

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

技術評論社の本が電子版で読める！
https://gihyo.jp/dp

 GIHYO
 Digital Publishing

 GIHYO
 Digital Publishing

未来の“普通”を，今。

 Gihyo Digital Publishing

 GIHYO
 DIGITAL
 PUBLISHING

〒162-0846　新宿区市谷左内町21-13　株式会社技術評論社　クロスメディア事業部
TEL：03-3513-6180　メール：gdp@gihyo.co.jp

法人などまとめてのご購入については別途お問い合わせください。
お問い合わせ

あわせて読みたい

イチオシの
1冊！

Webフロントエンド
ハイパフォーマンス チューニング
久保田光則　著

2,680円　 EPUB PDF

Webサイト，Webアプリケーションをより高速にチューニングするための解
説書です。リッチなWebサイト，Webアプリケーションの増加はとどまると
ころを知らず，これらの高速化の需要はますます高まってきています。

本書では高速化という課題に対し，きちんと対処できる知識と実力を身に
付けます。基礎となるブラウザのレンダリングから，個別の問題に対する対
応例，今後を見据えた設計の基礎などその場しのぎではない本質的な高速
化を学びます。

https://gihyo.jp/dp/ebook/2017/978-4-7741-9034-1

Intel Edisonマスターブック
～IoTデバイスをつくろう～

EPUB PDF

【図解】コレ1枚でわかる
最新 ITトレンド［増強改訂版］

EPUB PDF

JavaScriptではじめる
プログラミング超入門

EPUB PDF

rsyslog 実践 ログ管理入門

EPUB PDF

他の電子書店でも
好評発売中！

http://gihyo.jp/dp
https://gihyo.jp/dp/ebook/2017/978-4-7741-9034-1

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

https://gihyo.jp/site/inquiry/dennou

OSとネットワーク、
IT環境を支えるエンジニアの総合誌

年間定期購読と
電子版販売のご 案内

毎月18日発売
PDF電子版
Gihyo Digital
Publishingにて
販売開始

1年購読（12回）

14,880円（税込み、送料無料） 1冊あたり1,240円（6%割引）

※ご利用に際しては、／̃＼Fujisan.co.jp（http://www.fujisan.co.jp/）に記載の利用規約に準じます。

年間定期購読

 ／̃＼Fujisan.co.jpクイックアクセス
http://www.fujisan.co.jp/sd/
 定期購読受付専用ダイヤル
0120-223-223（年中無休、24時間対応）

1 >>

2 >>

・インターネットから最新号、バックナンバーも1冊からお求めいただけます！
・紙版のほかにデジタル版もご購入いただけます！
　デジタル版はPCのほかにiPad/iPhoneにも対応し、購入するとどちらでも追加料金を支払うことなく読むことができます。

PDF電子版の購入については

Software Designホームページ
 　http://gihyo.jp/magazine/SD
をご覧ください。
PDF電子版の年間定期購読も受け付けております。

Fujisan.co.jp
からの

お申し込み方法

http://gihyo.jp/magazine/SD
http://www.fujisan.co.jp/
http://www.fujisan.co.jp/sd/

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

Software Design plusシリーズは、esign plusシリーズは、usシシリpl ズー OSと
ネットワーク、IT環境を支えるエンジニアワーク、IT環境を支えるエ支、T環境をIT環境境 の
総合誌 ft D i 』編集部が自信誌『S ft DS tft

〒162-0846 東京都新宿区市谷左内町21-13
販売促進部　TEL 03-3513-6150 FAX 03-3513-6151

ED - 1 - Software Design

　「Moby Project」は、2017年4月
にDocker社が発表したコンテナシ
ステムのための新しいオープンソー
スプロジェクトです。Docker社では、
これまでにもコンテナベースのシス
テムを構築するためのさまざまなコ
ンポーネントを開発・提供してきま
した。Moby Projectでは、これら
のコンポーネントを他のコンポーネ
ントと任意に組み合わせることに
よって、自由にカスタムのコンテナ
システムを作り上げられるしくみが
提供されます。
　具体的には、Mobyは次のような
要素で構成されます。

• コンテナ化されたバックエンドコン
ポーネントのライブラリ。たとえば
ローレベルのビルダやロギング機
能、ボリューム管理機能、ネットワー
ク機能、イメージ管理機能、コン
テナランタイム、オーケストレーショ
ンツールなど

• コンポーネントを標準的なコンテナ・
プラットフォームで組み立てるため
のフレームワーク、および構築、
テスト、デプロイメントのためのツー
ル群

• Moby Originと呼ばれる、コンポー
ネントの組み立て（アセンブリ）の
参照実装

　コンポーネントやアセンブリは
オープンな共有モデルによって提
供され、サードパーティ製のコン
ポーネントも含めて自由に入れ替え

ることができます。Moby Projectは、
コンポーネントおよびアセンブリの
開発におけるコラボレーション基盤
として機能するとのことです。

　Moby Projectの公開に至る以前
から、Docker社ではコンテナ関連
技術のコンポーネント化を積極的
に進めていました。その中には、コ
ンテナベースシステムの構築や管
理のためのツールはもちろんのこと、
既存のDockerエンジンの機能の一
部を独立したツールとして提供した
ケースもあります。現在提供されて
いる主要なコンポーネントとしては
次のようなものが挙げられます。

• VPNKit……仮想ネットワークを実
現するためのライブラリツールキット

• DataKit……分散コンポーネント
向けのパイプラインフレームワーク

• HyperKit……macOSの Hyper
visor Frameworkに対応した軽
量な仮想化ツール

• libnetwork……Dockerのネット
ワーキング機能を提供するコンポー
ネント

• Notary……安全なコンテンツの
公開やコンテンツの内容の検証な
どを行うためのユーティリティ

• InfraKit……クラウドやオンプレミ
スにおいて、自己修正型のインフ
ラを構築・作成できるツール

• LinuxKit……containerdが動作
することに特化した最小限のLinux
をビルドするためのツールキット

• SwarmKit……マルチホスト環境

に対応した Dockerコンテナの
オーケストレーションツール

• runC……コンテナ標準である
OCIに準拠したコンテナランタイム

• containerd……Dockerエンジン
のコアとなるコンテナランタイム。
コンテナ実行レイヤの実装には
runCを利用している

• Docker Compose……複数の
Dockerコンテナからなるサービス
の構築や実行を自動化するツール

　このうち、LinuxKitはMoby Pro
jectの発表と同時にOSSとして公
開されました。これまでのDocker
コンテナはホストOSの上で動作す
るプロセスの1つでしたが、Linux
Kitを使うことで、OS機能ごとコン
テナとしてパッケージングして配布
できるようになります。
　Docker社では、プラガブルで
柔軟なコンテナシステムを実現す
るために、長い時間をかけてこの
ようなコンポーネント化に挑んで
きました。Mobyでは、これらのコ
ンポーネントを基本としつつ、必要
に応じてコンポーネント単位で組み
合わせを変えることによって、特定
用途向けのコンテナシステムを簡単
に構築することができます。コンテ
ナがさまざまな分野に普及していく
うえで、Moby Projectによるエコ
システムの形成は大きな役割を果
たすことになりそうです。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 103回

Moby Project

Moby Project
https://mobyproject.org/

コンテナシステムのため
の新プロジェクト

関連ツールのコンポーネン
ト化を進めてきたDocker

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
https://mobyproject.org/

vol.223

1 - Software Design Jul. 2017 - 1

　現在、床をハイハイしている赤ちゃ
んたちは、ごくごく普通に生まれたとき
からネットはもちろん、スマートフォンや
タブレットなどのタッチパネル端末が
存在します。そういうタッチすると何か
反応することを覚えた子供は、紙の雑
誌やテレビ画面さえも、なんでもかんで
も触って自分の思いどおりに動かそう
とするわけです。
　小さな子供には、大人の身体や特
徴とは異なるさまざまな要素が存在し
ます。
　音に敏感に反応したり、指がまだ
正確に使えず、グーパーと握るだけ
だったり、指も細く、小さすぎて何かを
うまくつかんだり、タッチパネルを的確
に操作したりできません。そもそもシン
グルタッチと呼ばれる人差し指だけで
ボタンをタッチするような操作は不得
意です。
　また興味を持って何かを触るときも、
どこを触るのかわからず、飽きっぽくて、
何かに集中していられる時間が短い
かと思えば、気に入ったことがあると、
何度も何度も飽きずに繰り返します。
ティッシュを引き出すことができるとわ
かったら、もう延 と々ティシュを箱から
引き出してみたり、大人の常識は子供
には通じません。
　けれども「赤ちゃんだから」と割り
切って考えるかもしれませんが、飽き

やすい、待たない、慣れないと的確に
扱えないといったことの本質は、子供
だけでなく、大人や高齢者も含め、す
べての人たちに当てはまる事柄でもあ
るのです。家庭に乳幼児がいると、大
人の理屈では考えられないほどの、さ
まざまな面倒な出来事や、手間、作業
が数多く予想できないタイミングで発
生します。
　生まれたばかりの赤ちゃんは、目も
まだまだ発達しきっておらず、大人と
同じように物事を見たり判別したりす
ることができません。赤ちゃんの見え
方を試すことのできるサービス「Tiny
Eyes（http://tinyeyes.com/）」では、
画像をアップロードすると、赤ちゃんの
見えている視点ふうにぼんやりした画
像を生成してくれます。赤ちゃん向け
の絵本がパッキリくっきりとした絵や
色合いなのも納得です。Tiny Eyes
では、生まれたばかりの赤ちゃん、1ヵ
月から、2、3、6ヵ月の見え方を示してく
れます。
　また、赤ちゃんがボンヤリとしか見
えないことを考慮し、赤ちゃんの視
線を集める単純な模様が描かれた

「Shutter Buddy」（pic.1）という
カメラグッズもあります。そういった赤
ちゃんならではの特性をとらえたさまざ
まなグッズが存在しているので、今回
はそれらを紹介していきましょう。

　赤ちゃん本人が使うものと、赤ちゃ
んを持った親や大人たちが活用する
デジタルグッズの両面があります。赤
ちゃんや幼児は、何かがちょっと光っ
たり動いたりするだけでとても喜んでく
れます。色や形も単純なものしか理解
できず、何か深く考えるまえに、まずは
触ってみることから始めます。大人の
手間や作業を少しでも削減し、子供た
ちをあやしたり、楽しんだりするデジタ
ルデバイスをいくつか紹介します。

　産婦人科の病院で使うような、赤
ちゃんの呼吸を監視するモニターの
家庭版（pic.2）。呼吸、睡眠、寝返
り、目を覚ましたことをスマホに知ら
せてくれます。非常用バッテリーも備

幼児のためのデジタルガジェット

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

安藤 幸央
EXA Corporation

新しい世代の子供たち 赤ちゃんならではの
デジタルグッズ

※本記事で紹介しているものは
国内未発表・未発売のものを含んでいます。

指のサイズが小さい赤ちゃんの手

Rayiot
http://www.rayiot.org/

http://www.andoh.org/
http://www.rayiot.org/
http://tinyeyes.com/

2 - Software Design

え、停電時も3時間ほど動作するそ
うです。赤ちゃん監視用のカメラとし
てはほかにも「Evoz」（pic.3）や、ス
マートフォン端末のカメラを活用する

「Dormi」（pic.4）などがあります。

　赤ちゃんの睡眠モニター（pic.5）。
オプションを追加すると赤ちゃんの睡
眠パターンの分析が行え、赤ちゃんの
就寝、寝起きのパターンや睡眠時間
をスマートフォンで把握することができ
ます。何時ごろ眠ると朝まで寝ている
とか、単にグズっているだけですぐに
寝付くとか、何時ごろ眠ると、夜中何
時ごろ起きるといったパターンがわか
るわけです。また自然の音を流してく
れる機能もあり、さまざまな方法で赤
ちゃんの就寝を手助けしてくれます。

　

自動ゆりかご（pic.6）。赤ちゃんの泣
き声を検知して、自動的に揺れ始め
ます。また、単にあやすだけでなく、赤
ちゃんが眠りに入りやすいよう、ゆっく
り揺らしたり、多くの赤ちゃんでユーザ
テストした結果から最適な揺れを提供
してくれるそうです。1,160ドルで販売
中。そのほかにも既存のゆりかごの足
に装着して自動で揺れるゆりかご化す
る「Lullabub」（pic.7）という商品も
あります。

　これから育っていくであろう新しい
世代は、物事のとらえ方が異なってく
るでしょう。たとえば……

●高速ネットワークは当然常時つな
がっているのがあたりまえ

●データの転送量やファイルのサイ
ズなどを気にせずコンテンツを扱う

●コンピュータやネットの負荷などは
気にしない

●クラウドにある、ローカルにある、など
とデータの置き場所を意識しない

●ちょっとした短い時間のタイムラグ
やズレ、遅れも気にする

●モノよりコト、何でも手に入る時代
なので所有欲やコレクション欲が
薄れる

　たとえば、現在家や部屋にテレビが
ない、テレビを見ないという人がいるか
もしれません。ゲーム専用のテレビや、
コンピュータ用のディスプレイや映画
鑑賞用のプロジェクタはあっても、地
上波のテレビを録画ではなくリアルタ
イムで見ることは減っているかもしれ
ません。ある年代以上であれば、たい
ていの場合、子供のころ、家にテレビ
が存在したと思います。ですから、現
時点で家にテレビがなくても、テレビ
がある風景というものは想像がつきま

幼児のためのデジタルガジェット

pic.１　
Shutter Buddy（左）
Shutter Huggers（右）

pic.2　
Rayiot

pic.5　
Nanit

pic.6　
SNOO Smart Sleeper

pic.3　
Evoz
https://myevoz.com/

pic.4　
Dormi
http://dormi.sleekbit.
com/

pic.7　
Lullabub
http://www.babyhugs.com.au/

未来の世代のための
デジタルガジェット

Nanit
https://www.nanit.com/

SNOO Smart Sleeper
https://www.happiestbaby.com/
pages/snoo

https://www.nanit.com/
https://www.happiestbaby.com/pages/snoo
http://www.babyhugs.com.au/
http://dormi.sleekbit.com/
https://myevoz.com/

Gadget 1 Gadget 3

Gadget 2 Gadget 4

2 - Software Design Jul. 2017 - 3

TempTraqは赤ちゃんの体温を計測
し、スマホに転送できるウェアラブル
デバイスです。子供が高熱を出したと
きに脇に貼って様子を見ることができ
ます。大型の絆創膏のようなシール
状になっており、使い捨てで24時間
利用できます。就寝中にあらかじめ指
定した度数を越えたら、親に通知した
り、2人の子供が同時に高熱を出した
ときにも見分けることができたり、さまざ
まな状況に配慮されています。米国で
は一般的な薬店
で定価19.99ド
ル、実売価格10
ドル程度で販売
中。米国ではFDA

（ 食 品 医 薬 品
局）の認可済み
ですが 、日本 販
売は未定です。

https://www.versame.com/
starling/

Pechatは、一般のぬいぐるみの胸
にボタンとして取り付けて利用する、
Bluetoothスピーカーマイクデバイス
です。専用アプリから音声を出すこと
で、あたかもぬいぐるみがしゃべってい
るかのように、扱うことができます。あら
かじめ登録された言葉や、歌、お話し
のほかにも、周囲の声に反応して対
話やおうむ返しをするモードもあります。
充電式で、3時間の充電で連続1.2
時間利用できます。見通し距離でス
マートフォンと約10メートル以内のとこ
ろで使えます。

Starlingは赤ちゃんに話しかけた言葉
の数を記録してくれる星形のウェアラ
ブルデバイス。赤ちゃんの言語能力は
幼いころにどれだけ話しかけられたかに
よって決まるらしく、周りの大人がどのく
らい話しかけているのかを計測し、その
量を意識するためのデバイスです。また
話しかけられる言葉だけでなく、赤ちゃ
ん本人が発した言葉もカウントしてくれ
ます。バッテリーは一度の充電で5日間
持ち、防水機能あり。149ドルで販売
中。スマートフォンと連携して利用でき
ます。計測はネットなしでも可能です。

Baby Giglはミルク量を計測してくれ
る、賢いスマート哺乳瓶です。哺乳瓶
の本体カバーに重量センサーと傾きセ
ンサーを搭載し、赤ちゃんにミルクをあ
げた時間や量を計測できます。哺乳
瓶を傾けすぎないように警告のランプ
が点いたり、警告音で知らせてくれた
りします。センサーで得られたデータは
スマートフォンと連携して記録できます。
数時間ごとにミルクを飲む赤ちゃん（と
赤ちゃんに飲ませる親）にとっては便
利なグッズです。現在開発中で100ド
ルほどで販売予定とのこと。

Pechat Starling

Baby Gigl TempTraq

ぬいぐるみを
おしゃべりにするボタン

スマート哺乳瓶

言葉の数を
記録してくれるデバイス

赤ちゃんの
体温計測デバイス

https://pechat.jp/

http://www.slowcontrol.com/en/
baby-gigl/ https://www.temptraq.com/

す。けれど、もう一世代巡り巡って、生
まれたときから家にテレビがない世代
というのも増えてくるのではないでしょ
うか。手間をかけずに、YouTubeやテ
レビ局のアプリで見たい番組が見ら
れる時代が特別なことではなく、ごく
普通のことだと子供たちに浸透して
いっています。
　一方、スマートフォンでなんでも撮
影でき、音楽も聴き放題のこの時代
に、一部の人たちに昔流行った使い
捨てのフィルムカメラやカセットテープ
が見直されつつあります。フィルムカ
メラは、現像やプリントしなければでき
あがった写真を見ることができず、面
倒な手間と、貴重な時間がかかります。
また撮影時に失敗したときも、あとか
らでないとわかりません。カセットテー
プもわざわざ録音したり、巻き戻したり、
音楽を聴くための準備も、聴く方法も
スマートフォンと比較すると面倒であ
ることは否めません。
　そういった、一見無駄とも思える時
間と手間ひまをかけ、そうやって得られ
たコンテンツだからこそ、貴重なものと
して、特別な感情を抱くことができる
のかもしれません。これからは、デジタ
ルデバイス、デジタルなサービスにお
いても、必要な手間や、単に素早いだ
けではない時間の流れ、愛着といった
アナログ的な要素を意図的に組み込
んでいく必要があるのかもしれません。
　最近では、赤ちゃん向けにデジタ
ル技術を活用したBabyTechという
分野も広がってきており、BabyTech
Awards（http://awards.babytech
summit.com/）という賞が開設されま
した。この記事でも紹介した商品を含
め、数々のグッズがエントリーされ、執
筆時現在審査中です。
　分野としては、赤ちゃんの飲み食い、
遊びや教育、赤ちゃんの移動や乗り
物、安全のための見守り、健康状態
のチェックなど、ありとあらゆる分野
に広がっています。テクノロジの力を
借りて、子育てがより便利になり、赤
ちゃんたちが元気に成長していってほ
しいものです。｢

https://pechat.jp/
https://www.versame.com/starling/
http://www.slowcontrol.com/en/baby-gigl/
https://www.temptraq.com/
http://awards.babytechsummit.com/

4 - Software Design

ブランチとは

　ブランチ（Branch）とは、バージョン管理シ
ステムで管理される、プログラムの別バージョ

ンのことです。ブランチという言葉は「幹から
分かれた枝」のことで、大本になっているプロ
グラムを木の幹に見立て、別バージョンを幹か
ら分かれた枝にたとえた用語です。
　ブランチの呼び名は開発プロジェクトごとに
さまざまですが、実際に運用しているブランチ
をマスターブランチと呼び、開発のために使う
ブランチを開発ブランチと呼ぶことがあります（図
1）。この場合、マスターブランチはいわば木の
幹にあたりますが、幹と枝の区別を付けずにす
べてブランチとして扱っていることになります。
　わざわざブランチという形でプログラムの別
バージョンを作るのは、動作しているプログラ
ムを修正によって壊さないようにするためです。
プログラムは複雑な構造物ですから、修正する
ときにはほかの部分へ影響が起きないように注
意する必要があります。たとえば、多くのユー
ザがいるプログラムで修正ミスが入り込んだら、
たいへんなトラブルになってしまいます。
　マスターブランチと開発ブランチを分離する
のは、そのようなトラブルを避けるためです。
開発者は、マスターブランチを直接修正するの
ではなく、いったんマスターブランチとまった
く同じ開発ブランチを作成します。そしてその
開発ブランチのほうに修正を加えていくのです。
　開発ブランチ上で作業している間、マスター

ブランチにはいっさい変更ありません。開発ブ
ランチ上での作業が終わり、十分にテストを行っ
てからマスターブランチに修正点を反映（マー
ジ）することになります（図2）。修正点は、開
発ブランチが枝分かれした時点から現在までの
差分で判定します。このように、マスターブラ
ンチと開発ブランチとを分離して、安定した運
用を保ちつつ修正を加えていくのは、ブランチ
を作る目的の1つです。
　プログラムを開発するときのブランチは2本
とは限りません。プログラムに新しく機能を追
加するとき、機能ブランチと呼ばれるブランチ
を作ることがあります（図3）。複数の開発者が
実装に取り組む過程で、たくさんの機能ブラン
チが作られるのはめずらしくありません。複数
の開発者が並行して作業を進めるのも、ブラン
チを作る目的の1つです。
　機能ブランチごとに開発された新機能は、完
成するごとに開発ブランチにマージされ、さら
にテストが済んだところでマスターブランチに

Branch ̶̶ ブランチ

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 50

マスターブランチ

開発ブランチ

 ▼図1　マスターブランチと開発ブランチ

マスターブランチ

開発ブランチ

マー
ジ

 ▼図2　マスターブランチに開発ブランチをマージする

http://www.hyuki.com/

4 - Software Design Jul. 2017 - 5

マージされます。
　バージョン管理システムとブランチを使ったプ
ログラムの開発は、作業が進行していくにつれ
て枝から新しい枝が伸び、そして枝の先がほか
の枝に戻っていくような姿になるでしょう（図3）。

独立性

　「マスターブランチを壊さないようにするた
め開発ブランチを作る」という目的を考えると、
ブランチごとの独立性が重要であることがわか
ります。つまり、あるブランチにいくら修正を
加えても、マージするまではほかのブランチに
いっさい影響がないということです。ブランチ
の独立性が守られているため、開発者は失敗や
ミスを恐れずに安心して開発を行うことができ
るのです。
　「複数の開発者が並行して作業を進める」とい
う目的にも独立性が効いてきます。1つのプロ
グラムに対して複数の開発者が修正を行うのは
よくあることです。しかし、1人の修正がほか
の人に影響を及ぼすなら、作業効率は落ちてし
まいます。機能ブランチが独立していることで、
ほかの人の修正に影響を受けず、落ち着いて作
業を進めることができるのです。

日常生活とブランチ

　日常生活でブランチに似たものはあるでしょ
うか。プログラムは複製や差分の判定が低コス
トで行えるので、ブランチを作るのは難しくあ
りません。しかし、日常生活の中では文字どお
りのブランチを作ることは難しくなります。そ
れは物理的なものを複製するのは難しいからで

す。しかし、独立性という観点で考えると、ブ
ランチに似たものは見つかります。
　どんな会社も、安定している事業を失敗させ
たくはありません。しかしその一方で、新しい
取り組みを行わなければ時代遅れになってしま
うでしょう。ここに見られるのは、運用中のプ
ログラムを壊さないようにしつつ新機能を入れ
たいという要求と同じです。
　また、いいアイデアを見つけた意欲のある社
員は新事業を興したいと思うかもしれません。
しかし、会社に属しているという自分の環境を
捨ててゼロから起業するのは難しいでしょう。
ここにあるのは、自分の環境を壊さないように
保ちつつ新しいチャレンジをしたいという要求
と言えます。
　社内ベンチャーという制度を採用している企
業があります。この制度は、社員が得た事業の
アイデアを会社の支援を受けつつ実現するとい
うしくみです。社内ベンチャーを利用するとい
うのは、社員であるという自分の環境をそのま
ま保ちつつ、新たな事業に取り組むわけなので、
ちょうど、マスターブランチから新たなブラン
チを作成したようなものです。たとえ新たなブ
ランチで失敗があったとしても、元の環境に戻
ることができるので、安心してチャレンジがで
きるでしょう。
　あなたの周りを見回して、安定したものを守
りつつも改善を加えたいという要求はないでしょ
うか。改善はしたいが安定しているものを壊し
たくはないというのは一見矛盾した要求です。
そのときに、独立性を保証する「ブランチ」に相
当するものは作れないでしょうか。失敗やミス

があっても安定してい
るものを壊さないよう
な環境や、「お試し」が
できる場を作ることは
できないでしょうか。
　ぜひ、考えてみてく
ださい。｢

50

マスターブランチ

開発ブランチ

機能ブランチ3

機能ブランチ1 機能ブランチ2

マー
ジ

マー
ジ

マ
ー
ジ

マ
ー
ジ

マー
ジ

 ▼図3　機能ブランチ

6 - Software Design

プロダクト開発の道しるべ
及川卓也の

品質を高めるプロダクトマネージャーの仕事とは？

　本誌を読まれている方ならば、リーンスター
トアップという言葉を聞いたことがあるでしょ
う。スタートアップのバイブルとも言われるエ
リック・リースの同名の書籍『リーンスタート
アップ』注1で一躍有名になった新規事業立ち上
げや起業の方法論です。
　スタートアップという言葉から、起業家にだ
け関係する方法論と誤解されるかもしれません
が、書籍の中でも「スタートアップとは、とて
つもなく不確実な状態で新しい製品やサービス
を創り出さなければならない人的組織である」
とされているように、実は起業家や（いわゆる）
スタートアップで働く人だけでなく、すべての
人に有効な方法論です。
　今回はこのリーンスタートアップで用いられ
るリーンキャンバスについて解説します。

リーンスタートアップ

　さて、あなたが優れた（と信じる）アイデアを
もとに起業した起業家だとしましょう。起業家
のあなたにとってもっとも恐れるべき事態は何
でしょうか？　アイデアを具現化した製品や
サービスが使われないことでしょうか？
　もちろん、そのとおりです。開発費を投入し
た製品やサービスが使われないと資金回収でき
ずに、会社は立ち行かなくなってしまいます。

注1） エリック・リース 著、井口耕二 訳、伊藤穣一（MITメディ
アラボ所長）解説／日経 BP社 刊／ISBN978-4-8222-
4897-0

　しかし、製品やサービスが最初からうまくい
くことは稀

まれ

です。もっとストレートに言うなら
ば、最初に思いついたアイデアは良いものでな
いことのほうが多いのです。ですので、起業家
にとってもっとも恐れなければいけないことは、
最善のソリューションである製品やサービスを
顧客に届けることができるようになるまでに、
リソースが枯

こかつ

渇することなのです。
　ここで言うリソースとは、おもに運転資金で
すが、エンジニアリングリソースなども含みま
す。あなたは起業家として初期の運転資金を調
達していたとします。最初の資金調達は額も少
額で、この資金で最初の製品を世に出す必要が
あり、それが市場に受け入れられると次のラウ
ンドの資金調達へと進めることになります。
　最初に考えたアイデアが当たればそれにこし
たことはありませんが、多くの場合はそのアイ
デアがそのままで通用することはありません。
何度もの変更を加えながら、世の中に受け入れ
られるものを見つけ出していくのです。
　ここではあえて起業家としましたが、ここで
言う起業家はまさにスタートアップという組織
そのもののことです。冒頭で書いたスタートアッ
プの定義からもわかるように、起業家だけでな
く、新規事業にかかわるすべての人、中でも製
品を成功に結びつける責任を負うPM（Product

Manager）がまさに意識すべき考えがリーンス
タートアップなのです。
　それでは、顧客の求める製品にたどり着くに
はどうすれば良いでしょう？　それはひたすら、

及川卓也の
プロダクト開発の道しるべ
品質を高めるプロダクトマネージャーの仕事とは？

リーンキャンバス

@takorattaTwitter

及川 卓也
（おいかわ たくや）

Author

第9回

6 - Software Design Jul. 2017 - 7

リーンキャンバス 第9回

仮説→検証→修正の反復を繰り返すことです。
仮説をもとにMVP注2（Minimum Viable Product）
を作り、その成果を計測し、計測データに基づ
いた学習から修正を加えること。これを何度も
何度も繰り返すことが必要となります。書籍では、
これは構築→計測→学習という反復で紹介され
ています（図1）。
　整理すると、スタートアップの最大のリスク
は誰も求めていないものを作ることであり、成
功するスタートアップはリソースを使い切る前に
十分な反復を行うスタートアップのことなのです。

注2） MVPとは検証に必要な最低限の機能を持った製品のこと。

リーンキャンバス

　このように、書籍『リーンスタートアップ』では
「構築－計測－学習」という反復を高速に回すこと
で事業を成功に導く手法が紹介されています。
しかし、この書籍で紹介されている内容は理論的
な話が中心で、実際にどのように進めれば良い
かまではあまり書かれていません。それが紹介さ
れているのが、アッシュ・マウリャ著の『Running

Lean ̶̶実践リーンスタートアップ』注3です。
　この中で著者のマウリャはスタートアップの
最大のリスクである「誰も欲しくないものを作っ
てしまうこと」を避けるために、製品開発の最初
のフェーズでまず課題とソリューションのフィッ
トを確認し、課題とソリューションがフィット
したことが確認されたあとに、製品と市場のフィッ
トを確認することが重要と解説しています。
　この課題とソリューションのフィットと製品
と市場のフィットを確認するために用いられる
フレームワークがリーンキャンバスです（図2）。
　リーンキャンバスは事業計画書相当の内容を
1枚のキャンバスに収めたものです。

注3） アッシュ・マウリャ 著、角征典 訳、渡辺千賀 解説、エリッ
ク・リース シリーズエディタ／オライリー・ジャパン 刊
／ISBN978-4-87311-591-7

仮説
idea

MVPデータ
data

学習する
learn

構築する
build

計測する
measure

 ▼図1　リーンスタートアップの提唱する構築→計測→学
 習という反復（書籍『リーンスタートアップ』より）

既存の代替品
Existing
Alternatives

主要指標
Key Metrics

ハイレベル
コンセプト
High Level
Concept

チャネル
Channels

アーリー
アダプター
Early Adopters

コスト構造
Cost
Structure

収益の流れ
Revenue
Streams

課題
Problems

ソリューション
Solution

独自の価値提案
Unique Value
Proposition

（UVP）

圧倒的な優位性
Unfair
Advantage

顧客セグメント
Customer
Segment1
2

3

4

5

67

8

9

 ▼図2　リーン開発で用いるリーンキャンバス。1から9の順番に埋めていく（書籍『Running Lean』より）

8 - Software Design

プロダクト開発の道しるべ
及川卓也の

品質を高めるプロダクトマネージャーの仕事とは？

　ここで「事業」という言葉が出てきましたが、
製品と事業は表裏一体です。PMと事業責任者
の境界がPMの役割を論じる中で永遠のテーマ
に近い論点であるのと同様、製品と事業の境も
またあいまいです。しかし、作った製品が市場
に受け入れられ、きちんと事業として収益をあ
げられるものでなければ、継続性を持った製品
として顧客への説明責任は果たせません。製品
の成功は事業の成功でもあるとPMは認識しな
ければなりません。

リーンキャンバスの各要素

　リーンキャンバスは次の9つの要素から構成
されています。

1. 課題
2. 顧客セグメント
3. 独自の価値提案
4. ソリューション
5. チャネル
6. 収益の流れ
7. コスト構造
8. 主要指標
9. 圧倒的な優位性

　リーンキャンバスは短い時間で一気にこの9

つのマスを埋めてしまうことが勧められていま
す。埋められないマスがあっても、気にせずに
埋められる範囲で埋め、全体を俯

ふかん

瞰し、埋めら
れる段階になったら埋めていくことで進めます。

❶課題と❷顧客セグメント
　製品に期待されることは顧客の課題の解決、
および新しい価値の提供です。価値も課題の解
決の形で創出されることがほとんどですので、
課題抽出こそが重要となります。
　書籍『Running Lean ̶̶実践リーンスター
トアップ』の中で、「あなたの『製品』は製品では
『ない』」というフレーズが出てきますが、顧客
にとって重要なのは製品ではなく、自分の課題
を解決してくれるものかどうかです。課題が存

在しないのに、その課題を解決する製品を作っ
ても誰も利用しません。課題がまず最初に考え
るべき要素なのはそのような理由です注4。
　このマスには1つから3つ程度の課題を書き、
また現時点でその課題を解決するために用いられ
ている代替手段があったならばそれを記述します。
　また、顧客セグメントにはその課題を持つ顧
客を具体的に記述します。その中でも、製品が
市場に出た際に真っ先に飛びついてくれそうな
アーリーアダプターを明確にします。

❸独自の価値提案
　独自の価値提案とは、「差別化要因と注目に
値する価値を説明した単一で明確な説得力のあ
るメッセージ」とされており、デーン・マクスウェ
ルの公式と呼ばれる次の公式で考えることが推
奨されています。

即効性のある
明快な見出し ＝ 顧客が望む成果

　　　　　　 ＋ 明確な期限

　　　　　　 ＋ それが達成されなかった

　　　　　　　 場合の代替案

　少しわかりにくいかもしれませんが、よく出
されるドミノピザの広告の例を見れば理解でき
るでしょう。ドミノピザは「時間内に配達でき
ないと無料」という広告を打ち出していました。
これは、顧客が望む成果としての「ピザが配達
されること」に、明確な期限としての「時間内」
とそれが達成されなかった場合の代替案として
の「無料」提供というのが組み合わさったものと
なっています。ここまで明快にこのフォーマッ
トに沿う必要はありませんが、顧客、その中で
も先ほど定義したアーリーアダプターが望む成
果がはっきりと表現されているようにします。
　また、このマスにはハイレベルコンセプトと
いうものも書くように言われています。これは

注4） そしてまた、製品は事業を成功に結びつけるビジネスモデ
ルそのものであるため、「あなたの『製品』は製品では『ない』」
と言われています。

8 - Software Design Jul. 2017 - 9

リーンキャンバス 第9回

広い視点で見た場合に、どのように位置付けら
れるかを示すもので、短い文で、すでに存在す
る別製品のメタファで表すことが期待されます。
たとえば、YouTubeのことを「動画のFlickr注5」
と例えることができます。

❹ソリューション
　ソリューションは課題を解決する機能を書く
ことになります。最初にキャンバスを作成する
ときは、この部分はラフなアイデアレベルで十
分です。課題の検証が済んでいない段階で、そ
の解決案について練ってもしかたないためです。

❺チャネル
　チャネルは製品をターゲットとなる顧客へ届
けるための手段です。Web系のサービスであ
れば、リスティング広告やSEO、ソーシャル
経由での流入などが考えられると思います。
BtoB製品であれば代理店や関連メディアなど
も含まれます。

❻収益の流れと❼コスト構造
　リーンキャンバスでいう製品とはビジネスモ
デルそのものですが、そのビジネスモデルには
事業としての収益とコストの検討が不可欠です。
　収益モデルにはいくつもの形態がありますが、
どのような収益モデルを取るのかなどを検討し
ます。また、事業を成り立たせるための主要コ
ストを概算しておきます。

❽主要指標
　製品（事業）の成否を判断するために見るべき

注5） FlickrはYouTubeより以前から存在している、写真共有サー
ビス。

指標を決めておきます。Web系のサービスで
あれば、DAU（日次のアクティブユーザ数）か
もしれませんし、直帰率かもしれません。
　書籍『Running Lean ̶̶実践リーンスター
トアップ』では、海賊指標（AARRR）と呼ばれ
る指標を使うことを推奨しています。これは
グロースハックでも用いられる指標で、獲得
（Acquisition）、活 性 化（Activation）、定 着
（Retention）、収益（Revenue）、紹介（Referral）
のそれぞれの段階の頭文字を取って、AARRR

と呼ばれています。
　製品によって、どの指標を見るべきかは異な
りますが、それよりもどの段階かによっても大
きく異なります。そのため、もし複数の指標を
想定する場合は、どの段階かもあわせて明確に
しておくほうが良いでしょう。

❾圧倒的な優位性
　圧倒的な優位性では、競合が簡単にはコピー
や購入ができないものを挙げます。

検証プロセス

　以上がリーンキャンバスの各要素となります
が、これを作成し、何度も書き直すことで、課
題と解決のフィット、そして製品と市場のフィッ
トを検証していくことが可能となります（図3）。
　以上がリーンキャンバスの概要となります。
　このリーンキャンバスは顧客が必要とする製
品を開発するためにたいへん役立つフレームワー
クです。次回は、さらにこの中で課題とソリュー
ションのフィットを確認するためのフレームワー
クである、バリュープロポジションキャンバス
について説明しましょう。｢

課題／解決フィット

●

製品／市場フィット

●●

拡大

●●●

 ▼図3　スタートアップに必要とされる3つのステージ（書籍『Running Lean』より）

ソフトウェアエンジニアとして社会人キャリアをスタートした後、MicrosoftやGoogleでプロダクトマネージャーやエンジ
ニアリングマネージャーを経験。現在はいくつかのスタートアップのプロダクトマネージメントをサポートしている。

Profile

宮原徹の

10 - Software Design

コミュニティ活動とは

　普段、OSCの事務局のような裏方

で忙しく活動しているため、私自身

は特定のコミュニティでの活動は

していませんでした。ですが最近、

Raspberry Piで音楽を聴く「ラズパ

イオーディオの会（@RasPiAudio）」

というコミュニティを立ち上げて、

OSCだけでなく外部のイベントにも

出展して普及・啓蒙活動を開始しま

した。今回は「コミュニティ活動と

はこんな感じ」というお話をしたい

と思います。

ラズパイオーディオとは？

　Raspberry Piはみなさんお馴染

みだと思いますが、Raspberry Piで

オーディオ、となると「？」な人が多

いのではないでしょうか。

　パソコンで本格的にオーディオ

を聴くには、オーディオインター

フェースをUSBで接続するのが一

般的な方法です。実はRaspberry Pi

上で動作するLinuxも、このUSB

オーディオインターフェースがあっ

さりと動作します。そして、Linux

カーネルのオーディオのしくみであ

る ALSA（Advanced Linux Sound

Architecture）や、音楽再生を担当

する MID（Music Player Daemon）

などを組み合わせれば、MP3や

FLAC（ Free Lossless Audio

Codec）などの楽曲データを高音質

で再生できるというわけです。もち

ろん、ハイレゾにも対応しています。

　Raspberry Pi で動作するオー

ディオ専用のディストリビューショ

ンも各種用意されています。よく使

われるのは「Vo lum io 2注1」です。

Webアプリでの操作だけでなく、専

用のアプリでスマホをリモコンとし

て使うこともできます。楽曲データ

はNASに入れたりと、エンジニア

スキルを活かせるのもおもしろいと

ころです。

ラズパイオーディオの会
としての活動

　ラズパイオーディオの会は、2016

年11月開催のOSC福岡から活動を

開始しました。当時、佐賀在住の座

布団1枚会長（@zabuton1mai）が

OSC福岡に出展、セミナーを開催し

たところから結成されました。その

ときの様子は本連載第12回（2017

年2月号）でも書いています。

　コミュニティ活動といっても、各

人がTwitterなどで情報発信したり、

メーリングリストでやりとりしたり

するのが中心です。また、オーディ

オ系のイベントにも出展してラズパ

イオーディオをアピールしたりもし

ていますので、そのときの様子を紹

介したいと思います。

注1） https://github.com/volumio/
Volumio2

ヘッドフォン祭りに出展

　まず、4月29日（土）、30日（日）

に中野サンプラザで開催された「ヘッ

ドフォン祭り」に出展しました。活

動を支援していただいている出版社

「ステレオサウンド」のブースを一部

間借りしました。

　イベント名称のとおりヘッドフォ

ン好きの人が集まるので、Rasp

berry Piが小さくて持ち運びもでき

る、モバイルバッテリで駆動できる

ところをアピール。さらに試作品で

すが、Raspberry Pi Zeroで使用す

る「SabreberryDAC ZERO」も展示

させていただきました（写真1）。開

発者のたかじんさん注2、ありがとう

ございました。

　また、会長と私しかいないラズパ

イオーディオの会だけでは心許ない

ので、この連載では常連となりつつ

注2） http://nw-electric.way-nifty.com/
blog/

ラズパイオーディオの会でコミュニティ活動第17回
宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

 ▼写真1　 「SabreberryDAC ZERO」
を先行展示。わざわざこれ
の音を聴きに来てくれる人も
いました

https://github.com/volumio/Volumio2
http://nw-electric.way-nifty.com/blog/

10 - Software Design Jul. 2017 - 11

R e p
o r t

ラズパイオーディオの会でコミュニティ活動第17回

あるIoT女子（#IoT女子）のみなさん

に応援に来てもらいました（写真2）。

ブースがグッと華やかになりますね。

　やはりIT系とは来場者層が異なる

ため、「Raspberry Piはなんとなく

知っている」「興味はあるけどどう始

めていいかわからない」という人が

圧倒的に多く、かなり開拓の余地が

ありそうです。

　Raspberry Piを使ったオーディ

オ機器を開発するメーカーのコン

ソーシアムが結成されており、この

イベントでケースの試作品も展示さ

れていましたから、オーディオ業界

でRaspberry Piが広まる日はそう

遠くないかもしれません。

OTOTENに出展

　続いて、5月13日（土）、14日（日）

に東京国際フォーラムで開催され

た「OTOTEN（音展）」にも出展しま

した。同様にステレオサウンドさん

のブースを間借りしましたが、こち

らのイベントはハイエンドオーディ

オ中心のイベントですので、Rasp

berry PiにUSB接続のDAC＋アン

プをつないで、スピーカーで音楽を

鳴らすデモを実施しました（写真3）。

　来場者層もアナログオーディオ愛

好家が中心のため、デジタルオー

ディオにはあまり詳しくない方が多

く、基本的なところから紹介するこ

とが多かったように思います。ハイ

エンド市場にRaspberry Piが食い

込んで行くには、もう少し時間がか

かりそうです。

　こんな感じで、ラズパイオーディ

オの会の活動を行っています。いろ

いろな人と趣味の話をするのは楽し

いですから、まずは好きな何かでコ

ミュニティ活動を始めてみてはいか

がでしょうか？s

 ▼写真3　 OTOTENでの出展の様子。エレベーターの前な
ので、たくさんの人が立ち寄ってくれました

 ▼写真2　 IoT女子のみなさん。事前の勉強会でラズパイ
オーディオの予習もバッチリです

京都奈良で
　日本酒三昧

　ヘッドフォン祭りは2日間でしたが、筆
者は初日だけの参加で、翌日から京都・奈
良への旅に出かけました。テーマは「日本
酒」です。
　まず向かったのは伏見。軽く散策しつ
つ酒蔵さんに立ち寄ったり、酒屋さんで
伏見のお酒を飲み比べたりしました。次に
向かったのが奈良の大

おおみわ

神神社です。酒造
りの神様として信仰されています。そのあ
と、昼間は室生寺や吉野山などに足を運
び、夜は奈良の日本酒が堪能できる酒屋
「なら泉勇斎」であれこれと飲み比べしてき
ました。奈良の日本酒、美味しいですよ。

◀ 大神神社の境内に
は奈良県内から奉
納された酒樽が並
べられています

▲ 酒屋「なら泉勇斎」。奈
良県内のお酒を100
種類以上試飲・購入で
きます

▼ 活
いくひ

日神社。杜氏の祖先神 高橋活
いくひのみこと

日命
を奉っています

12 - Software Design

はじめに

　今回は、EnOcean（エンオーシャン）という無
線規格を使ってみたいと思います。EnOceanは、
ドイツのEnOcean GmbHという会社が提供して
いる技術で、「電池レス」というのが特徴です。
どうやって電池を使わずにセンサや無線が動く
のかというと、センサの周辺の環境から電力（エ
ナジー）を収穫（ハーベスト）、つまり集めて、動
きます。こういった技術は、エナジーハーベス
ティングだとか、環境発電と呼ばれたりしてい
ます。
　エナジーハーベスティングと急に言われても
ピンと来ないかもしれませんが、EnOceanで使
われる発電手段の1つに太陽電池があります。太
陽電池も、周辺からの光を電力に変換して機器
を動かす、エナジーハーベスティングの代表例
です。無線通信というのは意外と電力を消費す
るものですが、EnOceanは、少ない電力で無線
通信を実現する技術と、エナジーハーベスティ
ングが特徴です。
　どうしてエナジーハーベスティングを行うと
便利なのかというと、たとえば最近はトイレの
使用状況をIoT化するのが一部のIT企業の間で
流行っていますが、トイレのドアに取り付ける
開閉センサの電源というのは意外と悩ましいも
のです。無線通信を行うのにもかかわらず、ト
イレのドアまで電源の線を引っ張るのもステキ
ではありませんし、電池を使って電池の残量を
気にするのもステキだとは言えませんよね。こ
こでEnOceanの開閉センサ（マグネットコンタ
クトセンサ）を使えば、トイレの中の照明から電

 Author 坪井 義浩（つぼい よしひろ）　 Mail ytsuboi@gmail.com　 @ytsuboi
協力：スイッチサイエンス

EnOceanを使ってみる第
25
回

力を得て、無線でデータを送るということも実
現できます。

EnOceanの無線

　EnOceanの無線通信はサブギガ（1GHzよりも
低い周波数帯）で通信を行うため、Bluetoothや
無線LANなどで多く使われている2.4GHz帯の
影響を受けずに使うことができます。たとえば
展示会などでIoTのデモを行う場合、Bluetooth

や無線LANを使うと2.4GHz帯は混み合うため
当日に思ったように通信ができないことが多く
あります。一方でサブギガは、国や地域によっ
て使用できる周波数帯が異なるために、通信モ
ジュールも異なるものを使わなければなりませ
ん。EnOceanの国や地域に応じた周波数帯や、
通信モジュールの型番の一例を表1に示します。
　EnOceanの無線通信プロトコルは、ERP

（EnOcean Radio Protocol）注1というEnOcean

独自のものが使われています。EnOceanの送受
信機とマイコンの間は非同期シリアル（UART）
で接続するのですが、ここではESP（EnOcean

Serial Protocol）注2が定められています。また、
機器ごとのプロファイル（センサの値とデータの

注1） http://www.enocean.com/erp1/

注2） http://www.enocean.com/esp

地域・国 周波数帯 USB受信
モジュール

温度センサ
モジュール

アメリカ合衆国
カナダ 902MHz USB300U STM332U

日本 928MHz USB400J STM431J
ヨーロッパ
中国 868MHz USB300 STM330

はじめに

EnOceanの無線

 ▼表1　 国や地域に応じた周波数帯や、通信モジュールの型番

http://www.enocean.com/erp1/
http://www.enocean.com/esp

12 - Software Design Jul. 2017 - 13

EnOceanを使ってみる 第
25
回

関係）は、EEP（EnOcean Equipment Profile）注3

に記されています。

エナジーハーベスティング

　次は、電池の代わりにEnOceanのセンサや無
線に電力を供給する、エナジーハーベスティン
グの方法です。先ほど紹介したように太陽電池
が最もわかりやすい方法ですが、EnOceanには
スイッチを押すときの動きで発電（電磁誘導と言
います）をして操作を伝えるスイッチもありま
す。ほかにもエナジーハーベスティングには、
ペルチェ素子を用いて温度差で発電する方法や、
ピエゾ素子を用いて振動から発電をする方法な
どもありますが、EnOceanの既存のモジュール
としては販売されていません。
　こういった方法で収穫できるエネルギーの量
は限られているため、無線通信を行えるだけの
エネルギー（電力）が一度に収穫できるとは限り
ません。常に無線通信を行うのに十分な電力を
収穫し続けるには、たとえば太陽電池のパネル
を大きくするなど、発電するデバイスを大きく
して収穫量を増やさなければならないのです。
このため、エナジーハーベスティングでは、少
しずつ収穫できるエネルギーを蓄えておき、た
まに無線通信を行うといったことをする必要が
あったりします。
注3） http://www.enocean-alliance.org/eep/

使ってみる

　では、今回はEnOceanの温度センサと湿度セ
ンサを使って測った温湿度を、mbedで受信して
みたいと思います。今回は、温度センサモジュー
ル（STM431J）に湿度センサモジュール（HSM

100）を組み付け（写真1）樹脂ケースに納めたも
のを、ローム株式会社から借用しました（写真
2）。ローム注4は、EnOcean規格の推進団体で

あるEnOcean Allianceのプロモーターです。こ
のセンサモジュールから送信されたデータを、
USB 400JというUSB接続タイプのモジュール
を使って受信してみました（写真3）。USB400J

は、USBホスト機能のあるmbed LPC1768と
Application boardを使って接続します。mbed

注4） http://www.rohm.co.jp/web/japan/enocean

　EnOcean GmbHもサブギガだけでなく、Bluetooth Low Energy（BLE）など2.4GHzの無線を使
う機器を販売しています。一方で、エナジーハーベスティングを行える機器は他社も販売してい
て、たとえばアメリカのCypress Semiconductor Corp.は、コインサイズの電池レスBLE温湿度
センサを「CYALKIT-E02 Solar-Powered BLE
Sensor Beacon Reference Design Kit」とし
て発売しています（写真A）。これは同社のBLE
マイコンと、エナジーハーベスティング用の
PMIC（電源管理 IC）を組み合わせた製品です。
こんな小さな太陽電池で集めた電力で、BLE
のビーコンとして動作をさせることができま
す。

エナジーハーベスティングでBLE

使ってみる

エナジーハーベスティング

 ▼写真A　 CYALKIT-E02 Solar-Powered BLE Sensor
Beacon Reference Design Kit

 ▼写真1　STM431JとHSM100

http://www.rohm.co.jp/web/japan/enocean
http://www.enocean-alliance.org/eep/

14 - Software Design

LPC1768にはEthernetがありますので、これ
を使ってMQTTなどでクラウドにデータ送信を
することもできますが、今回は受信したデータ
をApplication boardについている液晶に表示し
てみました（写真4）。
　USB400Jを選択したのは、mbedにはすでに
USB400Serial注5というドライバがあるからで
す。このドライバを使って受信したEnOceanの
シリアル信号の構造は、ESPのドキュメントに
記載されています。ドキュメント「EnOcean

Serial Protocol 3 (ESP3) V1.30注6」の13ペー
ジ、Table 2に記載されていました（表2）。これ
を参照し、受信したパケットを読み解くと、図
1のような構造であることがわかります。Packet

注5） https://developer.mbed.org/users/nanashino/code/
USB400Serial/

注6） https://www.enocean.com/fileadmin/redaktion/pdf/
tec_docs/EnOceanSerialProtocol3.pdf

Typeが0x0Aですので、ESPのドキュメントの
76ページに「Packet Type 10: RADIO_ERP2」
として記載されていることがわかりました。掲
載されている図（表3）によると、Optional Data

には電波の強度が入っているようです。
　さて、「Data Length」も0x0A、つまり10byte

ですので、ERPのドキュメントの「Data contents

for Length > 6 Bytes」の項を参照しました。
「Data」は0x22から始まりますので、ここに掲載
されている表を使って、0x22、つまり0b0010

0010を解釈すると、「001: Originator-ID 32 bit;

no Desti nation-ID」、「0: No extended header」、
「0010: 4BS telegram（0xA5）」であることがわ
かりました。
　「Data」の中身については、EEPを参照しま
す。A5ですので、EEPのドキュメントのうち
4BS Telegramの温湿度センサ（04）には、01～
03の3種があることがわかります。3種のうち
どれだろうと思いSTM431Jのデータシートを
見ると、HSM100と併用した場合、A5-04-01、

Group Offset Size Field Value hex Description
- 0 1 Sync. Byte 0x55 Serial synchronization byte; always set

to 0x55

Header

1 2 Data Length 0xnnnn Specifies how many bytes in DATA must
be interpreted

3 1 Optional Length 0xnn Specifies how many bytes in
OPTIONAL_DATA must be interpreted

4 1 Packet Type 0xnn Specifies the packet type of DATA,
respectively OPTIONAL_DATA

- 5 1 CRC8H 0xnn CRC8 Header byte; calculated checksum
for bytes: DATA_LENGTH,
OPTIONAL_LENGTH and TYPE

Data

6 x ...
...
...
...
...
...

...

...

...

...

...

...

Contains the actual data payload with
topics:
- RawData (e.g. 1:1 radio telegram)
- Function codes + optional parameters
- Return codes + optional parameters
- Event codes
x = variable length of DATA / byte
number

Optional
Data

6+x y ...
...
...

...

...

...

Contains additional data that extends the
field DATA;
y = variable length of OPTIONAL_DATA

- 6+x+y 1 CRC8D 0xnn CRC8 Data byte; calculated checksum for
whole byte groups: DATA and
OPTIONAL_DATA

 ▼写真4　動かしてみたところ ▼表2　 パケットの構造（ESP3 V1.30 P.13より引用）

 ▼写真3　USB400J ▼写真2　 温度センサモジュールと湿度センサモジュー
ルを樹脂ケースに納めたもの

https://developer.mbed.org/users/nanashino/code/USB400Serial/
https://www.enocean.com/fileadmin/redaktion/pdf/tec_docs/EnOceanSerialProtocol3.pdf

14 - Software Design Jul. 2017 - 15

EnOceanを使ってみる 第
25
回

A5-10-10、A5-10-12の3種が書いてあ
ります。このうち、今回はA5-04-01で
あることがわかります。EEPによると、
湿度は0～100％を0～250で表すため、
得た値に0.4を乗じて値を取りだし、温
度は0～100℃を0～250で表すので0.16

を乗じました。パケットの構造さえわかっ
てしまえばEnOceanは簡単に使えます。
　このドライバを使って書いてみたコー
ド注7のうち、main.cpp（リスト1）の118

行目や123行目で、表示をするセンサの
IDを限定しています。これはOriginator-

IDという4byteのセンサの IDの最終
byteを使用しています。4byteまるごと
確認したほうがよいのでしょうが、手元
にあったセンサの IDの最終byteが重複
していなかったため、簡易的にこうしま
した。

使ってみた

　無線通信では、みなさんの関心はやはり通信
可能な距離に集中するでしょう。EnOceanの
Webサイト注8には、「通信距離：建物内では30

m、自由空間では300mまでカバーします。」と

記されています。筆者は2015年のMaker Faire

TokyoでEnOceanを使ったデモを行ってみたの

注7） https://developer.mbed.org/users/ytsuboi/code/
USB400J_app_board_demo/

注8） https://www.enocean.com/jp/technology/radio-
technology/

ですが、このとき会場内の約60m離れた場所に
設置した温度センサモジュール（STM431J）から
のデータをUSB400Jで受信できました。Maker

Faire Tokyoの会場はとても混み合い、2.4GHz

帯も混み合い、無線LANやBluetoothの通信に
支障が出たりしますが、こうした混雑する会場
内で60mも離れて通信ができれば十分だと言え
るでしょう。まだ筆者はEnOceanのスイッチや
開閉センサを使っていないのですが、これらも
試用して経験を積んでみたいと思います。s

(..前略..)
118 if (sensor == 0x34) {
119 lcd.locate(0,12);
120 lcd.printf("%02X Temp:%2.2f C Hum:%3.1f %%¥r¥n", sensor, temperature*0.16,ｭ
 humidity*0.4);
121 }
122
123 if (sensor == 0x52) {
124 lcd.locate(0,21);
125 lcd.printf("%02X Temp:%2.2f C Hum:%3.1f %%¥r¥n", sensor, temperature*0.16,ｭ
 humidity*0.4);
126 }
(..後略..)

まとめ

 ▼リスト1　main.cpp（抜粋）

55 00 0A 02 0A 9B 22 04 01 79 BD 00 7B 9F 0A 73 01 41 D5
Sync Data

Length
CRC8 Data Option

Data
CRC8

Option Length
Packet Type

22 04 01 79 BD 00 7B 9F 0A 73
CRC8DataHeader Originator ID

00 7B 9F 0A
湿度 温度

Group Offset Size Field Value hex Description
- 0 1 Sync. Byte 0x55

Header

1 2 Data Length 0xnnnn Variable length of radio telegram
3 1 Optional Length 0x02 2 fields fixed
4 1 Packet Type 0x0A RADIO_ERP2 = 10

- 5 1 CRC8H 0xnn
Data 6 x Raw data ...

...
ERP2 radio protocol telegram without the
first Length byte. For sending the ERP2
protocol CRC8 byte can be set to any
value.
x = Data Length

Optional
Data

6+x 1 SubTelNum 0xnn Number of sub telegram;
Send: 3 / receive: 1 ... y

7+x 1 dBm 0xnn Send case: FF
Receive case: best RSSI value of all
received sub telegrams (value decimal
without minus)

- 8+x 1 CRC8D 0xnn CRC8 Data byte; calculated checksum for
whole byte groups: DATA and
OPTIONAL_DATA

 ▼図1　 EnOceanのパケットを読んでみた

 ▼表3　Packet Type 10の構造（ESP3 V1.30 P.76より引用）

https://developer.mbed.org/users/ytsuboi/code/USB400J_app_board_demo/
https://www.enocean.com/jp/technology/radio-technology/

16 - Software Design

『Javaパフォーマンスチューニング第
2版』のカバーを飾った動物「サーバル」
のイラストがプリントされたTシャツ。
サーバルをはじめとした野生動物が活
躍するアニメーション作品の人気急騰
を受け、イベントなどで販売されまし
た。MまたはLサイズをプレゼント。

Wi-Fiホームルータ
「Aterm WG1200HP2」
高機能Wi-Fiホームルータ。以前使っていたルータから設定を引
き継げる“Wi-Fi設定引越し”機能、スマホのアプリからNFCを
使った初期設定ができる“らくらく「かざして」スタート”機能を搭
載しています。無線LANの規格はIEEE802.11ac/n/a（5GHz
帯）と11n/g/b（2.4GHz帯）。5GHz帯での実効スループットは
約605Mbps（UDP）／約520Mbps（TCP）となっています。

提供元 NECプラットフォームズ　http://121ware.com/aterm

USBメモリ
「600-3TC16GN」
「USB Aコネクタ（USB3.0対応）」「USB Cコネクタ（USB3.1/
Gen 1対応）」を両方搭載し、パソコンやスマホに合わせて切り
替えられるフラッシュメモリ（16GB）です。本体5g・ストラッ
プホール付き・ネックストラップ付属と、持ち運びに便利。
提供元 サンワサプライ　https://direct.sanwa.co.jp/

提供元 オライリー・ジャパン
 https://www.oreilly.co.jp

1名

2名

3名

すごーい！ オライリーオリジナル

サーバルTシャツ

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2017年7月17日です。プレゼントの
発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

プログラミングに興味のある学生、初心を
忘れてしまった大人を対象にした、コン
ピュータとプログラミングのしくみを解説
する読み物。「プログラミングを楽しむ」こ
とを念頭に、ユーモラスに語ります。

提供元 丸善出版
 http://pub.maruzen.co.jp

プログラミング道への招待
竹内 郁雄 著

2名

保守性・堅牢性・性能・開発効率といった
現場でのJava開発で大切なことに重点を
置き、文法からオブジェクト指向やデザイ
ンパターン、ドキュメンテーション、品質
への配慮まで解説します。Java 8対応。

提供元 技術評論社
 http://gihyo.jp

Java本格入門
谷本 心 ほか 著

2名

関数型言語で書かれたプログラムにとって
効率的なデータ構造について学ぶ1冊。
「Standard ML」を使い、データの永続性
や遅延評価といった関数型言語の特徴に
合ったデータ構造について考察します。

提供元 アスキードワンゴ
 http://asciidwango.jp

純粋関数型データ構造
Chris Okasaki 著

2名

読者プレゼント
のお知らせ

乾電池で動作する省電力性ながら、無線
LAN・Bluetooth・高性能プロセッサを搭
載したIntel製のコンピュータモジュール
Edisonについて、Lチカからセンサーデー
タの活用方法までカバーする1冊です。

提供元 技術評論社
 http://gihyo.jp

Intel Edisonマスターブック
北神 雄太 著

2名

2名

は、作業終了後に責任を持って破棄いたします。お知お知お知お知

http://121ware.com/aterm
https://direct.sanwa.co.jp/
https://www.oreilly.co.jp
http://pub.maruzen.co.jp
http://gihyo.jp
http://gihyo.jp
http://asciidwango.jp
http://sd.gihyo.jp/

　開発でもインフラ管理でも運用でも、シェル上で行う作業はたくさん
あります。だからこそ、シェルの操作が少し上達しただけで、いろいろ
な作業が速く、楽にできるようになります。本特集は、初心者もベテランも、
ご自身のレベルに合わせて実力アップを図れるように、2つのパートで構
成しています。
　理論編（第1〜3章）では、設計思想やしくみをふまえながらシェルの
使い方や機能を解説します。今までシェルをなんとなく使ってきたという
人は、まずはここでおさらいを。
　応用編（第 4〜5 章）では、熟練者がさらにシェルの活用範囲を広げ
られる知見を紹介します。

1第　 特集

の幅を広げる
理論　応用& で

1第　 章
理論編 1

シェル初心者から中級者への
次の一歩

p.18

Author 山森 丈範

2第　 章
理論編 2

シェルスクリプト初心者から
中級者への次の一歩

p.28

Author 石山 将来

3第　 章
理論編 3

しくみを知れば、
bashは怖くない

p.35

Author 田島 優也

応用編 1

じつはこんな機能があった！　
bashの新機能、便利機能

p.45

Author 上田 隆一

4第　 章

応用編 2

意外と使える!?　Bash on
Ubuntu on Windows

p.53

Author くんすと

5第　 章

もっとbashを使いこなしませんか？

シェル力りょく

18 - Software Design

基本のおさらい

シェルとは

　UNIX系OSにテキストモードでログインし
たとき、xtermなどの端末エミュレータを開い
たとき、またはほかのホストからsshなどでリ
モートログインしたときに目にするのがシェル
のプロンプトです。ユーザはシェルのプロンプ
トが表示されたコマンドラインにコマンドをタ
イプします。シェルは、ユーザが入力したコマ
ンドを解釈し、該当するコマンドを実行します。
　このようにシェルはユーザがコマンド入力す
るために必須の存在ですが、シェルにはシェル
スクリプトを実行するというもう1つの役割が
あります。つまりシェルには、ユーザ入力のコ
マンドを逐次実行するインタラクティブ（会話）
モードと、シェルスクリプトを実行するノンイ
ンタラクティブ（非会話）モードの2つの使用
法があることになります。
　シェルの会話モードも非会話モードも基本的
には同じです。ユーザがシェルのプロンプト上
にタイプしている文字列をそのままファイルに
保存すれば、それだけでもシェルスクリプトに
なります。ただし、シェルスクリプト実行時に
はプロンプトは表示されず、ジョブコントロー

ルは行われず、kキーなどによるファイル
名の補完も行われないなどの違いはあります。

シェルの種類
　シェルには、bashなどのBシェル（Bourne

Shell）系のシェルのほかに、csh（tcsh）という
Cシェル系が存在します。history、alias、ジョ
ブコントロールなどのコマンドライン上で便利
な機能はもともとcshで導入されたものでした。
このため、csh（tcsh）をログインシェルとして
使用していたユーザも多かったと思います。
　cshでもシェルスクリプトは記述できますが、
cshのシェルスクリプトは不都合な点が多いた
め推奨されていません。コマンドライン上で
cshを使用しているユーザは、cshのコマンド
ラインをそのままファイルに保存しても、文法
の違いで/bin/shのシェルスクリプトにはなり
ません。シェルスクリプト記述時にはあらため
て/bin/shを使うように頭を切り替える必要が
あります。
　しかし、bashの登場によりhistory、alias、ジョ
ブコントロールなどの機能がコマンドライン上
で使えるようになり、ログインシェルもシェル
スクリプト記述も、どちらもbashだけで行え
るようになりました。Linuxの多くのディスト
リビューションやmacOSの標準シェルがbash

になっているため、新規のユーザはそのまま

1第　 章 編 理論 1

シェル初心者から中級者への
次の一歩
シェルのもっともシンプルな使い方である単純コマンドを使いこなすため
に、リダイレクト、パイプ、環境変数の影響範囲はきちんと理解してお
きましょう。そしてシェルスクリプトを書くための準備として「コマンド→パ
イプライン→リストの循環」という構造を知り、ifやforなどを使った複合
コマンドの基本を習得してください。

Author 山森 丈範（やまもり たけのり）
Mail yamamori@kt.rim.or.jp

1第　 特集 理論　応用& でシェル力の幅を広げる

18 - Software Design Jul. 2017 - 19

bashユーザになることが多いでしょう。また、
bash以外の高機能シェルとしてzshを使用して
いるユーザも少なくないことと思いますが、
zshもBシェル系のシェルであり、bashもzsh

も含めて、コマンドライン上の文法は現在では
Bシェル系に統一されたと言っていいでしょう。
　もとcsh系ユーザが戸惑う例の1つは環境変
数の設定だと思います。Bシェル系にはsetenv

コマンドはないため、図1のようにシェル変数
を exportする形で環境変数を設定します。
bashなどの多くのシェルでは変数の代入と
exportを同時に行えますが、従来のBシェル
系シェルとの互換性を重視する場合は図1-aの
ように変数の代入とexportを別々に行ったほ
うがいいでしょう。

単純コマンドとは、
リダイレクトやパイプの使い方

単純コマンド
　いわゆる普通のコマンドのことをシェルの文
法上では単純コマンドと呼びます。ls、cp、rm

などの/binや/usr/binなどにインストールさ
れた外部コマンドはもちろん、cd、export、
read、shiftなどのシェル組み込みコマンド（ビ
ルトインコマンド）も単純コマンドです。単純
コマンドは、コマンド名と任意の個数の引数の

並びで構成され、コマンド名と各引数はスペー
スまたはTABで区切られます（bashなどの場
合はTABはファイル名補完用に利用するため、
区切りにはスペースを使います）。

リダイレクト
　単純コマンドと、後述する構文などの複合コ
マンドを併せた「コマンド」は、その標準入力、
標準出力、標準エラー出力、さらに任意のファ
イル記述子をリダイレクトできます。
　リダイレクトの書式は、標準入力にファイル
を入力する場合は< fileで、標準出力をファ
イルに書き込む場合は> file、標準エラー出
力の場合は2> fileとなります。このほか、
すでに存在するファイル内容を削除せずに追記
（アペンド）したい場合は>> fileや2>> file
が使えます。さらに、3番以降の任意のファイ
ル記述子も、3> fileや4< fileなどのよう
に使うことができます。
　図2のように、1行程度の簡単なファイルを
作成する場合は、テキストエディタを開かなく
ても、echoコマンドの標準出力をファイルに
リダイレクトすることで作成できます。サイズ
ゼロのファイルを作成したい場合は、コマンド
を省略し、単にリダイレクトだけを実行すれば
OKです。

リダイレクト記号の記述位置
　リダイレクト記号はコマンドの
右端に記述するのが普通ですが、
単純コマンドの場合は実はどこに
記述してもよく、引数と引数の間
に記述したり、さらにはコマンド
名の左側に記述するのもOKです。
図 3の catコマンドの例では、<
file2の部分が標準入力のリダイ
レクトで、残りの「file1、file3、-、
file4」が catコマンドに引数とし
て渡されます。catコマンド自身
には file2のファイル名は渡されま

$ echo Hello > file ←echoコマンドをリダイレクトしてファイル作成
$ cat file ←作成したファイルの中身を表示
Hello ←中身を確認
$ > file ←コマンドなしのリダイレクトでサイズゼロのファイル作成
$ cat file ←作成したファイルの中身を表示
$ ←何も表示されないがファイルは存在している

 ▼図2　リダイレクトを使ったファイル作成

$ setenv CC gcc ←setenvコマンドを使おうとすると
bash: setenv: command not found ←エラーになる
$ export CC=gcc ←bashなどでの環境変数の設定方法
$ CC=gcc; export ←従来のBシェル系シェルでも使える方法（a）
$ printenv CC ←環境変数CCの値を確認
gcc ←gccに設定されている

 ▼図1　環境変数CCをgccに設定する例

cat file1 < file2 file3 - file4 ← < file2の部分がリダイレクト

 ▼図3　catコマンドの引数の途中にリダイレクトを記述

理論編 1

シェル初心者から中級者への次の一歩 1第　 章

20 - Software Design

せん。catコマンドの引数の-は標準入力を表
すため、結局、file1、file3、file2、file4の順
で連結されて標準出力に出力されることになり
ます。

ファイル記述子のリダイレクト
　リダイレクトはファイルに対してだけでなく、
ファイル記述子に対しても行えます。よく使う
のが2>&1です。makeコマンドのログを、標準
出力も標準エラー出力もまとめてファイルに書
き込みたい場合はmake > logfile 2>&1とし
ます。ここで、2>&1は、標準出力のファイル
記述子1番を、標準エラー出力のファイル記述
子2番として複製する、という動作になり、>
logfileよりも右側に記述する必要があります。
この記述は感覚的に左右の順番を逆に考えやす
いため注意してください。
　ほかによく使うのが1>&2です。シェルスク
リプト中でエラーメッセージを標準エラー出力
に出力したい場合、echo Error 1>&2のよう
に記述します。ここでは標準出力の1の記述は
省略できるため、echo Error >&2としてもか
まいません。

パイプ
　単純コマンドはもちろん、構文などの複合コ
マンドも併せた「コマンド」はパイプを使うこ
とができます。パイプは、テンポラリファイル
を作らずに、あるコマンドの標準出力を別のコ
マンドの標準入力に接続できる効率の良いしく
みです。
　何らかのコマンドの出力が長過ぎて、画面表

示が流れてしまって読めない場合には、コマン
ド ¦ lessをよく使います。標準エラー出力
も同時にパイプに通したい場合はコマンド
2>&1 ¦ lessとします。
　図4はカレントディレクトリのファイル数を
数えている例です。lsコマンドの出力をwcコ
マンドで数え、-lオプションでその行数だけを
表示させています。lsコマンドには、ドット（.）
で始まるファイルも含めて表示させるため、
-Aオプションを付けています（.と..を除く
ため、-aではなく-Aとしています。さらに、ファ
イル名の中に改行が含まれているような場合に
も対応するため、-qオプションを付けています。
　ところで、lsコマンドの出力をパイプに通し
てls ¦ lessを実行すると、表示が1行1ファ
イルのみの形式に変わってしまいます（図5、
図6）。これは、lsコマンド自身がその標準出
力が端末か端末以外（パイプまたはファイル）
かを判断して、出力形式を変えるようになって
いるためです。画面出力と同じ表示をそのまま
パイプに通したい場合は図7のようにls -C ¦
lessとします。GNU版 lsでカラー表示を行っ
ている場合に、パイプと lessコマンドを通し
てカラー表示をするには、ls -C --color ¦
less -rのようにオプションを追加するとい
いでしょう。lessの-rオプションは、カラー表
示のエスケープシーケンスをそのまま通すため
に必要です。

環境変数の一時変更
　単純コマンドは、そのコマンドのみ環境変数
を一時的に変更して実行できます。これは構文

$ ls -Aq ¦ wc -l ←パイプでwcコマンドにつないでlsの出力の行数を数える
167 ←ファイル数が表示される

 ▼図4　カレントディレクトリのファイル数を数える

$ ls
bin cdrom etc lib local mnt proc run srv sys usr
boot dev home lib64 media opt root sbin swap tmp var

