

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/

定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

技術評論社の本が電子版で読める！
https://gihyo.jp/dp

 GIHYO
 Digital Publishing

 GIHYO
 Digital Publishing

未来の“普通”を，今。

 Gihyo Digital Publishing

 GIHYO
 DIGITAL
 PUBLISHING

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

［改訂新版］プロのための
Linuxシステム構築・運用技術
中井悦司　著　
2,980円　 PDF EPUB

好評につき重版してきた『プロになるためのLinuxシステム構
築・運用』が，最新版のRed Hat Enterprise Linux（ver.7）に
対応し全面的な改訂を行った。これまでと同様に懇切丁寧に
Linuxのシステムを根底から解説する。そして運用について
は，現場で得られた知見をもとに「なぜそうするのか」といっ
たそもそも論から解説をしており，無駄なオペレーションをせ
ずに実運用での可用性の向上をねらった運用をするためのノ
ウハウをあますことなく公開した。もちろん，systemdもそ
の機能を詳細にまとめあげている。

https://gihyo.jp/dp/ebook/2016/978-4-7741-8465-4

C#プログラマーのための
デバッグの基本＆応用テクニック

EPUB PDF

ネットワークエンジニアのための
ヤマハルーター実践ガイド

EPUB PDF

『アポロ13』に学ぶ
ITサービスマネジメント
～映画を観るだけで ITILの実践方法がわかる！～

EPUB PDF

エンジニアがフリーランスで年収
1000万円になるための稼ぎ方
（2016年11月29日発売予定）

EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
https://gihyo.jp/dp/ebook/2016/978-4-7741-8465-4
mailto:gdp@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

https://gihyo.jp/site/inquiry/dennou

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

Software Design plusシリーズは、Software Design plusシリーズは、Software Design plusシリーズは、Software Design plusシリーズは、Software Design plusシリーズは、Software Design plusシリーズは、Software Design plusシリーズは、Software Design plusシリーズは、Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアネットワーク、IT環境を支えるエンジニアネットワーク、IT環境を支えるエンジニアネットワーク、IT環境を支えるエンジニアネットワーク、IT環境を支えるエンジニアネットワーク、IT環境を支えるエンジニアネットワーク、IT環境を支えるエンジニアネットワーク、IT環境を支えるエンジニアネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信誌『Software Design』編集部が自信誌『Software Design』編集部が自信誌『Software Design』編集部が自信誌『Software Design』編集部が自信誌『Software Design』編集部が自信誌『Software Design』編集部が自信

ED - 1 - Software Design Dec. 2016 - ED - 2

ものづくり日本と言われるが

　連載初回となる前回、その冒頭で、今日本で
もProduct Manager（以降、PMと省略）の重要
性が認識され始めているとお話しましたが、私
がなぜこの連載を始めたかについて、今回はも
う少しお話をさせていただきます。
　昨今、人工知能（AI）が注目を集めています。
日本ではこのようにある技術が注目されると、
その技術者が不足していると危機感を煽

あお

る論調
が聞かれるようになります。AIにしても、AI

技術者が数万人規模で足りなくなるなどという
話もあります。AI技術者というと何か別の職
業のように聞こえるかもしれませんが、本誌読
者ならおわかりのとおり、AI技術者もプログ
ラマです。プログラマの中でAIを開発できたり、
活用できたりする人がAI技術者であるだけです。
　では、そのプログラマの日本での地位はどう
でしょう？　大手 IT企業の中には要求定義や
工程管理しか行わず、実装は下請けや孫請けに
いるプログラマが行っているところも多くあり
ます。大手から仕事を請け負ったそのような会
社の労働環境や待遇は大手より悪いため、日本
ではプログラマになりたがる人はおらず、プロ
グラミングをしなくなって一人前というような
風潮さえあります。ものづくり日本と言われま
すが、そのものづくりにおいて現在一番重要な
技術である ITにおいてさえ、このようなお寒
い状況なのです。
　数年前、ある全国紙にプログラムを自動生成

する技術が大手 IT企業によって開発されたと
いう記事が掲載されました。その記事では、こ
の技術でプログラマが行っていた仕事が不要に
なると書かれていました。これはこれで、すべ
てのプログラミングがそのように思われかねな
いミスリードな記事なのですが、それよりも私
が残念に思ったのは、プログラマに用語説明が
書かれていたことです。確か、「プログラマと
はシステムエンジニア（SE）の用意したシステ
ム設計書をプログラミング言語に書き換える技
術者」などと説明されており、とても残念な気
持ちになったことを覚えています。この説明も
SEのほうが上級技術者であると誤解させます
が、それよりもプログラマという言葉に解説が
必要なことにショックを覚えました。
　しかし、その状況も変わりつつあります。実
装力がそのまま製品の良し悪しにつながること
が、Webやスマートフォンなどでは認識され
つつあります。また、政府主導で学校教育の中
でのプログラミング教育が検討されるなど状況
は改善してきています。プログラミングを理解
した若者が多くなれば、その受け皿となる企業
も変わらざるを得ません。笑い話ではないです
が、学生の頃からプログラミング能力を高めた
若者がいざ就職しようとしたとき、彼らの目に
魅力的に映る日本企業がなかったならば、彼ら
は外資系企業に就職してしまうでしょう。

プロダクト開発に必要なもの

　このようにソフトウェアプロダクトの開発に

及川卓也の
プロダクト開発の道しるべ
品質を高めるプロダクトマネージャーの仕事とは？

Product Managerが日本を救う

@takorattaTwitter

及川 卓也
（おいかわ たくや）

Author

新連載

第2回

ED - 1 - Software Design Dec. 2016 - ED - 2

おいてプログラミングを行うエンジニアの重要
性は少しずつ認識されつつありますが、一方で
プロダクト開発はプログラマだけで行えるもの
ではありません。前回書いたように、プロダク
トを世に出すためにはさまざまな役割を持つ専
門家が必要です。
　最高のユーザ体験（UX）を与えるためには、
UXリサーチャーやUXデザイナーが必要でしょ
うし、市場調査をするためには企画担当者も必
要です。完成したプロダクトを世に出すことを
考えると、広報やマーケティング、さらにはユー
ザーサポートもいるでしょう。プログラミング
だけ見ても、インフラからフロントエンドにバッ
クエンドなどのエンジニア、プロダクトによっ
てはデータベースに長けた専門家も必要かもし
れません。
　このような専門家で構成されたプロダクトチー
ムを指揮するのがPMなのですが、PMは何の
専門家かと言われると言葉に詰まってしまうこ
とがあります。逆に言うと、一言でPMを説明
しづらいからこそ、今までその重要性が認識さ
れにくかったのかもしれません。
　前回、PMの役割をスポーツチームのマネー
ジャーに擬

なぞら

えましたが、メタファーとしてほか
に私がよく使うのが映画のプロデューサーです。
　映画は誰のものかと聞かれたら、皆さんはな
んと答えるでしょうか？　有名監督の映画なら
監督のものと思うかもしれません。人気俳優が
出ていたら、その俳優かもしれません。原作が
ベストセラーになったものなら、その作家の名
前を思い浮かべるかもしれません。脚本が良い
ものもあるでしょう。しかし、映画はこのよう
な監督や脚本家、俳優だけでは作れません。プ
ロデューサーが不可欠なのです。
　多くの映画において、プロデューサーは商業
作品として興行収入をあげることを目指します。
映画によっては芸術性の高いものもあるでしょ
う。しかし、その場合でも純粋な芸術作品でも
ない限りは、作品が多くの人の目に触れるよう
に、適切な尺を考え、1日に何回上映できるか

なども考慮します。制作費を抑えるような努力
もするでしょう。監督と衝突することも多くあ
ると聞きます。監督や主役の交代をたまに耳に
することなどからもわかるように、必要と判断
すれば、制作スタッフも変更します。
　プロダクト開発におけるPMの役割もプロ
デューサーと似ています。縁の下の力持ち的な
存在でありながら、最終的な決定はすべて下す。
前回、PMはサーバントリーダーとして振る舞
わなければならないが、同時に強いリーダーシッ
プを持つ必要があるとお話したのはこのような
理由からです。合議制では良いプロダクトは生
まれません。プロダクトの方向性を決めたり、
さまざまな局面においての決断を行うのは最終
的にはPMになるのです。

IT立国を目指すには

　今日、経済大国となっている国の多くは高い
IT競争力があります。現代社会において、多
くの経済活動はITによって支えられています。
ITは昔はコスト削減のための技術でした。労
働者の行っていた作業を機械化することが産業
革命でしたが、ITも昔は事務作業や工場での
生産を置き換えていくものでした。今でもその
流れはあり、多くの企業において ITは不可欠
なものとなっていますが、ITの活用はそれだ
けに留まらず、ITでないと生み出せないもの
を生み出した企業が成長し、活用できなかった
企業は廃れていきます。
　日本の国際競争力は未だに高いものを維持し
ていますが、現在直面している少子化などの社
会課題に対応するには、ITのさらなる活用は
不可欠です。そんな状況下、プログラムを書く
エンジニアと同じように、ITでのものづくり

を支えるのがPMであると信じて疑っていませ
ん。エンジニアと同じように、PMを目指す人
が増えてほしい。そんな思いが、私がこの連載
を開始した理由となります。｢

Product Managerが日本を救う

ソフトウェアエンジニアとして社会人キャリアをスタートした後、MicrosoftやGoogleでプロダクトマネージャーやエンジ
ニアリングマネージャーを経験。現在はプログラマーのための情報共有サービスQiitaのプロダクトマネージャーを勤める。

Profile

第2回

ED - 3 - Software Design

　Dockerをはじめとしたコンテ
ナ環境ためのオーケストレーショ
ンツール「Kubernetes」の開発チー
ムが、インキュベータープロジェ
クトとして独自のコンテナランタ
イムの開発をスタートさせていま
す。このランタイムは「cri-o」と
名付けられており、コンテナ関連
の2つの標準仕様である「OCI
（Open Container Initiative）」と
「C R I（C o n t a i n e r R u n t i m e
Interface）」に準拠するとのこと
です。
　OCIは、DockerやCoreOSを
中心としたベンダー各社が発足さ
せた「The Open Container Initi
ative」が推進するコンテナ標準仕
様です。CoreOSやRed Hatなど
複数のベンダーがOCIをサポート
したランタイムをリリースしてい
るほか、リファレンス実装として
「runC」があり、Dockerもバー
ジョン1.11からはrunCベースと
なっています。
　CRIは、Kubernetesとランタイ
ム間のインターフェースを標準化
した仕様です。CRIに準拠してい
れば、Docker以外のランタイム
でもKubernetesと組み合わせて
利用できるようになっています。
　開発チームによれば、cri-oプロ
ジェクトのスコープはCRIのス
コープと強く関連しているとのこ
とで、機能面の具体的なターゲッ
トとしては次のような内容が挙げ
られています。

• コンテナイメージの管理
• コンテナのプロセスライフサイクル
の管理

• モニタリングおよびロギング
• リソース分割
• Docker Image Formatを含む複
数のイメージフォーマットのサポート

　一方で、イメージの作成やコマ
ンドラインユーティリティによる
管理はスコープの範囲外であり、
cri-oではサポートする予定はない
とのことです。

　実質的に、昨今のコンテナ型仮
想化の隆盛はDockerの登場に
よって始まったと言えます。Kuber
netesなどのサードパーティによ
る関連ツールも数多く作られ、
Dockerを中心としたエコシステ
ムは業界全体を巻き込んで急速に
成長していきました。Dockerに
特化したLinuxディストリビュー
ションであるCoreOSの登場もそ
の1つです。
　風向きが変わってきたのは、そ
のCoreOSが、Dockerと決別し
て独自のコンテナランタイムの開
発に着手したころからです。この
決別の背景には、Docker一社の
影響力が強くなり過ぎることに対
する大きな懸念があったと言われ
ています。最終的にDockerと
CoreOSは再び和解しますが、こ
の一件が、関連するベンダーを巻
き込んでThe Open Container

Initiativeの設立につながりました。
　標準仕様としてのOCIが軌道に
乗り始めたことで、各社は自由に
OCI準拠のコンテナやランタイム
を作れるようになりました。言い
方を変えれば、Dockerに依存し
ないコンテナのライフサイクルが
構築できるようになったというこ
とです。
　このような流れの中で、Kuber
netesプロジェクトではRed Hat
が中心となってOCIDと呼ばれる
独自のランタイムの開発をスター
トさせ、これが改名されてcri-o
となりました。Kubernetesの立
場としては、コンテナランタイム
を交換可能なコンポーネントとし
てコモディティ化させることでイ
ノベーションをさらに加速させた
いという狙いがあるようです。
　cri-oは、Kubernetesとの連携
を前提にチューニングされたコン
テナランタイムとして、ユーザに
新しい選択肢を提供することにな
ります。cri-oの開発チームは、プ
ロジェクトのスコープはあくまで
もオーケストレーションであり、
Dockerと競合するものではない
という点を強調しています。しか
し、そうは言ってもcri-oの存在
がコンテナ業界のエコシステムの
主導権争いに大きな影響を与える
ことは明白であり、しばらくは目
が離せない状況が続きそうです。
｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 96回

cri-o

cri-o
https://github.com/kubernetes-
incubator/cri-o

Kubernetesによる新コ
ンテナランタイム「cri-o」

cri-o 登場までの経緯

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
https://github.com/kubernetes-incubator/cri-o

vol.216

1 - Software Design Dec. 2016 - 1

　1958年に登場したレゴブロック、最
初の電子ブロックが発売されたのが
1965年、それ以降、さまざまなブロック
や電子ブロックが登場してきました。ブ
ロックの拡張性と柔軟性のある考え方
は、多くのハードウェア、ソフトウェアに
影響を与えていると考えられます。ブロッ
クが持つ本質で、ほかにも応用できる
事柄は何でしょうか？

●基本設計がシンプルで、拡張の余地
があること

●互換性を保ったうえで、個々の機能
が豊富であること

●ある目的を達成するための方法が複
数存在すること

　一方、ブロック的な考えにもデメリット
はあり、何かを試作したり、目的のものを
作り上げるときに、それらのデメリットを
考慮する必要もあります。

●完成物ではなく、量産や複製が困難
であること。永続性はないこと

●限られた数と種類のブロックから作る
ため、発想にある種の制限を受ける
こと

●汎用的なブロックと、特殊なブロックが
必要とする機能のバランスが難しいこ
と

　これらのブロック的な考えは、オモ
チャだけではなく、電子楽器や建築の
世界、家具など、モジュール化できるも
のであれば、何にでも役立つ要素を多
数含んでいます。

　電子ブロックの話題をする際、米国
のスタートアップ、LittleBitsの紹介を避
けて通ることはできません（pic.1）。電
子楽器メーカーであるKORGとの協業
でシンセモジュールを出したり、NASAと
の協業によるSpace Kitでは、NASA
の科学者が記したサンプル回路の解
説が付属します。そのほかにもクラウド
モジュールcloudBitで、Web連携サー
ビスIFTTTとつなぐこともできます。ま

た、当初は高価だと敬遠されていた部
分も、ハードウェアの回路図、仕様など
をオープンソース化し、他社や個人が
モジュールを作れる余地も出てきまし
た。LittleBitsのWebページには、希
望の新モジュールのアイデアを書き込
むドリームビッツというページ（http://
littlebits.cc/dreambits）が用意され
ており活況です。最近ではLEGOブロッ
クと組み合わせて遊ぶ遊び方も広まり
始めているようです。LittleBitsのCEO
によると、既存のIoTデバイスの70〜
80％は、LittleBitsの組み合わせで実
現できるそう。

　mCookieはArduino互換ボードをリ
リースしているMicroduino Studioの
モジュールです（pic.2）。レゴのパーツ

再び盛り上がる電子ブロック的アイデア

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

安藤 幸央
EXA Corporation

ブロックの歴史

電子ブロック的
ブロックの数々

※本記事で紹介しているものは
国内未発表・未発売のものを含んでいます。

学研電子ブロック「EX-150」（写真は80
年代発売当時のもの）

LEGO is the trademark of the LEGO Group.
©2016 The LEGO Group.

IoT化したレゴブロックの教育用製品
「WeDo 2.0」

LittleBits
http://japanese.engadget.com/
2015/06/19/2015-littlebits/

mCookie
https://www.microduino.cc/
index-mcookie

http://www.andoh.org/
http://japanese.engadget.com/2015/06/19/2015-littlebits/
https://www.microduino.cc/index-mcookie
http://littlebits.cc/dreambits

2 - Software Design

を取り付けることのできる小さな電子モ
ジュールで、これらを簡単に着脱できま
す。形を整えたり、ケース的なものを作っ
たりするのは、LEGOブロックのパーツ
で平易に行えます。IoTブロックとも言え
るmCookieです。

　KOOVはプログラミング可能な、ロ
ボット化ブロックです（pic.3）。おもにロ
ボットやプログラミングの教材用に考え
られたもので、ブロックの要素で形を作
り上げたものを、プログラミングの要素
で、動きをコントロールすることができま
す。教育カリキュラム「STEM101」の
プロジェクトの1つとして推進されており、
詳細は不明ですが、タブレット端末上で
命令を組み合わせてプログラムを作成
し、そのプログラムをブロックに送信し
て動かすようです。

　おもに教育用として考えられている
Makeblockは、アルミのパーツや電子
部品を組み合わせてロボットを作ること

のできるブロック製品です（pic.4）。基
本的なブロックを組み合わせて何かを
作るというイメージよりも、3Dプリンター
やレーザーカッター、プロッタ、ロボット、
ロボットカーなど、ある完成物を組み立
てるのに必要なパーツ群がそろってい
るというイメージです。

　BrixoはLEGOブロック互換のIoTモ
ジュールです（pic.5）。電子回路の回
線そのものもブロック化されているため、
簡単な電子回路を組むことができます。
モジュールとしては現状、Bluetooth接
続、音センサー、光センサー、接近セン
サー、LEDライト、モーターのブロックが
用意されています。ハンダ付けなしで回
路を構築でき、非毒性の金属で安全だ
そうです。

　ESLOV IoT Invention Kitは22ミ
リ角の正方形の電子回路で、センサー
や機能モジュールを組み合わせて電

子回路を作ります（pic.6）。基本となる
Wi-Fi機能を搭載したハブと、数個のモ
ジュール、GUIベースの簡単なプログラ
ミングで回路を作り上げます。モジュー
ルは、各種センサー、小さなOLEDディ
スプレイ、ブザー、LED、物理ボタン、リ
レー、GPS、タッチセンサー、サーボモー
ター、マイクロフォン、自作用基盤など、
ひととおりの部品がそろっています。

　Google Project Bloksは電子回路
のためのブロックではなく、プログラミン
グの概念を学ぶための電子ブロックで
す（pic.7）。プログラムにおける分岐や
ループなどといった概念を学ぶことがで
きるよう工夫されています。利用想定年
齢は5歳以上とのこと。プログラミングに
よって物理的なものをコントロールでき
ることを学べるそうです。オープンなハー
ドウェアプラットフォームとして、広く多く
の人がモジュールを提供できることを想
定しているそうです。ブレインボードと呼
ばれる頭脳の部分、パックと呼ばれるボ
タンやスイッチ、ダイヤルなどの操作部

再び盛り上がる電子ブロック的アイデア

pic.1　
LittleBits

pic.2　
Microduino mCookie

pic.4　
Makeblock

pic.7　
Google Project Bloks

pic.8　ドイツの電子ブロック、
LECTRON

pic.3　
KOOV

pic.5　
Brixo

pic.6　
ESLOV IoT Invention Kit

pic.9　Raspberry Piが心臓
部のPiperキット

Google Project Bloks
https://projectbloks.withgoogle.com

ESLOV IoT Invention Kit
https://www.kickstarter.com/projects/
iot-invention-kit/eslov-iot-invention-kit

Brixo
http://www.getbrixo.com

Makeblock
http://www.makeblock.com

KOOV
https://www.koov.io

https://www.koov.io
http://www.makeblock.com
https://www.kickstarter.com/projects/iot-invention-kit/eslov-iot-invention-kit
https://projectbloks.withgoogle.com
http://www.getbrixo.com

Gadget 1 Gadget 3

Gadget 2 Gadget 4

2 - Software Design Dec. 2016 - 3

http://www.modrobotics.com/
cubelets/

Googleの組み替え式スマートフォン
Project ARAは、残念ながら事情によ
りプロジェクトが中止されてしまいました。
その一方、MotorolaのMoto Mods
は、スマートフォン（Moto Z）の背面の
モジュールを切り替えることで、さまざま
な専用スマートフォンに切り替えること
のできる確実で現実的なソリューション
です。モジュールとして、スピーカーメー
カーJBLのスマートフォン用スピーカー、
小型プロジェクター、カメラメーカー
Hasselbladのズームレンズ付きカメラ、
非接触充電バッテリーモジュールなど
があります。

cubeletsは磁気でくっつく立方体のブ
ロックで、プログラミングも配線も必要
なく、ブロックの組み合わせで、動きを
作っていくことができます。Bluetooth
ユニットを追加すると、各ブロックの動き
を再プログラミングすることもできます。
LEGOブロック用のアダプタも用意され
ており、さらに拡張した形を作ることがで
きます。

Linktzは追加モジュールによって、機能
を持たせることのできる、ウェアラブル
ウォッチ型キットです。1つの腕時計に
3個のモジュールを搭載でき、モーショ
ンセンサーとLEDを2個といった組み
合わせや、マイクロフォン、スピーカー、
USB端子などが用意されています。ク
ラウドファンディングで目標を上回る10
万ドルの資金を集め、現在追加の予約
を受付中です。

Osmoはプログラミングの概念を学ぶた
めのブロック。文字ではなく、単純な動
作のしくみが絵で書かれた平面ブロッ
クを組み合わせてゲームを作ります。画
面の中ではなく、手で触れるモノの組み
合わせでプログラミングを学ぶのが特
徴です。iPadのアプリと専用スタンドの
組み合わせで、ブロックを画像認識させ
て利用します。

Moto Mods cubelets

Linktz Osmo

ブロック的スマートフォン サイコロ型ロボットブロック

モジュール型腕時計 プログラミング学習ブロック

分などに分かれます。

　1970年代、電子ブロックが流行し、
似たような製品も数多く登場しました。
その後いったんブームは収束し、2000
年代になってから、また電子ブロックの
復刻版が登場し人気を博しました。新
しい世代が飛びついたというよりも、子
供のころ、高価すぎて手に入らなかった
世代が大人になって、夢（というより欲
望？）を叶えたのかもしれません。
　電子ブロックと同じ時代に登場した
LECTRON（http://lectron.info/）は、
現在では、Webにある情報と、博物館
に保存されているものでしか知る由も
ありません（pic.8）。現存しているもの
と、過去のものとの差異はどこにあるの
でしょうか。永続性のある技術とは、どこ
がポイントなのでしょうか？　電子ブロッ
クの栄枯盛衰にあわせて、ハードウェア
やソフトウェアの栄枯盛衰も考えること
ができそうです。
　さて、最近では新しい世代が電子ブ
ロック的なオモチャやグッズを手に入れ、
新しい発想のもとに、新しいものを作り
上げるようになってきました。ネットやク
ラウドサービスさえも、ブロックの一部品
でしかないのです。なにかあらかじめ決
まったものしか完成しない「キット」的な、
お膳立てがされたものではなく、各部品
の特性や役割を知ったうえで、それらを
最大限組み合わせて、今までにないも
のを作り上げるのがブロックの醍醐味
です。発想の広がりを促進し、何か新
しいしくみを発見するためのブロックで
あってほしいものです。
　最近Microsoftに買収された子供達
に人気のゲームMinecraftも、ある種
ブロックの楽しみを仮想化したもので
す。実際にMinecraftの世界を使って
電子工作とプログラミングを学ぶツール

「Piper」（https://playpiper.com/）
も販売されています（pic.9）。そうした
ブロックによるある種の制限と、限界を
知ったうえで、いつかはブロックの枠組
みさえも超えて、新しいものを作り始める
ことになるのかもしれません。｢

http://www.motorola.com/us/
moto-mods

ブロックの本質

http://www.linkitz.com https://www.playosmo.com/en/

http://lectron.info/
https://playpiper.com/
http://www.motorola.com/us/moto-mods
http://www.linkitz.com
https://www.playosmo.com/en/
http://www.modrobotics.com/cubelets/

4 - Software Design

チューリングテストとは

　チューリングテスト（Turing test）とは、数学
者アラン・チューリングが提唱したテストで、「機

械は考えることができるか」という解答困難な

問いを検証可能な問いに変換したものです。
　「機械は考えることができるか」はとても難し
い問いです。答えるのが難しいだけではなく、
問いの意味を定義するのが難しいのです。それ
は「考える」という言葉が持つ意味の広さを想像
すれば理解できるでしょう。そこで「機械に何
ができたなら、考えたと言えるか」という発想
の転換を行います。
　チューリングは論文“Computing Machinery

and Intelligence”注1の中で、「機械」や「考える」
の定義をやめ、イミテーション・ゲームという
形で「機械は考えることができるか」の言い換え

を行っています。
　イミテーション・ゲームの概要はこうです（図1）。

¡登場人物は、男性Aと女性Bと質問者Cの3
人

¡3人はそれぞれ別室に入る
¡「AとC」ならびに「BとC」は文字だけの通信
ができる

¡質問者Cは通信相手のどちらが男性Aでど
ちらが女性Bかを知らないが、2人のどちら
とも通信でコミュニケーションを取ること
ができる

　そして、男性Aと女性Bと質問者Cには異な
る目的が与えられます。

¡男性Aの目的は、質問者Cに対して「自分は
女性Bであると思わせる」こと

¡女性Bの目的は、質問者Cに対して「自分は
女性Bであると信じてもらう」こと

¡質問者Cの目的は、通信相手の性別を判断
すること

　男性Aが女性Bを模倣するのでイミテーショ
ン・ゲーム（模倣ゲーム）というわけです。
　チューリングは「イミテーション・ゲームの
男性Aを機械に変えたらどうなるか」と問いま
す（図2）。そして、

「機械は考えることができるか」

という問いを、次のように言い換えます。

B

A C

 ▼図1　男性Aが女性Bのふりをするイミテーション・ゲーム

チューリングテスト

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 43

注1） 原文： URL http://www.loebner.net/Prizef/TuringArticle.
html 和訳： URL http://www.unixuser.org/~euske/doc/
turing-ja/index.html

http://www.hyuki.com/
http://www.loebner.net/Prizef/TuringArticle.html
http://www.unixuser.org/~euske/doc/turing-ja/index.html
http://www.loebner.net/Prizef/TuringArticle.html
http://www.unixuser.org/~euske/doc/turing-ja/index.html

4 - Software Design Dec. 2016 - 5

「男性Aを機械に変えた場合、質問者Cは、人
間のときと同じくらい判断を誤るだろうか」

　イミテーション・ゲームの男性Aを機械に変
えたもの、これがチューリングテストです。
　ある人は「イミテーション・ゲームで質問者
Cをうまく惑わせる機械ができても、それは単
に人間を模倣できる機械ができたに過ぎない。
機械が考えているわけではない」と考えるかも
しれません。でも、よく考えてみますと、私た
ちは普段たくさんの人とネットごしに会話して
います。それは、日々イミテーション・ゲーム
と同じ舞台に立っているようなもの。通信相手
に関して、性別・能力・信頼度……たくさんの
判断を行っています。人間を模倣できるほどの
機械でも「考えていない」と言うなら、私たちも
また考えてはいないことになってしまいます。

日常生活とチューリングテスト

　チューリングテストにまつわる事象は、私た
ちの生活のあちこちで見つかります。
　チューリングテストでは、見た目に影響され
ないようにコミュニケーションを文字に制限し
ていました。実際、私たちは多くの場面で見た
目に影響されている可能性があります。性別を
隠した試験では男女で差がないのに、性別を明
らかにした試験では男性が優位になると主張す
る人もおり、採用試験での性別の影響を研究し
ている人もいます。その真偽はわかりませんが、

人間同士のやりとりというのは繊細なものです
から、試験官が自覚なく性差に影響を受けてい
てもおかしくはないでしょう。
　消費者金融の自動契約機では、背後に人がい
るにもかかわらず、あたかも無人で処理される
ように見せています。これは恐らく、機械が処
理しているように見せて、利用者の心理的抵抗
を少なくしているのでしょう。いわば人間が機
械のふりをしているので、逆向きのチューリン
グテストと言えるかもしれません。
　チューリングテストで最も注目すべき点とい
うのは「問題の言い換え」にあります。定義すら
困難な問題に答えるのではなく、検証可能な問
題に言い換えた点です。
　入学試験などの選抜試験について考えてみま
しょう。あれは、人格を測定しているわけでは
ありません。そのときに試験としてたまたま出
された問題で、ほかの人よりも多く得点できた
人を選んでいるわけです。定義すら困難な「入
学するにふさわしい人を選択する」という問題
を、「試験で多く得点できた人を選択する」とい
う検証可能な問題に言い換えているのです。
　人工知能と試験と言えば、国立情報学研究所
が行っている「東ロボくん」のプロジェクトを思
い出します。そこでは、定義が困難な「ロボッ
トが一定レベルの知能を持つ」という問題を、「ロ
ボットが入試に合格する」という検証可能な問
題に言い換え、東ロボくんの2021年度東大合
格を目標に研究が進められています。
　実は、東ロボくんの目的の1つは、ロボットに
知能を持たせることの裏側にあります。東ロボく
んの研究を通して、人間が得意な分野を見極め
ようというのです。ここでも「人間が得意な分野
は何か」という問題を、「ロボットは何ができない
か」という検証可能な問題に言い換えていますね。
　あなたの周りを見回して、「定義すら難しい
ことを無理に解決しようとしている問題」はあ
りませんか。その問題を、検証可能な別の問題
に言い換えることはできないでしょうか。
　ぜひ、考えてみてください。｢

43

A

B

C

 ▼図2　男性Aを機械に変えたらどうなるか

6 - Software Design

　次のような作業をやりたいと思ったことはな
いでしょうか？

・ �同じファイルがあちこちにないかチェックしたい
・重要なファイルだけバックアップしたい
・自分のアイデアを日付つきで記録したい

　実はこのような仕事は、1つの単純な方法を
使って実行できます。
　パソコンやWebには膨大なファイルがあり
ますが、同じファイルがあちこちに冗長に置か
れていることも多いでしょう。
　私の場合、同じファイルを何度もダウンロー
ドしてしまったり写真や動画をいろんな場所に
コピーしてしまったりすることがよくあります
し、バックアップのつもりでコピーしたデータ
をさらにバックアップ対象にしてしまった結果、
バックアップのバックアップ（のバックアップ
の……以下同様）のような無駄なデータを作っ
てしまうことすらあります。
　こういう問題を防ぐためには、同じファイル
がすでに別のところに存在するか調べれば良い
わけですが、すべてのファイルの中身を比較す
ることは現実的ではありません。しかし、ファ
イルの「ハッシュ値」を利用すれば、あるファイ
ルが独自の（ユニークな）ものなのかどうかを比
較的簡単に判別できます。

HashInfo
ハッシュ関数とハッシュ値

　デジタルデータを一定サイズの数値に変換す
る関数をハッシュ関数と呼び、計算された値を
そのデータのハッシュ値と呼びます。
　最近のプログラミング言語ではa['abc']の
ような連想配列が使えるのが普通ですが、これ
を通常の計算機上に実装する場合、"abc"のよ
うな文字列に対してハッシュ関数を計算し、そ
の数値を添字として利用することによって通常
の配列と同じように扱う手法がよく利用されて
います。
　ハッシュ値のサイズが小さい場合は、異なるデー
タから同じハッシュ値が計算されてしまう（ハッ
シュ値が衝突する）ことがありますが、ある程度
大きなハッシュ値を生成する適切なハッシュ関数
を用意すれば、ハッシュ値が衝突する可能性は
ほぼゼロにできます。また、ハッシュ値からもと
のデータを計算することもほぼ不可能にできます。
　ハッシュ関数はさまざまなものが考えられま
すが、現在はMD5やsha1というハッシュ関数
が広く利用されています。このようなハッシュ
関数は次のような特徴を持つため、暗号化アル
ゴリズムなどで広く利用されています。

・ハッシュ値からもとのデータを知ることはで
きない

・異なるデータのハッシュ値が同じ値になるこ
とはない

　ファイルデータから計算されるハッシュ値の
情報（HashInfo）をうまく利用することにより、

増井ラボノート

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張って楽できるなら、それに越したことはないでしょ
う。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろんな
システムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用しているよ
うな単純かつ便利なシステムをたくさん紹介していきます。

第 14 回　HashInfo

注1） http://thinkit.co.jp/free/article/0709/19/

http://thinkit.co.jp/free/article/0709/19/

NO.

6 - Software Design Dec. 2016 - 7

HashInfo

最初に述べたようなさまざまな有用な機能を実
現できます。

　ハッシュ値の特徴を利用すれば、手持ちのす
べてのファイルのハッシュ値をあらかじめ計算
しておくことにより、あるファイルが別のとこ
ろにすでに存在するかを調べることができます。
たとえば、movies/abc.mp4という動画とbackup
/xyz.mp4という動画のハッシュ値が同じであ
れば、abc.mp4とxyz.mp4は同じファイルだと
いうことがわかるので、たとえば両方をバック
アップする意味はないと判断できます。
　図1は、手持ちのパソコンのすべてのファイル
のハッシュ値を計算し、それを
Treemapという手法で視覚化して
みたものです。同じファイルが複
数ある場合、そのファイルを赤く
表示しています（研究室に所属して
いた池滝俊太氏の卒業論文による）。
　池滝氏は整理が得意なのか、重
複するファイルは多くはないよう
ですが、それでもかなりの部分に
色がついている（ファイルが重複し
ている）ことがわかります。
　ハッシュ情報を複数の人間で共
有すれば、自分が持っているファ
イルを他の人も持っているかどう
かがわかります。図2は、研究室
の数人の学生に協力してもらって、
他人のパソコンまで比較対象を広
げて同じ計算をしてみたものです。
多くの学生はMacを利用してお
り、Macのシステムファイルは全
員に共通であるため、図1に比べ
ると左下部分が赤くなっています。
　このように、ハッシュ関数を利
用すると自分が持っているファイ

重複ファイルの視覚化

ルの素性がなんとなく見えてくると言えるでしょ
う。ファイルの中身をいくら調べてもこういうこ
とはわからないわけですが、他のファイルや他
人のファイルとの比較によりファイルの特徴が
見えてくることになります。

　前述の方法を使うと、複数のマシンで
HashInfoを計算することによって、さまざま
なマシンで同じファイルが共有されているかど
うかがわかります。システムファイルやメジャー
なアプリケーションのファイルは多数のマシン
で共有されているはずですが、あまり重要でな
い大きなファイルでもいろんなマシンで共有さ

重要情報の
バックアップ

 ▼図2　 他人とのファイル共有の視覚化

 ▼図1　 自分のパソコン内で重複しているものを赤く表示したもの

増井ラボノート

8 - Software Design

れている可能性があります。
　たとえばNode.jsでプログラム開発をする場
合、node_modulesというフォルダの下にたく
さんのライブラリがダウンロードされますが、
このようなファイルはバックアップをする必要
はありません。
　ブラウザでWebからデータをダウンロードす
るとき、大きなアプリケーションのプログラムファ
イルも重要なファイルも同じフォルダに入って
しまい、広く配られているファイルと重要なファ
イルを区別することは困難ですが、HashiInfoを
利用するとその違いが明白になるので、どのファ
イルが重要なのかがわかるようになります。
　一方、コンパイル結果やログファイルなどは
重要ではないにもかかわらず、他人が同じファ
イルを持っている可能性は低いと思われます。
　「他人と共有していない」「自動生成されるファ
イルではない」といった条件を満たすファイル
は重要である可能性が高いので、こういう性質
をもつファイルだけをバックアップすることに
しておけば、無駄なバックアップを防ぐことが
できるでしょう。

　特許や論文になるかもしれない新しいアイデ
アを思いついたときなど、ある時点においてあ
る情報を自分が持っていたことを証明したい場
合があります。
　情報がいつ作成されたかを個人的に覚えてお
くためにはファイル作成時刻を記録しておけば
良いのですが、ファイルの中身や作成時刻は後
から偽造できるので、確かにその時点でその情
報が存在したということを他人に納得させるこ
とはできません。デジタル情報がいつ作成され
たか証明するためには、信用できる外部の誰か

ファイルの存在証明

に認証してもらう必要があります。
　ある時点である書類が存在したことを証明す
るためには昔から「公証役場注2」が利用されてい
ます。公証役場の業務の1つに「確定日付の付与」
というものがあります。これは、私文書に「確
定日付」を付与し、その日付にその文書が存在
したことを証明するものです。
　デジタルデータを印刷して書類にしておけば、
その存在を証明するために公証役場を利用でき
ますが、情報を印刷して公証役場に持って行く
のは面倒ですし費用もかかります。
　最近はデジタル情報の存在を証明するために「電
子公証システム注3」を利用できるようになったの
で、公証役場に行かなくても公的な認証を得ら
れるようになりました。これは朗報なのですが、
かなりの費用がかかるのが難点です。
　ある時刻にあるデジタルデータが存在したこ
とを証明する技術のことをデジタルタイムスタン
プ注4技術と言います。電子公証システム利用は
高価であり利便性の問題もあるので、Seiko注5

やアマノ注6のような会社がデジタルタイムスタ
ンプ技術を提供するサービスを提供しています。
　しかし、大事なデータを民間企業に渡すのは
心配ですし、サービスがどれほど信頼できるか
わかりません。実際、現在運営を中止してしまっ
たサービスもありますし、10年後／20年後も
確実に利用できる保証はありません。
　電子公証システムや民間の証明システムを利
用する場合は証明したいデータの提示が必要で
すが、情報が漏れることは心配かもしれません。
その時点でその情報が存在することは証明した
いけれども情報の中身は公開したくないかもし
れません。簡単で良いアイデアを思いついたと
きなど、特許をとるまで内容は誰にも公開した
くないでしょうが、そのアイデアを自分が思い
ついた日時については記録しておきたいでしょう。

注2） http://www.koshonin.gr.jp/a2.html
注3） http://www.koshonin.gr.jp/de2.html

注4） http://www.imes.boj.or.jp/japanese/kinyu/2000/kk19-b1-4.pdf
注5） https://www.seiko-cybertime.jp/product/easy_time_stamp/
注6） http://www.e-timing.ne.jp/product/timestamp/characteristic/typet/

http://www.koshonin.gr.jp/de2.html
http://www.koshonin.gr.jp/a2.html
https://www.seiko-cybertime.jp/product/easy_time_stamp/
http://www.e-timing.ne.jp/product/timestamp/characteristic/typet/
http://www.imes.boj.or.jp/japanese/kinyu/2000/kk19-b1-4.pdf

NO.

8 - Software Design Dec. 2016 - 9

HashInfo

　つまり「情報を持っていることは証明するが、
情報そのものは公開しない」方法が必要になり
ます。

HashInfoによる
デジタルタイムスタンプ

　生のデジタル情報の存在証明を行う代わりに、
その情報のハッシュ値の存在証明を行うことに
すれば、情報そのものを渡す必要がないのでよ
り安全だと考えられます。
　たとえばある問題の解法を発見したとき、た
とえば「問題AはBという方法で解決できる」と
いった文字列のハッシュ値を公証役場や電子公
証サービスに登録しておけば、ハッシュ値から
もとの文字列を計算することはほぼ不可能なの
で、文字列そのものを登録しなくても証明を行
うことができます。
　電子公証サービスや民間のデジタルタイムス
タンプサービスを利用しなくても、一般的なブッ
クマークサービスやブログサービスを利用する
ことによって無料でハッシュ情報の存在を証明
できるかもしれません。
　たとえば秘密情報のハッシュ値がABCDEFとい
う値になるとき、http://example.com/ABCDEF
というURLをはてブのようなブックマーク登
録サイトや任意のブログサービスに記録してお
けば、ABCDEFという情報がどの時点で存在し
ていたかがそれらのサイトで公開されることに
なりますから、Aという問題を解くための情報
が、ある時点で存在したことが証明されること
になります。
　1つのサービスだけに登録すると、そのサイ
トの管理者に偽造される可能性もあるでしょう
が、関連のないたくさんのサービスに同じ情報
を登録しておけば、すべてを偽造することは不
可能と考えられるので、その情報がその時間に
存在したことをかなり確実に主張できると思わ
れます。
　つまり、時刻を証明したい情報があるときは
必ず次の手順をとることにしておけば、確実に

データの存在証明を行うことができるでしょう。

・情報を秘密の場所に格納する
・情報のハッシュ値を複数のサイトに登録する

　普通のテキストエディタを使っている場合で
も、気合いを入れてセーブした場合には上記の
処理を自動的に行うようにしておけばいいかも
しれません。秘密にしておくべき元データを安
全な場所に格納しておけば良いでしょうし、暗
号化したデータをクラウドなどにもセーブして
おけばさらに安全かもしれません。

　今回はHashInfoを利用する3種類のアプリ
ケーションを紹介しましたが、多数の人間でファ
イルのハッシュ値を共有するデータベースがあ
ればさまざまな用途に利用できることが期待で
きるので、誰もがHashInfoを活用できるよう
にするためのHashInfo.netというサイトを運
用したいと考えています。
　一方、こういうサービスではプライバシーの
問題に気を付ける必要があります。素性が怪し
いファイルを他の誰かが持っていることがわか
れば問題になる可能性もありますし、「名寄せ」
的に個人が特定される可能性があるので、誰が
どのハッシュを持っているかという情報は十分
に注意して扱う必要があるでしょう。しかし、
プライバシーやセキュリティに十分配慮すれば
HashInfoが有用な機会は多いはずです。
　Googleは、ファイルの中身よりもファイル
間のリンクを重視することで検索精度を向上さ
せることに成功しましたが、ファイルの中身よ
りもファイルの重複を重視することによって大
きな効果を得られる可能性もあるでしょう。
HashInfo.netの運用などによって有益なシス
テムを構築できればと考えています。ﾟ

HashInfo.net

宮原徹の

10 - Software Design

今回はお酒の話、多めで
　本連載も気がつけば第10回。毎

回、全国各地のオープンソースカン

ファレンスなど、地域コミュニティ

での交流の様子をお伝えしてきまし

たが、どうもイベントレポート中心

になってしまってタイトルバックの

絵にそぐわない感じですね。そこで

今回は「お酒の話」を少し多めにお送

りします。

日本酒のふるさと、
島根へ
　まずはOSC島根の話からです。今

回は9月24日（土）の開催でした。

TRONで有名な、坂村健 東京大学

教授の基調講演、さらに地元の学生

のみなさんが出展するブースが並ぶ

など、普段の開催よりもたくさんの

人が集まり、盛会となりました。

　私自身、前日に松江工業高等専門

学校を訪問させていただいたり、

ブース出展をしてくれた学生さんを

懇親会に招待したりして、日常の活

動について話を聞かせてもらうなど、

学生のみなさんとの交流を中心に楽

しみました（写真1）。

　また、OSC島根の運営を地元コ

ミュニティのみなさんにお任せして

いるので、私も展示ブースでRasp

berry Piを使ったデジタルオーディ

オプレーヤのデモをしたり、自社で

行った夏の学生インターンシップの

発表（Raspberry Piを使った電子工

作）を手伝ったりと、出展側にまわ

ることができ、たいへん充実した開

催となりました。たまには一参加者

としてOSCを楽しめるのも、小規

模開催のよいところです。

酒どころ、
新潟・長岡もいいところ
　さらに翌週、10月1日（土）は新

潟・長岡でOSCが開催されました。

新潟市での開催が多いのですが、今

回は久しぶりの長岡市での開催です。

長岡駅からほど近いこともあって

100名以上が参加し、和やかな中に

も活気のある開催となりました。

　この開催でも、私の主たる目的は

学生のみなさんとの交流です。地元

の長岡技術科学大学、長岡造形大学

からの参加はもちろん、遠く山形県

米沢市から山形大学の学生さんたち

が4名参加してくれました（写真2）。

OSCに参加してみたかったので、車

ではるばる来てくれたのだそうです。

これだけの行動力、若さってすばら

しいですね！　彼らはOSC東京に

も参加することになったので、この

欄に再登場するかも？

　また、地元のエンジニアのみなさ

ん向けに、前日にはOpenStack、当

日はDockerのお話をさせていただ

きました。内容は超入門レベルです

が、このような活動がどこかで成果

に結びつくとうれしいですね。

その土地を知るには
地酒から
　それでは、お酒の話を。島根も新

その土地を知るには地酒から第10回

 ▼写真1　 松江高専のみなさんと。先輩後輩の仲
がとてもいいですね

 ▼写真2　 山形大学のみなさんと2次会。OSCを楽しく満喫してく
れたようです

宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

10 - Software Design Dec. 2016 - 11

R e p
o r t

その土地を知るには地酒から第10回

潟も、どちらも日本酒の美味しい地

域です（写真3）。島根は国造り神

話が残るぐらい古くからの歴史の

ある地域ですから、当然お酒の歴

史も古いです。ご存じの話として、

「八
やまたのおろち

岐大蛇を退治するためにお酒を

飲ませて眠らせてしまった」という

言い伝えが残っています。

　さすがに神話の時代からのお酒造

りは残っていませんが、今に残る酒

蔵さんはだいたい江戸から明治・大

正時代のころ、始まっているところ

が多いようです。

　今回はお城から少し離れて、水の

良い場所で酒造りをしている李白酒

造さんを訪問、試飲させていただき

ましたが、こちらは明治15年の創

業。「李白」の酒名は昭和3年、若槻

礼次郎元首相の命名だとか（写真4）。

地元の歴史を紐
ひも

解くために酒蔵を訪

問してみるのは楽しいものです。

日本酒の秋、
ひやおろしの秋
　日本酒の旬は1年中ですが、秋は

「ひやおろし」の季節です。ひやおろ

しは、夏の間熟成させた日本酒を火

入れ（加熱殺菌）せずに飲む、生酒に

近い（貯蔵前に一度だけ火入れして

いる）日本酒です。9月から11月が

ひやおろしの季節ですが、2回目の

火入れをしていないので、さらに

ゆっくりと熟成が進んでいくため、

9月と11月に飲む味が異なってくる

というおもしろさもあります。

　いろいろな種類のひやおろしが出

回るので、通常の銘柄と飲み比べを

してみるのも楽しいですね（写真5）。

ひやおろしはコクのある味わいのも

のが多いので、秋の味覚、たとえば

サンマに合わせて飲むとさらに味わ

い深いものがあります。本誌が出る

ころにはそろそろひやおろしも終わ

りの時期ですが、「晩
ばんしゅううまざけ

秋旨酒」のひや

おろしを楽しんでみてください。｢

 ▼写真4　 前から一度来てみたかった李白酒造さんを訪問。生
きもと

酛造りを購入

 ▲写真3　 OSC長岡の懇親会には、豪華な日本酒がずらり
と並びます。写真を撮っているのは日本MySQL
ユーザ会の坂井恵氏

 ▼写真5　 右手にひやおろし、左
手に長期熟成酒。OSC
長岡の前夜祭にて

小嶋屋さんのへぎそば4人前。いく
らでも食べられる危険な味わい

3枚割子蕎麦。真ん中は舞茸の天ぷ
ら。下に薬味があります

島根は出雲そば、新潟はへぎそば

　島根と新潟は、日本酒だけでなくお蕎麦も美味しい
土地です。
　島根のお蕎麦は出雲そばと呼ばれますが、「割

わり ご

子」と
いう丸くて小さなお重に入れて、い
ろいろな薬味をかけて食べるのが特
長です。お重はだいたい3段（3枚）
ですが、5段のメニューもあります。
私も以前は5段でしたが、体重を気
にするようになって3段になりました。
　新潟のお蕎麦は、「布

ふ の り

海苔」をつ
なぎに使った「へぎそば」が有名で
す。海苔のおかげで強いコシがあ
り、喉ごしがツルッとしているのが
特長です。「へぎ」というのは漁で採っ

た魚を入れる木の箱のことで、今でも頼むとへぎに載
せて出してくれます。同じお蕎麦なのに、土地が変わ
るとずいぶんと違うものですね。

12 - Software Design

はじめに

　今回はmbedをネットにつなげる方法について
記したいと思います。mbedでは、「mbed Device

Connector」というクラウドサービスが開発者向
けに提供されていて、「100デバイス、1時間あ
たり10,000イベント」という制限はあるものの、
この範囲であれば無償で利用できます。mbed

Device Connectorに接続するクライアントは
mbed Clientと呼ばれており、mbed OS 5のリ
リースに含まれています。
　mbed Clientを使うサンプルは、mbed-os-

example-clientとして公開されています。今回
はこれを使って、mbed Device Connectorとは
どんなものか試してみることにしましょう。
　といっても、mbed-os-example-clientは、ま
だmbed LPC1768ではうまく動かせるように
なっていません。サンプルのページに記され

ているFRDM-K64F（写真1）や、サンプルの
mbed_app.jsonに記載のあるNUCLEO-F401RE

やNUCLEO-F411REでは動くようです。です

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

mbed Device Connectorを使ってみる第
18
回

ので、今回はFRDM-K64Fを使ってみます注1。
ちなみに、mbed LPC1768のRAMは64KBで
すが、FRDM-K64Fは256KBと4倍です。新し
いmbedをオンラインコンパイラで利用できるよ
うにするには、ボードのページ注2の右カラムに
ある「Add to your mbed Compiler」というボタ
ンをクリックします。

mbed-os-example-client

　では、mbed-os-example-clientをオンライン
コンパイラでビルドして、mbed Device Connec

torを使ってみましょう。まず、mbed-os-exam

ple-clientのページ注3にアクセスし、オンライン
コンパイラにインポートを行います。ページ右
上にある「Import into Compiler」ボタン（図1）
をクリックするだけでインポートができます。
ボタンが「Import with CLI」という表記になっ

ている場合、ボタン右の▼をクリックすれば、
「Import into Compiler」に切り替えられます。
注1） http://ssci.to/1689　6,210円
注2） https://developer.mbed.org/platforms/FRDM-K64F/

注3） https://developer.mbed.org/teams/mbed-os-exam
ples/code/mbed-os-example-client/

はじめに

mbed-os-example-client

 ▼写真1　FRDM-K64F

 ▼図1　インポートのボタン

https://developer.mbed.org/teams/mbed-os-examples/code/mbed-os-example-client/
https://developer.mbed.org/platforms/FRDM-K64F/
http://ssci.to/1689

12 - Software Design Dec. 2016 - 13

mbed Device Connectorを使ってみる 第
18
回

　こうしてサンプルプロジェクトをオンライン
コンパイラにインポートしたところで、ソース
コードの編集を行いましょう。このサンプル（図
2）は、ネットワークのインターフェースとして、
EthernetのほかにWi-Fiやメッシュネットワー
クをサポートしています。mbed_app.jsonを開く
と、使用するインターフェースの選択や、Wi-Fi

インターフェースを使う場合の設定、あるいは
FRDM-K64F以外のmbedを使う場合のピンの
設定が書かれているのが確認できます。今回は
説明をシンプルにするため、FRDM-K64Fに標
準でついているEthernetを使って接続をします
ので、とくに設定の変更は必要なさそうです。
　次に、security.hを見てみましょう。最後のほ
うの行に、

#error "You need to get security.h credenｭ
tials from connector.mbed.com and replace ｭ
the content of this security.h file"

と記述があるように、証明書をここに書き込ま
なければコンパイル時にエラーが起きるように
なっています。個人的には、IoTのエンドノー
ドに書き込む証明書がハードコードされるとい
う点に疑問を感じたりもしますが、あくまでこ
れはサンプルだと理解して、とりあえず動かし
てみましょう。
　説明のとおり、証明書はconnector.mbed.com

にWebブラウザでアクセスをして入手します。

developer.mbed.orgとアカウントは共通ですの
で、ログインしてください。ログインしたとこ
ろで、左側にあるカラムの「My devices」の下、
「Security credentials」をクリックします。次に、
「GET MY DEVICE SECURITY CREDEN

TIALS」というボタンをクリックすると、図3
のようにデバイスセキュリティ証明書が表示さ
れます。このテキストをクリップボードにコピー
して、先ほどのsecurity.hにペーストしてくだ
さい。
　ここまで済ませたら、サンプルプログラムの
ビルドができるはずです。ビルドをしてダウン
ロードしたバイナリファイルをFRDM-K64Fの
MBEDドライブにコピーして、マイコンに書き
込んでください。FRDM-K64Fをパソコンと接
続するUSBコネクタは、写真1でケーブルが接
続されている側のものです。FRDM-K64Fも、
mbed LPC1768と同様に、USBで接続したパ

ソコンからシリアルポートが認識されている

はずです。このシリアルポートを、パソコンの
シリアルターミナルソフトウェア（図4）から
115,200bps、データビット8bit、パリティなし、
ストップビット1bit、ハードウェアフロー制御
なしの設定で開いてください。初めてWindows

PCからmbedを使う場合、ドライバ注4のインス
トールが必要です。また、筆者はWindowsでは

注4） https://developer.mbed.org/handbook/Windows-
serial-configuration

 ▼図3　デバイスセキュリティ証明書 ▼図2　インポートしたソースコード

https://developer.mbed.org/handbook/Windows-serial-configuration

14 - Software Design

Tera Termを、MacではCoolTerm注5を使用し
ています。
　ビルドしたバイナリファイルのFRDM-K64F

への転送と、シリアルターミナルでシリアルポー
トへの接続、またEthernetコネクタを接続した
ところで、FRDM-K64Fのリセットボタン（パ
ソコンと接続しているUSBコネクタのすぐ横の
ボタン）を押します。しばらくすると、図4のよ
うに、DHCPでIPアドレスを取ってきて、mbed

Device Connectorに接続し、「Registered object

successfully!」と表示されます。このメッセージ
注5） http://freeware.the-meiers.org

から読み取れるように、mbed Clientは、mbed

Device ConnetorにCoAPというRFC 7252と
して公開されている IoTやM2M（Machine to

Machine）向けのプロトコルで接続しています。
　さて、ノードのほうは接続できたと言ってい
ますが、サーバ側でも接続がなされているか確
認してみましょう。先ほど証明書を取得した
mbed Device ConnectorのWebサイトにアクセ
スをし、「Dashboard」というボタンをクリック
します。こうしてダッシュボードを見ると、「My

devices」というところが「1 of 100」となってい
ます。冒頭で記したとおり、mbed Device Connec

torは、ノードを100台まで接続できる
のですが、うち1台がつながっていると
いうことが確認できます。また、「My

devices」の 下 に あ る「Connected devi

ces」をクリックすると、ノードに個別に
付与されるIDと状態が一覧できます。

mbed Device Connector

　mbed Device Connectorは、その名の
とおり、デバイスを接続するためのもの
です。mbed Device Connectorでノード
（デバイス）とサーバを接続することはで
きますが、データの蓄積や加工はARM

のプレゼンテーションスライド注6（図5）
にもあるように、ユーザアプリケーショ

ンで行います。
　先ほどノードのサンプルをビ
ルドしてみましたので、こんど
はアプリケーション（サーバ）側
のサンプルを動かしてみましょ
う。mbed-connector-api-python-

quickstart注7というPythonで書
かれたサンプルが提供されてい
ます。これをGitHubからダウン

注6） このプレゼンテーションのころは、
mbed Device Connector は、mbed
Device Serverと呼ばれていました。

注7） https://github.com/ARMmbed/
mbed-connector-api-python-quick
start※ARMのプレゼンテーションより抜粋

mbed Device Connector

 ▼図4　シリアルターミナルの画面

 ▼図5　mbed Device Connectorの位置づけ

http://freeware.the-meiers.org
https://github.com/ARMmbed/mbed-connector-api-python-quickstart

14 - Software Design Dec. 2016 - 15

mbed Device Connectorを使ってみる 第
18
回

ロードするか、gitコマンドでcloneし、Python

（2.7系）をインストールしたパソコンで動かしま
す。まず、Pythonのライブラリがいくつか必要
ですので、

$ pip install -r requirements.txt

を実行し、サンプルプログラムと一緒に配布さ
れているrequirements.txtに書かれているライ
ブラリをインストールしておきます。
　こちらも、mbed Device Connectorと接続す
るために認証キーが必要ですので、まずそれを
用意しましょう。パソコンのWebブラウザで
connector.mbed.comに接続します。そこで、左
側カラムにある「My applications」の下、「Access

keys」をクリックしてください。ここで「CRE

ATE NEW ACCESS KEY」というボタンを押
してアクセスキーに名前を付け、「ADD」ボタン
を押すと認証キーが発行されます（図6）。
　この画面では、「ftf2016」という名前が付いて
いますが、これは筆者がFTFというイ
ベントで行われたワークショップを冷
やかしていたときにつけた名前ですの
で、深い意味はありません。
　さて、このキーは、mbed-connector-

python-quickstartのapp.pyに、

token = "ChangeMe"

と書かれた行がありますので、この
「Change Me」に先ほど認証キーを発行し
て得られた文字列をペーストして書き
換えます。
　app.pyの編集を終えたら、保存し、
“python ./app.py”などとして実行しま
す。実行を開始したところで、同じパ
ソコンのWebブラウザで、 http://local
host:8080にアクセスをします。する
と、図7のようなWebアプリケーション
が開きます。
　「Subscribe」にチェックを入れ、「GET」
ボタンをクリックしてください。それ

から、FRDM-K64Fの「SW2 INT1」スイッチ
（写真1で基板の右手奥にあります）を押すと、
Webアプリケーションの「Presses」の右にある
カウントが増えていきます。シリアルコンソー
ルを開いていれば、こういった操作をしたこと
はマイコンのシリアル出力でも確認できます。
　アプリケーションまで用意しなくとも、mbed

Device ConnectorのWeb画面で、ちょっとした
APIのテストを行うことができるように作られ
ています。FRDM-K64Fをネットワークに接続
して動かしているときに、connector.mbed.com

の「API Console」にアクセスすると、APIを手
軽に操作できます。
　こうして、mbed OSのmbed Clientとmbed

Device Connectorを使って、ちょっとしたエン
ドノードの実験をしてみました。とくに何も用
意しなくても、mbedだけでIoTデバイスとサー
バの実験ができるのはたいへん便利です。s

 ▼図6　認証キーを発行する画面

 ▼図7　Web App Quickstart

16 - Software Design

Wi-Fi
ホームルータ
「Aterm WG2600HP2」

提供元 	NECプラットフォームズ　http://121ware.com/aterm

1名

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2016年12月15日です。プレゼント
の発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

構成管理ツールとしてAnsibleを選ぶべ
き理由から、導入方法の紹介、応用までを
解説。Webメディア「Think IT」の連載記
事「注目の構成管理ツールAnsibleを徹底
活用する」を再編集した1冊です。

提供元 	インプレス
	 https://www.impress.co.jp

Ansible徹底活用ガイド
平 初 ほか 著

2名

実務経験を数年積んだインフラエンジニア
をおもな対象に、プロトコル、データベー
ス、セキュリティ、RFCの読み方まで、イ
ンフラエンジニアとしてのステップアップ
に必要となる知識をわかりやすく解説。

提供元 	シーアンドアール研究所
	 http://www.c-r.com

インフラエンジニアの教科書2
佐野 裕 著

1名

PHPの入門書です。ショッピングカート
やログイン処理、商品管理を行うDBの設
定・制御法といったコマースサイトに必要
となる機能の実装を中心に、サンプルコー
ドを示しながら解説します。

提供元 	SBクリエイティブ
	 http://www.sbcr.jp

確かな力が身につくPHP「超」入門
松浦 健一郎、司 ゆき 著

2名

読者プレゼント
のお知らせ

コンピュータ同士で通信をする際の重要な
概念「ポートとソケット」を手がかりに、
aicoさんの可愛いイラストで、Unix、
TCP/IPといったインターネットのしくみ
をわかりやすく解説します。

提供元 	技術評論社
	 http://gihyo.jp

ポートとソケットがわかればインターネット
がわかる！ 小川晃通 著

2名

QiitaノベルティTシャツ（Mサイズ）
プログラマのための技術情報共有サービス「Qiita」のノベルティT
シャツです。ブルーかグレイ、どちらか1枚をプレゼント。

提供元 	Increments　http://increments.co.jp

2名

Wi-Fiホームルータ「Aterm」シリーズのフラッグシップモデル。
5GHz帯、2.4GHz帯ともに4本のアンテナを利用する4スト
リームに対応し、業界最速※の実効スループットとなる約
1,428Mbps（UDP）、約1,151Mbps（TCP）を実現しました。
規格はIEEE 802.11ac。

※日本国内メーカーの家庭用Wi-Fiホームルータとして（2016年10月3日、NEC
　プラットフォームズ調べ）。

総合セキュリティソフト「ウイルスバス
ター」の最新版です。パソコン／スマフォ
／タブレット（Windows、Mac、Android、
iOS、Fireタブレット）を最大3台まで保護
できます。24時間365日、ネット接続ト
ラブルなどのサポートが受けられる「デジ
タルライフサポート プレミアム」付き。

提供元 	トレンドマイクロ
	 http://www.trendmicro.co.jp 1名

ウイルスバスター クラウド
＋デジタルライフサポート プレミアム 1年版

http://sd.gihyo.jp/
http://121ware.com/aterm
http://www.trendmicro.co.jp
http://increments.co.jp
https://www.impress.co.jp
http://www.sbcr.jp/
http://www.c-r.com
http://gihyo.jp

第　 特集1

第 章1

第 章2

第 章3

第 章4

第 章5

適材適所で活用していますか？

　もはや RDB の対抗軸としての NoSQL ではなく、「適材適所で NoSQL
を使う」ようになってきました。本特集では、NoSQL のしくみについて
Key-Value Store やドキュメント指向といった基礎技術の確認を最初に行
います。その後、人気の高い MongoDB、ダークホースである Couch
base Server、定番的な Redis を解説します。そして MySQL でも NoSQL
を実現できる memcached プラグインを MySQL Cluster とともに紹介し
ます。これら NoSQL の実装を多面的に確認することでデータストアとし
ての活用方法を会得してください。

RDBMSとNoSQLのいいとこ取り！
NoSQLとしても使える
MySQLとMySQL Cluster
Author 梶山 隆輔

NoSQLの基本構造を理解する
ハッシュテーブルとドキュメント指向
Author 力武 健次

MongoDB使いにならないか？
多機能データストアMongoDB入門
Author 桑野 章弘

NoSQLのダークホース
Couchbase Serverを試してみよう！
Author 仲川 樽八

データの型や永続化機能が用途を広げる
高速なインメモリデータベースRedis
Author 大谷 祐司

18

24

50

32

40

MongoDB、Couchbase、
Redis、MySQLで
NoSQL ！

18 - Software Design

第　 特集1

原始的なKVSとしての
配列とその限界

　KVSとは、キーとキーに対応する値を組み
合わせた表のことを言います（図1）。KVSでは、
何らかのキーを与えると、テーブル（ストレー
ジ中の表）の対応する位置にあるデータの読み
書きができます。この条件を満たす最も単純な
データ構造は、キーをテーブル上の番地に限定
した「配列」です。たとえばC言語の配列は、
同じ型の要素をn個持ち、キーは0からn-1ま
での整数であるKVSと言い換えることができ
ます。しかし、C言語の配列のような静的なデー
タ構造をKVSとして使うには、次の欠点があ
ります。

・キーに文字列など任意の情報が使えない。キー
と配列上の番地との対応づけを行うには、そ

れ専用の配列が必要であり、なおかつキー
に対応する番地を毎回探索する必要がある
ため、効率的ではない注1

・テーブルの大きさを自由に変えることができ
ないか、著しく困難である

・1つのキーに1つの要素しか保持できないため、
重複したキーを持つ情報を保存できない

・キーに対応する値のデータ構造を自由に変え
ることができない

より柔軟なKVSである
ハッシュテーブル

　C言語の配列のようなデータ構造は定型的作
業には有用ですが、データベースとして使うに
はより自由度の高い文字列などをキーとして使
える必要があります。そこで多くのKVSでは、
「ハッシュ」という任意の情報を一定範囲の整

数値に変換する手法を使うことで、
任意の情報をキーとして使えるよ
うにしています。このようなデー
タ構造のことを「ハッシュテーブル」

注1） 線形探索ではn個の要素に対し最大でn回
比較する必要があります。二分探索法を使っ
て探索の時間を減らすことはできますが、
二分探索法の場合はn個の要素に対して
log 2 n回の比較が必要になります。ハッシュ
関数を使った場合はこれより速い結果が得
られる可能性があります。

Author 力武 健次（りきたけ けんじ）　力武健次技術士事務所 所長 http://rikitake.jp/

　本記事ではNoSQLの主流として普及しているキーバリュー型ストレージ
（KVS:Key-Value Store）の要素技術である「ハッシュテーブル」、分散
ノードで運用するKVSである「分散ハッシュテーブル」とその要素技術である

「コンシステントハッシュ」、そしてKVSのバリューの部分に自由な構造を持
つことができる「ドキュメント指向」データベースについて紹介します。

NoSQLの基本構造を理解する

ハッシュテーブルと
ドキュメント指向

KVSはキーと対応する値を持つ表（テーブル）と考えることができる

{
"ユーザ名": "jj1bdx",
"ディスク使用量": 255.5,
"使用言語": "Erlang"
}

JSONによる表記キー 値

ユーザ名

ディスク使用量

使用言語

jj1bdx

255.5

Erlang

 ▼図1　キーバリュー型ストレージ（KVS）の例

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

第 章1

http://rikitake.jp/

18 - Software Design Dec. 2016 - 19

と呼びます。ハッシュテーブルは、AWKの連
想配列、PerlのHash、Pythonの辞書、Luaの
テーブル、JavaScriptのオブジェクト、Erlang

やElixirのマップなど、多くの言語に標準機能
として備わっています。
　ハッシュテーブルは、中にキーと値の情報を
保存する「バケット」を多数持っています。ア
クセスする際は、キーを一度「ハッシュ関数」
で整数値に変換し、保存するバケットの番地を
求めてから、要素の追加や書き換えなどの操作

を行います（図2）。このハッシュ関数の役割は、
キーを変換した後の値が同じになる（衝突する）
確率をできるだけ下げることにあります。衝突
がなければ、キーから番地は一度の計算で求ま
るため、高速にデータの読み書きができます。
しかし、キーが衝突した場合は、同じバケット
の番地に2つ以上のキーが存在することになる
ため、何らかの方法でキーと番地の対応づけを
別途行うことが必要になります。代表的な方法
としては次の2つがあります（図3）。

キー 値

ユーザ名

ディスク使用量

使用言語

jj1bdx

255.5

Erlang

バケット番地

ディスク使用量

ユーザ名

使用言語

1

2

3

4

5

6

7

8

9

10

255.5

jj1bdx

Erlang

キー キーのハッシュ値

ユーザ名

ディスク使用量

使用言語

7

3

10

 ▼図2　KVSをハッシュテーブルで実装した例

キー 値

使用OS FreeBSD キー 値

使用OS FreeBSD

バケット番地

ディスク使用量

ユーザ名

使用OS

使用言語

1

2

3

4

5

6

7

8

9

10

255.5

jj1bdx

FreeBSD

Erlang

以下のキーと値のペアをKVS
に登録する際、バケットの番
地が衝突した場合について考
える。

開番地法では、キーをハッシュ
した後の番地が衝突した際は、
何らかの方法で空いているバ
ケットにキーと値を割り当て
る。この例では、番地が増える
方向の次の空いたバケットに
割り当てている。

連鎖法では、キーをハッシュ
した後の番地が衝突したら、
同じ番地にキーと値のペアを
リンクリストにして追加して
いく。

 ▼図3　KVSでバケットが重複した際の回避方法

NoSQLの基本構造を理解する
ハッシュテーブルとドキュメント指向

第 章1

20 - Software Design

第　 特集1

・同じ番地に属するキーと値の組を登録したリ
ンクリストを各バケットに用意し、番地の
重複するキーを持つデータを追加していく（連
鎖法）

・衝突したバケットの番地を始点として、その
番地から別の関数を使って空いているバケッ
トを探し、そこにキーと値の組を追加する（開
番地法）

　どちらの方法でも、情報を書き込んでいけば
空いているバケットがなくなってしまうため、
書き込み効率を維持するには再度別のハッシュ
関数を使用してバケットの数を増やして再割り
当てする（再ハッシュする）必要があります。
運用上は、バケットが全体数の半分程度埋まっ
た時点で、再ハッシュしてバケット数を倍に拡
張するのが良いようです [1]。

ハッシュと他の方法の
比較

　ハッシュテーブルは、十分なバケット数が用
意できていれば、平均探索回数を少なく抑えら
れるため高速に扱うことができます。またハッ
シュ関数は同じ入力に対して同じ出力を返すこ
とに特化した関数です。ハッシュテーブルを
Webのキャッシュとして使う場合などは、キー
が完全一致していれば良いため、その特徴を十
分に活かすことができます。
　一方、KVSであっても、キーの文字列とし
ての順番を意識した部分検索が必要になる場合
は、Trie（トライ木）[2]など文字列の特徴を反
映したデータ構造を使ったほうが検索効率を上
げられる場合があります。

分散ハッシュテーブルと
コンシステントハッシュ

　一般にデータベースをキーの値に応じて複数
のノードに分割して管理することをシャーディ
ング（sharding）といいます。分散ハッシュテー
ブル（DHT：Distributed Hash Table）はKVS

に対するシャーディングの1つの方法で、複数
の分散ノードが一体となってハッシュテーブル
を構成します。
　シャーディングではキーをどのノードに対応
づけるかが重要なポイントになります注2。DHT

では、キーをハッシュした値に応じて、キーと
値のペアであるバケットがどのノードに属する
かを決定します。
　分散環境では、ノードがアクセスできなくなっ
たときと復旧したときにどのように全体を再構
成するかという問題があります。単純にノード
数でバケットを分割してしまうと、ノード数が
変わるとバケットをほぼすべてのノードで移動
させなければならなくなるため、ノード間通信の
オーバーヘッドが大きくなってしまいます（図4）。
この問題を解決する手法の1つが「コンシステ
ントハッシュ」です。
　コンシステントハッシュでは、バケットは特
定の「仮想ノード」に属します。この仮想ノー
ドとバケットの対応はノードが増えても減って
も変わることはありません。1つのノードには
多数の仮想ノードが属しています。この方法で
あれば、ノード数が増えても仮想ノードとノー
ドの対応付けを変えるだけでよく、（仮想ノー
ド数／ノード数）分の仮想ノードを移動させる
だけで済みます（図5）。
　現実には、DHTのノードに障害が発生した
場合はデータも失われるため、DHTの設計に
は各バケットの複製を複数ノードに分散して
取ること、一時的な障害で落ちているノード
への書き込み内容は複製のための他ノードで
記録しておいて復旧したときに本来のノード
に戻すこと（ヒンテッド・ハンドオフ、hinted

handoff）[3]などの数々の障害復旧手法が用い
られています。

注2） 単純にキーの値を使って分割するという方法（例 :1文字目
の内容でノードを分ける）もありますが、このような固定
的な方法では障害が発生してノードのデータが失われた際
のデータ復旧が困難という問題があります。

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

20 - Software Design Dec. 2016 - 21

「ドキュメント指向」とは

　今まではKVSのキーと値の関係をとり持つ
ハッシュテーブルについて説明してきました。
ここからはKVSの値の中をどう扱うかについ

ての手法である「ドキュメン
ト指向」データベースについ
て紹介します。
　「ドキュメント指向」の「ド
キュメント」とは、一般的な
「文書ファイル」という意味で
はなく、厳格な文書構造を持
たないデータの総称として使
われています。筆者が調べた
範囲では、それ以上のはっき
りとした定義はないようです。
あえて定義を設けるならば、
何らかの構造を持つデータの
総称と言い換えてもいいで
しょう。具体的には後述の
JSONのように、要素名とそ

の要素に対応す
る値を列挙でき
るデータ構造を
指しているよう
です。
　従来のリレー
ショナルデータ
ベース管理シス
テ ム（RDBMS）
では、テーブル
は列（カラム）と
行（ロウ）を持つ
1つの表として
扱っています。
それぞれの列は
行のフィールド
として型やデー
タ長に至るまで

厳格に定義され、テーブル全体で統一した規則
（スキーマ）を持っています。このようにしてテー
ブルの中にある情報の関係（リレーション）を
定義しています。
　一方、ドキュメント指向のデータベースでは、
統一したスキーマを持つ必要がありません。ド

16個のバケット（a～o）をバケットの名前を使って均等に割り振ると、
ノードの数が変化した場合多くのバケットを移動させる必要がある

ノード1

a d g

j m p

ノード2

b e h

k n

ノード3

c f i

l o

ノード1

a e i

m

ノード2

b f j

n

ノード3

c g k

o

ノード4

d h l

p

 ▼図4　仮想ノードを使わずにノード間でバケットを分割した場合 [8]

一旦各バケットを仮想ノード
に割り当て、その後仮想ノード
（A～I）を均等に各ノードに割
り振った場合、仮想ノードのみ
を移動させれば済むため、結
果として全体の移動バケット
数も低く抑えることができる。

ノード1

a d g

j m p

ノード2

b e h

k n

ノード3

c f i

l o

ノード1

a g

j p

ノード2

b e

k n

ノード3

c f

l o

ノード4

d h i

m

A D G B E H C F I

A G B E C F D H I

 ▼図5　仮想ノードにバケットを割り当てたうえでノード間で仮想ノードを移動させた場合 [8]

NoSQLの基本構造を理解する
ハッシュテーブルとドキュメント指向

第 章1

22 - Software Design

第　 特集1

キュントの中身は、MongoDBならBSON [4]注3、
CouchbaseならJSONと、JavaScriptのオブジェ
クトであればどのようなものでも受けいれるよ
うになっています。たとえばMongoDBでは
RDBMSのテーブルにあたるものは「コレクショ
ン」として管理されますが、コレクションの中
の各ドキュメントは一定の構造を持つ必要はあ
りません。ドキュメントの中に別のドキュメン
トが入れ子になることも、またドキュメントの
中にコレクションのキーが入ることも自由です。

