幅に節約でき
るでしょう。なお、自動生成したreSTはメモリ
内にのみ一時生成されるため、内容を知りたい
場合はmake html SPHINXOPTS=-vvvのように
実行すれば、確認できます。

関数引数の記述

　関数の引数について長々とした文章で説明を

注7） http://www.sphinx-doc.org/ja/stable/domains.html
#the-python-domain

書き綴
つづ

っても、わかりやすいドキュメントには
なりません。引数の説明だということが明確で、
どんな型を期待していて、値にどのような意味
があるのかが端的に書かれているべきです。
　Sphinxでは、関数引数を端的に記述するため
に情報フィールドリスト記法注8を提供していま
す。これを使うと、整形された読みやすいフォー
マットで出力されます（図1の❷）。
　リスト1の③は情報フィールドリスト記法を
使って、引数と戻り値について説明しています。
この記法は関数などの説明文でのみ使用できま
す（正確には、Pythonドメインのディレクティ
ブ内で使用できます）。
　情報フィールドリストは:param <型> <引
数名>: <説明文>のように書きます。このとき、
<型>部分に一致する型が見つかった場合、それ
が定義されているドキュメントのページへ自動
的にリンクが設定されます。ある程度大きなラ
イブラリであれば、そのライブラリが提供する
クラスを引数にとる関数などもあるでしょう。
そのとき、クラスがどこに定義されているのか、
どうやって値を用意するのか、といった説明に
リンクされていれば、そのドキュメントはとて

注8） http://www.sphinx-doc.org/ja/stable/domains.html#
info-field-lists

ドキュメントを自動生成するautodoc 第18回

.. py:module:: deep_thought.calc

.. py:function:: calc_answer(question)
 :module: deep_thought.calc

 疑問の答えを導き出します。 （後略）

 ▼リスト5　 pythonドメインのディレクティブで
APIドキュメントを記述

docstring自動取得の落とし穴
　SphinxはPythonが解釈した結果を使ってdoc
stringを取得しています。このため、対象のソー
スコードは Sphinxドキュメントのビルド時に
Pythonによって読み込まれます。
　importだけで利用環境に影響を与えるようなプ
ログラムをautodocの対象としてはいけません。
そのコードが、現在のディレクトリ以下のファイ
ルをすべて削除するような内容の場合、make html
を実行するとファイルが消えることになります。
　一般的に、Pythonモジュールを importするだ
けで副作用のある処理を実行するようなコードを
書くべきではありません。if __name__ == '__

main__':のような実行ガードを記述することで、
import時によけいな処理を走らせないようにしま
しょう（リストA）。

COLUMN

import os

def delete_current_dir():
 os.system('sudo rm -Rf .')

if __name__ == '__main__':
 delete_current_dir()
 このモジュールがimportされた場合、ここは実行されない

 ▼リストA　if __name__ == '__main__':の使用例

http://www.sphinx-doc.org/ja/stable/domains.html#the-python-domain
http://www.sphinx-doc.org/ja/stable/domains.html#info-field-lists

144 - Software Design

も読みやすくなります。
　リスト3の❷ではライブラリが提供している
deep_thought.utils.Questionクラスへリンクさ
れます。リスト1の③のような組み込み型やほ
かのライブラリが提供する型にリンクするには
intersphinx（下記コラム参照）を使ってください。

関数名の参照

　ライブラリで定義した関数やクラスは、ライ
ブラリ内のほかの関数などの引数として使われ
ることがあります。たとえば、リスト3のcalc_

answer関数はdeep_thought.utils.Questionクラ
スのインスタンスを引数に受け取ります。ドキュ
メントでは、Pythonドメインのロールを使って、
Questionクラスの説明にジャンプできるように
書くと良いでしょう。リスト3の❸では:py:
class:で、.. py:class::ディレクティブで
定義したドキュメントへリンクさせています。
同様に、:py:func:ロールを使えば .. py:
function::ディレクティブで記述したドキュ
メントへの参照を書けます。
　説明文中にリファレンスの定義個所へのクロ
スリファレンスを簡単に設定できるのが、Sphinx

の魅力の1つです。autodocを利用すると、定義
側のドキュメントはソースコードから自動生成
されるため、参照する側のドキュメントを書く

ことに集中できます。
　チュートリアルのようなナラティブなドキュ
メントを書く場合、使い方などの流れを重視し
てストーリー仕立ての文章を書きます。しかし、
用語や定義の説明を都度挟んでしまうと、文章
の流れが分断されてしまいます。ここで紹介し
た関数やクラスの参照を使えば、細かな定義は
リファレンスに任せられ、読みやすいドキュメ
ントを作れるでしょう。

　もしライブラリにAPIがたくさんあって、そ
れをすべてドキュメント提供しなければいけな
い場合、多くの手作業が必要になります。autodoc
はソースコードの関数定義からドキュメントを
自動生成してくれましたが、その機能を使うに
は、autofunctionなどのディレクティブを使っ
て対象関数やクラスなどをひとつひとつ指定し
なければいけません。
　モジュール（.pyファイル）内の関数やクラスを
すべてドキュメントに埋め込むautomoduleディ
レクティブを使えば作業は楽になります。リス

ト6はdeep_thought.calcモジュールをautodoc

で取り込むときの例です。ディレクティブの

:members:オプションは、対象モジュール内の

複数のAPIリファレンス
ページを自動生成

Sphinxで始める
 ドキュメント作成術

intersphinx
　intersphinxはSphinxプロジェクトを越えて、別
のドキュメントに書かれている定義個所へ自動的
にリンクする機能です注A。Pythonの組み込み型や

djangoのクラスなど、ほかのSphinxドキュメン
トで定義されたデータ型に自動的にリンクするに
は、Sphinx内蔵のsphinx.ext.intersphinxを有効に
します。そのためにはconf.pyにリストBのように
設定してください。

COLUMN

extensions = [
 'sphinx.ext.intersphinx',
 ... # 他の拡張利用の指定
]
intersphinx_mapping = {'python': ('https://docs.python.org/3.4', None)}

 ▼リストB　conf.pyで intersphinxを有効化

注A） http://www.sphinx-doc.org/ja/stable/ext/
intersphinx.html

http://www.sphinx-doc.org/ja/stable/ext/intersphinx.html

144 - Software Design Sep. 2016 - 145

どの関数やクラスをドキュメントに取り込むの
かを指定するためのものです。:members:とだ
け書いた場合、docstringのある通常の関数／ク
ラスなどが対象となり、:members: calc_
answerのように書いた場合、明示したオブジェ
クトだけが対象となります。:members:オプ
ションを書かない場合、モジュール自体のドキュ
メント（モジュール先頭のdocstring）だけが対象
となります注9。
　このディレクティブを使えば、労力はだいぶ
削減されます。しかし、automoduleディレク
ティブを1つの .rstファイルにいくつも書くと、
1つのページにたくさんのリファレンスが出力
されてしまいます。たとえば、10個のモジュー
ルを対象とする場合、各モジュールが10個前後
の関数などを持っていたら、合計100個ほどの
リファレンスが1ページに出力されるでしょう。
だからといって、10個の .rstファイルを用意し
てそれぞれにリスト6のような記述だけを書く

注9） オプションの詳細は以下を参照。
 http://www.sphinx-doc.org/ja/stable/ext/autodoc.html

作業は、繰り返したくありません。
　Sphinxは、この問題を解決する組み込み拡張
sphinx.ext.autosummaryを提供しています。auto
summaryは、指定されたモジュールそれぞれを
個別のページとして生成する機能を提供します。
　autosummaryを使うには、conf.pyにリスト7

のように設定してください。そして、各モジュー
ルの目次となる文書を作成します。たとえばapi.

rstにリスト8のように対象としたいモジュール
やパッケージを列挙します。あとはmake html
を実行すれば各モジュールそれぞれのリファレ
ンスページが生成されます。また、api.rstから
生成されたapi.htmlには、autosummaryディレ
クティブに指定した各モジュールのリファレン
スページへのリンクが提供されます（図3）。

　autodocによって、Pythonソースコードから
自動的にAPIリファレンスを生成できます。こ
れによりドキュメントを書く人は手書きで書く
際の退屈な繰り返し作業から解放されます。そ
して、読者に読みやすいドキュメントを楽に提
供できるでしょう。
　これまでの本連載では、Sphinxの機能は汎用
的に使えることを強調してきましたが、今回の
autodocはPythonソースコードとの連携でのみ
利用できます。将来的には言語の垣根を越えて
使える機能にしていきたいところですね。
　次回はSphinxを使ったWeb APIのドキュメ
ントの書き方を紹介します。｢

まとめ＆次回予告

ドキュメントを自動生成するautodoc 第18回

.. automodule:: deep_thought.calc
 :members:

 ▼リスト6　 automoduleでモジュール内の
ドキュメントを一括生成

Deep Thought API
================

.. autosummary::
 :toctree: generated

 deep_thought.calc
 deep_thought.utils
 deep_thought.pkg

 ▼リスト8　autosummaryの利用例（api.rst）

extensions = [
 ... # 他の拡張利用の指定
 'sphinx.ext.autodoc',
 'sphinx.ext.autosummary',
]
autodoc_default_flags = ['members'] # すべてのautodocディレクティブにオプションを設定する
autosummary_generate = True # autosummaryディレクティブで指定されたモジュールの中間ファイルを自動生成する

 ▼リスト7　conf.py でautosummaryを
 有効化

 ▼図3　api.rstページの出力例（api.html）

http://www.sphinx-doc.org/ja/stable/ext/autodoc.html

146 - Software Design

ムに依頼をする」というフローができあがる場
合が多いのではないでしょうか。これは、「全サー
ビスのサーバを一括監視しているので、そのし
くみをすべてのエンジニアには自由に操作させ
たくない」という理由かもしれません。あるいは、
「サービス側のエンジニアがサーバ監視のしく
みを理解していないので、お願いするしかない」
という理由かもしれません。
　とくにここ最近では、AWSやAzureなどの
クラウドを活用して、サーバを簡単に起動／停
止できるようになりましたし、これを用いてサー
ビスへのトラフィックに応じてサーバの台数を
自動的に増減できる構成を簡単に構築できるよ
うになりました。
　こういった状況で、「サーバ監視に関する設
定を依頼しなければならない」というフローが
できあがっていると、サービス側もインフラチー
ム側もどちらも手間ですし、何より時間がかか
り過ぎてしまいます。
　そういった場合によく起こるもう1つの問題
が、2つめの「サービスごとに監視のしくみが
乱立する」です。サービスごとでサーバ監視の
しくみを構築できれば、そのサービスにとって
最適な形でしくみを構築できますし、何よりサー
バ監視の設定も自分たちで行うことができるの
で、「インフラチームに依頼する」といったフロー
によって生じるタイムロスがなくなります。
　しかし、この解決策も簡単ではありません。
まず、サービスを安定して監視するためのしく

Mackerelではじめる
サーバ管理

Mackerelの活用事例第2弾。GMOペパボに続き、今回は「ガイアックス」です。サー
バ監視において、かつてどのような問題があり、現在どのようなアプローチで解決し
ようとしているのかを解説します。また、筆者が立ち上げにかかわった「Mackerel
User Group」についても紹介します。

Writer 福本 貴之 （ふくもと たかゆき）

㈱ガイアックス
Twitter @__papix__

　ガイアックスの福本です。会社では、Reactio

など複数のWebサービスの開発に従事しつつ、
サービスのインフラや、デプロイフローの改善
などに取り組んでいます。また最近では、
Mackerelユーザの有志が集まって設立された、
Mackerel User Groupの立ち上げも担当させて
いただきました。よろしくお願いします。
　さて今回は、筆者が所属するガイアックスに
おいてのMackerel導入に至るまでの顛

てんまつ

末や、具
体的な活用例などについて紹介したいと思います。

Mackerelを
導入するまで

　Mackerelを導入するまで、ガイアックスで
はNagiosやCacti、ZabbixなどのOSSを組み
合わせてサーバ監視のしくみを構築していまし
た。これらのしくみは、社内の各サービスを開
発するエンジニアグループを横断的に支援する、
技術開発部のインフラチームが担当しています。
このように、OSSなどを活用してサーバ監視
のしくみを社内で構築する場合、いずれ次のど
ちらかの問題に直面するのではないでしょうか？

（1）サーバ監視の設定変更に時間がかかる

（2）サービスごとに監視のしくみが乱立する

　1つめの問題です。インフラチームなどのサー
ビスを横断してサポートするチームが、サーバ
監視のしくみを管理している場合、「サーバ監
視に関する設定を変更する際にはインフラチー

第18回 Mackerel活用事例
――ガイアックスの場合

146 - Software Design Sep. 2016 - 147

みを構築するのは簡単ではありませんし、その
保守管理はチームで責任を持たなければなりま
せん。サービスのためのサーバ監視のしくみを
構築したエンジニアが、他チームへの移籍や退
職などになってしまって、保守管理できなくなっ
てしまった……というパターンは、絶対に避け
なければなりません。
　ガイアックスでは、これらの問題を解決するた
めに、Nagios、CactiやZabbixなどを活用したこ
れまでのインフラ監視のしくみも残しつつ、必要
に応じてMackerelを導入することになりました。
現在、社内のおよそ3割のサービスでMackerel

が活用されていて、とくに新規のサービス開発や
サービスのリプレイス時のタイミングで、徐々に
Mackerelへ置き換えるという流れになっています。

ガイアックスでの
Mackerel活用

PerlからMackerelを使う

　ガイアックスではRubyやPHP、Perlなど、サー
ビスごとに異なるプログラミング言語を利用して
サービスを開発しています。サーバやインフラを
保守／管理するスクリプトや、デプロイ時に行う
さまざまなAPI操作については、公式が提供す
る各種APIクライアント（たとえば、Mackerelで
あればmkrコマンド）を利用しても良いのですが、
そのサービスで使われている言語を活用できれば、
チームでの保守管理はいくぶんか容易になります。
　筆者が所属する事業ではおもにPerlを利用す
ることが多いので、MackerelのAPI操作につい
ては、CPANで公開されているWebService

::Mackerel注1を活用することが多いです。
　ちなみに、RubyからMackerelのAPIを操作す
るのであれば、本連載第4回（2015年6月号）でも
紹介されているmackerel-client注2、Node.jsであ

ればmackerel注3、Golangであればmackerel-client

-go注4を、それぞれ同様に利用できます。
　ここでは、簡単にWebService::Mackerelの
使い方を紹介しましょう。たとえば、次のよう
なコードだけで、Mackerelのホスト一覧を取
得できます（YOUR_API_KEYはMackerelのAPI

キーを、YOUR_SERVICE_NAMEはMackerelに設
定されているサービス名を設定します）。

use WebService::Mackerel;

my $mkr = WebService::Mackerel->new(
 api_key => 'YOUR_API_KEY',
 service_name => 'YOUR_SERVICE_NAME',
);

my $hosts = $mkr->get_hosts;

　なお、WebService::Mackerelの使い方につ
いては、WEB+DB PRESS Vol.91に掲載され
たPerl Hackers Hub「Perlで Infrastructure as

Code」という記事でも紹介させていただいたこ
とがあります。もし興味があれば、ぜひそちら
の記事もお読みください。

踏み台サーバでのホスト一覧表示

　MackerelとWebService::Mackerelの利用例を、
もう1つ紹介しましょう。
　ガイアックスでは、オンプレミス／クラウド合
わせて500台以上のサーバを管理／運用しており、
これらの上でさまざまなサービスを提供していま
すが、これらのサーバにSSH接続する場合には
必ず、メンテナンス用の踏み台サーバ（「SSHゲー
トウェイ」などと呼ぶ場合もあります）を経由しな
ければならないようにしています。このとき、接
続したいサーバのIPアドレスが常に固定であれば、
手元のマシンの .ssh/configを適切に設定するな
どして、SSHゲートウェイを経由する多段SSH

接続を使うことができます。
　しかし、クラウドでは頻繁にサーバ（インスタ

第18 回
Mackerel活用事例――ガイアックスの場合

注1） URL https://metacpan.org/pod/WebService::Mackerel
注2） URL http://rubygems.org/gems/mackerel-client
注3） URL https://www.npmjs.com/package/mackerel
注4） URL https://github.com/mackerelio/mackerel-client-go

https://metacpan.org/pod/WebService::Mackerel
https://rubygems.org/gems/mackerel-client
https://www.npmjs.com/package/mackerel
https://github.com/mackerelio/mackerel-client-go

148 - Software Design

 Mackerelではじめるサーバ管理

ンス）を起動したり、削除したりすることができま
すし、とくにAmazon Web Services（AWS）の
Auto Scalingなどを利用すれば、サービスの負荷
によってサーバの台数を自動的に増減することさ
えできます。
　AWSのElastic Compute Cloud（EC2）の場合、
起動したサーバのプライベートIPアドレスは起
動するたびに異なるものが割り当てられるので、
諸般の事情でどうしてもサーバにSSH接続して
オペレーションをしたい場合、いったんAWSの
コンソールなどでプライベートIPアドレスを確認
してから接続しなければなりません。
　一方、これらのサーバをMackerelで管理して
いるのであれば、プライベートIPを含むEC2イ
ンスタンスの各種情報を、MackerelのAPI経由
で取得できます。そこで筆者たちはWebService

::Mackerelを使って、踏み台サーバ（これもEC2

インスタンスの上に構築しています）に接続した
際に、そこから接続できるEC2インスタンスのプ
ライベートIPアドレスを、Mackerelから取得し
て表示するようにしています。こうすることで、
踏み台サーバにおいて、現在起動しているEC2

インスタンスのプライベートIPアドレスと、

Mackerelにおけるステータスを確認し、オペレー
ションが必要なサーバにSSH接続できます。
　たとえば、Mackerel上でYOUR_SERVICE_NAME
というサービスに紐付いているサーバの一覧を表
示させるには、先ほど紹介したホスト一覧を取得
するコードに手を加えて、リスト1のようにすれ
ば実現できます。
　YOUR_SERVICE_NAMEに、192.0.2.0～192.0.2.2
というIPアドレスを持ったserverというロール
のサーバと、192.0.2.8、192.0.2.9というIPア
ドレスを持ったdatabaseというロールのサーバ
がある場合、このスクリプトの実行結果は次の
ようになります。

192.0.2.0 ... server (working)
192.0.2.1 ... server (working)
192.0.2.2 ... server (working)
192.0.2.8 ... database (working)
192.0.2.9 ... database (working)

　あとは、このスクリプトを踏み台サーバに
SSH接続した際、自動的に実行するようにす
れば良いでしょう。

　またまたPerlの話で恐縮なのですが、CPAN

にはMackerel::Webhook::Receiver注5というモ
ジュールが公開されています。このモジュール
を使うことで、MackerelのアラートをWebhook

で受け取り、任意の処理を行うというPerlの
Webアプリケーションを簡単に作ることがで
きます。
　リスト2は、Mackerel::Webhook::Receiverを

使ってMackerelのアラートをWebhookで受け
取り、その詳細（Webhookで通知されるJSON

データ）を、Data::Dumperでダンプするコード
です。起動すると、8080番ポートでWebhook

のリクエストを待ち受けます。
　なお、MackerelのWebhookについては、Mack

erelのヘルプの「Webhookにアラートを通知す
る注6というページに、Webhookの設定方法や

 ▼リスト1　あるサービスに紐付くサーバの一覧を表示

use WebService::Mackerel;
use JSON qw/ decode_json /;

my $SERVICE = 'YOUR_SERVICE_NAME';

my $mkr = WebService::Mackerel->new(
 api_key => 'YOUR_API_KEY',
 service_name => $SERVICE,
);

my $json = decode_json($mkr->get_hosts);
my $hosts = $json->{hosts};

for my $host (@{ $hosts }) {
 next unless $host->{roles}{$SERVICE};

 printf "%s ... %s (%s)\n",
 $host->{interfaces}[0]{ipAddress},
 $host->{roles}{$SERVICE}[0],
 $host->{status};
}

 MackerelのWebhookを使う

注5） URL https://metacpan.org/pod/Mackerel::Webhook::Receiver
注6） URL https://mackerel.io/ja/docs/entry/howto/alerts/webhook

https://metacpan.org/pod/Mackerel::Webhook::Receiver
https://mackerel.io/ja/docs/entry/howto/alerts/webhook

148 - Software Design Sep. 2016 - 149

 ▼リスト2　Mackerel::Webhook::Receiver

use strict;
use warnings;

use Mackerel::Webhook::Receiver;
use Data::Dumper;

my $receiver = Mackerel::Webhook::Receiver->new;
$receiver->on(sub {
 my ($event, $req) = @_;
 my $payload = $event->payload;

 print Dumper $payload;
});
$receiver->run;

Webhookに含まれるJSONデータのサンプル
が掲載されていますので、こちらの情報も活用
すると良いでしょう。
　ガイアックスでは、このMackerel::Webhook

::Receiverを使って、Mackerel公式で通知に対
応していない各種サービスとの連携を試行して
います。たとえば、Mackerelが何かしらの問
題を検知してアラートが発生し、その対応を行っ
た場合、「何が原因で問題が発生して、どのよ
うな対応を行ったか」という履歴を残さなけれ
ばなりません。そのためのひな形を、Webhook

を受け取ったタイミングでQiita:Teamやesa.io

といったサービス上に作成するという実験を試
したことがあります。ほかにも、自社で開発し
て現在SaaSとしても提供しているReactio注7

を含む社内向けサービスと、API経由で連携さ
せたりもしています。
　MackerelのWebhookやMackerel::Webhook

::Receiverを用いれば、Mackerelが公式に対応
していないサービスであっても、Mackerelの
アラートと連携させることができます。便利で
すので、ぜひいろいろなサービスとMackerel

の連携を試してみてください。

Mackerel User Group
について

　最後に、Mackerel User Groupについて紹介
させてください。
　Mackerel User Groupは、Mackerelを利用して
いるユーザによって設立された、Mackerelユー
ザの集まりです。Mackerel User Groupブログ注8

からの情報発信はもちろんのこと、Mackerel

User Group MeetupなどのイベントやSlackな
どを通して、ユーザ間の交流と情報交換を活性
化していきたいと思っています。
　Mackerelの導入を検討していて、疑問に思っ
ていることや興味があることがあれば、ぜひ
Mackerel User GroupのイベントやSlackにご

参加ください！

　ガイアックスでのMackerelの導入経緯と、社
内で活用する際に使っているTipsについて紹介
させていただきました。Mackerelは、日本で開
発されたサービスであるため日本語の情報が多
いこと、そしてその機能や使い勝手もそうですが、
サポートの手厚さもすばらしいと思います。困っ
たことがあれば、問い合わせフォームから連絡
を送るとサポートの方がすぐに対応してくださ
いますし、開発者の方もMackerelが開催するオ
フィシャルなイベントだけでなく、さまざまな勉
強会に参加しておられますので、そういった場
所で直接質問や要望を出せるのは、サービスを
使う側としてとても安心感があります。
　また、最後に紹介させていただきましたが、
つい先日Mackerel User Groupも設立されま
した。Mackerelを日々活用できるユーザさん
と交流できるので、日本語の情報が多いことと
併せて、Mackerelの導入障壁は今後どんどん
下がっていくのではないでしょうか。この機会
にぜひ、Mackerelを試してみてください！ﾟ

おわりに

第18 回
Mackerel活用事例――ガイアックスの場合

注7） URL https://reactio.jp
注8） URL http://mackerel-ug.hatenablog.com

https://reactio.jp/
http://mackerel-ug.hatenablog.com/

150 - Software Design

 「自分のPCにはたいした情報は入っていないから、不正アクセスされても大丈夫」という人がたま
にいます。しかし、そのPCが組織のLANに接続されているなら、考えを改めないといけません。
なぜなら、組織内には重要な情報資産があるわけで、そこに内部ネットワークを介してアクセスさ
れ外部に持ち出される可能性もあるからです。