 ▼図5　lsコマンドを単独で実行

1第　 特集
理論　応用& でシェル力の幅を広げる

20 - Software Design Jul. 2017 - 21

などの複合コマンドではできない文法です。シェ
ルによってはシェル関数の環境変数の一時変更
も可能ですが、うまく動作しない場合があります。
　環境変数の一時変更は、単純コマンドの左側
に、そのまま環境変数の代入を記述します。た
とえば環境変数LANGを ja_JP.UTF-8などの
日本語環境に設定している人が、一時的に英語
環境でコマンドを実行したい場合には、コマン
ド名の直前にLANG=Cを付加して実行します。
LANG=C dateなら英語での日付時刻表示、
LANG=C man lsなら英語でのマニュアル表示
になります注1。
　図8のように、単純コマンドの実行後に環境
変数を表示してみると、もとの値のまま変化し
ていないことがわかります（図8-a）。同様のこ
とは、シェルの文法を使わずに外部コマンドの
envを使って行うこともできます（図8-b）。複

注1） 言語環境の環境変数はLANG以外のLC_ALL、LC_CTYPE、
LC_MESSAGES、LC_TIMEなども関係するため、これら
を設定している場合は適宜対応が必要。

数の環境変数を同時に一時変更することも可能
で、その場合は環境変数の代入文を横に並べて
記述します（図8-c）。いずれの場合も、環境変
数の代入文のあとにセミコロン（;）を入れな
いように注意してください。

コマンドを組み合わせるため
の多彩な方法

コマンド→パイプライン→リスト
の循環

　シェルスクリプトの文法には、コマンド→パ
イプライン→リスト→コマンドという循環構造
があります。単純コマンドと複合コマンドを併
せた「コマンド」は、パイプでつないでパイプ
ラインを作り、複数のパイプラインは「リスト」
を構成します。この「リスト」は複合コマンド
の中で使うと「コマンド」になります。
　「リスト」というのは、たとえば if文の ifと
thenの間とか、thenと fiの間などに記述する
もののことです。実際には、if [$# -lt 3];
then ……のように testコマンドの別名の[コ
マンドを記述することが多いですが、文法上は
ifと thenの間に記述できるのはリストです。リ

$ ls -C ¦ less
bin cdrom etc lib local mnt proc run srv sys usr
boot dev home lib64 media opt root sbin swap tmp var
(END) ←lessのプロンプト

 ▼図7　ls -Cにするとパイプ経由でも画面と同様の表示

$ printenv LANG ←環境変数LANGを表示
ja_JP.UTF-8 ←UTF-8の日本語環境
$ LANG=C printenv LANG ←LANG=Cに一時変更してみる
C ←Cに一時変更されている
$ printenv LANG ←再度LANGの値を確認
ja_JP.UTF-8 ←もとのまま変更されていない（a）
$ env LANG=C printenv LANG ←envコマンドを使う方法もある（b）
C ←Cに一時変更されている
$ printenv LANG ←再度LANGの値を確認
ja_JP.UTF-8 ←もとのまま変更されていない

 ↓複数の環境変数を一時変更（c）
$ LANG=C HOME=/home/guest printenv LANG HOME
C
/home/guest

 ▼図8　環境変数を一時的に変更

$ ls ¦ less
bin
boot
cdrom
dev
etc
home
lib
lib64
local
media
mnt
opt
proc
root
run
sbin
srv
swap
sys
tmp
usr
var
(END) ←lessのプロンプト

 ▼図6　 lsの出力をパイプに
通すと1行1ファイ
ルの表示に変わって
しまう

理論編 1

シェル初心者から中級者への次の一歩 1第　 章

22 - Software Design

ストにはパイプラインも単純コマンドも含むた
め、単純コマンドの1つである[コマンドを記
述することができるわけです。そして、if文全
体が1つの複合コマンドになるため、この if文
をほかの for文、while文や case文、あるいは
別の if文の中のリストとして記述し、構文をネ
スティングすることができるのです。
　以上をまとめると図9のようになります。

&&リスト、||リスト

　リストには、パイプライン同士でANDや
ORの論理演算を行う&&リスト、||リストと
呼ばれるものがあります。「&」が1個のバック
グラウンドや「|」が1個のパイプとは違うので
注意してください。

&&リスト
　&&リストはパイプライン1 && パイプライ
ン2のように記述し、パイプライン1とパイプ
ライン2の両方が真（終了ステータス0）の場合

に全体の真偽値が真になります。実際にはパイ
プライン1が先に実行され、この終了ステータ
スが0以外（偽）の場合はその時点で全体の真
偽値が偽であると確定してしまうため、パイプ
ライン2は実行されません。この性質を利用し、
&&リストは簡単な if文の代わりに利用されま
す。
　図10はcmpコマンドで2つのファイルを比
較し、結果が真（ファイル一致）の場合にOK

を表示させるというものです（cmpコマンド単
独ではファイル一致時にはメッセージは表示さ
れません）。この例のファイル名を見てわかる
とおり、ISOイメージファイルとCD-ROM（ま
たはDVD）のデバイスファイルを比較し、ディ
スクのベリファイを行う場合などに便利です。

||リスト
　||リストはパイプライン1 ¦¦ パイプライ
ン2のように記述し、パイプライン1とパイプ
ライン2のどちらかが真（終了ステータス0）の

コマンド

単純コマンド
ls,cp,echo,…

パイプライン
ls -l | less

リスト
make && echo OK

複合コマンド
if,for,while,

サブシェル ,…

 ▼図9　コマンド→パイプライン→リストの循環

●	コマンド：
	 単純コマンドと複合コマンドを併せてコマン
ドと言う。コマンドはリダイレクトすること
ができる。

●	単純コマンド：
	 ls、cp、rmなどの外部コマンド、echo、cd、
testなどの組み込みコマンド。引数やリダイ
レクトが付いていてもよく、環境変数の一時
変更も可能。

●	パイプライン：
 ls -l ¦ lessのように、1個以上のコマン
ドを0個以上のパイプ記号¦でつないだもの。
コマンド1個だけでパイプがなくてもパイプ
ラインと言う。

●	リスト：
 zcat file.gz ¦ grep -q word && echo OK
のように、1個以上のパイプラインを0個以上
の「;、&、&&、¦¦」の記号でつないだもの。リ
ストの最後は通常、「;、&、改行」のどれかで区
切る。パイプライン1個だけでも、パイプなし
のコマンドを&&などでつないだものでも、&&な
どもなしでコマンド1個だけでもリストと言う。

●	複合コマンド：
	 if文、case文、for文、while文などの構文、サ
ブシェル、グループコマンドなど。複合コマン
ドの中でリストを記述できる。複合コマンドと
単純コマンドと併せて「コマンド」になる。

1第　 特集
理論　応用& でシェル力の幅を広げる

22 - Software Design Jul. 2017 - 23

場合に全体の真偽値が真になります。実際には
パイプライン1が先に実行され、この終了ステー
タスが0（真）の場合はその時点で全体の真偽
値が真であると確定してしまうため、パイプラ
イン2は実行されません。つまり&&リストと
は逆で、パイプライン1が偽の場合のみパイプ
ライン2が実行されます。この性質を利用し、
||リストも&&リストと同様に簡単な if文の代
わりに利用されます。
　シェルスクリプトの行頭を#!/bin/sh -eと
記述して起動している場合、またはシェルスク
リプト中でset -eコマンドを実行している場
合、シェルスクリプト中の各リストの終了ステー
タスが0以外になるとその時点でシェルスクリ
プトを終了するようになります。この-eオプショ
ンは、シェルスクリプト中に記述したコマンド
のどれか1つでもエラーになればすぐに実行を
打ち切りたい場合に便利です。この状態で、あ
るコマンドだけはエラーを無視し、たとえエラー
になっても処理を続行したい場合に||リスト
が便利です。
　リスト1は、rmdirコマンドを使ってディレ
クトリを削除していますが、たとえ削除できな
かった（もともとディレクトリが存在していな
かった）場合でもエラーにしたくない場合の例
です。コマンドの後ろに¦¦ trueを付けるこ
とにより、このリスト全体の終了ステータスは
常に0になり、エラーとしては扱われません。
なお、trueの代わりに:と記述することもでき
ます。:は何もしないヌルコマンドで、0の終

了ステータスを返すため、trueコマンドと同じ
ように使うことができます。
　この方法はMakefile中に記述するコマンド
のエラーを無視させたい場合にも使えます。

複合コマンド（構文、サブシェル、
グループコマンド、シェル関数）

if文
　シェルスクリプトの if文は、ifの直後のリス
トとしておもに testコマンドの別名の[コマン
ドを記述し、その真偽によって thenの直後ま
たはelseの直後のリストを実行します。if文の
終了は fiです。条件判断が複数あってelse if
の形になる場合はelifのキーワードを使うこと
ができます。
　リスト2は、シェルスクリプトが起動された
ときの引数の個数を特殊パラメータ$#を参照
してチェックし、引数が 2個未満の場合は
Usage（使用方法）を表示して終了する例です。
この例のexitの直後のelseは最適化が可能で、
elseの代わりに fiで if文を終了し、そのあとに
実際の処理を続けたほうが効率がいいでしょう。

case文
　case文は、caseの直後に記述された文字列を、
パターンごとに場合分けして、各パターンに対
応するリストを実行します。caseの直後には、
シェル変数またはコマンド置換を記述するのが
普通です。各パターンはその右側に閉じる括弧)
を付け、各パターンに対応するリストはその最
後にセミコロン2つ;;を付けます。case文の

$ cmp file.iso /dev/cdrom && echo OK ←ファイル一致を&&リストで判定
OK ←ファイルアクセス後、OKが表示される

 ▼図10　cmpコマンドの結果が真ならOKを表示

#!/bin/sh -e ← -eオプション付きのシェルスクリプト

rmdir ディレクトリ ¦¦ true ←ディレクトリを削除できなくてもエラーにしたくない
 または
rmdir ディレクトリ ¦¦ : ←trueコマンドの代わりに「:」コマンドも使える

 ▼リスト1　||リストを使ってエラーを無視する方法

理論編 1

シェル初心者から中級者への次の一歩 1第　 章

24 - Software Design

最後はcaseのスペルを逆にしたesacを記述し
て終了します。
　リスト3はOSの種類ごとに場合分けし、各
OSの lsコマンドでファイルのタイムスタンプ
を秒以下（または秒単位まで）まで詳細に表示
する例です（lsコマンドのオプションはOSに
よって異なります）。ここでは caseの直後に
unameコマンドをコマンド置換としてバック
クォート` `で囲んで記述しており、これを各
OS名のパターンにマッチさせます。Solarisの
場合、uname -sの出力がSunOSになるため、
バージョン名も含まれるようにuname -srの
出力を利用します。「SunOS 5.11」のような出
力になればSolarisです。FreeBSD、NetBSD、
OpenBSDについては、パターンを¦記号でつ
ないで記述し、OR条件を表現しています。パ
ターン上のアスタリスク*は任意の文字列に一
致するため、Linux、FreeBSDなどのバージョ
ン数値は何であっても一致し、Solarisの場合
はメジャーバージョン5のみチェックしている
ことになります。SunOSと5の間にスペース

があるため、パターン上ではシングルクォート
' 'で囲みます。
　なお、シェルスクリプトの場合分けの処理は、
if文でもcase文でも記述できることがあります
が、文字列の場合分けについてはcase文を使
うほうがパターンにOR条件やアスタリスクな
どが使えるため効率がいいでしょう。

for文
　シェルスクリプトの for文は、そのループ変
数に代入する値が規則的な数列でなくてもかま
わないのが特徴です。ループ変数に代入したい
文字列を羅列しておけば、これらが順番に代入
されながら for文のdo～doneのループが実行さ
れます。代入する文字列としてパス名（ファイ
ル名）に展開される*などを使うことができ、
for file in *と記述すればカレントディレ
クトリに存在する各ファイル（ただしファイル
名がドットで始まるファイルを除く）ごとにルー
プすることができます。リスト4は、do～done

のリストとしてcpコマンドを実行し、各ファ

#!/bin/sh

if [$# -lt 2] ←引数の個数が2個未満の場合
then
 echo "Usage: $0 file1 file2" 1>&2 ←Usage:を標準エラー出力に出力
 exit 1 ←終了ステータス1で終了
else
 …実際の処理… ←ここに実際の処理を記述
 :
fi

 ▼リスト2　if文でシェルスクリプトの引数の個数をチェック

#!/bin/sh

case `uname -sr` in ←unameコマンドの出力文字列で場合分け
 Linux*) ←Linuxの場合（バージョン数値は任意）
 ls -l --full-time "$@";; ←Linux（GNU）版のlsコマンド
 FreeBSD*¦NetBSD*¦OpenBSD*) ←FreeBSDなどの場合（OR条件使用、バージョン任意）
 ls -lT "$@";; ←BSD版のlsコマンド
 SunOS' '5.*) ←Solarisの場合（SunOS 5.*として判定）
 ls -E "$@";; ←Solaris版のlsコマンド
 *) ←それ以外の場合
 echo unknown OS 1>&2;; ←エラーメッセージを表示
esac

 ▼リスト3　case文でOSごとに場合分けし、 lsで詳細タイムスタンプを表示

1第　 特集
理論　応用& でシェル力の幅を広げる

24 - Software Design Jul. 2017 - 25

イルをバックアップする例です。
　このほかfor arg in "$@"という記述もよ
く用いられ、シェルスクリプト起動時に付けら
れた各引数（位置パラメータ）ごとにループす
ることができます。なお、このin "$@"とい
う記述は実は省略でき、単にfor arg; do～
doneと書けば各引数ごとにループするfor文に
なります。
　for文でループ変数を規則的な数列にしたい
場合、たとえば単純に変数に1から10までの
数値を代入してループしたい場合は、bashや
zshの場合は連番のブレース展開を使ってリス
ト5のようにするのが簡単でしょう。連番のブ
レース展開が使えないシェルの場合、Linuxな
どseqコマンドが使える環境ではリスト6のよ
うに seqを利用できます。FreeBSDなど、jot

コマンドが使える環境ではリスト7のようにな
ります。seqも jotもなく、シェルが従来の

/bin/shの場合、少々技巧的になりますがリス
ト8のような方法もあります。ここではバック
クォート` `の中のコマンド置換でsetコマン
ドを使って位置パラメータの個数（$#）をカウ
ンタ代わりに利用していますが、コマンド置換

全体が暗黙のサブシェルになるため、シェル本
体の位置パラメータや$#の値は変化しないの
で安心です。

while文
　while文は、whileの直後に記述したリストが
真である限り、do～doneのループを実行します。
whileの直後のリストとしては、if文と同様に
testコマンドの別名の[コマンドがよく使われ
ますが、ほかに、readコマンドを使うことも
多いです。
　リスト 9は、/etc/resolv.confを読み込み、
その中のnameserverの行に記述された IPアド
レスのみを取り出して表示する例です。read

コマンドは標準入力から1行を読み込み、単語
に分割して変数にセットしますが、標準入力が
EOF（End Of File：ファイル終端）になった
場合は終了ステータスが偽になります。このた
め、while read ……と記述すると標準入力
から1行ずつ読み込んでEOFまでループする

#!/bin/sh

for file in * ←カレントディレクトリのファイル名でループ
do
 cp -p "$file" "$file".bak ←各ファイルをバックアップ
done

 ▼リスト4　カレントディレクトリの各ファイルをバックアップ

 ↓連番のブレース展開で1から10までループ
for i in {1..10}
do
 echo $i ←試しにループ変数を表示
 : ←ここに処理本体を記述する
done

 ▼リスト5　 連番のブレース展開を使った数列ループ
（bash、zsh用）

 ↓seqを使う（`seq 10`でも良い）
for i in `seq 1 10`
do
 echo $i ←試しにループ変数を表示
 : ←ここに処理本体を記述する
done

 ▼リスト6　 seqコマンドを使った数列ループ
（Linuxなど）

for i in `jot 10` ←jotを使う（`jot - 1 10`でも良い）
do
 echo $i ←試しにループ変数を表示
 : ←ここに処理本体を記述する
done

 ▼リスト7　jotコマンドを使った数列ループ（FreeBSDなど）

for i in `set X;while [$# -le 10];do echo $#;set "$@" X;done`
do ↑setコマンドで$#の値を利用した技巧的な方法
 echo $i ←試しにループ変数を表示
 : ←ここに処理本体を記述する
done

 ▼リスト8　従来の /bin/shの内部コマンドだけで数列ループ（Solaris10以前など）

理論編 1

シェル初心者から中級者への次の一歩 1第　 章

26 - Software Design

ことができます。
　ここでは標準入力に/etc/resolv.confファイ
ルをリダイレクトしますが、リダイレクトの記
述はwhile文全体のあと、つまりdoneのあとに
記述します。
　なお、同様の処理はほかのスクリプト言語を
使って行うこともでき、たとえばawkを使えば
リスト10のようになります。しかし、外部コ
マンドを呼び出さずにシェル内部のwhile文と
readコマンドなどだけを使ってやる方法もある
ことを覚えておくと応用範囲が広がるでしょう。

サブシェル
　リストを()で囲むとサブシェルになり、サ
ブシェルはもとのシェルとは別扱いで実行され
ます。サブシェルの中でシェル変数や環境変数
を変更したり、カレントディレクトリやumask

値などを変更しても、サブシェルを抜けるとも
とに戻ります。そこで、シェル変数や位置パラ
メータなどを変化させて何らかの処理を行い、
必要な処理が終わったらもとに戻したい場合に
サブシェルを使うと便利です。もちろん、サブ
シェル全体をリダイレクトしたり、パイプに接
続したりすることも可能です。
　リスト11は、環境変数PATHに設定されて
いるコロン（:）で区切られた複数のディレクト

リ名のうち、3番目に設定されているディレク
トリ名だけを表示するシェルスクリプトです。
シェル変数 IFSを:に変更し、:を区切り文字
とした状態でsetコマンドを実行すると、:は
削除されて、PATHの各ディレクトリが順番に
$1、$2、$3、……の位置パラメータにセット
されます。ここで$3をechoすれば目的が達成
できます。たとえばPATH=/home/guest/bin:/

usr/local/bin:/usr/bin:/usr/sbinと設定されて
いたとすると、3番目の/usr/binが表示される
はずです。サブシェルの中で変更されたIFSと
位置パラメータはもちろんもとに戻ります。
　サブシェルを1行で記述する場合、次項のグ
ループコマンドとは違って、(の直後にスペー
スを空ける必要はなく、また、リストの最後は
セミコロン（;）なしで括弧を閉じることがで
きます。
　サブシェルの中でexitコマンドを実行すると、
もとのシェルを終了するのではなく、サブシェ
ルだけが終了になります。exitの引数で終了ス
テータスを返せるので、これを利用して、1の
終了ステータスを返す falseコマンドと同じコ
マンドを作ることができます。さらに1だけで
なく、0～255までの任意の終了ステータスを
返すコマンドをサブシェルで作れます（図11）。

#!/bin/sh

while read name val comment ←1行ずつ読み込んでループ
do
 case $name in nameserver) echo "$val";; esac ←nameserverの行でechoを実行
done < /etc/resolv.conf ←リダイレクトはdoneのあとに

 ▼リスト9　resolv.confのnameserverの IPアドレスを抜き出すスクリプト

#!/bin/sh

awk '$1 == "nameserver"{print $2}' ｭ
< /etc/resolv.conf

 ▼リスト10　 awkを使ってnameserverの IPア
ドレスを抜き出すスクリプト

#!/bin/sh

(←サブシェル開始
 IFS=: ←区切り文字をコロン（:）とする
 set $PATH ←コロンで区切って位置パラメータにセット
 echo $3 ←3番目の位置パラメータを表示
) ←サブシェル終了

 ▼リスト11　 PATHの3番目に設定されたディレクトリ名
を表示

1第　 特集
理論　応用& でシェル力の幅を広げる

26 - Software Design Jul. 2017 - 27

グループコマンド
　リストを{ }で囲むと、グループコマンドと
呼ばれる複合コマンドの一種になります。グルー
プコマンド全体が1つのコマンドですので、グ
ループコマンドとしてまとめてリダイレクトし
たり、パイプに接続したり、また次項のシェル
関数の本体として使用したりすることができま
す。サブシェルとは違ってグループコマンド内
のリストはもとのシェル上で実行され、変数な
どの変更はすべてグループコマンドを抜けたあ
とにも影響します。
　リスト12は、3個のコマンドの出力を同じ
logfileにまとめてリダイレクトしている例です。
グループコマンドを使わずに個々のコマンドを
個別にリダイレクトする（その場合はアペンド
モードで>> logfileとする）よりも記述が簡
便になります。
　グループコマンドを1行で記述する場合、サ
ブシェルの記述とは違って{ リスト;}のよう
に、{の直後にスペースが必要で、}の前には
セミコロンが必要です。サブシェルとグループ
コマンドの違いが問題にならない場合は、グルー
プコマンドの代わりにサブシェルを使って記述
してもかまいません。

シェル関数
　一定の処理を行うコマンドをまとめてシェル
関数を定義することができます。シェル関数は
シェルスクリプトの中で使えるのはもちろん、
コマンドラインで使うこともできます。リスト
13は、ls -lを実行するようなシェル関数を
定義している例で、シェル関数を使ってalias

と同様のことができます。ただし、aliasとは違っ

て引数の受け渡しも明示的に定義する必要があ
ります。シェル関数に対する引数は、位置パラ
メータ（$1、$2、……）に一時的にセットされ、
この値はシェル関数内だけで有効になります。
引数をそのまま全部引き継ぐには、"$@"を使
います。
　このように、シェル関数は関数名() { リス
ト;}の形で定義します。シェル関数内の変数は、
引数渡しのための位置パラメータを除いてグロー
バル変数のように扱われ、関数内で変更した変
数の値は関数からリターンしたあとでも変化し
たままになります。
　関数内の変数をローカル変数のように扱いた
い場合は、関数本体の{ }を、()を使ったサ
ブシェルに変更し、関数名() (リスト)の形
で記述すると良いでしょう。実は、関数本体部
分は何らかの複合コマンドを1つ記述すればよ
く、たとえば if文を1つ使って、関数名() if
:;then リスト;fiのような変わった定義も文
法的には可能です。
　シェル関数の終了ステータスは、シェル関数
内で最後に実行されたリスト（コマンド）の終
了ステータスになりますが、returnコマンドを
使って終了ステータスを明示的に返すこともで
きます。ﾟ

$ (exit 1) ←サブシェルの中で引数1でexitを実行
$ echo $? ←終了ステータスを表示
1 ←終了ステータスは1、falseコマンドと同じ
$ (exit 123) ←0～255までの任意の終了ステータスを返せる
$ echo $? ←終了ステータスを表示
123 ←終了ステータスは123

 ▼図11　 サブシェルで任意の終了ステータスを返すコマン
ドを作る

#!/bin/sh

{ ←グループコマンド開始
 hostname ←ホスト名を出力
 date ←日時を出力
 who ←ログインユーザ名を出力
} > logfile ←以上の出力をまとめてファイルにリダイレクト

 ▼リスト12　 3個のコマンドの出力をまとめてファイルにリ
ダイレクト

#!/bin/sh

ll() ←llという関数を定義
{ ←関数本体はグループコマンドとして記述
 ls -l "$@" ←ls -lの引数は"$@"ですべて引き継ぐ
} ←関数本体の終了

 ▼リスト13　シェル関数で llという関数を定義

理論編 1

シェル初心者から中級者への次の一歩 1第　 章

28 - Software Design

基本のおさらい

シェルスクリプトとは

　シェルスクリプトとは、普段シェルから打ち
込んでいるようなコマンドなどを1つのテキス
トファイルにまとめたものを指します。
　たとえば、ビルドなどの目的に応じた手順（入
力する一連のコマンドなど）をスクリプトとし
て保存し、そのスクリプトを実行することで、
上から順番にコマンドがシェルに解釈され実行
されていくため、わざわざ1つずつシェルから
コマンドを打ちこむ必要がなくなります。
　ゆえに、更新作業やビルド処理など定期的に
実行する必要がある複数のコマンドセットをひ
とまとめにシェルスクリプトとして用意してお
くなどがよくあるユースケースです。
　リスト1に示した例は、

・Go 1.8の圧縮ファイルをダウンロード
・ダウンロードした圧縮ファイルを展開
・指定したディレクトリを作成
・インストール
・実行（バージョン情報を出力）

を1つにまとめたシェルスクリプトの例です。
　このシェルスクリプトを install-go18.shとい
う名前で保存して実行してみましょう。

$ bash install-go18.sh

　次のように表示されると成功です。

go version go1.8 darwin/amd64

　だいたいのシェルはシェル自体が if、forといっ
た制御文などを解釈する機能を持っているので、
これらを駆使すると、ほかのプログラミング言
語で行うようなプログラムを書くこともできま
す（後述）。しかし、シェルスクリプトの基本
はリスト1のようなコマンドの羅列をまとめた
ものだ、と覚えておくことをお勧めします。

シェルの種類と
シェバンについて

　前項にて、「だいたいのシェルは」と説明し
ました。一口にシェルと言っても実はさまざま

 ▼リスト1　 Go言語をインストールするシェルスクリプ
ト（install-go18.sh）

#!/bin/bash
wget "https://storage.googleapis.com/ｭ
golang/go1.8.darwin-amd64.tar.gz"
tar zxf "go1.8.darwin-amd64.tar.gz"
mkdir -p ̃/bin
install -m 755 go/bin/go ̃/bin
̃/bin/go version

2第　 章 編 理論 2

シェルスクリプト初心者から
中級者への次の一歩
シェルはコマンドラインインターフェースで、インタラクティブ（対話的）
に使うだけではありません。コマンドなどをファイルに記述すればシェル
スクリプトとして実行できます。ここで意識したいのが、UNIX哲学。こ
の考えに則ってコードを書けば、ほかのコマンドとの連携もできる自作
コマンドが作れます。

Author 石山 将来（いしやま まさき）
Twitter @b4b4r07

株式会社メルカリ

1第　 特集 理論　応用& でシェル力の幅を広げる

28 - Software Design Jul. 2017 - 29

な実装があり、よく利用されているものとして
はbashやzsh、fishなどが挙げられます。
　多くのLinuxディストリビューションでは、
bashがデファクトスタンダードとしてログイ
ンシェルに指定されています。ログインシェル
とは、ログイン時に起動されるシェルのことで、
環境変数$SHELLを参照すると確認できます。

$ echo $SHELL
/bin/bash

　リスト1では、スクリプトの1行目に#!/bin/
bashと記述しました。これはシェバン（shebang

／シバン）と呼ばれるもので、実行形式で呼び
出したときにどのインタプリタで実行されるべ
きかを示したものです。インタプリタ言語であ
るRubyやPythonでスクリプトを書いたことが
ある方には馴染みのあるものかもしれません。
　シェバンを指定して実行することで、図1の
ように実行することも可能です。

どのシェルでシェルスクリプトを
書くべきか

　基本的にどのシェルを使ってシェルスクリプ
トを書いても問題ありません。
　ただし、ほとんどのシェル環境で動くシェル
スクリプトを求められる場合には、POSIXと
いう規格注1に沿って書くことが望ましいです。
　しかし、POSIX shに則ってシェルスクリプ

注1） http://pubs.opengroup.org/onlinepubs/9699919799/

トを書くとなると、ログインシェルとして普段
コマンドラインから利用するbashの機能や構
文は使えませんし、一部POSIXでないコマン
ドやオプションが使えなくなってしまいます。
要件やそのシェルスクリプトを書くことで何を
解決できれば正とするのかなどと照らし合わせ
て、条件にあったシェルをシェバンに採用する
と良いでしょう。
　加えて、シェルの中でも、zshや fishなどは
デフォルトでインストールされていないことが
多いため、採用には注意が必要です。
　ちなみに本稿で記載するシェルスクリプトの
コードはbashで書いています。

シェルスクリプトを
コマンド化する

　Linuxコマンドの多くはC言語などで書かれ
ていることも多いですが、シェルスクリプト

（/bin/bash、/bin/zshなど）でも同様にコマン
ドを作ることができます。図1では作成したシェ
ルスクリプトに実行権限を与えると、相対パス
で実行することが可能になりました。これをど
のディレクトリにいてもコマンド名（ファイル
名）だけで実行できるようにするには、環境変
数$PATHで指定されている（パスの通った）
ディレクトリにコピーまたは移動します（図2）。
　あるいは、次のように自分で用意したディレ
クトリにパスを通してもいいでしょう。

$ mkdir ̃/bin
$ export PATH="$PATH:$HOME/bin"

$ chmod 755 install-go18.sh ←実行権限を付与する
$./install-go18.sh ←シェバンに記したインタプリタで呼び出される

 ▼図1　シェバンを指定すれば、スクリプトの相対パスとファイル名だけでも実行可能

$ mv install-go18.sh install-go18 ←コマンドらしい名前に変更
$ echo $PATH ←$PATHの内容を確認
/bin:/usr/bin:/usr/local/bin
$ sudo cp install-go18 /usr/local/bin ←パスの通ったディレクトリにコピー
$ install-go18 ←コマンド名だけで実行できる
go version go1.8 darwin/amd64

 ▼図2　パスの通ったディレクトリに入れることで、コマンド名だけで実行できる

理論編 2

シェルスクリプト初心者から中級者への次の一歩 2第　 章

http://pubs.opengroup.org/onlinepubs/9699919799/

30 - Software Design

シェルスクリプトとパイプライン

　シェルにおけるパイプラインとは、「あるコ
マンドの出力結果を、別のコマンドの入力とし
て接続して、処理を継続する」というたいへん
便利な機能です（図3）が、その本質はコマン
ドの並列処理にあります。パイプラインでは、
つなげられたコマンドが順番にではなく同時に
動作することで、共同で1つのまとまった仕事
を処理します。
　パイプ処理の多用は遅いと思われがちですが、
この性質を鑑

かんが

みるとむしろ高速化が期待できる
ポイントになっています。なぜならパイプ先で
生成されるプロセスはデータが流れたときに作
られるのではなく、一斉に作られ常にデータ待
ちをしていて、データが流れてきた瞬間から逐
次処理をしているためです。
　また、フィルタコマンド（標準入力からデー
タを読み込み、処理結果を標準出力に出力する
コマンド）でなくとも、xargsコマンドを通し
て引数を渡してパイプをつなげ続けることもで
きます。少し冗長ですが、図4はトピックブラ
ンチに加えられた変更をmasterの状態に戻す
（git revertではない）ようなコマンドです。
　このパイプ処理をシェルスクリプトにおいて
考えてみましょう。シェルスクリプトは基本的
にコマンドラインの写しです。パイプをたくさ
んにつなげて処理を書くことはシェルスクリプ
トにおいても有用です。
　拙作ですが、enhancdとい
うCLI（コマンドラインイン
ターフェース）アプリをシェ
ルスクリプトで作っており、
その中でパイプを多用してい
る実際の例を見ることができ

ます注2。

実践的なシェルスクリプトを
書くための7つのポイント

　ここまでは、おもに手順書としてのシェルス
クリプトについて述べてきました。シェルスク
リプトとはコマンドの羅列をまとめたテキスト
ファイルに過ぎないので、バッチ処理や定期実
行されるLinuxコマンドのセットを書き記した
ものであるべきです。
　しかしここからは、手順書としてのシェルス
クリプトというだけでなく、CLIアプリケーショ
ンとしてのシェルスクリプトという観点で、書
く際に必要なことを説明します。

1．成否は終了ステータスで
返す

　終了ステータス（status code/exit code）とは、
コマンドの処理が終了したときの成否を表す値
のことです。正常終了をゼロ値（0）、異常終了
を非ゼロ値（1～255）として扱います。直前に
実行したコマンドの終了ステータスはシェル変
数$?で確認できます。

$ cp a.sh b.sh
$ echo $?
0

　たとえば、ここでa.shが存在しないなどの理

注2） https://github.com/b4b4r07/enhancd

$ cat example.csv ¥ ←あるCSVデータを
 ¦ awk -F, '{print $1}' ¥ ←カンマ区切りの1列目を取り出し
 ¦ sort ¥ ←昇順ソートして
 ¦ uniq -c ¥ ←重複行をまとめてカウントし
 ¦ sort -nr ¥ ←カウントした順位で降順ソートし
 ¦ head ←上位10個を表示する

 ▼図3　パイプを使うと、複数のコマンドをつなげて処理ができる

$ git diff --name-only master... ¥ ←masterとの差分のあるファイルを一覧して
 ¦ peco ¥ ←インタラクティブに選んで
 ¦ xargs git diff master... ¥ ←選んだデータをgit diffの引数として渡して
 ¦ patch -p1 -R ←リバースパッチを当てて元に戻す

 ▼図4　フィルタコマンドではないコマンドでも、xargsコマンドを使えばコマンドをつなげられる

1第　 特集
理論　応用& でシェル力の幅を広げる

https://github.com/b4b4r07/enhancd

30 - Software Design Jul. 2017 - 31

由で、cpコマンドが実行できなかった場合は
異常終了として1が返ってきます。

$ cp a.sh b.sh
cp: a.sh: No such file or directory
$ echo $?
1

　終了ステータスを用いてコマンド実行の成否
をハンドリングすることは、UNIXコマンドで
は一般的な手法です。シェルスクリプトでも、
これらの終了ステータスを使って条件分岐する
パターンが非常に多いです。リスト2の例で見
てみましょう。
　ちなみに、引数の数字を与えず単にexitとだ
けすると、exitの直前に実行したコマンドの$?

を使ってexitされるので、意図しないステータ
スの場合があり、注意が必要です。
　また、この終了ステータスの値（数字）には
意味があります（表1）。自分で書いたシェルス
クリプトやコマンドが0以外の終了ステータス
を返す場合は、この規則に則って書くことが望
ましいです。自分が示したいエラー症状に応じ
た終了ステータスを返しましょう。また、これ
らはシェルスクリプトだけではなく、CLIツー
ルを書く際に使える知識なので覚えておくと良

注3） http://tldp.org/LDP/abs/html/exitcodes.html

いでしょう。
　ただし、例外もあって、wget、diffなどは表
1にあるケースにかかわらず、そのコマンド内
で定義した意味を持つ終了ステータスを返して
きます。自分のシェルスクリプト内で終了ステー

 ▼リスト2　 関数 is_existの終了ステータスを使って
条件分岐するスクリプト

#!/bin/bash

コマンドにPATHが通っているかどうか調べる関数
function is_exist() {
 if [[-z $1]]; then
 echo "too few arguments" 1>&2
 return 1
 fi
 # typeコマンド自体の出力はいらないので
 # 標準出力・標準エラー出力ともに捨てる
 type "$1" &>/dev/null
 # typeコマンドの終了ステータスを返す
 return $?
}

変数定義
cmd="go"

ifでは真偽値で分岐される
シェルスクリプトでは0がtrueで非0がfalse
として解釈される
if is_exist "$cmd"; then
 # コマンドが存在する（ここでは何もしない）
 :
else
 # エラーメッセージは標準エラー出力に出す
 echo "$cmd: no such command" 1>&2
 # 異常終了なので0以外で終了する
 exit 1
fi

値 意味 例 説明
1 一般的なエラー全般 $ let "var 1 = 1 / 0" ゼロ除算などのコマンドを継続できないエラー

2 ビルトイン機能の誤用 $ empty_func(){} キーワード（この例では「;」）の付け忘れや権限な
どの問題

126 呼び出したコマンドが実
行できなかった $ /dev/null パーミッションの問題か、コマンドがexecutable

（実行可能）でない

127 コマンドが見つからない $ illegal_command $PATHがおかしいときや入力ミスしたときに起
こる

128 exitコマンドに不正な引
数を渡した $ exit 3.14159 exitコマンドは0～255の整数だけを引数に取る

128＋n シグナルnで致命的なエ
ラー $ kill -9 $PPID 例では、$?は137（128＋9）を返す

130 スクリプトが l ＋ C
で終了 l＋C

l ＋ C はシグナル 2 で終了する（128 ＋ 2 ＝
130）

255 範囲外の終了ステータス $ exit -1 exitコマンドは0～255の整数だけを引数に取る

 ▼表1　終了ステータスの意味注3

理論編 2

シェルスクリプト初心者から中級者への次の一歩 2第　 章

http://tldp.org/LDP/abs/html/exitcodes.html

32 - Software Design

タスを用いて条件分岐するときは、これらのコ
マンドに注意してください。

2．成功したときは
何も表示しない

　簡単なコマンドmkdirを例に説明します。こ
れはディレクトリを作るときに使うコマンドで
すが、正常にディレクトリの作成が行われれば、
ターミナル画面上には何も表示しません。

$ mkdir a
$

　一見、これだと正常に終了したのかの判断が
つきにくいですが、これはUNIXなりの親切さ
ゆえの設計なのです。UNIXにおいて一般的な
データの受け渡しは標準入出力です。コマンド
が実行されると標準入力を期待して待機し、標
準入力から得られたデータを処理して標準出力
に結果を出す、という挙動をすることが多いで
す。これらの振る舞いをするUNIXコマンドを
「フィルタコマンド」と言います。フィルタコ
マンドは標準入力からデータが渡されるのを期
待するため、データ以外の情報（コマンドの成
功／エラーのメッセージなど）を標準出力に出
すと、パイプを使ったデータの連携がやりにく
くなります。これらの情報を表示する手段がほ
しい場合は、--helpオプションや標準エラー出
力に表示するべきです。
　パイプでつなげられることを前提としていな
いコマンドなどは、その限りではありません。
とはいえ、前述のmkdirはフィルタコマンドで
はありませんが、出力は端的です。フィルタコ
マンドでなくとも成否のメッセージは端的であ
るのがUNIXコマンドらしさです。
　もちろん、これはUNIXコマンドやCLIア
プリとしてシェルスクリプトを書いている場合
には当てはまることです。しかし、たとえばバッ
チ処理用のスクリプトを書いているときなどは、
verbose（冗長に）に表示したほうがいい場合も
あります。これは次の「3．失敗したときは静

かなエラー」においても同様です。

3．失敗したときは静かなエラー

　UNIXのエラー出力は静かです。静かという
表現は、端的にその原因を告げることを意味し
ます。それ以降の操作についてUNIXは言及し
ません。

$ rm dir
rm: dir: is a directory

　上の例では、rmでディレクトリを削除しよ
うとしました。もちろん、この場合rm -rと
して再帰的な削除を命令する必要があります。
しかし、UNIXはそのやり方を指示したりはし
ません。「rm -rとしなさい」とも「空のディレ
クトリならrmdirを使いなさい」とも言いませ
ん。ただ単に「それはディレクトリです」と標
準エラー出力に表示するだけです。暗示的に「rm

ではディレクトリは削除できませんよ」と示し
ているだけなのです。
　これはUNIXコマンドを書くときも同様です。
エラーを表示するときに必要のない情報まで出
力する必要はありません。必要のない情報とは、
Usage（使用法）やオプションの使い方を示す
ようなヘルプメッセージなどです。この無駄な
出力によって、パイプによるフィルタリングが
難しくなったり、大事な出力が埋れたりするの
は良いCLIとは言えません。

4．エラーは標準エラー出力に
出力する

　「2．成功したときは何も表示しない」や「3．
失敗したときは静かなエラー」にも述べました
が、エラーは標準エラー出力に出力させましょ
う。次のようにして、エラーを標準エラー出力
に出力することで、フィルタやコマンドとして
の振る舞いがとてもやりやすくなります。

$ echo "An error occurred " 1>&2

1第　 特集
理論　応用& でシェル力の幅を広げる

32 - Software Design Jul. 2017 - 33

　また、純粋なコマンドのアウトプットだけを
捨てたいとき、またはエラーメッセージだけを
捨てたいとき、出力先を分けておくことで、こ
れらの分離がやりやすくなります。

 ./output.sh
#!/bin/bash
echo "Expect stdout"
echo "Expect stderr" 1>&2

$./output.sh >/dev/null
Expect stderr ←標準エラー出力だけ表示
$./output.sh 2>/dev/null
Expect stdout ←標準出力だけ表示

　これを一緒くたに同じ標準出力に出力してし
まうと、>/dev/nullにリダイレクトしたとき、
すべての出力が無に流れてしまいます。

5．フィルタとパイプを意識する

　標準入出力はシェルスクリプトにおいて一般
的なデータの受け渡し方法であると述べました。
これに関して、パイプの開発者M.D.マキルロ
イも次のように要約しています。

これがUNIXの哲学である。
一つのことを行い、またそれをうまくやるプ
ログラムを書け。
協調して動くプログラムを書け。
標準入出力（テキスト・ストリーム）を
扱うプログラムを書け。標準入出力は普
遍的インターフェースなのだ。
̶̶ダグラス・マキルロイ、UNIXの四
半世紀

　古来から存在するUNIXコマンドの多く
は、この思想をもとにフィルタコマンドと
して設計されています。私たちが作成する
CLIアプリもこの慣習にならい、データ入
力には標準入力（stdin）を使用し、データ
出力には標準出力（stdout）を使用するべ
きです。こうすることで、パイプによるフィ
ルタリング処理がしやすくなります。パイ
プでフィルタしたデータを受け渡しできる

ようになれば、ほかのツールとの連携がとても
簡単になります。
　自作するシェルスクリプトでも標準入力を受
け付けられるようにする場合、デバイスファイ
ルである/dev/stdinと、test -pなどを使う
ことで標準入力の有無を判断できます注4。

$ test -p /dev/stdin
$ echo $?
1 ←標準入力がないため異常終了になる
$ echo "hogehoge" ¦ test -p /dev/stdin
$ echo $?
0 ←標準入力があるため正常終了になる

　標準入力が確認できる場合、test -pは true

（0）を返していることが確認できます。ちなみ
に、testコマンドは[コマンド（対応する位置に]
が必要）と同等の機能を持ち、bashなどのシェ
ルではさらに多くの機能を持つ[[（対応する位
置に]]が必要）がビルトインコマンド（シェル
自体が持っている機能やコマンドのこと）とし
て実装されています。これを使って標準入力を
判断するスクリプトを書いてみましょう。リス
ト3は、標準入力からパッケージ名を得て、そ

注4） http://qiita.com/b4b4r07/items/77c589f21a99db
8bb682

 ▼リスト3　 フィルタコマンドとしてのシェルスクリプト（goget.sh）

#!/bin/bash

標準入力がない場合は何もしない
if [[! -p /dev/stdin]]; then
 echo "no stdin data" 1>&2
 exit 1
fi

count=0

readコマンドは標準入力からデータを変数に格納できる
whileと組み合わせることでEOF(^D)があるまで読み続ける
while read line
do
 echo "Installing $line"
 # バックグラウンドで処理（サブプロセス化）
 go get -u "$line" &
 # 同時に立ち上げるプロセスの数を16個に制限する
 (((count += 1) % 16 == 0)) && wait
done
すべてのプロセスの終了を待つ
wait

理論編 2

シェルスクリプト初心者から中級者への次の一歩 2第　 章

http://qiita.com/b4b4r07/items/77c589f21a99db8bb682

34 - Software Design

れぞれのパッケージを導入するスクリプトです。
　実行すると図5のようになります。このよう
にパイプを捕捉し、フィルタコマンドとしての
役割を担うことができるようになります。

6．bashに依存しているのに
`#!/bin/sh`と書かない

　/bin/shの実態は環境によってまちまちです。
さまざまなシェルのシンボリックリンクになっ
ていることが多いです。そのため、予期せぬエ
ラーや動作しないといったことが起きる場合が
あります。
　bashやその他シェルに依存したスクリプト
を書くのなら、そのシェル上での動作を前提に
しているので、シェバンには#!/bin/bashな
どと書いたほうが良いです。
　Linuxディストリビューションのデファクト
スタンダートと化しているUbuntuでは、/bin/

shは/bin/dashになっています。つまり、Ubuntu

で動かすスクリプトにbashの文法を書いてお
きながらシェバンを#!/bin/shとしていると、
dash上で実行されてエラーで動かないという
事態も起きかねません。

 ./list.sh
#!/bin/sh
list=($(ls))
echo "$list"

　Ubuntu環境だと/bin/shの実態はdashにな
るので、次のようにエラーとなります。

$./list.sh
./list.sh: 2: ./list.sh: Syntax error: ｭ
"(" unexpected

　これはdashが(...)の表記をサポートして
いないためです。
　ほかにも、if [...の書き方（testコマン
ドの代用である[）などもサポートしていません。
これは大きくスクリプトの動作を変えてしまい
ます。

7．移植性、ポータビリティ

　シェルスクリプトの魅力の1つはポータビリ
ティです。POSIX shで記述するスクリプトは、
理論上最も汎用性の高いシェルスクリプトとし
て、ほとんど改変や手直しを加えることなく多
くの環境で使いまわせます。ただし、これには
POSIXという規格で定められた範囲内の文法
やコマンドで記述することが必要となります。
　そのスクリプトがどんなケースで実行される
ことを想定しているかによって、使用するシェ
ルを選択すると良いでしょう。

まとめ

　シェルスクリプトとは何なのか、またそれを
書くうえで想定される2つのユースケースにつ
いてまとめました。

・手順書としてのシェルスクリプト
・CLIアプリとしてのシェルスクリプト

　今回紹介したことは、シェルスクリプトにお
いては基本的なことです。とくに後者に関して
は、ほかのスクリプト言語やGo言語で書く際
にも通ずる話です。
　ぜひこの機会に、シェルスクリプトを通して
その使い方と、CLIアプリ（UNIXコマンド）
のお作法について触れてみてください。ﾟ

$ cat pkg.txt
github.com/b4b4r07/gist
github.com/heppu/gkill
github.com/peco/peco
github.com/davecheney/httpstat
 （..省略..）

$ cat pkg.txt ¦ ./goget.sh
Installing github.com/b4b4r07/gist
 （..省略..）

 ▼図5　goget.shの実行結果

1第　 特集
理論　応用& でシェル力の幅を広げる

35 - Software Design Jul. 2017 - 35

bashはプログラミング言語
処理系

　そもそもbashとは何なのでしょうか？　こ
の問いは広い意味では「シェルとは何なのでしょ
うか？」という問いにつながります。
　プログラミング言語を学び始めると、ひとま
ず細かい説明は抜きでテキストファイルに
Hello, World!と命令文を書いて実行し、画
面に表示させるということから始めるケースが
多いと思います。そこから、徐々に発展的なプ
ログラミングを行っていくのですが、特定のプ
ログラミング言語についての理解が深まってい
く一方で、ベースのインターフェースとなって
いるシェルについては、ほとんど意識せずに進
んでしまっている人もいるのではないでしょう
か？
　そこで、この章では最初にHello, World!
を書くときの気持ちに立ち戻り、「シェルとは
何か？」というところから始めてみましょう。
シェルについてインターネットで検索して調べ
てみると、いろいろな説明が出てきますが、そ
れらをまとめて次のよう

注1） なお本章でシェルという言葉
を用いる場合、それは基本的
に CLI（ Command Line
Interface）のシェルのことで
あり、ソフトウェアとしては
bashを指すこととします。

に定義します。

シェルとは、ユーザとOSの中間に位置し、ユー
ザのリクエストした命令を解釈してそれに対す
る処理を実行するソフトウェアである。

　その定義だけに注目して、まずはシェルとし
てbash、プログラミング言語としてPHPを取
り上げて両者の共通点を見ていきましょう。
　なおバージョンに関してPHPは7.0.18、そ
の他ソフトウェアやライブラリはCentOS 6.9

のデフォルトリポジトリに準じます。

PHPとbashを比較する

PHPでプログラムを実行する
　PHPでHello, World!を画面に表示するプ
ログラムを書いてみます。

<?php

echo "Hello, World!\n";

　これをexample.phpとして保存し、シェルか
らphpコマンドの引数として実行します（図1）。

$ ls -l example.php ←メタ情報確認
-rw-rw-r-- 1 tajima tajima 30 5月 1 13:37 2017 example.php
$ php example.php ←実行
Hello, World!

 ▼図1　シェルからexample.phpを実行

3第　 章 編 理論 3

しくみを知れば、bashは
怖くない
第1、2章で基本を学んでも、プログラミング初心者にはまだbashは
どこか異質な存在という印象があるのではないでしょうか？　そのイメー
ジを一新するため、本章ではbashをプログラミング言語の一種と捉え
つつ、その本質としくみを解説します。そして、より発展的に使うため
の基礎を固めていきます注1。

Author 田島 優也（たじま ゆうや）
Twitter @tajima_taso

株式会社オールアバウト

1第　 特集 理論　応用& でシェル力の幅を広げる

36 - Software Design

bashでプログラムを実行する
　続いてbashで同じプログラムを書いてみます。

echo "Hello, World!"

　これをexample.shとして保存し、シェルか
らbashコマンドの引数として実行します（図2）。
　気づいた人もいるかもしれませんが、exam

ple.shの先頭行にはシェバン（#!/bin/bashなど）
を書いていませんし、ファイルのパーミッショ
ンに対して実行権も付与していません。必要な
のは読み取りの権限だけです。なぜならこの場
合、example.shはbashコマンドの引数と指定
されているので、インタプリタがbashである
ことは明確であり、実行権はbashコマンドに
付いてさえいれば良いからです。
　おそらく、PHPの例では「example.phpの先
頭行にシェバンが必要なのでは？」あるいは、
「example.phpに実行権を付与しなくてはいけ
ないのでは？」と思った人はいないと思います
が、bashの場合はそのあたりを気にしてしまっ
た方がいるのではないでしょうか？
　実は、シェバンはシェル（bash）のスクリプ
ト固有のものではなく、あくまでexecveシス
テムコールに対してインタプリタとして何を利
用するかを指定するものなのです。

　さて、bashとPHPにおいて、テキストファ
イルの文字列から命令を実行するしくみは同じ
であることがわかりました。次はログインシェ
ルとして利用するケースから両者を比較しましょ
う。

bashをログインシェルとして使う
　bashをとあるユーザのログインシェルに設
定してみます。ログインシェルとは、ユーザが
システムにログインしたときに設定されるシェ
ルのことです。ログインしたユーザはログイン
シェルをインターフェースとして、システムの
機能を利用します。
　ログインシェルとして動作するシェルは通

常、インタラクティブシェルとして実行されま
す注2。
　ほとんどのLinuxのディストリビューション
のデフォルトで、bashがログインシェルとし
て設定されていると思いますが、あえて再度
bashに設定してみます（図3）。
　これで、tajimaのログインシェルがbashに
変更されました。ログアウトして、再度ログイ
ンしてみてください。なお、ユーザがシステム
にログインする場合はsshdを経由してログイ
ンすることを前提とします。psコマンドで状
況を確認してみます（図4）。

注2） 命令の入力と実行をユーザが繰り返し
行える状態であることをインタラクティ
ブであると言いますが、こういった性
質を持つシェルのことをインタラクティ
ブシェルと言います。bashにおいて厳
密にログインシェルの定義の話をする
と、必ずしもインタラクティブである
必要はないのですが、現実的な利用ケー
スを考慮して、ここではインタラクティ
ブなものとして話を進めます。

$ ls -l example.sh ←メタ情報確認
-rw-rw-r-- 1 tajima tajima 21 5月 1 13:54 2017 example.sh
$ bash example.sh ←実行
Hello, World!

 ▼図2　シェルからexample.shを実行

$ cat /etc/shells ¦ grep '/bin/bash' ←/bin/bashが/etc/shellsに記述されているか確認する
/bin/bash ←記述されている
$ sudo chsh -s /bin/bash tajima ←chshコマンドでtajimaのログインシェルを/bin/bashに変更
tajima のシェルを変更します。
シェルを変更しました

 ▼図3　ログインシェルをbashに設定する

tajima 28035 0.0 0.0 102560 1868 ? S 14:34 0:00 _ sshd: tajima@pts/1
tajima 28036 0.0 0.0 108364 1812 pts/1 Ss+ 14:34 0:00 _ -bash

 ▼図4　psコマンドの実行結果（ログインシェルをbashにした場合）

1第　 特集
理論　応用& でシェル力の幅を広げる

36 - Software Design Jul. 2017 - 37

　ユーザ tajimaがログイン後に実行しているプ
ロセスがbashであることが確認できました。
ログインしたユーザプロセスの環境変数には、
SHELLが設定されているはずなので確認して
みます。

$ sudo strings /proc/28036/environ ¦ ｭ
grep SHELL
SHELL=/bin/bash

　では、bashで次の操作を行ってみましょう。

①	カレントディレクトリの確認
②	ディレクトリの作成
③	ディレクトリへの移動
④	ファイルの作成
⑤	ディレクトリの中身を確認する

　bashでカレントディレクトリの確認は、bash

のビルトインコマンドpwdで行えます。

$ pwd
/home/tajima

　ディレクトリの作成は、外部コマンドmkdir

で行えます。

$ mkdir foo

　ディレクトリへの移動は、bashのビルトイ
ンコマンドcdで行えます。

$ cd foo
$ pwd
/home/tajima/foo

　ファイルの作成は、外部コマンド
touchで行えます。

$ touch hoge

　ディレクトリの中身を確認するには、
外部コマンド lsで行えます。

$ ls
hoge

　いずれもLinuxの新人研修で行うような基本
操作ですので、とくに説明不要かと思います。
ただ、外部コマンド、ビルトインコマンドの違
いについては、のちほど補足します。

PHPをログインシェルとして使う
　PHPもbashもソースコードから実行できる
ことは先ほど見たとおりですが、次はPHPを
ログインシェルとして使ってみます。もともと
PHPは -aオプションを付けて起動すると、イ
ンタラクティブに起動することができます注3。
php >がプロンプトです。bashにおける$に相
当します。

$ php -a
Interactive shell

php > echo "Hello, World!\n";
Hello, World!
php >

　この機能を利用して、PHPをログインシェ
ルとして起動します。そのための準備として、
C言語でリスト1のソースコードを作成します。
　細かい説明は省きますが、要するにPHPの
プロセスを -aオプション付きで起動する実行

注3） http://php.net/manual/ja/features.commandline.
interactive.php

#include <unistd.h>

extern char **environ;

int main (void) {

 char *const argv[] = {"/usr/bin/php", "-a", NULL};

 execve("/usr/bin/php", argv, environ);

 return 1;
}

 ▼リスト1　 PHPをインタラクティブに起動するためのソースコード

理論編 3

しくみを知れば、bashは怖くない 3第　 章

http://php.net/manual/ja/features.commandline.interactive.php

38 - Software Design

ファイルを作成するコードです。これをコンパ
イルすると、引数なしでPHPをインタラクティ
ブに起動できる実行ファイルが作成されるので、
それをログインシェルとして設定します。

 ↓実行ファイル名をphp2とする
$ gcc php.c -o php2
 ↓実行ファイルを/usr/binに移動
$ sudo mv php2 /usr/bin/php2
$ ls /usr/bin/php2
/usr/bin/php2

　/etc/shellsに実行ファイルのパスを追記し
ます。

$ sudo vim /etc/shells
 ↓vimが起動したら行末に以下を追記し保存
/usr/bin/php2

　ここまで準備できたら、あとはbashのとき
と同じようにchshコマンドに/usr/bin/php2を
指定して tajimaのログインシェルを変更して完
了です。sshdを経由して tajimaユーザでログ
インしてみましょう。
　ログインできたら、別のユーザの端末でps

コマンドを実行して確認します（図5）。tajima

ユーザの実行しているプロセスがphp -aであ
ることがわかります。
　ログインしたユーザプロセスの環境変数には、
SHELLが設定されているはずなので確認して
みます。

$ sudo strings /proc/28232/environ ¦ ｭ
grep SHELL
SHELL=/usr/bin/php2

　また、tajimaユーザの画面には、システムへ
のログイン時に次のようなメッセージが表示さ
れ、PHPがログインシェルとして動作してい

ることがわかります。

Last login: Mon May 1 14:34:31 2017 ｭ
from xxx.xxx.xxx.xxx
Welcome to xxxx

Interactive shell

php >

　それでは、bashのときに行った操作をPHP

で行ってみましょう。当然、シェルとしてbash

を使用して解釈されていた文字列は、PHPの
シェルでは解釈できません。

php > pwd;
PHP Notice: Use of undefined constant ｭ
pwd - assumed 'pwd' in php shell code ｭ
on line 1
php >

　このように、あくまでPHPで定められてい
る文法に沿わないと、目的のコマンドを実行で
きません。bashでは当たり前のように解釈・
実行されていた、パイプ（¦）やリダイレクト（>）
のようなユーティリティコマンドもインタプリ
タに認識されません。
　これはPHP以外のプログラミング言語で書
かれたソースコード（たとえばC言語）が、
PHPで実行できないことと同じです。
　以上をふまえて、PHPでbashと同じこと（前
述の①～⑤）を実現してみます。
　PHPでカレントディレクトリの確認は、PHP

のビルトイン関数getcwdで行えます。また、
PHPの関数では、bashのようにコマンドの実
行結果を標準出力に吐き出す機能が基本的には
組み込まれていないので、結果の出力を確認し
たい場合はechoを指定します。命令の終端には;
と改行を指定します。

tajima 28231 0.0 0.0 102560 1864 ? S 16:02 0:00 _ sshd: tajima@pts/1
tajima 28232 0.0 0.5 314496 10868 pts/1 Ss+ 16:02 0:00 _ /usr/bin/php -a

 ▼図5　psコマンドの実行結果（ログインシェルをPHPにした場合）

1第　 特集
理論　応用& でシェル力の幅を広げる

38 - Software Design Jul. 2017 - 39

php > echo getcwd();
/home/tajima

　ディレクトリの作成は、PHPのビルトイン
関数mkdirで行えます。

php > mkdir("./foo");

　ディレクトリへの移動は、PHPのビルトイ
ン関数chdirで行えます。

php > chdir("foo");
php > echo getcwd();
/home/tajima/foo

　ファイルの作成は、PHPのビルトイン関数
touchで行えます。

php > touch("hoge");

　ディレクトリの中身を確認するには、PHP

のビルトイン関数scandirで行えます。結果を
きれいにフォーマットして出力させるには、少
しプログラムを書く必要があるので、今回は結
果をvar_dumpで表示するにとどめます。

php > var_dump(scandir("."));
array(3) {
 [0]=>
 string(1) "."
 [1]=>
 string(2) ".."
 [2]=>
 string(4) "hoge"
}

　いかがでしょうか？　bashとはだいぶイン
ターフェースが異なりますが、PHPのシェル
もユーザのリクエストに対する命令を実行でき
ています。この挙動はシェルそのものです。
　bashのほうがシェルとしての機能と利便性
に特化しているというだけで、数あるプログラ
ミング言語処理系の一部というイメージを少し
でも持てたとすれば、だいぶbashとの距離感

が近づいてきたと言えるでしょう。
　bashはリアルタイム性が要求され、実行し
ている環境のファイルシステムの構成などに影
響を与えてしまう命令を処理する機会が多いの
に対して、通常のプログラミング言語は好きな
テキストエディタや IDEの環境でじっくり編
集でき、bashほどシステムに影響を与える危
険性が少ないかもしれません。
　ですが、bashもみなさんが日常的に触れて
いるプログラミング言語と本質的に同じもので
す。初めて触れるプログラミング言語がbashで、
bashで初めてのHello, World!を表示するプ
ログラムを書くケースがあってもいいのです。

bashで知っておくべきこと

　この節ではbashの機能や決まりごとについ
て見ていきます。bashをプログラミング言語
として捉えたうえで、これらを理解しておくと
bashを応用的に使えるようになるでしょう。

bashの設定ファイル

　bashをプログラミング言語と捉えると、bash

の実行の流れは次のように考えられます。

設定ファイルの読み込み → 各種変数や関数の
定義 → ユーザプログラムの実行

PHPの外部コマンド
実行関数

　PHPには systemやexecといった外部コマン
ドを実行するためのビルトイン関数がありま
すが、今回は使用していません。これらの関
数は内部的に/bin/sh -c 引数の形式でコマ
ンドを実行しており、bashを利用してしまう
からです。実際にプログラミングを行う過程
では、目的に応じてこれらの関数を利用する
と便利な場合がありますので、適時利用しましょ
う。ビルトインと外部コマンドの違いについ
ては、のちほど見ていきます。

理論編 3

しくみを知れば、bashは怖くない 3第　 章

40 - Software Design

　設定ファイルをどう読み込むかについては、
bashの起動コンテキストによって違いがあり
ますので、その点について説明します。
　これまでインタラクティブシェルとログイン
シェルという言葉をとくに区別せずに使ってき
ました。ここでその違いを明確にしておきます。

ログインシェル
　グローバルな設定情報を読み込む
インタラクティブシェル
　ローカルな設定情報を読み込む

　上記のような違いがあります。ただし、これ
らは厳密には独立したものではなく、ORで結
ばれる関係にあります。
　グローバルな設定情報としてはbashはデフォ
ルトで、/etc/profile、̃/.bash_profileを対象
にして読み込みます。なお、̃/.bash_profileが
存在しない場合は、̃/.bash_login、̃/.profileを
順に探していき、読み込めた場合はそこで設定
ファイルの読み込みをストップします。
　ローカルな設定情報としては、̃/.bashrcを
対象として読み込みます。
　psコマンドでシステムログイン後の tajima

ユーザのプロセス状況を確認すると、図6のよ
うに表示されています。bashでは0番目の引数
の最初の文字が-である場合、ログインシェル
です注4。したがって、設定ファイルとして/etc/

profile、̃/.bash_profileを読み込みます。
　この状態で、bashを起動してみます。

注4） bash --loginやbash -l、またはsu -コマンドやsshd
経由で実行された場合もログインシェルと定義されます。

$ bash

　するとログインシェルのbashから非ログイ
ンシェルのbashがインタラクティブシェルと
して新たに起動されます（図7）。したがって、
この場合は ̃/.bashrcが新たに読み込まれます。
　もしも ̃/.bash_profile内でbashのビルトイ
ンコマンドexportを使って変数を定義してい
た場合、新たに起動したbash内でもその変数
にアクセスすることが可能です。新たに起動し

tajima 10648 0.0 0.1 104264 3652 ? S 13:01 0:00 ¦ _ sshd: tajima@pts/4
tajima 10649 0.0 0.0 108500 1880 pts/4 Ss 13:01 0:00 ¦ _ -bash

 ▼図6　ログイン直後は、ログインシェルとしてbashが起動している

tajima 10648 0.0 0.1 104264 3652 ? S 13:01 0:00 ¦ _ sshd: tajima@pts/4
tajima 10649 0.0 0.0 108500 1880 pts/4 Ss 13:01 0:00 ¦ _ -bash
tajima 11982 0.0 0.0 108500 1864 pts/4 S+ 14:38 0:00 ¦ _ bash

 ▼図7　さらにbashを起動すると、ログインシェルのbashから非ログインシェルのbashが起動される

ビルトインコマンド
export

　シェルから新たに起動したシェルは、親と
アドレス空間が異なる別プロセスなので、特
別な手法を用いないと親プロセス内の情報を
引き継げません。
　そこでbashでは親プロセスで定義した変数
を子プロセスでも参照するために、環境変数
を子プロセスにコピーするという手法で変数
の参照を可能にしています。その処理を行っ
てくれるのが、bashのビルトインコマンド
exportです。exportコマンドは子プロセスに
引き継ぎたいシェル変数にフラグを付けておき、
execveシステムコール呼び出し時の引数にそ
の情報を渡すことにより、生成された子プロ
セスに対して環境変数を引き継いでいます。
　プログラミング言語におけるオブジェクト
指向の文脈で語るなら、ログインシェルは親
クラス、そこから起動されたシェルは子クラ
スのようなイメージを持っておくと、各設定ファ
イルに適切な内容を設定できると思います。

1第　 特集
理論　応用& でシェル力の幅を広げる

40 - Software Design Jul. 2017 - 41

たbashの先頭には-がないので、ログインシェ
ルではありません。

ビルトインコマンドと
外部コマンド

　ここまでbashの話をしてきた中で、ビルト
インコマンドと外部コマンドという話が出てき
ました。その違いを理解していないと、思わぬ
不具合に見舞われることがあるのでその違いを
はっきりさせておきます。
　ビルトインコマンドも外部コマンドも、コマ
ンドという名前からわかるように実行可能な命
令で、ビルトインコマンドはbashの実行ファ
イルに組み込まれているコマンドを指し、外部
コマンドはbashの実行ファイルに組み込まれ
ていないコマンドのことを指します。
　違いに関して、より具体的なイメージをつか
むために、psコマンドを使って確認してみましょ
う。
　/usr/bin/timeは外部コマンドです。このコ
マンドは引数として指定したコマンドの実行時
間を計測する処理を行います。そこで、/usr/

bin/time/の引数としてsleepを指定したあと、
ほかの端末からpsコマンドでプロセスの状態
を確認してみます。

$ /usr/bin/time sleep 10

　bashから新たに/usr/bin/timeが子プロセス
として起動され、そこからさらにsleepが子プ
ロセスとして起動しています（図8）。
　次にbashのビルトインコマンド timeを使っ

て、同様にsleepの実行時間を計測して、ほか
の端末からpsコマンドで状態を確認します。

$ time sleep 10

　timeのプロセスが存在せず、bashから直接
sleepが起動されて、実行時間を計測していま
す（図9）。これは、timeの処理がbashのプロ
セスの中で動作していることを意味します。
　このように、ビルトインコマンドは、新たに
プロセスを生成せずにbashのプロセスの中で
実行され、外部コマンドは、新たに生成された
プロセスの中で実行されていることがわかりま
す。ビルトインコマンドのメリットとしては、
bashに組み込まれているぶん高速に実行でき
ることと、内部で完結するため外的な要因に依
存しない実行結果が保証されることです。
　紛らわしいのは（先ほどの timeコマンドもそ
うですが）、ビルトインコマンドと外部コマン
ドで同名のコマンドが存在しているパターンが
あることです。指定されたパスが特定するもの
が、bashのビルトインコマンドなのか外部コ
マンドなのか判断するには、bashのビルトイ
ンコマンド typeを利用します（図10）。
　bashのビルトインコマンドの場合は、shell

tajima 13081 0.0 0.0 108500 1968 pts/0 Ss 17:50 0:00 ¦ _ -bash
tajima 13264 0.0 0.0 3936 300 pts/0 S+ 18:09 0:00 ¦ _ /usr/bin/time sleep 10
tajima 13265 0.0 0.0 100924 576 pts/0 S+ 18:09 0:00 ¦ _ sleep 10

 ▼図8　外部コマンド/usr/bin/timeを実行した場合（bashからtimeが起動、timeからsleepが起動されている）

tajima 13081 0.0 0.0 108500 1968 pts/0 Ss 17:50 0:00 ¦ _ -bash
tajima 13315 0.0 0.0 100924 572 pts/0 S+ 18:14 0:00 ¦ _ sleep 10

 ▼図9　ビルトインコマンドtimeを実行した場合（bashから直接sleepが起動されている）

$ type time
time is a shell keyword
$ type /usr/bin/time
/usr/bin/time is /usr/bin/time

 ▼図10　 typeコマンドでビルトインコマンド／外部コ
マンドの判断ができる

理論編 3

しくみを知れば、bashは怖くない 3第　 章

42 - Software Design

builtinやshell keywordというメッセージが表
示され、外部コマンドの場合はそのコマンドま
での絶対パスやハッシュ化して保存されている
という旨の表示がされます。

これまでに学んだことを
応用してみる

　それでは、最後にこれまでに学んだことから、
実践的に応用するケースを見ていきましょう。

bash以外のインタプリタで
シェルスクリプトを実行したい

　PHPとbashの比較の項で、シェルスクリプ
トはシェル（bash）固有のものではないと説明
しました。よって、PHPでシェルスクリプト
を実行することも可能です。シェバンには
PHPのインタプリタまでのフルパスを指定し
ます。

#!/usr/bin/php
<?php

echo "Hello, World!\n";

　このファイルをexample_php.shとして保存
し、実行権を付与することでそのまま実行可能
です（図11）。

bashで定義した変数に、bash
以外の環境からアクセスしたい

　bashの設定ファイルの項で、ビルトインコ
マンドexportを使って変数を定義すると、新

たに起動した子プロセスのbashでもその変数
にアクセスできると説明しました。そして、コ
ラム「ビルトインコマンドexport」の中で説明
したとおり、変数は環境変数として引き継がれ
ているため、インターフェースさえあれば、
bash以外のプロセスからも定義済み変数にア
クセスできます。

 ↓bashのexportで変数を定義
$ export hoge=foo
 ↓PHPをインタラクティブモードで起動
$ php -a
Interactive shell

 ↓環境変数の値を取得するPHPのビルトイン関数
php > echo getenv('hoge');
foo

sudo cdを行いたい

　UNIXライクなほとんどの環境において、現
在のユーザとは別のユーザの権限でコマンドを
実行できるsudoというユーティリティコマン
ドが使えます。sudoコマンドを利用すること
によって、一時的に権限レベルの高いユーザの
権限でコマンドを実行して、システムに関わる
設定変更を行えます。
　sudoコマンドは引数として与えたコマンドを、
新たなユーザ権限のもと別プロセスで起動する
コマンドですので、たとえばsudo sleep 10
を実行時のプロセスの状態は図12のようにな
ります。

$ chmod u+x example_php.sh ←実行権を付与
$ ls -l example_php.sh ←メタ情報確認
-rwxrw-r-- 1 tajima tajima 45 5月 7 19:28 2017 example_php.sh
$./example_php.sh ←実行
Hello, World!