◆　◆　◆
　では、ドキュメント指向データベースは何を
目指しているのでしょうか。代表的な実装である、
MongoDBやCouchbase、そしてCouchDB [6]に
共通しているのは、すべてのデータに識別用の
ID（RDBMSのテーブルにおける主キー（primary

key）と同義）が付いているものの、検索につい
てはIDを基本的には使わずに注4、ドキュメント
そのものに対する検索を行うことを前提にして
いることです。具体的には、ドキュメント内の
各項目に対して検索条件を設定し、それをデー
タベースに与えて検索結果を得る機能が用意さ
れています。つまり、データベースとはドキュ
メントの並びであり、データベースの操作とは
ドキュメントに対する操作であるという前提を
満たすべく、ドキュメント指向データベースは
作られていると考えることができます。

検索に見るKVSでの
データの整合性の問題

　ドキュメント指向データベースを含むKVS

で情報検索を行う際に問題になるのは、データ
構造を定義するスキーマが明示的に存在しない

注3） BSONでは JavaScriptのオブジェクトである JSONと表現
の互換性を保ちつつ、バイナリデータによる効率的な表
現に加え、オブジェクト中の各要素の型を明示したり、
オブジェクトの大きさをオブジェクト自身の前に前置す
るなど、データの検索をより高速に行えるようにしてい
ます。

注4） 実際には IDをデータベースアクセス用URLの一部として
明示的に使えたり、管理用の IDが予約されているなど、ID
を使うことを前提としている機能もあります。また、一度
IDを得たデータベースの内容については、その IDを使っ
て更新や消去といった操作ができます。

ため、検索の完全性を目指すには全数検索を行
うしかないということです。言い換えれば、デー
タベースが持つ情報全体に対して検索を行うこ
とが前提になっているといえます。この前提の
実現にあたっては、昨今の全文検索エンジンの
高速化を考えれば、十分に現実性はあるでしょ
う。JSONのようにある程度構造を持ったデー
タを扱うなら、その構造を利用してさらに効率
の良い検索はできます。しかし、データが常に
追加されたり変更されたりするデータベースに
おいては、完全な検索を仮定するのは本質的に
不可能です注5。そのような状況下では、検索結
果についてもある程度の不確定性が伴うのは不
可避だと言えるでしょう。
　別の考え方をしてみます。本当に「漏れがな
く過剰でもない完全な検索」は「毎回」必要で
しょうか？　たとえばKVSをWebのデータ
キャッシュとして使うような場合は、そのキャッ
シュが完全である必要はそもそもありません。
検索したデータがキャッシュに存在しなければ、
元の情報をキャッシュに入れるだけのことです。
また、ある条件を満たす検索結果をすべて用意
する必要は必ずしもなく、そのうちのいくつか
を得れば済むような場合もあります。このよう
な検索を行う際は、全数検索をするのではなく、
必要な数の検索結果を得たら検索処理を終了す
るように設計すべきでしょう注6。

おわりに

　本記事ではハッシュテーブル、DHTとコン
システントハッシュ、そしてドキュメント指向
データベースについて紹介しました。

注5） トランザクション動作の可能な多くのRDBMSでは、デー
タの検索を行うSQLのSELECT文の実行をトランザクショ
ンとして読み出しの整合性を維持したまま検索を行うこと
ができますが、これとてデータベースの情報量が大きければ、
トランザクションのために他の更新作業を停止した時間が
長くなり過ぎて、ほかの作業に支障が出てしまいます。

注6） 必要な個数だけ検索結果を得る際に何も特別な作業をしな
かったときの動作はデータベースの実装に依存します。ど
んな結果が欲しいかについては検索条件に漏れなく記述し
ておかないと、予想外のデータが出てきてしまうことがあ
ります。

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

22 - Software Design Dec. 2016 - 23

　KVSを含めたNoSQLでは、障害に対する可
用性や速度を重視するあまり、データの整合性
が緩く規定されていて、そのことがしばしば問
題になります。DHTなどの分散環境でノード
間の整合性が取れないのは日常茶飯事であり、
修復が必要になることも珍しくありません。整
合性の問題は多岐にわたりかつ解決困難な問題
です。情報検索の問題を1つ取ってみても、デー
タの整合性を実現することがいかに難しいかを
考えざるを得ません。
　しかし別の見方をすれば、データの整合性の
制約を緩めれば処理を楽にすることも不可能で
はないということになります。Amazon.comの
研究者はこの問題について2007年に考察した
論文を発表しており[7]、KVSを業務で使う際
は必読と言えます注7。
　ドキュメント指向データベースやその他の
KVSを使う際は、そこにある情報が「完全なも
の」かどうかに関する制約を緩めれば処理が楽

注7） Basho Technologies の Riak（ URL http://docs.basho.
com/）は、このamazon.comの論文に出てくるDynamo
というKVS（Amazon DynamoDBとは名前は似ています
が無関係です）の考え方を実装したものです。アリエルネッ
トワークの技術コラム「DHTからAmazon Dynamoまで」
（2010年）にて、DHTとDynamoについての概要を網羅し
た日本語の解説があります。　 URL http://dev.ariel-
networks.com/column/tech/amazon_dynamo/

になること、そしてその制約の緩さゆえに不都
合が発生した場合どのような処理をするかを考
えておくことが重要です。
　データベースの技術は日新月歩の勢いで進ん
でいます。最近ではSILO[9]という、多数の
CPUコアをノード内に抱えたメニーコア環境
を前提とするトランザクションの高速化手法が
提案されています注8。SILOのような技術が製品
に実装されれば、NoSQLも、RDBMSも、そ
の形を大きく変えてくるでしょう。そういう意
味では、データベースをどう使うのかという根
本的な問題を考えてシステム設計をすることが
ますます重要になるだろうと筆者は考えます。
ﾟ

注8） SILOについては、ノーチラス・テクノロジーの神林飛志氏
が、その背景と技術的に重要な点について日本語で詳説し
ています。ぜひ一読をお勧めします。 URL http://d.
hatena.ne.jp/okachimachiorz/20161003/1475494676

参考文献
 [1]	 “Five Myths about Hash Tables”, https://hughewilliams.com/2012/10/01/five-myths-about-hash-tables/

［2］	 https://en.wikipedia.org/wiki/Trie
［3］	 「ヒンテッド・ハンドオフ：書き込みパス中のリペア」、DataStax Apache Cassandra™ 3.0（Linux）日本語ドキュメント、

http://docs.datastax.com/ja/cassandra-jajp/3.0/cassandra/operations/opsRepairNodesHintedHandoff.html
［4］	 http://bsonspec.org/
［5］	 “Data Model”, Couchbase 4.5 Server, http://developer.couchbase.com/documentation/server/4.5/data-modeling/

concepts-data-modeling-intro.html
［6］	 “Storing Documents”, CouchDB: The Definitive Guide（Draft）, http://guide.couchdb.org/draft/documents.html
［7］	 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon's highly available key-
value store. In Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles (SOSP '07).
ACM, New York, NY, USA, 205-220. DOI=http://dx.doi.org/10.1145/1294261.1294281 （論文の写しのPDFのURL:
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf）

[8]	 Tyler Hannan, Basho Technologies, "O'Reilly Webinar: Simplicity Scales - Big Data", http://www.slideshare.net/
BashoTechnologies/oreilly-webinar-simplicity-scales-big-data

[9]	 Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. 2013. Speedy transactions in
multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (SOSP '13). ACM, New York, NY, USA, 18-32. DOI: http://dx.doi.org/10.1145/2517349.2522713 （論 文 の
写しのPDFのURL: http://people.csail.mit.edu/stephentu/papers/silo.pdf）

NoSQLの基本構造を理解する
ハッシュテーブルとドキュメント指向

第 章1

http://docs.basho.com/
http://dev.arielnetworks.com/column/tech/amazon_dynamo/
http://d.hatena.ne.jp/okachimachiorz/20161003/1475494676
https://hughewilliams.com/2012/10/01/five-myths-about-hash-tables/
https://en.wikipedia.org/wiki/Trie
http://docs.datastax.com/ja/cassandra-jajp/3.0/cassandra/operations/opsRepairNodesHintedHandoff.html
http://bsonspec.org/
http://developer.couchbase.com/documentation/server/4.5/data-modeling/concepts-data-modeling-intro.html
http://guide.couchdb.org/draft/documents.html
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf
http://www.slideshare.net/BashoTechnologies/oreilly-webinar-simplicity-scales-big-data
http://dx.doi.org/10.1145/2517349.2522713
http://people.csail.mit.edu/stephentu/papers/silo.pdf
http://dx.doi.org/10.1145/1294261.1294281

24 - Software Design

第　 特集1

MongoDBとは何か？

　こんにちは！　桑野と申します。目黒でカレー
を探しながら働いているものです。
　この章ではMongoDBというデータストアに
ついて説明していきます。MongoDB注1は、
MongoDB社注2が開発しているオープンソース
のデータストアです。MongoDBという名前の
由来は、「ばかでかい」という意味の英単語
“huMONGOus”からきています。実際にイン
ターネット上で名前だけは聞いたことがある、
という人で、実際にどのようなデータストアな
のかわからないという方も多いのではないでしょ
うか。たとえばSNSなどでは開発しやすい、
機能が豊富という意見とともに、運用しづらい、
とくに大規模に運用するとたいへんなデータス
トアという話が散見されます。
　本記事ではMongoDBで実現されること、便
利に使えることとは何か、という点を説明して

注1） URL http://www.mongodb.org/

注2） URL http://www.mongodb.com/

いければと考えています。

MongoDBの概要

　MongoDBとはどんな特徴を持つデータスト
アなのか、その概要について最初に説明してい
きましょう。おっと、その前にテスト用のデー
タベースを作ってみましょう。

テスト環境の作成

MongoDBのインストール
　公式サイトのドキュメント注3を確認して
MongoDBの最新版をインストールしてみましょ
う。各プラットフォームへのインストール方法
は割愛しますが一例としてUbuntuの場合のイ
ンストール方法を記載します（図1）。

テストデータのインポート
　今回は図2のようにNASAが公開している
WebサーバのログのTSVファイルをインポー

注3） URL https://docs.mongodb.com/manual/administration/
install-community/

Author 桑野 章弘（くわの あきひろ）
Twitter：@kuwa_tw mail：akihiro.kuwano@gmail.com Web：http://akuwano.hatenablog.jp/

　NoSQLとしてよく話題にあがるMongoDB。本章では、MongoDBの
特徴を押さえたうえでインストール、そして簡単なクエリの実例を学び、地
図情報と連携して使うちょっとした応用例まで学びます。MongoDBの優
れた機能をぜひ体験してみてください。

MongoDB使いにならないか？

多機能データストア
MongoDB入門

$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927
$ echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-org/3.2 multiverse" ¦ sudo ｭ
tee /etc/apt/sources.list.d/mongodb-org-3.2.list
$ sudo apt-get update
$ sudo apt-get install -y mongodb-org

 ▼図1　Ubuntu環境でのMongoDBのインストール

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

第 章2

http://akuwano.hatenablog.jp/
http://www.mongodb.org/
http://www.mongodb.com/
https://docs.mongodb.com/manual/administration/install-community/

24 - Software Design Dec. 2016 - 25

トしてテストデータとしてみましょう。図3で
はこれをMongoDBへと取り込んでいます。テ
スト環境ができたら次の節でMongoDBの概要
の説明を行います。

ドキュメント指向とは何か？

　データストアと言えば、やはり日本で有名な
のはMySQLを始めとしたRDBです。RDBは
列構造でデータを保存するのですが、Mongo

DBはJSONを拡張したBSON（Binary JSON）
形式でデータを保存します。配列や階層構造な
どのリッチなデータ構造に対応しています。
BSONはJSONでは表現できないバイナリデー
タを扱うBinData型や、Date型などのデータ
型にも対応しており、MongoDBはこのような
構造的なデータが扱えるドキュメント指向デー
タベースに分類されています。リスト1は、
BSON形式のデータの例です。

スキーマレス

　もう1つMongoDBのデータ構造には大きな
特徴があります、それはスキーマレスです。
RDBの場合CREATE TABLE文を用いて列
名やデータ型などのスキーマ定義を行うことが
必ず必要となります。テーブル構造はそのテー
ブル内では同じでなければならず、構造を変更
する際にもALTER文を使用してすべての行の

構造を変更する必要があるわけです。ですが、
MongoDBのコレクション（RDBで言うテーブ
ル）内の構造は各オブジェクトで同一である必
要はありません。リスト2とリスト3のデータ
構造が同一コレクション内に存在してもまった
く問題ありません。
　ここで考えなければならないのは、自由度が
高いということは同一コレクションの異なる
データ構造のドキュメントのデータの違いをプ

$ mongoimport --db nasa --collection wwwlog --type tsv --file nasa_19950630.22-19950728.12.ｭ
tsv --fields host,logname,time,method,url,response,bytes,referer,useragent
2016-10-13T17:55:28.268+0000 connected to: localhost
2016-10-13T17:55:31.267+0000 [##......................] nasa.wwwlog 15.5MB/142MB (10.9%)
 ……（中略）……
2016-10-13T17:55:56.436+0000 [########################] nasa.wwwlog 142MB/142MB (100.0%)
2016-10-13T17:55:56.436+0000 imported 1891710 documents

 ▼図3　MongoDBへのインポート

$ wget http://indeedeng.github.io/imhotep/files/nasa_19950630.22-19950728.12.tsv.gz
$ gzip -d nasa_19950630.22-19950728.12.tsv.gz
$ head -2 nasa_19950630.22-19950728.12.tsv
host logname time method url response bytes referer useragent
199.72.81.55 - 804571201 GET /history/apollo/ 200 6245

 ▼図2　TSVファイルのダウンロード

{
 userId : 'akuwano',
 age : 39,
 favoritefood : ['hamburger', 'curry'],
 logintime : ISODate("2016-10-16T13:04:38Z")
}

 ▼リスト1　BSON形式データの例

{
 userId : 'akuwano',
 sex : male,
 favoritefoods : ['curry', 'hamburger']
}

 ▼リスト2　データ構造の例

{
 userId : 'hiroakis',
 favoritefoods : ['curry']
 job : {
 name : “ServerSideEngineer”,
 level : 10
 }
}

 ▼リスト3　データ構造の例2

MongoDB使いにならないか？
多機能データストアMongoDB入門

第 章2

26 - Software Design

第　 特集1

ログラムで吸収する必要が出てくるということ
です。スキーマレスは柔軟であるという点でメ
リットでもありますが、単純に自由であるとい
うふうに見てしまうと開発に苦労してしまう、
バグの温床になってしまう可能性があります。
ただし、データ構造が頻繁に変わる可能性の
あるWebアプリケーション開発では、データ
型の違いを吸収するしくみさえ作ってしまえば、
スキーマレスであることは開発のスピードを上
げるのに非常に大き
なメリットともなり
えます。

冗長化

　最 初 にMongoDB

のクラスタサーバ構
成のオーバービュー
を図4に示します。
　MongoDBに は 冗
長化の機能が標準的
に搭載されています、
それがレプリカセッ
トです。レプリカセッ
トとは、複数のデー
タベース（mongod）
プロセスで、データの同期とサーバの冗長化を
行う機能です。MySQLなどのRDBでも、レ
プリケーションというデータ同期の機能があり
ますが、レプリカセットはそれを発展させデー
タ同期や負荷分散だけではなく、サーバの冗長
性の担保つまり自動フェイルオーバーまでを行
う機能です。レプリカセットの主な構成は図5
を参照してください。
　サーバの種別はPrimaryとSecondaryに分か
れており、RDBのレプリケーションを行うよ
うにサーバからの更新をPrimaryに、参照を
Secondaryにと負荷分散することもできます。
　プライマリサーバは各データ操作をOplogと
呼ばれるデータベースに格納して、各Second

aryサーバはそのOplogを参照して、自身のサー

バへ適用することでデータを同期します。
　各レプリカセットのメンバは投票により
Primaryの選出を行います。最低3つの投票権
を持ちPrimary選出を行います。具体的には投
票権を過半数取得したサーバがPrimaryとなり
ます注4。例外としてArbiterプロセスと言われ

注4） レプリカセットはネットワーク分断時にレプリカセットが
スプリットブレイン＝「ネットワーク分断などにより1つ
のクラスタが複数に分かれ、別のクラスタのように見える
現象」を起こすのを防ぐためです。

App + mongos

mongoc

mongod

mongos：適切なシャード
への割り振り

mongod：実際
のデータの格納

mongoc：シャーディング
情報の格納

 ▼図4　MongoDB構成のオーバービュー

プライマリ

セカンダリ セカンダリ

プライマリ→Failed

セカンダリ セカンダリ→プライマリ

 ▼図5　レプリカセットの概要

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

26 - Software Design Dec. 2016 - 27

る投票権のみを持ち、データを持たない軽量な
プロセスを使用することで起動サーバ数を削減
することもできます。レプリカセットの具体的
な設定方法については公式ドキュメント注5など
を確認ください

負荷分散／スケールアウト

　次に負荷分散について説明します。レプリカ
セットはデータとしては同一のデータを複数の
データベースで共有するためのものです。この
場合、データの更新と参照を分散することでデー
タのスケールアウトを行うことができるといい
ました。
　しかしレプリカセットは、データが同期され
ているだけで分散されているわけではないため、
同一データベースの更新の負荷分散を行うこと
ができません。シャーディングは複数データベー
スにおいて、データの受け持ち範囲をシャード
に分割することで効率よく負荷分散、そしてス

注5） https://docs.mongodb.com/manual/tutorial/deploy-
replica-set/

ケールアウト、蓄積可能データ量を増やす、な
どを行うためのしくみとなります。
　RDBでもシャーディングを行うことができ
ますが、アプリケーション側での実装が必要だっ
たり、データベース単体で行うことができない、
できても手間がかかることが多いですが、
MongoDBでは非常に手軽にシャーディングの
設定を行えます。主な構成は図6を参照してく
ださい。
　シャード構成を実現する際の登場人物は前述
の図4にありますが、mongoc、mongos、mongod
の 3プロセスとなっており、mongocはどの
シャードにどのデータを割り当てるかの情報が
入っているサーバ、mongosはmongocに入っ
ている情報をもとに各シャードへデータを割り
振るためのルーティングを行うサーバ、そして
mongodは実際のデータが保存されているサー
バとなります。
　また、自動リシャーディングがデフォルトで
有効になっており、データの偏りをできるだけ
なくすように動きます。運用中も常にデータの

分散配置が行われ続けます。シャー

Clients

mongos

ChunkA ChunkB

ChunkA

ChunkB

ChunkC

mongod
ShardA

mongod
ShardB

mongod
ShardC

mongoc

ChunkA->
ShardA ChunkB->
ShardB ChunkC->
ShardC

 ▼図6　シャーディングの概要 ディングの具体的な設定方法につい
ては公式ドキュメントなどを確認し
てください注6。

ストレージエンジン

　MongoDBバージョン3系以降の
特徴的な機能としてデータベースの
ストレージエンジンがプラガブルに
なり必要に応じて入れ換えることが
可能になりました。今まで使われて
いたストレージエンジンに明示的な
名前が付き、MMAPv1ストレージ
エンジンと呼ばれるようになりまし
た。WiredTigerという、多重バー
ジョン並行処理制御（MVCC）、ロ
グ構造化マージツリー（LSMTree）

注6） U R L ht tps : / /docs .mongodb.com/
manual/tutorial/deploy-shard-cluster/

MongoDB使いにならないか？
多機能データストアMongoDB入門

第 章2

https://docs.mongodb.com/manual/tutorial/deploy-replica-set/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/

28 - Software Design

第　 特集1

に対応した新しいNoSQL用のストレージエン
ジンも使えるようになりました。MongoDBバー
ジョン3.2からはWiredTigerがデフォルトの
ストレージエンジンになっています。

MMAPv1ストレージエンジン
　今までMongoDBではMMAPv1ストレージ
エンジンの特性により、次のような問題が言わ
れてきました（言ってきましたw）これらの問
題をどう避けて使うかというのがMongoDB使
いにとっての命題だったわけです。

・マルチコアを使うことができない
・キャッシュメモリのインテリジェンスな管理

ができない、結果サーバリソースを異常に
使う

・データの大量アクセス時にディスクへのアク
セスが増えてしまいスローダウンする

・コレクションレベルロッキングのため大量更
新に弱い

・容量がドンドン増えてストレージを圧迫する

WiredTigerストレージエンジン
　WiredTigerストレージエンジンを使うことに
よりこれらの問題が解決することになりました。

・マルチコアを適切に使うことができる
・自由な量のメモリをキャッシュとして設定し、

インテリジェンスなキャッシュを持つこと
が可能

・ドキュメントレベルロッキング

・データ圧縮が可能

　結果として、従来大量データへの一括アクセ
スなどには弱いと言われていたMongoDBです
が、非常に汎用的な用途で使うことのできるデー
タストアになったわけです。表1に機能をまと
めています。

MongoDBのクエリ

　RDBはSQLを使ってアクセスしますが、
MongoDBは、NoSQLと言うとおりJavaScript

ライクなクエリでデータストアにアクセスしま
す。それでは先ほど作ったデータベースにアク
セスしてみましょう。

基本的なクエリ
　図7のコマンド実行画面で基本的なクエリを
示しています。それぞれ、ドキュメント挿入＝
save、ドキュメント検索＝find、ドキュメン
ト更新＝update、ドキュメント削除＝remove
です。

JavaScriptを使ったクエリ
　基本的なクエリの書き方を勉強してきました
が、もちろんこれだけではなくMongoDBで使
えるクエリにはさまざまなものがあります。そ
の究極とも言えるのがJavaScriptを使用した
クエリです。MongoDBにはSpidermonkeyと
いうJavaScriptエンジン注7が組み込まれてい
ます。そのためMongoDBではJavaScriptを駆

注7） 以前はV8というエンジンでしたが、3.2から置き換わり
ました。

MMAPv1 WiredTiger

ロック粒度 コレクションロッキング ドキュメントロッキング
キャッシュコントロール OS任せ（MMAPのしくみを利用） ストレージエンジン側で設定可能
マルチコア 不可 可能
データ圧縮 不可 可能（Snappy、GZIP）
得意なアクセスパターン ホットデータがあるもの オールラウンドに使用可能
重視するリソース メモリ メモリ（CPUもうまく使えるためあると好ましい）

 ▼表1　MMAPv1とWiredTigerの機能比較

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

28 - Software Design Dec. 2016 - 29

使したクエリを使用することで、ほかのDBで
は別途スクリプトを書かなければならないよう
な処理というのをワンライナー的に表現できま
す。図8で実行しているコマンドは1万件のテ
ストデータを作成できます。
　もう1つの例として、図9で実行しているコ
マンドは、nameフィールドのユーザ名を1件
ずつ forEachで持ってきて表示するものです。
　このようにSQLで表すと非常に難解になり
そうなクエリもJavaScriptで記述することで
簡潔に、そして柔軟に記述できるのはMongo

DBならではの特徴です。スパゲティコードな

らぬスパゲティクエリになるようでは本末転倒
ですが……。

MongoDBの
さらなる使い方

Aggregation Framework

　ログを入れたり、ユーザのアクティビティロ
グを入れているようなデータベースの場合にデー
タを解析したい場合があるかと思います。そういっ
た際に使用するのがAggregation Frameworkで
す。Aggregation Framework集計処理のための

 ドキュメント挿入
> db.wwwlog.save({ "host" : "192.168.0.1", "logname" : "-", "time" : 999999999, "method" : ｭ
"GET", "url" : "/", "response" : 200, "bytes" : 1, "referer" : "", "useragent" : "" });
WriteResult({ "nInserted" : 1 })

 ドキュメント検索
> db.wwwlog.find({ "host" : "192.168.0.1" });
{ "_id" : ObjectId("57ffd0631f78a02c7cfc3b05"), "host" : "192.168.0.1", "logname" : "-", ｭ
"time" : 999999999, "method" : "GET", "url" : "/", "response" : 200, "bytes" : 1, "referer" ｭ
: "", "useragent" : "" }

 ドキュメント更新
> db.wwwlog.update({ "host" : "192.168.0.1" } , { $set:{ "url":"/test"} })
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
> db.wwwlog.find({ "host" : "192.168.0.1" });
{ "_id" : ObjectId("57ffd0631f78a02c7cfc3b05"), "host" : "192.168.0.1", "logname" : "-", ｭ
"time" : 999999999, "method" : "GET", "url" : "/test", "response" : 200, "bytes" : 1, ｭ
"referer" : "", "useragent" : "" }

 ドキュメント削除
> db.wwwlog.remove({ "host" : "192.168.0.1" });
WriteResult({ "nRemoved" : 1 })
> db.wwwlog.find({ "host" : "192.168.0.1" });

 ▼図7　MongoDBの基本クエリ

> for (var i = 1; i <= 10000; i++) { db.user.save({ id: i, name: "name"+i }); }
WriteResult({ "nInserted" : 1 })
> db.user.find()
{ "_id" : ObjectId("57ffd70fff9a982c8597578e"), "id" : 1, "name" : "name1" }
 ……（中略）……
{ "_id" : ObjectId("57ffd712ff9a982c85977e9d"), "id" : 10000, "name" : "name10000" }

 ▼図８　テストデータ作成

> db.user.find().forEach(function(myDoc) { print("user: " + myDoc.name); });
user: name1
 ……（中略）……
user: name10000

 ▼図9　JavaScriptによるクエリ例

MongoDB使いにならないか？
多機能データストアMongoDB入門

第 章2

30 - Software Design

第　 特集1

フレームワークです。パイプラインとして定義
された処理をつないでいくことで特別なアプリ
ケーションを作成／使用せずに簡単に複雑な集
計を行うことができます。
　サンプルで作ったデータベースの解析をして
みましょう。「ステータスコードが200のデータ」
の「各HTTPメソッドごとのデータ量の合計」
を見たい場合は図10のようなクエリになります。
　この場合、$match、$group、$sumが使われて
おり、処理の流れとしては次のようになってい
ます。

・$matchでresponse（レスポンスコード）が
200のデータを抽出

・$groupで、集計処理を実行、HTTPのメソッ
ドごとに$sumで、該当するbytesの値を合
計して表示

　ほかにもパイプラインとして提供されている
機能はたくさんあり、MongoDBもバージョン
アップごとに充実してきています。
　それ以外にもMongoDBはHadoopとのコネ
クタを提供しているので、自分たちで立てたも
のや、クラウドサービスのHadoopからMongo

DBのデータにアクセスすることもできます。
もしもっと大規模に解析をしたい場合にはそう
いった構成を検討するのも良いかと思います。

座標処理

　現在Pokémon GOが世間を席巻しています。
みなさんも休日公園でポケモンと戯れていたり
するのではないでしょうか？　いわゆる位置情
報ゲームを始めとして、経路探索アプリなどは
今日において座標計算というものは生活と切っ
ても切れない関係になります。実はMongoDB

では座標系の計算を標準の機能として持ってい
ます。
　pokemongodb.placesコレクションに緯度経度
の情報を持ったオブジェクトを入れ、空間情報
のインデックスを作成しましょう（図11）。
　インデックスができました。それでは次は検
索を行ってみます。目黒駅から徐々にアルコタ
ワーアネックスへと歩いているという想定で検
索を行います。先ほどインサートした座標と約
100mまで近づいたら検索から出てくるように
$maxDistanceで指定します。$maxDistance
の単位は、緯度経度の度になっているのでわか
りづらいですが約100mで指定します。
　まずは目黒駅です。

> db.places.find({ loc: {$near: [35.633848, ｭ
139.715733], $maxDistance: ｭ
0.0008987713795241903 }})

> db.wwwlog.aggregate(
... { $match : { "response" : 200 } },
... { $group : { _id : "$method", "totalbytes" : { "$sum" : "$bytes" } } }
...);
{ "_id" : "POST", "totalbytes" : 66446 }
{ "_id" : "HEAD", "totalbytes" : 0 }
{ "_id" : "GET", "totalbytes" : NumberLong("38692224996") }

 ▼図10　Aggregation Framework

> use pokemongodb
> db.places.save({'place':'アルコタワーアネックス', 'loc':[35.631460, 139.714035]});
> db.places.save({'place':'ハチ公前', 'loc':[35.659055, 139.700775]});
> db.places.save({'place':'秋葉原駅', 'loc':[35.698353, 139.773114]});
 # 二次元インデックスの作成
> db.places.ensureIndex({loc : "2d"});

 ▼図11　座標系のデータの使用例

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

30 - Software Design Dec. 2016 - 31

　何も出てきませんね、まだちょっと遠いよう
です。次は「とんかつとんき」です。並びます
がおいしいとんかつ屋さんです。

> db.places.find({ loc: {$near: [35.633594, ｭ
139.714215], $maxDistance: ｭ
0.0008987713795241903 }})

　こちらも出てきませんね、では「目黒雅叙園」
を指定してみます。

> db.places.find({ loc: {$near: [35.631964, ｭ
139.713614], $maxDistance: ｭ
0.0008987713795241903 }})
{ "_id" : ObjectId("57ffe88d21a509a02b44d561"), ｭ
"place" : "アルコタワーアネックス", "loc" : ｭ
[35.63146, 139.714035] }

　出てきました！　「アルコタワーアネックス」
から100m以内にあるという判定がされたわけ
です（図12）。このようにMongoDBでは座標
の指定の機能は非常に便利に使えます。

まとめ

　ここまでMongoDBのさまざまな機能につい
て説明してきました。ですが、今回紹介したの

はMongoDBの機能のほんの一部でしかありま
せん。これ以外にも「全文検索エンジン」
「MapReduce」「分散ファイルシステム」などさ
まざまな機能が存在しています。データストア
だけでこれだけいろいろな機能があるデータス
トアというのはなかなかないのではないでしょ
うか、そしてそれ以外にもWiredTigerストレー
ジエンジンを搭載したことにより従来の弱点と
も言える部分を克服しMongoDBは非常にさま
ざまなユースケースで使えるようになりました。
ひと昔前のように運用で死ぬデータストア、ユー
スケースを限定しなければいけないデータスト
アというところから一皮むけてきたところでは
ないでしょうか。ですが、じゃあ無条件に
MongoDBを使えば良いのかというとそうでは
なく、データストアによって運用が楽になる、
開発が楽になるというよりは、そのデータスト
アの理解をどんどん深めることでデータストア
の運用が楽になるというのが基本的な原則です。
これはMongoDBに限った話ではなく、RDBを
含めたすべてのデータストアで共通の話となる
と考えています。

　それを突き詰めること
によって、これだけの恩
恵を受けることができる
デ ー タ ス ト ア で あ る
MongoDBを、毛嫌いせず
に1回向き合ってみるの
も良いのではないかな、
と筆者は考えつつ本章を
終わりたいと思います。
ﾟ

 ▼図12　歩いていった道程

MongoDB使いにならないか？
多機能データストアMongoDB入門

第 章2

32 - Software Design

第　 特集1

Couchbaseとは

概要

　CouchbaseはいわゆるKVSの 1つですが、
Value部分をJSONで保存するドキュメント指
向データベースです。その特徴を次に挙げます。

・	高スループット、低レイテンシでの応答
・	複数のCouchbaseサーバのノードを1つの
クラスタとして管理

・ドキュメントの永続化、および生存期間
（expiry）を設定した自動削除の両
方が可能

・	冗長度を指定したデータの冗長化
・ドキュメントに対する強い一貫性
（結果整合性ではない）
・	KeyやValueに関する横断的操作
（後述するViewやN1QLを利用）
・	CASやロック機構を利用したド
キュメントのアトミック操作

・	遠隔地のクラスタとのデータの
双方向レプリケーション（XDCR：
Cross Data Center Replication
機能）

Couchbaseのクラスタ

　Couchbaseは1台からでも導入ができますが、
複数台のノードを利用してクラスタを組み、ク
ラスタ全体を1つのCouchbaseリソースとして
利用できます。

Couchbaseのバケット

　Couchbaseクラスタ内には複数のバケットを
作成できます（図1）。このバケットはRDBに
おける論理DBに相当します（後述するN1QL

利用時ではテーブルに近い概念）。

Author 仲川 樽八（なかがわ たるはち）　（株）ゆめみ　 Twitter @tarupachi

　Couchbase Server（以降、Couchbase）というKVS（Key-Value
Store）をご存じですか。日本では知名度が高くありませんが、ハイパ
フォーマンスと高可用性のため海外ではさまざまな企業で使われています。
CouchbaseはEnterprise向け製品でありながら、非商用利用ならば無
償で使用できます。さらにCommunityEditionならば無償での商用利用
も可能なので比較的容易に導入検討ができます。本章ではインストールと
その使い方を紹介します。

NoSQLのダークホース

Couchbase Serverを
試してみよう！

バケットA

1024MB
割当メモリ

バケットB

1024MB
割当メモリ

バケットC

512MB
割当メモリ

512MB
未割当メモリ

 ▼図1　バケットの概念（Couchbaseクラスタ内には複数のバケット
 を作成できる）

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

第 章3

32 - Software Design Dec. 2016 - 33

・バケットごとにあらかじめ利用メモリを割り
当てるが、このメモリは管理画面から動的
に変更可能

・バケットごとに冗長度の設定や接続パスワー
ドの設定が可能

・この機能により、1つのクラスタを複数のア
プリケーションで安全に共有できる

Couchbaseのドキュメント

　Couchbaseはバケット内に複数のドキュメン
トを保存できます。ドキュメントはKeyと
Valueの組み合わせにより構成されますが、
Value部分をJSONデータとして保持します。
　ドキュメント間のトランザクションなどはサ
ポートしませんが、単一のドキュメントに対す
るデータ操作では、ドキュメントのget時にメ
タ情報として同時に通知されるCAS（Compare

And Swap）を次回保存時に指定することでア
トミックな操作を実現します。冗長度を上げた
場合、ドキュメントは複数のサーバにコピーさ
れますが、フェイルオーバー機能（障害発生時
などに特定のノードを切り離す機能）が行われ
るまで、同一のドキュメントに対する更新操作
は常に同一のノードに対して行われます。その
ためCouchbaseでは、ドキュメントは強い一貫
性を保有しています。

4つのサービスとは

　Couchbaseは次の4つのサービスで構成され
ます。サービスごとにリソースの使用状況に偏
りが生じたり、分散困難な内容などが含まれる
ため、サービスを起動するノードについて個別
で設定できます。

・Dataサービス
　いわゆるKVSの本体。ドキュメントそのも
のの格納および利用一式を担う。後述する
View機能の利用もこのDataサービスに含ま
れる

・Indexサービス
　後述するN1QLのインデックスの作成、保存、
利用を行うサービス

・Queryサービス
　後述するN1QLのクエリを実行するサービス
・FullTextサービス
　4.5.0ではβ機能として提供されているドキュ
メントの検索サービス（本稿では触れない）

Couchbaseを選ぶ理由

　Couchbaseは一般的なRDBのようなトラン
ザクション機構がありませんが、KVSとして
4つの特徴があります。
　第1には高性能とスケーラビリティの実現で
す。具体的には次のようになります。

・ノード1台あたり100,000 read/write級の
スループットが可能

・クラスタへのノードの追加によりread/write
のスケールアウトが可能

・1〜2ミリ秒単位での非常に低いレイテンシ
での応答が可能

・クラスタ全体を1つのリソースと見なせるた
め、クラスタへのノードの追加により逼

ひっぱく

迫
したリソースのスケールアウトが可能

　第2は高可用性です。次のようになります。

・データが冗長化され、かつドキュメントに強
い一貫性を持つため、クラスタ内の単体のノー
ドが破損したケースでもデータの欠損なし
に速やかに縮退運転に移行できる

・クラスタへのノードの追加、削除が無停止で
可能

・ノードの入れ替えが無停止で可能なので、ソ
フトの更新も無停止でできる

・XDCR機能（Cross Data Center Replication）
を利用することで広域なインフラ障害に対
しても対応可能（図2）

NoSQLのダークホース
Couchbase Serverを試してみよう！

第 章3

34 - Software Design

第　 特集1

　第3としては横断的ドキュメント操作を提供
するメソッドです。

・Viewを利用してドキュメント内の値を利用
した検索ができる

・Elastic Searchにリアルタイムでデータ連携
ができる（XDCR機能を利用）

・N1QL注1のようなSQLでのデータ検索がで
きる

・Full Text Serachが可能に

　第4は、Webベースの管理コンソールです。
各ノードの詳細なモニタリングや管理ができま
す。そしてCouchbaseのシステムに対するコマ
ンドはREST APIとして提供されており、運
用の自動化もできます。それらにより高いメン
テナンス性を実現しています。

EnterpriseEditionと
CommunityEdition

　CouchbaseにはEnterpriseEditionとCommu

nityEditionの2つがあります。利用方法を表1

注1） Couchbase4.x以降で、SQLによるデータ問い合わせ・更
新機能（N1QL：ニッケルと読む）が、正式にサポートされ
ました。N1QL上では複数のドキュメントの JOINなどもサ
ポートされ、RDBのようなデータ操作ができますし、
View機能では不可能なドキュメントの更新操作ができる
強力な機能です。

にまとめました。

CommunityEditionの機能制限について
　CommunityEditionの機能制限については
Webサイト注2の情報が詳しいのですが、おも

注2） URL http://developer.couchbase.com/documentation/
server/4.5/introduction/editions.htm

バケットA バケットC ’’バケットB バケットC

バケットD バケットB’ バケットC ’

 ▼図2　XDCR機能（パケット単位で他のクラスタ上のバケットへのレプリケーションができる）

CouchbaseのViewとは
　Couchbaseではドキュメント中の特定の
フィールドの値や、ドキュメントのKeyを利
用した Index作成ルールを JavaScriptで記載し、
Indexおよび Indexに対応するデータの作成が
できます。この Indexを利用した検索により、
ドキュメントの抽出やドキュメントの集計結
果を取得できます。簡単な例では、ドキュメ
ントに更新時間を記載しておき、この更新時
間を元にViewの Indexを作成します。これで
更新時間順にドキュメントを整列して特定の
範囲のものだけを取得するといった操作がで
きます。Viewの Indexの更新は非同期ですが、
検索時に必ず Indexを更新して最新の状態にし
たうえで検索を行うオプションなどもあります。

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

http://developer.couchbase.com/documentation/server/4.5/introduction/editions.html

34 - Software Design Dec. 2016 - 35

な差異を次に挙げます。

・XDCR時のフィルタリング
・ラックゾーンアウェアネス機能
・差分データバックアップ機能
・セキュリティの機能
・N1QLの一部機能制限

　この中でとくに重要なのはラックゾーンアウェ
アネス機能です。これがシステム構築時に必須
かどうか、それが選定する際の判断基準になる
ことが多いでしょう。
　ラックゾーンアウェアネス機能とは、クラス
タ内のノードをあらかじめ複数のグループに別
れるようにタグ付けしておくことができる機能
です。Couchbaseはデータを冗長化するとき、
各ノードに書き込まれたデータを必ず他のグルー
プに含まれるノードにコピーします。このグルー
プ分けとして、サーバラックや、データセンター、
Availability Zoneなどを利用することにより、
それぞれの単位での障害が発生してもデータ欠
損なくサービスを継続できます。

Couchbaseの
インストール

　AWS上にCouchbaseを構築する場合、Market

placeにあるイメージから作成することもでき
ます。しかし、本稿では公式サイトからパッケー
ジをダウンロードしてインストールする方法を
説明します。

　インスタンスの推奨スペックはかなり高いの
ですが、開発環境では小規模でも問題ありませ
ん。ここでは t2.small（2016年 9月 16日現在
0.04$／時～100円／日）のインスタンスを利
用することとします。管理コンソールを利用す
るために、今回は起動時にグローバル IPアド
レスを利用可能な状態としておきます。
　日本語版のページは古いので、本家サイト注3

から最新版をダウンロードします（ここでは
CentOS6 64bit版）。ダウンロード先のURLが
わかればwgetを使用してもかまいません。

$ wget http://packages.couchbase.com/
releases/4.5.0/couchbase-server-ｭ
enterprise-4.5.0-centos6.x86_64.rpm
$ sudo rpm -Uvh couchbase-server-ｭ
enterprise-4.5.0-centos6.x86_64.rpm

　コマンドとしてはこれだけです。インストー
ルはほぼ数秒で終わりますが、この時点で
Couchbaseがサービスとして起動します。この
とき、Couchbaseが利用するポートも表示され
ますので、利用するサーバ間ではそのポートを
開けてください（今回はlocalhostで試験します）。

クラスタの初期化

　最初に管理コンソールでクラスタの初期化が
必要です。すでに初期化されたクラスタにノード
を追加する場合もこちらから行うことができます。

注3） URL http://www.couchbase.com/nosql-databases/
downloads

EnterpriseEdition CommunityEdition

年間ライセンス契約あり 無償利用 無償利用
ライセンス費用 利用ノード台数に比例 無償 無償
商用利用 可 2ノードまで可 可
非商用利用 可 可 可
サポート 24時間365日（※） なし なし
Hotfix あり なし なし
マイナーバージョンアップ あり あり 多くのマイナーバージョンをスキップ
各言語用のSDK 最新版利用可能 最新版利用可能 最新版利用可能
機能制限 フル機能利用可能 フル機能利用可能 一部機能制限あり

 ▼表1　各エディションによるライセンスなどの違い（※英語のみ）

NoSQLのダークホース
Couchbase Serverを試してみよう！

第 章3

http://www.couchbase.com/nosql-databases/downloads

36 - Software Design

第　 特集1

　Couchbaseをインストールしたサーバの
8091ポートで管理コンソールが起動している
のでブラウザでアクセスし、［Setup］を押下し
て次へ進んでください。初回はまだUser/

Passwordを設定していないでそのまま進めま
す（図3）。
　サービスはデフォルトでDataサービス、
Indexサービス、Queryサービスを利用できます。
　また、このノードではデフォルト状態だと
RAMが足りなくなるので、DataRAM Quota

を1024MBに、Index RAM Quotaを256MBに
変更します。
　Couchbaseでは初回にサンプルバケットを作
成します。サンプルバケットに投入するデータ
を選べますが、このバケットは最初に削除する
予定のため、そのまま進めます。
　メールアドレスなどを聞かれますが入力しな
くてもかまいません。途中でパスワードを聞か
れるので適宜設定します。このパスワードは次
回以降に管理コンソールを使うときや、クラス
タに他のノードを追加するとき、XDCR機能
を利用するときなどに使用するので忘れてはい
けません。

管理コンソールの利用開始

　これまでの作業により、管理コンソールが使
用可能になります。モニタリング可能な項目は
膨大ですので説明は割愛します。各種のリソー
スがリアルタイムで更新されていく様子が圧巻
なので、ぜひ一度試してください（図4）。

デフォルトバケットの削除

　初期化時に作成されたデフォルトバケット
［default］は特殊なバケットです。そのまま利
用するのが難しいので削除します。

①［Data Buckets］タブを押下
②	バケット名の横の［ ▼］を押下してバケット
の詳細情報を展開

③［Delete］を押下

 ▼図4　管理コンソールのモニタリング画面（抜粋）

 ▼図3　Webブラウザで「http://[Global IP]:8091/」で
　　　管理コンソールにアクセス（入力数値は例）

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

36 - Software Design Dec. 2016 - 37

新規バケットの追加

　次の手順でバケットを新規追加
します（図5）。

①［Data Buckets］タブを押下
②［Create New Data Bucket］
を押下

③［Bucket Name］に sample と
入力

④［Per Node Ram Quota］に
256と入力

⑤［Access Control］→［Enter
password］にパスワードを入
力（先ほど設定したものとは異
なる新しいパスワードを設定）

⑥［Replicas］→［Enable］の
チェックを外す（ノードが1つ
のため）

⑦［Create］ボタンを押下

KVSとしての
利用

PHPスクリプトからの
利用

　PHPからCouchbaseを利用する
ための例を図6に示します。準備注4

が必要です。php.iniにcouchbse.so

を組込み、Apacheを再起動します。

sudo echo "extension=couchbase.so" > /etcｭ
/php.d/couchbase.ini
sudo /etc/init.d/httpd restart

注4） URL http://developer.couchbase.com/documentation/
server/current/sdk/php/start-using-sdk.html

Only needed during first-time setup:
wget http://packages.couchbase.com/releases/couchbase-release/couchbase-release-1.0-2-x86_64.rpm
sudo rpm -iv couchbase-release-1.0-2-x86_64.rpm
Will install or upgrade existing packages
sudo yum install libcouchbase-devel gcc gcc-c++ php-devel
sudo pecl install couchbase

 ▼図6　PHPのCouchbaseへの導入

 ▼図5　バケットの新規追加

③

⑤

④

⑥

⑦

　リスト1は、先ほど作成したバケットにドキュ
メントを格納するサンプルです。これはCouch
baseBucket::upsert()命令を利用して、元の
ドキュメントがなかった場合には新規追加、あっ
た場合には上書きを実行しています。PHP上の
array()データ構造をそのままJSONとして

NoSQLのダークホース
Couchbase Serverを試してみよう！

第 章3

http://developer.couchbase.com/documentation/server/current/sdk/php/start-using-sdk.html

38 - Software Design

第　 特集1

シリアライズして格納している
ため、Couchbase上では JSON

であることを意識しないものと
なっています。リスト1の実行
結果は図7のようになります。
　管理コンソールでもDocument

に追加されていることが確認され
ました（図8）。ここでは expiry

として30を指定していますので、
30秒後にはこのドキュメントは
削除されることも確認できます。
　CouchbaseBucketに対する主
要なMethodは表2のとおりで
す。例示したリスト1を改修し
ながらいろいろな挙動を試して
いただきたいと思います。

横断検索の利用

N1QLを利用した
検索

　CouchbaseはまさにNoSQL（Not Only SQL）
で、KVS機能だけでなくSQLも利用できます。
当初はcbqというコマンドラインツールを利用
していましたが、最新版のCouchbase4.5では管
理コンソールからクエリの実行ができますので
気軽に試行できます注5。
　N1QLにはかなりの癖がありますが、
Couchbaseではチュートリアルサイト注6を準備
しています。こちらのサイトから、実際に
N1QLのクエリを発行しながらN1QLで何がで
きるのか体験してください。

N1QLを利用する際の注意

　一方でN1QLはまだ発展途上の機能である
部分もあるため、とくにデータ量が多い環境で

注5） この機能を利用するためにはCouchbaseインストール後
の最初に管理コンソールを立ち上げたときに、Indexサー
ビスとQueryサービスを有効にする必要があります。

注6） URL http://query.pub.couchbase.com/tutorial/

$ php cb_test.php

Upsert U:Taru8
CouchbaseMetaDoc Object
(
 [error] =>
 [value] =>
 [flags] =>
 [cas] => 2445gkpq8k
 [token] =>
)
Get U:Taru8
Array
(
 [doctype] => USER
 [email] => taruhachi@***.**
 [sex] => male
 [birthday] => 1975-08-08
 [u_timestamp] => 1474152241
)

 ▼図7　スクリプトの実行結果注7

<?php
define("BUCKET_NAME", "sample");

define("BUCKET_PASSWD", "password");

 // Connect to Couchbase
 $cluster = new CouchbaseCluster("localhost");
$bucket = $cluster->openBucket(BUCKET_NAME, BUCKET_PASSWD);

// Store a document
echo "Upsert U:Taru8\n";
$result = $bucket->upsert(
 'U:Taru8',
 [
 "doctype" => "USER",
 "email" => "taruhachi@***.**",
 "sex" => "male",
 "birthday" => "1975-08-08",
 "u_timestamp" => time()
],
 ['expiry'=>30]
);
 print_r($result);

 echo "Get U:Taru8\n";
 $result = $bucket->get("U:Taru8");
 print_r((array)$result->value);
?>

 ▼リスト1　cb_test.php

注7） ドキュメントのキーおよびドキュメント双方にドキュメン
トのデータ区分がわかるようにしておくと管理コンソール
の利用時、N1QL利用時などに便利。ここではドキュメン
トのキーのプレフィックスを“U:”とし、doctype=“USER”
をドキュメントに含めている。

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

http://query.pub.couchbase.com/tutorial/

38 - Software Design Dec. 2016 - 39

の利用には十分な検証が必要です。
　CouchbaseでのN1QLの使用にあたり、注意
点を次にまとめます。

・Indexが作成されていない検索は非常に遅く、
タイムアウトすることが多い

・Indexを追加すると追加されたIndexの数に
応じて物理メモリを大量に要求する

・Indexの更新が非同期であり、取得した結果
が最新のドキュメント内容とは一致しない
ことがある

・Index更新タイミングの制御が難しい
・（当然ながら）トランザクション操作を利用
できない

最後に

　足早にCouchbaseの紹介をしましたが、導入
に関しては非常に簡単で比較的気軽に試すこと
ができる製品です。今回はPHPのサンプルを
紹介いたしましたが、Couchbaseには各種プロ
グラミング言語用のSDKがすでにそろってい
ますので、まずは動作を試したうえで製品とし
ての強力さを体験してください。ﾟ

Method 操作内容 特記事項
insert() ドキュメントの新規挿入 元のドキュメントがすでに存在するときは例外が発生
upsert() ドキュメントの挿入 元のドキュメントがすでに存在するときは上書き
replace() ドキュメントの更新 元のドキュメントがないときは例外が発生
append() ドキュメントの最後に追記
prepend() ドキュメントの先頭に挿入
remove() ドキュメント削除 元のドキュメントがないときは例外が発生
get() ドキュメント取得 元のドキュメントがないときは例外が発生
getAndTouch() ドキュメント取得と同時にドキュメント

生存期間を更新 session保存期間の更新などに利用

getAndLook() ドキュメント取得と同時にロック
touch() ドキュメント生存期間を更新
counter() アトミックカウンターを利用
query() View検索クエリまたはN1QLクエリの

発行
それぞれ事前にViewやN1QLのIndexを作成しておく
必要がある

 ▼表2　各種メソッドの説明（http://docs.couchbase.com/sdk-api/couchbase-php-client-2.2.2/）

 ▼図8　管理コンソールでの確認

NoSQLのダークホース
Couchbase Serverを試してみよう！

第 章3

http://docs.couchbase.com/sdk-api/couchbase-php-client-2.2.2/

40 - Software Design

第　 特集1

Redis概要

　Redisは、C言語で実装されているインメモ
リ（メモリ上にデータを保存する）データベー
スです。2009年に初回リリースされ、執筆時
点（2016年10月）での最新安定版は3.2です。
修正BSDライセンスのオープンソースソフト
ウェアで、GitHub上でソースコードを見るこ
とができます注1。

開発状況

　Redisは、イタリア人のエンジニアである
Salvatore Sanfilippo氏によって開発されました。
現在も開発は活発で、継続的なバージョンアッ
プが行われています。最近のものを挙げると、

●バージョン3.0（2015年4月）
・Redis Clusterの追加（複数のサーバでクラ

スタリングできるしくみ）
・WAITコマンドの追加（レプリケーション構

成時にSLAVEへの書き込みが終わるまで、
MASTERが待つ）

・LRUアルゴリズムの改善

●バージョン3.2（2016年5月）
・文字列型がビットアレイとして利用可能になる

注1） URL https://github.com/antirez/redis

・GEO APIの追加（キーに対する緯度、経度、
地名を扱える）

・Luaスクリプティングにデバッグ機能の追加
・Redis Clusterの機能改善

　このように、バージョンアップごとにさまざ
まな機能が追加されています。

利用できる環境

推奨環境
　RedisはPOSIX注2システム上で動作します。
Redisの開発はLinux、Mac OS Xで行われて
おり、本番環境ではLinuxで動かすことが推奨
されています。
　Windowsは公式にはサポートしていませんが、
MS Open Techによって64bit Windows OS用
にバイナリが配布されています注3。

AWSのElastiCache for Redis
　2013年9月からAWS（Amazon Web Servi

ces）のキャッシュサーバ（ElastiCache）に
Redisが追加されました。それまでの選択肢
はmemcachedのみでしたが、現在はRedisと
memcachedの2つから選択できます。

注2） Portable Operating System Interfaceの略で、Unix系OS
において移植性の高いソフトウェアの開発を容易にするた
めの規格。

注3） URL https://github.com/MSOpenTech/redis/releases

Author 大谷 祐司（おおたに ゆうじ）　㈱インテリジェンス

　この章では、KVS（Key-Value Store）として人気の高いRedisについ
て紹介します。インメモリデータベースの高速性に加えて多彩なデータ型、
データ保護や冗長化のしくみを備えているRedisは、Webアプリケーショ
ン開発現場で必須の技術となりつつあります。

データの型や永続化機能が用途を広げる

高速なインメモリ
データベースRedis

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

第 章4

https://github.com/antirez/redis
https://github.com/MSOpenTech/redis/releases

40 - Software Design Dec. 2016 - 41

　ElastiCache for Redisではデータスナップ
ショットのS3へのエクスポート、データを保
持したままのスケールアップ、Multi-AZで自
動フェイルオーバーなど、運用時に役立つ機能
を利用できます。
　2016年10月14日にアップデートがあり、最
新バージョンのRedis 3.2が利用できるように
なりました。詳細についてはAmazon Web Ser

vicesブログ注4で紹介されていますので、ぜひ
チェックしてみてください。

Redisの特徴

　オープンソースのデータベースには多くの種
類が存在しますが、Redisの特徴として次の点
が挙げられます。

KVS（Key-Value Store）
　データを保存する際、Keyに対応した値
（Value）を格納します。データの格納や取り出
し、削除などはすべてキーを指定して行います。
RDBMSと異なり、スキーマ（テーブル定義）
が存在しません。一般的なKVSは単純なキー
と値をセットで保持しますが、Redisの値には
後述する“データ型”が存在します。これによっ
て単純なKVSではできなかったさまざまな操
作が可能です。

高いパフォーマンス
　Redisはインメモリで動作するため、ディスク
にデータを保存するDBに比べると非常に高い
パフォーマンスを発揮します。また図1のように
シングルプロセス／シングルスレッドで動作す
るために、プロセスやスレッド立ち上げにかか
る時間を必要としません。ただしマルチコアの
CPU環境で起動しても、使用するのは1つのコ
アだけになります。
　それでは、マルチコアCPUの環境でパフォー

注4） URL https://aws.amazon.com/jp/blogs/news/amazon-
elasticache-for-redis-update-sharded-clusters-engine-
improvements-and-more/

マンスを高めたいときにはどうしたら良いでしょ
うか。Redisは単一サーバ上で、ポートを変え
て複数の起動が可能です。複数のRedisを立ち
上げて利用することで、複数コアを活用してパ
フォーマンスを上げることができます。ただし
利用できるメモリも各Redisに割り当てなけれ
ばいけないので注意が必要です。この方法は公
式サイトでも紹介されています注5。

複雑な処理をまとめて行える機能
　Lua言語で書かれたスクリプトを実行でき
る注6、トランザクションを利用して複数の命令
を1コマンドで実行できる注7など、複雑な処理
をまとめて行える機能を備えています。

データの保護
　Redisには、データを保護するためにいくつ
かのしくみが備わっています。一般的なインメ
モリデータベースはすべてのデータをメモリ上
に保管するため、サーバプロセスが終了すると

注5） URL http://redis.io/topics/faq
 *Redis is single threaded. How can I exploit multiple

CPU / cores?

注6） Redis上でLuaというプログラム言語を実行することがで
きます。これにより、複雑な操作を一括で実行することが
可能です。EVALコマンドの引数としてLuaスクリプトを
渡す方法、LuaスクリプトをRedisに登録する方法があり
ます。工夫次第でさまざまな活用が可能ですので、ぜひ試
してみてください。

注7） Redisでは複数の命令をまとめて実行することで、トラン
ザクションを利用することができます。MULTIコマンドで
トランザクションを開始し、その後発行されたコマンドの
キューイングを行います。キューイングされたコマンドは、
EXECコマンドがコールされた時点で実行されます。代わ
りにDISCARDをコールすると、トランザクションキュー
の内容がフラッシュされて、トランザクションは終了します。

コマンド

コマンド

コマンド

コマンド

Redis
 1スレッドで
順番に処理

1プロセス／1スレッドで動作

コマンド実行

 ▼図1　Redisのコマンド処理

データの型や永続化機能が用途を広げる
高速なインメモリデータベースRedis

第 章4

https://aws.amazon.com/jp/blogs/news/amazon-elasticache-for-redis-update-sharded-clusters-engine-improvements-and-more/
http://redis.io/topics/faq

42 - Software Design

第　 特集1

データが消失してしまいます。しかしRedisは
バックアップからデータを復旧することが可能
です。

多彩なデータ型
　一般的なKVSは単純なキーと値をセットで
保持しますが、Redisは値をデータ型として保
持することができます。文字列型（Strings）、
リスト型（Lists）、セット型（Sets）、ハッシュ型
（Hashes）、ソート済みセット型（Sorted Sets）
という5つのデータ型を利用できます。
　複数のデータ操作を一括して行える、データ
の集合から特定のデータを取り出すことができる
など、データ型を利用することで活用の幅が広
がります。

多彩なコマンド
　Redisには約200ものコマンドが存在してい
ます。Redis本体の動作に関するコマンドや、
データ型特有のコマンドなどさまざまなものが
あります。スペースの都合から詳細な説明は割
愛しますが、Redisの公式サイトでコマンドを
確認できます注8。利用する際はぜひ目を通して
みてください。

CLIを利用できる
　Redisをインストールすると、CLI（コマンド
ラインツール）を利用できるようになります。動
作状況の確認やデータ操作などができる便利なツー
ルです。

柔軟なスケールアウト
　RedisにはMaster/Slave形式のレプリケー
ションや複数台のクラスタなど、スケールアウ
トできるしくみが備わっています。Redis単体
でも高速に動作しますが、複数台で負荷分散す
ることでよりパフォーマンスの高いシステムを
構築することができます（冗長化の節で詳しく

注8） URL http://redis.io/commands

説明します）。

Redisのデータ型について

　「Redisの特徴」で取り上げたデータ型につい
て、もう少し詳細に説明します。

文字列型（Strings）
　シンプルなKVSとして、キーに対して値を
格納し、キーを指定して値を得る、最も基本的
なデータ型です（図2）。最大で1GBまで扱え
ます。画像ファイルなどのバイナリデータを扱
うこともできますが、利用するクライアントラ
イブラリによってはバイナリデータに対応して
いないものもあるので注意が必要です。

リスト型（Lists）
　プログラム言語のリスト型と同じように、追加
した順番に値が格納されるデータ型です（図3）。
先頭や末尾に値を追加する、範囲を指定して値
を取り出すなど、リスト操作のためのコマンドが
存在します。また、LINSERTコマンドを使用す
ると、格納されている値を指定して前後に値を
追加することが可能です。

セット型（Sets）
　集合として値を保持するデータ型です（図4）。
保持している値は順番を持たず、同じ値は重複

PUB/SUB
　Redisでは標準でPUB/SUBを使用したメッ
セージングが可能です。PUB/SUBはパブリッ
シュ・サブスクライブの略で、メッセージの
送信者（出版側）が特定の受信者（購読側）を
想定せずにメッセージを送信できるモデルです。
出版側と購読側の結合度が低いため、スケー
ラビリティがよく、動的なネットワーク構成
に対応可能なのが特徴です。

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

http://redis.io/commands

42 - Software Design Dec. 2016 - 43

して保持できません。集合への値の追加や削除
のほかに、複数の集合を使った演算用のコマン
ドが用意されています。

ハッシュ型（Hashes）
　プログラム言語のハッシュテーブルと同じよ
うに、キーと値のペアを複数保持できるデータ
型です（図5）。保持している値は順番を持たず、
キーを指定することで値の操作が可能です。セッ
ト型は値を指定して操作を行いますが、ハッシュ
型は値を指定して操作を行うことができません。

ソート済みセット型（Sorted Sets）
　セット型と同じく値の集合を扱うデータ型で
すが、それそれの値に設定された「スコア」に
よって順序付けされているのが特徴です（図6）。
順位を指定してデータを取得したり、スコアの
値の範囲を指定してデータを取得することがで
きます。注意点としては、複数の値が同一のス
コアを持っている場合でも同一順位にはならず、
辞書の順番に順位が高いとみなされます。

Apple
Orange

Lemon

Kiwi

Peach

値を順不同で保持

 ▼図4　セット型

活用方法

　この節では、Redisの活用方法を紹介します。
筆者はこれまで、次の用途でRedisを利用して
きました。

Webアプリケーションの
セッションストア

　ここ最近、Webアプリケーションのセッショ
ンストアにRedisを利用するケースをよく見る
ようになりました。セッションストアに求めら
れる要件として次のようなものがありますが、
これらの要件をRedisは満たすことができます。

・一定の時間でデータを消失できる
・Webリクエストごとにデータアクセスする

ので、素早く動作する
・冗長化された複数台のWebサーバで同じデー

タを共用できる

　従来はセッションをWebサーバのファイル
やDBに保存することが多かったのですが、最
近はWebフレームワークでRedisの利用が増え
てきました。Ruby on Railsや、PHPで人気の
Laravel、Java/Scalaで人気のPlay Framework

など、多くのフレームワークでRedisに対応すOrange

 ▼図2　文字列型

Apple Orange Lemon Kiwi Peach

1 2 3 4 5

値を順番に保持

 ▼図3　リスト型

Apple
Orange

Lemon

Kiwi

Peach
A

B

E

C

D

値とキーをセットで保持

 ▼図5　ハッシュ型

Apple
スコア：10

Orange
スコア：30

Lemon
スコア：50

Kiwi
スコア：70

Peach
スコア：90

1 2 3 4 5

値をスコアの大きさ順に保持

 ▼図6　ソート済みセット型

データの型や永続化機能が用途を広げる
高速なインメモリデータベースRedis

第 章4

44 - Software Design

第　 特集1

るしくみが存在します。ぜひチェックしてみて
ください。

DBのキャッシュ

　Webアプリケーションのレスポンスタイムを
早くしたいとき、DBへのアクセスがボトルネッ
クになるケースが多いのではないでしょうか。そ
んなときDBのデータをRedisにキャッシュする
ことで、パフォーマンスを改善することができま
す。筆者の場合にはマスタデータをあらかじめ
DBからRedisにコピーしておき、キーを指定し
て高速に取得できるようにしていました。
　また、DBに発行した複雑なSQLの実行結果
をRedisにキャッシュすることで、2回目以降の
データアクセスを高速に行うことができます。こ
のようにDBとRedisを共存させることで、高速
なWebアプリケーションを構築できます。

リアルタイムランキングでの活用

　Redisの人気が高まったのは、ゲームの「リ
アルタイムランキング」で活用されたことが大
きいように思います。筆者も以前ソーシャルゲー
ムのランキングでRedisを活用していましたが、
ユーザ数の多い環境においてもパフォーマンス
の良いしくみが実現できました。簡単ですが以
下に手順を記します（図7）。

ランキングの生成
　ランキング用のソート済みセット型を作成し、
ゲームプレイ結果の「ユーザID」「スコア」を登

録します。この操作で、スコア順のユーザラン
キングが生成されます。

ランキングデータの取得
　ランキング用のソート済みセット型からは、
次のようなデータを取得して利用できます。

・登録されているユーザの数
・指定したユーザのランクとスコア
・順位の範囲を指定したランキング情報（例：

1〜100位の範囲）
・スコアを指定したランキング情報（例：100

〜500点）

スコアの増加／減少
　ZINCRBYコマンドを利用することで、指定
したユーザのスコアを増加／減少させることが
できます。スコアを増減させると、リアルタイ
ムでランキングに反映されます。

◆　◆　◆
　Redisには複数のデータ型やデータ永続化の
しくみがあるので、データを一時的に保存する
「キャッシュサーバ」を超えたさまざまな活用が
可能です。読者の方はRedisをWebアプリケー
ションで利用することが多いと思います。DB

とRedisを併用することで柔軟性の高いシステ
ム構築ができます。

使ってみよう

　この節ではRedisを利用する手順を説明します。

ソースからのインストール

　公式サイト注9に記載されている方法で、Mac

やLinuxなどのPOSIX互換システムに最新安
定版のRedisをインストールすることができます。
　OSのパッケージ管理ツールにRedisが用意さ
れていることも多いですが、Redisは頻繁にバー
ジョンアップが行われています。バグ修正や機

注9） URL http://redis.io/download

User：A
スコア：10

User：B
スコア：30

User：C
スコア：50

User：D
スコア：70

User：E
スコア：90

1 3 4 5

ユーザランキング

ソート済みセット型

プレイ結果

 ▼図7　ソート済みセット型を使ったリアルタイムランキング

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

http://redis.io/download

44 - Software Design Dec. 2016 - 45

能追加に追従するためにも、ソースから最新バー
ジョンをインストールすることをお勧めします。
　まずは公式サイトからRedisをダウンロード
します。ダウンロードできたら、アーカイブを
展開してディレクトリに移動します。そこで
makeコマンドを実行してRedisをビルドし、
完了したらインストールを行います。一連のコ
マンドは次のようになります注10。

$ wget http://download.redis.io/releases/ｭ
redis-3.2.4.tar.gz
$ tar xzf redis-3.2.4.tar.gz
$ cd redis-3.2.4
$ make
（$ make test）
$ sudo make install

起動してみよう

　Redisのインストールが完了したら、次のコ
マンドを実行することでRedisを起動できます。

$ redis-server

　次のようなメッセージが表示されたら、起動
完了です。

The server is now ready to accept ｭ
connections on port 6379

　Redisはデフォルトだと、ポート6379でク
ライアントからの接続を待ちます。デフォルト
では常駐プロセス（daemon）として動作するよ
うになっていないため、立ち上げるとシェルが
操作できなくなります注11。
　常駐プロセスとしてバックグラウンドで起動
するには、Redisを解凍したディレクトリに存
在する設定ファイル（redis.conf）に次の修正を
行ってください。

daemonize no
　 ↓
daemonize yes

注10） wgetに入れるソースのパスはバージョンによって変更に
なります。最新バージョンについては公式サイトを参考に
してください。

注11） l＋cを入力するとRedisを終了し、操作できるよう
になります。

　あとは起動時の引数で、設定ファイル（redis.

conf）の位置を指定します。

$ redis-server ./redis.conf

　Redisの起動はプロセスで確認できます。

$ ps -ax | grep redis-server
xxxx xx xx:xx.xx redis-server 127.0.0.1:6379
 xは環境に応じて変化

　このような表示が出力されればRedisは起動
しています。

CLIから使ってみよう

　Redisには標準でCLI（Redisと対話するため
のコマンドラインツール）が用意されています。

$ redis-cli

　上記のコマンドを実行すると、対話モードに
なります。

127.0.0.1:6379>

　このような表示が出力されれば準備完了です。
CLIからはRedisのコマンドを実行できます。
　次のコマンドを実行して、値の登録と取り出
しをしてみましょう。「test」というキーに対し
て、"value"という値を設定しています。

127.0.0.1:6379>set test "value"
127.0.0.1:6379>get test
"value"

　Redisを停止するときは次のコマンドを実行
します。

127.0.0.1:6379>shutdown

　対話モードに入らずともCLIの引数にコマン
ドを入力することで、任意のコマンドを実行で
きます。たとえば上記のRedisの停止であれば、

$ redis-cli shutdown

と実行できます。
　このほかにもたくさんのコマンドが用意され
ています。運用に役立つコマンドをいくつか表1

データの型や永続化機能が用途を広げる
高速なインメモリデータベースRedis

第 章4

46 - Software Design

第　 特集1

にまとめたので参考にしてください。

アプリケーションから使ってみよう

　Redisの公式サイトには、各言語で利用でき
るクライアントライブラリが紹介されていま
す注12。お勧めのライブラリもわかるようになっ
ていますので、皆さんの使っている言語をチェッ
クしてみてください。
　ここでは、人気のプログラム言語である
PHPからRedisを操作する方法についてご紹
介します。公式サイトでもお勧めされている
phpredis注13を使ってみましょう。なおここでは、
パッケージマネージャの yumが利用できる
Linux環境を想定しています。

・phpredisをインストールできるように、epel
をインストール

　 $ sudo yum install epel-release
・PHP、phpredisをインストール
　 $ sudo yum install php php-pecl-redis

　リスト1はRedisに接続して値を保存し、そ
れを取り出して出力するPHPプログラムのサ
ンプルです。「redistest.php」というファイル
名で作成し、次のコマンドで保存したプログラ
ムを実行します。

注12） URL http://redis.io/clients

注13） URL http://redis.io/clients#php

$ php redistest.php

　実行すると、Redisから取り出した値“test_

value”が表示されます。

設定項目

　この節ではRedisで設定可能な項目について、
いくつかピックアップして紹介します。前述の
「起動してみよう」でも少し説明しましたが、
設定ファイルのサンプルとして、Redisインス
トール時に解凍したディレクトリに「redis.

conf」が存在します。設定項目の説明が載って
いますので目を通しておくことをお勧めします。
　設定ファイルはRedis起動時の引数として指
定します。未指定の場合には、デフォルトの設
定値が使用されます。

 redis.confを指定する例
$ redis-server ./redis.conf

データバックアップ

　Redisには2種類のデータバックアップ方法
が存在します。

RDBファイルでのバックアップ
　RedisはRDBファイルというデータのスナッ

CLIコマンド 処理内容
CONFIG SET confの設定値を変更することが可能。起

動中に動的に設定を変更できるが、再起
動すると設定は失われてしまうので要注意。
設定可能な項目は、CONFIG GET *で表
示されるもの

KEYS 正規表現で一致したキーを取得すること
ができる。コマンドKEYS *で、登録済み
のすべてのキーを取得可能

FLUSHALL Redisに保存されているすべてのデータを
削除する。Redisの初期化時などに有効

MONITOR あるクライアントで実行すると、Redisに対
して実行されたすべてのコマンドがダンプ
される。実行状態を確認するのに役立つ

 ▼表1　運用に役立つCLIコマンド例 <?php

$redis = new Redis();
$redis->connect("127.0.0.1",6379);

// 登録済みの値を削除
$redis->delete('test_key');

// 値をセットする
$redis->set('test_key', 'test_value');

// 値を取得する
$value = $redis->get('test_key');

// 表示
echo $value;

 ▼リスト1　redistest.php

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

http://redis.io/clients
http://redis.io/clients#php

46 - Software Design Dec. 2016 - 47

プショットを出力できます（図8）。RDBファ
イルを出力しておけば、そこから簡単にデータ
をリストアすることが可能です。
　設定ファイルのsaveでは、RDBファイルを
出力するタイミングを指定します。設定方法は
独特で「X秒間にY回の変更があったらバック
アップファイルを出力する」という指定を行い
ます。この条件は複数指定可能です。次の設定
だと「10分間（600秒）に100回の変更があっ
たらファイルを出力する」という指定をしてい
ることになります。

save 600 100

　RDBファイルの出力時には、Redisは子プロ
セスを作成して動作を行います。よって親プロ
セスの動作が影響を受けないようになっていま
す。RDBファイルを出力しない場合には、次
の設定を行います。

save ""

　RDBファイルを利用することで、データの
リストアをスピーディに行うことができます。
ただし、前回RDBファイルを出力した以降に
書き込まれたデータについては、障害時に消失
する可能性がある点に注意が必要です。
　SAVEまたはBGSAVEコマンドを利用して、
明示的にRDBファイルにバックアップすること
も可能です。SAVEコマンド実行中はすべての
リクエストをブロックしますが、BGSAVEなら
リクエストを受け付けたままバックアップを実
行できます。

AOFでの
バックアップ
　もう1つのデータ
バックアップ方法が、
AOF（Append Only

File）を使ったもの
です。設定ファイル
に次のように記述す

ることで有効になります。

appendonly yes

　AOFは追記専用のログファイルで、Redisへ
更新を行った内容が記載されています（図9）。
AOFに書いた直後はディスクに書き込まれてお
らず、バッファキャッシュ上に存在します。ファ
イルに書き出す（fsyncを実行する）タイミング
はalways、everysec、noの3つが選択できます。
デフォルトはeverysecで、毎秒書き出しを行い
ます。alwaysにすると毎回ログ書き出しを行う
ため、パフォーマンスが著しく低下します。no

にするとfsyncでの書き出しは行わず、データ
の書き出しはOSに任せるため高速です。
　AOFはファイルサイズが大きくなり、バック
アップからのリストアにも時間がかかります。
しかし任意の地点までの状態をリストアできる
というメリットがあります。たとえば誤ったコ
マンドの実行で全データを消してしまった場合
などでも、その命令を取り除いてAOFを読み
込めば、データを復旧することが可能です。

◆　◆　◆
　このように、Redisにはデータ消失を防ぐ機
能が備わっています。データの重要性や求めら
れるパフォーマンスに応じて、最適なものを選
択しましょう。

ログ出力

　Redisには「実行ログ」「スローログ」という2

種類のログが存在します。ここではログの用途
と設定方法について解説します。

RDBRedis

SAVE/BGSAVE

全データ

 ▼図8　RDBファイルによるバックアップ

AOFRedis

コマンド

更新
コマンド

 ▼図9　AOFによるバックアップ

データの型や永続化機能が用途を広げる
高速なインメモリデータベースRedis

第 章4

48 - Software Design

第　 特集1

実行ログ
　loglevelでログの出力レベルを指定します。ロ
グレベルにはdebug、verbose、notice、warning

が存在し、デフォルトではnoticeに設定されて
います。用途に応じて切り替えるのが望ましい
ですが、若干ですがパフォーマンスに影響を与
える点に注意してください。logfileでログの出
力先ファイルを指定します。

スローログ
　slowlog-log-slower-thanを指定することで、
遅いコマンドをログとして保持することが可能
です。slowlog-max-lenで指定した件数をメモ
リに保持します。ログを確認するためには、
SLOWLOG GETコマンドを利用します（図
10）。遅いコマンドを特定できるので、パフォー
マンスチューニングに役立ちます。

メモリが上限に達したときの挙動

　maxmemory-policyを指定することで、Redis

の利用できるメモリが上限に達したときの挙動
を次の6つから選択することができます。

・noeviction：エラーを返してこれ以上の登録
は行わない。デフォルト設定

・volatile-lru：expireが設定されているキーか
らLRUアルゴリズム注14を使って削除

・allkeys-lru：すべてのキーからLRUアルゴリ
ズムを使って削除

・volatile-random：expireが設定されているキー

注14） LRUとはLeast Recently Usedの略で、未使用の時間が最
も長いものを抽出するアルゴリズムです。これによって、
重要度の低いと思われるデータを操作することができます。

