

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

技術評論社の本が電子版で読める！
https://gihyo.jp/dp

 GIHYO
 Digital Publishing

 GIHYO
 Digital Publishing

未来の“普通”を，今。

 Gihyo Digital Publishing

 GIHYO
 DIGITAL
 PUBLISHING

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

Pythonクローリング＆スクレイピング
̶データ収集・解析のための実践開発ガイド̶

加藤耕太　著　
3,200円　 PDF EPUB

Pythonによるクローリング・スクレイピングの入門から実践
までを解説した書籍です。基本的なクローリングやAPIを活
用したデータ収集，HTMLやXMLの解析から，データ取得後
の分析や機械学習前の処理まで解説。データの収集・解析，
活用がしっかりと基本から学べます。Webサービスの開発や
データサイエンスや機械学習分野で実用したい人はもちろん，
基礎から解説しているのでPython初心者でもつまずかずに
学習できます。多数のライブラリ，強力なフレームワークを
活用して高効率に開発できます。

https://gihyo.jp/dp/ebook/2016/978-4-7741-8684-9

はじめての深層学習（ディープラーニング）
プログラミング

EPUB PDF

人工知能の作り方
「̶おもしろい」ゲームAIはいかにして動くのか

EPUB PDF

未来を味方にする技術
～新しいビジネスを創り出す ITの基礎の基礎

EPUB PDF

その「エンジニア採用」が不幸を生む
～良い人材を見つけ、活躍してもらうには何が必要か？

EPUB PDF

他の電子書店でも
好評発売中！

https://gihyo.jp/dp
https://gihyo.jp/dp/ebook/2016/978-4-7741-8684-9
mailto:gdp@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

https://gihyo.jp/site/inquiry/dennou

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

年間定期購読

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/
 定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

ED - 1 - Software Design Feb. 2017 - ED - 2

PRDとは

　前回、製品要求仕様書（PRD）のことをProduct

Manager（PM）の武器と紹介しました。PRDの
作成に必要なタスクをこなすことで、PMとし
ての役割を全うすることにつながるので、
PRDを武器と評しました。今回、PRDの書き
方を紹介するに際して、まずはあらためて
PRDの定義を考えてみましょう。
　PRDは、その名のとおり「製品への要求」を
記述したものです。新製品の開発や既存製品の
変更を行う場合に記述します。ここで「製品」と
書きましたが、製品の粒度はまちまちです。新
しい製品やサービスを新規開発する場合はその
製品がPRDの対象となりますが、既存製品に
対して、一部の機能を変更したり、新機能を提
供する場合には、その機能をPRDとして記述
します。新しい製品の場合でも、全体を1つの
PRDとして記述するにはあまりにも大規模な
ドキュメントとなってしまうという場合には、
機能ごとにPRDを用意することもあります。
このように、PRDが複数のPRDに分割される
形を取ることも可能ですので、運用は臨機応変
に組織で決めると良いでしょう。大事なのは、
書くにも読むにも適切なサイズにすることであ
り、それにより必要十分な情報を漏らすことな
くドキュメントに含めることができるのです。
　前回に述べたことの繰り返しになりますが、
PRDで書くべきことは「何をするものか（What）」
です。その製品の持つ目的や機能、特徴、動作

などについて明確に曖昧さを排除した形で記述
します。一方、「どのように実現するか（How）」
は記述しません。Howについては、PRDを読
むデザイナーやエンジニアが自身のスキルと経
験をもとに、最適な実現方法を考えることにな
ります。これについては、エンジニアの発想を
狭めないためにも「書かなくて良い」というより
も、むしろ「書いてはいけない」としておくこと
をお勧めします。
　PRDは開発の初期段階で完成していること
が望ましいですが、現実的にはそれは不可能で
す。実装が進んだ段階で仕様が曖

あいまい

昧であったと
ころが判明することもよくありますし、さまざ
まな理由により、当初予定していた機能を変え
なければならないこともあります。PRDは製
品を作るための原理原則として、常に変わらな
いことを期待される一方、現実にそぐわなくなっ
た部分については、常に正されていく、そのよ
うな存在です。

他ドキュメントとの関係

　PRDと似たドキュメントにMRD（Marketing

Requirements Document）と呼ばれるものがあ
ります。これはマーケティング担当者がマーケッ
トの要求を記述するためのドキュメントです。
MRDを元にPRDを作成するようにしている組
織もありますが、筆者はこのMRDもPRDに
含めて良いのではないかと考えています。グロー
スハックという手法が一般化したように、小さ
く始めたサービスを大きく育てるには、一昔前

及川卓也の
プロダクト開発の道しるべ
品質を高めるプロダクトマネージャーの仕事とは？

製品要求仕様書（PRD）の書き方

@takorattaTwitter

及川 卓也
（おいかわ たくや）

Author

第4回

ED - 1 - Software Design Feb. 2017 - ED - 2

だったらマーケティングに分類されていた活動
も今はサービスの運用に組み込まれています。
製品の成功に責任を負う役割のPMとしては、
リリースして終わりではなく、その製品を育て
ていくにはマーケティング的な活動にも責任を
負うことになり、必然的にマーケティングの要
求をまとめたMRDにもかかわることになりま
す。もちろん、担当者が別であり、ドキュメン
トのサイズが肥大化する場合などは別ドキュメ
ントとして用意してもかまいませんが、PRD

と重複する内容が多い場合などは1つのドキュ
メントとしてまとめてしまっても良いでしょう。
　ちょっと脱線しますが、筆者はここで「サー
ビス」と「製品」を使い分けてみました。「サービ
ス」はWebやスマートフォンアプリケーション
など、製品そのものにマーケティング的手法を
取り入れやすいものを意味し、「製品」はそれ以
外にもハードウェア製品など従来製品も含むも
のを意味しています。多くの製品はサービス的
な役割も持つようになってきていますが、製品
単体としてグロースに貢献できないものや製品
以外のマーケティング要素（パッケージデザイ
ンやパートナー戦略など）が多くある場合は、
MRDを別に用意することをお勧めします。
　PRDに含めるかどうかは別としても、MRD

がPRDの前に用意されるドキュメントですが、
一方、PRDの次に用意されるドキュメントが
デザインドキュメントです。Design Docと略
されて呼ばれることも多いこのドキュメントは

PRDに書かれたWhatをもとに、Howについ
てエンジニアが記述するものです。FRD

（Functional Requirements Document）と呼ぶこ
ともあります。このDesign Docには、どのよ
うな技術を用いてPRDの内容を実現するかを
文書化します。ただし、シンプルな実装となる
場合は、Design Docを用意しないこともあり
ます。チーム開発における実装の話になるので、
ここでは詳しくは書きませんが、Design Doc

は効率的なエンジニアリングのために重要なド
キュメントです。エンジニアはドキュメントを
書くことを面倒くさがる傾向がありますが、実
装を進め、いざコードレビューを他エンジニア
に頼もうとしたときに、コードの内容ではなく、
そもそもの実装方針について揉めることがあり
ます。コードレビューの段階になって、ほかの
実装方法にするべきであるということになった
ら、そのエンジニアの書いたコードは無駄になっ
てしまいます注1。Design Docはこのような事態
を避けるためにも、実装方針を事前に関係者と
議論し、同意を得ておくためのドキュメントな
のです。

◆　　◆　　◆
　PRDの内容について、もう少し説明しよう
と思ったのですが、誌面が尽きてしまったよう
です。次回は実際のPRDの構成要素について
解説します。｢

注1） もちろん、POC（Proof of Concept）として試しに実装し
てみることは重要です。

MRD PRD Design Doc
（任意） コードMRD

MRD

どちらか

製品要求仕様書（PRD）の書き方

ソフトウェアエンジニアとして社会人キャリアをスタートした後、MicrosoftやGoogleでプロダクトマネージャーやエンジ
ニアリングマネージャーを経験。現在はプログラマーのための情報共有サービスQiitaのプロダクトマネージャーを勤める。

Profile

第4回

ED - 3 - Software Design

　2016年9月に、Microsoftは同社
が開発する.NETプラットフォームに
関する新しい方針を発表しました。
.NETが備えるべき共通的な機能の
仕様を「.NET Standard」として定義
し、個々の .NET実装はこの仕様に
準拠するということを決定したのです。
　今回発表されたバージョンは
.NET Standard 2.0となっており、
次に挙げる要素から構成されるとのこ
とです。

• XML……XLinq、XML Document
/XPath/XSD/XSL

• シリアライゼーション……バイナリ
フォーマッタ／データコントラクト／
XML

• ネットワーキング……ソケット／
HTTP ／メール／ Webソケット

• I/O……ファイル／圧縮／ MMF
（Memory Mapped File）

• スレッド……スレッド／スレッドプー
ル／タスク

• コア……プリミティブ／コレクショ
ン／リフレクション／相互運用性
／ LINQ

　アプリケーション基盤として必要と
なる機能は網羅されているため、開
発者は.NET Standardをおさえてお
けば基本的な.NETアプリケーション
の開発が可能になるとのことです。

　この .NET Standard構想には、
将来的な.NETの実装の分断を防ぐ
目的があると発表されています。現
在の .NETには、大きく分けて次の3
種類の実装があります。

• .NET Framework
• .NET Core
• Xamarin

　.NET FrameworkはWindows向
けのライブラリを含むプロダクトで、い
わゆるフル機能の .NET実装と言える
ものです。

　一方 .NET Coreは、.NET Frame
workから核となる部分のみを抽出し
てパッケージ化したものです。クロス
プラットフォームな設計になっている点
が大きな特徴で、ユニバーサル
Windowsプラットフォームアプリの開
発にも対応しています。
　この2つの実装に対して、2016年
2月にMicrosoftがXamarin社を買
収したことで、新たにXamarin（製
品）が加わることになりました。Xa
marinはオープンソースの .NET互
換ツールであるMonoをベースとした
クロスプラットフォーム開発ツールです。
OS XやiOS、Androidなどをサポー
トしています。したがってXamarin
も.NET Coreと同様にクロスプラット
フォームな.NET環境となりますが、
スマートデバイスにフォーカスが当てら
れている点が .NET Coreとの差別化
ポイントと言えます。
　従来、これらの3つの .NET実装
はそれぞれ異なるベースライブラリの
上に構築されていました。それに対し
て、今後は.NET Standard仕様に
準拠した「.NET Standard Libra
ry」が提供され、基本機能の一元化
が図られることになります（図1）。
.NETとしてカバーするべき要件を明
確にしてコントロールすることで、無
差別な分断を未然に防止しようという
わけです。
　.NET Standard 2.0は、次期バー
ジョンのVisual Studioと合わせてリ
リースされる見込みとなっています。
｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 98回

.NET Standard

｢

.NET Standard
https://github.com/dotnet/standard

.NET STANDARD LIBRARY

.NET FRAMEWORK

WPF Windows
Forms

ASP.NET

.NET CORE

UWP

ASP.NET Core

XAMARIN

iOS
Android

OS X

コモン・インフラストラクチャ
コンパイラ 言語 ランタイム・コンポーネント

ア
プ

リ
ケ

ー
シ

ョ
ン

モ
デ

ル

.NETの標準仕様
「.NET Standard」

.NET Standardの目的

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

▼図1　.NET Standard の構造（引用元：.NET Blog「Introducing .NET Standard」）

mailto:sd@gihyo.co.jp
https://github.com/dotnet/standard

vol.218

1 - Software Design Feb. 2017 - 1

　アクセラレータというのは、生まれて
まもないスタートアップのチームや個
人を手助けし、その成長を加速させる
ための支援組織のことです（CPUや
浮動小数点演算の加速装置をアク
セラレータと呼ぶ場合もありますが、こ
こでのアクセラレータは違った意味で
す）。その役目は資金的な援助はもち
ろんですが、経験や人脈に基づき、ス
タートアップが失敗しないようノウハウ
を伝授し、良いところをより良く伸ばし、
しなくてよい失敗を回避していく役目
を担っています。
　そのようなアクセラレータの中で
も注目を浴びているHAX（https://
hax.co/）は、もともとHAXLR8Rと呼
ばれていた、ハードウェア、デバイスに
特化したスタートアップ支援組織です。
資金援助やオフィス空間の提供、メン
ターシップなど、必要なことがすべてま
かなえる充実したアクセラレータです。
現状、HAXが支援したスタートアップ
の90％は潰れずに残っており、かつ
支援したスタートアップのほとんどがク
ラウドファンディングで目標額を達成
するという快挙を成し遂げています。
　多くのハードウェアスタートアップ
が、そこそこ良い感じの試作品を開発
し、多くの支援金を集めたとしても、そ
の先に待っているのは量産化と販

売にまつわるさまざまな困難です。ソフ
トウェアで完結するプロダクトであれ
ば、コードを書けばさまざまなことが解
決し、特殊な資産を持つこともなくクラ
ウドを活用してサービスを作り上げる
ことができるかもしれません（もちろん
ソフトウェアはソフトウェアでまた違っ
た意味での困難や競争は数多くあり
ます）。物質的な製品が重要なハード
ウェアは、往々にしてそう簡単にはい
きません。ハードウェアの開発は、失
敗した場合、その際に失う資金や損
失は計り知れません。ソフトウェアなら、
随時パッチで更新が可能だったり、ソ
フトウェアやアプリをアップデートして
不具合を回避する方法が使えますが、
ハードウェアの場合は最悪の場合、
製品の回収、リコールの告知、発火に
よる火事や利用者のケガさえも起こり
うるのです。
　HAXでは、半年ごとに15チームの

スタートアップをピックアップして支援
します。いくつかの採用基準があるよ
うです。個人での参加は認められず、
必ずチームで参加することや、製品を
売るべき大きな市場があること、コン
セプトがしっかりしていることなどです。
15チームのうちいくつかは、普通に成
功しそうなプロダクトではなく、あえて
突拍子もないアイデアが選ばれてい
ます。
　支援を受けたチームは約3ヵ月の
間、世界の工場と呼ばれる深圳に
チーム全員で来て住み込み、メンター
と呼ばれるその筋の指導者からのア
ドバイスを受けながら作業します。量
産用のプロトタイプ作りから始まり、
KickstarterやIndiegogoなどのクラウ
ドファンディングで公開して賛同者や
資金を集めるまで、ものすごいスピード
で実行するそうです。
　現在HAXが力を入れているのは、

ハードウェア開発を加速する

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

安藤 幸央
EXA Corporation

アクセラレータというしくみ

※本記事で紹介しているものは
国内未発表・未発売のものを含んでいます。

連載第216回（2016年12月号）で
紹介したMakeBlockは、
HAX卒の躍進中スタートアップ

HAXのホームページには、2012年から
現在までの支援のすべてが記載されて
いる。支援申し込みもここから行える

http://www.andoh.org/

2 - Software Design

LIFE（生活）、FAB（物作り）、INFRA
（インフラ基盤）、HEALTH（ヘルス
ケア）、ROBOTICS（ロボット）の5分
野です。その中から最近のHAX支援
プロジェクトをいくつかご紹介しましょ
う。

　
　Kniterateは3Dプリンターのよう
な感覚で編み物を自動化するマシン

（pic.1）。単に編み物を出力する
だけでなく、編み物のデータを共有し、
衣服デザインも共有するという展開を
想定している。単純なものであれば1
枚のセーターを3時間程度で出力す
ることができ、好みの柄や素材を自由
に選択できるだけでなく、従来の衣服
の流通や、人それぞれのサイズ問題
といったことが一気に解消される。単
なる製作ツールというだけでなく、新し
いエコシステムを構築しようとしている
ところが特徴。

　WAZERは研磨粒子と水を高水
圧で照射することで切断する、ウォー
タージェットカッター（pic.2）。通常は
大規模な装置が必要であるところを、
小型化したのが特徴。本体サイズは
864×635×534mm。タイル、ガラス、
カーボン、アルミ、ステンレススチール、
チタンなどが切断できる。専用の制御
ソフトウェアも用意されており、平易に
使えるように配慮されている。3,599
ドルから。

　DARMAは、座っているときの血流
や血圧、心拍数、姿勢をズボン越しに
測ることのできるクッション（pic.3）。
時計型のアクティビティトラッカーは
数多く発売されているが、椅子のクッ
ションというのはまた違ったアプロー
チ。運動不足やエコノミー症候群を防

ぐことを想定しているそう。

　dispatch社のCarryというロボット
は宅配業者のように道を進んで荷物
を運搬する自律型ロボット（pic.4）。
約45kgまでの荷物を運ぶことができ
る。車の自動運転というよりも、脇道
をゆっくりと進んで移動する。現在は
大学のキャンパス内での配達を実験
中とのこと。ドローンよりも安い費用で、
確実に配達することが特徴。

　近未来を描いたジョン・スコルジー
のSF小説「ロックイン」では、家庭用
の3Dプリンターで必要なハードウェア
が出力できてしまう未来が描かれてい
ました。現在でもそのような誤解はあ
り、インクジェットプリンターで電子回
路がプリントできる研究などは進んで
いますが、まだまだ完成された家電製
品がそのまま3Dプリントできるほどの

ハードウェア開発を加速する

HAXの息のかかった
ハードウェアスタートアップ

これからの
ハードウェア開発の行方

Kniterate：
ニット編みマシン［FAB分野］
http://www.kniterate.com/

WAZER：卓上に置ける
ウォータージェットカッター

［FAB分野］
http://www.wazer.com/

DARMA：正しい姿勢を
保つためのデジタル
クッション［HEALTH分野］
http://darma.co/

dispatch：宅配ロボット
［ROBOTICS分野］
http://dispatch.ai/

pic.1　Kniterate pic.2　WAZER

pic.3　DARMA pic.4　dispatch

http://www.kniterate.com/
http://www.wazer.com/
http://darma.co/
http://dispatch.ai/

Gadget 1 Gadget 3

Gadget 2 Gadget 4

2 - Software Design Feb. 2017 - 3

https://www.habitaware.com/

Nuraは装着後、ユーザの耳の感度に
合わせ、各周波数ごとの音を最適化して
くれるヘッドフォンです。調整にかかるの
はわずか30秒。一度調整した後はユー
ザ設定が記憶され、次回からはどの人が
ヘッドフォンを装着したのかを2秒で判別
します。インナー型イヤホンと耳が隠れ
るタイプのオーバーヘッド型の両方を併
せ持った形となっており、その人の耳の
特性に合わせた音質に調整されたうえ
で、インナー側では高音域を、オーバーイ
ヤーで全体の周波数の音を再生します。
クラウドファンディングでプリオーダー中
で、一般販売の際は399ドルの予定。

HABITAWAREは、人が知らず知らず
のうちに繰り返している変なクセ、たとえ
ばツメを噛むとか、前髪をいじるとか、指
をくわえるとか、鼻をかくといった腕や手
の特定の動きを検知し、スマートフォン
と連携して記録し、注意をうながしてくれ
るウェアラブルデバイスです。クセの動
作や、生じる時間帯などを記録したうえ
で、身につけたデバイスの震動通知に
よりクセを意識するきっかけを作ること
ができます。149ドルで販売の予定。

PRYNTは、スマートフォンのケースとし
て持ち運べるモバイルプリンターです。
スマートフォンで撮影した写真をその場
でプリントできる利点と、プリントアウトし
た写真をスマートフォンにかざすと、AR

（拡張現実）機能によって、写真が動
いているかのような動画を楽しむことが
できます。印画紙にはZINKフォトペー
パーを用い、PRYNT本体に10枚収納
可能です。1回の充電で約20枚のプリ
ントが可能。重さは225gです。

Trainerbotはスマートフォンで細かにコ
ントロールできる卓球練習用のいわゆ
る投球マシン。卓球ボールの速度、回
転、落ちる場所、角度などが、コントロー
ルでき、不得意な球筋を練習したり、左
右に切り替えながら投球したりと、実戦
さながらの訓練ができます。難易度を
設定したり、ある難易度をクリアできる
か、ライバル同士で競争しても良いそう。
400ドルほどで販売の予定。

Nura HABITAWARE

PRYNT Trainerbot

自動調整ヘッドフォン

スマートフォン用
携帯プリンター

クセ検知デバイス

卓球トレーニングロボット

技術はありません。
　一方、汎用的なハードウェアがさ
まざまな家電に組み込まれることで
スマートフォンと連携し始めたり、コス
トが極限まで安くなったことで、使い
捨てのデバイスや同じ機能を持った
複数のデバイスを使い分けるという
ことも増えてきました。最近日本でも
販売が開始されたAmazon Dash
は、ボタンを押すとある特定の商品を
Amazonに注文するという単機能の
小型デバイスで、商品ごとにボタンが
用意されています。
　HAXでは最近、すでに製品が出来
上がっているものを、よりたくさん大き
く広げるために、HAX BOOSTという
しくみでの支援も行っています。流通
経路を育て、小売組織とのつながりを
強める方法を学び、広く世界に展開
していくのです。アプリケーション販
売が、箱に入ったパッケージを店頭で
購入するものから、ネット上のアプリス
トアで購入するものに変化してきたの
と同様に、ハードウェアもAmazonの
倉庫で在庫を管理し、販売や運送は
Amazonに任せてしまうといったアウト
ソーシングが可能になってきました。こ
ういった設計や組み立て、在庫管理、
販売、配送などさまざまな作業を誰か
に任せることができれば、最初のアイ
デアに注力することができます。アイ
デアがアイデアのまま終わらずに実
現可能な世界がやってきているわけ
です。
　HAXの比喩によれば、ソフトウェア
の開発は「ロックバンド」であり、数人
のスタープレーヤーがいれば人気の
バンドになれるのが特徴です。その一
方、ハードウェアの開発は「オーケスト
ラ」であるとのこと。それは、すべての
人々がそれぞれの役目を全うし、一人
でも調和を乱すとすべてをダメにして
しまうといった比喩です。これからも多
くの人々の協力で、まだ見たことのな
いような、便利ですばらしい製品の出
現が加速（アクセラレート）してほしい
ものです。｢

https://www.facebook.com/
nuraphone/

https://www.pryntcases.com/ http://trainerbot.com/

https://www.facebook.com/nuraphone/
https://www.habitaware.com/
https://www.pryntcases.com/
http://trainerbot.com/

4 - Software Design

メモ化とは

　メモ化（Memoization）は、プログラムを高速
化する技法の1つです。メモ化では、入力に対
応する計算結果を記録しておき、以前と同じ入

力が与えられたなら、記録しておいた計算結果

を出力します。計算を再度実行することなく、
記録しておいた計算結果をそのまま出力するの
で計算時間を節約することができるというわけ
です。
　簡単な例として、n番目のフィボナッチ数Fn

を計算するプログラムを考えてみましょう。入
力はnで、出力はフィボナッチ数Fnです。フィ
ボナッチ数の漸化式は、

F0　＝ 0,

F1　＝ 1,

Fn　＝Fn-1＋Fn-2 　(n＝ 2,3,4,…)

ですから、そのままRubyのプログラムとして
書くとリスト1のようになります。
　リスト1の関数 fib1は正しく動作しますが、
入力nが少し大きくなるだけで、出力を得るま
での時間は非常に長くなります。これは関数
fib1の中で fib1を再帰呼び出ししており、入力
nが大きくなると、呼び出し回数が指数関数的
に増えてしまうからです。
　リスト2に、メモ化を使って高速化した関数
fib2を示します。関数 fib2のほとんどの部分は
fib1と同じです。違うのは、MEMOを使ったメ
モ化の部分だけです。一度でも計算したことが
あるフィボナッチ数FnはMEMO[n]に記録されま

メモ化

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 45

 ▼リスト1　フィボナッチ数を求める関数 fib1
 （メモ化なし）

def fib1(n)
 if n == 0
 0
 elsif n == 1
 1
 else
 fib1(n-1) + fib1(n-2)
 end
end

 ▼リスト2　フィボナッチ数を求める関数 fib2
 （メモ化あり）

MEMO = Hash.new(nil)

def fib2(n)
 if n == 0
 0
 elsif n == 1
 1
 else
 m = MEMO[n]
 if not m
 m = fib2(n-1) + fib2(n-2)
 MEMO[n] = m
 end
 m
 end
end

http://www.hyuki.com/

4 - Software Design Feb. 2017 - 5

す。関数 fib2では、再帰呼び出しで計算をする
前に、過去に計算したことがあるかどうかをま
ず調べます。もしも計算していたらその記録を
出力し、計算していなかったときに限り実際に
計算を実行します。これによって、同じ入力に
対する再計算という無駄を防ぎ、高速化ができ
るのです。
　fib1で何時間もかかるような大きなnの場合
でも、メモ化で高速化した fib2は一瞬で計算を
終えます。
　フィボナッチ数を求める計算は単純な例です
が、メモ化を行えば、計算がどれほど複雑であっ
ても高速化が簡単に実現できます。メモ化では、
計算のアルゴリズムを高速化するわけではなく、
入力に対応する出力をただ記録しておくだけで
済むからです。
　しかし、どんな計算に対してもメモ化が有効
なわけではありません。まず、メモ化では過去
の記録を検索しますから、検索にかかる時間よ
りも計算にかかる時間のほうが長いものでなけ
れば意味がありません。
　また、計算のたびに結果が異なるような計算
はメモ化できません。入力をキーとして記録さ
れた出力を探すわけですから当然ですね。メモ
化を使うには、入力から出力が一意に定まる必
要があるのです。
　さらに、同じ入力が何回も発生するような計
算でなければメモ化で高速にはなりません。過
去の計算結果を記録しておいて再利用するわけ
ですからこれも当然です。メモ化では、計算時
間を節約するために、以前の出力を記録してお
くための空間を消費します。ですから、入力の
バリエーションが多過ぎたり、出力を記録する
ための空間を大量に消費する計算の場合には、
メモ化は使えないでしょう。つまり、メモ化に
は時間と空間のトレードオフがあるということ
です。
　ただし、メモ化のいいところは「実際に必要
になった計算のみを行っている」という点です。
「こういう入力が来るかもしれないから、それ

に備えて前もって計算しておこう」と考えると、
もしかしたら無駄な記憶領域を消費してしまう
かもしれません。その意味では、メモ化は本当
に必要な計算しか行っていないと言えますね。

日常生活とメモ化

　メモ化によるプログラムの高速化は直観的に
もわかりやすく、またシンプルなしくみですか
ら、失敗も少ないでしょう。
　私たちの日常生活でも、メモ化に似た高速化
はよく行われます。たとえば、多くの参考書を
使って時間がかかる調査をしているとしましょ
う。事項を調べるのに手間や時間がかかるとし
たら、調べた結果を自分でまとめておけば便利
です。同じ事項を調べる必要が生じたときには、
自分の作ったまとめを見ればいいからです。こ
れはまさにメモ化ですね。
　顧客からの問い合わせに答えるサポート業
務でも、メモ化に似た活動が行われます。顧
客からの問い合わせとその回答を事例研究と
して共有しておくことで、類似の問い合わせ
が発生したときに短時間で回答することがで
きるからです。
　調査であれ、事例研究であれ、入力と出力の
対応関係についてはよく理解しておく必要があ
ります。私たちの世界は常に変化を続けていま
すから、過去の記録が現在では当てはまらなく
なってしまう危険性があるからです。その意味
では記録のタイムスタンプが重要ですね。
　また、時間と手間を省くために過去の記録を
利用しようとするのはいいのですが、検索にか
かる時間を考慮することは大切です。メモ化が
有効になるのは、検索にかかる時間が短いとき
に限るからです。

◆　◆　◆
　あなたの周りを見回して、時間や手間がかか
る作業が繰り返されていることはないでしょう
か。その作業結果を記録しておくことで、時間
や手間を軽減することはできないでしょうか。
　ぜひ、考えてみてください。｢

45

6 - Software Design

　2017年1月号ではさまざまなファイルや書
類を「フラット」に管理する方法について説明し
ましたが、今回はさまざまな情報をより効果的
に整理し共有できる「Scrapbox」というシステ
ムを紹介します。

　2017年現在における理想的な情報整理法と
はどのようなものでしょうか？　現在のテクノ
ロジ状況をふまえつつ要件を考えてみます。

 ブラウザを使ってネット上で情報を管理する
　ネットやブラウザを使えない環境は現在ほぼ
なくなりましたから、情報整理は当然これらを
活用するべきでしょう。

 一ヵ所で集中管理する
　ネット上の1つの場所にあらゆるデータを保
存してブラウザからアクセス可能にするのが良
いでしょう。

 気軽な入力と編集
　ブラウザ上での入力／編集手法は極力単純に
しておく必要があるでしょう。

Scrapboxの紹介

理想の情報整理
システムとは

 タグを活用する
　先月号でも解説しましたが、個人的な雑多な
データを階層的に管理することは常人にはとて
も難しいので、タグを使って管理するのが良い
と思われます。

 他人との情報共有
　Web上に置いた情報を簡単に共有できると
便利でしょう。

　現在、Web上で情報を整理したり共有するため
のさまざまなシステムが利用されていますが、上
記の要望をすべて満たすものはありませんでした。

　私は、Web上に気軽に情報を書いて簡単に
共有できるScrapboxというシステムを開発し
て利用しています。長年に渡って「Gyazz」とい
う名前のWikiを作成して使っていましたが、
Scrapboxはこれを大幅に改良して前述の要件
をすべて満たすようにしたものです（図1）。
　Scrapboxは次のような特長を持っています。

 ブラウザ上で情報編集／整理
　Scrapboxではあらゆる情報をWeb上に置き、

ブラウザで閲覧や編集を行
います。このためあらゆる
パソコンやスマホなどから

Scrapbox

増井ラボノート

Author 　増井 俊之（ますい としゆき）　慶應義塾大学

エンジニアというものは「楽をするためならどんな苦労も厭
いと

わない注1」ものだと言われていますが、 コ
ロンブスの卵のようなゴキゲンな発明によって頑張って楽できるなら、それに越したことはないでしょ
う。私はコンピュータ上の簡単な工夫で楽をする方法を考えるのが好きで、長年にわたっていろんな
システムを開発してきています。今回の連載では、私がこれまで開発して長年実際に利用しているよ
うな単純かつ便利なシステムをたくさん紹介していきます。

第 16 回　Scrapbox（1）

注1） http://thinkit.co.jp/free/article/0709/19/
 ◀図1　 Scrapbox

（https://scrapbox.io/）

http://thinkit.co.jp/free/article/0709/19/
https://scrapbox.io/

NO.

6 - Software Design Feb. 2017 - 7

Scrapbox（1）

同じデータにアクセスできます。

 グループで利用
　ScrapboxのページにはユニークなURLがつ
いており、個人で利用することも共有して利用
することもできます。

 強力な編集機能
　ScrapboxのページはEmacsのようなテキスト
エディタと同じようにブラウザ上でWYSIWYG

（What You See Is What You Get）的に編集を行
えます。編集されたテキストは自動的に保存され
るので保存ボタンなどを押す必要はありません。

 リアルタイム同時編集
　ScrapboxではGoogle Docsと同じように、
複数ユーザが同時にリアルタイムにWYSI

WYG編集することができます。

 リンクの活用
　Scrapboxではタグを利用して情報管理を行
います。ScrapboxはWikiなので、「増井」とい
うページに「人物」というタグを書くとこれは「人
物」というページへのリンクになりますが、こ
のとき「人物」ページから「増井」ページへのリン
クも同時に作成されるようになっています。こ
のため「増井」のような名前を忘れたとしても「人
物」ページから「増井」ページへのリンクを見つ
けることができます。
　このような「逆リンク」を利用すると、特別なタ
グ検索機能を用意しなくても、タグ的なものをす
べて独立したWikiページとして作成するだけで
タグを用いた検索が利用できることになります。
　また、Scrapboxではリンク先ページからリン
クされているページ（2ホップ先のページ）まで
を関連ページとして表示するようになっている
ので、「Steve Jobs」のページも「人物」ページに
リンクされている場合「増井」のページから「Steve

Jobs」のページを直接参照できます（図2）。

　たとえば「湘南台」のページを表示したときは、
湘南台のラーメン屋のページや私のページは表
示されますがSteve Jobsのページは表示され
ませんし、Steve Jobsのページを表示したとき
は「人物」つながりで私のページやJonathan Ive

のページは表示されますが、慶應大学や湘南台
のページは表示されません。

 代表画像
　リンク先ページを表示するとき、ページに含
まれる画像を表示するようになっているので、
関連ページの視認性がよくなっています。

 その他各種の便利機能
　各種の簡単なタグ記法、プログラムコードを
きれいに表示する機能、簡単な記法による文字
装飾、テキストと同じ大きさで画像を文中に埋
め込むアイコン表示機能など、たくさんの便利
な機能が搭載されています。

　ScrapboxはWeb注2から利用できます。Scrap

boxを長年に渡って利用してきた例を紹介します。

研究室での利用

　私の研究室では数年に渡ってScrapboxを利

Scrapbox利用例

 ▼図2　 リンクの構造

注2） http://scrapbox.io/

https://scrapbox.io/

増井ラボノート

8 - Software Design

用しており、2016年末現在、約8,000ページが
作成されています。研究室に所属する学生の興
味はいろいろであり、論文や研究トピックや開
発Tipsのような情報に加え、ラーメン情報も
アニメ情報も部品情報もイベント情報もすべて
同じところに置いてあります。雑多な情報が何
千ページもあるとたいへんなことになりそうで
すが、とくに分類を行わなくても関連ページや
カテゴリをページとして関連付けておくだけで、
これらの情報が適切に分類管理されるのが便利
です。
　研究室のScrapboxのトップページは図3の
ようになっています。研究関連情報からアニメ
情報、ラーメン情報までかなり雑多な情報が並
んでいることがわかります。
　ここで「AD620」という部品に関するページを
選んで表示すると、その部品の詳しい情報が表
示され、似た部品など関連研究のページが表示
されます（図4）。この部品ページには「ストレン
ゲージ」「オペアンプ」というページへのリンク
が定義されているので、同じページへのリンク
を持つ「キッチンスケール」や「LMC660」が関連
ページとして表示されているというわけです。
　一方、藤沢のラーメン屋のページを選んで表
示すると、藤沢やラーメン屋のページがたくさ
ん関連ページとして表示されます（図5）。部品
情報もラーメン屋情報も同じ場所に書いてある
のですが、リンク関係がまったく違っているの
で別のクラスタとしてうまく管理できています。

UIPedia

　前述の例は研究室内の人間だけが参照できる
ページでしたが、ユーザーインターフェースに
関連する論文やシステムなどをScrapboxで公

 ▼図3　 研究室のトップページ ▼図4　 1つの部品ページを開くと関連する情報がす
べて表示される

NO.

8 - Software Design Feb. 2017 - 9

Scrapbox（1）

開しています（図6）。UIPediaページは誰でも
閲覧できますし、参加も可能になっています注3。
　文献情報を管理するさまざまなシステムが利
用されていますが、文献データベースでは入力
できる情報の属性が限られているのが普通です。
Scrapboxを使うと、タイトルや著者名のよう
な一般的な書誌情報だけでなく
著者の写真や弟子筋情報、配偶
者情報を記述したり、普通の文
献整理システムではできないこ
とができるので味のある情報
ページにできます。

家族情報

　私は個人的なメモや予定表、
TODOなどをすべてScrapbox

で管理しており、現在6,000ペー
ジほどが作成されています。ま
た家族間で共有したい情報も
Scrapboxで管理しています。親
戚の連絡先、銀行口座情報、各
種の契約情報、予定表など、家
族間で共有したい情報は意外と
たくさんあるものです。こういっ
た情報は住所録やスケジュール
帳のようなアプリケーションで
管理している人が多いと思いま
すが、家族関連情報はすべて1

つの場所に置いておけば何かと
便利です。私の場合、家紋の情報、
家系図、引っ越し履歴など家族
に関連するさまざまな情報を書
いていたら簡単に100ページを
越えてしまいました。
　私はこの考えに基づくシステ
ムを10年以上利用しており、
Scrapboxはその最新版です。

多くの機能を盛りこんだために現在のScrapbox

の仕様はある程度は大きなものとなっていますが、
多くのアイデアは「コロンブスの卵」的であり、
仕様のシンプルさは保てています。次号では、
Scrapboxのさらに詳しい利用法および実装につ
いて解説します。ﾟ

 ▼図5　 藤沢のラーメン屋のページ
を開いたところ

 ▼図6　 入力インターフェースの研
究ページ

注3） https://scrapbox.io/UIPedia

https://scrapbox.io/UIPedia

宮原徹の

10 - Software Design

2016年もたくさん飛び回
りました

　早いもので、この連載も第12回。

1年経ってしまいました。2016年

のオープンソースカンファレンスも

OSC広島で無事に終了し、全14回

の開催をすべて終了しました。今年

も北は北海道から南は沖縄まで、全

国各地を飛び回る1年でした。

　今年は延べ参加者数が約7,000名

と、前年に比べて若干参加者が減っ

てしまいましたが、一方で各開催で

学生のみなさんに、積極的に参加、

交流してもらう機会を作ったことで、

内容的には充実していたように感じ

ます。とくに今回レポートする福岡

では、学生の活躍が目立ちました。

OSC福岡は
10回目の開催

　OSC福岡は2007年12月に初開

催後、今年が10回目の開催でした。

過去には何度か会場に大学や専門学

校の校舎を使わせていただいたり、

学校の先生が実行委員に入ってくれ

たりと、学生のみなさんが参加しや

すい土壌です。今回も実行委員長を

福岡大学の学生である前田恵里さん

（写真1中央）が務めてくれました。

　直前のOSC東京秋にもスタッフ

として参加してもらい、運営に慣れ

てもらったおかげで、しっかりと大

任を果たしてくれました。今後、そ

のほかの地域で開催するOSCでも、

学生さんにリーダーとして頑張って

もらいたいですね。

　もちろん、ほかにも多くの学生さ

んがスタッフや講師を務めてくれま

した。たとえば、私も趣味で遊んで

いるRaspberry Pi を使ったオー

ディオ再生で出展してくれた松本壮

史さんは佐賀県在住の大学生ですが、

展示会場にたくさんのオーディオ機

器を持ち込んでデモ展示を行い（写
真2）、セミナーにもたくさんの参加

者を集めていました。ただ、セミ

ナーが30分で終わってしまったた

め、私も飛び入りでラズパイオー

ディオのネタを話させてもらいまし

た（ちょっと狙ってたのは秘密です）。

　こんな若者を、来年のOSCでも

たくさん発掘していきたいですね。

サプライズで第5回OSC
アワード表彰式

　閉会式では、1回目の開催から縁

の下の力持ちとして貢献していただ

いている坂本好夫さん（写真1右）に

OSCアワードを贈呈しました。サプ

ライズ受賞ということで最後まで

黙っていたのですが、何も言わなく

ても第1回のときに使ったスタッフ

Tシャツ（黄色）を着てきてくれてい

ました。偶然にも、私も試作した黄

色いスタッフTシャツ（現行デザイ

2016年のOSCも無事に終了第12回

 ▼写真1　 実行委員長の前田さん、OSCアワード受賞の坂
本さんと一緒に記念撮影

 ▼写真2　 松本さんの持ち込んだラズパイオーディオの
デモ機材。左上の銀色の筐体にRaspberry
Piが組み込まれています

宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

10 - Software Design Feb. 2017 - 11

R e p o r t

2016年のOSCも無事に終了第12回

ン）を着ていたので、新旧黄色Tシャ

ツでそろい踏み。表彰盾に刻んだお

名前が間違えているというアクシデ

ントがありつつも、和やかに表彰式

を執り行わせていただきました。

博多といえば
中州の屋台ですよね

　さて、恒例のお酒の話。OSC福岡

では前日準備が終わったあと、前夜

祭をするのが恒例ですが、さらに2

次会では中州の屋台に繰り出しまし

た。屋台はたくさん並んでいますが、

今回は以前お邪魔したことがある「紀

文」さんに入りました。ほかの屋台

はどちらかというと観光客相手とい

う感じですが、こちらは正当派の屋

台です。美味しい焼き魚とお酒をい

ただき、翌日の本番に向けて鋭気を

養ったのでした。透明なビニール

シートで囲った屋台が多い中、格子

戸で囲われた屋台ですので見つけや

すいです。もし中州の屋台で行くと

ころに迷ったら探してみてください。

ただ、あまりお店にそぐわない雰囲

気の客だと思われると、店主の親父

さんに追い返されてしまうこともあ

るので注意してくださいね。親父さ

ん曰く、お客さんが楽しめる雰囲気

を大事にしているのだそうです。ガ

ンコ親父というわけではありません

ので、普通に行けば大丈夫です。

福岡の懇親会も
持ち込みのお酒だらけ

　今回のOSC福岡の懇親会は、展

示会場を片付けてそのまま立食形式

で開催。ビールなども用意しました

が、やはりメインは各自持ち寄った

お酒の飲み比べです。九州のお酒と

いうとやはり焼酎ですが、鹿児島か

らの参加者の方が東京ではプレミア

ムな焼酎である「伊佐美」を持ってき

てくれたり、佐賀大学農学部で作ら

れている大学限定酒や、同じく佐賀

の「鍋島」など、美味しいお酒がたく

さん集まりました。

　OSC広島のレポートもしようと

思ったのですが、盛りだくさん過ぎ

たので、次回は広島、そして香川と

移動して学生さんたちと交流したお

話をしたいと思います。s

 ▼写真3　 今回も登場、日本MySQLユーザ会の
坂井 恵氏（右）も屋台まで付き合ってく
れました

▶写真4 懇親会後、みんなで記念撮影。美味しいお酒を飲み
過ぎて、みんなおかしくなっています

いいちこ日田蒸留所で記念撮影。こんなに巨大なボ
トルだったら、簡単には飲み終わらなさそうです

焼酎工場も見学してきました

　開催翌日の日曜日に代表的な焼酎である「いいちこ」
の日田蒸留所を見学してきました。偶然にも紅葉祭を開
催しており、アンケートに答えて試飲用ミニボトルをゲッ
ト。さらに試飲コーナーでさまざまな焼酎を飲んだ後、
自分の好みのいいちこが作れる原酒セットを購入。焼酎
を蒸留するときの圧力を、常圧（とくに圧力を変えない）
にしたり、減圧（圧力を下げる）したりすることで味が変
わるそうです。それらの原酒をブレンドすることでいろい
ろな味の銘柄が作られているとか。年末年始の休みの
間、じっくりと楽しもうと思います。

12 - Software Design

ET2016

　「Embedded Technology」という展示会をご存
じでしょうか。毎年11月くらいに、みなとみら
いにあるパシフィコ横浜で開催されている組み
込み技術に関する展示会です。昨年も11月16

日から18日にかけてET2016が開催され、たい
へん盛況でした。ここ数年間、筆者は一般来場
者としてETに参加してきました。しかし今回
はARMブース（写真1）で「ARMを触ってみよ
う」という体験コーナー（写真2）の手伝いと、同
ブースでプレゼンを行う機会（写真3）をもらっ
たので、出展者タグでの参加になりました。

IARシステムズ

　ところで、IARシステムズ注1という会社をみ
なさんご存じでしょうか。1983年にスウェーデ
ンで創業した会社で、「世界初の組み込みC言語

注1） https://www.iar.com/jp/

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

CとC++第
20
回

コンパイラメーカー」ということです。Embedded

Workbenchという開発環境を販売していて、
ARM用のC/C++コンパイラのほかにも、各社
のマイコン用のコンパイラを提供しています。
ちなみに、mbed OS 5からmbed enabledの認定
を得るためには、このIARシステムズのコンパ
イラにも対応することが要件になりました注2。
　このIARシステムズもET2016にブースを出
していました。スウェーデンの会社ということ
で、スウェーデンコーヒー（写真4）がブースで
振る舞われていて、筆者はとても気に入って自
宅用にも買おうかなと思ったくらいです。
　それはさておき、このブースでちょっとおも
しろいクイズがあったので紹介したいと思いま
す。出題されたC言語のコードの出力結果を解
答用紙に記すというものでした。
　リスト1をご覧になって回答してみてくださ
い。インチキプログラマであるところの筆者は、

注2） https://www.mbed.com/en/about-mbed/mbed-
enabled/mbed-enabled-program-requirements/

ET2016

IARシステムズ

 ▼写真1　ET2016でのARMブース ▼写真2　ブース内の「ARMを触ってみよう」コーナー

https://www.iar.com/jp/
https://www.mbed.com/en/about-mbed/mbed-enabled/mbed-enabled-program-requirements/

12 - Software Design Feb. 2017 - 13

CとC++ 第
20
回

演算子の優先順位を完全に覚えていません。C

言語のコードは、コンパイラに食わせて処理す
るのが正しいだろうということで、手元のCコ
ンパイラが入っているマシンとmbedのオンライ

ンコンパイラで処理をしてみました。
　まずリスト1を、筆者の手元のMacBookで入
力して test.cとして保存、gccでコンパイルし、
実行してみました（図1）。C言語は親切ですね。
ちゃんと演算子の優先順位を教えてくれまし
た注3。
　手元のマシンにCコンパイラが入っていない
という人向けのソリューションが、mbedのオン
ラインコンパイラです。出題のプログラムでイ
ンクルードされているヘッダファイルをmbed

2.0のものに書き換え（リスト2）、オンラインコ
ンパイラでコンパイルをしてみました。この内
容であれば、ほぼすべてのmbed対応ボードを
ターゲットとして使うことができます。
　オンラインコンパイラでビルドし、できあがっ
たバイナリを手元にある適当なmbedで実行して

注3） ちなみに演算子の優先順位は*＞+＞<<です。

 ▼写真3　ARMブースでプレゼンを行う筆者 ▼写真4　スウェーデンコーヒー

 ▼リスト1　クイズ1

Q1 printfで表示されるresultの答えはいくつで
　 しょうか

#include "stdio.h"
int main(void)
{
 unsigned int a = 1;
 unsigned int b = 1;
 unsigned int c = 2;
 unsigned int d = 2;

 unsigned int result = a << b * c + d;

 printf ("result: %d¥n", result);

 return 0;
}

 ▼図1　クイズ1をgccでコンパイルし、実行してみる

yoshi$ gcc test.c
test.c:9:38: warning: operator '<<' has lower precedence than '+'; '+' will be evaluated first
 [-Wshift-op-parentheses]
 unsigned int result = a << b * c + d;
 ~~ ~~~~~~^~~
test.c:9:38: note: place parentheses around the '+' expression to silence this warning
 unsigned int result = a << b * c + d;
 ^
 ()
1 warning generated.
yoshi$./a.out
result:16

14 - Software Design

みます。mbedを接続したパソコンでシリアル
ターミナルを開き、mbedのリセットボタンを押
すとバイナリが実行され、ターミナルに実行結
果が出力されます（図2）。
　クイズ2はリスト3のようなプログラムです。
このプログラムもクイズ1と同様に、筆者の手
元のMacBookで入力して test2.cとして保存、コ
ンパイルと実行をしてみました。

yoshi$ gcc test2.c
yoshi$./a.out
s1+s2=50

　次に、先ほどのようにヘッダファイルをmbed

2.0のものに書き換え（リスト4）、オンラインコ
ンパイラで実行してみましょう。
　オンラインコンパイラでビルドしようとする
と、図3のようなエラーとワーニングが出ます。
　怒られたので、7行目をコメントアウトし、12

行目と13行目を次のように書き換えてキャスト ▼リスト3　クイズ2

 ▼リスト4　クイズ2のヘッダをmbed 2.0用に書き換えたQ2 printfで表示されるs1+s2の答えはいくつで
 しょうか？

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int s1,s2;
 char *p1, *p2;

 s1 = sizeof('z') * 10;
 s2 = sizeof(char) * 10;

 p1 = malloc(s1);
 p2 = malloc(s2);

 printf("s1+s2= %d¥n", s1+s2);

 return 0;
}

#include <mbed.h>
// stdlib.hはmbed.hでincludeされています。
Serial pc(USBTX, USBRX);

int main()
{
 int s1,s2;
 char *p1, *p2;　// 7行目

 s1 = sizeof('z') * 10;
 s2 = sizeof(char) * 10;

 p1 = malloc(s1);　// 12行目
 p2 = malloc(s2);　// 13行目

 pc.printf("s1+s2= %d¥n", s1+s2);

 return 0;
}

 ▼図2　クイズ1をオンラインコンパイラで実行してみた ▼リスト2　 リスト1のヘッダをmbed 2.0用に書き換
えた

#include "mbed.h"
Serial pc(USBTX, USBRX);
int main(void)
{
 unsigned int a = 1;
 unsigned int b = 1;
 unsigned int c = 2;
 unsigned int d = 2;

 unsigned int result = a << b * c + d;

 pc.printf ("result: %d¥n", result);

 return 0;
}

14 - Software Design Feb. 2017 - 15

CとC++ 第
20
回

してみます（ところで、p1とp2は出力に使って
いないのに、なぜ計算しているのでしょうね
……）。

 char *p1 = (char *) malloc(s1);
 char *p2 = (char *) malloc(s2);

　無事、コンパイルが通るようになったので、
実行してみました（図4）。
　あれ、Mac上でgccでコンパイルしたものと、
mbedのオンラインでコンパイルしたものとで結
果が違っちゃいましたね。
　いくらなんでもこういうことが起きると困る
ので、原因を探ってみることにします。
　printf()の行を書き換えて、s1とs2がそれ
ぞれどうなっているのか表示してみます。C言
語でコンパイルするとs1が40でs2が10、オン
ラインでコンパイルするとs1が10でs2が10で
した。つまり、s1、「sizeof('z')」の計算結果
が異なっているということがわかります。
　ここでなぜ「sizeof('z')」の結果が異なるの

かを考えてみたところ、あることに気づきまし
た。Cでは文字定数'z'がintとして扱われる
ので4バイト、C++ではcharとして扱われるの
で1バイトです注4。
　そういえば、C言語でコンパイルしたときの
ソースのファイル名は test2.cで、オンラインコ
ンパイラでコンパイルしたときのファイル名は
main.cppでした。
　試しに、C言語でコンパイルするソースのファ
イル名（拡張子）をcppにしてみます。

yoshi$ mv test2.c test2.cpp
yoshi$ gcc test2.cpp
yoshi$./a.out
s1+s2=20

　やはり、先ほど気づいたようにC言語とC++

言語で'z'が、それぞれどういう型として扱わ
れるかということが原因のようです。

まとめ

　みなさんご存じでしょうが、C言語の仕様で
は、intやlongなどの整数型はサイズが定まっ
ていません。このため、C99やC++11で用意さ
れているuint32_tやint8_tなどの環境に依存
しない型を使ったほうがよいでしょう。また、
クイズ2のように、C言語とC++言語で型が異
なるような設問を出すのであれば、C言語なの
かC++言語なのかを明らかにしたほうがよいで
しょう。
　期せずして、C言語とC++言語について、い
ろいろ考えさせられました。なかなかおもしろ
いきっかけでした。s

注4） 根拠については、http://www.bohyoh.com/CandCPP/
FAQ/FAQ00004.htmlを参照してください。

まとめ

 ▼図3　コンパイルエラーとワーニング

Error: A value of type "void *" cannot be assigned to an entity of type "char *" in "main.ｭ
cpp", Line: 12, Col: 9
Error: A value of type "void *" cannot be assigned to an entity of type "char *" in "main.ｭ
cpp", Line: 13, Col: 9
Warning: Variable "p1" was set but never used in "main.cpp", Line: 7, Col: 12
Warning: Variable "p2" was set but never used in "main.cpp", Line: 7, Col: 17

 ▼図4　クイズ2をオンラインコンパイラで実行してみた

http://www.bohyoh.com/CandCPP/FAQ/FAQ00004.html

16 - Software Design

ご近所で見かける猫たちの一瞬をとら
えた、猫好きの猫好きによる猫好きの
ための写真集です。毛づくろいの途中
の舌や、大あくびしているときの舌、
まれにしまい忘れの舌など、見られた
らラッキーな“ねこ舌”を集めてみまし
た。

高速無線LANルータ「WNPR2600G」
「新しい技術トレンドや使い方を安心の日本品質で提供し、根付
かせていく」がコンセプトの新ブランド「PLANT」。その第1弾製
品、IEEE802.11ac規格の高速無線LANルータです。規格値は
1,733Mbps、全ポートがギガビットに対応しています。複数の
子機に対して同時に電波を出せる技術「MU-MIMO」に対応し、各
端末との通信速度を落とさず、安定した通信が可能になります。

提供元 	アイ・オー・データ機器　http://www.iodata.jp

ディレクターズ
10周年記念バッグ
ディレクターズが2017年の創業10周年を記念して、女性向け
PCバッグを作りました。本皮を使用した高級感のあるつくりで、
中がふかふかの素材で作られたポケットには13インチのPCが
すっぽり入ります。今月は『ベージュ』をプレゼント。
提供元 	ディレクターズ　http://www.directorz.ad.jp

提供元 	技術評論社
	 http://gihyo.jp

1名

1名

2名

ご近所猫の写真集

ねこ舌 ヒロジカズオ 著

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2017年2月16日です。プレゼントの
発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

データ分析の初心者を対象に、データ分析
技法の実際を解説した1冊。ソフトバン
ク・テクノロジーのデータサイエンティス
トが、実際に手掛けた事例を失敗点とその
克服法とともに紹介していきます。

提供元 	SBクリエイティブ
	 http://www.sbcr.jp

データサイエンティストの秘密ノート
高橋 威知郎、白石 卓也、清水 景絵 著

2名

PythonによるクローリングやAPIを活用
したデータ収集、HTMLやXMLの解析か
ら、データ分析や機械学習の処理まで解
説。強力なライブラリとフレームワークを
活用して、高効率に開発しましょう。

提供元 	技術評論社
	 http://gihyo.jp

Pythonクローリング&スクレイピング
加藤 耕太 著

2名

MySQL 5.7の運用・管理の現場で初心者
が押さえておくべき内容にしぼって解説し
ています。「1レッスン45分」のセミナー
感覚で学習しやすく、章末の演習問題を解
くことで要点が理解できます。

提供元 	インプレス
	 https://www.impress.co.jp

やさしく学べるMySQL運用・管理入門
山崎 由章、梶山 隆輔 著

2名

読者プレゼント
のお知らせ

『はじめよう！要件定義』の続刊です。業務
フローの見える化・しくみ化を行う「プロ
セス設計」の手法を学び、日々の仕事から
業務改革、IT化プロジェクトの問題を解決
しましょう。

提供元 	技術評論社
	 http://gihyo.jp

はじめよう! プロセス設計
羽生 章洋 著

2名

http://gihyo.jp
http://gihyo.jp
http://gihyo.jp
http://www.directorz.ad.jp/
http://www.iodata.jp/
http://www.sbcr.jp/
https://www.impress.co.jp/
http://sd.gihyo.jp/

第 章7

Dockerの最新動向を知る� ������������������������� P.63
runC、Swarmモード、Dockerストア…… Author 前佛 雅人

用途ごとに分類第 章4
Dockerイメージとコンテナを活用するコマンドの理解� ����� P.38

 Author 前佛 雅人

第 章2

マネージドサービスでDockerを活用� ��������������� P.24
すぐに使える！ Author 阿佐 志保、山田 祥寛

第 章5

導入事例で見えてくるDockerの使いどころ� ��������� P.47
現場は何に悩み、何を解決したのか Author 川添 昌俊、矢吹 遼介

第 章6
Linux Containerの歴史としくみ� ������������������ P.55

しっかりと基礎を固める Author 花高 信哉

第 章3

アプリ開発のストーリーからメリットを知る� ����������� P.30
使ってみよう！ Author 阿佐 志保、山田 祥寛

第 章1

いっきに押さえるDockerの基礎からKubernetesまで� ��� P.18
プログラマのためのコンテナインフラ環境とは？ Author 中井 悦司

第1特集

　環境を特定用途ごとに隔離できるコンテナ技術を利用して、開発を効率化する現場が増えています。
Dockerの登場がその流れを加速していますが、Dockerで構築するものはアプリケーションを動かす基盤側
のため、自分とは縁遠い話だと感じていたプログラマの方もいらっしゃるのではないでしょうか。
　しかし、プログラマ自身がDockerの恩恵を理解していなければ、自分の仕事を効率化できるチャンスを
みすみす逃してしまいます。もしいままでDockerに手をつけていないなら、なにはともあれ自分の手元で動
かして試してみましょう。そこがスタートラインです。コンテナ技術を適用しやすいところ／しにくいところは導
入事例を参考にしてみてください。

なぜプログラマの役に立つのか
いまはじめるDocker

〜コンテナ技術を身につける〜

18 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

第 章1

いっきに押さえる
Dockerの基礎からKubernetesまで

プログラマのためのコンテナインフラ環境とは？

 Author
中井 悦司（なかい えつじ）
グーグル㈱
 Twitter
@enakai00

インターネット上のアプリケーション開発で、コンテナを使用することは決して珍しいことではなくなりました。今
は、インフラエンジニアの手を離れ、アプリケーションを実際に開発し動かす段階に入っています。本章では、そ
んな状況を鑑み、プログラマ目線でのDockerを解説します。

コンテナSIGの誕生

　皆さんは、「コンテナSIG」というコミュニティ
をご存じでしょうか？　2016年10月に開催さ
れたイベント「Container SIG Meet-up 2016

Fall」の開催レポートでは、「Dockerを中心とす
るコンテナ技術・実装・業界動向などを総合的
に共有するために設立されたコミュニティ」との
説明があります注1（図1）。Dockerそのもののコ
ミュニティではなく、Dockerをとりまく情報の
共有が目的というわけですが、これにはいった
いどのような意味があるのでしょうか？
　実はここには、「Dockerの利用方法の変化」が
隠されています。Dockerが登場した当初は、プ
ログラマが自分専用の開発・テスト環境を用意
するためにDockerを利用するシーンが多かった
ように思われます。現代的なサーバアプリケー
ションの実行環境には、さまざまなライブラリ
やフレームワーク、データベースなどが必要と
なりますので、事前にこれらが適切に用意され
た環境をセットアップすることが、プログラム
の開発をスタートする前提となります。一般に、
このような前提環境を用意するのは、「インフラ
エンジニア」の役割でした。大規模なアプリケー

ション開発の世界では、専任のインフラエンジ
ニアが開発環境、あるいは、テスト環境の構築
やメンテナンスを担当することになります。金
融機関のシステム統合プロジェクトの現場をご
存じの方であれば、どのような世界か容易に想
像がつくことでしょう。
　しかしながら、小さなチームで開発するアプ
リケーションの場合、専任のインフラエンジニ
アを確保する、あるいは、開発・テスト用のサー
バ環境を永続的に保持することが難しい場合も
あります。このような場合、Dockerを用いて、
必要なライブラリなどがインストールされた環
境をコンテナイメージに固めておけば、間違い
なく便利です。
　Dockerが利用できる環境であれば、手元の
MacBook、机の下で動いているワークステー
ション、あるいは、パブリッククラウド上の仮

注1） 「Container SIG Meet-up 2016 Fall」レ ポ ー ト（http://
knowledge.sakura.ad.jp/event-seminar/6192/）

 ▼図1　コンテナSIGのロゴマーク

http://knowledge.sakura.ad.jp/event-seminar/6192/

Feb. 2017 - 1918 - Software Design

第 章1 いっきに押さえるDockerの基礎からKubernetesまで
プログラマのためのコンテナインフラ環境とは？

作業を行うと、すべての環境を同一に保つこと
はもちろん、それぞれの環境の差異を把握する
ことすら困難になっていきます。そこで、開発
環境だけではなく、テスト環境、サービス環境
を含めた、すべての環境で同じコンテナイメー
ジを利用して、アプリケーション実行環境の差
異を完全になくしてしまおうというわけです（図
3）。
　従来、インフラエンジニアは、必要なサーバ
を用意してOSを導入したあと、アプリケーショ
ンの実行に必要なライブラリ、データベースな
どのインストールを進めていくのが定番です。
サービス環境においては、アプリケーション開
発者が用意した手順書を見ながら、完成したア
プリケーションを手作業でインストールするこ
ともよくあります。このような手作業もまた、
環境ごとの差異が生じる大きな要因となりえま
す。そこで、OS導入以降の作業をコンテナイ

想マシンなど、あらゆる場所で同一の開発環境
を即座に再現することができます（図2）。チー
ムメンバでコンテナイメージを共有することで、
誰もが間違いなく同じ環境で、迅速に開発作業
をスタートできるというわけです。

サービス環境への
利用の広がり

　そのあと、開発・テスト環境を超えて、実サー
ビス環境でのコンテナの利用を検討する企業が
増えてきました。これまでは、開発環境、テス
ト環境、そして、実サービス環境のインフラは、
それぞれ個別に構築されていました。そのため、
これらの環境が違うことに起因する問題が発生
することがあります。
　アプリケーション開発の現場によっては、こ
の手の問題は、日常茶飯事という話を聞くこと
もあります。開発者の手元にある開発用PCで
は実行できるコードが、テスト環境ではなぜか
テストに失敗する。テストに成功したはずのア
プリケーションが、サービス環境では原因不明
のエラーで停止する。この手のエラーの原因を
調べるには、アプリケーションそのものだけで
はなく、OS、ライブラリ、データベースなど、
あらゆる要因を探る必要があります。
　とりわけ、アプリケーションをサービス環境
にリリースしたあとに、OSやライブラリのバー
ジョンアップが必要になった場合に、開発・テ
スト・サービス環境で個別のバージョンアップ

 ▼図2　コンテナイメージ化した開発環境

コンテナイメー
ジで開発環境を
共有

クラウドの上の仮想マシン

ノートPC
ワークステーション

 ▼図3　コンテナイメージで開発・テスト・サービス環境を統一

開発環境 テスト環境 サービス環境

データベース データベース データベースライブラリ ライブラリ ライブラリ

アプリケーション
バイナリ

アプリケーション
バイナリ

アプリケーション
バイナリ

アプリケー
ション開発

アプリケー
ションテスト サービス提供

20 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

メージのデプロイに置き換えてしまいます。ア
プリケーションの実行に必要な環境が、すべて
コンテナイメージとして用意されていれば、
dockerコマンドでコンテナイメージをデプロイ
するだけで作業完了です。
　アプリケーションをコンテナ化した場合、ロ
グの収集やアプリケーションの監視方法など、
従来と運用手順が変わることを心配する人もい
るようですが、これは、それほど大きな問題で
はありません。「1台のサーバ（もしくは、仮想
マシン）に1つのアプリケーション（すなわち、1

つのコンテナ）」という構成を変更しなければ、
基本的には、従来と同じ運用方法を適用するこ
とができます注2。

コンテナイメージは
誰が作るもの？

　コンテナイメージを用いたサービス環境を実
現した場合、アプリケーション導入済みのコン
テナイメージを作成するのは誰の役割になるの
でしょうか？　理想を言うならば、アプリケー
ション開発者、すなわち、プログラマ自身とい
うことになります。もともと、プログラマが自
分で必要な環境を用意できるという手軽さが、
Dockerが人気を集めるようになった理由です。
従来のサーバ環境のように、「インストール担当
者」が手順書を読みながらコンテナイメージを作
成するのでは本末転倒でしょう。アプリケーショ
ン開発の世界では、継続的インテグレーション
（CI：Continuous Integration）のように、アプリ
ケーションのビルドとテストを自動化するしく
みが発展していますので、CIの延長として、コ
ンテナイメージの作成を自動化することもそれ
ほど難しくはないはずです。
　――というような話をしていると、「おっと。
これはまた、インフラエンジニアは仕事がなく
なる系の話か？！」と考える読者もいるかもしれ

ません。この点については、最後に改めて振り
返ることにします。

継続的デリバリと
マイクロサービス

　ここまで、「プログラマが必要な環境を自分で
用意できる」「開発、テスト、サービス環境の差
異を取り除く」という2つの観点で、Dockerが
役に立つ理由を説明してきました。そして、近
年、Dockerが注目を集めるもうひとつの理由が
「継続的デリバリ（CD：Continuous Delivery）」
の実現です。
　先ほど触れたCIの活用が広がる理由の1つは、
開発期間の短縮です。従来のウォーターフォー
ル型の開発では、要件定義からアプリケーショ
ンの完成までに長い期間がかかるため、アプリ
ケーションが完成した時点では、すでにその機
能は時代遅れになっているということもありえ
ます。そこで、すべての機能を一度に実装する
のではなく、自動化を利用して開発とテストの
サイクルをスピードアップしながら、機能の追
加・拡張を段階的に実施していきます（図4）。
　ただし、この際、せっかく機能の追加・拡張
を行っても、即座にサービス環境にデプロイで
きなければ意味がありません。アプリケーショ
ンの開発・テストをCIで自動化すると同時に、
完成したアプリケーションのサービス環境への
展開を自動化して、サービス環境における機能
の追加と拡張を継続的に実施しようというのが、
「継続的デリバリ」の考え方になります。
　このとき、完成したアプリケーションをコン
テナイメージに固めておけば、「サービス環境へ
の展開を容易に自動化できるのでは？！」と期待
が膨らみます。ただし、この点は、単純にDocker

だけで解決できる問題ではありません。サービ
ス環境のアプリケーションを頻繁に更新するに
は、サービスの停止時間をできるだけ短くする、
あるいは、想定外の問題が発生した際にすみや
かに元の状態に戻すなどのしくみづくりが必要
となります。ここで登場するのが、Kubernetes

注2） アプリケーションをコンテナ化した際の運用設計について
は、次のWeb記事が参考になります。「Dockerによるコ
ンテナ化アプリケーションの運用設計ガイド」（http://jp-
redhat.com/openeye_online/column/nakai/3077/）

http://jp-redhat.com/openeye_online/column/nakai/3077/

Feb. 2017 - 2120 - Software Design

第 章1 いっきに押さえるDockerの基礎からKubernetesまで
プログラマのためのコンテナインフラ環境とは？

ションを実施しました。デモンストレーション
の手順を筆者のブログで公開しているので、興
味のある方は、実際に試してみると良いでしょ
う注3。ここでは、このアプリケーションの構成
を理解する前提となる、Kubernetesのしくみに
ついて解説を行います。ポイントとなるしくみ
は、「Deployment」と「Service」の2つです。
　まず、「Deployment」は、ある特定の機能を提
供するコンテナをどのような構成でデプロイす
るかを指定するしくみです。Kubernetesでは、
図5のように、複数のノード（コンテナホスト）
を束ねて、1つのクラスタ、すなわち、巨大な
リソースプールとして管理します。Kubernetes

などのオーケストレーションツールが実現する
コンテナインフラ環境、そして、「マイクロサー
ビスアーキテクチャ」の考え方になります。
　マイクロサービスアーキテクチャについて簡
単に説明すると、アプリケーションを機能単位
に分割して、それぞれを個別のコンテナで起動
する手法になります。アプリケーションを機能
拡張する際は、該当部分のコンテナのみを更新
すれば良いので、変更の影響範囲を局所化して、
事前の機能テストや問題発生時の切り戻しを容
易にできます。すぐ後で説明するように、
Kubernetesの機能を利用すれば、同一機能のコ
ンテナを複数起動してスケールアウトしたり、
ブルー・グリーンデプロイメントによって、サー
ビスを停止せずに機能をアップデートすること
も可能になります。
　――と言っても、マイクロサービスアーキテ
クチャがどのようなものか、すぐにはイメージ
がわかないかもしれません。次節からは、具体
的なアプリケーションの例を用いて、マイクロ
サービスの考え方を紹介したいと思います。

Kubernetesが
提供するしくみ

　実は、冒頭で紹介したコンテナSIGのイベン
トには筆者も登壇しており、Kubernetesを利用
したサンプルアプリケーションのデモンストレー

注3） 「Google Container Engineで五目並べアプリケーション
のAPIサーバを作るデモ」（http://enakai00.hatenablog.
com/entry/2016/08/10/152334）

 ▼図5　Kubernetesによるコンテナクラスタ管理

設定ファイル

ノード ノード ノード

マスタ

コンテナ
デプロイ

Deployment

Service

…

 ▼図4　継続的デリバリによるアプリケーションの機能拡張

テ
ス
ト

設
計

実
装

要
件
定
義

開発期間

バージョン1.0
デプロイ

テ
ス
ト

設
計

実
装

要
件
定
義

開発期間

バージョン2.0
デプロイ

テ
ス
ト

設
計

実
装

要
件
定
義

開発期間

バージョン3.0
デプロイ

サービス提供

こんな機能
欲しい

そんな機能
欲しい

あんな機能
欲しい

http://enakai00.hatenablog.com/entry/2016/08/10/152334

22 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

のマスタにDeploymentの設定ファイルを与える
と、リソースの空いているノードを見つけて、
自動的にコンテナのデプロイを行います。この
際、コンテナ数を指定することで、同一の機能
を提供する複数のコンテナを起動できます。何
らかの障害でコンテナ、もしくは、ノードが停
止した際は、健全な状態のノード上で、自動的
にコンテナを再起動してくれます。つまり、ノー
ド障害に対する高可用性クラスタの機能が、最
初から組み込まれているわけです。
　次に、「Service」は、コンテナに対するネット
ワークを構成するしくみです。前述のように、
同じ機能を提供するコンテナが複数起動するの
で、代表IPアドレスを用意して、アクセスを振
り分けるロードバランサの機能が必要になりま
す。Serviceの設定ファイルでは、どのコンテ
ナのどのポートに対して負荷分散するかを指定
します。先ほどと同様に、Kubernetesのマスタ
にServiceの設定ファイルを与えると、自動的
にロードバランスの設定が行われます。
　そして最後に、これらを組み合わせて実現す
るのがブルー・グリーンデプロイメントです。
たとえば、Deploymentの設定を変更すること
で、図6のように、既存のコンテナと新しいバー
ジョンのコンテナを並行して稼働できます。さ

らに、それぞれのコンテナに個別のServiceを
適用して、外部ユーザからのアクセスは既存の
コンテナに受け渡し、内部のテストユーザから
のアクセスのみを新しいバージョンのコンテナ
で受け取ります。テストが完了したあとに、
Serviceの設定を変更して、外部ユーザからの
アクセスを新しいバージョンのコンテナに切り
替えれば、コンテナのバージョンアップが完了
するという寸法です。

マイクロサービスによる五目並べ
アプリケーションの構成例

　最後に、デモンストレーションで紹介したサ
ンプルプリケーションの構成を説明しておきま
しょう。全体像は、図7のようになります。これ
は、五目並べアプリケーションのAPIサーバを
Kubernetesのクラスタ上で稼働するというもの
で、Google Cloud Platform（GCP）が提供する
Kubernetesのマネージドサービス環境（Google

Container Engine）を利用しています。ゲームの
進行を管理するフロントエンド機能と、コン
ピュータプレーヤの思考ルーチンを提供するバッ
クエンド機能を別々のコンテナで起動していま
す。どちらもDeploymentのしくみを用いて、複
数コンテナで負荷分散するようになっています。

 ▼図6　ブルー・グリーンデプロイメントのしくみ

代表IPアドレス 代表IPアドレス

テスト完了後に
接続先を切り替え

Deployment

バージョン1.0

Service Service

バージョン2.0

一般ユーザ テストユーザ

Feb. 2017 - 2322 - Software Design

第 章1 いっきに押さえるDockerの基礎からKubernetesまで
プログラマのためのコンテナインフラ環境とは？

サービス化して、機能単位でのライブアップ
デートを実現するというところまで話が広がり
ました。
　とくに、最後に紹介したKubernetesの環境で
あれば、DeploymentやServiceなどの設定ファ
イルを用いてコンテナのデプロイを行います。こ
のような作業はアプリケーション開発者、すな
わち、プログラマ自身で行うことも可能です。ど
のサービスをどのような構成でデプロイするべ
きかなど、最適な構成の判断ができるのは、プ
ログラマ自身にほかなりませんので、そちらの
方がより理想に近い役割分担と言えるでしょう。
　ただし、サンプルアプリケーションの例から
もわかるように、現実のサービス環境では、さ
まざまな外部サービスと連携したしくみが必要
となります。ネットワークや外部のデータスト
アなど、すべてのしくみを1人のプログラマが
理解するのは困難な場合もあるでしょう。アプ
リケーション開発者と、サービスインフラの構
成要素を深く理解したアーキテクトが協力して、
アプリケーション全体の設計を実施する必要が
あります。
　本文中では、「インフラエンジニアの仕事がな
くなるのでは？！」という話題にも触れました
が、インフラの構築だけがインフラエンジニア
の仕事ではありません。インフラの構成要素を
深く理解して、最適なアプリケーションの設計
に貢献すること、これこそが、これらからのイ
ンフラエンジニアに求められる役割ではないで
しょうか。ﾟ

　このとき、プレイ中のゲームの状態は、GCP

が提供するデータストアサービス（Cloud

Datastore）に保存するようにしてあります。ノー
ドの障害停止に対する高可用性クラスタの機能
があるとはいえ、障害に伴ってゲームの状態が
失われては意味がありません。マイクロサービ
スアーキテクチャを実現する際は、失われると
困るデータは外部に保存して、データを持たな
い部分（いわゆる「ステートレス」なサービス）を
コンテナでスケールアウトするという考え方が
大切です。
　そして、この構成においては、フロントエン
ドの機能とバックエンドの機能を個別にバージョ
ンアップすることができます。イベント当日は、
エンドユーザが五目並べをプレイしている最中
に、こっそりとバックエンドをバージョンアッ
プするというデモンストレーションを行いまし
た。ゲームを中断することなくバージョンアッ
プを行い、ゲームのプレイ中に、突然、コン
ピュータの腕前が上がって強くなる様子を見せ
て、オーディエンスを驚かせてみました。