 ▼図11　PHPで書いたシェルスクリプトを実行する

tajima 30646 0.0 0.0 108504 1864 pts/1 Ss 12:47 0:00 _ -bash
root 30715 0.6 0.2 196460 4256 pts/1 S+ 12:56 0:00 _ sudo sleep 10
root 30716 0.0 0.0 100924 576 pts/1 S+ 12:56 0:00 _ sleep 10

 ▼図12　sudo sleep 10を実行した場合のプロセスの状態

1第　 特集
理論　応用& でシェル力の幅を広げる

42 - Software Design Jul. 2017 - 43

　では、cdコマンドをsudoコマンドから実行
してみましょう。

$ cd /var/spool/cron
-bash: pushd: /var/spool/cron: 許可がありｭ
ません
$ sudo cd /var/spool/cron
sudo: cd: コマンドが見つかりません

　cdコマンドが見つからないというエラーが
出てしまいました。外部コマンドとビルトイン
コマンドの説明を思い出してみてください。cd

コマンドを新たなプロセスとして起動しようと
しましたが、cdはbashの中に組み込まれてい
るビルトインコマンドなので直接実行できませ
ん。また、/bin/cdというような外部コマンド
も存在しません。
　したがいまして、sudoからcdを実行したい
場合はbashそのものを新たに起動しなくては
なりません。

 ↓sudoの-Eオプションで環境変数を引き継ぐ
$ sudo -E bash
$ cd /var/spool/cron
$ pwd
/var/spool/cron

　このときのプロセスの状態は図13のように
なり、ログインシェルとして起動していないの
で読み込まれるのはrootの ̃/.bashrcのみとな
ります。この場合グローバルな設定はあくまで
tajimaユーザに定義されている想定で、イメー
ジとしてはbashの設定ファイルの項で説明し

たとおり、親クラスと子クラスの関係です。
　あるいは、bashを現在のユーザと異なるユー
ザの権限で起動しなおすほど大げさなことをし
なくても、一度限りのコマンドを実行したい場
合は図14のような方法もあります。ただし、
このとき実行されるコマンドは子プロセスとし
て実行されますので、親子で共有していない情
報の変更についてはカレントプロセスに戻った
ときに失われてしまうので注意です。

まとめ

　いかがでしたでしょうか？　シェルは黒い画
面と呼ばれ、非エンジニアはもちろん初心者の
エンジニアにも苦手意識がある方がいるようで
す。それはシェルに関して知らないことや、理
解していないことが多いということだと思いま
すが、冒頭で述べたようにプログラミング言語
を学ぶ過程でそうならざるを得ないという側面
があると思います。
　そして、いざシェルに関して学びたいと思っ
ても、関連するシェルの情報はオペレーション
やTIPSに関するものが多く、しくみの部分に
関して説明したものはbashの歴史のわりには
少ないように思えます。ですので、本章によっ
て、シェルがみなさんにとって少しでも身近な
ものになってくれていたとしたら幸いです。
　なお、bashのことをもっと深く詳しく知り
たいという方は、筆者がQiitaで書いたエント

tajima 30646 0.0 0.0 108504 1912 pts/1 Ss 12:47 0:00 _ -bash ←親クラス
root 31490 0.0 0.1 189396 3012 pts/1 S 14:50 0:00 _ sudo -E bash
root 31491 0.0 0.0 108360 1836 pts/1 S 14:50 0:00 _ bash ←子クラス

 ▼図13　sudoでbashを新たに起動した場合のプロセスの状態

$ pwd
/home/tajima
$ sudo bash -c "cd /var/spool/cron; pwd"
/var/spool/cron ←cdコマンドによって子プロセスのカレントディレクトリが変更されている
$ pwd
/home/tajima ←親プロセスではカレントディレクトリが変更されていない

 ▼図14　一度限りのコマンドであれば、bashの -cオプションを使えば実行できる

理論編 3

しくみを知れば、bashは怖くない 3第　 章

44 - Software Design

リ注5を参照してみてください。
　また、筆者のQiitaでは、bashに限らずほか
のさまざまなソフトウェアについても調べた結

注5） http://qiita.com/tajima_taso/items/149ca77a2401
bf9bf026

果をアウトプットしていく予定ですので、よろ
しければフォローしていただけますと励みにな
ります。ﾟ

同名の外部コマンドとビルトインコマンドが存在する場合

　現在のプロセスのカレントディレクトリを表示
するコマンドとして、pwdコマンドがありますが、
このコマンドはbashのビルトインコマンドとして
実装されていることに加え、外部コマンドとして
も存在している環境があります。この場合、pwd
と打った場合はbashのビルトインコマンドが優先
され、環境変数PATH上にpwdコマンドが存在した
としてもそちらは実行されません。
　ただし、sudo pwdのようにビルトインコマンド
を実行できない状況では、外部コマンドをPATH上

のディレクトリから検索して /bin/pwdを見つける
ので、こちらを実行します。

$ sudo pwd ←/bin/pwdが実行されている
/home/tajima

　外部コマンドと内部コマンドで実行結果が同じ
ように見えても、指定できる引数や内部処理が異
なる場合があるので注意しましょう。

1第　 特集
理論　応用& でシェル力の幅を広げる

http://qiita.com/tajima_taso/items/149ca77a2401bf9bf026

45 - Software Design Jul. 2017 - 45

　2016年9月にbashのバージョンが4.4にな
り、いくつかの新機能が追加されました。しか
し、bashのバージョンアップは毎度盛り上が
りに欠けます。なぜかと理由を考えてみると、
たとえば仕事でシェルスクリプトを書いていて
POSIXに合わせなければならない場合、
bash注1の新機能は危険な落とし穴でしかあり
ません。逆にシェル芸的にコマンドを組み合わ
せるときも、使う機能はせいぜいパイプとリダ
イレクトくらいです。
　「bashに新機能ついたよ！」「お、おぅ……」
という微妙なムードには、だいたいこの2つの
背景があるような気がします。

たぶん、新機能の追加には
それなりの理由が

　とは言っても、新機能が追加されるというこ
とは、それが必要だと思った人と、追加を許可
した人がいたということです。また、bashの裏
側では、普段ユーザが目にしない設定のための
データやフラグ類がbashの文法やしくみで管
理されており、そのために設けられたと思われ
る機能もいくつか見受けられます。余計な機能
を普段は使わないにしても、それらを知ること

注1） shで書けという話ですが、shのふりをしてbashが動いて
いる環境もあるので事態はそんなに単純ではありません。

で、シェルのしくみを垣間見ることができます。
　そこで本稿は、bashのバージョン4.0以後に
加わった新機能注2を中心に、「なんでこんな機
能があるの？」「なにが便利なの？」という視点
で探って、読者のみなさんとキャッチアップし
ていくという趣旨でお送りすることにします。
先ほど述べたように筆者はあまりbashの細か
い機能に頓

とんちゃく

着していないのですが、それでも
bashが不便だなと思うことは多々ありますので、
新機能がそれをどう解決するのかということを
説明していこうかと思います。

bash 4.4の準備

　bashのコードは、
https://ftp.gnu.org/gnu/bash/
にありますので、バージョン4.4をダウンロー
ドして使いましょう。多くのUNIX系OS環境
では、図1の手順でインストールできます。他
の古いバージョンも同様にセットアップできま
すので、自身で新旧バージョンの比較を行う場
合は図1の tar.gzファイルを変更していくつか
bashをインストールしてみましょう。筆者が
本稿で検証に使った環境は、Ubuntu 16.04

注2） と言ってもバージョン4.0もすでに8年経っているのですが、
盛り上がってないので新機能とさせていただきます。

編 応用 1

じつはこんな機能があった！
bashの新機能、便利機能
本稿ではバージョン4.0以降に加わった機能をいくつか紹介します。
シェルスクリプトの互換性などを考えると、新しい機能を取り入れるの
は慎重にならざるを得ませんが、使わないからといって知らなくて良いわ
けでもありません。どんなことを解決するために追加された機能なのか
を考えながら見ていきましょう。

Author 上田 隆一（うえだ りゅういち）
千葉工業大学

4第　 章

1第　 特集 理論　応用& でシェル力の幅を広げる

46 - Software Design

Serverです。
　歴代のバージョンで何が変わったかは、tar

で展開したディレクトリ直下のCHANGESと
いうファイルに記録があります。興味があれば
ご一読を。
　また、バージョンを切り替えながら作業する
ときは、頻繁に変数BASH_VERSIONを確認
しましょう。たとえばバージョン4.4と3.2を
図1の手順でパスの通ったところに置くと、次
のようにバージョンを切り替えられます。

$ bash4.4
$ echo $BASH_VERSION
4.4.0(1)-release
 バージョン3.2も図1の手順で作って置いた場合
$ bash3.2
 後述の連想配列の関係でワーニングが出ますが気にしないこと
にします
$ echo $BASH_VERSION
3.2.57(1)-release

標準出力と標準エラー出力を
まとめてパイプに出せる「|&」

　まずは軽い話題から。バージョン4.0から¦&
というパイプの表記ができるようになっていま
す。bashを使っていると、たまに標準出力と
標準エラー出力をまとめて別のコマンドに渡し
たいことがありますが、バージョン3.2までは、
この場合、

$ ls a aa 2>&1 ¦ nl
 1 ls: 'aa' にアクセスできません: 以下略
 2 a

というように、2>&1というファイル記述子の
操作を明示的に書く必要がありました。
　このワンライナーの意味を説明しておくと、
lsの標準出力と標準エラー出力を2>&1でまと
めてパイプに渡し、nlというコマンドで行番号
をつけるというものです。最初に lsのエラー出
力、次に lsの標準出力がパイプを通り、nlで番
号がつけられてこのような出力になっています。
ファイル記述子については、本稿のニッチな性
質上、説明を割愛します。
　一方、バージョン4.0以降では、そんな小難
しいことを考える必要もなく、

$ ls a aa ¦& nl
 1 ls: 'aa' にアクセスできません: 以下略
 2 a

で済んでしまいます。ただ、数文字減っただけ
なので地味な機能追加ではあります。
　これがどれだけ便利か、というところですが、
次のようなケースを1つの例として挙げておき
ます。たとえば一般のユーザでディレクトリに
findをかけると、

$ find /proc/
/proc/
/proc/fb
 (..略..)
find: `/proc/tty/driver': 許可がありません
find: `/proc/1/task/1/fd': 許可がありません
 (..略..)

というように標準出力にファイルやディレクト
リのパス、標準エラー出力にエラーが出てきます。

$ wget https://ftp.gnu.org/gnu/bash/bash-4.4.tar.gz
$ tar zxvf bash-4.4.tar.gz
$ cd bash-4.4/
$./configure && make -j
$ sudo cp bash /usr/local/bin/bash4.4
$ bash4.4 --version
GNU bash, バージョン 4.4.0(1)-release (x86_64-unknown-linux-gnu)
Copyright (C) 2016 Free Software Foundation, Inc.
ライセンス GPLv3+: GNU GPL バージョン 3 またはそれ以降 <http://gnu.org/licenses/gpl.html>

This is free software; you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

 ▼図1　bashのインストール

1第　 特集
理論　応用& でシェル力の幅を広げる

46 - Software Design Jul. 2017 - 47

　findにかかわらず、2つの出力が入り混じる
ものを端末で見るときには、

$ find /proc/ 2> /dev/null
 ↑標準出力だけ見る
$ find /proc/ > /dev/null
 ↑エラーだけ見る

　あるいは、

$ find /proc/ > a 2> b

というようにファイルに一度貯めてから眺めて
みたりということをします。
　こういう場合、¦&を使うとちょっと便利に
なります。たとえば次のように lessやほかのコ
マンドと組み合わせると、

$ find /proc/ ¦& less
 ↑両方を眺める
$ find /proc/ ¦& grep ^find: ¦ less
 ↑エラーだけ眺める
$ find /proc/ ¦& grep -v ^find: ¦ less
 ↑標準出力だけ眺める

というように、aやbなどというゴミファイル
を作らなくても出力が選別できるようになりま
す。
　¦&がないからといってそんなに困ることはな
さそうですが、手が覚えてしまったら、使う人
は頻繁に使うようになるのではないかと筆者は
考えます。1点だけ注意ですが、標準出力と標
準エラー出力がパイプに渡る順序は不定です。
　関連事項として&>>という記号も紹介してお
きます。標準出力と標準エラー出力をまとめて
ファイルに追記するためのものです。

$ ls a b &> result
 ↑2出力をまとめてファイルにリダイレクト
$ ls a b &>> result
 ↑2出力をまとめてファイルに追記
$ cat result
ls: 'a' にアクセスできません: 以下略
b
ls: 'a' にアクセスできません: 以下略
b

「**」 —— globstar

　bashにはshoptという内部コマンドがあり、
さまざまな機能を有効化／無効化できます。次
のように、

$ shopt -s globstar

とすると、globstarという機能が使えます。
　使い方を示します。たとえば次のようにディ
レクトリやファイルが存在するディレクトリを
考えます（xargsは誌面節約のため使用）。

$ find ¦ xargs
. ./c ./a ./b ./b/f ./b/e ./b/h ./b/h/iｭ
 ./b/h/j ./b/g

　このディレクトリでecho **すると、

$ echo **
a b b/e b/f b/g b/h b/h/i b/h/j c

というように、findと同様にディレクトリ構成
を見ることができます注3。**がglobstarの記号
です。
　また、ディレクトリだけ抽出するとき、find

だと、

$ find -type d
.
./c
./b
./b/h

というようにオプションを駆使する必要があり
ます。一方、**/と書くと、

$ echo **/
b/ b/h/ c/

で同様の情報が抽出できます。

注3） 「.」から始まるディレクトリやファイルは出力されません。

応用編 1

じつはこんな機能があった！ bashの新機能、便利機能 4第　 章

48 - Software Design

　また、次のように組み合わせると、/etc/下
の拡張子がconfのファイルを、子、孫のディ
レクトリまですべて含めてすべて抽出できます。

$ echo /etc/**/*.conf ¦ tr ' ' '¥n' ¦ ｭ
head -n 3
/etc/adduser.conf
/etc/apache2/apache2.conf
/etc/apache2/conf-available/charset.conf

　この機能を常時端末で使うときは、.bashrc

や .bash_profileに、

shopt -s globstar

と書いておきます。
　また、そのときだけ使いたいなら端末で
shopt -s globstarと打ちます。機能を切る
ときは-sでなく-uを指定します。
　1点、これも注意ですが、findと違って表示
順をソートしてしまっているので、ファイル数
の多いディレクトリに適用すると処理が遅くな
る可能性があります。次の計測出力は、筆者の
使い込んだUbuntu 16.04 Serverで、上の例を
作ったときのディレクトリと、ファイルシステ
ム全体に対して findと**を実行したときの時
間を計測したものです。何度も実行してキャッ
シュの効いた状態で計測しています。

 ファイル数の少ないディレクトリ
$ time find ./ &> /dev/null

real 0m0.007s
user 0m0.000s
sys 0m0.004s
$ time echo ** &> /dev/null

real 0m0.001s
user 0m0.000s
sys 0m0.000s

 ファイル数の多いディレクトリ
$ time find / &> /dev/null

real 0m0.963s
user 0m0.368s

sys 0m0.588s
$ time echo /** &> /dev/null

real 0m7.291s
user 0m6.092s
sys 0m1.192s

　このように、ファイル数が多くなるとfindと
**の実行時間は逆転します。ファイル数が少
ないときに findのほうが遅いのは、findが外部
コマンドで、echoが内部コマンドであるのが
原因と推察されます。

shoptで設定できる
他の機能

　ついでに、shopt関係でfailglobとautocd
も紹介しておきます。ほかにもさまざまな機能
があるので、興味のある方は man bashで
shoptに関する記述を読んでみることをお勧め
します。
　failglobはバージョン3.0以降に存在してい
る機能です。たとえば、

$ touch *.txt

と打って、拡張子が txtのファイルのタイムス
タンプを現在の時刻にする操作を行いたいとし
ます。ただ、今いるディレクトリにそのような
ファイルがない場合、

$ touch *.txt
$ ls
*.txt

というように、「*.txt」という名前のファイル
ができてしまいます。面倒ですし、特殊な文字
が入ったファイルがディレクトリにできると、
二次災害が起きる場合もあります。
　これを避けたい場合、.bashrcにあらかじめ、

shopt -s failglob

1第　 特集
理論　応用& でシェル力の幅を広げる

48 - Software Design Jul. 2017 - 49

と書いておくと、次のようにエラーになります。

$ touch *.txt
-bash: 一致しません: *.txt

　個人的には、このオプションは有効にしてお
くと便利だと思うのですが、残念ながらタブ補
完と干渉する場合があるようです。
　autocdは、cdを抜いてディレクトリの名前
を端末に入力してもcdできるという機能です。
例を示します。

$ shopt -s autocd
$ /etc/
cd /etc/
$ ̃
cd /home/ueda

　慣れると便利かもしれませんが、これが使え
ない別の環境に行くと混乱するかもしれません。

連想配列、配列への
データ読み込み

　本誌2017年1月号の特集「シェル30本ノッ
ク」でも取り上げましたが、バージョン4.0以
降では連想配列が使えます。図2に使い方の例
を示します。
　筆者は普段まったくこの機能を使わないので、
何に使うのか例を挙げることが極めて困難です
が、1つだけ、使用例を挙げます。Ubuntu

Server 16.04と17.04で確認していますが、

$ set -x

と打ってから、次のように設定を再読み込みし
つつ、先ほど覚えた¦&でdeclareを検索すると、

$ source ̃/.bashrc ¦& grep declare
+ grep --color=auto declare
+ source /home/ueda/.bashrc
+++ declare -A _xspecs

というような出力が出てきます。出力の一番下
の行を見ると、連想配列_xspecsが作られてい
ます。ちなみに、この連想配列は補完用で、

$ echo ${_xspecs[latex]}
!*.@(?(la)tex¦texi¦dtx¦ins¦ltx¦dbj)

というデータが入っています。この例では、
latexというコマンドに関係する拡張子が入っ
ています。
　このように入力された文字列に対して即座に
情報を引き出したい場合には、連想配列は最適
です注4。また、bashの文法で補完のデータが管
理されているので、bashのユーザがカスタマ
イズすることも可能となります。
　一方、連想配列をやみくもに使用することは、
個人的にはお勧めしません。_xspecsの例のよ
うに、レスポンシブにユーザに何かを提示する
ような場合や、フラグの類を管理するくらいに
とどめたほうが良いでしょう。データを加工す
るための処理には、ファイルを使ったほうが良
いというのが個人的な主張です。
　たとえば初心者向けに連想配列の例を挙げて
くれと頼まれた場合、図2の警察、消防の例に
続けて、

for key in ${!tel[@]} ; do
 #$keyと${tel[$key]}を使った処理の例
done

というようなものを挙げてしまいがちです。し

注4） この補完について気になる人は、bash-completionという
キーワードで調査をお願いします。

$ declare -A tel ←telという連想配列を作る
$ tel[警察]=110 ←警察というキーに110という値をセット
$ tel[消防]=119 ←消防というキーに119という値をセット
$ echo ${tel[警察]} ←警察の値を呼び出す
110
$ echo ${tel[時報]} ←存在しないキーを指定
$ ←何も出てこない
$ echo ${!tel[@]}a ←キーを列挙
警察 消防

 ▼図2　連想配列の使い方

応用編 1

じつはこんな機能があった！ bashの新機能、便利機能 4第　 章

50 - Software Design

かし、これは例としてはあまりよくありません。
普通の言語ならこれで良いのですが、初心者に
これを見せてしまうと、パイプラインを使うと
いう発想がなくなってしまいます。また、これ
も普通の言語と違って、書き方がカッコだらけ
で変な記号もあってたいへんぎこちない印象は
否めません。連想配列の使用は、どうしようも
ないときに限るべきだとしつこく主張して、連
想配列の紹介を終わります。
　もう1つ、これも乱用禁止ですが、ファイル
から配列にデータを読み込む機能がバージョン
4.0以降には存在します。例を示します。次の
ようにmapfileというコマンドを使います。

$ mapfile -t passwd < /etc/passwd
$ echo ${passwd[0]} ←最初の要素をecho
root:x:0:0:root:/root:/bin/bash
$ echo ${passwd[-1]} ←最後の要素をecho
ueda:x:1001:1001:ueda,,,:/home/ueda:/ｭ
bin/bash

　この例は、配列「passwd」に /etc/passwdの
中身をコピーしてechoで呼び出したというも
のです。mapfileのオプション -tは改行をとる
という意味です。また、Pythonのリストのよ
うに、配列にマイナスのインデックスを与えて
後ろから要素を参照する方法も、バージョン4.3

から加わった機能です。
　mapfileは、ちょっとしたパラメータをbash

に取り込んで管理する場合には便利です。ただ、
外部コマンドをいっさい使ってはならないとい
うシビアな状況でもない限り、加工用のデータ
をこれで取り込んで for文で加工するようなこ
とは避けるべきではないかと考えています。

コプロセス

　今度は、バージョン4.0から加わった「コプ
ロセス」（co-process。子プロセスではない）を
紹介します。本稿で紹介するものの中で一番や
やこしいです。実例を最初に示します。

$ coproc awk '{print $1*2;fflush()}'
[1] 10872
$ seq 1 3 >&"${COPROC[1]}"
$ read n <&"${COPROC[0]}" ; echo $n
2
$ read n <&"${COPROC[0]}" ; echo $n
4
$ read n <&"${COPROC[0]}" ; echo $n
6

　この例は、1行目でcoprocというコマンドに
awkのコードを渡しています。このawkのコー
ドは1列目に数字が入っているテキストを標準
入力から読んで、1列目に2をかけて標準出力
から出すというものです。fflushという関数は、
出力のバッファの中身を標準出力に追い出すた
めのもので、毎行の処理が終わったら確実に標
準出力に出すために付け加えています。3行目
ではseqで1、2、3と3行出力し、>&"${COPRO
C[1]}"でどこかにリダイレクトしています。
配列COPROCには、

$ echo ${COPROC[@]}
63 60

というように数字が入っています。ですので、
>&"${COPROC[1]}"は実行時には>&60になり、
60番のファイル記述子の指す先にseqの出力が
行ったことになります。
　4、6、8行目は逆にread n <&63と、63番
のファイル記述子の指す先から文字を読んで変
数nに読み込み、echo $nで出力しています。
出力は5、7、9行目のように、seqから出した
数字が2倍されたものです。つまりawkに指定
した処理が適用されて返ってきたものです。
　ということは1行目で書いたawkがどこかで
動いているようです。このawkのプロセス番号
はCOPROC_PIDという変数に格納されていて、

$ kill -KILL $COPROC_PID
[1]+ 強制終了 coproc COPROC ｭ
awk '{print $1*2;fflush()}'

1第　 特集
理論　応用& でシェル力の幅を広げる

50 - Software Design Jul. 2017 - 51

のように止めることができます。
　というのが一番簡単なコプロセスの使い方で
すが、最初の印象はただただ「なんじゃこりゃ」
でした。が、整理すると、

・coprocに指定したコマンドが立ち上がりっ
ぱなしになる

・コマンドの入出力先がCOPROC変数で管理
される

・立ち上がりっぱなしになったコマンドにいつ
でも読み書きできる

ということで、コマンドをサーバ化する機能だ
と言えます。
　こんな回りくどいことをして何なのかという
ところですが、有効な例を1つ示します。リス
ト1は、bashとawkで最大公約数を求めるプロ
グラムです注5。もちろんbashだけ、あるいは
awkだけでも解けますが、この例ではあえて両
方使っています。ここで大切なのは、処理の内
容ではなく注6、関数subをbashのwhileループ
の中で繰り返し呼び出していることです。sub

内に実装したawkは2つ数字を入力すると2つ
数字を出力しますが、bashで出力を再度awk

に入力しています。余談ですが、7行目のset
--は、引数（bashの位置パラメータ）の$1、
$2、……の値を、後ろに書いた文字列で置き

注5） さまざまなバージョンのbashで実行する関係でシバンは
つけていません。

注6） アルゴリズムについては「ユークリッドの互除法」でご調査
を。

換えるための記法です。この場合は$()内のコ
マンドの出力が2つの数字に置き換わり、$1、
$2に代入されます。
　このようにコマンドの出力を再度同じコマン
ドに入力するような処理を実装する場合、シェ
ルスクリプトでは基本的にwhile文で書くこと
になります。このとき、ループの回数が多いと
コマンドを立ち上げる時間（この場合はawkを
立ち上げる時間）が無視できないほどかかるこ
とがあります。
　これをリスト2のようにコプロセスを使って
書き直すと、この問題は基本的にはなくなりま
す。コプロセスには名前をつけることができ、
リスト2の1～4行目のように書くと関数と同
じような記述ができます。名前はsubになりま
す。また、同じ名前のbash配列にアクセス用
のファイル記述子が入ります。このコプロセス
を使うときは10、11行目のようにややこしい
記述が必要ですが、コプロセスのawkは立ち上
がりっぱなしなので、ループの回数だけawkを
立ち上げる負荷はなくなります。
　計算量を比較してみましょう。図3のように
timeをつけて実行してみます。real（実際にか
かった計算時間）を比較すると、4倍強、コプ
ロセスを使ったスクリプトの処理時間が短くなっ
ています。この例ではループの回数はたった9

回でしたが、ループの回数がもっと大きいと、
処理時間の差はもっと大きくなります。

 ▼リスト1　gcd.no_coproc.bash

01: function sub(){
02: awk '$1>$2{print $1%$2,$2;fflush()}
03: $1<=$2{print $2%$1,$1;fflush()}'
04: }
05:
06: while ["$(($1*$2))" -ne 0] ; do
07: set -- $(echo $1 $2 ¦ sub)
08: echo ">" $1 $2 >&2
09: done
10:
11: echo "$(($1+$2))"

 ▼リスト2　gcd.coproc.bash

01: coproc sub {
02: awk '$1>$2{print $1%$2,$2;fflush()}
03: $1<=$2{print $2%$1,$1;fflush()}'
04: }
05:
06: a="$1"
07: b="$2"
08:
09: while [$((a*b)) -ne 0] ; do
10: echo $a $b >&"${sub[1]}"
11: read a b <&"${sub[0]}"
12: echo ">" $a $b >&2
13: done
14:
15: echo $((a+b))

応用編 1

じつはこんな機能があった！ bashの新機能、便利機能 4第　 章

52 - Software Design

　以上でコプロセスの話は終わりです。まとめ
ると、「コプロセスはプログラミングが面倒だ
けど、ループで何度も同じコマンドを呼び出す
ときは使用を検討できる」ということになるか
と考えます。ただ、コプロセスの出力が常に得
られる状態でないと、readで読み出すときに
止まってしまうので、awkの場合は fflushを付
ける、sedの場合は-uを付けるなどの、標準出
力のバッファリングを防ぐ注意が必要です。

番外編：pipefail

　pipefailはバージョン3.0から存在している
機能ですが、案外マイナーですのでここで紹介
しておきます。pipefailは、パイプの中でコマ
ンドがエラーを起こしたときにスクリプトを止
めるための設定です。よくシェルスクリプトに
関して「shやbashでは-eオプションをつけて、
エラーがあったら止めるようにしましょう」と
いう記述があるのですが、これが結構曲者です。
　たとえばリスト3のスクリプトは-eオプショ

ンが1行目で設定されており、2行目の falseが
エラーを出します。しかし、実行すると2行目
で止まらず、次のように、

$ bash set_e.bash
NG

と3行目が実行されてしまいます。
　falseの行で止めるには、リスト4の2行目の
ように、

set -o pipefail

と入れておきます。すると、次のように止まり
ます。

$ bash set_e_pipefail.bash
 （何も表示されない）
$

　-eについてはほかにも止まらない条件があり、
また、bashが使えない場合もあるのでpipefail

があるから万全ということではありません。し
かし、-eを使ったbashスクリプトでパイプを
避けながらコーディングしている場合には、
pipefailを利用すると良いでしょう。

終わりに

　以上、bashの4.0以降の機能を中心に、普段
あまりお目にかからないものを紹介しました。
このような機能を覚えると使ってみたくなるも
のですが、とくにスクリプトを書くときは乱用
するのではなく、ここぞというところで使える
ようになりたいものです。今回の使用例は真面
目なものでしたが、おもしろい使い方をいろい
ろ考えながら注7、遊んでみると身につくかと思
います。ﾟ

注7） 危険シェル芸など。

$ time bash ./gcd.no_coproc.bash 10710 102012
> 5622 10710
 略。6回分の出力
> 6 12
> 0 6
6

real 0m0.036s
user 0m0.004s
sys 0m0.000s
$ time bash ./gcd.coproc.bash 10710 102012
 略。同じ出力
6

real 0m0.008s
user 0m0.000s
sys 0m0.004s

 ▼図3　計算量の比較

 ▼リスト3　set_e.bash

set -e
false ¦ true
echo "NG"

 ▼リスト4　 set_e_pipefail.
bash

set -e
set -o pipefail
false ¦ true
echo "NG"

1第　 特集
理論　応用& でシェル力の幅を広げる

53 - Software Design Jul. 2017 - 53

BoWで開発してみる

　Windows 10 Anniversary Updateより導入さ
れた「Bash on Ubuntu on Windows」は、2017

年4月のCreators Updateでより機能が強化さ
れ、開発ツールも一通り利用できる状態になっ
てきました。そこで本章では、このBoWを使っ
て実際に開発をしてみることで、本当に「意外
と使える」のかを検証します。

環境について

　本章での開発・検証は次の環境で行います。

・Windows 10 Pro 64bit、バージョン 1703、
ビルド 15063.138 （Creators Update）

・16GB RAM
・Intel Core i7-5500U CPU @ 2.40GHz

　そして、BoWはCreators Update後のもの
を使います（図1）。
　BoWの導入方法については本稿では省略し
ます。導入の手順はネット上の記事注2を参照し
てください。導入後、スタートメニューより
「Bash on Ubuntu on Windows」を選択するか、
キー＋Rで表示される「ファイル名を指定
して実行」ダイアログにbashと入力すること
で起動できます。

検証内容について

　検証として、実際に次のような簡単なサンプ
ルアプリケーションを開発してみて、使用感を
確認していきます注3。

・JavaとPlay FrameworkでWeb開発
・Vue.jsとnpmを使ったフロントエンド開発
・Pythonで簡易Twitterクライアント開発

　また、上記のほかにも、Mastodonを動かし
たりCOBOLの環境を作成した
りといった検証も行いました。

注1） ターミナルの表記について、とく
に記載のない場合はコマンドプロ
ンプトではなくBoWのターミナル
を表します。

注2） http://gihyo.jp/admin/clip/01/
ubuntu-topics/201608/05

注3） サンプルコードはGitHubにて公開
しています。https://github.com/
kunst1080/SD201707-sample

$ uname -a
Linux DESKTOP-T3CMM04 4.4.0-43-Microsoft #1-Microsoft ｭ
Wed Dec 31 14:42:53 PST 2014 x86_64 x86_64 x86_64 GNU/Linux
$ cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.1 LTS"

 ▼図1　本章で使うBash on Ubuntu on Windowsの情報 注1

編 応用 2

意外と使える!? Bash on
Ubuntu on Windows
2016年8月よりWindows 10に導入された「Bash on Ubuntu on
Windows」（以下、BoW）。これにより、Windows上でUbuntuおよ
びbashが使えるようになっています。「開発で使えたらうれしい」という
人も少なからずいるのではないでしょうか？　その期待に応えられるもの
なのか、実際の開発を想定してBoWを使ってみました。

Author くんすと
Twitter @kunst1080

5第　 章

1第　 特集 理論　応用& でシェル力の幅を広げる

http://gihyo.jp/admin/clip/01/ubuntu-topics/201608/05
https://github.com/kunst1080/SD201707-sample

54 - Software Design

それらは、筆者のブログにて紹介していますの
で、興味がありましたらご覧ください注4。

BoWとWindows環境の連携

　基本的に、実行環境としてBoWを使用し、
エディタや IDEをWindowsで扱うようにしま
す。WindowsからはBoWのフォルダを普通に
参照することはできない注5ため、Windows上
に作業フォルダ（C:¥work）を作成し、このフォ
ルダをWindowsとBoWの両方から参照して開
発を行うことにします。BoWからはそのまま
使うのは若干面倒ですので、図2のように、
$HOMEにシンボリックリンクを作成しておく
と良いでしょう。
　それでは検証していきましょう。

JavaとPlay Framework
でWeb開発

　まずはJavaとビルドツールsbtを使ったPlay

FrameworkのWeb開発を行います。以前、個
人的に書いたJavaとPlay Frameworkのサンプ
ルアプリケーション注6がありますので、本稿で
も同様のものを作成します。

OpenJDKとsbt
のインストール

　BoW環境へ、aptでOpen

JDK 8をインストールします。

$ sudo apt-get install ｭ
openjdk-8-jdk

　sbtは公式サイトの「Linux

への sbtのインストール」注7

注4） http://www.kunst1080.net/
entry/2017/05/26/212415

 http://www.kunst1080.net/
entry/2017/05/27/001523

注5） http://gihyo.jp/admin/clip/01/
linux_dt/201611/21

注6） http://qiita.com/kunst1080/ite
ms/51eee39bb1141bd143c4

注7） http://www.scala-sbt.org/rel
ease/docs/ja/Installing-sbt-on-
Linux.html

の手順に沿ってインストールします（図3）。

開発準備（BoW）

　BoW環境で、Playアプリケーションのひな
形を作成します。ひな形の作成には、sbt new
コマンドを使用します注8。

$ sbt new playframework/play-java-seed.g8

　このときにいくつか質問をされますが、図4
のようにname以外は空Enterで大丈夫です。

開発準備（Windows）

　BoWでプロジェクトのひな形を作成できま
したので、作成されたプロジェクト（C:¥work

¥play-java8-sample）をWindowsから開きます。
IDEには IntelliJ IDEAを使用します（IntelliJ

IDEAでJavaアプリケーションをコンパイル
するには、別途Windows環境にもJDKが必要

注8） https://www.playframework.com/documentation/
2.5.x/NewApplication

$ echo "deb https://dl.bintray.com/sbt/debian /" ¦ ｭ
sudo tee -a /etc/apt/sources.list.d/sbt.list
$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 ｭ
--recv 2EE0EA64E40A89B84B2DF73499E82A75642AC823
$ sudo apt-get update
$ sudo apt-get install sbt

 ▼図3　sbtをインストール

This template generates a Play Java project

name [play-java-seed]: play-java8-sample ←プロジェクト名を入力
organization [com.example]: ←空Enter
scala_version [2.11.11]: ←空Enter
play_version [2.5.14]: ←空Enter

Template applied in ./play-java8-sample

 ▼図4　ひな形作成時の質問

$ ln -s /mnt/c/work $HOME/work
$ ls -l work
lrwxrwxrwx 1 kunst kunst 11 4月 29 17:58 work -> /mnt/c/work

 ▼図2　 Windows上の作業フォルダへのシンボリックリンクを作成

1第　 特集
理論　応用& でシェル力の幅を広げる

http://www.kunst1080.net/entry/2017/05/26/212415
http://www.kunst1080.net/entry/2017/05/27/001523
http://gihyo.jp/admin/clip/01/linux_dt/201611/21
http://qiita.com/kunst1080/items/51eee39bb1141bd143c4
http://www.scala-sbt.org/release/docs/ja/Installing-sbt-on-Linux.html
https://www.playframework.com/documentation/2.5.x/NewApplication

54 - Software Design Jul. 2017 - 55

になります）。
　「Import Project」からフォルダを選択し、
sbtプロジェクトとしてインポートします（図5、
6）。インポート後は図7の状態になります。

開発

　BoWで開発サーバを起動しながらWindows

のIDEでソースコードを編集し開発を進めます。
次のコマンドで開発サーバを起動します。

$ sbt ̃run

　そして、ブラウザから「local

host:9000」へアクセスします。
sbtはホットデプロイに対応
しており、IDEでソースを編
集し保存すると自動的にコン
パイルされ、ブラウザをリロー

ドすると変更後の状態で表示されます（図8）。
この状態で開発をしていきます。
　筆者が書き上げたコードはGitHub注9にアッ
プしていますので、誌面での掲載は省略します。
Windowsでsbtを使う代わりにBoWでsbtを使
いましたが、とくに問題もなく書き上げられま
した。

注9） https://github.com/kunst1080/SD201707-sample/tree/
master/play-java8-sample

 ▼図5　 IntelliJ IDEAにsbtプロジェク
トをインポート（1） ▼図8　完成したアプリケーション

 ▼図6　 IntelliJ IDEAにsbtプロジェクトをインポート（2）

 ▼図7　インポート直後の状態

応用編 2

意外と使える!? Bash on Ubuntu on Windows 5第　 章

https://github.com/kunst1080/SD201707-sample/tree/master/play-java8-sample

56 - Software Design

Vue.jsとnpmを使った
フロントエンド開発

　次に、JavaScriptのフレームワークVue.jsと、
パッケージ管理ツールnpmを使ったフロントエ
ンド開発の検証を行います。ここでは、Vue.js

のサイトに紹介されているサンプルのTodo

MVC注10を作成します。

開発準備（BoW）

　BoW環境へ、aptでNode.js（JavaScript実
行環境）をインストールします。そのま
まだと古いバージョンのものがインストー
ルされてしまうため、NodeSource注11を
使って新しいバージョンのNode.jsがイン
ストールされるようにします。

$ wget https://deb.nodesource.com/ｭ
setup_7.x
$ sudo bash setup_7.x
$ sudo apt-get install nodejs

　次に、プロジェクトのひな形を作成す
るため、vue-cli注12をインストールします。

$ sudo npm install -g vue-cli

　vue-cliを使ってVue.jsのプロジェクト
のひな形を作成します。vue initを実行
すると、図9のような選択とメッセージ
が表示されます。
　プロジェクトのひな形が作成されたの
で、npmモジュールをインストールします。

$ cd js-sample
$ npm install

開発準備（Windows）

　BoWでプロジェクトのひな形を作成で

注10） https://jp.vuejs.org/v2/examples/todomvc.html

注11） https://github.com/nodesource/distributions

注12） https://jp.vuejs.org/v2/guide/installation.html

きましたので、Windows側でIDEを準備します。
今回は IDEにVisual Studio Codeを使用しま
す。そのままではVue.jsで利用する *.vueファ
イルに対応していないので、プラグインをイン
ストールしましょう（図10）。プラグインのイ
ンストール後、Visual Studio Codeを再起動す
ると、*.vueファイルが色付きで表示されるよ
うになります。
　IDEの準備ができましたので、BoWで作成
したプロジェクト（C:¥work¥js-sample）をIDE

で直接開きます。

$ vue init webpack js-sample

 This will install Vue 2.x version of the ｭ
template.

 For Vue 1.x use: vue init webpack#1.0 js-sample

? Project name js-sample
? Project description A Vue.js project
? Author xxxx <xxxx@example.com>
? Vue build standalone
? Install vue-router? No
? Use ESLint to lint your code? Yes
? Pick an ESLint preset Standard
? Setup unit tests with Karma + Mocha? No
? Setup e2e tests with Nightwatch? No

 vue-cli・Generated "js-sample".

 To get started:

 cd js-sample
 npm install
 npm run dev

 Documentation can be found at ｭ
https://vuejs-templates.github.io/webpack

 ▼図9　Vue.jsのプロジェクトのひな形を作成する

 ▼図10　vueプラグインのインストール

1第　 特集
理論　応用& でシェル力の幅を広げる

https://jp.vuejs.org/v2/examples/todomvc.html
https://github.com/nodesource/distributions
https://jp.vuejs.org/v2/guide/installation.html

56 - Software Design Jul. 2017 - 57

開発

　BoWで開発サーバを起動しながらWindows

のIDEでソースを編集し開発を進めていきます。
次のコマンドで開発サーバを起動します。

$ npm run dev

　そして、ブラウザから「localhost:8080」へア
クセスします。こちらはホットデプロイとホッ
トリロードに対応しており、ソースコードを更
新するたびに画面が自動的にリロードされます
（図11）。この状態で開発をしていきます。
　サンプルコードは注10のサイトで紹介され
ているものとほぼ同じため、誌面では省略しま
す。
　BoWだけでnpmを利用したため、Windows

へのnpmのインストールはせずに開発できまし
た。BoWでnpmを動かしましたが、とくに問
題もなく書き上げられました。

 ▼図11　完成したアプリケーション

ユーティリティ「パスの変換コマンド」

 ▼リスト1　 WindowsパスをUbuntuパスに変換す
るコマンド（bin/w2u）

#!/bin/bash
sed 's_¥¥_/_g' ¦ sed -r 's_^(.)(:)_/ｭ
mnt/¥L¥1_g'

　ターミナルをBoWで、GUIをWindowsで扱って
いると、WindowsのパスをBoWで利用したり、そ
の逆を利用したくなったりすることが多々あります。
そんなときはリスト1、2のような変換コマンドを
作成しておくと便利です。使用例は次のとおりです。

$ echo "/mnt/c/work/python-sample" ¦ u2w
C:¥work¥python-sample

$ echo "C:¥work¥python-sample" ¦ w2u
/mnt/c/work/python-sample

 ▼リスト2　 UbuntuパスをWindowsパスに変換す
るコマンド（bin/u2w）

#!/bin/bash
sed -r 's_^(/mnt/)(.)_¥U¥2:_g' ¦ sed ｭ
's_/_¥¥_g'

ユーティリティ
「openコマンド」

　2017年 4月の Creators Updateによって、
BoWから直接Windowsのバイナリを実行でき
るようになりました。そこで、Macのopenコ
マンドのように、カレントディレクトリをエ
クスプローラで開くコマンドを作成しておく
と便利です。
　「$HOME/bin/open」にリスト 3のスクリプ
トを作成し、.bashrcなどで「$HOME/bin」に
PATHを通しておくと良いでしょう。これで、
openや、open work\js-sampleなどでフォ
ルダを開けます。ただし、BoWの仕様上、
Windowsのフォルダ（/mnt/c/以下など）以外
のフォルダは開けないので気をつけましょう。

 ▼リスト3　bin/open

#!/bin/bash
if [$# -eq 0]; then
 DIR=.
else
 DIR="$*"
fi
explorer.exe $DIR

応用編 2

意外と使える!? Bash on Ubuntu on Windows 5第　 章

58 - Software Design

Pythonで簡易Twitter
クライアント開発

　次に、Pythonを使ったTwitterクライアント
の開発を行います。開発環境の検証レベルです
ので、タイムラインの表示のみを行う簡単な
CLIクライアントを作成します。

開発準備（BoW）

　BoWには標準ではパッケージ管理ツールpip

がインストールされていないため、インストー
ルします。

$ sudo apt install python3-pip

　pipを使って、必要なライブラリをあらかじ
めインストールしておきます。

$ pip3 install requests_oauthlib

開発準備（Windows）

　Pythonの開発検証ではプロジェクトのひな
形などは使用しません。「C:¥work¥python-

sample」のフォルダをWindowsで作成し、Atom

などのテキストエディタで開きます。

開発

　また、今回は開発サーバなども利用しません。
Windowsのエディタでソースを編集し、でき
あがったスクリプトを随時、BoWから実行し

ます。書き上がったコードはGitHub注13を参照
してください。
　では、作成したツールをコマンドラインで実
行してみましょう。図12のような感じでタイ
ムラインを表示できました。
　簡単な検証ではありますが、BoWのPython

からTwitter APIを叩き、データを取得するな
どのことができました。

まとめ

　Java・JavaScript・Pythonの各種検証を実
施し、いずれの環境でも（少しの工夫が必要で
したが）準備をしておけば、普通に開発をして
いけました。個人的な使用感としてはWindows

上にLinuxの仮想マシンを立ち上げて開発を

注13） https://github.com/kunst1080/SD201707-sample/tree/
master/python-sample

$./sample.py
おやすみなさい
これでもう無線のレンジを独占してるテレビ局は正当性の一部を失ったんじゃないの
今世界一ラーメン食べたい自信あるから
RT @miho_karasawa: 影山ヒロノブさん、改めて40周年おめでとうございます！私も影山さんのお声を聴いてｭ
育ってきた「影山チルド レン」の一人です。こうしてお祝いをさせていただけるなんて…本当に夢のようです。ｭ
大先輩方の背中に少しでも近づけるように、これからも頑張ります…
ラーメンの画像を上げるな～～～

 ▼図12　完成したTwitterクライアント

BoW環境の再構築

　BoW環境がうまく動かなかったりして、イ
チから環境を再構築したい場合の手順を紹介
します。
　コマンドプロンプトを管理者権限で立ち上げ、
次の2つのコマンドを実行します。

> lxrun /uninstall
> lxrun /install

　再構築をしても /rootと /homeフォルダは削
除されずに残るため、ユーザを再作成する
と .bashrcなどの設定ファイルは元どおり使え
ます。

1第　 特集
理論　応用& でシェル力の幅を広げる

https://github.com/kunst1080/SD201707-sample/tree/master/python-sample

58 - Software Design Jul. 2017 - 59

行っているのとほぼ同じような感じで、十分「使
える」という印象です。
　Windows上でWeb開発を行う場合、さまざ
まな開発ツールをインストールする必要があり、
環境が汚れてしまう……という問題がありまし
た。実行環境にBoWを使うことで、ある程度

環境の分離ができたり、シェルスクリプトによ
る自動化が行えたりなどのメリットがあるよう
に思います。また、仮想マシンではなくネイティ
ブ環境で実行できるということもあり、今後の
選択肢の1つとして考えても良さそうに思いま
す。ﾟ

Visual Studio Codeで
無理やりBoWのPythonを使う方法

　Pythonの開発検証では、はじめ
IDEには、Visual Studio Codeを使
用する予定でした。しかしながら、
Visual Studio Code か ら BoW の
Pythonを直接利用するのは難しく、
本稿では使用を見送りました（もち
ろん、Windows側にPythonを
導入しておけば普通に使用は可
能でしょうが……）。
　しかし、検証の中で一応、
Visual Studio CodeからBoWの
Pythonを無理やり使用できま
した。ちなみにこの方法では
Pylint（Pythonのコードチェッ
カー）は使えません。
　まず、Pythonのプラグイン
をインストールします（図13）。
インストール後、Visual Studio
Codeを再起動すると、*.pyファ
イルが色付きで表示されます。
　次に、l＋,で settings.
jsonを開き、編集します（リス
ト4）。そして、settings.jsonに
書 い た「C:¥work¥python.bat」
をリスト5の内容で作成します。
　設定後 Visual Studio Codeで
エディタを右クリックし「Run
Python File in Terminal」をク
リックすると、IDE上の端末で
実行されます（図14）。
　いずれ、Visual Studio Code
でBoWがネイティブサポート
されることと思いますので（願
望）、そうなったら乗り換えた
いですね。

 ▼図14　 Visual Studio Code上で、BoWのPythonを実行

 ▼リスト5　python.bat

@bash.exe -c "echo %* ¦ sed 's_¥¥¥¥_/_g' ¦ ｭ
sed -r 's_^(.)(:)_/mnt/¥¥L¥¥1_g' ¦ xargs python3"
 引数で渡されたPythonスクリプトのパスを、sedでBoWのパスに変換し、bash.exeの
 python3コマンドに流し込んでいる

 ▼リスト4　settings.jsonを編集する

// 既定の設定を上書きするには、このファイル内に設定を挿入します
{
 "python.pythonPath": "C:/work/python.bat"
}

 ▼図13　Pythonプラグインのインストール

応用編 2

意外と使える!? Bash on Ubuntu on Windows 5第　 章

60 - Software Design

プログラミング道
への招待

　本書では、オートマトンやフィボナッチ数列を用いたコ
ンピュータのしくみや、“アルゴリズムとは”“プログラムと
は”といったプログラミングの基礎が、適所に比喩や余談
を交えながらわかりやすく解説されている。教育者でもあ
る著者らしい、これからプログラマへの一歩を踏み出すと
いう方にお勧めの内容だ。しかしこれだけでは、現役プロ
グラマにとっては忘れかけていた記憶が刺激されるくらい
だろう。そういった方にも一読してほしいのは、その先に
書かれた、プログラミングの「美学」や「道」（老子の示した
Tao）といった、プログラマの生き様につながる著者の想い
だ。たくさんのプログラマに出会い、育ててきた著者の想
いにふれることで、自らが初心に返り、より豊かなプログ
ラマ人生を考えるきっかけにしてみてはどうだろうか。

竹内 郁雄 著
四六判／254ページ
1,800円＋税
丸善出版
ISBN＝978-4-621-30133-3

Intel Edison
マスターブック

　Intel Edisonは、今話題のIoTプロトタイピングに使え
るコンピュータモジュールだ。小型・低消費電力ながら、
高性能かつWi-Fi/bluetooth4.0というIoTに必須のイン
ターフェースを備えている。本書の大きな特徴は、Edison
を動かすための電源回路やシリアル通信用のインター
フェースの自作に取り組んでいるところだ。Edisonには各
種コネクタやArduinoシールドを使うための純正拡張基板
が用意されており、必須ではないのだが、イチから自分で
組み立てるとできあがったときの喜びもひとしおである。
掲載されている作例はLチカなど入門レベルのものから環
境測定器まで幅広いレベルがある。実際に試したところ、
簡単な配線と設定で通知を送れたのには少し近未来感があ
りおもしろかった。本書を読んで挑戦してほしい。

北神 雄太 著
B5変形判／192ページ
2,980円＋税
技術評論社
ISBN＝978-4-7741-8921-5

純粋関数型
データ構造

　関数型言語で書かれたプログラムの実行速度が遅いとい
うデメリットは、CPUのマルチコア化やコンパイラの性能
向上によって緩和されてきたと言われている。加えて、プ
ログラム内で使用するデータ構造を関数型言語に適合した
もの（＝関数型データ構造）にすることで実行速度をさらに
高める、というのが本書の目的である。内容としては、関
数型言語の特徴「破壊的代入が推奨されない」「データが永
続性を持つ」「遅延評価」への考察、リンクリスト・木構造・
ヒープといった従来のデータ構造の改良、新しい関数型
データ構造設計のための技法の紹介と、研究的な側面が強
い。本書内のサンプルコードはすべて関数型言語Stan
dard MLで記述されているが、付録として、それらのサン
プルコードをHaskellで書き直したものも付いている。

Chris Okasaki 著／稲葉 一浩、
遠藤 侑介 訳
B5判／216ページ
2,500円＋税
アスキードワンゴ
ISBN＝978-4-04-893056-7

Java本格入門

　Javaの入門書ではあるが、文法や機能を堅実に説明し
ていく体裁ではなく、現場での使われ方にフォーカスした
1冊となっている。基本文法、型、データ構造などの入門
的な章の中にも「名前のつけ方に注意する」「情報共有のた
めに知っておきたい機能」「型にまつわる問題を予防する」
といった現場を意識した節があり、チーム開発やその後の
保守のヒントになる。ほかのJava本ではそこまで大きく
取り上げていないが、本番運用では重要な事柄「日付処理」

「スレッドセーフ」を、章を設けて解説しているのも特徴的
だ。加えて、ソフトウェアの品質を高めるためのツール群

（Maven、Jenkinsなど）とライブラリ（Super CSVや
SLF4J・Logbackなど）の使い方も盛り込まれ、読み通す
ことで入門＋中級者への入り口までカバーできるだろう。

谷本 心、阪本 雄一郎、岡田
拓也、秋葉 誠、村田 賢一郎
著／Acroquest Technology株
式会社 監修
B5変形判／448ページ
2,980円＋税
技術評論社
ISBN＝978-4-7741-8909-3

システムやアプリを開発する以上はデータベース、とくにリレー
ショナルデータベースの扱いを避けては通れず、その中身の
データを操作するための SQL は、エンジニアの必修科目と言え
ます。今回はそんな SQL の中で、最も高い頻度で使われるで
あろう「SELECT 文」にスポットを当て、基本構文からORDER
BY、GROUP BY を使ったデータの抽出、各種 JOINとサブクエ
リを使ったデータの加工までと、基本から応用までを一気に解
説します。本特集では、RDBMSとしてはオープンソースの
MySQL を、操作するデータとしては都道府県・市町村の人
口・面積データを使います。実務を意識しながら、お手もとの
環境でぜひ実践してください。

MySQL
集中講座

［SE LECT 文］

Part 1P.62

P.76 Part 3

 Author とみたまさひろ

P.67 Part 2

62 - Software Design

　データの抽出・加工を担う「SELECT文」は、
SQLを扱ううえでもっともよく使う操作ではな
いでしょうか。本特集で都道府県・市町村に関
する実データを操作しながら、SELECT文の基
本的・応用的な使い方を身に付けましょう。

はじめようMySQL

　まずMySQLをインストールしましょう。い
くつかのパターンを示しますので、環境や好み
に合ったものを選択してください。

Ubuntu

　Ubuntuには標準パッケージとしてMySQLが
用意されています。Ubuntu 14.04ではMySQL

5.5または5.6、Ubuntu 16.04以降は5.7が対応
しています。インストールするには次のコマン
ドを実行します。

$ sudo apt-get install mysql-server

　途中でMySQLの rootのパスワード（OSの
rootとは異なります）を設定するかどうか尋ねら
れますが、空のままにしておくこともできます。

起動と停止
　Ubuntuでは、インストールされたデーモン系
のパッケージは自動的に起動します。mysqldも
同様です。OS再起動時にも自動的にmysqldが

起動します。手動で起動＆停止したい場合は次
のコマンドを実行します。

 起動
$ sudo service mysql start
 停止
$ sudo service mysql stop

mysqlコマンドで接続
　mysqldに接続するにはmysqlコマンドを使用
します。インストール時にパスワードを設定し
た場合はパスワードの入力が必要です。

$ mysql -uroot -p
Enter password: 指定したパスワードを入力
mysql>

　パスワードを空にしてインストールした場合
は、OSのrootユーザからだけ接続できます。

$ sudo mysql
mysql>

　なおUbuntuのmysqlコマンドには、default-

character-setオプションが設定されていると日
本語が入力できないという問題があるようです。
また、LANGやLC_ALL環境変数の値によっ
ても日本語入力ができなくなります。もしmysql

コマンド内で日本語入力ができない場合は、次
のように実行してみてください。

$ LC_ALL=ja_JP.UTF-8 mysql -uroot -p ｭ
--default-character-set=auto

 Author とみたまさひろ
	 日本MySQLユーザ会
 Twitter @tmtms

MySQL
集中講座

［ S E L E C T 文 ］

この Partではまず MySQL のインストール・初期設定を行い

ます。Ubuntu／CentOS／汎用 Linux バイナリ／Dockerと

4 つの導入パターンを紹介するので、お好きなものを選んで

ください。Part1 の最後では、Part2、3 の演習で使用する

データベースの準備も行います。

Part 1

62 - Software Design Jul. 2017 - 63

Part 1

$ sudo yum install mysql-community-server

起動と停止
　Ubuntuと異なり、インストールしただけでは
mysqldは起動しませんが、OSを再起動すると
自動起動します。手動で起動・停止したい場合
は次のコマンドを実行します。

 起動
$ sudo service mysqld start
 停止
$ sudo service mysqld stop

mysqlコマンドで接続
　CentOSではインストール時にはパスワード
の設定は要求されません。そのため、rootユー
ザに設定された初期パスワードを調べる必要が
あります。mysqldに接続するための初期パス
ワードは/var/log/mysqld.logファイルに出力さ
れています（図2）。この例ではパスワードは
「E-0igVtyZ./2」です。
　このパスワードを使うとrootでmysqldに接続
できますが、この状態では何のクエリ（命令文）
も実行できません。まずパスワードを再設定す
る必要があります（図3）。新しいパスワードは、
アルファベットの大文字小文字と数字記号を含
み、8文字以上で設定する必要があります。

汎用Linuxバイナリ

　Oracleが配布している汎用Linuxバイナリを
使用すると、任意のディレクトリにMySQLを
インストールできます。このバイナリはOSの

　また、次のコマンドで接続を切断します。

mysql> quit;
 または
mysql> exit;

　切断の操作は、ほかの環境でも共通です。

CentOS

　CentOS 7には、MySQLはパッケージとして
用意されていません。CentOS 6にはありまし
たが、それもバージョンが5.1と古いのでお勧
めしません。
　yumで管理したい場合は、Oracleが配布して
いるrpmパッケージを使用するのが良いでしょ
う。MySQLの公式ページ 注1からOSのバージョ
ンに応じたrpmをダウンロードしましょう。こ
のrpmはyumの管理情報が入っているだけです
ので、ファイルサイズは25KB程度と小さいで
す。公式ページにはCentOSと書かれたものは
ありませんが、Red Hat Enterprise Linux /

Oracle Linuxと書かれたものが、CentOSでも
使用できます。
　次のコマンドで、ダウンロードしたrpmをイ
ンストールします。

$ sudo yum localinstall ダウンロードしたrpm

　インストール後はmysql57-communityリポジ
トリが有効になっています（図1）。次のように
インストールします。

 ▼図1　yumリポジトリの確認

$ yum repolist enabled | grep mysql
mysql-connectors-community/x86_64 MySQL Connectors Community 36
mysql-tools-community/x86_64 MySQL Tools Community 47
mysql57-community/x86_64 MySQL 5.7 Community Server 187

 ▼図2　初期パスワードの確認

$ grep 'temporary password' /var/log/mysqld.log
2017-04-30T09:25:50.361916Z 1 [Note] A temporary password is generated for root@localhost: ｭ
E-0igVtyZ./2

注1） URL https://dev.mysql.com/downloads/repo/yum/

https://dev.mysql.com/downloads/repo/yum/

64 - Software Design

MySQL
集中講座

［ S E L E C T 文 ］

起動と停止
　mysqldを起動するには（図5）
のようにします。
　--skip-networkingオプション
はTCP/IPを使用しないオプ
ションです。ソケットファイル
を使用した接続しか受け付けま
せん。ソケットファイルのパス
は--socketオプションで指定し
ます。この例のようにフルパス
で指定していない場合は、data

ディレクトリからの相対パスと
みなされます。
　--daemonizeオプションはmy

sqldがデーモンとしてバックグ
ラウンド動作をする指定です。

このオプションを指定しない場合はフォアグラ
ウンドで動作し、mysqldが終了するまでこの端
末は使用できなくなります。
　--log-errorオプションはエラーログの出力先
ファイル名を指定します。--daemonizeオプショ
ン指定時には必須です。フルパスで指定しない
場合は、--socketオプションと同様にdataディ
レクトリからの相対パスとみなされます。
　mysqldを停止するには、mysqldプロセスに対
してTERMシグナルを送ります。mysqldのプロ
セス番号は「data/ホスト名 .pid」というファイル
に格納されているため、次のようにしてkillコ
マンドを実行します。

$ kill $(<data/hostname.pid)

　また、mysqlコマンドからshutdownをクエリ
として発行することでもmysqldを停止できま
す。

mysql> shutdown;

ディストリビューションに依存しません。自分
のホームディレクトリ配下にインストールして、
rootではなく自分のユーザ権限で動かすことも
できます。
　MySQLの公式ページ 注2からmysql-5.7.18-

linux-glibc2.5-x86_64.tar.gz（執筆時点2017年5

月の最新版）をダウンロードして、インストール
します（図4）。最後の行にrootの初期パスワード
が出力されるので控えておきます。この例では
初期パスワードは「n++rAyp#k1Uw」です。図4で
使っているオプションの意味は次のとおりです。

・--no-defaults：既存のMySQLの設定の影響を
受けないようにする

・--basedir=$(pwd)：カレントディレクトリ
（MySQLを展開したディレクトリ）を基底ディ
レクトリとする。カレントディレクトリの下
のdataディレクトリにデータが作成される

・--initialize：データを初期化

 ▼図3　mysqlコマンドで接続、パスワードを再設定

$ mysql -uroot -p
Enter password: 初期パスワードを入力
mysql> select 123
ERROR 1820 (HY000): You must reset your password using ｭ
ALTER USER statement before executing this statement.
mysql> set password='P@ssword1'; 新しいパスワードを設定
mysql> select 123;
+-----+
| 123 |
+-----+
| 123 |
+-----+

 ▼図4　カレントディレクトリにインストール

$ tar xf mysql-5.7.18-linux-glibc2.5-x86_64.tar.gz
$ cd mysql-5.7.18-linux-glibc2.5-x86_64
$./bin/mysqld --no-defaults --basedir=$(pwd) --initialize
 ...（略）...
2017-04-26T13:12:59.207693Z 1 [Note] A temporary passwordｭ
 is generated for root@localhost: n++rAyp#k1Uw

 ▼図５　mysqldの起動コマンド

$./bin/mysqld --no-defaults --basedir=$(pwd) --skip-networking --socket=socket --daemonizeｭ
 --log-error=error.log

注2） URL https://dev.mysql.com/downloads/mysql/

https://dev.mysql.com/downloads/mysql/

64 - Software Design Jul. 2017 - 65

Part 1
ユーザの初期パスワードです。続
くyum installコマンドで日本
語入力を可能にする追加パッケー
ジをインストールしています。
　起動したmysqldに接続するに
は、図8のコマンドを実行します。
LC_ALL=ja_JP.UTF-8と--default

-character-set=auto は Ubuntu

の場合と同様、日本語を入力する
ための設定です。図7のコマンド
の実行直後はエラーになることが
あります。mysqldが起動するまで
十秒程度待ってください。
　なお、コンテナを停止するには

docker stop mycontainer、停止したコンテ
ナを再起動するにはdocker start mycontai

nerを実行します。コンテナを削除するには、
docker rm mycontainerを実行します。

テスト用データベースの
用意

　ここまでで、mysqlコマンドが実行できる状態
になっているかと思います。ここからは、Part2、
3で使用するデータベースを用意します。
　以降では見やすさのために、クエリの予約語
は大文字、それ以外は小文字で記述しますが、
MySQLはクエリの大文字小文字は区別しない
ため、小文字で入力してもかまいません。なお、
データベース名とテーブル名は大文字小文字を
区別するので注意してください。
　また、通常はテーブル名やカラム名に日本語
を使用することはないと思いますが、今回は説
明のわかりやすさのために日本語にしています。
　あらかじめ筆者のリポジトリ 注4から都道府県
データ（prefectures.csv）と市町村データ（cities.

csv）をダウンロードし、カレントディレクトリ
に配置しておいてから、図9のクエリを実行し
ます。なお、今回使用するデータは平成27年国

mysqlコマンドで接続
　インストール時に出力されたパスワードを指
定して接続します（図6）。なお、--socketオプ
ションはmysqldとは異なり、カレントディレク
トリからの相対パスで指定します。
　CentOSと同様、パスワードを再設定しない
と何のクエリも実行できません。ただしCentOS

と違い、新しく設定するパスワードには文字種
と文字数の制約はありません。

Docker

　もし手元にDockerを実行できる環境があるの
なら、試しにMySQLを使ってみるための用途
としては最適でしょう。MySQL環境がコンテ
ナ内に閉じているのでホストOSに影響しませ
んし、不要になった場合は簡単に破棄できます。
　OracleのMySQLチームが公開している
Dockerイメージ 注3を使用できます。図7のコ
マンドを実行すると、コンテナ内でmysqldが起
動します。初回はイメージをダウンロードする
ため時間が掛かります。ここでは、--nameオプ
ションによりコンテナに「mycontainer」と名前を
付けています。MYSQL_ROOT_PASSWORD

環境変数に指定する文字列は、MySQLのroot

 ▼図6　mysqlコマンドで接続、パスワードを再設定

$./bin/mysql --no-defaults --socket=data/socket -uroot -p
Enter password: 初期パスワードを入力
mysql> set password='password'; 新しいパスワードを設定

 ▼図8　mysqldに接続

% docker exec -it mycontainer bash -c 'LC_ALL=ｭ
ja_JP.UTF-8 mysql -uroot -p --default-character-set=auto'
Enter password: MYSQL_ROOT_PASSWORDで指定した初期パスワード
mysql>

 ▼図7　コンテナ内でmysqldを起動

$ docker run --name=mycontainer -e MYSQL_ROOT_PASSWORD=ｭ
<初期パスワード> -d mysql/mysql-server:5.7
% docker exec mycontainer yum install -y glibc-common

注3） URL https://hub.docker.com/r/mysql/mysql-server/ 注4） URL https://github.com/tmtm/sdsample

https://hub.docker.com/r/mysql/mysql-server/
https://github.com/tmtm/sdsample

66 - Software Design

MySQL
集中講座

［ S E L E C T 文 ］

ています。
　LOAD DATA LOCAL INFILEは、クライアント
（mysqlコマンドを実行しているOS）のファイル
システム上に置いてある、タブ区切りテキスト
が書かれたファイルからテーブルにデータを流
し込むための命令です。LOCALを付けずに
LOAD DATA INFILEとした場合は、サーバ
（mysqldが動作しているOS）のファイルを読み
込む指定となります。今回はタブ区切りではな
く CSVですので、FIELDS TERMINATED BY

','でカンマ区切りを指定しています。
　なお、Dockerを使用している場合はDocker

コンテナ内にcsvファイルを置く必要があるた
め、あらかじめ次のコマンドを実行しておいて
ください。ﾟ

% docker cp prefectures.sql mycontainer:/
% docker cp cities.csv mycontainer:/

勢調査のデータ 注5を加工したものです。
　クエリの説明ですが、CREATE TABLEで作成
しているテーブルの形式は表1、2のようになっ

 ▼図9　データベースを準備

mysql> SET NAMES utf8mb4; 文字コードをUTF-8に設定
mysql> CREATE DATABASE test CHARSET utf8mb4; テスト用データベースを作成
mysql> USE test; テスト用データベースを使用

mysql> CREATE TABLE 都道府県 (都道府県テーブルを作成
-> 都道府県コード INT NOT NULL,
-> 都道府県名 VARCHAR(255) NOT NULL,
-> 人口 INT NOT NULL,
-> 面積 DOUBLE NOT NULL,
-> PRIMARY KEY (都道府県コード),
-> UNIQUE (都道府県名)
->);
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE 市町村 (市町村テーブルを作成
-> 都道府県コード INT NOT NULL,
-> 市町村コード INT NOT NULL,
-> 区分 INT NOT NULL, -- 1:政令指定都市, 2:市, 3:町村
-> 市町村名 VARCHAR(255) NOT NULL,
-> 人口 INT NOT NULL,
-> 面積 DOUBLE NOT NULL,
-> 世帯数 INT NOT NULL,
-> PRIMARY KEY (市町村コード)
->);
Query OK, 0 rows affected (0.02 sec)

mysql> LOAD DATA LOCAL INFILE 'prefectures.csv' INTO TABLE 都道府県 FIELDS TERMINATED BY ',';
Query OK, 47 rows affected (0.01 sec)

mysql> LOAD DATA LOCAL INFILE 'cities.csv' INTO TABLE 市町村 FIELDS TERMINATED BY ',';
Query OK, 1719 rows affected (0.04 sec)

注5） URL http://www.stat.go.jp/data/kokusei/2015/kekka.htm

カラム名 説明
都道府県コード 識別子である整数
都道府県名 文字列
人口 整数
面積 浮動小数点（単位：km2）

 ▼表1　都道府県テーブル

カラム名 説明
都道府県コード 市町村が属する都道府県の識別子
市町村コード 識別子である整数

区分 1：政令指定都市、2：市、3：町または村
市町村名 文字列
人口 整数
面積 浮動小数点（単位：km2）
世帯数 整数

 ▼表2　市町村テーブル

http://www.stat.go.jp/data/kokusei/2015/kekka.htm

67 - Software Design Jul. 2017 - 67

　本章では、Part1で作ったテーブル「都道府県」
（図1）を使って、基本的なSELECT文を学んで
いきます。

そもそもテーブルとは

　SELECTはテーブルから値を抽出するための命
令です。SELECTの説明の前にテーブルに
ついて少し説明します。
　テーブルは行（ロー、レコード）と列（カラ
ム、フィールド）からなる2次元の表です（図
2）。ただし、リレーショナル・データベース
（以下RDB）でのテーブルは、単純な2次元の
表ではありません。行と列は役割が異なり、
交換可能ではありません（図3）。
　RDBのテーブルは、同じ属性項目を持った
複数のオブジェクトの集合（図4）を2次元の

 Author とみたまさひろ
	 日本MySQLユーザ会
 Twitter @tmtms

MySQL
集中講座

［SE LECT 文］

環境準備とデータの用意が済み、いよいよ実践です
。はじ

めに「テーブルとは何なのか」を押さえたあとは、
簡単な

SELECT文の使い方からみていきましょう。後半では
、単に

抽出するだけではなく、並び替えや値の計算、グル
ーピン

グによってデータを加工する方法も解説していきま
す。

Part 2

 ▼図1　都道府県テーブルを表示したところ

mysql> SELECT * FROM 都道府県; ←後に解説するSELECT文
+-----------------------+-----------------+----------+----------+
| 都道府県コード | 都道府県名 | 人口 | 面積 |
+-----------------------+-----------------+----------+----------+
| 1 | 北海道 | 5381733 | 83424.31 |
| 2 | 青森県 | 1308265 | 9645.59 |
| 3 | 岩手県 | 1279594 | 15275.01 |
| 4 | 宮城県 | 2333899 | 7282.22 |
| 5 | 秋田県 | 1023119 | 11637.54 |
 ...（略）...
| 47 | 沖縄県 | 1433566 | 2281.12 |
+-----------------------+-----------------+----------+----------+
47 rows in set (0.00 sec)

 ▼図2　行と列

都道府県名 県庁所在地 人口 面積
北海道 札幌市 5381733 83424

青森県 青森市 1308265 9645

岩手県 盛岡市 1279594 15275

宮城県 仙台市 2333899 7282

行

列

 ▼図3　行と列は可換ではない

都道府県名 県庁所在地 人口 面積
北海道 札幌市 5381733 83424

青森県 青森市 1308265 9645

岩手県 盛岡市 1279594 15275

宮城県 仙台市 2333899 7282

これは
OK

都道府県名 北海道 青森県 岩手県 宮城県
県庁所在地 札幌市 青森市 盛岡市 仙台市
人口 5381733 1308265 1279594 2333899

面積 83424 9645 15275 7282

これは
NG

68 - Software Design

MySQL
集中講座

［SE LECT 文］

ありますが、同じ意味となります。

mysql> SELECT カラム名, ...
 -> FROM テーブル名;

　サンプルデータベースのテーブル「都道府県」
から、都道府県名と人口を取り出すには図6の
ように記述します。この例ではテーブルのコー
ドカラムの順にレコードが取り出されています
が、実際には取り出される順番は不定と思って

表形式で表現したもので、行はオブジェクトを
表し、列は属性を表します。
　また、行と列には順番はありません。RDBに
おいては、表1のテーブルと表2のテーブルは
同じものとなります。列の並びは人間が見やす
いように並べられることが多いですが、論理的
には順番はないものとして扱われます。

SELECT：
カラムの値を取り出す

　ここからは、実際にSELECTを実行してみ
ましょう。Part1で作成した環境に合わせて
mysqlコマンドで接続してください。
　SELECTは、指定したカラムの値をテーブル
から取り出して返す操作です。結果もテーブル
の形式になります（図5）。構文としては、
SELECTの後ろには取り出すカラム名を並べ、
FROMでテーブル名を指定します。

SELECT カラム名, ... FROM テーブル名;

　実行例では次のように改行されているものも

 ▼図4　オブジェクトと表

都道府県名 県庁所在地 人口 面積
北海道 札幌市 5381733 83424

青森県 青森市 1308265 9645

岩手県 盛岡市 1279594 15275

宮城県 仙台市 2333899 7282

都道府県名：北海道
県庁所在地：札幌市
人口：5381733
面積：83424

都道府県名：青森県
県庁所在地：青森市
人口：1308265
面積：9645

都道府県名：岩手県
県庁所在地：盛岡市
人口：1279594
面積：15275

都道府県名：宮城県
県庁所在地：仙台市
人口：2333899
面積：7282

都道府県名 県庁所在地 人口 面積
北海道 札幌市 5381733 83424

青森県 青森市 1308265 9645

岩手県 盛岡市 1279594 15275

宮城県 仙台市 2333899 7282

秋田県 秋田市 1023119 11638

山形県 山形市 1123891 9323

福島県 福島市 1914039 13784

 ▼表1　見やすいように並べられたテーブル

面積 都道府県名 人口 県庁所在地
83424 北海道 5381733 札幌市

9323 山形県 1123891 山形市
15275 岩手県 1279594 盛岡市
13784 福島県 1914039 福島市

9645 青森県 1308265 青森市
11638 秋田県 1023119 秋田市

7282 宮城県 2333899 仙台市

 ▼表2　表1の行・列の順番を入れ替えたもの

 ▼図5　SELECTの操作

a b c d

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a c

1 3

5 7

9 11

13 15

68 - Software Design Jul. 2017 - 69

Part 2

することもできます（図9）。なお、ASは省略で
きます。
　カラム名の特別な指定方法として*がありま
す。これはすべてのカラムを意味し、結果のカ
ラムはテーブルのカラムと同じになります（図
1）。テーブル定義時のカラムの順番が影響する
唯一の例外です。
　*は、手入力でカラム名をいちいち書くのが
めんどくさい場合には便利なのですが、どんな
カラムがどの順に返されるのかはSQLからはわ
からず、本来不要なカラムのデータまで取り出
すのは無駄ですので、プログラムから使われる
ことはあまりないと思います。