ユーザのとんでもない
行動

　つい最近ですが、福井県のある町の議会事務局の
業務用PCが何者かに遠隔操作されたという事件が
発生しました。ここまでは世間でよく聞くマルウェ
アの感染事例です。しかし、その感染がたいへん興
味深いものでした。
　まず、職員が職場でアダルトサイトを見ていて画
面に「ウイルス感染」という表示が現れたようです。
この手のポップアップ誘導はPC以外にも、スマー
トフォンでも頻繁に見かけます。「無料ウイルス除
去ソフトをPCにダウンロード」とか、「スマート
フォンの電池の持ちを良くするアプリをダウンロー
ド」など、もっともらしいメッセージが出てきます。
　普通はクリックしないでしょうが、ここでクリッ
クしたとしましょう。その場合、外部からアプリ
ケーションをインストールすることになりますか
ら、システムがインストールの警告を表示するなど
して、ユーザの許可なしにはインストールはできま
せん。とくにスマートフォンなどでは、開発モード
にするといった手間がかかります。インストールの
事前準備が必要なので、開発知識がないと難しいで
しょう。Androidでは、触っていて偶然に開発モー
ドになってしまうような作りにはなっていません。

　しかし、報道を見てみると、予想を越える状況に
なっていました。

パソコン画面の「ウイルス感染」の表示を見て、そこ
に記された番号に電話し、電話相手の指示に従って
遠隔操作ソフトをダウンロードしたのが原因だった。
 （産経WESTの記事注1より）

　職場でアダルトサイトを閲覧していたという後ろ
めたさがあったのか、自分でどうにかできると思っ
ていたのか、電話をかければ何でも親切に解決して
くれると思ったのか、いくら考えても答えは出ませ
んが、1つだけわかるのは「ユーザは想像を越える行
動を平気でするものだ」ということです。
　いずれにしても、正規の方法でアプリケーション
をインストールしているわけですから、これではマ
ルウェアは好き放題に何でもできます。もしかする
と指定された操作の過程でマルウェア対策ツールを
無効にするといった可能性も考えられます。
　この指示に従ってインストールしたマルウェアは
RAT（Remote Access Tools）というタイプのもので、
これにより遠隔からPCが操作されたということです。

低い情報資産評価

　先ほどのニュース記事からですが、この遠隔操作

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第三五回】

すずきひろのぶ
suzuki.hironobu@gmail.com

情報資産とローカルネットワーク内感染

注1）	 アダルトサイトを職場で閲覧→パソコン外部操作され内部情報流出　町議会事務局長のあきれた危機管理能力	 	
http://www.sankei.com/west/news/160718/wst1607180005-n1.html

http://www.sankei.com/west/news/160718/wst1607180005-n1.html

Sep. 2016 - 151

【第三五回】 情報資産とローカルネットワーク内感染

されたPCには個人情報もあったようです。

パソコンには議員名簿や議会の資料など開示されて
いるもののほか、事務局長が私的に作成した地元集
落の緊急連絡先名簿もあり、名簿には117世帯分の住
所、世帯員氏名、生年月日などが記載されていた。
 （前述の産経WESTの記事より）

　最近は「情報資産」という言葉も聞かれるようにな
りました。資産／財産として、一般的なのが「不動
産」「動産」です。簡単に言えば、「不動産」は土地な
どで、「動産」とは不動産以外の有体物、つまりモノ
です。近ごろは、形を持たない著作権や特許権と
いったものも知的所有権とか無体財産権と呼んで資
産／財産として認識されるようになってきました。
とはいえ、所有している情報そのものの価値につい
ては理解しているとは言い難いものがあります。
　たとえば今回のニュースですが、「職場のPCを
使って」という言い方から「情報資産が入っている
PCを使って」と言い換えたら、とらえ方がずいぶ
ん変わってくると思います。形のない情報資産とい
うものを正しく評価しておらず、低く見積もってい
るという傾向があるように思います。

「使っているPCにはたいしたものは入っていない
から気にしない」

　このような言葉は、みなさんも一度や二度は聞い
たことがあると思います。そんなことはまずないと
思いますが、大幅に譲歩して、その人の情報資産が
ゼロであったとしましょう。しかし、もしその人の
PCが組織内のLANに接続していたならば意味が
違ってきます。なぜならば、その人のPCの中にあ
る情報資産の問題ではなく、組織の持つ情報資産の
問題になるからです。
　その人のPCがマルウェアに感染した、というこ
とだけではなくなります。本来、外部からのネット
ワークからは安全な環境におかれていた機材までも
が、そのマルウェアに感染したPCから組織内LAN

経由で、感染していく可能性があるからです。

侵入者の攻撃活動

　最初の1台のPCは、RATがしかけられ、外部か
ら侵入した際のゲートウェイになります。ですか
ら、そのPC内にある情報資産がゼロであろうと何
であろうと関係ありません。
　RATのコントロール下にあるPCは、組織内の
LANをターゲットにして探査を開始します。どこ
にどんなPCやファイルサーバがあるのか調べま
す。そして、組織内部のLANに接続しているPC

へマルウェアの感染を拡大したり、あるいは感染活
動はせずに、ほかのPCやファイルサーバ上のファ
イルを外部に流出させたりするかもしれません。
　一般に、内部LANは直接インターネットには接
続されていないので、サーバのような外部からの直
接のネットワークアクセスはないという想定がされ
ています。そのため内部LANの上でのPCクライ
アントは必要なセキュリティ・アップデートがされ
ていないケースがあります。パケットフィルタリン
グなども、組織内の内部ネットワークと公衆ネット
ワークでは違う設定で運用をしていると思います。
つまり、信頼できる内部ネットワークに接続する際
には、いろいろなネットワークを介したサービスを
使えるようにしていると思います。
　内部ネットワークに接続するデスクトップPC

は、接続を制限すると、LAN上で動作しているいろ
いろなサービスが使えなくなります。そのため、内
部ネットワークは安全なネットワークとみなして、
とにかく接続することを優先にする設定にしておく
ケースは、よく見かけると思います。
　この気持ちはわからないでもありません。組織内
でデスクトップPCを使ってドキュメント作成を中
心に行っている人たちのためには、もっとも緩い基
準で運用しないと、「つながらない」「動かない」と次
から次へとクレームが来てたいへんなのは想像がつ
きます。
　ただ、そのような環境は、組織内LAN上のPC

が乗っ取られていて外部から操作されている状況で
は、その侵入者にも有利に働くわけです。たぶん、

152 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

このような組織内ネットワーク側からの本格的な攻
撃に耐えられるだけのシステムを構築しているとこ
ろは稀

まれ

でしょう。ほかのPCへとマルウェアを感染
させていくのに、それほど苦労はないと思います。

マルウェア対策ツールは
意味をなさない？

　先ほどの「指示に従ってマルウェアをPCにイン
ストールする」ケースでは、指示の中にマルウェア
対策ツールを無効にする手順も含まれていて、イン
ストールされたマルウェアはスキャンされない／検
知されないという可能性が十分に考えられます。
　しかし、ほかのPCは人の手によりインストール
されるのではなく、侵入するならば外部からの攻撃
によりマルウェア（のファイル）が入り込みます。そ
れならば、今度はマルウェア対策ツールが感染した
マルウェア（のファイル）を見つけてくれる可能性も
十分に生まれてくるわけです。
　マルウェアの実行プログラムは外部からの異物で
すから、そのマルウェアの動作は標準アプリケー
ションの動作とは区別できます。少なくともイベン
トログをみれば、これまでインストールされていな
かった謎のアプリケーションが実行されているのを
見つけることは可能です。
　でも、もしもマルウェアはインストールせず、当
然ながら動かしもせず、PCに入っている標準コマ
ンドを外部から動かすだけなら、どうでしょうか？
　普通なら、マルウェア対策ツールはファイルをス
キャンして疑わしいファイルを見つけて対応してく
れます。しかし、マルウェアは入っていませんから
スキャンそのものが無意味です。
　組織内LANに接続されているほかのPCに対し
て、外部からの任意のコマンドを動かすことは可能
でしょうか？

Windowsの
リモート実行コマンド

　Windowsであれば、WMIC注2のようにリモートホ

スト上のコマンドを実行するリモート実行コマンド
が用意されています。これらはネットワーク側から
システムを管理する際に利用するコマンドです。管
理をするオペレータにとっては非常に使い勝手の良
いツールです。
　遠隔で任意のコマンドを使えるわけですが、勝手
に実行できないようにパスワードで制限がかかって
います。しかし、パスワードといえども、絶対では
ありません。ハッシュダンプツールを用いてパス
ワードのハッシュ値を入手し、さらにそこからパス
ワードを探し出すツールにかければパスワードが見
つかる可能性は十分にあります。そして、パスワー
ドが見つかれば、好き勝手なことができます。そう
なってしまえば、あとは遠隔から任意のコマンドが
使えるので、何でもありです。
　これらに関しては、JPCERT/CCが提供する情報
ページ「攻撃者が悪用するWindowsコマンド（2015-

12-02）」注3（表1）を読むとさらにRATを経由して侵
入してきたあとで、どんなことをしているか想像が
つくと思います。

ファイルをアップロード

　たとえば、PCの中にあるファイルをアップロー
ドするにはどうすればいいでしょうか？　マルウェ
アを使わずに標準のコマンドだけで考えてみます。
　まず、Windowsで思いつくのがbitsadminです。
bitsadminは、バッチ方式でも簡単にファイルの
アップロード／ダウンロードが行えます。ですか
ら、最悪なケースではbitsadminをリモート実行さ
れ、PCの中のファイルをアップロードされて情報
漏洩することもあり得ます。
　最近では、クラウドのサービスを利用するのが日
常でも当たり前になっています。当然、窃取した
ファイルの転送先がクラウドサービスということも
あるでしょう。一般論としてクラウドサービスを使
う部分でこれまでより良いのは、提供されている
APIを使ってクラウド上のファイルにアクセスでき

注2）	 WMIC - Take Command-line Control over WMI　https://msdn.microsoft.com/en-us/library/bb742610.aspx
注3）	 攻撃者が悪用するWindowsコマンド（2015-12-02）　https://www.jpcert.or.jp/magazine/acreport-wincommand.html

https://msdn.microsoft.com/en-us/library/bb742610.aspx
https://msdn.microsoft.com/en-us/library/bb742610.aspx

Sep. 2016 - 153

【第三五回】 情報資産とローカルネットワーク内感染

を崩壊させたという話からきています。
　一方で、現状で内部も外部も分け隔てなく、すべ
てに対して同様なセキュリティレベルを想定して防
御してしまうと、たいへん使いづらい環境になるこ
とでしょう。すでに個人レベルでは、モバイル環境
でもデスクトップ環境でも境目がなくクラウドサー
ビスを使っているように、将来的には、組織レベル
でも内部ネットワークも外部ネットワークも関係な
い、フラットなネットワーク環境のモデルへ変化し
ていくのではないかと予想しています。ですが、い
ずれにしろ、もう少し先の話であって、今、このと
きの解決とはならないかもしれません。

守るべき情報資産とは
何か

　最初の話に戻りますが、自分のPCにはたとえ情
報資産が存在していなくとも、そのPCが組織の
LANに所属しているなら、組織の情報資産を危険
にさらす可能性はあります。
　情報資産のことを考えるときは、自分の目の届く
ところだけではなく、組織全体の情報資産を考えな
くてはなりません。「使っているPCにはたいしたも
のは入っていない」のは、そのとおりなのかもしれ
ませんが、その人の周りにはたくさんの情報資産が
存在しているはずです。
　そういう観点からユーザの理解を深めていかなけ
ればいけないのではないか、と今回の事例を見て深
く考えるのでした。s

ることです。ただ、これは標準コマンドだけでは実
現できません。それでもクラウドへアップロードす
るだけのマルウェアを作成すればよいので、それほ
ど難しいことでもありません。またその際の処理ス
テップは次のようになるでしょう。

●● Step 1：感染PCから情報資産を持っているPC

にリモート実行を行う
●● Step 2：bitsadminを使い外部からマルウェアを

ダウンロードする
●● Step 3：マルウェアはクラウドサービスのAPIを

持っていてファイルアップロードを行う
●● Step 4：必要なファイルのアップロードが終わっ

たらマルウェア自身を削除する

　このようなプロセスをたどれば、自分は見つけら
れることなく、PC上の情報資産を窃取することが
可能です。さらに、PCがNASやファイルサーバに
アクセスできる状況だと、そのファイルサーバの中
身も同様に危険にさらされることになります。

内部からの攻撃には弱い

　外部からの攻撃には防壁があり十分な役目を果た
していても、いったん防壁の内側に入られると十分
な守りができず崩壊するストーリーはありがちで
す。「トロイの木馬」というマルウェアの名称も、古
代の戦争の際に、大きな木馬の中に兵士が身を潜
め、城壁の内側に密かに入り込んで城壁内から敵陣

◆◆表1　攻撃者が悪用するWindowsコマンド（注3のサイトをもとに作成）

▼初期調査でよく使われるコマンド ▼探索活動でよく使われるコマンド ▼感染拡大でよく使われるコマンド

※wmicは、探索活動などにも用いられます

順位 コマンド
1 tasklist
2 ver
3 ipconfig
4 systeminfo
5 net time
6 netstat
7 whoami
8 net start
9 qprocess
10 query

順位 コマンド
1 dir
2 net view
3 ping
4 net use
5 type
6 net user
7 net localgroup
8 net group
9 net config
10 net share

順位 コマンド
1 at
2 reg
3 wmic
4 wusa
5 netsh advfirewall
6 sc
7 rundll32

154 - Software Design

Ansible Towerの構造

　Ansible TowerでPlaybookを実行するには、
Ansible Towerの主な設定項目を理解する必要
があります。設定項目の階層図と解説を図1と
表1に記載します。以降のページでは、これら
の項目を設定しながらPlaybookの実行手順を解
説します。

Ansible Tower CLIの
セットアップ
　Ansible TowerはWebブラウザから操作でき

ますが、操作手順の自動化や効率的なレビュー
などの実現につながるCLI 注1や、ほかのアプリ
ケーションとの連携のためのREST APIを利用
することもできます。本記事では、主にCLIに
よる操作手順を紹介していきます。まず、Ansible

Towerをインストールしたサーバ上で、次のコ
マンドを実施してCLIをインストールします。

yum -y install python-pip
pip install ansible-tower-cli

　次にCLIのセットアップをしていきます。セッ
トアップやAnsible Towerの操作にはtower-

cliコマンドを利用します（図2）。tower-cli

ではhelpオプションも用意さ
れていますので、使い方を逐
次調査しながら実施していく
ことができます。
　Ansible Tower の CLI の
セットアップが完了すると、
カレントユーザのホームディ
レクトリにAnsible Towerを
操作するためのホスト／ユー
ザ名／パスワード情報が記載
された、「.tower_cli.cfg」

注1） U R L https://github.com/an
sible/tower-cli

 ▼図1　Ansible Towerの階層図

CredentialsGroups Playbook

TeamsInventories Projects Jobs

PermissionsHosts Job
Templates

Users

Credentials

Permissions

Organizations

SOURCES
 Author 小島 啓史（こじまひろふみ）
	 mail：hkojima@redhat.com

レッドハット㈱ テクニカルセールス本部 ソリューションアーキテクト

前回はAnsible Towerの概要とインストール方法を
解説しました。今回はAnsible Towerの構造と
Playbookの実行方法を紹介します。

Ansible Tower part2　

第2回

レッドハット系ソフトウェア最新解説

https://github.com/ansible/tower-cli

Sep. 2016 - 155154 - Software Design

（図3）。ここで登録するホ
ストは、IPアドレスまた
は名前解決できるホスト
名である必要があります。
ssh-copy-id で SSH の
公開鍵を対象ホストにコ
ピーしたあとに、公開鍵
をCredential01として登
録します。
　次に、Project01という
名前のProjectを作成しま
す（図 4）。こ こ で は、

Ansible TowerのローカルディレクトリをPlay

bookの格納先として指定するため、作成した
Playbook（user-create.yaml）を格納している
ディレクトリ、sample-project01を指定します。
なお、Ansible TowerではProjectに登録する
ディレクトリは、/var/lib/awx/projectsに
作成する必要があります。
　最後に、Job Templateを作成してJobを実行
します（図5）。Group01/Project01/Credential

01を紐付けた、job-user-create01という名前の
Job Templateを作成します。前の手順でPlay

bookの格納先となるディレクトリのみを
Projectに登録していますので、user-create.

yamlをここで登録します。作成した Job

Templateを指定して、最後にJobを実行すると
Playbookが実行されます。Jobを実行すると、
Ansible Towerでは図6のような画面で実行結

が作成されます。セットアップの最後に、Ansible

Towerのインストール時に自動的に作成される
adminユーザが正常に表示されるかを見ること
で、tower-cliの動作確認をしています。

Playbookの実行

　いよいよPlaybookの実行を解説していきま
す。ここでは、とある部署が管理しているホス
トに対して、ユーザを作成するための簡単な
Playbookを実行することを想定しています。そ
の場合の、一連のコマンド実行例を紹介してい
きます。
　最初に、InventoryとCredentialを作成しま
す。Inventory01という名前のInventoryを作成
し、IPアドレス（192.168.124.19）を持つサーバ
をGroup01に所属するホストとして登録します

項目 解説
Organization 下記4項目の上位項目

Inventory Playbookの実行対象となるホスト。Ansible Towerでは、Inventory単位でPlaybookの実行対象
を指定する

Team
ロールベースのアクセス制御を実現する単位。Teamに所属するユーザは、Organizationの管理者
により割り当てられたPlaybook実行時の認証情報（Credential）と、Inventory/Job Templateを利
用できる。Inventory/Job Templateのアクセス権限は、Permissionで指定する

Project

Ansible Towerで実行するPlaybookを管理する。Playbookの格納先は、Manual（Ansible Tower
のローカルディレクトリ）/Git/Subversion/Mercurialを指定できる。Ansible TowerのJobとして
Playbookを実行するためには、Project/Credential/Inventoryを紐付けたJob Templateを作成す
る必要がある

Job Job Templateを利用したPlaybookの実行や実行履歴を管理する。また、Jobのスケジューリング
も可能

 ▼表1　Ansible Towerの設定項目

 ▼図2　Ansible TowerのCLIのセットアップ

tower-cli config username admin
tower-cli config password adminユーザのパスワード
tower-cli config host http://localhost
cat /root/.tower_cli.cfg
[general]
host = http://localhost
username = admin
password = adminユーザのパスワード
tower-cli user list
== ======== ================= ========== ========= ============
id username email first_name last_name is_superuser
== ======== ================= ========== ========= ============
 1 admin メールアドレス 　　true
== ======== ================= ========== ========= ============

Ansible Tower part2　第2回

156 - Software Design

作してきましたが、各部署の運用担当者にOrg

anizationの管理ユーザを割り当てて、Inven

toryやProjectの作成を委任できます（図7）。
　こちらの操作で、前に作成したCompany01の
管理者としてuser01を登録することで、user01

権限を持つ運用担当者がAnsible Towerを利用
して、Company01に紐付
けられたInventoryやPro

jectなどを管理できるよう
になります。また、Org

anization間ではリソース
が隠蔽されますので、各
部署に割り当てられた
サーバだけをAnsible To

werで管理できるようにも
なります。
　ほかにもPermissionの
設定を行うことで、非エ

果を確認できます。Ansible TowerのGUIでは、
どのユーザがいつ何のJobを実行したかといっ
た履歴以外にも、標準出力されたPlaybookの実
行結果や作成されたユーザ情報なども確認でき
ます。
　ここまではAnsible Towerのadminユーザで操

 ▼図3　Playbookのコマンド実行例（Inventory、SSH公開鍵の作成）

tower-cli organization create --name Organization01
tower-cli inventory create --name Inventory01 --organization Organization01
tower-cli host create --name 192.168.124.19 --inventory Inventory01
ssh-copy-id root@192.168.124.19
tower-cli credential create --name Credential01 --username root --password redhat --kind ｭ
ssh --ssh-key-data /root/.ssh/id_rsa

 ▼図4　Playbookのコマンド実行例（Playbookのためのディレクトリ作成など）

mkdir -p /var/lib/awx/projects/sample-project01
cat << EOF > /var/lib/awx/projects/sample-project01/user-create.yaml

- hosts: all
 tasks:
 - name: create user
 user: name=james
EOF
tower-cli project create --name Project01 --organization Organization01 --scm-type manualｭ
--local-path sample-project01

 ▼図5　Playbookのコマンド実行例（Job Templateの作成と実行）

tower-cli job_template create --name job-user-create01 --job-type run --inventory ｭ
Inventory01 --project Project01 --playbook user-create.yaml --machine-credential Credential01
tower-cli job launch --job-template job-user-create01

 ▼図7　Organizationの管理ユーザの割り当て

tower-cli user create --username user01 --password redhat --email user01@example.com
tower-cli organization associate_admin --user user01 --organization Organization01

 ▼図6　Jobの実行結果

SOURCES レッドハット系ソフトウェア最新解説

Sep. 2016 - 157156 - Software Design

ンジニアの方に対してJob Templateを実行する
権限だけを与えて、ボタンを押すだけの安全な
Playbookの実行環境を用意できます。こうした
手順の詳細については、Ansible Towerのユー
ザーガイド 注2を参照ください。

　前の Inventory作成手順では逐次ホスト名や
IPアドレスを指定していましたが、ホストやグ
ループの情報を記載した既存のInventoryファイ
ルをインポートしたり、AnsibleのDynamic Inve

ntory注3を利用することができます。インポー
トの場合は tower-cliではなく、Ansible

Tower付属のtower-manageコマンドを利用し
ます（図8）。
　また、AnsibleのDynamic Inventoryを利用し
て、Amazon EC2上で管理しているサーバを登
録する場合は図9のような手順を実行します。
　ec2-Credential01としてAWSのアクセス
キーとシークレットキーを登録し、その認証情
報が紐付けられたec2-group01という名前のグ
ループを作成します。そしてsyncを実行すると、
Dynamic Inventoryが実行されてEC2上にある
ホストがec2-group01に登録されます。グルー
プ作成時に --update-on-launch, --overwrite,を
指定することで、Job実行時、またはsync実行

Inventoryのインポート
/Dynamic Inventory

時に、すでに存在しないホスト情報を自動的に
削除してくれます。

Ansible Tower 3.0.0の
リリース
　米国時間2016年7月19日に、Ansible Tower

3.0.0がリリースされました。v3.0.0での主な変
更点は次のようになります。

・Web UIの刷新（v2.4.5と基本概念は同じ）
・Dynamic Inventoryの拡張（Red Hat CloudFor

-ms/Red Hat Satellite 6にも対応）

　詳細はこちらで公開されているWebページ注4

での情報を参照ください。

Ansible/Ansible Tower
の導入支援
　レッドハットでは本記事のようなお客様への
製品紹介のほかにも、プロフェッショナルサー
ビスでAnsible、またはAnsible Towerによるシ
ステム構成管理の導入支援なども行っています。
　Ansibleの導入支援に興味のある方は、ぜひ気
軽にsales-jp@redhat.com宛にお問い合わせくだ
さい。ﾟ

注2） URL http://docs.ansible.com/ansible-tower/latest/html/userguide/index.html
注3） URL http://docs.ansible.com/ansible/intro_dynamic_inventory.html
注4） URL http://docs.ansible.com/ansible-tower/latest/html/release-notes/index.html

 ▼図8　inventoryのインポート

tower-manage inventory_import --inventory-name=Inventory01 --source= Inventoryファイルまたはディ
レクトリ

 ▼図9　Amazon EC2上で管理しているサーバの登録方法

tower-cli credential create --name ec2-Credential01 --kind aws --username AWSのアクセスキー ｭ
--password AWSのシークレットキー
tower-cli group create --name ec2-group01 --source ec2 --credential ec2-credential01 ｭ
--inventory Inventory名 --update-on-launch true --overwrite true
tower-cli group sync ec2-group01

Ansible Tower part2　第2回

http://docs.ansible.com/ansible-tower/latest/html/userguide/index.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible-tower/latest/html/release-notes/index.html

158 - Software Design

必要最小限のサービス

　FreeBSDはプロジェクトが配布しているインス
トーラ経由でインストールした場合、デフォルトで
はほとんどのデーモン（サービス）が動作しない設定
になっています。必要な機能があればその都度有効
化して利用するといったように、シンプルでセキュ
アなほうにデフォルトの設定が振られています。
　システムのデフォルトの挙動は/etc/defaults/
ディレクトリにまとまっています。

% tree /etc/defaults/ ｶ
/etc/defaults/
├── bluetooth.device.conf
├── devfs.rules
├── periodic.conf
└── rc.conf

0 directories, 4 files

　/etc/defaults/rc.confがとくにデーモン（サー
ビス）の有効化・無効化や、起動時のオプションな
どを設定するファイルです。簡単にデーモン（サー

ビス）の有効化・無効化に関連する設定行を抜き出
すと図1のようになります。だいたい「デーモン名_
enable="YES"」となっているものが有効化で、YESが
NOになっていれば無効化されています。YESになっ
ていると、必要に応じてシステム起動時に自動的に
そのデーモン（サービス）が実行されるしくみになっ
ています。
　実際にFreeBSDを必要最小限設定でインストー
ルした場合にデーモンとして起動してくれるのは、
デバイスの状況変化に応じてアクションを取るため
のdevd(8)、システムやデーモン（サービス）のログ
を収集するためのsyslogd(8)、指定されたスケジュー
ルで指定されたプログラムを実行するcron(8)、メー
ルのやりとりを管理するsendmail(8)くらいで、そ
れ以外のデーモン（サービス）は動作していません。
逆に言えば、これらのデーモン（サービス）は汎用オ
ペレーティングシステムとして動作するための基本
的なデーモン（サービス）ということになります。

タイムスケジュールで
処理を行うcron(8)

　今回は指定したタイムスケジュールで指定された
プログラムを実行するcron(8)を取り上げます。シ
ステムを運用するためのいくつかの機能がcron(8)

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第34回 ❖タイムスケジュールでプログラムを実行

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

% uname -sr ｶ
FreeBSD 10.3-RELEASE-p4
% grep -E ^[^#][a-z]+_enable+='"YES"' ｭ
/etc/defaults/rc.conf | awk '{print $1}'
devd_enable="YES"
cleanvar_enable="YES"
gptboot_enable="YES"
hostid_enable="YES"
syslogd_enable="YES"
cron_enable="YES"
crashinfo_enable="YES"
dmesg_enable="YES"
virecover_enable="YES"
newsyslog_enable="YES"
mixer_enable="YES"

▼▼図1　デフォルトで有効になるデーモンなどの設定

Sep. 2016 - 159

▶第34回◀
タイムスケジュールでプログラムを実行

マンドを実行していきます。
　必要最小限の設定だけ抜粋するとリスト1のよう
になります。左から5列目までは「いつ」を指定する
項目です。6個目が「誰」の権限で実行するかで、7個
目以降が実際に実行するコマンドやプログラムと
なっています。わかりやすいようにまとめると次の
ようになります。

何分 何時 何日 何月 何曜日 誰 実行する内容 ...