まとめ

　本章では、「Dockerの利用方法の変化」という
観点で、コンテナを利用するメリットを紹介し
ました。アプリケーション開発に必要な環境を
プログラマが自分で用意できるという点から始
まり、開発・テスト・サービス環境でのアプリ
ケーション実行環境の差異がなくなるというメ
リット、そして、アプリケーションをマイクロ

 ▼図7　五目並べアプリケーションの全体構成

ロードバランサ

クライアント
アプリ

REST API
Container Engine Cloud Datastore

フロントエンド バックエンド

フロントエンド バックエンド

フロントエンド バックエンド

ゲームの進行処理

ゲームの
状態保存

コンピュータ思考ルーチン

24 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

第 章2

マネージドサービスでDockerを活用
すぐに使える！

第2章と第3章では、Dockerを使ってアプリを本番の実行環境で稼働させるまでの流れを体験しながら、プロ
グラマにとってのメリットを感じてください。まずはGoogle Cloud Platformを利用して、アプリのデプロイ環
境を構築します。

 Author
阿佐 志保（あさ しほ）　TIS㈱
 Twitter @_Dr_ASA
 General editor
山田 祥寛（やまだ よしひろ）　
WINGSプロジェクト

　ここ数年、雑誌や書籍などでDockerが大きく
注目されていたため、手元の開発環境や検証環
境などでDockerを動かし、その便利さを享受さ
れたプログラマの方も少なくないのではないで
しょうか。しかしながらDockerは、本番環境で
稼働させることで、さまざまなメリットが生ま
れます。とくに、ビジネス環境の変化や技術革
新のスピードに追従できる継続的デリバリを実
践するための「変化に強いシステム」を実現する
ためのプラットフォームとして大きな可能性を
秘めています。本章では、Dockerがプログラマ
にとって、どのようなメリットをもたらすかを
具体的に見ていきます。

プログラマにとっての
Docker

　第1章での解説にあったとおり、Dockerは、
アプリの実行に必要なものを1つのイメージに
まとめて、任意の環境で稼働させるためのプラッ
トフォームです。そのため、プログラマがテス
ト済みの開発／テスト環境で動作している安全

なアプリを、そのままの状態で本番環境で動か
すことができます。そのため、多くの開発プロ
ジェクトで頭を悩ます「こっちでは動くけど、
あっちでは動かない」を減らすことができます。
　しかしながら、実際に本番環境でDockerを
使ったアプリを稼働させるという観点からみた

とき、システムの可用性／拡張性をどう確保す
るか、永続データの管理をどうするかなどの検
討が必要です。これらを検討し、最適な基盤を
自前で構築／運用するためには、どうしてもイ
ンフラに関する高度な知識と経験が必要です。
　一方、近年パブリッククラウドは勢いを増し、
極めて早いスピードでさまざまな機能やサービ
スを次々に提供しています。AWS/Microsoft

Azure/Google Cloud Platformといったメ
ジャーなクラウドサービスは、いずれも国内に
リージョンを持ち、先進的な企業やスモールス
タートが求められるスタートアップ企業だけで
なく、エンタープライズシステムへの導入も本
格的に進んでいます。パブリッククラウドを利
用するメリットは、コスト削減や高いスケーラ
ビリティの確保など数えきれないほどあります
が、なんといってもシステム構築にかかる時間
を大幅に短縮できるため、常に変化するビジネ
ス環境の変化や技術革新のスピードに追従しや
すいという点で大きく注目されています。
　現在、パブリッククラウド各社はいずれも、
コンテナの実行基盤を構築するためのサービス
を豊富に提供しています。そこで、先ほど挙げ
たDockerを使ったアプリ実行基盤をパブリック
クラウド上で動作させることで、Dockerの持つ
利便性と、パブリッククラウドの強みを組み合
わせることができ、プログラマは次のようなメ

Feb. 2017 - 2524 - Software Design

第 章2 マネージドサービスでDockerを活用
すぐに使える！

ナをオンプレミスやクラウドなど任意の環境で
実行できます。高い移植性を持ち、プログラマ
の手元にある開発環境や、テスト環境で動いた
ものが、そのまま本番環境で動作するのが特徴
です。どのようなしくみでそれらを実現してい
るのでしょうか？　Dockerには、大きく分けて
図1のような3つの基本機能があります。

Dockerイメージ作成機能（Build）

　Dockerは、アプリの実行に必要になるプログ
ラム本体／ライブラリ／ミドルウェアや、OSや
ネットワークの設定などを1つにまとめて
Dockerイメージを作ります。出来上がった
Dockerイメージは、実行環境で動くコンテナの
もとになります（図2）。Dockerイメージの実体
は、アプリの実行に必要なファイル群が格納さ
れたディレクトリツリーです。テキストファイ
ル（Dockerfile）にDockerイメージの構成情報を
記載して、これをもとにイメージをビルド（自動
作成）することが可能です。Dockerでは1つの
アプリを1つのコンテナに入れ、複数のコンテ
ナを組み合わせてサービスを構築する、という
シンプルな構成にすることが推奨されています。

リットを享受できます。

・テスト済みの安全なアプリを本番環境に即座
にデプロイ

・障害時にも即時切り戻し
・プログラマ自身でDocker実行環境の構築／

運用の実現
・機能単位での短い開発サイクルによる継続的

デリバリ
・提供サービスの無停止アップデート

　それでは、これらのメリットを体感するため、
サンプルアプリを使ってDockerを使ったアプリ
を本番の実行環境で稼働させるまでの流れと、
プログラマにとってのDockerのメリットを見て
いきましょう。

Dockerの基本機能

　まず、Dockerにはどのような機能があるかを
簡単におさらいしておきます。Dockerでは、イ
ンフラ環境設定ファイルやアプリの実行モジュー
ル／ライブラリなどをまとめてDockerイメージ
を作成し、イメージをもとにしてDockerコンテ

 ▼図1　Docker概要

Docker
イメージ オンプレミスサーバ

アプリの実行に必要な
ファイルをイメージ化

イメージをDocker
レジストリで一元管理

Dockerイメージをもと
にしてさまざまな環境
でコンテナを実行

Oracle
Database nginx

Red Hat
Enterprise Linux

Cisco
Systems

Solaris

Oracle
Linux

MySQL

Windows
Server 2012

Apache
HTTP Server

Google Cloud Platform

Amazon Web Sevices

Microsoft Azure

26 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

Dockerコンテナ実行機能（Run）

　Dockerは、Linux上で、コンテナ単位でサー
バ機能を動かします。このコンテナのもとにな
るのが、Dockerイメージです（図3）。Dockerイ
メージさえあれば、どこでもコンテナを動かす
ことができます。1つのDockerイメージから複
数のコンテナを起動できますので、高いスケー
ラビリティを要求されるシステムでは、リクエ
ストの多

た か

寡に応じて必要な数のコンテナを実行
できます。Dockerはオーバーヘッドが少なく、
すでに動作しているOS上でプロセスを実行す
るのとほぼ同じ速さで起動するのが特徴です。
　Dockerは1つのLinuxカーネルを複数のコン
テナで共有しています。コンテナ内で動作する
プロセスを1つのグループとして管理し、グルー
プごとにそれぞれファイルシステムやホスト名
／ネットワークなどを割り当てています。グルー
プが異なればプロセスやファイルへのアクセス
ができません。このしくみを使って、コンテナ
を独立した空間として管理しています。これら
を実現するために、Linuxカーネル機能（name

space/cgroupsなど）の複数の技術が使われてい
ます（第6章を参照）。興味がある方は、参考書
籍を一読されるとより理解が深まります。

Dockerイメージ共有機能（Ship）

　DockerのイメージはDockerレジストリで一
元管理します。公式のDockerレジストリであ
るDocker Hubでは、UbuntuやCentOSなどの
Linuxディストリビューションの基本機能を提
供するベースイメージが配布されています。ま
た、公式のイメージ以外にも、個人が作成した
イメージをDocker Hubで公開／共有すること
ができます。
 ただし、Docker Hubはインターネット上に公
開されたパブリックなレジストリであるため、
機密情報が含まれる場合、セキュアな環境に
Dockerレジストリを別途用意する必要がありま
す。業務系システムであれば、開発メンバーの
みがアクセスできるセキュアな環境内で、Docker

レジストリを運用することが必須でしょう。

クラウドが提供する
マネージドサービスの活用

　Dockerをマルチホスト環境からなるクラスタ
構成で稼働させるためには、コンテナの起動／
停止などの操作だけでなく、ホスト間のネット
ワーク接続やストレージの管理、コンテナをど
のホストで稼働させるかなどのスケジューリン
グ機能が必要になります。さらに、コンテナが
正常動作しているかどうかを監視するしくみも
必要でしょう。これらの機能を備え、コンテナ
を統合管理できるツールをコンテナオーケスト

レーションツールと呼びます。

 ▼図2　Dockerイメージの作成機能

Docker
Image

1.ベースイメージの設定
FROM centos:latest

2.作成者情報
MAINTAINER Shiho ASA

3.コマンド実行
RUN yum install

アプリ実行環境の構成情報を
Dockerfileに記述

Dockerfile

build

 ▼図3　Dockerイメージの実行機能

アプリイメージ

…

OSイメージ

ホストLinux

コンテナ

CentOS

Python
ファイル

コンテナ

CentOS

Python
ファイル

nginx

…

Red Hat
Enterprise Linux

Feb. 2017 - 2726 - Software Design

第 章2 マネージドサービスでDockerを活用
すぐに使える！

　どのサービスを選ぶべきかはシステム要件に
よりますが、前述したとおり、開発したアプリ
の移植性が高いのがDockerの大きな特徴です。
特定の環境にロックインされることが少ないた
め、将来的にやむを得ない理由でオンプレミス
上で稼働させなければならない場合でも、マイ
グレーションが比較的容易です。したがって、
各サービスの提供機能やサポート体制などの比
較検討に時間と労力をかけるより、まずはプロ
グラマ自身が、手を動かして試してみることを
お勧めします。オンプレミスの世界では、イン
フラ構築といえば、ネットワーク敷設や機器調
達から始まり……という手戻りが難しい工程が
多いため、どうしても机上での比較検討が欠か
せませんが、クラウドの世界では、インスタン
スを生成しては破棄してを繰り返す、というこ
とが大前提です。
　本記事では、現時点でコンテナの開発環境が
充実していてDocker導入の敷居が低く、かつ本
番環境で大規模システムを導入するのに最も適
したフルマネージドサービスであると筆者が考
えている、Google Container Engineを使って環
境を構築します。

コンテナ実行環境を
構築してみよう

　Google Cloud Platform（以降、GCP）は、Goo

gleが自社で使っているインフラを一般でも利用
できるようにしたクラウドサービスです。コン
テナの実行環境を提供するGoogle Container

Engine（以降、GKE）は、Kubernetesをベース
にしたフルマネージドサービスです。言い換え
れば、専門的な知識が必要なKubernetesの環境
を自動で構築してくれるサービスだ、と理解す
ればよいでしょう。操作はすべてGoogle Cloud

Consoleと呼ばれているWebベースのGUIから
行います。
　GCPを使うにあたり、お使いのGoogleアカ
ウントでログインしてアカウントを登録します。
トライアルで60日／300ドルまで無償で利用で

　オーケストレーションツールの利用環境を適
切に設計／構築するには、システム全体の信頼
性／可用性／拡張性、さらに運用方式などの知
識や経験が必要なため、アプリを設計／開発す
ることが本業であるプログラマにとっては、ハー
ドルが高いのではないでしょうか。そこで、ク
ラウド各社が提供するコンテナ実行環境構築の
フルマネージドサービスをうまく活用すれば、
手軽にコンテナの実行環境が用意できます。代
表的なサービスは次のとおりです。

Amazon EC2 Container Service

　Amazon Web Servicesの仮想マシンサービス
Amazon EC2のインスタンスでクラスタを構成
し、Dockerの実行環境を提供するフルマネージ
ドサービスです。AWSは数多くのサービスと
豊富なドキュメント、活発なコミュニティを持
ち利用者も多いため、中小規模から大規模シス
テムまで安心して導入できるプラットフォーム
といえるでしょう。

Azure Container Service

　MicrosoftのクラウドサービスであるAzureの
マネージドサービスです。オーケストレーショ
ンツールとしてMesosベースのDC/OSかKu

bernetesかDocker Swarm/Docker Composeを
選べるのが特徴です。国内に2つのリージョン
を持ち、これまで同社が培ってきた充実したエ
ンタープライズ向けサポートもあるため、既存
の業務系システムとの親和性は高いでしょう。

Google Container Engine

　Googleが提供するパブリッククラウドサービ
スの1つで、オープンソースのオーケストレー
ションツールであるKubernetesをベースにした
フルマネージドサービスです。Googleが提供し
ている検索エンジン／YouTube／Google Maps

などのサービスはすべてコンテナで稼働してい
ます。

◆　◆　◆

28 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

きます。また、課金の設定が必要になりますの
で、次の公式サイトでアカウント登録を行い、
クレジットカードの登録を行ってください。
　なお、明示的に有償アカウントにアップグレー
ドしない限り、課金されることはありません。

https://cloud.google.com/free-trial/

　登録が完了すると、Webベースの管理コン
ソールにアクセスできます。これはGoogle

Cloud Consoleと呼ばれていて、多くの管理作
業をGUIで行うことができます。

プロジェクト作成とアクセス設定

　GCPを利用するには、まず最初に「プロジェ
クト」を作成する必要があります。GCPでは、
このプロジェクト単位で、各サービスの利用や
アクセス権／支払い情報などをまとめることが
できます。新しいプロジェクトを作成するには、
Google Cloud Consoleの［ホーム］－［ダッシュ
ボード］から［プロジェクト作成］ボタンをクリッ

クします。ダイアログが表示されますので、任
意のプロジェクト名を入力します（図4）。プロ
ジェクト名を入力すると、プロジェクトIDが付
与されます。このプロジェクトIDは、以降の作
業で利用しますので、忘れないように控えてお
いてください。
　アカウントを登録した直後のデフォルトの状
態では、GKEを利用できません。そこでまず、
GKEを利用するためのアクセス権を設定しま
す。Google Cloud Consoleの［API Manager］－
［ライブラリ］を選択し、「Google Container Engi

ne API」を検索します。［有効にする］ボタンを
クリックして、アクセスを許可します（図5）。
　以上で、GCPを利用する準備が完了しました。

GKEでのコンテナ実行環境構築

　つづいて、Google Cloud Consoleからコンテ
ナの実行環境を構築します。今回は図6の構成
となるよう、2台の仮想マシン（ノード数）を使っ
てクラスタを構築します。
　Cloud Consoleメニューの［コンピュート］－
［Container Engine］を選択し、［コンテナクラス
タを作成］ボタンをクリックします。今回はクラ
スタの仮想マシンの数（ノード数）を2とするた
め、表1の値を設定します。指定以外の個所は
すべてデフォルトとします。
　クラスタが構成できているかどうかは、

 ▼図4　プロジェクトの作成

 ▼図5　アクセス権の設定

 ▼図6　Dockerイメージの実行機能

設定
ファイル

仮想マシン#1
（VMインスタンス）

コンテナ

コンテナ

　 GCE

仮想マシン#2
（VMインスタンス）

コンテナ

　 GCE

2台の仮想マ
シンでクラス
タを構成

Google Container Engine

クラスタ
の管理

コンテナ
の起動

https://cloud.google.com/free-trial/

Feb. 2017 - 2928 - Software Design

第 章2 マネージドサービスでDockerを活用
すぐに使える！

リをデプロイ／アップデートを繰り返す、継続
的デリバリの流れを見ていきましょう。ﾟ

［Container Engine］－
［コンテナクラスタ］を
確認します。作成した
「web-cluster」に緑色
のチェックがついてい
れば、問題なく稼働し
ています（図7）。
　驚いた方もいるかも
しれませんが、わずか数分でクラスタ化された
コンテナ実行環境が構築できました。次章では、
このコンテナ実行環境を使って、開発したアプ

 ▼図7　クラスタの構築

項目 説明 今回の設定値
名前 Kubernetesで管理するクラスタの名前 web-cluster

ゾーン 使用可能なコンピューティングリソースとデータの保存場所と使用場所を指
定。ここでは東京リージョンを指定 asia-northeast1-a

マシンタイプ クラスタのノードに使用するマシンのスペックを選択 vCPU×1

サイズ クラスタ内のノード数。クラスタサイズは、使用可能なCompute Engineの
割り当て量によって制限される 2

 ▼表1　クラスタの設定

　GCPは、Googleが提供するパブリッククラウド

サービスです。本章でご紹介したコンテナマネー

ジドサービスであるContainer Engine以外にも、

Python/Go言語 /JavaなどをサポートするPaaS

サービスであるAppEngineや、大規模データセッ

トを扱うBigQuery、翻訳や画像解析など機械学習

に関するAPIなどが提供されています。

　GCPの特徴は、なんといっても自社サービスの

ために開発したシステム基盤をもとにしていると

いうところにあります。Googleが提供する検索エ

ンジン／YouTube／Google Mapsなどは、地球上

のすべての人々がユーザです。そのため、世界中

のデータセンターが同じしくみで構成されており、

ストレージやデータベースなど、アプリの実行に

必要な基盤は、独自のソフトウェアで実装されて

います。Googleのアプリ開発者は、実装／テスト

／デプロイまでを標準化されたプロセスに則って

行います。まさに世界規模での稼働実績があると

いっても過言ではありません。

　現時点では、大規模案件の導入実績や日本語ド

キュメントが少ないという観点から、どうしても

AWSが注目されることが多くなっています。しか

しながら、GCPの生い立ちを紐解いてみると、全

社共通基盤を作成して、その上で自社フレーム

ワークを採用し、アプリ開発者から基盤レイヤー

をできるかぎり抽象化して、品質の安定したアプ

リを実装するという、今日の多くのエンタープラ

イズシステムが採用している開発手法に極めてよ

く似ていることがわかります。GCPがサービスと

して提供する「変化に強いインフラ」を上手に活用

することで、エンタープライズシステムは、より

一層顧客のビジネス目的実現のためのアプリ開発

に注力できるのではないかと考えています。

Column Google Cloud Platform（GCP）の生い立ち

30 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

第 章3

アプリ開発のストーリーから
メリットを知る

使ってみよう！

第3章では、アプリ開発のストーリーを想定し、それぞれの段階でどのようにDockerが使われていくかを見て
いきます。第2章で用意したクラウド上に、実際に手を動かしながら4つのステップを追って確認してみてくださ
い。

 Author
阿佐 志保（あさ しほ）　TIS㈱
 Twitter @_Dr_ASA
 General editor
山田 祥寛（やまだ よしひろ）　
WINGSプロジェクト

　第2章では、Dockerのもつ利便性と、パブ
リッククラウドが提供するコンテナのフルマネー
ジドサービスの強みを組み合わせれば、プログ
ラマがコンテナを使ってアプリ開発を行ううえ
で、さまざなメリットがあることを説明しまし
た。第3章では、実際に、構築した基盤を使っ
て、サンプルアプリを開発／デプロイしていく
流れに沿って、Dockerがもたらすメリットを確
認していきます。

サンプルから学ぶDocker
を使ったアプリ開発の流れ

　Dockerを使ったアプリ開発では、インフラの
構成情報も含めたアプリケーションをパッケー

ジングできるため、プログラマとインフラエン
ジニアで分担していたタスクの大部分を、プロ
グラマだけで実施できるようになります。
　アプリで使うライブラリ群やインフラの構成
管理だけでなくデプロイの作業も自動化できる
ため、開発からリリースまでの期間を短くでき、
小さな機能ごとに分割した継続的デリバリが可
能になります。今回は、サンプルアプリを使っ
て、図1の流れでアプリ開発と本番環境へのデ
プロイを行います。

STEP1．アプリ（v1.0）の開発

　まず、サンプルアプリのv1.0を開発します。
アプリの実行に必要な環境の設定とアプリの実

 ▼図1　サンプルアプリ開発の流れ

サンプルアプリ
(v1.0)

サンプルアプリ
(v2.0)

要件定義

要件定義

設計

設計

実装

実装

Google Container Engineの実行環境

テスト

テスト

STEP1:
v1.0の開発

STEP2:
v1.0のデプロイ

STEP4:
v2.0のバージョンアップ

STEP3:
v2.0の開発

Feb. 2017 - 3130 - Software Design

第 章3 アプリ開発のストーリーからメリットを知る
使ってみよう！

することなく、アプリをバージョンアップしま
す。バージョンアップは、GKEのベースになっ
ているコンテナオーケストレーションツール
KubernetesのRolling Update機能を使います。
この機能を使うと、クラスタ上で稼働している
コンテナのアプリを段階的にバージョンアップ
させることができます。そのため、システム利
用者はダウンタイムなしでアクセスできます。

　◆　◆　◆　
　本章で扱う全体の構成は、図2のようになり
ます。それでは具体的に、手順を追っていきま
しょう。

STEP1
アプリ（v1.0）の開発

　はじめに、サンプルのアプリを実行するため
のDockerfileを作成します。

Dockerfileの作成

　DockerfileはCloud Shellで作成します。
Cloud Shellを起動するには、Webコンソール
上で、右上のアイコンをクリックします（図3）。
　ここで使用するDockerfileのサンプルを
GitHubで公開しています。Cloud Shellで図4
のコマンドを実行して、サンプルファイルをダ

行モジュールをDockerfileに定義します。
Dockerは、DockerfileをビルドしてDockerイ
メージを作成します。開発環境でビルドした
Dockerイメージを、第2章で構築したGoogle

Container Engine（以降、GKE）の実行環境で利
用できるよう、プライベートレジストリで共有
します。このイメージ共有には、Google Cloud

Platform（以降、GCP）が提供するDockerイ
メージ共有サービスの、Google Container

Registryを使います。

STEP2．アプリ（v1.0）のデプロイ

　アプリ開発が完了したら、GKEの実行環境に
デプロイします。どのイメージをどの環境にデ
プロイするか、などの構成情報はすべてyaml形
式の定義ファイルで指定します。デプロイが完
了したら、システム利用者がアプリにアクセス
ができるようサービスを作成します。サービス
では、アプリへアクセスするときに必要なネッ
トワークの設定などを定義します。

STEP3. アプリ（v2.0）の開発

　変更個所を追加開発して、イメージを新しく
作成します。イメージの作成手順はSTEP1と
同じ流れになります。ただし、イメージにバー
ジョンを区別できるようタグを設定します。今
回は、「v1.0」のタグを「v2.0」にしたイメージを
作成します。

STEP4. アプリ（v2.0）の無停止バージョンアップ

　すでにGKE上で稼働しているサービスを停止

 ▼図2　開発環境／実行環境の構成

ビルド

開発環境
（Google Cloud Shell）

Dockerレジストリ 実行環境

Google Container
Registry

アプリ
Dockerfile

Dockerイメージ

Linux Linux

コンテナ
New!

コンテナ
New!

コンテナ
New!

 ▼図3　Cloud Shellの起動

Google Container Engine

32 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

ウンロードしてください。この後は、サンプル
のDockerfileに含まれる命令を順番に説明して
いきます。

［1］ベースイメージの指定

　Dockerfileでは、Dockerコンテナをどの
Dockerイメージから生成するかの情報が必要で
す。このもとになるイメージをベースイメージ
と呼び、FROM命令で指定します。Dockerfile

では、FROM命令は必須項目になります。また、
タグ名を省略したときは、ベースイメージで指
定したものの最新版（latest）が適用されます。こ
こでは、nginxが動作するベースイメージを、図
5のように指定します。

［2］作成者情報の設定

　Dockerfileの作成者の情報を記述するときは、
MAINTAINER命令を使います。ここでは、
Dockerfileを作成した人のメールアドレスを記
述します（図6）。

［3］コマンドを実行

　FROM命令で指定したベースイメージに対し
て、「アプリケーション／ミドルウェアをインス
トール／設定する」「環境構築のためコマンドを
実行する」など、なんらかのコマンドを実行する
ときには、RUN命令を使います。ここでは、コ
ンテナのログを転送するため、図7のように設
定します。なお、命令を改行するときは「\」で区

切ります。

［4］ポートの開放

　コンテナの公開ポート番号を指定するときは、
EXPOSE命令を使います。ここでは、HTTP

での通信（80番ポート）を受け付けるため、図8
のように指定します。

［5］アプリのデプロイ

　イメージにホスト上のファイルやディレクト
リを追加するときは、ADD命令を使います。こ
こでは、Cloud Shellのhtmlディレクトリにあ
るファイルを、コンテナ内の/usr/share/nginx/

html/にデプロイするため、図9のように指定し
ます。

［6］サーバの起動

　これで環境構築は完了しましたので、最後に
Webサーバを起動します。起動はCMD命令を
使います。Dockerfileには、CMD命令は1つだ
け指定してください。もし複数指定したときは、
最後のコマンドが有効になります。図10は、
nginxを実行するという意味になります。

 ▼図4　サンプルの取得

$ git clone https://github.com/asashiho/gke-rolling-update-sample.git

 ▼図6　MAINTAINER命令の設定

MAINTAINER Your Name your_name@your_domain.com

 ▼図7　RUN命令の設定

RUN ln -sf /dev/stdout /var/log/nginx/access.log \
 && ln -sf /dev/stderr /var/log/nginx/error.log

 ▼図5　FROM命令の設定

FROM nginx

 ▼図8　EXPOSE命令の設定

EXPOSE 80

 ▼図9　ADD命令の設定

ADD html/ /usr/share/nginx/html/

 ▼図10　CMD命令の設定

CMD ["nginx", "-g", "daemon off;"]

Feb. 2017 - 3332 - Software Design

第 章3 アプリ開発のストーリーからメリットを知る
使ってみよう！

ロードします。アップロードするには、「gcr.

io/<PROJECT ID>/名前 :タグ」という命名規
則でイメージにタグを設定します（図13）。プロ
ジェクトIDは、第2章でプロジェクトを作成し
たときに付与される一意のIDです。プロジェク
ト名とは異なる場合もありますので、注意して
ください
　次に、Dockerイメージを、Google Container

Registryにアップロードします。gcloudコマン
ドを使用することで、Cloud Shellを起動したア
カウントの権限でGoogle Container Registryへ
のアクセスが行われます（図14）。
　イメージのアップロードが完了すると、Google

Cloud Console の［Container Engine］－［Con

tainer Registry］にアップロードされたイメージ
が格納されていることが確認できます（図15）。
　これで、「sampleapl」という名前のアプリのv1.0

が稼働できるDockerイメージが、GKEから利
用できる状態になりました。今回はGCPで動か
すためDockerイメージを、Google Container

Registryで共有しましたが、DockerはDocker

　Dockerfileの命令はここで取り上げた以外に
も、環境変数を設定する／ボリュームのマウン
ト／作業ディレクトリの指定などを行う命令が
あります。バージョンアップで仕様が変更にな
ることもありますので、詳細についてはDocker

公式サイト注1を参照してください。

Dockerイメージのビルト

　Dockerfileからイメージを作成するには、
docker buildコマンドを使います。サンプルの
v1.0ディレクトリ配下に格納されたDockerfile

をもとにして、「sampleapl」という名前のイメー
ジを作成するときは、図11のコマンドを実行し
ます。なお、イメージのタグ名に「v1.0」という
バージョンをつけておきます。
　Dockerイメージは、docker imagesコマンド
で確認できます。図12のコマンドを実行する
と、作成した「sampleapl」いう名前のイメージが
作成できているのがわかります。また、ベース
イメージである、「nginx」のイメージも作成され
ています。

Dockerイメージの公開

　これで、Dockerコンテナを動かすもとになる
Dockerイメージが作成できましたので、次は
Google Container Registryにイメージをアップ

注1） URL https://docs.docker.com/engine/reference/builder/

 ▼図13　Dockerイメージへのタグ設定コマンド

$ docker tag sampleapl:v1.0 gcr.io/<ご自身のPROJECT_ID>/sampleapl:v1.0

 ▼図14　Google Container Registryへのアップロード

$ gcloud docker -- push gcr.io/<ご自身のPROJECT_ID>/sampleapl:v1.0

 ▼図11　docker buildコマンドの実行例

$ cd gke-rolling-update-sample/v1.0
$ docker build -t sampleapl:v1.0 .

 ▼図12　docker imagesコマンドでの確認

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
sampleapl v1.0 d8f98741caec 20 seconds ago 181.6 MB
nginx latest ef068b58f0cd 8 days ago 181.5 MB

 ▼図15　Dockerイメージのアップロード確認

https://docs.docker.com/engine/reference/builder/

34 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

fileさえあれば、Dockerイメージをビルドでき
ます。たとえばDocker公式のリポジトリサービ
スであるDocker Hubであれば、任意のDocker

実行環境で動作させることができますし、他ク
ラウド上のリポジトリやオンプレミス環境で構
築したプライベートレジストリなどでも同様に
運用できます。この移植性の高さがDockerの持
つ大きなメリットです。

STEP2
アプリ（v1.0）のデプロイ

　次に、第2章で作成したコンテナの実行環境
にアプリケーションをデプロイします。

GKEを操作するための設定

　まず、Cloud Shell上で環境設定を行います。
図16のコマンドを実行することで、東京リー
ジョンである「asia-northeast1-a」に作成した、
「web-cluster」という名前のGKEのクラスタに
アクセスするために必要な認証情報が設定され
ます。

デプロイ構成情報ファイルの作成

　アプリをデプロイするために、構成情報ファ
イルを作成します。ファイルはサンプルの
deployment.yamlになります（リスト1）。起動し
たいコンテナの数はreplicasに指定します。こ
こでは3を指定していますので、第2章で構築
した2台の仮想マシン上のいずれかで3つのコ
ンテナが起動します。なお、コンテナイメージ
名に含まれる「<PROJECT ID>」の部分を実際に
使用するプロジェクトIDに書き換えて、ファイ
ルを修正してください。
　ファイルが作成できたら、kubectl createコ
マンドを使ってコンテナをデプロイします（図
17）。デプロイ構成情報ファイル（deployment.

yaml）は、コマンドのfオプションで指定しま
す。

サービス定義ファイルの作成

　次に、サービス定義を作成します。リスト2
は、起動したコンテナに外部からアクセスする
ために必要なネットワーク環境を定義するため
のファイルです。
　定義ファイルの準備ができたら、図18の
kubectl createコマンドを使ってサービスを定

 ▼図16　環境設定

$ gcloud container clusters get-credentials web-cluster --zone=asia-northeast1-a

Fetching cluster endpoint and auth data.
kubeconfig entry generated for web-cluster.

 ▼図17　コンテナのデプロイ

$ kubectl create -f deployment.yaml
deployment "web-container" created

 ▼リスト1　デプロイ構成情報ファイル（deployment.yamlの抜粋）

apiVersion: extensions/v1beta1
kind: Deployment ←デプロイ構成情報ファイルの指定
 ...略...
spec:
 replicas: 3 ←レプリカ数
 ...略...
 spec:
 containers:
 - image: gcr.io/<ご自身のPROJECT ID>/sampleapl:v1.0 ←コンテナのもとになるDockerイメージ
 name: web-container
 ports:
 - containerPort: 80 ←コンテナに外部からアクセスできるポート

Feb. 2017 - 3534 - Software Design

第 章3 アプリ開発のストーリーからメリットを知る
使ってみよう！

STEP3
アプリ（v2.0）の開発

　無事、v1.0のアプリがリリースできましたの
で、引き続いてv2.0の開発を行います。Docker

fileの作成およびビルド／公開はv1.0の手順と
同じですので、詳細な手順は省略しますが、イ
メージを作成する際に、タグ名として「v2.0」を
指定する点に注意してください（図20）。
　イメージが作成できたら、Google Cloud Con

soleの［Container Engine］－［Container Regist

ry］に、アップロードされたイメージが格納され
ていることを確認できます。v1.0とv2.0のイメー

義します。このコマンドの実行で、外部からコ
ンテナに対してアクセスが可能になります。サー
ビスの情報を確認するには、kubectl getコマ
ンドを実行します。コマンド実行結果の「EX

TERNAL-IP」が外部からアクセスするときの
IPアドレスになります。また、外部アクセス用
の IPアドレスは自動的に割り当てるのではな
く、事前に確保しておいたIPを明示的に指定す
ることも可能です。
　ここまでの準備ができたら、動作確認のため、
ブラウザから［EXTERNAL-IP］にアクセスしま
す。図19のような画面が正しく表示されたら、
v1.0のアプリのデプロイに成功しています。

 ▼図18　サービスの定義と確認

$ kubectl create -f service.yaml

$ kubectl get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 10.59.240.1 <none> 443/TCP 9m
web-service 10.59.240.35 104.198.118.141 80/TCP 1m

 ▼リスト2　 サービス定義ファイル
（service.yamlの抜粋）

apiVersion: v1
kind: Service ←サービス定義ファイルの指定
 ...略...
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80 ←受付ポート
 selector:
 name: web-container
 type: LoadBalancer ←ロードバランサの設定

　GKEでは、デプロイの構成情報や外部からアク

セスするときの接続情報をすべて定義ファイルで

管理します。定義ファイルはソースコードとして

管理できるので、アプリ開発で行われているGit

などのバージョン管理のしくみを利用すれば、容

易にバージョン管理が可能です。オンプレミス環

境でありがちな、運用手順書を作成して、手作業

で環境を構築／運用し、構成変更があったときは

差分情報を修正して……ということなく、アプリ

の実装コードとまったく同じように、インフラの

構成情報をソースコードとして管理できることは、

プログラマにとっては大きなメリットになるで

しょう。なお、インフラの構成情報をソースコー

ドで管理するという概念は、Infrastructure as a

Codeと呼ばれています。

Note

 ▼図20　バージョン情報の設定

$ docker build -t sampleapl:v2.0 .

 ▼図19　サンプル（v1.0）の動作確認

36 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

ジが2つアップロードされているのがわかりま
す（図21）。

STEP4：アプリのバージョ
ンアップ（v1.0→v2.0）

　v2.0のアプリの開発がおわり、Dockerイメー
ジをレジストリにアップロードできたので、コ
ンテナ実行環境で稼働しているv1.0のアプリを、
Kubernetesの提供するRolling Update機能を
使ってバージョンアップします。この機能を使
うと、サービスを無停止の状態でバージョンアッ
プできます。まず、図22のコマンドを実行し
て、デプロイメント設定ファイルを修正します。
修正する個所は1ヵ所だけです。
　デプロイメント構成ファイルがエディタで開
くので、コンテナのイメージのタグ名を「v1.0」
から「v2.0」に修正して保存します（リスト3）。
　デプロイの履歴を確認するときは、kubectl

describeコマンドを使います。図23のコマン
ドを実行すると、新しいイメージのPodを起動
した後に、古いイメージのPodを停止するとい
う操作が順次行われたことがわかります。
　なお、ここでは稼働環境の構成ファイルを直
接に修正しましたが、事前に修正済みのファイ
ルを用意して、それをkubectlコマンドで適用
することも可能です。構成情報を設定ファイル
で管理するという意味では、こちらのほうが望
ましい運用方法と言えるでしょう。
　以上の手順を終えたら、動作確認のため、ブ
ラウザから再度［EXTERNAL-IP］にアクセスし
ます。図24のような画面が表示されたらデプロ
イに成功しています。
　サービスを停止させることなく、アプリをバー
ジョンアップできるということがおわかりいた
だけたでしょうか？　このように、規模を小さ
くして開発とバージョンアップを繰り返すこと
で、継続的デリバリが実現できます。

クラスタの停止と削除

　動作を確認できたら、クラスタを停止／削除し
ます（図25）。サービスを削除したタイミングで、

 ▼図21　Dockerイメージのアップロード確認 ▼図24　サンプル（v2.0）の動作確認

 ▼図22　デプロイ構成ファイルの修正

$ kubectl edit deployment/web-container

 ▼図23　ローリングアップデートの確認

$ kubectl describe deployment/web-container

 ▼リスト3　デプロイ構成情報ファイル（deployment.yamlの抜粋）

apiVersion: extensions/v1beta1
kind: Deployment
 ...略...
 spec:
 containers:
 - image: gcr.io/<PROJECT ID>/sampleapl:v2.0 ←v1.0をv2.0に変更
 ...略...

Feb. 2017 - 3736 - Software Design

第 章3 アプリ開発のストーリーからメリットを知る
使ってみよう！

期間を短縮できるため、プログラマだけでなく
システムを利用するエンドユーザに大きなメリッ
トが生まれます。本稿では、段階的にバージョ
ンアップするRolling Updateの紹介にとどまり
ましたが、第1章で説明のあったv1.0とv2.0を
並列に動作させておき、即座にアクセス先を切
り替える、ブルー・グリーンデプロイメントも
容易に実現できます。
　なお、ここまで、プログラマにとってのDocker

のメリットばかりを述べてきましたが、必ずし
もメリットばかりではありません。残念ながら、
既存システムの開発体制でアーキテクチャや開
発手法がそのままの状態のものを、コンテナ基
盤に「移植」してもうまくいかないケースがほと
んどでしょう。
　Dockerやクラウドに限らず、テクノロジーが
もたらすメリットとデメリットを正しく知るに
は、「手を動かす」ことがなによりも重要です。
つまり、テクノロジーの恩恵を受けるためには、
エンジニア自身が環境を変え、新しいことを学
び、変化し続けることが大切です。ﾟ

Global Load Balancerの設定も破棄されます。
　次に、Google Cloud Consoleで［Container

Engine］－［コンテナクラスタ］で、コンテナク
ラスタの削除を行います。最後にDockerイメー
ジを格納した［Container Engine］－［Container

Registry］にある2つのバージョンのDockerイ
メージを削除します。

まとめ

　第2章、第3章では、プログラマにとって、
Dockerは何の役に立つのか、という観点で、
Google Cloud Platformを使ったコンテナ実行
環境の構築を紹介しました。サンプルアプリの
開発の流れを通して、Dockerのもつ移植性の高
さに加えて、パブリッククラウドのもつ導入の
容易さ／可用性や拡張性の高さなどがもたらす、
さまざまなメリットを体験していただけたと思
います。
　継続的デリバリを実現した「変化に強いシステ
ム」を導入することは、アプリのリリースまでの

　DevOpsとは、プログラマ（Dev）とインフラエ

ンジニア（Ops）がお互いに協力してシステムを開

発／運用していこうという概念です。プログラマ

のミッションは、新しいビジネス価値の創造です

が、一方のインフラエンジニアのミッションは、

システムの安定稼働です。相反する両者では、お

互いの価値観が異なるため、時には意見が衝突す

ることもあるでしょう。Dockerは、プログラマと

インフラエンジニアの境界をあいまいにします。

そのため、お互いの専門性を生かし、お互いを尊

重／信頼しあって、より良いシステムにしていく

ことが望まれます。

　なお、大規模な開発の場合、プログラマとイン

フラエンジニアの部門が異なることが多くなりま

す。所属する組織が異なれば、どうしても意思決

定に時間がかかるため、せっかく変化に強いシス

テムが完成したとしても、そのメリットを十分に

生かせない恐れがあります。Dockerをベースにし

たコンテナ実行環境を導入するには、技術的な側

面だけでなく、組織改革や人材評価のしくみなど

とあわせて、システム開発全体のしくみを熟考す

る必要があります。

Column DockerとDevOps

 ▼図25　クラスタの停止と削除

$ kubectl delete service web-service
$ kubectl delete deployment web-container

38 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

第 章4

Dockerイメージとコンテナを活用する
コマンドの理解

用途ごとに分類

 Author
前佛 雅人（ぜんぶつ まさひと）　
さくらインターネット㈱
 Twitter
@zembutsu

Dockerの操作はdockerコマンドライン・ツールを使うのが一般的です。コマンドは多岐に渡りますが、本章
ではイメージの管理、コンテナの実行、レジストリ操作、システム管理と用途で分類し、開発担当者が知ってお
くべき最低限のコマンドとオプションを紹介します。

Dockerコマンドと
ライフサイクル

　Dockerを使ったコンテナの実行、イメージの
構築、デーモンの確認など、Dockerに関するさ
まざまな操作は、dockerコマンドを通して次の
ような書式で行います。

　docker <コマンド名>と続くコマンドは、現
在（Docker 1.12）約50個近く存在しています。
コマンドごとにさまざまな機能（表1）がありま
すが、すべてを覚える必要はありません。それ
よりも、Dockerの基本である「イメージを使っ

docker <コマンド> [オプション1] [オプション2] …

てコンテナを実行し、使い終わったらコンテナ
を削除する」というライフサイクルの理解が大切
です。とくにDockerイメージを構成している
「イメージ・レイヤ（層）」に対する操作という概
念が、コマンドを理解する手助けになります。
　以降では、作業時のフローを通して、コマン
ドに対する理解を深めていきましょう。各コマ
ンドには次のようにそれぞれ頻出度を振り、よ
く使われるものを抜粋して紹介していきます（書
式やオプションの説明は、特筆するものがない
コマンドについては省いています）。

★★★ 頻繁に使うので、覚えておくべきコマンド

★★ たまに使うので、存在を知っておいたほう
が良いコマンド

★ 用途が限られるので、必要なときに参照

分類名 コマンド 説明

イメージ build、comit、history、images、impoart、inspect、
load、rmi、save、tag

イメージの構築や管理など、イメー
ジ操作用

コンテナ
attach、cp、create、diff、events、exec、export、
kill、logs、pause、port、ps、rename、restart、rm、
run、start、stats、stop、top、unpause、update、wait

コンテナの実行や停止など、コンテ
ナ操作用

レジストリ login、logout、pull、path、search Docker Hubなどのレジストリに対す
る操作や検索

ネットワーク
network connect、network create、network
disconnect、network inspect、network ls、network
rm

Dockerコンテナ間で使うネットワー
クの操作用

ボリューム volume create、volume inspect、volume ls、volume
rm

ボリュームの作成や削除など、管理
用コマンド

システム dockerd、info、inspect、version dockerデーモンの操作や、イメージ
とコンテナの調査用

 ▼表1　Dockerコマンドの分類

Feb. 2017 - 3938 - Software Design

第 章4 Dockerイメージとコンテナを活用するコマンドの理解
用途ごとに分類

タグは必須ではありません。また、リポジトリ
にIPアドレスやホスト名を指定すれば、Docker

Hub以外のリポジトリからもイメージを取得で
きます。
　タグを指定しなければ、自動的にlatestタ
グが付与されます。次の centos:latestと
centos:7のタグは、現時点では同じです。latest
は自動で最新版を取得できるので、とりあえず

　またコマンドの一覧は、Dockerのコマンドラ
イン・リファレンス注1からもご確認いただけます。

Dockerイメージの管理

　Dockerコンテナを実行するためには、Docker

イメージが必要です。イメージとは、イメージ・
レイヤの親子関係を積み重ねたものです。その
ため、イメージの操作コマンドは、イメージ・
レイヤに対する操作を意味します（表2、図1）。

docker pull

○書式とおもなオプション

・--all-tags、-a……�すべてのタグを一括ダ
ウンロード

　Docker Hubなどのレジストリ上にあるリポジ
トリから、イメージを取得（pull）します。通常
は、何も指定しなければDocker Hubからイメー
ジをダウンロードします。リポジトリ名とタグ
を指定すると、対象のイメージをダウンロード
します。なお、書式にある[]内のオプションと

docker pull [オプション] リポジトリ[:タグ]

注1） Dockerコマンドライン・リファレンス　 URL https://docs.
docker.com/engine/reference/commandline/

コマンド名 説明 頻出度

build
Dockerfileからイメージを
構築 ★★★

commit
コンテナのファイル変更内
容をイメージ化 ★★★

history イメージの構築履歴を表示 ★★
images ローカルのイメージを一覧 ★★★

import
tarアーカイブからイメージ
を作成 ★

inspect イメージの詳細情報を表示 ★★

load
tarアーカイブまたは標準入
力からイメージ作成（タグ付
き）

★

pull
Dockerレジストリからイ
メージやリポジトリをダウ
ンロード

★★★

rmi イメージを削除 ★★★

save
イメージを tarアーカイブ
として保存（タグ付き） ★

tag イメージにタグを付ける ★★★

 ▼表2　イメージ操作コマンド

レジストリ（Docker Hub）
削除したレイヤ
イメージ・レイヤ（読み込み専用）
コンテナ・レイヤ（読み書き可能）

 ▼図1　イメージ操作コマンドの関係

…

イメージ1の
リポジトリ

イメージ2の
リポジトリ

イメージnの
リポジトリ

…………

…

リポジトリ
commitbuild

history
inspect

images

tag

rmi

タグ

Tar Tar

タグ

pull

import save

load

Dockerfile

https://docs.docker.com/engine/reference/commandline/

40 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

使う場合には役立ちます。

・centosのlatestタグを持つイメージを指定

$ docker pull centos:latest

・centosの7タグを持つイメージを指定

$ docker pull centos:7

　ですが、イメージによっては頻繁なバージョ
ンアップや中身の変更により、いざ使いたいと
きに動かなくなってしまうという問題が起こり
得ます。そのため、検証用途以外であれば、タ
グを指定するよう習慣付けするほうが望ましい
でしょう。
　Docker Hub以外のレジストリを指定する場合
は、リポジトリ名の前にホスト名とポート番号
を付けます。たとえば、ホスト192.168.0.100の
ポート5000で動作しているレジストリにある
myimage:latestを取得する場合は、次のように
なります。

$ docker pull 192.168.0.100:5000/myimage ｭ
:latest

docker images

○書式

　ホスト上のイメージを表示するのがdocker

imagesです。イメージはリポジトリという単位
で管理されており、各イメージはバージョン番
号を表すタグを持っています。オプションを付
けずに実行すると、すべてのイメージが含まれ
るリポジトリとタグを一覧表示します。扱うリ
ポジトリが多くなった場合、オプションでリポ

docker images [オプション] [リポジトリ[:タ
グ]]

ジトリ名を指定すると便利です。

docker inspect

○書式

　イメージに対する詳細な情報を表示するコマ
ンドです。そのイメージがいつ作成されたか、
64文字のイメージIDなどの情報を返します。と
くに便利なのは、コンテナ実行時のデフォルト
のコマンドとパラメータの表示です。コンテナ
として実行しなくても、どのような役割を持つ
イメージなのかを確認できるため、デバッグや
メンテナンスに役立ちます。

docker history

○書式

　イメージがどのようなイメージ・レイヤの積
み重ねなのかを確認するコマンドです。自分の
使おうとしているイメージが、どのような過程
を経て作られたのかという情報と、各レイヤの
容量がわかります（図2）。

docker commit

○書式とおもなオプション

・-a……作者（author）の記録
・-m……コミット時のメッセージ

　正確に言うと、Dockerコンテナ用のイメー
ジ・レイヤをもとに、新しいイメージ・レイヤ

docker inspect リポジトリ[:タグ]

docker history [オプション] リポジトリ[:タグ]

docker commit [オプション] コンテナ名またはID
[リポジトリ[:タグ]]

 ▼図2　docker historyの実行例

$ docker history 8315978ceaaa
IMAGE CREATED CREATED BY SIZE COMMENT
8315978ceaaa 4 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0 B
<missing> 4 weeks ago /bin/sh -c #(nop) LABEL name=CentOS Base Ima 0 B
<missing> 4 weeks ago /bin/sh -c #(nop) ADD file:e5428f255dd7260252 194.6 MB
<missing> 3 months ago /bin/sh -c #(nop) MAINTAINER https://github. 0 B

Feb. 2017 - 4140 - Software Design

第 章4 Dockerイメージとコンテナを活用するコマンドの理解
用途ごとに分類

docker tag

○書式

　既存イメージに対して新しいタグを追加しま
す。1つのイメージIDに対して複数のタグを付
けられるため、ホスト上でのディスク容量は増
えません。イメージの部分はイメージ名か、イ
メージ用の「リポジトリ名 :タグ」、またはイメー
ジIDのいずれかを指定できます。

 イメージ名指定
$ docker tag nginx mynginx:1.0
 リポジトリ名:タグ指定
$ docker tag nginx:latest mynginx:1.0
 イメージID指定
$ docker tag abf312888d13 mynginx:1.0

○書式とおもなオプション

・-f……依存関係があっても強制的に削除

　イメージはホスト側のディスク容量を消費し
ますので、このコマンドで使わなくなったイメー
ジは削除しておきます。あるいは、不要なタグ
を削除する場合にも使えます。
　docker rmi実行時、コンテナ用のイメージ
を使っている場合に警告が出ます。ほかのイメー
ジから参照されている場合も、警告が表示され
ます。そのため、-fオプションで強制削除する
前に、エラー内容の確認が必要です。
　またdocker imagesコマンドと組み合わせ
ると、イメージを強制一括削除することもでき
ます。docker images -aqはすべてのイメー
ジ IDだけを画面に表示するという動作をしま

docker tag イメージ[:タグ] 新しいリポジトリ[:
タグ]

docker rmi [オプション] リポジトリ

を作成するコマンドです。コミット時はコンテ
ナが一時停止（paused）の状態になりますが、オ
プション（-p）を使うと、停止させないというこ
ともできます。

docker build

○書式とおもなオプション

・-f……�Dockerfileのパス（デフォルトは「パス
/Dockerfile」）

・-t……タグの指定
・--no-cache……�構築時にキャッシュを使わ

ない（デフォルトは有効）
・--pull……�常にレジストリから新しいイメー

ジをダウンロード

　イメージを自動構築するコマンドです。
Dockerfileの中にある命令を読み込みます。命
令1つごとに中間コンテナをバックグラウンド
で起動し、命令を処理し、イメージをコミット
します。このコマンドはキャッシュ機能が使え
るため、Dockerfileの命令に変更がなければ、
スムーズにイメージを構築できるコマンドです。

$ docker build -t myapp:latest .

　コマンド実行時、タグの指定-tは、ほぼ必須
のオプションです。またパスの指定では、通常
はDockerfileのあるカレント・ディレクトリを
指定します。あるいは、GitHubなどGitリポジ
トリやTarアーカイブの指定もできます（図3）。
　また、バッチ処理などでbuildの成功／失敗を
判断するときには、戻り値の確認が役立ちます。
正常であればecho $?の戻り値は「0」です。そ
れ以外の場合は数値のエラーを返します。

docker build [オプション] パス

docker rmi

 ▼図3　GitHubをパスに指定したdocker buildの実行例

$ docker build https://github.com/<リポジトリ>/<ファイル>.git

42 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

す。そのため、次のように実行すると、イメー
ジを逐次削除します。

$ docker rmi -f $(docker images -aq)

　docker rmiの次に出てくる$(<コマンド>)

の部分はシェルスクリプトの機能を利用して括
弧内のコマンドを実行した結果を変数展開しま
す。

Dockerコンテナの実行

　Dockerコンテナの実行とは、Dockerイメー
ジの中に含まれているファイルをコンテナ状態
で実行することです。
　Linuxカーネルの名前空間との分離（isolate）
により、ホスト上に存在する個々のプロセスや
ファイルシステムは、それぞれのコンテナで分
かれています。また、cgroup（control group）機

能によって、各プロセスに対してCPUやメモリ
などのリソースが割り当てられます。
　このコンテナの実行や停止が、Dockerを使う
うえでの中心的な操作となります。順を追って
理解していきましょう（表3、図4）。

docker run

○書式とおもなオプション

・-i……標準入力の有効化
・-t……疑似ターミナルの有効化
・-d……�バックグラウンド（デタッチド・モー

ド）で実行
・-P……�コンテナのポートをホスト側に自動で

割り当て（マッピング）
・-p <ホスト側ポート>:<コンテナ側ポート>

docker run [オプション] イメージ [コマンド]
[引数]

 ▼表3　コンテナ操作コマンド

コマンド名 説明 頻出度
attach 実行中のコンテナにアタッチ ★
cp コンテナ内のファイルをホスト側にコピー ★★
create 新しいコンテナの作成 ★
diff コンテナ内のファイルに対する変更を調査 ★★
events すべてのコンテナの操作状況（attach、commitなど）を一覧表示 ★
exec 実行中コンテナ内でコマンド実行 ★★
export コンテナのファイル階層を tarアーカイブに出力 ★
kill 実行中のコンテナをkillシグナルで停止 ★★
logs コンテナの標準出力を表示 ★★★
pause コンテナのプロセスを一時停止 ★
port 特定またはすべてのコンテナに対するコンテナの表示 ★
ps コンテナを一覧表示 ★★★
rename コンテナ名の変更 ★★★
restart 実行中のコンテナを再起動 ★★★
rm コンテナを削除 ★★★
run 新しいコンテナを実行 ★★★
start 停止中のコンテナを起動 ★★
stats リソース（CPU、メモリ、ネットワーク、ブロック I/O）を表示 ★★
stop 実行中のコンテナを停止 ★★★
top コンテナで実行しているプロセスを表示 ★★★
unpause 一時停止したコンテナの再開 ★
update コンテナの設定を更新 ★
wait コンテナ終了まで待機し、終了コードを表示 ★★

Feb. 2017 - 4342 - Software Design

第 章4 Dockerイメージとコンテナを活用するコマンドの理解
用途ごとに分類

パラメータを実行前に設定しておきたい場合は、
各コマンドを使います。

docker ps

○書式

　実行中のコンテナ一覧を表示するコマンドで
す。デフォルトでは実行中のコンテナ情報しか
表示しません。停止中のコンテナを含めて表示
したい場合はdocker ps -aと実行します。
　便利なオプションは-lです。これは直近で操
作したコンテナの情報を表示します。コンテナ
が停止／実行中にかかわらず情報を表示します
ので、作業時に役立ちます。

docker attachとdocker exec

　どちらも実行中のコンテナで操作するときに
使うコマンドです。しかし、操作対象のプロセ
スが異なります。
　docker attachはコンテナ内の「PID 1」のプ
ロセスに対して接続します。コンテナ実行時に
-iと-tオプションを指定しておけば、ログの
出力やキーボードからの入力を受け付けられま
す。このとき、　 　 +　 などを入力するとシグ

docker ps [オプション]

Ctrl C

……ポートを手動で割り当て
・-v [ホスト側パス:]<ボリューム名>

……ボリュームをコンテナに割り当て
・--rm……�コンテナ実行終了時、自動的にコン

テナを削除

　新しいDockerコンテナを作成し、起動するコ
マンドです。イメージ（リポジトリ名とタグ）を
指定すると、イメージ内のファイル階層に含ま
れているファイルを、Dockerが動作するホスト
上のプロセスとして起動します。
　なお、コンテナを実行するdocker runは複
数のコマンドの集合です。これは、次の3つの
コマンド実行時と同じ結果になります。

・docker pull……�ローカルにイメージがなけ
ればダウンロード

・docker create……�新しいコンテナ（用のイ
メージ・レイヤ）を作成

・docker start……�イメージ・レイヤに含ま
れるファイルをコンテナ
のプロセスとして実行

　イメージをダウンロードして、そのまま実行
するにはdocker runは便利なコマンドです。
実行する前にファイルをコンテナにコピーした
い場合や、イメージを取得する場合、起動時の

コンテナ内のプロセスやファイルシステム

ホストから
各コンテナを
管理・操作

コンテナの
PID 1を操作

コンテナ用
レイヤ作成

親子
関係

 ▼図4　コンテナ操作用コマンドの関係

イメージの
リポジトリレジストリ

top
pause

stop

kill

restartstart

createrun

attach

inspect

logs

ホスト上の
コンテナ
全体を管理

ps

stats

port

events

削除したレイヤ
イメージ・レイヤ（読み込み専用）
コンテナ・レイヤ（読み書き可能）

プロセス
（PID1）

追加
プロセス

exec

pull

rm

diff

44 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

ナルがPID 1に直接送信され、プロセスが停止
することがあるため注意が必要です。
　docker execはコンテナ内に新しいプロセス
を追加して実行します。docker attachとは
違って別のプロセスを追加しますので、デバッ
グ時には重宝するコマンドです。次は、コンテ
ナ内でbashを実行する例です。

$ docker exec -it <コンテナ> bash

docker logs

○書式とおもなオプション

・-f、--follow……表示し続ける
・--tail <行数>……末尾から指定した行を表示
・-t……タイムスタンプ表示

　コンテナの標準出力を確認するコマンドです。
docker attachを実行しなくても、プロセスの
出力やログを確認できます。何もオプションを
付けなければ、コンテナ起動時から今に至るす
べての情報を表示します。ログが多い場合は-f

と--tailの組み合わせが便利です。次は、直
近の10行目以降の情報を表示し続ける例です。

$ docker logs -f --tail 10 コンテナ

docker rm

○書式とおもなオプション

・-f……強制削除
・-v……ボリュームの削除

　コンテナを削除するコマンドです。コンテナ
作成時にコンテナ用のイメージ・レイヤを作成
すると、このレイヤを削除するまで、コンテナ
の情報は残り続けます。
　オプション-fはコンテナが実行中かどうかに
かかわらず、強制的にコンテナを削除します。

docker rm [オプション] コンテナ

また-vは、コンテナ起動時に作成したボリュー
ムも一緒に削除するコマンドです。ボリューム
はコンテナの作成、実行、削除から独立してい
るため、このように明示しないと削除できませ
ん。コンテナ削除時に残ったままのボリューム
はdocker volume lsで対象イメージを確認し
たあと、docker volume rmコマンドで削除で
きます。
　また、一括してコンテナを削除するには、次
のように複数のコマンドをまとめられます。

$ docker rm $(docker ps -aq)

　括弧内のコマンドdocker psには2つのオプ
ションが付いています。-a（--all）は実行中、
停止中を含む、すべてのコンテナを表示するた
めのオプションです。そして-q（--quite）は、
コンテナIDのみを表示します。
　つまり、docker ps -aqで実行中／停止中を
含めたすべてのコンテナIDを表示し、その出力
結果を変数としてdocker rm <コンテナID>を
実行するのと同じ状態を実現しています。
　なお、シェル上のエイリアス機能を使えば、こ
れらのコマンドを忘れても大丈夫です。図5のよ
うにコマンドを登録しておけば便利でしょう。

レジストリ操作関連
コマンド

　Dockerイメージを別のホストへ移動するには
レジストリ（registry）を通します。レジストリ
とはイメージを保管する場所で、一番有名なの
は、Docker Hubです。これはパブリックで、誰
でも利用可能なレジストリという位置付けであ
り、各種の公式イメージが配布されています。
ほかにも、ローカルで使うレジストリやDocker

Trusted Registry（トラステッド・レジストリ）
もあります。そのレジストリのイメージ送受信

docker logs [オプション] コンテナ

 ▼図5　エイリアス機能でdocker rmのコマンドを登録

$ alias drm='docker rm $(docker ps -aq)'
$ alias drmi='docker rmi -f $(docker images -aq)'

Feb. 2017 - 4544 - Software Design

第 章4 Dockerイメージとコンテナを活用するコマンドの理解
用途ごとに分類

イルを削除するまで認証が有効なため、注意が
必要です。docker logoutはDockerレジスト
リからログアウトするコマンドで、書式は次の
とおりです。
○書式

docker push

○書式

　レジストリにイメージを送信（push）します。
Docker Hubに送信する場合は、「ユーザ名/リ
ポジトリ」を指定します。そのため、送信前に
docker tagコマンドでユーザ名を含むリポジ
トリ名に変更します（図8）。

docker logout [サーバ]

docker push [オプション] リポジトリ[:タグ]

や、認証に関するコマンドを見ていきましょう
（表4、図6）。レジストリ操作関連コマンドのポ
イントは次の2点です。

・docker pullでイメージを受信
・docker pushでイメージを送信。ただし、
Docker Hubに送信する場合は事前にdocker

loginで認証が必要

docker loginとdocker logout

○書式

　認証機能付きのレジストリに接続するコマン
ドです。デフォルトではDocker Hubへのログ
インを試みますが、任意のレジストリを指定で
きます。
　ログインに成功すると（図7）、Docker Hubで
はdocker pushコマンドが利用可能になりま
す。また、認証時の情報は ̃/.docker/config.json

に格納されています。
　docker logoutコマンドを実行するか、ファ

docker login [オプション] [サーバ]

 ▼表4　レジストリ操作コマンド

コマンド名 説明 頻出度

login
Dockerレジストリにログ
イン ★★★

logout
Dockerレジストリからログ
アウト ★

pull
Dockerレジストリからイ
メージやリポジトリをダウ
ンロード

★★★

push
Dockerレジストリからイ
メージやリポジトリをアッ
プロード

★★★

search
Docker Hub上のイメージ
を検索 ★

イメージ・レイヤ（読み込み専用）

 ▼図6　レジストリ操作コマンドの関係

ローカルの
イメージ・リポジトリ

Docker レジストリ（Docker Hubなど）

リポジトリ リポジトリ

…

pull login logout push

 ▼図7　docker loginの実行例

$ docker login
Login with your Docker ID to push and pull images from Docker Hub. If you don't have a ｭ
Docker ID, head over to https://hub.docker.com to create one.
Username: <Docker Hubのユーザ名を入力>
Password: <パスワードを入力>
Login Succeeded

46 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

docker search

○書式

　コマンドライン上でDocker Hub上のイメー
ジを検索します。表示する情報は、「名前」「公
式なイメージであるかどうか」「スター数」のみ
です。詳細なドキュメントやタグ一覧の確認は、
ブラウザでDocker Hubの各リポジトリをご覧
ください。

システム管理用コマンド

　最後に、デバッグやシステム情報確認のため
の管理コマンドを紹介します（表5）。その中で
も重要なコマンドを2つ見ていきます。

docker version

　おもな用途は、Dockerクライアントとサーバ
のバージョン情報を確認するコマンドです。
Dockerはバージョンアップが頻繁ですので、
使っているクライアントとサーバのバージョン
に相違があれば、各種のコマンドやオプション
に相違が出てしまうこともあります。そのため、
利用前にはバージョン確認をお勧めします。

docker search [オプション] 検索語

　また、クライアントがサー
バに接続できるかどうかの確
認にも使えます。コマンド実
行後に、サーバのバージョン
番号ではなく、「Cannot con

nect to the Docker daemon.（デーモンに接続で
きない）」とエラーが出る場合は、デーモンが起
動しているかどうかや、/var/run/docker.sock

へのアクセス権限があるかどうか確認しましょ
う。

docker info

　Dockerサーバの情報を一覧表示します。実行
中や停止中のコンテナ数だけでなく、サーバ上
のメモリやディスク容量のほか、ストレージド
ライバなどのシステム情報を表示します。
　docker infoコマンドをよく使うのは、サー
バにセットアップした直後や、初めてログイン
する環境です。Dockerのデフォルト起動時のオ
プションはディストリビューションによって異
なります。また、サーバの設定がパフォーマン
スに影響を与える場合もありますので、役立つ
ことも多いでしょう。

◆　◆　◆
　Dockerのコマンドは多岐に渡りますが、それ
ぞれイメージの構築や実行のライフサイクルと
関係があります。重要なコマンド以外、すべて
のコマンドを覚える必要はありません。あとは
利用形態に合わせて、コマンドの詳細オプショ
ンの理解を深めれば、Dockerを自分の手足のよ
うに、効率的に使えるようになるでしょう。ﾟ

 ▼図8　 docker push前には、docker tagで名前を変更する

$ docker commit mynginx mynginxイメージ作成
$ docker tag mynginx zembutsu/mynginx <ユーザ名>/mynginxタグを付ける
$ docker push zembutsu/nginx 送信

コマンド名 説明 頻出度

dockerd
Docker デーモン（Docker
Engine）の起動や管理用 ★

info
さまざまなシステム情報を
表示 ★★★

inspect
コンテナやイメージに関す
る情報を表示 ★★★

version
Dockerクライアントとサー
バ両方のバージョン情報を
表示

★★★

 ▼表5　システム管理用コマンド

・Dockerコマンド・リファレンス（公式）

 https://docs.docker.com/engine/referen

ce/commandline/

・日本語訳

 http://docs.docker.jp/engine/reference/

commandline/

参考文献

https://docs.docker.com/engine/reference/commandline/
http://docs.docker.jp/engine/reference/commandline/

Feb. 2017 - 4747 - Software Design

第 章5

導入事例で見えてくる
Dockerの使いどころ

現場は何に悩み、何を解決したのか

 Author
川添 昌俊（かわぞえ まさとし）
面白法人カヤック

 Author
矢吹 遼介（やぶき りょうすけ）
面白法人カヤック

 Twitter
@acidlemon

 Twitter
@Konboi

この章では筆者が日々の開発において直面した開発サーバ上の検証環境の不足問題を、Dockerコンテナの導
入、そしてmirageというDockerコンテナの管理を便利にするミドルウェアの開発によって解決した話を紹介し
ます。

慢性化した検証環境不足

　筆者が担当しているチームではスマートフォ
ン向けゲームの開発／運用を行っています。チー
ム規模は全体で20～30人程度です。
　チーム内にはいくつかのサブチームがあり、
複数の開発ラインが並行で開発をしています。
検証環境が複数必要となるため、1つのサーバ
にdev01～10まで番号を振ったサブドメインの
検証環境を用意し、エンジニアがメンバーの依
頼を受けてブランチを切り替え、使用する運用
を行っていました。
　しかし、メンバーが増えるにつれ検証環境が
枯渇する時間と、各検証環境のgitブランチを切
り替える回数が増えました。この作業はデータ
ベースのマイグレーションやデプロイなど、サー
バサイドエンジニアの作業が必要不可欠です。
環境を切り替える回数が増大した結果、サーバ
サイドエンジニアのリソースが逼

ひっぱく

迫して開発に
遅延が発生するようになりました。
　この問題を打開するため、Dockerコンテナに
注目しました。Dockerコンテナに検証環境を入
れることができれば、環境を使い捨てることが
できます。切り替え作業が単純になり、サーバ
サイドエンジニアの手間を大幅に軽減できると
考えました。

Dockerの導入どころを
検討する

　Dockerは便利ですが、いきなりすべてを
Dockerにしていくのはなかなか馬力を必要とす
る作業が待っています。ある程度以上の規模の
プロダクトを開発するようなチームにDockerを
投入するためには、チームのエンジニア全員が
Dockerをある程度理解することが必要となりま
す。さらに、本番環境のデプロイにDockerを利
用する場合はインフラエンジニアもDockerに精
通していることが求められます。

開発環境の構築に利用する

　Dockerの利用を検討するような現場では、開
発マシンとしてはOS X（macOS）もしくはLinux

を利用しているはずです。Windowsを利用して
いても、おそらく仮想マシンで動かしたLinux

環境はあることでしょう。Dockerを利用しない
場合の開発環境構築は、おもに次のような手段
が一般的です。

・POSIX系OSの開発マシン上に直接環境構築
する

・開発マシン上で起動した仮想マシン上のLinux
に環境構築する

　前者の方法は構築が簡単な半面、開発マシン

48 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

のほうが気軽に試すことが可能です。また、開
発マシンがLinuxであれば、Dockerの動作環境
を満たしていれば新たにVMを起動する必要も
なくなり、オーバーヘッドが小さくなることも
挙げられます。

本番環境の構築に利用する

　開発環境をDocker化したら、次は本番環境で
す。しかしながら、筆者が所属する会社ではほ
ぼ本番環境でDockerを採用していません。現時
点では一部の社内サービスに採用するに留まっ
ているという状態です。
　なかなか採用が進んでいない理由としては、
リリース済みのモノリシックな巨大Webアプリ
ケーションをDocker化する労力が、得られるメ
リットに見合わないという点があります。筆者
のかかわるところで一番開発規模が大きいスマー
トフォン向けゲームのプロジェクトだと、22万
行程度のPerlコードに加え、依存パッケージが
400個程度あります。この規模のプロジェクト
だと、Dockerイメージを高頻度で作り直すのが
難しくなっています。
　元々デプロイにDockerや Immutable Infrast

ructureを使うことを前提としていないプロジェ
クトをDocker化するのは、インフラエンジニア
も巻き込んで進める必要があります。たとえば、
ゼロダウンタイムデプロイをどうするか、迅速
なロールバックをどうやるか、などなどDocker

を本番環境へ導入するにあたっての課題はたく
さんありますので、よく検討のうえで進める必
要があります。
　本番環境への導入はインフラ構築のトピック

を長く使っていると、開発環境のライブラ
リバージョンなどが異なる複数のプロジェ
クトを開発するのに苦労することが多くなっ
てきます。
　後者は前者の問題を回避するため、プロ
ジェクトごとに仮想マシン（VM）を用意して、
そのVMごとにそれぞれ環境を構築する方法
です。この方法はVM単位で環境を完全に分
け、ライブラリバージョンを独立に管理するこ
とができます。この方法は、Vagrantを使って
プロビジョニングまでを自動化するやり方で自
動化が可能です。
　VM別に環境を分けると、環境の削除はVM

を削除するだけで完了するため、他のプロジェ
クト用の環境に傷をつけることがありません。
ただし、各VMごとにLinuxカーネルなどのシ
ステム部分を仮想ディスク上に持つ必要がある
ため、ディスク効率が悪くなるというのがデメ
リットです。
　Dockerを開発環境の構築に利用する際のイ
メージは、仮想マシンを利用した環境構築に近
いです。仮想マシンを利用する場合、Vagrant

を使って、Linux VMの起動と必要な開発ツー
ルやライブラリをインストールするプロビジョ
ニング作業をセットにすると、効率的に環境を
構築できます。Dockerを利用する場合は、
Dockerfileでベースのイメージを指定し、必要
な開発ツールやライブラリをインストールして
開発環境用のコンテナを構築します（図1）。
　どちらも決められた手順により再現性のある
環境構築ができるというメリットは同じです。
再現性のある環境構築により、チームメンバー
間の環境差分が出ないようにできます。
　開発環境構築にDockerを利用するメリット
は、コンテナの起動速度と環境の変更の柔軟性
にあると筆者は考えます。開発環境のバージョ
ン変更などを行いたいときの実験的な操作は、
VMの再プロビジョニングが必要な仮想マシン
よりも、ダメだったときにコンテナごと捨てて
しまい、コンテナを起動しなおせばよいDocker

 ▼図1　環境構築における仮想マシンとDockerの比較

VM コンテナ

Docker Engine

System

VM コンテナ

Project-A
Project-A

Project-B
Project-B

System System

VMを複数立てる場合 Dockerを利用する場合

Feb. 2017 - 4948 - Software Design

第 章5 導入事例で見えてくるDockerの使いどころ
現場は何に悩み、何を解決したのか

が中心となるため、本章では開発環境の構築に
ついて深掘りしていきます。

アプリケーションコンテナ
とシステムコンテナ

　Dockerでコンテナを作る場合、どのような役
割のコンテナを作るかということを意識する必
要があります。コンテナの役割は、大きく分け
て2種類あります。

・単一のアプリケーションを動かすコンテナ
・複数のアプリケーションを動かすコンテナ

　Dockerはコンテナ起動時にDockerfileの
CMD行で指定した、もしくはdocker runで指
定したコマンドを1つだけ実行し、そのプロセ
スが終了するとコンテナを停止します。コマン
ドを1つしか実行できないため、基本的には前
者の単一のアプリケーションを動かすコンテナ
として構成するのが通常の使い方です。これを
アプリケーションコンテナと呼びます（図2左）。
　コンテナ起動時に実行するコマンドを工夫す
ると、1つのコンテナの中で複数のアプリケー
ションを動かすことも可能です。たとえばPerl

のProcletやRubyのForemanを利用し、Webア
プリ本体のほかにMySQLやRedisなどのミド
ルウェアを起動する、といったことができます。
このようなコンテナをシステムコンテナと呼び
ます（図2右）。
　アプリケーションコンテナとシステムコンテナ
にはそれぞれメリット／デメリットがあります。

アプリケーションコンテナの
メリット／デメリット

　アプリケーションコンテナのメリットは、ア
プリケーションから参照する永続化したデータ
（RDBやNoSQLに入ったデータ）をコンテナの
外に置くことで、コンテナの起動終了でデータ
が失われないことです。複数台のサーバを使う
Webサービスは基本的にデータベースサーバと
Webアプリケーションサーバは分けて配置しま
すので、そのような環境に向いています。

　また、コンテナイメージにはアプリケーショ
ンの動作に必要なファイルだけを格納すればよ
いため、システムコンテナと比較してコンテナ
イメージが小さくなります。コンテナが小さい
ということは、ネットワーク経由でコンテナイ
メージを配布するのにかかる時間が短くなると
いうことですので、デプロイにかかる時間が短
くなります。
　近年はマイクロサービスという考え方でアプ
リケーションを細かく分割するアーキテクチャ
を取り入れる会社もあり、そのような環境のデ
プロイにDockerを利用するというケースが多い
です。
　逆にデメリットとしては、アプリケーション
コンテナだけではサービスを動かすことができ
ないため、開発マシンで動かすにはデータベー
スなどを別途動かす必要があるという点です。
ストレージもDockerコンテナ化してdocker-

composerを利用して開発マシン上で動かす、も
しくはクラウド上のマネージドサービスに開発
マシンから直接接続するなどの方法で、ある程
度デメリットを軽減することができます。

システムコンテナの
メリット／デメリット

　システムコンテナのメリットは、コンテナイ
メージが1つあれば誰の手元でも動かすことが
できる点です。たとえば（Dockerに詳しくない）
デザイナーやプランナーの手元でも、コマンド
さえ実行すれば動かすことができます。現実的
にはなかなか難しいかもしれませんが、しくみ
を作ることで十分可能となるポテンシャルを秘
めています。また、コンテナを破棄するとすべ