おいたほうが良いでしょう。
　SELECTの後ろはカラム名だけではなく、関
数などを使用した式も指定できます。たとえば
図7では、人口を万人単位（ROUNDで小数点以下
を四捨五入）で取り出しています。また、カラム
に依存しない式を記述することもできます。当
然ですが、この場合はすべての行で同じ値にな
ります（図8）。このように、SELECTに式を使
用すると、結果のテーブルのカラムの名前が式
そのものになってしまいます。
　ASを使用して結果テーブルのカラム名を変更

 ▼図6　都道府県名と人口を抽出

mysql> SELECT 都道府県名, 人口 FROM 都道府県;
+-----------------+----------+
| 都道府県名 | 人口 |
+-----------------+----------+
| 北海道 | 5381733 |
| 青森県 | 1308265 |
| 岩手県 | 1279594 |
| 宮城県 | 2333899 |
| 秋田県 | 1023119 |
| 山形県 | 1123891 |
| 福島県 | 1914039 |
| 茨城県 | 2916976 |
| 栃木県 | 1974255 |
| 群馬県 | 1973115 |
 ...（略）...
| 熊本県 | 1786170 |
| 大分県 | 1166338 |
| 宮崎県 | 1104069 |
| 鹿児島県 | 1648177 |
| 沖縄県 | 1433566 |
+-----------------+----------+
47 rows in set (0.00 sec)

 ▼図8　カラムに依存しない式を記述

mysql> SELECT 1+2+3, 都道府県名 FROM 都道府県;
+-------+-----------------+
| 1+2+3 | 都道府県名 |
+-------+-----------------+
| 6 | 北海道 |
| 6 | 青森県 |
| 6 | 岩手県 |
| 6 | 宮城県 |
| 6 | 秋田県 |
| 6 | 山形県 |
| 6 | 福島県 |
| 6 | 茨城県 |
| 6 | 栃木県 |
| 6 | 群馬県 |
 ...（略）...
47 rows in set (0.00 sec)

 ▼図9　人口／面積の値を「人口密度」カラムとして抽出

mysql> SELECT 都道府県名, ROUND(人口/面積,1)
 -> AS 人口密度
 -> FROM 都道府県;
+-----------------+--------------+
| 都道府県名 | 人口密度 |
+-----------------+--------------+
| 北海道 | 64.5 |
| 青森県 | 135.6 |
| 岩手県 | 83.8 |
| 宮城県 | 320.5 |
| 秋田県 | 87.9 |
| 山形県 | 120.5 |
| 福島県 | 138.9 |
| 茨城県 | 478.4 |
| 栃木県 | 308.1 |
| 群馬県 | 310.1 |
 ...（略）...
47 rows in set (0.00 sec)

 ▼図7　人口を万人単位で抽出

mysql> SELECT 都道府県名, ROUND(人口/10000)
 -> FROM 都道府県;
+-----------------+---------------------+
| 都道府県名 | ROUND(人口/10000) |
+-----------------+---------------------+
| 北海道 | 538 |
| 青森県 | 131 |
| 岩手県 | 128 |
| 宮城県 | 233 |
| 秋田県 | 102 |
| 山形県 | 112 |
| 福島県 | 191 |
| 茨城県 | 292 |
| 栃木県 | 197 |
| 群馬県 | 197 |
 ...（略）...
47 rows in set (0.00 sec)

70 - Software Design

MySQL
集中講座

［SE LECT 文］

須なものがあります。つまりテーブルに関係なく
式を評価したいだけであっても、何かしらのテー
ブルの指定が必要になります。Oracleではその
ために、ダミーのテーブルDUALが用意されて
います。MySQLもDUALに対応しています。

mysql> SELECT 1+2+3 FROM DUAL;
+-------+
| 1+2+3 |
+-------+
| 6 |
+-------+
1 row in set (0.00 sec)

演算子と関数

　SELECTやWHEREの式で使用できる演算
子や関数は数多くあります。数えたところ、
MySQL 5.7では436個ありました。
　演算子と関数は、見た目は異なりますが
MySQLではどちらもSQLの構文として定義さ
れているので、本質的に違いはありません（ユー
ザ定義関数を除きます）。よく使われると思われ
るものをいくつか紹介します。

比較

　=（等しい）、<>（等しくない。!=も可）、>（よ
り大きい）、>=（より大きいか等しい）、<（より
小さい）、<=（より小さいか等しい）の演算子は、

WHERE：対象を絞り込む

　WHEREを使えば、SELECTの結果としてテー
ブル内の全レコードではなく、必要なレコード
だけを取り出せます（図10）。WHEREの後に指
定した式の値が真であるレコードだけが取り出
されます。0、FALSE、NULLは偽、それ以外
の値は真として扱われます。なおMySQLでは、
TRUEは1、FALSEは0を表すシンボルです。
構文は次のとおりです。

SELECT カラム名, ... FROM テーブル名 WHERE 式;

　図11では、都道府県テーブルから人口300万
人以上の都道府県の名前を抽出しています。

テーブルから値を
取り出さない SELECT

　SELECTはテーブルから値を取り出すだけで
なく、単純に式を評価することだけにも使用で
きます。FROMを指定しないと式を評価した結
果を返します。

mysql> SELECT 1+2+3;
+-------+
| 1+2+3 |
+-------+
| 6 |
+-------+
1 row in set (0.00 sec)

　RDBMSによっては、SELECTにFROMが必

 ▼図10　WHEREの動作

a b c d

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b c d

1 2 3 4

9 10 11 12

 ▼図11　人口300万人以上の都道府県の名前を抽出

mysql> SELECT 都道府県名 FROM 都道府県
 -> WHERE 人口 >= 3000000;
+-----------------+
| 都道府県名 |
+-----------------+
| 北海道 |
| 埼玉県 |
| 千葉県 |
| 東京都 |
| 神奈川県 |
| 静岡県 |
| 愛知県 |
| 大阪府 |
| 兵庫県 |
| 福岡県 |
+-----------------+
10 rows in set (0.00 sec)

70 - Software Design Jul. 2017 - 71

Part 2

mysql> SELECT 'abc'='ABC';
+-------------+
| 'abc'='ABC' |
+-------------+
| 1 |
+-------------+
1 rows in set (0.00 sec)

　INを使用すると、値が複数の値のどれかに一
致しているかどうかを調べられます（図14）。
　LIKEで文字列のワイルドカード条件を指定で
きます。「%」は任意の文字列、「_」は任意の1文
字に適合します（図15）。
　REGEXP（RLIKEでも同様）で正規表現による文
字列マッチングができます。ただ日本語などの
マルチバイト文字では正常に働きません（図16）。

演算子の左右の2つのオペラ
ンド（値、変数）を比較して、
真偽値（1または0）を返しま
す（図12）。
　比較演算子のオペランドの
一方または両方にNULLを
指定すると結果はNULLに
なります。NULL同士を比
較してもNULLになります。
NULLは値ではなく、値が
未知であることを示すもので
す。未知のものと何かを比較
しても結果は未知ですので、
NULLになるのです。なお、
MySQLにはNULLとNULLが等しいとみなす
演算子（<=>）もありますが、これは標準SQLに
はない演算子です（図13）。
　BETWEENを使用すると、値が範囲内に入って
いるかどうかを確認できます。

mysql> SELECT 123 BETWEEN 100 AND 200;
+-------------------------+
| 123 BETWEEN 100 AND 200 |
+-------------------------+
| 1 |
+-------------------------+
1 rows in set (0.00 sec)

　数値ではなく文字列でも比較ができます。基
本的には文字列の先頭から1文字ずつ比較しま
す。なお文字列の比較はコレーション（照合順
序）に依存します。MySQLでは通常、アルファ
ベットの大文字と小文字は区別されません。

 ▼図12　比較演算子

mysql> SELECT 123=123, 123<>123, 123>123, 123>=123;
+---------+----------+---------+----------+
| 123=123 | 123<>123 | 123>123 | 123>=123 |
+---------+----------+---------+----------+
| 1 | 0 | 0 | 1 |
+---------+----------+---------+----------+
1 rows in set (0.00 sec)

 ▼図13　NULLの挙動

mysql> SELECT 123=NULL, NULL=NULL, 123<=>NULL, NULL<=>NULL;
+----------+-----------+------------+-------------+
| 123=NULL | NULL=NULL | 123<=>NULL | NULL<=>NULL |
+----------+-----------+------------+-------------+
| NULL | NULL | 0 | 1 |
+----------+-----------+------------+-------------+
1 rows in set (0.00 sec)

 ▼図14　四国の都道府県を抽出

mysql> SELECT 都道府県名, 人口 FROM 都道府県
 -> WHERE 都道府県名
 -> IN ('徳島県','香川県','愛媛県','高知県');
+-----------------+---------+
| 都道府県名 | 人口 |
+-----------------+---------+
| 徳島県 | 755733 |
| 愛媛県 | 1385262 |
| 香川県 | 976263 |
| 高知県 | 728276 |
+-----------------+---------+
4 rows in set (0.00 sec)

 ▼図15　名前に「島」という字を含む都道府県を抽出

mysql> SELECT 都道府県名 FROM 都道府県
 -> WHERE 都道府県名
 -> LIKE '%島%';
+-----------------+
| 都道府県名 |
+-----------------+
| 福島県 |
| 島根県 |
| 広島県 |
| 徳島県 |
| 鹿児島県 |
+-----------------+
5 rows in set (0.00 sec)

72 - Software Design

MySQL
集中講座

［SE LECT 文］

数値演算

　+、-、*、/で四則演算がで
きます。また、DIVで整数除算、
%（またはMOD）で剰余演算がで
きます（図17）。

文字列処理

　LENGTH()はバイト単位での
文字列の長さ、CHAR_LENGTH()
で文字単位での文字列の長さを
返します。UPPER()、LOWER()
は文字列の英字を大文字化、小
文字化した文字列を返します。
LEFT()、RIGHT()、SUB

STRING()で文字列の先頭、末
尾、途中の部分文字を返します
（図18）。

論理演算

　x AND yは論理積で、xとy

 ▼図17　数値演算

 四則演算
mysql> SELECT 456+123, 456-123, 456*123, 456/123;
+---------+---------+---------+---------+
| 456+123 | 456-123 | 456*123 | 456/123 |
+---------+---------+---------+---------+
| 579 | 333 | 56088 | 3.7073 |
+---------+---------+---------+---------+
1 rows in set (0.00 sec)

 整数除算と剰余演算
mysql> SELECT 456/123, 456 DIV 123, 456 MOD 123, MOD(456,123);
+---------+-------------+-------------+--------------+
| 456/123 | 456 DIV 123 | 456 MOD 123 | MOD(456,123) |
+---------+-------------+-------------+--------------+
| 3.7073 | 3 | 87 | 87 |
+---------+-------------+-------------+--------------+
1 rows in set (0.00 sec)

 ▼図16　 正規表現による文字列マッチング（日本語ではうまくいかない）

mysql> SELECT 'AAA' REGEXP '^A*$', 'あああ' REGEXP '^あ*$';
+---------------------+-----------------------------+
| 'AAA' REGEXP '^A*$' | 'あああ' REGEXP '^あ*$' |
+---------------------+-----------------------------+
| 1 | 0 |
+---------------------+-----------------------------+
1 rows in set (0.00 sec)

 ▼図18　文字列処理

 文字列の長さ
mysql> SELECT LENGTH('abc'), LENGTH('いろは'), CHAR_LENGTH('いろは');
+---------------+---------------------+--------------------------+
| LENGTH('abc') | LENGTH('いろは') | CHAR_LENGTH('いろは') |
+---------------+---------------------+--------------------------+
| 3 | 9 | 3 |
+---------------+---------------------+--------------------------+
1 rows in set (0.00 sec)

 大文字・小文字の変換
mysql> SELECT UPPER('aBcD'), LOWER('aBcD');
+---------------+---------------+
| UPPER('aBcD') | LOWER('aBcD') |
+---------------+---------------+
| ABCD | abcd |
+---------------+---------------+
1 rows in set (0.00 sec)

 先頭、末尾、途中の部分文字
mysql> SELECT LEFT('あいえうお',2), RIGHT('あいうえお',2), SUBSTRING('あいうえお',3,2);
+---------------------------+----------------------------+----------------------------------+
| LEFT('あいえうお',2) | RIGHT('あいうえお',2) | SUBSTRING('あいうえお',3,2) |
+---------------------------+----------------------------+----------------------------------+
| あい | えお | うえ |
+---------------------------+----------------------------+----------------------------------+
1 rows in set (0.00 sec)

72 - Software Design Jul. 2017 - 73

Part 2

ORDER BY と LIMIT

　SELECTにORDER BYを指定することで結果
を昇順に並び替えることができます。さらに
DESCを指定すると降順に並びます。図20は都
道府県を面積の大きい順に並び替えた例です。
　通常は、WHEREで絞り込んだ数のレコード
が返りますが、LIMITを使用すると指定した数
のレコードをだけを返すようにできます（図21）。
LIMITを使用する場合は通常、ORDER BYを
指定します。そうでないと、何が返されるか不
定になります。

の両方が真の場合に1、そうでなければ0を返し
ます。x && yとも記述できます。

mysql> SELECT 1 AND 1, 1 AND 0, 0 AND 0;
+---------+---------+---------+
| 1 AND 1 | 1 AND 0 | 0 AND 0 |
+---------+---------+---------+
| 1 | 0 | 0 |
+---------+---------+---------+
1 rows in set (0.00 sec)

　x OR yは論理和で、xとyのどちらかが真の
場合に1、そうでなければ0を返します。x ||

yとも記述できます。

mysql> SELECT 1 OR 1, 1 OR 0, 0 OR 0;
+--------+--------+--------+
| 1 OR 1 | 1 OR 0 | 0 OR 0 |
+--------+--------+--------+
| 1 | 1 | 0 |
+--------+--------+--------+
1 rows in set (0.00 sec)

　x XOR yは排他的論理和で、xとyのどちらか
が真でもう一方が偽の場合に1、そうでなけれ
ば0を返します。

mysql> SELECT 1 XOR 1, 1 XOR 0, 0 XOR 0;
+---------+---------+---------+
| 1 XOR 1 | 1 XOR 0 | 0 XOR 0 |
+---------+---------+---------+
| 0 | 1 | 0 |
+---------+---------+---------+
1 rows in set (0.00 sec)

　NOT xは否定で、xが真の場合に0、そうでな
ければ1を返します。! xとも記述できます。

mysql> SELECT NOT 1, NOT 0;
+-------+-------+
| NOT 1 | NOT 0 |
+-------+-------+
| 0 | 1 |
+-------+-------+
1 rows in set (0.00 sec)

　なお、||はMySQLでは論理和の演算子です
が、標準SQLでは文字列結合の演算子です。
MySQLでも、sql_modeシステム変数にPIPES

_AS_CONCATを設定することで、文字列結合
として働くようになります（図19）。

 ▼図19　設定を変え、 ||を文字列結合に使う

mysql> SELECT 123 || 456;
+------------+
| 123 || 456 |
+------------+
| 1 |
+------------+
1 rows in set (0.00 sec)

mysql> SET sql_mode='PIPES_AS_CONCAT';
 以降、||は文字列結合に
mysql> SELECT 123 || 456;
+------------+
| 123 || 456 |
+------------+
| 123456 |
+------------+
1 rows in set (0.00 sec)

 ▼図20　面積の大きい順に都道府県を抽出

mysql> SELECT 都道府県名 FROM 都道府県
 -> ORDER BY 面積 DESC;
+-----------------+
| 都道府県名 |
+-----------------+
| 北海道 |
| 岩手県 |
| 福島県 |
| 長野県 |
| 新潟県 |
| 秋田県 |
| 岐阜県 |
| 青森県 |
| 山形県 |
| 鹿児島県 |
 ...（略）...
47 rows in set (0.00 sec)

74 - Software Design

MySQL
集中講座

［SE LECT 文］

は最大値、MIN()は最小値を計算します（図23）。

GROUP BY と HAVING

　集約関数はテーブル全体ではなく、ある条件
でグルーピングしたグループごとに適用できま
す。たとえば、都、道、府、県のそれぞれの数
を数えるには、都道府県名の右端1文字でグルー
プングして、グループ内のレコード数を数えれ
ば良いです（図24）。SELECTとGROUP BY

の両方にRIGHT(都道府県名,1)を記述してい
ますが、ASで別名を付けると簡単に記述でき
ます（図25）。
　もっと簡単に、SELECTに記述した式の順番
をGROUP BYに指定することもできます。今
回は1番目の値でGROUP BYしているので、

集約関数

　今まで見てきたように、SELECTはWHERE

でレコードを絞り込んだ結果を返すので、結果
テーブルのレコード数はWHEREの条件に適合
した数になります。しかし、レコードの中身で
はなくレコード数だけがほしい場合があります。
SELECTにCOUNT(*)を指定すると、結果テー
ブルのレコード数が返ります（図22）。
　なお、COUNT(*)は条件に一致するすべての
レコードをカウントしますが、引数に*ではな
くカラム名を指定した場合は、カラムの値が
NULLでないレコードをカウントします。
　このCOUNT()のような関数を集約関数と言い
ます。
　集約関数は、形式は通常の関数と同じなので
すが、SELECTに集約関数を指定すると、結果
テーブルそのものではなく、結果テーブル全体
に対する演算結果を返すようにSELECTの動
きが変わります。
　集約関数はCOUNT()のほかにもいくつかあり
ます。SUM()は合計、AVG()は平均値、MAX()

 ▼図22　「島」を含む都道府県名とその件数

mysql> SELECT 都道府県名 FROM 都道府県
 -> WHERE 都道府県名
 -> LIKE '%島%';
+-----------------+
| 都道府県名 |
+-----------------+
| 福島県 |
| 島根県 |
| 広島県 |
| 徳島県 |
| 鹿児島県 |
+-----------------+
5 rows in set (0.00 sec)
 レコード数のみ表示
mysql> SELECT COUNT(*) FROM 都道府県
 -> WHERE 都道府県名
 -> LIKE '%島%';
+----------+
| COUNT(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)

 ▼図21　面積の大きい順に4つまで抽出

mysql> SELECT 都道府県名 FROM 都道府県
 -> ORDER BY 面積 DESC
 -> LIMIT 4;
+-----------------+
| 都道府県名 |
+-----------------+
| 北海道 |
| 岩手県 |
| 福島県 |
| 長野県 |
+-----------------+
4 rows in set (0.00 sec)

 ▼図23　都道府県の人口の合計、平均値、最小値、最大値

mysql> SELECT SUM(人口), AVG(人口), MIN(人口), MAX(人口) FROM 都道府県;
+-------------+--------------+-------------+-------------+
| SUM(人口) | AVG(人口) | MIN(人口) | MAX(人口) |
+-------------+--------------+-------------+-------------+
| 127094745 | 2704143.5106 | 573441 | 13515271 |
+-------------+--------------+-------------+-------------+
1 rows in set (0.00 sec)

74 - Software Design Jul. 2017 - 75

Part 2

の後にGROUP BYされるということは、グルー
ピングした結果のテーブルに対してWHEREは
使えないということです。
　GROUP BYの結果をさらに絞り込みたい場
合はHAVINGを使用します（図28）。なお、
ORDER BY、LIMITはGROUP BYよりも後
に評価されます（図29）。｢

GROUP BY 1と記述できます（図26）。
　なおGROUP BY使用時に、SELECTに記述
できるのは集約関数とGROUP BYに記述した
式のみです。
　WHEREはGROUP BYよりも前に評価され
ます。つまりWHEREで絞り込んだ結果テーブ
ルに対してグルーピングされます。全都道府県
ではなく、人口300万人以上の都道府県でグルー
ピングするには図27のようにします。WHERE

 ▼図24　 都・道・府・県でグルーピング、数を集計

mysql> SELECT RIGHT(都道府県名,1), COUNT(*)
 -> FROM 都道府県
 -> GROUP BY RIGHT(都道府県名,1);
+--------------------------+----------+
| RIGHT(都道府県名,1) | COUNT(*) |
+--------------------------+----------+
| 府 | 2 |
| 県 | 43 |
| 道 | 1 |
| 都 | 1 |
+--------------------------+----------+
4 rows in set (0.00 sec)

 ▼図25　図24をASを使って簡略化

mysql> SELECT RIGHT(都道府県名,1)
 -> AS type, COUNT(*)
 -> FROM 都道府県
 -> GROUP BY type;
+------+----------+
| type | COUNT(*) |
+------+----------+
| 府 | 2 |
| 県 | 43 |
| 道 | 1 |
| 都 | 1 |
+------+----------+
4 rows in set (0.00 sec)

 ▼図28　カラム「count」の値が2以上で絞り込み

mysql> SELECT RIGHT(都道府県名,1)
 -> AS type, COUNT(*) AS count
 -> FROM 都道府県
 -> GROUP BY 1
 -> HAVING count >= 2;
+------+-------+
| type | count |
+------+-------+
| 府 | 2 |
| 県 | 43 |
+------+-------+
2 rows in set (0.00 sec)

 ▼図29　ORDER BYが先に評価され、カラム「count」
　　　 値の昇順に

mysql> SELECT RIGHT(都道府県名,1)
 -> AS type, COUNT(*) AS count
 -> FROM 都道府県
 -> GROUP BY 1
 -> ORDER BY count;
+------+-------+
| type | count |
+------+-------+
| 道 | 1 |
| 都 | 1 |
| 府 | 2 |
| 県 | 43 |
+------+-------+
4 rows in set (0.00 sec)

 ▼図26　図25のGROUP BY部分を簡略化

mysql> SELECT RIGHT(都道府県名,1)
 -> AS type, COUNT(*)
 -> FROM 都道府県
 -> GROUP BY 1;
+------+----------+
| type | COUNT(*) |
+------+----------+
| 府 | 2 |
| 県 | 43 |
| 道 | 1 |
| 都 | 1 |
+------+----------+
4 rows in set (0.00 sec)

 ▼図27　 人口300万人以上の都道府県でグルーピン
グ、数を集計

mysql> SELECT RIGHT(都道府県名,1)
 -> AS type, COUNT(*)
 -> FROM 都道府県
 -> WHERE 人口 >= 3000000 GROUP BY 1;
+------+----------+
| type | COUNT(*) |
+------+----------+
| 府 | 1 |
| 県 | 7 |
| 道 | 1 |
| 都 | 1 |
+------+----------+
4 rows in set (0.00 sec)

76 - Software Design

2 つのテーブルを
結合してみよう

　Part2では都道府県テーブルを操作していま
したが、ここからはPart1の最後にLOADコマ
ンドで読み込んだ、市町村テーブル（図1）も使っ
て、複数のテーブルを使ったSELECT文を学
習しましょう。
　まず市町村テーブルを用いて、全国に市町村
がいくつあるか数えてみます。該当するレコー
ド数をカウントするには、Part2の集約関数の
節で解説したCOUNT(*)を使います。

mysql> SELECT COUNT(*) FROM 市町村;
+----------+
¦ COUNT(*) ¦
+----------+
¦ 1719 ¦
+----------+
1 rows in set (0.01 sec)

　この結果を見ると、日本全国に全部で1,719

個の市町村があるようです。
　次に、都道府県ごとの市町村の個数を、多い
順に10件取り出してみましょう。市町村テーブ
ルには都道府県を示す都道府県コードカラムが
あるので、それを使ってPart2で解説したGROUP
BYでグルーピングし、さらにCOUNT(*) 市町
村数の結果をORDER BY DESCで降順に並べ、
LIMIT 10で10件取り出します（図2）。
　市町村テーブルには都道府県コードしかない
ので、都道府県名がわかりません。都道府県コー
ドと都道府県名の対応は都道府県テーブルにあ
ります。まずは都道府県テーブルからPart2で
解説したINを使って直接都道府県コードを数値
で指定して、この10件の都道府県が何かを取り
出してみます（図3）。
　このように2つの結果を合わせることによっ
て、1位は北海道の179市町村、2位は長野県の

 Author とみたまさひろ
	 日本MySQLユーザ会
 Twitter @tmtms

MySQL
集中講座

［SE LECT 文］

このPartでは、2つ以上のテーブルを使い、いろ
いろな種

類の結合（JOIN）やサブクエリを学習していきます
。また、

クエリを使った簡単なデータ分析なども行います。
少し難し

くなりますが、クエリと実際の出力を照らし合わせ
てイメー

ジしてみてください。

Part 3

 ▼図1　市町村テーブルを表示したところ

mysql> SELECT * FROM 市町村;　 *はすべての要素を表す
+------------------+----------------+--------+-------------+---------+---------+-----------+
¦ 都道府県コード ¦ 市町村コード ¦ 区分 ¦ 市町村名 ¦ 人口 ¦ 面積 ¦ 世帯数 ¦
+------------------+----------------+--------+-------------+---------+---------+-----------+
¦ 1 ¦ 1100 ¦ 1 ¦ 札幌市 ¦ 1952356 ¦ 1121.26 ¦ 921837 ¦
¦ 1 ¦ 1202 ¦ 2 ¦ 函館市 ¦ 265979 ¦ 677.86 ¦ 123950 ¦
¦ 1 ¦ 1203 ¦ 2 ¦ 小樽市 ¦ 121924 ¦ 243.83 ¦ 55466 ¦
¦ 1 ¦ 1204 ¦ 2 ¦ 旭川市 ¦ 339605 ¦ 747.66 ¦ 155747 ¦
¦ 1 ¦ 1205 ¦ 2 ¦ 室蘭市 ¦ 88564 ¦ 80.88 ¦ 43616 ¦
 ...（略）...
¦ 47 ¦ 47382 ¦ 3 ¦ 与那国町 ¦ 1843 ¦ 28.96 ¦ 1080 ¦
+------------------+----------------+--------+-------------+---------+---------+-----------+
1719 rows in set (0.00 sec)

76 - Software Design Jul. 2017 - 77

Part 3
77市町村、3位は
埼玉県の63市町村
……ということが
わかります。
　ですが、こんな
別のテーブルの結
果をコマンドに手
入力するのは、人
間がするべき作業
ではありません。
もちろんプログラ
ムを作れば同様の
ことはできますが、
ここは当然、My

SQLにやらせましょう。
　1つのSELECTで2つ以上
の複数のテーブルを結合して
使用できます。この例ですと、
図4のように実行できます。

結合（JOIN）の
種類

　テーブルの結合には次のよ
うな種類があります。

・CROSS JOIN… … 交差結合
・NATURAL JOIN…… 自然結合
・INNER JOIN……… 内部結合
・OUTER JOIN… … 外部結合
・UNION …………… 和集合

　それぞれを実際に試しなが
ら見ていきましょう。

CROSS JOIN（交差結合）

　CROSS JOINを使用すると、
2つのテーブル（テーブル1と
テーブル2とします）のすべて
のレコードの組み合わせで新
しいテーブルを作ることがで
きます。テーブルを次のよう

 ▼図2　 都道府県ごとの市町村の個数を多い順に10件取り出す

mysql> SELECT 都道府県コード, COUNT(*) 市町村数
 -> FROM 市町村 GROUP BY 都道府県コード GROUP BYでグルーピングを指定
 -> ORDER BY 市町村数 DESC LIMIT 10;　 ORDER BY DESCで降順、LIMITで件数を指定
+-----------------------+--------------+
¦ 都道府県コード ¦ 市町村数 ¦
+-----------------------+--------------+
¦ 1 ¦ 179 ¦
¦ 20 ¦ 77 ¦
¦ 11 ¦ 63 ¦
¦ 40 ¦ 60 ¦
¦ 7 ¦ 59 ¦
¦ 23 ¦ 54 ¦
¦ 12 ¦ 54 ¦
¦ 43 ¦ 45 ¦
¦ 8 ¦ 44 ¦
¦ 27 ¦ 43 ¦
+-----------------------+--------------+
10 rows in set (0.00 sec)

 ▼図3　 直接都道府県コードを数値で指定して県名を表示する

mysql> SELECT 都道府県コード, 都道府県名 FROM 都道府県
 -> WHERE 都道府県コード IN (1,20,11,40,7,23,12,43,8,27);
+-----------------------+---------------+
¦ 都道府県コード ¦ 都道府県名 ¦
+-----------------------+---------------+
¦ 1 ¦ 北海道 ¦
¦ 7 ¦ 福島県 ¦
¦ 8 ¦ 茨城県 ¦
¦ 11 ¦ 埼玉県 ¦
¦ 12 ¦ 千葉県 ¦
¦ 20 ¦ 長野県 ¦
¦ 23 ¦ 愛知県 ¦
¦ 40 ¦ 福岡県 ¦
¦ 43 ¦ 熊本県 ¦
¦ 27 ¦ 大阪府　 ¦
+-----------------------+---------------+
10 rows in set (0.00 sec)

 ▼図4　 都道府県テーブルと市町村テーブルを結合して結果を表示

mysql> SELECT 都道府県名, COUNT(*) 市町村数 FROM 都道府県
 -> JOIN 市町村 USING (都道府県コード)
 -> GROUP BY 都道府県コード ORDER BY 市町村数 DESC LIMIT 10;
+-----------------+--------------+
¦ 都道府県名 ¦ 市町村数 ¦
+-----------------+--------------+
¦ 北海道 ¦ 179 ¦
¦ 長野県 ¦ 77 ¦
¦ 埼玉県 ¦ 63 ¦
¦ 福岡県 ¦ 60 ¦
¦ 福島県 ¦ 59 ¦
¦ 千葉県 ¦ 54 ¦
¦ 愛知県 ¦ 54 ¦
¦ 熊本県 ¦ 45 ¦
¦ 茨城県 ¦ 44 ¦
¦ 大阪府 ¦ 43 ¦
+-----------------+--------------+
10 rows in set (0.00 sec)

78 - Software Design

MySQL
集中講座

［SE LECT 文］

ムがある場合はどちらのテーブルのカラムかわ
からないので、「テーブル名 .カラム名」のように
指定します。

NATURAL JOIN（自然結合）

　NATURAL JOINを使用すると、左右両方のテー
ブルの同じ名前のカラムが同じ値であるレコー
ドが結合されます。テーブルを次のように指定
します。

FROM テーブル1 NATURAL JOIN テーブル2

　実際の動作を図6に示します。

INNER JOIN（内部結合）

　INNER JOINは、条件を満たすレコード同士
が結合され、条件を満たさないレコードは捨て
られます。条件はUSINGまたはONで指定しま
す。USINGは両方のテーブルに存在するカラム
を指定して、カラムが同じ値のレコード同士が
結合されます。ONは式の結果が真になるレコー
ド同士が結合されます。テーブルを次のように
指定します。

FROM テーブル1 INNER JOIN テーブル2
 USING (カラム1, カラム2, ...)
FROM テーブル1 INNER JOIN テーブル2 ON 式

※INNERは省略可能です

　実際の動作を図7に示します。

に指定します。

FROM テーブル1 CROSS JOIN テーブル2

　単純に「,」で連結して次のように記述すること
もできます。

FROM テーブル1, テーブル2

　実際の動作を図5に示します。
　たとえば1,000行程度のテーブルでも、その
2つをCROSS JOINすると論理的には100万レ
コードもの一時テーブルができあがります。そ
こからWHEREやGROUP BYを使用して目的
のレコードを抽出することになります。これは
あくまでも論理的にはそのような操作になると
いうことであって、実際のRDBMSの処理では
テーブルの結合時にもWHEREなどの条件が考
慮されるので、必ずしもすべてのレコードを持っ
た巨大な一時テーブルが作成されるわけではあ
りません。
　結合したテーブルに対するWHEREで、条件
を記述したり最終的に抽出するカラムを選択し
たりする際、両方のテーブルで同じ名前のカラ

 ▼図5　CROSS JOIN（交差結合）のイメージ

t1.a t1.b t2.a t2.c t2.d

1 b1 1 c1 d1

1 b1 3 c2 d2

1 b1 4 c3 d3

2 b2 1 c1 d1

2 b2 3 c2 d2

2 b2 4 c3 d3

3 b3 1 c1 d1

3 b3 3 c2 d2

3 b3 4 c3 d3

t1
a b

1 b1

2 b2

3 b3

t2
a c d

1 c1 d1

3 c2 d2

4 c3 d3

SELECT * FROM t1 CROSS JOIN t2;

 ▼図6　NATURAL JOIN（自然結合）のイメージ

t1.a t1.b t2.a t2.c t2.d

1 b1 1 c1 d1

3 b3 3 c2 d2

t1
a b

1 b1

2 b2

3 b3

t2
a c d

1 c1 d1

3 c2 d2

4 c3 d3

SELECT * FROM t1 NATURAL JOIN t2;

78 - Software Design Jul. 2017 - 79

Part 3

　図4の都道府県ごとの市町村数を求めた
SELECTでは、このINNER JOINを使用して
います。なお、MySQLではCROSS JOINと
INNER JOINの区別はありません。

OUTER JOIN（外部結合）

　OUTER JOINは、INNER JOINと同様に条件
を満たすレコード同士が結合されますが、条件
を満たさないレコードも残されます。テーブル
を図8のように指定します（OUTERは省略でき
ます）。
　LEFT OUTER JOIN（図9）はクエリにおい
て左側のテーブルのレコードが残り、RIGHT

OUTER JOIN（図10）は右側のレコードが残り
ます。FULL OUTER JOIN（図11）は両方の
テーブルのレコードが残ります。いずれも対応
するレコードがないテーブルのカラムはNULL

になります。OUTER JOINを使って村を持た
ない都道府県を調べてみます（図12）。
　この例では、都道府県テーブルと市町村テー
ブルを、都道府県コードが同じでかつ市町村名

 ▼図8　OUTER JOINの種類

FROM テーブル1 LEFT OUTER JOIN テーブル2 ｭ
 {USING または ON}
FROM テーブル1 RIGHT OUTER JOIN テーブル2 ｭ
 {USING または ON}
FROM テーブル1 FULL OUTER JOIN テーブル2 ｭ
 {USING または ON}

 ▼図7　INNER JOIN（内部結合）のイメージ

t1.a t1.b t2.a t2.c t2.d

1 b1 1 c1 d1

3 b3 3 c2 d2

t1
a b

1 b1

2 b2

3 b3

t2
a c d

1 c1 d1

3 c2 d2

4 c3 d3

SELECT * FROM t1 INNER JOIN ON t1.a = t2.a;
または
SELECT * FROM t1 INNER JOIN t2 USING (a);

 ▼図9　LEFT OUTER JOIN（左外部結合）のイメージ

t1.a t1.b t2.a t2.c t2.d

1 b1 1 c1 d1

2 b2 NULL NULL NULL

3 b3 3 c2 d2

t1
a b

1 b1

2 b2

3 b3

t2
a c d

1 c1 d1

3 c2 d2

4 c3 d3

SELECT * FROM t1 LEFT OUTER JOIN ON t1.a = t2.a;
または
SELECT * FROM t1 LEFT OUTER JOIN t2 USING (a);

空

 ▼図10　RIGHT OUTER JOIN（右外部結合）のイメージ

t1.a t1.b t2.a t2.c t2.d

1 b1 1 c1 d1

3 b3 3 c2 d2

NULL NULL 4 c3 d3

t1
a b

1 b1

2 b2

3 b3

t2
a c d

1 c1 d1

3 c2 d2

4 c3 d3

SELECT * FROM t1 RIGHT OUTER JOIN ON t1.a = t2.a;
または
SELECT * FROM t1 RIGHT OUTER JOIN t2 USING (a);

空

 ▼図11　FULL OUTER JOIN（完全外部結合）のイメージ

t1.a t1.b t2.a t2.c t2.d

1 b1 1 c1 d1

2 b2 NULL NULL NULL

NULL NULL 3 c2 d2

3 b3 4 c3 d3

t1
a b

1 b1

2 b2

3 b3

t2
a c d

1 c1 d1

3 c2 d2

4 c3 d3

SELECT * FROM t1 FULL OUTER JOIN ON t1.a = t2.a;
または
SELECT * FROM t1 FULL OUTER JOIN t2 USING (a);

空 空

80 - Software Design

MySQL
集中講座

［SE LECT 文］

が「村」で終わるという条
件で結合しています。
LEFT JOINですので条
件を満たさない場合でも
都道府県テーブルのレ
コードは残り、市町村
テーブルはNULLになり
ます。WHEREで市町村
テーブル側のカラムが
NULLであるレコードを
抽出すれば条件を満たさ
ないレコード、この場合
は市町村が「村」で終わる
レコードがない県が抽出
されるというわけです。
　このように OUTER

JOINは、条件を満たさないレコードを抽出す
るのによく使われます。

UNION（和集合）

　JOINはテーブルとテーブルを横方向に結合し
てカラムを増やす操作でしたが、UNIONはテー
ブルとテーブルを縦方向に結合してレコードを
増やす操作です。

SELECT …… UNION DISTINCT SELECT ……
SELECT …… UNION ALL SELECT ……

　UNIONの前後に書かれたSELECTの結果を
結合します（図13）。DISTINCTは結合結果か
ら重複レコードを削除します（DISTINCTは省
略可能です）。ALLはすべてのレコードを採用
します。結合するテーブルはカラムの数が同じ
である必要があります。結合結果のカラム名は
最初のテーブルのカラムが使われます。

サブクエリ

　日本国内には異なる県で同じ名前の市町村名
があります。調べてみましょう。市町村テーブ
ルの中から重複が1件よりも多い市町村名を調

 ▼図12　OUTER JOINを使った例

mysql> SELECT 都道府県名 FROM 都道府県 LEFT JOIN 市町村
 -> ON 都道府県.都道府県コード=市町村.都道府県コード AND 市町村名
 -> LIKE '%村' WHERE 市町村コード IS NULL;
+-----------------+
¦ 都道府県名 ¦
+-----------------+
¦ 三重県 ¦
¦ 佐賀県 ¦
¦ 兵庫県 ¦
¦ 山口県 ¦
¦ 広島県 ¦
¦ 愛媛県 ¦
¦ 栃木県 ¦
¦ 滋賀県 ¦
¦ 石川県 ¦
¦ 福井県 ¦
¦ 長崎県 ¦
¦ 静岡県 ¦
¦ 香川県 ¦
+-----------------+
13 rows in set (0.00 sec)

 ▼図14　異なる県で同じ名前の市町村名を検索

mysql> SELECT 市町村名 FROM 市町村
 -> GROUP BY 市町村名
 -> HAVING COUNT(*) > 1;
+--------------+
¦ 市町村名 ¦
+--------------+
¦ 伊達市 ¦
¦ 南牧村 ¦
¦ 南部町 ¦
¦ 太子町 ¦
¦ 小国町 ¦
 ...（略）...
¦ 那珂川町 ¦
¦ 金山町 ¦
¦ 高山村 ¦
¦ 高森町 ¦
+--------------+
26 rows in set (0.00 sec)

 ▼図13　UNION（和集合）のイメージ

a b

1 b1

2 b2

3 b3

1 c1

3 c2

4 c3

t1
a b

1 b1

2 b2

3 b3

t3
a c

1 c1

3 c2

4 c3

SELECT * FROM t1 UNION
DISTINCT SELECT * FROM t3;

80 - Software Design Jul. 2017 - 81

Part 3

　比較演算子と同様に括弧で括って複数列を返
す場合でも記述できます。

(a,b) IN (SELECT x,y FROM ……)

EXISTS

　EXISTSはSELECTが結果を返す場合に真
となります。

EXISTS (SELECT ……)

FROM

　テーブルをSELECTした結果もまたテーブ
ルです。通常のテーブルと同様にFROMに指定
することができます。ただしASでテーブルに
名前（この場合はT）をつける必要があります。

SELECT …… FROM (SELECT …… FROM ……)
 AS T WHERE ……

　この形式のサブクエリを使用して、都道府県

べるには図14のようにします。
　26個の市町村が重複しているよ
うです。この市町村がどの都道府県
に所属しているかを調べるにはどう
すればいいでしょうか。このクエリ
の結果の市町村名を INに羅列して
図15のようなSELECTを実行す
れば市町村名と都道府県名のペアが
得られます。
　実は、INの括弧内には値のリス
トだけではなくSELECTを記述で
きます。ですので、今回の場合は図
16のように記述できます。
　このように SELECTの中に
SELECTを含めたクエリをサブク
エリといいます。INだけではなく
いくつかの種類があります。

比較演算子

　SELECTが単一のレコードを返
す場合、比較演算子で比較することができます。
次の式はSELECTの結果のxの値がaと等しい
場合に真になります。

a = (SELECT x FROM ……)

　SELECTが複数列を返す場合は括弧で括って
比較できます。次の式はSELECTの結果のx,y
の値がそれぞれa,bと等しい場合に真になりま
す。

(a,b) = (SELECT x,y FROM ……)

IN

　先ほど示したようにSELECTが複数のレコー
ドを返す場合、INを使用して比較することがで
きます。次の例はSELECTの結果の複数のレ
コードのxの値のどれかがaと等しい場合に真に
なります。

a IN (SELECT x FROM ……)

 ▼図15　 図14の重複した市町村の都道府県を調べる

SELECT 市町村名,都道府県名 FROM 市町村 JOIN 都道府県
 USING (都道府県コード) WHERE 市町村名
 IN ('伊達市','南牧村','南部町','太子町', ……);

 ▼図16　SELECTの中にSELECTを含んだ例（サブクエリ）

mysql> SELECT 市町村名,都道府県名 FROM 市町村 JOIN 都道府県
 -> USING (都道府県コード) WHERE 市町村名
 -> IN (SELECT 市町村名 FROM 市町村 GROUP BY 市町村名
 -> HAVING COUNT(*) > 1) ORDER BY 市町村名;
+--------------+-----------------+
¦ 市町村名 ¦ 都道府県名 ¦
+--------------+-----------------+
¦ 伊達市 ¦ 福島県 ¦
¦ 伊達市 ¦ 北海道 ¦
¦ 南牧村 ¦ 長野県 ¦
¦ 南牧村 ¦ 群馬県 ¦
 ...（略）...
¦ 金山町 ¦ 福島県 ¦
¦ 金山町 ¦ 山形県 ¦
¦ 高山村 ¦ 長野県 ¦
¦ 高山村 ¦ 群馬県 ¦
¦ 高森町 ¦ 熊本県 ¦
¦ 高森町 ¦ 長野県 ¦
+--------------+-----------------+
59 rows in set (0.01 sec)

82 - Software Design

MySQL
集中講座

［SE LECT 文］

道府県の人口と市町村の合計人口が等しいこと
がわかります（図18）。

おわりに

　単一のSELECT文は、論理的には JOIN、
WHERE、GROUP BY、HAVING、ORDER

BY、LIMITの順に評価されます。そのSELECT

結果のテーブルをUNIONで連結したり、別の
SELECTの一部として使用したりすることも
できます。
　今まで見てきたように、この過程のそれぞれ
の演算の入力はテーブルであり、出力もまたテー
ブルです。つまりSELECTは1つまたは複数の
テーブルを元に新たなテーブルを作るという、
テーブルを単位とした演算処理なのです。レコー
ドやカラムだけではなくテーブルを意識するこ
とで、複雑なSELECT文でも理解しやすくな
ると思います。s

の面積と都道府県内の市町村の面積の合計が同
じかどうか調べるクエリを書いてみます。
　各都道府県の市町村の面積の合計は次のクエ
リで求められます。

SELECT 都道府県コード,SUM(面積)
 AS 市町村合計面積 FROM 市町村
 GROUP BY 都道府県コード;

　この結果テーブルと都道府県テーブルを結合
して、面積に差があるものを抽出してみます。
面積は浮動小数点数なので誤差が発生するため
に、差の絶対値が1km2以上という条件にしてい
ます。
　結構差がありました（図17）。
　今回使用したテーブルは国勢調査のデータか
ら抜き出したものですが、面積はいくつか調整
されていて都道府県と市町村の合計が合わない
ものがあるのです（たとえば北海道には北方領土
の面積が含まれているなど）。
　面積ではなく人口で同様の処理を行うと、都

 ▼図17　都道府県の面積と都道府県内の市町村の面積の合計が同じかどうか調べる

mysql> SELECT 都道府県名,ROUND(ABS(面積-市町村合計面積),1)
 -> AS 面積の差 FROM 都道府県 JOIN
 -> (SELECT 都道府県コード,SUM(面積) AS 市町村合計面積 FROM 市町村
 -> GROUP BY 都道府県コード)
 -> AS t USING (都道府県コード)
 -> WHERE ABS(面積-市町村合計面積) > 1;
+-----------------+--------------+
¦ 都道府県名 ¦ 面積の差 ¦
+-----------------+--------------+
¦ 北海道 ¦ 4970.8 ¦
¦ 秋田県 ¦ 22.0 ¦
¦ 東京都 ¦ 4.8 ¦
¦ 山梨県 ¦ 4.7 ¦
¦ 愛知県 ¦ 3.1 ¦
¦ 岡山県 ¦ 7.0 ¦
+-----------------+--------------+
6 rows in set (0.00 sec)

 ▼図18　面積ではなく人口で比較した

mysql> SELECT 都道府県名 FROM 都道府県 JOIN
 -> (SELECT 都道府県コード,SUM(人口) AS 市町村合計人口
 -> FROM 市町村 GROUP BY 都道府県コード)
 -> AS t USING (都道府県コード)
 -> WHERE 人口 <> 市町村合計人口;
Empty set (0.00 sec)

Jul. 2017 - 83

①

③

②

④

⑦

⑤

⑥

パスワードリスト攻撃の被害が後を絶ちません。防衛策は、パスワードの使い回しをやめること、多段認証を使うこと。OpenSSHサー
バでもGoogleワンタイムが使えるのを最近試しました。SNSやCMS、Webストレージ等でも利用できるので積極的に使いたいですね。
いつぞやの芸能人チョメチョメ画像漏洩もパスワードリスト型攻撃が原因だったと聞きます。ちゃんと対策しないと、次はアナタのチョ
メチョメ画像が世に放たれるかもしれませんよ。「“チョメチョメ”が古い」と指摘している前に、アナタのアカウントが本当に大丈夫か、
パスワードを使いまわしてないかちゃんとチェックしましょうね！　自分のアカウントは自分で守る！　ダディとの約束だぞ！

Ｇ
Ｗ
が
あ
っ
と
い
う
間
に
過
ぎ
て
茫
然
自
失
の
ま
ま
日
々
を
過
ご
す
担
当
の
旁
ら
、
日
々
ジ
ョ
ギ
ン
グ
に

い
そ
し
み
リ
ア
充
を
極
め
る
く
つ
な
先
生
の
マ
ン
ガ
が
読
め
る
の
は
本
誌
だ
け
！

複数のサイトで同じIDと
パスワードを使いまわして
いる人がけっこういます。

どこかでID・パスワード漏洩
事件があると、それを利用し
て別サイトのアカウントを乗っ
取ろうとする攻撃を受けます。

これを「パスワードリスト
攻撃」と呼びます。

パスワードの
使い回しをやめる
のも重要だけど、

とりあえずは、
「2段階認証」
からだよね。

ねぇねぇ。
なんの話で
盛り上がって
いるのー？

「2段階認証」だよ。
オマエもどっかで
使っているだろう？

よう。
① IDと②パスワードの
「2段階認証」ですよね！

もちろん。

え？

パスワードと
「何か」をプラス
して認証する
ようにする。

SNSでも
使えるトコロが
多くなって
いますものね。

OpenSSHでも
PAMモジュール設定
すればGoogleの
ワンタイムパスワードを
使えたりするしね。

CMSでも
使えるの多い
ですよね。

多要素認証を
積極的に使って
いきたいねぇ。

生体認証って、認証に
使用している目玉とか指先と
か切られて利用されるヤツ
ですよね。怖いですよぅ。

映画の
見過ぎ
じゃね？

作）くつなりょうすけ
@ryosuke927

2段階認証第41回

84 - Software Design

前回のおさらい

　前編ではMD5やSHA-1など、ハッシュ関数
とは何か、ハッシュ関数が持つべき特性はどの
ようなものかを解説しました。後編となる今回
は前編の内容をさらに深掘りする内容となりま
すので、簡単に前編の復習をしましょう。

ハッシュ関数とは

　あるデータが与えられ、そのデータからある
アルゴリズムで小さな値を算出したとします。
このとき、「あるアルゴリズム」のことをハッシュ
関数、「小さな値」のことをハッシュ値と呼びます。
また、データからハッシュ値を計算することを
「ハッシュ化」と呼ぶこともあります。MD5、
SHA-1、SHA-512などがコンピュータプログ
ラムでよく利用されるハッシュ関数の例です。

ハッシュ関数の持つ特性とそれを活かした利用例

　ハッシュ関数はいくつかの特性を持ち、その
特性を活かしてコンピュータプログラムで利用
されています。

「ハッシュ関数が持つ特性」

A）	�同じデータを入力すると必ず同じハッシュ
値を出力する

B）	�どんなデータを入力しても決まった長さの
ハッシュ値を出力する

C）	�別のデータに対してはほぼ別のハッシュ値
を出力する

D）	�ハッシュ値から元のデータを算出すること
は、ほぼできない

　また、ハッシュ関数を利用する場合の重要な
留意事項として、ハッシュ値は衝突することがあ
ることを解説しました。つまり、ハッシュ関数は
別のデータに対して同じハッシュ値を出力するこ
とがあります。これは後編の内容にも深くかかわっ
てきますので頭の片隅に置いておいてください。
　そして、本誌６月号前編の「ハッシュアルゴ
リズムの脆弱性」の節で説明に誤りがありまし
た。「第2原像計算困難性が破られた」と記述し
ましたが、正しくは「衝突困難性が破られた」で
した。この場合の計算量は2160ではなく280です。
お詫びして訂正します。Googleが発見した方
法では、これを263回の計算で実現したようです。
そしてその計算に利用した計算資源は1つの
CPUで6,500年換算とのことです。

ハッシュ関数使用時の注意

　ハッシュ関数はとても便利に使うことができ
ます。しかし、その特性を理解したうえで正し
く使わないと問題が発生することがあります。
ここでは前編で述べた3つの利用例について、
その注意点を紹介します。

さまざまなシステムで使用されている

ハッシュ関数を
使いこなしていますか
ソフトウェア開発での実装ポイント

ハッシュ関数は近年のソフトウェア開発において、とても重要な役割を担っています。
この特集では前編に引き続き、ハッシュ関数を実際に利用する際に注意すべき点や、
OSSではどのように実装されているかなど、もう少し掘り下げてハッシュ関数について
解説します。

Author 長谷川 智希（はせがわ ともき） デジタルサーカス㈱ 副団長 CTO　　 Twitter @tomzoh

イラスト フクモトミホ

特別
企画

後編 ？

84 - Software Design Jul. 2017 - 85

後編
特別
企画

さまざまなシステムで使用されている
ハッシュ関数を使いこなしていますか

ソフトウェア開発での実装ポイント

？
ファイルの同一性チェックでの注意点

　入手したファイルから計算したハッシュ値と
公式の配布元が公開しているハッシュ値を比較
して、自分が入手したファイルが間違いなく公
式の配布元が配布しているファイルと同じこと
を確認する、というのがこの利用法でした（図1）。
　この利用方法では、ハッシュ関数の持つ「同
じデータを入力すると必ず同じハッシュ値を出
力する」「別のデータに対してはほぼ別のハッ
シュ値を出力する」という性質を利用していま
したが、その後者について前述のとおり、ハッ
シュ値は衝突する可能性があります。
　つまり、次のようなストーリーで、ファイル
の同一性チェックが無効化されてしまいます。

①あるソフトウェアAの公式サイトにソフトウェ
アAのファイルとハッシュ値が公開される

②攻撃者が悪意のあるソフトウェアBを作成し、
そのハッシュ値がソフトウェアAのハッシュ
値と同じになるようにファイルを作成する

③攻撃者はソフトウェアAと称してソフトウェ
アBを配布する

④ソフトウェアAのつもりでソフトウェアBを
入手したユーザは、ソフトウェアAの公式サ
イトにアクセスし自分が入手したファイルか
ら計算したハッシュ値とソフトウェアAのハッ
シュ値が同じことを確認し、実行してしまう

　このような攻撃に対しての対策は、ハッシュ
アルゴリズム単体ではとくになく、第2原像計
算困難性の高いハッシュアルゴリズムを使うし

かありません。ハッシュアルゴリズム単体でな
ければ、2つのアルゴリズムで計算したハッシュ
値を両方比較する、などの工夫はできます。前
述のUbuntuの公式サイトではMD5とSHA-1、
SHA-256が公開されていますので、入手した
ファイルについてその3つのハッシュ値を計算
して比較して一致すればまずそのファイルの内
容は公式サイトで配布されているファイルと同
じものであると言えるでしょう。もちろん、こ
れでも3つとも衝突させている可能性もゼロで
はありません。しかし、ハッシュアルゴリズム
1つに対する場合でも非常に難しい攻撃ですの
で、3つとも衝突させている可能性はゼロとみ
なして良いでしょう。

推測しにくいURLの生成での注意点

　Ruby on RailsやCakePHP、Drupalなど、連番

の数字をテーブルのキーとしてデータベースに
持つ設計のもとで、URLのパラメータにレコー
ドを指定したい場合に、指定するパラメータを
テーブルのキーをハッシュ化したものとするこ
とでURLを推測しにくいようにする、という
のがこの利用法でした（図2）。
　この利用法ではハッシュ関数の「どんなデー
タを入力しても決まった長さのハッシュ値を出
力する」「別のデータに対してはほぼ別のハッ
シュ値を出力する」という性質を利用していま
すが、ハッシュ関数は「同じデータを入力する
と必ず同じハッシュ値を出力する」という性質
も持っています。
　そのため、次のようなストーリーでURLを

 ▼図 1　ファイルの同一性チェック

①ダウンロード

②ハッシュ値計算

③ハッシュ値比較

ファイル

ハッシュ値

ユーザファイル配布元

ファイル

ハッシュ値

86 - Software Design

推測されてしまう可能性があります。

①システム開発者は記事のURLを、/article/
＋データベースのキーの数字をハッシュ化し
たものとしてシステムを設計する

②攻撃者は、記事URLを見て数字をハッシュ化
したものと推測し、1から順番にカウントアッ
プしながらいくつかのアルゴリズムでハッシュ
値を計算して記事URLの文字列と比較する

③一致するものがあれば、攻撃者はすべての
URLが推測可能となる

　このような攻撃には非常に有効な対策があり
ます。それは、上記ストーリーの①で「データベー
スのキーの数字をハッシュ化したもの」として
いるところを、「データベースのキーの数字と
任意の長い文字列を結合してハッシュ化したも

の」とすれば良いのです。この使い方ではデー
タベースのキーとして振られる連番の数字から
推測しにくく重複しにくい文字列を得られれば
良いので、ハッシュ関数に与えるデータが「デー
タベースのキーの数字」でも「データベースの
キーの数字と任意の長い文字列を結合したもの」
でもその要件を満たせるのです。
　この対策をすることにより、攻撃者はシステ
ム開発者が設定した「任意の長い文字列」を入手
しない限り、URLの推測が非常に困難になりま
す。攻撃者がこのような設計のもとでURLの
推測をするためには、総当たりでデータベース
のキーと任意の長い文字列を探す必要があります。
　ここで使った「任意の長い文字列」のことを、
「ソルト（salt）」と呼びます。この用途の場合、
ソルトはシステム設定として持って、すべて同
じソルトを使うのがよくあるパターンでしょう。

ログインパスワードの保存での注意点

　ユーザのログインを伴うシステムでユーザの
パスワードをハッシュ化してデータベースに保
存するというのがこの利用法でした（図3）。
　この利用法でも注意すべき事項はあります。
それは「パスワードはユーザが指定する」ことで
す。その結果、システム中にセキュリティレベ
ルの低いパスワードが含まれていることがあり
ます。このような状況であれば、攻撃者がハッ
シュ化されたパスワードのリストを入手したと
きに、ハッシュ化されたパスワードのハッシュ

 ▼図 2　推測しにくいURLの生成

①ハッシュ化したものを保存

データベーステーブル

記事のURL
http://www.example.com/article/3

http://www.example.com/article/eccb…7baf3

 id hash title …

 1 c4ca...849b 記事1
 2 c81e...862c 記事2
 3 eccb...7baf3 記事3
 : : : :

②記事のURLにはハッシュ化
　された文字列を使用する

 ▼図3　ログインパスワードの保存

①パスワードを設定

ユーザ登録

③ユーザー名とパスワードを入力

ログイン

⑤ユーザ名とハッシュ化されたパスワードで認証

データベーステーブル

id user_name password …
　ユーザ名: nick
　パスワード: asdfasdf

④パスワードをハッシュ化
　ユーザ名: nick
　パスワード: 6a20....097a

 1 tom 5f4d....cf99
 2 bob 36a8....f5ae
 3 nick 6a20....097a
 : : : :

②パスワードを
　ハッシュ化して保存

86 - Software Design Jul. 2017 - 87

後編
特別
企画

さまざまなシステムで使用されている
ハッシュ関数を使いこなしていますか

ソフトウェア開発での実装ポイント

？
値と「世の中でよく使われているパスワード一
覧」などのリストなどからハッシュ値を計算し
たものを比較することで容易にユーザのパスワー
ドを知ることができます。
　この攻撃に対する対策はどうしたら良いでしょ
うか？　ここまでこの特別企画記事を読み進め
てきた方であれば想像がつくでしょうか。
　答えは「ソルトを追加する」です。ソルトをパ
スワードに追加してからハッシュ化することで、
攻撃者は「世の中でよく使われているパスワー
ド一覧」などのリストを持っていたとしても、
それに加えてソルトも探す必要があるので簡単
にはパスワードを知ることはできなくなります。
　では、どのようにソルトを追加するのが良い
でしょうか。さきほどの「推測しにくいURL」
の例ではソルトはシステム設定として持って、
すべて同じソルトを使うことが多いと解説しま
した。これと同じ方法でもパスワードをそのま
まデータベースに保存するよりは良いのですが、
複数のユーザが同じパスワードを使っていると、
ハッシュ化されたパスワードもすべて同じになっ
てしまいます。そのため、攻撃者がハッシュ化
されたパスワードのリストを入手したときに、
その中で出現回数の多いものは「世の中でよく
使われているパスワード一覧」のそれぞれ上位
のものである可能性が高いというヒントを与え
ることになってしまい、望ましくありません。
　パスワードのハッシュ化について、ソルトは
ユーザごとに計算し、ハッシュ値と合わせてデー
タベースに保存する実装がよく利用されていま
す。また、ソルトとハッシュ値だけではなく、
使用しているハッシュ化アルゴリズムなどもあ
わせてデータベースに保存している実装もよく
見かけます。

　推測しにくいURLの例もそうですが、ハッ
シュ関数を使用するほとんどのケースではソル
トを付けることになるでしょう。逆にソルトの
ないハッシュ化ロジックを見たら疑問に思って
良いでしょう。それぐらいハッシュ関数とソル
トは切っても切れない存在なのです。

⿎Drupal 8での実装
　ここで、PHPベースのオープンソースCMS

（Contents Management System）であるDrupal

8でのパスワード保存の実装を見てみましょう。
　Drupal 8のハッシュ化パスワードは次のよ
うな形の文字列です。

例）Drupal 8のハッシュ化パスワード

SDb4Dmq533CGzI1ZjHJeRLQ69o02FE2wEG./ｭ
t7io6L9DNUdxpNtb1

　この文字列には、ハッシュアルゴリズム、繰
り返し（ストレッチング）の回数注1、ソルト、ハッ
シュ値が含まれています（表1）。
　ハッシュアルゴリズムに対する攻撃は基本的
には総当たりをベースとしたものです。そのた
め、コンピュータの演算能力が上がればハッシュ
化されたパスワードの安全性は下がっていきま
す。また、研究の結果、総当たりの回数を減ら
す方法が見つかることもあります。
　そのような場合に、上記のDrupal 8の例の
ようにハッシュアルゴリズムを識別するための
情報をハッシュ化されたパスワードの一部とし
て保存しておくと、システムの運用中に使用す
るハッシュアルゴリズムを変更できます。
Drupal 8では、先頭がSの場合は Drupal 7

以降標準のSHA-512を使用したもの、Hと
Pの場合は古いDrupal互換のMD5ベースの

注1） Drupalではハッシュ値の安全性を高めるために、計算したハッシュ値の後ろにパスワードを結合して再度ハッシュ化する、
という操作を複数回繰り返しています。繰り返し回数はパスワードのハッシュ化のたびに決めており、その回数をデータベー
スに保存するハッシュ化パスワードの中に含めています。

S D b4Dmq533 CGzI1ZjHJeRLQ69o02FE2wEG./t7io6L9DNUdxpNtb1
ハッシュアルゴリズム 繰り返しの回数 ソルト ハッシュ値

 ▼表1　文字列とハッシュ値・ソルトの対応

88 - Software Design

もの、となっています。
　このようにすることで、ある時点でパスワー
ドのハッシュ化に使用するアルゴリズムを変更
した場合でも、それ以降にパスワードを設定し
たユーザだけ新しいアルゴリズムを使用し、既
存のユーザは古いアルゴリズムを使用してログ
インできます。さらにユーザが古いアルゴリズ
ムを使用してログインした際に、ユーザが入力
したパスワードの正当性を古いアルゴリズムで
認証したあとに、新しいアルゴリズムを使って
ハッシュ化パスワードを上書き保存することで、
それ以降は新しいアルゴリズムを使用できます。

ハッシュアルゴリズムの
脆弱性

　先日、GoogleによってSHA-1の脆弱性が指
摘されるというニュースがありましたが、しば
しば、ハッシュアルゴリズムの「脆弱性」が話題
に上がることがあります。この脆弱性とはどの
ようなものなのでしょうか。
　前回解説したとおり、ハッシュアルゴリズム
の安全性の指標として「衝突困難性」「原像計算
困難性」「第2原像計算困難性」という性質があ
ります。

・衝突困難性……同じハッシュ値を持つ2つの
データを見つけることが難しいという性質

・原像計算困難性……ハッシュ値から元のデー
タを算出することが難しいという性質

・第2原像計算困難性……あるデータがあった
ときに、そのデータのハッシュ値と同じハッ
シュ値を持つほかのデータを見つけること
が難しいという性質

　このどれかを実現する方法が見つかった場合
に「ハッシュアルゴリズムの脆弱性が見つかった」
と表現することになります。冒頭でも触れたと
おり、先日のGoogleの例は、同じSHA-1ハッシュ
値を持ち内容の異なる2つのPDFを現実的な計
算量で作成する方法が見つかった、ということで、
上記で言うと「衝突困難性」が破られた、という

ことになります。

巨人の肩の上に乗る

　先のDrupal 8の実装の例もそうですが、パ
スワードのハッシュ化などのように難しいとこ
ろはたいてい先人が考えてしくみを作り、オー
プンな環境で議論して鍛え、堅固なものになっ
ています。そのようなしくみはソフトウェアの
実装そのものに現れる場合もありますし、API

などに現れることもあります。
　たとえば、Drupal 8ではCryptクラスにCrypt::
hashBase64というメソッドを持っており、これ
は Calculates a base-64 encoded, URL-
safe sha-256 hash.ということで、URLに利
用可能なSHA-256ハッシュを計算してくれます。
また、より厳密に2つのデータを比較するための
メッセージ認証符号（MAC）のアルゴリズムとし
て有名なHMACについてもCrypt::hmacBase64
という形で実装されています。Drupal 8を使う
のであれば、独自にハッシュ化を実装するのでは
なく、これらのメソッドを使うのが良いでしょう。
　ただし、フレームワークやライブラリが提供す
る機能を利用する場合は、必ず中身を理解して
しかるべきものを使いましょう。前述のように
Crypt::hashBase64と Crypt::hmacBase64が
ある場合に、自分はどちらを利用すべきか。こ
の判断には、ハッシュとHMACについての理解、
そしてそれぞれのメソッドの実装の理解が必要
でしょう。正しい理解なしにフレームワークやラ
イブラリが提供する機能を利用してしまうと、意
味がないだけでなく、場合によっては本来必要だっ
た要件を満たせなかったり、せっかく考えられ
たしくみを殺してしまうことにもなりかねません。

ハッシュとよく混同される
ハッシュに似た概念

　人間にとって意味のあるデータ、たとえば文
章などをハッシュ化すると、データが不規則に
見えるデータに変換されたように見えます。

88 - Software Design Jul. 2017 - 89

後編
特別
企画

さまざまなシステムで使用されている
ハッシュ関数を使いこなしていますか

ソフトウェア開発での実装ポイント

？
　一方、世の中にはハッシュ関数以外にも、与
えられたデータを不規則に見えるデータに変換
する操作があり、ときとしてそれはハッシュと
混同されます。
　ハッシュについての理解が深まったところで、
ハッシュ関数とよく混同される操作を紹介します。

暗号化

　もっともよくある勘違いが、暗号化とハッシュ
化の混同です。前編の冒頭で紹介したAくんも
この違いをはっきりと認識していませんでした。
　暗号化は、デジタル大辞泉では「文章や電子
データの情報を一定の規則に従って組み替え、
通信途中に第三者に利用されないようにするこ
と。受信者は暗号化された情報に逆の手続きを
施して解読する。」と説明されています。
　2者間の通信を考えたときに、送信者は鍵と
特定のアルゴリズムを使用して元のデータ（平
文）を暗号文に変換します。この操作を暗号化
と言います。暗号文を受信した受信者は、暗号
化に使用したのと同じアルゴリズムと、暗号化
に使用したのと同じ鍵、または、暗号化に使用
された鍵とペアになる鍵を使用して平文に変換
します。この操作を復号と言います。
　暗号化は、復号して元のデータに戻すことを
前提とした操作です。そのため、元のデータ（平
文）が長くなれば、暗号化されたデータ（暗号文）
は長くなります。
　暗号化の方式として、暗号化に使用した鍵と
同じ鍵を使って復号する「共通鍵方式」や、送信
者と受信者がそれぞれペアになった対の鍵を使
用して暗号化・復号を行う「公開鍵方式」があり
ます。
　公開鍵方式は、公開鍵で暗号化した暗号文は
秘密鍵で復号し、秘密鍵で暗号化した暗号文は
公開鍵で復号するように設計されており、
SSHを始め、さまざまなアプリケーションで
利用されています。
　ただし、公開鍵暗号はその計算の負荷が高く、
大きなデータの暗号化・復号には向きません。

そのため、実際にやりとりする暗号文は共通鍵
で暗号化するが、その共通鍵の配送に公開鍵方
式を使うことで公開鍵暗号の秘匿性の高さと共
通鍵暗号の計算負荷の低さという「良いところ
取り」をした通信方法もあり、身近なところで
はSSLがこのような実装になっています。
　なお、余談ですが、「暗号化」に対応する言葉
は「復号化」ではなく、「復号」です。これは、日
本語では「復号」が動詞なのに対して「暗号」は名
詞なので「化」を付けて動詞化しているためです。
英語では暗号化 encrypt に対して複合 decrypt

と対称的な単語になっていてうらやましいですね。

難読化

　難読化とは、プログラムのソースコードを人
間が読みにくいように変換することです。
　難読化はハッシュと同様に片方向の変換です
が、難読化されたソースコードはそのまま実行
されます。そのため、難読化されていてもプロ
グラムとして解釈可能であり、難読化前と同じ
動作をする必要があります。
　具体的には、変数名や関数名などを1文字の
アルファベットに置換したり、改行やスペース
を削除するなどの操作を行います。これらの操
作によりファイルサイズが小さくなることも多
いため、CSSなどでは同様の操作を「圧縮」と
呼ぶこともあります。
　暗号化と比較したときに、暗号化は復号する
までは使うことができませんが、難読化ではそ
のまま使えるところが異なります。
　難読化がよく使われてるのはJavaScriptや
Javaなどです。
　JavaScriptは、ソースコードをそのままユー
ザの手元のブラウザ上で実行するので、ユーザ
はソースコードを入手できます。そのため、ユー
ザにソースコードを読まれたくない場合に難読
化が使用されます。さらに、前述のとおり、難
読化することでファイルサイズが小さくなるこ
とも多いため、インターネットを経由して配布
されるJavaScriptにとってはメリットになります。

90 - Software Design

　もう1つの例として、Javaの実行ファイルは
バイナリで配布されますが、逆コンパイルする
ことでユーザがソースコードを入手できるため、
難読化されることがあります。Javaの難読化
製品としてはAndroidのProGuardが有名です。

エンコード

　エンコードは、特定のアルゴリズムでデータ
を別の形に変換することです。変換されたデー
タはデコードすることで元のデータに戻すこと
ができます。つまり、暗号化同様、両方向の変
換で、元のデータが長くなれば、エンコードさ
れたデータも長くなります。
　よく使われるエンコードは、MIMEエンコー
ド、URLエンコード、BASE64などです。ど
れも1回は聞いたことがあるでしょう。
　エンコードは、おもに、特定の文字列しか通
せない経路に任意のデータを通す目的で使います。
　たとえば、URLエンコードは、URLに使え
ない文字をURLに入れるために使用しますし、
MIMEエンコードは7ビット文字しか使えない
E-mailにファイルを添付して送信するために
使用します。また、多くの暗号化アルゴリズム
では文字列を暗号化すると暗号文はバイナリで
出力されます。これをテキスト形式に戻すため
にエンコードが使用されたりもします。
　エンコードは暗号化と同様、元の形に戻すこ
とを前提とした双方向の変換ですが、暗号化と
異なり、アルゴリズムを知っていれば元の形に
戻す（デコードする）ことができます。そのため、
一見、不規則に見えるデータに変換されますが、
エンコードされた文字列を暗号のつもりで使用
してはいけません。
　なお、バイナリに対して2回同じ操作をする
と元の値に戻る排他的論理和（XOR）もある意味、
エンコードと言えます。昔のコンピュータでは
フロッピーなどに格納するデータやマシン語の
プログラムをXORした状態で格納し、実行時に
それをメモリにロードしたあとにXORして元の
形に戻してから実行するような実装もありまし

た。これは目的としては難読化に近く、ゲーム
のセーブデータや、フロッピーディスクのコピー
プロテクトプログラムなどにそのような処理が
よく見られました。また、2017年5月に話題に
なったランサムウェア「WannaCry」でも、プロ
グラムがXORでエンコードされていたようです。

まとめ

　2回にわたってハッシュ関数・ハッシュ値と
その周辺技術について解説しましたが、最後に
内容をまとめます。

・ハッシュ関数はデータをハッシュ値に1方向
に変換する関数であり、ハッシュ値は元のデー
タに戻すことはできない

・ハッシュ関数は「同じデータを入力すると必ず
同じハッシュ値を出力する」「どんなデータを入
力しても決まった長さのハッシュ値を出力する」
「別のデータに対してはほぼ別のハッシュ値を
出力する」「ハッシュ値から元のデータを算出す
ることはほぼできない」という性質を持っている

