

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

Software Design plusシリーズは、OSと
ネットワーク、IT環境を支えるエンジニアの
総合誌『Software Design』編集部が自信
を持ってお届けする書籍シリーズです。

Software Design plusシリーズは、esign plusシリーズは、usシシリpl ズー OSと
ネットワーク、IT環境を支えるエンジニアワーク、IT環境を支えるエ支、T環境をIT環境境 の
総合誌『S i 』編集部が自信誌『S ft DS tft

ED - 1 - Software Design

　「NGINX」は、軽量かつ安定性
の高いWebサーバとして高いシェ
アをもつオープンソースソフト
ウェアです。そのNGINXの開発
を主導しているNGINX社が、
「NGINX Application Platform」
という新しいプラットフォームを
発表しました。
　NGINX社は従来より、NGINX
のエンタープライズ向けの商用版
である「NGINX Plus」の提供を
行ってきました。NGINX Appli
cation Platformは、そのNGINX
Plusの技術やノウハウを軸として、
モダンなアプリケーションの開発
や管理を行うためのワンストップ
のプラットホームを提供するもの
です。クラウドやコンテナ、マイ
クロサービスといった要件をサ
ポートし、市場の急激な変化に対
応する柔軟性を備えた近代的なプ
ラットフォームになるとのことで
す。
　NGINX Application Platform
は、NGINX Plusに加えて以下の
3つの新しいツールから構成され
ます。

NGINX Unit
　NGINX Unitは動的制御ができ
るように設計された軽量なWeb
アプリケーションサーバです。
NGINXは多彩な用途に利用でき
る汎用的なWebサーバとして設
計されていますが、一方で単体で
アプリケーションを実行する環境

は持っていません。NGINX Unit
はその部分のニーズをカバーする
存在になります。初期段階では
PHP、GoおよびPythonをサポー
トしており、将来的には Javaや
Node.jsなどほかの言語にも対応
する予定だそうです。
　NGINX Unitの最大の特徴は、
可変的な環境でアプリケーション
を動作させることを前提に設計さ
れているという点です。アプリ
ケーションのバージョンアップな
どの保守作業を、プロセスを再起
動することなくシームレスに実施
できるほか、コンフィグレーショ
ンの変更もREST API経由で動的
に行うことができます。また、
サービスメッシュを構成するため
のネイティブのロードバランサな
ども備えています。

NGINX Controller
　NGINX Controllerは、NGINX
のプラットフォームを集中的に管
理するツールです。NGINXイン
スタンスの作成からコンフィグ
レーション、URLルーティング、
SSL接続などの管理を、GUIから
簡単に行えます。また、ワークフ
ローやポリシー管理といった機能
を備えるほか、マルチクラウドや
マルチテナント環境に対応するな
ど、近代的なアプリケーションイ
ンフラに求められる要件をカバー
している点も大きな特徴です。
　NGINX PlusとNGINX Unitの
両方に対応し、両者の環境を統合
して管理することもできるとのこ
とです。

NGINX Web Application
Firewall
　NGINX Web Application Fire
wallは、NGINXプラットフォーム
をさまざまな外的リスクから保護
するためのファイアウォール・
ツールです。SQLインジェクショ
ンやクロスサイトスクリプティン
グをはじめとするレイヤー7攻撃
の防止、DDoS攻撃への自動対応、
IPレピュテーションといった機能
が提供されます。

◆　◆　◆
　上記のツール群のうち、NGINX
ControllerやNGINX Web Appli
cation FirewallはNGINX Plus
と同様に有償のツールですが、
NGINX Unitについてはオープン
ソースで公開されており、無償で
利用することができます。NGINX
社ではそのほかにも、軽量なモニ
タリングおよび分析ツールである
NGINX Amplifyを正式リリース
するなど、NGINXを中心とした
エコシステムの強化に力を入れて
います。
　NGINX Application Platform
の立ち上げは、マイクロサービス
に代表されるモダンなエンタープ
ライズWebアプリケーションへ
の対応を推進していくという
NGINX陣営の方針を改めて明確
にしたものであり、今後の大きな
改革を予感させるものと言えるで
しょう。｢

TEXT： ㈲オングス 杉山 貴章 SUGIYAMA Takaaki
　　　 takaaki@ongs.co.jp

第 107回

NGINX Application Platform

The NGINX Application Platform
https://www.nginx.com/products/

NGINX による新しいアプリ
ケーションプラットフォーム

テーマ募集
本連載では、最近気になる用語など、
今後取り上げてほしいテーマを募集し
ています。sd@gihyo.co.jp 宛にお送
りください。

mailto:sd@gihyo.co.jp
https://www.nginx.com/products/

vol.227

1 - Software Design Nov. 2017 - 1

　コンピュータグラフィックスとイン
タラクティブ技術に関する世界最
大の学会・展示会である第44回
SIGGRAPH 2017が7月30日から8
月4日の5日間、米国ロサンジェルスコ
ンベンションセンターで開催されました

（pic.1、2）。先月号に続いて、デジ
タルガジェット視点でレポートをお届け
します。
　今年のSIGGRAPHの注目は、昨
年から大きな盛り上がりを見せつつ
ある、VR、ARのコンテンツや応用
技術です。VRと組み合わせた触覚
デバイスや、各種センサーなどの研
究開発も進みつつ、PlayStation
VR、Oculus、HTC Vive、Sumsung
GearVR、Google Daydreamといっ
た、平易に手に入る市販VRデバイス
を活用した、VR産業が大きく花開い
てきている印象が強く感じられました。
またSIGGRAPHの出展や発表でも、

VR専業企業の活躍が多くみられまし
た（pic.3）。
　単なる物珍しい体験としてのVRか
ら、映画に次ぐ映像コンテンツとして、
ストーリー性のあるVR映像に、豊富
な予算が投下され、経験豊富なメン
バーが参画しつつあり、そういったVR
作品のメイキングセッションもいくつか
開催されました。

　ストーリーが秀でたVR作品を配信
し続けているGoogle Spotlightプロ
ジェクトの作品の1つ。音を中心とし
た実験的作品で、縦横無尽に広がる
三次元空間のための音の最適化を
検討するためにいろいろな要素が加
えられたものです（pic.4）。11の動
物と、8つのセット（背景）が用意され、
制作時には360度全方向を考慮した
ストーリーボードが描かれ、検討された
とのこと。たとえば、水の中のようなボ

コボコ、ポコポコといった音は実際に
水の中に防水マイクを落として集録し
たり、空気中にいる場合、水中にいる
場合、その境い目にいる場合と、それ
ぞれ異なる環境音が考慮されました。
音がどの方向から聞こえているかを常
に考えながら編集された、とても手間
のかかった作品です。

　同じくGoogle Spotlightの作品。
義足の闘牛士から発想を得た、片足
の覆面レスラーという独得のキャラク
タが特徴的な作品です（pic.5）。ア
イルランドの詩人、オスカー・ワイルドの

「素顔で語るとき、人はもっとも本音
から遠ざかる。仮面を与えれば真実を
語り出す」という言葉から着想を得た
ストーリーで、VR空間ならではのキャ
ラクタ設定や、環境設定などが細かく
考えられた作品です。実際のVR映像
制作のまえに、数多くのスケッチや、カ

[Twitter] @yukio_andoh
[Web Site] http://www.andoh.org/

安藤 幸央
EXA Corporation

技術の進化と映像の進化

※本記事で紹介しているものは
国内未発表・未発売のものを含んでいます。

pic.3 脳波でVR映像をコント
ロール。HTC Viveを改造した
Neurableの脳波VRヘッドセット

pic.4 Sonariaの
1画面

pic.1 SIGGRAPH会場に設置
された、ロゴのオブジェ

pic.2 認識用の二次元バー
コードがいたるところに貼り付けら
れた撮影用ダミー車

コンピュータグラフィックスの祭典SIGGRAPH 2017［後編］
〜映画の街ロサンジェルス。VRと映像技術編

Sonaria
Son of Jaguar

http://www.andoh.org/

2 - Software Design2 - Software Design

ラースクリプトと呼ばれるストーリーに
基づいた色設計、プロレス興行の調
査などが行われました。キャラクタの
形状をあえて、ポリゴン数が少ないゴ
ツゴツした感じで表現し、その確認の
ために3Dプリンタも活用したそう。

　残念ながら現在は解散してしまっ
た、VR作品専門の映像制作スタジ
オOculus Story Studioの作品で
す。Oculusの独自開発ツール「Quill」

（https://www.oculus.com/story-
studio/quill/）を使用してVR空間の
中に手作業で描かれた素材をもとに
作られたアート要素の強いVR作品で
す（pic.6）。作品の制作の流れとし
ては、Quillで描いた大量のデータを
特殊効果の扱いに強い3DCGツー
ル、Houdiniで編集、特殊効果、最適
化、タイミングの調整を行い、VRにも
対応したUnreal Engine 4というゲー
ムエンジンでの映像再生を実現させ
たそう。人間が描いた手書きの順番
や、描画の強さ、弱さといったものをう
まくデジタル環境で再現し、表現する

ことで、描く人の情熱や勢いみたいな
ものも伝えたかったとのこと。

◆　◆　◆
　今年のSIGGRAPH会場には、参
加者は無料で入場できるVR専用の
シアターが設置され、会場内では20
組のVRヘッドセットと視聴用のイス、
サポートスタッフが待ち構えています

（pic.7）。連日上映チケットがソール
ドアウトしてしまうという、人気の催しで
した。VRシアターをはじめ、各所のVR
の展示には「体験」のための工夫が
見られたのも今年の特徴です。

●セッティングの補助が必要。動き回
ると思わぬケガをしやすいので椅
子に座って視聴する

●VR作品は見ている本人しかわから
ない。視聴を待っている人のために
デモ上映のディスプレイを設置

●デモ用の視聴映像は、意図的に
ゆっくりと動かないと、酔うくらいの
映像になってしまうため要注意

●VR作品は長い時間集中して見続
けることが難しいので、数分で完結
するストーリー

●VR空間はどこを見ればいいのかわ
からない自由視点のため、演出で
視線を導く工夫が必要（pic.8）

　流行のVR技術に限らず、SIG
GRAPHでは、数多くの先端技術が
紹介されています。その中からいくつ
か特徴的なものを紹介しておきましょう

（pic.9〜13）。

　何度目かのブーム到来で、こんど
こそ一般に定着するとも言われてい
るVR。一方、スマートフォンの進化
が頭打ちになりつつある現在、次の
進化はVRやARの方向へ行くと言
われつつも、まだまだ先が見通せて
いないのが現状です。ただ、昨年の
SIGGRAPHと今年のSIGGRAPHと
を比べてみると、VR関連の盛り上が
りの大きな差異は、より多くの予算が
動き、より多くの映像制作者が興味を
もってVR映像の制作に参画してきて
いることです。

コンピュータグラフィックスの祭典SIGGRAPH 2017［後編］

DEAR ANGELICA

VRだけでない、先端技術

これからのコンピュータ
グラフィックスの進化

pic.10 formlabsという比較的
安価に購入できる高性能3Dプリ
ンタによる出力サンプル。ボード
ゲームのフィギュアのような金属質
感の3Dプリントサンプル

pic.9 世界的に使われているカ
ラーサンプルで知られるPantone
社のx-riteは、実物とCGとを比較
する質感マネジメント技術

pic.11 VRライブラリvuforiaの
技術を活用したVRカードゲーム

pic.7 左の写真は会場内に設置されたVR専用シアター。VR
短編作品を何本かまとめて観ることができる。写真右はVRシア
ター内部。VRヘッドセットの装着を手助けしてくれるスタッフがお
り、安全のため椅子に座って視聴する。会場の中央部には、応
年のVRデバイス「任天堂バーチャルボーイ」の展示も

pic.6 DEAR ANGELICAのワンシーンpic.5 Son of Jaguar
に登場するキャラクタ制
作中のスケッチ

pic.8 参加者それぞ
れが、違う方向を見てい
る、VR体験中の奇妙な
風景

https://www.oculus.com/story-studio/quill/

Gadget 1 Gadget 3

Gadget 2 Gadget 4

2 - Software Design Nov. 2017 - 32 - Software Design

SIGGRAPHアートギャラリー展示より。
超音波の反射を聞き取りながら飛び
回るコウモリのような体験ができる特
殊な眼鏡。目が塞がれていても、潜水
艦の「ピーン、ピーン」という音のように、
周りの障害物を音に変換して聞くこと
で、周辺情報を把握することができる
感覚デバイスです。この眼鏡を装着し
たばかりだと視覚が奪われて妙な感
覚になりますが、徐々に音で周辺状況
を把握しようと耳を中心とするさまざま
な感覚が研ぎすまされてくることがわか
ります。

SIGGRAPHアートギャラリー展示より。
音と光で人工生命を表現したインタラ
クティブな装置。物理的に相互接続
された照明機器が光る様子を、生命
の誕生、進化、淘汰を表現したライフ
ゲームのような人工生命アルゴリズム
で表現しています。伝搬していく様子
を表す、スイッチで切り替わる機械式
リレー端子と照明機器、その接続ケー
ブルで構成され、作品の前に立った
人の動きに反応します。巨大な人工
生物というよりも、ネットワークそのもの
が生命体のように感じさせる作品です。

SIGGRAPHアートギャラリー展示よ
り。汚水を微生物の働きで浄化する装
置の生物的活性を、音に変換してその
動きを感じるための装置。燃料電池の
しくみを用いたバイオセンサーでは、微
生物の代謝の際に発生する電子を捕
捉して感知することができます。その情
報を音に加工し、細菌の生活を描いた

「交響曲」を奏でているとのことです。

SIGGRAPHアートギャラリー展示より。
トウモロコシを原材料とするフィラメン
ト（3Dプリンタの素材となるコイル状
の樹脂）を用い、畑に模した円形状の
土の上をグルグルとトラクターのように
延 と々動き続けるアート作品。移動型
の3Dプリンターが動きながら出力し続
けているのは、トウモロコシの形状をした
種子。つまりは素材もトウモロコシ、生産
しているのもトウモロコシ、生み育てよう
としているのもトウモロコシという、ある閉
じた生態系の中での循環をテーマに表
現した作品です。

Echolocalizator

http://www.marcelaarmas.net/

※イベント展示品のため参照URLなし http://gilbertoesparza.net/

BioSoNot 1.2

Milpa Polimera Dispersiones

視覚遮断音波メガネ

自己増殖3Dプリンタ

水の浄化装置

生命のリレー

http://www.leonunez.com.ar/

　また、今までは企業のサイドビジネ
スとして行われてきたVR関連の機
材開発、VR映像制作も、専業の企
業、専業のスタートアップ、専業の映
像チーム、専業アーティストなどが生
まれてきており、確実に裾野が広がっ
ていることが実感されます。ただ、まだ
まだ先進的なものとしてとらえられるこ
とが多く、一般にはまだまだ浸透して
おらず、ゲームに似た何かだと思われ
ている場合もあります。より広くたくさ
んの人がVR映像を楽しみ、さまざまな
VR映像が作られ、撮影され、映画に
次ぐ一大産業になるのはまだまだ先
ですが、その片鱗がうかがえる今年の
SIGGRAPHでした。
　来年夏のSIGGRAPH 2018は8
月12日から16日の5日間、カナダのバ
ンクーバーで開催されます。また、来
年2018年冬のSIGGRAPH ASIA
は東京（有楽町の東京国際フォーラ
ム）での開催が決定しています。各国
から集まるCG作品や、最新技術展
示に多くの期待が集まっており、来年、
また何が見られるのか、体験できるの
か、今から楽しみです。｢

pic.12 地震の振動を目で見える
形に3Dプリントしたアート作品。写真
はエクアドルの高地とガラパゴス諸島
の4つの活火山での地震活動を記録
したもの

pic.13 i am aiという顔がタブレッ
ト端末のAIロボット。人間ふうに受け
答えし、流れ作業やパズルゲームを代
行してやってくれる。ユーモラスであり
ながら、少し頼りない

http://gilbertoesparza.net/
http://www.marcelaarmas.net/
http://www.leonunez.com.ar/

4 - Software Design

バックトラックとは

　バックトラック（Backtrack）とは、解空間の
中を行きつ戻りつして目的の解を求める、深さ

優先探索アルゴリズムの一種です。部分解を少
しずつ組み立てていき、途中で「これでは最終
的な解に行き着けない」と判断したら、そこか
ら深くなる解の探索をばっさり捨てて別の道を
探る（バックトラックする）のが特徴です。バッ
クトラックは、特定の問題を解くための具体的
なアルゴリズムというより、もう少し抽象度が
高い発見的な戦略と言えます。
　私たちが何かの問題を解こうとするとき、「起
こり得るたくさんの可能性から条件に合った解
を探索する」という状況になる場合があります。
　この場合、もっとも単純な解の探索方法は「1

列に並んだすべての可能性を端から順に見ていっ
て、条件に合うかどうかを調べる」というもの
です。これは「しらみつぶし」や「ブルートフォー
ス」と呼ばれます。
　今回のバックトラックも「すべての可能性を
順に見ていく」という点ではブルートフォース
と同じですが、バックトラックは単純に「1列
に並んだものを端から見ていく」のではありま
せん。バックトラックでは木構造として表現さ
れた可能性を枝刈りしながら見ていくのです。

8クイーン問題

　バックトラックの説明をするとき、多くのア
ルゴリズムの教科書では「8クイーン問題」が例

として挙げられます。
　8クイーン問題とは、8×8のチェス盤に8個
のクイーンを置く問題で、どのクイーンを見て
も、ほかのクイーンの効き筋にいないという条
件を満たす必要があります。チェスのクイーン
は縦横斜めのすべてが効き筋になっており、飛
車と角を足したような動きができますので、8

×8の盤に8個のクイーンを置くのはなかなか
難しい問題となります（図1）。
　自明なこととして、8個のクイーンは列（aか
らhまで）と行（1から8まで）ごとに1個しか存
在できません。ですから「a列はどの行にクイー
ンを置くかを決める」「b列はどの行にクイーン
を置くかを決める」……のようにして、少しず
つ部分解を作っていく方法が考えられます。そ
の部分解の集合は図2のような木構造を作るこ
とになり、最終的な解を求めるのは、この木構
造を巡回（traverse）することに対応するのです。
　a列1行にクイーンを置き、b列3行にクイー
ンを置き、c列……と木構造を下に進むと、や
がて置けなくなる状態に至ります。そうなった
ら、それより下方向への探索を行うのは無駄で
す。残りのクイーンの位置を検討する必要はあ
りません。そこでバックトラックが行われます。
つまり、最後に置くことができたクイーンを別
の位置に動かす部分解へと進むのです。言葉で
説明するとややこしいですが、図2のような木
構造で想像するなら状況は理解できるでしょう。
　バックトラックでは木構造になった解空間の
探索において「枝刈り」が行われ、それによって

Backtrack ̶̶ バックトラック

結城 浩 YUKI Hiroshi
http://www.hyuki.com/
Twitter：@hyuki 54

http://www.hyuki.com/

4 - Software Design Nov. 2017 - 5

効率的な解空間の探索を行うことができます。
　「それならブルートフォースなんかせずに、
いつもバックトラックを使えばいい」と考えた
くなりますが、そうはいきません。バックトラッ
クを使うためには、「現在のところまでは条件
を満たしている」という部分解を作ることがで
きる必要があるからです。
　たとえば、暗号解読で手がかりが何もなけれ
ば、バックトラックは使えません。「326421479

の鍵がダメだから、320000000番台の鍵はす
べてダメ」のような枝刈りはできないからです。
　バックトラックを行うためには、解空間の構
造がわかっていなければなりませんが、効率を
高めるため、とくにどのような順番で部分解を
作っていくかは重要です。厳しい条件を先に確
認すれば、探索する空間を小さくできるからです。

日常生活とバックトラック

　日常生活で私たちは自然にバックトラックを
行っています。たとえば、入り組んだ路地で目
的の家を探すときを考えます。1つの道を選び、
進んでいきます。そして「いや、こんな遠くま
で来るはずないから、この道の先にはない」と
判断して後戻りし、別の道へ進みます。これは
まさにバックトラックです。ここでも、部分解
をどう作っていくかは重要です。「駅より東に
あるはず」のような大きな条件を先に確認すれ
ば、探索する空間を小
さくできるからです。
　あるいは、数学の試
験問題を解くときを考
えます。与えられた問

題に対していくつかの解法を思いついたとしま
す。式変形で知っている問題に帰着させるか、
そのままごりごり計算するか、問題の性質を生
かして単純化するか……どの解法を選んだとし
ても、さらにその先まで進まなければ本当に解
けるかどうかはわかりません。最終的な解に行
き着くまでの筋道は、抽象化して考えるなら木
構造になるでしょう。1つの解法を選び、先に
進んだけれど行き詰まったら、そこから先の作
業はバッサリ捨てて、バックトラックすること
になります。
　数独を解く際にもバックトラックを使えます。
「このマス目に入り得る数字は4と7と9のどれ
かだけど、まだどれになるかはわからない。も
し4だとしたら……」というのは、数独の解空
間を探索していることにほかなりません。矛盾
が見つかるまで進み、矛盾が見つかったらバッ
クトラックして別の部分解を試すことになりま
す。数独を解くのがうまい人は、条件が最も厳
しいマス目をすばやく見つけることができるの
ではないでしょうか。
　あなたの周りを見回して、多くの候補から条
件に合うものを求める状況があるかどうか探し
てください。そのとき、バックトラックをして
いるでしょうか。探索するときの順番を変える
ことで、効率は変わるでしょうか。
　ぜひ、考えてみてください。｢

54

a
8
7
6
5
4
3
2
1

b c d e f g h

OK

NG

 ▼図1　クイーンの効き筋

探索しない
（枝刈り）

バックトラックして
別の枝を探索

もう
置けない

・・・ ・・・

・・・ ・・・

・・・

・・・ ・・・

・・・

・・・

 ▼図2　8クイーンの木構造と、バックトラックでの枝刈り

6 - Software Design

プロダクト開発の道しるべ
及川卓也の

品質を高めるプロダクトマネージャーの仕事とは？

　前回（2017年 10月号）はプロダクトマネー
ジャーの実務を、会社や組織のビジョンやミッ
ションから機能要求まで落とし込んでいくまで
の過程を用いて説明しました。
　その中でも触れましたが、すべてのプロダク
トマネージャーに共通する役割にアイデアを生
み出すことがあります。

良いアイデアを
生みだすには

　アイデアを整理し、製品の要求仕様に落とし
込んでいくために必要な考え方について説明し
ましょう。
　まず、最初に製品やサービスは基本的に2つ
の目的しかないことを理解する必要があります。