　それぞれの項目では、基本的に「何分：0～59」「何
時：0～23」「何日：1～31」「何月：1～12」「何曜日：
0～7」のように数字が指定できます。
　曜日の指定は0または7が日曜日を意味していま
す。1が月曜日、2が火曜日、3が水曜日、4が木曜
日、5が金曜日、6が土曜日です。項目が*になって
いる場合にはすべてに対して一致します。たとえば
「何時」の指定が*になっているなら、ここは0から
23まですべて指定したのと同じことになります。
　/etc/crontabでは*/5といったようにスラッシュ

も使われていますが、スラッシュは指定した数字分
だけスキップせよ、という指定になります。たとえ

経由で実行されているため、なんらかのサービスを
開発した場合に、実はcron(8)で定期的に実行して
いるだけとか、cron(8)を使って仕事量が少なくな
る夜間にバッチ処理を走らせているだけとか、そう
いった運用が実は多いからです。そんなわけで有益
で大切な機能なのですが、今ではこの存在を知らな
い方もいるようです。
　cron(8)もしくはこれに類する機能はいくつか異
なる方法で利用でき、設定ファイルもいくつかあり
ます。今回はシステムが利用する設定ファイル

/etc/crontabを読むとともに、どのように設定す
るのかを説明します。

システムレベルの
タイムスケジュール設定ファイル
/etc/crontab

　FreeBSD 10.3-RELEASEの/etc/crontabは図2
のようになっています。#から始まる行はコメント
行で、空行も設定としては意味をもたず、それ以外
の行が意味のある内容になっています。cron(8)はこ
のファイルに書いてある内容をそのまま読み、指定
されたタイムスケジュールどおりに、指定されたコ

% cat /etc/crontab ｶ
/etc/crontab - root's crontab for FreeBSD
#
$FreeBSD: releng/10.3/etc/crontab 194170 2009-06-14 06:37:19Z brian $
#
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
#
#minute hour mday month wday who command
#
*/5 * * * * root /usr/libexec/atrun
#
Save some entropy so that /dev/random can re-seed on boot.
*/11 * * * * operator /usr/libexec/save-entropy
#
Rotate log files every hour, if necessary.
0 * * * * root newsyslog
#
Perform daily/weekly/monthly maintenance.
1 3 * * * root periodic daily
15 4 * * 6 root periodic weekly
30 5 1 * * root periodic monthly
#
Adjust the time zone if the CMOS clock keeps local time, as opposed to
UTC time. See adjkerntz(8) for details.
1,31 0-5 * * * root adjkerntz -a

▼▼図2　FreeBSD 10.3-RELEASEの/etc/crontab

160 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

れないこともあるのですが、cron(8)で、実行でき
るときにユーザのジョブを実行しています。
　次の行も指定内容はatrunと同じです（②）。11分
ごとに実行せよ、というスケジュールになります。
/usr/libexec/save-entropyというのは/dev/random
からランダム値を抽出して、/var/db/entropy/以下
にsaved-entropy.[1-8]といった名前で保存するた
めのプログラムです。このプログラムが11分おき
に起動され、ランダム値が保存されることになりま
す。このランダム値は、システム起動時に/dev/
randomの乱数のシードとして使われることになり
ます。システム起動時において特定の条件だと（た
とえば起動時十分な乱数性を確保できない）擬似乱
数が十分な乱数性を確保できないという懸念があ
り、このように乱数を保存することで、次回のシス
テム起動時における乱数性の確保につなげていると
いうわけです。
　次に行ってみましょう（③）。「いつ」の指定は「0 *
* * *」となっています。この指定だと何分の0だけ
が指定されていることになりますので、1時間に1

回、たとえば13時になった段階で1回、14時になっ
た段階で1回といったように、1時間に1回だけ
newsyslog(8)というコマンドがroot権限で実行さ
れることになります。
　newsyslog(8)は、おもに/var/log/ディレクトリ
に保存されるログファイルをローテーションするこ
とが目的のコマンドです。ファイルがある一定サイ
ズを超えたら新しいファイルにするとか、古いファ
イルは圧縮しておくとか、そういったことをさせて
います。
　次の行（④）は「1 3 * * *」となっていますので、
毎晩午前3時1分に「periodic daily」というコマン
ドをroot権限で実行せよ、という指定になります。

ば「何分」の部分が/5になっているなら、「5分飛ば
せ」という意味になります。「何分」の列では、*は0
から59までを意味するので、つまり*/5で「5分ご
とに実行せよ」という意味になります。
　1,31といったカンマ区切りの指定がありますが、
これは1と31の両方とも、という指定です。0-5と
いう指定も1ヵ所あります。これは0,1,2,3,4,5と
指定したのと同じです。範囲指定ということになり
ます。つまり*の指定は、-を使って最初から最後ま
で範囲指定したことと同じになりますし、カンマ区
切りで全候補を記述したこととも同じになります。

crontab(8)を読んでみよう

　crontab(8)ではほかの書き方も用意されていま
すが、システムがデフォルトで用意しているcron
tab(5)の内容を読むだけなら、前述したルールを
知っているだけで大丈夫です。リスト1を見なが
ら、一通り読んでみましょう。
　最初は①です。この行は「*/5 * * * *」がスケ
ジュールの指定で、実行権限はroot、実行対象は

/usr/libexec/atrunとなります。何時、何日、何
月、何曜日がすべて*になっているので、つまり何
分に記述された*/5がスケジュールということにな
ります。よって、「5分ごとにroot権限で/usr/
libexec/atrunを実行せよ」という指定になります。
　at(1)についてもそのうち取り上げようと思いま
すが、at(1)で実行が指定されたものの、指定され
た時刻になっても実行されなかったジョブは優先度
の低い待ち行列に追加されることになります。この
待ち行列からジョブを持ってきて定期的に消化して
いくのが、/usr/libexec/atrunです。システムの負
荷が高いと、待ち行列入りしたままなかなか実行さ

#minute hour mday month wday who command
*/5 * * * * root /usr/libexec/atrun①
*/11 * * * * operator /usr/libexec/save-entropy②
0 * * * * root newsyslog③
1 3 * * * root periodic daily④
15 4 * * 6 root periodic weekly⑤
30 5 1 * * root periodic monthly⑥
1,31 0-5 * * * root adjkerntz -a⑦

▼▼リスト1　必要最小限だけ抜粋した/etc/crontab

Sep. 2016 - 161

▶第34回◀
タイムスケジュールでプログラムを実行

　FreeBSDサーバを枕元において寝たことがある
方はご存じかもしれませんが、FreeBSDは午前3時
1分になるとハードディスクがゴリゴリ音をたてま
す。秘密裏に株価予測プログラムが動き出すとか
ビットコインマイニングプログラムが動き出すとか
そういうことではなく、おもにファイルシステム上
のヘルスチェックや、毎日調べたほうが良いステー
タスのチェックなどが行われています。午後3時1

分に動き出すのが嫌であれば時刻を変更するか、コ
メントアウトして処理そのものを動作しないように
するという手もあります。
　次の行（⑤）もperiodic(8)の実行を指定したもの
です。「15 4 * * 6」となっていますので、「毎週土
曜日の午前4時15分」に「periodic weekly」を「root
権限で実行せよ」という指定になります。
　periodic(8)はデイリー、ウィークリー、マンス
リーで実行する定期チェックを担当するプログラム
で、実際にはこのようにcron(8)経由で実行されて
います。そして次の行（⑥）もperiodic(8)の実行に
関するものです。こちらは「30 5 1 * *」ですので、
「毎月1日の午前5時30分」に「root権限」で「periodic
monthlyを実行せよ」ということになります。
　システムがデフォルトで設定しているスケジュー
ルは次の設定で最後です。⑦では「1,31 0-5 * * *」

となっています。この指定で「毎日午前0時1分、
午前0時31分、午前1時1分、午前1時31分……午
前5時1分、午前5時31分」に「root権限」で「adjker
ntz -a」を実行せよ、という指定になります。
　カーネルは通常、協定世界時の時刻情報を保持し
ています。PCやサーバのハードウェア側は現地時
間（日本だと日本標準時）の時間を保持しています。
adjkerntz(8)はこの2つの間の値を適切に調整す
るコマンドです。夜間の間に微妙な時刻の調整を
行っていることになります。
　と、このように、普段は気にすることなく使って
いるかと思いますが、実際にはシステムにそのよう
に実行するようスケジュールが書き込まれ、
cron(8)が指定されたスケジュールに従ってプログ
ラムを実行しているだけというのが、動作の本当の
ところだったりします。

◆　◆　◆
　以上、cron(8)の説明でした。cron(5)とその設定
ファイルcrontab(5)はシステム運用でもっとも基
本的な機能の1つなのですが、最近は知らない方も
多いようですので取り上げました。気にしたことが
なかったのであれば、これを機に一度使ってみては
いかがでしょうか。s

　デフォルトの設定は最小限で汎用的に使えるもの
が想定されていますので、periodic(8)も動作します
し、必要最低限のステータスチェックも行います。
しかし、periodic(8)が実行するデイリーのチェック
処理はディスクに対して軽い処理というわけでもあ
りませんので、この時間帯に重いバッチ処理などを
実行していると、システムはだいぶ苦しい状況に追
い込まれます。
　また、AzureでもAmazon EC2でもKVMでも
bhyveでもVMwareでも良いのですが、仮想環境で
FreeBSDをホストしている場合、periodic(8)の処理
の一部やadjkerntz(8)などの処理は実行する意味が
なくなることがあります。ntpd(8)の実行などもそう

なのですが、そういった処理は仮想環境のホスト側
で処理するので、ゲスト側で処理すると“メガネon
メガネ”というか、無駄な処理になるからです。
　このため、エンタープライズで利用するような
ケースであったり、本番環境で運用するようなケー
スでは、こうした処理が実行されないようにcron
tab(5)を編集することがままあります。periodic(8)
が実行されているタイミングで何かシステムの反応
が遅くなるとか、負荷が高くなるといったことがあ
れば、それら機能を無効化することを検討してみて
ください。スケジュールの設定をコメントアウトし
てからcron(8)を再起動すれば設定が反映されます。

periodic(8)は必要か?
column

162 - Software Design

Ubuntu Monthly Report第77回 Ubuntu Monthly Report

LibreOffice 5.2の新機能
Ubuntu Japanese Team／あわしろいくや

今回は、本誌発売後にリリース予定のLibreOffice 5.2の新機能や変更点についてです。

　LibreOffice 5.2は、タイムベースリリースの方針
に従って半年に一度のリリースが行われている
LibreOfficeの新バージョンです。8月第1週のリリー
スを目指して開発が進んでいます。
　5.1から引き続きユーザインターフェースの変更点
が多いのですが、Calcには比較的大きく手が入って
います。また、特筆すべき変更点としては、ついに
UbuntuからでもGoogle Driveにアクセスできるよ
うになりました。

リモートファイルで
Google Driveのサポート

　これまでも何度か取り上げてきましたが、Libre

Officeとしてはリモートファイル機能でGoogle

Driveをサポートしていたのですが、Ubuntuを含む
Linux用のバイナリではGoogleの認証をパスできま
せんでした。それが、ようやくファイルの読み込み
と保存ができるようになりました。
　認証は通常のパスワード認証のほか、2段階認証に
も対応したため、Googleのアカウントを持っている
場合は誰でもGoogle Driveにアクセスできるように

LibreOffice 5.2概要

全般

なるはずです。
　なお、Google Driveへのアクセスにはクライアント
IDとクライアントシークレットが必要で、LibreOffice

ではconfigureで指定する必要があります。言うまで
もなくこれらは個人ないし団体ごとに取得する必要が
あり、オフィシャルバイナリとUbuntu用バイナリでは
別のものを使用することになります注1。Ubuntu用のバ
イナリで使用するクライアントIDとクライアントシー
クレットは5.1.0の段階で取得済み注2ですので、5.2で
も有効な状態でリリースされることが期待できます。
　なお、Microsoft OneDriveサポートは5.2でも見送
られています。

テンプレート

　テンプレートのウィンドウが一新されました（図
1）。カテゴリの切り替えがタブからプルダウンにな
り、テンプレートが多数ある場合でも簡単に目的の
ものが絞り込めるようになりました。
　また、テンプレートを開くのはもちろん、編集や
デフォルトのテンプレートを変更することも簡単に
できるようになりました。LibreOfficeのデフォルト
のテンプレートは日本語で使うぶんには適した状態
になっていない部分もあるので、簡単に変更できる
のは朗報でしょう。

注1） ちなみにLibreOfficeはDebianとUbuntuでほぼ同じソース
からビルドされていますが、このあたりには違いがあります。

注2） https://bugs.launchpad.net/bugs/1389936

https://bugs.launchpad.net/bugs/1389936

162 - Software Design Sep. 2016 - 163

LibreOffice 5.2の新機能 第 77 回

　さらに、標準ツールバーの保存アイコンのオプショ
ンに、［テンプレートとして保存］が追加されました
（図2）。この機能を使用すると、テンプレートのカ
テゴリを選択して保存できます。そればかりか、こ
こから直接デフォルトのテンプレートにもできます。
　テンプレートのインポートとエクスポートと移動
が簡単にできるようになったのも特記すべきことで
しょう。意外なことに、今まではない機能でした。
エクスポートは選択したテンプレートをテンプレー
ト形式で保存します。移動はカテゴリ間を移動しま
す。インポートは、カテゴリを選択後テンプレート
ファイルを選択します。現在表示しているカテゴリ
にインポートするわけではないのは注意点でしょう。
　なお、この変更はGoogle Summer of Code

（GSoC）2016の成果によるものです。GSoCの成果は
通常毎年2月リリース版に盛り込まれるのですが、
このプロジェクトは開始後わずか4週間で所定の作
業がおおむね終わってしまいました。よって5.2の
フィーチャーフリーズに間に合ったという極めて珍
しい事態になったのです。残作業としては、次の

バージョン（5.3を予定）でLibreOffice Templates注3

のデータを取得できるように変更する開発があり、
これはまだ取り込まれていません。
　余談ですが、5週目以降は絵文字を簡単に入力でき
るようにするツールバーの開発を行っているようで
すので、次のバージョンでは簡単に絵文字の入力が
できるようになっているかもしれません注4。

ツールバー

　ツールバーが3つ追加されました。いずれも［表
示］-［ツールバー］で表示のオンオフができます。
　まず最初はWriterとCalcに追加された［標準（シ
ングルモード）］で（図3）、これは基本的な機能を提
供するツールバーと、書式設定ツールバーを統合し
て1つのツールバーにしたものです。これをオンに
する場合は［標準］と［書式設定］ツールバーを非表示
にします。そうすると、ツールバー1行分縦に広く
使えるようになるということです。言うまでもなく
昨今のワイドディスプレイでは横のスペースには余
裕がありますので、フルHD程度の解像度で使用し
ている場合はこのツールバーを使用するといいので

はないでしょうか。もちろん［標準］
と［書式設定］ツールバーのすべての
アイコンがあるわけではないので、
すべてのケースで切り替えできるわ
けではありませんが、少なくとも書
式ツールバーはサイドバーからでも

注3） http://templates.libreoffice.org/

注4） 現状でもオートコレクトを使用すれば簡単
に絵文字の入力ができますが、記法を覚え
なくてはいけないので若干ハードルは高め
です。

図1　新しいテンプレートのウィンドウ

図2　 テンプレートとして保存が追加された

図3　Writerの［標準（シングルモード）］ツールバー

http://templates.libreoffice.org/

164 - Software Design

Ubuntu Monthly Report

変更ができるため、問題とはならないでしょう。
　ほかには機密ツールバーも追加されています。こ
れはわかりにくいですが、デジタル署名をするため
のツールバーです。Writerだけではありますが、差
し込み印刷ツールバーも追加されています。

検索と置換

　検索と置換ウィンドウが一新されました（図4）。
新たに［前を検索］と［次へ検索］ができるようになり
ました。

デジタル署名の強化

　オランダ国防省のスポンサードで注5、デジタル署名
機能が強化されています。まずは1つのドキュメン
トに単数の著者による複数の署名ができるようにな
りました。あとSHA-256のハッシュ関数が使用でき
るようになり、それに伴ってOOXMLの署名のイン
ポートとエクスポートができるようになりました。

曲線

　Draw/Impressにはもともとあったのですが、
Writer/Calcの図形描画ツールバーからもベジエ曲

注5） イタリア国防省はすでにLibreOfficeに移行していますが、こ
の機能の追加によりオランダ国防省でもLibreOfficeが採用さ
れるのかもしれません。資金を提供して機能を追加してもら
い、それを採用することによって全体のコストを下げること
ができ、かつLibreOfficeユーザのメリットにもなるというの
は、理想的な状況といえます。日本でもこのようになるとい
いのですが、なかなか難しいです。

線や多角形の曲線を描けるようになりました。

ファイルへ出力

　LibreOfficeでは、これまでも印刷ウィンドウから
ファイルへ出力できましたが、［オプション］タブの
［ファイルへ出力］にチェックを入れる必要があり、
直感的ではありませんでした。5.2からはプリンタの
1つとして表示されるようになったため、とても使
いやすくなりました。とはいえどの程度使いどころ
があるのかは疑問なところがあります。ちなみに出
力形式はOSによって異なり注6、UbuntuではPost

script形式となります。

変更の追跡バー

　変更の追跡機能は、簡単にいえばバージョン管理
機能ですが、メニューをたどるほか［表示］-［ツール
バー］-［変更の追跡］でツールバーを表示して使用し
ます。今回［標準］ツールバーにこのツールバーの表
示と非表示を切り替えるアイコンが追加されました。

相互参照にフィルター

　［挿入］-［フィールド］-［他のフィールド］-［相互参

注6） ちなみにWindowsではPRN形式です。

Writer

図5　新しいブックマークウィンドウ図4　新しい検索と置換ウィンドウ

164 - Software Design Sep. 2016 - 165

LibreOffice 5.2の新機能 第 77 回

照］タブに、フィルタ機能が追加されました。多数の
相互参照を使用している場合でも、簡単に絞り込め
るようになりました。

ブックマークの挿入の強化

　これまでの［ブックマークの挿入］は本当に挿入す
ることしかできず、操作も直感的ではありませんで
した。5.2ではそれが見直され、ただ挿入するだけで
はなくその場所に移動（ジャンプ）したり、削除や
ブックマーク名の変更もできるようになりました（図
5）。なお、ブックマーク名は自動で割り当てられる
ようになったので、数が多くない場合はそれに任せ
るのもいいでしょう。

セルの固定が簡単に

　これまでセルの固定をしたい場合、固定する行と
列の1つ下をアクティブにし、［表示］-［行と列の固
定］をクリックする必要がありました。5.2では［表示］
-［セルの固定］のサブメニューに［行と列の固定］のほ
か、［最初の行を固定］と［最初の列を固定］が追加さ
れました。たいていの場合は最初の行か列を固定す
るでしょうから、アクティブなセルを移動する必要
がなくなったので便利といえます。

隣接するセルからも枠線を削除

　これはちょっとわかりにくいのですが、たとえば
6×6のセルに罫線を引いたとします。真ん中の4×

Calc

4から罫線を消す場合、通常であればほかのセルと
隣接する罫線は残ります（図6）。しかし、新たに追
加された［隣接するセルからも枠線を削除］にチェッ
クを入れると、隣接するセル、すなわちこれまで罫
線が残っていたセルからも罫線が消えます（図7）。
どういった場面で役に立つ機能なのかはよくわかり
ませんが、今までの方法で同じことをしようと思う
とすごく面倒だったので、大幅に手数を減らすこと
ができるようになりました。

ステータスバーの機能を
同時表示可能に

　Calcの画面右下に、合計や平均などを簡易表示す
るステータスバー機能があります。これまではどれ
か1つしか有効にできませんでしたが、5.2からは複
数同時に表示できるようになりました（図8）。

関数のツールチップ

　セルに直接関数を入力する場合、ツールチップが
表示されるようになりました（図9）。これで関数を
完全に覚えてなくても入力できるようになったので、
ウィザードを使う機会が減ることが期待できます。
なおこの機能は、個人名は伏せますが日本人の大学
生によって実装されました。

新しい関数

　新しい関数が追加されています。表1にまとめま
したのでご覧ください。おおむねMicrosoft Excel

2016との相互運用性を向上させるために追加されて
いますが、RAWSUBTRACTは計算の精度を上げる

図6　従来は隣接するセルの線は残る

図7　 ［隣接するセルからも枠線を削除］にチェックを入れ
るとこうなる

図8　 複数の項目にチェックを入れることができるようになった

図9　SUMで始まる関数をツールチップで表示している

166 - Software Design

Ubuntu Monthly Report

ために追加されています。

仕様変更のあった関数

　WEEKDAY関数は、Microsoft Office 2010以降と
同じく種類（タイプ）に11～17が追加されました。日
曜日を1とする17は、日本では便利そうです。

ワイルドカードのサポート

　Calcは一部の関数でワイルドカードが使えるだけ
で、Microsoft Excelほど広範囲に使用できなかった
のですが、このたび大幅に見直されました。なお、
実際に使えるワイルドカードは、任意の一文字の
“?”と、空白を含むすべての文字の“*”で、エスケー
プには“~”を使用します。
　ただし、デフォルトでは正規表現を使用するよう
になっており、変更するには［ツール］-［オプション］
-［LibreOffice Calc］-［計算式］の［一般的な計算］を
変更します。

キーアサインの変更

　数式入力ボックスで`+©を押した場
合、これまでは1つ上のセルに移動していましたが、
5.2からは改行になりました。
　これまで`+$はセルの参照に割り当てら
れていましたが、5.2からはこの機能は無効になりま
した、［ツール］-［オプション］-［LibreOffice Calc］-
［互換性］-［キーバインディング］を［OpenOffice.org

互換］に変更すると、従来どおりの挙動になります。
　現在アクティブなセルの行を全選択する場合は

`+スペースキー、列を全選択する場合は

l+スペースキー、全シートを選択する場合は

l+`+スペースキーとなりました。ただし

通常l+スペースキーはインプットメソッド
（Fcitx）にアサインされているため、変更しない限り
使用できません。

サイドバーのアニメーションの設定

　Impressのサイドバーにある［アニメーションの設
定］は、これまで追加時に［+］アイコンをクリックし
てダイアログから適用する項目を選択していました
が、5.2からはこのダイアログがなくなり、サイド
バーから直接設定するようになりました。