・ハッシュ関数を使うときは必ず入力データに
ソルトを付加し、衝突の可能性を常に考慮
に入れる

・パスワードのハッシュ化などはできるだけ既
存のしくみを使うのが望ましい

・ハッシュと似た概念として暗号化、難読化、
エンコードがあるが、それらはすべて別の
概念である

エピローグ

　前回の冒頭で上司のBさんからハッシュを
使った実装を依頼された新人Aくん、その後ど
んな設計にしたのでしょうか。

上司Bさん） ログインパスワードの保存の件は
どうだ？　順調に進んでいるか？
新人Aくん） はい。いくつかのオープンソース

90 - Software Design Jul. 2017 - 91

後編
特別
企画

さまざまなシステムで使用されている
ハッシュ関数を使いこなしていますか

ソフトウェア開発での実装ポイント

？

ソフトウェアの実装を調査し、SHA-512でハッ
シュ化されたパスワードをソルトと一緒にデー
タベースに保存することにしました。
上司Bさん） うむ。それで良いだろう。
新人Aくん）	それから、1つご提案があります。
今回はSHA-512を使用しますが今後SHA-512

に脆弱性が発見されたときのために、データベー
スに保存するハッシュ値にアルゴリズムを指定

する値も含めようと思うのですがいかがでしょ
うか。
上司Bさん）	良い観点だ。それで進めてくれ。
新人Aくん）	承知しました！

――新人Aくん、だいぶ勉強をしたようですね。
今後も今回のことを忘れずに疑問に思ったことは
精力的に調べて成長していってほしいですね！ﾟ

　本記事の前編のコラムでは、プログラム言語で連
想配列のことをハッシュと呼ぶ言語がある理由につ
いて、内部的な実装にハッシュ関数を利用している
ためである、という話を紹介しました。ハッシュ関
数を利用した連想配列の実装では、連想配列のキー
をハッシュ化しそのハッシュ値のアドレスに値を格
納します。ハッシュ値は衝突する可能性がありますが、
衝突した場合はハッシュ値のアドレスにリスト形式
で複数の値を格納します。この実装では、ハッシュ
値が衝突しない限りでは1回のハッシュ値の計算で指
定されたキーに対応する値を見つけることができます。
ハッシュ値が衝突した場合は1回のハッシュ値の計算
＋ハッシュ値が衝突した数だけループをたどって指
定されたキーに対応した値を見つけることになります。
　さて、このような言語が多く存在する中で、2011
年の年末にhashdosというセキュリティ上の問題が
発表されました。これは、連想配列の実装に問題を
抱えた言語でWebアプリケーションなどを実装した
際に、容易にDoS攻撃（計算量を大きく増加させ攻撃
対象のサーバのパフォーマンス低下を引き起こす攻撃）

ができる、という問題でした。
　たとえばPHPでは、HTTPのGETメソッドやPOST
メソッドでアクセスされた場合に、そのパラメータ
が連想配列に格納された状態でPHPプログラムが実
行されます。つまり、連想配列のキーを外部から自
由に指定できることになります。ここで大量のパラメー
タを、キーをハッシュ化したものが同じになるよう
な名前で与えることにより、配列に対するアクセス
のパフォーマンスを著しく落とします。
　hashdos は、その発表時点でPHPに限らず Javaな
ど多くの言語で抱える問題でした。この対応は各言
語で行われ、ある言語ではプロセスごとに異なるソ
ルトを使うようにして意図的な衝突が起こらないよ
うにし、また別の言語ではHTTPパラメータの数を制
限することでDoSとしての効果を下げるという対症
療法的な対応をしました。
　このように、ハッシュ関数の最大の特徴である「衝
突が起こり得る」という特性には常に注意を払う必要
があります。

「プログラム言語のハッシュへの攻撃」Co lumn

ソルトと一緒に
データベースに

保存

アルゴリズムを
指定する値も

92 - Software Design

Azure上に
検証環境を構築

　まずは、図1のような構成を目指します。
Azure上に1つのネットワークを作り、そこに
認証基盤としてのActive Directoryドメインコ
ントローラと機能検証用のファイルサーバ、そ
して接続テスト用のクライアントとして3台の
仮想マシンを配置します。

①仮想ネットワークfsnet1の作成

　テスト環境なので、見た目にもわかりやすい
IPアドレスを設定しておくとよいでしょう。ま

た、図2の設定画面に出てくる「リソースグルー
プ」などの用語はAzure特有のため詳細な説明は
割愛します。Azureにはネットワークや仮想マ
シンを束ねて管理するためのグループ名のよう
なものがあると考えてください。

②Windows Server 2016
Datacenter テンプレートからad01、
fs01、fsclient01という3つの仮想マ
シンを作成し、fsnet1に配置

　ad01を最初に作成しましょう（図3）。そうす

 ▼図2　仮想ネットワーク fsnet1の作成画面

 ▼図1　 Microsoft Azure上で作るファイルサーバの
簡易検証環境（IPサブネットや仮想マシンの名
前など、本記事に書かれた内容はあくまでも
一例）

仮想マシン
ドメイン
コントローラ

ad01
172.16.1.4

仮想マシン
ファイル
サーバ

fs01
172.16.1.x

仮想ネットワーク fsnet1 (172.16.1.0/24)
Microsoft Azure

仮想マシン

クライアント

fsclient01
172.16.1.x

DNS

 Author 高添 修（たかぞえ おさむ）
 blog 	 http//blogs.technet/
	 microsoft.com/osamut
	 日本マイクロソフト㈱

本誌2017年6月号では、ファイルサーバとしての機能の解説と構築する際
に使えるWindows Server 2016の最新機能にも触れました。さて、実際に
試してみたいと思った方が次に考えるのは、その環境をどうやって用意するか
ではないでしょうか。今回は手軽にWindows Server 2016のファイルサー
バ環境を作るべく、クラウド（Microsoft Azure）上に検証用のファイルサー
バを構築する方法を解説します。また、クラウドならではのコツなど、知って
おくべき、もしくは気をつけるべきポイントにも触れていきます。

進化した機能で効率化を推進

Windows Server 2016で
構築する最新ファイルサーバ（後編）

正しいデータ共有のススメ？

https://blogs.technet.microsoft.com/osamut/

92 - Software Design Jul. 2017 - 93

想ネットワーク内の仮想マシンは名前解決がで
きるようになっています。しかし、Active

Directory環境のように独自でDNSを立てるこ
とも多くあるでしょう。このような場合、ネッ
トワークに配置された仮想マシンが同じDNS

サーバを確認できるようにしなければなりませ
ん。図5では、仮想マシンそれぞれにDNSサー
バの設定をしなくて済むよう、仮想ネットワー
クのプロパティ設定でDNSサーバのIPアドレ
スを固定化しています。

⑤④のDNS設定を反映させるため、仮想マ
シンad01を再起動

　この作業によって、ad01という仮想マシンの

ることで、ad01にサブネット内の4番めの番号
172.16.1.4というIPアドレスが割り当てられて
いるはずです。ドメインコントローラマシンの
IPアドレスを確実に把握しておくことで、この
あとのActive Directoryのセットアップ、ファ
イルサーバやクライアントのドメイン参加など
で重要になるDNSサーバのIPアドレス指定が
しやすくなります。

③ad01のネットワークインターフェース
プロパティでプライベートIPアドレスを

［静的］に変更

　Azure上の仮想マシンは、使わないときに
シャットダウンをしておくことで余計な課金を
止めることができます。ただし、この際IPアド
レスも解放し、何もしなければ次の起動時に違
うIPアドレスになることがあります。そこで、
図4の設定を用いて、ドメインコントローラad01

の IPアドレスが常に同じになるよう固定しま
す。

④fsnet1のプロパティでDNSサーバを
172.16.1.4（カスタム）に設定

　AzureはデフォルトでDNSサービスが動いて
おり、とくにDNSサーバの指定をしなくても仮

 ▼図5　DNSサーバの IPアドレスを172.16.1.4に固
 定 しているところ

 ▼図3　Windows Server 仮想マシンの作成画面 ▼図4　 仮想マシンに自動的に割り当てられた IPアド
レスを静的な割り当てに変更（仮想マシンのプ
ロパティはDHCPになっていても、常に同じ
IPが割り振られる）

94 - Software Design

⑦�DNS設定を反映させるために
fs01を再起動

　この再起動により、ファイルサーバ
マシンはActive Directoryとともに
動作するDNSサーバを見にいくこと
になります。ちなみに再起動の作業は
意図的に仮想マシンに接続してから実
施する必要はなく、Azureの管理ポー
タルからでもできます。

⑧�fs01にリモートデスクトップ
接続し、ドメインcontoso.
comに参加（再起動）

　この段階ではすでにDNSサーバの
IPアドレスがドメインコントローラ

に向いているので、ドメインへの参加はスムー
ズです（図8）。

⑨再起動後、fs01にドメインの管理者とし
てログオンし、fs01を日本語化

　Azureの仮想マシンの、日本語化の手順は次
のようになります（図9）。日本語化したテンプ
レートを用意しておき、そこから仮想マシンを
作ることもできます 注1。

DNSサーバアドレスは172.16.1.4となり、自分
自身に向けられることになります。

⑥ad01に接続し、Active Directoryド
メインコントローラへと昇格（今回は
contoso.comを使用）

　仮想マシンのプロパティ画面にある接続をク
リックするとRDPファイルがダウンロードされ
るため、それを使って仮想マシンにリモートデス
クトップで接続します（図6）。Active Directory

ドメインコントローラへの昇格手順も既知のた
め細かくは触れませんが、Azureだからといっ
て特別なことはありません。いつもどおりの手
順で実施してください。
　ドメインコントローラの準備ができたら、検
証用のユーザやグループを作成しておくとよい
でしょう（図7）。画面は英語ですが、これは後
述する方法でOSを日本語化できます。

 ▼図6　 仮想マシンのプロパティ画面（左のプロパティ一覧に加えて、
上にも接続や再起動のメニューあり）

 ▼図7　 DEMOというOUを作成し、ユーザやグルー
プを登録したところ

 ▼図8　 見慣れたドメイン参加画面。このあと、ユー
ザ名とパスワード入力画面が表示される

注1） 管理ディスク（Managed Disks）の“イメージ”リソースを使
用し、仮想マシンを複数台展開する

 URL https://blogs.technet.microsoft.com/jpaztech/
2017/05/10/deployvmsfrommanagedimage/

進化した機能で効率化を推進
Windows Server 2016で構築する最新ファイルサーバ（後編）

正しいデータ共有のススメ？

https://blogs.technet.microsoft.com/jpaztech/2017/05/10/deployvmsfrommanagedimage/

94 - Software Design Jul. 2017 - 95

ファイルサーバとしての
環境の準備

　前号の復習も兼ね、ファイルサーバの機能と
それを試すのに必要となる作業を簡単に説明し
ます。図10の画面は、Windows Serverが起動
する際に立ち上がってくるサーバマネージャと
いうツールに統合されています。またエクスプ
ローラでフォルダを共有した場合でもサーバマ
ネージャ側にも表示してくれるので、どのフォ
ルダを共有したか覚えていないという場合でも
頼りになる存在です。
　そして、ディスククォータやスクリーニング、
レポート、ファイル分類機能などを利用する場
合には、Windows Serverの役割と機能の追加
からファイルサーバリソースマネージャを追加
します（図11）。
　追加が終わると、各種設定が可能になるので、
ファイルサーバ側でクォータなどの設定を行い、
それらの設定が正しく機能しているかを

❶［Control Panel］の［Add a language］
❷［Add a language］で［Japanese（日本語）］を
［Add］

❸［Move up］で日本語の優先順位を上に
❹［Options］をクリック――言語パックを自動

で探してくれる
❺［Download and install language pack］をク

リックして言語パックをインストール
❻［Change date, time, or number formats］を

クリックして、ロケールやようこそ画面など
を日本語に変更

⑩fsclient01に対しても
⑦～⑨を実施

　これで、Azure上に認証基盤とファ
イルサーバ、クライアント環境ができ
あがります。慣れていれば数十分、い
ろいろと確認しながらでも1～2時間も
あればというところでしょう。ちなみ
に、Office 365 ProPlusを使える権利
をお持ちの場合は「Windows Server

Remote Desktop Session Host with

Microsoft Office 365 ProPlus」と い
う仮想マシンのテンプレートをAzure

Marketplaceで検索し、そこから仮想
マシン fsclient01を作成するとよいで
しょう。このテンプレートはVDIなど
の用途のために用意されていて、Office

が事前にインストールされているため、
ファイルサーバ検証にOfficeが必要な
場合にも別途用意する手間を省けます。

 ▼図9　日本語言語パックの追加

 ▼図11　ファイルサーバリソースマネージャを追加しているところ

 ▼図10　 サーバマネージャに統合された共有フォルダ管理画面

96 - Software Design

プで接続していれば、ローカルPCにあるファ
イルをドラッグ＆ドロップで仮想マシンのデス
クトップなどにコピーすることも可能になって
います。
　さらに、Windows Server 2016ベースの環境
には、標準でマルウェア対策ソフトウェアの
Windows Defenderが組み込まれており、Win

dows Updateと連動しながら最新の定義ファイ
ルの更新も行われ、スキャンも実行されますの
で、自社内で利用しているマルウェア対策ツー
ルを入れて検証したい場合を除き、このまま進
めてよいでしょう。

ストレージの
重複除去機能を試す

　Windows Server 2016のストレージ機能の中
には、重複除去の機能が含まれています。ただ
し、こちらも最初は有効になっていないため、
役割と機能の追加という作業を行います。また、
記事執筆時点では、更新プログラム 注2を適用す
る必要がありますので注意ください（図13）。
　機能の追加と更新プログラムの適用が完了し
たら、あとは重複除去の設定を行うだけと言え
ます。ただし、実際のファイルサーバはデータ
用ディスクの追加なども行われているでしょう

から、ファイルサーバを
模擬すべくAzure上の仮
想マシンにもデータ用の
ディスクを追加してみま
しょう。
　図14のように、仮想マ
シンのプロパティにある
ディスクメニューで「デー
タディスクの追加」という
作業を行います。Azure

の新しいディスク管理機

fsclient01というクライアントから確認してい
くとよいでしょう（図12）。
　今回用意したAzure上の各仮想マシンは、こ
の状態でインターネットにも接続できる状態な
ので、検証用のツールやファイルのダウンロー
ドなどもできます。また、リモートデスクトッ

 ▼図12　 サーバマネージャのツールの一覧にファイル
サーバリソースマネージャが追加されている

 ▼図13　データ重複除去の機能追加画面

注2） URL https://support.micro
 soft.com/ja-jp/help/
 4013429/windows-
 10-update- kb40134
 29

進化した機能で効率化を推進
Windows Server 2016で構築する最新ファイルサーバ（後編）

正しいデータ共有のススメ？

https://support.microsoft.com/ja-jp/help/4013429/windows-10-update- kb4013429

96 - Software Design Jul. 2017 - 97

構「管理ディスク」では、IOPSが500で
スループットの上限が60MB/秒に制限
されたStandardと、ディスクあたり最
大で IOPS 5000、スループットが
200MB/秒まで高速にアクセス可能な
Premiumがあります（図15）。
　ファイルサーバかどうかに限らず、
ディスク（ストレージ）の選択は、スピード、容
量、コストのバランスがとても重要になります。
もし IOPS値が1つのディスクでは足りない場
合は、複数のディスクを追加し、それをWindows

Serverのストレージ機能などを使って分散処理
させることで高速化を図れます。
　さて、Azureのポータルからディスクの追加
という作業をすると、サーバマネージャの記憶
域プールという画面に物理ディスクとして追加
されています。今回は、このディスクをWindows

Serverの機能でプール化し、そこから仮想ディ
スクvDisk01の作成を行います（図16）。
　仮想ディスクとして切り出したあとは、論理
ボリュームとしての設定ウィザードが表示され
ます。このウィザードでは、エクスプローラか
ら見えるドライブ番号（FドライブとかHドライ
ブ、ドライブレターとも言う）の設定や、重複
除去の設定なども可能になっています。
　図17はファイルサーバとして重複除去を有効
にしているところですが、この設定だけで定期
的に重複除去が行われ、ファイルサーバの負荷
が高い場合には重複除去の処理を一時停止しま
す。ただ、デフォルトの設定に任せるのではな

 ▼図14　仮想マシンへのディスク追加画面

 ▼図15　 記事執筆時点での Premium 管理ディスクのパフォーマン
スとコスト（https://azure.microsoft.com/ja-jp/ricing/
details/managed-disks/）

 ▼図16　 ディスクをプール化したあと、仮想ディスク
として切り出している画面（「記憶域のレイア
ウトSimple」とはストライピングのこと）

 ▼図17　 ウィザードでデータ重複除去の設定をしてい
るところ

https://azure.microsoft.com/ja-jp/ricing/details/managed-disks/

98 - Software Design

意し、Windows

Serverの 標 準
機 能 で あ る
フェールオー
バークラスタを
使っていまし
た。この構成は
サーバOSが最
新に変わった今
でもできます
が、一般的にパ
ブリッククラウ

ド上ではこのような構成をとりません。なぜな
ら、オンプレミスで利用される共有ストレージ
装置はそれ自身が止まらずにサービスを提供す
る工夫がなされているのに比べ、クラウド上で
は仮想マシンがその代わりを担うことになり、
共有ストレージとしての仮想マシンそのものが
単一障害点になってしまう可能性があるからで
す。そのため、Azure上のシステムによっては、
サイオステクノロジー社のDataKeeperなどを
利用してストレージレプリケーションを実現し、
可用性を高める構成などがとられています。
　Windows Serverの標準機能で実現する方法
はないものか、と思われた方もいるでしょう。
その答えとして、ようやく登場したのがWindows

Server 2016の記憶域スペースダイレクト
（Storage Spaces Direct = S2D）という技術で
す 注4。
　図19を見てわかるとおり、4台のサーバがネッ
トワークで接続されているだけです。しかし、
それぞれのサーバに搭載されたローカルディス
クを記憶域スペースダイレクトという技術で1

つに束ね、サーバ4台はすべてアクティブに動
くことができます。また、この技術は最低2台
から構成可能になっているので、たった2台の
Windows Server 2016で可用性の高いファイル

くご自身で制御したい場合には、重複除去スケ
ジュールの設定を行うとよいでしょう。また、
Windows Serverには重複除去の処理を制御す
るPowerShellコマンドも用意されているため、
処理中の重複除去ジョブの列挙や強制的な実施
などもできます。検証環境では重複除去の即時
実行Start-Dedupjobコマンドやジョブの状態
チェックGet-Dedupjobをよく使うことになるの
で覚えておくとよいでしょう（図18）。
　このように、重複除去は高額な専用ストレー
ジだけのものではなくなり、クラウド上でも利
用できるようになりました。さまざまな部門、
さまざまな仕事をしている社員が利用するファ
イルサーバなので、運用していくと意図せずに
同じファイルが複数保存されてしまうこともあ
ります。利用者に余計な作業を強いることなく、
効果的にファイルサーバ用のストレージを活用
するために、重複除去は欠かせない機能の1つ
と言えます 注3。

クラウド上でファイルサーバの
可用性を高める

　これまで、高可用性ファイルサーバを構築す
るには、複数台のサーバと共有ストレージを用

 ▼図18　 重複除去（deduplication）用のPowerShellコマンドの一覧を表示したところ

注3） 現時点では、Windows Server 2016一押しの新しいファ
イルシステム ReFSは重複除去が効かないため、ファイル
サーバのデータ用ボリュームはNTFSを選択する場面も多
く出てきます。もちろん、ReFSによる重複除去も将来的
には実現の方向で話が進められています。

注4） 記憶域スペースダイレクトの詳細はこちら
 URL https://docs.microsoft.com/ja-jp/windows-server/

storage/storage-spaces/storage-spaces-direct-overview

進化した機能で効率化を推進
Windows Server 2016で構築する最新ファイルサーバ（後編）

正しいデータ共有のススメ？

https://docs.microsoft.com/ja-jp/windows-server/storage/storage-spaces/storage-spaces-direct-overview

98 - Software Design Jul. 2017 - 99

ンドを実行
⑦記憶域スペースダイレクトを使って2台ずつ

追加したディスクをプール化
⑧ディスクプールから仮想ディスクを作成
⑨ファイルサーバとして利用するため、スケー

ルアウトファイルサーバの役割を追加
⑩共有フォルダ作成

　ポイントをいくつか書いておきましょう。ま
ずは⑤のクォーラムの設定ですが、Windows

Server 2016では、ウィットネスにAzureスト
レージを選択できるようになっています。
　⑥の手順では、記憶域スペースダイレクトを
有効化するために Enable-ClusterS2Dコマンド
を利用します。このコマンドで、各ノードにバ
ラバラに接続されたディスクがS2Dというしく
みに組み込まれます。たとえば、今回の環境で
は1台のマシンにデータ用のディスクを2つ追
加しているため、本来サーバマネージャの管理
画面には2つのディスクが見えているはずです。
しかし、このコマンドを実行することで、図21

のように合計4つのディスクが1台のサーバの
ローカルに存在しているように見えてきます。
　2台にまたがっているディスクが1台のマシン
に接続されているように見えるので、次はそれ
らのディスクをプール化し、さらに仮想ディス
クを切り出すことでS2Dの環境構築は完成です。
ただし、今回はそれをファイルサーバとして利
用したいので、スケールアウトファイルサーバ

という役割の追加作業を行
います。これで、2台のマシ
ン（＋クラウドウィットネ
ス）による可用性の高い共有
フォルダができあがります。
クライアントからも共有
フォルダが見えているはず
です。
　さて、今回の検証環境で
はクライアントもクラウド
上に作成しているため、ファ

サーバを構築可能になっています。
　ここから、2台のWindows Server 2016仮想
マシンを使った高可用性ファイルサーバの構築
手順を見てみましょう。認証基盤などはすでに
用意できているので、先ほどの3台の検証環境
に追加する形で、図20を目指します。
　手順は次のとおりです。

①Windows Server 2016 の仮想マシンを2台
作成し、fsnet1へ配置

②2台のマシンそれぞれをActive Directoryに
参加

③2台のマシンそれぞれにデータ用のディスク
を2つ追加（手順確認のため）

④2台でフェールオーバークラスタを構築
⑤フェールオーバークラスタのクォーラムとし

てクラウドウィットネスを設定
⑥記憶域スペースダイレクトを有効化するコマ

 ▼図19　記憶域スペースダイレクト

4台はネットワークで接続するだけ

Windows Server 2016

サーバ１ サーバ3サーバ2 サーバ4

記憶域スペースダイレクト

 ▼図20　Azure上の検証環境にS2Dマシンを2台追加したところ

仮想マシン
ドメイン

コントローラ
ad01

172.16.1.4

仮想ネットワーク fsnet1 (172.16.1.0/24)
Microsoft Azure

仮想マシン
ファイル
サーバ

fs01
172.16.1.x

仮想マシン2台
記憶域スペース
ダイレクト

s2d01とs2d02
172.16.1.x

DNS

仮想マシン

クライアント

fsclient01
172.16.1.x

100 - Software Design

イルサーバも利用者もクラウド上にいることに
なっています。最近流行り始めたクラウド上の
VDI環境であれば、ほぼ同じ構成と言えるでしょ
う。しかし、利用者のクライアントが社内に設
置されたPCであった場合にはどうするか、社
外に持ち出すモバイルPCだったらどうするか
も検証したいところです。
　まずは、比較的容易に試すことができるパター
ンから紹介しておきましょう。AzureにはVPN

Gatewayという機能があり、それを使うことで、
図22のように企業のネットワークとAzureの
仮想ネットワークをサイト間VPN（Site-to-

Site VPN）で接続できます。企業側にVPN装置
がない場合はWindows Server 2016のリモー
トアクセス機能を使ってVPNルータ代わりに
することもできます。こうすることで、社内の
ユーザはファイルサーバがAzure上にあること

を意識することなく＜\\ファ
イルサーバ名\共有名＞でアク
セス可能になります。また、
Azure VPN Gatewayにはポイ
ント対サイトVPNという機能
も持っていて、PCから直接
Azure上の仮想ネットワークに
VPN接続できるので、モバイ
ルユーザを想定した検証もでき
ます。ただし、このポイント対

サイトVPNには接続の上限値があるので気をつ
けましょう。
　それから、ファイルサーバをクラウドに配置
する場合、企業とAzureとを閉域網接続し、通
信の安定化を図るパターンが増えてきています。
全社員が利用するファイルサーバの利便性を落
とすことは社員の生産性に影響を及ぼすからで
す。AzureにはExpressRouteという閉域網接続
サービスがあり、社内とAzureとの通信を安定
した品質で構築できます。また、クラウド上の
ファイルサーバと社内のPCとの距離が空くこ
とによって著しくパフォーマンスが低下する場
合は、Windows Server 2016のブランチキャッ
シュという機能を利用して、社内にファイルサー
バ用のキャッシュを置くこともできます。一度
アクセスしたことがあるファイルはキャッシュ
にも保管され、次からはキャッシュサーバとの

 ▼図21　 記憶域スペースダイレクトを有効にするコマンドを実行したあとのディ
スク管理画面

 ▼図22　Microsoft Azure上のファイルサーバへVPNを経由して接続するパターン

仮想マシン
ドメイン

コントローラ
ad01

172.16.1.4

仮想ネットワーク fsnet1 (172.16.1.0/24)
Microsoft Azure

仮想マシン
ファイル
サーバ

fs01
172.16.1.x

仮想マシン2台
記憶域スペース
ダイレクト

s2d01とs2d02
172.16.1.x

DNS

仮想マシン

クライアント

fsclient01
172.16.1.x

社外ユーザ

VPN
Gateway

オンプレミス
VPN

VPN

VPN

VPN

ポイント対
サイトVPN

サイト間VPN

進化した機能で効率化を推進
Windows Server 2016で構築する最新ファイルサーバ（後編）

正しいデータ共有のススメ？

100 - Software Design Jul. 2017 - 101

やりとりで済みますし、あくまでもキャッシュ
という位置付けのため、クラウド上のファイル
サーバが常に正であるというルールを徹底でき
ます。

クラウド上のファイルサーバの
バックアップ

　最後にクラウド上でのバックアップをどうす
るかは考えておく必要があります。クラウドス
トレージのスナップショット機能でとりあえず
データがなくならないようにしているという強
引なものから、仮想マシンにバックアップエー
ジェントを入れ、オンプレミスと同じようにバッ
クアップをとるパターンもあるでしょう。Azure

の場合は、Azureバックアップサービスを使う
のがシンプルです。もともとAzure バックアッ
プサービスはオンプレミスのデータを保護する
目的などで使われてきましたが、最近Azure仮
想マシンのサービスとうまく統合されました。
　図23のように、Azureの仮想マシンのプロパ
ティにはバックアップという項目が用意されて
います。バックアップサービス側でバックアッ
プ用のポリシー（どのようなタイミングでバック
アップをとるかなど）の定義を事前に作っておけ
ば、仮想マシンの管理者が、仮想マシンのプロ
パティ設定画面からバックアップを有効化でき
ます。また、仮想マシンの復元やファイルレベ

ルの回復作業というメニューも仮想マシンのプ
ロパティに用意されています。

進化の激しいクラウドで起こるファ
イルサーバ周りの進化の可能性

　クラウド上の仮想マシンを使ってファイルサー
バを構築するところまで解説してきました。し
かし、パブリッククラウドでは、SaaSやPaaS

が台頭してきており、仮想マシン依存から脱却
できる可能性が出てきています。これはファイ
ルサーバも例外ではなく、Azure上で認証サー
ビスを提供するAzure Active Directoryにはド
メインサービスが提供され、ドメインコントロー
ラを仮想マシンで構築する必要がなくなりつつ
あります。また、Azureのストレージサービス
は、BloB StorageやTable Storageなどのサー
ビスとともにファイル共有サービスを提供して
います。記事執筆時点で、このサービスは社内
のドメインに参加できないため、利用用途は限
られますが、今後はドメインに参加可能なサー
ビスになる可能性もあります。
　このように、パブリッククラウドは高速に進
化し、さまざまなITの要素をサービス化し始め
ているため、いずれはドメインコントローラも
ファイルサーバも当たり前のようにサービスと
して利用する時代が来るかもしれません。また、
クラウド上のサービスはSLAとともに高可用性

を意識した構成になっている場合
が多いので、記憶域スペースダイ
レクトなどの技術を使って仮想マ
シンの可用性を高めるという必要
すらなくなるかもしれません。柔
軟な容量の増減、APIやコマンド
を使った自動化、バックアップ
サービスとの連携など、今後ファ
イルサーバの見直しをするエンジ
ニアは、クラウドにも注目してお
くとよいでしょう。ﾟ

 ▼図23　 バックアップツールと統合されたAzure仮想マシンのプロパティ

102 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

　みなさん、こんにちは！Eiji James Yoshida

です。毎回洋楽のことばかり書いているけど邦
楽は聴かないのかよ、と思われているかもしれ
ませんが、最近は一風堂（IPPU-DO）の曲を聴
いていたりします。もちろんラーメン屋ではな
く、土屋昌巳率いる80年代のロックバンドで、
歌謡曲と80年代英国New Waveの融合っぽい
独特な雰囲気の曲が多くて好きだったりします。
「すみれ September Love」は一風堂で有名な曲
なので聴いたことのある人もいると思いますが、
SHAZNAの曲と間違えている人も多いんです
よね。筆者はSHAZNAのカバー版より一風堂
のオリジナルをお勧めします。
　さて、今回は本連載の記念すべき第10回な
ので、Jamesの挑戦状としてWiresharkについ
ての問題を出します。ぜひ過去の連載も参考に
しながら、全問正解目指して頑張ってください！

環境説明

　本稿を書く際に使用した環境はWindows 10

でWireshark 2.2.6です。

・Wireshark

　https://www.wireshark.org/download.html

　Wiresharkのインストール方法はお任せしま
すが、とくにこだわりがない場合はデフォルト

でインストールしてください。また、筆者のブ
ログから下記のファイルをダウンロードしてく
ださい。

・Software Design 短期集中連載「Jamesのセ

キュリティレッスン」用キャプチャファイル

	 http://d.hatena.ne.jp/EijiYoshida/2014	
0907/1410071296

	 ・�sd1707.zip
	（展開用パスワード：88224646ba）

　あとは何かBGMでも流しましょう。筆者は
一風堂のベストアルバム「ESSENCE:THE

BEST OF IPPU-DO」をBGMにして本稿を書
いています。とくに「ふたりのシーズン」や「イ
ミテーション・チャチャ」、「すみれ September

Love」はお気に入りでよく聴いていたりします。

いざ、挑戦！

　Wiresharkのインストールやダウンロードし
たファイルの展開も終わり、問題を解く環境が
整ったと思うので、さっそく挑戦しましょう！

問題1
　「どのようなキャプチャフィルタがインター
フェースに設定されていたのか」と「どのイン
ターフェースでキャプチャされたパケットなの
か」という情報が記録されるファイル形式はど
れでしょうか。選択肢の中から正しいものをす
べて選んでください（解答はP.103）。

はじめに

第10回
 Writer 吉田 英二（Eiji James Yoshida）

　合同会社セキュリティ・プロフェッショナルズ・ネットワーク（http://www.sec-pro.net/）

Jamesの挑戦状！　Wireshark実践問題

JamesのJamesの
セキュリティレッスンセキュリティレッスン
パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★ 短

期集中連載

http://www.sec-pro.net/
http://d.hatena.ne.jp/EijiYoshida/20140907/1410071296
https://www.wireshark.org/download.html

102 - Software Design Jul. 2017 - 103

Jamesの挑戦状！　Wireshark実践問題 第10回

① ppapファイル形式
② pcap（libpcap）ファイル形式
③ pcap-ngファイル形式

問題2
　送信元 IPアドレスまたは送信先IPアドレス
のどちらか一方が192.0.2.1ではないパケット
だけを表示するディスプレイフィルタはどれで
しょうか。選択肢の中から正しいものをすべて
選んでください（解答はP.105）。

①	ip.addr == 192.0.2.1
②	ip.addr != 192.0.2.1
③	!ip.addr == 192.0.2.1

問題3
　SYNパケットだけを表示するディスプレイ
フィルタはどれでしょうか。選択肢の中から正
しいものをすべて選んでください（解答は
P.105）。

①	syn
②	tcp.flags == 2
③	tcp.flags == syn
④	tcp.flags.syn == 1

問題4
　2017年5月5日1:23:45の間にキャプチャさ
れたパケットだけを表示するディスプレイフィ
ルタはどれでしょうか。選択肢の中から正しい
ものをすべて選んでください（解答はP.106）。

①	frame.time == "2017-05-05 01:23:45"
②	frame.time >= "2017-05-05 01:23:45"
&& frame.time < "2017-05-05 01:23:46"

③	"2017-05-05 01:23:45" <= frame.time
< "2017-05-05 01:23:46"

問題5
　「sd1707.pcapng」に保存されている、「james」
という文字列を含むパケットの番号（No.）をす
べて答えてください（解答はP.106）。

問題6
　「sd1707_portscan.pcapng」には、攻撃者（192.0.

2.100）が標的（192.0.2.1）をSYNポートスキャ
ンしたときに送受信されたパケットが保存され
ています。ポートスキャンで開いていると判断
されたポート番号をすべて答えてください（解
答はP.107）。

問題7
　「sd1707_ftppassauth.pcapng」にはFTPサー
ビスのパスワード認証で送受信されたパケット
が保存されています。このキャプチャファイル
を参考にしながら、「sd1707_ftpcrack.pcapng」
に保存されている、FTPサービスに対するパ
スワード推測攻撃で認証に成功したユーザ名と
そのパスワードをすべて答えてください（解答
はP.108）。

問題8
　「sd1707_intrusion.pcapng」には、攻撃者（192.0.

2.100）が標的（192.0.2.2）のバックドア（4444/

tcp）に接続しているときに送受信されたパケッ
トが保存されています。攻撃者がバックドアに
接続して実行したWindowsコマンドをすべて
答えてください（解答はP.110）。

答え合わせ

　それでは答え合わせをしていきましょう。

問題1の解答
　答えは③です。
　①の ppapだとPen Pineapple Apple Penに
なってしまうのと、そもそもppapというキャ

104 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

プチャファイルのファイル形式が現時点では存
在しません。
　残る②と③については、pcap（libpcap）ファ
イル形式の「sd1707.pcap」とpcap-ngファイル
形式の「sd1707.pcapng」のキャプチャファイル
プロパティや、パケット詳細ペインのFrame

を展開すれば答えがわかります。
　まずはWiresharkで「sd1707.pcapng」を開
きましょう。［統計］メニュー（図1）にある
［キャプチャファイルプロパティ］をクリック
して［キャプチャファイルプロパティ］ウィン
ドウ（図2）を表示します。［インターフェース］
にある［キャプチャフィルタ］の下を見ると
「icmp」とありますが、これがパケットをキャ
プチャする際にインターフェースに設定した
キャプチャフィルタの内容になります。
　続いて、［キャプチャファイルプロパティ］
ウィンドウを［閉じる］ボタンをクリックして
閉じたら、Wiresharkの上側に表示されてい
る［パケット一覧］ペインでNo.1のパケット
をクリックします。Wiresharkの中央に表示
されている［パケット詳細］ペインで一番上に
ある［Frame 1:（省略）］を展開すると、図3の
ように「Interface id: 0 （\Device\NPF_{38B777

6D - DFB8-46D6- B3F6-2CCAE6CE

4DEB}）」という情報が表示されますが、こ
の「\Device\NPF_{}」で囲まれた値「38B7776D

-DFB8-46D6-B3F6-2CCAE6CE4DEB」が、
No.1のパケットをキャプチャしたインター
フェースのGUIDになります。
　インターフェースのGUIDを調べるには、
パケットをキャプチャしたマシンのコマンド
プロンプトで図4のコマンドを実行します。

この図は筆者の環境で実行した結果になります
が、パケットをキャプチャしたインターフェー
スのGUIDとSettingIDの値が同じことから、
「Intel（R） PRO/1000 MT Network Conne

ction」でNo.1のパケットをキャプチャしたこ
とがわかります。このように③のpcap-ngファ

 ▼図1　［統計］メニュー

 ▼図2　 pcap-ngファイル形式の［キャプチャファイルプ
ロパティ］ウィンドウ

 ▼図3　 pcap-ngファイル形式の［Frame］項目にある
インターフェース ID

 ▼図4　wmicコマンドによるインターフェース情報の表示

C:¥WINDOWS¥system32>wmic nicconfig get description,index,ipaddress,macaddress,settingid
Description Index IPAddress MACAddress SettingID
Intel(R) PRO/1000 MT Network Connection 0 {"192.0.2.101"} 00:0C:29:AF:68:39 ｭ
{38B7776D-DFB8-46D6-B3F6-2CCAE6CE4DEB}

C:¥WINDOWS¥system32>

104 - Software Design Jul. 2017 - 105

Jamesの挑戦状！　Wireshark実践問題 第10回

イル形式なら、「どのようなキャプチャフィル
タがインターフェースに設定されていたのか」
と「どのインターフェースでキャプチャされた
パケットなのか」という情報が記録されます。
　今度は、先ほどと同じ手順でpcap（libpcap）
ファイル形式である「sd1707.pcap」をWire

sharkで開いて、［統計］-［キャプチャファイル
プロパティ］ウィンドウにキャプチャフィルタ
の内容が記録されているか、No.1のパケット
の［パケット詳細］ペインにキャプチャしたイン
ターフェースのGUIDが記録されているか確認
してください。
　「sd1707.pcap」の［キャプチャファイルプロパ
ティ］ウィンドウ（図5）を見ると［キャプチャフィ
ルタ］の下が「不明」となっていることから、
pcap（libpcap）ファイル形式では記録されない
ことがわかります。
　続いて［キャプチャファイルプロパティ］
ウィンドウを閉じたら、No.1のパケットの［パ
ケット詳細］ペインで［Frame 1:（省略）］を展
開すると図6のようにパケットをキャプチャ
したインターフェースの情報が記録されない
ことがわかります。このように②の pcap

（libpcap）ファイル形式では、「どのようなキャ
プチャフィルタがインターフェースに設定さ
れていたのか」と「どのインターフェースで
キャプチャされたパケットなのか」という情
報は記録されません。
　pcap（libpcap）ファイル形式とpcap-ngファ
イル形式の詳細については本誌2014年11月
号の同連載第1回、12月号の第2回、2015

年1月号の第3回、9月号の第4回で解説し
ています。

問題2の解答
　答えは③です。「sd1707_ipaddr.pcapng」で
各ディスプレイフィルタを試してください。
　③は「送信元 IPアドレスまたは送信先 IP

アドレスのどちらか一方が192.0.2.1ではな
いパケットだけ」が表示されます。

　①は「送信元 IPアドレスまたは送信先 IPア
ドレスのどちらか一方が192.0.2.1のパケット
だけ」が表示されます。
　②は間違えやすく非推奨となっている!=を
使っていて、「送信元 IPアドレスと送信先 IP

アドレスの両方が192.0.2.1ではないパケット
だけ」が表示されます。
　ディスプレイフィルタの使い方については、
本誌2015年10月号の第5回で解説しています。

問題3の解答
　答えは②です。「sd1707_portscan.pcapng」で
各ディスプレイフィルタを試してください。
　②はTCPヘッダにある制御フラグ・フィー
ルド全体の状態が条件に含まれます。制御フラ
グ・フィールドのうちSYNビットだけが立っ

 ▼図6　pcapファイル形式の［Frame］項目

 ▼図5　 pcapファイル形式の［キャプチャファイルプロパ
ティ］ウィンドウ

106 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

ている状態を2進数で表すと、図7のように
「000010」となり、これを10進数で表すと「2」
になります。結果として、TCPの制御フラグ・
フィールド全体の状態が000010のパケットだ
けを表示するといった意味になるため、SYN

パケットだけが表示されます。
　①と③はディスプレイフィルタを設定しよう
とするとフィルタツールバーの色が赤になるこ
とから、そもそもディスプレイフィルタとして
正しくないことがわかります。
　④はSYNビットの状態だけが条件に指定さ
れているので、ほかのACKビットやFINビッ
トなどの状態が条件に含まれないことに注意し
てください。結果としてSYNパケットのほか
にもSYN+ACKパケットが表示されてしま
います。
　ディスプレイフィルタの使い方については、
本誌2015年10月号の第5回で解説していま
す（問題4、5、7の解答の際にも参考にして
ください）。

問題4の解答
　答えは②と③です。「sd1707.pcapng」で各
ディスプレイフィルタを試してください。ま
ずはWiresharkの時刻表示形式を日時に変更
しましょう。［表示］メニューにある［時刻表
示形式］を選んで［日時］（図8）をクリックし
ます。これで［パケット一覧］ペインの［Time］
項目が日時で表示されます。
　②はパケットをキャプチャした日時が
2017年 5月 5日 1:23:45.000000000以上で、
なおかつ2017年5月5日1:23:46.000000000

未満という条件になることから、2017年5

月5日1:23:45.000000000から2017年5月5

日1:23:45.999999999の間にキャプチャされた
パケットだけが表示されます。
　③は見た目こそ間違えているように見えます
が、これでも構文としては正しく、②と同じ結
果が表示されます。
　①は2017年5月5日1:23:45.000000000ちょ
うど（Just）にキャプチャされたパケットだけが
表示されます。

問題5の解答
　答えはNo.1209です。
　パケット内の文字列を条件に検索するには
containsやmatchesを使いますが、matches
はPerl互換正規表現（PCRE）を使えるので便
利かつ強力なことから、筆者はmatchesの使
用をお勧めします。まずはパケットのどの部分
に文字列が含まれているのかわからないので、
パケット全体を指定するframeを使うことに
します。あとは「james」が全部小文字かどうか
もわからないので、大文字小文字を区別しない

 U A P R S F
 R C S S Y I
 G K H T N N
 0 0 0 0 1 0

2 進数→10 進数
2

 ▼図7　TCP制御フラグ・フィールドの値

 ▼図8　［時刻表示形式］を［日時］に変更

 ▼図9　問題5の解答のパケット

106 - Software Design Jul. 2017 - 107

Jamesの挑戦状！　Wireshark実践問題 第10回

ように（?i）を文字列の頭に付けて次のような
ディスプレイフィルタを設定します。

frame matches "(?i)james"

　「sd1707.pcapng」を開いてディスプレイフィ
ルタを設定した結果が図9になります。Wire

sharkの下側に表示されている［パケットバイ
ト列］ペインを見ると、確かに「james」という文
字列を含んでいることがわかります。

問題6の解答
　答えは21/tcp、22/tcp、80/tcp、443/tcpです。
　SYNポートスキャンのしくみとしては、開
いているか閉じているかわからないポートに
SYNパケットを送信して、その反応からポー
トの開閉を判断します。そのポートからSYN

+ACKが返信される場合は開いている、そのポー
トからRST+ACKが返信される場合は閉じて
いると判断します。
　まずはSYNポートスキャンのスキャン対
象となったポート番号を調べます。送信元
IPアドレスが攻撃者（192.0.2.100）で送信先
IPアドレスが標的（192.0.2.1）のSYNパケッ
ト（tcp.flags == 2）だけを表示すれば良い
ので、次のようなディスプレイフィルタを設
定します。

ip.src == 192.0.2.100 && ip.dst ==
192.0.2.1 && tcp.flags == 2

　このディスプレイフィルタを設定した結果
が図10になります。SYNパケットの送信先
ポート番号がスキャン対象なので、［パケッ
ト一覧］ペインの［Info］項目を見ると、21/

tcp、22/tcp、23/tcp、25/tcp、53/tcp、80/

tcp、139/tcp、443/tcp、445/tcpがSYNポー
トスキャンされたことがわかります。
　次にSYNポートスキャンで開いていると
判断されたポート番号を調べます。SYNパ
ケットに対してSYN+ACKパケットを返信
したポート番号が開いていると判断すること

から、送信元 IPアドレスが標的（192.0.2.1）で
送信先 IPアドレスが攻撃者（192.0.2.100）の
SYN+ACKパケット（tcp.flags == 18）だけ
を表示すれば良いので、次のようなディスプレ
イフィルタを設定します。

ip.src == 192.0.2.1 && ip.dst ==
192.0.2.100 && tcp.flags == 18

　このディスプレイフィルタを設定した結果が
図11になります。［パケット一覧］ペインの
［Info］項目を見ると、SYNポートスキャンし
たポートのうち、21/tcp、22/tcp、80/tcp、
443/tcpからSYN+ACKパケットが返信されて
いることから、これらのポート番号がSYNポー
トスキャンで開いていると判断されたと推測さ
れます。
　ちなみにSYNポートスキャンを行ったポー
トスキャナの結果が図12になりますが、推測
した結果と同じであることがわかります。

 ▼図10　SYNパケットだけを表示

 ▼図11　SYN+ACKパケットだけを表示

108 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

　キャプチャファイルからポートスキャンの
結果を推測する方法については、本誌2015

年11月号の第6回で解説しています。

問題7の解答
　答えは、ユーザ名「user_d」／パスワード
「pass08」と、ユーザ名「user_h」／パスワード
「pass04」です。
　まずはWiresharkで「sd1707_ftppassauth.

pcapng」を開いて、FTPサービスのパスワー
ド認証のやりとりを調べましょう。キャプチャ
ファイルを開いたら、ftpというディスプレ
イフィルタを設定すると図13のようにFTP

のパケットだけが表示されます。［パケット
一覧］ペインの［Info］項目を見ると同じよう
な内容が2回ずつ表示されていますが、これ
はパスワード推測ツールがFTPサービスに
対してほぼ同時に2つ接続したからです。パ
スワード推測ツールの多くは効率化のために
複数の接続を行い、それぞれの接続でパスワー
ド推測を行います。それぞれの接続でやりと
りされた情報を追いかけるには、パケットを
ひとつひとつ見るよりストリームを追跡する
機能が便利なので使いましょう。
　試しに、No.7パケットを含む接続でやりと

りされた情報を追いかけるには、［パケット一覧］
ペインのNo.7パケットを右クリックしてコン

 ▼図12　SYNポートスキャンを行ったポートスキャナの結果（Kali Linuxで実行）

root@kali:̃# nmap -P0 -n -r -sS 192.0.2.1 -p 21,22,23,25,53,80,139,443,445

Starting Nmap 7.40 (https://nmap.org) at 2017-05-05 01:31 JST
Nmap scan report for 192.0.2.1
Host is up (0.00013s latency).
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp closed telnet
25/tcp closed smtp
53/tcp closed domain
80/tcp open http
139/tcp closed netbios-ssn
443/tcp open https
445/tcp closed microsoft-ds
MAC Address: 00:0C:29:58:FD:AC (VMware)

Nmap done: 1 IP address (1 host up) scanned in 0.20 seconds
root@kali:̃#

 ▼図13　ftpパケットだけを表示

 ▼図14　［パケット一覧］ペインのコンテキストメニュー

108 - Software Design Jul. 2017 - 109

Jamesの挑戦状！　Wireshark実践問題 第10回

テキストメニューの［追跡］にある［TCPスト
リーム］（図14）をクリックします。［TCPス
トリームを追跡］ウィンドウ（図15）が表示さ
れ、No.7パケットを含む接続でやりとりさ
れた情報が赤と青で表示されます。赤は接
続した側（192.0.2.100）が送信した情報、青
は接続された側（192.0.2.1）が送信した情報
になります。
　内容を見るとFTPサービスのパスワード
認証では「USER ユーザ名」でユーザ名を送
信して、「PASS パスワード」でそのユーザ
のパスワードを送信していることがわかりま
す。そして認証に成功した場合は、サーバ側
から「230 Login successful.」という返事があ
ることもわかります。
　それでは、もう1つの接続も見てみましょ
う。［TCPストリームを追跡］ウィンドウを
閉じたら、再度ディスプレイフィルタとして
ftpを設定してください。その後はNo.9パ
ケットを右クリックしてから［追跡］にある
［TCPストリーム］をクリックして、［TCP

ストリームを追跡］ウィンドウ（図16）を表示
します。パスワード認証の結果を見ると、パ
スワード認証に失敗した場合はサーバ側から
「530 Login incorrect.」という返事があるこ
とがわかりました。
　パスワード認証に成功した場合は「230

Login successful.」という返事があることか
ら、この文字列を含むパケットだけが表示され
るようにディスプレイフィルタを設定すること
で、パスワード認証に成功した接続だけが表示
されます。このときに文字列の先頭部分にある
「230」という成功を表す3桁のステータスコー
ドを活用して、次のようなディスプレイフィル
タを設定します。ステータスコードの後ろにあ
る区切り文字のスペース（ｽ）も含めることで、
なるべくステータスコードの部分が条件に当て
はまるようにしています。

ftp matches "230ｽ"

　Wiresharkで「sd1707_ftpcrack.pcapng」を開
いて、このディスプレイフィルタを設定した結
果が図17になります。2つの接続が表示され
ているので、［パケット一覧］ペインでNo.433

パケットを右クリックしてから［追跡］にある
［TCPストリーム］をクリックして、［TCPス
トリームを追跡］ウィンドウ（図18）を表示しま
す。表示された内容を見ると、ユーザ名が「user_

d」でパスワードが「pass08」のときに、「230

Login successful.」という返事があることから、
「user_d」のパスワードは「pass08」ということが

 ▼図15　 No.7パケットを含む接続の［TCPストリームを追
跡］ウィンドウ

青色
赤色

 ▼図16　 No.9パケットを含む接続の［TCPストリームを追
跡］ウィンドウ

 ▼図17　 「230ｽ」という文字列を含むパケットだけを表示

110 - Software Design

短期集中連
載セキュリティレッスンセキュリティレッスンJamesのJamesの

パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開パケットキャプチャWiresharkの新展開

★★★★

わかります。
　それでは、残るもう1つの接続も見てみま
しょう。［TCPストリームを追跡］ウィンド
ウを閉じたら、先ほどのディスプレイフィル
タ（ftp matches "230 ｽ"）を再度設定して
ください。その後はNo.840パケットを右ク
リックしてから［追跡］にある［TCPストリー
ム］をクリックして、［TCPストリームを追跡］
ウィンドウ（図19）を表示します。表示され
た内容を見ると、ユーザ名が「user_h」でパス
ワードが「pass04」のときに、「230 Login

successful.」という返事があることから、
「user_h」のパスワードは「pass04」というこ
とがわかります。
　ちなみにFTPレスポンスのステータスコー
ドを条件にしたディスプレイフィルタは、次
のように設定することもできます。

ftp.response.code == 230

　こちらはFTPのパケットから「230」とい
う文字列を探すのではなく、FTPの通信を
解析してFTPレスポンスのステータスコー
ドが「230」かどうかを判断しているので、
matchesを使う方法より正確な結果が期待
できます。

問題8の解答
　答えは次の9つのコマンドです。

・ipconfig
・whoami /user
・cd /
・dir
・cd inetpub
・dir
・cd wwwroot
・dir
・echo Hacked by James > index.html

　Wiresharkで「sd1707_intrusion.pcapng」を開
くと、攻撃者（192.0.2.100）が標的（192.0.2.2）

のバックドア（4444/tcp）に接続して何か情報
をやりとりしていることがわかります。
　パケットを順に見ていくとNo.4パケットの
［パケットバイト列］ペインにはWindowsのコ
マンドプロンプトのようなメッセージがあり、
No.6パケットの［パケットバイト列］ペインに
は「ipconfig」というコマンドと思われる文字列
があります。このことから、バイナリ形式では
なくテキスト形式の通信である可能性が高いの
で、試しにストリームを追跡する機能を使って
みましょう。
　［パケット一覧］ペインでNo.4パケットを右
クリックしてから［追跡］にある［TCPストリー
ム］をクリックして、［TCPストリームを追跡］
ウィンドウ（図20）を表示します。前述のとおり、
赤は接続した側（192.0.2.100）が送信した情報

 ▼図19　 No.840パケットを含む接続の［TCPストリームを
追跡］ウィンドウ

 ▼図18　 No.433パケットを含む接続の［TCPストリー
ムを追跡］ウィンドウ

110 - Software Design Jul. 2017 - 111

Jamesの挑戦状！　Wireshark実践問題 第10回

で、青は接続された側（192.0.2.2）が送信した
情報になります。
　内容を見るとWiresharkが正しく表示できず
に所々文字化けしていますが、攻撃者
（192.0.2.100）から標的（192.0.2.2）のバックド
ア（4444/tcp）宛にさまざまな文字列が送信さ
れていて、その文字列がコマンドとして標的
（192.0.2.2）にあるWindowsのコマンドプロン
プトで実行されていることがわかります。
　あとは［TCPストリームを追跡］ウィンドウ
の赤で表示されている文字列を調べれば、攻撃
者がバックドアに接続して実行したコマンド
がわかります。
　ちなみに攻撃者が実行したコマンドを順に
見ていくと、次のように動いていたことがわ
かります。

❶ipconfigで侵入したサーバが接続されて
いるネットワークを確認

❷whoami /userでコマンドを実行する標的
側ユーザを確認

❸cd /でCドライブ直下に移動
❹dirでCドライブ直下にあるファイルや
ディレクトリを確認

❺cd inetpubでinetpubに移動
❻dirでinetpub直下にあるファイルやディ
レクトリを確認

❼ cd wwwroot で wwwroot（IIS の Web 用
ディレクトリ）に移動

❽dirでwwwroot直下にあるファイルやディ
レクトリを確認

❾ echo Hacked by James > index.html
でwwwroot直下にあるindex.htmlを改ざん

　さらにNo.43のパケットでTCPストリー
ムの追跡を行うと、［TCPストリームを追跡］
ウィンドウ（図 21）の内容から、攻撃者は
index.htmlを改ざんしたあとに標的（192.0.2.2）
の80/tcpにWebブラウザで接続して、コン
テンツを改ざんできているか確認しているこ
とがわかります。

おわりに

　今回は Jamesの挑戦状ということでWire

sharkについての問題に挑戦していただきまし
たが、いかがでしたでしょうか。本誌2014年
11月号から連載をスタートして、ふと気付い
たら第10回になりましたが、いまだに紹介で
きていない機能や使い方がWiresharkにはたく
さんあるので、引き続き本連載で取り上げて解
説していきたいと思います。ﾟ

 ▼図20　 ［TCPストリームを追跡］ウィンドウで攻撃者の行
 動を追跡

 ▼図21　 コンテンツを改ざんできているかを確認する攻
撃者

112 - Software Design

　前回は「失われた事実」と題して、保存するデー
タ設計の重要性を説明しました。今回は「やりす
ぎたJOIN」として、RDBだからこそ陥るJOIN

の罠を説明します。

やりすぎたJOIN

　RDBは前回でもお話したとおり、リレーショ
ナルモデルに沿って設計・正規化することが大
事です。そして、そのように作ったデータベー
スから正しいデータを取り出すには、必ずJOIN

が必要になります。しかし、正規化を正しく利
用した設計がされていないと、ボトルネックに
なりやすいのもJOINの特徴の1つです。
　JOINの機能はRDBMSによって異なるため、
今回はOSSのRDBMSを題材に解説します。

　　 事の始まり

　社会人3年目のKさんはSQLが大好き。

Kさん：集計のSQL、今は2個になってるけど
こうすれば……1個のSQLにできる！　よー
し、この改善で不要なクエリを1つ減らせたぞ！
これを今のバッチと差し替える前に本番で実行
してみよう。………あれ、終わらない？

　実行直後、監視システムからDB負荷に関す
るアラート通知が飛んできた。それに合わせ、
飛んできたかのような勢いで先輩エンジニアの
Tさんが現れる。

Tさん：今すぐそのクエリを止めるんだ！
Kさん：あっ……すみません。わかりました。

　実行中のクエリを止めることで負荷がみるみ
る下がり、アラートは収まった。

Kさん：すみません、SELECT文なので大丈夫
かと思って本番で実行しました。staging環境で
動作確認もしましたし……。
Tさん：ちょっとクエリ（リスト1）を見せてくれ
る？　やりたいことは、指定した合計単価以上
の会員の組み合わせを取り出したいだけだよね？
それには不要なテーブルのJOINが多すぎるな。
実行計画を見てみると単価表の会員 idには
INDEXがないね。不等号のJOINだからなおさ
らINDEXが必要だ。WHERE句の前にONで絞
り込むことでタスクテーブルは小さくできるね。
……ほかにも修正点があるから、ちょっとJOIN

について説明しよう。
Kさん：はい、お願いします！

PostgreSQLとMySQLの失敗と対策

　本連載では、開発の現場で発生しやすいリレーショナルデータ
ベース（RDB）全般の問題をRDBアンチパターンとして紹介し
ていきます。今回のアンチパターンの主人公は、JOINを駆使
して集計のSQL文を改修中の社会人3年目エンジニア。

 Author 曽根 壮大 （そね たけとも）　㈱はてな　 Twitter @soudai1025

やりすぎたJOIN第 回3

112 - Software Design Jul. 2017 - 113

・INNER JOIN注1

SELECT
 会員.名前 AS 会員名
 , 都道府県.名前 AS 出身県
FROM
 会員
 INNER JOIN 都道府県
 ON 会員.出身県id = 都道府県.県id

　また、JOINは集合の和の結果ですので、ベン
図でよく表現されます（図2）。このように、重な
り部分だけを取得するのがINNER JOINです。

そのほかのJOIN
　JOINにはほかにもいくつか種類がありま

す（図3）。実務でよく使うのは、LEFT OUTER

JOINとRIGHT OUTER JOINの2つです。

・LEFT OUTER JOIN 注2

SELECT
 *
FROM
 会員
 LEFT OUTER JOIN 都道府県
 ON 会員.出身県id = 都道府県.県id

・RIGHT OUTER JOIN 注3

SELECT
 *
FROM
 会員
 RIGHT OUTER JOIN 都道府県
 ON 会員.出身県id = 都道府県.県id

　ベン図の内、すべてを取ってくる JOINを

　　 JOINの特性

代表的なINNER JOIN
　アンチパターンの分析の前に、まずはJOIN

の特性について説明します。JOINはその名のと
おり、テーブルとテーブルの結合です。
　代表的なJOINであるINNER JOINを使った
次のSQLを実行した場合のイメージは、図1の
とおりです。

 ▼リスト1　Kさんが作ったクエリ

SELECT
 単価表1.単価 AS 単価1
 , 会員1.会員id AS 会員1id
 , 単価表2.単価 AS 単価2
 , 会員2.会員id AS 会員2 id
FROM
 単価表 AS 単価表1
 INNER JOIN 単価表 AS 単価表2
 ON 単価表1.単価id < 単価表2.単価id
 AND 単価表1.会員id <> 単価表2.会員id
 INNER JOIN 会員 AS 会員1
 ON 単価表1.会員id = 会員1.会員id
 INNER JOIN 会員 AS 会員2
 ON 単価表2.会員id = 会員2.会員id
 INNER JOIN 都道府県 AS 都道府県1
 ON 会員1.出身県id = 都道府県1.県id
 INNER JOIN 都道府県 AS 都道府県2
 ON 会員2.出身県id = 都道府県2.県id
 INNER JOIN 会社 AS 会社1
 ON 会員1.会社id = 会社1.会社id
 INNER JOIN 会社 AS 会社2
 ON 会員2.会社id = 会社2.会社id
WHERE
 (単価表1.単価 + 単価表2.単価) > :合計単価;
AND 会社1.会社名 = '株式会社 そーだい'
AND 会社2.会社名 = '株式会社 そーだい'

 ▼図1　INNER JOINを使ったSQLの実行イメージ

会員
ユーザ id 名前 性別 出身県 id

1 山田太郎 男性 1

2 山田花子 女性 2

会員名 出身県
山田太郎 北海道
山田花子 青森

都道府県
県 id 名前 ふりがな

1 北海道 ほっかいどう
2 青森 あおもり
3 岩手 いわて
4 宮城 みやぎ
5 秋田 あきた

注1） INNERを省略して単に JOINと書くこともできる。
注2） OUTERを省略してLEFT JOINと書くこともできる。
注3） OUTERを省略してRIGHT JOINと書くこともできる。

 ▼図2　 INNER JOINを使ったSQL
をベン図で表現

会員　 　　都道府県

ここを抽出

やりすぎたJOIN第 回3

114 - Software Design

JOINの問題点
　ベン図が図5のように増えていくとどうでしょ
う？　3つの重なりを調べる場合は、次のよう
にテーブルを調べる必要があります。

AとB／AとC／BとC

　さらに4つになると、次のとおりです。

AとB／AとC／AとD／BとC／BとD／CとD

　このように指数関数的に増加します。JOINの
回数が増えると急激に重くなるのがJOINの特
徴の1つです。
　また、JOINは掛け算と言われます。テーブル
スキャンの場合、100行と100行のJOINの場合
は10,000行のテーブルスキャン相当ですが、
10,000行と10,000行ではなんと100,000,000行
です。
　このように、JOINはSQLの処理の中でもっ
とも重い処理の1つと言えるでしょう。しかし

FULL OUTER JOINといいます。

・FULL OUTER JOIN注4

SELECT
 *
FROM
 会員
 FULL OUTER JOIN 都道府県
 ON 会員.出身県id = 都道府県.県id

　MySQLはFULL OUTER JOINをサポート
していないため、次のようにRIGHT JOINの結
果をLEFT JOINの結果とUNIONすることで
表現します。

SELECT
 *
FROM
 会員
 LEFT OUTER JOIN 都道府県
 ON 会員.出身県id = 都道府県.県id
UNION
SELECT
 *
FROM
 会員
 RIGHT OUTER JOIN 都道府県
 ON 会員.出身県id = 都道府県.県id

　そのほかにも、次のようにして差の部分を抽
出することができます（図4）。

SELECT
 *
FROM
 会員
 LEFT OUTER JOIN 都道府県
 ON 会員.出身県id = 都道府県.県id
WHERE
 都道府県.県id IS NULL

 ▼図3　そのほかのJOIN

LEFT OUTER JOIN

会員 都道府県

FULL OUTER JOIN

会員 都道府県

RIGHT OUTER JOIN

会員 都道府県

 ▼図4　重複部分を除去

重複の部分を除いて抽出

会員 都道府県

注4） OUTERを省略してFULL JOINと書くこともできる。

PostgreSQLとMySQLの失敗と対策

114 - Software Design Jul. 2017 - 115

ながら、多くのRDBMSに
はこの重い処理を高速に処理
するための工夫がたくさんあ
ります。たとえば、100行と
「一意な INDEXが貼られた
100行」の場合は、100行 +

（100×1）行となり200行相
当です。INDEX1つでこの
ように大きく計算結果が変わ
るのです。次は、JOINの高
速化についてみてみましょ
う。

 JOINのアルゴリズムの
種類

　JOINの高速化のコツを知
るためには、JOINのアルゴ
リズムを知る必要がありま
す。RDBで使われるJOINの
アルゴリズムには、おもに次
の3つがあります。

・Nested Loop Join（NLJ）
・Hash Join
・Sort Merge Join

　それぞれの動作をまとめる
と図6～図8となり、特徴を
まとめると表1となります。
図の見方ですが、ループの元
になるテーブルが「外部表」
（この場合は会員テーブル）、
ループの先になるテーブルが
内部表（この場合都道府県
テーブル）となります。また
外部表は、別名「駆動表」とも
呼ばれます。
　一言にJOINと言っても、
大きく異なる3種類のアルゴ
リズムがあるのです。また注
意点として、PostgreSQLは

 ▼図5　増えるベン図

C D

3つの重なり

A B

C

4つの重なり

A B

 ▼図6　NLJの動作

都道府県（内部表）
県 id 名前 ふりがな

1 北海道 ほっかいどう
2 青森 あおもり
3 岩手 いわて
4 宮城 みやぎ
5 秋田 あきた

1行ずつループして処理をする

会員（外部表）
ユーザ id 名前 性別 出身県 id

1 山田太郎 男性 1

2 山田花子 女性 2

 ▼図7　Hash Joinの動作

会員（外部表）
ユーザ id 名前 性別 出身県 id

1 山田太郎 男性 1

2 山田花子 女性 2

都道府県（内部表）
県 id 名前 ふりがな

1 北海道 ほっかいどう
2 青森 あおもり
3 岩手 いわて
4 宮城 みやぎ
5 秋田 あきた

一度に全件を読み込んで処理する
　①小さい表を全件読み取って
　　Hash表を作成
　②大きい表の結合列を
　　Hash表の値と比較して結合
　③両テーブルを1回ずつ全件読み取り

ハッシュ
表

 ▼図8　Sort Merge Joinの動作

会員（外部表）
ユーザ id 名前 性別 出身県 id

1 山田太郎 男性 1

2 山田花子 女性 2

都道府県（内部表）
県 id 名前 ふりがな

1 北海道 ほっかいどう
2 青森 あおもり
3 岩手 いわて
4 宮城 みやぎ
5 秋田 あきた

全件をソートして上から順に比較する
　①2つの表の結合キーでソート
　②ソート後は、上から順に
　　値を比較して結合

マッチング

やりすぎたJOIN第 回3

116 - Software Design

用意に多段JOINをした」ということになります。
　まずJOINの特性を知れば、大きなテーブル
のJOINについては注意を払いますし、INDEX

の活用場所も見えてきます。Kさんが書いたク
エリを書き直した場合の例ですと、リスト2の
ようなクエリになります。このクエリは、条件
に関係なかった都道府県テーブルを排除し、単
価表の計算を行ったあとに、そのテーブルに対
して絞り込んだ会員テーブルをJOINしていま
す。これにより、複数回行っていた会員テーブ
ルや会社テーブルのJOINを最低限にしていま
す。また単価表テーブルの会員 idには INDEX

3種類の JOINをサポートしていますが、
MySQLはNLJしかサポートしていません。
PostgreSQLはMySQLに比べ、大きな2つの表
のJOINや不等号を使ったJOINが得意と言えます。
　しかし、MySQLはJOINが苦手かと言われれ
ば一概にはそうではなく、表の説明にもあると
おり、内部表に適切な INDEXがあり、小さな
外部表をもとに等号で結合する場合は、非常に
高速に処理できます。MySQLはNLJの特徴を
より活かした設計が得意と言えるでしょう。

　　 問題点

　今回のアンチパターンには、ここまで紹介し
てきたJOINの特性をふまえると次のような問
題があります。

・JOINに対する不理解
・多段JOINと不要なJOIN
・JOINの内部表にINDEXがない

　これらはパフォーマンスに直結します。
staging環境などのデータが小さい場合は問題が
なくても、本番環境の大きなデータではサービ
スに影響を与えるほど大きな負荷になることも
あります。また、最初のリスト1を見てわかる
ように複雑なクエリ（スパゲッティクエリ）の要
因になります。

　　 このアンチパターンのポイントと対策

　今回のアンチパターンは「JOINを知らずに不

アルゴリズム 特徴

NLJ

・内部表の結合キーの列に利用できる INDEXがある場合、ループ数を省略できるため外部表
が小さいほど高速になる

・内部表の結合キーが一意の場合は内部表対象レコードを絞りこめるため、より高速になる
・1レコードずつ確定するので、確定したレコードはレスポンスとして返すことができる

Hash Join

・「外部表が大きい場合、または内部表の対象件数が多い場合」と「結合条件の索引がなく、
テーブルのフルスキャンが必要な場合」ではNLJより有利

・Hash表を作成さえすれば結合は非常に高速だが、Hash表の作成・保存ができるだけの十
分なメモリが必要

Sort Merge Join

・ソートに用いる索引が作成されていると高速化できる
・Hash Joinと同様に表の大部分を結合する場合に有効
・Hash Joinと違い、等値結合だけでなく不等式（<、>、<=、>=）を使った結合にも利用できる
・INDEXが活用できる場合はHash Joinより速い場合もある

 ▼表1　JOINの3アルゴリズムの特徴

 ▼リスト2　リスト1を書きなおし

SELECT
 単価表1.単価 AS 単価1
 , 単価表1.会員id AS 会員1id
 , 単価表2.単価 AS 単価2
 , 単価表2.会員id AS 会員2id
FROM
 (
 SELECT
 単価表1.単価 AS 単価1
 , 単価表1.会員id AS 会員1id
 , 単価表2.単価 AS 単価2
 , 単価表2.会員id AS 会員2id
 FROM
 単価表 AS 単価表1
 INNER JOIN 単価表 AS 単価表2
 ON 単価表1.単価id < 単価表2.単価id
 AND 単価表1.会員id <> 単価表2.会員id
 WHERE
 (単価表1.単価 + 単価表2.単価) > :合計単価
) AS 単価組み合わせ表
 INNER JOIN 会員
 ON 会員.user_id = 単価組み合わせ表.会員1id
 AND 会員.user_id = (SELECT 会社id FROM ｭ
会社 WHERE 会社名 = '株式会社 そーだい')

PostgreSQLとMySQLの失敗と対策

116 - Software Design Jul. 2017 - 117

すが、再作成のときにテーブルの作りなおしが
不要で、共有ロックのリフレッシュのみで良い、
などのメリットがあります。SQL Serverなど
の商用DBでは有料機能ですが、PostgreSQL

では9.3以降から無料で使えますので、Postgre

SQLをお使いの方はぜひお試しください。
　それでは、今回のアンチパターンの対策ポイ
ントをまとめます。

・JOINは必要最低限
・INDEXを適切に活用する
・JOINするテーブルは小さくしてからJOINする
・複雑なクエリになった場合はViewを活用する

　これらの点をふまえて、JOINを有効活用しま
しょう。読者のみなさんへの注意点として、JOIN

に対して間違った認識を行い「重い処理だから
JOINは禁止！」などのルールを作ってしまうと、
逆にN+1問題の温床になったり、無駄なクエリ
を発行することになります。繰り返しますが、
「JOINはRDBを使ううえで必要な機能」ですの
で、正しく理解したうえで有効活用をしましょう。
　またJOINにおけるINDEXの挙動に関しては
@yoku0825さんのスライド「Where狙いのキー、
order by狙いのキー」 注5が非常に参考になりま
す。MySQLの話ですが、MySQL使い以外の人
にもとてもわかりやすく、応用が利く話ですの
でぜひ見てみてください。

次回のRDB
アンチパターン

　今回のRDBアンチパターンはいかがでしたで
しょうか？　JOINの話題の中でも、INDEXの
重要性についてご理解いただけたかと思います。
次回はそんなRDBの主役の1人、INDEXの話
題です。今まで使っていた INDEXが急に効か
なくなったなど、RDBのパフォーマンスに直結
のテーマです。次回の「効かないINDEX」もお楽
しみに！ﾟ

を追加することで、データが大きくなった際に
はSort Merge Join に効いてきます。
　しかしこのクエリは、わかりやすいクエリと
言い難いのが正直なところです。このような場
合は、Viewを活用するとシンプルになります
（リスト3）。JOINの回数を減らして高速化でき
たうえに、シンプルになりました。この例では
単価組み合わせ表を汎用的に使うために単価合
計での絞り込みを外に持ってきました。Viewを
活用することでスパゲッティクエリを防ぐこと
もできますので、テクニックとして覚えておき
ましょう。
　さらに、単価表の更新が少ない場合や更新が
1日1回で良い場合などは、集計結果を別テーブ
ルとして保存することでViewのようにクエリを
シンプルにしつつも、計算結果を実体として持っ
ていますので高速に参照できます。
　また、このようにSQLの結果を実体のある
Viewにする機能としてマテリアライズド・
ビューがあります。マテリアライズド・ビュー
はクエリの結果のテーブルを作ることと一緒で