	 ① ユーザの課題を解決すること
	 ② ユーザに新しい価値を提供すること

　誰にも使われないものを作りたいのでなけれ
ば、この2つのどちらかを実現する必要があり
ます。良いアイデアとはこれらを実現するベー
スとなる考えなのです。

最初のアイデアが
優れているとは限らない

　前回もお話しましたが、最初のアイデアのほ
とんどはたいしたアイデアではありません。最
初のアイデアは後から冷静になって見てみると、
どうでもよいアイデアであることがほとんどで
す。ビジネスコンテストなどで大学生が「すば
らしいアイデアを考えつきました！」とばかり

にアイデアを発表したりするのを聞いていると、
自分に酔ってしまっているんじゃないかなと感
じることがあります。これは大学生などの若い
人に限りません。どんなに経験の長い人も、最
初のアイデアを思いついた瞬間に、それに惚

ほ

れ
込
こ

んでしまっていることがあります。これでは
冷静な判断はできません。

アイデアを分解する

　では、良いアイデアを生み出すためにはどう
すれば良いでしょう？
　それは、アイデアを分解し、分解された要
素それぞれについての検証を行うことです。
　先ほど、アイデアは①ユーザの課題を解決す
ることか②ユーザに新しい価値を提供するこ
とのどちらかだとお話しましたが、アイデアを
まずこの形に分解してみるのです。
　②のユーザに新しい価値を提供することも①
に吸収できたり、①での考え方をそのまま応用
できるので、ここでは①のユーザの課題を解決
することを考えてみましょう。
　この「ユーザの課題を解決すること」というア
イデアは「ユーザの課題」と「その解決策」という
2つに分解できます。そして、良いアイデアと
いうのは「ターゲットとなるユーザが抱える重
大な課題」と「その最善の解決策」の組み合わせ
なのです（図1）。
　アイデアをこの2つの要素に分解した後は、そ
れぞれを検証することになります。アイデアを思
いついた段階では、それぞれはあくまでも仮説

及川卓也の
プロダクト開発の道しるべ
品質を高めるプロダクトマネージャーの仕事とは？

プロダクトアイデアの生み出し方

@takorattaTwitter

及川 卓也
（おいかわ たくや）

Author

第13回

6 - Software Design Nov. 2017 - 7

プロダクトアイデアの生み出し方 第13回

に過ぎません。課題仮説を検証し、そのあとに
解決策の検証を行います（図2）。その検証2つが
終了したあとに、初めてそのアイデアは実用化し
て成功の可能性があるアイデアとなるのです。
　課題仮説の検証も解決策の検証も実際のユー
ザに当たるしかありません。ユーザへのヒアリ
ングや行動分析などを行い、検証を行います。
もし、すでに存在する製品から派生した製品で
あったり、その製品の新機能として提供するこ
とを考えているアイデアならば、ログの分析な
どからもユーザの課題を抽出できるでしょう。
解決策もユーザへのヒアリングやモックやプロ
トタイプを制作し、ユーザに試してもらうなど
して、その解決策で本当に課題を解決できるか
を確認する必要があります。
　この仮説検証で使えるのが、この連載の第10

回（2017年8月号）で解説したバリュープロポジ
ションキャンバスになります。その使い方につ
いては、第10回を参照していただくとして、こ
こでは最初に思いついたアイデアへの執着の捨
て方について1つの方法を説明したいと思います。

解決策の千本ノック

　先ほど説明したように、最初にアイデアを思

いついたとき、多くの人はそれに対しての愛着
を持っています。その愛着は良いアイデアを考
え出すには邪

じゃま

魔なこともあります。
　執着を捨てるには、アイデアを何個も考え出
すことです。ターゲットユーザが抱える重大な
課題であることが検証された課題に対しての、
解決策をいくつも考えてみましょう。10個と
言わず、100個考えてみましょう。1,000個ま
で考えつくのはさすがに難しいと思いますが、
大量の解決策を自分以外のチームメンバーも巻
き込み考えてみるのが良いでしょう（図3）。
　10個も100個も案が出ないと思うかもしれ
ませんが、それでもひねり出してみましょう。
数を出して並べてみると、案外99個目のもの
が一番良かったなどということもあるものです。
なにより、このように案をひねり出すことで必
然的に最初の案に対する執着が薄れていきます。
結果として、実際にユーザに試してもらい評価
が低かった場合でも、素直にそれを認め、その
案を諦めることもできるのです。
　数多くの案を出す工夫はいろいろありますが、
ある程度案が出たら、それを机の上に並べてみ
ることをお勧めします注1。KJ法と呼ばれる、ブ
レーンストーミングなどで出たアイデアを整理
する方法がありますが、同じように案を並べ、
グルーピング化してみます。その際のグループ
化もいろいろな軸（＝側面）から行うことが大事

注1） 付箋紙に案を書くと、並べ替えが楽なのでお勧めです。

1. 課題仮説検証
正しい課題か？

2. 解決策検証
 正しい解決策か？

＋ 解決策課題

 ▼図2　 アイデアを分解したそれぞれの要素について
検証する

良いアイデアとは、

組み合わせ

と

の

ターゲットとなるユーザが
抱える重大な課題

その最善の解決策

 ▼図1　 良いアイデアとは

解決策
解決策
解決策
解決策

解決策
解決策

解決策解決策解決策

（検証された）
課題

 ▼図3　 アイデア（解決策）の千本ノックのように、多
くの解決策をひねり出す。これにより、最初
のアイデアへの執着を捨てるとともに、最善
の解決策を考えつくことができる

8 - Software Design

プロダクト開発の道しるべ
及川卓也の

品質を高めるプロダクトマネージャーの仕事とは？

です。
　軸の持ち方の例として、5W1Hで考えてみる
方法があります。解決策の案の場合、「誰に（＝
Who）」と「なぜ（＝Why）」はすでに課題に含ま
れていることが多いですが、「誰が」や「誰と」と
いう形でのWhoや、「どこで（＝Where）」、「ど
うやって（＝How）」、「いつ（＝When）」という
のを軸に考えてみると案が生まれてくることが
あります。
　おもしろいのは、出ている案がバランス良く
分散していない場合の考え方です。もちろん足
りない要素を増やすように考えてみることもで
きますが、あえて、この課題は偏った解決策し
かないのではないかとして、偏った要素をより
尖らせていくというのもあります。
　いずれにしろ、物事を上から見たり、横から
見たり、斜めから見たりするときの切り口はい
くらでもありますので、工夫してみることが大
事です。
　切り口の持ち方としては、ブレーンストーミ
ングの考案者、A.F.Osborne氏によるオズボー
ンのチェックリストと呼ばれるものが有名です。
これは次の9つの法則からなります。

1. ほかに使い道はないか？（転用）
2. ほかに似たものはないか？（応用）
3. 変えてみたらどうか？（変更）
4. 大きくしてみたらどうか？（拡大）
5. 小さくしてみたらどうか？（縮小）
6. ほかのものでは代えられないか？（代用）
7. ほかのものと入れ替えられないか？（置換）
8. 逆にしてみたらどうか？（逆転）
9. ほかのものと組み合わせられないか？（結合）

　また、デザイン思考で有名なIDEOのCEOの
Tim Brown氏は商品（商品を提供する要素技術と
ここでは考えたほうが良いでしょう）と消費者を
それぞれ縦軸と横軸に取り、取り得るアプローチ
を4つに分割して考えられるとしています（図4）。
　たとえば、既存技術を新しい領域に展開する
こと（図4右下「適応」のマス）でも、十分新たな

顧客を開拓することが可能となります。Flickr

という写真共有サービスがある中で、同じアイ
デアを動画に展開したYouTubeがユーザの支持
を得たことなどは、既存アイデアを新しい領域
に適応させたものと考えられます。イノベーティ
ブなものを生み出そうとすると、つい新規性の
ある技術で新規ユーザの獲得を目指すことばか
り考えがちですが、この図が示すようにほかに
もアプローチはあります。

チームでの
アイデアディスカッション

　ここまでプロダクトマネージャー個人として、
どのようにアイデア出しを行うかについて説明し
ました。アイデアはプロダクトマネージャーから
出されることも多いですが、プロダクトチームの
誰もが出せることが理想です。
　プロダクトアイデアや製品要求をチームで議
論することには、2つの利点があります。まず、
多くのアイデアが集まることがあげられます。
個人では考えもつかなかったアイデアが出てく
ることが期待されます。
　次に、個人的にはこちらのほうがより重要と思
われますが、チームメンバーの納得感が高まると
いうことがあります。人は他人から言われたこと
をやることに心理的な抵抗感を持ってしまいがち
です。同じ結論であっても、その結論が出る場

注2） Tim Brown 著、千葉敏生 訳、早川書房 刊、2014/05/10
発行

（進化的）
拡張

（革命的）
創出

（漸進的）
管理

（進化的）

既存 新規

新規

既存 適応

消費者

商
品

 ▼図4　 『デザイン思考が世界を変える』注2の中で紹
介されているTim Brown氏によるイノベーショ
ンの分類

8 - Software Design Nov. 2017 - 9

プロダクトアイデアの生み出し方 第13回

にいること、もっと言うと、その結論を自らが出
した場合にコミットメントが高まります。
　プロダクトマネージャーとして自信のあるア
イデアがあったとしても、あえてそれを押しと
どめ、チームからの意見を募るというのは、チー
ムの結束を高める、チームビルディングとして
も有効なのです。

リーダーシップのあり方

　チームでのディスカッションとも関係するの
で、ここでプロダクトマネージャーのリーダー
シップのあり方についても考えてみましょう。
最初にお断りしますが、成功するプロダクトマ
ネージャーに、これと言った型があるわけでは
ありません。禅問答のようになってしまいます
が、成功するプロダクトマネージャーが成功す
るのです。つまり、リーダーシップについても、
最終的にはプロダクトを成功に導きさえすれば、
どんな形であってもかまわないのです。
　筆者はSteve Jobs氏をプロダクトマネージャー
の成功例としてあげることがあります。Jobs氏
は良い意味でも悪い意味でも極端なプロダクト
マネージャーです。プロダクトに対する妥協が
一切ない姿勢などは見習うべきところですが、
二度と一緒に働きたくないという元同僚や部下
が数多くいるなど、人格的には模範としづらい
ところも多くあります。ですが、iPhoneがそう
であるように、あれだけ成功するプロダクトを
世に出したというだけでも、紛れもない史上最
高のプロダクトマネージャーの1人なのです。
　ただ、Jobs氏になれる人は世の中にはほと
んどいません。凡人とまでは言いませんが、一
般のプロダクトマネージャーは個人ではなく、
チームの力を使ってプロダクトを成功に導く必
要があります。そこで気に留めないといけない
のがリーダーシップのスタイルです。
　リーダーシップの分類の1つに、トランザク
ティブリーダーシップとトランスフォーメーショ
ナルリーダーシップという分類があります。従
来型の上意下達で物事を決めていくスタイルは

トランザクティブリーダーシップと呼ばれます。
トランザクティブという言葉からわかるように、
部下との関係を取引（＝トランザクション）のよ
うにとらえ、高い成果をあげた部下には報酬を、
そうではない部下には罰を与えるというスタイ
ルです。昭和の時代のリーダー像と言うと語弊
があるかもしれませんが、一昔前のリーダーは
ほとんどがこのスタイルでした。
　一方のトランスフォーメーショナルリーダー
シップは変革を指導するリーダーシップのこと
です。ビジョンを共有する、ビジョナリーのス
タイルで、部下のモチベーションを向上させる
ことで自覚を促します。
　別のリーダーシップのスタイルとしては、サー
バントリーダーシップというものもあります。
こちらはサーバント（＝使用人・召使い）という
言葉からもわかるように、相手に奉仕すること
で導くスタイルのリーダー像です。傾聴や共感、
納得などが特徴となります。
　ここでは、便宜上、部下という言い方をして
いますが、プロダクトマネージャーの場合は、チー
ムのメンバーと置き換えてかまいません。人事
権を持っているかどうかは重要ではありません。
むしろ、人事権を持っていないがゆえに、これ
らのリーダーシップのスタイルの中で、トラン
スフォーメーショナルリーダーシップやサーバ
ントリーダーシップというのがプロダクトマネー
ジャーには相

ふさわ

応しいものとして考えられています。
　チームでのディスカッションなどを通じてア
イデアやさまざまな意見を集約するには、この
トランスフォーメーショナルリーダーシップや
サーバントリーダーシップというのを意識する
ようにしてください。

◆　◆　◆
　今回はアイデアの生み出し方とそれから派生
し、プロダクトマネージャーのリーダーシップ
について解説しました。次回は企業や組織、事
業などの目標設定とその管理に使われる、
OKR（Objectives and Key Results）について解
説します。｢

ソフトウェアエンジニアとして社会人キャリアをスタートした後、MicrosoftやGoogleでプロダクトマネージャーやエンジ
ニアリングマネージャーを経験。現在はいくつかのスタートアップのプロダクトマネージメントをサポートしている。

Profile

宮原徹の

10 - Software Design

「開発」をテーマに
イベントを開催

　本連載は全国各地で開催されてい

るオープンソースカンファレンス

（OSC）の様子をおもにお届けしてき

ましたが、OSCはどちらかというと

インフラエンジニア向けのイベント

でした。

　しかし世の中ではDevOpsやSRE

といったキーワードが流行している

ように、インフラエンジニアも開発

者とのコミュニケーションをとる機

会が増え、構築作業自体も自動化ス

クリプトで実現するなど「開発」に積

極的に関わる必要が出てきていま

す。そこで8月19、20日の2日間、

「オープンデベロッパーズカンファ

レンス」（ODC）を開催しました。

久しぶりの
日本工学院専門学校

　ODCの会場となった日本工学院

専門学校はJR蒲田駅すぐ近くと絶

好のロケーション。校舎も建て替

わって数年というすばらしい会場で

す。建物は違いますが、以前にも

OSCの会場として利用させていただ

いたこともありましたので、久しぶ

りの会場です。

　ODCは初開催ということもあっ

て人が集まるのかどうか不安なとこ

ろもありましたが、朝からたくさん

の方が来場してくれてホッと一安心。

最終的に、初日の土曜日が250名、

2日目の日曜日が150名と、想定の

400名ちょうど参加していただけた

ので、見込みどおりでした。

　セッションの内容ですが、普段の

OSCではあまり話すことができない

OSSがどのように開発されているの

か、コミュニティ開発の裏側につい

て説明するセッションが複数あった

のが印象的でした。私自身が企画し

たMySQLとPostgreSQLの開発の

比較セッションも、たとえばPost

greSQLはRedmineなどのチケッ

ト管理ではなく、メーリングリスト

で開発の課題が管理されているとい

うのは驚きでした。そのほか、シス

テム設計やDevOpsに関わるセッ

ション（写真1）など、私自身が今興

味を持っていること（写真2）につい

てジックリ聴くことができたので、

企画運営している私自身が楽しめる

イベントになりました。こういう収

穫があると、今後も頑張って継続し

ていくぞ、というモチベーション

アップになりますね。今回は東京で

の開催でしたが、今後の各地のOSC

の中にも開発をテーマにしたセミ

ナーを積極的に取り入れていくつも

りです。

2日目のメインは
LLイベント

　今回のODCの2日目は、メイン

がLLイベントです。これまではLL

は「Lightweight Language」でした

が、今回は「Learn Language」とい

オープンデベロッパーズカンファレンスを開催しました第21回
宮原 徹（みやはら とおる）　 Twitter @tmiyahar　株式会社びぎねっと

 ▼写真2　 『スラスラわかるPython』
（翔泳社）の監修をした寺
田学氏と。機械学習の講
演も大好評でした

 ▼写真1　 私のDevOps超入門の講演。本連載のページをスクリーンに映し
て宣伝中

10 - Software Design Nov. 2017 - 11

R e p o r t

オープンデベロッパーズカンファレンスを開催しました第21回

うことで、基調講演の「ハッカーに

なるためには何の言語を勉強したら

いいですか？」を始め、開発言語の

学習がテーマとなりました（写真3）。

とくに最近注目されている関数型言

語のセッションなど、私も興味が

あったのですが、私は私で裏側で

Raspberry Piのハンズオンなどを

やっていたので聞けずじまい。それ

でも、あらためて自分の中で気に

なっていることを発見できるのも、

このようなイベントの醍醐味ですね。

蒲田の夜は更けていく

　さて、会場のあった蒲田はたくさ

んの飲み屋さんがありますので、当

然懇親会も盛り上がります。前日準

備が終わったあと、蒲田といえば餃

子だろ、ということで餃子を堪能し

たあと、私は1人で翌日の2次

会のお店を探しに1人で夜の

蒲田をウロウロと。一応目星

を付けておいた日本酒立ち飲

みのお店（写真4）に行くと、い

い感じだったので突撃して店

主お勧め3種飲み比べを注文。

それぞれ90ml（0.5合）が3つ

ですので、1.5合につまみ2品

が付いて2,000円は安い！　隣にい

る常連のお兄さんたちの会話を楽し

みながら、明日はここに何人来るか

な〜と想像しながらほどほどで帰宅

しました。

　さて、翌日は懇親会1次会が終

わったあと、有志でまた日本酒立ち

飲みのお店へ、10名ほどでゾロゾ

ロと。土曜日のせいか少し混んでい

ましたが、奥の方に陣取らせても

らって、思い思いに注文します。ど

れもこれも安いので、どんどん注文

が入っていくのが怖いところ。明日

もあるんですよ〜、と思いつつ、私

も少し飲み過ぎてしまいました。し

かし、写真5のように揃いのTシャ

ツを着て入っていったので、いった

い何者かと思われたに違いありませ

ん。s

写真4▶
 日本酒立ち飲
みの店「日本
酒人」。次々と
日本酒が入れ
替わるので、
つい通ってし
まいそうです

 ▼写真3　 LLイベントの竹迫良範氏の基調講演の様子。日曜日にもか
かわらず100名以上が参加しました

まさに昭和！
蒲田の「鳥まん 本店」

　2日目は有志のみなさんが会場の片付けを手伝って
くれたので、その後そのまま打ち上げに。向かったの
は会場ほど近くの「鳥まん 本店」です。昭和39年

（1964年）創業の老舗、安くて美味しい大衆居酒屋
です。とくに名前に鳥が入っているとおり、若鶏の唐
揚げがサイズも大きくて、揚げたて熱々で美味しいで
す。また、こういうお店はビールももちろんいいです
が、焼酎ボトルにホッピーが似合います。みんなで美
味しく、2日間の疲れを癒すことができました。

 ▼写真5　 講師陣と個人スポンサーに配布
した「開発」Tシャツで記念撮影

▶ 鳥まんの鶏の唐
揚げ。1人1皿ぐら
いがちょうどい
いです。火傷注意

◀ 左の赤いのは「バイス」と言うら
しい。紫蘇風味で焼酎割りで飲
むそうです。初めて見ました

12 - Software Design

はじめに

　今回は、今話題のLPWA（Low Power Wide

Area）の中でもとくに注目されているLoRa

WANを使ってみたいと思います。普段はLoRa

と呼ばれていますが、LoRaというのは無線の
変調方式の呼称で、「LoRaWAN」というのが仕
様全体を指す呼称です。つまり、LoRaとは、
LoRaWANのうち物理層の部分の呼び名なの

です。
　変調とは電波に情報を載せるときの変換のこ
とです。変調について詳しく説明をすると、4

ページまるごと埋まってしまいますので、詳し
く知りたい方は、サイレックスさんの記事注1な
どを参照してください。
　今回は、日本国内でLoRaWANを使ってみる
ための最も手っ取り早い方法を提供しているで
あろう、SORACOMさんのソリューションで、
LoRaWANの技術の説明をしつつ実際に動かし
てみることにします。

LPWA

　LoRaWANは、Low Power（低消費電力）、
Wide Area（広域）というのが特徴です。無線ネッ
トワークと言えば、ケータイのLTEや、Wi-Fi

がすぐに思いつく規格だと思いますが、これら
2つは高速で通信できる代わりに、とても多く
の電力を必要とします注2。より消費電力の少な
いところでは、BluetoothやBluetooth Low

注1） http://www.silex.jp/blog/wireless/2013/03/post-4.html

注2） LTEについては、本連載の2017年3月号の第21回と4月
号の第22回で扱いました。

 Author 坪井 義浩（つぼい よしひろ）　 @ytsuboi

LoRaWANを使ってみる（前編）第
29
回

Energyといった規格がありますが、これらはせ
いぜい10mくらいが通信距離でしょう。En

Ocean注3は、エナジーハーベスティング（環境発
電技術）で動かすくらい低消費電力で、筆者が試
したことがある範囲では展示会場で60mくらい
飛びました。でも、屋外で無線通信をしようと
するには少し心許ない距離です。
　こういった、屋外にセンサノードの設置を考
えた場合、電池で運用をしたくなり（つまり低消
費電力が要求され）、離れた場所との通信がした
くなり（つまり広域の通信が要求され）ます。IoT

というものが流行りつつありますが、こういっ
た要求を満たす技術や規格がLPWAです。
　LPWAには第21回でも紹介したNB-IoTな
ども含まれますが、NB-IoTの国内サポートは
まだまだ時間を要しそうです。LPWAとして頻
出の規格としては、ほかにSigfoxがありますが、
こちらについては近いうちに紹介をすることに
します。

LoRa変調（物理層）

　さて、LoRaWANの物理層について説明をし
たいと思います。まず、LoRaWANはいわゆる
サブギガ（1GHz以下の周波数帯）の無線を使っ
て通信をします。サブギガといえば、ソフトバ
ンクが5年ちょっと前に割り当てを希望してい
た「プラチナバンド」を含む周波数帯です。周波
数の低い電波は、回折（かいせつ）と言って、障
害物の影に回り込んで伝わりやすいという特徴
があります。

注3） EnOceanは本連載の2017年7月号の第25回で扱いまし
た。

はじめに

LPWA
LoRa変調（物理層）

http://www.silex.jp/blog/wireless/2013/03/post-4.html

12 - Software Design Nov. 2017 - 13

LoRaWANを使ってみる（前編） 第
29
回

　Wi-FiやBluetoothに使われている2.4GHz帯
は、世界共通で免許不要で使える周波数帯です。
ケータイやWi-Fiなど、無線通信を多用してい
るので忘れがちですが、本来、ほとんどの周波
数帯域は使用免許を受けずに利用してはいけな
いのです注4。
　ケータイについては携帯電話事業者が包括免
許を受けていますし、Wi-FiやBluetoothについ
ては先述の 2.4GHz帯を利用しています。
LoRaWANも免許不要の周波数帯を使うのです
が、サブギガについては国によって免許を受け
ずに快適に使用できる周波数帯が異なります。
このあたりは2017年7月号の本連載第25回で
も少し触れましたが、LoRaWANの仕様でも日
本では923MHz帯なのに対して、アメリカでは
915MHz帯、ヨーロッパでは 433MHz帯と
868MHz帯といった具合に国や地域によって使
用する周波数帯域が異なります。ですので、海
外用のLoRaWANの無線機は工事設計認証（い
わゆる技適）以前に、そのままでは国内で運用で
きません。
　また、一般社団法人電波産業会（通称ARIB、
アライブ）の標準規格で、920MHz帯にはデータ
の「送信休止時間」が規定されています。このた
め、国内で920MHz帯を使用するときには、こ
の送信休止時間を設ける必要があることからも、
他国向けの機器やソフトウェアをそのまま使用
できないといった事情もあります。