 ▼図2　アプリケーションコンテナとシステムコンテナの違い

コンテナ コンテナ

コンテナ

Redis Redis

コンテナ

MySQL MySQL

アプリケーションコンテナ システムコンテナ

リクエスト リクエスト
MyProject MyProject

50 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

ステムコンテナについて説明しました。ここか
らは実際にDockerイメージを作って環境構築す
る例を紹介します。

最初の一歩

　リスト1に、Perlの開発環境用Dockerfileの
例を示します。
　このDockerfileは、開発マシン上にあるソー
スコードをDockerコンテナの/myappディレク
トリにマウントして、コンテナ内で動かすため
のコンテナイメージを作るものです。依存パッ
ケージの管理のため、パッケージマネージャを
インストールしています。
　パッケージマネージャでインストールするラ
イブラリが混ざらないようにするため、Carton

を利用します。一番原始的な開発環境としては
これでよいでしょう。
　Dockerfileの最後で、パッケージマネージャ
経由でコマンドが実行されるようENTRY

POINTを設定します。これを指定すると、
docker runするときに実行するコマンドはこの
ENTRYPOINT経由の起動となります。
　このコンテナイメージを、プロジェクト名を
タグに指定してビルドします。次の例では、プ
ロジェクトディレクトリの下にdockerディレク
トリを作成し、そこへDockerfileを配置してい
ます。プロジェクトディレクトリで次のコマン
ドを実行します。

$ docker build -t myapp -f docker/Dockerfile docker

　Dockerイメージのビルドが完了したら次のコ
マンドを実行します。

$ docker run -v $(pwd):/myapp -it myapp /bin/bash

　これで、コンテナ上でソースコードのあるディ
レクトリを/myappにマウントした状態でbash

を起動できました。carton installで、まず
依存ライブラリをインストールします。依存ラ
イブラリはマウントしたディレクトリにインス
トールされるため、プロジェクトディレクトリ

て消えますので、データを残す必要がない場面
で有効です。手元でちょっと動かして、動作確
認したらすぐ捨てる、といった用途にはうって
つけです。
　デメリットとしては、アプリケーションコン
テナよりもイメージサイズが大きくなるという
点があります。いろいろなミドルウェアが同居
したコンテナとなるため、この点は許容するし
かありません。

どちらを選択するか

　アプリケーションコンテナとシステムコンテ
ナ、どちらを選ぶべきかは以上のようなメリッ
ト／デメリットを勘案して決める必要がありま
す。どちらが優れている、劣っているというも
のではなく、用途に合わせて適切に選択するの
が大事です。
　本番環境ではスケールを考慮するとアプリケー
ションコンテナ一択となりますが、開発環境を
整備するという場面では、システムコンテナに
することで利便性を得られる場面もあります。
コンテナをどのぐらい長く使うかというライフ
サイクルの観点と、ライフサイクルが単一なの
か、長いものと短いものがあるのかによってア
プローチが変わります。
　たとえば、CI（継続的インテグレーション）に
よるテスト実行のように、コンテナ上でアプリ
ケーションおよびテスト用データベースを起動
し、テスト完了時に破棄するような用途であれ
ばシステムコンテナを作るのが向いています。
開発用サーバで起動しっぱなしにしておくコン
テナであれば、データベースのデータは引き継
ぎたいが、Webアプリは入れ替えたいという
ニーズに対するアプローチとしてアプリケーショ
ンコンテナを複数立ち上げてライフサイクルを
分けるという方法が適切です。

コンテナを用いた
開発環境整備

　ここまでで、アプリケーションコンテナとシ

Feb. 2017 - 5150 - Software Design

第 章5 導入事例で見えてくるDockerの使いどころ
現場は何に悩み、何を解決したのか

のある開発マシン側にインストールされます。
　あとは、ソース編集以外の作業はこのコンテ
ナ上で行いましょう。たとえば、Webアプリの
起動や、テストの実行などがそれに当たります。
　この方式で行うと、実行する環境はDocker上
で一意に決まるため、多人数開発にありがちな
「Macで開発する人とLinuxで開発する人がいる
ためsnapshotファイルがOSにより異なる内容
になり、Gitで管理できない」という問題を解決
することができます。本番環境にも snapshot

ファイルを使って環境を作ることができるため、
当たり前のことですがとても心強いです。

システムコンテナを作る

　前の節で作ったコンテナに、MySQLとRedis

をインストールしてCIができるようにしてみま
しょう。
　DockerfileにMySQLとRedisのインストー
ルを追加します。myuserユーザでサービスを起
動するため、sudoもインストールします。
　コンテナ起動時にmysqldとredis-serverを起
動する方法はいくつかあります。ここでは一番
簡単な、シェルスクリプトで起動する方法を紹
介します。

　リスト2のシェルスクリプトをdocker_entry.

shという名前で作成してdockerイメージに組み
込み、ENTRYPOINTに指定します。このスク
リプトをdockerディレクトリに配置して、実行
パーミッションを付与します。
　最終的にできたDockerfileはリスト3です。
　これを先ほどと同じ手順でdocker buildし、
docker runします。コンテナ起動時のコマン
ドにmysql -u rootを指定すると、コンテナ
内のMySQLサーバに接続できます。また、
redis-cliを指定するとコンテナ内のRedis

サーバに接続できます。
　コンテナ内がどうなっているか調べるため、
bashを起動してpstreeを実行してみた結果が
図3です。execによりpid=1となったbashの下
に、MySQLサーバとRedisサーバが子プロセス
としてぶら下がっています。
　これでアプリとともにMySQLサーバとRedis

サーバが稼働するシステムコンテナが出来上が
りました。開発マシンでCIをする、もしくは
Webアプリを立ち上げてみて動作確認してみる
などの用途にはこれで十分なことも多いです。
　システムコンテナは全部入りですので、開発
環境として立ち上げが簡単です。しかし、中に

 ▼リスト2　docker_entry.sh

#!/bin/sh

sudo service mysql start
sudo service redis-server start

exec carton exec $@

 ▼リスト1　Perl向けDocker�le

FROM perl:latest

RUN mkdir /myapp
VOLUME /myapp

RUN cpanm Carton
RUN useradd -m myuser

WORKDIR /myapp
USER myuser

ENTRYPOINT ["carton", "exec"]

 ▼リスト3　Docker�le最終版

FROM perl:latest

RUN mkdir /myapp
VOLUME /myapp

RUN cpanm Carton

ENV DEBIAN_FRONTEND noninteractive
RUN apt-get update && apt-get install -y ｭ
mysql-server redis-server sudo
RUN echo "myuser ALL=NOPASSWD: ALL" >> /etc/ ｭ
sudoers

COPY docker_entry.sh /usr/local/bin/docker_ ｭ
entry.sh

RUN useradd -m myuser
WORKDIR /myapp
USER myuser

ENTRYPOINT ["/usr/local/bin/docker_entry.sh"]

52 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

Redis、MySQLを起動し、ホストマシンへのア
クセスをコンテナ内のポートへマッピングして
います。
　docker-composeを使ったコンテナの起動と終
了は、サブコマンドupとstopを使用します。
　この設定ファイルでは、コンテナ群の再起動
を行ってもデータを保持できるため便利です。

開発サーバ上向けの
Dockerコンテナ作り

　開発サーバ上で利用するコンテナは「開発環境

入っているWebアプリケー
ションとストレージサービス
でライフサイクルを分けたい
というニーズが出てきたとき
には、システムコンテナでは
そのニーズを満たすことがで
きません。その場合、Webア
プリケーション、データベー
ス、セッションストレージなどとアプリケーショ
ンコンテナをいくつも立てる必要が出てきます。
次は、開発環境構築で複数コンテナを手際よく
立てる方法を紹介します。

docker-composeを使って
開発環境を構築する

　新しいプロジェクトに配属されたときやマシ
ンを新調したときなど、開発環境の構築のため
に必要なミドルウェア／ライブラリのインストー
ルを行う必要がある場面があります。その際、
バージョンを固定しているなどの理由で古いバー
ジョンを指定してインストールする必要がある
場合、手間となることがあります。
　また、複数のプロジェクトの開発を1つの開
発マシンで行う場合、ミドルウェアのバージョ
ンが異なるとプロジェクトごとに切り替える必
要があります。このような面倒ごとをコンテナ
を使用することで解決できます。

docker-composeの利用

　docker-composeは、Dockerコンテナを複数
利用するアプリケーションの構成をYAMLで定
義し、まとめて起動するアプリケーションです。
自身で作成したコンテナイメージと、Docker

Hub注1で提供されているコンテナイメージを一
度に起動し、連携させることが可能です。

docker-composeを使った開発環境の例

　リスト4は筆者が使っている開発環境の
docker-compose.ymlを一部修正したものです。

注1） URL https://hub.docker.com/

 ▼リスト4　docker-compose.ymlの例

version: '2'
volumes:
 mysql:
 redis:
services:
 mysql:
 image: mysql:5.6
 environment:
 MYSQL_ALLOW_EMPTY_PASSWORD: "yes"
 ports:
 - "3306:3306"
 volumes:
 - mysql:/var/lib/mysql
 redis:
 image: redis:2.8
 ports:
 - "6379:6379"
 volumes:
 - redis:/var/lib/redis
 perl-app:
 build: "./"
 working_dir: "/myapp"
 ports:
 - "5000:5000"
 volumes:
 - "/:/myapp"
 links:
 - "mysql:docker-mysql"
 - "redis:docker-redis"
 command: "carton exec plackup -r app.psgi"

 ▼図3　pstreeの実行結果

$ docker run -v $(pwd):/myapp -it myapp:latest /bin/bash
[ok] Starting MySQL database server: mysqld ..
[info] Checking for tables which need an upgrade, are corrupt or were ｭ
not closed cleanly..
Starting redis-server: redis-server.
myuser@af8b1e78dd42:/myapp$ pstree
bash-+-mysqld_safe---mysqld---16*[{mysqld}]
 |-pstree
 `-redis-server---2*[{redis-server}]

https://hub.docker.com/

Feb. 2017 - 5352 - Software Design

第 章5 導入事例で見えてくるDockerの使いどころ
現場は何に悩み、何を解決したのか

のスナップショット」として作成するのがオスス
メです。具体的には、Dockerfileで次のような
作業をしてコンテナイメージをビルドします。

・必要なミドルウェア、ライブラリのインストー
ル

・プロジェクトのgitリポジトリのclone
・プロジェクトで利用する言語の依存パッケー
ジのインストール

・データベースへのスキーマ適用

　Dockerコンテナを起動するときには環境変数
でブランチ名を渡します。起動シェルスクリプ
トで指定のブランチをチェックアウトし、依存
モジュールのインストールとスキーマ適用を行っ
てからWebアプリケーションを起動します。
　このようにするとコンテナ起動時の処理はコ
ンテナイメージへの差分アップデートという形
になるため、短時間で更新が終わります。差分
の量にもよりますが、1分程度で指定ブランチ
の内容で最新化したコンテナを起動できます。
これで、煩雑だった検証環境の切り替えがコン
テナ起動だけで済むようになりました。

検証環境を動的に
増やせるようにする

　ここまでで、Dockerコンテナを利用すること
で、開発サーバの検証環境切り替えが煩雑になっ

ていた問題を解決することができました。
　しかし、依然としてdev01～10までで枠が決
まっていて慢性的に枠不足となる問題を解決で
きていません。そこで、mirageを使うことで各
メンバーが必要な環境をDockerコンテナを使い
起動し任意のサブドメインを割り当て利用する
ことができるようになりました｡
　以降でmirageの詳細と設定とmirageの運用
におけるTipsについて紹介します｡ 任意のサブ
ドメインを特定のコンテナと結びつけることがで
きるmirageというミドルウェアを開発しました。

mirageとは

　mirageはDockerの利用に特化したリバース
プロキシサーバです。APIおよびWebインター
フェースでDockerコンテナを起動／停止し、指
定のサブドメインへのトラフィックをDockerコ
ンテナにルーティングする機能を持っています。
コンテナの起動時には、サブドメインのほかコ
ンテナに渡す任意の環境変数を指定することが
できます。
　カヤック社内ではChatOpsを活用しており、
mirageをSlack上のBotからAPI経由で呼び出
して利用しています。

mirageの導入

　nginxからmirageを通してコンテナへリバー
スプロキシする手順を説明します。図4の構成
を構築します。mirageのインストールはGitHub

上の公式サイト注2を参照してください。
　mirageはデフォルトでは8080ポートを開い
て起動します。<起動しているマシンのIP>

:8080にブラウザでアクセスすると、mirageの
ダッシュボードを表示します。問題なく起動し
ていれば、ダッシュボードはコンテナ起動ボタ
ンおよびコンテナリストが確認できます｡
　また、APIを利用できます。図5はmirageで
管理しているコンテナリストを取得するAPIの

注2） URL https://github.com/acidlemon/mirage

 ▼図4　mirageを利用した開発サーバ環境の構成図

*.mirage.example.net

Docker

port:5010

Container

port:5010

Container

port:5010

Container

port:5000

port:80

mirage

nginx

https://github.com/acidlemon/mirage

54 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

あります。
　mirage自身はサービス化の機能を持たないた
め、ユーザが何らかの方法でサービス化する必
要があります。参考までに､ 筆者の環境では
daemontoolsを利用してサービス化を行ってい
ます。
　次に、nginxからmirageへリバースプロキシ
する設定をします。
　mirageがサブドメインに対応するコンテナへ
リクエストを転送するので、nginxはサブドメイ
ンをワイルドカードにしてリクエストを受け付
けて、mirageに転送します。

mirageの高度な使い方

　mirageは開発当初シンプルなリバースプロキ
シでしたが、現場で使い込むにつれて機能が増
えていきました。現在では、次のような使い方
ができます。

・複数ポートをListenしてコンテナの複数のポー
トにマッピングする

　これはWebアプリ本体と管理画面を1つのコ
ンテナに別ポートで建てるときに便利です。

・コンテナ内から外部DBにサブドメインを含
むDB名で接続する

　mirageはコンテナ起動時に環境変数SUB

DOMAINを設定します。コンテナ内でこれを利
用してDB名を生成することで、サブドメイン
ごとに異なる外部DBへ接続できます。

さいごに

　本章ではDockerを使った開発環境の構築につ
いて紹介しました。一人で複数のプロジェクト
を受け持つ人、多人数で1つのプロジェクトを
開発する人、それぞれに採用するメリットがあ
ります。開発環境であれば導入のハードルが低
いので、ぜひお試しください。ﾟ

実行結果です。最初は起動しているコンテナが
ないため、空の値のJSONが返ります。

mirageの設置

　mirageの設定ファイルを編集し、nginxのバッ
クエンドに設置します。例として設定するホス
トをmirage.example.netとします。適宜読み
替えてください。

・APIおよびWebインターフェースのエンドポ
イントをweb.mirage.example.netに設定

・*.mirage.example.netへのアクセスがmirage
にきたら該当のコンテナにリバースプロキシ

・5000番ポートへのアクセスをコンテナの
5010番ポートへプロキシする

・起動時に使用されるコンテナのデフォルトイ
メージはmyapp:latestを使用する

　このような環境になる設定ファイルは、リス
ト5のとおりです。
　Docker APIの呼び出し方法がUnix Socket以
外の場合は、endpointの部分を変更する必要が

 ▼リスト5　mirageのcon�g.yml

host:
 webapi: web.mirage.example.net
 reverse_proxy_suffix: .mirage.example.net

listen:
 foreign_address: 127.0.0.1
 http:
 - listen: 5000
 target: 5010

docker:
 endpoint: unix:///var/run/docker.sock
 default_image: myapp:latest

parameters:
 - name: branch
 env: GIT_BRANCH
 required: true
 rule:

 ▼図5　APIでmirageにアクセスしたところ

$ curl <起動しているマシンのIP>:8080/api/list
{"result":[]}

Feb. 2017 - 5555 - Software Design

第 章6

Linux Containerの歴史としくみ
しっかりと基礎を固める

 Author
花高 信哉（はなたか しんや）　
㈱インターネットイニシアティブ

これまでDockerの使い方をひととおり見てきましたが、コンテナ型仮想化技術と言われるところの、「コンテナ」
というしくみについても本章で確認しておきましょう。コンテナ技術そのものは、Unix、そしてLinuxそのもの
の発展とともに考えられてきた便利なしくみです。

　Dockerは優れたツールでコンテナのしくみに
ついて詳しく知らなくても利用できるのですが、
技術者としては内部のしくみがどのようになっ
ているのか気になるところです。しくみを知っ
ていればトラブルに遭遇したときにも原因を追
求したり、問題を回避したりできるかもしれま
せん。ということでLinuxのContainer機能に
ついて、歴史としくみを簡単に紹介します。

コンテナと
通常の仮想サーバの違い

　XenやKVMのような通常の仮想サーバとコン
テナ型の仮想サーバの違いについてもう一度確
認してみましょう。図1において上の2つが通
常の仮想サーバ、下の2つがコンテナの例になっ
ています。
　通常の仮想サーバではエミュレータとかハイ
パーバイザなどと呼ばれる仮想ハードウェアを
提供するためのソフトウェアを使い、その上で
仮想サーバが実行されています。それに対して
コンテナは、1つのカーネルの上に作られた隔
離環境として実現されています。同じカーネル
内ですべてが動いているため、余分なリソース
を必要とせず最適なリソース配分が可能なこと
や、オーバーヘッドがないおかげで軽くて速い
などの特徴があります。

歴史からひもとくコンテナ

chrootから始まった

　まずは少しさかのぼってコンテナのしくみの
歴史について見てみましょう（表1）。最初のプ
ロセスを隔離するしくみは 1979年にUnix

System 7に導入された「chroot」です。

 ▼図1　仮想サーバとコンテナ型仮想サーバの違い

APP

OS基盤

LIB

init

カーネル

OS基盤

init

カーネル

ハイパーバイザ

ハードウェア
ハイパーバイザ方式

(Xenなど)

APP

OS基盤

LIB

initOS基盤

カーネル

init

ハードウェア
コンテナ方式

(サーバコンテナ)

APP

LIB OS基盤

カーネル

init

ハードウェア
コンテナ方式

(アプリコンテナ)

LIB

init

OS基盤

カーネル

エミュレータOS基盤

init

カーネル

ハードウェア
エミュレータ方式

(KVMなど)

APP

56 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

うことができ、IPアドレスを隔離環境に渡すこ
とで内部でWebサーバなどを自由に起動できる
ようになりました。

Linuxでの取り組み

　それから少し遅れて2001年ごろに、Linuxで
も jailのような軽量サーバ機能を提供したいと
いう目的で開発されたのが、Linux-VServerで
す。これはLinuxカーネルへのパッチとして開
発されており、FreeBSDの jailとほぼ同様の機
能を持っていました。
　同じころに商用のVirtuozzoが開発・販売さ
れています。これは商用だけあって高機能で、
ユーザ空間、ネットワーク空間、プロセス空間
などの必要なすべての機能を分離し、リソース
制限などの機能も備わったコンテナ型の仮想化
として十分なものでした。
　2005年にVirtuozzoのオープンソース版とし
て公開されたのがOpenVZです。公開後は jail

やLinux-VServerなどに代わって、VPS（Vir

tual Private Server）などの提供に広く使用され
るようになりました。

標準カーネルへの統合へ

　Linux-VServerもOpenVZも標準カーネルへ
の改造パッチとして提供されていたため、バー
ジョンアップ作業などには余計な手間がかかり
ました。そのため広く使われるようになると、
標準カーネルにこれらの機能を取り込みたいと
要望されるようになりました。
　しかし、OpenVZのパッチはあまりにも巨大
でそのまま統合するには無理がありましたし、
コードも自由度のない専用のものでLinuxカー
ネルの開発者たちを満足させるものではありま
せんでした。それでカーネル開発者たちはコン
テナ機能を小さな機能ごとに分解整理して、もっ
と汎用性のある形で実装しなおす方針を採用し
ました。
　こうして「Namespace」と「CGROUP」という
しくみが実装されていきました。表1の年表を

　これはプロセスごとにルートディレクトリの
位置を変更し、それより上のディレクトリやファ
イルにアクセスできなくする機能です。アクセ
スできるファイルを制限してセキュリティを確
保したり、標準とは違うライブラリを置いて独
自の開発環境や運用空間を作るなどいろいろな
面で活躍しました。
　ただchrootは、root権限があれば簡単に抜け
出せるため一般ユーザしか閉じ込めることがで
きず、ファイルシステム以外のリソース（たとえ
ばプロセスとかネットワークとか）には自由にア
クセスできるため、隔離としては不十分でした。

FreeBSDのjail

　大きな進歩は1998年ごろからFreeBSDに実
装が開始された jailシステムから始まりました。
これはchrootの考え方を大幅に進めて、ファイ
ルシステムだけでなくプロセス空間や管理者
（root）権限の一部を分離する機能です。ユーザ
は隔離空間の中でroot権限を持つように振る舞

年 仮想化機能の登場
1979 chroot［Unix System 7］
1998 jail［FreeBSD］
2001 Linux-VServer（パッチ）
2001 Virtuozzo（商用）
2002 Mount Namespace
2003（Xen 1.0パッチ）
2005 OpenVZ（パッチ）
2005 Solaris Container［Solaris 10］
2006 UTS Namespace
2007（KVM統合）
2008 CGROUP（cpu、memory、device）
2008 User Namespace
2008 PID Namespace
2008 Network Namespace
2008（LXC）
2009 CGROUP（freezer、net_cls）
2010（Xen/pvops統合）
2011 CGROUP（blkio、perf_event）
2012 CGROUP（net_prio、hugetlb）
2013 User Namespaceの改修
2013（Docker、systemd-nspawn）

 ▼表1　コンテナにまつわる主な技術の年表

Feb. 2017 - 5756 - Software Design

第 章6 Linux Containerの歴史としくみ
しっかりと基礎を固める

見ていただくと、KVMやXenなどの仮想サーバ
機能の実装と並行して、NamespaceとCGROUP

が順に実装されていったのがわかると思います。
　そして2013年のUser Namespaceの改修によ
り、Linuxカーネルのコンテナ機能が一通りそ
ろいました。それを受けて2013年からDocker

を始めとするさまざまなコンテナツールが次々
と登場してきたため、この年がコンテナ元年な
どと呼ばれたりします。

名前空間の分離機能：
Namespace

　それでは具体的にLinuxのNamespace機能に
ついて見てみましょう。これは文字どおりプロ
セスごとの名前空間を分離する機能で、表2の
ように複数の名前空間から構成されています。

mount namespace

　まず最初のmount namespaceですが、ファイ
ルシステムのマウントをプロセスごとに別にし
て見せる機能です。本来OS上のすべてのプロ
セスは同じファイルシステムを参照しています
が、マウント名前空間を別にすると、あるプロ
セスからはマウントしているように見えるのに、
別のプロセスからはマウントしていないように
見せることができます。この機能は2002年に実
装されたもので、コンテナシステムを直接目的
としたものではなく、ファイルシステムの柔軟
な利用を意図したものでした。

uts namespace

　Linuxカーネルの開発者たちはコンテナシス
テムの実装を計画したときに、このmount name

spaceのやり方を採用することにしました。そ
の方針が決まっていち早く実装されたのがuts

namespaceで、プロセスごとにホスト名を別に
することができます。utsというのはUnix Time-

sharing Systemの略で、伝統的にUnixのホスト
名を格納する構造体がutsnameと呼ばれていた
ため、この名前になっています。

ipc namespace

　ipc namespaceは共有メモリ、セマフォ、メッ
セージキューなどのプロセス間通信（Inter-Pro

cess Communication）を分離する機能です。同じ
名前空間に所属するプロセスどうしは互いに通
信できますが、別の名前空間に所属するプロセ
スとは通信できなくなります。

user namespace

　少し遅れてユーザ ID（UID）とグループ ID

（GID）の名前空間を分離するuser namespaceが
実装されました。これにより隔離空間内で外部
とは別のUIDとGIDを持つことができるように
なります。また外部と内部でマッピングを指定
することができます。
　このユーザ名前空間の特徴は管理者権限の移
譲にあります。Unix系のOSではUID 0はスー
パーユーザ（root）と呼ばれ全特権を持っていま
すが、名前空間の内部でUID 0を割り当てられ
ると管理者特権を行使できるようになります。
この権限はあくまでも隔離空間の中でのみ有効
で、何らかの手段で外部に脱出したとしてもそ
こでは特権は利用できません。

pid namespace

　続けてプロセス ID空間を分離するpid name

spaceが実装されました。この名前空間には親
子関係があり、親の名前空間からは子供のプロ
セスを見ることができますが、子供から親のプ
ロセスは見えません。そして子供の名前空間の

名前 カーネル 分離する対象
mount 2.4.19 ファイルシステムのマウント
uts 2.6.19 ホスト名、ドメイン名
ipc 2.6.19 System V IPC、POSIX message

queue
user 2.6.23 ユーザ ID、グループ ID
pid 2.6.24 プロセス ID
net 2.6.24 ネットワークデバイス、プロト

コルスタック
cgroup 4.6 CGROUP

 ▼表2　Namespaceの名前空間一覧

58 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

unshare()、setns()、およびclone()を使用します。
新しく作られたプロセスは親プロセスと同じ名
前空間に所属していますが、引き数で名前空間
の種類を指定してunshare()システムコールを呼
び出すことにより、新しい名前空間を作成して
そこに移動できます。名前空間の中にいるプロ
セスがすべて終了すると、その名前空間は自動
的に削除されます。
　各プロセスが現在所属している名前空間は

/proc/<プロセスID>/nsディレクトリ以下にシ
ンボリックリンク形式で読み取ることができま
す。たとえば実行中のシェルの名前空間は、図

2のようにして確認できます。
　名前空間を使っていなければすべて数字が init

（/proc/1/ns）のものと一致しますが、名前空間
が別になっていれば違う数字になります。psコ
マンドのオプションでも名前空間を確認できま
す。たとえば、uts namespaceならば次のように
なります。

$ ps -o pid,utsns,args
 PID UTSNS COMMAND
 5047 4026531838 bash
 5071 4026531838 ps -o pid,utsns,args

　新しい名前空間ではなく既存の名前空間へ移
動するにはsetns()システムコールを使用します。
移動先は上記の/proc/<プロセス ID>/ns/配下
を指すファイルディスクリプタで指定します。
　clone()はLinux版の多機能 fork()で、スレッ
ドを作成するなどいろいろな機能がありますが、
新しい名前空間を作成してその中でプロセスや
スレッドを作成することもできます。
　以上のように名前空間はプロセスの属性とし

中 で は プ ロ セ ス ID

（PID）が1から順に振ら
れ始めます。
　UnixではPID 1のプ
ロセスは initプロセスと
呼ばれ、親が死亡して
孤児になったプロセス
を引き取って親になり
ます。そして initが終了することでOS自体が停
止します。プロセスID名前空間の中で最初に起
動して内部でPID 1になるプロセスも、この孤
児を引きとる役割が割り当てられています。そ
のプロセスが終了すると名前空間内にいる全プ
ロセスが終了します。

net namespace

　net namespaceはネットワークデバイスを隔離
します。個々のネットワークデバイスは1つの
名前空間にしか所属できないため、子供に渡し
たデバイスは親からはアクセスできなくなりま
す。ネットワーク名前空間では、IPv4や IPv6

などのプロトコルスタック（IPアドレス、ポー
ト番号、ルーティングテーブル、フィルタ情報
など）も分離します。これにより同じ80番ポー
トを listenしたり、コンテナごとに別のルーティ
ングをしたりできます。

cgroup namespace

　最後のcgroup namespaceは最近実装されたも
ので、後で説明するCGROUP機能を分離しま
す。コンテナ内でさらにコンテナを実行したい
ような場合に使用します。

namespaceの特徴と実装

　Linuxの名前空間はプロセス単位で個別に指
定することができます。全部の名前空間を分離
してコンテナ型仮想サーバを作ることもできま
すし、一部だけを別の名前空間にすることもで
きます。
　名前空間の操作には専用システムコール

 ▼図2　実行中のシェルの名前空間の確認

$ ls -l /proc/$$/ns
lrwxrwxrwx 1 root root 0 Nov 15 21:11 cgroup -> cgroup:[4026531835]
lrwxrwxrwx 1 root root 0 Nov 15 21:07 ipc -> ipc:[4026531839]
lrwxrwxrwx 1 root root 0 Nov 15 21:07 mnt -> mnt:[4026531840]
lrwxrwxrwx 1 root root 0 Nov 15 21:07 net -> net:[4026531969]
lrwxrwxrwx 1 root root 0 Nov 15 21:07 pid -> pid:[4026531836]
lrwxrwxrwx 1 root root 0 Nov 15 21:07 user -> user:[4026531837]
lrwxrwxrwx 1 root root 0 Nov 15 21:07 uts -> uts:[4026531838]

Feb. 2017 - 5958 - Software Design

第 章6 Linux Containerの歴史としくみ
しっかりと基礎を固める

て実装されているため、カーネルから見れば個々
のプロセスが initなどほかのプロセスと同じ名
前空間で実行されているか、別の名前空間で実
行されているかの違いに過ぎません。そのため
実行にあたってオーバーヘッドがほぼ存在しな
いのが大きな利点です。

namespaceを試してみる

　実際にnamespaceを試してみましょう。名前
空間を作成するツールにはLXCや systemd-

nspawnやrunCなどいろいろとあるのですが、
今回は最も単純なunshareコマンドを使ってみ
ることにします。
　unshareコマンドは先に説明したunshare()シ
ステムコールを叩く単純なツールで、dmesgや
mountなどのLinux標準ツールを収容している
util-linuxパッケージに含まれているため、ほと
んどのLinuxディストリビューションで最初か
らインストールされています注1。
　まずは単純な uts namespaceを試してみま
しょう。

hostname
base
unshare --uts
 ↑uts namespaceを作成してその中でシェルを実行
hostname
base ←最初は外部のホスト名を引き継いでいる
hostname in-container
 ↑名前空間の中でホスト名の変更
hostname
in-container ←ホスト名が変わっているけど
exit ←名前空間を抜けると
hostname
base ←変わっていない

　lsnsコマンドが使えれば、次のように名前空
間の一覧が確認できます注2。lsnsが使えない場
合は前述のpsのオプションなどで対応してくだ
さい。

unshare --uts
echo $$
24540
lsns
 NS TYPE NPROCS PID USER COMMAND
4026531836 pid 301 1 root init [3]
4026531837 user 300 1 root init [3]
4026531838 uts 302 1 root init [3]
4026531839 ipc 305 1 root init [3]
4026531840 mnt 304 1 root init [3]
4026531857 mnt 1 47 root kdevtmpfs
4026531957 net 300 1 root init [3]
4026532478 uts 2 24540 root /bin/bash
 ↑新しくできた
exit

　加えてuser namespaceも分離してみましょ
う。権限がわかりやすいよう今回は一般ユーザ
から実行し、--map-root-userをオプションに
つけて起動したユーザを、コンテナ内でrootに
マッピングしてみます。

$ hostname
base
$ id
uid=1001(guest) gid=1000(guest)
$ unshare --uts --user --map-root-user
 ↑名前空間を作成してUID 0にマップ
id ←プロンプトが # に変わっている
uid=0(root) gid=0(root) ←rootになっている
cat /etc/shadow ←でも外部ではrootではないので
cat: /etc/shadow: Permission denied
 ↑権限のないファイルは読むことはできない
hostname in-container ←ホスト名の変更はできる
hostname
in-container
exit
$

　uts namespaceが別になっているため、変更さ
れるのはコンテナ内部のホスト名のみなので内
部の root権限で変更できるというわけです。
--map-root-userオプションを使用する代わり
に、親の名前空間から/proc/<プロセス ID>/

uid_mapや /proc/<プロセス ID>/gid_mapに
「内部の ID　外部 ID　個数」という形式で書き
込み、直接マッピング情報を指定することもで
きます。

注1） コンテナまわりの機能やツールは最近になってどんどん
追加／拡張されたものなので、使用しているディストリ
ビューションによっては採用しているカーネルやutil-linux
のバージョンが古く、すべての機能が使えない可能性も
あります。

注2） 新しいutil-linuxが導入されているUbuntu 16.10以降、
Fedora 24以降などが必要です。

60 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

らで説明します。
　cgroupの機能はコントローラとかサブグルー
プと呼ばれる複数のリソース管理機能からなっ
ています。コントローラには表3のようなもの
が存在しています。

cgroupの特徴と実装

　cgroupはプロセスをグループ化する機能と、
そのグループごとにリソースを割り当てたり、
利用状況をレポートしたりする機能からなって
います。
　cgroupを使うと自由にプロセスを集めてグ
ループ化することができ、任意のタイミングで
グループにプロセスを追加したり削除したりで
きます。さらにグループの中にグループを作っ
て、グループを階層化することができます（図

3）。内のグループに所属しているプロセスは、
同時に外のグループにも所属しているとみなさ
れます。
　このような階層化された構造を扱うのにぴっ
たりのしくみがUnixにはあります。ファイルシ
ステムです。cgroupのインターフェースはシス
テムコールではなく/procや/sysなどと同じよ
うな仮想ファイルシステムとして実装されてお
り、次のファイルシステムへのアクセス手段で
操作することができます。

リソース管理機能：
CGROUP

　次はコンテナ機能のもう1つの重要な要素
CGROUP（control group）について見てみま
しょう。Namespaceがプロセスを隔離する機能
だったのに対して、CGROUPはプロセスのリ
ソースを管理するための機能です。
　CGROUPにはLinux 2.6.24から実装が開始
されたバージョン1と、Linux 3.10から実装が
開始されたバージョン2がありますが、今のと
ころほとんどのディストリビューションではバー
ジョン1を使用していますので、本稿ではそち

 ▼表3　CGROUPのコントローラ一覧

名前 カーネル 機能
cpuacct 2.6.24 CPUの利用時間をレポートする
cpu 2.6.24 CPUの利用時間を重み付きで配分したり上限設定する
cpuset 2.6.24 使用するCPUコアとNUMAメモリを指定する
memory 2.6.25 メモリやスワップ使用量を制限したりOOM Killerの動作を制御する
device 2.6.26 デバイスファイルの書き込み、読み込み、作成などの操作を禁止する
freezer 2.6.28 プロセスをまとめて一時停止したり再開する
net_cls 2.6.29 ネットワークパケットにラベルを付けて、パケットフィルタをしたり、トラフィック制御

（tc）で帯域制御したりする
blkio 2.6.33 ブロックデバイス（ディスク）に対する I/Oを重み付きで配分したり上限設定する
perf_event 2.6.39 perfコマンドを使用してコンテナのパフォーマンスモニタリングする
net_prio 3.3 ネットワークパケットに優先度を付加して、トラフィック制御（tc）で送出順指定や帯域制

御する
hugetlb 3.5 連続した巨大メモリ領域（Huge Page）の確保量を制限する
pids 4.3 プロセス数の上限を設定する。最近実装された機能で新しいカーネルでのみ利用可能

 ▼図3　cgroupによるグループの階層化例

group-A
process-1
process-2

group-C
process-5

group-B
process-3
process-4

Feb. 2017 - 6160 - Software Design

第 章6 Linux Containerの歴史としくみ
しっかりと基礎を固める

・グループの作成 ⇒ ディレクトリを作成
・グループの削除 ⇒ ディレクトリを削除
・プロセスの移動 ⇒ 特殊ファイルへの書き込み
・設定の書き込み ⇒ 特殊ファイルへの書き込み
・情報の読み出し ⇒ 特殊ファイルの読み出し

　cgroupはコンテナ以外でも任意のプロセスの
集まりに対してリソースの管理ができるように
なっており、デーモンやKVMの仮想サーバの
リソースを制限するなど多目的に使えます。

cgroupを試してみる

　それではcgroupを実際に使ってみましょう。
cgroupの使用には特別なツールは必要ありませ
ん。対応しているLinuxカーネルがあれば利用
できます。カーネルがどのcgroupをサポートし
ているかは/proc/cgroupsを見れば確認できま
す（図4）。
　cgroup操作用の仮想ファイルシステムは/sys

/fs/cgroups以下にマウントする決まりになっ
ています。最近のディストリビューションなら
ば最初からマウントされているはずですが、な
ければ図5のような感じでマウントしてくださ
い。通常はこのように、コントローラごとに個
別のグループを管理できるよう別々にマウント
します。
　/proc/<プロセスID>/cgroupを見れば個々の
プロセスが、現在どのcgroupに所属しているか
確認できます（図6）。
　比較的単純なcpusetを実際に使ってみましょ
う。これは複数のCPUコアがある機材でプロセ
スの使用可能なCPUコアを制限できます。
　次のようにすると、このシェルおよび子孫の
プロセスはcpu 0、1、2、3の4個のみを使用す
るようになります。

cd /sys/fs/cgroup/cpuset
mkdir test
 ↑グループtestをcpusetに作成
echo 0-3 > test/cpuset.cpus
 ↑CPUコア0-3の4個に設定
echo 0 > test/cpuset.mems
 ↑メモリをNUMA 0に設定
grep cpuset /proc/$$/cgroup
6:cpuset:/ ←今シェルは / にいる
echo $$ > test/cgroup.procs
 ↑このシェルをtestに移動
grep cpuset /proc/$$/cgroup
6:cpuset:/test ←確かにtestに移動している
cat test/cgroup.procs
15976 ←シェルとプロセスID
16177 ←catのプロセスID

 ▼図4　/proc/cgroupsの表示例

$ cat /proc/cgroups
#subsys_name hierarchy num_cgroups enabled
cpuset 6 1 1
cpu 5 86 1
cpuacct 5 86 1
blkio 11 86 1
memory 9 202 1
devices 10 86 1
freezer 3 1 1
net_cls 4 1 1
perf_event 2 1 1
net_prio 4 1 1
hugetlb 8 1 1
pids 7 87 1
$

 ▼図6　 個々のプロセスがどのcgroupに所属している
かの確認例

$ cat /proc/$$/cgroup
11:blkio:/user.slice
10:devices:/user.slice
9:memory:/user.slice
8:hugetlb:/
7:pids:/user.slice/user-1000.slice
6:cpuset:/
5:cpu,cpuacct:/user.slice
4:net_cls,net_prio:/
3:freezer:/
2:perf_event:/
1:name=systemd:/user.slice/user-1000.ｭ
slice/session-c2.scope
$

 ▼図5　/sys/fs/cgroups以下へのmount例

mount -t tmpfs tmpfs /sys/fs/cgroup
#
mkdir /sys/fs/cgroup/cpu
mount -t cgroup -o cpu cgroup /sys/fs/cgroup/cpu
#
mkdir /sys/fs/cgroup/cpuset
mount -t cgroup -o cpuset cgroup /sys/fs/ ｭ
cgroup/cpuset
 ...略...

62 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

1. コンテナのイメージ形式

　コンテナには速いだけでなく、イメージのサ
イズが小さくて済むという利点があります。
Dockerが標準のイメージ形式を決めたことによ
り、別のサーバへコンテナを持ち運んだり、複
製、保管、共有するなどポータビリティの高いシ
ステムが実現できます。それまではコンテナ技
術に詳しくないと使えませんでしたが、Docker

によりほかの人の作成したイメージを使って誰
でも簡単にコンテナが使えるようになりました。

2. イメージの作成ツール

　Dockerはイメージの作成も簡単にしました。
既存のイメージを入手してきて改変してセーブす
れば、誰でも簡単に新しいコンテナイメージを作
成できます。Dockerイメージは差分形式で保存
できるため、イメージサイズも小さくできます。

3. Docker Hub

　そしてこれらのコンテナイメージをネット上
で交換したり共有したりできるように、Docker

Hubというイメージ管理サービスを提供してい
ます。このDocker Hubを中心としたコンテナ
イメージ管理のエコシステムを持っていること
が、Dockerの最大の特徴です。

◆　◆　◆
　このようにLinuxカーネルによって柔軟なコ
ンテナ環境が使えるようになったところへ
Dockerが登場したことで、コンテナ利用の障壁
が下がり、コンテナの普及が爆発的に広まるきっ
かけとなりました。ﾟ

　OpenSSLを使って暗号化速度のベンチマー
クをしてみましょう。

openssl speed rsa -multi 4 2>&1 | tail -5
 sign verify sign/s verify/s
rsa 512 bits 0.000012s 0.000001s 86956.5 1083333.3
rsa 1024 bits 0.000034s 0.000002s 29795.5 422222.2
rsa 2048 bits 0.000231s 0.000007s 4324.3 146825.4
rsa 4096 bits 0.001622s 0.000025s 616.5 39506.9

　ここで、使用可能なCPUをcpu 0の1個に減
らして同じ計測を実施してみます。

echo 0 > test/cpuset.cpus ←CPUコア0の1個だけに設定
openssl speed rsa -multi 4 2>&1 | tail -5
 sign verify sign/s verify/s
rsa 512 bits 0.000046s 0.000003s 21918.0 285714.3
rsa 1024 bits 0.000133s 0.000009s 7543.6 112166.3
rsa 2048 bits 0.000912s 0.000027s 1096.4 36867.1
rsa 4096 bits 0.006431s 0.000100s 155.5 10031.5

　上下の結果を比較してみれば、同じ4並列で
もCPUが1個しか使えないため、速度が4分の
1になっているのがわかります。
　グループの削除はディレクトリを消すだけで
すが、その前にプロセスを空にする必要があり
ます（図7）。

Dockerの登場

　コンテナはNamespaceとCGROUPという
Linuxカーネルの機能であり、新しいカーネル
さえあれば使えることがわかりました。それで
は評判のDockerとは何でしょうか？
　一言で答えると「Dockerはコンテナイメージ
の管理ツール」です。yumとかaptのようなパッ
ケージ管理ツールの親戚と思えばわかりやすい
かもしれません。Docker自体は直接コ
ンテナを操作せず、昔のDockerでは
内部でLXCを呼んでいました。最近
のバージョンではコンテナ操作にrunC

を使用しています。
　コンテナの世界にDockerのもたら
したものは次のようになります。

 ▼図7　グループの削除

cat test/cgroup.procs
3420 3599 ←中にシェルとcatがいる
rmdir test
rmdir: failed to remove 'test': Device or resource busy
 ↑消せない
echo $$ > cgroup.procs ←シェルを親グループへ移動
cat test/cgroup.procs ←testが空なのを確認
rmdir test ←今度は消せる

Feb. 2017 - 6363 - Software Design

第 章7

Dockerの最新動向を知る
runC、Swarmモード、Dockerストア……

 Author
前佛 雅人（ぜんぶつ まさひと）
さくらインターネット㈱
 Twitter
@zembutsu

Dockerは2011年3月に公開されて以来、バージョンアップを重ねるごとに機能の追加や拡張が行われていま
す。本章では、ここ1年でのアップデート情報と、覚えておくべき重要なトピックをまとめました。

ネットワーク機能の正式化
と機能追加

　コンテナのリンク機能（コンテナ実行時に
--linkオプションを使用）は、コンテナのポー
トを開くことなく、コンテナ間を1対1で名前
解決し、接続できます。しかし、複数のコンテ
ナを接続したい場合や、動的にコンテナ数やコ
ンテナ名が変わる場合には有用な機能ではあり
ませんでした。
　そこで、v1.9からはdocker networkコマン
ドが正式導入され、コンテナのネットワークが
強化されました。Dockerホスト上で複数のブ
リッジ・ネットワークが扱えるようになり、コ
ンテナは複数の仮想インターフェースを扱える
ようになりました。つまり、コンテナが複数の
Docker内部ネットワークを利用できるように
なったのです。また、ホスト側とネットワーク・
インターフェースを共有するhostネットワーク、
インターフェースを持たないnoneネットワーク、
複数のホスト間をつなげるoverlayネットワーク
の概念も導入されています。
　しかし、従来の名前解決はコンテナ起動時に
/etc/hostsを変更していたため、動的な環境に
は適しませんでした。そこでv1.10ではネット
ワーク機能が強化され、Docker Engine（Docker

デーモン）に、内部で名前解決するためのDNS

サーバが内蔵されました。そして、ネットワー
クにコンテナを追加・削除しても動的な名前解
決ができるようになりました。また、任意の
CIDRを持つネットワークの作成や、コンテナ
に対するIPアドレスの割り当てもできるように
なり、複数のコンテナを扱ううえでの利便性が
高まりました。またv1.11からは、内部DNSの
ラウンドロビンにも対応しています。

ランタイムrunCの導入

　外見上大きく変わったのが、Docker 1.11か
らのrunC導入です。runCはコンテナ標準化団
体のOCI注1の規格に則ったライブラリであり、
Linuxカーネルのコンテナに関する各種操作を
行います。このライブラリを扱うために、v1.11

からはcontainerdデーモンが導入されています。
　v1.11までは、docker daemonコマンドを指
定すると、dockerバイナリがデーモンとして稼
働していました。v1.12からはcontainerdの機能
をdockerデーモンに統合した、新しいdockerd

デーモンが導入されました（表1）。Dockerエン
ジンを起動・停止する手順が変更になっただけ
でなく、監視対象も変更になったため、運用時
の手順見直しや、監視対象のデーモンの変更が

注1） Open Container Initiative　 URL https://www.open
containers.org/

https://www.opencontainers.org/

64 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

タ形成に必要なのはDocker Engineが動くサー
バだけであり、Docker Swarmに必要なマネー
ジャやディスカバリ・バックエンドは不要です。

Swarmモードの開発の背景

　Dockerはそもそも、アプリケーションを簡単
に開発、移動、実行するためのプラットフォー
ムとして開発がスタートしました。ですが、ク
ラスタ環境でDockerを動かそうとすると、複雑
なDocker Swarmのセットアップや、キーバ
リュー・ストアなどの外部ツールの導入や管理
が必要となります。また可用性を考慮すると、
サーバ台数も増え、複雑な構成になってしまい
ます。
　このような状況はDockerの設計思想とは相容
れないため、Swarmモードの開発に至りました。

クラスタの手軽な管理と新機能を提供

　Swarmモードでクラスタを作成するには、外
部のツールを必要としません。新しく導入され
たdocker swarmコマンドでクラスタを形成し
ます。すると標準のDocker Engineだけで、複
数のノードでクラスタ管理・コンテナ実行をす
る機能や、複数のSwarmマネージャでデータを
複製する機能を実現できます。さらにDocker

Engine間の通信は、デフォルトでTLS暗号化
によって保護されるため、セキュリティも高まっ
ています。

必要になっています。なお、runCはDocker社
のプロダクトでしたが、2015年にOCI（Open

Container Initiative）へ寄贈されました。そして
containerdも、2016年12月に独立したプロジェ
クトへの移行が発表されています。

クラスタを管理する新しい
Swarmモード

既存機能「Docker Swarm」との違い

　英語のswarm（スウォーム）とは「群れ」の意味
です。Dockerにおいては、Docker Engineが動
作するホストが相互に通信可能なクラスタを形
成している状態を「swarm」と呼びます。これま
でのDockerは、Docker Engineをリモート管理
するしくみとしてDocker Swarmを開発、提供
していました。これは複数のDocker Engineが
動作するホストをクラスタに束ね、1つのリソー
ス・プールと見立ててコンテナを実行・管理し
ます。Swarmはストラテジとフィルタによって、
コンテナをどのように実行するかルールを決め
られます。そのため、ホストを意識しなくても
コンテナを実行できるのが利点です。
　Docker v1.12からは、新しいSwarmモードが
追加されました。この「Swarmモード」と従来の
「Docker Swarm」は、どちらも「Swarm」の名前
を冠しています。しかし、機能（表2）もクラス
タの構成のしかた（図1）も異なります。クラス

 ▼表1　Dockerデーモンとランタイムの変遷

Dockerバージョン ～0.8 0.9～1.10 1.11 1.12
コンテナ用ランタイム（ランタイム用デーモン）LXC libcontainer runC（containerd）
Dockerデーモン docker daemon dockerd

Swarmモード Docker Swarm
クラスタの管理 Dockerエンジン内蔵コマンド（docker

node）で管理
SwarmマネージャがSwarmノードを
管理

クラスタ上のコンテナ操作 docker serviceコマンド SwarmマネージャのAPIにアクセス
Swarmマネージャの追加 不要 必要
KVSのセットアップ 不要 必要
クラスタ間通信の暗号化 デフォルトで有効 別途設定が必要

 ▼表2　イメージ操作コマンド

Feb. 2017 - 6564 - Software Design

第 章7 Dockerの最新動向を知る
runC、Swarmモード、Dockerストア……

　コンテナを管理する新しい概念として、サー
ビスとタスクが導入されました。コンテナを実
行するにはサービスを定義します。たとえば
nginxコンテナを3つ実行し、ポート80番を公
開するには次のように実行します。

$ docker service create --replicas 3 -p ｭ
80:80 nginx:latest

　これはnginxコンテナを3つ使うサービスを作

成（create）する命令であり、期待する状態を定
義しています。そして、これを達成するため、
クラスタ上のホストのいずれかで、コンテナを
実行するタスク（としてのコンテナ）が3つ実行
されます。
　またSwarmモードは、Docker Swarmよりも
クラスタが簡単に組めるというだけではありま
せん。新しい機能も追加されています（図2）。
　Swarmクラスタを形成すると、自動的にクラ

Docker
デーモン

Docker
デーモン

Docker
デーモン

Docker
デーモン

Docker
デーモン

Docker
デーモン

Docker
デーモン

Swarm
ノード

Docker
デーモン

Swarm
ノード

Docker Swarm Swarm モード（v1.12～）

複製複製

情報保存

情報保存

マネージャ・ノード

ワーカ・ノード

マネージャ・ノード

ワーカ・ノード

ディスカバリ・バックエンド
（キーバリュー・ストア）

マネージャ・ノード

Docker Engineの
動作するサーバ

ワーカ・ノード

リソース・プール

命令・監視

命令

監視

Swarm
マネージャ

命令

ノード管理

情報参照

 ▼図1　Docker SwarmとSwarmモードのクラスタ比較

 ▼図2　ルーティング・メッシュとIngressロードバランシング

Docker
デーモン

コンテナ

ワーカ・ノード

Docker
デーモン

コンテナ

ワーカ・ノード

Docker
デーモン

コンテナ

ワーカ・ノード

外部のネットワーク

負荷分散

ルーティング・
メッシュ

Ingressネットワーク

66 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

ものと思われます。

その他のトピック

Docker for Mac/Windows

　Docker for Macと Docker for Windowsは、
ローカル開発環境向けの環境を提供します。こ
れまで提供されていたDocker Toolboxと同じよ
うな機能ですが、Docker for Mac/Windowsと
もにローカルでしか利用できません。用途に応
じた使い分けが求められます（図3）。
　まずDocker Toolboxの説明ですが、これは
Docker Machine、Docker Compose、dockerク
ライアント、VirtualBoxをひとまとめにして提
供しています。Docker MachineはVirtualBox

上にboot2dockerという名前のLinuxディスト
リビューションをセットアップし、その上で動
作するDockerデーモンをリモートから操作でき
るようにします。Docker Machineの管理できる
対象はローカルPCの仮想化環境上だけではあ
りません。クラウド上のAPIを使うことで、リ
モート環境上で仮想サーバの起動とDockerの
セットアップを、docker-machineコマンドを
通して管理できます。
　Docker for Macは、macOS上のネイティブ・
アプリケーションです。そして、dockerコマン
ドやdocker-composeコマンドも利用できます。

スタ内部で通信可能なIngress（イングレス）とい
う名前のoverlayネットワークを作成します。そ
して、Swarmホストに外部のネットワークから
通信があるとき、ホスト上に対象のコンテナ（の
サービス）が動作していなければ、適切なホスト
にIngressネットワークを通してルーティングし
ます（ルーティング・メッシュ機能）。
　また、ルーティング先に複数のコンテナが動
作している場合は、負荷分散機能が有効になり
ます（Ingressロードバランシング）。そのため、
どのホスト上でコンテナを実行しているか意識
することなく、スケールアウトやスケールイン
が容易に行えるようになります。
　Swarmモードの詳細は、公式ドキュメント注2

や筆者の日本語訳注3をご覧ください。

今後のDocker Swarm

　便利なSwarmモードが登場したからといっ
て、これまでのDocker Swarmが急になくなる
わけではありません。商用サポート版のDocker

Engine 1.12未満では、Docker Swarmのサポー
トが今も続いています。また、GitHub上のリポ
ジトリでも開発は継続していますが、積極的な
バージョンアップは2016年夏以降行われていま
せん。機能がSwarmモードと競合していること
もあるため、今後の大きな機能改善は望めない

注2） URL https://docs.docker.com/engine/swarm/
注3） URL http://docs.docker.jp/engine/swarm/

ローカルPCのOS ローカルPCのOS ローカルPCのOS

Docker Toolboxの構成 Docker for Mac Docker for Windows

 ▼図3

Dockerクライアント

操作

Docker Engine

boot2docker仮想マシン（Linux）

VirtualBox

Docker Engine

xhyveハイパーバイザ

macOSカーネル

Docker Engine

仮想マシン（Linux）

Hyper-Vハイパーバイザ

Docker Machine

dockerコマンド dockerコマンド dockerコマンドCompose Kitematic

Windowsカーネル

管理

http://docs.docker.jp/engine/swarm/
https://docs.docker.com/engine/swarm/

Feb. 2017 - 6766 - Software Design

第 章7 Dockerの最新動向を知る
runC、Swarmモード、Dockerストア……

　一見すると同じように見えますが、Dockerを
動かすためにVirtualBoxは不要です。通常の
DockerはLinuxカーネルの機能を使うために、
何らかのLinuxディストリビューションを必要
とします。ですが、Docker for MacではmacOS

10.10 Yosemite以降で利用可能となった、
Hypervisor.framework（xhyve）を使います。ロー
カルでの開発に限った用途であれば、Docker

Machineよりも使い勝手が良いでしょう。
　そして、Docker for Windowsの提供も始まり
ました。Hyper-V上にLinux仮想マシンを作成
し、そこでDocker Engineを動かします。Docker

Toolboxとは異なり、VirtualBoxで仮想マシン
の作成や削除が不要です。コマンドラインやパ
ワーシェルで直接dockerを操作できるようにな
ります。利用するにはWindows 10以上で、か
つ、Hyper-Vが動作するライセンス（Pro、
Enterprise、Education）が必要です。注意点と
しては、Hyper-Vを有効化するとVirtualBoxが
使えなくなることです。Docker Machineや
Vagrantなど、VirtualBoxご利用時にはご注意
ください。

Dockerストアの提供開始

　Dockerストア注4とは、Dockerイメージの

「マーケットプレイス」です。Dockerストアを通
して各種の公式イメージや、商用サポート版の
イメージが配布されています。2016年6月にプ
ライベート・ベータ版の提供が始まり、現在は
誰でも利用できます。
　Dockerストアでイメージを検索すると、
Dockerの確認済みイメージだけでなく、Docker

Hub上のイメージも検索できます。Dockerスト
アで配布されているイメージは2種類です。

・Docker Verified images
　Docker社が確認済みのイメージであり、セ

キュリティやノウハウを適用済み。これまで
の公式イメージの位置付け

・Community/Hub images
　Docker Hub上のイメージであり、Docker社

は未確認

　従来のDocker Hubで配布されていた「公式イ
メージ」は、Dockerストアを通してでも確認で
きるようになりました。それだけでなく、商用
ライセンス（サブスクリプション）も購入できま
す。そのため、利用者はDockerストアでライセ
ンスを購入するだけで、すぐに商用アプリケー
ションを利用できます。また、イメージの提供
者は、自分で決済システムを持たなくとも手軽
にイメージを配布できるようになりました（図4）。
　さらに、ストアに登録されている確認済みイ注4） URL https://store.docker.com/

Docker

提供者利用者 利用者

審査・認証

 ▼図4　DockerストアとDocker Hubの比較

検索 検索Dockerストア Docker Hub

ライセンス
購入

申請

受信 受信

送信

認証済みイメージ

公開リポジトリ

プライベート・リポジトリ

https://store.docker.com/

68 - Software Design

なぜプログラマの役に立つのか
いまはじめるDocker 〜コンテナ技術を身につける〜

第1特集

　また、イメージやコンテナなどのリソースの
アクセス権限を、ユーザとチームごとのロール
（役割）設定に応じて設定できます。コンテナに
対するアクセス権限を開発チームと運用チーム
で分けることも可能であり、誤操作の防止やセ
キュリティ向上という利点があります。

Windows ServerのDocker対応

　Windows Server 2016から、Windowsに対応
したDockerデーモンでDocker Windowsコンテ
ナが実行可能になりました。これはLinuxコン
テナと同じように、Windowsのプロセスに対し
て名前空間やファイルを分離する機能です。た
だし、あくまでもWindowsアプリケーションを
コンテナとして実行できる機能であり、Linux

用のイメージは実行できません。

まとめ

　直近の1年を振り返るだけでも、多くの機能
やツールの発表がありました。より新しい情報
を参照されたい場合には、Dockerのブログ注6と
DockerのTwitterアカウント（@docker）が参考
になります。また、新機能に対するドキュメン
ト注7も充実していますので、併せてご覧くださ
い。ﾟ

メージは検索機能も充実しています。たとえば、
Linux用かWindows用か、アプリケーションや
データベースなどのカテゴリでも検索できます。

商用Dockerエンジンの
バージョンごとの差違

　Docker 1.9以降、ネットワークやSwarmモー
ドのサポートなど、大きな変更を伴うバージョ
ンアップが続いています。オープンソース版の
Dockerは多くのディストリビューションで動作
します。一方で、CS（商用サポート）版を使う場
合は、バージョンごとにサポート対象のディス
トリビューションが利用できるストレージドラ
イバが異なります（表3）。
　今後もDockerのバージョンが変わる場合は、
都度、Docker社のサイト注5で対応情報の確認が
必要です。

Docker Datacenter

　Dockerが提供を始めたツール群の総称で、
DTR（Dockerトラステッド・レジストリ）と
UCP（ユニバーサル・コントロール・プレーン）
がセットになり、ローカル環境もしくはプライ
ベートな環境でDocker Hubと同等のリポジト
リ機能、ユーザ認証機能を提供します。従来は
イメージを保管するリポジトリとしてのDTRの
みの提供でした。UCPを使えば、任意のインフ
ラ上でブラウザのGUIを通したイメージ管理が
可能になります。

注5） Compatibility Matrix　 URL https://success.docker.com/
Policies/Compatibility_Matrix

注6） URL https://blog.docker.com/
注7） URL https://docs.docker.com/

 ▼表3　CS版Docker Engineの対応表

Dockerバージョン 1.10 1.11 1.20

ディストリビューション

Red Hat Enterprise Linux 7.0, 7.1 7.0, 7.1, 7.2
CentOS 7.1-1503 7.1-1503, 7.2-1511
Ubuntu 14.04 LTS
SUSE Linux Enterprise Server 12

Dockerストレージ・ドライバ

Red Hat Enterprise Linux devicemapper
CentOS devicemapper
Ubuntu aufs3
SUSE Linux Enterprise Server btrfs

https://success.docker.com/Policies/Compatibility_Matrix
https://blog.docker.com/
https://docs.docker.com/

第2特集

Linux
ファイルシステムの
教科書

Ext3、Ext4、XFS、F2FS、
Btrfsの特徴と進化

　パソコンはよく「ソフトがなければただの箱」と言われます。それらのソフトは、メ
モリに読み込まれCPUによって実行されますが、そのソフトやソフトが扱うデータが
保存されているのはHDDやSSDなどの記憶装置です。これらの記憶装置を使いやす
く抽象化するのがファイルシステムの役割です。
　ファイルシステムによって、データに名前を付けて、ディレクトリ（Windowsでは
フォルダ）に保存し、あとから読み出すことができます。こういったファイルシステ
ムはいったいどのように動いているのでしょうか。
　本特集では、Linuxのファイルシステム（Ext3、Ext4、XFS、F2FS、Btrfs）の特
徴としくみや、トランザクション単位で問題解決するジャーナリングファイルシステ
ムについて詳しく解説します。

 Author 青田 直大（あおた なおひろ）

第 章1 　 いろいろなファイルシステムの特徴と
ファイルの整合性を保護する機能......P.70

第 章2 　 古典的ジャーナリングファイルシステム
「Ext3」のしくみ......P.79

第 章3 　 現代のジャーナリングファイルシステム
～Ext4とXFS......P.84

第 章4 　 フラッシュデバイス用ファイルシステムと、
Copy-on-Writeが特徴のBtrfs......P.91

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

70 - Software Design

Linuxの
ファイルシステム
　Linuxにはさまざまなファイルシステムが実
装されています。Ext4やXFSなど有名なもの、
BtrfsやF2FSなど比較的近年に追加されたも
の、UBIFSといったちょっと珍しいものなど総
勢60種類ものファイルシステムが実装されてい
ます。
　60種のファイルシステムは、

①ローカルファイルシステム
②ネットワークファイルシステム
③特殊ファイルシステム

と大きく3つのカテゴリに分けることができま
す。①のローカルファイルシステムは、いわゆ

る普通のファイルシステムで、HDD（やSSD）に
データを保存するために使われるもののことで
す。よく使われるものとして、Ext4やXFSが
あります。
　②のネットワークファイルシステムは、
Windowsの共有フォルダのようにネットワーク
上で、あるマシンから別のマシンのファイルへ
のアクセスを提供するものです。たとえばNFS

や、少し構成は異なりますがクラスタファイル
システムのCeph注1というものが、Linux上の
ネットワークファイルシステムとして知られて
います。
　③の特殊なファイルシステムには、カーネル
とのやりとりに使われるものや、ほかのファイ
ルシステムに付加的な機能をつけるものがあり
ます（図1）。前者には、たとえばプロセスの情

いろいろなファイルシステムの
特徴とファイルの整合性を
保護する機能

　本章では、Linuxのさまざまなファイルシステムがどのようにデータをディスクに保存し、そして
データが壊れないように保護しているのかを見ていきます。

 Author 青田 直大（あおた なおひろ）

第 章1

注1） http://ceph.com

ローカルファイルシステム

ディスク

ディスク

ローカルファイルシステムは、
データをディスクに保存

procファイルシステム

procファイルシステムは、対応するディス
クがなく、OSが生成したデータが見える

ローカルファイルシステム

eCryptファイルシステム

eCryptファイルシステムは、ほかのファイル
システムとのアクセスを中継し、暗号化を実現

 ▼図1　特殊なファイルシステム

http://ceph.com/

いろいろなファイルシステムの特徴とファイルの整合性を保護する機能

70 - Software Design Feb. 2017 - 71

第 章1

報を取得し/procにマウントされるprocファイ
ルシステムがあります。後者にはたとえば、ユー
ザとほかのファイルシステムとのデータを中継
して、暗号化・復号を行うeCryptファイルシス
テム注2があります。
　60種のうち、Linuxのローカルファイルシス
テムは、特殊なデバイス用のものや書き込み機
能が実装されていないものを除いても18種類あ
ります。その中でもExt2、Ext4、Reiserfs、
JFS、XFS、Btrfs、NILFS2、F2FSの8個が
とくにLinuxネイティブのファイルシステムと
して知られています。
　ほかのOS、たとえばWindowsでは公式にサ
ポートするローカルファイルシステムはNTFS

とFATの 2つです。Linuxと同じUNIX系の
FreeBSDにしても、UFS2とZFSの2つがネ
イティブサポートとされています。このように
LinuxはほかのOSと比べて、ネイティブサポー
トのファイルシステムが多く、さまざまな特徴
を持ったファイルシステムを比べていくことが
できます。

ファイルシステムの
特徴とは?
　本特集ではLinuxのファイルシステムから、
Ext3、Ext4、XFS、F2FS、Btrfsを紹介しま
す。さまざまなファイルシステムを比較するに
あたって、どこに注目するとよいでしょうか。
多くのファイルシステムの比較では、扱えるファ
イルのサイズや、ファイルシステム全体の最大
サイズ、あるいは透過的圧縮機能など機能の違
いを並べていることが多いように思います。し
かし、これらの機能的差異の多くは、その実装
の違いによって生まれてくるものです。本特集
では、ファイルシステムの作りを解説し、そこ
から機能の違いを見ていくボトムアップのアプ
ローチをとります。
　ボトムアップでファイルシステムを見ていく

にあたって、まずファイルシステムの構成要件
を考えましょう。冒頭にあったようにファイル
システムとは「データに名前をつけて、アクセス
できるようにするもの」です。ここで、より正確
に、Linuxにおいてローカルファイルシステム
を実現するための必須要素とは何かを見ていき
ます。

データの保存

　ファイルシステムの最も基本的要件、それは
「データを保存すること」でしょう。ファイルシ
ステムはユーザが指定したデータを、ディスク
のどこに保存するかを決める必要があります。
当然ですが、このときほかのファイルに割り当
てられている領域を使うわけにはいかないので、
ディスクのどこが空いているのかを管理する情
報を保持する必要があります。ファイルシステ
ムは、ディスクを一定のサイズ（一般に4KB）の
領域（ブロック）に区切り、その単位で領域を管
理しています。

ファイルの管理

　データを保存しただけでは、あとから読み出
すことができません。そのファイルのデータが
どこにあるのかを記録していなければいけませ
ん。また、ほかにもファイルのサイズ・所有者・
アクセス権限・タイムスタンプなどが管理情報
として記録されます。また、ファイルタイプと
いう情報も記録されています。これはあるファ
イルが、データを保存する通常ファイルなのか、
ディレクトリなのか、はたまたそのほかの特殊
なファイルなのかを表現するものです。これら
の管理情報のことを、ファイルの inodeと呼び
ます。inodeは、inode番号という IDで識別さ
れます（以降、inode番号がXXXである、inode

のことを inode #XXXと表記します）。

ファイルデータのマッピング

　inodeの情報のうち、ほとんどはデータサイズ
が小さいので、まとめて保存できます。しかし、注2） http://ecryptfs.org

http://ecryptfs.org/

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

72 - Software Design

データの保存アドレスの表現には工夫が必要で
す。理想的にはディスク上のアドレスと長さで
1つの領域を指定できればよいですが、現実的
にはさまざまなファイルが同時に更新され、追
記されていく中で、たとえば100GBの連続領域
をいつも確保できるとは限りません。したがっ
て「ファイル上のこの領域は、ディスクのこの領
域に対応する」という情報（マッピング）を保存す
ることになります。さまざまなサイズのファイ
ルについて、マッピングを効率的に保存する方
法が必要となります。

ファイルの階層と名前

　Linuxのファイルシステムは階層構造を持ち
ます。すなわちディレクトリは、その中にどの
ファイルがどのような名前で入っているかのデー
タを管理しています。当たり前のようですが、
ディレクトリに対して、その中のファイルの一
覧を取得するAPIがあります。大量のファイル
を持つディレクトリの場合、一度のAPIですべ
てのファイル一覧を取得することはできず、ど
こまで読んだかを覚えておき、次のAPIで続き
を取得していきます。

◆　◆　◆
　まとめるとLinuxのローカルファイルシステ
ムを実装しようと思うと、次の要素をどのよう
にディスク上で表現するかを決める必要があり
ます（図2）。

・データ領域の使用状況の管理情報
・inode番号の使用状況の管理情報

・inodeの保存方法
・ファイル内アドレスと、物理アドレスとの変

換情報（マッピング）
・ディレクトリ内のファイルの表現

整合性の保護

　ときにファイルシステムは壊れます。コン
ピュータを起動するときに、“fsck”というもの
が実行されているのを見たことが、一度はある
のではないでしょうか。これはファイルシステ
ムが「壊れて」いないかどうかをチェックし、場
合によっては修復するツールです。そもそもファ
イルシステムとは、どのようにして壊れるので
しょうか。
　前述したようにファイルシステムは、さまざ
まな管理情報をディスクに保存します。それら
のデータはディスク上の連続しない離れた場所
に保存されることがあります。その場合、OSの
クラッシュやコンピュータの電源喪失などによ
り、更新の一部だけがディスクに書き込まれ、
ファイルシステムの構造が壊れてしまうことが
あります。
　具体的に、新しくファイルXをディレクトリ
Dの下に作り、そこに“ABC”と書いたときの
ファイルシステムの動きを見てみましょう。前
項で見たように、

①“ABC”と書くブロックを決定し、確保
②使用するinodeの確保
③inodeの管理情報を設定

inode
管理領域 ディレクトリ inode データディスク

使用inodeの管理

inodeの保存 使用領域の管理

マッピング
ディレクトリとファイ
ルの関係

 ▼図2　ファイルシステムの構成要件

いろいろなファイルシステムの特徴とファイルの整合性を保護する機能

72 - Software Design Feb. 2017 - 73

第 章1

④inodeから“ABC”へのマッピングを追加
⑤ディレクトリDに、名前Xで、確保したinode

を指すエントリを追加

と5つの操作が行われます。
　これらの操作を行う途中でコンピュータが停
止した場合、さまざまな形でファイルシステム
に不整合が発生します（図3）。たとえば、①の
操作だけが反映されると、どのファイルからも
使われていないデータ領域が生まれてしまいま
す。②～④までの場合には、どこからも参照さ
れていない inodeも発生します。これらの領域
や inodeは、ファイルシステム全体をスキャン
して、「参照されていない」ということを確認し
なければ解放できません。
　さらには、OSやディスクの最適化により、こ
れら操作の順番が入れ替えられることもありま
す。その場合、たとえばDからXへのエントリ
はありますが、対応する inodeは作られていな
いということも起こりえます。こちらは前のケー
スよりも状況が悪くなるかもしれません。
　たとえば、ユーザAさんが新規ファイルへの

書き込み中にコンピュータが停止して、「ディレ
クトリD内に、inode #42のファイルXがある」
ことだけが記録されたとします。再起動後に、
（fsckが行われず）別のユーザBさんが新しい
ファイルYを作ります。ファイルシステムは
inode #42は空いていると思って、Bさんのファ
イルに inode #42を割り当てます。すると、本
来は別のファイルであったはずのAさんのXと、
BさんのYとが同じファイルを指してしまいま
す。すなわち場合によっては、ほかの人のファ
イルが覗

のぞ

けるわけで、これはセキュリティ上の
問題となってしまいます。
　fsckはファイルシステムをスキャンして、こ
ういった誰からも参照されていない領域や、不
完全なエントリを見つけ出すツールです。ファ
イルシステムを使い始めるとき（マウント時）に、
OSはファイルシステムにdirty bitというもの
を立てて、ファイルシステムが使用中であるこ
とを示し、使い終わったとき（アンマウント時）
にdirty bitを落とします。システムが正常終了
しなかった場合、dirty bitが立ったままになり
ます。dirty bitが立っていなければ、正常終了

inode
管理領域

データ
管理

ABCディレクトリD

inode
管理領域

データ
管理

ABCディレクトリD

本来意図しないファイルが見えてしまうこともinode
管理領域

データ
管理

ABC

ABC

XYZ
ディレクトリD

ファイルX

ファイルX

ファイルX ファイルY

inode
管理領域

データ
管理

ABCディレクトリD

正しい状態

データ管理だけ反映

存在しないinodeへの参照が残ることも

ディレクトリエントリだけがなくても
どこからも参照され
ない領域ができる

どこからも見え
ないファイル

結果的にこの領域も
使用できない

 ▼図3　ファイルシステムの不整合

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

74 - Software Design

ということなので、ファイルシステムを調べる
必要はありません。逆にdirty bitが立っていれ
ば、ファイルシステムのどこかが上記のように
不整合を起こしている可能性があるので、fsck

はファイルシステムを調べにいきます。
　このツールは一般に、ファイルシステム全体
をスキャンするため、ファイルシステムが大き
くなるほどに膨大な時間が必要になっていきま
す。さらには、fsckは一般的にシステムが起動
する前に、ほかのプログラムが走らない状況で
動作するので、システムの起動を遅くしてしま
います。
　ここまで説明したケースでは、最悪 fsckを行
うことでファイルシステムを復旧できました。
しかし、場合によってはデータが消えて元には
戻せないこともあります。図4のようにAとい
うファイル（inode #10）と、Bというファイル
（inode #20）とがあるときに、“rename A B”と
することを考えます。
　この場合に行われる操作は、

①Bがinode #10のファイルを指すように書き
換える

②Aからinode #10を指すエントリの削除
③inode #20の解放

④inode #20のデータ領域の解放

の4つです。前述のように、システムクラッシュ
時には、これらの操作の一部だけが適用される
場合があります。たとえば、②Aのエントリ削
除と、③ inode #20削除だけが行われるとどう
なるでしょうか。Aの指していた inode #10の
ファイルは誰からも参照されず、Bは存在しな
い inode #20を指しています。さらに、Bのデー
タ領域は誰からも参照されずに残っています。
元の状態に戻そうにも、inode #10を誰がどのよ
うな名前で参照していたのかはわかりませんし、
Bのデータ領域がどのファイルのものであった
のかもわかりません。できるのはせいぜい、inode
#10に別の名前をつけて参照できるようにし