からランダムに削除
・allkeys-random：すべてのキーからランダム

に削除
・volatile-ttl：expireの期限が近いものから削除

冗長化

　この節ではRedisを冗長化する方法を紹介し
ます。Redisには複数のサーバでデータを冗長
化させるためのしくみがいくつか存在します。

レプリケーション

　1台のMasterと複数台のSlaveでレプリケー
ションを構築することができます（図11）。デー
タ参照のアクセスをSlaveに振り分けることで
負荷を分散したり、集計やデータバックアップ
など負荷の高いコマンドをSlaveで実行するこ
とでMasterの動作に影響を与えないようにす
る、などの用途で活用できます。
　また、複数台のサーバでデータを保持するの
で、Masterに障害が起こってデータが消失し
たときでもSlaveからデータの復旧が可能です。
レプリケーションは非同期で行われるため、
MasterとSlaveでデータの差分が出ることが
あります。Masterで登録したデータがSlaveか
ら取得できないケースもありえる点には注意が
必要です。Slaveはデフォルトで更新不可として、
参照専用で動作します。

Redis Sentinel

　Redis 2.6からサポートされた、サーバの死
活監視／通知および自動フェイルオーバー機能

127.0.0.1:6379> slowlog get 10
1) 1) (integer) 3 自動採番されたID
 2) (integer) 1476082769 コマンド実行時のUnixタイムスタンプ
 3) (integer) 81 コマンド実行にかかった時間（マイクロ秒）
 4) 1) "slowlog" 以下、コマンドとそのパラメータ
 2) "get"
 3) "10"

 ▼図10　スローログの確認

Slave

SlaveMaster

Slave

 ▼図11　レプリケーション

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

48 - Software Design Dec. 2016 - 49

を提供する管理サーバです。Sentinelが
Master/Slaveサーバを監視していて、Master

のダウンを検知したらフェイルオーバー（Slave

のMaster昇格）処理を行います（図12）。
　ただし、Sentinel自身はプロキシサーバ的な
機能は持ちません。フェイルオーバー時のアプ
リケーションからのMaster接続切り替えは、
別のしくみで行う必要があります。

Redis Cluster

　Redis 3.0で実装された、複数台のRedisサー
バをクラスタリングするしくみです。Redis

SentinelがMaster-Slaveをベースにしているの
に対して、Redis Clusterは複数台のMaster（ノー
ド）でデータを分散して保持します。それぞれの
ノードをMaster-Slave構成にすることができ、
Masterの障害発生に自動でSlaveをMasterに
昇格させるしくみを持っています（図13）。
　どのノードがどのデータを持つのかは、キー値
によって決定します。各ノードに0～16383の範
囲で数字（slot）が割り当てられており、キー値を
計算してslotを割り出し、対象のサーバを決定し
ます。ノードはお互いに監視していて、割り当て
られているslot以外のキー値でリクエストを受け
ると、対象のノードに命令を転送するよう
にレスポンスを返します。
　レプリケーションに比べて構成は複雑
ですが、次の点でメリットがあります。

・データ書き込みの負荷分散ができる
・自動でフェイルオーバーできる
・各ノードがお互いを監視するので、監

視専用のサーバが不要

注意点
　Redis 3.0から実装されたRedis Clusterです
が、クライアントライブラリによっては対応し
ていないものも多くみられます。導入を検討す
る際に注意が必要です。また、リリースされて
間もないので機能改善スピードも速いです。ネッ
トなどの情報を参考にする場合には、対象バー
ジョンに気をつけるようにしましょう。

◆　◆　◆
　このように、Redisには冗長化を行うしくみ
が複数存在します。用途に応じた構成を検討し
てみてください。

さいごに

　筆者は約5年前からRedisを利用しています
が、Webアプリケーションを高速化する際の
選択肢がとても広がりました。またRedis自身
の開発のスピードが速いので、新機能を試すの
がとても楽しみです。
　今回の記事がシステム開発の選択肢を広げる
きっかけになってもらえれば幸いです。ﾟ

Slave

Sentinel

Master

 ▼図12　Redis Sentinel

・ノードに0～16383の数字（slot）を割り振る　
・リクエストのキーを計算して、対象のサーバを判別する
　[HASH_SLOT = CRC16(key) mod 16383]

③命令を実行して
結果を返す

②対象のサーバを判別
して命令を転送

Redis
[slot 0 - 5460]

node1

Redis
[slot 5461 - 10922]

node2

Redis
[slot 10923 - 16383]

node3

①サーバを
選んで命令

 ▼図13　Redis Cluster

データの型や永続化機能が用途を広げる
高速なインメモリデータベースRedis

第 章4

50 - Software Design

第　 特集1

MySQLとNoSQLの
関係

　MySQLは「世界で最も普及しているオープ
ンソースデータベース」として、大規模なWeb

アプリケーションやクラウドから組み込みデー
タベースまで幅広く利用されています。現在の
MySQLはさらに進化を続け、RDBMSとNo

SQLのハイブリッド型のデータストアとして
の利用が可能になっています。
　MySQL 5.6からKey-Value型APIのInnoDB

memcachedプラグインが同梱され、Key-Value

Store（KVS）として利用が可能です。
　MySQL 5.7ではJSONデータ型が追加され、
さらにプラグインとしてNoSQL APIであるX

DevAPIが追加され、ドキュメントデータベー
スとして利用可能となります。
　MySQL Serverとは別製品のMySQL Cluster

は、共有ディスクを必要としない分散型の全ノー
ドアクティブなRDBMSクラスタです。SQL

と複数のNoSQL APIをサポートし、JSONデー
タ型も実装されているハイブリッド型データス
トアです。

MySQLの
Key-Value型API

　MySQL 5.6では、プラグインとしてmemcached

ベースのKey-Value型APIが利用可能となりま

した。InnoDB memcachedプラグイン（以下、
memcachedプラグイン）と呼ばれ、アプリケー
ションからのアクセスはmemcachedプロトコル
およびクライアントライブラリを使用し（図1の
（1））、データはInnoDBストレージエンジンを利
用したテーブルに格納されます（図1の（2））。
　通常のmemcachedは複数のサーバのメモリ
上にデータを分散配置できます。一方、My

SQLのmemcachedプラグインでは、データを
分散して配置することなく1台のMySQL Ser

ver上に格納します。また、メモリ上だけでは
なくデータをディスク上にも格納できます。
　memcachedそのものにはトランザクション
の概念はありませんが、memcachedプラグイ
ンからのアクセスは InnoDBストレージエンジ
ンのトランザクションの管理に含まれます。

アプリケーション

(1)

(2)

(1)

Country_kvテーブル

CountryCode Name

JPN Japan

USA America

JapanGet JPN

mysqld

 ▼図1　memcachedプラグインの利用イメージ図

Author 梶山 隆輔（かじやま りゅうすけ）　日本オラクル（株）

　オープンソースのRDBMSであるMySQLは、近年のバージョンアップ
でNoSQLとしての機能が備わっています。シンプルな操作で高速にデータ
を読み書きできるNoSQLの利点を享受しながら、トランザクション管理な
どのRDBMSの恩恵を受けることもできます。

RDBMSとNoSQLのいいとこ取り！

NoSQLとしても使える
MySQLとMySQL Cluster

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

第 章5

50 - Software Design Dec. 2016 - 51

　なお、このmemcachedプラグインはLinux、
Solaris、Mac OS Xで利用可能です。

アーキテクチャ概要

　memcachedプラグインは、MySQL Server

プロセス（mysqld）内で、memcached APIを提
供します。このAPIでは、クライアントプロ
グラムから実行されるmemcachedのgetや set

などのコマンドを、InnoDBストレージエンジ
ンのAPIに変換しています（図2の（1））。mem

cachedプラグインからのアクセスは、MySQL

Serverのユーザ認証やパーサーによる構文解析、
オプティマイザーによる実行計画の処理などを
介さずに、直接ストレージエンジンにアクセス
するため、オーバーヘッドが抑えられ、高いス
ループットが期待できます。
　データはテーブルに格納されており、MySQL

のSQL文でのアクセスも可能であり（図2の
（2））、Key-Value StoreとRDBMSとしての両
立ができています。またキャッシュとデータの
同期についてもアプリケーション側で実装する
必要はなくなります。

memcachedプラグインを
利用する

　memcachedプラグインはデフォルトでは有
効になっていないため、次の手順で設定／イン
ストールを行う必要があります。
　まず、innodb_memcached_config.sqlスクリプ
トで表1の3つの設定テーブルを作成します。

その後、INSTALL PLUGINコマンドにて lib

memcached.soをインストールします。memca

chedプラグインは通常のmemcachedと同じ
TCPポートの11211をリッスンします。
　ここまでの設定を終えた前提で、memcached

プラグインの利用例を示したのが図3、4、5です。
　図3の（a）では、データを格納するためのテーブ
ルを作成しています。図3の（b）では、containers
テーブルに、キーのプレフィックスによって

「どのテーブルのどの列にキーや値を格納するか」
を定義しています注1。プレフィックスがない場合
はcontainersテーブルの1レコード目に定義され
たマッピング情報を使います。
　図4の（c）では、setコマンドでデータを格納
しています。格納先のテーブルは同じですが、キー
のプレフィックスによって値の格納先となる列が
異なっていることを確認してください（図4の（d））。
　図5の（e）は、（c）（d）で格納したデータを
getコマンドで取得する例です。

キャッシュポリシーの変更

　表1のcache_policiesテーブルを利用すると、
次のキャッシュポリシーをget、set、delete、
および flushの操作ごとに定義できます。

・innodb_only：InnoDBのテーブルへのデー
タ格納のみ

・cache-only：memcachedが管理するメモリ
へのデータ格納のみ

・caching：InnoDB のテーブルおよびmem
cachedのメモリへのデータ格納

注1） InnoDB memcached Plugin Internals　 URL http://dev.
mysql.com/doc/refman/5.7/en/innodb-memcached-
internals.html#innodb-memcached-containers-tableアプリケーション

 (2)
SQL

(1)
 NoSQL

MySQL Server memcached
プラグイン

InnoDBストレージエンジン

mysqld

（MySQLプロトコル） （memcachedプロトコル）

 ▼図2　memcachedプラグインのアーキテクチャ

テーブル名 役割

containersテーブル データ格納テーブルと列の
マッピングを定義

cache_policiesテーブル キャッシュポリシーの定義

config_optionsテーブル memcached関連の構成オ
プションを定義

 ▼表1　memcachedプラグインの設定テーブル

RDBMSとNoSQLのいいとこ取り！
NoSQLとしても使えるMySQLとMySQL Cluster

第 章5

http://dev.mysql.com/doc/refman/5.7/en/innodb-memcached-internals.html#innodb-memcached-containers-table

52 - Software Design

第　 特集1

KVSとRDBMSとの
レプリケーション

　MySQL Serverの innodb_api_enable_binlog

オプションを有効にすると、memcachedプラ
グインから書き込んだ処理もバイナリログに書
き込まれ、MySQLのレプリケーションによっ
てほかのMySQL Serverに展開できます。
　MySQLのmemcachedプラグインによって、

同じデータに対してSQLとKey-Valueによる
トランザクショナルな処理が可能となるばかり
か、Key-Valueデータストア的な使い方のMy

SQLからRDBMS的な使い方のMySQLへの
レプリケーションも可能となります。

トランザクション対応KVS
としてのMySQL Cluster

　MySQL Clusterは高い可用性と性能拡張性
を持った、全ノードアクティブなRDBMSクラ
スタです。さらに各種のNoSQL APIを持って
おり、SQLとNoSQLでのアクセスが可能です
（図6）。
　SQLを利用するアプリケーションは、My

SQL Cluster構成内でSQLノードと呼ばれる

 (e) memcachedのgetコマンドで値を取得
 キーのプレフィックスがcountryの場合
get @@country.JPN
VALUE @@country.JPN 0 5
Japan
END

 キーのプレフィックスがcountry_ncの場合
get @@country_nc.JPN
VALUE @@country_nc.JPN 0 10
Japan¦Asia
END

 ▼図5　データの取得

 (a) テーブル作成
mysql> CREATE TABLE test.country_kv (
 CountryCode VARCHAR(3) NOT NULL,
 Name VARCHAR(256),
 Continent VARCHAR(256),
 col_flags INT(11), incrやrependコマンドの処理対象を指定するフラグ
 col_cas BIGINT(20), casコマンドのcas ID
 col_exp INT(11), 値の有効期限
 PRIMARY KEY (CountryCode)
);

 (b) containersテーブルにマッピングを定義する
 キーのプレフィックスがcountryの場合、testデータベースのcountry_kvを使用 CountryCode列がキー、Name列を値とする
mysql> INSERT INTO innodb_memcache.containers VALUES ("country", "test", "country_kv", ｭ
"CountryCode", "Name", "col_flags", "col_cas", "col_exp", "PRIMARY");

 キーのプレフィックスがcountry_ncの場合、Name列とCountry列のデータを¦(バーティカルバー)でつないだものを値とする
 列の区切りはconfig_optionsテーブルのseparator列で指定
mysql> INSERT INTO innodb_memcache.containers VALUES ("country_nc", "test", "country_kv", ｭ
"CountryCode", "Name¦Continent", "col_flags", "col_cas", "col_exp", "PRIMARY");

 ▼図3　データ格納用テーブルとcontainersテーブルの準備

 memcachedのTCP/IPポート11211に接続
$ telnet 127.0.0.1 11211

 (c) memcachedのsetコマンドにて値を格納
 キーのプレフィックスがcountryの場合
set @@country.AAA 0 0 16
Dummy Country 01
STORED

 キーのプレフィックスがcountry_ncの場合
set @@country_nc.JPN 0 0 10
Japan¦Asia
STORED

 (d) 格納されたデータをSQL文にて確認
mysql> SELECT CountryCode, Name, Continent ｭ
FROM test.country_kv;
+-------------+------------------+-----------+
¦ CountryCode ¦ Name ¦ Continent ¦
+-------------+------------------+-----------+
¦ AAA ¦ Dummy Country 01 ¦ NULL ¦
¦ JPN ¦ Japan ¦ Asia ¦
+-------------+------------------+-----------+

 ▼図4　データの格納

@@から.(ピリオド)までが
キーのプレフィックス。@@
country.AAAのあとはフ
ラグ、cas ID、レコード長

Name列とCountry列のデータを¦(バーティ
カルバー)でつないだものを値とする

格納する値を指定

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

52 - Software Design Dec. 2016 - 53

MySQL Serverプロセス（mysqld）に対して接
続してSQLを発行し、ndbclusterストレージ
エンジンがデータノードとやりとりをしてデー
タの参照更新を行います。
　MySQL Clusterではデータは各テーブルの
主キー（またはユニークキー）のハッシュパー
ティショニングによって分割され、データノー
ド間で変更点を同期的に複製することで冗長性
を持たせています。パッチ適用やテーブル定義
の変更、ノード追加などのメンテナンス中も無
停止で利用できます。
　MySQL Clusterの開発当初はC++のAPIで
あるNDB APIを持っているだけでしたが、
MySQL Serverと組み合わせることでSQL対
応のデータストアとなりました。NDB APIは
データノードに直接アクセスするためオーバー
ヘッドが小さく、リアルタイム性を求められる
通信システムなどで利用されています。
MySQL Cluster 7.4では、データノードを増
加させることでリニアにスループットが向上し
ており、データノード32台構成で秒間2億件
の参照処理を実現しています注2。
　このNDB APIを、JNI（Java Native Interface）
でラップした Java用のAPI「ClusterJ」や、

注2） MySQL Clusterベンチマーク　 URL http://www-jp.
mysql.com/why-mysql/benchmarks/mysql-cluster/

JPA（Java Persistence API）に準拠させた
「ClusterJPA」も用意しています。MySQL Clu

sterのmemcached APIは、MySQL Serverの
memcachedプラグインとは異なったアプローチ
を採っています。アプリケーションからはMy

SQL Cluster用のドライバを追加したmemca

chedに接続しリクエストを送ることで、データ
ノードのデータを読み書きできます（図7）。キー

Apps

PHP

データノード

Apps

Perl

Apps

Python

Apps

Ruby

Apps Apps

JDBC

Apps

JPA

ClusterJPA

ClusterJ

Apps

JNIMySQL Node.JS

NBD API（C++）

ndb_eng

Apps

JS

Apps

memcached

Apps

 ▼図6　MySQL Clusterのアーキテクチャ

アプリケーション

SQL NoSQL

NDB API

MySQL Server

NDBCluster
ストレートエンジン

mysqld

memcached
Driver for NDB

memcached

（MySQLプロトコル） （memcachedプロトコル）

データノード

 ▼図7　MySQL Clusterのmemcached APIのアー
 キテクチャ

RDBMSとNoSQLのいいとこ取り！
NoSQLとしても使えるMySQLとMySQL Cluster

第 章5

http://www-jp.mysql.com/why-mysql/benchmarks/mysql-cluster/

54 - Software Design

第　 特集1

のプレフィックスによって利用するテーブルや
列を制御すること、キャッシュのポリシーを設
定することも可能です。Node.js用のAPIも用
意されており、Node.jsアプリケーションから
SQLをいっさい書かずにデータノードのデー
タを読み書きできるようになっています。
　MySQL Clusterは高い可用性と性能拡張性
を持つRDBMSクラスタとしての性格だけで
はなく、トランザクション対応のNoSQLデー
タストアとしての性格も兼ね備えています。
いずれのAPIからのアクセスも、
データノードでトランザクショナ
ルに処理されます。また外部キー
による制約も適用されます。さら
に変更内容をSQLノードに取り
込んでバイナリログに記録し、ほ
かのMySQL ClusterやMySQL

Serverにレプリケーションできま
す。

MySQLの
JSON対応

　MySQL 5.7では、JSONデータ
型および、JSONデータ型に格納
されたJSONドキュメント内の値
の取得や変更などを行うための
JSON関数が追加されました。

MySQLのJSONデータ型と
JSON関数

　MySQLのJSONデータ型は、JSONドキュ
メントをバイナリ形式にて格納し、文字コード
はutf8mb4として扱います。データ全体を走査
することなくキーや配列の内部インデックスを
参照させることで、検索性能の向上を図ってい
ます。JSONデータ型の利用例を図8に示します。
　MySQL 5.7では、JSON文字列およびJSON

データ型を処理するための関数や演算子が複数
用意されています。また、JSONドキュメント
内の階層（パス／Path）を表現する方法が用意
されています（図9）。

生成列と、JSONデータ型に対す
るインデックス

　MySQL 5.7では生成列（Generated Column）
という機能が実装されました注3。JSON関数を
使ってJSONドキュメントから抽出した値を生
成列に格納し、その生成列にインデックスを作

注3） 生成列は既存の列に対して演算を行った値を格納するしく
み。デフォルトではVIRTUAL生成列となっており、該当
のレコードを参照するたびに演算が行われその値を返す（実
際にストレージには格納されない）。STORED生成列にす
ると、データの挿入または更新時に演算が行われて、その
値をストレージに格納する。

 JSONを展開するJSON_EXTRACT関数の利用例
mysql> SELECT JSON_EXTRACT(menu, ｭ
"$.Name") FROM pz;
+------------------------------+
¦ JSON_EXTRACT(menu, "$.Name") ¦
+------------------------------+
¦ "Plain Pizza" ¦
¦ "Cheesy Pizza" ¦
¦ "Classic Pizza" ¦
+------------------------------+

 JSON_EXTRACT関数と同様の動作をする JSON演算子 -> の利用例
mysql> SELECT menu->"$.Name" FROM pz;
+-----------------+
¦ menu->"$.Name" ¦
+-----------------+
¦ "Plain Pizza" ¦
¦ "Cheesy Pizza" ¦
¦ "Classic Pizza" ¦
+-----------------+

 ▼図9　JSON関数およびJSON演算子の利用例

 JSONデータ型の列menuを持つテーブルを作成
mysql> CREATE TABLE pz (menu JSON);

 データを追加
mysql> INSERT INTO pz(menu) VALUES ('{
 '> "Name":"Plain Pizza",
 '> "price":300
 '> }');

 配列を含むJSONドキュメントを追加
mysql> INSERT INTO pz(menu) VALUES ('{
 '> "Name":"Cheesy Pizza",
 '> "price":400,
 '> "toppings":"More Cheese",
 '> "additionals":[{"Name":"B Cheese","price":100}]
 '> }');

 JSONドキュメントではない文字列を追加しようとするとエラーになる
mysql> INSERT INTO pz(menu) VALUES ('some text');
ERROR 3140 (22032): Invalid JSON text: "Invalid value." ｭ
at position 0 in value for column 'pz.menu'.

 ▼図8　JSONデータ型の列を持つテーブルの作成とデータの格納

複数行に渡るJSONドキュ
メントの場合、改行を入
れてもとくに問題ない。
JSONドキュメント全体をシ
ングルクォーテーションで
囲む。JSONドキュメント内
の文字列はダブルクォー
テーションで囲む

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

54 - Software Design Dec. 2016 - 55

成することで、JSONデータ型へのインデック
スを実現できます（図10）。

◆　◆　◆
　JSONドキュメント内の値とテーブル内の値
のJOINや、JSONドキュメントとテーブルを
1つのトランザクションで更新することなどは、
異なるデータストア間では実現しにくいもので
す。JSONデータ型を使うことで、これらの処
理をMySQL内で実施できることは大きなメ
リットとなります。

MySQLのドキュメント
データベース機能

MySQL Document Store

　MySQL Document Storeは、NoSQLの 1つ
であるドキュメントデータベースとしてMy

SQLを利用するための方法です注4。リレーショ
ナルデータベースであるMySQLをこれまでど
おり運用しながら、アプリケーション開発者か
ら要望の多いより柔軟な開発を実現することを
目指しています。

注4） MySQL as a Document Store　 URL http://dev.mysql.
com/doc/refman/5.7/en/document-store.html

　MySQL 5.7.12からMySQL X Plugin（以下、
Xプラグイン）が利用可能となっています。
MySQL 5.7のGA（製品版）リリース以降に追
加された新機能のため、MySQL本体には含め
ずにプラグインとして提供することで、本機能
を必要としない方には影響が出ないしくみとし
ています。インストールは次の方法で行います。

mysql> INSTALL PLUGIN mysqlx SONAME ｭ
'mysqlx.so';

　このXプラグインは、MySQLのクライアン
ト／サーバ間の新しい通信プロトコルMySQL

X Protocol（以下、Xプロトコル）を実装してい
ます。従来のSQL文に加えて、CRUD（Create、
Read、Update、Delete）操作でのデータの読み
書きをサポートしています（図11）。そして、X

プロトコルをアプリケーションから利用するた
めの新しいAPI群「MySQL X DevAPI」が用意
されています。MySQL X DevAPIを試す環境
としては、コマンドラインクライアントのMy

SQL X Shell（コマンド名「mysqlsh」）がありま
す。
　2016年10月現在、GA（製品版）はMySQL同
梱のXプラグインのみです。MySQL X Shell、

Node.js用／Java用／.Net用
のMySQL X DevAPI対応
Connector、Visual Studio

へのプラグインは、RC（リ
リース候補版）またはDMR

（開発途上版）となっていま
す。

 MySQL X DevAPI

　MySQL X DevAPI は、
JSONドキュメントとテーブ
ルへのアクセスを一体化する
もので、CRUD操作は「流れ
るようなインターフェース
（Fluent Interface）」と呼ばれ
るスタイルとなっています。

 生成列の作成
mysql> ALTER TABLE pz ADD COLUMN pz_name VARCHAR(32)
 -> GENERATED ALWAYS AS
 -> (JSON_UNQUOTE(JSON_EXTRACT(menu, '$.Name')))
 -> VIRTUAL;

 作成した生成列に対してインデックスを作成
mysql> ALTER TABLE pz ADD INDEX(pz_name);

 EXPLAINで実行計画を確認
mysql> EXPLAIN SELECT * FROM pz WHERE pz_name = "Cheesy Pizza"\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: pz
 partitions: NULL
 type: ref
possible_keys: pz_name
 key: pz_name
 key_len: 35
 （..略..）

 ▼図10　生成列の作成とインデックスの追加

keyの項目でインデックスpz_name
が利用できていることが確認できる

JSON内のName要素を展開し、
その値をVIRTUAL生成列とする

RDBMSとNoSQLのいいとこ取り！
NoSQLとしても使えるMySQLとMySQL Cluster

第 章5

http://dev.mysql.com/doc/refman/5.7/en/document-store.html

56 - Software Design

第　 特集1

　従来、テーブルに対してはSQL文でアクセ
スしていましたが、MySQL X DevAPIを使う
と、表2のようなCRUD操作でアクセスでき
るようになります。テーブル全体に対しては
Tableオブジェクトとして、JSONドキュメン
トに対してはCollectionオブジェクト（以下、
コレクション）として、CRUD操作ができるよ
うになります。とくにJSONドキュメント内の
データへのアクセスは、従来のSQL文でのア
クセスと比較してシンプルなります。
　コレクションは createCollection()関数で作
成できます。作成すると、図12のような定義
のテーブルが作成されます。

　図13、14は、従来のMySQLクライアント
でSQLを用いてJSONデータ型へアクセスし
た様子と、MySQL X ShellのJavaScriptモー
ドでMySQL X DevAPIを用いてCRUD操作
を試した様子です。後者ではSQL文を使わず
にデータにアクセスできている点、またJSON

ドキュメントのデータ抽出がシンプルになって
いる点を確認してください。
　MySQL X Shellで、JavaScrptおよびPython

からMySQL X DevAPIを利用する場合の
チュートリアルも用意されています注5。ぜひお
試しください。

注5） X DevAPI User Guide 11.5 Table CRUD
Functions

 URL https://dev.mysql.com/doc/x-devapi-
userguide/en/crud-ebnf-table-crud-
functions.html

 X DevAPI User Guide 11.3 Collection
CRUD Functions

 URL https://dev.mysql.com/doc/x-devapi-
userguide/en/crud-ebnf-collection-crud-
functions.html

処理 CRUD操作 テーブル JSONドキュメント
作成 Create Table.insert() Collection.add()
参照 Read Table.select() Collection.find()
更新 Update Table.update() Collection.modify()
削除 Delete Table.delete() Collection.remove()

 ▼表2　テーブルとJSONドキュメントに対してCRUD操作を行う関数

SQL CRUD API & SQL

MySQLプロトコル

コア機能
Xプラグイン memcachedプラグイン

プラグイン

Xプロトコル

MySQL
プロトコル

MySQLプロトコル
& Xプロトコル

memcached
プロトコルXプロトコル

MySQL Connector（接続製品群）

MySQL

MySQL
Shell

memcached
クライアント

 ▼図11　Xプラグインとmemcachedプラグインの利用イメージ図

mysql> SHOW CREATE TABLE tbl_x\G
*************************** 1. row ***************************
 Table: tbl_x テーブル名はcreateCollection()関数の引数で指定した名称
Create Table: CREATE TABLE `tbl_x` (
 `doc` json DEFAULT NULL, JSONデータ型のdoc列
 `_id` varchar(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,'$._id'))) ｭ
 STORED NOT NULL,PRIMARY KEY (`_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

 ▼図12　createCollection()関数で作成したコレクションのテーブル定義

JSONドキュメント内に格納される自動生成されたidを抽出したSTORED生成列

適材適所で活用していますか？

MongoDB、Couchbase、Redis、MySQLでNoSQL！

の教科書

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-table-crud-functions.html
https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-crud-functions.html

56 - Software Design Dec. 2016 - 57

新通信プロトコル
MySQL X Protocol

　Xプラグインによって、今後の
機能拡張の土台となる新しいXプ
ロトコルが利用可能となります。
Xプロトコルは非同期APIをサ
ポートし、並列処理や複数のリク
エストをまとめて送信するパイプ
ライン処理が可能です。アクセス
先などのルーティング情報、シャー
ディング構成のデータ分割のキー
の情報、また参照と更新の分散な
どのサポートを準備中です注7。

まとめ

　MySQLはRDBMSだけではな
く、Key-Valueデータストア、そ
してドキュメントストアを組み合
わせたハイブリッド型のトランザ
クション対応データストアとして
の利用の可能性が大きく広がって
います。JSONデータ型はMySQL Cluster 7.5

にも導入され、全ノードアクティブなデータベー

注6） URL http://dev.mysql.com/doc/refman/5.7/en/mysql-
shell-tutorial-javascript.html

 URL http://dev.mysql.com/doc/refman/5.7/en/mysql-
shell-tutorial-python.html

注7） Xプロトコルの実装の詳細は次の情報を参照。MySQL
Internals Manual Chapter 15 X Protocol　

 URL https://dev.mysql.com/doc/internals/en/x-protocol.
html

スクラスタとトランザクション対応Key-Value

データストアからさらに機能強化されます。
MySQLおよびMySQL ClusterをRDBMSと
してお使いの方も、トランザクション対応の
NoSQL製品をお探しの方も、ハイブリッド型
のデータストアとしての利用をぜひご検討くだ
さい。ﾟ

 MySQLクライアントでのSQL
mysql> INSERT INTO tbl_sql(doc) VALUES('{"id": 1, "name": "Mike", "Team": "Products"}');
Query OK, 1 row affected (0.06 sec)

 MySQL X Shellでのテーブルに対するCRUD操作
mysql-js> db.tbl_sql.insert(['doc']).values('{"id": 2, "name": "Joe", "Team": "Sales", ｭ
"Title": "VP"}').values('{"id": 3, "name": "Tomas", "Team": "Development"}').execute();
Query OK, 2 items affected (0.06 sec)

 MySQL X Shellでのコレクションに対するCRUD操作
mysql-js> db.tbl_x.add({"id": 1, "name": "Mike", "Team": "Products"}).execute();
Query OK, 1 item affected (0.06 sec)

 ▼図13　「JSONドキュメントへのSQLアクセス」と「コレクションへのCRUD操作」の比較（データの追加）

 MySQLクライアントでのSQL
mysql> SELECT doc FROM tbl_sql WHERE JSON_UNQUOTEｭ
(JSON_EXTRACT(doc,'$.name')) LIKE 'Mike';
+---+
¦ doc ¦
+---+
¦ {"id": 1, "Team": "Products", "name": "Mike"} ¦
+---+
1 row in set (0.00 sec)

 MySQL X Shellでのテーブルに対するCRUD操作
mysql-js> db.tbl_sql.select(['doc']).where("JSON_UNQUOTEｭ
(JSON_EXTRACT(doc,'$.name')) like 'Mike'");
+---+
¦ doc ¦
+---+
¦ {"id": 1, "Team": "Products", "name": "Mike"} ¦
+---+
1 row in set (0.01 sec)

 MySQL X Shellでのコレクションに対するCRUD操作
mysql-js> db.tbl_x.find('name like "Mike"');
[
 {
 "Team": "Products",
 "_id": "52d0afae9286e611cd3b81294d063805",
 "id": 1,
 "name": "Mike"
 }
]
1 document in set (0.00 sec)

 ▼図14　「JSONドキュメントへのSQLアクセス」と「コレクションへの
 CRUD操作」の比較（絞り込み検索）注6

RDBMSとNoSQLのいいとこ取り！
NoSQLとしても使えるMySQLとMySQL Cluster

第 章5

http://dev.mysql.com/doc/refman/5.7/en/mysql-shell-tutorial-python.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-shell-tutorial-javascript.html
https://dev.mysql.com/doc/internals/en/x-protocol.html

58 - Software Design

ポートとソケット
がわかれば
インターネットが
わかる

　本誌2016年10月号はおかげさまで大変好評だった。
Amazonでは追加注文をたくさんいただいた。実は「Web
のしくみ」特集は本書の抜粋だといっても過言ではない。
もともと「ポートとソケット」のアイデアは本誌2014年5
月号の新人向け特集だが、このテーマはずっと読者の皆さ
んに受け入れられているのだ。とてもありがたいことだ。
皆、技術がどうなっているのか知りたいのだ。専門家は魔
術のようにその秘密を隠す。あたかも既得権益を守る悪代
官のようだ。だが本書はその秘密のベールを『小悪魔女子
大生のサーバエンジニア日記』のaicoさんの力を借りてさ
らっと剥がしてしまう。知ることの力は偉大だ。いろんな
ことが爆発的に進むようになるからだ。本書でガッチリ未
来をつかんでほしい。読んだ人ならばできるはずだ。

小川 晃通 著
A5判／272ページ
2,280円＋税
技術評論社
ISBN＝978-4-7741-8570-5

Ansible徹底活用
ガイド

　Infrastructure as Codeを実現するための構成管理
ツールとして、Chef、Puppet、そしてAnsibleがよく挙
げられる。いずれのツールも、パッケージのインストール
やサービスの起動といった操作を仕様書のように記述して
おき、コマンド1つで、複数サーバに対してそれら操作を
実行できる。Ansibleは、RubyベースのDSLを使用する
Chef、Puppetと違い、YAMLという単純な表現形式で操
作を記述する。またほかの2ツールと違ってサーバ・クラ
イアント構成を取る必要はなく、この特徴も加えてハード
ルが低いツールとして人気がある。本書はそんなAnsible
に関するWeb記事の再編集本で、110ページと気軽に読め
る1冊。概要、始め方、使い方、良い記述の仕方と、入門
にはぴったりの内容だ。

坂本 諒太、安久 隼人、小野寺
大地、平原 一帆、平 初、冨永
善視 著
B5変形判／110ページ
1,800円＋税
インプレス
ISBN＝978-4-8443-8166-2

確かな力が身につく
PHP「超」入門

　「確かな力が身につくシリーズ」のPHP版。マスコット
キャラクターがキーウィでイラスト図を多用しているので
親しみやすい。本文は9つのChapterに分かれ、Chapter1
はPHPの概念、Chapter2はXAMPPを使用した環境設定
で、PHP 7.0.8をベースに解説を行っている。環境設定は
Windows 10を基準としているが、macOS関連もNote
として若干の記載がある。解説の最初にエラーや文字コー
ドにも触れているが、初心者にはハードルが高いかもしれ
ない。Chapter3からは変数や関数、制御構造などを一通り
試し、Chapter6以降では、MySQLを使ってショッピング
サイトの構築まで行っているので難易度は高くなってい
る。全体的に駆け足での解説になっているので、PHP、
Apache、MySQLなどの入門書の併読をお勧めする。

松浦 健一郎、司 ゆき 著
B5変形判／344ページ
2,480円＋税
SBクリエイティブ
ISBN＝978-4-7973-8872-5

インフラエンジニア
の教科書2

　「ITにおける広範囲の業務を担当するインフラエンジニ
アは、どんな知識を習得すれば良いのか」を教えてくれる、
まさに教科書と言える本書。プロトコル、OS、セキュリ
ティ、サーバサイド開発言語といった各領域での重要な概
念、用語を説明しながら、筆者が実務の中で培ってきたさ
まざまな実用情報をコラムとして載せている。新人インフ
ラエンジニア向けだった前作の「インフラエンジニアの教
科書」に比べ、本書は実務経験を数年積んだインフラエン
ジニアがステップアップできるような内容となっている。
目立つものでは、「インターネットの運用と発展をつかさど
る組織や団体」「RFCの読み方と作られ方」という、技術か
らはやや離れるが、知識として持っておけばエンジニアと
しての視野がより広がるような章が設けられている。

佐野 裕 著
A5判／256ページ
2,130円＋税
シーアンドアール研究所
ISBN＝978-4-86354-186-3

　文字列の変換・数え上げ、Webページの作成、クローリング
……。プログラミングと文字列は切っても切れない関係です。
そして文字列を扱う以上、文字コードを避けては通れません。
　本特集では文字コードの扱いで失敗しないために、文字コー
ドの基本と主要プログラミング言語＋DBMSでの扱いを押さえ
ましょう。Part1では文字列の歴史をひも解きながら、各文字
コードの成り立ちと特徴を学びます。Part2からはHTML・
Java・Ruby・MySQLをピックアップして、各処理系でどんな
文字コードをサポートしているのかを解説し、文字化けやエ
ラーを発生させないためのTipsを紹介します。

ゼロからはじめる文字コード
符号化のしくみと、ASCIIからUTF-8への系譜	 P.60
田所 駿佑

HTMLと文字コード
仕様を理解し、文字を正しく表示する	 P.66
田所 駿佑

Javaと文字コード
char型の落とし穴と文字化け予防策	 P.70
田所 駿佑

Rubyと文字コード
プログラム中での異なるエンコーディングの扱い方	 P.74
とみたまさひろ

MySQLと文字コード
charsetでの文字集合の指定方法とエンコーディングの対応	 P.79
とみたまさひろ

1

2

3

4

5

HTML・Java・Ruby・
MySQLのハマりどころ

文字コード
攻略マニュアル

第 2 特集

c o n t e n t s

HTML・Java・Ruby・MySQLのハマりどころ
文字コード攻略マニュアル第 2 特集

60 - Software Design

0と1で文字を
どう表現するか

　「文字」と言われてイメージするものは何で
しょうか？　紙に書いたアルファベットやひら
がな、人によっては古代エジプトのヒエログリ
フなどを思い起こすかもしれません。いずれも
情報を記録・交換するための視覚的な表現注1

であるということは共通していそうです。文字
の形から「これはアルファベットの『A』」や「こ
れはひらがなの『あ』」、「ヒエログリフの『葦の
穂』」と私たちは判断しているわけです。
　このような視覚的な表現をコンピュータで扱
うにはどうしたら良いのでしょうか？　コンピュー
タでの情報の最小単位は0と1、すなわちビット
（bit）です。1ビットは0もしくは1という2種類
の情報を表現できます。たとえば、アンケート
の解答の「はい」を1、「いいえ」を0にするといっ
たルールを決めておけば、その結果を1ビット
で表現できます。「はい」もしくは「いいえ」その
ものではなく、ビットに置き換えることによって、
情報がコンピュータで扱えるようになるわけです。
　文字を表現する際も同様です。すなわち文字
そのものではなく、「文字を表す符号」を0と1

からなる表現によって扱っています。
　文字を符号で表すとはどういうことでしょう
か？　簡単な例として、ジャンケン専用の架空
の文字コードを考えてみましょう。ジャンケン
の手はグー・チョキ・パーの3種類です。2ビッ
トの情報量は22＝4ですので、2ビットあれば
すべての手を表現できることがわかります。こ

こでは次のように定めてみました。

文字 符号

00

01

10

　「グーはビット列で00と表現する」などとい
うルールが共有されていれば、00というビッ
ト列を見て「これは だ」と正しく解釈できます。
このように文字をビット列で表すことを「符号
化」といいます。符号化されていれば、視覚的
な表現を使わずともビットの情報だけで文字の
やりとりができるわけです。この「どの文字を
どのようなビット列で表現するか」のルールが
すなわち「文字コード」です。表現と解釈のルー
ルが一致しない場合、情報を正しく扱うことが
できません。これがいわゆる「文字化け」です。

符号とフォント

　ある文字を指し示す符号が文字コードですが、
その文字がどのように視覚的に表現されるかを
決定するのが「フォント」です。フォントを変更
すれば文字の見た目が変化するということは、
広く知られていると思います。
　注意したいのが、“文字コードは視覚的な表
現についての責務を持たない”という原則です。
書道の表現を借りるなら、ある文字の一画がト
メかハネか、はたまたハライなのかを指示する
情報を、文字コードは持ちません。
　フォントによる視覚的表現の差が顕著なのが

注1） もちろん点字など視覚的な表現に依らない文字もありますが、形から意味を読み取るという点では同じです。

Author 田所 駿佑（たどころ しゅんすけ）　株式会社ビズリーチ スタンバイ事業部　 Twitter @todokr

ゼロからはじめる
文字コード
符号化のしくみと、ASCIIからUTF-8への系譜
　コンピュータで扱うデジタルな情報は0と1からできている。そう知ってはいても、「Hello
World !」という目の前のテキストがコンピュータでどのように扱われているか、ピンと
こない方も多いのではないでしょうか。Part1ではコンピュータが文字をどのように扱う
のか、その歴史としくみに触れながら各種文字コードを見ていきます。

1

1
ゼロから始める文字コード

符号化のしくみと、ASCIIからUTF-8への系譜

60 - Software Design Dec. 2016 - 61

絵文字です。Unicode Emojiについての規格書、
Unicode Technical Report #51注 2の「2 Design

Guidelines」を見てみましょう（図1）。U+1F36D

LOLLIPOPのそれぞれは、例示図形の「渦巻き
模様を持つ」「持ち手がある」などコアな表現を守
りつつも、向きなどが異なることがわかります。

文字コードの
種類と歴史

　ここまで見てきたように、文字コードとフォ
ントが互いに手を取り合うことによって、コン
ピュータは文字を扱っていることがわかりまし
た。ここからは各種文字コードとその歴史につ
いて見ていきましょう。

ASCII

　現在一般的に使われる文字コードの祖先にあ
たるのが、1963年に誕生した「ASCII」です。
当初はコンピュータではなく、テレックスと呼
ばれるキーボード付きFAXのような通信機器
で使われていました。American Standard Code

for Information Interchangeの名のとおり、は
じめから異なる端末間での情報交換を目的とし
て作られた文字コードです。
　ASCIIは7ビットで符号化された1バイト
コードです。現在、たいていのコンピュータで
は8ビットを1バイトとして扱いますが、その
ような環境では最上位ビットを常に0にして使
用します。扱える文字の種類は最大で27＝128

種類、コードポイント（個々の文字に割り当て
られた数値）の範囲は0x00～0x7Fです。
　表1はASCIIのコード表です。行が上位3ビッ
ト、列が下位4ビットを表しており、0x41は
「A」、0x5Cは「\」となります。英数字や記号など、
英語圏での情報交換に必要な文字が収録されて
いることがわかります。
　図の網掛けの範囲に注目してください。0x00

のNULから0x1FのUS、そして0x7Fの計33字
は「制御文字」と呼ばれる特殊な文字です。現代

においては大半が有名無実化してしまいましたが、
0x0Aの「LF（改行）」や0x0Dの「CR（復帰）」など、
プログラミングにおいて重要な意味を持つ制御
文字もあります。目に見えない制御文字に対して、
英数字や記号などを「図形文字」と呼びます。
0x20の「SP（スペース）」も図形文字に含まれます。
　ASCIIの国際規格版にあたるのが、ISO

（International Organization for Standardization）
によって規格化された「ISO/IEC 646」です。ア
メリカ以外の国でも使用できるよう、各国の事情
に合わせて一部の文字や記号の入れ替えが可能
と定められましたが、アクセント表記を多用する
ヨーロッパなどの非英語圏では制約が大きいため、
あまり使われていません。

注2） URL http://unicode.org/reports/tr51/index.html

 ▼図1　 絵文字の表現例（出典：http://unicode.
org/faq/emoji-examples.png）

上位3ビット

下位
4ビット

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

 ▼表1　ASCIIコード表

http://unicode.org/reports/tr51/index.html

文字コード攻略マニュアル
第 2 特集

HTML・Java・Ruby・MySQLのハマりどころ

62 - Software Design

JIS X 0201

　ISO/IEC 646に基づき、英数字に加えてカ
タカナを扱えるよう拡張した日本版が、1969

年に誕生した「JIS X 0201」です。その名のと
おり、JIS（日本工業規格）として規格化されて
います。誕生した当時はJIS C 6220と呼ばれ
ていましたが、部門Cの「電子機器及び電気機械」
から部門Xの「情報処理」に移され、現在の名前
になりました。正式名称は「7ビット及び8ビッ
トの情報交換用符号化文字集合」と言います。
　英数字においては、ASCIIとの違いは2字で
す。0x5Cの「\（バックスラッシュ）」が「¥（円記
号）」に、0x7Eの「（̃チルダ）」が「‾（オーバーラ
イン）」に変更されています。カタカナ集合には
カタカナだけでなく、濁点や半濁点、句読点や
鉤括弧も収録されています。
　7ビット版は制御文字である0x0Eの「SO

（SHIFT OUT）」と 0x0F の「SI（SHIFT IN）」を
使って英数字とカタカナを切り替えます。たと
えば、通常時では0x33 0x2A 0x32は「3*2」です
が、SOからSIの間に現れた場合には「ｳｪｲ」にな
ります（図2）。このように“状態”を持つ文字コー
ドを「ステートフルエンコーディング」と呼びます。
　8ビット版は28＝256のコードポイントを持
ち、英数字とカタカナを一緒に収められるため、
SOやSIによる切り替えを必要としません。こ
のように状態を持たない文字コードは「ステー
トレスエンコーディング」と呼ばれます。デー
タの欠損などで切り替え用の文字が失われた場

合でも、文字化けしないのが
特徴です。

JIS X 0208

　英数字や各種記号、カタカ
ナに加え、ひらがなや漢字を
扱えるようにした2バイト文

字コードが、1978年に誕生した「JIS X 0208」で
す。正式名称を「7ビット及び8ビットの2バイト
情報交換用符号化漢字集合」といいます。最大
で94行×94列＝8,836種類の文字が扱えますが、
2012年の第5次規格では6,879文字が収録され
ています。
　漢字については第一水準注3および第二水準
のものを収録しています。英数字や各種記号も
収録していますが、あらゆる文字が2バイトで
表現されるため、ASCIIのそれとは互換性が
ありません注4。そのため単独ではあまり使われ
ず、ほかの文字コードと組み合わせて使われる
ことが一般的です。
　そのほか、JISで規格化されている文字コード
には、補助漢字を扱うための「JIS X 0212」や「JIS

X 0208」を拡張し、第三・第四水準漢字などを
追加で収録した「JIS X 0213」などがあります。

多種多様な文字を
混在させるには

　ここまで見てきた文字コードだけでは、「//

UserIDを取得する」のように日本語の文字と半
角英数字とを同時に使えません。ひらがなや漢
字、英数字を混在させるにはどうしたら良いの
でしょうか？　大きく分けて2つのアプローチ
があります。

（1）	�あらゆる文字を1つの符号化文字集合に収
める

（2）	�各種の符号化文字集合を組み合わせて符号
化する

注3） JIS X 0208制定にあたり、利用頻度などを鑑みて定められたのが「漢字水準」です。常用漢字を中心に収録した第一水準、部首や旧
字体、難しい人名用漢字を収録した第二水準のほか、第三・第四水準や補助漢字などの区分があります。

注4） 俗にいう「全角文字」として扱われています。

 ▼図2　 SOとSIによる文字集合の切り替え

切替用文字（SO/SI）

どちらも0x33 0x2A 0x32

文字

コードポイント

3 ＊ 2 = SO ウ ェ イ SI !

0x33 0x2A 0x32 0x3d 0x0E 0x33 0x2A 0x32 0x0F 0x21

1
ゼロから始める文字コード

符号化のしくみと、ASCIIからUTF-8への系譜

62 - Software Design Dec. 2016 - 63

　それぞれのアプローチで代表的なものを見て
いきましょう。

Unicode

　（1）のアプローチとして最も有名なのが、
GoogleやAppleを中心とした非営利団体であ
るUnicodeコンソーシアムによって策定された
「Unicode」です。最初のバージョンである
Unicode1.0は1991年に誕生しました。
　Unicodeは世界中の文字を1つ（＝Uni）の符
号化文字集合に収めようとする規格で、変わっ
たところでは錬金術記号や、未解読であるファ
イストスの円盤文字なども収録されています。
　当初は2バイト（＝65,536）の範囲に世界中の
文字を収める計画でしたが、各国からさまざま
な文字を追加する要求があったことなどから、
その計画は早々に破

はたん

綻してしまいました。現在
ではUnicodeといえば4バイト（＝約43億）とし
て符号化された文字集合を指します。前者の2

バイト文字集合をUCS-2、後者の4バイト文
字集合をUCS-4と呼びます。なおUCS-4では、
UCS-2にあたる0～65,535までの領域をBMP

（Basic Multilingual Plane：基本多言語面）と
呼びます。
　2010年に公開されたUnicode6.0からは絵文字
も収録しています。もともとは各通信キャリア
間での「ケータイ絵文字」の相互運用性向上が収
録の目的でしたが、近年ではEmoji Modifi ersと
呼ばれる文字を使って肌の色を変化させるしく
みや、ZERO WIDTH JOINERと呼ばれる制御
文字を使った合字など、ケータイ絵文字ではで
きなかった多種多様な表現が可能になっています。

ISO/IEC 2022

　（2）の、各種符号化文字集合を切り替えて使
うアプローチとしては、「ISO/IEC 2022」があ
ります。これは文字コードそのものではなく、
複数の文字コードを切り替えて使うための規格

として定められています。ある符号化文字集合
がISO/IEC 2022に準拠していれば、準拠して
いるもの同士は互換性を持つために、この方式
で切り替えができます（図3）。
　このようなしくみを用いた文字コードは「文字
符号化方式」と呼び、符号化文字集合と1対多の
関係になります。たとえば、EUC-JPはASCII

とJIS X 0208、JIS X 0201、およびJIS X 0212

から成り立っている文字符号化方式です。
Unicodeも、1つの文字集合に対してUTF-16や
UTF-8など多数の文字符号化方式があります。

EUC-JP

　EUCはExtended Unix Codeの略で、アメリ
カの通信会社AT&Tによって1980年代に策定
された文字符号化方式です。名前のとおり
Unixで広く使われました。その日本語版が
「EUC-JP」です。EUC-JPではASCIIをGL注5

領域に固定、JIS X 0208（JIS第一／第二水準
漢字）、JIS X 0201（半角カナ）、およびJIS X

0212（JIS補助漢字）を切り替えながら文字を表
現します（図4）。
　切り替えの際には「シングルシフト」と呼ばれ
る、後続の1文字だけを切り替え対象とする制

 ▼図3　 ISO/IEC 2022のしくみ

GL

G0

GR8ビット符号表

各種符号化
文字集合

文字
集合1

文字
集合2

文字
集合3

文字
集合4

バッファ

invoke（呼出）

designate（指示）

G1 G2 G3

注5） 2つの7ビット符号表を左右に並べると8ビット符号表になりますが、そのうちの左側の図形（Glyph）文字領域をGL領域、右側の
図形文字領域をGR領域といいます。

文字コード攻略マニュアル
第 2 特集

文字コード攻略マニュアル
第 2 特集

HTML・Java・Ruby・MySQLのハマりどころ

64 - Software Design

御文字を用います。次の切り替え用制御文字が
来るまでモードが固定される「ロッキングシフ
ト」は使いません。そのためステートレスエン
コーディングと言えます。
　このしくみの長所としては、文字列中の1バ
イトを見ればそれが1バイト文字なのか2バイ
ト文字の一部なのかが判別できるという点が挙
げられます。ASCIIがGL領域に固定されてい
るため、0x7F未満のコードポイントはすべて
ASCII、それ以上なら2バイト文字、といった
具合です（図5）。そのため、ソースコード内の
文字の一部が意図せずに制御文字として解釈さ
れることがありません。
　短所としては、各国版のEUCを混在させら
れないという点があります。切り替え対象の文
字集合は各国版によって異なりますが、どの国
のEUCであるかという情報を自身で持たない
ためです。

Shift_JIS

　Windowsでお馴染みなのが「Shift_JIS」です。
SJISやMS_Kanjiと呼ばれることもあります。
名前に「JIS」と入っていますが、JISではなく

株式会社アスキーを中心とした企業体によって
考案されました。現在ではJISでも「シフト符
号化表現」という名称で規格化されています。
JIS X 0201の8ビット符号化方式との互換性
があったため、かつては日本語環境でのデファ
クトスタンダードとも言える存在でしたが、現
在ではUTF-8などに取って代わられています。
　扱える文字集合はJIS X 0201（半角英数字＋
半角カナ）とJIS X 0208（第一・第二水準漢字）
です。JIS X 0201をベースに、半角英数字＋
半角カナが使っていない範囲にJIS X 0208漢
字の1バイト目をずらして（＝シフト）配置した
構造になっています（図6）。
　漢字や日本語の2バイト目として0x7F未満
のコードも使われるため、環境によっては意図
しない動作を引き起こす可能性があります。た
とえば「能」は0x945Cというコードで表されま
す。この5Cが制御文字である「\（バックスラッ
シュ：0x5C）」にあたり、ダブルクォートがエ
スケープされてしまうなどの困った問題が起き
ることがあります。
　ほかにも、あるバイトを見ても1バイト文字
なのか2バイト文字の一部なのかがわからない、
拡張性が乏しいなどの短所があります。

UTF-16

　「UTF-16」はUnicodeの文字符号化方式の1つ
で、1文字を2バイトで表現します。2バイトでは
BMPの範囲内にある65,536種類の文字しか扱え
ないため、範囲外の文字は2バイト文字を2つ組
み合わせて表現します。この特別な組み合わせ
が「サロゲートペア」と呼ばれるものです（図7）。
　1つの文字でUCS-4を表現できるUTF-32

 ▼図4　EUC-JPの構造

GL GR

ASCII
（英数字）

JIS X 0208
（第一／第二

水準漢字）
JIS X 0201
（半角カナ）

JIS X 0212
（補助漢字）

GLはASCII固定 シングルシフトで切り替え

 ▼図5　EUC-JPの符号化例

シ ャ 乱 Q
0xA5 0xB7 0xA5 0xE3 0xCD 0xF0 0x51

0xA1以上は
2バイト文字の1バイト

0x7F以下は
ASCII

 ▼図6　Shift_JISの符号化例

シ ャ 乱 Q
0x83 0x56 0x83 0x83 0x97 0x90 0x51

漢字やひらがなにASCIIと同じ範囲のコードが使われる

1
ゼロから始める文字コード

符号化のしくみと、ASCIIからUTF-8への系譜

64 - Software Design Dec. 2016 - 65

と比較すると、サロゲートペアのために扱いが
やや複雑になるという短所があります。しかし、
頻繁に使われるBMPの文字に関してはUTF-

32の半分のバイト数で表現できることから、
メモリやストレージの容量を抑えられるという
長所があり、プログラミング言語の内部コード
として広く使われています。

UTF-8

　Unicodeの文字符号化方式のうち、もっとも
広く知られているのが「UTF-8」でしょう。
UTF-8は1文字が1～4バイトで表現される可
変長の符号化方式で、1バイト文字については
ASCIIそのものであることが特徴です。
ASCIIで書かれたファイルなどをそのまま
UTF-8としても扱えることから、ASCIIの上
位互換として急速に普及しました。また、2～
4バイト文字ではASCIIの範囲である0x00～
0x7Fを使わないため、EUC-JPなどと同じく、
文字の一部が意図せずに制御文字として解釈さ
れることがありません（図8）。また、2～4バイ
ト文字の先頭バイトは特定の値であるため、文
字の区切りを簡単に見つけられます。
　（われわれ日本語ユーザにとっての）短所とし
ては、ひらがなや漢字が3バイトで表現されるた
め、日本語中心のテキストなどではUTF-16より
も容量が大きくなってしまう点が挙げられます。

Microsoftが拡張した
文字コード

　これまで見てきた各種文字コード以外に知っ
ておきたいのが、各ベンダによって拡張された
文字コードです。AppleやAdobe、富士通など
さまざまなベンダが拡張した文字コードがあり
ますが、ここではMicrosoftに
よって拡張された文字コードで
ある「CP932」と「CP51932」につ

いて紹介します。

CP932
　もともとMicrosoftは日本語

環境での文字コードとしてShift_JISを採用し
ていましたが、IBMやNECといったOEMメー
カーに対してJIS X 0208部分の拡張を許して
いました。そのため各メーカーが、空き領域に
独自に符号を割り当てました。これがいわゆる
「機種依存文字」と呼ばれるものです。
　1993年、MicrosoftはWindows 3.1Jの開発
に際し、各メーカーの機種依存文字を整理して
再配置し、Shift_JISを拡張しました。これが
「CP932」と呼ばれる文字コードです。Shift_

JISには含まれない「NEC特殊文字」や「IBM拡
張文字」、「NEC選定 IBM拡張文字」などを収
録しています。

・NEC特殊文字
　①　㊧　Ⅳ　㎞　㍑　㈱　㍼　∑
・IBM拡張文字
　ⅳ　|　㈱　彅　戓　弴　羽　髙

CP51932
　CP932のEUC-JPバージョンが「CP51932」
です。Internet Explorer 4.0以降や秀丸エディ
タなどで採用されていますが、CP51932では
なく「日本語（EUC）」と表記されることが多い
ようです。EUC-JPにはないNEC特殊文字と
NEC選定IBM拡張文字が追加されているほか、
JIS X 0212補助漢字が削除されています。ﾟ

 ▼図7　サロゲートペアのしくみ

吉 �

「𠮷𠮷𠮷𠮷𠮷𠮷𠮷𠮷𠮷𠮷𠮷𠮷𠮷
2バイト（16ビット）×2で表現する

0x5409 0xD842 0xDFB7

 ▼図8　UTF-8の符号化例

シ ャ 乱 Q
0xE3 0x82 0xB7 0xE3 0x83 0xA3 0xE4 0xB9 0xB1 0x51

2 ～ 4バイト文字ではASCIIの範囲内のコードを使わない

HTML・Java・Ruby・MySQLのハマりどころ
文字コード攻略マニュアル第 2 特集

66 - Software Design

仕様から探る

　この章ではHTMLの仕様という観点から文
字コードについて見ていきます。
　HTMLの仕様は、Web技術の標準化を行う
非営利団体である「W3C（World Wide Web

Consortium）」や、Apple・Mozilla・Operaを中
心としたコミュニティである「WHATWG（Web

Hypertext Application Technology Working

Group）」によって策定されています。なお、こ
の章の内容はW3Cの「HTML 5.1 Proposed

Recommendation」注1に準拠します。

文字コードを
宣言する

　HTMLはHyper Text Markup Languageの略
で、インターネット上の文章やWebアプリケー
ションを表現するためのマークアップ言語です。
HTML自体はプレーンテキスト形式で記述さ
れます。仕様では、HTML内で使える文字は

Unicodeに収録されているものに限られていま
す注2。しかし、これはUnicodeの符号化方式を
使わないといけないという意味ではなく、ファ
イルの文字コードにはShift_JISやEUC-JPな
どを使うこともできます。
　プレーンテキスト自体はどんな文字コードで符
号化されたかを伝えるしくみを持たないので、な
んらかの形で文字コードを明示する必要がありま
す。HTML内で明示するには、meta要素の
charset属性、もしくはhttp-equiv属性を使っ
てリスト1のように指定します。この文字コード
宣言はファイルの先頭から1,024バイト以内に記
述しないといけません。また、宣言には標準化団
体IANA（Internet Assigned Numbers Authority）
によって登録された文字コード名注3を正確に記
載する必要があります。
　宣言がないなど、文字コードについて判断す
る情報が与えられない場合、たいていのブラウ
ザは文字コードの自動判別を試みますが、バイ
トの並びによっては幾通りもの解釈ができる場
合があります。たとえば、EUC-JPで符号化さ

注1） URL https://www.w3.org/TR/2016/PR-html51-20160915/
注2） 現時点（2016年10月）での最新版であるUnicode 9.0には128,172種類の文字が収録されており、使える文字が限られているといっ

てもまず困ることはないと思います。
注3） 「Character Sets」 URL http://www.iana.org/assignments/character-sets/character-sets.xhtml

<head>
...（略）...
 <!-- HTML 5での形式 -->
 <meta charset="utf-8">
 <!-- HTML 4以下と互換性のある形式-->
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
...（略）...
</head>

 ▼リスト1　HTMLでの文字コード宣言

Author 田所 駿佑（たどころ しゅんすけ）　株式会社ビズリーチ スタンバイ事業部　 Twitter @todokr

HTMLと文字コード
仕様を理解し、文字を正しく表示する

　HTMLで文字コードを扱う際にはいくつかの注意点があります。適切に扱うためには、
HTMLの仕様を理解することが大切です。基本を押さえたあとは、CJK統合漢字を扱う
方法、指定した文字コードに存在しない文字を表現する方法など、実践的な技術も身につ
けましょう。

2

https://www.w3.org/TR/2016/PR-html51-20160915/
http://www.iana.org/assignments/character-sets/character-sets.xhtml

2
HTMLと文字コード

仕様を理解し、文字を正しく表示する

66 - Software Design Dec. 2016 - 67

れた「文字コード」という文字列
は、Shift_JISで符号化された「ﾊ
ｸｻ妺ｳ｡ ｼ･ﾉ」という文字列であ
るとも解釈できます。どちらが
正しい解釈なのかを判断する材
料がこれ以上ないなら、どちら
に解釈されてもおかしくないわ
けです。
　文字コードが誤って解釈されてしまった場合
は、人が読めないだけでなく、検索エンジンが
コンテンツを発見できない事態にもつながりま
す。文字化けを起こしている状態で検索エンジ
ンにインデックスされてしまったら、検索の結
果が望みどおりになるはずがありません。
　また、セキュリティの問題も無視できません。
かつての Internet Explorerは、文字コード宣
言がないHTMLや誤った文字コード名が記載
されている場合に、そのHTMLをUTF-7注Aと
解釈していました（図1）。その挙動を悪用した
XSS（クロスサイト・スクリプティング）攻撃注4

が引き起こされる可能性などがあります。

なぜUTF-8なのか

　W3Cのドキュメントでは、よほど特別な理
由がない限りはUTF-8を使用するべき注5だと
されていますが、なぜでしょうか。そこには
HTMLがインターネットでやりとりされるデー
タであることに由来する、いくつかの理由があ
ります。順番に見ていきましょう。
　まず挙げられるのは、UTF-8があらゆる文
字を扱えるUnicode系のエンコードである点で
す。世界中から閲覧される多言語サイトでも、
一種類の文字コードですべてのページを扱うこ
とができれば、HTMLを出力するサーバサイ

ドのロジックもシンプルになります。
　圧倒的な普及率による文字化けのしにくさも
特筆すべき点です。2012年時点では、Google

にインデックスされているWebページの60％
がUTF-8を使用していました注6。サブセット
であるASCIIも含めると、その普及率は80％
ほどになります。
　また、英数字が中心であればUTF-16などに
比べて容量を削減できるというメリットもあり
ます。2バイト固定長の文字コードと比較すると、
ASCIIにあたる文字だけで書かれたHTMLは、
単純計算でサイズが半分になります。HTML

はネットワーク越しにやりとりされるという点
を考えると、ページが軽く済むというのは大き
な利点です。

HTMLでの
ハマりどころ

宣言と実際の
文字コードが異なる

　慣れないうちはついやってしまいがちなミス
です。charset属性で宣言したとしても、ファ
イル自体の文字コードが自動的に変化するわけ
ではありません。宣言と同じ文字コードを指定
して保存する必要があります。ページ全体が文
字化けしてしまった際には、宣言と実際の文字
コードが同一かどうかをまず確認してみると良
いでしょう。

注A） UTF-7は、かつてUnicodeの規格として存在した7ビットの文字コードです。E-mailなどでの利用を想定し、Base64をもとにした
変換方法とシフト文字によって、Unicodeの文字すべてを7ビットで符号化するのが特徴です。

注4） Internet Explorerの挙動を悪用したXSSについてはこの記事に詳しいです。「本当は怖い文字コードの話第1回　UTF-7によるクロ
スサイトスクリプティング攻撃［前編］」　 URL http://gihyo.jp/admin/serial/01/charcode/0001

注5） URL https://www.w3.org/International/getting-started/characters#choosing
注6） URL https://googleblog.blogspot.jp/2012/02/unicode-over-60-percent-of-web.html

+ADw-script+AD4-alert(+ACI-Hello+ACI-)+ADw-/script+AD4-

 ▼図1　 UTF-7として解釈されるとXSSを引き起こす可能性のある文字列

↓ UTF-7として解釈

<script>alert("Hello")</script>

http://gihyo.jp/admin/serial/01/charcode/0001
https://www.w3.org/International/getting-started/characters#choosing
https://googleblog.blogspot.jp/2012/02/unicode-over-60-percent-of-web.html

文字コード攻略マニュアル
第 2 特集

HTML・Java・Ruby・MySQLのハマりどころ

68 - Software Design

BOM付きUTF-8

　HTMLファイルを保存する際、文字コード
として普通のUTF-8のほかに、「BOM付き」の
UTF-8を選択できるエディタがあります。本
来のBOM（Byte Order Mark）は2バイト文字
であるUTF-16のバイト並び順を指定するため
のもので、目に見える文字としては出力されま
せん（表1）。原理的にUTF-8には必要のない
ものですが、Internet Exploler10/11以外のモ
ダンブラウザはこのバイト列を、「文字コード
はUTF-8である」と判断するための材料として
使います。

　BOM付きUTF-8の場合、HTMLの文字コー
ド宣言を省略することもできますが、ファイル
がどの文字コードでエンコーディングされてい
るかがプログラマやデザイナーにとってわかり
やすいよう、UTF-8と明示的に宣言すること
がドキュメントでは勧められています。
　また、BOM付きUTF-8はシステムによって
はエラーを起こしたり、画面の上部に謎の余白
ができることがあるので注意が必要です。

ブラウザの言語によって
漢字の字体が変わる

　中国、日本、韓国、台湾で字体が微妙に異な
るものの、Unicode収録に際して1つに統合さ
れた漢字が存在します。この統合された漢字を

CJK（China、Japan、Korea）統合
漢字と呼びますが、ブラウザによっ
ては言語設定に応じて字体を描画
し分ける場合がありますので注意
が必要です。たとえば中国語を表
記する際は、lang属性でzhと明

文字コード BOM

UTF-8 0xEF 0xBB 0xBF

UTF-16（ビッグエンディアン） 0xFE 0xFF

UTF-16（リトルエンディアン） 0xFF 0xFE

 ▼表1　UTF-8とUTF-16のBOM

※UTF-16のバイトの並び順において、上位8ビットが先頭に来るものをビッグエンディ
　アン、下位8ビットが先頭に来るものをリトルエンディアンと呼びます。

　筆者がHTMLに触れ始めた2000年代後半ごろ、
Yahoo! JapanのHTMLには上のほうに<!-- 京 -->と
いうコメントが入っていました（図A）。この謎のコ
メントは文字化け防止のおまじないで、Yahoo!
JapanのサイトがEUC-JPを採用していたことに関
係があります。

　EUC-JPにおいて「京」は0xB5FEと符号化されます。
この2バイト目にあたる0xFEは Shift_JISやUTF-8
の2バイト目には出現しないバイトのため、ブラウ
ザの文字コード判別機能が文字コードを特定しや
すくなる、という効果があったようです。いわば、
UTF-8におけるBOMのEUC-JP版のような働きをし

ていたわけです。初めて見るコー
ダーやプログラマにとっては意味
が伝わりづらいですし、検索エン
ジンによってはコメントの内容ま
でインデックスされる可能性があ
るため、今ではこのような手法を
用いるのはお勧めできません。
　なお、現在のYahoo! Japanのペー
ジにはこのような記述はありませ
ん。また、UTF-8を採用しています。

 ▼図A　 2007年当時のYahoo! JapanトップページのHTML
（Wayback Machineより）

Yahoo! Japanと<!-- 京 -->

2
HTMLと文字コード

仕様を理解し、文字を正しく表示する

68 - Software Design Dec. 2016 - 69

示的に一緒に指定すると良いでしょう（図2）。

指定した文字コードに存在
しない文字を表現するには

　サーバサイドの都合などでUTF-8が使えな
いケースもあるでしょう。しかし、たとえば
Shift-JISをcharset属性に指定していると、
JIS X 0213に含まれる第3水準漢字などが扱
えません。文字コードにない文字をHTML内
で表現するにはどうしたら良いのでしょうか。

画像を使う
　1つ目が、文字の代わりにSVGなどの画像
ファイルを使う方法です。要素やCSS

のbackground-imageプロパティで文字を画
像として表現します。変わったところでは、
js-emoji注7などの絵文字を扱うための Java

Scriptライブラリが、この手法で絵文字表示の
フォールバックを提供しています。

　 文字参照を使う
　2つ目はUnicodeスカラー値を直接表記する方
法です。𩸽のように10進数で表記する

「10進数文字参照」と、𩸽のように16進
数で表記する「16進数文字参照」があります。あ
る漢字のUnicodeスカラー値を調べる際は、
Unicodeコンソーシアムの「Unihan Database

Lookup」注8というツールを使うと便利です（図3）。
　また、数値ではなく名前を使った「名前文字
参照」注9もあります。「<」がHTML要素の一部
と認識されないように使う<や、「©」の表記
に使う©などは見る機会も多いかと思い
ます。

フォントを作成する
　最後に挙げるのは独自の符号化文字集合やフォ
ントを作成してディストリビュートする方法で
す。この方法はいわゆる文字を表現するためで
はなく、FontAwesome注10に代表されるように、
アイコンなどを表現するために使われることが
多いようです。Webフォントにすればユーザ
はフォントファイルをダウンロード・インストー
ルする手間がなくなるため、文字集合とフォン
ト作成の手間さえクリアできれば、それなりに
現実的な方法ではあります。ﾟ

 ▼図2　 CJK統合漢字とlang属性 ▼図3　 Unihan Database Lookupで「𩸽」を検索したところ

注7） URL https://github.com/iamcal/js-emoji
注8） URL https://www.w3.org/TR/html5/syntax.html#character-references
注9） HTML 4では「実体参照」と呼ばれていました。
注10） URL http://fontawesome.io/

https://github.com/iamcal/js-emoji
https://www.w3.org/TR/html5/syntax.html#character-references
http://fontawesome.io/

HTML・Java・Ruby・MySQLのハマりどころ
文字コード攻略マニュアル第 2 特集

70 - Software Design

Javaがサポートする
文字コード

　Javaがサポートしている文字コードはJDKの
ドキュメント注1に記載されています。記載され
ているものの内、日本語表現に使われる文字コー
ドを表1にまとめてみました。歴史的な経緯に
より、データの入出力を行うためのAPIである
java.io、同じく入出力を行う java.nio、および
言語の基本機能を提供する java.langで文字コー
ドの名称が異なりますが、java.nio APIで使わ
れる名称はIANAに登録されているそれに一致
します。
　また、Java 7で追加された java.nio.charset.