LoRaWAN（MAC層）

　冒頭で、LoRaWANは仕様全体を指す名称だ
と記したように、LoRaWANはLoRaより上の
レイヤの仕様を含みます（表1）。
　LoRaWANの変わっているところは、
LoRaWANのゲートウェイ（エンドデバイ
スが無線通信をする相手）は単なる中継機
器であることです。ゲートウェイは、エン
ドデバイスとネットワークサーバ（バック

注4） 電波が著しく微弱な機器については、この限りでは
ありません。

エンドとも呼びます）の間でやりとりされる
LoRaパケットをIPパケットに変換して転送を
するだけの装置で、通信制御はネットワークサー
バが行います（図1）。
　たとえば、LoRaのエンドデバイスには固有
の IDがあるのですが、この IDの管理やデータ
の暗号化・復号といった制御はネットワークサー
バが行うのです。ですので、LoRaWANにはネッ
トワークサーバが不可欠なのです（LoRa変調で
エンドデバイスどうしが直接通信することも可
能で、これもLoRaと呼ばれるために多くの人
が混乱をしています）。ゲートウェイとネット
ワークサーバは、IPネットワークで接続されま
すが、LoRaWANのエンドデバイスはIPで通信
をするわけではありません。
　LoRaWANには、3つの通信クラスがありま
す。一般的に用いられるのはClass Aで、エン
ドデバイスから通信を始める方式です。エンド
デバイスは必要なときに無線機の電源を入れる
ため、消費電力が少ないというメリットがあり
ます。定期的にエンドデバイス側の無線機の電
源を入れ、ゲートウェイからのビーコンを受信
したのをきっかけに通信を行う方式がClass B

です。エンドデバイスの無線機の電源を入れっ
ぱなしにして、サーバから通信を開始できる方

LoRaWAN（MAC層）

LoRaWAN Ethernet

アプリケーション層 - HTTPなど

ネットワーク・
トランスポート層 - IP、TCP、

UDP、TLS

データリンク層 LoRaWAN（LoRaWANは、
下位層のLoRaを含む） Ethernet

物理層 LoRa変調 1000Base-T

 ▼表1　LoRaWANとレイヤ

LoRaWAN
Network Server

Application
Server

3G

Beam

Funnel

Harvest

IP

SORACOM Air for LoRaWANの場合

一般的なLoRaWAN

Application
Server

 ▼図1　LoRaWANのネットワーク

14 - Software Design

式がClass Cです。無線機の電源を入れている
とその分電力を消費するため、Class Aより
Class Bが、Class BよりもClass Cのほうが電
力を消費するという特徴があります。
　LoRaWANにはData Rate（データレート）と
いうしくみもあります。センサーとゲートウェ
イが近くにあるなど電波条件が良い場合は高速
なデータレートを選び、逆に電波条件があまり
良くない場合は低速ながらノイズに強いデータ
レートを選ぶことができます。通信できる距離
と通信速度はトレードオフなのです。よくLoRa

の通信速度は、と質問を受けますが、データレー
トしだいだというのが答えになってしまいます。
すごく乱暴に概算の数字を挙げると、LoRaの
通信速度は20bpsくらいです。キロとかメガを
付け忘れたわけではありません。秒20bitと極
端に低速ですので、LoRaやLoRaWANで通信
することができるのは温湿度などそういった少
量の数値データだと考えておくとよいでしょう。
画像データなどを送るのには向きません。なお、
エンドデバイスの設置場所が移動する場合など
は、ADR（Adaptive Data Rate）というしくみで、
データレートの切り替えを行うことができます。
　通信速度と通信距離のほかのFAQとして、暗
号化が挙げられます。先ほどLoRaWANのネッ
トワークサーバのところでデータの暗号化と復
号に触れたとおり、LoRaWANには暗号が仕様
に含まれています。LoRaWANでは、MAC層
とその上のアプリケーション層それぞれでAES

による暗号化が行われます。MAC層とアプリ
ケーション層それぞれ別の鍵が使われるのには
理由があります。先ほど述べたように、
LoRaWANではゲートウェイは中継機器で、
ネットワークサーバの存在が前提です。ネット
ワークサーバは、MAC層の暗号を使って不正な
デバイスからのデータを排除します。このMAC

層の暗号の鍵はネットワークセッションキー、
アプリケーション層の暗号鍵はアプリケーショ
ンセッションキーと呼ばれています。この暗号
における共有鍵は、エンドデバイスの工場出

荷時にあらかじめ書き込んでおく（ABP：
Activation by Personalization）か、エンドデバ
イスに工場出荷時に仮の鍵を書き込んでおき、
エンドデバイスがLoRaネットワークに接続す
るJOINという手順の際に仮の鍵を使い認証を
行い、そのあとに本番の鍵を発行するOTAA

（Over the air activation）という方法で発行しま
す。たいていはエンドデバイスを製造する者と
ネットワークサーバを提供する者は別ですので、
OTAAが便利でしょう。

使ってみる

　概説がとても長くなってしまいました。何事
も実際に動かさないと身につきませんので、実
際にSORACOMさんのソリューションで動かし
てみましょう。まずゲートウェイについては、
共有サービスモデルゲートウェイであれば
「LoRa インドアゲートウェイ AL-020」を購入
して、受け取ったときにユーザコンソールの「発
注」画面で「受け取り確認」ボタンをクリック、
開梱して電源につないで設置するだけです。
SORACOMのゲートウェイには「所有モデル」と
「共有サービスモデル」の2種類が存在し、共有
サービスモデルは電気通信事業法の関係か、設
置場所を気軽に変更することはできませんし、
常時接続状態の維持が必要となっています。
　幸運にもオフィスや自宅の近くに共有サービ
スモデルのゲートウェイがある方は、このゲー
トウェイを利用してエンドデバイスだけで
LoRaWANを試用してみることができます。

使ってみる

 ▼写真1　LoRa インドアゲートウェイ AL-020を設置

14 - Software Design Nov. 2017 - 15

LoRaWANを使ってみる（前編） 第
29
回

SORACOMの共有サービスのゲートウェイの設
置場所は、LoRa Space注5で確認できます。こ
こには「通信ログ」として接続実績のデータが掲
載されていますので、ゲートウェイと通信ログ
の間の地点であれば恐らくLoRaWANに接続で
きるでしょう。
　SORACOMが販売しているエンドデバイス
は、「LoRa Arduino開発シールドAL-050」と
「LoRa GPSトラッカーLT-100」の2種類です。
現在のところ、デバイスID（MAC層の項で触れ
たIDです）をユーザコンソールに登録するには、
SORACOMにデバイスを注文して「受け取り確
認」ボタンをクリックするのが唯一の方法です。
ですので、今のところSORACOMのソリュー
ションでLoRaWANを使うには、この2種のど
ちらかを購入するしかありません。GPSトラッ
カーはあとあとできることに限りがありそうで
すので、Arduino開発シールドを使ってみるこ
とにします。
　エンドデバイスを試しに動かしてみましょう。
実験するアプリケーションは、LoRa Spaceに
接続ポイントを登録するものにします。これは
Arduino開発シールドを使うもので、SORACOM

が方法を詳しく記したページ注6を公開していま
す。ここで使用するGPSモジュールは、筆者の
手元にあったGroveのGPSモジュールに置き換
えて実際に試してみました。用意したものは、
「LoRa Arduino開発シールドAL-050」とArduino

Uno R3、それからBase Shield V2注7です。
　Arduino Unoで使いますので、Base Shieldの
スイッチが「5V」側になっていることを確認し、
Arduino UnoにLoRa Arduino開発シールドと
Base Shieldを取り付けます。また、Grove -

GPSにGroveのケーブルを挿し、反対側はBase

ShieldのD8の端子に挿しました（写真2）。

注5） https://lora-space.soracom.jp/map

注6） https://dev.soracom.io/jp/start/loraspace-register-
point/

注7） h t tps : / /www.seeeds tud io .com/Base-Sh ie ld -
V2-p-1378.html)、Grove - GPS(URL: https://www.
seeedstudio.com/Grove-GPS-p-959.html

　SORACOM の Arduino library for LoRa

WAN Deviceに含まれるサンプルスケッチ、
SLS_GPS_LoRa.inoはとくに書き換える必要
はありません。
　組み立ててスケッチを書き込んだところで、
外に出てGPSを受信できているか確認してみま
した（写真3）。こういったGPSは、スマート
フォンのGPSのようにWi-Fiやセルラーのアシ
ストがないため、空が見えるところでなければ
位置情報を得ることができない場合がほとんど
です。
　筆者は写真3のように基板を円筒状のタッパー
に納めてみました。LoRaのアンテナを立てて
おきたかったのと、LoRa Spaceへの登録の際
に基板を持って街中をウロウロするので、怪し
い人に思われないためです。実際のところ、ノー
トパソコンとタッパーを持って歩いていたら、
やはり人々の視線が少々刺さりました。s

 ▼写真2　Grove - GPSを接続

 ▼写真3　GPSの受信テストの様子

https://lora-space.soracom.jp/map
https://dev.soracom.io/jp/start/loraspace-register-point/
https://www.seeedstudio.com/Base-Shield-V2-p-1378.html
https://www.seeedstudio.com/Grove-GPS-p-959.html
https://www.seeedstudio.com/Base-Shield-V2-p-1378.html
https://www.seeedstudio.com/Grove-GPS-p-959.html

16 - Software Design

人工拡張知能「Watson」や、GUIで
アプリを開発できる「Node-RED」
などが特徴的な、IBMが提供する
PaaS製品「IBM Bluemix」のノベ
ルティTシャツです。Lサイズをプ
レゼント。

Parallels Desktop
13 for Mac
Macマシン上でWindowsやmacOSなどの仮想マシンを実行で
きる仮想化ソフトです。最新のWindows 10 Fall Creators
UpdateおよびmacOS High Sierraに対応し、Windowsの仮
想マシン上で動くアプリと機能を「Mac Touch Bar」から起動で
きるようになりました。通常版を2名様に、Visual Studio、
Vagrant、Chef、Jenkinsなどの開発ツールをサポートするPro
Edition（1年更新版）を1名様にプレゼントします。
提供元 	パラレルス　https://www.parallels.com/jp

提供元 	日本アイ・ビー・エム
	 https://www.ibm.com/ibm/jp/ja

3名

1名

Bluemix

ノベルティTシャツ

『Software Design』をご愛読いただきありがとうございます。本誌サ
イトhttp://sd.gihyo.jp/の「読者アンケートと資料請求」にアク
セスし、アンケートにご協力ください（アンケートに回答するには
gihyo.jpへのお名前と住所のアカウント登録が必要となります）。ご希
望のプレゼント番号を記入いただいた方の中から抽選でプレゼントを
差し上げます。締め切りは2017年11月16日です。プレゼント
の発送まで日数がかかる場合がありますが、ご容赦ください。

ご記入いただいた個人情報は、プレゼントの抽選および発送以外の目的で使用
することはありません。アンケートの回答は誌面作りのために集計いたします
が、それ以外の目的ではいっさい使用いたしません。記入いただいた個人情報
は、作業終了後に責任を持って破棄いたします。

サイトを巡回してWebページの内容を取
得する「クローラー」の開発において押さえ
ておくべき知見——文字コード、HTML、
認証、Ajax/JSON、認証、クローリング
マナーについてまとめられています。

提供元 	翔泳社
	 http://www.shoeisha.co.jp

クローリングハック
竹添 直樹、田所 駿佑 ほか 著

2名

過去のセキュリティ事件を題材に、その事
件が起きた背景や真の原因を解説した1
冊。サイバー攻撃の巧妙な手口は興味深い
と同時に、知ることで企業や家庭のセキュ
リティを考えるヒントにもなります。

提供元 	技術評論社
	 http://gihyo.jp

マジメだけどおもしろいセキュリティ講義
すずきひろのぶ 著

2名

SREとは、Googleでサービスの信頼性を
支えるエンジニアチームが蓄積してきた、
システム運用に関するベストプラクティ
ス。各分野ごとに、Googleの最先端のノ
ウハウを学べます。

提供元 	オライリー・ジャパン
	 https://www.oreilly.co.jp

SREサイトリライアビリティエンジニア
リング　Betsy Beyer ほか 編

2名

読者プレゼント
のお知らせ

クラウド環境（Amazon Web Services）
での負荷試験のノウハウを紹介していま
す。システムにかかる負荷を正しく見積も
ることで、本番でも想定どおりのパフォー
マンスを発揮させることができます。

提供元 	技術評論社
	 http://gihyo.jp

Amazon Web Services負荷試験入門
仲川 樽八、森下 健 著

2名

トイレやお部屋の気になるニオイを、オゾ
ンで強力分解・脱臭する装置です。消臭剤
などと違って薬品を使わないので、お手軽
に使用できます。またフィルタ交換などは
必要なく、コンセントに接続するだけで使
用できます。人の動きを感知して動作を停
止する人感センサーも搭載。

提供元 	フォースメディア
	 http://www.j-force.net 1名

オゾンの力 for トイレ

http://sd.gihyo.jp/
http://gihyo.jp
http://gihyo.jp
http://www.shoeisha.co.jp
https://www.forcemedia.co.jp
https://www.parallels.com/jp
https://www.ibm.com/ibm/jp/ja
https://www.oreilly.co.jp

　近年、SQLを利用する機会が増えています。顧客情報・販売
情報などの重要データはデータベースに集まるため、営業やマー
ケティング担当者からデータの抽出・集計の依頼を受けるエンジ
ニアも多いことでしょう。その際にSQLが必要になってきます。
もはや開発で使うだけの時代ではないのです。
　そこで、SQLでデータを抽出するところから始めて、累積比率・
移動平均を求められるようになるまでの演習問題「SQL50本ノック」
を用意しました。学習環境を簡単に構築できるスクリプトもあります。
　自分のSQL力を磨くために使うも良し、社内のSQL勉強会の
教材に使うも良し。本特集をデータ・ドリブンな組織づくりに
役立ててください。

第　 特集1

SQL50本ノックを
始める前に

第 　 　 章1 18

初級編
SQLの基本を学ぶ

第 　 　 章2 21

中級編
複数テーブルを使った抽出・集計

第 　 　 章3 34

応用編
複雑な集計・順位付け・累積

第 　 　 章4 44

Author 河原塚 有希彦、masahixixi、大政 勇作、桂 大介
	 ㈱リブセンス

18 - Software Design

第　 特集1

はじめに

　今日、データ・ドリブンな意思決定が営業や
マーケティングの現場でも求められています。
「SQL力」はそれを加速させる強力な武器であ
るにもかかわらず、SQL活用の推進は十分と
は言えず、データ抽出はいまだエンジニアの仕
事となっているのが、多くの現場の状況ではな
いでしょうか。
　本特集ではSQL力を確実に身に付けるべく、
初歩から応用まで幅広いノック（問題）を用意
しました。また別立てのコラムとして、組織内
でのSQL力の活用方法についても紹介します。
　初学者の教科書としてはもちろん、周囲へ教
えるときの参考書や、組織でのSQL浸透のヒ
ントとして、幅広く本特集をご活用ください。
エンジニアが起点となって、社内にデータ・ド
リブンの文化が根づいていく――本特集がその
1つのきっかけとなれば幸いです。

想定読者

　本特集のSQLノックは初級編・中級編・応
用編に分かれています。ノックは徐々に難しく
なるように作られており、1本ごとに独立して
いますので、自分のスキルに合わせて読み進め
てください。各章のレベルと想定読者は次のと

おりです。

・初級編（第2章）：SQLを初歩から学びたい方
・中級編（第3章）：複数テーブルを組み合わ

せてデータ抽出する方法を学びたい方
・応用編（第4章）：SQLを使いこなしてさら

に多様な使い方を身に付けたい方。とくに、
自由自在に分析を行う際に便利な機能やノ
ウハウを知りたい方

　それぞれのノックでは、説明用のサンプルク
エリを載せています。まず1周目はサンプルク
エリを見ながら読み進めて、2周目からはノッ
クだけを読んで解けるか挑戦しましょう。

実行環境を用意しよう

　本特集の実行環境として、PostgreSQLを用
意します。もちろん、業務で使うデータベース
がMySQLやOracleの読者にも参考になるよ
う、一部を除いてSQL標準に準拠したクエリ
で説明します。インストールの手間もないよう
に、簡単に環境構築を行えるスクリプトも用意
しています。

データベースサーバ
（PostgreSQL）を用意しよう

　本特集では実行環境を簡単に用意できるよう、
シェルスクリプト（Windows 10ではバッチファ
イル）を用意しています。このスクリプトは、

　社員全員がSQLを使う組織作りに取り組んでいるリブセンスの方々に、
SQL力を高めるための演習問題「SQL50本ノック」を作っていただきまし
た。本章ではまず、クエリを実行しながら学ぶための環境を構築しましょう。

Author 河原塚 有希彦（かわらづか ゆきひこ）、masahixixi、
	 大政 勇作（おおまさ ゆうさく）、桂 大介（かつら だいすけ）
	 ㈱リブセンス

SQL50本ノックを
始める前に

第 　 　 章1

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 1918 - Software Design

Dockerを用いて「コンテナ」と呼ばれる仮想環
境上でデータベースサーバを構築するものです。
利用環境はLinuxの各ディストリビューション、
macOS、Windows 10を想定しています。

Dockerのインストール
　Dockerは各OS向けにプログラムが提供さ
れていますので、Dockerの公式サイト注1から
環境に応じてダウンロード、インストールして
ください。Community EditionとEnterprise Edi

tionがありますが、今回は学習用途ですので
Community Editionを選択してください。
　WindowsでDocker Community Editionを動
作させるためには、Windows 10 Enterprise/

Professional/Educationのいずれかのエディ
ション、かつHyper-Vに対応したCPUが必要
です。さらに、コントロールパネル［プログラ
ムと機能］-［Windowsの機能の有効化または無
効化］からHyper-Vを有効化する必要がありま
す（図1）。
　詳細なインストール手順は、Docker公式サ
イトの次のページを確認してください。

・Ubuntu：https://docs.docker.com/engine/
installation/linux/docker-ce/ubuntu/

・CentOS：https ://docs.docker .com/
engine/installation/linux/docker-ce/
centos/

・Windows 10：https://store.docker.com/
editions/community/docker-ce-desktop-
windows

・macOS：https://store.docker.com/edi
tions/community/docker-ce-desktop-mac

スクリプトの実行
　次に、本特集のサポートページ注2から構築用
スクリプト一式「env_script.zip」をダウンロー
ドし、展開したうえで実行してください。

注1） URL https://www.docker.com/get-docker

注2） URL http://gihyo.jp/magazine/SD/archive/2017/201711/
support

・Linux/macOS

$ sh postgres_initialize.sh

（環境によってはsudoが必要です）

・Windows 10（コマンドプロンプト）

> postgres_initialize.bat

　実行すると、コンソールには数分間にわたっ
てサーバのダウンロードとインストールのメッ
セージが流れます。この間、Debianイメージ
上でPostgreSQLのサーバが立ち上がり、その
中に今回使うサンプルデータ（後述）が展開さ
れます。しばらく待つと、PostgreSQLのクラ
イアントである「psql」が立ち上がり、データベー
スサーバに接続します。コンソール上に、

#================
login postgres
#================
psql (9.6.5)
Type "help" for help.

postgres=#

のように表示されれば、準備完了です。
　psqlを終了する際は、\qと入力してください。
なお、データベースサーバはDocker上で終了
するまで起動したままとなります。再度psql

を使う場合、もう一度シェルスクリプトを実行
してください。これにより、データベースサー

 ▼図1　Hyper-Vの有効化

第 　 　 章1SQL50本ノックを始める前に

https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://www.docker.com/get-docker
http://gihyo.jp/magazine/SD/archive/2017/201711/support

20 - Software Design

第　 特集1

バが起動していてもしていなくて
も、データベースサーバの再起動
とデータ初期化を行って、クリー
ンな環境が用意されます。

サンプルとして扱う
「Pagila」について

　Pagila注3は、PostgreSQLで用
意されているサンプルデータで、
同じくMySQLで提供されている
「Sakila」をポーティング（移植）
したものです。PagilaはDVDレ
ンタルショップで取り扱うデータ
をモデリングしたもので、出演俳優をはじめと
する作品メタ情報からカスタマー情報、そして
売上情報まで含まれたデータベースとなってい
ます。全体のER図など詳しい情報を知りたい
方は、MySQLの公式サイト注4をご覧ください。

データベースと
テーブルの構成

　第1章の最後に、データベースにおける基本
的な用語をおさらいしておきます。
　一般的に、データベースは複数のテーブルで
構成されています。Pagilaのように20テーブ

注3） U R L https: / /www.postgresql .org/ftp/projects/
pgFoundry/dbsamples/pagila

注4） U R L https://dev.mysql.com/doc/sakila/en/sakila-
structure.html

ル程度のものもありますし、エンタープライズ
システムでは数百テーブル以上から構成される
ものもあります。
　テーブルは、値が2次元に配置されたもので
す。言葉で説明するよりも、図2を見てもらう
のが早いでしょう。テーブルはレコード（行）
とカラム（列）で構成されていて、レコードと
カラムが交わったところをフィールドと言い、
そこに値が格納されています。ﾟ

テーブル
カラム

レコード（ロウ）

フィールド

 ▼図2　テーブルの構成

SQL上達の秘訣は？

　SQL上達の秘訣はズバリ、「自分の興味がある、
もしくは必要に迫られているデータを利用す
ること」です。日々業務で利用しているデータ
の抽出を、自分自身の手でクエリを書いて行
うことが大きなモチベーションになります。日々
業務で使う必要に迫られたデータだからこそ、
取得条件の間違いや甘さにも気づけ、修正す
るための創意工夫も苦なく行えます。こうし
ていつの間にか反復練習が行え、スキルアッ
プが成されるのです。