スライドのプロパティを
サイドバーのプロパティに追加

　スライド全体のプロパティをサイドバーから変更で
きるようになりました。［書式］-［ページ］を開く必要
がなくなったので、非常に便利になりました。

図形描画ツールバーのオンオフ

　標準ツールバーに、図形描画ツールバーの表示と
非表示を切り替えるアイコンが追加されました。一時
的に縦のスペースを広くしたい場合に便利でしょう。

　いつものように、10月にリリースされるUbuntu

16.10はLibreOffice 5.2をデフォルトでインストール
するでしょう。また、やはりいつものようにPPA注7

でも配布され、16.04などでも使用できるようになる
でしょう。
　同時にsnapパッケージでも配布されるようになる
はずですので、PPAからインストールするのに抵抗
がある場合は使用してみるといいのではないでしょ
うか。執筆段階では、少なくとも5.2 Beta2は配布さ
れています注8。｢

注7） https://launchpad.net/~libreoffice

注8） https://skyfromme.wordpress.com/2016/06/14/libreoffice-
5-2-0-beta2-as-a-snap-package/

Draw/Impress

Ubuntuで5.2を使用する

関数 用途
RAWSUBTRACT 誤差を丸めず減算
FORECAST.ETS 実績から予測値を求める7つの関数
CONCAT Excel 2016の同名の関数と互換
TEXTJOIN Excel 2016の同名の関数と互換
IFS Excel 2016の同名の関数と互換
SWITCH Excel 2016の同名の関数と互換
MINIFS Excel 2016の同名の関数と互換

表1　新しい関数

https://launchpad.net/~libreoffice
https://skyfromme.wordpress.com/2016/06/14/libreoffice-5-2-0-beta2-as-a-snap-package/

Sep. 2016 - 167

39 Debian Developer　やまねひでき　henrich@debian.org

DebConf16レポート（前編）

DebConf16開催

　Debian開発者会議「DebConf」が南アフリカ・
ケープタウンのケープタウン大学で開催されま
した注1（写真1、2）。参加者が集まりやすいヨー
ロッパや北米ではなく初のアフリカ大陸での開
催ということで、例年より参加者は少なめでは
ありましたが、それでも280名超が100以上の
セッションやイベントを精力的にこなしました。
今回と次回では、そこからいくつかトピックを
かいつまんで紹介したいと思います。
　セッションビデオについてはDebConf16の
サイトにリンク注2がありますので、そちらを
ご覧ください（有志がYouTubeにもアップロー
ドしているようなので、そちらを検索いただい

ても良いでしょう）。

Debian 11のコードネームは
「Bullseye」

　リリースチームのEmilio Pozuelo Monfort

さんのセッション「We need you to release

Debian」注3では、Debian 9“Stretch”のリリー
スに向けての状況と、フリーズを短くするため
の取り組みへの協力依頼が語られました。
　Debian 9のリリーススケジュールについて
は以前からとくに変更なく、2017年2月5日に
開発フリーズが宣言されています。「現状、修
正が必須となるリリースクリティカルバグ（RC

バグ）は1,062個あり、そのうちの300個超が
GCC 6がらみ、別の300個超がdebhelperの旧
バージョン依存で、さらに別の330個程度がキー

となるパッケージに存
在している。まずはこ
れらのバグを修正して
いく必要がある」と述
べられました。リリー
ス対象アーキテクチャ
については表1のよう
になっています。
　そして早くもDebian

11のコードネームが
発表されました。これ
までどおりToy Story

のキャラクターから
WoodyとJessieの愛馬

 ▼写真2　ケープタウン大学構内の様子 ▼写真1　宿の学生寮からの眺め。
　　　　晴れた日にはテーブル
 マウンテンが見える

注1） URL https://debconf16.debconf.org/
注2） URL https://debconf16.debconf.org/talks/
注3） URL https://annex.debconf.org//debconf-share/

debconf16/slides/13-we-need-you-to-release-
debian.pdf

https://annex.debconf.org//debconf-share/debconf16/slides/13-we-need-you-to-release-debian.pdf
https://debconf16.debconf.org/talks/
https://debconf16.debconf.org/

168 - Software Design

「Bullseye」が選ばれています（表2）。

systemd in Debian
- a status update

　Debianでは Jessieから正式に採用された
systemdですが、そのsystemdのDebianでの現
状についてのセッションです注4。
　「systemd自体の開発はかなり速いスピードで
行われている。そんな状況でも、Upstream側
で入念に作りこまれているユニットテストに加え、
Debianパッケージ側でも基本的な振る舞いのテ
ストをするautopkgtest群を加えることで、品質
を担保しつつすばやくUpstreamの変更に追随
して、いつでもunstableに投入できている」との
ことです。なお、Upstreamでのsystemdの開発
はGitHubを利用しており、すべてのプルリクエ
ストに対してCI（Continuous Integration）が走
るようになっているようです。システムの中核
を成すソフトウェアなのに「枯れている」とは言
いがたい変更が続々と加えられるsystemdです
が、大きなリグレッション（デグレード）を避け
つつリリースできているのはこのおかげですね。
　パッケージとしては、systemdパッケージ群
の分割（systemd-containerなど）を行って、イ
ンストールされるライブラリパッケージを最小
になるようにしているとのこと。その際には、
ほかのディストリビューションとも協力してい
るそうで、昨年行われたsystemd conferenceで
は、systemd関連のパッケージ名をなるべくディ
ストリビューション間で共通にするように話し

注4） U R L https://annex.debconf.org/debconf-share/
debconf16/slides/89-systemd-in-debian--a-status-
update.pdf

合いなどを行ったようです。
　また、先日のリリースでは、libsystemd-

shared.soというライブラリに共通コンポーネ
ントをまとめるようにした結果、パッケージサ
イズが50％削減されたとのこと。筆者が実際
にビルドして確認したところ、バージョン
230-1では 35MBだったのが、バージョン
230-7では16MBと大幅に削減されていまし
た注5。
　現在作業中なのが、systemd採用に従って不
要になったレガシーな機能やパッケージの依存
関係を削除することです。セッションでは、次
の項目が取り上げられていました。

¡	initscriptsパッケージの依存関係整理（完了）
¡	sysv-rcパッケージのプライオリティ降格
¡	insserv対応パッチの削除
¡	rcS対応パッチの削除（完了）

　initscriptsはシステム起動／シャットダウン
用スクリプト集のパッケージです。このパッケー
ジに含まれていた/lib/init/vars.shファイル（多
数の initスクリプトが参照しています）をsysv

init-utilsパッケージに移動することで、パッケー
ジの削除が可能になりました。同様のパッケー
ジであるsysv-rcは、プライオリティが「impor

tant」ですので自動的にインストールされてし
まいます。しかし、いくつか見つかっている問
題を処理すれば、プライオリティを落としてイ
ンストールされないようにできそうだ、とのこ
と。両方合わせても削減されるサイズは微小で
すが、こういう積み重ねが大事なのでしょう。
　systemd自身でも、SUSE由来の insserv用

注5） systemdソースパッケージからビルドされる全バイナリパッ
ケージの総計での比較。

 ▼表1　Debian 9のリリース対象のアーキテクチャ

現状、対象になっているもの
（と追加候補） 対象にするか検討中のもの

amd64/i386
armel/armhf/arm64
mips/mipsel/（mips64el）
ppc64el
s390x

kfreebsd-i386/amd64
powerpc
sparc64

 ▼表2　Debianのコードネーム

バージョン コードネーム リリース時期
Debian 8 Jessie 2015年5月
Debian 9 Stretch 2017年春予定（おそらく5月）
Debian 10 Buster 未定（2019年春？）
Debian 11 Bullseye 未定（2021年春？）

https://annex.debconf.org/debconf-share/debconf16/slides/89-systemd-in-debian--a-status-update.pdf

168 - Software Design Sep. 2016 - 169

DebConf16レポート（前編） 39

のDebian固有パッチ（/etc/insserv.conf（.d/）を
利用する機能）注6を削除するなどの取り組みを
進めています。
　もう1つはrcS周りの整理です。/etc/rcS.d/

配下の initスクリプトは、システム起動時のハー
ドウェア周り、たとえばディスクのマウントや
ネットワークなどの初期化作業などを実施しま
す。これをsystemdのネイティブサービスに置
き換えることで、これらの initスクリプト間で
の依存関係でループが起きてトラブルが発生す
るのを避けられるようになる、と説明がありま
した。「rcSの initスクリプトは、kFreeBSDや
Hurdの場合や initにsystemdではなくOpenRC

などを使う場合に参照するので、きちんと直し
たほうが良いのでは？」という質問については、
「systemdの観点からは、rcSではなくsystemd

ネイティブなserviceファイルをパッケージに
入れることで対応してもらう」との回答でした。
　なお、Debianには積極的に新しいバージョ
ンの systemdが投入されていますが、systemd

が提供する全サービスを有効にしているかとい
うとそうではなく、次のような例外があります。

¡	ネットワークインターフェース処理には、現在、
Debianで利用しているifupdownのリプレー
スが必要になるため、systemd-networkd注7

についてはまだ有効にしていない
¡	Ubuntuではネットワーク名前解決のコンポー
ネントとしてsystemd-resolved注8を推してい
るが、Debianでは有効にしていない。採用
はUbuntuでの反響を見てから決めたい、と
のコメント

¡	同様にブートローダーであるsystemd-boot注9

も有効にはしていない

注6） Debianでsystemdを採用する以前に initに使っていました。
注7） URL https://www.freedesktop.org/software/systemd/

man/systemd-networkd.service.html

注8） URL https://www.freedesktop.org/software/systemd/
man/systemd-resolved.service.html

注9） UEFI専用のブートローダー。現状のGRUBを置き換えるこ
とになるか？　 URL https://www.freedesktop.org/wiki/
Software/systemd/systemd-boot/

　このあたりは、同じようにsystemdを採用し
ているディストリビューションであっても、違
いが出るところですね。

CDNサービス
「deb.debian.org」

　Tollef Fog Heenさんが発表したのは、Debian

パッケージのCDNサービス注10「deb.debian.

org」です注11。これまでも、Debianパッケージ
リポジトリ用のCDNサービスは複数存在して
いました。第1世代のCDNが、現在、AWSで
ソリューションアーキテクトとして活躍してい
らっしゃる荒木靖宏さんが実装した「cdn.deb

ian.net」、次に第2世代として「httpredir.deb

ian.org」、そして第3世代が今回の「deb.debian.

org」という位置づけになるでしょうか。
　日本国内にいる限り、パッケージリポジトリ
は現状の ftp.jp.debian.orgを指定するのが最適
です。しかし、頻繁に海外へ移動を行う場合や、
利用者の地理的な特定ができないdockerなど
のマシンイメージでミラーを指定する場合には、
CDNであるdeb.debian.orgを指定しておくの
が最適でしょう。deb.debian.orgを利用するに
は、/etc/apt/sources.listにリスト1の設定を
追加します。
　これまでのCDNと比較すると、deb.debian.

注10） Contents Delivery Networkの略。1サーバに負荷が集中
しがちなコンテンツデータ配信について、各地にコンテン
ツをコピーしたエッジサーバを配置し、ユーザから最も近
いエッジサーバからコンテンツを配信することで、負荷分
散と快適なサービスの提供を可能にする。今回名前が出て
くるFastly以外ではAkamai、CloudFlare、MaxCDNなど
が有名。

注11） URL https://debconf16.debconf.org/talks/97/

 ▼リスト1　deb.debian.orgの設定のしかた

 DNSのSRVレコードをサポートしていないjessieのaptの場合
deb http://cdn-fastly.deb.debian.org/debian ｭ
jessie main contrib non-free
deb http://cdn-fastly.deb.debian.org/debian-ｭ
security jessie/updates main

 stretch以降のaptの場合
deb http://deb.debian.org/debian sid main ｭ
contrib non-free

https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/software/systemd/man/systemd-resolved.service.html
https://www.freedesktop.org/software/systemd/man/systemd-networkd.service.html
https://debconf16.debconf.org/talks/97/

170 - Software Design

orgは通常のパッケージ／セキュリティアップ
デートパッケージ／デバッグシンボルパッケー
ジ／移植版のdebian-portsと、広い範囲でパッ
ケージが取得可能になったのと、クライアント
にとってより最適なエッジのキャッシュが利用
できるようになっているのが利点です。
　現状の実装では、バックエンドのCDNとし
て過去にTollefさんが勤務していたFastly注12

を利用しているようです注13。今のところまだ実
験段階のサービスで、ほかのCDNサービスと
も協力していく予定であり、今後正式なリリー
スが待たれます。

ScreenをDebian
インストーラに統合

　日本からの参加者の発表では、ロジャー清水
さんによるターミナルマルチプレクサ注14の
GNU ScreenをDebianインストーラに統合し
たという発表「GNU Screen comes to Debian

Installer」がありました注15。とくに画面出力や
キーボード接続が存在しないARM組み込み系
などのヘッドレスマシン注16でのシリアルコン
ソール経由のインストールや、IBMのPower

シリーズで使われているppc64elアーキテクチャ
や汎用機であるs390xアーキテクチャなどへの
SSH経由でのインストール作業の際、簡単に
仮想コンソールを切り替えられるようになりま
す（図1）。これらの機器では、通常のPCとは
違ってインストール最中にシェルに切り替えて
機器固有の設定をコマンドで実施する必要があ
るため、Screenで仮想コンソールが使えるの
は大きなメリットです。

注12） URL https://fastly.com

注13） Fastlyというフリーではないサービスに依存しているなど
の問題は存在しますので、ここはどう折り合いをつけてい
くのかが、今後の課題になりそうです。

注14） 1つのターミナルで仮想ターミナルが利用できるようにす
る機能。ScreenやTmuxがある。

注15） U R L https://annex.debconf.org/debconf-share/
debconf16/slides/86-gnu-screen-comes-to-debian-
installer.pdf

 URL https://debconf16.debconf.org/talks/86/

注16） たとえばNASなど。

　DebianインストーラのバージョンStretch

alpha7「以降」注17での利用が可能になっている
ので、ぜひお試しください。

“jessie and a half”
リリースの検討

　さて、DebConf中には発表以外にもメーリン
グリストでの議論が活発に行われています。
Steve McIntyreさんは、jessie-backportsに含
まれている新しいカーネルやX関連パッケージ
を「jessie and a half」としてリリースするのはど
うか、という提案を行いました。過去にDebian

4.0“etch”に対して「etch and a half」注18として、
サポート対象のハードウェアを増やすために
LinuxカーネルやXドライバの更新を行ったこ
とがあります。Debian 8“Jessie”でもこれと同
様に行おう、という提案です。
　Jessieリリース後、ARM64アーキテクチャ
やamd64アーキテクチャのクライアント（つま
りは普通のPC）のSkylakeプラットフォームで

注17） 執筆時点ではdaily imageのみになります。 URL http://
cdimage.debian.org/cdimage/daily-builds/daily/arch-
latest/amd64/iso-cd/などを参照。

注18） URL https://www.debian.org/releases/etch/etchnhalf.
ja.html

拡大

 ▼図1　インストール時の仮想コンソール切り替え

http://cdimage.debian.org/cdimage/daily-builds/daily/arch-latest/amd64/iso-cd/
https://www.debian.org/releases/etch/etchnhalf.ja.html
https://annex.debconf.org/debconf-share/debconf16/slides/86-gnu-screen-comes-to-debian-installer.pdf
https://debconf16.debconf.org/talks/86/
https://www.fastly.com/

170 - Software Design Sep. 2016 - 171

DebConf16レポート（前編） 39

は、大きな変更が続々と起きています。今回は
それらの新しめの機器での対応を主目的として
いるようです。
　以前の「etch and a half」との違いは、Debian 9

“Stretch”のリリースまで、継続的にbackports

リポジトリからカーネルを更新する予定である
ところです。とくに主だった反対は行われず、

作業ターゲットの日程としては7月下旬あるい
は8月頭という話でしたので、この号が発売さ
れるころには実施されているかもしれません。
名称についてはもっと良いものがあれば、それ
でかまわない（“Jessie Backport August 2016”
などはどうか？）とあるので、最終的には若干
変わっているかもしれませんね。｢

カンファレンス参加への道（下準備から現地到着まで）

　DebConfの申し込みは開催3、4ヵ月ほど前にオー
プンし、Webから申し込みができます。ちなみに参
加にあたっては特別な資格は「不要」で、どなたでも
無料で参加できます。さらに、早めに登録を行うと
宿泊や食事のスポンサー枠を受けることもできます。
渡航費については、必要であれば費用の申請を行い、
それをDebConfチームが審査して可否を決めます。
この審査に通るためには、これまでにDebianへの
何らかのContributionを目に見える形で行っている
か、をアピールできるかどうかが肝です。
　参加までに準備が必要だと筆者が思ったことを表
Aにまとめておきました。次回のDebConfに限らず、
今後、初めて海外 IT系カンファレンスに行くという

方は参考にしてください。
　現地空港から会場までの移動ですが、DebConf
では参加者がWikiで自身の乗る飛行機／列車の時
間を記載して移動のコーディネートをし、複数人で
待ち合わせてタクシーシェアして会場入りするスタ
イル注19を採っていますので、意外に安心です。筆
者は空港に着いてすぐに、先に会場入りしていた知
り合いのDebian開発者に見つけられ、彼らの運転
するレンタカーでケープタウン大学入りしました。
大きな都市であればUberを使うのも良いでしょう。

COLUMN

 ▼表A　カンファレンス参加チェックリスト

内容 チェック コメント
パスポート □ 今すぐ取ろう！　GPGキーサイン交換にも使える
クレジットカード □ キャッシュ機能を有効に。付帯保険の確認を忘れずにすること
カンファレンス申し込み □ 早めの申し込みだと割引や宿／食事のスポンサーが受けられたりする
休暇の取得 □ 誰かが休んでも単一障害点にならない職場づくりの機会だと思おう
航空券購入 □ トランジットに気をつけて
ESTA（eTA）登録／ビザ申請 □ 北米行きの場合は要注意
ノートPCと電源アダプタ □ 現地で壊れたり盗られたりしても泣かない。ディスクは暗号化しておこう
電源変換プラグ □ いくつかの国で使えるものを買っておこう
SIMロックフリー端末 □ 安いので構わない。モバイルルータでも良い
モバイルバッテリー □ 複数持ちがお勧め
スーツケース □ 帰りのお土産を入れるスペースがあると良い
着替え □ 長期滞在の場合は洗濯するかランドリーサービスを利用しよう
虫除け／日焼け止め／薬 □ 日焼け止めは現地で購入したほうが強力なのが手に入って良いかも

他の参加者へのお土産など □ せっかくだから何か手土産があると喜ばれる。宣伝したいことがあれば資料やステッ
カーなども持参

印刷したカンファレンス情報 □ 開催地の住所／連絡先電話番号は必ず控えておく
印刷したEチケット □ 旅費の補助を受ける際には必須※。スマートフォンでも見れるとなお良い
オンラインチェックイン □ 搭乗24時間前から可能
現地通貨 □ 空港で両替。少額ならレートはあまり気にしない

※カンファレンスへの参加で旅費の補助を受ける場合、現地で開催チームに旅費の精算を求められることがあり、そのような場
合に必要になってきます。PDFファイルがあれば印刷すれば……と思っても、プリンタがうまく動かない場合や、そもそもプリ
ンタがない場合もありますので、データだけでなく印刷物も準備しておきましょう。

注19） U R L https://wiki.debconf.org/wiki/DebConf16/
TravelCoordination/Arrival

https://wiki.debconf.org/wiki/DebConf16/TravelCoordination/Arrival

172 - Software Design

　エンジニアに必要な基礎能力は、問題解決力
や読解力、表現力、対話力、論理思考能力など
多岐にわたっています。いずれも一朝一夕に身
につくものではありませんので、日々の努力と
経験が重要です。そうした能力の中で、初心者
のうちに必ず身につけておいたほうが良いもの
を1つ挙げるなら、「タイピングスピード」です。
とにかく素早くたくさんのプログラムや命令を
コンピュータに入力できる能力が邪魔になるこ
とはありません。入力が遅ければ、キーボード
をたたいているうちにせっかく考えていたアイ
ディアやアルゴリズムが頭の中から消滅してし
まうこともあります。ライバルエンジニアが
1,000行書き上げる間に、入力が4倍速ければ
4,000行のコードが書けます。キーボードの音
高らかにタイプしているので後ろからよく見て
いると、入力した先からバックスペースで修正
ばかりしていて、一向に前に進まない人がいま
すが、間違いが多いのも思考が中断してしまい
ます。タッチタイピング（手元を見ない）で、素
早く、間違いなく入力できるようになりましょ
う。
　そんな能力はすでに高いレベルに達している
というあなたには、2番目に効果がある「整理
整頓」をおすすめします。;-)

続・ファイル操作

移動とリンク

　前回のファイル操作基本1で紹介した、ディ
レクトリ・ファイルの作成、複製、削除はもう
ばっちりですね。さらに先月から十分に経験を
積んだ皆さんは、CLI環境（テキスト情報だけ）
でもファイルシステム中で迷うことはないでしょ
う。弊社の新人さんも、要領を得て調子がでて
きたのか、口調も軽やかになってきました。
　さて、前回やり残したファイルの移動とリン
クを体験しましょう。実践環境が残っている人
は、そのまま続けて動作を確認できます。

mv̶MoVe̶ファイルやディレクトリを移
動する
　mvはファイルやディレクトリを移動したり
名前を変えるコマンドです。移動対象がディレ
クトリの場合、その下にあるファイルやディレ
クトリも移動します。
　図1のように../d1をそっくりd1の下に移動
してみましょう。

$ pwd í
/Users/masa/Work/d2 masaはユーザ名が入る
$ mv ../d1 d1 í

前回に引き続きファイル操作を紹介します。今回はファイルやディレクトリの移動、リンク、
リダイレクトについて解説します。

 Author 中島 雅弘（なかじま まさひろ）　㈱アーヴァイン・システムズ

第　　回5 ファイル操作の基本（その2）

172 - Software Design Sep. 2016 - 173

　簡単ですね。

 mv応用例：複数のファ
イルの拡張子をまとめて変更する
　Windows系のファイルシステム
では、ファイル名は<ファイル名>.

