

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

技術評論社の本が電子版で読める！
https://gihyo.jp/dp

 GIHYO
 Digital Publishing

 GIHYO
 Digital Publishing

未来の“普通”を，今。

 Gihyo Digital Publishing

 GIHYO
 DIGITAL
 PUBLISHING

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

［改訂新版］プロのための
Linuxシステム構築・運用技術
中井悦司　著　
2,980円　 PDF EPUB

好評につき重版してきた『プロになるためのLinuxシステム構
築・運用』が，最新版のRed Hat Enterprise Linux（ver.7）に
対応し全面的な改訂を行った。これまでと同様に懇切丁寧に
Linuxのシステムを根底から解説する。そして運用について
は，現場で得られた知見をもとに「なぜそうするのか」といっ
たそもそも論から解説をしており，無駄なオペレーションをせ
ずに実運用での可用性の向上をねらった運用をするためのノ
ウハウをあますことなく公開した。もちろん，systemdもそ
の機能を詳細にまとめあげている。

https://gihyo.jp/dp/ebook/2016/978-4-7741-8465-4

科学技術計算のためのPython入門
̶̶開発基礎，必須ライブラリ，高速化

EPUB PDF

Xcodeではじめる 簡単iPhoneアプリ開発
［Xcode 8&Swift 3対応］

EPUB PDF

コンピューターで「脳」がつくれるか

EPUB PDF

改訂新版JavaScript本格入門
～モダンスタイルによる基礎から現場での応用まで

EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
mailto:gdp@gihyo.co.jp
https://gihyo.jp/dp/ebook/2016/978-4-7741-8465-4

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

https://gihyo.jp/site/inquiry/dennou

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

Software Design plusシリーズは、esign plusシリーズは、usシシリpl ズー OSと
ネットワーク、IT環境を支えるエンジニアワーク、IT環境を支えるエ支、T環境をIT環境境 の
総合誌『S ft D i 』編集部が自信誌『S ft DS tft

ED - 1 - Software Design Nov. 2016 - ED - 2

成功するテック企業の影の
主役Product Manager

　昨今、Product Manager（略してPM）という
職種が注目されています。
　米国、とくにシリコンバレーでは、以前より
PMが製品開発における重要な役割として定着
しています。たとえば、GoogleのCEOである
Sundar Pichai氏はGoogle ToolbarやChrome
などの製品開発においてProduct Management
の要職を務めた後、CEOの座まで上り詰めま
した。現在、苦境に陥ってはいますが、米国
Yahoo!のCEO、Marissa Mayer氏もGoogleの
Consumer担当Vice Presidentでしたが、彼女
も元はPMです。シリコンバレーの成功したテッ
ク企業というと、優秀なソフトウェアエンジニ
アが有名ですが、製品開発の現場ではPMも欠
かすことのできない職種として認識されていま
す。実際、LinkedInや Indeedなどで米国での
Product Managerの職を探してみると、多くの
企業が募集していることがわかるでしょう。
　一方、日本では「PM」と言うとProject Manager
を指すことが多いようです。システムインテグ
レーターが行うような大規模のプロジェクトか
ら自社開発案件など、さまざまなレベルのプロ
ジェクトにおいて、おもにその進捗を管理する
役割です。「プロマネ」と略されることもありま
す。Project Managerの知識体系はPMBOKと
してまとめられています。
　このように、日本ではProduct Managerの知
名度が低い時期が長く続いていましたが、この

状況が変わりつつあります。シリコンバレーの
テック企業の開発手法や企業文化を積極的に学
ぶスタートアップ企業などを中心に、Product
Managerを積極的に採用したり育成したりする
企業が増えています。PMJP注1というコミュニ
ティは、Slack上でのPMに関する日々の情報
交換や非定期のオフ会を行っています。また、
筆者の勤める IncrementsでPM Meetupを開催
したときも、予想を上回る人数の参加希望者が
集まりました。10月には日本初のProduct
Manager Conferenceも開催される予定です。

PMはミニCEO

　さて、それではいったいProduct Manager
は何をする人でしょうか？
　よく言われるのが、PMはミニCEOだとい
う例えです。これは、担当する製品やサービス
の開発において、企業のトップであるCEOと
同じ役割を果たすのがPMであるということを
意味しています。CEOというと偉い人とか思
う人がいるかもしれません。確かにその企業に
おいて最も重要な人物であることは事実ですが、
一方で、すべての責任を負い、経営の舵取りを
行うのがCEOです。そのためにはすべてのこ
とをします。考えてもみてください。自分の会
社でふんぞり返って命令だけ下していても、そ
のとおりに実施されないのならば、実施される
ように変えていくのは、自分以外にはいません。

注1） http://productmanagers.jp/

及川卓也の
プロダクト開発の道しるべ
品質を高めるプロダクトマネージャーの仕事とは？

Product Managerとは

@takorattaTwitter

及川 卓也
（おいかわ たくや）

Author

新連載

第1回

http://productmanagers.jp/

ED - 1 - Software Design Nov. 2016 - ED - 2

やる人がいないので、自らが動くことさえ
あるでしょう。同じように、製品開発につ
いて最終的な責任を負う立場になるのが
PMです。
　製品開発は、複数の部署からのメンバー
で構成されるプロダクトチームにより行わ
れます。プロダクトチームにはエンジニア
やデザイナー、テスト（品質管理）担当者な
どの技術メンバー以外にも、営業、マーケ
ティング、広報、ユーザーサポート、法務
などのさまざまな部署からのメンバーが所
属します。もちろん、中には専属ではない
メンバーがいるでしょう。もしかしたら、
スタートアップ企業のように会社の規模が
大きくない場合には、一部の担当者、たとえば
マーケティングや広報などがまだ社員としては
いないこともあるかもしれません。いずれの場
合も、足りない役割はPMが担うことになります。
　これらからわかるように、PMは製品開発の
最終責任を担うとともに、開発において必要と
なる要素をすべてつなぎあわせる「糊

のり

」のような
役割です。すべての役割を担うメンバーがそ
ろっていても、きっと誰が担当とはっきりと決
められないタスクも出てくることでしょう。そ
の場合、PMが自ら担当するか、プロダクトチー
ムのメンバーで担当を決めて、タスクを完了さ
せる必要があります。

「マネージャー」という言葉に
惑わされない

　マネージャーというと、上長というイメージ
がつきまといます。確かに、指揮命令者と同義
であることも多いでしょう。ですが、本来は
Manage、すなわち管理を行う役割を担った人
がマネージャーです。何を管理するかによって、
その役割は変わります。
　PMはプロダクトを管理する人です。プロダ
クトは1人では作られず、チームで作るので、
プロダクトチームを束ね、プロダクトを成功に
導くプロセスを管理することがPMの役割です。

　マネージャーのイメージを変えるには、高校
野球などのスポーツチームのマネージャーを思
い浮かべると良いでしょう。この場合のマネー
ジャーは、選手が試合において最高のパフォー
マンスを発揮できるための健康管理から備品の
整備など、さまざまなことを行います。練習メ
ニューを考えるために試合のスコアを付けたり、
分析したりすることもあるでしょう。
　芸能タレントのマネージャーも良い例です。
担当のタレントがより良い芸能活動を行えるよ
うに、仕事を段取りし、移動を助けます。
　どちらもマネージャーは影の存在です。主役
である選手やタレントが活躍し、ゴールを達成
するためにすべてのことを行います。
　組織において、このように働くリーダーのこ
とをサーバントリーダーと呼びますが、PMも
プロダクトチームにおいてサーバントリーダー
として振る舞う必要があります。我を強く出す
だけでなく、チームメンバーが自発的にプロダ
クトのことを考え行動するような文化を醸成す
る必要があります。
　ただし、このように言うと誤解されることも
あるのですが、良い製品は合議制だけでは生ま
れません。強いリーダーシップの下に決断をし
続ける。それもまたPMの大事な役割です。こ
れについては次回さらに解説しましょう。｢

エンジニア

研究開発

デザイナー

品質管理・
テスト

営業経理

ユーザー
サポート

法務

マーケ
ティング

広報

プロダクト
マネージャー

 ▼図　複数のチームメンバーから構成されるプロダクトチームとPM

Product Managerとは

ソフトウェアエンジニアとして社会人キャリアをスタートした後、MicrosoftやGoogleでプロダクトマネージャーやエンジ
ニアリングマネージャーを経験。現在はプログラマのための情報共有サービスQiitaのプロダクトマネージャーを勤める。

Profile

第1回

ED - 3 - Software Design

　「BuckleScript」は、プログラミン
グ言語「OCaml」で記述されたコー
ドから、JavaScriptのコードを生成す
ることができるコンパイルツールです。
Bloomberg社によって開発され、
LGPLに基づいてオープンソースで
公開されています。
　OCamlは、フランス国立情報学
自動制御研究所（INRIA）で開発さ
れているオープンソースのプログラミ
ング言語です。関数型言語とオブ
ジェクト指向言語の両方の要素を兼
ねそろえており、型安全な静的型シ
ステムをベースとして信頼性の高いプ
ログラムを作成できるという特徴があ
ります。また、強力な型推論や代数
データ型、モジュールシステム、多
相バリアント、第一級モジュールと
いった言語機能によって、整理され
た可読性の高いコードが記述できる
点も強みとして挙げられています。
　BuckleScript自体は新しいプログ
ラミング言語というわけでなはく、
OCamlの言語仕様に準拠したコン
パイラとして動作します。生成された
JavaScriptコードは一般的なJava
Scriptエンジンで実行することができ
ます。すなわち、BuckleScriptを利
用すれば、Webブラウザ上で動作
するアプリケーションをOCamlを使っ
て開発できるようになるということです。

　BuckleScriptは JavaScriptを
ベースとした大規模なシステムをター

ゲットとして開発されました。いまや
JavaScriptは単なるWebブラウザの
ための言語ではなく、クロスプラット
フォームのための共通基盤として広く
利用されています。 JavaScriptエン
ジンの高速化も積極的に進められて
おり、大規模なアプリケーションで採
用されるケースも増えてきました。
　BuckleScriptはそのような背景か
ら生み出されたものです。大規模シ
ステムに必要となる信頼性をOCaml
の言語機能によってカバーしたうえで、
それを汎用性の高いJavaScriptに落
とし込もうというわけです。開発元の
Bloombergによれば、BuckleScri
ptを使うことで次のようなメリットを得る
ことができるとのことです。

• 高い型安全性……OCamlが備
える堅牢で先進的な型システムと、
強力な型推論機能を利用できる

• オフライン最適化……オフライン
でのコンパイル時に多くの最適化
が行われるため、極めて高速な実
行コードを生成可能

• ネイティブコードの生成も可能
……OCamlから iOSや Android
などの特定のプラットフォームのネ
イティブコードにコンパイルすること
もできるため、性能が要求される
シーンでの選択肢が広がる

• 生成されたコードの可読性が高い
……人間にとっても読みやすい
コードが生成されるため、デバッグ
性／メンテナンス性が高く、既存
の JavaScriptライブラリとの統合
も容易

• コンパイルが速い……OCamlの
優れたネイティブコード処理によっ

て高速なコンパイルを実現してい
る

　JavaScriptコードを生成ターゲット
とするプログラミング言語という発想
そのものは決して新しいものではなく、
メジャーな言語としてはTypeScript
やBabelJSといったものを挙げること
ができます。実際、BuckleScriptも
それらの言語に着想を得て開発され
たそうです。ただし、TypeScriptな
どが新しい構文を持った言語として開
発されたのに対して、BuckleScript
ではOCamlという既存の言語を採
用しており、従来の資産を活用できる
という点が大きく異なります。
　OCamlは金融系システムの開発
などにおいてすでに高い実績を持っ
ている言語です。その資産やノウハ
ウを、JavaScriptベースのシステム
に活かせるということは、開発者に
とって非常に大きなメリットと言えます。
金融関連の情報サービスを手がける
Bloombergが、自社のビジネス分
野にフォーカスしたこのようなツールを
公開したというのも興味深い点です。
　BucklescriptはGitHub上のプ
ロジェクトサイトからダウンロードできる
ほか、npm（Node Package Mana
ger）を使ってインストールすることも可
能です。また、Webブラウザ上で動
作を確認できるデモページも公開され
ています。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 95回

BuckleScript

BuckleScript
https://github.com/bloomberg/
bucklescript

OCaml からJSを生成
する「BuckleScript」

BuckleScript
誕生の背景

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
https://github.com/bloomberg/bucklescript

vol.215

1 - Software Design Nov. 2016 - 1

　コンピュータグラフィックスとイン
タラクティブ技術に関する世界最
大の学会・展示会である、第43回
SIGGRAPH 2016が7月24日から
28日の5日間、米国アナハイムで開
催されました。先月号に続いて、デジタ
ルガジェット視点でレポートをお届けし
ます。
　デジタルダブルと呼ばれる、役者の
代わりにCGの代役に演技させる映
像技術がかなり浸透してきました。俳
優の仕事を阻害しないためにデジタ
ルダブルの活躍の場は限られている
ようですが、もとの俳優の顔や体の動
きをキャプチャして作成されたデジタ
ルダブルは、本人と見まごうほどの再
現性で、危険な演技や、実写では不

可能な演技を実現しています。
　今回のSIGGRAPH中の目玉イ
ベントの1つに、Real-Time Liveとい
う、リアルタイム生成されたCG分野
のテクノロジーやコンテンツを紹介す
る時間がありました。そこで紹介され
た「From Previs to Final in Five
Minutes: A Breakthrough in Live
Performance Capture」が会場の
絶賛を浴びていました（pic.1）。これ
はタイトルどおり、膨大な時間をかけて
演技をキャプチャする必要がある現
状の時間のかかるデジタルダブル映
像作りを打破するもので、たった5分
で最終映像を製作するまでの手順を
紹介したものです。
　全身の動きを収録するモーション
キャプチャと顔全面の動きを収録す

るフェイシャルキャプチャ、加えて音声
収録用の機材を装着した女優さんが
1名、CG映像空間内でのカメラ撮影
を担当するバーチャルカメラ用の機
材をかまえたカメラマンが1名で、女優
さんは1人で2役をこなす映像作りで
した。デモでは、CG映像で作られた
2人の人物の動きや表情を一気に
収録してしまい、通常は長い時間をか
けて作る映像を、約5分で完成させて
しまいました。映像生成には高画質
の汎用ゲームエンジンとして知られる
Unreal Engine 4が使われました。こ
ういった技術の進歩でリアルタイムで
映像作りが可能となり、ゲーム制作や、
映画の製作の方法も変わってくること
でしょう。

コンピュータグラフィックスの祭典SIGGRAPH 2016［後編］
〜ディズニーランドの街アナハイム。VRと映像技術編

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

安藤 幸央
EXA Corporation

技術の進化と映像の進化

※本記事で紹介しているものは
国内未発表・未発売のものを含んでいます。

展示会場に鎮座した、バック・トゥ・ザ・
フューチャーのデロリアン。顔をトラッキ
ングするツールのブースでの展示。

3Dプリントをひとコマごとにストップモーション撮
影した映画「Kubo and the Two Strings」で
用いられた3Dプリントキャラクタ。

pic.1　1人2役のモーションキャプチャ
で、5分間で映像を完成させてしまう様子。
左側がCG映像、右側が撮影の様子。

http://www.andoh.org/

2 - Software Design

　展示会場で印象的だったのは、
OptiTrack社の展示。VRヘッドマウン
トディスプレイを装着して、VR映像だ
けが見えており外が見られない状態
の人と、バスケットボールをやり取りし
ている場面でした（pic.2）。VRの映像
の中には、相手とバスケットボールが
CGで描かれているわけですが、現実
世界と比べても遅延がないからこそ実
現できている振る舞いです。今までは
無理だったことも、VRでいろいろ実現
できるのではないかと、実感をもって期
待を抱かせた展示の1つでした。

　VRヘッドマウントディスプレイで、
他メーカーの一歩先を行くOculus
Researchからは、HapticWaveとい
うVR視聴の際に用いる震動デバイ
スが体験展示されていました（pic.3）。
HapticWaveは時計の文字盤のよう
に360度方向に16個の電磁石ソレ
ノイド（ZYE1-P40/20）を埋め込ん
だレコードのターンテーブルのような
形状をしています。デモでは、テーブル
の上で玉が跳ねている様子や、遠く
で火花がバチバチしている様子が描
かれていました。HapticWaveに手を
載せると、手から伝わる振動によって、
それらの映像とともに、どの方向から
どの程度の振動があるのかが伝わっ
てくるため、目からの情報を強化する

役目を果たしていました。

　Googleが提供するVRコンテンツ
のプロジェクト、Google Spotlight
Storyの中で、VRミュージックビデオと
しても話題になった「Pearl」のメイキ
ングセッションが人気でした。Pearlは、
Pixarに所属するPatrick Osborne
監督が手がけた映像で、父親とその
娘が車で旅を続けながら音楽の夢を
追いかけるストーリーです（pic.4）。登
場するキャラクターの口の場所から、
ちゃんとセリフの音声が聞こえるよう
に音を収録したり、車の中での反響
の量、車の中で反射する音量を実
際の車を用いながら収録したそう。楽
器の演奏も車の中にステレオマイク
を用いて、車の中で収録したり、映像
シーンの違いによって、車のドアを開
けた状態で車の外で演奏したものな
ど、さまざまな状況での演奏を収録し
たとのこと。

　現在のスマートフォンの性能は、フ
ルCGアニメ映画『トイ・ストーリー』の
制作時に使われていたコンピュータ
の2倍ほどの性能を持っていると言
われています。10年前、20年前には、
利用するために数千万円の機材が
必要だったVRも、ローエンドのものは
スマートフォンとダンボールの箱で楽
しめるようになってきました。まだまだ
理想のVR環境に到達するには時間

がかかるかもしれませんが、確実にVR
視聴の裾野は広がり、機材も映像コ
ンテンツも出そろってきています。報
道の分野でも、臨場感のあるパノラマ
映像で、現地の様子をVRで体感でき
るといった、単なるゲームやエンターテ
インメントだけではない、次のVR時代
が到来している気配がしています。
　その一方、映画や演劇では、長年
の演出の蓄積で、見せ方、的確に見
せるための手法が確立しています。視
聴者もその見せ方を受け入れ、慣れて
います。ときどき従来型ではない、見た
ことのない演出や映像を目にすること
がありますが、それさえも、既存のルー
ルを知ったうえで、意図的にルールを
破って作られた映像です。それは映像
言語、視覚言語と呼ばれる決まりごと
や、ショット、カット割り、撮影の仕方、カ
メラや照明の決まりがあるからです。
　VRの世界では、それらの万人に共
通する伝え方がまだ確立しておらず、
製作のための絵コンテひとつとっても、
従来の手法はそのままでは成り立ち
ません。ハイエンドの機材を使った没
入感のあるVRや、手軽なスマートフォ
ンVR、パノラマ映像の視聴、スマート
フォンの普及による縦動画の浸透も、
従来の映像手法がそのままでは役立
たなくなっています。
　360度すべてが見渡せる状態で、
実際どこを見てほしいのか。奥行きを
見渡せる状態で、どこに焦点を当てて
見れば良いのか。音がする方向が気
になって、そちらを向いてしまったり、動
く物を目で追いかけてしまったり、映

コンピュータグラフィックスの祭典SIGGRAPH 2016［後編］

これからのコンピュータ
グラフィックスの進化

pic.2　VRヘッドセットのまま、バスケット
ボールをパスする様子。

pic.3　ターンテーブルのようなパッドに取り付けられた震動素子で、VR空間の震動を感じる
様子。

VRで震動

VRの音

VRだけでない、
触覚と視覚と没入感

VRでキャッチボール

Gadget 1 Gadget 3

Gadget 2 Gadget 4

2 - Software Design Nov. 2016 - 3

http://www.iskn.co/

http://www.ximmerse.com/ https://get.google.com/tango/

Orahは360度同時撮影、ライブVR配
信用のカメラです。複数のカメラを使っ
た360度撮影リグは数多く使われてい
ますが、Orahは1台に4個のカメラ、4
つの魚眼レンズ、4つのマイクを搭載し、
機材のセットアップや取り扱いが容易
で、4K（4800×2400）解像度のパノ
ラマ映像が撮影できます。本体にある
イーサネット端子にネットワークケーブ
ルを接続して配信することが可能です。
暗い場所での撮影も得意とのこと。80
×70×65mm、重量500g以下。予定
価格は3,959ドルです。SIGGRAPHで
ブース展示がありましたが、実機はまだ
開発中とのことでした。

isknのSlateは使い慣れた普通の紙と
ペンで、デジタルタブレットの機能を享
受するタブレットデバイスです。ゴムっぽ
い表面にA5サイズの紙を置いて描くと、
USB経由でPCへ、またはBluetooth
LE経由でiPadなどに画像が転送され
ます。また、使い慣れたペンや鉛筆に
専用のリングを装着することで、Slate
で使えるようになります。一度全部書き
終わってから転送するのではなく、描い
ているタイミングで随時送信されていく
ので、デジタルデバイスの画面にもリア
ルタイムで反映します。一式169ドルで
販売開始しています。

Ximmerseはパソコン用VRにもモバイ
ル用VRにも活用できる、VR用に手の
動きを感知するモーショントラッキング
デバイスです。光る球体を埋め込んだ
デバイスを両手に持って、光学カメラと
して位置を検知するしくみです。スマー
トフォンを活用した簡易型のVRデバイ
ス単独では手の動きと連動したコンテ
ンツ作りは難しいため、このような入力
デバイスと組み合わせて、操作感を高
めるしくみが検討されています。

Google TangoはAndroidスマートフォ
ンやタブレット端末に、Kinectのような
距離センサーを搭載したデバイスです。
SIGGRAPH会場では、会場を背景に
CGで描かれた動き回る恐竜をAR（拡
張現実感）で重畳表示するというデモ
を披露していました。Tangoに対応した
スマートデバイスが各社から発売される
予定となっており、流行のゲームのAR
対応が加速するかもしれません。また、
ゲームのみならず、三次元空間を把握
するために用いることができ、窓のサイ
ズを計測したりもできるそうです。

Orah Slate

Ximmerse Tango

ライブVR用カメラ 普通の紙をタブレットに

モーショントラッキング
デバイス

奥行きセンサー付きの
タブレット端末

像制作者が演出として見てほしいも
のを、正しく的確に見てもらう方法が
求められています。
　今回のSIGGRAPHでメイキング
が上映された映画『ジャングルブック』
は、実写とCGで、ジャングルと多数の
動物を描いた映画です。このジャング
ルブックでは、主人公の少年以外、背
景のジャングルも動物達もほとんどす
べてCGで描かれ、自由な演出、自由
な映像作りができたそうです。そうする
と、映像作りはすべては人間の想像
力次第であり、想像できるものは、何で
も作れるし、想像できないものは、どう
やっても描けないということになります。
　SIGGRAPHのセッションの各所で
共通して言われていたことは、リファレ
ンスの大切さでした。それはCGを使っ
て自由に想像したものを描くとしても、
その元となる本物を観察したり、現地
に取材に行ったり、どのように自然に
存在し、物の質感がどういったものな
のか。素晴らしい映像作品を作り上
げるには、頭の中ではわかっていると
思いがちの事柄を詳細に観察するこ
とから始まるという考えが、どの製作
者も共通してこだわっていることがわ
かった次第です。
　来年夏のSIGGRAPH 2017は7
月30日から8月3日の5日間、米国ロ
サンジェルスで開催されます。また今
年の冬、12月5日から8日の4日間開
催されるSIGGRAPH ASIA 2016は、
マカオでの開催です。アジア各国から
集まるCG作品や、最新技術展示に
多くの期待が集まっています。｢

https://www.orah.co/

pic.4　声や楽器の音が出る位置を
正確に再現したVR作品「Pearl」。

https://www.orah.co/
http://www.iskn.co/
http://www.ximmerse.com/
https://get.google.com/tango/

4 - Software Design

デッドロックとは

　デッドロック（deadlock）とは、複数の動作主
体が、複数の資源を取り合った結果、動作を続
けられなくなった状態のことです。「動作主体」
と抽象的な言い方をしましたが、コンピュータ
ではスレッドやプロセスである場合が多く、実
社会ではチームや人間などになります。
　たとえばA、Bの2人がテーブルについて食
事をするとします。テーブルにはフォークとナ
イフがそれぞれ1本だけあり、食事をするため
にはその両方を必要とします。Aがフォークを
取ると同時にBがナイフを取った瞬間、この2
人はデッドロックになります（図1）。AはBが
ナイフを手放すのを待ち、BはAがフォークを
手放すのを待ったまま、この2人は動作を続け
ることができなくなるからです。
　このようなコメディタッチの食事は、複数の
プロセスやスレッドが動作するときにどのよう
に協調動作を行うかのたとえ話です。A、Bの
2人はプロセスやスレッドなどの動作主体を表

し、フォークとナイフは動作主体が必要とする
資源を表しています。
　複数の動作主体が複数の資源を取り合うとい
うのは、よくある状況です。たとえばA、Bと
いう2つのプログラムがあり、Aは銀行口座X
からYに送金し、Bは逆にYからXに送金する
としましょう。プログラムAはいったんXをロッ
クして自分以外の誰もアクセスできない状態に
し、続けてYをロックしようと試みます。プロ
グラムBは逆にYをロックしてからXをロック
しようと試みます。このままでは先ほどの食事
と同じ状況が起こり得ることがわかるでしょう。

デッドロックの回避

　デッドロックを回避するための方法はいろい
ろあります。タイムアウトを使えば、デッドロッ
クは回避できます。たとえば、「10秒待っても
フォークとナイフの両方を確保できなかったら、
いったん自分が確保したものを手放し、再度ト
ライする」という方法です。動けなくなってか
ら時間が過ぎると自分が確保したものを手放す
ことになるので、「動けなくなる」状態から抜け
出せるからです。しかし、A、Bの2人が同じ
回避策をとってはだめです。なぜなら、2人が
同時に再度トライするため、さっきとまったく
同じように「相手が手放すのを待つ」状態に陥っ
てしまうからです。動けなくなるというデッド
ロックは回避できましたが、今度はスタベーショ
ンという「動いているけれど資源が確保できな
い状態」に陥ってしまったことになります。こ

 ▼図1　デッドロック

デッドロック

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 42

http://www.hyuki.com/

4 - Software Design Nov. 2016 - 5

れを避けるためには、再度トライするまでの時
間をランダムにするなどの工夫が必要です。
　デッドロックを回避するために対称性を崩す
という方法があります。たとえば、「フォーク
とナイフでは、必ずフォークを先に取る」のよ
うに、資源に順序を付けてしまうのです。この
ようにすれば、A、B両方ともフォークをまず
取ろうとするので、デッドロックは防げます。
　あるいはまた資源をまとめるという方法もあ
ります。フォークとナイフを別々に確保するの
ではなく、「食器セット」という1つの資源にま
とめてしまい、それ1つを確保するという方法
です。これでデッドロックを防ぐことができま
すが、動作主体と資源がたくさんある場合に一
般化すると、資源の利用効率が悪くなるという
問題が起こるでしょう。
　いずれにせよ、複数の動作主体が複数の資源
を必要とする場合には、デッドロックが起きな
いかどうか、起きた場合の対策はどうするかを
考える必要があります。

日常生活とデッドロック

　日常生活で起きるデッドロックとして、信号
のない道での交通渋滞が考えられます。1つの
道を自動車Aで抜けようとしたら、前方に自動
車Bが止まっていて動きが取れない。ところが

自動車Bが止まっているのはそのさらに前方に
自動車Cが止まっているから。そして自動車C
が動くのを阻んでいるのは自動車Dで、それを
自動車Aが止めている……という状態です（図
2）。通常、交通量が多いところには信号が設
置され、信号がどちらの方向を優先するかを決
定して、デッドロックを回避します。
　複数の作業者がうまく意思疎通できないとき
も、デッドロックに近いことが起きる場合があ
ります。2人の人がどちらも「相手から情報がやっ
てきたら、自分の作業を進め、完成したら相手
に情報を送ろう」と考えてしまったら、いつま
でたっても話が進まないことになります。この
デッドロックを回避するには、タイムアウトを
使う（一定期間が過ぎたら相手からの情報を待
たずに作業を進める）、2人の対称性を崩す（リー
ダー的な人を配置する）などの方法があるでしょ
う。もちろん、より根本的な解決策としては、
仕事をどのように進めるかを事前に話し合って
おくことでしょう。
　作業者が少ないうちはデッドロックの発見は
難しくありません。でも、共同で作業している
人数が多くなってくるとデッドロックを見つけ
るのは難しくなります。また、デッドロックと
までは言えなくても、無駄な待ち時間が発生す
るのはよくあります。図2のように全体を俯

ふかん

瞰
できれば、ばかばかしい事態が起きていること
はわかりますが、多くの場合、個々の作業者は
自分の周りしか見られません。リーダー的な存
在が俯瞰的に作業の流れを見て、交通整理をし
なくてはいけませんね。

◆　◆　◆
　あなたの周りを見回して、「複数の作業者が
いるのに思ったほど効率が上がらない」という
状況はありませんか。複数の作業者の間でデッ
ドロックに近い状況が起きることはないでしょ
うか。待ち状態が発生したときの対処法を作業
者に伝えたり、作業者同士の対称性を崩したり
して、効率を上げることはできないでしょうか。
　ぜひ、考えてみてください。｢

42

 ▼図2　交通渋滞

6 - Software Design

　Webで面白い情報を見つけたとき、よく見た
らとても古いページだということに気づいてがっ
かりすることがあります。がっかりするだけだ
とまだ良いのですが、SNSなどで紹介したあと
で古さを指摘されたりすると恥ずかしいものです。
　世の中のたいていのものは古くなるとゴミが
溜まったり変色したりするものなので、古さに
なんとなく気づくのが普通ですが（写真1）、ファ
イルやWebページのようなデジタル情報は古
くなっても見栄えが変わらないため、こういう
失敗をしやすいと言えるでしょう。
　情報が劣化しないことは、デジタルデータの
大きな特長なのですが、古さが直感的にわかっ
たほうが都合が良い場合もあります。古くても
価値が変わらない情報なら気にする必要はない
のですが、ニュースや技術情報のように新しさ
が重要な場合、間違って古い情報を参照しない

Webページの
古さの視覚化

ように気を付けなければなりません。今回は
Webページの古さを直感的に感じることがで
きるようにするための工夫を紹介します。

廃れるリンク

　はこだて未来大学の塚田浩二氏は、古いペー
ジへのリンクが汚く見える「廃れるリンク注2」と
いうシステムを開発しました。
　図1のようなWebページは古い情報へのリンク
を含んでいるのですが、これを見るだけではどの
リンクがどれだけ古いのかはわかりません。廃れ
るリンクシステムを使うと、図2のように古いペー
ジへのリンク文字列が汚く表示されるため、リン
ク先のページが古いことが明らかにわかります。
　廃れるリンクシステムはプロキシサーバとし
て実装されています。廃れるリンクのプロキシ
サーバ経由でWebページにアクセスした場合、
アクセス先のページの古さを取得したあとで、
古さに応じてリンクのCSSを調整することに
よって古さを表現しようとしています。

増井ラボノート

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張って楽できるなら、それに越したことはないでしょ
う。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろんな
システムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用しているよ
うな単純かつ便利なシステムをたくさん紹介していきます。

第 13 回　廃れるページ

 ▼写真1　 明らかに古い壁 ▼図1　 古い情報へのリンクを含む
Webページ

 ▼図2　 廃れるリンクを利用した結果

注1） http://thinkit.co.jp/free/article/0709/19/ 注2） http://mobiquitous.com/dying-link.html

http://thinkit.co.jp/free/article/0709/19/
http://mobiquitous.com/dying-link.html

NO.

6 - Software Design Nov. 2016 - 7

廃れるページ

廃れるバックグラウンド

　リンク先の古さを視覚化するだけでなく、ペー
ジそのものも古く見せると良いでしょう。自分
のWebページの場合、作成時刻や編集時刻を
利用して、きめ細かく古さを表示できます。
　図3は私が昔作成した「廃れるバックグラウ
ンド」というシステムです。古さに応じてラン
ダムドットの数を増やしていますが、あまり美
しいとは言えないようです。
　図4はページ内の各部分のアクセス状況によっ
てバックグラウンド表示を変えてみたものです。
gimpで自動生成したシミのような画像と日付
を表示することによって、古さを直感的に理解
させようとしています。
　廃れるバックグラウンドシステムは、バック
グラウンド画像がイケてなかった点や、古いペー
ジが読みにくくなってしまった点であまり評判
がよくなかったため、真面目に運用せず放置状
態になったまま現在に至っています。

　「廃れるリンク」も「廃れるバックグラウンド」
も10年以上前のシステムなのですが、手間の
割に便利さが不足していたり見栄えが悪かった
りしたため、日常的に使ってはいませんでした。
一方、Web上の情報がますます増えてきた現在、
古い情報を新しいものと勘違いする危険は増え
ていますし、古さ
の理解は以前より
も重要になってい
る気がするので、
「廃れるバックグ
ラウンド」と同様
のシステムを次の
方針で作りなおし
てみることにしま
した。

廃れるページ

・ブラウザ拡張機能として実装
・ページの古さを最初の数秒だけ全面に表示

　任意のWebページに対して古さを視覚化す
るためには、どこかになんらかの細工が必要に
なるわけですが、最近のChromeやFirefoxは
ブラウザ拡張機能を簡単に作れるようになって
きたので、最近はこれを利用するのが良い気が
しています（図5）。
　従来はブラウザ拡張機能を作るのはかなりた
いへんでしたが、最近はFirefoxでもChrome
でも同じ形式で開発ができますし、開発の手間
もかなり小さくなっています。

ブラウザの挙動を制御する方法

 ブラウザ拡張機能
　ブラウザの挙動を変えたり機能を追加したり
するために、さまざまな「ブラウザ拡張機能」が
利用されています。ブラウザ拡張機能とはブラ
ウザアプリケーションの見栄えや動きを変更し
たり拡張するためのもので、ブラウザの挙動を
制御するためのたくさんのAPIを利用して開
発されるものです。たとえば ブラウザのタブ

 ▼図3　 古くなったWikiページ

 ▼図4　 バックグラウンド画像を工夫し
てみたもの

 ▼図5　廃れるページ

増井ラボノート

8 - Software Design

の挙動を変更したい場合は、タブの挙動を変更
するAPIを利用することになります。
　便利なブラウザ拡張機能を使っている人は多
いでしょうが、ブラウザ拡張機能を自分で作っ
て活用している人は少ないと思います。
　ブラウザ拡張機能を作る方法はブラウザごと
に異なっていましたし、APIが膨大で理解する
には努力が必要ですし、作成方法がしょっちゅ
う変わるので対応がたいへんだったりしたから
です。
　たとえばFirefoxの場合、

・Chrome XULを利用して開発
・Pythonベースのcfxコマンドでadd-on SDK

を利用して開発
・Nodeベースのjpmコマンドでadd-on SDK

を利用して開発
・Web-extコマンドで開発

のように開発方法が追加されたり変化したりし
ており、最新の開発手法について行くのは苦労
したものです。

 ブックマークレットとGreasemonkey
　ブラウザの挙動に変更を加えるのではなく、
Webページの内容を利用したり修正したりするた
めには「ブックマークレット」や「Greasemonkey」
などのシステムが利用されてきました。ブックマー
クレットとはブラウザのブックマークとして登録
したJavaScriptプログラムで、普通のブックマー
クを呼び出すのと同じ方法で呼び出して実行する
ものです。
　ブックマークレットはブックマークメニュー
などから手動で起動する必要がありますが、
Webページに対して自動的になんらかの処理
を行いたい場合は Greasemonkeyというシステ
ムが従来よく利用されていました。
　GreasemonkeyはFirefoxの拡張機能で、ユー
ザがGreasemonkeyに登録したJavaScriptコー
ドを自動的に呼び出して利用できるというもの

でした。
　私の場合、拡張機能のAPIを勉強するのは
面倒だけれど、自動的にWebページを操作し
たいことは多かったので、ブックマークレット
やGreasemonkeyをよく利用していました。
　たとえば、パスワードを要求するWebサー
ビスに対して、本誌2016年6月号で紹介した
EpisoPassのような「なぞなぞ認証」でログイン
を可能にするような Greasemonkeyスクリプト
を作って使っていましたし、 面白いページを
Gyump（2015年12月号）に登録するためのブッ
クマークレットは頻繁に使っています。
　このように、これまでは、

①ブラウザの挙動を変えるためにブラウザ拡張
機能を利用

②Webページを手動で操作するためにブック
マークレットを利用

③Webページの自動処理化のためにGrease
monkeyを利用

のような使い分けをするのが普通だった気がし
ます。
　現在見ているWebページに対する処理を指
定できるブックマークレットというのは便利な
しくみなのですが、そもそもWebページの
URLを記憶するためのブックマーク機能を
Webページの操作に利用するというのはわか
りにくいですし、登録も起動も簡単ではないの
で世の中で広く使われるようにはなっていない
ようです。本来、別のWebページにジャンプ
する機能と今見ているWebページに手を加え
る機能はかなり性質が異なりますから、同列に
扱うのは適切でない気がします。
　一方、ブラウザ拡張機能というのは、ブラウ
ザの見栄えや挙動を変えるというはっきりした
意図が明らかですし、インストールや管理も簡
単なので、そういう用途にはこちらの方が向い
ていると思われます。最近は開発事情が若干改
善しており、それほど苦労しなくても Java

NO.

8 - Software Design Nov. 2016 - 9

廃れるページ

Scriptで拡張機能を作成できるようになってき
たので②も③もブラウザ拡張機能を利用して問
題ない状況になりつつあります。ブラウザ拡張
機能の作成が簡単になってきた現在、もっとさ
まざまなブラウザ拡張機能が出現してきてほし
いものだと思います。
　現在、どこでもEpisoPassが使えるようにす
るための拡張機能を開発中なのですが、拡張機
能をうまく使うと EpisoPassがかなり便利に
なりそうです（図6）。
　こういう状況なので、廃れるページもブラウ
ザ拡張機能として実装するのが良いと思われます。

 廃れるページの実装
　廃れるページの原理はとても簡単で、

①Webページの時刻を取得する
②古い場合は全画面を古い感じにして古さを表

示する

というだけです。②については「廃れるバック
グラウンド」で利用していたような画像を
<div>タグで重ねるだけなので簡単ですが、時
刻を取得するのは少し注意が必要です。
　Webページの作成時刻は document.last
Modifiedで取得できるはずなのですが、これ
がうまく取得できないページがあります。また、
動的に生成されるページでは現在時刻が設定さ
れてしまう場合があります。私はLivedoor
Blog注3で時々ブログを書いているのですが、
このサービスではブログ記事ページの作成時刻
は常に現在時刻になってしまい、記事内容が古
くてもページは最新という状況になってしまい
ます。本当の古さを知るためにはきちんと内容
を調べる必要がありますが、これは難しいので、
ページ中に出現する日付をページの古さだと解
釈することにしています。

 利用結果
　廃れるリンクも廃れるバックグラウンドも、

いろいろ用意が必要な割に効果がパッとしない
せいか、流行するということはありませんでし
たし、私自身も利用していませんでした。しか
しブラウザ拡張機能を使ったものは、インストー
ルが簡単ですし、ページの古さがすぐにわかる
ので、今のところ満足して利用しています（図
7）。ページの古さの表示はウザいこともある
でしょうが、数秒待てば完全に消えてしまいま
すし、古いページにアクセスする機会はそれほ
ど多いわけではありませんから、なんとか便利
さとウザさのトレードオフが我慢できるレベル
になっている気がします。
　廃れるページの拡張機能は、Chromeや
Firefoxのストアに「sutare_extension」という
名前で登録してあるので簡単にインストールで
きます。またソースをGitHub注4で公開してい
るのでご利用ください。ﾟ

 ▼図6　 Amazonのログイン画面でEpisoPassを利用
する拡張機能

 ▼図7　「廃れるページ」の利用結果

注3） http://masui.blog.jp/
注4） https://github.com/masui/SutareExtension

http://masui.blog.jp/
https://github.com/masui/SutareExtension

宮原徹の

10 - Software Design

ダイエットに成功して、
お酒解禁です

　6月頭からスタートした断酒ダイ

エットですが、目標である「3ヵ月間

で75kgまで落とす」を無事達成でき

ました。3ヵ月目の9月1日（木）に

75.6kgになりましたので、減酒フェー

ズに移行しました。今後「食生活は

変えない」「体重をリバウンドさせな

い」「73kgを目標」「飲酒は最小限に

抑える」の予定です。

「頑張らない」で集まる
アンカンファレンス

　アンカンファレンスの定義はいろ

いろとありますが、筆者の中での定

義は「頑張らない」ということです。

通常のカンファレンスを開催する場

合、次の作業が必要となります。

・日程決め／場所取り
・セミナーなどのプログラム調整
・デモ展示の調整

・配布物作成
・事前受付
・当日運営

　OSCはほぼ毎月、各地で開催され

ており、フルタイムスタッフが3名、

日々準備作業を行っています。しか

し、規模を拡大するには限界があり

ます。また、多くの企業・団体から

のご支援も未来永劫続くとは限りま

せん。OSCを持続的に開催するため

には、低コストで運営できる形態も

模索しておく必要があります。そこ

で、2016年はとくに「オープンソー

スアンカンファレンス（OSunC）」の

開催に力を入れています。

4回開催で実績のある
OSunC川越

　現状、OSunCで実績のあるのが

川越（小江戸）です。2013年から毎

年、すでに4回開催の実績がありま

す。とくに第3回は筆者が体調不良

で不参加でしたが、問題なく開催さ

れました。これは、開催の中心に

なっている小江戸らぐのみなさんの

貢献が大でしょう。OSunC川越で

は、ライトニングトーク＋立食の

パーティーという形式で、和やかな

雰囲気が最大の特長です（写真1）。
　発表者も、当日その場で決定する

ので、事前準備を頑張らなくてもよ

いアンカンファレンスの趣旨に合っ

ているといえます。OSunC川越は、

OSunCのリファレンスモデルの1

つと言ってよいでしょう。

千葉工業大学で開催した
OSunC千葉

　OSC東京は、会場が新宿から西に

小一時間とやや遠いのが難点です。

とくに千葉方面からは片道2時間は

かかります。とある日、千葉で活動し

ている皆さんと飲んでいて、「OSunC

を千葉でやろう」「千葉工業大学が駅

前で便利だよ」「そうだ、シェル芸の

人（上田隆一氏）がいるじゃないか」

というわけで、OSunC千葉の開催

OSunCリレー（川越→千葉→金沢）とAKB第９回

 ▼写真1　 いつものメンツでゆっくり話せるのが
OSunC川越のいいところ

 ▼写真2　 千葉は首都圏だけあって、たくさんの人が集まりまし
た。千葉工業大学のキャンパスで集合写真

宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

10 - Software Design Nov. 2016 - 11

R e p o r t

OSunCリレー（川越→千葉→金沢）とAKB第9回

が決まりました。OSunC川越のス

タイルを踏襲しつつ、学生食堂を食

事付きで借り、飲み物などを近くで

買い出し、というスタイルで開催し

ました（写真2）。会場を借りる手続

きなどでやや手間取るところはあり

ましたが、最後は現場合わせで乗り

きり、2次会まで楽しく過ごせまし

た（写真3）。反省点は、飲み物が多

過ぎたことでしょうか。持ち帰りに

備えて、飲み物は350ml缶、食べ物

は個別包装を選ぶとよいでしょう。

また、「足りなかったら買い足せば

いい」と割り切り、最初から少なめ

に見積るべきかもしれません。

北陸地域で初開催の
OSunC金沢

　これまで北陸地域でOSCは開催

されませんでしたが、2015年3月

から北陸新幹線が開通したこともあ

り、8月27日（土）にOSunC金沢を

開催しました。北陸地域のコミュニ

ティの皆さんが中心になり、初開催

ということで県外からの参加者も多

数集まりました（写真4）。開催場所

は、観光スポットでもある近江市場

の目の前の会場を選択しました。午

前中の会場準備のあと、近江市場で

名物の「ノドグロ」やお寿司などを

買ってきて皆でランチ会、その後は

LT＋立食形式の川越方式に、展示を

追加する形での開催となりました。

「次は冬の名物のブリやカニを楽し

む合宿をやろう」「OSunCやOSCも

やりたい」という意見が出るなど、地

域のコミュニティ活動を活性化する

きっかけ作りになったようです。

自由にやることの難しさ

　アンカンファレンスで最も難しい

のは「自由にやる」ということです。

ルールが定まっていれば、それに従

えば問題ありません。OSCは「イベ

ントのルール」の提示を目的として

きました。しかし、自由にやること

は「1から自分で考える」ということ

です。多くの人は自由に慣れていな

いので、アンカンファレンスで何を

していいのかわからず、戸惑ってし

まうのかもしれません。今後、開催

を重ねて「アンカンファレンスとは」

という共通理解を築いていき、時に

はそれを壊してみるのが大事ではな

いか。そう感じる千葉、金沢での

OSunC開催でした。s

 ▼写真3　 シェル芸の人の挨拶で2次会開始。2次
会も30名以上で座るところがない人も

 ▼写真4　 北陸ではOSC系のイベントは初開催ですが、50名も
集まってくれました

市場でお寿司の買い出し。左は北海
道から参加してくれた松井健太郎氏

朝から豪華海鮮丼が食べられるのも
日本海側の魅力ですね

近江市場は食の宝庫

　金沢を訪れた観光客が必ず訪れるスポットの1つが近江
市場です。日本海の幸だけでなく、
独特な「加賀野菜」も並んでいて、楽
しませてもらえます。
　今回は、OSunC金沢のお昼ご飯
だけでなく、朝ご飯も市場で海鮮丼
という、かなり贅沢な食事を楽しん
できました。季節によっては甘エビ
やカニ、ブリなども美味しいそうで
す。次回は冬の時期に合宿をしたい
ね、という話をしているので、北陸
のAKB（Amaebi、Kani、Buri）を楽

しみにまた訪れたいですね。

12 - Software Design

mbed OS 5

　前回説明をしてきたように、mbed OS 5は
mbed 2.0からの移行コストが比較的低くできて
います。今回は、mbed 2.0のころから公開され
ていたmbedアプリケーションボード注1向けの
ライブラリを使って、ちょっとしたアプリケー
ションを実際に作ってみることにします。この
連載のタイトルは「なんでもネットにつなげちま
え」ですので、mbed LPC1768をネットワーク
に接続してセンサの値を送信したいところです。
しかし、現在のところmbed Clientがすんなり
動くデバイスにmbed LPC1768が含まれていま
せん。そこで、今回はクラウドにつなげるので
はなく、スタンドアローンで動かすところまで
やってみます。

ライブラリ

　まず、mbedアプリケーションボード向けのラ
注1） http://ssci.to/1276

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

mbed OS 5での開発第
17
回

イブラリを見つけましょう。mbed.orgにある
ページ注2を見てみます。今回は、ここにある液
晶のライブラリと温度センサのライブラリを使っ
てみることにします。
　まず、プログラムを作ります。mbedオンライ
ンコンパイラを開き、「新規」の「新しいプログラ
ム」をクリックします（図1）。ここでプラット
フォームとしてmbed LPC1768が選択されてい
ることを確認し、テンプレートとして「mbed OS
Blinky LED HelloWorld」を選択します。プロ
グラム名は何でもよいですが、今回は「mbed-os-
example-app-board」としました。下部にある、
「プログラムとライブラリを最新のバージョンに
アップデートする」のチェックボックスは、
チェックを入れておいてください。
　次に、液晶（C12832）と温度センサ（LM75B）
のライブラリのインポートをしましょう。先ほ
どのページにあるC12832の、「Import library」
ボタンをクリックします。するとオンラインコ
ンパイラが開き、ライブラリをインポートする
ダイアログが表示されます（図2）。
　「Target Path」が先ほど作ったプログラムに
なっていることを確認し、「Import」ボタンをク
リックしてください。C12832のライブラリの
インポートを終えたら、LM75Bのインポート
も同様に行います。

プログラム

　今回参照したサンプルプログラムは、mbed
2.0用の液晶を使うサンプルコード（リスト1）

注2） https:/ /developer.mbed.org/cookbook/mbed-
application-board

はじめに

ライブラリ

プログラム

 ▼図1　新しいプログラムの作成

https://developer.mbed.org/cookbook/mbed-application-board
http://ssci.to/1276

12 - Software Design Nov. 2016 - 13

mbed OS 5での開発 第
17
回

と、mbed 2.0用の温度センサの値を読むサンプ
ルコード（リスト2）です。
　インポートを終えると、ワークスペースは図
3のようになっていると思います。ここでmain.
cppをダブルクリックして開き、それぞれのラ
イブラリ用のサンプルプログラムを参照してプ
ログラムを書きます。液晶にカウントアップを
するプログラムと、温度センサの値を読んで
UARTで送信するプログラムを参考にしたので、
液晶に温度センサの値を表示するようなプログ
ラムを書いてみました（リスト3）。
　変更点は、mbed 2.0のwait()を、mbed OS
5のThread::wait();に置き換えたことくらい
です。また、このサンプルを長時間実行する人
はいないでしょうが、intである jを際限なく加
算しているのが気になったので、一定値で jを1
に戻すようにしました。それだけではつまらな
いので、別にスレッドを実行して、LEDの点滅
もさせてみました（写真1）。

ローカル開発

　次に、mbed-cliを使ってローカルでの開発を
行ってみましょう。ここでは、OS Xを使って
ビルドを行ってみました。もちろん、Windows

ローカル開発

 ▼図2　ライブラリのインポート

 ▼図3　ワークスペース

 ▼リスト1　mbed 2.0用の液晶を使うサンプルコード
 ▼リスト2　 mbed 2.0用の温度センサの値を読むサン

プルコード

#include "mbed.h"
#include "C12832.h"

C12832 lcd(p5, p7, p6, p8, p11);

int main() {
 int j=0;
 lcd.cls();
 lcd.locate(0,3);
 lcd.printf("mbed application board!");

 while(true) {
 lcd.locate(0,15);
 lcd.printf("Counting : %d",j);
 j++;
 wait(1.0);
 }
}

#include "mbed.h"
#include "LM75B.h"

LM75B tmp(p28,p27);

int main () {
 while (1) {
 printf("%.2f¥n",tmp.read());
 wait(1.0);
 }
}

 ▼写真1　動作しているところ

14 - Software Design

やLinuxでも同様の手順で開発を行うことがで
きます。
　なによりも最初に、mbed-cliの環境構築をし
なければなりませんが、そこはWebに書いた記
事を参考にしてください。この手順は、Windows
用注3と、OS X用注4が日本語で書かれています。
　環境が構築できているところで、mbed-cliを
使って、まずプロジェクトを作成します。

注3） https://developer.mbed.org/users/ytsuboi/notebook/
ja-setup-mbed-cli-on-windows/

注4） https://developer.mbed.org/users/okano/notebook/
setup-mbed-cli-on-mac-os-x-JP/

$ mbed new mbed-os-example-app-board

　すると、mbed-os-example-app-boardという
ディレクトリが作成され、中にmbed OSがダウ
ンロードされます。とりあえず、まず作られた
ディレクトリの中に入り、オンラインコンパイ
ラの操作でインポートしたときと同様にインポー
トを行います（図4）。
　次に、プログラムを書きましょう（筆者は、vi
党員です）。内容は、先ほどのリスト3と同一
です。

$ vi main.cpp

　ビルドするターゲットの設定
をしましょう。GCCを使って、
mbed LPC1768用のバイナリを
作るように設定します。

$ mbed toolchain GCC_ARM
$ mbed target LPC1768

　最後にコンパイルします（図
5）。
　これでバイナリができあがり
ましたので、mbedに転送をしま
す（図6）。
　コピーを終えたところで、mbed
LPC1768のリセットボタンを押
すと、オンラインコンパイラで開
発を行ったときと同様の成果が
得られます。

コンパイラによる違い

　オフラインでビルドしてでき
あがったバイナリのファイルサ
イズを見てみると、筆者の手元
での実行時は、72,080byteでし
た。これに対して、オンライン
コンパイラでビルドしたバイナ
リは、38,556byteです。ファイ
ルサイズが大きく異なるのは、

コンパイラによる違い

 ▼リスト3　今回作成したサンプルコード

#include "mbed.h"
#include "C12832.h"
#include "LM75B.h"

C12832 lcd(p5, p7, p6, p8, p11);
LM75B sensor(p28,p27);
DigitalOut led1(LED1);

void led_thread() {
 while (true) {
 led1 = !led1;
 Thread::wait(1000);
 }
}

int main() {
 int j=1;

 Thread th1(osPriorityNormal, (DEFAULT_STACK_SIZE), NULL);
 th1.start(led_thread);

 lcd.cls();
 lcd.locate(0,0);
 lcd.printf("mbed application board");

 while(true) {
 lcd.locate(0,11);
 lcd.printf("Counting : %d",j);
 if (j == 60) { j = 0; };
 j++;

 lcd.locate(0,22);
 lcd.printf("Temp = %.3f", sensor.read());

 Thread::wait(1000);
 }
}

https://developer.mbed.org/users/ytsuboi/notebook/ja-setup-mbed-cli-on-windows/
https://developer.mbed.org/users/okano/notebook/setup-mbed-cli-on-mac-os-x-JP/

14 - Software Design Nov. 2016 - 15

mbed OS 5での開発 第
17
回

オンラインコンパイラがARMのarmccというコ
ンパイラを使っているのに対し、ローカルでは
GCCを使っているのが原因です。
　OS XではGCCしか実行できませんが、Win
dowsでは、MDK-ARM注5や、IAR Embedded
Workbench注6といった商用のコンパイラが実行
できます。試しにWindowsで、これらのコンパ
イラを使ってビルドしてみたところ、MDK-
ARMでビルドすると38,920byte、Embedded
Workbenchでは44,080byteのバイナリが生成さ
れました。今回は、MDK-ARMのほうが小さな
バイナリを生成しましたが、プログラムによっ
ては、Embedded Workbenchのほうが小さなバ

注5） http://www.arm.com/ja/products/tools/software-
tools/mdk-arm/

注6） https://www.iar.com/jp/iar-embedded-workbench/

イナリを生成することもあります。
　普段使っているLinuxなどのソフトウェア開
発では、バイナリのサイズをあまり意識する機
会がありませんが、マイコンで動かすときには
Flashメモリのサイズなどの制約があります。ま
た、バイナリファイルのサイズが小さいという
ことは、一般的には実行効率も良いバイナリが
生成されているということを意味します。以前、
マイコン向けのベンチマークソフトをビルドし
て実行してみたことがありますが、こうした商
用コンパイラでビルドしたバイナリのほうが明
らかに高いスコアを出しました。本格的な開発
を行うときには、こうしたコンパイラの検討も
必要となるでしょう。当面は、オンラインコン
パイラを使うことで、効率のよいバイナリをビ
ルドして使うことができます。｢

 ▼図4　手動でインポートを行う

$ cd mbed-os-example-app-board/
$ mbed add http://developer.mbed.org/users/chris/code/C12832/
$ mbed add http://developer.mbed.org/users/chris/code/LM75B/

 ▼図6　mbedへ転送する

$ cp ./.build/LPC1768/GCC_ARM/mbed-os-example-app-board.bin /Volumes/MBED/

 ▼図5　コンパイル作業

$ mbed compile
～中略～
Link: mbed-os-example-app-board
Elf2Bin: mbed-os-example-app-board
+-------------+-------+-------+------+
¦ Module ¦ .text ¦ .data ¦ .bss ¦
+-------------+-------+-------+------+
¦ Fill ¦ 106 ¦ 4 ¦ 5 ¦
¦ Misc ¦ 53056 ¦ 2228 ¦ 800 ¦
¦ hal/common ¦ 4428 ¦ 4 ¦ 401 ¦
¦ hal/targets ¦ 5383 ¦ 4 ¦ 244 ¦
¦ rtos/rtos ¦ 829 ¦ 4 ¦ 4 ¦
¦ rtos/rtx ¦ 6343 ¦ 20 ¦ 6810 ¦
¦ Subtotals ¦ 70145 ¦ 2264 ¦ 8264 ¦
+-------------+-------+-------+------+
Allocated Heap: 2048 bytes
Allocated Stack: 3072 bytes
Total Static RAM memory (data + bss): 10528 bytes
Total RAM memory (data + bss + heap + stack): 15648 bytes
Total Flash memory (text + data + misc): 72409 bytes
Image: ./.build/LPC1768/GCC_ARM/mbed-os-example-app-board.bin

http://www.arm.com/ja/products/tools/software-tools/mdk-arm/
https://www.iar.com/jp/iar-embedded-workbench/

16 - Software Design

Parallels Desktop for Mac
Pro Edition
Mac上で、WindowsやほかのOSを実行できる仮想化ソフトで
す。最新版では、Windows 10およびmacOS Sierraに対応し
ています。また、20以上のツール・ユーティリティをまとめた

「Parallels Toolbox for Mac」を搭載。「Pro Edition」では、
DockerやChef、Jenkinsといった開発ツールにも対応。パッ
ケージ版（1年期間更新ライセンス）をプレゼントします。

提供元 	パラレルス　https://www.parallels.com/jp

8BITDO
DPAD USB HUB
レトロゲーム機を彷彿とさせる十字ボタン風デザインのUSBハ
ブです。3つの出力ポート（USB2.0/1.1）と1つの入力ポート

（microUSB-B）を搭載。PS4、各種パソコンに対応しています。
USB-A・microUSB-BのUSBケーブルも付属。

提供元 	サイバーガジェット　http://www.cybergadget.co.jp

2名

2名

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2016年11月17日です。プレゼント
の発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

国内初の、Elixirに関する言語本。言語の基
本からElixirの得意分野である並列処理、
さらにはマクロといった応用機能まで広く
解説しています。著者は『達人プログラ
マー』執筆の有名Rubyプログラマ。

提供元 	オーム社
	 http://www.ohmsha.co.jp

プログラミングElixir
Dave Thomas 著

2名

日本における著名Goプログラマが勢ぞろ
いして書かれた、Go言語のムック本。実
際に開発・運用するうえでのTipsが盛りだ
くさんです。表紙のキャラクタはGoのマ
スコット「Go Gopher（ジリス）」。

提供元 	技術評論社
	 http://gihyo.jp

みんなのGo
松木 雅幸、mattn、藤原 俊一郎、
中島 大一、牧 大輔，鈴木 健太 著

2名

大学におけるプログラミング授業の教科書
として構成されており、C++の例題・練習
問題を解きながら、プログラミングのスキ
ルを磨けます。総ページ数は1,248、価
格は税抜き7,000円。

提供元 	アスキードワンゴ
	 http://asciidwango.jp

C++によるプログラミングの原則と実践
Bjarne Stroustrup 著

2名

読者プレゼント
のお知らせ

Linuxサーバの構築、運用、問題判別に必
要な知識と手法を、具体的な設定方法と合
わせて解説しています。改訂にあたり、最
新版のRHEL 7に対応し、systemdに関
する加筆が行われました。

提供元 	技術評論社
	 http://gihyo.jp

［改訂新版］プロのためのLinuxシステム
構築・運用技術 中井 悦司 著

2名

QiitaノベルティTシャツ（Mサイズ）
Incrementsが展開する、プログラマのための技術情報共有サー
ビス「Qiita」（https://qiita.com）のノベルティTシャツです。

提供元 	Increments　http://increments.co.jp

1名

http://www.cybergadget.co.jp
https://www.parallels.com/jp
http://increments.co.jp
http://www.ohmsha.co.jp
http://gihyo.jp
http://gihyo.jp
http://asciidwango.jp
http://sd.gihyo.jp/

第 章6第 章5第 章4 p.44 p.52 p.61

第　 特集1

クラウドコンピューティングの
しくみ AWS・Azure・SoftLayer・

Heroku・さくらのクラウド

新人のときに知っておきたかった

第 章3第 章2第 章1 p.18 p.28 p.35

これからクラウドする人に教えたい

Amazon Web Services
のシン・ノウハウ
Author 多田 貞剛

インフラの構築・運用はPaaSで省略

スモールスタート＆高速開発
に最適なHeroku
Author 織田 敬子

ベアメタルサーバにはどんな利点がある？

SoftLayerとBluemixを
擁するIBM Cloudの強み
Author 常田 秀明

Linuxが動く！　RedHatが動く！

オープンソースとの親密度を
深めるMicrosoft Azureのいま
Author 戸倉 彩

ハードウェアからしっかり解説

“仮想データセンター”を
目指したさくらのクラウド
Author 篠田 真一、宮堂 達也

「クラウドコンピューティングのしくみを解説できますか？」そんな問いかけ
が本特集の始まりでした。新入社員の仕事が最初からクラウドというのも、

もはや決して珍しい話ではありません。しかし、これだけ普及したにもかかわらず、
そのしくみをわかりやすく解説しようとすると意外とできないものです。本特集では、若手エンジニ
アに向けて最前線で活躍する執筆者がクラウドのしくみ解説を書き下ろしました。これらの知識を
深めることで、技術習得の手がかりを得てください。

Author 五十嵐 綾、堀内 晨彦

猫先生かく語りき

そもそもクラウドって？

18 - Software Design

仮想マシンってなんだ？！

―クラウドを使った社内システム構築チーム
に配属された新人君。ある日曜日の昼下がり。
カフェでクラウドについて勉強を始めました。
するとどこからか猫が現れて……。

うーん。会社でクラウドサービスを使う
ことになったんだけど、何から手を付け

ればいいのかなあ。
どうしたの？

？！　猫が喋った!

さっきから唸っているけど、何か困って
いるのかな……。
クラウドについて知りたいのだけど、ク
ラウドってなんだかモヤモヤとしたイメー

ジしかなくて。
そうね。君はどのようなものだと思って
いるんだい？（猫が喋っているというのに、

順応が早いな……）
えっと、インターネットの向こうにサー
バがあって、それをいつでも作ったり消

したりして使える……みたいなもの？

なるほど。クラウドのしくみについて理
解が曖

あいまい

昧みたいだから、まずはクラウド
サービスの基礎となっている仮想化技術を学ぶ
のがよさそうね。

仮想化技術？

そう。一口に仮想化技術と言ってもいろ
いろあるんだけど、まずは仮想マシンを

実現している仮想化技術を知るのが良いかな。
教えてください。よろしくお願いします！

仮想マシンとは、仮想化技術によって1
台のマシン上で複数の仮想的なマシンを

動かせるようにしたものだよ。

クラウドコンピューティング導入が進んだ2008年頃に比べ、現在はさまざまなサービスが普及し、より
複雑なシステムになってきています。マイクロサービスやサーバーレスという概念まで出てきました。本章
では知識の整理をしながら調べていきましょう。登場人物は、とあるクラウドサービス企業に務める新人
君。そして猫（？）先生です。

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

第 章1
猫先生かく語りき

そもそもクラウドって？

Author 五十嵐 綾（いがらし あや）　堀内 晨彦（ほりうち あきひこ）

18 - Software Design Nov. 2016 - 19

ふ む ふ む。会 社 で よく聞くVMって
Virtual Machine（仮想マシン）の略なの

でしょうか。
そう！

なるほど。しかし……文字だけだと想像
しづらいですね。
では、図1の仮想マシンのイメージを見
てみようか。
ゲスト、ホストという謎の言葉ががが。

これはただの呼び名。一般的に仮想化さ
れる側をゲスト、仮想化を提供する側を

ホストと呼ぶ。よくゲストOSという言葉が使わ
れるけど、ゲスト側の仮想マシン内で動くOSの
ことを示すの。

そういうことなんだ。じゃ、仮想化を提
供する側の物理マシンは、ホストマシン

と呼ばれているの？
正解！

やった！　仮想化技術によって仮想マシ
ンが実現されることはわかってきました。

ただ、なぜクラウドサービスには仮想マシンが利
用されているの？

よい質問！　仮想マシンを活用するメリッ
トはいくつかあるけど、新人君、何か思

いつくものはある？
うーん。1台で複数のマシンが動かせる
ということは、複数台使用するときと比

べてサーバを置く場所や電力の消費を抑えること
ができるかも（図2）。

そのとおり。あとは仮想マシン間で共有
してリソース（CPUやメモリ、ディスク

容量などのこと）の利用効率を高めることもでき
るね（図3）。

確かに。最近のサーバは性能が良いので、
単一用途でリソースを使い切ることはあ

んまりないとか言われていますね。
ほかにもスナップショットを利用して環
境の保存や複製をすることができるよ。
スナップショット？　写真でも撮るの？

一瞬を記録するという点では写真と近い
ね。スナップショットとは、ある時点で

 ▼図1　仮想マシン（ホストとゲストの関係） ▼図2　仮想化技術でサーバの占める場所を節約

 ▼図3　仮想化技術で利用効率を向上

仮想マシン
ゲスト

仮想化技術

ホスト スペース削減

利用効率を向上

リソース共有

CPU
使用率 80%
CPU

使用率 80%

30%30%50%50%

CPU
使用率 50%
CPU

使用率 50%

猫先生かく語りき
そもそもクラウドって？

第 章1

20 - Software Design

の仮想マシンのディスク、データや設定の状態
を記録したもののこと（図4）。

そうだったんだ。じゃあ開発環境を1つ
作って、これを複製してチーム全員が同

じ環境で開発するということもできそう！　あれ、
もしかして任意の時点を記録しているということ
は、仮想マシンに対して修正を加えたあとも元に
戻すことができちゃうの？

そう！　クリーンな状態でスナップショッ
トを撮っておけば、試験を実行していて

環境が汚れたとしても、そのつどクリーンな状態
に復元できるよ。

それは超便利！

新人君は、サービス公開されているもの
の前任者が異動してしまったりして、再

構築すらできなくなった古いサーバを見たことは
ないかな？

そういえば思い当たるものが1つ……。
サーバのパーツも生産終了しちゃって、

先輩が壊れないよう祈っていたなぁ。
そんなサーバも、仮想マシンを使ってい
たら救えたかもしれないよ。
なんと！　どんな機能を使うの？

仮想マシンは、別のホストマシンに移動
させることができるんだ（図5）。サービ

スが動いている環境……つまり、OSは当時の環
境のまま、ホストマシンには最新のサーバを使う
ということができるよ。ライブマイグレーション
という、動作中の仮想マシンを停止させることな
く別のホストマシンに移動させる機能もあるね。

仮想マシンってすごい！　もっと詳しく
知りたい！

仮想マシンのしくみを
知ろう

ハイパーバイザの種類には
いろいろある？
では、Hypervisor（以下ハイパーバイザ）
の種類について説明しよう。
いきなり知らない単語！

ハイパーバイザとは、仮想マシンを実現
するための制御プログラムのことだよ。

仮想化モニタ（VMM：Virtual Machine Monitor）
とも呼ばれているね。

「ハイパー」ということは「スーパー」と
かもある？
一般的にOSのカーネルをSupervisorと
呼ぶよ。仮想マシンは、この上位で制御

を行うのでハイパーバイザと名付けられたんだ。
なるほど。

では話を戻そう。分類方法はいくつかあ
るけど、動作方法に着目すると大まかに

 ▼図4　便利な仮想マシンのスナップショット機能

 ▼図5　仮想マシンを引っ越し

y日
x日

VMの復元
（y日からx日）

VMの複製

スナップショット
を取得

VMを移動

状態は
そのまま

新しいサーバ古いサーバ

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

20 - Software Design Nov. 2016 - 21

2つに分類できる。図6を見てみよう。左がホス
ト型、右がネイティブ(ベアメタル)型のハイパー
バイザの構造を示しているよ。

むむっ。なんだか複雑だなぁ。

単純なので大丈夫だよ。それでは、1つ
ずつ説明していこう。ホスト型は、ホス

トOS上で動くハイパーバイザだ。Type2 VMM
とも呼ばれ、VMwareのWorkstation注1などがこ
れにあたる。

あ、これは使ったことがあります！　デュ
アルブートのように再起動も必要なく、

ホストOSのアプリケーションを起動したまま開
発に必要なOSも利用できるので便利。

そう。この型はアプリケーションとして
手軽に使えるという利点がある。ただ、

ホストOSを経由してハードウェアを操作するた
めに、オーバヘッドが大きくあまり性能がでない
という欠点もある。

たしかにサーバで仮想化するときは仮想
化以外のアプリケーションを起動するこ

とは少なそうですし、ハードウェアの処理効率が
下がるのが大きく響きそうですね。

そう、そこで登場したのがもう1つのネ
イティブ型なんだ。この型では、ハイパー

バイザ自体がOSを兼ねてハードウェア上で動く。
仮想化に最適化されているので処理効率がよくなっ
ているよ。Type1 VMMとも呼ばれていて、Citrix
のXen注2がこれにあたるね。

ふむふむ。

ハイパーバイザは明確に上記の2つに分
け ら れ る わ け で は な い ん だ。Linux

KVM注3は、ネイティブ型に分類されることが多
いけど、ゲストOSがホストOS上で1プロセス
として動作するためホスト型とも言われているよ。

注1） URL http://www.vmware.com/jp/products/workstation.html

注2） URL https://www.xenproject.org/

注3） URL http://www.linuxkvm.org/

ちょっと混乱してきました……。

まずはこんな分類があることだけ覚えて
おいてね。
了解です！

準仮想化と完全仮想化の違い

今度はゲストOSの種類を見ていこう。

ゲストOSはハイパーバイザ上で動くOS
のことでしたっけ？
正解だね。このゲストOSは、準仮想化
と完全仮想化の2つに分類することがで

きるよ。
準ということはOSに仮想化されてない
部分がある？
そうだね。準仮想化とは、ゲストOSのカー
ネルに手を入れ、仮想化によるハードウェ

ア操作のオーバヘッドを減らしたものなんだ。ネ
イティブ型の例で挙げたXenはこの準仮想化で
実装されているよ。

うーん。OSのカーネルに手を入れるの
はたいへんそうですね。
そこが欠点なんだ。完全仮想化では、準
仮想化に比べて仮想化処理の負荷は大き

くなるものの、ライセンスなどの関係でカーネル
に手を入れることが難しいOSも動作させること
ができる。

 ▼図6　ハイパーバイザの構造

仮想マシン

仮想モニタ

ハードウェア

ネイティブ型ハイパーバイザ
（Type1 VMM）

ホストOS

ハードウェア

仮想モニタ

ホスト型ハイパーバイザ
（Type2 VMM）

アプリ
ケーション

アプリ
ケーション

ゲストOS

仮想マシン

アプリ
ケーション

アプリ
ケーション

アプリ
ケーション

アプリ
ケーション

ゲストOS

仮想マシン

アプリ
ケーション

アプリ
ケーション

ゲストOS

猫先生かく語りき
そもそもクラウドって？

第 章1

http://www.vmware.com/jp/products/workstation.html
http://www.linux-kvm.org
https://www.xenproject.org/

22 - Software Design

なんでも動かせるのはいいですね。

そう、便利なのもあって、Xen以外はほ
ぼ完全仮想化によって実装されているん

だ。XenについてもCPUの仮想化支援機能によ
り性能が向上してカーネル側でチューニングを行
うメリットが減ったため、完全仮想化をサポート
するようになっているよ。

なるほど！　わかってきた気がする！

では、まとめとして各方式に対応するソ
フトウェアの表1を見てみよう。
それにしても、準仮想化を実装している
ものは少ないね。
仮想マシンに限定しているからね。ほか
の準仮想化については後ほど説明しよう。
楽しみ！
注4注5注6注7

クラウドサービスって
何だろう？

クラウドサービスが登場するまで

サーバの仮想化はわかったけど、本題の
クラウドサービスって結局何なんだろう。
理解をスムーズにするために、まずはク
ラウドサービスが登場するまでの歴史を

振り返ってみよう。新人くんは、ホスティングサー
ビスやレンタルサーバって言葉は聞いたことない
かな？

注4） URL https://www.virtualbox.org/

注5） URL http://wiki.qemu.org/

注6） URL https://msdn.microsoft.com/jajp/virtualization/
hyperv_on_windows/windows_welcome

注7） URL http://www.vmware.com/jp/products/esxi-and-
esx.html

ホスティングサービスは会社で契約して
るって聞いたことがあります! 　レンタ

ルサーバは、先輩がブログを公開するために使っ
てるって言ってました。

それなら話が早いね。ホスティングサー
ビスは、データセンターなんかにサーバを

設置してもらって、メンテナンスやサポート込みで
月額いくら、というふうに契約するサービスなんだ。
でも、サーバが必要になったときにすぐに使うこと
ができないし、比較的料金も高めなんだよね。

なんか法人向けって感じのサービスです
ね。
そうだね。レンタルサーバの方は、1台
の物理サーバを複数人で共有したり、権

限をWebページの公開などに絞って提供されて
いるサービスのことなんだ。新人くんの先輩のよ
うに、ブログを公開するのに使われてたりするね。

なるほど！　ここまでは物理サーバ上の
サービスでしたけど、仮想化はいつ登場

するんですか？
仮想マシンを提供するサービスとしては、
VPS（Virtual Private Server）があるよ。

レンタルサーバと違って仮想マシン1台を丸ごと
提供しているから、いろんなことに使えるんだ。

じゃあ、VPSがクラウドなんですか？

良い質問！　でも厳密に言うと少し違う。
クラウドでも仮想マシンは提供されてる

けど、もっと柔軟に使えるんだよ。たとえば1時
間とか使った分だけ料金を払えば良いし、新しい
サーバが欲しかったらすぐに作ることもできるん
だ。この「従量課金」と「拡張性」がクラウドの
大きな特徴だね。

なるほど。クラウドでは仮想マシン以外
のサービスも提供されているんですか？

 ▼表1　仮想化の種類

ホスト型 ネイティブ型
完全仮想化 VMware Workstation、Oracle

VirtualBox注4、QEMU注5
Citrix Xen、Microsoft Hyper-V注6、
VMware ESXi注7、Linux KVM

準仮想化 Citrix Xen

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

https://www.virtualbox.org/
http://wiki.qemu.org/
https://msdn.microsoft.com/jajp/virtualization/hyperv_on_windows/windows_welcome
http://www.vmware.com/jp/products/esxi-and-esx.html

22 - Software Design Nov. 2016 - 23

そうだよ。作ったアプリケーションを簡
単に動かせる環境だったり、インターネッ

トを通じて保存や読み込みができるストレージだっ
たり、数え切れないようなサービスのラインナッ
プがあるんだ。それらを組み合わせることで、今
ではクラウドの上で何でもできちゃうよ。

クラウドってスゴいね！　実際には、ど
んなしくみでできているの？

至れり尽くせりなクラウドの
オモテナシ
クラウドが何で、どんなことができるのか
はわかったんですが、最初に勉強したハ

イパーバイザはどのように使われるのでしょうか？
わかりやすいように、クラウドサービス
を提供するハイパーバイザがどのように

構築されているかを図7にしてみたよ。ハイパー
バイザはデータセンタに設置された物理マシン（ホ
ストマシン）にインストールされていて、その上
ではユーザが使う仮想マシンが動いているんだ。
基本的な使われ方は、手元で動かすときと同じ
だね。

なるほど。その仮想マシンをユーザはイン
ターネット経由で使うと思うんですが、ネッ

トワークはどのようにつながっているんですか？
良い質問だね。まず、ハイパーバイザは
ルータと物理的なネットワークでつながっ

ていて、ルータを通じてインターネットにアクセ

スしているんだ。仮想マシンは、その物理ネット
ワークの中を通る仮想的なネットワークに接続し
ていて、ほかの仮想マシンや仮想ルータとつながっ
ているんだ。

ネットワークが仮想化されているのはど
うしてなんですか？　仮想マシンと同じ

ように、何か便利になることがあるのかな。
仮想ネットワークにすることで、仮想マ
シンと紐付けて作成したり削除したりで

きるし、他の仮想マシンとのつながりなんかを柔
軟に設定できるようになるんだ。そして、仮想ネッ
トワーク上にはDHCPサーバもあって、仮想マ
シンにIPアドレスを割り当ててくれるんだ。

インターネットから仮想マシンにアクセ
スするには、グローバルなIPアドレスが

必要って聞いたのですが、そこはどうやって設定
しているんですか？

仮想ルータが、インターネットからアク
セスできるグローバルIPアドレスと、仮

想ネットワーク内部のIPアドレスを変換してくれ
るおかげで、インターネットから仮想マシンにア
クセスできるんだ。サービスを提供している事業
者によって実現しているしくみは異なるので、あ
くまで一例だよ。

なるほど、ハイパーバイザと仮想マシン、
インターネットのつながりがよくわかり

ました！

 ▼図7　クラウドとハイパーバイザの関係

インターネット

ルータ

仮想マシン
ハイパーバイザ DHCPサーバ

物理的なネットワークで結線
（光ファイバ、LANケーブルなど）

仮想マシンに IPアドレスを割り当て
（固定 IPアドレスを設定する場合も
ある）

仮想マシン同士は仮想ネットワークで接続
実際は物理的なネットワークの中で通信している
インターネットには仮想ルータを通じてアクセスされる

グローバル IPアドレスと
仮想ネットワーク内の
IPアドレスを変換し
インターネットとの
アクセスを実現

仮想ルータ

猫先生かく語りき
そもそもクラウドって？

第 章1

24 - Software Design

クラウドサービスで便利になること

そういえば、クラウドサービスにはAPI
が付いてるって聞いたんですけど、APIっ

て何ですか？
API は「Application Programming Inter
face」で、プログラムの機能を呼び出す

ための入口のことだよ。少し難しいかもしれない
から、具体的な例を出してみようかな（図8）。新
人くん、クラウドでサーバ100台作ってって言わ
れたらどうする？

ダッシュボード（クラウドの操作画面）で
1台ずつ作る……のは面倒ですね。それ

とAPIってどう関係してるんですか？
APIに対して、サーバの名前やスペック、
IPアドレスやOSなんかの情報を渡してあ

げると、その情報どおりにサーバを作ってくれた
りするんだ。APIは別のプログラムから簡単に呼
び出すことができるから、for文のようなループを
使ってAPIを100回呼び出してあげれば良いよね。

なるほど！　APIを使えば、自分で作っ
たプログラムからクラウドを自由に操作

できるようになるんですね！　サーバを作る以外
にはどんなことができるんでしょうか？

たとえば、新人くんのWebページが人気
になってアクセスがたくさんあったとし

よう。APIを使えばサーバの状態を知ることもで
きるから、サーバが重くなってきたら新しいサー
バを追加して快適にWebページを見てもらう、
なんてことも自動でできるようになるんだよ。

なるほど、APIを使っていろんなことを
自動でできるのも、クラウドの特徴なん

ですね。

クラウドは「組み合わせ」の
テクノロジー
ここまでで、ハイパーバイザとネットワー
クのつながりや、APIって便利な機能が

あることはわかったんですが、ユーザがサービス
を利用するときに、裏側ではどんなふうに仮想マ
シンが作られてるんでしょうか？

良い質問！　では、仮想マシンを提供す
るクラウドがどんなふうに動いているのか、

詳しく説明しよう。仮想マシンを提供する場合、
最低でも次の4つの機能が必要になるんだ（図9）。

・ダッシュボード：Webブラウザなどでアク
セスする、ユーザが実際に操作するための
クラウドの画面。ダッシュボードから各機
能に指示を出して、仮想マシンやストレージ、
ネットワークの作成などを行う

・コンピュート：ハイパーバイザ上の仮想マシ
ンを操作するための機能。ハイパーバイザ
上にサーバを作ったり消したり、何台もあ
るハイパーバイザのどこにサーバを作るか
を決めたりする

・ストレージ：仮想マシンにインストールする
OSのテンプレート（雛形）や、仮想マシン
のディスクを保存するためのサービス

・ネットワーク：仮想マシンをインターネット
や他の仮想マシンと繋ぐための機能。サーバ
と同じように仮想化されていることが多い

仮想マシンを作るだけかと思っていたら、
こんなに機能が必要なんですね。クラウ

ドの裏側って複雑だ……。
クラウドを提供するためのいろいろな機
能は、それぞれ独立して動くようになっ

ていることが多いんだ。APIを使ってお互いの機
能を使ったり、情報を取得したりしているんだよ。
そうすることで、他のサービスからも簡単に使え
たりするからね。こういうのを「マイクロサービ

 ▼図8　クラウドサービスとAPI（Application Pro
 gramming Interface）

ハイパーバイザ

2回呼び出し

OS：Windows
CPU：2コア
メモリ：4GB
HDD：500GB

適切なハイパーバイザを
選択して仮想サーバを作成

ユーザー API
（コンピュート）

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

24 - Software Design Nov. 2016 - 25

スアーキテクチャ」って言うんだよ。
マイクロサービス、聞いたことがあります！
でも、やっぱりクラウド作るのってたい

へんそうだなぁ……。
簡単に作る方法もあるよ。最近の事業者は、
これらの機能をゼロから作るんじゃなく

て、「クラウド基盤ソフトウェア」や「クラウド
OS」と呼ばれるものを利用することが多いんだ。

クラウド基盤ソフトウェア？

クラウド基盤ソフトウェアでは、サービ
スに必要な機能一式を提供しているから、

簡単にクラウドサービスを作ることができるんだ。
代表的なクラウド基盤ソフトウェアに「Open
Stack注8」があるよね。

OpenStackって聞いたことがあります！
クラウドを作るためのソフトウェアだっ

たんですね！
OpenStackは、オープンソースで開発さ
れていて、たくさんの企業が利用してい

るんだ。
OpenStackを使っているクラウドって、
どんなのがあるんです？

注8） URL https://www.openstack.org

Hewlett Packerd Enterprise の Helion
Open Stack注9や、NTTコミュニケーショ

ンズのEnterprise Cloud注10があるね。ただ、その
ままじゃなくて、一部の機能を各社独自のものに置
き換えたりして、オリジナリティを出してるみたいよ。

なるほど、マイクロサービスだとAPIで
つながっているから、互換性があれば機

能を置き換えることもできるんですね。クラウド
のしくみ、なんとなくわかってきました！

いろいろなクラウドサービス

クラウドには大きく分けて「IaaS」「PaaS」
「SaaS」の3つがあるよ。表2を見ながら、

順番に説明するね。
はい、お願いします!