StandardCharsetsクラスには、文字コード名を
表す文字列が定数として用意されています。文
字コード名を文字列で指定する際、たとえば「_（ア
ンダースコア）」を「-（ハイフン）」と間違えるなどの
ミスが起こりがちですが、これらの定数を使えば
安心です。StandardCharsets.UTF_8のように
使用します。また、定数になっている文字コードは、
“Javaプラットフォームのあらゆる実装で使用で

きることが保証”されています。

処理系内での
文字列の扱い

　Javaでは世界中の国でプログラムを扱える
よう、内部処理用の文字コードとしてUnicode

を採用しています。採用しているバージョンは
java.lang.Characterクラスのドキュメントに記
載されており、Java 8ではUnicode 6.2.0となっ
ています。
　文字列を表すStringクラスやchar配列、お
よびStringBufferクラスはUTF-16で符号化さ
れます（図1）。文字を構成する最小の要素が
char型ですが、「char＝文字」ではないので注
意が必要です。詳細は後述します。
　Javaのソースコードをコンパイルするコマ
ンドが javacですが、この javacの実行時にソー
スコードの文字コードからUnicodeへの文字
コード変換が行われます。この際 javacコマン
ドは、ソースコードをOSのデフォルト文字コー
ドで符号化されているものとして、Unicodeに
変換を行います。

注1） 「Supported Encodings」https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

java.nio API java.io、java.lang API 説明

EUC-JP EUC-JP JISX 0201, 0208 and 0212, EUC encoding Japanese

ISO-2022-JP ISO2022JP JIS X 0201, 0208, in ISO 2022 form, Japanese

Shift_JIS SJIS Shift-JIS, Japanese

windows-31j MS932 Windows Japanese

x-euc-jp-linux EUC_JP_LINUX JISX 0201, 0208, EUC encoding Japanese

x-eucJP-Open EUC_JP_Solaris JISX 0201, 0208, 0212, EUC encoding Japanese

 ▼表1　Java 8でサポートされている代表的な日本語文字コード

Author 田所 駿佑（たどころ しゅんすけ）　株式会社ビズリーチ スタンバイ事業部　 Twitter @todokr

Javaと文字コード
char型の落とし穴と文字化け予防策

　本章で取り上げるのはJavaにおける文字コード。Javaがどのような文字コードをサポー
トしているのか、処理系内部ではどのように文字列を扱っているのかを理解したあとは、
文字数カウントやファイルの読み書きなど、文字コードにまつわるハマりどころとその回
避方法を見ていきましょう。

3

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

3
Javaと文字コード

char型の落とし穴と文字化け予防策

70 - Software Design Dec. 2016 - 71

　もちろん、デフォルトの
文字コードがUTF-8であ
るMacでShift_JISを使う
など、ソースコードにOS

のデフォルト文字コード以
外を使用することもできま
す。使用している文字コー
ドにない文字をソースコー
ド内に使用したいときには、
Unicodeスカラー値で表記
します。たとえばEUC-

JPには収録されていない「 （「長」の中国語簡
体字）」は、この字を表すUnicodeスカラー値で
あるU+957FをUnicodeエスケープシーケンス
である\uに続けて、\u957Fと表記します（リ
スト1）。
　また、デフォルトの文字コード以外を使用し
たソースコードを javacコマンドでコンパイル
する際には、-encodingオプションで文字コー
ドを指定します。

$ javac -encoding Shift-JIS EncodingTest.java

　Eclipseではワークスペース単位、プロジェ
クト単位、コンテンツ・タイプ単位でソースコー
ドに使用する文字コードが設定できます。
Mavenでビルドする際には、各種プラグインの
confi gurationで文字コードを指定します。詳細
は各種ドキュメントなどを確認してください。

Javaでの
ハマりどころ

サロゲートペアと結合文字列

　Javaのchar型に対する一番素朴な理解は「1

つのcharが1文字にあたる」ですが、これは正
確ではありません。1つのcharでは表せない文
字があるからです。

　先に述べたように、Javaは文字をUTF-16

で処理しています。その16ビットにあたるの
が charです。16ビットで表現できるのは
65,536種類の文字、すなわちUnicodeの第一面
であるBMPの範囲内に存在する文字しか表現
できません。BMPの範囲外にある文字は、16

ビットのcharを2つ組み合わせたサロゲートペ
アで表現する必要があります注2。Unicodeには
3.1からサロゲートペアが導入され、Javaでは
1.5から対応しています。Java 1.4と1.5のド
キュメントでString#charAtメソッドの説明を
比較すると、前者では charが「文字」とされて
いるのに対し、後者では「char値」に変わって
いることが確認できます。
　またUnicodeには結合文字列と呼ばれるしく
みがあり、これが文字の扱いをさらにややこし
くしています。身近なところでは、Macで作成
したフォルダ名の初期値である「名称未設定フォ
ルダ」の「ダ」が、「タ（U+30BF）」と「（゙U+3099）」
の結合文字列です（図2）。サロゲートペアが
charのペアで1つのコードポイントを表現して
いたのに対し、こちらは2つのcharがそれぞれ
1つのコードポイントを表現しています。
　サロゲートペアや結合文字列の存在によって
問題になりやすいのが、文字数カウントといっ
たchar単位での処理です。たとえば、サロゲー
トペアで表現する「𩹉（U+29E49 とびうお）」と、

注2） BMP、サロゲートペアについてはPart1を参照。

System.out.println("「長」の中国語簡体字は「\u957F」です。");
// => 「長」の中国語簡体字は「 」です。

 ▼リスト1　Unicodeエスケープシーケンスの使用例

 ▼図1　文字列をUTF-16で符号化

あ な た と J a v a
0x3042 0x306A 0x305F 0x3068 0x004A 0x0061 0x0076 0x0061

英数字も16ビットで符号化される

文字コード攻略マニュアル
第 2 特集

文字コード攻略マニュアル
第 2 特集

HTML・Java・Ruby・MySQLのハマりどころ

72 - Software Design

「か」と「 」゙による結合文字列「が」を含んだ「𩹉が
釣れた」というテキストの文字数をカウントす
るとします。
　一番シンプルな方法はString.length()で
カウントする方法です（リスト2の（1））。この
方法はcharの個数をカウントしているだけで
すので、サロゲートペアである「𩹉」と結合文字
列である「が」がそれぞれ2文字とカウントされ
るため、結果は7文字になります。
　Unicodeコードポイントの個数をカウントす

るString.codePointCount()を使うと、「𩹉」
は1文字になりますが、「が」はあくまでも結合
文字列ですので依然として2文字のままです。
その結果、6文字となります（リスト2の（2））。
　結合文字列を1文字とカウントするには、
java.text.Normalizerを使って文字列を正規化
したうえでカウントする方法があります（リス
ト2の（3））。この例では「か」と「 」゙による結合
文字列が合成済みの「が」になるので、（2）の方
法と組み合わせてカウントすると5文字になり

 ▼図2　結合文字列のしくみ

名 称 未 設 定 フ ォ ル タ ゛

0x540D 0x79F0 0x672A 0x8A2D 0x5B9A 0x30D5 0x30a9 0x30eb 0x30BF 0x3099

0x30BFと0x3099で
「ダ」を表す

String s = "𩹉か\u3099釣れた"; // 見た目上は「𩹉が釣れた」の5文字

// （1） String.length()でカウントする方法
// シンプルだがサロゲートペアや結合文字列は2字としてカウントされる
System.out.println(s.length()); // => 7

// （2） String.codePointCount()でコードポイントの数をカウントする方法
// 「𩹉」は1字とカウントできるようになったが、結合文字列は2字のまま
System.out.println(s.codePointCount(0, s.length())); // => 6

//（3） java.text.Normalizerで結合文字列をUnicode正規化したうえでカウントする方法
// 「か\u3099」を「が」に正規化したうえでコードポイントをカウントする
String normalized = Normalizer.normalize(s, Normalizer.Form.NFC);
System.out.println(normalized.codePointCount(0, normalized.length())); // => 5

// （4） java.text.BreakIteratorを使う方法
// 文字分割用のイテレータを使い、適切な位置で文字を区切ってカウントする
BreakIterator bi = BreakIterator.getCharacterInstance(Locale.JAPANESE);
bi.setText(s);
int count = 0;
while (bi.next() != BreakIterator.DONE) {
 count++;
}
System.out.println(count); // => 5

 ▼リスト2　さまざまな文字数カウントの方法

3
Javaと文字コード

char型の落とし穴と文字化け予防策

72 - Software Design Dec. 2016 - 73

ます。
　また java.text.BreakIteratorを使い、自然な
文字の区切り位置でカウントする方法もありま
す（リスト2の（4））。
　サロゲートペアや結合文字列を1文字として
カウントするのかという点に関しては、システ
ムの要件や仕様によって判断が分かれるところ
ですので、どの手法が最善かは結論づけられま
せんが、“人が素朴に認識している文字数と
Unicodeでの文字数の概念には隔たりがある”
ということは、認識しておくと良いでしょう。

Unicodeへの変換に際した
文字化け

　先に述べたように、Javaは内部コードとし
てUnicodeを使うため、ファイルの読み書きや
ネットワーク経由でのやりとりの際にデータの
文字コードとUnicodeとの間で変換が行われま
す。この変換の際に文字化けが起きることがあ
ります。
　Javaにはファイルを読み書きする簡易な
APIとして java.io.FileReader/FileWriterクラ
スが用意されていますが、読み書きする際の文
字コードは実行環境のデフォルト文字コードに

依存します（リスト3の（1））。そのため、Windows

では正しく読み書きできていた処理をLinux上
で動かすとファイルが文字化けする、などの不
具合が起きる場合があります。java.io.Input

StreamReader/InputStreamWriterクラスを使
い、文字コードを明示的に宣言するとこのよう
な問題を防ぐことができます（リスト3の（2））。
　Unicodeに変換されるシーンとしてはほかに
も、

・リクエスト時に送信された文字列（クエリパ
ラメータ、リクエストボディなど）の文字コー
ドからUnicodeへの変換

・レスポンス時のUnicodeからレスポンス用
の文字コードへの変換

・データベースへのアクセス時のデータベース
の文字コードとUnicode間の文字コード変換

などがあります。これらの境界で適切に変換が
行われないと文字化けにつながります。
　文字化けが起きた際には、どの境界で起きた
のかをまず把握し、変換が行われる処理や各種
ミドルウェア、フレームワークの設定を見直し
てみましょう。ﾟ

int ch;
File file = new File("./hello.txt");

// （1）FileReaderはファイルがデフォルト文字コードで符号化されているものとして読み込むため、
// ファイルの文字コードと実行環境のデフォルト文字コードが異なると文字化けする
FileReader fr = new FileReader(file);
while ((ch = fr.read()) != -1) {
 System.out.println((char)ch);
}
fr.close();

// （2）InputStreamReaderで文字コードを明示的に指定し、
// デフォルト文字コードに依存しないようにする
InputStream is = new FileInputStream(file);
InputStreamReader isr = new InputStreamReader(is, "Shift_JIS");
while ((ch = isr.read()) != -1) {
 System.out.println((char)ch);
}
isr.close();

 ▼リスト3　FileReaderとInputStreamReader

HTML・Java・Ruby・MySQLのハマりどころ
文字コード攻略マニュアル第 2 特集

74 - Software Design

はじめに

　Rubyでは文字エンコーディングのことを単
にエンコーディングと呼びます。Rubyの文字
列オブジェクトのエンコーディングは1つに決
まっているわけではありません。プログラム実
行時にどれか1つに決まるというわけでもあり
ません。Rubyの中で生成される文字列オブジェ
クトごとにエンコーディングを持っています。
つまり実行中の1つのRubyプログラムの中で、
異なる文字コードの文字列オブジェクトが同時
に存在し得るということです。

スクリプト
エンコーディング

　Rubyプログラム中に直接文字列を記述した
ら、そのエンコーディングは何になるのでしょ
うか。文字列オブジェクトのエンコーディング
は、encodingメソッドで知ることができます。
試してみましょう。

% cat test.rb
p "abc".encoding

% ruby test.rb
#<Encoding:UTF-8>

　これでエンコーディングがUTF-8であるこ
とがわかりました。
　プログラムファイル（スクリプト）を解釈すると
きに使用されるエンコーディングを、スクリプ

トエンコーディングと言います。文字列だけで
はなく、正規表現、シンボル、変数名などもス
クリプトエンコーディングによって解釈され

ます。
　先ほどの例ではString#encodingを使用し
て調べましたが、スクリプトエンコーディング
は簡単に__ENCODING__で取得できます。スク
リプトエンコーディングのデフォルトは
UTF-8です。現在ではスクリプトエンコーディ
ングがUTF-8であることで困ることはほとん
どないと思いますが、変更することもできます。
　スクリプトの先頭に「# coding:エンコーディ
ング名」を記述することで、そのファイル全体
のスクリプトエンコーディングを指定できま

す。次の例ではエンコーディングにCP932

（Windows-31J）注1を指定した例です。

% cat cp932.rb
coding: cp932
p __ENCODING__

% ruby cp932.rb
#<Encoding:Windows-31J>

　エンコーディングが異なる複数のスクリプトを、
1つのプログラムで使用することもできます。そ
の場合は、異なるエンコーディングの文字列が
存在することになります。次の例は、スクリプトエ
ンコーディングがそれぞれUTF-8とCP932のス
クリプトを1つのプログラムが読み込んだ場合、
各スクリプト中で定義された文字列がそれぞれの
エンコーディングになっていることを示しています。

注1） 詳しくはPart1の「Microsoftが拡張した文字コード」の節を参照してください。

Author とみたまさひろ　日本Rubyの会　 Twitter @tmtms

Rubyと文字コード
プログラム中での異なるエンコーディングの扱い方
　Rubyプログラムの中では、同時に異なる文字コードの文字列オブジェクトが存在できます。
本PARTでは、スクリプトそのもののエンコーディング、ファイル入出力時のエンコーディ
ング、エンコーディングの変換、エンコーディングが混在するときの処理などを解説します。
また、不正なバイト列が混入した場合の処理も紹介します。

4

4
Rubyと文字コード

プログラム中での異なるエンコーディングの扱い方

74 - Software Design Dec. 2016 - 75

% cat utf-8.rb
coding: utf-8
$str_utf8 = "あいうえお"

% cat cp932.rb
coding: cp932
$str_cp932 = "あいうえお"

% ruby -r./utf-8 -r./cp932 -e 'p $str_utf8.ｭ
encoding, $str_cp932.encoding'
#<Encoding:UTF-8>
#<Encoding:Windows-31J>

ASCII互換
エンコーディング

　Rubyが持つエンコーディングの一覧は
Encoding.listで見ることができます。Ruby

2.3.1では101個のエンコーディングがあります。
　ですが、このすべてのエンコーディングをスク
リプトエンコーディングに指定できるわけではあ
りません。指定できるのは、ASCII互換エンコー
ディングのみです。ASCII互換エンコーディング
とは、00から7Fの範囲の文字がASCIIと同じ

ものです。ASCII互換エンコーディングは
Encoding#ascii_compatible?で調べることが
できます。Ruby 2.3.1では88個あります。

ファイル入出力

　通常、テキストファイルはファイル自身にエ
ンコーディング情報を持っていないため、プロ
グラム側が読み書き時にファイルのエンコーディ
ングを意識する必要があります。
　RubyではIOオブジェクトが外部エンコーディ
ングと内部エンコーディングを持っていて、そ
れに従って読み書きが行われます。外部エンコー
ディングはファイルの内容が何のエンコーディ
ングで書かれているかを示し、内部エンコーディ
ングは読み込んだ文字列をプログラム中で何の
エンコーディングとして扱うかを示します。

読み込み時のエンコーディング

　ファイルから文字列を読み込むときの外部エ
ンコーディングは、ファイルのオープン時にオー
プンモード文字列で指定します。"r:cp932"
が外部エンコーディングの指定部分です。

f = File.open("cp932.txt", "r:cp932")
s = f.gets #=> CP932文字列

　さらに続けて内部エンコーディングを指定し、
読み込んだ文字列を何のエンコーディングとし
て扱いたいかを指定することもできます。これ
を指定するとファイルを読み込む際にエンコー
ディングが変換された文字列が返ります。次の
例では、"r:cp932:utf-8"の指定により、ファイ
ルからの文字列読み込み時にCP932からUTF-8
にエンコーディングを変換しています。

f = File.open("cp932.txt", "r:cp932:utf-8")
s = f.gets #=> UTF-8文字列

　オープン後にIO#set_encodingでエンコー
ディングを設定することもできます。

f = File.open("cp932.txt", "r")
f.set_encoding("cp932")
s = f.gets #=> CP932文字列
f.set_encoding("cp932", "utf-8")
s = f.gets #=> UTF-8文字列

　外部エンコーディングを指定しない場合は
Encoding.default_externalに従います。
　Encoding.default_externalはシステムの
ロケールによって決定します。Linuxの場合は、
LC_ALL、LC_CTYPE、LANG環境変数の値によっ
て決定します。

% LC_ALL=ja_JP.UTF-8 ruby -e 'p Encoding.default_external'
#<Encoding:UTF-8>
% LC_ALL=ja_JP.EUC-JP ruby -e 'p Encoding.default_external'
#<Encoding:EUC-JP>
% LC_ALL=C ruby -e 'p Encoding.default_external'
#<Encoding:US-ASCII>

文字コード攻略マニュアル
第 2 特集

HTML・Java・Ruby・MySQLのハマりどころ

76 - Software Design

　環境変数の値によって読み込むファイルのエ
ンコーディングが変わってしまうことが望まし
くない場合は、プログラムの最初のほうで
Encoding.default_externalを設定してお
くのがよいでしょう。
　内部エンコーディングを指定していない場合
は Encoding.default_internalの値が使用
されます。この値のデフォルト値はnilですの
で、値を設定しなければ変換は行われません。

書き出し時のエンコーディング

　文字列をファイルに書き出す際には、その文
字列のエンコーディングから外部エンコーディ
ングに変換されて書き出されます。文字列は自
身のエンコーディングを知っているため、内部
エンコーディングは書き出し時には影響しません。
　外部エンコーディングを指定していない場合
は、文字列オブジェクトのエンコーディングの
まま変換されずに書き出されます。ただし、
Encoding.default_internalが設定されてい
る場合は、外部エンコーディングを指定してい
なくてもEncoding.default_externalに変換
されて書き出されます。Encoding.default_
internalの値は設定されているかどうかだけ
参照されて、変換には使用されません。
　外部・内部エンコーディング、Encoding.
default_internalの値と、読み書きの変換
をまとめると表1のようになります（Encoding.
default_externalは常に値が設定されてい

ます）。

バイナリデータ

　ファイルがテキストデータではなくバイナリ
データの場合、読み書き時にエンコーディング
が変換されてしまっては困ります。
　Rubyではバイナリデータも文字列オブジェ
クトとして扱います。バイナリデータを扱うた
めのエンコーディングはASCII-8BITです。
BINARYという別名も持っています。
　I/Oの外部エンコーディングとしてASCII-8

BITを指定すると、Encoding.default_inter
nalの設定にかかわらず常にASCII-8BITエン
コーディング文字列として読み込まれます。書
き出し時には文字列のエンコーディングにかか
わらず無変換でI/Oに書き出されます。
　また、メソッドによってもエンコーディング
の影響を受けないものがあります。たとえば、
IO#getsは改行まで読み込むというメソッド
ですので外部エンコーディングや内部エンコー
ディングで指定したエンコーディング文字列を
返しますが、IO#read(size)メソッドは、指
定したバイトサイズのデータを読み込むためエ
ンコーディングの指定にかかわらずASCII-

8BITエンコーディング文字列を返します。なお、
サイズを指定しないIO#readメソッドはエン
コーディングの影響を受けます。

外部エン
コーディング

内部エン
コーディング default_internal 読み込み 書き出し

未指定 未指定 nil default_externalとして読み込み、変換しない 変換しない

未指定 未指定 指定 default_externalからdefault_internalに変換 default_externalに変換

指定 未指定 nil 外部エンコーディングとして読み込み、変換しない 外部エンコーディングに変換

指定 未指定 指定 外部エンコーディングからdefault_internalに
変換 外部エンコーディングに変換

指定 指定 nil
外部エンコーディングから内部エンコーディング
に変換 外部エンコーディングに変換

指定 指定 指定 外部エンコーディングから内部エンコーディング
に変換 外部エンコーディングに変換

 ▼表1　外部・内部エンコーディング、Encoding.default_internalの値と、読み書きの変換

4
Rubyと文字コード

プログラム中での異なるエンコーディングの扱い方

76 - Software Design Dec. 2016 - 77

変換

　String#encodeメソッドは、文字列を別のエ
ンコーディングに変換した新しい文字列オブジェ
クトを返します。リスト1はUTF-8の「日本語」
をCP932に変換した例です。
　文字列のバイト列をASCII-8BITとして取
り出すことはよくあるため、短いString#bと
いうメソッドも用意されています。
　エンコーディングによって文字集合が異なる
ため、元の文字列にあった文字が変換先のエン
コーディングに存在しない場合もあります。ま
た、元の文字列に文字としては不正なバイト列
が含まれている場合もあります。そのような文
字を含む場合はエラーが発生します（リスト2）。
　String#encodeメソッド時に:undef、
:invalidオプションを渡すことでこれらのエ

ラーを制御できます（リスト3）。
　String#force_encodingメソッドは、エン
コーディングを変換するのではなく、文字列の
バイト列はそのままでエンコーディング情報だ
けを変更します。これはencodeとは異なり、
新しい文字列オブジェクトを返すのではなく

文字列オブジェクトを変更する破壊的メソッド
です。

異なるエンコー
ディング同士の処理

　今まで説明してきたように、Rubyは1つの
プログラム中で複数のエンコーディングの文字
列オブジェクトを持つことができます。異なる
エンコーディングの文字列同士の処理がどうな
るか見てみましょう（リスト4）。
　エンコーディングが異なる場合は同じ文字列
であっても==での単純な比較はfalseになります。

"♡".encode("cp932")
#=> `encode': U+2661 from UTF-8 to Windows-31J (Encoding::UndefinedConversionError)
"¥xFF".encode("CP932")
#=> encode': "¥xFF" on UTF-8 (Encoding::InvalidByteSequenceError)

 ▼リスト2　変換先のエンコーディングにない文字が含まれている場合と、元の文字列に不正なバイト列が含まれている場合

"いろは¥xFF日本語♡".encode("cp932", undef: :replace, invalid: :replace)
#=> "¥x{82A2}¥x{82EB}¥x{82CD}?¥x{93FA}¥x{967B}¥x{8CEA}?" (CP932で「いろは?日本語?」)

 ▼リスト3　:undef、 :invalidによるString#encodeのエラー制御の例

utf8 = "いろは".encode("utf-8")
cp932 = "いろは".encode("cp932")
utf8 == cp932
#=> false
utf8 + cp932
#=> incompatible character encodings: UTF-8 and Windows-31J (Encoding::CompatibilityError)
utf8.include? cp932
#=> incompatible character encodings: UTF-8 and Windows-31J (Encoding::CompatibilityError)

 ▼リスト4　異なるエンコーディングの文字列同士の処理の例

"日本語".encode("cp932")
#=> "¥x{93FA}¥x{967B}¥x{8CEA}" (CP932で「日本語」)

 ▼リスト1　UTF-8の「日本語」をCP932に変換

文字コード攻略マニュアル
第 2 特集

HTML・Java・Ruby・MySQLのハマりどころ

78 - Software Design

異なるエンコーディングの文字列結合や文字列
検査などの処理はEncoding::CompatibilityError

例外が発生します。
　複数の文字列に対する処理を行う場合は、事
前にエンコーディングを合わせておかないと思
わぬエラーの原因になることもあるので注意し
ましょう。
　正規表現も文字列と同じようにエンコーディ
ングを持ちます。文字列と正規表現の比較の場
合もエンコーディングを合わせておかないとエ
ラーになるので注意しましょう。
　なお、ASCII互換のエンコーディングで、
ASCII文字だけで構成されている文字列や正
規表現は、エンコーディングが異なってもエラー
になりません。

不正なバイト列

　文字列中に文字として不正なバイト列が混入

していると、正規表現との比較でエラーになる
ことがあります。不正なバイト列が混入するの
は図1のような場合です。
　文字列がエンコーディングとして正しいバイ
ト列で構成されているかはString#valid_
encoding?メソッドを使用して調べられます。

"あいうえお".valid_encoding? #=> true
"あいう¥xFFえお".valid_encoding? #=> false

　また、String#scrubメソッドを使用して文
字列中の不正なバイト列を置換することができ
ます。

"あいう¥xFFえお".scrub #=> "あいう えお"
"あいう¥xFFえお".scrub("?") #=> "あいう?えお"

　信頼できないファイルなどから読み込んだ文
字列を安全に処理するには、これらのメソッド
を使用したほうが良いでしょう。ﾟ

・スクリプト中のリテラル文字列に直接文字コードを指定した場合

str = "あいうえお¥xFFかきくけこ"
0xFF は UTF-8 には存在しないバイト
str =~ /./
#=> invalid byte sequence in UTF-8 (ArgumentError)

・内部エンコーディングを指定せずにファイルから不正なバイト列を読み込んだ場合

str = File.open("/dev/urandom").gets
変換処理が行われないのでここではエラーにならない
str =~ /./
#=> invalid byte sequence in UTF-8 (ArgumentError)

・encodeやforce_encodingで誤ったエンコーディングを指定した場合

str = "あいうえお".force_encoding("cp932")
UTF-8文字列のバイト列をそのままにCP932エンコーディング化
str =~ /./
#=> invalid byte sequence in Windows-31J (ArgumentError)

 ▼図1　文字列として不正なバイト列が混入する例

HTML・Java・Ruby・MySQLのハマりどころ
文字コード攻略マニュアル第 2 特集

Dec. 2016 - 79

charset

　MySQLの文字コードはcharacter setまたは
charsetという単語で表されます。MySQLの構
文としてもcharacter setとcharsetは同等に扱
われます。以降、本稿ではcharsetを使用します。
日本語が使用できるcharsetはutf8、utf8mb4、
cp932、sjis、eucjpms、ujisの6つです。
　それぞれ、どのような文字集合とエンコーディ
ングに対応しているのかを表1に示します。
　今から新しくMySQLを開始するのであれば、
utf8mb4を使用すべきです。Unicodeは現在コ
ンピュータ上で扱うことのできる世界中のすべ
ての文字を含んでいますが、Windows-31Jや
JISは日本語と、日本でよく使用されることの
ある一部のラテン文字しか含んでいません。
　またutf8 charsetはUnicodeのうちU+10000

～U+1FFFFFの文字を含んでいません。この
範囲には一部の漢字も含まれますし、多くの絵
文字も含まれます。
　漢字のほうは「𠀋」「𡈽」「𡌛」などあまり使用さ

れることのない文字ですが、今や「 」「 」
「 」「 」などの絵文字は普通に入力され得る
文字です。これらの文字に対応できない方が影
響が大きいかもしれません。
　utf8mb4の名前は、UnicodeのU+10000

～U+1FFFFFの文字が、UTF-8で表現すると
1文字が4byteになることに由来しています
（mb4＝multibyte 4）。
　使用できるcharsetの一覧はSHOW CHARSETク
エリで表示できます。MySQL 5.7.16では41

個のcharsetがあります。

charsetの指定

　MySQLでは、サーバ、データベース、テー
ブル、カラムごとにそれぞれ異なるcharsetを
指定できます。
　指定できるといっても、異なるcharsetを指
定してもトラブルの元になるだけです。実際に
使用するcharsetはできるだけ1つに統一して
おくべきです。
　MySQLのデフォルトのcharsetは latin1（ISO

8859-1）です。何も指定しなければ latin1が使
われるのですが、一見日本語も使用できるよう
な挙動に見えるため、あとあとトラブルになっ
たりすることもあります。できれば最初に設定
しておくのがよいでしょう。

サーバ charset

　サーバcharsetは、新規にデータベースを作
成するときのデフォルトのcharsetです。実は
これさえ指定しておけばだいたい問題ありませ

charset 文字集合 エンコー
ディング

utf8mb4 Unicode UTF-8

utf8 Unicode（U+0000～U+FFFFの範囲のみ）UTF-8

cp932 Windows-31J CP932

sjis JIS SHIFT_JIS

eucjpms Windows-31J CP51932

ujis JIS EUC-JP

 ▼表1　 MySQLのcharsetの文字集合とエンコーディン
グの対応

Author とみたまさひろ　日本MySQLユーザ会　 Twitter @tmtms

MySQLと文字コード
charsetでの文字集合の指定方法と
エンコーディングの対応
　本稿では、MySQLで文字コードを扱う際に指定するcharsetについて、エンコーディ
ングとの対応と、クライアント／サーバ接続時の問題について解説します。また、
MySQL 5.6での文字処理時のエラー対応方法についても紹介します。

5

文字コード攻略マニュアル
第 2 特集

HTML・Java・Ruby・MySQLのハマりどころ

80 - Software Design

ん。このサーバが扱うすべてのデータベース／
テーブル／カラムがただ1つのcharsetだけを
使用するのであれば、これを指定しておくだけ
で十分です。
　/etc/my.cnfなどの設定ファイルにcharacter-
set-serverを指定します注1。

[mysqld]
character-set-server = utf8mb4

データベース charset

　データベースcharsetは、このデータベース配
下に作成するテーブルのデフォルトのcharsetで
す。CREATE DABASEでデータベースを作成する
ときにCHARSETを指定します。何も指定しなけ
ればサーバcharsetが使用されます。

mysql> CREATE DATABASE dbname CHARSET ｭ
utf8mb4;

　データベースcharsetを変更するにはALTER
DATABASEを使用します。

mysql> ALTER DATABASE dbname CHARSET utf8mb4;

　なお、データベース charsetを変更しても、
すでに作成されているテーブルには影響しま

せん。

テーブル／カラムの charset

　テーブルのcharsetは、CREATE TABLEでテー
ブルを作成するときにCHARSETを指定します（図

1）。何も指定しなければデータベースcharset

が使用されます。
　カラムのcharsetは、何も指定しなければテー
ブルのcharsetと同じになります。普通はしない
と思いますが、カラムの定義にCHARSETを指定
すれば、テーブルのcharsetと異なるcharsetの
カラムを作成することもできます（図2）。
　テーブルの charsetを変更するには、ALTER
TABLEを使用します。テーブルのcharsetを変
更してもカラムのcharsetや格納されているデー
タには影響しません。

mysql> ALTER TABLE tblname CHARSET cp932;

　カラムの charsetを変更するのもALTER

TABLEです。カラムのcharsetを変更すると
格納されている文字列も新しいcharsetのデー
タに変換されます（図3）。

クライアント／
サーバ接続のcharset

　MySQLのcharsetまわりで問題が発生しや
すいのが、クライアント／サーバ接続の
charsetです。接続のcharsetはクライアントか
ら指定します。特別な事情がなければテーブル
／カラムに設定しているcharsetと同じものを
指定すべきです。
　接続のcharsetはクライアントごとに設定方
法が異なりますが、MySQLに付属のコマンド
であればたいていはdefault-character-setと
いうパラメータで指定できます注2。my.cnfに次

注1） mysqldがどの設定ファイルを読み込むかは環境によって異なります。設定ファイルのファイル名はmysqld --help -vコマンドの出
力の「Default options are read from the following files in the given order:」の行で知ることができます。

注2） すべてのクライアントコマンドがdefault-character-setパラメータを解釈できるわけではないため、単にdefault-character-setを
指定しただけだとコマンドによってはエラーになることがあります。loose-をパラメータ名の先頭につけることで、そのパラメー
タを解釈できない場合はエラーの代わりに無視するようになります。

mysql> CREATE TABLE tblname (col VARCHAR(10)) CHARSET utf8mb4;

 ▼図1　CREATE TABLEでテーブル作成時にCHARSETを指定する

mysql> CREATE TABLE tblname (col1 VARCHAR(10), col2 VARCHAR(10) CHARSET cp932) CHARSET utf8mb4;

 ▼図2　カラム定義にCHARSETを指定し、テーブルと異なるcharsetを指定する例

5
MySQLと文字コード

charsetでの文字集合の指定方法とエンコーディングの対応

80 - Software Design Dec. 2016 - 81

のように設定しておけばよいでしょう。

[client]
loose-default-character-set = utf8mb4

　MySQL付属ではない独自に作成したアプリ
ケーションで接続のcharsetを指定する方法は、
そのアプリケーションしだいです。charsetを指
定する方法がなく、デフォルトの latin1のまま
使用するアプリケーションもあるかもしれません。
　そのようなアプリケーションでは、サーバ側で
skip-character-set-client-handshakeパラメー
タを設定することで解決できる場合があります。
このパラメータを指定すると、クライアントが指
定した charsetを無視して、character-set-
serverパラメータの値を接続のcharsetとして扱
います。ただし、これはすべてのクライアントに
影響するため、設定する場合は注意が必要です。

collation

　collationは照合順序／照合規則と訳されます。
文字をソートしたときの順序や、文字を比較し
たときに等しいとみなすかどうかの規則を定め
たものです。charsetごとに collationがあり、

テーブル／カラムでcharsetを指定するという
ことは、そのcharsetのデフォルトのcollation

を指定しているのと同じ意味になります。
　テーブル／カラムにcollationを設定するには、
COLLATEで指定します（図4）。
　MySQL 5.7.16には、全部で222個のcollation

があります。そのうち utf8mb4の collationは
26個です。さらにその中で日本語で使用され
ることのあるutf8mb4_general_ci、utf8mb4_bin、
utf8mb4_unicode_ci、utf8mb4_unicode_520_ci
について説明します。

utf8mb4_general_ci

　utf8mb4charsetのデフォルトのcollationです。
末尾のciはcase insensitiveの意味で大文字小文
字を区別しないということを示しています。比較
時に英字の大文字小文字は区別されません。全
角文字も大文字小文字は区別されません。「Å」「Ô」
なども「A」「O」と同様に扱われます。U+10000～
U+1FFFFFの文字はすべて区別されません。「𠀋」
「𡈽」「 」「 」などは同じ文字として扱われます。
「寿司ビール問題」として有名です。

mysql> SELECT col2,HEX(col2) FROM tblname;
+-----------+--------------+
| col2 | hex(col2) |
+-----------+--------------+
| いろは | 82A282EB82CD |
+-----------+--------------+
mysql> ALTER TABLE tblname MODIFY col2 VARCHAR(10) CHARSET utf8mb4;
mysql> SELECT col2,HEX(col2) FROM tblname;
+-----------+--------------------+
| col2 | hex(col2) |
+-----------+--------------------+
| いろは | E38184E3828DE381AF |
+-----------+--------------------+

 ▼図3　ALTER TABLEでカラムのcharsetを変更する

mysql> CREATE TABLE tblname (col VARCHAR(10)) CHARSET utf8mb4 COLLATE utf8mb4_unicode_ci;

 ▼図4　COLLATEでテーブル／カラムにcollationを設定する

文字コード攻略マニュアル
第 2 特集

HTML・Java・Ruby・MySQLのハマりどころ

82 - Software Design

utf8mb4_bin

　すべての文字が区別される collationです。
文字列型カラムにBINARY属性を指定したと
きに、このcollationが使用されます。

utf8mb4_unicode_ci

　UCA（Unicode Collation Algorithm）4.0.0 準
拠のcollationです。
　ciとついているように大文字小文字を区別し
ません。utf8mb4_general_ciとの主な違いは、
かな文字のひらがな／カタカナ／全角／半角／
濁音／半濁音を区別しないことです。つまり「は」
「ば」「ぱ」「ハ」「パ」「バ」「ﾊ」を区別しません（「ハ
ハ＝パパ問題」）。

utf8mb4_unicode
_520_ci

　UCA 5.2.0準拠の collationです。utf8mb4_
unicode_ciとの主な違いは、U+10000～U+

1FFFFFの文字が区別されることです。つま
り「寿司ビール問題」は発生しません。なお「ハ
ハ＝パパ問題」は発生します。
　utf8mb4の、各collationでの文字の扱いを表
2にまとめます。用途に応じて適切なcollation

を使用しましょう。

sql_mode

　MySQLの最新版は5.7ですが、5.6を使って
いる人もまだ多いと思います。MySQL 5.6では、
文字処理周りでおかしなことが発生しても、デ
フォルトではエラーにならないことに注意が必
要です。

・カラム長を超過した文字列をカラムに入れて
もエラーにならず、はみ出した分が削られる

・不正な文字が入っているとそれ以降の文字が
すべて削除される

・文字変換に失敗した文字が「?」となって格納
される

　これらはあまり望ましい挙動とは言えず、
MySQL 5.7からはエラーになるようになりま
した。
　MySQL 5.6でもエラーになるようにするに
は、my.cnfで sql-modeパラメータに STRICT_
ALL_TABLESを設定します注3（リスト1）。
　すべてのクライアントではなく、特定のクラ
イアントだけエラーにするには、クライアント
がサーバに接続した後にリスト2のクエリを発
行します。ﾟ

 collation A : a A : Ａ(全角) : は : ぱ : ば
 general_ci ＝ ≠ ＝ ≠

 bin ≠ ≠ ≠ ≠

 unicode_ci ＝ ＝ ＝ ＝

 unicode_520_ci ＝ ＝ ≠ ＝

 ▼表2　 utf8mb4の各collationでの文字の扱いの違い

注3） sql_modeのデフォルトはNO_ENGINE_SUBSTITUTIONなため、それに追加する形で設定しています。

[mysqld]
sql-mode = NO_ENGINE_SUBSTITUTION,STRICT_ALL_TABLES

 ▼リスト1　MySQL 5.6でもエラーになるようにSTRICT_ALL_TABLESを設定

set sql_mode='NO_ENGINE_SUBSTITUTION,STRICT_ALL_TABLES';

 ▼リスト2　特定のクライアントだけエラーにする

先人たちの知恵と足跡に学ぶ
【年末特別企画】

温故知新

ITむかしばなし

第1話 	パソコンの揺
よう

籃
らん

期に進化を続けたPC-9800シリーズ 小高 輝真����� P.84

第2話 	富士通FM-7とCPU動作周波数	
　　　　〜搭載CPU 68B09(2MHz)はどこまで速いか〜 速水 祐������������������������������� P.86

第3話 	初期のインターネットダイヤルアップ接続とユーザ認証 伊勢 幸一����� P.88

第4話 	汎用機のLISP	
　　　　〜大文字でタイプライタで会話していたあのころ〜 五味 弘������������������������������� P.90

第5話 	 IDEのさきがけとなったTurbo PascalとTurbo C 大野 元久���������� P.92

第6話 	 VZエディタ開発秘話 兵藤 嘉彦��� P.94

第7話 	あこがれのグラフィックスソフト 古籏 一浩�� P.96

第8話 	オープンソースの夜明けと「まつり」 法林 浩之��� P.98

最終話 	オープンソースとコミュニティ 田中 邦裕��� P.100

　今回は年末特別企画として、いつもは連載の「ITむかしばなし」を特
別編でお送りします。日本国内でパソコンという言葉が使われ始めた
1980年代、マシン環境は昨今のような高速なスペックではなく、CPU
は周波数だけとっても千分の一程度。本体メモリは百分の一程度でした。
　そんな時代を過ごされた9人の方に、それぞれの経験を披露していた
だきました。懐かしく思う方も、想像がつかない方もいらっしゃると思
いますが、むかしばなしをお楽しみください。

スペシャル

84 - Software Design

第1話

はじめに

　今やすっかりコモディティ化し
て、国内･国外ともにPCメーカー
は淘汰の波にさらされていますが、
20～30年前は、まさにパソコン揺

よう

籃
らん

期ともいうべき時代でした。
　その当時、日本のパソコン市場
でトップシェアを占めていたNEC

のPC-9800シリーズ（写真1）に
は、PC-9801VMに代表されるメ
インストリーム機以外に、多分に
実験的要素の強い、ある意味で未
来を先取りしたような機種も開発
されていました。
　本稿では、PC-9800シリーズの
うち、突然変異的機種について、
振り返ってみます。

ハイレゾモード

　1985年に発売されたPC-98XA

は、CADなどでの利用を想定した
ハイレゾモード（画面解像度1,120

×750ドット）専用機です。当時の
アプリケーションソフト（以下、ソ
フト）は直接ハードウェアを制御し
てグラフィックスを描画していた
ため、ハイレゾモードはノーマル
モード（画面解像度640×400ドッ
ト）と互換性がなく、PC-98XAで

は大多数のPC-9801向けソフトが
使用できず不評でした。そのため、
後継機種にあたるPC-98XL・
XL2･RLとPC-H98では、ハイレ
ゾモードとノーマルモードをシス
テム起動時に切り替えられるよう
になりました。

ラップトップ、ハンディ、
電子ブックリーダーの先駆け

　1986年11月に発売されたPC-

98LTは、PC-9800シリーズ初の
ラップトップ型注1です。CPUは
V50（V30注2に周辺回路を集積した
LSI）、重量は3.8kg。当時の技術
的限界から、グラフィックスは画
面解像度640×400モノクロ2値

注1） 今のノートパソコンに近いが、ディ
スプレイと本体が一体型のポータブ
ルパソコンのような意味。膝の上で
使えるということで命名された。

注2） V30、V50は、NECによる Intel 8086
の上位互換CPU。

のVRAMのみ搭載だったため、
PC-9800シリーズのノーマルモー
ド用ソフトはそのままでは動作し
ませんでした。
　PC-98LTアーキテクチャの製品
は1990年にも発売されます。PC-

98HA（Handy98）です（写真2）。本
体重量は1.1kg、RAMドライブ（フ
ロッピーディスク版SSDのような
もの）やPCMCIA注31.0カードス
ロットも装備し、パソコンという
より、PDAの市場を狙った製品で
した。ノーマルモードとの互換性
がなかったのは、やはり当時の半
導体技術の限界のためです。
　1993年に発売されたデジタル
ブックプレーヤーDB-P1も、実は
注3） 携帯型パソコン向けのカード型デバ

イスの規格。メモリやモデムなどを
内蔵するためのもの。

小高 輝真（こだか てるまさ）　kodaka@webtech.co.jp　 twitter @koda256

パソコンの揺
ようらん

籃期に進化を
続けたPC-9800シリーズ

 ▼写真2　 PC-98HAとサイズ比較
用に置いた iPhone 7

『98 ハードに強くなる本 II』（技術評論社 1988）
『PC-9801 スーパーテクニック』（アスキー 1992）
『UNDOCUMENTED 9801/9821』（インプレス 1994）

 ▼写真1　 筆者が執筆したPC-
9800関連の書籍

84 - Software Design Dec. 2016 - 85

PC-98LTアーキテクチャです。画
面解像度は320×400ドットと横
方向が半分になっています。本体
重量は340g。今から20年以上も前
に、電子ブックリーダーを発売し
ていたというのは驚きですが、時
代の先を行き過ぎていたようです。

タブレットPC

　DB-P1と同じく1993年に発売
されたPC-9801P（98PEN）は、今
のタブレットPCをだいぶ分厚く
したような形状です。ワコム製の
ペンタブレットユニットを内蔵し、
プリインストールOSとして、Pen

DOS 2.0、Windows for Pens 1.1、
Go社PenPoint 2.0と3種類も用
意する意欲的な製品でした。
　非公開のPen BIOS（『UNDOCU

MENTED 9801/9821』に記載あ
り）では、ペンの座標位置取得は当
然のこと、ペンの傾きまで取得で
きる機能を持っていたことに驚き
ました。

日本版MCA/EISA
バス

　1990年に、PC-H98（HYPER 98）
シリーズが発表されました。ハイ
レゾ・ノーマル両用機で、NESA

バスという32bit対応の高速・高
機能バス（拡張スロット）を備えた
高級機です（写真3）。NESA（New

Extend Standard Architecture）
バスは、PC/AT機におけるMCA

（Micro Channel Architecture）バ
スあるいはEISA（Extended Indus

try Standard Architecture）バ ス
のような存在ですが、EISAと異
なり従来の16bit拡張ボード（Cバ
ス）用コネクタとNESAバスのコ

ネクタは独立していました。
　PC-H98は高機能ゆえの高価格
が市場で受け入れられず、1992年
発売のPC-H98 model105を最後
に、シリーズ終了となりました。
　NESAバス用の専用コネクタは、
1993年発売のMate Aシリーズの
ローカルバスコネクタに流用され
ています。
　そのMate Aシリーズのローカ
ルバスも、同時期にMate Xシリー
ズで採用されたPCI（Peripheral

Component Interconnect）バスに
取って代わられました。PCビジ
ネスでは、価格と互換性の要素が
非常に大きいという証左のひとつ
でしょう。

マルチメディアの
先端を行く

　PC-98GS（1991年発売）は、PC-

9800シリーズで初めてVGA解像
度（640×480 1677万色中256色）
をサポートした機種です。
　当時、非常に高価だったCD-

ROMドライブをはじめ、FM（Fre

quency Modulation）音源＋SSG

（Software-controlled Sound Gen

erator）音源、画面合成機能など、
マルチメディアPCとして考えられ
る機能を詰め込んだようなスペック
を持っていました。Windows 3.0A

とMacromedia（2005年にAdobe

に買収）Authorware Starという
ソフトをプリインストールしてい
て、マルチメディアタイトルのオー
サリング機として企画されました。
　大ざっぱな言い方をすると、PC-

98GSを低価格化したものが初代
PC-9821（98MULTi。1992年 発
売）で、これはその後のPC-9821

シリーズの原型と言えます。

Intel製PC-98
専用CPU

　切り口を変えて、特殊なCPUを
搭載した機種について触れてみ

ます。
　i386SL（i386SXをベースにISA

バス用周辺回路などを集積した省
電力CPU）をベースに、PC-9800

用として IntelとNECが共同開発
したのが i386SL（98）です。搭載
機種がPC-9801NS/T（1992年発
売）のみで終わってしまったのは、
共同開発がスムーズではなく、細
かなバグが多かったからだという
噂を聞いたことがあります。
　翌1993年には、i486SX（J）を搭
載したPC-9801NS/Rが発売され
ました。i486SX（J）は、i486SXの
外部データバス16bit版です。i486

SX（J）はPC-9801NL/R・Pにも
搭載されましたが、他メーカーで
は採用されておらず、PC-9800シ
リーズ専用品だったようです。
　Intel CPUではありませんが、
1990年に発売されたPC-98Do+

は、V30をハードワイヤード化し
たV33Aを搭載していました。
V33AはV30に比べて高速でした
が、主力機種が i386/80286に移行
する時期だったため、他の機種で
採用されることはありませんでし
た。｢

温故知新 ITむかしばなし
パソコンの揺籃期に進化を続けたPC-9800シリーズ

スペシャル

 ▼写真3　 PC-H98とNESAバス技
術説明書

86 - Software Design

第2話

はじめに

　最近、富士通が中国のパソコン
大手レノボとパソコン事業統合に
向けて調整中であることが報じら
れました注1。レノボといえば、すで
にNECとパソコン事業を統合して
おり、1980年代当初のマイコンの
ライバル2社が同じメーカーに統
合されるとは、当時には夢にも思
えないことでした。
　今回は、富士通FM-7と、そこに
搭載されたCPU 68B09（2MHz）
と、そのライバルのNEC PC-8801

のCPU Z80A（4MHz）のスピード
の違いについてのお話をしましょう。

FM-7とは

　1982年、8bitマイコンは、グラ
フィックが緻密になり画面表示の
高機能化が図られたのに対して、
それを描く8bit CPUのスピードは
従来のままで、ユーザは遅い描画
速度に我慢を強いられていました。
　1982年当時の8bitマイコンのグ
ラフィック描画は、CPUが直接に
表示用メモリ（以下VRAM）にアク
セスすることで描いていました。
　横640×縦200ドットごとに8

注1） 2016年10月7日現在。

色を表示するためのVRAMは
48KB必要なので、64KBのメモリ
エリアしかない8bit CPUでは半
分以上のエリアを占有してしまう
ことになります。FM-8ではサブ
CPUで、メインCPUのメモリエ
リアとは別エリアでVRAMのエリ
アを確保して描画もサブCPUが行
うような構成でした注2。したがっ
て、サブCPUを高速化すれば、描
画がそのまま高速化されることに
なります。
　1982年11月、FM-8注3の機能は
そのままに、メインCPUもサブ
CPUも高速な68B09を搭載した
FM-7が登場しました。本体価格
が126,000円と、FM-8の218,000

円に対して10万円近く廉価で、メ
インCPU、サブCPUともに動作
クロック周波数が2MHzと圧倒的
な高速化を実現していました。
　1982年当時のマイコンは、2月
に量産出荷されたNEC PC-8801

が、Z80A（4MHz）搭載で228,000

円、4月登場の日立ベーシックマスタ
レベル3 MarkIIは、初代レベル3

に対してキーボードの配色が変わっ
ただけでCPUは 6809（1MHz）の
ままで198,000円、そして5月に

注2） 2016年10月号の本連載参照。
注3） FM-8はメインCPUがMBL68A09

（1.2288MHz）、サブCPUがMBL
6809（1.008MHz）。

発売されたシャープMZ-2000は、
オプションのグラフィック機能を加

えると258,000円（本体218,000＋
グラフィックボード32,000円＋グラ
フィックメモリ32KB 8,000円）でし
たので、FM-7はホビーユーザに歓
喜の声で迎えられました。
　また、PSG注4音源も標準で搭載
され、ゲームの効果音を奏でる機
能追加も好評でした。しかし外見
的には、重厚さは陰を潜め、やや
小柄で軽い筐体となり、キーボー
ドも軽く安価なものに替えられて
いました。
　FM-7でもFM-8のキーを離し
た状態を検知できないという問
題注5はそのまま残り、アクション
ゲームを遊ぶには適したマシンに
はなりませんでした。しかし、当
時流行り始めたテキスト文字列を
打ち込んでゲームを進めるアドベ
ンチャーゲームにおいては、最適
なマシンとして認められ大人気を
博しました。

CPUのクロック周
波数と動作周波数

　FM-7の付属のマニュアルには、

注4） PSG（プログラマブル・サウンド・
ジェネレータ）。GI社製のチップで3
声同時に出力可能で、ノイズ音発生
の機能もあり、爆発音などを出力で
きる。

注5） 2016年10月号の本連載参照。

速水 祐（はやみ ゆう）　http://zob.club/　 twitter @yyhayami

富士通 FM-7とCPU動作周波数
〜搭載CPU 68B09（2MHz）はどこまで速いか〜

http://zob.club/

86 - Software Design Dec. 2016 - 87

クロック周波数8MHz、CPUの動
作周波数2MHzと記述されていま
す。内部を調べてみると16.128MHz

の水晶発振器があります。FM-7で
はこのクロックを1/2して8.064MHz

を68B09に供給しています。68B09

は、内部にクロックジェネレータを
内蔵していて、外部からのクロック
（EXTAL）を1/4にして2.016MHz

（周期約0.5μS）のEパルス（信号）
と1/4周期先行したQパルスを作成
して、周辺チップ、メモリ、バスの
同期信号としています（図1）。これ
らのパルスの周波数を動作クロッ
ク周波数と呼んでいるのです。
　CPUの基本となる動作は、

❶フェッチ（Fetch）：読み込み

❷デコード（Decode）：解析、解読

❸実行（Execute）

❹ライトバック（Write-back）

の4つの段階で成り立ちます。6809
では最初のマシンサイクル注6で❶
を処理し、次のマシンサイクルで
❷❸を同クロック内で実行します。
❸の実行は命令コードに続くデー
タの読み取り処理も含みます。
　メモリからの読み取りは、Eパ
ルスの立ち下がり注7でデータを
リードします。フェッチサイクル
❶で命令コード$86を読み取り、
次の実行サイクル❷❸で即値注8の
$05を読み取り、CPU内部でAレ
ジスタ注9に代入しています。即値
をレジスタに代入する命令は2マ
シンサイクルで処理可能であり、
2M Hzの68B09では、1μ秒で実
行できることになります。
注6） CPUから見た1動作が実行できる最

低の時間単位。
注7） 信号が1から0になるタイミング。
注8） 機械語内に直接書かれた数値。
注9） CPUが直接計算に使用する専用メモ

リ。

　それに対してZ80は、インテル
社80系CPUが外部に各種パルス
を作成するクロックジェネレータ
を使うことが一般的でしたので、そ
れにならい供給する外部クロック
周波数とクロックが一致します。
　Z80は、最初のマシンサイクルM1

でフェッチ処理を行い、ここで動作
クロック4周期を使い3周期（T3）の
立ち上がりでコードを読み取ります。
メモリの読み取りは半周期分フェッ
チのほうが短くなっており、ここは
68B09の2MHzと同じアクセスタ
イム以下のメモリが必要になるこ
とになります。最初のマシンサイ
クルM1のフェッチ処理で命令を
読み込み、次のM2サイクルは動
作クロック3周期を要して3周期
（T3）の立ち下がりで即値データを
読み込み、内部処理でA

レジスタにデータを代入
しています。
　ウェイトがないとする
と、即値をレジスタに代
入する命令は、68B09が
2マシンサイクルで1μ
秒、Z80Aが7動作クロッ
クで1.75μ秒かかること
がわかります。
　Z80は、データをCPU

内部に一時的に格納する
レジスタ数が多く、レジ
スタ間のデータ転送の命
令ではM1マシンサイクル
のみで処理が完了するた
め4動作クロック（1μ秒）
になり、処理スピードが
一気に上がります。それ
に対して6809では豊富な
アドレッシングモード注10

注10） 即値のほかに、値が入って
いる場所を示す方法。

を駆使したプログラムを組めば、
それぞれ高速なプログラム作成に
つながっていったのです。

CPUのその後

　その後Z80は、1985年10月に
発売されたシャープ MZ-2500で
Z80B 6MHzが搭載され、1986年
に発売されたPC-8801FHでは2

倍の8MHzクロックのZ80Hで動
くようになり、高速化が進んでい
きました。しかし、6809の方は
1984年に発売された日立S-1でも
68B09 2MHzのままであり、遂に
2MHzより高い周波数のマシンは
現れませんでした。｢

スペシャル温故知新 ITむかしばなし
富士通 FM-7とCPU動作周波数 〜搭載CPU 68B09（2MHz）はどこまで速いか〜

 ▼図1　68B09とZ80Aのタイミングチャート

EXTAL φ

E

Q

ADDRESS

DATA

EXTAL φ

ADDRESS

DATA

68B09 (2MHz)

Z80A (4MHz)

T1 T2 T3 T4 T1 T2 T3
M1 M2

0100 0101リフレッシュ
アドレス

Fetch

0100 0101

86 05

Execute

0.125μS
0.5μS

1μS

3E 05

0.25μS
1μS

1.75μS

アドレス　コード　 命令

0100 86 05 LDA #$05 ;A レジスタに即値 $05 を代入

アドレス　コード　 命令

0100 3E 05 LD A ,05H ;A レジスタに即値 $05 を代入

88 - Software Design

第3話

はじめに

　「ピーィーヒョロロローヒョロ
ロー、ガァーッガァーッ、ガッ……」

　これは何の音なのかおわかりに
なるでしょうか？　筆者と同世代
でIT業界にいた方なら日に何度か
の頻度で聞いていたと思います。
そうです、この音はTelebit社の
Trailblazerというモデムがダイヤ
ルアップしたときのネゴシエーショ
ン音です注1。
　インターネットがまだ一般的でな
かったころ、筆者たちはUUCP

注1） 音はメーカーや通信規格、変調速度
によって微妙に変わります。

（Unix to Unix CoPy）というUNIX

のシリアル回線を使った通信プロ
グラムによって一日に何度かリ
モートサイトと送受信し、バケツ
リレー方式で各サイトへメールや
NetNewsを受配信していました。
そしてこのモデムを介したアナロ
グ回線ダイヤルアップによる通信
接続は、その後のインターネット
接続に対しても利用されることに
なります。

電話回線でつなぐ
ダイヤルアップ

　現在、一般的にスマートフォン
やタブレット、またラップトップ
PCであっても電源を入れるだけ
であらかじめ設定されている携帯

通信網や無線LANなどと自動的に
接続され、みなさんはさまざまな
オンラインサービスを利用してい
ることでしょう。しかし、今から
十数年前までは個人がインター
ネットを利用する前に「インター
ネットに接続する」という手続きが
必要でした。すでにアナログ電話
回線とモデムを使うことはほとん
どないと思いますが、いまだにMS

Windowsのネットワーク接続コン
トロールパネルでは「ダイヤルアッ
プ」という項目が残っています（図
1）。

ターミナルサーバ

　そしてインターネット接続サー
ビスを提供するISP側にはユーザ
からのダイヤルアップを受信し、
インターネット接続を提供する
ターミナルサーバという機器が利
用されていました。ターミナルサー
バとは、もともとLAN上に接続さ
れたUNIXホストマシンに対し、複
数のVT端末を接続し、何人かで

1台のUNIXマシンを共有するため
の機器です。このターミナルサー
バはLAN接続用のEthernetイン
ターフェースと複数のシリアル
ポートを持っていました。このVT

端末を接続するシリアルポートに

伊勢 幸一（いせ こういち）　 twitter @ibucho

初期のインターネットダイヤルアップ
接続とユーザ認証

 ▼図1　Windows10のダイヤルアップ画面

88 - Software Design Dec. 2016 - 89

受信用モデムをつなぎ、リモート
からのダイヤルアップを受信して
通信路を確立するのです。当時の
ターミナルサーバにはXylogics社
のANNEXシリーズやEMULEX

のP4000シリーズなどがありまし
た。
　あるユーザがある電話番号にダ
イヤルアップしてインターネット
接続をすると、ほかのユーザは同
じ電話番号にダイヤルアップして
も通話中で接続できません。そこ
で当時のISPは複数の電話回線を
契約し、同時に複数のユーザに対
して接続サービスを提供できるよ
うにしていました注2。

ユーザ情報が異なって
いたターミナルサーバ

　通常ターミナルサーバのシリア
ルポートは4ポートから8ポート
しかなく、一度に提供する接続サー
ビス数を増やすには複数のターミ
ナルサーバを用意する必要があり
ます。ところがこのターミナルサー
バによる接続サービスにはユーザ

注2） 個人で ISPを運営しようとし、マン
ションに多くの回線を引き込んだ結
果、公安に踏み込まれたという事例
もありました。複数の回線を契約す
る個人宅はノミ屋か何らかの活動団
体の連絡係と疑われるようです。

認証の運用に問題がありました。
　ISPでは契約したユーザからの
ダイヤルアップだけに接続サービ
スを提供する必要があります。そ
のためターミナルサーバ内に接続
を許可するユーザ名とパスワード
を設定します。これらユーザ名・
パスワードはターミナルサーバ間
で共有することができないので、1

つの接続拠点内にあるターミナル
サーバのすべてに契約ユーザの情
報を書き込む必要があります。し
かし、その拠点が東京と横浜とい
うように離れた場所にあると、各
拠点間でユーザパスワード情報を
即時共有することが難しく、拠点
ごとに別々のユーザパスワード情
報を管理していました。したがっ
て、東京のユーザは東京の拠点の
電話番号に接続し、また横浜のユー
ザは横浜の拠点に接続する必要が
あります。

RADIUSの登場

　そのような接続先拠点の制限を
解決したのが、今やユーザ認証プロ
グラムとしてデファクトスタンダー
ド化したRADIUSです。RADIUS

はもともとISP向けに特化した数

多くのシリアルポートを擁するターミ
ナルサーバ（PortMasterシリーズ）
を開発販売していたLivingstone

社が実装したプログラムです。
Livingstone社は、その後買収され
てしまったため、現在その社名と
製品を見ることはできませんが、
RADIUSの仕様を提案している
RFC 2058、2138あたりに彼らの
痕跡が残っています。
　RADIUSをサポートしている
ターミナルサーバはダイヤルアッ
プしてきたユーザ情報がローカ

ルにない場合、LAN上にある
RADIUSサーバにその認証を移譲
し、RADIUSサーバ側でユーザ認
証を実行します（図2）。
　したがって、ターミナルサーバ
とRADIUSサーバとの間にTCP/

IP接続が確立されている限り、
ターミナルサーバが地理的にどこ
にあっても同じユーザ情報を共有
できることになります。ユーザか
らみると、ISPが提供するどの電
話番号にダイヤルアップしても同
じユーザ名とパスワードで認証さ
れるので、利用する場所に依存せ
ず、最も近い拠点の電話番号を利
用できるようになりました。
　今、多くの人には「インターネッ
トに接続する」という行為も意識も
ないと思いますが、それらはいま
だにコンピュータ内のプログラム
が代行しています。同じように今、
我々が行っているさまざまな作業
もやがてプログラムで自動化され
ていくことでしょう。そのとき、
自分にどんな作業が残っているの
かを考えると楽しくもあり、怖く
もあります。｢

温故知新 ITむかしばなし
初期のインターネットダイヤルアップ接続とユーザ認証

スペシャル

 ▼図2　RADIUS認証トポロジー

インターネット

ユーザ認証

モデム
モデム PC

ユーザ認証
RADIUS

ターミナル
サーバ

ISP LAN アナログ
電話回線網

90 - Software Design

第4話

はじめに

　1980年ごろ、パソコンでは
BASICやアセンブラが主流で、
LISPは汎用機注1やミニコン注2上
でしか動いていませんでした。こ
のころのLISPはタイプライタで
入力し、計算結果がアルファベッ
ト大文字で紙に印字されるもので
した。タイプライタをガシャガシャ
と打つ音と、プリンタがジジジと
印字する音で、本当に動いている
んだなという実感があったLISP

でした。今のようにカシャカシャ
と遠慮したキーボードを打つ音と、
無言で画面に表示される結果を1

注1） mainframe。基幹業務を処理する大
型のコンピュータのことでメインフ
レームとも呼ばれる。広い場所を占
有し、冷房が完備された部屋に設置
された。

注2） mini computer。汎用機よりも小型
なコンピュータであるが、それでも
入出力機器を合わせれば、一室を占
有する設備になり、ミニと呼ぶには
勇気が要った。

人で見るものではなく、まわりか
らも作業をしているのが一目瞭然
でした。本稿では、この時代の
LISPとそれを取り巻く汎用機や
ミニコンのプログラミングについ
てお話しましょう。

汎用機のLISPは
小さかった

　1970年代後半から1980年代前
半にかけて、LISPは汎用機やミ
ニコンで動作していました。当時
大学生だった筆者は、学内のミニ
コン（OKITAC System50/40）で
動作していたLISP50注3や、近く
の大学の大型計算機（FACOM

230-75）で動作していたUtiLisp注4

注3） LISP50は三重大学教授の太田義勝氏
によって開発されたLISPで、OKITAC
System50/40で動作していた。
LISP50はFORTRANで記述されてい
て、FACOM 230-38上で開発した
LISP38を移植したもの。

注4） UtiLispは東京大学教授の近山隆氏に
よって開発されたLISPで、FACOM
などの汎用機上で動作していた。
UtiLispはアセンブラで記述されてい
て、多くの大学で使われていた。

でLISPの初体験をしました。
LISP50とUtiLispの開発者2人
のおかげでLISPの初体験ができ
たのです。写真1は当時のLISP

のマニュアル、写真2はミニコン
です。
　筆者が最初に触れたLISP50

は、今から思えばメモリやディス
クなどの環境は極少で極貧でした。
LISP50のプログラムは10MB注5

のディスクパック2個に入ってい
ました。一方、リスト用のメモリ
は8kセル注6しかありませんでし
た。つまり、リストの要素が8,192

個しか使えません。LISPはこの
8,192個のリストの中にプログラ
ムとデータを格納しなくてはいけ
ません。これは非常に厳しいです。
10年ほど前に筆者が（スマホでな
く）携帯電話上に作ったLISPと比
べても2桁以上少ないものです。図
体は携帯電話の何倍になるかわか
らないほどですが。
　もちろんこれは作者の太田氏が

注5） 単位は間違ってい
ません。G（ギガ）
でなくM（メガ）
です。

注6） LISPでリストを
構成するための最
小単位で、データ
部と次のアドレス
部がペアになった
もの。たとえば
16bitマシンであ
れば、1セルは
32bitになる。

五味 弘（ごみ ひろし）　沖電気工業㈱　 mail gomi@gomi.info

LISP38 や UtiLisp、INTERLISP、KCL のマニュアル。なお
LISP38 のマニュアルは手書きだった

 ▼写真1　当時のLISPマニュアル

ミニコンという名前にも関わらず、一室を占有していた

 ▼写真2　 ミニコンOKITAC System50/60

汎用機のLISP
〜大文字でタイプライタで会話していたあのころ〜

90 - Software Design Dec. 2016 - 91

悪いのではなく、仮想記憶もない
時代のミニコンではしかたがない
ことでした。でもこの8kセルの中
でどのようにプログラムを作るか
が楽しかったのも事実です。実際
にこのLISP50の8kセルだけを使
い、プログラムの正当性証明シス
テムを構築していた先輩もいまし
た。

LISPの入出力は
すごいものだった

　最初に触れたLISP50は、今ふ
うの入出力でなく、タイプライタ
でLISPプログラムを打ち込み、
結果が紙に印字されるというもの
でした。今振り返れば、何という
レトロ感！　何という昭和感！
だったのでしょうか。LISP50の
次に触れたUtiLispは、すでにディ
スプレイにキャラクタとして表示
されるようになり、このレトロ感
がないのは残念でした。
　しかし、ディスプレイとタイプ
ライタで大きく違うことがありま
す。ディスプレイでは、表示され
た文字は誰に見られることなく、
恥ずかしい間違いを闇夜に葬り
去ってくれますから、Lisperとし
てのプライドも保てます。しかし
タイプライタでは印字結果が物理
的な紙に残ります。その紙を燃や
してしまわない限り、黒歴史とし
て残ります（ゴミ箱の中かもしれま
せんが）。
　タイプライタのキーボードと
ディスプレイのキーボードも天と
地ほどに違います。打鍵の重さと、
それ以上に打鍵音が違います。今
のキーボードのように軟弱なもの
ではありません。まさに硬派でし
た。実際に硬過ぎて指が疲れまし

たが。でもこの重さに慣れた筆者
はUNIXのキャラクタ端末を使う
ときも、VT-100系注7を選んでい
て、今でもHHK注8です。慣れって
恐ろしいものです。

革命的だった
プログラミング環境

　その当時の汎用機やミニコンで
は、プログラミングと言えば、紙
カードと紙テープでした。紙カー
ドにプログラムをパンチャー（カー
ドパンチマシン注9）で打鍵して穴を
開け、そのカードを1箱に詰め込
んでいました。またプログラムを
コンパイルしてリンクして実行す
るためのジョブコントロール文の
紙テープを探して、紙テープリー
ダーに挿入しました。そして、コ
ンソールタイプライタから実行さ
せるのですが、そのまま素直に行
くとは限りません。紙カードがジャ
ムる注10のです。気を取り直して再
び、実行！……でもエラーの文字
がラインプリンタに勢いよく印字
されます。もう一度、振り出しに
戻ることになります。
　この一連の喜劇と悲劇を横目に、
涼しい顔で眺めていました。紙テー

注7） DECのキャラクタ端末の1つで多く
売れた端末であり、キーボードのタッ
チが深く重いものであった。当時、廉
価版のVT-101はどこでも見かけた。

注8） Happy Hacking Keyboard。東京大
学名誉教授の和田英一氏とPFUが開
発したキーボードで、UNIX英字キー
ボード準拠で最小限のキーしか配置
されておらず、一部で絶大な人気が
ある。なお東大の和田研はUtiLispの
開発元の研究室。

注9） Card punch machine。紙カードに
穴を開けるマシン。キーボードで打
鍵すると紙カードに穴が開いた。こ
の作業をする人をパンチャーと呼ん
でいた。それからカードパンチマシ
ンのこともパンチャーと呼んでいた。

注10） 機関銃などで空になった薬莢が詰ま
ること。これからプリンタの紙が詰
まることや、紙カードリーダーに紙
カードが詰まることを意味する。

プリーダーの近くに、専用のタイ
プライタがありましたので、筆者
はこのタイプライタでLISPプロ
グラムを打ち込んで、その場でデ
バッグをして、バグも何もなかっ
たかのように、涼しい顔で再計算
をさせていました。
　LISPには構造化エディタがも
れなく内包されていました。構造
化エディタとはLISPのプログラ
ムやデータ構造（これをS式（シン
ボリック式）と呼んでいます）を意
識して、会話的に編集できるもの
でした。近くでコーディング用紙
にプログラムを鉛筆と赤鉛筆で書
き、それをパンチャーしていた人
たちと比べると革命的なものでし
た。しかしその後、構造化エディ
タはEmacsなどの高性能なテキス
トエディタにとって代わられるも
のになり、今のLISPには内包さ
れなくなりました。

おわりに

　今回は1980年代前半の汎用機の
LISPを見てきました。いかがだっ
たでしょうか。LISPプログラム
は昔も今も同じ思想で作ることが
できますが、その環境は天と地の
差がありました。このような環境
で今、流行の人工知能プログラム
の研究も行われていました。この
ころは機械学習ではなく、機械を
うまく使えるように人間が学習し
ているときでした。でもそれが楽
しい時代でした。今はメモリもディ
スクもプロセッサも無尽蔵に使え
る環境になっていますが、当時の
楽しみは少し減ったかもしれませ
ん。でも今のほうがもちろん楽し
く遊べます！｢

スペシャル温故知新 ITむかしばなし
汎用機のLISP〜大文字でタイプライタで会話していたあのころ〜

92 - Software Design

第5話

はじめに

　C言語は古くから使われ続けて
いる言語の1つで、とくに日本で
は昭和の終わりから平成にかけて
は大ブームが起こりました。今な
おCやC++言語を使う開発者が多
いのは、その時代から受け継がれ
た知識や資産があるためです。
　1987年にBorland International

社（当時、以下Borland）が発売し
たTurbo Cは、そのブームの中心
にいました。

Turbo Pascal

　もともとBorlandは、Turbo

Pascalという製品を販売していま
した。今でこそコンパイラや開発
環境は、高機能なものを無料で入
手できますが、当時は「ちゃんとし
たもの」が高額で販売されている
か、機能が制限されたものが個人
レベルで無料～安価で提供されて
いた程度でした。プログラムを編
集するためのエディタすら、別個
に販売されていた時代です。
　その中で、Turbo Pascalは安価
（最初のバージョンは$49.99～
$69.99注1）にもかかわらず、コン
パイラとエディタを一体化させた

開発環境を持っていました。コン
パイラの性能は抜群で、高価なも
のに引けを取らないどころか、ス
ピードも効率も圧倒的でした。
　また、コピープロテクトのない
製品があり、「書籍のように扱う」
というユーザ本位のライセンスも
特徴的でした。
　Turbo Pascalは人気を博しまし
たが、残念なのは、それが「Pascal」
だったことでしょう。Pascalは
もっぱら「教育用の言語」と評され
ており、プログラミング学習や趣
味では使われるものの、業務用プ
ログラム開発の主流に食い込むこ
とはできませんでした（後年、
Pascalを使うDelphiという画期的
な製品が登場しますが、本稿では
割愛します）。

C言語の隆盛

　C言語は、早くから注目されて
いました。『プログラミング言語
C』、いわゆるK&R本の訳書が登
場したのは1981年のことです。C

言語はもともとUNIXを記述する
ために開発された言語で、それく
らい実行速度が速く「高級言語なの

に低レベルの処理ができる」といっ
た特徴があります。
　C言語への人気が高まる中、数
多くのC言語製品が登場しました
が、性能の良いものは高価であり、
比較的安いものは制約があったり
性能が悪かったり、クセ（あるいは
不具合）がある、というものでし
た。「Turbo PascalのようなCコ
ンパイラがあればいいのに」という
願望は常にありました。

Turbo Cの登場

　そして1987年、ついにTurbo C

1.0が登場しました。Turbo Cが
「コンパクト」だったのは$99.95と
いう価格だけで、コンパイルの速
度も作成されるプログラムの性能
も高額な製品に匹敵するものです。
エディタやコンパイラ、リンカと
いう開発に必要な一通りの機能を
単独のツールとして統合開発環境
（Integrated Development Environ

ment；IDE）と呼ぶようになった
のはTurbo C 1.0（および同時に発
売された Turbo Pascal 4.0）が最
初です。
　Turbo Cは、Microsoft C（当時）
と並ぶ人気を博し、Borlandとし
てもTurbo Pascalを上回る大ヒッ
ト商品に成長しました。

注1） Turbo Pascal発売の1983年の為替
レートは1ドル約240円、Turbo C
発売の1987年では1ドル約140
円。

大野 元久（おおの もとひさ）　 twitter @mohno

IDEのさきがけとなった
Turbo PascalとTurbo C

92 - Software Design Dec. 2016 - 93

日本における状況

　もともとTurbo Pascalは、さま
ざまなマシンに搭載されていた
CP/MというOS向けに作られて
いたものです。キーボードや画面
に対する入出力は汎用性の高い方
法が使われており、そのままPC-

9800シリーズなどの日本のパソコ
ンで使うことができました。
　ところが、Turbo Cの統合開発
環境はIBM-PCに特化して作られ
ていました。開発機能は格段に向
上しましたが、Turbo Pascal（バー
ジョン3.0以前）のように、そのま
ま日本のパソコンで使うというこ
とはできませんでした。
　そんな中、月刊『The BASIC』誌
（技術評論社）にSIM（星野操氏作）
というツールが掲載されました。
これはIBM-PC向けに開発された
ソフトを、PC-9800シリーズで使
うためのツールです。Turbo Cも
実行ファイルを少し書き換えるだ
けで使えるようになるため、筆者
を含め、日本語化を待ちきれずに
SIMを使ってTurbo Cに触り始め
た、という人も多いでしょう。
　日本語版が発売されたのは
Turbo C 1.5からでしたが、この
日本語化は、当時Borlandの正規
代理店だった2つの会社によって
独立に行われました。Borlandと
しては2社に競わせて、より売上
の高いほうに今後の日本市場を託
す意味もあったのでしょう。結果
としてマイクロソフトウェア・ア
ソシエイツ（当時）が優位に立ち、
Borlandの日本法人（ボーランド
ジャパン）設立のパートナーとなっ
たのです（1989年4月）。

ライブラリ

　最初のバージョンでは、IBM-

PC固有の機能を使っていたのは
統合開発環境だけでしたが、次の
バージョン（Turbo C 1.5）では、
IBM-PCの画面（コンソールやグ
ラフィック）を直接操作する機能が
ライブラリに含まれました。当時、
この手の機能は製品自身ではなく、
サードパーティから別売りされる
のが一般的でした。Turbo Cは、
それを製品の一部として取り入れ
たのです。追加の出費なしで、こ
うした機能が利用できるのも魅力
になっていました。
　また、BorlandはTurbo Cのラ
イブラリのソースコードも販売し
ました。今では考えにくいかもし
れませんが、当時、ほとんどのC

言語製品はライブラリのソース
コードは他社にノウハウを盗まれ
ないようにするため非公開なのが
当たり前でした。「どんな処理をし
ているかわからないものは使えな
い」と、標準ライブラリを使わず独
自に機能を実装することもあった
くらいです。
　Turbo Cは、ライブラリのソー
スコードを公開することで、開発
者が自由に中身を確認し、改変で
きるようにしたのです。
　実際、ソースコードを見られる

ことで、Turbo Cのライブラリ関
数が速い理由もすぐにわかりまし
た。Turbo CにはC言語のプログ
ラム中にアセンブリ言語を記述で
きる機能がありましたが、ほとん
どの関数はそうしたアセンブリ言
語を使って記述されていたのです。

ANSI C

　Turbo C、あるいはC言語その
ものが幅広く受け入れられた理由
の1つにANSI Cという規格があ
ります。それまでのC言語製品は、
それぞれ文法や関数の機能に少な
からず違いがありました。これで
は開発者が安心できないと、業界
を挙げて規格化が進み、1989年に
ANSI Cが制定されました。
　規格化により、製品の違いに悩
まされることも少なくなり、C言
語の普及がいっそう進みました。
Turbo Cは規格化が進む段階から
ANSI Cへの対応に積極的であり、
安心できる選択肢になりました。

おわりに

　かつて、休日にプログラミング
する人たちのことを「サンデープロ
グラマ」と呼んだ時代がありまし
た。Turbo PascalやTurbo Cは、
そうした人たちの味方であるとと
もに、仕事でも使える製品として
成長していきました。
　開発ツールがソフトウェア市場
の一端を担っていた時代に、先進
的な機能を提供し続けることがで
きたのは誇らしく、利用者の心に
Turbo PascalやTurbo Cが刻ま
れているのであれば、当時の関係
者としてうれしいことです。｢

温故知新 ITむかしばなし
IDEのさきがけとなったTurbo PascalとTurbo C

スペシャル

 ▼図1　 日本語版Turbo C 2.0の画
面（同製品のカタログより）

94 - Software Design

第6話

VZエディタとは

　VZエディタは、ビレッジセン
ターが1991年頃から発売していた
MS-DOS用のテキストエディタで
す。当時のエディタとしては画期
的だったメモリ常駐モードを備え、
ÌESCÔキーだけで呼び出せたり、
DOSの簡易シェル機能のような、
バックスクロール（消えてしまった
画面を記録して呼び出す）が扱えた
り、マクロ機能を有しており、い
ろいろな機能追加ができました。
当時は数々の賞をとっている画期
的なエディタでした。

はじめに

　よく「VZの○×機能は良かった
ですね !」と言われますが、実はよ
く覚えていなかったりします（笑）。
ひと仕事終えると、苦労や辛いこ
とはすっかり忘れちゃうんですよ
ね。そういう性格だからこそ、懲
りずに何十年もプログラマやって
いられるのかな？
　VZのWindows版を開発してい
る夢をよく見ます。目が覚めたと
きは、せつないです……。未だに
バージョンアップを続けている
WZ EditorやMIFESのニュース

を見かけると、「よく続くなぁ
……」と感心する一方、ちょっと悔
しいです（笑）。
　ただ、プログラマはIDEでコー
ディングするのが主流になって、
もはやエディタをメインツールと
して使うのはライターの方くらい
でしょう。ちなみに現在、筆者は
Eclipseがメインで、C++のみ
Visual Studioの無償版を使ってい
ます。先日、Markdownの編集用
にVisual Studio Codeをちょっと
かじりました。この原稿は秀丸で
書いてます。

VZの誕生

　さて、VZを作った頃の話を少
ししましょう。筆者が初めて買っ
たパソコンは、PC-9801U2でし
た。プログラムを開発するために
は、当然、まずエディタから作り
ます（笑）。当時、最初に使ってい
たエディタは、大学のゼミのPC-

9801で使っていたシンプルなスク
リーンエディタでした。UNIX系
やWordStar注1といった正統派の
エディタを使った経験はなく、タッ
チタイピングもできなかったので、