て注3、Bのエントリを削除、Bのデータ領域を
解放して無駄な領域を片付ける程度です。

さまざまな更新保護方法

　こうして見たように、ファイルシステムの発
行する I/O操作がOSやディスクによって最適
化されるので、システム停止後に思わぬ結果が

ABC

XYZ

ファイルA
inode #10

inode #20

ABC

XYZ

inode #10

ABC

XYZ

inode #10

inode #20

クラッシュによって
こうなることも

ファイルB

ファイルB

ファイルB

使われなくなった
領域を削除

存在しないinodeを参照

inode #10を指す
ように書き換え

参照されない領域
ができる

 ▼図4　リネーム時の障害

注3） Ext4では、この復旧を行うための“lost+found”ディレク
トリがあります。

いろいろなファイルシステムの特徴とファイルの整合性を保護する機能

74 - Software Design Feb. 2017 - 75

第 章1

起きることがあります。このような現象を防ぐ
ために、ファイルシステムはさまざまな方法を
用いて整合性を保護します。ここでは、

①同期書き込み
②ジャーナリング
③ログ構造ファイルシステム
④Copy-on-Write

の4つの方法について簡単に紹介します。

①同期書き込み

　同期書き込みの発想は単純です。I/O操作が
入れ替えられることで問題が発生するなら、順
番が入れ替えられないようにすればよいわけで
す。書き込み操作後に、ディスクに今すぐI/O

を実行するように指示し、その完了を待つこと
でI/O操作の順番を守ることができます。順番
が守られることで、ある程度のファイルシステ
ム不整合の問題を防ぐことができます。
　最初のファイル作成の例でも、リネームの例
でも、順番が守られれば、存在しない inodeを
ディレクトリエントリが指したり、解放済のデー
タ領域を inodeが参照するといったことがなく
なります。参照されていないのに確保されてい
る領域や inodeが残る問題はありますが、これ
はいつか fsckすれば発見されて、ほかにトラブ
ルを起こさないので比較的容易な問題です。
　さて、同期書き込みはシンプルですが、その
分、大きな問題点を抱えています。ひとつひと

つのI/O操作でディスクの完了を待つので、ファ
イルシステムの速度はディスクの速度がボトル
ネックとなり、非常に遅くなってしまいます。
とくにこの手法では、ディスクの各所にちらばっ
た管理情報をいちいち少しだけ書き換え、完了
を待つので大きくパフォーマンスが下がってし
まいます。

②ジャーナリング

　ジャーナリングは、1つのファイル更新に必
要なI/O操作のログを、ファイルシステム内の
「ジャーナル領域」という特別な領域に記録して
から、I/O操作を実行する方法です（図5）。I/O

操作の途中でシステムが停止しても、ジャーナ
ル領域の操作ログから、元の I/O操作をやりな
おすことでファイルシステムの整合性を守るこ
とができます。Linuxでは、Ext3、Ext4、XFS、
JFS、ReiserFSで使われています。
　具体的にジャーナリングにおける、新規ファ
イルへの書き込みの様子を見てみましょう。ま
ず、ジャーナル領域に、

・inode #10用のデータ領域を確保
・inode #10を確保
・inode #10へ管理情報を書く
・inode #10にマッピングを書く
・ディレクトリDに、ファイル名Aとしてinode

#10を指すエントリを追加

と5つの操作ログを書きます。操作ログの I/O

データ管理
領域の更新

inode #10
を確保

inode #10
に書き込み

inode
管理領域

データ
管理領域commitマッピング

の更新

ジャーナル領域

ジャーナルに書いてから、ファイルシステム本体を更新

ファイルシステム本体

ディレクトリDに、
A（inode #10）を追加

データ管理
領域の更新

inode #10
を確保

inode #10
に書き込み

inode
管理領域 ディレクトリDデータ

管理領域commit inode #10 データマッピング
の更新

ジャーナル領域 ファイルシステム本体

ディレクトリDに、
A（inode #10）を追加

本体更新中にクラッシュしても、ジャー
ナルから書き直すことができる

 ▼図5　ジャーナリングの概念

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

76 - Software Design

が完了したうえで、操作ログの終わりを示すコ
ミットログというものを書き、その I/Oの完了
を待ちます。ジャーナルへの記録中にシステム
が停止した場合、コミットログが存在しないの
で、そのジャーナルは破棄されます。このとき、
ファイルシステムの本体部分はまったく変更さ
れていないので、整合性は保たれています。コ
ミットログが記録されれば、ファイルシステム
本体にログのとおりに変更を加えていきます。
前述したように、この途中でシステムが停止し
ても、ログからすべての I/O操作をやりなおせ
ば整合性が保たれます。
　同期書き込みでは、各操作ごとにディスク待
ちが必要でした。一方、ジャーナリングではコ
ミットログの前後と、操作ログの適用後の3回
だけディスク待ちをすればよいので、その分性
能が向上します。逆にジャーナリングでは、ロ
グを書いてから実際の操作を行う分、ディスク
に書く量が大きくなってしまう弱点もあります。

③ログ構造化ファイルシステム

　ジャーナリングの考え方をさらに発展させて、

ファイルシステム全体をログ領域にしてしまう
のがログ構造化ファイルシステム（以後、ログ
FS）です。Linuxでは、NILFS2やF2FSで使
われています。ログFSは、すべてがいわば
ジャーナル領域で、ほとんどすべての書き込み
がシーケンシャルに行われます。
　具体的にログFSにおける、新規ファイルへ
の書き込みの様子を見てみましょう（図6❶）。ま
ず、ファイルデータ“ABC”がログの中に書かれ
ます。その後ろに、ファイルの inodeがデータ
を参照する形で書き込まれます。ディレクトリ
エントリが、新しいファイルの inodeを指すよ
うに書き込まれ、ディレクトリの inodeが書か
れます。
　このようにログFSでは、inodeがログ中の任
意の位置に記録されます。そこで inodeの位置
を記録する inodeマップというデータもログに
書きます。ファイルシステムの更新にしたがっ
て、ログはどんどん追記されていき、inodeマッ
プも inodeの更新ごとに書き込まれることにな
ります。原理的にはログを読んでいけば、最新
の inodeマップを知ることができますが、それ

データ
ABC

ファイル
のinode

ディレクトリ
エントリ

ディレクトリ
inode

inode
マップ 追記されていく

データ
ABC

ファイル
のinode

ディレクトリ
エントリ

ディレクトリ
inode

inode
マップ

ここはもう参照されていない

データ
XYZ

ファイル
のinode

ディレクトリ
エントリ

ディレクトリ
inode

inode
マップ

ログをまとめて書き直す

データ
ABC

ファイル
のinode

ディレクトリ
エントリ

ディレクトリ
inode

inode
マップ

データ
ABC

ファイル
のinode

ディレクトリ
エントリ

ディレクトリ
inode

inode
マップ

ログ更新後、ここは削除可能に

新しいログ領域

データ
XYZ

ファイル
のinode

データ
XYZ

ファイル
のinode

ディレクトリ
エントリ

ディレクトリ
inode

inode
マップ

❶

❷

❸

 ▼図6　ログ構造化ファイルシステム

いろいろなファイルシステムの特徴とファイルの整合性を保護する機能

76 - Software Design Feb. 2017 - 77

第 章1

ではマウントに時間がかかってしまうので、定
期的に最新の inodeマップがどこにあるのかを
固定位置のチェックポイントブロックに記録し
ます。マウント時は最新のチェックポイント以
後のログを読んで、ファイルシステムの状態を
復元します。
　さてここで、同じディレクトリ中にもう1つ
ファイルを追加したらどうなるでしょうか？（図
6❷）
　まずは、先ほどと同様に新しいファイルのデー
タと inodeが書かれます。次にディレクトリに
新しいファイルが入ったので、それを反映した
ディレクトリエントリが記録されます。すると、
ディレクトリエントリの位置が変わってしまう
ので、ディレクトリの inodeが書き直されます。
すると、inodeの位置が変わったわけですので、
inodeマップが書かれます。この更新によって、
元のディレクトリの inodeとそのデータ部分へ
の参照は消滅します。このようにログFSでは
ファイルシステムの更新にしたがって、どんど
ん古いログが発生して、有効なログが断片化さ
れます。これを放置して、ひたすらログを後ろ
に書いてくだけでは、いつかはディスクの容量
を使いきってしまいます。
　そのためログFSは、なんらかのタイミング
でこれまでのログを整理して、新しいログのた
めの連続領域を確保します。先ほどのログの状
態で、このログの整理作業（クリーニング）が始
まるとどうなるでしょうか。クリーニングは既
存の、2つのファイルの作成と、2つのディレク
トリの更新のログを読み込みます。このうち、
ディレクトリ更新の片方は古いログなのです。
そこで図6❸のように、2つのファイルの作成ロ
グと、1つのディレクトリの更新ログを書きま
す。すると、クリーニングの前までのログはす
べて古いログとして捨てることができるように
なります。
　ログFSでは全体をログにすることで、ほと
んどの書き込みがシーケンシャルになり高いパ
フォーマンスを実現できます。その一方で、ロ

グの整理が必要であるという弱点があります。
また、ここで見たようなシンプルなログFSに
おいては、ディレクトリの更新時のように、
ちょっとしたデータの更新で inodeレベルまで
すべて更新され、書き込みが大きくなるという
弱点もあります。

④Copy-on-Write

　Copy-on-Writeは、既存のデータを上書きせ
ず更新を別の場所に書いていくことで、既存の
ファイルシステム構造を壊さずに更新を行う方
法です。LinuxではBtrfsで使われており、ZFS

でも採用されています。
　Copy-on-Writeを使うファイルシステムで、
ファイルを書き換える様子を見てみましょう。
ディレクトリDに2つのファイルXとYがあり、
Xのデータを書き換えるとします。初めは図7
のようにファイルX、YのデータをXとYの
inodeがそれぞれ参照し、ディレクトリエントリ
がXとYを参照、そしてディレクトリの inode

をroot blockが指しているという状態になって
います。また、ブロック管理領域が使用中の領
域を記録しており、これもroot blockから参照
されています。
　ここでXのデータを書き換えます。Copy-on-

Writeですので、新しい場所にデータが書き込
まれます。するとそこを参照するXの inodeが
書き換えられ、さらに inodeを参照するディレ
クトリエントリが書き換えられ……と、root

blockまで書き換えが連鎖していきます。書き換
えにより使用中のブロックも変わるのでその情
報も更新します。root blockを書き換えると、最
新のroot blockを指すポインタを、新しいもの
に切り替えます。このように、上書きがないこ
とで最新のroot blockからたどったファイルシ
ステム構造が常に壊れていないことを保証でき
ます。
　ディスク上の動きとして、ログFSとCopy-

on-Writeは似ています。実際、ログFSも既存
のデータの上に上書きしないというCopy-on-

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

78 - Software Design

Write同様なポリシーを持っています。この区
別は専門家でも議論が分かれるところですが、2

つの違いとしてログFSでは最新のチェックポ
イントからログを復元していく部分が挙げられ
ます。これはログFSが（基本的には）常にシー
ケンシャルに書いていくことによって実現され
ています。一方で多くのCopy-on-Writeのファ
イルシステムは使い終わった領域を可能であれ
ばすぐに再利用します。これはCopy-on-Write

では、どの領域を使っているのかを管理してい
ることから可能になっています。

まとめ

　ローカルファイルシステムは、ディレクトリ
やファイルからなる抽象的なツリーを、ディス
ク上にデータとして表現する必要があります。
具体的には次の5つについて、どのように管理
するかが問題となり、ファイルシステム間の違

いを生み出します。

・データ領域の使用状況の管理情報
・inode番号の使用状況の管理情報
・inodeの保存方法
・ファイル内アドレスと、物理アドレスとの変

換情報（マッピング）
・ディレクトリ内のファイルの表現

　また、OSやディスクの最適化により整合性
が壊れないように、ファイルシステムはそれぞ
れの方法で整合性を保護しています。ここでは
同期書き込み、ジャーナリング、ログ構造化、
Copy-on-Writeの4つの手法を簡単に紹介しま
した。これらの手法のメリット・デメリットを
簡単に表1にまとめました。
　第2章以降では、具体的にLinuxのファイルシ
ステムがどのようにこれらディスク上の表現と、
整合性保護を実現しているのかを見ていきます。
｢

root
block

ブロック
管理

inode
X

inode
Y

Data
X

Data
YディレクトリD

元のroot blockからの構造を上書き
せずに、新しいroot blockを構成する

灰色の部分は古いrootから
の参照のみで、削除可能
保持しておけばスナップショッ
トとして使える

root
block

root
block

ブロック
管理

ブロック
管理

inode
X

inode
Y

Data
X

Data
Y

Data
X2

inode
XディレクトリD ディレクトリD

 ▼図7　Copy-on-Write

 ▼表1　整合性によるメリット・デメリット

整合性保護 Linuxでの実装 メリット デメリット

同期書き込み なし 実装が容易 ディスクに律速され遅い
リソースリークは起きる

ジャーナリング Ext4、XFS 実装が容易 書き込み量の増加
ログ構造化 F2FS、NILFS2 書き込みがシーケンシャルになる ログのクリーニングの実装が困難

Copy-on-Write Btrfs 上書きがないので、FSの構造が壊れ
ない

参照するブロックが再帰的に更新され、
書き込みが増大する

79 - Software Design Feb. 2017 - 79

Ext3の歴史
　Ext3はExt2の流れを継ぎ、長年Linuxで多
く使われていたファイルシステムです。名前か
らわかるとおり、Ext2の前に、Extended File

System（ExtFS）というファイルシステムが、
1992年4月にLinux 0.96cに実装されていまし
た。これはMinixのファイルシステムから、最
大ファイルサイズが2GBという制限と、最長
ファイル名が255バイトであるという制限を取
り払っただけのものでした。そのため、ExtFS

には根本的に構造上の問題が残っていました。
そこで1993年1月、ExtFSのコードをベースに
さまざまな構造を見直して作られたものが、Ext2

になります。
　Ext3はExt2の構造をそのままに、おもに
ジャーナリング機能を追加したものです。その
ため高い後方互換性を持ち、Ext2のファイルシ

ステムをExt3のコードでマウントすることもで
きますし、Ext2のファイルシステムをマウント
したままExt3に変換することもできます。

Ext3の全体的な構造
　Ext3の全体構造を見ていきましょう。Ext3

のディスクは、ファイルシステム作成時に、静
的にBlock Groupという領域に分割されていま
す（図1）。このBlock Groupごとに、空きブロッ
ク数や、空き inode数が管理されています。各
Block Groupは次のように、さらに分割されて
います

・スーパーブロック（オプション）
・グループディスクリプタ領域（オプション）
・データブロックビットマップブロック
・inodeビットマップブロック
・inodeテーブル領域
・データ領域

古典的ジャーナリング
ファイルシステム
「Ext3」のしくみ

　本章ではLinuxでジャーナリングを使うファイルシステムから、古典的なもの（ですが今でも使われ
ているもの）として、Ext3を紹介します。Ext3の構造はシンプルで理解しやすく最初にファイルシス
テム構造を見るにはうってつけです。

 Author 青田 直大（あおた なおひろ）

第 章2

スーパー
ブロック

Block Group #0 Block Group #1 Block Group #2 Block Group #3 …………

データブロック
ビットマップブロック

inode
ビットマップブロック

グループ
ディスクリプタ inodeテーブル データBlock

Group

ビットマップは必ず1ブロック
最大128MB

 ▼図1　特殊なファイルシステム

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

80 - Software Design

スーパーブロック

　ファイルシステム全体の設定を記録している
ブロックです。ブロックのサイズや、Block

Groupのサイズ、ファイルシステム全体での空
きブロック数や空き inode数を記録しています。
これらのパラメータがないと、ファイルシステ
ムの構造がわからないので、スーパーブロック
は大切なブロックです。このブロックは最初の
Block Groupと、バックアップ用にその後ろの
Block Groupのいくつかに書き込まれます。マ
ウント時には、基本的に最初のスーパーブロッ
クが使われますが、ディスクの破損時には後ろ
のスーパーブロックを読ませることができます。

グループディスクリプタ領域

　各Block Groupについての情報を記録する領
域です。それぞれの領域に、全Block Groupの
情報がまとめて書かれています。ここにはデー
タブロックビットマップや inodeビットマップ
の位置や、空きブロック、空き inodeの数や、
Block Groupのフラグが記録されています。こ
こにビットマップの位置が記録されていること
で、後述するようにビットマップを動かすこと
が可能になっています。この領域も、スーパー
ブロックと同様に、最初のBlock Groupと、残
りのBlock Groupのうちいくつかにだけ記録さ
れます。
データブロックビットマップブロック、
inodeビットマップブロック

　Block Groupの中で、どのブロックが使用中
かを管理するのがデータブロックビットマップブ
ロックです。同様に inodeビットマップブロックは、
使用中の inodeを管理しています。これらのビッ
トマップのサイズは、Block Groupごとに1ブ
ロック（＝ほとんどの場合4KB）と決まっていま
す。したがって、1つのBlock Group中のブロッ
ク数は、8×4,096までとなり、すなわちBlock

Groupのサイズ上限が、4KB×8×4,096＝128MB

となります。

inodeテーブル領域、データ領域

　inodeを書くために確保されている領域です。
Block Group 0の inodeテーブルが、inode #1か
らinode #4096、Block Group 1のinodeテーブル
が inode #4097から inode #8192というように、
inode番号順に inodeの位置が予約されています。
　データ領域は、Block Groupの残りを占める、
ファイルシステムのデータを記録する部分です。

ブロックとinodeの管理
　それでは、Ext3におけるファイルシステムの
ディスク上での表現方法について見ていきましょ
う。まずは、データ、inodeの使用状況と、inode

の保存方法について見てみます。
　全体構成で見たように、Ext3ではブロックの
使用状況と、inodeの使用状況、そして inodeは
Block Groupごとに管理されています。ブロッ
クの使用状況はビットマップで管理され、Block

Groupの最初のブロックが使用されていれば、
ビットマップの0ビット目が立っているという
ようになっています。Block Groupの先頭には、
ビットマップや inodeテーブルがあるので始め
のほうのビットは立っている、ということにな
ります。同様に inodeビットマップも inodeテー
ブルの空き状況を、順番に表現しています。
　inodeテーブルは inodeのデータを書くために、
ファイルシステム作成時に、静的に確保される
領域です。
　これらの部分はExt2のころからまったく変わ
らず、Ext4でも制限の原因となっています。た
とえば、inodeテーブルが静的に確保されるた
め、小さいファイルを大量に作るとデータ領域
が余っていても inodeが枯渇して、ファイルシ
ステムがいっぱいでファイルを作れないという
エラーが発生します。逆に巨大なファイルをい
くつか作るというケースでは、inode用に確保さ
れている領域をファイルデータ用に使うことが
できないという無駄が発生します。

古典的ジャーナリングファイルシステム「Ext3」のしくみ

80 - Software Design Feb. 2017 - 81

第 章2

　実際に inodeテーブルには、どれだけのサイ
ズが割り当てられているのでしょうか?　テーブ
ルのサイズは、inodeのサイズと、何バイトに1

つ inodeを作るかのbytes-per-inodeの設定に
よって決まります。inodeのサイズはデフォルト
で256バイトです。一方、bytes-per-inodeは
ファイルサイズの大きさによって変わります。
　デフォルトでは、512MBから4TBまでのサ
イズのファイルシステムでは、16KBに1つの
inode、4TBから16TBまでなら32KBに1つ、
16TB以上なら64KBに1つの inodeが作られま
す。
　すなわち、1TBのファイルシステムでは、
128MBのBlock Groupにつき、128MB÷16KB

＝8,192個の inodeが作られます。すると、inode
テーブルのサイズは、8,192×256＝2,048KB

が予約されます。ファイルシステム全体では、
1％、16GBが inode領域に割かれていることに
なります。

Ext3のマッピング：
block map
　Ext3における、ファイル内のアドレスとディ
スク上のアドレスとの対応について見ていきま
しょう。
　Ext3の inodeはi_blocksという配列を持ち、
ここに1対1対応の形式でブロックアドレスが
記録されます。図2のように、配列の最初のエ
ントリがファイルの先頭のブロック（0から4,095

バイトまで）に対応するディスクブロックを示
し、その次のエントリが次のブロックを示す……
というように並んでいます。この配列には15の
エントリがあります。この配列に直接アドレス
を書くだけでは、4KB×15＝60KBのファイル
までしか表現できません。
　そこで末尾の3つのエントリがそれぞれ、間
接参照ブロック、二重参照ブロック、三重参照
ブロックを指すエントリとなっています。間接
参照ブロックは、i_blocksの配列のようにブ
ロックアドレスを記録する配列だけが入ったブ
ロックです。1エントリが4バイトなので、1つ

ブロック #0

ファイル

entry #0: 100

entry #1: 101

entry #11: 110

間接参照: 200

二重参照: 300

三重参照: 400

inode内エントリ

entry #12: 201

entry #13: 202

ブロック #200

entry #1036: 302

entry #1037: 303

ブロック #301

entry #1049612: 403

entry #1049613: 404

ブロック #402

間接参照: 301

ブロック #300

二重参照: 401

ブロック #400

間接参照: 402

ブロック #401

ブロック #1

ブロック #12

ブロック
#1036

ブロック
#1049612

ブロック #100

ディスク

ブロック #101

ブロック #102

ブロック #202

ブロック #302

ブロック #403

ブロック #201

 ▼図2　block map

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

82 - Software Design

のブロックには4KB÷4＝1,024個のエントリ
を持ちます。したがって、i_blocksの先頭の
12エントリがファイルの4KB×12＝48KBの
領域を示し、参照ブロック内のエントリが次の
4KB×1,024＝4MBの領域を表現します。
　同様に二重参照ブロックは、参照ブロックを
指すエントリが並んだブロックであり、三重参
照ブロックは、二重参照ブロックを指すエント
リが並んだブロックになっています。したがっ
て、ブロックマップのエントリ数は、（i_blocks

内の）12 +（参照ブロックの）1,024＋（二重参照
ブロックからの）1,0242＋（三重参照ブロックか
らの）1,0243＝1,074,791,436個になります。こ
れに4KBを掛けた約4TBが、block mapで表現
可能な最大ファイルサイズです。

Ext3のディレクトリ表現：
リニアディレクトリ
　Ext3のディレクトリは、通常のファイルのよ
うに割り当てられたブロックに、ディレクトリ
エントリが並ぶ形式をとります。ディレクトリ
エントリには以下の要素が入っています。

・inode番号
・ディレクトリエントリの長さ
・ファイル名の長さ
・ファイルタイプ（通常ファイルか、ディレクト
リかなどを示す）

・ファイル名

　ここに inodeにも入っている情報であるファ
イルタイプが入っているのは、ファイルタイプ
を返すようになっているLinuxのシステムコー

ルgetdents()を inodeを読むことなく効率的に
実装するためです。
　ファイルが追加されると、新しいディレクト
リエントリを保持するのに十分な領域を探索し、
そこにディレクトリエントリを保存します。

Ext3のジャーナリング
　Ext3ではジャーナリングを用いて、ファイル
システムの整合性を保護します。Ext3のジャー
ナリング機能は、JBDというシステムに分離さ
れ、Ext3以外でも使うことができます。JBDは
“Journaling Block Device”の意味で、ブロック
デバイスへの書き込みにジャーナリング機能を
提供する汎用的なシステムとなっています

（図3）。
　Ext3では、ジャーナル領域は inode #8のファ
イルのデータ領域として静的に確保されていま
す。ジャーナル領域の先頭には、ジャーナル用
のスーパーブロックがあり、残りの部分をリン
グバッファとしてブロックの更新情報を記録し
ていきます。
　ジャーナルへの記録は、後続するブロックが
ファイルシステムのどこに書き込まれるかを記
録するディスクリプタブロック、実際のデータ
の入ったブロック、データブロックを書き終わっ
たことを示しトランザクションを完了するコミッ
トブロックの主要な3種類のブロック、および
リボークブロックで構成されます。
　リボークブロックは、一度ジャーナルに書い
たアドレスへの記録をキャンセルするためのブ
ロックです。たとえば、ディレクトリを新しく

スーパー
ブロック

ディスクリプタ
ブロック

データ
ブロック

データ
ブロック

ディスクリプタ
ブロック

データ
ブロック

データ
ブロック

ディスクリプタ
ブロック

データ
ブロック

データ
ブロック

データ
ブロック

コミット
ブロック

コミット
ブロック 空き領域

データの書き込み位置を指定
1つのトランザクション内に複数の
ディスクリプタブロックがあることも

1つ目のトランザクション 2つ目のトランザクション

 ▼図3　JBDの構造

古典的ジャーナリングファイルシステム「Ext3」のしくみ

82 - Software Design Feb. 2017 - 83

第 章2

作ると、そのディレクトリエントリ用のブロッ
クが確保され、そのブロックへの書き込みは
ジャーナルに記録されます。これがファイルシ
ステム本体にまだ反映されていないタイミング
で、作ったディレクトリを削除したとしましょ
う。このとき、ジャーナル内に記録されている、
ディレクトリエントリブロックの更新はもう無
意味なものになっています。そこでリボークブ
ロックを使って、「このブロックへの書き込みは
キャンセルする」ということを記録し、ジャーナ
ルの反映時の無駄を削減します。

3つのジャーナルモード

　Ext3ではデータとジャーナルに関して3つの
モードが実装されています。デフォルトの
“data=ordered”では、データが確実にディスク
に書かれてから、そのデータを参照するメタデー
タ（マッピングや inodeなど）をジャーナルに書
きます。
　一方、“data=writeback”では、データの書き
込み完了を待たずにメタデータの書き込みを開
始します。“writeback”の方が書き込み完了を待
たないためパフォーマンスは向上しますが、メ
タデータだけが書き込まれ、データが書かれて
いないという状況が起こりえます。その場合、

「ファイルが存在するものの、書いた覚えのない
データが見える」といったことになります。
　“data=journal”は、ほかの 2つとは異なり、
データもジャーナル領域に書くモードです（図
4）。このモードがデータとメタデータの整合性
を最もよく保護します。しかし、メタデータだ
けでなくデータも2回書くことになるのでパ
フォーマンスは下がってしまいます。

まとめ

　本章では、ジャーナリングを使うファイルシ
ステムから古典的なものとして、Ext3の解説を
行いました。Ext3の構造は、基本的な設計が昔
からのファイルシステムとあまり変わらず、今
ではさまざまな制限の原因となっています。次
の章ではよりモダンなファイルシステムとして、
Ext4とXFSを紹介します。Ext4がどうやって
Ext3との互換性を保ちつつ現代的なデータ構造
を取り入れているか、そしてXFSがどのように
作られているかを見ていきます。｢

A

クラッシュすると、
ファイルの中身が
“X”だけになることも

data=journal

サイズ：1

X Y
サイズ：2

A

data=ordered(default)

サイズ：1

X Y
サイズ：1

X Y
サイズ：1

X Y
サイズ：2

データとサイズの両方がジャーナルに
書かれる
したがって、両方が一度に更新される

データが書かれてから、ファイルのサイズ
を変える

“AB”、“XB”、“AY”、
“X”などの結果にな
り得る

A

data=writeback

サイズ：1

X Y
サイズ：1

X Y
サイズ：1

X Y
サイズ：2

A B
サイズ：2

X B
サイズ：2

 ▼図4　データの書き込みモード。“A”を“XY”に書き換える

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

84 - Software Design

Ext4の全体的な構造
　Ext3がExt2との互換性を保ったのと同様に、
Ext4もExt3と後方互換性を持っています。
Ext2とExt3の間では、全体的なディスク構成
を変更しなかったのに対して、Ext4ではさまざ
まな点でディスク上の構造を変え、Ext2・Ext3

にあった制限を回避しています。それでいて、
プログラム上のデータ構造は多く共通している
ため、Ext4のコードでExt3のファイルシステ
ムをマウントできるようになっています。実際
に、Linuxカーネルにおいて、以前はExt3と
Ext4のコードは分離されていましたが、今では
Ext3のコードが削除され、Ext3のファイルシ
ステムは完全にExt4のコードで取り扱われるよ
うになっています。
　Ext4のディスク構造は、Ext3のものをベー

スに現在のファイルシステムへの要求、すなわ
ち巨大なファイル、巨大なファイルシステム、
大量のファイルを持つディレクトリへの対応な
どを実現するように、うまく調整したものです。
　前章で解説しましたが、Ext3のBlock Group

には128MBまでの制限があります。各データ領
域の間には、ビットマップや inodeテーブルな
どに予約された領域があり、データ領域は最大
でも128MBで、バラバラに分割されていること
になります。そうすると1GB程度のファイルで
あっても、ディスク上で9ヵ所以上に分割され
ることになります。こうした断片化はExt3にお
いて、巨大なファイルに対するパフォーマンス
上の問題となります。
　そこで、Ext4ではグループディスクリプタ領
域に、ビットマップや inodeテーブルの位置が
書かれていることを利用して、これらの位置を
変更しています。Ext4では、複数のBlock Group

現代のジャーナリング
ファイルシステム
～Ext4とXFS

　本章では、Linuxでジャーナリングを使う現代的なファイルシステムとして、Ext4とXFSを詳しく
紹介していきます。

 Author 青田 直大（あおた なおひろ）

第 章3

スーパー
ブロック

グループ
ディスクリプタ

データブロック
ビットマップ
#0

データブロック
ビットマップ
#1

inode
ビットマップ
#0

inode
テーブル
#0

データ
inode

ビットマップ
#1

inode
テーブル
#1

データ
データブロック
ビットマップ
#2

inode
ビットマップ
#2

inode
テーブル
#2

データ

スーパー
ブロック

グループ
ディスクリプタ

データブロック
ビットマップ
#0

データブロック
ビットマップ
#1

データブロック
ビットマップ
#2

inode
ビットマップ
#2

inode
ビットマップ
#0

inode
ビットマップ
#1

inode
テーブル
#0

inode
テーブル
#1

inode
テーブル
#2

データ

Block Group #0

ビットマップを1ヵ所にまとめる

Block Group #1 Block Group #2

flex_bgの適用

データ領域がまとまり
大きくなる

 ▼図1　Ext4における全体構造の拡張

現代のジャーナリングファイルシステム～Ext4とXFS

84 - Software Design Feb. 2017 - 85

第 章3

のビットマップ、inodeテーブルをまとめて配置
し、大きなデータ領域をとるflex_bgという拡張
が使われるようになっています（図1）。

Ext4のマッピング：
extent tree
　Ext3で使われていたblock mapは、1つのブ
ロック（4KB）を表現するのに、4バイトを消費
します。さらに、より大きなファイルであれば、
参照ブロックなども消費することになります。
たとえば、4GBのファイルには1,048,576個の
エントリが割り当てられ、block mapだけで4MB

の書き込みが必要になります。
　このようにblock mapでは、大きなファイル
を表現するにはスケールしません。そこでExt4

での拡張では、extent treeという形式でファイ
ルを表現するようになりました。
　extentは図2のようにマッピングを、ファイ
ル内のオフセット、長さ、ディスク上のオフセッ
トの3つの組で表現する方法です。Ext4では1

つのextentで32,768ブロック（＝128MB）まで
表現できます。先ほどの4GBのファイルは32

個のextentで表現されます。1つのextentのサ
イズは12バイトですので、384バイトで4GBの
ファイルをマップできるようになります。
　extentはblock mapの入っていた領域に保存
されます。block mapの領域が 60バイトで、
extentのサイズが12バイトですので工夫しなけ
ればextentを5つしか保存できません。Ext4で

は、extent treeと言うツリー構造を使います。
inodeの中には4つまでのエントリ（extent情報、
またはほかのブロックへの参照情報）を持ちま
す。4つ以上のextentが必要な場合は、extent

情報の代わりにブロックの参照情報を書いて対
処します。参照されるブロックにも inode内と
同様にエントリが並びます。
　各エントリ保持領域は、へッダとエントリの
並ぶ部分に分かれています。へッダにはマジッ
クナンバー、この領域内で有効なエントリの数、
この領域に入る最大エントリ数、ノードの高さ
が書かれています。高さはextent情報の並ぶ

ブロックの高さが0で、そこを参照するブロッ
ク（または inode）が高さ1、さらにそこを参照

する部分の高さが2などとなります。参照情報
にもファイルのどのオフセットを担当している
かが記録されており、ツリーをたどる際に使わ
れます。

Ext4のディレクトリ表現：
Hash Tree
　Ext3のディレクトリ表現であるリニアディレ
クトリでは、ある名前のファイルをディレクト
リの下から探すときに、1つずつディレクトリ
エントリを読んでいくしかありません。ファイ
ル数が少ないうちは、これでもよいのですが、
ファイル数が増えるごとに線形に探索時間が長
くなります。これもExt3におけるパフォーマン
スの限界となっていました。

extent

extentによるマッピング extent tree

inode内extent情報

ファイル ディスク

ディスク

4KB 20KB

40KB

ファイル内
オフセット：1

ディスク上
オフセット：5 ヘッダ

高さ：2
…

ファイル内オフセット：0
ブロック：100

ファイル内オフセット：1000
ブロック：200

ブロック #100
ヘッダ
高さ：1
…

ファイル内オフセット：0
ブロック：500

ブロック #200
ヘッダ
高さ：1
…

ファイル内オフセット：10000
ブロック：800

ファイル内オフセット：100
ブロック：501

ブロック #500
ヘッダ
高さ：0
…

ファイル内オフセット：0
長さ：10

ブロック：600
ファイル内オフセット：20

長さ：10
ブロック：700

ファイル内オフセット：2000
ブロック：300

ファイル内オフセット：3000
ブロック：400

ブロック長：10

 ▼図2　extent tree

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

86 - Software Design

　そこでExt4ではHash Treeという構造によ
り、名前のハッシュを使って効率的にディレク
トリエントリを見つける機能を追加しています。
ディレクトリ内のファイルが増え、1つのブロッ
クの内にすべてのディレクトリエントリを保持
できなくなると、Hash Tree化が行われます。
　Hash Tree化されたディレクトリでは最初の
ブロックが、Hash Treeのルートブロックとな
ります。このブロックには、ハッシュ値と（ディ
レクトリ内での）ブロックアドレスを書いたエン
トリが、ハッシュ値でソートされて並びます。
Hash Treeをたどった末端には、Ext3の形式で
ディレクトリエントリが記録されたブロックが
配置されます。したがって、図3のようにファ
イル名“XXX”のハッシュ値が0x2345（実際の
ハッシュ値は32ビット）で、ルートブロック中
のエントリのハッシュ値がそれぞれ、0x0000、
0x1500、0x3000であれば、0x1500≦0x2345

＜0x3000なので、2番めのエントリをたどった
先にファイル名“XXX”のディレクトリエントリ
が存在します。
　Hash Tree内のブロックはうまく工夫されて、
Ext2とも互換性があるようになっています。
ルートブロックには、先頭に“.”と“..”に対応す
るディレクトリエントリが配置され、そのあと
に4バイト分の0埋め領域が配置されています。
Ext3のディレクトリ形式では、この4バイトに
inode番号が入っています。Ext2のコードは、

inode番号が0のエントリを終端と認識するの
で、こうやってハッシュツリー構造が入ってい
る残りの部分をExt2のコードに解釈させないよ
うにしています。同様にHash Tree内のほかの
ノードも先頭4バイトに0が入っており、Ext2

のコードにはディレクトリエントリがまったく
入っていないブロックのように見えます。一方
で、末端のブロックはExt2時代のブロックと変
わっていないので（探索に時間はかかりますが）、
変わらず読み込むことができるようになってい
ます。

Ext4のジャーナリング
　Ext4がExt3を拡張したように、ジャーナリ
ングを担当するJBDも、JBD2として機能が拡
張されています。代表的な追加機能としてチェッ
クサムの追加と、それによるディスク同期の削
減が挙げられます。
　まず、JBDにおけるdata=orderedでのジャー
ナルへの書き込みを詳しく見てみましょう。こ
のモードでは、まずデータを書き、ディスクへ
の反映を待って（ディスク同期をして）からメタ
データをジャーナルに書き始めます。ジャーナ
ルへの書き込みは、まずデスクリプタブロック
とデータブロックの書き込みで始まります。
　一通り書き込みリクエストを送ると、ディス
ク同期をしてから、コミットブロックを書き込
みます。ここでディスク同期を行わなければ、
コミットブロックがデータブロックよりも先に
書き込まれる可能性があり、その場合不正なデー
タがファイルシステム本体に再現されてしまい
ます。したがって、JBDのdata=orderedモード
では、コミットブロック書き込み後のものを入
れて、3回のディスク同期を行っています。
　ディスク同期は、その時点までにディスクに
送った書き込みリクエストをすぐにディスクに
処理させ、完了を待つという方法で実現されて
います。これはディスクにおける、I/O処理の
スケジューリングを阻害し、すべての書き込み

ブロック #0

“.”のエントリ

“..”のエントリ

inode #0

ハッシュ0x0000／ブロック #1

ハッシュ0x1500／ブロック #2

ハッシュ0x3000／ブロック #3

ブロック #1

ファイルABCのエントリ

ファイルXYZのエントリ ハッシュが
0x0000から
0x1500の
エントリ

ファイルXXXのエントリ

ブロック #2

ファイル100のエントリ

ファイル200のエントリ

ファイル300のエントリ

 ▼図3　Hash Tree

現代のジャーナリングファイルシステム～Ext4とXFS

86 - Software Design Feb. 2017 - 87

第 章3

を待つという非常に「重い」処理となっています。
　そこでJBD2ではチェックサム機能を導入し
て、このディスク同期の数を減らしています。
チェックサム機能が有効になると、コミットブ
ロックに、データブロックのチェックサムが記
録されます。これによりディスクエラーでジャー
ナルが壊れても、ジャーナルを再生せず、ファ
イルシステム本体への影響を避けることができ
ます。
　さらにこのとき、journal_async_commit機能

を有効にすると、データブロック書き込みとコ
ミットの間のディスク同期を省略できます。も
しもコミットブロックだけが先に書かれたとし
ても、そのときはチェックサムが不整合となる
ので、ジャーナルが破棄され、ファイルシステ
ムが壊れる心配がなくなるためです。これによ
りジャーナル書き込み時のパフォーマンスが改
善されます。

XFSの全体構造
　ここからはもう1つのジャーナリングファイ
ルシステムであるXFSを紹介します。XFSは
Ext2とほぼ同時期に登場しています（Ext2が
1993年、XFSが1994年）が、当初から64ビッ
トのアドレスをサポートしたり、ツリー構造を
使っているなど、高パフォーマンス・スケーラ
ビリティを意識した作りになっています。
　まずはXFSの全体構造から見ていきましょ

う。Ext4でディスクをBlock Groupに分割して
いたように、XFSもディスクをAllocation

Groupという部分に分割し、Allocation Group

単位で空き領域や、inodeの管理を行っています
（図4）。Ext4のBlock Groupが最大128MBで
あったのに対して、Allocation Groupは最大
1TBにもなります。
　各Allocation Groupには、スーパーブロック、
空きブロック管理情報のルート、使用中 inode

管理情報のルート、メタデータ用に予約済のブ
ロックのリストが入っています。「スーパーブ
ロック」とは言っていますが、これら4つ合わせ
て4KB以下のサイズです。このほかに空きブ
ロック管理に6ブロック予約されていますが、そ
れでも28KBとXFSでは静的に予約された領域
は、Ext4に比べて小さくなっています。

XFSのブロック管理
　XFSは、B+ツリー構造で空きブロックを管
理します。2つのツリーはどちらも連続した

空き領域（Allocation Groupの先頭からの相対ア
ドレスと、空き領域のサイズの組で表現）をアイ
テムとして持ちます。1つのツリーはアドレス
をキーとしてソートされ、もう1つのツリーは
空き領域のサイズをキーとしてソートされてい
ます。
　たとえば、「アプリケーションが既存のファイ
ルに追記して、データを近くに置きたい」という

スーパー
ブロック

空きブロック管理の
ルート情報

inode管理の
ルート情報

予約ブロック
リスト inode B+ツリー 空き領域inode空きブロックB+ツリー

（サイズでソート）
空きブロックB+ツリー
（サイズでソート）

予約
ブロック

Allocation
Group

Allocation Group
#0

Allocation Group
#1

Allocation Group
#2

Allocation Group
#3

最大1TB

…………

 ▼図4　XFSの構造

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

88 - Software Design

ときはアドレスでソートされたツリーを使いま
す。ほかのケース、たとえば、新規ファイルへ
の書き込みであれば、書き込みが入るサイズの
領域を見つけなければいけないので、サイズで
ソートされたツリーを使います。

XFSの inode管理
　Ext4では inode領域がファイルシステム作成
時に予約されていましたが、XFSでは必要に
なったタイミングで inode領域が動的に確保さ
れます。ファイル作成時に空き inodeが存在し
ない場合、新しく64個分の inode領域が確保さ
れます。こうして確保された inode領域（inode

チャンク）は、B+ツリーで管理されます。この
B+ツリーには、inodeチャンクの最初の inode番
号をキーとして、その領域中の空き inode数と、
どの inodeが空いているのかを示すビットマッ
プが入っています。
　空いている inodeを見つけるには、inodeのB+

ツリーをたどって空き inode数を見ていく必要
があります。しかし、ファイル数が増えるごと
に、空き inodeが0である inodeチャンクも増え
て、この探索にかかる時間もそれだけ長くなり
ます。そこで近年のXFSでは、空き inodeがあ
る inodeチャンクのみを登録するB+ツリーも別
個に保存しています。

XFSのファイル表現
　XFSもExt4と同様にextentを使ってファイ
ルとディスクのマッピングを保持します。Ext4

においては、1つのextentで128MBまで表現可
能であったのに対して、XFSでは221ブロック
（＝8GB）まで表現可能になっています。
　Ext4の場合と同様に、extentは、その数が少
ないうちは inode内に並べて配置されます。
extentの数が増えると、ファイル内のオフセッ
トをキーとしたB+ツリーにextentが保存され
るようになります。

XFSのディレクトリ表現
　XFSでもExt4と同様に、ディレクトリエン
トリ（inode番号、ファイル名、ファイル名の長
さ）が並べて記録されます。Ext4でファイル数
が増えると、リニアディレクトリからHash Tree

へと変換されたように、XFSでもファイル数に
応じてディレクトリの形式が変化します。XFS

では、

①Short Form
②Block
③Leaf
④Node
⑤B+ツリー

と5つの形式を持ちます（図5）。Short Form

ディレクトリは、ファイル数が最も少ないとき
の形態です。このとき、ディレクトリエントリ
は inodeの中に記録されます。
　ファイル数が増えていくと、inodeの中には
ディレクトリエントリが入りきらなくなるので
Block形式に変換されます。Block形式では、
ディレクトリエントリを保持する専用のブロッ
クが1つ割り当てられ、inode内にはそのブロッ
クのアドレスが記録されます。このブロックに
は、ディレクトリエントリのほかに、エントリ
の空き領域情報（大きい順に3つ）、ファイル名
のハッシュとエントリのアドレスの組が記録さ
れています。これらの情報を使って、新規ファ
イルの作成時のエントリ位置の決定や、ファイ
ルの探索を高速化しています。
　さらにファイル数が増え、ディレクトリエン
トリとハッシュとでブロックが埋まると、ディ
レクトリはLeaf形式に変換されます。Leaf形
式では、1つ以上の「データブロック」と1つの
「リーフブロック」で構成されます。ディレクト
リエントリと空き領域情報は各データブロック
が持ち、リーフブロックにはハッシュ値の情報
と各データブロックで一番空いている領域のサ

現代のジャーナリングファイルシステム～Ext4とXFS

88 - Software Design Feb. 2017 - 89

第 章3

イズが保存されます。
　よりファイル数が増え、リーフブロックがハッ
シュ値で埋まるとディレクトリはNode形式に変
換されます。この形式ではハッシュ値を保持す
るリーフブロックが複数に分割され、2種類の
ブロックが追加されます。1つはノードブロッ
クで、これはリーフブロック中のハッシュ値の
インデックスを構成します。もう1つは free

indexブロックで、これはリーフブロックの「各
データブロックで一番空いている領域のサイズ」
を集めて保持するブロックです。
　さらにファイル数が増えると、inode内に
extentのリストを保持できなくなります。その
場合、ファイルの場合と同じようにextentの

リストがB+ツリーに拡張されます。構造的には
Node形式と変わりませんが、この状態のディレ
クトリをB+ツリー形式のディレクトリと呼んで
います。

XFSのジャーナリング
　XFSもExt4と同様にジャーナリングを用い
て整合性を保護します。Ext4のジャーナリング
機能は、汎用的に使うことができるようにブロッ
ク単位でジャーナルを行っていましたが、XFS

では「inodeをこのように編集する」「このブロッ
クを確保する」といったように、論理的な操作の
ログをジャーナルに記録しています。そのため、
XFSの方が同一サイズの領域に効率的に、多く
の操作を記録できます。一方で実装の複雑さは
XFSの方が高くなってしまいます。
　簡単にXFSのジャーナルの構造を紹介し

ます。XFSのジャーナルは、LogRecordという
単位で記録されます。各LogRecordは、Log

Sequence Number（LSN）という64ビットのID

で識別されます。LSNの上位32ビットは“cycle

number”と呼ばれ、ジャーナル領域に一周書き
込むたびにインクリメントされます。下位32

ビットはLogRecordのジャーナルの先頭からの
オフセット÷512で決定されます。

inode

entry #0

entry #1

entry #2

Short Form形式

inode

block #100

block #100

bestfree[0]

bestfree[1]

bestfree[2]

entry #0

entry #1

entry #2

hash #0

hash #1

hash #2

Block形式

inode

block #100

block #101

leaf #200

block #100

bestfree[0]

bestfree[1]

bestfree[2]

entry #0

entry #1

entry #2

block #100

bestfree[0]

bestfree[1]

bestfree[2]

entry #0

entry #1

entry #2

block #201

hash #0

hash #1

hash #2

block #202

hash #3

hash #4

hash #5

block #100

bests[0]

bests[1]

hash #0

hash #1

hash #2

Leaf形式

inode

block #100

block #101

node #200

leaf #201

leaf #202

freeindex #300

block #300

bests[0]

bests[1]

bests[2]

block #200

hash #0 / #201

hash #3 / #202

Node形式

リーフブロックには
ハッシュと
各ブロック最大空き
容量が入る

 ▼図5　XFSのディレクトリ表現

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

90 - Software Design

　LogRecordは図6のように、先頭512バイト
を占めるヘッダと、「ログアイテムバッファ」で
構成されます。LogRecordのヘッダにはログア
イテム（操作ログ）の数や、LSNが記録されてい
ます。ログアイテムバッファはその名のとおり、
ログアイテムが並ぶバッファです。ログアイテ
ムは所属するトランザクションのIDや、ログア
イテムの種類を記録するヘッダと、種類ごとの
データを記録する領域からなります。
　1つのトランザクションは、トランザクショ
ンの開始フラグの付いたログアイテムで始まり
ます。その直後にはトランザクションの説明を
行うログアイテムがつき、ここにトランザクショ
ン内のログアイテム数が記録されます。そのあ
とに、各種ログアイテムが続き、最後にコミッ
トを示すログアイテムが記録されます。コミッ
トのログアイテムがなければ、そのトランザク
ションは不完全とみなされ、その部分のログは
再生されません。
　1つのトランザクションが、複数のLogRecord

にまたがる場合もあります。その場合、また

がる前のLogRecordの最後のログアイテムに
CONTINUEフラグが、またがったあとのLog

Recordの最初のログアイテムにはWAS_CON

TINUEフラグがそれぞれついて、トランザク
ションの継続を示しています。

まとめ

　本章ではLinuxのジャーナリングファイルシ
ステムExt4とXFSとを紹介しました。Ext4は
Ext2時代からの互換性をなるべく保ちながら、
新しいデータ構造を導入しています。古いデー
タ構造と新しいデータ構造が同居しているので、
Ext4を見ることで古い構造のシンプルさと問題
点、新しい構造の効率のよさがわかりますね。
　XFSは設計当初からExt4では拡張にあたる
ツリー構造や、extent、64ビットのアドレッシ
ングをサポートしていました。したがってExt4

よりも自然に、かつ高パフォーマンス・スケー
ラビリティが向上するように作られています。
最近ではCopy-on-Writeの機能が追加され、
ファイル単位でスナップショットをとることが
できるようになるなど、今でも活発に開発され
ています。｢

XFSのジャーナルの中身

複数のLogRecordにまたがるトランザクション

LogRecord #0
LSN=1,0

LogRecord #1
LSN=1,2

1KB 5KB

LogRecord #2
LSN=1,10

ヘッダ

ヘッダ

LogRecord #10 LogRecord #11

ログアイテムバッファ

TRANS
START

TRANS
HEADER COMMITブロック追加

TRANS
START

TRANS
HEADER CONTブロック追加 ヘッダ WAS

CONT inode更新 COMMITディレクトリ
エントリ編集

トランザクションの中身は
ブロック単位のデータではなく
「どんな操作をするか」

CONTとWAS_CONTで
トランザクションの継続をマーク

 ▼図6　XFSのジャーナリング

91 - Software Design Feb. 2017 - 91

Flashデバイスの特性
　F2FSは、Flash Friendly File Systemの略
で、その名のとおりFlashデバイスに最適化し
たさまざまな機能を持っています。F2FSはさ
まざまな点でFlashの特性を意識した設計がな
されています。そこで、F2FSの解説に入る前
に、まずSSDのようなFlashデバイスの特性に
ついて解説します。
　Flashデバイスはハードディスクと比べて、高
いパラレル書き込み性能を持ちます。ハードディ
スクでは、離れたアドレスに連続して書き込み
を行うと、ディスクを回転するシーク時間が必
要になります。一方で、Flashデバイスではそ
のようなシーク時間は必要ありません。こうし
たことから、Flashデバイスは、複数の離れた
場所へのI/Oを効率的に処理できます。
　また、Flashデバイスはハードディスクとは
違った書き換え特性を持ちます。ハードディス
クでは、同じブロックを好きなように書き換え
ることができますが、Flashデバイスでは一度
書いたブロックは、リセット処理（イレーズ）を
行うまでは書き換えることができません。
　イレーズは遅く、かつリセットの単位が大き
いため厄介な問題となります。単純に実装する
と、たとえばイレーズの単位が16KBのときに、
1ブロック（＝4KB）を書き換えるために、周辺
16KBを読み込んで、1ブロックをメモリ上で書

き換え、イレーズ処理の完了を待ち、16KBを
書き直す、という処理が必要となります。
　実際には、FlashデバイスはFlash Translation

Layer（FTL）というものを導入して、この問題
を回避します。FTLはOSに見せるアドレスと、
実際のデバイス上のアドレスを動的に変更する
機能を持ちます。今、図1の上のようにブロッ
クが対応しているとしましょう。ここに書き込
みがあると、デバイスは元のブロックではなく、
未書き込みのブロックに書き込みを反映します。
そのうえでマッピングを今書き込まれたブロッ
クに切り替えます。こうすることで、OSから

フラッシュデバイス用
ファイルシステムと、
Copy-on-Writeが特徴のBtrfs

　本章では、Linuxのログ構造化ファイルシステムからF2FSと、Copy-on-Writeを用いるファイル
システムであるBtrfsとを詳しく紹介します。

 Author 青田 直大（あおた なおひろ）

第 章4

OSから見たデバイス

イレーズの単位

A B C D

内部デバイス A B C D A A

AからXに書き換えよう

直接書き換えはしない
別の場所に書いて、マッピングを切り替える

X B C D

A B C D X

 ▼図1　Flashデバイスの書き換え

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

92 - Software Design

はすぐにデータが書き換わったように見えます。
　FTLを使う上での問題は書き換えられてマッ
ピングが外れた領域の回収（＝Garbage Collec

tion（GC））です。イレーズ領域内のすべてが書
き換えられれば、イレーズして終わりですが、
ユースケースによっては、領域のうちの一部が
ずっと書き換えられずに残る場合もあります。
その場合は、その部分をほかに移してイレーズ
する、といった作業が必要となります。

F2FSの特徴的機能
　F2FSは、サムスン社が開発していることか
ら、「Android用では?」とも思えるような変わっ
た最適化をほどこしています。特徴的なのはマ
ルチヘッドロギングという機能です。一般的な
ログFSでは、ハードディスクがうまく動くよ
うに、ログの書き込みは連続した1つの領域に
シーケンシャルに行います。一方でF2FSでは、
最大で6個所に同時にログの書き込みを行いま
す。これは前述した、Flashの高いパラレル書
き込み性能を活かした機能です。
　6個所のログ領域には、それぞれ特定の種類
の書き込みが割り当てられます。割り当ては、
データとメタデータのそれぞれについて、書き
換えが多いと予測される種類の順番に3つのカ
テゴリHot/Warm/Coldに分類して行われてい
ます。こうすることで、よく書き換えられるデー
タ同士が1ヵ所にまとまり、FTLによるGCが
効率的に動くと期待されます。
　ここでデータの書き換え頻度の分類にサムス
ンらしいと思える特徴があります。F2FSはCold

なデータ（すなわち、あまり書き換えられない
データ）として、マルチメディアファイルを認識
します。あるファイルがマルチメディアファイ
ルかどうかは、ファイル名の拡張子で判別され

ます。この拡張子のリストはデフォルトでは、
jpgやpngの画像ファイル、avi、mp3や3gpなど
音声・動画ファイルのほかに、apkとAndroidの
パッケージファイルまでもが入っています。こ
のあたりはやはりAndroid端末を出しているサ
ムスンらしいですね。

F2FSの全体構造
　F2FSのディスクは図2のようにスーパーブ
ロックを含めて6つの領域に分けられています。
F2FSのメイン領域は「セグメント」という単位
で管理されています。デフォルトでセグメント
のサイズは2MBとなっています。
　スーパーブロックには、いつものようにファ
イルシステム作成時に決定されて変わることの
ないパラメータが記録されています。チェック
ポイント領域は、第1章で示したように有効な
ログエントリを参照するチェックポイントデー
タが2つ入る領域です。1つは前回完了したログ
を参照し、1つは現在編集中のログを参照しま
す。すなわち、どちらかのチェックポイントを
使うことで、整合性のとれたファイルシステム
をたどることができるということになります。
　セグメント情報テーブル（SIT）は、各セグメン
ト内で有効なブロックの数と、どこのブロックが
有効かを示すビットマップが入っています。ノー
ドアドレステーブル（NAT）は、メイン領域のメ
タデータブロックのアドレスを変換するための
テーブルです。詳しくは後述します。セグメント
サマリ領域は、メイン領域の各ブロックについ
て、そのブロックを参照している「オーナー」の情
報を持つテーブルです。この情報があることで、
まだ参照されているブロックを、効率的にほかの
場所へ動かすことが可能となります。
　チェックポイントと同様に、SITとNATも2

スーパー
ブロック

チェックポイント
（CP）

セグメント情報テーブル
（SIT）

ノードアドレステーブル
（NAT）

セグメントサマリ領域
（SSA）

メイン領域
セグメント セグメント セグメント セグメント セグメント

 ▼図2　F2FSの構造

フラッシュデバイス用ファイルシステムと、Copy-on-Writeが特徴のBtrfs

92 - Software Design Feb. 2017 - 93

第 章4

つに分かれており、それぞれ2つのチェックポ
イントデータに対応しています。

Wandering Tree
Problemへの対処
　F2FSではExt3と同じように、ブロックマッ
プでファイルとディスクのマッピングを表現しま
す。古典的なログFSにおいて、このようなファ
イルで三重参照に入るファイル領域のデータを書
き換えると、どうなるか考えてみましょう。
　第1章で触れたような古典的なログFSでは、
図3左のように、データブロックを参照エント
リが並んだブロックが参照し、そこを二重参照
エントリのブロックが参照し、さらにそれを
inodeが参照する、という形になっています。こ
こでデータが書き換わると、データブロックの
位置が変わるので参照ブロックが書き換えられ、
参照ブロックの位置が書き換わったので二重参
照ブロックが書き換えられ、結局 inodeまですべ
て書き換えられる、というように1つのブロック
の書き換えで4つのブロックの書き換えが発生
します。このように書き換えの連鎖が発生する
ことを、“Wandering Tree Problem”といいます。
　F2FSでは、ノードアドレステーブル（NAT）
を導入することでこの問題を回避しています。
第1章で解説した古典的なログFSでは、inode

マップによって、inodeの場所が変わっても、

inode番号からその inodeの位置を取得できまし
た。これにより、inodeが動いてもそこを参照す
るディレクトリエントリは書き換えずに済んで
いました。これを inodeだけでなく参照ブロッ
クなどにも拡張するのがNATのアイデアです。
　先ほどと同じ状況でNATを使うF2FSでの
データがどうなるかを見ていきましょう（図3
右）。NATを使っているので、inodeから二重参
照ブロックへのアドレスと、二重参照ブロックから
参照ブロックへのアドレスには物理ディスクで
はなく、NAT上のアドレスが書かれています。
　ここでデータが書き換わると、まず新しいデー
タブロックが書き込まれます。すると、そこを
参照する参照ブロックも新たなアドレスへと書
き換えられます。古典的なログFSでは、ここ
から二重参照ブロックと inodeも書き換えられ
ていましたが、NATを使うF2FSでは参照ブ
ロックに対応するNATのエントリを書き換える
ことで、ブロックの書き換えを止めることがで
きます。

ディスク上のファイル表現

　ここまで見たように、F2FSではブロックの
使用状況はSITの中でセグメントごとにビット
マップで管理されています。また、inodeの使用
状況はノードアドレスの使用状況として管理さ

データ inode 空き領域
参照
ブロック

二重参照
ブロック

データ inode 空き領域
参照
ブロック

二重参照
ブロック

Node
Address
#0

Node
Address
#1

Node
Address
#2

データ inode
参照
ブロック

二重参照
ブロック データ inode

空き
領域

参照
ブロック

二重参照
ブロック

データ inode
参照
ブロック

二重参照
ブロック データ 空き領域参照

ブロック

NATの書き換えを使って、
参照ブロックの書き換えを防ぐ

データの書き換え

データの書き換え

古典的なログFS NATを使うログFS

データ1ブロックの書き換えで、
4ブロックが書き換えられる

（Wandering Tree Problem）

NAT

Node
Address
#0

Node
Address
#1

Node
Address
#2

NAT

 ▼図3　Wandering Tree Problemへの対処

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

94 - Software Design

れ、inodeはノードとして動的に領域が確保され
保存されます。また、ファイルはExt3と同様に
ブロックマップとして表現されています。
　F2FSでは、変わったディレクトリ表現を使っ
ています。ディレクトリエントリ（ハッシュ、
inode番号、名前長、ファイルタイプ）を持つブ
ロックには、図4左のようにエントリの有効を
示すビットマップとファイル名を保持するエン
トリが入っています。ハッシュは入っています
が、ほかのファイルシステムのようにハッシュ
値でソートされていません。F2FSは、1つのブ
ロックの中では、エントリを頭から最後まで順
番に探索します。
　もちろん、これではファイル数が増えたとき
にスケールしません。そこでF2FSは階層型ハッ
シュテーブルを使います。ディレクトリエント
リブロックは、図4右のように階層化されたバ
ケツのいずれかに所属します。level #0にはバ
ケツが1つ、level #1にはバケツが2つ、level

#2には4つというように levelが上がるほどに、
バケツが増えていきます。各バケツには、そこ
に属するブロックに入り得るディレクトリエン
トリの条件が設定されています。
　たとえば、level #0のバケツにはどんなハッ
シュのディレクトリエントリでも入り、level #1

の0番目のバケツにはハッシュが2の倍数であ

るディレクトリエントリが入ります。
　このように、level #nのk番目のバケツには、
ハッシュをその levelの中のバケツ数で剰余を
とったときにkとなるようなディレクトリエン
トリが入ります。この性質を使って、F2FSは
level #0のバケツから探索を始め、見つからな
ければ次のレベルのバケツを見る……というよ
うに探索を行います。

Btrfsの特徴
　ここからはBtrfsについて解説します。Btrfs

は複数デバイスを透過的に1つのファイルシス
テムにまとめ、RAID機能をファイルシステム
レベルで持つなどZFSと似た機能を備えた先進
的なファイルシステムです。ほかにもデータの
透過的圧縮や、効率的なバックアップなどさま
ざまな機能を備えています。
　Btrfsは、Btree File Systemの意味で、その
名のとおりすべてのデータ構造がさまざまなB

ツリーの中で管理されています。Bツリーは、
すべて“（objectid, type, offset）”の3つ組をキー
としています。typeがキーの種類を指定し、
objectidとoffsetは typeによって意味が変わり
ます。たとえば、（42, INODE_ITEM, 0）という
キーのアイテムは、objectid=42が inode番号で、

ディレクトリエントリブロック

hash、inode番号、名前長、ファイルタイプ

ビットマップ

ファイル名：XXX
hash:***1001（2進）

バケツ
#0-0
(*)

level #0

level #1

level #2

バケツ
#1-0
(*0)

バケツ
#1-1
(*1)

バケツ
#2-0
(*00)

バケツ
#2-1
(*10)

バケツ
#2-2
(*01)

バケツ
#2-3
(*11)

hash、inode番号、名前長、ファイルタイプ

ファイル名

ファイル名

ファイル名

hash、inode番号、名前長、ファイルタイプ

…
…

…
…

有効なエントリを示す

 ▼図4　F2FSのディレクトリ

フラッシュデバイス用ファイルシステムと、Copy-on-Writeが特徴のBtrfs

94 - Software Design Feb. 2017 - 95

第 章4

offsetは常に0となり、inode情報を保持するた
めに使われます。
　Btrfsのツリーには、次のものがあります。

　・ファイルシステムツリー	 	
　inodeやextent情報を保持する

　・extentツリー	
　extentの被参照情報を保持する

　・checksumツリー	
　checksumを保持

　・chunkツリー		
　�Block Groupのマッピングやファイルシス
テムを構成するデバイスを管理

　・デバイスツリー	
　デバイス上で確保している領域を管理

　・rootツリー	
　�そのほかのツリーのrootのアドレスを保持
する

Btrfsのアドレス：
extent空間
　多くのファイルシステムでは、ほかのブロッ
クやデータを参照するのにディスク上のアドレ
スを使っています。Btrfsでは、複数のディスク
上にファイルシステムが構築できるため、この
ようなアドレス指定は使うことができません。
　そこでBtrfsでは、extent空間という論理的
なアドレス空間を導入しています（図5）。Btrfs

上のほぼすべてのアドレスが、このextent空間
のアドレスを使用します。ちょうどF2FSのノー
ドアドレスが全ブロックに適用されるようなも
のです。

　extent空間はBlock Groupという単位で分割
され、ディスクへとマッピングされています。
このBlock Groupで、RAIDが行われます。
Block Groupのサイズは、ファイルシステムの
サイズによっても変わりますが、データ用には
1GB、メタデータ用には256MB（50GBを超え
るファイルシステムでは1GB）で確保されます。

Btrfsのファイル表現
　Btrfs上で inodeは（inode番号, INODE_ITEM,
0）というキーで「ファイルシステムツリー」とい
うBツリーに保持されます。Btrfsはデフォルト
では、どこの inode番号が空いているかは管理
していません。単純に、これまで使った最大の
inode番号を覚えておき、その1つ先の inodeを
新しいファイルに割り当てるといった戦略をと
ります。inodeは64ビットで表現されるので、
相当数のファイルを作らなければ inodeが枯渇
するということはありません。しかし、もしも
枯渇した場合には、inode_cacheという機能を
使い、inodeのどこが空いているかのビットマッ
プを作り、そこから inodeを割り当てることが
できます。
　XFSやExt4と同様にBtrfsのファイルも
extentにより、extent空間へとマップされます
（図6）。Btrfsにおいては、データの圧縮が行わ
れるため、「ファイル上での長さ」と「extent空間
上での長さ」とが記録されます。extent空間上の
領域は、さらに前述したBlock Groupの情報を
使って実ディスクへとマップされます。extent

の情報は、ファイルシステムツリーの中に、

空き領域データ領域extent空間

デバイス1

メタデータ領域
RAID1

空き領域データ領域メタデータ領域

デバイス2

空き領域メタデータ領域

 ▼図5　Btrfsのextent空間

第2特集 Linuxファイルシステムの教科書
　Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化

96 - Software Design

（inode番号, EXTENT_DATA, ファイルオフ
セット）をキーとして保持されます。
　ディレクトリ中のファイルもまた、ファイル
システムツリー内に記録されます。ディレクト
リとファイルの関係の表現には、3つのキーが
必要となります。1つ目は（ディレクトリの
inode番号, DIR_ITEM, ファイル名のハッ
シュ）というキーで、ほかのファイルシステムと
同様にファイル名を使って効率的にファイルを
見つけだすために使われています。2つ目のキー
は（ディレクトリのinode番号, DIR_INDEX,
index番号）というキーで、readdir()でディレク
トリエントリを返す順序を決定するために使わ
れます。3つ目のキーは、（inode番号, INODE_
REF, ディレクトリのinode番号）というキーで
す。これは、あるファイルがどのディレクトリ
からどのような名前で参照されているのかを記
録しています。

スナップショットのしくみ

　Btrfsはスナップショット機能で有名なファイ
ルシステムです。スナップショットというのは、
ある時点でのファイルシステムツリーを高速か
つ軽量に保存する機能です。スナップショット
は、実は簡単に実現できます。
　前述したとおり、Btrfsのファイルシステムツ
リーは図7の左上のように、Bツリーで表現さ

れています。スナップショットは、単純にroot

をコピーすることで実現されます。これで、こ
のコピーからも、その時点でのファイルシステ
ムツリーをたどることができるようになりまし
た（図7右上）。ここでファイルの書き換えがあ
るとどうなるでしょうか。ファイルの更新はB

ツリーの書き換えに対応します。Copy-on-Write

の原則どおり、ツリーのノードを rootまでコ
ピーして書き換えを行います。すると、「FSツ
リーのroot」からは書き換えられたファイルシス
テムツリーが見えます。その一方で、「snapshot

のroot」からたどれば、元のツリー構造が保存さ
れています。このようにCopy-on-Writeの性質
を使えば、スナップショットは自然に実装でき
ます。

Btrfsのブートストラップ
　前述したように、Btrfsはほぼすべてのアドレ
スがextent空間のアドレスで記録されています。
これはツリーのルートのアドレスすら例外ではあ
りません。したがって、ツリーを読み込むために、
どこか固定位置にextent空間から物理アドレスへ
のマッピングが書かれている必要があります。
　この情報はスーパーブロックの中に保持され
ます。Btrfsを構成するすべてのパーティション
には、その中の決まった位置（先頭から64KB、
64MB、256GB、1TB、1PB）にスーパーブロッ
クが配置されています。この中にsys_chunk_
arrayという2KBの領域があり、ここにchunk

ツリーのコピー、すなわちBlock Groupから物
理デバイスへのマッピングや、ファイルシステ
ムを構成するデバイスの情報がコピーされてい
ます。スーパーブロックには、ほかにもファイ
ルシステムのUUIDや、ファイルシステム ツ
リーのルートのextentアドレスが記述されてい
ます。Btrfsのマウント時には、まずここを読ん
でファイルシステムを構成するデバイスを認識
し、ツリーが実際にディスクのどこにあるかを
認識するということになります。

file offset

圧縮をサポートするため、
file内のoffsetとサイズ、
extent空間のoffsetとサイズと、
4つ組でextentを記述

file length

extent offset

extent空間 空き領域
データ領域

空き領域
データ領域

デバイス1

 ▼図6　Btrfsのマッピング

フラッシュデバイス用ファイルシステムと、Copy-on-Writeが特徴のBtrfs

96 - Software Design Feb. 2017 - 97

第 章4

さまざまな
ファイルシステム
　本章ではF2FSとBtrfsを紹介しました。
F2FSはデータ構造としては、ビットマップや
ブロックマップなどExt3と同様のものも使って
います。その一方で、Flashデバイス・Android

に特化した最適化をほどこし、その特徴を彩っ
ています。Btrfsは、すべてをBツリーの上に乗
せてCopy-on-Writeを採用して、スナップ
ショットなどさまざまな機能を実装しています。
　本特集では、Ext3、Ext4、XFS、F2FS、Btrfs

と、昔からあるものから、近年のものまで、ファ
イルシステムがどのようにファイルを表現して
いるのかを見てきました（表1）。ファイルシステ

 ▼表1　ファイルシステムの構造まとめ

ファイルシステム Ext3 Ext4 XFS F2FS Btrfs

ディスク管理
Block Group Block Group Allocation Group Segment Block Group
最大128M 最大128M 最大1TB 2MB 1GBなど

ブロック管理 ビットマップ ビットマップ B+ツリー ビットマップ Bツリー

inode番号の管理 ビットマップ ビットマップ B+ツリー ノードとしてビットマップ
で管理 Bツリー

inode領域 静的 静的 動的 動的 Bツリー内
マッピング ブロックマップ extent extent ブロックマップ extent（圧縮対応）
ディレクトリ表現 リニア Hash Tree 5つの形式 階層型ハッシュテーブル Bツリー

整合性の保護 ジャーナル
（ブロック単位）

ジャーナル
（ブロック単位）

ジャーナル
（操作ログ） ログ構造化 Copy-on-Write

ムは、Ext3からExt4・XFSの変化のように、
データ構造が効率化されるだけでは終わりませ
んでした。たとえば、F2FSのようにターゲッ
トをFlashに絞って特化したり、あるいはBtrfs

のようにRAIDやスナップショットをサポート
するなど機能を拡張し続けています。研究段階
でも、書き込み速度に特化したBetrFS注1や、
ディスクの操作やクラッシュからの復帰が仕様
どおりに動くと証明し、安全性を向上させたファ
イルシステムであるFSCQ注2など機能特化や機
能拡充に向けて今でも研究・開発が進んでいま
す。本特集をきっかけにファイルシステムの内
側に興味を持っていただければ幸いです。｢

注1） http://betrfs.org/
注2） https://github.com/mit-pdos/fscq

inodeやマッピングが
記録されている

Copy-on-Writeの原則どおり、
コピーを撮って書き換える

スナップショットから見たツリー
構造は、元のまま残る

rootをコピーすることで
スナップショットが撮れる

この部分を書き換える

FSツリーの
root

FSツリーの
root

snapshotの
root

FSツリーの
root

snapshotの
root

FSツリーの
root

snapshotの
root

 ▼図7　スナップショットのしくみ

http://betrfs.org/
https://github.com/mit-pdos/fscq

98 - Software Design

前編のあらすじ
　ガラケーゲームで業界トップに躍り出たエス社。し
かし、スマホゲームへの対応と事業方針の転換を誤り、
かつての栄光は過去のモノになってしまった。そんな
状況に愛想を尽かしやめていくエンジニア達……。人
材コンサルタントの田草は社長の堀内から相談を受け
る。「いいエンジニアはいないのか？」。田草には一人
の男の姿が脳裏に浮かぶ。人材ハンター「藤堂」。彼を
呼び出し、堀内と引き合わせた結果、想像もし得ない
展開がそこに待っていた。――エンジニアを採用する
ためにはエンジニアを理解できる人間を役員に据える
べき……。エス社を根底から揺るがす採用についての
新しい価値観は、エス社自らの変化を強いるものだっ
た。果たして、いいエンジニアは来るのか？

プロローグ

――定時を過ぎて数時間が経つ。周囲にはまだ
同僚が数人残って残業をしている。私は上司が
役員会で報告するための資料作りと、終わりの
見えないデバッグ作業に挟まれ、ここ数ヵ月終
電前にオフィスを出たことがない……。

「梶君、この計画書の資料作成を週末までにやっ
てくれないか。週明けの役員会で新事業として
提案したいのだ」

「それは、どういう事業なのですか？」
「新たにセキュリティ診断サービスを開始したい
と思っている」

「セキュリティって、当社にはその経験も実績も
ないと思います。ましてセキュリティに通じた
技術者もいないのではないですか？」

「必要な人員の確保はこの提案書が承認されて
からでいい。とにかく今セキュリティが儲かる
のだ！」

「セキュリティはそれ単独で成立する分野ではな
く、システムのコンポーネントすべてに関する
専門性と、そこに潜在する不適正や脆弱性など
を熟知している必要があるので、適切に診断が
できるエンジニアをそう簡単に確保できるとは
思えませんが」

「そこはいい。頭数さえそろえればポートスキャ
ンやXSS（Cross-Site Scripting：クロスサイト

Author 伊勢 幸一（いせ こういち）　 Twitter @ibucho

3 新春特別企画特集

◆ 登場人物 ◆

藤堂
人材コンサルタン
ト。求める人材は
百発百中という気
鋭のヘッドハンター

田草
人材コンサルティ
ング会社の新米
エージェント。元
エンジニア

堀内
エス社代表取締
役社長CEO。ガ
ラケーゲームで一
財を成したが……

梶
無責任な社風に
嫌気がさし、自
分の将来に悩み
を抱えている

矢部
田草の同僚。転
職を希望する梶
と出会う

（後編）

イラスト：高野涼香

98 - Software Design Feb. 2017 - 99

スクリプティング）、SQLインジェクションをテ
ストするツールはオープンソースにあるし、そ
れらを実行してレポートを作成する程度なら多
少のIT知識があれば十分だろ」

「それだとセキュリティエンジニアは必要ないの
ではないでしょうか？　Webフォームから対象
サーバを入力してもらって、プログラムで診断
ツールを実行し、その結果をJSONかXMLで返
すプログラムがあれば十分だと思います」

「どっちでもいい。ただ、プログラムでの自動応
答だけだと金にならない。人が診断作業をする
ことで工数が生まれ、費用を請求できるのだ。
プログラムではなく、人が介在していることが
重要なのだ。とにかく是非は考えなくていい。
ここにある概要書を役員会で配布できるレベル
のクオリティに仕上げてくれ。週末までに」