 ▼リスト3　リスト2をViewを使って書きなおし

CREATE VIEW 単価組み合わせ表 AS
SELECT
 単価表1.単価 AS 単価1
 , 単価表1.会員id AS 会員1id
 , 単価表2.単価 AS 単価2
 , 単価表2.会員id AS 会員2id
 , (単価表1.単価 + 単価表2.単価) AS 単価合計
FROM
 単価表 AS 単価表1
 INNER JOIN 単価表 AS 単価表2
 ON 単価表1.単価id < 単価表2.単価id
 AND 単価表1.会員id <> 単価表2.会員id

SELECT
 単価組み合わせ表.単価1 AS 単価1
 , 単価組み合わせ表.会員1id AS 会員1
 , 単価組み合わせ表.単価2 AS 単価2
 , 単価組み合わせ表.会員2id AS 会員2
FROM
 単価組み合わせ表
 INNER JOIN 会員
 ON 会員.user_id = 単価組み合わせ表.会員1id
 INNER JOIN 会社
 ON 会員.会社id = 会社.会社id
 AND 会社.会社名 = '株式会社 そーだい'
WHERE 単価合計 > :合計単価

注5） URL https://www.slideshare.net/yoku0825/where
order-by/

やりすぎたJOIN第 回3

https://www.slideshare.net/yoku0825/whereorder-by/

118 - Software Design

　大阪を中心に20年間システム開発に携わった
あと、現在は東京で仕事をしている「SQLの伝
道師」ことジーワンシステムの生島です。
　「生島さん、ちょっとお尋ねしたいんですけ
ど！」
と、当連載では久しぶりに登場の五代さんが、
私の顔を見るなり大きな声で呼びかけてきまし
た。
　「経緯は僕から説明します」という大道君に話
を聞いてみると図1のようなことでした。
　「ははあ、よくいるJOIN禁止論者ですね。率

帰ってきた JOIN禁止論
直に言って『a．原因不明のトラブル』っていうの
はアンタの技術力がないだけやろ、という感じ
ですし、b．のほうも単に設計が悪いだけでしょ
う。c．はコストの考え方が間違っていると思い
ますね」
　ちなみにb．については、本来は「そもそも
RDBMSで処理すべきなのか？」から考えるべき
です。ドキュメント型やグラフ型など、データ
構造が本質的にテーブル型ではないシステムを
作るにはそもそもSQLは向いていないので、た
とえばブログや画像、動画サイトなどのコンテ
ンツ部分はNoSQLに向いています。最初は手
慣れたRDBで試作するけれど将来はNoSQLに
移行するといった見込みがあるならJOINなし

生島氏
DBコンサルタント。性
能トラブルの応援のた
め大道君の会社に来た。

大道君
浪速システムズの新米
エンジニア。素直さと
ヤル気が取り柄。

五代氏
大道君の上司。プロ
ジェクトリーダーで
もある。

登
場
人
物

紹
介

 原案 生島 勘富（いくしま さだよし） info@g1sys.co.jp ㈱ジーワンシステム
 構成・文 開米 瑞浩（かいまい みずひろ）　 イラスト フクモトミホ

開発現場でたまに目にする JOIN禁止ルール。システムのスケールアウトがしにくくなる、性能を悪化させるなど
のデメリットが禁止のおもな理由です。しかし、そのデメリットに根拠はあるのでしょうか？　回避はできない
のでしょうか？　技術者ならデメリットにおびえるのではなく、うまく回避してメリットを享受しましょう。

JOINのロックが怖くて飯が食えるか !!第17回

 ▼図1　JOIN禁止の理由

（1）一部の協力会社の技術責任者が、強硬にJOIN禁止の方針を出していて困っている

（2）JOIN禁止の理由は次の3つ
a．原因不明のトラブルを起こしやすい
b．将来ユーザが増えたときにスケールアウトしにくい
c．以上の悪影響によりJOINを使うとコスト高になる

（3）ちょうど折悪しく、OracleからMySQLに移行しようとしているプロジェクトの案件でJOINがらみの部
分でトラブルが起きたことも彼の主張を後押ししてしまった

118 - Software Design Jul. 2017 - 119

という方針でも良いでしょうが、将来に渡って
RDBMSを使うならJOINを使いながらスケー
ルアウトを効かせる方法はあります（当連載第
10回注1で紹介）。つまり、きちんと設計してお
けばスケールアウトに対応するのは容易で、そ
のほうがトータルコストは小さくなります。
　「やはり生島さんはそう思われますよね。そこ
で、とくにコストについての考え方を一度きち
んと整理しておきたいんですわ」
　「なるほど、わかりました。でも、（3）のトラ
ブルっていうのはなんですか？　そこが解決し
なければそのJOIN禁止派さんがますますドヤ
顔になりそうですね」
　「いや、それがまだなんですよ……」
　「じゃあ、そっちからやりましょうよ」

　ということで調べてみたところわかったのは、
ECシステムの注文処理時に、「在庫があったら
引き当てて注文を確定し、なかったらロールバッ
クする」という処理で性能劣化およびデッドロッ
クが多発していたということでした。そこで使
われていたのはリスト1のようなSQL文です。
　「いわゆる『ぐるぐる系』じゃないです。普通に
JOINを使って読んでいるんですが……」
　「この-- z.在庫数というコメントが気にな
りますね。これ、OracleからMySQLに移行し
たと言っていましたよね？」

注1） 本誌2016年12月号。

MySQLではロックの粒度
が粗くなる？

　「そうです。もともとはOracleでした」
　「ははあ、それで読めた。MySQLではロック
の粒度が違うことによる問題でしょうね、これ
は」
　「どういうことですか？」
　言うまでもなく、ロックというのはシステム
の中の1つしかないリソースを多数のプロセス
（スレッド）が同時に使おうとしたときに発生す
るもので、1つのプロセスが占有すると残りは
それが解放されるまで待たされるため、レスポ
ンスタイムの悪化を引き起こします。この種の
現象は同時ユーザ数やデータ量が増えたときに
起こりやすく、逆に言うと常に再現するわけで
も不正なデータが残るわけでもないため、「原因
不明のトラブル」として受け止められやすいもの
です。
　「実はOracleとMySQLではこのSQLでの
ロックの動きが違うんよ。それで、MySQLに
移行したら問題が起きたんやろね」
　「それはひょっとして-- z.在庫数というコ
メントが関係あるんですか？」
　「そのとおり。実はMySQLではSELECT文
でFOR UPDATE z.在庫数という構文が使えな
い。だから、移行するときにもともと入ってい
たz.在庫数を削ってコメントにして残しておい
たんやろ。それで文法的には通るようになった
けれど、ロックで問題が起きたというわけや」

JOINのロックが怖くて飯が食えるか !!第17回

BEGIN

SELECT *
 FROM 在庫数 z
 INNER JOIN 製品マスタ p
 ON z.製品ID = p.ID
 （他、いくつかのマスタ）
 WHERE
 z.製品ID = ?
 FOR UPDATE ; -- z.在庫数

 ▼リスト1　性能劣化を招いていたSQL文

120 - Software Design

サブクエリ化でロック範囲を制
限する

　OracleとMySQLでのロックの違いを簡単に
書くと図2のようになります。OracleではFOR
UPDATEのあとにテーブル名.カラム名を指定す
ることでロックの範囲を狭くすることができま
すが、MySQLではできません。
　「じゃあ、これはOracleからMySQLに移行
するときに起こりやすい問題なんですか」
　「そういうことやね。で、これを回避するには
SELECT文をリスト2のようなものに変えてや
ればいい」
　「いったんサブクエリを使うことで、FOR
UPDATEの範囲は在庫数テーブルだけだよという
ことを教えてやるんですか」
　「そういうこと。こうしても実行計画は素直に
JOINしたのと同じになるからパフォーマンス
は変わらない。ロック範囲が狭くなるだけ」
　そう聞いて実際に実行計画を調べてみる大道

君。
　「本当ですね、変わらないですね！」
　「そんなわけで、下手な使い方をしたら、そ
りゃあいろいろと問題起こしますけど、それを
『a．原因不明のトラブル』と呼ぶのは単にSQL

を知らな過ぎ、技術力がないということだと思
いますよ」

デッドロックの発生パターン

　「ついでにもうひとつ教えてください。単に同
時競合だったら性能は落ちても動くと思うんで
すけど、デッドロックというのはどうして起こ
るんですか？」
　「そういう場合はこいつを見てくれ」
　図3が典型的なデッドロックの発生パターン
です。プロセスが2つあり、どちらもリソース
AとBを使いますが、プロセス1はA→B、2は
B→Aとそれぞれ違う順序で排他的ロックをか
けようとしています。リソース側の「L」はロッ

クされた状態、「F」は解放された状
態を表します。
　「ここで実行のタイミングがたま
たま『1がAをロック→ 2がBを
ロック』という順序で進むとどうな
る？」

テーブルA テーブルB テーブルZ テーブルP

複数のテーブルをJOINして、その1つをアップデートする処理をOracleと
MySQLで行う場合、たとえばテーブルZをアップデートするとき

MySQLのほうがロック範囲が広いため、同時競合が起こりやすい

Oracleでは

テーブルZの行のみが
ロックされる

MySQLでは

テーブルA～Pまで、
JOINしているすべての行が
ロックされる

更新対象

 ▼図2　OracleとMySQLのSELECT ～ FOR UPDATE

SELECT *
FROM
 (SELECT * FROM 在庫数 z WHERE z.製品ID = ? FOR UPDATE) z
 INNER JOIN 製品マスタ p
 ON z.製品ID = p.ID
 （他、いくつかのマスタ）;

 ▼リスト2　FOR UPDATEでのロック範囲限定方法（MySQL向け）

120 - Software Design Jul. 2017 - 121

　「あ……その時点でAB両方がロックされた状
態になって、その後もうひとつのリソースをロッ
クしようとすると解放されるまで待たされて……
お互い相手を待ってて止まってしまうわけです
か」
　「そういうこと」
　デッドロックはタイミング依存の障害ですか
らテストでは発見しにくく、実運用に入って負
荷が上がったところで起きるため、開発者にとっ
てはやっかいな問題です。この1年、よく勉強
してきた大道君でも知らなかったように、RDB

での開発経験の長いエンジニアでもわかってい
ないことは珍しくありません。
　「ということは……プロセス1と2がどちらも
A→Bの順番でロックをかけるように作ってい
れば、これは発生しないんですか？」
　「そう、それがデッドロック回避の一番の基本
やね。それにはDBへのアクセスシーケンスを
きっちりと管理する必要があって、そのために
もDB担当とUI担当を分けるAPIファースト開
発をしたほうがいいんよ」

　そこで五代さんがおもむろにつぶ
やきました。
　「今回みたいに一応技術リーダー
をやっている人間にJOINのデメ
リットを説明されると、そういうも
のかと思ってしまいますけど、単に
回避する方法を知らないだけなんで
すかねえ」
　「少なくとも、デメリットがある
から使わない、というのはおかしい
ですよね。新しい技術にはデメリッ
トはあるに決まっています。それを
上回るメリットがあるから使われる
ので、デメリットは防ぐ方法を講じ
ればいいだけです」
　新しい問題には新しいテクノロジ

回避できるデメリットは
デメリットではない

が作られるものです（図4）。何十年もの歴史が
あるRDBを「新しいテクノロジ」と呼ぶのも変な
ものですが、現代でも手続き型言語からプログ
ラミングを覚えた人にとっては、集合指向のパ
ラダイムで作られたRDBは「新しいテクノロジ」
と言えるでしょう。新しいテクノロジにはそれ
ぞれ特有のメリットもデメリットも複数あるも
ので、それを活かす方法も防ぐ方法もきちんと

JOINのロックが怖くて飯が食えるか !!第17回

プロセスの進行

プロセス
1

Aロック獲得

B解放待ち

プロセス
2

Bロック獲得

A解放待ち

リソースのロック状態

リソース
A

リソース
B

F

L

F

L

 ▼図3　典型的なデッドロックの発生パターン

122 - Software Design

学ばなければ有効には使えません。それをきち
んと学んでいない人間はデメリットを過大評価
／メリットを過小評価して「新しいテクノロジを
使わないことを正当化」していることがありま
す。JOIN禁止というのもそれに類する主張と思
われます。

　「ところでコストの考え方についてなんですけ
ど」
　「コストというのも、パターンがいろいろある
やないですか。定常的にかかる費用がいくらで
一時的にかかるのがいくら、そしてそれをどの
程度正確に読めるのか？　そのへんの相場観が
わからんのですわ」

JOINを使うと高コストに
なる？

　「一理あるのは、図1の（2）のb、『スケールア
ウトしにくい』というのは必ずしも嘘とは言えな
い。JOINを使っていると、DBサーバが1台で
済まなくなって分散させるときにはちょっと手
間がかかる。ただ、最初からそれを想定して設
計しておけば大したことはない。つまり知って
いれば回避できるわけや！」
　「そういうことなんやね」
　「まあ、コストを『大したことない』とか『ちょっ
と』とか定性的に言うのは難しいけど、傾向とし
ては図5のようなイメージになる、私の意見と
しては」
　「JOINを使ったほうがサーバは少なく済むん
ですか？」
　「JOINをしようがしまいが、必要なデータは
取ってこなきゃいけない。それをJOINして取

新しい
問題

新しい
テクノロジ

メリット1
メリット2
メリット3

活かす方法

デメリット1
デメリット2
デメリット3

防ぐ方法

これを学んで
使うのが
エンジニアとして
正しい姿勢

 ▼図4　「デメリットがあるから使わない」というのはエンジニアにとって正しい姿勢ではない

JOINを使う場合：
最初にサーバ分散をするときの出費が大きいが、平均的には低い

ギャップ大

DB 1台 DB 2台

JOINを使わない場合：
突出した出費はないが、コンスタントに高くかかる
必要なサーバ数も多い

DB 1台 DB 2台 DB 3台

 ▼図5　JOINを使う場合と使わない場合のコスト・パターン

122 - Software Design Jul. 2017 - 123

るとその瞬間は負荷が高くても1発で済むのに
対して、分割して取ると低い負荷が何度もかか
るので結局トータルではかえって重くなる（DB

サーバとは別のキャッシュを使っている場合を
除く）」
　「JOINしたほうが出費が平均的には低い、と
いうのはサーバ台数が少ないから？」
　「プログラムが単純になるので開発／保守工数
が低く済むし、もちろん、全般にサーバ負荷も
減るから、台数を減らせるという理由もある。
JOINを使うほうがDB/Web/APサーバともに
スケールアウトを迫られる時期が大幅に遅く（台
数は少なく）済むからね。従量制でCPU課金さ
れるようなクラウドを使っている場合、コスト
の差はもっと顕著に出るね」
　「サーバを増やすときのギャップがエライ違い
ますね？」
　「JOINを使っていると、2台以上に増やすと
きにプログラムの改修が必要になるのでギャッ
プが大きいんですよ。といっても、スケールア
ウトを予想してJOINを避けるなら、最初から
JOINしながらスケールアウトするように設計
しておけば回避できます」
　この件は当連載第10回で触れた「マスタのコ
ピーを作る」という方法です。
　「JOINを使わない場合もサーバを増やすとき
に少し工数がかかりますか……」
　「そこはどうしても、物理サーバでも仮想サー
バでも、機材の設置や設定変更、分散範囲の切
り分けに多少の作業が発生するからね。プログ
ラムの改修ではないから単純な作業で済むけど」
　「ふむ……」

人は知らないことは不安に思う
もの

　考え込む五代さんに私のほうから聞いてみま
した。
　「もしこれが実際のコスト・パターンだとした
ら、経営者の視点ではどちらが望ましいです
か？」
　「そうですね、お金というのは結局総額でいく

らになるかが問題ですから……図5で言えば面
積が小さいほうが安くつくわけですから、JOIN

を使うべきやろね……」
　「私もそう考えるんですけど、実際にその選択
をしようとしたときに何か不安に感じることは
ありますか？」
　「もちろん、ギャップの大きさは気になります
わ。本当にこれで済むのかどうか。実際やって
みたらこの5倍かかりましたとか、改修でバグ
を出してサービスが止まりましたとか、そうい
う事態が起きへんかという不安は感じますね」
　「あ、そうなんですね。実は私は逆で、JOIN

を使ったときのギャップは最初からそう設計し
ておくことでこの図の半分とか1/4まで落とせ
る見込みで考えますし、JOINを使わないほうは
プログラムが複雑化しますんで、開発／保守コ
ストがもっと膨らむんじゃないかと、そっちの
ほうを心配しますね」
　「あ、そっちですか。うーん……人間、知らな
いことは不安に感じるってことですかね、それ
は。今回JOIN禁止を言ってきた人も、実はSQL

をよく知らないからギャップが大きく見えてる
だけなのかなあ……」
　「やっぱりちゃんと勉強しなきゃダメなんです
ね」とつぶやいた大道君のほうを見て、五代さん
は少し考え込んだあと、言いました。
　「JOINを使うほうが経営的にはメリットがあ
りそうなことはわかりました。ただ、そのメリッ
トを得るためには、ちゃんとSQLがわかる技術
責任者を確保しなきゃいけないってことですよ
ね？」
　「そうなりますね」
　「これはうちの人事戦略にかかわる問題ですな
……いつも生島さんを頼れるわけじゃないです
から、中途で雇うか社内で育てるか、いずれに
しても社内の技術力を上げなきゃいけない。そ
れを会社の方針にして社長レベルからの働きか
けで、技術に対して取り組む姿勢を変えていか
んといけませんね。ということで……これから
もご協力ください！　大道君も、頼むで！」｢

JOINのロックが怖くて飯が食えるか !!第17回

124 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

　連載後半「仮想ネットワーク環境で使ってみ
よう～現実的な使い方」の8回目です。
　前回（本誌2017年6月号）は仮想環境の運用
管理で必要となる各種管理ツールの利用方針な
どを解説しましたが、今回はその具体的な実装
例のポイントについて解説します。一般的な利
用者管理APIのWebブラウザやセキュリティ
ツールでWebサーバと仮想環境運用管理イン
フラを経由して、仮想マシンの利用部門がリモー
ト運用管理する具体的な実装例について考えて
いきます。

実装のしくみ

　実装のしくみは、前回にも掲載した図1のよ

うに、「仮想環境運用管理インフラと利用者管
理API」の中の、利用者管理API（ホームペー
ジ）、Webサーバ、そして、仮想環境運用管理
インフラ、を通して仮想マシン環境にアクセス
して運用管理するというものです。
　「仮想環境運用管理インフラ」内では、virt-

installコマンドとvirshコマンドラインツール
により libvirtdデーモンを制御します。

基本的な考え方

　基本的な考え方は、前回までの解説のように、
一般的なアプリケーションインターフェースで
簡単に利用できるようにすること、仮想マシン
の基本的なハードウェア管理（ハードウェア制

仮想化の知識、再点検しませんか？

使って考える
仮想化技術

第14回 仮想環境リモート運用管理の実装例

本連載は「仮想化を使う中で問題の解決を行いつつ、残される課題を整理する」
ことをテーマに、小さな仮想化環境の構築・運用からはじめてそのしくみを学
び、現実的なネットワーク環境への実践、そして問題点・課題を考えます。仮
想化環境を扱うエンジニアに必要な知識を身につけてください。

笠野 英松（Mat Kasano）
オフィス　ネットワーク・メンター

Author

URL http://www.network-
mentor.com/indexj.html

 ▼図1　仮想環境運用管理インフラと利用者管理API（連載第13回 図1再掲）

利用者　　（ネットワーク）

利用者管理API（ホームページ） 利用者
インターフェース

仮想環境
運用管理
インフラ

基本サーバ（ホスト物
理システム内外）Webサーバ

virt-install
コマンド virt-manager

libvirtdデーモン

仮想マシン環境

virsh
コマンドライン
ツール

http://www.network-mentor.com/indexj.html

Jul. 2017 - 125124 - Software Design

仮想環境リモート運用管理の実装例
第14回

起動／強制停止など、（通常の物理システムと
同様の）ハードウェア操作をリモートから行い
ます。

システム管理

　OSのインストールや、電源オン直後の
BIOS設定やシングルモードなど、システムや
ネットワークが稼働していない状態でのコンソー
ルもリモートから操作します。

具体的な実装の構造例

　実装のしくみをブレークダウンすると、いく
つかの考え方がありますが、一般的な構造はた
とえば、図2のようになります。基本的な操作
は、仮想マシンハードウェア管理、仮想マシン
システム管理、そして、一般利用です。

御など）とシステム管理（電源オン直後からのコ
ンソール操作など）を行うこと、です。
　また、リモート運用管理に必要な仮想マシン
の情報データベース（DB）が必要です。

一般的なアプリケーションインター
フェース

　利用部門の技術者が扱いやすい一般的なアプ
リケーションである、WebブラウザやVNCな
どを使うのが基本です。これらを通して運用管
理操作を行えるようにします。これらは一般的
なアプリケーションですので、利用端末はPC

ばかりでなく、携帯端末でも可能になります。

ハードウェア管理

　仮想マシンでのデバイスの着脱やCD/DVD

メディアのセット、電源オン／オフ、システム

※ IPC：Inter-Process Communication（プロセス間通信）

 ▼図2　利用者による仮想マシンのリモート運用管理の実装図

利用者リモート運用管理

Webブラウザ（セキュリティを
考慮したHTTPSによる認証）

VNCビュアー ネットワークAPクライアント

ネット　　ワーク

ネットワーク
APサーバ

仮想マシン
マルチユーザモード

SSLクライアント

仮想マシン
コンソール

仮想マシン
ハードウェア

仮想マシン

SSLトンネル

仮想環境
運用管理インフラ

libvirtdデーモン

virt-install/virsh/
virt-manager

動的
CGI/SSI

管理プロセス

仮想マシンハード
ウェア管理

仮想マシン
システム管理 一般利用

preルーティング
forwardファイアウォール

仮想
マシン
情報
DB

SSLサーバHTTPSサーバ

VNCコンソール ホ
ス
ト
物
理
シ
ス
テ
ム

IPC

126 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

仮想マシンハードウェア管理

　一般的なアプリケーションであるWebブラ
ウザからネットワークを通して、もちろんセキュ
ア通信（HTTPSプロトコル）を使い、Webサー
バ経由で仮想環境運用管理インフラを制御・利
用する、結果を戻す（逆方向）という流れです。

Webブラウザ（HTTPSプロトコル）
　Webブラウザから物理ホストのWebサーバ
に利用者認証を行ってから接続して仮想マシン
のハードウェア制御情報を伝えます。これらは
SSLトンネル経由で行います。
　リモート運用管理のWebページフローは次
のようなものが考えられます。

₁ユーザホームページ

・（処理）ポータルページ
①クライアント証明書の認証とユーザ名／パ
スワードの認証を行う
②正当ユーザのみ受け付け、ユーザ個別ホー
ムページへのリンクを表示

・（下位連携）ユーザ個別ホームページ

₂ユーザ個別ホームページ

・（処理）ユーザメイン画面
①ユーザ名に対応したグローバル IPアドレ
ス注1で相手認証を行い、正当ユーザのみ受付
②それぞれのcapability（権限能力）に対応し
た仮想マシンの制御メニューを表示
③ユーザが選択した操作情報を仮想マシン制
御デーモン・クライアントに渡す

・（メニュー）状態表示、起動、停止、再起動、
OSインストール準備注2、利用者情報、利用ガ

注1） 利用ユーザのユーザ名やグローバル IPアドレスなどのほか、
仮想マシン用デバイス、VNCポート番号／パスワード、利
用OSなどを制御情報として持つ。

注2） インストールOSのフレーム作成とインストール起動。イ
ンストールのオペレーション操作はSSL＋VNCで行う。な
お、このSSL/VNCはサーバ側はstunnelなどのSSLラッパ
からVNCサーバ、クライアント側はSSL＋VNCで行うよ
うにあらかじめ準備しておく。SSLクライアント証明書も
必須。SSL双方向認証によるセキュリティ強化のため。

イドやサポート情報
・（上位連携）ユーザホームページからの入りの
み
・（下位連携）仮想マシン制御

利用者認証
　利用者認証は一般的なホームページの認証管
理「セッション管理」です。いくつかのWebペー
ジを渡り歩く利用になるので、そのセッション
を唯一認識するようにしておかなければなりま
せん（セッション状態の保持）。
　セッション管理としては、セッション IDや
Cookieによりstateful（状態保持）通信を行う方
法が一般的ですが、ここでは認証とセキュリティ
を併用するために、ユーザ ID／パスワードと
証明書（SSL）により入口から入り、次のペー
ジ以降ではその情報＋ IPアドレスとから制御
管理することにします。
　そのためには、運用管理サーバ上でSSL証
明書を作成します（手順は図3）。証明書はサー
バと利用クライアントの両方です。
　HTTPSサーバ設定ファイルで、ユーザ名／
パスワードと証明書チェックの設定をしておき
ます（リスト1）。

※ここではサーバとクライアントの両方の証明書を自己認証局CAを作
成して署名しているが、正式には公的なCAで署名・証明書作成を依頼
する（上記、2-4、2-5、2-6、2-9）。

1. httpd.confのSSL設定

2. SSL証明書の作成
　2-1. サーバプライベートキーの作成

　2-2. 自動起動のためのパスフレーズ問い合わせの除去
　2-3. サーバ証明書作成依頼書の作成（CSR）の作成
　2-4. 自己認証局（CA）プライベート鍵および証明書作成
　2-5. 自己認証局CA証明書のPC用x509変換
　2-6. 自己認証局CA署名によるサーバ証明書作成
　2-7. クライアントプライベート鍵の作成
　2-8. クライアント証明書発行要求（CSR）の作成
　2-9. 自己認証局CA署名によるクライアント証明書の作成
　2-10. クライアント証明書のPC用PKCS#12変換

3. Windowsでの証明書のインポート

 ▼図3　 SSL証明書のサーバ側の設定およびクライ
アントの設定手順

Jul. 2017 - 127126 - Software Design

仮想環境リモート運用管理の実装例
第14回

接続を許可しますが、個別仮想マシンに対応し
た（許可された）リモート運用管理端末の IPア
ドレスに応じてフィルタ許可する必要がありま
す。許可されていないリモート IPアドレスか
らの着信は許可しません（リスト2）。

HTTPSサーバ
　受け取った情報から仮想マシン管理プロセス
のクライアントを起動します。
　クライアント－サーバ間のSSL証明書処理
を行うために、証明書の管理・保存を確実にし

運用管理ホームページ
　最初の入口ページはユーザ ID／パスワード
入力とクライアント証明書確認を行う簡単なユー
ザホームページです（図4～6）。
　後続のページは、入力されたユーザ ID／パ
スワードと接続端末のIPアドレスから、CGI/

SSIで動的に作成して表示し、接続クライアン
トに対応した運用管理ページになります（図7）。
そのため、このときに仮想マシン情報DBが重
要な役を負います。

ファイアウォール
　運用管理のHTTPS接続は物理ホスト上（ま
たは、別の物理ホスト上）のHTTPSサーバに

 ▼リスト1　HTTPSサーバのユーザ名／パスワード設定

 ▼図4　証明書選択

 ▼図6　リモート運用管理ポータルページ ▼図7　リモート運用管理ページ

 ▼図5　ユーザ名／パスワード入力認証

<Directory "/var/www/shtml">
 AuthType Basic
 AuthName "Members Page"
 AuthUserFile /etc/httpd/conf/passwd
 AuthGroupFile /etc/httpd/conf/group
 Require group ugroup

ugroup: wuser10 wuser6 wuser7 wuser8 wuser9

ファイル：passwd
wuser10:QiZwrpBPUCKEY
wuser6:QxoKThqFQTqLg
wuser7:kQfnIx6XqdjQI
wuser8:aIt3qqh1tiSBE
wuser9:Utj66hax1uk1M

 許容ユーザ名

 ユーザ名とハッシング・パスワード

 ファイル：group

 ファイル：httpd.conf

128 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

ておく必要があります。また、セキュリティを
厳しくするために、ユーザ ID／パスワードお
よび証明書の属性情報なども確認チェックが必
要です。

管理プロセス
　HTTPSサーバプロセスはCGIやSSIから管
理プロセスを起動・処理し、その結果を戻しま
す。
　管理プロセスは受信した目的の操作情報を
virt-install/virsh/vairt-managerなどの仮想環
境運用管理インフラに送信します。管理プロセ
スは、HTTPSサーバにより動的に起動され、
制御処理終了後は自分でexitします。なお管理
プロセスは、仮想環境運用管理インフラを操作
するために管理者属性がなければなりません。
　管理プロセスがクライアント－サーバ接続す
る仮想環境運用管理インフラは、通常のサーバ

アプリケーションプロセスのように、口を開け
て待っている状態です。また、管理プロセスと
仮想環境運用管理インフラは、IPC（Inter-

Process Communicaton：プロセス間通信。シ
ステム内）で制御処理と結果返送を行います。
図8は仮想マシンの状態を確認したページです。

仮想環境運用管理インフラ
　仮想環境運用管理インフラでは、virt-inst

all/virsh/virt-managerが libvirtdデーモンに仮
想マシンのハードウェアドライバの制御管理を
行わせます（表1）。

仮想マシンシステム管理

　仮想マシンのコンソール処理には、KVMで
提供されているVNCを使います。ただし、セ
キュリティ保持のためには、SSL上で行う必
要があります。

 ▼リスト2　 リモート仮想マシン管理のためのファイアウォール設定
※外部から仮想ホストへのリダイレクト（外部から物理ホストへの着信の、仮想ネットワークへのリダイレクト）

[192.168.0.8] から[192.168.0.18:20-9999/tcp]への接続は[192.168.122.181]へリダイレクト。
-A PREROUTING -s 192.168.0.8 -i eth0 -p tcp -m tcp --dport 20:9999 -j DNAT --to-destination ｭ
 192.168.122.181
[192.168.0.8] から[192.168.0.18:domain/udp]への接続は[192.168.122.181]へリダイレクト。
-A PREROUTING -s 192.168.0.8 -i eth0 -p udp -m udp --dport domain -j DNAT --to-destination ｭ
 192.168.122.181
[192.168.0.12]から[192.168.0.18:20-9999/tcp]への接続は[192.168.122.182]へリダイレクト。
-A PREROUTING -s 192.168.0.12 -i eth0 -p tcp -m tcp --dport 20:9999 -j DNAT --to-destination
 192.168.122.182
[192.168.0.12]から[192.168.0.18:domain/udp]への接続は[192.168.122.182]へリダイレクト。
-A PREROUTING -s 192.168.0.12 -i eth0 -p udp -m udp --dport domain -j DNAT --to-destination ｭ
 192.168.122.182
仮想マシンコンソール[192.168.0.18:10021/10022/10023/10080/10443/15801/15901/15911/15912/ ｭ
15913]への接続は[192.168.0.18:21/22/23/80/443/5801/5901/5911/5912/5913]へリダイレクト。
-A PREROUTING -i eth0 -p tcp -m tcp --dport 10021 -j DNAT --to-destination 192.168.0.18:21
-A PREROUTING -i eth0 -p tcp -m tcp --dport 10022 -j DNAT --to-destination 192.168.0.18:22
-A PREROUTING -i eth0 -p tcp -m tcp --dport 10023 -j DNAT --to-destination 192.168.0.18:23
-A PREROUTING -i eth0 -p tcp -m tcp --dport 10080 -j DNAT --to-destination 192.168.0.18:80
-A PREROUTING -i eth0 -p tcp -m tcp --dport 10443 -j DNAT --to-destination 192.168.0.18:443
-A PREROUTING -i eth0 -p tcp -m tcp --dport 15801 -j DNAT --to-destination 192.168.0.18:5801
-A PREROUTING -i eth0 -p tcp -m tcp --dport 15901 -j DNAT --to-destination 192.168.0.18:5901
-A PREROUTING -i eth0 -p tcp -m tcp --dport 15911 -j DNAT --to-destination 192.168.0.18:5911
-A PREROUTING -i eth0 -p tcp -m tcp --dport 15912 -j DNAT --to-destination 192.168.0.18:5912
-A PREROUTING -i eth0 -p tcp -m tcp --dport 15913 -j DNAT --to-destination 192.168.0.18:5913

ｭ

 外部から仮想マシンコンソールへはstunnel経由でSSL復号後、VNCコンソールへリダイレクト

 対象：<iptables/natテーブル：PREROUTING/DNAT>
 対象：<iptables/natテーブル：PREROUTING/DNAT>
 外部から各利用者がそれぞれの仮想ホストを個別に利用する、個別利用者ホスト－仮想ホストを1対1対応
 （物理ホスト：192.168.0.18、外部ホスト：192.168.0.8、192.168.0.12と仮定）

Jul. 2017 - 129128 - Software Design

仮想環境リモート運用管理の実装例
第14回

ファイアウォール
　リモートシステム管理でも対応する仮想マシ
ンに対応した（許可された）リモート運用管理端
末の IPアドレスに応じてフィルタ許可する必
要があります。

SSLサーバ（物理ホスト）
　クライアントからの（preルーティングされた）
SSL接続はSSLサーバで復号されて、仮想マ
シンのVNCコンソールへ平文接続されます。
実装例としてはstunnelがあります（リスト3）。

VNCコンソール（物理ホスト）
　VNCコンソールは物理ホスト上で仮想マシ
ンコンソールとして動作します。物理ホスト上
でKVM仮想マシンの一般的な操作端末です。

仮想マシンコンソール
　ローカルVNCにより仮想マシンコンソール
の操作が可能になり、電源オン後の、あるいは、
シングルモードなど仮想マシンのネットワーク
機能が動作していないときでも、コンソール端
末として操作が可能です。

仮想マシン情報DB

　仮想マシンの情報DBには、リモート運用管
理に必要な情報すべてが入っていなければなり
ません。
　物理ホストシステム上のユーザアカウント
ID／パスワード、その証明書情報、リモート
運用管理端末の IPアドレス／マスク、仮想マ

　WindowsではWindowsのstunnel経由でVNC

ビュアーを使い、物理ホスト側のSSL＋VNC

で認証して（図9）から接続します（図10）。

preルーティング
　クライアントシステムからの接続は、一般利
用と同じ経路を通るため注3、ファイアウォール
では通常、仮想マシンにルーティングされます。
　しかし、リモート運用管理のSSL＋VNCで
仮想マシンをシステム管理する、この場合は、「物
理ホスト」側に接続しなければなりません。そ
のため、この接続は一般の接続とは異なり、物
理ホストシステムにpreルーティング（ルーティ
ング処理の前に行き先を変える）する必要があ
ります（リスト2）。
　ここでは、VNC接続を解説していますが、
一般のシステム管理では telnetや ftp、sshなど
の管理端末処理も同様です。

注3） 一般利用（図2の一番右側）では仮想マシンのSSLサーバや
VNCサーバに接続する場合はそのまま仮想マシンに転送
されます。このとき、IPアドレスが同じとなるので宛先の
切り分けが必要です。

コマンド 用途
list 状態、情報などの表示
create 定義からの生成
start 起動
shutdown シャットダウン
reboot 再起動
install インストール
suspend サスペンド
resume レジューム
reset リセット
setting 情報DB設定
poweroff 電源停止

 ▼図8　リモート運用管理例 ▼図9　SSL：VNCパスワード認証 ▼図10　SSL：VNC接続例

 ▼表1　 仮想マシンのハードウェアドライバの制御管
理のコマンド例

130 - Software Design

仮想化の知識、再点検しませんか？

使って考える仮想化技術

シンの割り当て IPアドレス、MACアドレス、
VNC接続のためのユーザアカウント ID／パス
ワード、OS情報、メモリ情報、ディスク情報、
など多数あります。
　このDBはセキュリティを厳しく管理されて
いなければなりません。そのためには、ファイ
ル属性のみならず、暗号化（ハッシングだけで
は平文を読み出しできないので不可）や認証、
さらには、アクセス排他制御などの機能も必要
です。
　また、この情報を利用者が適時に追加・更新
などできるようにすること、さらに初期インス
トールやバックアップなどを行うツールも必要
になります。

実装のポイント

　仮想マシン環境を実装する場合、その利用用
途を十分に考慮したつくりにしなければなりま
せん。つまり、誰が、どのように接続して利用
するか、に適切に対応する必要があります。
　仮想マシン間あるいは、外部システムと仮想
マシンとの間のコミュニケーションが想定され
るので、接続する、利用元のシステムと利用先
の仮想マシンとの間の、アドレスやプロトコル、
ポート（アプリケーション）、フロー（さらには
デバイス）などを考慮することになります。
　また、仮想マシンの利用と、（本連載で解説
している、仮想マシンの利用者による）管理を
個別に考えなければなりません。つまり、利用
用途に応じて、利用接続と管理接続の相手を特
定し限定します。
　ただし、仮想マシンの利用用途にはさまざま
なものがあるため、それに応じてセキュリティ
を含むシステム化、体系化が必要になります。
　繰り返しになりますが、仮想マシンには
Webサーバやメールサーバなどインターネッ
トに公開するサーバ、社内などの組織専用で利
用するサーバ、開発システムなど一時的システ
ムとしての利用、BYOD注4によるクライアント
システムとしての利用など多々あります。
　次回、最終回はこれらについて解説していき
ます。s

注4） BYOD：Bring Your Own Device、個人電子機器の社内
利用。

 ▼リスト3　stunnelの関連設定

; サーバ証明書／キー
cert = /etc/pki/tls/certs/server.crt
key = /etc/pki/tls/private/server.key
; SSLプロトコル (all, SSLv2, SSLv3, TLSv1)
sslVersion = all
options = NO_SSLv2
; 証明書の検証を行う
verify = 2
; CA証明書ファイル
CAfile = /etc/pki/CA/cacert.crt
; サービス
[vncs] ;物理ホスト
accept = 15901 ;着信ポート
connect = localhost:5901
; ↑復号後の平文接続転送ポート

; ### KVM 仮想マシン宛 SSL console vnc ###
[vnc-s186]
accept = 15916
connect = localhost:5916

[vnc-s187]
accept = 15917
connect = localhost:5917

[vnc-s188]
accept = 15918
connect = localhost:5918

[vnc-s189]
accept = 15919
connect = localhost:5919

[vnc-s190]
accept = 15920
connect = localhost:5920

連載各回では、読者皆さんからの簡単な「ひとく
ち質問（QA）コーナー」や「何かこんなこともしてほ
しい要望（トライリクエスト）コーナー」を設けて「双
方向連載」にできればと思っていますので、質問
や要望をお寄せください。

宛先：sd@gihyo.co.jp
件名に、［仮想化連載］とつけてください

mailto:sd@gihyo.co.jp

Jul. 2017 - 131

型の完全理解は
可能か？

　今回はSwift最大の特長であるプロトコル
（protocol）を、総称型（generic type）と絡めつ
つ紹介します。そのためには、型（type）とは何
かをまず理解しておく必要があります。型とは
何か、なんとも深淵そうな質問で、実際それだ
けでTAPLこと『型システム入門注1』という名
著がまるごと1冊書けてしまうほどなのですが、
本連載は「書いて覚えるSwift入門」。実際に書
いていくことにしましょう。

0 == 0.0 // compile
error

　REPLで次のとおりに入力してみましょう。

var i = 0
i == 0
i == 0.0

　macOSでは次のようになります。

Welcome to Apple Swift version 3.1
(swiftlang-802.0.53 clang-802.0.42). Type
:help for assistance.
 1> var i = 0
i: Int = 0
 2> i == 0
$R0: Bool = true
 3> i == 0.0
error: repl.swift:3:3: error: binary operatorｭ
'==' cannot be applied to operands of type ｭ
'Int' and 'Double'

i == 0.0

repl.swift:3:3: note: expected an argument
list of type '(Int, Int)'
i == 0.0

　（Objective）?C（++）?やJavaなどのコンパイ
ル言語に慣れた人にとっては当たり前のこの挙
動は、JavaScriptやPerlやPythonやRubyな
どのスクリプト言語にとっては驚きの結果です。

・node（JavaScript）

> var i = 0
undefined
> i == 0
true
> i == 0.0
true

・perl -de 1

main::(-e:1): 1
 DB<1> my $i = 0

 DB<2> p $i == 0
1
 DB<3> p $i == 0.0
1

・python

>>> i = 0
>>> i == 0
True
>>> id == 0.0
True

書いて覚える 入門Swift

Author 小飼弾 （こがい だん）　　 twitter @dankogai

第27回 静かなること型の如し

注1） URL https://estore.ohmsha.co.jp/titles/978427406911P

https://estore.ohmsha.co.jp/titles/978427406911P

132 - Software Design

書いて覚える 入門Swift

・irb（ruby）

irb(main):001:0> i = 0
=> 0
irb(main):002:0> i == 0
=> true
irb(main):003:0> i == 0.0
=> true

　スクリプト言語で0 == 0.0が成立する理由
は厳密にはそれぞれの言語で異なるのですが、
Swiftで0 == 0.0が成立しない理由は明白で
す。型が一致しないからです。0はIntという
型で、0.0はDoubleという型になります。そ
してSwiftの型は静的。コンパイルの段階でど
の変数（および定数）がどんな型なのかがあらか
じめ決まっているので、0 == 0.0は実行すら
させてくれないというわけです。
　なぜSwiftでは0と0.0は別々の型なのでしょ
う？
　別の役割が期待されているからです。
　たとえば割り算。IntとDoubleでそれぞれ/
してみましょう。

 1> var i = 42
i: Int = 42
 2> i / 10
$R0: Int = 4
 3> var d = 42.0
d: Double = 42
 4> d / 10
$R1: Double = 4.2000000000000002

　かたや 4、かたや 4.2000000000000002。何
が違うか。そう、余りです。

 5> i % 10
$R2: Int = 2
 6> d % 10
error: repl.swift:6:3: error: '%' is
unavailable: Use truncatingRemainder insteadｭ
d % 10

Swift.%:2:13: note: '%' has been explicitlyｭ
marked unavailable here
public func %(lhs: Double, rhs: Double) -> ｭ
Double

　整数の範囲で「割り切る」代わりに「余り」も%
で出せるのがIntの/で、精度一杯まで「割り
続ける」代わりに「余り」を出さないのがDouble
の/。こういった区別がない言語では、==が楽
な代わりにほかで苦労しています。たとえば
JavaScriptには Doubleに相当する Numberは
あってもIntに相当する型はないので、Swift

の42 / 10に相当する演算は(42 / 10) ¦ 0
などとしなければなりません。

引数をそのまま返す
だけの簡単なお仕事

　ここで、1番目に簡単な関数を考えてみましょ
う。ちなみに0番目に簡単な関数は何も引数を

取らず何もしない関数で、Swiftならばこうな
ります。

func noop(){}

　これが0番目なら、1番目は当然1つ引数を

とってそれをそのまま返す関数になるでしょう。
簡単ですね̶̶動的言語なら。

・JavaScript
function id(x){ return x }
// es6 ならもっと簡単に var id = (x)=>x;

・Perl
sub id { @_ }

・Python
def id(x):
 return x

・Ruby
def id(x)
 x
end

　それではSwiftでは？　Swiftは静的型言語
（大事なことなので何度も繰り返します）。関数
を定義するときには、引数と戻り値を明示しな

132 - Software Design Jul. 2017 - 133

静かなること型の如し第 回27

ければなりません。ということは……

func id(_ x:Int)->Int { return x }
func id(_ x:Double)->Double { return x }
func id(_ x:String)->String { return x }
// ...

　こういうのを繰り返し書かなければならない
ということでしょうか？　やってることどころ
か{}の中身もまったく同じなのに？
　ここで颯爽と登場するのが総称型（generic

type）。次のように書いておけば……

func id<T>(_ x:T)->T {
 return x
}

　何でもござれです。

 1> func id<T>(_ x:T)->T {
 2. return x
 3. }
 4> id(0)
$R0: Int = 0
 5> id(0.0)
$R1: Double = 0
 6> id("")
$R2: String = ""
 7> id([0])
$R3: [Int] = 1 value {
 [0] = 0
}
 8> id([0:""])
$R4: [Int : String] = 1 key/value pair {
 [0] = {
 key = 0
 value = ""
 }
}

　ここでidは総称関数（generic function）、T
はプレイスホルダー型（placeholder type）と言
います。

得意なことは違うから

　この何でもござれぶりを見ると、関数という
関数を総称型で書きたくなってきますが、これ
は以前言った「本当に必要なとき以外Any型は
使うべきではない」と同様な意味でムチャ振り

です。それを実感するため、今度はl == rに
相当するeq(l,r)を同様に書いてみましょう。

 1> func eq<T>(_ l:T, _ r:T)->Bool {
 2. return l == r
 3. }
 4.
error: repl.swift:2:14: error: binary operatorｭ
'==' cannot be applied to two 'T' operands
 return l == r

repl.swift:2:14: note: overloads for '=='
exist with these partially matching parameterｭ
lists: (Any.Type?, Any.Type?), (UInt8, UInt8),ｭ
/* 中略 */ (UnsafePointer<Pointee>,
UnsafePointer<Pointee>)
 return l == r

　なんかむちゃくちゃ文句言って来ましたよ。
「Any型には==はない」と前回も言いましたが、
==演算子はどんな型でもOKとはいかない以上、
総称しようがないのです。ということは、

func eq(_ l:Int, _ r:Int)->Bool {return l == r}
// ...

の時代に戻らなければいけないということでしょ
うか？
　ここでいよいよプロトコルが登場します。要
は「==演算子を持つ型」というのを何とか表現
できればいいのですよね？　これでどうだ？

func eq<T:Equatable>(_ l:T, _ r:T)->Bool {
 return l == r
}

　今度はうまくいきました！

 1> func eq<T:Equatable>(_ l:T, _ r:T)->Bool {
 2. return l == r
 3. }
 4> eq(0,0)
$R0: Bool = true
 5> eq(0.0,0.0)
$R1: Bool = true
 6> eq("","")
$R2: Bool = true

　このEquatableのことをプロトコル（proto

134 - Software Design

書いて覚える 入門Swift

col）といい、T:Equatableで「Tという型は
Equatableというプ ロ ト コ ル に 準 拠（con

form）している」ことを表現します。
　めでたし、めでたし？
――ちょっと待った !　これは？

 4> [0]==[0]
$R0: Bool = true
 5> eq([0],[0])
error: repl.swift:5:8: error: argument typeｭ
'[Int]' does not conform to expected type
'Equatable'
eq([0],[0])

　なぜ[0]==[0]はうまくいくのにeq([0],[0])
はうまくいかないのでしょう？　むしろ[0]==[0]
がうまくいくほうが不思議ではありませんか？
Array自体はEquatableではないのに……。
　「それ自体はプロトコル準拠ではないけど、
中身は準拠している」ということをSwift語で
何と言えばいいのでしょうか？
　こういうときに便利なのが swiftdoc.org注2。
ArrayやDictionaryやRangeが共通して準拠して
いるSequenceをよく見てみるとelementsEqual注3

なるメソッドが存在するではありませんか。

func eq<T:Sequence>(_ l:T, _ r:T)->Bool
 where T.Iterator.Element:Equatable
{
 return l.elementsEqual(r)
}

　このようにして、実行してみると

 4> eq([0],[0])
$R0: Bool = true
 5> eq(0...1,0...1)
$R1: Bool = true

　うまくいったようですが、これでもまだ完璧
ではありません。

 7> eq([0:""],[0:""])
error: repl.swift:7:3: error: type '(key: Int,ｭ
value: String)' does not conform to protocol
'Equatable'
eq([0:""],[0:""])

　Sequenceとしての Dictionary<K,V>の Ele
mentは(K, V)というタプル型で、これがEqua
tableではない、と。
　さすれば……

func eq<K: Equatable,V: Equatable>
 (_ l:[K:V], _ r:[K:V])->Bool
{
 return l == r
}

　これを実行してみると、

6> eq([0:""],[0:""])
$R0: Bool = true

　これでDictionaryもeq()できるようになり
ました。

オレオレプロトコルの
書き方

　それでは同様に、Collectionの中身を総和す
るsumというメソッドを書いてみましょうか。そ
のためにはCollectionのIterator.Elementが演
算+をサポートしていることをSwiftが知ってい
ればよいわけですが、==のEquatableと違って+

にAddableというプロトコルは見当たりません。
　ならば定義してしまいましょう。

protocol Addable {
 static func +(_ l:Self, r:Self)->Self
}

　これは、次のとおりに読めます。

注2） URL http://swiftdoc.org/
注3） URL http://swiftdoc.org/v3.1/protocol/Sequence/#func-iterator-element_-equatable-elementsequal_

http://swiftdoc.org/v3.1/protocol/Sequence/#func-iterator-element_-equatableelementsequal_
http://swiftdoc.org/

134 - Software Design Jul. 2017 - 135

静かなること型の如し第 回27

> プロトコルAddableに準拠し
ている型は、自分自身と同じ型
を持つlとrを受けて同じ型の
値を返す+という二項演算子を
持つ

　IntやDoubleといった数値型
のみならずStringもAddableに
準拠しているのは明白ですが、
残念ながらSwiftは良きに計らっ
てくれません。プロトコルに準
拠しているのだということを
Swiftに教えるには、空のext
ensionを用います。

extension Int: Addable{}
extension Double: Addable{}
extension String: Addable{}
extension Array: Addable{}
……（中略）……

　ここでプロトコルに準拠していない型に
extensionをかけるとエラーで止まります。

extension Dictionary: Addable {}
// error: type 'Dictionary<Key, Value>' doesｭ
not conform to protocol 'Addable'

　これで準備は完了。あとはCollectionを拡
張するだけです。

extension Collection where Iterator.
Element:Addable {
 func sum()->Iterator.Element? {
 guard var v = self.first else {
 return nil
 }
 var i = self.startIndex
 i = self.index(after:i)
 while i != self.endIndex {
 v = v + self[i]
 i = self.index(after:i)
 }
 return v
 }
}

　要素をイテレートするのにずいぶんまだるっ
こしい方法を使っていますが、これはArrayや
Rangeをそのまま拡張するのではなく、Coll
ectionというプロトコルを拡張しているから。
たとえばArrayだけであれば、

extension Array where Element:Addable {
 func sum()->Element? {
 guard var v = self.first else {
 return nil
 }
 for i in 1..<self.count {
 v = v + self[i]
 }
 return v
 }
}

とより簡潔に書けますが、(0...100).sum()
のようにRangeまでまとめて拡張することはま
まなりません。

次回予告

　というわけで今回もコード盛りだくさんでお
届けしましたが、次回はWWDCの知見をなる
べくお伝えしたうえで、次回にまたプロトコル
について続きを話します。ﾟ

 ▼図1　実行画面

136 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

Tangoとは

　T
タ ン ゴ

angoはGoogleが開発した空間認識の技術
です。タブレット型の開発者向け端末Tango

Developer Kitが販売されたあと、一般向けの
「Phab 2 Pro」（Lenovo）が発売されました。
　Tangoは「Motion Tracking」「Area Learning」
「Depth Perception」の3つの機能から成り立っ
ています。
　Motion Trackingは、9軸 IMU（Inertial Mea

surement Unit：3軸電子コンパス、3軸加速
度センサー、3軸ジャイロスコープ）と6DOF

（Degrees Of Freedom：3次元の直交座標系に
沿った動きと3軸各々の周囲の回転）アルゴリ
ズムで取得できるデータを用いて運動情報を解
析します。これはデバイスを持って動いたとき
にどれくらい動いたか検知します。

　Area Learningは場所を認識します。カメラ
とMotion Trackingの情報を使い、特徴点を抽
出することで空間データとして保存します。同
じ場所と認識できる場合、データは最新の環境
に合わせて更新されます。これによりある空間
のどの部分に端末が存在しているかを判定でき
るようになります。
　Depth Perceptionは奥行きを認識します。こ
れは赤外線ベースのセンサーを使って認識しま
す。床、壁、平面、端面を検知できます。これ
は写真のような平面な状態を取得するのではな
く、立体的な物を立体と認識できるようになり
ます。
　このような情報をアプリケーション（以下ア
プリ）から利用できるのがTangoです。Tango

はAndroid上で動作します。

動作機種

　Tangoでは特定のハードウェアとAPIを実装
したデバイスで動作します。日本国内で購入可
能なものとして、レノボより発売中の「Phab 2

Pro注１」とASUSより今年夏発売予定の「Zen

Fone AR注２」があります（写真 1）。どちらも
Android端末にTangoが搭載されているので
TangoだけではなくAndroidの機能も使えます。

注１） http://www3.lenovo.com/jp/ja/tango/

注２） https://www.asus.com/jp/Phone/ZenFone-AR-ZS571KL/

第16回 VR/ARアプリ開発を後押しする空間認識技術Tangoとは

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

三宅 理（みやけ おさむ）
日本Androidの会 運営委員・
日本Androidの会 埼玉支部
合同会社ソニックスタジオ

Androidは世界で出荷される約9割のスマートフォンに搭載される標準OS
です※。そのため、多くのAndroidアプリが開発され続けており、そして多
くのエンジニアが活躍しています。Androidで広がる新しい技術に魅了さ
れたエンジニアが集うコミュニティもあり、そこでは自分が愉しむための技
術を見つけては発信しています。その技術の一幕をここで紹介します。

※Gartner Worldwide Smartphone Sales to End Users by Operating System in 3Q16

 ▼写真1　Phab 2 Pro（左）とZenFone AR（右）

http://www3.lenovo.com/jp/ja/tango/
http://www.android-group.jp/
https://www.asus.com/jp/Phone/ZenFone-AR-ZS571KL/

Jul. 2017 - 137136 - Software Design

VR/ARアプリ開発を後押しする空間認識技術Tangoとは第16回

アプリの動作準備

　今回はTanog SDKに含まれるサンプルをビ
ルドして実行してみます。
　最初に新しくUnity Projectを作成します。
Projectが作成されたらTango SDK for Unity

のファイルである「TangoSDK_Gankino_Unity

5.unitypackage」をダブルクリックしてプロジェ
クトにインポートします（図1）。
　Unityの左下にあるProjectを選択して［Tango

SDK］－［Examples］－［Scenes］を選択します。
右側にシーンの一覧が表示されるので「Detect

TangoCore」を選択します（図2）。このシーンは、
各シーンを選択するためのメニューとして動作
します。
　メニューの［File］－［Build Settings］を選択
して「Build Settings」ダイアログを表示します。
PlatformにはAndroidを選択して「Switch Plat

form」ボタンを押します（図3）。「Player Set

tings」を押して、PackageNameを入力します。
　Projectから図3に含まれるシーンをドラッ
グ＆ドロップして登録します。一番上は「Detect

TangoCore」になるようにしてください。これ
で起動時に最初に選択されるシーンになります。
　PCにTango端末を接続して「Build And Run」
ボタンを押してビルドと実行を行います。ボタ

そのためアプリの開発もAndroidをベースとし
て開発していくことができます。
　エミュレータは現在ありませんので、アプリ
ケーションを開発する場合Tango対応の実機が
必要となります。

開発言語

　Androidベースということで、Tangoでアプ
リを開発するにはC/C++、Java、Unity（C#）と、
3つの言語が公式でサポートされています。

Unityによる
Tango World

　今回はTangoの世界を体験するためUnity注３

でアプリを開発する方法を見ていきたいと思い
ます。
　Tangoを利用するうえで必要なものはUnity

とTango SDK for Unity注４です。Unityはマル
チプラットフォームアプリを開発できる開発ツー
ルです。無料で始められ、WindowsとMacで
動作します。スマートフォン向けのゲームアプ
リ開発によく使われています。筆者の環境は、
MacBook Pro 13 2016とUnity 5.6.0f3を使っ
てビルドしました。

注３） http://japan.unity3d.com/

注４） https://developers.google.com/tango/downloads

 ▼図1　Import画面 ▼図2　シーンの選択

http://japan.unity3d.com/
https://developers.google.com/tango/downloads

138 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

ンを押した際に図4のようなエラーダイアログ
が表示されましたか？　開発にAndroid Studio

2.3以上を利用している場合、Unity側が対応
できていないのが理由で、別途SDKをインス
トールする必要があります。Android開発サイ
ト注５より「Get just the command line tools」か
らSDKをダウンロードして解凍、配置したあ
と、Unityメニューの［Unity］－［Preferences］
を選択後、「External Tools」のタブ内にある
Android SDKのパスを先ほど配置した場所に
変更します。これでビルドができるようになり
ます。

アプリの動作

　「Build And Run」ボタンを押してビルドと実
行を行うと図5のような画面が表示されます。
右上のメニューをタップすることでそれぞれの

注５） h t tps : / /deve loper.andro id .com/stud io / index .
html#downloads

シーンが呼び出されます（図6）。

Tangoの今後

　ARエンジンであるVuforia注６はVuforia

Smart TerrainでTangoをサポートすることが
発表されました。TangoはVRのようにコン
シューマーで普及という流れよりもBtoBで普
及していくと思います。専用デバイスを使い自
社サービスを提供するということは大いにあり
そうです。またセンサー部分を活用しておもし
ろいサービスを作ることもできるかと思います。
　日本Androidの会 2017年 3月定例会では
「VR/AR/MRのサービス最前線！」というテー
マで定例会を開催しました注７。その中でTango

を活用したプロジェクトとして「ミク☆さん
ぽ注８」（KDDI株式会社）やインテリア3Dシミュ
レーターのTango対応を行った株式会社リビン
グスタイルがあります。Google I/O 2017では、
仮想位置認識サービス（VPS：Virtual Position

Service）としてGoogleはTangoを紹介してい
ました。これらにより今後Tangoは普及してい
くと思います。みなさんもTangoを活用してお
もしろいアプリを作ってみませんか？s

注６） https://www.vuforia.com/

注７） https://japan-android-group.connpass.com/event
/52967/

 Youtube
 https://www.youtube.com/watch?v=1lpKl8xpO-A

注８） http://news.kddi.com/kddi/corporate/newsrelease
/2017/02/07/2278.html

 ▼図4　SDK PATHエラー

 ▼図5　DetectTangoCore画面

 ▼図3　Build Settingsダイアログ

https://www.vuforia.com/
https://japan-android-group.connpass.com/event/52967/
https://www.youtube.com/watch?v=1lpKl8xpO-A
http://news.kddi.com/kddi/corporate/newsrelease/2017/02/07/2278.html
https://developer.android.com/studio/index.html#downloads

Jul. 2017 - 139138 - Software Design

VR/ARアプリ開発を後押しする空間認識技術Tangoとは第16回

　日本Androidの会 (Japan Android Group)ではコ
ミュニティメンバーを募集しています。Androidに興
味がある、技術的な質問をしたいといったことがあれ
ばぜひ公式サイトから参加してみてください。
　また、定例会を月に1回ほど開催しています。詳し
い情報はイベントサイト、https://japan-android-

group.connpass.com/を参照してみてください。遠
方にお住まいの方はYouTubeによる動画も配信して
います。
●日本Androidの会ライブチャンネル
https://www.youtube.com/channel/
UCEgcvRMuUx49r96YRSrab0Q

コミュニティ活動COLUMN

 ▼図6　DetectTangoCore画面のメニューから行える操作

MotionTracking PointCloud

AreaLearning

PointToPointSimpleArgumentReality

AreaDescriptionManagement

仮想空間を表示して、デバイスを動かすと動かした
方向にカメラが移動する。箱の見え方が変化

ADFを作成・編集・削除・エクスポートできる。
アプリを作成する場合このシーンは入れておいたほ
うが良い

Depth APIを利用してPintCloud情報をワールド座
標に表示

カメラを使って、現実世界に地球と月の映像を重ね
た表示を行う

ARモードで画面をタップするとマーカーを立てる
ことができる。ADF（AreaDescriptionFile）を保存す
ると同じ空間にマーカーを復元する

タップすることで線が引かれ、線の距離を表示する

https://japan-androidgroup.connpass.com/
https://japan-androidgroup.connpass.com/
https://www.youtube.com/channel/UCEgcvRMuUx49r96YRSrab0Q

140 - Software Design

　Webアプリケーションやバッチ処理のシステ
ムを構築する場合、データベースは欠かせない
コンポーネントの1つになりました。最近では
ORM（Object-relational mapping）を使い、SQL

を書かずにプログラミングすることも多くなっ
てきましたが、いまだSQLはエンジニアの必須
スキルであることに変わりありません。
　みなさんはデータベースを扱うようなプログ
ラミングを行う際、どのようにデータベースを
操作していますか。GUIで作られたSQL開発環
境を使っていますか？　それともCLIで作られ
た対話形式のツールを端末から使っていますか？
　GUIで操作する場合、グリッド表示されたク
エリの実行結果は確かに見栄えも良く、クリッ
プボードにコピーして再利用することもできて
とても便利なのですが、単純にクエリを実行し
たい場合には少し大げさです。また、SSHなど
を使ってリモート上で作業する場合には向きま
せん。逆に、CLIで操作する場合には、SQLが
シンタックスハイライトされないので可読性が
低くなったり、複数行に渡るクエリの編集が難
しくなったりする問題があります。
　そんな問題を解決するのが、dbext.vimプラグ
インです。Vimの拡張機能を使ってSQLをシン

タックスハイライト表示したり、テーブル名や
カラム名を補完しつつ編集、そして実行結果を
確認するといったこともできます。

dbext.vimを準備

まずはインストール

　残念ながら、dbext.vimプラグインはGitHub

上で開発されていません。しかし、http://www.

vim.orgに置いてあるいろいろなVimプラグイン
を、GitHub上でミラーリングしてくれているリ
ポジトリ「vim-scripts」があります。プラグイン
マネージャvim-plugをお使いであれば次をvimrc

に追記し、:PlugInstall dbext.vimを実行す
ることでインストールできます。

Plug 'vim-scripts/dbext.vim', { 'for': 'sql' }

　このforは、ファイルタイプがsqlの場合、
動的に読み込まれるようにするためのオプショ
ンです。dbext.vimは若干古いプラグインで、読
み込まれると多くの処理を実行してしまいます。
これはSQL以外のファイルを編集する場合で
あっても有効になってしまいます。そういった
場合にこのforを使います。
　現在開いているファイルのファイルタイプを
調べるには次を実行します。

SQLの編集に
最適な環境とは？

一歩進んだ使い方
のため

のイロハ

Vimからデータベースを
操作する

　エディタから、テーブルやカラムの確認といったSQLのクエリを手軽に実行できると便利ですよね。今回は
そんな要望を叶えるプラグインdbext.vimを紹介。さらにクエリ実行だけでなく、SQLを補完、整形する方法
も紹介し、編集面も面もサポートします。

mattn
twitter:@mattn_jp

第 回19

140 - Software Design Jul. 2017 - 141

実行モジュールの指定方法

　dbext.vimは各RDBMSのCLIコマンドを
使ってSQLを実行します。しかし、CLIにパス
が通っていない（または通したくない）場合もあ
ります。そこで、各RDBMSのCLIへのパスを
別途指定できるようになっています。たとえば、
OracleのCLIであるsqlplusへのパスはリスト
2のように指定します。同様にsqlite3コマンド
を指定したい場合は、g:dbext_default_

SQLITE_binに設定します。

dbext.vimを使う

基本的な操作

　まずは接続の確認も兼ねて、適当なクエリを

:set filetype?

　そのほかの有名なプラグインマネージャにも、
同様の機能が付いています。

プロファイルの作成

　dbext.vimを使用するにはプロファイルが必要
です。プロファイルとはデータベースの接続文
字列やパラメータといった構成情報です。
　dbext.vimがサポートしている RDBMS

（Relational DataBase Management System）を
示した表1の内、db_typeをプロファイルに指
定することで、該当のRDBMSを扱うことがで
きるようになります。プロファイルはリスト1
の方法で記述します。この例では2つのプロファ
イルを定義しています。g:dbext_default_

profile_XXXの形式で複数のプロファイルを記
述し（1行目：PostgreSQL、2行目：SQLite）、
g:dbext_default_profile（3行目）でデフォ
ルトのプロファイルを指定できます。SQLの編
集中などにプロファイルを切り替える場合は、
次のコマンドを実行します。

:DBSetOption profile=test

　SQLファイルを単に開いた場合は、デフォル
トのプロファイルが使用されます。デフォルト
が testの状態であれば、編集中のSQLは

/home/mattn/myDB.dbというSQLiteデータ
ベースファイルに対してSQLが実行されます。
現在のプロファイルでどのようなパラメータが
設定されているか確認するには次を実行します。

:DBGetOption

db_type RDBMS
ASA SAP Sybase SQL Anywhere、IQ

ASE
SAP Sybase Adaptive Server
Enterprise

ULTRALITE SAP Sybase UltraLite
HANA SAP HANA
ORA Oracle
RDB Oracle RDB
SQLSRV SQL Server
MYSQL MySQL
PGSQL PostgreSQL
DB2 DB2
FIREBIRD Firebird
INGRES Ingres
INETRBASE Interbase
SQLITE SQLite
CRATE CrateIO

 ▼表1　Vimが対応しているRDBMS

 ▼リスト1　プロファイルの作成例（PostgreSQLとSQLiteを設定、前者を指定）

let g:dbext_default_profile_develop = 'type=PGSQL:user=postgres'
let g:dbext_default_profile_test = 'type=SQLITE:dbname=/home/mattn/myDB.db'
let g:dbext_default_profile = 'develop'

 ▼リスト2　OracleのCLIへのパスを指定

let g:dbext_default_ORA_bin = 'c:¥tools¥instantclient_12_1¥sqlplus.exe'

Vimからデータベースを操作する

第 回19

一歩進んだ使い方
のため

のイロハ

142 - Software Design

ラメータの変更は、<leader>sbpをタ
イプして実行します。GVimから実行
すると、確認ダイアログでのパラメー
タ入力となります。ログインアカウン
トの変更なども行えます。

キーマッピング

　dbext.vimには多くのキーマッピングが用意さ
れています。表2はその一部です。そのほかの
キーマッピングについては :help dbext-

mappingsを参照してください。

SQLの入力補完

　VimにはもともとSQLの入力補完を行う機能
が備わっています。ただし、用意されているの
は枠組みだけで、追加の拡張を入れることで動
作するしくみになっています。dbext.vimもこの
拡張インターフェースを提供しており、SQLの
入力補完を提供しています。

◆テーブル名の入力補完
　たとえば、

SELECT * FROM カーソル

というSQLでテーブル名を入力補完したい場合
は、　　 -c t（　　 を押しながらcをタイプし
たあとt）をタイプします。

◆カラム名の入力補完
　dbext.vimはカラム名
を入力補完する際、テー
ブル名を決定させる必要
があります。一度、カラ
ム名を補完するのにFOO.

までをタイプし、　　 -c

tで補完を行います。id

とvalueが補完候補に現
れるので、以降はFOO.な
しに補完が可能になりま
す。また、Vimのオムニ

Ctrl Ctrl

Ctrl

発行してみましょう。example.sqlのように拡張
子 .sqlのファイルを作成して、リスト3のSQL

文を記述します。カーソル上のクエリを実行す
るには、<leader>seをタイプします。<leader>
は何も設定していない状態であれば\になって
いるので、\seをタイプすれば良いです。さき
ほどのリスト3で、1行ずつ実行するか、ビジュ
アルモードで4行すべて選択してから実行しま
す。そのあと、

SELECT * FROM FOO WHERE ID < 3;

を実行して結果を確認してみましょう（図1）。

パラメータの変更

　開いているバッファに対するデータベースパ

 ▼リスト3　example.sql

CREATE TABLE FOO(ID INTEGER PRIMARY KEY, VALUE TEXT);
INSERT INTO FOO(ID, VALUE) VALUES(1, 'foo');
INSERT INTO FOO(ID, VALUE) VALUES(2, 'bar');
INSERT INTO FOO(ID, VALUE) VALUES(3, 'baz');

 ▼図1　クエリの実行結果

キー コマンド 意味
<Leader>sbp DBPromptForBufferParameters 接続先設定ウィザート
<Leader>se DBExecSQLUnderCursor カーソル上のSQLを実行
<Leader>sq DBExecSQL 引数のSQLを実行
<Leader>slt DBListTable テーブル一覧を表示

<Leader>sdt DBDescribeTable カーソル上（または引数）のテ
ーブル定義を表示

<Leader>st DBSelectFromTable カーソル上（または引数）のテ
ーブルデータ表示

<Leader>stw DBSelectFromTableWithWhere
カーソル上（または引数）のテ
ーブルデータ表示（WHERE文
で条件を付けられる）

 ▼表2　Vimが対応しているRDBMS

142 - Software Design Jul. 2017 - 143

nmap <buffer> <leader>sf <Plug>(sqlfmt)

　また、SQLファイルを保存する際に整形を行
うのであれば、次のように設定します。

autocmd BufWritePre *.sql SQLFmt

　これらのように任意の拡張子やファイルタイ
プに関する設定をvimrcに書く場合は、リスト
4のようにaugroupを使ってグループ化するの
が一般的です。これは、vimrcを再読み込みし
ても二重にautocmdが登録されないようにする
ための書き方です。vimrcにすべての設定をま
とめることにこだわっていないのであれば、
̃/.vim/ftplugin/sql/sqlfmt.vimというファイル
を作成し、次のように書いておきます。

nmap <buffer> <leader>sf <Plug>(sqlfmt)
au BufWritePre *.sql SQLFmt

　こうすることで、ファイルタイプがsqlに設
定された場合のみスクリプトが実行されるので、
SQLを編集しない場合に無駄な設定が行われる
ことを回避できます。vimrcをリロードしても、
autocmdやmapが二重に登録されることはあり
ません。

まとめ

　今回は、VimからSQLを操作できるdbext.

vimを紹介しました。ちょっとしたSQLの開発
や修正であれば、これだけでも十分開発できま
す。ぜひ活用してみてください。ﾟ

補完を行うキー　　 -x 　　 -oはデフォルト
でテーブル名の入力補完にアサインされていま
す。次のように設定することで、デフォルトで
カラム名の入力補完が実行されます。

let g:omni_sql_default_compl_type = 'column'

SQLの整形

　dbext.vimはSQLの実行をサポートするプラ
グインです。インデントなどはサポートしてい
ません。入力補完と同様、Vimにはインデント
の枠組みだけが用意されています。各種RDBMS

に依存したプラグインを導入することで、自動
インデントが可能になります。pgsql.vim注1とい
うプラグインを入れると、PostgreSQLの一部
の自動インデントを行えます。しかしこのプラ
グインが提供するのは、CREATE TABLEやサブ
クエリの()の入力時に段下げを行う程度です。
きれいな整形を行うには、専用の機能を使わな
ければなりません。
　SQLの整形を行いたい場合にはvim-sqlfmt注2

を導入します。このプラグインはPythonのパッ
ケージsqlparseに付属するsqlformatコマンド
を使って、SQLの整形を行います。vim-sqlfmt

はカレントバッファの整形を行う:SQLFmtとい
うコマンドと、マッピングを行う際の<Plug>

インターフェースのみを提供しています。何か
のキーに連動してSQLの整形を行いたいのであ
れば次のように設定します。

Ctrl Ctrl

 ▼リスト4　SQLの整形に関する設定をグループ化

augroup MyFileTypeSQL
 " MyFileTypeSQL で設定される内容を破棄
 au!