注1） テキストベースのワープロ。最初は
CP/M上で動作していたが、MS-DOS
版も発売された。

矢印キーでカーソルを移動し、左
手側の ÌCtrlÔキーで編集、というス
タイルです。これはまわりの玄人
衆からは評判が良くなく、渋々
WordStarふうのキーアサイン（ダ
イヤモンドカーソル注2や2スト
ロークコマンド注3との導入など）に
したわけです。今から考えると、
後年のMacに始まる標準エディタ
の編集スタイルには、むしろ筆者
のほうが近かったなぁと思います。
　そして最初にできたのが、偶然
にも（笑）、9,801byteのEZエディ
タです。それを最近の本連載を執
筆されている速水祐氏のマイコン
クラブ注4でデモする機会があり、
そこのメンバーから指摘されたさ
まざまな意見を取り入れて完成に
漕ぎ着け、某雑誌社から発売の運
びとなりました。サイズは倍の
20kbyteになっていました。その
後、雑誌社の経営が思わしくなく
なり、印税の支払いも滞るように
なったため、ビレッジセンターか
らVZエディタとして新しく発売
することになりました。実は、ビ
注2） ÌCrtlÔキーとその近くのE（上）、S（左）、

D（右）、X（下）を同時に押すことで
カーソル移動を行う方法。菱形に並
んだキー配列からダイヤモンドカー
ソルと呼ばれた。後にWindows3.1
が ÌCtrlÔXにカット機能を割り振った
ために使われなくなった。

注3） ÌCrtlÔキーとQキーの同時押しのあと、
特定のキーを押して行う操作。

注4） http://zob.club/

兵藤 嘉彦（ひょうどう よしひこ）　 twitter @c_mos

VZエディタ開発秘話

http://zob.club/

94 - Software Design Dec. 2016 - 95

レッジセンターの中村満社長と引
き合わせてくださったのも、速水
祐氏です。氏と出会わなければ、
VZエディタ（図1、2）が世に出る
ことは、決してなかったでしょう。

VZの機能紹介

　ここでVZの筆者お気に入りの
機能を紹介します。まずは「テキス
トスタック」。当時、クリップボー
ドやUndo/Redoという概念は、ま
だ知りませんでした。テキストス
タックには複数の行またはブロッ
クを格納できるため、1行削除を
連打し、カーソルを移動して、今
度は1行挿入を連打することで、範
囲指定することなく、簡単に複数
行の移動ができました。
　次に「ヒストリー機能」。検索文
字列やコマンドライン入力でå

キーを押すと、過去に入力した文
字列を順次表示します。さらに、
stråと打てば、「str」で始まる文
字列だけを表示します。後者はと
ても便利な機能だと思いますが、
Windows上のDOS窓（コマンドプ
ロンプト）では未だに使えません。
　逆に、これは失敗したなぁとい
う機能もあります。次ページ／前

ページコマンドが、3モードのト
グル注5になっていた点です。タイ
トル行サーチは、「* / ;」などの
記号で始まり、直前が空行の行に
ジャンプする機能です。プログラ
ム上の関数の頭出しを意図してい
ます。しかし、これをいちいち切
り替えるのはやはり面倒でした。
モードというのはUI的に素性が良
くなかったようです。

おわりに

　過去の自分に戻って、人生をや
り直す……というお話があります。
今の記憶を持ったまま30年前に
戻ったら……、もう一度アセンブ
ラでエディタを書く根性なんて、
もちろんありません（笑）。といっ
て記憶もリセットしたら、また同
じ人生を辿るだけでしょう。
　大学に入ってマイコン（H68/

TR）と出会ってからの約10年間、
起きている間はひたすらプログラ
ム書いたり、考えたりしていまし
た。まったく新しいRPGを作る、
という野望もありました。そのた
めのエディタでしたが、結局そこ
注5） 通常の全画面／半画面送り、タイト

ル行サーチ、文字列サーチの3モー
ドです。

で力尽きてしまいました。まぁ自
分にはツール作りが向いていたの
かもしれません。
　先日、新入社員のプログラミン
グ研修をお手伝いする機会があり
ました。プログラムが苦手な人の
間違い方には、興味深い共通点が
あります。プログラマ向きの性格っ
て何なんでしょう。おそらく、コー
ド、ツール、棲む空間が、もっと
使い勝手がよくならないか、快適
にならないか、考えずにはいられ
ない性格です。与えられたモノを
漫然と頑固に使い続けている人の
いかに多いことか。常に工夫し続
ける、それがプログラマだと思い
ます。
　最後にネタを1つ。NHK BSで
新世紀エヴァンゲリオンのテレビ
シリーズが始まりました。第7話
のJAというロボットが起動する場
面で、コンソールをよーく見てく
ださい。VZのおまけのメモリ表
示ツール「VMAP.COM」の画面に
そっくりです（笑）。VZが人々の
記憶から忘れられても、筆者の生
きた証はここに刻まれています
……。｢

温故知新 ITむかしばなし
VZエディタ開発秘話

スペシャル

どこかで見たことのあるゲーム

 ▼図2　VZエディタのマクロ実行画面

モードメニューを表示したところ

 ▼図1　VZエディタの画面

96 - Software Design

第7話

はじめに

　30年前、筆者が所有していたマ
シンは SHARPのMZ-700でし
た。ところが、このマシンはグラ
フィックス機能がありません。文
字しか表示できないのです。プロッ
タプリンタ注1を使えば紙の上で

は絵は描けますが、ほかのマシン
のようにディスプレイ上に、自由
にグラフィックを描くことは夢で
した。

ベクターと
ピクセル

　開発者のみなさんも、図やイラ
ストを描く場面はあるかと思いま
す。表計算ソフトとして使われる
Excelでもいろいろな図形が描け
ます。Excelを簡易的なグラフィッ
クスソフトとして使う人もいるで
しょう。
　グラフィックスソフトは大きく
分けてピクセル形式のものとベク
ター形式注2のものがあります。
1980年代前半のコンピュータの多

注1） プロッタとも呼ばれる。ヘッドの代
わりにペンを使って線を描くように
印刷するプリンタ。

注2） 最近のベクター形式は、滑らかな線
で結べるスケーラブルなデータ形式
を指しますが、本稿では座標を指定
して線や図形、塗りつぶしを行うも
のをベクター形式と呼んでいます。

くは 320× 200／640× 400pixel

サイズの画面解像度で、同時に可
能な発色数は8色（黒、青、赤、紫、
緑、水色、黄、白）でした。
　当時はお絵かきソフトがほとん
どなく、BASICなどのプログラム
を使ってグラフィックを表示して
いました。この場合、座標をもと
にして描画するのでベクター形式
になります。ゲームではデゼニラ
ンド注3など多くがベクター形式を
採用していました。ベクター形式
は座標データ+αだけでデータ量
が少なくて済むので当時のメモリ
が少ないマシンにとっては好都合
だったのです。

8bitから
16bitへ

　1980年代中期になると、記録メ
ディアとしてフロッピーディスク
（FDD）が一般的になりました。大
容量のデータを扱えるようになり、
サイズの大きいピクセル形式の画
像データを、そのまま画面に表示
できるようになりました。スキャ
ナで取り込んだ画像を修正しFDD

に記録しておきそれを直接転送す
ることで、高速に画面表示するこ
とが可能になりました。これによ

注3） ハドソン社による某ネズミ系テーマ
パークをもじったゲーム。

り表現の幅が格段に広がりました。
ゲームでは、日本ファルコムが販
売していたアステカが、データを
ディスクから転送し表示しており、
瞬間画面表示と謳

うた

っていました。
後に同社の知名度を向上させた
Xanadu（ザナドゥ）でも同様の手法
が使われていました。タイトル画
面でキャラクタがエフェクトとと
もに格好良く表示されていくのは
今でも記憶に残っています。
　多くの画像データが扱えるよう
になると、必要になるのがお絵か
きソフトです。それもベクター形
式ではなく1pixel（ドット）ごと自
由に点を描けるピクセル形式のお
絵かきソフトです。1980年代中期
になるとパソコンも 8bitから
16bitマシンに移行していきまし
た。PC-9801、X68000、FM

TOWNSなど8bitマシンとは比較
にならないパワーを持っていまし
た。そんな中、登場したお絵かき
ソフトがZ's STAFF（ジーズス
タッフ）でした。X68000版はZ's

STAFF PRO-68Kという名前で
販売されていました。当時、最強
とまで言われたZ's STAFFです
が、残念ながら金欠で買えません
でした。高額なX68000を買って
貧乏になり過ぎた、というのもあ
ります。X68000は65,536色同時

古籏 一浩（ふるはた かずひろ） Twitter @openspc

あこがれの
グラフィックスソフト

96 - Software Design Dec. 2016 - 97

発色可能でしたが、富士通の
FM77AV40はさらに多くの色（26

万色中64,000同時発色）を表現で
きます。実はFM77AV40も購入
したのですが、いまだに未開封の
まま家にあります。

MacPaint

　もう1つ、1980年代中期で欠か
せないお絵かきソフトがあります。
それはMacintosh用のMacPaint

（マックペイント）です（写真1）。
MacPaintは白黒のお絵かきソフト
です。当時のマシンは8色以上表
現できるのが一般的でしたが、
Macintoshは白黒でした。当たり
前ですが、白黒よりも多色のほう
が表現力は上に決まっています。
決まっているはずなんですが、
MacPaintを使うとあら不思議。白
黒なのに意外なほどの表現力。お
まけにすごく描きやすい。これは
マウスの影響も大きかったのかも
しれませんが、すらすらと絵が描
けることは驚きでした。
　そのあと、会社にMacintosh II

が導入されPixelPaintというお絵
かきソフトがインストールされて
いました。時代としては Z's

STAFFと同時期ですが、使って
みてあまりの凄さにビックリ。フ
ルカラーでお絵かきができ、斜め

グラデーションなども可能でした。
なげなわツールで領域をくり抜い
て移動なんてのも楽々。おまけに
高速でスムーズ。日本と海外の差
を感じた瞬間でした。

花子とIllustrator

　1980年代中期のベクター形式の
ソフトとして、ジャストシステム
が販売していた花子があります。
筆者は仕事で回路図などを描くと
きなどに使っていました。けっこ
う描きやすいなあと思っていまし
たが、Macintoshが導入され、Mac

Draw（写真2）を使った瞬間に花子
で何かを描くという選択肢がなく
なりました。描きやすさがあまり
に違いました。しかし、MacDraw

は精度が足らずPostScriptプリン
タ（レーザープリンタ）で印刷する
と線がはみ出したり、文字が期待
する位置に表示されなかったりと、
いくつか問題がありました。
　そこでPostScriptプリンタをフ
ル活用できるグラフィックスソフ
トであるAdobe Illustrator 1.0（英
語版）を導入しました。最初は
Adobe独特の職人っぽい操作方法
に慣れず四苦八苦しました。慣れ
てくると、けっこう使いやすいソフト
です。筆者は今でもIllustratorを
愛用しています。

　そしてIllustratorのあとに、ラ
イバルソフトとなるAldus Free

Handが登場します。Illustratorは
作図には便利でしたが、イラスト
を描くのには向いていませんでし
た。FreeHandのほうがイラスト
を作るのには向いていたような感
じがありました。そんなFreeHand

もさまざまな事情により今ではな
くなってしまいました。

終わりに

　1990年代に入ると有名な
Photoshopが登場します。初期
バージョンはたしかPhotoshop

1.0.7だったと思いますがレイヤー
機能などはなく本当に写真のレ
タッチ程度しかできませんでした。
また、当時のマシンでPhotoshop

を扱うのは荷が重くハードディス
クから、ゆっくりと1ラインずつ
画像が転送されてくるのを眺める
ほどでした。
　30年前と比べてグラフィックス
ソフトは格段に進歩しました。し
かし、いくらすごいグラフィック
スソフトを持っていても、自分に
絵心と画力がないので宝の持ち腐
れです。筆者は、以前から絵が上
手に描けないのはグラフィックス
ソフトが悪いのだと思っていまし
たが、結局悪かったのは地道に絵

の練習をしない自
分のほうでした。
やはり地道な努力
は大事なのです。
｢

温故知新 ITむかしばなし
あこがれのグラフィックスソフト

スペシャル

 ▼写真1　MacPaint ▼写真2　MacDraw

98 - Software Design

第8話

はじめに

　今ではオープンソースの概念は
広く知られていますが、昔からIT

の世界にいる人達にとっては後天
的に得た言葉です。本稿では、オー
プンソースが日本にやってきたこ
ろのことを紹介します。

オープンソースの
来日

　オープンソースという言葉が作ら
れたのは1998年ぐらいですが、筆
者にとっての初見は、1998年11月
に行われたThe Perl Conference

Japan注1（オライリー・ジャパン主
催）におけるティム・オライリー氏
の講演でした。証拠はありません
が、オープンソースの概念が日本
国内で紹介されたのは、これが最
初かもしれません。にもかかわら
ず、筆者をはじめ聴衆の多くは、
おそらくその考え方をすぐに理解
できたと思われます。というのは、
もともとインターネットの世界で
は、ソフトウェアのソースコード
を公開することは普通に行われて
いたからです。つまりオープンソー
スとは、技術者達の間で暗黙の内
に共有されていた考え方に後から
注1） http://www.oreilly.co.jp/pcjp98/

名前がついたものであり、それゆ
えに広く受け入れられたのではな
いかと考えられます。
　オープンソースの来日と前後し
て、1990年代に入ると各種ソフト
ウェアのユーザ会が設立されるよ
うになりました。ちょうど日本国
内におけるインターネットの普及
が進んだ時期であり、メーリング
リストや掲示板などネットを介し
て情報交換ができるようになった
ことが、ユーザ会の発展を促した
のです。

jusを取り巻く状況と、
コードネーム「まつり」

　jus（日本UNIXユーザ会：Japan

UNIX Society）は、1986年から10

年間に渡り、UNIX機器およびソ
フトウェアの展示会・UNIX Fair

を開催してきました。しかし、安
価なWindowsマシンの登場による
UNIXのシェア低下とともに、
UNIX Fairは終了し、後継イベント
として1997年に開催したNetwork

Users'も惨敗に終わってしまいま
した。
　そのころから jusでは、商業的
な展示会とは異なる、エンジニア
たちが持ち寄った技術を見せ合う
お祭りのようなイベントを模索し
ていて、それを「まつり」と仮称し

ていました。また、当時はFree

BSDやLinuxなどのPC-UNIXが
広まりつつある時期で、秋葉原で
PC-UNIXマシンを販売していた
「ぷらっとホーム」と一緒にイベン
トを企画していました。そこへオー
プンソースがやってきたことで、一
気に開催の機運が高まったのです。

まつり開催へ

　「まつり」の開催にあたり基本線
と考えていたのは、仕事でも趣味
でも来場できるように、

・	金曜・土曜の2日間開催する

・	日本最大の電気街である秋葉原

で開催する

・	各種ユーザ会に集まってもらっ

て展示やセミナーをしてもらう

ことでした。とくに会場に関して
は、IT業界だけでなく一般の方々

日本UNIXユーザ会 http://www.jus.or.jp/
法林 浩之（ほうりん ひろゆき）　hourin@suplex.gr.jp

オープンソースの夜明けと
「まつり」

 ▼写真1　 第1回まつりのステージ。
スクリーン右で司会をして
いるのが筆者

http://www.jus.or.jp/
http://www.oreilly.co.jp/pcjp98/

98 - Software Design Dec. 2016 - 99

にも見てもらうことを狙って、秋
葉原の中央通りに面した廣瀬本社
ビルのイベントホールをメイン会
場として利用しました。
　イベント名称は開催直前まで悩
みましたが、オープンソースとい
う言葉の目新しさを買って「オープ
ンソースまつり '99 in 秋葉原」注2

としました（写真1、2）。日本Linux

協会（jla）も主催に加わり、jus、ぷ
らっとホーム、jlaの三者共催で、
1999年11月12、13日（金、土曜）
にまつりは決行されました。14件
のセミナー、20件の展示、21件の
ステージセッションを行い、2日
間で7,300人を動員したのです。

2回しか
できなかった理由

　オープンソースまつりは、我々
の世界を知ってもらうという意味
では成功しましたが、財政的には
非常に苦しいものでした。今でこ
そオープンソースやコミュニティ
主催のイベントにも、多額の協賛
金が出るようになりましたが、こ
の時代はまだオープンソースを事
業とする企業はごくわずかで、こ
の種のイベントへの協賛はほとん
ど得られませんでした。また、大
規模なイベントをボランティア

注2） http://www.jus.or.jp/matsuri/
index.html

ベースで動かすノウハウがなく、
事務的な部分をイベント業者に委
託していたため、多額の運営委託
費を支払っていました。その結果、
初回も2回目（2001年2月）注3（写
真3、4、5）も1千万円近い赤字を
計上し、開催を重ねられる状況で
はなくなってしまったのです。

まつりの遺伝子

　こうしてまつりは2回で終了し
ましたが、イベントとしてはエン
ジニアの心をつかむものだったの
で、自分たちもあれをやりたいと
いう動きが各地で出てきました。
たとえば大阪では、2002年から
「関西オープンソース＋フリーウェ
ア」が開催され、現在も関西オープ
ンフォーラム注4として継続してい
ます。
　2004年からはオープンソースカ
ンファレンス注5が始まり、こちら
は全国展開して今も健在です。さ
らにコミュニティ主導のイベント
は、オープンソース以外の分野に
も波及し、協賛してくれる企業も
増えたので、今では年間を通して
数え切れないほどのイベントが開
催されるようになりました。

注3） http://www.jus.or. jp/matsuri
2001/index.html

注4） https://k-of.jp/
注5） http://www.ospn.jp/

伝えたいこと

　今ではオープンソースの誕生後
にITの世界に入った人も多く、そ
ういう人々にはオープンソースは
当たり前の概念と思われるかもし
れませんが、そうではないのです。
先人たちがさまざまな苦労や痛い
思いをしながら普及に尽力し、今
日の地位を勝ち取ってきたのです。
オープンソースまつりは、その一
端を担ったにすぎませんが、日本
のオープンソースの歴史には欠か
せない出来事の1つであり、今に
して思えばこのころがオープン
ソースの夜明けだったと思います。
かつて、こういう行事があったこ
とを知っておいてもらえるとうれ
しいです。｢

温故知新 ITむかしばなし
オープンソースの夜明けと「まつり」

スペシャル

 ▼写真4　第2回まつりのステージ

 ▼写真5　 オープンソースまつり
2001のパンフレット

 ▼写真3　第2回まつりのメイン会場 ▼写真2　第1回まつりのメイン会場

http://www.jus.or.jp/matsuri/index.html
http://www.jus.or.jp/matsuri2001/index.html
https://k-of.jp/
http://www.ospn.jp/

100 - Software Design

最終話

学内の
インターネット

　筆者は1993年に中学を卒業し
て、ロボコンに出るべく舞鶴工業
高等専門学校（舞鶴高専）へ入学し
たのですが、ロボコンの傍

かたわ

らCAD

システムのパソコンやネットワー
クにどっぷりはまりこみ、2年生
だった1994年ころには学内LAN

上に自分のサーバを構築して遊ん
でいました。
　そのころは、ちょうどAT&T

Jensや IIJなどがダイヤルアッ
プ注1によるインターネット接続
サービスを始める時期で、舞鶴高
専はまだインターネットに常時接
続されておらず、UUCPで1日1

回だけメールのやりとりができる

注1） 電話回線とモデムでネットワークに
接続する方法。

という環境でした。
　なお学内のLANは、通称イエ
ローケーブルと呼ばれる同軸ケー
ブルを使った10MbpsのEthernet

で、ケーブルに「バンパイアタッ
プ」と呼ばれる針を差し込んでノー
ドを増設していました（写真1）。ち
なみに、バンパイアタップの差し
込みに失敗すると同軸ケーブルの
中心線を切断してしまって通信が
できなくなり、とてつもなく怒ら
れるので、非常に慎重にやってい
たというのは舞鶴高専時代の語り
草です。
　そこにつないでいたサーバは、当
初Sun-3という古いワークステー
ションで、ビックリするくらい大
きなカセットをドライブに差し込
んで、OSインストールからネット
ワーク設定、サーバ構築を行って
いました。
　その後、DECのAlphaという

サーバが研究室に
入り、今度はそれ
をおもちゃにして
いたのですが、コ
ンパイラを始め、
多くのソフトウェ
アが非常に高価
で、何百万円もす
るものもザラだっ
たので、学生の身

分で遊ぶにはなかなかたいへん
だったと記憶しています。

オープンソースとの
出会い

　商用ワークステーションやサー
バ、そしてソフトウェアが非常に
高かったこともあり、FreeBSDや
CERN httpdなどのオープンソー
スを使って自分のパソコンをサー
バにすることにしました。これに
より安価で高速な環境と、たくさ
んの機能が得られるようになりま
した。
　とはいえ、当時のオープンソー
スはまだ枯れたものではなく、か
つFreeBSDはUNIXライセンス
の問題もあって、技術的にも法的
にも不安定な状況にありました。
またFreeBSD 1.Xでは、米国の暗
号化規制もあって、/etc/passwd

のパスワードが暗号化されていな
いという、今から思うととんでも
ない仕様になっていました。
　このような状況だったので、常
に新しいバージョンのオープン
ソースを追い求めるという状況に
あったのですが、そのダウンロー
ドが課題になっていました。
　学内LANは、未だにインター
ネットに常時接続されていなかっ
たので、LinuxやFreeBSDのパッ

田中 邦裕（たなか くにひろ）　さくらインターネット㈱　 twitter @kunihirotanaka

オープンソースと
コミュニティ

By No machine-readable author provided. Alistair1978 assumed (based on
copyright claims). - No machine-readable source provided. Own work assumed
(based on copyright claims)., CC BY-SA 2.5, https://commons.wikimedia.org/w/
index.php?curid=426331

 ▼写真1　バンパイアタップとケーブル

https://commons.wikimedia.org/w/index.php?curid=426331

100 - Software Design Dec. 2016 - 101

チを取得する際には、archieとい
う公開FTPサーバのファイル検索
ができるシステムと、ftpmailとい
うメール経由でのファイル取得が
できるシステムを使い、メールを
使ってファイルを取得していました。
　そのため、「archieで検索をメー
ルで送信して、返信があるまで2

日」「ftpmailで送信してuuencode

されたファイルを受け取るまでに
2日」「コマンドを間違えていたら
やり直し」といった感じで、1週間
くらいかけてパッチを取得してい
たことを思い出します。まるで郵
便のようなレスポンスでデータの
やりとりをしていたので、1996年
に学内のネットワークがインター
ネットへ常時接続されたときの感
動は忘れられません。
　自分のパソコンから、自由に世
界中のサーバに接続できるという
のは本当に衝撃で、意味もわから
ずCERNやNASAなどのホーム
ページへアクセスしていたのは良
い思い出ですし、自由にオープン
ソースやパッチをダウンロードで
きるようになったのは本当に感動
しました。
　こう思うと、オープンソースの
発展とインターネットの発展とい
うのは、重なり合う部分があるなぁ
とひしひしと感じます。

コミュニティ活動

　そのころ、CERN httpdよりも
良いWebサーバソフトウェアがあ
るということでApacheに手を出
したのですが、当時はバージョン
がまだ1.0になったばかりでした。
a patchが語源ともされるApache

はまだまだバグが多く、筆者も

しょっちゅうバグレポートや修正
パッチを送っていました。
　余談ですが、オープンソースの
価値は無料であることだけではな
く、自分でソースを見ながらバグ
潰しができるという利便性や、バ
グレポートやパッチを送ってソー
スへ取り込まれたときの感動を得
られるなど、ITエンジニアの成長
過程において重要な価値を持って
いると思います。
　また、筆者は当時東大におられ
た安東孝二氏などと「日本Apache

ユーザ会」というコミュニティを立
ち上げ、Apacheの日本語ドキュメ
ントの翻訳や、MLの開設、apache.
jpによる情報提供などを行ってい
ました（図1）。そのため、このと
きに出会った方々とのつながりは
今でも深く、オープンソースに加
えて、コミュニティ活動の大切さ
を知ることになりました。そして、
筆者たちが翻訳していたドキュメ
ントは公式のドキュメントとなり、
MLは今でも情報交換の場として
活用してもらっています。
　なお、このころは、今につなが
るような多くのオープンソースが
ほかにもたくさん産まれていた時
代でした。Apacheにモジュールと
して組み込めるスクリプト言語、
PHP/FI（今のPHPの原型）も勢
力を伸ばし始めていて、筆者も日
本語関係のバグ報告をしたりパッ
チを送ったりしていました。
　また、「ようこそ私のホームペー
ジへ」のようなサイトが流行ってい
たころでもあり、PHP/FIを使っ
て画像ではないインラインのアク
セスカウンタを作ったり、掲示板
やチャットなどを作ったりしてい
たころでもあります。

　なお、学校に居候していた筆者
のサーバを利用する人も増え、そ
の影響でトラフィックも増え、学
外にサーバを移設する際に、その
維持のためにお金をいただくよう
になって、さくらインターネット
を創業したのが、まさにこのころ
の話です。

終わりに

　今回紹介したのは、1994～1996

年のことですが、ちょうど日本のイ
ンターネットが成長を始めた時期で
あり、LinuxやFreeBSD、Apache、
PHPといった、今でも使われる各
種オープンソースが勃

ぼっ

興
こう

しつつ
あった時期でもあります。
　また、オープンソース系のコミュ
ニティが活発になり始めた時期で
もあり、今では以前にも増してそ
の文化が根付いたことはたいへん
うれしいことですし、今後もオー
プンソースとコミュニティがイン
ターネットを引っ張って行ってく
れることだろうと思います。｢

温故知新 ITむかしばなし
オープンソースとコミュニティ

スペシャル

 ▼図1　 1998年当時の日本Apache
ユーザ会のサイト

102 - Software Design

Elixirでアプリを作ろう

　本記事では、次に挙げる執筆時点（2016年10

月）の最新バージョンを前提としています注1。

・Elixir 1.3.4、Erlang/OTP 19.1
・Phoenix 1.2.1

注1） Elixir、Erlang/OTPのインストールについては、本記事前
編（本誌2016年11月号）を参照してください。

Elixirではアプリをどう作るか

　手続き型言語では、プログラムを組む際に、
実行する処理（手続き）を中心に考えてプログラ
ミングを行います。一方Elixirでは、プロセス
を中心に考えてプログラミングを行います。
　簡単な例として、ランダムな時間sleepして
引数を返す処理を挙げて説明します（リスト1）。
関数do_something（①）を100回繰り返すプログ
ラムを考えてみましょう。

 ▼リスト1　プロセスの利用例

defmodule ProcessSample do
 # ランダムな時間sleepして引数を返す――①
 def do_something(arg) do
 sleep_time = round(:rand.uniform * 1000)
 :timer.sleep(sleep_time)
 IO.puts " sleep:#{inspect sleep_time}msec, arg:#{inspect arg}"
 arg
 end

 # 直列に実行――②
 def serial_exec do
 1..100
 |> Enum.map(&do_something(&1)) # fn(arg) -> do_something(arg) endは&(do_something(&1))と書けます
 end

 # 並列に実行――③
 def parallel_exec do
 1..100
 # do_somethingを実行するプロセスを作成
 |> Enum.map(&Task.async(ProcessSample, :do_something, [&1]))――③-1
 |> Enum.map(&Task.await(&1)) # ③-1の結果を取得――③-2
 end
end

注1） Elixir、Erlang/OTPのインストールについては、前編（本
誌2016年11月号）を参照してください。

　Rubyのような書き味で、簡単に並行処理が実現できる関数型プログラミング言語「Elixir」の入門記事。
前編では、Elixirの概要、環境作成、簡単なコーディングを紹介しました。後編では、プロセスによる
並列処理、mixを使ったプロジェクト作成、PhoenixによるWebアプリ作成について解説します。

特別企画

ElixirにおけるプロセスとPhoenixによるアプリ開発

後編

大原 常徳（おおはら つねのり）
株式会社ドリコム
@ohrdev
ohr486@gmail.com

102 - Software Design Dec. 2016 - 103

　素直に処理を記述するのであれば、②のよう
にEnum.mapに関数do_somethingを引数として
渡して、1～100の引数に対してそれぞれ適用
させます注2。実行結果は（図1）となります。こ
のように直列に処理が実行される場合、図2の
ように繰り返しの数が多ければ多いほど、処理
時間は長くなります。

注2） Elixirでは関数を値として扱えます。関数を引数として渡す
場合は、キーワードfn・endを使い、無名関数「fn 引数
-> 実行したい処理 end」として表現します。また、&演算
子を使って「&実行したい処理(&1, …)」と省略もできます。
&1は第一引数、&2は第二引数……、となります。よって2
つの引数の和を求める関数は「fn(a, b) -> a + b end
または&(&1 + &2)と表現できます。

　次にこの処理を、プロセスを使って並列に実
行してみましょう。Elixirは、非同期に処理を
実行する手段として、Taskモジュール注3を提
供しています。
　Taskモジュールによって、Task.async(モ
ジュール, 関数, 引数リスト)（③ -1）で引数
として与えられたモジュール.関数(引数)を
実行するプロセスを作成し、Task.await(my_
task)（③-2）でその結果を取得できます。実行
結果は、図3となります。並列に実行した場合

注3） URL http://elixir-lang.org/docs/stable/elixir/Task.html

 ▼図1　直列実行の結果（リスト1、②）

$ iex process_sample.ex
iex(1)> ProcessSample.serial_exec
 sleep:600msec, arg:1
 sleep:86msec, arg:2
 sleep:624msec, arg:3
 ...（中略）...
 sleep:228msec, arg:98
 sleep:729msec, arg:99
 sleep:934msec, arg:100
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
 43, 44, 45, 46, 47, 48, 49, 50, ...]
iex(2)>

 ▼図3　並列実行の結果（リスト1、③）

$ iex process_sample.ex
iex(1)> ProcessSample.parallel_exec
 sleep:0msec, arg:35
 sleep:2msec, arg:54
 sleep:9msec, arg:17
 ...（中略）...
 sleep:972msec, arg:61
 sleep:973msec, arg:60
 sleep:973msec, arg:8
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
 43, 44, 45, 46, 47, 48, 49, 50, ...]
iex(2)>

端末
実行時間

処理の流れ

do_something(1)

sleep(994) sleep(667) sleep(934)

[1, 2,・・・100]do_something(2) do_something(100)

 ▼図2　直列実行のイメージ

ElixirにおけるプロセスとPhoenixによるアプリ開発 後編

http://elixir-lang.org/docs/stable/elixir/Task.html

104 - Software Design

 ▼リスト2　Rubyによる辞書アプリの実装（ruby_dict.rb）

class RubyDict
 def initialize
 @my_dict = {}
 end

 def get(key)
 @my_dict[key]
 end

 def put(key, val)
 @my_dict[key] = val
 end

 def cleanup
 # @my_dictを{}に設定する事で初期化
 @my_dict = {}
 end
end

は、図4のように繰り返しの数によらず、一定
時間で結果が返ってきます。

辞書アプリの作成

　今回作成するのは辞書アプリです。アプリの
仕様として、次の操作ができるものとします。

（1）get(キー)で引数のキーに対応する値を取
得し、対応する値がなければnilを返す

（2）put(キー, 値)で引数のキーに対応する値
を設定する

（3）cleanupで設定された辞書をクリアする

Rubyによる辞書アプリ
　ここではオブジェクト指向言語とElixirを比
べてみます。Rubyによる実装はリスト2のと
おりです。オブジェクト指向によるプログラミ
ングの場合は、まず辞書を取り扱うオブジェク
トを作成します（図5♣）。作成したオブジェク
トに対してget、put、cleanupのメソッドを
呼び出して、オブジェクト内部にある辞書（ハッ
シュ@my_dict）への操作を行います（図6）。

$ irb
irb(main):001:0> load 'ruby_dict.rb'
=> true
 辞書オブジェクトを作成――♣
irb(main):002:0> d = RubyDict.new
=> #<RubyDict:0x007f847c83a8d0 @my_dict={}>
irb(main):003:0> d.get(:a)
=> nil
irb(main):004:0> d.put(:a, 1)
=> 1
irb(main):005:0> d.get(:a)
=> 1
 @my_dictを{}に設定することで初期化
irb(main):006:0> d.cleanup
=> {}
irb(main):007:0> d.get(:a)
=> nil
irb(main):008:0>

 ▼図5　リスト2（ruby_dict.rb）の実行結果

端末

Task.async Task.await

実行時間

処理の流れ

do_something(1)

sleep

[1, 2,・・・100]

do_something(2)

do_something(3)

do_something(100)

 ▼図4　並列実行のイメージ

104 - Software Design Dec. 2016 - 105

Elixirによる辞書アプリ
　一方、Elixirでは辞書アプリを、プロセスを
中心に考えて実装します（リスト3）。Elixir

は状態を管理するプロセスを扱う手段として、
Agentモジュールを提供しています注4。
　まず初期状態として、空のハッシュを持
つAgentプロセスAgent.start_linkを作
成します（図7★）。そのプロセスに対して
get、updateのメッセージをプロセスに対
して送信すると、辞書プロセスが内部のハッ
シュを更新し、その結果をメッセージとし
て送信元プロセスに返却します（図8）。

mixを使ってプロジェクトを
管理

　mixはElixirのビルドツールです。mixは
プロジェクトの作成、ソースのコンパイル、
アプリケーションのテストといったさまざ
まなプロジェクトの管理機能（タスク）を提
供します。mixの標準タスクは、mix help
を実行することで確認できます（図9）。
　本節では、前節で作成した辞書アプリ
（ex_dict.ex）をmixプロジェクトとして作成

注4） URL http://elixir-lang.org/docs/stable/elixir/
Agent.html

していきます。まず手始めに、mix newコマン
ドでプロジェクトを作成しましょう（図10）。

$ iex ex_dict.ex
iex(1)> ExDict.start_link ← 辞書プロセスを作成――★
{:ok, #PID<0.86.0>}
iex(2)> ExDict.get(:a)
nil
iex(3)> ExDict.put(:a, 1)
:ok
iex(4)> ExDict.get(:a)
1
 Agentプロセスの状態を%{}に更新することで初期化
iex(5)> ExDict.cleanup
:ok
iex(6)> ExDict.get(:a)
nil
iex(7)>

 ▼図7　リスト3の実行結果

get、put、cleanup

Dict Object

@my_dict

@my_dict
 への操作

 ▼図6　オブジェクトベースのプログラム

端末

messageAgent.get（dictへの操作）

Agent.start_link（dictの初期値）

Agent Process

Agent.update（dictへの操作）
message

dict

dictへの操作 Agentプロセス
の内部状態

 ▼図8　プロセスベースのプログラム

 ▼リスト3　Elixirによる辞書アプリの実装（ex_dict.ex）

defmodule ExDict do
 # Agentを起動
 def start_link do
 Agent.start_link(fn -> %{} end, name: __MODULE__)
 end

 # Agentを停止
 def stop do
 Agent.stop(__MODULE__)
 end

 def get(key) do
 Agent.get(__MODULE__, &Map.get(&1, key))
 end

 def put(key, val) do
 Agent.update(__MODULE__, &Map.put(&1, key, val))
 end

 def cleanup do
 # Agentプロセスの状態を%{}に設定する事で初期化
 Agent.update(__MODULE__, fn _ -> %{} end)
 end
end

ElixirにおけるプロセスとPhoenixによるアプリ開発 後編

http://elixir-lang.org/docs/stable/elixir/Agent.html

106 - Software Design

ディレクトリ構成は（図11）となります。また、
-S mixオプションを付けることで、プロジェ
クト内でiexを実行できます（図12）。

OTPの上にアプリを建てる

　それでは、ビヘイビアを使ってOTPに則っ
た辞書アプリをプロジェクトに組み込んでいき
ましょう注5。使用するビヘイビアは、アプリケー
ションの起動・停止の振る舞いを提供する
Applicationビヘイビアと、プロセスの監視と
再起動を行うSupervisorビヘイビアです。

アプリケーションビヘイビア
　アプリケーションの起動のために、Appli

cationビヘイビアを組み込んでいきましょう。
ビヘイビアを使うには、

・useビヘイビアの宣言

注5） OTP、ビヘイビアの詳細については、前編（本誌2016年
11月号）を参照してください。

・ビヘイビアが要求するコールバックの実装

を行う必要があります。Applicationビヘイビ
アは、コールバックとしてstart(type,args)
の実装を要求します注6。
　今回はMixSampleモジュールに対してアプリ
ケーションビヘイビアを組み込んでいきます。lib/

mix_sample.ex（リスト4）でuse Applicationを
宣言し（❶）、start(type,args)を実装します
（❷）。なお、後述するSupervisorの起動（❸）を
このstartの中で行いますが、今は暫定として
自身のプロセスIDを返却する{:ok, self}を
有効にし、後ろのSup.start_linkをコメントアウ
トしてください。
　また、mix.exsのapplicationに、mod:オプ
ションを追加することで（リスト5♠）、プロジェ
クトの起動時に、指定したモジュール、引数で

注6） URL http://elixir-lang.org/docs/stable/elixir/Application.
html#c:start/2

 ▼図9　mix helpの実行結果

$ mix help
mix # Runs the default task (current: "mix run")
mix app.start # Starts all registered apps
mix app.tree # Prints the application tree
 ...（中略）...
mix test # Runs a project's tests
mix xref # Performs cross reference checks
iex -S mix # Starts IEx and runs the default task

 ▼図10　mix newの実行結果

$ mix new mix_sample
* creating README.md
 ...（中略）...
Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:

 cd mix_sample
 mix test

Run "mix help" for more commands.

 ▼図11　mixプロジェクトのディレクトリ構成

mix_sample
├── README.md
├── config ← アプリ固有の設定ファイル
│ └── config.exs
├── lib ← プロジェクトのソースコード
│ └── mix_sample.ex
├── mix-files.txt
├── mix.exs ← プロジェクトの設定ファイル
└── test ← テストコード
 ├── mix_sample_test.exs
 └── test_helper.exs

 ▼図12　iex -S mixの実行結果

$ iex -S mix
Compiling 1 file (.ex)
Generated mix_sample app
Interactive Elixir (1.3.4) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

http://elixir-lang.org/docs/stable/elixir/Application.html#c:start/2

106 - Software Design Dec. 2016 - 107

アプリケーションを起動できます。再度、iex
-S mixでプロジェクトを起動します（図13）。

スーパバイザビヘイビア
　次にスーパバイザを作成しましょう。スーパバ
イザとは、特定のプロセスを監視し、そのプロセ
スがクラッシュしたら再起動を行うしくみです注7。
　lib/sup.exとしてスーパバイザモジュールを
作成します（リスト6）。use Supervisorを
宣言し（①）、コールバックとしてinitを（②）、
起動のためにstart_linkを（③）実装してい
ます。スーパバイザでは、クラッシュした場
合の再起動の設定をstrategyオプションで指
定し（④）注8、監視対象のプロセスの起動方法
（モジュール、関数、引数）を指定します（⑤）。
　このスーパバイザの起動（Sup.start_
link）を、前節のMixSample.startの中で実
行することで（リスト4、❸）、アプリ起動時に
スーパバイザが起動し、監視対象のプロセス
が立ち上がります。start関数のSup.start_
linkを有効にし、その前の{:ok, self}を
コメントアウトしてください。

辞書の組み込み
　それでは準備が整ったので辞書をアプリ
に組み込んでいきましょう。
　前節で作成した辞書アプリ（リスト3、ex_

dict.ex）をlib/ex_dict.exとして配置し、super

visorの監視対象（ワーカー）としましょう（リ
スト6、④）。なお、Supervisorの監視対象と
してモジュールを組み込んだ場合、起動時に
呼び出される関数はデフォルトでstart_link

注7） U R L http://el ixir-lang.org/docs/stable/elixir/
Supervisor.html#c:init/1

注8） U R L http://el ixir- lang.org/docs/stable/el ixir/
Supervisor.html#module-strategies

となります。

スーパバイザによるプロセスの再起動
　もし辞書プロセス（ExDict）が何らかの理由
でクラッシュした場合はどうなるでしょう？　
　当然、辞書への問い合わせと登録はできませ
ん。しかしご心配なく。スーパバイザによって
辞書プロセスは監視されていますので、辞書プ

 ▼リスト4　lib/mix_sample.ex

defmodule MixSample do
 use Application # ビヘイビアの宣言――❶

 # callbackの実装――❷
 def start(_type, _args) do
 # 起動時に何も実行しない時は以下のように記述
 #{:ok, self} # selfは自身のプロセスID

 # 起動時にスーパバイザを起動する時は以下のように記述
 Sup.start_link # スーパバイザの起動――❸
 end
end

 ▼リスト5　mix.exs

defmodule MixSample.Mixfile do
 use Mix.Project

 def project do
 [app: :mix_sample,
 version: "0.1.0",
 elixir: "~> 1.3",
 build_embedded: Mix.env == :prod,
 start_permanent: Mix.env == :prod,
 deps: deps()]
 end

 def application do
 [
プロジェクト起動時にMixSampleを引数[]で起動――♠
 mod: {MixSample, []},
 applications: [:logger]
]
 end

 defp deps do
 []
 end
end

 ▼図13　アプリケーションの起動

$ iex -S mix
Compiling 1 file (.ex)
Generated mix_sample app
Interactive Elixir (1.3.4) - press Ctrl+C to exit (type h() ENTER for help)

ElixirにおけるプロセスとPhoenixによるアプリ開発 後編

http://elixir-lang.org/docs/stable/elixir/Supervisor.html#c:init/1
http://elixir-lang.org/docs/stable/elixir/Supervisor.html#module-strategies

108 - Software Design

ロセスがクラッシュした場合はスーパバイザが
再起動してくれます注9。
　それでは、ExDict.stopで、辞書プロセス
を明示的に停止してみましょう（図14）。やり
ました、スーパバイザが辞書プロセスを再起動
するので、辞書への問い合わせが続行できてい
ますね。

Phoenixとは

　PhoenixはElixirで実装されたWebアプリ
ケーションフレームワークです。この節では
Phoenixによるミニブログアプリ作成を通して、
Phoenixの使い方を紹介します。Phoenixのア
プリケーションもmixプロジェクトの規約に則っ
ていますので、基本的な操作はmixプロジェク
トと同様に行えます。

Phoenixの特徴

　PhoenixはRailsの影響を強く受けてお
り、「高い生産性とパフォーマンス」「チャ
ネル注10を使ったWebSocketベースのリ
アルタイム通信を簡単に行える」といった
特徴があります。また、さまざまなジェ

注9） Elixirではプロセスが壊れたとき、プロセスがリカ
バリを試みるのではなく、一度クラッシュさせて
それを監視するプロセスで再起動させるというのが、
良いアプローチとされています（Let it crash）。

注10） URL http://www.phoenixframework.org/docs/
channels

ネレータがmixタスクとして提供されているの
で、高速にアプリケーション作成が行えます。

Phoenixでアプリを作ろう

　本節ではPhoenixを使ったWebアプリを作
成します。まずはPhoenixまわりの環境を整え
ましょう。

Phoenixのインストール

　Elixirはパッケージ管理をhex注11で行います。
Phoenixもhexによって管理・インストールする
ので、まずはhexをインストールしましょう。hex

はmixタスクからインストールできます（図15）。

注11） URL https://hex.pm/

 ▼リスト6　lib/sup.ex

defmodule Sup do
 use Supervisor # ビヘイビアの宣言――①

 # スーパバイザの起動――③
 def start_link do
 Supervisor.start_link(__MODULE__, [], name: Sup)
 end

 # スーパバイザの起動設定――②
 def init([]) do
 # スーパバイザによる監視対象――④
 children = [worker(ExDict, [])] # ExDict.start_linkでワーカーが起動される
 supervise(children, strategy: :one_for_one) # 再起動戦略――⑤
 end
end

 ▼図14　プロセスの再起動

$ iex -S mix
iex(1)> ExDict.put(:a,1)
:ok
iex(2)> ExDict.get(:a)
1
iex(3)> ExDict.stop ← 辞書プロセスを停止
:ok
iex(4)> ExDict.get(:a)
nil
iex(5)> ExDict.put(:a,2)
:ok
iex(6)> ExDict.get(:a)
2
iex(7)>

← スーパバイザが辞書プロセスを再起動、
　 ただしプロセス内の辞書の状態は初期値
　 になる

http://www.phoenixframework.org/docs/channels
https://hex.pm/

108 - Software Design Dec. 2016 - 109

　次に、phoenixのパッケージをmixタスクでロー
カルにインストールしてください（図16）。イン
ストールされるとmix helpコマンドでphoenix

のタスクが表示されるようになります。

Node.jsとMySQLを準備

　なぜNode.jsをインストールするのか？と疑
問に思う方がいるかもしれません。Phoenixは
Node.jsで書かれたビルドツールであるbrunch.

io注12を使って、JavaScriptコードのビルド・
変換・ミニファイや、CSS・画像ファイルといっ
たアセットの処理、ページのリロードといった
処理を行うので、Node.jsが必要となります。
また本アプリでは、データはMySQLに
保存するものとします。
　お使いの環境に合わせ、Node.jsと
MySQLをローカルにインストールして
ください。

注12） URL http://brunch.io/

ブログアプリケーションを作る

　それではPhoenixでミニブログアプリを作成
していきましょう。作成するブログは表1のテー
ブルを持ち、ブログの記事データに対して
CRUDの操作を行えるものとします。

phoenixプロジェクトの作成
　Phoenixはデフォルトのデータベースとして
PostgreSQLを採用しています。今回はデータ
ベースにMySQLを使うので、--database
mysqlオプションを付けてPhoenixプロジェク
トを作成します（図17）。途中、「Fetch and in

 ▼表1　アプリのデータを保存するblogsテーブル

カラム名 データタイプ 説明 備考

id bigint 内部 ID phoenixが自動生成

title varchar blogタイトル ユーザが定義

body varchar blog本文 ユーザが定義

inserted_at datetime レコード作成日時 phoenixが自動生成

updated_at datetime レコード更新日時 phoenixが自動生成

 ▼図15　hexのインストール

$ mix local.hex ← hexをローカルにインストール
Are you sure you want to install archive "https://repo.hex.pm/installs/1.3.0/hex-0.13.2.ez"? [Yn] Y
* creating /Users/ohara_tsunenori/.mix/archives/hex-0.13.2
$ mix hex ← hexの情報を表示
Hex v0.13.2
Hex is a package manager for the Erlang ecosystem.
 ...（後略）...

 ▼図16　phoenixのインストール

 ローカルにインストール
$ mix archive.install https://github.com/phoenixframework/archives/raw/master/phoenix_new.ez
Are you sure you want to install archive "https://github.com/phoenixframework/archives/raw/ｭ
master/phoenix_new.ez"? [Yn] Y
* creating /Users/ohara_tsunenori/.mix/archives/phoenix_new
$ mix help | grep phoenix ← phoenixパッケージの確認
mix local.phoenix # Updates Phoenix locally
mix phoenix.new # Creates a new Phoenix v1.2.1 application

 ▼図17　phoenixプロジェクトの作成

$ mix phoenix.new blog_sample --database mysql
* creating blog_sample/config/config.exs
 ...（中略）...
Fetch and install dependencies? [Yn] Y
* running mix deps.get
* running npm install && node node_modules/brunch/bin/brunch build
 ...（後略）...

ElixirにおけるプロセスとPhoenixによるアプリ開発 後編

http://brunch.io/

110 - Software Design

stall dependencies? [Yn]」と関連パッケージと
npmモジュールのインストールを行うか聞かれ
るので、Yを入力してインストールしてください。
　blog_sample/config/dev.exsにMySQLの設
定項目（リスト7）があるので、前節でインストー
ルしたMySQLのユーザ名とパスワードを設定
してください。これでPhoenixからMySQLに
接続できるようになるので、次のようにmixタ
スクでアプリが使用するデータベースを作成し
ます。

$ mix ecto.create
The database for BlogSample.Repo has been ｭ
created

　準備が整いました。それではアプリを起動し
て（図18）、ブラウザで「http://localhost:4000」
にアクセスしてみましょう。不死鳥の画面が確
認できます（図19）。
　本稿で使用したPhoenixのアプリは、本誌
サポートページ注13からダウンロードできます。
そちらを実行する際は、図20を実行してくだ

注13） URL http://gihyo.jp/magazine/SD/archive/2016/201612/
support

さい。

ブログページの作成
　それではブログのページを作って
いきましょう。PhoenixのHTMLジェ
ネレータを使って図21のように作成
します。関連ファイルの作成メッセー
ジのあとに、ルーティングの指定と

マイグレーションの実行を行う旨のメッセージ
が表示されていますので、それぞれ設定・実行
しましょう（リスト8、図22）。
　以上です。たったこれだけの操作でミニブロ
グができました。

CRUD操作
　それでは動作確認をしてみましょう。
　mix phoenix.serverでアプリを起動して、
ブラウザで「http://localhost:4000/blogs」を開
いてみてください（図23）。［New blog］リンク
からブログ記事の投稿してみましょう（図24）。
右の［Show］［Edit］［Delete］ボタンから、投稿し
たブログ記事の参照、編集、削除の操作ができ

 ▼図18　アプリの起動

$ mix phoenix.server
[info] Running BlogSample.Endpoint with Cowboy using http://localhost:4000
17 Oct 05:39:48 - info: compiled 6 files into 2 files, copied 3 in 1.1 sec
[info] GET /
[debug] Processing by BlogSample.PageController.index/2
 Parameters: %{}
 Pipelines: [:browser]
[info] Sent 200 in 47ms

 ▼図20　サンプルコード実行のためのコマンド

$ mix deps.get && npm install && node node_modules/brunch/bin/brunch build

 ▼リスト7　DBの設定（blog_sample/config/dev.exs）

Configure your database
config :blog_sample, BlogSample.Repo,
 adapter: Ecto.Adapters.MySQL,
 username: "root", # インストールしたMySQLのユーザー名を設定
 password: "", # インストールしたMySQLのパスワードを設定
 database: "blog_sample_dev",
 hostname: "localhost",
 pool_size: 10

 ▼図19　アプリの起動を確認

http://gihyo.jp/magazine/SD/archive/2016/201612/support

110 - Software Design Dec. 2016 - 111

ますので、試してみてください。
　いかがでしょう。Rails同様、
簡単にWebアプリが作成でき
ることを実感できたのではない
でしょうか？

まとめ

　本記事では、Elixirのプロセ
スをもとにしたアプリ作成と
mixによるプロジェクト管理、Phoenixによる
ミニブログ作成についての説明を行いました。
Elixirについてさらに詳しく知りたい方はぜひ
『プログラミングElixir』注14を、Phoenixについ
ては『Programming Phoenix』注15を読んでみて
ください。

注14） Dave Thomas 著／笹田耕一・鳥井 雪 共訳 ,オーム社 ,2016
年 , ISBN=978-4-274-21915-3　 URL http:/ /shop.
ohmsha.co.jp/shopdetail/000000004675

注15） Chris McCord, Bruce Tate, José Valim 著 , Pragmatic
Bookshelf,2016年 , ISBN=978-1-68050-145-2　 URL https://
pragprog.com/book/phoenix/programming-phoenix

　前編・後編と2回に分けElixirについて紹介
させていただきました。日本でもElixir/

Phoenixの採用事例は増えつつあり、来年2017

年4月には「ElixirConfJapan」が開催されるなど、
盛り上がりを見せています。しかし残念ながら、
日本語のElixirに関する情報はまだまだ少ない
のが実情です、本記事がElixirの利用にあたり
読者のみなさんの一助になれば幸いです。｢

 ▼リスト8　ルーティングの追加（router.ex）

defmodule BlogSample.Router do
 use BlogSample.Web, :router
 ...（中略）...
 scope "/", BlogSample do
 pipe_through :browser # Use the default browser stack

 get "/", PageController, :index
 resources "/blogs", BlogController # blogsのルーティングを追加
 end
 ...（中略）...
end

 ▼図22　マイグレーション実行

$ mix ecto.migrate
05:53:53.535 [info] == Running BlogSample.Repo.Migrations.CreateBlog.change/0 forward
05:53:53.536 [info] create table blogs
05:53:53.547 [info] == Migrated in 0.0s

 ▼図23　ブログ記事一覧

 ▼図21　ブログページの作成

$ mix phoenix.gen.html Blog blogs title:string body:string
 ...（中略）...
Add the resource to your browser scope in web/router.ex:
 resources "/blogs", BlogController ← ルーティング追加の設定
Remember to update your repository by running migrations:
 $ mix ecto.migrate ← マイグレーションの実行方法

 ▼図24　ブログ記事作成

ElixirにおけるプロセスとPhoenixによるアプリ開発 後編

http://shop.ohmsha.co.jp/shopdetail/000000004675
https://pragprog.com/book/phoenix/programming-phoenix

112 - Software Design

インフラの分散・冗長化

　Webシステムを動かすサーバやそのほかイ
ンフラの構成を設計する際は、負荷の大きさや
通信の流れなど、さまざまなことを考慮しなが
ら設計する必要があります。アクセスが増える
などの影響で処理量が大きくなるにつれて、負
荷の分散や冗長化を進めていくのが一般的です。
　今回は典型的なWebアプリケーションのイ
ンフラ構成を1つ例として取り上げ、構成の内
容や設計にあたって考えるべきことについて説
明します。

典型的なWebアプリケーションの
インフラ構成

　今回挙げる例は図1のような構成になります。
ユーザからのリクエストをHTTPS（TCP443

番ポート）で待ち受けるシステムを想定してい
ます。ユーザからのリクエストはまずロードバ
ランサへ送られます。そこから複数のWebア
プリケーションサーバ（Webサーバ）へリクエ
ストが分散されます。
　それぞれのWebサーバは、リクエストに応
じてレスポンスを作成するための処理を行いま
す。その過程で、データベースサーバ（DBサー
バ）へ読み取りや書き込みの処理を行います。
DBサーバにはマスタとスレーブという2つの

　連載最終回で取り上げるのはインフラの設計、とくに実サービスへの展開にも耐えうるための分
散・冗長化です。Webサーバ、ロードバランサ、DBサーバの設計について、それぞれ気を付け
るべきことを解説していきます。

HTTPS

HTTP

読み込み書き込み

レプリケーション

ロードバランサ

DBサーバ
（スレーブ）

DBサーバ
（マスタ）

Web
サーバ

Web
サーバ

Web
サーバ

Web
サーバ

 ▼図1　典型的なWebアプリのインフラ構成の例

 Author 出川 幾夫（でがわ いくお）　レバレジーズ株式会社　teratail開発チーム　 Twitter @ikuwow

最終回 インフラ設計入門

112 - Software Design Dec. 2016 - 113

役割のサーバがあり、マスタからスレーブにデー
タが同期（レプリケーション）されています。
Webサーバはデータの読み込み処理はスレー
ブに送りますが、書き込み処理はマスタに送る
ようになっています。
　このようなインフラ構成の基本的な考え方は
冗長化と呼ばれます。Webのシステムは24時
間365日稼働していることが前提になっている
場合が多く、数分、場合によっては数秒でもサー
ビスが停止するのは大きな問題となります。こ
のため、同様のサーバを複数設けて単一障害点
を少なくし、サービスの停止やパフォーマンス
の低下、データ損失などのリスクを小さくする
必要があります。

Webサーバを冗長化

　Webサーバは、リクエストに応じてビジネ
スロジック注1を実行してレスポンスを作成する
処理を行う、インフラの中でも中核となる部分
です。NginxやApacheなどのミドルウェア、
PHPやRuby、Javaなどのサーバサイド言語に
よって処理が行われます。

同一サーバを複数配置
　サービスのトラフィックが増えるにつれてま
ずはじめに負荷が上がるのがこのWebサーバ
ですので、図1では複数台の構成にしています。
負荷に応じてサーバの数を変化させるオートス
ケールのしくみを作ることもあります。これら
複数のWebサーバは基本的に同一のものにす
る必要があります。サーバのスペックや、OS、
ミドルウェアの種類、バージョン、アプリケー
ションのコードなど、すべてを同一にするのが
基本です。そのため、サーバの設定が再現可能
ですぐに作りなおせるようなしくみを作ってお
く必要があります。

注1） データの保持やリクエストのやりとりなどを除いた、アプ
リケーション内部の固有の処理のこと。

スムーズなデプロイ
　非常に重要なのがアプリケーションのデプロ
イの方法です。デプロイは毎週、毎日と頻繁に
行うものですので、それらが複数のサーバにス
ムーズに配布され、動作可能な状態になるしく
みを作る必要があります。当然、一定以上の自
動化は必須です。複数のサーバに同時に変更を
反映するために、あらかじめデプロイが完了し
たサーバを構築しておいて、古いコードのある
サーバとすげ替えて瞬時に切り替えを完了する
ように構成することもあります。

インフラを使い捨てる
　データベースやキャッシュなど、永続的に保
持すべきデータをWebサーバにまったく置かず、
ビジネスロジックの処理だけに集中させるのが
理想です。またデプロイなどのたびにサーバな
どのインフラを使い捨て、更新のたびに作りな
おす考え方をイミュータブルインフラストラク
チャと言います。これが実現できると、再現性
が常にテストされ、同一の環境を構築して検証
を行うことなどが非常に楽になります。構成管
理の際に冪

べき

等
とう

性
せい

を考慮する必要がないのも大き
な利点です。

ロードバランサを設置

　Webサーバを冗長化したら、ユーザからの
リクエストをそれらに振り分ける必要がありま
す。これを行うのがロードバランサです。ミド
ルウェアではLVSやPoundなどが有名ですが、
先述したApacheやNginxをロードバランサと
して扱うこともできます。

ロードバランサの役割
　ロードバランサはL4スイッチとL7スイッ
チの2つに分類できます。L4、L7とはOSI参
照モデルの階層のことで、L4はトランスポー
ト層、L7はアプリケーション層を表します。
　L4スイッチはトランスポート層プロトコル
（HTTP通信の場合はTCP）を終端し、ユーザ

最終回 インフラ設計入門

114 - Software Design

⇔ロードバランサ、ロードバランサ⇔Webサー
バでそれぞれ別のコネクションを張ります。こ
の場合、HTTP通信で行うというのは共通です。
　L7スイッチではアプリケーション層プロト
コル（今回はHTTP（S）通信）を終端するので、
HTTPのヘッダの内容を修正でき、通信内容
を見て柔軟な振り分けができます。またレスポ
ンスをロードバランサに返すか、ユーザに直接
返すかなどの違いもあります。
　ロードバランサには単にリクエストを振り分
けるだけでなく、付随するさまざまな処理を行
えます。とくにバランシングに付随する機能と
して、振り分け先のWebサーバが正しく動作
しているかを確認するヘルスチェックを行う機
能も併せ持っていることが多いです。これによ
り、正しく動作していないサーバを検出したと
きに、そのサーバへは振り分けないという制御
ができます。
　図1では、HTTPSのSSL暗号化通信を終端
し、HTTPリクエストに変換する機能も持た
せています。こうすることで、ロードバランサ
以降のサーバなどを閉じたネットワークに置け
ば、以降の通信にHTTPSを利用する必要がな
くなり、証明書を配布したりする必要性がなく
なります。

リバースプロキシとは
　ロードバランサとWebサーバの間にリバー

スプロキシというものを設けることもあります。
リバースプロキシはユーザからの通信のインター
フェースとして、HTTPの通信を最適化する
ためのさまざまな役割を担います（図2）。
　ロードバランサのようにHTTPS通信を終端
するほか、

・/hogehoge/ikuwow/1のようなURLを/hoge
hoge?user=ikuwow&page=1に書き換える

・KeepAlive: onの通信を終端してWebサー
バにはKeepAlive: offで通信を行う

・コンテンツのGZIP圧縮

など、HTTP領域で制御できることなら、か
なり柔軟な操作ができます。
　Webアプリケーションのビジネスロジック
を実行する部分はCPUやメモリなどの多くの
リソースを消費する一方、これらの単純な変換
は1リクエスト当たりのリソース使用量はそこ
まで大きくありません。このため、たとえばリ
バースプロキシではキャッシュした静的リソー
スをWebサーバを利用せずに返すなど、役割
分担をさせることでリソース仕様の効率化とパ
フォーマンス改善が図れます。
　リバースプロキシのうしろには複数台のアプ
リケーション・サーバを置くことが多いので、
実質的にロードバランサとしての機能も担うこ
とが多いです。Amazon Web Services（AWS）
やGoogle Cloud Platform（GCP）のロードバラ

HTTPS
KeepAlive: on

HTTP
KeepAlive: off

/img/*

ロードバランサ

リバースプロキシ

Web
サーバ

Web
サーバ

Web
サーバ

画像配信
サーバ

リバースプロキシ

 ▼図2　リバースプロキシを用意した例

114 - Software Design Dec. 2016 - 115

ンサ機能を見ても、さまざまな機能が使えるよ
うになっており、2つの呼び名や役割の境目は
あいまいになっていると感じます。
　ロードバランサやリバースプロキシは、その
実装や製品によってできることがさまざまです。
また2つを明確に分けて考えることもあれば、
同一として扱う場合も多くややこしい部分です。
構築の際は何が必要かをきちんと把握してから、
それを実現できる適切なツールを選ぶようにし
ましょう。

DBサーバを冗長化

　DBサーバの構成は、マスタとスレーブとい
う2種類を設けることが一般的です。スレーブ
はマスタのデータと同期して常に同じデータを
保持するようになっており、このしくみをレプ
リケーションといいます。

DBサーバは使い捨てにしない
　この構成の冗長化には、負荷の分散に加えて
バックアップの目的もあります。DBサーバは
Webサーバやロードバランサと違い、ユーザ
の利用するデータを永続的に保持する部分です
ので、基本的に使い捨てをしない構成にします。

マスタ・スレーブ構成にする理由
　Webサーバのように、すべてが同一の構成
となっておらず非対称なのは、書き込み処理
（CREATE、UPDATE、DELETE）はデータ
の不整合を起こす可能性があるからです。もし
同じデータに対して複数の更新処理が同時に行
われてしまうとこれらは衝突を起こし、正しい
状態が保てなくなります。この場合はサービス
の負荷が上がるに連れて、マスタは1台のまま
スレーブを複数台に増やしていくことが多いで
す。このため書き込み処理はマスタのみに集中
させ、整合性を壊す恐れのない読み取り処理
（SELECT）をスレーブに送ります。
　一般的なWebアプリケーションでは、書き
込み処理よりも読み取り処理のほうがずっとリ

クエスト数が多いので、ある程度の負荷までは
この構成でうまく負荷の分散ができます。
　書き込み処理の負荷を分散するためには、機
能ごとにDBを分割してマスタ1つに対してス
レーブが複数の組をいくつか作る設計にしたり、
シャーディングやクラスタリングを行う必要が
あります。また書き込み処理に限らず、全体の
負荷を下げるためにキャッシュのためのサーバ
を用意するのも非常に効果的です。

そのほかの冗長化構成

　図2に示した冗長化は一般的なもので、負荷
によってはさらに冗長化をする必要があります。
たとえば、ここではロードバランサが1つです
ので、これが故障するとサービスが停止する単
一障害点となっています。
　これを解消するなら、複数のロードバランサ
を用意し、ルータを使ってネットワークレベル
で分散させるなどの方法があります。単にこれ
を行うと今度はルータが単一障害点となり、こ
れが問題となるなら、VRRPプロトコルを利
用した冗長化をするなどの対策を行うことにな
ります。
　データストレージの冗長化や、サーバ間のネッ
トワークの冗長化など、サービスの高い信頼性
が求められるほど使うリソースを増やしていく
ことになります。

冗長化構成を設計する際に
考えること

　このような冗長化構成を実際のサービスで作
る際には、どのように考えたら良いでしょうか。
今回示した例はほんの一例で、システムによっ
て必要なものは大きく変わってきます。

見積もり
　まず、トラフィックや負荷がどれぐらいにな
るかを見積もる必要があります。Webサーバ
であればリクエスト数やLoad Average、使用
メモリ量などを見積もることが多いです。既存
の構成がある場合は、そこから予測を行うと良

最終回 インフラ設計入門

116 - Software Design

いでしょう。新しくサービスを立ち上げる際な
どは厳密に見積もりを行うことは難しいので、
AWSやGCPなどのクラウドを利用して簡単
にスケールできるような、変化に強いしくみを
作るほうに力を注ぐのが得策です。最悪、たと
えばロードバランシングをせずに1台のサーバ
にアプリケーションもDBも置くこともできな
くはありませんが、限界がきた場合の変更が容
易ではないので、Webとデータベースを分け
るなど、役割の分担だけはしておいたほうが良
いでしょう。

構成管理ツール
　冗長化のためには同一のサーバを複数用意す
る必要があるので、ChefやAnsibleなどのプロ
ビジョニングツールを使った構成管理は必須で
す。Dockerを利用してコンテナ単位で管理す
るのも良いでしょう。AWSやGCPなどでは、
Terraformなどの構成全体のオーケストレー
ションツールなども非常に役に立ちます。これ
らの導入の際には、実験的に手動で部分部分の
構築を行ってから、それをあらためてオーケス
トレーションツールのテンプレートに書き直し
て全体を再構築すると、作業がスムーズです。

クラウド特有の考え方

　AWSやGCPなどのクラウドサービスには、
これまで挙げてきたこと以外に、特有の考え方
や設計のコツがあります。
　多くのクラウドサービスにはゾーンという概
念があります。これはデータセンターとほぼ同
義の言葉です。たとえばAWSの場合、複数の
アベイラビリティーゾーンにリソースを分散配
置できる機能が、多くのサービスで利用できま
す。クラウドサービスは、高度に仮想化と冗長
化がされているとはいえ、サービスが利用でき
ない時間や障害がまったくないわけではありま
せん。たとえば、図1のWebサーバなどを2つ
のアベイラビリティーゾーンに分けて配置する
ことによって、より高い信頼性が得られます。

　クラウド内で使えるサービスを必要に応じて
利用するのも、サービスの冗長化と管理の簡略
化に効果的です。AWSにおけるS3やGCPに
おけるCloud Storageは非常に高い耐久性があ
り、ストレージが必要であればぜひとも使って
おきたいところです。HTTPのリクエストを
受け付けることもできるので、画像の配信や、
ユーザがダウンロードする大容量のファイルの
配置やバックアップに利用しても良いでしょう。
使用した容量や通信量に応じて課金されるため、
ストレージの残り容量や通信のキャパシティを
気にする必要は基本的にありません。

まとめ

　今回はWebアプリケーションのインフラ構
成の全体について、かなり広い分野の内容をい
れながら、冗長化のベストプラクティスや設計
の際の考え方などを説明しました。
　全体の概念がわかっていると、インフラの分
野の技術やツールの理解の速さが違います。も
ちろん、Backend as a Service（BaaS）やPlatform

as a Service（PaaS）で個々の機能やツールは異
なりますが、基本的な考えは同じです。また最
近は、複数のPaaSやBaaSを利用して構成す
るサーバレスアーキテクチャや、コンテナとい
う単位で実行環境を小さく取り回すDockerな
ど、Webのインフラ管理には今までになかっ
たものが次々と登場しており、変化のあるおも
しろい分野になっています。
　仕事や趣味で開発をしているWebシステム
のインフラ構成について、現在の状態を整理し
たり、今後どうあるべきかを考えてみると、イ
ンフラをより良くする良い取っ掛かりになると
思います。

◆　◆　◆
　今回でこの『アプリエンジニアのための［イン
フラ］入門』の連載は最終回となります。今まで
読んでくださりありがとうございました。｢

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Dec. 2016 - 117

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）、「雑誌オンライン.com」(http://www.zasshi-online.com/)、「Gihyo Digital Pub
lishing」（https://gihyo.jp/dp）で購入できます。最新号、バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の
割引になります。デジタル版はPCのほかに iPad／ iPhoneにも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

雑誌オンライン

Fujisan

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

千代田区 書泉ブックタワー 03-5296-0051 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 丸善　丸の内本店 03-5288-8881

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

中央区 八重洲ブックセンター本店 03-3281-1811 広島市中区 丸善　広島店 082-504-6210
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322

 第1特集
速く堅実に使いこなすための
bash再入門
 第2特集
RDBの学び方
MySQLを武器にSQLを
始めよう！
 巻頭特集
・Android Wearアプリ開発入門［特別編］
・フリーで始めるサーバのセキュリティチェック［後編］

2016年6月号

定価（本体1,220円＋税）

 第1特集
試して実感！
プラグラマが知っておくべき
TCP/IP
 第2特集

手を動かして学ぼう正規表現入門
記事とWebツールでトレー二ング

 新連載
・アプリエンジニアのための［インフラ］入門

2016年7月号

定価（本体1,220円＋税）

 第1特集

GitHubさいしょの一歩
はじめてのPull Requestから、チーム導入へ

 第2特集
案外知らなかった
YumとAPTのしくみと活用
 一般記事
・Ruby on Railsへの導入でわかったRRRSpec
 による分散テストの効果

2016年8月号

定価（本体1,220円＋税）

 第1特集
知りたい情報集まっていますか？
ログ出力のベストプラクティス
 第2特集

良いPHP、悪いPHP
——すぐ効くWeb開発入門

 一般記事
・「良いプログラム」のための「良いコメント」
 コードを読みやすくするための6つの書き方

2016年9月号

定価（本体1,220円＋税）

 第1特集

Webサーバはなぜ動くのか？
HTTP、CGI、サーブレット、Node.js、Railsを一挙解説

 第2特集
いますぐ始める本格派データベース
新しいPostgreSQLの教科書
 一般記事
・CHIRIMENシングルボードコンピュータ入門
 WebプログラミングでWoTサイネージ制作

2016年10月号

定価（本体1,220円＋税）

 第1特集

クラウドコンピューティングの
しくみ
AWS・Azure・SoftLayer・Heroku・さくらのクラウド

 第2特集

レガシーコード改善実践録
サイボウズ流バグゼロまでの道のり

 一般記事
・［次世代言語］Elixirの実力を知る【前編】
・Jamesのセキュリティレッスン

2016年11月号

定価（本体1,220円＋税）

Webで

購入 ！
家でも

外出先でも

http://www.fujisan.co.jp/product/1535/
http://www.fujisan.co.jp/product/1535/
http://www.e-hon.ne.jp
http://www.zasshi-online.com/
http://www.fujisan.co.jp/sd
https://gihyo.jp/dp
https://gihyo.jp/dp

118 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

後半スタート：仮想ネット
ワーク環境で使ってみよう

　本連載の前半では「まずは使ってみよう」とい
うことで、仮想化インフラKVMを使ってホス
トシステムや仮想環境の構築から、仮想マシン
／ゲストシステムの利用までシンプルな環境で
進めてきました。
　後半では「現実的な使い方を考えよう」という
ことで、複数仮想マシン／ゲストシステムの仮
想ネットワークと物理ホストを含む実ネットワー
クから構成される、ネットワーク環境での仮想
化について考えてみます。
　具体的には、ホストシステムや仮想環境の構
築から仮想マシン／ゲストシステムの利用まで

を、ホスト－ゲスト間と仮想ネットワーク内、
そして、ネットワーク間（仮想ネットワークと
実ネットワークの間、そしてインターネット接
続）という実際の仮想環境の中で作業を進め、
問題点をクリアしながら課題を整理します。
　また現実の環境では、インストールや運用管
理などの作業を手作業で行うことは考えにくく、
さまざまな自動化の手だてを考えなければなり
ません。
　なお、本連載後半ではOSとしてCentOS 6.8

を使用します。

今回行う作業

　まず、仮想マシン構築のためのインフラを作

※インストールDVD #1/#2必要（CentOS-6.8-x86_64-bin-DVD1/2.iso）

仮想化の知識、再点検しませんか？

使って考える
仮想化技術

第7回 ホストシステムと仮想環境の構築

笠野 英松（Mat Kasano）

画面／処理 設定値
インストール言語 ⇒Japanese（日本語）
キーボード言語 ⇒日本語
ストレージデバイスタイプ選択 ⇒基本ストレージデバイス
ホスト名 ⇒vhost1.example.com

ネットワーク設定 ⇒アドレス「192.168.0.11」／ネットマスク「24」／ゲートウェイ「192.168.0.100」／DNS
「192.168.0.100」

タイムゾーンの選択−都市 ⇒アジア／東京、
UTC ⇒チェックオフ
root パスワード ⇒設定
パティション（領域）の作成方法 ⇒カスタムレイアウト
パティション作成 ⇒swap、3+2G=5120M／boot（ext4）、512／（ext4）40GB＝40960M
ブートローダー ⇒ /dev/sda
ソフトウェアセットの選択 ⇒Virtual Host
ソフトウェア選択のカスタマイズ方法 ⇒今すぐカスタマイズ（記事末の表2参照）
ユーザー追加 ⇒ユーザー名：user1、フルネーム：Test User No.1、パスワードおよび確認
日付と時刻／日時 ⇒ネットワーク上で日付と時刻を同期化します
kdump （デフォルト：オン）
※以降、表3へ続く

有限会社 ネットワーク・メンター

Author

URL http://www.network-
mentor.com/indexj.html

 ▼表1　CentOS（6.8）インストール項目

本連載は「仮想化を使う中で問題の解決を行いつつ、残される課題を整理す
る」ことをテーマに、小さな仮想化環境の構築・運用からはじめてそのしくみ
を学び、現実的なネットワーク環境への実践、そして問題点・課題を考えます。
仮想化環境を扱うエンジニアに必要な知識を身につけてください。

http://www.network-mentor.com/indexj.html

Dec. 2016 - 119118 - Software Design

ホストシステムと仮想環境の構築
第7回

※ このks.cfgのサンプルファイルは、本誌Webサイトのサポートページ（http://gihyo.jp/magazine/SD/archive/2016/201612/support）
からダウンロードできます。

仮想ネットワークが物理ホストの実ネットワー
クとどのように関係し、どのように運用するか
まで考えておかなければなりません。

OSのインストール項目

　OSのインストール項目は表1のようなもの
ですが、連載前半のようなGUI／対話型で手作
業していては、現実の場では大変です。

ソフトウェアの選択構築

　システム設計をするうえでは仮想環境のほか
にも、システム機能として通常のサーバ環境を

成します。①ホストシステムと仮想環境の構築、
そして、②仮想ネットワーク環境とセキュリティ
保護の設定です。
　今回は前者の①ホストシステムと仮想環境の
構築を行います。次回が②仮想ネットワーク環
境とセキュリティ保護の設定の予定です。