本番では分析用のデー
タベースを準備しよう

　本特集で SQLの基礎を学んだあと、いざ現
場で分析をしようとなったときに最初にやる
べきことは、分析用のデータベースを準備す
ることです。アドホックな分析クエリは高負
荷になりがちです。トラブルを避けるために、
たとえ参照系のクエリしか実行しないとしても、
本番環境に分析クエリを投げることは可能な
限り避けるべきです。
　データベースは、万一に備えて定期的にバッ
クアップが取得されているはずです。そのバッ
クアップデータから分析用のデータベースを
準備しましょう。データベースに個人情報が
含まれている場合は、法令・ガイドライン注A

に従って適切なアクセス制御やデータの匿名
化などの対応を行ってください。

注A） 「個人情報保護委員会」 URL https://www.ppc.go.jp

データ分析に効く

SQL  50  本ノック

https://www.postgresql.org/ftp/projects/pgFoundry/dbsamples/pagila
https://dev.mysql.com/doc/sakila/en/sakila-structure.html
https://www.ppc.go.jp

Nov. 2017 - 21

第　 特集1

　初級編では、おもに customerテーブルと
paymentテーブルを使ってSQLの基本を学ん
でいきましょう。
　はじめにそれぞれのテーブルに存在するカラ
ムを簡単に整理しておきます（図1）。

customerテーブル
　顧客情報が格納されたテーブルです。顧客
ID（customer_id）、氏名（last_name、
first_name）などが格納されています。

paymentテーブル
　支払い情報が格納されたテーブルで
す。支払い ID（payment_id）、顧客 ID

（customer_id）、支払い額（amount）、

支払い日（payment_date）などが格納されてい
ます。1人の顧客が複数回利用することがある
ため、顧客と支払いは1対多の関係にあります。
また、顧客なしで支払いはできないため、支払
いテーブルには必ず顧客が関連づきます。

◆　◆　◆
　それでは実際にクエリを書きながら学んでい
きましょう。

customer、paymentテーブルを使ってSQLの基本を学ぶ

customer（顧客）
customer_id（顧客ID）
first_name（名前）
last_name（名字）
create_date（登録日）

payment（支払い）
payment_id（支払いID）
customer_id（顧客ID）
amount（支払い額）
payment_date（支払い日）

 ▼図1　customerテーブルとpaymentテーブルの関係

データを抽出する - SELECT

　ここから先では、第1章で準備した環境でク
エリを実行しながら進めてください。
　それでは、SELECTから学んでいきます。テー
ブルからデータを取り出すときに使用するのが
SELECTです。まず、次のノックに挑戦してみ
てください。

　答えは、次のクエリになります。実際に、実
行してみてください。

ノック 01
paymentテーブルの一覧を表示する

　いよいよSQL50本ノックの始まりです。ノックという形でデータの抽出・
集計などの問題を出していきますので、それを実現するクエリを一緒に考え
ながら、SQLを学んでいきましょう。

Author masahixixi、大政 勇作（おおまさ ゆうさく）、
	 河原塚 有希彦（かわらづか ゆきひこ）
	 ㈱リブセンス

初級編
SQLの基本を学ぶ

第 　 　 章2

データ分析に効く

SQL  50  本ノック

22 - Software Design

第　 特集1

SELECT * FROM payment;

　いかがでしょうか。図2のように何やらたく
さん結果が出てきました。psql（PostgreSQL

のターミナル型フロントエンド）でのクエリ実
行結果は、moreコマンドと同じ操作で移動で
きます注1。/rowsと入力すれば実行結果のレコー
ド数が見つかりますので、(16049 rows)と表
示されていることを確認してください。
　続いて次も実行してください。

SELECT payment_id FROM payment;

payment_id

 16050
 16051
 16052
 16053
 16054
 （..略..）
(16049 rows)

注1） 「Enterキーで次の1行を表示」「Spaceキーで次の1画面を
表示」「/文字列 で指定した文字列を検索し、その場所に
移動」など。

　さらに次も実行してみましょう。

SELECT
 payment_id,
 customer_id
FROM
 payment
;

payment_id ¦ customer_id
-----------+-------------
 16050 ¦ 269
 16051 ¦ 269
 16052 ¦ 269
 16053 ¦ 269
 16054 ¦ 269
 （..略..）
(16049 rows)

　ここまで連続で実行し、少しイメージが湧い
たでしょうか。どのクエリもテーブルからデー
タを取り出していることがわかるかと思います。
　SELECTとFROMの間に*を指定するとすべて
のカラムを抽出、カラム名を指定すると指定し
たカラムのみ抽出、複数指定したいときには,
で区切る。
　以上のことをふまえて次に進みましょう。

 ▼図2　「SELECT * FROM payment;」の実行結果

条件を指定する - WHERE

WHEREについて学びます。

　まずは、次のクエリを実行してみてください。

ノック02
paymentテーブルのcustomer_idが
1のレコードを抽出する

　さて、SELECTが使えるようになりテーブル
からデータを抽出できるようになりました。
　抽出したデータを眺めると感じるかもしれま
せんが、このままではデータが膨大であり、ほ
しい情報をピンポイントで見ることができませ
ん。ここではほしいデータのみ抽出できる

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 2322 - Software Design

SELECT
 payment_id,
 customer_id
FROM
 payment
WHERE
 customer_id = 1
;

payment_id ¦ customer_id
-----------+-------------
 16677 ¦ 1
 16678 ¦ 1
 18495 ¦ 1
 （..略..）
(32 rows)

　実行結果を見ると、customer_idが1のレコー
ドで絞られていることがわかります。
　続いて次も実行してみましょう。

　今度はcustomerテーブルも使ってみます。

SELECT
 first_name,
 last_name
FROM
 customer
WHERE
 first_name = 'KELLY'
;

first_name ¦ last_name
-----------+-----------
KELLY ¦ TORRES
KELLY ¦ KNOTT
(2 rows)

　first_nameがKELLYで絞られました。

演算子

　WHEREではさまざまな演算子が利用できます。
必須と言えるので押さえておきましょう。

ノック03

customerテーブルの名前
（first_name）がKELLYのレコードを抽
出する

論理演算子
　SQLでは表1のような論理演算子が使えます。
実際にSQLを実行して結果を見ていきます。

　まずはANDを試してみます。

SELECT
 first_name,
 last_name
FROM
 customer
WHERE
 first_name = 'KELLY'
 AND last_name = 'KNOTT'
;

first_name ¦ last_name
-----------+-----------
KELLY ¦ KNOTT
(1 row)

　first_nameをKELLYとした場合は2名抽出
されましたが、last_nameも指定することで1

名に絞られました。

　次にORを試してみます。クエリの実行結果
にMARIAとKELLYのレコードが含まれてい
ることを確認してください。

SELECT
 first_name,
 last_name
FROM
 customer
WHERE
 first_name = 'KELLY'
 OR first_name = 'MARIA'
;

first_name ¦ last_name
-----------+-----------
MARIA ¦ MILLER
KELLY ¦ TORRES
KELLY ¦ KNOTT
(3 rows)

ノック04

customerテーブルから、名字
（last_name）がKNOTTで名前が
KELLYの顧客を抽出する

ノック05
customerテーブルから、名前がKELLY
もしくはMARIAの顧客を抽出する

演算子 説明
条件1 AND 条件2 どちらの条件にも一致
条件1 OR 条件2 どちらかの条件に一致
NOT 条件 条件に一致しない

 ▼表1　論理演算子

第 　 　 章2初級編
SQLの基本を学ぶ

24 - Software Design

第　 特集1

　続いて、NOTを試します。

SELECT
 first_name,
 last_name
FROM
 customer
WHERE
 NOT (
 first_name = 'KELLY'
 OR first_name = 'MARIA'
)
;

first_name ¦ last_name
------------+--------------
MARY ¦ SMITH
PATRICIA ¦ JOHNSON
LINDA ¦ WILLIAMS
 （..略..）
(596 rows)

　NOTは条件の否定です。WHERE NOT(条件)
とすることで、括弧内の条件を否定することが
できます。注意点は、括弧を付けることでNOT
が影響する範囲を明確化している点です。括弧
を付けなかった場合、演算子の優先順位によっ
て思ったとおりの結果が得られないことがあり
ます。今回のクエリも、括弧をはずしてしまう
と「first_nameがKELLY以外、もしくは first

_nameがMARIAの顧客」となってしまい期待
した結果が得られません。試しに括弧をはずし
て実行してみてください。合計件数が変わって
きます。
　実行結果と照らし合わせることで理解が深ま

ノック06
customerテーブルから、名前がKELLY
やMARIA以外の顧客を抽出する

ると思いますので、さまざまな条件でWHERE
を書いてみてください。

OR条件を、列挙して記述できるIN句
　IN句を使うと、複数のOR条件をシンプルに
記述することができます。

　複数の値で抽出するにはWHERE カラム名
IN (カンマ区切りの値)と書きます。

SELECT
 first_name,
 last_name
FROM
 customer
WHERE
 first_name IN ('AARON', 'ADAM', 'ANN')
;

first_name ¦ last_name
-----------+-----------
ANN ¦ EVANS
ADAM ¦ GOOCH
AARON ¦ SELBY
(3 rows)

　無事、括弧の中で列挙した名前で絞り込めま
した。これだけでは「ORと大差ないな」、「OR
だけ覚えればいいや」と感じるかもしれません。
しかし、この括弧の中に、実はクエリを書くこ
とができます。別のクエリを呼び出した結果を
使って絞り込みをかけられるため、IN句はOR
に比べて複雑な条件を柔軟に扱える強みがあり
ます。第4章の応用編ではIN (クエリ)を使っ
てデータを抽出する例を紹介しますので、楽し
みに読み進めてください。

比較演算子
　続いて比較演算子を見ていきます。先ほどの
名前の抽出では=演算子を使いました。クエリ
では一般的なプログラミング言語と同様、さま
ざまな比較演算子が使えます（表2）。とくに数
値データ型のカラムで力を発揮しますので、

ノック 07

customerテーブルから、名前が
AARON、ADAM、ANNの顧客を
抽出する

演算子 説明
A < B AはBよりも小さい
A > B AはBよりも大きい
A <= B AはB以下
A >= B AはB以上
A = B AとBは等しい
A <> B

AとBは等しくないA != B

 ▼表2　比較演算子

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 2524 - Software Design

paymentテーブルを使って練習してみましょう。

　次のクエリを実行してみましょう。カラム名
演算子 値 の形式で値の比較を行えます。

SELECT
 payment_id,
 amount
FROM
 payment
WHERE
 amount >= 6.99
;

payment_id ¦ amount
-----------+--------
 16052 ¦ 6.99
 16058 ¦ 8.99
 16060 ¦ 6.99
 （..略..）
(2651 rows)

　条件に一致しないレコードの抽出には!=演
算子が使えます。

SELECT
 payment_id,
 amount
FROM
 payment
WHERE
 amount != 0.99
;

payment_id ¦ amount
-----------+--------
 16050 ¦ 1.99
 16052 ¦ 6.99
 16054 ¦ 4.99
 （..略..）
(13070 rows)

NULL演算子

　SQLにもNULLが存在します。

ノック08

paymentテーブルから、支払い額
（amount）が6.99ドル以上のレコード
を抽出する

ノック09

paymentテーブルから、支払い額
（amount）が0.99ドル以外のレコード
を抽出する

IS NULL
　値のないフィールドを抽出する際には、IS
NULLを使ってWHERE句を組み立てます。IS
NULLは「NULLかどうか」を判定します。

　次のクエリを実行してください。

SELECT
 rental_id,
 return_date
FROM
 rental
WHERE
 return_date IS NULL
;

rental_id ¦ return_date
----------+-------------
 11496 ¦
 11541 ¦
 12101 ¦
 （..略..）
(183 rows)

　return_dateがNULLのものだけが抽出されて
いることがわかります。

IS NOT NULL
　逆に「NULLでないか」の判定はIS NOT NULL
を使います。

　次のクエリを実行してください。

SELECT
 rental_id,
 return_date
FROM
 rental
WHERE
 return_date IS NOT NULL
;

ノック 10
rentalテーブルのreturn_dateが
NULLのレコードを抽出する

ノック 11
rentalテーブルのreturn_dateが
NULLではないレコードを抽出する

第 　 　 章2初級編
SQLの基本を学ぶ

26 - Software Design

第　 特集1

rental_id ¦ return_date
----------+---------------------
 2 ¦ 2005-05-28 19:40:33
 3 ¦ 2005-06-01 22:12:39
 4 ¦ 2005-06-03 01:43:41
 （..略..）
(15861 rows)

　今度は、return_dateがNULL以外のレコード
が抽出されていることがわかります。

BETWEEN演算子

　範囲を指定する条件には、BETWEEN演算子
が使えます。>=や<=で条件指定するよりも、
簡便に読みやすく範囲条件を記述できます。

　次のクエリを実行してください。

SELECT
 customer_id,
 first_name,
 last_name
FROM
 customer
WHERE
 customer_id BETWEEN 11 AND 13
;

customer_id ¦ first_name ¦ last_name
------------+------------+-----------
 11 ¦ LISA ¦ ANDERSON
 12 ¦ NANCY ¦ THOMAS
 13 ¦ KAREN ¦ JACKSON
(3 rows)

　BETWEEN a AND bという記法で、範囲が指
定できます。BETWEENを使った場合、境界値
が含まれることに注意してください。

LIKE演算子

　あいまいな検索にはLIKE演算子を使います。

　次のクエリを実行します。

ノック 12

customerテーブルから、顧客IDが11
から13の顧客をBETWEENを使って抽
出する

ノック 13

filmテーブルのdescriptionに
Amazingが含まれているレコードを抽出
する

SELECT
 title,
 description
FROM
 film
WHERE
 description LIKE '%Amazing%'
;

 title ¦ description
-------------------+-------------------
ANNIE IDENTITY ¦ A Amazing Panoram...
ANONYMOUS HUMAN ¦ A Amazing Reflect...
BRANNIGAN SUNRISE ¦ A Amazing Epistle...
 （..略..）
(48 rows)

　%は任意の文字列を表し、上の例だとフィー
ルドのどこかにAmazingという文字列が含ま
れていれば抽出します。
　それでは、先頭と末尾から%をそれぞれ取り
除いた結果はどうでしょうか。
　まずは先頭の%を取ってみます。

SELECT
 title,
 description
FROM
 film
WHERE
 description LIKE 'Amazing%'
;

title ¦ description
------+-------------
(0 rows)

　次に末尾の%を取ってみます。

SELECT
 title,
 description
FROM
 film
WHERE
 description LIKE '%Amazing'
;

title ¦ description
------+-------------
(0 rows)

　それぞれ、「Amazingから始まるdescription」
と「Amazingで終わるdescription」が抽出され
ます。しかし、結果を見ると、Amazingから始

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 2726 - Software Design

まるものも終わるものも含まれていないことが
わかります。
　ちなみに、否定の意味でNOT LIKEも使える
ようになっておきましょう。

　次のように書きます。

ノック 14

filmテーブルのdescriptionに
Amazingが含まれていないレコードを
抽出する

SELECT
 title,
 description
FROM
 film
WHERE
 description NOT LIKE '%Amazing%';

title ¦ description
-----------------+---------------------
ACADEMY DINOSAUR ¦ A Epic Drama of a Fe...
ACE GOLDFINGER ¦ A Astounding Epistle...
 （..略..）
(952 rows)

レコード総数を出す - COUNT

ことがわかります。COUNT(*)はすべてのレコー
ド数を取得という意味です。
　COUNT(customer_id)と書くとcustomer_id

カラムのNULLではない件数を返してくれま

す。今回 customer_idにはNULLが含まれてい
ないため、COUNT(*)の結果と件数は変わりま
せん。しかし、実際の業務で使うデータベース
には、しばしばNULLが含まれるテーブルもあ
るので気をつけましょう。
　COUNTのように「複数行の情報を集計し1行
にまとめる」ものを「集計関数」と呼びます。
合計・平均・最大値・最小値を求める集計関数
もありますので、第3章で詳しく取り上げます。

　レコードの数を数えたいときにはCOUNTが
使えます。

　次のクエリを実行してください。

SELECT COUNT(*) FROM payment;

 count

 16049
(1 row)

　paymentテーブルには、16049レコードある

ノック 15
paymentテーブルの総件数を求める

重複を取り除く - DISTINCT

SELECT
 DISTINCT customer_id
FROM
 payment
;

customer_id

 251
 106
 120
 （..略..）
(599 rows)

　重複を取り除きたいときはDISTINCTを使い
ます。たとえば、支払いを行ったユニークな顧客
IDリストを作成する場合にはcustomer_idが同
じ人を支払い数に関係なく1名と扱いたいです。

　次のクエリを実行してください。

ノック 16
paymentテーブルから、支払いを
行ったユニークな顧客IDを求める

第 　 　 章2初級編
SQLの基本を学ぶ

28 - Software Design

第　 特集1

　customer_idカラムを対象に重複を取り除い
た結果なので、つまり支払いを行ったユニーク
な顧客IDとなります。
　また、次のようにCOUNTと合わせて使うこ
ともできます。

　次のクエリを実行してください。

ノック 17
paymentテーブルから、支払いを
行ったユニークな顧客数を求める

SELECT
 COUNT(DISTINCT customer_id)
FROM
 payment
;

count

 599
(1 row)

　このようにCOUNTとDISTINCTはユニーク
ユーザを集計したいときに重宝するので合わせ
て覚えておきましょう。

順序を指定する - ORDER BY

　ORDER BY last_nameと指定することで、
昇順にデータを取得できました。ただし、同じ
名字の顧客がいた場合にはどちらが先に表示さ
れるかわかりません。「同じ名字の場合は、顧
客 IDが若い順に並べる」ように、その順序も
指定する場合には、ORDER BY last_name,
customer_idのようにカンマ区切りでカラム
名を指定します。
　では、降順に出力するにはどうすると良いで
しょうか。

　降順で出力するには、カラム名のあとに
DESCキーワード（DESCendent：降下する）を
使います。

SELECT
 customer_id,
 first_name,
 last_name
FROM
 customer
ORDER BY
 customer_id DESC
;

ノック 19

customerテーブルから、最近登録され
た顧客を順に（customer_idの降順に）
並べて出力する

　ここまでのノックで、さまざまな条件でデー
タを抽出できるようになりました。次は抽出し
たデータを並び替える方法を学びましょう。

　指定した順序によってレコードを抽出したい
場合には、ORDER BYを使います。

SELECT
 customer_id,
 last_name
FROM
 customer
ORDER BY
 last_name
;

customer_id ¦ last_name
------------+--------------
 505 ¦ ABNEY
 504 ¦ ADAM
 36 ¦ ADAMS
 96 ¦ ALEXANDER
 470 ¦ ALLARD
 27 ¦ ALLEN
 220 ¦ ALVAREZ
 11 ¦ ANDERSON
 326 ¦ ANDREW
 183 ¦ ANDREWS
 （..略..）
(599 rows)

ノック 18
customerテーブルから、顧客の名字を
昇順に出力する

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 2928 - Software Design

customer_id ¦ first_name ¦ last_name
------------+-------------+--------------
 599 ¦ AUSTIN ¦ CINTRON
 598 ¦ WADE ¦ DELVALLE
 597 ¦ FREDDIE ¦ DUGGAN
 596 ¦ ENRIQUE ¦ FORSYTHE
 （..略..）
(599 rows)

　昇順を表すASCキーワード（ASCendant：上

昇する）もありますので、ご自身で書き換えて
実行し、確かめてみてください。ASCキーワー
ドは省略可能ですが、明示的に記述することで、
クエリの意図がより明確になります。
　抽出したデータの件数を絞る場合はLIMIT
を使います。

ノック20
customerテーブルから、最近登録され
た顧客3名を抽出する

　次のクエリを実行します。

SELECT
 first_name,
 last_name
FROM
 customer
ORDER BY
 customer_id DESC
LIMIT 3
;

first_name ¦ last_name
-----------+-----------
AUSTIN ¦ CINTRON
WADE ¦ DELVALLE
FREDDIE ¦ DUGGAN
(3 rows)

　いかがでしょうか。LIMIT 件数とすることで、
データの抽出件数を指定することができます。
実務では「新規登録者N人にキャンペーンを打
つ」ようなケースが頻繁にあると思いますので、
繰り返しクエリを書いて練習しましょう。

　今回の教材には含まれませんが、実際の業務で
は巨大なテーブルを取り扱うことも多いかと思い
ます。たとえば、アクセスログを格納したテーブ
ルや、あるテーブルのスナップショットを日々記
録したテーブルなどは数十万から数億レコードに
達することも珍しくありません。
　このような巨大なテーブルに対して、次のよう
に一覧表示するクエリを実行したとします。

SELECT
 *
FROM
 アクセスログ
ORDER BY
 更新日 DESC
;

　このようなクエリを実行すると多くの場合、結
果が出力されるまでに長い処理時間がかかってし
まいます。この間は I/Oをはじめとする計算機資源
を消費してしまっていますので、同時アクセスし
ているほかのクエリの実行も待たされてしまいます。
つまり、ほかの人から見るとデータベースサーバ

が落ちたように感じられてしまいます。
　LIMITを付けた場合は、付けない場合に比べてデー
タ転送時間を「LIMITで指定した件数 / 全レコード
件数」に短くでき、こうしたトラブルを予防できま
すので、SELECTクエリには積極的にLIMITを付け
るように心がけましょう。
　同じく、SELECT *ではなくSELECT カラム名と
するのも良い方法です。

SELECT
 カラム1, カラム2
FROM
 アクセスログ
ORDER BY
 更新日 DESC
LIMIT 10
;

　もちろん、クエリの実行に処理時間がかからな
いようにするのもデータベースエンジニアの腕の
見せどころではありますが、さまざまなクエリに
対応できるわけではありません。

SELECTするときはLIMITをつける癖をつけよう

第 　 　 章2初級編
SQLの基本を学ぶ

30 - Software Design

第　 特集1

　顧客の中からロイヤルカスタマーを抽出し、
綿密な営業やプロモーションを行うことは、ビ
ジネスの現場でよくあるのではないでしょうか。
そんなときに役立つのが、GROUP BY句です。
GROUP BY カラム名とすることで、特定の値
ごとに集計を行えます。

　次のようなクエリで抽出できます。

SELECT
 customer_id,
 COUNT(*) AS payment_count
FROM
 payment
GROUP BY
 customer_id
ORDER BY
 payment_count DESC
LIMIT 3
;

customer_id ¦ payment_count
------------+---------------
 148 ¦ 46
 526 ¦ 45
 236 ¦ 42
(3 rows)

　GROUP BY customer_idにより、顧客 IDご
とに取りまとめられます。そしてCOUNT(*)に
よって、顧客 IDごとの支払い回数を集計でき
ます。
　集計した結果のカラム名は、AS句で設定で
きます。AS 名称とすると、集計結果カラムに
名称を付与できます。何も設定せずともcount
というデフォルト名称が付与されますが、
COUNTを複数使ったときにみんな同じ名称に
なってしまいますので、ASを付与する癖をつ
けておきましょう。今回はpayment_countとい
う名称をつけました。
　支払い回数の多い順にソートするには、先ほ