――いつも思い付きで企画を発案し、すぐ気が
変わって途中で投げ出す上司。その彼から指示
された不毛な資料づくりに時間を取られている。
　どうせこの資料はムダになるに決まっている。
企画立案を任され自分の調査と判断で作成する
ならまだましだが、これは上司が頭の中で考え
ているアイデアを私が変わりに具現化するだけ
のつまらない仕事だ。

……そもそも今の自分にはこんな資料作成に時
間を割いている余裕などない。来週納品予定の
システムに致命的な問題が発覚し、早急にデバッ
グして原因を特定しコードを修正しなければな
らない。そのコードを書いたプログラマはすで
に先月退職してしまっている。このデバッグを
任せられるような同僚もすでに辞めてしまった。
ほかの同僚のほとんどは仕様書を忠実にコーディ
ングするだけで、自分で工夫してデバッグやコー
ド解析、テストする気など微

みじん

塵もない。昨年思
いがけず大規模な開発案件が舞い込んだとき、
慌てて頭数だけ増やすために採用しまくったと
きの社員ばかりが残っている。
　おかげで私の業務範囲は広く多くなり、その
責任だけは増えているが、私への評価も報酬に
も反映されてはいない。実装やテストについて
相談したり、ともに技術を高めたり、新しい技
術を一緒に検証してくれる同僚など1人もいな
い。
　オフィスの明かりが突然消えた。振り返ると
さっきまで残業していたほかの同僚の姿が居な
くなっていた。部屋の電気を消したのか。誰一
人、一言も私に声を掛けずに……。

100 - Software Design

3 新春特別企画特集

転職

「矢部さん、お客様がいらっしゃいました」
「はーい。ありがとうございまーす」

　約束の時間より5分ほど早く顧客が来たよう
だ。どうやら彼は誠実な男のようだ。
　私（矢部）は人材コンサルタント会社3年目
のエージェント。この会社ではおもに転職を希
望する ITエンジニアのキャリアアドバイスを
担当している。先輩の田草とコンビを組んでい
るのだが、田草はクライアントへ営業で外出し
ているようだ。
　今回の顧客はエンタープライズ系システムの
受託開発と運用代行をしているSI会社に新卒
で就職して4年目のエンジニアと聞いている。
履歴書によると大学ではニューラルネットワー
クを卒論のテーマとし、その研究中にシミュレー
タを自作してプログラミングに興味を持ち、
AIのプログラマを目指すことになったそうだ。
――新卒で入社して3年、キャリアアップを目
指した転職を希望。比較的技術力向上に積極的
でさまざまな文献を自費で購入して勉強してい
るらしい。
　来客が通された応接室へ向かう前に、その通
路の途中にある個室のドアをノックした。中か
ら返事はなかったが、擦りガラス越しに黒いスー

ツの人影が見える。私はドアを静かに開け中の
人影に声を掛けた。

「ミスター藤堂、梶さんがお見えになりました。
ご同席をお願いします」

　ミスター藤堂は当社のエージェントのオブザー
バとして契約を交わし、定期的に私達エージェ
ントに対してアドバイスや指導をしてくれてい
る。今回は偶然にもエージェント研修があり、
彼が講師として来社していたので、梶氏との面
談に同席をお願いした。ミスター藤堂を梶氏の
待つ応接室へ案内し、ドアをノックして扉を開
けた。

「梶さん、お待たせしてしまいました。本日はご
足労いただきありがとうございます」

　私達2人が室内に足を踏み入れると、2人が
けのソファーに座っていた青年がすっと立ち上
がった。襟元のボタンだけを外した白いワイシャ
ツに紺のジャケット、濃いグレーのスラックス、
足元はテーブルの影に隠れて見えないが、おそ
らくダークブラウンの革靴を履いているだろう。
髪は短めで前髪が自然に左右へ流れるようにと
かされ清潔感の観点では申し分ない。そして彼
はそこで深々とお辞儀をした。

「梶さん、こちらがミスター藤堂です。ミスター
藤堂、こちらが先ほどお話させていただいた梶
さんです」

「ミ、ミスター藤堂？」

　ミスター藤堂は無言で梶氏をソファーに座る
ように促し、そして彼の正面の椅子に自分も着
座した。私も続いてミスター藤堂の隣の椅子に
腰掛けた。

「なぜ転職を考えた？」

100 - Software Design Feb. 2017 - 101

　珍しくミスター藤堂のほうから口火を切った。
梶氏は突然の問いかけに、うつむき加減だった
顔を上げ、ちょっと怯えたような目を見開いて、
ミスター藤堂を見た。そして、あらためて背筋
を伸ばし、短く息を吐き、そして目線を変えず、
訴えかけるような姿勢で話をし始めた。

「私は新卒で今の会社に入社し、丸3年間、シス
テム開発と運用の現場で働いてきました。昨年
ぐらいからチームを率いるようになり、数人の
スタッフを取りまとめています。入社してから
今までの仕事はほとんどが受託開発業務で、ク
ライアントから要求されるざくっとした仕様や
イメージからシステムの要件定義、概要設計、
モジュールの詳細設計、運用設計まで行い、そ
れらをスタッフと一緒に開発し納品し、場合に
よっては運用も行っています」

「普通だな」

「はい、ごく普通のSIerの業務だと思います。
ただ、最近その業務に達成感を感じなくなって
きました。受託案件で利用する言語やフレーム
ワークは基本的に会社が今まで使ってきた環境
をそのまま継承しています。時に別の言語やフ
レームワークで依頼されることもあるのですが、

新しい開発環境で受託するとその学習コストが
工数となって原価を上げてしまうため、営業側
が顧客を説得して従来通りの言語とフレームワー
クで受託してしまうのです。新しい技術や言語、
フレームワークで開発してみたいと個人的に学
習しても業務とは認められません。私は新しい
フレームワークや言語などを試したり検証した
りはしていますが、実際の業務で活用してみな
いと適不適や性能、バグ、実用性など真の技術
力として身につかないものです。私はもっとい
ろいろな技術や実装、言語フレームワークを学
び習得したいのです。いろいろな参考書を買い、
自宅でさまざまな言語や実装を試したり、レン
タルサーバ上で実行したりしますが、どうもそ
れだけでは素人の趣味の範囲を超えられないと
感じるのです。業務として、仕事として責任を持っ
てそれらさまざまな新しい技術を習得しつつ活
用してサービスやアプリケーションを作り、そ
して運用しつつチューニングしていくような仕
事につきたいと思い、今回ご相談に伺いました」

　滑
かつぜつ

舌良く、はっきりと落ち着いた話具合から
察する限り、彼の言うことに嘘はないだろう。
エンジニアの転職の中でスキルアップ、キャリ
アアップを図りたいという理由がもっとも多い

102 - Software Design

3 新春特別企画特集

（前編を参照）。彼もまた同じように自身の技術
力を高め、新たな技術に挑戦したいという思い
が転職を考えさせたのだろう。

「それだけか？　隠しごとはやめてもらおう」

　ミスター藤堂には彼の話以外にも理由がある
のではないかと感じたようだ。確かに梶氏の表
情には単により高い技術者を目指しているだけ
のエンジニアとしては、目の表情に若干の焦り
と憤りの色が見て取れる。純粋な向上心だけを
願う目にはもっとハッキリと瞼

まぶた

の奥から眼光を
示すものだ。

「転職理由はそれだけではありません」

不信感

　梶氏はふたたび語り始めた。梶氏によると会
社のサービス企画や受注方法などの事業姿勢に
不誠実を感じるとのことだ。顧客の立場で最適
なソリューションを提供するとは言っているが、
実際には不適切に過剰な設計で工数を水増し、
同時に開発コストや人件費を極限まで削って利
益を確保しようとしている。また提案も顧客に
とって最適であるとは限らず、どちらかという
と受注する会社側の都合や利益を優先した内容
になる場合が多い。

　さらに実績も経験もないサービスを新規事業
としてでっちあげ、真摯に計画を検討せず準備
にもあまり時間をかけず、適当なクオリティで
顧客に提供しようとしている。法的に問題があ
るわけではないが自身の職務に社会的正当性を
見いだせなくなったそうだ。
　また新事業や案件があるたび慌てて人の募集
をし、必要と思われる頭数だけ集め、不要になっ
たら能力不足を理由に減俸するなどの評価を下
し、自ら退職していくよう仕向ける気配がある。
いつかは自分の番が来るという恐怖観念に悩ま
されながら仕事をしていくことが大きなストレ
スとなっているようだ。会社では優秀な友人を
紹介し、採用に至ったならば50万円の報奨金
を出すというキャンペーンも行っているが、当
然能力の高い友人をこの会社へ誘いたくないし、
金で友人を売る気にもなれない。

「事業ありきの人事体制か」

　会社の事業と人事に関する体制は大きく2つ
に分けられる。まず事業があり、そして必要な
雇用を行う事業優先型と、まず人材を集めそこ
から生まれるものを事業化していく人材優先型
である。梶氏の会社は典型的な事業優先型であ
り、この類の企業では社員、つまり人やエンジ
ニアをモノ扱いする傾向にある。端的に言うと
社員は給料というお金で買うモノであり、お金
の流出を止めたければ解雇すれば良いという認
識だ。
　当然ながらエンジニアを含め、社員をモノ、
つまり事業にとってのコストと考えている企業
は社員の能力や可能性に対する評価などできる
はずもなく、評価軸は工数コストにヒットする
人件費だけである。

人材

「おまえは社員になりたいのか、人材でありたい
のか？」

102 - Software Design Feb. 2017 - 103

　ミスター藤堂はいつもと同じく、瞑想してい
るかのように細めた目からじっと梶氏を見つめ、
そして呟くように問いかけた。

「雇用されるのが社員、投資されるのが人材だ」

　この概念は、ミスター藤堂が人材を求めてい
る企業に対して採用の概念を認識させるための
決まり文句だ。

「私は、指示された業務に応じて結果を出してい
るつもりです。与えられた業務は滞りなく遂行
しています」

　与えられた業務を遅延なく遂行するだけでは、
評価が下がらないまでも上がることは決してな
い。なぜなら業務を与えた側、つまり上司や会
社にとっては業務が完了することを前提として
指示しているのであって、それを遂行すること
は当然であり、期待以上の結果が得られたわけ
ではない。

「今のおまえは会社のコストでしかない」

　多くの場合、会社の評価はエンジニアの労働
時間やエンジニアの業務によって生み出される
売上と利益から査定される。会社や上司が要求
した業務を社員が滞りなく行ったとしてもその
人件費は成果物に対するコストであり、事業面
から考えるとコストは安いほうが利益率が高い。
高度な技術力を持っていたり、新しい技術を利
用したり、チームの技術力と士気を上げるといっ
た、コストと利益に反映しない要素は一般的に
考慮されない。

「私は定時後に技術の勉強会に出席したり休日
でもエンジニアセミナーに参加したり自宅でコー
ディングやサーバの実装なども自主的に行って
ます」

　ミスター藤堂はテーブルの上に置いてある彼
のラップトップを手元に引き寄せて開き、何か
をタイプした。そしてじっと画面を見ながらキー
を押したりボタンを押しながら糸のような細い
瞼
まぶた

の中で漆黒の瞳を振り子のように左右させた。
すると彼は肩でゆっくりと息を吸い、そして静
かにその息を吐くと目線だけを上げて梶氏を見
据えた。

「1行もない」

　彼は梶氏の氏名と彼のポートフォリオにある
所属企業や出身校、得意分野などいくつかの単
語を組み合わせたキーワードでネット上を検索
したのだ。しかし、彼の氏名を含むサイトやペー
ジが1つもなかったのである。

「私は検索結果に出てくるような有名人ではあり
ません。書籍や雑誌記事の執筆経験もありませ
んし、セミナーに参加することがあっても講演
者として登壇するような立場ではありません」

「誰しも最初から著名なわけではない」

　現在、さまざまな ITエンジニア向けのセミ
ナーや勉強会、ハッカソン、ハンズオンなどの
集いがあり、そのイベントを運営したり、講師
として招

しょうへい

聘される人は大勢いるが、彼らのすべ
てが最初から業界内で注目される人物だったわ

104 - Software Design

3 新春特別企画特集

けではない。最初は皆、一参加者であったはず
だが、時を経るに従い参加者から運営サイドに
回り、場合によっては講師として登壇し、また
ほかのコミュニティやセミナーから講演を依頼
されたりするようになったのだ。

「コミットメントとアウトプットだ」

　一般参加者がイベントやコミュニティの運営
サイドにマイグレーションしていくにはパター
ンがある。先輩社員や友人がすでにコミュニティ
の運営だった場合、その先輩や友人に紹介され
て運営に参加する場合。とくに紹介者が居なく
とも毎回同じカテゴリのイベントに参加し続け、
会場内や懇親会などで自分の作業や作品、サー
ビス、興味のある分野などを積極的に伝えたり
ディスカッションしている間に運営への誘いを
受ける場合もある。
　ただし、イベントやコミュニティに参加する
ことによってエンジニアとして成長したいので
あれば、それ相応のコミットメントが必要であ
る。通常それらのイベントやコミュニティの運
営に携わることは基本的に無償奉仕である場合
が多く、定時後や休日などのプライベートな時
間を割いたり、イベント会場までの交通費や宿
泊費も自己負担したりと、ある程度個人でコミッ
トメントをする必要がある。
　また、単にイベントやセミナーでの交流だけ
でコミュニティ内の評価を得られるわけではな
い。エンジニアが携わっている技術や業務に関
してどれほど造詣があるかが重要であり、その
エンジニアが公開しているオープンソースや執
筆した書籍、投稿記事、発表資料、もしくは個
人のブログや会社の技術情報サイトでの寄稿な
ど、具体的な技術スキルや実績が測れるマテリ
アルが求められる。
　つまり、情報共有するに足る経験、知識、知
見を持ち合わせているかどうかを判断するエン
ジニアのアウトプットが必要なのだ。書籍の執
筆や講師の依頼を受けるにはある程度実績のあ

るエンジニアである必要がある。しかし、イベ
ントのライトニングトークや個人ブログに技術
情報を載せる行為はとくに資格や過去の実績な
ど必要とせず、本人が情報発信するつもりがあ
る限りいくらでも実行できることだ。そういっ
たカジュアルな情報発信がやがてほかのエンジ
ニアから注目されたり共感されることで、次第
にエンジニアコミュニティの中で発言、講演、
執筆する機会が巡ってくるものなのである。ア
ウトプットなきエンジニアにインプットもチャ
ンスも与えられることはない。

「しかし、私の現在の業務で使っている技術や
環境は特定メーカーのブラウザ使用を前提とし
た業務管理システムで、そのメーカーの開発環
境とフレームワークと機能に依存し、バックエ
ンドにも同社のDBMSを利用した開発ばかりで
す。今どきのオープン系のエンジニアが興味を
持つような要素などありません」

「ツールが何かの問題ではない、要はお前にこ
だわりがあるかどうかだ」

拘泥

　エンジニア間でよく話題に上る技術の情報だ
けに価値があるわけではない。非常にレガシー
かつビジネスライクな実装や製品であっても利
用者がいる限り、新たな視点での使用方法や便
利なプラグイン、新しいバージョンに関する検
証結果などは価値のある情報として注目される。
問題はそういった知見が得られるまでそれらの
環境や実装に当のエンジニアがこだわっている
かどうかである。こだわりがあればさまざまな
新しい発見や利用法、隠された機能などを見つ
け出し、その情報を発信できるだろう。逆にこ
だわりがなければ必要以上に対象を知ろうとす
るわけがなく、ほかのエンジニアが気づかなかっ
たテクニックや秘密などを見つけ出すことはま
ずない。

104 - Software Design Feb. 2017 - 105

「私は幼い頃、ジェームス・ホーガンの『未来の
二つの顔』を読んで人工知能に興味を持ち、さ
まざまな本を読んだり、セミナーに参加して、
大学では人工知能を実現するニューラルネット
ワークを研究テーマにしていました」

「……興味を失ったか？」
「今のベンダー依存の実装と開発環境で業務系
を開発する仕事にAIを必要とすることなどあり
ません。過去にエキスパートシステムが提唱さ
れたとき一時的にAIが注目されもしましたが、
実際に役に立つレベルではなく、すぐにビジネ
ス界から消え去りました。AIとは言ってもせい
ぜい将棋ゲームかスパムメール駆除に応用され
ている程度で、AIが人の代わりになるなどSF
の世界だけの話です。今の社会にAIなど必要と
されてはいません」

「必要かではなく、興味があるのかと尋ねている」
「も、もちろん興味は今でもあります。時々文献
を読んだり、ネット上でAI関連の話題や記事を
見つけると楽しくなります」

「……ならば突き詰めるがいい」

　その時々で注目される技術や流行っている技
術を後追いで身に付けたとしても、その分野の
イノベーターとして1番になれるわけはない。
どんなに努力しても2番以下、つまりアーリー
アダプターのポジション以下しか得られない。
なぜなら、華やかな技術に気がついて後追いし
始めるということはすでにイノベーターグルー
プが形成された後だからだ。業界や世間から注
目されていなくとも、エンジニア本人が興味を
持ち、こだわりを持って追求し続けるエンジニ
アだけが、その分野のイノベーターとなれる。
　特定の分野でイノベーターであったとしても、
その分野が必ずしも業界や世間から注目され、
イノベーターが社会や企業から評価されるとは
限らない。しかし、興味のない分野を後追いで
追っかけ続けた挙句、これといった注目も得ず、
評価もされない結果となるより、評価されなく
とも興味のある分野を追求し続け、新たな発見

や知見を得られるならばそれで達成感や満足感
を得ることはできる。そして、不思議なことに
特定の技術や分野にこだわり続ける限り、数年
から十年に一度の頻度で突然世間の耳目が集ま
り、その分野のイノベーターが強烈な勢いで注
目評価されるものである。肝心なのは自身の興
味に従い、こだわり続けることであり、決して
現段階での流行や注目を不本意にもかかわらず
追っかけまわすことではないであろう。

「なるほど、そうかもしれません。興味のない技
術を義務的に努力習得してある程度の評価を受
けるより、評価されなくとも本当に興味のある
分野を突き詰めていったほうがいいですね。自
分自身を納得させることができる。わかりました」

「ただし、実務を疎かにするな」

　コミュニティや個人の興味のための調査検証
などの活動によってエンジニアとして成長する
には、あくまで本来の業務における責任を果た
していることが前提となる。本来会社から課せ
られた業務や義務、責任を疎かにした状態でコ
ミュニティや個人的興味の活動に注力すること
は逆に社内からの信頼を失い評価を下げること
になる。社外活動を通じて技術力が評価され社
内で何らかのプロジェクトを任されるまでになっ
たとしても、信頼を失ったエンジニアに協力し
ようとする同僚はいない。業務というのはたっ
た1人で実施できるものではない。さまざまな
ステークホルダの理解と協力によって成立する
ものである。社内的とは言っても一度信頼を失
うと、それ以上の実績を上げることなど不可能
なのだ。当然、社内での評価や信頼が下がると
社外や個人的活動にも大なり小なり影響するも
のであり、結果的に社内での評価も社外へのコ
ミットメントも下がり、エンジニアキャリアに
とって取り返しのつかないダメージになってし
まう。

「わかりました。現状の責務を十分に果たしたう

106 - Software Design

3 新春特別企画特集

えで、もういちどAI技術に注力してみます。そ
して、その結果やレベルの良しあしを恐れず、
すべてを自分の今の知識知見として広く情報発
信していくことにします」

――梶氏は憑きものが取れたかのように生気を
発し、目つきは凜とし、口元は引き締まっては
いるが、わずかな笑みが見て取れる。

エピローグ

　イベントが開催されている大ホールの入口に
設けられた受付で参加者用のストラップとガイ
ドブックを受け取り、同僚の田草と一緒に会場
へと足を進めた。冬だというのに会場内には熱
気がこもり、通路でもエンジニアがそこかしこ
に団子を作って議論を交わしている。入口の右
側の列には協賛会社の展示ブースがあり、それ
ぞれサービスや製品のカタログを案内したり、
社員が調理したという屋台物を振るまったり、
簡単なゲームを催し賞品としてレアなノベルティ
を提供したりしている。
　ホールの中央にあるメインステージはオープ
ンになっており、ホールのどこからでも観覧す
ることができ、高さ1メートルくらいのステー
ジ上ではパネルディスカッションが行われてい
る。メインステージの左右に設営されたセッショ
ンスペースではさまざまなテーマについてセミ

ナーやカンファレンスが開催されている。この
イベントはあらゆるカテゴリに携わる ITエン
ジニアが一同に会し、それぞれエンジニアが興
味を持つテーマで自由に議論し情報を共有する
ITエンジニアの祭典、MINGLE（Mixture of

New Generation, Link Engineer）の会場である。
　メインステージ前に準備された座席の一番後
ろで田草と一緒にステージのセッションを眺め
ていると、右後ろから快活な足音で近づいてく
る人の気配を感じた。

「矢部さんですか？　お久しぶりです」

――振り返ってみると数年前に私が転職コンサ
ルティングを担当した梶氏が明るい笑みを携え
て話しかけてきた。

「あら、お久しぶりですね。お名前は最近よく伺っ
てはいたのですが、お会いするのは本当に久し
ぶり。今日はご参加？　ご登壇？」

「はい、今日はニューラルネットワークとAIに
関するセッションでお話しさせていただくこと
になっています」

「それはぜひ拝聴させていたただきます。ところ
で今お仕事は？」

「ええ、幸い昨年転職しまして、今はその会社で
AIの開発をしています」

「それはよかったですね。そうそう、紹介が遅れ
ました。こちら私の同僚の田草です」

「田草です。梶さん、よろしくお願いします」
「梶です。こちらこそよろしくお願いします」

　3人で取り留めもない世間話をしていたとこ
ろ、梶氏の後ろ側から控えめに背筋をピンと伸
ばしつつ、人懐っこい表情を携えノーネクタイ
にダークスーツを着込む紳士が近づいてきた。

「おお、田草さん、ご無沙汰です」
「これは、堀内社長、こちらこそご無沙汰してお
りました」

106 - Software Design Feb. 2017 - 107

「あれ？　社長、こちらの田草さんをご存じなん
ですか？」

「おや、梶くん、君こそ田草さんと面識があった
のか？」

「いえ、私は初対面です。こちらの矢部さんには
以前エンジニアキャリアについてアドバイスを
いただき、お世話になったことがあるのです」

　梶氏は藤堂との面談後、AIや機械学習、ニュー
ラルネットワークに関してふたたび学び直し、
細々ではあるが行動してみたのだ。さまざまな
機械学習ツールやニューラルネットワークのフ
レームワークがオープンソースとして公開され
ていることを知り、それを片っ端から調査した。
それらを検証し、数学的根拠による考察などを
加えたレポートを個人のブログ上で公開してき
た。
　そうして2年ほど経過したあるとき、梶のブ
ログがエス社の堀内社長に目にとまった。堀内
は興味を持ち、梶が登壇するエンジニアセミナー
に足を運び、AIに興味があるということで直
接梶氏を口説いたのだ。もちろんその当時のエ
ス社にAIを必要とするようなプロジェクトや
事業などなかった。しかし、堀内氏は梶氏に
AIの研究に注力するよう依頼し、梶氏もその

依頼に答え、やがてWebシステム開発業界で
もっとも機械学習とAIに関して知見の深いエ
ンジニアとして認知されるようになってきた。
　その後AIによる画像認識の世界コンテスト
で海外の企業の研究チームが画期的な計算方法
によって絶大な高速化を実現し、世界を驚愕さ
せた。その事件をきっかけとして世界中に機械
学習とAIのブームが押し寄せ、過去のブーム
と異なり、現在のコンピューティング性能の向
上と相まってAIシステムが俄然現実味を帯び
てきた。同時に梶氏の業界内での知名度も上が
り、梶氏を慕って優秀なAIエンジニアが次々
とエス社に入ってきたのである。

「1年ほど前に、梶君がオンランゲームのGM、
つまりゲームマスターをAIを使ってロボット化
するプログラムを作ったので自社サービスへ導
入してみたのだ。このロボットはプレイヤーか
らの問い合わせに対し、機械学習の結果から適
切な回答を返すだけではなく、そのあとのプレ
イヤーの行動を分析して返した回答の精度を求め、
それをさらにリアルタイムで入力シナプスへの
ウェイト量の調整にフィードバックするという
ものだ。長くプレイすればするほど適切な対応
をしてくれようになるとプレイヤーからの評判

108 - Software Design

3 新春特別企画特集

も上がった。そして、他社からも問い合わせが
あり、他社のゲーム向けにAI-GMを提供すると
いう事業が生まれたのだよ。今では携帯ゲーム
での直接収益より、AI-GMロボットの販売と運
用事業の収益が大きくなったぐらいだ。BtoC事
業だけが収益源だった当社にBtoB事業が生まれ、
さらにその収益が成長し続けているという状況だ。
まったく、梶君を採用したときにこうなるとはまっ
たく期待していなかった、思いもよらないこと
だよ」

「社長、まったく期待してなかったんですか？　
ひどいな」

「いや、それはまあ、言葉のあやであって……」

　返答に困る堀内氏を囲み私たち3人は明るく
笑った。

「梶くん、そろそろセッションの時間ではないの
かね？」

「そうでした。矢部さん、田草さん、お会いでき
てうれしかったですよ。残念ですが、ここで失
礼します。あ、そうそう、来月初めて私の本が
出版されます。私の開発したGMエンジンの実
装方法をソースレベルで解説した本です。今手

持ちが1冊しかないのですがよろしかったらど
うぞ」

「ありがとうございます。よろこんで拝読させて
いただきますよ。梶さん」

――梶氏は笑顔でゆっくりと振り返り、そして
メインステージの方へと歩みを進めた。私はい
ただいた本を両手で持ち上げ、そして左手で表
紙をめくってってみると、扉ページの裏に短い
文が書いてあることに気がついた。

「矢部さん、セッション始まるよ」

　田草に急かされ矢部は慌てて本を閉じて左手
に持ち替え、バッグを拾い上げてメインステー
ジのほうへと向かった。
　田草に急かされなければ、矢部は本の扉裏に
あるこの言葉を読むはずであった。

「世界最高のエンジニアハンター、親愛なるミス
ター藤堂へ捧ぐ」

ﾟ

109 - Software Design Feb. 2017 - 109

データ
サイエンティストの
秘密ノート

　ソフトバンク・テクノロジーが行っている「データアナリ
ティクス」事業。それにかかわるデータサイエンティスト
が、プロジェクトの中での失敗事例を紹介している。たと
えば、「分析目的から逸れた興味本位な分析をしてしまっ
た」「過学習が生じてしまった」「報告資料のコメントがわか
りにくいといわれてしまった」などである。紹介する35の
事例はすべて「失敗」したものであるが、それぞれの事例で
は、どのように失敗をとらえ、それを繰り返さないように
したかという「症状と克服法」が語られている。依頼内容や
依頼企業、対象データの詳細などはさすがに明かされてい
ないが、すべて著者らが実際に経験した失敗とのことで、
これからデータ分析を行おうとする読者の方、今まさにそ
の途中だという方には大いに参考になるだろう。

高橋 威知郎、白石 卓也、清水
景絵 著
四六判／216ページ
1,800円＋税
SBクリエイティブ
ISBN＝978-4-7973-8962-3

やさしく学べる
MySQL運用・管理
入門

　データベース運用・管理者向けの、MySQLの入門書。
RDBMSの基礎から解説が始まり、DBMS初心者にも優し
い作りとなっている。また各章の最後では演習問題が設け
られ、習得知識の確認ができる。本の内容としては、SQL
文の説明やプログラムとの接続といった開発面の話題はほ
とんどなく、バックアップとリカバリ、レプリケーション、
セキュリティ、さらにはパフォーマンスチューニングと、
運用・管理に特化したものとなっている。なお本書は、
InnoDBの強化、マルチソースレプリケーション、JSON
データ型、パスワードの有効期限設定など多くの変更が
あったMySQL 5.7に対応している。JSONデータ型につい
ては章を設け、そのメリットやJSON関数・JSON演算子
の使い方を解説している。

梶山 隆輔、山崎 由章 著
B5変形判／296ページ
2,600円＋税
インプレス
ISBN＝978-4-2950-0019-8

Python
クローリング&
スクレイピング

　膨大なWebのデータを収集し、必要なものだけを抽出
するクローリングとスクレイピング。オープンデータの集
積と可視化、SNSからの語彙分析、検索エンジンの自作、
Webページの自動操作など、この技術の用途は多岐に渡
る。Pythonは言語自体の特性や強力なライブラリの存在、
収集後の工程との親和性の高さから、この分野で最も広く
使われている言語だ。本書では、Pythonによるクローリン
グ・スクレイピングの基礎から実践までを余すことなく解
説し、その後のデータの利用方法まで紹介する。強力無比
なScrapyフレームワークの活用などの即使える実践的な
テクニックはもちろん、キューイングや非同期I/Oなどの
汎用的な技術も扱っており、実践的なデータ収集を始めた
い人には必携の1冊と言える。

加藤 耕太著
B5変形判／400ページ
3,200円＋税
技術評論社
ISBN＝978-4-7741-8367-1

はじめよう!
プロセス設計	

　本書でいう「プロセス」とは「仕事の組み合わせ」。良い流
れでプロセスが組まれていれば、仕事はスムーズに流れ、
協業も適切に行われるが、悪い流れなら、その仕事にかか
わる当事者がそこかしこでつまずくことになる。またプロ
セスには、「IT」を利用すると、「イノベーション」を引き起
こすことが可能という側面もある。ITシステムはつまり、
良い「プロセス」の流れを設計できれば、ユーザにとって魔
法のようなパワーをもたらす存在になる。逆に、誰もプロ
セスに真剣に向き合わないで実現されると、ユーザ不在の
末路を迎えることにもなる。本書は、エンジニアとして

「プロセス」をどう考え、向き合えば良いか豊富なイラスト
とともに丁寧に教えてくれる。読む中でビジネスパーソン
として、仕事の本質と向き合うことができるのも魅力。

羽生 章洋 著
四六判／240ページ
1,980円＋税
技術評論社
ISBN＝978-4-7741-8592-7

セキュリティ情報の最前線「Black Hat USA 2016」でトレーニング！ ▶▶▶▶▶▶▶▶▶▶▶▶▶▶

110 - Software Design

はじめに
　2016年7月30日から8月2日の4日間にかけて、
アメリカ合衆国のラスベガスでBlack Hat（以下、
BHUSA）と呼ばれるセキュリティに関する世界的
なカンファレンスが開催されました。
　BHUSAでは、企業による展示のほかに講師によ
るさまざまなトレーニングプログラムを受講できま
す。企業展示では、セキュリティ脅威から身を守る
ための製品やサービスを見て回ることができます
が、セキュリティ脅威そのものに対する詳細な解説
は多くありませんでした。そこでセキュリティ脅威
に関する具体的な手法や実例を学ぶため、サーバー
インフラストラクチャへのペネトレーションテスト
のトレーニングを受講してきました。
　本稿では、具体的なツールや実行例を元にペネト
レーションテストの大まかな流れを紹介すること
で、攻撃者の手法の一部を知ってもらえればと思い
ます。

ペネトレーションテスト
（PenTest）とは

　ペネトレーションテストとは、ネットワークに接
続されているシステムに対して、侵入を試み、シス
テムに脆弱性が存在しないかを検証するテストで
す。ネットワークに接続されたシステムは「格納さ
れている重要なデータを盗み出したい」「システムを

破壊してサービスを妨害したい」などさまざまな目
的のため、常に外部から悪意あるユーザの攻撃にさ
らされることになります。ペネトレーションテスト
の対象はさまざまで、アプリケーションに脆弱性が
ないかを確認するテストや、今回のようにアプリ
ケーションが稼働するサーバそのものに脆弱性がな
いかを確認するものもあります。

ペネトレーションテストで学ぶ
侵入攻撃の手法と対策

セキュリティ情報の最前線「Black Hat USA 2016」でトレーニング！

　ペネトレーションテストの実施において、守っ
ていただきたいことがあります。
　ペネトレーションテストを実施する場合は、自
身が管理するサーバ・ネットワークのみを対象とし
てください。ペネトレーションテストでは、実際
の攻撃者が使用するツールを用い、サーバに対し
て攻撃をしかけます。今回紹介する内容の中には、
サービス妨害行為（DoS）に該当する可能性がある
ものが含まれます。テストを行った結果、大量の
アクセスや侵入を試みようとした記録が残ったり、
場合によってはサーバに対して重大な障害を引き
起こす可能性があります。また、クラウド環境や
レンタルサーバ環境では、ペネトレーションテス
トの実行を禁止しているところも多くあります。
ペネトレーションテストの実行を攻撃とみなされ、
非常に厳しい処罰を受けることがあります。テス
トを行う際は、閉じたネットワークなどの安全な
環境で試してください。

WARNINGWARNINGWARNING
本稿を読むにあたってのご注意

システムを侵入者の手から守るためには、その手口を知ることが重要
です。本稿で解説するペネトレーション（侵入）テストによって、システ
ムを守るために必要だと言われている事柄の理由を、より具体的に感
じてください。

ペネトレーションテストで学ぶ
侵入攻撃の手法と対策

 Author 國信 真吾（くにのぶ しんご）　㈱アーヴァイン・システムズ

ペネトレーションテストで学ぶ
侵入攻撃の手法と対策▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶

Feb. 2017 - 111

把に次の2つのパターンに分類されます。1つは、自
身（攻撃を実行するサーバ）が接続しているネット
ワーク、もう1つがそれ以外の外部のネットワーク
です。ネットワークのスキャンでは、対象となる
ネットワークによって用いるツールが異なります。

■arp-scanによる内部ネットワークのスキャン
　攻撃用サーバが接続しているネットワーク上に、
ほかにどのようなサーバが存在するかを特定するに
は、arp-scanと呼ばれるツールを使用します。arp-

scanは、ARP（Address Resolution Protocol）と呼ば
れるIPアドレスからMACアドレスに変換するため
に用いられるプロトコルを利用し、ネットワークに
存在するサーバの検出を行います。具体的には、
arp-scanは、自身が接続されているネットワークの
ブロードキャストアドレスに対してARPパケット
を送信し、応答があった場合サーバの情報を出力し

トレーニング
の概要

　トレーニングでは、受講者
ごとにKali Linuxがインス
トールされた攻撃用のサーバ
が用意されます。受講者は、
Kali Linuxサーバを操り、ネッ
トワークに存在する攻撃対象
となるサーバを特定し、脆弱
性を突いた攻撃を行い、サー
バの管理者権限を取得するこ
とを目標とします（図1）。ネッ
トワーク上に何台、どのよう
なサーバが存在するかは明ら
かにされておらず、サーバの
特定もトレーニングの最初の
課題でした（図2）。
　トレーニングの流れは、次
のとおりです。

1. Enumeration……ネットワー

クに存在するサーバの特定、

サーバの情報収集（OS、サービスポート、ユーザなど）

2. Strategy……Enumerationで取得した情報を元に、

どのような攻撃を仕掛けるか方針を決定

3. PenTest……Strategyに沿って実際の攻撃を実施

　トレーニングでは、PenTestの結果、管理者権限
を取得した段階で完了となりましたが、ペネトレー
ションテストの実際では、発見した脆弱性を報告す
るReportのフェーズがあります。
　以降は、トレーニングの内容を元にしたペネト
レーション（ハッキング）テストの簡単な流れについ
て紹介していきます。

Enumeration
——検出——
ネットワークのスキャン

　攻撃用サーバから見たとき、ネットワークは大雑

▼▼図1　トレーニング概要

攻撃対象ネットワーク
（192.168.3.0/24）

受講者ネットワーク
（192.168.XX.0/24）

ネットワークに接続されているサーバを探し、
サーバに管理者権限でログインできれば勝ち！

攻撃用サーバ

？
？ ？

kali

OS：???
サービス：???

サーバ台数不明

▼▼図2　受講者の課題

攻撃者（受講者）

ネットワークにサーバが何台あるのか？
⬇

攻撃対象の特定

どの攻撃手段が使えるのか？
⬇

攻撃手段（exploit）の選定

どんなOSが稼働しているのか？
どんなサービスが起動しているのか？

⬇
OS・サービスの組み合わせで攻撃方針を決定

セキュリティ情報の最前線「Black Hat USA 2016」でトレーニング！ ▶▶▶▶▶▶▶▶▶▶▶▶▶▶

112 - Software Design

プションがあるので、気になった方はmanコマンド
で確認してみてください。

攻撃対象リストの作成

　arp-scanやnmapを用いることでネットワークに
存在するサーバのIPアドレスが取得できました。
しかし、実行結果にはヘッダ情報や不要な情報が含
まれており、そのままでは活用することができませ
ん。出力結果からIPアドレスだけを抽出し攻撃対
象のリストを作成するには、grepやawkなどのコマ
ンドを使用します。図5コマンドは、nmapの実行結
果からIPアドレスリストを作成する例です（図6）。

サービスの検出

　arp-scanやnmapのPINGによるスキャンで収集

ます。
　図3に挙げているのが、arp-scanの実行例です。
localnetオプションを指定すると、サーバのネット
ワーク設定に応じて自動でスキャンするネットワー
クアドレスやブロードキャストアドレスを設定して
くれます。

■nmapを使った外部ネットワークのスキャン
　arp-scanコマンドは、自身が接続されている直近
のネットワークに存在する機器の検出が可能です。
しかし、攻撃用のサーバが攻撃対象のサーバと同一
ネットワーク上に存在することはまれです。（Free

Wi-Fiなど誰でもアクセスできるネットワーク上の
サーバを攻撃対象とした場合は別ですが）多くの場
合、攻撃者はインターネット網を経由して攻撃対象
となるサーバを検出し、侵入を試みます。arp-scan

では、外部のネットワークに対して検出を行うこと
ができないため、別のツールを使う必要がありま
す。
　外部のネットワークに対してスキャンをする場合
は、nmapというツールを用います。nmapは、PING

による検出のほかに、後述するサービスポートのス
キャンを行うことができます。また、NSE注1（Nmap

Scripting Engine）と呼ばれる機能を用いることで、
攻撃（Exploit）を実行することも可能です。
　図4の出力は、nmapを用いたPINGによるネット
ワークのスキャン例です。nmapには非常に多くのオ

注1	 https://nmap.org/book/nse.html

root@kali-kuninobu:~# nmap -n -sn -PE ｭ
192.168.2.0/24 | tee /tmp/nmap_ping_result.txt ｶ

Starting Nmap 7.12 (https://nmap.org) at ｭ
2016-06-16 22:27 JST
Nmap scan report for 192.168.2.1
Host is up (0.0076s latency).
Nmap scan report for 192.168.2.10
Host is up (0.0089s latency).
Nmap scan report for 192.168.2.15
Host is up (0.21s latency).
Nmap scan report for 192.168.2.40
Host is up (0.21s latency).
Nmap scan report for 192.168.2.46
Host is up (0.20s latency).
Nmap scan report for 192.168.2.47
Host is up (0.0058s latency).
 ...略 ...

▼▼図4　�nmapを用いたPINGによるネットワークの
スキャン例

root@kali-kuninobu:~# arp-scan --localnet | tee /tmp/arp-scan_result.txt ｶ
Interface: eth0, datalink type: EN10MB (Ethernet)
Starting arp-scan 1.9 with 256 hosts (http://www.nta-monitor.com/tools/arp-scan/)
192.168.223.1 00:50:56:c0:00:08 VMware, Inc.
192.168.223.2 00:50:56:ec:3d:7b VMware, Inc.
192.168.223.254 00:50:56:f3:9c:45 VMware, Inc.

3 packets received by filter, 0 packets dropped by kernel
Ending arp-scan 1.9: 256 hosts scanned in 2.901 seconds (88.25 hosts/sec). 3 responded

▼▼図3　arp-scanの実行例

root@kali-kuninobu:~# grep '^Nmap scan' /tmp/nmap_ping_result.txt | awk '{print $5}' > /tmp/server_ ｭ
list.txt

▼▼図5　nmapの実行結果からIPアドレスリストを作成するコマンド

https://nmap.org/book/nse.html

ペネトレーションテストで学ぶ
侵入攻撃の手法と対策▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶

Feb. 2017 - 113

したIPアドレスリストを元に、各サーバで稼働し
ているサービスを検出します。ここでいうサービス
とは、HTTPやSMTPなどTCP/UDPポートを使
用し、外部から接続を受け付けているサーバプログ
ラムを指します。サーバへ侵入するためには、外部
からの接続を受け付けているサービスを利用する必
要があるためです。

■nmapによるポートスキャンの実行
　サービスの検出には、サーバの特定でも使用した
nmapがよく使われます。nmapはPINGによるサー
バスキャンのほかに、特定のサーバに対してTCP

やUDPポートが開放されているかをスキャンする
ことができます。図7、8、9は、nmapによるポート
スキャンの実行例です。
　nmapを用いると、開放されているポート番号だ
けでなく、稼働しているサービスやOSの情報など
も取得することができます。OSやサービスのバー

ジョン情報がわかると、そのバージョンでは対応さ
れていない脆弱性を突くことができるということを
攻撃者に教えることになります。
　nmapによるスキャン時間は、スキャンするポー
ト番号の範囲に応じて長くなります。スキャン時間
が長くなると、攻撃先に気付かれる可能性が高いた
め、HTTP（80番）やSSH（22番）など、メジャーな
サービスが含まれるウェルノウンポート番号（0～
1023）のみを対象にすることが多いです。すべての
TCPポート番号（0～65535）をスキャンする場合
は、膨大な時間がかかります。

root@kali-kuninobu:~# head /tmp/server_list.txt ｶ
192.168.2.1
192.168.2.10
192.168.2.15
192.168.2.40
192.168.2.46
 ...略 ...

▼▼図6　図5で作成したアドレスリストの表示

root@kali-kuninobu:~# nmap -sS 192.168.2.68 ｶ

Starting Nmap 7.12 (https://nmap.org) at 2016-06-17 03:56 JST
Nmap scan report for web01.irvine.lo.2.168.192.in-addr.arpa (192.168.2.68)
Host is up (0.0016s latency).
Not shown: 996 filtered ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
3000/tcp open ppp
3306/tcp open mysql

Nmap done: 1 IP address (1 host up) scanned in 51.22 seconds

▼▼図7　nmapによるTCPポートのスキャン例

root@kali-kuninobu:~# nmap -sU 192.168.2.10 ｶ

Starting Nmap 7.12 (https://nmap.org) at 2016-06-17 04:02 JST
Nmap scan report for dns.irvine.lo (192.168.2.10)
Host is up (0.00083s latency).
Not shown: 999 open|filtered ports
PORT STATE SERVICE
53/udp open domain

Nmap done: 1 IP address (1 host up) scanned in 4.40 seconds

▼▼図8　nmapによるUDPポートのスキャン例

root@kali-kuninobu:~# nmap -sS -iL /tmp/server_list.txt

▼▼図9　サーバのIPアドレスリストを元にスキャンを行う例

セキュリティ情報の最前線「Black Hat USA 2016」でトレーニング！ ▶▶▶▶▶▶▶▶▶▶▶▶▶▶

114 - Software Design

■SNMPによるサービスの検出
　サービスを検出するもう1つの方法として、SNMP

が利用されることがあります。SNMPは、Simple

Network Management Protocolの略で、ネットワー
ク監視や管理をするためのプロトコルです。外部か
らCPUの使用率やハードディスクの使用量など
サーバの状態を監視するために利用されます。運用
監視に役立つサービスですが、攻撃者にとっても非
常にジューシーな情報源となり得ます。SNMPv1や
SNMPv2cなどの古いバージョンでは、コミュニ
ティ名と呼ばれる1つのパラメータのみで認証を行
うため、コミュニティ名を推測できれば、情報を取
得できてしまうことがあります。攻撃者はこの認証
を突破して情報を盗み出そうとします。コミュニ
ティ名のデフォルト値である、publicは設定しない
ように注意しましょう。
　なお、SNMPの脆弱性のチェックには、onesixty

one注2と呼ばれるツールを使用します。これは、
SNMPのデフォルトポート番号である161をも
じったものです。辞書ファイルと呼ばれる、よく使
われるであろうコミュニティ名のリストを元に高速
でSNMPへの認証を行うツールです。用意されて
いる辞書ファイルによるチェックをすることで、最
低限の脆弱性チェックをすることができます。当
然、外部のサーバに対しても実行できるので、使用
には十分注意してください。

Strategy
——戦略を立てる——

　ここまでの作業で、ネットワーク上に存在する
サーバの検出とサーバで稼働しているサービスの検
出をしました。PenTesterは、収集した情報を元に
攻撃者が行ってくるであろうサーバへの侵入シナリ
オを作成します。
　侵入シナリオは、検出されたサービスごとに作成
していきます。サービスごとに作成する理由として
は、攻撃者が使用するツールがサービスごとに特化
したものが使用されることや、攻撃に用いる脆弱性

注2	 https://github.com/trailofbits/onesixtyone

がサービスごとに報告・管理されているためです。
脆弱性は、CVE注3（Common Vulnerabilities and

Exposures）IDと呼ばれる番号で管理され、データ
ベース化されています。日本では、JPCERT/CC注4

が注意喚起を行っています。CVEには、

●●どのバージョンの
●●どのソフトウェアが
●●どういった脆弱性を持っていて
●●どのくらい危険なのか

といった情報が含まれています。攻撃ツールやセ
キュリティ診断ツールも、どのCVE IDに対応する
脆弱性かを基準にしているものがほとんどです。
PenTesterも攻撃者が使用するツールを用意し、脆
弱性単位でチェックをすることで、効率よくテスト
の実施が可能となります。

PenTest
——実施——
総当たりによるパスワード認証

　脆弱性をついた攻撃例を紹介する前に、もっと原
始的な攻撃方法を紹介します。多くのサービスで
は、第三者からの侵入を防ぐためにアクセス認証を
設けるのが一般的です。SSHでは公開鍵認証による
ユーザ認証が一般的になってきましたが、ユーザ
IDとパスワードがわからない場合は、考えうる
ユーザIDとパスワードの組み合わせを総当たりで
チェックすることで認証をパスすることが可能で
す。この総当たりで攻撃する方法をブルートフォー
スアタック（力づくの攻撃）と呼びます。
　パスワード認証の脆弱性検証ツールとしては、
hydraやmedusaがよく使用されます。hydraや
medusaでは、ものすごい速度でパスワード認証を
検証することができます。サーバスペックに影響し
ますが、秒間数千以上のパスワード認証を試みるこ
とができます。また、hydraやmedusaでは、SNMP

のスキャンで紹介したonesixtyoneと同様に辞書

注3	 https://cve.mitre.org/
注4	 https://www.jpcert.or.jp/

https://github.com/trailofbits/onesixtyone
https://github.com/sferik/t
https://www.jpcert.or.jp/

ペネトレーションテストで学ぶ
侵入攻撃の手法と対策▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶

Feb. 2017 - 115

ファイルを用いてパスワード認証を行います。
　{ユーザID, パスワード}の組み合わせを{a,
a}, {a, b}, ..., {abc, a}, {abc, b}, ...,
{ZZZZ, ZZZZ}というようにパスワードとして利用
できる文字のすべての組み合わせを試していった場
合、ユーザIDやパスワードの文字の長さもわから
ないので、膨大な時間がかかることになります。ま
た、総当たりによる攻撃は大量のエラーメッセージ
がログに記録されるため、すぐにサーバ管理者に気
付かれてしまいます。攻撃者はより少ない試行回数
で認証をパスできないかを考えているのです。
　hydraは、SSHだけでなく、MySQLやPostgre

SQLなど著名なミドルウェアのプロトコルに対応
しているため、複数のサービスに対するパスワード
認証のチェックに利用できます。
　図10は、hydraを用いたMySQLサーバへの攻撃
例です。パスワード認証に成功した場合は、ユーザ

IDとパスワードを教えてくれます。hydraは、Kali

Linuxではデフォルトでインストールされています。
　攻撃に用いられるユーザIDやパスワードの辞書
ファイルは、インターネット上に公開されていたり
販売されていたりします。有名なものとしては、
John the Ripperと呼ばれるパスワードクラック用
ツールの作者が作成したものが挙げられます。筆者
もいくつかの辞書ファイルをみたことがあります
が、英語圏向けのものが多く、案外日本語をもじっ
たパスワードは安全かもしれないという印象を受け
ました。

データベースから取得できる情報

　ユーザIDとパスワードがわかってしまえば、普
通にMySQLサーバに接続します。

$ mysql -u foo -pbar -h 192.168.2.181

root@kali-kuninobu:~/dic/en# hydra -l foo -P pass mysql://192.168.2.181:3306 ｶ
Hydra v8.1 (c) 2014 by van Hauser/THC - Please do not use in military or secret service organizations, ｭ
or for illegal purposes.

Hydra (http://www.thc.org/thc-hydra) starting at 2016-06-17 00:46:13
[INFO] Reduced number of tasks to 4 (mysql does not like many parallel connections)
[DATA] max 4 tasks per 1 server, overall 64 tasks, 6 login tries (l:1/p:6), ~0 tries per task
[DATA] attacking service mysql on port 3306
[3306][mysql] host: 192.168.2.181 login: foo password: bar
1 of 1 target successfully completed, 1 valid password found
Hydra (http://www.thc.org/thc-hydra) finished at 2016-06-17 00:46:14

▼▼図10　hydraを用いたMySQLサーバへの攻撃例

mysql> SHOW GRANTS;
+---+
| Grants for foo@% |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'foo'@'%' IDENTIFIED BY PASSWORD 'XXX' |
+---+

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| hoge |
| information_schema |
| mysql |
| performance_schema |
| test |
+--------------------+

▼▼図11　侵入したMySQLでの実行例

セキュリティ情報の最前線「Black Hat USA 2016」でトレーニング！ ▶▶▶▶▶▶▶▶▶▶▶▶▶▶

116 - Software Design

　データベースサーバに接続できてしまえば、当然
データベースサーバに保存されたデータを取得する
ことができます。接続したユーザIDに与えられた
権限や、参照可能なデータベースを確認します。あ
とは、ダンプコマンドでデータを抽出したり、デー
タを書き換えたりと自由にできます（図11）。

サーバプロセスの実行権限の悪用

　データベースに接続することができましたが、ほ
かに取得できる情報はないのでしょうか。恥ずかし
ながら、筆者は今回のトレーニングを受けるまで
は、データベースに接続されても盗まれるのはデー
タベースに格納されているデータだけだと思ってい
ました。しかし、接続されたユーザに与えられた権
限によっては、データベースサーバが稼働するサー
バのファイル内容も取得できることがあるのです。
　たとえば、データベースに接続しているユーザに
対して、ファイルからデータをテーブルに読み込む
ための権限が与えられていた場合、データベース
サーバを起動しているユーザの権限でファイルの内
容を見ることができてしまいます。

　たとえば/etc/passwdファイルには、リモート
サーバで登録されているユーザの情報が格納され
ています（図12）。つまり、SSHのユーザ認証突破
に必要な2つの情報のうち、1つが取得できてしま
います。併せて、SSHの設定ファイルも確認すれ
ば、どの認証方法を使用しているかも確認できて
しまいます（図13）。
　もし、データベースサーバを特権ユーザ（root）で
稼働していた場合は、サーバにSSH接続せずにあ
らゆる情報を読み取ることが可能になります。
　このように、サーバプロセスを起動しているユー
ザの権限を利用した方法を用いると、ファイルの読
み出しだけでなく、外部コマンドを実行し、侵入用
のユーザを作成することも可能だったりするので
す。

◆　◆　◆
　2日間にかけて行われたトレーニングでは、今回
紹介したもの以外にもWindowsサーバへの攻撃、
Webサーバへの攻撃などさまざまな方法でサーバ
の管理者権限を奪取する方法を学びました。攻撃方
法を学ぶことで、セキュリティ脅威からシステムを

mysql> SELECT load_file('/etc/passwd') ¥G
*************************** 1. row ***************************
load_file('/etc/passwd'): root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
 ...略 ...

▼▼図12　/etc/passwdファイルにアクセスできた例

mysql> SELECT load_file('/etc/ssh/ssh_config') ¥G
*************************** 1. row ***************************
load_file('/etc/ssh/ssh_config'): # $OpenBSD: ssh_config,v 1.25 2009/02/17 01:28:32 djm Exp $

This is the ssh client system-wide configuration file. See
ssh_config(5) for more information. This file provides defaults for
users, and the values can be changed in per-user configuration files
or on the command line.

Configuration data is parsed as follows:
1. command line options
2. user-specific file
3. system-wide file

▼▼図13　SSHの設定ファイルにアクセスできた例

ペネトレーションテストで学ぶ
侵入攻撃の手法と対策▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶▶

Feb. 2017 - 117

守る立場になったときに、どのような点に気を付け
れば良いのか、どう振る舞うべきかについても学ぶ
ことができたと思います。

セキュリティを高めるため
に気を付けること

1デフォルト設定のまま運用しない
　多くのソフトウェアは、デフォルト設定の状態で
も問題なく動作するよう親切な設定がされているも
のが多いです。しかしここまでで学んできたよう
に、攻撃者がまず狙うのはデフォルト設定やよく使
われる設定です。当然デフォルト設定で使っている
のだから、きっとセキュリティ対して気を使ってい
ないと悟られてしまうことにもつながります。

2設定内容を正しく理解しよう
　はじめてサーバを構築する場合、インターネット
で調べて出てきたサイトにある設定をコピペして
使ったりしてはいないでしょうか。また、設定内容
はよくわからないけど、とりあえず動いてるからい
いや、となってはいないでしょうか。攻撃者は、攻
撃対象とするサーバについてどのような脆弱性があ
るのか、場合によってはどのようなプロトコルで通
信をしているのか、ソースコードが入手可能な場合
は、ソースコードから脆弱性を見つけようとしま
す。自分が設定しようとしている内容と実際の設定
内容の対応付けができるようになるべきです。

3OSや権限、プロトコルなど低いレイヤのしく
みも理解しよう
　攻撃者は、はるかに深い知識を持っている人であ
るケースも少なくありません。攻撃対象としている
サーバに対してどのようにすれば、管理者権限を取
得できるのかを常に模索しています。また、本来で
あれば正しい順序で行われるべきはずであるプロト
コルに対しても、もしこのタイミングで異なる手順
を踏むとどうなるのか、といった異常ケースによる
試行錯誤も行われています。そういった攻撃から身
を守るためにも、OSやプロトコルといった低いレ
イヤの知識も身につけていくべきです。

4情報（ログ）を素早く読めるようになろう
　完璧な攻撃でないかぎり、必ず攻撃の痕跡が残り
ます。それは、ログファイルのように記録されるも
のであったり、netstatコマンドで確認できるセッ
ションの数だったりします。それらの情報から異変
がおこっていないか判断できるようになりましょ
う。もちろん、すべての情報を目視で確認していく
のは不可能に近いので、技術者らしくソフトウェア
に頼るべきです。

5英語に慣れよう
　セキュリティに限らず、最新の情報は英語で公開
されていることが非常に多いです。また、設定方法
を確認しようとしたところ、英語だったということ
も多いでしょう。このとき気を付けるべきは、翻訳
されたドキュメントの場合、情報の欠落や誤りが混
じっている可能性があるということです。素早く、
正しい情報にアクセスできるようになるため、英語
に慣れておくと役立ちます。

PenTestで
確認すべき項目

　最後に、今回紹介したツールや手法を元に、皆さ
んが管理しているサーバに対してぜひ確認いただき
たい項目を紹介します。

1. 不要なサービスやポートが稼働していないかを確認

しよう（nmap）

2. 脆弱なパスワードを設定していないかを確認しよう

（hydra）

3. 脆弱性が報告されている古いソフトウェアを使用し

ていないか確認しよう

4. 管理者権限で外部からの接続を受けるサービスを起

動していないか確認しよう

5. 適切なアクセス制限（接続元IPを制限など）が設定

されているか確認しよう

　本稿が安全なサーバ運用の一助になれば幸いで
す。s

118 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

　連載後半「仮想ネットワーク環境で使ってみ
よう～現実的な使い方」の3回目です。
　今回および次回は、前回までに構築した、ホ
スト環境や仮想ネットワーク環境、そしてセキュ
リティ環境を使って、仮想マシンの作成とゲス
トOSのインストールを行います。
　今回から現実のネットワーク環境、つまり、
仮想ネットワークと実ネットワーク、そして外
部インターネットの3つのネットワーク環境下
での仮想マシンの利用、運用を考えていきます。
　今回はまず、仮想マシンの作成を行います。

仮想マシンの作成方法

　今回は、仮想マシンをGUIの「仮想マシンマ
ネージャー（virt-manager）」とは別のCUI（コマ
ンド）で作成します。CUIコマンドの作成方法
には2つあります。
　1つ目はPythonスクリプトの「virt-install」コ
マンドによる方法です。仮想マシン作成に必要
な情報を対話型、またはコマンドパラメータで
指定して実行することで、仮想マシンを作成し、
ゲストOSのOSインストールまで自動的に引
き継ぎます。
　2つ目は仮想マシン管理ユーザインターフェー
ス「virsh」コマンドを利用する方法です。仮想マ
シンの情報をパラメータで指定することはでき
ませんが、仮想マシンのフレームをあらかじめ
作成しておき、それを仮想マシンとして定義・

登録することで仮想マシンを作成します（この
方法の詳細は次回）。

virt-installによる
仮想マシンの作成

　virt-installコマンドは、KVMのみならず
Xenでも使用可能な仮想マシン作成、およびゲ
ストOSインストールのコマンドです。
　virt-installの処理は、情報の入力処理および
仮想マシン作成と、ゲストOSのインストール
の2つのステップに分かれています。
　情報の入力処理ステップでは、対話型で全情
報を入力することも、全情報をそれぞれパラメー
タとして一括記述することもできます。
　virt-installコマンドの入力情報が正しく、起
動が正常であれば（パラメータエラーや起動エ
ラーがなければ）仮想マシンの作成は完了し、
コマンドも終了します。ただし、ゲストOSの
インストール処理は自動的に始まっています。
　ゲストOSのインストールはテキストモード
とVNCなどによるGUI操作が可能です。
　virt-installコマンドによる仮想マシン作成の
例が図1のようなものです。
　ここでは、使用メモリ1GB、ディスク/dev/

sda5、CD/DVD起動、MACアドレス指定、
NAT変換（デフォルト）、そして、ホスト起動
時の仮想マシン自動起動、などをパラメータ指
定して、仮想マシンの作成を行い、Windows

Server 2008の isoイメージやVNCを使用して

仮想化の知識、再点検しませんか？

使って考える
仮想化技術

第9回 仮想マシンの作成

笠野 英松（Mat Kasano）
有限会社 ネットワーク・メンター

Author

URL http://www.network-
mentor.com/indexj.html

本連載は「仮想化を使う中で問題の解決を行いつつ、残される課題を整理す
る」ことをテーマに、小さな仮想化環境の構築・運用からはじめてそのしくみ
を学び、現実的なネットワーク環境への実践、そして問題点・課題を考えます。
仮想化環境を扱うエンジニアに必要な知識を身につけてください。

http://www.network-mentor.com/indexj.html

Feb. 2017 - 119118 - Software Design

仮想マシンの作成
第9回

virtualized、完全仮想化）に対応
② 2つのフェーズ処理：仮想マシン設定・作成

とゲストOSインストール
③ 仮想マシン設定方法：対話型（--prompt指定）

と一括記述型（--prompt指定なし）
④ゲストOSインストール方法：テキスト操作（PV

ゲストOSインストールを行っています。作成
された仮想マシン設定xmlファイルがリスト1
です。

virt-install（表1、図2）の特徴：

① PV（Paravirtualized、準仮想化）とFV（Full

 ▼図1　virt-installによる仮想マシン作成の例

[root@vhost1 ̃]# fdisk -l
デバイス ブート　　　 始点 終点 ブロック Id システム
/dev/sda1 * 1 66 524288 83 Linux
/dev/sda2 66 5288 41943040 83 Linux
/dev/sda3 5288 5940 5242880 82 Linux スワップ / Solaris
/dev/sda4 5940 12161 49972000+ 5 拡張領域
/dev/sda5 5940 7898 15729421+ 83 Linux

[root@vhost1 ̃]# ls -al /iso
合計 2907628
drwxr-xr-x 2 root root 4096 12月 4 11:55 2016 .
dr-xr-xr-x. 27 root root 4096 12月 4 12:10 2016 ..
-rw-r--r-- 1 root root 2977398784 12月 4 12:00 2016 windows-server-2008_r2_sp1_x64.iso

[root@vhost1 ̃]# ./virt-install_1
virt-install svm1 (win2k8)
#!/bin/bash
echo "virt-install svm1 (win2k8)"
cat $0
virt-install --hvm --name=svm1 --ram=1024 --disk path=/dev/sda5 --cdrom=/iso/windows- ｭ
server-2008_r2_sp1_x64.iso --mac='52:54:00:9a:90:01' --autostart --os-variant=win2k8 ｭ
--network network=default --accelerate --graphics vnc,port=5911,listen='0.0.0.0', ｭ
password=Password1,keymap=ja --video=cirrus --noautoconsole --wait=0

Starting install...
ドメインを作成中... ¦ 0 B 00:00
Domain installation still in progress. You can reconnect to
the console to complete the installation process.
[root@vhost1 ̃]#

[root@vhost1 ̃]# ls -al /etc/libvirt/qemu
合計 20
drwx------. 4 root root 4096 12月 4 12:15 2016 .
drwx------. 4 root root 4096 12月 3 12:37 2016 ..
drwxr-xr-x 2 root root 4096 12月 4 12:15 2016 autostart
drwx------. 3 root root 4096 12月 3 12:37 2016 networks
-rw------- 1 root root 3146 12月 4 12:15 2016 svm1.xml

[root@vhost1 ̃]# vncviewer localhost:5911 &

TigerVNC Viewer for X version 1.1.0 - built May 11 2016 13:00:50
Copyright (C) 1999-2011 TigerVNC Team and many others (see README.txt)
See http://www.tigervnc.org for information on TigerVNC.

[root@vhost1 ̃]#

 fdisk領域確認（fdisk領域作成は図3）

 ドメインxmlファイル確認（内容はリスト1）

 windows-server-2008_r2_sp1_x64.iso確認

 virt-installスクリプト実行による仮想マシン作成

 VNCによる仮想マシン上のゲストOSインストールへ

 ...略...

120 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

仮想マシン管理virsh

　virshは、仮想マシンAPIライブラリ libvirt

パッケージ内の「仮想マシン管理ユーザインター

時のみ）とグラフィクス操作（VNC）
⑤ グラフィクス操作：VNCサーバ（その仮想マ

シン IPアドレス：指定ポート）にアクセス
⑥ 仮想マシンの削除：仮想マシンの削除と（イ

メージの場合）ストレージイメージの削除

 ▼リスト1　virt-installにより作成されたネイティブxmlファイル（/etc/libvirt/qemu/svm1.xml）

<!--
WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE
OVERWRITTEN AND LOST. Changes to this xml configuration should be made using:
 virsh edit svm1
or other application using the libvirt API.
-->

<domain type='kvm'>
 <name>svm1</name>
 <uuid>f496e029-d208-85e7-8a58-dd3614cdaeb2</uuid>
 <memory unit='KiB'>1048576</memory>
 <currentMemory unit='KiB'>1048576</currentMemory>
 <vcpu placement='static'>1</vcpu>
 <os>
 <type arch='x86_64' machine='rhel6.6.0'>hvm</type>
 <boot dev='hd'/>
 </os>

 <clock offset='localtime'>
 <timer name='rtc' tickpolicy='catchup'/>
 </clock>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='block' device='disk'>
 <driver name='qemu' type='raw' cache='none' io='native'/>
 <source dev='/dev/sda5'/>
 <target dev='hda' bus='ide'/>
 <address type='drive' controller='0' bus='0' target='0' unit='0'/>
 </disk>
 <disk type='file' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source file='/iso/windows-server-2008_r2_sp1_x64.iso'/>
 <target dev='hdc' bus='ide'/>
 <readonly/>
 <address type='drive' controller='0' bus='1' target='0' unit='0'/>
 </disk>

 <interface type='network'>
 <mac address='52:54:00:9a:90:01'/>
 <source network='default'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
 </interface>

 <input type='mouse' bus='ps2'/>
 <graphics type='vnc' port='5911' autoport='no' listen='0.0.0.0' keymap='ja' ｭ
passwd='Password1'>
 <listen type='address' address='0.0.0.0'/>
 </graphics>
 </devices>
</domain>

 ドメイン名＝仮想マシン名
 仮想マシンUUID

 CD/DVD

 KBメモリサイズ
 現在メモリ
 仮想CPU数

 仮想システム情報
 HD起動

 ...略...
 TIME設定

 ストレージ

 実デバイス（作成は図3）
 仮想デバイス

 実isoイメージ
 仮想デバイス

 ...略...
 NIC
 MACアドレス
 デフォルトネットワークタイプ＝NAT

 ...略...

 グラフィクスVNC
 listenアドレス

Feb. 2017 - 121120 - Software Design

仮想マシンの作成
第9回

フェース」です。KVMのほか、Qemu、Xen、
LXC、OpenVZ、VirtualBox、VMware ESXi

などにも対応しています。
　virshは仮想マシンの起動やシャットダウン
など、仮想マシンのすべての操作管理を行いま
す（表2）。また、次回に解説する、既存仮想マ
シンxmlファイルからの新規仮想マシン作成に
も使用します。

仮想マシン作成中の
問題と対策

　virt-installコマンドによる仮想マシン作成中
に起こるトラブルシュートの例です。

論理パーティションが作成できない

　仮想マシン用の追加パーティション/dev/

sda5を作成できないことがあります。

対処策（図3）
　KVM物理ホストのインストール時、ハード
ディスク/dev/sda内は3つの基本パーティショ
ン/dev/sda1、/dev/sda2、/dev/sda3、だけな
ので、/dev/sda5は拡張パーティション/dev/

sda4を作成してから論理パーティションとして
追加作成します。

ディスクデバイスのエラー

　virt-installコマンドがストレージパラメータ
のエラーで異常終了することがあります。

size is required for non-existent disk ｭ
'/dev/sda5'

 ▼表1　virt-installコマンドの主なパラメータ（https://virt-manager.org/）

パラメータの書き方 説明
--prompt 対話型設定。対話型時、ほかのパラメータは無効
--name=仮想マシン名 例）VM2
--ram=メモリサイズMB 例）4096
--disk path=仮想マシンデバイス　または
イメージ [, size=イメージ新規作成サイズGB］ 例）/dev/sda5、/var/lib/xen/images/VM2.img, 10GB

--autostart ホスト起動時の仮想マシン同時起動
--os-type=OSタイプ 例）solaris
--os-variant=OS種別（os-type省略可） 例）solaris10
--network bridge=ブリッジ名　または
--network network=default（NAT） 例）virbr0

--mac=MACアドレス 例）'52:54:00:00:00:02'（KVM-OUI先頭３オクテット共通）
--accelerate カーネルアクセラレータ使用

--location=インストールURL 例1）'http://127.0.0.1/media/CentOS_6.5_Final'
例2）'http://ftp.iij.ad.jp/pub/linux/centos/6.5/isos/x86_64/'

--graphics none（テキスト操作） －
　　　または
--graphics vnc（グラフィクス操作）

,port=ポート番号 例）5911
,listen=待機アドレス 例）'0.0.0.0'
,password=パスワード文字 －
,keymap=キーボードマップ 例）ja
,passwordvalidto='UTC時間有効期限 ' 例）'2016-10-09T15:51:00'

--noautoconsole virt-install実行時にコンソール /vncに自動接続しない
--wait=0 virt-install実行後、すぐに終了する。プロンプトを返す
-v, --hvm 完全仮想化方式の指定、必須
--cdrom=インストールCD/DVDデバイス 例）/dev/sr0（旧/dev/cdrom）
--cdrom=インストール ISOメディア 例）/osmedia/solaris11.iso
--location=インストールイメージディレクトリ 例）/media
--pxe PXEインストール

https://virt-manager.org/

122 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

 ▼図2　virt-installコマンドの指定例

virt-install --prompt
※質問選択
・Would you like a fully virtualized guest (yes or no)? This will allow you to run
 unmodified operating systems.
（入力例）yes
・仮想マシンの名前は何ですか？
（入力例）VM1
・どれだけのRAMを割り当てますか（メガバイト単位で）？
（入力例）2048
・What would you like to use as the disk (file path)?
（入力例）/var/lib/xen/images/VM1.img
・どの位の大きさのディスク（/var/lib/xen/images/VM3.img）にしたいですか（ギガバイト単位で）？
（入力例）40
・インストールCD-ROM/ISOイメージ、もしくはURLの場所はどこですか？
（入力例）/dev/sr0
⇒仮想マシン作成処理⇒ゲストOSインストール（virt-viewer）

 ①対話型（最低限の設定のみ）

 ②一括記述型/VNC操作……「図1　virt-installによる仮想マシンの作成の例」参照

（※）「/etc/libvirt/qemu/ネイティブxml設定ファイル」のシンボリックリンクを「/etc/libvirt/qemu/auto/」内に作成。

番号 書式 説明
1 autostart[--disable] ドメイン名 ドメインの自動起動設定［解除］（※）
2 console ドメイン名 ゲストのコンソールに接続
3 create XMLファイル [--console] XMLファイルからドメインの作成［および、接続］
4 define XMLファイル XMLファイルからドメインを定義登録（ただし起動しない）
5 undefine ドメイン名 停止状態のドメインの定義削除
6 destroy ドメイン名 ドメインの強制停止
7 edit ドメイン名 ドメインのXML設定を編集
8 start ドメイン名 [--console] （以前に定義した）停止状態のドメインの起動
9 shutdown ドメイン名 ドメインを穏やかに停止。通常稼働中のRHEL/CentOSのみ有効

10 reboot ドメイン名 ドメインの再起動
11 suspend ドメイン名 ドメインの一時停止
12 resume ドメイン名 suspendドメインの再開
13 setmem ドメイン名 KBサイズ メモリサイズの変更
14 setvcpus ドメイン名 仮想CPU数 仮想CPU数の変更
15 list [--inactive | --all] 稼働ドメインの一覧を表示。［停止ドメイン｜全ドメイン］
16 dominfo ドメイン名 ドメインの情報
17 domstate ドメイン名 ドメインの状態
18 domid ドメイン名 ドメイン名またはUUIDをドメイン IDに変換
19 domname ドメイン ID ドメイン IDまたはUUIDをドメイン名に変換

20 domxml-from-native フォーマット ネイ
ティブ設定ファイル

ネイティブ設定をドメインXMLに変換。フォーマット：xen-xm（xmフ
ォーマット）、xen-sxpr（sxpフォーマット）

21 domxml-to-native フォーマット xmlフ
ァイル

ドメインXMLをネイティブ設定に変換。フォーマット：xen-xm（xmフ
ォーマット）、xen-sxpr（sxpフォーマット）

22 dumpxml ドメイン名 XML形式のドメイン情報表示
23 net-edit default ドメインデフォルトネットワーク設定の変更

 ▼表2　主なvirshサブコマンド

Feb. 2017 - 123122 - Software Design

仮想マシンの作成
第9回

次回予告

　次回も引き続き、仮想マシン作成を行います
（virsh/dumpxmlによる方法）。s

対処策
　仮想マシン用のストレージデバイスが確保さ
れていないので、fdiskなどでディスク領域を
確保します（図3）。
　なお、ディスク領域を確保した後も、そのま
ま、virt-installすると同じエラーとなります。
必ず、システムの再起動が必要です。

 ▼図3　fdiskによる論理パーティション作成

[root@vhost1 ̃]# fdisk /dev/sda

コマンド (m でヘルプ): n
コマンドアクション
 e 拡張
 p 基本パーティション (1-4)
e
選択した領域 4
最初 シリンダ (5940-12161, default 5940):
Using default value 5940
Last シリンダ, +シリンダ数 or +size{K,M,G} (5940-12161, default 12161):
Using default value 12161

コマンド (m でヘルプ): n
最初 シリンダ (5940-12161, default 5940):
Using default value 5940
Last シリンダ, +シリンダ数 or +size{K,M,G} (5940-12161, default 12161): +15G

コマンド (m でヘルプ): p

デバイス ブート 始点 終点 ブロック Id システム
/dev/sda1 * 1 66 524288 83 Linux
パーティション 1 は、シリンダ境界で終わっていません。
/dev/sda2 66 5288 41943040 83 Linux
/dev/sda3 5288 5940 5242880 82 Linux スワップ / Solaris
/dev/sda4 5940 12161 49972000+ 5 拡張領域
/dev/sda5 5940 7898 15729421+ 83 Linux

コマンド (m でヘルプ): w
パーティションテーブルは変更されました！

ioctl() を呼び出してパーティションテーブルを再読込みします。

警告: パーティションテーブルの再読込みがエラー 16 で失敗しました: デバイスもしくはリソースが ｭ
ビジー状態です。
カーネルはまだ古いテーブルを使っています。新しいテーブルは
次回リブート時か、partprobe(8)またはkpartx(8)を実行した後に
使えるようになるでしょう
ディスクを同期しています。
[root@vhost1 ̃]#

 fdiskによる15GBの/dev/sda5作成

 拡張領域

 ...略...

 ...略...