<拡張子 >の形式が一般的です。
Unixとは異なり、拡張子（‘.’以降
の文字列）にファイルの種別を示す
意味があります。ここでは、特定の
ディレクトリ内にあるファイルの拡
張子をまとめて変更する方法を探っ
てみましょう。
　拡張子 .dmgを .isoに変更してみます。

 現在のファイルの状態
$ lsí
a.xxx a.dmg b.yyy c.iso d.dmg

　まず単純にmvを使って、次のように指定で
きるでしょうか……

 失敗例
$ mv *.dmg *.isoí

　この失敗は前回のcpの例でもあったように、
移動先が複数であることが原因です。mvの代
わりにechoを使って出力を見れば一目瞭然です。
a.dmgとd.dmgをc.isoに移動しろ、という指示
になってしまいますね。

$ echo *.dmg *.isoí
a.dmg d.dmg c.iso

　解決するには、前回のように複数のmvコマ
ンドを発行する必要があります。今回は、シェ
ルの繰り返し制御を使ってみましょう。bash

ではforによる繰り返し処理ができますので、
次のように記述します。

 bashでの技
$ for f in *.dmg ; do mv ${f} ${f%.*}.iso; ｭ
doneí

　ここではforとシェル変数f、拡張子を取り
除くためのパターンマッチ演算%.*を使ってい
ます。ちょっと見慣れない文字の並びで気後れ
してしまいそうですが、頑張って理解しましょ
う。bashのこのような文字列展開の機能につ
いては、また別の回に改めて詳しく解説しよう
と思います。
　FreeBSDなどは、cshもしくはその拡張版
である tcshが標準のシェル注1です。shの系統と、
cshの系統の両方を理解し操作できるようにな
れば、ほとんどの環境で困ることはないでしょ
う。ここでは参考として、前の処理と同じ動き
をcshで記述してみます。

% foreach i (*.abc)í
foreach? echo $i $i:r.isoí
foreach? endí

行頭のforeach?は、
foreach処理内での
入力プロンプト

　ちなみにsh系のプロンプトは$ですが、csh

の標準プロンプトは%です。foreachとendは、
独立した行に書くと決まっているので、bash

のように1行では書けません。:r演算子で、拡
張子を取り除いた文字列が得られます。見た目
はちょっと違いますが、bashの技と同じ操作
になっていることが確認できます。

注1） サン・マイクロシステムズの共同設立者である、ビル・ジョ
イがcsh、viの開発者です。氏は、70年代の終わりから80
年代前半に、UCBでBSD Unix開発において中心的な役割
を果たしていました。そうした経緯もあり、FreeBSDなど
BSD系Unixでは標準シェルがcshということがあります。

第　　回5 ファイル操作の基本（その2）

f1

これらを

f2 f3f1

f2

Work

d2d1

ここに移動

f2 f3f1

d1

. ワーキングディレクトリ.. 1 つ上のディレクトリ

f3
f1

f2
f3

d2d1

 ▼図1　移動する

174 - Software Design

　作業現場でよく現れるこの手の短いスクリプ
トは、イディオムとして覚えておきましょう。

シンボリックリンクとハードリンク

　Unixファイルシステムは、異なる名前で同
じファイルやディレクトリにアクセスする方法、
リンクを2種類提供しています（図2）。

ls -lの情報再び
　ls -lの情報を再び注2確認しましょう（図3）。
　リンクカウントに注目してください。リンク
カウントは、ファイルがリンク（参照）されてい
る数で、i-node内にあります。ファイルが作ら
れた状態ならリンクが1つでリンクカウント1、
ハードリンクされるたびにリンクカウントも増
えます。rmコマンドなどでファイルを消す操作
は、実際には参照情報だけ削除してリンクカウ

注2） Software Design 2016年6月号、172ページの図7で確
認しました。

ントを1つ減らします。リンクカウントが0に
なるとファイルの実体が占有していた領域を解
放します（図4）。

ln̶LiNk̶ハードリンクを作る
　lnコマンドを使って、リンクとリンクカウ
ントを実際に試してみましょう。

$ ls -l d1/f1í
-rw-r--r-- 1 masa staff 0 2 13 14:36 d1/f1

$ ln d1/f1 ./l1í
$ ls -l d1/f1 ./l1í
-rw-r--r-- 2 masa staff 0 2 13 14:36 ./l1
-rw-r--r-- 2 masa staff 0 2 13 14:36 d1/f1

　リンク前に1だったd1/f1のリンクカウント
が、もとの d1/f1も、新しく作った l1も、と
もに2になっています。
　i-node番号を確認してみましょう。lsに“-i”
オプションを指定してみます。

$ ls -i d1/f1 ./l1í
34202749 ./l1 34202749 d1/f1

　同じ i-node（この場合34202749）が共有され
ていることがわかりますね。i-node番号は1つ
のファイルシステム内でユニークな番号です。
ハードリンクでは、ファイルシステムをまたい
だリンクは作れないことに注意してください。

ln -s̶LiNk -s̶シンボリックリンクを作る
　シンボリックリンクはファイルやディレクト

リへのアクセスの方法（パス）
を示したものです。リソー
スの実体はないので、アク
セス先がどこかに移動され
たり削除されると、デッド
リンクになります。
　では、早速シンボリック
リンクを作ってみましょう。
シンボリックリンクは、ln
コマンドに-sオプションを
指定して作ります。

$ ls -l /etc/apache2
total 200
drwxr-xr-x 15 root wheel 510 10 11 07:50 extra
-rw-r--r-- 1 root wheel 20785 10 11 07:43 httpd.conf
-rw-r--r-- 1 root wheel 20785 7 3 2015 httpd.conf.pre-update
-rw-r--r-- 1 root wheel 20785 8 24 13:04 httpd.conf‾previous
-rw-r--r-- 1 root wheel 13077 8 23 08:53 magic
-rw-r--r-- 1 root wheel 53258 8 23 08:53 mime.types
drwxr-xr-x 4 root wheel 136 8 23 08:53 original
drwxr-xr-x 3 root wheel 102 8 23 08:53 other
drwxr-xr-x 3 root wheel 102 10 11 07:47 users

このディレクトリの合計ブロック数

権限情報 リンクカウント 所有者名 グループ名 サイズ 最終更新日時 ファイル名

 ▼図3　ls -lの実行例と意味（OS X 10.11.4の例）

ファイルシステム
中の実体

ハードリンク

s1

d1/f1
アクセス方法（経路）
が書いてあるだけ

d2

d1 l1

f1

シンボリック
リンク

 ▼図2　ハードリンクとシンボリックリンク

174 - Software Design Sep. 2016 - 175

$ ln -s d1/f1 ./s1í
$ ls -Fí
d1/ l1 s1@
$ ls -Fl s1í
lrwxr-xr-x 1 masa staff 5 2 13 14:43 ｭ
s1@ -> d1/f1

　上の例では、d1/f1を参照するs1というシン
ボリックリンクを作成しました。lsに“-F”オ
プションを指定したので、s1にシンボリック
リンクである‘@’がついていることが確認でき
ます。
　試しに、もとのd1/f1を削除してみましょう。

$ rm d1/f1í
$ ls -lF s1 d1/f1 l1í
ls: d1/f1: No such file or directory
lrwxr-xr-x 1 masa staff 5 2 13 14:43 ｭ
s1@ -> d1/f1

　もとのファイルは消え、先に作ったハードリ
ンクl1のリンクカウントは1減っています。
s1はまだ、d1/f1へのアクセスを示したまま存
在していますが、次のように“cat”コマンドを
使ってファイルにアクセスしてみると、

$ cat s1í
cat: s1: No such file or directory

　エラーメッセージが示すように、参照先に実
体がないことがわかります。
　ハードリンクも、シンボリックリンクも実体
を複製しませんので、大きなファイルが対象で

あってもディスク容量の消費は気になりません。
バックアップのとき、既存のファイルに別の名
前やアクセス方法を提供したいときなど便利に
使えます。

	 システムによっては異なるファ
イルシステムへの移動はできない
　mvコマンドは内部でrename(2)システムコールを呼
び出して、ファイルの実体はそのままに、参照情報を
書き換えます。ファイル実体のサイズは大きいことも
ありますが参照情報はほんのわずかです。参照情報だ
けを書き換えることで、ファイルをすべてコピーする
無用な負荷がかかりません。
　異なるファイルシステム間を移動するには、ファイ
ルの実体も移動させなければなりません。そのためシ
ステムによっては、mvで異なるファイルシステム間の
移動ができない場合があります。

 例：異なるファイルシステムでは動かないときに出力されるエ
ラーメッセージ
"inter-device move failed, unable to ｭ
remove target: Is a director"

　逆にmvで異なるファイルシステム間での移動がで
きるシステムは、ファイルシステムが異なる場合には
（1）コピー先にすでにファイルがあるなら削除してお
く（2）コピーを実施（属性やパーミッション、構造を維
持。シンボリックリンクは辿らない）（3）コピー元を
削除、という一連の動作をしています。

 ファイルシステムをまたいで、mvと同じ処理をする
$ rm -f コピー先 && ¥í
$ cp -pRP コピー元 コピー先 && ¥í
$ rm -rf コピー元í

木構造を再帰で克服
　Unixのファイルシステムは階層構造です。
rm -r、mkdir -pなど、階層構造をたどって処

理できることを
紹介しました。
すでに紹介した
コマンドにも、
階層構造に対応
できるものがあ
ります。
　rmdirはディレ
クトリの中が空
でなければディ
レクトリを削除
できませんでし

第　　回5 ファイル操作の基本（その2）

i-node

ファイル
実体

参照がいくつあっても、
実体は1つ

data

/a/file1

ファイル名
（参照）

リンクの数がリンクカウント
・リンクカウント＝3

リンク

/b/c/file2

/b/d/file2

i-node

ファイル
実体

data

/a/file1

ファイル名
（参照）

・リンクカウント＝2

ファイルを消すと、
リンクも消える

リンクカウントが0になると、領域が解放される

/b/c/file2

/b/d/file2

 ▼図4　リンクカウントとファイルの実体

176 - Software Design

た。rmdir -pは、サブディレクトリ内のディ
レクトリにファイルがなければ、深層にあるディ
レクトリまでまとめて削除できるオプションで
す。もちろんrm -rなら、ファイルも含めて削
除できるので、あまり使う機会はないかもしれ
ません。
　先月のディレクトリマップ作成では、ディレ
クトリの各階層に対してlsを実行して確認し
ました。ls -Rとオプションを指定すれば、対
象のディレクトリ以下を再帰的にたどって見る
ことができます。各ディレクトリごとに空白行
で区切られて表示されています。それぞれのセ
クションのはじめの行の◯◯ :の◯◯が、ディ
レクトリパスです。

 ls -Rの例（Ubuntu）
$ ls -Rí
.:
d1 d2

./d1:
f1 f2 f3

./d2:
d1 d2 f1

./d2/d1:
f1 f2

./d2/d2:
f1 f2

　オプションがコマンドによって、-R、-r、
-pなどと異なっています。Rとrはrecursive（再
帰）、pは parents（親）の意味です。mkdir、
rmdirなど、parentsでの指定はユーザ自身、
最下層がどの位置かわかっていて、そこから親
ディレクトリをたどるというイメージです。一
方rmなどのrecursive指定は、指定したポジショ
ンから下の階層を根こそぎ取ってくるというイ
メージですから、下の階層にどのくらいファイ
ルやディレクトリがあるかわからない状態で指
定するのは危険です。今後紹介するコマンドに
も、これらと同様なオプション指定で階層的処
理に対応したものがあります。

ファイルのリダイレクト

　Unixは、プロセスを起動するとデフォルト
で3つのファイルが開かれています。3つのファ
イルは、それぞれ0：標準入力（stdin）、1：標
準出力（stdout）、2：標準エラー出力（stderr）
です。番号は、ファイルディスクリプタと言い、
プロセス内でファイルをオープンするごとに、
空いている若い番号から順に割り振られるユニー
クなIDです。
　各コマンドが単純に出力する場合は標準出力
に出力され、入力を求めると標準入力から入力
されます。標準出力は、デフォルトでは画面へ
の出力、標準入力はキーボードからの入力で、
標準エラー出力も画面への出力に設定されてい
ます。
　シェルはこれらの入出力先をファイルにした
りコマンドと連結する注3ことができます。

リダイレクト
　出力先や入力元をファイルに変更する機能＝
リダイレクトは、後に紹介するテキスト処理で
多用するファイルとコマンドのやり取りのしく
みですので、ここでマスターしておきましょう。
　何も指定しなければ「標準入出力」は画面と
キーボードです、これをファイルなどに変更す
るには、次の記号を使います。

・ > ：ファイルへ出力（上書き）
・ < ：ファイルから入力
・ >> ：ファイルへ追記

　例で確認しましょう。

$ ls /bin -FC > ls_out.txtí
$ cat ls_out.txtí
[* df* launchctl* pwd* tcsh*
bash* domainname* link* rcp* test*
 （..中略..）
date* kill* pax* stty*
dd* ksh* ps* sync*

注3） これをパイプでつなぐと言いますが、パイプの話は改めて。

176 - Software Design Sep. 2016 - 177

　ls_out.txtにlsの結果が書き込まれました。
続けて、既存のファイルに対して同様にリダイ
レクト処理をしてみます。

$ ls /usr/bin > ls_out.txtí
$ cat ls_out.txtí
2to3* mdls*
2to3-* mdutil*
 （..中略..）
mdimport* znew*
mdimport32* zprint*

　ls_out.txtは上書きされています。もう一度
/binの内容を、‘>>’のリダイレクトによって
書き込んでみます。

$ ls /bin >> ls_out.txtí
$ cat ls_out.txtí
2to3* mdls*
2to3-* mdutil*
 （..中略..）
date* kill* pax* stty*
dd* ksh* ps* sync*

　ファイルに、新しい処理の結果が追加されま
した。次は、入力のリダイレクトも組み合わせ
てみましょう。tailコマンドは、ファイルの
終わりから10行分を表示します。コマンド引
数で、入力するファイルを指定できますが、指
定しなければ標準入力からです。ここではリダ
イレクトを意図的に使っています。

$ tail < ls_out.txt > ls_out2.txtí
$ cat ls_out2.txtí
mdimport* znew*
mdimport32* zprint*
[* df* launchctl* pwd* tcsh*
 （..中略..）
dd* ksh* ps* sync*

　ls_out.txtをtailに入力して、結果を ls_out2.

txtに出力できました。

	
　リダイレクト処理は、シェル内でコマンドを子プロ
セスとして起動する際に、forkされた子プロセス内で
標準入出力を一度closeしてから、指定された入出力
ファイルをopenすることで、ファイルディスクリプ
タ（0、1、2、……）の対象をファイルに置き換えます。
その状態で、コマンドをexecすれば実行されたコマ
ンドのファイルディスクリプタ（0、1、2、……）は、

既存のファイルを空（0bytes）にする
　リダイレクトを理解したところで、既存のファ
イルを空にする方法を紹介しましょう。さまざ
まな方法がありますが、よく使われているのは
/dev/nullという（読んでも、書いても常に）空っ
ぽの特殊ファイルを、cpしたりcatしたりする
方法です。

 cpを使った例
$ cp /dev/null fileí

 catとリダイレクトを使った例
$ cat /dev/null > fileí

　どちらも、同じように動作します。

今回のまとめと
次回について

　移動やリンクの方法とリンクカウントや参照
のしくみを理解しました。ファイルシステムの
階層構造をたどるオプションを使ってサブディ
レクトリを処理できるようになりました。そし
て、リダイレクトを理解しました。これで、ファ
イルの基本操作は大丈夫ですね。
　来月はちょっとレベルを上げて、キャラクタ
ベースゲームの金字塔ローグと、ローグを自動
で解くシステムロゴマチックを題材に、ソース
コードからのビルド手順を見ていきます。｢

すでにオープンされたファイルとなっているわけです。
出力先としてopenするときに、上書き／追記の指定
がされています。

【manで調べるもの
（括弧内はセクション番号）】
mv(1), csh(1), ln(1), unlink(1), unlink(2),
cat(1), tcsh(1), rm(1), rmdir(1), mkdir(1),
ls(1), close(2), open(2), tail(1), null(4)
【以下はbashのhelpコマンドを使って確認】
for

今回の確認コマンド

第　　回5 ファイル操作の基本（その2）

178 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

解説します。DRMプログラミングにはCRTC、
Plane、Encoder、Connector、FrameBufferと
5種類のobjectが登場します（図1）。
　CRTCとはCRTコントローラの略です。CRT

（ブラウン管）のディスプレイはほとんど見なく
なりましたが、ソースコードの中ではしっかり
生き残っています。これはビデオカード側の描
画バッファであるスキャンアウトバッファを示
すobjectです。Planeとは描画元と描画先をつ
なぐobjectで、どのFrameBufferのどの領域か
らどのCRTCのどの領域へ描画するかを管理し
ます。Planeを使うことで、ビデオカードによ
る描画の合成が実現されています。
　たとえばマウスカーソルは、カーソル用の
Planeがあれば、それを使って表示されています。
Encoderは、CRTCから受け取ったデータをモ
ニタへと出力するまでを管理するobjectです。ど
のCRTCに接続可能であるかを示す情報を持っ
ています。Connectorは、信号の最終的な出力先
でモニタにつながっている部分を管理するobject

です。出力先の種類（VGA、HDMI、Display Port

など）や、ディスプレイのID（EDID）といった情
報を持っています。FrameBufferはアプリケーショ
ンが描画するデータを書くバッファを管理する
objectです。

　今年もLinuxCon Japanが終わりました。ちょ
うどRCのタイミングがいい時期だったので、
「LinuxConでLinux 4.7がリリースされるかな？」
と思っていましたが、そうはいかなかったようで
す。なんにせよ、この記事が出るころにはLinux

4.8の新機能patchも出そろっていることでしょう。
　今月は、Linux 4.2のDRMの新APIである
atomic mode settingについて解説します。

DRM 概要
　XやWaylandのような複雑なものから、boot

splashを実現しているシンプルなplymouthまで、
さまざまなアプリケーションがモニタへの描画を
行います。これらのアプリケーションはlibdrmと
いうライブラリを使い、/dev/dri以下のデバイス
ファイルに ioctl（DRM API）でやりとりを行うこ
とで、解像度を設定し、画面の描画に使われるバッ
ファを設定し、ちらつかないように適切なタイミ
ングでバッファの切り替えを行っています。
　Linux 4.2ではカーネルのDRMインターフェー
スに新しくatomic modesetというものが追加さ
れました。atomic modesetとはどういうもので
どのように使うのかを見ていきます。
　まずDRMを使ったプログラミングの概要から

Linux 4.2の新API
DRMインターフェースの
atomic mode setting
Text：青田 直大　AOTA Naohiro

第54回第54回

178 - Software Design Sep. 2016 - 179

Linux 4.2の新API
DRMインターフェースのatomic mode setting

第53回第54回

　アプリケーションの側からまとめてみましょう。
アプリケーションはFrameBufferに描画したい
データを書き込みます。ビデオカードはPlane

に設定されたデータをもとに定期的にCRTCの
バッファにFrameBufferに描画されたデータを
合成します。合成されたデータはEncoderを通
じてConnectorに送られ、モニタへの表示が行
われます。

DRMプログラミング：
描画先の選択

　では、DRMを使ったプログラミングを見てい
きましょう。今回はサンプルとして、メインのバッ
ファに左から右へと伸びていく赤い四角を描き、
その下にPlaneを使って青い三角形を右向きに、
赤い四角の先頭部分と一緒に進むように合成す
るコードを書きます（図2）。さらに、赤線が画
面の半分までいったところで描画スクリーンを
180度回転してみます。すなわち、画面の半分
までいったところで、これまで左端から右に伸
びていた赤い四角が、右端から左
へと伸びていくようになり、青い
三角は赤四角の上に表示されるこ
とになります。
　DRMのプログラミングは、まず
カードデバイスをopenすることか
ら始まります（リスト1）。/dev/dri

の下にビデオカードごとに“card*”
というファイルがあり、これを

openします。DRMプログラミングは、ここで
openしたファイルデスクリプタに ioctlを発行す
ることで実現されます。リスト1の例ではioctl
をラップするlibdrmを使っています。
　まず、drmSetClientCap()を使って UNIVERS
AL_PLANESという機能を有効にします。CRTC

全体を覆うPrimaryのPlaneやマウス用のカーソ
ルPlaneも、通常のPlaneのように見えるように
する設定で、あとのatomic mode settingと動作
をそろえるために有効にしています。
　次にdrmModeGetResources()を使って現在の
環境を調べていきます。この環境からConnector

の数がとれるので、ひとつひとつdrmModeGet
Connector()でConnectorの情報を取得してい
きます。リスト1の例ではモニタに接続されて
いて、かつEncoderが設定されているConnec

torを探しています。適切なConnectorを発見し
たら、そこに接続されているEncoder、さらに
そのEncoderにつながったCRTCを調べてそれ
らのIDを取得します。また、解像度やリフレッ

（赤い四角）

モニタの左端から右へ赤い四角が伸び、
青い三角が動いていく

（赤い四角）

モニタの半分まで来たところで、
上下反転

（青い三角）

（青い三角）

（赤い四角）

（赤い四角）

 ▼図2　DRMを使ったプログラミング例

HDMIケーブル

DPケーブル

VGAケーブル

FrameBuffer

FrameBufferApp

FrameBuffer

Connector
HDMI-1

Connector
DP-1

Connector
VGA-1

CRTC

CRTC

CRTC

Encoder

Encoder

Encoder

Encoder

Encoder

Plane

Plane

アプリケーションは
FrameBufferに描画

Planeは描画FBと
描画先CRTC、
描画位置を設定

ビデオカード
による合成

 ▼図1　DRMによる画面出力の概念

180 - Software Design

Linuxカーネル観光ガイド

シュレートなどのmodeの設定を読み込んでお
きます。

Planeの取得
　次に描画に用いるPlaneを取得します（リスト
2）。drmModeGetPlaneResources()を用いて、
Planeの数を取得し、各PlaneをdrmModeGetPlane
Resources()で取得して調べていきます。Plane

はどのCRTCにも使えるわけではないので、描
画先のCRTCに対応しているかどうかをまず

調べます。
　次にPlaneの種類を調べます。Planeには
PRIMARY、CURSOR、OVERLAYの 3種 類
が存在します。PRIMARYはCRTCの全体を覆
うベースとなるPlaneです。CURSORは単語の
とおりマウスカーソル用のプレーンです。OVER

LAYは自由に使うことができるPlaneです。赤
い四角を描くメインのPlaneとしてPRIMARY

を、青い三角を描くPlaneとしてOVERLAYを
選ぶ必要があります。種類を取得するには
Planeの“type”という“プロパティ”を読みます。
drmModeObjectGetProperties()で、該当Plane

のプロパティのリストを取得し、drmModeGet
Property()を使って各プロパティの名前を調べ、
“type”であればその値を読み込むといったコー
ドになります。

FrameBufferの作成
　次にFrameBufferを3つ作成します（リスト3）。
2つはPRIMARY Planeに設定するメインの描
画用で、1つはOVERLAY Planeに設定するた
めに使います。create_fb()はサイズwidth x

heightのFrameBufferを作成す
る関数です。
　ioctl(DRM_IOCTL_MODE_
CREATE_DUMB)でDumb Bufferを
作り、drmModeAddFB()でFrame

Bufferを作り、ioctl(DRM_IOCTL
_MODE_MAP_DUMB)とmmapで
FrameBufferの領域をプログラ
ムのメモリにマップします。こ
のmapの部分にRGB値を描くこ
とで画面への描写が行われます。

 modeと
 Planeの設定
　青三角のFrameBufferへの描
写（コードは省略）が終われば準
備は完了です。CRTCにPrimary

のFrameBufferを座標（0,0）から
描画するように設定し、読み込
んでおいたmodeを使って解像
度を設定します（リスト4）。プ
ログラムがコンソールで動いて
いれば、この設定をしたところ
でコンソールが消えて真っ黒に

int main(int argc, char **argv)
{
 drmModeConnector *conn;
 uint32_t crtc_id = 0, enc_id, conn_id;
 drmModeCrtc *saved_crtc;

 // カードデバイスのopen
 const char *card = "/dev/dri/card0";
 int fd = open(card, O_RDWR ¦ O_CLOEXEC);
 FAIL_ON(fd < 0);

 // UNIVERSAL_PLANES を有効に
 FAIL_ON(drmSetClientCap(fd, ｭ
DRM_CLIENT_CAP_UNIVERSAL_PLANES, 1));

 drmModeModeInfo mode;
 drmModeRes *res = drmModeGetResources(fd);
 FAIL_ON(!res);
 for (int i = 0; i < res->count_connectors; ++i) {
 conn = drmModeGetConnector(fd, res->connectors[i]);
 FAIL_ON(!conn);
 if (conn->connection != DRM_MODE_CONNECTED ¦¦
 (enc_id = conn->encoder_id) == 0) {
 drmModeFreeConnector(conn);
 conn = NULL;
 continue;
 }

 // 適切なConnectorを発見
 drmModeEncoder *enc = drmModeGetEncoder(fd, enc_id);
 conn_id = conn->connector_id;
 crtc_id = enc->crtc_id;
 memcpy(&mode, &conn->modes[0], sizeof(mode));
 drmModeFreeEncoder(enc);
 drmModeFreeConnector(conn);
 break;
 }

…

 ▼リスト1　描画先の選択部分

180 - Software Design Sep. 2016 - 181

Linux 4.2の新API
DRMインターフェースのatomic mode setting

第53回第54回

 uint32_t plane_id = 0, main_plane = 0;
 drmModePlaneRes *plane_res = drmModeGetPlaneResources(fd);
 FAIL_ON(!plane_res);
 for (int i = 0; i < plane_res->count_planes; ++i) {
 drmModePlane *p = drmModeGetPlane(fd, plane_res->planes[i]);
 // 描画先CRTCに対応しているか?
 if (!(p->possible_crtcs & (1 << crtc_index)))
 continue;
 // Planeの種類の確認
 drmModeObjectProperties *props = drmModeObjectGetProperties(
 fd, p->plane_id, DRM_MODE_OBJECT_PLANE);
 for (int j = 0; j < props->count_props; j++) {
 drmModePropertyPtr prop =
 drmModeGetProperty(fd, props->props[j]);
 if (strcmp(prop->name, "type") == 0) {
 uint32_t type = props->prop_values[j];
 if (type == DRM_PLANE_TYPE_PRIMARY)
 main_plane = p->plane_id;
 else if (type == DRM_PLANE_TYPE_OVERLAY)
 plane_id = p->plane_id;
 }
 drmModeFreeProperty(prop);
 }
 drmModeFreeObjectProperties(props);
 drmModeFreePlane(p);
 }
 FAIL_ON(main_plane == 0 ¦¦ plane_id == 0);