ホストシステムの構築

　仮想環境をのせる物理ホストシステムの構築
です。今回からは実際の場でのシステム構築な
ので、この物理ホストにのせる仮想環境および、

 ▼リスト1　CentOS自動インストールのためのキックスタートファイル

ks.cfg for Virtualization
autostep
#version=DEVEL
Firewall configuration（★）
firewall --disabled
install
cdrom
Root & 1 user（★） password
rootpw --iscrypted 6j3M33cInttK7hREq$9GDMWvR8QZD4.LnKUkxhrQXWMniHgYv/36.fMwpm/
user --name=user1 --password=password1

Use graphical install（★）
graphical
Disable Firstboot（★）
firstboot --disabled

SELinux configuration（★）
selinux --disabled
Installation logging level（★）
logging --level=info
Network information
network --onboot yes --device eth0 --bootproto static --ip 192.168.0.11 --netmask ｭ
255.255.255.0 --gateway 192.168.0.100 --noipv6 --nameserver 192.168.0.100 --hostname ｭ
vhost1.example.com

Clear the Master Boot Record（★）
zerombr
Partition clearing information（★）
clearpart --all --initlabel
Disk partitioning information（★）
part /boot --fstype=ext4 --size=512
part / --fstype=ext4 --size=40960
part swap --size=5120
#（★）repo --name="CentOS" --baseurl=cdrom:sr0 --cost=100
reboot after completion of install with eject CDROM（★）
reboot --eject
%packages

%end

 （...略...）

 （...略...）

 （...略...）

 （...略...）

 （...略...）

http://gihyo.jp/magazine/SD/archive/2016/201612/support

120 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

加え、また、付加的なサーバ追加のための開発
環境も入れておきます。
　記事末の表2は、CentOSインストール時の
ソフトウェアのカスタマイズリストです。

自動インストール

　インストールは自動化します。
　CentOSやRed Hat Enterprise Linuxでは自
動インストール手段として「キックスタートイ
ンストール」があるので、これを使います。
　キックスタートインストールはキックスター
トファイル「ks.cfg」という、インストール中に
入力が必要な項目についての回答を含んだ自動
インストールのための手順ファイルを利用しま
す。このファイルは複数のホストに共通で使用
できます注1。

ks.cfgの作成

　ks.cfgは、CentOSインストール後に/rootディ
レクトリ内に生成される「anaconda-ks.cfg」をも
とに編集・作成することができますが、一部コ
メント化や追加がされているので、基本的な
フォーマットルールを理解したうえで編集・作

注1） 参照：「Red Hat Enterprise Linux 6インストールガイド」
第32章 キックスタートインストール

成するほうがよいでしょう。
　今回使用したks.cfgは前ページのリスト1の
ようなものです。注意ポイント（anaconda-ks.

cfgからの変更点）はリスト1の「★」印の行で、
おもに次のような点です。

・無効化設定（firewall、firstboot、selinux）
・追加設定（ユーザ／平文パスワード、ログ、

MBR初期クリア、ディスク初期クリア、終
了時CDイジェクト）

・コメント化（repo）

　このうち、ユーザのパスワードは平文にして
いますが、図1のように「openssl passwd」を使っ
てできる、ハッシュパスワード文字列を値とし
て「--iscrypted」を指定すればセキュリティを強
くできます。

ks.cfgのインストールメディアへ
の組み込み

　ks.cfgは、たとえば、DVDのトップディレク
トリに入れ、そのパスを含むks.cfgによる自動
インストールの設定は「isolinux」ディレクトリ
の中の「isolinux.cfg」に記載します（リスト2）。
　なお、CentOSイメージをDVDだけではなく、
ハードディスクやNFS、URL（ほかのHTTP/

 ▼図1　「openssl passwd」によるハッシュパスワードの作成

[root@vhost1 ̃]# openssl passwd -apr1
Password:
Verifying - Password:
$apr1$cii9S7Ho$x6h0nQ8R0IAgIkIIDtvIZ0

[root@vhost1 ̃]# openssl passwd -1
Password:
Verifying - Password:
1b4d7B8Nd$NL5MliHuIbz70lxHBOcic1

[root@vhost1 ̃]# openssl passwd
Password:
Verifying - Password:
Q5kzGfX49Tfc6

 1. ApacheタイプのMD5ハッシュ・アルゴリズムによるパスワード生成

 2. MD5ハッシュ・アルゴリズムによるパスワード生成

 3. Unixパスワード・アルゴリズムによるパスワード生成：8文字制限

Dec. 2016 - 121120 - Software Design

ホストシステムと仮想環境の構築
第7回

います（表3）。

仮想環境の構築

　仮想環境の主なものは「仮想マシンマネー
ジャー」の「接続の詳細」にあるようにネットワー
クとストレージです。
　ネットワークなどは次回に説明するとして、
今回は仮想環境の基本のストレージを説明しま

FTPサーバ）に置くこともできます。

DVD isoイメージの作成

　isoファイルをCentOSで作成し（図2）、適当
なシステムでDVD（#1）化します。

ホストシステムの自動構築

　作成したDVD#1を使用してホストシステム
を起動メニューAuto installで自動インストー
ルします。なお、インストール途中（1267/1271

完了時）メッセージ表示なくDVD#1がイジェク
トされるので、DVD#2と入れ替えます。

インストール後の設定

　インストール後、ホスト環境の設定調整を行

 ▼図2　ks.cfg組み込み ISOイメージの作成手順

❶ CentOS 6.8 DVD#1のマウント
❷ CentOS 6.8 DVD用作業ディレクトリの作成
　mkdir /root/CentOS_6.8U_Final
❸ CentOS 6.8 DVD#1オリジナルのコピー
　cp -pfR /media/CentOS_6.8_Final/* /media/ｭ
　CentOS_6.8_Final/.??* /root/CentOS_6.8U_Final/
❹ オリジナルDVDをイジェクト
　eject cdrom
❺ CentOS 6.8 DVD用作業ディレクトリへ移動
　cd /root/CentOS_6.8U_Final
❻ ks.cfg と isolinux.cfg の編集
　vi ks.cfg （リスト1参照）

　vi isolinux/isolinux.cfg （リスト2参照）
❼ ISO生成ディレクトリの作成
　mkdir /data
❽ ISOイメージを/data/CentOS_6.8U_final.isoとし
て作成

　mkisofs -input-charset utf-8 -v -l -R -J ｭ
　 -joliet-long -o /data/CentOS_6.8U_Final.isoｭ
　 -b isolinux/isolinux.bin -c isolinux/ｭ
　boot.cat -no-emul-boot -boot-load-size 4 ｭ
　 -boot-info-table .
❾ 確認
　ls -al /data

 ▼リスト2　isolinux/isolinux.cfg追加行
（ks.cfgによる自動インストールエントリの追加）

label autoinstall
 menu label ^Auto install
 menu default
 kernel vmlinuz
 append ks=cdrom:/ks.cfg initrd=initrd.img

 ファイル：isolinux/isolinux.cfgの最後に追加

概要 設定内容

サービス停止
service NetworkManager stop
service ip6tables stop
service bluetooth stop

サービスのランレベル設定の
変更（無効化）

chkconfig --level 35 ip6tables off
chkconfig --level 35 bluetooth off

SELinux（セキュアOS機能）
無効化

setenforce 0
vi /etc/selinux/config："SELINUX=disabled"（SELinux無効化）

ネットワーク設定ファイルの
修正と再起動

vi /etc/hosts（192.168.0.11 vhost1.example.com　vhost1）
vi /etc/sysconfig/network-scripts/ifcfg-eth0（NIC起動設定）
vi /etc/resolv.conf（レゾルバ設定）
vi /etc/sysconfig/network（ネットワーク利用有無、ホストFQDN名、ゲートウェイIPアドレス）
service network restart

su 使用可能ユーザの
制限設定

vi /etc/pam.d/su－"auth required pam_wheel.so use_uid"（非コメント化）
wheel グループにユーザ追加
vigr－"wheel:x:10:root,ユーザ"
vigr -s－"wheel:::root,ユーザ"

 ▼表3　インストール後のホスト環境の設定調整

122 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

6のようになっています。ルートディレクトリ
にディレクトリが作成されていて/dev/sda7が
ここにマウントされています。

次回予告

　現実のネットワーク環境に対応するためには
仮想ネットワーク環境を整備し、ネットワーク
接続のセキュリティ設定を確実にしなければな
りません。また、運用管理も「すべて」管理者が
行うのではなく、利用者と「分担」することも必
要になります。そのための、しくみやセキュリ
ティも考えておかねばなりません。次回はそう
したことがらについて考えてみます。s

す。連載前半ではデフォルトのディスクイメー
ジファイルで構築しましたが、後半はさまざま
なストレージを使用して構築します。
　仮想マシンのストレージとしては、物理ディ
スクやファイルシステムのほかに、KVM/

libvirtであらかじめ確保する、ストレージプー
ルと呼ばれるストレージ領域内に割り当てるこ
ともできます。
　ストレージプールには、ディスクボリューム、
ディスクパーティション、ディスクディレクト
リ、LVMボリューム、iSCSIボリューム、
NFS、などさまざまな形態があります。

ストレージプールの作成

　ここではストレージプールとして、ディスク
パーティション（事前フォーマット済みブロッ
クデバイス）を作成してみます。
　あらかじめ、fdiskなどでパーティション（た
とえば、/dev/sda7）を作成し、フォーマット
（mkfs /dev/sda7）しておきます。
　そのうえで、仮想マシンマネージャーの［編集］
→［接続の詳細］→［ストレージ］でストレージ
プールを作成します。その手順が図3、4、5です。
　作成した後のファイルシステムの状況は、図

連載各回では、読者皆さんからの簡単な「ひとく
ち質問（QA）コーナー」や「何かこんなこともしてほ
しい要望（トライリクエスト）コーナー」を設けて「双
方向連載」にできればと思っていますので、質問
や要望をお寄せください。

宛先：sd@gihyo.co.jp
件名に、［仮想化連載］とつけてください

 ▼図3

 ▼図6　ストレージプール作成後のファイルシステムの状況

 ▼図4 ▼図5

[root@vhost1 ̃]# ls -al / ¦ grep vm_storages
drwxr-xr-x 3 root root 4096 10月 10 20:30 2016 vm_storages
[root@vhost1 ̃]# ls -al /vm_storages
合計 24
drwxr-xr-x 3 root root 4096 10月 10 20:30 2016 .
dr-xr-xr-x. 28 root root 4096 10月 10 20:36 2016 ..
drwx------ 2 root root 16384 10月 10 20:30 2016 lost+found
[root@vhost1 ̃]# more /etc/mtab ¦ grep vm_storages
/dev/sda7 /vm_storages ext2 rw 0 0

 マウントディレクトリ

 ディレクトリの内容：未使用なので空

 マウント情報

mailto:sd@gihyo.co.jp

Dec. 2016 - 123122 - Software Design

ホストシステムと仮想環境の構築
第7回

選択ソフトウェアセット パッケージグループ（- 追加パッケージ）

Webサービス PHPサポート　←追加選択のみ
Webサーバー　←追加選択のみ

アプリケーション インターネットブラウザ　←追加選択のみ

サーバー

CIFSファイルサーバー　←追加選択のみ
FTPサーバー　←追加選択のみ
サーバープラットフォーム　←デフォルト
システム管理ツール　←追加選択のみ
ディレクトリサーバー　←追加選択のみ
ネットワークインフラストラクチャサーバー　←追加選択＋カスタマイズ
- bind - DNS（Domain Name System）サーバーBIND（Berkeley Internet Name Domain）は
DNSプロトコル　★追加選択
- bind-chroot - A chroot runtime environment for the ISC BIND DNS server,
named(8)　★追加選択
電子メールサーバー　←追加選択＋カスタマイズ
- sendmail - 広く普及しているメール転送エージェント（MTA）　★追加選択
- sendmail-cf - Sendmailを再設定するために必要なファイル　★追加選択

システム管理
SNMPサポート　←追加選択のみ
システム管理　←追加選択＋カスタマイズ
- watchdog - Software and/or Hardware watchdog daemon　★追加選択

デスクトップ

X Window System　←追加選択のみ
グラフィカル管理ツール　←追加選択のみ
デスクトップ　←追加選択＋カスタマイズ
- tigervnc-server - A TigerVNC server　★追加選択
リモートデスクトップ接続クライアント　←追加選択＋カスタマイズ
- tigervnc - A TigerVNC remote display system　★追加選択
レガシーX Winodwsシステムの互換性　←追加選択のみ
汎用デスクトップ（GNOMEデスクトップ）　←追加選択のみ

データベース MySQLデータベースサーバー　←追加選択のみ

ベースシステム

Javaプラットフォーム　←デフォルト
Perlのサポート　←デフォルト
コンソールインターネットツール　←デフォルト＋カスタマイズ
管理者用コンソールインターネットアクセスツール
- ftp - 標準的なUNIX FTP（File Transfer Protocol）クライアント　★追加選択
ディレクトリ接続クライアント　←デフォルト
デバッグツール　←デフォルト＋カスタマイズ
- glibc-utils - GNU Cライブラリからの開発ユーティリティ　★追加選択
ネットワーキングツール　←追加選択＋カスタマイズ
- arpwatch - ネットワーク上のIPアドレスを追跡するためのネットワーク監視ツール　★追加選択
- nmap - ネットワーク調査ツールおよびセキュリティスキャナ　★追加選択
- stunnel - SSL暗号化ソケットラッパ　★追加選択
ネットワークファイルシステムクライアント　←デフォルト
ハードウェア監視ユーティリティ　←デフォルト
パフォーマンスツール　←デフォルト
ベース　←デフォルト
レガシーUNIXの互換性　←追加選択＋カスタマイズ
レガシーUNIX環境使用／移行のための互換性プログラム
- dump - ファイルシステムのバックアップと復元のためのプログラム　★追加選択
- telnet - telnetリモートログインプロトコル用のクライアントプログラム　★追加選択
- telnet-server - telnetリモートログインプロトコル用のサーバープログラム　★追加選択
互換性ライブラリ　←追加選択
大規模システムのパフォーマンス　←デフォルト

仮想化

仮想化　←「ソフトウェアセット」で「Virtual Host」選択時デフォルト＋カスタマイズ
- qemu-kvm-tools - KVM debugging and diagnostic tools　★追加選択
仮想化クライアント　←「ソフトウェアセット」で「Virtual Host」選択時デフォルト
仮想化ツール　←追加選択＋カスタマイズ
- libguestfs-tools - System administration tools for virtual machines　★追加選択
- virt-v2v - Convert a virtual machine to run on KVM　★追加選択
仮想化プラットフォーム　←「ソフトウェアセット」で「Virtual Host」選択時デフォルト

言語 日本語のサポート（インストール言語＝日本語、の場合デフォルト）を含む、各国言語のサポート選択

開発

サーバープラットフォーム開発　←追加選択のみ
開発ツール　←追加選択＋カスタマイズ
- compat-gcc-34 - Compatibility GNU Compiler Collection　★追加選択
- compat-gcc-34-c++ - C++ support for compatibility compiler　★追加選択

 ▼表2　ソフトウェアカスタマイズリスト（一般的なサーバ環境での仮想化設定を例として）

124 - Software Design

　大阪を中心に20年間システム開発に携わった
あと、現在は東京で仕事をしている「SQLの伝
道師」ことジーワンシステムの生島です。
　ある日のこと、技術アドバイザーとしてかか
わっている取引先の浪速システムズから、いつ
ものようにヘルプの依頼がやってきました。
　「また、性能改善依頼です。もともと他社で開
発されたシステムなんですが、開発元がバンザ
イしてしまって、ウチに持ち込まれた案件なん

開発元がギブアップした
システムの改修依頼

です」と、浪速システムズの大道君。
　「そらー、危ない予感でいっぱいやな。元の開
発者はもうおらん、設計資料もろくにない、と
かいう話とちゃうの？」
　「どうしてわかるんですか !?」
　「わかるわ！」
　この業界ではよくあるパターンとはいえ、予
想どおりでも全然うれしくありません。状況を
整理するとざっと次のようになりました。

①ECサイトのシステム
②稼動当初は問題なかったが、データ件数が増
えるにつれて遅くなっていった

③全体的に遅いが、とくに商品一覧や受注一覧
などの一覧系の画面は遅い

④DBサーバのチューニングはいろいろとやっ
てみたが、万策尽きた

　「万策尽きた、って具体的に何やったんや？　
データベース（以下、DB）の設定いじってみた程
度じゃないの？」
　「物理メモリの増設、バッファプールの割り当
て増強、CPUもグレードアップした、だそうで
す」
　「それだけか、まあ、ありがちやけど……SQL

生島氏
DBコンサルタント。性
能トラブルの応援のた
め大道君の会社に来た。

大道君
浪速システムズの新米
エンジニア。素直さと
ヤル気が取り柄。

五代氏
大道君の上司。プロ
ジェクトリーダーで
もある。

登
場
人
物

紹
介

 原案 生島 勘富（いくしま さだよし） info@g1sys.co.jp ㈱ジーワンシステム
 構成・文 開米 瑞浩（かいまい みずひろ）　 イラスト フクモトミホ

性能改善をするときには、どこがボトルネックになっているのかを正確に見極めないと、効果的な対策が行えな
いどころか、かえって事態を悪化させる場合があります。今回、大道君が遭遇した「ぐるぐる系SQLでのバッファ
プールの割り当て増強」や「JOIN禁止」という対策がまさにそんな悪手だったようです。

「スケールアウトしにくいから JOIN禁止」はあまりにも短絡的第10回

124 - Software Design Dec. 2016 - 125

に手を入れようとするとアプリケーション（以
下、アプリ）側のコード改修が必要になって、話
が大ごとになるからそこまでやらないケースが
多いんよね」
　「あまり期待できないですか、これでは」
　「大道君だったら、原因として何を疑う？」
　「一覧系の画面が遅いということですから……
真っ先に『ぐるぐる系』を疑いますね」
　「うん、それが一番怪しい。でもそれが原因な
ら解決にはSQLの改良、つまりアプリのアルゴ
リズム変更が必要で、バッファプールいじって
も意味ないんよ」
　『ぐるぐる系』というのは当連載初期に何度か
触れた、何重にもSQL文のループをまわすよう
な処理のことを言います。たとえばcustomer

テーブルに id=1から100までの全100件のデー
タがあるとして、SELECT * FROM customer
WHERE id=?;というSQLの?を1から100まで
変えて100回SQL文を発行するのが『ぐるぐる
系』SQLです。それに対して、同じ結果を得る
のにSELECT * FROM customer ORDER BY id;
として1回のSQLで全データを取得する方式を
本連載では一発系SQLと呼びます。

　ここでDBアクセスの性能にかかわる要因を
少し整理してみましょう。図1はSELECT系の
SQL文をアプリケーションサーバ（AP）からDB

サーバ（DB）に投げて結果を得る場面のイメージ
です。
　APでSQL文を生成してDBに転送（1）し、
DBでパース、オプティマイズをかけて実行計
画を生成、それを実行してハードディスク（以
下、HDD）読み込みとデータ加工（1）を行って結
果をAPに転送（2）し、AP側でさらにデータ加
工（2）をして画面に表示（ビジュアライズ）する
という流れです。
　この流れの中でメモリを使うポイントは大き
く3つあり、パース、オプティマイズにかかわ
るのがライブラリバッファとSQLキャッシュ、
HDD読み出しにかかわるのがバッファプール、
データ加工（1）にかかわるのがワークスペース
です。これらの具体的な名前はDB製品によっ
て違い、概念も微妙に違いますので図1はイメー
ジを持ってもらうための目安と考えてください。
バッファプールというのはMySQLでの用語で、
おもな役割はテーブルのデータをキャッシュし

バッファプールが「ぐるぐる
系」に影響しない理由とは？

「スケールアウトしにくいから JOIN禁止」
はあまりにも短絡的第10回

ワーク
スペース

バッファ
プール

実行計画SQL
生成

ビジュア
ライズ

データ
加工（2）

データ
加工（1）

HDD
読み出し

転送
（1）

パース、
オプティマイズ

ライブラリバッファ
SQLキャッシュ

転送
（2）

AP DB

実
行

HDD

 ▼図1　DB負荷への影響要素イメージ（1）

126 - Software Design

てHDD読み出し回数を減らすことです。
　次に「ぐるぐる系」がこれらの流れのどこにど
んな影響を与えるかを大まかに整理したものが
表1です。「設計ガイドライン」は設計上望まし
い方針、「ぐるぐる系の悪影響」はそれに対して
ぐるぐる系SQLがどの程度の影響を与えるかの
目安を小～中～大で示し、さらにその操作で使
用するメモリを示しています。
　「さて、さっき言った『ぐるぐる系の遅さはバッ
ファプールじゃ解決しない』というのはどういう
ことか、大道君だったらどう見る？」
　「え、そうですね、こういうことでしょうか」

❶ぐるぐる系は多くのポイントで悪影響「大」に
なっている

❷しかし、バッファプールを増やして効果があ
るのはHDD読み出しだけ。ここへのぐるぐ

る系の影響は「小〜中」なので、「大」を放置し
て「中」以下のところに手をつけても、たいし
た効果は期待できない

　「そういうこっちゃ。じゃあ、HDD読み出し
に対するぐるぐる系の悪影響が『中』以下なのは
なぜ？」
　「それは……」
　「バッファプールがどんな動作をするのか考え
ればわかるよ」
　「……あ、こういうことですか？」

❶バッファプールはHDDのデータをブロック
単位で1度だけ読みにいってそれをキャッ
シュしておくことで、2度目以降のHDD読み
込みを不要にするためのもの

❷ぐるぐる系SQLを使っても、バッファプールが
働いていればHDD読み出しは増えない（図2）

　「ビンゴ！　結局、一発系でもぐるぐる系で
も、使うデータが同じならHDDを読み出す回数
は同じなわけや。バッファプールはHDD読み出
しが無駄に多いときに、つまりHDDの同じブ
ロックを何度も読み出してるようなときにその
回数を減らすために役に立つもの。だいたい「ぐ
るぐる」される先のほとんどはマスタ系のデータ
で、参照頻度が高いのでずっとキャッシュされ
ていることが多いからね。もともとのバッファ
プールがよっぽど少ないときを除いて、ぐるぐ
る系SQLに対しては効果はないんよ」

影響項目 設計ガイドライン ぐるぐる系の
悪影響 使用するメモリ

SQL生成、転送（1）、
パース、オプティマイズ 回数を減らす 中〜大 ライブラリバッファ、

SQLキャッシュ
HDD読み出し 回数を減らす 小〜中 バッファプール

データ加工（1）
大規模なソート、ジョインを最小限にする 小 ワークスペース
回数を減らす。コネクションをつないでい
る間の待ち時間を減らす 大 ワークスペース

転送（2） データ量、回数を減らす 中〜大 ワークスペース

データ加工（2） 集合操作系の処理を避ける（必要な場合は極
力DB側の「データ加工（1）」に移す） 中〜大

ビジュアライズ なし なし

 ▼表1　DB負荷への影響要素イメージ（2）

バッファプールのイメージ
手元にデータの複製を置いておけば、
HDDまで取りに行かずに済む

126 - Software Design Dec. 2016 - 127

　もっとも、完全に増えないのであれば影響は
「なし」なのですが、一発系で複雑な結合条件・
抽出条件を使用する場合には、ぐるぐる系で同
じ結果を得ようとするとHDD読み出しが増えて
しまうことはありえます。そこで、影響度なし
ではなく「中以下」としましたが、ほかの項目に
比べて相対的に小さいことは確かです。
　「メモリを増やせば効果がある、ってものじゃ
あないんですね」
　「足りていないなら増やせば効くけど、足りて
いるところに足しても意味はないよね。でも、
昔はメモリのチューニングだけで効果が出る場
合がよくあったんよ」
　「昔は？　なんでですか？」
　DBMSソフトウェアのインストール直後は、
メモリの少ないノートPCでも動くような設定
になっている場合があり、それを変更せずに使っ
ているケースを10年ぐらい前はよく見かけまし
た。最近ではそこまで極端な例は少なくなりま
したが、サーバにメモリを増設したときに、DB

のパラメータを変えるのを忘れてそれを使えな
いままだったという例には、今年もある大手企
業のプロジェクトで遭遇しています。
　そんな場合には、DBパラメータのチューニ

ングだけで効果が出る場合もありえます。しか
し、そもそも下手なSQLを使っているのが原因
の場合はそちらに手を打つべきです。
　「というわけで、実際のところどうなんや？　
ぐるぐる系なのか、これ？」
　「調べてみます」と言って大道君は調査に入り
ましたが、その結果は驚くべきものでした。

　「JOINを全然使ってないやて……？」
　「そうなんです。ぐるぐる系ばっかりですね」

スケールアウトしにくいから
JOINを禁止する？

「スケールアウトしにくいから JOIN禁止」
はあまりにも短絡的第10回

AP HDD
ワーク
スペース

バッファ
プール AP HDD

ワーク
スペース

バッファ
プール

ぐるぐる系でもHDDアクセスはとくに増えない

一発系 ぐるぐる系

 ▼図2　バッファプールの動作イメージ

128 - Software Design

　「なんやそら。ド素人かいな !!　メモリもCPU

も効くわけないやろ」
と嘆いてはみたものの、実際のところこういう
ケースはときどきあります。会社によっては
JOIN操作を禁止している例があるのです。
　「JOIN禁止？　ぐるぐるを推奨するんです
か？　なぜ……？」
　「いちおう理屈が立つと言えなくもない理由の
ときもあるけど、実のところしょうもない理由
のときもあるよ。しょうもない言うのは、要す
るにJOINするとSQLが複雑になって扱いに困
るからやめろ、という奴で、まあ『私は勉強する
気ありません！』宣言みたいなもんやな」
　「一緒に仕事したくないタイプですね。もうひ
とつは？」
　「JOINを使っていると負荷分散が必要になっ
たときにスケールアウトしにくいからやらない、
という方針をとっていた会社があったね」
　「え……それは理にかなってるんですか？」
　高負荷に対応する手法には、おおまかにスケー
ルアップとスケールアウトがあります。スケー
ルアップはサーバの性能を上げる方法ですが、
高性能なサーバは高価ですし、そもそも無限に
速いCPUが手に入るわけでもありません。
　スケールアウトはサーバの数を増やす方法で、
相互に独立した複数の処理が同時に発生するよ
うな用途では、それぞれを別なサーバに分担さ
せるという「安価なマシンの並列動作」により高
負荷に対応できます。しかしそのためには「並列
動作させる複数の処理が相互に独立して」いなけ
ればなりません。データベースの処理はそれが
成り立たないことがあり、スケールアウトさせ
るうえでボトルネックになりやすいのです。

DBがボトルネックになる理由
とは？

　「DBがボトルネックになりやすい理由はわか
る？」
　「複数の処理が相互に独立していないというこ
とですか……ああ、つまりトランザクションっ
てそのためにあるんですよね？」

　「そう。口座残高や商品在庫、商品マスタみた
いな、全ユーザが共通して参照／更新する単一
のオブジェクトに更新をかける処理は並列動作
できない。だからテーブルやレコードにロック
をかける必要がある。この部分はスケールアウ
トできないわけや」
　「それはわかりましたが……だからといって
JOIN禁止にするのが合理的な方法なんでしょ
うか？」
　たとえばECサイトにログインして注文履歴
を参照する処理を素直に考えると、注文履歴が
入っている売上明細テーブルと商品マスタテー
ブルをJOINするのが最も合理的です。これを
負荷分散させようとしても、商品マスタは「全
ユーザが共通して参照する単一のオブジェクト」
ですので分散させられません。すると図3のよ
うにサーバをまたいでJOINをすることになり、
性能低下を招きます。
　「あ、だからJOIN禁止、と……」
　「そういうことやね」
　「でも商品マスタなんてあまり更新されるデー
タでもないですし……各サーバにコピーを持た
せるってわけにはいかないんでしょうか？」
　「実はこんな方法があるんや」

　図4のようにサーバをマスタ（1つ）＋トランザ
クション系（複数、以下トラン系と表記）に分け、
マスタ系のデータはマスタサーバに入れ、その
コピーをトラン系サーバに作ります。
　参照の処理はトラン系サーバ内で完結するの
でJOIN操作に支障はありません。マスタ系の
データを更新するときはマスタサーバに更新を
かけます。その更新が自動的にほかのトラン系
サーバにも反映される、というしかけを作れば
全体の一貫性が保たれます。これを実装するた
めには、DBリンクを使ったマテリアライズド
ビュー、トリガーでコピー、DBリンクがない
MySQLの場合はレプリケーション、などのし

マスタ系データをコピー
する方法

128 - Software Design Dec. 2016 - 129

くみが使えます。
　「ユーザ同士がお互いの売上明細（＝注文情報）
を知る必要はないから、トランAとトランBに
全然別のトランザクションデータが入っていて
も問題ない」
　「あ、つまりAとBの明細を同期させる必要は
ない、と……そこは『相互に独立した複数の処
理』になるわけですね」
　「そう。マスタ系を同期させる負荷はどうして
も発生するけど……」
　「マスタ系は……データ量も更新頻度も少ない
ので、たいしたことはない？」

　「そのとおり！」
　「なるほど……おもしろいです！」

JOIN禁止はかえって負荷を
増やす

　JOINには確かに負荷がかかります。COBOL

時代にはとくにそうだったので、そのイメージ
を引きずっている人もいるようです。しかしだ
からといってJOIN禁止というのはあまりにも
短絡的な考え方です。
　当連載でこれまで書いてきたように、RDBは
集合操作が効率良くできるように特化したシス
テムであり、JOINはその集合操作の核となる機

能です。本質的にJOINが
必要なのに、RDBにそれ
をやらせずにAPサーバに
移すという「ぐるぐる系」の
設計をすると、RDBへの
SQL1回あたりの負荷は減
りますが、それ以外の部分
で負荷が増えて差し引くと
かえって有害になる場合が
多いですし、開発効率の面
でも悪影響を招きます。
　性能というのはシステム
全体でトータルに考えるべ
きもので、どこでどんなボ
トルネックが発生している
のかを見極めて適切な手を
打たなければなりません。
それをきちんと考えている
ならば、「スケールアウト
させるためにJOIN禁止」
などという短絡的な方針は
出てこないはずです。もし
設計ガイドラインとしてそ
んな方針を決めているプロ
ジェクトがあるなら、あら
ためてその意図を精査する
ことをお勧めします。｢

「スケールアウトしにくいから JOIN禁止」
はあまりにも短絡的第10回

商品マスタ
テーブル

マスタサーバ

売上明細
テーブル

売上明細一覧

トランAサーバ

明細はユーザごとに分離・分散できるが、マスタ系データは分散できないため、
JOINをしているとそこがボトルネックになる。

ユーザ1

売上明細
テーブル

トランBサーバ

ユーザ2

JOIN

 ▼図3　サーバをまたぐJOINは性能低下を招く

マスタサーバ トランAサーバ

マスタ系データのコピーをトラン系サーバ内に持たせる。
参照系の処理はトラン系サーバ内で完結。JOIN制限不要。
マスタ系データの更新はマスタサーバに対して行う。
マスタ系データへの更新を自動的にトラン系サーバに反映させる。

トランBサーバ

コピー

 ▼図4　マスタ系データをトラン系にコピーして負荷分散

130 - Software Design

Vimのファイラ
「Netrw」

　みなさんはテキストエディタを使う際に、ど
のようにファイル名を指定しているでしょうか
――シェルからエディタを起動する際のコマン
ド引数で指定して開く、起動したエディタのファ
イル選択画面から指定して開く、はたまたプロ
ジェクト内でgit管理されたファイルだけを抽出
して開く――いろいろな方法があると思います。
　Vimには「Netrw」というファイラが付属して
おり、ディレクトリをブラウジングしながらファ
イルを選択できます。NetrwはDr.Chip氏が開
発しており、古くからVimにバンドルされてい
るプラグインです。Vimとともに成長してきま
した。特徴は次のとおりです。

・マルチプラットフォーム
・コピーや削除といったファイル操作
・豊富なビュースタイル
・拡張可能なアクション
・リモートファイルの編集

　実はこのNetrw、機能がたくさんあって便利
なのですが、残念なことにそれほど多くの人に
は使われていない現状があります。使っていた
としても、すべての機能を使いこなしているユー
ザはほとんどいないのではないでしょうか。

　Netrwの機能は多く、とても1回では紹介し
切れません。そこで今月号と次月号の2回に渡っ
て、この隠れた機能がたくさんあるNetrwの便
利な機能を紹介したいと思います。今回はNetrw

の操作方法を、次回はNetrwのカスタマイズ方
法を紹介します。

Netrwの使い方

　まずは基本的なNetrwの使い方を紹介します。

ファイルの開き方

　Vimは本来ファイルを編集するためのテキス
トエディタですが、ディレクトリ名を指定して
開くことでファイルブラウザが開きます（図1）。
　ファイルブラウザではj/kでカーソル移動を
行えます。目的のファイルの上で　　　を押す
と対象のファイルのバッファが開きます。これ
が一番簡単なNetrwの使い方になります。
　次に、ファイルブラウザで使えるキーマッピ
ングを示します（表1）。
　　　 -hから隠し項目リストを入力すると、
ファイルブラウザに表示される一覧から特定の
ファイル／ディレクトリを非表示にできます。
ここでは正規表現でパターンを入力します。次
の例は拡張子が「.jpg」と「.png」のファイルを表示
しないパターンです。

Enter

Ctrl

一歩進んだ使い方
のため

のイロハ

Vimの標準ファイラ
「Netrw」（基本編）

　多機能・便利だけどあまり知られていないのが、Vimの標準ファイラ「Netrw」。その活用方法を基本編・
応用編の全2回で追います。基本編では、基本的な使い方とキーマップ、ソート、マーク機能によるファイ
ルへの一括操作、プロトコルを越えたファイルの編集方法などを紹介します。

mattn
twitter:@mattn_jp

第 回13

130 - Software Design Dec. 2016 - 131

機能などに割り当てられている場合は、:help

netrwで参照してください。

編集ウィンドウ設定

　ファイルブラウザで　　　を押すと編集用
ウィンドウでファイルが開きます。ファイルを
変更していないのであれば、同じウィンドウで
ファイルが開きます。ファイルが変更されてい
る場合は、プロンプトで保存、または変更を破
棄するかを聞かれます。
　この編集用ウィンドウは:NetrwCコマンドを
使ってカレントウィンドウに設定できます。ま
た:NetrwC 3のようにウィンドウ IDを指定す
ることでも変更できます。今いるウィンドウの
IDは:echo winnr()で確認できます。ファイ
ルブラウザでCをタイプすることで現在の編集
用ウィンドウIDを確認することもできます。

ウィンドウの操作

　Vimはスクリーン上に複数のウィンドウを開

Enter

\.\(jpg\|png\)$

　隠し項目リストのデフォルト値はg:netrw_

list_hideで設定できます。
　qfで表示されるファイルの情報はファイル名、
サイズ、更新時刻です。Vim7.4.1976以前では
サイズが2GB以上のファイルサイズを正しく表
示できませんでしたが、このバージョンにて
64bitの数値を扱えるようになったため、きちん
と表示できるようになりました。
　始めはキーが覚えられないかもしれませんが
　　 でヘルプを表示できるので基本的な操作は
そちらからすぐに参照できます。　　 がOSの

F1

F1

キー 動作
ディレクトリを開く／ファイルを開く

またはD

ファイル／ディレクトリを削除

 -h 隠し項目リストの編集
 -l 一覧の再表示
- 1つ上のディレクトリに移動
qf ファイルの情報を表示
p ファイルをプレビュー
d ディレクトリの作成
x 関連付けられたプログラムでファイルを実行

X
カーソル配下のファイル名をsystem()で
実行

% 移動したいパスを入力
ヘルプを表示

 ▼表1　基本操作のキーマッピング

Ctrl

Ctrl

F1

Enter

Delete

 ▼図1　Netrwのファイルブラウザ画面

キー 動作

o
カーソル配下のアイテムを縦分割ウィンドウ
で開く

t カーソル配下のアイテムの新しいタブで開く

v
カーソル配下のアイテムを横分割ウィンドウ
で開く

 ▼表2　ウィンドウ関連のキーマッピング

Vimの標準ファイラ「Netrw」（基本編）

第 回13

一歩進んだ使い方
のため

のイロハ

132 - Software Design

いてruntimepathで指定される最初のパスに、
それぞれ「.netrwhist」「.netrwbook」というファ
イル名で保存されます。置き場所を変更したい
場合はg:netrw_homeという変数で指定します。
次の例は、g:netrw_homeにホームディレクト
リを指定しています。

let g:netrw_home = expand('~/')

マーク操作

　Netrwの操作の肝はマーク操作です（表5）。
ファイルブラウザで対象のファイルをマークし
て操作を一括実行できます。mfをタイプすると
カーソル配下のファイルの色が変わるので、マー
クされたことがわかります。
　quickfix/location-listからNetrwへのマーク
に変換する機能（qF、qL）については、たとえば
あるパターンで:grepした結果見つかったファ
イルを、一括で削除するといったユースケース
が考えられます。
　mdは2つ以上のファイルをマークした状態で
実行すると、1つめに指定したファイルと残り
のファイルとの差分をdiff形式で表示します。
　ファイルのコピー（mc）や移動（mm）を行うに
は、まずターゲットを指定する必要があります。
mtでディレクトリをターゲットとして設定し、
次にmfでファイルをマーク、最後にmcでコピー
を実行します。ただしこのコマンドには、
Windowsで動かないという問題が残っており、
これについては今後vim-jpで修正していきたい
と思います。
　mvを実行すると、Netrwはマークしたファイ
ルをいったんVimで開き、:で始まるコマンド

くことができます。ファイルブラウザで表2の
キーをタイプすると別のウィンドウが開き、そ
こで対象のファイルを編集できます。これらの
キーは、押すたびに新しいウィンドウが開かれ
ます。

ファイルブラウザの操作

　Netrwが表示するファイルの一覧では、表3
のようにソート順や表示／非表示の切り替え、
カレントディレクトリの移動などが行えます。
　デフォルトのビューは、次の4つの中から
g:netrw_liststyleで設定できます。

・0：ファイル名のみ
・1：�ファイル名とサイズ、タイムスタンプを

表示
・2：マルチカラム
・3：ツリー

　ソートのサフィックス（S）には、正規表現の
パターンをカンマセパレートで入力します。デ
フォルト値はg:netrw_sort_sequenceで設定
できます。

ブックマーク

　Netrwでは、表4のようにブックマーク・閲
覧履歴に関する操作も行えます。Netrwの閲覧
履歴およびブックマークは、設定ファイルにお

キー 動作
a 隠しモード、表示モードの切り替え

c
Vimのカレントディレクトリを閲覧ディレ
クトリに移動

gh ドットファイルを表示／非表示

gn
カーソル配下のディレクトリをツリーのト
ップにする

i
ビューを切り替える（簡易／詳細／ワイド
／ツリー）

r ソート順を逆に切り替え
R ファイルをリネーム

s
ソートを切り替え（名前／時刻／ファイル
サイズ）

S 名前ソートのサフィックスを指定

 ▼表3　ソート、表示に関するキーマップ

キー 動作
gb 1つ前のブックマークディレクトリに移動
qb ブックマークディレクトリと履歴を一覧表示
mb ディレクトリをブックマーク
u 最近表示したディレクトリへ移動
U 次に表示したディレクトリへ移動

 ▼表4　ブックマークに関するキーマップ

132 - Software Design Dec. 2016 - 133

　今回はNetrwの基本動作とキーマッピングに
ついて説明しました。巷にはVimで扱えるファ
イラがほかにもたくさんあり、どうしても目新
しいほうに目が行きがちです。ですが、実際に
はNetrwだけで事足りてしまうことの方が多
かったりもします。
　Netrwは使ってみると意外にも多機能で、そ
れだけでも実はいろいろなことができるように
なっています。マーク機能を使えば一括コピー
や一括移動もできるので、Vimの中で全部やっ
てしまいたい人にはとても便利だと思います。
　次回はNetrwのカスタマイズ方法と、活用方
法などをご紹介します。ﾟ

を適用したあとファイルを保存します。ですの
で、たとえばmxをタイプしたあと、

s/foo/bar/g

を入力すると、ファイル内の fooがbarへ一括置
換が行われます。ちょうど、sedの「-i」フラグと
同じ動作になります。

　Netrwの特徴的な機能として、各種ネットワー
クプロトコルを扱えることが挙げられます。次
に、Netrwがサポートするネットワークプロト
コルを示します。

・WebDAV
・FTP
・HTTP
・RCP
・rsync
・SCP
・SFTP

　HTTPについては、HTMLの読み込みができ
ますが、書き込みはできません。そのほかのプ
ロトコルでは書き込みもできます。FTPや
BASIC認証を使う場合は「.netrc」ファイルを読
み込むことで認証を行うことができます。編集
はVimのコマンドから:eで指定できます。ま
た、コマンドラインから引数で指定することも
できます。
　たとえば、SSHポートが空いているサーバの
̃/.vimrcを直接編集するのであれば、次のよう
に実行します。

$ vim scp://server/~/.vimrc

　この場合、パスワードやパスフレーズの入力
を避けるために、ssh-agentを起動しておく必要
があります。そのほか、プロトコル別に設定方
法が異なるので、詳細は:help netrw-xferを
参照してください。

キー 動作
qF quickfixにあるファイルをNetrw上でマーク

qL
locaiton-listにあるファイルをNetrw上で
マーク

mc
マークしたファイルをターゲットディレクト
リにコピー

md マークしたファイルでdiffを実行
me マークしたすべてのファイルを編集
mf ファイルをマーク
mF ファイルのマークを解除
mr 正規表現でマッチしたファイルをマーク
mg マークされたファイルでvimgrepを実行

mh
マークしたファイルのサフィックスを隠しリ
ストに設定

mm
マークしたファイルをターゲットディレクト
リに移動

mp マークしたファイルを印刷
mt カレントディレクトリをターゲットに設定
mT マークしたファイルでctagsを実行
mu すべてのマークを解除
mv マークしたファイルにVimのコマンドを適用

mx
マークしたファイルにそれぞれシェルコマン
ドを適用

mX
マークしたファイルに一括でシェルコマンド
を適用

mz マークしたファイルを圧縮／解凍

 ▼表5　マーク操作に関するキーマップ

おわりに

Netrwはネットワーク
を超えられる

Vimの標準ファイラ「Netrw」（基本編）

第 回13

134 - Software Design

連載作家殺しの
アップル

　前号から早1ヵ月。macOS Sierraは無事リ
リースされましたが、月刊誌連載の執筆者とし
ては困ったことに、締切日もなお「微妙な時期」
は続いています。Apple Pay注1日本スタートは
10月25日。新型 MacBook Pro が発表される
であろうhello again注2イベントは10月27日。
「パチンコガンダム駅」からもう4年、やっと日
本国内でも純正マップで公共交通機関検索でき
るようになるのも、Swift Playgroundが iCloud

でMacと iPadを行き来できるようになるのも、
間に合いません（涙）。たった数日なのに！
　10月下旬現在の筆者と本記事を手にしてい

る読者の皆さんと、Appleの新製品以上に隔て
ているものがあります。読者の皆さんは、すで
にObamaの次の米国大統領が誰かを知ってい
るのです。なんてうらやましい！

Bad hombre

　全3回の公開討論も終わり、あとは投票日
11月8日（現地時間。日本時間では翌日）を待
つだけとなった執筆現在（10月下旬）。今日、
最も正確な選挙予測をするFiveThirtyEight注3

のNate Silver注4によると、状況は図1のグラ
フのとおり、Hillary Clintonの勝利は決まった
も同然に思われます。
　にもかかわらず、普段はノンポリなギークた

ちも、コードそっちのけで今回の選挙
について語らずにはいられないようで
す。Perlの父、Larry Wallですらこの
調子（図2）。
　もう一方の候補、Ronald Trumpの「反
人気」の高さは過去に例を見ません。普
段は二大政党の党大会双方に機材を貸
し出すAppleも今回は取りやめていま
すし、それどころかトウの共和党自体、
自ら選んだ候補への推薦を下げている
ような状態の中、異色を放っているの
がピーター・シール（Peter Thiel注5）。

書いて覚える 入門Swift

Writer 小飼 弾（こがい だん）　　 twitter @dankogai

第21回“hello again”を待ちながら

 ▼図1　 ヒラリーの勝利は確実？

注1） http://www.apple.com/jp/apple-pay/getting-started/
注2） http://www.apple.com/apple-events/october-2016/
注3） FiveThirtyEight（http://fivethirtyeight.com/）
注4） https://twitter.com/NateSilver538/status/789625104657514496
注5） http://www.politico.com/story/2016/06/apple-wont-aid-gop-convention-over-trump-224513

http://www.apple.com/jp/apple-pay/getting-started/
http://www.apple.com/apple-events/october-2016/
http://fivethirtyeight.com/
https://twitter.com/NateSilver538/status/789625104657514496
http://www.politico.com/story/2016/06/apple-wont-aid-gop-convention-over-trump-224513

134 - Software Design Dec. 2016 - 135

“hello again”を待ちながら第 回21

　PayPalの共同創始者で『ゼロ・トゥ・ワン注6』
の著者でもあるビリオネアは、Trumpの選挙
に125万ドル寄付注7することを表明しました。
　しかしこのニュース以上に物議を醸し出した
のは、Y CombinatorとFacebookの対応でしょ
う。双方ともTrumpへの不支持を表明する一方、
Thielとの関係を維持注8することを表明したの
です。
　Ruby on Railsの作者であるデビッド・ハイネ
マイヤ・ハンソン（David Heinemeier Hansson、
@dhh）のツイートに、『ハッカーと画家注9』の著
者でもあるポール・グレアム（Paul Graham、@

paulg）は「もし共和党を支持している会社がヒラ
リーのサポーターを解雇したらどう感じるか」（図
3）と答えています注10。
　しかしDHHが指摘するとおり、ベンチャー
キャピタル（VC）のパートナーというのは被雇
用者ではありません。労働基準法に相当する各
国の法が被雇用者支持政党による差別を禁止し
ているのは、それが生活基盤を人質にとるのに
相当する行為だというのが理由ですが、VCの
パートナーというのは雇用側というまさに正反
対の立場であり、Trumpを支持することは
Trump的な判断を投資先に下すのではないか
という懸念をむしろ増すものだと判断せざるを
えないでしょう。結局@dhhと@paulgのやり
とりは、@paulgが@dhhをブロックすること
で終わるのですが、この事件は IT業界におけ
る多様性とはいったい何なのか、筆者にも再考
を迫られるものでした。

最悪の脆弱性とは

　ちょうどその頃起こったのが、脆弱性を突か

れて乗っ取られたセットトップボックスやウェ
ブカメラによるDDoS注11。「IoTによるDDoS」
がこれまでの脆弱性と異なるのは、機器のアッ
プデートで収束を図るという、パソコンやスマ
フォの常識が通用しないこと。機器によっては、
ファームウェアのパスワードを変更することす
ら不可能とあっては、物理的にプラグを抜くし
か解決法はありません。
　そう。「物理的に外す」。これこそが「モノ」の
欠陥を修復するたった1つの冴えたやり方だっ
たのです。むしろ「論理的に交換」できることが
パソコンやスマフォでは新常識として確立され
ていたにもかかわらず、旧来から存在していた
というだけで旧来の常識のまま進めてしまった
ことこそが、IoTにおける真の脆弱性なのかも
しれません。

 ▼図2　 “More than one way” but “no Trump
 way”

注6） http://amzn.to/2f79YzJ
注7） http://www.nytimes.com/2016/10/16/technology/peter-thiel-donald-j-trump.html
注8） https://theintercept.com/2016/10/19/when-the-genius-men-of-silicon-valley-suddenly-dont-seem-so-smart/
注9） http://amzn.to/2f7aePh
注10） https://twitter.com/paulg/status/787571526891663360
注11） http://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/

 ▼図3　 DHHとポール・グレアムのTwitterでの
やりとり

http://amzn.to/2f79YzJ
http://www.nytimes.com/2016/10/16/technology/peter-thiel-donald-j-trump.html
https://theintercept.com/2016/10/19/when-the-genius-men-of-silicon-valley-suddenly-dont-seem-so-smart/
http://amzn.to/2f7aePh
https://twitter.com/paulg/status/787571526891663360
http://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/

136 - Software Design

書いて覚える 入門Swift

　しかし、「物理であれ論理であれ、脆弱な部
品は交換する」というのは実は IoTどころかイ
ンターネット以前には確立された常識でもある
のです。Galaxy Note 7を挙げるまでもなく、
スマフォでさえ論理的に直せなければ物理的に
交換するしかないのですし、家電にもクルマに
もリコールは制度として確立しています。
　そして交換するのであれば、脆弱性が健在す
る前に交換してしまえればなおよし。
　その点から考えると、「脆弱性」があろうがあ
るまいが、定期的な交換を制度化した選挙制度
というものは、「期限付き保証はあっても使わ
なくなるか壊れるまで放置」という「アプライア
ンスの常識」よりよほど先進的にも感じます。
もっとも今回の米国大統領選挙をめぐる混乱は、
交換品自体の品質保証体制の脆弱性を突かれた
結果とも言えるのですが。
　トランプ候補と言えば、GitHubにTrump

Script注12が公開されています。これを実行す
ると（もちろん Macでは動かない！）、図4の
ようになります。

Keep Walking

　この2つの事件を通してあらためて思い起こ

したのが、今年のノーベル生理学医学賞注13。
数多の研究者が「新しいものが、どう形作られ
るのか」を追ってるのを横目に、大隅良典先生
は「古いものはどう捨てられるのか」を追い続け
た結果、単独受賞にたどり着きました。しかし
オートファジーにほかの研究者が遅まきながら
目を向け始めたのも、オートファジーという現
象自体より、オートファジーというメカニズム
が故障するとヤバイということに気がついてか
らだったというのも、人というのは痛い目に合
わないと学ばないものなのかと自戒しています。
去年左腕が壊れなければ、今年の私が 1日
15km歩くようになっていたか。

◆　　　◆　　　◆
　“If it ain't broke, don't fix it”、「壊れてもい
ないのに直すな」というの本誌の読者もよくご
存じの格言ですが、「壊れているのに気づいて
ない場合」に対して脆弱でもあります。
　互換性を損ねてでも直し続けるSwiftという
言語はその点においてもモダンなのですが、
Xcode 8.0現在、新たに壊れたものが8.1以降
で直るのを待っているという、歯がゆい状況が
「史上最低」の米国大統領選挙とともに終わって
いることを祈りつつ、今月はこれにて失礼しま
す。ﾟ

注12） https://github.com/samshadwell/TrumpScript
注13） http://www.nobelprize.org/nobel_prizes/medicine/laureates/2016/press.html

Traceback (most recent call last):
 File "./bin/../src/trumpscript/main.py", line 30, in <module>
 main()
 File "./bin/../src/trumpscript/main.py", line 24, in main
 Utils.verify_system(args.Wall)
 File "/Users/dankogai/github/TrumpScript/src/trumpscript/utils.py", line 34, in verify_system
 Utils.boycott_apple()
 File "/Users/dankogai/github/TrumpScript/src/trumpscript/utils.py", line 72, in boycott_apple
 raise Utils.SystemException('boycott');
 File "/Users/dankogai/github/TrumpScript/src/trumpscript/utils.py", line 21, in __init__
 raise Exception(random.choice(ERROR_CODES[msg_code]))
Exception: Mac? 'Boycott all Apple products until such time as Apple gives cellphone info to ｭ
authorities regarding radical Islamic terrorist couple from Cal'

 ▼図4　 TrumpScriptの実行結果

https://github.com/samshadwell/TrumpScript
http://www.nobelprize.org/nobel_prizes/medicine/laureates/2016/press.html

137 - Software Design Dec. 2016 - 137

　Sphinxでよく利用される出力形式の1つが
PDFです。PDFはポータブルで印刷に向いて
いるなどの特徴があることから、業務でもよく
利用されるフォーマットです。
　Sphinxでは外部の拡張やツールを利用する方
法を含め、PDFに変換する方法がいくつも存在
します（表1）。本稿では、生成されたPDFの見
栄えが良いLaTeXを使ったPDF出力を紹介し
ます。この方法では、LaTeXのテクニックを
使って出力がカスタマイズできます。

　本稿では次のWindows環境で検証／確認をし
ています。UNIX系OSを利用されている方も同
様の手順で進めることができます。

・OS：Windows 10
・Python：3.5.2
・Sphinx：1.4.8

LaTeXを利用した
PDF出力

Sphinx環境の確認／
TeX環境の構築

　簡単に最新のTeX環境を構築できることから
TeXのディストリビューション「TeX Live」のイ
ンストールを推奨します。最新版のTeX Live

2016をインストールしましょう。
　TeX Liveのインストールは付属のインストー
ラを実行します。詳細な手順はSphinx-Users.jp

で紹介されていますので、ここでは説明を省き
ます注1 注2。
　また、Windows環境ではTeX Liveに加えて
makeコマンドをインストールします。筆者は
Gow（Gnu On Windows）注3というUNIXコマン
ド集を利用しています。
　そのほか、出力されたPDFの確認用として
Adobe Acrobat ReaderをAdobe公式サイト注4

よりインストールしてください。

　PDFを出力するには次の手順を実行します。

①Sphinxプロジェクトの作成
②日本語ドキュメント向けのLaTeX出力設定の

追加

注1） http://sphinx-users.jp/cookbook/
pdf/latex-install-tl.html

注2） Windows 以外のOSへのインス
トールは、次のTeX Wikiから「TeX
をインストールしよう」→「TeX入手
法」→「TeXをインストールする方
法」を参照。

 https://texwiki.texjp.org/

注3） https://github.com/bmatzelle/
gow/releases

注4） https://acrobat.adobe.com/jp/ja/
acrobat/pdf-reader.html

PDFの出力手順

PDFを出力しよう第21回

山田 剛　Yamada Go　 Twitter @usaturn

Sphinxで始める
 ドキュメント作成術

方法 概要

LaTeX出力 Sphinx標準のPDF出力方式。組版エンジンであるLaTeX
を介してPDFを生成する。出力結果の品質が非常に高い

rst2pdf拡張 Sphinx拡張であるrst2pdfを用いてPDFを生成する。出
力はシンプルだが、依存関係は少なく済む

HTMLをPDFに
変換する

Sphinxで出力したHTML（singlehtml）をブラウザなどを
介してPDFに変換する。変換の際に操作を必要とするが、
依存関係の少なさと一定の出力品質が担保されている

 ▼表1　SphinxからPDFを生成する方法

http://sphinx-users.jp/cookbook/pdf/latex-install-tl.html
https://texwiki.texjp.org/
https://github.com/bmatzelle/gow/releases
https://acrobat.adobe.com/jp/ja/acrobat/pdf-reader.html

138 - Software Design

③ reSTファイルの編集
④makeコマンドの実行

 ■Sphinxプロジェクトの作成
　はじめにsphinx-quickstartコマンドでSphinx

プロジェクトを作成します。

　初期化の際、-lオプションで日本語（ja）を指
定するのがポイントです。既存のプロジェクト
を利用する場合はconf.py内の languageを'ja'
に設定してください。

 ■日本語ドキュメント向けLaTeX出力設定
　続けて、日本語ドキュメント向けのLaTeX出
力の設定を行います。conf.pyに次の設定を追加
します。

　latex_docclassを設定するとLaTeXのドキュ
メントクラスを差し替えることができます。こ
こでは日本語環境でよく使われる jsarticleや
jsbookを利用するように設定しています。

 ■ reSTファイルの編集
　次にreSTファイルを編集します。ここでは
index.rst（リスト1）を変更し、chapter1.rst（リ

スト2）を追加します。

 ■makeコマンドの実行
　文章を書き終えたら、いよいよPDFファイル
を出力してみましょう。PDFの生成にはmake
latexpdfjaコマンドを実行します。

　処理の様子がターミナルに大量に流れ、次の

> sphinx-quickstart -q -p project_name ｭ
-a test -l ja -v 1.0 project_dir

 日本語向けLaTeX出力設定
latex_docclass = {
 'howto': 'jsarticle',
 'manual': 'jsbook'
}

> make latexpdfja

メッセージが出てプロンプトが返ってきたら完
了です。

　メッセージどおり_build/latexディレクトリ
以下にPDFファイルが生成されていることを確
認してください。

　どうでしょう。想像していたよりも簡単に
PDFが出力できたのではないでしょうか。

　LaTeX経由で出力したPDFには次の特徴が

Build finished; the PDF files are in ｭ
_build/latex.

project_dir¥_build¥latex¥project_name.pdf

LaTeX経由で出力し
たPDFの特徴

Sphinxで始める
 ドキュメント作成術

=======================================
project_name のドキュメントへようこそ！
=======================================

見出し１の手前に表示されるコンテンツ

- この章はマスタードキュメント(index.rst)ｭ
に書かれている内容です。
- toctree の直前に記述されています。

.. toctree::
 :maxdepth: 2

 chapter1

見出し２
========

２章の本文

- この章はマスタードキュメント(index.rst)ｭ
に書かれている内容です。
- toctree の直後に記述されています。

 ▼リスト1　index.rst

========
見出し１
========

１章の本文

- この章は toctree 配下のドキュメントｭ
(chapter1.rst)に書かれている内容です

 ▼リスト2　chapter1.rst

138 - Software Design Dec. 2016 - 139

あります。

・表紙が自動的に生成される
・目次が自動的に生成され、章番号が割り振ら

れる注5

・rsSTファイルが1つのPDFに統合される

　一方でLaTeX出力特有の動作として、ドキュ
メントを書く際に意識しなくてはならないとこ
ろもあります。
　1つめは、index.rstの最初のセクションタイ
トルがPDFに出力されないことです。通常、最
初のセクションタイトルはドキュメントの見出
しとなる部分ですが、LaTeX出力ではドキュメ
ントのタイトルはconf.pyの latex_documentsで
設定するため、LaTeXソースコードに変換する
際に読み飛ばされます。先ほど出力したPDFで
も、目次には最初のセクションタイトル「project

注5） LaTeXによって自動的に割り振られるものです。HTMLで出
力したときと異なる章番号が割り振られることがあります。

_name のドキュメントへようこそ！」は含まれ
ず、次に登場するセクションタイトルである「見
出し１」が先頭に表示されます（図1）。
　もう1つの注意点は、最初のセクションタイ
トルに続くコンテンツが、独立したページに配
置されることです。先ほど触れたとおり、2番
目に登場するセクションタイトルである「見出し
１」が最初の章とみなされるため、最初のセク
ションタイトルから2番目のセクションタイト
ルまでにあるコンテンツは第1章の手前にある
と解釈されます。そのため、これらのコンテン
ツは独立したページに配置されます（図2）。
　こうしたLaTeX出力特有の動作を回避するに
は、次の点に注意してドキュメントを作成する
と良いでしょう。

・2階層以上のセクションを持った文章構造に
する

・先頭のセクションには本文を持たせない

PDFを出力しよう 第21回

 ▼図1　出力された目次 ▼図2　第1章の前に配置されたコンテンツ

拡大

拡大

140 - Software Design

　具体的にはリスト3、4のようなマークアップ
が良いでしょう。

　LaTeX出力にはさまざまなオプションが提供
されています。また、LaTeXのマクロを記述す
ることで見た目を大幅に変更できます。
　ここでは例を挙げながら、いくつかのカスタ
マイズ方法を紹介します。

白紙のページを削除する

　LaTeX出力の標準の設定では、紙の書籍を想
定したスタイルが選択されています。そのため、
目次や章扉が必ず右側のページから始まるよう
空白ページが挿入されることがあります（図3）。
　このスタイルは見開きで綴じられるような印
刷物向けの設定であるため、PDFを直接閲覧す
るような用途には向いていません。オンライン
でPDFを参照する場合は、conf.pyにリスト5の
設定を追加します。この設定を行うことで、空
白ページが詰められたPDFが生成されます。

簡素なPDF出力	
に変更する

　独立した表紙／目次を
持たない、シンプルなPD

Fを出力したいというケー
スも考えられます。その
場合はconf.pyの latex_do

cumentsの設定を変更しま
す。latex_documentsの 5

番目の引数はスタイルを
表します。初期設定では
書籍を想定したmanualが
指定されていますが、こ
れをレポート用のスタイ
ルであるhowtoに変更し
ます（リスト6）。なお、how

toスタイルは空白ページ
などを持たないため、先

PDFの形式を
カスタマイズしよう

Sphinxで始める
 ドキュメント作成術

====================
ドキュメントタイトル
====================

 ※ここには本文を書かない

見出し１
=========

テキストテキストテキスト...

見出し２
=========

テキストテキストテキスト...

 ▼リスト3　LaTeXに変換しやすいドキュメント構成（1）

 ▼図3　書籍を想定したスタイルの見開き

====================
ドキュメントタイトル
====================

 ※ここには本文を書かない

.. toctree::

 chapter1
 chapter2

 ▼リスト4　LaTeXに変換しやすいドキュメント構成（2）

※ index.rstには
toctreeのみ配置

 非印刷用PDFの出力オプション
latex_elements = {
 'extraclassoptions': 'oneside,openany',
}

 ▼リスト5　非印刷用PDFの出力オプション

140 - Software Design Dec. 2016 - 141

ほど設定した非印刷用PDFのオプション
（latex_elements）は削除してかまいません。
　howtoスタイルでPDFを出力すると図4のよ
うな見た目に変わります。

段落で字下げする

　標準では段落ごとの字下げが無効になってい
ます。次の設定により字下げを有効にします。

　ここで設定したものはLaTeXソースコードの
プリアンブル部という個所に記述されます。プ
リアンブル部にLaTeXマクロを記述することで
PDFの見た目を変更できます。設定にはLaTeX

の知識が必要ですが、ページ構成や見た目など、
さまざまなカスタマイズが可能です。

 字下げの設定
latex_elements = {
 'preamble': r'¥setlength¥parindent{1zw}'
}

その他のカスタマイズ

　ここで紹介した以外にもSphinxでは数多くの
設定が提供されています注6。これらを組み合わせ
て読みやすいPDFを生成すると良いでしょう。

　フォントを埋め込まないPDFでは、異なる環
境で閲覧する際に、フォントが見つからず意図
しない表示になることがあります。TeX Live

2016ではフォントの埋め込みが行われるよう初
期設定されていますが、念のためフォントが埋
め込まれていることを確認してみましょう。
Adobe Acrobat ReaderでPDFファイルを開
き、「ファイル」→「プロパティ」→「フォント」と
選択していくと、確認できます（図5）。
　TeXのフォント設定は欧文と日本語でそれぞ
れ違いますので、分けて説明をします。

欧文フォントを埋め込もう

　TeX Live 2016をインストールしている場合
は、標準で「times」という欧文フォントのパッ
ケージが使用されます。
　設定を変更するにはconf.pyの latex_elements

注6） Sphinxリファレンス LaTeX出力のオプション
 http://www.sphinx-doc.org/ja/stable/config.html

#options-for-latex-output

フォントの埋め込み

PDFを出力しよう 第21回

latex_documents = [
 (master_doc, 'project_name.tex',
 'project¥¥_name Documentation', 'test',
 'howto'), ←manual から howto に変更
]

 ▼リスト6　出力形式をレポートに変更する

 ▼図4　howtoスタイル

 ▼図5　フォントの確認

http://www.sphinx-doc.org/ja/stable/config.html#options-for-latex-output

142 - Software Design

に fontpkgを追加します。次の例ではpalatinoと
いうパッケージを指定しています。

　指定できるフォントのパッケージ名は、
Windows 10にTeX Live 2016をインストール
した場合、「C:¥texlive¥2016¥texmf-dist¥tex¥

latex¥psnfss」に配置されるパッケージファイル
から拡張子を抜いた文字列となります。標準で
利用できる文字列は次のとおりです。

　「avant」「bookman」「chancery」「charter」
「courier」「helvet」「mathpazo」「mathpple」
「mathptm」「mathptmx」「newcent」
「palatino」「pifont」「times」「utopia」

　それぞれのフォントについての説明は省きま
すが、欧文フォントの変更は手間をかけずにド
キュメントのイメージを変えられますので、一
度お試しください。

日本語フォントを埋め込もう

　欧文フォントと同様にTeX Live 2016をイン
ストールしている場合は、標準で「IPAex/IPA

フォント」が埋め込まれます。
　古いバージョンのTeX Liveや、それ以外の
環境でフォントが埋め込まれていない場合は日
本語フォントパッケージの設定が別途必要とな
ります。日本語フォントの設定はconf.pyの書き

 欧文フォントの指定
latex_elements = {
 'fontpkg': r'¥usepackage{palatino}',
}

換えではなく、TeXのコマンドを実行します。

　②を実行した結果、次のように表示されてい
れば成功です。

　kanji-config-updmap-sysコマンドの引数
として利用できるフォントパッケージの文字列
は「C:¥texlive¥2016¥texmf-dist¥fonts¥map¥

dvipdfmx¥jfontmaps」配下のディレクトリに対
応しています。
　パッケージ名（表2）に対応したフォントがイ
ンストールされていないと、コマンドを実行し
ても有効にならないことに注意してください。
　そのほか、初期設定にないフォントを埋め込
みたい場合や、より詳しくフォントの埋め込み
について知りたい場合は、TeX Wiki注7を参照し
てください。

　Sphinxは「TeX Live」のインストールと簡単
な設定のみで、実用的なPDFファイルを出力で
きます。Sphinxが標準で提供していない設定に
関しても、LaTeXの設定により変更可能です。
　本稿は、Sphinx関連以外ではWeb、書籍の
TeX関連情報を参考にしました。とくにTeX

Wiki、『LaTeX2ε美文書作成入門』注8は非常に
勉強になりました。TeXコミュニティの方々に
感謝いたします。
　次回は「Sphinxで本を書こう！」です。｢

注7） 次のURLから「一覧」→「TeXとフォント」を選択。
 https://texwiki.texjp.org/

注8） 奥村晴彦、黒木裕介 著、技術評論社、2013年。

 ①IPAexフォントを設定するコマンド
> kanji-config-updmap-sys ipaex
 ②フォントが設定されたことを確認する
> kanji-config-updmap-sys status

CURRENT family : ipaex
Standby family : ipa
Standby family : ms
Standby family : yu-win

まとめ＆次回予告

Sphinxで始める
 ドキュメント作成術

フォント名 備考
noEmbed フォントを埋め込まない
hiragino、
hiragino-elcapitan、
hiragino-elcapitan-pron、
hiragino-pron

ヒラギノフォント

ipa、ipaex IPA/IPAexフォント
ms MSフォント
yu-win、yu-win10、yu-osx 游書体フォント
kozuka 小塚フォント
morisawa、morisawa-pr6n モリサワフォント

 ▼表2　日本語フォントパッケージ

https://texwiki.texjp.org/

142 - Software Design Dec. 2016 - 143

PDFを出力しよう 第21回

Sphinx-1.5のLaTeX事情	 Author 小宮 健

　本連載執筆陣の一人、小宮です。現在、Sphinx
プロジェクトでは次期メジャーリリースである
Sphinx-1.5の開発作業が大詰めを迎えています。
Sphinx-1.5は半年ぶりのメジャーバージョンアッ
プで、数多くの機能が追加されています。
　ここでは、今回の記事で紹介したLaTeX出力周
りの変更点について紹介したいと思います。
Sphinx-1.5の開発では新たにTeX使いがメンテナ
に加わったこともあり、LaTeXビルダがとても便
利になっています。

■日本語向けの設定がシンプルに
　Sphinx-1.5では言語ごとに適切な初期設定を持
つようになります。その結果、conf.pyで言語を日
本語（language = 'ja'）に設定している場合、今
回紹介した latex_docclassの設定が不要となりま
す。また、PDFを生成する際のコマンドもmake
latexpdfjaではなくmake latexpdfの利用を推
奨するようになりました注A。
　この変更により、日本語PDFを生成するために
設定しなくてはならない項目が減り、また、言語
によらず、常にmake latexpdfコマンドでPDFが
生成できるようになっています。

■画像のサイズ指定にpxが利用可能に
　これまでのLaTeX出力では、画像のサイズを指
定する際は、LaTeXの単位系であるcmやemなど
を使う必要がありました。一方、Webでは一般に
pxを使うため、HTML出力向けにpxを使って画像
のサイズを指定してしまうとLaTeX出力には反映
されませんでした。
　Sphinx-1.5では画像の単位系としてpxをサポー
トしたので、HTML出力とLaTeX出力の双方で画像
のサイズ指定にpxを使えます。なお、LaTeX出力

のデフォルトは96dpiです注B。96pxの画像は1イ
ンチ（2.54cm）として扱われます。

■TeXエンジンが切り替え可能に
　Sphinx-1.5では、latex_engineオプションの指
定により、PDFの生成に利用するTeXエンジンを
切り替えられるようになります。通常、日本語向
けにはpTeXが利用されるようになっていますが、
これをLuaTeXやXeTeXを利用するように設定でき
ます。

■カスタマイズ性の向上
　Sphinxで使用しているTeXマクロを見直し、カ
スタマイズしやすくなります。各種インラインテ
キストやnoteやwarningなどの警告ブロックな
ど、数多くの要素に専用のスタイルが提供され、
利用されるようになります。これにより、利用者
はリストAのようにマクロを上書きすることで見
た目をカスタマイズできます。
　また、Sphinxプロジェクト内に _templates/
latex.tex_tファイルを配置すると、生成されるTeX
のソースコードそのものをカスタマイズできるよ
うになりました。

■Sphinx-1.5のリリース予定
　Sphinx-1.5では、ここで紹介した内容のほかに
も、クロスリファレンス機能（numref機能）の強化
やHTML5/EPUB3への対応強化などの大きな機能
追加など、バージョン1.4から100件を超える変更
が行われています。2016年10月現在、アルファ
版として1.5a2がリリースされており、正式版は
11月末ごろにリリースされる予定です。便利に
なったバージョン1.5を楽しみにお待ちください。

COLUMN

注A） これまでどおりmake latexpdfjaも利用できます。 注B） この設定は、latex_elements["pxunit"]オプションで
変更できます。

latex_elements = {
 'preamble': '¥¥renewcommand{¥¥sphinxcrossref}[1]{¥¥textbf{#1}}'
}

 ▼リストA　参照（:ref:など）を太字にする設定

144 - Software Design

IoTのセキュリティに関しては、本連載でも過去に何度も取り上げてきました注1が、ついに懸念し
ていた大規模なIoTデバイスの乗っ取りが発生し、それがDDoS攻撃に使われるという事例が現れ
ました。その攻撃のトラフィック量は1Tbpsを越えたという報告もなされています。今号と次号の
2回に分けてその詳細について取り上げます。

記録的なDDoS攻撃

　筆者がこの事件を最初に目にしたのは、世界で3

本の指に入る巨大ホスティング企業OVH社の創業
者兼CTOであるOctave Klaba氏（@olesovhcom）
が、2016年9月22日につぶやいたツイート（図1）で
した。
　図1に記載されているのは、2016年9月20日1時
40分47秒にOVH社のサーバで記録された攻撃ト
ラフィックですが、パケット数では9,300万パケッ
ト/秒、転送量では799Gbpsという今まで見たこと
のない数字でした。
　これまで本連載注2で取り上げた、NTPのmonlist

機能を使ったDDoS攻撃では400Gbpsでした。今
回はそれの約2倍の量で攻撃されるという状況に
なっています。
　続くツイートによれば、インターネットにつなが
れた約145,000台のカメラで構成されたボットネッ
トからの攻撃で、IPアドレスあたり1～30Mbpsが
計測されているので、理論上は1.5Tbpsを上回るト
ラフィックを発生させることが可能であると説明し
ています。

インターネット接続の監視
カメラ／ビデオレコーダー

　インターネットに接続しているIoTデバイスを見
つけてしまうSHODANのサービスについては、こ

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第三八回】

すずきひろのぶ
suzuki.hironobu@gmail.com

IoT機器を使った過去最大規模のDDoS攻撃（前編）

◆◆図1　Octave Klaba氏の2016年9月22日のツイート

（https://twitter.com/olesovhcom/status/778830571677978624）

注1）	 第16回「IoTのセキュリティについて考える」（本誌2015年1月号）	 	
第27回「同じ轍を踏まないために。IoT時代に向けてできること」（本誌2015年12月号）	 	
第34回「電力施設から家電クーラーまでセキュリティを考える時代」（本誌2016年8月号）

注2）	 第10回「根深くはびこるDDoS攻撃の脅威」（本誌2014年4月号）

https://twitter.com/olesovhcom/status/778830571677978624

Dec. 2016 - 145

【第三八回】 IoT機器を使った過去最大規模のDDoS攻撃（前編）

れまでも本連載でたびたび取り上げてきました。そ
の際に、ネットワーク接続の監視カメラが見つけら
れ、そして、なんらかの方法で認証を回避されて
乗っ取られてしまう危険性についても指摘してきま
した。
　現実に、監視カメラ／ビデオレコーダーが乗っ取
られ、それがボットネットを構成する端末となり
DDoSに使われているという報告が、すでに
SUCURIBLOG（セキュリティ企業Sucuri社が運営
するブログ）で説明されています注3。これによれば、
監視カメラ／ビデオレコーダーが乗っ取られWeb

サーバに対して毎秒35,000～50,000回アクセスを
する攻撃のノードとして使われたということです。

Digital Video Recorder

　監視カメラ／ビデオレコーダーについて少し詳し
く説明します。防犯カメラを店内に配置し、それを
ビデオレコーダーに記録する装置がDVR（Digital

Video Recorder）です。おもにアナログカメラ
（CCDカメラ）からの入力をデジタル化し、それを
デジタルで記録する機材で、今日では防犯カメラの
キットとして一般家庭、事務所、駐車場、店舗、倉
庫などに幅広く導入されています。
　インターネット上でマニュアルが公開されている
DVRの機種を参考に、これはという特徴を抜き出
してみると次のようになります。

●●操作などのためにアクセスするにはパスワード

が必要
●●ネットワーク接続が可能である
●●監視ソフトウェアを別途導入することで、複数の

DVRをネットワーク経由で集中的に管理できる
●●ソフトウェアのライセンスから中身はGNU/

Linuxとわかる

　取り扱い説明書を見るとわかりますが、管理者の
アカウントとパスワードが機種によってすべて同じ
です。あと別途購入する中央監視ソフトを使えば、
最大16台までDVRをネットワーク経由で接続し管