連載各回では、読者皆さんからの簡単な「ひとく
ち質問（QA）コーナー」や「何かこんなこともしてほ
しい要望（トライリクエスト）コーナー」を設けて「双
方向連載」にできればと思っていますので、質問
や要望をお寄せください。

宛先：sd@gihyo.co.jp
件名に、［仮想化連載］とつけてください

 追加論理
 パーティション

 追加論理パーティション/dev/sda5

KVMで使用するMACアドレス
　KVMのNICで使用するMACアドレスの先頭3オ
クテットOUI（Organizationally Unique Identifier、
管理組織識別子）は、IEEEには登録されていませんが、
qemu/kvmでは「52:54:00」と規定しています。

Note

mailto:sd@gihyo.co.jp

124 - Software Design

　大阪を中心に20年間システム開発に携わった
あと、現在は東京で仕事をしている「SQLの伝
道師」ことジーワンシステムの生島です。
　「生島さん、ちょっとこれ（リスト1）見てもら
えませんか」といつものように大道君が相談に
やってきました。
　「おー、これもEAVやね。どうしたん？」
　「既存のコードでこういうのが使われているの

EAVのコードはメンテナ
ンスしづらい

を見つけまして……前回の話もあるので、使わ
ないように修正しておこうかと思うんです」
　EAV（Entity Attribute Value）というのは前
回触れたSQLアンチパターンの1つです。通常
ならば「別な種類の値は、別なカラムに格納す
る」ようにテーブル設計をするのがRDB設計の
原則ですが、「値の種類（属性名）を示すカラムと
値そのものを格納するカラム」の2つのカラムで
汎用的な意味を持たせるような設計とすること
でカラムやテーブルの種類を減らす方法のこと
です。リスト1のコードの場合は、type_names

がEAV方式のテーブルで、type_nameで属性名
を示し、type_valueに値を格納します。
　社内で開発しているECシステムの受注業務
モジュールを引き継いだプログラマが、SQLの
読みにくさに悩んで大道君に愚痴をこぼしたの
がきっかけで発見したそうです。
　「どこが読みにくいと思った？」
　「SELECT文のFROM句を見て、頭が？？？
だらけになりました。やっていることはこうい
うことですよね？」
と言って大道君が見せてくれたのが図1です。リ

スト1のSELECT文の処理ロジックを見える化
するとこうなるわけです。

生島氏
DBコンサルタント。性
能トラブルの応援のた
め大道君の会社に来た。

大道君
浪速システムズの新米
エンジニア。素直さと
ヤル気が取り柄。

五代氏
大道君の上司。プロ
ジェクトリーダーで
もある。

登
場
人
物

紹
介

 原案 生島 勘富（いくしま さだよし） info@g1sys.co.jp ㈱ジーワンシステム
 構成・文 開米 瑞浩（かいまい みずひろ）　 イラスト フクモトミホ

前回は、SQLのアンチパターンの1つであるEntity Attribute Value（EAV）を取り上げました。このような設計はで
きるだけ避けたいものですが、悲しいかな、すでにこんな下手な設計で作られたシステムが存在するのも事実で
す。そこで今回は、そんな設計を少しずつ修正し、技術的負債を解消していくアイデアを紹介します。

EAVや非正規形のテーブル設計を少しずつ修正する方法第12回

124 - Software Design Feb. 2017 - 125

EAVや非正規形のテーブル設計を
少しずつ修正する方法第12回

 ▼リスト1　EAV方式を名称マスタテーブルに使っている例

 運送会社と配達時間のマスタデータ生成
CREATE TABLE orders (
 id SERIAL PRIMARY KEY
 , order_date DATETIME NOT NULL
 , input_employee_id BIGINT NOT NULL
 , delivery_id INT NOT NULL -- 運送会社
 , delivery_time_id INT NOT NULL -- 配達時間
 （..略..）
);

CREATE TABLE type_names (
 id INT NOT NULL
 , type_name VARCHAR(100) NOT NULL
 , type_value TEXT
 , PRIMARY KEY (id, type_name)
);

INSERT INTO type_names(id, type_name, type_value)
VALUES
 (1, 'delivery_id', 'クロネコヤマト')
 , (2, 'delivery_id', '佐川急便')
 （..略..）
 ;

INSERT INTO type_names(id, type_name, type_value)
VALUES
 (1, 'delivery_time_id', '午前')
 , (2, 'delivery_time_id', '午後')
 , (3, 'delivery_time_id', '8時～10時')
 , (4, 'delivery_time_id', '10時～12時')
 （..略..）
 ;

 運送会社と配達時間を参照するコード
SELECT
 o.id, o.order_date
 , o.delivery_id, n1.type_value
 AS delivery_comp
 , o.delivery_time_id, n2.type_value
 AS delivery_timeslot
 （..略..）
FROM orders o
 INNER JOIN type_names n1
 ON o.delivery_id = n1.id
 AND 'delivery_id' = n1.type_name
 INNER JOIN type_names n2
 ON o.delivery_time_id = n2.id
 AND 'delivery_time_id' = n2.type_name
 （..略..）
;

同じ名前が別な
意味に多用されて読みづらい

 id order_date delivery_id delivery_time_id

 1 2017/1/9 1 1

 2 2017/1/9 2 3

 3 2017/1/9 2 4

 id order_date delivery_id delivery_comp delivery_time_id delivery_timeslot

 1 2017/1/9 1 阿川急便 1 午前

 2 2017/1/9 2 シロネコ 3 8時～10時

 3 2017/1/9 2 シロネコ 4 10時～12時

ordersテーブル

 id type_name type_value

 1 delivery_id 阿川急便

 2 delivery_id シロネコ

 1 delivery_time_id 午前

 2 delivery_time_id 午後

 3 delivery_time_id 8時～10時

 4 delivery_time_id 10時～12時

type_namesテーブル

type_name =
'delivery_time_id'

である行のtype_valueを
引いてくる

type_name = 'delivery_id'
である行のtype_valueを

引いてくる

 ▼図1　EAV方式のテーブルのJOIN処理

126 - Software Design

　「そうそう、こういうことやね。EAV使うと
どうしてもこういうふうになるわけや」
　「type_valueという1つのカラムの情報が、
delivery_compとdelivery_timeslotという別な
カラムに使われていくというのはどうも馴染め
ません」
　この連載の第2～3回あたりでも触れました
が、SQLはテーブルの一部をタテ方向でもヨコ
方向でも自在に切り出して「集合的に扱う」ため
の言語です。その意味では図1でも「テーブルの
一部を切り出して」使っていることには違いあり
ませんが、EAV方式を使った場合のSQL文は
通常の設計で出てくるSQL文と根本的に違う面
があります。その違いを大道君に聞いてみると、
　「そうですね……、同じ名前が何度も出てくる
ので、混乱しやすい気がします」
　「そこ、試験に出るよ！（笑）」

同じ名前が違う意味で使われて
いる！

　別に試験はありませんがまさにそのとおりで、
リスト1のSELECT文を見ると、type_names

テーブルの id、type_name、type_valueの3種の
カラムが2回出てきてそれぞれ違う意味を表し
ています。通常の手続き型言語のプログラミン
グにたとえれば、同じ変数名が隣の行で違う意
味で使われているようなもので、混乱しないは
ずがありません。
　「ですよね……幸い、と言っちゃなんですけど
早めに気がついたので、これを使わないように

修正しようと思うんですが、その段取りをどう
しようかと」
　「すでにこれで書かれたコードがあるわけだ
ね？」
　「そうなんです。調べてみたんですが、図2に
書いたように、EAV方式って本来は分離してお
くべきA～Dのテーブルが全部入っているわけ
で、中身は実質的に多数のテーブルじゃないで
すか。だからそこに関係するコードは参照系も
更新系も非常に多いですよね」
　「そうやね」
　「となるとそれを一気に修正するのは現実的に
は難しそうで……」
　「まあ、そうやね」
　「かと言ってこれをそのまま放置すると、メン
テナンスしにくいコードが今後も大量に残るわ
けですから、なんとかしたいわけです」
　「うん、それで？」
　これまでは私が方法を指示することが多かっ
たのですが、すでに何か策を考えていそうだっ
たので、先をうながしてみました。

　「これ、EAVを名称マスタ用に使っているの
で修正方法自体はわりと単純で、type_nameの
種類別に個別の名称マスタテーブルに切り出し
て、それを参照／更新するようにSQLを変えれ
ばいいんです。けれど、何しろ数が多いので、

少しずつやれないかと思いまして
……こんな方法は可能でしょう
か？」
と言って大道君が見せてくれたの
が図3です。
　「まず、①EAVから、たとえば
Dの部分のデータをコピーして、同
じデータを持つ新テーブルを生成
します。その後、②参照系のコー
ドを順次新テーブルを使うように
移行させていきます。すべての移

EAVの名称マスタを少し
ずつ移行する方法

更新コード1

更新コード2

更新コード3

参照コード1

参照コード2

参照コード3

EAV方式テーブル

A B

C D

EAV方式テーブルは実質的には多数のテーブルであるため、
参照系／更新系ともに非常に多数のコードが関係する

一気に修正するのは現実的でない……？

 ▼図2　EAV方式のテーブルには大量のコードが関係する

126 - Software Design Feb. 2017 - 127

行が完了するまでは、EAV内のDも残しておき
ます。両方のDには同じデータが入っているの
で整合性は保たれます。完了したらEAV内のD

を削除。これを繰り返してすべてのEAV内デー
タの移行を終えたら、EAVテーブル全体を
DROPする……で、いけるでしょうか？」
　「おお、そうかそうか。なるほどね……うん、
いけそうやね。でも、更新系のコードはどうす
るの？」
　「やっぱりそこが問題ですよね……。名称マス
タ用のデータなんかだと、そもそも更新系のコー
ドがない場合もあるんですけど、全部がそうじゃ
ないです。ただ、更新系は少ないので、③最後
に一気に移行させようかと……」
　「これがうまくいく前提は、二重に存在するD

のデータの同値性が保たれること、やね？」
　「そうですね」
　「『①新テーブル生成』のあと、『③更新系のコー
ドは一気に移行』の間に、EAV内のDに更新が
かかる可能性はある？」
　「……あります」
　「そこで2つのDの整合性を保つしくみはあ
る？」
　「そこなんですけど、何か良い手がないでしょ
うか」
　「まあ、古いテーブルにトリガーかけてやれば
えぇよ」
　「え？　トリガー使ってもいいんですか？」
　「こういうときにこそ使うもんよ」
　2つのDに同じデータが入っているようにす
るためには、古いデータ
（EAV内のD）が更新さ
れたときに、その内容で
新しいテーブルを更新す
るようにトリガーを組ん
でやります。リスト2が
その例です。

トリガーは便利、けれどご利用
は慎重に

　本来ならばDを更新するコードをすべて洗い
出してそのすべてを修正する必要があるのです
が、トリガーを使えば1ヵ所で済みます。そん
な便利なトリガーですが、便利さと危険さは裏
表で、トリガーを多用するとアプリケーション
から存在が見えない処理が多数走ることになり、
つまりプログラマがその存在を忘れてしまう危
険を伴います。そこで、弊社では次のような基
準に合致するときにトリガーを採用しています。

・動作を周知徹底できる内容であること
・Excelなどの定義ファイルから自動生成でき
ること

 ▼トリガーを使うと、表Aの変更をきっかけにして自動
的に表Bも変更できる

EAVや非正規形のテーブル設計を
少しずつ修正する方法第12回

EAV方式テーブル

A

C

更新コード1

更新コード2

更新コード3

参照コード1

参照コード2

参照コード3D

③更新系のコードは一気に移行

①新テーブル生成 ②参照系のコードを
　順次新テーブルに移行

B

D

 ▼図3　一時的に二重管理を許せば段階的な移行が可能

128 - Software Design

　今回のトリガーは恒久的なものではなくEAV

をなくすために一時的に使用するものであり、
かつ、リスト2を見てもらえばわかるようにワ
ンパターンのコードが続くため、Excelマクロ
でカラム名一覧からトリガーを自動生成できる
程度の単純な内容です。この程度の単純なもの
なら「動作を周知徹底する」のも容易ですので、
使っても問題ないでしょう。
　「まあ何にしてもそれでいけるやろ！　やって
み！」
　「やってみます！」

　この例のように「下手な設計で作ってしまった
けれど今さら作りなおせない」というシステム、
身近に心当たりのある方も多いことでしょう。
基本設計がまずいままで大量のコードを書いて
しまうと、それを一気に修正するのはなかなか

非正規形のテーブルを正
規化したい

現実的ではありません。ですが、やりようによっ
ては少しずつ修正できる場合があります。
　前述の例はEAVでしたが、もう1つ、「非正
規化設計のテーブルを正規化する」という例を紹
介しましょう。
　図4の上部は非正規化された受注テーブルの
例です。テーブルの中に受注ヘッダと受注明細
が混在しているため、受注ヘッダに該当する部
分に同じ情報が重複して表れています。これは
非正規化設計でよくある例ですが、本来は分離
しなければなりません。なお、実際には図4に
示した以外にも多数のカラムが必要ですが、単
純化してあります。
　「さて、ここで受注テーブルを参照している
コードが多くて、やっぱり一気に修正するのが
無理だとする。EAVのときと同じ手が使えるか
な？」
　「これは……statusみたいに、トランザクショ
ンをかけて更新する情報が入っているから、コ

 ▼リスト2　新テーブルの生成（左）と更新トリガー（右）

 SELECT文の結果を新規テーブルにコピー
CREATE TABLE delivery_comps
(PRIMARY KEY (id))
AS
 SELECT
 id
 , type_value AS delivery_comp
 FROM type_names
 WHERE type_name = 'delivery_id'
;

CREATE TABLE delivery_timeslots
(PRIMARY KEY (id))
AS
 SELECT
 id
 , type_value AS delivery_timeslot
 FROM type_names
 WHERE type_name = 'delivery_time_id'
;

 旧テーブルへの更新を自動的に新テーブルに反映させるためのトリガー
DELIMITER $$

CREATE TRIGGER tr_type_names AFTER INSERT UPDATE DELETE
 ON type_names FOR EACH ROW
BEGIN

 -- delivery_compsテーブルと同期
 IF OLD.id IS NOT NULL AND type_name = 'delivery_id' THEN
 DELETE FROM delivery_comps WHERE id = OLD.id;
 END IF;
 IF NEW.id IS NOT NULL AND type_name = 'delivery_id' THEN
 INSERT INTO delivery_comps (id, delivery_comp)
 VALUES(NEW.id, NEW.type_value);
 END IF;

 -- delivery_timeslotsテーブルと同期
 IF OLD.id IS NOT NULL AND type_name = 'delivery_time_id' THEN
 DELETE FROM delivery_timeslots WHERE id = OLD.id;
 END IF;
 IF NEW.id IS NOT NULL AND type_name = 'delivery_time_id' THEN
 INSERT INTO delivery_timeslots (id, delivery_time)
 VALUES(NEW.id, NEW.type_value);
 END IF;

END;
$$

DELIMITER ;

128 - Software Design Feb. 2017 - 129

ピーを作るわけにはいかないですよね？」
　「トリガーは発火元のトランザクションの中で
動くけど、まあ名称マスタと違ってこの種のデー
タの実体を二重に持つのはやめたほうがいいね。
マスタと違ってデータ量も多いし。そこで役に
立つのがviewなんよ」

正規化してからviewを使って非
正規形を再現

　手順としては、まず元テーブルを更新してい
るプログラムを洗い出したうえで、それをすべ
て、正規化した新テーブルを更新するように修
正します。
　次に、元テーブルから新テーブルへデータを
移行します（図4の❶）。
　元テーブルをDROP（またはバックアップの
ためリネーム）し、代わりに非正規形の元テーブ
ルを再現するviewを作ります（図4の❷）。当面
このviewで元テーブルとの互換性が保たれるた
め、参照するコードは無修正で動きます。

　その後順次、参照系のコードも正規形テーブ
ルを参照するように変えていきます（図4の❸）
　すべての修正を終えたら、orders viewを
DROPします。
　「あ、なるほど……参照系のコードにとっては
『要するに読めればいい』ので、実体を残す必要
ないんですね。同じ名前で同じ値が返ってきさ
えすれば……」
　「そういうこと。こんな手を使うこともできる
から、やってみるといいよ」
　正規形はRDBの基本ではありますが、深く考
えずに、あるいは「正規化すると性能が落ちるか
ら……」のような間違った考えをもとに非正規形
で作ってしまったシステムも少なくありません。
基本設計をひっくり返すのは一筋縄ではいきま
せんが、ずっと使い続けるシステムで下手な設
計を残しておくと、後々禍

か

根
こん

を残します。こん
な方法を参考に、できるだけ解消するように工
夫してみてください。｢

EAVや非正規形のテーブル設計を
少しずつ修正する方法第12回

 order_id order_date customer_id status line_id product_id price quantity
 （受注ID） （受注日） （顧客ID） （処理状況） （明細番号） （商品ID） （単価） （数量）

 1 2017/1/8 100 0 1 3517 1800 10

 1 2017/1/8 100 0 2 8492 750 2

 2 2017/1/9 101 0 1 4461 2240 4

orders（受注）テーブル　（非正規形状態）

order_headers
受注ヘッダテーブル
（正規形）

order_detail
受注明細テーブル
（正規形）

CREATE VIEW orders AS
SELECT
 h.order_id
 , d.line_id
 , h.order_date
 , h.customer_id
 , h.status
 , d.product_id
 , d.price
 , d.quantity
FROM order_headers h
 INNER JOIN order_details d
 ON h.order_id = d.order_id

❶正規形のテーブルへと
　データを移行
　更新処理はすべてここへ行う
　ように一気に修正

❸その後順次、参照系のコードも
　正規形テーブルを参照する
　ように変えていく

❷非正規形のordersテーブルを
　再現するviewを作る
　当面このviewで旧ordersテーブルとの
　互換性が保たれるため、
　参照するコードは無修正で動く

 ▼図4　非正規形テーブルを正規形に修正

130 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

　ディープラーニングの実用化により、近年大
きな注目を集める人工知能。私たちに最も身近
なスマートフォンと人工知能がどう結びついて
いくのか、技術的な観点から考えてみるために、
TensorFlowをAndroidで動作させるアプリを
実際に開発しました。その紹介を通して、今後
の人工知能の活用を展望してみましょう。

人工知能を使った
アプリケーションの登場

　音声アシスタントシステムは、プロダクトと
して人工知能がスマートフォンで活用されてい
る事例の1つです。代表的なものは iPhoneに
組み込まれたSiriや、Androidの「OK Google」
機能です。SiriやOK Googleの高度な音声認
識の実現には、人工知能が用いられていること

が明かされています。
　この「人工知能」とは機械学習によって作られ
た特化型人工知能（Colum 1参照）のことであり、
ディープラーニングと呼ばれる機械学習の発達
により、ここ数年で急速に精度が向上してきま
した。この人工知能の活用は、農業における環
境管理や品質評価、自動車の自動運転技術、医
療分野における病気の早期発見などに応用され
ており、これらの研究が活発に行われています。
　本稿ではこのような、最も人々に身近なデバ
イスであるスマートフォンと人工知能の関係に
フォーカスを当てます。とくに、この音声アシ
スタントは音声解析により直感的かつインタラ
クティブに情報提供を行う機能を持ちます。ま
た、ユーザ個人に特化した情報収集や整理など
を支援する機能を持っているため、パーソナル
アシスタントシステムとも呼ばれます。
　ほかにも、写真に写っている顔を判別して人
物ごとのアルバムを自動で作成する機能が、
iOS 10の写真アプリやGoogle Photosに導入
されています。Facebookには、ユーザのアッ
プロードした画像に写っている人物を自動で判
断してタグ付けする機能があります。これらの
アプリケーションはどれも機械学習を用いるこ
とで、既存のアプリには存在しないユーザエク
スペリエンスを実現しています。このように、
人工知能を応用したスマートフォン向けアプリ

特化型人工知能
COLUMN 1

　ある特定の課題について、賢く振る舞おうとする
プログラムのことを特化型人工知能と言います。将
棋やチェスの最適な手を見つけ出すプログラムや、
写真に写っている人物を判別するプログラムなどが
あります。近年実用化が進んでいる人工知能は、こ
の特化型人工知能のことを指す場合がほとんどです。
本稿において、「人工知能」とは機械学習によって作
られた特化型人工知能のことを指すこととします。

第13回 スマートフォンと人工知能がつながる未来

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

古川 新（ふるかわ あらた）
東海大学 理学部1年／
日本Androidの会
学生部 部長

Androidは世界で出荷される8割のスマートフォンに搭載※される、事実上
スマートフォンの標準OSです。このOS上で動くアプリケーションを開発す
ることは、自分のアイデアを世界に発信し、最も多くのスマートフォン上で
動かしてもらえる可能性がある行為です。このAndroidの最新情報と、そ
れを取り巻くコミュニティを知って、魅力的な開発をはじめませんか?

※IDC Worldwide Mobile Phone Tracker, August 7, 2013

http://www.android-group.jp/

Feb. 2017 - 131130 - Software Design

スマートフォンと人工知能がつながる未来第13回

値演算の集合です。それを計算し出力を得るに
は大きな演算コストを伴います。一度の計算で
あればあっという間でも、多くのリクエストを
さばかねばならないサーバでは大きな負荷とな
ります。安定したサービスを提供する場合は、
それなりの設備投資が必要になります。たとえ
サーバが高速に処理できたとしても、ユーザの
環境によっては必要な通信帯域を確保できない

ケーションが市場に現れてきています注１。

スマートフォンから
人工知能を利用する方法

　機械学習は特化型人工知能を作る手法の1つ
です。生物の神経細胞（ニューロン）が構築する
ニューラルネットワークを計算機上でシミュレー
トしたものを、人工ニューラルネットワークと
呼びます。この人工ニューラルネットワークこ
そが機械学習で作られる人工知能の正体です。
人工ニューラルネットワークを構成するニュー
ロンは数式で模され、作られる人工知能は巨大
な数学モデルになります。この人工知能が理想
的な結果を出力するようになるためには、生物
と同様に反復的な訓練が必要です。機械学習と
は、膨大な学習用データを用いて体系的にニュー
ラルネットワークの内部表現の最適化を繰り返
していくことです。人工ニューラルネットワー
クはとにかく巨大な数値演算の集合なので、入
力を与えて演算を行うことで計算結果を得るこ
とができます。このような膨大なデータや高速
な計算性能が必要な人工知能の恩恵をスマート
フォンが受けるにはどのような方法があるので
しょうか。

サーバで実行する

　スマートフォンから人工知能を利用する方法
の1つは、人工知能を稼働させたサーバを用意
し、特定の問題を解決する機能をWeb APIと
してスマートフォンに提供する方法でしょう。
これはGoogle Cloud Vision APIのようにサー
ビスとして提供されている事例が存在します。
　サーバを用意する場合、運用コストとプライ
バシーに関する問題があります。人工ニューラ
ルネットワークの機械学習により作られた人工
知能を「モデル」と呼びます。モデルは巨大な数

注１） “Google voice search: faster and more accurate”
https://research.googleblog.com/2015/09/google-
voice-search-faster-and-more.html

GoogleとAppleのプライバシー問題
COLUMN 2

　Googleはこのプライバシーの問題について、高
度な暗号化によりデータを守ることで、プライバシー
よりも利便性を追求する姿勢がうかがえます注A。
2016年に発表されたGoogle Nowは、ユーザーデー
タがネットワークを通過することを否定していませ
ん。Google Nowは情報の送信を拒否する選択肢も
提供していますが、その場合は機械学習による便利
なパーソナルアシスタントシステムを十分に利用す
ることができなくなります。Googleが情報を収集
する背景には、ユーザから情報を収集して機械学習
に用いたほうが、より優秀な人工知能を作ることが
可能になるという事実があります。
　一方で、Appleはプライバシーの問題に対して
非常に慎重です。iPhoneで用いられている人工知
能におけるプライバシーに対する取り組みについて、
個人情報やプライバシーにかかわるデータはサー
バに送信しないとインタビューにて明言していま
す注B 。これでは個人に特化した人工知能を用意す
ることが困難になると思われますが、Appleではこ
の課題を、スマートフォン上で実行する方法をサー
バ上での実行と組み合わせることで、ある程度解決
しているようです。
　人工知能に用いるデータが必ずしも個人情報を含
んでいるとは限りませんし、例に挙げた2社のどち
らが正しいのかを判断するのは難しいことです。し
かし、サーバを使った人工知能の利用にはプライバ
シーの問題が付随することは意識しなくてはいけま
せん。

注A） “Google’s AI Plans Are A Privacy Nightmare”
http://gizmodo.com/googles-ai-plans-are-a-
privacy-nightmare-1787413031

注B） “An exclusive inside look at how artificial intelli
gence and machine learning work at Apple”
https://backchannel.com/an-exclusive-look-at-
how-ai-and-machine-learning-work-at-apple-
8dbfb131932b

http://gizmodo.com/googles-ai-plans-are-a-privacy-nightmare-1787413031
https://backchannel.com/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple-8dbfb131932b
https://research.googleblog.com/2015/09/google-voice-search-faster-and-more.html

132 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

こともあるでしょう。ゲームの人工知能利用な
どのように、インタラクティブでリアルタイム
性が要求され、リクエスト頻度が高くなること
が予期されるようなアプリケーションには向い
ていません。
　とくに重要なのはプライバシーの問題です。
この方法ではユーザーデータがネットワークを
通過してしまうため、プライバシーの確保に疑
念が生じてしまいます。前述のとおり、スマー
トフォンの強みはユーザとの密接な関係であり、
それを活かしたパーソナルアシスタントシステ
ムなどが扱う情報は個人情報と直結します。人
の顔の写った写真や、自分の声など、あらゆる
データが勝手にネットワークを通っていくので
す。学習のデータとして利用するためにユーザ
から収集したデータが保存されている可能性も
否定できません。たとえ誰にも個人情報が漏れ
ないとしても、自分のデータがインターネット
に流れることそのものを嫌う人もいるでしょう。
そのため、サーバで実行するには課題があり、
Google、Appleともに独自の方針を設けていま
す（Column 2参照）。

スマートフォンで
実行する

　ここまでは、サーバでの実行について客観的
に事実を述べてきました。実はもう1つ人工知
能を利用する方法があります。それは、スマー
トフォン上で人工知能を実行する方法です。
　この方法では、ユーザからのリクエストをリ
アルタイムに処理するサーバを運用するコスト
が一切かかりません。人工知能の実行プロセス
からネットワーク通信という不安定な要素が排
除されるため、サーバ実行よりもインタラクティ
ブなコンテキストに利用しやすく、モデルデー
タさえあればオフラインでも実行することが可
能です。
　サーバにはない重要なメリットもあります。
この方法では、ユーザのデータがネットワーク
を通過しません。AppleのSiriを始めとする人

工知能技術では、この方法をサーバと組み合わ
せることで、品質を維持すると共にプライバシー
を守っているようです。スマートフォン上で計
算が完結するため、人工知能に起因したプライ
バシーの侵害が起きる可能性は根本的にありま
せん。
　スマートフォン自身に計算させるため、どう
してもサーバで実行する場合に比べてスマート
フォンへの負荷が大きくなります。莫大な回数
の反復訓練を行うのは現実的ではありません。

 ▼図1　 作成したアプリケーションの
スクリーンショット

 ▼表1　サーバとスマートフォンでの違い

サーバ
で実行

スマートフォン
で実行

運用コスト 高 低

プライバシーの
保護 未解決 問題なし

スマートフォン
への負荷 低 高

機械学習
による訓練 可能 困難

Feb. 2017 - 133132 - Software Design

スマートフォンと人工知能がつながる未来第13回

今のスマートフォンの性能で可能なのは、すで
に完成しているモデルを使って結果を計算する
ことでしょう。アプリケーションが人工知能に
要求するのは結果を得ることであって、人工知
能を作る機能ではないからです。サーバのよう
に大量のリクエストをさばく必要はないため、
非力なスマートフォンでも結果を計算すること
に問題はないと考えられます。この点について
は、一例ですが実際にアプリを開発して検証し
てみましたので後述します。
　両者は一長一短でどちらかが優れているわけ
ではありません（表1）。逆に言えば、どちらに
も必要とされる局面が存在します。本当にスマー
トフォン上で実行可能であるならば、プライバ
シーの保護やコスト削減といった大きなメリッ
トを持つこの手法はスマートフォン開発に広く
用いられていくでしょう。

人工知能をスマートフォン
上で実行するアプリを
開発してみた

　機械学習で作られた人工知能は本当にスマー
トフォンで実行できるのか、そして実用に足る
ものなのかを検証するために、次の条件で
Androidアプリを実際に開発してみました（図

1）。

・モデルを使った計算はスマートフォンで実行

する
・モデルを作る機械学習はサーバで実行する
・スマートフォンからサーバへ情報を提供する
（ユーザの任意）

　作成したのはリバーシの人工知能と対戦がで
きるAndroidアプリです。盤面上のマスの数字
は、マスごとの「どのくらい最適な手か」を人工
知能が数値化したものです。わかりやすいよう
に数値の高いマスほど赤くなるようにしていま
す。図1では、4行1列目が人工知能である白
にとって最適な手であると判断されています。
　機械学習による訓練と実行には、Tensor

Flowを使用しました。TensorFlowはGoogle

によって開発されている汎用数値演算ライブラ
リです。大規模分散並列処理に特化しており、
マルチデバイスに処理を分散し演算をスケール
アウトすることができます。機械学習において
問題となる莫大な演算負荷もスケールアウトが
できるため、Google翻訳エンジンなどさまざ
まなプロダクトに利用されています。GitHub

上でオープンソースとして公開されているため、
誰でも自由に利用することができます。
TensorFlowはC++で作られたライブラリです。
Androidアプリには共有ライブラリとして組み
込み、JNIを用いてJavaから実行します（図2）。
TensorFlowをAndroidで実行するための共有
ライブラリのサイズは約16MBです。

Protocol
Buffers

Firebase
Realtime Database

Data Server

HTTPS
Reversi

JNI

JavaC++

Run
TensorFlow

Android App

 ▼図2　アプリケーションの構成イメージ

134 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

　このアプリではプレイデータをFirebaseの
リアルタイムデータベースに送信します。プレ
イデータの送信はユーザの判断で拒否できるよ
うになっています。Firebaseはスマートフォ
ンアプリケーションでよく利用される汎用的な
機能を、クラウドから提供するGoogleのサー
ビスです。データベースに新たなデータが追加
されると、訓練用のサーバは自動で機械学習に
よる訓練を行います。訓練で更新された人工知
能モデルは定期的にProtocol Buffers形式とし
てシリアライズされ、データベースサーバにアッ
プロードされます。Androidアプリは最新のモ
デルデータをローカルストレージにダウンロー
ドし、そのモデルを使用して打つ手をスマート
フォン上で計算します。遊べば遊ぶほど訓練さ
れ、自動的にユーザへフィードバックされると
いう一連の品質向上のサイクルが出来上がって
います。
　より具体的な実装方法については、筆者のブ
ログ注２にまとめておりますので、そちらを参
照してください。

実際に開発することで
確認できたこと

　設けた条件のとおり、モデルの実行はスマー
トフォン上で行われるため、ユーザから直接リ
クエストを受けて結果を返すAPI用サーバは
必要ありません。一度モデルデータをインストー
ルすればオフラインでも実行可能です。訓練用
サーバはありますが、訓練はユーザのためにリ
アルタイムに処理を行う必要はなく、常時稼働
しているわけではありません。どちらの場合で
も訓練コストは必要ですし、API用サーバに比
べれば大したコストではありません。また、デー
タベースサーバについても同様です。スマート
フォン上で実行することで大幅にサーバ運用コ
ストを削減することができたと言えます。

注２） http://ornew.net

　懸念されたスマートフォンへの負荷も問題と
なっていません。このアプリを筆者のNexus 5

で実行する限りでは、人工知能が結果を算出す
るのにかかる時間は100ミリ秒未満です。人工
知能のモデルサイズもバイナリタイプの
Protocol Buffers形式でたったの約 17KBで
す注３。もちろん、負荷や容量はモデルの規模や
実行頻度、実行環境によって変化します。しかし、
まったく使い物にならないほどマシンリソース
を酷使するわけではないと考えてよいでしょう。

スマートフォンは
人工知能の顔となるか?

　スマートフォンの最たる特徴は人との距離に
あります。今やスマートフォンを誰もが持って
いて当たり前の時代になりました。ゆえに、「ス
マートフォンだからこそできること」がありま
す。冒頭で例に挙げたパーソナルアシスタント
システムを始めとするアプリケーションは、機
械学習によって作られる人工知能の持つ高精度
な解析能力と、スマートフォンが人に最も近い
デバイスであるという特徴が有効に活かされて
います。技術と社会の最も大きな接点であるス
マートフォンは、人工知能を利用するデバイス
として活用されていくポテンシャルを十分に秘
めています。
　実際にAndroidアプリケーションで人工知能
を利用してみたことで、スマートフォン上でも
人工知能の実行は可能であることが検証されま
した。スマートフォン自身が人工知能を動作さ
せることも当たり前になっていくのだと思いま
す。s

注３） ちなみに、MNISTによる手書き数字の解析で約99.7%の
精度を出せるGoogleのTensorFlowによる畳み込みニュー
ラルネットワークのモデルとほぼ同じサイズです。

http://ornew.net/

Feb. 2017 - 135134 - Software Design

スマートフォンと人工知能がつながる未来第13回

コミュニティ活動

COLUMN 3

■ABC2016 Autumn開催報告
　日本のAndroid開発者のユーザーコミュニティ
である日本Androidの会が、年に2度開催する
Androidの祭典「Android Bazaar and Conference
（ABC）」が2016年11月19日に「ABC2016 Autumn」
として開催されました。千葉県柏市にある、柏の葉
キャンパスというイノベーション色が豊かな地に
400名の方々が集いました（写真A）。
　「次世代の孵化装置ΘAndroid ～ミライをつくろ
う、Androidで作ろう！～」がテーマです。モバイ
ルに関する技術は、スマートフォン8割のシェアを
持つAndroidの「上も使って」花開いています。
Androidは次世代に続く技術、文化、人材の卵を温
める孵化装置の役割を担っています。今どのような
卵を温めているのか、今ある孵化の鼓動を集め、そ
こから見えるミライを共感するために開催しました。
「講演（カンファレンス）」と「展示（バザール）」の2つ
に分かれ、このテーマにちなんだ講演と展示が行わ
れました。とくに人気が高かったのが、レノボから
発売されている空間をセンシングできるtangoスマ
ホの実機展示や、本文執筆の古川さんも登壇した
ディープラーニング、そして今回後援をいただいた
総務省から、情報通信国際戦略局長の谷脇康彦様に
よるデータ主導社会の実現に向けての講演でした。
また今回は、Gショックを彷彿させるカシオ計算機
のAndroid Wear「WSD-10F」を用いたアプリコンテ
ストを開催しました。日本Androidの会の地方支部
からも参戦し、IoTと連携させるもの、お笑いのネ
タに走るものなど多彩なアプリが発表され、浜松支
部の「今何時？」アプリが優勝をしました。
　コミュニティの愉しみは、技術やテーマを同じに
した参加者や講演者との情報交換ができること、そ
して自分のアイデアを生かすチャンスがあることで
す（写真B）。次回のABCも計画していますので、ス
タッフとしてコミュニティ活動に参加されてみては
いかがですか？
・ABC2016●http://abc.android-group.jp/2016a/

■MaruLabo紹介
　学生にディープラーニングの学習・開発環境を提
供することを目的としたコミュニティです。2016
年12月20日（火）には、定員50名のところ700名
を超える申し込みがあった「ディープラーニング・
ハンズオン」をGoogleで開催。MaruLaboは基本
的に学生自身によって運営されており、学生の参加

を募っています。実際的なディープラーニングの開
発・学習に必須の高速なGPU環境の提供を1つの
特徴としており（計算資源は、企業・個人からの寄
贈によるもの）、今後ハンズオンの開催が予定され
ています。
https://goo.gl/qU21hK

■Android関連イベント
〇Droidkaigi 2017
主催：DroidKaigi 2017 実行委員会
日時：2017年3月9日（木）／10日（金）
場所： ベルサール新宿グランドコンファレンス

センター
有料イベント。エンジニアが主役のAndroidカンファ
レンス。
https://droidkaigi.github.io/2017/

〇技術書典
主催：TechBooster／達人出版会
日時：2017年4月9日（日）
場所：アキバ・スクエア
一般参加 無料。サークルなどで制作した技術書オ
ンリーの販売会。
https://techbookfest.org/

文：日本Androidの会　嶋 是一

 ▼写真A　 基調講演会場

 ▼写真B　 運営委員集合写真

http://abc.android-group.jp/2016a/
https://goo.gl/qU21hK
https://droidkaigi.github.io/2017/
https://techbookfest.org/

136 - Software Design

筆者愛用プラグイン
QuickRun

　筆者はVimプラグインを見つけては少しだけ
試すといったことをよくやっており、日常的に
使うプラグインというのはあまり持たないほう
なのですが、そんな筆者であってもこれは常に
インストールしているというプラグインがいく
つかあります。
　その1つが今回紹介するQuickRun注1です。
　QuickRunは thincaさんが開発しているVim

プラグインで、現在開いているファイルタイプ
に見合ったコマンドを実行してくれるコマンド
です。今回はQuickRunの基本的な操作方法を、
そして次回で便利なカスタマイズ方法を紹介し
ます。

基本的な操作

　たとえば、Rubyのファイルを開いた状態
で:QuickRunを実行すると、そのRubyスクリ
プトが実行されます。デフォルトで、<leader>
-rがキーマッピングされています注2。QuickRun

のしくみは一見簡単そうに見えますが、デフォ

ルトで数多くのファイルタイプが実行可能とな
るように設定されており、簡単かつ便利に使え
ます。
　たとえばゼロからソースコードを書いていく
場合、トライ&エラーでだんだんと形を作って
いくわけですが、その際に都度、動作を確かめ
ながらコードを書けるため非常に役立ちます。
もちろん1枚岩（ソースファイルが1つだけ）で
あれば、完成しているものを実行するのにも使
えます。
　:QuickRunはバッファの一部でも実行可能で、
ソースコードの一部をビジュアル選択して次の
ように実行できます。

:'<,'>QuickRun

※<leader>-rでも実行可能

　また、たとえばテキストの中に例文として書
かれたコードについては、ビジュアル選択して
次のように実行することもできます。

:'<,'>QuickRun python

　このとき、バッファにはスクリプト言語では
ないテキストファイルが開かれているので、末
尾の「python」のように、実行すべきものが何で
あるかをQuickRunに引数で教える必要があり
ます。実行できる言語の候補は、:QuickRunの
入力のあとに　　 で入力補完できます。TAB

注1） URL https://github.com/thinca/vim-quickrun
注2） 何も設定していない状態であれば<leader>-rは\rで動作

します。

一歩進んだ使い方
のため

のイロハ

QuickRunで
開発を加速する（前編）

　書いたプログラムをその都度実行できる便利なプラグインQuickRunを、2回に渡って取り上げます。今
回はまず、基本的な使い方とオプションの一覧、そしてQuickRunのカスタマイズにつながる重要なしくみ、
runnerとoutputterについて解説します。

mattn
twitter:@mattn_jp

第 回15

https://github.com/thinca/vim-quickrun

136 - Software Design Feb. 2017 - 137

runnerとoutputter

　QuickRunが起動する際、大きく分けて2つの
機能「runner」「outputter」が働きます。runnerは
コマンドを実行するためのしくみ、outputterは
その結果を出力するためのしくみです。

runnerとは

　Vimが外部プロセスを起動する方法にはいく
つかあり、それぞれに特性が異なります。Quick

Runではこれらをユーザ側が指定できるように
なっています（表3）。ただし、runnerのすべて
があらゆるコマンドに対して有効であるという
わけではないため、問題を自己解決できる方の
み指定するようにしてください。
　表中で、非同期サポートが△となっている

実行できる
ファイルの種類

　QuickRunが実行できるのは、PythonやRuby

といったスクリプト言語に限りません。たとえ
ばC言語であれば、編集中のソースコードをコ
ンパイルして実行してくれます。Javaも実行で
きますし、HTMLファイルであればブラウザが
起動します。MarkdownであればHTMLに変換
され、ブラウザが起動します。
　執筆時点（2016年12月）でQuickRunには、デ
フォルトで51種類のスクリプト言語や変換可能
なフォーマットが登録されています（表1）。
WindowsでもLinux/UNIXでも、ほぼ相違なく
動作します。

オプションの指定

　QuickRunには実行時オプショ
ンが用意されており、実行するコ
マンドの挙動を変えられます。指
定は次の書式で行います。

:QuickRun -[オプション] [値] ｭ
 -[オプション] [値] ...

　表2に扱うことができるオプ
ションを示します。これらは設定
にてファイル種別ごとに指定する
こともできます。これらをカスタ
マイズすることで、自分独自のコ
マンドを作り上げることができま
す。

QuickRunで
開発を加速する（前編）

第 回15

オプション 概要

type
種別を指定。たとえばテキストファイル内に書かれた別の
言語を実行する際に有効

exec
実行するコマンドの書式を指定。既存の設定を上書きする
ために使用

command
exec内での%cを指定。たとえば専用のインタプリタを使用
する場合に使用

cmdopt exec内での%oを指定。オプションを付加する場合に使用
srcfile ソースファイルを指定。srcとは併用不可
src ソース文字列を指定
args exec内での%aを指定。プログラム引数を指定する

input
コマンドの標準入力に書き込むファイルを指定。=xxxで指
定した場合、文字列xxxが書き込まれる

outputter outputterを指定
runner runnerを指定

mode
ノーマルモードnもしくはビジュアルモードvを指定。通常
は自動設定される

tempfile 一時ファイル名を指定。形式：%{tempname()}

 ▼表2　QuickRunの実行時オプション

 ▼表1　QuickRunの対応言語・環境

awk bash C Clojure Coffee Cpp Crystal C# D
Dart Dosbatch Elixir Erlang eRuby fish FORTRAN F# Go
Groovy Haskell io Java JavaScript JSX Kotlin Lisp LLVM
Lua Markdown Nim Ocaml Perl Perl 6 PHP Powershell Python
R Ruby Rust Scala Scheme sed sh SQL Swift
tmux Typescript Vim script WSH XQuery Zsh

一歩進んだ使い方
のため

のイロハ

138 - Software Design

◆　◆　◆
　今回はQuickRunの基本的な使い方を説明し
ました。runnerやoutputterの特性を理解する
ことで、QuickRunの可能性は広がります。次回
はQuickRunの設定方法と、拡張方法を紹介し
ます。ﾟ

runnerの理由を説明します。これ
らは非同期をサポートはしているも
のの、実現方法に懸念事項があるた
めです。Vim scriptはVim8まで非
同期処理をサポートしていませんで
した。そこで vimprocや concur

rent_processでは、updatetime

というVimのオプションの値を小さ
く設定することで、一定間隔にプロ
セスの状態や出力を監視し、更新が
あれば所定の処理を実行するという
方法で非同期を実現していました。
ただしこのupdatetimeは、もとも
と無操作時にswapfileを更新するた
めの待機時間を設定するオプション
であり、この値を小さくすると想定
外の問題が起きる可能性がありまし
た。またupdatetimeはグローバル
オプションであるため、ほかのプラ
グインが期待しない動作になった
り、画面がチラつくという問題が起
きました。Vim8の jobの登場によ
り、これらの問題は解消されました。

outputterとは

　QuickRunでコマンドを実行した
際の出力結果をどうするかを指定で
きます（表4）。各outputterでは出
力に関するパラメータが設定できま
す。詳しくは:help quickrun-mo

dule-outputterを参照してくだ
さい。
　outputterは、複数のoutputterを
組み合わせて実行できます。たとえばコマンド
の実行結果が正常の場合にはbufferに出力し、
失敗した場合には変数outに結果を設定すると
いった場合は、次のように実行します。

:QuickRun -outputter error:success= ｭ
buffer:error=variable/out

runner 非同期
サポート 特性

system × コマンドの実行にsystem()関数を使用
shell × コマンドの実行に:!を使用

concurrent_
process

△
REPL※をサポートするコマンドの場合、プ
ロセスを常駐させることで次回以降のコマン
ド実行を高速化

python 〇
Python拡張にてsubprocessモジュールを使
用。Python拡張が有効になっていないと使
用不可

remote 〇
remote通信機能を使用する。ただしLinux
/UNIXの場合、X Window Systemが起動し
ていない環境では使用不可

vimproc △ Shougo氏が開発しているvimprocを使用

vimscript ×
ファイルの評価に:コマンドを使用。基本的
にVim script専用だが、:pyfileなどを使用
することでPythonも実行可能

job ◎
Vim8の jobを使用。ネイティブに非同期を
サポートするため、コマンドからの出力をリ
アルタイムに表示

 ▼表3　各 runnerとその特性

※REPLとはRead Eval Print Loopの略で、入力を評価して表示する対話形
　式のプログラムのこと。

outputter 特性

browser
出力をブラウザに表示する。openbrowser.vimが必要。
プレーンな出力がそのままブラウザで出力されるため、
コマンドの出力がHTMLでなければならない

buffer
出力をQuickRun専用のバッファに出力（デフォルトの
動作）

buffered
出力全体を読み込んだあとbuffered/targetで指定さ
れる出力先に流し込む。例）buffered/buffer

error
コマンド実行結果が成功かエラーかで出力先を変更。
例）error/success=buffer:error=variable/out

file 出力をファイルに書き出す。例）file/name=out.log
loclist 出力結果をロケーションリストに設定
message 出力をVimのメッセージに書き出す
null どこにも出力しない
quickfix 出力をクイックフィックスに設定
variable 出力を変数に設定。例）variable:a

multi
複数の出力先を指定する。
例）multi/targets=buffer/variable:a

 ▼表4　各outputterとその特性

139 - Software Design Feb. 2017 - 139

第33回 Emacsの正規表現（上級編）

思考をカタチにするエディタの使い方

るびきち流
Emacs超入門

るびきち
twitter@rubikitch http://rubikitch.com/

Emacsの正規表現（上級編）
　Emacsの正規表現の最終回。前半では、正規表現にマッチした行を一覧できるM-x occurをさらに便
利にするTipsを紹介します。後半では、複数のクエリによる絞り込み検索ができるhelmとoccurを組み合わ
せた強力なM-x helm-occurと、結果を編集できるall-extパッケージを紹介します。

Writer

第33回

 ▼図1　M-x occur RET ;; RET

anything.el復活

　ども、るびきちです。今まで細々と更新をし
ていたanything.elでしたが、この際、復活宣言
をしました。anything.elとは、筆者が9年間育
ててきた候補選択フレームワークで、helmの前
身です。helmと袂

たもと

を分かってから、helmは超高
速で開発が進められました。
　一方でanything.elは、メンテナンス中心に
ゆったりと育ててきました。その間にanything.

elのミッション（開発理念）が固まってきました。
「Emacs Lisp学習者に実用的な成功体験、そし
てずっと使える安心を提供します」です。あくま
でも「ユーザ目線」という点でhelmと明確な差別
化を図ります。
　とはいえ筆者は、helmを全否定するつもりは
ありません。helmを使ったすばらしいパッケー
ジは数多く存在し、とくにhelm-swoopには毎度
お世話になっています。helmは開発が活発です
ので、そのまま使う分には問題ありません。た
だ、helmの内部を改造したりhelmプログラミン
グをしていると、突然の仕様変更の煽

あお

りを
受けるリスクがあると言っておきます。
　内部を改造したり候補選択インターフェー
スを使ったプログラミングをするならば、
anything.elをお勧めします。与えられたも
ので満足する人はhelm、自分にぴったりな

形へと徐々に進化させたい人はanything.elと明
確に線引きします。詳しくは筆者のサイト注1を
参照してください。

occurを使いこなす

*Occur*バッファを編集する

　さて、今回もEmacs正規表現の話題の続きで
す。バッファ内で正規表現にマッチした行を列
挙するには先週お伝えしたとおり、M-x occur

を使います（図1）。
　実は、*Occur*バッファを編集することで、元
のバッファに編集結果を反映させられます。

*Occur*バッファはそのままだとread-onlyです
のでe（occur-edit-mode）で編集可能にします。
そのあとは、置換などで自由に編集してくださ
い。編集結果は、ダイレクトに反映されます

（図2）。

注1） URL http://emacs.rubikitch.com/anything

http://rubikitch.com/
http://emacs.rubikitch.com/anything/

140 - Software Design

るびきち流
Emacs超入門

 ▼図4　前後2行を表示する

 ▼図2　*Occur*バッファを編集。すぐに反映される

 ▼図3　行番号がmarginに表示される

（occur-x-filter-out）が flush-lines相当です。
両方の操作はu（occur-x-undo-filter）で戻せ
ます。複数の正規表現すべてにマッチする
行を取り出すには、M-x occurのあと、M-x
occur-x-filterを繰り返せばいいです。
徐々に絞り込まれていきますので、安心し
て使えます。もちろん、M-x occur-edit-

modeと併用できます。絞り込み検索に加え、

*Occur*バッファの編集もこなせるようにな
れば、編集の幅はかなり広がってきます。
　また、行番号をmarginで表示するという
ことは、*Occur*バッファそのものには行番
号が含まれないことを意味します（図3）。
マッチした行そのものだけを、コピー&ペー

ストできるようになります。*Occur*バッファ
の内容を貼り付ける際、行番号は邪魔になるこ
とが多いです。

M-x occurで前後の行も表示する

　M-x occurでは、grepプログラムのように前
後の行も表示できます。たとえば、マッチ行の
前後2行を表示したければ、C-u 2 M-x occur
と操作します（図4）。一方で、普通にM-x occur

を実行したあとで前後の行を表示させるには標
準では再実行するしかありません。
　そこで、occur-context-resize.elをインストー
ルすると便利です。M-x package-install

occur-context-resizeでインストールし、次
の設定を加えます。

(add-hook 'occur-mode-hook
 'occur-context-resize-mode)

　編集が終了し、通常のread-onlyに戻すには
C-c C-c（occur-cease-edit）を使います。

M-x occurを拡張する
occur-xパッケージ

　あまり知られていませんが、occurを拡張す
るoccur-x.elがあります。次の機能を提供しま
す。

・絞り込み検索
・行番号をmargin（左端の空き部分）に表示する

　M-x package-install occur-xでインス
トールし、次の設定を加えます。

(add-hook 'occur-mode-hook
 'turn-on-occur-x-mode)

　絞り込み検索は、正規表現にマッチする行の
みを表示したり削除したりする機能です。言っ
てみれば、前回（2017年1月号）で紹介したよう
に、M-x keep-linesや M-x flush-linesを

*Occur*バッファで行うようなものです。
　k（occur-x-filter）が keep-lines相当で、f

 ▼margin部分（1と3が表示されている列）

140 - Software Design Feb. 2017 - 141

第33回 Emacsの正規表現（上級編）

 ▼図5　M-x helm-occur RET defun file.+read

ます。

・ ：その行へジャンプする
・C-p、C-n、　　、　　：前後行への移動
・C-↑、C-↓：�前後行へ移動しながら対象バッ

ファの表示も反映させる
・C-z：対象バッファの該当行を表示する

　これらの操作を使ってバッファを縦横無尽に
駆け抜けてください。

Migemoを有効にする

　Migemoとは、ローマ字で日本語文字列を検
索するすばらしいプログラムです。たとえば、
「nihongo」で「日本語」が、「ugoKu」で「動く」が検
索にヒットします。
　まずはmigemo.elとcmigemoをインストール
します。Debian系列のGNU/Linuxならば両者
ともパッケージ化されているのでインストール
は簡単です。sudo apt-get install cmigemo
migemo-elを実行するだけで初期設定まで済み、
そのまま使えます。多くのGNU/Linuxにはパッ
ケージシステムがあるため、インストール・設
定・管理がとても楽です。
　パッケージ化されていない場合は、cmigemo

とmigemo.elを別個でインストールし、初期設
定も行う必要があります。macOSではbrew

install cmigemoで、Windowsでは香り屋氏
のサイト注2からcmigemoのバイナリを取ってき

↑ ↓

　すると *Occur*バッファにて、　　　キー
で前後の行を1行ずつ対話的に増やせます。
「0」で前後の行を表示しなくなります。
　とはいえ、気になる行があれば *Occur*
バッファから直接ジャンプしたり、M-g M-n
などでたどれます。
　*Occur*バッファの表示はほんのちょっと
したことですが、お好みで設定してみてく
ださい。

M-x helm-occur

パワフルな処理を実現

　helmでインクリメンタルに行を絞り込むこと
で、occurと isearchの良いとこどりができます。
つまり、occurのように正規表現にマッチする
行を一覧しつつ、isearchのように文字をタイプ
するごとに表示を変えていくことができます。
コンピュータの性能が上がったことで、このよ
うなパワフルな処理ができるようになりました。
　それを実現してくれるのがM-x helm-occur

です。
　M-x helm-occurは通常のoccurよりもはる
かに強力な機能です。なぜなら、次の特徴があ
るからです。

・正規表現にマッチする行を一覧できる
・文字をタイプするごとに表示が変わる
・正規表現を複数個指定して絞り込み検索がで

きる
・Migemoが効く（helm-migemo-mode）
・表示結果を編集できる（all-ext.el）

　M-x helm-occurを使いこなせれば、バッファ
内の目的とする行をすぐに見つけられます（図
5）。helmについては2015年3、4月号で取り上
げましたが、これから使うにはM-x package-

install helmでインストールしてください。
この状態でM-x helm-occurが使えます。
　M-x helm-occurではいろいろな操作ができ

+ -

Enter

注2） URL http://www.kaoriya.net/software/cmigemo

https://www.kaoriya.net/software/cmigemo/

142 - Software Design

るびきち流
Emacs超入門

 ▼リスト1　migemo.elからcmigemoを使う初期設定

(when (locate-library "migemo")
 (setq migemo-command "cmigemo") ; HERE cmigemoバイナリ
 (setq migemo-options '("-q" "--emacs"))
 (setq migemo-dictionary "/usr/share/cmigemo/utf-8/migemo-dict") ; HERE Migemo辞書の設定
 (setq migemo-user-dictionary nil)
 (setq migemo-regex-dictionary nil)
 (setq migemo-coding-system 'utf-8-unix)
 (load-library "migemo")
 (migemo-init))
(with-eval-after-load "helm-multi-match"
 (helm-migemo-mode 1))

　M-x allはM-x occur-edit-modeと機能的
には同じですが、それが登場するはるか昔に書
かれたものです。all.el＋all-ext.elのメリット
は次のとおりです。

・行番号がoverlayで表示されているため、M-x

occur-edit-modeより編集しやすい
・行番号とその行の内容が書いてあるすべての

helm情報源に対応
・anything.elにも対応
・C-x hでマッチ行すべてをマークできる
・マッチ行に対してmultiple-cursors.elによる

一括編集ができる

　all-ext.elもMELPAから、M-x package-in
stall all-extとインストールします。この状
態ですでに基本的な設定はできていて、helmか
らC-c C-aでallに移行できます。*All*バッファ
はすでに書き込み可能になっていて、編集結果
が即反映されるようになっています。
　また、マッチ行をC-SPCでマークすることで

*All*で編集する行を限定できます。たとえば、
絞り込んでも特定行のみを編集対象から外した
い場合は、M-aで全行をマークし、除外したい
行をC-SPCでアンマークすればいいです。
　次の手順ならば安心確実に置換処理ができま
す。

①M-x helm-occurやM-x helm-swoopを実
　行（図6）
②Migemo対応絞り込み検索

ます。migemo.elはMELPAからインストール
し、初期設定でHEREと書かれた部分は環境に
合わせて書き換えてください。M-x package-

install migemoでインストールし、リスト1
の設定を加えます。
　これで isearchでもM-x helm-occurなどで
も、Migemoが使えるようになります。

helm-occurを親切にしたhelm-swoop

　helm-swoop.elはM-x helm-occurを親切に
したパッケージです。M-x package-install

helm-swoopでインストールします。使い方と
してはM-x helm-occurとほぼ同じです。M-x

helm-swoopを実行してC-p/C-n/　 /　 を押
すと前後行に移動しながら、対象バッファの表
示も連動してくれます。ハイライト機能が強化
されている分、見やすさはこちらが上です。
　筆者のサイト注3で詳しく説明しています。

helmの結果を一覧表示、修正して
元のバッファに反映

　M-x helm-occurやM-x helm-swoopはM-x

occurと違い、Migemoが効くうえに絞り込み検
索ができます。
　それならば、M-x occur同様にマッチ行一覧
を編集できたらいいとは思いませんか？　all.el

を拡張する拙作all-ext.elをインストールすれば
実現できます。

注3） URL http://emacs.rubikitch.com/helm-swoop

↑ ↓

http://emacs.rubikitch.com/helm-swoop/

142 - Software Design Feb. 2017 - 143

第33回 Emacsの正規表現（上級編）

 ▼図7　編集対象の2行をC-SPCで選択

 ▼図8　C-c C-aで *All*に移行

 ▼図9　defun→DEFUNに書き換えてC-c C-cで編集が反映
 されているのを確認

 ▼図6　M-x helm-swoop RET defun③（任意）編集対象の行をマーク（図7）
④C-c C-aで *All*に移行（図8）
⑤M-%やC-M-%などで置換（図9）

　通常の置換は置換元にマッチした部分を
すべて置換対象にしてしまいますが、all-

ext経由の置換は置換対象を明確に絞り込
めます。

　今回はバッファ内検索・置換の上級編を
お届けしました。次回は複数ヵ所を同時編
集するmultiple-cursors.elを取り上げる予
定です。ただの置換では処理しきれないよ
うな複雑な編集も楽々こなせます。
　筆者はいろいろなことに興味を持ってい
るため、サイトはサブドメイン単位で再構
築しました。「日刊Emacs」改め「新生日刊
Emacs」（http://emacs.rubikitch.com/）は
日本語版Emacs辞典を目指し、毎日更新
しています。やりたいことやパッケージか
ら探せるようにしましたので、Emacsで何
か実現したいことがあればぜひとも御覧に
なってください。手元でgrep検索できる
よう全文をGitHubに置いています。
　またEmacs病院兼メルマガのサービス
を運営しています。Emacsに関すること関
しないこと、わかる範囲でなんでもお答え
します。「こんなパッケージ知らない？」
「挙動がおかしいからなんとかしてよ！」は
もちろんのこと、自作elispプログラムや
文章の添削もします。集中力を上げるなど
のライフハック・マインド系も得意として
います。ﾟ
登録はこちら➡http://www.mag2.com/
m/0001373131.html

おわりに

http://www.mag2.com/m/0001373131.html
http://emacs.rubikitch.com/

144 - Software Design

あらためて Swiftを
始めませんか？

　本稿を執筆しているのは（とくに政治的に）波
乱含みどころか波乱しかなかった感のある
2016年末ですが、皆さんに届くころには新年
気分も過ぎ、2017年という表記に読者の皆さ
んも慣れているころだと思います。新言語を学
びはじめるにはちょうどいいころあいかと。
　本連載はこれまで連載ということもあって、
すでにSwiftという言語には本連載開始時点か
ら慣れ親しんでいる読者を対象にしてきたので
すが、本誌をはじめて手にとった方、つまり本
誌にはある程度の理解はあるけれどもSwiftは
まだ知らないという読者に向けて、Swiftとは
どんな言語なのかを紹介するころあいでしょう。

安全、高速、
豊かな表現力

　いったいSwiftとはどういう言語なので
しょう？　公式サイトのAbout Swift注1に
は3つの特長が掲げられています。

・安全（Safe）
・高速（Fast）
・豊かな表現力（Expressive）

　Swiftは静的型を採用していますが、
これは安全性に寄与しています。たとえ
ばvar i = 42でInt型として初期化され

たものにi = "one"とStringを代入しようとし
ても、コンパイル時にエラーとして弾きます。
SwiftはCやC++やObjective-Cを置き換えるこ
とを標榜しているだけあって、同じことを同じ
ように書いた場合、速度はそれらにまさるとも
劣りません。それでいて、動的型を採用してい
るJavaScriptやPerlやPythonやRubyに匹敵す
る表現力を持ちます。動的言語のように速く書
けて、静的言語のように速く実行できる。その
ような言語はすべての言語デザイナの夢ですが、
Swiftはその夢に最も近い言語だと筆者は感じ
ています。

Getting Started

　ではさっそくはじめてみましょう。え、Macな
んて持ってない？　ご安心を。Swift Sandbox注2

のおかげで、今やSwiftはWebブラウザさえあ
ればお試しできるのです（図1）。

書いて覚える 入門Swift

Writer 小飼弾 （こがい だん）　　 twitter @dankogai

第22回 謹賀新言語

注1） https://swift.org/about/
注2） https://swiftlang.ng.bluemix.net/

 ▼図1　Swiftのsandbox

https://swift.org/about/
https://swiftlang.ng.bluemix.net/

144 - Software Design Feb. 2017 - 145

謹賀新言語第 回22

　もともとはApple製品専用開発言語とし
てスタートしたSwiftですが、オープンソー
ス化にともない、MacだけでなくLinuxも
公式にサポートされています。Linux版は
Windows 10 Anniversary Editionに搭載
されたLinux on Windowsでも動きます。
本稿に限らず、本連載ではなるべくプラッ
トフォームに依存しないように当初から心
がけているので、本書の連載を理解するに
あたってApple製品は必須ではありません。
　とはいえ、Swiftの醍醐味をもっとも堪能
できるのは、MacのXcodeということにな
ります。とくにPlaygroundは現状Mac版と
iPad版しか存在しません。Swiftを100％し
たかったら、やはりMacが第一選択肢とな
ります。

演習 :言語処理系を
実装してみる

　では、さっそく言語処理系を作ってみましょ
う。え、いきなりハードルが高い？　心配ご
無用。ここで実装するのは、その言語でプ
ログラムするよりその言語の処理系を書くほ
うが簡単と定評のあるBrainfuck注3です（図
2）。リスト1はわずか36行ですが、それで
も写経するのが面倒だというのであれば、
gistにソース注4を用意しておきましたので
利用ください。
　リスト1を実行してみると、図3のとお
りに標準出力されます。図3はMacの例で
すが、Linuxでは最初の Darwinが Glibc
になった以外同じものが出力されるはずで
す。
　これをたとえばecho.swiftというテキ
ストファイルにセーブしたうえで、次のよ
うにシェルからコンパイルして実行してみ
ます。

注3） https://ja.wikipedia.org/wiki/Brainfuck
注4） https://gist.github.com/dankogai/7020471a37e4e902c70cfe5ff3b7111f

 ▼図2　PlaygroundでBrainfuck

let datasize = 65536
var framework = "Darwin"
#if os(Linux)
framework = "Glibc"
#endif
let bf2swift:[Character:String] = [
 ">": "sp += 1",
 "<": "sp -= 1",
 "+": "data[sp] += 1",
 "-": "data[sp] -= 1",
 "[": "while data[sp] != CChar(0) {",
 "]": "}",
 ".": "putchar(Int32(data[sp]))",
 ",": "data[sp] = {c in CChar(c < 0 ? 0 : c)}
(getchar())"
]
func bf2swift(src:String) -> String {
 var lines = [
 "import ¥(framework)",
 "var data = [CChar](repeating:CChar(0),count:ｭ
¥(datasize))",
 "var (sp, pc) = (0, 0)",
]
 for c in src.characters {
 if let l = bf2swift[c] {
 lines.append(l)
 }
 }
 lines.append("")
 return lines.joined(separator: "¥n")
}
extension String {
 func bfCompile()->String {
 return bf2swift(src: self)
 }
}
let src = "+[,<>.]-"
print(src.bfCompile())

 ▼リスト1　brainfuck.swift

https://ja.wikipedia.org/wiki/Brainfuck
https://gist.github.com/dankogai/7020471a37e4e902c70cfe5ff3b7111f

146 - Software Design

書いて覚える 入門Swift

$ swiftc echo.swift
$./echo < echo.swift

　echo.swiftの中身がそのまま出力されれば
成功です。
　では処理系中の最後から2番目のsrcを++++
+++++[>++++++++>+++++++++++>+++++
<<<-]>.>++.+++++++..+++.>-.------------
.<++++++++.--------.+++.------.--------
.>+.にしたうえで、もう一度同じようにして
みてください。Hello, world!と表示されまし
たか？
　それではあらためて処理系のソースコードを
見てみましょう。こんな小さなコードからでも、
次のことが読み解けるはずです（表1）。

・変数（var）や定数（let）を定義するにはどう
すればよいか

・文字列中に変数を展開（interpolate）するには
どうすればよいか

・型を指定すればどうなるか
	 →指定しない場合はどうなるか?
	 →bf2swift:[Character:String]
　　の :[Character:String]を消したら
　　どんなエラーが出るか
・辞書（Dictionary）をどう初期化してどう
　使うか
・配列（Array）をどう初期化してどう使うか
・文字列を1文字ごとに処理するにはどう
　すればよいか
・既存のデータ型（String）にメソッドを追
　加するにはどうすればよいか（extension）
・アーキテクチャごとに処理を変えたい
　場合はどうすればよいか（#if）

　余裕があったら、次の課題にも挑戦し
てみてください。

・BrainfuckにはBrainfuck自身で書かれた処理
系が存在するが、その処理系を本処理系で生
成してみる

・現状ソースコード中のsrcにハードコードされ
たBrainfuckコードではなく、任意のソースファ
イルをコンパイルできるようにしてみる

・Swift処理系をBrainfuckで実装してみる

　最後はさすがに冗談ですが、ある言語で簡素
な言語の処理系を実装するというのは、その言
語を覚える一番の近道の1つ。さすがにBrain

fuckほど簡単ではありませんが、Lispの実装
などはなかなか楽しそうです。
　では、今月はこのへんで。ﾟ

import Darwin
var data = [CChar](repeating:CChar(0), count:65536)
var (sp, pc) = (0, 0)
data[sp] += 1
while data[sp] != CChar(0) {
data[sp] = {c in CChar(c < 0 ? 0 : c)}(getchar())
sp -= 1
sp += 1
putchar(Int32(data[sp]))
}
data[sp] -= 1

 ▼図3　brainfuck.swiftの実行時出力

BF C Swift
> sp++; sp += 1
< sp--; sp -= 1
+ data[sp]++; data[sp] += 1
- data[sp]-- data[sp] -= 1
[while(data[sp]){ while data[sp] != CChar(0) {
] } }
. putchar(data[sp]) putchar(Int32(data[sp]))

, data[sp] = getchar() data[sp] = {c in CChar(c < 0 ? 0 : c)}
(getchar())

 ▼表1　CとSwift実装比較

※BF：Brainfuck

Feb. 2017 - 147

　「コマンド名を作るのって難しいなぁ」と仕事で使う小さいスクリプトにすら悩むので、OSSとして公開してるツールや、システムに
組み込まれる可能性のあるツールを作ってるヒトたちはスゴイなぁと尊敬します。そういうコードを書く能力もですが、命名スキルもっ
てことで。他人になんて読まれるかってのも検討課題になりますよね。短く、直感的にわかりやすく、口に出しやすいのが理想かと思っ
てはいますが、実践できてません。ちなみに、私がナンて読むのかいつも忘れるコマンドは fcitxです。「ファイティクス」と読むそう
です。綴りも忘れるので補完機能なしでは入力できません。ええ、Input Methodなのでコマンドする機会ないですね。

c
a
t
コ
マ
ン
ド
の
由
来
を
誰
一
人
知
ら
な
い
S
I
で
働
い
て
い
た
担
当
編
集
は
、『
た
の
し
い
U
N
I
X
』で

c
a
t
の
意
味
を
や
っ
と
知
り
、
そ
ん
な
会
社
は
辞
め
る
こ
と
に
し
た
の
は
こ
こ
だ
け
の
話
で
す（
遠
い
目
）
。

catコマンドは、
「catenate」の
略でしたよね。

killはシグナル送る
コマンドなのに名前が
 物騒ですよネ。

エンジニア同士の会話で
「殺せ」とか「虐殺しろ」とか
出てきて、一般人にドン引き
されるヤツね。
なんでkillにしたン
だろうね。

ページャの「more」に対抗
して反対語の「less」って
名前付けて、機能を増やす
とかケンカ売りすぎですよねw。

洒落が効いているンだヨ。
エスプリってヤツじゃねネ？
わかんねーけど。

sedはストリームエディタ
でしたっけ？
Stream EDitorの略。

そう。今でもedと
sedでコードを書いている
人がいるから馬鹿に
できないよ。
真似したくないけど。

awkは、開発者の3人
のイニシャルでしたっけ。
RSAみたいですね。

仲良くないとできないよね。
ケンカ別れしたら、akとか
awになっていたかと思うと
 ドキドキするなぁ。

grepはedコマンドでの
正規表現に一致する行
を表示する、という
コマンド（g/re/p）でし
　　たよね。

正規表現で検索す
るコマンド名が
grepでおさまって
よかったと思うよ。

なんで
ですか？

よく正規表現を
意味する「regexp」
がコマンド名に
なったとしたら？

なんて読むかで
戦争が
起きてんぞ。

Linuxの読み方でも
戦争になって
いましたものね。

うん。ネコじゃないね。
cat(1)には、
concatenateのほうで
説明しているけどね。

 tarは「TapeArchive」
の略ってmanにも書いて
ありますね。

テープも見る機会が減った
けど、tarコマンドは、
毎日使うコマンドだものね。

作）くつなりょうすけ
@ryosuke927

コマンド名の由来第36回

⑦⑨

①

③

⑤⑥

④

②

148 - Software Design

　今回のテーマであるSphinx拡張は、その名の
とおりSphinxの機能を拡張するモジュールで
す。外部のツールやサービスとの連携をはじめ
として、ドキュメント作成の助けとなる機能を
Sphinxに追加します。
　本連載でも、これまでに数多くのSphinx拡張
を紹介してきました（表1）。ひとことにSphinx

拡張と言っても、追加する機能はさまざまです。
過去の調査注1では、世の中には200を超える
Sphinx拡張が存在しており、さまざまな機能を
Sphinxに追加することができます。
　Sphinxはこのような拡張を可能とするため

に、たくさんのインターフェースを提供してい
ます注2。このインターフェースを理解すれば、
Sphinx拡張を簡単に開発できます。今回はいく
つかのSphinx拡張を例に、Sphinx拡張の構造

注1） 2014年10月時点。
 http://sphinxext-survey.readthedocs.io/en/latest/

注2） Sphinx自体もこの拡張用インターフェースを利用しており、
一部の機能はSphinx拡張として実装されています。

Sphinx拡張とは
や作り方を紹介します。

　SphinxはreStructuredText（以下reST）の処
理系であるdocutilsをベースに実装されていま
す。docutilsは2つのステップでreSTファイル
を各種フォーマットに変換します。

①入力となるドキュメントソースを読み込み、ド
キュメントツリー（以下doctree）に変換する

②doctreeを対象フォーマット（HTMLなど）に
変換する

　doctreeは、ドキュメントをツリーで表現する
docutils独自のデータ構造です。読み込まれた
ドキュメントは章（section）や段落（paragraph）、
見出し（title）など、ドキュメント構造を表すノー
ドからなるツリーに変換されます（図1）注3。
　Sphinxはドキュメントを表現する内部形式と
して、このdoctreeを利用しています。入力ファ

注3） Sphinxではmake pseudoxmlコマンドを使うと、変換され
たdoctreeをXML形式で出力できます。

ドキュメントツリー
（doctree）

Sphinxで始める
 ドキュメント作成術

Sphinx拡張の作り方第23回

小宮 健　Komiya Takeshi　 Twitter @tk0miya

Sphinxで始める
 ドキュメント作成術

名称 概要
sphinxcontrib-cacoo（第9回） Cacooで作成した図を取り込む
sphinxcontrib-visio（第9回） MS-Visioで作成した図を取り込む
sphinx.ext.autodoc（第18回） Pythonドキュメントを自動生成する
sphinx.ext.intersphinx（第18回） 外部のSphinxドキュメントを参照する
Shuwa Builder（第22回） ドキュメントを秀和システム社向けの原稿に変換する
columnディレクティブ（第22回） コラム記述用のディレクティブを追加する

 ▼表1　本連載で紹介されたおもなSphinx拡張

http://sphinxext-survey.readthedocs.io/en/latest/

148 - Software Design Feb. 2017 - 149

イル（.rst、.mdファイルなど）1ファイルから、1

つのdoctreeが生成されます。その後、各doctree

は出力形式に合わせて、LaTeXなどのように1

つに統合されて出力されたり、HTMLなどのよ
うに個別に出力されたりします。

　docutilsではドキュメントの変換を2つのス
テップで実行していましたが、Sphinxでは5つ
のビルドフェーズで変換を行います（表2）。
　Sphinx拡張はこれらのフェーズで特定の処理
を実行することで、Sphinxに機能を追加します。
たとえば、ソースパーサ（Source Parser）は読
み込みフェーズで動作する拡張で、特定の形式
のドキュメントを読み込んでdoctree形式に変
換します。一例を挙げると、recommonmarkは
Markdownを処理するソースパーサで、Sphinx

が読み込みフェーズでMarkdown形式のファイ
ルに遭遇すると呼び出され、Markdown形式の
ドキュメントを解釈してdoctreeに変換
します。
　また、書き込みフェーズで呼び出さ
れるビルダー（Builder）と呼ばれる拡張
もあります。「sphinxcontrib-dashbuilder」
はその1つで、doctreeをDash（APIド
キュメントブラウザ）形式に変換します。
　このように、Sphinx拡張を開発する