IaaSはInfrastructure as a Serviceの略
で、仮想マシンや仮想ネットワークなど

のインフラを提供するサービスなんだ。スペック
やOSを自由に選べたり、ネットワークの構成を
好きなように変えられるなど、自由度が高いのが
特徴だよ。

注9） URL http://www8.hp.com/jp/ja/cloud/hphelionopenstack.
html

注10） URL https://ecl.ntt.com

 ▼図9　仮想マシンを提供するための4つの機能

ストレージ

コンピュート

情報を取得

情報を取得

仮想マシン
を作成

ディスクイメージ
を作成

ダッシュボード

IPアドレス
を取得

Webブラウザ
でアクセス

ネットワーク

ユーザ

猫先生かく語りき
そもそもクラウドって？

第 章1

https://www.openstack.org
http://www8.hp.com/jp/ja/cloud/hphelion-openstack.html
https://ecl.ntt.com

26 - Software Design

IaaSはこれまでのホスティングやVPS
の進化版って感じですね!
次に、PaaSはPlatform as a Serviceの
略で、PHPやRuby、JavaScriptなどで

作ったアプリケーションを簡単に動かせるサービ
スなんだ。普通だと、Webサーバを立てたり、
OSの設定をしたり、アプリを動かすための準備
が必要だけど、PaaSを使えば作ったプログラム
をアップロードするだけで動くんだよ。

とっても便利ですね。PaaSだと、Herokuっ
てサービスが有名だって聞きました。
最後のSaaSはSoftware as a Service
の略で、ソフトウェアをインターネット

を通じて使えるサービスだよ。今までだとお店で
買っていたオフィスソフトなんかを、Webブラウ
ザで使えたりするんだ。データはクラウド上に保
存されてるし、他の人と一緒に編集することもで
きる。

もしかして、Microsoft OfficeがWebブ
ラウザで使えるようになったOffice

OnlineはSaaSになるんでしょうか。
まさしくSaaSだね。
注11注12注13注14注15注16

注11） URL https://aws.amazon.com/jp/ec2/

注12） URL https://cloud.google.com/compute/

注13） URL https://www.heroku.com

注14） URL https://cloud.google.com/appengine/

注15） URL https://www.office.com

注16） URL https://www.google.co.jp/intl/ja/docs/about/

進化し続ける
クラウドサービス

仮想マシン以外のクラウドのしくみにつ
いても知りたいです！
じゃ、比較的新しいクラウドの概念をい
くつか紹介しよう。表3を見ながら解説

するね。注17注18注19注20注21

ベアメタルクラウド

最初は「ベアメタルクラウド」だ。

ベアメタル？　なんかカッコ良さそうだ
けど、どういう意味？
直訳すると「剥

む

き出しの金属」っていう意
味なんだ。物理サーバを仮想マシンと同

じように、簡単に使えるようにしたクラウドサー
ビスだよ。仮想マシンより性能の高いサーバを
使えたり、好きなハイパーバイザをインストール
してオレオレクラウドを作ったりすることもでき
るんだ。

なるほど、物理サーバならば仮想化して
いない分、効果的に性能を引き出せそう

ですね。

注17） URL https://www.ibm.com/marketplace/cloud/bare-
metal-server/jp/ja-jp

注18） URL https://arukas.io

注19） URL https://cloud.google.com/container-engine/

注20） URL https://aws.amazon.com/jp/lambda/

注21） URL https://aws.amazon.com/jp/s3/

 ▼表2　クラウドの分類

 ▼表3　新しいクラウドの種類

提供するもの 具体的なサービス
IaaS サーバ、ネットワーク Amazon EC2注11、GCP Compute Engine注12

PaaS アプリケーション実行環境 Heroku注13、Google App Engine注14

SaaS ソフトウェア Office Online注15,Google Docs注16

提供するもの 具体的なサービス
ベアメタル 物理サーバ Softlayer Bare Metal Servers注17、Enterprise Cloudベアメタル
コンテナ型仮想化 コンテナ実行環境 Arukas注18、Google Container Engine注19

サーバーレス さまざまな機能 Amazon Lambda注20、Amazon S3注21

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

https://aws.amazon.com/jp/ec2/
https://cloud.google.com/compute/
https://www.heroku.com
https://cloud.google.com/appengine/
https://www.office.com
https://www.google.co.jp/intl/ja/docs/about/
https://www.ibm.com/marketplace/cloud/bare-metal-server/jp/ja-jp
https://arukas.io
https://cloud.google.com/container-engine/
https://aws.amazon.com/jp/lambda/
https://aws.amazon.com/jp/s3/

26 - Software Design Nov. 2016 - 27

コンテナ型仮想化

次は「コンテナ型仮想化」だよ。

コンテナってDockerとかですよね、な
んか最近流行ってますよね。
コンテナはハードウェアの動きまで再現
する仮想マシンよりも、軽量で高速に動

かすことができるんだ。仮想化というより、ホス
トマシンのリソースの一部を隔離して、コンテナ
を使っているイメージが近い。たとえば、仮想マ
シンの占めるディスク容量は数十、数百GBだけ
ど、コンテナのイメージは小さくまとめると数十
MBくらいから作ることができるんだよ。

とっても小さいんですね。それならクラ
ウド上のどこにでも持っていけますね。
携帯性の良さだけじゃなくて、「どこでも
動く」というのもコンテナの特徴なんだ。

たとえばノートパソコンで作ったコンテナでも、
イメージをそのままクラウドにアップロードする
だけで、同じように動かすことができるんだ。

コンテナはスゴいですね、なんだか使っ
てみたくなりました！

サーバーレス

最後は「サーバーレス」だ。これは具体
的なサービスというより考え方に近いか

な。ただ、まだ明確な定義がなくて、フワッとし
たものなんだ。

サーバーレスってことは、サーバを使わ
ないってことですか？

「サーバを意識せずに使えるサービス」と
言うのが正しいかな。クラウドサービス

の種類が増えたことで、わざわざ仮想マシンを作
らなくても、いろんなことができるようになった
んだよ。たとえ、Webサーバを構築しなくても、
ストレージに保存したWebページをそのまま
Webサイトとして公開できちゃったりする。

何だか難しそうですけど、今まで仮想マ
シンを作って実現していたことを、いろ

んなクラウドサービスを連携させて実現できるよ
うになったってことなんですね。

そうだよ。ほかにもコンテナを使ったり、
PaaSを使ったりするのでもOKだよ。
なるほど、僕にもできそうな気がしてき
ました。

おわりに

ここまでで仮想化やクラウドのことはわ
かったかな？
はい！　最初はモヤモヤしていましたが、
クラウドのしくみが理解できました！　

たくさん勉強しないといけないことがあるのもわ
かりました……。

では、次章からは実際のクラウドサービ
スや使い方を紹介していくよ。ここで勉

強したことをしっかり思い出しながら、次章以降
を読んでみてね。

頑張ります!

―結局、なぜ猫が喋ったのかは気にしないま
まの大雑把な新人君でした。ｯ

猫先生かく語りき
そもそもクラウドって？

第 章1

28 - Software Design

Amazon Web Services
のしくみと必須ポイント

AZをまず押さえよう！

　Amazon Web Services（以下、AWS）とは、
IaaS型のパブリッククラウドです。2016年9
月の執筆時点では利用できるクラウドサービス
が約70を超えており、利用者の幅広い利用用
途に対応できるクラウドサービスと言えるでしょ
う（図1）。

　AWSでは、世界各地にデータセンター（以下、
DC）を保有し、それらを地域ごとに束ねたも
のをリージョンと呼びます（図2）。リージョン
内には地理的に離れた、複数のDCが存在しま
す。AWSでは、これをアベイラビリティゾー
ン（以下、AZ）と呼びます（図3）。AWSでは、
利用するサービスに応じてリージョンを選択し
ます。また、サービスによっては、AZを選択
しなければ、利用できないサービスもあります。
その場合は、サービスを展開するAZを選択し
ていきます。

 ▼図1　Amazon Web Services（70を越えるクラウドサービス：一部表示割愛）

本章では、Amazon Web ServicesについてCIer（Colud Integrater）として得られた経験から、そ
の利用方法からシステム移行まで、実際に使用してわかった使い方のコツとそのエッセンスを解説します。
まずAWSのしくみを明らかにし、体験から得られたメリット／デメリットをまとめました。そしてクラウド
に移行したシステムをいかに運用するか紹介し、サーバーレスアーキテクチャにも触れます。

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

第 章2
これからクラウドする人に教えたい

Amazon Web Servicesの
シン・ノウハウ

Author 多田 貞剛（ただ さだよし）　㈱サーバーワークス
Mail tada@serverworks.co.jp

28 - Software Design Nov. 2016 - 29

AWSは何でできているのか？

　そして、AWSのもう1つの特徴としては、ネッ
トワークからプラットフォームまですべてのレイヤ
を API（Application Programming Interface）で
プログラマブルに制御できることです。SDK
（System Developper Kit）、CLI（Command
Line Interface）といったツールが提供されて
おり、IaaS型のクラウドですが、インフラエ
ンジニアだけでなく、アプリケーションエンジ
ニアも手軽に利用できます。
　そのAWSのしくみについて触れます。AWS
の内部では、一部のサービスオプションを除き、
AWS社が管理するDC内のインフラリソースを
ほかの利用者とともに共有する形でサービスが
提供されています。たとえば、仮想サーバサー
ビスのEC2（Amazon Elastic Compute Cloud）
の仮想化基盤にはXenが使われています。
　Xenとは、ハイパーバイザ型の仮想化技術の
1つです。特徴としては、物理サーバのCPU

やメモリ、ストレージなどのリソースを、各仮
想マシンのスペックに割り当てて利用します。
そのため、基本的には1つの物理サーバ上にス
ペックに応じて仮想マシンを複数台展開できま
す（図4）。EC2もほかの利用者とリソースを
共有しつつ、利用する形態になります。AWS
では、ほかの利用者とリソースを共有するXen
をベースに、独自カスタマイズしたサービスを
提供しています。

AWSのメリット／デメリット
から見極めるポイント

　パブリッククラウドのAWSの特徴を概観し
たので、本項ではより深くAWSのメリットと
デメリットについて触れていきます。メリット
／デメリットを表1にまとめました。

ポイント1「利用するインフラは早め
に確保する」

　リソースについて表1のとおり、AWSでは
利用者同士でリソースを共有しながらサービス
を利用しています。AWSは膨大なインフラを
DCに保有していますが、利用するリソースに
よっては、まれに枯渇する場合が存在します。
　たとえば、EC2の購入オプションには、サー
バのスペックに応じた1時間あたりの利用料を
支払うオンデマンドインスタンス、余剰分のリ
ソースを利用者が価格をAWSに入札して利用

 ▼図2　世界各地にデータセンターを配備

 ▼図4　Amazon Elastic Compute Cloudにおける
　　 Xenによる仮想化

 ▼図3　アベイラビリティゾーンの概念

地理的にデータセンターが離れて
いるため、自然災害によるデータセ
ンター自体が崩壊によってもサー
ビスダウンしない設計が可能

仮想マシン1

ハイパーバイザ（Xen）

物理機器（サーバ／ストレージ）

ネットワークインターフェース

仮想マシン2 仮想マシン3 ・・・

これからクラウドする人に教えたい
Amazon Web Servicesのシン・ノウハウ

第 章2

30 - Software Design

するスポットインスタンスがあります。これら
を利用する際、自分が購入するスペックのサー
バをほかの利用者が多数利用している場合、サー
バを起動しようとするプロセスで必要なリソー
スが枯渇してしまい、エラーが発生する場合が
あります。
　そのため、AWSのインフラを確実に利用す
る方法としては、ほかの利用者よりも先行でリ
ソースを押さえておくと良いです。たとえば、
EC2では、リザーブドインスタンスという購
入オプションがあります。リザーブドインスタ
ンスとは、利用者が1年もしくは3年先まで利
用するサーバのリソースを確保しておくことが
可能なオプションとなっています。リザーブド
インスタンスを利用することで、利用者は、サー
バのリソースが枯渇することなく必要なスペッ
クのサーバを手に入れることができます。

ポイント2「予測は予測にすぎない」

　コストについて、AWSはサービスを使った
分だけ課金する従量課金制が基本的な課金モデ
ルとなっています。つまり、当月の利用料は、
どれくらい月間にクラウドサービスを利用した
かで変動します。したがって、AWS利用料を
見積もることはあくまでも予測にすぎません。
そのため、AWS Billing and Cost Management
サービスで日々の利用状況を確認できるので、
利用状況に応じて月間の利用料の予算に近づけ
る対応を検討する必要があります。
　たとえば、利用料の抑制が目的の場合、EC2

は1時間当たりの課金が行われるため、利用す
る時間帯が日中帯ならば、夜間帯はEC2を停
止することで利用料を抑えられます。また、利
用しなくなったサービスリソースは削除するこ
とで利用料削減に寄与できます。筆者の場合、
EC2に固定のグローバル IPアドレスを付与す
るElastic IP（EIP）をサービスリソースとし
て確保したまま、EC2に紐付けずに放置して
いたことがあります。その結果、利用料が嵩

かさ

ん
でいました。利用しないリソースは削除してお
きましょう。また、利用料の閾

いきち

値（境目となる値）
を設定して利用者に対して通知を行う、Billing
Alertを設定することも対策になります。閾値
の利用料に到達した際に、不要なサービスを利
用していないかどうかを見直すことによって、
月間の利用料を抑えることにつながります。

ポイント3「自動拡張／縮小のタイミ
ングの確認」

　拡張性について、AWSではインフラサービ
スの柔軟な制御ができます。たとえば、キャン
ペーンサイトへの膨大なアクセスや、メディア
に取り上げられたことで、通常では想定できな
い急激なWebサイトへのアクセス増加に対応
するために、AWSでは、インフラを拡張する
サービスや機能が存在します。
　代表的なサービスとしては、Auto Scalingが
あります。このサービスは、特定の条件のとき
にEC2の台数を増減させるもので、サーバの
可用性を高めます。
　たとえば、CPU使用率が60％を上回ったと

 ▼表1　AWSのメリット／デメリット

メリット デメリット
リソース 利用者はAWSが提供するインフラをはじめと

するリソースを使う
利用者間で、各リソースを共有しているため、
枯渇する場合もある

コスト 使用した分だけを課金する従量課金制 毎月の利用状況によって利用額が変動するため、
将来の予測がしづらい

拡張性 柔軟なインフラ制御が可能 インフラが拡張／縮小するのにかかる時間を
確認する必要がある

機能 利用者のニーズに応える豊富なサービス 新サービスやアップデート内容を追い続けな
いとAWSを活用した構成を実施できない

セキュリティ セキュリティが高いインフラ環境が利用可能 セキュリティホールを攻撃される設定をした
場合、最悪の場合利用停止が発生する

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

30 - Software Design Nov. 2016 - 31

きに、1台増やすことや、CPU使用率が40％
を下回ったときに、1台減らすといった制御が
可能なサービスとなります。したがって、急激
なEC2へのアクセス増加に対して、サーバの
台数を増やし、ほかのサーバへもアクセスを分
散させていくような対処を行うことで、サービ
スダウンを防ぐインフラの拡張ができます。
　他方、Auto ScalingはEC2の増減に時間を
要するサービスです。上記の例のように、
CPU使用率が閾値に達したからといって瞬時
に増減するわけではありません。EC2の増減
するタイミングは、利用するスペックやサーバ
の環境、閾値の条件に依存します。そのため、
本稿の冒頭で触れた具体例のようなシステムで
利用するときに、必要とする時間内で増減する
かの確認をしましょう。本番稼動する前に必須
です。

ポイント4「サービスのアップデー
トのキャッチアップ」

　機能について、AWSが提供するサービスは
約70を超えています。新規サービスやアップ
デートは頻繁です。たとえば、2013年は280個、
2014年は516個、2015年は722個の新規リリー
スがあり、年々増加傾向にあります。さまざま
なアップデートがなされていくなかで、利用し
始めたころには存在しなかったサービスや機能
が追加されることもあります。従来は、外部サー
ビスやAWS内でも利用者の管理負担があった
サービスからAWS内で完結するものやAWS
が管理／運用する、マネージドサービスに置き
換わったことで、利用者の運用管理負担が減る
ことがあります。
　幅広い顧客ニーズに応えるクラウドサービス
だけに、新規サービスやアップデートのキャッ
チアップが顧客ニーズに応える機会につながり
ます。AWS上でシステムが安定稼働している
からといって慢心してはいけません。どうすれ
ばよりクラウドの機能を活かした使い方ができ
るのか、日頃から意識して情報収集をしましょう。

ポイント5「自分の環境は自分で守
る」

　セキュリティについて、AWSでは、SOC、
PCI DSSなど高いセキュリティ性が認められ
たインフラ環境を利用できます。AWSがセキュ
リティの責任を負う部分と、利用者がセキュリ
ティの責任を負う部分が分かれています。この
ような考え方を責任共有モデルと呼びます（図
5）。責任共有モデル内では、AWSはサービス
を支える、DCの施設自体や物理インフラ、物
理セキュリティ、Xenの仮想化基盤のセキュリ
ティに関して責任を負っています。Xenのセキュ
リティ上の脆弱性が発生した際、ハイパーバイ
ザ層のアップデートのため、EC2 を再起動す
る対応を行ったことからもAWSがサービスの
根幹部分に責任を負っていることがうかがえる
と思います注1。
　他方、利用者は、利用するサービス内のセキュ
リティに責任を負います。そのため、サービス
内のセキュリティが万全かのチェックを利用者
が怠ることはできません。セキュリティ設定が
甘い設定の場合、その分セキュリティホールを
攻撃されやすくなります。攻撃された結果、ほ
かの利用者へセキュリティの危険性が及んだ場
合、AWSの利用停止が行われる場合があるので、
注意が必要です注2。

注1） URL http://aws.typepad.com/aws_japan/2014/09/
ec2mente.html

注2） URL https://aws.amazon.com/jp/agreement/

 ▼図5　責任共有モデル

利用者の責任範囲

AWSの責任範囲

仮想マシンOS、ファイアウォール、
ネットワーク設定、

アカウント管理、アプリケーション

DC、物理インフラ、
物理セキュリティ、物理インフラ、
ネットワークインフラ、仮想インフラ

これからクラウドする人に教えたい
Amazon Web Servicesのシン・ノウハウ

第 章2

http://aws.typepad.com/aws_japan/2014/09/ec2mente.html
https://aws.amazon.com/jp/agreement

32 - Software Design

AWSへのシステム移行

　筆者が勤めるサーバーワークスは、AWSに
特化したクラウドインテグレーター（CIer）です。
幸いなことにAWSの移行／構築案件を多くい
ただいています。本稿では、筆者が経験した
AWSの移行／構築のポイントを紹介します。

ポイント1「最初は小さく始めて、
次第に大きくする」

　既存システムや新規開発するシステムを
AWS上に構築して運用していきたいという要
望が最も多いのですが、弊社では、とくにお客
様のご要望のスペックが厳格でなければ、最小
のスペックかつ最小のサーバ台数で環境を構築
します。その理由は、AWSでは運用していく
中でサーバのリソース拡張（図6）や、台数を
増やす（図7）などの柔軟なインフラ制御が可
能なためです。
　また、利用当初からスペックの高いサーバを
選択したものの、想定よりもスペックが低くて
も運用に耐えられる場合もあります。スペック
が高い分課金も高くなるため、初めは小さなも

のを用意し、アプリケーションを載せたあとに
様子を見て上位のサーバへ変更することを検討
するのが費用対効果的にも良いです。お客様に
システムを引渡したあと、サーバスペックが問
題となれば、スペックをより上位のものに変更
を行います。
　筆者も実際に最小のスペックで構築後、アプ
リケーションの試験中にリソースが不足してし
まったことがありました。その際は、お客様よ
り必要なマシンスペックをヒアリングし、その
要望に適うインスタンスタイプへとスケールアッ
プを行いました。なお、インスタンスタイプの
変更を行う際、EC2はサーバの停止が発生す
るため注意が必要です。
　また、サーバのスペックではなく、台数を増
やすことでシステムの可用性を高める要望にも
対応できます。この場合サーバ自体のスペック
は変更しません。また、サーバのスペックを変
更するときと異なり、EC2の停止は不要であ
らかじめ準備したマシンイメージからAuto
Scalingを使って台数を増やします。急激なア
クセスやあらかじめ予想できる大量アクセスに
対して、サーバ台数を増やしてシステムダウン
を防ぐときに有効になります。
　どちらを実施するかは、お客様の要件との兼
ね合いになりますので、弊社ではお客様と協議
していく場合が多いです。

ポイント2「セキュリティを高める」

　AWSでは、利用者と事業者が双方でセキュ
リティに責任を負う責任共有モデルを採用して
います。そのため、利用者は自分が使う環境の
セキュリティを高め、システムを脅威から守る
必要があります。弊社では、ネットワークのセ
キュリティについては、Virtual Private Cloud
（以下、VPC）サービスで、アカウントのセキュ
リティは、Identity and Access Management（以
下、IAM）サービスで対策を行います。また、
AWS環境全体のセキュリティ対策については、
AWS CloudTrail（以下、CloudTrail）サービ

 ▼図6　スケールアップ

 ▼図7　スケールアウト

スペックの高いサーバへスケールアップが可能

サーバの台数を自動でスケールアウトすることも可能

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

32 - Software Design Nov. 2016 - 33

スやAWS Config（以下、Config）サービスを
利用しています。
　VPCは、通信元の IPアドレス、ポート、サ
ブネットを絞って通信可能なトラフィックを制
御します（図8）。これにより、VPC内に配置
されたサービスのネットワークレベルでのセキュ
リティを高めることができます。弊社で行う設
定では、接続できる IPアドレスとポート番号
の範囲を広く設けず、できる限り絞った設定を
行います。
　たとえば、お客様の会社で全国にさまざまな
支社が存在し、その支社から通信を許可してほ
しいというご要望が多いです。このときは、支
社ごとにインターネットと通信するエンドポイ
ントの IPアドレスと使用するポート番号の設
定を行うことで、接続できる通信元を絞ること
ができます。
　IAMは、利用者がアクセスできるサービス
リソースに必要な最小限の権限しか付与しない
権限管理を行うことができます。また、AWS
マネジメントコンソール（管理画面）へログイ
ンし、操作できる利用者の IPアドレスを絞る
ことや、AWSマネジメントコンソール多要素
認証を導入するなどでAWSへアクセス可能な
利用者を絞ってセキュリティを高めます（図9）。
　弊社のお客様で IAMの権限を管理する場合、
お客様が実行したいAWSにおける操作を確認
し、その操作に対応する IAMの権限を付与す
るようにしています。そうすることによって不
要なAWS環境への操作を防ぐことができます。

　CloudTrailは、AWSにおけるすべての操作
をログとして保管できます（図10）。また、
ConfigはCloudTrailほど対応しているサービ
スの範囲は広くないですが、サービスの変更や
更新があった場合の構成管理に役立つサービス
です（図11）。
　弊社では、CloudTrailもConfigもすべての
リージョンに対して設定の有効化を行っていま
す。その理由は、AWSアカウントを乗っ取ら
れた場合やトラブルシューティングを行う場合、
どの時点の操作に問題があるのか、AWS環境
に対してどんな操作を行ったから問題なのかを
追跡するために役立つためです。

 ▼図8　Virtual Private Cloudによるアクセス制御

 ▼図10　CloudTrailによるログ管理

 ▼図9　AWSマネジメントコンソールでのユーザアク
　　 セス制御

80 番ポートへの HTTP 通信

22 番ポートへの SSH 通信

22 番ポートへの SSH 通信のみ通信許可

AWS 環境

セキュリティグループ
Amazon EC2

VPCサブネット

権限が付与されないユーザー

IAM 権限 +MFA 保有ユーザー

AWS 環境

Amazon EC2

IAM MFA Token

Amazon S3 Amazon RDS

AWS 環境

AWS の操作を全てログとして保管する

Amazon EC2

AWS
ColudTrail

Bucket

Amazon S3

Amazon RDS

Amazon Redshift

Amazon VPC

これからクラウドする人に教えたい
Amazon Web Servicesのシン・ノウハウ

第 章2

34 - Software Design

　筆者の体験としてもお客様からの問題事象に
対する問い合わせでCloudTrailのログを活用
して原因を特定できた経験があるので、
CloudTrailとConfigの有効化を行うことで
AWS環境全体のセキュリティ向上に資すると
考えます。

サーバーレスアーキテクチャ

　近年、AWS Lambda（以下、Lambda）の登
場によりサーバーレスアーキテクチャという考
え方が広まっています（図12）。
　サーバーレスアーキテクチャとは、利用者はサー
バを管理せず、マネージドサービスを活用して
システムを構築することです。Lambdaは、利用
者が実行する処理をコードで制御し、コードを
実行する条件となるトリガーイベントが発生し
たときだけ処理が走ります。たとえば、Lambda
にはcron機能があるため、スケジュールのジョ
ブ実行ができます。設定した時間になったとき（ト
リガーイベント）、Slackに対してお知らせを投
稿するといった処理を行うことができます注3。
Lambdaでは、サーバの管理はAWSが行うため、

注3） URL http://blog.serverworks.co.jp/tech/2016/08/31/
lambda-point/

利用者のサーバ管理が不要となります。
　また、利用者はサーバの運用負担軽減やシス
テムでの考慮点が減り、ビジネスロジックの開
発に集中できるのもメリットです。処理を実行
するトリガーが決まっているものはLambdaに
オフロードして、そのほかのシステムの開発／
運用に注力できるのがサーバーレスアーキテク
チャの魅力です。

まとめ

　ここまでAWSはどんなクラウドサービスな
のか、どんなメリット／デメリットがあるのか、
AWSを使ううえでポイントになる事項につい
て触れてきましたが、いかがでしたでしょうか。
　AWSがサービス開始したのが2006年で、今
年で10年目の節目になります。近年、サーバー
レスアーキテクチャを始め、IoTや機械学習と
いった話題のトピックも使った分だけ課金され、
不要な場合はリソースを破棄できるAWSだか
らこそ始めやすいと思っています。また、
AWSには、これらに対応するサービスがそろっ
ています。IT業界の最先端にAWSを使いなが
ら、チャレンジしてみるきっかけに本記事が少
しでも役立てば幸いです。ﾟ

 ▼図11　Configによる構成管理 ▼図12　サーバーレスアーキテクチャ（AWS Lambda
 による例）

AWS 環境

AWS の変更／更新を記録して閲覧できる

Amazon EC2

Bucket

IAM

Amazon EBS

Amazon VPC

AWS ColudTrail

AWS
Config

Slack

Amazon
DynamoDB

Amazon
Cognito

Amazon S3

ロジックは API 化して
バックエンドを

Lambda で動かす

Lambda から
各種操作を実行

Amazon
API Gateway

Lambda

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

http://blog.serverworks.co.jp/tech/2016/08/31/lambda-point/

35 - Software Design Nov. 2016 - 35

はじめに

　こんにちは。皆さんは「Microsoft Azure（読
み方：マイクロソフトアジュール）」のことを
どこで知りましたか？　気になっていた人はも
ちろん、名前しか知らない人もいるかと思いま
す。本章でMicrosoft Azureの特徴や構成を把
握しながら、サービスの使いどころをイメージ
してみてください。
　そもそも「Azure」とは何でしょうか？　英
語では「空の青い色」という意味です。無限に
広がる大空のように、広大なスケーラビリティ
と高い柔軟性を持つクラウドコンピューティ
ングを、必要なときに必要なだけ使えるマイ
クロソフトのパブリッククラウドサービスが
Microsoft Azure（以降、Azure）です。

大規模パブリック
クラウドサービス

　Azureは、マイクロソフトが運用管理するデー
タセンターのネットワークやクラウドコンピュー
ティングによって支えられています。執筆時現
在（2016年9月）、Azureデータセンターは発
表されているものも含めると世界各国34ヵ所
のリージョンに設置されており、そのうち26
のリージョンが一般向けに運用されています。
日本国内では、東日本と西日本の2つのリージョ

ンを利用することができます。Azureリージョ
ンと実際のデータセンター所在地の関係につい
ては図1をご覧ください注1 注2 注3。
　大規模なクラウドだからこそ実現できること
があります。たとえば、日本国内では東日本と
西日本の2つのリージョンを組み合わせること
で、システムの冗長構成はもちろんのこと、大
規模災害などに備えたディザスタリカバリを国
内に閉じて構成することが可能になります（図

2）。Azureストレージのデータは、ハードウェ
ア障害が発生した場合でもサービスレベルアグ
リーメント（SLA）注4を満たすように、同じデー
タセンター内でコピーを自動的に3つ保持する
ようになっています。これをローカル冗長
（LRS）といいます。
　しかしながら、大規模災害などでデータセン
ター全体に障害が発生した場合は、SLAの未
達はおろかデータ消失のリスクにつながります。
これを回避するために、Azureでは設定を有効

注1） 各リージョンの詳しい情報については「Azure regions」ペー
ジに掲載されています。 URL https://azure.microsoft.
com/ja-jp/regions/

注2） 各リージョンによって提供されているサービスが一部異な
ります。「Products available by region」ページで最新情
報を確認できます。 URL https://azure.microsoft.com/ja-
jp/regions/services/

注3） 各リージョンの稼働状況は「Azureの状態」ページで情報を
一般公開しています。 URL https://azure.microsoft.com/
ja-jp/status/#current

注4） AzureのSLA適用には各サービスごとに条件が設定されて
います。詳細は「サービスレベルアグリーメント」ページで
確認できます。 URL https://azure.microsoft.com/ja-jp/
support/legal/sla/

本章ではMicrosoft Azureについて解説します。Windowsエコシステムとして使う利点はもちろんのこ
ととして、各種Linuxディストリビューションをはじめ、オープンソースソフトウェアの利用環境も整って
います。選んですぐ使える豊富なサービス群や、オンプレミス環境を視野に入れた開発中のAzure
Stackも注目です。

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

第 章3
Linuxが動く ！ RedHatが動く ！

オープンソースとの親密度を深める
Microsoft Azureのいま

Author 戸倉 彩（とくら あや）　日本マイクロソフト(株) デベロッパーエバンジェリズム統括本部 テクニカルエバンジェリスト
Blog https://blogs.msdn.microsoft.com/ayatokura/　 Twitter @ayatokura

https://blogs.msdn.microsoft.com/ayatokura/
https://azure.microsoft.com/ja-jp/regions/
https://azure.microsoft.com/jajp/regions/services/
https://azure.microsoft.com/ja-jp/status/#current
https://azure.microsoft.com/ja-jp/support/legal/sla/

36 - Software Design

にすることで、地理冗長ストレージ（GRS）を
使用できます。GRSは、LRSに加え、固定ペ
アとなっているデータセンターにも非同期にレ
プリケーション（複製）されたデータを3つ保
持します。プライマリ拠点で障害が発生した場
合、ストレージはセカンダリ拠点にフェールオー
バーされ、プライマリ拠点のデータセンターの
データが保証されるしくみになっています。
　日本国内の場合、東日本データセンターにシ
ステムを配置しつつストレージをGRSに設定
すると、西日本データセンターがセカンダリ拠
点としてデータ複製を持つため、日本からデー
タが海外に出ることを防ぎながらディザスタリ
カバリ対策ができるということになります。

OSSへの取り組み

　より多くの人が、より多くの環境を利用する
のに伴い、データの運用性と統合性が今まで以
上に重要になってきました。マイクロソフトは、
多様なニーズにも対応できるよう標準化を推進
する組織や団体との協業に取り組んでいます。
開発者はAzure上に、広範なオープンソースの
プログラミング言語やフレームワークを使った
アプリケーションやサービスを構築することが
できます。ほかにも仮想マシン上では、

Windows Serverに加えてRed Hat Enterprise
LinuxなどのLinuxも選択できます。現在、
Azure上の仮想マシンの約1/3ではLinuxが利
用され、Azure Marketplaceでは1,000以上の
Linuxイメージが公開されています（図3）。
　たとえば、Azureポータルから「Marketplace」
の中で「Linux」を選択すると、Azure仮想マシ
ンとして展開できるLinuxディストリビュー
ションが表示されるので、自由に選択して利用
することができます。Red Hat社のRed Hat
Enterprise Linux、Oracle社のOracle Linux、
ミラクル・リナックス社のAsianux、SUSEの
SUSE Linux Enterprise Server、Canonical
の Ubuntu Server、OpenLogic の CentOS、
credativeのDebianなど、Linuxのイメージは

 ▼図2　可用性を標準装備したストレージ

 ▼図1　Azureリージョンとデータセンター所在地

東日本
サブ

リージョン

西日本
サブ

リージョン

Azure ストレージAzure ストレージ

・最小冗長構成でも、各サブリージョン内の分散されたラックに
　3 重のレプリカを配置（ローカル冗長）
・サブリージョン間で複製が行われ、合計 6 多重のレプリカを配置
　（データの多重化と地理冗長）

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

36 - Software Design Nov. 2016 - 37

多くのパートナーから提供されており、マイク
ロソフトはさまざまなLinuxコミュニティと協
力して、動作保証済ディストリビューションの
一覧をより一層充実させようと努めていま
す注5。
　これらを選択できると聞いて、驚いた人もい
るかもしれませんね。ギャラリーから選択でき
ないディストリビューションの場合も、Linux
オペレーティングシステムを格納した仮想ハー
ドディスク（VHD）を作成し、それをAzureへ
アップロードすることで、いつでも独自の
Linuxを展開することができます。ディストリ
ビューションごとに、サポートしているバージョ
ンや利用が無償のものと有償のものがあります
ので、実際に利用する際にはホームページなど
で最新情報を確認するようにしてください。

Microsoft Azureの
全体像

　ここからはAzureの概念に関するお話です。
Azureは、①データセンターインフラストラク
チャ②インフラストラクチャサービス③プラッ

注5） マイクロソフトは、オープンソースの開発にどのような規
模感で携わっているのかを「Open source software on
Azure」でリアルタイムに情報公開しています。

 URL https://azure.microsoft.com/en-us/overview/open-
source/

トフォームサービスの3つの層に大別できます
（図4）。Azureでは、さまざまなサービスが用
意されているので、何か新しいシステムを作り
たい場合には、ゼロベースから考えるのではな
く、Azure上で使えるサービスは何か、を考え
ることで効率的にシステムが構築できるのでは
ないでしょうか。

データセンターインフラストラクチャ

　Azureデータセンター内には、土台となる物
理的なデータセンター基盤となるデータセンター
インフラストラクチャが配置されています。
Azureは継続して毎月どんどん新しいサービス
が登場してくるので、必要に応じて新しいハー
ドウェアを追加するだけでなく、定期的なハー
ドウェアリフレッシュにより故障したハードウェ
アの交換や、最新ハードウェアプラットフォー
ムへの移行も行われています。

インフラストラクチャサービス

　データセンターインフラストラクチャの上に
は、インフラストラクチャと呼ばれる基盤レベ
ルのサービスが実装されています（表1）。この
部分を使うことで、自社内のインフラ環境と同
じようなかたちの環境をAzure上に再現するこ
とができます。

プラットフォームサービス

　プラットフォームサービスは、インフラスト
ラクチャサービスをビルディングブロックとし

 ▼図3　MarketplaceでLinux系仮想マシンを表示 ▼図4　Azureクラウドプラットフォームの全体像

Linuxが動く ！　RedHatが動く ！
オープンソースとの親密度を深めるMicrosoft Azureのいま

第 章3

https://azure.microsoft.com/en-us/overview/open-source/

38 - Software Design

て使い、目的に特化した各種サービス
をあらかじめAzureで構成して提供す
るというサービス群です（表2）。よく
使われるサービスとしてWebやモバ
イル向けサービスや、最近ではデータ
の分析などに使われる機械学習、IoT
などもあげられます。また、大切なデー
タをしっかり格納するための分散スト
レージ、あるいはデータベースも多く
使われています。

Azureアカウントと管理

　Azureを利用するためには、Azureサブスク
リプションが有効になっているMicrosoftアカ
ウントが必要です。Microsoftアカウントを持っ
ていない場合には新規に作成します。その後、
利用を希望するAzureプランよりMicrosoftア
カウントとの紐づけを行うことでサブスクリプ
ションを有効にします。Azureを初めて試して
みたい方は「1か月無償評価プログラム」、開発
者の方は開発ツールやトレーニングと合わせて
12ヵ月にわたってAzure無料枠を利用できる
「Visual Studio Dev Essentials」を活用いただ
くことをお勧めします。
　Azureの操作はWebブラウザを使った「Azure
ポータル」（図5）または、Azureコマンドから行
います。Windows環境の場合はPowerShell、

MacやLinux環境の場合にはAzureコマンドラ
インツールを公式サイトからダウンロードでき
ます。
　Azureポータルを使用すると、利用する各サー
ビスはリソースとして取り扱われ、さらにそれ
らをグルーピングすることでリソースグループ
という単位で管理します注6。

マイクロソフトの
仮想化技術

　マイクロソフトは、さまざまな仮想化技術を

注6） 現時点ではすべてのサービスでAzureポータルまたはリソー
スを管理するためのリソースマネージャがサポートされて
いるわけではないため、一部のサポートされていない場合
には、旧Azureポータルの「クラシックポータル」を使用す
る必要があります。Azureポータルの各サービスの対応状
況は「Azureポータルの可用性チャート」サイトで確認で
きます。 URL https://azure.microsoft.com/ja-jp/features/
azure-portal/availability/

 ▼表1　インフラストラクチャサービスで提供されるサービス概要

サービス 概要
コンピューティング
仮想マシン WindowsとLinux Virtual Machinesを数分でクラウド上に配置できる IaaS
コンテナ Dockerベースのツールを使用してコンテナを配置したり管理するためのサービス
ストレージ
Blob Storage Binary Large Objectの略。文書や画像、動画などの一般的なファイルの保存が可能
Azure Files 標準的なサーバメッセージブロック（SMB）プロトコルを使用してファイル共有を提供
Premium Storage 高負荷の I/Oワークロードのためのディスクサポート
ネットワーキング
Virtual Network Azure上に仮想ネットワークを作成できるサービス
Load Balancer ネットワーク負荷を自動的に分散するために利用
DNS DNSドメインをAzureにホストするためのもの
Express Route Azureとオンプレミスデータセンター間に高速かつ安全なプライベート接続を実現
Traffic Manager トラフィックの負荷分散
VPN Gateway Azure仮想ネットワークとオンプレミス間や、Azure内の仮想ネットワーク間（VNet間）のネットワー

クトラフィックを送信
Application Gateway アプリケーションレベルのルーティングおよび負荷分散サービス

 ▼図5　Azureポータル

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

https://azure.microsoft.com/ja-jp/features/azure-portal/availability/

38 - Software Design Nov. 2016 - 39

 ▼表2　プラットフォームサービスで提供されるサービス概要

サービス 概要
Compute
Cloud Services アプリケーションをホスティングできるPaaS
Service Fabric マイクロサービスが構築できるPaaS
Batch 大規模な並列／バッチの実行のときに利用
Remote App Windowsクライアントアプリをクラウド上に配置し、あらゆるデバイスで実行
WebとMobile
Web Apps Webアプリを短期間に作成して配置
Mobile Apps モバイルに特化したmBaaS。Windows、Android、iOS、Xamarin、Cordovaに対応
API Apps 簡単操作によるクラウドAPIの作成と利用
Logic Apps ビジネスプロセスを自動化
API Management APIとマイクロサービスを保護、発行、および分析するためのスケーラブルなAPIゲートウェ

イを提供
Notification Hubs バックエンドからモバイルにプッシュ通知を配信
開発者向けサービス
Visual Studio マイクロソフトの開発ツール（IDE）
Team Project チームプロジェクト
Azure SDK Azure用のSDK
Application Insights Webアプリおよびサービスにおける問題の検知や診断
統合
Storage Queues 非同期なメッセージ配信に用いられるストレージ
ハイブリッド接続 エンタープライズとクラウドをシームレスに統合
Biztalk Services Azure BizTalk Servicesの機能の一種
Service Bus プライベートとパブリックのクラウド環境間での接続
メディアとCDN
Media Services 大規模にビデオおよびオーディオをエンコード、ストリーミング配信
Content Delivery Network

（CDN）
高帯域幅のコンテンツを配信

分析と IoT
HDInsight ApacheのHadoopソリューションをクラウドに移行するHadoopベースのサービス
Data Factory データ変換と移動の整理と管理
Stream Analytics リアルタイムストリーム処理
Machine Learning クラウドベースの機械学習
Event Hubs 1秒間に何百万ものイベントを取り込み処理
Mobile Engagement モバイルの使用率、継続率の増加をサポート
Data
SQL Database SQLデータベース
Redis Cache Redis CacheベースのAzureアプリケーション専用のキャッシュ
DocumentDB 管理されたサービスとしてのNoSQLドキュメントデータベース
SQL Data Warehouse 大量並列SQL Server処理アーキテクチャに基づいたエラスティックデータウェアハウス
Search 完全に管理されたサービスとしての検索
Tables 非リレーショナルデータストレージ
セキュリティと管理
ポータル Webベースの管理ポータル
Active Directory クラウドベースのActive Directory
Multi-Factor
Authentication

高度な認証により、データとアプリへのアクセスを保護

Automation プロセス自動化でクラウド管理を簡素化
Key Vault キーやその他のシークレットを保護し、制御を維持する
Store / Marketplace Azureソリューションを提供
VM イメージギャラリーと
VM Depot

仮想マシン用イメージ

ハイブリッド運用
Azure AD Connect Health オンプレミスの IDインフラストラクチャと同期サービスを監視
AD Privileged Identity
Management

組織内のアクセス権を管理、制御、監視

Backup クラウドへのシンプルで信頼性の高いサーババックアップサービス
Operational Insights オンプレミスの IDインフラストラクチャと同期サービスを監視
Import/Export 大量にデータを安全にAzureへ転送
Site Recovery プライベートクラウドの保護と回復の調整
StorSimple ハイブリッドのクラウドストレージサービス

Linuxが動く ！　RedHatが動く ！
オープンソースとの親密度を深めるMicrosoft Azureのいま

第 章3

40 - Software Design

提供していますが、今回はAzureと最も関係が
深い仮想化技術「Hyper-V」についてご紹介し
ていきます。Hyper-Vとは、Windows Server
だけでなく現在Windows 8以降のクライアン
トOSの機能としても実装されている仮想化シ
ステムで、1台の物理的なコンピュータ上に複
数の仮想的なコンピュータを配置し稼働させる
ことができます。
　Windows OS上にHyper-Vの仮想マシンを
作成する前には、Hyper-Vを有効にする必要が
あります。Windows Serverの場合は「役割と
機能の追加ウィザード」から、Windowsクライ
アントの場合は「Windowsの機能の有効化また
は無効化」から手動で設定を行うか、Power
Shellを使用して有効にすることもできます。
手元にWindowsマシンがある場合は試しに利
用してみると良いかもしれません注7。

Hyper-VとAzureの関係

　Azureインフラストラクチャサービスは、
Windows ServerのHyper-Vの仮想化基盤をも
とに構築されています（図6）。すなわち、皆さ
んがオンプレミスで仮想化を実現するために用
いることができるHyper-Vと同じ技術がクラ
ウド上でも活用されているというイメージを持っ
ていただけると、少し身近に感じていただける
のではないでしょうか。Hyper-Vという共通の

注7） クライアントOSで実装されているクライアントHyper-Vは、
Windows 8 Pro 64bit以上で使うことができます。

仮想化テクノロジが使われているメリットとし
て、オンプレミスとクラウドを連携したハイブ
リッド化や、オンプレミスからAzureへの移行
がしやすいことが挙げられます。

Azure仮想マシン（IaaS）

　ここからは、Azureにおけるインフラストラク
チャサービスのコンピューティングカテゴリで提
供される「仮想マシン」の概要についてお話して
いきます。Azure仮想マシンは、Hyper-Vベース
のサーバをホスティングできるサービスです（図

7）。仮想マシンは、Webサーバやデータベースサー
バ、ファイルサーバや開発環境などさまざまな用
途で活用することが可能です。
　Azure仮想マシンは、Azure Marketplaceや
オープンソースの仮想マシンイメージが提供さ
れているVM Depotサイト注8のベースイメージ
を選択して、新規に作成することができ、さら
にカスタマイズして独自のベースイメージを作
成することもできます。Hyper-Vで作成した
VHDをイメージとして利用するためには
Sysprep（一般化）されている必要があります
のでご注意ください。Azure仮想マシンで展開
された仮想サーバは「インスタンス」と呼んで
います。仮想マシンのVHDファイルはBlobと
呼ばれるストレージに保存され、異なる3つの
ノードに保存されることで3重化されます（前

注8） URL https://vmdepot.msopentech.com/

 ▼図6　Hyper-VとAzureの関係

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

http://vmdepot.msopentech.com/

40 - Software Design Nov. 2016 - 41

述のとおり）。
　Azure仮想マシンのインスタンスは、さまざ
まな規模のCPUコア数、メモリ、データディ
スクなどのサイズや数を指定して利用すること
ができます。サイズは、仮想マシンの処理能力、
メモリ、記憶容量に影響するため、用途にあっ
たサイズを選択することが大切です。標準サイ
ズは、複数のシリーズ（A、D、G、F）で構成
されています注9。

・Aシリーズ：一般的な用途で使われる。小〜
中規模のサーバに最適

・Dシリーズ：Aシリーズよりも高性能なCPU
でローカルSSDディスクをサイズごとに指定
できる

・Gシリーズ：大規模なデータベースワークロー
ドに最適

・Fシリーズ：より高速のCPUを必要としつ
つも、CPUコアあたりのメモリやローカル
SSDについてはそれほど多くを要求しない
ワークロードに最適

注9） 選択が可能なAzure仮想マシンのサイズは、配置する場所
および価格にも影響します。詳細な情報については「Virtual
Machinesの価格」をご確認ください。 URL http://azure.
microsoft.com/ja-jp/pricing/details/virtual-machines/

　Azure仮想マシンは、OSディスク、テンポ
ラリディスク、データディスクで構成されてい
ます（図8）。テンポラリディスクは非永続化の
ため、再起動やサイズを変更するタイミングで
テンポラリディスクに格納されているデータは
すべて初期化され消えてしまいます。そのため、
既存データやアプリケーションはデータディス
クに格納して利用します。データディスクが足
りないときは、仮想マシンのサイズに応じたディ
スクの数を追加することができます。

・OSディスク：OS起動用に使用される
・テンポラリディスク：Azure Hyper-Vのロー

カルストレージを利用したAzureのサービス。
非永続化

 ▼図7　Azure仮想マシンの利用に必要な基礎知識

 ▼図8　Azure仮想マシンのディスク構成

VHDVHDVHD Blobストレージ
サービス

ストレージアカウント

リソースグループ

Azure 仮想ネットワーク

Azure 仮想マシン インスタンス

Azure Hyper-V

Marketplace
VM Depot

OSSのイメージ

DNS名とエンドポイント
（外部からのアクセス）

仮想マシンから
イメージ作成

手元にある
VHDファイル

ドメイン名管理

F/WNLB

VPN G/W DHCP

DNS

Azureイメージ管理

Azure 基本サービス

標準イメージ
（MS 提供）

マイイメージ
（独自テンプレート）

ローカルディスク
OS 再起動などでデータは初期化

ストレージアカウント

C:¥
OS ディスク

D:¥
テンポラリディスク

E:¥、F:¥、etc.
データディスク

G:¥、H:¥、etc.
ネットワークドライブ

Windows 仮想マシン

Azure
Files

Azure
Blobs

Linuxが動く ！　RedHatが動く ！
オープンソースとの親密度を深めるMicrosoft Azureのいま

第 章3

http://azure.microsoft.com/ja-jp/pricing/details/virtual-machines/

42 - Software Design

・データディスク：利用者固有のデータやアプ
リはここに格納する

・ストレージアカウント：Azureストレージア
カウントはスタンダードストレージ（Blobス
トレージ）とプレミアムストレージ（VM
Disk）がある

　Azure仮想マシンには、管理に必要なDNS
名と IPアドレスが付与されます。DNS名は
＊ .cloudapp.netとなり、＊の部分は仮想マシ
ンの作成時に任意の文字列を指定します。外部
からAzure仮想マシンへアクセスする場合には、
仮想マシンとの通信を許可するようエンドポイ
ントの設定を行います（図9）。ACL（Access
Control List）機能により、エンドポイントの
ポートに対して IPアドレスによるアクセス許
可・不許可を細かく設定することもできます。
　Azure仮想マシンは、使用した時間に基づい
て課金されるしくみになっています。仮想マシ
ンは、Azureポータル上でシャットダウンを実
行することで課金を停止することができること
を覚えておくと、コスト削減につながります。

Microsoft Azure Stack
（Preview）

　マイクロソフトでは、自社のデータセンター

でAzureサービスを実現できる新たなハイブ
リッドクラウド基盤として「Microsoft Azure
Stack（以降、Azure Stack）」の開発を進めて
います。現段階では、物理サーバ1台で動く
Technical Previewを公開しており、一部の機
能を試すことができます注10。
　Azure Stackは、Azureで使える機能をオン
プレミスで使えるようになるため、ビジネス的
あるいは技術的にすべてのシステムをパブリッ
ククラウドに移行することが困難なケースにお
いても、開発面や運用面における一貫性を失わ
ずに課題を解決することができますし、世界中
のAzureエンジニアが検証した結果やノウハウ
を社内に持ち込むことが可能になります（図

10）。
　以前のAzureは、Azure Service Management
（ASM）と呼ばれる管理モデルが使われていま
したが、今では適切なサービス（IaaS/PaaS）
を論理的にまとめて展開／管理するための手段
としてAzure Resource Manager（ARM）が登
場し、Azureの管理基盤が一変しました。そし
て、Azure Stackの管理モデルにも、その

注10） Microsoft Azure Stack Previewサイト
 URL https://www.microsoft.com/ja-jp/server-cloud/
products-Microsoft-Azure-Stack.aspx

 ▼図9　仮想マシンへの外部からのアクセス：エンドポイント

プライベートポート
（仮想マシンの IPに対して一意）

※DNS 名（IP アドレス）に対して
　外部から見たポート番号とAzure 内通信用の
　ポート番号を指定

Server 1

仮想マシン

443 5986

443 5986

Server 2

仮想マシン

443 5986

444 5987

Server 3

仮想マシン

443 5986

445 5988

仮想 IP アドレス xxx.xxx.xxx.xxx

設定した DNS 名：testxx.cloudapp.net

［リソースグループ］

パブリックポート
（仮想 IPアドレスに対して一意）

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

https://www.microsoft.com/ja-jp/server-cloud/products-Microsoft-Azure-Stack.aspx

42 - Software Design Nov. 2016 - 43

ARMが採用されているため、複数リソースか
ら構成される複雑なシステムを、JSON形式で
テンプレートファイルに記述することでハイブ
リッドなリソース展開が可能となります。よく
使われると想定される構成のARMテンプレー
トは、AzureとAzure Stack両方ともにGitHub
上に公開されているので、これを使うと変数の
部分のみ手入力で編集するだけで、一から
JSONを書き起こす手間を省くこともできま
す注11。たとえば仮想マシンを1台構築するとい
うシンプルなスクリプトから用意されています。
また、実行中のリソースグループからテンプレー
トをエクスポートすることも可能です。
　AzureとAzure StackのARMによる一貫性
はAPIレベルで共通化されており、Azure用の
PowerShellやコマンドもそのまま利用可能で
すし、1つのアプリケーションを同じ手法でハ
イブリッドに展開することも可能になります。
ただし、パブリッククラウドで使えるAzureサー
ビスのすべてが利用できるというものではなく、
オンプレミスであるAzure Stackで実装するこ
とで価値を見出せるサービスから順次提供を開
始する予定です。

注11） AzureおよびAzure Stack ARMテンプレートを公開して
いるGitHubサイト

 URL https://github.com/Azure/azure-quickstart-
templates
 URL https://github.com/Azure/AzureStack-QuickStart-
Templates

本章のまとめ

　今回はAzure概要について紹介させていただ
きましたが、いかがでしたでしょうか。Azure
には、クラウドを楽しむ要素はもちろん、最新
の技術に触れるサービスもたくさん提供されて
いますので、実際に触れてみるのも面白いかも
しれません。最後に今後役立つサイトをご紹介
しておきますので、参考にしてみてください。
ﾟ

 ▼図10　Azure Stackの概要

Azure
リソース

マネージャ
(ARM)

Azure
リソース

マネージャ
(ARM)

共通の Azure エコシステム
を実現

Microsoft Azure
パブリッククラウド

Azure Stack
プライベート・ホスト型

※�引用：【ウェブセミナー】理想のハイブリッドクラウドを実現
するMicrosoft Azure & Azure Stack

Azureに関するお役立ちサイト
◆Microsoft Azure公式サイト
https://azure.microsoft.com/ja-jp/
Azureに関する情報が集約されている日本語サイト
です。各サービスの説明や料金計算ツール、必要なコ
マンドラインツールやSDKの入手などができます。
また、このサイトからAzureを開始するための無料
評価アカウントの作成や、Azureポータルへアクセ
スすることもできます。

◆マイクロソフトマーケティングチーム公式ブログ
https://blogs.technet.microsoft.com/mssvrpmj/
サーバ＆クラウド関連の製品やサービスの発表内容を
日本語でお届けしています。各製品ごとのブログ記事
やテクニカルサポートブログ記事へのリンクが豊富な
ので、技術的な情報を検索したいときや最新情報の収
集をする際にはお勧めです。

◆MSDNオンラインフォーラム（日本語OK）
https://social.msdn.microsoft.com/Forums/
ja-JP/home?forum=windowsazureja
マイクロソフトが運営しているユーザ同士で技術的な
ナレッジやノウハウを共有するためのオンライン知識
共有サービスです。いつでも過去の投稿を閲覧でき、
質問や回答する場合にはお持ちのマイクロソフトアカウ
ントがあれば無料で利用することができます（投稿時に
はオンラインフォーラム用の表示名を指定できます）。
MVP（Microsoft Most Valuable Professional）を
受賞した専門家やマイクロソフト社員が回答するケー
スもあるため、専門的な回答が蓄積されています。

◆stackoverflow（英語）
http://stackoverflow.com/questions/tagged/azure
海外の技術系掲示板サイトです。世界中のユーザが活
発に質問や回答を投稿していることで知られているた
め、豊富な情報量が期待できるサイトです。

Linuxが動く ！　RedHatが動く ！
オープンソースとの親密度を深めるMicrosoft Azureのいま

第 章3

https://github.com/Azure/azure-quickstart-templates
https://github.com/Azure/AzureStack-QuickStart-Templates
https://azure.microsoft.com/ja-jp/
https://blogs.technet.microsoft.com/mssvrpmj/
http://stackoverflow.com/questions/tagged/azure
https://social.msdn.microsoft.com/Forums/ja-JP/home?forum=windowsazureja

44 - Software Design

はじめに

　筆者は普段SIerのエンジニアとしてユーザ
企業様へ、システムをクラウド化するお手伝い
をさせていただいております。ほんの少し前は
「クラウド、何それ？」という反応が、ここ1、
2年ですっかり一般的な選択肢となり、日々時
代の早い流れを感じております。今回この章で
紹介する IBM Cloudもこの時代の流れで急激
に変化をしているクラウドサービスです。
　一昔前は IBMが業界を牽引していました。
しかし、現在クラウドサービスを牽引している
アマゾンのAmazon Web Services（AWS）、そ
してマイクロソフトのAzureに比べると、一般
のエンジニアにとって「SoftLayer」というの
は少し遠いところにあり、あまり知られていな
いのかなと感じています。「IBM」が作るこの
クラウドサービスも実は日本でのサービス開始
はまだ日が浅く、「IBMフリーク」なユーザの
方の中でもまだあまり知らない方も多いのでは
ないかと思います。最近ではIBMというと「ワ
トソン」が非常にポピュラーなキーワードとなっ
ています。また「Bluemix」という新しいプラッ
トフォームの名前も少し耳に入ってきているか
と思います。この章では、IBMのクラウドサー
ビス「SoftLayer」そして「Bluemix」をエンジ
ニアの視点から見ていきたいと思います。

SoftLayerの概要

SoftLayerの提供形態

　IBMのクラウドといえば、「ベアメタルクラ
ウド」として有名です。このクラウドサービス
は現在「SoftLayer」と呼ばれています。これ
までクラウドといえばユーザに対して仮想化さ
れている環境である点や、共有リソースである
ことを強要してきた背景がありますが、
SoftLayerでは「ベアメタルサーバ（仮想化さ
れていない素の物理サーバ）」や「占有型プラン
（仮想化環境においても共有利用でないプラン）」
などが用意され、ユーザがその提供形態を選択
できます（図1）。
　こういった背景にはいろいろな事情がありま
すが、SoftLayerでは「仮想サーバを提供して
いたプロバイダ」が物理サーバを提供したので

本章ではIBMのクラウドサービス、IBM Cloudの製品であるSoftLayerとBluemixについて解説しま
す。SoftLayerは、インフラエンジニアがこれまで培ってきた技術を最大限に活かせる「ベアメタルサーバ」
が特徴です。Bluemixは、開発したアプリケーションを素早くリリースできるPaaS環境で、アプリケー
ションエンジニア注目のサービスです。

 ▼図1　共有環境と占有環境

物理サーバA 物理サーバB 物理サーバC

ユーザA

仮想化基盤 仮想化基盤

仮
想
サ
ー
バ

（
ユ
ー
ザ
Ａ
）

仮
想
サ
ー
バ

（
ユ
ー
ザ
Ｂ
）

仮
想
サ
ー
バ

（
ユ
ー
ザ
Ａ
）

仮
想
サ
ー
バ

（
ユ
ー
ザ
Ｃ
）

仮
想
サ
ー
バ

（
ユ
ー
ザ
Ａ
）

物理的なデバイス（サーバ・
ネットワーク機器など）を単
一のユーザのみが利用

物理的なデバイス（サーバ・
ネットワーク機器など）を仮
想化し複数のユーザで共
有

仮想環境における物理リ
ソースの占有モデル（単
一のユーザのみが利用可
能な仮想化基盤）

ユーザA専用
に予約

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

第 章4
ベアメタルクラウドにはどんな利点がある？

SoftLayerとBluemixを擁する
IBM Cloudの強み

Author 常田 秀明（ときだ ひであき）　日本SoftLayerユーザ会
Mail tokihide@gmail.com

44 - Software Design Nov. 2016 - 45

はなく、実はもともと「物理サーバを提供して
いる企業」が事業の始まりでした。その後の経
緯でベアメタルサーバと仮想サーバを分け隔て
なく利用することができるようになり、今に至
ります。ベアメタルサーバも仮想サーバもOS
（利用者）から見るとほぼ同じように扱うこと
が可能な設計になっています（図2）。

ネットワークに強い世界32ヵ所の
データセンター網

　昨今のクラウドベンダーの中ではめずらしく
ホスティング事業出身という出自のクラウドで
あり、ネットワークに非常に強いことも特徴の
1つです。執筆時の9月上旬現在、世界中の
32ヵ所のデータセンターまで拡張されており、
それらすべてのネットワーク上のサーバに自由
にアクセスすることができます。ネットワーク
はクラスAのプライベートアドレス帯注1が割り
当てられたネットワークとして構成されています。
　SoftLayer上ではユーザのネットワークとし
てVLAN単位で IPアドレスの割り当てが行わ
れます。複数のVLANをまたいで通信を行う
ために「VLANスパニング」とSoftLayerにて
呼ばれる機能を有効にすると、ユーザの管理し

注1） プライベート IPアドレスの範囲はRFC 1918で規定されて
おり、クラスAからCに分けられています。クラスAは
10.0.0.0～10.255.255.255（10.0.0.0/8）、クラス Bは
172.16.0.0～172.31.255.255（172.16.0.0/12）、クラスCは
192.168.0.0～192.168.255.255（192.168.0.0/16）。

ているVLAN間で IP通信が可能となりま
す注2。このあたりはネットワーク設計としてか
なり割り切った設計をしていると思います。昨
今では、閉域網として専用線でSoftLayerと接
続した際、ユーザが管理する企業側のプライベー
トネットワークのアドレス体系が同じクラスA
で競合してしまうケースなども出てきているた
め、専用線で接続する際にはNATなどの技術
によりアドレスの変換を行う対策が必要です。
　とはいえこの構成により、32ヵ所を相互に
接続する単一のネットワーク、そしてネットワー
ク制御装置が仮想化されていないことによるス
ループットが非常に良いネットワークを作れて
いることも事実です。速さや安定性という面で
は素晴らしいと感じます注3。

SoftLayerのしくみ

　もう少し中をみると図3のように、サーバに
は2つのネットワークへ配線がされています。

注2） これらの通信は単一のデータセンター内だけでなく、東京
←→ダラスなど異なるデータセンター間でも有効です。し
たがって一度設定してしまえば、SoftLayerの全データセ
ンター内の自分の管理しているサーバに非常に簡単にアク
セスが可能です。

注3） 32ヵ所ものデータセンターを結べば地球を一周するネット
ワークになり、小型のインターネット網のようになってい
ます。

 ▼図2　SoftLayerの論理構成図

ストレージ層

仮想サーバ

Xenベースの
仮想環境上のVM

プライベート
クラウド

ハイパーバイザ
設定済み物理サーバ

ベアメタル
（物理サーバ）

Supermicro 社
ボードベースの
物理サーバ

ネットワーク経由型のストレージの提供（iSCSI、NASなど）

ネットワーク層

API

プライベートネットワークとパブリックネットワーク

 ▼図3　ベアメタルサーバのネットワーク構成

DC #1 DC #2

パブリックネットワーク

プライベートネットワーク

Internet

物理 IF

物理 IF

VLAN #4

ベアメタル
（物理サーバ）

#1

DC #3

Internet

物理 IF

物理 IF

VLAN #6

VLAN #3

ベアメタル
（物理サーバ）

#2

VLAN #1

ベアメタルクラウドにはどんな利点がある？
SoftLayerとBluemixを擁するIBM Cloudの強み

第 章4

46 - Software Design

1つは「パブリックネットワーク」で、もう1つ
が「プライベートネットワーク」です。このうち
のパブリックネットワークは実際にグローバル
IPアドレスがOS上の設定として付与されてお
り、昨今の仮想化されたネットワーク環境を持
つクラウドと比べると珍しい構成になっている
と言えます注4。そしてもう1つのプライベートネッ
トワークの接続は、VLANを経由してすべての
データセンターとの通信を可能にします。海外
に複数拠点展開してるユーザであれば、このシ
ンプルさは目を引くのではないでしょうか。
　またSoftLayerでは、これらのネットワーク
周辺の構成などが公開されている部分もあり、
透明性の高さをアピールしています。実際にシ
ステムを構築した際に仮想化されたネットワー
クでトラブルシューティングが難しいという話
も聞かれますが、SoftLayerではかなりのとこ
ろまで問題原因を追うことができるインフラサー
ビスとなっています。
　ちなみに仮想サーバにおいても同様のネット

注4） 想像がつくように、グローバル IPアドレスが付与されてい
るということは直接インターネットに接続されているとい
うことでもあるので、キチンとネットワークなどの設計をし、
Firewallなどでセキュリティを担保していく必要があります。

ワーク構成がされており、ハイパーバイザ経由
で仮想ネットワークインターフェースが提供さ
れ、それぞれパブリックとプライベートに接続
される構成になっています（図4）。このように
物理サーバと仮想サーバでの差がハードウェア
構成上も少なくなるように設計されています。
　このようなことからベアメタルサーバと仮想
サーバを相互にバックアップ→復元することが
できるFlex Imageと呼ばれるサービスも提供
しています注5（図5）。

ベアメタルクラウドとは？

　「ベアメタル」は単純に言えば「素のハードウェ
アのサーバ」です。その特徴は大きいところで
次の3つ、

❶自由にリソース構成を選択できる
❷自由に構成をコントロールすることができる
❸ハイパフォーマンス（費用に応じたパフォー
マンス）

があげられます。順に詳しく解説していきましょう。

❶自由に選択できる

　SoftLayerにおけるベアメタルサーバのオー

注5） こちらについては最新のOSに対応していないなどがあり、
少し残念なところです。

 ▼図4　仮想サーバのネットワーク構成

物理サーバ

Xen

パブリックネットワーク

プライベートネットワーク

Internet

仮想 IF

仮想 IF

VLAN #4

仮想サーバ #1

Internet

VLAN #6

VLAN #3VLAN #1

仮想 IF

仮想 IF

仮想サーバ #2

仮想 IF

仮想 IF

仮想サーバ #3

OSから見た場合、仮想サーバも物理サーバも同じNetwork Interface の構成をしている

 ▼図5　Flex Imageの構成

仮想サーバと物理サーバを
相互に移動することができる
バックアップサービス

Flex Image
物理 IF

物理 IF

ベアメタル
（物理サーバ）

#1

仮想 IF

仮想 IF

仮想サーバ

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

46 - Software Design Nov. 2016 - 47

ダー方法は完全に自作サーバです（笑）。
SoftLayerのサイトを見ると、たくさんのマザー
ボードから利用用途に応じて選択をするところ
から始まります。フルオーダータイプ（月額）と、
構成が決まったセミオーダータイプ（時間額）
があります。フルオーダータイプの場合には
CPUの種類や数、メモリの数などサーバを構
成する物品を選択していき、オリジナルのサー
バをオーダーすることが可能です（図6）。最新
のチップセットやGPUなど話題のハードウェ
アが利用できます。
　このようにオーダーされたサーバはおおむね
4時間程度で利用可能になります（とはいえ大
容量のストレージをオーダーすれば初期化する
のにかかる時間は必然ですのでその時間はかか
ります）。しかも初期構成済みの場合には30分
で物理サーバが利用可能です。以前からSI案
件でインフラを構築していたエンジニアの立場
からすると、驚異的な時間の短さと言えます。
物理的に何かしらはキッティングする作業は発
生しているはずなのですごいですね。自由に選
択できるという点ではOSのバリエーションも
非常に豊富です（CentOS、Citrix XenServer、
CloudLinux、CoreOS、FreeBSD、Windows、

RHEL、Ubuntu、VMware、Vyatta、none
OS）。なかには、OSを入れないという玄人な
選択肢もあります。使い方としてはかなり自由
度が高くなっています。昨今、エンタープライ
ズ企業において企業内の仮想化基盤として
VMwareを利用されているユーザが少なくあり
ません。そういったすでに仮想化基盤を持って
いるユーザ企業が既存の資産（技術的なものや
構築されている環境）を維持しながらもクラウ
ドの恩恵を得るためにベアメタルサーバ上に
VMware環境を構築されるケースが多くありま

ホスティング業者からIBM Cloudに至る道程

　まだ世の中がクラウドという言葉で利用してい
ないころ、SoftLayer社がThe Planet Internet Servi
ces社と合併して、現在の SoftLayerのように物理
サーバを提供するホスティング企業として事業を
展開していたのがはじまりだそうです（なんとまだ
Planet時代のサーバは稼働中！）。その後SoftLayer
社として、AWSやCloudStackといった仮想サーバ
を主体としたサービスに対抗するために、シトリッ
クス社の技術を利用してSoftLayerも仮想サーバを
ラインナップに加えてサービスを提供していました。
IBMに買収された2013年当時はまだ日本にデータ
センターはありませんでしたが、AWSの日本デー
タセンター設立後の躍進に導かれるように、IBMも
2014年にデータセンターを日本に設立しています。

日本データセンターと今年に入ってからのVMware
社との提携などにより、ベアメタルを利用したプ
ライベートクラウドの流れはエンタープライズ企
業にとって見過ごせなくなると感じています（図A）。