理可能となっています。
　日本の国内代理店が用意している日本語マニュア
ルでは、LANでのセットアップについてのみ説明し
ています。インターネット側からのアクセスに関し
ては言及していません。
　ただし、メーカーのサイトにある海外向けマニュ
アル（オリジナル）では、DVRをインターネット側
からアクセスできるように地域的／地理的に広範囲
に設置し、それを中央監視ソフトで切り替えて監視
できるという、低コストで便利に使えるシステムの
使い方を説明していました。
　もちろんVPN（Virtual Private Network）など
いっさいなしで、直接インターネット側からDVR

にアクセスできることを前提としています。
　この機種のネットワーク設定マニュアルを見てみ
ると、とても興味深いことがわかりました。

●●内部に固有コードを持っており、それをホスト名

にしてDDNS（ダイナミックDNS）に自動登録す

ることが可能
●●ルータの設定でポートフォワードを行いインター

ネット側からDVRへ直接アクセスできるように

設定できる

　マニュアルには、「DVRはHTTPサーバとして動
作するので、セキュリティのためにデフォルトの
80ポートから別なポート番号に変更するように」と
説明書きはありますが、世の常として管理者はデ
フォルトのパスワードは変更せず、ポート番号も
80のまま運用しているのが多数でしょう。よくあ
りがちなのは、業者が最低限の設定だけして設置
し、そのままユーザが使うというようなモデルだと
思います。

攻撃元の統計

　さて、インターネット接続された監視カメラ／ビ
デオレコーダーから成るボットネットの攻撃ノード
はどこの国にあるのか、というのをSUCURIBLOG

は先ほど紹介したサイト注3で分析しています。

注3）	 Large CCTV Botnet Leveraged in DDoS Attacks	 	
https://blog.sucuri.net/2016/06/large-cctv-botnet-leveraged-ddos-attacks.html

https://blog.sucuri.net/2016/06/large-cctv-botnet-leveraged-ddos-attacks.html

146 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

●●台湾：24％
●●米国：12％
●●インドネシア：9％
●●メキシコ：8％
●●マレーシア：6％
●●イスラエル：5％
●●イタリア：5％

（以下略）

　先ほど説明したDDNSのサーバの設置場所が台
湾です。つまり台湾のベンダのDVR装置だという
のがだいたい想像つきますし、また、ご当地ですか
らそれだけ多くの設置数となっているのでしょう。
　台湾の出荷先として東南アジアが入っており、ま
た、防犯のニーズの高い地域が入っているという感
じでしょうか。
　興味深いことに、国別リストの上位には「香港」
「日本」「中国（本土）」というのはありませんでした。
日本は国内ベンダが充実しているので、台湾の機種
を入れるというのは少ないのかもしれません。ま
た、先ほど紹介したように、オリジナルのマニュア
ルではインターネット側からのアクセスを想定して
いるのに、日本国内向けのマニュアルではあくまで
もローカルなネットワークで利用する範囲で説明し
ていたのも一因かもしれません。

IoTをボット化する
システム

　145,000台ものIoT機器からなるボットネット
は、脅威以外の何者でもありません。これだけの数
のIoT機器を1台1台人間が手間暇かけて集めたわ
けではないのはわかります。ここまで大量のIoT機
器を乗っ取るためには自動化するしかありません。
どのような手法やマルウェアだったのか調べようと
思ったところ、なんと、そのシステムのコードが
GitHubで公開されていました注4。作者の名前は
“Anna-senpai”、このボットネットのシステムの
コード名は“Mirai”です。名前からわかるように明

らかに日本のアニメに影響を受けています。
　GitHubで公開された文章を読んでみると、Anna-

senpaiは、これまでDDoSのプロフェッショナルと
して仕事をしてきたこと、これを機にDDoSから身
を引くことを表明しています。それらの経緯や、
コードの分析からわかった攻撃方法の詳細について
は、次回に詳しく紹介します。

なぜ無防備なIPカメラが
出てくるのか考えてみる

　監視用IPカメラやDVRといった機材は建屋内外
の配線や設置などがありますから、自分で取り付け
る方はごく少数で、専門の設置業者に発注して付け
てもらう形になるはずです。
　そして、外部からの攻撃や乗っ取りなどの脅威へ
の対応は設置業者の作業範囲ではないですから、
ルータもカメラもデフォルト設定のまま設置して
いったとしても設置業者の責任は問えません。家電
がそうであるように、機材を置くべき場所に設置
し、そしてマニュアルのデフォルトどおりに設定す
れば終了です。
　ベンダのマニュアルには、パスワードが変更でき
ることや、ポート番号は安全のために変更すること
がきちんと記載されています。しかし、すでに設置
され動いており、使える状態にあるのに、セット
アップのための説明書を読んで設定を変更するユー
ザはほとんどいないでしょう。下手にポート番号を
変更すると、NAT（Network Address Translation）
をかけているようなルータなどの設定内容と齟

そ ご

齬が
出るので、たぶん、そのままにするでしょう。
　ベンダは最低限、一律なパスワードなどは避け
て、デフォルトでハードウェアひとつひとつに異な
るパスワードを設定すべきでしょう。実際に日本国
内で作られている家庭やSOHO向けのルータは、
デフォルトで個々に違う値となっています。しか
し、海外でこれまでに作られたものは、「ユーザの
責任でセットアップをすること」というスタンスで、
ベンダは責任をユーザに預けています。しかし、こ

注4）	 https://github.com/jgamblin/Mirai-Source-Code/

https://github.com/jgamblin/Mirai-Source-Code/

Dec. 2016 - 147

【第三八回】 IoT機器を使った過去最大規模のDDoS攻撃（前編）

でもなく、ましてや軍でもなく、選んだ先はある意
味、Anna-senpaiと同じ分野とも言えるプロフェッ
ショナルです。
　そして、その被害者の立場にいる人が触媒にな
り、IoTセキュリティの問題点と、今回の巨大
DDoS攻撃の脅威をリアルタイムで詳しく情報を流
してくれました。それが波紋のように広がりIT系
メディアが取り上げ、米国政府のCSIRTから注意
喚起がなされ、そして、今、筆者がこのことを原稿
に書いています。
　これまで本連載でもIoTのセキュリティやDDoS

攻撃の脅威、ボットネットについて取り上げてきま
した。しかし、どんなに言葉をかさねようと、今回
の“Mirai”のような具体的な事象と、その手法を
ソースごと公開するインパクトには負けます。
　そう考えるとAnna-senpaiは、このDDoS業界か
ら足を洗うにあたり、最後の警告を残していったの
かもしれません。s

こまで見たように、結果的には責任は誰も持たず、
たらい回しにされているだけです。
　このような状況が、今回のDDoS攻撃が効果的に
実現できた背景へとつながったのではないかと筆者
は考えています。

US-CERTからの
注意喚起

　2016年10月14日に米国政府のCSIRTである
US-CERTから、ボットネット“Mirai”のソース
コードの公開のタイミングで、「Miraiやほかのボッ
トネットが引き起こす深刻なDDoS脅威について」
というタイトルの注意喚起が発行されました注5。
　今回の“Mirai”が引き起こした1Tbpsを越えるト
ラフィック量でのDDoS攻撃は、これまでで最大と
いうだけではなく、政府レベルの組織であっても、
まともに攻撃を受けるとネットワークが長期間に渡
り麻痺するレベルの大きな脅威であることは間違い
ないようです。

Anna-senpaiは
何を目的にしていたのか

　“Mirai”の最初の攻撃は、サイバー空間において
は兵器クラスの破壊力を持っていたと言っても過言
ではないでしょう。また、“Mirai”は、これまで言
われてきたIoTセキュリティの問題を具現化したも
のです。新しい技術は導入していないけれども、技
術をうまくまとめることに関してはたいへん良くで
きています。コード難読化などを見ると、この手の
技術に非常に熟練しています（このあたりのコード
の特徴については、次回に詳しく解説します）。
　しかし、冷静に考えてみると、歴史的とも言える
DDoS攻撃の先は何だったかというと、Brian Krebs

氏というITセキュリティを専門とするジャーナリ
ストのブログ（図2）注6や、DDoS対応には世界でも
トップクラスの実績を持つ巨大ホスティング企業の
サイトでした。
　銀行でもなく、政府機関でもなく、巨大イベント

注5）	 Heightened DDoS Threat Posed by Mirai and Other Botnets　https://www.us-cert.gov/ncas/alerts/TA16-288A
注6）	 冒頭で紹介したOVH社へのDDoS攻撃に先立って、Brian Krebs氏のブログにも、同様の攻撃がありました。

◆◆図2　Brian Krebs氏のブログへのサイバー攻撃を伝え◆
 るBusiness Insiderの報道

（http://www.businessinsider.com/akamai-brian-krebs-
ddos-attack-2016-9）

https://www.us-cert.gov/ncas/alerts/TA16-288A
http://www.businessinsider.com/akamai-brian-krebsddos-attack-2016-9

148 - Software Design

FreeBSD 11.0-RELEASE
の特徴

　FreeBSDリリースエンジニアリングチームは
2016年10月10日（協定世界時）、FreeBSDの最新
版となる「FreeBSD 11.0-RELEASE」を公開しま
した。amd64版、i386版、powerpc版、powerpc64

版、sparc64版、armv6版、aarch64版が用意された
ほか、Amazon EC2、Google Compute Engine、
HashiCorp/Atlas Vagrantで利用できます。
　FreeBSD開発版に取り込まれた新機能や新しい
ドライバは、随時FreeBSD 10系にもバックポー
トされていきましたので、FreeBSD 10.3-RELEA

SEとFreeBSD 11.0-RELEASEの間にはそれほど
大きな違いはありません。ユーザから見た場合には
とくに違いに気がつかないかもしれません。
　10系にバックポートされていない機能もいくつ
かあります。中でもとくに注目されるのは、
zfsd(8)デーモンが導入されたあたりです。これは
iXsystemsとSpectra Logicのスポンサーシップの
もとで取り組まれた成果物で、ホットスペアと自動
交換を実施するための機能です。
　SolarisのZFSにはホットスペア機能が実装され
ているそうですが、これまでFreeBSD ZFSでは
この機能は使えませんでした。ホットスペア機能と
いうのは、簡単に言うとディスクが壊れたら自動的
に控えておいたディスクに入れ替える機能です。こ
の機能が使えると、ストレージの管理がさらに簡単
になります。
　FreeBSD 11からはzfsd(8)が動作するようにな
りましたので、故障してもあまり手を入れたくな
い、システムの再起動ができないといった場合に
は、あらかじめこのホットスペア機能を仕込んでお

いて、壊れた場合に自動的にディスク入れ替えが実
施されるようにしておくといったことができます。

FreeBSD Updateで
アップグレード

　FreeBSD Updateで、この最新版へのアップグ
レードが可能です。詳しい理由は後述しますが、今
回はちょっとアップデートの方法が異なります。
OpenSSLのセキュリティ脆弱性が絶妙なタイミン
グで発表されてしまったために、イレギュラーな
アップデートになっています。
　まず、次のようにfreebsd-update(8)コマンドを
実行してカーネルとユーザランドをアップグレード
します。

: > /usr/bin/bspatch
freebsd-update upgrade -r 11.0-RELEASE
freebsd-update install
shutdown -r now

freebsd-update install# newaliases

　freebsd-update(8)を実行する前に、記述にある
ように/usr/bin/bspatchの中身を空にすることを忘
れないでください。: >は記述間違いでも顔文字で
もなく、そのあとに記載されているファイルの中身

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

第37回 ❖FreeBSD 11.0登場

◉著者プロフィール
後藤 大地（ごとう だいち）
BSDコンサルティング（株）　取締役／（有）オングス　代表
取締役／FreeBSD committer
エンタープライズシステムの設計、開発、運用、保守から
IT系ニュースの執筆、IT系雑誌や書籍における執筆まで幅広
く手がける。カーネルのカスタマイズから業務に特化した
ディストリビューションの構築、自動デプロイ、ネット
ワークの構築など、FreeBSD/Linuxを含め対応。BSDコ
ンサルティングでは企業レベルで求められるFreeBSDの
要求に柔軟に対応。

各コマンドのうしろについている括弧書きの数字は、manコマンドで見ることができるマニュアルに記載
されている章番号を表しています。

...（略）...

Dec. 2016 - 149

▶第37回◀
FreeBSD 11.0登場

同じホストにログインしたセッションには、1つめ
のターミナルからログインしたときに確立したセッ
ションが使われるようになります。最初にログイン
したほうのターミナルではfreebsd-update(8)を行
い、2つめのターミナルではtop(1)を実行し続ける
といった操作をします。こうするとモニタリングも
できますし、ssh(1)接続も切れにくくなりますので
お勧めです。
　カーネルとユーザランドをアップグレードしてシ
ステムを再起動したあとは、次のようにしてパッ
ケージをすべてFreeBSD 11.0向けのバイナリに入
れ替えます。バイナリが入れ替わりますので、すべ
てのアップグレードが終了したらもう一度システム
を再起動しておきます。