…
 ▼リスト2　Planeの取得部分

struct framebuffer {
 uint32_t width, height;
 uint32_t dumb;
 uint32_t fb;
 uint32_t pitch;
 uint8_t *map;
 uint32_t size;
};

void create_fb(int fd, struct framebuffer *fb, uint32_t width, uint32_t height)
{
 fb->width = width;
 fb->height = height;

 // create dumb buffer
 struct drm_mode_create_dumb creq;
 memset(&creq, 0, sizeof(creq));
 creq.width = width;
 creq.height = height;
 creq.bpp = 32;
 FAIL_ON(drmIoctl(fd, DRM_IOCTL_MODE_CREATE_DUMB, &creq));
 fb->dumb = creq.handle;
 fb->size = creq.size;
 fb->pitch = creq.pitch;

 FAIL_ON(drmModeAddFB(fd, width, height, 24, 32, fb->pitch, fb->dumb, &fb->fb));

 // map buffer
 struct drm_mode_map_dumb mreq;
 memset(&mreq, 0, sizeof(mreq));
 mreq.handle = fb->dumb;
 FAIL_ON(drmIoctl(fd, DRM_IOCTL_MODE_MAP_DUMB, &mreq));
 fb->map = mmap(0, fb->size, PROT_READ ¦ PROT_WRITE, MAP_SHARED, fd, mreq.offset);
 FAIL_ON(fb->map == MAP_FAILED);

 return;
}

…

 ▼リスト3　FrameBu�erの作成

182 - Software Design

Linuxカーネル観光ガイド

なります。X上で動かしている場合、XがCRTC

を握っているのでここで失敗します。さらに、
青三角のFrameBufferをCRTC上の位置を指定
して合成させます。CRTC上の座標（0, ybase（＝
赤い四角の下））からLINE_WIDTH×LINE_

HEIGHTの領域に、FrameBufferの座標（0,0）
からLINE_WIDTH×LINE_HEIGHTの領域
を合成しています。プログラム中で16bitシフト
しているのは16bitの位置に小数点が置かれる
ためです。
　またこのプログラムでは、最後に元のコンソー
ルに戻せるように、saved_crtcに現在の画面設
定を保存しています。

描画メインループ
　描画を行うメインループに入ります。リスト
5では幅STEPずつの赤い四角を描画し、メイ
ンのバッファを切り替え、overlayの表示位置を
更新しています。描画と切り替えから見ていき
ましょう。現在表示されているFrameBufferは

fb[front]になっています。fb[front]に直接
描画を行っても画面は更新されますが、タイミ
ングによっては描画途中のデータが見えてしまい、
画面のちらつきの原因となります。そこで先ほ
ど2つ用意したFrameBufferを使って、ユーザ
には見えない「裏側」のFrameBufferに描画を行
い、描画完了した時点でバッファを交換します。
　裏側に描画作業を行い、drmWaitVBlank()で
次のCRTCへのスキャンアウトまで待ちます。
drmModeSetCrtc()でメインのFrameBufferを
入れ換え、drmModeObjectSetProperty()で画
面の回転を行い、drmModeSetPlane()で青い三
角が描画されているPlaneを移動します。
　以上のようなコードを書けば、とりあえず
FrameBufferとPlaneを使ったプログラミング
ができます。ここで「メインのFrameBufferの
切り替え」「メインのFrameBufferの回転設定」
「Planeの位置調整」「Planeの回転設定」と4つの
作業を4つの関数で行っていることに注目して
ください。これら4つの関数呼び出しは libdrm

を通じて、4回のioctl()に対応します。ioctl()
を呼び出せば、その時点でmodeやバッファが
切り替わってしまいます。もしカードやドライ
バの問題でPlaneを動かすioctlの前後に0.1秒
ずつかかってしまう場合（少し無理そうな仮定
ですが……）、メインの赤い四角が伸びるのが
モニタに描画されたあとにPlaneが動いてしまい、
図3のように常に赤い四角を青い三角が追いか
けるような形に描写されてしまいます。
　このように異なるCRTCやPlaneに対する操
作がatomicに行われないことで、画面が乱れた

…

 // OVERLAY用Framebufferへの描画(省略)

…

 // save current CRTC
 saved_crtc = drmModeGetCrtc(fd, crtc_id);
 // set mode
 FAIL_ON(drmModeSetCrtc(fd, crtc_id, fb[front].fb, 0, 0, &conn_id, 1, &mode));
 // set plane
 if (drmModeSetPlane(fd, plane_id, crtc_id, fb[overlay].fb, 0, 0, ybase,
 LINE_WIDTH, LINE_HEIGHT, 0, 0, LINE_WIDTH << 16, LINE_HEIGHT << 16)) {
 fprintf(stderr, "failed at %d¥n", __LINE__);
 goto clean;
 }

 ▼リスト4　modeとPlaneの設定

（赤い四角）

（青い三角）

赤い四角の描画が先に行われ、
青い三角の移動が遅れてしまう

 ▼図3　表示がずれてしまう

182 - Software Design Sep. 2016 - 183

Linux 4.2の新API
DRMインターフェースのatomic mode setting

第53回第54回

り意図しない描写が行われることになります。
Linux 4.2ではこうした問題を解決するために、
atomicにCRTCやPlaneへの操作を行うAPIが
追加されました。

atomic mode
setting

　では、libdrmでatomicに操
作を行うコードを見てみましょ
う。リスト6は描画が完了し、
atomicにFrameBufferの切り
替えやPlaneの移動を行う部
分の抜粋です。まずdrmMode
AtomicReqのデータareqを
drmModeAtomicAlloc()を使っ
てallocationします。そして、
drmModeAtomicAddProperty
()を使って変更内容をareq
に追記していきます。drmMode
AtomicAddPropertyは、操作
対象のオブジェクトのID、そ
のオブジェクトで変更するプ
ロパティのID、変更後の値を
引数にとります。ここではメ
インのPlaneのFrameBufferを
切り替え（FB_ID）、回転を設
定（ROTATION）し、Planeを
移動（CRTC_X, CRTC_Y）し
ています。areqのデータ構築
が終われば、書き換えタイミ
ングを待ってdrmModeAtomic
Commit()を使い、FrameBuffer

とPlaneへのプロパティの更
新をatomicに実行します。
　こちらのAPIであれば、た
とえPlaneの移動に時間がか
かったとしても青い三角と赤
い四角が一緒に進み、描写の
問題は起きません。

まとめ
　今回はLinux 4.2のDRMの新機能、atomic mode

settingについて解説しました。Xなしでモニタ
に描画できるDRMプログラミングはなかなか
おもしろいので、ぜひ試してみてください。｢

 for (int x = 0; x < width; x += STEP) {
 int back = front ^ 1;
 // draw main buffer
 // (省略)

…

 front ^= 1;
 drmWaitVBlank(fd, &vbl);
 FAIL_ON(drmModeSetCrtc(fd, crtc_id, fb[front].fb, 0, 0,
 &conn_id, 1, &mode));
 FAIL_ON(drmModeObjectSetProperty(
 fd, main_plane, DRM_MODE_OBJECT_PLANE, ROTATION,
 (x > width / 2) ? 4 : 0));
 if (x < width / 2) {
 if (drmModeSetPlane(
 fd, plane_id, crtc_id, fb[overlay].fb, 0,
 max(0, x + STEP - LINE_WIDTH), ybase,
 LINE_WIDTH, LINE_HEIGHT, 0, 0,
 LINE_WIDTH << 16, LINE_HEIGHT << 16)) {
 fprintf(stderr, "failed at %d¥n",
 __LINE__);
 goto clean;
 }
 } else {
 // 座標が変わり, 回転させるだけで同様
 // (省略)
 }
 }

 ▼リスト5　描画メインループ

 front ^= 1;
 areq = drmModeAtomicAlloc();
 FAIL_ON(!areq);
 if (x < width / 2) {
 drmModeAtomicAddProperty(areq, main_plane,
 prop_id[FB_ID], fb[front].fb);
 drmModeAtomicAddProperty(areq, main_plane,
 prop_id[ROTATION], 0);
 drmModeAtomicAddProperty(areq, plane_id,
 prop_id[CRTC_X],
 max(0, x + STEP - LINE_WIDTH));
 drmModeAtomicAddProperty(areq, plane_id,
 prop_id[CRTC_Y], ybase);
 } else {
 // 省略
 }
 drmWaitVBlank(fd, &vbl);
 if (drmModeAtomicCommit(fd, areq, 0, NULL)) {
 fprintf(stderr, "failed at %d¥n", __LINE__);
 perror("");
 goto clean;
 }
 drmModeAtomicFree(areq);

 ▼リスト6　atomic mode setting

184 - Software Design

うやって決めているか」というお題が出ました。
LibreOfficeなどの開発コミュニティはミッションを
明確にしやすいですが、TEF道は勉強したい人が集
まっているだけで、団体としての目標は設定してい
ないとのことです。LOCALは一般社団法人なので、
理事会で方向性を決めて総会で決議しています。

■コミュニティの高齢化にどう立ち向かうか

　八巻さんからのお題は「コミュニティの高齢化問
題」でした。LOCALには学生部もあるのですが、就
職で北海道を離れるケースが多く、高齢化問題への
根本的な対策にはなっていません。新しい人を入れ
ていかないと高齢化は避けられないので、TEF道で
は参加登録サイトをDoorkeeperにして新しい人が
入りやすいようにしています。また、筆者と榎さん
が実行委員を務める関西オープンフォーラムでは、
年1回のイベント以外に今年から月例の勉強会を始
め、そのリピーターをスタッフに勧誘しています。

■なぜ北海道コミュニティは盛り上がるのか／

	 マンネリ化対策／コミュニティの解散

　筆者からは「北海道のコミュニティやイベントは
なぜこんなに盛り上がるのか？」というお題を出し
ました。道民である八巻さんと小楠さんは、道外か
ら見て楽しそうに見えるからではないかと答えまし
た。北海道という土地柄に人々を開放的にさせる何
かがあるのかもしれません。
　今回は会場からも質問を受け付けました。「長く
やっていると同じネタが繰り返し出てきてマンネリ
化するのはどうすれば避けられるか？」という質問

　6月に札幌、7月に沖縄で行った研究会の模様をお
伝えします。いずれも、ここ1年ほど続けている
ITコミュニティをテーマに取り上げました。

	 ■ITコミュニティの運営を考える

	【講師】小楠 聡美（TEF道）、八巻 正行（LOCAL）、

	 	 法林 浩之（日本UNIXユーザ会）、榎 真治

	 	 （日本UNIXユーザ会/LibreOffice日本語チーム）

	【日時】2016年6月18日（土）15:15〜16:00

	【会場】札幌コンベンションセンター 204会議室

　札幌大会は、ソフトウェアのテストや品質管理に
関するコミュニティ・TEF道を運営している小楠さ
ん、同じく道内コミュニティの支援をするコミュニ
ティ・LOCALの理事を務める八巻さんを講師にお
迎えしました。参加者は20人でした。

■新人へのフォローはどうしている？

　まず小楠さんから「新しく入ってくる人がコミュニ
ティに馴

な

染
じ

めず定着しないのだが、どうやってフォ
ローしているか」というお題が出されました。これに
対しては、ほかのコミュニティでもフォローはあま
りできていませんが、初参加者には必ず主催者から
声をかける、全員で自己紹介をする、お菓子を提供
して共通の話題を作るなどの工夫をしています。

■コミュニティのミッションは決めているか

　次に榎さんから「団体のミッションや方向性はど

jus研究会 札幌大会

北と南でも議論、コミュニティそれぞれの課題と解決策

NO.59
September 2016

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/

Sep. 2016 - 185184 - Software Design

には、やりたいことの選択肢を増やせばマンネリ化
しない、マンネリだと思えば自分が発表すれば良
い、同じ話題でも4、5年経つと違う議論になるので
気にしない、などの回答がありました。
　「コミュニティには終わりの美学はあるか？」とい
う質問には、目的を達成したら解散しても良いのだ
が、まだ目的を十分に達成した感触がないため解散
を考えていないという回答が多かったです。

	 ■ITコミュニティの運営を考える

	【講師】米須 渉（JAWS-UG沖縄）、

	 	 西島 幸一郎（ハッカーズチャンプルー）、

	 	 榎 真治（日本UNIXユーザ会/LibreOffice日本語

	 	 チーム）、法林 浩之（日本UNIXユーザ会）

	【日時】2016年7月2日（土）15:15〜16:00

	【会場】沖縄コンベンションセンター 会議場B1

　沖縄大会は、AWSのユーザグループ・JAWS-UG

を運営する米須さん、開発系コミュニティが集まる
イベント・ハッカーズチャンプルーを運営している
西島さんをお迎えしました。参加者は27名でした。

■コミュニティの目的とは

　最初の議題は榎さんから出た「コミュニティって
何？」でした。各講師からは、コミュニティにはイ
ベント系のように人の輪を作ることに主眼が置かれ
ているものと、開発系のように継続的に何かを作っ
て貢献することを目指すものとの2種類があるこ
と、マイナーなもののほうが、コミュニティができ
やすいことなどのコメントがありました。JAWS-

UG沖縄の場合は立ち上げ時の苦労が多く、うまく
回るようになるまでに2、3年かかったそうです。

■勉強会の満足度を測るには

　続いては西島さんの「勉強会やイベント参加者の
満足度をどう測るか？」というお題でした。これに
対しては、懇親会への参加率で測るとの意見があり

ました。しかし学生は金がないので懇親会に参加す
る人が少ない、沖縄では自家用車で来ているので帰
る人も多いという課題もあるようです。ほかにはツ
イートの量で測定するなどの回答がありました。

■どうやって人を集めるか

　米須さんからのお題は「どうやって新しい人を集
めていますか？」でした。LibreOfficeでは、世界的
にはGoogle Summer of Codeなどを利用して若者
を集めることに成功していますが、日本ではまだで
きていないようです。学校関係はコミュニティ活動
に関心の高い先生や先輩が引率する形で若い人が参
加するケースが多いですが、特定の人に依存してい
るため永続性がないのが問題です。
　また、若い人たちは自ら新団体を旗揚げするのも
アリとの意見が出る一方で、開発系コミュニティで
団体が分裂すると開発リソースが分断されて致命傷
になるのでやめてほしいという意見もありました。
　筆者からは「集客について、地元のキーマンに相
談する以外の手段はないか？」というお題を出しまし
た。沖縄ではコミュニティ数もそれほど多くなく、
メンバーも重複しているので、コミュニティに参加
するような人に情報を伝えるのはさほど難しくない
とのことです。地域によっては行政などが持ってい
る企業リストを通して情報を伝えることもできます
が、自分たちが来てほしいような参加者が増えるか
というと疑問であるという意見が多かったです。

■イベントは土日開催か、平日開催か

　最後に米須さんから「土日開催と平日開催はどち
らが集客できるか？」というお題が出されました。
全体的には、平日は業務に役立つ勉強会が多く、趣
味に近いものは土日に開催される傾向があります。
　沖縄では平日に開催すると運営側が仕事を休まな
いと対応できないため週末の開催が大半ですが、最
近は勉強会の回数が増えてきて、土曜日は複数のコ
ミュニティが勉強会を行うことも珍しくなくなって
きました。そこでGo言語の勉強会は平日の開催を
試行しているそうです。｢

jus研究会 沖縄大会

北と南でも議論、コミュニティそれぞれの課題と解決策 September
2016

186 - Software Design

減災インフォの活動

　減災インフォ注1は、平時には災害に関する情報
収集と発信、災害時には遠隔・後方からの情報支援
に取り組んでいるボランティア団体です。熊本地震
では、発生時から情報の整理を始めていき、Webサ
イト、Twitter、Facebookで発信に取り組んできま
した。
　原稿執筆時点（7月2日）では、発災から時間が
経っていることもあり更新頻度は落ちていますが、
振り返ってみるとWebサイトではカテゴリ別に13

本の記事を作成、SNSではおもにTwitterで6月ま
ではほぼ毎日のように熊本地震に関して発信してい
ます。減災インフォの活動については、これら
WebサイトやSNSでの記録を元に活動を紹介して
いきます。

現地状況の把握

　発災時にまず取り組んだのが、どこでどのような
災害情報が発信されているかを把握するための情報
発信元を整理することでした。手始めとして、簡単
な説明を添えて企業や団体をリストにして記事とし
て公開しました。このリストには、大手メディア、
現地メディア、内閣府防災・関係省庁、ボランティ
ア団体、自治体、支援コミュティといった企業や団
体が含まれています。このリストを起点にして、メ
ディアの報道や省庁の発表資料、現地の生の情報な
どを効率的に入手できるようにしました。
　次に自治体の状況に関しての情報整理に着手しま

注1	 http://www.gensaiinfo.com/

した。震度や避難者数などを含めた自治体別の被害
情報一覧、自治体ホームページやSNSアカウント
の有無と発信状況、熊本県内の自治体のTwitterア
カウントリストをまとめました。自治体別の避難情
報については、発表資料をもとに地図上に落とし込
むことで、一見してわかりやすくなるような表現に
取り組みました（詳しくは後述「理解しやすくするた
めの見える化」に記載）。
　これら自治体別の情報については、減災インフォ
では平時の活動として、1,741自治体の公式ホーム
ページやSNSアカウントなどの情報を整理する取
り組みを進めており、今回の熊本地震ではこの活動
が役に立ちました。平時に集めた自治体の情報は、
減災インフォのサイトやオープンデータ注2として
公開していますので、興味のある方はぜひご覧くだ
さい。

支援したい方向け情報の取りまとめ

　前述の「現地状況の把握」でもわかるように、発災
からしばらくは被害状況に関する情報が多く発信さ
れていましたが、次第に支援に関する情報が増えて
きました。そこで減災インフォでもボランティアや
寄付に関する情報をまとめていきます。ボランティ
アでは「心構え」、「全国社会福祉協議会（社協）の情
報」、「ボランティアツアー情報」、「自治体主体のボ
ランティア情報」、「ボランティア向け宿泊施設」な
どの項目で記事を作成して随時更新、必要であれば
社協関係の団体やYahoo!ボランティアなどへのリ
ンクも設けて、ボランティア情報が入手しやすくな
るような内容としました。

注2	 http://linkdata.org/work/rdf1s4103i

Hack For Japan
エンジニアだからこそできる復興への一歩

熊本地震での活動紹介
（減災インフォ・情報支援連絡会議・Civic Tech Live!）

第57回
先月号のIT DARTによる熊本地震での活動に続き、今回は減災インフォの活動、情報支援連絡会議、
Civic Tech Live!についてお届けします。

●Hack For Japanスタッフ
　鎌田 篤慎　KAMATA Shigenori
　 Twitter @4niruddha
　佐伯 幸治　SAEKI Koji
　 Twitter @widesilverz

http://www.gensaiinfo.com/
http://linkdata.org/work/rdf1s4103i

Sep. 2016 - 187

熊本地震での活動紹介
（減災インフォ・情報支援連絡会議・Civic Tech Live!）第57回

　寄付については、「義援金を受け付けている団体・
企業」、「支援金を受け付けている団体・企業」、「ふ
るさと納税を利用した寄付を募っている自治体」の
3つにわけて情報をまとめて更新していきました。

被災された方向け情報の取りまとめ

　避難所が開設されていくとともに、自治体や省庁
からは避難所生活における情報が発信されるように
なります。熊本地震では災害関連死としてエコノ
ミークラス症候群が大きく取り上げられたことか
ら、厚生労働省や内閣府防災、政府応援情報注3（今
回の熊本地震で開設された省庁からの発信をまとめ
てアナウンスするTwitterアカウント）、自治体な
どの公的機関が心身の健康にまつわる注意喚起の情
報を頻繁に発信しており、共有も多くされていたた
め、減災インフォでも健康に関しての取りまとめに
着手しました。
　また避難所生活からしばらく日数が経つに連れ、
住まいやお金のことなど生活再建に関する情報を多
く目にするようになります。これらの情報は有用か
つ大切な内容ではあるのですが、普段の生活を過ご
している限りでは馴染みのないものが多く、被災さ
れた方にとってわかりづらいという声も聞かれたの
で、理解しやすくするためにイラストをメインにし
た表現での取り組みにもチャレンジしました（次項
参照）。

理解しやすくするための見える化

　理解しやすくするための見える化の取り組みとし
ては2つ挙げられます。1つは自治体別の避難者数に
ついて、自治体名と数字が掲載されている発表資料
をもとに地図上に落とし込んだ取り組みです。これ
はデータを地図上に落とし込んで視覚的に表現でき
るCartoDBを利用しています注4（図1）。
　もう1つは住まいやお金に関する生活再建や健康
などにまつわる情報をイラスト化したことです。省
庁や自治体などから提供される情報は信頼性の担保

注3	 https://twitter.com/kantei_hisai http://www.kantei.
go.jp/jp/headline/saigai/kumamoto_hisai.html

注4	 http://www.gensaiinfo.com/blog/2016/0420/3028/

はされているものの、文字が主で内容が複雑だった
こともあり、そのままではとっつきにくく、人によっ
ては敬遠してしまうかもしれません。そこで内容をイ
ラスト化して簡易的に表現することで、読み込むきっ
かけとして利用してもらったり、自治体職員や士業の
方々に説明資料として利用してもらうことを目指しま
した。内容のイラスト化については、グラフィックレ
コーダーの方々が集まっている団体のグラフィックレ
コーダーネットワークに協力を仰ぎ、「み絵るヘルプ」
というプロジェクトを起ち上げてTwitterやFacebook

での発信に取り組みました注5（図2）。

各団体や企業との連携

　減災インフォはボランティアでの活動なのでどう
してもリソースが限られてしまいます。そこで熊本
地震では、減災インフォと同様にHack For Japan

のスタッフがかかわっているIT DARTに加え、社
協関係の団体や大学生を中心とした支援コミュニ
ティなどと連携しながら、手を広げすぎることな
く、減災インフォでできることに配慮しつつ情報支
援に取り組んでいました。また情報発信について
は、災害時ツイートの勉強会などで協力いただいた
Twitter社からツイートのプロモーション枠を提供
してもらう機会もあり、平時からの活動やつながり
を災害時に活かして、連携していくことの重要性を
実感しています。

注5	 https://twitter.com/mieruhelp https://www.
facebook.com/mieruhelp/

◆◆図1　CartoDBを利用した避難者数のマッピング

http://www.gensaiinfo.com/blog/2016/0420/3028/
http://www.kantei.go.jp/jp/headline/saigai/kumamoto_hisai.html
https://twitter.com/kantei_hisai
http://www.kantei.go.jp/jp/headline/saigai/kumamoto_hisai.html
https://twitter.com/mieruhelp
https://www.facebook.com/mieruhelp/
http://www.gensaiinfo.com/

188 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

情報支援連携会議

　5月29日に「熊本地震 情報支援連携会議」が開催
されました。この会議は情報支援に取り組んでいる
団体・コミュニティ・組織・個人の方々が集まり、
それぞれの取り組みを共有して、今後の支援につな
げていくことを目的としたものです。会議では各団
体が各自のテーマで発表を行いました（表1）。詳し
くは減災インフォのサイトに各発表のレポートやス
ライドがアップされていますのでそちらをご覧くだ
さい注6。
　また、熊本県でITリテラシーを解消する活動に
取り組んでいるモバイル・ネットワーク研究所の松
川さんより、発災時のことや復興に関する取り組み
について話を聞く機会もありました。なお松川さん
は、復興支援として物産購入サイト「熊本 買って支
援」注7を開設していますので、ぜひサイトを訪れて
みてください。情報支援連携会議では多様な立場か
らの情報共有がなされ、より多面的に熊本地震を理
解することができました（写真1）。

防災×シビックテック

　5月26日に、Hack For Japanスタッフの関治之さ
んが代表を務めるCode for Japanによる「Civic Tech

注6	 http://www.gensaiinfo.com/blog/2016/0604/3792/
「イントロ編［熊本地震 情報支援連携会議］」

注7	 http://kumamotokatte.jimdo.com/

◆◆図2　�Twitterアカウント「み絵るヘルプ」からのツイー
ト。内容によっては自治体など元情報へのリンクも
貼られています

テーマ タイトル 発表団体
通信 通信環境（キャリア、WiFi）と今後の課題 iSPP
NPO連携 NPO連携火の国会議の運営について JVOAD
NPO支援 ボランティア団体向け情報機器提供と情報サービスの支援 IT DART