 ▼図A　SoftLayerの歴史

VMware 社と
提携し、新しい
プライベート
クラウドの流れ

Bluemixを
中心とした
新しい開発
プラットフォーム
の提供

Planet

ベアメタルを
中心とした
ホスティング
事業

SoftLayer

サービスを拡充し
仮想サーバを
加えクラウドの
時代に対応

IBM

データセンターの
世界展開、
PaaS 機能の
拡充

 ▼図6　ベアメタルサーバのコンポーネント

ベース（board）の選択

ストレージ
追加

GPUの
選択

CPU
追加

OS
選択

ディスクの選択

RAIDの構成

速度選択メモリ
追加

ネットワーク
追加

ベアメタルクラウドにはどんな利点がある？
SoftLayerとBluemixを擁するIBM Cloudの強み

第 章4

48 - Software Design

す。とくにIBMは今年、VMwareと提携を行っ
たこともあり、この流れはしばらく続くと考え
られます。VMwareでクラウドの基盤を利用し
てもらい、新規のシステムでは仮想サーバや物
理サーバを使っていくというケースが想定され
ます。

❷自由に構成をコントロールするこ
とができる

　SoftLayerでは基本的に、さまざまなことが
できる権限を極力多くユーザに提供しています。
ベアメタルサーバではなんとBIOSの設定まで
も変更することができます。したがってブート
シーケンスの設定だったり、特殊なオプション
を有効にするなどといったことが可能です。
SoftLayerで提供しているベアメタルサーバの
マザーボードはSupermicro提供のもので、多
くのツールやしくみを利用できます。

　たとえばユーザは IPMI注6経由でマザーボー
ドにアクセスし、設定を確認することができま
す注7。
　また観点は違いますが、OS上の管理ユーザ
としてrootアカウントが提供されます注8。こう
いった点もSoftLayerの自由さとして現れてい
るかと思います。

SoftLayerを支えるAPIの技術
　この章に至るまでに「AWS」「Azure」での開
発を読まれてきたことと思います。SoftLayer
でも同様にサーバ、ネットワーク、ストレージ、
そしてそれ以外のサービス群をリモートより簡
単に操作して設定していくことができます。こ
れらの操作は「コントロールパネル」と呼ばれ
るブラウザベースのWebアプリケーションと
して提供されています（図7）。
　この裏側では多数のAPIが呼び出されてい

注6） Intelligent Platform Management Interface：外部から
電源のON/OFFやリモートコンソール、温度やエラー情報
などを取得できるインターフェース。

注7） 実際に設定の変更をするためにはADMIN権限が必要であり、
サポートチケットに依頼するとユーザの権限をADMIN相
当にしてもらえます。こうすると設定の変更などができ、
たとえば仮想メディアをマウントしたり、BIOSの設定を
変更したりできます。

注8） 他社のクラウドの多くは専用アカウントが払いだされ、
sudoする環境になっていることが多いかと思います。

 ▼図7　管理コンソール

 ▼図8　API概念図

メソッド群
操作

プロパティ（値）群

リソース

ハードウェア ソフトウェア ネットワーク ストレージ

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

48 - Software Design Nov. 2016 - 49

ます。APIは、SoftLayerのほぼすべての部分
をコントロールできるように構成されており、
たとえばサーバの電源を入れたり、またはスト
レージを追加したり、ネットワークを構成した
りすることを自在に行えます。実際にはAPI
基盤がサーバや各ハードウェアのファームウェ
アに対して指示を出したりすることになるわけ
ですが、とくにこのAPI設計が特徴的であり、
あらゆるリソースを同じように取り扱うことが
できます。たとえば、先ほどのネットワークの
電源の入れ方もストレージの追加の仕方も統一
された仕様で行われており、一度理解すればよ
いというのは非常に低コストです。
　さまざまなリソース（定義上は100種類以上）
それぞれに、プロパティと呼ばれる値が存在し、
それを操作するためのメソッドが用意されてい
ます（図8）。
　たとえば、ユーザが利用しているすべての
物理サーバの ID、FQDN（Fully Qualified Do

main Name）、データセンター名、IPアドレス
の情報を取得する際には、操作したい情報の宣
言を行い、その宣言されたオブジェクトに対し
て情報を取得するというgetObjectsメソッドを
実行することで、宣言された値を得ることがで
きます（図9）。この操作はSoftLayer全体で統
一されており、目的のリソースを調べさえすれ
ば、さまざまなことが同じ操作で行えます。
　APIでのアクセスはベアメタルサーバに対し
ても同様にコントロールすることが可能です。
実際に弊社では、これらのAPIを利用して複
数のアカウントのユーザ情報・請求情報・構成
情報を管理するためのプロダクトを開発し運用
しています（図10）。
　その気になれば、システム専用のコントロー
ルパネルやダッシュボードを作ることができる
のは運用面のアドバンテージになります。API
でさまざまなことができるというのは、従来サー
バの前でマニュアルを見ながら設定パラメータ

 ▼図10　日本情報通信㈱の管理ソフト「kumade」コンソール画面

 ▼図9　例）ハードウェア情報取得の方法

メソッド群

宣言：Object（SL001）として物理サーバ（SoftLayer_Hardware）の
　　　操作したい値を宣言

resource(SoftLayer_Hardware) [
 id,
 fullyQualifiedDomainName,
 datacenter.longName,
 networkComponents.primaryIpAddress
],

処理：すべての情報を取得
SL0001.getObjects()

 　　→ 結果として宣言された id など 4 つの項目の内容を取得

プロパティ（値）群

SoftLayer_Hardware

ベアメタルクラウドにはどんな利点がある？
SoftLayerとBluemixを擁するIBM Cloudの強み

第 章4

50 - Software Design

を1つずつ入力していたことから比べて非常に
面白く、APIを利用してスクリプトでソフトウェ
アを導入するようにハードウェアを構成するこ
とができます。まさに最近はやりの Infrastrac
ture as a Codeを実施できる環境と言えます。
　SoftLayerのAPIは基本的には、コンソール
から発行されるユーザ ID/Tokenキーでアクセ
スするREST API（またSOAP、XML-RPC）
として提供されています。より開発を促進する
ためにPythonベースのslcliと呼ばれるコンソー
ル同様のコマンド、また開発用のLibraryとし
てGo言語（つい先日追加されていました！）、
Python（CliなどはすべてPython製なので一番
安定しています）、PHP、Javaなどが提供され
ています。

❸ハイパフォーマンス（費用に応じ
たパフォーマンス）

　共有環境の悩みの1つに、noisy-neighborと
呼ばれる共有環境において、自分以外のユーザ
がリソースを多く使用してしまい自身が求める
パフォーマンスが出ない問題があります。一般
的なクラウドでは、こういった問題に対して帯
域保証などをオプションで行うことでSLA
（Service Level Agreement）を担保しています。
より多くのコストをかけることでパフォーマン
スが保証されるトレードオフを行うことになり
ます。ネットワークやストレージなどの I/Oは
多くがこのケースで提供されていますが、サー
バに関しては共有環境のコストを軽減するため
に実際のリソース以上のリソースを利用者に割
り当てる、オーバサブスクリプションと呼ばれ
ている割当を行うことがあります。この場合に
はnoisy-neighborを避けることは難しいです。
　SoftLayerにおいてもこの問題は皆無ではあ
りませんが、物理サーバにおいては発生しませ
ん。そして費用面でも仮想サーバと同レベルの
価格帯から提供されており、物理サーバ＝高価
格という図式ではないため、安定したパフォー
マンスを得たいという場合においてもベアメタ
ルサーバは有効です。実際にジョブなどを実行

して日により実行時間が異なるという状況にな
れば、問題になるケースも出てくるかと思いま
す。また仮想サーバにおいても、SoftLayerは
2GHzという単位で提示されており、オーバサ
ブスクリプションをしていないのではと考えら
れます（公開されていません）。
　いくつかの観点はありますが、物理サーバと
してオーダーできるスペックは日々進化してお
り、最新CPUと大容量メモリ（たとえば48ソ
ケット搭載可能なベースであったり、3TBま
で搭載できるメモリなど）、サーバ間を接続す
る高速なネットワーク（10Gbps、InfiniBand）、
高速なディスク（SSDやFusion-io）、GPUな
どのボードを追加で選択することができます。
また、CPUに IntelだけでなくPowerを選択す
ることも可能です。

IaaSとPaaSの両展開の
実践

　IBMがSoftLayer買収後に打ち出した一番
ホットなサービスがBluemixです。これまでの
IBMの雰囲気とはかなり違うライトな印象の
サイト、開発者を見て作られたであろうダーク
調なコントロールパネル、多数のOSSで構成
された内容と、IBMにとってBluemixは挑戦的
なサービスであると思います。
　Bluemixが何かという問いに対しては、構成
的には「Cloud FoundryベースのPaaSです」と
いうのが答えになります。Cloud Foundryは
HerokuにインスパイアされたOSSベースのソ
フトウェアです。Cloud Foundryに、非常に多
くのサービスと小綺麗なポータルを用意してい
るものになります。これまでのSoftLayer側の
視点はインフラエンジニアにとり面白い視点で
あり、アプリケーションエンジニアにとっては
馴染みがなく、また従来どおり覚えることも多
く、始めるのはハードルが高かったこともある
かと思います。それに対してBluemixは、まさ
にアプリケーションエンジニアにとっての面白
い環境になりつつあります（図11）。

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

50 - Software Design Nov. 2016 - 51

　Bluemixは現在3つのSoftLayerのデータセ
ンターで運用を開始しています。残念なことに
はSoftLayerのようにロケーションフリーでは
ないため、各データセンター単位での管理となっ
ています。このBluemixではたくさんの意欲的
なことが行われています。IBMはBluemixで多
くの初物を扱っています。これまでは自社の
RDBMSのみを提供していたスタイルから、
Compose社との提携によりMySQL、Elastic
Search、Redisなども利用できます。また、
SaaS提供をしていた IBMのソフトウェアプロ
ダクトも利用することができます。代表的な
IBMのNoSQL DBであるCloudantなども、
Bluemix経由で簡単に利用できるようになって
います。
　現在、SoftLayerの安定性や性能の面からも、
Bluemix上のOSSサービスを利用して開発を
行い、SoftLayer上で本番環境を構築する、な
どの展開が行われています。とはいえこの
Bluemixの波は徐々に広がっており、従来の
Cloud Foundryが提供するPaaSの実行環境
だけでなく、OpenStack VMやDockerそして
OpenWhiskといった、より粒度の細かい単位
での制御サービスに発展しています。そのうち
にBluemixからSoftLayerのベアメタルが利用
できる日も来るかもしれません。SoftLayerか
らBluemixを利用するためのアイデアはいくつ

かあります。SoftLayerにはBluemixの「サー
ビス」と呼ばれる部分に該当する機能が提供さ
れていないので、SoftLayer側からBluemixの
「サービス」を利用するのは1つのアイデアです。
逆に、データなど自身で管理したいデータ部分
をSoftLayer上で構築したストレージに、Blue
mixからアクセスすることも可能です。

最後に

　過去、サーバが目の前にあったころには当た
り前だったことができなくなっている現在では、
サーバについて学び始めたエンジニアの人にと
り、SoftLayerは非常に貴重な場であるように
感じます。また、クラウドであってもオンプレ
ミスと同様の技術を利用できるということは、
いつでも自社でシステムを別環境で構成できる
という安心感にもつながりますね。
　また一方で、Bluemixは開発を行い、すぐに
でも実行させたいというニーズに応えてくれま
す。作成したプログラムが一定以上の品質で簡
単に公開できるのは非常に魅力的です。この2
つはまだ融合されていない点も多いですが、エ
ンジニアのアイデア次第で連携して利用するこ
とが可能です。本章の解説で興味を持たれたら、
まずは無料トライアルからはじめてもらえれば
と思います。ﾟ

 ▼図11　Bluemixのサービス体系の相関図

SoftLayer

R
ou

te
r

APP APP APP APP

Bluemix
Services

100 以上のサービス群

開発したアプリケーション

Runtime（Droplet Execution Agent）Runtime（Droplet Execution Agent）

Internet

HTTP(s)
WebSockets

Admin
UI

Application
Client

Developer

ベアメタルクラウドにはどんな利点がある？
SoftLayerとBluemixを擁するIBM Cloudの強み

第 章4

52 - Software Design

はじめに

　AWSは使用したことがあるけれどHeroku
やほかのPaaSは使用したことがない、または
PaaSを趣味のアプリ作成では使用したことが
あるけれど、業務では使用したことがない、と
いった方は多いのではないでしょうか。この章
では、PaaSとは何かといったところから、
PaaSとしてのHerokuのメリット、その裏側
とアーキテクチャまで解説したいと思います。

PaaSとは

　PaaS（Platform as a Service；パースまた
はパーズと読む）は、アプリを実行、または運
用するためのプラットフォームをサービスとし
て提供します。このプラットフォームでは、
OSだけでなくアプリを実行、または運用する
ために必要なミドルウェアも提供しますので、
開発者はインフラの知識を必要とせずにアプリ
を開発、公開できます。
　PaaSは Infrastructure as a ServiceとSoftware
as a Serviceの中間に位置しますが、筆者は
「IaaSの上に1枚レイヤを重ねた感じ」といっ
た説明をよくします。IaaSはサーバの調達や
管理といったものをクラウド上で行うことがで
きて非常に便利ですが、このサーバのセットアッ

プ部分、運用部分はユーザしだいであり、自由
度が高い反面、その使用にはインフラの知識が
必要でした。実際にアプリをローカルで開発で
きる、という方でもいざ IaaSを使用してデプ
ロイする、公開する、となるとさまざまな準備
や知識が必要となります。PaaSはこの部分を
プロバイダが提供することにより、開発者はサー
バの管理運用をプロ（PaaSプロバイダ）に任せ、
開発に注力できます。SaaSの利用者はおもに
一般ユーザであるのに比べると、PaaSや IaaS
は開発者に向けたサービスで、その上に何かを
作ることを前提としていることからも、PaaS
はIaaSに近いものと言えます。
　Herokuは代表的なPaaSのうちの1つですが、
そのほかにもMicrosoft社が提供するMicrosoft
Azure、Red Hat社のOpenShift、Google社の
Google App Engineなどが代表的なPaaSとし
て挙げられます。
　図1はHerokuのホームページから引用した
ものですが、IaaSを使用して一般的なWebア
プリを作成しようとした場合に必要なステップ
や知識を示しています。まず IaaSのプロバイ
ダを選定し、OSのセットアップをします。そ
の後コンテナに何を使用するか、データストア
（データベース）に何を使用するかの選定およ
びセットアップ、コンテナの管理運用が必要に
なってきます。また、ロードバランスやルーティ
ングといったネットワークの設定もWebアプ

インフラの構築・運用はできるだけ外部サービスに委託してアプリケーションの開発に集中するのが、イマ
ドキの開発手法。それを実現するPaaS、その中でもとく若手エンジニアに人気のあるHerokuを紹介し
ます。併せて、Herokuの機能を最大限使って開発を効率化するHeroku Flowも解説します。

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

第 章5
インフラの構築・運用はPaaSで省略

スモールスタート＆高速開発に
最適なHeroku

Author 織田 敬子（おだ けいこ）　Heroku

52 - Software Design Nov. 2016 - 53

リには必要不可欠です。それらが済んでいざア
プリをデプロイしても、その後アプリが動いて
いるかだけでなく、サーバ・コンテナがしっか
り動いているかのモニタリングの設定、またロ
グはどうするかなど、アプリ開発という本来の
目的とはかけ離れたインフラの設計と開発が必
要になってきます。PaaSはこれら一連のもの
をプラットフォームとして提供しているのです。

HerokuのPaaS
プロバイダとしての歩み

　HerokuはSalesforce.comが提供するPaaS
です。Herokuは2007年の夏に設立されました。
当初は、Ruby on Railsアプリをブラウザベー
スで作成・ホスティングできるといったもので、
PaaSの概念からは少し離れたサービスを提供
していました。
　2009年にこのブラウザベースの開発環境を
破棄し、開発はローカルで開発者の慣れ親しん
だエディタで行い、Herokuへはgit push heroku
masterを用いてデプロイする、といった形に
シフトしました。これにより、HerokuはPaaS
プロバイダとしてプラットフォームを提供して
いくという道を進んでいくことになりました。
このとき、言語としてはまだRubyのみのサポー

トでしたが、次々と生まれる新しい言語、また
それらを積極的に利用していく開発者コミュニ
ティの後押しもあり、Ruby以外の言語をサポー
トする試みが始まってきました。また、同時期
にAdd-ons（アドオン）と呼ばれる、サードパー
ティの提供するさまざまなサービスを簡単にア
プリに追加できるサービスの提供を始めました。
　この1年後の2010年には、アプリ開発にお
いて多く使われるデータベースのアドオン
「Heroku Postgres」の提供を始め、より簡単に
Herokuのエコシステム内でのアプリの作成が
可能となりました。
　2010年末にSalesforce.comがHerokuの買収
を発表し、PaaSプロバイダとしてさらにサポー
トする領域を増やしていきました。言語として
は、2012年にCedarスタック（実行基盤）が
GA注1となり、Rubyに加えてClojure、Java、
Node.js、Python、Scalaが正式にサポートさ
れるようになりました。
　2014年にはPHP、2015年にはGoも正式サ
ポートされるようになりました。このようにサ
ポートされる言語が増え、アプリの性質に合わ
せた言語を開発者がより自由に選択できるよう

注1） General Availability：正式リリース。

 ▼図1　build apps, not infrastracture（https://www.heroku.com/）

インフラの構築・運用はPaaSで省略
スモールスタート＆高速開発に最適なHeroku

第 章5

54 - Software Design

になりました。Heroku社内でも多くのHeroku
アプリがデプロイされており、さまざまな言語
が使用されています。
　DX注2、開発者の生産効率の向上やより良いア
プリ作りを支援する、という方面からも
Herokuは進化していきました。2011年にはモ
ダンなWebアプリを開発・運用するうえで考
慮すべきアーキテクチャについて解説された
The Twelve-Factor App注3が公開されました。
Heroku上で作成されるアプリについては自然と
これに沿うことができるようになっており、こ
れによってHerokuにデプロイされたアプリは簡
単なスケールイン・アウトが可能などPaaSの
力を十分に引き出すことができるようになって
います。
　2014年のHeroku Buttonのリリースにより、
開発者は簡単にテンプレート化されたHerokuア
プリを自分のアカウントでデプロイできるように
なりました。
　2015年にはGitHub Integrationが紹介され、
これまでGitHubとHerokuの両方にpushしなけ
ればならなかった運用から、GitHubにpushする
だけでHeroku上にも自動的にデプロイされるよ
うになりました。その後、Heroku Flow注4と呼
ばれるContinuous Deliverly注5をサポートする
しくみが発表されました。
　これらのプロダクトは、PaaSプロバイダで
あるHerokuの、長年多くのアプリをホスティ
ングしてきた実績と経験を通じて培ってきたア
プリ開発におけるベストプラクティスから来て
おり、どうすればより良い開発体験が得られる
かを追求していったものとなります。これにつ
いてはあとで詳しく説明しますが、Herokuで
はこのようなプロダクトを通じて、ベストプラ
クティスを開発者が自然に簡単に取り入れるこ

注2） デベロッパエクスペリエンス、開発体験。
注3） URL https://12factor.net

注4） URL https://www.heroku.com/continuous-delivery

注5） 継続的デリバリ。継続的にアプリの開発・テスト・リリー
スを行うしくみ。

とができるような工夫がなされています。
　PaaSが認知され始め利用者が増えるに連れ、
徐々に、とくにエンタープライズな利用者から、
よりセキュアで独立した環境であるプライベー
トクラウドの需要が増えてきました。Heroku
は従来パブリッククラウドのみを提供していま
したので、このような需要に応えるためにも
2015年、Private Spacesを発表しました。こ
れにより、Heroku本来の開発体験や開発効率
は維持したまま、プライベートなPaaS空間が
簡単に構築できるようになりました。この従来
のパブリッククラウド（Common Runtime）と
プライベートクラウド（Private Spaces）につ
いてはのちほどまた詳しく説明します。
　このように、HerokuがPaaSプロバイダとして
提供しているサービスは、特定の言語に特化し
たプラットフォームから、より良い開発体験を含
めたさまざまな言語・ニーズに応えることのでき
るプラットフォームへと進化をしていきました。

Herokuの特徴

Herokuプラットフォーム

　Herokuでは、アプリは「Dyno」と呼ばれる
コンテナ単位で動きます。このDynoは、アプ
リコードはもちろんのこと、アプリが依存する
ライブラリ群などアプリを実行するためのすべ
てのリソースを含みます。Herokuでは、この
Dynoの作成やスケールイン・アウトが簡単に
できるしくみの提供、WebリクエストのDyno
への割り当て、ログの処理などさまざまな機能
を実行環境として提供しています。また、この
実行環境はHerokuの運用およびセキュリティ
チームにより24時間365日モニタリングされ
ています。

多言語対応

　Herokuでは現在、Node.js、Ruby、Java、PHP、
Python、Go、Scala、Clojureの8つのプログラ

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

https://12factor.net
https://www.heroku.com/continuous-delivery

54 - Software Design Nov. 2016 - 55

ミング言語・環境をオフィシャルにサポートし
ています。Herokuにアプリをデプロイすると、
アプリの言語を判別し、それぞれの言語に応じ
て自動的にプログラミング言語やアプリを走ら
せるために必要な依存ライブラリなどを格納し
た「Slug」と呼ばれるオブジェクトが生成され
ます。このSlugをDynoコンテナの上に載せる
ことにより、アプリを実行できる状態にします。
　このプロセスはbuildpack注6というしくみを
用いて行われますが、オフィシャルに提供され
ているもののほかにもカスタムのbuildpackを
利用することにより異なる言語、もしくは標準
のbuildpackでは入らない依存ライブラリなど
を利用できます。
　これはHeroku/PaaSの長所でも短所でもあ
ります。各言語ごとにしっかりとしたオフィシャ
ルのbuildpackがあるからこそ、コードをデプ
ロイするだけでインフラ部分を意識することな
く必要なものがすべて用意されるという長所と、
少し変わったプラットフォーム（例：サポート
されていない言語やライブラリ）がほしい場合
は、オフィシャルにサポートしていないカスタ
ムのbuildpackを自分で作成する必要があると
いう短所です。ただ、このカスタムbuildpack
もエコシステムは充実しておりり、1,000個以上
のものが公開されていますので、誰かがすでに
作ったものを再利用できる場合が多々あります。

Herokuエコシステム

　Herokuの大きな特徴として、エコシステムが
非常に発達していることが挙げられます。
Herokuではアドオンを使用することにより、デー
タベースなどを簡単にアプリに追加できます。た
とえば、Heroku Postgresアドオンを追加するこ
とによってアプリから簡単にPostgreSQLを使
用できます。データストア関連のアドオンだけで
も PostgreSQL、MySQL、Redis、MariaDB、
MongoDB、Neo4j、Kafkaといったようなもの

注6） URL https://elements.heroku.com/buildpacks

が利用できます。
　現在アドオンの数は150を超えており注7、そ
れらを組み合わせることにより非常に効率的な
開発ができます。たとえば、メール関係のアド
オンを使用することにより、メールサーバを立
てることなくメールの送信ができます。アドオ
ンの追加はたいていワンクリックででき、設定
も非常に容易なものが多いです。
　Heroku button注8、buildpackもエコシステム
のうちの1つで、さまざまな作者によって作ら
れた多くのものが公開されています。これらを
利用することによって、開発を加速させること
ができます。

PaaSとしてのHerokuの
メリットと使用例

スモールスタート

　スモールスタートはクラウドの利点でもあり
ますが、これはPaaSにも当てはまります。
Herokuには無料もしくは少額から使用できる
Dynoやアドオンが豊富にあり、これらを使用し
てプロトタイプを作成・公開して必要に応じて
スケールイン・アウトしていく、といったこと
ができます。Dynoやアドオンは秒単位の課金で
すので、数時間だけ、3日間だけ、といったよ
うに短期間だけ使用するような使い方もできます。
　スモールスタートで簡単にトライ・アンド・
エラーができるということで、PaaSは新規事
業などに非常によく利用されています。アジャ
イル開発ともとても相性が良く、たとえば大き
な企業の新規事業開発チームなどで利用されま
す。Heroku社内でも、新しいアプリを思いつ
いたらすぐにHerokuにデプロイしてみて社内
で使用し、ニーズが高ければスケールアウト、
もしあまり使われないようなら破棄、といった

注7） URL https://elements.heroku.com/addons

注8） クリックするだけで、テンプレートを元にアプリが
Herokuにデプロイされるボタン。 URL https://devcenter.
heroku.com/articles/heroku-button

インフラの構築・運用はPaaSで省略
スモールスタート＆高速開発に最適なHeroku

第 章5

https://elements.heroku.com/buildpacks
https://elements.heroku.com/addons
https://devcenter.heroku.com/articles/heroku-button

56 - Software Design

ようなことがよく行われています。

アプリ開発に集中できる

　PaaSでは特別なインフラの知識が必要ない、
アプリを走らせるために必要な環境を準備する
必要がない、というのは非常に大きな利点です。
これは、インフラの知識がない人にはもちろん、
インフラの知識がある人にとっても構築の手間
が省けるということで非常に重宝されています。
また、PaaSでは IaaS（インフラ）部分は隠蔽
され、その部分の管理・運用はPaaSプロバイ
ダが行っています。そのため、アプリを走らせ
ているサーバのモニタリングなどを気にする必
要はなく、利用者はアプリ開発に集中できます。
　たとえばサーバを管理しなければならないと
なると、OSやライブラリにセキュリティ脆弱
性が発見されたとき、まずセキュリティに長け
た人がその重大性を検証し、パッチを当てる必
要があるか判断する必要があります。パッチを
当てる必要があると判断された場合、実際にパッ
チを当てるにあたってどのように実行するかを
計画し、管理しているサーバすべてにそれを行
う必要があります。このステップだけでもスキ
ルを持ったセキュリティエンジニアとインフラ
エンジニアが必要になります。そのようなリソー
スを保持していない企業も多く、重大な脆弱性
にパッチが当たらないまま運用を続けてしまっ
ている、といったようなケースもあります。
　PaaSの場合はプロバイダ側でプロのセキュ
リティエンジニアとインフラエンジニアがおり、
このようなセキュリティ脆弱性が発見されたと
きは適時にパッチを当てます。このようなイン
フラ部分というのは本当に価値を出したいとこ
ろ、アプリの実装や機能からはかけ離れたとこ
ろにあり、本来意識する必要がない部分です。
意識する必要はないのですが、インフラが安全
に安定して動いているというのは非常に重要な
ことであり、PaaSはそれを提供しているのです。
　この特徴を活かして、スタートアップ企業な
どの小さなチームでPaaSはよく利用されてい

ます。PaaSを使用することによってインフラ
に特化したエンジニアを雇う必要がないですし、
その部分の教育をチームメンバーにする必要も
ありません。その部分のリソースを、アプリを
より良くしていく開発に使用できるのです。

開発のベストプラクティスと
効率の向上

　アプリ開発への集中というのも開発効率を高
める要素の1つですが、ここではHeroku Flow
を例にとって、Herokuがどのようにしてアプ
リ開発のベストプラクティスを開発者が自然に
簡単に取り入れられるようにし、開発効率の向
上を助けているかを説明します。このようにア
プリ開発のフローまで提案、提供ができるのは、
PaaSならではと言えるでしょう。
　Heroku FlowではHeroku Pipelines、Review
Apps、GitHub Integrationの 3つを使用して
Continuous Deliveryのための構造化されたワー
クフローを提供しています。これによって、テ
ストやデプロイが非常に簡単になり、イテレー
ションの加速につながります。実際の開発フロー
としては、次のようになります。

・Heroku Pipelinesを使用してpipelineを作成
する

・GitHub Integrationを使用して自動デプロイ
を設定する

・Review Appsを有効にする
・Pull Request（PR）を新規作成し、レビュー

アプリを使用して確認
・PRをマージしてステージング環境にデプロイする
・本番環境にプロモートする

　このワークフローは多くの企業で採用されて
います。とくに、Herokuを長く使用してきた
企業などは、自前で似たようなことを長い時間
をかけてしていましたが、Heroku Flowを用い
ることによりワークフローが整理され、とても
簡単にできるようになりました。
　Heroku Flowを実現する機能を1つずつ見て
いきましょう。実際にHeroku社内でも、これ

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

56 - Software Design Nov. 2016 - 57

ら機能を多用してアプリを作成しています。

Heroku Pipelines
　Heroku Pipelinesは、同じコードベースを
持ったHerokuアプリ（pipline：レビュー・開発・
ステージング・本番環境）を管理・可視化する
ためのツールです（図2）。本番環境のみを用意
するのではなく、常にステージング環境や開発
環境を用意するというのは、アプリ開発におい
て非常に重要です。開発・レビュー環境ではさ
まざまな新しい取り組みをし、形がまとまった
時点でステージング環境にプロモートしさらに
テストを行います。ステージング環境でのテス
トがしっかり通ったもののみ、本番環境にプロ
モートします。このようなワークフローを使う
ことにより、重大なデプロイミスを防ぐことが
できますし、本番環境で見られる問題をステー
ジング環境でデバッグするなどといったことも
容易にできます。

Review Apps
　Review Appsでは、GitHubのPRベースで、
新しい一時的なアプリを作成できます。これは
新機能の開発などに非常に便利です。実際に動
くアプリがPRをもとに作成されるので、レビュ
アはそのアプリを自身で操作して実際に目で見
てレビューできます。フィードバックをそのPR
に反映すると、レビューアプリにも新しいコード
が反映されます。そうやって実際に動くものを

見ながらレビューを行い、実際に固まったところ
でこのPRをマージします。マージが完了した時
点でHeroku Pipelinesがこれをステージング環
境にプロモートし、レビューアプリは自動的に破
棄されます。このようにReview Appsは、プロ
ダクト側を巻き込んだイテレーションが容易なレ
ビュー環境を可能にします。

GitHub Integration
　GitHub Integrationでは、GitHubのリポジ
トリをHerokuアプリと同期でき、手動または
自動で特定のブランチにpushされたコードを
Herokuアプリにデプロイできます。以前はこ
の機能がなく、GitHubとHerokuの両方にpush
をする必要があったので、Herokuのコードと
GitHubのコードが一致していないといった現
象がよく起きていました。
　もしGitHub上でContinuous Integration（CI）注9
の設定をしている場合は、CIが通るコミット
のみHerokuに自動デプロイする、といったよ
うな設定もできます。Review Appsもこの機能
を使用していますし、また開発環境アプリにも
使用できるでしょう。

小さなアプリから大きなアプリまで

　HerokuではさまざまなサイズのDynoとアド

注9） 継続的インテグレーション。アプリ開発において、継続的
にビルドやテストを行うためのしくみ。

 ▼図2　Heroku Pipelinesの画面

インフラの構築・運用はPaaSで省略
スモールスタート＆高速開発に最適なHeroku

第 章5

58 - Software Design

オン、またパブリッククラウドとプライベート
クラウドの両方を提供しているので、スモール
スタートや趣味のアプリといったような非常に
小さなアプリから、高セキュリティが必要なエ
ンタープライズアプリ、非常にトラフィックの
多い大規模アプリまでサポートしています。こ
れらをすべて、同じHerokuの開発体験を用い
て開発していくことができるのです。
　Herokuというと日本ではまだまだ趣味のア
プリ用のプラットフォームとしての利用が多い
ですが、近年ではエンタープライズでの利用も
非常に増えています。また、プライベートクラ
ウド（Private Spaces）にはTokyoリージョン
があり（パブリッククラウドにはUS/EUリー
ジョンのみ）、日本のアプリも多数デプロイさ
れています。家計簿アプリの「Moneytree」も
Private Spacesを使用しTokyoリージョンに
アプリをデプロイしています注10。

Herokuの舞台裏

Herokuのアーキテクチャ

　Herokuは実際どのようにしてPaaSを提供し

注10） URL https://www.heroku.com/form/private-spaces-
webinar

ているのでしょうか。最初に「IaaSの上に1枚
レイヤを重ねた感じ」といった説明をしたとおり、
Herokuでは IaaS（Amazon EC2）を使用してい
ます。では、実際にどういったふうにIaaSを使
用してPaaSとなっているのか、Herokuのアー
キテクチャを見ていきましょう（図3）。

Deploy（デプロイ）

　Herokuの使用は、アプリをデプロイするこ
とから始まります。コードはHerokuが管理し
ているGitへとpushされ、その後buildpackを
使用してSlugコンパイルと呼ばれるステップ
が走ります。buildpackに従い、Slugコンパイ
ラが依存関係、プログラミング言語を読み取っ
て適切に取得・設定をし、それらを包んだ
Slugと呼ばれるオブジェクトを作成します。
このSlugオブジェクトはすでに依存関係など
が解決された状態ですので、実行の準備ができ
た状態になります。
　このSlug、つまりアプリのコードとは別に、
Config vars（設定変数）の設定ができます。これ
らの値は実際にアプリが走るときに環境変数と
して取得できます。HerokuではThe Twelve-
Factor Appに則って、こういった設定をコー
ド（Slug）から厳密に分離することを推奨して
おり、そのしくみを提供しています。Config
varsの例としては、データベースの接続情報

 ▼図3　Herokuのアーキテクチャ

Heroku Dashboard, CLI

開発者 Dyno, 実行環境 アドオン エンドユーザ

Heroku データサービス
（例：Heroku Postgres）

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

https://www.heroku.com/form/private-spaces-webinar

58 - Software Design Nov. 2016 - 59

などが挙げられます。
　これに加えて、データベースといったような
アドオンを適宜追加します。多くのアドオンは、
追加をすればそのほかに特別何の設定もする必
要がなく、すぐ使い始められます。
　このSlug、Config vars、そしてアドオンを
まとめて1つの「リリース」という単位になり、
これらがHerokuのデプロイになります。

Runime（実行環境）

　デプロイを通じて、アプリが動くためのベー
スができました。Slugオブジェクトは実行の
準備ができた状態ですし、データベースも動い
ています。では、実際のWebアプリを仮定し
たとき、これらはどのようにHeroku上で実行
されているのでしょうか。

Dynoとプロセス
　HerokuではアプリはDynoと呼ばれるコンテ
ナ単位で動くことは前に説明しました。この
Dynoの実体はLinux containers（LXC）であり、
アプリが実際に走るときは、このLXCにSlug
オブジェクトをダウンロードし、Config vars
を環境変数として設定します。
　Herokuでは大量のEC2インスタンスをプー
ルしており、Dynoのサイズによって1つのEC2
インスタンスに複数のDynoを載せたり（マルチ
テナント）、1つのEC2インスタンスに1つの
Dynoのみを載せたり（シングルテナント）といっ
たことができます。インスタンスのプールがあ
るからこそ、Dynoを起動するときに実際に必要
なことはSlugをダウンロードすることのみとな
り、非常に早くユーザのアプリが動くような環
境を準備できるのです。また、実際に動く
Runtime部分とSlugが分離されているため、
Dynoの数を増やしたいときも簡単にスケールで
きます。これらDynoの立ち上げなどは、Dyno
managerと呼ばれるものが管理しています。た
とえば、Dynoが走っているEC2インスタンス
上で何か異常を検知した場合は、Dyno manager

が、このDynoを別のEC2インスタンスにすば
やく移動することでダウンタイムを防ぎます。
　アプリにはそれぞれプロセスというものが
Procfileを用いて定義され、このプロセス単位
でDynoを立ち上げられます。たとえば、Ruby
のアプリでPumaというアプリサーバを用いて
Webプロセスを立ち上げたいとしましょう。
Webプロセスの定義はbundle exec puma -C
config/puma.rbといった具合になります。
Dynoはこの単位で、縦にも（サイズの上下）横
にも（個数の上下）スケールできます。
　また、こういった定義されたプロセス以外に
も、one-off Dynoと呼ばれる一時的なDynoを
作成できます。このone-off Dynoではたとえ
ばbashを起動しインタラクティブに会話でき
ますので、実際にSlugコンパイル後のコード
がDyno上でどうデプロイされているかの確認
などができます。しかし、これは実際に走って
いるDynoにSSH接続しているわけではなく、
新しいまったく別のLXCをbashプロセス用に
1つ作ってある、ということに注意してください。
　すべてのDynoはephemeral filesystem（揮発
性のファイルシステム）を採用していますので、
Dyno間でファイルの共有はできず、またファ
イルもDynoの寿命注11とともに消えてしまいま
す。ここは、馴染みのない人には設計のうえで
難しい部分があるかもしれませんが、データは
データストアやS3など外部に保持するように
しましょう。DynoやDyno managerについて詳
しくは公式サイトのドキュメント注12を参照し
てください。

Herokuアプリに対するリクエスト処理の流れ
　では実際に、複数のDynoで bundle exec
puma -C config/puma.rbというプロセスを
立ち上げた際に、リクエストはどのように処理
されるのでしょうか。

注11） 最大約1日、デプロイや再起動ごとに入れ替わる。
注12） URL https://devcenter.heroku.com/articles/Dynos

インフラの構築・運用はPaaSで省略
スモールスタート＆高速開発に最適なHeroku

第 章5

https://devcenter.heroku.com/articles/Dynos

60 - Software Design

　Herokuでアプリを作成すると、最初に「ア
プリ名 .herokuapp.com」といったアプリ独自の
ドメインが付与されます。Webプロセスが走っ
ているDynoへは、このドメインを叩くことに
よりアクセスできます。もちろんドメイン名は
カスタムのものも使用できます。
　このドメインによって送られたリクエストは、
一度Herokuプラットフォーム共通のElastic
Load Balancing（ELB）注13へ行き、そのELB
が背後に控える大量のHeroku Routerインスタ
ンスへリクエストを送ります。Heroku Router
では、リクエストのHOSTヘッダの値を読み、
どのアプリ名へのリクエストかを判別します。
　WebプロセスDynoが1つの場合はすべての
リクエストをそのDynoへ送り、もし複数ある
場合はランダムなDynoにリクエストを送信し
ます。それぞれのDynoはインスタンス上でポー
トがアサインされていますので、マルチテナン
トの場合もポートを指定することにより、目的
のDynoへとリクエストを送れます。Heroku
Routerについてもっと興味がある人は、ドキュ
メント注14を参照してください。
　アプリのログは、すべてstdoutに吐いてもら
うと「logplex」と呼ばれるログ収集エンジンに
よって各Dynoから収集され、それらをheroku
logsというコマンドで見ることができます。
さらに独自の log drain注15の設定もできますの
で、任意のログサーバにログを転送して保存す
ることもできます。また、ログ関連はアドオン
が充実しており、アドオンを追加するだけで自
動的に log drainが設定され、アドオン側にロ
グが保存されていきます。

Common Runtimeと
Private Spaces

　これまで説明したアーキテクチャはCommon
Runtime、いわゆるパブリッククラウドのアー
キテクチャとなります。Herokuはそのほかに

注13） AWSのロードバランスサービス。
注14） URL https://devcenter.heroku.com/articles/http-routing

注15） ログを外部に排出できる機能。

もPrivate Spaces、いわゆるプライベートクラ
ウドを提供しています。
　Private SpacesではAmazon VPCという仮
想プライベートクラウドを利用して、1つの
Spaceごとに1つのVPCが割り当てられ、そ
のSpaceの中に専用のRouterおよびRuntime
が配置された、非常に独立した空間となってい
ます。また、このVPCの中にはデータベース
などを入れることもできます。1つのSpaceが
ミニHerokuである、といった感じでしょうか
（図4）。
　Common Runtimeを使用するうえでは、どう
しても他者と共有しているリソースが少なから
ずあります。たとえば、ELBやRouter、マル
チテナントの場合はRuntimeインスタンスまで
共有しています。こういったことによる恩恵も
大きいですが、ほかのアプリの影響を受けてし
まう可能性もゼロではありません。Private
Spacesはその高い独立性により、セキュリティ
だけではなく他者からの影響を排除できます。

おわりに

　PaaSはインフラを気にせずにアプリ開発に
集中するのに非常に適したサービスです。また、
簡単に始められるのも大きな特徴です。まだ触っ
たことがない人は、この機会にアプリを作って
Herokuにデプロイしてみてはいかがでしょう
か。ﾟ

プライベートの
データサービス ネットワークの境界と

Router

Heroku
プラットフォーム

プライベート
のRuntime

 ▼図4　HerokuのPrivate Spacesのイメージ

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

https://devcenter.heroku.com/articles/http-routing

61 - Software Design Nov. 2016 - 61

さくらのクラウドの特長

　さくらのクラウド注1とは、さくらインターネッ
トが提供するパブリック・クラウドです。コン
トロールパネル（図1）を備え、トラフィック課
金のないさまざまなスペックの仮想サーバを利
用できます。ほかにも、スイッチやVPCルータ、
DNSや監視のアプライアンス機能、マップ機能
なども備えています。APIを公開しているため、
プログラマブルな処理やCLIを使った操作、
Terraformとの連携もできます。

注1） URL http://cloud.sakura.ad.jp

開発者志向のシンプルなIaaS

　開発コンセプトは、「開発者志向のシンプル
なクラウドの提供」です。弊社はこれまでレン
タルサーバ、専用サーバ、VPS（仮想サーバ）
の各サービスを提供していました。しかし、い
ずれも初期費用が必要であり、かつ課金は月額
単位でした。
　「必要なスペックのサーバを必要なとき、必
要なだけ使えるだけでなく、スイッチやネット
ワークも含めた仮想データセンターとしてのク
ラウドを提供しよう」。そうして、さくらのク
ラウドは2011年11月にサービスを提供開始し、
今年で5周年を迎えました。

 ▼図1　コントロールパネル

国産のクラウドサービス「さくらのクラウド」について、ハードウェアからネットワーク、さらにはコントロー
ルパネルまで、どのような構成の下で、どのような工夫がなされているのかを解説していきます。データセ
ンター事業者ならではの視点で、“仮想データセンター”としてのクラウドをひも解きます。

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

第 章6
ハードウェアからしっかり解説

“仮想データセンター”を目指したさくらのクラウド
Author 篠田 真一（Shinichi Shinoda）　 Blog http://kuroeveryday.blogspot.com/

Author 宮堂 達也（Tatsuya Miyado）　 Blog http://hogesuke.hateblo.jp/
さくらインターネット株式会社

http://kuroeveryday.blogspot.com/
http://hogesuke.hateblo.jp/
http://cloud.sakura.ad.jp

62 - Software Design

 ▼表1　さくらのクラウド、機能一覧表

使い勝手の良いクラウドを
目指して

　サービス開始以降、お客様からのご要望を取
り入れながら、さまざまな機能を追加・開発し
続けています（表1）。

シンプルな料金体系
　さくらのクラウドの仮想サーバでは、一般的な
クラウドとは異なりトラフィックやI/Oに対する
課金はありません。課金は時間単位ですが、月
額料金に上限を設けているため、使い続ける場
合もコスト感が得られやすい特長があります。

自由に組めるネットワークとマップ機能
　ネットワークの概念は、クラウドだからといっ
て特殊な要素はありません。物理サーバの場合、
ローカルの安全な環境にサーバを置きたければ、
スイッチを追加し、その下にサーバを置きます。
同様にさくらのクラウドでも、スイッチの追加・
接続をコントロールパネル上で操作できます。

　そして、さくらのクラウドで一番ユニークな
のがマップ機能です。サーバやスイッチ、
VPCルータの接続や IPアドレスの情報を画面
で一覧できるだけでなく、そのまま詳細の確認
や設定変更・接続もできます。まさに、「自分
の仮想データセンター内で機器の操作が行える」
ような感覚を大切にしています。

専用サーバやVPSとも連携
　ブリッジ接続機能やハイブリッド接続を使え
ば、専用サーバやVPS、データセンター（ハウ
ジング）環境との接続もできます。とくにブリッ
ジ接続であれば、コントロールパネルを通して
接続先のスイッチ情報の確認や操作もできます。

Arukas、さくらのIoT Platform

　さくらのクラウドは24時間365日の保守体
制を整えています。この基盤を通して、
Arukasやさくらの IoT Platformを展開してい
ます。

コンテナ・ホスティング・サービス
「Arukas（β）」
　Dockerコンテナをデプロイするには、
一般的に何らかのサーバを準備し、そ
の上にDockerをセットアップする必要
があります。Arukasを使えば、サーバ
を使わずにコンテナを実行できるだけ
でなく、インターネット上に、自動的
にエンドポイントの作成やポートの割
り当てを行えます。
　Arukasuはコンテナを使ったサービス
をすぐにデプロイし、スケールさせたい
場合に有用です。

IoTのためのプラットフォーム・サービス
「さくらのIoT Platform（α）」
　クラウドEXPO（2016年春）で「みま
もりポット」という IoTデバイスを展示
しました。お湯を出した時間や温度を

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

カテゴリ 機能名

サーバ／ディスク

サーバ
ディスク
アーカイブ
ISOイメージ
スタートアップスクリプト

ネットワーク
スイッチ
ルータ＋スイッチ
ブリッジ接続

セキュリティ
VPCルータ
パケットフィルタ

負荷分散
ロードバランサ
GSLB（広域負荷分散）

CDN ウェブアクセラレータ

アクセスコントロール
2段階認証
アクセスレベル

オプションサービス

DNS
シンプル監視
オブジェクトストレージ
データベースアプライアンス

サービス間接続
ハイブリッド接続
プライベートリンク

62 - Software Design Nov. 2016 - 63

センサーで感知し、そのデータをSlackに
ポストするというものでした。このデバ
イスは、2016年4月に公開した「さくらの
IoT Platform」を使って実現しています。
　本サービスでは、弊社が提供している
通信モジュールをマイコン／シングルボー
ドコンピュータに接続することで、3G/
LTE回線で通信できます。閉域網なので
インターネットを通らず、安全にデータ
の収集・蓄積を行うことができます。また、
WebSocketとWebHookを使って蓄積した
データを通信することで、さまざまなア
イデアを実現できます。

さくらのクラウドの基盤

　さくらのクラウドは、国内最大規模のバック
ボーンネットワークを使って、お客様に安全で
安定したサービスを提供しています。はじめに、
サービスの根幹を担っているハードウェアやネッ
トワークといったクラウドの基盤について説明
します。

ホストサーバ、ストレージなどの
ハードウェア

　弊社の北海道石狩と東京のデータセンター内
には、大量のホストサーバやストレージが設置
されています。
　ホストサーバはCPUとメモリを大量に搭載
しており、このリソースをVMに割り当て、「サー
バ」としてお客様に提供しています。
　ストレージはホストサーバとは切り離され、
大量のSSDやHDDを格納し、メイン用／バッ
クアップ用／アーカイブ用と分けて管理してい
ます。このストレージの領域を切り分け、「ディ
スク」としてお客様に提供しています。

ネットワーク

　先に説明したハードウェアが、インターネッ
トやデータセンター内、データセンター間でど
のようにつながれているか説明します。

　インターネット（外部ネットワーク）は、デー
タセンター内のエッジルータに接続しています。
エッジルータからL2ネットワークでコアスイッ
チ、エッジスイッチに、そしてエッジスイッチ
からホストサーバの仮想スイッチに接続してい
ます（図2）。さらにホストサーバ・ストレージ
間は、10GbEスイッチで接続しています。

可用性を高めるための取り組み

　ホストサーバは電源やNIC（ネットワークイ
ンターフェースカード）、OS起動用ディスク
の冗長化を行い、可用性を高める対策をしてい
ます。しかし、突然の故障や、ソフトウェアが
クラッシュしたりといった状況で仮想サーバが
ダウンしてしまう場合もあります。そのような
場合に備え、自動的に別のホストで仮想サーバ
を再起動させることで、極力早く復旧できるし
くみを実装しています。
　ストレージは、電源やコントローラ、HDD、
SSDのパーツごとにそれぞれ冗長化されてい
ます。ホストサーバとストレージ間の接続も2
系統のSAN（ストレージエリアネットワーク）
となっており、故障や障害からサービスを保護
する設計になっています。
　ネットワークは、エッジルータやコアスイッ

 ▼図2　ネットワーク図

エッジルータ エッジルータ エッジルータ

VPN

エッジルータ

エッジスイッチ

コアスイッチ

仮想スイッチ

VM VM

ホストサーバ

仮想スイッチ

VM VM

ホストサーバ

仮想スイッチ

VM VM

ホストサーバ

仮想スイッチ

VM VM

ホストサーバ

コアスイッチ

エッジスイッチ エッジスイッチ エッジスイッチ

インターネット

ハードウェアからしっかり解説
“仮想データセンター”を目指したさくらのクラウド

第 章6

64 - Software Design

チ、エッジスイッチがそれぞれ冗長化され、単
一障害点を減らしています。このネットワーク
構成により、高い可用性を実現しています。

クラウドの基盤

　ここまでハードウェアとネットワーク、その
可用性について説明してきました。ここからは、
そのハードウェア・ネットワーク上でどのよう
にIaaSを提供しているのか説明します。
　さくらのクラウドは、Linux+KVM+QEMU
で動作しています。KVMはハイパーバイザ型
の仮想化基盤で、ホストサーバのCPUやメモ
リを仮想化しています。QEMUも仮想化ソフ
トウェアですが、こちらはVMの入出力を仮想
化しています（図3）。
　KVM・QEMUを管理、操作するためにはコン
トローラが必要です。OpenStackやCloudStack
といったオープンソースソフトウェアもありま
すが、さくらのクラウドは国産クラウドでは珍
しく、そのコントローラをフルスクラッチして
います。背景には、サービスコンセプトの「開
発者指向のシンプルなIaaS」があり、既存のソ
フトウェアでは「私たちが求めること」が実現
できなかったからです。
　コントローラ・APIについては、次節にて詳
しく説明します。

さくらのクラウドの
コントローラ

　さくらのクラウドのコントローラは、API、
バッチ処理、課金処理、運用ツールなどのコン
トローラ群で構成されています。これらのコン
トローラが、先ほど説明したクラウドの基盤を
管理・操作しています（図4）。

APIはさくらのクラウドの司令塔

　さくらのクラウドでは、APIをフルスクラッ
チで開発しており、PHPやPerl、Ruby、Node.js
で書かれた「基盤を操作するスクリプト群」を
束ねるような働きをしています。
　RESTfulなAPIですので、POSTでリソース
を作成、PUTでリソースの設定変更、DELETE
でリソースの削除、といった具合にエンドポイ
ントが設定されています。裏側ではエンドポイ
ントに応じたスクリプトを実行して、VMをコ
ントロールしたり、ディスクの設定ファイルを
書き換えたりとさまざまな処理をしています。

 ▼図3　クラウド基盤

ルータ・スイッチ

ホストサーバ

コントローラ・API

L2ネットワーク

インターネット

ストレージ

SSD HDD

アーカイブ用ストレージ

アーカイブ アーカイブ

自動制御

ストレージ
ネットワーク

Linux

プロセス

QEMU QEMU

KVM

CPU・メモリ

VM VM

 ▼図4　クラウドコントローラ

石狩第 1データセンター

コントロールパネル ルータ

スイッチ

バッチ ホスト ホスト

コントローラ 物理環境

スクリプト群
API

課金ゾーン別共通情報

コントローラ 物理環境

ゾーン別共通情報

石狩第 2

コントローラ 物理環境

ゾーン別共通情報

東京第 1

ストレージ ストレージ

インターネット
PC

HTTP(S) SSH DBクエリ

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

64 - Software Design Nov. 2016 - 65

サーバをつくる裏側

　実際にサーバがつくられ起動するまでに裏側
で何が行われているか、順を追って説明してい
きます。

❶サーバの構成情報（CPUとメモリ）を保存する

　POST /serverが実行されると、指定された
構成がゾーン別DBに保存されます。この時点
では、まだVMは作られていません。

❷ディスクを作成する

　POST /diskが実行されると、ストレージに
ディスク領域を作成し、DDコマンドなどを使っ
てOSイメージやアーカイブをコピーします。

❸ディスクの内容を編集する

　PUT /disk/:diskid:/configが実行され
ると、作成されたディスクの設定を変更します。
スクリプトがファイルシステムの内部を検索し、
OSの種類を特定、OSに見合った場所にある設
定ファイルを書き換えます。VMのホスト名を変
更する場合は、CentOS6なら /etc/sysconfig/
network、Ubuntuなら/etc/hostnameを書き換
えるといった具合です。

❹ディスクを接続し、サーバを起動する

　PUT /server/:serverid:/powerが実行さ
れると、ディスクを iSCSIでホストサーバに

接続します。次に、ゾーン別DBに保存されて
いるサーバ構成でVMを作成し、VMからディ
スクにアクセスできる状態にします。最後に
VMの起動コマンドを実行し、利用できるよう
になります。

　このようにしてサーバをつくり、お客様に提
供しています。

性能向上のためにMQを導入

　APIの性能向上のため、MQの導入を進めて
います。MQとはMessage Queueの略で、リク
エストを一時的に貯めこんで随時実行するしく
みです。また、リクエストを処理したいサーバ
がメッセージをサブスクライブすることで、リ
クエストの一斉配信を実現できます。
　たとえば、パケットフィルタの設定を変更す
るときに、このMQのしくみを使っています（図
5）。導入前は、パケットフィルタが適用され
ているサーバを、スクリプトが巡回して適用し
ていました。そのため、サーバ数が多くなると
処理時間も比例して長くなっていました。現在
はMQを導入し、全サーバがMQをサブスクラ
イブするように設定しています。そのため、サー
バ数に関係なく一定、かつ短時間にパケットフィ
ルタの変更が適用できるようになったのです。

さくらのクラウドの
コントロールパネル

　さくらのクラウドのコントロールパネルはSPA
（シングルページアプリケーション）です。Java
Scriptを通してレンダリングを行い、動的にUI
を構築します。そして、前述のRESTAPIを
XMLHttpRequestを用いて呼び出すことで、
リソースの取得や作成・削除、編集などの操作
を行います。
　お客様にとって使いやすいコントロールパネ
ルとするため、アクセスレベル機能やマップ機
能を搭載しています。次節で、それらについて
詳しく紹介します。

 ▼図5　MQの導入

サーバ1

スクリプト

MQ導入前 MQ導入後

サーバ2

サーバ3

サーバ1スクリプト

処理時間

サーバ数

サーバ2

サーバ3

MQ

処理時間

サーバ数

ハードウェアからしっかり解説
“仮想データセンター”を目指したさくらのクラウド

第 章6

66 - Software Design

アクセスレベル機能

　サーバやディスクといったリソースは「アカ
ウント」ごとに管理されます。そして、そのア
カウントにアクセス可能な「ユーザ」を作成し
ます。
　ユーザには各アカウントに対するアクセスレ
ベルを4段階で設定できます。

❶リソース閲覧
❷電源操作
❸設定編集
❹作成・削除

　下にいくほど強い権限となり、自身より弱い
権限を内包します。
　これらの権限を各ユーザの役割に合わせて設
定することで、操作に制限を設けられます（図
6）。これにより、想定しないユーザによる想
定しない操作を防ぐことができます。
　アカウントごとに異なる権限を設定できるた
め、ユーザの関わり方が異なる場合にも対応で
きます。たとえば、あるアカウントにおいて、
一からインフラの構築に携わる役割である場合
には「作成・削除」権限を付与し、すでに構築
されたインフラを運用する役割である場合には

「設定編集」権限を付与するといった具合です。
　また、これらとは別に請求情報の閲覧につい
ても別途権限を設定できます。経理担当者など
限られた人のみに請求情報の閲覧を制限したい
といった要望を実現します。
　さらに、コントロールパネルから発行できる
APIキーにも、同様の4段階の権限と請求情報
閲覧の権限を設定できます。

マップ機能

　さくらのクラウドの中で、とくに好評をいた
だいているものが「マップ機能」です。これは、
作成したサーバやスイッチなどの関係を示した
ネットワーク構成図をコントロールパネル上で
閲覧・編集できる機能です（図7）。
　この機能で、作成したリソースを俯瞰でき、
全体を把握しやすくなります。サーバに接続し

 ▼図7　マップ機能の表示例

 ▼図6　アクセスレベルの設定例

アカウントA
作成・削除

閲覧

アクセス不可

アカウントB

アカウントC

ユーザ

サーバ

ディスク

スイッチ

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

66 - Software Design Nov. 2016 - 67

たスイッチのつなぎ変えもドラッグ&ドロップ
で簡単に行うことができます。
　Sandboxというテスト環境と併用することで、
より効果的にご利用いただけます。Sandboxで
はリソースの作成に料金は発生いたしません。
ですので、マップ機能をネットワーク構成の検
討にご使用いただけます。マップの印刷・画像
での保存機能も実装されているので、ほかの方
と共有しながらの検討も行いやすくなっていま
す。
　この機能はJavaScriptライブラリの jQuery
をベースに作成されています。また、ドラッグ
&ドロップやタッチ操作にはHammer.jsを用い
ています。
　今後もますます便利なコントロールパネルと
するため、表示の高速化の取り組みや、複数リ
ソースの一括操作を可能にするといった操作性
の向上を図っていきたいと考えています。

さくらのクラウドの
最新サービス

データベースアプライアンス

　2016年8月10日に、「データベースアプライ
アンス」をリリースしました。自動・手動バッ
クアップを始め、世代管理、セキュリティ設定
などの機能があります。
　お客様にとっては作成後すぐ利用できるデー
タベースに見えますが、内部的にはお客様専用
のデータベースサーバを作成し、そこにDBMS
をインストール、各種設定を行うなど、次のよ
うな処理を行っています（PostgreSQLの場合）。

❶コントロールパネル、またはAPIからの作成
リクエストを受ける

❷サーバとディスク2台（マスタとバックアッ
プ）を作成

❸最小構成のCentOSをインストール

コントロールパネルに桜葉愛が登場?!

　2016年4月1日、2次元枠採用された桜葉愛（さ
くらは あい）が声でお知らせする「音声通知機能Ω
版」を1日限定でリリースしました。桜葉愛がコン
トロールパネルに現れて「作成しました」や「起動
しました」など、さまざまな音声でお客様をサポー
トするための機能です（図A）。この機能を有効に
することで、処理が完了するまでコントロールパ
ネルを見なくて良くなるので、お客様の貴重なお
時間を無駄にしません。
　桜葉愛（の中の処理）は、HTML5+JavaScriptで
実装されています。話すためには、HTMLAudio
Elementを使っています。HTTPレスポンスコード
をもとに最適な音声を読み込み、意味が通じるよ
うに結合して再生しています。姿を見せるためには、
Canvasを使っています。また、日付をもとに季節
に応じたイラストをランダムに表示する遊び要素
もあります。
　この「音声通知機能Ω版」はリリース直後から大
きな反響を呼び、「正式に機能として追加してほしい」

とたくさんのリクエストをいただきました。
　それから1ヵ月後、「サウンド通知機能」と名前
を変えて正式リリースしました。大人の事情で音
声ではなく効果音に変わりましたが、桜葉愛がサー
バの作成や起動の操作を見守ってくれます。コン
トロールパネルをご利用になられるときは、ぜひ
画面右下にある「サウンド」ボタンからサウンド通
知機能を有効にしてみてください！

 ▼図A　桜葉愛が登場

ハードウェアからしっかり解説
“仮想データセンター”を目指したさくらのクラウド

第 章6

68 - Software Design

❹phpPgAdmin用にApacheをインストール
❺PostgreSQLとphpPgAdminをインストール
❻コントロールパネルで入力した値をもとに
ApacheやPostgreSQLなどの設定を行う

❼データベースの初期化を行う
❽バックアップ用にcrontabの設定を行う
❾データベースアプライアンスの完成

　このようにして、さくらのクラウドのデータ
ベースアプライアンスは作られています。現在
はプレビュー版ということもあり、無料でご利
用いただけますので、ぜひお試しください。

シンプル監視

　「シンプル監視」は、外形監視に特化した監
視機能を提供します。監視のためにサーバを別
途用意したり、ソフトウェアをインストールし
たりする必要はありません。簡単・お手軽に使
うことができるのが特徴です。
　監視対象は IPアドレス、またはFQDNで指
定します。さくらインターネットが提供するグ

ローバル IPアドレスなら無償でご利用になれ
ます。監視プロトコルはping、tcp、http、https、
dns、ssh、smtp、pop3、snmpの9つに対応し、
チェック間隔は1分から60分まで1分間隔で指
定可能、さまざまな用途のサーバの監視に対応
しています。
　この機能の裏ではNagiosが動作しており、
すべての監視を担っています。コントロールパ
ネルから登録した設定値はNagiosのconfigに
コンバートされ、監視対象に追加されます。異
常を検知すると、MQにユーザへの通知メッセー
ジを送信します。そして、MQからメッセージ
を受信した通知サーバが、メールやSlackに異
常検知メッセージを送信します。
　さくらのクラウドでは課金額が設定の値を超
えた場合に通知する「料金アラート」という機
能を提供しているのですが、実はこれもシンプ
ル監視のしくみの上に実装されています。
　簡単、お手軽に使える監視機能、ぜひお試し
ください。ﾟ

新人のときに知っておきたかったクラウドコンピューティングのしくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

第　 特集1

ソフトウェアを徐々に高品質にするコードの直し方� P.70

第 1 章

効果的なテストを無理なく導入する方法� P.78

第 2 章

漏れがなく負担も少ないコードレビューとは� P.86

第 3 章

ログ監視で人が気づかないバグも発見・撲滅する� P.88

第 4 章

高品質を目指すときに、心がけたいこと� P.91

第 5 章

第２特集 Author 	青木 翔（あおき しょう）
	 サイボウズ㈱
	 アプリケーション基盤チーム
 Twitter 	@a_o_k_i_n_g

サイボウズ流バグゼロまでの道のり

レガシーコード
改善実践録

恐れずに
リファクタリングをするために

　本番稼働中の製品なのにバグだらけ。しかもコードのンテナンス性が悪くて、別のバグを作り込まないか
ビクビクしながら修正を行う。日々のバグ対応に追われて、みんな疲弊……。そんな状況から、1つずつ安
全にプログラムを改修し、着実に品質を向上させて、とうとうバグをゼロにした現場があります。高品質を
達成するまでにはさまざまな工夫、取り組みがありました。
　本特集では、その取り組みにかかわったエンジニアご自身に、過酷な状況の中から試行錯誤のすえに導
き出したアイデアを紹介してもらいます。

70 - Software Design

稼動中の製品を安全に
高品質化できるか？

　みなさんはじめまして。サイボウズで働くエ
ンジニアの青木（@a_o_k_i_n_g）です。サイボウ
ズではクラウドでグループウェアを提供するサー
ビス、cybozu.comを提供しています。cybozu.
comは2016年9月時点で契約社数1万6,000社、
ユーザ数は58万を超えており、筆者はその
cybozu.comを支えるミドルウェアを開発する
チームに所属しています。
　cybozu.comはOSS含め多数のミドルウェア
に支えられていますが、自作しているものも多
くあります。たとえばファイルサーバやメッセー
ジキューイングを含むジョブの非同期処理シス
テムなどです。

触れるのも怖いほど粗悪なコード

　cybozu.comが公開された当初のこれらの自作
ミドルウェア群は、正直言って品質が高くあり
ませんでした。筆者のチームのミドルウェアが
原因でサービスが停止することも珍しくなく、
ユーザには多大な迷惑をかけました。ユーザだ
けでなく、弊社の運用部隊にもたいへんな迷惑
をかけ、慌てて不具合調査して改修、緊急リリー
スということがしばしばありました。コードの
悪さゆえに不具合の原因を特定するのにも時間
がかかり、しばらくは「障害が発生したら再起動
で対処」という対症療法でしのいでいたこともあ

りました。
　cybozu.comが公開された当時、この出来の悪
いミドルウェア群によって、プログラマのみな
らず品質保証部やプロダクトマネジメント部、
そして運用部隊も疲弊していました。
　控えめに言っても当時のコードは粗悪でした。
巨大なメソッドがひしめき合い、if文や for文が
何重にも重なり、そしてカプセル化されていな
いオブジェクトのフィールドを直に操作する、
そんなコードでした。名は体を表しておらず、
継承は直感に反し、同期処理の責任が各所に分
散していました。そのようなコードで構成され
たマルチスレッドなプログラムのデバッグは悲
惨なものでした。
　とある機能は誰も全体像を把握できなくなっ
ており、「コードが仕様書」を体現していました。
複雑な部分に手を入れるときは、ジェンガのよ
うな不安定さを感じながら、そして新たに不具
合を仕込んでいるのではないかという不安を感
じながら、コードに手を入れていました（図1）。
　今のコードをメンテナンスし、かつ今後も機
能を拡張していくのは困難です。でも少しずつ
でも改善していかなければ、未来になっても環
境が変わっていないだろうと思いました。それ
は無限に押し寄せてくる不具合を改修し、絆

ばんそうこう

創膏
の上に絆創膏を貼り続けるような仕事のように
思えました。
　実際、筆者は以前そんな環境に一度身を置い
たことがあり、その苦痛はわかっているつもり

 Author 	青木 翔（あおき しょう）
	 サイボウズ㈱　アプリケーション基盤チーム

 Twitter 	@a_o_k_i_n_g
 Illustration どこ ちゃるこ

ソフトウェアを徐々に
高品質にするコードの直し方

第 1 章

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

Nov. 2016 - 7170 - Software Design

ソフトウェアを徐々に
高品質にするコードの直し方

第 1 章

ようにしてきました。日々ログを洗い、通常な
らほとんど発見不可能な不具合をいくつも発掘
し、1つ残らず改修しました。その結果、我々
は高品質なコードを手に入れ、それだけでなく
プロダクトとしての安定性や拡張性も手に入れ
ました。
　本特集では、いかにして我々が悲惨な状況か
ら高品質なコードを手に入れたのかについて、
我々の足跡と知見を記そうと思います注1。

使っていないコードを
破棄すべし

　さまざまな機能を追加したりバグフィックス
したりして、コードは日々増加していきます。
日々の修正は小さなものでも、それが積み重な
ると工数に影響を与え始めます。機能をまるご
と削除したのにコードが残っていたり、「いつか
使うだろう」と思って実装した関数が使われてい
なかったりなどの理由がよくあります。
　ストラテジパターンで完全に使われなくなっ
たストラテジが残ることもあります。ひどいと
きでは、あるxxxという関数やクラスを高速化
するなどで再実装に近いことを行い、xxx2や
xxxFastという名前で実装し、元の実装がまる
ごと残っているようなケースもあります。過去
のバージョンのコードをすべてコメントアウト
して残しておくプロジェクトもあるようですが、
コメントアウトされているとはいえ、コードを
読みにくくするという点では同罪です。VCS注2

が発達している今の時代にそんなことをするまっ
とうな理由はないでしょう。
　このような使われていないコードは、保守性
を悪化させます。新機能を追加するときにどこ
に機能を追加すればいいのかがわかりにくくなっ
たり、不具合の原因を探るときに時間をいたず
らに消費する原因になったりします。とくに、
障害が発生して早急に原因を突き止めなくては

です。筆者はそういった環境がどこか賽
さい

の河原
みたいに思え、これは今立ち上がって改善せね
ばならない、というある種の強迫観念のような
ものに捕らわれたのです。それに、筆者だけが
苦労するならまだしも、いずれやってくるであ
ろう後輩にこのコードを渡すというのはあまり
に申しわけがなく、筆者のプログラマとしての
プライドがそれを許せませんでした。
　粗悪なコードが生まれてしまったものはもう
過去のことなので今毒づいてもしかたありませ
ん。でも、これからの対応で今後の品質を変え
る力を筆者たちプログラマは持っています。今
あるコードを、今後安定した大樹のようなコー
ドにするか、それとも噛み合わせの悪い十徳ナ
イフのようなコードにするか、その分

ぶん

水
すい

嶺
れい

に筆
者たちは立っていました。筆者は、高品質化の
道に進むことを決心しました。

地道な努力で高品質化を達成

　結論から言うと、筆者たちは高品質なコード
を手に入れたと言える状況になったと思います。
既知の不具合はすべて改修し、コードの品質が
良くない部分もほとんどすべて駆逐しました。
メンテナンス不可能なレベルのコードをいくつ
も葬り去り、そのたびにシンプルなコードと十
分な量のテストで武装し、バグが入り込まない

注1） 我々のプロダクトは Javaで実装されています。よって、紹
介するツールやコード例は Javaです。

注2） Version Control System：バージョン管理システム。

 ▼図1　粗悪なコードで作られた製品はまるでジェンガ
 のよう……

72 - Software Design

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

ならないときには、そのような無用な時間の消
費はサービス停止時間の増加につながります。
　というわけで、不要なコードは削除しましょ
う。不要なコードの削除ならば、それは稼働し
ているコードを修正するよりも気軽に行えます。
もちろんそのコードが真に不要なのかどうかは
厳重にチェックしましょう。
　この節で筆者が主張したいことはこれにつき
ます。コード行数を減らしたプルリクエストを
もっと評価しよう（図2）。不要なコードの削除
は、コードを追加することと同じくらい重要で
す。コードの行数の分が仕事量や生産性に比例
しているというような考えは時代遅れと言わざ
るを得ません。不要なコードを削除したり、既
存の機能をより簡潔に表現できたりしたならば、
それは今後のメンテナンス工数の削減という意
味では大きな意味を持っています。

レガシーコードは
機能まるごと削除する発想も必要

　レガシーコードに手を入れたくないという理
由もよくわかります。コードを修正するという
ことは、バグが入り込む余地が出てくるからで
す。
　筆者のチームのコードでもそんなコードが多

数ありました。1つはとあるWebアプリ
ケーションのセッションマネージャーク
ラスだったのですが、改行をすることも
憚
はばか

られるほどのコードでした。テストも
満足に書けず、その機能一帯は誰も手を
入れることができない「聖域」になってい
ました。しかしあるとき、諸事情により
セッションの管理方法を切り替えたため、
そのセッションマネージャーをまるごと
破棄できました。
　とあるサムネイル作成機能も提供して
いたのですが、その仕様とコードはあま
りにひどく、サムネイルという機能の重
要度の低さの割に大量のメンテナンス工
数が投入されていました。しばらくはそ
のコードを四苦八苦しつつメンテナンス

していたのですが、これは小手先では太刀打ち
できるものではないと判断し、サムネイル作成
周りの機能を再設計して新しいコンポーネント
を実装しました。機能の再設計にはそれなりに
工数がかかりますし、ほかのチームとのやりと
りもあるので手間はかかりますが、再実装され
たサムネイル作成ツールは冗談抜きで保守性が
数十倍になったのではと思います。
　このように、歴史が詰まっているコードだか
らこそ、何か別のプロダクトや手法でまるごと
消し去ることができる場合もあります。イニシャ
ルコストが高くつくこともありますが、メンテ
ナンスコストを削れるなら利益を出すはずです。
これができるケースはあまり多くはありません
が、コードの聖域を取り除くうえでは一撃必殺
に等しい一手になり得ます。

2種類の不具合の直し方

　たいていのプロジェクトではさまざまなしが
らみや歴史的背景があり、簡単にはコードを削
除したり修正できなかったりします。そこで、
筆者は不具合改修をする際に、試験範囲に影響
のない範囲で周囲のコードもきれいにする、と

 ▼図2　不要なコードの削除はもっと評価されるべき

Nov. 2016 - 7372 - Software Design

ソフトウェアを徐々に
高品質にするコードの直し方

第 1 章

テーションを指定すればSetter/Getterやコン
ストラクタ、toStringメソッドやequals/hash
Codeメソッドを自動生成してくれます。
　リスト1の例では、@Setter、@Getterアノ
テーションをUserクラスに付与することで、自
動でそのクラスのフィールドのSetter/Getter
を生成してくれます（リスト2）。
　もちろん、フィールドごとにSetterのみを生
成したり可視性を指定したりと細やかな指定も
行えます。ほかにも@Dataでコンストラクタや
toString/equals/hashCodeも生成してくれるな
ど、お決まりのコードがわずかなアノテーショ
ンで済むようになります。
　lombokを導入するとJavaの冗長なコードを削
減でき、コード内のロジックの濃度が上がりま
す。それだけ本質的な部分に集中できます。
lombokはコンパイル時に処理を行うという性質
上、IDE注3にプラグインをインストールする必
要がありますが、EclipseでもIntelliJ IDEAで
もスムーズに動いています。lombokはたいへん

いう方法でコードを少しずつ直していきました。
　バグの直し方には2種類あります。1つめは、
コードの差分を最小にしてレビュー時の工数を
できるだけ少なくし、影響範囲も限りなく小さ
くするというものです。このやり方で直すとき
は、修正個所が1行だけということも珍しくあ
りません。レビューも簡単で、diffを見た時点
で一目瞭然なことも多いです。
　2つめの直し方は、不具合を改修するととも
にコードを少しずつきれいに直していく方法で
す。diffが増え、したがってレビュー時にも少
し工数がかかりますが、長期的に見てコードの
品質を高めていけます。
　筆者の経験上、前者のパターンでは高品質な
コードになることはないと判断しました。でき
るだけ後者の方針で直すように心がけました。
試験範囲には影響が出ないよう、修正をやり過
ぎないように注意しつつ、少しずつ少しずつコー
ドをきれいにしていきます。すぐに効果が出る
ものではないですが、着実にコードの品質が上
がっていきます。

コードの本質的でない
部分をなるべく隠蔽しよう

　コードを見る際、本質的でない部分に気を取
られてしまうことがしばしばあります。よくあ
るのが、コードのフォーマットです。コードの
フォーマットはあくまでフォーマットであり、
本質的な部分ではありません。複数人で開発す
る場合、レビュー時に不要なdiffが出て混乱す
ることもあります。そのような本質的でない部
分に時間を取られることがないよう、フォーマッ
トをそろえるようフォーマッタを用意し、常に
それを用いるようにしましょう。
　また、たとえばJavaではSetter/Getterの記
述が冗長で、クラス内のコードを大きく占めて
いることがあります（リスト1）。Javaに限った
解法ですが、lombokというライブラリで冗長な
コードを劇的に短くできます。lombokはいわば
Javaのプリプロセッサのようなもので、アノ 注3） Integrated Development Environment：統合開発環境。

 ▼リスト2　lombokを使えば@Setter、@Getterだ
 け書けば良い

@Setter
@Getter
public class User {
 private String name;
 private int age;
}

 ▼リスト1　通常のSetter/Getterの記述例

public class User {
 private String name;
 private int age;

 public void setName(String name) {
 this.name = name
 }
 public String getName() {
 return this.name;
 }

 // age プロパティも同様
}

74 - Software Design

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

すばらしいツールなので、ぜひ導入してみて
ください。

コードや環境は時間が
経つだけで劣化していく

　コードが劣化する原因は人の手によって複
雑化していくという理由も大きいですが、そ
れだけではありません。時代が進むに連れて
プログラミングの技法や言語仕様は進化して
いくので、それに取り残されていくとレガ
シーコードになっていきます。コードは、時
間が経つだけで劣化していくのです（図3）。
　極端な例ですが、今新規プロジェクトで用
いる言語にCOBOLを選択する人はまずいな
いでしょう。それと同様に、たとえばJavaも6
から7、7から8へと進化していっており、モダ
ンな機能が取り込まれています。同じJavaとは
いえ、過去のバージョンでは正当だった記法も、
現行のバージョンでは警告が出るというような
こともあります。たいてい、新しい言語ほどよ