ノック 21

paymentテーブルから、これまでの累
計で支払い回数が多い顧客の上位3人
の顧客IDを抽出する

ど学んだORDER BYにpayment_countを指定し
ます。ORDER BYをはじめとするカラム名を指
定する句では、先ほどAS句で指定した別名を
使うことになります。今回のクエリでは、
ORDER BY payment_count DESCと指定する
ことで支払い回数順にソートを行えます。

データ型と関数

　これまで抽出したデータには数字や文字列、
時間などが含まれていましたが、データベース
にも型があります。データ型は、データベース
固有のものもあるため、代表的なものを紹介し
て、データの型変換まで行ってみます。
　データ型には、VARCHAR型などの文字列、
INTEGER型などの数値、TIMESTAMP型な
どの日時を指定するものがあります。
　データの保存時には型チェックが行われ、そ
のデータが妥当なものかどうか判定されます。
　おもなデータ型は表3のとおりです。ほかの
プログラミング言語では、データの型によって
使える関数や演算子の振る舞いが違ったりしま
すが、それはSQLでも同様です。ここからし
ばらく、関数を使ったノックが続きますのでデー
タ型と関数の扱いに慣れていきましょう。

データ型 データ内容
CHARACTER 固定長文字列
VARCHAR 最大長付き可変長文字列
BINARY(n) バイナリ文字列
BOOLEAN 真偽値
INTEGER 整数値
DECIMAL(p,s)

固定小数点数NUMERIC(p,s)
REAL

浮動小数点数FLOAT
DATE 日付（年、月、日）
TIME 時間（時、分、秒）
TIMESTAMP 日時（年、月、日、時、分、秒）

 ▼表3　データベースの代表的なデータ型

カラムの値ごとに集計する - GROUP BY

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 3130 - Software Design

　数値のデータ型であれば四則演算ができます。
たいていのデータベースでは、テーブル定義を
参照して、カラムのデータ型を調べることがで
きます（調べ方は次頁のコラム「中身を知らな
いデータベースで分析する」をご覧ください）。
　まずは、1ドル110円としてデータを抽出し
てみます。

SELECT
 amount * 110 AS amount_yen
FROM
 payment
LIMIT 3
;

amount_yen

 218.90
 108.90
 768.90
(3 rows)

　ドルから円に変換できましたが、日本円は通
常1円単位のため、小数値は使いません。小数
を四捨五入するにはROUND()関数を使います。
　SQLの関数は、カラムを引数にとり、ROUND
(amount)のように使います。この関数は、引
数にとったカラムのデータにそれぞれ作用しま
す。今回は、円に変換したあとに四捨五入する
ことにしましょう。

SELECT
 ROUND(amount * 110) AS amount_yen
FROM
 payment
LIMIT 3
;

amount_yen

 219
 109
 769
(3 rows)

ノック 22

paymentテーブルの売上金額（amount）
をドルから円に変換して、“109”のように
小数点以下を四捨五入した形で抽出する（1
ドル110円とする）

　最後に109yenのような形で出力することに
しましょう。文字列を結合するにはCONCAT()
関数を使います。

SELECT
 CONCAT(
 ROUND(amount * 110),
 'yen'
) AS amount_yen
FROM
 payment
LIMIT 3
;

amount_yen

219yen
109yen
769yen
(3 rows)

　目的のデータを抽出できました。しかし、
CONCAT()関数が数値と文字列をよしなに結合
したので良かったものの、明示的にデータの型
を変換しなければならないケースもあります。
　その場合はCAST()関数を使います。CAST
(変換したいカラム AS 変換後のデータ型)の
ように書きます。

SELECT
 CONCAT(
 CAST(ROUND(amount * 110) AS VARCHAR),
 'yen'
) AS amount_yen
FROM
 payment
LIMIT 3
;
（実行結果は省略）

　少々複雑になってしまいましたが、ここで扱っ
た内容を理解していると、クエリでさまざまな
データ加工ができるようになります。CASTは
次の中級編でも詳しく解説します。ﾟ

ノック23

paymentテーブルの売上金額（amount）
をドルから円に変換して、“109yen”のよ
うに小数点以下を四捨五入し単位を付け
て抽出する

第 　 　 章2初級編
SQLの基本を学ぶ

32 - Software Design

第　 特集1

　本特集を読んで、自分が携わる事業やサービス
のデータを分析しようとしたときに、どんなテー
ブルやカラムがあるかがわからなくて、どこから
分析をしたら良いか困ってしまうことがあるかも
しれません。
　テーブル定義のドキュメントが読めると、どん
なデータが保存されているかが、ビジネスやサー
ビス内容と絡めて理解できるので理想的です。
　ただし、度重なるシステム改修によってドキュ
メントの更新が追いついていなかったり、そういっ
たドキュメントが準備されていない、といったこ
ともあるでしょう。そうした場合は、データベー
スのテーブルの定義を調べるところから始めると
良いでしょう。
　今回の題材であるPagilaで試してみます。まずは、
クエリを使って対象のデータベースのスキーマを
見てみます。

SELECT
 DISTINCT table_schema
FROM
 information_schema.columns
;

 table_schema

 information_schema
 pg_catalog
 public
(3 rows)

　結果を見るとpublicスキーマというものがあり
ます。Pagilaのデータはpublicスキーマの中に入っ
ています。では、publicスキーマに所属しているテー
ブルを見てみましょう。

SELECT
 DISTINCT table_name
FROM
 information_schema.columns
WHERE
 table_schema = 'public'
ORDER BY
 table_name
;

 table_name

 actor
 actor_info
 address
 category
 city
 country
 customer
 customer_list
 film
 film_actor
 film_category
 film_list
 inventory
 （..略..）
(28 rows)

　このテーブル一覧を元に、テーブル名から中身
を推測しつつ、テーブルのカラム定義を見ていき
ます。たとえば、今回のノックでもよく使われた
customerテーブルを調べてみます。次のクエリを
実行すると、

SELECT
 column_name,
 data_type,
 column_default,
 is_nullable
FROM
 information_schema.columns
WHERE
 table_schema = 'public'
 AND table_name='customer'
;

カラム名、データ型、カラムのデフォルト値、
NULL許容について知ることができます（図3）。
　この結果を踏まえて、データをざっと把握する
ためにLIMITを付けてクエリを投げてみます。カ
ラムの定義と合わせて、データの中身を見ることで、
ざっくりとしたデータの偏りや出現頻度を把握す
ることができます。

SELECT * FROM customer LIMIT 100;
（実行結果は省略）

中身を知らないデータベースで分析する

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 3332 - Software Design

　また、paymentテーブルとcustomerテーブルの
ように、customer_idカラムで関連している場合が
あります。そういったテーブル同士の関連は、外
部キー（FOREIGN KEY）で定義されていることが多

いです。外部キーは図4のようにして調べられま
す注A。
　これらのテーブル情報を元に、さまざまな観点
から分析をしていけることでしょう。

column_name ¦ data_type ¦ column_default ¦ is_nullable
------------+-----------------------------+---+-------------
customer_id ¦ integer ¦ nextval('customer_customer_id_seq'::regclass) ¦ NO
store_id ¦ smallint ¦ ¦ NO
first_name ¦ character varying ¦ ¦ NO
last_name ¦ character varying ¦ ¦ NO
email ¦ character varying ¦ ¦ YES
address_id ¦ smallint ¦ ¦ NO
activebool ¦ boolean ¦ true ¦ NO
create_date ¦ date ¦ ('now'::text)::date ¦ NO
last_update ¦ timestamp without time zone ¦ now() ¦ YES
active ¦ integer ¦ ¦ YES
(10 rows)

 ▼図3　customerテーブルのカラム定義の出力結果

SELECT
 k1.table_name AS fk_table,
 k1.column_name AS fk_column,
 k2.table_name AS ref_table,
 k2.column_name AS ref_column
FROM
 information_schema.referential_constraints AS rc
 INNER JOIN information_schema.key_column_usage AS k1
 USING(
 constraint_catalog,
 constraint_schema,
 constraint_name
)
 INNER JOIN information_schema.key_column_usage AS k2
 ON k2.constraint_catalog = rc.unique_constraint_catalog
 AND k2.constraint_schema = rc.unique_constraint_schema
 AND k2.constraint_name = rc.unique_constraint_name
 AND k2.ordinal_position = k1.ordinal_position
;

 fk_table ¦ fk_column ¦ ref_table ¦ ref_column
------------------+------------------+-----------+--------------
 inventory ¦ film_id ¦ film ¦ film_id
 film_category ¦ film_id ¦ film ¦ film_id
 film_actor ¦ film_id ¦ film ¦ film_id
 rental ¦ inventory_id ¦ inventory ¦ inventory_id
 store ¦ manager_staff_id ¦ staff ¦ staff_id
 rental ¦ staff_id ¦ staff ¦ staff_id
 payment ¦ staff_id ¦ staff ¦ staff_id
 payment_p2007_06 ¦ staff_id ¦ staff ¦ staff_id
 （..略..）
(40 rows)

 ▼図4　外部キーを調べる

注A） 図4のクエリの中に出てくる JOINやUSINGなどについては、中級編以降で解説します。

第 　 　 章2初級編
SQLの基本を学ぶ

34 - Software Design

第　 特集1

　paymentテーブルとcustomerテーブルは、と
もにcustomer_idカラムを持っているため、2

つのテーブルのデータがひも付きます。このひ
も付きを使って、paymentテーブルをcustomer

テーブルの顧客氏名とともに表示させたい場合
は、テーブルとテーブルを結合するJOINを使
います。
　テーブル同士の結合にはいくつか種類があり
ますが（図1）、ここではとくに利用頻度の高い
LEFT JOINとINNER JOINについて扱います。

LEFT JOIN

　paymentテーブルを元に、customerテーブル
の一致するデータを結合して抽出するには、
LEFT JOINを使います注1。
　なぜこんなにJOINの種類があるかというと、
2つのテーブルの間に結合できないデータがあっ
た場合の取り扱いが異なるからです。今回使っ
ているPagilaのデータではJOINの違いがわか
りにくいため、説明では一部データが欠損した、
不完全なデータを使います。paymentおよび
customerテーブルの抜粋を用意しましたので、
データベースの中にこのデータが入っていると
思って読み進めてください（表1、表2）。
　LEFT JOINは日本語で左外部結合といい、
左側のテーブルを元に右側のテーブルを結合し
ます。今回のノックではpaymentテーブルを優
先して結合したいため、FROM句にpaymentテー

注1） LEFT JOINやRIGHT JOINは外部結合と呼ばれ、LEFT OUTER
JOINのように、OUTERを明示的に書くこともできます。

ノック 24

paymentテーブルにcustomer_idで
ひも付くcustomerテーブルを結合し、
payment_id、last_name、first_
nameカラムのデータを抽出する

テーブルの結合 - JOIN

JOIN の種類

INNER JOIN

イメージ

左テーブル 右テーブル

LEFT
OUTER
JOIN

左テーブル 右テーブル

RIGHT
OUTER
JOIN

左テーブル 右テーブル

FULL
OUTER
JOIN

左テーブル 右テーブル

CROSS JOIN 左テーブル 右テーブル×

 ▼図1　JOINの種類

　中級編では、初級編で学んだクエリに加えて、JOIN、HAVING、
CASE、集計関数など、より複雑な操作を行う方法を学んでいきましょう。

Author 大政 勇作（おおまさ ゆうさく）、masahixixi
	 ㈱リブセンス

中級編
複数テーブルを使った抽出・集計

第 　 　 章3

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 3534 - Software Design

ブルを指定します。テーブルの結合条件を指定
する場合は、ONのあとに条件を書きます。

SELECT
 payment_id,
 first_name,
 last_name
FROM
 payment
 LEFT JOIN customer
 ON payment.customer_id
 = customer.customer_id
;

 payment_id ¦ first_name ¦ last_name
------------+----------- +-----------
 31917 ¦ MARGIE ¦ WADE
 31918 ¦ MARGIE ¦ WADE
 31919 ¦ CASSANDRA ¦ WALTERS
 31921 ¦ NAOMI ¦ JENNINGS
 31922 ¦ ¦

　LEFT JOINは、paymentテーブルとcustomer

テーブルのデータがひも付かない場合でも、
paymentテーブルのデータは優先されてすべて
抽出されます。customerテーブル側にひも付
く customer_idがなかった場合は、データに
NULLが入ります（図2）。
　なお、結合に使うカラム名が2つのテーブル
で同じ場合、USING(custom_id)と短い表現
で書くこともできます。

SELECT
 payment_id,
 first_name,
 last_name
FROM
 payment
 LEFT JOIN customer
 USING(customer_id)
;
（実行結果は省略）

INNER JOIN

　paymentテーブルと customerテーブルで、
データのひも付きがあるものだけを抽出するに
は、INNER JOINを使います。

SELECT
 payment_id,
 first_name,
 last_name
FROM
 payment
 INNER JOIN customer
 ON payment.customer_id
 = customer.customer_id
;
 payment_id ¦ first_name ¦ last_name
------------+------------+-----------
 31917 ¦ MARGIE ¦ WADE
 31918 ¦ MARGIE ¦ WADE
 31919 ¦ CASSANDRA ¦ WALTERS
 31921 ¦ NAOMI ¦ JENNINGS

paymentテーブル

顧客 IDで JOIN
payment_id customer_idamount

31917 2677.98

31918 2670.00

31919 2693.98

31921 2740.99

31922 2794.99

customerテーブル

結合できなかった顧客 IDのフィールド値には
NULLが入る

customer_id last_namefirst_name

267 WADEMARGIE

267 WADEMARGIE

269 WALTERSCASSANDRA

274 JENNINGSNAOMI

279 NULL NULL

 ▼図2　LEFT OUTER JOIN

customer_id first_name last_name
267 MARGIE WADE
269 CASSANDRA WALTERS
274 NAOMI JENNINGS
275 CAROLE BARNETT

 ▼表2　customerテーブルの抜粋payment_id customer_id amount
31917 267 7.98
31918 267 0.00
31919 269 3.98
31921 274 0.99
31922 279 4.99

 ▼表1　paymentテーブルの抜粋

第 　 　 章3中級編
複数テーブルを使った抽出・集計

36 - Software Design

第　 特集1

　INNER JOINは、2つのテーブルで結合でき
るデータのみに絞り込まれるため、WHERE句の
ような働きも併せ持ちます。今回のサンプルで
は、paymentテーブルにあったcustomer_id
= 279のデータがINNER JOINによって除外さ
れました（図3）。
　以降では再度、Docker環境のPagilaのデー
タを使ってクエリを実行しながら進めます。

　JOINで結合したテーブルは、WHEREや
GROUP BYなどで使うことができます。このノッ
クでは顧客名で絞り込みをしたいので、WHERE
句で first_nameと last_nameをAND条件で指定
します。カラムは、payment_id、customer_id、
amountを取り出すことにしましょう。

SELECT
 payment_id,
 customer_id,
 amount
FROM
 payment
 INNER JOIN customer
 ON payment.customer_id
 = customer.customer_id
WHERE
 first_name = 'BRIAN'
 AND last_name = 'WYMAN'
;

-- ERROR: column reference "customer_ｭ
id" is ambiguous
-- LINE 1: SELECT payment_id, customer_ｭ
id, amount

ノック25

paymentテーブルから、顧客名が
BRIAN WYMANの支払いデータを
抽出する

　おかしいですね、エラーになってしまいまし
た。このエラーはSELECTで指定したcustomer

_idが、paymentテーブルのものかcustomerテー
ブルのものかが判別できないために発生したも
のです。
　どのテーブルのものか明示するためには、テー
ブル名.カラム名のようにテーブル名をドット
でつなぎ、指定します。ここでは、payment.
customer_idという形で明示しましょう。

SELECT
 payment_id,
 payment.customer_id,
 amount
FROM
 payment
 INNER JOIN customer
 ON payment.customer_id
 = customer.customer_id
WHERE
 first_name = 'BRIAN'
 AND last_name = 'WYMAN'
;

 payment_id ¦ customer_id ¦ amount
------------+-------------+--------
 16160 ¦ 318 ¦ 9.99
 17400 ¦ 318 ¦ 2.99
 17401 ¦ 318 ¦ 2.99
 17402 ¦ 318 ¦ 0.99
 17403 ¦ 318 ¦ 7.99
 20001 ¦ 318 ¦ 2.99
 25744 ¦ 318 ¦ 4.99
 25745 ¦ 318 ¦ 2.99
 25746 ¦ 318 ¦ 8.99
 25747 ¦ 318 ¦ 0.99
 25748 ¦ 318 ¦ 0.99
 25749 ¦ 318 ¦ 5.99
(12 rows)

　念のため、customer_id = 318がBRIAN WYMAN
であることを確認しましょう。

paymentテーブル

顧客 IDで JOIN
payment_id customer_idamount

31917 2677.98

31918 2670.00

31919 2693.98

31921 2740.99

31922 2794.99

customerテーブル

結合できなかった顧客 IDのレコードは含ま
れない

customer_id last_namefirst_name

267 WADEMARGIE

267 WADEMARGIE

269 WALTERSCASSANDRA

274 JENNINGSNAOMI

×

 ▼図3　INNER JOIN

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 3736 - Software Design

SELECT
 customer_id, first_name, last_name
FROM
 customer
WHERE
 customer_id = 318;

 customer_id ¦ first_name ¦ last_name
-------------+------------+-----------
 318 ¦ BRIAN ¦ WYMAN
(1 row)

　customer_id = 318は BRIAN WYMANであ
ることがわかります。また、先ほど書いたクエ
リを、

SELECT
 payment_id,
 payment.customer_id,
 customer.first_name,
 customer.last_name,
 amount
FROM
 payment
 INNER JOIN customer
 ON payment.customer_id
 = customer.customer_id
WHERE
 first_name = 'BRIAN'
 AND last_name = 'WYMAN'
;
（実行結果は省略）

のように書き換えても確認できますので、ぜひ
こちらも手元で実行してみてください。
　テーブル名が長い場合は、カラム名と同様に
ASを使ってテーブルに別名を付けることで短

くできます。

SELECT
 payment_id,
 p.customer_id,
 amount
FROM
 payment AS p
 INNER JOIN customer AS c
 ON p.customer_id = c.customer_id
WHERE
 first_name = 'BRIAN'
 AND last_name = 'WYMAN'
;
（実行結果は省略）

　これでデータを抽出できました。なおUSING
を使った場合は、どちらのテーブルのカラムで
あるかの明示は不要です。

SELECT
 payment_id,
 customer_id,
 amount
FROM
 payment
 INNER JOIN customer USING(customer_id)
WHERE
 first_name = 'BRIAN'
 AND last_name = 'WYMAN'
;
（実行結果は省略）

　これらのJOINに慣れてきたら、RIGHT JOIN
といった、ほかの結合方法も試してみてくださ
い。

GROUP BYした結果で絞り込む - HAVING

ルです。映画 ID（film_id）、タイトル（title）、
説明（description）、リリース年（release_year）
などが格納されています。
　film_categoryテーブルには映画 ID（film_

id）、カテゴリ ID（category_id）などが入って
います。
　categoryテーブルにはカテゴリID（category_

id）、カテゴリ名（name）などが入っています。

　ここでは、filmテーブル、film_categoryテー
ブル、categoryテーブルを使い、HAVINGにつ
いて学んでいきます。HAVINGを使うと、GROUP
BYでの結果に対して、さらに条件を付けて絞
り込むことができます。初級編で学習したとお
り、GROUP BYを使うとカラムの値ごとに集計
できます。
　filmテーブルは映画情報が格納されたテーブ

第 　 　 章3中級編
複数テーブルを使った抽出・集計

38 - Software Design

第　 特集1

　先にクエリと実行結果を見ていきましょう。

SELECT
 category.name AS name,
 COUNT(category.name) AS film_cnt
FROM
 film
 INNER JOIN film_category
 USING(film_id)
 INNER JOIN category
 USING(category_id)
GROUP BY
 category.name
HAVING
 COUNT(category.name) >= 65
ORDER BY
 film_cnt DESC
;

 name ¦ film_cnt
-------------+----------
 Sports ¦ 74
 Foreign ¦ 73
 Family ¦ 69
 Documentary ¦ 68
 Animation ¦ 66
 (5 rows)

　GROUP BYを使ってカテゴリ名ごとに集計し
たうえで、HAVING COUNT～の部分で条件に合
うレコードを抽出しているように見えます。
　ここまで進めてきた方であれば、WHEREとど
う違うのかという疑問が浮かんでくると思いま
す。まずはその違いについて解説します。

HAVINGとWHEREの
違いについて

　適用される順番が違うのがポイントです。ク
エリはWHERE→GROUP BY→HAVINGという順
に適用されていきます。WHEREはGROUP BYの
前、HAVINGはGROUP BYの後と覚えておきま
しょう。
　WHEREを用いると、適用順が後であるGROUP
BYで集計した結果に対して絞り込むことがで
きません。一方で、HAVINGを用いればGROUP
BYでの集計結果を絞り込むことができます。

ノック26

filmテーブル・film_categoryテーブル・
categoryテーブルから、カテゴリ名ご
とに映画の作品数を集計し、65件以上
のものを抽出する

　いかがでしょうか。ちなみに、1つのクエリ
内で両方を使用することもできます。

SELECT
 category.name AS name,
 COUNT(category.name) AS film_cnt
FROM
 film
 INNER JOIN film_category
 USING(film_id)
 INNER JOIN category
 USING(category_id)
WHERE
 category.name IN(
 'Sports',
 'Games',
 'Travel'
)
GROUP BY
 category.name
HAVING
 COUNT(category.name) > 60
ORDER BY
 film_cnt DESC
;

 name ¦ film_cnt
--------+----------
 Sports ¦ 74
 Games ¦ 61
(2 rows)

　上のクエリで、次の3つのケースをそれぞれ
実行してみてください。違いが実感できると思
います。

・全体を実行（上記のクエリ）
・HAVING句を削って実行
・WHERE句を削って実行

　なお、SELECTクエリの評価順序は次のとお
りです。

（1）FROM
（2）JOIN
（3）WHERE
（4）GROUP BY
（5）HAVING
（6）SELECT
（7）ORDER BY
（8）LIMIT

WHERE句

HAVING句

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 3938 - Software Design

　プログラミングにおける条件分岐にあたるも
のがCASEです。長くなりがちで多少読みづら
さがありますが、単に「◯◯という結果のとき
××と表示するもの」と覚えておくと良いです。

　それではCASEを使ったクエリを実行してみ
ましょう。CASE WHEN 条件1 THEN 値1 ELSE
デフォルト END値という構文で、条件ごとに
値を振り分けることができます。