 " ファイルタイプが SQL の場合は整形のマッピングを追加
 au FileType sql nmap <buffer> <leader>sf <Plug>(sqlfmt)

 " 拡張子が .sql のファイルを書きだすときは SQLFmt コマンドを実行する
 au BufWritePre *.sql SQLFmt
augroup END

注1） URL https://github.com/lifepillar/pgsql.vim
注2） URL https://github.com/mattn/vim-sqlfmt

Vimからデータベースを操作する

第 回19

https://github.com/lifepillar/pgsql.vim
https://github.com/mattn/vim-sqlfmt

144 - Software Design

2017年5月12日に感染が拡大したランサムウェア「WannaCry」は、世界的にも大きな注目を集
めました。今回は、その本質的な脅威は何であったかを踏み込んで考えてみます。

ランサムウェア
WannaCry

　2017年5月12日、CNNや英ガーディアン紙は、
イギリスの病院のコンピュータがランサムウェアに
感染し、病院で患者を受け入れられなくなった、と
一斉に報じました注1。その報道が引き金となり、
世界中にWannaCryの報道が広がっていきます。
　WannaCryはPCに感染すると、PCの接続してい
る内部ネットワークを探索し、MS17-010（Micro

soft Windows SMBサーバ用のセキュリティ更新プ
ログラム）注2のパッチが適用されていないPCがあ
れば、そこに感染していきます。このパッチが適用
されていないと、攻撃者は攻撃コードをMicrosoft

Server Message Block 1.0（SMBv1）に送信するこ
とで、リモートで任意のコードを実行できます。
　つまり、何らかの形でLAN内のPC1台に感染さ
せてしまえば、あとはLAN内にあるMS17-010で
アップデートされていないPCに網羅的にWanna

Cryを感染させられます。正しくは、WannaCryの
ランサムウェア機能をインストールしていくことが
できると言うほうが正しいかもしれません。

侵入モジュール
（エクスプロイトコード）

　近年のマルウェアは複数の機能モジュールから構

成されており、機能モジュールを入れ替えるだけで
機能を拡張できます。侵入するモジュールと、侵入
したあとにその侵入先に本体を導入するためのモ
ジュールは独立しているのが、今日的なマルウェア
です。システムにマルウェアを投入するのでドロッ
パー（Dropper）と呼ばれたり、あるいは内部に侵入
したあとに外部からマルウェア本体をインストール
するのでインストーラ（Installer）と呼ばれたりしま
すが、要は防御を突破し攻撃目標に到達する機能部
分が必要になります。
　脆弱性をついて侵入するタイプにフォーカスして
考えてみます。脆弱性は次々に発見され、次々にセ
キュリティアップデートが用意され、脆弱性が消さ
れていきます。脆弱性を使って侵入するには、その
速いローテーションで消費される脆弱性をキャッチ
アップして、侵入するためのエクスプロイトコード
（exploit code）を量産しなければなりません。しか
も、かなり専門的な知識が必要です。そこで何が起
こるかというと、エクスプロイトコードがレンタル
されたり、売買されたりする状況が生まれます。
　Multilockerというランサムウェア本体とボット
ネットを貸し出す形で営業しているタイプのランサ
ムウェアがあります。貸し出す側が20～25％、こ
れを使ってしかける側が75～80％の割合で利益を
分配します。ちなみに、Multilockerを運用している
側はこの形態をアフィリエイトと呼んでいるそうで

みんなでもう一度見つめなおそう

セキュリティ実践の
基本定石

【第四五回】

すずきひろのぶ
suzuki.hironobu@gmail.com

WannaCryの問題の本質

注1）	“NHS seeks to recover from global cyber-attack as security concerns resurface”	 	
https://www.theguardian.com/society/2017/may/12/hospitals-across-england-hit-by-large-scale-cyber-attack

注2）	 マイクロソフトセキュリティ情報 MS17-010 - 緊急　https://technet.microsoft.com/ja-jp/library/security/ms17-010.aspx

https://www.theguardian.com/society/2017/may/12/hospitals-across-england-hit-by-large-scale-cyber-attack
https://technet.microsoft.com/ja-jp/library/security/ms17-010.aspx

Jul. 2017 - 145

【第四五回】WannaCryの問題の本質

す。しかし、このMultilockerもエクスプロイト
コードは別売りでほかからレンタルしたり、購入し
たりして調達しなければなりません。正しく動作す
るエクスプロイトコードを作成するには、相応の技
術力が必要です。また、それ以上に、エクスプロイ
トコードはセキュリティパッチが現れてそれが広く
適用されるまでしか使えません。ほかのモジュール
と比較し極めてコストが高くつきます。

兵器級マルウェア
Stuxnet

　Stuxnetというマルウェアがあります。これは、
「イラン核施設の遠心分離機で使われる制御コン
ピュータに感染し、機器の性能を低下させ、核兵器
レベルの濃度のウランを生成させないようにする」
という目的のために作られたマルウェアです。
　世界で最初の兵器級マルウェアとも呼ばれる
Stuxnetは、次の3つの脆弱性に対して感染する能
力を持っていました。

●●MS10-046：Windowsシェルの脆弱性
●●MS08-067：Serverサービスの脆弱性
●●MS10-061：印刷スプーラーサービスの脆弱性

　この3つの脆弱性はいずれもリモートから任意の
コードを実行できるものです。そのうちMS10-046

とMS10-061は、Stuxnet発見時にはパッチが存在
していなかったいわゆるゼロデイ攻撃でした。
　誰も知らない脆弱性を複数見つけ、しかも、完全
に動作するエクスプロイトコードを作成するのは、
並の技術力ではできません。今では、Stuxnetは
ジョージ・W・ブッシュ大統領政権時に、コンピュー
ター・ウイルス計画OlympicGames（作戦コード名）
によりNSA（米国家安全保障局）が作成したという
のが定説になっています。

WannaCryが
ネットワークに蔓

ま ん

延
え ん

　今回騒ぎになっているWannaCryがどのようにサ

イト内に侵入したか、その経過は確定しないでしょ
う。なぜならば、マルウェアがPCに感染する理由
は数えるとキリがないからです。「メールに添付さ
れてきたマルウェアをクリックして動作させてしま
う」「Webブラウザに入っているプラグインの脆弱
性から感染する」「ほかで感染したPCをネットワー
ク内に持ち込む」。どんな可能性だってあります。
　最近ではマルウェアをしかけているサイトにアク
セスすると、Google Chromeのフォントがないと偽
の警告を出し、フォントに見せかけたマルウェアを
ダウンロードさせるといったものもあります注3。
よく次から次へと考えつくものだなと感心します
が、こういうものでも間違えてマルウェアをPCに
入れてしまう人もいるでしょう。
　WannaCryの最大の特徴（というか致命的な問題）
は、感染先のネットワーク上でMS17-010を対象と
した高度なエクスプロイトコードを使って、脆弱性
が残っているPCにかたっぱしからランサムウェア
をしかけていくことです。企業や組織では同じよう
なシステム構成のPCが複数台導入されているはず
です。そのため、同じような脆弱性を持ったPCが
何台もネットワークにつながれているということに
なります。一般事務などの用途でPCが使用されて
いる環境では、LANは特別なコストをかけてネット
ワーク防御をしているわけでもないでしょう。
　とくに（ゼロデイ攻撃も含み）脆弱性に対応してい
ないのであれば、いったんLANに侵入されて攻撃さ
れては、ひとたまりもありません。これがWanna

Cryの脅威です。しかし、これはWannaCryが生み
出した新たな手法というわけではありません。
　この攻撃に関しては、前述のStuxnetがまさにモ
デルケースです。Stuxnetが最初にしかけられたの
は隔離されているネットワーク上にあるコンピュー
タでした。USBメモリを持ち込んで感染させたと言
われています。そこから先に挙げた3つの脆弱性を
ついて内部感染を広げていきました。最後はイラン
の核開発施設からなんらかの形で外部に流出し、海
外でも感染が起こり、そこで初めてStuxnetの存在

注3）	“Hack Alert: Chrome Users Urged to Download Missing Font, Install Malware Instead”	 	
http://news.softpedia.com/news/hack-alert-chrome-users-urged-to-download-missing-font-install-malware-instead-513152.shtml

http://news.softpedia.com/news/hack-alert-chrome-users-urged-to-download-missing-font-install-malware-instead-513152.shtml

146 - Software Design

みんなでもう一度見つめなおそうセキュリティ実践の基本定石

が明らかになりました。
　そもそも今回のイギリスの病院のコンピュータ
は、2014年4月にサポートが終わっているWindows

XPを継続して使っていて、ランサムウェアに感染
しました。その対策のためにMicrosoft社は急きょ
Windows XPのためのMS17-010を出したという経
緯があります。サポートが終了したシステムを使っ
ているようではひとたまりもありません。
　Windows XPに限らずMS17-010のセキュリティ
アップデートがかかっていないPCはたくさん存在
しているでしょう。「内部ネットワークにつながっ
ているだけで、インターネットへのアクセスはしな
いPCなので、アップデートは必要ない」という考
え違いをしている可能性もあり得ます。内部で閉じ
ているネットワークであっても、どこかに侵入を許
してしまえば網羅的に脆弱性を狙われます。

NSAが作る兵器級
エクスプロイトコード

　WannaCryが使っていたMS17-010の脆弱性は、
別名EternalBlueと言います。しかも、EternalBlue

のPoC（Proof of Concept、概念実証）コードはすで
に出回っており、それは非常に完成度が高いもので
す。もちろんWannaCryの作者が作ったものではあ
りません。GitHub上にもEternalBlueがどのような
動作をするのかがわかるコードが公開されています
し、ネットを検索すれば複数のエクスプロイトコー
ドが簡単に見つけられるはずです。
　未知の脆弱性（後にMS17-010として知られる）に
対して洗練されたエクスプロイト手法を開発したの
はNSAです。そして、（NSAもまた）これらの秘密
とされていたエクスプロイト手法を外部に流出させ
てしまうのです。2016年夏に突如として名乗りをあ
げたハッカーグループThe Shadow Brokers（以下、
TSB）が、これらの手法を入手しています。TSBは
いくつかのゼロデイ攻撃のエクスプロイトコードも
含め、複数の攻撃用コードをNSAから入手し、そ
れをオークションにかけました。
　結局このオークションは成立しなかったようです
が、本当にTSBがお金のためにオークションをし

たのかどうか、筆者は疑っています。
　その後、2017年4月14日にEternalBlueを公開し
ました。そのちょうど1ヵ月前にMS17-010の緊急
セキュリティアップデートが発行されているわけで
すから、一通りセキュリティアップデートが終わっ
たと見通した時点で公開したとも考えられます。
　NSAは米国の数ある諜報組織の1つでSIGINT

（通信に対する諜報活動）を専門としており、現在で
はコンピュータもNSAの活動範囲になっています。
NSAがマルウェアを開発する予算は、米国の諜報
組織の膨大な予算の中の一部として用意されてお
り、それを元手に開発されています。ネットワーク
犯罪者が密かに作ったり、興味があって実力試しで
作ってみたりというレベルとは完全に違うことを理
解しておかなければなりません。

The Shadow Brokers

　今回の件で、TSBがNSAから流出させたいくつ
かのエクスプロイトコードを手元に置いていること
は証明されました。
　WannaCryは、EternalBlueでPCにエクスプロイ
トをしかけたあと、DoublePulsarと呼ばれるこれま
たNSAから流出したバックドアモジュールをメモ
リ上に常駐させます。これはメモリ上で動作し、外
部から遠隔制御するための機能を持ちます。バック
ドアのツールとして任意のファイルを入れたり、外
にファイルを流出させたりすることができます。
　今回、DoublePulsarは、ランサムウェアの本体を
入れることに使われています。任意のコマンドを外
部から実行できますから、外部の第三者がPCをコ
ントロールできるのと同じです。
　EternalBlueとDoublePulsarを用意し、ター
ゲットを狙うPCと実際にターゲットとなるPCが
あり、攻撃可能な状態であれば、ターゲットとなっ
たPCは内部から情報が流出していることにはいっ
さい気づけないはずです。また、DoublePulsarはメ
モリ上にしか存在しないタイプですから電源を落と
してしまえば、各種監査ログでも詳細に見ないかぎ
り、その存在は見つけられないでしょう。監査ログ

Jul. 2017 - 147

【第四五回】WannaCryの問題の本質

トコードが、まだいくつも存在していて、それがど
の段階はわからないが、将来公開されるであろうこ
とが予想できる、私たちはそんな状況にいます。こ
れまでとはまったく違う様相を見せています。
　TSBのここまでの論理は「すでにアップデートは
公開されている」「PoCを公開しているだけで実際
のマルウェアを作っているわけではない注6」「そも
そもこれらのコードを作ったのはNSAであり、自
分たちではない」ということだと思います。NSA、
ひいては米国政府が世界から非難されれば目的は達
成されるのではないかと筆者は考えています。
　今回も、TSBが公開する前に緊急セキュリティ
アップデートが出ているわけですから、これでどう
にかできたわけです。もしゼロデイ攻撃でTSBが
情報を公開するなら無責任として非難が集中するの
で、その形は取らないでしょう。
　我々が選択すべき最初の防御は、とにかくリリー
スされるセキュリティアップデートをいち早く適用
することです。そうすれば、かなり対抗することが
できるでしょう。少なくとも、セキュリティアップ
デートを怠ったり、セキュリティアップデートすら
されないサポート切れのシステムを使ったりできる
時代ではなくなったことだけは確実です。s

に残っているかどうかも疑問です。
　こんなシナリオを考えてみましょう。Raspberry

Piのような小型のPCを用意します。EternalBlue

とDoublePulsarとあと少しの追加プログラムを入
れておきます。MS17-010のパッチはまだ存在して
いないとします。すると、この小型PCを密かに組
織のネットワークに接続してしまえば、その組織内
のWindows系注4のコンピュータから情報を盗んだ
り、WannaCryが行ったように情報を破壊したりす
ることが可能です。

兵器級のマルウェアが
あといくつあるのか

　WannaCryは、TSBが公開したいくつかのNSA

作成のエクスプロイトコードを流用したに過ぎませ
ん。WannaCryが登場する以前の2017年4月24日時
点で、すでにDoublePulsarが全世界の数万から十
数万台のコンピュータに感染しているという報告が
あります注5。WannaCryのようなわかりやすい形で
感染を表面化させていなかっただけで、問題は水面
下で進んでいたのです。
　TSBは“TheShadowBrokers Data Dump of the

Month”という、入手したNSAの情報をリークする
会員サービスを立ち上げるとしています（図1）。
　しかし筆者は、TSBのモチベーションが金銭だと
はどうしても思えません。むしろ、これらのすべて
は注目を引くのが目的で、このような厄介な兵器レ
ベルのマルウェアを作って外部に流出させてしまう
ようなNSAに非難の目が向くようにしかけている
ように見えます。つまり今後も、NSAに対して冷た
い視線がいくような形で公開が続く可能性が大きい
ということです。

セキュリティアップデート
のいち早い適用を

　NSAが作った極めて危険性の高いエクスプロイ

注4）	 具体的には、Windows Vista、7、8.1、RT 8.1、10と、Windows Server 2008、2008 R2、2012、2012 R2、2016と、Server
Coreインストールオプションです。詳しくは注2のURLで確認できます。

注5）	“NSAから流出のバックドア「DOUBLEPULSAR」、世界で感染急増”　https://japan.zdnet.com/article/35100240/
注6）	 銃規制を嫌うアメリカ人が使う「銃が人を殺すわけではない。人が人を殺す」というレトリックと同じです。

◆◆図1　TheShadowBrokersのツイート

このツイートにあるリンクの先にて“TheShadowBrokers Data
Dump of the Month”についてアナウンスされている。

https://japan.zdnet.com/article/35100240/

148 - Software Design

さまざまなコンテナ戦略を発表
したRed Hat Summit 2017
　2017年5月2日から4日にかけて、Red Hatは
Red Hat Summit（年次で実施されるRed Hat最
大のイベントであり、同社のメッセージから製
品のロードマップまでさまざまな事柄を発表）を
開催しました。このイベントではコンテナ戦略
に深く関係するOpenShiftが一番の注目を浴び
ており、マッコーリー銀行 注1などの金融機関を
中心とした導入利用事例 注2や、これから紹介す
る次のような新規戦略を発表しています。

OpenShift.io注3

　開発者向けに用意されたコンテナベースのア
プリケーション開発環境であり、パブリックク
ラウドサービスとして提供されます。OpenShift.

ioはさまざまなオープンソースの組み合わせで
成り立っており、OpenShiftのほかにEclipse

Che、Eclipse Vert.x、OpenJDK、PCP、
WildFly Swarm、Spring Bootといった、サー
ビス分析やアプリケーションの継続的改善／デ

リバリーを実現するために必要な機能を一通り
備えています 注4。OpenShift.ioはテクノロジー
プレビューとして公開されていますが、クロー
ズドベータのようなサービスとなっているため、
現在空席待ちの状態となっています。そのため、
使用イメージを把握したい場合、YouTubeなど
で公開されているOpenShift.ioの紹介デモ 注5を
ご覧になるか、アップストリームプロジェクト
であるfabric8注6を使ってみることを推奨します。

OpenShift Application Runtimes

　マイクロサービス化されたアプリケーション
のランタイムとして、WildFly Swarm、Spring

Boot、Eclipse MicroProfile、Eclipse Vert.x、
Node.jsの正式なサポートを発表 注7しました。
OpenShift.ioのほかにも、すでに製品としてリ
リースしているオンプレミス版のOpenShiftとも
組み合わせて利用できるようになる予定です。ま
た、既存のJavaアプリケーションについて、JBoss

Enterprise Application Platform 注 8（JBoss

注1） URL https://youtu.be/QnY9TozANr0
注2） URL https://www.openshift.com/container-platform/

 customers.html
注3） URL https://openshift.io/

注4） URL https://developers.redhat.com/blog/2017/05/02/
 announcing-red-hat-openshift-io/

注5） URL https://www.youtube.com/watch?v=XNdi4AC_EPQ
注6） URL https://fabric8.io/
注7） URL http://red.ht/2pG5ku2
注8） URL https://www.redhat.com/ja/technologies/jboss-

 middleware/application-platform

 Author 小島 啓史（こじまひろふみ）
	 mail：hkojima@redhat.com

レッドハット㈱ テクニカルセールス本部
ソリューションアーキテクト

パブリッククラウドサービスであるOpenShift Onlineが、
2017年5月上旬にリリースされました。この使い方を、同
時期に開催されたRed Hat Summitで発表したさまざまなコ
ンテナ戦略と合わせて紹介します。

コンテナを使ってみよう

第10回

レッドハット系ソフトウェア最新解説

https://youtu.be/QnY9TozANr0
https://www.openshift.com/container-platform/customers.html
https://openshift.io/
https://developers.redhat.com/blog/2017/05/02/announcing-red-hat-openshift-io/
https://www.youtube.com/watch?v=XNdi4AC_EPQ
https://fabric8.io/
http://red.ht/2pG5ku2
https://www.redhat.com/ja/technologies/jboss-middleware/application-platform

Jul. 2017 - 149148 - Software Design

モリ／ストレージなど）が限られている、JBoss

EAPコンテナを利用するためのテンプレートが
ないなどの制限がありますが、個人で試してみ
るには十分な機能を備えています。
　それでは、さっそく利用方法を見ていきましょ
う。最初に https://www.openshift.com/ にアク
セスし、［SIGN UP FOR FREE］をクリックし
てアカウントを用意します。OpenShift Online

のアカウントには、レッドハットのカスタマー
ポータル 注12のアカウントや各種ソーシャルア
カウント（図2）を利用できます。
　ログインするアカウントを選択したあとに、プ
ラン（FREE1択）とリージョン（US EASTかUS

WESTの2択）を指定して、アカウントにOpen

Shift Onlineの環境を紐付けます。執筆時点で
はほぼ選択肢がないため、何も考えずにクリッ
クしていくだけの作業となります。環境の紐付
けが完了すると、Welcome画面（図3）が表示さ
れるので、［Open Web Console］ボタンをクリッ

EAP）への移行を促進させ
る Red Hat Application

Migration ToolKit注9も利
用していくことで、Open

Shift環境でのJBoss EAP

コンテナを利用したマイ
クロサービス化を実現で
きるようになります。

オンプレミスのOpen
ShiftとAWSとの連携

　Amazon AWSとの提携
強化が発表され、図1の
OpenShiftのコンソールか
ら各種AWSサービスをデ
プロイ、オンプレミスのア
プリケーションとの連携が
簡単にできるようになりま
す 注10。これにより、アプ
リケーションのハイブリッ
ドクラウド対応の促進につながります。この機能
は、OpenShiftにOpen Service Broker API注 11

を組み込むことにより実現される予定です。

OpenShift Online

　OpenShift OnlineはOpenShift.ioのベースと
なっているパブリッククラウドサービスです。
Red Hat Summit 2017の開催とほぼ同時期に、
正式なサービスとしてリリースされました。執
筆時点では無償のFree Planのみ利用できるよ
うになっており、Dockerコンテナをベースとし
たアプリケーションの開発を気軽に試せるよう
になっています。過去記事で紹介しましたオン
プレミス版のOpenShift Container Platformと
比較すると、OpenShift環境の管理権限が必要
となる各種操作ができない、使えるリソース（メ

注9） URL https://access.redhat.com/documentation/en/red-
 hat-application-migration-toolkit/

注10） URL https://www.youtube.com/watch?v=EKo3khfmhi8
注11） URL https://www.openservicebrokerapi.org/ 注12） URL https://access.redhat.com/

 ▼図1　 AWSサービスを呼び出すOpenShiftコンソールの画面イメージ

 ▼図2　OpenShift Onlineで利用できる各種アカウント

コンテナを使ってみよう第10回

https://access.redhat.com/documentation/en/red-hat-application-migration-toolkit/
https://www.youtube.com/watch?v=EKo3khfmhi8
https://www.openservicebrokerapi.org/
https://access.redhat.com/
https://www.openshift.com/

150 - Software Design

とができます。この使い方については、2016年
10月号と2016年11月号の同連載記事やRed

Hatの公式ドキュメント注13をご参照ください。
なお、Webコンソールだけでなくコマンドベー
スでも操作ができるようになっています。その
場合は、OpenShiftのCLIツール（ocコマンド）
をインストール 注14して、OpenShift Onlineの
環境にログインします。ログイン後は、ocコマ
ンドを利用してアプリケーションの状況確認や
デプロイなどを実施できるようになります。

$ oc login https://console.starter-us-ｭ
west-2.openshift.com

　このようにOpenShift Onlineはたいへん簡単
に利用できるため、興味がありましたらぜひと
も試してみてください。ﾟクすればOpenShift Onlineのコンソールにアク

セスできます。
　コンソールにアクセスしたあとは、前述した
ように機能がいくつか制限されていますが、オ
ンプレミス版のOpenShiftと同じように使うこ

注13） URL https://access.redhat.com/documentation/en/
 openshift-online/

注14） URL https://access.redhat.com/documentation/en-us/
 openshift_online/3/html/cli_reference/cli-reference
 -get-started-cli#installing-the-cli

 ▼図3　OpenShift OnlineのWelcome画面

レッドハット系ソフトウェア最新解説

https://access.redhat.com/documentation/en/openshift-online/
https://access.redhat.com/documentation/en-us/openshift_online/3/html/cli_reference/cli-reference-get-started-cli#installing-the-cli

151 - Software Design Jul. 2017 - 151

Ubuntuの方針転換とWeb翻訳混入事件 第 86 回第87回

Unityの生涯

　今回は主役の座を失うことになってしまったUnityの航路をたどっていくことにします。

Ubuntu Monthly Report

Unityとは何だったのか

　Unityは、その前身であるnetbook-launcherやそ
の後継となるはずだったUnity 8、あるいは数多の
デスクトップ環境やデスクトップシェルと比較して
も、変化の激しさと機能の多さは他の追随を許しま
せん。これはUnityに求められることが変わって
いったことの証左でしょう。最初のうちはネット
ブックの狭い解像度でも、通常のデスクトップの解
像度でも違和感なく使えること、続いては対応デバ
イスの増加とWeb技術との統合、最後はUnity 8へ
スムーズにバトンタッチすべくひたすらバグ修正や
使い勝手の向上やパフォーマンス問題への対応な
ど、とにかく問題を起こさないことが重要視された
と考えられます。
　というわけで、今回はUnityの多機能ぶりと歩み
を振り返っていくことにします。

Unity 7の機能

Dash

　画面左上のUbuntuのロゴアイコン（Dashアイコ
ン）をクリックすると表示されるのがDash（ダッ
シュ）です。当初はアプリケーションの起動のみだっ
たのが、Lensというしくみが導入されてPCの内外
を問わずさまざまな項目が表示できるようになりま

した。とはいえ、最近のUnityでは外部（インター
ネット）を検索するしくみはデフォルトでオフになっ
ています。LensにはさらにScopeというしくみがあ
り、検索の対象を広げることができます。
　後年はまったく活用されなくなりましたが、ほか
にもアプリケーションのインストールや支払い（購
入）やさまざまなことがこのDashから行うことがで
きます。

Launcher

　画面左端に表示されるのがLauncher（ランチャー）
です。よく使うアプリケーションはDashを経由せず
起動できたり、現在起動しているアプリケーション
やさまざまなウィンドウを管理したり、ショート
カットの追加や削除、アイコンを右クリックした際
に表示されるクイックリストなど、かなりたくさん
の機能があります。Launcherの設定は「設定」-「外観」
である程度変更できます。

Indicator

　画面上部に表示されているパネルの右側にあるの
がIndicator（インジケーター）で、向かって左側に表
示されるApplication Indicatorsと右側に表示される
System Indicatorに分かれています。前者の仕様は
公開されており注1、たくさんのアプリケーションで対
応しているほか、KDE Plasmaでもほぼ同じ仕様で
対応しています。Unityが使われなくなっても、この
注1） https://unity.ubuntu.com/projects/appindicators/

Ubuntu Japanese Team　あわしろいくや

https://unity.ubuntu.com/projects/appindicators/

152 - Software Design

Ubuntu Monthly Report

仕様は残ることでしょう。

HUD

　Heads-Up Displayの略で、アクティブなウィンド
ウでmキーを押すと表示されるショートカットメ
ニューです。たとえばmキーを押したあとc

キーを押すと、ウィンドウを閉じることができます。
キーボードから直接文字を入力できる言語圏では便
利でしょうが、日本語では便利とはいい難いです。

Global MenuとLocal Integrated Menu

　Unityではデフォルトで上部のパネルに表示して
いるアプリケーション（ウィンドウ）のメニューが表
示されます。これをGlobal Menuといいます。また、
個々のアプリケーションのタイトルバーにこのメ
ニューを表示することもできます。これをLocal

Integrated Menu（LIM）といいます。どちらにするか
は「システム設定」-「外観」-「挙動」タブで変更できま
す。

オンラインアカウント

　「システム設定」-「オンラインアカウント」を開き、
デフォルトではFacebook、Flickr、Googleの各種
Webサービスのアカウントを有効にして、Unityやそ
のほかのアプリケーションから便利に使えるように
するための機能です。GNOMEにも似たような機能
がありますが、実装はまったく異なるようです。

WebApp

　Webサービスを、さもアプリケーションであるか
のように扱う機能でしたが、最近はまったく使用さ
れていません。たしかに多様なプラットフォームに
対応したアプリケーションを用意するのはたいへん
ですので、このような機能が必要だったのでしょう。
しかし、Unity 7はほぼPC専用と言える状況になっ
たので、活用されなくなったものと思われます。

セキュリティとプライバシー

　「システム設定」-「セキュリティとプライバシー」で
各種の設定が行えます。Unityはセキュリティについ

て話題になったことがあり、後年にはどんどん厳し
くなっていき、最終的にはオンラインでの検索はデ
フォルトで無効になりました。

Unity Tweak Tool

　unity-tweak-toolパッケージをインストールし、起
動するとUnityの細かな設定を安全に変更できます。
Launcherを横表示にする設定もこれを使うと簡単で
す。

Low Graphics Mode

　具体的な方法は紹介しませんが、Unityにはグラ
フィックスが遅い環境用のLow Graphics Modeがあ
ります。各種エフェクトを省略して相対的に高速化
しています。これは16.04以降に実装されましたが、
設定はやや難しいです。しかし17.10からはこれが
簡単になるということです。17.04に間に合わなかっ
たのが残念です。

UnityとUbuntuの歴史

netbook-launcher

　Unityの前身はnetbook-launcherといい、その名
のとおり今となっては懐かしいNetbook用のラン
チャーでした。デスクトップ用とNetbook用のラン
チャー（デスクトップシェル）を統一したものですの
でUnityという名称であり、またデスクトップ用と
スマートデバイス向けのランチャーを統一しようと
したのもUnity（厳密にはUnity 8）でした。そういう
意味ではポリシーは一貫しているといえます。
　Netbook用のUbuntuが最初にリリースされたの
は、インストール用イメージではなくプリインス
トール用でした。DELLやASUSなどから発売され
たようですが、日本でも販売されており、筆者は
DELL Inspiron Mini 9を所有していました。残念な
がら現在は電源が入らなくなってしまいましたが、
図1がデスクトップのスクリーンショットです。
　Ubuntu Netbook Remixとしてインストールイ
メージが公開されたのが9.04、Ubuntu Netbook

152 - Software Design Jul. 2017 - 153

Unityの生涯 第 87 回

Editionと名称が変わって公式フレーバーになったの
が10.04（図2）、最後のリリースとなったのが10.10

と、Ubuntuの歴史を駆け抜けていきました。

Unity

　最初に注意ですが、ここで登場するバージョンは
すべて最終バージョン（サポート終了時点、あるいは
執筆段階での最新版）です。Unityはアグレッシブに
アップデートされているので、リリース時点とサ
ポート終了時点でバージョンの乖

かい

離
り

が激しいものも
存在しました。
　Unityが最初に採用されたUbuntu Netbook

Editionは10.10（図3）です。すなわち10.04までは
netbook-launcherが採用されていました。そして
11.04からはUbuntu Netbook EditionとUbuntuが統
一されました（図4）。このあたりの流れは現在の
UbuntuとUbuntu GNOMEの関係とよく似ていま
す。

　Ubuntu 11.04にはUnityのほか、ハードウェアア

クセラレーションが有効にならないときの環境用に
Unity 2Dも選択可能になっていました。Unity 2Dは
QtとQMLで書かれ、Unityと似たような使い勝手に
するよう開発されていました。
　Ubuntu Netbook Edition 10.10のUnityのバー
ジョンは0.2.46です。このころはまだGNOME

Shellと同じウィンドウマネージャであるMutterを
採用していました。機能もシンプルで、おおむねア
プリケーションランチャーとしての機能しかありま
せんでした。
　Ubuntu 11.04のUnityのバージョンは3.8.16、
Unity 2Dのバージョンは3.8.4.1でした。Unityは
ウィンドウマネージャをCompizに変更した最初の
バージョンです。バージョニングは0.2から3.8に上
がっていて驚きますが、全面的に書き換えるにあ
たって3から始めたものと思われます。changelogに
残る最後の0.2系列が0.2.46、最初の3系列が3.1.2

ですので、単純に頭の小数点を取ったのでしょう。
Unity 2Dのバージョンは3.2.0から始まっており、

図1　 Dell Inspiron Mini 9のデスクトップ。Ubuntuのバー
ジョンは8.04だった

図2　 Ubuntu 10.04 Netbook Editionのスクリーン
ショット。LTSではなかった

図3　 Ubuntu 10.10 Netbook EditionからUnityに移行
した

図4　Ubuntu 11.04のUnity

154 - Software Design

Ubuntu Monthly Report

これはUnityに合わせたとのことです。
　Ubuntu 11.10のUnityのバージョンは4.30、Unity

2Dのバージョンは4.12で、Lensとインジケーターが
実装されてだいぶ現在のUnityに近づいてきました
（図5）。LauncherとパネルとインジケーターがGTK+

3にポーティングされたのと、Dashが日本語入力に対
応したのも大きな変更点です。LTS前だからか、と
にかくアグレッシブに開発されており、11.10のリ
リース時点では4.22だったのが、最終的には4.30ま
でアップデートされました。
　Ubuntu 12.04 LTSはついこの4月にサポートが
切れたばかりですので注2、最近までお使いだった方
もいらっしゃるのではないでしょうか。Unityのバー
ジョンは5.20、Unity 2Dのバージョンは5.14でした。
もちろんUnityがデフォルトになって初めてのLTS

でした。HUDが実装され、「システム設定」-「外観」-
「挙動」タブでいくつかの設定が変更できるようにな
りました。
　Ubuntu 12.10のUnityのバージョンは6.10で、こ
こまで来るとUnity 7と見た目に関する大きな違い
はなくなってきます。Lensの機能が強化され、さま
ざまなことが検索できるようになりました。また
WebAppsも実装されました。「システム設定」に「プ
ライバシー」が追加され、Unityに関するプライバ
シーの設定が細かく変更できるようになりました。
Unity 2Dのサポートが削除され、Unityに一本化され

注2） Canonicalからサポートサービスを購入すれば、あと2年延長
できます。

たのも大きな変更です。
　Ubuntu 13.04でついにUnity 7.0に到達します。
ここから4年間このバージョンが続くのは、おそら
く誰も予想していなかったでしょう。7.0にアップ
デートしたとはいえ6.xと機能的には大きな違いは
なく、パフォーマンスチューニングや使い勝手の向
上がおもに行われました。デフォルトでワークス
ペースが1つになったり、タイプミスをそれっぽい
ものに修正してくれるようになったなどの挙動の変
更もあります。
　Ubuntu 13.10のUnityのバージョンは7.1.2です。
このころからUnity 8の開発が始まり、Unityの開発
速度が低下していきますが、バグフィックスなどは
確実に行われています。
　Ubuntu 14.04 LTSのUnityのバージョンは7.2.6

です。High-DPIディスプレイに対応したり、グロー
バルメニューをアプリケーションのタイトルバーに
表示できるようにしたなどの変更点があります。ま
た、gnome-settings-daemonとgnome-control-center

をそれぞれunity-settings-daemonとunity-control-

centerへとフォークし、独自の変更を加えやすくな
りました。
　Ubuntu 14.10のUnityのバージョンは7.3.1です。
さらなるHigh-DPIディスプレイへの対応などが行
われています。
　Ubuntu 15.04のUnityのバージョンは7.3.2、15.10

のUnityのバージョンは7.3.3、16.04のUnityのバー
ジョンは7.4.0、16.10と17.04のUnityのバージョン
は7.5.0です。いずれも細かな修正が行われていま
す。16.04以降のUnityではLow Graphics Modeオプ
ションの追加、Launcherを下中央に移動するオプ
ションの追加が行われています。

Unity 2D

　前述のとおりUnityのデフォルト化に伴って11.04

から12.04まで採用されていたUnity 2Dですが、消
滅した理由は担当社員の退社と記憶しています。奇
しくもUnity 8と同じくQtとQMLで書かれていた
ので（ただしこちらのQtは4で、Unity 8のQtは5で
す）、そのまま継続していればどうなったのか歴史の

図5　 Ubuntu 11.10のUnity。ようやくDashにLensが
実装された

154 - Software Design Jul. 2017 - 155

Unityの生涯 第 87 回

ifを考えざるを得ません。

Unity 8

　最初はqml-phone-shellという名称で2012年8月
から開発が開始され、2013年6月からUnity 8という
名称に変更されました。qml-phone-shellの最終バー
ジョンは1.80、Unity 8の最初のバージョンは7.80.0

です。たしかにUbuntu 13.10にはunity8というパッ
ケージが存在します。
　計画はWikiにまとめられており注3、現在でも読む
ことができます。最大の目標は今さら言うまでもな
く1つの実装ですべてのハードウェアに対応させる
ことです。そして移行のスケジュールは14.10以降
となっていました。ディスプレイサーバとしては当
初からMirのみの対応だったようです。このWikiに
は書かれていませんが、initデーモンはUpstartのみ
の対応で、systemdに移行したものの結局全部の移行
はできませんでした。すなわち、Unity 8はUpstart

とMirに強く依存していたということです。
　プレビューのままで終わってしまった17.04の
Unity 8を見ても（図6）、ユーザインターフェースと
しては実にいいところまで来ていたので、なんとも
惜しいです。

Unityの今後

　2017年5月下旬現在ではUbuntu 17.10の開発が
進んでいます。今のところはまだデスクトップシェ
ルはUnity 7のままです。以後GNOME Shellに移行
するものの、アップグレードした場合はUnity 7も
引き続き使用できるようになる予定です。とはいえ
Unity 7のためにあたっていた各種パッチは落とされ
ると思われるので、どの程度同じ使い勝手が維持さ
れるかは不透明です。
　Unity 8セッションはすでにデフォルトではインス
トールされなくなり、Upstartに依存していた部分が
削除されたり、GTK+のMirバックエンドが有効にさ
れなくなったりなど、現段階ですでに動作しなく
なっています。今後はフォーク先に期待するのみに
注3） https://wiki.ubuntu.com/UnityNextSpec

なりました。

ポイントオブノーリターン

　蛇足ですがUnity 8に全面的に移行する未来が訪
れるためには何が必要だったのかを考えてみること
にしましょう。
　まずはディスプレイマネージャをMirとX Window

System（X11）の両対応にしておくことです。ひとま
ずUnity 8に移行しておいて、デスクトップ版のみ
あとからMir（あるいはWayland）に移行する、とい
う手が使えていれば、移行は叶っていたのではない
かと思えてしまいます。事実14.04まではunity8-

desktop-session-x11というセッションが存在してい
ました。14.10の段階はもちろん、現在であってもX

Window Systemなしは現実的ではありません。
　あとはsystemdへの移行も、結局Unity 8では達
成できなかったことを考えると手間ばかりかかって
効果的ではなかったといえます。とはいえこれが
あったからGNOMEへの移行も比較的容易にできる
ので、未来を予測することはいかに難しいかがよく
わかります。｢

図6　Unity 8は右側のメニューが特徴

https://wiki.ubuntu.com/UnityNextSpec

156 - Software Design

48 Debian Developer　やまねひでき　henrich@debian.org

Debian 9“Stretch”の新しい点

Debian 9は
どこが新しくなったの？

　ここしばらくの間、続けて状況をお伝えして
いるDebian 9“Stretch”ですが、本稿執筆中に、
「6月17日にリリース予定」というアナウンスが
出ました注1。本誌を読んでいらっしゃる方は、
すでにインストール可能な状態となっているこ
とでしょう。
　今回は、Debian 9“Stretch”のリリースにつ
いて、概要をまとめてお伝えします（さらに詳
しい内容を知りたい場合はリリースノート注2を
ご参照ください）。

Debian 9の
サポートアーキテクチャ

　Debian 8からは、64ビットリトルエンディ
アンMIPS（mips64el）アーキテクチャが追加さ
れました。
　逆にサポートが削除された機器として、
Pentium（PentiumIIより前です）とその互換
CPU注3が載っているPCや、PowerPCアーキ
テクチャの古めのMacなどがあります。これ
らの機器では、残念ながらDebian 9“Stretch”
は利用できません。このような機器を使う場合

注1） URL http://deb.li/3zGE0

注2） URL http://deb.li/33dxA

注3） どのぐらい古いかというと、Pentiumの発売開始が1993
年（20年以上前）です。このような環境を今でも使ってい
るのは、かなり珍しいでしょう。ここしばらくで使われて
いるものとしては、Intelのシングルボードコンピュータ
「Intel Galileo」ぐらいでしょうか。

は、前のリリースであるDebian 8“Jessie”をお
使いください（Debian 8では、i386アーキテク
チャはLTSサポートも含めて2020年まで利用
できます）。

インストーラ／カーネル

　まず、インストーラはGUI（Graphical User

Interface）がデフォルトになりました。そのた
め、これからDebianを触る人も、実機へのイ
ンストールが多少とっつきやすくなったのでは
ないでしょうか。
　ただ、期待されていたインストーラのUEFI

セキュアブートへの対応は、9.0リリース時点
では間に合わないかもしれません（間に合わな
かった場合は、9.xのポイントリリースで対応
が追加される予定です）。
　Linuxカーネルは4.9をベースとしたものに
なっています。Linux 4.9はLTS（Long Term

Support）バージョンであり、メンテナンスを
するうえでDebian単体でがんばるのではなく、
ほかの開発者の力も借りられるので順当な選択
でしょう。
　最近出たAMDのCPU「Ryzen」への最適化な
どは難しいですが注4、周辺機器のサポートにつ
いては、新しいデバイスドライバがポイントリ
リースで随時更新／追加されていくことになり
ます。

注4） このような場合は、stretch-backportsリポジトリに追加
されるであろう、新しいバージョンのカーネルパッケージ
を使うのがお勧めです。

http://deb.li/3zGE0
http://deb.li/33dxA

156 - Software Design Jul. 2017 - 157

Debian 9“Stretch”の新しい点 48

プログラミング言語

　プログラミング言語についても順当にアップ
デートが実施されています（表1）。
　後方互換性を非常に大事にしているPerlは、
とくに変わったところもなく利用できます。し
かし、カレントワーキングディレクト
リ（.）が@INC（デフォルトでインクルー
ドするディレクトリの一覧）から削除さ
れているので、自作スクリプトについ
ては動作の確認を行いましょう注5。
　PHPは7.0にバージョンアップする
ことで、大きく性能が向上している
のは見逃せません。
　RubyとPythonについては、最新の
メジャーバージョンはDebianのフリー
ズとスケジュールが合っていないため、
1つ前のものになります。Rubyを使っ
た開発などでどうしても新しいバー
ジョンのRubyを使いたいという場合、
rbenv（パッケージとしては rbenvと
ruby-build）を使うことで対応できま
す（図1）。
　一方、残念ながらupstreamと大き
くバージョンが乖

か い り

離しているのが、
Node.jsです。セキュリティサポート
も行われない予定なので、Node環境
を使いたい場合はNode.jsのサイト注6

からダウンロードして利用すること

になるでしょう。
　C/C++コンパイラとしては、GCC 6.3とclang

3.8/3.9が採用されています。C++ 14がデフォ
ルトとなって、C++ 17の実験的サポートが部
分的に追加されているのは、うれしい方も多い
ことでしょう。

 ▼図1　rbenvを使って複数バージョンのRubyをインストールする

 必要なパッケージを入れて初期設定する
$ sudo apt install rbenv ruby-build
$ echo 'eval "$(rbenv init -)"' >> ̃/.bashrc && . ｭ
̃/.bashrc

 rbenvを利用して、Debian 9ではパッケージされていないRuby2.4.0を入れる
$ rbenv install 2.4.0
Downloading ruby-2.4.0.tar.bz2...
-> https://cache.ruby-lang.org/pub/ruby/2.4/ruby- ｭ
2.4.0.tar.bz2
Installing ruby-2.4.0...
Installed ruby-2.4.0 to /home/testuser/.rbenv/ ｭ
versions/2.4.0

 一方、古いバージョンのRubyをインストールしようとするとエラーになる ※
$ rbenv install 2.2.6
Downloading ruby-2.2.6.tar.bz2...
-> https://cache.ruby-lang.org/pub/ruby/2.2/ruby- ｭ
2.2.6.tar.bz2
Installing ruby-2.2.6...

BUILD FAILED (Debian 9.0 using ruby-build 20160913)
 （..略..）
 from ./tool/rbinstall.rb:754:in `each'
 from ./tool/rbinstall.rb:754:in `<main>'
uncommon.mk:246: ターゲット 'do-install-all' のレシピｭ
で失敗しました
make: *** [do-install-all] エラー 1

 この場合はlibssl1.0-devをインストールしてからビルドする
$ sudo apt install libssl1.0-dev
 （..略..）
以下のパッケージは「削除」されます:
 libssl-dev
以下のパッケージが新たにインストールされます:
 libssl1.0-dev
 （..略..）

$ rbenv install 2.2.6
Downloading ruby-2.2.6.tar.bz2...
-> https://cache.ruby-lang.org/pub/ruby/2.2/ruby- ｭ
2.2.6.tar.bz2
Installing ruby-2.2.6...
Installed ruby-2.2.6 to /home/testuser/.rbenv/ ｭ
versions/2.2.6

 ▼表1　おもな言語と採用バージョン

言語 バージョン
Perl 5.24.1
PHP 7.0
Python 3.5.3/2.7.13
Ruby 2.3.3
Java 8
Go 1.7
Node.js 4.8.2

※　古いバージョンのRubyを使いたい場合、Ruby 2.4.0よりも古いバージョン
は新しいOpenSSLに対応しておらず、そのままではビルドできません

（Debian 9で提供しているデフォルトのOpenSSLのバージョンは新しめの
1.1.0であるため）。

注5） URL https://www.debian.org/releases/
stretch/amd64/release-notes/ch-infor
mation.ja.html#perl

注6） URL https://nodejs.org/ja/download/

https://www.debian.org/releases/stretch/amd64/release-notes/ch-information.ja.html#perl
https://nodejs.org/ja/download/

158 - Software Design

サーバ関連

　サーバ周りに目を移します（表2）。
　DBサーバとしてMySQLは非常にメジャー
なものですが、Debian 9“Stretch”ではMySQL

は含まれず、代わりに派生DBの「MariaDB

10.1」が採用されています。これはMySQLが
Oracle社の傘下になってからクローズドな姿
勢を強めており、「セキュリティ問題に対して
個別の詳細な情報を公開しなくなった」、「リグ
レッションテストを提供しなくなった」、「バグ
データベースが非公開になった」などの要因に
よりディストリビューション側でメンテナンス
がしづらくなってきたからです（すでにFedora、
openSUSE、Red Hat Enterprise Linux と
RHELクローンのCentOSなどの主要なLinux

ディストリビューションは、MariaDBを標準
としています）。
　これまでMySQLが利用されてきた多くの場
面では、MariaDBでも問題なく動作するはず
ですが、どうしてもMariaDBではなくMySQL

を使いたいという場合は、次の2択になります。

¡	Oracleが配布するMySQLパッケージを使う注7

¡	Debian unstableからパッケージを持ってき
て利用する

　詳細な情報については、「https://wiki.debian

.org/Teams/MySQL」を参照してください。
　そして、最近注目のコンテナ環境である
Dockerですが、残念ながらdocker.ioパッケー
ジが複数のRCバグのためにStretchから削除
されてしまっているという問題があり、そのま
までは利用できません。後日、stretch-back

portsリポジトリに登録されることを期待しま
しょう。すぐに使いたいという場合には、Doc

kerのサイト注8を参考にリポジトリを追加のう
えで、「docker-ce」パッケージを導入してくだ
さい。

デスクトップ／ブラウザ／
エディタ

　デスクトップ環境も順当なバージョンアップ
をしています（表3）。大きく使い勝手が変わっ
たり見栄えが違ったりすることはありませんが、
たいていのものが以前よりもスムーズで使いや
すくなっているはずです。
　ブラウザでは、FirefoxはESR（Extended

Support Release、延長サポート版）である45

が採用されています注9。一方、Chromiumは
ESRのようなものはないので、可能な限り最
新のバージョンが入ることになりそうです。
　本誌でもよく特集が組まれるエディタについ
ては、Vimは 8.0が、Emacsは 24と 25の 2つ
のバージョンが利用できます。

その他

　全体的な話としては、バイナリの多くがAS

LR（Address Space Layout Randomization）が
 ▼表2　おもなサーバ環境と採用バージョン

サーバ環境 バージョン
Apache 2.4
Nginx ※1 1.10
PostgreSQL ※2 9.6
MariaDB 10.1
MySQL 外部リポジトリ
Docker 外部リポジトリ
Samba 4.5

※1　若干古めなので、新しいものを使いたい場合は「http://nginx.
org/en/linux_packages.html」を参照。

※2　PostgreSQLの開発中バージョンや過去のバージョンを
Stretchで使いたい場合は、外部リポジトリがあります。

	 「http://wiki.postgresql.org/wiki/Apt」を参照。

 ▼表3　おもなデスクトップ環境と採用バージョン

デスクトップ環境 バージョン
GNOME 3.22
Cinnamon 3.2
MATE 1.16
Xfce 4.12
KDE 5.8

注8） URL https://store.docker.com/editions/community/
docker-ce-server-debian

注9） ESRのバージョンに合わせますので、しばらくすると
Firefox 52に変わります。

 URL https://www.mozilla.jp/business/注7） URL https://dev.mysql.com/downloads/repo/apt/

https://dev.mysql.com/downloads/repo/apt/
https://store.docker.com/editions/community/docker-ce-server-debian
https://www.mozilla.jp/business/
https://wiki.debian.org/Teams/MySQL
https://wiki.debian.org/Teams/MySQL
http://nginx.org/en/linux_packages.html
http://wiki.postgresql.org/wiki/Apt

158 - Software Design Jul. 2017 - 159

Debian 9“Stretch”の新しい点 48

有効にされてコンパイルされており、バッファ
オーバーフローなどの攻撃に対して被害を抑え
られるようになっています。
　これらのパッケージを管理するツールAPT

は、かなり速度が向上しており容易に体感でき
るほどです。そして、「apt-getと apt-cacheの
2つの使い分けが面倒」という声からか、この2

つの機能を合わせた「apt」コマンドが実装され
ています（使い方はこれまでの apt-get/apt-

cacheとほぼ一緒です）。一点、APTまわりで

注意が必要なのは「pin」機能の振る舞いが変わっ
ていることです。pinを活用している人はman

ページをよく確認してください。
　また、ファイルがどのパッケージに含まれて
いるのかを検索するのに使う「apt-file」という
ツールがあるのですが、このapt-fileのインデッ
クスがAPTと統合され、apt-file updateを
実行しなくても済むようになって地味に使い勝
手が良くなったのが、筆者としては気に入って
います（図2）。
　その他、数々のソフトウェアがパッケージと
なりDebian 9に含まれた結果、バイナリパッ
ケージの個数は約51,700個と膨大なものになっ
ています（図3）注10。
　筆者個人としては、表4、図4のようなフォ
ント関連パッケージを新たに追加していますの
で、読者のみなさんもぜひインストールして使っ
てみてください注11。｢

 ▼図2　apt-fileを使って必要なヘッダファイルを検索
 する

$ sudo apt install apt-file
 （..略..）

 ソフトウェアをビルドする際に
 ヘッダファイルgconv.hが足りないため、
 どのパッケージに入っているのかを探す場合
$ apt-file search /usr/include/gconv.h
libc6-dev: /usr/include/gconv.h

注10） 逆に、Debian 9から削除されたパッケージ数は6,700を
超えます。

注11） 逆に、「もう役目を終えただろう」ということで削除した
ものとしては東風フォント（ttf-kochi）があります。

0

15000

45000

30000

60000

5.0
（2009年）

6.0
（2011年）

7.0
（2013年）

8
（2015年）

9
（2017年）

23200

29100

37500

43500

51700

 ▼図3　Debianの各バージョンに含まれるバイナリ
 パッケージ数比較

 ▼表4　筆者がDebian 9で追加したフォント関連パッケージ

パッケージ 説明
fonts-seto 手書き風「瀬戸フォント」
fonts-ricty-diminished プログラミングなどに向く「Ricty Diminished」
fonts-oradano-mincho-gsrr レトロな「Oradano明朝GSRR」
fonts-octicons GitHubの絵文字フォント「Octicons」。（図4を参照）
birdfont フォント作成ツール「birdfont」

 ▼図4　fonts-octiconsで利用可能な文字の例
 （LibreOffice Impressで表示）

160 - Software Design

安全なネットワーク接続に
欠かせないコマンド

　大型コンピュータに端末を接続していたホス
ト集約型の環境から、Unixワークステーショ
ンの普及によって、リソースの分散が可能にな
りました。ネットワーク通信は、サービスを提
供するプログラムとサービスを受けるプログラ
ムと役割を分けたクライアント・サーバモデル
を実現します。ファイルシステムの分散に
NFS、ローカルでできていることをリモート
システムから実行できるプログラム、GUIで
も表示とサービスプログラムを分離したウィン
ドウシステムが開発されます。異なるソフトウェ
アやハードウェアの開発者が、お互いに接続で
きるように協力しあい、標準となるプロトコル
が定められました。

ssh̶̶Secure SHell
　sshは、フィンランドのTatu Ylonen氏が
1995年に開発しました。それまでの、平文で
送るネットワーク接続コマンドに対して、暗号
化した通信により安全を確保できる画期的な発
明です。sshは、Secure SHellという名称です
が、本連載でも馴染みのあるbashやcshなどの
OSと利用者の間に立つ一般のシェルとは異な
ります。ネットワークを介して、別のシステム
と接続する際に使うプロトコルであり、接続の

ためのサービス・デーモン（sshd）とクライアン
トプログラム（ssh）です。またSSHプロトコル
を用いたクライアントプログラム（scp）や暗号
鍵生成や、鍵を管理するためのツール群があり
ます。
　探検隊では、Unixでの伝統的な通信ソフト
ウェアである、ftp、telnet、BSD rコマン
ド注1よりも先に、現代では不可欠な技術である
sshを取り上げます。それまで通信プログラム
の主流だったrコマンドは、ホストベース（リ
モートホスト名もしくは、IPアドレス）で認証
をしますので、IPアドレスを詐称（IPスプーフィ
ング）されても、利用者は気づかず被害を受け
ることがあります。sshには、こうした問題を
解決するしくみがあります。
　sshは、その成り立ちと発展の過程からいく
つかのバージョンがあります。元祖sshは、後
に商用となりました。OpenBSDを開発するチー
ムが、ライセンスがフリーだったころのsshを
改良してOpenSSHを作り、近年のLinuxや
macOSのほとんどで使われています。
　また、SSHプロトコルにもSSH1とSSH2

とがあります。使える暗号方式の違いや改ざん
チェックのアルゴリズムの違いによりますが、
サーバ側、クライアント側がそれぞれどちら

注1） BSD Unixで発展したさまざまなリモート接続プログラム
とプロトコル。これらの名称のほとんどは、rで始まる。

sshの基本的な使い方を紹介します。

 Author 中島 雅弘（なかじま まさひろ）　㈱アーヴァイン・システムズ

第　　回15 ssh（その1）

160 - Software Design Jul. 2017 - 161

を使うかなどを設定できます注2。SSH2では、
鍵交換（Diffie-Hellman方式）を使って、外部に
情報を漏らすことなくクライアント、サーバ
それぞれが共通する鍵を入手しますので、
SSH1プロトコルの公開鍵暗号系と秘密鍵暗号
系を組み合わせた共通鍵の伝達方式（一方が共
通鍵を用意してから公開鍵暗号を使って鍵を
送る）よりも安全だと考えられています。
　今回解説する sshのバージョンはOpenSSH

7系です。使っているsshのバージョンは、次
のとおりssh -Vオプションで確認できます。

 sshのバージョンを確認する
$ ssh -V í
OpenSSH_7.2p2 Ubuntu-4ubuntu2.1, OpenSSL ｭ
1.0.2g 1 Mar 2016 Ubuntu 16.04
OpenSSH_7.4p1, LibreSSL 2.5.0 macOS

sshで対話シェルに接続する̶̶基本形
　sshコマンドは、sshdが動いているシステム
へ接続するためのクライアントコマンドです。
　接続元マシンと接続先（ホスト）の環境で同じ
利用者名で接続するなら、オプションにホスト
名（もしくは IPアドレス）を指定するだけで接
続できます。

ssh ホスト名

　利用者が異なる場合は、

ssh ホスト名 -l 利用者名

注2） 使用するsshのバージョンや設定により、どちらかのプロ
トコルでしか通信できない環境もあります。

　もしくは、

ssh 利用者名 @ ホスト名

とします。

my-mac:~ $ ssh her-ubuntu í
her-ubuntu:~ $

my-mac:~ $ ssh her-ubuntu -l root í ここでは、root
として接続していますが、sshdの設定でrootログインを禁止している場
合は接続できません
her-ubuntu:~ #
$

　接続すると、ターゲットマシン上のログイン
シェルが起動して、対話的処理ができるように
なります。このときsshは、ターゲットマシン
に対する端末として働いているイメージです。
もちろん、接続、ログインするには、接続先に
アカウントが必要です。
　ターゲットマシン上では、sshdが動作して
いて、接続元のsshコマンドのリクエストに応
答しているのです。ですので、接続先にsshd
が導入されていなかったり、ファイアウォール
などによって接続制限が設けられている場合に
は、接続できません。　
　接続先のマシンが置き換えられている場合、
名前をかたって、悪意のあるマシンに接続させ
ようとするなどの異常を発見できるのがsshの
特徴です。最初にサーバに接続するとき、図1
のように、クライアントがサーバを認証するた
めにメッセージが表示されます。サーバの公開
鍵のフィンガープリント（fingerprint）が表示さ
れますので、問題なければ、yesと入力して接
続します。

$ ssh my-ubuntu í
The authenticity of host 'my-ubuntu (192.168.33.117)' can't be established.
ECDSA key fingerprint is SHA256:F0jxan/LmlZJ/qN2allr9llplrxljMlarzGXDUoANg9.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'my-ubuntu,192.168.33.117' (ECDSA) to the list of known hosts.
masa@my-ubuntu's password:
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-62-generic x86_64)

 ▼図1　以前の接続情報と照合され、リストになければ接続するか確認を促される

第　　回15 ssh（その1）

162 - Software Design

　一度接続できたら、接続先の情報が~/.ssh/
known_hostsに登録されるので、以降環境に変
化がなければ確認作業はありません。
　以前接続したリモートホストのフィンガープ
リントと異なったフィンガープリントが送られ
てくると、警告が表示されます（図2）。対象の
リモートホストが、自分で置き換えたなどと問
題がないことがわかっていれば、ssh-keygen
コマンドを使って、known_hostsから以前の情
報を削除し、接続しなおします。

$ ssh-keygen -R ホスト名

セッションを操作する
　対話シェルで接続中に、接続元のシェルに一
時的に戻りたいときや、別のシステムに接続し
たいときがあります。tmuxやscreenといった仮
想端末注3を活用していれば、こうした切り替え
が簡単という少し進んだ読者もいらっしゃるこ
とでしょう。でも、sshの機能だけでも、簡単
なセッション操作ならできます。対話シェルの
行頭で、~注4ではじまるコマンドを使えばsshに
対してコマンドを送ることができます（表1）。
　~l＋Zで処理を中断すれば、接続元の
セッションはバックグラウンドになって、シェ
ルに戻ってきます。fgでフォアグラウンドに
すれば、元のセッションに戻ります。図3に複
数のセッションを切り替える様子を示します。
　sshが、リモートシステムが停止するなど何

かの理由で応答しないときには、試しに ~.を

注3） 探検隊ではまだ紹介していません。
注4） チルダ（tilde）と読みます。

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the ECDSA key sent by the remote host is
 ...略...

 ▼図2　リモートホストが入れ替わっているときの警告

 ▼表1　~コマンド（一部分）

入力コマンド 機能
~. 接続を切る

~l＋ Z 現在のsshをバックグラウンドジョブにする

~~ ~そのものの入力

~? エスケープ文字のリストを表示

~V
ログレベルを下げる（接続がおかしいときなど、
デバッグ情報を制御する）

~v ログレベルを上げる（上と同じ）

	 フィンガープリントの確認方法
　はじめて接続する際にクライアントに表示される
fingerprintは、サーバ側の公開鍵の情報です。この内
容を確認する方法は、サーバ側で（通常システム管理
者によって）ssh-keygenコマンドで確認でき、電話や
印刷したメモなど、別の安全な伝達手段を使って対象
ホストのフィンガープリントをユーザに伝達し、目視
で確認します。
　フィンガープリントは、クライアントのssh環境に
よってsha256（base64）形式や、md5（hex）形式で
表示されます。サーバ側のシステム管理者は、ssh-
keygenコマンドの-lオプションに加えて、-Eオプショ
ンで表示形式を指定して、両方の形式のフィンガープ
リントを利用者に伝えておけばよいでしょう。

 クライアントの表示形式がsha256の場合
ECDSA key fingerprint is SHA256:F0jxan/ｭ
LmlZJ/qN2allr9llplrxljMlarzGXDUoANg9.
 サーバ側での確認
$ ssh-keygen -l -E sha256 -f /etc/ssh/ssh_ ｭ
host_ecdsa_key.pub

 クライアントの表示形式がmd5の場合（:で区切られた16進数が
並んでいる）
ECDSA key fingerprint is ff:de:ca:10:22:89:ｭ
93:dc:22:3c:e9:4d:85:66:e8:a1.
 サーバ側での確認
$ssh-keygen -l -E md5 -f /etc/ssh/ssh_host_ ｭ
ecdsa_key.pub

　公開鍵も、暗号化方式によりssh_host_ecdsa_key.
pub、ssh_host_dsa_key.pub、ssh_host_rsa_key.
pub、ssh_host_ed25519_key.pubファイルが異な
ります（上の例ではECDSA方式）。どの暗号方式の鍵
で通信しようとしているかの確認もしてください。

162 - Software Design Jul. 2017 - 163

入力してみましょう。呼び出し元のシェルに復
帰できるかもしれません。

リモートコマンドを実行する
　sshは、対話端末以外にもリモートシステム
上のコマンドを直接実行できます。

masa@my-ubuntu:~$ ssh her-ubuntu ls í
2015
SVN
 ...略...

　このしくみを使うと、バッチ処理などシェル
スクリプト中で、リモートシステムのリソースを
使って処理を分散させたり、リモートシステム
上の結果も取り込んだ操作が継ぎ目なくできます。
　これまでの使い方でおわかりのように、リモー
トシステムに接続すれば、外部のシステムリソー
ス（CPU、メモリ、ファイルシステム）を活用
できます。sshを活用することで、接続元のシ
ステムが貧弱でリソースが欠けていても、快適
に処理を実施できます。しかし、それはシステ

ムリソースを気にしないでよいということでは
なく、接続元のシステムではなく、接続先のシ
ステムリソースを代わりに意識する必要がある
ということです。
　リスト1のスクリプトでは、配列serversの
うち、uptimeコマンドで現在のロードアベレー
ジ（プロセスがキューで順番を待っている程度）
を取得し、最も低いシステムにリクエスト（ス
クリプトコマンドの引数）を投げています。

認証方式
　sshの認証方式は、公開鍵による認証、（Unix

ログイン時に使っている）パスワードによる認
証、ホストベース注5による認証などがあります。
認証の優先順位のデフォルト（いずれの認証も
設定で使用を認めている場合）は通常、1）ホス
トベース、2）公開鍵認証、3）パスワードの順

注5） ホストベース認証は、rコマンド時代からマシンの名前と
利用者の名前をリストに記述して、それが一致しているか
で接続を許す認証方式。SSHでの安全な接続の設定方法に
ついては次回解説予定です。

my-mac:SD2016 masa$ ssh my-ubuntu í my-ubuntuに接続
masa@my-ubuntu's password:
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-77-generic x86_64)
 ...略...
Last login: Sun May 7 07:28:38 2017 from 192.168.22.104
masa@my-ubuntu:~$ ls í
a Boostnote Documents Dropbox Git Music my-ubuntuでの操作
Public Templates Work Archived Desktop Downloads
examples.desktop HubotStartup Pictures SVN Videos
masa@my-ubuntu:~$ ~^Z [suspend ssh] セッションをサスペンド

[1]+ 停止 ssh my-ubuntu
my-mac:SD2016 masa$ ssh her-ubuntu í her-ubuntuに接続
 ...略...
[masa@her-ubuntu ~]$ ~^Z [suspend ssh] セッションをサスペンド her-ubuntuでの操作

[2]+ 停止 ssh her-ubuntu
my-mac:SD2016 masa$ jobs í 実行中のジョブを確認
[1]- 停止 ssh my-ubuntu
[2]+ 停止 ssh her-ubuntu
my-mac:SD2016 masa$ fg %1 í 1番のジョブをフォアグラウンドに
ssh my-ubuntu

masa@my-ubuntu:~$ ls í
Documents Dropbox Git Music Public Templates Work my-ubuntuでの操作
Archived Desktop Downloads examples.desktop HubotStartup
Pictures SVN Videos
masa@my-ubuntu:~$

 ▼図3　~で複数セッションを行ったり来たり

第　　回15 ssh（その1）

164 - Software Design

番です。
　サーバ側（/etc/ssh/sshd_config）で、どの
方式の認証をするかを設定できます。sshdを
導入した直後の環境では、公開鍵認証を実施し、
これに失敗するとパスワード認証に切り替わり
ます。ホストベース認証は認めない設定になっ
ているのが一般的です。
　パスワードによる認証は、パスワードが暗号
化されていてもパスワードがネットワークを流
れてしまうのであまり安全ではありません。公
開鍵認証では、秘密鍵はローカルホストに置い
ておき、対となる公開鍵を（リムーバブルメディ
アで手渡しするなど）安全な方法でリモートホス
トに配置して、チャレンジ・レスポンス認証と
いう、「ユーザの認証のための情報をまったくネッ
トワークに流さずに、ユーザの正当性を証明する」
ゼロ知識認証を用いた方式でログイン認証を行
います。ホストベース認証は、利用者はパスフレー
ズを入力しなくてもよいので便利ですが、反面
セキュリティレベルは少し下がります。
　そのためsshは、公開鍵認証を中心に運用す
るのが望ましいです。公開鍵（接続先マシンに
配置する）は、ssh-keygenコマンドを実行して、
秘密鍵（クライアントマシンにしまっておく）と
一緒に作成します。鍵を生成するとき、秘密鍵
を復号するためのパスフレーズ（パスワード認証

とは異なる）を付けることができます。
　リモートシステムでコマンドを実行する際、
バッチ処理などでは毎回パスフレーズを要求さ
れるのは困ることがあります。鍵の生成時にパ
スフレーズの入力を省略しておけば、パスフレー
ズは要求されません。また、ここでは解説しま
せんが、パスフレーズを省略しなくとも、認証エー
ジェント機能を使うことでも解決できます。
　公開鍵は、リモートホストの~/.ssh/autho
rized_keysに登録します。これは鍵束ですので、
接続元の数だけ、このファイルに登録しておき
ます。次の鍵作成手順例でもcatコマンドを追
記でリダイレクトしているところに注目してく
ださい。

$ ssh-keygen -t rsa -b 2048 í
 ...略...
 パスフレーズを省略するには、パスフレーズ入力要求時に何も入れない
で改行

$ scp ~/.ssh/id_rsa.pub remotesystem:.ssh/ｭ
id_rsa.ME í
 安全な方法で公開キーを接続先~/.sshに配置
 ここでは便宜上scpを用いて、コピー先にもid_rsa.pubがあるかもしれ
ないので、名前を変えてコピー

$ ssh remotesystem í
 リモートシステムに接続して
$ cd .ssh í
$ cat id_rsa.ME >> authorized_keys í
$ exit í
 もとのシステムに戻って...確認

$ ssh remotesystem ls í

#!/bin/bash

servers=(localhost my-mac my-ubuntu her-ubuntu)
cmds=$@
target=${servers[0]}
lb=9999
for s in ${servers[@]} ; do
 #echo $s
 l=$(ssh $s uptime ¦ awk '{gsub(/^.*averages?:/,""); print $1*100}')
 # 後に解説するawkを使って加工しています。bashは実数をうまく扱えないので、uptimeの結果を100倍して整数に
 if [$l -lt $lb]; then
 lb=$l
 target=$s
 fi
done

printf "%s : %d\n" $target $lb
ssh $target $cmds

 ▼リスト1　ロードアベレージで処理先を切り替えるスクリプト

164 - Software Design Jul. 2017 - 165

Enter passphrase for key '/home/bot/.ssh/id_ｭ
rsa':
 パスフレーズを設定していれば、ここでパスフレーズを求められる
 ...略...
 lsの結果が表示されれば、成功!!