全般
災害情報を共有する仲介役を目指して 防災科学技術研究所
熊本地震から〜シビックテックと防災 Code for Japan
フェーズ毎の今回の活動と７つの特長〜試行・連携のトライアル 減災インフォ・TKM47・み絵るヘルプ

地図
基盤情報としての地理空間情報と災害情報支援における課題 東京大学 空間情報科学研究センター
避難所情報の集約と課題 IT DART
大学生を中心としたgoogleMAPの展開 Youth for Kumamoto

企業の現地支援 Yahoo! JpanのIT支援と、熊本現地チームの連携 Yahoo! Japan

災害ボランティア
熊本ボランティア情報ステーションと福岡市ボラバス支援 ボランティアインフォ
災害ボランティアセンターの情報発信支援 災害IT支援ネットワーク

マッチングプラットフォーム スマートサプライを活用した物資支援 スマートサバイバープロジェクト

◆◆表1　情報支援連携会議で行われた発表

http://www.gensaiinfo.com/blog/2016/0604/3792/
http://kumamotokatte.jimdo.com/

Sep. 2016 - 189

熊本地震での活動紹介
（減災インフォ・情報支援連絡会議・Civic Tech Live!）第57回

会議、通称「支援P」注8での活動報告となりました。
現地社協に代わって特設サイトの立ち上げや各災害
ボランティアセンターのIT支援を行われたそうで
す。ネットワークの構築からパソコンの運搬とセッ
トアップ、ホームページからFacebookページの運
用までをこなしていましたが、その活動の中で非常
に苦しめられたのが業務用複合機による印刷が1台
のパソコンからしかできない問題でした。
　これは非常時において、複数台からの印刷を行うた
めの環境整備にかかる準備が整わず、家庭用のプリン
ターのほうが有効とのことでした（最新の業務用複合
機ではこの辺りの問題は解決しているそうです）。
　このほかにもさまざまな取り組みの紹介がありまし
た。東日本大震災からの教訓が活かされ、初動の早さ
が目に見える形となって表れている報告会でした。

最後に

　前号、今号とお届けした熊本地震における活動で
すが、熊本の復興はまだこれからとなり多くの支援
が必要です。現地でのボランティアだけでなく、物
産購入の支援、観光支援、情報支援など、いろいろ
な支援の形がありますので、支援活動に参加してみ
てはいかがでしょうか。また減災インフォの活動
は、平時、災害時にかかわらず、常に試行錯誤で取
り組んでいる状況ではあるのですが、活動メンバー
を募集していますので、興味をお持ちの方は減災イ
ンフォのサイトからお問い合わせください。s

注8	 http://www.shien-p-saigai.org/

Live!」が開催されました。このイベントではみんな
が当事者意識を持って、ITの力で社会をより良くす
るシビックテックをテーマに、飲み、語り合いなが
ら、自分たちに何ができるかを考えます。5月に開催
されたこのイベントでは、熊本地震にてボランティ
ア活動に携わった方々に、被災地での活動内容や課
題などを中心に防災とシビックテックを題材とした
ライトニングトークをしていただきました。その活
動報告の中から、いくつかご紹介します。

熊本地震における特徴

　NPO法人ETICローカルイノベーション事業部
の川口枝里子さんによる熊本の現地での被害状況や
特徴などのお話では、被災地でのさまざまな被害状
況を説明いただきました。とくに避難生活を余儀な
くされている家屋の倒壊状況については、5月16日
時点で全壊、半壊、一部破損の合計で85,506棟あ
り、熊本県内で被害が集中している地域もあれば、
少なかった地域もあるという非常に局所的な状況
だったようです。また、東日本大震災と比較して、
津波被害が起きなかったこともあり、復旧のスピー
ドは非常に早く進んでいます。緊急支援の段階をい
ち早く終えた地域から、現地の人たちへバトンをう
まく渡していき、いかに後方支援をしていくかが重
要な取り組みになると締めくくられました（写真2）。

プリンターに課題があった

　災害支援ITネットワークの代表である柴田哲史
さんからのお話は、被災地での支援経験が豊富な人
たちによる災害ボランティア活動支援プロジェクト

◆◆写真1　情報支援連絡会議で開催されたワークショップ ◆◆写真2　熊本の被害状況を説明する川口さん

http://www.shien-p-saigai.org/

190 - Software Design

はじめに

　16bit命令アーキテクチャで動
作するIntelの16bit CPU（8088、
4.77MHz、外部データバスは
8bit）が搭載されたIBM-PCは、
当時の8bit CPUに比べて動作
スピード的にはあまり差がない
ものでした。しかし、1984年に
発売されたPC/ATは、さまざ
まな拡張と高速な動作を実現し
た現在のPCアーキテクチャの
礎となるものでした。今回は、
このPC/ATに搭載され x86 16
bitアーキテクチャの最後を飾る
高速／高機能な16bit CPUであ
るIntel 80286（以下i80286）につ
いてのお話をしましょう。

i80286とは

　8bitの Intel 8080の命令アー
キテクチャを伝承して16bit化
した Intel 8086（以下 i8086）は、
IBM-PCに遅れること1年の
1982年に発売されたNEC PC-
9801に搭載され、我が国におけ
る16bitコンピュータのスタン
ダードになりました。i8086/
i8088が載ったパソコンが広く
使われるようになるとその機能

の不足が問題視され、高機能化
を求める声が高まりました。そ
れに応えるよう、i8086を高機能
化して登場したCPUが i80286
でした。
　1982年2月の発表のあと、1984
年8月に6MHzの動作クロック
の i80286を搭載したPC/ATが
登場しました。PC-9801シリーズ
では、1986年にPC-9801VXが
10MHzの i80286が搭載されて
発表されました注1。
　i80286は、次のような機能強
化が行われています。

❶CPU実行速度の大きな高速化
❷メモリ領域の拡大
❸信頼性の高いメモリ保護と割
り込み管理機能の追加

❹高速性と信頼性を両立させた
マルチタスクの実現

CPU実行速
度の高速化

　i80286の内部ブロックは大き
く変更され（図1）、4つの内部ユ
ニットに分割されています。こ
れらのユニットが並列に動作す
ることでパイプラインを実現し

注1） 1985年5月にハイレゾグラフィック
機能を有したPC-98XA i80286 8MHz
が発表されていますが、互換性から
PC-9801シリーズとはしていません。

ています。i8086でもバスユニッ
トと実行ユニットが分割され
ており、命令の読み込みである
フェッチ動作と命令の実行動作
を並列に実行できましたが、
フェッチと実行には要するクロッ
ク数に差があるため、効果的な
パイプライン動作は実現できて
いませんでした。i80286では、
実行ユニット（EU）と命令ユニッ
ト（IU）を分割することで、ユニッ
トごとの機能を低減でき、各ユ
ニットの動作時間の差を少なく
して効率的なパイプラインを実
現しています。
　またバスユニット（BU）に6
byteのプリフェッチキュー（i8086
にも存在する）と命令ユニットに
デコード済みの3つの命令を格
納するエリアにより、各ユニッ
トの実行時間の差を吸収してい
ます。
　さらに、高機能化したバスユ
ニットによりメモリのアクセス
が速く動作しています。以上の
ような機能アップにより、かな
りの高速化が図られていますが、
倍の高速化までは達しないはず
です。では表1のように3倍近
い高速化はどうして実現してい
るのでしょうか。
　実は、i80286には、システム

温故知新
ITむかしばなし

速水 祐（HAYAMI You） 　http://zob.club/ Twitter : @yyhayami

Intel 80286
 〜究極の16bit CPUだったのか〜

第58回

http://zob.club/

190 - Software Design Sep. 2016 - 191

クロックとプロセスクロックの2
種類の外部クロックがあります。
i8086では動作クロックといえ
ばシステムクロックを指します
が、i80286ではプロセスクロッ
クとしており、プロセスクロッ
クはシステムクロックの1/2な
のです。すなわちPC/ATのプ
ロセスクロック 6MHzのi80286
は、システムクロックが12MHz
なのでした。

メモリ領域の
拡大

　i80286では、従来の i8086と
互換の16bitアーキテクチャで
あるリアルモードと拡張された
プロテクトモードがあり、21bit
以上（アドレス：FFFFHより上）
のアドレスを使用するにはプロ
テクトモードにする必要があり
ました。
　プロテクトモードでは、セグ
メントレジスタはセグメントセレ
クタとなり、機能が変わります（図
2）。メモリブロックの情報をセッ
トされているテーブルが物理メ
モリ上にあり、セグメントセレク
タはそのテーブルのインデック
ス値を示すことになります。そ
れが示すメモリブロック情報を
使って、図2のように❶～❹の
手順でアクセスが行われます。

マルチタスク
OSの実現

　マルチタスクOSに必要な機
能が備わっているため、それを
活用したMS-DOSのレベルアッ
プとなるOSの登場が期待され
ていました。それがOS/2であり、
Microsoft社とIBM社の共同で

開発が進められていたのですが、
開発は大きく遅延しました。

おわりに

　Unixの原型を築くために活用
されたDEC社のミニコンピュー
タPDP-11は、完全な16bit CPU
であり、使えるメモリエリアも
当初は64KBでしたが、利用が
広がるにつれてメモリの拡張が
要求され i80286と似たメモリブ
ロック管理テーブルによるメモ
リ拡張が行われました。しかし、
その直後の1977年に32bitコン
ピュータ VAX-11が登場して
PDP-11の役割は急速に減速し

てしまいます。それから8年後
のx86におけるCPUの変遷も同
様であったのかもしれません。
　i80286は、16bit CPUとして究
極な機能を持っていましたが、
それはほとんど生かされずに高
速なi8086互換のCPUとして使
われ、その優れたアーキテクチャ
はi80386に引き継がれていった
のです。｢

i8086
5MHz

i80286
 10MHz

Ratio to PC9801 1 6
データ転送命令 必要クロック数
レジスタ←即値 4 2
メモリ←レジスタ 8+EA※ 3
レジスタ←メモリ 9+EA※ 5

 ▼図1　i80286の内部ブロック図

 ▼図2　プロテクトモードでのメモリアクセス動作

６byte
プリフェッチ
キュー

デコード
された３命令
キュー

アドレスユニット（AU）

実行ユニット（EU）
命令ユニット
（IU）

バスユニット
（BU）

ALU

レジスタ
コント
ロール

オフセット
アダー セグメント

リミット
チェッカ

セグメント

セグメント
ベース

サイズ

物理
アドレス
アダー

アドレスラッチと
ドライバ

プリフェッチャ
プロセッサ
拡張インター

バスコントロール

データトランシーバ

フェース

命令デコーダ

アドレスバス

コントロール
ライン

データバス

+

❶ ❷

❸

❹

０００８H ０３４５H

０００８HDS

セレクタ オフセット

０１２０００Ｈ

３ＦＦＨ

０１２３４５Ｈ
０１２０００Ｈ

３ＦＦＨ

物理メモリ

メモリアドレス

セグメントベース

セグメントセレクタ

ディスクリプタテーブル
ＧＤＴ　

GDTR

ディスクリプタキャッシュ

アクセス権

セグメントベース

セグメントリミット

０１２０００Ｈ

データ

インデックス

セグメントリミット

セグメントベース

アクセス権

MOV AX,0008H
MOV DS,AX
MOV AX,DS:[0345H]

セグメントリミット

セグメント

温故知新 ITむかしばなし
Intel 80286 〜究極の16bit CPUだったのか〜

第58回

 ▼表1　i80286のスピード

※Effective Address（実行アドレス）に要するク
 ロック数

192 - Software Design

 CHIRIMEN とは
　CHIRIMENとはWebデベロッパのためのWoT注1デバイ
ス開発環境である。センサやアクチュエータもすべて
Web技術で制御でき、Webページを作るようにWoTデ
バイスアプリケーションを開発できる。
　開発環境はOSとしてB2G（Boot to Gecko）OSを搭載
したシングルボードコンピュータで、GPIO、I2C、UART、
SPIポートに加えて、USBおよびHDMI互換のポートを装
備している。Webページ内のnavigatorにローレベルハー
ドウェアAPIを施し、Web画面とセンサやアクチュエー
タが絡みあった新しい考えのデバイスを開発可能とす
る。
　本稿ではCHIRIMENのハードウェアとソフトウェア、
その開発方法、開発主体であるCHIRIMEN Open Hard
wareコミュニティの活動内容について紹介する。

 CHIRIMEN開発環境
　CHIRIMENは、写真1に示すハードウェアおよびその
上で動作するソフトウェアの双方で成立する。

・ハードウェア
　開発したシングルボードコンピュータは、GPIO、I2C、
UART、SPI、加えてUSBおよびHDMI互換の出力ポート
を持ち合わせている。そのため、センサやアクチュエー
タとWebページの画面出力を同時に制御することが可
能となる。また利用しているSoC注2にはGPUを搭載して
いるため、マルチメディアの再生も可能である。Wi-Fi
などのネットワーク環境は搭載されていないが、これは
グローバルな展開を見据え、各国における技適獲得が不
要となり、コストを少しでも抑えられると判断したため
である。もちろん、USB経由でWi-Fiドングルが利用で
きるため、ネットワークはこれを経由して接続可能とな
る。表1に具体的なハードウェア仕様を示す。

・ソフトウェア
　執筆現在、搭載されているOSはFirefox OSの開発版、

B2Gである。B2GはFirefoxブラウザと共通のブラウザエ
ンジンGeckoを搭載したWebコンテンツ・アプリケー
ション実行環境を備えたOSであり、OS起動時にWebブ
ラウザだけが起動する。したがってそのアプリケーショ
ンはすべてWeb技術で構成される。CHIRIMEN Open
Hardware projectでは、GPIOおよびI2CをWebページか
らJavaScriptだけで制御可能にするAPI「WebGPIO」およ
び「WebI2C」を開発し、その仕様をW3Cに提案中である。
同APIをGecko上に実装しており、アプリケーションや
Webページと同じコンテキストから周辺ハードウェア
の制御を可能としている。
　参考までに、本環境で「Lチカ」を実現するコードをリ
スト1に示す。詳細は次号にて述べるが、JavaScriptに
詳しい方であれば、Webページ上で何かを点滅させる
方法と大差ないことがおわかりいただけると思う。

・アプリケーション開発
　CHIRIMENをUSB接続したホストPC上で、B2Gアプリ
ケーションの開発同様、Firefoxブラウザに搭載された
Web IDEを用いて開発する。WebページおよびGPIO、
I2Cの制御すべてをJavaScript、HTML、CSSで開発する
ため、WebページとWoTデバイスアプリケーションは
ほぼ同等に扱うことが可能で、Webページ・アプリを
作るようにWoTデバイスアプリケーションを開発でき
る。なお、CSSのみでデバイスを制御するPCSS（Physical
CSS）という開発環境も平行して開発している。スタイ
ルシートが画面の中の表示を変えるものでなく、実世界
をもスタイリングしてしまう思想へ昇華されているおも
しろさがある。
　これらの環境によって開発の敷居が低くなり、Web
デザイナを含めたWebにかかわるさまざまな方がデバ
イス製作にもかかわっていただけるものになると信じ、
また、そうなってほしいと考えている。

オープンハードウェアとWeb技術でWoTの世界を多くの開発者に
CHIRIMENプロジェクト始動！

▲▲写真1　CHIRIMEN

注1） WoT（Web of Things）：Internet of Things（IoT）というスロー
ガンが知られているが、そこで共通化されるのはネットワー
クのレベルである。WoTはその上位のコンテンツ・サービス・
アプリケーション実行環境を共通化し、それらの連携をより
容易にすることを目指している。

注2） SoC（System on Chip）：従来コンピュータを構成するには
CPU、MMU、GPU、I/Oブリッジなど多数のプロセッサを組み
合わせる必要があったが、超小型化が進むに従い、これらの
プロセッサを1つのパッケージに統合したLSI（SoC）が主流と
なってきた。

Author CHIRIMEN Open Hardware コミュニティ 赤塚大典

192 - Software Design Sep. 2016 - 193

▲▲リスト1　Lチカのコード例

 CHIRIMEN Open Hardwareコミュニティの
活動

　我々の具体的な活動としては、❶CHIRIMEN開発環境
のハードウェアおよびソフトウェアの開発、❷その標準
化、❸ユースケースの開発、❹ワークショップや展示、
などがある。
　このような活動を支えるCHIRIMEN Open Hardware
projectはコミュニティで活動し、すべてをコミュニティ
で決定、運営している。本コミュニティは上記のように
ソフトウェアのみならず、ハードウェアの開発も同時に
進めているので、Webデベロッパをはじめ、Webデザ
イナ、ローレベルハードウェアエンジニア、ミドルウェ
アエンジニア、W3Cエディタ、プロダクトデザイナ、
コンセプタなど、国内外あわせて多種多様な職種の方々
で構成されている。そのため、従来のオープンソースソ
フトウェアコミュニティの特性に加えて、近年立ち上
がってきたMakerカルチャも併せ持つのがCHIRIMEN
Open Hardwareコミュニティの特徴である。Web、ソ
フトウェア、ハードウェアの側面から、さまざまなレベ
ルでの視点が合わさり、思想が混じり合うことで、新し
い考え方が生まれやすい土壌にあると考えている。また、
さまざまな意味で国際的活動となっているのも特徴とい
える。

❶CHIRIMEN開発環境の構築
　WebGPIOおよびWebI2Cの実装、より開発のしやすい
環境の提案や実装、教育用途を対象としたキット提供、
およびさまざまなセンサ、アクチュエータとの連携テス
トや確認を行っている。また、Linux＋Firefoxをベース
とした開発環境の構築も提案されており、時期をみて取
りかかることになると思われる。

❷標準化
　WebGPIOおよびWebI2C APIの仕様策定と標準化を

　これらの活動方針は、基本的にはFacebook Group注3、
Slack、および月に一度を目処に開催されるマンスリー
ミーティングで決定される。このようにCHIRIMENの検
討は多種多様な技術、職種、思想、国が交わるコミュニ
ティ活動により成り立っており、執筆時点においても道
半ばにある。もし、Webデザイン、組み込み技術、ハー
ド開発など、少しでも自身の得意分野・興味分野をお持
ちの方がいるならば、CHIRIMEN Open Hardwareコミュ
ニティに参加いただきたい。きっとどこかでご自身のス
キルが役に立ち、未完成のCHIRIMENをより良いものに
できると確信している。一緒にいいものに作り上げてい
かないだろうか。
　なお、CHIRIMEN環境でのより詳しい開発手順や
CHIRIMEN Open Hardware projectの誕生した背景など
は次号に掲載予定である。乞うご期待。

W3CのコミュニティグループBrowsers
and Robotics Community Group内で行っ
ている。

❸ユースケースの開発
　開発環境だけでなく、どのようなアプリ
ケーションが考えられるか、プロトタイプ
を製作し実験している。このプロトタイプ
が新しいWebの使い方を示す糸口となる。

❹ワークショップや展示
　ワークショップも比較的頻繁に開催して
いる。そこではタッチ＆トライ的な側面の
イベントもあれば、実際にモノを作るイベ
ントなども行っている。

CHIRIMEN Open Hardware project　
URL https://chirimen.org/

CONTACT

●●表1　ハードウェア仕様

SoC
RK3066
ARM Cortex A9 1.6GHz dual core, Mari 400 GPU quad
core

Memory DDR3 1GB（RAM）

Storage NAND Flash 8GB, MicroSD slot×1

Size 80mm×48mm

Power 5V 1A via dedicated power connector

Interface

micro HDMI female、USB（microUSB×1（OTG), USB×1,
microUSB×1（UART debug））, Wi-Fi（NOT on board. Use
RTL8188CUS compatible USB Wi-Fi adaptor）,
GPIO >1（下記各種インターフェースと置き換え可能）,
I2C×2, UART×2, SPI×2, Audio analog stereo IN×1/
OUT×1, PWM×1, Analog IN×1

注3） https://www.facebook.com/groups/chirimen/

https://www.facebook.com/groups/chirimen/
https://chirimen.org/

194 - Software Design

　グレープシティは7月27日、ブラウザ上でMicrosoft
Excelライクなユーザインターフェースを実現できる
JavaScriptライブラリ「SpreadJS 9J」のリファクタリン
グ版を提供開始した。
　SpreadJSは、HTML5のCanvas上にクライアント側UI
ウィジェットとしてスプレッドシートを描画し、Excel
ライクな操作性と、スパークラインや条件付き書式、グ
ループ化やフィルタリングなど高度な機能も含めた豊富
なExcel互換機能を提供する。
　今回のリファクタリングでは約800KBあったコアモ
ジュールを約400KBまで軽量化、これまでjQueryの参照
が必須であったものを非依存にし、高速化、さらにAPI
をよりシンプルに使いやすくするように見直し、可読性
と記述性を高めた。また新機能として、次の4つが搭載
された。

 ・ Excel入出力機能の強化
　これまで提供していたExcelIOサービスに代わり、ク

ライアントサイドExcelIOとExcelIOコンポーネント
の2種類のExcel入出力機能を提供。クライアントサ

　The Linux Foundationによる国際技術カンファレンス
「LinuxCon+ContainerCon Japan 2016」が7月13～16日
にかけて椿山荘（東京都文京区）にて開催された。セッ
ション登壇などのためSUSE Linuxの経営陣が来日、CTO
のThomas Di Giacomo氏に取材の機会を得た。
̶̶SUSE Linuxのこれまでの活動について
　SUSEは1991年からエンタープライズLinuxを開発し
てきました。フォーチュン掲載企業100社のうち2/3は
当社のOSを利用しています。最近ではOpenStackへの
貢献も活発です。HPC（High Performance Computing）
については東工大とも協力関係にあります。ここ数年、
さまざまな面で二桁台の成長を果たしています。当社は、
初期の10年はLinuxのエンタープライズ使用に注力して
きました。そして次の10年はMicrosoftやSAPなどとの
パートナーシップの拡大です。さらにIntel、AMD、富
士通とも協力関係を深めてきました。2010年からはデー
タセンターの近代化に力を注いでいます。これには
CephなどのSDS（Software Definded Storage）やResou
rce Orchestrationが挙げられます。さらにOpenNFV、
OpenDaylightにもカーネルアップデートで対応してい

イドExcelIOは、クローズドな環境でも利用できる
 ・ 印刷機能
　専用APIによるシートの印刷機能を提供。ブラウザで

の画面印刷では見切れていたシート全体の印刷など
が可能になる

 ・ テーブルスライサー
　テーブル作成時に利用できるスライサー機能を追加。

ボタンによる視覚的なフィルタリングが可能になる
 ・新テーマへの対応
　新たにExcel2013スタイル（3種類）、Excel2016ス

タイル（2種類）にも対応

　なお、リファクタリング前の製品は「SpreadJS
Classic」として、製品パッケージに同梱される。価格は
120,000円（税抜き）となっており、対応ブラウザは
Internet Explorer 9以上、Microsoft Edge、Chrome、
Firefox、Safari 5.1以上、iOS（Safari、Chrome）。

ます。また、PaaS基盤としてCloudFoundryにもかかわっ
ています。これからの課題としてはARMへの対応で、
年末には正式発表します。SAPについては推奨環境です。
とくにSAP HANAの95％はSUSEで稼働しています。
̶̶Red HatはRHELのMicrosoft Azure対応で活発な
プロモーションをしているが、SUSEの戦略はどうか
　Microsoftとは10年以上協力関係にあります。技術的
な優位点としてはHyper-VのサポートとSUSE Managerの
利用です。さらに、AzureでのHPC対応はSUSEだけです。
̶̶日本市場の見込みについて
　いわゆる無償のLinuxは、ビジネスでたしかに使用で
きますが管理が手間です。SUSEの導入でそれが解決で
きます。日本市場は少し特殊で、ほとんどの顧客がIBM
のメインフレーム上でSUSEを使用していて、それが安
定したビジネスになっています。SAP HANA対応は戦略
上のアドバンテージです。

グレープシティ、
「SpreadJS 9J」のリファクタリング版を提供開始

「LinuxCon+ContainerCon Japan 2016」開催、
SUSE Linux CTOインタビュー

グレープシティ㈱　URL http://www.grapecity.com
CONTACT

ノベル㈱　URL http://www.novell.com/ja-Jp
The Linux Foundation　URL http://www.linux-foundation.jp