ノック 27

paymentテーブルで、支払い額が5を
超える場合はexpensive、1を超える場
合はmodest、そうでなければcheapと
して一覧表示する

SELECT
 payment_id,
 amount,
 CASE
 WHEN amount > 5 THEN 'expensive'
 WHEN amount > 1 THEN 'modest'
 ELSE 'cheap'
 END AS price_range
FROM
 payment
;

 payment_id ¦ amount ¦ price_range
------------+--------+-------------
 16050 ¦ 1.99 ¦ modest
 16051 ¦ 0.99 ¦ cheap
 16052 ¦ 6.99 ¦ expensive
 （..略..）
(16049 rows)

条件分岐 - CASE

POSIX正規表現

　SQLでは正規表現を扱うこともできます。
こちらに関してはPostgreSQL、MySQLでそ
れぞれ表現方法が違うので、MySQLでの表現
方法についても軽く触れておきたいと思います。

　先にクエリを実行してみましょう。

SELECT
 COUNT(*)
FROM
 film
WHERE
 description ̃ '(Thou¦Insi)ghtful'
;

 count

 91
(1 row)

　正規表現のマッチ演算子は表3のとおりです。
ここで紹介したのはPostgreSQLの正規表現で

ノック28

filmテーブルのdescriptionに入ってい
るThoughtfulまたはInsightfulの数を
求める

すが、MySQLでは次のように書けます。

SELECT
 COUNT(*)
FROM
 film
WHERE
 description REGEXP '(Thou¦Insi)ghtful'
;
（実行結果は省略）

　どちらの環境にも対応できるよう、それぞれ
覚えておくと良いと思います。

演算子 説明

̃ 正規表現に一致し、大文字小文字を区別
する

̃* 正規表現に一致し、大文字小文字を区別
しない

!̃ 正規表現に一致しない、大文字小文字を
区別する

!̃* 正規表現に一致しない、大文字小文字を
区別しない

 ▼表3　PostgreSQLの正規表現

第 　 　 章3中級編
複数テーブルを使った抽出・集計

40 - Software Design

第　 特集1

　ここからは、集計で使われるクエリを学んで
いきましょう。初級編ではCOUNTを使いまし
たが、これはデータの個数を数えるものでした。
たとえば売上の合計金額を知りたい場合は、
SUM関数を使ってamountの値をすべて足し上
げます。

SELECT
 SUM(amount) AS total_sales
FROM
 payment
;

 total_sales

 67416.51
(1 row)

　COUNTやSUMは、値の集まりを1つに集計す
るため、集計関数とも呼ばれます。

GROUP BYと組み合わせる

　集計関数はGROUP BYと組み合わせることで、
クエリの表現力が一気に広がります。たとえば、
顧客ごとの売上の金額を知りたい場合は次のよ
うに書きます。

SELECT
 customer_id,
 SUM(amount) AS total_sales
FROM
 payment
GROUP BY
 customer_id
;

 customer_id ¦ total_sales
-------------+-------------
 251 ¦ 120.69
 106 ¦ 100.77
 120 ¦ 143.68
 285 ¦ 135.74
 264 ¦ 98.75
 497 ¦ 129.72
 452 ¦ 107.68
 496 ¦ 88.79
 （..略..）
(599 rows)

　お店ごとであったり、日付ごとであったり、
クエリのGROUP BYの指定を変えるだけで、さ
まざまな観点で集計をすることができます。お
もな集計関数には表4のものがあります。

　SUMなどの関数の処理結果は、SELECTの結
果だけではなく、WHERE句やORDER BYの中で
も使うことができます。
　customer_idをGROUP BYでまとめて、ORDER
BY SUM(amount) DESCとすると、支払い額の
降順で顧客情報を並べることができます。

SELECT
 customer_id,
 SUM(amount) AS total_sales
FROM
 payment
GROUP BY
 customer_id
ORDER BY
 total_sales DESC
LIMIT 5
;

 customer_id ¦ total_sales
-------------+-------------
 526 ¦ 221.55
 148 ¦ 216.54
 144 ¦ 195.58
 137 ¦ 194.61
 178 ¦ 194.61
(5 rows)

ノック29
paymentテーブルから、支払い額上位
5名の顧客データを抽出する

集計関数

関数 集計処理
COUNT レコードの件数
SUM 合計
AVG 平均値
MAX 最大値
MIN 最小値

 ▼表4　集計関数

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 4140 - Software Design

　中級編の最後では、日別や月別といったデー
タ集計の方法を見ていきます。

日付型に変更する - CAST

　では、日付ごとの売上を見ていきましょう。
paymentテーブルのpayment_dateに日時が入っ
ているので、GROUP BYで指定してみます。

SELECT
 payment_date,
 SUM(amount) AS total_sales
FROM
 payment
GROUP BY
 payment_date
ORDER BY
 payment_date
;

 payment_date ¦ total_sales
----------------------------+-------------
 2007-01-24 21:21:56.996577 ¦ 2.99
 2007-01-24 21:22:59.996577 ¦ 2.99
 2007-01-24 21:32:05.996577 ¦ 3.99
 2007-01-24 21:33:07.996577 ¦ 4.99
 2007-01-24 21:33:47.996577 ¦ 6.99
 2007-01-24 21:36:33.996577 ¦ 0.99
 2007-01-24 21:40:19.996577 ¦ 1.99
 2007-01-24 22:00:12.996577 ¦ 4.99
 2007-01-24 22:29:06.996577 ¦ 4.99
 （..略..）
(15817 rows)

　payment_dateが timestamp型のため、日付ご
とではうまく集計できませんでした。
　timestampからdateのようにデータの型を変
更するにはCASTを使います。初級編の最後で
説明したように、CAST(変換したいカラム AS
変換後のデータ型)という形式で型を変換でき
ますので、payment_dateをdate型に変換する
ように書き換えます。

ノック30
paymentテーブルから、日付ごとの
売上金額を集計する

SELECT
 CAST(payment_date AS DATE) AS p_date,
 SUM(amount) AS total_sales
FROM
 payment
GROUP BY
 p_date
ORDER BY
 p_date
;

 p_date ¦ total_sales
------------+-------------
 2007-01-24 ¦ 86.81
 2007-01-25 ¦ 568.61
 2007-01-26 ¦ 743.30
 2007-01-27 ¦ 708.27
 2007-01-28 ¦ 793.10
 （..略..）
(40 rows)

　CASTは整数を文字列に変換したり、整数を
小数に変換したりする場合にも使うことができ
ます。データ型に関しては、RDBMSによって
種類や使える関数が異なるためご注意ください。

日付から月だけ抽出
- EXTRACT

　先ほどは日別の集計でしたが、次は月別の集
計をしてみます。日付から特定の部分だけを取
り出すにはEXTRACTを使用します。

SELECT
 EXTRACT(MONTH FROM payment_date)
 AS p_month,
 SUM(amount) AS total_sales
FROM
 payment
GROUP BY
 p_month
ORDER BY
 p_month
;

ノック 31
paymentテーブルから、月別の売上金
額を集計する

日付の条件指定

第 　 　 章3中級編
複数テーブルを使った抽出・集計

42 - Software Design

第　 特集1

 p_month ¦ total_sales
---------+-------------
 1 ¦ 4824.43
 2 ¦ 9631.88
 3 ¦ 23886.56
 4 ¦ 28559.46
 5 ¦ 514.18
(5 rows)

　ただし、この集計の方法は誤解を招きやすい
ものになっています。取り出した1月が去年な
のか今年なのかがわかりません。あらためて年、
月の2項目を使って集計してみましょう。

SELECT
 EXTRACT(YEAR FROM payment_date) AS yyyy,
 EXTRACT(MONTH FROM payment_date) AS mm,
 SUM(amount) AS total_sales
FROM
 payment
GROUP BY
 yyyy,
 mm
ORDER BY
 mm
;

yyyy ¦ mm ¦ total_sales
-----+----+-------------
2007 ¦ 1 ¦ 4824.43
2007 ¦ 2 ¦ 9631.88
2007 ¦ 3 ¦ 23886.56
2007 ¦ 4 ¦ 28559.46
2007 ¦ 5 ¦ 514.18
(5 rows)

　今回のデータでは問題なかったのですが、1

年分以上のデータが蓄積されているデータベー
スの場合、月だけで集計すると別の年のデータ
（たとえば2007年1月と2006年1月のデータ）
も集計してしまう恐れがあります。先ほどのよ
うなミスで意思決定を間違えないように、日頃
から数値感の把握をしたり、複数の書き方でク
エリを書いて結果のダブルチェックをしてみた
りするといった工夫ができれば理想的です。ま
た、こうした問題は表計算ソフトなどを使って
グラフにしてみると、気付けることも多いです。
　EXTRACTを使わずに年、月を取り出すには
どうしたら良いでしょうか。日付情報を文字列
として扱って、左から7文字を取得すると、

yyyy-mmの形でデータを取得できます注2。

SELECT
 LEFT(
 CAST(payment_date AS VARCHAR),
 7
) AS yyyymm,
 SUM(amount) AS total_sales
FROM
 payment
GROUP BY
 yyyymm
ORDER BY
 yyyymm
;

 yyyymm ¦ total_sales
---------+-------------
 2007-01 ¦ 4824.43
 2007-02 ¦ 9631.88
 2007-03 ¦ 23886.56
 2007-04 ¦ 28559.46
 2007-05 ¦ 514.18
(5 rows)

　LEFT(文字列, 文字数)は、「文字列」から
「文字数分」の文字を左から切り出す関数です。
この関数を使うことで、timestamp型のpayment_

dateの値を文字列変換し、2007-01のような
文字列を作ることができます。せっかく日付用
の型でデータが格納されているのに文字列とし
て操作するという、少々乱暴な書き方ではあり
ますが、この方法でもEXTRACTと同様の結果
を得ることができました。
　このほかにも、GROUP BYを使ったときの合
計値と、使わなかったときの結果が一致するか
など、さまざまなチェック方法が考えられます。

日付の条件指定

　次は日付の条件指定の書き方です。初級編で
説明したように、WHERE句に1月の開始日と終

注2） データベースエンジンによっては、TO_CHARやCONVERTな
どの、日付情報をフォーマット指定して文字列で取り出す
関数が提供されています。

ノック32
paymentテーブルから、2007年1月
の売上データを抽出する

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 4342 - Software Design

了日をAND条件で指定してみます。

SELECT
 SUM(amount) AS total_sales
FROM
 payment
WHERE
 payment_date >= '2007-01-01'
 AND payment_date <= '2007-01-31'
;

total_sales

 4177.92
(1 row)

　おや、おかしいですね。月別で集計した結果
（4824.43）よりも売上が少なくなってしまいま
した。これはクエリの学び始めで誰しもがつま
づくポイントなのですが、実は終了日の指定の
しかたに問題があります。
　payment_date <= '2007-01-31'と 書 く
と、「2007-01-31 00:00:00」までのデータが取
得されます。つまり、「2007-01-31」のほとん
どのデータが対象外になってしまうのです。
　日付の範囲指定を正しく書くにはいくつか方
法があります。代表的なものとしては、条件を
「2007-02-01」未満にする方法と、payment_

dateをCASTしてdate型で扱う方法です（図4）。
　2007年1月の売上データは次の3通りの方法
で表現できます。

①payment_date >= '2007-01-01' AND payment_
date < '2007-02-01'

②payment_date >= '2007-01-01' AND CAST
(payment_date AS DATE) <= '2007-01-31'

③CAST(payment_date AS DATE) BETWEEN
'2007-01-01' AND '2007-01-31'

　③を使ったクエリは次のとおりです。

SELECT
 SUM(amount) AS total_sales
FROM
 payment
WHERE
 CAST(payment_date AS DATE)
 BETWEEN '2007-01-01' AND '2007-01-31'
;

total_sales

 4824.43
(1 row)

　今回のクエリは、無事結果が一致しました。
もちろん、先ほど使ったEXTRACTを使って年、
月が一致するように条件指定しても大丈夫です。

SELECT
 SUM(amount) AS total_sales
FROM
 payment
WHERE
 EXTRACT(YEAR FROM payment_date) = 2007
 AND EXTRACT(MONTH FROM payment_date) = 1
;

total_sales

 4824.43
(1 row)

　ただし、こちらの書き方は月初から月末まで
のデータを見たいときにしか使えないので、先
ほどの書き方を覚えておくと応用しやすいです。
ﾟ

payment_date <= '2007-01-31'

payment_date < '2007-02-01'

CAST(payment_date AS DATE) <= '2007-01-31'

・・・ 2007-01-30 2007-01-31 2007-02-01

 ▼図4　日付の範囲指定

第 　 　 章3中級編
複数テーブルを使った抽出・集計

44 - Software Design

第　 特集1

　「集計処理を行った結果に対して、さらに集
計処理を行う」ような、複数のクエリを組み合
わせた抽出を行う場合には「サブクエリ」とい
うしくみを利用します。

別のクエリ結果をテーブルとして
使う - FROM

　サブクエリで抽出した結果をテーブルとして
使いFROMに引き渡すと、クエリ結果に対する
集計を行えます。文章にすると難しそうに感じ
ますが、「大きな問題を小さな問題に分割して
解いていく」というイメージさえ持てれば解け
たも同然です。

　さっそく今回のノックを小さな問題に分割し
て解いていきましょう。
　①「顧客IDごとに累計売上を合計し……」。
ここまでは、初級編で解説した内容の復習で解
けます。GROUP BY customer_idとすること
で、顧客 IDごとの集計を行うことができまし
たね。合計値には、何の合計値かわかるように
total_salesと名付けましょう。

ノック33

paymentテーブルから顧客IDごとに累
計売上を合計し、1顧客あたりの平均売
上、最低売上、最高売上を求める

SELECT
 customer_id,
 SUM(amount) AS total_sales
FROM
 payment
GROUP BY customer_id;

 customer_id ¦ total_sales
-------------+------------
 251 ¦ 120.69
 106 ¦ 100.77
 120 ¦ 143.68
 （..略..）
(599 rows)

　②「1顧客あたりの平均売上、最低売上、最
高売上を求める」。次に、先ほど学んだ集計関
数を使って平均、最低、最高をクエリにします。
①で作った顧客 IDごとに売上を合計したテー
ブルがcustomer_paymentというテーブル名で
存在すると想像しながら、書いてみましょう。

SELECT
 AVG(total_sales),
 MIN(total_sales),
 MAX(total_sales)
FROM
 customer_payment;

ERROR: relation "customer_payment" ｭ
does not exist

　customer_paymentテーブルは存在しないの
でエラーとなりますが、イメージはつかめると

複数のクエリを組み合わせた抽出 - FROM、IN、EXISTS

　これまでのテクニックをふまえて、さらに複雑な構文を学びます。応用編
をマスターすれば「複数のクエリを組み合わせた抽出」「複雑な条件式の簡
略化」「順位付けや累積などの行をまたいだ集計」ができるようになります。

Author 桂 大介（かつら だいすけ）、	 大政 勇作（おおまさ ゆうさく）、
	 河原塚 有希彦（かわらづか ゆきひこ）、
	 ㈱リブセンス

応用編
複雑な集計・順位付け・累積

第 　 　 章4

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 4544 - Software Design

思います。このエラーを解消するために、括弧
で囲った最初のクエリを書き、AS customer_
payementとして辻

つじつま

褄を合わせてみましょう。

SELECT
 AVG(total_sales),
 MIN(total_sales),
 MAX(total_sales)
FROM
 (SELECT
 customer_id,
 SUM(amount) AS total_sales
 FROM
 payment
 GROUP BY
 customer_id
) AS customer_payment;

 avg ¦ min ¦ max
----------------------+-------+--------
 112.5484307178631052 ¦ 50.85 ¦ 221.55
(1 row)

　これで1顧客あたりの平均売上、最低売上、
最高売上を求めることができました。
　問題を分割して考えた際に、結果のテーブル
を使ってさらに結果を求めるイメージができる
のなら、そこがサブクエリの使いどころです。
サブクエリ単位で実行し、結果を確認しながら
クエリを構築していくと良いでしょう。

JOINとサブクエリの使い分け - なるべくJOIN
を使おう
　サブクエリを使うクエリは、しばしばJOIN
を用いても実現可能です。たとえば「直近の支
払い3件を、顧客の氏名とともに抽出する」と
いうクエリは、JOINでもサブクエリでも結果
を得られます。しかしサブクエリを用いたクエ
リは重くなりがちです。
　1つのクエリの中に複数のクエリがあり、それ
ぞれを実行しなければ結果が得られないという
特性と、サブクエリの結果テーブルにはインデッ
クスと呼ばれる索引機能が働かないためです。
　一方、JOINを用いた場合は（設定にもより
ますが）インデックスと呼ばれる索引機能が働
くため高速にテーブル同士の結合が行われます。
また、サブクエリを使ったクエリはネストが深

くなり、可読性が落ちがちです。ですから、
JOINで済む場合はなるべくJOINを使うように
しましょう。
　応用編の後半では、重くなりがち、可読性が
落ちがちなサブクエリの欠点を解消するWITH
を紹介していますので、そちらもご覧ください。

別のクエリ結果を値として使う
- IN

　初級編では、IN (値の列挙)という絞り込
みの方法を学びました。ここではその応用とし
て、()内でサブクエリを使う方法を学びます。
　まずは2007年5月に支払いのあった顧客の
last_nameを取り出してみましょう。ここでは
payment_p2007_05テーブルを扱います。これ
はpaymentテーブルのうち、2007年5月のデー
タのみを取り出したものです（今後もpayment_

p2007_XXというテーブルをいくつか扱うので、
覚えておいてください）。
　まずはサブクエリを用いず、中級編で習った
JOINを使って素直に書いてみましょう。

　次のようなクエリになります。

SELECT
 last_name
FROM
 customer AS c
 INNER JOIN payment_p2007_05 AS p
 ON c.customer_id = p.customer_id
;

last_name

BROWN
MOORE
ANDERSON
WHITE
HARRIS
HARRIS
 （..略..）
(182 rows)

ノック 34

customerテーブルとpayment_
p2007_05テーブルからJOINを用いて、
2007年5月に支払いのあった顧客の
last_nameを抽出する

第 　 　 章4応用編
複雑な集計・順位付け・累積

46 - Software Design

第　 特集1

　一見うまくいったように見えますが、この方
法だと2回購入した人（HARRIS）は2回出て
きてしまいます。もちろんDISTINCTを使って
重複を削除することもできますが、ここからさ
らにJOINをつなげていくケースなどでは、
JOINするごとにどんどん行が膨れあがってし
まい、処理時間も膨大にかかります。
　それではこれをINを用いて書き直してみま
す。

　次のようなクエリになります。

SELECT
 last_name
FROM
 customer
WHERE
 customer_id IN
 (SELECT
 customer_id
 FROM
 payment_p2007_05
)
;

last_name

BROWN
MOORE
ANDERSON
WHITE
HARRIS
CLARK
 （..略..）
(158 rows)

　先ほど2回出てきていたHARRISは、無事
に1回だけ表示されるようになりました。
　条件はcolumn IN (query)という形になり、
queryのところにSELECTクエリが書かれます。
ここでは5月に支払いのあったcustomer_idを
抽出しており、その結果を値として親クエリで
はINを用いて絞り込みを行っています。試し
にINの内部のSELECTクエリだけを実行して、
customer_id一覧が表示されることをご自身で
確認してみてください。

ノック35
INを用いて、2007年5月に支払いの
あった顧客のlast_nameを抽出する

別のテーブルに存在する値だけ
抽出する - EXISTS

　実は先ほどのINで扱ったクエリは、EXISTS
で書き直すことも可能です。EXISTSはその名
のとおり、該当する行が存在するかどうかを判
定する構文です。

　実際のクエリを見てみましょう。

SELECT
 last_name
FROM
 customer AS c
WHERE
 EXISTS (
 SELECT
 1
 FROM
 payment_p2007_05 AS p
 WHERE
 c.customer_id = p.customer_id
)
;

last_name

BROWN
MOORE
ANDERSON
WHITE
HARRIS
CLARK
 （..略..）
(158 rows)

　EXISTSキーワードの後ろにはサブクエリを
書きますが、先ほどのINと異なり、EXISTSの
クエリは単独では実行できません。サブクエリ
のWHERE句にはJOIN同様に結合条件が書かれ
ます。内部ではJOINと似た結合が行われますが、
あくまでEXISTSは該当するレコードがあるか
ないかを確認するだけであり、実際に複数レコー
ドとの結合が行われることはありません。
　EXISTSの特徴をおさらいしておきましょう。

・ある外部キーがほかのテーブルに存在するか
どうかを判定する

ノック36

payment_p2007_05テーブルから、
EXISTSを用いて、2007年5月に支払い
のあった顧客のlast_nameを抽出する

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 4746 - Software Design

・一般的にJOINしてからDISTINCTを行うの
に比べ高速である

・SELECT句のカラムは結果に影響せず、慣例
的に1が使われることが多い

・これまでの条件演算と同様にNOT EXISTSと
して、否定条件で使うこともできる

EXISTSとINの使い分け
　EXISTSとINでは似た動きができることがわ
かりました。利用するデータベースにもよりま
すが、一般的には、

・INはまずサブクエリを実行する
・EXISTSは内部でJOINに近い動きをする

という違いがあります。
　使い分けについてはまずは、

・サブクエリの結果が小さくなる場合は、INを
使う

・親クエリの結果が小さくなる場合は、EXISTS
を使う

と覚えておきましょう。

問い合わせの結合 - UNION、INTERSECT、EXCEPT

　次は問い合わせの結合です。2つ以上のクエ
リの結果を組み合わせる方法を学びます。図で
表すと図1のようなイメージになります。

結果の和集合をとる - UNION

　2つ以上のクエリから、その結果の和集合（ど
ちらか、もしくは両方に含まれるもの）を取り
出したいときはUNIONでクエリをつなぎます。

　次のようなクエリで実現できます。

SELECT
 DISTINCT customer_id
FROM
 payment_p2007_01
UNION
SELECT
 DISTINCT customer_id
FROM
 payment_p2007_05
;

customer_id

 251
 106
 120
 （..略..）
(539 rows)