りシンプルな記法やモダンなメソッドが導入さ
れているので、できる限り最新のものを導入す
るように心がけましょう。

例1

　Java 7以前ではRunnableインスタンスを生成
するには、リスト3のような記述が必要でした。
　Java 8でラムダが導入されてからは、これだ
けで済みます。

Runnable runnable = () -> doSomething();

例2

　「ユーザのリストから、削除されておらず、か
つaから始まるユーザが存在するかどうか調べ
たい」。そんなときにはリスト4のようなコード
になります。
　Java 8のStream APIを用いれば、リスト5の
ように記述できます。

◆　◆　◆
　環境が最新のものに追随できないと、システ
ムがレガシーになっていく以外にも困ることが

 ▼図3　コードは時間が経つだけで劣化していく

 ▼リスト3　Runnableインスタンスの生成
 （Java 7以前の書き方）

Runnable runnable = new Runnable() {
 @Override
 public void run() {
 doSomething();
 }
};

 ▼リスト4　削除されていない、かつaから始まるユー
 ザが存在するかどうかを調べる
 （Java 7以前の書き方）

List<User> users = ...
for (User user : users) {
 if (!user.isDeleted()) {
 if (user.getName().startsWith("a")) {
 return true;
 }
 }
}
return false;

 ▼リスト5　削除されていない、かつaから始まるユーザが存在するかどうかを調べる（Java 8での書き方）

return users.stream().filter(u -> !u.isDeleted()).map(u -> u.getName()).anyMatch(e -> ｭ
e.startsWith("a"));

Nov. 2016 - 7574 - Software Design

ソフトウェアを徐々に
高品質にするコードの直し方

第 1 章

合にチューニングをする、というのが正攻法で
しょう。ちなみに早すぎる最適化が問題ではな
いケースは、性能の重要度が高いソフトウェア
を実装するときです。たとえば、RDBMS（Rela
tional DataBase Management System）や KVS
（Key-Value Store）を自前で実装する際、おそ
らく性能は重要な観点になるはずです。設計が
大きく性能を左右するので、初期段階の設計時
での性能問題のあぶり出しが重要になります。
　コードの品質を上げると、性能を追求しやす
くなります。ドナルド・クヌース先生注4も述べ
ているように、「通常、実行時間の半分以上はプ
ログラムの4パーセント未満の部分に費やされ
る」というのは体感的にもそのとおりのように思
います。
　役割や責任が明確に分割されていると、コー
ドを拡張しやすくなります。すると、性能のた
めにキャッシュ機構を入れるとしても、影響範
囲やコードの修正量が小さく済みます。結果と
して、コードの品質を上げることは、粗悪なコー
ドで性能を追求するよりも、性能や保守工数両
方の観点で良い結果をもたらしてくれます。

参考になるメトリクス、
参考にならないメトリクス

　日々コードを改修していくうえで、さまざま
なメトリクスが収集できます。筆者のチームで
はSonarQube注5を利用し、コミットのたびに集
計していました。
　カバレッジだけ見ても、行カバレッジ、ブラ
ンチカバレッジ、ステートメントカバレッジ、

出てきます。開発環境の構築が困難になったり、
またそれが原因でビルドシステムがブラックボッ
クスになったりするということが起こり得ます。
最新のバージョンでのみ動くツール、たとえば
プロファイラのようなものが古い環境だと動か
ないということもあります。
　時代はどんどん良い方向に向かっており、開
発環境をできるだけ新しいものに追随できれば、
それだけでさまざまな恩恵を受けることができ
ます。最新とは言わずとも、それなりに主流や
それに近い環境で開発できるしくみを構築しま
しょう。

コードの品質と
性能について

　性能を追い求めると一般的にコードは複雑化
します。性能のためにキャッシュ機構を導入し
たり、オブジェクトに本来は持たせなくて良い
余分なプロパティを持たせて値を使いまわしし
たり、変数のスコープを本来の用途より広げた
り。このように、コードの読みやすさや保守性
という観点と相容れないケースがしばしばあり
ます。設計段階で性能の点でも十分に考慮され
ているコードは、シンプルかつ性能も出るので
すが、小手先のチューニングを施したコードは
シンプルとは言いがたいコードになります。
　元から複雑なコードに対して性能を求めた改
善を行うと、より複雑になり、それだけ不具合
が混じる可能性が高まります。不具合含みの性
能改善にいったいどれだけ価値があるのでしょ
う？　保守工数の観点ではまったく時間の節約
にならず、小手先のチューニングを施した質の
悪いコードの手入れに時間を奪われることでしょ
う。
　『プログラミング作法』（第5章の参考図書（2）
を参照）という古典的名著にも書かれているとお
り、「早すぎる最適化はするな」というルールは
ほとんどの場合正しいです。
　まず第1にコードのシンプルさを心がけて実
装し、それで性能テストや運用で問題が出た場

注4） ドナルド・クヌースはTeXの開発者として知られている数
学者です。『The Art of Computer Programming』の著者
でもあります。TeXもまた不具合が少ないことで知られて
います。

 Donald E. Knuth 著、有澤誠、和田英一 監訳、青木孝、筧
一彦、鈴木健一、長尾高弘 訳『The Art of Computer
Programming Volume 1 Fundamental Algorithms Third
Edition 日本語版』ドワンゴ、2015年

注5） SonarQubeとは、スイスのSonarSource社が開発を行っ
ているソースコードの品質管理システムです。さまざまな
言語に対して、ソースコードの静的解析のレポートを表示
したり、テストを実行してカバレッジレポートを表示した
りできるツールです。過去のデータも保持しているので、
時系列でメトリクスを参照できたりする優れたツールで
す。

76 - Software Design

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

ブロックカバレッジ、などいくつもあります。
その他のメトリクスも、凝集度や複雑度、コメ
ント率、重複行数、などいくつもあります。いっ
たい我々はこれらのメトリクスの中から何を参
考にすれば良いのでしょうか？
　この節では、コードを高品質化する際に参考
にしたものを紹介します。
　まずテストを書くときに一番参考にしたのは、
行カバレッジでした。まだテストが十分にそろっ
てない時代、カバレッジを見ればテストされて
いないコードがひと目でわかるので、それを参
考にテストを次々と書いていきました。プロダ
クションコードもテストしやすいように修正し
つつ、カバレッジを参考にし、カバレッジを
85％以上まで引き上げました。残りの部分はロ
ジックではない小さな部分であったり絶対に通
らないようなコードであったりしたので、この
数字はほぼ限界近くまでプロダクションコード
がテストコードによって通っていることを表し
ていると思います。
　一方、ブランチカバレッジやその他のカバレッ
ジは、あまり参考にはしませんでした。という
のも、当初はカバレッジ率が非常に低かったの
でブランチカバレッジを気にするほど余裕がな
かったのと、行カバレッジが上昇するに従って
ブランチカバレッジなども上昇してきていたか
らです。
　次に参考になったのはサイクロマティック複
雑度でした。サイクロマティック複雑度は循環
的複雑度とも呼ばれ、メトリクス測定では一般
的なものです。これは、メソッドごとに始まり
から終わりまでの経路のパターン数を表したも
ので、分岐が多いほど増加するものです。この
値が大きいものほど複雑度が高いことを表して
います。サイクロマティック複雑度は、おおむ
ね人間の直感とそう離れていない程度には複雑
度をうまく表しているように思います。これを
参考に、数値の大きいもの順にリファクタした
りクラスを分割したりして、効率的に複雑なコー
ドを除去できました。

　それから単純ではありますが、大き過ぎるク
ラスやメソッドというのも効果がありました。
これらは単にメソッドの行数が100行を超えて
いるかどうかとか、1クラスに20以上のメソッ
ドがあるかどうかといった至極単純な計算をす
るものです。単純とはいえ、判断基準が明瞭な
分人間にもわかりやすいもので、度々参考にし
ていました。
　メトリクスを参考にする際の注意ですが、あ
くまでこれらは目安でしかないということを念
頭に置いたうえで参考にしましょう。カバレッ
ジが低いからテストをもっと書くべきだとか、
複雑度が高いから悪いコードだとは一概に言え
るものではありません。
　このメトリクス周りには後日談があります。
筆者たちのチームではある程度のコードの品質
を手に入れて以降、メトリクスをほとんど見な
くなりました。というのも、既知のコードは直
せる部分は直したのと、新規の部分はレビュー
によってたいてい弾けるようになったからです。
　メトリクスを眺めていると、限界までカバレッ
ジを上げてみたくなるなどの中毒症状に似たも
のが出ますが、おそらくこれ以上カバレッジを
上げてもほとんどリターンは得られないだろう
と判断しました。それはコードの品質とカバレッ
ジの関係の飽和点のようなものなのだろうと思
います。

IDEの警告を
無視しないように

　Javaで開発している方なら、まず間違いなく
何かしらのIDEを用いて開発を行っていると思
います。EclipseやIntelliJ IDEA、NetBeansな
どいくつも優れたIDEがありますが、IDEの機
能の1つとして、コードをチェックして怪しげ
な個所に警告を出してくれる機能があります。
たとえばDeprecated（非推奨）なメソッドを利用
していたり、型パラメータを指定すべき個所で
指定していなかったりする場合に、該当する部
分に下線を引いてくれるなどで開発者に知らせ

Nov. 2016 - 7776 - Software Design

ソフトウェアを徐々に
高品質にするコードの直し方

第 1 章

ない場合、特定の個所の警告を消す方法も
あるのでそれを使うのも1つの手です（もち
ろんあまりお勧めはできません）。警告を0
件にしておくと、次に警告が出たときにす
ぐ気づけるようになり、気づけることで修
正しようという意思が働きます。
　これはコードの中の割れ窓理論のような
ものだと筆者は考えています。割れ窓理論
とは犯罪学で用いられる言葉で、小さな犯
罪を取り締まることで凶悪な犯罪を抑止で
きる、という理論です。1枚の窓が割れてい
るとほかの窓を割ることに抵抗が少ないで
すが、1枚も窓が割れていない建物の窓を割
るのは抵抗が大きい、という心理を表した
もので、割れた窓のような些細なことも放
置せずきれいにしておくことでほかの窓も

割られず、結果大きな犯罪も防げるそうです（図
4）。
　この理屈は犯罪学上では眉

まゆつば

唾ものではありま
すが、筆者はコード上ではこの理論は正しいの
ではないかと考えています。全体から見れば小
さな粗悪なコードがあったとして、その粗悪な
コードに引きずられるようにしてほかのコード
も粗悪になっていく。そういった体験はプログ
ラマなら誰でもあるのではないでしょうか。
　書籍『ビューティフルコード』注6でも同様のこ
とが言われています。2章の「スプーン一杯の汚
水で」というタイトルが付けられた章で、「樽一
杯のワインにスプーン一杯の泥水を入れたらそ
れは泥水になる。樽一杯の泥水にスプーン一杯
のワインを入れても泥水のままである。」という
ことを述べています。
　コードに泥水が入らないよう、些細な警告も
取り除きましょう。警告を取り除くことで、新
規の警告に気づきやすくなり、警告が出ないよ
うに修正する。そうして好循環の車輪が回り始
めるので、ぜひ警告は取り除いてください。ﾟ

てくれます。
　これらの警告は、正直言って些細なものです。
警告を放置したからといって即不具合につなが
るようなケースは多くありません。しかしそれ
でも、警告は無視しないようにしましょう。と
いうのも、警告が出ているコードを放置してお
くことでコードがレガシー化していくからです。
たとえば、Deprecatedなメソッドを利用してい
る個所を長期間放置しておくと、そのライブラ
リをバージョンアップしたくともインターフェー
スが大きく変わってバージョンアップができな
くなる、あるいは大きな工数がかかるようになっ
てしまうかもしれません。型パラメータを指定
すべき個所で指定していなかったというケース
も、言語やライブラリが提供している安全性を
高める機能を捨てているようなもので、不吉な
匂いの一因です。
　個々の警告を見るとひとつひとつは些細なも
ので、「この警告1つくらいなら無視しても大丈
夫だろう」と思うことでしょう。しかし、警告が
多数あると細かな警告に注意がいき渡らなくなっ
てしまい、結果としてコード全体がレガシー化
の方向に向かい始めてしまいます。警告は修正
するのが一番ですが、諸事情でどうしても直せ

注6） Andy Oram、Greg Wilson 編、Brian Kernighan、Jon
Bentley、まつもとゆきひろ他 著、久野禎子、久野靖 訳
『ビューティフルコード』オライリー・ジャパン、2008年

 ▼図4　コードにおける割れ窓理論「粗悪な部分がゼロだと、
 粗悪なプログラミングはしづらい」

78 - Software Design

テストが品質を
担保してくれる

　高品質なソフトウェアを作り上げるには、テ
ストは必須です。スーパープログラマならまだ
しも、ほとんどの凡人プログラマにとってはテ
ストはなくてはならないものでしょう。
　今の時代、テストの重要性はかなり理解され
やすくなっていると思います。オープンソース
の著名なソフトウェアも膨大なテストによって、
その品質が担保されているということが当たり
前になってきました。少し知名度があるOSSに
は、ほとんどすべてテストが付属しています。
組み込み型RDBとして有名なSQLiteは、本体
のコード量に比べてテストコードの量はおよそ
680倍もあるということで話題になったことも
ありました。テストは、高品質なソフトウェア
を作り上げるためには必須と言って良いでしょ
う。
　本章では、高品質を生み出すテストコードに
ついて記します。

テストを書く文化を
取り入れよう

　テストの重要性はかなり浸透してきたと言え
ますが、一方で、テストを書く文化がないチー
ムがあるのもまた事実です。それは忙しくてテ
ストを書く時間がなかったり、実装的にテスト
が書きづらかったりとさまざまな理由があると

思います。あるいは「俺が書くコードはバグがな
いからテストは必要ない」というような理由から
かもしれません。1人で開発しているソフトウェ
アならテストがなくても良いかもしれませんが、
多くのケースではソフトウェアは複数人で作り
上げるものです。その全員でメソッドの細かな
仕様まで認識を合わせ、かつ常にそれを忘れな
いように実装するということは現実的には不可
能です。それを助けてくれるのがテストで、テ
ストを書くことによって仕様の破壊を防ぐこと
ができます。

忙しいときこそテストを書こう

　忙しくてテストを書くことができていない場
合、それはソフトウェア開発サイクルが悪循環
に陥っている可能性があります（図1）。その忙
しさの要因に、不具合改修がある程度の割合を
占めているのではないでしょうか。テストがな
いことによって不具合を生み出してしまい、そ
の不具合の改修が忙しくテストが書けない。悪
循環ですね。また、実装的にテストが書きづら
いというケースもあるのではないでしょうか。
しかしそのソフトウェアのすべてがテストしに
くいコードというのはほとんどあり得ず、小さ
な部分に着目すればテストを書きやすい部分が
あるはずです。
　テストを書く文化がない現場では、「では、今
日からテストを書きましょう」と言ってもおそら
く簡単に合意は取れないでしょう。そこで筆者

 Author 	青木 翔（あおき しょう）
	 サイボウズ㈱　アプリケーション基盤チーム

 Twitter 	@a_o_k_i_n_g
 Illustration どこ ちゃるこ

効果的なテストを
無理なく導入する方法

第 2 章

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

Nov. 2016 - 7978 - Software Design

効果的なテストを
無理なく導入する方法

第 2 章

　テストがあれば、コードを見たり手動でテス
トしたりする以外に不具合を検出するしくみを
得ることができます。実装時には気づかなかっ
たコーナーケースに気づけたり、意図せず組み
込んでしまった些細な仕様変更に気づけたりと、
人間では対応することが困難なケースをサポー
トしてくれます。これは言い換えれば、テスト
を書くということは、プログラマが自身の無能
さを克服するための手段の1つであると言えま
す。バグを作りこまないプログラマはまず存在
しないので、テストは書くべきでしょう。

すべてのプロダクトに
テストを書くべきか？

　前述のようにテストはソフトウェアに福音を
もたらしますが、テストは常に書くべき、とい
うものではありません。テストを書くにも工数
が割かれるわけですし、CIサーバやテストデー
タの管理コストなどもかかります。テストはす
ばらしいものではありますが、効果を発揮しや
すいポイントとそうでないポイントがあるので、
テストを書くことに割ける有限なリソースの価
値を最大化することを意識して書きましょう。
　テストが効果を発揮するのは、次の2点にマッ

がお勧めしたいのは、「不具合
を改修したときに、その部分に
ついてのみテストを書いてい
く」という方法です。これなら
小さなスタートを切ることがで
きるので、あまり障壁は高くあ
りません。少しずつ少しずつ、
テストケースが溜まっていくこ
とでしょう。しばらくは手元で
テストを実行するだけでも良い
と思います。いずれはCI注1も
必要になりますが、最初はとに
かく小さなスタートで良く、テ
ストコード0行から1行を目指
しましょう。そうしていくうち
に少しずつテストが充実し、不
具合をテストで救えるケースが出てきます。そ
の不具合をテストで救えたケースをチーム内で
共有すれば、テストの有用性について理解して
くれることでしょう。そうしてだんだん、テス
トを書いていく文化が生まれていきます。

小さな一歩からはじめよう

　筆者も失敗した体験があるのですが、いきな
りテストを書く文化をチームに導入しようとし
てもなかなかうまくいきません。それはテスト
の必要性が理解してもらえなかったり、テスト
を書く工数が取れないなどの理由があったり、
そう簡単にこの壁を葬ることはできません。最
初は小さな一歩から開始し、少しずつ少しずつ
導入していくのが良いのではないかと思います。
　幸い、テストコードはあくまでテストコード
であり、プロダクションコードには影響を及ぼ
しません。プロダクトマネージャや品質保証部
にお伺いを立てることなくテストを書くことは
できるのです。これはテストコードのすばらし
い性質の1つであり、この性質を活用しない手
はありません。

注1） Continuous Integration：継続的インテグレーション。

 ▼図1　ソフトウェア開発サイクルが悪循環に陥っていませんか？

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

80 - Software Design

チするかどうかです。

①対象となるコードが開発者だけではなくユー
ザが使うものであること

②対象となるコードの寿命が長いこと

①対象となるコードが開発者だけ
ではなくユーザが使うものであること

　これは、「開発者だけが使うツールにはテスト
コードはあまり必要とされない」ということを指
しています。また、「ユーザが使うものである」
というのは、ユーザが直接的に操作するもの、
たとえばアプリケーションサーバやブラウザ上
で動くJavaScriptのコードだけでなく、システ
ム内でユーザデータを扱うものすべてを指して
ます。
　具体的には、たとえばデプロイ処理用のスク
リプトやコードに静的解析をかけるスクリプト
などです。これらは開発者向けであり、製品の
ユーザとは直接的には関係がありません。とく
にデプロイ処理スクリプトなどは周辺の環境や
時代に応じて日々変化していくものですので、
仮にテストを書いていてもそのテストのメンテ
ナンスに工数を取られがちになるでしょう。

②対象となるコードの寿命が長いこと

　たとえば、テストが書かれていない製品があ
るとします。仮にその製品が今後も継続的に売
れ続け、5年後や10年後も現役として稼働し続
けそうならば、テストを書くことによる恩恵は
大きいでしょう。テストを書き、テストコード
を保守し続ける工数を鑑

かんが

みても、その工数分を
ペイするだけの品質向上の恩恵があると考えら
れるからです。一方、仮にその製品が今後クロー
ズする方向に向かっているならテストを書く恩
恵はあまり大きくありません。
　プロダクトコードとともにテストコードが存
在する期間が長ければ長いほど、テストコード
は価値を発揮していきます。製品の寿命を想定
することは困難なことではありますが、少なく
とも終わりが見えているコードよりは将来性の

あるコードにテストを書いたほうが価値を発揮
するでしょう。

テストの実行時間も
気にするべし

　よりテストコードの価値を高めるために、テ
ストの実行時間も気にしましょう。仮に十分な
量のテストがあるとして、コミットのたびにCI
でテストを実行し、テストが通らなければプロ
ダクトコードにマージできないようなしくみが
構築されているとします。そういった状況下で、
仮にテストの実行に1時間かかるとなると、ロ
グメッセージの修正のような細かな修正でもマー
ジまでに少なくとも1時間以上の時間がかかっ
てしまうことになります。それが積み重なると、
人間側の待ち時間が積み重なってきます。肌感
覚ではありますが、単体テストは10分以内程度
に終わると快適な開発プロセスを回せるように
思います。
　たいていの単体テストのツールでは、テスト
ケースごとにかかった時間が表示されます。簡
単なスクリプトで、時間がかかったテストの上位
一覧を出せることでしょう。もしくは、各種メト
リクス測定ツールを導入しているなら、自動でテ
ストに時間がかかったものが表示されるので、上
から順に潰

つぶ

していけばかなり改善できます。

I/Oに時間がかかるケース

　テストが遅くなる理由として、テストデータ
の出し入れなどによるI/Oに時間がかかってい
ることがありがちです。もし I/Oが問題なら、
たとえばテスト時に使うRDBMSのデータディ
レクトリを、メモリ上に配置するだけで劇的に
高速化するでしょう。Linuxならば/run/shm下
はデフォルトで tmpfs注2でマウントされている
ので、ここを用いると良いです。

注2） tmpfsとは、Linuxで利用可能なメモリベースのファイル
システムです。これを用いるとメモリの空いた部分をスト
レージのように扱うことができます。メモリベースゆえ
に、超高速で読み書きできます。マシンを再起動すると内
容が失われます。

Nov. 2016 - 8180 - Software Design

効果的なテストを
無理なく導入する方法

第 2 章

　SLEEP_TIMEを外部から渡せる形にするのも良
いですが、ここではThread.sleep(long)を呼
び出さないようにします。リスト2のように修正
し、スリープするメソッドを切り出しました。
　テストコード側では、doSleepをモック化し
ましょう。リスト3ではMockitoを利用してい
ます（Mockitoの紹介は後述）。sutはテスト対象
のインスタンスです。
　Mockitoの記述方法を知らないと、リスト3の
テストコードはわかりにくいと思います。やって
いることは、doSleep内の処理をテスト時には実
行しないようにしていて、ただし呼び出されたか
どうかはチェックしている、というものです。こ
れで、テスト時にスリープ処理が呼ばれなくなり
ました。

それ以外の遅いケース

　それでも遅い場合は、テストを並列で動かせ
るようにするという手段もあります。筆者が所
属するミドルウェアを開発するチームでは、画
像変換処理を行うツールも提供しています。画
像変換はテストすべきパターンが多く、枝切り
してもテストするパターン数は1,000を超えて

　ほかにも、一時ディレクトリにファイルを読み
書きするのが遅いケースがあります。たとえば
Javaならjava.io.tmpdir環境変数で一時ディレク
トリを変更できるので、そこでtmpfsを指定すれ
ば I/Oに関する時間を短縮できます。ただし
tmpfsはあくまでメモリ上ですので、SSDやHDD
に比べると領域が小さく、大き過ぎるデータを書
き込まないよう注意する必要があります。

コード中でスリープしているケース

　次に単体テストが遅い理由としてよくあるの
は、テスト内でスリープ処理を入れてしまって
いるということが挙げられます。何かの条件が
満たされるまでスリープする、あるいはリトラ
イ処理で次回のリトライまでに一定時間待つな
どスリープを使う場面は多々あります。このよ
うな処理をテストする際、愚直にスリープを待
つと不要に待ち時間が発生してしまいます。こ
のようなときは、スリープする処理を別のメソッ
ドに切り出し、テスト時はそのスリープ用メソッ
ドをモック化して実際にスリープ処理が行われ
ないようにしましょう。
　たとえば、リスト1のようなメソッドは問答
無用でスリープしてしまうので、テストしにく
いです。

 ▼リスト1　必ずスリープしてしまうメソッド

public void doSleepIfNeed() {
 if (isXXX()) {
 try {
 Thread.sleep(SLEEP_TIME);
 } catch (InterruptedException e) {
 (..中略..)
 }
 }
}

 ▼リスト2　スリープするメソッドを切り出した例

public void doSleepIfNeed() {
 if (isXXX()) {
 doSleep(SLEEP_TIME)
 }
}

protected void doSleep(long sleepTime) {
 try {
 Thread.sleep(sleepTime);
 } catch (InterruptedException ignore) {
 (..中略..)
 }
}

 ▼リスト3　doSleepをモック化する

public void testDoSleepIfNeed_sleepするケース() {
 doNothing().when(sut).doSleep(anyLong()); // モック化
 sut.doSleepIfNeed();
 verify(sut).doSleep(SLEEP_TIME); // doSleep が呼ばれたことを確認
}

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

82 - Software Design

いました。画像変換処理はただでさえ計算量を
必要とするので、この1,000パターンを超える
ケースを逐次実行していくとかなり時間がかか
ります。これを改善するため、パターンごとに
並列実行できるように修正しました。
　テストの並列化は強力な手段ですが、注意点
もあります。それはテストコードが複雑になり
やすい、ということです。また、今回のケース
のように画像変換のテスト内でパターンごとに
並列化するならまだしも、別個のテストケース
を並列化して実行してくれるようなフレームワー
クを用いてテスト時間の短縮化を図る場合は、
さまざまな依存関係の解決に時間を取られてテ
ストコードのメンテナンスに工数をとられるこ
とになり得るという点にも注意が必要です。
　単体テストならまだしも、Selenium注3テスト
まわりはとくに時間がかかりがちです。
　弊社の例では、十分な量のSeleniumテストが
あり品質を十分に保証しているチームがあるの
ですが、そのSeleniumテストをすべて実行する
のには約7時間かかっていたというケースがあ
りました。これだけ時間がかかるとプルリクエ
ストを出してCIでテストを実行、ということが
気軽にできません。テストが落ちることがわか
るのも翌日になり、スピーディな開発からは遠
のいてしまっています。
　このケースは、弊社のテストエンジニアリン
グチームが改善を行い、テストの並列化と、
Google Computing Platformの計算力を活用し
て時間の短縮を図りました。

良いテストとは

　テストを書く文化が根づき、日々CIでテスト
を実行するようになったら、テストコードの品質
を気にするフェーズです。というのも、テスト

コードが粗悪だと、プロダクションコードを修正
した際にテストが落ち、そのテストの修正に時間
を取られてしまうからです。複雑なロジックが書
かれているテストや、事前に挿入するテストデー
タが大きいときなどがこれに該当します。
　そのような状況を防ぐため、弊社ではテスト
コードもレビューを行っています。良いテスト
を書くうえで一番注目するところは「十分なテス
トケースが記述されているかどうか」です。

不具合は境界で起こりやすい

　テストケースの中でもとくに注目するのは、
境界値やその前後のケースです。不具合は境界
で起こりやすいので、そこを重点的にチェック
しています。たとえば文字列をある長さnに切
り取るテストでは、

・長さnを超える文字列
・長さnと同じ長さの文字列
・長さn未満の文字列

というテストケースを必ず用意してもらいます。
そのうえで、

・文字列が空文字列のケース
・文字列がnullのケース
・Javaの場合、切り取る境界上にサロゲートペ
ア注4文字が来たときのケース

も必須です。レビューでは、このようにさまざ
まな条件を十分に試したテストコードであるか
を確認しています。

テストコードはシンプルに

　テストコードをプロダクションコードと同等
のつもりで書くと、テストコードに不要なロジッ

注3） Seleniumとは、Webブラウザ経由でWebアプリケーショ
ンのテストを行うツールの名称です。手動でWebアプリ
ケーションを操作するような試験を自動化できます。便利
な一方で、Seleniumには単体テストのような軽量さがな
く、一般的にテストの実行には時間がかかります。

注4） Surrogate Pair：もともとUnicodeは16bitで1つの文字
を表す仕様ですが、表現できる文字数を増やすために
Unicode 2.0から16bitの文字コード2つで1つの文字を
表す仕様が追加されました。この1対の16bit文字コード
をサロゲートペアと呼びます。Javaでは、このような文字
は、文字を表す型であるcharでは表現できません。その
ためchar 2つで1文字を表します。Javaにおいては、この
2つのcharをサロゲートペアと呼びます。

Nov. 2016 - 8382 - Software Design

効果的なテストを
無理なく導入する方法

第 2 章

・testConvert_ステータスコードが200かつ
JSONが正しい()

・testConvert_ステータスコードが200かつ
JSONが不正()

・testConvert_ステータスコードが200かつ
JSONがパース不可()

　このあとも、ステータスコードが404や500
などいくつものケースのテストがあり、かつそ
れぞれに応じてJSONが正しいのか、期待して
ないフォーマットなのか、パース不可なのかの
ケースを書いています。一目瞭然ですね。日本
語は情報の密度が高いので、日本人で構成され
るチームならテストメソッド名に日本語を使う

クが入ってしまうことがあります。たとえばテ
キストファイルの文字コードを判定するテスト
があるとします。このとき、リスト4のように
書きたくなるかもしれません。
　しかしテストコードではリスト4のようなロ
ジックはあまり必要ではないケースが多く、リ
スト5のようにシンプルにベタ書きしてしまう
のが一番わかりやすい、ということもしばしば
あります。
　同様に、たとえばJavaでは文字列結合が遅い
ときにStringBuilderを使いますが、テストコー
ドでは文字列結合がボトルネックになることは
まずないうえに、コードが読みにくくなるので
害悪ですらあります。コンパイラによる最適化
もかなり効くので、ほとんどのケースでは
StringBuilderを使って文字列結合をする必
要はありません。

テストメソッドの名前

　テストメソッドの名前も、できるだけ明瞭
にしましょう。Javaではメソッド名に日本語
を使えるので、明瞭さが十分確保できるなら、
日本語のメソッド名も許容しています（図2）。
　たとえば弊社では次のようなテストメソッ
ド名を使用しています。これはHTTP経由で
受け取ったデータをパースして別のデータに
変換する処理です。

 ▼リスト4　イマイチな例

Map<String, String> targetFiles = new HashMap<>();
targetFiles.put("foo.txt", "Shift-JIS");
targetFiles.put("bar.txt", "UTF-8");
targetFiles.put("baz.txt", "ASCII");

for (String file : targetFiles.keySet()) {
 testTextFileCharset(file, targetFiles.get(file));
}

 ▼リスト5　良い例

testTextFileCharset("foo.txt", "Shift-JIS");
testTextFileCharset("bar.txt", "UTF-8");
testTextFileCharset("baz.txt", "ASCII");

 ▼図2　日本語のメソッド名のほうが簡潔に表現できることも

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

84 - Software Design

のも良い選択肢かと思います。
　ただ、テストコードのレビューはプロダクショ
ンコードほど厳密に行っているわけではありま
せん。たとえばリファクタリングなどでファイ
ルの変更数が膨大になると、「テストコードは別
途修正するのでプロダクションコードだけレ
ビューお願いします」と言ってプルリクエストを
ある程度の大きさに絞るようにしています。

優秀なテストライブラリ
を使おう

　Javaの単体テストを行うためのフレームワー
クといえば、言わずと知れたJUnitですね。し
かし近年のテスト事情ではJUnit単体では機能
が足りないことがあり、JUnitを補強するテス
トライブラリがいくつか出ています。
　ここでは、弊社が利用しているすばらしいテ
ストライブラリ、MockitoとAssertJを簡単に紹
介します。

Mockito

　Mockito注5はモック化を簡単に行うためのラ
イブラリです。モック化とは、テスト時に特定
のインスタンス変数やメソッドの処理を差し替
えられるようにすることです。モック化するこ
とで得られる利点は、単体テスト時の依存関係
を限定的にできるということです。あるクラス
AがBに依存し、BはCに依存するコードで、A
の単体テストをしたいとします。そのときに、
BやCのインスタンスを生成したり変数を書き
換えたりして、Aをテスト可能な状態に持って
いく必要があります。現実的にはこれらはけっ

こう手間がかかり、テストコードも複雑化しま
す。そこで、Bをモック化し、任意の振る舞い
を行えるようなインスタンスを設定することで
Aはテストしやすくなります。
　リスト6は、ユーザ管理をするロジックをモッ
ク化する例です。ここではこのモックに、
getUserCount()メソッドを呼び出したら27を
返すという振る舞いを設定しています。
　これでlogicは、getUserCount()が呼び出
されると27を返すようになりました。これで
ユーザ数は一見27人に見えるようになりました
が、あくまでモックです。たとえばgetUsers()

のようなメソッドがあるとして、それを呼ぶと
nullが返ります。このモックだけではほとんど
利点を感じることはできないかもしれませんが、
このロジックに大きく左右されるようなクラス
があるとき、このMockitoをうまく使えば事前
条件をスムーズに指定できたり、事後条件をア
サーション（条件が正しいかどうかの判定処理）
できたりします。
　任意のクラスをモック化できますし、完全な
るモックでなくとも通常のインスタンスの一部
だけ挙動を差し替える、ということもできます。
引数によって戻り値を変更したり、例外を投げ
たり、メソッドが呼び出されたときの引数を後
から取得したりすることだってできます。少々
クセのある記法を用いるので最初は慣れないか
もしれませんが、使いこなせれば手放せなくな
るたいへん優れたライブラリです。

AssertJ

　AssertJ注6は、流れるようにアサーションを

注6） URL http://joel-costigliola.github.io/assertj/注5） URL http://mockito.org/

 ▼リスト6　ユーザ管理をするロジックをモック化する例

UserLogic logic = mock(UserLogic.class); // モック作成
when(logic.getUserCount()).thenReturn(27); // getUserCount() が27を返すよう設定
sut.setLogic(logic); // テスト対象のインスタンスにロジックを設定
sut.doSomething(); // テスト対象のメソッドを実行（内部で logic.getUserCount() が呼び出される想定）
verify(logic).getUserCount(); // getUserCount() が呼び出されたかチェック

http://mockito.org/
http://joel-costigliola.github.io/assertj/

Nov. 2016 - 8584 - Software Design

効果的なテストを
無理なく導入する方法

第 2 章

　また、さらに各ユーザの年齢も比較したくなっ
たとします。同様にリスト10の1行を追加して
も良いですが、extractingと tupleを用いてリス
ト11のように記述することもできます。
　1行が長くなり過ぎると可読性が落ちますが、
AssertJにはいくつもの便利なメソッドが用意
されており、ケースバイケースでテストに見合っ
た内容のものを利用できます。また、入力補完
が効くのも大きなメリットです。「assert

That(list).」と打った時点でリスト系の比較
メソッドが候補に出てくるのでサクサクとテス
トを書いていくことができます。このAssertJ
を用いれば簡潔明瞭なテストコードを書く手助
けになるでしょう。ﾟ

行えるライブラリです。心地良くアサーション
を書け、かつ読みやすさにも優れています。
　たとえば文字列のアサーションでは、リスト
7のように流れるように条件を連続して書くこ
とができます。この例はほとんどおもちゃのよ
うなコードですが、流れるように（Fluentに）記
述できていることがわかるかと思います。
　AssertJは、とくにコレクション関係ですば
らしい力を発揮します。ユーザのリストを取得
するメソッドで、結果をチェックするとき、リ
スト8のようになると思います。
　このようなテストはAssertJを用いるとリス
ト9のように書けます。extractingというメ
ソッドでリスト内のオブジェクトのプロパティ
を抜き出して、その後に続くメソッドで一気に
比較できます。

 ▼リスト7　文字列のアサーションの例

assertThat(user.getName()).startsWith("Ao")
 .endsWith("ng")
 .isEqualToIgnoringCase("aoking");

 ▼リスト11　extractingとtupleを用いてリスト9とリスト10を改良

assertThat(users).extracting("name", "age")
 .containsExactly(
 tuple("tanaka", 29),
 tuple("aoki", 25),
 tuple("mori", 32));

 ▼リスト8　ユーザリストのチェックのテスト

List<User> users = ...
assertEquals(3, users.size())
assertEquals("tanaka", users.get(0).getName());
assertEquals("aoki", users.get(1).getName());
assertEquals("mori", users.get(2).getName());

 ▼リスト9　AssertJを用いてリスト8を改良

assertThat(users).extracting("name").containsExactly("tanaka", "aoki", "mori");

 ▼リスト10　各ユーザ年齢の比較

assertThat(users).extracting("age").containsExactly(29, 25, 32);

86 - Software Design

人間はミスをするもの

　高品質なソフトウェアを作るという点におい
て、コードレビューは非常に重要です。これを
怠るのは、高品質なソフトウェアを作るという
ことを諦めるに等しい行為とすら言えます。
　人間の能力には限界があります。慣れ親しん
だコードにわずかな修正を入れるとき、簡単な
機能追加を行うときでさえ、うっかり凡ミスを
入れてしまったり不自然な設計にしてしまった
りすることは日常茶飯事です。体調やそのとき
の心境、直前に読んだコードや書籍などの影響
を受けることもあります。深夜残業やリリース
直前で時間がないときも低品質なコードを書き
がちです。プラスの方向に影響を受けるなら良
いですが、そうでないこともしばしばあります。
そういった既存のコードを汚染するようなコー
ドを弾

はじ

くことがレビューの大きな役割です。
　レビューはコードに着目すべきです。レビュ
イーが上司だからというような理由で粗悪なコー
ドであることを指摘しにくい、というような環
境では高品質なコードは生まれにくいでしょう。
役職や権力にかかわらず、レビューの際はコー
ド本位で考え、議論しあえるチームの土壌が必
要です。そういう土壌作りはおそらく一朝一夕
では不可能です。もし、上司の権力やコードが
絶対であり、指摘するのが困難なチームなら、
真剣に転職活動を検討すべきと思います。

　通常、実装とレビューは1対1のペアで行い
ますが、重要な部分についてはレビュワーを複
数人に指定することもあります。たとえば、筆
者たちが実装する機能の1つに、ドメインプロ
テクションと呼ばれる顧客同士のデータを絶対
に混じらないようにするための論理的な壁を構
築するしくみがあります。あるとき、諸般の事
情でこのドメインプロテクションのしくみを再
実装することにしました。ここは極めて重要な
個所で、些細な不具合でも混じれば会社への信
頼が揺らぎ得る部分です。コードの行数的には
それほど多くありませんでしたが、複数人がレ
ビューを行いました。結果、その部分は不具合
を起こさず、現在もうまく稼働しています。

サイボウズの
レビュー文化

　サイボウズではCI（継続的インテグレーショ
ン）はJenkins、VCS（バージョン管理システム）
はGit、レビューツールにはGitHub Enterprise
を利用、というチームが多いです。
　通常、プロダクションコードにはレビューな
しでマージやコミットされることはなく、常に
レビューを必要とします。
　ただし一部例外があり、たとえばプロダクショ
ンコードの範囲内でも、コメントの追加のような些
細なものならレビューなしでマージすることもあり
ます。具体的には、障害対応や不具合調査の際に
既存のコードを眺めることになりますが、そのとき

 Author 	青木 翔（あおき しょう）
	 サイボウズ㈱　アプリケーション基盤チーム

 Twitter 	@a_o_k_i_n_g

漏れがなく負担も少ない
コードレビューとは

第 3 章

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

Nov. 2016 - 8786 - Software Design

漏れがなく負担も少ない
コードレビューとは

第 3 章

　レビューポイントのひとつひとつは単純なも
ので、ほとんど知っていて当然というものです。
しかし一方で、レビューポイントは多岐に渡り、
そのすべてを常に把握しておくことは困難です。
人間は物事を忘れやすいので、要点だけを記し
たレビューポイントを見ながらの実装とレビュー
は効果がありました。

レビュー時には
小さな一言を

　もう1つ、レビュー時にやっていることがあ
ります。それは、実装者がレビューを投げる際
に、レビューポイントをコメントで書き記して
おき、レビュワーの負担を下げるようにするこ
とです。レビューに投げる際、たとえば if文の
構造を少し変えただけでもインデントが変わっ
て一見diffが大きく見えてしまったり、本質的
ではない変更が複数のファイルにまたがってし
まっていたりすることはしばしばあります。
　そのようなとき、事前に「ここは if文を変更し
たのでインデントが変わっています」「ここが肝
な部分です」というような一言があるだけで、
ぐっとレビューをしやすくなります。レビュワー
の負担を減らし、かつ滑らかなコミュニケーショ
ンのために、そういった小さな一言を添えてお
くと良いでしょう。ﾟ

に一見して何をしているのかわからないコードに
遭遇することがあります。コードを修正できるなら
それが一番ですが、そうでないことも多いので、そ
のときはコメントを追加して意図が簡潔に伝わる
ようにしています。とはいえレビューなしでのマー
ジは基本的には稀

まれ

で、ほとんどありません。ログ
の1行を追加するだけでもレビューは必須です。
　レビューにはそれなりの技術を要します。コー
ドの正しさや拡張性といった観点のほかに、ほ
かの製品と組み合わせたときに問題が起きない
かといった大局的観点などいくつもの必要な技
術があります。
　そのため、筆者のチームでは多数のレビュー
を経て得た知見を社内Wikiに蓄積しています。
“Middleware Review Points”というタイトルの
そのWikiページには、「ファイルのclose漏れが
ないかチェック」「ゴミファイルを残さないよう
に」といった基本的なレビューポイントはもちろ
ん、その機能独自のレビューポイント、たとえ
ば「○○の処理が実行される順序に注意」といっ
たポイントも記されています。一時期、筆者は
実装者としてレビューに出すときも、レビュワー
としてコードを見るときも、このWikiページを
常にブラウザで開いていて各項目を確認するよ
うにしていました。このレビューポイントの
Wikiの一部を紹介します（リスト1）。

 ▼リスト1　サイボウズのレビューポイントのWiki（一部抜粋）

忘れ物はないですか?
* File、接続の閉じ忘れはないか？
* 永続的に使うスレッドに紐づく物をためっぱなしにしてないか？
** 必要だからといってコネクションを接続しっぱなしにする場合、ポートが枯渇するような状況には陥らないか？
* 例外発生時もちゃんと close されるか？
** try-with-resources 使いましょう

国際化対応
* ロケール(言語)とリージョン(国)を混同しないようにしましょう。
* 日時を扱う際はタイムゾーンは基本 UTC で

不要なファイル
誰からも参照されない不要なファイルが残っていないか？
diff に出ないので注意です。

ツールで実環境で動作させましょう!
* 結合テスト的なイメージ
* 実環境で動かすのが手間な場合、少なくともローカルでは動かして動作確認すること。

88 - Software Design

ログも品質向上に役立つ

　ソフトウェアを作るうえで、良いログを出し、
それを監視するということは想像を絶するほど
重要です。少なくとも良いコードを書くことと
同程度には重要で、これを怠ってはなりません。
当たり前ではありますが、ログは宝です。より
良いソフトウェアを作り上げるためには、この
宝の価値を最大限まで有効活用しましょう。

平常時でもログを
監視しよう

　ソフトウェアは日々多くのログを出力します。

そのほとんど、おそらく99％以上は誰の目に触
れることもなくひっそりと消えていくものと思
います。ログを見る必要があるときは、たいて
いトラブルの現象解明のために読まれることが
多いのではないでしょうか。しかしそれはとて
ももったいないことであり、トラブルが起こる
前にこそログを確認することでその価値を発揮
できるものだと思います。

　膨大なログをすべて日々人間の目で
追うことは非現実的ですので、これを
ある程度自動化しましょう（図1）。ログ
を半自動で監視し、未知の例外やログ
にすぐ気づけるようなしくみを構築し
ましょう。このような処理は簡単に書
くことができます。
　図2の例では、ログファイルをcatし
てログレベルERRORでgrepし、既知の
ログをgrep -vで除外しています。す
ると、最後には未知のERRORログが
残ります。このフィルタを通した結果
は元のログの量に比べればごくわずか
ですので、人間の目でも十分確認でき
る程度のサイズになります。未知の例

 Author 	青木 翔（あおき しょう）
	 サイボウズ㈱　アプリケーション基盤チーム

 Twitter 	@a_o_k_i_n_g
 Illustration どこ ちゃるこ

ログ監視で人が気づかない
バグも発見・撲滅する

第 4 章

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

 ▼図2　ログファイルの絞り込み

$ cat $LOG_FILES
 | grep ERROR
 | grep -v "known error message 1"
 | grep -v "known error message 2"
 (..略..)

 ▼図1　平常時からログを監視できるよう自動化しよう

Nov. 2016 - 8988 - Software Design

ログ監視で人が気づかない
バグも発見・撲滅する

第 4 章

があります。そのうちの1つは、頻度が重要な
意味を持つログです。ログは「ログのメッセー
ジ」が重要なことは言うまでもありませんが、「似
たようなログが書かれた頻度」も同じくらい重要
なケースがあります。たとえばファイルサーバ
に問い合わせしてダウンロードする処理で、1
秒以上時間がかかった場合に、遅延したことを
表すログが出力されるとします。このとき、ロ
グフィルタでこの遅延ログを除外してしまうと、
遅延が増加したときに気づくことができません。
遅延ログは頻度が重要な意味を持つので、既知
であっても除外するのはお勧めできません。
　ただ、それでも量が多くて無視したいときが
あります。そのときはログフィルタ部分では遅
延ログを除外し、別の個所で、遅延ログが何件
出ていたかの統計情報を出すと良いでしょう。
もちろん、モニタリングツールなどの環境が整っ
てきたら、それらに監視させるのがよりベター
です。
　上記ログフィルタを実装しても、使われなかっ
たら意味がありません。筆者のチームでは上記
スクリプトをCIで毎朝実行し、メールを送信す
るようになっています。そうして毎朝の日課と
してログを眺めています。

監視しやすいログ

　前述したようにログの活躍できる場はトラブ
ル発生時だけでなく、正常に稼働しているよう
に見える際にも何か問題が発生していないか監
視するときにも活躍します。そのことを念頭に
置いてログを書くとさらに良いです。
　たとえばエラーが発生した際に書くログは、
ログのサマリを書いておいて監視スクリプトで
一目でわかるようにしておくと便利です。とい
うのも、ログのパースは実はけっこう困難です
ので、1行単位で扱うことが多く、複数行を持っ
て意味のあるログにすると扱いにくいケースが
あるからです。
　たとえば例外が発生した際、リスト1のよう

外が多過ぎたら、改修しましょう。同様に、ロ
グレベルWARNや、Exceptionでgrepすると良
いです。
　これは非常に単純な方法ではありますが、絶
大な効果を持っています。たとえば、めったに
利用されないAPIに対して特定のデータを投げ
ると、NullPointerExceptionが発生するような
不具合があったとします。これを人間の目で発
見するのは困難です。弊社の例では、数十台の
マシンで日々数万回以上繰り返し行われる処理
の中に、4年間以上潜んでいたマルチスレッド
の不具合も検出できました。針の穴を通すよう
なタイミングでのみ発生する不具合で、発生頻
度は非常にまれなものでした。こういった小さ
な不具合も潰すことで、ソフトウェアはより安
全堅牢になります。
　このログフィルタは実装が簡単な割に、膨大
なリターンが得られます。「ログをスクリプトで
処理して人間の目で見る」というのは、最近のモ
ダンな監視に比べればアナログな部類に入りま
すが、何より手軽に導入できるのでたいへんお
勧めです。ぜひみなさんのプロジェクトでも導
入してみてください。

除外して良いログと
そうでないログ

　さて、どのようなログを除外すれば良いので
しょうか。ある程度の指針ですが、通常操作で
起こりえるもの、ユーザ操作によって引き起こ
されたものは除外して大丈夫です。たとえば認
証に失敗したり、ユーザがAPIに対してJSON
を投げてパースエラーが出たり、CSRF注1対策
チケットの期限が切れていたり、などです。こ
れらはソフトウェアの不具合ではなく、いわば
正常な例外です。もちろんケースバイケースで
あり、ソフトウェアの性質によって変わってき
ます。
　一方、既知であっても除外すべきでないログ

注1） Cross Site Request Forgeries：Webアプリケーションに
存在する脆弱性の一種。リクエスト強要とも呼ばれる。

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

90 - Software Design

にログ出力をさせることはよくあると思います。
　すると、フォーマットにもよりますが一般的
には図3ようなログが出力されます。
　このログを監視したいと考えた時、1行目の
ERRORの部分は例外の内容にかかわらず常に同
一で、ERRORで単純にgrepしただけではほとん
ど意味がわからないでしょう。
　これを改善するために、ほんの少しだけログ
の部分を書き換えてみます（リスト2）。
　こうすることで、ERRORログにはちゃんと
ログのメッセージも表示され、ログをERRORで
grepした際に、どれが既知でどれが未知なのか
判断しやすくなります。同様に、既知のERROR
メッセージならgrep -vで除外することも簡単
になります。ほんの小さな改善でぐっとログを
監視しやすくできました。

意味のないログ出力指示
を書かないようにする

　意味のないログ出力指示を、ついうっかり書
いてしまうこともしばしばあります。ログを出
力しただけで満足してしまって、「いざ運用して
障害が発生したとき、ログを見返すと必要な情
報が書かれていなかった」ということもありま
す。ログ出力の指示をする際には、あとから見
返したときに意味がある情報を出力するように
心がけましょう。
　意味のないログの例としては、次のようなも
のが挙げられます。

・ファイルがないときに投げる例外にファイル
のパスを書いていない

・失敗した情報にお客様情報が載っておらず、
顧客を特定できない

・パースエラーした際にエラーが出た場所を書
いていない

・HTTPレスポンスが200 OKではなかったが、
ステータスコードが判別できない

　などなど、無意味なロ
グ書き出しは意外と作り
こんでしまうものです。
　最悪なのは、本来はロ
グに出すべき例外を握り
つぶしてしまうことです。
握りつぶす場合は本当に
それで良いのか十分に考
慮してください。たとえ
握りつぶさなくとも、例
外チェインに追加せず新
規に例外を生成してス
ローするようなコードも
ほぼ同罪です。
　具体的には、リスト3の
ような例です。これはやっ
てはいけません！ﾟ

 ▼図3　リスト1によって出力されたログの例

2016-03-21 19:03:43,613 ERROR ClassName An exception occured
java.lang.Exception: org.apache.XxxException: <例外のメッセージ>
 … スタックトレース …

 ▼リスト2　リスト1を改良したもの

log.error("An exception occured. message: " + e.getMessage(), e)

 ▼リスト3　例外が握りつぶされている例

・Case1
try {
 (..中略..)
} catch (Exception e) {
 return; // 例外eを握りつぶしている
}

・Case2
try {
 (..中略..)
} catch (Exception e) {
 throw new RuntimeException(); // 例外eをCauseとして渡していない
}

 ▼リスト1　例外発生時にログを出力する

try {
 (..中略..)
} catch (Exception e) {
 log.error("An exception occured", e)
}

Nov. 2016 - 9191 - Software Design

常に高品質を目指すべき
というわけではない

　ここまでソフトウェアの高品質化について記
してきましたが、筆者は常に高品質を目指すべ
きではないと思います。ソフトウェアの性質や
時期によって変わってくるものです。

ソフトウェアの性質によるもの

　まず、筆者のチームが既知の不具合を0件に
できたのは、ミドルウェア開発チームという性
質も大きいです。ミドルウェアはその性質上、
新機能よりは安定性を求められやすいポジショ
ンにあります。ファイルサーバを開発するとし
て、ファイルのバージョン管理機能やウイルス
チェック機能があったらうれしいかもしれませ
んが、それよりも第一にたとえマシンクラッシュ
時でもファイルが消えることなく信頼して読み
書きできるほうが何倍もうれしいですよね。
　一方、フロントエンド界隈はユーザが直接触
る場所ゆえ、日々絶えることなく新機能の要望
がやってきます。あまり使われていない画面で
特殊な操作をしたときに発生する小さな不具合
を直すよりは、新機能に注力するという判断が
採られることはしばしばあるのではないでしょ
うか。日々顧客からの新機能や改善の要望が山
のようにくる中では、その要望を取り入れる方
向に向かうのは、それもまた1つの正しい選択
肢でしょう。

　筆者たちはミドルウェアを開発するチームで
す。新機能の要望ももちろんありますが、フロ
ントエンドに比べればそれほど多くありません。
求められるのは安定性や性能でした。そういっ
た性質があったからこそ品質の向上に集中でき
たという面は確実にあります。

時期的なもの

　それから時期的な問題もあります（図1）。ソ
フトウェアのライフサイクル内の時期によって
も品質は変わりますし、意図して変えることも
あります。たとえば、筆者のチームが作り出し
たミドルウェア群は確かにできた当初は不具合
の塊でした。でも筆者は、それはそれで1つの
正しい選択肢かなと思います。というのも、サー
ビスインする際は方針転換することもしばしば、

 Author 	青木 翔（あおき しょう）
	 サイボウズ㈱　アプリケーション基盤チーム

 Twitter 	@a_o_k_i_n_g
 Illustration どこ ちゃるこ

高品質を目指すときに、
心がけたいこと

第 5 章

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

 ▼図1　サービスイン前は、スピードと品質の見極め
 が大切

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

92 - Software Design

あるケースがあります。ここで言う後ろ向きな
実装とは、過去の実装や工数の問題、プロダク
ト間の事情などにより、一時しのぎ的なとりあ
えずの問題を回避する実装のことを指します。
本来はより良い改修方法があるにもかかわらず、
さまざまな事情でその良い改修を行えずにしぶ
しぶ醜い実装をしてしまうことは多いのではな
いでしょうか。
　後ろ向きな実装の1つの例を紹介します。弊
社ではファイルサーバを自前で実装しており、
各アプリケーションはこのファイルサーバにユー
ザがアップロードした画像やそのほかのファイ
ルを置いています。このファイルサーバと関連
がある1つの機能に、ファイル内のテキストを
抽出する機能があります。たとえばPowerPoint
のファイルをファイルサーバにアップロードし、
このテキスト抽出機能を用いるとPowerPoint
ファイル内の文字列が返されるというものです。
　あるとき、このファイルサーバを利用してい
ない弊社のアプリケーションが、テキスト抽出
機能を利用したいということになりました。現
状の構成上、真っ当に進めるならまずファイル
管理をこのファイルサーバに移管することが先
決であり、大局的に見ればそのほうがいくつか
のメリットがあったのですが、機能の移管はコ
ストが高過ぎるということで却下されてしまい
ました。結果、我々はこのアプリケーションの
ために、ファイルサーバを利用していなくとも
テキスト抽出機能を利用できるよう醜い if文や
その他いくつかの実装を入れ込まねばなりませ
んでした。
　このような後ろ向きな実装は、予想に反して
長く生き残ってしまうことがあります。また、
一時しのぎ的な実装というだけあって、本来実
装すべき直感的な処理とは異なっており、保守
性もあまり良いとは言えないものが多いです。
　一方で、後ろ向きな実装は低コストで一時し
のぎができるというメリットもあり、合理的な
選択と見ることもできます。とはいえ、長いス
パンで見るとその合理性は落ちていき、いずれ

仕様も深く検討する時間なしに急造することも
あります。そのような場面でサービスインを目
標として開発をする際には、どうしてもスピー
ディな開発が求められ、テストを書いたりじっ
くりレビューしたりというのは、それに反する
面が少なからずあるからです。
　もちろんそのあとの不具合改修には、それな
りに時間や工数がかかります。相応の代償を払
わなくてはなりません。コードの悪さならある程
度改善しやすいですが、設計の悪さの改善には
かなり長い時間が必要です。そのあたりはサー
ビスインする際の設計や実装にどれだけコスト
をかけるかというバランス感覚が必要です。

品質をコントロールする
ということ

　最初からバグを生まないコードを書けたら最
高ですが、現実的にそれは理想論であり、不可
能と言って良いでしょう。DJB注1レベルのプロ
グラマになればできるかもしれませんが、きっ
とそんなコードを書けるのは世界に数人で、大
半の凡人プログラマは注意してコードを書いた
ところでバグを作り出してしまうものです。
　となると次の一手は「品質をコントロールす
る」ことに落ち着きます。サービス開始時に品質
が低いことはしかたがないと割りきって、その
後の対応で品質を高めていく方向に持っていく
べきではないでしょうか。新機能を追加するこ
とだけに時間を費やすのではなく、既存のコー
ドを改善していくこと、不具合を検出して直し
ていくこと、そういったことに時間を割けるか
どうかが品質をコントロールできるかどうかの
分岐点でしょう。

後ろ向きな実装をしない

　ある実装を行う際、それが後ろ向きな実装で

注1） DJBは、ダニエル・ジュリアス・バーンスタイン（Daniel
Julius Bernstein）というイリノイ大学教授の通称で、qmail
やdjbdnsを公開しています。DJB製のプログラムはバグや
セキュリティホールが非常に少ないことで知られています。

Nov. 2016 - 9392 - Software Design

高品質を目指すときに、
心がけたいこと

第 5 章

は害悪なコードになっていきます。
　モチベーション的にも、過去の実装に縛られ
た一時しのぎを繰り返すより、幸福な未来を目
指してコードを書くほうが何倍もモチベーショ
ンが高まります。未来に向けて書いたコードは
生きたコードであり、若々しく、モダンなライ
ブラリや技術を取り入れやすいという面もあり
ます。そういうコードを書けるプログラマは技

術を吸収し、発揮できます。後ろ向きな実装ば
かりを繰り返すプログラマは古い技術に取り込
まれ、モチベーションも高まらず、いずれ転職
してしまうことでしょう。
　後ろ向きな実装を行うのはしかたがない面も
大きいです。でも、それを回避する選択肢があ
るケースもあります。後ろ向きな実装を行わな
くて済むように、みんなが幸福になれるように、

　ここで、筆者がソフトウェアの高品質化の観点で

役に立った書籍を紹介します。いずれもすばらしい

名著なので、未読ならぜひ入手して読んでみてく

ださい。チーム内のメンバーや関係者を集めて輪

講するとさらなる効果を発揮できると思います。

『新装版　リファクタリング』注2

　アジャイル開発やエクストリームプログラミン

グでも有名なマーティン・ファウラー先生の著書

で、いかにして安全にコードを修正していくか、

ということに焦点を当てた書籍です（図2）。役割

ごとにクラスを作り、責任をそれぞれのクラスに

分担させていく様は、リファクタリングだけでな

くオブジェクト指向を学ぶのにもうってつけで

しょう。

『リーダブルコード』注3

　良いコードとは何か、読みやすいコードとは何

か、を簡潔に明瞭に示した良書です（図3）。良い

コードとは何か、という点については『Code

Complete』注4や『Clean Code』注5などいくつか書

籍がありますが、その中でも本書は内容や読みや

すさの点で群を抜いており、エッセンスも凝縮さ

れているように思います。

参考図書（1）

注2） Martin Fowler 著、児玉公信、友野晶夫、平澤章、梅
澤真史 訳『新装版　リファクタリング　既存のコード
を安全に改善する』オーム社、2014年

注3） Dustin Boswell、Trevor Foucher 著、角征典 訳『リー
ダブルコード̶̶より良いコードを書くためのシン
プルで実践的なテクニック』オライリー・ジャパン、
2012年

注4） Steve McConnell 著、㈱クイープ 訳『Code Com
plete 第2版 上下 ― 完全なプログラミングを目指し
て』日経BP社、2005年

注5) Robert C. Martin 著、花井志生 訳『Clean Code ア
ジャイルソフトウェア達人の技』アスキー・メディア
ワークス、2009年

 ▼図2　『 新装版　リファクタリング　
既存のコードを安全に改善する』

 ▼図3　『 リーダブルコード̶̶より良い
コードを書くためのシンプルで実
践的なテクニック』

恐れずにリファクタリングをするために
レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

第
２
特
集

94 - Software Design

人だけが手を入れ続け、ほかの人がメンテナン
スできないという状況がしばしば発生します。
そのようなチームはスケールすることなく、属
人的なノウハウの塊になってしまいます。
　今では、当初頻繁に発生していた、我々のチー
ムのプロダクトによるサービス停止はほとんど
なくなりました。年単位の時間がかかりました
が、それでも得るべきものは得られたと思いま
す。
　ユーザに幸福をもたらすこともできました。
テストばかり書いて、リファクタばかりしてい
たように見られていたかもしれない筆者のチー

そんなコードを書ける環境や方針を作ることも
プログラマの1つの責任だと筆者は思います。

高品質化を
手に入れた結果

　前述のことをすべて取り入れ、筆者たちのチー
ムのプロダクトは高品質を手に入れたと言える
状況になったと思います。複雑過ぎて手出しで
きない聖域もなくなり、自信を持って後輩にコー
ドの手入れを任せられるようになりました。こ
れは、チームがスケールするようになったとも
言えます。聖域があるとその歴史を知っている

『レガシーコード改善ガイド』注6

　手のつけようがない酷いコード、レガシーコー

ドには多くの人が悩まされていると思います。本

書はそのようなレガシーコードに対してどう対処

していくかを記した1冊です（図4）。閉塞感漂う

プロジェクトに光明をもたらしてくれる1冊にな

ると思います。

『プログラミング作法』注7

　ブライアン・カーニハン（UnixやC言語の開発

をした方）とロブ・パイク（UnixやUTF-8、Go言

語の開発をした方）によって書かれたプログラミ

ングのお作法に関する書籍です（図5）。先に挙げ

た3冊の書籍と比べて本書は古典的であり、サン

プルコードや時代背景などに若干の古臭さがある

ことは否めません。とはいえ、「長すぎる変数名

は良くない」や「コメントと実装が乖
かい

離
り

しないよう

に」といったお作法そのものについては時代や言

語が移り変わってもほとんど変わっていません。

個人的にではありますが、本書は筆者が今まで読

んできたすべての技術書の中で最も愛する1冊で

あり、バイブルです。

参考図書（2）

注6） マイケル・C・フェザーズ 著、ウルシステムズ株式
会社 監訳、平澤章、越智典子、稲葉信之、田村友彦、
小堀真義 訳『レガシーコード改善ガイド』翔泳社、
2009年

注7） Brian W.Kernighan、Rob Pike 著、福崎俊博 訳『プ
ログラミング作法』アスキー、2000年

 ▼図4　『 レガシーコード改善ガイド』 ▼図5　『プログラミング作法』

Nov. 2016 - 9594 - Software Design

高品質を目指すときに、
心がけたいこと

第 5 章

ムですが、結果として不具合が少なく安定性が
高いサービスを提供できており、ユーザの幸福
に一役買っているのは間違いないと断言できま
す。筆者の感覚では、世間一般は、「ユーザに幸
福をもたらすのは新機能である」という風潮が強
過ぎるのではと思います。ユーザに価値を提供
するのは新機能だけでなく、安定性や性能によっ
ても価値をもたらすことができるはずです。
　不具合が少なくなってきたので、時間にある
程度余裕ができます。すると、その時間を新し
いツールの調査やフレームワークの選定などの
先行調査などに配分できるようになりました。
この調査に工数を取れるようになると、日々現
れる新たなツールやフレームワークを取り入れ、
時には捨て、というサイクルにつながり、好循
環を生んでいます。
　そして最後にもうひとつ、一番大きなメリッ
トを紹介します。それは、高品質なソフトウェ
アをリリースしているという満足感からくる心

地良さです。ソフトウェア開発では、たくさん
の不具合を含んでいるのを知りつつも、工数や
その他さまざまな関係で不具合を直せないこと
がしばしばあります。そういったときは「バグが
あることをわかっているのに直せない」、「ユー
ザに対して迷惑をかけてしまっている」という後
ろめたさが心のどこかにあると思います。高品
質なコードは、そのような後ろめたさから解放
してくれます。プロダクトがほかの製品やユー
ザに迷惑をかけず、日々安定して稼働するとい
う事実は何にも代えがたい誇り高さがあります。
　我々がやってきたコードの高品質化への取り
組みは、ただ単にプログラマにとって読み書き
しやすいということだけに終わるものではなく、
高品質を良しとする文化をチームに根付かせる
ことができたように思います。この手塩にかけ
たプロダクトもいずれは筆者の手を離れていき
ますが、でもきっと、高品質への想いは今後も
受け継がれていくことでしょう。ﾟ

96 - Software Design

はじめに

　みなさんはElixir注1をご存じでしょうか？
　ElixirはJosé Valim氏によって開発されてい
る、並列処理を取り扱うのが得意な関数型プロ
グラミング言語です。後述するErlangVMの上
で動作するので、分散システム、耐障害性、ソ
フトリアルタイム注2といった特徴を持ちます。
またRubyに似たシンタックスと、マクロ、プ
ロトコル、メタプログラミングといったモダン
な機能も持ち合わせています。
　2016年8月には『プログラミングElixir』注3が
翻訳出版され、日本での認知度も上がってきま
した。著者は、Elixirに関するイベントや
MeetUpを運営しているのですが、とても強い
盛り上がりを感じています。
　本記事では、前編と後編の2回に分けて、
Elixirをまったく知らない読者を対象に、
Elixirの概要を解説します。前半ではElixirの
紹介とインストール方法の説明を行い、簡単な
サンプルプログラムを使ってElixirの特徴につ

注1） URL http://elixir-lang.org

注2） あらかじめ決められた時間内に処理が終了しなくても、深
刻な影響を及ぼさないが、提供するサービスの価値は低下
するというシステムの特性。

注3） Dave Thomas 著、笹田 耕一、鳥井 雪 訳、オーム社、2016年、
ISBN＝ 978-4-274-21915-3　 URL http://shop.ohmsha.
co.jp/shopdetail/000000004675

いて解説していきます。

Elixirの基礎知識

　まずは、Elixirと関係が深いErlangについ
てみていきましょう。

Erlang/OTPとは

　Erlang注4はエリクソン社によって開発された、
並列処理を取り扱うのが得意なプログラミング
言語です。OTP（Open Telecom Platform）とい
う、アプリケーション作成のための汎用的な処
理やパターンを抽象化したフレームワーク／ラ
イブラリ群と一緒に配布されています。そのた
め、ErlangとOTPを合わせて「Erlang/OTP」
と呼ばれることが多いです。
　OTPはサーバの振る舞いやパターンを「ビヘ
イビア」という規約で抽象化し、面倒な例外処理
や監視などのしくみを隠蔽します。開発者はこ
のビヘイビアを使い規約に従ったコードを書く
ことで、ユーザに提供したい処理に専念して開
発を行うことができるようになります。Elixirも、
ErlangのOTPをラップしたビヘイビアモジュー
ルを標準ライブラリとしてバンドルしています。
表1は主要なビヘイビアの一覧です。後編では、

注4） URL https://www.erlang.org

　Rubyのような書き味で、簡単に並列処理が実装できる関数型プログラミング言語「Elixir」。とくに
若手エンジニアの間で注目され、企業においても少しずつ採用がはじまっています。本記事では前後編
で、Elixirの実力を確かめます。前編で扱うのはElixirの概要、環境準備、簡単なコーディングです。

特別企画

［関数型言語］Elixirのはじめ方

前編

大原 常徳（おおはら つねのり）
株式会社ドリコム
@ohrdev
ohr486@gmail.com

http://elixir-lang.org
http://shop.ohmsha.co.jp/shopdetail/000000004675
https://www.erlang.org

96 - Software Design Nov. 2016 - 97

ビヘイビアを使ったサンプルアプリを作成します。

Erlang/OTPの学習は必要？

　筆者はイベントやMeetUpで「Elixirを使う
ためにErlang/OTPの学習は必要ですか？」と
よく質問されます。この質問に対する回答は「作
成するプログラムが小規模なら必須ではない、
中規模以上であればOTPの概念は知っておく
必要があるので、学習したほうが良い」です。
　使い捨てのスクリプトや規模の小さなプログ
ラムを書く分には良いのですが、ある程度の規
模のアプリケーションになってくると、Super
visorビヘイビアによる死活監視と再起動、
Applicationビヘイビアによるアプリケーショ
ンの起動と停止、標準的なクライアント／サー
バの処理のためのGenServerビヘイビアなど、
OTPを使ったアプリケーションを開発するこ
とになるでしょう。ですので、OTPの概念を
理解する必要があり、ある程度のErlang/OTP
についての学習は必要だと考えています。

ElixirとErlang/OTPの関係

　ElixirはErlangVMの上で動作し
ます。これはどういうことでしょうか？
　Elixirのプログラムが実行される
際、ElixirのソースコードはBEAM注5
ファイルという実行ファイルにコン
パイルされ、ErlangVMにロードされ
て実行されます。Erlang/OTPのプロ

注5） BEAMはBogdan's Erlang Abstract Machine
の略です。BEAMファイルの拡張子は
「.beam」になります。

グラムも同様に、ソースコードがBEAMファイ
ルにコンパイルされ、ErlangVMにロードされ
て実行されます。
　これらElixirとErlang/OTPのBEAMファ
イルはそれぞれ同じ形式で、同じErlangVM上
で動作し、相互にモジュール中の関数を実行で
きます（図1）。

Elixirの得意なこと／苦手なこと

　ElixirはErlangVM上で動作するので、分散
システム、耐障害性、ソフトリアルタイムといっ
たErlang/OTPの特徴を継承しています。この
ことからElixirは、ネットワークサーバ、高負
荷な大規模システム、高可用性システム、並列・
分散処理システムといったシステムを実装する
のに向いています。
　一方、Erlang/OTPは数値計算や高速な処理
を行うのには向いていません。したがって
ErlangVM上で動作するElixirも、高速な処理
速度を求められるシステムや、大量のデータを
扱う数値計算アルゴリズム処理といったシステ
ムを実装するのには向いていません。

Elixirの環境構築

　ここからはElixirのインストール手順を解説
します。なおErlang/OTPとElixirのバージョ
ンは、次に挙げる執筆時点（2016年9月）の最
新バージョンを前提としています。

・Elixir 1.3.1 / Erlang/OTP 19.0

 ▼表1　主要ビヘイビア一覧

名称 振る舞い

GenServer
リクエストを受けてレスポンスを返すクライアント
／サーバ

GenEvent 動的に追加・削除できるイベントハンドリング

Supervisor
プロセスの死活監視と、指定可能な設定（戦略）
でのプロセスの再起動

Application
ErlangVM 上で動作する再利用可能なアプリ
ケーションの起動と停止

ErlangVM

Erlang/OTPのソースコード Elixirのソースコード
相互にモジュール内の
関数を実行可能

コンパイル

コンパイル

a.erl b.ex

a.beam

b.beam

 ▼図1　ElixirとErlang/OTPの関係図

［関数型言語］Elixirのはじめ方 前編

98 - Software Design

Erlang/OTPのインストール

　ElixirはErlangVM上で実行されるので、ま
ずErlang/OTPをインストールする必要があり
ます。それではErlang/OTPのインストールと
起動方法を見ていきましょう。

OS Xの場合
　OS XではHomebrewでErlang/OTPをイン
ストールできます。

$ brew update
$ brew install erlang

　すでにErlang/OTPをインストール済みの方
は次のコマンドでErlang/OTPを最新のバー
ジョンに更新してください。

$ brew update
$ brew upgrade erlang

Windowsの場合
　Windowsでは後述するElixirの専用のイン
ストーラを使うことで、Erlang/OTPのインス
トールを、Elixirと同時に行うことができます。
Erlang/OTPを個別にインストールする必要は
ありません。

Linuxの場合
　Linuxではディストリビューションごとにパッ
ケージが提供されています。公式サイトのダウ

ンロードページ注6から対応する手順
でインストールしてください。

起動確認
　Erlang/OTPの対話環境（REPL）の
起動は、erlコマンドで行います（図2）。
　それでは、伝統に則ってハローワー
ルドプログラムを実行してみましょう。
Erlang/OTPのプログラムでは、命令
の最後にドット（.）を付ける必要があ
ります。

1> io:fwrite("Hello, Erlang!\n").
Hello, Erlang!
ok

　終了するには次のようにq()と入力するか、図
3のようにl-Cのあとにaを入力してください。

2> q().
ok
3>
$

Elixirのインストール

　次に、Elixirのインストールを行います。

OS Xの場合
　OS XではErlang/OTP同様、Homebrewで
Elixirをインストールできます。

$ brew update
$ brew install elixir

　すでにElixirをインストール済みの方は、次
のコマンドでElixirを最新のバージョンに更新
してください。

$ brew update
$ brew upgrade elixir

注6） URL https://www.erlang.org/downloadsの［Pre-built Binary
Packages］

$ erl
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] ｭ
[async-threads:10] [hipe] [kernel-poll:false]

Eshell V8.0 (abort with ^G)
1>

 ▼図2　 Erlang/OTPのREPLの起動

2> <CTRL+C>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
a
$

 ▼図3　ショートカットによるErlang/OTPの終了方法

https://www.erlang.org/downloads

98 - Software Design Nov. 2016 - 99

　ハローワールドプログラムの実行は次のよう
になります。

iex(1)> IO.puts "Hello, Elixir"
Hello, Elixir
:ok
iex(2)>

　終了するには、次のように、

iex(2)> System.halt
$

と入力するか、図9のようにl-Cのあとに
aを入力してください注9。

注9） Windowsの場合は、iexコンソールウィンドウのメニュー
から「File」->「Exit」を選択するか、Á-$を入力して終
了してください。

Windowsの場合
　Windowsでは、Elixirの専用インス
トーラ注7を使って、ElixirとErlang/
OTPをインストールできます（図4）。
WindowsのErlang/OTPには 32bit版
と64bit版の2種類があり、どちらをイ
ンストールするか指定できます（図5）。
お使いのPCに合わせて選択してくだ
さい。

Linuxの場合
　Linuxではディストリビューションごとにパッ
ケージが提供されています。公式サイトのイン
ストールページ注8から対応するインストール手
順でインストールしてください。

起動確認
　Elixirの対話環境（REPL）の起動は iexコマ
ンドで行います。OS XまたはLinuxの場合は
コンソールからiexと入力してください（図6）。
Windowsの場合は、メニュー一覧（図7）から
「Elixir」を選んで起動すると、iexのコンソール
ウィンドウが立ち上がります（図8）。

注7） URL http://elixir-lang.org/install.htmlの［Download the
installer］からダウンロードできる。

注8） URL http://elixir-lang.org/install.htmlの［unix-and-unix-
like］

 ▼図6　ElixirのREPLの起動

$ iex
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe] [kernel-poll:false]

Interactive Elixir (1.3.2) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

 ▼図4　Elixirインストーラ画面

 ▼図8　iexコンソールウィンドウ

 ▼図7　Windowsメニュー
　　　一覧（Windows 10）

 ▼図5　64bit、32bitの選択画面

 ▼図9　ショートカットによるElixirの終了方法

iex(2)> <CTRL+C>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
a
$

［関数型言語］Elixirのはじめ方 前編

http://elixir-lang.org/install.html
http://elixir-lang.org/install.html

100 - Software Design

　WindowsでErlangを使いたい場合は、Elixir
と同様にメニュー一覧から「Erlang OTP 19
(x64)」を選んで対話環境を起動します。

関数型言語とは

　Elixirは関数型言語です。関数型言語や関数
型プログラミングと聞くと難しいと思う方もい
るかもしれませんが、ご心配なく。関数型とは
要するに、命令やオブジェクトを中心に考えて
プログラミングを行うのではなく、「関数」を中
心に考えてプログラミングを行うというだけの
ことです。
　複数の関数を組み合わせて処理を記述するプ
ログラミングのスタイルを、関数型プログラミ
ングと言います。関数型プログラミングを行う
うえで欠かせない、「関数の生成、代入、演算、
引数や戻り値としての受け渡しなどの基本操作
を制限なしに使用できる」注10といった特徴を持
ち、関数型プログラミングの考えに基づいて設
計された言語を関数型言語と言います注11。