pkg-static install -fy pkg
pkg upgrade -y
freebsd-update install
shutdown -r now
```

　10系の段階でビルドしたバイナリを使い続ける
必要があるとか、バイナリを再構築しないで使い続
ける必要があるといった場合には、次のように10

系互換ライブラリをインストールしてみてくださ
い。

# pkg install -y compat10x-amd64-10.3

　FreeBSD 11.0-RELEASEへのアップグレード
が完了していれば、図1のようにuname(1)や
freebsd-version(1)でバージョンを確認できます。
　とくにパッチレベルが1以上になっていることを
確認してください。FreeBSD 11.0-RELEASEのリ
リースは「FreeBSD 11.0-RELEASE」ではなく

を空にするためのリダイレクト指定です。
　コマンドにまとめると、このように簡単なものに
なりますが、マシンによってはファイルのダウン
ロードからシステムへの適用まで長い長い時間がか
かります。最近のマシンだとけっこうサクッと終わ
りますが、IoT系のデバイスなどだとかなり時間が
かかります。
　また、作業中にインタラクティブ形式で/etc/の
下の設定ファイルのいくつかを編集するように求め
られると思いますので、それも指示に従って編集し
てください。
　FreeBSDはサーバとして運用されていることが
多いと思いますので、ssh(1)経由でログインしてこ
うしたアップグレード作業をすることが多いと思い
ますが、アップグレードに長い時間がかかるため、
途中でssh(1)の接続が切れることがあります。そ
うやって何度もやりなおしをすることになると、か
なりのストレスになります。
　ssh(1)が途中で切れてお話にならないという場
合、次の設定を ̃/.ssh/configファイルに追加して接
続が切れないようにしてみてください。

Host *
    ServerAliveInterval     120

　または、次のような設定を ̃/.ssh/configに追加し
て、2つのターミナルからログインして作業を行う
という方法もお勧めです。

Host *
    ControlMaster auto
    ControlPath ~/.ssh/sshmux-%r@%h:%p
    ControlPersist 10

　この設定を行った場合、2つめのターミナルから

# uname -a
FreeBSD virt.ongs.co.jp 11.0-RELEASE-p1 FreeBSD 11.0-RELEASE-p1 #0 r306420: Thu Sep 29 ｭ
01:43:23 UTC 2016     root@releng2.nyi.freebsd.org:/usr/obj/usr/src/sys/GENERIC  amd64
% freebsd-version -uk
11.0-RELEASE-p1
11.0-RELEASE-p1
#

▼▼図1　FreeBSD 11のバージョンを確認

...（略）...



150 - Software Design

チャーリー・ルートからの手紙
Be familiar with FreeBSD.

OpenSSLのセキュリティ脆弱性を修正し、ビルド
をやりなおし、パッケージも新しくビルドしなおし
ました。このため、リリースの対象となったのは
「FreeBSD 11.0-RELEASE」ではなく「FreeBSD 

11.0-RELEASE-p1」だったのです。アップグレー
ドの方法がいつもとちょっと違うのは、このためで
す。
　リリースアナウンスの前にFreeBSD 11.0- 

RELEASEへアップグレードしてしまったという
場合には、次のように作業してFreeBSD 11.0- 

RELEASE-p1へアップグレードする必要がありま
す。

# : > /usr/bin/bspatch
# freebsd-update fetch
# freebsd-update install
# shutdown -r now

　パッケージも再構築されましたので、次のように
アップデートしておきましょう。

# pkg update
# pkg upgrade -y

　OpenSSLのセキュリティ脆弱性であるHeart 

Bleedが発見されて以来、OpenSSLにはセキュリ
ティ脆弱性の発見が続いています。こういったソフ
トウェアをベースシステムにマージした状態にして
おくのは避けるべきではないか、という考えが出て
くるのも当然です。
　実際、OpenBSDはすでにLibreSSLを採用して
いますし、FreeBSDベースまたはFreeBSDから派
生したディストリビューションであるTrueOS（旧：
PC-BSD）、HardenedBSDおよびDragonFly BSD

はすでにLibreSSLをデフォルトのライブラリとし
て採用し、OpenSSLをデフォルトでは利用しない
ように変更しています。
　FreeBSDは、こうした変更にはかなり慎重なほ
うですので、いますぐにOpenSSLからLibreSSL

への変更が実施されるということはなさそうです。
しかし、利用するSSLライブラリの実装系を入れ
替えできるようにする取り組みが進められているな
ど、パッケージも含めて対応は進められています。

「FreeBSD 11.0-RELEASE-p1」となっています。
　パッチレベルがリリースの対象となることは、普
通ないことです。今回がイレギュラーなのですが、
今回はこのバージョンが対象となってしまったの
で、確実にこのパッチレベル以降になっていること
を確認してください。

なぜパッチレベルが
リリースの対象に？

　パッチレベル（-p?）はセキュリティ脆弱性を修正
したり、不具合を修正した場合などに提供されるも
のです。
　たとえばFreeBSD 10.3であれば、FreeBSD 

10.3-RELEASEがリリース時のバージョンであ
り、以降セキュリティ脆弱性が修正されるごとに、
「FreeBSD 10.3-RELEASE-p1」「FreeBSD 10.3 

-RELEASE-p2」といったようにパッチレベルが増
えたバージョンが公開されていきます。
　メジャーアップグレードバージョンの最初のリ
リース、つまり今回のような「FreeBSD 11.0-RE 

LEASE」のリリースには、当初のリリーススケ
ジュールから大幅に遅延して公開される傾向があり
ましたが、今回はそれに比べるとかなりスケジュー
ルどおりにリリース作業が進みました。
　2016年9月の中頃にはイメージファイルやパッ
ケージのビルドも完了し、ミラーサーバへの配布も
完了、あとはリリースアナウンスを実施するだけと
いった状況になりました。アナウンス前でしたが、
すでにfreebsd-update(8)でアップグレードが可能
でしたので、この段階でFreeBSD 11.0-RELE 

ASEへアップグレードした方も少なからずいたよ
うです。
　しかしリリース直前になって、OpenSSLのセ
キュリティ脆弱性が発表されます。FreeBSDはベー
スシステムにOpenSSLを取り込んでいますので、
このままリリースすると、セキュリティ脆弱性を抱
えたままのOpenSSLを含んだ状態でリリースを出
すということになります。
　リリースエンジニアリングチームは、それは避け
るべきと判断してリリースを延期しました。



Dec.  2016 - 151

▶第37回◀ 
FreeBSD 11.0登場

今後のリリースで、OpenSSLがベースから外れる
ときが来る可能性もあります。

最低5年間セキュリティ
サポートモデルへ変更

　FreeBSD 11.0-RELEASEからはセキュリティ
モデルが、これまでのリリースバージョンベースで
の1年間または2年間といったものから、ブランチ
ベースで最低5年間というものに変更となります。
これには、長期セキュリティサポートを明言すると
ともに、セキュリティサポートチームのリソースを
より効率化する狙いがあります。
　従来のセキュリティサポートモデルでは、リリー
スバージョンごとにデフォルトで1年間、拡張で2

年間のセキュリティサポートが提供されてきまし
た。つまりこれは、FreeBSDセキュリティチームが
サポートすべきバージョンが、常に数個存在すると
いう状況を作り出してきました。
　FreeBSD 11.0-RELEASE以降の新しいセキュ
リティサポートモデルは、ブランチベースで最低5

年間はセキュリティサポートを提供するといったも
のに変わります。サポートするバージョンはブラン
チでの最新版です。つまり、FreeBSD 11.1-RE 

LEASEがリリースされてからは、FreeBSD 11.0- 

RELEASEに対してはセキュリティアップデート
は提供されなくなります。常にそのブランチで最新
のリリース版がセキュリティアップデートの対象と
なります。
　新しいモデルでは、新バージョンがリリースされ
た場合、3ヵ月間の移行期間を設けるとされていま
す。こうやって常に最新のブランチ版に更新し続け
ることで、セキュリティアップデートを適応してい
くというモデルに変わります。バイナリアップデー
トが主流になりつつあって、マイナーバージョン間
のアップグレード負荷が軽くなっている現状では、
これはかなり現実的なセキュリティサポートモデル
です。
　FreeBSD 11.1-RELEASEは、カーネルとユー
ザランドのアップデート作業はさらに細かく、かつ
簡単に実施できるようになる見通しです。だいたい

5年間をサポート期間と考えて、サーバやサービス
の構築を検討すると良いのではないかと思います。

カーネルとベースシステムの
パッケージ化は11.1から

　FreeBSD 11.0を目処にカーネルとユーザランド
をパッケージで管理する取り組みが進められてきま
した。
　この取り組みは「pkgbase」と呼ばれていますが、
最終的に解決すべき課題がいくつかあり、11.0のリ
リースには間に合わないということで、11.0- 

RELEASEへの採用は見送られました。11.1- 

RELEASEで導入される見通しです。
　カーネルとユーザランドをパッケージ化するとい
うのは、言葉のとおりpkg(8)で管理できる対象に
するということです。これまでカーネルとユーザラ
ンドのアップグレードにはfreebsd-update(8)を
使ってきたわけですが、これがpkg(8)で実施でき
るようになります。これまでよりもアップグレード
作業が簡単になります。
　この取り組みはFreeBSDベースのディストリ
ビューションであるTrueOSではすでに実現されて
います。TrueOSはFreeBSD-CURRENTをベース
にカーネルもユーザランドもパッケージも、すべて
pkg(8)経由でローリングリリース的にアップデー
トするといったしくみへ移行しました。UNIX系の
ディストリビューションとしては、かなり先進的な
取り組みへ移行したと言えます。
　このため、もしかするとFreeBSD 11.0から
11.1へのアップグレード作業も、ちょっとイレ
ギュラーな操作になる可能性があります。そう
いった最新の情報は、Gihyo.jpの連載「BSD界隈四
方山話」注1に掲載していきますので、ぜひそちらを
ご覧ください。s

注1	 http://gihyo.jp/admin/serial/01/bsd-yomoyama

http://gihyo.jp/admin/serial/01/bsd-yomoyama


152 - Software Design

41 Debian Developer　やまねひでき　henrich@debian.org

GNOME、Perlほか、
パッケージ取り込みの近況

GNOME 3.22リリース

　9月21日に、GNOME 3.22がリリースされ
ました。Debianでは、GNOME 3.22のβ版で
あるバージョン3.21.xのパッケージが、3.22の
リリースを待たずに続々とunstableに投入され
ており、3.22がリリースされた直後にはほぼ出
そろったかたちとなりました。現状、testing/

unstableともに3.22の投入がほぼ完了した状態
です注1。Debian 9“Stretch”ではこのGNOME 

3.22が使われます。
　この記事の執筆時点では、設定ユーティリティ
である「gnome-control-center」や、Windowsの
エクスプローラー、MacのFinderであるとこ
ろの「ファイル」アプリケーションなどの一部の
アプリケーションでは、残念ながら日本語訳が
間に合っていないところがあり、英語のままに

なっていますが、日常の使用には問題はないで
しょう。今後の翻訳作業に協力したいという方
は、「https://l10n.gnome.org/」を参照してくだ
さい。
　GNOME 3.22の変更点ですが、ドラマティッ
クに変わったところはなく、既存のGNOME 3

の細かな使い勝手を磨き上げています。
　たとえば、「ファイル」アプリケーションでは、
ファイル名を連番で付け直すことが簡単になり
ました。複数ファイルを選択した状態で右クリッ
クし「Rename」を選択する（図1）と、「どのよう
にファイル名を付け直すのか」の確認画面が出
てきます。図2は、[001,002,003]という指定
で連番を付けようとしている様子です。画面右
のリネーム後には、ファイル名の先頭に00xと
いう数字が入っていることが確認できます。
　図3は、ファイル名の「Disc」という文字列を

 ▼図1　複数ファイルを選んで右クリックし「Rename」を選択
 ▼図2　[001,002,003]という指定で、ファイル名に 
 連番を付けられる

注1）  URL  https://www.0d.be/debian/debian-gnome-3.22-
status.html

https://www.0d.be/debian/debian-gnome-3.22-status.html
https://l10n.gnome.org/


152 - Software Design Dec.  2016 - 153

GNOME、Perlほか、
パッケージ取り込みの近況

41

 ▼図3　ファイル名の「Disc」を「でぃすく」に一括置換

 ▼図4　圧縮形式を選択できる

「でぃすく」に置き換えようとしているところで
す。ターミナルからシェルでサッと作業できる
事柄ではありますが、GUIで変更後の状態を
確認しつつ実行できるのは良いですね。
　また、圧縮機能はアーカイブ形式が、zip、
tar.xz、7zの3種類から選べるようになってい
ます（図4）。

Perl 5.24投入

　最新のPerl 5.24が、Debianにやってきまし
た注2。これがunstableに投入されたことで、パッ
ケージングのコアツール周りに依存関係の問題
が生じ、2日間ほど各種パッケージのビルドが
できない状態が続きました注3。しかし、5.24対
応のための数百パッケージの再ビルドが無事に
終わり、現在は元どおりになっています。Perl 

5.24では内部コードが改善され、パフォーマ

ンスが良くなっているそうです。
　他方、ビルド自体は通っているものの互換性
が破壊されていて動かなくなっているモジュー
ルも、多少ながら出てくるでしょう。Debian 9

“Stretch”のリリースまでには完全に安定した
状態になることを期待しましょう。

ほかのディストロからの
取り込み

　Debianでは、ほかのディストリビューショ
ンのプロダクトでも、有用な場合は取り入れる
ことがあります。今回は現在作業が進行してい
る openSUSE由来の「snapper」と「openQA」を
例にして、その活動を取り上げてみます。

snapper

　snapper注4はファイルシステムのスナップ
ショットを取りやすくするツールです。たとえ
ば、何かの作業前にスナップショットを取って
おき、「やっぱり、なかったことにしたい！」と
いう場合には復元する、などという作業が可能
です。VirtualBoxなどの仮想マシンではお馴
染みの機能ですね。
　Btrfsはスナップショットがファイルシステ
ムの機能としてありますし、LVM（Logical 

Volume Manager）もシンプロビジョニングと
いう機能を使うことでスナップショットを取る
ことができます。
　ただ、BtrfsもLVMも、スナップショット
を取ろうとするとサブコマンドやオプションの
指定が結構複雑で面倒です（表1）。これをいい
感じに楽にしてくれるのが、snapperというわ
けです。現在、snapperを使えるファイルシス
テム、ディストリビューションとしては表2の
ようなものがあります。
　snapperの導入と利用は、対応しているファ
イルシステムであるLVMシンプロビジョニン
グやBtrfsを使っていれば非常に簡単です。パッ

注4）  URL  http://snapper.io/
注2）  URL  https://bugs.debian.org/830200
注3） 名前どおり「unstable（不安定版）」の宿命ですね。

http://snapper.io/
https://bugs.debian.org/830200


154 - Software Design

ケージのインストール後、標準の設定ファイル
を create-configコマンドで作成し、設定ファ
イルを編集します。そして、snapper自体の実
行を管理者権限なしでもできるように、実行可
能なユーザを追加します。

 パッケージのインストール 
$ sudo apt install snapper
 設定ファイルの生成 
$ sudo snapper create-config /
 設定ファイルの編集 
$ sudo vi /etc/snapper/configs/root

　スナップショットを取るには「snapper create」
だけですのでお手軽です注5。スナップショットが
取れたかどうかは「snapper ls」で確認できます。
　スナップショット間で変更されたファイルが
何かを確認するには、「snapper status 5..6」
のように実行します（ここではスナップショッ
ト番号5と6の間の差分を確認することになり
ます）。すると図5のように表示されます。
　先頭が「+」となっているのは追加されたファ
イル、「-」となっているのは削除されたファイル、
「c」となっているのは変更されたファイル
（changeのc）です。ここでは毎度出力されてほ
しくない/var/log以下のファイルも出力され
てしまっていますが、/etc/snapper/filters/に

「/var/log/*」と書かれた log.txtファイルを置
くことでsnapperの出力から除くことができま
す注6。/etc/snapper/filters/にはほかにもファ
イルがあるので、参考にしてください。
　具体的な変更内容は、（バイナリファイルで
なければ）「snapper diff」で確認できます。

$ snapper diff 105..106 /etc/systemd/ｭ
journald.conf

　必要に応じて「snapper undochange」で変更

 ▼表1　標準コマンドとsnapperの比較

ファイルシステム／ツール スナップショット取得の実行例
Btrfs標準コマンド ※1 # btrfs subvolume snapshot / /snapshot01
LVMシンプロビジョニング ※2 # lvcreate -s --thinpool vg001/pool origin_volume --name snapshot01
snapper # snapper create

※1　Btrfs標準コマンドの場合は、どのサブボリュームに対してどこにどの名前でスナップショット（＝サブボリューム）を作
るのかを常に意識して指定する必要がある。ここでは/（ルートディレクトリのサブボリューム）に対して/snapshot01と
いうサブボリュームを作っている。

※2　LVMシンプロビジョニングの場合も、ボリュームグループ名などを含めさまざまなオプション指定が必要。

 ▼表2　snapperが使えるファイルシステムと代表的ディストリビューションなど

ファイルシステム ディストリビューション
LVMシンプロビジョニング Red Hat Enterprise Linux（※3）、CentOS（ともに7から）
Btrfs SUSE Linux Enterprise Server、Oracle Linux、openSUSE（デフォルト）など

EXT4（一応） 実験的サポート。カーネル側の設定とe2fsprogsユーティリティのパッチが別途
必要で、実質的には不可

※3　RHEL 7でのLVMシンプロビジョニングによるsnapperの利用については、Red Hatの森若和雄さんの記事が参考にな
ります。 URL  https://oss.sios.com/redhat-ch/blog/rhel7snapper

注5） さらに、初期設定が済むと、パッケージの追加と削除を
実行する前後で、自動でスナップショットを取るようになっ
ています。

 ▼図5　スナップショット間の差分表示

+..... /usr/games/LS
+..... /usr/games/sl
+..... /usr/games/sl-h
+..... /usr/share/doc/sl
+..... /usr/share/doc/sl/README
 （..中略..） 
c..... /var/lib/dpkg/status
c..... /var/lib/dpkg/status-old
c..... /var/log/apt/history.log
c..... /var/log/apt/term.log
c..... /var/log/dpkg.log
c..... /var/log/kern.log
c..... /var/log/messages
c..... /var/log/snapper.log
c..... /var/log/syslog
c..... /var/tmp/snapper-apt

注6） あくまでも snapperの出力から見えなくなるだけで、ス
ナップショット自体は取ることになります。スナップショッ
ト自体を取らないようにするには、LVMシンプロビジョ
ニングでは別々のパーティションとして分割する、Btrfs
ではサブボリュームを分ける必要があります。

https://oss.sios.com/redhat-ch/blog/rhel7snapper


154 - Software Design Dec.  2016 - 155

GNOME、Perlほか、
パッケージ取り込みの近況

41

前に戻すなどしましょう注7。

$ sudo snapper undochange 105..106 /etc/ｭ
systemd/journald.conf

　snapperパッケージは、Debianではアップデー
トが滞っていたので、筆者がパッケージメンテ
ナを引き継ぎました。Debianパッケージには
bash completionも追加したので、コマンド補
完によって使いやすくなっています注8。
　ただ、SUSEのウリである管理ツール「YaST」注9

との統合などの機能は、Debianには同等のもの
がないために、さすがに取り入れられませんで
した。このあたりはSUSEに1日の長がありま
すね。
　また、このツールを触っていくうちに、現状
のdebian-installer（d-i）でのパーティショニン
グ問題や、GRUB2でのサポート問題も見えて
きました。このあたりは、Debian 10“Buster”
をにらんで提案をしていこうかと思っています。
　この問題について、「なぜにDebian 9での解
決を目指さないの？」というと、次のような理
由になります。SUSEでは「snapper rollback

コマンドで過去に取得したスナップショットを
選んで、そこからロールバックして再起動」と
いう技ができるのですが、これを実現するため
に結構な数のパッチがブートローダーである
GRUB2に当てられています。これをDebianに
入れるのはなかなか骨になります。
　また、d-iではパーティションのファイルシ
ステムとしてBtrfsが選べますが、作成した
Btrfsにサブボリュームを作成してサブボリュー
ムごとにディレクトリを割り当てることができ
ません（これができるとスナップショット対象
が絞り込めてスナップショットの取得サイズを
小さくできますし、全体をロールバックして起

動するときに運用しているDBのロールバック
によるリグレッションも起きなくなります）。
　すでにフリーズの足音が聞こえている中で、
インストーラに対して具体的なコードを伴わな
い大きな機能拡張の提案は実現が難しいので 

す注10。ただ、debian-installerチームががんばっ
てくれれば、Debian 9に間に合うかもしれま
せん。

openQA

　openSUSEで積極的に新しいパッケージを
投入するのに役立っているのが「openQA」とい
うシステムです。こちらは仮想マシンでOSを
起動し、OpenCVを使った画像認識をベースに、
インストーラと主要GUIアプリケーションの
テスト実施とリグレッションが起きていないか
を検出するというツールです。openSUSEで
は各ビルドの動作確認に利用しています。テス
トについては動作のビデオやスクリーンショッ
トも取得できるという、中々の優れものです。
　Debianでは、openQAを構成するフレームワー
クの機能の1つ「os-autoinst」については筆者が
無事にパッケージ投入を完了しました。
　しかし、openQAが依存しているライブラリ
について、Selenium部分のバイナリ生成がエ
ラーになってばかりで、まだパッケージ投入の
目処がついていません注11。
　同等のテストが行えるようになれば、今後の
Debianの品質向上に役立つと思うので、もう
少し作業を続けてみたいと思います。

◆　◆　◆
　ほかのディストリビューションからの取り込
み活動は、いかがでしたでしょうか。ほかにも
「○○○には、こんな有用なツールがあるよ！」
という情報があれば、ぜひお寄せください。
｢

注10） 一応バグレポートという形で提案自体はしておきました
ので、気になる方は追いかけてみてください。

  URL   http://bugs.debian.org/840248
注11） 今後の進捗については次のバグを参照してください。
  URL  https://bugs.debian.org/839569
  URL  https://bugs.debian.org/840253

注7） ここでは、書き戻すファイルの権限が、一般ユーザでは
書き込みできない設定になっているので「sudo」を付けて
実行しています。

注8） upstreamへのPull Requestもしておいたので、この記事
が読まれるころには取り入れられているかもしれません。

注9） openSUSEやSUSE Linux Enterprise Serverで採用されて
いる設定／インストール作業を一元的に行えるツール。

https://bugs.debian.org/840253
https://bugs.debian.org/839569
http://bugs.debian.org/840248


156 - Software Design

Ubuntu Monthly Report第80回

Ubuntu 16.10 
とそのフレーバーの変更点

Ubuntu Monthly Report

今回は10月13日にリリースされたUbuntu 16.10とそのフレーバーの変更点をお知らせします。

Ubuntu Japanese Team　あわしろいくや

　思い返せば、Ubuntu 13.10のころから新しいディ
スプレイサーバであるMirに変更するのかという話
題が出ては消えています。最初はMirをX.Orgで動
作させたXMirから開始するという話だったのが、
13.10でのスキップが決定し、当然LTSである
14.04でもスキップし、14.10以降はUnity 8とMirを
セットにしてデフォルトにするという話が出ては消
え、16.10でも本年5月の段階でデフォルトにはしな
いという決定が発表されました。しかし、同時にテ
クニカルプレビューとしてUnity 8のセッションをデ
フォルトでインストールすることも発表されました。
ようやくUnity 8/Mirを手軽に試せる準備が整った
ということになります。
　そのほかにも変更点はありますが、どれも次の
LTSに向けた小さな第一歩という感じであり、16.04

と比較してあまり大きな変更点はありません。例外
と言えるのはUbuntu GNOMEとUbuntu MATEで
す。では、それぞれ細かく見ていきましょう。

リリース日とコードネーム

　Ubuntu 16.10は、前述のとおり10月13日にリリー

次のLTSに向けた 
小さな第一歩

16.10概要

スされました。コードネームはYakkety Yakで、「か
しましいヤク」という意味です。ヤクは野牛だそうで
す。名前負けというのはおかしいですが、かしましい
というよりもおとなしいリリースとなりました。

共通の変更点

　GNOME関連パッケージが中核となるものは3.20

に、それ以外のアプリケーションは3.22にアップ
デートされました。過去にはこれほど積極的に最新
版のパッケージを採用するということはありません
でした。今回はより積極的な開発が行われたという
ことです。
　16.04ではファイル（Nautilus）のバージョンは3.14

でしたが、16.10では3.20にアップデートしました。
サイドバーにあった「ネットワーク」と「コンピュー
ター」と「サーバーへ接続」がなくなり「他の場所」に
統合されたなど、操作に大きな変更点があります。
　initデーモンはずいぶん前にUpstartからsystemd

に変更されましたが、グラフィカルセッションの起
動には依然としてUpstartが使われてきました。
16.10ではついにその部分もsystemdに変更されまし
たが、UnityのインジケーターなどはまだUpstartが
使われています。前者はsystemctl --user 
statusコマンドで、後者はpstreeコマンドで確認
すると簡単にわかります。
　ネットワークの設定を一括して管理するしくみと
してnetplanが採用されました。パッケージ名は



156 - Software Design Dec.  2016 - 157

Ubuntu 16.10とそのフレーバーの変更点 第 80 回

nplanです。これは/etc/netplan/*.yamlにネット
ワーク関連の設定を保存し、バックエンドである
Network Managerとsystemd-networkdを使用して
設定の反映をしようとするものです。現在はデスク
トップ版UbuntuとUbuntu TouchではNetwork 

Managerで、それ以外は/etc/network/interfaces

ファイルで管理しており、そのあたりを統一すべく
用意されました。しかし、現段階のnetplanは開発
初期バージョンといったところで、実用レベルに達
しているとはいい難い状況です。
　カーネルのバージョンは4.8です。16.04の4.4から
は4回のバージョンアップを経ており、過去の
Ubuntuはだいたい2～3回のバージョンアップにとど
まっていることを考えると、ジャンプアップと言っ
ていいでしょう。ただしカーネルモジュールが対応
していない場合はビルドに失敗しますので、ハード
ウェアを増設している場合などはご注意ください。
　LibreOfficeは5.2にアップデートされました。リ
リース時点では5.2.2になっています。LibreOffice 

5.2に関しては2016年9月号の本連載第77回で詳し
く取り上げているので、そちらをご覧ください。

アップグレード方法

　16.04をインストールした場合、デフォルトでは
16.10へのアップグレード通知は表示されません。
「ソフトウェアとアップデート」を起動し、「Ubuntuの
新バージョンの通知」を「すべての新バージョン」に変
更し、「閉じる」をクリックしてください（図1）。

Unity 8のセッション

　ログイン時にセッションを選択することにより、
Unity 8が手軽に試せるようになりました (図2)。プ
ロプライエタリなドライバを使用している場合や仮
想マシンを使用している場合注1はUnity 8、正確には

注1） 少なくともVirtualBoxではログインできません。VMware 
WorkstationはMirに対応しているはずですが、同様にログ
インできませんでした。

Ubuntuの変更点

Mirが使用できずにログイン画面に戻ってしまいま
すので、注意が必要です。
　ログインに成功すると「スコープ」が起動します（図
3）。現状、ここから起動できるアプリケーションが
3つとシステム設定があります。端末は起動時にパ
スワードの入力が求められるのですが、正しいパス
ワードを入力しても文字が打てるようになりません。
一度フォーカスをほかのウィンドウ（というか事実上
スコープしかありませんが）に変更し、もう一度端末
に戻ってくると文字が打てるようになります。
　Webブラウザもありますが、そもそも日本語が打
てないので検索もおぼつかないのです。
　PrintScreenキーを押せばスクリーンショットを撮影する
ことはできますが、ファイルマネージャーも画像
ビューアもなく、確認できません。また、まれにフ
リーズしてしまうこともありました。
　筆者が普段使用している、検証用のPCに接続し
ているディスプレイの解像度はフルHDなのですが、
スクリーンショットを撮影して記事に掲載するには
いささか解像度が大き過ぎます。しかし、ディスプ
レイの設定はないので、結局1,366×768ドットの
液晶ディスプレイがあるノートPCにインストール

図1　ソフトウェアとアップデート

図2　ログイン時にUnity 8セッションを選択する



158 - Software Design

Ubuntu Monthly Report

し、スクリーンショットを撮影しました。
　このとおり、実用に耐えるとはいい難いのが現状
です。プレビューにしても、もう少しなんとかなら
なかったものかと思いますが、リリース直前のかな
りギリギリのタイミングだったのでどうにもできな
かったのでしょう。Unity 8のセッションが選択でき
るようになったのは10月に入ってからですので、も
し16.04や15.10のときのように本誌での紹介とリ
リースのタイミングを合わせていた場合、紹介でき
ませんでした。今回は1ヵ月遅れにしたので、この
ように紹介できたということです。
　おそらく次のバージョンでは、少なくともGTK+ 

3のアプリケーションは普通に動くようになっている
と思われるので、それに期待しましょう。もちろん
Unity 8/Mirをデフォルトに変更するということが
あり得るかもしれませんが……。

　現在KDEはKDE Software Compilationとして3

つに分割してリリースを行っています。Plasmaが
5.7.5、Frameworksが5.26.0、Applicationsが16.04.3

というバージョンを採用していますが、最新版はそ
れぞれ5.8.0、5.27.0、16.08.1ですので、少し前のバー
ジョンです。
　気になる変更点としては、ドキュメントビューアで
あるOkularがデフォルトでインストールされなくなり
ました。理由はよくわかりませんが、Frameworks 5.x

Kubuntuの変更点

へのポーティングが完了していないのが原因であると
推測できます。PDFやPostScriptファイルはもちろ
ん、EPUBにも対応しているので便利であり、今後の
対応が待たれます。
　もちろんデフォルトでインストールされなくなっ
ただけであり、パッケージが削除されたわけではな
いので、必要な場合は“okular”と“okular-extra-

backends”パッケージをインストールしてください。

　Xubuntuは16.10にアップグレードしてもあまり変
更点はありません。追加あるいは削除されたパッ
ケージもありません。すぐに気づくのは壁紙が明る
い青になったことくらいです。サポート期間を考え
ると16.04にとどまるのがベストです。
　現在XfceはGTK+ 3へのポーティング作業を実施
しており、揃いしだい4.14をリリースすると公表し
ています。すでに完了した作業ももちろんあり、そ
の代表格はxfce4-terminalですが、16.10ではGTK+ 

2でビルドしたままです。
　Xfce 4.14はいつリリースされるのかは未定です。
18.04に間に合うといいなというくらいのスパンで考
えておくとよいのではないでしょうか。

　Lubuntuはついに独自のソフトウェアセンターの

Xubuntuの変更点

Lubuntuの変更点

図3　左側にある「アプリ」を表示しているのがスコープ



158 - Software Design Dec.  2016 - 159

Ubuntu 16.10とそのフレーバーの変更点 第 80 回

採用をやめ、ソフトウェア（gnome-software）に変更
しました。大きな変更はそのくらいです。
　LubuntuはいつLXDEの採用をやめ、LXQtに移行
するのかに注目されていました。開発期間中にLXQt

に切り替えたインストールイメージを配布するという
話は出てきましたが、結局見送られ、現在に至るまで
リリースされていません。
　もちろん現在のLubuntuにLXQtをインストール
する方法もあるのですが（図4）、素直にインストー
ルイメージがリリースされるまで待つのがいいので
はないかと思います。ほかのLinuxディストリ
ビューションではすでにLXQtを採用しているもの
があるので、試したい場合はそちらをインストール
するのがよいのではないかと思います。

　前述のとおりGNOMEの中核となるパッケージは
3.20に、そうではないアプリケーションはおおむね
3.22にアップデートしているため、Ubuntu GNOME

に関しては16.10へのアップグレードに値するリ
リースといえます。
　今回から初回ログイン時に初期セットアップ画面
が表示されるようになりました。入力の項目では必
ず「日本語（Mozc）」を選択してください（図5）。
　一部のアプリケーションでは、l＋?キーある
いはl＋!キーを押すとショートカットキー
一覧が表示されるようになりました（図6）。これは
ファイル（Nautilus）での例ですが、メニューから消

Ubuntu GNOMEの 
変更点

滅したようなことでもショートカットであれば実現
できます。

　MATEデスクトップ環境は、9月にリリースされた
ばかりの1.16にアップデートされています（図7）。

Ubuntu MATEの 
変更点

図4　LubuntuにLXQtをインストールした例

図5　「日本語（Mozc）」を選択する

図6　ファイル（Nautilus）のショートカット1ページ目



160 - Software Design

Ubuntu Monthly Report

このバージョンでGTK+ 3へのポーティングが完了
しました。もちろんUbuntu MATEでも積極的に
GTK+ 3でビルドを行っています。
　MATEはGNOMEから派生したこともあり、もと
もと軽量志向ではないのですが、GTK+ 3へのポー
ティングで、ますますメモリを消費するようになり、
Raspberry Pi 2/3を含めてメモリ1GBしかないよう
な環境では採用の見送りを含めて検討する必要があ
るかもしれません。軽く計測してみたところ、16.04

では起動直後のメモリ消費量は387MBでしたが、
16.10では529MBでした注2。
　16.04では1.12だったのでかなり大幅なバージョ
ンアップとなりますが、基本的には機能の増減はあ

注2） もちろんこれはあくまで参考値であることにご注意ください。

まりなく、内部的な変更が多いので違いに気づかな
いかもしれません。
　なお、開発期間中にプロジェクトリーダーの
Martin WimpressがCanonicalの社員になったとい
うトピックもありました。

　16.10からBudgieというパッケージが加わりまし
た。「Budgieデスクトップ環境」と称していますが、
実体はGNOMEのデスクトップシェルである
GNOME ShellをBudgieに置き換えたものです。
　左上の○アイコンはアプリケーションメニューで、
カテゴリごとに並ぶという旧来の方法を提供してい
ます。上右端の矢印アイコンをクリックすると、
Ravenというメニューが表示されます（図8）。ここで
カレンダーや通知やテーマのカスタマイズを行うこ
とができます。
　もちろんUbuntu GNOMEにBudgieをインストー
ルしてもいいのですが、Budgie Remix注3という非公
式フレーバーが公開されているので、こちらをイン
ストールするのが簡単です。
　Budgie Remixも16.04ベースと16.10ベースがあ
りますが、今回使用したのは後者です。
　Budgie Remixをインストールするとデフォルトで
IBusが起動していますが、右上にIBusのアイコン
は表示されていません。これはBudgieがアイコンを
表示するしくみ（Appindicator）をサポートしていな
いからです注4。IBusを使いたい場合は、ibus-setup
コマンドを実行して「次の入力メソッド」を
「<Control>space」に、「プロパティーパネルを表示す
る」を「常に表示する」にし、［入力メソッド］タブで
「日本語-Mozc」を追加し、「閉じる」をクリックしてく
ださい。これでl＋スペースキーを押すとMozc

に切り替えることができます。
　近い将来Budgie Remixがオフィシャルフレー
バーになるようなことがあるかもしれません。｢

注3） https://budgie-remix.org/

注4） https://github.com/solus-project/budgie-desktop/
issues/286

その他：Budgie

図7　最速でMATE 1.16を採用したUbuntu MATE 16.10

図8　右側に表示しているのがRavenで、使用感はUnity 8に近い

https://budgie-remix.org/
https://github.com/solus-project/budgie-desktop/issues/286




162 - Software Design

　シェルスクリプトを書くにあたり、POSIX準拠
についてどうすべきか迷うことがあります。プロジェ
クトとして要求があれば要求に従うべきです。で
も要求がないときはどうしたらよいでしょうか。

　筆者のお勧めは、規格よりも「広く使われて
いる技術を重視する」です。いつ効果を発揮す
るかわからない、互換や規格の曖昧さの補完、
プラットフォームやミドルウェアのバグ回避、
性能との両立などのために初心者がむやみなハッ
スル注1をするのは蟷

とうろう

螂の斧
おの

です。情報産業界で
は、みんなが使っているものが標準＝デファク
トスタンダードという考え方が重要な価値基準
です。突拍子もない新技術は来年にはなくなっ
てしまっているかもしれませんが、たとえばこ
れだけ多くの人が使っているbashは、これか
らも長く使い続けられることでしょう。

注1） ハッスルが必要なときには、巨人の肩に乗りましょう。『す
べてのUNIXで20年動くプログラムはどう書くべきか』（松
浦智之著　C&R研究所）など、良き先輩が苦労を知恵とし
て記録してくれています。

bashスクリプトに挑戦

　シェルには、ボーンシェル（bourne SHell）
sh注2の系統と、BSD（Berkeley Software Destri 

bution）を源流とするcshの系統の2つのメジャー
な系譜があります。シェルが違えばスクリプト
の記法も異なります。現在最も使われているの
は、shを大幅に拡張したボーン・アゲイン・シェ
ル（Bourne Again SHell）でしょう。今回はこ
のbashにフォーカスをあてます。
　シェルスクリプトは、ワンライナー（1行スク
リプト）に代表される対話的スクリプトと、プロ
グラムをファイルに記述して実行するスタイル
があります。ほかの言語を知っていれば、シェ
ルをよく知らなくても、なんとなくはスクリプ
トの意味を理解できるでしょう。しかし、外部
のコマンドの起動や連携、シェル特有の動作や
記法があり、シンプルに書けることも、逆に遠
回しでわかりにくい記述になることもあります。

シェル変数

　シェルには変数があります。シェルの内部で
使う変数をシェル変数と呼びます。シェル変数
は、PATHやPWD、動作オプションなどシェル自

注2） POSIX準拠。

POSIX：Portable Operating System Interface。
OSが百花繚乱の時代だった1988年ごろから、互換
性を維持するために、Unixを中心としたOS共通のイ
ンターフェース（APIやshell、そのほかのコマンド）と
してIEEE（アイ・トリプルイーと読みます）によって
定められた標準規格です。現在まで改訂が続けられ、
維持されています。この範囲内のインターフェースを
使っている限り、今後新しいOSが出てきても長年互
換性が維持されることを期待できます。

bashは、高機能で全部理解するには多くの時間が必要です。まずは、シェルスクリプトを読
んでなんとなくわかる、簡単なスクリプトは書ける、といったレベルを目指してシェルスクリ
プトの基本を探検します。

  Author    中島 雅弘（なかじま まさひろ）　㈱アーヴァイン・システムズ

第　　回8 シェルスクリプトへの入り口



162 - Software Design Dec.  2016 - 163

身の動作を決定する情報や、ユーザが任意で定
義できる変数があります。通常のシェル変数は、
子プロセスに継承されません。環境変数という
特殊なシェル変数は、子プロセスに継承されま
す注3。

シェル変数の定義と参照
　シェル変数は次のように定義注4します。スペー
スもしくはタブで区切って、複数の変数を1行
に書くこともできます。読み出すときは、変数
名の先頭に$を付けます。

 変数の定義と参照 
$ a="abc" b=10 c= í
$ echo $a í
abc
$ echo $b í
10
$ echo $c í
 cは定義されているが、値は空 

　どこまでが変数名か混乱するときは、変数名を 
{ }でくくります。$nameという表記は、${name}
を省略した記法です。例を見てみましょう（図1）。
　スペース／タブは、コマンド、引数や構文上
の区切りとしてあつかわれます。文字列は、
クォート（'か"）でくくれば、文字列中にスペー
スがあっても一連の文字列として代入できます。

注3） 子プロセスを生成（execve）するときに親プロセスの環境変
数が引き継がれます。

注4） bashはスクリプト言語ですので、データの型は実行時都
合よく解釈されます。しかし明確に変数の型を指定したい
ときは、declareを使って宣言します。

環境変数とシェル変数
　bashでは、シェル変数をexportで環境変数
にして、子プロセスと情報を共有できます。

export e=10

　すでに定義されている変数に対しても、後か
らexportできます。

e=10
export e

　環境変数はprintenvコマンドで確認できま
す。引数なしで実行すると、設定されているす
べての環境変数が表示されます。同様にsetコ
マンドを引数なしで実行すると、シェル変数や
定義されている関数がすべて表示されます。
　図2のように、環境変数は子プロセスに継承
することができます。一方、子プロセスで値を
変更しても、親プロセスの変数は変更されない
ことに注目してください。

変数と数
　「文字列を連結したい」、「1加えたい」などの
さまざまな演算もできます。整数の演算をする
には、外部コマンドのexprが使えますが、使い
勝手の優れた算術展開構文$(( ... ))がありま
す（図3）。算術展開構文の中では、変数の参照

$ serifu="Oishii" í

$ echo $serifu_pyon í

$ echo ${serifu}_pyon í  正しくは{}を使う 
Oishii_pyon

 ▼図1　変数と文字列の連結
$ a=9 í 
$ export e=10 í 
$ echo $a $e í  内容を確認 
9 10
$ printenv a í  結果は何も出力されない 
$ printenv e í  10と出力される 
10

$ bash í  子プロセスを起動してみる 
$ echo $a $e í  aとeの内容を確認。eしか定義されていない 
10
$ e=8 í  eの値を変更してみる 
$ printenv e í 確認
8
$ exit í  親プロセスにもどる 

$ printenv e í  eの内容を確認 
10

 ▼図2　変数のプロセス間でのスコープを確認する

$ expr 10 + ¥( 2  - 10 ¥) ¥* 4 í
-22
$ echo $((10 +(2 - 10) * 4)) í
-22

 ▼図3　算術展開構文

数字や演算子の前後のスペー
スや¥によるクォートは必須

こちらのほうがずっと簡潔・
柔軟に書ける

serifuという変数に文字列
「Oishii」を設定

serifu_pyonという変数を参照と
いう解釈になり、うまくいかない

第　　回8   シェルスクリプトへの入り口



164 - Software Design

に$を付けなくても（付けても）かまいません。

制御構造

　bashには、フロー制御のためのしくみ（if/
else、for、while、until、case、select）
があります。今回ははじめの4つを紹介します。
プロセスの終了ステータスがフロー制御にかか
わってきます。直前に実行したコマンドの終了
ステータスは、“$?”で参照できます。成功が0、
失敗が0以外です。

forループ
　forループの基本形は次のとおりです。

for 変数 [in list]
do
  処理
  ...
done

　それぞれ、for ... 、do 処理、doneは、
1文（1行）として記述します。inで指定された
リスト（スペース／タブで区切られた要素の列）
を1つずつ“変数”に代入して、処理を繰り返し
ます。in listを省略すると、コマンドライン
引数のリスト（変数 $@）です。
　次の例は、古くから使われている記法です。
seqコマンドで、3、4、5、6、7、8という数
字を生成してループする例です。バッククォー
ト（`）は、くくられたコマンドの出力を展開し
ます。bashには、$( ... )というコマンド置
換機能があり、より明快でネストなどがしやす
く強力な記述ができます。次の2つの例は、同
じ動作をします。

for i in `seq 3 8`
do
    echo $i
done

for i in $(seq 3 8)
    do echo $i
done

　ワンライナーで書くには次のように、文をセ
ミコロン（;）で区切ればOKです。

$ for ((i=3; i<9; i++)) ; do echo $i ; done í

　do～doneは、代わりに{～}と記述できます。
さらに(( ... ))構文を使えば、C言語っぽく
なりますね。算術展開と同様で、(( ... ))の
中では$参照する必要がないのも便利です。

for ((i=3; i<9; i++))
{
    echo $i
}

forを使ってコマンド引数を取得する
　引数は、$1、$2、$3、...、$n（位置パラメー
タ）に入っています。 変数 $@には、これらす
べてが入っています。$0は、実行しているコ
マンド自身です。$#はコマンド引数の数です。

 arg1.sh 
#!/bin/bash
n=$#
for (( i=0; i<n; i++ )) ; do
    echo $i $1
    shift
done

$ ./arg1.sh a b c í
0 a
1 b
2 c

 コマンド引数の取得で shiftを
使わない方法
　evalを使って位置パラメータを操作します。
evalは、文字列を評価して実行します。

 arg2.sh 
#!/bin/bash
n=$#
for (( i=0; i<n; i++ )) ; do
    eval echo '$i ' ¥$$((i+1))
done

　もちろん、n番目の引数であると表示しない
なら、for構文の基本形でin以降を省略して、
次のようにもっと単純にできます。

for i ; do echo $i ; done

whileループ
　whileの構文は、次のように書きます。条件



164 - Software Design Dec.  2016 - 165

を満たしている間、do ... doneを繰り返しま
す。

while 条件
do
  処理
  ...
done

　次の例は、bashの内部コマンドreadで input.

txtの内容を1行ずつ表示するスクリプトです。
while文のブロック全体にリダイレクト処理す
る場合には、doneの直後に書くところにも注
目してください。

 whileを使ってcatコマンドのように動作させる 
while read line
do
  echo $line
done < input.txt

untilループ
　untilは、条件を満たしていない間ループを
繰り返すという部分がwhileと逆です。

until 条件
do
  処理
  ...
done

　$( ... )のコマンド置換、パイプ処理も使っ

てちょっとこった例を見てみましょう。図4の
例は、untilを使って特定のコマンドが実行さ
れていない間は、そのプロセスを待ちます。同
様の処理をwhileで書けば、特定のプロセスが
実行されている間は待つというような記述がで
きます。このしくみで前日のバックアップスク
リプトの処理が終わらないうちに、新たなバッ
クアップが2重に実行されないようにすること
もできます。
　$()の中に注目してください。はじめに、ps
コマンドで実行中のプロセス一覧を取得してい
ます。この出力をパイプラインでegrepコマン
ドに引き渡し、一覧中にemacsが含まれている
行を抽出します。さらに次のegrepコマンドに
抽出結果を渡し、-vオプションによってgrepが
含まれていない行だけ取り出し、2つめのegrep 
emacsのプロセスを一覧から取り除いています。
出力は無用なので、/dev/nullに捨てます。最
終的に1行もなければ、$()の処理は失敗し、1

行でも見つかれば（おそらく）emacsプロセスが
実行されているということで成功です。

if、test、[
　プログラミング言語を1つでも知っている人
なら馴染みのあるifを見てみましょう。[ ... ]
の部分は省略可能です。if <条件>、then 処
理、elif 処理、else 処理、fiは 1文（1行）
として書き分けます。条件は、コマンドの終了
ステータスで判定します注5。真偽値だけを返す
コマンドtrueとfalseもあります。

注5） C言語などでの真値＝0以外と逆であることに注意してく
ださい。

readコマンド
　readは、標準入力や指定したファイルディスクリプ
タからの入力を読み取り、その値をIFS環境変数（デフォ
ルトはスペース、タブ、改行）で区切られた語に分割
してシェル変数に収納します。readの引数に複数の変
数を指定できますが、読み取った語より変数の数が少
ないと、最後の変数に余りもまとめて代入されます。
引数を省略すると、REPLYという変数に結果が収納さ
れます。readを使うと、対話的なスクリプトを記述で
きます。

$ read a b í
A B C í
$ echo $a í
A
$ echo $b í
B C

$ read í
A B C í
$ echo $REPLY í
A B C

until $(ps aux | egrep emacs | egrep -v grep ｭ
> /dev/null )
do
  echo 'waiting for emacs.'
  sleep 3
done
echo 'Yep, move on next!'

 ▼図4　 特定のプロセス（ここではemacs）が存在し
ていない間は待つ

第　　回8   シェルスクリプトへの入り口



166 - Software Design

if <条件>
then 処理
  ...
[elif <条件>
then 処理
  ...]
[else 処理
  ...]
fi

　testコマンドは、整数、文字列の比較、ファ
イルの属性・存在などのチェックをし、結果を
終了ステータスとします。多くのオプションが
あるので、manで詳しく調べてください。

 testの例 
$ i=10 j=10 í
$ if test $i -eq $j ; then echo "yes"; fi í
yes

　前例と同じ処理をしますが、次のように[ ]
を使って記述すると少しプログラム言語らしく
なります。

$ if [ $i -eq $j ]; then echo "yes"; fi í

　なんと[はコマンド注6です。/bin/[もしくは、
/usr/bin/[というコマンドがあるはずです。

注6） 後述しますがbashでは内部コマンド。

testと[はほぼ同じように動作します。違いは、
[コマンドは、最後の引数に“]”が必要なこと
です注7。[はコマンド、]は引数ですので、スペー
スでほかの引数と区切られていなければなりま
せん。
　条件式には、コマンド以外に、数値を演算・
比較しやすい(( ... ))構文が使えます（図5）。

注7） 構文的、審美的に括弧が閉じていないとおかしいですから。

$ if ((i>j)) ; then echo "iが大きい" ; else ｭ
"それほどでもない" ; fi í

 ▼図5　(( ... ))構文を使った条件式

	 ヌルコマンド

 nottrue.sh 
if false ; then
   何もしない 
else
  echo "false"
fi

を実行すると、次のようなエラーが生じて正しく処理
できません。

./nottrue.sh: 3: ./nottrue.sh: Syntax error: ｭ
"else" unexpected

　thenに続く処理ブロックに、なにもコマンドを実
行しないのは、構文上認められません。これを避ける
ために、条件文の真偽を反転させるという方法もあり
ますが、開発の途中で変更はできるだけ避けておきた
いこともあるでしょう。そのようなときには、then
のブロックに、何もしないコマンドを書くようにしま
す。何もしないコマンドには、true、falseも候補で
すが、ヌルコマンド:があります。このコマンドは、
何も処理せず常にステータス0を返します。無限ルー
プを記述する場合も、このヌルコマンドは便利に使え
ます。

 nottrue.sh 改 
if false ; then
  :
else
  echo "false"
fi

 whileを使った無限ループの例 
while :
do
    sleep 1
    echo "無限ループ中。停止はControl-C"
done

  1 #!/bin/bash
  2 echo '[[数あてゲーム]]'
  3 thenumber=$(($RANDOM % 100))
  4 numtry=1
  5 
  6 read -p '私が思っている数(0から99まで)を当てて ｭ
ください。: ' ans
  7 until (( ans == thenumber ))
  8 do
  9     if (( ans > thenumber )) ; then
 10         echo "大きすぎます。"
 11     else
 12         echo "小さすぎます。"
 13     fi
 14     echo -n "$((++numtry))回目 "
 15     read -p 'いくつ? (0-99): ' ans
 16 done
 17 echo "${numtry}回で当たりました。"

 ▼リスト1　kazuate.sh



166 - Software Design Dec.  2016 - 167

数あてゲーム
　ここまで出てきたしくみを使って、簡単なゲー
ムを作ってみましょう（リスト1）。
　3行目で、組み込みの環境変数RANDOMから乱
数を取り出し、100で割った余りを求めていま
す。6、15行目のように readに-pオプション
を付けると、プロンプトメッセージを表示する
ことができます。14行目のechoは、-nオプショ
ンで改行処理を抑止しています。また、++の
算術演算子を使っています。シングルクォート
（'）による文字列のエスケープでは、すべての
文字がエスケープされますが、ダブルクォート
（"）による文字列のくくりは、変数の参照など
シェルが解釈すべき文字列はエスケープされま
せん。次が実行例です。

$ ./kazuate.sh í
[[数あてゲーム]]
私が思っている数(0から99まで)を当ててください。: 50 í
小さすぎます。
2回目 いくつ? (0-99): 75 í
小さすぎます。
3回目 いくつ? (0-99): 85 í
3回で当たりました。

終了ステータスと&&、||

　ワンライナーなどで便利に使えるのが、&&
と||です。コマンドの終了ステータスを、C

言語での論理演算子と同じように、短絡評価し
ます（表1、図6）。

今回のまとめと
次回について

　今回は、シェルスクリプトを書くにあたって
のbashの基本的なしくみを紹介しました。次
回は、テキスト処理に入門しましょう。｢

	 コンテキストスイッチ
　プロセスはコンテキスト——プログラムの実行中の
状態・リソース（CPU内部のレジスタや、メモリ、オー
プンしているファイルやデバイスなど）を含むすべ
て—— を持つ動作／再開可能なプログラムです。プロ
セスを起動するには通常、fork→execという処理、
つまり親プロセスのコンテキストは保存して、子プロ
セスに制御を移します。実行しているプロセスを切り
替える処理をコンテキストスイッチといいますが、コ
ンピュータにとってコンテキストを保存したり、復帰
するコストは高いのです。
　test、[、true、false、:、echoなどは、/bin、 
/usr/binにある実行可能なプログラムですので、for
やif で何かを判定するたびにコンテキストスイッチが
生じますが、bashはこのコストをなくせるよう内部
コマンドとして実装しています。

 ▼表1　 &&、 ||の評価と終了ステータス
コマンド1 コマンド2 終了ステータス

コマンド1 || コマンド2 失敗 実行する コマンド2の結果

コマンド1 || コマンド2 成功 実行しない 成功

コマンド1 && コマンド2 失敗 実行しない 失敗

コマンド1 && コマンド2 成功 実行する コマンド2の結果

【manで調べるもの
（括弧内はセクション番号）】
bash(1), printenv(1), execve(2), environ(7), 
expr(1), seq(1), egrep(1), emacs(1), test(1), 
[(1), true(1), false(1), fork(2), exec(3)

【以下はbashのhelpコマンドを使って確認】
set, export, declare, shift, eval, for, while, 
until, if, read, test, [, true, false, :

今回の確認コマンド

 コマンド[は、/binにある、/usr/binにある？ 
$ [ -e /bin/[ ] && echo "binにあります。" || echo "binには、ありません。/usr/binにあるかもしれません。" í

 OS X / macOSでの結果例 
binにあります。

 UbuntuなどLinux系での例 
binには、ありません。/usr/binにあるかもしれません。

 ▼図6　&&と||を使ったワンライナーの例（/binに［コマンドがあるかを調べる）

第　　回8   シェルスクリプトへの入り口



168 - Software Design

Linuxカーネル観光ガイド

Linux 

カーネ
ル 

観光ガ
イド

ます。一番安全な方法として、仮想マシンを一
度シャットダウンして別の物理マシンで起動し
なおすという手段が考えられます。この方法は
安全で簡単ではありますが、すべてのサービス
を止めて起動しなおすということで、長い間、
仮想マシンが使えない期間（ダウンタイム）がで
きてしまいます。Webサーバなどが動く仮想マ
シンではこれは好ましくないでしょう。
　ダウンタイムを小さくするため、仮想マシン
を動かしたままマイグレーションすることが求
められます。この場合、シャットダウンしてい
たときとは違ってメモリの内容を転送する必要
があります。とはいえ、マシンが起動されてい
る限りメモリの内容はどんどん更新されていく
ので単純なコピーではうまくいきません。そこ
で書き込みのあったページ（dirty page）を追跡
する機能を使います。
　図1をご覧ください。仮想マシンを動かした
ままコピーを行い、コピー中に更新されたペー
ジのみを再度コピーするということを繰り返し、
更新されたページが十分に少なくなったところ
で仮想マシンを一時停止して、それ以上の更新
を止めて最後の転送を行います。転送先では受
け取ったメモリイメージをもとに、仮想マシン
を復帰させてマイグレーションが完了します。

　先月の予想どおりにLinux 4.8が10月2日に
リリースされました。今回のLinux4.8はリリー
ス直前にVM_BUG_ON()でカーネルを殺してしま
うバグが入ってしまったことで話題となりまし
た注1。その後、Linux 4.9の新機能パッチも出 

揃って、10月15日にはLinux 4.9-rc1がリリー
スされています。だいたい2ヵ月ほどでLinux 4.9

のリリースとなるので、それが年内最後のリリー
スとなることでしょう。
　今回はLinux 4.3の機能から、より効率的に
より柔軟にページフォルトをユーザ空間で処理
することを可能にするuserfaultfdについて紹介
します。

仮想マシンのライブ 
マイグレーション

　仮想マシン関連技術の1つに、マイグレーショ
ンがあります。これはある仮想マシンを、ある
物理マシンから別の物理マシンへと移動するこ
とを言います。物理マシンの負荷をバランスし
たり、ホストのメンテナンスを行うためにマイ
グレーションが使われます。
　マイグレーションにはいくつかの方法があり

注1） http://gihyo.jp/admin/clip/01/linux_dt/201610/06

  

仮想マシンの 
ライブマイグレーションを 
支えるuserfaultfd
Text：青田 直大　AOTA Naohiro

第57回第57回

http://gihyo.jp/admin/clip/01/linux_dt/201610/06


168 - Software Design Dec.  2016 - 169

仮想マシンのライブマイグレーションを支える 
userfaultfd

第57回第57回

この方法では最後の転送から転送先での仮想マ
シンの復帰までがダウンタイムとなり、マシン
を停止させてから転送するメモリの量を減らす
ことで小さいダウンタイムを実現しています。
　図1の方法は、仮想マシンの実行を開始する
前にメモリを転送するという意味で、プレコピー
と呼ばれています。これとは逆に仮想マシンの
実行を開始してからメモリのコピーを行うポス
トコピーという方法があります（図2）。
　ポストコピーではまずマイグレーション先で
の仮想マシンの実行に必要な最低限の情報を転
送し、仮想マシンの実行を開始してから、メモ
リの残りの部分を転送していきます。メモリが
すべて揃わないまま実行を開始してしまうわけ
ですので、まだ転送が終わっていない領域への
アクセスも起こりえます。したがって、ポスト
コピーでは、未転送領域へのアクセスをキャッ
チして、オンデマンドにメモリを転送すること
も必要になります。

mprotectによる 
ページアクセスのトラップ

　転送されていないページへのアクセスをどの
ように捕まえるかが、ポストコピーの実装上の
ポイントといえます。では、その部分はどのよ
うに実装したらいいのでしょうか？　従来の方
法として、mprotectとシグナルハンドラを使う
方法があります（図3）。
　リスト1がその方法を使ったプログラムです。
main()から見ていきましょう。まず、対象となる
メモリ領域を8GB分確保します。mprotect()
の対象となるアドレスはページ境界にアライメ
ントされてなければいけないので、posix_
memalign()を使います。次にこの領域全体を
mprotect()を使ってアクセス禁止にします。
これで、この領域に読み書きを行うとカーネル
がSIGSEGVシグナルを発行するようになり 

ます。
　あとはsigaction()を使って、SIGSEGVの
ハンドラとなる関数hanlder()を導入します。

  

handler()では、si->si_addrからアクセスさ
れたアドレスを取得し、そのページをふたたび
mproctect()を使って読み書き可能にします。

転送先マシン転送元マシン

VM（動作中） 0 1 2 3

1回目の転送

転送先マシン転送元マシン

VM（動作中） 0 2

2回目の転送

転送先マシン転送元マシン

VM（停止中） 0

最後の転送

転送先マシン

VM（動作中）

 ▼図1　 仮想マシンを動かしたままマイグレーションする 
（プレコピー）

転送先マシン転送元マシン

VM（停止中） 0

最低限の転送

転送先マシン

page #2に
アクセス

転送元マシン

VM（停止中） 1

1

0 1 2

動作と同時に転送

転送先マシン転送元マシン

VM（停止中） 2

オンデマンドで転送

VM（動作中）

VM（動作中）

 ▼図2　 仮想マシンを動かしたままマイグレーションする 
（ポストコピー）

シグナルハンドラが
メモリ領域を
読み書き可能にする読み書き不可能

読み書き可能 RW

--

RW

--

RW

--

アクセスすると
SEGVが発生

プロセスの
メモリ空間

 ▼図3　mprotectとシグナルハンドラ



170 - Software Design

Linuxカーネル観光ガイド

さらに、書き込みが行われたことを確認するた
めにハンドラが呼ばれるたびにインクリメント
される数字を書いておきます。
　main()に戻って読み込み側を見ていきましょ
う。ここでは対象のメモリ領域を1ページずつ
飛ばしながら読み込んでいきます。ここでは1,000

ページに一度読み込んだ値を表示しています。
ハンドラ側がうまく動いていれば、1,000回目の
readで“1000”などと表示されるはずです。
　では、このプログラムを動かしてみると……
図4のように32,000ページ読み込んだところで
メモリ不足でシグナルハンドラ内のmprotect()
が失敗してしまいました！　これがmprotect()
による実装の問題点です。プロセスの、どの領
域がどのような保護状態にあるのかはカーネル

内でstruct vm_area_structによって管理さ
れています。そして、あるプロセスの struct
vm_area_structがどのような状態にあるのか
は/proc/<PID>/mapsを見るとわかります。
　図5の1行が1つのstruct vm_area_struct
に対応しています。プログラム中ではcat /proc 
/<PID>/maps | wc -lの結果を "#vma:"のあ
とに表示しています。1つページにアクセスし
て1つのページへのアクセス許可を変更するた
びに、図3のようにメモリ領域が分割されるの
でstruct vm_area_structが2つずつ増えて
いくことになります。
　結果として、32,000ページ読んだところで、
struct vm_area_structの数が64,000以上の
数になっています。実際、リストのプロセス終

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>

#define PAGE_SIZE 4096

const size_t SIZE = (size_t)8 << 30;
char *buf;
unsigned long cnt = 0;

static void handler(int sig, siginfo_t *si,ｭ
 void *unused)
{
  char *addr = si->si_addr;
  if (buf <= addr && addr <= buf+SIZE) {
    if (mprotect(addr, PAGE_SIZE, PROT_READ|ｭ
PROT_WRITE)) {
      perror("mprotect");
      char cmd[1024];
      sprintf(cmd, "cat /proc/%d/maps", getpid());
      system(cmd);
      exit(1);
    }
    *(unsigned long*)addr = cnt++;
  } else {
    exit(1);
  }
}

int main(int argc, char *argv[])
{
  posix_memalign((void**)&buf, PAGE_SIZE, SIZE); 
  if (!buf) {
    perror("memalign");

 ▼リスト1　mprotectとシグナルハンドラを使うページアクセスのトラップ

    return 1;
  }

  if (mprotect(buf, SIZE, PROT_NONE)) {
    perror("mprotect");
    return 1;
  }
  struct sigaction sa;
  sa.sa_flags = SA_SIGINFO;
  sigemptyset(&sa.sa_mask);
  sa.sa_sigaction = handler;
  if (sigaction(SIGSEGV, &sa, NULL) == -1) {
    perror("sigaction");
    return 1;
  }

  char cmd[1024];
  sprintf(cmd, "cat /proc/%d/maps | wc -l",ｭ
 getpid());

  int i;
  volatile unsigned long x;
  for (i=0; i<100000; ++i) {
    if (i%1000 == 0) {
      printf("%d #vma: ", i); fflush(stdout);
      system(cmd);
    }
    x = *(unsigned long*)(buf+i*2*PAGE_SIZE);
    if (i%1000 == 0) {
      printf("read %lu¥n", x);
    }
  }

  free(buf);

  return 0;
}



170 - Software Design Dec.  2016 - 171

仮想マシンのライブマイグレーションを支える 
userfaultfd

第57回第57回

了時のmapsファイルを見るとメモリ領域が読み
書き可能な“rw-p”領域と、読み書きができない
“---p”領域に1ページずつ分割されていること
がわかります。これがこのプログラムがメモリ
不足で終了してしまう原因です。

userfaultfdによる 
ページアクセスのトラップ

　Linux 4.3の新機能userfaultfdは、mprotect

の方法におけるstruct vm_area_structが増
大する問題を発生させずに、ページアクセスを
トラップするために使うことができる機能です。
　さっそく、先ほどと同じプログラムをuser 

faultfdを使って実装してみましょう（リスト2）。
　まずuserfaultfdのシステムコールを実行し、
userfaultfdのファイルデスクリプタを取得しま
す。このデスクリプタに ioctl、read、pollで操

  

作を行っていきます。
　次にioctl(UFFDIO_API)を使って、カーネ
ル側のAPIのバージョンが適合しているかを確
認します。そしてioctl(UFFDIO_REGISTER)
を使って、対象とするメモリ領域を登録します。
今後、この領域へのアクセスはuserfaultfdの読
み込み側でハンドルされるまでブロックされます。
　userfaultfdの読み込み側はif ((pid=fork() 
)==0){}の中にあります。userfaultfdもファイ
ルデスクリプタですので、このようにファイル
デスクリプタを引き継ぐ子プロセスから処理を
行うことができます。上記のように設定した
userfaultfdは readすることで struct uffd_
msg msgの情報を読み込むことができます。こ
の構造体のeventには、どのようなイベントが
起きたのか（現状、UFFD_EVENT_PAGEFAULT= 
0x12のみ）、フォルトが起きたアドレス、そし

$ ./mprotect
0 #vma: 22
read 0
1000 #vma: 2020
read 1000
2000 #vma: 4020
read 2000
...
30000 #vma: 60020
read 30000
31000 #vma: 62020
read 31000
32000 #vma: 64020
read 32000
mprotect: Cannot allocate memory
./mprotect > /dev/null  0.10s user 3.44s system 101% cpu 3.485 total

 ▼図4　mprotectを使ったページアクセスのトラップの出力

00400000-00401000 r-xp 00000000 08:03 16331100                           /home/naota/mprotect
00600000-00601000 r--p 00000000 08:03 16331100                           /home/naota/mprotect
00601000-00602000 rw-p 00001000 08:03 16331100                           /home/naota/mprotect
01aa4000-01ac6000 rw-p 00000000 00:00 0                                  [heap]
7fae5006f000-7fae50071000 rw-p 00000000 00:00 0 
7fae50071000-7fae50072000 ---p 00000000 00:00 0 
7fae50072000-7fae50073000 rw-p 00000000 00:00 0 
7fae50073000-7fae50074000 ---p 00000000 00:00 0 
 (..中略..) 
7fae60054000-7fae60055000 rw-p 00000000 00:00 0 
7fae60055000-7fae60056000 ---p 00000000 00:00 0 
7fae60056000-7fb050070000 ---p 00000000 00:00 0 
7fb050070000-7fb050071000 rw-p 00000000 00:00 0 
 (..後略..) 

 ▼図5　プロセス終了時の /proc/PID/mapsの出力



172 - Software Design

Linuxカーネル観光ガイド

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/syscall.h>
#include <linux/userfaultfd.h>
#include <string.h>

#define PAGE_SIZE 4096

const size_t SIZE = (size_t)8 << 30;
char *buf;
unsigned long cnt = 0;

int main(int argc, char *argv[])
{
  posix_memalign((void**)&buf, PAGE_SIZE, SIZE);

  char *zeropage;
  posix_memalign((void**)&zeropage, PAGE_SIZE, PAGE_SIZE);
  memset(zeropage, 0, PAGE_SIZE);

  int fd;
  fd = syscall(__NR_userfaultfd, 0);
  struct uffdio_api api;
  memset(&api, 0, sizeof(api));
  api.api = UFFD_API;
  if (ioctl(fd, UFFDIO_API, &api) < 0) {
    perror("ioctl(UFFDIO_API)");
    return 1;
  }

  struct uffdio_register reg;
  memset(&reg, 0, sizeof(reg));
  reg.range.start = (__u64)buf;
  reg.range.len = SIZE;
  reg.mode = UFFDIO_REGISTER_MODE_MISSING;
  if (ioctl(fd, UFFDIO_REGISTER, &reg) < 0) {
    perror("ioctl(UFFDIO_REGISTER)");
    return 1;
  }

  pid_t pid;
  if ((pid=fork())==0) {
    struct uffd_msg msg;
    while(read(fd, &msg, sizeof(msg)) == sizeof(msg)) {
      fprintf(stderr, "Event: 0x%x Address: 0x%llx Flags: 0x%llx¥n",
      msg.event, msg.arg.pagefault.address, msg.arg.pagefault.flags);

      *(unsigned long*)zeropage = cnt++;

      struct uffdio_copy copy;
      copy.dst = (unsigned long) msg.arg.pagefault.address;
      copy.src = (unsigned long) zeropage;
      copy.len = PAGE_SIZE;
      copy.mode = 0;
      copy.copy = 0;
      if (ioctl(fd, UFFDIO_COPY, &copy) < 0) {

 ▼リスト2　userfaultfdを使うページアクセスのトラップ

 （次ページに続く）



172 - Software Design Dec.  2016 - 173

仮想マシンのライブマイグレーションを支える 
userfaultfd

第57回第57回

てイベントのフラグが入っています。読み込ん
だイべントに対する処理はioctl(UFFDIO_
COPY)を使って行います。struct uffdio_
copyにコピー元とコピー先（フォルトしたアド
レス）、サイズなどを指定して ioctlを実行すると、
フォルトした領域にコピー元のメモリの内容が
コピーされます。コピーが完了したところで、フォ
ルトで止まっていたプロセスの動きが再開され
ます。
　では、userfaultfdを使ったプログラムを動か
してみましょう。今度はメモリ不足のエラーで
終了せず、最後までメモリアクセスが行われて
います（図6）。
　実際にstruct vm_area_structの数も22の
まま変わっていないことがわかります。また、
mprotectのほうでは、33,000ページ未満を読む
までに3.485秒かかっているのに対して、user 

faultfdでは100,000ページ読んでも2.022秒と

パフォーマンスも高いことがわかります。これ
はstruct vm_area_structの allocateをしな
いこと、mmapのセマフォをとらないことなどに
起因しています。
　このようにuserfaultfdはこれまでmprotectと
シグナルハンドラで行っていた処理をより高い
パフォーマンスで実現しています。また、ファ
イルデスクリプタに対して処理することから、
UNIXドメインソケットによってほかのプロセ
スに転送できるなど、シグナルハンドラにおけ
るプロセスに閉じている制約も解決しています。

◆　◆　◆
　今回はよく使われる例として仮想マシンのポ
ストコピーを取り上げましたが、いろいろと応
用できそうなおもしろい機能です。｢

        return 1;
      }
    }
    return 0;
  }

 (..中略..) mprotectと同様の/proc/<PID>/mapsの行数表示コード 

  kill(pid, SIGKILL);

  free(buf);
  free(zeropage);

  return 0;
}

（前ページから続き）

0 #vma: 22
Event: 0x12 Address: 0x7fa1e646c000 Flags: 0x0
read 0
1000 #vma: 22
Event: 0x12 Address: 0x7fa1e646e000 Flags: 0x0
read 1000
 (..中略..) 
99000 #vma: 22
Event: 0x12 Address: 0x7fa2171aa000 Flags: 0x0
read 99000
./userfault 2> /dev/null  0.19s user 1.15s system 66% cpu 2.022 total

 ▼図6　userfaultfdを使ったページアクセスのトラップの出力



174 - Software Design

¡司会：前田 薫

　プログラミングをするうえで欠かせない道具であ
るキーボードについて語り合うセッションです（写
真1）。奥野さんはErgoDox、松本さんはHappy 

Hacking Keyboard、東プレのお2人はRealforce、
司会の前田さんもKinesisを担当し、単なる製品紹
介にとどまらず、キーボードの構造や動作のしくみ
など濃い話題が展開されました。

■Dynamic Typing再考

¡出演：まつもとゆきひろ、梅澤 真史、佐藤 鉄平

¡司会：高橋 征義

　LLイベントに登場する言語は動的型付け（Dyna 

mic Typing）を行うものが大半ですが、最近は静的
型付け言語が再び注目されています。そこで本セッ
ションでは、動的型付け言語であるRuby、Java 

Script、Smalltalkの有識者を招き、型について議論
しました。JavaScriptおよび類似の言語への型宣言
導入の動向、まつもとさんがRubyに型宣言を採り

　今回は、今年で14回目を迎えたLL（Lightweight 

Language）イベントについて報告します。今回はイ
ベント名称を「Lightweight Language of Things」
（通称：LLoT）とし、昼の部を日本電子専門学校、
夜の部をwatford新宿店にて行いました。参加者
は、昼の部が118人、夜の部が53人でした。

	 ■Lightweight Language of Things

	【日時】2016年8月27日（土）10:00〜20:00

	【会場】日本電子専門学校、watford新宿店

■Language Update

¡出演：高橋 徹（Java）、hnw（PHP）、

	 石垣 憲一（Perl）、清原 弘貴（Python）、

	 佐藤 鉄平（JavaScript）、高橋 征義（Ruby）

¡司会：りゅうちてつや

　各言語の近況を伝えるセッションで、1人ずつ発
表する形式で実施しました。常連の言語が並ぶ中、
初出場だったのがJavaです。過去のLLイベントで
はあまり取り上げてこなかったのですが、Java 8で
関数型言語の考え方が採り入れられるなどの大きな
変化があり、LLプログラマに状況を伝えたほうが
良いだろうということで参加していただきました。

■キーボードにこだわろう

¡出演：奥野 幹也、松本 秀樹（㈱PFU）、

	 持田 智彦（東プレ㈱）、小林 充（東プレ㈱）

昼の部

写真1　「キーボードにこだわろう」セッションの様子

みんなプログラミングでつながれ！　LLoT開催！

NO.62
December 2016

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/


Dec.  2016 - 175174 - Software Design

入れない理由、梅澤さんによるSmalltalkの爆笑デ
モなど、内容の濃いセッションでした。

■Kotlin vs Swift 

	 〜新言語はモバイル開発をどう変えるか？〜

¡出演：長澤 太郎（エムスリー㈱）、

	 岸川 克己（Realm）

¡司会：えんどう やすゆき

　新進のモバイル開発言語として注目されている
KotlinとSwiftに焦点を当てたセッションです。長
澤さんがKotlin、岸川さんがSwiftの担当で、それ
ぞれの言語仕様や最近の状況、開発者への利点、開
発時の注意点などについて話していただきました。

■物販＆見本誌・機材展示

　今年もIT系出版社による書籍の即売と見本誌展
示を行いました。参加した出版社は、アスキードワ
ンゴ、㈱オーム社、㈱技術評論社、SBクリエイ
ティブ㈱、㈱オライリー・ジャパン、㈱達人出版会、
㈱マイナビ出版、USP出版でした。
　また、今回は書籍だけでなく、「キーボードにこ
だわろう」セッションに関連してPFUと東プレによ
るキーボードの展示も行われました。とくにPFU

からは漆塗りのHappy Hacking Keyboard（写真2）
が出展され、注目を集めていました。

■フロントエンドだめ自慢

¡出演：大竹 智也、河村 奨

¡司会：小山 哲志

　JavaScriptフレームワークについて、良いところ
だけでなくダメな部分も一緒に語り合おうという
セッションです。大竹さんがReact.js、河村さんは
Riot.jsを担当しました。React.jsはCSSをどうする
か問題、Riot.jsはコンパイラが正規表現でしかない
などの問題が提起されました。

■帰ってきたデモ自慢

¡演題と出演者

　- 「5分で出来るIoT」呉屋 寛裕（ニフティ㈱）

　- 「プロジェクト°D ツワモノどもが夢の跡」

　  海老原 寛之（㈱サイタスマネジメント）

　- 「Googleカレンダーで図書館の貸出予約状況を管

理するLiblendrsv（Ruby）」堀田ほつた（東海大学）

¡司会：法林 浩之

　2005年に行われたLLDN（LL Day and Night）の
夜の部で実施した「デモ自慢」のリメーク版で、今回
はライトニングトークの要素も採り入れて制限時間
5分でデモをしてもらいました。5分の発表の中にデ
モを入れるのが難しいのか応募者が3人しかいませ
んでしたが、それぞれ果敢にデモに挑戦し、参加者
の拍手喝

かっさい

采を浴びていました。

■終わりに

　ここ数年のLLイベントは、LLと周辺技術に焦点
を当てたセッションが多かったのですが、今年は
久々に言語仕様やプログラミングを正面から扱った
ものが多く、内容は充実していました。ただ、昨今
のイベント供給過剰の状況下で、このイベントを選
んで来てもらうことはなかなか難しく、思うように
参加者を集められなかったのが残念です。もっと多
くの人に見てもらうための工夫が必要と感じました。
　発表資料、写真、映像などはWebサイト注1に置
いてあります。こちらもぜひご参照ください。｢

写真2　漆塗りのHappy Hacking Keyboard

夜の部（LLoT Night）

注1）  URL  http://ll.jus.or.jp/2016/

みんなプログラミングでつながれ！　LLoT開催！ December
2016

http://ll.jus.or.jp/2016/


176 - Software Design

減災ソフトウェア開発に
関わる一日会議とは

　「減災ソフトウェア開発に関わる一日会議」は2013

年から毎年開催されているもので、東日本大震災以
降、毎年多くの災害が発生する災害大国日本におけ
る災害時の対応に必要な情報技術や、それによって
連携できる支援活動について、参加者間で情報交換
やディスカッションを行う場となっています。これ
までもそうした活動に携わってきた我々、Hack For 

JapanやIT DARTといった団体の関係者も数多く
集まり、直近に発生した災害などで得た知見などを
共有してきました。
　今回の会議では、近く発生した熊本・大分での地
震や、東北地方を襲った豪雨による被害状況、情報
ボランティアの活動実績、そこで生じた課題を共有
し、何ができて、何ができないのかを知ることで、
平時に準備しておくべきノウハウを整理することを
目的として開催されています。また、本イベントで
は防災や減災、被災地域で活動されてきた多くの人
たちの課題や学びを共有し、参加者がそれぞれディ

スカッションしたい議題を提示、話し合うアンカン
ファレンスを通して、今後の防災や減災に向けてど
ういったアクションを取るべきか、次の行動につな
げるための議論が行われました（写真1）。
　それでは、本イベントで発表されていた内容を中
心に紹介していきたいと思います。

発災後に必要となる
システム開発での技術選定

　筆者（及川）からは発災後に必要となるシステム開
発での技術選定について説明しました（写真2）。発
災後でのITの役割は、Webサイトやアプリケー
ションなどの開発に留まりません。むしろ、それ以
外での対応がメインであることも多いです。それ
は、我々が東日本大震災以降でのHack For Japan

活動でも学んだことです。ですが、ここでの話はそ
れを踏まえたうえで、「開発」が必要になるニーズが
あった場合の技術選定について考察したものです。

ターゲットユーザとシステム内容

　まず、発災後に必要となるシステムのターゲット

Hack For Japan
エンジニアだからこそできる復興への一歩

減災ソフトウェア開発に関わる
一日会議2016

第60回
今回は2016年10月1日に開催された「減災ソフトウェア開発に関わる一日会議2016」にて、Hack For 
Japanメンバーでもあり、防災、減災に取り組む団体IT DARTにて活動する及川による熊本地震で実施
した活動内容の紹介と、本イベントの内容を同じくHack For Japanメンバーの鎌田がレポートします。

●Hack For Japanスタッフ
　鎌田 篤慎　KAMATA Shigenori
　 Twitter  @4niruddha
　及川 卓也　OIKAWA Takuya
　 Twitter  @takoratta

◆◆写真2　筆者（及川）による発表の様子◆◆写真1　「減災ソフトウェア開発に関わる一日会議」開会の様子



Dec.  2016 - 177

減災ソフトウェア開発に関わる一日会議2016第60回

ユーザと内容は次のように分類できます。

ターゲットユーザ
●●他支援団体および個人
●●自治体関係者
●●一般市民（おもに、被災地以外の市民）

内容
●●情報発信
●●支援作業へのIT支援
●●他IT支援で使われる汎用技術

　IT DARTの熊本地震での支援プロジェクトをこ
の分類に従って整理すると、表1のようになりま
す注1。

共通のシステム要件

　このようにユーザや内容は異なりますが、これら
のシステムには次の3つの共通の要件があります。

1.	 利用者が使うプラットフォームで利用できる必要が

ある

2.	迅速に提供する必要がある

3.	提供後にも仕様変更の可能性が高い

　まず、プラットフォームについては、実際のユー
ザを考えるとWindowsかスマートフォンやタブ
レットとなります。開発ではMacを使うことが多
いかもしれませんが、一般ユーザはWindowsを利
用していることがほとんどです。これらのプラット
フォームでのシステムは大別すると、ネイティブア
プリケーションかWebとなります。

注1	 各プロジェクトは連載第56回（本誌2016年8月号）で紹介
しています。

　ネイティブアプリケーションは普段使いしている
アプリケーションと同じ操作性の提供という点では
優位です。もちろん、プラットフォームでのUXデ
ザインガイドラインなどに準拠するのは前提となり
ます。一方、Webは操作性はネイティブアプリケー
ションには劣る場合があります。とくに、ファイル
操作などローカルシステムとの連携が必要となる場
合はネイティブアプリケーションに分があります。
　一方、ネイティブアプリケーションは迅速性に関
しては課題があります。スマートフォンやタブレッ
トはApp StoreやPlay Storeなどのプラット
フォームでのストアを経由してインストールや更新
する必要があり、それにはAppleやGoogleの審査
が入ります。開発者がシステムの提供タイミングを
コントロールできないのです。ストアを経由しない
アプリケーションを使うように設定を変更すること
もできますが、セキュリティを考えるとお勧めでき
ません。Windowsはストアを経由せずにアプリケー
ションを提供することができますが、逆にインス
トールと更新を手作業で行わなければならず、その
ための手間はかかります。WebはURLをブラウザ
で開いてもらうだけですので、システムの提供も更
新も最短に行えます。
　このようにネイティブアプリケーションとWebは
それぞれ一長一短ありますが、Windowsにはネイティ
ブアプリケーションを、スマートフォンやタブレッ
トにはWebを使うのが一般的には勧められます。

Webサイト制作

　情報支援として常にニーズがあるのがWebサイ
ト制作になります。システムダウンしてしまった自

プロジェクト ターゲットユーザ 内容

自治体HPレスキュープロジェクト※1
1）自治体関係者

情報発信
2）一般市民

Excel Geo※2 他支援団体および個人 他IT支援で使われる汎用技術

マークシートを用いた災害ボランティア登録システム（検討のみ） 他支援団体および個人 支援作業へのIT支援

物資管理帳システム 他支援団体および個人 支援作業へのIT支援

り災証明発行システム（未使用） 自治体関係者 支援作業へのIT支援

◆◆表1　IT DARTの熊本地震での支援プロジェクト分類表

※1　http://klgmonitor.itdart.org/       ※2　http://excelgeo.itdart.org/

http://klgmonitor.itdart.org/
http://excelgeo.itdart.org/


Hack For Japan
エンジニアだからこそできる復興への一歩

178 - Software Design

治体サイトから重要な情報だけを載せ替えた暫定サ
イトの制作や支援団体の情報発信用のサイトなど、
今までの災害でも提供してきました。
　このようなWebサイト制作に対する手段として
は、Jimdo注2、Wix注3、Strikingly注4、Weebly注5などに
代表される簡易Webサイト制作サービスを使う方
法やTumblrを使う方法、WordPressを使う方法、
スクラッチからすべて作る方法があります。
　それぞれの制作の難易度、ホスティングの手配の
要否、ユーザによる更新の可否などをまとめると表2
のようになります。

Web技術

　単純な情報発信以上の機能を持つWebサービス
を開発する場合は、一般的にはIaaSよりもPaaSの
ほうが迅速にサービスを立ち上げられます。IaaSの
場合は事前にコンテナを用意しておくなど、発災後
にスクラッチから作業をしなくて良いように準備を
しておくことが望まれます。
　また、認証や通知などの機能が必要な場合は、
Google FirebaseなどのBaaSを活用することも勧
められます。BaaSだけでなく、ありもののサービ
スやライブラリなどを最大限活用することで、本当
に必要な機能の開発に集中することができます。
　さらに、使う技術の移植性も考慮する必要があり
ます。実際の例なのですが、簡単な処理だからと
シェルプログラミングで組みました。プログラム完
成後、レンタルサーバを引っ越す必要があったので
すが、このシェルプログラムが引っ越し先で動作し
なかったのです。調べてみると、LinuxとFreeBSD

注2	 http://jp.jimdo.com/
注3	 http://ja.wix.com/
注4	 https://www.strikingly.com/?locale=ja
注5	 https://www.weebly.com/jp

の違いが原因でした。これなど、最初からPerlや
Python、Rubyなどのスクリプト言語で組んでいれ
ば起こらなかった問題です。
　及川からは、以上のような解説とともに、アクセ
ス過多への対応とセキュリティの重要性を強調し
て、発災後のシステム開発での技術選定のセッショ
ンを終了しました。

情報共有の重要性と
災害時のシステム

　京都大学防災研究所教授でIT DARTのメンバー
でもある畑山満則氏からは、被災地での情報支援シ
ステムの導入の困難さからの学びを紹介していただ
きました。
　被災した現地では、情報支援システムを含む IT

環境は、徹底的にサポートしなければ定着しないと
いう問題を指摘されていました。これは情報共有を
行うシステムを導入したとしても、現地の人たちが
パソコンを含む、そうしたIT環境の利活用を身に
つける学習コストが高すぎて、定着しないというも
のです。IT環境に不慣れな利用者側は、システムの
作りに合わせて融通を利かせてデータ入力をしたり
することがなかなかできません。たとえば、数字ひ
とつ取っても半角、全角、英数字、漢数字、手書き
文字など、これらを利用者に統一的に入力してもら
うことが困難であり、そうした状況をシステム面で
吸収していこうとすると、非常に工数のかかるシス
テム開発に発展していきます。
　この課題に対して、畑山氏の取ったアプローチ
は、被災地の人たちに必要な支援物資を紙の伝票に
記入して、その写真を読み取って仕分けするシステ
ムです。利用者のバラバラな入力をOCRで読み取
らず、畑山氏の身近な大学生に協力を依頼し、人力
で写真の伝票を読み取り、データベースに登録して

サービス 難易度 ホスティング ユーザによる更新

簡易Webサイト制作サービス 低 込み 可（優しい）

Tumblr 中 込み 可（やや難しい）

WordPress 中〜高 別途用意 可（難しい）

すべて自作 高 別途用意（GitHub Pagesを使えば無料） 不可（技術がわかるユーザの場合を除く）

◆◆表2　Webサイト制作にかかるコスト

https://www.weebly.com/jp
http://jp.jimdo.com/
http://ja.wix.com/
https://www.strikingly.com/?locale=ja


Dec.  2016 - 179

減災ソフトウェア開発に関わる一日会議2016第60回

いく作業に切り替えました。このことで必要な支援
物資を被災地の人の手間をかけずに正しく仕分けて
郵送できるようになりました。
　そうした経験から導かれた畑山氏の学びは、災害
発生時にその時点の状況に合わせて最適な技術を選
択し、要件を満たしていくほうが、被災状況にあっ
たシステムを素早く提供できるのではないか？とい
うものです。この視点から「災害時に支援するなら
ソフトウェアは使い捨てにすべき」という提言がな
されました。これは中越地震のときには世の中にな
かったクラウド環境などの誕生が、旧来のシステム
を流用することのミスマッチさを実感されていたか
らこその提言のように感じられました。

熊本地震で起きた課題

　熊本市消防局 情報司令課の池田光隆氏からは、
先日に発生した観測史上最大の地震となった熊本地
震の被災直後の状況、その後の救助活動で発生した
課題などが共有されました（写真3）。
　震災時、消防センターそばにいた池田氏は前例の
ない規模の揺れに慌てて消防センターに戻るも、そ
の後に続いた熊本地震の本震から、はじめて前震と
いう言葉を知ったとのことでした。そして、落ち着
いた現在でも余震は続いているそうです。そうした
中で熊本地震の影響で発生した状況は、今後想定さ
れている首都圏直下や南海トラフを視野に入れた防
災、減災の観点でも、非常に示唆に富んだ報告とな
りました。
　まず、報告されている避難所に18万人が生活し
ているという情報は、車中泊の被災者の数が含まれ
ておらず、家屋の倒壊などの二次災害を恐れ、車中
泊を選択した被災者の数を含めると、およそ、その
倍の数の避難民が潜在的に予想されているとのこと
で、この車中泊が駐車スペースを埋め尽くしてしま
う影響で、各地から駆けつける救助隊を受け入れる
スペースが減り、速やかな支援が困難になったそう
です。これは駐車スペースがある地方都市であれ
ば、まだ問題として発展する可能性は低いですが、
首都圏などの駐車スペースが限られているような都

市では、避難所も限られ、非常に危機的な状況を生
む可能性を感じさせました。
　また、SNSの普及から、Twitterなどの投稿がな
い、あるいは知人の投稿内容を見て、消防に通報す
る人がこれまでにない規模で発生し、同じ人に対す
る119番通報が発生するなど、通報の輻

ふくそう

輳が非常に
多い割に、位置情報が含まれていない内容から、ど
こに救助に行けば良いのかわからないケースも多く
発生したとのことでした。しかし、後から振り返る
と危機的な状況ほど、通報の輻輳が発生していたと
いう学びもあったそうです。
　ほかにも例のない災害を他県の消防にも情報共有
するために救命対応に追われる中でも、報道への対
応を真

しんし

摯に行うも、意図しない誤った解釈の取り上
げ方をされ、それを見た視聴者の新たな対応が発生
したり、現場の士気を下げるなど、メディアとの関
わり方が現場に与える影響も報告されました。

将来の減災、防災に向けて

　こうしたいくつかの報告を受けて、将来に起きる
であろう新たな災害に向けて、参加者はどういった
取り組みで減災、防災の効果を上げていくかという
軸から、アンカンファレンスを行い、未来に向けて
の取り組みを参加者それぞれが発表し、「減災ソフ
トウェア開発に関わる一日会議2016」は終了しまし
た。読者の皆さまにも減災、防災のヒントが伝われ
ば幸いです。s

◆◆写真3　池田氏による熊本地震の被害状況の共有の様子



180 - Software Design

うまくいく チーム開発のツール戦略

  Author   リックソフト㈱　持田 秀敏（もちだ ひでとし）

継続的インテグレーション（CI）ツールで
安定した本番リリースをしてみよう第 回5

 

はじめに

前回は品質を保ちながらコードを改善してい
くコツや技術的負債の賢い返済方法について説
明しました。今回は、修正したコードが本番環
境で動かない状況を避けるにはどうしたらよい
かをお話しします。
修正したコードが本番環境で動かない状況
を避けるには、「継続的インテグレーション
（Continuous Integration、以下CI）」ツールに
よる自動化が有効な手段の1つです。今や開発
現場になくてはならない存在となったCIですが、
みなさんの環境では導入されているでしょうか。
そもそも何のためにCIが必要なのか、まずは
おさらいしたいと思います。

CIとは、ソフトウェア開発過程において、
ビルドやテストを頻繁に繰り返し行うことによ
り問題を早期に発見する
開発手法です。ソフトウェ
アの不具合は早い段階で
発見するほうが、あとの
工程で発見されるより対
策にかかるコストが抑え
られるため、頻繁にビル
ドを行うのが好ましく、
ビルド結果が正しいこと
を検証するためにテスト
を行います。
しかし、ビルドやテス
トを頻繁に毎回手動で行

うのは手間がかかります。そこで、特定のタイ
ミングで自動的にビルドやテストを実行し、完
了後にその結果を通知する「CIツール」が広く
利用されています。CIツールによる自動化の
メリットは多く、単純作業から開発者を解放し、
設計や実装などの知的な作業に集中できるよう
になります。
従来の開発では、「私の環境ではビルドでき

るが他人の環境だとビルドできない」「ビルド
はアノ人にお願いしないとできない」「ビルド
手順を間違えてうまくソフトウェアが動かない」
といった場面がたびたびありました。作業を自
動化して暗黙知の作業や属人性を排除すること
で、作業のミスがなくなり、誰でも実行可能な
ソフトウェアを作成できるようになります。
本稿では、数あるCIツールの中から、

Atlassian社が提供するCIツール「Bamboo（バ
ンブー）」をベースにCIの方法を説明します。

 ▼図1　ビルド用のプロジェクト

うまくいく
チーム開発のツール戦略

Catch Up Trend



180 - Software Design Dec.  2016 - 181

継続的インテグレーション（CI）ツールで安定した本番リリースをしてみよう 第 回5

 

Bambooについて

Bambooでは、ビルド用のプロジェクトとデ
プロイ用のプロジェクトを作成できるようになっ
ています。
ビルド用のプロジェクトでは、プランという
単位でビルドのシナリオを定義します。ビルド
のシナリオには、「ステージ」という概念と「ジョ
ブ」という概念があります。ジョブでは、一連
のビルドタスクを構成していきます。たとえば、
ソースコードをチェックアウトして、ビルドツー
ルでビルドを行い、テストを実施する、といっ
たタスクを組みます。

図1は、「Build Stage」というステージに
「Build Job」というジョブがあり、そのジョブ
が「Source Code Checkout」「Maven 3.X」
「Script」という3つのタスクを持っている構造
を示しています。これらのタスクは、あらかじ
め用意されているものを利用できます。そのた
めスクリプトをゴリゴリ書くことは必要最低限
で済みます（図2）。
デプロイ用のプロジェクトでは、どのビルド

の成果物をどの環境にデプロイするか、タスク、
実行タイミングをどうするか、などをデプロイ
対象の環境ごとに定義します（図3）。デプロイ
もビルドと同様に、あらかじめ用意されている
タスクから選択してデプロイを構成します。

実行タイミングは、ビルド
が成功したら即時にデプロ
イするとか、1日1回決まっ
た時間にデプロイする、な
どの設定ができます。もち
ろん手動でデプロイするこ
ともできます。手動でのデ
プロイは数クリックで簡単
に実行できます。
ほかにもBambooは次の
ような機能を持っています。

ブランチの 
自動検出

GitやMercurial、Subversion

のリポジトリを使用してい
る場合に限りますが、リポ
ジトリでブランチが作成さ
れた際に、Bambooが自動で
ブランチを検出し、プラン
を自動で作成します。その
ため、開発者はブランチを
作成し、作成したブランチ
にコードをコミットするだ
けで、Bambooが自動的にブ
ランチを検出してビルドや
テストを行ってくれます。

 ▼図2　Bambooにあらかじめ用意されているタスク

 ▼図3　デプロイ用のプロジェクト



182 - Software Design

うまくいく チーム開発のツール戦略

通知設定

ビルドやデプロイの実行時に特定の条件で通
知ができるようになっています。ビルド完了時
に必ず通知する設定は言うまでもなく、最新の
ビルドが成功から失敗に変化した場合といった
条件で通知を設定することもできます。連続で
ビルドに失敗した場合という条件も指定できる
ので、たとえば5回ビルドに失敗した場合はプ
ロジェクトの管理者に通知してエスカレーショ
ンするといった使い方も考えられます。
通知はEメール、Atlassianが提供している

チャットアプリであるHipChat、その他にも
XMPPプロトコルを使用して IMアプリへ送る
ことも可能なので、ビルドやデプロイの状況を
リアルタイムに把握できます。

リモートエージェント

ほかのサーバにビルドを分散させるリモート
エージェント機能を利用できます。ビルドやテ
ストは多くの場合、メモリやCPUを大量に必
要とするので、複数サーバによる分散ビルドを
行うことで負荷を分散させることができます。
リモートエージェント機能は負荷分散以外にも
有効で、Bambooがインストールされている
OS以外のプラットフォームでビルドやテスト
を行いたい場合にも利用できます。
 Bambooを使った

開発の流れ
ここまで、Bambooの基本的な機能を説明し
てきました。Bambooを利用することで柔軟に
CI環境を構築できることがおわかりいただけ
たと思います。次は、Atlassianが提供してい
る課題管理システムであるJIRA、Gitリポジ
トリ管理ツールのBitbucketと連携した場合の
開発の流れを紹介します。Bamboo単体の導入
でももちろん効果がありますが、JIRAや
Bitbucketと組み合わせることで、相乗効果が
生まれます。

1. ブランチの作成

まずは、対応する課題をJIRAから決めます。
対応する課題を決めたら、課題の開発セクショ
ン（画面は掲載できませんでしたが課題画面右
下）にある「ブランチを作成」をクリックすると、
Bitbucket Serverのブランチ作成ページが表示
されるので、ブランチタイプや分岐元などを選
択してブランチを作成します。
このときに、Bambooでブランチの自動検出

を設定している場合は、ブランチのプランが自
動的に作成されます。

2. チェックアウト～コミット

先ほど作成したブランチをGitクライアント
でローカル環境にチェックアウトして、ソースコー
ドを修正していきます。ここで使用するGitク
ライアントとしては、Atlassianから無料で提供
されている「Source Tree」が、Bitbucket Server

との親和性が高いのでおススメです。なお、ソー
スのチェックアウトから次に説明するプルリク
エストまでの詳しい流れについては、本連載の
第2回「Bitbucket Server＋SourceTreeで快適
Git環境！」をご参照ください。
意味のある変更ができたらコミット、プッシュ

していきます。Bambooのビルドプランの実行
トリガーを、リポジトリの変更が発生したとき
に実行するようにしておけば、プッシュしたあ
とにビルドやテストが実行されます。
ビルドとテストが頻繁に繰り返し行われるの

で、早い段階で問題を発見でき、あとあと発生
する問題をぐっと抑えられます。ビルドの実行
結果は、通知や JIRAの課題画面、Bitbucket

のブランチ一覧画面で確認できます。
ビルドやテストが失敗した場合は、Bamboo

の画面で詳細を確認しましょう。Bambooの詳
細画面では、ビルド結果のサマリやテスト結果、
コードの変更、ビルド成果物、ログ、ビルドに
含まれるJIRAの課題一覧などを確認できます。

Atlassianのコードカバレッジツールである



182 - Software Design Dec.  2016 - 183

継続的インテグレーション（CI）ツールで安定した本番リリースをしてみよう 第 回5

される課題管理／バックログ／バグトラッキン
グツールの「JIRA」、Gitリポジトリの「Bitbucket 

Server」、ユーザ管理ツールの「Crowd」などと
のツールチェインによって開発プロセスを連携
できる点です。Crowdによってアカウント管
理が統合され、JIRAという課題管理システム
からブランチ作成、ビルド／デプロイなどの実
行やステータスの自動切り替えができます。
開発システム基盤が分かれていることで、開

発者が手動でステータス変更をしなければなら
ないなど、情報の連携に手間がかかっていまし
たが、Atlassian製品によるツールチェインを
利用すると、その手間から開発者を解放するこ
とができます。GitリポジトリであるBitbucket 

ServerとCIツールである「Bamboo（バンブー）」
を組み合わせたツールチェインはぜひ試してい
ただきたいです。

Bitbucket Serverについては、本連載の第2回
（2016年6月号）「Bitbucket Server＋SourceTree

で快適Git環境！」もお読みください。ﾟ

Cloverを利用している場合は、コードカバレッ
ジのレポートも詳細画面に表示できます。

3. プルリクエスト～マージ

実装を終えたら、次はレビューです。JIRA

からプルリクエストを作成してレビューを依頼
します。承認を得たらマージです。
ここで万が一ビルドが通っていないソースが
マージされると、ほかの開発者に迷惑がかかり
ます。Bitbucketでは、ビルドが成功していな
いブランチをマージできないように設定できる
ので安心です。

4. デプロイ

マージを終えたらデプロイです。ビルドが終
わったときに自動でデプロイを実行させること
もできますが、ここでは手動でデプロイをして
みます。

Bambooから対象のデプロイプロジェクトを
開き、デプロイしたい環境のデプロイアイコン
をクリックします。デプ
ロイ画面が表示されるの
で、デプロイしたいビル
ド結果を選択して、「Start 

deployment」をクリック
します。すると、デプロ
イが実行され、実行結果
が通知されます（図4）。
デプロイした結果は
JIRAの課題画面にも表
示されるので、実装がデ
プロイ済みかどうかがわ
かります（図5）。
 

おわりに

今回はAtlassian社のBambooを紹介しまし
た。CIツールには、ほかにもJenkins（ジェン
キンス）、Travis CI（トラヴィス）などがありま
すが、Bambooの良いところは、世界中で利用

 ▼図5　デプロイした結果

 ▼図4　デプロイ画面



184 - Software Design

　NECプラットフォームズ㈱は10月13日、IEEE 802.11ac
規格のWi-Fiホームルータ「Aterm WG2600HP2」を発売
した。価格はオープン。
　Aterm WG2600HP2は、Atermシリーズの主要機能を
すべて搭載した最上位モデル。特徴は次のとおり。

・業界最速の実効スループット
　4本のアンテナを利用する4ストリームへの対応によ

り、5GHz帯で最大1,733M 
bpsの高速通信が可能とな
る。また、NECの先端技術で
ある「極技」を活用し、無線
用CPUドライバの最適化かつ
独自チューニングなどを
行って、業界最速の実効ス
ループットとなる約1,428M 
bpsの高速通信を実現した。

・全方位の電波送信
　内蔵アンテナから球体に

　10月19日、KDDI㈱は、㈱ソラコムとの共同開発によ
るIoTに特化した回線サービス「KDDI IoTコネクト Air」を
リリースした。
　KDDI IoTコネクト Airは、KDDIの携帯電話通信網を利
用したIoT向けの回線サービス。KDDIから提供される
SIMカード（4G LTE）をIoTデバイスに挿して利用する。
大きな特徴は次の2点。

・申し込み～通信の管理はすべてWebから
　Webから本サービスに申し込むとSIMカードが送られ
てくる。そのSIMカードを使ってネットワーク接続設定
を行うことで、すぐに利用を開始できる。さらに、通信
の利用開始／休止／中断／再開／解約、利用状況の確認、
通信速度クラスの変更などもすべてWebから可能で、
複数のSIMを一括・集中管理できる。

・IoTに特化した料金体系
　SIMカード1枚につき、契約事務手数料1,500円、SMS
基本料含め1日10円の基本料金、1MBあたり0.2円～の
データ通信量と、シンプルで安価な設定となっている。

近い形で全方位に電波を送信できるため、ユーザはアン
テナを調整することなく、家中どこにいても高速かつ安
定した通信が行える。

・同時使用でも快適な高速通信
　Wi-Fi端末に向けて集中して電波を送信する「ビーム
フォーミング機能」、各Wi-Fi端末の電波強度などにより、
適切な周波数帯に自動的に移動させる「バンドステアリ
ング機能」に対応することで、快適な高速通信が可能。

・Wi-Fiの見える化
　ルータに接続中のWi-Fi端末の一覧、機器ごとの接続
周波数帯や電波強度といった状態表示をスマフォやタブ
レットなどで確認できる「見えて安心ネット」機能を搭
載。また、不正アクセスしたWi-Fi端末を検出し、それ
を不正な端末として設定すれば、以降は接続拒否できる。

本サービスの提供は2016年12月以降を予定しており、
今後は回線サービスだけではなく、IoTのための上位の
アプリケーション・クラウドサービスまでもセットで提
供していくとのこと。
　今回発表されたKDDI IoTコネクト Airは、ソラコムの
携帯通信コアネットワーク「SORACOM vConnec Core」
と、KDDIのネットワーク回線を活用し、2社が共同開発
したものとなっている。SORACOM vConnec Coreは、
ソラコムが提供するSORACOM AirやSORACOM Beamと
いった各種サービスの中核となるテクノロジ。Amazon 
Web Services上に、パケット交換・顧客管理・課金・帯
域制限・API/Web・クラウド連携といった機能を実装し
た、いわば「バーチャルキャリア」であり、ソラコムの
コアコンピタンスとなっている。KDDIから「できるだけ
早くサービスを立ち上げ、IoT業界に参入したい」という
相談を受け、本コア技術を提供するに至ったという。

NECプラットフォームズ、
Wi-Fiホームルータ「Aterm WG2600HP2」発売

KDDI・ソラコム、
IoT特化型回線サービス「KDDI IoTコネクト Air」をリリース

KDDI㈱　URL  http://www.kddi.com
㈱ソラコム　URL  https://soracom.jp

CONTACT

▲▲  Aterm WG2600HP2

NECプラットフォームズ㈱
URL  https://www.necplatforms.co.jp

CONTACT

https://www.necplatforms.co.jp
http://www.kddi.com
https://soracom.jp


184 - Software Design Dec.  2016 - 185

㈱セキュアソフト　URL  https://www.securesoft.co.jp
CONTACT

　アカマイ・テクノロジーズ合同会社は10月3日、2016
年第2四半期の「インターネットの現状レポート」を発表
した。
　インターネットの現状レポートでは、世界中に存在す
るアカマイのエッジサーバから収集した攻撃トラフィッ
ク、ブロードバンド普及状況、モバイル接続、インター
ネットおよびその利用状況に関連したトピックに関する
データと、そこから分析した長期的な傾向などが四半期
ごとにレポートされる。報告のハイライトは次のとおり。

・ 世界における平均接続速度は、2016年第1四半期か
ら2.3%減の6.1Mbpsになり、前年比14%増

・ 第2四半期の世界における平均ピーク接続速度は、
3.7%増の36.0Mbpsになり、前年比2.5%増

・ 世界における10Mbpsのブロードバンドの普及率は、
四半期比0.7%増、15Mbpsおよび25Mbpsのブロー
ドバンド普及率は、それぞれ0.8%と2.1%減

・ アカマイのエッジサーバに接続しているユニークアド
レス数（IPv4）は、2016年の第1四半期より1%減で8
億をわずかに上回る

アカマイ・テクノロジーズ、
2016年第2四半期「インターネットの現状」レポートを発表

アカマイ・テクノロジーズ合同会社
URL  https://www.akamai.com/jp/ja

CONTACT

　アクロニス・ジャパン㈱は9月14日、Windows PCや
Mac対応のバックアップソフトウェアの新バージョン
「Acronis True Image 2017」を発表した。
　Acronis True Imageは、ローカルやクラウドに高速に
イメージバックアップを行えるソフトウェア。最新バー
ジョンでは次の機能強化が図られた。

・モバイルデバイスのデータをWi-Fi経由でWindows 
PCに自動バックアップ

・ Windows PCやAcronis Cloudへの、モバイルデバイ
スのデータバックアップ機能を、デバイスの台数に関
係なく利用可能

・ デバイスの場所に依存することなく、遠隔地からでも
バックアップの設定や管理が可能

・ Facebookの投稿や写真などのコンテンツのバック
アップに対応

　オンラインから入手できる製品ラインナップは、ライ
センス版（税別4,980円～）と、クラウドストレージが付
いたサブスクリプション版（税別3,980円～／年）。

アクロニス、
バックアップソフトウェア「Acronis True Image 2017」
を発表

アクロニス・ジャパン㈱
URL  http://www.acronis.com/ja-jp

CONTACT

　㈱セキュアソフトは10月18日、ランサムウェアなど
のマルウェア侵入・拡散防止ソフトウェア「SecureSoft 
mamoret」を発表した。
　SecureSoft mamoretは1台のパソコン上にインター
ネットブラウジング専用環境を生成し、一般業務を行う
ローカル環境と完全に分離することで、ランサムウェア
などのマルウェアからパソコンを守るソリューション。
マルウェアをブラウジング専用環境内に封じ込め、さら
にWebメールの添付ファイルをその環境内で実行させ
ることで、ローカル環境の安全が保たれる。管理サーバ
は不要で、パソコンにソフトをインストールするだけで
利用できる。対象ユーザとしては、ウィルスチェックソ

フトのみに頼り、標的型攻撃などの未知脅威対策製品を
導入できていない企業、インターネットアクセス環境分
離を検討している企業、社内規定上インターネットアク
セスを制限されている企業などを想定している。 
　本ソフトウェアは12月19日より提供開始で、価格は1
ユーザの年間使用料が税別9,000円を予定。対応OSは
Windows 7/8.1/10。対応するWebブラウザは、現在
Internet Explorer 8/9/10/11だが、今後ほかのブラウザ
にも対応予定とのこと。

セキュアソフト、
セキュリティソフトウェア「SecureSoft mamoret」発表

https://www.akamai.com/jp/ja
http://www.acronis.com/ja-jp
https://www.securesoft.co.jp


186 - Software Design

 日本初の開催でも高い注目度
　プロダクトマネージャーカンファレンス実行委員会が
主催する「Japan Product Manager Conference 2016」
が、10月24、25日の2日間にわたって開催された。プロ
ダクトマネージャー（以下、PM）という職種は、まだ日
本のIT業界の職種としては認知度が高くはないと思われ
ているが、そうは思えないほどの盛況ぶりだった。ここ
ではいくつかの講演を紹介する。

 登壇者：Google 徳生氏
　グーグル㈱ 製品開発本部長の徳生裕人氏からは、「世
界を変えるプロダクトマネージャーになるために」とい
うテーマで講演が行われた。YouTubeのアジア最高責任
者としてプロダクトに携わっていた氏は、PMのあるべ
き姿を模索する良い方法として「デキるPMから知識を
ぬすむ」ことを推奨。プロダクトスケジュールを考える
際には、「なぜこの時期に、これをやらなければいけな
いのかという意思を明確にする」ことで、プロダクトメ
ンバーの意識やモチベーションが違ってくるとのこと。
そして“必要であれば何でもやる”のがPMではあるが、
PMがすべてのアイデアを出す必要はなく、多くのアイ
デアをつなぎ合わせる能力が求められること。外の力を
利用してさらに加速する、ときには回り道もするスイン
グバイ方式を身につけてほしい、などといったアドバイ
スが語られた。

 登壇者：東京大学 馬田氏
　東京大学 本郷テックガレージ ディレクターの馬田隆
明氏の講演は「ゼロから始めるPM生活」。スタートアッ
プやプロダクトの成功に必要な「アイデア×プロダクト
×実行×チーム×運」の5つの項目について、Y Combi 
natorの知見を引用しながら解説した。
　急成長するためのアイデアは、「悪いように見えて、
実は良いアイデア」が望ましいとのこと。「困難な課題」
や「小さな市場の独占」を狙うこともポイントとして挙
げられた。また、小さな成長を重ねることが重要であり、
CEOやPMはその実行のために行動の基準を設定し、KPI
の進捗を追跡すること。良いPMは、ほとんどのことに
「No」と言う必要があるため、メンバーに多少嫌われる
傾向にあるとも指摘。精神的にも肉体的にもタフである
必要があることなどが述べられた。

 登壇者：DevJam社 David Hussman氏
　DevJam社のDavid Hussman氏は、「プロセスからプ
ロダクトへ」というテーマで講演。同氏の会社でのプロ

ダクトの進め方を3つの開発モデルで紹介した。基本は
スクラムだが、プロセスではなくプロダクトの管理を文
脈にするようにアジャイルマニュフェストを更新し続け
ているとのこと。会場にいる人たちに向けて次のような
メッセージが贈られた。「過去10年では、デリバリのし
くみを改善することに注力し、実現できた。これから先
はそのしくみの上で、良いプロダクトを生み出すしくみ
作りがどうやったらできるか、それに挑戦してほしい。」

 登壇者：Niantic, Inc. 河合氏
　　　　　 ×Increments 及川氏
　Pokemon Goで注目を浴びるNiantic社のプロダクト
マネージャー 河合敬一氏と本カンファレンスの実行委
員でもあるIncrements㈱のQiitaプロダクトマネー
ジャー 及川卓也氏による講演は「グローバル企業におけ
るプロダクトマネージメント」。来場者やTwitterからの
質問に答える形で行われた。
　PMがうまく仕事をするためのポイントについて河合
氏は、会社とプロダクトの軸（ガイドライン、プロダク
トビジョン）がしっかりあることが大切だとした。何か
を決定しなければならないとき、この軸が常に依りどこ
ろとなる。
　また、プロダクトの意思決定としてトップダウンがい
いのか、ボトムアップがいいのか、という質問には、エ
ンジニアのオーナーシップを高めてあげることはPMに
とって重要な役割だとした。最終的にはトップダウンで
の決定が必要になるかもしれないが、エンジニアたちが
プロダクトに大きくかかわっている意識を持ってもらう
ことはプロダクトの質を高めることにつながる。
　PM自身の評価は、チーム内でリスペクトされている
か、きちんとモノを出しているか、で判断される。きつ
いことを言っても、価値のあるプロダクトをきちんと出
していれば、自然とリスペクトされる。そして、チーム
内の雰囲気作りには、お酒とお肉も重要だとも語った。

◆　◆　◆
　ここで紹介した以外の講演も多数行われた。興味のあ
る方はhttp://pmconf.jp/をご覧いただきたい。
　講演が終わった後には登壇者へ直接質問ができるコー
ナーが設けられたり、2日目の夕方からはアンカンファ
レンスの時間があるなど、聴講者自身も積極的に参加で
き、プロダクトマネジメントにかかわる知識が深められ
るイベントだった。

日本初のプロダクトマネージャー向けカンファレンス、
「Japan Product Manager Conference 2016」開催

Japan Product Manager Conference
URL  https://www.facebook.com/pmconf.jp/

CONTACT

http://pmconf.jp/
https://www.facebook.com/pmconf.jp/


186 - Software Design Dec.  2016 - 187

さくらインターネット㈱
URL  https://www.sakura.ad.jp

CONTACT

　ブロケードコミュニケーションズシステムズ㈱は10
月14日、ネットワーク自動化プラットフォーム「Brocade 
Workflow Composer」の戦略的な展開、および日本での
導入事例を発表した。
　本製品は、同社が買収したスタートアップ企業Stack 
Storm社がオープンソースとして公開している「Stack 
Storm」をもとにしており、サブスクリプションモデル
で提供される。この戦略は仮想ルータであるVyattaと同
じく、ユーザコミュニティとのフィードバッグを重視し、
囲い込みではなくオープンな企業姿勢を示すもの。　　
　Brocade Workflow Composerは、ますます複雑化す
るネットワーク環境において迅速な自動化を推進する製

品である。その特徴は、クロスドメイン、すなわちすべ
てのアプリケーション、ストレージチケットシステムを
ワークフロー中心にまとめ、発生するイベントごとにま
とめて自動化ができること。すでに日本でも、富士通㈱
の仮想デスクトップサービス「V-DaaS」で実運用されて
いる。当日の発表会では、同社の髙野徳巳氏が「Brocade 
Workflow Composer」の導入経緯、システムの運用状況
などを発表した。

ブロケードコミュニケーションズシステムズ、
ネットワーク自動化に関する技術戦略発表

ブロケードコミュニケーションズシステムズ㈱
URL  http://www.brocade.com/ja.html

CONTACT

　㈱豆蔵は10月24日、「ITが変革するビジネス・組織・
社会」を基本テーマに「QCon TOKYO 2016」を開催した。
　今回は技術者向けだけでなく、経営層などに向けた
セッションも用意され、より幅広い層へのITテクノロジ
の発信を目指すイベントとなった。講演テーマは、AIや
フィンテックなど注目を集めているホットな話題が中
心。基調講演は3本あり、最初はHakka Labs社のPete 
Soderling氏による『エンジニアリングの物語』。これは、
IT企業がクリエイティブであるためには、ストーリーと
して自社の企業文化を語ることが大事であるというも
の。続いて国立情報学研究所教授佐藤一郎氏が『ポスト・
ムーアの法則時代のコンピューティング』を発表。CPU

の性能がムーアの法則に適合しない時代になって、技術
者はますますソフトウェア工学に基づいた仕事をせねば
ならないという内容。最後は、損害保険ジャパン日本興
亜㈱のCTO浦川伸一氏による『日本の情報システムの未
来革新に向けて』。5つの保険会社が1つに合併すること
でシステム統合をいかに進めてきたか、その複雑極まる
舞台裏を明かした。いずれのセッションも啓発されるも
のが多く、ビアバッシュに至るまでエンジニアとして刺
激的な1日を得ることができるイベントであった。

「QCon TOKYO 2016」開催、
～ ITエンジニアの思考と技術を深める～

Qcon Tokyo 2016　URL  http://www.qcontokyo.com
CONTACT

　さくらインターネット㈱は10月31日、プライム・ス
トラテジー㈱が開発する超高速WordPress仮想マシン
「KUSANAGI」を「さくらのVPS」で実行できる「KUSANAGI 

for さくらのVPS」を提供開始した。
　KUSANAGIは、オープンソースのブログ／CMSプラッ
トフォームであるWordPressを高速に動作させるための
仮想マシンおよびそのイメージ。「WordPressの実行時
間3ミリ秒台」「秒間リクエスト処理1,000」をページ
キャッシュ非使用で実現する。本製品は、Microsoft 
Azure、Amazon Web Servicesといったパブリッククラ
ウドのほか、Dockerにも対応している。
　さくらインターネットでは2015年5月より、同社のク

ラウドサービス「さくらのクラウド」でのKUSANAGIの
提供を行っていたが、今回新たに、さくらのVPSでの同
製品の提供を開始する。さくらのVPSのコントロールパ
ネルから、「CentOS 7（64bit）」上にKUSANAGIがインス
トールされたサーバを作成することで利用を開始でき
る。追加料金不要で導入できるため、企業のWebサイ
トはもちろん、個人のブログにおいても、より快適に
WordPress環境を利用できる。

さくらインターネット、
「KUSANAGI for さくらのVPS」を提供開始

http://www.brocade.com/ja.html
http://www.qcontokyo.com
https://www.sakura.ad.jp


188 - Software Design

禍
福
は
あ
ざ
な
え
る
縄
の
ご
と
し
。
チ
ャ
ー
シ
ュ
ー
す
れ
ば
丼
す
る
自
称
プ
ロ
・
ジ
ロ
リ
ア
ン
の
く
つ
な
先
生
の

マ
ン
ガ
が
読
め
ち
ゃ
っ
た
り
な
ん
か
し
ち
ゃ
っ
た
り
す
る（
広
川
風
に
！
）の
は
本
誌
だ
け
。

作）くつなりょうすけ　@ryosuke927

上からデバイス
が降ってくる

紙の書籍と
電子書籍

コマンド
ライン

書類作成休暇で旅行

ラズパイ

えー。
また動作確認
デバイス追加?!

追加料金出され
ても納期は変わら
ないンでしょ？

出たばかりの流行デバイス
だからって……。
たいへんなんだよ!?
こっち地獄絵図に
なっちゃうよ？

デバイス使えるのは
いいんですけどね♪

電子書籍は場所を
とらないし、端末も
軽いから持ち運び
が楽なんだけど、

サービスが
終了しちゃうと、
買ったコンテンツが
読めなくなるのが
怖いなー。

独自アプリも
困ってしまう。
各社ごとに
比較できるのは
楽しいけど♪

黒い画面を
使っているのって、
昭和みたい
じゃない？

死ねぇぇぇぇ!?

1文字スペースを入れた
だけで書式が崩れる
ワープロソフトなんて

休暇なのに会社の
携帯電話を持た
されちゃったよう。

携帯電話を手放せ
ないから休暇の
気分にならンな。

何もなければ、
ないで寂しン
だけどね。

もう、
Markdownで
なんとか整形
してやるぅぅぅ♪

俺、結構、
楽しんで
いるな。

安いし、
手軽すぎていろいろ
作ってしまう……。

数を作ると
メンテナンスしきれないな。
保存場所にも困るし

困ったにゃー。
あれ？



188 - Software Design Dec.  2016 - 189

ど
ん
な
に
寂
し
く
て
も
、O
S
C
に
行
け
ば
宮
原
さ
ん
に
逢
え
る
か
ら
大
丈
夫

恒例年末年始特番

上から
デバイスが
降ってくる

紙の書籍と
電子書籍

コマンド
ライン

書類作成 休暇で旅行

ラズパイ

OSC
（オープンソースカン
ファレンス）

いつもボッチ旅
だけど、OSC
ならばそうじゃ
ないはず（希望）！

コミュニティの
仲間と遊べる

（はず）！　
呑める

（はず）!!!
（たぶん）
天国やわぁ！

安いから、
ついつい
買いすぎて
しまうわー。

一人データセンター
ごっこのために
積んでみるか。

こうやって
積んでいたら

「パイの河原」に
なっちゃうな!!

あは♪ それじゃ

「三途の川」
だwww

第34回 天国と地獄

わーい♪
新しいスマホが
動作確認機材として
届いたぞー♪

新しいデバイスに
触れるタイミングが勝手に
やってきてくれるなんて
ラッキー♪

新技術のフォローは
書籍と雑誌で
会社に買って
もらっているのを
読ンでいる。

コマンドラインは
便利だなー。
仕事もできるし、

文字サイズ2.8ポイ
ントが個人的には
ゾクゾクくる。 エクセル

方眼紙
萌えるぅ〜。

あれ？
俺、ちゃんと
楽しんでいる
のかな……？

いちいちセル
結合するのは、  
   面倒
   くさ〜。

この際限なく
広がるような感じ、

たまんねぇ〜。

でかい画面で
迎えてやらなきゃっ
て脅迫感が
イイよイイよ〜。

tail -fでログを流して
おけば仕事をしているよう
にも見えるぞ!!

電子版じゃ、
書店に行く楽しみ
なくなっちゃう。
書店ついでに遊びに
行くしねー。

買ったら会社に
置いておくから
場所も困らない
しぃー。

自分用に買う前に試せるので
いいわー。こりゃ天国やでぇ。

あれ？　
今、何種類あるんだっけ？

GUIの発明は
失敗じゃね？



190 - Software Design

大 VR時代到来？
VR（バーチャル・リアリティ）を楽しむためのHMD（ヘッドマウント・ディスプレイ）。その
中で大本命と言われる「PlayStation VR」がついに発売されました。本体価格は4万5千円
で、PS4も合わせて9万円ほどかかりますが、ゲームだけではなく映画も楽しめるとのこと
で、もはやテレビが不要になるかもしれませんね。家族全員がHMDを装着して食卓を囲む
ような未来にならなければ良いのですが……。

Webサーバについての疑問、「どのよう
にクライアントとデータをやりとりして
いるのか」「どうやってプログラムを実
行しているのか」「いかにしてDBと接続
しているのか」の疑問に答えました。さ
らに具体例として、Node.jsとRuby on 

Railsのしくみも解説。

基本的なこともあらためてまとまって
いると、自分の技術知識の整理にとて
も良いです。 のりぃさん／埼玉県

Node.jsの動作が最近気になっていた
のでちょうど良かった。
 澤田さん／千葉県

Node.jsのイベントループモデルがわ
かりやすかった。 本の海さん／奈良県

Node.jsをはじめとするサーバサイド
のJavaScriptの何が良いのか、理解
できました。 tack41さん／愛知県

WebサーバやCGIの動作のしくみの
ところは、個人的には初めて調べたと
きの20年ちょい前を思い出しました。
 福田さん／神奈川県

わからないで開発している人、けっこ
ういるんじゃないかなぁ……。
 tekitoizmさん／東京都

クラウドやWebはほぼ毎日利用してい
ます。その入り口のWebサーバは、水
や空気のようにあって当たり前の存在
になっています。詳しいしくみを知る
ことでこれからもっと活用していきた
いです。 牧さん／大阪府

Webを利用するとき、またWeb

アプリを開発するときでさえ、
Webサーバの詳しいしくみは意識した
ことがなかった人が多いようです。今回
は、若い人に人気があるNode.jsと
Ruby on Railsも取り上げたことで、興
味を示した読者も多いようでした。

2016年に生誕20周年を迎えたDBMS

「PostgreSQL」を特集しました。Postgre 

SQLの歴史、インストールと使い方、特
徴、Oracleからの移行Tips、さらには
コミュニティ情報まで、盛りだくさんの
内容でした。

子供が情報システム部に異動、そして
PostgreSQLを使うことになり、タ

イムリーな内容でした。
 お花ところ助さん／大阪府

今読んでいるミック氏のデータベース
本でPostgreSQLを使っているため、
タイムリーだった。
 トミオくんさん／福岡県

自分の知識の確認と新人に読ませるの
にとても良いと思った。
 なおきさん／千葉県

データベースといえばMySQLとばか
り思っていた人は……自分だけ？　デー
タベースを学ぶなら知っておいたほう
が良い内容が満載でした！
 南雲さん／埼玉県

Oracleの移行を検討しており、注意
点や高可用性の構成例が参考になりま
した。 橿山さん／埼玉県

DBサーバについては選択肢があまり
ないので、PostgreSQLの動向は常
に見ておきたいのですが、こうやって
まとめて特集してもらえるととても助
かります。また使おうかな。
 romeosheartさん／長崎県

以前のMySQLの特集と比べながら読

2016年10月号について、たくさんの声が届きました。

第1特集
Webサーバはなぜ動くのか？

第2特集
新しいPostgreSQLの教科書



190 - Software Design Dec.  2016 - 191

んでいます。MySQLとPostgreSQL 
はどちらか一方しか選べないのが不便
です。同じデータに対してどちらから
でもアクセスできるとか、どちらかが
上位互換とかになってもらえれば、違
いを気にせずに済ませられると思いま
す。 中村さん／大阪府

オープンソースのDBで、MySQL

とシェアを二分するPostgreSQL。
注目度はかなり高いようです。コメント
をみると、Oracle Databaseからの以降
を考えている人も多いようですね。

CHIRIMENは、HTML/CSS/JavaScriptと
いうWebの技術で制御できるシングル
ボードコンピュータ。記事では環境の 

セットアップから、距離センサとミニモ
ニターを使ったWoTサイネージの開発
までを扱いました。

リアルタイムの動画エンコード／デコー
ドができそうだなと思いました。
 A758さん／山口県

Webの技術で IoTができるって、夢が
あると思った。
 tomato360さん／東京都

HTML/JavaScript/CSSで開発可 
能という点が目新しく、ぜひ試してみ

たいと思った。 若山さん／千葉県

WoTサイネージの記事をたいへん興
味深く読みました。CHIRIMEN買い
ます。 niwaさん／神奈川県

Webの技術が使える今までにな
い IoTデバイスということで、「興

味が湧いた」「買いたい」という声が多く
寄せられました。いろいろな用途に応用
できそうですね。

シミュレーションやセキュリティに欠か
せない乱数について、作り方／使い方の
両面を全3回で追います。最終回では、
OSやCPU内部でどのように乱数が作ら
れるのか、それらをどう利用するのかを
解説しました。

古典的な合同法などの乱数を過去に勉
強しただけでしたので、最近の乱数に
ついての記述がたいへん役に立ちまし
た。参考文献もありがたかったです。
新しい乱数生成機も興味深かったで 
す。 Qkobさん／富山県

普段何気なく使っている乱数も、背景
にはこんな技術があるのかと感心した。
 かっぱてっくさん／熊本県

同号のLinuxカーネル観光ガイドでも

乱数について取り上げられており、2つ
の共通点などを探しながら学べた。
 渡邊さん／東京都

ユニークキー生成など、乱数使用頻度
は高いのでためになった。
 とんびさん／沖縄県

エントロピーと仮想化環境についての
記述が参考になった。
 psiさん／東京都

難易度が高いながらも人気の高
かった本連載。乱数は、数学や物

理学が絡む奥が深い領域で、すぐには応
用できない知識かもしれませんが、押さ
えておいて損はありません。

一般記事　CHIRIMENシングル
ボードコンピュータ入門

短期連載
乱数を使いこなす【3】

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

①  OWL-KB109CBRU2-BK
村橋究理基様（北海道）

② 世界の盾 JF-PEACE55
（黒）りょうじ様（東京都）、（白）高松直斗様（愛知県）

③ LinuxCon Japan 2016 ノベルティグッズ
髙橋輝大様（東京都）

④ 『Amazon Web Services活用入門』
ぴょうへい様（大阪府）、土屋建様（神奈川県）

⑤ 『脆弱性診断スタートガイド』
今井英敏様（千葉県）、永作肇様（東京都）

⑥  『パーフェクトJava EE』
矢野誠様（東京都）、yasu様（広島県）

⑦  『独習Python入門』
小林采豊様（神奈川県）、ゆんど様（長野県）

10月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

mailto:sd@gihyo.co.jp
http://sd.gihyo.jp/


Software Design
2016年12月号

発行日
2016年12月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6179
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2017年1月号
定価（本体1,220円＋税）

192ページ

January 2017
12月17日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2016 技術評論社 

●今年は「猫」様に表紙参加いただいたおかげで、5

月以降盛り返して非常によかった。猫が地球をまわして

いるのだ。渡る世間は猫ばかり。これからずっと猫が表

紙で良いかもしれない。昨年の今ごろデザイナーさんと

の打ち合わせで天啓があり、そこで猫に決めたのだっ

た。でも、本当は犬のほうが好きなんだけどね。（本）

●今回の「IT昔話SP」はいかがでしたか？　業界長い

方は、昔のことをいろいろ思い出されたのではない

でしょうか。若い方にはチンプンカンプン（←死語？）

だったかも。今現在の IT業界も、先達の苦労の蓄積

があったからで、あと数十年もすると今現在の苦労話

が「昔話」になっていることでしょう。（ポンコツ幕）

●TOTOのショールームに行ってきました。トイレだけ

じゃなく、浴室やキッチンといった商品も扱っていて、

私は浴室にも興味津々。サウナみたいに浴室にベン

チがあるモデルを熱心に見ていたら、「それ、ご高齢

者向けですけどね」と担当者。ふむ、老後の楽しみに

浴室にこだわるってのもありだな。（キ）

●十数年同じ美容師さんに髪を切ってもらっていま

す。当初はスタイリストという役職だった美容師さん

も、数年でトップスタイリストになり、今では店長に。

頼むのは毎回同じカットでも彼女の出世のたびに価

格がアップ。予想外の値上げに毎度ビックリですが、

きっと私の髪型もレベルアップしているはず！（よし）

●姉の結婚式に行ってきました。和式だったので神前

式ですね。新郎は紋付羽織袴、新婦は白無垢、宮司

と巫女が式を執り行い、始終厳かな雰囲気で進行し

ました。ただすごく小さな神社だったので、すぐ外で

賽銭箱に小銭が投げ入れられるチャリンという音が鳴

りっぱなし。金運が上がりそうな一日でした。（な）

S D  S t a f f  R o o m

［第1特集］ 新春bash書き初め　

シェル30本ノック 
基本からちょっとした応用までシェル力を鍛える
［第2特集］ 心機一転・乾坤一擲　

転職で成功するには何をすべきか？ 
［第3特集］ 中井先生直伝　

機械学習の勉強方法 
※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

次号予告

休載のお知らせ
　「Androidoで広がるエンジニアの楽しみ」（第12回）、「るびきち流Emacs超入門」（第32回）、「SOURCES～レッドハット
系ソフトウェア最新解説」（第5回）は都合によりお休みさせていただきます。

■2016年12月号
●P.22　第1特集「クラウドコンピューティングのしくみ」第1章　左段　注7）
　［正］http://www.vmware.com/jp/products/esxi-and-esx.html　
　［誤］http://www.vmware.com/jp/products/esxiandesx.html
●P.26　第1特集「クラウドコンピューティングのしくみ」第1章　右段　注17）
　［正］https://www.ibm.com/marketplace/cloud/bare-metal-server/jp/ja-jp
　［誤］https://www.ibm.com/marketplace/cloud/baremetalserver/jp/jajp
●P.26　第1特集「クラウドコンピューティングのしくみ」第1章　右段　注19）
　［正］https://cloud.google.com/container-engine/　［誤］https://cloud.google.com/containerengine/
●P.33　第1特集「クラウドコンピューティングのしくみ」第2章　右段　図10 キャプション
　［正］CloudTrailによるログ管理　［誤］CloudTrailによる構成管理（その1）

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

192 - Software Design

mailto:sd@gihyo.co.jp
http://www.vmware.com/jp/products/esxi-and-esx.html
https://www.ibm.com/marketplace/cloud/bare-metal-server/jp/ja-jp
https://cloud.google.com/container-engine/


この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。



この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。


	SD2016年12月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 適材適所で活用していますか？ NoSQLの教科書 MongoDB、Couchbace、Redis、MySQLでNoSQL！
	第1章：NoSQLの基本構造を理解する ハッシュテーブルとドキュメント指向 ......力武 健次
	第2章：MongoDB使いにならないか？ 多機能データストアMongoDB入門 ......桑野 章弘
	第3章：NoSQLのダークホース Couchbase Serverを試してみよう！ ......仲川 樽八
	第4章：データの型や永続化機能が用途を広げる 高速なインメモリデータベースRedis ......大谷 祐司
	第5章：RDBMSとNoSQLのいいとこ取り！ NoSQLとしても使えるMySQLとMySQL Cluster  ......梶山 隆輔

	■第2特集 文字コード攻略マニュアル　HTML・Java・Ruby・MySQLのハマりどころ
	Part1：ゼロからはじめる文字コード 符号化のしくみと、ASCIIからUTF-8への系譜 ......田所 駿佑
	Part2：HTMLと文字コード 仕様を理解し、文字を正しく表示する ......田所 駿佑
	Part3：Javaと文字コード char型の落とし穴と文字化け予防策 ......田所 駿佑
	Part4：Rubyと文字コード プログラム中での異なるエンコーディングの扱い方 ......とみたまさひろ
	Part5：MySQLと文字コード charsetでの文字集合の指定方法とエンコーディングの対応 ......とみたまさひろ

	■第3特集 年末特別企画　先人たちの知恵と足跡に学ぶ　温故知新 ITむかしばなしスペシャル
	第1話：パソコンの揺籃期に進化を続けたPC-9800シリーズ ......小高 輝真
	第2話：富士通 FM-7とCPU動作周波数　搭載CPU 68B09（2MHz）はどこまで速いか ......速水 祐
	第3話：初期のインターネットダイヤルアップ接続とユーザ認証 ......伊勢 幸一
	第4話：汎用機のLISP　大文字でタイプライタで会話していたあのころ ......五味 弘
	第5話：IDEのさきがけとなったTurbo PascalとTurbo C ......大野 元久
	第6話：VZエディタ開発秘話 ......兵藤 嘉彦
	第7話：あこがれのグラフィックスソフト ......古籏 一浩
	第8話：オープンソースの夜明けと「まつり」 ......法林 浩之
	最終話：オープンソースとコミュニティ ......田中 邦裕

	■一般記事
	［次世代言語］Elixirの実力を知る——Phoenixで高機能Webアプリ開発【後編】ElixirにおけるプロセスとPhoenixによるアプリ開発 ......大原 常徳

	■Catch up trend
	うまくいくチーム開発のツール戦略【5】継続的インテグレーション（CI）ツールで安定した本番リリースをしてみよう......持田 秀敏

	■連載：Column
	及川卓也のプロダクト開発の道しるべ【2】Product Managerが日本を救う ......及川 卓也
	digital gadget【216】再び盛り上がる電子ブロック的アイデア ......安藤 幸央
	結城浩の再発見の発想法【43】チューリングテスト ......結城 浩
	増井ラボノート　コロンブス日和【14】HashInfo ......増井 俊之
	宮原徹のオープンソース放浪記【10】その土地を知るには地酒から ......宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【18】mbed Device Connectorを使ってみる ......坪井 義浩
	Hack For Japan エンジニアだからこそできる復興への一歩【60】減災ソフトウェア開発に関わる一日会議2016 ......鎌田 篤慎、及川卓也
	［恒例年末年始特番］ひみつのLinux通信【34】天国と地獄 ......くつなりょうすけ

	■連載：Development
	アプリエンジニアのための［インフラ］入門【最終回】インフラ設計入門 ......出川 幾夫
	使って考える仮想化技術【7】ホストシステムと仮想環境の構築 ......笠野 英松
	RDB性能トラブルバスターズ奮闘記【10】「スケールアウトしにくいからJOIN禁止」はあまりにも短絡的 ......生島 勘富、開米 瑞浩
	Vimの細道【13】Vimの標準ファイラ「Netrw」（基本編） ......mattn
	書いて覚えるSwift入門【21】“hello again”を待ちながら ......小飼 弾
	Sphinxで始めるドキュメント作成術【21】PDFを出力しよう　......山田 剛、小宮 健
	セキュリティ実践の基本定石【38】IoT機器を使った過去最大規模のDDoS攻撃（前編）　......すずきひろのぶ

	■連載：OS/Network
	Be familiar with FreeBSD チャーリー・ルートからの手紙【37】FreeBSD 11.0登場 ......後藤 大地
	Debian Hot Topics【41】GNOME、Perlほか、パッケージ取り込みの近況 ......やまねひでき
	Ubuntu Monthly Report【80】Ubuntu 16.10とそのフレーバーの変更点 ......あわしろいくや
	Unixコマンドライン探検隊【8】シェルスクリプトへの入り口 ......中島 雅弘
	Linuxカーネル観光ガイド【57】仮想マシンのライブマイグレーションを支えるuserfaultfd　......青田 直大
	Monthly News from jus【62】みんなプログラミングでつながれ！　LLoT開催！ ......法林 浩之

	■アラカルト
	ITエンジニア必須の最新用語解説【96】cri-o　......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW
	バックナンバーのお知らせ
	SD NEWS & PRODUCTS
	Readers’ Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内
	Software Design  plus