ノック 37

1月と5月の支払い履歴（payment_
p2007_01/05テーブル）から、どちら
かに含まれるcustomer_idを抽出する

　このように最低どちらかに入っているcusto

mer_idが表示されます。このとき重複はデフォ
ルトで削除されますが、削除を避けたい場合は
キーワードをUNION ALLに変更しましょう。

結果の積集合をとる -
INTERSECT

　同様に積集合（両方に含まれるもの）をとり
たい場合は、INTERSECTを使います。

　次のようなクエリになります。

ノック38

1月と5月の支払い履歴（payment_
p2007_01/05テーブル）から、両方に
含まれるcustomer_idを抽出する

結合の種類

UNION

イメージ

クエリA クエリB

INTERSECT クエリA クエリB

EXCEPT クエリA クエリB

 ▼図1　問い合わせの結合イメージ

クエリA

クエリB

第 　 　 章4応用編
複雑な集計・順位付け・累積

48 - Software Design

第　 特集1

SELECT
 DISTINCT customer_id
FROM
 payment_p2007_05
INTERSECT
SELECT
 DISTINCT customer_id
FROM
 payment_p2007_01
;

customer_id

 251
 120
 337
 （..略..）
(139 rows)

　5月と1月、どちらでも利用のあった顧客が
139人いたことがわかります。
　問い合わせの結合はどのキーワードでも連続
させることが可能です。1、2、3月と続けて利
用した顧客を見てみましょう。

SELECT
 DISTINCT customer_id
FROM
 payment_p2007_01
INTERSECT
SELECT
 DISTINCT customer_id
FROM
 payment_p2007_02
INTERSECT
SELECT
 DISTINCT customer_id
FROM
 payment_p2007_03
;

Fcustomer_id

 251
 106
 120
 （..略..）
(512 rows)

　これは実際には次のクエリと同義で、内部で

ノック39

1、2、3月の支払い履歴（payment_
p2007_01/02/03テーブル）から、すべ
てに含まれるcustomer_idを抽出する

は先に前の2つのクエリが実行されています。

(
 SELECT
 DISTINCT customer_id
 FROM
 payment_p2007_01
 INTERSECT
 SELECT
 DISTINCT customer_id
 FROM
 payment_p2007_02
)
INTERSECT
SELECT
 DISTINCT customer_id
FROM
 payment_p2007_03
;
（実行結果は省略）

結果の差集合をとる - EXCEPT

　それでは、最後に差集合（片方にあって、も
う片方にはないもの）を取り出すEXCEPTを実
行してみましょう。

　次のようなクエリになります。

SELECT
 DISTINCT customer_id
FROM
 payment_p2007_05
EXCEPT
SELECT
 DISTINCT customer_id
FROM
 payment_p2007_01
;

customer_id

 264
 410
 80
 （..略..）
(19 rows)

　和集合のUNION、積集合のINTERSECTと異
なり、差集合EXCEPTでは結合するクエリの順

ノック40

payment_p2007_01/05テーブルから、
5月に支払いがあって、1月には支払いが
なかったcustomer_idを抽出する

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 4948 - Software Design

番によって結果が異なることに注意しましょう。
上のクエリでは、5月にいて1月にはいなかっ
た顧客を抽出していますが、以下のクエリでは
1月にはいて5月にはいなくなってしまった顧
客を抽出しています。

SELECT
 DISTINCT customer_id
FROM
 payment_p2007_01
EXCEPT
SELECT
 DISTINCT customer_id
FROM
 payment_p2007_05
;

customer_id

 106
 455
 209
 （..略..）
(381 rows)

　実行してみて結果セットが異なることを確認
しましょう。

結合結果に対しての操作

　UNIONなどで結合された結果に対しては、通

常のクエリと同様GROUP BYやORDER BYを適
用することが可能です。

　次のようなクエリになります。

SELECT
 DISTINCT customer_id
FROM
 payment_p2007_01
UNION
SELECT
 DISTINCT customer_id
FROM
 payment_p2007_05
ORDER BY
 customer_id ASC
LIMIT
 3
;

customer_id

 1
 2
 3
(3 rows)

ノック 41

payment_p2007_01/05テーブルから、
1月または5月に支払いがあった顧客を、
customer_idの昇順で3件のみ抽出する

複雑なサブクエリを簡略化する - WITH 注1

　複雑な分析をしていると、集計した結果を結
合して、それと別の集計テーブルを結合……と、
どんどん構想が広がっていきます。もちろんこ
れまで使ったテクニックを駆使してそれを実現
しても良いのですが、テーブルが増えていくと
クエリの見通しが悪くなってしまいます。
　WITHを使えば、実行結果を1つの仮想テー
ブルとして扱うことができます。たとえば1月
に7回以上レンタルしてくれたロイヤルカスタ
マーにメールを送りたいとします。まず、

payment_p2007_01テーブルを集計して7回以
上支払いのあるcustomer_idを抽出し、その後
customerテーブルと連結してみましょう。

　構文はWITH table_name AS (query)とな
ります。queryの結果を table_nameとして、そ
れ以降のクエリで利用することができます。で
は、実際に次のクエリを実行してみてください。

ノック 42

WITH句を使って、payment_p2007_
01テーブルから1月に7回以上支払い
のあったアクティブなcustomerの
emailを抽出する

注1） MySQLでは8.0から利用可能です。

第 　 　 章4応用編
複雑な集計・順位付け・累積

50 - Software Design

第　 特集1

WITH loyal_customers AS (
 SELECT
 customer_id,
 COUNT(*) AS cnt
 FROM
 payment_p2007_01
 GROUP BY
 customer_id
 HAVING
 COUNT(*) >= 7
)
SELECT
 email
FROM
 customer AS c
 INNER JOIN loyal_customers AS lc
 ON c.customer_id = lc.customer_id
WHERE
 c.active = 1
;

email

EDNA.WEST@sakilacustomer.org
SUE.PETERS@sakilacustomer.org
LESLIE.SEWARD@sakilacustomer.org
(3 rows)

　また、WITHは2つ以上同時に使うこともで
きます。その場合は、

WITH table1 AS (
 query
),
tabel2 AS (
 query
)

と、カンマで区切ります。

部分的に集計関数を適用する - ウィンドウ関数 注2

　先ほどはロイヤルカスタマーを抽出しました
が、ここで各顧客に対してそのロイヤルティを
購入回数に応じて順位付けしたいとしましょう。
各行に対して、全体と比較した評価を行いたい
場合はウィンドウ関数を使用します。
　まずはサンプルを見てみます。1月の利用回数
が多かった顧客と順位を一緒に表示しましょう。

　次のようなクエリになります。

SELECT
 cl.name,
 COUNT(*) AS cnt,
 RANK() OVER (
 ORDER BY COUNT(*) DESC
) AS ranking
FROM
 payment_p2007_01 AS p
 INNER JOIN customer_list AS cl
 ON p.customer_id = cl.id
GROUP BY
 cl.name
;

ノック 43

ウィンドウ関数を使って、payment_
p2007_01テーブルとcustomer_list
テーブルから1月の利用回数が多かった
顧客をその順位と一緒に表示する

name ¦ cnt ¦ ranking
----------------------+-----+---------
SUE PETERS ¦ 8 ¦ 1
EDNA WEST ¦ 7 ¦ 2
LESLIE SEWARD ¦ 7 ¦ 2
MINNIE ROMERO ¦ 6 ¦ 4
BILLY POULIN ¦ 6 ¦ 4
 （..略..）
(520 rows)

　このクエリではcustomerではなく、customer

_listテーブルを使って顧客情報を取得してい
ます。customer_listテーブルは「ビュー（view）」
と呼ばれる特殊なテーブルです。ビューは
SELECTクエリの実行結果を保持しているもの
でcustomerテーブルの first_nameと last_name

をつなげたnameカラムや、address、country

テーブルをJOINして得られたcountry（居住国）
カラムなどがあります。応用編ではこのcusto

mer_listビューを活用してノックを進めます。
　さて、SELECT句の3行目から5行目に見慣
れない関数があると思いますが、これがウィン

注2） MySQLでは8.0から利用可能です。

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 5150 - Software Design

ドウ関数です。
　構文はfunction_name() OVER (ORDER BY
column)となっています。順番に見ていきましょ
う。まず、RANK()は順位を表示する関数であ
ることを示しています（それ以外のウィンドウ
関数についても、のちほど扱います）。次の
OVER (ORDER BY column)にて順序を指定し
ます。今回は回数の降順で順位付けしたいので
ORDER BY COUNT(*) DESCを指定しています。

範囲（パーティション）を指定する
- PARTITION

　次に順位を国別に取得してみましょう。今回
は先ほどのRANK()とORDER BYに加えて、順
位付けする範囲をOVER()の中でPARTITION
BY columnとして指定します。実行結果の横
幅が長くなってきましたので、ここからは顧客
の名前ではなくIDを表示します。

　次のクエリを実行してみてください。

SELECT
 cl.id,
 cl.country,
 COUNT(*) AS cnt,
 RANK() OVER (
 PARTITION BY cl.country
 ORDER BY COUNT(*) DESC
) AS rank
FROM
 payment_p2007_01 AS p
 INNER JOIN customer_list AS cl
 ON p.customer_id = cl.id
GROUP BY
 cl.id, cl.country
;

id ¦ country ¦ cnt ¦ rank
----+----------+-----+------
176 ¦ Algeria ¦ 5 ¦ 1
 69 ¦ Algeria ¦ 2 ¦ 2
441 ¦ Algeria ¦ 1 ¦ 3
528 ¦ Angola ¦ 5 ¦ 1
383 ¦ Angola ¦ 2 ¦ 2
381 ¦ Anguilla ¦ 3 ¦ 1
 （..略..）
(520 rows)

ノック 44

payment_p2007_01テーブルと
customer_listテーブルから、1月の
顧客の利用回数順位を国別に表示する

　今回は国ごとに順位がついているのがわかる
と思います。
　このようにウィンドウ関数は大きく分けて、

・関数
・範囲
・順序

からなっています。

ウィンドウ関数で平均を求める
- AVG

　先ほどは国別の順位を表示しました。次に国
別の平均値も併せて表示してみましょう。

　使う関数は平均値を計算するAVGです。クエ
リは次のようになります。

SELECT
 cl.id,
 cl.country,
 COUNT(*) AS cnt,
 ROUND(AVG(COUNT(*)) OVER (
 PARTITION BY cl.country
), 2) AS avg_pay,
 RANK() OVER (
 PARTITION BY cl.country
 ORDER BY COUNT(*) DESC
) AS rank
FROM
 payment_p2007_01 AS p
 INNER JOIN customer_list AS cl
 ON p.customer_id = cl.id
GROUP BY
 cl.id, cl.country
;

id ¦ country ¦ cnt ¦ avg_pay ¦ rank
----+----------+-----+---------+------
176 ¦ Algeria ¦ 5 ¦ 2.67 ¦ 1
 69 ¦ Algeria ¦ 2 ¦ 2.67 ¦ 2
441 ¦ Algeria ¦ 1 ¦ 2.67 ¦ 3
528 ¦ Angola ¦ 5 ¦ 3.50 ¦ 1
383 ¦ Angola ¦ 2 ¦ 3.50 ¦ 2
381 ¦ Anguilla ¦ 3 ¦ 3.00 ¦ 1
 （..略..）
(520 rows)

　先ほどのRANKと異なり、AVGの場合は何の
平均を表示するかをAVG(column)として指定

ノック45
ノック44の結果にあわせて、国別の平
均利用回数も表示する

第 　 　 章4応用編
複雑な集計・順位付け・累積

52 - Software Design

第　 特集1

します。今回は国別の利用回数の平均なので、
COUNT(*)を入れてAVG(COUNT(*))とします。
　OVER句は先ほどと同様に PARTITION BY
customer_list.countryを指定。小数点の表
示が長くなってしまうので、ROUND関数でくくっ
ておきましょう。

ウィンドウ関数で合計を求める
- SUM

　同様に国ごとの合計を表示することも可能で
す。

　SUM(COUNT(*))を用いて、国ごとの合計利
用回数を並べて表示してみましょう。

SELECT
 cl.id,
 cl.country,
 COUNT(*) AS cnt,
 SUM(COUNT(*)) OVER (
 PARTITION BY cl.country
) AS total_pay,
 RANK() OVER (
 PARTITION BY cl.country
 ORDER BY COUNT(*) DESC
) AS rank
FROM
 payment_p2007_01 AS p
 INNER JOIN customer_list AS cl
 ON p.customer_id = cl.id
GROUP BY
 cl.id, cl.country
;

id ¦ country ¦ cnt ¦ total_pay ¦ rank
----+----------+-----+-----------+------
176 ¦ Algeria ¦ 5 ¦ 8 ¦ 1
 69 ¦ Algeria ¦ 2 ¦ 8 ¦ 2
441 ¦ Algeria ¦ 1 ¦ 8 ¦ 3
528 ¦ Angola ¦ 5 ¦ 7 ¦ 1
383 ¦ Angola ¦ 2 ¦ 7 ¦ 2
381 ¦ Anguilla ¦ 3 ¦ 3 ¦ 1
 （..略..）
(520 rows)

累積比率のための累積回数

　ここまで国別の平均や合計を出してきました
が、パレート分析などを行う際には累積の比率

ノック46

ノック45のクエリを変更し、平均回数の
代わりに国ごとの合計利用回数を表示す
る

が重要になります。そこで、国ごとの累積比率
の算出に挑戦してみましょう。
　累積比率は「累積比率＝累積利用回数÷全体
の利用回数」として算出するため、まず累積の
利用回数が必要です。
　あるパーティションの中で集計する範囲を限
定するためにはROWS BETWEENオプションを利
用します。こちらはパーティションと区別して
フレームと呼ばれます。

　次のクエリを実行してみましょう。

SELECT
 cl.country,
 COUNT(*) AS count,
 SUM(COUNT(*)) OVER (
 ORDER BY COUNT(*) DESC
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND CURRENT ROW
) AS cumulative_count
FROM
 payment_p2007_01 AS p
 INNER JOIN customer_list AS cl
 ON p.customer_id = cl.id
GROUP BY
 cl.country
ORDER BY
 count DESC
;

country ¦ count ¦ cumulative_count
--------------+-------+------------------
India ¦ 111 ¦ 111
China ¦ 109 ¦ 220
United States ¦ 70 ¦ 290
Japan ¦ 65 ¦ 355
Mexico ¦ 63 ¦ 418
 （..略..）
(99 rows)

　cumulative_countに、最初の行から現在の行
までのcountを合計した値が入っていることが
わかります。
　6行目の見慣れないROWS BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROWがウィンドウ
の範囲（ウィンドウフレーム）の指定となります。
これはROWS BETWEEN frame_start AND frame

ノック 47
1月の国別の利用回数を降順に抽出し、
累積回数と併せて表示する

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 5352 - Software Design

_endという文法になっており、それぞれフレー
ムの始点と終点を設定します。frame_startと
frame_endには、表1の値が設定できます。
　今回のケースではパーティション内を降順に
並べたうえで、パーティションの最初の行から
現在の行までを合計することで、累積回数を得
ています。
　frame_endは省略が可能であり、デフォルト
はCURRENT ROWとなるため、今回のケースで
は単にROWS UNBOUNDED PRECEDINGと記述す
ることも可能です。

累積比率

　それでは累積比率の計算に移ります。「累積
比率＝累積利用回数÷全体の利用回数」という
式をそのままクエリ上で表現します。累積利用
回数は先ほど（ノック47）のとおり。全体の利
用回数は、こちらもウィンドウ関数のSUM
(COUNT(*)) OVER ()を利用します。

　次のようなクエリになります。

SELECT
 cl.country,
 ROUND(
 SUM(COUNT(*)) OVER (
 ORDER BY COUNT(*) DESC
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND CURRENT ROW
) / SUM(COUNT(*)) OVER (),
 2
) AS cumulative_percent
FROM
 payment_p2007_01 AS p
 INNER JOIN customer_list AS cl
 ON p.customer_id = cl.id
GROUP BY
 cl.country
ORDER BY
 COUNT(*) DESC
;

ノック48

payment_p2007_01テーブルと
customer_listテーブルから1月の
国別の利用比率を降順に並べ、累積で
表示する

country ¦ cumulative_percent
-------------------+--------------------
India ¦ 0.10
China ¦ 0.19
United States ¦ 0.25
Japan ¦ 0.31
Mexico ¦ 0.36
Russian Federation ¦ 0.41
Brazil ¦ 0.46
Philippines ¦ 0.49
Indonesia ¦ 0.52
 （..略..）
(99 rows)

　全体として99ヵ国ありますが、上位9ヵ国で
利用の過半数を占めていることがわかります。

ウィンドウ関数で移動平均を
求める

　最後はこれまで学んだテクニックを活用して
移動平均を計算してみましょう。
　移動平均とはおもに時系列データなどに対し、
ある一定区間ごとの平均値を、区間をずらしな
がら求めるものです。たとえば曜日ごとの変動
の大きいデータに対して7日間移動平均を計算
することで、曜日変動を抑えた傾向を見ること
ができます。
　今回はpaymentテーブルを使い、4月6日か
ら12日の利用回数の3日移動平均を見てみま
しょう。まずは当該期間について、日別の利用
回数を計算します。

　次のクエリを実行してみてください。

ノック49

paymentテーブルを使い、
2007年4月6日から12日の日別利用
回数を集計する

キーワード 意味

UNBOUNDED PRECEDING パーティションの最初の行
n PRECEDING n行前
CURRENT ROW 現在の行
n FOLLOWING n行後

UNBOUNDED FOLLOWING パーティションの最後の行

 ▼表1　ROWS BETWEENで指定できる値

第 　 　 章4応用編
複雑な集計・順位付け・累積

54 - Software Design

第　 特集1

SELECT
 CAST(payment_date AS DATE) AS d,
 COUNT(*)
FROM
 payment AS p
WHERE
 CAST(payment_date AS DATE)
 BETWEEN '2007-04-06' AND '2007-04-12'
GROUP BY
 d
ORDER BY
 d ASC
;

 d ¦ count
------------+-------
 2007-04-06 ¦ 486
 2007-04-07 ¦ 472
 2007-04-08 ¦ 516
 2007-04-09 ¦ 514
 2007-04-10 ¦ 482
 2007-04-11 ¦ 468
 2007-04-12 ¦ 452
(7 rows)

　ここまでは大丈夫ですね。次にこのクエリを
改変して移動平均を計算します。

　利用回数の移動平均を出すためウィンドウ関
数にはAVG(COUNT(*))を使い、順序は日付順、
範囲（フレーム）のスタートには 2行前（2
PRECEDING）を指定します。こうして2行前か
ら現在行までの計3行の平均が計算できます。
結果を見やすくするため、ROUND関数で小数点
桁数も指定しておきましょう。実際のクエリは
次のようになります。

ノック50

paymentテーブルを使い、
2007年4月6日から12日の利用回数
の3日移動平均を計算する

SELECT
 CAST(payment_date AS DATE) AS d,
 COUNT(*),
 ROUND(AVG(COUNT(*)) OVER (
 ORDER BY
 CAST(payment_date AS DATE) ASC
 ROWS BETWEEN
 2 PRECEDING
 AND CURRENT ROW
), 2) AS moving_avg
FROM
 payment AS p
WHERE
 CAST(payment_date AS DATE)
 BETWEEN '2007-04-06' AND '2007-04-12'
GROUP BY
 d
ORDER BY
 d ASC
;

d ¦ count ¦ moving_avg
-----------+-------+------------
2007-04-06 ¦ 486 ¦ 486.00
2007-04-07 ¦ 472 ¦ 479.00
2007-04-08 ¦ 516 ¦ 491.33
2007-04-09 ¦ 514 ¦ 500.67
2007-04-10 ¦ 482 ¦ 504.00
2007-04-11 ¦ 468 ¦ 488.00
2007-04-12 ¦ 452 ¦ 467.33
(7 rows)

　結果を検証してみましょう。9日のmoving_

avg値を見てみると、前2日の結果との平均値
「（472＋516＋514）÷3」と等しくなっています。
　あとはフレーム句を6 PRECEDINGにして1

週間の移動平均を計算したり、1 PRECEDING
AND 1 FOLLOWINGにして前後1行を使った移
動平均を算出したりもできます。先述の曜日変
動に限らず、日々のバラつきが大きいとき、長期
的な傾向を把握したいときにも有効な手法です。

終わりに

　いかがでしたか？　初級編でSELECTを使っ
てテーブルの内容を抽出するところからスター
トして、応用編の最後には移動平均を使って期
間ごとの数値変動を求めるところまで学びまし
た。
　本特集で取り上げたノックをマスターしたな

ら、データ・ドリブンな意思決定のために必要
なSQL力を確実に身につけたと言えます。
　一度では理解しきれない部分もあると思いま
すが、クエリを書き換えながら実行することで
理解が深まっていきます。繰り返しノックを解
いて、自分の力にしていってください。ﾟ

データ分析に効く

SQL  50  本ノック

Nov. 2017 - 5554 - Software Design

　本特集を読んでくださっている読者の方は、組
織内で仕事をしている方が多いかと思います。働
いている中で、「営業から数字出しや分析の依頼を
急にされて困った」とか、「クライアントから、顧
客の購入一覧を出してと急かされた」などの依頼を
受けた経験は、誰しもあるものではないでしょうか？
　本特集をここまで読んだ方ならお気づきかと思
いますが、データを必要とした人がクエリを書いて、
試行錯誤しながらデータを取得しないと納得のい
くデータは取得できません。依頼されてデータ出
しを行うと「これじゃない……」と手戻りも起こり
がちです。
　もし「みんなSQLが書ければもっと円滑にコミュ
ニケーションが取れるのに……」そんな環境にいる
のなら、SQL勉強会を開くことは良い解決法にな
るかもしれません。
　筆者らの所属する㈱リブセンスでも前述のよう
な期間がありましたが、SQL勉強会が各部署ごと
に開かれてチームの「SQL力」が上がった結果、各々
自分自身でデータ取得する文化になりました。SQL
勉強会を開催する際のポイントは次の5点です。

①�市販の参考書を使うのではなく、実務に即
した資料を用意する

　参加者が自学自習しやすくなるよう、その場で
の口頭説明だけではなく繰り返し閲覧できる資料
を用意しましょう。
　また、参考書では興味を持てなくても、実務デー
タを使うことで俄

が

然
ぜん

興味が湧く参加者は非常に多
いです。さらに、実務のデータと実行環境を工夫
して用意すれば、仕事をしながら勉強してもらえ
ます（！）。
　ただし、資料作りは結構たいへんですので、そ
こでエネルギーを使い切ってしまっては元も子も
ありません。最初は実務で使うテーマを用いたノッ
ク（問題）だけを用意して、参加者に解いてもらう
形でも勉強会は成り立ちます。

②講師のコミュニティを作る
　何よりもまず教える側のコミュニティづくりが
大切です。もし複数人の講師が確保できない場合は、
まず1～2名にノックを解けるように教え、教えた
内容の説明を書いてもらうなどして講師のサポー