実践：関数型プログラミング

曜日計算プログラム

　それではサンプルとして、年月日から曜日を
計算するプログラムを、関数型／手続き型それ
ぞれのスタイルで見ていきましょう。なお曜日
計算には、ツェラーの公式注12を使って行います。
　作成するプログラムは次のような動作を行う
ものとします注13。

（1）引数が年、月、日の整数でない場合は例外
を起こす

注10） このような操作の対象を第一級オブジェクト、またはファー
ストクラスと言います。

注11） 関数型言語の正確な定義は存在しません。「関数を中心に
処理を記述するスタイルを推奨する言語なのであれば、そ
れは関数型言語である」というのが筆者の考えです。

注12） URL https://ja.wikipedia.org/wiki/ツェラーの公式
注13） 今回サンプルとして作成するプログラムでは潤年などの扱

いを省略しているため、厳密には正確ではありません。

（2）引数に日付を入力すると曜日を計算する
（3）変換内容を出力する
（4）返り値として曜日を返却する

Rubyを使って手続き型で実装

　日付から曜日を計算する処理をRubyで実装し
たものがリスト1となります。このプログラムを
実行すると図10のような結果となり、日付から
曜日を計算できていることがわかります。2016
年9月5日は月曜日、2016年9月6日は火曜日です。
　Date2Weekクラスのcalcメソッドに注目し
てください（リスト1の①）。プログラムの仕様
の、（1）入力値チェック、（2）曜日計算、（3）計
算内容の表示、（4）曜日の返却、の処理をそれ
ぞれ順番に実行しています。よく見かけるコー
ドのスタイルではないでしょうか。

Elixirを使って関数型で実装

　Elixirによる実装はリスト2のようなコード
になります注14。このプログラムを実行すると、
図11のような結果となります。

パイプ演算子
　Date2Weekモジュールのcalc/1関数注15を見
てください（❶）。¦>という記号を使って関数が
つながっている様子がわかります。¦>はパイプ
演算子と言い、左側の式の結果を受け取り、右
側の関数の第一引数として渡す演算子です。
　calc/1関数はこのパイプ演算子を使って、
年月日を表すタプル注16を引数に、（1）入力値チェッ
ク、（2）曜日計算、（3）計算内容の表示、（4）曜日
の返却、の処理を行う関数に対して、ベルトコ
ンベアーのように次々と、関数の出力結果を次

注14） Elixirのソースコードの拡張子は「.ex」または「.exs」です。
「.ex」ではバイトコードにコンパイルして実行するのに対
して、「.exs」ではソースレベルで解釈・実行します。

注15） Elixirでは関数の名前が同じであっても引数の数が違うと異
なる関数として扱われます。関数名と引数の数の組み合わ
せを「アリティ」と言います。たとえば、関数名がhoge、
引数の数が2の関数のアリティは、hoge/2となります。

注16） コンマ区切りの順序のある要素を波括弧で囲むデータ構造
を「タプル」と言います。タプルの要素は、タプルとインデッ
クスを引数とするelem/2関数で取り出すことができます。
たとえば、elem({1,2,3}, 0)は1を返します。

https://ja.wikipedia.org/wiki/%E3%83%84%E3%82%A7%E3%83%A9%E3%83%BC%E3%81%AE%E5%85%AC%E5%BC%8F

100 - Software Design Nov. 2016 - 101

の関数の入力値として適用していきます（図12）。
関数を通るたびに、一番最初の引数のタプルが
どんどん変換されていく様子がわかるでしょう。
　なお、パイプ演算子を使わずに書いたのが
calc2/1関数です（❷）。関数の結果を、次の
関数の第一引数として引き渡していく様子が見
て取れると思います。

パターンマッチ
　calc2/1関数やcalc_week_no/1関数には=
演算子が使われています。Elixirの=演算子は

代入演算子ではなく、パターンマッチ演算子で
す。パターンマッチ演算子=は、まず右辺を評
価し、次に左辺を評価し、両辺が等しくなる方
法があれば成功し、その値を返します。
　iexでパターンマッチの簡単な例（図13）を実
行してみましょう。
　1行目のx = 1は代入ではなくパターンマッチ
です。まず、右辺の1が評価されて整数値「1」に
なります。左辺は変数ですので右辺の「1」を左辺
の変数xに束縛することで両辺が等しくなります。
2行目の1 = xでは、右辺のxは「1」に束縛さ

 ▼リスト1　sample.rb

class Date2Week
 require 'date'
 attr_accessor :year, :month, :day

 # 年月日から曜日を計算
 def calc
 validate_args # (1)入力値チェック
 week_no = calc_week_no # (2)曜日数計算
 week_str = week_no_to_str(week_no) # (2)曜日数を曜日に変換
 puts "#{@year}/#{@month}/#{@day}は#{week_str}です。" # (3)計算内容を表示
 week_str # (4)曜日を返却
 end

 def initialize(year, month, day)
 @year, @month, @day = year, month, day
 end

 # year, month, dayが整数でなければ例外を投げる
 def validate_args
 if !@year.is_a?(Integer) || !@month.is_a?(Integer) || !@day.is_a?(Integer)
 raise "引数がマッチしません"
 end
 end

 # ツェラーの公式で曜日番号を計算
 # 曜日番号は、0:土曜、1:日曜、...として表す
 def calc_week_no
 y_1 = @year + @year / 4
 y_2 = y_1 - @year / 100
 y_3 = y_2 + @year / 400
 m_4 = (@month * 13 + 8) / 5
 (y_3 + m_4 + @day) % 7
 end

 # 曜日番号を文字列に変換
 def week_no_to_str(week_no)
 weeks = ["日", "月", "火", "水", "木", "金", "土"]
 weeks[week_no] + "曜日"
 end
end

...①

 ▼図10　リスト1「sample.rb」の実行結果（Rubyの
　　　 REPL「irb」 で実行）

irb(main):001:0> load 'sample.rb'
=> true
irb(main):002:0> Date2Week.new(2016,9,5).calc
2016/9/5は月曜日です。
=> "月曜日"
irb(main):003:0> Date2Week.new(2016,9,6).calc
2016/9/6は火曜日です。
=> "火曜日"
irb(main):004:0>

［関数型言語］Elixirのはじめ方 前編

102 - Software Design

 ▼リスト2　sample.exs

defmodule Date2Week do
 # 年月日から曜日を計算
 def calc({year, month, day}) do
 {year, month, day}
 |> validate_args # (1)入力値チェック
 |> calc_week_no # (2)曜日数計算
 |> week_no_to_str # (2)曜日数を曜日に変換
 |> display # (3)計算内容を表示
 |> select_week # (4)曜日を返却
 end

 # calcをパイプ演算子を使わずに書いたバージョン
 def calc2({year, month, day}) do
 arg0 = {year, month, day}
 arg1 = validate_args(arg0) # (1)入力値チェック
 arg2 = calc_week_no(arg1) # (2)曜日数計算
 arg3 = week_no_to_str(arg2) # (2)曜日数を曜日に変換
 arg4 = display(arg3) # (3)計算内容を表示
 arg5 = select_week(arg4) # (4)曜日を返却
 arg5
 end

 # year, month, day が整数でなければ例外を投げる
 def validate_args({year, month, day})
 when is_integer(year) and is_integer(month) and is_integer(day) do
 {year, month, day}
 end
 def validate_args(_), do: raise "引数がマッチしません"

 # ツェラーの公式で曜日番号を計算
 # 曜日番号は、0:土曜、1:日曜、...として表す
 # 引数の最後に、曜日を追加して返却
 def calc_week_no({year, month, day}) do・・・
 y_1 = year + (div year, 4)
 y_2 = y_1 - (div year, 100)
 y_3 = y_2 + (div year, 400)
 m_4 = div (month * 13 + 8), 5
 week_no = rem (y_3 + m_4 + day), 7
 {year, month, day, week_no}
 end

 # 引数の最後の曜日番号を文字列に変換
 def week_no_to_str({y, m, d, 0}), do: {y, m, d, "日曜日"}
 def week_no_to_str({y, m, d, 1}), do: {y, m, d, "月曜日"}
 def week_no_to_str({y, m, d, 2}), do: {y, m, d, "火曜日"}
 def week_no_to_str({y, m, d, 3}), do: {y, m, d, "水曜日"}
 def week_no_to_str({y, m, d, 4}), do: {y, m, d, "木曜日"}
 def week_no_to_str({y, m, d, 5}), do: {y, m, d, "金曜日"}
 def week_no_to_str({y, m, d, 6}), do: {y, m, d, "土曜日"}

 # 変換内容を出力
 def display({year, month, day, week}) do
 IO.puts "#{year}/#{month}/#{day}は#{week}です。"
 {year, month, day, week}
 end

 # 最後の曜日を抽出して返却する
 def select_week({_year, _month, _day, week}), do: week
end

...❶

...❷

...❸

102 - Software Design Nov. 2016 - 103

れているので評価されて「1」になります。左辺
は「1」ですので両辺値が等しくなり、成功します。
3行目の2 = xは、右辺のxは「1」に束縛され
ているので評価されて「1」になります。左辺は
整数値「2」で、どうやっても両辺が等しくならず、
マッチエラーとなります注17。

関数の引数のパターンマッチ
　次に、week_no_to_str/1関数を見てみま
しょう（❸）。一種類の関数に複数のボディがあ
ることに驚いたのではないでしょうか？
　Elixirは渡された引数を、定義されている順
にパラメータリストにパターンマッチさせよう
とします。week_no_to_str/1の場合は、{y, m,
d, 0}、{y, m, d, 1}、……と定義されてい
る順にパターンマッチを繰り返していきます。

注17） Elixirのパターンマッチは、左辺の変数の値しか変更しま
せん。

　たとえば、引数が
{2016, 9, 6, 2}のと
きは、{y, m, d, 0}、
{y, m, d, 1}とのパ
ターンマッチが失敗し、
{y, m, d, 2}とのパ
ターンマッチが成功し
て、yが 2016、mが 9、
dが6に束縛され、{y,
m, d, “火曜日”}つま
り {2016, 9, 6, “火

曜日”}が関数の結果として返されます。
◆　◆　◆

　本記事で、Elixirの紹介とインストール手順の
説明、ElixirとErlangの関係の説明、曜日計算
プログラムを例に、手続き型によるプログラミン
グとの比較、パイプ演算子やパターンマッチといっ
たElixirの言語機能について説明しました。
　今回取り上げなかったマクロによるメタプロ
グラミングや、さまざまな標準モジュールにつ
いて知りたい方、さらに深くElixirを理解した
い方はぜひ『プログラミングElixir』や公式のド
キュメント注18を読んでみてください。
　次回はいよいよ、Elixirの目玉である「プロ
セス」を使った並列プログラミング、そして
PhoenixによるWebアプリ開発について解説
します。お楽しみに！｢

注18） URL http://elixir-lang.org/getting-started/introduction.
html

 ▼図11　リスト2「sample.exs」の実行結果

$ iex sample.exs
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe] [kernel-poll:false]
Interactive Elixir (1.3.2) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> Date2Week.calc({2016, 9, 5})
2016/9/5は月曜日です。
"月曜日"
iex(2)> Date2Week.calc({2016, 9, 6})
2016/9/6は火曜日です。
"火曜日"
iex(3)>

validate_args

{ 2016, 9, 5}

calc_week_no

{ 2016, 9, 5}

week_no_to_str

{ 2016, 9, 5, 2}

display

{ 2016, 9, 5, “火曜日”}

select_week

{ 2016, 9, 5, “火曜日”}

“火曜日”

標準出力

2016/9/5は火曜日です。

 ▼図12　パイプ演算子

 ▼図13　パターンマッチ

iex(1)> x = 1
1
iex(2)> 1 = x
1
iex(3)> 2 = x
** (MatchError) no match of right hand side value: 1
iex(3)>

［関数型言語］Elixirのはじめ方 前編

http://elixir-lang.org/getting-started/introduction.html

104 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

　みなさん、1年ぶりです！　脳内でPrinceが
「農！協！牛！乳！」と叫んでいるEiji James
Yoshidaです。今年一発目の「Jamesのセキュリ
ティレッスン」ですので音楽ネタは何を書こう
か悩みましたが、やはりDavid BowieやPrince、
元SOFT BALLETの森岡賢といった大好きな
アーティストが今年になって亡くなったことを
書かずにいられないですね。まだまだ長生きし
て、刺激的で実験的な曲を作り続けてほしかっ
たです。
　さて、前回（2015年11月号）まではディスプ
レイフィルタを習得するような内容が続いたの
で、今回はディスプレイフィルタではなく、
SSL/TLSの暗号化通信を復号する方法につい
て説明します。

　本稿を書く際に使用した環境はWindows 10で
Wireshark 2.2.0です。使い慣れたWireshark 1.x
系を使いたいところですが、今年の7月末でサポー
ト終了（End of Life）となってしまったため、思い
切ってWireshark 2.x系に乗り換えました。

・Wireshark
	 https://www.wireshark.org/download.html

環境説明

　Wiresharkのインストール方法はお任せしま
すが、とくにこだわりがない場合はデフォルト
の設定でインストールしてください。また、筆
者のブログからキャプチャファイルをダウンロー
ドしてください。

・	Software Design 短期集中連載「Jamesのセ
キュリティレッスン」用キャプチャファイル

	 http://d.hatena.ne.jp/EijiYoshida/20140907/

1410071296

　・sd1611_https_192.0.2.2.pcapng
　・sd1611_https_192.0.2.3.pcapng
　・sd1611_192.0.2.2_server.key
　・sd1611_192.0.2.3_server.pfx
　・sd1611_sslkeylogfile.txt

　あとは何かBGMでも流しましょう。先ほど
書いたアーティストの曲を聴いたことがなけれ
ば、David Bowieの「Let's Dance」やPrinceの
「Batdance」、あとはSOFT BALLETの「EGO
DANCE」といった曲は、懐かしい音ですが聴
きやすいのでお勧めです。

　近年、セキュリティが重要視されていること
から多くの通信が暗号化され始めています。実
際、Wiresharkを使って通信内容を確認しよう
とパケットをキャプチャしたところ、暗号化さ
れていて内容がわからないという経験をした人

多くの通信が暗号化され
始めている

はじめに

第7回
 Writer 吉田 英二（Eiji James Yoshida）

　合同会社セキュリティ・プロフェッショナルズ・ネットワーク（http://www.sec-pro.net/）

SSL/TLSの暗号化通信を
復号してみよう！

JamesのJamesの
セキュリティレッスンセキュリティレッスン
パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★ 短

期集中連載

http://www.sec-pro.net/
http://d.hatena.ne.jp/EijiYoshida/20140907/1410071296
https://www.wireshark.org/download.html

104 - Software Design Nov. 2016 - 105

SSL/TLSの暗号化通信を復号してみよう！ 第7回

は多いと思います。筆者もダウンロードしたツー
ルの動作確認をしようとパケットキャプチャし
てみたら、内容がSSL/TLSで暗号化されて
いて動作確認できずに困ったことがあります。
　そこで今回は、Wiresharkの機能を使って
SSL/TLSの暗号化通信を復号する方法を解説
してみたいと思います。

　多くの人がお世話になっているSSL/TLS
を利用した通信といえばHTTPSだと思うので、
今回はこのHTTPSで使われているSSL/TLS
の暗号化通信を復号してみましょう。
　WiresharkでHTTPSの通信をキャプチャし
ただけでは、内容はSSL/TLSで暗号化されて
いてわからないです。試しに筆者のブログから
ダウンロードしたキャプチャファイル「sd1611_
https_192.0.2.2.pcapng」をWiresharkで開いて
ください。このキャプチャファイルはHTTPS
の通信で送受信されたパケットを保存したもの
ですが、上側の［Packet List］ペインのNo.11

HTTPSで使われているSSL/TLS
の暗号化通信を復号してみよう

やNo.12のパケットを選択して、中央の［Packet
Details］ペインにある［Secure Sockets Layer］
配下を展開すると、図1のようにデータ部分が
Encrypted Application Data:と表示され
ていることから、SSL/TLSで暗号化されてい
ることがわかります。
　WiresharkでSSL/TLSの暗号化通信を復号
する方法は、大きく分けて2つあります。1つ
はサーバ秘密鍵を使う方法、もう1つは（Pre）
-Master-Secretを使う方法です。

　まずはサーバ秘密鍵を使ってSSL/TLSの
暗号化通信を復号してみましょう。

　Wiresharkでサーバ秘密鍵を使ってSSL/
TLSの暗号化通信を復号するには、当然です
が通信相手であるWebサーバのサーバ秘密鍵
を入手する必要があります。

SSL/TLSの暗号化通信を
サーバ秘密鍵で復号する

サーバ秘密鍵を入手する

 ▼図1　SSL/TLSで暗号化されているHTTPSの通信

106 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

● Apache（mod_ssl）のサーバ秘密鍵
　Apacheでmod_ssl注1を使っている場合は、イ
ンストール方法や設定によって異なることもあり
ますが一般的に「/etc/httpd/conf.d/ssl.conf」ファ
イルの「SSLCertificateKeyFile」ディレクティブ
に、サーバ秘密鍵の保存場所が書かれています。
　筆者はテスト環境として、CentOS 7.2で
Apacheとmod_sslを使っているので、上記ファ
イルの「SSLCertificateKeyFile」ディレクティ
ブを確認したところ「SSLCertificateKeyFileｽ /
etc/pki/tls/private/server.key」と記載されて
いることから、サーバ秘密鍵は「/etc/pki/tls/
private/server.key」ファイルということがわか
ります。
　このファイルが、環境説明のときに筆者のブ
ログからダウンロードした「sd1611_192.0.2.2_
server.key」ファイルになります。

注1） ApacheをSSLに対応させるためのモジュール。

● IIS/7.x系のサーバ秘密鍵
　Microsoft-IIS/7.x系を使っている場合は、「イ
ンターネットインフォメーションサービス（IIS）
マネージャ」を使います。
　筆者はテスト環境としてWindows Server
2008で IIS/7.0を使っているので、［管理ツー
ル］にある［インターネットインフォメーション
サービス（IIS）マネージャ］を起動します。中
央ペインにある［サーバー証明書］をダブルク
リックするとサーバ証明書の一覧が表示される
ので、証明書を選んでから右側ペインにある［エ
クスポート］リンク（図2）をクリックします。［証
明書のエクスポート］ウインドウ（図3）が表示さ
れたら、［エクスポート先：］にパスとファイル名、
「パスワード：」と「パスワードの確認入力：」
にはサーバ証明書自体の暗号化と復号に使うパ
スワードを入力して［OK］ボタンをクリックする
と、サーバ秘密鍵を含むサーバ証明書が
PKCS#12（PFX）ファイル形式でエクスポート
されます。
　このファイルが、環境説明のときに筆者のブ
ログからダウンロードした「sd1611_192.0.2.3_
server.pfx」ファイルになります。

　サーバ秘密鍵を入手したら、さっそく
Wiresharkにサーバ秘密鍵を設定しましょう。

Wiresharkにサーバ秘密鍵を
設定する

 ▼図2　サーバー証明書の［エクスポート］リンク

 ▼図3　［証明書のエクスポート］ウインドウ

106 - Software Design Nov. 2016 - 107

SSL/TLSの暗号化通信を復号してみよう！ 第7回

● 手順と注意点
　キャプチャファイル「sd1611_https_192.0.2.2.
pcapng」をWiresharkで開いて、Protocol項目
にSSLv～やTLSv～と表示されているパケット
を右クリックします。今回はNo.4のパケット
を右クリックしてコンテキストメ
ニュー（図4）から［プロトコル設定］
を選び、［Open Secure Sockets Layer
preferences］をクリックします。
　［Wireshark・設定］ウインドウ（図

5）が表示されたら、RSA keys list
の右にある［Edit］ボタン（図5の①）
をクリックします。［SSL Decrypt］
ウインドウ（図6）が表示されたら、
左下の［+］ボタンをクリックして
SSL/TLSの復号に必要な情報を設
定します。各項目をダブルクリック
すると入力に切り替わります。
　ここで注意すべき点として、
©を押すと［OK］ボタンが押さ
れたことになり、ほかの項目の入力
が終わっていない場合はエラーに
なってしまうので、©は押さ
ないことをお勧めします。もし
©を押してエラーになったら、
再度RSA keys listの右にある［Edit］
ボ タ ン を ク リ ッ ク し て［SSL
Decrypt］ウインドウを表 示し、
©を押してしまった項目を含
む行を選択してから、［－］ボタンを
クリックして行ごと削除してくださ
い。その後、［＋］ボタンをクリック
して再度入力します。少々面倒です
が、そうしないと筆者の環境では
©で余計なデータが入力され
てしまったのか、復号処理がエラー
になってしまいました。

● Apache（mod_ssl）の復号設定
　それでは筆者のテスト環境にある192.0.2.2
のApache（mod_ssl）のHTTPSを復号する設
定をしましょう。
　IP address項目には、サーバ秘密鍵を設定し

 ▼図4　No.4パケットのコンテキストメニュー

 ▼図6　［SSL Decrypt］ウインドウ

 ▼図5　［Wireshark・設定］ウインドウ

108 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

ているWebサーバのIPアドレスを入力します。
今回は192.0.2.2と入力してください。
　Port項目には、WebサーバがSSL/TLSで
使用しているポート番号を入力します。今回は
443と入力してください。
　Protocol項目には、SSL/TLSで暗号化して
いる通信のプロトコルを入力します。HTTPS
であればSSL/TLSでHTTPの通信を暗号化
しているので、httpと入力します。今回も
httpと入力してください。
　Key File項目には、サーバ秘密鍵のパスとファ
イル名を設定します。今回は筆者のブログから
ダウンロードした「sd1611_192.0.2.2_server.
key」を設定してください。
　Password項目には、サーバ秘密鍵のファイ

ルが暗号化されている場合に復号で使用するパ
スワードを設定してください。今回使用する
「sd1611_192.0.2.2_server.key」はパスワード
がないので何も入力しないでください。

● IIS/7.0の復号設定
　続いて、筆者のテスト環境にある192.0.2.3の
IIS/7.0のHTTPSを復号する設定をしましょう。
［＋］ボタンをクリックしてIP address項目には
192.0.2.3、Port項目には443、Protocol項目に
はhttp、Key File項目には筆者のブログからダ
ウンロードした「sd1611_192.0.2.3_server.pfx」、
Password項目にはすべて小文字のpasswordと
入力してください。

◆　◆　◆
　これら入力がすべて終わると図7のような表
示になります。設定が正しいことを確認したら
［OK］ボタンをクリックして［SSL Decrypt］ウ
インドウを閉じます。さらに［Wireshark・設定］
ウインドウ（図5）の［OK］ボタンをクリックし
てウインドウを閉じます。Wiresharkのメイン
ウインドウが設定を反映した表示になっていな
いこともあるので、念のためメイン・ツールバー

にある［このファイルを再読み込
み］ボタン（図8）をクリックして
キャプチャファイルを再読み込み
してください。
　図8のようにNo.11とNo.12のパ
ケットの表示が変わって、［Packet
List］ペインのProtocol項目が
TLSv1からHTTPになり、Info項
目に通信内容の一部分が表示され
ています。さらに［Packet List］
ペインでNo.11やNo.12のパケッ
トをクリックすると、Packet
Detailsペ イ ン に あ る［Secure
Sockets Layer］の下に、新しく
［Hypertext Transfer Protocol］
が表示されて、そこを展開すると
SSL/TLSで暗号化されている

 ▼図8　192.0.2.2の復号されたHTTPSの通信

 ▼図7　設定が終わった［SSL Decrypt］ウインドウ

108 - Software Design Nov. 2016 - 109

SSL/TLSの暗号化通信を復号してみよう！ 第7回

HTTPの通信、つまりHTTPS
の通信が復号されて平文で丸
見えになっていることがわか
ると思います。
　次に IIS/7.0とのHTTPSの
通信が保存されている「sd1611_
https_192.0.2.3.pcapng」をWires
harkで開いてください。すで
に復号に必要な設定をしてい
るので、図9のようにNo.10と
No.12のパケットが復号され
ていることがわかります。
　このように、Wiresharkはサー
バ秘密鍵を使ってSSL/TLS
の暗号化通信を復号できます。
［SSL Decrypt］ウインドウで
設定した内容は削除しない限
り残るので、安全性を考えて
設定を削除しましょう。先ほどのサーバ秘密鍵
を設定する手順に従って［SSL Decrypt］ウイ
ンドウ（図7）を表示したら、追加した行を選択
して［－］ボタンをクリックすれば削除されます。
あとは［SSL Decrypt］ウインドウの［OK］ボタ
ンをクリックしてウインドウを閉じてください。

　Wiresharkはサーバ秘密鍵を使って復号する
方法のほかにも、（Pre）-Master-Secretを使っ
て復号する方法があります。（Pre）-Master-
SecretはPre-Master-SecretやMaster-Secret
のことを指していて、この2つのどちらかを使っ
てSSL/TLSで暗号化された通信を復号します。
この（Pre）-Master-SecretはSSL/TLSで通
信しているサーバとクライアントの両方に生成
されるため、サーバ秘密鍵がなくてもクライア
ントの（Pre）-Master-Secretがあれば復号で
きます。もちろん、復号したい暗号化通信で使
われている（Pre）-Master-Secretを入手しな
いと復号はできないです。

SSL/TLSの暗号化通信を（Pre）
-Master-Secretで復号する

　Windowsで（Pre）-Master-Secretを入手する
簡単な方法は、（Pre）-Master-Secretの情報を
含むSSLKEYLOGFILEを出力できるブラウザ
を使うことです。SSLKEYLOGFILEを出力で
きるブラウザとしてはGoogle ChromeやMozilla
Firefoxがあります。どのバージョンから対応し
ているのかはわかりませんでしたが、筆者のテス
ト環境ではGoogle Chromeはバージョン53系、
Mozilla Firefoxはバージョン48系で出力できる
ことを確認しました。また、筆者のテスト環境にあ
るMicrosoft Internet Explorer 11系とMicrosoft
Edge 25系ではSSLKEYLOGFILEの出力はで
きませんでした。
　Google Chrome や Mozilla Firefox で SSL
KEYLOGFILEを出力するには、環境変数を設
定する必要があります。［コントロールパネル］
の［システムとセキュリティ］にある［システム］
をクリックして、左側にある［システムの詳細設
定］リンク（図10）をクリックします。［システム
のプロパティ］ウインドウ（図11）が表示された

Windowsで（Pre）-Master-
Secretを入手する

 ▼図9　192.0.2.3の復号されたHTTPSの通信

110 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

ら、［詳細設定］タブの下側にある［環境変数］ボ
タンをクリックします。［環境変数］ウインドウ（図

12）が表示されたら、中央にある［ユーザー環境
変数］の［新規］ボタン（図12の①）をクリックし
ます。［ユーザー変数の編集］ウインドウ（図13）
が表示されたら、［変数名：］にはSSLKEYLOG
FILE、［変数値 :］にはSSLKEYLOGFILEを出
力するパスとファイル名を入力します。今回は
%USERPROFILE%\Documents\sslkeylog
file.txtと入力してください。あとは［ユー
ザー変数の編集］ウインドウと［環境変数］ウイ
ンドウ、そして［システムのプロパティ］ウイン
ドウの［OK］ボタンをクリックして各ウインド
ウを閉じます。
　設定後はGoogle ChromeやMozilla Firefox
でHTTPSの通信を行うと、［ドキュメント］フォ
ルダに（Pre）-Master-Secretの情報を含む
sslkeylogfile.txtが作成されます。試しに、
「https://www.example.com/」に接続すると、み

なさんの［ドキュメント］フォルダにsslkeylogfile.
txtが作成されたかと思います。筆者のテスト
環境で出力したファイルは、環境説明のときに
筆者のブログからダウンロードした「sd1611_
sslkeylogfile.txt」になります。
　ちなみに、Linuxでも同様の環境変数を設定
した端末からブラウザを起動することで、（Pre）
-Master-Secretの情報を含むファイルを出力
することができます。

　キャプチャファイル「sd1611_https_192.0.
2.2.pcapng」をWiresharkで開いてください。す
でに開いている場合は、念のためメイン・ツー
ルバーにある［このファイルを再読み込み］ボタ
ン（図8）をクリックして表示を更新してください。
　No.11やNo.12のパケットを選択して［Packet
Details］ペインにある［Secure Sockets Layer］
配下をすべて展開すると、図1のようにデータ

Wiresharkに（Pre）-Master-
Secretを設定する

 ▼図10　［システムの詳細設定］リンク

 ▼図12　［環境変数］ウインドウ

 ▼図11　［システムのプロパティ］ウインドウ

 ▼図13　［ユーザー変数の編集］ウインドウ

110 - Software Design Nov. 2016 - 111

SSL/TLSの暗号化通信を復号してみよう！ 第7回

部分が「Encrypted Application Data:」と表示
されていると思います。それでは、今度は（Pre）
-Master-Secretの情報を含む「sd1611_sslkeylog
file.txt」を使ってWiresharkで復号してみま
しょう。
　まずはNo.4のパケットを右クリックしてコン
テキストメニューから［プロトコル設定］を選び、
［Open Secure Sockets Layer preferences］（図

4）をクリックします。
　［Wireshark・設定］ウインドウ（図5）が表示
されたら、（Pre）-Master-Secret log filename
にある［Browse］ボタン（図5の②）をクリックして、
筆者のブログからダウンロードした「sd1611_
sslkeylogfile.txt」を選択して［保存］ボタンをク
リックします。あとは［Wireshark・設定］ウイ
ンドウ（図5）の［OK］ボタンをクリックしてウ
インドウを閉じましょう。
　Wiresharkのメインウインドウが設定を反映
した表示になっていないこともあるので、今回
もメイン・ツールバーにある［このファイルを
再読み込み］ボタン（図8）をクリックして再読
み込みしてください。サーバ秘密鍵を使って復
号したときと同じく、図8のNo.11・No.12の
パケットのようにHTTPSの通信が復号されて、
内容が平文で丸見えになっていることがわかる
と思います。
　このように、Wiresharkは（Pre）-Master-
Secretを使うことでも、SSL/TLSの暗号化
通信を復号できます。［ユーザー環境変数］に追
加したSSLKEYLOGFILEは、削除しない限
り残って（Pre）-Master-Secretを記録し続け
てしまうので、こちらも安全性を考えて環境変
数SSLKEYLOGFILEと［ドキュメント］フォ
ルダにあるsslkeylogfile.txtは削除しましょう。
環境変数SSLKEYLOGFILEを削除する方法
は、先ほどの環境変数を設定する手順に従って
［環境変数］ウインドウ（図12）を表示します。
変数項目にあるSSLKEYLOGFILEを選択し
たら中央にある［ユーザー環境変数］の［削除］ボ
タン（図12の②）をクリックすれば削除されま

す。あとは［環境変数］ウインドウの［OK］ボタ
ンをクリックしてウインドウを閉じてください。
sslkeylogfile.txtが削除できない場合はGoogle
ChromeやMozilla Firefoxが使用中ですので、
環境変数SSLKEYLOGFILEを削除したあと
にWindowsを再起動すれば削除できるように
なります。

　最近はWebサーバに侵入されたり脆弱性を
悪用されたりしてサーバ秘密鍵が漏えいしても、
SSL/TLSの暗号化通信を復号できないような
特性注2を持ったCipherSuiteを使おうという考
えが広まっており、鍵交換方式にRSAではな
くDHEやECDHEを使用するCipherSuiteを
優先するWebブラウザが増えています。実際、
DHEやECDHEを使用するCipherSuiteが
SSL/TLSで使われるとサーバ秘密鍵では暗号
化通信を復号できないのですが、このような場
合でも（Pre）-Master-Secretを使えば暗号化
通信を復号できます。

　Wiresharkを使ってSSL/TLSの暗号化通信
を復号する方法について説明しましたが、今回
紹介した機能のほかにもSSLストリームの追
跡（Follow SSL Stream）といった便利な機能
があるので、興味のある方は試してください。
　それと、今年の11月末にWiresharkなどを
使ったパケット解析の手法をハンズオンで教え
る「ネットワークパケット解析コース」の開催
を予定しています。開催が決まりましたら筆者
のブログでお知らせしますので、ぜひこの機会
にご参加ください。
　本稿の内容が少しでもみなさんのお役に立て
ば幸いです。ﾟ

注2） Perfect Forward Secrecyや、略してPFSと呼んだりします。

サーバ秘密鍵では
復号できない場合も

おわりに

112 - Software Design

　“ソースコードによるコミュニケーション”の
仕方によって、開発の効率は大きく変わります。
これは、仕様の認識の違いに気づけず最後の段
階で実装しなおしになったり、リリース後にト
ラブルを起こしたりすることのないよう、安全
に開発を進めるためにも大切な観点です。
　今回はバージョン管理のしくみをベースとし
て、効率よく安全な開発のフローのために必要
な考え方を紹介します。

バージョン管理の必要性

　バージョン管理とは、ソースコードの履歴を
管理するしくみのことです。履歴を管理するこ
とによって、ソースコードを過去の一時点に戻
したり、変更の過程を追従したり、複数人が同
じソースコードを編集しても最終的に矛盾なく
統合（マージ）させることができます。昔は、ソー
スコードをファイルサーバなどで共有したり、
ファイル名にバージョン番号を付けて複数のファ
イルをやりとりしていることもありました。今
では、バージョン管理をしないと怖くて開発が
できないという人も多いでしょう。
　ソースコードは要求に合わせて頻繁に変更が
行われ、その1行1行がアプリケーションの価
値を決めます。バージョン管理の履歴には、誰
がいつどのファイルのどの行に変更を行ったの

かという詳細な情報が含まれています。このた
めチーム開発でソースコードをやりとりする方
法として、バージョン管理は必須のものとなっ
ています。さらにバージョン管理のしくみの上
にテスト自動化などのしくみが作られるため、
DevOpsのすべてはバージョン管理から始まる
とも言われています。
　バージョン管理のためのツールには、Git、
Subversion、Mercurialな ど が あ り ま す。
GitHubでオープンソースコミュニティの多くが
ソースコードを管理している影響で、Web開発
やスマートフォンアプリ開発の世界では、Git
はすでにバージョン管理ツールのデファクトス
タンダードになっているといえます。以降では、
Gitを利用している前提で話を進めていきます。

すべてを再現可能にする

　チーム開発でバージョン管理を行う場合、「で
きる限りアプリケーションのすべてを再現可能
にする」という方針が重要です。
　「すべて」というのは、開発するアプリケーショ
ンのソースコードだけでなく、データベースの
構造に変更を加えたSQL文、定期実行するバッ
チ処理のためのスクリプト、APIのドキュメン
トなども含まれます。これらもアプリケーショ
ンを構成する要素ですので、基本的に履歴をす

　「現場でDevOpsを実現させるには、まずアプリエンジニアがインフラを知る必要がある」とい
う前提に立ち、アプリの視点からインフラを広く学んでいく本連載。第5回のテーマはバージョン
管理。履歴管理に留まらない、コミュニケーションツールとしてのバージョン管理ツールに注目し
ましょう。

 Author 出川 幾夫（でがわ いくお）　レバレジーズ株式会社　teratail開発チーム　 Twitter @ikuwow

第　　回5 バージョン管理入門

112 - Software Design Nov. 2016 - 113

べて管理すべきものと考えます。
　「再現可能」というのは、ソースコードを開発
マシンにダウンロード（git clone）したあと、
ほんの少しの作業でアプリケーションの動作が
確認できることを言います。
　この方針は、誰かの頭の中にしかない情報を
なるべく少なくしていくことにつながります。
バージョン管理することによって情報が属人化
せず、誰もがその情報にアクセスできるように
なります。また、細かな変更やその時期や判断
内容も漏らさず記録できます。そうしないと担
当者がチームを離れた場合に、「この手順は誰
がいつどういう理由で決めたのか」を知る方法
がなくなってしまいます。
　とくにデプロイの手順や、アプリケーション
のセットアップに必要な作業、細かな処理を書
いたスクリプトを意識的にバージョン管理する
ようにしましょう。話を聞いたり文字を読んだ
りせずに、「動かせば所望の状態になる」という
のは、チーム開発におけるコミュニケーション
の最高の状態です。たとえば動作環境の構築を
1つのスクリプトにまとめれば、「開発環境で
は動いたけど本番に上げたら動かなくなった」
ということが起きづらくなりますし、開発者の
環境構築の手間を省けます。
　Webアプリケーションの場合、ChefやAnsible
などでサーバなどの構成管理をしておくことも
重要です。これらのツールはインフラをコード
として扱うことができるため、ソースコードと
同様に人にレビューしてもらったり、履歴を記
録したりといった動作ができるようになります。
また簡単に同じ環境を構築でき、開発の効率も
上がります。

バージョン管理で
気を付けること

　外部のライブラリを利用する場合は注意が必
要です。ライブラリは、ソースコードをそのまま
コピーしてリポジトリに入れ込むのではなく、必
ずGitのsubmodule機能やパッケージ管理ツール
を用いて、「どのライブラリに依存するかの情報」
だけをバージョン管理するようにしましょう。パッ
ケージ管理ツールの例としてRubyではbundler、
PHPではComposer、Node.jsではnpmなどが挙
げられます。リスト1のように「ライブラリのバー
ジョンを変えただけの情報」を保持すれば十分です。
　また例外として、バージョン管理すべきでな
い情報も一部あります。動作環境に依存する情
報（ホスト名や IPアドレス）やセキュリティ上
ネットワークに載せたくない秘密鍵やパスワー
ドは、環境変数などから取得させるような実装
にしましょう。
　アプリケーションに必要な情報をなるべくバー
ジョン管理しておくことで、すべての情報共有
や変更の追従ができるようになります。基本的
にすべての要求や仕様がコードになっているこ
とが大切です。設定方法や作業手順、スクリプ
トなどをドキュメントのような形で共有するの
も1つの手ですが、構成管理ツールなどを使っ
てテキストにすると動く手順書として、より信
頼度の高い情報になります。

コミュニケーションツール
としてのGitHub

　GitHubは、単にGitリポジトリのホスティン
グというだけでなく、開発者間のコミュニケー
ションツールとしての機能も多く備えています。

 ▼リスト1　composer.json（PHPの依存ライブラリを記述したもの）

{
 "name": "username/repositoryname",
 "require": {
 "league/oauth2-client": "^1.1"
 }
}

第 回5 バージョン管理入門

114 - Software Design

Pull RequestとIssue

　最も特徴的なのは「Pull Request」です。これ
は、自分が変更を行ったブランチのレビューと
マージを他者に依頼する機能です。「このよう
な変更はどうか」と思いついたアイデアを、そ
のまま変更としてレビュー可能な状態にしてお
くこともあります。Pull Requestそのものや、
変更行に個別にコメントを付けることもでき、
まさに“ソースコードによるコミュニケーショ
ン”を行うための機能と言えます。
　「Issue」も、コードをもとにしたコミュニケー
ションをするしくみの1つです。基本的にアプ
リケーションの問題や課題を報告する機能です
が、筆者のまわりでは、チーム開発において実
装の要件を書いたり、その内容について議論す
るといった使い方が多いです（図1）。Issueや
Pull Request同士は#1234などの形で相互に
リンクを張れます。オープンソースコミュニティ
では、この Issueでユーザの意見やバグの報告
が頻繁に行われます。

運用方針

　実際にGitHubをどう使うかは、開発チームの
性質やメンバーの好みによって決めていきます。
teratail開発チームでは、Issueには実装すること
が決まった機能や修正のTODOを書き、その仕

様に関して随時 issue内のコメントで議論をして
います。Pull Requestは、アサインされた人以
外も気づいたことをコメントするようにしていま
す。またIssueは、エンジニア以外のメンバーか
らもバグ報告などを書いてもらうことがあります。
　GitHubでのコミュニケーションはSlackな
どのチャットツールとは違って、ソースコード
の変更や特定の機能の実装に関連させて議論が
できます。これによってコードの過去の変更履
歴を追う際に「どういう過程を経てこの変更が
行われたのか」を知ることができます。GitHub
のさまざまな機能を使うことでコードレビュー
の精度や効率の向上が期待できます。
　レビューしやすいPull Requestを作ること
も大切な心がけです。なるべく小さな変更や機
能単位でPull Requestをすることが推奨され
ます。こまめに変更をマージすることで不具合
が発生した際のリスクが少なく、部分的な変更
に絞ってレビューを行えるからです。
　9月 15日のGitHub Universe注1では、Issue
やPull Requestをかんばんのように可視化で
きる「Project」機能や、Pull Requestに対して「In
Review」のような状態を付けられるなど、タス
ク管理に非常に便利な機能の発表がありました。
GitHubは今後もしばらく、ソフトウェア開発
のデファクトスタンダードとあり続けるでしょ
う。

早く安全にデプロイを
するフロー

　バージョン管理のしくみをコミュニケーショ
ンのベースとすると、これをもとに開発フロー
を組むことができます。Gitの場合は、どのよう
にブランチを切ってどういう役割を持たせ、ど
ういう流れでコードを本番にリリースするかを
決めたものが開発フローとなります。Gitを用い
た開発フローには有名なものが何種類かあります。

注1） 「A whole new GitHub Universe: announcing new
tools, forums, and features」

 URL https://github.com/blog/2256-a-whole-new-githu
b-universe-announcing-new-tools-forums-and-features

 ▼図1　筆者が所属するteratail開発チームのとある Issue

https://github.com/blog/2256-a-whole-new-github-universe-announcing-new-tools-forums-and-features

114 - Software Design Nov. 2016 - 115

Git �ow

　Git flow注2は、masterブランチのほかにdeve
lop、hotfix、releaseなどのブランチを用意し
て開発を行うフローです。
　開発者はdevelopブランチからfeatureブラン
チを切り出し、開発が終了したらまたdevelopブ
ランチにマージします。リリースを行うときは、
リリースの準備を行うためのreleaseブランチに
developブランチをマージして検証を行います。
その後masterブランチをreleaseブランチにマー
ジし、タグを付けます。masterブランチは常に
リリース可能な状態にしておくというルールを守
りつつ、複数人でも大規模な開発を可能にした
のがこのフローといえます。このフローで開発を
行うための「git-flow」というツールも存在します。

GitHub �ow

　GitHub flow注3はGit-flowのアンチテーゼと
して提唱されたフローで、ブランチはmaster
と featureの 2種類のみです。リポジトリは
forkせず、masterから切り出したブランチに
開発を行ってmasterにマージします。master
ブランチにマージされたら直ちにリリースを行
います。シンプルでわかりやすく、頻繁にリリー
スをするプロジェクトに向いています。

GitLab �ow

　またGitLab flow注4というフローもあります。
これはGitHub flowにproductionブランチを1
つ追加したような形になっていて、シンプルさ
を保ちつつリリースタイミングをコントロール
しやすいフローです。teratail開発チームでは
このGitLab flowを少しカスタマイズしたフ
ローを利用しています（図2）。

注2） 「A successful Git branching model」
 URL http://nvie.com/posts/a-successful-git-branching-

model/

注3） 「Understanding the GitHub Flow・GitHub Guides」
 URL https://guides.github.com/introduction/flow/

注4） 「GitLab Flow | GitLab」
 URL https://about.gitlab.com/2014/09/29/gitlab-flow/

　これらフローの中には、テストやデプロイの
自動化を含めることができます。Travis CIや
CircleCIなどのCIツールと連携させることで、
すべてのPull Requestがpushされるたびに指
定のテストコマンドが走り、テストが通ったと
きだけマージができる、というように変更の信
頼性をある程度担保できます。
　Webアプリケーションでは、Pull Requestを
マージした瞬間から本番環境へのデプロイが全
自動で行われるようなしくみが理想です。これに
より、作ったものを素早くユーザに届けられます。
　テストやデプロイが自動化されると、信頼性
の高いリリースが頻繁に行えるようになり、イ
ンフラの知識がないデザイナーやディレクター
もリリースを行えるようになるなど、非常に柔
軟な開発が可能になります。

◆　◆　◆
　今回はバージョン管理のしくみをベースにし
た開発の流れにおける考え方を紹介しました。
バージョン管理はDevOpsに関わるすべての土
台です。単なる履歴の管理以上に、コミュニケー
ション方法の1つとして非常に重要です。また
開発のフローはこれがベストというものはなく、
アプリケーションの性質やチームメンバーの好
みで大きく変わってきます。たまには普段の開
発から一歩引いた視点でそのフローを見直して
みて、最も開発のパフォーマンスが上がる方法
を模索してみましょう。｢

 ▼図2　teratail開発チームのGitLab flow（https://
　　 teratail.com/blog/article/ba2）

第 回5 バージョン管理入門

http://nvie.com/posts/a-successful-git-branching-model/
https://guides.github.com/introduction/flow/
https://about.gitlab.com/2014/09/29/gitlab-flow/
https://teratail.com/blog/article/ba2

116 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

　これまでの連載では、デフォルトの「NAT接
続／単独仮想マシン／仮想マシン着信」、仮想
マシンマネージャー処理により、仮想マシンの
仮想環境導入から仮想マシン／ゲストシステム
の構築設定・利用・運用管理まで、管理者、そ
して利用者として作業を行いました。
　今回は、本連載前半「まずは単一システムで
仮想マシンを使ってみよう」というテーマの締
めくくりとして、今までに構築し利用してみた
デフォルト最低限の仮想環境の運用管理全般に
ついて、仮想マシンを中心に問題点を見てみま
す。着信接続、固定 IPアドレス、かなり遅い
Windows仮想マシンのディスクI/O、そのほか
個々の仮想マシンの詳細設定などです。

仮想マシン宛の接続

　これまでの連載では仮想マシンからの発信接
続で、仮想マシン宛の接続はしていません。し
かし、仮想マシンからの発信接続だけでは仮想
マシンがクライアントとして利用することはで
きても、仮想マシンがネットワークサーバとな
るような使い方はできません。
　仮想マシンをネットワーク・サーバとして使
うためにはどうしても、仮想マシンへの着信接
続を可能にするような設定が必要になります。
　物理ネットワーク側から仮想ネットワーク側
へパケット転送するために、第1に物理ホストで、

ファイアウォール通過（転送）許可をすること、
第2に物理ホストをそのゲートウェイとして物
理ネットワーク側で認識させること、の2つです。

ファイアウォールの転送許可設定

　KVM物理ホストのファイアウォール iptables
に、次のような「仮想マシンのIPアドレス宛パ
ケットを通過させる設定」をすると仮想マシン
宛の接続が可能になります。

ゲートウェイ認識設定

　これには2つの方法があります。
　1つは、物理LAN側のどんなシステムからも、
仮想マシン宛パケットはKVM物理ホストへ渡
す設定です。これは、物理ホストLAN側のメ
インのルータで「LAN側の静的ルーティング」
設定で仮想ネットワーク「192.168.122.0/24」の
ゲートウェイを192.168.0.111（KVM物理ホス
トのIPアドレス＝KVMルータ）にします。
　もう1つは、仮想マシンにアクセスする物理
LAN側のシステム個々のネットワーク設定の
デフォルト、または追加のゲートウェイに
192.168.0.111を設定します（「メトリック」を2）。
設定は［ローカルエリア接続］→［全般］→［イン
ターネットプロトコル（TCP/IPv4)］→「全般」の

仮想化の知識、再点検しませんか？

使って考える
仮想化技術

第6回 仮想マシンの管理

本連載は「仮想化を使う中で問題の解決を行いつつ、残される課題を整理す
る」ことをテーマに、小さな仮想化環境の構築・運用からはじめてそのしくみ
を学び、現実的なネットワーク環境への実践、そして問題点・課題を考えます。
仮想化環境を扱うエンジニアに必要な知識を身につけてください。

笠野 英松（Mat Kasano）
有限会社 ネットワーク・メンター

Author

URL http://www.network-
mentor.com/indexj.html

iptables -I FORWARD -d 192.168.122.0/24 ｭ
-j ACCEPT

http://www.network-mentor.com/indexj.html

Nov. 2016 - 117116 - Software Design

仮想マシンの管理
第6回

デフォルトゲートウェイ、または［詳細設定］→
［デフォルトゲートウェイ］に追加します。

Windows 7ファイル共有

　Windows 7ファイル共有可能設定は一般の物
理PCと同様です（ファイルウォール：［受信の
規則］→［該当プロファイル（ドメイン／プライ
ベート／パブリック）］→［ファイルとプリンター
の共有（NBセッション受信／SMB受信／エコー
要求-ICMPv4受信）］→［スコープ］→［リモート
IPアドレス］に「192.168.0.0/24」を追加）。
　また、［ネットワークと共有センター］→［共有］
の詳細設定をします。

仮想マシンでの
固定 IPアドレスの利用設定

　自動IPアドレス取得から固定IPアドレスへ
変更する場合は、次の設定変更を行い再起動し
ます。

・Windows 7：［ローカルエリア接続］→［イン
ターネットプロトコルバージョン4（TCP/
IPv4）］→［全般］で、IPアドレスとDNSアド
レスを設定

・FreeBSD 10.3：Ifconfig_em0="DHCP"
（em0 は NIC ID）→ ifconfig_em0="inet IP
アドレス netmask 255.255.255.0"

　この連載ではさまざまな環境やトラブルシュー
ティングなどを考え、次回からの後半連載では
固定IPアドレスで進めます。

Windows
準仮想化デバイスドライバ

　WindowsではKVM仮想マシンデバイスドラ
イバのうち、とくにディスクのI/O速度が物理
システムに比べてかなり遅いので、実環境では
速くしたくなります。準仮想化（virtio）ドライ
バを使うと、スループットを実システムのよう
に上げることができます。
　Windowsのデフォルトでは、IDEデバイスド

ライバ（Windowsのデバイスマネージャでは
「QEMU HARDDISK ATA Device」と表示）が
使用されますが、virtioドライバとして、Virtio
BlockドライバとVirtio SCSIドライバの2つ
が使用可能です。
　Virtio SCSIドライバは、SCSIチャネルに
直接接続し、Virtio Blockドライバ（28デバイ
スしか処理できず、PCIスロットを使い果たす）
よりスケーラビリティ（数百デバイスを処理可能）
が格段に上がっています。
　virtioドライバのインストール手順は記事末
の囲み記事を参照してください。なお、現在
Windows 7のvirtioディスクはWindows 10へ
更新インストール後使用できません。新規イン
ストール後のvirtioドライバ追加は可能です。

さまざまな
仮想マシンサポート

CD/DVD-ROMの利用

　仮想マシンでのCD/DVDは、仮想マシンの
詳細プロパティでIDE CD-ROMの「メディアを
選択」でCD/DVDを指定しておいて使用します。
もし、仮想マシンで認識しないときはプロパティ
（仮想マシン／詳細）のCD-ROMタブの仮想ディ
スクの欄の右端の「接続」をクリックします。

仮想環境の運用管理制御

　仮想マシン環境に関する仮想マシン接続の詳
細設定、仮想マシンとの間の全般的な仮想マシ
ンの全般環境設定、そして仮想マシン個々の詳
細設定の3種類です。

仮想マシン接続環境設定

　仮想マシンマネージャーの［編集］→［接続の
詳 細］か ら 設 定 す る「localhost Connection
Details」です。仮想ネットワークやストレージ、
NICの作成・変更を行います（図1）。
　NICの設定では、仮想ネットワークでの

118 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

DHCP／固定 IPアドレス利用やブリッジ／
VLAN／チャネルボンディングなどの選択設定
が可能です（詳細は連載後半）。

仮想マシン全般環境設定

　仮想マシンマネージャーの［編集］→［設定］か
ら設定します。仮想マシンとの間の一般的な設
定や統計などです（図2。詳細は連載後半）。

仮想マシン個々の詳細設定の概要

　個々の「物理的」設定は、仮想マシンメニュー
［表示］→［詳細］（図3）の左ペインで行います。

ACPI／APIC／時刻設定
　「Overview→マシンの設定」でAdvanced Con
figuration and Power Interface（電源制御）や
Advanced Programmable Interrupt Controller

（プログラム割り込み制御）の有効／無効設定、
そして、時刻（ローカルとUTC：Coordinated
Universal Time協定世界時）選択が可能です（図
4）。

プロセッサ
　「Processor」で仮想マシンに割り当てる論理
ホストCPUの設定などを行います（図5）。

メモリ割り当て
　「Memory」で仮想マシンに割り当てるメモリ

 ▼図1　仮想マシン接続の詳細設定

 ▼図2　仮想マシンの全般環境設定

 ▼図4　ACPI／APIC／時刻設定

 ▼図5　プロセッサ設定

 ▼図3　仮想マシン個々の物理的な設定開始画面

Nov. 2016 - 119118 - Software Design

仮想マシンの管理
第6回

仮想NIC設定
　「NIC」で仮想環境のNICデバイスを選択し
ます。あらかじめ仮想マシン接続環境設定
（「localhost Connection Details」）で設定してお
く必要があります（図10）。

ディスプレイVNC設定
　仮想マシンマネージャーからハイパーバイザ
へのビュアーとして仮想マシンのコンソールを
開きますが、VNC（tigervnc）を使用するとVNC
ビュアー仮想マシンを開くことができます（図
11）。つまりこれを使うと、リモートから直接
仮想マシンコンソールを開くことが可能になり、
運用管理の幅を広げることが可能になります（ハ
イパーバイザビュアーとVNCビュアーは排他
使用）。この詳細は次回以降の連載後半で解説
します。

サイズを設定します（図6）。

起動設定
　「Boot Options」で（物理ホスト起動時の）仮想
マシンの自動起動や起動デバイス順序の設定を
行います（図7）。

IDEディスク
　「IDE Disk 1」でハードディスクの読み込み専
用や共有、およびディスクバス（IDEまたは
Virtio）などの設定を行います（図8）。

IDE CD-ROM
　「IDE CDROM 1」で「仮想ディスク」の［接続］
から「メディアを選択」でデバイスやISOイメー
ジのパスを設定します（図9）。

 ▼図7　起動設定

 ▼図8　IDEディスク設定

 ▼図6　メモリ割り当て設定 ▼図9　CD-ROM設定

 ▼図10　仮想NIC設定

 ▼図11　ディスプレイVNC設定

120 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

※virtioドライバ isoファイル名：virtio-win-0.1.102.iso
（2016年9月12日現在）

Windows準仮想化（virtio）ドライバの
インストール手順

【手順1】次のどちらかの方法でvirtioドライバをダウ
ンロードし、KVMホストの適当な場所に格納する。
（1-1）ホストの適当な場所に直接ダウンロード。
https://fedorapeople.org/groups/virt/virtio-win/
direct-downloads/stable-virtio/virtio-win.iso
（1-2）repoをwgetした後に、yumインストールを行う。

【手順2】仮想マシン環境設定注1でストレージ（Storage）
に virtioデバイス（Virtio Disk）、または virtio-SCSI
デバイス（Virtio SCSI disk）を追加する（図A）。

【手順3】仮想マシン（Windows 7）起動後、仮想マシン
設定でvirtioドライバ isoファイルを接続する（IDE
CDROM1→仮想ディスク→［接続］→メディアを選択。
図B）。

【手順4】仮想マシンWindows 7のデスクトップ上に
CD-ROMマウントメッ
セージが表示される（図
C）ので、virtioドライバ
をインストールする。

注1） 仮想マシン個々の詳細設定：仮想マシン表示時、［表示］→［詳
細］から「ハードウェアを追加」。

仮想マシンの管理者と
利用者

　集中管理やコスト削減を目的とした仮想化の
考え方にしたがえば、また、仮想マシンのOS
やアプリケーションを含めたシステムについて
利用者組織／部署が「もっとも詳しい」ことを考
えたならば、個々の仮想マシンのすべての運用
管理については利用者組織／部署（の技術者）が
担当することが技術的には合理的に思えます。
　小組織／部署、小仮想ネットワークであれば
なおさらですが、大規模仮想ネットワークでも、
その運用管理をサポートできるだけの管理者を
置くことも現実的には難しくなります。とくに、
仮想マシンのプラットホームのOSやインフラ
が多種多彩になると、それだけの技能を1人で
持つ管理者を集めることはさらに難しくなりま
す。つまり、それらに詳しい利用者組織／部門
（や技術者）に運用管理まで任せることが管理コ
スト的にも合理的です。
　こうした「利用者組織／部門」自身による仮想
マシンの運用管理については、次回以降の本連
載後半の中で詳しく議論していくことにします。

次回予告

　次回からは仮想ネットワークを現実的な使い
方で考える、連載後半「仮想ネットワーク環境
で使ってみよう」を始めます。次回テーマは「ホ
ストシステムと仮想環境の構築」です。ﾟ

連載各回では、読者皆さんからの簡単な「ひとく
ち質問（QA）コーナー」や「何かこんなこともしてほ
しい要望（トライリクエスト）コーナー」を設けて「双
方向連載」にできればと思っていますので、質問
や要望をお寄せください。

宛先：sd@gihyo.co.jp
件名に、［仮想化連載］とつけてください

 ▼図B　

 ▼図C

 ▼図A　

①# wget https://fedorapeople.org/groups/ｭ
virt/virtio-win/virtio-win.repo -O /etc/ｭ
yum.repos.d/virtio-win.repo
②# yum install virtio-win

mailto:sd@gihyo.co.jp
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso

Nov. 2016 - 121120 - Software Design

仮想マシンの管理
第6回

（4-1）［コントロールパネル］→［システム］→［デバイス
マネージャー］を開くと、「ほかのデバイス」に黄色！三
角の「SCSIコントローラー」が表示されている（図D）。

（4-2）このSCSIコントローラを右クリックして「ドラ
イバーソフトウェアの更新」をクリック。
（4-3）「ドライバーソフトウェアの更新－SCSIコント
ローラー」画面の「どのような方法でドライバーソフト
ウェアを検索しますか？」で下段の「コンピューターを
参照してドライバーソフトウェアを検索します（R）ド
ライバーソフトウェアを手動で検索してインストール
します。」を選択クリック（図E）。

（4-4）「コンピューター上のドライバーソフトウェアを
参照します。」画面で「次の場所でドライバーソフトウェ
アを検索します」の枠内に、virtioドライバの種類に応
じて次のパスを設定（図F）。

・Virtio Block driver＝Q:¥VIOSTOR¥W7

・Virtio SCSI driver＝Q:¥VIOSCSI¥W7

（4-5）「次へ」をクリックするとインストールが開始され、
正常に完了すると「ドライバーソフトウェアが正常に更
新されました。」というメッセージが表示される（図G）。

（4-6）「閉じる」でデ
バイスマネージャー
の「ディスクドライ
ブ」と「記憶域コン
トローラー」に図H
のような表示注2が
現れる。ここでは、
Virtioブロックドラ
イバディスクと
Virtio SCSIドライ
バディスクの2つを
インストール完了
している。
（4-7）［管理ツール］
→［コンピュータの
管理］→［ディスクの
管理］画面で「ディス
クの初期化」メッ
セージ（図I）が表示
されるので、そのま
ま「OK」で初期化し
た後、通常のフォー
マットを行って使用
可能になる（図J）。

注2） ●ディスクドライブ：QEMU HARDDISK ATA Device＝
KVMデフォルト IDEディスク／QEMU QEMU HARDDISK
SCSI Disk Device＝KVM Virtioブロックドライバディス
ク／Red Hat VirtIO SCSI Disk Device＝Virtio SCSIドラ
イバディスク

 ●記憶域コントローラー：Red Hat VirtIO SCSI controller
＝Virtio SCSIコントローラ

 ▼図E

 ▼図D　

 ▼図F　

 ▼図H　

 ▼図 I　

 ▼図J　

 ▼図G　

122 - Software Design

　大阪を中心に20年間システム開発に携わった
あと、現在は東京で仕事をしている「SQLの伝
道師」ことジーワンシステムの生島です。このと
ころ、取引先の浪速システムズが開発している
お料理レシピ投稿サイトに技術アドバイザーと
してかかわっています。
　「おかげさまでこのところ順調に進んでます
わ」と言ってくれたのは浪速システムズプロジェ

APIファースト・メソッド
のしくみとメリット

クトリーダーの五代さん。
　「生島さんが提案してくれたAPIファースト・
メソッドのおかげで、開発効率も非常にいいで
すわ」
　「それも大道君の飲み込みの早さあってこそで
すし、五代さんがこの方針で行こう！　とOK
出してくれたからですよ」
　APIファースト・メソッドというのはこのプ
ロジェクトで採用した方法で、この連載では第
6回注1で触れています。要点は図1のような方法
で、データベース（以下、DB）からアプリケー

ション（以下、アプリま
たはAP）側に提供する
APIをストアドプロシー
ジャで定義してやり、ア
プリからのDBアクセス
は必ずそのAPIを通し
て行うようにします。そ
れによって、メリット
❶～❻のような効果が
得られます。
　「しかもこれ、別に勉

注1） 本誌2016年8月号。

生島氏
DBコンサルタント。性
能トラブルの応援のた
め大道君の会社に来た。

大道君
浪速システムズの新米
エンジニア。素直さと
ヤル気が取り柄。

五代氏
大道君の上司。プロ
ジェクトリーダーで
もある。

登
場
人
物

紹
介

 原案 生島 勘富（いくしま さだよし） info@g1sys.co.jp ㈱ジーワンシステム
 構成・文 開米 瑞浩（かいまい みずひろ）　 イラスト フクモトミホ

アプリからDBを扱うためのAPIをストアドプロシージャで定義する方法「APIファースト・メソッド」（本連載第6
回で紹介）。これを使えば、アプリとDBの担当者をうまく分担できます。同様のことを実現する方法として「O/R
マッパ」もあります。今回はこの両者の違いを見つつ、Webアプリ開発の組織体形について考えます。

APIファースト・メソッドが可能にする「DB分離」の組織体制第9回

① アプリはAPIを通して
 DBへアクセスする
 生のSQLは発行しない

② APIはストアドプロシー
 ジャでDB側に用意する
③ データは当初ダミーで
 用意し、ある程度仕様が
 確定してからテーブル
 設計をして差し替える

しくみ

❶ アプリ側プログラマは
 SQLの知識不要
❷ アプリ側ソースの可読性向上

❸ アプリ側のニーズが
 明確になるため、
 チューニングがしやすい
❹ テーブル設計を後まわし
 にできるため、手戻りが少ない
❺ SQLインジェクション対策
 としても有効
❻ 「ぐるぐる系」SQLは
 ほぼ消滅する

メリット

RDB

table

アプリに
提供するAPI

（ストアドプロシージャ）

アプリケーション

 ▼図1　APIファースト・メソッドによる開発のしくみ

122 - Software Design Nov. 2016 - 123

強に時間がかかる複雑なツールを使うわけでも
なく、Excelでストアドプロシージャのスタブ
を自動生成するだけじゃないですか。こんなや
り方があったんだ、ってまるで目から鱗

うろこ

な感じ
ですけど、どうしてこういう方法を考えついた
んですか？」
　「原点として持っていた問題意識は、DBをき
ちんとわかって使っているシステムエンジニア
（SE）、プログラマがあまりにも少ない、という
ことですね」
　「そこはこの半年で本当に痛感しています
……」と大道君。彼はこのところ既存システムの
トラブルシューティングにもよく駆り出されて
いて、そのたびにあまりにも下手なSQLを見つ
けては唖

あぜん

然としているそうです。ベテランのSE
でも意外にRDBとSQLのことは理解していな
いというのが現実で、それは私自身がこの20年
もどかしく感じていることです。
　「でも、どうしてそんなことになっちゃってる
んでしょう？」と再び大道君。まだ IT業界3年
目と、若いからこそ抱く素朴な疑問だと思いま
す。五代さんと私は思わず目を見合わせて苦笑
いしました。その答えは、業界経験の長い私た
ちには共通の認識がありました。

　簡単にまとめると図2のようになります。
　日本の IT業界では、プロ
グラムを書くことを価値の高
い仕事と見なさず、プログラ
マは交換可能な部品であるほ
うが望ましい、と考えるマネ
ジメントが蔓

まんえん

延していまし
た。「交換可能な部品」と思っ
ているからこそ、「1人1月い
くら」の人月商売、技術者派
遣ビジネスが成立していたわ
けです。最近はあまり聞かな
くなりましたが、昔は「プロ

プログラマは交換可能な
部品扱いだった

グラマ35歳定年説」などとも言われていました。
「いつまでもプログラマなんぞやってんじゃねえ
よ」と蔑

さげす

むようなマネジャーの下で、素直な若者
が技術習得に情熱を燃やすはずもありません。
　一方、ただでさえ技術習得が重視されないの
にプログラミング作業の中でSQLを扱う比率は
どうしても圧倒的に低く、その分勉強にあまり
時間をかけられず、しかも手続き型言語と同じ
発想では習得しにくいため理解が進まず、結果
として「RDBはトランザクション制御が効くス
トレージのようなもの」程度の認識にとどまる技
術者が多かったのです。もちろん、トランザク
ション制御は一般にACID特性とも呼ばれる「一
貫性を保ったデータの更新を保証する」非常に重
要なしくみです。しかしこの連載でこれまで書

APIファースト・メソッドが可能にする
「DB分離」の組織体制第9回

組織的
理由

プログラムを書くのは価値
の高い仕事であるとは思わ
れていなかった

プログラマは交換可能な
部品のほうが望ましかった

技術的
理由

プログラミング作業の中で
SQLを扱う比率はどうしても
圧倒的に低かった

SQLは手続き型言語と発想
が違うため習得しにくかった

RDBはトランザクション制御
が効くストレージのような
もの、程度の認識だった

その結果……

SQLのわかる技術者が
なかなか育たない

複雑なSQLを書かれると困る

「ぐるぐる系」の横行

 ▼図2　ベテランエンジニアでも意外にSQLをよく知らないのはなぜ？

124 - Software Design

いてきたように、RDBへの問い合わせ言語とし
てのSQLの価値の真骨頂は、データを集合的に
扱うことを可能にし、複雑なデータ処理を劇的
に簡単にできることにあります。そしてこれこ
そが手続き型言語と違う発想を必要とする部分
のため、なかなか理解されていません。
　以上のような組織的理由と技術的理由が重なっ
てSQLのわかる技術者がなかなか育たず、たま
にいても「複雑なSQLを書かれるとほかの人が
読めないから困る」と規制されてしまうためます
ます技術向上の機会を失い、その結果「ぐるぐる
系」と呼ばれるような下手なSQLが横行してし
まうわけです。
　「というわけや。わかった？」
と五代さんに聞かされた大道君ですが、衝撃の
あまり感想の言葉も出てこない様子。
　「う、嘘でしょ……と思いたいです」
　「まあ日本の IT業界の黒歴史やな、これは。
もちろんウチらがこれの真似をする理由はない
んで、大道君は本物のプロフェッショナルになっ
てや」
　「もちろんそのつもりですよ！　でも……その
組織的理由と技術的理由を解決することはでき
るんでしょうか？」
　「ああ、そのための策の1つが、今やってる
APIファースト・メソッドなんよ」

　組織的理由については経営者層の考え方の問

DB担当とAP担当は
分けたほうがいい

題であり、経営者に考えを変えてもらうしかあ
りません。それができない経営者のいる会社は
潰
つぶ

れる、というかなり荒っぽい形で変わってい
くことでしょう。
　「ウチは変わりまっせ～、潰さへんで～」と五
代さん。はい、そのために私も協力してますか
ら。
　一方の技術的理由については、エンジニア側
の動き方しだいで解決できます。そのために重
要なのが、「DB担当とUI担当を分ける」という
ことです。
　「ああ、そうか！　APIファーストだとそれが
できるんですね？」と大道君。そのとおり！
　もう一度図1を見てみましょう。アプリから
はAPIを通してDBへアクセスします。生の
SQLは発行しません。そのため、「AP側プログ
ラマにはSQLの知識は不要」です。その分、ス
トアドプロシージャを作るDB担当のほうにそ
の仕事を分担させます。
　「でも、DB担当ができる人なんてそう多くな
いですよね？」
　「そこで、DB担当は複数のプロジェクトを受
け持つ体制を組むわけ。どうしてもコードの量
はAP側のほうが多いし、ユーザとの仕様調整
に伴う細かい修正も多く発生するから、AP担
当は1プロジェクト専任にする。DB側はストア
ドプロシージャを書く必要があるとは言っても
APに比べるとプログラミング負担は少ないか
ら、DB担当のほうは複数のプロジェクトのDB
側をまとめて受け持つ。こうすることで、DB
担当はDBに集中でき、短時間でSQLスキルを
向上させられるわけだ」（図3）
　「あ、なんだ、それってまさに今やってること
じゃないですか！」
と大道君。そうなんです。実はお料理レシピ投
稿サイトはまさにこんな体制で開発しています。
誌面の都合上登場していませんが、画面の細か
いところを作るAP担当プログラマが別にいて、
大道君がDB担当、ただしまだ心許ないので私
が技術アドバイザーについている、という体制

AP担当とDB担当を分離することによって、AP担当には
DBスキルが不要になり、DB担当はDBスキルを習得し
やすくなる

AP担当

DB担当

プロジェクト
A

AP担当

プロジェクト
B

AP担当

プロジェクト
C

 ▼図3　「APIファースト・メソッド」を可能にする組織体制

124 - Software Design Nov. 2016 - 125

です。このしくみならDB関係の性能問題は大
幅に予防できます。しかもAPのコードが単純
化して開発工数が減りますし、DBスキルがい
らなくなるので、新人エンジニアはまずAP担
当にアサインして現場経験を積んでもらうこと
が可能。
　「いいことづくめに思えますけど、でもそれ
じゃなぜそういう体制の現場が少ないんでしょ
うか？」
　「技術リーダークラスがSQLというものの価
値をわかっていないと、こういう発想にはなら
ないんだよね。DBなんてちょっと賢いファイ
ルシステムでしょ、程度に思っていたら、デー
タをファイルに書き出す部分だけ独立して担当
させよう、なんて考えないでしょ？」
　「もうひとつ、下請け型のSIビジネスの構造
だとこれはやりにくかったんですわ。求人が『DB
のプロ求む』じゃなくて、『APもDBもそこそこ
書ける奴をとにかく頭数そろえて出してくれ』と
いうような注文がくるんで、AP担当とDB担当
を分けづらい……」と五代さん。
　一言で言えば、IT業界に求められていたのは
人足、いわゆる IT土方であって、プロフェッ
ショナルではなかった……という悲しい実態で
す。とはいえ、それは過去の話。現代もそのま
までは通用しません。

　しかし、SQLをきちんと使おうとすると、
「SQLのわかる技術者がなかなか育たない」とい
う問題に加えてもうひとつ、「アプリ側のプログ
ラム言語ではSQLを操作しづらい」という、一
般にはインピーダンス・ミスマッチと言われる
問題もあります。この両者を解決できるのでは
ないか、と期待され非常に広く普及したのが、
思いっきり単純にいうと「AP用言語によるDB
アクセス操作ライブラリ」といった性格を持つ
O/Rマッパです。簡単なイメージを描くと図4

で、APとRDBのインピーダンス・ミスマッチ
を、APIファースト・メソッドではDB側にAPI
を用意して吸収し、O/RマッパではAP側のO/
Rマッパライブラリ（SQL文生成機能を持つ）で
吸収するわけです。
　しかし、O/Rマッパでは本質的な問題は解決
しません。というのは、O/Rマッパはあくまで
も「SQL文生成機能」であり、プログラミング中
にSQLを意識しなければいけない場面が残るか
らです。
　例として、PHP用のO/Rマッパ、Doctrine
を使ったDBアクセスコード例（リスト1）をご覧
ください。これはECサイトの管理画面で当日、
前日、今月の売上と受注件数を集計表示するた
めのコードの概要部分です。
　第1のポイントは、getOrdersByDay()関数

O/Rマッパでは問題は
解消しない？

APIファースト・メソッドが可能にする
「DB分離」の組織体制第9回

RDB

table

API

RDB

table

AP AP

APIファースト・
メソッド

O/Rマッパ

O/R
マッパ

 ▼図4　APIファースト・メソッドとO/Rマッパ

126 - Software Design

の中でSUM(…) as totalやandWhere(…)の
ように部分部分でSQL文の断片が残ることで
す。つまり、結局のところ生成されるSQL文を
AP側プログラマがイメージしながら使わなけ
ればなりません。さらに第2のポイントは、当
日、前日、今月とそれぞれ期間を変えて3回

getOrdersByDay()関数を呼んでいることで
す。プログラムの部品化を重んじる手続き型言
語であれば当然の発想ではありますが、これで
は同じ受注テーブルを3回スキャンすることに
なるため性能的には悪影響を及ぼします。
　SQLの考え方であればこれは一度で処理すべ

// 当日、前日、今月の売上/件数をそれぞれ取得
$salesToday = $this->getOrdersByDay(当日, 当日);
$salesYesterday = $this->getOrdersByDay(前日, 前日);
$salesThisMonth = $this->getOrdersByDay(月初, 月末);

// DB操作関数
protected function getOrdersByDay($date_start, $date_end)
{
 // ------ 前略 ------
 $repository = $this->getDoctrine()
 ->getRepository('Entity¥Orders'); // リポジトリは省略

 $qb = $repository->createQueryBuilder('o')
 ->select('SUM(o.payment_total) as total, 'COUNT(o.id) as order_count')
 ->andWhere('o.order_date >= :order_date_start')
 ->andWhere('o.order_date <= :order_date_end')
 ->setParameter(':order_date_start', $date_start)
 ->setParameter(':order_date_end', $date_end);

 // ------ 中略 ------

 $result = array();
 try {
 $result = $qd->getSingleResult();
 } catch (NoResultException $e) {
 // 結果がない場合は空の配列を返す.
 }
 return $result;
 }

 ▼リスト1　O/Rマッパ（Doctrine）を使ったときのPHPコード例

// 当日、前日、今月の売上/件数を一度で取得する
SELECT
 SUM(CASE WHEN o.order_date = :today THEN payment_total ELSE 0 END)
 AS today_amount
 , COUNT(CASE WHEN o.order_date = :today THEN o.id ELSE null END)
 AS today_count
 , SUM(CASE WHEN o.order_date = :yesterday THEN payment_total ELSE 0 END)
 AS yesterday_amount
 , COUNT(CASE WHEN o.order_date = :yesterday THEN o.id ELSE null END)
 AS yesterday_count
 , SUM(CASE WHEN o.order_date BETWEEN :month_start AND :month_end THEN payment_total ELSE 0 END)
 AS month_amount
 , COUNT(CASE WHEN o.order_date BETWEEN :month_start AND :month_end THEN o.id ELSE null END)
 AS month_count
 FROM
 Entity¥Orders o
 WHERE
 o.order_date BETWEEN :month_start AND :month_end
 OR o.order_date = :yesterday';

 ▼リスト2　SQLのコード例

126 - Software Design Nov. 2016 - 127

きであり、コードとしてはリスト2のようにな
ります。SQLの発想が身についていればとくに
難しいこともない処理ですが、このSQL文を
PHPのコードの中に埋め込むのは可読性を落と
しますし、AP側プログラマにSQLの理解を強
いるため好ましくありません。
　そこで、APIファースト・メソッドではスト
アドプロシージャの中にSQL文を隠

いんぺい

蔽します。
PHP側のコードはリスト3のようになります。
指定するパラメータは日付だけであり、SQL文
の断片はまったくありません。
　結局のところ、RDBとSQLは「集合的データ
操作に向く」ように作られたシステムであり、そ
れを徹底的に活用するならAPIファースト・メ
ソッドのほうが適しています。
　このような部分を適切なSQLに変える修正を
すると、平均500ミリ秒のレスポンスタイムシ
ステムを平均100ミリ秒にできたりします。こ
れは1ユーザの体感速度としては問題にならな
い差ですが、AWSなど従量課金のサービスを
利用して一般公開するようなシステムの場合、
レスポンスタイムが延びるとその分同時アクセ
ス数も増えるため、ランニングコストが数倍違っ

てくることもあります。
　簡単なDB操作しか使わず、性能要求もゆる
いプロジェクトならO/Rマッパで間に合うと思
いますが、そうでない場合はAPIファースト・
メソッドでDB担当も分ける組織体制での開発
をお勧めします。｢

APIファースト・メソッドが可能にする
「DB分離」の組織体制第9回

// 当日、前日、今月の売上/件数を一度で取得する
 protected function getOrdersSummary($today, $yesterday, $month_start, $month_end)
 {
 $em = $this->getDoctrine()->getEntityManager();

 $dql =
 'CALL pr_getOrdersSummary(:today, :yesterday, :month_start, :month_end)';

 $q = $em
 ->createQuery($dql)
 ->setParameter(':today', $today)
 ->setParameter(':yesterday', $yesterday)
 ->setParameter(':month_start', $month_start)
 ->setParameter(':month_end', $month_end);

 $result = array();
 try {
 $result = $q->getSingleResult();
 } catch (NoResultException $e) {
 // 結果がない場合は空の配列を返す.
 }
 return $result;
 }

 ▼リスト3　APIファースト・メソッドを使ったときのPHPコード例

128 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

はじめに

　Androidの新しいOS、Nougat（Android 7.0
API Level 24）がリリースされました。ヌガー
と読みますが、聞きなれないですよね。マシュ
マロに続きスペルミスが非常に心配です。もう
少し一般的な名前にしてもらいたいものです。
　さてAndroid N（Nougat）はすでに公式アップ
デートが開始され、筆者の手元のNexus 5Xに
も公式アップデートが届きました。また、7.0
が初期インストールされたモデルもLGから発
売されました。
　しかし10月4日にGoogleから、Android 7.1
を載せた新端末がリリースされる可能性が非常
に高いです。しかもバージョン番号は0.1しか
上がらないのに、結構変更があるとか……新し
い情報をキャッチアップしていくのもたいへん
です（残念ながら本稿を書いている段階ではわ
かりませんが、本誌が発売されるころには明ら
かになっていると思います）。
　さて1年前のOS、Android 6.0では、Runtime
Permission機能が導入されました。これによ
りAndroidのセキュリティレベルは上がりまし
たが、一方ほぼすべてのアプリに影響を及ぼす
機能追加でした。変更が必要になり忙しくなっ
た方、対応するのが大変なのでアプリケーショ
ンの公開自体をやめてしまった方、あるいは聞

かなかったことにして放置している方、さまざ
までしょうが、非常にインパクトがあった仕様
変更でした。
　安心してください。今回のAndroid 7.0のバー
ジョンアップでは、セキュリティ的には、すべ
てのアプリケーションに影響を与えるような大
きな変更は加わりませんでした。筆者の感覚と
しては、いぶし銀的な変更が多かったという印
象です。
　アプリ開発者に直接関係のないOS自体の機
能変更、よりセキュアなアプリケーションを作
るための変更など、さまざまな機能追加があり
ますが、紙幅の都合上すべてを取り上げること
はできません。今回は、通信まわりの拡張であ
るNetwork Security Configについて解説しま
す。

Network Security
Configとは

　Network Security Configとは、その名のと
おり、ネットワークのセキュリティ設定のこと
です。ネットワークのセキュリティに関する事
項を、ソースコードとは別に設定ファイルを使っ
てコントロールすることができるようになりま
した。
　AndroidManifest.xmlにリスト 1のように、
ネットワークセキュリティ設定ファイルの場所
を指定します。この記載では、network_

第11回 Android 7.0のセキュリティ

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

谷口 岳（たにぐち がく）
リスクファインダー（株）

Androidは世界で出荷される8割のスマートフォンに搭載※される、事実上
スマートフォンの標準OSです。このOS上で動くアプリケーションを開発す
ることは、自分のアイデアを世界に発信し、最も多くのスマートフォン上で
動かしてもらえる可能性がある行為です。このAndroidの最新情報と、そ
れを取り巻くコミュニティを知って、魅力的な開発をはじめませんか?