5つのビルドフェーズ

際は、それがどのビルドフェーズで処理を行う
拡張なのかを意識すると良いでしょう。

　ここからは具体的なSphinx拡張の内部構造を
見ていきます。最初に取り上げるのは「sphinx

contrib-textstyle」（以下 textstyle）です。
　reSTは、ディレクティブとロールという記法
の拡張方法を提供します。reST処理系である
Sphinxでは、Sphinx拡張からディレクティブや
ロールを追加できます。textstyleは、ルビや取
り消し線などのロールを追加します（リスト1）。
　textstyleでは、:del:ロールから取り消し線
への変換を2つのフェーズを介して行います。ま
ず、読み込みフェーズで:del:ロールをdeleted

というノードに変換します。そして、書き込み
フェーズでdeletedノードをHTMLのタ
グに変換します（図2）。
　textstyleはこのフローを実現するため、初期

ロールの定義
（sphinxcontrib-textstyle）

Sphinx拡張の作り方 第23回

フェーズ 説明
初期化 Sphinx本体や拡張を初期化する

読み込み ドキュメントソースを読み込み
doctreeに変換する

検証 doctreeに矛盾がないか
検証する

解決 クロスリファレンスなどの参照
を解決する

書き込み doctreeを対象フォーマットに
変換する

 ▼表2　Sphinxの5つのビルドフェーズ

document

・・・

・・・
・・・

section

title paragraph

section section

Text Text reference

 ▼図1　doctreeによるドキュメント表現

Sphinx は :del:`エジプト製の` ドキュメンテーションツールです。

 ▼リスト1　sphinxcontrib-textstyleによる取り消し記法の例

:del:`...`
（reST）

deleted
（ノード）

（HTML）

 ▼図2　:del:ロールの処理フロー

150 - Software Design

化フェーズでいくつかの設定を行っています（リ

スト2）。初期化はsphinxcontrib/textstyle.pyの
setup()という関数で行います。Sphinxはロー
ドされた拡張にsetup()関数が定義されていれ
ば、それを初期化フェーズで呼び出します。

:del:ロールの追加……❶
Sphinx API の add_role()を使って :del:
ロールを追加する。第1引数にはロール名、
第2引数にはロール関数を指定する（ロール関
数については後述）

カスタムノードdeletedの追加……❷
Sphinx APIのadd_node()を使ってSphinx
拡張が独自に拡張するノードdeletedを追加
する。また、同時にキーワード引数で各種
フォーマットへの変換関数（Visitor関数）を指
定する（Visitor関数については後述）

　次に:del:ロール用のロール関数に指定した
deleted_role()の実装を見てみましょう（リス

ト3）。deleted_role()関数は、Sphinxの読み込
みフェーズでreST原稿に:del:ロー
ルが出現するごとに呼び出されます。
　ここではユーザが記述したオリジナ
ルのreSTロールrawtextと、そこか
ら抽出されたロールのテキスト部分
textを使って、deletedノードを生成
しています（❸）。その後、ファイル名
や行番号などの情報をノードに付加し
（❹）、ノードを返しています（❺）。

ロール関数は2つのリストを返さなければなり
ません。最初のリストは:del:ロールが記述さ
れていた位置に埋め込まれるノードの配列、2

つ目のリストは:del:ロールが記述されている
段落の後ろに埋め込まれるノードの配列です。
後者はエラーメッセージ表示などに用いられま
す。
　最後に書き込みフェーズで呼び出される
Visitor関数を見てみましょう。Visitor関数と
はvisit関数とdepart関数のペアです。deleted

ノードのVisitor関数は、visit_deleted()と
depart_deleted()です。
　Visitor関数はいずれも、Writerオブジェク
トと処理対象のノードを受け取る関数で、
doctreeに対象のノード（この場合はdeletedノー
ド）が出現するたびに呼び出されます。visit関
数はノードの開始時に、depart関数はノードの
終了時にそれぞれ呼び出されます（図3）。
　そのため、多くのVisitor関数では開始タグを
visit関数で出力し、終了タグをdepart関数で出
力します（リスト4）。deletedノードに対する

Sphinxで始める
 ドキュメント作成術

paragraph

Text deleted

Text

1. visit_paragraph 8. depart_paragraph

2. visit_Text 3. depart_Text

4. visit_deleted 7. depart_deleted

5. visit_Text 6. depart_Text

 ▼図3　Visitor関数の処理順序

def setup(app):
 app.add_role('del', deleted_role) ←❶
 app.add_node(deleted, html=(visit_deleted, depart_deleted)) ←❷

 ▼リスト2　textstyleの初期化処理（抜粋）

def deleted_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
 text = utils.unescape(text)
 node = deleted(rawtext, text) ←❸
 set_role_source_info(inliner, lineno, node) ←❹
 return [node], [] ←❺

 ▼リスト3　:del:ロールの実装

150 - Software Design Feb. 2017 - 151

Visitor関数でも、出力先であるself.bodyに
対してタグを出力しています。タ
グの中身となる削除テキストは、図3にあるよ
うにTextノードで表現されており、visit_
deleted()とdepart_deleted()の間で、Text

ノードのVisitor関数によって自動的に処理され
ます。
　なお、textstyleではdeletedノードが子ノード
を持つため、visit関数とdepart関数で開始／終
了タグをそれぞれ出力しましたが、子ノードを
持たないカスタムノードの場合、visit関数だけ
で処理を完結できます。リスト5のhrタグ出力
のようにvisit関数の終了時にSkipNode例外を
投げると、Sphinxは子ノードの走査とdepart関
数の呼び出しを行いません。

　textstyleは、削除済みテキストを表現するた
めにカスタムノードを使用します。しかし、拡
張で表現したい内容がdocutilsの標準ノードで
表現できるのであれば、カスタムノードを使用
せずに、標準ノードを使ってドキュメント構造
を表現することをお勧めします。
　Sphinxはすべての出力フォーマットに向けて、
標準ノード用のVisitor関数を提供しています。
そのため、Sphinx拡張から標準ノードを利用す
れば、新たにVisitor関数を定義せずに済みま

カスタムノードと
標準ノード

す。つまり、標準ノードを使えば実装量を減ら
しながら、さまざまなフォーマットに対応しや
すくなります。
　標準ノードをうまく活用している拡張の1つ
に、Excelの表をSphinxに取り込む「sphinxcont

rib-exceltable」（以下 exceltable）があります。
exceltableは標準ノードとして提供されている
表や列、セルなどのノードを使って、変換結果
を出力します。
　docutilsは、表や画像、パラグラフ（段落）な
どといった一般的なドキュメント構造向けにそ
れぞれノードを定義しています。したがって、
多くの場面で標準ノードが利用できます。Sphinx

拡張を開発する際は、あらかじめdocutilsのド
キュメント注4に目を通しておくと良いでしょう。

　次に取り上げるのは、Sphinxドキュメントに
ニコニコ動画のプレイヤーを埋め込む「sphinx

contrib-nicovideo」（以下 nicovideo拡張）です。
nicovideo拡張は、nicovideoというディレクティ
ブを提供します。
　先ほど紹介したtextstyleではロールを関数と
して定義しましたが、ディレクティブを定義す
る際にはクラスとして定義します。nicovideoディ

注4） http://docutils.sourceforge.net/docs/ref/doctree.html

ディレクティブの定義
（sphinxcontrib-nicovideo）

Sphinx拡張の作り方 第23回

def visit_deleted(self, node):
 self.body.append(self.starttag(node, 'del', suffix=''))

def depart_deleted(self, node):
 self.body.append('')

 ▼リスト4　deletedノード用のVisitor関数

def setup(app):
 app.add_node(horizonal_line, html=(visit_hr, None)) ←depart関数を指定しない

def visit_hr(self, node):
 from docutils.nodes import SkipNode
 self.body.append('<hr />')
 raise SkipNode ←子ノードの走査とdepart関数をスキップ

 ▼リスト5　visit関数だけで完結する場合

http://docutils.sourceforge.net/docs/ref/doctree.html

152 - Software Design

レクティブの定義を見てみましょう（リスト6）。
　まず、ディレクティブのクラスは、docutils

のDirectiveクラスのサブクラスとして定義し
ます（❻）。
　このNicoVideoDirectiveクラスには、クラ
ス変数がいくつか定義されています（❼）。これ
はディレクティブの記法の設定です（表

3）。Sphinxはこのクラス変数を見て、
「nicovideoディレクティブは必須の引数
を1つ受け取り（required_arguments
= 1）、また、thumbというオプションが
指定できる（option_spec）もの」として
扱います。
　また、NicoVideoDirectiveクラス
にはrun()という名前のメソッドが定義
されています（❽）。run()メソッドは
ディレクティブの本体とも言えるメソッ
ドです。reST原稿にnicovideoディレク

ティブが出現するごとに呼び出され、引数やオ
プション、コンテンツなどをもとにディレクティ
ブの処理を行います。nicovideo拡張では引数
（self.arguments）で指定された動画 IDと
thumbオプション（self.options）をもとに、
nicovideoノードを生成して返しています。Sphinx

Sphinxで始める
 ドキュメント作成術

あえてカスタムノードを使う

　Sphinxに同梱されている「sphinx.ext.graphviz」
（以下graphviz）は、DOT記法から生成したグラフ
画像をドキュメントに埋め込む拡張です。docutils
では画像を表すノードとして imageノードが提供
されていますが、graphviz拡張ではあえてカスタ
ムノードを使用しています。
　これは出力フォーマットごとに適切な画像形式
を選択するためのテクニックです。たとえば、
HTMLに変換する場合はHTMLに適したPNG画像
を生成しますが、LaTeXへの変換では拡大にも強
いベクター形式のPDFデータを生成します。
　このテクニックはビルドフェーズの違いを利用
したものです。標準ノードを利用する場合、ロー

ルやディレクティブの処理で imageノードを生成
することになりますが、読み込みフェーズの時点
では出力フォーマットが確定していません。その
ため、出力フォーマットに応じて適切な画像を生
成することはできません。
　一方、カスタムノードを利用する場合は、出力
フォーマットごとにVisitor関数を定義できます。
この特性を利用して、graphviz拡張では出力フォー
マットに適した画像出力を行っています。
　標準ノードを利用する場合のメリットと、カス
タムノードを利用する場合のメリットをそれぞれ
把握して、拡張の特性に合ったアプローチを採る
と良いでしょう。

COLUMN

変数名 初期値 概要
required_arguments 0 必須のディレクティブ引数の数
optional_arguments 0 省略可能なディレクティブ引数の数
final_argument_whitespace FALSE 最後の引数がスペースを許容するかどうか
option_spec {} ディレクティブオプションの定義（dict形式）
has_content FALSE ディレクティブがコンテンツを受け付けるかどうか

 ▼表3　ディレクティブ記法の定義（クラス変数）

from docutils.parsers.rst import Directive

class NicoVideoDirective(Directive): ←❻
 has_content = False
 required_arguments = 1
 optional_arguments = 0
 final_argument_whitespace = False
 option_spec = {
 'thumb': directives.flag,
 }

 def run(self): ←❽
 node = nicovideo(movie_id=self.arguments[0],
 thumb=('thumb' in self.options))
 return [node]

 ▼リスト6　nicovideoディレクティブの定義

❼

152 - Software Design Feb. 2017 - 153

はrun()メソッドが返したノードの配列を、ディ
レクティブが記述されていた場所に埋め込みま
す。
　残りの工程はロールと同様です。初期化フェー
ズでSphinx APIのadd_directive()を使って
ディレクティブを登録し、Visitor関数にてnico
videoノードをHTML要素に変換します。

　その他、Sphinxはさまざまなイベントを提供
します（表4）。これらのイベントをフックする
ことで、任意のタイミングでSphinx拡張の処理
を実行することができます。
　イベントをフックするには、Sphinx APIの
connect()を使ってイベントハンドラを登録し
ます。たとえばSphinxに同梱されている「sphinx.

ext.intersphinx」（以下 intersphinx）では、リスト

7のようにハンドラを登録しています。
　intersphinxは外部のSphinxドキュメントを
参照して、リンクを張る拡張です。たとえば
Pythonのドキュメントで説明されている関数
を、手元のドキュメントから参照できるように
します。これらの外部参照はドキュメントをビ
ルドすると外部リンクに変換されます。inter

sphinxでは、この動作を実現するために2つの
ステップで処理を行います。

①外部のSphinxプロジェクトからイベントリ情
報（リンク先情報）をダウンロードする

②外部のドキュメントのラベルや関数を参照し

Sphinxイベント（sphinx.
ext.intersphinx）

ている個所を、外部リンクに置き換える

　ここでは、この2つのステップを実行するタ
イミングとして、それぞれbuilder-initedイ
ベント（Sphinxの初期化が完了した）とmissing
-referenceイベント（クロスリファレンスの参
照先が見つからない）を利用しています。

　今回はいくつかの拡張を例に、Sphinx拡張の
構造や作り方を駆け足で紹介しました。今回紹
介したほかにも、Sphinxは数多くのAPIや拡張
ポイントを提供しています注5。これらを利用する
と、出力フォーマットやドメインの追加、検索
機能の拡張、そしてHTML出力の調整など、多
種多様な拡張を作ることができます。
　ドキュメントの表現力の向上やビルド処理の
自動化、外部のツールやサービスとの連携など、
ドキュメント作成の手助けとなるようなアイデ
アをお持ちでしたら、ぜひともSphinx拡張を
作ってみてください。
　次回はSphinxと情報デザインについて紹介し
ます。｢

注5） 詳細は開発者ドキュメントを参照のこと。
 http://www.sphinx-doc.org/ja/stable/extdev/index.html

まとめ＆次回予告

Sphinx拡張の作り方 第23回

イベント名 概要
builder-inited ビルダーを含む、Sphinxの初期化が完了したときに発生するイベント

source-read 入力ファイル（reSTファイルなど）を読み込んだときに発生するイベント。読み出したファ
イルの内容を差し替えることができる

doctree-read 解決フェーズの直前に発生する、doctreeを読み込んだときに発生するイベント。読み出し
たdoctreeの内容を差し替えることができる

missing-reference 解決フェーズにおいて、クロスリファレンスの参照先が見つからない場合に発生するイベ
ント

doctree-resolved 解決フェーズの最後に発生するイベント
build-finished ビルドが完了したあとに発生するイベント

 ▼表4　おもなSphinxイベント

def setup(app):
 （..略..）
 app.connect('missing-reference', missing_reference)
 app.connect('builder-inited', load_mappings)
 （..略..）

 ▼リスト7　intersphinxの初期化処理

http://www.sphinx-doc.org/ja/stable/extdev/index.html

154 - Software Design

2016年を振り返る形で、注目に値するセキュリティの動きを挙げていきます。情報セキュリティの
俯
ふかんてき

瞰的な視点というわけではなく、あくまで筆者の目から見て注目したという前提で挙げていきます。

1月

Anonymousが日本を攻撃対象に

　「ハッカー集団」と呼ばれるAnonymousですが、
直訳してわかるように「匿名の誰か」であり、具体的
に特定の人物が統率をとっているわけではありませ
ん。誰かが呼びかけ、そこに賛同し行動を起こす。
そのときに集まった人々が自分たちをAnonymous

と呼んでいる。そう理解したほうがいいでしょう。
　彼らが行っている活動の1つに「#OpKillingBay」
があります。これは、日本のイルカ漁への対抗とし
て、おもに「.go.jp」のドメイン名を持つサイトに対
して、ここ数年継続的に行っているDDoS攻撃で
す。これは今後も引き続き行われることでしょう。

CIA長官のアカウントが
クラックされる

　ティーンエージャーの手で、CIA長官のJohn

Brennan氏のAOLのアカウントがクラックされま
した。AOLは、昔はパソコン通信で一世を風

ふうび

靡した
サービスです。現在では米Verizon社が買収し管理
しています。クラックの手法は、同社のカスタマー
サービスに電話をし、パスワードをリセットしても
らうという古典的とも言える欺

ぎじゅつ

術注1を用いたよう
です。国家安全保障上の問題はなかったとのことで

す（今どきAOLを活発に使っているとも思えないで
すし）が、この事実そのものが話題になりました。
　ちなみにAOLではありませんが、筆者も使わず
にほったらかしにしているWebサービスが多くあり
ます。もう使っていないメールアドレスで登録して
あり、パスワード変更のしようのないサービスもあ
ります。そんなケースを考えると、今回のパスワー
ドリセットの方法が効果的なのも理解できます。

2月

FBIから2万人分の個人情報が流出

　2016年2月8日に、@DotGovsというTwitterアカ
ウントから2万人分のFBI職員の名前、肩書き、電
話番号、メールアドレス、国が列挙されているファ
イルのURLとパスワードが投稿されました。この
アカウントはすでに凍結されてファイルは取得でき
ませんが、米Webメディア「Motherboard」の記事
によると、このファイルの中身は正しく、さらに
FBI以外にDHS（米国土安全保障省）の9,000人分の
個人情報も公開されていたそうです。
　このツイートには#FreePalestine（「パレスチナ
に自由を！」の意味）のタグが付いていました。ま
た、公開された個人情報ファイルの最初には“Long

Live Palestine, Long Live Gaza,”（「パレスチナ万

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第四十回】

すずきひろのぶ
suzuki.hironobu@gmail.com

2016年のセキュリティの状況を振り返る（前編）

注1）	 Social Engineeringという用語に対し、岩谷宏氏がつけた秀逸な訳語。

Feb. 2017 - 155

【第四十回】2016年のセキュリティの状況を振り返る（前編）

歳、ガザ万歳」の意味。）と入っていました。典型的
なハックティビズム注2に見えます。
　これらの情報をどのように入手したかは明らかで
はありませんが、FBIとDHSというセキュリティが
もっとも高そうな政府組織の職員の情報が大量に公
開されているのですから、穏やかではありません。

病院のPCにランサムウェアが感染

　ランサムウェアとは、感染先のPCのハードディ
スクのファイルを暗号化し使えなくしたうえで、被
害者に金銭的な要求をする「身代金（ransam）」目的
のマルウェアです。感染を広げたり、金銭的要求を
したりするための情報管理には、既存のボットネッ
トのインフラ（Gameover ZeuSなど）を使う手法を
採っています。欧米ではここ2、3年、爆発的な広が
りを見せています。犯罪のモチベーションは金銭で
すから、広がるのも無理はないと思います。
　実務で使うPCに感染すると大きな問題になるの
は言うまでもありませんが、米国ではさらに悪いこ
とに、病院でランサムウェアに感染してしまい、暗
号化された患者の治療記録などが入っているファイ
ルを諦めるわけにもいかず、ビットコインで40

BTC注3を払いファイルをもとに戻しました。

Linux Mintサーバがクラックされる

　Linux Mintは使い勝手が良く見た目がかっこよ
い（これが人気の秘訣だと筆者は考えています）、
DebianとUbuntuをベースとしているデスクトップ
向けディストリビューションです。欧米では常に
トップクラスの人気を保っています。そのLinux

Mintのサーバがクラックされ、インストール用
ISOファイルが改

かいざん

竄されたものに置き換えられてい
ました。これは非常に大きな問題です。
　たとえば、利用（運用）しているGNU/Linuxに、
新規のソフトウェアを導入する際や、既存のソフト
ウェアをアップデートする際のことを考えてみてく
ださい。このとき、インストールパッケージをダウ
ンロードするわけですが、たとえ配布用サーバに侵

入されインストールパッケージが汚染されていたと
しても、パッケージには電子署名がかかっているの
で、正規のパッケージでないことを検出できます。
　ただし、インストール用ISOファイル、つまり
一番最初のものだけは、唯一電子署名のメカニズム
は使えず、人間の手によって確認する必要がありま
す。それが済めば、検証鍵（公開鍵）を利用できるの
で、電子署名が使えます。このように最初に使った
ものをその後も信じて使う方式を、TOFU（Trust

On First Use）と呼び、ベストプラクティスとして
十分に運用可能だと信じられています。
　しかし、それも最初が正しいという前提があって
こそです。一応、各ディストリビューションのサイ
トにはインストール用ISOファイルのフィンガー
プリント（SHA256などの出力を用いたファイルの
指紋）がありますが、万が一そこまで改竄されてい
たならば防ぎようがありません。最初が一番の弱点
であり、今回はそこを突かれた形になります。

3月

出会い系サイトの個人情報が流出

　出会い系サイト「Mate1.com」の登録ユーザのメー
ルアドレスと平文パスワード2,700万人分が流出
し、それが闇サイトで売りに出されたことが発覚し
ました。業者の持つアカウント情報が数百万人とか
数千万人という規模で流出するのは、珍しいことで
はありません。ここで注目すべき点はパスワードが
「平文」で管理されているという点です。
　本連載第1回（2013年7月号）でパスワード認証の
実装モデルを解説しましたが、このようにパスワー
ドを「平文」で保存しているのは極めて脆弱です。
もっとはっきり言えばパスワードのしくみを理解し
ていません。基本的な知識がないままシステムを作
り、多数のユーザを抱えて運用している現実がある
ということがこのケースからわかります。
　またパスワードは平文で流出しているので、この

注2）	 サイバー攻撃を手段として、政治的主張を行うこと。
注3）	 2016年2月時点では「1BTC＝約400ドル」「1ドル＝約115円」なので、40BTCはドルで16,000ドル、日本円で約184万円です。

156 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

パスワードをほかでも使いまわしているならば（し
かも、ユーザアカウントをメールアドレスで管理し
ているようなサイトで利用しているならば）、アウ
トです。Webサービスなどで使う際のパスワード
は、ひとつひとつユニークにすべきである、という
理由がよくわかるケースだと言えるでしょう。

ニューヨーク州のSCADAに攻撃

　米国内サイトに対してサイバー攻撃を繰り返し
行っていた7名のイラン人を、米国司法省が手配し
たと公表しました注4。彼らはイランに本社を持つ
ITSecTeam社やMersad社で働いており、その背後
にはイスラム革命防衛軍が存在している、と司法省
のサイトでは説明しています。彼らは2011～2013

年の間、金融業界の会社など46ヵ所に176日間と
いう長期間に渡りDDoS攻撃をしていました。
　深く考えなくてはならないのは、ニューヨーク州
にあるダムを監視／管理するSCADA（Supervisory

Control And Data Acquisition）にもDDoS攻撃を
行っていたことです。見方によってはサイバー戦争
の前哨戦とも言えるのではないでしょうか。

4月

トルコ国民約5,000万人分の
個人情報が流出

　トルコ国民の約60％にあたる約5,000万人分の氏
名、個人番号、住所がインターネット上で公開され
るという事件が発生しました。どうもトルコでは各
政党が選挙時に選挙人名簿を入手できるようで、そ
のデータが外部へ流出したようです。トルコ現政権
であるエルドアン大統領を批判しているメッセージ
も同時に出されていたという報道もあり、これも
ハックティビズムの一種だと考えられます。
　選挙人名簿でかつ個人を特定するためのID（日本
でのマイナンバーにあたるもの）が大規模に公開さ
れているわけですから、それを使った詐欺など2

次、3次の被害が考えられる深刻な事件です。

　このような情報を選挙時に各政党が入手できると
いうのは、何でも情報が使える政権側との公平性を
考えるとアリなのかもしれませんが、FBIやDHSの
職員の個人情報が大量に流出する時代ですから、一
般の事務処理にプラスアルファ程度の情報管理をし
ているレベルでは、守り通せるとは思えません。
　現在、日本でマイナンバーの利用範囲を拡大する
議論が進んでいますが、この流出事件が示すよう
に、利用範囲が広がるほど流出のリスクは増えま
す。マイナンバーの変更にも手間がかかります。あ
と10年もすれば、だだ漏れ状態で放置されるよう
な状況になっていて、「法制度を作るときの議論は
いったいなんだったのか」という結果になっている
かもしれません。

5月

ギリシャの中央銀行へのDDoS攻撃

　Anonymousの活動「#OpIcarus」の一環として、ギ
リシャ銀行へDDoS攻撃が行われました。報道を見
る限り、日本のイルカ漁に対する#OpKillingBayの
活動と変わりないようなのですが、攻撃の質が変
わってきたのか、ギリシャ銀行の対応が遅れたのか
わかりませんが、たいへん苦しめられたようです。

大手DNSサービス業者NS1への
DDoS攻撃

　DNSサービスを提供するNS1社へDDoS攻撃が
行われました。DNS水責め攻撃やUDP floodなど複
数の攻撃がミックスされ、攻撃パターンも単純では
なかったとのことです。欧州方面のDNSサービス
に影響が出たのと、Imgurなどの有名サイトでも影
響が出ましたが、短い期間で対応できたようです。
　2016年を振り返ると、NS1への攻撃は、このあと
の6月、9月の大規模なDDoS攻撃であるMIRAIの
前哨戦とも言える位置づけだったことがわかりま
す。同社のブログ注5に、一連のDDoS攻撃につい
て言及があるのですが、流量的には20～30Gbps

注4）	 https://www.fbi.gov/news/stories/iranians-charged-with-hacking-us-financial-sector
注5）	 https://ns1.com/blog/how-we-responded-to-last-weeks-major-multi-faceted-ddos-attacks

https://www.fbi.gov/news/stories/iranians-charged-with-hacking-us-financial-sector
https://ns1.com/blog/how-we-responded-to-last-weeks-major-multi-faceted-ddos-attacks

Feb. 2017 - 157

【第四十回】2016年のセキュリティの状況を振り返る（前編）

仮想通貨投資ファンド
The DAOへの攻撃

　The DAOは仮想通貨イーサリアム（以下ETH）の
投資ファンドです。The DAOがスタートするとき
に、ドル換算すると1億ドルを越える約1200万ETH

もの資金が短い期間で集まったことでも話題になり
ました。ところが、DAOが開発しETHを管理して
いる分散システムにバグがあり、第三者によって
364万ETHの資金が移動させられるというセキュ
リティ上の問題が発生しました。DAOの仕様ですぐ
には換金できないようになっているので、「盗む」と
は表現せずに「移動」という表現が使われています。
　この事件のあと、この攻撃を行ったという者から
声明が出ました。「The DAOの方式で仮想通貨を扱
うと、スマートコントラクトやブロックチェーン方
式の信頼（Confidence）を永遠に損なう」そのことを
無視してThe DAOは事業を進めている、という事
実を世間に注目させたかったのが動機のようです。
その後に、別の攻撃者がまたもや同じバグをついて
約700万ETHを移動させました。これで大半が移
動させられたことになります。The DAOが、開発し
たソフトウェアの品質は低いということを、このよ
うな形で露見させてしまいました。
　80年代からソフトウェア開発に関わってきた筆
者の経験から言えば、安定したシステムが運用でき
るまでには長い期間が必要です。開発期間もリリー
スしてからの運用期間も短いソフトウェアで100億
円を越える仮想通貨を扱うリスクをThe DAOがど
う考えていたのか、筆者には理解できませんが、た
とえ警告をしたとしても、「欲」に動かされている熱
狂的な仮想通貨ブームの中では焼け石に水だったで
しょう。不安定な技術の上で多大な価値が動き、
それが攻撃を受けるという同様な事件は今後も続
くと思います。

７月以降は次回

　2016年の前半だけで誌面がつきてしまいました。
7月以降については次回に議論します。s

で、パケット数（DNSクエリ数）は10～20Mパケッ
ト/秒（pps）だったそうです。また、この程度であ
れば対応できるとも説明されていました。これから
見ると、後のMIRAIの攻撃が常軌を逸したもので
あったこと、インターネット史上最大の脅威であっ
たということがわかります。

6月

民主党全国委員会への攻撃

　米国の民主党全国委員会（The Democratic Natio

nal Committee、以下DNC）の内部から電子メール
がWikiLeaksに流出しました。Guccifer 2.0という
ハッカーブログで、自分たちが行ったということを
発表しています。しかし、複数のセキュリティ企業
および専門家は、ここ2年間の攻撃はCozy Bearと
Fancy Bearと呼ぶ2つのロシアチームが関わって
いると分析しています。
　この2チームに関しては、DNCだけではなく、ほ
かの米政府組織への攻撃も長く行っていることが知
られています。これらのチームがロシア政府と関係
しているかどうかの確証はどこにもありませんが、
この手のプロフェッショナルとして動いているチー
ムは、どこかにスポンサーがいるはずです。
　今回のDNCの流出事件は、必ずしもメールサー
バへの侵入は必要ありません。マルウェアがPCに
感染してファイルが流出し、その中に電子メールが
含まれていた可能性もあります。この手のマルウェ
アが流出対象のファイルを選択するとき、電子メー
ルのファイルがあれば、真っ先に流出させます。で
すから、ロシアのチームが長年行っていたことと、
電子メール流出が別の機会に発生したことは必ずし
も矛盾するわけでありません。
　このWikiLeaksに流出した内容が、この年行わ
れた米大統領選に大きな影響を与えたことは誰もが
認めることです。また、その影響がロシア政府への
柔軟な姿勢を見せる候補者であったドナルド・トラ
ンプ氏に大きくプラスに働きました。この先も
DNCの問題は長く影を落とすことになるでしょう。

158 - Software Design

OpenShift環境の
メンテナンス
　前回の記事で紹介したOpenShift環境を主体
に解説します。環境のメンテナンスという観点
で考えなくてはならない代表的な項目は、アプ
リケーションを実行するNodeの状況確認や追
加・削除といったものがあります。その場合は、
OpenShift環境の全管理権限を持つ system:

adminユーザで次のコマンドを実施します。

oc login -u system:admin
oc get node
oc describe node

　補足ですが、AnsibleでOpenShift環境を構築
する際には、各Masterでsystem:adminユーザを
利用するための認証情報が記載された設定ファ
イルが、MasterのAnsibleユーザ（前回の例では
rootユーザ）の「̃/.kube」ディレクトリに作成さ
れます。上記コマンドはMasterで実施すること
を前提としますが、もし他のサーバで実施した
い場合は、Masterの「̃/.kube」ディレクトリをコ
ピーして、atomi-openshift-clientsパッケージを
インストールする必要があります。
　「oc get」で各リソースの一覧と状況を、「oc

describe」で各リソースの詳細情報を確認できま

す。「oc describe node」を実行した場合は、
Nodeの IPアドレスや起動中のPod、CPU/

Memoryのリソース利用状況などを確認できま
す。ここで何らかの不具合を確認したため、サー
バ修理などで一時的にNodeをOpenShift環境か
ら取り外したいという場合は、「oc adm」コマン
ドで当該NodeからPodを移動させる必要があ
ります。

oc adm manage-node NODE_NAME ｭ
--schedulable=false
oc adm manage-node NODE_NAME --evacuate

　「--schedulable=false」でPod配置を無効
化し、「--evacuate」で他Node上にPodを作成
した後に当該Node上のPodを削除します。当
該Nodeの復旧が完了したら、同じく「oc adm」
コマンドの「--schedulable=true」オプション
でPod配置を有効化することで、ふたたびNode

として使えるようになります。

Nodeの追加・削除

　アプリケーション実行に必要なCPUやメモリ
などのリソースが枯渇している、またはアプリ
ケーション実行サーバを集約したい場合は、Node

の追加・削除を実施します。Nodeの追加には、

 Author 小島 啓史（こじまひろふみ）
	 mail：hkojima@redhat.com

レッドハット㈱ テクニカルセールス本部 ソリューションアーキテクト

前回は、複数台構成のOpenShift環境の構築方法を紹介
しました。今回は構築したOpenShift環境のメンテナンス
方法や運用時の基本的なポイントなどを紹介していきます。

Red Hat OpenShift Container Platform Part2

第6回

レッドハット系ソフトウェア最新解説

Feb. 2017 - 159158 - Software Design

で、特定のラベル（zone=zone01など）が付けら
れたNodeを一括削除することもできます。

oc delete node NODE_NAME
oc delete node -l zone=zone01

　そしてPlaybookでOpenShift関連のパッケー
ジやファイルを削除する注1ことで、削除した
Nodeをクリーンアップできます。必要に応じ
て、Dockerコンテナやイメージもdockerコマ
ンドで削除します。なお、余談ですが、各Node

はGarbage Collection注2の機能を備えており、
停止した古いコンテナや利用されていない
Dockerイメージを自動的に削除してくれるた
め、ディスク容量の圧迫が起きにくくなってい
ます。

Registry Console

　構築したOpenShift環境内の特定のプロジェ
クトを利用してアプリケーションを開発してい
る場合、デフォルトのopenshiftプロジェクトに

OpenShift環境構築時と同様にInventoryファイ
ルを作成してPlaybookを実行します（図1）。
　既存のOpenShift環境にNodeを追加する場合
は、Inventoryファイルで既存のMaster/Nodeの
情報を記載し、[new_nodes]で新しいNodeの情
報を記載する必要があります。これにより既存
のMasterが管理するNodeの情報に新しいNode

が追加されます。ここでは通常のNodeを追加し
ていますが、Infra Nodeを追加する場合は
「region=infra」ラベルをInventoryファイル内
で指定してPlaybookを実行します。この時、追
加した Infra NodeでRouter Podが起動してい
ない場合は、Router Podのレプリカ数を Infra

Nodeの台数に変更することで、Router Podが
自動的に新規作成・起動されます。

oc scale rc router-1 --replicas=ｭ
REPLICA_NUMBER -n default

　また、「oc delete」で指定したリソースを
OpenShift環境から削除できます。Nodeを削除
する場合は、当該NodeからPodを移動させた
後に「oc delete node」を実行します。この時、
Nodeに付けられたラベルを「-l」で指定すること

 ▼図1　Nodeの追加

cat <<EOF > /root/ansible-add-nodes
[OSEv3:children]
masters
nodes
new_nodes

[OSEv3:vars]
ansible_ssh_user=root
deployment_type=openshift-enterprise

[masters]
master1.example.com
master2.example.com
master3.example.com

[nodes]
infra[1:2].example.com openshift_node_labels="{'region': 'infra'}"
node[1..2].example.com openshift_node_labels="{'region': 'primary', 'zone': 'zone01'}"

[new_nodes]
node3.example.com openshift_node_labels="{'region': 'primary', 'zone': 'zone02'}
EOF
ansible-playbook -i /root/ansible-add-nodes \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-node/scaleup.yml

注1） URL http://red.ht/2fY7eFP
注2） URL http://red.ht/2gWDBlj

Red Hat OpenShift Container Platform Part2第6回

http://red.ht/2fY7eFP
http://red.ht/2gWDBlj

160 - Software Design

るDockerイメージ、Docker Registyr内のプロ
ジェクトにログイン注3してDockerイメージを
push/pullする方法が確認できます。このような
情報を参照すると、図4のようなコマンドで、指
定したプロジェクトにカスタムDockerイメージ
をpushできます。
　なお、特定のプロジェクトにあるカスタム
DockerイメージをOpenShift環境の全ユーザに
公開する場合は、system:adminユーザでopen

shiftプロジェクトのタグを付けます。

oc tag PROJECT_NAME/CUSTOM_IMAGE:ｭ
latest openshift/CUSTOM_IMAGE:latest

　これでopenshiftプロジェクトにあるDocker

イメージを利用して、他プロジェクトの開発者
がアプリケーションをデプロイできるようにな
ります。ただし、管理者が開発者向けにカスタ
ムDockerイメージを用意することがある場合、
適当なユーザにopenshiftプロジェクトの管理権
限を追加して、そのユーザ権限を持って管理者

が直接openshiftプロジェクトにイ
メージのpushを実行することを推
奨します。

 # oc adm policy add-role-to-ｭ
 user admin USERNAME -n openshift

　なお、OpenShift環境ではDocker

イメージからアプリケーションを
起動する際に、セキュリティを考
慮してコンテナ内のプロセスの
rootユーザでのプロセス実行を禁
止しており、プロセス実行時には
ランダムなUIDが割り当てられま

あるDockerイメージ以外も利用したい場合があ
ります。その時は、OpenShiftの機能の1つであ
るRegistry Consoleを利用すると便利です。
Registry Consoleと は OpenShift環 境 内 の
Docker Registryを利用するためのWeb UIを提
供するものであり、開発時に利用しているプロ
ジェクト内でのDockerイメージが、プロジェク
トの参照・管理権限を持つ開発者間で共有でき
るようになります。Registry Consoleにアクセ
スするためのURLは、「oc get route」で確認
できます（図2）。
　defaultプロジェクト内で、registry-console
というルーティング名に紐付けられているホス
ト名を利用します。図2では、「https://registry-

console-default.cloudapps.com」にWebブラウ
ザからアクセスします。ログインには、Open

Shift環境が利用している認証情報をそのまま使
います。ログインすると図3が表示されます。
　ここで現在ログイン中のユーザが利用してい
るプロジェクト、プロジェクト内から参照でき

 ▼図2　Registry Consoleへのアクセス

oc get route -n default
 ……（中略）……
NAME HOST/PORT
docker-registry docker-registry-default.cloudapps.com
registry-console registry-console-default.cloudapps.com

 ▼図3　Registry Consoleのダッシュボード

 ▼図4　DockerイメージのPush

docker login -p 　 ←Registry Consoleで表示されるログインコマンドを実行
docker tag CUSTOM_IMAGE:latest \
 docker-registry-default.cloudapps.com/PROJECT_NAME/CUSTOM_IMAGE:latest
docker push docker-registry-default.cloudapps.com/PROJECT_NAME/CUSTOM_IMAGE:latest

注3） URL https://docs.docker.com/engine/
 reference/commandline/login/

レッドハット系ソフトウェア最新解説

https://docs.docker.com/engine/reference/commandline/login/

Feb. 2017 - 161160 - Software Design

ため、OpenShift関連サービスのログも
「/var/log/messages」ファイルに出力さ
れます。OpenShift関連サービスのログ
だけを出力したい時は、journalctlコマ
ンドを使います。ただし、デフォルトで
は journaldのログは永続化されていませ
んので、永続化の設定 注5を忘れないよ

うにしてください。

journalctl -u atomic-openshift-*.service

　また、OpenShift環境全体の診断ツールには、
「oc adm diagnostics」コマンドがあります。
このコマンドでErrorが出力されていないかを
確認します。そのほかには図6のようなコマン
ドも使えます。こうした問題解決のノウハウを、
弊社サポート契約者向けに公開 注6していますの
で参照ください。
　バックアップは、etcdのデータディレクトリ注7、
各Master/Nodeの設定ファイル注8、Persistent

Storageとして利用しているストレージ、といっ
た要素についてそれぞれ取得する必要がありま
す。また、各プロジェクトのバックアップも、
「oc export」コマンドでリソース情報をYAML

ファイルに出力する注9ことにより取得できます。

まとめ

　今回はOpenShift環境のNode/Dockerイメー
ジ/ログなど、運用時に考慮する代表的な項目
の管理方法を解説しました。次回はOpenShift

に関連したSoftware-defined storageの話を紹
介します。ﾟ

す。そのため、コンテナ内のプロセスは任意の
一般ユーザで実行できるように、Dockerfileで
の一般ユーザの指定と設定／実行ファイルのア
クセス権追加 (chmod ugo+rxなど)を忘れない
ようにしてください。

ログとバックアップ

　OpenShift環境運用時の情報収集や問題解決
には、他のシステムと同様にログや診断ツール
などを活用します。OpenShift関連のサービス
の状況確認やログは図5のコマンドで確認でき
ます。
　OpenShiftのMaster/Nodeに関するサービス
は systemdに統合されていますので、「syste

mctl status」コマンドでサービスの状況やロ
グの一部を確認できます。ログレベルはMaster/

Nodeの設定ファイル「/etc/sysconfig/atomic-

openshift*」に記載されています。デフォルトで
は「--loglevel=2」が定義されています。デバッ
グモードにしたい場合は、「--loglevel=5」に
変更して、Master/Nodeの各サービスを再起動
する必要があります。また、ocコマンドのログ
レベルも実行時に指定できます。6から8の数字
が指定でき、「--loglevel=8」を指定すると最
も多くのログを出力します。
　RHEL7ではロギングのしくみとして journald

とrsyslogが並行して起動しています 注4。その

 ▼図5　OpenShift関連サービスのログ取得方法

systemctl status atomic-openshift-master-{api,controllers}.service ←Masterで実行
systemctl status atomic-openshift-node.service ←Nodeで実行

注5） URL http://red.ht/2g9PC8n
注6） URL https://access.redhat.com/solutions/1542293
注7） URL /var/lib/etcd/ (etcdをクラスタ化していない場合は

 /var/lib/origin/openshift.local.etcd/)
注8） URL /etc/origin/, /etc/sysconfig/atomic-openshift*, /etc/

 etcd, /etc/sysconfig/docker*
注9） URL http://red.ht/2gqRirJ注4） URL http://red.ht/1GW6p2O

 ▼図6　OpenShift環境の情報収集コマンド

 Podのログを出力
oc logs POD_NAME

 各Nodeで実行して、Podへのルーティング情報を確認
iptables -t nat -nL

 Docker関連の情報を収集しアーカイブを作成
sosreport -e docker -k docker.all=on

Red Hat OpenShift Container Platform Part2第6回

http://red.ht/1GW6p2O
http://red.ht/2g9PC8n
https://access.redhat.com/solutions/1542293
http://red.ht/2gqRirJ

162 - Software Design

43 Debian Developer　やまねひでき　henrich@debian.org

Mini Debian Conference
Japan 2016レポート

Mini Debian Conference
Japan 2016開催

　開発のフリーズのフェーズも徐々に進んでい
るDebianですが、今回は開発のことを離れて、
国内で開催されたイベントについて報告します。
　2016年12月10日に東京・日本橋のサイボウズ
㈱にて、「Mini Debian Conference Japan 2016」
が開かれました（写真1）注1。2トラック、9セッ
ションが行われたこのイベントの模様を、かい
つまんでお伝えします。

Open Build Service in
Debian

　まずはAndrew Lee（李健秋）さんによる「Open

Build Service」（以下OBS）注2をDebianパッケー
ジにしたという発表です。以前、本連載内で
snapperとopenQAを紹介しましたが、OBSも
それらと同様openSUSE由来のプロダクトです。
　OBSは、openSUSE/SUSE Linux Enterprise

Serverのパッケージビルドの中心的なサービス
（DebianでいうところのBuild daemon注3のよう
なもの）で、そこで動いているソフトウェアも
Open Build Serviceと呼ばれています。
　ちなみにOBSはopenSUSEだけではなく、
Fedora、Debian、Ubuntuのパッケージもビル
ド可能という意欲的なものです。さらに単なる
パッケージビルドのみならず、パッケージング
作業のポータルサイトとしても機能していま

す注4（LaunchpadやGitHubのようなものを想像
してもらえば良いかと思います）。継ぎはぎで

拡張を続けてきたDebianのビルドシ
ステムとパッケージトラッカーよりも
後発だけあって、きれいにアーキテク
チャが考えられており、スマートにま
とまっている印象を受けました。
　Andrewさんによると、勤務先の
Collabora社注5での業務で必要になっ
たために、2年ほど前からずっとパッ

 ▼写真1　会場の様子

注2） URL http://openbuildservice.org/
 旧称はopenSUSE Build Service。
注3） URL https://buildd.debian.org/
注4） URL http://www.slideshare.net/ftake/1-

open-build-service
注5） URL https://www.collabora.com/
 OSS関連の開発やコンサルティングを行っ

ており、LibreOfficeの主要開発企業の1つ
でもある。

注1） URL http://miniconf.debian.or.jp/
 ちなみに同日、同じオフィス内で「LibreOffice Kaigi 2016.

12」も併催されていました。

http://openbuildservice.org/
https://buildd.debian.org/
http://www.slideshare.net/ftake/1-open-build-service
https://www.collabora.com/
http://miniconf.debian.or.jp/

162 - Software Design Feb. 2017 - 163

Mini Debian Conference Japan
2016レポート

43

ケージング作業をしていたとのこと。OBSの
フロントエンドを構成するRuby on Rails周り
の知識がなかったために苦労したそうで、先日、
台湾でRubyConfが開かれたことから、そこに
も参加していろいろと参加者に質問していたそ
うです。OBSのために数十個ものgemを公式
Debianパッケージにし、その過程で不明瞭な
ライセンスの問題に対処したり、埋め込まれて
いるJavaScriptを取り除いて既存のDebianパッ
ケージ側を使うようにするなどの対処をしたり、
gemのDebianパッケージが壊れていたのを直
したりと、かなりたいへんだったようです。
　この記事を執筆している現在、Debianでは
obs-buildパッケージとその関連パッケージが
unstableに投入されています。Collabora社の
サイトにはDebian開発者のHector Oronさん
によるチュートリアル注6があるので、試して
みてください。個人的にはupstreamとの3-way

mergeを実行する「Merge-o-Matic」が気になっ
ているので、そのうち試してみようと考えてい
ます。

Deby

　「Debianソースコードを用いた組込み向け
Linux環境作成」という小林良岳さんの発表では、
㈱東芝が組み込み機器向けに作成している
「Deby」という名のカスタムディストリビュー
ションの紹介が行われました。
　Yocto Project注7が提供する、組み込みデバ
イス向けのカスタムビルドを生成する「Poky」
というツールがあります。Debyは、このPoky

をベースにして、Debianパッケージのソース
を使う「meta-debian」というPokyのレイヤ注8

を追加したものです（図1）。
　meta-debianは、Debianのソースパッケージ
をベースに、クロスコンパイルの追加や、東芝
が組み込みデバイス向けでは不要だと考えた機
能とその依存関係を削除するなどのカスタマイ
ズが行えます。現在のrecipe（パッケージ）数は
約500ほどあります。
　Debianをベースにすることで、複数のCPU

アーキテクチャの利用とそこでの安定性に対し
て0から試行錯誤するのではなく、Debianでの
作業成果の流用が可能になっているわけですね。

　組み込み機器ではサポート期間が重要
になりますが、Debian安定版の約3年で
は東芝が期待する期間には足りません。
そこで東芝は、Debian安定版よりさらに2

年間長くセキュリティアップデートを行っ
ているDebian LTSプロジェクトのスポン
サーになり、支援を行っているそうです注9。
　今後どのような形でUpstreamである
Debianへコントリビューションを行って

Upstream ソースコード
Debian 8（Jessie）

ソースパッケージ

Poky ビルドシステム

meta（OpenEmbedded-Core）

ボード別のメタデータ

meta-debian

A B C

Deby A Deby B Deby C

取得 取得

ビルド

 ▼図1　Deby（Poky＋meta-debian）

注7） URL https://www.yoctoproject.org/　組み込み製
品のためのLinuxベースのカスタム・システムをハー
ドウェア・アーキテクチャに関わらず構築するた
めの、テンプレート、ツール、手段を提供するプ
ロジェクト。

注8） URL https://github.com/meta-debian/
注9） URL https://www.freexian.com/services/debian-

lts.html　東芝は最も高額のスポンサーである「プ
ラチナ」。ちなみにもう1社のプラチナスポンサー
はGitHub社です（彼らのプロダクトであるGit
Hub EnterpriseにDebianを使っている、という
話をどこかで見かけましたので、その関係でしょ
うか……真偽をご存じの方は教えてください）。

注6） Part1　 URL https://goo.gl/OSBNqv
 Part2　 URL https://goo.gl/2rNPMx

https://goo.gl/OSBNqv
https://goo.gl/2rNPMx
https://www.yoctoproject.org/
https://github.com/meta-debian/
https://www.freexian.com/services/debian-lts.html

164 - Software Design

いくのかという議論では、

¡	組み込み機器ではライセンス確認をきちん
としているので、その確認結果をDEP5形
式注10で記述するなどの形でフィードバック
すれば良いのではないか

¡	クロスコンパイルについては、Debianでは
なく、Debyのもう1つのUpstreamである
OpenEmbedded-Core注11にフィードバック
するほうが良いだろう

などの話が出ました。Downstreamでの開発に
おいてUpstreamとの差異（delta）をどのように
吸収していくか（最小化していくか）、というの
は重要なポイントですので、両者にとってメリッ
トのある形で実現していくと良いですね。

OSS版初音ミク？「徴
ち

音
おん

梅
めい

林
りん

」

　異色だったのは張正一さんによる「FOSSバー
チャルシンガー徴音梅林とLINNEプラットホー
ム」という発表です。初音ミクをはじめとした「ボー
カロイド」については、多くの方がご存じかと思
います。これらのボーカロイドはプロプライエ
タリ・ソフトウェアですので、ソースコードが
公開されていないことは当然として、その使用
についてもいくつかの制限がついています注12。
通常の「楽器」は、購入者がその楽器をどのよう
に使用してもかまいません（例として、ギターを
歯で弾いたり、ステージ上で破壊・火をつけた
りしたミュージシャンが挙げられました）が、ボー
カロイドには「制限」があります。
　これに対して、山梨大学の森勢将雅博士が開

発した「WORLD」注13をベースにしたソフトウェ
ア「徴音梅林」注14はCreative Commonsライセ
ンス（CC-BY）で提供されているOSSで、ボー
カロイドのような使用制限はいっさいありませ
ん。その性能はプロジェクトのページからリン
クされているYouTube動画で確認できますの
で、ご一聴ください。
　WORLDをベースにすることで、ヤマハが
多数所有する特許にも抵触しないなどのメリッ
トもあります。現在、中国語（マンダリン）と日
本語（＋関西弁（！））に対応しているとのこと。
　同じくWORLDを使えるソフトウェアとし
てはフリーウェアの歌声合成ツール「UTAU」注15

があります。徴音梅林がUTAUと違う点は、オー
プンソースであること、国際化を意識して内部
の文字コードはSJISではなくUTF-8を利用し
ていること、さらにクロスプラットフォームを
志向しておりLinuxでの利用も可能ということ
が挙げられます（徴音梅林の「林」は "Lin"uxの
意味も含みます）。
　もう1つの構成要素である「LINNE platform」
は先ほど出てきたWindows用フリーウェアの歌
声合成ツール「UTAU」をオープンソースで再実
装する試みのようです。いくつかのコンポーネ
ントで構成されますが、現状ではまだ足りない
部分が多いとのこと。フロントエンド部分であ
る「Cadencii」は .NETで記述されているものの、
Windowsのネイティブコールにかなり依存して
いる問題があり、CadenciiのJava移植版である
Jcadenciiは極端に遅いという問題があります。
そして何より、Upstreamでの開発が停滞してし
まっているため、現在は別のソフトウェア（Fluid

Vocal Synthesis system）注16の利用を検討して
いるとのことです。
　おもしろい方向でのOSSプロジェクトです
ので、今後も情報があればまたお伝えしたいと
思います。｢

注13） URL https://github.com/mmorise/World
注14） URL http://projectmeilin.github.io/ja/
注15） URL http://utau2008.web.fc2.com/
注16） URL http://fluidvocalsynth.weebly.com/

注10） 詳しくはコラム「debian/copyrightファイルについて」を参
照。現在のソースコードライセンスの記述形式の正式名称
は「Machine-readable debian/copyright file」です。

 URL https://www.debian.org/doc/packaging-manuals/
copyright-format/1.0/

 同様のものとして、Linux FoundationのSPDX（Software
Package Data Exchange）があります。

注11） U R L http://www.openembedded.org/wiki/Open
Embedded-Core

注12） URL http://www.crypton.co.jp/download/pdf/eula_cv01.
pdf　たとえばユーザが「公序良俗に反する歌詞を含む合
成音声を公開または配布すること」は認められていませんし、
「映像作品での使用」は別途権利者であるクリプトン・フュー
チャー・メディア社に許諾を得る必要があります。

https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://github.com/mmorise/World
http://www.openembedded.org/wiki/OpenEmbedded-Core
http://www.crypton.co.jp/download/pdf/eula_cv01.pdf
http://projectmeilin.github.io/ja/
http://utau2008.web.fc2.com/
http://fluidvocalsynth.weebly.com/

164 - Software Design Feb. 2017 - 165

Mini Debian Conference Japan
2016レポート

43

debian/copyrightファイルについて

　よくDebianはライセンスについて「厳格だ」「う
るさい」と言われることがあります。実際にDebian
に含まれているソフトウェアのライセンスについて
は、ソースパッケージ内のdebian/copyrightファ
イルで確認できます。しかし、じつは最近までは結
構大雑把な記述にとどまっていました（リスト1）。
　これはあまり良くないだろうとのことで、Debian
Enhancement Proposals（DEP）の5つめの提案とし
て挙げられたのが「Machine-readable debian/copy
right」（機械的に読み取り可能なdebian/copyright

ファイル）です（リスト2）。これに従って書くことで、
プログラムでライセンスの精査が可能になります。
　ただ、実直に記述するのはかなりの労力を要する
（そのうえソフトウェアを使用するうえでは、ここ
を詳細に書いてもユーザには何も変わりがない）ので、
メンテナ側もそこまで積極的に作業するにはいたっ
ていません。ツール側でケアする動きもありますが、
統一して「このツールを使おう！」という状況にはなっ
ていません。今回のように、利用者側からフィード
バックしようという話があると助かりますね。

COLUMN

 ▼リスト1　従来のライセンス表記例（developers-referenceパッケージ）

This is the Debian package of the Debian Developer's Reference. It
was assembled by Christian Schwarz <schwarz@debian.org>, has been maintained
by Adam Di Carlo <aph@debian.org> and is now maintained by Andreas Barth
<aba@not.so.argh.org>.

--
Copyright of the Debian Developer's Reference:

Copyright c 1997, 1998 Christian Schwarz;
 （..略..）
This manual is free software; you may redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

This is distributed in the hope that it will be useful, but without
any warranty; without even the implied warranty of merchantability or
fitness for a particular purpose. See the GNU General Public License
for more details.

A copy of the GNU General Public License is available as
`/usr/share/common-licenses/GPL-2' in the Debian GNU/Linux distribution
or on the World Wide Web at <URL:https://www.gnu.org/copyleft/gpl.html>.
You can also obtain it by writing to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110, USA

 ▼リスト2　新しいライセンス表記例（jdパッケージ）

Format: http://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: jd
Source: https://osdn.jp/projects/jd4linux/releases/

Files: *
Copyright: 2006-2012, JD project
License: GPL-2

Files: debian/*
Copyright: 2006-2013, Hideki Yamane <henrich@debian.org>
License: GPL-2

License: GPL-2
 distributed under the terms of the GNU General Public License,
 version 2. On Debian GNU/Linux system you can find a copy of this license
 in `/usr/share/common-licenses/GPL-2'.

自由記述であるため、すべての
パッケージの記述がバラバラ

「Files:」で対象ファイルを、「Copyright:」
で著作権者が誰かを、「License:」で適用ラ
イセンスを明示して、適用ライセンスの内
容については最後にまとめて記述を行う、
という約束

166 - Software Design

Ubuntu Monthly Report第82回

Ubuntu 16.04 LTSで
使用できるUSB
無線LANアダプタ7選

Ubuntu Monthly Report

今回はUbuntu 16.04 LTSで動作するUSB 無線LANアダプタを7つ検証したので、そのレポートです。

Ubuntu Japanese Team　あわしろいくや

　2015年5月号に掲載された、本連載第61回で
『Ubuntu 14.04で使用できるUSB 無線LANアダプ
ター7選』と題して今回と同じような記事を書きまし
たが、約2年も経つと入手が極めて困難になってし
まったものや、カーネルのバージョンアップにより
対応しなくなってしまったものもありますので、今

USB
無線LANアダプタの対応状況

回あらためてUSB 無線LANアダプタを入手し、検
証を行うことにしました。併せて、前回筆者は
IEEE 802.11acに対応したルータを所有していませ
んでしたが、今回、諸事情により購入したので速度
の計測もしてみました。
　選定した機種は表1のとおりで、上6つが802.

11ac対応、残りが802.11n対応です。検証したのは
16.04/16.04.1のカーネル4.4で、16.04.2/16.10のカー
ネル4.8では確認していません。

　今回検証に使用したルータは、バッファローの
WXR-1900DHP2です。使うかどうかはさておき、
いろいろな機能があるのと、802.11nでも600Mbpsの
速度が出るので選択しましたが、残念ながら無線
LANアダプタ自体が300Mbpsまでしか対応しない
ものしか購入できなかったため、今回は試せません
でした。ルータもデフォルトでは使用する帯域が
20MHzになっており、これだと300Mbpsまで出ま
せん。よって40MHzに変更しています（図1）。

　前述のとおり今回別途ドライバ（カーネルモジュー
ル）の必要なモデルが6つありますが、インストール
する方法はすべて同じです。図2のコマンドを実行
してください。

使用するルータ

ドライバーのインストール

メーカー 型番 lsusbの結果
プラネックスコミュニケーションズ GW-900D/GW-900D-BK 2019:ab30
プラネックスコミュニケーションズ GW-450S 2019:ab32
アイ・オー・データ機器 WN-AC867U 04bb:0952
アイ・オー・データ機器 WN-AC433UA 04bb:0953
バッファロー WI-U2-433DM 0411:0242
エレコム WDC-433DU2H 056e:4007
アイ・オー・データ機器 WN-G300UA 0bda:8178

表1　今回取り上げるUSB 無線LANアダプタ

図1　2.4GHzの帯域を「600Mbps（40MHz）に変更した」

166 - Software Design Feb. 2017 - 167

Ubuntu 16.04 LTSで使用できるUSB無線LANアダプタ7選 第 82 回

　すべてエラーが出ていないことを確認し、無線
LANアダプタを挿入してください。
　とくに問題なく動作することを確認したら、次の
コマンドを実行してください。これでカーネルの
アップデートごとにカーネルモジュールの再インス
トールが不要になります。

$ sudo make uninstall
$ sudo make -f Makefile.dkms install

　第61回（2015年5月号）でも紹介したGW-900Dは
終息で、現行モデルはGW-900D-BKです。プラ
ネックスコミュニケーションズの開発者向け情報注1

によると内部的には同じものとのことです。USB 3.0

モデルとしては価格も安めですのでうれしいです。
ドライバのインストールが必要です。
　iwconfigの結果は図3のとおりです。

注1） https://www.planex.co.jp/support/taiou/kisyu/developer_
wifiusb.shtml

GW-900D/GW-900D-BK

　これも第61回で使用しました。ドライバのインス
トールが必要です。5GHzにしか対応していないのは
注意点ですが、価格も安くて小さいのはうれしいと
ころです。
　iwconfigの結果は図4のとおりです。

　USB 3.0で比較したかったので購入しました。ド
ライバのインストールが必要です。正直なところか
なり大きいので、扱いはけっこう難しいです。
　iwconfigの結果は図5のとおりです。

　アンテナが長いモデルは、802.11nで使用する場合
に有効ではないかと思います。ドライバのインス
トールが必要です。
　iwconfigの結果は図6のとおりです。

GW-450S

WN-AC867U

WN-AC433UA

$ sudo apt install git dkms
$ git clone https://github.com/abperiasamy/rtl8812AU_8821AU_linux.git
$ cd rtl8812AU_8821AU_linux/
$ make
$ sudo make install
$ sudo modprobe rtl8812au

図2　別途ドライバインストールの例

wlx0022cfe65987 IEEE 802.11AC ESSID:" (略) " Nickname:"<WIFI@REALTEK>"
 Mode:Managed Frequency:5.64 GHz Access Point: (略)
 Bit Rate:867 Mb/s Sensitivity:0/0
 Retry:off RTS thr:off Fragment thr:off
 Power Management:off
 Link Quality=100/100 Signal level=100/100 Noise level=0/100
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

図3　GW-900D-BKのiwconfigの結果

wlx0022cff2744f IEEE 802.11AC ESSID:" (略) " Nickname:"<WIFI@REALTEK>"
 Mode:Managed Frequency:5.64 GHz Access Point: (略)
 Bit Rate:434 Mb/s Sensitivity:0/0
 Retry:off RTS thr:off Fragment thr:off
 Power Management:off
 Link Quality=98/100 Signal level=100/100 Noise level=0/100
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

図4　GW-450Sのiwconfigの結果

https://www.planex.co.jp/support/taiou/kisyu/developer_wifiusb.shtml

168 - Software Design

Ubuntu Monthly Report

　コンパクトで802.11nにも対応していていいです
が、若干割高感があります。ドライバのインストー
ルが必要です。
　iwconfigの結果は図7のとおりです。

　これもアンテナが長いモデルで、エレコム製のも
のもあったほうがいいかと思って選択しました。ド
ライバのインストールが必要です。

WI-U2-433DM

WDC-433DU2H

　iwconfigの結果は図8のとおりです。

　表1を今一度見ていただきたいのですが、このモ
デルのベンダIDはアイ・オー・データ機器（04bb）で
はありません。調べてみたところどうもチップベン
ダ（Realtek）そのままですので、ドライバのインス
トールが不要です。とにかく簡単につなぎたいとい
う場合にはお勧めです。とはいえ速度が安定せず、
なぜかビットレートも300Mb/sになりません。
　iwconfigの結果は図9のとおりです。

WN-G300UA

wlx3476c56c028d IEEE 802.11AC ESSID:" (略) " Nickname:"<WIFI@REALTEK>"
 Mode:Managed Frequency:5.64 GHz Access Point: (略)
 Bit Rate:867 Mb/s Sensitivity:0/0
 Retry:off RTS thr:off Fragment thr:off
 Power Management:off
 Link Quality=100/100 Signal level=100/100 Noise level=0/100
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

図5　WN-AC867Uのiwconfigの結果

wlx3476c52db4e4 IEEE 802.11AC ESSID:" (略) " Nickname:"<WIFI@REALTEK>"
 Mode:Managed Frequency:5.64 GHz Access Point: (略)
 Bit Rate:434 Mb/s Sensitivity:0/0
 Retry:off RTS thr:off Fragment thr:off
 Power Management:off
 Link Quality=100/100 Signal level=100/100 Noise level=0/100
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

図6　WN-AC433UAのiwconfigの結果

wlx8857ee94524d IEEE 802.11AC ESSID:" (略) " Nickname:"<WIFI@REALTEK>"
 Mode:Managed Frequency:5.64 GHz Access Point: (略)
 Bit Rate:434 Mb/s Sensitivity:0/0
 Retry:off RTS thr:off Fragment thr:off
 Power Management:off
 Link Quality=98/100 Signal level=100/100 Noise level=0/100
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

図7　WI-U2-433DMのiwconfigの結果

wlxbc5c4c57310a IEEE 802.11AC ESSID:" (略) " Nickname:"<WIFI@REALTEK>"
 Mode:Managed Frequency:5.64 GHz Access Point: (略)
 Bit Rate:434 Mb/s Sensitivity:0/0
 Retry:off RTS thr:off Fragment thr:off
 Power Management:off
 Link Quality=100/100 Signal level=100/100 Noise level=0/100
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

図8　WDC-433DU2Hのiwconfigの結果

168 - Software Design Feb. 2017 - 169

Ubuntu 16.04 LTSで使用できるUSB無線LANアダプタ7選 第 82 回

　ベンチマークについてはいろいろと前提の説明が
必要です。場所は筆者の自室で電波暗室などではな
いため、電波干渉などがあり、安定していないこと
が考えられます。とはいえ直線距離で2メートル程
度しか離れていないので、比較的良好な条件である
とは思われます。同じような速度にならない場合は、
筆者はウサギ小屋に住んでいるのだなと思っていた
だければ幸いです。
　送受信それぞれを計測しましたが、scpコマンドを
使用してUbuntu 16.10の isoイメージ（ubuntu-16.10

-desktop-amd64.iso）を送信しました（表2）。約1.5

GBです。
　計測は原則として3回行って最も速いものにしま
した。802.11nはタイミングによってばらつくことも

ベンチマーク
ありましたが、電波干渉を受けやすいという性質上、
やむを得ないと思います。ただしWN-G300UAは例
外で、場合によっては1桁違っていました。あくま
で参考値で、この値はほぼ出ないと思っていただい
ていいです。

　今回はすべてRealtek製のチップが採用されてい
るもののみを検証しました。MediaTek製のチップを
採用しているモデルも市場にたくさん出回っていま
すが、今回少し試した限りでは速度がまったく出な
いとか、16.04のカーネル（4.4）ではなんとか動作す
るものの16.10のカーネル（4.8）では動作しないとか、
容易に解決できそうにない大きな問題があったため、
見送っています。WI-U3-866D注2は認識したものの
アクセスポイントの検出ができなかったので外して
います。

考察

　新規に購入する場合は、用途を
よく考えるのがいいでしょう。と
にかく速いほうがいいという場合
はUSB 3.0のモデルになります
が、いつも大きなファイルをやり
とりするわけではないでしょう
し、性能と価格のバランスのいい
USB 2.0モデルが妥当ではないで
しょうか。5GHz帯でしか使用しな
いのであればGW-450Sがお勧め
ですが、やはり2.4GHz帯も使用
したいというのであればWDC-

433DU2Hがお勧めです。とはい
え若干割高感はありますが。注2

　WN-G300UAはお勧めではあり
ませんが、価格も安いですし、い
ざというときのために持っておく
のは悪くないでしょう。｢

注2） http://buffalo.jp/product/wireless-
lan/client/wi-u3-866d/

wlx3476c541afc5 IEEE 802.11bgn ESSID:" (略) "
 Mode:Managed Frequency:2.437 GHz Access Point: (略)
 Bit Rate=150 Mb/s Tx-Power=20 dBm
 Retry short limit:7 RTS thr=2347 B Fragment thr:off
 Power Management:off
 Link Quality=70/70 Signal level=-27 dBm
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:5 Missed beacon:0

図9　WN-G300UAのiwconfigの結果

型番 周波数 送信 受信 備考
GW-900D 5GHz 36.2MB/s 23.0MB/s USB 3.0接続
GW-900D 2.4GHz 20.8MB/s 22.0MB/s USB 3.0接続
GW-900D 5GHz 35.4MB/s 22.7MB/s USB 2.0接続
GW-900D 2.4GHz 20.0MB/s 18.8MB/s USB 2.0接続
GW-450S 5GHz 28.7MB/s 22.4MB/s 5GHzのみ対応
WN-AC867U 5GHz 34.6MB/s 22.7MB/s USB 3.0接続
WN-AC867U 2.4GHz 20.8MB/s 20.3MB/s USB 3.0接続
WN-AC867U 5GHz 35.4MB/s 22.4MB/s USB 2.0接続
WN-AC867U 2.4GHz 20.5MB/s 21.7MB/s USB 2.0接続
WN-AC433UA 5GHz 28.7MB/s 22.4MB/s
WN-AC433UA 2.4GHz 11.1MB/s 11.6MB/s
WI-U2-433DM 5GHz 28.7MB/s 22.4MB/s
WI-U2-433DM 2.4GHz 11.3MB/s 12.4MB/s
WDC-433DU2H 5GHz 28.2MB/s 22.7MB/s
WDC-433DU2H 2.4GHz 11.5MB/s 11.7MB/s
WN-G300UA 2.4GHz 6.0MB/s 4.9MB/s 2.4GHzのみ対応

表2　各モデルのベンチマーク結果

http://buffalo.jp/product/wireless-lan/client/wi-u3-866d/

170 - Software Design

　システム管理者はもちろん、ソフトウェアエ
ンジニアにもある、システム停止による緊急の
深夜呼び出し。原因の調査や問題の解決をする
には、何をしなければいけないのでしょうか。
今回は、さまざまな障害のうち、ファイルシス
テムの問題に対処できるようになることを目指
しましょう。
　ファイルシステムが木構造であること、コ
ピー、削除、移動、リンクの仕方を知っただけ
で、Unix上のオペレーションが自在にできる
わけではありません。バックアップの仕方、使っ
ているディスクの空き状況を確認すること、使っ
ているファイルシステムの制限・特性の理解、
ディスクが不足になった場合の対応方法や、ファ
イル・システム中のファイルやディレクトリを
一括で処理する方法の修得を目指してください。

ファイルシステムの状態

　まずは、ディスクの利用量などファイルシス
テムの状態の確認方法を見ていきます。

du -- Disk Usage -- ディレクトリ内の使用量
を調べる
　duは、ディレクトリ階層を再帰的にたどり、
使用量を集計するコマンドです。オプションを
指定しなければ、カレントディレクトリから、
それぞれのディレクトリのサイズを集計した情

報を列挙します。単位はブロック（Linuxでは
1,024byte、macOSでは512byte）で、1ブロッ
クのサイズは環境変数やオプションで変更でき
ます。

 duの実行例（macOS）
$ du í
145424 ./bin
8 ./Caskroom/identify/.ｭ
metadata/551/20161107035636.943/Casks
8 ./Caskroom/identify/.ｭ
metadata/551/20161107035636.943
0 ./Caskroom/identify/551
 ...略...
0 ./var/run/dbus
0 ./var/run
4632 ./var
15240728 .