CONTACT

http://www.grapecity.com/
https://www.novell.com/ja-jp/home/
http://www.linux-foundation.jp

194 - Software Design Sep. 2016 - 195

　㈱ユニークは、電子マネーの利用環境に合わせた、IC
カード電子マネー専用の残高表示機能付パスケース
「miruca（ミルカ）」を7月中旬に発売した。
　mirucaは、電子マネーの残高が確認できるパスケー
ス。液晶下のボタンを押すと液晶部分に電子マネーの残
高が表示され、また電子マネーを使った際には、残高が
自動で一定時間表示される。ケース本体にはラバーコー
ティングが施されており、手に馴染む滑りにくい加工に
なっている。電源はCR2016電池1個。
　対応電子マネーは、Suica、PASMO、nanaco、ICOCA、
Kitaca、manaca、TOICA、PiTaPa、はやかけん、nimoca、
SUGOCA、Suica・PASMOを搭載したICキャッシュカー

ド・クレジットカードなど。価格は2,980円（税抜き）。

ユニーク、
電子マネー残高表示機能付パスケース「miruca」発売

　㈱ソラコムは7月13日、IoTプラットフォーム「SORA
COM」において、2つの新サービス「SORACOM Gate」
「SORACOM Door」を発表した。
　SORACOM Gateは、IoTシステムとデバイスとの間に
仮想的なL2ネットワークを張り、両者の直接通信を実
現するサービス。これにより、セキュリティを担保しつ
つ、プライベートIPアドレスを利用してサービスにアク
セスしたり、SSHなどでログインしてメンテナンスを
行ったりすることが可能になる。
　SORACOM Doorは、任意の環境に構築されたユーザ
のシステムとSORACOMとを、AWS Direct Connectを
活用して専用線で直接接続するサービス「SORCOM

Direct」の兄弟サービス。Directでは専用線で接続して
いた部分を、インターネット上に構築したVPNトンネル
で代用する形での接続を可能とするもので、安全な経路
での通信をより安価に実現できる。
　また同社は同日、SORACOM Global PoCキットの申
し込み受付を開始した。本キットは世界の120を超える
国と地域で、SORACOMのすべてのサービスが利用でき
る。価格は49,800円（税込み）で、30回線（30枚のSIM）
の初期費用・基本料金、およびSIMの送料を含んでいる。

ソラコム、
新サービス「SORACOM Gate」「SORACOM Door」を発表

　ルネサスエレクトロニクス㈱は7月23日、「GRデザイ
ンコンテスト2016」のWebエントリー受付を開始した
（http://gadget.renesas.com/ja/contest/2016/）。
　本コンテストはルネサスエレクトロニクス㈱が提供す
るプロトタイピングボードを用いたアイデア作品のコン
テスト。1次選考（9月5日）では形にする前のアイデアが
審査され、選出された100名に対して、「GADGET
RENESAS」のワンボードコンピュータが提供される。2
次選考（11月18日）ではそのボードを用いたプロダクト
の完成度や実用性などが審査される。最終選考（12月10
日）では、その作品のデモが審査される。賞金総額は
150万円。1位は賞金50万円となっている。

ルネサスエレクトロニクス、
「GRデザインコンテスト2016」のエントリー受付開始

㈱ユニーク　URL http://www.uniqstyle.co.jp
CONTACT

㈱ソラコム　URL https://soracom.jp
CONTACT

ルネサスエレクトロニクス㈱
URL https://www.renesas.com/ja-jp

CONTACT

▲▲miruca

▲▲GADGET RENESASのボード。6種類の中から1つを選択する

http://www.uniqstyle.co.jp
https://soracom.jp/
https://www.renesas.com/ja-jp

196 - Software Design

Slack入門

　本誌2016年1月号でも特集したチャットコミュニケー
ションツール「Slack」の日本初の解説書。親しみやすいUI
とたくさんのサービスと連携できる機能（App Directory）
が人気を呼び、Slackはエンジニアを中心に今もユーザ数を
増やしている。最近では大手企業での導入も始まっている
ようだ。本書は「入門」と冠しているものの、中級者向けに
Slackを活用するためのHubotやCIツールとの連携につ
いても触れているため、ChatOpsを始めたい方でも参考に
できる内容になっている。また、Slackは日本語化されてお
らず、英語が苦手な方にとってはまとまった資料として有
用である。視覚的な情報が多く、またフルカラーなので、
Slackの楽しげな雰囲気が伝わってくる1冊になってい
る。

松下 雅和、小島 泰洋、長瀬
敦史、坂本 卓巳 著
A5判／208ページ
1,980円＋税
技術評論社
ISBN＝978-4-7741-8238-4

プログラミング言語
Go

　2009年にGoogleから発表されたコンパイル言語
「Go」はシンプルな言語仕様と高速性で、エンジニアから人
気を集めている。本言語の開発にはC言語の開発者の１人
であるケン・トンプソンがかかわり、また本書の著者には

「K&R本」のブライアン・カーニハンが名を連ねるなど、豪
華な顔触れだ。本書はそんなGoについて、プログラミン
グ言語の基本（文法、制御構造、データ型、関数など）を前
半で説明し、Goの特徴的な機能（並行プログラミング、リ
フレクション、低レベルプログラミング）を後半に説明し
ている。とくに並行プログラミングについては、時計サー
バやチャットサーバを作りながら、Goの並行プログラミン
グを実現している2つの要素「ゴルーチン」「チャネル」を詳
細に解説している。

Alan A.A. Donovan、Brian W.
Kernighan 著／柴田 芳樹 訳
B5変形判／464ページ
3,800円＋税
丸善出版
ISBN＝978-4-621-30025-1

インフラエンジニア
になるための教科書

　本書はインフラ技術者の業務全般について解説する。最
近この手の本が多いが、技術そのものよりシステムの構築
／運用に関するノウハウを扱っているためか、本（著者）ご
とに重きを置いているテーマや、書かれているノウハウに
違いがあるのが興味深い。本書は、章ごとにその分野の専
門家が執筆しているのが特徴だ。とくに、VPS／クラウド
／ベアメタルなど各種インフラサービスの特徴について論
じた2章と、システムの検討／構築／運用／障害対応など
を扱った3、4章が、著者の経験に裏づけられた情報が多く
盛り込まれていると感じた。インフラの分野も技術の流行
り廃りが著しいが、本書ではコンテナ技術、Immutable
Infrastructure、ChatOpsなどの新しい話題にも触れてい
る。最新の情報に遅れないよう目を通しておきたい。

寺尾 英作、中村 知成、波多野
安衣、横田 真俊、JPCERT/
CC 著
B5変形判／296ページ
2,680円＋税
ソシム
ISBN＝978-4-8026-1043-8

Python機械学習
プログラミング	

　機械学習は、コンピュータで人間並みの学習能力機能を
実現させる研究で、科学シミュレーションや音声認識な
ど、さまざまな分野への活用が期待されている。機械学習
のソフトウェアの実装には、豊富なライブラリと平易な文
法 を 持 つPythonが 使 わ れ る こ と が 多 い。 本 書 で は、
SciPy、NumPy、scikit-learn、matoplotlib、pandasと
いったライブラリを使ったPython 3によるプログラムを
示しながら、機械学習において必要とされる処理を説明し
ていく。そこで使われるアルゴリズムは数学の理論と複雑
な数式で詳細に説明されており、技術書というよりは科学
書の印象を受ける。書籍の難易度は高いが、Pythonのコー
ドは読みやすいので、ひとつひとつの処理を追いながら、
少しずつ理解していけるだろう。

Sebastian Raschka 著／㈱ク
イープ 訳／福島 真太朗 監訳
B5変形判／464ページ
4,000円＋税
インプレス
ISBN＝978-4-8443-8060-3

Sep. 2016 - 197

歌って踊れるエンジニアが夢ですが、歌えないし踊れないしエンジニアとしても特に自信はありません。この業界、勉強は欠かせない
のに時間は有限、現金も有限、お腹も空くし、睡眠も削れない。手軽にスキルアップを、Linuxカーネルモジュールのようにinsmod
やmodprobeできないか脳内検討した。映画『MATRIX』にもそんなシーンがあったね。ああいう世界がそこまで来てるんだ、ってワクワ
クしましたね。機械の世界には恐怖しましたが。アレが普通になると学校とか行かなくていいから、さらにコミュ障になりそうだし、
そういうロボットのほうが先に実用化されそうだし、アレはオレに有用じゃない！――って結論にいたりました。やっぱり、日々努力
して歌って踊れるエンジニアになります。

ト
リ
二
テ
ィ
が
n
m
a
p
で
ポ
ー
ト
ス
キ
ャ
ン
す
る
シ
ー
ン
で
ほ
く
そ
笑
ん
だ
、
君
!
　

す
で
に
老
害
で
す
か
ら
!
―
―
と
自
分
に
ブ
ー
メ
ラ
ン
す
る
担
当
編
集
の
咆
哮
が
読
め
る
の
は
本
誌
だ
け
。

作）くつなりょうすけ
@ryosuke927

お前には
いろいろ
覚えてもらうぜ♪

っていろんな能力を
「読み込み」できると
いいなぁって思いますわ

Linuxカーネル
モジュールみたいだな。
でもそんなのが普通に
できるようになったら……

能力の読み込み可能な
人が多い世界

自分だけ能力の
読み込み可能な世界

え？　また
フルスタック
エンジニアが
来た？

リプレース
案件を
指揮してよ!!

青い銀行の
案件手伝って！

休ませろおおおおお
おおおおおおおおお
おおおお!!

どっちも
奴隷だ……。

そこそこの得意分野が
あるのがちょうどよい
気がしました。
欲張ってすみません

普通そうに見える、
そういうことが
一番難しいのだよ。

このカーネル
ダンプを
解析してぇ！

DBの最適化
頼む!!

抱い
てぇ!!

ちょっとやそっと
読み込めるくらいじゃ、
ウチでは
やっていけないよ？

まずは
功
カ ン フ ー

夫からだ
功夫を
マスター
しますた！

モジュールを読み込むように進化したい第31回

①②③④

⑤

⑥

⑦

⑧⑨

198 - Software Design

チャット Botと生活する未来？
　人工知能と自然言語処理の技術で作られた、まるで人間のように受け答えができる「チャッ
トBot」。Webサービスにおいてのナビゲーション、さらにリアル店舗での接客など、さま
ざまなビジネス展開が模索されています。技術が進めば、会話しているだけではもはや人間
と区別がつかないようなBotも登場するのでしょうか。ただ、日本語の複雑な敬語を完璧に
使いこなせるBotが登場するには、長い時間がかかりそうですね。

　プロトコルとネットワークモデルの解
説から、C、JavaScript、PHP、Python、
Rubyでのネットワークプログラミング、
さらにはWiresharkでのパケットキャプ
チャまで、プログラマが手を動かしなが
らTCP/IPを学べる大特集でした。

抜け落ちている知識の総ざらいができ
ました。 尾崎さん／東京都

及川さんが書いたというのを聞いて買
いました。 twoさん／東京都

通信の基本ですよね。初心に帰らなくっ
ちゃ。 ｋｍさん／愛知県

私たちが日ごろお世話になっているイ
ンターネットの基礎であるプロトコル
について、あらためて学びなおすこと
ができる良い企画でした。
 オミオさん／宮城県

普段意識していないTCP/IPについて
学習できたのが良かった。
 thさん／新潟県

TCP/IPのしくみからWiresharkま
での流れが良かった。 三浦さん／大阪府

こういう基礎的な記事は人に教えると
き役に立つし、己の記憶のリフレッシュ
もできるので定期的に読んでいきたい。
 うたさんさん／大阪府

Software主体の雑誌にネットワーク
の記事があるのがうれしい。
 raihennさん／東京都

久しぶりにWiresharkを触ってみて、
かなりの機能が追加され、かつ便利に
なっていることに驚きました。
 山下さん／東京都

低レベルな部分からわかりやすい説明
がされている。 上藤さん／広島県

プログラマサイドのTCP/IPの本質が
理解できた。 高尾さん／群馬県

より深く学びたい読者向けに、参考文
献リストを特集末尾に掲載しても良
かったかもしれません。
 匿名希望さん／大阪府

アプリ開発者といえども、イマドキ
TCP/IPの知識なくして最適な開発は
できないです。
 ほまれさん／千葉県

TCP/IPはネットワークの基本中の基
本なので、ネットワークに携わるエン
ジニアには必須の特集でした。C言語
から利用するのは初心者には若干ハー
ドルが高いと思いますが、基礎をちゃ
んと知るという意味ではすばらしい特
集だったと思います。
 bsdhackさん／神奈川県

インフラエンジニア向けよりは、
プログラマ向けに重きを置いた

TCP/IP特集。普段から利用しているイ
ンターネットのしくみを、それこそコー
ド単位で紐解くことができました。

　プログラミングやエディタの作業を効
率化する「正規表現」を基本から解説。
Webツール「Rubular」で、書いた正規表
現がきちんと動くか試しながら知識を身
に着けていく、実践的な特集でした。

正規表現の理解が深まり良いと思いま
した。多くの人に使ってもらいたいで
すね。
 masaki_hashimo2さん／沖縄県

正規表現の説明がかなりわかりやすい
ため､ これから正規表現を学習する方

2016年7月号について、たくさんの声が届きました。

第1特集　プログラマが知ってお
くべきTCP/IP

第2特集
手を動かして学ぼう正規表現入門

198 - Software Design Sep. 2016 - 199

にはもってこいだと思いました｡ 個人
的には正規表現の確認サイトを知らな
かったので、勉強になりました｡ 伊藤
さんの記事は丁寧で本当にすばらしい｡
これからの記事も楽しみにしています！
 ノリオさん／大阪府

正規表現はなかなかとっつきにくいの
で勉強になります。 ともさん／兵庫県

正規表現って敷居が高いのですが、こ
れをうまく引き下げて説明されている
ように感じました。 鈴木さん／熊本県

正規表現はミニ言語という視点はおも
しろい、と思いました。
 泥臭い環境しか知らない。さん／奈良県

どうしてもわかりにくい正規表現を
Webツールを使って解説してくれるの
はすごく助かると思います。もっと早
く読みたかった。
 romeosheartさん／長崎県

サーバをいじる際などに正規表現が使
えると便利と思いつつ、なかなか憶え
られなかったが、例がわかりやすくとっ
つきやすくて良かったです。
 kusaさん／東京都

「HTMLをCSVに置換」の項、仕事で
も役に立ちそうです。
 ＹＹさん／神奈川県

基礎部分の理解があるだけで、文字列
処理の効率が全然上がると思う。
 阿部さん／岩手県

今さらながら、正規表現を利用したも
のを組む際はググったりしていたので、
再度勉強になった。
 massakiiiiさん／福岡県

今まで都度都度の独学だったが、きち
んと勉強しようという気になった。
 kybさん／東京都

使っているプログラミングがRubyだっ
たため、正規表現をよく利用するので
おもしろかったです。 井上さん／埼玉県

一度覚えてしまえば普段の作業
が一気にカイゼンされる正規表

現。必要だとは思っていてもなかなか
勉強する機会がなく、この機に勉強で
きて良かったという声が多かったです。

　弊誌の表紙の変遷ですが、2013年度
「鳥」、2014年度「犬」、2015年度「野生
動物」となっています。そして今年2016

年度は、ご存じのとおり「猫」です。

娘が猫好き。癒やされる。
 西原さん／兵庫県

子猫に癒やされた。
 白川さん／東京都

猫がかわいいです。
 風のピエロさん／長野県

やっぱ、にゃんこでしょ！
 南雲さん／埼玉県

一目見て貴誌と分かるデザインが安心
感を与えてくれます。
 サバ鼻炎さん／東京都

猫は、エンジニアの方にはとく
に人気の高い印象の動物ですね。

内容ももちろんですが、表紙にもご注目
ください！

表紙について

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① HHKB Professional BT
向山裕介様（東京都）

② USBアナログメーター
井上裕貴様（東京都）

③ Vivaldi Tシャツ＆ステッカー
小林福嗣様（東京都）

④ 『Unix考古学』
林正紀様（埼玉県）、福田和真様（神奈川県）

⑤ 『プリンシプル オブ プログラミング』
西上博士様（兵庫県）、諸星大樹様（愛知県）

⑥ 『Amazon Web Servicesクラウドネイティブ・
アプリケーション開発技法』
西谷幸治様（大阪府）、長浜均様（神奈川県）

⑦ 『基礎からのWebアプリケーション開発入門』
永島薫様（福岡県）、いくす様（埼玉県）

7月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

http://sd.gihyo.jp/
mailto:sd@gihyo.co.jp

Software Design
2016年9月号

発行日
2016年9月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6179
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2016年10月号
定価（本体1,220円＋税）

192ページ

October 2016
9月17日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2016 技術評論社

●8月には『小悪魔女子大生のサーバエンジニア日

記』のａｉｃｏさんが挿絵を描いた、『独習Ｐｙｔｈｏｎ入門』

（著 湯本 堅隆＝ござ先輩）が発売されます。10月に

は一昨年の特集『ポートとソケットがわかればTCP/IP

がわかる』が同じくaicoさんのイラストで書籍発売予

定です。ぜひ買ってください。（本）

●文鎮化したNexus7を冷蔵庫に入れておいたら治っ

たと友人に聞き、ロッカーに眠っていた、買ってすぐ

に画面が乱れて電源の入らなくなったWinタブを思い

出した。まずは充電して……と電源をいれたら無事

起動！ ギリで無料10化も間に合った。しかし、自前

Nexus7文鎮は復活しませんでした。（幕）

●仕事の帰り道、目の前で信号が赤に変わる。何気

なく脇にある公園の石垣に目をやると、そこにへばり

つく黄色いトカゲと目が合った。微動だにしない彼の

気持ちは知らず、“久しぶりだな”とのんきに独り言。

それから信号が変わるまで二人でだるまさんごっこを

した。明日はもう少し早く帰ろう。（キ）

●NHKの連ドラ「とと姉ちゃん」にハマっています。

平日は見られないので、土曜の放送だけを見ていま

す。ほかの月～金の内容は頭の中で勝手に想像して

います。が、伊藤淳史なる俳優さんが演じている男

性が何者なのかがいまだにわかりません。とと姉ちゃ

んと親しくしていて重要人物ぽいのに……。（よし）

●地元の友人連中に混ざりたくて、十何年ぶりに某

TCGを始めようかと思案中。自分の小学生時代からは

状況が変わっているようで、ガチ勢の友人たちと対等

に対戦するためのデッキを作るには、なんと1万円超

は掛けなければならない雰囲気。一年に一度会うか会

わないかの友人なので、悩みどころですね。（な）

●来年用の年賀状素材集本に掲載予定のちびぬいがで

きあがりました。これを撮影してもらってポストカードに

します。撮影には小物も必須であれこれ手作りするの

ですが、毎年１つ、２つ冬っぽい素材が足りなくなり慌

てて購入するはめに…夏なのでお店ではなかなか欲し

いものがすぐ手に入らないのがつらいところです。（ま）

S D S t a f f R o o m

［第1特集］ 意外と説明できない？　

Webサーバとは何か？ なぜ動くのか？
CGI、サーブレットからNode.js、Railsまで一挙解説
［第2特集］ いますぐ始める本格派データベース

新しいPostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

■2016年7月号
●P.172　連載「Linuxカーネル観光ガイド」リスト2中の下から10行目
　［誤］ if (TICKET_SLOWPATH_FLAG &&
 __ticket_t head;
　［正］ if (TICKET_SLOWPATH_FLAG &&
 static_key_false(¶virt_ticketlocks_enabled)) {　←この行抜け
 __ticket_t head;
●P.174　左段10行目
　［誤］ただし、 SPIN_THRESHOLD（=2）
　［正］ただし、 TICKET_LOCK_INC（=2）
■2016年8月号
●P.102　連載「アプリエンジニアのための［インフラ］入門 第2回」右段上から21行目
　［誤］192.168.0.0/216
　［正］192.168.0.0/16

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

200 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	SD2016年9月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 知りたい情報集まっていますか？　ログ出力のベストプラクティス
	第1章：Linuxのシステムログを知ろう サーバ管理に欠かせないセキュリティログをチェック......中井 悦司
	第2章：Webサーバのログ設定　ApacheとNginxのログ出力の基本と目的別手法鶴長 鎮一
	第3章：MySQL 4つのログの使いどころ　データベースの保全、性能評価で役立てるとみたまさひろ
	第4章：Sambaの詳細なログ設定と活用　パフォーマンスと実益とのバランスをとって出力しようたかはしもとのぶ
	第5章：マーケティングにも使えるログ設計とは　アプリケーションログで何を記録し、どう可視化するか吉野 哲仁

	■第2特集 使いこなせていますか？　良いPHP、悪いPHP　すぐ効くWeb開発入門
	第1章：基本、押さえていますか？　PHPのはじめ方と学び方　環境構築からコーディングまで濱田 侑弥
	第2章：効率よく選んでいますか？　PHPのライブラリの選び方・使い方　Composerをお勧めする理由後藤 知宏
	第3章：本命はBEAR.Sundayか　PHPフレームワークの選び方　システムの目的から振り返るはやしりょう
	第4章：参加しませんか？　PHPのユーザコミュニティ　チャットルームからハッカソンまで小山 哲志

	■一般記事
	「良いプログラム」のための「良いコメント」コードを読みやすくするための6つの書き方きしだなおき
	乱数を使いこなす【2】物理乱数ハードウェアを作る力武 健次

	■連載：Column
	digital gadget【213】広告とデジタルの新しい関係性安藤 幸央
	結城浩の再発見の発想法【40】三路スイッチ　......結城 浩
	増井ラボノート　コロンブス日和【11】Gear増井 俊之
	宮原徹のオープンソース放浪記【7】北奔南走!? OSC北海道と沖縄宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【15】Universal Serial Bus（デバイス編）......坪井 義浩
	Hack For Japan〜エンジニアだからこそできる復興への一歩【57】熊本地震での活動紹介（減災インフォ・情報支援連絡会議・Civic Tech Live!）......鎌田 篤慎、佐伯 幸治
	温故知新 ITむかしばなし【58】Intel 80286〜究極の16bit CPUだったのか　......速水 祐
	ひみつのLinux通信【31】モジュールを読み込むように進化したい......くつなりょうすけ

	■連載：Development
	アプリエンジニアのための［インフラ］入門【3】インフラ構成管理入門出川 幾夫
	使って考える仮想化技術【4】仮想環境の構築（その3）〜仮想マシンの操作と状態確認......笠野 英松
	RDB性能トラブルバスターズ奮闘記【7】SQLに小回りの効く記述力を与えてくれるCASE式......生島 勘富、開米 瑞浩
	Androidで広がるエンジニアの愉しみ【9】VRアプリをつくろう！野田 悟志
	Vimの細道【11】Vimの設定ファイル再点検mattn
	るびきち流Emacs超入門	【29】カレントバッファを即実行！　quickrun（前編）るびきち
	書いて覚えるSwift入門【18】APFSとSwift3......小飼 弾
	Sphinxで始めるドキュメント作成術【18】ドキュメントを自動生成するautodoc　......清水川 貴之
	Mackerelではじめるサーバ管理【18】Mackerel活用事例——ガイアックスの場合......福本 貴之
	セキュリティ実践の基本定石【35】情報資産とローカルネットワーク内感染　......すずきひろのぶ

	■連載：OS/Network
	SOURCES〜レッドハット系ソフトウェア最新解説【2】Ansible Tower part2小島 啓史
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【34】タイムスケジュールでプログラムを実行......後藤 大地
	Ubuntu Monthly Report【77】LibreOffice 5.2の新機能　......あわしろいくや
	Debian Hot Topics【39】DebConf16レポート（前編）......やまねひでき
	Unixコマンドライン探検隊【5】ファイル操作の基本（その2）中島 雅弘
	Linuxカーネル観光ガイド【54】Linux 4.2の新API——DRMインターフェースのatomic mode setting　......青田 直大
	Monthly News from jus【59】北と南でも議論、コミュニティそれぞれの課題と解決策　......法林 浩之

	■アラカルト
	ＩＴエンジニア必須の最新用語解説【93】Rust　......杉山 貴章
	読者プレゼントのお知らせ
	SD NEWS & PRODUCTS
	SD BOOK REVIEW　
	Readers’ Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内