※IDC Worldwide Mobile Phone Tracker, August 7, 2013

http://www.android-group.jp/

Nov. 2016 - 129128 - Software Design

Android 7.0のセキュリティ第11回

ました。アプリケーションに脆弱性（セキュリ
ティホール）があり、パスワード、個人情報な
どが盗まれたら大変です。しかしながら、多く
のアプリには脆弱性が存在します。
　1つの例をあげますと、過去に大垣共立銀行
が提供していたスマホ通帳で、SSLサーバ証
明書の検証不備の脆弱性が発見されました（図

1）。この脆弱性は、中間者攻撃（man-in-the-

security_configがネットワークセキュリティ設
定ファイルです（ファイル名は自由に付けるこ
とができます）。
　そして、ネットワークセキュリティ設定ファ
イルに、ネットワークに関するさまざまな設定
を書いていきます。リスト2のネットワークセ
キュリティ設定ファイルでは、<certificates>
タグにアプリケーションで利用するCA（Cer
tification Authority：認証局）による電子証明
書（以降、CA証明書と書きます）のファイル名
を指定しています。CA証明書をアプリケーショ
ンに同梱し、簡単に利用できるようになったの
も新しい機能です。
　ネットワークセキュリティ設定ファイルで、
指定できることについては後述します。まず、
なぜこのような機能が追加されたのかを解説し
たいと思います。

アプリケーションの
セキュリティ問題

　現在では、アプリケーションのほとんどはイ
ンターネット通信を行います。Android OSが
安全になってきたこともあり、SNSをはじめ、
銀行、証券、さまざまなアプリでログインを行っ
たり、重要なデータを送信するようになってき

 ▼リスト1　AndroidManifest.xmlでのネットワークセキュリティ設定ファイルの指定

 ▼リスト2　ネットワークセキュリティファイルの記載例

<?xml version="1.0" encoding="utf-8"?>
 (...略...)
<app (...略...) >
 <meta-data android:name="android.security.net.config"
 android:resource="@xml/network_security_config" />
 (...略...)
</app>

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <domain-config>
 <domain includeSubdomains="true">example.com</domain>
 <trust-anchors>
 <certificates src="@raw/my_ca"/>
 </trust-anchors>
 </domain-config>
</network-security-config>

http://jvndb.jvn.jp/ja/contents/2015/JVNDB-2015-000015.html

 ▼図1　JVNDB-2015-000015「スマホ通帳における
　　 SSL サーバ証明書の検証不備の脆弱性」より

http://jvndb.jvn.jp/ja/contents/2015/JVNDB-2015-000015.html

130 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

middle attack）による暗号通信の盗聴などが行
われる可能性があります（現在は修正されてお
りますので安心してください）。
　銀行など、セキュリティに注意している会社
のアプリでもこのような脆弱性が見つかったこ
とで当時は話題になりましたが、残念ながらこ
の教訓は生かされず、同じ問題を抱えたアプリ
ケーションが現在でも山ほど存在します。
　日本では情報処理推進機構注1が、アプリケー
ションの脆弱性報告を受け付け、公表していま
す。過去どのような脆弱性が発見されたかは、
JVN iPedia注2などで見ることができます（図2）。
検索をすることで、どのようなアプリケーショ
ンで、どのような脆弱性があったのかを確認で
きます。
　JVN（Japan Vulnerability Notes）には、第三
者によって報告が行われ、開発者側が修正を行っ
た後、脆弱性の公表を許可した場合にのみ情報
が掲載されます（大垣共立銀行は公表を許可し
たわけで、脆弱性があったことは確かに落ち度
かもしれませんが、そのおかげでこのようにサ
ンプルとして誌面に載せることができ、セキュ
リティの啓蒙活動に役立っています。大変すば

注1） IPA。情報処理試験も運営している組織です。
注2） http://jvndb.jvn.jp/

らしい会社だと思います）。
　発見されていないもの、発見されても報告さ
れないもの、報告を受けてからこっそり修正し
て、公表されないものも多くあり、JVNで確
認できるものはほんの一握りです。とくに先に
あげた、SSLサーバ証明書の検証不備の脆弱
性は比較的発見しやすいこともあり、数多くの
アプリケーションが脆弱性を持っていることが
確認されています。

SSLサーバ証明書の検証不備は
なぜ起こるのか

　なぜ多くのアプリケーションがこのSSLサー
バ証明書の検証不備の問題を抱えているのでしょ
うか？ たとえば次のようなことが想定できます。
　Androidアプリの多くはサーバと通信をしま
す。ログインなどの処理や重要な情報をサーバ
とやり取りするときは暗号化通信を行わなけれ
ばなりません。そこで多くのアプリはhttpsを
使用して通信を行います。https通信を正しく
行うにはサーバ証明書が必要ですが、開発段階
では、サーバの正式な証明書は用意できないこ
とがあります。正式なサーバ名が決まり外部に
公開されるのは、開発の最後の段階だったり、
開発が終わってからだったりするためです。多
くの場合、開発段階ではテストサーバを立てて
開発を行います。テストサーバとhttps通信を
行うときはもちろんサーバ証明書が必要になり
ますが、パブリックCAにお願いしてお金を払っ
てテストサーバ用サーバ証明書を作成するといっ
たことはコストの面からたいてい行わず、自己
署名証明書（通称オレオレ証明書）を自分で作成
してサーバに配置して済ませます。
　この状態でクライアントから自己署名証明書
を持つテストサーバにアクセスすると、正式な
証明書ではないのでエラーになります。このま
までは開発が進まないので、エラーを回避する
コードを記述して「とりあえず」動かします（こ
の状態はSSLサーバ証明書の検証不備の脆弱
性がある状態です）。
　開発は進み、正式なサーバが用意されました

http://jvndb.jvn.jp/

 ▼図2　脆弱性対策情報データベース JVN iPedia

http://jvndb.jvn.jp/

Nov. 2016 - 131130 - Software Design

Android 7.0のセキュリティ第11回

ので、アクセス先のURLを開発サーバから正
式サーバに書き換えます。このとき上記の署名
のエラーを回避するコードがそのままですと、
「SSLサーバ証明書検証不備」の脆弱性を持っ
たアプリが生み出されます。
　開発者は、重要なデータを送信するのでhttp
通信ではなく、https通信を使うという正しい
セキュリティの知識がありました注3。しかしな
がら、最後の最後で元に戻すのを忘れるという
凡ミスを行ってしまいました。
　また、https通信をするネット上のサンプル
コードをそのままコピペして使用していること
も、SSLサーバ証明書検証不備が多い理由と
言われています。
　このSSLサーバ証明書の検証不備問題は、
Androidでは古くから指摘されていますが、な
かなかなくならない問題の1つです。そこで、
このような凡ミスによる脆弱性を防ぐための機
能が、今回追加されたNetwork Security Con
figに入れられました。

Network Security
Config機能

　さて、ネットワークセキュリティ設定ファイ
ルに設定できる内容を見ていきたいと思います。
ネットワークセキュリティ設定ファイルに記載
できる内容は、大きく分けて次の4種類です。
そのうち3種類はCAに関する設定項目となり
ます。

1 信頼すべきCAのコントロール機能
　通信時に、どのCAを信頼するか柔軟なコン
トロールができます。端末にインストールされ
てしまった不適切なCAを信頼してしまう問題
を防ぐこともできます。

2 ビルドモードによるCAの切り替え
　リリース時に信頼するCA、デバック時に信

注3） 昔のWeb創世記にはパスワードをhttp通信上に平文で送
るひどいシステムがたくさんありました。

頼するCAのように切り替えることができます。
これにより先に解説した、SSLサーバ証明書
検証不備によくあるケースを防ぐことが可能で
す。

3 ピンニング
　本来信頼すべきCAが偽造証明書を発行する
問題を防ぎます。

4 クリアテキスト
　暗号化したい通信が、誤って非暗号化されて
しまうミスを防ぎます。

信頼すべきCAのコントロール機能

　端末のデフォルトの設定ではなく、独自に信
頼するCAを設定する機能です。普通のアプリ
ではまず使用しない機能です。
　Androidでは、［設定］→［セキュリティ］画面
から「ストレージからのインストール」を選択す
ることで、端末にカスタムの証明機関（CA）を
インストールすることができます（図3）。
　また、「信頼できる認証情報」画面でシステム
によりインストールされている認証情報、ユー
ザがインストールした認証情報が確認できます
（図4）。

 ▶図3　
［設定］→
［セキュリティ］画面

132 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

　この機能は、アプリ開発時にテストサーバを
信頼するためにインストールしたり、セキュリ
ティエンジニアが、通信のパケットをキャプチャ
してアプリケーションが不適切に端末の情報を
抜き取っていないかを確認するために使用され
たりもします。ですがおもに、企業内部CA（大
企業でよくあります）を利用するときなどに使
われます。
　Android 7.0では仕様が変更になり、ユーザ
がインストールした証明書は使用できなくなり
ました。認証情報のインストールは下位互換の
ためできるのですが、Android 7.0以上で動作
するように設定されたアプリケーション（And
roidManifest.xmlで targetSdkVersion=24以上
に設定）ではまったく参照されなくなりました。
　信頼できる認証情報に攻撃者の認証情報がイ
ンストールされると大変危険です。パスワード
などの重要なデータを抜き取られる可能性もあ
ります。スマートフォンは子供からお年寄りま
でさまざまな人が使用します。ある悪意のある
アプリケーションをインストールしたとき、促
されるままに、攻撃者の認証情報をインストー
ルしてしまうこともありえます。今回の変更に
より、より多くの人が守られることになると思
われます。
　企業内CAを使うような場合、Android 7.0
からは、Customizing Trusted CAs機能を利用
します。CA証明書をアプリケーションの中に
含めることができ、通信時にそれを参照できま
す（リスト2参照）。既存アプリは変更が必要に
なりますが、従来はアプリケーションのインス
トールに加え、CA証明書を端末に配布（ダウ
ンロード）して手動でインストールといった運
用上の手間がありましたが、アプリケーション
のみの配布だけで良くなり運用が楽になります。
また、証明書の配布問題も解決されます。
　また、この信頼するCAのコントロールは強
力で、端末にプレインストールされているCA
を信頼しないことも可能です。かなり柔軟な指
定が可能ですので、もっと詳しく知りたい方は

Android Developer Site注4の方を参照してくだ
さい。

ビルドモードによるCAの切り替え

　SSLサーバ証明書の検証不備の原因として、
開発時のオレオレ証明書の使用問題を取り上げ
ました。開発時のサーバにアクセスするために、
証明書の検査エラーをスキップするコードはこ
の機能を利用すれば必要はありません。リスト

3のように“デバック時だけ信頼するCAの証明
書”を指定することができます。
　この証明書はリリースビルドしたときは使用
されません。開発サーバを信頼するCAの証明
書を、アプリケーションのプロジェクト内に含
める必要がありますが、リリースモードに応じ
たソースコードの変更は必要なくなります。

ピンニング

　通常、アプリケーションはプレインストール
されたすべてのCAを信頼します。CAを信用
するという前提にたってセキュリティモデルが
構築されていますが、世の中にはさまざまな国
があります。過去にCA局が偽造証明書を発行
するという事件がありました。また、戦争をし

注4） https://developer.android.com/training/articles/
security-config.html

 ◀図4　
信頼できる
認証情報

https://developer.android.com/training/articles/security-config.html

Nov. 2016 - 133132 - Software Design

Android 7.0のセキュリティ第11回

ているような状況を想定すると、相手国のCA
局は信頼できないなど理解できると思います。
このため“国内のCA局のみ信頼する”や“特定
の国のCA局のみ信頼する”など議論がされて
きましたが、インターネット文化として、この
ような制限は良くないという意見もありました。
　そこで生み出されたのがピンニングという技
術です。ピンニングを用いることで偽造証明書
を検知できますが、ピンニングについて記載し
だすと多くの説明が必要になりますので、ここ
では詳細は述べません。ピンニングはサーバ側
も含めた技術です。サーバの証明書を変更する
と（通常定期的に変更します）、クライアントも
変更する必要があるなど運用コストが上がりま
す。セキュリティ強度とコストのバランスを考
えて採用してください。また、特定のサイトの
みにアクセスするサイトでピンニングを採用す
ると決定した場合は、端末のプレインストール
CAを参照せずに、アプリケーション内に含め
たCAだけを信用する方法で解決できることも
あります。

クリアテキスト

　クリアテキストとは、そのまま直訳するとわ
かりやすいです。「平文」のことです。暗号化通

信をしなければいけないところで、
誤って平文通信をしたときに通信し
ないようにしてくれます（リスト4）。
　https通信をすべきところでhttpで
通信をしてしまう可能性などないの
では？と思われるかもしれませんが、
サーバサイドから、クライアントが
アクセスするURLを指定するような
仕様は現在多くあります注5。このとき、
サーバのプログラムミスにより平文
通信を行ってしまうかもしれません。
　この機能だけCAとは関係ありませ
んが、なかなかの機能です。念のた
め設定しておくのが良いと思います。

最後に

　いかがでしたでしょうか？　認証局とか普段
あまり意識しない部分の機能追加であるため、
あまりピンと来ない変更かもしれません。必須
の機能ではありませんし、必ず対応しなければ
いけないものでもありません。しかしながら、
ちょっとした変更で、凡ミスなどによる脆弱性
の発生を防ぐことができます。これらの機能を
活用することにより、安全安心のプログラムを
作ってもらえたらと思っております。s

注5） TwitterやSNSはほとんどそのような仕様です。

 ▼リスト3　ビルドモードによるCAの切り替え

 ▼リスト4　クリアテキストの指定

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <debug-overrides>
 <trust-anchors>
 <certificates src="@raw/debug_cas"/>
 </trust-anchors>
 </debug-overrides>
</network-security-config>

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <domain-config usesCleartextTraffic="false">
 <domain includeSubdomains="true">secure.ｭ
example.com</domain>
 </domain-config>
</network-security-config>

　国内最大級のAndroidの祭典ABCの 2016年秋
（ABC2016A）を11月19日（土）に、千葉県柏市の「柏
の葉キャンパス」で開催します。テーマは「次世代への
孵化装置 Θ Android」として、来年10年目を迎える
Androidが産み出す、モノ、コト、データを共有しま
す。ぜひご参加ください。
http://abc.android-group.jp/2016a/

Android Bazaar and Conference
2016 Autumn（ABC2016A）開催

Androidのコミュニティで
行われるイベント紹介

COLUMN

http://abc.android-group.jp/2016a/

134 - Software Design

エディタとgrep

　みなさん、grepはお使いでしょうか。エンジ
ニアならば当然使っていることでしょう。
　エンジニアが使っているようなテキストエディ
タであれば、当然のようにgrep検索という機能
が備わっています。検索を開始するディレクト
リとファイルの内容を検査するパターンを入力
して実行すると、そのパターンでマッチしたファ
イルを一覧表示する機能です。この機能が使い
やすいかどうかが、テキストエディタの価値を
大きく左右することもあります。
　grepの名前の由来は、Global Regular Expre
ssion Printをg/re/pと略したものです。読んで
字のごとく、正規表現を使って広域に検索して
表示するプログラムを意味します。UNIX系の
OSであれば当然インストールされています。
Windowsであってもmsys2注1などをインストー
ルすることで手軽に利用できます。
　Vimにももちろん、このgrepと連携する機能
が備わっています。今回はこのgrep機能をVim
から活用する方法を紹介したいと思います。

まずはgrepの使い方

　シェルからgrepを実行する際の引数は次のと
おりです。

grep [オプション] [検索パターン] [ファイル]

　Vimはこのgrepコマンドを呼び出して出力結
果を解析し、マッチした行番号や検索語から一
覧を作ります。その一覧から、対象のファイル
へ簡単にジャンプできるようになっています。
Vimからgrep機能を使うには、シェルから実行
するのと同じく次のコマンドを実行します。

:grep hello *.c

　この例では、カレントディレクトリにある拡
張子「.c」のファイルから「hello」というパターン
を検索しています。この「hello」の部分は正規表
現として扱われるので、たとえば、

:grep [0-9]+ *.c

を実行すれば、数字を検索してquickfixウィン
ドウに表示してくれます（図1）。デフォルトで
はquickfixウィンドウは自動で開きません。grep
コマンドを実行して自動的にquickfixウィンド
ウを表示したい場合は次の設定をvimrcに設定
します。注1） Minimal SYStem 2。Windows用Unixシェル環境。

一歩進んだ使い方
のため

のイロハ

Vim使いの必需品 grep

　grepをVimから使う場合、設定の仕方やWindows環境でのハマりどころなど押さえておくべき知識があり
ます。今回はそういったVimでgrepを使うえでの基本事項を紹介しつつ、設定することでVimの:grepから
使えるようになる5つのgrep代替コマンドを、性能を比較しながら紹介していきます。

mattn
twitter:@mattn_jp

第 回12

134 - Software Design Nov. 2016 - 135

応しておらず、簡単な正規表現しか扱えません。
そこで多くのWindowsユーザはgrepコマンドを
入手し、このgrepprgオプションにUNIXと同
様にgrepコマンドを指定しています。

:set grepprg=grep\ -n

　最近ではmsys2が登場したことでWindowsで
もほぼ最新のgrepコマンドを使えますが、以前
はWindows向けに正式なgrepコマンドが存在せ
ず、見つけたとしても古いGNU grepで、しか
もバグがあったりもしました。

grepformat

　前述のとおり、Vimはgrepprgオプションで、
使用するgrepコマンドを選ぶことができます。
しかし、コマンドによってはVimが期待する出
力をせず、行番号を調べることができません。
そこでVimは、grepprgで指定したコマンドの
出力をどう解析するかを指定するgrepformatオ
プションを用意しています。デフォルトでは、
一般的に想定されるような出力が3つ登録され
ています。

%f:%l:%m,%f:%l%m,%f %l%m

augroup QuickFixCmd
 autocmd!
 autocmd QuickFixCmdPost *grep* cwindow
augroup END

　あとはquickfixウィンドウでジャンプしたい
ファイルの上で　 　　を押下すれば簡単に目的
のファイルを開けます。cwindowと同じような
命令にcopenがありますが、これは結果のあり
なしにかかわらずquickfixウィンドウを開きま
す。grepした結果が何もない場合で、quickfix
ウィンドウを開きたくないときにはcwindowを
使います。

カスタマイズ方法

　Vimはgrepを外部コマンドとして呼び出して
いますが、その実行するコマンドを変更するこ
ともできます。

grepprg

　Windowsではデフォルトで、Windowsに標準
インストールされている findstrコマンドが設定
されています。しかしfindstrの動作はgrepとは
大きく異なり、ANSIエンコーディングしか対

Enter

 ▼図1　quickfixウィンドウ

Vim使いの必需品 grep

第 回12

一歩進んだ使い方
のため

のイロハ

136 - Software Design

　また:vimgrepでは、bashのextglob（拡張グ
ロブ）と同じ機能が使えます。extglobとは、ワ
イルドカードをさらに強力にしたマッチング方
法で、Vimではstarstar-wildcardと呼ばれてい
ます。

:vimgrep pattern /usr/inc**/types.h

と実行すると、次のファイルが検索の対象とな
ります。

・/usr/include/types.h
・/usr/include/sys/types.h
・/usr/inc/old/types.h

　ただし:vimgrepには1つ癖があり、実行して
パターンにマッチすると、そのままそのファイ
ルをVimで開くという動作になっています。プ
ロジェクト内のファイルから検索したい場合で
あればマッチするファイルの数も知れているの
ですが、未知のフォルダで多くヒットし得るパ
ターンを指定してしまった場合、意図せず多く
のファイルがVimで開かれてしまいます。
　場合によっては、一覧しか作成されないgrep
コマンドのほうが良いということになります。

grepコマンドを選ぶ

　grepコマンドは実行速度が非常に重要です。
実行していつまで経っても終わらないgrepは苦
痛で仕方ありません。またマルチバイト文字に
対応しておらず、Vimから日本語を検索できな
いものもあります。しかしながら、ありがたい
ことにgrepと同様の機能を実装したコマンドが
いくつかあります。

Ag：The silver searcher

　最初はAg注2というコマンドです。The silver
searcherという名前で、silver（銀）を元素記号
で表した「Ag」から名付けられています。C言語

　%fがファイル名、%lが行番号、%mが文字列
部分となります。お使いのgrepコマンドがVim
から正しく使えない場合は、このオプションを
見直すと良いでしょう。

各grepコマンドの違い

　単純に:grep pattern *.cのように実行す
るのであれば問題は発生しませんが、オプショ
ン引数の指定方法はgrepprgで指定したgrepコ
マンドに依存します。たとえば、Windowsでの
デフォルト設定である findstrをそのままお使い
の方は、再帰的に*.cを検索するには次のよう
に実行する必要があります。

:grep /S pattern *.c

　また、GNU grepをお使いの方が再帰的に検
索する場合は、

:grep -r pattern .

と実行する必要があります。
　再帰的に、かつファイルパターンも指定する
場合は標準で指定されているGNU grepではで
きないため、ほかのgrep互換コマンドを選ぶの
が良いでしょう。

vimgrep

　Vimからファイルを検索する方法とし
て:grepコマンドを紹介しましたが、Vim には
もう1つ:vimgrepというコマンドが用意されて
います。このコマンドは外部プログラムを実行
しない、Vimに内蔵されたgrepコマンドです。
ファイルを検索し、実際にVimがファイルを開
いてパターンを検索します。メリットとしては
Vimの正規表現がそのまま使えることです。た
とえば次のコマンドを実行すると、「foobar」で
ない「foo」を検索できます。

:vimgrep foo･(bar･)･@! *.c
注2） URL https://github.com/ggreer/the_silver_searcher

https://github.com/ggreer/the_silver_searcher

136 - Software Design Nov. 2016 - 137

ちらもAgと同じく、Windowsで引数に与えら
れたマルチバイト文字が正しく動作しません。

Sift

　Sift注6は紹介した3つのいずれよりも速いと
自負しているgrep系ツールです。Ptと同じく
golangで書かれています。こちらはUTF-8にし
か対応していません。ただしAgとは異なり、
Windowsでも問題なく動作します。

Jvgrep：Japanese Vimmer's Grep

　Jvgrep注7は筆者が開発している日本人
Vimmer向けのgrepです。GNU grep互換を目
指しており、これまでに紹介したツールとは若
干毛色が異なるかもしれません。Japaneseとい
う名前が付けられているとおり、次のように多
くのエンコーディングをサポートします。

・ISO-2022-JP
・EUC-JP
・UTF-8
・Shift_JIS
・UTF-16LE
・UTF-16BE

　BOM付きも自動で検出されます。:set grep

prg=jvgrepで:grepコマンドとして使えます。
UNIXのシェルによっては、再帰的にワイルド
カードを展開する**/*.cという引数指定（拡張
グロブ）が使用できますが、jvgrepを使うと
Windowsでもこの指定ができるため、

:grep pattern **/foo/*/bar*.c

といった複雑なファイルパターンの指定ができ
ます。またファイルパターンでディレクトリが
指定された場合には、再帰的にディレクトリを
たどって検索します。ですので、たとえば
「pattern」をカレントディレクトリ（.）から検索す
るのであれば、

で書かれており、正規表現のJITやマルチスレッ
ドを駆使することでgrepよりも高速であると言
われ、世界中の多くのユーザが使っています。
Vimでは次のように設定することで:grepコマ
ンドからagを使用できます。

:set grepprg=ag

　また、専用のVimプラグインag.vim注3もあり
ます。これをインストールすると、

:Ag keyword

でカレントディレクトリ配下のファイルをkey
wordで検索でき、自動でquickfixウィンドウが
開くようになります。そこそこ速いのですが、
WindowsではANSIキャラクタセットにしか対
応していません。Linuxでは文字コードが
UTF-8ですのでそのまま使えるのですが、
Windowsでは引数で渡されたマルチバイト文字
がそのまま検索キーワードとして扱われてしま
うため、UTF-8のファイルにマッチしません。

Pt：The platinum searcher

　Agに対抗して作られているのがPt注4です。
The platinum searcherと名付けられており、Ag
よりも速いと言われています。Go言語（golang）
で書かれており、Agと同様にgrepprgオプショ
ンで設定できます。こちらは、README.mdに
ほかのエディタやプラグインと連携する方法が
多く書かれています。エンコーディングは
UTF-8とShift_JIS、EUC-JPの3つに対応し
ています。

Hw：Highway

　Hw注5はC言語で書かれており、スレッドを
駆使してAgよりも速く動作します。grepprgに
hwコマンドを指定することでVimと連携できま
す。Shift_JISとEUC-JPに対応しています。こ

注3） URL https://github.com/rking/ag.vim
注4） URL https://github.com/monochromegane/the_platinum

_searcher
注5） URL https://github.com/tkengo/highway

注6） URL https://sift-tool.org
注7） URL https://github.com/mattn/jvgrep

Vim使いの必需品 grep

第 回12

https://github.com/rking/ag.vim
https://github.com/monochromegane/the_platinum_searcher
https://github.com/tkengo/highway
https://sift-tool.org
https://github.com/mattn/jvgrep

一歩進んだ使い方
のため

のイロハ

138 - Software Design

り、誤検知が起きにくい順になっています。
　しかしながら、Highwayの速度は捨てがたい
です。使いたいケースもユーザによりさまざま
だと思いますので、1つ選んで常用してみるか、
vim-localrc注8などを使ってプロジェクトごとに
設定するのも良いかもしれません。

おわりに

　Vimからgrepを利用する方法、カスタマイズ
する方法を説明しました。grepprgやgrepformat
さえあれば、今後登場するかもしれない新たな
grepにも簡単に対応できるはずです。自分に
あった最強のgrepを探し出してください。ﾟ

:grep pattern .

とだけ指定すれば良いです。

結局どのgrepがいいの？

　紹介してきたgrepツールのディレクトリ拡張
ありなし、マルチバイト文字対応状況、速度を
表1にまとめます。Linuxのソースコードをダ
ウンロードして解凍し、そのディレクトリツリー
で「linus」を検索した際にかかった秒数を「grep
速度」として扱いました。
　jvgrepはGNU grep互換でもあり、利便性を
取ったことで、ほかのツールよりも若干ながら遅
くなってしまいました。それでも世界中で使われ
ているAgよりも2～3倍速くて日本語もきちんと
扱えます。また、サポートするエンコーディング
の指定順は前回（2016年9月号）も説明したとお

 去る9月12日、Vimのメジャーバージョンアッ

プであるVim 8がリリースされました。channelや

job、timerといった非同期をサポートするAPI、

partialや lambdaといったVim scriptを便利にする

APIなど、プラグイン作者にうれしい機能が追加さ

れました。それ以外にもWindowsのフォントレン

ダリングを強化するDirectWriteやGTK3のサポー

トも追加されています。一部にはVimがメジャー

バージョンアップしたことに驚きを隠せない人も

いるようですが、開発に関わる側から見ると衰え

があるようにはとても思えません。ぜひ、新しい

APIを使ったプラグインの作成にもチャレンジして

みてください。

　Vim 8.0 の新機能についてはvim-jpが解説する次

のページをご覧ください。

・�http://vim-jp.org/blog/2016/09/13/vim8.0-

features.html

Vim 8リリース

名前 拡張グロブ 引数の扱い マルチバイト文字列対応 grep速度
Ag なし × UTF-8のみ 19.987s
Pt なし 〇 UTF-8、SHIFT_JIS、EUC-JP 2.326s
Hw なし × UTF-8のみ 1.951s
Sift なし △ UTF-8のみ 2.115s
Jvgrep あり ◎ ※ 7.455s
※デフォルトはascii、iso-2022-jp、utf-8、euc-jp、sjis、utf-16le、utf-16be。設定可能なエンコーディングは
　 218個40種類。

 ▼表1　grepツールのカタログ

注8） URL https://github.com/thinca/vim-localrc

https://github.com/thinca/vim-localrc
http://vim-jp.org/blog/2016/09/13/vim8.0-features.html

Nov. 2016 - 139

　過去のコードを見直すたびに、自ら黒歴史を紐解くようなイヤな気持ちになります。3日も前になると、なんでこんなの書いたのか
と自分を呪うことオッフンです。自分が楽するために書いたコードが人に見られるとなった際には、「卒業アルバム隠さなきゃ」「エロ
本隠さなきゃ」みたいな汗が出ます。すぐポイするつもりだったスクリプトを見られるのに抵抗を感じるのは、ゴミ箱を漁られるのに
似てるからでしょうか。OSS業界にいるんだし、いつ見られても良いように恥ずかしくないコードを書いていきたいものですね。コー
ドだけではなく、常日頃も恥ずかしいと思うような行動は慎みましょう。いい大人なんですから（なんで鏡を見ているの？）。

「
昨
日
…
…
。
そ
ん
な
昔
の
こ
と
は
忘
れ
て
し
ま
っ
た
。
明
日
…
…
。
そ
ん
な
未
来
の
こ
と
は
わ
か

ら
な
い
」と
ヤ
バ
イ
方
向
に
ボ
ケ
つ
つ
あ
る
編
集
が
担
当
し
て
い
る
マ
ン
ガ
が
あ
る
の
は
本
誌
だ
け
？

変に長い変数名を使って
いるせいで、読みにくいな。
誰だ、
これを書いたヤツは。

同じ変数の分岐処理に
ifを並べて
いるんじゃねーよ。

例外をCatchして、
何もしてないのが
あるな。

ここ、メソッドだけで
2,000行もあるぞ。

長すぎてよく
わからないよ。
これは誰が
書いたんだ？

3日前に
commitした
ヤツだった……

case使えば
いいだろ。
誰よこのコードを
書いたヤツは……。

誰だこんな
握りつぶすような
コードを書いたのは。
例外のメリットが
台無しやん。

俺やん。

うぐぅ。俺だわ……。

「WithOut」って、
キャメルケースの
センスがまるで
なっていない……。

この書き方の
パターンは……

俺かッ！
俺のコードかッ！

情熱溢れる
個性的な
命名ルールに
心当たりがある。

一人でこなした
案件の
コードでした。

自分用に作った、
自分だけが使う
スクリプトでした。

3日前の
自分は他人。

作）くつなりょうすけ
@ryosuke927

犯人は誰だ !?第33回

⑦⑧

①

③

⑤⑥

④

②

140 - Software Design

正規表現を
身に付けよう

なぜ身に付けるべきか？

　ども、るびきちです。ついにメジャーリリー
スとなるEmacs 25.1がリリースされましたね。
今回は正規表現について取り上げます。
　正規表現と聞くと、あなたはあの暗号じみた
文字列にアレルギー反応を起こしたかもしれま
せん。正規表現……確かに初見だと意味不明か
もしれません。けれども、より効率的に作業が
したいと望むあなたは正規表現を身に付ける必
要があります。あなたは、あの暗号じみた文字
列を直視しなければなりません。
　たとえあなたがプログラミングをしない人で
あっても、正規表現を知って使いこなせるだけ
で、そうでない人と比べこれからの生産性に雲
泥の差がつきます。なぜなら、正規表現はテキ
ストエディタやプログラミング言語をはじめと
するあらゆる場面で使われているからです。し
かも一度覚えてしまえば、将来ほかのテキスト
エディタやプログラミング言語を使うときにも
活用できます。つまり、正規表現は普遍的で一
生モノの知識なのです。多くの知識やスキルが
数年で陳腐化するITの世界において、正規表現
がいかに貴重な知識なのかがよくわかると思い
ます。

　正規表現を習得できれば、検索や置換ででき
ることが広がります。正規表現を知らなければ、
単純な文字列の検索や置換を繰り返すことにな
ります。単純作業はとても面倒で嫌気がさしま
す。正規表現検索を使えれば、大まかなパター
ンにマッチさせられます。
　正規表現を習得できれば、複雑なテキスト処
理ができます。正規表現を知らずにテキスト処
理のプログラミングをしたら、複雑なループや
場合分けを記述する必要があるなど、プログラ
ムが読み書きしづらくなります。正規表現を知
ることによって短いコードで複雑な検索・置換
ができるようになります。
　正規表現はとても奥が深い世界で、本気で学
ぼうとすると書籍1冊分の勉強量になるほどで
す。ですが、初歩的な正規表現を知るだけで十
分な威力を実感できます。さあ、あなたも正規
表現を使ってテキパキと作業しましょう。

正規表現とは

　では、正規表現とは何でしょうか？　Wiki
pediaにはこうあります。

正規表現（せいきひょうげん、英 : regular expre
ssion）とは、文字列の集合を一つの文字列で表
現する方法の一つである。正則表現（せいそく
ひょうげん）とも呼ばれ、形式言語理論の分野で
は比較的こちらの訳語の方が使われる。まれに

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

Emacsの正規表現（基本編）
　敷居は高いけれど、知っていると作業が何倍も楽になる「正規表現」。Emacsのうえでその正規表現を自
由に使いこなせれば、作業効率はさらに何倍にも高まることでしょう。今回はまず基本編として、正規表現の
基本から、「正規表現の方言」におけるEmacsの立ち位置、メタ文字の紹介まで行います。

Writer

第31回

http://rubikitch.com/

140 - Software Design Nov. 2016 - 141

ように特別な意味が込められた文字のことを「メ
タ文字」といいます。

◆　◆　◆
　このように正規表現の本質とは、“文字列がパ
ターンにマッチするかどうか”ですので、概念と
しては難しくありません。正規表現が難しいと
敬遠されがちなのは、メタ文字がたくさん存在
し、後述の「方言」によってメタ文字が異なるか
らです。なお、ここで紹介したメタ文字はすべ
ての方言で使えるものです。

Emacs流正規表現

いろいろな正規表現の方言

　正規表現の方言には大きく分けて4系統あり
ます。

・基本正規表現
・拡張正規表現
・Perl系統の正規表現
・Emacsの正規表現

　基本正規表現はgrepやsedで使われている正
規表現で、メタ文字が少ないことが特徴です。
その代わり、拡張正規表現などと比べて冗長に
なってしまうという欠点があります。
　拡張正規表現はegrep（grep -E）で使われて
いる正規表現で、基本正規表現よりもメタ文字
が多く、簡潔に記述できます。
　Perlの正規表現は拡張正規表現をさらに拡
張し、より簡潔に表現できるような新たなメタ
文字が登場したり、先読みや戻り読みなど基
本・拡張正規表現では使えなかった機能が用意
されています。Perlの正規表現は便利で高機
能であるため、PCRE（Perl Compatible Regular
Expression）という名のライブラリになってい
ます。PCREは多くのプログラミング言語やア
プリケーションで使われています。
　RubyやPythonやJavaScriptの正規表現も、
Perlの正規表現に近いものになっています。お

正規式と呼ばれることもある注1。

　この説明を読んでもちんぷんかんぷんですよ
ね。ではコンピュータを使う立場で正規表現を
定義してみましょう。
　正規表現とは「文字列のパターンを指定するミ
ニ言語」です。

正規表現とgrep

　あなたと正規表現の初めての出会いは、grep
コマンドだったかもしれません。grepは、テキ
ストファイルからパターンに一致した行を抜き
出すプログラムです。grepに指定するパターン
こそが正規表現です。そもそもgrepとは、Global
Regular Expression注2 Printの略なのです。
　一番簡単な正規表現は、正規表現文字列その
ものがパターンになっている場合です。スペー
ス、英数字、日本語文字だけからなる正規表現
は、その文字列そのものがパターンになります。
たとえば、grep Emacs memo.txtというコマ
ンドを実行したとき、memo.txtの中から「Emacs」
という文字列が含まれる行のみが出力されます。
これだけならば、何ら難しいことはありません。

メタ文字

　先ほど、正規表現とは「文字列のパターンを指
定するミニ言語」だと定義しました。ミニ言語で
あるということは、正規表現を構成する一部の
文字に、特別な意味が込められていることを意
味します。
　たとえば正規表現.は改行以外の任意の文字
にマッチします。正規表現a.cは「abc」にも「a.c」
にも「0abcd」にもマッチします。ほかにも行頭を
表す^や行末を表す$もあります。正規表現^red

は「red」や「redo」にマッチしますが「hundred」に
はマッチしません。正規表現^red$は改行を含
まない限り「red」のみにマッチします。これらの

注1） 出典：https://ja.wikipedia.org/wiki/正規表現、2016年10
月3日時点

注2） Regular Expression＝正規表現。

第31回 Emacsの正規表現（基本編）

https://ja.wikipedia.org/wiki/%20%E6%AD%A3%E8%A6%8F%E8%A1%A8%E7%8F%BE

142 - Software Design

　そんな嫌われ者のEmacsの正規表現ですが、
基本の理解は大切ですので、怖がらずに直視し
てみましょう。別な記法からEmacsの正規表現
に変換するアプローチもありますが、それはあ
くまでも応用です。

メタ文字一覧

　それでは、Emacsの正規表現のおもなメタ文
字を見てみましょう（表1）。
　参考のために、Perl系統のメタ文字とも比較
します（表2）。Perlなどに慣れている人であれ
ば、違いがわかればその分理解しやすいからで
す。ここからがいわゆる“ふつうの正規表現”と
の違いになってきます。Emacsの正規表現にお
いては、一般に親しまれているメタ文字| ()

の前にはそれぞれバックスラッシュが付いてる
ので注意してください。

用語説明

　表1、表2における見慣れない用語について説
明します。
　「文字クラス」とは、[]で囲まれた文字のうち
のどれかにマッチする表現です。否定文字クラ
スとは文字クラスの逆で、指定された文字以外

そらく“ふつうの正規表現”と言えば、Perl系統
の正規表現ではないでしょうか。

Emacsの正規表現

　Emacsの正規表現は残念ながらPerlほどの機
能はありません。メタ文字も独自のもので、基
本正規表現と拡張正規表現がごっちゃになった
感じです。
　一方でEmacsの正規表現独自の機能として、
シンタックステーブルやカーソル位置を表す正
規表現も存在します。
　Emacsの正規表現は残念ながら嫌われ者です。
その最大の理由はメタ文字にバックスラッシュ
が多用されていることです。そのためPCREと
比べて冗長になってしまいます。
　おまけにEmacs Lispと正規表現の相性が最悪
です。Emacs Lispには正規表現専用のリテラル
が用意されていません。そのため文字列で正規
表現を表現することになります。そして、バッ
クスラッシュを文字列リテラルで表現するとき
は二重バックスラッシュになります。その結果、
Emacs Lisp内で正規表現を表現すると二重バッ
クスラッシュの嵐になってしまうのです。

メタ文字 意味
. 改行以外のすべての文字に
* 直前の表現が0回以上（欲張りマッチ）
+ 直前の表現が1回以上（欲張りマッチ）
? 前の表現が0回か1回（欲張りマッチ）
*? 直前の表現が0回以上（非欲張りマッチ）
+? 直前の表現が1回以上（非欲張りマッチ）
?? 直前の表現が0回か1回（非欲張りマッチ）
[…] 文字クラス（どれかの文字に一致）
[^ …] 否定文字クラス（どの文字にも一致しない）
^ 行頭
$ 行末
\b 単語の境界
\B 単語の境界ではない（途中）

\w
単語の構成要素
（シンタックステーブル依存）

\W 単語の構成要素ではない（同上）

\N（数字）N番目の括弧にマッチしたテキスト
（後方参照）

 ▼表1　Emacs/Perl系統共通のメタ文字

Emacs Perl 意味

\| |
\|で区切られた表現のう
ちのどれか

\(... \) (...)
後方参照ありのグルーピ
ング

\(?: ... \) (?: ...)
後方参照なしのグルーピ
ング

\{N\} {N} 直前の表現がN回
\{N,\} {N,} 直前の表現がN回以上
\{N,M\} {N,M} 直前の表現がN〜M回
\` \A 文字列・バッファの先頭
\' \z 文字列・バッファの末尾
\= なし バッファの現在位置
\< なし 単語の開始位置
\> なし 単語の終了位置
_< なし シンボルの開始位置
_> なし シンボルの終了位置

 ▼表2　EmacsとPerl系統では異なるメタ文字

るびきち流
Emacs超入門

142 - Software Design Nov. 2016 - 143

◆　◆　◆
　今回はEmacsの正規表現を取り上げました。
次回は正規表現を扱うコマンドや応用を取り上
げる予定です。
　筆者のサイト「日刊Emacs」は日本語版Emacs
辞典を目指し、毎日更新しています。手元でgrep
検索できるよう全文をGitHubに置いています。
　つい最近、fishというシェルにハマってしまっ
たため、「fishシェル普及計画」というサイトも
立ち上げました。
こちら➡http://fish.rubikitch.com

　fishは最初から使いやすいような巧妙なしく
みになっていますので、ぜひとも試していただ
けると幸いです。筆者は15年間使っていたzsh
からあっさり乗り換えてしまいました。
　またEmacs病院兼メルマガのサービスを運営
しています。Emacsに関すること関しないこと、
わかる範囲でなんでもお答えします。「こんな
パッケージ知らない？」「挙動がおかしいからな
んとかしてよ！」はもちろんのこと、自作elisp
プログラムや文章の添削もします。集中力を上
げるなどのライフハック・マインド系も得意と
しています。ﾟ
登録はこちら➡http://www.mag2.com/m/000

1373131.html

にマッチする表現です。
　文字クラスにはハイフンを含めることで、範
囲を指定できます。たとえば[0-9]は数字、
[a-z]がアルファベットです。ハイフンそのも
のを含めるには、文字クラスの最初か最後に指
定する必要があります。
　「欲張りマッチ」とは、* + ?がなるべく長く
マッチ（最長マッチ）する習性のことを言います。
それらのメタ文字に?を加えれば最短マッチに
なります。置換の際には欲張りマッチに注意し
ないと、思わぬ結果になってしまいます。
　「グルーピング」は\(と\)で囲まれた正規表
現をひとまとめに扱うことです。しばしば、\|

* + ?と組み合わされます。
　「後方参照」とは、グルーピングにマッチした
正規表現に、マッチした部分を記憶して、あと
で参照する機能です。同じパターンの繰返しを
表現するときに使います。

正規表現の例

　最後にEmacs、Perl系統を合わせて正規表現
の実例を表3に示すことにします。なお、文字
列中の\nは改行文字、\tはタブ文字とします。
表中の「マッチする文字列」列では、正規表現に
マッチした部分文字列を（）内に示します。

Emacs Perl マッチする マッチしない
ox ox ox（ox）、fox（ox） oyx
^re ^re re（re）、regex（re） ore
^rx$ ^rx$ rx（rx）、foo\nrx（rx） rxt, frx
fo* fo* f（f）、fo（fo）、foo（foo） o
fo+ fo+ fo（fo）、foo（foo） f
fo+? fo+? fo（fo）、foo（fo） f
fo*? fo*? f（f）、fo（f）、foo（f） o
fo\|ba fo|ba foo（fo）、bar（ba） ob
\`rx\' \Arx\z rx（rx） foo\nrx
[0-9]+ \d+（[0-9]+も可） 12345（12345） w
\bgz\b \bgz\b gz（gz）、a\tgz（gz） tgz
\([a-z]+\)\1 ([a-z]+)\1 murmur（murmur） murxmur
^[^a-c]d ^[^a-c]d dd（dd） ad、bd、cd
[0-9]\{3\}-[0-9]\{2\} \d{3}-\d{2} 0123-456（123-45） 123-4

 ▼表3　正規表現の実例（Emacs、Perl系統）

第31回 Emacsの正規表現（基本編）

http://fish.rubikitch.com/
http://www.mag2.com/m/0001373131.html

144 - Software Design

一緒に歩くと
いいことあるよ！

　本稿執筆現在、（i|mac|tv|watch）OSは無事バー
ジョンが上がり、iPhone 7も筆者の手元に届きま
した。が、macOS Sierra、Apple Watch Series 2
は間に合いませんでしたし、次期MacBook Pro
は影も形もありません。そんな微妙な時期ですが、
Pokémon GOは今もなお大ニュースであり続け
ています注1。
　まず、待望のバディシステムがバージョン1.7.0
に搭載されました。ポケモンを進化させたり強
化させたりするためには、「ほしのすな」という共

通通貨と「種族のアメ」という固有通貨の双方が
必要なのは読者の皆さんもご存じのとおりですが、
どんなポケモンをGETしても増える前者と異な
り、後者はその種族のポケモンGETからしか入
手ができず、レアポケモンの育成は困難を極め
ていました。それが、選んだポケモンと一緒に
歩くことで、一定距離ごとにアメがもらえるよう
になったのです。これで理論上は、ミニリュウ
が一匹さえいれば確実にカイリューをGETでき
ることになったわけです注2。
　ポケモン図鑑完成の難易度はこれで下がる一
方、バディシステム以前以後ではある意味別の
ゲームでもあるわけで、なんとかその前に図鑑

完成まで持っていけたらいいけど難
しいなあと思っていた矢先の9月10
日、幸いにも国内142種目をGET
することができました（図1）。
　図2のようにゲーム開始から50日
目、歩行距離415km、捕まえたポケ
モン5,990匹、孵

かえ

した卵623個、ポケ
ストップ回し8,120回注4。しかし、
Pokémon GOはオープンエンド。レ
ベルカンストはあってもゲームオーバー
はありません。その後も歩き続けてな
んぼなわけですが、幸いなことに歩
き癖がすっかりついて、この1ヵ月平
均で20,000歩／日歩く体になってい
ました（図3）。台風で土砂降りの日で

書いて覚える 入門Swift

Author 小飼 弾（こがい だん）　　 twitter @dankogai

第20回 Pokémon GO、iPhone 7、macOS（Sierra）

注1） Pokémon GO（http://www.pokemongo.jp）
注2） ただし、その場合に必要な歩行距離は620km！

 ▼図1　 国内142種目をGET注3 ▼図2　 レベル32を達成

注3） https://twitter.com/dankogai/status/774457126332669952
注4） https://twitter.com/dankogai/status/774458397596921856

http://www.pokemongo.jp
https://twitter.com/dankogai/status/774457126332669952
https://twitter.com/dankogai/status/774458397596921856

144 - Software Design Nov. 2016 - 145

Pokémon GO、iPhone 7、macOS（Sierra）第 回20

さえ1万歩は歩かないと欲求不満になるなんて。
　そしてバージョン 1.7.0が到着したのが、
iOS 10アップデート直後。さらに iPhone 7と
同日にPokémon GO Plus到着というわけで、
ラ++と歩く日々がまだ続いています（図4）。

ボタンのない iPhone 7、
ボタンしかない
Pokémon GO Plus

　で、iPhone 7です。これまた読者の皆さんご
存じのとおり、穴とボタンが1つずつ減りました。
イヤフォンジャックとホームボタン。後者はな
くなったというより機械式から感圧式に生まれ
変わったのですが、それで耐水性能を獲得しま
した。耐水という点では先行していた競合他社
のスマフォはジャックやコネクタに蓋をつけ、
ホームボタンそのものをなくしてタッチスクリー
ンに表示するという、わかりやすい代わりに不
恰好なものでしたが、そういったことをせず、
ある意味「そのままの姿」で実現したというのが
実にAppleらしい後出しじゃんけんでした。
　iOS 10（のデフォルト設定）で一番戸惑いが
多かった「ホームボタン触るだけでアンロック
できていたのに押さないといけなくなった」と

いうのも、iPhone 7ではむしろ自然ですし、
機械式ではないのに押した感覚を実現する
Taptic Engineはホームボタンを「仮想機械式」
にするにとどまらず、たとえばメニューのダイ
アル選択でカリカリと本物のダイアルを選択し
ている感触まで実現するなど実によくできてい
ます。機械的可動部は減ったのに機械的感触は
増えている。実に見事です。
　その意味でPokémon GO Plusというデバイ
スは、ある意味その真逆にあります。ついてい
るのはLEDで7色、もとい4色に光るボタン（も
ちろん機械式！）が 1つだけ。筆者はApple
Watch（Series 1）のミラネーゼループに留めて
ますが、笑っちゃうぐらいだっさい（図5）。
　しかしこれのおかげで、iPhoneの画面をに
らめっこしなくてもPokémon GOできるよう
になりました。もちろんボタン1個でできるこ
とはたかが知れていて、ポケストップ回しとポ
ケモン捕獲。それもスーパーボールやハイパー
ボールといった高性能ボールは使えず、赤白ボー
ル1回だけ。失敗すればポケモンハイさような
ら（図6）。これでピカチュウを取ろうとしては
いけません（笑）。

 ▼図3　 20,000歩／日も歩く体のログ ▼図4　 ラ＋＋と歩く日々

 ▼図5　 Pokémon GO PlusをApple Watch
（Series 1）のミラネーゼループに留める

 ▼図6　 Pokémon GO Plus
だけではゲームプ
レーに限界がある

146 - Software Design

書いて覚える 入門Swift

　しかし Pokémon GO の一番の狙いはトレー
ナーを歩かせることにあり、だとしたらむしろ
画面をにらめっこしているのは避けるべきことで、
オープニング画面も歩きスマフォしているとギャ
ラドスに食われるぞと警告しているぐらいです。
実際筆者も恥を忍んで、もとい恥も外聞もなく
使ってみたところ実に快適でした。ぼうけんノー
トに「ミニリュウに逃げられた」という記録を見
つけてちょっぴりムッとはしましたが。
　しかし、よく考えてみると、Pokémon GO
Plusって実にムダなデバイスではあるのですよ。
ポケストップに近づくだけでアイテムGETで
きたり、ポケモンが近くにいるだけで自動捕獲
したり、つまりノーボタンにしたほうが実装面
では楽なのですから。しかしそれだともはや
Pokémon GOはゲームではなく単なる通知アプ
リになってしまいます。Pokémon GO Plusは、
まさにその余計なワンクリックがあることでポ
ケモンの存在をリアルにしているわけです。
　iPhone 7とPokémon GO Plus。かたや物理
を略すことでリアルにし、かたや物理を加える
ことでリアルにする。リアルとはいったい何な
のか。そんな哲学的な疑問がリアルに沸き起こっ
てきます。AR＝Augumented Reality＝強化現
実といっていますが、もう弾言してしまいましょ
う。リアルとは「実体」ではなく、リアルとは「実
感」なのだと。物理的事実だけではなく、論理
的虚構だけでもなく、双方合わせて我々が「こ
れが世界だ」と感じているもの、それがリアル
なのだと。複素現実＝Complex Realityという
言葉が思い浮かびましたが、ちょっと数学的す
ぎるかなあ……。
　上野の不忍池でプレイが禁止されたり、レイ
ンボーブリッジに向かうお台場の自動車専用道
路にプレイヤーが押し寄せたりとPokémon GO
はリリース後2ヵ月経過した今も社会現象であ
り続けていますが、驚くべきなのは、楽しんで

る人も迷惑を被っている人も誰も「ポケモンな
んて存在しない。ただのデータだ」という人が
いないこと。もはやポケモンは虚構ではない、
今そこにある現実なのです。
　これが我々プログラマにとって何を意味する
か。我々は、リアルを想像し改変する力を得た
ということなのです。メタファーではなくリア
ルに。ふと、金子勇注5さんのことを思い出しま
した。Winnyが無罪判決を勝ち取れたのは、ま
だまだその影響がコンピューターネットワーク
に留まっていたからではないのかと。仮に誰か
ポケソースを偽造するツールを作って、それを
利用した誰かがミュウが湧く偽ポケソースをど
こかに設置して、結果押し寄せたトレーナーで
圧死者が出たら、ツール作成者は著作権ではな
く殺人の幇助で追訴されるのではないか……。
　妄想にすぎない、というにはARはすでにリ
アルすぎるというのは心に留めておいたほうが
いいかと。

Swift Playgroundsは
モバイルプログラミング
を実現するか？

　このまま妄想を続けたい誘惑を振り切って、
Swiftの話題に入りましょう。 ARがモバイル
アプリを「デスクトップでしかできなかったこ
とがどこでもできる」から「実際の場所に行って
みないとできない」と一段進めたのであれば、
モバイルプログラミングとはいったい何を意味
するのでしょうか？
　Swift Playgrounds for iPadはその試みの1
つかもしれません。
　図7を見てのとおり、リアルキーボードなし
でもフルセットのSwiftプログラミングができ
ます。それも「単に動く」以上にある程度のモバ
イル最適化が進んでいます。カーソルの位置に
よって正しい構文として成立する表現が候補に
現れますし、変数やリテラルをクリックすれば

注5） 金子勇（http://blog.livedoor.jp/dankogai/archives/51878044.html）

http://blog.livedoor.jp/dankogai/archives/51878044.html

146 - Software Design Nov. 2016 - 147

Pokémon GO、iPhone 7、macOS（Sierra）第 回20

その型にあった候補が現れます。
　とはいうものの、やはり「iPadの方がMacよ
りも快適にプログラミングできる」というには
ほど遠く、実際に使いこむには大まかな作業は
Macで行い、それを iPadでレタッチするとい
う iWorkに近い使い方に現状落ち着くと思う
のですが、ここで1つ問題が。
　現時点で、iPad以外の環境で iCloud Drive
がSwift Playgroundsに対応していないような
のです（図8、図9）。
　スクリーンショットを見てもわかるとおり、
iPadの iCloud DriveにはPlaygroundsがある
のに、iPhoneの方にはない。Macも同様です。
macOS SierraとXcode 8.1待ちということで
しょうか……。
　というわけで冒頭で述べたとおり「微妙な時
期」だけあってなんとも微妙な結果となりまし

たが、次号までには macOSもSierraになるは
ずですし、もしかしたらMacBook Proも刷新
されているかもしれません。次回は本連載の主
旨どおり、Swift言語メインの記事をお届けで
きる……はずです。ﾟ

 ▼図8　 Swift Playgrounds for iPadは
iCloudに対応している

 ▼図9　 Swift Playgrounds for iPadは
iPhoneに未対応であることに注意

 ▼図7　Swift Playgrounds for iPad

148 - Software Design

　今回はSphinxを利用してドキュメントを作成
するにあたって、知っておくと便利なツール、
プラグイン、サービスを紹介します。ドキュメ
ントの作成からSphinxで出力したファイルを外
部へ公開するまでの流れを以下の順で追いなが
ら、それぞれの場面で作業の手助けになるよう
なツール、プラグインについて特徴と使い方を
確認していきます。

・ドキュメントを書く
　reStructuredText（以下、reST）を便利に書け

るエディタのプラグイン
・ビルドする
　ビルドの自動化ツール
・バージョン管理する
　ドキュメントファイルを管理する方法、ツール
・公開する
　出力したファイルを外部へ公開するサービス

　今回は図1のようなプロジェクトを例にとっ
て進めていきます。sphinx-quickstartコマ
ンドを実行し、以下の質問を除きデフォルトで
設定しています。

・Project name：回答必須のため適当な値を入力
・Author name(s)：同上
・Project version：同上
・Project language [en]：ja

今回のテーマ
・Do you want to use the epub builder (y/n)

[n]：y

　動作はMac OS X El Capitan 10.11.5、Python
2.7.9以降、Sphinx 1.4以降の環境で検証してい
ます。

　SphinxではreSTというプレーンテキストで
表現できる記法を使いドキュメントを書きます。
そのため、文字コードをUTF-8に指定できるも
のであれば、どのエディタでもドキュメントを
作成できます。
　VimやEmacsといったエディタではreST記
法がサポートされています。これらのエディタ
でreSTファイルを開くとreST記法に従って文
章を見やすくハイライトしてくれます。
　また、Vimにはriv.vim注1、Emacsにはrst.el注2

注1） https://github.com/Rykka/riv.vim

注2） http://docutils.sourceforge.net/tools/editors/emacs/

ドキュメントを書く

Sphinxで始める
 ドキュメント作成術

Sphinx環境ひとめぐり
̶̶エディタ、ビルド、バージョン管理、公開

第20回

安宅 洋輔　ATAKA Yosuke　 Twitter ＠kk_Ataka

Sphinxで始める
 ドキュメント作成術

sphinx-project/
 Makefile
 _build
 _static
 _templates
 conf.py
 index.rst
 make.bat

 ▼図1　プロジェクトファイル一覧

https://github.com/Rykka/riv.vim
http://docutils.sourceforge.net/tools/editors/emacs/

148 - Software Design Nov. 2016 - 149

というプラグインがあります。導入することで
次のような作業がコマンド1つでできるように
なり、覚えると便利になるでしょう。

・ドキュメントを見出しごとに折りたたむ
・見出しのマークアップ
・テーブルの作成、整形

　ここでは、Vimのriv.vimを使ってショート
カットを実行する例を紹介します。使用するriv.
vimのバージョンは0.79です。
　riv.vimのREADMEでは、インストールに
Vundle注3を使用しています。.vimrcにBundle
'Rykka/riv.vim'と追加し、riv.vimをインス
トールしましょう。

ドキュメントを見出しごとに折り
たたみ

　reSTドキュメントを開くと図2のように見出
しがすべて折りたたまれている状態になります。
　見出しにカーソルを合わせ、©を入力す
ることで見出しの展開、折りたたみを切り替え
られます。見出しを展開すると図3のようにな
ります。

注3） Vimのプラグインを管理するためのプラグイン。
 https://github.com/VundleVim/Vundle.vim

　また、すべての見出しを一括で展開、折りた
たむこともできます。ノーマルモード時にzRで
展開、zMで折りたたみです。

見出しのマークアップ

　見出しのマークアップを行うには、図4のよ
うに見出しにしたい文章にカーソルを合わせ
<C-E>s[N]と入力します。<C-E>はlを押
しながらEを入力します。[N]は1から6まで
のいずれかを入力します。
　見出しは1から6に対応した記号が出力され
ます。1なら=（図5）、2なら-（図6）です。reST
では「見出しに使う装飾記号の出現順に見出しレ
ベルが決まる」というルールがあります。見出し
レベルに合わせて1から6を順番に使うと良い
でしょう。

テーブルの作成、整形

　テーブル（表）を作成するには、<C-E>tcと入
力します。行と列の数を入力したら、その数値
どおりにグリッドテーブルが作成されます。テー
ブルレイアウトの整形や行列の挿入が自動で実
行されるため、はじめは戸惑うかもしれません。
しかし、慣れると自分でテーブルを調節する手

Sphinx環境ひとめぐり
̶̶エディタ、ビルド、バージョン管理、公開

第20回

 ▼図2　見出しが折りたたまれた状態

 ▼図3　選択した見出しを展開

 ▼図4　見出しにしたい行を選択

 ▼図5　<C-E>s1と入力した結果

 ▼図6　<C-E>s2と入力した結果

https://github.com/VundleVim/Vundle.vim

150 - Software Design

間が省けます。
◆　◆　◆

　riv.vimの機能の一例を紹介しました。ほかに
も、文字の装飾やリンクの自動生成などできる
ことはたくさんあります。rim.vimのWiki注4か
らやりたいことを探してみるのも良いでしょう。

　SphinxはreSTで作成したドキュメントを、
make htmlやmake epubなどのコマンドで指定
した形式にビルドします。Sphinxでドキュメン
トを作成する場合、次の①～④の手順を繰り返
すことになります。ビルドしたファイルの確認
には、記述の内容が確認しやすいHTML形式を
使用すると良いでしょう。

① reSTでドキュメントの内容を編集する
②ビルドする（make html）
③ビルドされたHTML（_build/html/index.html

など）をブラウザで開く。すでに開いている
場合はリロードする

④HTMLでの出力結果を確認する

　しかし、ドキュメントを書き進めるたびに何
度も手動でビルドやブラウザのリロードをする
のはたいへんな手間です。いくつかの手順を自
動化して、ドキュメントの作成に集中しましょ
う。ビルドの自動化は次のような方法で実現で
きます。

・sphinx-autobuild注5を使用する
・Emacs を使用している場合、sphinx-front

end注6を使用する
・Windowsでサクラエディタを使用している場

合、マクロを作成し、ショートカットに設定
する注7

注4） https://github.com/Rykka/riv.vim/wiki/1.-Instruction
#rivtablecreate

注5） https://pypi.python.org/pypi/sphinx-autobuild

注6） https://github.com/kostafey/sphinx-frontend/

注7） http://advent-calendar2012.usaturn.net/2012/12/10/
make_on_sakura.html

ビルドする

　今回は、sphinx-autobuildを使用した自動ビ
ルド方法について紹介していきます。

sphinx-autobuildを使用した
自動ビルド

　sphinx-autobuildを使用すると「ビルドする」
「ブラウザで開いているHTMLをリロードする」
の手順を自動化できます。インストールは、ター
ミナルで次のコマンドを実行します。

　インストールに成功したらSphinxプロジェク
ト内で図7のコマンドを実行してみましょう。
sphinx-autobuildコマンドの-bオプション
は自動ビルドする形式を記述します。ここでは
HTML形式を指定しています。source/は .rst
が格納されているパス、_build/html/はビル
ド先のパスを指定しています。
　sphinx-autobuildを実行するとローカルホス
トでWebサーバが起動します。デフォルトの設
定では8000番ポートで動作しているので、ブラ
ウザから「http://127.0.0.1:8000」にアクセスし
ましょう。SphinxでビルドされたHTMLが表
示されます。
　次に、ブラウザでドキュメントを開いたまま、
Sphinxプロジェクト内の .rstファイルを更新し
てみましょう。このとき、図7を実行したターミ
ナルは終了させないように注意します。ファイ
ルを更新し、保存すると、sphinx-autobuildが変
更を検知してビルドを実行してくれます（図8）。
　先ほど開いたブラウザを確認しましょう。自
動でページがリロードされ、更新されたHTML
が表示されているはずです。
　このように、sphinx-autobuildを利用するこ
とで「ビルドする」「ブラウザで開いている
HTMLをリロードする」作業を自動化できまし
た。簡単な作業ですが、ドキュメントを作成す
るうえで何度も行う必要があります。自動化で
きるとドキュメント作成に集中することができ
るでしょう。

$ pip install sphinx-autobuild

Sphinxで始める
 ドキュメント作成術

https://github.com/Rykka/riv.vim/wiki/1.-Instruction#rivtablecreate
https://pypi.python.org/pypi/sphinx-autobuild
https://github.com/kostafey/sphinx-frontend/
http://advent-calendar2012.usaturn.net/2012/12/10/make_on_sakura.html

150 - Software Design Nov. 2016 - 151

　Sphinxのプロジェクトをバージョン管理する
にはいくつかの方法が考えられます。その中で
reSTと相性が良いのはGit、Mercurial、Sub
versionといったバージョン管理ツールを使用す
る手法です。プロジェクトのreSTファイルを
はじめとする構成ファイルはプレーンテキスト

バージョン管理する
であるため、これらのバージョン管理ツールと
相性が良いです。
　バージョン管理について、詳しくは本連載の
第7回「Webサイトを作ろう（後編）」注8で説明さ
れています。
　今回はバージョン管理から公開までの手順を
すべてGitHubで完結させてみましょう。バー
ジョン管理ツールはGitを使用します。Sphinx
ドキュメントをバージョン管理する際の注意点

を紹介します。

成果物は管
理対象から
外す

　_buildディレクトリ
以下のファイルはmake
コマンドで生成するこ
とができるため、バー
ジョン管理下に置く必
要はないでしょう。.git
ignoreファイルに_bui
ldディレクトリを追加
します。

注8） 本誌2015年10月号。

Sphinx環境ひとめぐり
̶̶エディタ、ビルド、バージョン管理、公開

第20回

$ sphinx-autobuild -b html source/ _build/html/

+--------- manually triggered build ---
¦ Running Sphinx v1.4.1
 （..中略..）
¦ build succeeded.
+--

[I 160611 15:22:43 server:281] Serving on http://127.0.0.1:8000
[I 160611 15:22:43 handlers:59] Start watching changes
[I 160611 15:22:43 handlers:61] Start detecting changes

 ▼図7　sphinx-autobuildコマンドを実行

+--------- source/index.rst changed ---
¦ Running Sphinx v1.4.1
 （..中略..）
¦ build succeeded.
+--

+--------- source/index.rst changed ---
¦ Running Sphinx v1.4.1
 （..中略..）
¦ build succeeded.
+--

[I 160611 16:07:31 handlers:132] Browser Connected: http://localhost:8000/index.html

 ▼図8　変更を検知してビルドを自動で実行

Makefileに自動ビルドのターゲットを追加する
　sphinx-autobuildを利用するにあたって、Make
fileにリストAを追加すると、make livehtmlと入
力するだけで自動ビルドを実行できるようになり

ます。この方法は sphinx-autobuildのpypiページ
（注5参照）の「Makefile integration」にも書かれて
います。

COLUMN

livehtml:
 sphinx-autobuild -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html

 ▼リストA　Makefileにターゲット追加

152 - Software Design

　最後に公開です。第7回「Webサイトを作ろう
（後編）」ではRead the Docs注9を使用した公開方
法を解説しました。Read the Docsはもともと
Sphinx専用に作られたサービスなので、Sphinx
ドキュメントを公開するのに適しています（現在
はSphinx以外にMkDocs注10にも対応していま
す）。
　Sphinxで生成したHTMLはそのまま配信でき
るため、Read the Docs以外のサービスでもHT
MLファイルを配信可能なサービスを利用するこ
とでドキュメントを公開できます。有名なサービ

注9） https://readthedocs.org

注10） Markdownで書かれたドキュメントからHTMLを生成する
ツール。　http://www.mkdocs.org/

公開する
スとしてはGitHub Pages、Bitbucket、Amazon
S3などがあります。VPSやレンタルサーバを利
用しても良いでしょう。
　前の「バージョン管理する」の節で触れたとお
り、今回はGitHubでバージョン管理から公開ま
でを完結させます。GitHub Pagesでは表1のよ
うに、リポジトリの特定ブランチのファイルを
公開できます注11。

　表1に加え、2016年8月23日からプロジェク
トページではmasterブランチのdocs/直下の
ファイルを公開できるようになりました注12。
　以下、公開手順を説明していきます。

GitHub Pagesで公開するとき
の注意点

　GitHub Pagesで公開する際に注意点がありま
す。Sphinxでビルドしたファイルをそのまま
GitHub Pagesで公開すると図9のような表示に
なります。
　これはGitHub Pagesの仕様注13で、アンダー
スコア（_）から始まるディレクトリを読み込め
ないために起こります注14。ビルド時に画像や
CSSファイルが_images/や_static/ディレクト
リに格納されるので、読み込みに失敗している
のです。次のどちらかの方法で回避する必要が
あります。

・docs/直下に.nojekyllファイルを追加する
・sphinxtogithub注15を使う

注11） https://help.github.com/articles/user-organization-and-
project-pages

注12） https://github.com/blog/2233-publish-your-project-
documentation-with-github-pages

注13） https://jekyllrb.com

注14） https://help.github.com/articles/files-that-start-with-
an-underscore-are-missing

注15） https://pypi.python.org/pypi/sphinxtogithub

Sphinxで始める
 ドキュメント作成術

 ▼図9　CSSや画像が表示されない

リポジトリの種類 URL 公開するファイルのブランチ
ユーザページ username.github.io master

オーガニゼーションページ orgname.github.io master

ユーザのプロジェクトページ username.github.io/projectname masterまたはgh-pages

オーガニゼーションのプロジェクトページ orgname.github.io/projectname masterまたはgh-pages

 ▼表1　リポジトリと公開用ブランチの対応

https://readthedocs.org
http://www.mkdocs.org/
https://help.github.com/articles/user-organization-and-project-pages
https://github.com/blog/2233-publish-your-projectdocumentation-with-github-pages
https://jekyllrb.com
https://help.github.com/articles/files-that-start-with-an-underscore-are-missing
https://pypi.python.org/pypi/sphinxtogithub

152 - Software Design Nov. 2016 - 153

　.nojekyllファイルを配備すると、アンダース
コアから始まるディレクトリもGitHub Pages上
で通常どおり読み込めるようになります。
　sphinxtogithubは、ビルド時にアンダースコ
アから始まるディレクトリをリネームするプラ
グインです。sphinxtogithubを導入し、make
htmlを実行すると図10のようにディレクトリ
をリネームしていることがわかります。

GitHub Pagesの公開設定

　ブラウザで、GitHub Pagesに公開するプロ
ジェクトのリポジトリを開き、「Settings」リン
クを選択します（図11）。SettingsページのGit
Hub Pages の Source を「master branch /docs
folder」に変更します（図12）。そして、「Save」
を選択します（図13）。
　これでmasterブランチのdocs/直下のファイ

ルを公開できるようになりました。

HTMLファイルをコミットする

　ビルドしたHTMLファイルをdocs/直下にコ
ピーし、変更をpushすれば公開完了です。設定
に誤りがなければ、CSSも正しく適用されるで
しょう（図14）。

　「ドキュメントを書く」～「ビルドする」の節で
は、エディタのプラグイン、ビルドツールを導
入し、ドキュメント作成時に繰り返し行う必要
がある煩雑な作業を自動化することができまし
た。「バージョン管理する」～「公開する」の節で
は、GitおよびGitHub Pagesを採用し、GitHub
内で完結してドキュメント公開する際の注意点

を紹介しました。
　これらを組み合わせることで、より
ドキュメント作成に集中できるように
なると幸いです。
　次回はSphinxドキュメントから
PDFを作成する方法を紹介していき
ます。｢

まとめ&次回予告

Sphinx環境ひとめぐり
̶̶エディタ、ビルド、バージョン管理、公開

第20回

 ▼図14　GitHub Pages上で正しく表示された

$ make html
sphinx-build -b html -d build/doctrees source build/html
 （..中略..）
build succeeded.
Renaming directory '_sources' -> 'sources'
Renaming directory '_static' -> 'static'

Build finished. The HTML pages are in build/html.