　各ディレクトリの合計だけわかればいいとき
は、-sオプションを指定します。

 duの実行例-sオプション付き（Linux）
du -s /usr í
10488368 /usr

du -s /usr/* í
295504 /usr/bin
2528 /usr/games
172832 /usr/include
3270800 /usr/lib
3807056 /usr/local
20 /usr/locale
18240 /usr/sbin
2061324 /usr/share
860060 /usr/src

　この例では、/usrの下をアクセスしました

システム管理者の視点でファイルシステムを眺めます。データ圧縮や、ファイルシステムの木
構造をうまく活用する方法を見ていきます。

 Author 中島 雅弘（なかじま まさひろ）　㈱アーヴァイン・システムズ

第　　回10 ファイルシステムについてもう少し深く

170 - Software Design Feb. 2017 - 171

ので、念のためroot（スーパーユーザ）権限で実
行しています。アクセスできないところがある
と、下記のようなエラーメッセージがでます。
エラーがあっても、コマンドは中断しないで読
めなかった部分をスキップします。

 duでパーミッション（権限がないディレクトリを参照しようとした場
 合のメッセージ例）
du: cannot read directory './var/backups/ｭ
Remote/nakajim/fml/spool/ml/asgs0/tmp': ｭ
Permission denied

　-k、-mを付けるとKB、MBをブロック単位
として集計してくれます（さらにLinuxでは、
-Bオプションによって、ブロックサイズを明
示的に指定できます）。

人間に読めるよう出力してくれ
　人は、桁が多い場合カンマ（,）で区切るか、KB、
MB、GB、TBなど、ある程度桁を丸めてもらえない
と理解に時間がかかります。du、ls -l、この後に紹
介するdfコマンドなどは、サイズを表示する際のデフォ
ルト単位は、Byteやブロックだったりで、カンマに
よる桁の区切りもありません。コマンドの出力情報を
プログラムが処理する場合は、正確であること、無駄
がないほうが便利です。
　du、ls、dfなどは、人が読みやすい形で表示するオ
プション-hが用意されています。

$ du -sh í
148K .
$ ls -lh í

total 240
-rw-r--r--@ 1 masa staff 97K 6 6 15:48 ｭ
fig10.pptx
-rw-r--r-- 1 masa staff 324B 11 19 15:41 ｭ
out_of_10.txt
-rw-r--r--@ 1 masa staff 15K 11 23 19:01 ｭ
unix_command_explorer_10.txt

　Unixの世界は、コマンドやプロセスがうまく連携
できることを重視しますので、コンピュータ優先

（Computer First）です。この世界では、あなたがコ
ンピュータでないことを明示的に宣言「-hオプション」
しましょう。

　-aオプションを指定すれば、個々のファイ
ルサイズも列挙します。

$ du -a í

　duで、ディレクトリ同士を比較してどこが
多く領域を取っているか確認できます。ログファ
イルが無用に増えてしまったなどの状況が一目
で確認できるので便利です。しかし、ファイル
の数が多い、ディレクトリ階層が深いところに
duをかけると時間がかかります。たとえばルー
ト（/）から全部duをかけるなどという大胆な構
想はいけません。容量が動的に増える可能性が
あるのは、ログとデータベースの領域だから
/var/log、/var/lib/mysql、Webアプリケー
ションディレクトリ/siteの下など、的を絞っ
てduを使いましょう。
　-dオプションで表示するディレクトリの深
さは指定できますが、使っている領域はすべて
スキャンして合計します。サブディレクトリの
数が多いときには、有効なオプションです。du
の結果をsort -nrにパイプで結果を渡してや
れば、消費量の多いディレクトリから並べ替え
ることができます。

	 ls -lとディレクトリのサイズ
　ls -lで表示される5番目のフィールドの「サイズ」、
ファイルの場合はまさにサイズです。しかし、ディレ
クトリのときは何なのでしょう。ディレクトリ内にあ
るファイルの合計でしょうか。違います。duの結果と
比較してみてください。ディレクトリの場合は、ファ
イルシステム中で、そのディレクトリのメタ注1情報

（ディレクトリ内にどんなファイルやディレクトリが
どのくらい入っているのかなど＝ディレクトリエント
リというデータ構造）が使っている領域です。この領
域がどのように増減するかは、Linuxの（extX）やmac
OSなど、ファイルシステムによって異なります。

df -- Disk Free -- ファイルシステムの状態を
見る
　ファイルシステムごとに、どの程度の容量が
あって、どのくらい使われているかを確認する
には、dfコマンドを使います（図1）。
　表形式で、ファイルシステムごとに1行ずつ
情報が出力されます。図1のように、macOS

注1） 「メタ～」は、情報システムの世界でよく使われる接頭語です。
扱う対象と上位の（対象を管理上する、対象を定義するなど）
ものを区別するときに使います。例）メタデータ、メタ言語。

第　　回10 ファイルシステムについてもう少し深く

172 - Software Design

などのBSD系Unixのdfは、オプションを指
定しなくてもディスク容量や使用状況に加えて、
i-nodeの利用状況も表示します。

i-node
　Unixのファイルは、それぞれ1つのi-nodeと呼ば
れる管理情報に対応付けられているということを第5
回（本誌2016年9月号）で解説しましたが、この機会
にもう少し詳しく理解しておきましょう。i-nodeには、
次のような情報が保存されています。
・ファイルの所有者・グループ
・アクセス権限
・ファイルの大きさ
・ファイルシステム中のデータの位置
・制作、最終使用、最終変更日時
・リンクカウント
・種別
　プログラムは、i-nodeをインデックスとして実デー
タが保存されている領域にたどり着くことができます。
i-nodeは、1つのファイルシステム（ディスクパーティ
ション）中では、必ずユニークになるように番号（ID）
が振られています。逆に、異なるファイルシステム（ディ
スクパーティション）では、i-node番号のユニーク性
は保証されません。

　Linuxでは、デフォルトでは i-node情報が表
示されません。i-nodeの状態を確認したければ

-iオプションを指定します（図2、表1）。
　dfもオプションで、-m 1block=1MB、-k 1block
=1KBなどブロックサイズを指定できます。

	 i-node領域
　通常ファイルシステムを作るときは、システムのデ
フォルトでi-node数が確保されます。しかし、ファ
イルシステムの活用のされ方、「たとえば、a）小さいファ
イルをたくさん作る場合、b）大きなファイルを少数作
る場合」によっては、a）の場合i-node領域が足りなく
なってしまう、b）の場合無駄にi-node領域がディス
クを専有してしまっている、という状況になります。
ディスク容量がシステム運用に十分ある場合は、あま
り気にすることはありませんが、際どい計画を求めら
れているときには、ファイルシステムを作るときに、
i-node領域を指定するようにしましょう。

$ df í
Filesystem 512-blocks Used Available Capacity iused ifree %iused Mounted on
/dev/disk1 1872985888 899070744 973403144 49% 112447841 121675393 48% /
devfs 366 366 0 100% 634 0 100% /dev
map -hosts 0 0 0 100% 0 0 100% /net
map auto_home 0 0 0 100% 0 0 100% /home
/dev/disk5 16674816 6427752 10247064 39% 803467 1280883 39% /Volumes/Secured

 ▼図1　dfの実行例（macOS）

$ df -i í
masahiro@ubuntu0:~$ df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
udev 1007464 531 1006933 1% /dev
tmpfs 1011787 788 1010999 1% /run
/dev/sda2 7266304 360572 6905732 5% /
tmpfs 1011787 8 1011779 1% /dev/shm
tmpfs 1011787 6 1011781 1% /run/lock
tmpfs 1011787 17 1011770 1% /sys/fs/cgroup
/dev/sda1 0 0 0 - /boot/efi
cgmfs 1011787 13 1011774 1% /run/cgmanager/fs
tmpfs 1011787 36 1011751 1% /run/user/1000
/dev/mmcblk0p1 3899392 59878 3839514 2% /media/masa/EXT4XCI64G

 ▼図2　-iオプションを付けたdfの実行例（Ubuntu）

 ▼表1　dfで表示されている情報の意味
フィールド名 意味

XXX-blocks 利用可能領域（ブロック数、1ブロックのサイズはXXX）

Used 利用済み領域

Available 残り利用可能領域

Capacity/Use% 利用されている領域％

ifree/IFree 利用可能 i-node領域

%iused/IUse% 利用されているi-node領域％

Mounted on どのディレクトリにマウントされているファイルシステムか

172 - Software Design Feb. 2017 - 173

ファイルシステムの
マウント

　HDDやSSDなど、物理ドライブは分割して
使うことができるのはご存じでしょうか。分割
したかたまりをディスクパーティションと呼び
ますが、通常1つのディスクパーティションに
は1つのファイルシステムを作って使います。
　ディスク（パーティション）は、ファイルシス
テムを作ってから、適当なディレクトリの下に
マウントmountできます。マウントすることで、
複数のファイルシステムを横断して、まるで1

つのドライブのように使えます（図3）。

mount -- MOUNT -- ファイルシステムを
マウントする
　ファイルシステムをマウントするには、
mountコマンドを使います。USBドライブな
どのプラグ＆プレイできるドライブは、コン
ピュータに接続するだけで自動でマウント
（automount）されることもあります。現在マウ
ントされているデバイスを確認する場合にも、
mountコマンドを使います。

 mountされているファイルシステムの確認する例
$ mount í
/dev/disk1 on / (hfs, local, journaled)
devfs on /dev (devfs, local, nobrowse)
map -hosts on /net (autofs, nosuid, ｭ

automounted, nobrowse)
map auto_home on /home (autofs, ｭ
automounted, nobrowse)
/dev/disk5 on /Volumes/Secured (hfs, ｭ
local, nodev, nosuid, journaled, noowners, ｭ
mounted by masa)

　出力結果は、onの前のデバイスが、その後
ろのディレクトリにマウントされていることを
示しています。()括弧内は、マウント時のオ
プション、どのようなフォーマットのファイル
システムかなどが表示されています。
　macOSでは、mountが実装されていますが、
独自のツールdiskutilを使います。

圧縮したままファイルを操作する

　ディスク容量に限りがある場合、ファイルを
圧縮するなどして効率的にファイルシステムを
使わなければなりません。ログなどテキストデー
タは圧縮による効果が大きく、容量を削減する
ことができます。

gzip、bzip2
　Unixには、ファイルの圧縮ツールも用意さ
れていてgzip、bzip2がよく使われます。違い
は、圧縮アルゴリズムで、圧縮効率、圧縮速度
です。gzipのほうが一般に圧縮率は低いので
すが、高速だと考えて良いでしょう。使うとき

には、圧縮ファイルをほかの
システムで使うこと、コンパ
チビリティなどを考慮して選
択します。
　圧縮は、元のファイルはそ
のままで、圧縮ファイルを作
りながら進行するので、残り
領域が極端に少ない状態まで
放置していると圧縮できない
ことがあります。早めにアク
ションをとりましょう。

第　　回10 ファイルシステムについてもう少し深く

/

homeetcusr
基本となるファイルシステム

マウントした結果

/

etcusr

/

masasd

追加するドライブ

genko

masasd

genko

home

 ▼図3　ファイルシステムのマウント

174 - Software Design

圧縮したまま、ファイルを操作
　圧縮したままファイルを操作できるコマンド
には、zmore、zless、bzmore、bzless、zcat、
bzcat、zdiff、bzdiff、zcmp、bzcmp、zfgrep、
zegrep、bzfgrep、bzegrepなどがあります。ペー
ジャーをはじめ、ほとんど必要なものはそろっ
ています。これまでの連載でも出てきたコマン
ド名の前に、圧縮形式に対応した接頭語
gzip=z、bzip2=bzが付いた名前になっています。

木構造をまとめて操作する

tar -- Tape ARchiver -- アーカイブする
　テープデバイスが活躍していた古

いにしえ

の時代から
存在しているコマンドで、今も頻繁に使われて
いるのがtar（ターと発音）です。tarは、木構
造のまま、ファイルとディレクトリを1つのファ
イルにまとめ（アーカイブし）て管理します。
tarでまとめたファイルは、tarball（ターボール）
と呼びます。拡張子は慣用的に.tarを使います。
　tarのオプションは、-に続かないものもあ
ります。cはアーカイブを作る、tはアーカイ
ブの中身を確認する、xはアーカイブから取り
出す、です。vオプションを一緒に指定すると、
詳細なメッセージが出ます。fオプションで、
ターゲットの tarballを指定します。
　次のコマンドは、ディレクトリ.以下をアー
カイブして、ファイル“mytarball.tar”に出力
する例です。

 アーカイブを作る基本形：カレントディレクトリ以下をmytarball.
 tarにアーカイブする
$ tar cvf mytarball.tar . í

　tarでアーカイブする対象のディレクトリは、絶対
パス指定（/xxxというように、/で始まる形式）しない
ようにしましょう。古いバージョンのtarには、アー
カイブファイル内に本当に/からのパスが付けられて、
展開するときに望んだ出力先と違う所に展開されてし
まうことがありました。このようなシステムも残って
いるかもしれませんが、新しいtarは絶対指定した場
合は、アーカイブ内のファイルパスはすべて先頭の/
を取り除いてアーカイブしてくれます。それでも、無
用なパスが長々とついているのは、展開したときに、
とても深いディレクトリを作ってしまったりと良いこ
　

とはありませんので、パス指定は適切に行うようにし
ましょう。

$ tar cvf tmp.tar /tmp í
tar: Removing leading `/' from member names
/tmp

 アーカイブの内容を確認する基本形
$ tar tvf mytarball.tar í

　次のコマンドは、mytarball.tarの内容をカレ
ントディレクトリに取り出します。

 アーカイブからファイルを取り出す基本形：カレントディレクトリか
 らの相対パスで、mytarball.tarに記録されている情報を取り出す
$ tar xvf mytarball.tar í

　tarを使うと、オーナー・パーミッション情
報を保存したままコピーすることもできますし、
別のシステムへの移動も容易です。次の例では、
-Cオプションを使って、出力先のディレクト
リを、デフォルトのカレントディレクトリから
変更しています。

 tar | tarを使って、カレントディレクトリ以下を、属性そのまま
 /home/taroにコピーする
$ tar cf - | tar xf - -C /home/taro í

　デフォルトでは、tarはファイルを圧縮しま
せんが、圧縮形式を扱うこともできます。zオ
プションならgzip形式、jオプションならbzip2

形式です。

 tarと圧縮の組み合わせ（アーカイブの内容の確認）
$ tar tvzf mytarball.tar.gz í
$ tar tjvf mytarball.tar.bz2 í

　ファイル名には、アルゴリズムに応じて、.tar.

gz、.tgz、.tar.bz2、.tbzなどをサフィックス（接
尾辞。ここではファイル拡張子の意）として付
けるのが習慣です。
　圧縮アルゴリズム（圧縮していない場合も）に
合ったオプションを指定しないと、アーカイブ
の内容を確認したり展開したりできないので注
意しましょう。たまに、上記のネーミングコン
ベンションに従わなかったり、間違ったサフィッ
クスが付いていることもありますので、おかし

174 - Software Design Feb. 2017 - 175

いと思ったら、fileコマンドでファイルの内
容を確認してみましょう。

$ file abc.tar í

find -- FIND -- 木構造に従ってファイルを見
つける・操作する
　先に紹介したdu -aを使えば、特定のディレ
クトリ以下のファイルを再帰的にファイルやディ
レクトリサイズを集計します。findコマンドは、
木構造に従ってファイルやディレクトリを列挙
して、さらにそれらに対して指示を送ることが
できます。
　findのオプションは、Linuxでは新しいスタ
イルで、macOSは従来からのスタイルです。
大きな違いは、検索を開始するディレクトリを
省略できるのがLinuxで、macOSでは省略で
きません。オプションはたくさんありますが、
従来からのスタイルで記述する習慣をつけてお
けば良いでしょう。
　最も使うのは、-printオプションでしょう。
見つかったファイルやディレクトリ名を標準出
力に出力します。

 findの例
$ find . -print í
.
./.gitignore
./.git
./.git/description
./.git/FETCH_HEAD
./.git/config
./.git/objects
./.git/objects/38
... 中略
./rogue5.4.4-ant-r1.1.2/pack.c
./rogue5.4.4-ant-r1.1.2/rooms.o
./rogue5.4.4-ant-r1.1.2/save.o
./r-o-m

　.docで終わるファイル名のものだけ探してみ
ます。*によるグロッビングを使っていますが、
findの前にシェルにグロッビングを展開され
てしまわないように\で*をエスケープします。

 findの例2
$ find . -name ¥*.doc -print í
./rogue5.4.4-ant-r1.1.2/rogue.doc

　findなら、ディレクトリ階層以下、特定のファ
イルだけを削除できます。次の例では、-exec
オプションで、rmを実行します。rmの引数に、
見つかったファイル名（これは記号{}に収納さ
れる）を指定し、コマンドの区切りである;を\
でシェルからエスケープしています。ちょっと
記号が多くて混乱するかもしれませんが、イデ
オムとして覚えておくと便利です。

 find -execの例
$ find . -name ¥*.doc -exec rm {} ¥; í

　-typeを指定すると、特定の属性のものだけ
を抜き出すことができます。

 find -typeでディレクトリだけを表示する例
$ find . -type d -print í
.
./.git
./.git/objects
 ...略...
./rogomatic-r2.0.2/src/.deps
./rogue5.4.4-ant-r1.1.2

　ファイル操作において、とにかくfindは強
力です。確実にマスターしましょう。

今回のまとめと
次回について

　今回は、ファイルシステムの状態の確認、圧
縮操作、木構造をたどってのファイルの操作を
紹介しました。次回は、テキスト処理（その2）
の予定です。｢

第　　回10 ファイルシステムについてもう少し深く

【manで調べるもの
（括弧内はセクション番号）】
du, df, mount, zmore, zless, bzmore, bzless,
zcat, bzcat, zdiff, bzdiff, zcmp, bzcmp, zfgrep,
zegrep, bzfgrep, bzegrep, tar, file, find,
diskutil（macOSのみ）

今回の確認コマンド

176 - Software Design

えそう、人に紹介できそう」という意識で物事を見て
おり、やはり運営というより生活の一部だそうです。
法林さんも同様とのこと。筆者（榎）は、LibreOffice

では少し運営感があると話したところ、意識高い系
だと言われてしまいました。

■一般人にリーチするには

　2つめのお題は、やまぐちさんの「啓発活動なので
一般の保護者にリーチしたいが、どうすれば良い
か？」です。学校でチラシを配布してもらっても、男
の子はチラシをカバンから出さないのだそうです。
　たなかさんはLILOでもLinux普及に3年はかかっ
たと言います。OSM関西でも2年間はほぼ宣伝活動
しかしていなかったそうです。当時は、売名と言わ
れても看板を出すことをやっていました。
　筆者からはLibreOfficeは一般の人に使ってほし
いのにギークの人しか知らないこと、LibreOfficeの
イタリアコミュニティではマーケティングの人が
引っ張っていて、ボランティアを集める際にはマー
ケティングの人も募っていたことを紹介しました。
意図的にそちら方面の人を集めるのもありではとい
う議論になりました。
　そのほかに、LibreOfficeからはサッカー場でブー
スを出す試みをしたという話があり、やまぐちさん
からも図書館でのインターネットお悩み相談をした
経験の紹介があり、外に出て行くことも大事ではな
いかとの議論にもなりました。

■コミュニティは惰性で良いのか

　筆者から3つめのお題として「コミュニティが惰

　今回は、2016年11月に大阪で行った研究会の模
様をお伝えします。

	 ■ITコミュニティの運営を考える

	【講師】たなかとしひさ（LILO／OSM関西）、

	 	 やまぐちあゆみ（子供とネットを考える会）、

	 	 榎 真治（jus／LibreOffice日本語チーム）、

	 	 法林 浩之（jus）

	【日時】2016年11月12日（土）15:00〜15:50

	【会場】大阪南港 ATC ITM棟10階

　関西のLinuxユーザズグループ「LILO（Linux Ins

tall Learning Osaka）」や、OpenStreetMapのコミュ
ニティ「OSM関西」で活動するたなかさん、「子ども
とネットを考える会」で活動するやまぐちさんとい
う、関西のITコミュニティで長く活動されている
2人をお迎えして、関西オープンフォーラム（KOF）
の中で開催しました。参加者は14人でした。
　パネリストからそれぞれITコミュニティ運営で
困っているお題を1つずつ出してもらい、みんなで
それに回答していくスタイルで進めました。

■コミュニティ運営は生活の一部？

　最初のお題は、たなかさんの「運営感を持てませ
んが、これでいいでしょうか？」でした。コミュニ
ティ活動は顔を洗うように生活の一部とのことです。
　やまぐちさんも、コミュニティ活動が日常（子育
て）に直結していることもあり、常に「これ、家で使

jus研究会 大阪大会

もはや生活の一部!? ベテランのコミュニティ運営術

NO.64
February 2017

日本UNIXユーザ会　http://www.jus.or.jp/
榎 真治　ENOKI Shinji　enoki-s@imail.plala.or.jp

http://www.jus.or.jp/

Feb. 2017 - 177176 - Software Design

性になったときにどうするのか？」を伺いました。
　たなかさんによるとLILOは惰性で良くて、終着
点としては30年くらいたったある日にサーバがダ
ウンして解散だそうです。「まだやっていたんだ」と
いうくらいがちょうど良いと言います。
　やまぐちさんは、まっちゃ139勉強会で宴会担当
を10年ほどやっており、立ち上げ当初は年2、3回
開催していたのが、今は年1回程度だそうです。メ
ンバーがほかのコミュニティをやったり別の方向を
向いたりしているので、これで良いかなとのことで
す。子供とネットを考える会は「世の中に良い資料
があるのに知られていないのがもったいない、知ら
せたい」との思いが活動のベースにあるので、子供
が成長しても続けられそうという話もありました。
　法林さんからは、jusではインターネットが流行り
だしたときなど、何度か新しい方向に舵を切ったこ
とが紹介されました。「やっている人がおもしろい
と思ったから、そちらに進んだのでは？」とのこと。
最近10年くらいは年中行事化しており惰性感は強
くなってきていますが、大きいイベントということ
もあって、やった感はあるとのことです。

■南港は遠い？

　法林さんから4つめのお題として「KOFの会場と
して南港は遠いが、どこでやったらいいですか？」
が出されました。
　たなかさんからは「遠いから行けないということ
で消滅したコミュニティも多く、コミュニティの継
続的活動をするうえではどこに地域基盤を持つかは
大事」という指摘がありました。LILOは関西全体で
あり、活動が活発なころは各地を回っていたそうで
す。広いので1ヵ所にしてはいけないという意識
だったそうです。KOFの規模になると転戦はしない
ほうが良いだろうという議論もありました。
　また、子供を連れて来られるので南港は便利とい
う話や、やまぐちさんから「会場の開放感や、一般
のお客さんにふらっと参加してもらいやすいという
点で南港はいいのでは」という話がありました。
　「OSC東京やデブサミ関西に比べると便利」、「コ

ミュニティイベントはお金がないので、不便なとこ
ろでやっていることも多い」との意見もありました。

■遠方から参加してもらうには

　会場からは、「エリア外からの参加はどう思いま
すか？」というお題をいただきました。「ほかのエリ
アから参加いただけるのはありがたい、ただ遠方か
らの参加はたいへんではないか？」という話になっ
たのですが、広島からの参加者によると、この会場
は「広島から（新幹線で来て）新大阪で降りればさほ
ど気にならない」とのこと。子供とネットを考える
会は啓発について一緒に考える会がほかにあまりな
いらしく、エリア外からの参加者が多いそうです。
　会場からの2つめのお題として、「遠隔で参加した
い」という話がありました。筆者からはLibreOffice

でも中継はやりたいが、トラブルが起こりがちで張
りついて担当できる人がいないと厳しいこと、人が
確保できていないことを紹介しました。
　長らくKOF中継班を担当されていた、たなかさ
んによると、KOFでは1年目からステージを中継し
ており、それは来られない人に雰囲気を味わっても
らうためにやっているとのことです。初めてLinux

Conference '98で中継したときには、回線がパンク
するほどアクセスがあったそうで、会場に行けない
人は情報に飢えているのだろうとのことです。
　やまぐちさんからは「情報モラルやセキュリティの
イベントでは、その場で信頼できる人と直接話をし
たいというニーズがあるので、内容を選ぶ必要があ
る」との指摘がありました。セキュリティでディープ
な勉強会は意図的に配信していないそうです。

■終わりに

　ゲストの2人は長くコミュニティで活動されてお
り、時間軸を見据えた話は印象に残りました。ま
た、いつにも増して笑いが多い研究会でした。
　動画をWeb注1で公開しているので、詳しい内容
に興味を持たれた方はご覧ください。｢

注1） URL https://www.youtube.com/watch?v=z9ww4TouVVI

もはや生活の一部!? ベテランのコミュニティ運営術 February
2017

https://www.youtube.com/watch?v=z9ww4TouVVI

178 - Software Design

　自分たちが住む地域の課題をテクノロジーを用い
て解決する活動（シビックテック）は、海外だけでな
く日本各地でも行われています。Code for Japan

Summit（以下サミット）とは、シビックテックの普
及啓発のために、Code for Japanのメンバーや行政
職員、各地で活動しているシビックテック関係者が
一緒になってシビックテックの活動を紹介し、悩み
を共有し、相互に学ぶための場です。
　今年は、横浜市金沢区さんの協力のもと、横浜市
金沢区総合区役所にてサミットを開催しました。全
国からエンジニア、デザイナー、行政職員などシ
ビックテックにかかわる多くの方々が参加して、活
発な議論が行われました。今回のサミットのテーマ
に掲げた「Voyage（出航）」にふさわしく、新たな仲
間との出会いや新たな活動のスタートの契機となる
イベントになったと考えています。会場の装飾も、
船出というキーワードにからめてこだわっています

（写真1）。
　参加者は3日間の延べ人数で約650人。正確には
把握できていませんが、ユニークにすると400人ほ
どが参加いただいたと思います。関連ツイートは、
450以上にものぼりました。

サミット1日目

　1日目は、金沢区長もお呼びして、「シビックテッ
クと地域協働のネクストステップ」というパネル
ディスカッションを行いました。
　区長に金沢区の地域協働に関する取り組みをうか
がった後、この連載でもおなじみの、Hack For

Japanの及川卓也さんに登壇してもらい、シビック
テックが次のステップに進むにはどういったことが
必要かをお話いただきました注1。
　及川さんからは、ご自身もかかわっていたSpend

ing.jpのプロジェクトをケースにして、ビジネスと
して考えたときに必要となる価値設定や、人に届け
るために必要なこと、プロダクトマネジメントの必
要性を伝えてもらいました。
　その後、Code for Kanazawaの福島さんも参加し、
どのように地域の人達とつながって、継続的に活動
をしていくかを話し合いました。印象的だったの
は、Code for KanazawaではNPOや地域の人達にも
同団体に入ってもらって、一緒にプロジェクトを起
こしていっているという点でした。そうしないと
「Code for Kanazawaに頼めば何かやってくれる」と
いう感じでお客さん立場になってしまうことで、活
動が続かなくなることが多いとのことです。

注1	 スライドURL：https://t.co/0Kc0qymV0h

Hack For Japan
エンジニアだからこそできる復興への一歩

シビックテック祭り
「Code for Japan Summit 2016」

第62回
Code for Japanの関です。今回は2016年11月18〜20日にかけて開催された、シビックテックのお祭り
「Code for Japan Summit 2016」についてレポートをしたいと思います。

●Hack For Japanスタッフ
　関 治之　Hal Seki
　 Twitter @hal_sk

◆◆写真1　�VOYAGEにからめて、いろいろな仕掛けをして
みました

https://t.co/0Kc0qymV0h

Feb. 2017 - 179

シビックテック祭り
「Code for Japan Summit 2016」第62回

　その後は会場を分けて、分科会に。さまざまな
セッションが行われましたが、筆者が参加していた
セッションを中心にご紹介します。

インターナショナルセッション

　Code for AmericaのMonique Baena-Tenさんや、
台湾のシビックハッカーであるT.H. Scheeさんが来
日していたので、英語のみのセッションを企画しま
した。人数が20名くらいだったので、車座になっ
て皆でディスカッションを行いました（写真2）。
　アメリカ、台湾でのシビックテック事情をうかが
い、Code for Ibarakiの柴田重臣さんからも日本の
各地の状況をシェアしました。アメリカの大統領選
の影響についてもリアルなところを聞けて、とても
勉強になりました。THさんは、“Civic Tech is like

a ocean”と表現しましたが、シビックテックを進め
ていくことは、荒波を航海するようなもの。良いと
きもあれば、悪いときもあります。そんなときに、
このように各地の活動をシェアし、世界中で頑張っ
ている人達がいることを知ることは、とても良い機
会だと思いました注2。

ブリゲイド相談会

　Code for Japanと連携しながら各地で課題解決を
行っているCode forコミュニティを、「ブリゲイド」
と呼びます。このセッションでは、ブリゲイド同士
が集まって相互に悩みを相談する相互相談会を行い
ました。活動内容の見える化や、より良いコミュニ
ティ運営のやり方について、多くの意見が出ていま
した。筆者の参加したテーブルでは、各地の情報を
共有するハッシュタグを作り、Code for Japan側で
それらを拾ってニュースレターを定期的に配信する
などのアイデアが出ていました。実施を検討したい
と思います。

Code forフェロー大報告会

　Code for Japanでは、企業と自治体間の組織の壁
を壊して、ともに考える人材づくりを行う目的で、

注2	 THさんのスライドURL: https://drive.google.com/
file/d/0BxiwX2rqs8dzTW16alZKdEJlNWc/view

企業の従業員が自治体の職員として役所内で3ヵ月
間働く、人材育成プログラムを行っています。これ
まで、8自治体に18人のフェローが派遣されていま
す。実際に派遣を体験した4名が参加して、パネル
ディスカッションを行いました。
　セッションでは、奥野和弘さんから「鯖江に行っ
てびっくりしたのが、言葉が通じないこと。アメリ
カ人とのほうがはるかに話が通じる！　いかにプロ
トコルに頼っていたのかわかった」といった話がで
たり、神戸に行っていた松村亮平さんから「請負と
コーポレートフェローシップの違いは上下関係があ
るかないか。対等の関係で課題に向かえる」といっ
た話、同じく神戸に行っていた宮崎光世さんからは
「市というのは市民への良い発信の手段を意外と
持っていない。新聞は年齢層が高い。ネットをうま
く活用する余地がたくさんある」といった話が出て
きました。
　そのほかにもたくさんのセッションやワーク
ショップがあり、そこかしこで情報交換がされてい
ました。ちなみに、1日目で人気のあったセッショ
ンが「シン・ゴジラセッション」（写真3）。
　自治体職員がシン・ゴジラをテーマに防災を語る
というもの。そのほかにも政府職員によるIT戦略
のワークショップがあったり、政府や自治体の職員
による企画が多くあるのも、Code for Japan Summit

の特徴です。

サミット2日目

　サミット2日目は、Code for AmericaのMonique

◆◆写真2　Code for AmericaのMoniqueさんも参加

https://drive.google.com/file/d/0BxiwX2rqs8dzTW16alZKdEJlNWc/view

Hack For Japan
エンジニアだからこそできる復興への一歩

180 - Software Design

Baena-Tanさんによるキーノートスピーチから始ま
りました。MoniqueさんはCode for Americaで、地
域活動の取り組みのユーザ調査を指揮してきまし
た。おもに、組織的な最優先事項とコミュニティの
ニーズを明らかにする、参加型デザインの調査プロ
セスの開発をブリゲイドと行ってきました。また
Code AcrossやNational Day of Civic Hackingと
いった全米中の行動を促す日（national days of

action）のプログラムの開発やコーディネーション
など、ブリゲイドのネットワークマネージメント支
援も行ってきました。
　行政と地域コミュニティが協働をするための具体
的な方法やヒントが満載のプレゼンでした。

1.	 一般的な言葉、その場にいる人が理解のできる言

葉を使いましょう

2.	期待値をコントロールしましょう

3.	コミュニティの中間で引き合わせましょう

という3つの方法論や、各地のブリゲイド向けの活
動のアドバイスもありました。情報発信や内部のコ
ミュニケーションツールとして、MeetupやMedium、
Slack、Loomio、Google Docsなどを活用している
そうです。
　最後に締めくくりの言葉として言ってくれた、
「You are not alone. あなたは一人ではありません。
この課題に向き合っているのは我々だけではありま
せん。行政の中にも市民の中にも行政に限らずさま
ざまなバックグラウンドを持った人たちがいて、そ
れぞれ今の政治がうまくいくように取り組んでいま

す。それを忘れないでください。」という言葉は、多
くの人の心に響いたようです。
　その後、1日目と同じく分科会セッションに入り
ました。筆者が参加したセッションからいくつかご
紹介します。

公共システムの開発を
成功させるには

　Code for Japan初のフェローとして2014年から
福島県浪江町に勤務し、町民向けアプリの開発を
行った後、2016年4月からはIT専門官として神戸市
に勤務している吉永隆之さんがセッションチェアと
なり、同じく浪江町の町民向けアプリ開発プロジェ
クトにかかわった合同会社インフォラウンジの肥田
野正輝さん、千葉市でオープンデータ施策やちばレ
ポの立ち上げにかかわり、Code for Chibaの活動に
も積極的に参加している千葉市役所 広報広聴課長の
松島隆一さんにお話をうかがうセッションでした。
　公共システムの開発は、通常の企業が行うものよ
りも制約がたくさんあります。随意契約が難しく、
開発企業を好きには選べない問題や、アジャイル開
発に向かない契約形態、異動などの影響で役所側と
ベンダー間の知識の非対称性が大きくなりがちで丸
投げになってしまう、などです。
　吉永さんから、浪江町のシステム開発で実際に体
験した話をシェアしてもらいました。吉永さんから
は公共調達に関して、行政システムのオープンソー
ス化や、アジャイル開発ができる会社を見つけるこ
と、段階的な開発プロセスの導入などを提言してい
ました。
　松島さんが言っていた印象的なこととして、「シ
ステム調達の面から考えると、役所のフロント部分
のシステムはブルーオーシャン。多くのベンダーが
入り込んでいる既存部分を攻めるより、シビック
テック側は外側の部分を攻めるほうが良いのでは」
「役所の内側のシステムを変えていくには、シビッ
クテック側の人が役所の中に入っていく必要があ
る。CfJの関さんが神戸市のCINO（Chief Innovation

Officer）になったり、吉永さんが市の職員になった
りという動きがもっと起こると良いのでは」という
点がありました。

◆◆写真3　シン・ゴジラセッションのグラフィックレコード

Feb. 2017 - 181

シビックテック祭り
「Code for Japan Summit 2016」第62回

Government×Startup

　こちらは筆者が担当したセッションです。福岡
市、神戸市、大阪市など、スタートアップを支援す
る自治体が増えてきました。世界的に見ても、市職
員がスタートアップとタッグを組んで共に解決に挑
むサンフランシスコ市や、4,500万ドル規模のスター
トアップ支援を発表したホーチミン市など、自治体
とスタートアップの結びつきが注目されています。
　神戸市でスタートアップ支援を推進する多名部重
則さんや、経済産業省でスタートアップと協働した
経験を持つ津脇慈子さんにお話を聞きました。筆者
からは、サンフランシスコの先進事例として、自治
体が提示した地域課題をスタートアップが支援する
Startup in Residenceプログラムを紹介させてもら
いました。
　多名部さんは神戸市で500 Startupsを始めとす
るスタートアップ支援施策を推進している人です。
神戸市のスタートアップ支援は、市長から「なにか
ワクワクすることを企画してくれ」という話があっ
たことからスタートしたとのこと。スタートアップ
が成長するには大きなエコシステムが必要という考
えから、神戸市が支援するスタートアップは神戸市
になくてもかまわないという姿勢で、神戸市外から
も広くスタートアップを集めています。
　津脇さんは経済産業省のプロジェクトで、スター
トアップとアジャイルプロセスのシステム開発を
行ったのですが、そのときに「発注側と開発側との
信頼関係がないとアジャイル開発はちゃんと回らな
い」という点を強く感じたそうです。プロジェクト
開始後、経産省側から「なにがどう進んでいるかわ
からなくて不安」という意見が出始めたときに、実
際に開発現場に足を運んで、バックログの説明やタ
スクカンバンの作業内容の説明などをしてもらった
ところ、安心できたしコミュニケーションもうまく
できるようになったとのこと。そのときの経験を活
かし、今進めている地域IoTのプロジェクトでは、
企業側に経産省の担当がついて、規制緩和について
の取り組みを進めるなど、「ともにつくる」側に回る
やりかたを実施しているそうです。Code for Japan

のコーポレートフェローシップでは、企業の人材が
自治体に派遣されますが、その逆のパターンもある
のだなと勉強になりました。
　お二人と話す中で、行政がスタートアップを育成
する取り組みが広がるには、行政側とスタートアッ
プが立場を越えて同じ目的意識を共有し、プロジェ
クトベースで協働をしていくことが重要なのだなと
感じました。とはいえ、「行政と付き合うのは面倒」
と敬遠してしまうスタートアップもまだまだ多いと
思います。Code for Japanとしては、スタートアッ
プとの連携や起業家育成について、政府にいろいろ
と提言をしていきたいと考えています。

グラフィックレコーディング

　Code for Japan Summitは、日本でもかなり早い
段階（2年前のサミット）で大規模なグラフィックレ
コーディングチームで会場のセッションを記録した
のですが、今回も新たな取り組みをしました。多く
のセッションをレコーディングして張り出しただけ
でなく、写真4のように、タワー状にレコーディン
グを組み合わせて、立体的に展示を行っています。
　この前で記念写真を取っている人もたくさんいて
楽しかったです。グラレコチームの皆さん、どうも
ありがとうございました！

★　★　★
　2017年もサミットは実施する予定ですので、ご
興味を持っていただいた方は、Code for Japanの
Facebookグループなども覗いてみていただければ
と思います。s

◆◆写真4　グラレコタワー

182 - Software Design

はじめに

　シャープ製のパソコンMZシ
リーズも、最後に輝いたマシン
がありました。しかし、その高
い性能の輝きは時代背景や広報
メッセージの迷いにより一瞬で、
ほとんど目立たない存在で終わっ
てしまいました。今回は、この
ホビーパソコンMZ-2861（写真
1）に光を当てます。

MZ-2861とは

　MZ-2000、MZ-2200と続く
MZシリーズでは、1985年9月
にスーパーMZと呼ばれたMZ-
2500が発売されました。この
MZ-2500 は、MZ-80B → MZ-
2000の非互換性の問題の反省を
活かして、MZ-80BとMZ-2000
の双方のマシンの互換性を有し、
CPUに6MHzの動作周波数の
Z80Bを載せて、当時最高速の
8ビットホビーパソコンとして登
場しました。
　また表現力の高いグラフィッ
ク機能を有し、解像度640×
400ピクセル16色と、ゲーム用
として活用できる320×200ピ
クセル256色の表示が可能でし

た。画面のハードウェアスクロー
ルもサポートされていたため、
縦スクロールシューティングゲー
ムに最適なハードであり、電波
新聞社から発売されたMZ-2500
版XEVIOUS注1は、それまでの
ほかのパソコンの移植版とは一
線を画す出色の出来でした。
　しかし、1985年はNECから
88シリーズの地位を確立するPC-
8801mkIISRが発売され、シャー
プ製のパソコンは、MZとは異
なる事業部から発売されていた
X1ターボがホビーユーザから支
持を集めていました。ですから、
出遅れたMZ-2500は十分な販
売実績を残せませんでした。
　起死回生を期して1987年4月
に登場するのがMZ-2861です。
MZの後の数字286は、搭載さ
れていた当時の最高速16ビット
CPUのIntel 80286（以下i80286）
の286と、最初の2がMZ-2000
シリーズであることを示してい
ます。MZ-2861は、8ビット機
として完成されたMZ-2500との
互換性を有し、I/O関連はZ80
系の安定したハードを使い、そ
れにi80286に最適化した新規開

注1） ゼビウス。ナムコ（現在のバンダイナ
ムコエンターテインメント）から
1983年に発表された、縦スクロール
のシューティングアーケードゲーム。

発のハードウェアを加えた究極
の16ビットパソコンとして開発
されました。
　当時のi80286を載せた16ビッ
トパソコンの多くは、その前の
8086を使ったパソコンが前身に
あり、その互換性に引きずられ
て自由にi80286用の設計ができ
なかったのです。
　またMZ-2861のグラフィック
機能は、高い表現力を持ってお
り、MZ-2500の持つ出力に加え
て640×400ピクセルで65,536
色を表示できました。

ワープロ専用機互換
のMZ書院

　シャープからは同じ1987年3
月にX68000（68HC00 10MHz搭
載）が発売されており、当時ホ
ビーユーザに圧倒的な支持を得
て、多くの高機能なゲームなど

 ▼写真1　 MZ-2861

第62回

 ※本記事の執筆にあたり、2016年12月号「ITむかしばなしスペシャル」でも登場した、古籏一浩氏に写真や貴重な情報を提供いただきました。

速水 祐（はやみ ゆう）　http://zob.club/　 twitter @yyhayami

シャープMZ-2861
〜MZの最後に輝く究極の16ビットパソコン〜

温故知新
ITむかしばなし

http://zob.club/

182 - Software Design Feb. 2017 - 183

第62回

のソフトウェアが発表されまし
た。それに対してMZ-2861はス
プライト機能はないものの、
CPUの高速性では68HC00に
比べて圧倒的に有利であり、ユー
ザの支持さえ得られれば、MZ
の地位の復活となるはずだった
のです。
　そこで、シャープがとった販
売戦略は、なんとMZ-2861とい
う名を前面に出さずに「MZ書院」
と名を付すことだったのです。
当時のシャープ製ワープロ専用
機「書院」は、評判がよく、世の
中はワープロブームでした。富
士通でもFM-16βを諦め、富士
通製のワープロOASYSの機能
を持つFM-Rが発売されたのも
この年です。また、PC98シリー
ズ（以下PC98）が16ビットパソ
コンとして地位を固め、ビジネ
スユースだけでなくホビーユー
スでもPC98の時代になってき
ていました。PC98は、ワープ
ロとしてジャストシステムの一
太郎と、表計算としてLotus 1-
2-3を使うことが一般的でした。
当時は、漢字変換（ATOKなど）
の変換スピードを上げるために
辞書をRAMディスクに置くこと
もさかんに行われていました。
　MZ-2861は、メインメモリ空
間に辞書ROMエリアを設ける
ことで、RAMディスク以上の高
速な漢字変換を実現しており、
付属のMS-DOS 3.1には、カナ
漢字変換プロセッサとして書院
の変換が使えるようになってい
ました。さらに、MZ-2861は
PC98ソフトウェアエミュレー
ション機能もついていたのです。
すなわちMZ-2861上でPC98用

の一太郎やLotus 1-2-3を動作
させることができたのです。
　しかし、この年にはEPSON
からハードウェア的にPC98と
互換のPC-286が発売され、ソ
フトウェアエミュレーションで
は速度的にとても対抗できなかっ
たと思われます。当然、販売実
績も上がらず、新たなソフトウェ
アはほとんど発表されず。MZ-
2861の最後の数字の1が2にな
ることはなく、MZシリーズは
終焉を迎えたのです。
　同じi80286が載ったPC-9801
VXとMZ-2861のメモリマップ
を比べてみました（図1）。i80
286における1MB以上のメモリ
空間（最大16MB）は、プロテク
トモードに切り替えないとアク
セスできません。そのためには、
i80286で用意されている命令を
使いますが、リニアモードに戻

る命令は用意されておらず、
CPUに強制的にリセットをかけ
て、リニアモードに移行するし
かありません。実行時間も要す
るため、PC98VXではいくらプ
ロテクトメモリを増設しても、
せいぜいRAMディスク程度に
しか使えない状況でした。MZ-
2861は、設計当初からプロテク
トメモリを使うことを前提とし
て考えられているため、リニア
モードで扱えるメモリエリアに
256KBのメモリウィンドウが用
意されており、広大なプロテク
トメモリ空間をリニアモードか
ら扱えるようになっていました。
　MZ-2861は、新規のi80286マ
シンとして優れた設計になって
おり、最適な動作を行うことが
できる実力を持っていたので
すが、一瞬しか輝けませんでし
た。｢

温故知新 ITむかしばなし
シャープMZ-2861〜MZの最後に輝く究極の16ビットパソコン〜

 ▼図1　PC-9801VXとMZ-2861のメモリ構成の比較

000000

0A0000

0B0000

0C0000

0E0000

FFFFFF

PC-9801VX メモリマップ

0C8000

000000

100000

FFFFFF

FF0000

MZ-2861 メモリマップ

0E0000

0C0000

0A8000

100000

0E8000

0F8000

0F0000

F00000

FA0000

E00000

200000

テキスト VRAM 他

Blue

Intensity

Red
Green

VRAM2

VRAM2

標準実装 RAM 640KB

N88-BASIC(86)ROM 96KB

ユーザー用拡張 ROM 空間 32KB

システム用拡張 ROM 空間 96KB

(GRAM0 Blue)

(GRAM1 Red)

(GRAM2 Green)
グラフィック VRAM 96KB

IPL ROM 空間
64KB (0F8000 ～ 0FFFFF からアクセス可)

拡張 RAM 12MB

IPL ROM 32KB

標準実装 RAM 768KB

グラフィック VRAM BANK 128KB

辞書 ROM BANK 64KB

TEXT/CG BANK 64KB

メモリ・ウィンドウ 256KB

拡張 RAM 14MB

グラフィック VRAM 32KB (GRAM3)

リザーブ

0A0000 ～ 00FFFF と同一の内容

リザーブ

リザーブ

184 - Software Design

うまくいく チーム開発のツール戦略

 Author リックソフト㈱　斎藤 智昭、山本 鮎美、大塚 和彦

「すぐに使える障害管理テンプレート」なら簡単！
JIRAでラクラクIT運用業務第 回6

 Excelでの
インシデント管理の苦しさ

みなさん、筆者はExcelが大好きです。思い
ついたらExcelで、課題一覧、帳票作成（もち
ろんExcel方眼紙）、システム構成図（もちろん
Excel方眼紙）、報告書（もちろんExcel方眼紙）、
プロジェクト管理……。なんて自由なツールな
んでしょう！ この自由さが大好きです。とき
に自由過ぎて周りに迷惑をかけてしまいますが、
それでもやめられないのがExcelです。
某SIerに在籍していたころ、Excelでインシ

デント管理を行っていました。障害連絡が入る
とExcelファイルに記入するので、記入件数が
どんどん増えていきます。ステータスも記入し
なければなりません。運用チーム数名で、ファ
イルサーバ上にあるExcelファイルを黙々とメ
ンテナンスしていきます。このような日々の業
務の中では、次のような問題が発生します。

・	利便性の問題：ほかの誰かが使っていると、「読
み取り専用」でしかファイルが利用できない

・	データ破損の問題：ファイルの破損、もし
くは上書きミスで一部のデータが消失する

・	情報連携と共有の問題：各種の帳票がすべ
て別々のファイルなので連携ができていない。
手作業で情報連携と共有を行うので生産性
が悪い

世間にはITILというITサービスマネジメン
トのフレームワークがあり、それに準拠したツー
ルがあるので、そのツールを使えば問題は改善

するはずです。しかし、一見大きくなさそうで
実は大きい問題として、これまでの報告書と書
式が違うので読みにくいなどの問題が出てき
ます。
このような問題に対応するため、「Atlassian

社が開発する JIRA Software（以下 JIRAと表
記）にアドオンを組み合わせてインシデント管
理業務の運用を改善し、Excel方眼紙帳票にデー
タを差し込んで帳票として出力する」という夢
のような方法をお伝えします。

インシデント管理ツールとし
てJIRAを使ってみよう

ITILでは、通常どおり業務を遂行できない
システムの状態を「インシデント」、インシデン
トを引き起こす根本原因を「問題」と呼びます。
インシデントが発生したとき、迅速にサービス
の復旧処置を施すまでを「インシデント管理」、
根本原因を特定して再発を防止する是正処置を
実施するまでを「問題管理」として別々に管理・
解決していくことで ITサービスの品質を向上
させることを目標としています（図1）。ここで
は、インシデント発生から解決までの流れを、
JIRAを早期に業務利用できる「すぐに使える
テンプレートシリーズ」の障害管理テンプレー
トを利用して操作と合わせて説明します。この
テンプレートのURLは、
https://www.ricksoft.jp/solution/template/

incidents.html

となります。

うまくいく
チーム開発のツール戦略

Catch Up Trend

https://www.ricksoft.jp/solution/template/

184 - Software Design Feb. 2017 - 185

「すぐに使える障害管理テンプレート」なら簡単！JIRAでラクラクIT運用業務 第 回6

インシデントの復旧処置

a. インシデント発生！

ユーザから問い合わせを受けたら、インシデ
ントをJIRAに登録します（図2）。インシデン
トの解決策の蓄積と傾向分析のため、受けた問
い合わせはすべて登録することが重要です。イ
ンシデントには、システムが使えないなどの障
害回避要求だけでなく、パスワード変更や情報
開示などのサービス要求も含まれます。

b. 担当者にインシデント対応を	
依頼する（担当者の割り当て）

ユーザからの問い合わせ内容を課題に登録し
たら、インシデントの担当者をアサインします。
このとき、アサインされた担当者には、イン
シデント対
応を割り当
てられたと
いう内容の
通知が送ら
れます。そ
の担当者が
JIRAにア
クセスする

と、ダッシュボードに課題が表示されます（図3）。

c. ビジネスへの影響度と緊急度、
優先度を決める

インシデント対応をアサインされた担当者は、
影響度と緊急度、優先度を決めます。影響度（ビ
ジネスにおけるインパクト）は、インシデント
によりサービスを利用できなくなるユーザの数
や、システムの規模などから判断します。緊急
度は、インシデントを解決するのに必要とする
時間から判断します。影響度が高くても、運用
回避や代替手段の利用が可能な場合は緊急度は
低くなります。優先度は、影響度と緊急度から
算出できます。

d. 対応策を調査する

続いて、障害回避要求かサービス要求かの分

問題管理
問題管理起票

担当者

承認者

責任者

根本原因と
再発防止策を検討

是正対応
（本対応）

承認依頼 承認依頼

ウォッチウォッチ

承認

ウォッチ

課題の
クローズ・報告

承認

報告

運
用
部
門

インシデント管理 インシデント
発生

担当者

承認者

責任者

復旧処置
（暫定対応）

影響度：

課題の
クローズ

課題のリンク

影響度： 承認依頼

ウォッチウォッチ

承認

ウォッチ

運
用
部
門

 ▼図1　インシデント管理の概念

 ▼図2　JIRAの課題作成画面

 ▼図3　JIRAのダッシュボード

186 - Software Design

うまくいく チーム開発のツール戦略

類をします。テンプレートでは「種別」という項
目で選択します。サービス要求の場合は、用意
してある手順を準備します。障害回避要求の場
合は回避策を調査し、過去に同様のインシデン
トが起きていれば、その回避策のように対応し
ます。インシデントを課題として蓄積すること
により、その回避手順（ワークアラウンド）も蓄
積されていきます。ここでは、インシデントの
原因が不明な場合でも特定はしません。また暫
定回避ができない場合は、対応不可としてクロー
ズし、問題として管理します。

e. インシデントを解決する

調査した回避策により、インシデントを解決
します（図4）。テンプレートで「作業開始」を実
行して調査内容を入力し、「対応中」ステータス
に遷移させます。影響度の高いインシデントの
場合は、クローズする前に対応内容の承認を受
けます。テンプレートには、承認待ちの課題や
解決状況を簡単に把握できるように、専用のダッ
シュボードが用意されています。

f. インシデントをクローズする

サービスが復旧していることを確認したら、
インシデントをクローズします。インシデント
がクローズされると、この回避手順は既知のワー
クアラウンドとなり、同様のインシデントが起
きた際に役立ちます。

◆　◆　◆
以上で、インシデント発生から解決までの「イ

ンシデント管理」の一連の活動を説明しました。
次に、インシデントの根本原因を調査しイン

シデント発生を防止する「問題管理」の活動を説
明します。

インシデントの是正処置

a. 問題管理を起票する

暫定回避し、再発する（または再発する可能
性のある）インシデントや、暫定回避できなかっ
たインシデントを「問題」としてJIRAに登録し、
根本原因と再発防止策を調査して解決します。
テンプレートでは、該当するインシデントを課
題リンクで関連付けし、特定された問題の基礎
情報を入力します。

b. 問題解決の担当者を割り当てる

問題の基礎情報を課題に登録したら、問題解
決の担当者をアサインします。このとき、アサ
インされた担当者には、問題解決を割り当てら
れたという内容の通知が送られます。

c. 根本原因・再発防止策を	
調査する

問題解決にアサインされた担当者は、インシ
デントの場合と同様に優先度を決め、調査を開
始します。 このとき、インシデント管理と同
様に、過去の問題から同様の事象がないか調べ
ます。解決済みであれば、その原因・解決策を
参考にします。問題の原因が特定できたら、解
決策、再発防止策を検討し、是正対応の作業内
容について上長へ承認を求めます（図5）。

d. 問題を解決する（是正対応）

上長から承認を受けたら、調査した解決策を
もとに是正対応を実施します。対応が完了したら、
対応の結果を記載して上長へ承認を求めます。

e. 問題をクローズする

是正対応の内容について上長から承認を受け

 ▼図4　JIRAの作業開始画面

186 - Software Design Feb. 2017 - 187

「すぐに使える障害管理テンプレート」なら簡単！JIRAでラクラクIT運用業務 第 回6

おわりに

JIRAは、インシデント管理で重要な「問題発
生」から「問題解決」までの間、情報を共有しな
がら効率的に業務を進めるためのベース機能を
持っています。インシデント管理業務をすぐに
始められる「すぐに使える障害管理テンプレート」
を適用することで、今回紹介した機能を使うこ
とができます。Excelをやめるのではなく、
Excelとも仲良くするためのインシデント管理
ツールをぜひ試してみてください。ﾟ

※本連載の過去記事は技術評論社のWebサイト
　「gihyo.jp」でもご覧になれます。
http://gihyo.jp/ad/01/atlassian

たら、問題をクローズします。クローズされた
問題は、今後同じような事象が発生した場合の
ナレッジベースとして蓄積されていきます。

帳票出力で管理者に報告

JIRAの課題の出力機能は標準ではXML、
Word、印刷用しかなく、Excelでの出力はでき
ませんが、JIRAの拡張機能として追加できる
アドオンでExcel出力できるものがいくつかあ
ります。弊社で提供している「すぐに使える障害
管理テンプレート」ではExcel出力できるアドオ
ンを使用しているので、JIRAを使用している
場合でもExcelファイルの報告書をそのままテ
ンプレートとして使用できます。Excelファイ
ルの報告書の入力項目にJIRAのフィールド項
目を設定し、JIRAにテンプレートとしてアップ
ロードすれば、すぐに使用できます（図6）。

 ▼図5 JIRAの課題編集画面

 ▼図6 （左）報告書のテンプレート　（右）ダウンロードされる報告書

日本だけでなく、アジ
ア圏でもアトラシアン
製品販売のトップエキ
スパートであるリック
ソフトのWebサイト
では、各アトラシアン
製品の体験版を提供し
ているほか、アトラシ
アン製品専用のコミュ
ニティも運営していま
す。まずはアクセスし
てみては！

https://www.ricksoft.jp/

米国Atlassianから、2年連続
で「Top new business APAC」
を受賞。Atlassianセールス
パートナーとしてアジアパシ
フィックで1位の証。

https://www.ricksoft.jp/
http://gihyo.jp/ad/01/atlassian

188 - Software Design

　米Packet Host社は2016年12月16日、ARMサーバを
使ったベアメタルクラウドサービスの日本での提供を開
始した。またこれに伴い、同日にローンチイベントが開
催され、そこではソフトバンク㈱が本サービスの日本展
開に際して、全面的な支援を行うことが発表された。
　Packet Hostは2014年7月設立、現在従業員が二十数
名ほどのスタートアップで、ベアメタルクラウドを提供
するクラウド事業者。2016年11月にARMアーキテクチャ
のサーバマシンを提供開始し、サービス開始2週間で
400社への提供を行った。ソフトバンクはその実績と革
新的なサービスに注目し、出資を決めたそう。現在
Packet Hostは、Docker、Kubernetes、Mesosなどクラ
ウドネイティブやIoTでの利用、RHEL、Ubuntu、Core
OSおよびFreeBSDの各OSの64-bit ARMサポートのため、
エコシステムとの協力を進めているとのこと。また、今
回の日本での提供開始と同時に、サンノゼ、ニュージャー
ジー、アムステルダムに加え東京リージョンも開設した。
　今回提供が開始されたのは、「ARMv8-Aサーバ」を用
いたベアメタルクラウドサービス「Type2Aサーバ」。
ARMサーバを使用している理由は「低消費電力×高密

　2016年12月15日、ワンボードコンピュータRaspberry
Piを提供する英ラズベリーパイ財団の創設者の1人、エ
ベン・アプトン氏が来日し、Raspberry Pi開発の経緯や
日本での展開についての記者発表会を行った。
　Raspberry Pi誕生のきっかけとなったのは、エベン氏
が英ケンブリッジ大学で教鞭をとっていた2006年、コ
ンピュータサイエンスを受講する学生の数が年々減少し
ていることだった。エベン氏はその原因として、
Commodore 64やMSX、X68000、BBC Microといった8
ビット・16ビットのマイクロコンピュータがゲーム機
やパソコンに取って代わられ、プログラミングのできる
コンピュータが子供部屋からなくなったからだと分析し
ている。
　そして、氏がRaspberry Piの開発に乗り出したのが
2007年。「プログラミング可能で、多くの言語に対応し
ているもの」「子供の興味を引くもの」「小型で強度が高
く、子供が学校へ持っていくことのできるもの」「教科
書の価格程度の25ドルといった安価なもの」という4つ
の基準を満たしたマシンを開発することで、学生とプロ
グラミングのギャップを埋められると考えた。

度」で、インテルアーキテクチャサーバと遜色ないパ
フォーマンスを、従来比10分の1の省電力と、1サーバ
ラックあたり7,300コアという高密度（＝省スペース化）
によって、はるかに低コストで実現できるそう。現在の
利用料は85円／時間、つ
まり1コアあたり1円以
下／時間である。
　またクリエーションラ
イン㈱が、日本での
Type2Aサーバの展開に
おいて提携を発表してお
り、ベアメタルARMク
ラウド上でのIoTデータ
解析ソリューションの提
供を予定している。

　2011年、当時の財団メンバー6名が計25万ドルの資金
を持ち寄って、最初の1万台を中国で製造。売り出そう
とした2012年のはじめ、英アールエスコンポーネンツ
社とのライセンス契約が成立して大量生産につながり、
初日に10万台が売れた。そして順調にバージョンとモ
デルを重ね、今に至る。
　またエベン氏は、アール
エスコンポーネンツ㈱が
11月10日に提供開始した
Raspberry Piの国内生産モ
デル「日本製Raspberry Pi 3
Model B」にも触れ、「Made
in Japan」のRaspberry Piを
見られた喜びを語った。こ
ちらはRSオンライン（http:
//jp.rs-online.com）から
購入できる。

Packet Host、
ARMサーバを使ったベアメタルクラウドサービスを
日本で提供開始、ソフトバンクが全面支援

ラズベリーパイ財団創設者来日、
Raspberry Pi開発の経緯と日本での展開について

Packet Host　URL https://www.packet.net
ソフトバンク㈱　URL http://www.softbank.jp

CONTACT

Raspberry Pi財団　URL https://www.raspberrypi.org
CONTACT

▲▲ 左：ソフトバンク㈱専務取締役
エリック・ガン氏、右：米Packet
Host社CEOザッカリー・スミス氏

▲▲ ラズベリーパイ財団エベン・アプ
トン氏

https://www.packet.net/
http://www.softbank.jp/
http://jp.rs-online.com/
https://www.raspberrypi.org/

188 - Software Design Feb. 2017 - 189

㈱ネオジャパン　URL http://www.neo.co.jp
CONTACT

Ruby biz Grand prix　URL http://rubybiz.jp
CONTACT

グレープシティ㈱　URL http://www.grapecity.com
CONTACT

　グレープシティ㈱は2016年12月7日、Salesforce向け
ソリューションシリーズ「GrapeCity for Salesforce」の
第2弾となる「Spreadsheet for Salesforce」を発売した
（第1弾は同年3月発売の「Barcode for Salesforce」）。
　Spreadsheet for Salesforceは、SalesforceにExcelライ
クなユーザインターフェースを提供するAppExchange注

アプリ。SalesforceのデータをExcelのような柔軟な一覧
形式で参照したり編集したりでき、またExcelから直接
コピー&ペーストでデータを一括入力できるので、業務
担当者のデータ更新作業を大幅に効率化できる。

Salesforceと完全に統合されており、プラグインなどの
ソフトウェアはいっさい不要。MacやWindowsで動作
するブラウザだけですべての操作を行える。また、
SalesforceのSNS機能であるChatterにも対応しており、
新規ToDoの登録や行動履歴などのChatterフィードも
Spreadsheet上で利用できる。
　本製品はサブスクリプションによるクラウドサービス
で、1ユーザの月額利用料は1,500円（税別）。最低10ユー
ザからの契約で、1年単位の自動更新となっている。

グレープシティ、
「Spreadsheet for Salesforce」発売

　2016年12月15日、「Ruby biz Grand prix 2016」の表彰
式が行われた。
　Ruby biz Grand prixはビジネスの領域において、プロ
グラム言語Rubyの特徴を活かした新たなサービスを創
造し世界へ発信している企業、団体および個人を対象と
するグランプリ。審査委員長はまつもとゆきひろ氏。開
催2回目の今年は29点のエントリーがあった。受賞企業
は次のとおり。

「Ruby biz Grand prix 2016」、表彰式が開催

　㈱ネオジャパンは2016年11月22日、「ChatLuck」の新
バージョン（V2.0）の提供を開始した。
　本製品は、PCやスマホなどから利用する企業向けの
リアルタイムチャットツール。ビジネスに特化した管理
／セキュリティ機能を備え、製造業、サービス業、地方
自治体を中心に採用されている。V2.0では、次に挙げる
ように、スマホ版の機能を大幅に強化した。

・ GPSを用いて、メンバーの位置情報をリクエスト・
収集・確認する機能と、自分の位置情報をメンバーに
共有する機能を搭載。訪問先の指示、集合場所の連絡、
災害時の安否確認などのシーンで活用できる

・ スマホで動画を撮影して投稿できるようになった
・ スマホで撮影した写真を投稿する際に、画質を軽量化

して送信する機能を追加。これによりデータ通信量を
削減し、よりスムーズなやりとりが行える

・ スマホへのプッシュ通知を行う曜日や時間帯を設定可
能。業務時間外の通知を抑制する場合に活用できる

　そのほか、管理者によるシステムメンテナンスなどの
一斉通知が送れる機能など、多数の改善が行われている。

ネオジャパン、
ビジネスチャット「ChatLuck」の新バージョン（V2.0）を
提供開始

●●受賞一覧

グランプリ
㈱MISOCA 請求書作成サービス

「MISOCA」

ラクスル㈱ ネット運送サービス
「ハコベル」

特別賞

㈱アクトキャット 自動コードレビューサービス
「SideCI」

㈱ジモティー 広告掲示板「ジモティー」

ユニファ㈱ ポータルメディア写真サー
ビス「るくみー」

グローバル賞 独Planio社 プロジェクト管理サービス
「Planio」

ソーシャル
イノベーション賞

正興ITソリューション㈱ 健康管理ソリューション
「Health-Ledger」

㈱メドレー オンライン診療アプリ
「CLINICS」

注）ユーザ企業がSalesforce製品用に開発した画面、機能などを
 購入できるサービス。

http://www.grapecity.com/
http://rubybiz.jp/
http://www.neo.co.jp/

190 - Software Design

プログラミングと数学
　機械学習／深層学習が、実用的な技術として ITの世界に受け入れられつつあり、そういっ
た分野の求人も増えてきているそうです。機械学習／深層学習には便利なフレームワークも
たくさん出てきていますが、システムとして実装するには、少なからず高等数学の知識が必
要となります。昔の教科書を引っ張り出してきたりと、数学の勉強をあらためて始められた
プログラマ／エンジニアの方も多いのではないでしょうか。

ハッシュテーブルのしくみ、MongoDB、

Couchbase、Redis、NoSQLとして使
うMySQLと、今のNoSQL業界を横断
するような特集でした。気になった／
使いたくなったDBはありましたか？

普段は意識していなかったハッシュの
奥底まで踏み込んでいてよかった。
 りょうじさん／東京都

いまだに実案件でNoSQLを使う機会
に遭遇していないのですが、いつか使
いたいと狙っています。
 オトさん／神奈川県

業務でKVS（Redis）を利用しているた
め、再度基本を学べて良かった。
 massakiiiiさん／福岡県

DBの基本概念から解説してあり、わ
かりやすい。 林さん／愛知県

これまでNoSQLはmemcachedし
か使ってこなかったので参考になりま
した。MySQL Clusterはおもしろそ
うなので検証してみたいと思います。
 犬棟梁さん／埼玉県

同じKVSのNoSQLでもいろいろな特
色があることがわかり、とても参考に
なりました。次回機会があればグラフ
型データベースについても取り上げて
いただけるとうれしいです。
 出玉のタマさん／大阪府

実用段階に入って久しい各種
NoSQL、使いたいと考えている

読者の方は多いようです。実装するシ
ステム、扱うデータに合わせてSQLと
使い分けられれば、強い武器になるこ
とでしょう。

プログラミングでは避けては通れない
文字コードについて、文字どおり0と1

から解説しました。第2章からは実践編
として、HTML、Java、Ruby、MySQL

における文字コードのハマりどころと
その回避策を扱いました。

文字コード関係の問題はいつも付け焼
刃の知識でしのいできたので、あらた
めて体系的に整理でき、たいへん勉強
になりました。 南雲さん／埼玉県

もう文字コードはUTF-8の時代なんで
すね。まだShift_JIS指定しています。

読める人いないんじゃないかしら。
ちょっと気になります。
 Tayuさん／千葉県

文字化けさせないためにも文字コード
の理解は不可欠だと思いました。
 永作さん／東京都

文字コードについては最近の動向を
ちゃんと理解できるようになりました。
 栗原さん／大阪府

UTF-8で統一かと考えていましたが、
まだまだShift_JIS（CP932）の呪縛
は消えませんね。
 いとうはじめさん／宮城県

そういえば、最近はShift_JISの0x

5Cに起因する文字化け問題、あまり見
なくなった気がしますね。UTF-8普及
が進んでますよね。
 のりぃさん／埼玉県

今回の文字コードの特集はたいへん役
に立ちました。ありがとうございます。
このようなまとまった情報は、今まで
あまりなかったような気がします。普
段文字コードエラーが出ると、その場
しのぎで処理していました（内緒です
が）。 山根さん／京都府

2016年12月号について、たくさんの声が届きました。

第1特集
NoSQLの教科書

第2特集
文字コード攻略マニュアル

190 - Software Design Feb. 2017 - 191

文字コードについて体系的に学
べて良かったという声が多く寄

せられました。そのほか、文字化けで
痛い目をみたという読者の声も多かっ
たです。本特集は、文字化けなどのト
ラブルシューティングにも役立つ内容
でした。

連載記事「ITむかしばなし」の特別版。
日本の IT黎明期から活躍されている9

人の方に、ご自身の経験と当時の様子
を振り返っていただきました。

若手エンジニアとしては、過去を知る機
会ができて、ためになりました！
 ぴょうへいさん／大阪府

初期のインターネットダイヤルアップ
接続とユーザ認証を読んでいて、なん
とも懐かしい気分になりました。
 yoshitakaさん／神奈川県

おじさんなので昔話は懐かしい限りで
す。 FMタウンズ世代さん／埼玉県

大学でFM-11（Intel 8088）にLISP処
理系を実装したのを思い出しました。
RAMを空けるためFloppyでSwap
機構も作りましたが、それも含めすべ
てアセンブラ記述でした。
 e-jさん／神奈川県

リアルタイムで経験した懐かしい話が
多かったです。あの当時、もっといろい
ろとしていれば、今はもうちょっと違っ
たのかな、という回顧的な妄想もあっ
たり。(^^;; 福田さん／神奈川県

現役世代には懐かしく、若手世
代には新鮮なお話でした。ほか

の産業に比べればまだまだ歴史の浅い
IT業界ですが、それでも現在に至るま
での先人の試行錯誤が確かに存在し、
今の便利さにつながっているのだと実
感できました。

並行処理が書きやすく、耐障害性の高
いWebアプリを作るのが得意な言語と
して注目が集まる「Elixir」の入門記事で
す。後編では、プロセスによる並行処
理とmix・Phoenixを使ったアプリ開発
について解説しました。

最近いろんな場面で少しずつ見かける
ようになった言語ですが、まだ情報が少
ないので、勉強する機会ができて良かっ
たです。 村橋さん／北海道

年末年始の休みにでも試そうかと……。
 うたさんさん／大阪府

正直、言語が多過ぎて業務の上ではあ
る程度絞っている。しかし、システム

を刷新する際の参考になるし、こうい
う記事を読むことで新しいアイデアの
発想につながる。
 s5k6s842さん／沖縄県

Phoenixを使ってアプリケーションを
作ってみたくなりました。
 tomato360さん／東京都

どんどん新しい言語が出てきて、
すべてを試すことはとてもでき

ないですね。ただ、言語の強みや弱み
を押さえておくことで、未来における
選択肢の1つにすることができます。並
行処理に興味がある方、Elixirがお勧め
です。

第3特集
ITむかしばなしスペシャル

一般記事　［次世代言語］Elixirの
実力を知る（後編）

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① Wi-Fiホームルータ「Aterm WG2600HP2」
濱田弘様（兵庫県）

② ウイルスバスタークラウド＋デジタルライフ
　サポート プレミアム 1年版
オブジェクト脳192様（大阪府）

③ QiitaノベルティTシャツ（Mサイズ）
　ブルー：NGO VAN KHANH様（東京都）
　グレー：大平圭佑様（東京都）

④ 『Ansible徹底活用ガイド』
菊地謙様（愛知県）、青木悟様（神奈川県）

⑤ 『確かな力が身につくPHP「超」入門』
つばき様（愛知県）、高瀬行夫様（石川県）

⑥ 『インフラエンジニアの教科書2』
Sakura Onishi様（東京都）

⑦ 『ポートとソケットがわかればインターネットが
わかる！』
福田悟史様（埼玉県）、岩永良太様（東京都）

12月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

http://sd.gihyo.jp/
mailto:sd@gihyo.co.jp

March 2017

次号予告

Software Design
2017年2月号

発行日
2017年1月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
中島亮太
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
広告企画部
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6179
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2017年3月号
定価（本体1,220円＋税）

192ページ

2月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2017 技術評論社

●ちょっとした運動の後、僧帽筋を痛め首がまわらなく

なって2週間、そして現在1ヵ月すぎても背中の痛みが

取れない。治療では背中・肩・首の筋肉がカチンカチ

ンだそうだ。自覚症状がないので肩こりをしないタイプ

と自分を決めつけていたけど、体中がいろいろダメに

なっている。メンテナンスが要る時期に来たなぁ。（本）

●自分がファイルシステムを意識したのは、DISK

BASICやMS-DOSのFDだった。1980年代はPCゲー

ムが流行り、プロテクトがかかったFDがいろいろあっ

た。規格外のトラックに情報があったり、回転数を落

として同一トラックにセクタを増やしてあったり。シー

ク音で何かわかった頃が懐かしい。（幕）

●猫カフェ初体験！　土曜のお昼前、食事を終えてや

や眠くなった猫がウロウロ、ゴロゴロしている座敷部

屋は完全なまったり空間。ごきげんをうかがいながら、

なでさせてもらう。たまにフギャっと怒られて、すみま

せん、と手を引っ込めたりしながら撮影。かわいい寝

顔を撮影した、この瞬間の幸福感が◎。（キ）

●近所の本屋が雑貨屋化してきています。本よりも利

益率の高い雑貨の品数を増やすからには、経営難な

のでしょう。倒産したら困るので、Amazonの利用は

控えてその本屋で本を買っています。同様に、近所

の街並みがチェーン店だらけになると嫌なので、でき

るだけ個人店を利用するようにしています。（よし）

●取材の仕事でラスベガスに行ってきました。スト

リップ地区のホテルはどれも巨大で豪華絢爛。ダウン

タウン地区のフリーモントストリートにはカジノが立ち

並び、天井は電飾アーケードになっていて、深夜な

のに昼間のような明るさ。なんと空港にまでスロットマ

シーンが並んでいました。業が深い街です。（な）

●11月は寒い日が続いて積雪。12月は冬至を迎えて

いるにもかかわらず、暖かい日が続いて師走とは思え

ない季節外れの天候でした。北極の海氷が例年より

多く溶けていることもあり、この先はぐぐっと寒くなる

日もあるとか。2月の受験シーズンに雪が降らないこ

とを祈りつつ。穏やかな年になりますように！ （ま）

S D S t a f f R o o m

［第1特集］ マーケティング＆サービス向上に役立つ　

ログ＆データ分析基盤入門
［第2特集］

実践DevOps！　
【インフラ自動化】完全マニュアル
［特別企画］

PG-Stormとは何か（前編）
［一般記事］

なりすましメール対策
Amazonペイメントのしくみ

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

■2017年1月号
●P.128　連載「セキュリティ実践の基本定石 第39回」左段下から14行目
　［誤］CNCのサーバには外部から101/tcpポート
　［正］CNCのサーバには外部から48101/tcpポート

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

192 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	SD2017年2月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 なぜプログラマの役に立つのか いまはじめるDocker コンテナ技術を身につける
	第1章：プログラマのためのコンテナインフラ環境とは？ いっきに押さえるDockerの基礎からKubernetesまで中井 悦司
	第2章：すぐに使える！ マネージドサービスでDockerを活用阿佐 志保、山田祥寛
	第3章：使ってみよう！ アプリ開発のストーリーからメリットを知る阿佐 志保、山田 祥寛
	第4章：用途ごとに分類 Dockerイメージとコンテナを活用するコマンドの理解前佛 雅人
	第5章：現場は何に悩み、何を解決したのか 導入事例で見えてくるDockerの使いどころ川添 昌俊、矢吹 遼介
	第6章：しっかりと基礎を固める Linux Containerの歴史としくみ花高 信哉
	第7章：runC、Swarmモード、Dockerストア…… Dockerの最新動向を知る前佛 雅人

	■第2特集 Linuxファイルシステムの教科書 Ext3、Ext4、XFS、F2FS、Btrfsの特徴と進化青田 直大
	第1章：いろいろなファイルシステムの特徴とファイルの整合性を保護する機能
	第2章：古典的ジャーナリングファイルシステム「Ext3」 のしくみ
	第3章：現代のジャーナリングファイルシステム〜Ext4とXFS
	第4章：フラッシュデバイス用ファイルシステムと、Copy-on-Writeが特徴のBtrfs

	■第3特集 なぜ入りたい会社に入れないのか？ エンジニアが採用できない会社と評価されないエンジニア（後編）　......伊勢幸一
	■一般記事
	セキュリティ情報の最前線「Black Hat USA 2016」でトレーニング！ ペネトレーションテストで学ぶ侵入攻撃の手法と対策國信真吾

	■Catch up trend
	・うまくいくチーム開発のツール戦略【6】「すぐに使える障害管理テンプレート」なら簡単！ JIRAでラクラクIT運用業務斎藤 智昭、山本 鮎美、大塚 和彦

	■連載：Column
	及川卓也のプロダクト開発の道しるべ～品質を高めるプロダクトマネージャーの仕事とは？【4】製品要求仕様書（PRD）の書き方......及川 卓也
	digital gadget【218】ハードウェア開発を加速する安藤 幸央
	結城浩の再発見の発想法【45】メモ化　......結城 浩
	増井ラボノート　コロンブス日和【16】Scrapbox（1）増井 俊之
	宮原徹のオープンソース放浪記【12】2016年のOSCも無事に終了宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【20】CとC++坪井 義浩
	ひみつのLinux通信【36】コマンド名の由来くつなりょうすけ
	Hack For Japan～エンジニアだからこそできる復興への一歩【62】シビックテック祭り「Code for Japan Summit 2016」関 治之
	温故知新 ITむかしばなし【62】シャープMZ-2861～MZの最後に輝く究極の16ビットパソコン～　......速水 祐

	■連載：Development
	使って考える仮想化技術【9】仮想マシンの作成笠野 英松
	RDB性能トラブルバスターズ奮闘記【12】EAVや非正規形のテーブル設計を少しずつ修正する方法......生島 勘富、開米 瑞浩
	Androidで広がるエンジニアの愉しみ【13】スマートフォンと人工知能がつながる未来古川 新
	Vimの細道【15】QuickRunで開発を加速する（前編）mattn
	るびきち流Emacs超入門	【33】Emacsの正規表現（上級編）るびきち
	書いて覚えるSwift入門【22】謹賀新言語小飼 弾
	Sphinxで始めるドキュメント作成術【23】Sphinx拡張の作り方　......小宮 健
	セキュリティ実践の基本定石【40】2016年のセキュリティの状況を振り返る（前編）　......すずきひろのぶ

	■連載：OS/Network
	SOURCES～レッドハット系ソフトウェア最新解説【6】Red Hat OpenShift Container Platform Part2小島 啓史
	Debian Hot Topics【43】Mini Debian Conference Japan 2016レポートやまねひでき
	Ubuntu Monthly Report【82】Ubuntu 16.04 LTSで使用できるUSB無線LANアダプタ7選　......あわしろいくや
	Unixコマンドライン探検隊【10】ファイルシステムについてもう少し深く中島 雅弘
	Monthly News from jus【60】もはや生活の一部!? ベテランのコミュニティ運営術　......榎 真治

	■アラカルト
	ITエンジニア必須の最新用語解説【98】.NET Standard 　......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW
	SD NEWS & PRODUCTS
	Readers’ Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内