　鍵の堅牢性は、コンピュータの進歩とともに
相対的に弱まってきます。鍵は十分に長くない
と、解かれてしまうかもしれません。近年では、
RSA暗号で2,048bit相当の堅牢性以上でない
と安全ではないと言われています。
　一方で長い鍵は、悪意を持った解読者だけに
解くための時間をかけさせるだけでなく、利用
者である私達も影響を受けます。ここ数年の
高速なマシン間で通信しているなら、RSA

4,096bit長のキーを使っても違和感はないでしょ
うが、遅いマシンでは接続時に「ずいぶんと待
たされるな」と感じるでしょう。鍵の形式の選
択は、機密性と実用性のバランスを考慮するよ
うにしましょう。

重要な情報は~/.ssh/に
　sshを使うとき、ホームディレクトリに、.ssh
ディレクトリが作られます。ここに入るファイ
ルは、

・鍵ファイル：id_XXX.pub、id_XXX
　（XXXは暗号化方式）
・接続済みホストのリスト（クライアント側の

.ssh/）：known_hosts
・承認済みのホストと鍵（サーバ側の.ssh/）：

authorized_keys
・個別の設定ファイル：config

などがあります。
　.ではじまるファイルやディレクトリは、ls
に-aオプションを付けないと表示されません。
~/.ssh/は、他人からのアクセスができないよ
うにこのディレクトリのパーミッションは、
700（rwx------）に設定されていないといけませ
ん。また、ここに配置するファイルもパーミッ
ションは600にしておきましょう。パーミッショ
ンの設定が不適切だと、非常に危険です。不適

切な設定だと、sshは機密性を優先して、期待
どおりに動かないこともあります。
　秘密鍵が奪われると、ほかのホストに不正に
侵入される可能性があります。秘密鍵を失うと、
その鍵を利用したログインはできなくなります。
鍵の管理は、物理的な鍵と同じように、細心の
注意をはらってください。

今回の技術が
活躍するところ

　今回は、sshコマンドの使い方と、認証方式
について解説しました。また、SSHプロトコ
ルでは、通信内容の暗号化とチャレンジ・レス
ポンス認証の2つに暗号化技術を使っているこ
とを解説しました。
　現在のサーバオペレーションで、sshを使わ
ないことはほとんどないでしょう。明示的に対
話シェルとして使うことや、SSHプロトコル
を使ったコマンドの通信経路暗号化など、あり
とあらゆるところでsshは活躍します。安全な
ネットワーク通信を支えているsshのセキュリ
ティが甘いと、重大な事故につながります。で
すので、認証方式や暗号キーの管理設定、サー
バ側の設定なども理解し、マスターするように
しましょう。

次回について

　次回は、引き続きsshとsshを使ったコマン
ドについて解説します。｢

【manで調べるもの
（括弧内はセクション番号）】
s s h (1) , s c r e e n (1) , t m u x (1) , u p t i m e (1) ,
telnet(1), ftp(1), awk(1), ssh-keygen(1), ssh_
config(5), sshd_config(5), scp(1)

今回の確認コマンド

第　　回15 ssh（その1）

166 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

します。また、ファイルシステムレベルではBtrfs

がRAID機能を備えています。
　RAIDには、書き込みを分散するだけで、冗
長性は高めないRAID0や、データのミラーリン
グにより冗長性を高めるRAID1など、いくつか
のレベルがあります。今回はおもにRAID5への
拡張機能について見ていきます。
　ここで簡単にRAID5の動きをおさらいしま
しょう。RAID5に書き込まれたデータは、複数
のディスクに分散（ストライプ）されて書き込ま
れます。ストライプはchunkという単位で行わ
れます。冗長性を高めるため、RAID5ではパリ
ティというものが記録されます。たとえば、図
1のようにRAID5のディスクに先頭から“AB”（1

文字で1chunk長のデータを表現）とデータを書

　Linux 4.12の開発はrc2まで進んでいます。
ここから4～5週間で、この記事が出るころには
Linux 4.12がリリースされているかもしれませ
んね。今回は、RAIDにおけるwrite hole問題と、
MDにおいてその問題を解決する機能について
紹介します。

RAIDとは
　RAIDとはデータ（やパリティ）を複数のディ
スクに分散して書き込むことで、I/O速度の高
速化や、データの冗長性を実現する技術です。
Linuxカーネルにおいては、ブロックレベルで
あればMD（Multiple Devices）という機能や、LVM

（Logical Volume Manager）がRAID機能を提供

RAIDのwrite hole問題を
解決する
ジャーナル機能とLinux 4.12で登場するPPL
Text：青田 直大　AOTA Naohiro

第63回第63回

A

A

B

B

C

C A B C

D

A

D

B

XOR(C,D)

XOR(A,B)

RAID5

C

B

XOR(C,D)

XOR(A,B)

ディスクが1つ読めなくなっても、
ほかのディスクのデータと
パリティから復旧できる

C

 ▼図1　RAID5の構成参照

166 - Software Design Jul. 2017 - 167

RAIDのwrite hole問題を解決する
ジャーナル機能とLinux 4.12で登場するPPL

第63回第63回

いていくと、ディスクAのchunk #0に“A”、ディ
スクBのchunk #0に“B”が書かれます。このとき、
ディスクCのchunk #0にはパリティとして、“A”
と“B”のXORが書かれます。さらに続けて“CD”
と書いていくと、ディスクCのchunk #1に“C”が、
ディスクAのchunk #1に“D”が、そしてディス
クBの chunk #1にパリティである“C”と“D”の
XORが書かれます。
　パリティを使うことで、1つのディスクに障害
が起きてもデータを復旧できます。たとえば、先
ほどの状態でディスクAにアクセスできなくなっ
たとしましょう。このとき、残りのディスクBと
CからディスクAの内容を復旧できます。まず、ディ
スクB,Cのchunk #0を見ます。ここには、“B”と
パリティの“XOR(A,B)”が書かれています。“B”と
パリティをふたたびXORすることで、ディスクA

のchunk #0にあったデータである“A”を得ること
ができます。同様に、ディスクBのchunk #1の
パリティ“XOR(C,D)”とディスクCのデータ“C”から、
ディスクAのデータ“D”を復旧できます。

write hole問題
　このようにRAIDでは複数のディスクを用い
て、ミラーリングやパリティ書き込みを行うこ
とで耐障害性を高めています。その一方で、複
数のディスクが使われることで別の問題も発生
します。たとえばRAID5では、データを書き込
むと、データ本体とパリティの2つを別のディ
スクに書くことになります。したがって、シス
テムの電源断やクラッシュのタイミングによっ
ては、データかパリティのどちらか一方だけが
書き込まれてしまうこともあります。たとえば、
先ほどのディスクAのデータ“A”を“X”に書き

換えたところで電源が落ちたとします。ここで
運悪くディスクCのパリティは書き換えられず
“XOR(A,B)”のままで残ってしまうと、データと
パリティとの間に不整合が生じます。このあと
にほかの書き換えによって、パリティが更新さ
れてしまえば問題は回避されますが、このまま

ディスクBが壊れてしまうと深刻な事態におち
いります。ディスクBのデータを復旧するため、
ディスクAからデータ“X”が、ディスクCからは
パリティの“XOR(A,B)”が読み込まれます。その
結果、本来とはまったく違ったデータがディス
クBのデータとして復旧されてしまいます。こ
れをwrite hole問題といいます。
　システムのクラッシュが起きてwrite holeが
あるかもしれない場合には、MDはディスクの
再同期を行います。これはすべてのディスクを
読んで、データとパリティが合致するかを調べ
るプロセスで、ディスクのサイズと数が大きく
なればなるほどたいへんな時間がかかるように
なります。これを高速化する方法としてWrite-

Intent-Bitmapがあります。これはディスク領域
に対してBitmapを割り当て、これから書く領域
にBitを立てておき、書き終わったらBitを落と
すという方法です。クラッシュが起きたときには、
Bitmapを参照してBitの立っているところを見
れば、壊れているかもしれない領域だけを検査
しにいくことができます。
　Write-Intent-Bitmapで、再同期の時間が短
縮できても根本的な解決にはなっていません。
どんなに短くなっても、再同期の途中にディス
クが壊れてしまう可能性は残っています。
　今回紹介するのは、そんなwrite hole問題を
解決する2つの機能です。1つはLinux 4.4から
導入されている journal deviceを追加する機能
です。もう1つは、Linux 4.12（現在開発中）か
ら登場する予定のPPL（Partial Parity Log）と
いう機能です。

RAID5 journal
　write holeの問題はディスクへの書き込みが
アトミックではないことに起因しています。こ
れはファイルシステムにおいて、メタデータの
一貫性が壊れることと根を同じくする問題です。
ファイルシステムにおいては、Ext4やXFSな
どで一貫性を保った更新を行うためにジャーナ

168 - Software Design

Linuxカーネル観光ガイド

リングが使われています。これをMDにも実装
することでデータとパリティとの一貫性を保っ
て更新を行えます。
　MDのジャーナル機能は専用のジャーナルデ
バイスを設定することで使えるようになります。
RAIDへの書き込みがあると、データとパリティ
を、ジャーナルデバイスに書き込み永続化して
から、データとパリティを、今度はRAID本体
へと書き込みます。
　ジャーナルデバイスへの書き込み途中にシス
テムクラッシュが起きて、不完全な書き込みに
なったとします。この場合、ジャーナル中のチェッ
クサムとジャーナル上のデータを比較することで、
この書き込みは破棄できます。また、ジャーナ
ルへの書き込みが終わってから、RAID本体へ
の書き込み途中のクラッシュであれば、ジャー
ナル上の情報からRAID本体への書き込みをや
りなおすことができます。
　実際にMDのRAID5にジャーナルデバイスを
作り、ジャーナルログの書き込みを見てみましょ
う（図2）。“mdadm”の“--write-journal”を使っ
てジャーナルデバイスを指定します。ジャーナ
ルデバイスは“mdstat”には“(J)”の付いたデバ
イスで表現されます。
　ここから、先ほどと同様に/dev/md0に“ABCD”
と書き込み、ログデバイスの中身を見てみましょ
う。ダンプの最初に見えるのは、MDのsuper

blockです（図3）。バージョン1.2のsuperblock

はディスクの先頭から4KBの位置から始まり、
先頭にマジックナンバーの“0xa92b4efc”を持ち
ます注1。ここから4KBがsuperblockです。super

blockの中にはさまざまな情報が書かれていま
すが、本稿ではそのいくつかだけを見ていきます。
　まず、0x1080から8Byteには、このデバイス
上でのデータの開始位置が書かれています。
MDではsuperblockの後ろに、ある程度の領域
をとっていて、その後ろからデータ書き込み部
分が始まるようになっています。ここでは
0x4000セクタ（= 8MB）からデータが始まってい
注1） リトルエンディアンのため逆順になっています。

ます。こうしたsuperblockとデータ本体との空
き領域は、前述したWrite-Intent-Bitmapなど
を保存する領域としても使われます。続けて次
の行の8Byte目（0x1098）からは、ジャーナルロ
グの末尾（クラッシュ時にリカバリする範囲の先
頭）が記録されています。
　次に0x10a0から4Byteに、このデバイスの
RAID構成するデバイス群（RAIDアレイ）の中で
のデバイス番号が記録されています。このデバ
イスの場合は“3”であり、mdstatの出力中の
“sde[3]”という部分に対応しています。最後に
0x1100からのRAIDアレイの各デバイスの情報
を保持する部分を見てみましょう。ここは各要素
2Byteの配列となっており、デバイス番号または
0xfffdなどの特別なIDを保持します。たとえば、
このデバイスに対応する要素の部分（0x1106から）
を見ると0xfffdとジャーナルデバイスのIDとなっ
ており、mdstatの“sda[3](J)”と対応します。
　では、0x800000からのデータ本体に目を移し
ましょう。すなわち、ここからはジャーナルの
構造を見ていくことになります。ジャーナルは
管理情報を持つメタブロックとデータブロック
が並んだ形になっています（図4）。
　先ほどのログの末尾位置にしたがって、
0x800000＋8セクタ＝0x8001000からのメタブ
ロックを見ていきましょう。メタブロックのサ
イズは4KBで、先頭には、いつもどおりマジッ
クナンバーである0x6433c509があります。そ
の次の4Byteはメタブロックのcheck sum（CRC）
であり、続けてバージョンと、メタブロックの
中で実際にデータが入っているサイズが書かれ
ています。次の16Byteにはシーケンス番号と、
ログデバイス上での書き込み位置が記録されて
います。これらのシーケンス番号・書き込み位置・
チェックサムを見ることで、メタブロックが正
しい順序で、正しい場所に正しい内容で書き込
まれていることを検査します。ここまでがいわ
ばメタブロックのヘッダで、以降にpayloadが
続きますが、このブロックはサイズが0x20であ
り、payloadを持ちません。

168 - Software Design Jul. 2017 - 169

RAIDのwrite hole問題を解決する
ジャーナル機能とLinux 4.12で登場するPPL

第63回第63回

　0x802000から始まる次のメタブロック（seq：
0x7ada1766）を見てみましょう。このメタブロッ
クのサイズは0x160で、0x802020から0x802160

まではpayloadが入っていることになります。

payloadはこのメタブロックに続くデータブロッ
クの内容を記述します。payloadの先頭2Byteは
typeを示します。このpayloadの場合“0”で、後
続のデータブロック#1には、RAIDアレイ上のデー

$ sudo mdadm --create --verbose --level=5 --metadata=1.2 ¥
 --raid-devices=3 /dev/md0 /dev/libvirt_lvm/raid-disk{A,B,C} --write-journal /dev/sde
$ cat /proc/mdstat
Personalities : [raid6] [raid5] [raid4]
md0 : active raid5 dm-11[4] sde[3](J) dm-10[1] dm-9[0]
 20955136 blocks super 1.2 level 5, 512k chunk, algorithm 2 [3/3] [UUU]

unused devices: <none>

 ▼図2　ジャーナルログの書き込みを確認する

$ sudo xfs_io （...省略...）
$ hexdump -C /dev/sde
00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ¦................¦
*
00001000 fc 4e 2b a9 01 00 00 00 00 02 00 00 00 00 00 00 ¦.N+.............¦ # superblock: マジックナンバー
00001010 89 d6 fa 57 f8 1a 96 6c 4d 4f a9 db 8a 4b a0 f2 ¦...W...lMO...K..¦
00001020 6e 61 6f 74 61 3a 30 00 00 00 00 00 00 00 00 00 ¦naota:0.........¦
00001030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ¦................¦
00001040 61 9d 26 59 00 00 00 00 05 00 00 00 02 00 00 00 ¦a.&Y............¦
00001050 00 c0 3f 01 00 00 00 00 00 04 00 00 03 00 00 00 ¦..?.............¦
00001060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ¦................¦
*
00001080 00 40 00 00 00 00 00 00 b0 0b f9 0d 00 00 00 00 ¦.@..............¦ # データ開始セクタ番号: 0x4000
00001090 08 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00 ¦................¦ # ログの末尾位置(8-15Byte)
000010a0 03 00 00 00 00 00 00 00 ed 49 dd bf 3f 6f c3 66 ¦.........I..?o.f¦ # デバイス番号: 3
000010b0 2f d0 fd 31 57 48 38 a1 00 00 08 00 88 00 00 00 ¦/..1WH8.........¦
000010c0 61 9d 26 59 00 00 00 00 02 00 00 00 00 00 00 00 ¦a.&Y............¦
000010d0 ff ff ff ff ff ff ff ff 3a 96 ca 6b 80 00 00 00 ¦........:..k....¦
000010e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ¦................¦
*
00001100 00 00 01 00 fe ff fd ff 02 00 fe ff fe ff fe ff ¦................¦ # RAIDアレイについての情報
00001110 fe ff fe ff fe ff fe ff fe ff fe ff fe ff fe ff ¦................¦ # 0xfffdがジャーナル
*
00001200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ¦................¦
*
00800000 09 c5 33 64 26 81 6d ee 01 00 00 00 20 00 00 00 ¦..3d&.m..... ...¦ # ここからデータ開始
00800010 54 f0 d9 7a 00 00 00 00 00 00 00 00 00 00 00 00 ¦T..z............¦
00800020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ¦................¦
*
00801000 09 c5 33 64 8d ae d3 bb 01 00 00 00 20 00 00 00 ¦..3d........ ...¦ # magic(0-3), check sum(4-7),
 version(8), size(12-15)
00801010 65 17 da 7a 00 00 00 00 08 00 00 00 00 00 00 00 ¦e..z............¦ # seq(0-7), position(8-15)
00801020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ¦................¦ # payload: ここではなし
*
00802000 09 c5 33 64 03 4f a3 02 01 00 00 00 60 01 00 00 ¦..3d.O......`...¦ # seq: 0x7ada1766のメタブロック
00802010 66 17 da 7a 00 00 00 00 10 00 00 00 00 00 00 00 ¦f..z............¦
00802020 00 00 00 00 08 00 00 00 00 00 00 00 00 00 00 00 ¦................¦ # payload#0 (0x802020-0x802033)
00802030 91 8e 6c 23 01 00 00 00 08 00 00 00 00 00 00 00 ¦..l#............¦ # payload#1 (0x802034-0x802047)
00802040 00 00 00 00 1a 97 28 d4 00 00 00 00 08 00 00 00 ¦......(.........¦ # payload#2 (0x802048-0x80205b)
00802050 08 00 00 00 00 00 00 00 91 8e 6c 23 01 00 00 00 ¦..........l#....¦
…
00802160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ¦................¦
*
00803000 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 ¦AAAAAAAAAAAAAAAA¦ # データブロック#0
*
00804000 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 ¦................¦ # データブロック#1 (パリティ)
*
00805000 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 ¦AAAAAAAAAAAAAAAA¦ # データブロック#2
*

 ▼図3　ログデバイスのダンプ

170 - Software Design

Linuxカーネル観光ガイド

タが入っていることを示します。次の2Byteは
flagで、そのあとの4Byteにサイズが入ります。
payload#0の場合8セクタ（=4KB）になっていま
す。その次の8ByteにRAIDアレイ上のアドレス
が記録されます。ここでは“0”ですので、
payload#0はRAIDアレイの先頭に書かれるデー
タについて記述しているということです。そのあ
と、4KBごとに4Byteのcheck sumが記録され
ます。今回サイズが4KBですので最初の4Byte

でpayload#0は終わりで、0x802034からpayload

#1が始まります。
　payload#1は typeが“1”で、後続のデータブ
ロック#1がパリティであることを示します。
payload#0と同様にサイズ・RAID上のアドレス・
check sumが記録されています。0x802048から
始まるpayload#2はふたたびデータブロックを
記述し、そのサイズが4KBで、RAID上のアド
レスが0x08セクタ（=4KB）の位置であると言っ
ています。xfs_dbコマンドでは、4KBごとに書
き込んでいたのでそれに対応して、4KBごとに
payloadが作られていることが確認できます。

writeback cache
　デフォルトでは、MDのジャーナルは“write-

through”として機能しています。すなわち、ア
プリケーションから I/Oリクエストがあると、
データとパリティとをジャーナルディスクに書き、

RAIDディスクにI/Oリクエストを送ってから、
アプリケーションに返ります。
　“/sys/block/md0/md/journal_mode”ファイル
を書き換えることで、このジャーナルを“write-

back”にできます。すなわち、ジャーナルに書
いた時点で、アプリケーションに返ります。ジャー
ナルデバイスが高速であれば、書き込みが高速
化されます。
　また、ジャーナルからRAIDへの反映がwrite-

throughのように即時ではなく、30秒ごと（ある
いはジャーナルの残りスペースが少なくなるまで）
になるのでI/Oリクエストの回数も削減できるこ
とがあります。たとえば、冒頭の例のように“AB”
と書くことを考えてみましょう。write-through

であれば、RAIDには“A”とその時点でのパリティ、
“B”とその時点でのパリティと4つのI/Oリクエ
ストが発行されますが、write-backであればパリ
ティの更新が一度にまとめられ、I/Oリクエスト
の数が1つ少なくなります。

PPL
　さて、ここまでジャーナルを使ってwrite

holeを解決する方法について、ジャーナルの中
を見ながら紹介してきました。ここからwrite

holeを解決するもう1つの方法であるPPL

（Partial Parity Logging）についても紹介します。
PPLは現在開発中のLinux 4.12に登場する予
定の機能で、まだユーザランドのツールも整っ
てはいないので、ここでは簡単に紹介します。
　PPLは、データ更新時に更新されるchunk以
外のchunkでのパリティを記録しておくことで、
write hole問題を解決します。図5のように4台
のディスクで構成されたRAID5アレイを考えま
す。ここで“A”を“X”に書き換えます。
　PPLでは、まず書き換えるchunk以外のchunk

でのパリティ（部分パリティ）、すなわち“XOR
(B,C)”をパリティが記録されるディスクのメタ
データ領域に書き込みます。メタデータ領域は、
先ほどのsuperblockとデータ開始までの空白部

super
block

check
sum

ver/
pad

空き領域 空き領域

seq

payload#1

position

payload#0

payload#1

meta meta data data data

magic size

 ▼図4　ジャーナルデバイスの構造参照

170 - Software Design Jul. 2017 - 171

RAIDのwrite hole問題を解決する
ジャーナル機能とLinux 4.12で登場するPPL

第63回第63回

分にあたります。部分パリティを書き終わって
から、データである“X”と本物のパリティである
“XOR(X,B,C)”を書きにいきます。うまく書き込
みが終われば、ただ単に無駄に部分パリティを
書いただけですが、問題はクラッシュが起き、
たとえば“X”だけが反映された状態でディスク
が失われたときですね。
　まず、BかCのディスクが失われたときを考
えてみましょう。このとき、ディスクDには古
いパリティである“XOR(A,B,C)”が書かれていま
す。このパリティは現状を反映していないので、
これを使うと間違ったデータが復旧されてしま
います。ここで部分パリティと“X”をXORする
ことで、現状と合致したパリティを得て、失わ
れたディスク上のデータを正しく復旧できます。
また、パリティのディスクが失われた場合には
単純に“XOR(X,B,C)”が正しいパリティと計算で
きるので問題はありません。
　では、ディスクAが壊れた場合はどうでしょ
うか。このとき、パリティと“B”、“C”からデー
タを復旧させることになります。パリティがまっ
たく書き換えられていなければ、“A”に戻ります
がパリティが一部書き換えられていれば、“A”か

ら“X”に書き換える途中のデータが復旧されるこ
とになります。ジャーナルであれば、このよう
な中途半端な状態になることはなく、PPLと
ジャーナルの違いの1つと言うことができます。
　また、部分パリティをパリティと同じディス
クに事前に書くことから、書き込みパフォーマ
ンスが最大30～40％低下すると言われています。
とはいえ、RAIDを構成するディスクの台数を
増やせばその分、部分パリティも分散して書き
込まれスケールしやすい構成と言うことができ
ます。このように、（ともすればSPoFともなり
得る）ジャーナル専用のディスクが不必要である
ことは、PPLの利点とみることができます。

まとめ
　今月はMDで構成するRAIDについて、write

hole問題を解決する手段として、Linux 4.4で
導入されたジャーナル機能と、Linux 4.12で今
後登場するPPLについて紹介しました。とくに
ジャーナル機能は、うまく使えば高速化にもつ
ながる便利な機能だと思います。｢

A

A B C

B C

A B C D A B C D

A B C D

XOR(A,B,C)

RAID5

X C XOR(A,B,C)

PPLから正しい
パリティを計算

パリティは更新
されていない

"A"を"X"に
書き換える

X C XOR(X,B,C)

PPL:XOR(B,C)

PPL:XOR(B,C)

新しいパリティ
から復旧可能

 ▼図5　PPLの構造

172 - Software Design

ショップ開催の背景についての説明のあと、JPNIC

の佐藤晋さんから、国内外における IPv6普及の現
状というテーマで最初の講演がありました。
　JPNICでは2000年代初頭から国内の各ISPや組
織に対するIPv6アドレスの分配を行ってきており、
その立場から見たIPv6普及の流れをわかりやすく
紹介されました。国内のアクセスラインとしては
NTT東西が提供するNGNサービス（フレッツ光ネ
クスト／ライト）が最大シェアとなりますが、今年
頭には25％超のユーザがIPv6を利用可能な状態で
あることなどが報告されました。
　世界のIPv6普及状況ですが、APNICとAkamai

の調査によると、ここしばらくはベルギーなどの
ヨーロッパ諸国が普及率上位に位置しており、日本
は10位以下へと下がってきています。IPv6の接続
環境は整ってきているが、肝心の接続先であるコン
テンツサービス事業などのIPv6対応がいまひとつ
進んでいないからではないかという話でした。

■モバイルネットワークにおけるIPv6の推進

　次に伊藤孝史さん（NTTドコモ）、茂庭智さん
（KDDI）、安力川幸司さん（ソフトバンク）から、モ
バイルネットワークにおけるIPv6の推進というテー
マでの報告がありました。総務省IPv6研究会の「ス
マホユーザが、意識せずにIPv6の利用をはじめて
いる状況に」との方針に従い、今夏以降新規に購入
するスマートフォン／タブレット端末ではデフォル
トでIPv6が有効となるように主要3社で準備を進め
ており、一部サービスではすでに提供を始めている
そうです。モバイルネットワークでは端末が地域を

　今回は、4月に行われた「IPv6対応クラウドサー
ビスワークショップ」の模様をお伝えします。

	 ■IPv6対応クラウドサービスワークショップ

	【日時】2017年4月19日（水）13:00〜17:30

	【会場】ビジョンセンター東京

■はじめに

　IPv6の普及は当初の想定より長い時間がかかり
ましたが、ここ数年は伸びが目立ちます。PCやス
マートフォンなどのクライアント機器から、ISP、
アクセスラインとして提供される通信ネットワー
ク、大手のコンテンツサービス事業までかなりの部
分でIPv6が普通に使える状況となっています。今
後さらに普及を進めるには、大手以外のコンテンツ
事業者が広くIPv6サービスを提供することが求め
られます。そこでコンテンツサービスのプラット
フォームとなるクラウドサービスのIPv6対応状況
に関する認識を共有することを目的として、IPv6普
及・高度化推進協議会（v6pc）・日本ネットワークイ
ンフォメーションセンター（JPNIC）・インターネッ
ト協会（IAjapan）の主催で、本イベントが開催され
ました。来場者は80名を数え、熱心な質疑応答が
行われるなど関心の高さがうかがえました。

■国内外におけるIPv6普及の現状

　江崎浩さん（東京大学教授／ IPv6普及・高度化
推進協議会専務理事）からの開会の挨

あいさつ

拶とワーク

IPv6対応クラウドサービスワークショップ

IPv6はもう普通に使える!? 各社の対応状況を概観

NO.69
July 2017

日本UNIXユーザ会　http://www.jus.or.jp/
松山 直道　MATSUYAMA Tadamichi　ko@soum.co.jp

http://www.jus.or.jp/

Jul. 2017 - 173172 - Software Design

超えて移動することがあるため、固定電話網と異な
り地域ごとに順次対応とはならずに、全国一斉に
サービス開始になるそうです。各社とも2020年ご
ろまでに、設備の増強を進めるとのことでした。

■グローバル系クラウドサービスのIPv6対応状況

　この後、グローバル系2社、国内系2社の計4社
のクラウドサービス事業者の方から、それぞれの
サービスにおけるIPv6対応状況についての講演が
続きました。最初はアマゾンウェブサービスジャパ
ンの荒木靖宏さんの発表です。AWSとして、IPv6

のみに特化したプレゼンテーションを行うのはこれ
が世界で初めてとのことでした。
　AWSでは、世界に16ヵ所あるリージョン中で直
接ファイバーを引いていない中国リージョン以外で
は、すべてIPv6が使える状態だと言います。ただ
し、AWSは約90種類のサービスを提供しており、
サービス／プロダクトごとのマネージャが顧客の要
望を最優先に対応方針を決定しているため、現時点
ですべてのサービスがIPv6対応しているわけでは
ないそうです。最初にIPv6に対応したサービスは
Classic Load Balancerで、これにより実質的に主
要なアプリケーションはほぼIPv6に対応できると
言えるようです。VPCなどその他サービスについて
も一通りIPv6対応状況を話していただきました。
　続いては、田丸健三郎さん（日本マイクロソフト）
によるAzureを含むMicrosoft全体の取り組みにつ
いての講演です。同社はかなり以前からRFC制定
や実装の提供など積極的にIPv6普及に取り組んで
きました。2010年にはNICTやネットワーク機器ベ
ンダ、通信事業者などと共同でIPv6技術検証協議
会を設立し、IPv6利用環境における安全性の検証な
どを行っています。クラウドサービスのAzureも広
い範囲でIPv6に対応していて、人工知能サービス
APIやIoTプラットフォームなどのアプリケーショ
ンサービスでもIPv6対応サービスを提供している
そうです。なおAzureではプラットフォームとし
て、Windowsだけではなく半分くらいはLinuxが利
用されているとの話もありました。

■国内系クラウドサービスのIPv6対応状況

　次に国内系クラウドサービスとして、堂前清隆さ
ん（インターネットイニシアティブ）からIIJ GIOク
ラウドの状況について講演いただきました。GIOで
はPaaSとして普通にIPv6が使え、さらにその上
のメールホスティングやWebセキュリティといっ
たSaaSでもIPv6が問題なく使える状況とのこと
でした。クラウドサービスのほかにIIJモバイル
（法人向け）・IIJmio（個人向け）というMVNOサービ
スも提供していて、そちらでもIPv6接続サービス
が使えます。本講演では、LTE内蔵PCやスマート
フォンを使用してIIJmio経由のIPv6オンリー環境
を用意し、IIJ GIOクラウドの管理画面やコンソー
ルをIPv6のみで操作するデモンストレーションが
披露されました。
　最後は横田真俊さん（さくらインターネット）の講
演です。現在はレンタルサーバ・VPS・クラウド・
専用サーバといった主要サービスに加え、高火力コ
ンピューティング（GPU搭載サーバ提供）、sakura.

io（IoTプラットフォーム）といったサービスでも
IPv6が使えます。ただデフォルトでIPv6を有効と
はせず、ユーザが設定で有効状態に切り替えるよう
にしているそうです。理由としては、利用状況を見
る限りまだIPv6を使いたいと思っているユーザの
割合が非常に少なく、意図的にIPv6機能を削除し
ているユーザもいるくらいだからとの話でした。今
後1～2割くらいのユーザがIPv6を使うような状況
になれば、デフォルトで有効にすることも検討した
いとのことでした。

■終わりに

　今回の講演は、各クラウドサービスの IPv6の扱
いや考え方の違いがよくわかる興味深い内容でし
た。とくにこれまでIPv6対応に積極的でないとの
印象が強かったAWSの話が聞けたのは良かったで
す。コンテンツサービス事業者が今後積極的に
IPv6サービスを提供する方向に向かってくれるこ
とを期待しながら、細谷僚一さん（IAjapan）の挨拶
で閉会となりました。｢

IPv6はもう普通に使える!? 各社の対応状況を概観 July
2017

174 - Software Design

あなたのスキルは社会に役立つ

　我々、Hack For Japanでは、東日本大震災直後に
多くのハッカソンを開催しました。本連載の中でも
その取り組みを紹介してきましたが、その多くは被
災地のニーズにマッチしたものにならなかったり、
現地の人たちに使ってもらうにはハードルの高いも
のであったりなど、試みとしてはうまくいかないも
のが大半でした。
　あの日から6年目を迎え、いくつかの災害や先の
熊本地震などの経験を通し、現地のニーズを汲み取
り、利用可能なものを提供するためのノウハウやナ
レッジは溜まりつつありますが、まだまだ課題とし
ては大きなものがあります。
　そんな中「TECHNOLOGY → PEACE 世界は誰
でも変えられる」をテーマに2017年4月22日から
23日の2日間をかけて、Samurai Incubate.inc注1に
よる「SAMURAI ISLAND EXPO' 17」が開催され
ました。その中で、具体的に世界を変えるアクショ
ンを取る目的で地震災害対策を題材とした「地震対
策Hackathon注2」も催されました。このハッカソン
に、Hack For Japanスタッフの鎌田（筆者）がハッカ
ソン参加者に対するメンターとして参加しましたの
で、今号では地震対策Hackathonの様子と、2011年
のあの日から進歩したテクノロジなどが、どのよう
に災害に対して機能していくかなど、以前に我々が
開催したときのハッカソンと現在のハッカソンの間
のアップデートも含めて、お伝えしたいと思いま
す。

地震対策
Hackathonとは
　今回の地震対策Hackathonは3つのテーマの中か
ら1つを選び、指定されているWeb APIなどを任
意で使いながらサービス開発していくものでした。
その3つのテーマを紹介します。1つめが「状況収集・
共有・避難・安否確認」情報に関すること、2つめが
「お金」で、現金以外のお金に関すること、そして最
後が「家・モノ」で、IoTに関することとなっていま
した。2011年当時にはなかった視点としては、やは
り最後の「家・モノ」などのIoTに関するものが設定
されているのが、2017年でのアップデートではない
でしょうか。それらのテーマに従って、新規性や実
現性、課題解決性といった観点を中心に審査される
ものになっています。
　2日間の開発期間の中、1日目の午前中と午後の頭
がハッカソン参加者に対してメンタリングが行われ
る時間として当てられました。筆者のほかに当日の
ハッカソンにてメンターとして参加された方々は、
株式会社トレタのCTO増井雄一郎さんと株式会社
日本総合研究所の東博暢さん。技術面のアドバイス
やサービス開発で想定しておかなければならない震
災時の状況など、多角的な形で参加者のサービスコ
ンセプトやプロトタイプに対して、アドバイスを1

チーム15分で7チーム分、短い時間ながらも密度
濃く行いました（写真1）。
　過去の東日本大震災などで災害支援に入ってい
た、あるいは、災害向けハッカソンに参加していた

Hack For Japan

第67回

2011年3月11日の東日本大震災発生の直後にHack For Japanは発足しました。
今後発生しうる災害に対して過去の経験を活かすためにも、エンジニアがつながり
続けるためのコミュニティとして継続しています。防災や減災、被災地の活性化や人
材育成など、「エンジニアができる社会貢献」をテーマにした記事をお届けします。

●Hack For Japanスタッフ　鎌田 篤慎（かまた しげのり）　 Twitter @4niruddha

注1	 http://www.samurai-incubate.asia/
注2	 http://samurai-island-expo-hack.strikingly.com

地震対策Hackathonで感じた、
進歩する技術と蓄積された経験の融合
地震対策Hackathonで感じた、
進歩する技術と蓄積された経験の融合

あなたのスキルは社会に役立つ

http://samurai-island-expo-hack.strikingly.com
http://www.samurai-incubate.asia/

Jul. 2017 - 175

地震対策Hackathonで感じた、
進歩する技術と蓄積された経験の融合

第67回
Hack For Japan

参加者は思いのほか少数であったので、被災地の
ニーズとのギャップであったり、被災者やボラン
ティアセンターの様子、サービスを利用するうえで
必須となるリテラシーのギャップなどの過去からの
知見も伝えました。開発しているサービスと実際の
現場との乖離を埋めていくためのメンタリングに
よって、その後のサービスコンセプトに大きく影響
し、ブラッシュアップされていったので、やはり災
害対策系のハッカソンなどでは実際の経験が非常に
重要だとあらためて認識することができました。
　それでは、実際に開発されていったサービスがど
のようなものかを紹介していきます。

マイノリティ向けの
サービス
　最初に、震災発生時に一般の人たちよりも困難な
状況に陥ってしまうマイノリティを対象としたサー
ビスを開発していたチームを紹介します。
　食品アレルギーを持つ人たち向けのサービス
「Allescue」を開発した山本康史さんが代表を務める
「Team-Lightning」です。このサービスは備蓄食料、
救援物資の中に含まれるアレルギー物質を避け、安
全な食品を提供することをコンセプトとしています
（写真2）。首都圏直下型地震が発生した場合、400万
人が避難所生活を迎えると言われており、その中で
食品アレルギー保持者は1.5％の6万人ほど存在す
ると考えられています。こうした人たちは備蓄食料
や救援物資を食べることができない状況に陥る可能
性があります。また周囲の人たちには、非常時に食

べ物を選り好みする人間として映ってしまうという
問題も起こりえます。そうした人々に対するサービ
スというコンセプトを説明いただきました。
　メンタリング当初、備蓄食料としてアレルギー対
応食品を保存する話と、避難時のアレルギー対策を
適切に救援物資として送り届けるという2つのアプ
ローチがうまくリンクした形にはなっていませんで
した。その後、議論を重ね、事前のアレルギー食品
情報登録、決済情報の登録などを済ませておき、日
常的にアレルギー対応食品の購入をするサービスと
し、被災時も既存の決済情報をもとにアレルギー対
応食品を購入、避難所に配送する形になりました。
こうすることで、地方自治体でのアレルギー対応食
品の備蓄が10％以下という課題に対応しつつ、食
品提供会社のニーズ、配送の最適化なども考慮した
サービスにブラッシュアップされていきました。日
常的に使えるサービスであることと被災時のアレル
ギー対応食品の物資提供を最適にする視点は確かに
可能性を感じるものです。

Blockchain
を使ったサービス
　続いて、東日本大震災当時と比較して、一般的に
なりつつある技術であるBlockchainを活用する
サービスを開発していたチームを紹介します。
　1つめは、QRコードを活用した落し物発見を目指
す、チーム名と同名のサービスを開発した丸岡豊さ
んが代表の「Bo3.0」です。東日本大震災では津波被
害が大きく、家屋が倒壊するだけでなく、写真など

▼▼写真1　地震対策Hackathonの様子 ▼▼写真2　Allescueのプレゼンの様子

176 - Software Design

あなたのスキルは社会に役立つ

の思い出の品も失われてしまうことが問題となりま
した。このサービスではそうした問題を解決するこ
とを目的としていました。どういったアプローチの
サービスかというと、あらかじめなくしたくない物
に対してQRコードを発行、添付しておき、持ち主
と物をBlockchainで紐づけて管理します。それを
見つけた人がそのQRコードに記されるURLから
持ち主とコミュニケーションが取れ、持ち主のもと
に品を戻し、持ち主は拾い主に何かしらのお礼を提
供するコンセプトです。
　実際問題として、拾い主がQRコードからサイト
にアクセスしたり、持ち主とコミュニケーションす
るモチベーションであったり、そもそもなくしたく
ない物に対して永続的に残せるQRコードをどのよ
うに準備するかなど、実際のサービスとしての課題
も大きいですし、Blockchainの使いどころについて
は、もう一歩強みを活かすような発想が必要だと思
われます。一方で、多くの人がわかるQRコードを
利用するという発想は、利用者のリテラシーに左右
されにくいという点で参考になる視点かと思いま
す。
　2つめは、個人ボランティア受付デジタル化サー
ビスである「キズナコントラクト」を開発した小岩彩
友美さんが代表の「やわらかいIT」です。このサー
ビスには2つの役割が考えられています。1つは、個
人ボランティアがすばやく現地に支援入りできるよ
うに促す役割です。個人がボランティアの支援作業
に入るまでにはプロフィール登録や保険加入などが
必要で、この事前準備にかかる手間の問題を解決し
ます。もう1つは、個人ボランティアのボランティ
ア活動の履歴をBlockchainで管理することで、ボ
ランティアに慣れた個人であることや、その人の得
意なスキルなどをステークホルダー間で可視化し、
ボランティアの効率化などを図れるようにすること
です。
　初日のメンタリングでは、個人ボランティアの参
加の敷居を下げる機能に加えて、ボランティアセン
ターでの受付業務のデジタル化を軸にしたコンセプ
トでした。しかし、実際にボランティアセンターで
ボランティアの受け入れを行う人たちの ITリテラ

シーに差があることや、災害現場で一般的な紙によ
るやりとりの中にデジタル化を持ち込むことが、非
常にハードルの高い行為であることなど、これまで
のHack For Japanの活動の中で得た知見をイン
プットしたりしました。
　その結果、サービス全体で機能の絞り込みやブ
ラッシュアップが行われました。ボランティア活動
で必要な基本情報の登録のほか、保険加入について
もデジタル化したことによって、申し込みからボラ
ンティア参加可能になるまでのタイムラグを大幅に
短縮し、申し込みの敷居を下げるフローができまし
た（写真3）。ボランティアセンターでの受付業務の
効率化については、現在主流である紙でのチェック
インも可能にすることで、現場の担当者のITリテ
ラシーにも配慮。これに加えて、QRコードや利用
者の多いLINEを活用したチェックインができるよ
うにすることで、ある程度のITリテラシーがあれ
ば受付業務も効率化できる実装にブラッシュアップ
されました。このサービスのすばらしいところは個
人のボランティア活動が履歴としてBlockchain上
で共有されることで、新たな災害が発生した際のボ
ランティアの募集から、ボランティアに慣れている
人の可視化、効率的な支援活動参加への一連の展開
がスムーズに設計されているところです。
　3つめは、Blockchainを活用した新しい地震保険
を提案した堀口純一さんが代表を務める「TEAM

ZBB」です。保険全般に言えることですが、とくに
地震保険では被災後の支払い手続きなどが煩雑であ
り、被災者は被災後の家財の状況などから被災証明
を行ったり、保険会社と査定のやりとりをしたり、
時間のかかる作業の中で疲弊しがちです。そうした
結果、受け取る保険金も納得のいかない額になって
しまう場合も想定されます。こうした課題に対し
て、Blockchainを活用した新しいコンセプトの地震
保険を提供するサービスです。メンタリングの時点
ですでに非常に完成されたアイデアで、とくにアド
バイスも必要ない水準のものでした。Blockchainの
特性をうまく活かし、地震保険に関係するステーク
ホルダー間で保険の契約情報を共有することで、保
険にかかる一連の作業を非常に簡易的なものに落と

Jul. 2017 - 177

地震対策Hackathonで感じた、
進歩する技術と蓄積された経験の融合

第67回
Hack For Japan

し込んでおり、地震に限らずマイクロ保険として
ニーズの見込める点が秀逸でした。
　Blockchainを活用するうえでは、関係するス
テークホルダーのニーズを全体でうまく満たしてい
く必要があります。このサービスでは、地震保険契
約時に家財や家屋倒壊状況がわかるように契約者が
持つ家財のデータ、家屋の寸法や水平などの情報を
Blockchainで管理します。こうすることで、ス
テークホルダーである地震保険契約者、損保会社の
ほか、不動産管理会社や家財を販売する家電量販店
などをステークホルダーとして含めたエコシステム
ができあがります。
　それぞれのステークホルダーが望むものとして
は、地震保険契約者は被災時のオペレーションの簡
易化や納得のいく保険金の受け取りを望みます。こ
のサービスでは被災時に、契約者は地震発生に伴う
Push通知で家財や家屋の状況を写真に取り、現状
を記録するだけで、その後はBlockchain上のデー
タとの差分によって保険金の査定などが自動で行わ
れていく運用になっているため、従来の手続きが大
幅に簡略化されています。ほかのステークホルダー
である不動産管理会社は保険取引の最適化、保険を
提供する損保会社は査定の簡素化、オペレーターの
自動化、保険金支払いの早期化を望みます。また、
それだけでは保険ビジネスとしての旨味は大きくな
いので、マイクロ保険の開発や保険加入者の家財、
家屋データの有効活用などの展開も狙えます。家財
を提供するような家電量販店も新しい商品の提案な

ど、エコシステムとして参加するステークホルダー
の望みが見事に満たされあう構造で、地震保険に限
らず、新しい保険のあり方を示しました（写真4）。

新しい災害ハッカソン
の方向性
　このほかのチームもありましたが、今回の地震対
策Hackathonで優勝したのは最後に紹介した、
Blockchainを活用した新しい地震保険を発表した
「TEAM ZBB」でした。2011年時点のハッカソンか
ら技術も年々いろいろと進歩しています。過去の
ハッカソンを振り返ると、うまくいかなかった取り
組みがおかしがちだった点は、非常事態時に被災者
が新しく開発されたものを使う余裕がないという発
想を持たなかったことや、善意だけでは継続されな
いボランティアという活動を意識し、活動資金を捻
出することを発想として持たなかったことなどが挙
げられます。
　この点が新しい技術の登場や既存技術の進歩に
伴って、解決することが可能になりつつある印象を
今回のメンター活動を通して持つことができまし
た。また、我々のように東日本大震災から継続して
活動を続けているようなコミュニティが持つ知見と
いうのは、新しく災害対策に向けて活動を行おうと
する人々にとって非常に貴重な視座だということも
あらためて実感しました。本連載の読者のみなさん
も、ぜひこのような知見、視点を共有していってい
ただければと思います。s

▼▼写真3　�プレゼン時のキズナコントラクトのサービスス
コープの説明

▼▼写真4　�TEAM ZBBが考案した新しい保険のビジネスモ
デル

178 - Software Design

はじめに

　1980年代、パソコンで動かす
アプリケーションの代表は、日本
語ワードプロセッサ（以下ワープ
ロ）でした。性能の低い8bitパ
ソコン上で動作するワープロは、
当時のワープロ専用機には到底
及ばなかったのですが、16bitパ
ソコンPC-9801の登場とその上
で動作するワープロの出現によっ
て、一般ユーザへのパソコンの
普及に大きくつながりました。

当初のパソコン上
のワープロ

　1980年代初頭の8bitパソコン
上のワープロは、専用ワープロ
にはほとんど及びませんでした。
　そんな中、1983年に登場した
のがNECのPC-9801Fと、その
上で動作する管理工学研究所の
ワープロ「松」でした。管理工学
研究所はPC-9801の高度な技術
的ノウハウを持ち、「松」はアセ
ンブラ言語のみでハードウェア
能力を最高のレベルで引き出す
コーディングで作成されていま
した。PC-9801の 128KBの標
準搭載メモリエリアを最適に使
うことで、最大64KBのメモリ

空間しか使えない8bitパソコン
では実現できない効率的なデー
タ管理を行っており、各種プリ
ンタに特化したスプール機能も
利用できました。操作の面では、
PC-9801の標準機能に沿って、
操作選択を10個のファンクショ
ンキーで行い、漢字変換はスペー
スキーの右横にある‚キー
で行うようになっていました。
　「松」は、その操作の軽快性と
完成度の高さから好評を博し、
パソコン上のワープロとしてトッ
プの地位を築いたのです。しか
し、その値段は128,000円と高
価で、PC-9801F2（398,000円）
と24ピンプリンタPC-PR201
（298,000円）、そしてディスプ
レイを合わせると約100万円に
もなる高価なワープロマシンで
した。フロッピーディスクなし
のPC-9801Eをやっとの思いで
購入した筆者などには、とても
手の届かないシステムでした。

一太郎の登場

　1984年秋、NEC PC-100で動
作していたワープロソフト「JS-
WORD」がPC-9801版としてア
スキー社から登場します。JS-
WORDの先進性は、そのかな漢

字変換機能としてMS-DOSの
機能の一部となる日本語入力
FEP（フロントエンドプロセッサ）
KTIS（Kana- Kanji Transfer
Input System）を搭載したことで
す。KTISは、同社から発売さ
れていた表計算ソフト「Multi
plan」からも利用できました。
　JS-WORDを開発していた
ジャストシステム社は、並行し
てまったく別のテキスト型のワー
プロを、IBM社のIBM JX用に
開発していました。これが高性
能・高機能な「jX-WORD」でした。
　その3ヵ月後の1985年2月に
は、その名称を「jX-WORD太郎」
としたPC-9801版が発売されま
した。jX-WORD太郎はMS-
DOS上で動作することで、ファ
イル操作がMS-DOS上で行え
ました。
　jX-WORD太郎の先進性はそ
の操作性にあり、Multiplanのよ
うにüキーを押すことでメ
ニューが出て操作を選択できた
のです。ファンクションキーは
かな漢字変換で使用するように
なっていました。また漢字への
変換操作はスペースキーで行い、
変換文字の確定はíキーを押
すという、現在のかな漢字変換
の操作の原点だったのです。

第67回

速水 祐（はやみ ゆう）　http://zob.club/　 twitter @yyhayami

パソコン上の日本語ワープロ

温故知新
ITむかしばなし

http://zob.club/

178 - Software Design Jul. 2017 - 179

第67回

　また、かな漢字変換機能は
ATOK3が受け持ち、今までの
単漢字変換からある程度の長さ
の文書を一度の変換動作で行え
る連文節変換機能を実現し、変
換の効率を圧倒的に高めて「松」
の約半分の58,000円で発売され
たのです。
　半年後の8月には、jX-WORD
が外れて「一太郎」と名称を変
え注1、かな漢字変換がATOK4と
なって日本語FEPとして使える
ようになり、ユーザの大きな支
持を得ることになります。しか
し「松」と比べて、その動作スピー
ドと操作の快適性ではかなわな
い部分もあったようです。
　1986年には、一太郎Ver.2が
発売され、図形イメージの貼り
付けが可能になるなど機能強化
が行われたのですが、動作スピー
ドは遅くなったため、コアな一
太郎ユーザは変換のスピードアッ
プのために辞書ファイルを、当
時普及し始めた拡張バンク
RAMのRAM-DISKへ転送する
ことで、操作の快適性アップの
ための工夫を行っていました。
1987年に登場した一太郎
Ver.3.0（写真1）は、当時のソフ
トウェアには常識だったコピー
プロテクトが外れ、高速性がアッ
プするとともに完成度も上がり、
ワープロとして確固たる地位を
築きました。

一太郎4の葛藤

　シェル上で複数のアプリケー
ションを複数のウィンドウで動
注1） https://www.justsystems.com/jp/

camp/just2010/column/index09.
html

作させる環境が注目を集めてい
ました。そこで。ジャストシス
テム社は、一太郎や花子注2など
の複数のアプリケーションを切
り替えながら動かすことができ
る、テキストベースのシェルで
あるジャストウィンドウを開発
します。
　その上で動作する一太郎
Ver.4（以下一太郎4）は、640KB
のメモリだけではすべての機能
が使えず、花子を同時に動作さ
せるために、当時発売されたば
かりのEMSメモリや高価なハー
ドディスクが必須になり、ユー
ザに大きな出費を促すものでし
た。また最初のバージョンはバ
グが多発したため、ジャストシ
ステム社全社一丸となり、全力
でサポートを行います。Ver.4.1、
Ver.4.2と改良版を無償（郵送）
で送り続けVer.4.3で、ようやく
まともに動作する製品となった
のです。
　1988年は、すでにMS-DOS
対応になっていた松も大きく進
歩します。かな漢字変換部分は
日本語FEP「松茸」となり、全面
的に書き換えられたプログラム
コードにより、圧倒的に高速に
なり、テキストエディタに匹敵
するスピードを実現して「新松」
と名を冠して発売されました。
新松は操作キーなどをユーザが
自由にカスタマイズできる優れ
たワープロでした。当時、筆者
は一太郎4を使うのをやめて、
新松を購入して快適に使用して
いたことを思い出します。

注2） ジャストシステムが開発したグラ
フィックソフトウェア。一太郎Ver.4
と同時にジャストウインドウで動作
する花子Ver.2が発売された。

MS-DOS版ワープ
ロの終焉

　Windows 3.1が1991年に登場
にするとパソコンの環境が大き
く変わります。グラフィック操
作による複数のアプリケーショ
ンの実行が当たり前になり、ジャ
ストウィンドウのようなテキス
トベースのウィンドウシステム
は時代遅れになったのです。そ
してWindowsで動作するMicro
soft社製ワープロのMS Word
が使われるようになってきます。
　一太郎も1993年にWindows
版一太郎Ver.5.0を開発し、同
時にMS-DOS版の一太郎Ver.
5.0も発売します。しかし、Win
dowsの技術ノウハウを持つ
Microsoft社の技術力はWin
dows上のソフト開発においては
圧倒的であり、Windows版一太
郎の動作は、MS Wordにはと
てもかなわないものでした。

おわりに

　その後、一太郎のバージョン
アップは続きWindows版ワープ
ロとしても優れたものに進化し
ていったのです。一太郎の今後
の進歩を期待します。｢

温故知新 ITむかしばなし
パソコン上の日本語ワープロ

 ▼写真1　 一太郎Ver.3.0の起動時
のタイトル画面（初代PC-
9801で実行）

https://www.justsystems.com/jp/camp/just2010/column/index09.html

180 - Software Design

　グレープシティ㈱は5月17日、.NETアプリにデータグ
リッドやチャートといったUI部品を提供するコンポーネ
ントセット「ComponentOne Studio」の最新版「2017J
v1」を発売した。
　最新版で注目の新機能は2つ。プロジェクト管理ツー
ルでとくに有用なガンチャートを提供する「GanttView
for WPF」。フィールド数の多い業務アプリで関連のある
項目をまとめて縦並びにできる「MultiRow for ASP.NET
MVC」。加えて、対応環境に新しく「Visual Studio 2017」
「.NET Framework 4.7」「ASP.NET Core」が追加された。
　初回費用は、すべてのプラットフォームに対応した最
上位エディションである「ComponentOne Studio Enter

prise」の1ユーザーライセンスで162,000円（税込）、1年
単位の更新費用は64,800円（税込）となる。

グレープシティ、
.NETアプリ向けコンポーネントセット
「ComponentOne Studio 2017J v1」発売

　NECプラットフォームズ㈱は4月13日、IEEE802.11ac
対応のWi-Fiホームルータシリーズ「Aterm」の新製品
「WG1900HP」「WG1200HP2」を発売した。価格はとも
にオープン価格。
　WG1900HPは5GHz帯で最大1,300Mbpsの高速通信が
可能な3ストリーム高機能モデル、WG1200HP2は5GHz
帯で最大867Mbpsの通信が可能な2ストリーム高機能モ
デル。両製品とも、動作中に電波状態の良い最適なチャ
ネルに自動的に切り替える「オートチャネルセレクト」、
最適な周波数帯に自動的に切り替える「バンドステアリ
ング」、Wi-Fiの見える化および不正アクセスの検知を実
現する「見えて安心ネット」を搭載している。

NECプラットフォームズ、
Wi-Fiホームルータ
「Aterm WG1900HP」「Aterm WG1200HP2」を発売

　8月4～5日、京都リサーチパーク（京都府京都市）にて、
オープンソースカンファレンス2017 Kyoto（以下OSC京
都）が開催される。
　オープンソースカンファレンスは、インターネットの
発展を支えているオープンソースの考え方を普及・啓蒙
する「オープンソースの文化祭」で、毎年全国で開催さ
れている。京都での開催は今年で11回目。約80の展示
ブース、約70のセミナーが入場無料で見学できる。ブー
ス出展としては、以下のものなどが予定されている。

・日本仮想化技術㈱によるOpenStackのデモ
・Oracle Corporation によるMySQLの製品紹介

・サイボウズ㈱による自社でのコミュニティ活動の紹介

8月4～5日、
「オープンソースカンファレンス2017 Kyoto」開催

オープンソースカンファレンス2017 Kyoto
URL https://www.ospn.jp/osc2017-kyoto

CONTACT

▲▲GanttView for WPFの画面例

▲▲Aterm WG1900HP（左）とAterm WG1200HP2（右）

グレープシティ㈱　URL http://www.grapecity.com
CONTACT

NECプラットフォームズ㈱　URL https://www.necplatforms.co.jp
CONTACT

●●開催概要

日程 8月4日（金）10:00～17:00（展示は11:00～17:00）
8月5日（土）10:00～17:50（展示は10:00～16:00）

会場 京都リサーチパーク（京都府京都市下京区中堂寺南町134）

参加費 無料

主催 オープンソースカンファレンス実行委員会

協力 京都リサーチパーク㈱

企画運営 ㈱びぎねっと

http://www.grapecity.com
https://www.necplatforms.co.jp/
https://www.ospn.jp/osc2017-kyoto

180 - Software Design Jul. 2017 - 181

ネットギアジャパン合同会社　URL https://www.netgear.jp
CONTACT

　ネットギアジャパン合同会社は5月19日、NAS製品
「ReadyNAS」シリーズのディスクレスモデル（ハード
ウェアサポートオンリーモデル）をオンラインショップ
限定で発売することを発表。同日より販売を開始した。
　ハードウェアサポートオンリーモデルとは、製品機能
はそのままながらHDDを搭載しないディスクレスモデ
ルで、導入先が自由にHDDを選定・搭載できる。HDD
やサポートのコストを下げることで、型番の同じ製品を
より低価格で提供する。
　発売となったのは表の4製品（いずれもハードウェア
サポートオンリーモデル）。AmazonとNTT-X Storeで取
り扱う。

ネットギアジャパン、
NAS製品「ReadyNAS」シリーズに、
オンラインショップ限定のディスクレスモデルを追加

「AWS Summit Tokyo 2017」開催、
Amazon CTOによる基調講演をレポート

AWS Summit Tokyo
URL http://www.awssummit.tokyo

CONTACT

　5月30～6月1日、グランドプリンスホテル新高輪（東
京都品川区）にて、クラウドサービスAmazon Web
Services（以下AWS）に関するオフィシャルイベント
「AWS Summit Tokyo 2017」が開催された。3日目の

Amazon.com社のCTO、Werner Vogels氏の基調講演で
は、日本でのAWSの利用状況について語られたほか、
新機能の発表も行われた。その概要をレポートする。

 AWSと日本
　現在、日本のAWSのアクティブユーザは月に10万以
上にのぼる。スタートアップ企業でのAWS導入事例と
してはSansan㈱、㈱メルカリ、ウォンテッドリー㈱が
紹介され、エンタープライズ企業での事例としては㈱
NTTドコモや㈱ファーストリテイリングの例などが挙げ
られた。また、日本においては強力なクラウドインテグ
レータの存在も欠かせないとし、アイレット㈱の
cloudpack事業や㈱サーバーワークスの名前を挙げた。
日本におけるトピックとしてはほかに、2018年に「大阪
ローカルリージョン」が開設されることが発表された。

 AWSの注力分野
・サーバーレス：AWSでは、サーバーレスの核となる
「AWS Lambda」、分散アプリケーションの構成を視覚
的なワークフローを使って行える「AWS Step Func
tions」、分散アプリケーションの分析とデバッグを行う
「AWS X-ray」、そしてNoSQLデータベースの「Amazon

DynamoDB」を併用する構成を推しているとのこと。
DynamoDBについては、キャッシュサービスの新機能

「Amazon DynamoDB Accelerator」が発表された。

・ビッグデータ：データ分析分野においてWerner氏が
紹介したのは、Amazon S3内のデータに対してSQLのク
エリを実行できる「Amazon Athena」、Hadoopのマネー
ジドサービス「Amazon Elastic MapReduce」、データ
ウェアハウス「Amazon Redshift」。とくにRedshiftにつ
いては、新機能「Redshift Spectrum」が発表された。こ
れは、Redshiftから直接S3上のデータを参照できるとい
うもので、エクサバイトデータへの複雑なクエリを実行
する実験をしたところ、1,000ノードクラスタのApache
Hiveでは5年かかったものが、Redshift Spectrumではわ
ずか155秒で済んだとのことで、来場者を驚かせた。

 企業は不朽か
　Werner氏が最後に語ったのは、企業の永続性につい
て。以前にも増して企業が生き残ることが難しくなって
きており、エンタープライズ企業も例外ではないという。
クラウドによってスタートアップでもエンタープライズ
と同等のコンピューティングリソースを手に入れられる
ようになった一方、エンタープライズにはスタートアッ
プと同等のイノベーションスピードが求められるように
なり、企業にとってはいかに新しい領域に挑戦していけ
るかが重要だと強調した。

●●製品ラインナップ

製品名 サイズ（HDD搭載
可能数）

ネットワーク 価格（税込）

ReadyNAS 4312S 2Uラックマウン
ト型（12ベイ）

10G SFP＋×2、
1000BASE-T×4 993,600円

ReadyNAS 4312X 2Uラックマウン
ト型（12ベイ）

10GBASE-T×2、
1000BASE-T×4 993,600円

ReadyNAS 3312 2Uラックマウン
ト型（12ベイ） 1000BASE-T×4 820,800円

ReadyNAS 3138 1Uラックマウン
ト型（4ベイ） 1000BASE-T×4 216,000円

https://www.netgear.jp
http://www.awssummit.tokyo

182 - Software Design

本当に怖いランサムウェア
ランサムウェア「WannaCry」による大規模なサイバー攻撃が話題になりました。ランサム
ウェアは、パソコンに感染してアクセスの制限やデータの暗号化を施したあと、その解放の
ために身代金（ランサム）を要求します。各セキュリティ会社が勧める個人での対策方法は、
おもに「不審なメール・URLは開かない」「セキュリティソフトやOSを最新に」「バックアッ
プはこまめに」の3つ。素直に身代金を払うことは推奨されていないようです。

新人歓迎企画第2弾は、ネットワーク技
術特集。通信プロトコル、ネットワーク
コマンド、ルーティング、ファイルサー
バ、DNSをキーワードに、コンピュー
タ同士がどのようにつながり、インター
ネットを構成しているのかをゼロから解
説しました。

先月号と同様、Linuxコマンドが苦手
なアプリエンジニアが周りに多く、ネッ
トワーク系となるとからっきし。みん
なに読んでもらいたい。
 ほまれさん／千葉県

新人さん向け特集かと思ったら、いき
なりWiresharkでパケットを見てい
てびっくり。Linuxというか、UNIX
全般に有効な基礎知識ですね。
 KKさん／愛知県

新卒準備号のうち、第2弾の今号だけ
買いました。IT業界の中で転職して1
年半近くになりますが、第 1弾の
Linuxとは何ぞや？のレベルからはよ
うやく脱出できたことを今号の発売で
気付きました。それでもまだまだ成長
の途上。今後もお世話になります。
 石丸さん／千葉県

今回の新人準備号もいろいろな
世代の方に読んでいただいたよ

うです。新人にとっては基礎を固めるの
に良く、中級者にとっては振り返りに良
い記事になりました。

ドッグフーディングとは、自社製品を社
員自ら使って改善点を見つけるという試
み。サイボウズのクラウドサービス開発
において実際に行われたドッグフーディ
ングを通じ、環境づくりや失敗しないた
めのノウハウを紹介しました。

サイボウズ流ということで、とても実
践的で良かったです。
 yoshitakaさん／神奈川県

まずは自分たちで使ってみる。必要だと
思いつつなかなか実現できないですが、
参考にしたいと思いました。
 はにさん／大阪府

お客様からフィードバックを得るだけ
でなく、社内でも利用してフィードバッ
クを得ることは大事だというのは明確
なことです。しかし、それを実現する
といった点でしくみ作りが難しく、今
回の特集を参考にして実務につなげた

いと思います。 牧田牧場さん／東京都

ドッグフーディングという言葉は
初めて聞いた、という読者の方が

多かったです。社内の人にレビューして
もらうということで、しくみと風土作り
の両方が大事というお話でした。

ビットコインを支える基盤技術「ブロッ
クチェーン」は、新しい取引のしくみと
して、金融業界を中心に注目されている
技術。本特集ではエンジニアを対象に、
利用されている暗号技術やアルゴリズム
の面からブロックチェーンを解説しまし
た。

今一番興味があるので、タイムリーだっ
た。 安井さん／東京都

セキュリティに関心のある身としては、
金融業務モデルは参考になる。
 とっぽさん／愛知県

ブロックチェーンについて、最近よく
聞くけどわかってなかったので、良かっ
た。 くまーーーーさん／神奈川県

2017年5月号について、たくさんの声が届きました。

第1特集　Linux入門
【UNIXネットワーク編】

第2特集　ドッグフーディング環
境の作り方

第3特集　いまから学ぶブロック
チェーン入門

182 - Software Design Jul. 2017 - 183

名前は知っているけれど……、と
いう読者の方が多かったブロッ

クチェーン。ビットコインと聞くとなか
なか縁遠いものに感じますが、暗号技術
やP2P技術を利用したデータ管理のしく
みと聞くと、いろいろと応用が利きそう
ですね。

ニュースでも度々話題になるDDoS攻撃
は、もはや他人事ではありません。記事
ではDDoS攻撃について、概要、最近の
傾向、おもな対策方法を解説し、さらに
クラウド事業者が行う大規模な対処方法
を紹介しました。

まだDDoS被害を受けたことはないが、
見直しの良い機会になった。できる対
策は限られていても、可能なところか
ら対策は立てておきたい。
 大黒さん／徳島県

CDNでの対策など、参考になりまし
た｡ ノリオさん／大阪府

圧倒的な物量で攻撃してくるさ
まはまるで災害のようです。「個

人では対策の立てようもないのでは」と
も思ってしまいますが、少なからずでき
ることもあるのだと、プロフェッショナ
ルによる冷静な話を聞くことができまし
た。

モバイルアプリのバックエンド開発を省
力化できるmBaaS。その1つ「ニフティ
クラウドmobile backend（NCMB）」の
しくみと使い方を解説する短期連載です。
第2回は、開発に関わったエンジニアへ
のインタビュー、実際の開発の流れの2

本立てでした。

ニフティクラウドは弊社業務とも関わ
りが深いので、おもしろかったです。
 チャチャ丸さん／東京都

mBaasについて興味があるので、参
考になった。 さくらますさん／東京都

クラウドって、本当に一般化したもの
だと感心します。 鈴木さん／熊本県

○aaS系の派生が増えに増え、何
をどう使えば良いかわからない

といった方は多いはず。NCMBは国産
のクラウドサービスということで、日本
語のサポートを受けやすいという点はメ
リットですね。

現在使われる多くのプログラミング言語
に影響を与えた「Lisp」について、その画
期的なしくみや思想に、あらためて注目
する短期連載です。第1回は、Lispの「す

ごいところ」と歴史、これからのLispに
ついて学びました。

Lispを使うのかわからないが、ほかの
言語との共通点を確認したりと勉強に
なる。 エゾモモンガさん／滋賀県

AIは結構好きなので、読ませていただ
きました。Lispはなんか懐かしいです。
 風のピエロさん／長野県

年長者の読者から、「懐かしい」と
いう声が多く寄せられました。初

めて触った言語だから愛着がある、とい
う方も多いようでした。若い人にも、今
後の連載を通じて好きになってもらいた
いですね。

一般記事　クラウド事業者が考え
るDDoS攻撃への対策と対処法

一般記事
mBaaSのしくみ紹介【2】

短期集中連載　人工知能時代の
Lispのススメ【1】

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① タイプライター風交換用キートップ「DN-914671」
石垣徹徹様（神奈川県）、木田光浩様（奈良県）

② 寝るまでスマホ
さりさ様（愛知県）、桑野佳奈様（福岡県）、
今鷹進一様（福岡県）

③ Acronis True Image 2017 New Generation
きゃろさん様（埼玉県）、ももんが様（静岡県）、
岡雅善様（東京都）、出玉のタマ様（大阪府）、
野口菅子様（福岡県）

④ 『エンジニアになりたい君へ』
秋原蘭様（千葉県）、齋藤優太様（広島県）

⑤ 『ITエンジニアのためのデータベース再入門』
海老原寛大様（神奈川県）、あっきー様（福岡県）

⑥ 『パーフェクトR』
金岡裕志様（千葉県）、松井一弘様（東京都）

⑦ 『Ansible構成管理入門』
ゆめかけ様（神奈川県）、野島吉仁様（東京都）

5月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

http://sd.gihyo.jp/
mailto:sd@gihyo.co.jp

August 2017

次号予告

Software Design
2017年7月号

発行日
2017年6月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
松井竜馬
大橋　涼
北川香織

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
法人営業課（広告）
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6179
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2017年8月号
定価（本体1,220円＋税）

184ページ

7月18日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2017 技術評論社

●只管「歩く男」となって幾星霜。「季節はずれの

男」と後ろ指さされるのも吝かじゃない。左内坂を発

し麹町から赤坂に抜けて、ここは六本木一丁目。隣

は洒落乙な麻布十番。夜分「珍奇な男」となって信

号の変わり目に「かけ出す男」。魚籃坂まで達してみ

れば「戦う男」の一里と半の足掻きも其れ迄よ。（本）

● IT昔話にキャリーラボのJET話が出て、大学時代を

思い出す。当時はZ80をハンドアセンブルしてた。直

接16進を打ち込み、ニーモニックを介さずに意味も

わかっていた。雑誌掲載のゲームのダンプが動かな

いと嘆く友人に、ひと目見て4ヵ所の間違いを指摘し

たっけ。nパスのBASE80は便利だったなぁ。（Z幕）

●まわりの音が聞こえるイヤホン「ambie（アンビー）」

を買いました。これはゲーム好きのお父さんにオスス

メです！　イヤホンでのゲーム中に家人からの呼びか

けに気づけないと、“ゲームで遊んでいて人の話を聞

かない、じゃまな亭主”ということになりかねません。

でもambieなら家庭円満！（キ）

●ネットの情報を見ていて「Go言語の登場でC言語の

必要性は減っている」と感じていましたが、工学分野

でご活躍の方に聞いたところ、工学関連ではまだまだ

Cが現役とのこと。現実を知るにはやはり直に現場の

人に話を聞くべきだと感じました。人に会うのを面倒

がってはいけないと日々、自戒しています。（よし）

●クロスバイク走行記＜第2段＞。今回は横浜みなと

みらいまで往復80kmの旅でした。使った道路は環七

と第一／第二京浜だけと単純な経路でしたが、アップ

ダウンが意外と激しく、帰りはバテバテに。筋力・体

力アップを誓った一日でした。そして世の習いどおり、

ロードバイクが欲しくなって参りました。（な）

●いつもはちびぬいの型紙を作るときのできあがりイ

メージのラフ画くらいしか絵を描かないのですが、懇意

にしているギャラリーさんで銀筆画や板絵といった、初

めての技法を教われるという、わくわくするようなワーク

ショップに参加する機会があり、ちゃんとした絵を描くの

もやっぱり楽しい～と実感！　また頑張ろっかな。（ま）

S D S t a f f R o o m

［第1特集］ マシンラーニング・ディープラーニング　

機械学習エンジニアになりたい！
学習のヒントと実践方法
機械学習（深層学習）はこれまでのビジネスを変革する手段として、各方面で組み込まれていくでしょ
う。そしていま、機械学習を武器に持つエンジニアが求められています。
本特集で、仕事で求められる機械学習エンジニアになるための第一歩を踏み出してみませんか？

［第2特集］

エンジニアのためのうけるプレゼン・
すべるプレゼン̶̶あなたの思いを伝える技術教えます

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

■2017年6月号
●P.23　特集「あなたのプログラミングを加速させるエディタ」第1章（2ヵ所）
［誤］Ctrl- [　　［正］Ctrl-]
●P.155　連載「Unixコマンドライン探検隊」リスト1中25行目
［誤］char *argv[3];　　［正］char *argv[6];

お詫びと訂正
　以下の記事に誤りがございました。読者のみなさま、および関係者の方々にご迷惑をおかけしたことをお詫び申し上げます。

184 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	SD2017年7月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 理論＆応用で シェル力の幅を広げる
	第1章：理論編1 シェル初心者から中級者への次の一歩山森 丈範
	第2章：理論編2 シェルスクリプト初心者から中級者への次の一歩石山 将来
	第3章：理論編3 しくみを知れば、bashは怖くない田島 優也
	第4章：応用編1 じつはこんな機能があった！　bashの新機能、便利機能上田 隆一
	第5章：応用編2 意外と使える!?　Bash on Ubuntu on Windowsくんすと

	■第2特集 データの抽出・加工に強くなる！ MySQL［SELECT文］集中講座とみたまさひろ
	Part1：好きな環境ではじめよう MySQLのインストールとデータベースの用意
	Part2：SELECTの基本構文から押さえる データの絞り込み・並び替えをマスターしよう
	Part3：SELECT文を使いこなせますか？ JOINによる結合と、サブクエリを覚えよう

	■一般記事
	ハッシュ関数を使いこなしていますか？【後編】ソフトウェア開発での実装ポイント長谷川 智希
	Windows Server 2016で構築する最新ファイルサーバ【後編】進化した機能で効率化を推進高添 修
	Jamesのセキュリティレッスン【10】Jamesの挑戦状！　Wireshark実践問題吉田 英二

	■連載：Column
	digital gadget【223】幼児のためのデジタルガジェット安藤 幸央
	結城浩の再発見の発想法【50】Branch —— ブランチ結城 浩
	及川卓也のプロダクト開発の道しるべ〜品質を高めるプロダクトマネージャーの仕事とは？【9】リーンキャンバス及川 卓也
	宮原徹のオープンソース放浪記【17】ラズパイオーディオの会でコミュニティ活動宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【25】EnOceanを使ってみる......坪井 義浩
	ひみつのLinux通信【41】2段階認証......くつなりょうすけ
	Hack For Japan〜あなたのスキルは社会に役立つ【67】地震対策Hackathonで感じた、進歩する技術と蓄積された経験の融合鎌田 篤慎
	温故知新 ITむかしばなし【67】パソコン上の日本語ワープロ　......速水 祐

	■連載：Development
	RDBアンチパターン【3】やりすぎたJOIN曽根 壮大
	RDB性能トラブルバスターズ奮闘記【17】JOINのロックが怖くて飯が食えるか!!生島 勘富、開米 瑞浩
	使って考える仮想化技術【14】仮想環境リモート運用管理の実装例笠野 英松
	書いて覚えるSwift入門【27】静かなること型の如し......小飼 弾
	Androidで広がるエンジニアの愉しみ【16】VR/ARアプリ開発を後押しする空間認識技術Tangoとは三宅 理
	Vimの細道【19】Vimからデータベースを操作するmattn
	セキュリティ実践の基本定石【45】WannaCryの問題の本質　......すずきひろのぶ

	■連載：OS/Network
	SOURCES〜レッドハット系ソフトウェア最新解説【10】コンテナを使ってみよう小島 啓史
	Ubuntu Monthly Report【87】Unityの生涯　......あわしろいくや
	Debian Hot Topics【48】Debian 9“Stretch”の新しい点......やまねひでき
	Unixコマンドライン探検隊【15】ssh（その1）中島 雅弘
	Linuxカーネル観光ガイド【63】RAIDのwrite hole問題を解決するジャーナル機能とLinux 4.12で登場するPPL　......青田 直大
	Monthly News from jus【69】IPv6はもう普通に使える!?　各社の対応状況を概観　......松山 直道

	■アラカルト
	ITエンジニア必須の最新用語解説【103】Moby Project　......杉山 貴章
	読者プレゼントのお知らせ
	SD BOOK REVIEW　
	SD NEWS & PRODUCTS
	Readers’ Voice
	次号のお知らせ
	年間定期購読と電子版販売のご案内
	SDplus