 ▼図10　sphinxtogithub導入時のmake htmlログ

 ▼図11　プロジェクトのリポジトリを開き、Settingsリンクを選択する

 ▼図12　GitHub PagesのSourceを
 変更する

 ▼図13　 GitHub PagesのSourceを
変更し、設定を保存する

154 - Software Design

Writer 杉山 広通 （すぎやま ひろみち）　㈱はてな

Mail sugiyama88@hatena.ne.jp

ブログ」などの主力サービスに加えて、受託開
発サービスやラボサービスも運営しており、た
くさんのサービスが存在します。また創業16
年の歴史を持つため、レガシーなものから先進
的なものまで、たくさんのプラットフォームを
同時にサポートする必要もあります。
　はてなでは、インフラ環境を自社のビジネス
へ適合させるため、自作サーバやXenを活用し
た仮想サーバ、AWSなどのパブリッククラウド、
Dockerと chrootの考え方を組み合わせた
「droot」注1と呼ばれている自作コンテナなどを
活用してきました。

効率的な管理を促進する
サービス・ロール・ホストの概念

　このようにはてなには、数十のサービスを支
えるための数百の役割を持った数千のホストが
存在します。そのため、非常に複雑かつ膨大な
組み合わせへの効率的な対処が必要となります。
そこではてなでは、サービス・ロール（役割）・
ホストという普遍的で汎用的な管理概念を一貫
して採用してきました（図1）。非常に大規模で、
ともすれば複雑で管理の難しいインフラ環境で
すが、この一貫した概念ですべてのサービスを
管理しているため、迷いがなくてわかりやすく、
さまざまな利便性を得ることができています。
結果的に、数名のインフラエンジニアでミドル

Mackerelではじめる
サーバ管理

　20回に渡ったMackerel連載。最終回では、サーバ監視ツール「Mackerel」がどの
ような目的・思想で開発されているのかを、「はてなブックマーク」「はてなブログ」
を支えてきたインフラ管理のノウハウ、昨今の開発事情とともに振り返ります。

　前回はAmazon Web Services（以下、AWS）上
の各種サービスを簡単に監視するためのしくみ
である「AWSインテグレーション」を紹介しまし
た。今までの連載では、Mackerelの基本的な使
い方からAPIやコマンドラインツール「mkr」を
用いた少し進んだ使い方、プラグインの書き方、
ユーザの活用事例などを紹介してきました。
　今回は本連載の最終回となるため、Mackerel
の生い立ちや思想、今後のビジョンについて紹
介します。

Mackerelの生い立ち

動的で複雑なインフラ環境

　仮想サーバやコンテナ技術、サーバレスアー
キテクチャなどをはじめとするインフラストラク
チャ・プラットフォームは、日進月歩の進化を遂げ、
ますます便利になっています。おかげで従来では
考えられないようなスピードでサービスを立ち上
げ、ビジネスを展開できるようになりました。一方、
この動的なインフラ環境は複雑性もはらむため、
適切に維持管理する難しさも生じています。

はてなのインフラ環境
（自作サーバから自作コンテナまで）

　はてなは、「はてなブックマーク」や「はてな

最終回 Mackerelの生い立ちから思想、
今後について

注1） https://github.com/yuuki/droot

https://github.com/yuuki/droot

154 - Software Design Nov. 2016 - 155

ウェアから下のレイヤを効率的に管理すること
に成功しています。もちろんこの概念は、
Mackerelの基本的な管理概念へも採用されて
います。

Mackerelの思想

DevOpsライフサイクルと支援ツール
の関係

　ビジネスのスピードを牽引するため、昨今の
DevOpsライフサイクル注2はより高速化する一
方で、日に何度もこのライフサイクルを繰り返
すサービスもあたりまえになってきました。こ
のように開発と運用がより短時間で持続的なラ
イフサイクルを成すためには、優れたアーキテ
クチャや整備された体制はもちろん、DevOps

 ▼表1　代表的なDevOpsツール

カテゴリ ツール

モニタリング
Mackerel、NewRelic、
Nagios、Zabbix

インフラ構成管理
Puppet、Chef、Ansible、
Salt

インフラテスト Serverspec、InSpec

デプロイ Capistrano、Fabric

CI Jenkins、CircleCI

開発フロー管理 GitHub、Bitbucket

 ▼図1　サービス・ロール・ホスト

サービス

ホストホストホストホストホスト ホスト ホスト

ロール ロール ロール

 ▼図2　課題のあるツールの組み合わせ

モニタリング Nagios

個々のツールでインフラストラクチャを管理するには？

インフラ構成管理 Chef

デプロイ Capistrano

Xen

droot

AWS EC2

を支援するためのツールも必要となります。

動的であるがゆえの難しさ

　表1のように、DevOpsを取り巻く環境には
多種多様な効率化ツールやサービスが存在して
います。汎用的にベストな組み合わせなどなく、
取り扱うインフラ環境や目指す思想、担当者の
趣向などにより最適な組み合わせは千差万別と
なります。
　そのため、個別ツールごとの静的な作法に委
ねてオンプレ環境やクラウド環境をまたいだ動
的なインフラストラクチャを管理することは、
非常に困難です（図2）。たとえば、動的に更新
されるホストなどのインベントリ情報を個々の
ツールで正確に維持管理しなければならないか
らです。

最終回

Mackerelの生い立ちから思想、今後について

注2） フィードバック→開発→テスト→デプロイ→監視フェーズなどの永続的なループ。

156 - Software Design

 Mackerelではじめるサーバ管理

　Mackerelはユーザからの要望を第一に考え、
はてなの大規模な環境でドックフーディングを
しながら、常に進化注3しています。

　Mackerelでの監視やホストレジストリの流
れは非常に簡単です。

①ホスト起動時に必ずサービスとロールをセッ
トしてMackerelエージェントを起動（最低
限必要なことはこれだけですが、加えて任
意のKey-ValueをMackerelへ登録すること
もできます）

②Mackerelにホスト情報が登録され、あらか
じめ定義した監視が始まる

③APIやコマンドラインツールの「mkr」を利用
し、Mackerelから動的に情報を取り出して
別のツールで再利用（JSON形式で取得でき
るため可読性が高くjq注4などのフィルタで
再利用しやすい）

”Infrastructure as Code”
の実践

　“Infrastructure as Code”はインフラをコー

　はてなではこの問題への対処として、ホスト
などのインベントリ情報をMackerelへ動的に
一元集約して管理してきました。これにより、
従来では個々のツールで保持しなければならな
かったホストなどのインベントリ情報を、便利
で柔軟なAPIを介してMackerelから動的に取
り出せるようになりました。個々のツールは疎
結合な状態を維持できるため、ベストなツール
を制約なく組み合わせて活用することができて
います。
　このようにMackerelを活用することで、動
的で複雑になるインフラ環境を簡単にわかりや
すく管理できます。現在のMackerelは進化を
重ねた第四世代で、サーバ監視サービスとして
監視やメトリック可視化などの機能を主軸とし
て提供しつつ、動的な環境情報をより高精度に
把握して有効活用できるようになっています。
　たとえば図3のように、自動的にDNSへレ
コードを登録したり、SSHでサーバへ接続す
るときもロールを指定するだけでロール全体に
一斉にログインできるようにしたりと、アイデ
アしだいで効率化のレベルを高められます。

 ▼図3　Mackerelで集約したツールの組み合わせ

インフラ構成管理 Chef

モニタリング、
ホストレジストリ Mackerel

デプロイ Capistrano

SSH オペレーティング tmux

DNS レジストリ tinydns

Xen

droot

AWS EC2

Mackerelへのホストレジストリ

Mackerelを中核とした疎結合で柔軟
な連携

注3） Mackerelはサービス開始以来、100週以上連続で新しい機能をリリースし続けています。
注4） https://stedolan.github.io/jq/

https://stedolan.github.io/jq/

156 - Software Design Nov. 2016 - 157

ドで宣言的に記述して管理することで、今まで
ソフトウェアの開発で何十年と培ってきた有効
性の高いさまざまなベストプラクティスを、イ
ンフラへも適用するという考え方です。
　おもな活用メリットとしては、動的なインフ
ラへ対処しやすくなることはもちろん、迅速か
つ確実に同じ変更が何度でも適用可能になるこ
と、障害からの復旧時間の短縮、コードレビュー
によるサービス品質の向上など、駆使すること
で属人性のある単純作業から離れ、価値あるこ
とにより時間が割けるようになります。
　Mackerelが実現してきたことは、まさにこ
の考え方に基づくもので、Infrastructure as
Codeをより促進できるようMackerel自体の監
視設定もコードで管理できるようにしています。
　たとえばMackerelの監視設定をGitHub上で
コード管理してPullRequestで変更レビューし
ながら監視設定を変更したり、CircleCIで
GitHub上のコードとMackerelの監視設定との
整合性を定期的にテストし、結果をチャットサー
ビスのSlackへ通知することもできます（図4）。
　このようにして監視設定をコードで管理して
可視化することで、「Dev」エンジニアがインフ
ラの構成を把握し、PullRequestで「Ops」エン
ジニアへ変更リクエストを出したりできるため、
開発と運用をより密接な関係にし、サービス品
質向上へもつなげられると考えています。

　Mackerelは、サーバ監視やホスト管理を主軸
としながら、Infrastructure as Codeの実践を可
能にするサービスです。そこには、今まではて
なが培ってきたインフラ哲学が集大成されており、
限られたリソースで効率よく持続的に管理する
ためのノウハウが詰め込まれています。
　直近ではホストレジストリの強化として、任
意のKey-ValueをMackerelへ登録できるように
なりました。たとえば、導入されているパッケー
ジ名称とバージョン番号を登録しておくことで、
脆弱性の発覚したパッケージ名称と特定のバー
ジョン以下の組み合わせで、該当ホストを抽出
して一気に対策するような使い方が考えられます。
　今後は、異常検知など今まで人手では難しかっ
たことをアルゴリズムを駆使して通知できるよ
うにしていこうとしています。もちろん、従来
からの監視機能やメトリック情報の可視化など
も引き続き強化していきます。また、サービス
の成長に合わせた次世代プラットフォームへの
移行も検討しており、ますます目が離せない存
在となります。
　最後になりましたが、全20回にも渡りご愛読
いただいたみなさんに、御礼申し上げます。ぜひ、
これからのMackerelにご期待ください。ﾟ

 ▼図4　mkrコマンドによるMackerelのコード管理とGitHub・CircleCI・Slack連携

git pull/push

mkr pull/push

mkr diff

ユーザ

通知

GitHub CircleCI

SlackMackerel

Mackerelの今後

最終回

Mackerelの生い立ちから思想、今後について

158 - Software Design

今回は、2016年9月に公開されたMySQLの脆弱性（CVE-2016-6662）の話題です。これは、MySQL
の設定をバイパスすることで、MySQLのroot権限が入手できてしまうというものです。ただ、
この脆弱性はそのしくみや影響はさることながら、情報公開のタイミングや、公開のリスクにつ
いても考えさせられるものがありました。

MySQL

　Oracle MySQL（以下、MySQL）は非常に多く使
われているオープンソースのリレーショナル・デー
タベース注1です。
　Webサービス開発でのキーワードLAMP（Linux、
Apache、MySQL and PHP）からわかるように重要
なソフトウェアです。WordPress、phpBB、MyBB、
Drupalといった広く利用されているコンテンツマ
ネージメントシステムのプラットフォームに採用さ
れているだけではなく、Google、Facebook、Twitter、
YouTubeといったインターネットのサービスでも
利用されているデータベースであり、またAmazon
EC2といったクラウド環境でも提供されている
データベースでもあります。
　最初、スウェーデンのMySQL AB社が開発して
いましたが、2008年にMySQL ABがSun Micro
systems社に買収され、さらにそのSun Microsys
temsが2010年にOracle社に買収されました。その
ため、現在ではOracle MySQLという形で、Oracle
社が著作権および商標権を持っています。ライセン
スはGPL v2とプロプライエタリのデュアルライセ
ンスになっています。
　MySQLのアップデートやコードのマージ、そし

て配布に関しては最終的にOracleが行う形で現在
は運用されています。
　これ以外にもMySQLから派生したデータベース
があります。今回関係しているMariaDBとPer
cona Serverは、MySQLから派生したデータベース
です。MariaDBはMySQLのオリジナル作者による
派生で、Percona ServerはPercona社が提供する
MySQL互換のデータベースで、いずれもオープン
ソースです。

MySQLの脆弱性
CVE-2016-6662

　CVE-2016-6662の脆弱性について、まずは
MITRE社のCVE（Common Vulnerabilities and
Exposures：共通脆弱性識別子）のサイト（図1）から
確認し、手短に概要を書いてみたいと思います。

影響するバージョン範囲
●●MySQL：　5.5.52、5.6.x〜5.6.33、5.7.x〜5.7.15
●●MariaDB：　5.5.51以前、10.0.27以前の10.0.x、

10.1.17以前の10.1.x
●● Percona Server：　5.5.51-38.1以前、5.6.32-78.0

以前の5.6.x、5.7.14-7以前の5.7.x

脆弱性の内容
●●一般ユーザがgeneral_log_fileのしくみを利用す

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第三七回】

すずきひろのぶ
suzuki.hironobu@gmail.com

ゼロデイ攻撃と脆弱性公開のリスクを考えてみる

注1）	 本誌の読者のみなさんには、いまさら説明は必要ないかもしれませんが。

Nov. 2016 - 159

【第三七回】 ゼロデイ攻撃と脆弱性公開のリスクを考えてみる

ると、一般ユーザには書き換えられないはずの

my.cnfを書き換え、任意の設定ができる。この

点を悪用して、malloc_libを入れ替え、それによ

りデータベースのroot権限の入手や、任意のデー

タベースの命令の実行が可能になる

mallocライブラリの
入れ替え機能を悪用

　CVE-2016-6662の脆弱性の詳細について、発
見者であるDawid Golunski氏の説明注2を参考に解
説します。
　MySQLは、プログラム中で動的にメモリを確保
する関数malloc()のライブラリを選択する設定が可
能です。このような選択ができるようにしている理
由は、実装されたmalloc関数の性能により、それ
を利用しているソフトウェア（この場合はMySQL）
の実行性能が大きく異なってくるからです。
　たとえば、GNU/Linux系
ではglibcで採用されている
ptmalloc（dlmalloc）を、Free
BSD系では jemallocを採用
しています。ほかにもGoo
gleが実装したTCMallocな
ど、mallocのライブラリには
いろいろな実装がありま
す注3。どのようなmallocの
実装を導入して使うかは、
状況に合わせてケースバイ
ケースと言えます。
　mallocはメモリを提供す
る関数であると同時に、そ
の確保した領域を不正に書
き換えるとバッファオー
バーフローから任意のコー
ドを実行させることができ
たり、あるいはアクセスで

きないはずの情報にアクセスし情報流出などが起
こったりすることになります注4。このようなことが、
たとえばOpenSSL Heartbeat Buffer Over-Read
（通称Heartbleed）のような脆弱性として現れてい
ます。
　もしこのmallocライブラリを、意図的に情報流
出や任意のコードを実行するようなメカニズムを組
み込んだ特殊なライブラリに置き換えることができ
たならば、悪意による利用が可能になります。
　この2つのこと、つまり「MySQLはmallocライ
ブラリを入れ替えられる」「正規のmallocではなく、
情報流出や任意のコード実行ができるライブラリを
用意する」ということができたならば、もう情報は
安全に管理できなくなります。

設定ファイルを書き換える

　mallocライブラリを入れ替えるには、MySQLを

注2）	 http://legalhackers.com/advisories/MySQL-Exploit-Remote-Root-Code-Execution-Privesc-CVE-2016-6662.html
注3）	 もしプログラマでメモリアロケーションに興味があればIBMの「メモリー管理の内側」（以下のURL）を参照すると良いでしょう。とくに、

このページには有用な参考文献へのリンクがたくさん用意されており、さらに詳しく知ることができます。	 	
https://www.ibm.com/developerworks/jp/linux/library/l-memory/

注4）	 メカニズムに関しては本連載の第13回「動的メモリアロケーションの落とし穴」（本誌2014年9月号）で説明しています。

◆◆図1　CVEサイトにおけるCVE-2016-6662のページ	 ◆
 （https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-20◆
 16-6662）

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6662
http://legalhackers.com/advisories/MySQL-Exploit-Remote-Root-Code-Execution-Privesc-CVE-2016-6662.html
https://www.ibm.com/developerworks/jp/linux/library/l-memory/

160 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

稼動させる際に使う設定ファイルでライブラリのパ
スを指定する必要があります。通常はCentOSであ
れば/etc/my.cnfです。Debianであれば/etc/mysql/
mysql.cnfおよび/etc/mysql/mysql.conf.d/以下に
用意されている設定ファイルです。
　もし、これらの設定ファイルをMySQLの実行権
限で書き換えることができると、今回の脆弱性が発
現します。ただし、CentOSにしてもDebianにして
もディストリビューションでのMySQLデフォルト
設定ファイルの所有者はrootです。ですので、と
くに余計なことをしなければ今回の問題は発生しま
せん。
　ですが、たとえば自分でMySQLをビルドしてイ
ンストールしたりするときにmysqlというUIDを作
成し、MySQLの参照するファイル類をmysqlの権
限で読み書きできるようにしてしまった場合とか、
あるいは自己流の管理をして、ディストリビュー
ションのデフォルトの所有者からMySQLを動かし
ている権限に変更した場合には、この脆弱性が現れ
ることになります。

SQL文をログに記録する機能を悪用

　ここからがなるほど、と思う部分です。

①MySQLにはgeneral_logという入力したSQL文

をすべてログに記録する機能がある

②general_log_fileで指定した設定ファイルを変更

することができる

③これらはmysqlのコマンドラインから入力する

ことができる

　これを組み合わせると、次のようなことが行えま
す。まずはDawid Golunski氏の説明にある実行結
果をそのまま載せます（図2）。
　図2を実行することにより、ファイル/etc/my.
cnfに追加の形で、次の入力が書き込まれます。

; injected config entry

[mysqld]
malloc_lib=/tmp/mysql_exploit_lib.so

[separator]

　これで、次回MySQLを立ち上げたとき、自動的
に/tmp/mysql_exploit_lib.soの中にあるmallocが
使われることになります。データベースの管理者権
限の情報を抜き取るなり、任意のプログラムを動か
すなりの情報を盗むことを目的とする実装をした
mallocが現れるのも時間の問題でしょう。
　繰り返しますが、通常のディストリビューション
では、設定ファイルは所有者がrootになっており、
このような問題は発生しません。ただし、このよう
な問題があるというのを知っていて、そうしている
わけではありません。この点においては予期せぬ脆
弱性だと思います。

脆弱性の対応と
公開／告知

　技術的にはなるほど、と思います。ですが、
この脆弱性が抜け道となり世の中で使われて
いるMySQLデータベースから次々と情報が
盗まれる、というレベルでもありません。深
刻な脆弱性であるにせよ、不幸中の幸いとい
うべきで影響は限定的だと言えるでしょう。
　さて、今回はその技術的な問題よりも、こ
の脆弱性の公開について考えさせられる点が
ありました。
　この脆弱性の発見者であるDawid Golunski
氏によれば、脆弱性に関する情報は2016年7
月29日時点でOracleのセキュリティチームに

mysql> set global general_log_file = '/etc/my.cnf';
mysql> set global general_log = on;
mysql> select '
 '>
 '> ; injected config entry
 '>
 '> [mysqld]
 '> malloc_lib=/tmp/mysql_exploit_lib.so
 '>
 '> [separator]
 '>
 '> ';
1 row in set (0.00 sec)
mysql> set global general_log = off;

◆◆図2　general_logで設定ファイルを変更する

Nov. 2016 - 161

【第三七回】 ゼロデイ攻撃と脆弱性公開のリスクを考えてみる

GNU/Linuxのディストリビューションで必ず採用
されているようなソフトウェアなら、複数のディス
トリビューション経由でセキュリティのアップデー
トが進むわけですから、その分、調整もたいへんに
なり40日でも足りないケースはたくさん出てくる
はずです。また足並みをそろえるのに定例アップ
デートのタイミングにしてルーチーン作業としてス
ムーズに進めるのも悪い考えではありません。

リスクとベネフィットを
どう考えるのか

　脆弱性を公開することには当然ながらリスク（危
険性）とベネフィット（恩恵）が存在し、そのバラン
スがどうなっているのかを考えなければなりませ
ん。そして、そのバランスをどう考えるかは10人
いれば10人違うでしょう。リスクを取るにしても、
ベネフィットを取るにしても、どちらかの極端な
ケースでない限り、もしかするとそんなに違いはな
いのかもしれません。
　脆弱性の公開に関しては、これまでも脆弱性が見
つかった時点ですべての情報を公開すべきであると
いう考え方の「フルディスクロージャ」を主張してい
る人たちはいますし、またその反対に「寝た子を起こ
すな」という人たちもいます。一筋縄ではいかないで
すし、もちろん「定石」となる答えも見つからないで
しょう。とにかく脆弱性の発生件数は多く、次から
次へと問題が降ってきます。それを現実的に解決し
ていかなければいけません。
　ただひとつ言えることは、毎回、リスクとベネ
フィットを考えて行動することです。個々の問題を見
てみると、同じような問題なのに対応が異なるという
ケースがあったとしても、そのような経験値を積んで
いくことで、ベストではないにしろ、うまく回してい
けるようになるのではないかと考えています。
　みなさんも、このリスクとベネフィットをどう捉
えてどう考えるべきなのか一緒に考えてみません
か？s

報告がなされているそうです。またPercona Ser
verとMariaDBにも同時に連絡しているそうです。
　Percona ServerとMariaDBに関しては8月30日
までにセキュリティパッチが提供されていました。
一方で、OracleはMySQLのパッチを定例パッチと
して10月18日に公開するスケジュールに組み入れ
ました。

●● Percona ServerとMariaDBのパッチは公開され

ており、MySQLの脆弱性は簡単にわかってしま

うためゼロデイ攻撃の可能性が高まった
●● 40日ルール注5を適用できる期日がきていた

　この2つの理由により、Dawid Golunski氏は今回
の脆弱性を公開することに踏み切ったそうです。
　筆者が確認した範囲では、設定ファイルがroot
所有ではなくmysqlのプロセスから書き込めるよう
な設定にしているディストリビューションは見つか
りませんでした。自分でわざわざ変更するか、ある
いはとてもたいへんな思いをしてスクラッチからビ
ルドするといった場合においてのみ、今回の問題は
発生することになります。
　デフォルト設定で問題が発生することは防げてお
り、それを勘案するならば、Oracleが今回の脆弱性
対応を定例アップデートに回したというのも、それ
ほどおかしなことではないと思います。
　繰り返し述べているように、この脆弱性情報を公
開しても、影響を受けるのは利用者自ら変更を加え
ているようなケースです。そのような人たちは技術
的に一定の理解ができる人たちであり、今回の脆弱
性情報に接する機会も大きい、と考えることもでき
ます。だから、ゼロデイ攻撃の可能性がある時点で
公開するというのも一理あります。
　ただし、すでに次の対応リリースの日付も決まっ
ている中で、40日ルールを適用するというのも
ちょっと違う気がします。同じ機能だとしてもソフ
トウェアごとの利用の広がりを考慮に入れる必要は
ある、と筆者は思っています。
　とくに利用範囲の大きいソフトウェア、たとえば

注5）	 脆弱性が届けられて40日経っても脆弱性対応がなされない場合、ゼロデイ攻撃を勘案して脆弱性を公開する。

162 - Software Design

テンプレートの利用

　OpenShiftは、アプリケーション作成の雛形と
して利用できるテンプレートを備えています。こ
のテンプレートには、アプリケーションのビル
ド／デプロイ時の設定、アプリケーションへの
アクセスポイント、利用するソースコードやデー
タベース、アプリケーション作成時に指定でき
るパラメータなどの情報が含まれています。デ
フォルトで提供しているテンプレートについて
は、「oc get template -n openshift」で確認
できます。なお、OpenShiftでは「openshift」と
いう特別なプロジェクトを持っており、openshift
プロジェクトに登録されたテンプレートは
OpenShiftの全ユーザが利用できるように設定さ
れています。openshiftプロジェクトにあるテン
プレートを確認するために、「-n openshift」オ
プションを指定しています（図1）。
　確認したテンプレートを利用して、開発者は

アプリケーションを作成できます。前回は簡単な
Node.jsアプリケーションを作成しましたが、今
回はMongoDBデータベース付きのテンプレート
「nodejs-mongodb-example」を利用してNode.js
アプリケーションを作成してみます。
　このテンプレートはWelcomeページのアクセ
ス回数を、MongoDBに保存するNode.jsアプリ
ケーションを作成するためのものです。ただし、
このMongoDBはコンテナ上に存在するため、脆
弱性やバグ修正などでMongoDBのコンテナを
修正・再デプロイすると、コンテナ内のデータ
領域に保存されたアクセス回数が消去されてし
まいます。そこで、そのようなコンテナの再デ
プロイの場合にもデータが消えないよう、外部
ストレージの利用を考えてみます。OpenShift
の基盤技術であるDocker/Kubernetesでは、利
用可能な外部ストレージを永続ボリューム（PV：
Persistent Volumes）として定義し、ユーザが必
要に応じて永続ボリュームを利用する（PVC：
PersistentVolumeClaims）ための設定を行いま
すが、OpenShiftでも同様の作業を実施する
ことで外部ストレージ注1を利用できます。

永続ボリュームの利用

　OpenShiftでは、PVの情報はデフォルト

 ▼図1　OpenShiftのテンプレートの確認とNode.jsの作成

$ oc get template -n openshift
NAME
 ……中略……
nodejs-example
nodejs-mongodb-example
$ oc new-app --template=nodejs-mongodb-example

注1） URL http://red.ht/2d4OSPx

 Author 小島 啓史（こじまひろふみ）
	 mail：hkojima@redhat.com

レッドハット㈱ テクニカルセールス本部 ソリューションアーキテクト

前回はOpenShift Container Localの概要から簡単な
アプリ作成まで紹介しました。今回はテンプレートの利用
やアプリケーションのリリース管理を紹介していきます。

Red Hat OpenShift Container Local part2

第4回

レッドハット系ソフトウェア最新解説

http://red.ht/2d4OSPx

Nov. 2016 - 163162 - Software Design

　ちなみに、PV接続などの作業をテンプレー
ト化することもできます。その場合は、既存テ
ンプレートの修正をすることでより効率化でき
ます（図4）。こうしたカスタムテンプレートの
作成機能を使用すると、アプリケーションの環
境を使い回せるので、開発／テスト／本番環境
で同じ環境を利用できるようになります。

　Podのコンテナの起動と再起動

　Kubernetes/OpenShiftは、コンテナをPodと
いう単位で制御します。Podには単数または複
数のコンテナが入っています。デフォルトのテ
ンプレートには、Podが1個起動する（Podの数
は動的に変更可能）ように制御される設定が含ま
れていますので、「oc get pod」で確認した
MongoDBのPodを「oc delete pod」で消去す
ると、自動的にMongoDBのPodが再起動され

でadminユーザしか見られないようになってい
ますので、まずはadminユーザでログインしま
す。OpenShift Container Localが 提 供 す る
CDKでは、デフォルトでPVが 3つ（pv01，
pv02，pv03）設定されています。この3つのPV
には、CDKのNFSによるディレクトリのエク
スポートを割り当てています。こうした情報は、
「showmount」や「oc get pv」で確認できます。
　PVCは用意されていませんので、PVCを作
成するためのpvc01.yamlファイルを作成します。
pvc01というPVCが、pv01を1Gi分利用すると
いう設定をYAML形式で記載しています。PV
やPVCの文法などの詳細な解説は、Kubernetes
の公式ドキュメント注2に記載されていますので、
そちらもあわせて参照ください。最後にpvc01.
yamlを利用して、PVCを作成します（図2）。
　作成したPVCを利用して、PVをMongoDB
のコンテナに接続してみます。ちなみに、PV
接続などといったアプリケーションのデプロイ
に関連する設定は、OpenShiftではDeployment
Config（以降、DCと記載)というオブジェクト
の中で設定することになります。DCの一覧を
「oc get dc」で確認できますので、MongoDBに
関するDCにPVを追加するためのコマンド
「oc volume dc/mongodb」を実行して、PVを
MongoDBコンテナに接続します。この例では、
マウント先をMongoDBのデータ保存場所に指
定しています。コンテナからPVを外すときは、
--removeオプションを指定します。このとき、
PV接続時に指定した名前（この例ではv1という
名前）を指定する必要があります（図3）。

注2） URL http://kubernetes.io/docs/user-guide/persistent-volumes/
注3） URL nodejs-mongodb.yamlを修正したもの（https://git.io/viFtA）

 ▼図2　PVCの作成手順

$ oc login -u admin -p admin
$ showmount -e
Export list for rhel-cdk:
 ……中略……
/nfsvolumes/pv01 *
$ cat <<EOF > pvc01.yaml
apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
 name: "pvc01"
spec:
 accessModes:
 - "ReadWriteMany"
 resources:
 requests:
 storage: "1Gi"
 volumeName: "pv01"
EOF
$ oc create -f pvc01.yaml

 ▼図3　MongoDBのコンテナへのPV接続と切断

$ oc volume dc/mongodb --add --name=v1 -t pvc --claim-name=pvc01 --mount-path=/var/lib/mongodb/data
$ oc volume dc/mongodb --remove --name=v1

 ▼図4　OpenShiftのカスタムテンプレートの作成

$ oc export template nodejs-mongodb-example -n openshift > nodejs-mongodb.yaml
$ oc create -f nodejs-mongodb-persistent.yaml※注3 -n openshift

Red Hat OpenShift Container Local part2第4回

http://kubernetes.io/docs/user-guide/persistent-volumes/
https://git.io/viFtA

164 - Software Design

て識別されており、各ハッシュ値に付けられた
タグがOpenShiftのアプリケーション作成時に
利用されています。タグには任意の名前を付け
られますが、latest、2.6、2.4……などバージョ
ン番号を表すものを利用することが一般的です。
OpenShiftではこうした latestなどのタグを
nodejsやmongodbなどの名前でグループ化し、
Image Streamとして管理しています。たとえば
CDKのデフォルトでは、mongodbに関する
Image Stream は「oc get is mongodb -n

openshift」を実行することで、「2.4, 2.6,

latest」の3つのタグがあることが確認できま
す（図5）。ちなみに、一度タグを付けられた
Dockerイメージは、そのタグが別のDockerイ
メージに付けられてもImage Streamに参照情報
が残りますので、「oc describe」でDockerイ
メージの履歴として確認できます。

OpenShiftアプリケーション作成

　それでは、リリース管理を意識したOpenShift
のアプリケーション作成を実施してみます。ま
ず、openshiftプロジェクトの Image Stream
「mongodb」の最新版をテスト環境用のデータ
ベースとしてデプロイしてみます。作業場所と
なる test01プロジェクトを作成し、test01プロ
ジェクトからopenshiftプロジェクトの Image
Stream「mongodb」の最新版を、test01プロジェ
クトのImage Stream「testdb」の最新版として利

る様子を確認できます。Podが再起動しても、
MongoDBのデータがPVに保存されている場
合、コンテナ再デプロイによるデータ消去が発
生しないことも確認できます。

$ oc delete pod/mongodb-1-PODNAME_1

アプリケーションの
リリース管理

　OpenShiftは、アプリケーションを作成する
基となるDockerイメージを管理する機能を持っ
ています。たとえば前述したNode.jsアプリケー
ションを開発していくと、OpenShift内部のレ
ジストリに複数のバージョンのNode.jsや
MongoDBのDockerイメージが保存されていく
ことになります。要件によっては、開発環境は
バージョン 10、本番環境はバージョン 5の
Dockerイメージを利用するなど使い分けをする
場合があることも考えられます。その場合は、
OpenShiftのDockerイメージ管理機能である
Image Stream（IS）を利用することになります。

Dockerイメージ管理機能
「Image Stream」

　Image Streamの実体は、Dockerイメージを
参照するための情報（タグ）の集合体となります。
OpenShiftが参照するDockerイメージ注4は、
SHA256のユニークな64桁のハッシュ値によっ

注4） 外部のDockerリポジトリで配布しているDockerイメージの参照もできます。
注5） PullSpecはDockerイメージを実際にpull（取得）する場合に利用される、docker pullの引数です。OpenShiftのアプリケーション

作成時に、Dockerイメージを取得するために利用します。

 ▼図5　ImageStreamの確認

$ oc get is mongodb -n openshift
NAME DOCKER REPO TAGS UPDATED
mongodb 172.30.202.54:5000/openshift/mongodb 2.4,2.6,latest 18 hours ago
$ oc describe is mongodb -n openshift
 ……中略（出力結果を読みやすいように書き換えています）……
Tag Created PullSpec※注5
latest 3 hours ago REG_NAME_1/rhscl/mongodb-26-rhel7@sha256:HASH_NUM_3
2.6 3 hours ago REG_NAME_1/rhscl/mongodb-26-rhel7@sha256:HASH_NUM_3
2.4 1 hours ago REG_NAME_2/openshift/mongodb@sha256:HASH_NUM_2
<none> 3 hours ago REG_NAME_1/openshift3/mongodb-24-rhel7@sha256:HASH_NUM_1

レッドハット系ソフトウェア最新解説

Nov. 2016 - 165164 - Software Design

用できるように「oc tag」でタグ付けします（図
6）。タグ付けすると、Image Stream「mongodb」
の latestタグが参照するDockerイメージと、
Image Stream「testdb」の latestタグが参照する
Dockerイメージが同じものになります。そし
て、「oc new-app」で「testdb」を利用してアプリ
ケーションを作成します。
　次にテスト環境用のデータベースとしてデプ
ロイしたMongoDBのDockerイメージに変更を
加えるDockerfile（ここではrenewal01という空
ファイルを追加）を作成し、開発環境用のデータ
ベースとして利用する新しいDockerイメージを
「docker build」で作成します。このとき、「-t」
オプションで作成したDockerイメージにタグ付
けをし、「docker push」でタグ付けをした
DockerイメージをPushすることで、test01プ
ロジェクトに「devdb」という新しい Image
Streamを作成しています（図7）。
　そして開発環境用のデータベースのテストが
完了し、テスト環境用のデータベースとしてデ

プロイすることを考えてみま
す。そ の 場 合 は、Image
Stream「devdb」の latestタグ
が参照するDockerイメージ
を、「testdb」の latestタグで
も参照するように「oc tag」
でタグ付けします。すると、
アプリケーションが利用する
MongoDBのDockerイメー
ジが切り替わることになり、
自動的にMongoDBのPodが
再デプロイされることを、「oc

rsh」によるPodへのログインなどで確認できま
す（図8）。renewal01ファイルが作成されている
ことがわかるため、テスト環境用のデータベー
スが開発環境用のデータベースに切り替わった
ことが確認できます。この自動的な再デプロイ
については、テンプレート内のDCで無効にす
ることもできます。こうしたテンプレートの利
用やDockerイメージの切り替えにより、効率的
に継続的デリバリ（CD：Continuous Delivery）
を実現できるようになります。

まとめ

　今回はテンプレートやリリース管理について
紹介してきました。なお、OpenShiftには、ほ
かにもアプリケーションの開発を便利にするさ
まざまな機能（ロールバックによる世代管理や
サービス連携など）があります。そうした機能の
紹介を含んだ開発者向けのハンズオン資料が公
開されています注7ので、一度参照ください。ﾟ

注6） URL https://git.io/viFqU
注7） URL https://github.com/nekop/openshift-sandbox/blob/master/docs/developer-handson.md

 ▼図6　Image Stream「mongodb」を利用したアプリ作成

$ oc new-project test01; oc project test01
$ oc tag openshift/mongodb:latest testdb:latest
$ oc new-app -f nodejs-mongodb-persistent-tag.yaml※注6

 ▼図7　開発環境用のデータベースイメージの作成

$ mkdir works
$ cat <<EOF > ./works/Dockerfile
FROM 172.30.202.54:5000/test01/testdb:latest
MAINTAINER hkojima
RUN touch /var/lib/mongodb/renewal01
EOF
$ docker build -t 172.30.202.54:5000/test01/devdb:latest works
$ docker push 172.30.202.54:5000/test01/devdb:latest

 ▼図8　Dockerイメージの切り替え

$ oc tag devdb:latest testdb:latest
$ oc rsh mongodb-2-PODNAME_2
sh-4.2$ ls /var/lib/mongodb/
data renewal01

Red Hat OpenShift Container Local part2第4回

https://git.io/viFqU
https://github.com/nekop/openshift-sandbox/blob/master/docs/developer-handson.md

166 - Software Design

　前回はcrontab(1)を使い、タイムスケジュール
に従ってプログラムを実行する方法を説明しまし
た。Webから天気予報のデータを取得して雨が降る
場合にはメールするというスクリプトを取り上げま
したが、これはWebからデータを持ってきて活用
する例としてほかにも応用が利くので、今回はその
あたりを説明します。また、FreeBSDにおけるメー
ル機能（mail(1)）についても説明します。

ユーザが自分で
タイムスケジュールを設定

　前回は、fishで作成した天気予報通知シェルスク
リプト「wa.fish」を使ってcrontab(1)を説明しまし
た。今回はわかりやすいように、より一般的に使わ
れている/bin/shで作り替えたものをリスト1に掲
載します。

　このスクリプトを7時から22時の間に3時間おき
に実行するようにcrontab -eでリスト2のように
スケジュールを書き込みます。必要な環境変数を設
定してあるところもポイントです。これをちゃんと
設定しておかないと、開発中は動作したのに
cron(8)経由で実行すると正しく動かないといった
ことが起こります。
　ここまで設定して運用を始めると、雨が降りそう
になると図1、図2のようなメールが届きます。簡
単な例ですが、実用性の高い利用例です。次節から
内容を詳しく見ていきます。

スクリプトの内容

　スクリプトの中身は大きく分けると次のように

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第36回 ❖タイムスケジュールでプログラムを実行（その3）

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

▼▼図1　iPhoneに届いたメール

▼▼図2　Apple Watchで見た場合のメール（最近はApple▼
　　 Watchからできることが増えて便利）

Nov. 2016 - 167

▶第36回◀
タイムスケジュールでプログラムを実行（その3）

で強力なcurl(1)を使うのが便利です。オプション
はいろいろあります。1つポイントとして、curl(1)
で取得できなかった場合には--insecure -A
Mozilla/5.0 --location -getというオプションを
試してみてください。取得できるサイトが増えると
思います。curl(1)の説明はしませんが、これはか
なり使えるコマンドです。
　次に、取得したWebページ（ここではYahoo!ピ
ンポイント天気予報のWebページ）の内容の解析を
しています（②）。この部分はアドホックです。ケー

なっています。

①Webサイトからデータを取得

②データを解析

③必要がなければ処理を終了

④警告メールを送信

　リスト1を詳しく見てみましょう。
　まず①の、Webからコンテンツを取得する部分で
す。使うコマンドはcurl(1)ではなくfetch(1)で
もwget(1)でもなんでも良いのですが、一番多機能

#!/bin/sh

wa.sh
天気警報情報をメールで送信

作業用ディレクトリの作成と削除処理の設定
tmpd=/tmp/wa_$(date +%Y%m%d_%H%M%S)_$$; mkdir $tmpd
trap "rm -rf ¥"$tmpd¥"" EXIT

必要データ設定
url=http://weather.yahoo.co.jp/weather/jp/13/4410/13225.html
url2=http://tokyo-ame.jwa.or.jp/

天気予報データ取得
curl --get $url 2> /dev/null > $tmpd/src

天気情報を抽出
key=http://i.yimg.jp/images/weather/general/forecast/pinpoint/size40/
grep $key $tmpd/src ¦
時刻データを付与
awk 'BEGIN{i=0}{print i, $0;i=(i+3)%24}' ¦

sed 's/^¥([0-9]*¥) .*alt="¥([^"]*¥)".*$/¥1:¥2/' > $tmpd/tenki

天気予報の中に雨の予報がない場合には処理終了
grep 雨 $tmpd/tenki > /dev/null ¦¦ exit

天気予報をメールで報告
tenki=$(cat $tmpd/tenki ¦ tr '¥n' ' ')
printf "$tenki¥n¥n$url¥n$url2" ¦
mail -s "ALERT: $tenki" $USER

 ▼リスト1　雨が予想されている場合にはその旨をメールするスクリプト

SHELL=/bin/sh
TERM=xterm
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin
LANG=ja_JP.UTF-8

雨天注意報
0 7-22/3 * * * /Users/daichi/Documents/weather_alart/wa.sh > /dev/null

 ▼リスト2　crontab -eでタイムスケジュールを登録

...ⓐ

...①

...③

...④

...②

168 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

ます。最後にsed(1)の処理で時刻と天気の文字列
だけを抽出しています。これで天気予報データでほ
しい部分だけを抜き出しているというわけです。
　HTMLパーサを使って解析するということもで
きるのですが、HTMLデータは不適切な記述になっ
ていることも多くパーサで解析できないことがまま
あります。ほしいテキストデータだけを抜き出せれ
ば良いので、パーサを使って処理するよりもここで
示したようにgrep(1)で対象部分だけを抜き出し
て、awk(1)で編集し、さらにsed(1)で切り出しを行
うといった処理が有益です。
　もうちょっと厳密に処理を行う必要があるといっ
た場合には、いったんHTMLデータから改行デー
タをすべて削除したあと、sed(1)で必要な部分に改
行を挿入して整形してから切り出し処理を行うと
いった方法があります。この方法でだいたいほしい
部分のデータが抜き出せると思いますので、やって
みてください。
　次に、③の雨が降りそうなのかそうでないのかを
判断する部分です。ここではgrep(1)で「雨」という
キーワードがデータに入っているかを調べて、含ま

スバイケースで変わります。ここではgrep(1)、
awk(1)、sed(1)を使っています。たいていのテキス
トは、このあたりのテキスト処理系のコマンドを使
えばほしいデータを抜き出せます。こうしたデータ
の解析は1回限りのコードで、再利用は考えずにサ
クッと書いてしまうのがポイントです。
　アドホックな処理ですが、ここでデータを抽出し
ている処理を説明しておきます。
　まず、最初のgrepで天気情報を抜き出していま
す。このページのHTMLでは「http://i.yimg.jp/
images/weather/general/forecast/pinpoint/

size40/」のキーワードでgrep(1)すると天気情報の
みを抜き出すことができます。「http://i.yimg.jp/
images/weather/general/forecast/pinpoint/

size40/」がお天気アイコンへのパスになっており、
この部分を抜き出すとちょうどお天気情報だけを抜
き出すことができます。
　次に、awk(1)の処理で時刻データを追加していま
す。HTMLのほうでは最初が0時でそこから3時間
ごとの天気予報が掲載されていますので、awk(1)で
同じように0時から21時までの時刻を追加してい

 ...略 ...
>>>>>>>>>> The program "newaliases" must be run after
>> NOTE >> this file is updated for any changes to
>>>>>>>>>> show through to sendmail.
 ...略 ...
Pretty much everything else in this file points to "root", so
you would do well in either reading root's mailbox or forwarding
root's email from here.

root: me@my.domain

Basic system aliases -- these MUST be present
MAILER-DAEMON: postmaster
postmaster: root

General redirections for pseudo accounts
_dhcp: root
_pflogd: root
auditdistd: root
bin: root
bind: root
daemon: root
games: root
 ...略 ...

▼▼リスト3　/etc/aliases on FreeBSD 10.3-RELEASE

Nov. 2016 - 169

▶第36回◀
タイムスケジュールでプログラムを実行（その3）

れていない場合にはexitでシェルスクリプトを終了
させています。grep(1)は、一致しなかった場合に
は0以外の値で終了しますので、これを利用して処
理を切り分けています。||は前の処理が0以外で終
わった場合に次の処理を行うためのシンタックスで
すので、この処理で雨が降らない場合には処理を終
了する、という指定になります。
　そしてここを抜けたら、④でデータをメールで送
信しています。

システムからメールを送る

　スクリプトでは④の部分で結果をメールで送って
います。mail(1)コマンドのオプション-sで指定し
ている内容がメールのサブジェクト、$USERがメー
ルアドレス、printf(1)で出力してパイプに流し込
んでいる内容がメールの本文です。
　cron(8)はプログラムから出力があるとメールで
送信しますが、ここではメールのサブジェクトを指
定したいので、cron(8)からではなく、直接mail(1)
コマンドを実行してメールを送信しています。
　ここではメールアドレスとして$USERが使われて
います。自分の環境では「daichi」になるのですが、
このメールアドレスの実態は/etc/aliasesに書いて
あります。まず、デフォルトの/etc/aliasesを見て
みましょう（リスト3）。メールアドレスのエイリア
ス一覧のようになっています。多くの項目がroot
へのエイリアスになっていますので、通常はここに
rootのメールアドレスを登録します。これは、ほか
のアカウントに対しても有効です。たとえばここで
は、次の2行を追加したシステムを使っています。

root: daichi@example.co.jp
daichi: daichi@example.co.jp

　この例では、rootに対するメールもdaichiに対す
るメールも、daichi@example.co.jpに送信されるよ
うになります。なお/etc/aliasesは編集後、

% newaliases ｶ

のようにnewaliases(1)コマンドを必ず実行してく

ださい。newaliases(1)は、/etc/aliasesからデータ
ベースを作成するコマンドです。このコマンドを実
行しないと、書き換えた/etc/aliasesの内容が反映
されません。
　メールのサブジェクトを指定する必要はないとい
う場合には、mail(1)コマンドを使わないでスクリ
プトから文字列を出力するだけでメールが送信され
ますので、それを使えば良いでしょう。

ちょっとしたテクニック

　ⓐの処理は筆者がよく使っている実装です。知っ
ておくとコーディング上便利だと思うので説明しま
す。この処理で「/tmp/wa_20160911_180523_29112」
といったディレクトリが作成され、「$tmpd/」のよ
うな形で使えるようになります。さらに終了時に
は、自動的にディレクトリごと削除されます。
　このようにしておくと、foo bar > $tmpd/outの
ような形で一時ディレクトリにデータを書き出して
作業するといったことが簡単にでき、さらに終了時
にディレクトリの削除処理を気にする必要がなくな
ります。加えて、デバッグ時にはデータを一時ディ
レクトリに残しておくといったこともやりやすいの
で、デバッグにも利用できます。

さまざまな応用が可能

　今回取り上げたシェルスクリプトとcron(8)によ
るタイムスケジュールは、さまざまな応用が可能で
す。更新されたデータをチェックしたいWebサイ
トからデータを取得して、解析し、結果を報告す
る。そしてその動作はcron(8)経由で自動的に実施
させます。
　天気予報のサンプルはプライベートユース向けで
もありますが、これはそのまま現場作業者向けに天
気情報を送信するシステムとしても使えますし、取
得するデータ元を変更すれば、仕入れや販売などに
も応用が利きます。さまざまなシステム構築にも利
用できる基本的なテクニックです。s

170 - Software Design

Ubuntu Monthly Report第79回 Ubuntu Monthly Report

Network Managerの
VPNプラグイン

Ubuntu Japanese Team
あわしろいくや

今回はUbuntu 16.04 LTSのNetwork ManagerにVPNプラグインをインストールし、VPNサーバにアク
セスする方法を紹介します。

　Network Managerは、今や必須のネットワーク設
定ツールです。9月18日時点の最新版は1.4.0ですが、
Ubuntu 16.04 LTSでは1.2.0を採用しています。通
常UbuntuではLTSではあまり冒険はしないのです
が、16.04では1.2.0の開発版（1.1.93）に更新し、リ
リース後1.2.0にアップデートしています。
　Network Managerは、プラグインで対応する
VPNサーバを追加できます。このプラグインが
1.0.x以前と1.2.0では互換性がなくなりました。主
要なプラグインはNetwork Managerとともに開発さ
れていますが、中にはサードパーティのものもあり
ます注1。Network Managerの開発はRed Hatの開発
者が主体になって行っているのですが、同社のすご
いところはサードパーティ製VPNプラグインにも
1.2.0対応パッチを提供したところです。おかげで開
発がほぼ止まっていたものの、この件がきっかけで
メンテナーが交代し、ふたたび活発に開発されるよ
うになったものもあるくらいです。

　手軽なVPNサーバといえばPPTPが長らく使わ

注1） https://Wiki.gnome.org/Projects/NetworkManager/VPN に
すべてのリストがあります。

Ubuntu 16.04 LTSの
Network Manager

最近のVPNサーバ事情

れてきましたが、すでにセキュアでないということ
が明らかになって数年経っており、一線を退いた感
はありますが、それでも対応クライアントの多さと
簡便さでまだまだ使われているといったところで
しょう。しかしこのたび、最新版のmacOSとiOSで
サポートが打ち切られることになり、いよいよ使わ
れなくなっていくことになりそうです。ちなみに今
回PPTPサーバだけが手元で動作していなかったた
め、検証のために設定してみましたが、Ubuntuでも
簡単に動作しました注2。
　PPTPに代わって普及したのはL2TP/IPsecで
しょう。主要OSでもサポートされています。しか
し、使用環境によってはWindowsのレジストリを変
更してNATトラバーサルを有効にしなければいけな
いとか、古いバージョンのNetwork ManagerのL2TP
/IPsecプラグインは問題があってうまく接続できな
かったとか、そもそもL2TP/IPsecサーバに対応し
たルータは高価であるとか、いくつかの問題はあり
ます。それでも、よりこちらに流れていくのは間違
いないでしょう。
　UbuntuでVPNサーバを動作させたい場合は、
OpenVPNがいいのではないかと思います。最近で
はASUS製などのルータでも対応するようになって
います。デフォルトでクライアントが対応している
OSはないので別途VPNクライアントソフトが必要

注2） あまりちゃんと確認していないのですが、16.04では自動起動
はしないようでした。気をつけるのはそこぐらいのものです。

https://Wiki.gnome.org/Projects/NetworkManager/VPN

170 - Software Design Nov. 2016 - 171

Network ManagerのVPNプラグイン 第 79 回

ですが、各種OS用が用意されているので、あまり
困ることはないでしょう。
　今回はPPTPサーバを除いて、検証にはSoft
Ether VPNを使用しました。これは各種VPNサー
バと互換性があり、OpenVPNサーバやL2TP/IPsec
サーバ、今回検証しなかったSSTPサーバなどとし
ても振る舞うことができます。SoftEther VPNサー
バの設定は過去にも解説したことがありますが、あ
れでも不十分で、詳しくすると本連載数回分になっ
てしまうので解説は省略します注3。
　以上を鑑みて、今回はPPTPとOpenVPNとL2TP
/IPsecサーバに接続する方法を解説します。

　Network ManagerのPPTPプラグインは、Ubuntu
では［network-manager-pptp］と［network-manager-
pptp-gnome］という名前です。必ず両方必要なので
すが、これだけはデフォルトでインストールされて
います。というわけで、これを例にして設定方法を
解説します。
　Unityの右上にあるネットワークインジケーター
をクリックすると［VPN接続］があり、さらに［VPN
を設定］というサブメニューがあるので、これをク
リックします。［ネットワーク接続］が表示されるの
で、［Add］をクリックします。［接続の種類を選んで
ください］が表示されるので、プルダウンメニューか
ら［Point-to-Point Tunneling Protocol（PPTP）］を
選択し、［作成］をクリックします。
　接続画面が表示されるので、最低限［接続名］と、
［VPN］タブの［ゲートウェイ］と［ユーザ名］と［パス
ワード］だけは設定します。パスワードはそのままだ
と保存できないため、右側のアイコンをクリックし
てメニューを表示し、パスワードの保存方法を選択
します。［Store the password only for this user］に
しておくのが無難でしょう（図1）。
　よりセキュアに接続するため、［詳細］をクリック
します。［MPPE暗号を使用する］にチェックを入れ、

注3） Windowsで使う分にはさほど難しくはないのですが。

PPTP

［セキュリティ］を［128ビット（最も安全）］にすれば、
少しは安全にPPTPを使用できます（図2）。

　前述のとおりOpenVPNプラグインはインストー
ルされていないので、まずはインストールします。
コマンドラインで行う場合は、次のコマンドを実行
してください。

$ sudo apt install network-manager-openvpn*

OpenVPN

図1　PPTPのVPNタブの設定例

図2　PPTPの詳細設定

172 - Software Design

Ubuntu Monthly Report

　これで［network-manager-openvpn］と［network-
manager-openvpn-gnome］がインストールされます。
　OpenVPNのパスワード認証にはCA証明書が必要
ですが、OpenVPNサーバの実装によって対応方法が
異なります。ca.crtファイルが単体で存在する場合は
それを、SoftEther VPNのように拡張子がovpnの
ファイルの中に存在する場合はエディタなどで開いて
タグの<ca></ca>の部分をファイル名“ca.crt”として
保存します。その部分のみをコピーペーストしてもい
いですし、図3のようなワンライナー（これはあまりい
い例ではありませんが）を実行してもいいでしょう。
　あとは［VPNを設定］をクリックし、［接続の種類
を選んでください］で［OpenVPN］を選択し、編集画
面で［ゲートウェイ］を入力し、［タイプ］を［パスワー
ド］にし、［ユーザ名］と［パスワード］を入力して［CA
証明書］で先ほど生成したca.crtを指定し、保存しま
す（図4）。これはあくまでSoftEther VPNがサーバ
の場合の一番簡単な方法であり、OpenVPNの実装に
よっては設定方法が異なることもあります。

　L2TP/IPsecプラグインはUbuntuのリポジトリに
はないため、自力でビルドする必要があります。ビ
ルド方法は図5をご覧ください。

L2TP/IPsec

　もしかしたら本誌が発売されるころにはPPAなど
が用意されているかもしれないため、該当のGitHub
リポジトリ注4を確認してみてください。
　L2TP/IPsecの場合、通常のVPNタブの設定（図
6）のほか、プレシェアードキー（事前共有鍵）を設定
する必要があります。このプラグインの場合は、
［IPsec Settings］をクリックして［Enable IPsec tunnel

注4） https://github.com/nm-l2tp/network-manager-l2tp

$ awk '/<ca>/,/<¥/ca>/' /PATH/TO/FILE.ovpn | sed -e '/<[/]*ca>/d' -e '/^.$/d'>ca.crt

図3　ワンライナーの例

$ sudo apt install git
$ git clone https://github.com/nm-l2tp/network-manager-l2tp.git
$ cd network-manager-l2tp
$ sudo apt install intltool libtool network-manager-dev libnm-util-dev libnm-glib-dev libnm-glib-vpn-dev ｭ
libnm-gtk-dev libnm-dev libnma-dev ppp-dev libdbus-glib-1-dev libsecret-1-dev libgtk-3-dev libglib2.0-ｭ
dev xl2tpd strongswan
$ sudo ln -s /etc/apparmor.d/usr.lib.ipsec.charon /etc/apparmor.d/disable/
$ sudo apparmor_parser -R /etc/apparmor.d/usr.lib.ipsec.charon
$ sudo ln -s /etc/apparmor.d/usr.lib.ipsec.stroke /etc/apparmor.d/disable/
$ sudo apparmor_parser -R /etc/apparmor.d/usr.lib.ipsec.stroke
$ sudo systemctl disable xl2tpd.service
$./autogen.sh
$./configure --disable-static --prefix=/usr --sysconfdir=/etc --libdir=/usr/lib/x86_64-linux-gnu ｭ
--libexecdir=/usr/lib/NetworkManager --localstatedir=/var --with-pppd-plugin-dir=/usr/lib/pppd/2.4.7 ｭ
--enable-absolute-paths
$ make
$ sudo make install

図5　L2TP/IPsecプラグインのビルド方法

図4　OpenVPNのVPNタブの設定例

https://github.com/nm-l2tp/network-manager-l2tp

172 - Software Design Nov. 2016 - 173

Network ManagerのVPNプラグイン 第 79 回

to L2TP host］にチェックを入れ、［Pre-shared key］
にプレシェアードキーを入力します（図7）。［PPP
Settings］は、PPTPの［詳細設定］タブと同じにして
おくといいでしょう。

　原則としてVPNに接続した場合は、デフォルト
ルート（default route）はそちらに切り替わります。
怪しげな無線LANアクセスポイントなどを使用する
場合はそのほうが都合がいいですが、あくまでVPN
は補助的に使いたい場合もありますので、その設定
方法を紹介します。
　何も設定しない場合、ip routeコマンドを実行す

デフォルトルートを
変更する

ると図8のような結果になります。なお、PPTPサー
バのIPアドレスは削除しています。
　2つあるdefaultのうち、metricの値が小さいもの
がデフォルトルートになるため、PPTPサーバが選
択されていることがわかります。
　ルートの設定は［IPv4設定］タブの［ルート］をク
リックします。［192.168.3.0］は接続先のローカルIP
アドレスです。これを適宜変更し、あとは図9を参
考にして変更します。この設定を有効にしてip route
コマンドを実行すると図10のようにdefaultが1つだ
けになります。｢

図6　L2TP/IPsecのVPNタブの設定例

図9　デフォルトルートのサンプル設定

図7　L2TP/IPsecではプレシェアードキーを設定する

$ ip route
default dev ppp0 proto static scope link metric 50
default via 192.168.12.1 dev enp0s3 proto static metric 100
169.254.0.0/16 dev enp0s3 scope link metric 1000
192.168.3.2 dev ppp0 proto kernel scope link src 192.168.3.234 metric 50
192.168.12.0/24 dev enp0s3 proto kernel scope link src 192.168.12.52 metric 100
(PPTP Server) via 192.168.12.1 dev enp0s3 src 192.168.12.52

図8　VPNに何も設定しない場合

$ ip route
default via 192.168.12.1 dev enp0s3 proto static metric 100
169.254.0.0/16 dev enp0s3 scope link metric 1000
192.168.3.0/24 dev ppp1 proto static scope link
192.168.3.2 dev ppp1 proto kernel scope link src 192.168.3.234 metric 50
192.168.12.0/24 dev enp0s3 proto kernel scope link src 192.168.12.52 metric 100
(PPTP Server) via 192.168.12.1 dev enp0s3 src 192.168.12.52

図10　defaultが1つだけになっているのがわかる

174 - Software Design

　プログラミングが上達してくると、「他人の
書いたコードが気に入らない」、「汚く見える」
というシンドロームに陥ります。とくに、人の
コードをデバッグ・保守しなければならないと
きは、堪えます。人のソースコードを読むとい
うことは、その人のそのときの思考を1つ1つ
理解しながらたどっていくことです。理解し難
い、受け入れ難いは当然のことかもしれません。
著者も、数ヵ月して見た自身のコードが、まっ
たく残念だと思うことは頻繁にあります。一方
まれに10年以上前に書いた自分のコードに感
心することもあります。いずれにしても3ヵ月
もしたら、自分のコードも他人のものと変わり
ありません。
　あれもこれも否定して、コードを書き換えて
しまったり、コードを書いた人の人格まで否定
するような発言をすることは賢明ではありませ
ん。戦線拡大は不利益も拡大します。優れたソ
フトウェアエンジニアやシステムアドミニスト
レータは、不愉快は「ごくん」と飲み込んで、シ
ステムがどのように機能するかに注目して、ど
うしたら活用できるのか、最低限何を改善（ハッ
ク）すれば目的を果たせるのかを考えます。こ
のような建設的な考え方は近年DevOpsでの組
織と文化に対する提唱（お互いの尊重、お互い
に対する信頼、失敗に対する健全な態度、相手
を非難しない）やAgile Modelingの価値（コミュ
ニケーション、勇気、フィードバック、謙虚さ、
簡潔さ）と合致します。

所有者と権限

　Unixは、マルチユーザ・マルチプロセスの
オペレーティングシステムです。自分が編集し
ているファイルを、同時にほかの人が見たり編
集したりすることもできます注1。逆に権限を設
定すれば、自分だけしか読めない、実行できな
いファイルとすることもできます。また、プロ
セスにも実行しているユーザとグループの情報
があります。実行中のプロセスが、ファイルや
ディレクトリにアクセスする権限は、プロセス
のユーザとグループに従います。今回はこれら、
ファイルの所有者と権限、プロセスとの関係に
ついて少し掘り下げてみることにしましょう。

ファイルの基本属性とプロセスの実行者
　権限をはじめセキュリティの管理は、おもに
システム管理者の仕事です。今回説明する内容
は、一般ユーザとしてだけでなく、システム管
理者の視点も必要です。もちろん、自分のホー
ムディレクトリやファイルは、あなた自身の手
でしっかりと戸締まりしましょう。
　所有者とグループに対してファイル、ディレ
クトリのアクセス権限（図1）の設定が基本です。
実行できるプログラムに対してのセキュリティ
もファイルへのアクセス権限が軸です。安全に

注1） 編集中の情報がリアルタイムで共有されるわけではありま
せんが。

ユーザとグループ、ファイルの属性と権限がどのように関連しているか解説します。

 Author 中島 雅弘（なかじま まさひろ）　㈱アーヴァイン・システムズ

第　　回7 ファイルの属性と権限、プロセスの所有

174 - Software Design Nov. 2016 - 175

サービスが動くようにすること、セキュリティ
診断でも、ここから確認していきます。プログ
ラムを実行できないときは、権限があるかを確
認してみましょう。
　アクセス権限は、ファイルの①所有者、②属
するグループ、③その他の利用者、の3つの利
用者クラスに対して設定できます。そして、基
本の権限は“読み込み可能：r”、“書き込み可能：
w”、“実行／検索可能：x”の3つです。これを、
rwx bitsと呼ぶのでしたね注2。
　プロセスは基本、実行した人・グループのも
ので、そのプロセスがファイルをオープンした
り実行したりできるかは、対象のファイルに設
定された権限に従います。

setuid、setgid、sticky属性
　rwxに加えて、ファイルやディレクトリには、
setuid（set-user-id：セットuid）、setgid（set-
group-id：セットgid）注3、sticky（スティッキー）
の3つの属性を指定することができます（図2）。
　実行可能ファイルの setuid/setgid属性がオ
ンなら、実行者のuid/gidではなくてそのファ

注2） 連載第2回（本誌2016年6月号）参照。
注3） set-uid、set-gidと記述することがあります。

イルのuid/gidで実行します（図3）。
　サービスのユーザアカウント（たとえばユー
ザ＝www、グループ＝www）を作ります。プロ
グラムには所有者wwwとしてsetuidし、グルー
プwwwに実行権限を与えておけば、誰が起動
しても、サービスは常にwwwとしての権限で
実行されるようにできます。

　スクリプトファイルに対して、setuid/setgidを指
定しても実行者はファイル所有者にはなりません。ファ
イルを実行するプログラムは、たとえばシェルスクリ
プトであれば/bin/shや/bin/bashでしょうし、Ruby
スクリプトではrubyが実行されるファイルです。ス
クリプトは、これらシェルやRubyの動作手順を示し
たテキスト情報にすぎないからです。

第　　回7 ファイルの属性と権限、プロセスの所有

rwx bits

Group:gOwner:u Others:o

wr x xwr x wr x

読み 実行書き

 ▼図1　rwx bits̶̶3つの属性

setgid、setuid、sticky あり

Group:g

wr s

-- S

setgid on

Owner:u

wr s

-- S

setuid on

rwx on

rwx off

Others:o

wr t

-- T

sticky on

setgid、setuid、sticky なし

rwx bits

wr x

-- -

権限があるとき

権限がないとき

 ▼図2　lsの属性表示

Owner A
Group blue

Owner X
Group blue
rwxr-xr-x

User File

User A
Group blue

Process

しばりなし

Owner X
Group green

Owner X
Group blue
rwsr-xr-x

User B
Group green

Owner C
Group blue

Owner X
Group blue
rwxr-sr-x

User C
Group orange

所有者固定
＝setuid

グループ固定
＝setgid

 ▼図3　 setuid/setgidのあるファイルとプロセ
スの所有

176 - Software Design

　ディレクトリのsetgidがオンなら、そのディ
レクトリの中のファイルとサブディレクトリを
作成する場合のグループが、作成するユーザと
は無関係に、そのディレクトリのグループとな
ります。作業ディレクトリをグループで共有し
て使うときに役立ちます。
　ベトベト、ねばねば、貼り付くという意味の
sticky。ディレクトリに sticky bitが立ってい
る場合注4は、ディレクトリ中のファイルやディ
レクトリの削除制限をします。そのディレクト
リに入っているファイルは、ディレクトリに対
して書き込み権限を持っているユーザでそのファ
イルの所有者、ディレクトリの所有者、もしく
はスーパーユーザがファイルを削除したり名前
の変更ができます。つまりstickyを使えば、ディ
レクトリへのファイルやディレクトリ追加は許
可しても、削除や名前の変更ができないように
できます。

スーパーユーザ（root）は特別権限

　Unixでは、特別な権限を持ったスーパーユー
ザが存在します。rootというユーザで、UID

注4） 古くは、実行ファイルのstickyがオンになっていると、プ
ロセスができるだけ物理メモリ内にとどまるようにする仕
様でした。

とGIDが両方0です。rootには原則アクセスで
きないファイルやディレクトリ、制御できない
プロセスはありません（図4）。rootにもパスワー
ドを設定しておけば、普通にログインすること
もできます。セキュリティ上の理由から誰がスー
パーユーザになったか、記録が残るようにしな
ければなりませんが、rootで直接ログインして
しまうと、ログインした個人を識別できません。
そのため、スーパーユーザ権限でアクセスする
必要がある場合は、別の一般ユーザとしてログ
インして、suコマンドでユーザを変更した
り注5、権限を制御・許可された特定のユーザが
sudoコマンドを使ってスーパーユーザ権限を
発動します。

su̶Substitute User identity̶別のユーザ
idに切り替える

 書式
su [-] [ユーザ]

　「ユーザ」を省略するとrootになります。-オ
プションを指定すると、新規にログインした状
態と同じ、指定しなければ現在のシェル情報が

注5） この方法もセキュリティの理由で推奨されなくなりました。

Owner A
Group blue

rwx------

Owner B
Group blue

rwxr-x---

Owner C
Group blue
rwxrwxrwx

Unix は、複数の利用者が共存する環境

すべてのファイ
ル・ディレクト
リに問答無用で
アクセス可

A

Group blue

B

Group orange

C root

読み書き可

読みのみ可

 ▼図4　所有者、グループ、その他によるアクセス制御とスーパユーザ権限

176 - Software Design Nov. 2016 - 177

引き継がれます。

sudo̶SUしてDO̶別のユーザ権限でプロ
グラムを実行する

 書式
sudo [-s] [-u ユーザ] [コマンド]

　sudoは、ユーザ対象コマンドの権限を個別
に管理でき、sudoするとシステムのログに記
録されるなど、rootでの直接ログインやsuに
比べて安全面で優れています。-sオプション
を使うと、許可されたユーザ注6は、rootになる
ことができます。
　sudoコマンドを実行したときに要求される
パスワードは、現在の利用者のパスワードを入
力します。

ログイン時などで入力を修正するときのTIPS
　login、sudoなどでパスワードを求められるとき、
入力の途中で間違いに気がついて、バックスペースキー
で修正しようとしてもうまくいかないことがありませ
んか。この入力状態は、バックスペースが文字（l

＋H）と入力され、前の文字の取り消しは機能しません。
このときわざとログインを失敗して再挑戦するのは、
次のプロンプトが出るまでに時間がかかったり、場合
によっては複数の失敗でアカウントがロックされてし
まうこともあり、賢明な対応ではありません。
　パスワードなどの入力状態で使える編集操作キーは、
stty -aコマンドを実行したときに出力される情報、
“erase = ^?”や“kill = ^U”などなのです。Appleの
キーボードでdeleteと刻印されたキーボードはDEL

（アスキーコードで7F）が入力され、Windows系の
キーボードのほぼ同じ位置にあるバックスペース（BS
とかBACKとか←と刻印）はl＋H（アスキーコー
ドで08）になります。コマンドライン上は、DELもバッ
クスペースも直前の文字が取り消されるので区別がし
にくいかもしれません。で、“erace = ^?”の^?とは、
DELのことです。Appleキーボードでは、パスワー
ド入力で間違えた文字をgキーで修正できるの
ですが、Windowsキーボードではバックスペースで
はなくて、iキーが使えます。
　またパスワード入力は、入力文字が画面にフィード
バックされないので、何文字入れて、どこで間違えた
かわからないというのもありますね。このときは、“kill
= ^U”というところのl＋Uを使えば、入力をす

注6） sudoは /etc/sudoersで別のユーザになることができるユー
ザを限定できます。

べてキャンセルした状態となり、1文字目から入力を
やり直せます。ちなみにAppleキーボードでバック
スペースを入力するには、l＋Hを入力します。

ユーザ、グループとアクセス権限

id̶ID̶ユーザ ID、グループ IDなどを確認
する
　現在ログインしているユーザやグループを確
認する必要があるときには、idコマンドで確認
できます。ログインしているユーザには、現在
のユーザ名と対応する（ユニークな番号）UIDと、
現在のグループ名と対応する（ユニークな番号）
GIDがありますが、idはこのいずれの情報も確
認できます。ユーザ名だけを確認するのであれ
ば whoami、所属グループを確認するには
groupsなどのコマンドが idと同じように使えま
す。

 id Ubuntuでの例
$ id í
uid=1000(masa) gid=1000(masa) groups=1000ｭ
(masa),4(adm),24(cdrom),27(sudo),30(dip),ｭ
46(plugdev),113(lpadmin),128(sambashare)
$ id -un í
masa
$ id -gn í
masa

	� ユーザやグループの情報を確認・
編集する

　一般的なUnix系システムでは、ユーザ情報、グルー
プ情報が、/etc/passwd注7、/etc/shadow、/etc/group
/etc/gshadow注8に保存されています。
　これらのファイルを直接編集することで、ユーザや
グループを追加・変更・削除することができます。
　また、useradd、groupadd、userdel、usermod、
groupdelなどのコマンドを使って、ホームディレク
トリの管理などを併せて操作できます。
　OS X（10.6 以 降）で は、/etc/passwd、/etc/group
の情報は使わず、独自のディレクトリサービスを使う
ようになりました。このディレクトリサービスをコマ
ンドラインで使うdscl注9コマンドがあります。

注7） 暗号化されたパスワードファイル。
注8） 暗号化されたグループパスワードファイル。
注9） Directory Service Command Line utility

第　　回7 ファイルの属性と権限、プロセスの所有

178 - Software Design

newgrp̶NEW GRouP̶新しいグループに
ログインする
　ユーザは複数のグループに所属し、作業の役
割ごとにグループを変更できます注10。newgrpコ
マンドは、同じユーザ IDと新しいグループで、
新しいシェルを実行します（図5）。ユーザは指
定するグループに所属している必要があります。
所属していないグループを指定すると、newgrp
はそのグループに対するパスワードを要求しま
す。パスワードがマッチしなければ、そのユー
ザのデフォルトグループでシェルを起動します。

c h o w n̶C H a n g e O W N e r 、c h g r p̶
CHange GRouP̶ファイルやディレクトリ
の所有者、グループを変更する
　既存のファイルの所有者、グループ情報を変
更するには、chown、chgrpコマンドを使います。
chownは、通常スーパーユーザ権限で実行しま
す。chgrpは、自分が所属しているグループで
あればスーパーユーザでなくても変更できます。
　オーナー情報は、自分が所有しているファイ
ルでも、root権限でなければ変更できません。

注10） Linux系の環境では、groupに所属していても現在のグルー
プがファイルの実行権限と異なったグループの場合、実行
ができません。OS XなどBSD系の環境では、ファイルと
同じgroupに所属していれば実行ができます。

 rootではない一般ユーザによるchown実行の失敗例
$ chown root fig05.pptx í
chown: fig05.pptx: Operation not permitted

　chownで所有者とグループを一度にまとめて
変更することもできます。所有者名とグループ
名の区切りには“:”を使います（図6）。Linuxで
は名前の区切りに紛れがなければ“.”を使うこ
ともできます。:の前にユーザ名を指定しなけ
れば、グループのみを変更します。

chmod̶CHange MODe̶属性／権限を変
更する
　chmodコマンドは、ファイルの属性を2種類
の記法で変更します。属性の指定方法はrwxを
用いたシンボル表記と、8進数表記です（図7）。
　8進数表記（図7）は、setuid/setgid/stickyで
1桁、所有者（Owner）で1桁、グループ（Group）
で1桁、その他のユーザ（Other）で1桁の8進数
（合計4桁）を、各属性をオンにしたいところの
数字を足した値で表現します（表1）。setuid/
setgid/stickyを指定しない場合は、3桁で表記
することができます。
　シンボル表記は、次のように“対象 演算子
権限”という式で表現します。

(masa)$ whoami
masa
(masa)$ id -gn
staff
(masa)$ groups
staff everyone localaccounts _appserverusr admin _appserveradm _lpadmin
com.apple.access_screensharing com.apple.access_ssh _appstore _lpoperator _developer
com.apple.access_ftp
(masa)$ newgrp everyone

(masa)$

(masa)$ whoami
masa
(masa)$ id -gn
everyone
(masa)$ logout

新しい shell

現在のグループ

所属しているグループを確認

everyone グループに変更

 ▼図5　newgrp

178 - Software Design Nov. 2016 - 179

	 対象	 演算子	 権限
	［u￤g￤o］	［+￤-￤=］	［s￤t￤r￤w￤x］

u	……	所有者	 s	……	setuid/setgid
g	……	グループ	 t	 ……	sticky
o	……	その他	 r	 ……	読み込み
+	……	オンにする	 w	……	書き込み
-	……	オフにする	 x	……	実行
=	……	指定した権限にする

 chmodの使用例
 fileのモードをrwxrwxrwxにする
$ chmod 777 file
$ chmod ugo=rwx file
$ chmod ugo+rwx file

 fileのモードをrwsr-xr-xにする
$ chmod 4755 file

 グループとその他のユーザからrを取り去る
$ chmod go-r

サブディレクトリに再帰的に適用する
　chmod、chown、chgrpで、ディレクトリの下
全部の属性を変更したい場合は、recursive（再

帰）指定するオプション-Rで一括処理ができま
す。

今回のまとめと
次回について

　ファイルとディレクトリに設定できる属性に
ついて確認しました。
　互換性のため、同じような機能を持つコマン
ドもありますが、セキュリティ面、性能面など
を考慮して、適切に選択してください。
　次回は、シェルスクリプトへの入門です。｢

 ▼表1　 rwx bits̶̶8進数表記例
lsの表示 8進表記

rwx rwx rwx 777

rw- rw- r-- 664

r-s r-x --- 4550

rwx rws --- 2770

rwx --S --- 2700

rwx r-x r-t 1755

rws --- --T 5700

第　　回7 ファイルの属性と権限、プロセスの所有

bash-3.2# ls -l 123 í
-rw-r--r-- 1 masa staff 47 9 16 2015 123
bash-3.2# chown root 123 í
bash-3.2# ls -l 123 í
-rw-r--r-- 1 root staff 47 9 16 2015 123
bash-3.2# chgrp daemon 123 í
bash-3.2# ls -l í
total 40
-rw-r--r-- 1 root daemon 47 9 16 2015 123
bash-3.2# chown masa:staff 123 í
bash-3.2# ls -l 123 í
-rw-r--r-- 1 masa staff 47 9 16 2015 123

 ▼図6　 ファイル123の所有者、グループを変更して
みる

【manで調べるもの
（括弧内はセクション番号）】
su(1), sudo(8), sudoers(5), newgrp(1), id(1),
whoami(1), chown(1), chgrp(1), chmod(1), stty(1)
- Linuxのみ -
useradd(8), userdel(8), usermod(8), groupadd(8),
groupdel(8), groupmod(8)
- OS Xのみ -
stiky(8), dscl(1)

今回の確認コマンド

rwx bitssetuid/setgid/sticky bits

Group:gOwner:u

8 進数表記

Others:o

wr x xwr x wr x

24 124 1 x24 1 24 1

stickysetgidsetuid

 ▼図7　rwx bits̶̶3つの属性と8進数

180 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

くの読み込み側をブロックしてしまい、多くの
CPUコアにスケールしなくなるという問題があ
ります。
　そこでLinuxカーネルでは、リード・コピー・
アップデート（RCU）という排他制御がよく使わ
れています。RCUを使うことで書き込み側が読
み込み側をブロックすることなくデータを更新
できるようになります。それでは具体的に、
RCUで保護されたリストからアイテムを削除す
る様子を見てみましょう。
　リスト1のコードはext4の内のコードで、ei->
i_prealloc_listというRCUで保護されたリ
ストをたどっていく部分（リストの読み込み側）
です。list_for_each_entry_rcu()がRCU
で保護されたリストの各エントリをたどるため
のマクロとなります。読み込み側はリストのア
イテムを参照する区間を、rcu_read_lock()と
rcu_read_unlock()で囲まなければいけません。
ここで“read lock”とは言っていますが、実際に
はほとんど何もしないコードになっていて、読
み込み側はほかの読み込みスレッドや書き込み
側をまったく気にすることなく処理を行うこと
ができます。このrcu_read_lock、rcu_read_
unlockで囲まれた区間をRCU読み込み側クリ
ティカルセクションと呼びます。

Linux 4.2の
その他の変更

　Linux 4.8-rc7が9月19日にリリースされてい
ます。ここまで来るとだいたい次は正式に4.8
のリリース……となるのですが、今回はまだ
RCのpatchが落ち着いていないようです。とい
うことで、4.8のリリースは10月始めとなるでしょ
うか……。いずれにせよ、この記事が出るころ
には4.8がリリースされているでしょう。
　これまで数回に渡ってLinux 4.2の新機能を
紹介してきましたが、今回は latched rbtreeと
LSMのスタック化の紹介をして、4.2の紹介を
締めくくろうと思います。

RCUによる排他制御
　Linuxカーネル内のデータ構造は、同時に複
数のプロセスからアクセスされます。当然なが
ら排他制御をしなければ、たとえばリストの内
にあったはずのデータがなくなるなど、そのデー
タ構造は壊れてしまいます。排他制御というと
一般にロックを用いますが、多くの読み込み側
とごく少ない書き込み側がいるケースでは、そ
れが少しでも、書き込み側が動作している間多

Linux 4.2のlatched rbtree
とLSMのスタック化
Text：青田 直大　AOTA Naohiro

第56回第56回

180 - Software Design Nov. 2016 - 181

Linux 4.2のlatched rbtreeと
LSMのスタック化

第56回第56回

　リスト2のコードは、先ほどのi_prealloc_
listからアイテムを削除している部分です。
spin_lock()は、ほかのRCUリストの更新ス
レッドとの排他制御に使われています。list_
del_rcu()がアイテムはリストから削除してい
る関数です。削除するアイテムをXとすると、
list_del_rcu()は図1のようにAからXへのリ
ンクをBへと張り替えます。このとき、Xから
Bへのリンクはまだ残していることに注意して
ください。リンクの張り替えを行った時点では、
まだリストを読んでいるスレッドがいるかもし
れません。ここでXからBへのリンクを消して
しまうと、ちょうどXを読んでいたスレッドは
リストをたどれなくなってしまいます。切り替
え後のAやその前を読んでいたスレッドは、X
の消えた新しいリストを見ますし、X以降を読
んでいたスレッドは、Xのあった古いリストを
見ていたことになります。いずれにしても読み
込み側は問題なくリストをたどることができます。
　さてXをそのままにしていては、メモリリー
クとなってしまうので、どこか安全な時点でX
を削除する必要があります。これを行うのが
call_rcu()です。この関数は、呼び出された

時点でのRCU読み込み側クリティカルセクショ
ンが終わったあと、すなわちリストをreadして
いたスレッドがすべてリストを読み終わったあ
とに、指定した関数が呼び出されるようにスケ
ジュールします。このコードで呼ばれているの
はext4_mb_pa_callbackです。この関数が呼
ばれている時点では読み込み側は誰もXを参照
していないことが保証できているので、安全に
アイテムをkmem_cache_free()を使って削除で
きます（リスト2）。

RCUと赤黒木
　RCUによる更新は、リスト2の場合で見たよ
うにatomicな更新に依存しています。atomicな
更新ができない場合にはRCUがうまく動作しな

 rcu_read_lock();
 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
 (..中略..)
 }
 rcu_read_unlock();

 ▼リスト1　RCUリスト読み込み側

 spin_lock(pa->pa_obj_lock);
 list_del_rcu(&pa->pa_inode_list);
 spin_unlock(pa->pa_obj_lock);

 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);

static void ext4_mb_pa_callback(struct rcu_head *head)
{
 struct ext4_prealloc_space *pa;
 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);

 BUG_ON(atomic_read(&pa->pa_count));
 BUG_ON(pa->pa_deleted == 0);
 kmem_cache_free(ext4_pspace_cachep, pa);
}

 ▼リスト2　RCUリスト書き込み側

 A X B

A

X

B

 ▼図1　RCUで保護されたリストからのアイテム削除

182 - Software Design

Linuxカーネル観光ガイド

くなります。たとえば赤黒木（rbtree）への挿入
の場合を考えてみましょう。rbtreeへのノード
の挿入は、❶挿入位置の探索、❷挿入位置への
ノードのリンク、❸ツリーのバランスの3つの
ステップで行われます。❶、❷までは更新側同
士で lockをとりさえすれば、RCUを使って
atomicに行うことができます。しかし❸が曲者
で、ツリーのバランスの過程で読み込み側から
はアクセスできないノードができてしまう瞬間
があります。
　具体的に図2のようなツリーのバランス作業
を見てみましょう。図2の最初は“X”というノー
ドを新しく挿入したところです。説明の便宜上
XにはYとZという下部のツリーをつけていま

すが、本来は挿入直後ですのでどちらもNULL
になっています。また、Aの上の線はツリーの
上部からのAへの参照を意味しています。この
時点ではBとXがどちらも赤であり、赤黒木の
ルールに反しています。したがって、ここから
リスト3のようなコードで木を変形していきます。
　変数として「node=新しく挿入されたノードX」
「parent=Xの親ノードであるB」「gparent=parent
の親ノードであるA」と設定しています。また、
WRITE_ONCE(X, y)は、“X=y”をコンパイラに
最適化・順序入れ替えなどをさせないためのマ
クロです。最初のWRITE_ONCEではBの右の子が、
Xの左の子であるYになります。B、YはXよ
り小さいので、次のWRITE_ONCEでXの左の子を

Bにできます。同様に3つ目のWRITE
_ONCEで、ZをAの左の子にするとA、
C、ZはXよりも大きいので、AをXの右
の子とできます。最後に__rb_rotate_
set_parents()で、Xの色をAの色（＝
黒）にして、Aを赤にし、さらにAの親
ノードからの参照をXに張り替えます。
これでバランスが完成です。
　図2を見るとわかるように、バラン
ス中にツリーを読みにいくと、ツリー
のルートからの通常の探索ではたどる
ことができないノードが存在してしま
います。これではツリーの探索の結果
が信用できません。かといって、読み
込み側と書き込み側をロックで排他制
御すれば、最初に言ったようにスケー
ルしなくなります。

seqlockによる
排他制御

　こうした問題への解決策として、
seqlockの使用があります。たとえば
AFSで使われるRxRPCの実装には、
リスト4のようにseqlockが使われてい
ます。このロックは「シーケンシャル番号」
を持っていて、書き込み側がロックを

node = X;
parent = B;
gparent = A;

tmp = node->rb_left;
WRITE_ONCE(parent->rb_right, tmp);
WRITE_ONCE(node->rb_left, parent);

tmp = node->rb_right;
WRITE_ONCE(gparent->rb_left, tmp);
WRITE_ONCE(node->rb_right, gparent);
__rb_rotate_set_parents(gparent, node, root, RB_RED);

 ▼リスト3　バランスを行うコード

 A

 C B

Y Z

X B

Y

 A

 C
Z

 X

Y

 A

 C B B

 X

 C
Z

 A

Y

 B

Y

Z

X

 A

 C

 C

 B

Y Z

X

 A

 X

Z

 ▼図2　rbtreeのバランス（■部分は黒、■部分は赤を示します）

182 - Software Design Nov. 2016 - 183

Linux 4.2のlatched rbtreeと
LSMのスタック化

第56回第56回

とったとき、ロックを解放するときにそれぞれ
番号を1増やします。読み込み側は read_
seqbegin_or_lock()でシーケンス番号を確
認します。もし番号が奇数であれば、書き込み
側がいるということですので書き込み側がいな
くなるまでスピンして待ちます。書き込み側が
いなくなれば、そのときのシーケンス番号を“seq”
に保存します。探索後、need_seqretry()でシー
ケンス番号が変わっていないかどうかを確認し
ます。ここでもしシーケンス番号が変わってい
れば、探索中に書き込みがあり、ツリーが編集
されたということですので探索をやりなおします。
　このようにseqlockを使って、ツリー
の編集があればやりなおすようにすれ
ば、ツリーのバランスというatomicで
はない編集があっても正しい探索結
果を得ることができます。しかし
seqlockでは、読み込み開始時に書き
込み側がいる場合に、書き込み側が
いなくなるまで待ってしまいます。そ
うすると、書き込み側のコードの中で、
読み込みができません（読み込むとデッ
ドロックになってしまう）。そこでより
広いシーンで使うことができるデータ
構造として latched rbtreeという新し
いツリーがLinux 4.2から導入されま
した。

latched rbtreeを
使った排他制御

　Latched rbtreeは、rbtreeをatomicに更新で
きないという問題点を2つのツリーを保持する
ことで解決しています。latched rbtreeへの挿
入を行うlatch_tree_insert()と探索を行う
latch_tree_find()をリスト5に示します。
latch_tree_insert()からみていきましょう。
raw_write_seqcount_latch (&root ->seq);
はシーケンス番号をインクリメントし、探索側
がみるツリーを“ツリー1”の方に切り替えます。

// 読み込み側
 do {
 read_seqbegin_or_lock(&peer->service_conn_lock, &seq);

 p = rcu_dereference_raw(peer->service_conns.rb_node);
 while (p) {
 // 探索。見つかれば goto done;
 (..中略..)
 }
 } while (need_seqretry(&peer->service_conn_lock, seq));
done:
 done_seqretry(&peer->service_conn_lock, seq);

 ▼リスト4　seqlockの使用

static __always_inline void
latch_tree_insert(struct latch_tree_node *node,
 struct latch_tree_root *root,
 const struct latch_tree_ops *ops)
{
 raw_write_seqcount_latch(&root->seq);
 __lt_insert(node, root, 0, ops->less);
 raw_write_seqcount_latch(&root->seq);
 __lt_insert(node, root, 1, ops->less);
}

static __always_inline struct latch_tree_node *
latch_tree_find(void *key, struct latch_tree_root *root,
 const struct latch_tree_ops *ops)
{
 struct latch_tree_node *node;
 unsigned int seq;

 do {
 seq = raw_read_seqcount_latch(&root->seq);
 node = __lt_find(key, root, seq & 1, ops->comp);
 } while (read_seqcount_retry(&root->seq, seq));

 return node;
}

 ▼リスト5　latched rbtreeの挿入関数と探索関数

184 - Software Design

Linuxカーネル観光ガイド

その次の__lt_insert(node, root, 0, ops-
>less);は、“ツリー0”にアイテムの挿入とバラ
ンスを行います。その後、同様に探索対象を“ツ
リー0”に切り替えて、“ツリー1”にアイテムの挿
入とバランスを行います。
　読み込み側のコードは“seqlock”の読み込み
側と似ていますね。まず、raw_read_seqcount_
latch();でシーケンス番号を読み込みます。
シーケンス番号の下位1bitが探索すべきツリー
を示すので、そのツリーを指定して__lt_find()
で探索を行います。探索後にシーケンス番号が
変わっていた場合、探索対象としていたツリー
が探索中に更新されたということですのでもう
一度探索をやりなおします。このチェックは
seqlockと同様にread_seqcount_retry()で行
われています。
　挿入と探索のタイミングを詳しく考察してみ
ましょう（図3）。
　❶latch_tree_insert()よりも前に始まり、
ツリー0への挿入・バランス中に終わる探索は、
ツリー0を対象として探索し、シーケンス番号
の変更を検知して探索をやりなおします。
　❷のようにツリー0への挿入中に探索が開始・
完了するケースでは、ツリー1がアイテムの挿
入前の状態で安定しているので探索をやりなお
す必要はありません。実際シーケンス番号が変
わっていないので、リトライすることなく
latch_tree_find()が完了します。

　❸は❶と同様に、探索対象であるツリー1が
同時に変更されていたことをシーケンス番号の
変化から検知し、リトライします。
　❹、❺ではツリー0が挿入後の状態で探索中
に変化していないので、リトライなしで探索を
完了できます。
　一方で❻のように、次のlatch_tree_insert()
と実行区間がかぶってしまうと探索中にツリー
0が変更されているので、リトライを行うこと
になります。このように書き込み中でも必ず
1つは変更されていないツリーがあるので、書
き込みのコードの中でも読み込み側になること
ができます。

latched rbtreeの
使用例

　新しいデータ構造であることと、読み込みを
書き込みの中にネストしたいという場面が少な
いこともあってか、latched rbtreeは今のところ
一個所、__module_address()の実装にしか使
われていません。__module_address(unsigned
long addr)はaddrで指定したアドレスを含む
kernel moduleを探索する関数です。
　latched rbtreeを使う前はmoduleのリストを線
形にたどっていました。これでは読み込まれる
moduleの数が増えると、探索の時間がばかにな
らなくなります。この関数はperfやトレースに
よるstackダンプでアドレスとmodule名を表示
するときに頻繁に使われます。perfやトレース

はどんなコンテキストからでも呼ば
れ得るので、まさに読み書きがネス
トできる latched rbtreeが必要な場
面になっています。

セキュリティ
モジュールのスタック化

　SELinuxやTOMOYOといった
Linuxのセキュリティ機構は、Linux
Security Modules（LSM）という形で
実装されています。LSMは、Linux

seq++

insert to tree #0

seq++

insert to tree #1

seq++

insert to tree #0

retry

retry

retry

lookup tree #0❶

lookup tree #1❷

lookup tree #1❸

lookup tree #0❹

lookup tree #0❺

lookup tree #0❻

 ▼図3　latched rbtreeへの挿入と探索

184 - Software Design Nov. 2016 - 185

Linux 4.2のlatched rbtreeと
LSMのスタック化

第56回第56回

カーネルの各所へのhookという形で実装されて
います。4.1以前では動作するLSMは基本的に
1つで複数のセキュリティチェックを同時に動
かすことはできませんでした。SELinuxのよう
に「大きい」、カーネルのほとんどの部分をhook
するLSMだけがあるうちはこれでも問題はな
かったのですが、YAMAのようにごく一部の機
能だけをhookするLSMが出てくると問題は複
雑になります。YAMAの保護もSELinuxも使
いたいという場合には、SELinuxにYAMAの
機能をとりいれなければいけませんし、そうす
るとYAMAを単独で使いたいユーザは困ってし
まいます。この問題を解決するためにLSMの
スタックが可能となりました。
　Linux 4.1とLinux 4.2以後でのptraceのセ
キュリティチェックの関数を見てみましょう
（リスト6）。4.1版では securtiy_ops->ptrace_
access_check()がLSMの関数を呼んでセキュ
リティチェックを行っています。また、YAMA

をスタックする場合、YAMAの関数が「無理矢理」
呼び出されているのがわかります。新たにスタッ
クするLSMを追加する場合、その関数を該当
個所に追加しなければならず、きれいな実装と
は言いがたいですね。
　一方Linux 4.2以降ではcall_int_hookとい
うマクロが使われています。これは展開されると、
security_hook_heads.ptrace_access_check
というリストからhook関数をとってきて、順番
に呼んでいく（途中で0以外が返れば中断）とい
うコードになります。これでLSMをきれいにス
タックできるようになりました。
　このようにLSMのスタックが可能になったた
めか、最近は「小さい」LSMがよく提案される
ようになってきました。たとえば、loadpinとい
うカーネルモジュールや、ファームウェアのロー
ドを特定のファイルシステムに限定するLSMや、
chrootをよりセキュアにするHardchrootといっ
たLSMが提案されています。｢

// Linux 4.1
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
#ifdef CONFIG_SECURITY_YAMA_STACKED
 int rc;
 rc = yama_ptrace_access_check(child, mode);
 if (rc)
 return rc;
#endif
 return security_ops->ptrace_access_check(child, mode);
}

// Linux 4.2から

#define call_int_hook(FUNC, IRC, ...) ({ ¥
 int RC = IRC; ¥
 do { ¥
 struct security_hook_list *P; ¥
 ¥
 list_for_each_entry(P, &security_hook_heads.FUNC, list) { ¥
 RC = P->hook.FUNC(__VA_ARGS__); ¥
 if (RC != 0) ¥
 break; ¥
 } ¥
 } while (0); ¥
 RC; ¥
})
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
 return call_int_hook(ptrace_access_check, 0, child, mode);
}

 ▼リスト6　4.1のLSMと4.2からのLSMの比較

186 - Software Design

続するのがたいへん」などの問題提起があり、コミュ
ニティを再定義して方向転換されたそうです。ネッ
トワークについて勉強する際に、最初のハードルを
越える体験を提供するという目的で、ネットワーク
機器やサーバ、仮想プラットフォームも自前で用意
しており、ハンズオンやディスカッションなど参加
型イベントを毎月開催されているそうです。
　GDG京都は、昔は京都GTUG（京都 Google
Technology User Group）という名称でした。使い
方ではなく開発を楽しもうと、実体は変わらないも
のの名前が変わったそうです。また、女性の技術者
／参加者を増やしたいということで、各地に女子会
も生まれているそうです。GDG京都は女性が60名
くらいいるため、GDG京都女子会という形で活動さ
れています。また、GDG京都ではコアメンバーの女
性比率が半分程度とほかの地域と比べて高く、イベ
ントを増やし過ぎると生活に支障が出るので、女子
会単独のイベントは少なめにしているそうです。ま
た、オーガナイザー（まとめ役）も1人体制から2人
体制へ変更したとのことです。
　jusは時代に合わせて活動内容を変えてきていま
す。1990年前後にインターネットが流行った際には、
ほかに良い受け皿となる団体がなかったために jus
が勉強会などに取り組んだり、オープンソースが出
てきたときも、ほかの団体と一緒にオープンソース
まつりをやることになったりと、「柔軟な姿勢で活動
してきたことが良かったのでは」とのことでした。

■学生とつながるには

　続いて、重兼さんからの「学生へのリーチをどう

　今回は、7月に京都で行った jus研究会の模様をお
伝えします。

	 ■ITコミュニティの運営を考える

	【講師】重兼 史尚（NSC運営事務局）

	 	 藏
くら

野
の

 文子（GDG京都）

	 	 榎 真治（日本UNIXユーザ会

	 	 	 ／LibreOffice日本語チーム）

	 	 法林 浩之（日本UNIXユーザ会）

	【日時】2016年7月30日（土）13:00〜13:45

	【会場】京都リサーチパーク（KRP）1号館

　毎年夏に、jus研究会京都大会を開催しています。
今回は、ネットワーク技術を勉強したい人向けコ
ミュニティ「NSC（Network Skills Community）」の
重兼さん、Googleのテクノロジに興味のある有志の
集まり「GDG京都（Google Developer Group 京都）」
の藏野さんをお迎えして、jusが各地で開催している
「ITコミュニティの運営を考える」のパネルディス
カッションを行いました。参加者は20名でした。

■コミュニティの方向性を変えるとき

　はじめに筆者から「コミュニティの方向を変えたと
きに、どのような方法で変えていったのか？」という
お題を出しました。NSCは、元はNetwork Skills
Competitionという名前で、学生向け競技会を開催
していました。運営メンバー同士の議論で「参加者
は競技会が終わると勉強しなくなる」「イベントを継

jus研究会 京都大会

ITコミュニティ運営 関西ならではの課題・取り組みとは

NO.61
November 2016

日本UNIXユーザ会　http://www.jus.or.jp/
榎 真治　ENOKI Shinji　enoki-s@imail.plala.or.jp

http://www.jus.or.jp/

Nov. 2016 - 187186 - Software Design

するか？」というお題です。NSCは競技会から変更
した結果、学生がほとんどこなくなったそうです。
GDG京都でも学生が少ないという課題があります。
卒業や結婚とともによそに行ってしまうケースもあ
ります。「学生だけのコミュニティに参加していて、
そこから先には参加してもらえていないこともある
のでは」とのことです。世界中のオーガナイザーの
集まりで「大学の先生へのアプローチをすべきでは
ないか」との指摘を受けたこともあるそうです。
　LibreOfficeのグローバルコミュニティは、Google
Summer of Codeを活用したり、メンターシップを
重視していたりするため、若い人がいます。日本は
そのあたりができていないことが課題です。
　jusは学生へのリーチは壊滅的で「昔は学生もいた
が、今は興味を合わせることが課題」だそうです。
　NSCではコミュニティイベントでの会場ネット
ワーク設営を引き受けています。専門学校とタイ
アップして学生チームに設営を任せつつ、フォロー
する試みもされているそうです。今後は、「イベント
だけで終わってしまっているのであとにつなげる」
「ネットワーク以外のコミュニティと一緒にやってい
きたい」とのことでした。

■京都や関西を盛り上げるには

　次に、藏野さんから「京都で勉強会をやると人数
が少ないが、どうやって盛り上げるか？」というお
題が出されました。大阪で開催した場合に人数が多
かったことで、人数の課題を感じられたそうです。
　「機材があるイベントだとやりやすい場所が少な
い」「大阪や神戸とは客層が変わる」「イベントによっ
ては京都でも人は集まっている」「平日イベントの場
合は遠いので参加がしにくいのではないか」「学生が
多いので卒業したらどこかに行ってしまうのではな
いか」といったコメントがありました。
　また、法林さんからは、「関西のイベントを盛り
上げるにはどうするか？」というお題が出されまし
た。関西でのGDGは京都と神戸があり、合同イベ
ントの企画を進めているそうです。
　NSCのような参加型は、東京では行われていな

いそうです。「（都会から離れており、勉強会にも参
加しにくいために）ネットワークの技術に身近に触
れられないような地域でやりたい」「未開催の滋賀と
和歌山でもやりたい」とのことでした。
　法林さんからは「関西では都市ごとにコミュニ
ティがあることがいいことでもあり、課題にもなり
得るかもしれない」というコメントがありました。

■コニュニティ運営者を増やすには

　会場から「どこのコミュニティでも人が同じだっ
たり、就職すると東京へ行ったりするのをどうする
か？」というお題が出されました。筆者からは「流出
しそうな学生を自分のところで採用してはどうで
しょう？」という提案をしました。GDG京都では、
イベントを京都から離れて行った際に、参加者の半
数が初参加だったそうです。「場所を変えるのは効
果的ではないか」という議論になりました。
　会場からの2つめのお題は「コミュニティの運営
者を増やすためにどうするか？」です。NSCではイ
ベント参加者に声をかけて一本釣りしているが、な
かなか定着しないそうです。GDG京都では、声がけ
した人よりも自ら手を挙げてくれた人のほうが、定
着率が高いそうです。LibreOffice日本語チームで
は、ほかのコミュニティで活動していた人が入って
くれたケースが多いことを話しました。jusでは、制
度としてはないのですが、イベントの手伝いで、ボ
ランティアポイントがたまってきた人に幹事として
声がけしていることが紹介されました。

◆　◆　◆
　今回は、今までと少し路線の違うコミュニティに
出演いただきました。同じような悩みを抱えている
一方で、そのコミュニティならではのユニークな取
り組みや、関西独自の話もありました。会場からも
積極的にお題が出て、コミュニティ運営について一
緒に考える場になったかと思います。動画が公開さ
れています注1ので、詳しい内容に興味を持たれた
方はご覧ください。｢

注1） URL https://www.youtube.com/watch?v=zv9ek7ia8IM&fe
ature=youtu.be

ITコミュニティ運営 関西ならではの課題・取り組みとは November
2016

https://www.youtube.com/watch?v=zv9ek7ia8IM&feature=youtu.be

188 - Software Design

　2016年の7月29日から31日にかけて宮城県石巻
市で石巻ハッカソンが開催されました。2012年から
毎年この時期に開催されており、今回で5回目とな
ります。Hack For Japanからは2012年の第1回目
にIT Bootcampの講師として参加して以来、この
ハッカソンに参加を続けており、すでに夏の恒例イ
ベントになっていると言えるでしょう。
　このハッカソンは、東日本大震災で大きな被害を
受けた石巻で、若者が地元で活躍できる場所を作り
たいという想いで活動を始めたイトナブ石巻注1が
主催しています。アプリ開発を通して若者がITに
興味を持ったり、自分の夢を持つきっかけになって
ほしいという趣旨で開催されており、若者と現役の
エンジニアやデザイナーが一緒にチームを組むのが
特徴です（参加する大人は若者にかっこいい背中を
見せるという役目を負っています）。
　宮城県内はもちろん、東京や大阪など県外からも
多くの方が集まり参加者の数は100名を超え、今年
は昨年までと比較して学生が多かったようです。

今年も2つの部門で
スタート

　1日目は午後から始まり、今年もIT Bootcamp部
門とハッカソン部門とに分かれて進められました。

IT Bootcamp部門

　「はじめてだけどアプリ開発をやってみたい！」と
いう方のための部門で、講師がサポートすることで
3日間でアプリを作ることができるようにします。
今回はおもに小学生で構成されるScratchを使う組
と、おもに高校生で構成されるCorona SDKを使う

注1	 http://itnav.jp/

組とに分かれて進められました。
　Scratch組は、子どもたちが描いたゲームのイラ
ストから素材を作り出してScratchで動くよう組み
上げていくということをやりました。講師を務めた
イトナブの武山将己さんの「Scratchのやり方を教
えるというよりは、Scratchを使って自分の中だけ
にあった想像物を創造する楽しさを経験してもらえ
たらなと思ってやりました。『5回敵を倒したら進化
させたい！』とか『もっと難しくしたい！』とか、子
どもたちが自分でいろいろカスタマイズしていく様
を見ているのは個人的にも楽しかった」という言葉
が印象的です。大人がやりなさいと言っても子ども
の興味を引き出すことは難しく、やはり楽しいと
思って自主的に取り組んでもらうことが最初の一歩
として大切です。
　Corona SDK組には、プログラムの基礎を折り込
みつつ、2日間でアプリ開発を学べるようにした教
材が講師の中塩成海さんによってイベント前に用意
されていました。参加者の皆さんは事前に予習をし
てきていたそうです。家に帰ってからもプログラミ
ングを続け、さらには休み時間も惜しんで開発を続
けるという、ハッカソン組にも勝るとも劣らない頑
張りっぷりのBootcampだったようです。
　講師の中塩さんは、第1回目の開催当時は開催場
所である石巻工業高校の生徒でした。そこでアプリ
開発を体験し、現在はイトナブ石巻のエンジニアと
して活躍しています。このイベントで学んだ人が、
また次の世代に伝えていくという良い循環が起きて
います。

ハッカソン部門

　ハッカソン部門は最初にアイデアピッチとチーム
ビルドが行われました。今年のテーマは「青春」。会

Hack For Japan
エンジニアだからこそできる復興への一歩

第5回 石巻ハッカソン第59回
今回は2016年7月29〜31日に開催された「石巻ハッカソン」についてレポートします。

●Hack For Japanスタッフ
　高橋 憲一　TAKAHASHI Kenichi
　 Twitter @ken1_taka
　小泉 勝志郎 KOIZUMI Katsushiro
　 Twitter @koi_zoom1
　及川 卓也　OIKAWA takuya
　 Twitter @takoratta

http://itnav.jp/

Nov. 2016 - 189

第5回 石巻ハッカソン第59回

場のホワイトボードにはアイデアのヒントとなるよ
うに、参加者それぞれの「青春」について書かれた紙
が張り出されました。最終的には20のチームがで
きて、最終日の発表会に向けて開発をスタートしま
した。

ハッカソン2日目

　2日目からが本格的なハッカソンのスタートで
す。初日は夜の懇親会から参加の方も多く、実際に
手を動かす作業もここから始まります。

朝から元気よくスタート！

　前日の懇親会で夜遅くまで飲み歩いた影響で、皆
さん眠い目をこすりながら朝のガイダンスの始まり
です。ガイダンスが終わった後、「石巻ハッカソン
はこれがなきゃ始まらない」ということでイトナブ
のフィッシュこと津田恭平さんの掛け声。みんなで
「オー！」と拳を上げ元気よくスタートです。

製作風景の紹介

　2日目は製作作業の日。筆者（小泉）の視点から製
作風景を紹介していきます。
　今回のテーマは「青春」。プログラミングをする
我々には当然コンピュータに向き合うのが青春。と
はいえ、一般に青春という言葉からくるイメージは
恋愛色が強いですよね。そこで、この2つを両立す
るべく「萌えキャラGO」というどこかで聞いたよう
な名前のアプリを作成しました（図1）。
　筆者はプログラミングはできるけどデザインはで
きません。初日は懇親会からの参加だったので、危
うくソロチームになりそうだったのですが、武山華
さんがデザイナーに名乗りを上げてくれました。か
わいい女性とチームを組めた時点で、「青春」という
テーマ的には十分満足していたのですが、ここは
ハッカソンなのでチーム作成だけで満足してはいけ
ません。ちゃんと「萌えキャラGO」を二人三脚で作
り上げました。
　「萌えキャラGO」は聖地（キャラにゆかりの地）で
萌えキャラの女の子とのデートがコンセプト。地

図上にある聖地に
行くと萌えキャラが
Facebookメッセン
ジャーで話しかけて
きてくれるというも
のです。聖地を回る
と好感度が高まり、
会話も変わっていき
ます。女の子は集め
るものではありませ
んので、名前の元ネ
タゲームとはコンセ
プトはだいぶ違いま
す。青春ですから！
　「聖地が生まれるには二次創作の盛り上がりが不
可欠」というところから、イラストを投稿すると聖
地が作れるようにもなっています。作った聖地に人
が来れば、さらに萌えキャラからの好感度が上がる
しくみです。
　技術的にはSwift、Facebook Messenger Platform
を利用しています。ここに武山さんの素敵な絵が加
わり、たのしいアプリになりました（残念ながら受
賞は逃しました）。

石巻ハッカソン名物カレー

　石巻ハッカソン名物牛タンつくねカレー！　カ
レー部隊は全国から志願してきた精鋭達。みなさん
舌鼓を打ちました。筆者（小泉）はおかわりまでして
います（写真1）。石巻ハッカソンは技術系の人たち
だけではなく、こういったバックアップによって成

◆◆図1　萌えキャラGOタイトル

◆◆写真1　牛タンつくねカレーを食べる筆者（右）

190 - Software Design

Hack For Japan
エンジニアだからこそできる復興への一歩

り立っているのが伝わりました。

発表会

　最終日の発表会は昼過ぎから行われました。ラン
チもそこそこに最後まで開発に勤しむチームもあれ
ば、発表の準備を行うチームもありました。後でわ
かりましたが、今年は例年以上に発表に趣向を凝ら
したチームが多く、そのため事前のリハーサルなど
が大事だったようです。
　今年の審査員はHack For Japanスタッフで毎年
石巻ハッカソンに参加している筆者（及川）と株式会
社ゴーガの小山文彦氏の2名でした。
　賞としては、最優秀賞、ハッカソン賞、審査員特
別賞、青春賞、オール賞が用意されました。このう
ち、青春賞は参加者の2日目の昼食を用意してくれ
たカレー部の皆さんに、オール賞はIT Boot Camp
参加者に贈られました。
　受賞チームをご紹介する前に、今年の総評をお伝
えします。
　石巻ハッカソンは毎年参加しているので、毎回参
加チームのレベルが上がっていくのを目の当たりに
していましたが、今年はさらにパワーアップしてい
ました。機械学習やVRなどの時流に乗った技術を
使うチームもありましたが、それも単に流行だから
というだけではなく、きちんと実現したいサービス
に適した技術を使っていました。技術レベルの高さ

以上に驚いたのが、発表時のプレゼンテーション能
力です。プレゼンテーション資料の出来や話の上手
さもさることながら、寸劇やショートコントを行う
など工夫を凝らしたチームが多かったことに感銘を
受けました。寸劇やショートコントは演者が照れな
がらやっていたりすると、逆効果になることもあり
ます。しかし、今回の参加チームは普段何をやって
いるのかと思うほど質の高い演技を見せてくれまし
た。アプリケーションやサービスのユースケースな
どを説明するには、無味乾燥なスライドでの発表よ
りも、一種のシミュレーションである寸劇はとても
効果的でした。

審査員特別賞

　まずは審査員特別賞です。チームDHが受賞しま
した。
　チームDHの作品は「Happy Days」。これは顔が
写っている写真をアップロードすることで、その人
物の青春ストーリーを勝手に作ってくれるものです
（図2）。
　しくみは、Microsoft Face APIにより顔を認識
し、人物の年齢を推定します。あらかじめ組み込ん
である世代ごとのストーリーの文章と写真背景に、
切り出した顔部分の写真を合成します。画像合成に
は、Poisson Image Editing注2を用いています。

ヤバいで賞

　ヤバいで賞は「ヤバい」という形容詞でほめたく
なってしまうように、技術などで圧倒する作品に送
られる賞です。このヤバいで賞が送られたのは、ア
ダム＆フィッシュの「いつか見た夢」です。
　チームは技術の力で恋を助けることを目的とし
て、コミュニケーションに注目。テキストチャット
の延長としてのビデオチャットが必ずしも盛り上
がっていないことを、体験の共有が十分でないこと
と分析し、VR空間を共有するAndroidアプリケー
ションを開発しました。
　これは、お互いの顔は見せずに、ボイスチャット

注2	 SIGGRAPH 2003で発表された画像合成手法。	 	
http://dl.acm.org/citation.cfm?id=882269

◆◆図2　青春ストーリー作成例

http://dl.acm.org/citation.cfm?id=882269

Nov. 2016 - 191

第5回 石巻ハッカソン第59回

Common Subsequenceが用いられています（図5）。
　このチームも作品と同じくらいに発表に趣向を凝
らしていました。替え歌を作るためにツイートが必
要なのですが、修学旅行などに行って友人同士で思
い出を作ることを「まず、青春します」と説明するな
ど、朴

ぼくとつ

訥とした中に地味な面白さがあるプレゼン
テーションが印象的でした。また、発表者が実際に
作られた替え歌を歌ってみせたのですが、演技なの
か本当なのか、とても上手いとは言えない歌声で、
会場は笑いの渦に巻き込まれていました。

来年もあります！

　これほどバリエーションに富む参加者が集まり、
多岐にわたる技術が活用されるハッカソンはなかな
かないのではないかと思います。来年も7月末の開
催が計画されていますので、ぜひ石巻に足を運んで
参加されてみてはいかがでしょうか。s

とともに自分の体験し
ているVR空間を相手に
共有することができま
す。URLを共有すること
で相手はアプリケー
ションのダウンロード
ができ、その後、VR動
画の視聴を開始できま
す。顔の向きを変える
ことでVR空間を移動す
ることができますが、
それを完全に相手と同期できます。使われている技
術は、Google VR、Deep Link、Web RTC、Google
Cloud Platform、TypeScriptなどです。

ハッカソン賞

　実質2位であるハッカソン賞は「石巻生まれスト
リート育ち」に送られました。
　チームが作ったのは、打ち込んだ単語の韻を踏ん
でくれる（ライミングしてくれる）ボットです（図
3）。AndroidアプリケーションとFacebookメッセン
ジャー経由で利用できます。
　HerokuとPHPを使って開発されており、ラップ
のようなやりとりができるのが特徴です。このチー
ムは作品もともかく、映像をメインに使用する発表
時のプレゼンテーションが秀逸でした。

最優秀賞

　最優秀賞を受賞したのはIngress GOチームでし
た。
　このチームはオンリーソングライター（青春謳歌
斉唱）と題して、自分だけのテーマソングを作成し
てくれるアプリケーションを開発しました（図4）。
複数のツイートから自動的によく知られている
J-POPの替え歌を作成します。
　使用している技術としては、Swiftで書かれた iOS
アプリケーションからHeroku上のRuby on Rails
にツイートが送られ、そこで替え歌の歌詞が生成
されます。そこでは形態素解析エンジンMecabに
より品詞分解された後に、3次元dp拡張Longest

◆◆図4　替え歌の例

◆◆図5　替え歌を作るアルゴリズム

◆◆図3　ボットの返信例

192 - Software Design

はじめに

　リオデジャネイロオリンピック
における日本の400Mリレーの銀
メダルは、チームワークによる力
の高まりを実感しました。次回
2020年は東京オリンピックです
が、前回の東京オリンピックが開
催された1964年、トランジスタを
使った電子式卓上計算機（以下電
卓）の歴史は、豊洲の隣の東京晴海
のビジネスショウ会場で早川電機
工業（現シャープ）、キヤノンカメ
ラ（現キヤノン）、ソニー、大井電
気の4社が製品を発表したことか
ら始まります。しかし、ここにカ
シオ計算機（以下カシオ）の名前が
ありません。カシオは、この当時
スイッチングにリレーを使ったリ
レー式計算機を販売しており、一

定の地位を築いていました。
　今回は、このリレー式計算機に
ついてのお話をしましょう。

最初の電子式
卓上計算機とは

　1950年代の計算事務の一般的な
環境は、個人用のそろばんと、複
数の職員で共有して使う日本製の
タイガー計算機注1、そしてモーター
で歯車を回して計算する外国製の
電動計算機が並ぶ状況でした。計
算業務の多い職場ではその動作音
がかなりうるさかったようです。
　そんなご時世に、動作音を低減
して高速に計算できる計算機の開
発に、カシオを創業した樫尾4人
兄弟がとりくんだのです。最初に
ソレノイド注2を使った計算機を完
成させましたが、機械動作を含む
ため試作レベルで止まり、商品化
はできませんでした。しかし、次
男の樫尾俊雄氏は、リレー（後述）
をスイッチング部品として使用す
ることを考え、新たな計算機の開
発に取り組みました。そして、1957
年モーターや歯車類を使わないリ
レー式計算機「カシオ14-A型（写
真1）」を製品として完成させ、発

注1） 手でハンドルを回して計算するもの。
注2） コイルの中心に鉄心を入れ、電気を

流してその直線運動を利用する部品。

売に漕ぎ着けました。14-A型はリ
レーをわずか342個使用したもの
で、演算桁数は14桁で、商品名14
の数字はこの値のようです。
　当時、富士通が1956年に国産初
のリレー式商用コンピュータ
FACOM128Aを完成させました。
それを改良したFACOM128Bの
演算処理装置で使用されていたリ
レー素子数は約5,000個（メモリ部
を含まない）でした。となるとこの
342個という個数はかなり少なく、
優れた工夫が多く施されていたこ
とがわかります。
　リレー式計算機14-Aは485,000
円で発売され、好評を博して計算
機としてのシェアを拡大していき
ました。その後、技術用計算機で開
平機能注3付きの14-B型、作表計算
機TUCと革新的な計算機を続けて
開発しました。1962年には、計算の
手順をセットしておき、自動的に計
算を行うプログラム式計算機AL-1
を995,000円で発売し、国内にお
ける計算機分野の独壇場を築いた
のです。そして1964年を迎えます。

リレーによる
計算のしくみ

　リレーとは、コイル部と接点部

注3） 平方根（ルート）を求めることを、昔
はこう呼んでいた。

温故知新
ITむかしばなし

 ▼写真1　 カシオ14-A型計算機（後
にAL-1が写ってます）

速水 祐（HAYAMI You） 　http://zob.club/ Twitter : @yyhayami

リレー式計算機〜カシオの実用的な
最初の電子式卓上計算機〜

第60回

http://zob.club/

192 - Software Design Nov. 2016 - 193

が物理的に離れていて、コイルに
電流が流れると磁力が発生し（電磁
石）、その働きで鉄片を引き寄せ、
鉄片につながる可動接点が動くこ
とにより、固定接点と電気的に接
触してオン／オフするものです注4。
デジタル回路は、基本的に0と1の
信号で成り立っているので、リレー
のオンを1、オフを0とすれば論理
演算ができるのです。
　リレーによる論理演算の概念を
図1に示しました。論理積（AND）
は、スイッチAとBを直列につな
ぎ、共にオンになると、コイルに
電流が流れてスイッチCがオンに
なるしくみです。スイッチAかB
の片方または両方がオフのときは、
コイルに電流は流れないのでス
イッチCはオフのままです。
　論理和（OR）は、スイッチAとB
を並列につなぎ、スイッチAとB
のどちらかがオンであればコイル
に電流が流れスイッチCがオンに
なります。
　ラッチ（Latch）は、一時的に前の
データを保持します。図1の一番下
のように、スイッチR（リセット）、
スイッチS（セット）を並列にして
リレーで動作するスイッチCをス
イッチRと直列につなぎます注5。ス
イッチRがオンの状態でスイッチ
Sをオンにするとコイルに電気が
流れスイッチCがオンになり、ス
イッチSとRの接続側からもコイ
ルに電流が流れるようになります。
その後スイッチSをオフにしても、
スイッチCはオン（スイッチRの
状態）を続けることになります。

注4） 本文で説明しているのはメカニカル
リレーです。接点部を電子式にした
MOS FETリレーもある。

注5） 電子的なSRラッチ、Dラッチなどと
は異なる。

　このようなラッチ
を使うことで1bitの
データを一時的に保
持できるので、レジス
タや一時的なメモリ
として利用できます。
　リレーに使用され
ている接点には3種
類あり注6、前述した回
路は基本がメーク接
点でしたが、ブレー
ク接点を使えばNOT
演算も実現できます。
　以上のような回路を基本にして、
スイッチ部をほかのリレーの接点
として回路を組み上げれば、さま
ざまな演算を実現できる装置を作
れます。

カシオの
工夫

　初めての電子式卓上計算機を実
用化するために、さまざまな工夫
が成されていました。

◆二重方式のリレー

　コイル部が二重になったリレー
を使っています。そしてこの独自
のリレー素子の接点は、3種類の
接点形式をすべて備え、接触の信
頼性を上げるためにそれがさらに
二重になっているのです。この新
たに開発した高機能なリレー素子
により、故障率を低減させ、リレー
素子数自体も少なくできたのです。

◆テンキー式キーボード

　写真1はカシオ計算機14-A（大

注6） メーク接点：電磁石に電流を流した
ときに接点が閉じる。ブレーク接点：
電磁石に電流を流したときに接点が
開く。トランスファ接点：電磁石に
電流を流すことで複数の接点を切り
替える。

きさH78cm、W101cm、D42cm、重
量120kg）の操作部分のみが写っ
ており、操作テーブルの下に342
個のリレーが整列して並んでいま
す。操作部を見ると現在の電卓と
同様な配列で0～9の数字が並んで
います。
　テンキーで数値を入力すると表
示部に右から数値が表示され、次
の数値が入力されると前の数は左
にずれ、+などの演算ボタンを押
すと次の数入力からは新たな数が
右から入力され=ボタンを押すこ
とで、計算結果が表示されます。
昔のキャッシュレジスタ注7と比べ
ると、この入力方式は大きく効率
と正確性アップにつながるもの
だったのです。しかし、操作性の
大きな違いは、入力の文化ギャッ
プであり、今では当たり前の操作
も、当時は丁寧な説明が必要だっ
たようです。
　現在の大きく進歩した電子機器
も、先人たちが努力して工夫した
ものの積み重ねによって、ここに
あるのです。｢

注7） 桁ごとに0～9のボタンが並んでい
て、数値を入力するために、それぞ
れの桁のボタンを押した。

 ▼図1　リレーによる論理演算の概念図

A B

C

A

B

C

C
C

S

R

A
B

A
B

C

C

C

R

S

AND

OR

Latch

連 動

温故知新 ITむかしばなし
リレー式計算機〜カシオの実用的な最初の電子式卓上計算機〜

第60回

194 - Software Design

　㈱ギデオンは9月30日、サイバー攻撃対策機器「Cyber
Cleaner ST」をリリースした。
　Cyber Cleaner STはサイバー攻撃対策に特化したセ
キュリティアプライアンス。外部ネットワークの出入り
口に設置して不要パケットを破棄する「Cyber Cleaner」
と、ネットワークの内部に置いてギデオンのクラウド
サーバから配信されるサイバー攻撃情報（NICT、Kasper
sky）をインターネットから受信してCyber Cleanerに反
映する「AccessControl」の2台の機器で構成される。
　Cyber CleanerはIPアドレスを持たないので攻撃対象
となることがなく、またパケットのヘッダのみを見るた
めSSL/TLS終端をする必要がなく、かつ処理が速いとい

う特徴がある。また、AccessControlはGUIのダッシュ
ボードを持ち、ブラウザから接続することでパケット破
棄の設定（国別、ISP別、プロトコル別）を柔軟に行える。
　価格は新規＋初年度ライセンスが200万円～、更新ラ
イセンスが20万円～／年となっている。

ギデオン、
サイバー攻撃対策機器「Cyber Cleaner ST」発表

　トレンドマイクロ㈱は、セキュリティソフト「ウイル
スバスター」シリーズの最新版を9月1日に発売した。
　ウイルスバスターは、Windows/Mac/Android/iOS/
Fireタブレット向けの「ウイルスバスタークラウド」と、
Android/iOS/Fireタブレット向けの「ウイルスバスター
モバイル」からなる。
　最新版では、指定したフォルダに対するアクセスを監
視し、正規のプログラム以外のアクセスを防止すること
で、ランサムウェアがデータを暗号化することを防ぐ
「フォルダシールド」を新たに搭載。さらに、正規のプ
ログラムに偽装する不正プログラムも検知する。
　またWindows向けの新機能として、Adobe Acrobat

Reader、Javaのバージョンをチェックし、適用可能な
修正プログラムがある場合、ポップアップで最新版への
アップデートを促す機能を搭載した。

トレンドマイクロ、
「ウイルスバスター」シリーズ最新版を発売

　11月11日（東京）・11月18日（大阪）、XMLやXML DB
の普及啓蒙を目的としたイベント「NeoCoreサミット
2016」が、㈱サイバーテック主催で開かれる。
　同イベントは今年で9回目。今年のメインテーマは
『「XML×Web」～脱WOD・脱DTPによる、Webとの融
合～』となっている。本イベントの目的は、さまざまな
分野で応用が進む「XML」の最新動向や用途を紹介、啓
蒙すること。企業においてのドキュメント管理に課題を
感じている来場者に向け、基調講演やパートナー企業に
よる各セッションが行われる。
　イベント名に含まれている「NeoCore」とは、サイバー
テックが提供しているXML DB製品の名。XML DBは

RDBと比べ拡張性が高く、そのため途中でデータ構造が
変化することを前提としたシステムに向いている。

サイバーテック、
XML・XML DBの国内最大級イベント
「NeoCoreサミット2016」開催

▲▲Cyber CleanST「Cyber Cleaner」

㈱サイバーテック　 URL http://www.cybertech.co.jp
CONTACT

㈱ギデオン　 URL https://www.gideon.co.jp
CONTACT

トレンドマイクロ㈱　 URL http://www.trendmicro.co.jp
CONTACT

●●開催概要

東京 大阪

日付 2016年11月11日（金） 2016年11月18日（金）

時間 14:00～17:20（受付13:40～）

場所 アマゾンデータサービスジャパ
ン㈱セミナールーム

アマゾンデータサービスジャパ
ン㈱大阪支社セミナールーム

参加費 無料（事前登録制）

●●おもな製品ラインナップ

製品名 期間 販売価格（税込）

ウイルスバスタークラウド（ダウンロード版）

1年版 5,380円

2年版 9,680円

3年版 12,780円

ウイルスバスターモバイル（ダウンロード版）
1年版 3,065円

2年版 5,637円

https://www.gideon.co.jp
http://www.trendmicro.co.jp
http://www.cybertech.co.jp

194 - Software Design Nov. 2016 - 195

U-22プログラミング・コンテスト
URL http://www.u22procon.com

CONTACT

▲▲Project Stingerプレイ画面

　アカマイ・テクノロジーズ合同会社は9月28日、Web
画像コンテンツの最適化と高速配信を自動化する新製品
「Image Manager」の日本での正式展開を発表した。
　画像を多用する今日のWebサイトやモバイルアプリ
には、さまざまな課題がある。Webへのネットワーク
接続性は向上しているにもかかわらず、画像の増大によ
りサイトは重くなり、速度やパフォーマンス、そして最
終的にはユーザ体験にも負の影響を及ぼしている。
　そんななかImage Managerは、画像の自動最適化を
行って、最高の画像品質と高い配信パフォーマンスの両
立を可能にすると同時に、派生画像の保存、変換、配信
に要するコストや労力を削減、サイトへの反映を迅速化

できる。具体的な処理としては、ストレージ上のオリジ
ナルイメージファイルからリンク、ビジュアル関連のポ
リシーに沿ってファイルを変換、イメージファイルの
フォーマットをモバイル表示に適したサイズに圧縮、デ
バイスごとに適した形式で高速なイメージを配信する、
というもの。本製品はアカマイのウェブ・パフォーマン
ス・ソリューションと連携させて使用することが念頭に
置かれており、単体での利用はできないとのこと。

アカマイ・テクノロジーズ、
画像自動処理製品「Image Manager」を発表

10月2日、
U-22プログラミング・コンテスト2016、最終審査会

アカマイ・テクノロジーズ合同会社
URL https://www.akamai.com/jp/ja

CONTACT

　10月2日、秋葉原UDX（東京都千代田区）で「U-22プロ
グラミング・コンテスト2016」の最終審査会が行われた。
　U-22プログラミング・コンテストは、1980年から経
済産業省主催として、アイデアに富んだイノベイティブ
な人材発掘と育成を目的として開催されてきた。2014
年からは民間企業から構成される「U-22プログラミン
グ・コンテスト実行委員会」が主催となっている。
　今年は7月1日から作品の募集が開始され252作品が応
募、そのうち事前審査・一次審査を通過した16作品が
最終審査会にて審査された。経済産業大臣賞それぞれ4
部門に輝いたのは次の4作品。

 経済産業大臣賞　総合部門
　『Project Stinger』：チーム藤原重工
　（ECCコンピュータ専門学校）
　PCで動作する、爽快な操作感の3Dアクションゲーム。
UnityやUnrealEngineなど既製のゲームエンジンを使わ
ず、自作のフレームワークを作ってゲーム開発を行った。

 経済産業大臣賞　プロダクト部門
　『わたしのお薬』：青山 柊太朗氏
　（ぐんま国際アカデミー中等部）
　高齢者の薬飲み忘れを防ぐ「薬服用管理アプリ」。薬
服用アラームを家族の声で鳴らすことができる温かみの
あるデザイン。重い病気のため、毎日数種類の薬を飲む
必要がある祖父のために開発したそうだ。

 経済産業大臣賞　テクノロジー部門
　『WARos』：斎藤 鴻氏
　（HAL東京）
　IoTデバイスに搭載することを想定した、超軽量カー
ネルとして開発している「モノのOS」。アセンブリ言語
とRustで実装しており、現在x86アーキテクチャ、
Raspberry Piでの動作を確認している。

 経済産業大臣賞　アイデア部門
　『Worknote - Organize your Brain』：二ノ方 理仁氏
　（東京学芸大学附属竹早小学校）
　いろいろな種類の作業をかんたんに記録でき、自分で
設定した四象限のマトリクスでわかりやすく表示する
TODOアプリ。作業の期限を設定でき、期限が迫るとメー
ルが自動で送信される。

https://www.akamai.com/jp/ja
http://www.u22procon.com

196 - Software Design

 Black Hat USA 2016
　業界と技術者のセキュリティサミットBlack Hatは今
回で19回目。7月30日～8月4日の6日間、米国ラスベガ
スで開催されました。1日あたり1万1千人以上が参加す
る大イベントです。見渡すと、参加者のほとんどは男性
の技術者と出展している企業スポンサーです。日本のセ
キュリティ意識は欧米・韓国などと比べて低いという報
告を反映するかのように、日本からの参加はそれほど多
くはなさそうです。
　Black Hatは、キーパーソンによる（1）ブリーフィング
／プレゼンテーション、デモとハンズオンの（2）トレー
ニング（100以上のコース、1～2日間）、スポンサーに
よる（3）ワークショップ、個人・グループの研究発表の
場である（4）アーセナル 注1、そして（5）エキシビジョン
という構成です。技術者が企業と面談するブースもあり
ました。複数のホールに分かれて一度にいくつものメ
ニューが進行しますので、どれかに時間をかけていると
別のイベントに参加できなくなってしまうのが悩ましい
ところです。
　出展企業は、Microsoft、Hewlett Packard、Cisco、
Sohos、Symantec、RSA、Tenable、sshなどの大手から
ベンチャー系の小さい会社多数、Raytheon、Lockheed
Martinのような防衛産業で有名な企業も含めて400社ほ
ど。例年、「翌年には50～80％の企業が入れ替わる」と
いう厳しい業界ですが、活気ある成長産業です。
　商品やサービス、研究報告は、監視、診断、防衛、暗
号化、管理・自動化のツールなど。監視運用の機械学習
を用いた自動化、IoTハッキング、高度暗号化 注2 などが、
今回の注目技術です。
　またアーセナルは、成果の多くをオープンソースとし
て公開しています。Web脆弱性診断ツール、Raspberry
Piを使った攻撃フレームワークなど、すぐにでもセキュ
リティ診断業務に役立ちそうなものもありました。

DEF CON 24
　ハッカーの祭典
DEF CONは8月4日
～8月7日の4日間、
こちらは24回目の
開催です。任意・
学術団体、企業30
社あまりと、趣味
や学術研究色が強

いです。公表参加者2万2千人、
女性も子供も参加していま
す。Black HatとDEF CON両方
に参加するエンジニアも多数
います。
　Black Hatと主催・会場は
異なるのですが、ネットワー
クの運用チームは同じスタッ
フだそうです。開催数日前に
会場近辺のホテルなどのフ
リーWi-Fiは、ハッカーの集
会に対し無防備だから使うな
という警告が出され、主催者
側が用意したハイレベルセキュリティを施したWi-Fiを
使えとのことです。
　CTF 注3 など30あまりの（1）コンテストが目玉です。子
供向けのCTFや、200万ドルを賞金にしたDARPA 注4 が主
催するものもあります。ソーシャルハッキング、IoTハッ
キングなどの（2）ワークショップ、研究・開発の成果を
発表する（3）プレゼンテーション、スポンサー展示の（4）
ヴィレッジ、Matrixなどコンピュータを題材にした（5）
映画の上映、（6）ライブ（入場時にもCDをもらう）など
と盛りだくさんです。受付、ワークショップやプレゼン
テーションなど、DEF CONではすべてが早い者勝ちで、
席がなくなれば入場できません。人気イベントは長蛇の
列です。

おわりに
　セキュリティの分野は多岐にわたり、それぞれが高度
で複雑です。システムの問題を突くにも、専門に特化し
た技術者がそれぞれの持ち分で活躍・連携して挑みます。
問題点を共有するサイトも多くあります。サイバーセ
キュリティの専門家たちは、こうした先端の情報への敏
感さや、技術者同士の連携をとても重視しています。日
本でも、広くサイバーセキュリティへの意識が高まり、
世界で活躍する技術者が増えることを強く望みます。

Black Hat USA 2016＋DEF CON 24 in Las Vegas
視察レポート

Author 中島 雅弘　㈱アーヴァイン・システムズ

▲▲DEF CONバッジ。毎年恒例
になっている、ハッキング可
能なデバイスの入場証。これ
をハッキングするコンテスト
もある。

▲▲Black Hat会場

注1） 弾薬庫とか宝庫といった意味。
注2） TLSも近いうちに使われなくなると言っているところも。

注3） Capture The Flagという、どこかに隠されたキーワードなどを
素早く見つけるハッキングゲーム。

注4） アメリカ国防省の研究開発機関。

Black Hat USA 2016　 URL https://www.blackhat.com/us-16/
DEF CON 24　 URL �https://www.defcon.org/html/defcon-24/

dc-24-index.html

CONTACT

https://www.blackhat.com/us-16/
https://www.defcon.org/html/defcon-24/dc-24-index.html

197 - Software Design Nov. 2016 - 197

プログラミング
Elixir

　本誌特別企画『［次世代言語］Elixirの実力を知る』でも紹
介しているElixirは、高機能な関数型プログラミング言語。
Erlangをベースとしており敷居が高い印象だが、使いこな
せれば並行処理を効率よく実装できるようになり、耐負荷
が求められるアプリでは強力な武器となる。
　本書はそんなElixirに関する国内初の言語本。「すべての
文法、ライブラリを網羅している１冊」というわけではな
く、小さいサンプルコードと要所を突いた説明で、Elixir、
引いては関数型プログラミングの良さがすぐにわかるよう
な構成となっている。著者は『達人プログラマー』『プログ
ラミングRuby』執筆の著名Rubyプログラマで、Rubyに親
しんだ方には入門しやすい内容になっているのではないだ
ろうか。

Dave Thomas 著／笹田 耕一、
鳥井 雪 訳
A5判／344ページ
2,800円＋税
オーム社
ISBN＝978-4-274-21915-3

［改訂新版］プロのた
めのLinuxシステム
構築・運用技術

　おかげさまで改訂前の本書は5刷りまで重版し、多くの
Linuxユーザがプロの技術を学ぶための手掛かりを本書か
ら得ることができたのではなかろうか。初版からすでに5
年が経過し、Red Hat Enterprise Linuxのバージョンも
5.5から7までバージョンアップした。
　本書でもこれに対応し、systemdなど追加された新機能
についても十分な解説を加えた。そうした新しい部分もさ
ることながら、前版のエッセンスも十分に洗練しつつ残し
ている。ストレージ技術もそうだが、問題発生時の切り分
けノウハウは、時代が変化しても変わらない絶対的な技術
であり、ぜひ継承してほしいエンジニアの知恵の結晶でも
ある。古くても新しい本書を片手にエンジニア道を邁進し
てほしい。

中井 悦司 著
B5変形判／272ページ
2,980円＋税
技術評論社
ISBN＝978-4-7741-8426-5

C++によるプログラ
ミングの原則と実践

　C++の開発者ビャーネ・ストロヴストルップが執筆し、
プログラミングとソフトウェア開発技法を、C++のコード
を使って解説している。大学におけるプログラミング授業
のための教科書として構成されており、著者自身、本書の
テキストを使って何千人もの学生を指導してきたそうだ。
総ページ数「1,248」という辞書のような厚さと大量の練習
問題から成り、すべて読破する場合は年間計画となりそう
だ。内容はプログラミング未経験者が読者対象なだけあっ
て、「なぜセミコロンを末尾に付ける必要があるのか？」と
いった基本事項まで省略せずに解説している。とりあえず
動くものが作りたい、という読者の方には不向きだが、1行
1行のコードの裏でどのような処理が走っているのかが気
になるといった方には、これ以上ない1冊と言える。

Bjarne Stroustrup 著／江添 亮
監修／株式会社クイープ、遠
藤 美代子 訳
B5変形判／1,248ページ
7,000円＋税
アスキードワンゴ
ISBN＝978-4-04-893051-2

みんなのGo	

　かわいい表紙で話題？ の本書だが、Goユーザ向けの専門
書であることは間違いない。なぜ今Goをはじめる必要が
あるのか。Goを利用するメリットとして「パフォーマンス」

「シンプルな言語仕様」「スタイルの統一感」「シングルバイ
ナリの手軽さ」などが挙げられる。また、ほかのプログラ
ミング言語の経験があるエンジニアであればGoはすぐに
はじめられる。本書でも触れている「A Tour of Go」（Web
で公開されているチュートリアル）を試してみるのが良い。
入門を一通り押さえたら本書の出番になるだろう。「チーム
開発」「コマンドツールの作成」「マルチプラットフォームア
プリ作成」「テスト」など、入門書では扱っていない実用的
なテーマで構成されている。Goによる実践的な開発のため
の書籍としてお勧めできる。

松木 雅幸、mattn、藤原 俊一
郎、中島 大一、牧 大輔、鈴木
健太 著
B5判／144ページ
1,980円＋税
技術評論社
ISBN＝978-4-7741-8392-3

198 - Software Design

アプリからタクシーを呼べる時代に
　「Uber」「LINE TAXI」「全国タクシー配車」など、スマホからタクシーの配車を頼めるアプ
リが人気です。乗車位置を指定するだけで簡単にタクシーが呼べ、さらにはアプリ内で決済
までできます。スマホの登場によって本や専用ゲーム機の売上が下がったという話も聞きま
すが、タクシーのように昔からあるものが、スマホによってもう一段階便利になるという「リ
ノベーション」が起きているのもひとつの事実ですね。

　CentOS、Apache/Nginx、MySQL、
Samba、Webアプリケーションのログ
を最大限利用するための出力の設計、設
定を考える特集。さらには出力したログ
の見方、活用方法も解説しました。

知識があやふやなところを補完できた
ので、たいへん良かったです。
 二関さん／東京都

ログを加工していたので、ちょうど良
かった。 jo7oemさん／山形県

CentOSの5を利用することが多いの
で、6以降のログ出力を試す際に参考に
なると感じた。
 massakiiiiさん／福岡県

ログの管理については、いろいろ試行
錯誤していますが、まだ目視に頼って
いる部分が多いです（台数も少ないので、
何とかなっていますが）。
 菊地さん／愛知県

トラブルシューティングにログは必須
だと思います。出力レベルやログロー
テーションの検討は欠かせないと思い
ます。 永作さん／東京都

本特集目当てで購入しました。最近、
会社でサーバ系のログの話をよく聞く
のだが、もともとホストの技術者のせ
いか、勘所がよくわからない。特集が
何かの役に立てば良いのだが。
 ねこやまさん／埼玉県

systemdが採用されてから、journal
という何かが現れ、よくわからず不安
に思っていましたが、今回の特集の第1
章だけを読んでよく理解できました。
このようなシステムの基盤となってい
る機能については、定期的に特集して
もらえると参考になります。
 今井さん／千葉県

ログについて、さまざまな環境
でのまとまった知識を得られて

良かったという声が多く寄せられました。
OS、サーバ、DB、アプリと広く解説し
たので、仕事ですぐに使えるTipsが1つ
は見つかったのではないでしょうか。

　Web開発では圧倒的なシェアを持つ
PHPの入門特集記事。文法、ライブラリ、
フレームワークについて、良いパターン
と悪いパターンを示しながら解説してい
きました。記事末ではPHPのコミュニ

ティも一挙に紹介しました。

コミュニティについてのまとめが意外
と役に立ちました。
 サユリナンバさん／神奈川県

PHPは初心者でも書けるけど、ちゃん
と書くのは慣れた人でも難しくて、参
考になりました。 藤田さん／東京都

PHPの最新情報が見られて良かったで
す。 Tayuさん／千葉県

PHPについて勉強中だったので、非常
にためになる記事だった。
 TOCさん／東京都

PHPライブラリはPearよりあとはあ
まり知りませんでしたが、Composer
が便利そうなので、導入してみたいと
思います。 NGC2068さん／愛知県

PHPについては、使ったことが
ある／使っている／勉強中など、

何かしら関わりがあるという読者がほと
んどのようです。古い言語ですが、処理
系・ライブラリ・フレームワークは今も
進化中で、新しい情報を知れて良かった
という声もありました。

2016年9月号について、たくさんの声が届きました。

第1特集
ログ出力のベストプラクティス

第2特集
良いPHP、悪いPHP

198 - Software Design Nov. 2016 - 199

　ソースコードにおける「コメント」は、
チームでの開発やシステムの引き継ぎに
際して非常に重要な役割を持ちます。記
事では、どのような個所にどのようにコ
メントを書けば「良いプログラム」へつな
げることができるのかを解説しました。

新人のとき意識していたことを再確認
できた。 ぴょうへいさん／大阪府

若手に読んでほしい。
 茅野さん／神奈川県

自分の認識を改める機会になった。
 落ち葉さん／千葉県

「作るときは良いが、半年経ったら他人
だよ」とアドバイスしていますが、その
ときに役立ちそうな記事です。
 とーふやさん／神奈川県

以前プログラムを書いていたとき、こ
れで苦労しました。「このコメント必
要？」って感じで。今なら、もう少しま
ともに書けると思います。
 あまのじゃくさん／長野県

コードの補完になっているのが、よく
わかる。 桑村さん／兵庫県

秘伝のタレのように数十年継ぎ足し継

ぎ足ししてきたシステムを子守すると、
良いコードよりも良いコメントのほう
がうれしかったり……。本当はどちら
も良いほうがうれしいのですが（笑）。
 よっとっとさん／広島県

「コメントをどうするか」はけっこう出
てくる話題なのでおもしろかった。
 片山さん／東京都

新人のときを思い出した／若手に
読ませたい、といった類の声が多

かったです。「コメントを適切に書く」と
いうことは、キャリアが長くなるにつれ
おざなりになっていく部分かもしれませ
んね。

　乱数は、シミュレーションやセキュリ
ティ確保に欠かせない技術。その乱数に
ついて、作り方／使い方の両面を全3回
で追います。第2回「物理乱数ハードウェ
アを作る」では、デバイスによる乱数生
成の方法を紹介しました。

自社製の乱数生成器と比較してみた
い。 lipgtxさん／東京都

数理的に乱数には興味があったが、今
回の物理乱数ハードウェアの話はおも
しろかった。 匿名希望さん／埼玉県

まだ使いこなせるまでにはいたってい
ないが、少しずつ理解ができてきてい
る気がします。
 yoshitakaさん／神奈川県

少し疑問に感じたのは、それほど大規
模でもないようなのに汎用のCPUに
ハードウェアとして組み込まれていな
いのはなぜなんだろうか、という点で
した。もし理由があるのでしたら、機
会があれば解説をお願いします。
 出玉のタマさん／大阪府

「難しいけど勉強になる」と好評の
本連載。今回取り上げた物理乱

数ハードウェアは、聞いたこともなかっ
たという声が多かったです。

一般記事　「良いプログラム」のた
めの「良いコメント」

短期集中連載
乱数を使いこなす【2】

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① ザ・ワイヤレス サイレントマウスキーボード
MK48367G
岸部翔吾様（東京都）

② 裸族の頭HDD/SSD引越キットCRAHK25U3
前田せい様（東京都）

③ Spark Summit Tシャツ
手崎達也様（新潟県）

④ 『Python機械学習プログラミング』
廣田健様（千葉県）、斉藤敦貴様（東京都）

⑤ 『インフラエンジニアになるための教科書』
地引秀和様（茨城県）、三宅俊輔様（滋賀県）

⑥ 『プログラミング言語Go』
星野大祐様（東京都）、新妻佑記様（東京都）

⑦ 『Slack入門』
中島秀明様（東京都）、福田昌弘様（埼玉県）

9月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

mailto:sd@gihyo.co.jp
http://sd.gihyo.jp/

Software Design
2016年11月号

発行日
2016年11月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6179
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2016年12月号
定価（本体1,220円＋税）

192ページ

December 2016
11月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2016 技術評論社

●先月に引き続き新刊の案内です。『ポートとソケット

でわかるインターネットの仕組み（仮）』が11月中に発

売されます。『小悪魔女子大生のサーバエンジニア日

記』のaicoさんのイラストとズバリ核心を突く解説でま

とめられたネットワーク技術の入門書です。楽しく学

べる本ですのでご期待ください！（本）

●今号の「ひみつのLinux通信」を読みつつ思う。昔

の自作プログラムや記事などを見て、「俺ってこんな

ことしてたんだ」と驚いてしまうのは齢50歳を過ぎて

しまったからか！　アセンブラで複数のSPをビシバシ

使ったり、 int 21hフックしたり、FGALにもTurboC

のソース付きでアップしてたなぁ。（退化の戒心、幕）

●週末に腰を痛めた。かがむ必要があるときには腰を

伸ばしたままヒザを折り曲げる。常に蹲
そんきょ

踞。力士か！　

力士といえば、北の湖関に続き、千代の富士関も亡

くなってしまった。子どものころ父と見ていて、相撲

が面白いと思ったのはこの2人のおかげ。私にとって

の二大横綱のご冥福を祈る。（キ）

●私はたまに、妻がECサイトで買い物をする様子を

見ています。妻が品物を熟慮しているときには、サイ

トのセッションが切れないか密かにドキドキします。ま

た、彼女は注文〆切時刻の1分前に注文確定したり

するので「PCとサーバの時刻がズレていたら間に合わ

ないかも」と私一人緊張しています。（よし）

●ピーマンの肉詰め、好きでよく作っています。鶏挽

き肉を使ったあっさりレシピもありますが、自分はやっ

ぱり牛豚合挽き派。できるだけ肉厚のピーマンを使う

ことで、焼いたあとも食感と苦味がしっかり残ってお

肉とBest Friend。挽肉にチーズを刻んで混ぜ込むと、

さらに本格的なTaste。（な）

●編集部のそばの小路で木蓮の実を初めて見ました。

緑の葉を茂らせている中に、鮮やかに赤く色づいた実

は、可愛らしい花からは想像できないようなゴツゴツし

た変わった形で吃驚。その隣には銀白色のふわふわな

毛を纏った春
はるまちめ

待芽（蕾）もあってなんとも不思議な光景

ですが、早くも冬支度が始まっているのですね。（ま）

S D S t a f f R o o m

［第1特集］ 適材適所で使っていますか？　

今学ぶべきNoSQLの教科書
MongoDB、CouchBase、Redis、定番NoSQLの嘘・本当
［第2特集］

プログラマのための
文字コード完全攻略マニュアル
HTML・Java・Ruby・MySQLのハマりどころ
［年末年忘れ企画］

温故知新 ITむかしばなしスペシャル
——あっと驚くゲストライター陣によるヤバイ話で振り返る IT業界　
［恒例スペシャル年越しマンガ］

特別版ひみつのLinux通信
※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
　「Debian Hot Topics」（第41回）は都合によりお休みさせていただきます。

200 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	SD2016年11月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 新人のときに知っておきたかった クラウドコンピューティングのしくみ AWS・Azure・SoftLayer・Heroku・さくらのクラウド
	・第1章：猫先生かく語りき そもそもクラウドって？五十嵐 綾、堀内 晨彦
	・第2章：これからクラウドする人に教えたい Amazon Web Servicesのシン・ノウハウ多田 貞剛
	・第3章：Linuxが動く！ RedHatが動く！ オープンソースとの親密度を深めるMicrosoft Azureのいま戸倉 彩
	・第4章：ベアメタルクラウドにはどんな利点がある？ SoftLayerとBluemixを擁するIBM Cloudの強み常田 秀明
	・第5章：インフラの構築・運用はPaaSで省略 スモールスタート＆高速開発に最適なHeroku織田 敬子
	・第6章：ハードウェアからしっかり解説 “仮想データセンター”を目指したさくらのクラウド篠田 真一、宮堂 達也

	■第2特集 恐れずにリファクタリングをするために レガシーコードF改善実践録 サイボウズ流バグゼロまでの道のり
	・第1章：ソフトウェアを徐々に高品質にするコードの直し方青木 翔
	・第2章：効果的なテストを無理なく導入する方法青木 翔
	・第3章：漏れがなく負担も少ないコードレビューとは青木 翔
	・第4章：ログ監視で人が気づかないバグも発見・撲滅する青木 翔
	・第5章：高品質を目指すときに、心がけたいこと青木 翔

	■特別企画
	［次世代言語］Elixirの実力を知る――Phoenixで高機能Webアプリ開発【前編】［関数型言語］Elixirのはじめ方大原 常徳

	■短期集中連載
	Jamesのセキュリティレッスン【7】SSL/TLSの暗号化通信を復号してみよう！吉田 英二

	■連載：Column
	及川卓也のプロダクト開発の道しるべ　品質を高めるプロダクトマネージャーの仕事とは？【新連載】Product Managerとは......及川 卓也
	digital gadget【215】コンピュータグラフィックスの祭典SIGGRAPH 2016［後編］～ディズニーランドの街アナハイム。VRと映像技術編安藤 幸央
	結城浩の再発見の発想法【42】デッドロック　......結城 浩
	増井ラボノート　コロンブス日和【13】廃れるページ増井 俊之
	宮原徹のオープンソース放浪記【9】OSunCリレー（川越→千葉→金沢）とAKB宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【17】mbed OS 5での開発坪井 義浩
	ひみつのLinux通信【33】犯人は誰だ!?くつなりょうすけ
	Hack For Japan　エンジニアだからこそできる復興への一歩【59】第5回 石巻ハッカソン高橋 憲一、小泉 勝志郎、及川 卓也
	温故知新 ITむかしばなし【60】リレー式計算機～カシオの実用的な最初の電子式卓上計算機　......速水 祐

	■連載：Development
	アプリエンジニアのための［インフラ］入門【5】バージョン管理入門出川 幾夫
	使って考える仮想化技術【6】仮想マシンの管理笠野 英松
	RDB性能トラブルバスターズ奮闘記【9】APIファースト・メソッドが可能にする「DB分離」の組織体制生島 勘富、開米 瑞浩
	Androidで広がるエンジニアの愉しみ【11】Android 7.0のセキュリティ谷口 岳
	Vimの細道【12】Vim使いの必需品 grep mattn
	るびきち流Emacs超入門	【31】Emacsの正規表現（基本編）るびきち
	書いて覚えるSwift入門【20】Pokémon GO、iPhone 7、macOS（Sierra）......小飼 弾
	Sphinxで始めるドキュメント作成術【20】Sphinx環境ひとめぐり――エディタ、ビルド、バージョン管理、公開安宅 洋輔
	Mackerelではじめるサーバ管理【最終回】Mackerelの生い立ちから思想、今後について杉山 広通
	セキュリティ実践の基本定石【37】ゼロデイ攻撃と脆弱性公開のリスクを考えてみるすずきひろのぶ

	■連載：OS/Network
	SOURCES　レッドハット系ソフトウェア最新解説【4】Red Hat OpenShift Container Local part2小島 啓史
	Be familiar with FreeBSD　チャーリー・ルートからの手紙【36】タイムスケジュールでプログラムを実行（その3）後藤 大地
	Ubuntu Monthly Report【79】Network ManagerのVPNプラグイン　......あわしろいくや
	Unixコマンドライン探検隊【7】ファイルの属性と権限、プロセスの所有中島 雅弘
	Linuxカーネル観光ガイド【56】Linux 4.2のlatched rbtreeとLSMのスタック化　......青田 直大
	Monthly News from jus【61】ITコミュニティ運営 関西ならではの課題・取り組みとは　......榎 真治

	■アラカルト
	ITエンジニア必須の最新用語解説【95】BuckleScript　......杉山 貴章
	読者プレゼントのお知らせ
	SD NEWS & PRODUCTS
	SD BOOK REVIEW
	Readers’ Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内
	Software Design Plus