トをしてもらいましょう。
　講師の負担は大きいので、講師同士で資料をシェ
アしあい、盗み合いましょう。その過程で、組織
内で伝わりやすい教材が育まれていきます。

③長期型ではなく、短期集中型で実施する
　「長期間かけてじっくり」というケースですと、
徐々に参加者が減りがちです。仕事の繁忙期など
とかぶり、継続もたいへんです。
　ですから短期集中型で、参加しきれる勉強会設
計が大事です。週に1回を数ヵ月やるよりも、毎日
開催して2週間で終了とするなど期間を区切ってし
まいましょう。
　内容は一度ですべてを盛り込んでしまうと講師
も参加者もたいへんですし、脱落者も出やすくな
りますので、参加者の興味を引くポイントを絞っ
て実施しましょう。弊社では、参加者が増えてき
たタイミングで、白帯コース・茶帯コース・黒帯コー
スのようにレベル分けして開催する方法を取りま
した。

④講師のサポートは手厚く
　質問を投げると返してくれる土壌を用意してお
くことは重要です。チャットや口頭で気軽に聞け
る人間関係を作ることも、（一見、技術的には見え
なくとも）組織の技術レベルを高めるために重要で
す。

⑤毎回、宿題を出す
　反復だけが、「SQL力」を高めます。

　以上が、SQL勉強会の開催ノウハウです。講師
の技術レベルは、必ずしも高い必要はありません。
講師には、知識よりも「参加者に寄り添う気持ち」
が重要だからです。
　本特集をここまで読んだ方なら、十分講師をで
きるレベルです。ぜひSQL勉強会を開いてチーム
のSQL力を高めてください。

SQL勉強会を開いて、チームのSQL力を高める
5つのポイント

第 　 　 章4応用編
複雑な集計・順位付け・累積

56 - Software Design

第　 特集1

　分析クエリは、仮説を検証するためにアドホッ
クに 1回だけ使われるものもあれば、KPI（Key
Performance Indicator、重要業績評価指標）の
チェックなどを目的として繰り返し使われるもの
もあります。
　当社ではそれぞれの目的によって共有のしかた
を分けています。
　前者のケースは、社内のWikiに仮説とその検証
結果をクエリとともに記載して共有しています。
現実世界のデータは、しばしば複雑な要件が入り
混じっていることがあり、分析者が気づかない条
件の考慮もれをしているケースがあったりします。
結果だけでなくクエリも共有しているのは、Wiki
の記事を見たほかのメンバーがミスを発見できる
ようにしたり、クエリを再実行してみて再検証で
きるようにしたりするためです。また、このWiki
の記事を元に新たな仮説が見つかるかもしれません。
　一方、後者のケースは「Redash」注Aなどのツー
ルで共有しています。

　Redashは、データベースを含む多種多様なデー
タ・ソースに対して、クエリを実行することがで
きるWebアプリケーションです。クエリを保存し
て共有できるだけではなく、スケジューラを使っ
て定期的にクエリを実行したり、実行結果をグラ
フ描画したりすることができます（図 2）。また、
複数のグラフをダッシュボードとして1画面にまと
めることもできるので、KPIのチェックにとても便
利です。
　なお、どちらの共有をする場合でも、クエリの
実行結果（数値など）からグラフを描画することを
お勧めします。グラフにすることで数値を見るだ
けでは見えなかった、分布の偏りや傾向が見える
ことがあります。図2のpaymentの日別の支払い
回数を集計したグラフを見ると、月初から月中ま
で支払いのデータがないことが一目瞭然でわかり
ます。
　クエリの使われ方を意識しながら、より効果的
な共有ができるように工夫してみてください。

 ▼図2　Redash

クエリの共有方法――社内WikiとRedash

注A） URL https://redash.io/

データ分析に効く

SQL  50  本ノック

https://redash.io/

第2特集

なぜ、コンピュータは	
割り算が下手なのか！？

　日ごろ、みなさんはコンピュータを何に使っていますか？　インターネットの情報
を入手するために使っていますか？　SNSで友人知人とコミュニケーションをとるた
めに使っていますか？　レポートや報告書を書いたり、売上を集計したり、プレゼン
テーションの資料を作ったり、お絵かきをしたり、動画編集をしたり、コンピュータ
の使い方は千差万別です。本誌の読者であれば、プログラミングでソフトウェアやシ
ステムの開発に携わっている方も多いことでしょう。
　しかし、情報処理装置としてのコンピュータも、その基本は計算を繰り返すことに
よって情報を処理します。テキストデータや動画、音声のデータであっても、その基
本は文字コードでありコード化された音声情報、映像情報です。その実態は数値デー
タにすぎません。コンピュータは中央処理装置（Central Processing Unit：CPU）
で超高速な数値演算を繰り返し、あらゆる情報処理を実現しています。
　特集では、どうしてコンピュータは割り算が苦手なのか、その秘密を紐

ひ も と

解いていく
ことにします。

	第1章	 割り算はなぜ難しい？..58

	第2章	 コンピュータ内部での取り扱い...65

	第3章	 CPUレベルで考える実装上の話題.....................................74

 Author 飯尾 淳（いいお じゅん）　中央大学
 Mail iiojun@tamacc.chuo-u.ac.jp

 Twitter @iiojun

なぜ、コンピュータは割り算が下手なのか！？第2特集
第2特集 なぜ、コンピュータは割り算が下手なのか！？

58 - Software Design

割り算はなぜ難しい？
第1章

整数の加減乗除

　四則演算の中で、割り算というのはやや特別
な演算です。割り算の説明に入る前に、まずは、
自然数の計算から始めましょう。小学校の算数
に遡
さかのぼ

ります。

自然数の集合上における演算
　「自然数」とは、1から始まる、1，2，3，……
という数のことです。定義によっては、0を含
めることもあります。本稿では、説明の便宜上、
前者の定義を用いることにします。
　さて、まずは自然数の集合を考えましょう。
自然数の集合Nとは、自然数のすべてを含む集
合です。自然数はいくらでも大きな数を考える
ことができるので、集合Nの大きさは無限大で
す。集合論を考えるとき、どのくらいの程度の
無限大なのか、それを集合の濃さ（濃度）と考え
て議論することがありますが、ここではそこま
では踏み込みません。とにかく無限大の個数を
持つ自然数の集まりと考えてください。
　ここで、自然数の集合Nから任意の要素xと
yを取り出します。x ∈ N注1、y ∈ Nです。xと

yは同じ値でもかまいません。そのうえで、xと
yに関する演算「☆」を考えましょう。x ☆ y → z

となるような操作を考えます。この表現は、「演
算☆はxとyという2つの要素を対象とし、その
結果がzとなる」ということを表しています。
　それでは、演算☆の実態として、まずは足し
算を考えてみます。任意の自然数x，yを考えた
ときに、足し算の結果得られるzはNに含まれ
るでしょうか。
　その答えは自明ですね。2つの自然数を足し
算した結果は、自然数です。つまり、x + y → z

としたとき、zは必ず自然数になります。すな
わち、自然数の集合Nは、足し算について閉じ
ている注2といえます。
　では、引き算についてはちょっと脇に置いて
おくことにして、掛け算はどうでしょうか。掛
け算についても足し算と同じことがいえます。x

× y → zで得られるzは必ず自然数になります。
自然数の定義として0を含めた場合でもそれは
同様です。自然数の集合Nは掛け算についても
閉じています。
　ところで、先ほど脇に置かれた引き算はどう
でしょうか。x - y → zのとき、zは必ず自然数と

 Author 飯尾 淳（いいお じゅん）　中央大学
 Mail iiojun@tamacc.chuo-u.ac.jp

 Twitter @iiojun

　みなさんは、小学校で四則演算を習ったことでしょう。加減乗除、ひらたく言えば、足し算、引き
算、掛け算、割り算です。いずれも基本的な数値演算です。ところが、コンピュータは割り算を苦手
としています。
　そこでまず、そもそも割り算は難しいものだということを理解してください。本章では簡単な例題と
して、整数の加減乗除から考えていきます。

注1） 「∈」は「集合に属する」を示す記号で、この場合は「xはNに
属する」という意味。

注2） ある集合がその演算について閉じているとは、任意の要素
に対する演算の結果が、必ずその集合に含まれることをい
います。

割り算はなぜ難しい？第1章

Nov. 2017 - 59

なることが保証されているでしょうか？　なお、
負の数を習うのは、中学生からですね。ここか
ら先は小学校の四則演算を少しだけ超えた話に
進みます。
　任意の自然数x，yを考えたときに、x - y → z

の結果、zが自然数になるとは限りません。最も
単純な場合として、xとyが同じもののとき引き
算の結果は0となり、自然数の範囲を逸脱してし
まいます。0を含むような自然数の定義を用いた
としても、x（引かれる数）がy（引く数）よりも小

　先ほどの例では、演算の表現として「演算☆」を考えました。この演算☆はxとyの2つを対象とした計算
操作を表現していました。そしてその表記は「x ☆ y」というように2つの演算対象の間に演算子を配置しま
す。
　2つの対象の間に演算子を配置したのは、我々が習ってきた四則演算に対応させやすいと考えたからとい
うだけの理由です。x ☆ y → zという操作を、2つのパラメータxとyをとる関数 f が計算結果としてzを返
すという状況に見立てることだってできるでしょう。つまり、関数 f の実態が演算☆であるという状況で
す。このとき、f (x, y) → zと表現できます。x, yという引数に f を適用するということをシンプルに表すな
らば、f x y → zと書いてもかまいません。演算子のままで表現すれば、☆ x y → zという表現もできますね。
　x ☆ y → zという表現を、演算子を中に置くので中置記法、☆ x y → zという表現を、演算子を前に置く
ので前置記法と呼びます。前置記法は「ポーランド記法（Polish Notation：PN）」とも呼ばれます。これは
ポーランドの論理学者であるヤン・ウカシェヴィチ（Jan tukasiewicz）に由来するとのことです。前置記法
は、先の関数の例をみれば明らかなように、コンピュータのプログラム表記に親和性が高い表現です。
　前置記法と中置記法があるならば、後置記法があるだろうという想像は難くありません。そのとおり、

「逆ポーランド記法（Reverse Polish Notation：RPN）」と呼ばれる表現も存在します。先の例で表現すれ
ば、x y ☆ → zという表現になります。
　PNもRPNも、複雑な演算を括弧なしで表現できるというメリットがあります。
たとえば、「（3 + 4）×（5 － 2）」という計算を考えてみましょう。普通に計算する
と、「（3 + 4）×（5 － 2）= 7 × 3 = 21」となりますね。これをRPNで表現すると、「3
4 + 5 2 － × =」と書けます。括弧を使う必要はありません。
　RPNに関するメリットの1つに、そのまま読めば計算できる、というメリット
があります。「3 4 + 5 2 － × =」は、「3と4を足して（+）、5から2を引いて（－）、
それらを掛けた（×）ものは何（=）？」と素直に読めばよいのです。日本語に素直に
対応しています。前置記法は「add three and four … 」と考えると、英語など動
詞が先に置かれる言語に対応しているとも言えるでしょう。
　さらに、RPNはスタックを用いてごく自然に計算処理を実装できます。頭から
順番にパースしていき、「数値が来たらスタックに積む、演算子が来たらスタッ
クの上2つを取り出して演算子、その結果をスタックに積む」という単純なルール
を適用するだけで計算できるわけです。
　昔の電卓は逆ポーランド記法のものがありまし
た（写真1）。今でも、Unixコマンドのdc（digital
calculator）は逆ポーランド記法で記述した式を計
算してくれます。憶えておくと便利に使えるでしょ
う注3（図1）。

逆ポーランド記法コ ラ ム

注3） なおdcでは計算結果の出力として「=」の代わりに「p」を使います。pコマンドは、スタックの一番上を出力するという命令
です。

 ▼写真1　RPN計算が
できる電卓の例（HP
50g：ヒューレット・パ
ッカード）

 ▼図1　Unixのdcコマンドの実行例

なぜ、コンピュータは割り算が下手なのか！？第2特集

60 - Software Design

さかったとしたら、結果は負の数となり、自然
数ではなくなってしまいます。つまり、自然数
の集合Nは引き算について閉じていないのです。
　割り算の話はさらにややこしくなるのですが、
先に結論を言っておくと、割り算も自然数の範
囲で語ることはできません。その詳細について
は後述します。

整数の集合上における演算
　さて次は、扱う数の範囲を少しだけ拡大しま
す。これまで自然数を扱ってきましたが、次は
整数の集合Zを考えてみましょう。整数の集合
Zも、無限個の要素を持つ集合です。
　なお、自然数の集合Nと整数の集合Zの大き
さは等しい（濃度が等しい）ということが知られ
ています。直感的には「自然数の集合である{ 1,

2, 3, ……}という集合に0と{-1, -2, -3, ……}とい
う集合を加えたものが整数の集合なんだから、
それは自然数の集合の2倍の大きさがあるんじゃ
ないの？」と感じるかもしれません注4。
　数学では、任意の自然数nを選んだときにそ
れに対応する整数mが一対一に決まれば、Nと
Zの大きさは同じだということが言えます。そ
して、次の式を考えると、Nの要素（自然数）で
あるnと、Zの要素（整数）であるmが一対一対
応する注5ことは明らかです（図2）。

・m = n / 2（n が偶数のとき）
・m = -（n-1）/ 2（nが奇数のとき）

　この対応を考えることにより、自然数の集合
Nと整数の集合Zは同じ濃度を持つということ

注4） そもそも自然数の集合が無限大の大きさを持つので、「0」を
無視できるということは、なんとなく理解できるでしょう。

注5） この状態を「全単射が存在する」といいます。

が示されます。無限大のトリックとも言えるか
もしれませんが、自然数と整数、それぞれの集
合は同じ大きさを持つのです。
　さて、本題に戻りましょう。自然数は引き算
について閉じていない、つまり、「任意の自然数
を2つ持ってきて引き算をした結果は、必ずし
も自然数とはならない場合がある」ということを
先ほどは確認しました。では、整数の集合Zは
引き算について閉じているでしょうか？
　この答えは明らかですね。整数は自然数を拡
張して負の数も含んでいます。よって、引き算
の結果として値が負の数になったとしても、そ
の答えは整数に含まれます。演算の対象として
負の数を持ってきたとしても、整数であるとい
う事実には変わりありません。ですから整数の
集合Zは減算について閉じています。
　自然数は足し算と掛け算について閉じていま
したが、整数の場合はどうでしょうか。これも、
例を示すまでもありません。負の数まで含めた
としても、整数どうしの足し算と掛け算は、必
ず整数となるでしょう。すなわち、整数の集合
Zは足し算や掛け算についても閉じています。

割り算の難しさ
　さて、いよいよ割り算です。四則演算のうち、
割り算はさらに複雑な演算と考えることができ
ます。なぜなら、割り算の結果は、整数の集合
をはみ出してしまう場合が多いからです。最も
簡単そうな例を示しましょう。x ∈ Z、y ∈ Zと
して、x = 9、y = 4の場合を考えます。9 / 4 =

2.25ですね。あるいは分数で表せば 9
4でしょう

か。この答えはすでに整数ではありません。
　数学では、さらに実数だとどうなるか、有理
数注6と無理数注7ではどうなるか、虚数注8の導入
……というように議論が進んでいきますが、本
稿ではとりあえずここでいったん立ち止まりま
す。小中学校レベルの四則演算を考えただけで

 ▼図2　自然数と整数の全単射の関係

1

0

2

1

3

-1

4

2

5

-2

6

3

7

-3

…

…

自然数：

整数：

注6） 2つの整数を使った分数形式で表現できる値。
注7） 有理数以外の数値。小数点以下が循環しないものや、πや

√2なども無理数である。
注8） 自乗してマイナスになる数。

割り算はなぜ難しい？第1章

Nov. 2017 - 61

も、四則演算のうち割り算は特別な計算なんだ
ということを理解していただけたでしょうか。

本節のまとめ

・自然数の集合Nは、四則演算のうち足し算と
掛け算にのみ閉じている

・整数の集合Zは、四則演算のうち足し算、引
き算、掛け算に関して閉じている

・整数を対象とした割り算の結果は、必ずしも
整数となるとは限らない

％（余り）計算

　小学校の四則演算から考え始めたのに、だい
ぶややこしい話になってしまいました。ここで
また、小学校で習う範囲の割り算に戻って考え
ましょう。

割り算と余り
　先ほどの9を4で割る計算について、少数や
分数をまだ習っていない小学生は、何と答える
でしょうか。彼ら彼女らは、「9割る4は、2、余
り1」と答えます。
　ここで、何やら怪しい「余り」という言葉が出
てきました。小学校の算数では、「9は4で割り
切れない」と考えます。9より小さい数のうち4

で割り切れる最大の数は8であり、その8を4で
割った答えが2、そして、9から8を引いた残り
の「余り」が1である、そのような割り算を小学
校では行うのでした。
　この「余り」、硬い表現でいえば剰余を求める
演算は、プログラミングではしばしば使われる
のでみなさんにも馴染みのある演算かもしれま
せん。言語によりますが、%という演算子を用
いたり、moduloの意味でmodという記号を用い
たりしますね。
　よくある例題として、2次元のデータを1次元
に並べ直すときに使うケースを考えてみましょ
う。（x , y）の画素値で表現される2次元画像デー

タを、1次元配列に格納しなければならないよ
うなケースです。
　画像の幅をw、高さをhとすると、1次元配列
のインデックス iは、i = y・w + x（ただし、0≦
x<w，0≦y<h）で計算されます。画素値の座標
（x, y）も、幅や高さを表すwとhも、そしてイン
デックス iも、すべて整数であることがミソで
す。x，yと iの間に上記の関係があるときに、i

が与えられれば、次の式でxとyを求めることが
できます。

　x = i % w

　y = i / w

　ただし、ここでの割り算は「整数の範囲での割
り算（余りを無視する）」です。

整数の範囲での計算方法
　ところで、「9割る4は、2余り1」という答え
は、そもそも、x ☆ y → zという式に合致して
いません。この形式に適合させるにはどうすれ
ばよいでしょうか。
　まず、「余り」を無視するという方針が考えら
れます。最も単純な解決方法です。「9割る4は
2。以上！」としてしまう方法です。余りは考え
ない、ある意味で潔い方法です。ただし、この
方法には大きなデメリットがあります。「8割る
4」、「9割る4」、「10割る4」、「11割る4」、いず
れも答えは2であり、答えから割られる数を求
めることができません。
　整数の範囲で可逆演算とするには、「整数 / 整

数 → {整数、整数 }」としなければなりません。
すなわち、先に示した例のように、余りを無視
した割り算と余りの結果を組みにして扱う方法
です。この方法を用いれば、2つの数字と割る
数から、割られる数を再現することができます。
整数の範囲でなんとか割り算をうまく取り扱う
ことができるようにしようという苦労が偲

しの

ばれ
る方法でもあります。

なぜ、コンピュータは割り算が下手なのか！？第2特集

62 - Software Design

本節のまとめ

・整数の割り算では「余り」が生じる
・整数の範囲で割り算を定義することは可能だ

が、足し算、引き算、掛け算と異なり元の数
を再現するような演算を定義するためには余
りとセットで考えないといけない

割る数と割られる数

　前項で、前説明なく「割られる数」とか「割る数」
などという言葉を使いました。x ☆ y → zという
演算を考えたときに、xを「演算☆を適用される
数」、yを「演算☆を適用する数」とするのはごく
自然な考えでしょう。足し算だったら「（足され
る数）xに（足す数）yを足す」、引き算だったら
「（引かれる数）xから（引く数）yを引く」ですね。
　それをふまえて、四則演算の中でも割り算は
特別だということを示す議論の最後に、2つの

要素を対象とした演算のあり方に目を向けてみ
ることにしましょう。

小学校の復習：割り算の意味
　小学生でも、割り算を最初からすんなりと理
解するのは難しいのだそうです。小学校では、
割り算は2つの意味があると教えるので、それ
で混乱する児童が出てきてしまうのだとか。そ
の2つの意味とは、次の2つです。

・全体をいくつかに分けたときに、1つあたり
の数を求める計算

・全体を1つあたりの数を決めて分けたときに、
いくつに分けられるかを求める計算

　前者の考え方は、このようなものです。「キャ
ンディが15個あったとします。そしてそのキャ
ンディを配ろうとしている子供たちが5人いま
す。さて、子供たちは何個のキャンディをもら
えるでしょうか？」
　15個のキャンディを、まず1つずつ5人の子

　剰余計算の応用として、時差を簡単に理解する方法を考えてみましょう。
　近隣諸国との時差というのは比較的わかりやすいものです。たとえば
中国やマレーシアの時間は、日本から1時間だけ遅れています。ベトナ
ムは2時間遅れです。1時間遅れているということは、日本でお昼を食
べ終わって午後の仕事を始めようかという日本時間の13時に、向こうは12時で、今からお昼休みにしよ
うかと考えているだろう、そのような感覚でとらえることができます。
　欧州だと（時期にもよりますが）8時間ないしは9時間遅れです。この時間差は、日本の夕方がちょうど朝
に相当すると考えれば難しくありません。夕方、ひと仕事終えたなと感じている時間に、向こうではこれ
から仕事が始まるんだな、という感じです。したがって、欧州と電話会議をしましょうなどというときに
は、日本は夜、向こうは昼とするパターンが多いようですね。
　難しいのが米国です。一番東のEastern Standard Time（EST）でGMT-5ですので、日本のGMT+9か
ら比較すると14時間、遅れていることになります。西海岸のPacific Standard Time（PST）だとさらに3
時間遅れて17時間のズレが生じます。
　ところが、地球の時差はしょせん24時間以内ということを考えると、割と単純に考えることができます。
米国西海岸が日本より17時間遅れているという状況で、日付を無視して考えてみましょう。日付を無視し
て、日本より何時間先んじているかを考えると、24 - 17 = 7です。つまり、日本が7時間、遅れているとい
うことになるわけです。これは、日本と欧州の関係性と似ているでしょう。東海岸でも、日本が10時間遅
れているという状況です。そう考えると、向こうが夜のときに日本が朝なのだとすぐにわかります。

時差を簡単に考える方法コ ラ ム

割り算はなぜ難しい？第1章

Nov. 2017 - 63

供に配ります。配り終えると10個のキャンディ
が残っています。まだ配ることができますね。2

巡めとしてまた1つずつ5人の子供に配ります。
子供たちはこの時点でキャンディを2個ずつ手
にしています。配り終えて、まだ5個残ってい
ます。これも配ってしまいましょう。3巡して、
ようやくキャンディはなくなりました。子供た
ちが手にしたキャンディは、それぞれ3つです。
　同じ「15 / 5 = 3」でも、後者の立場では次のよ
うな解釈がなされます。
　15個のキャンディから5個取り出したものを
用意します。これを、1人めの子供に配ること
にします。残りは10個あるので、そこからさら
に5個取り出します。これも、次の子供に配り
ましょう。さて最後に5個残ったものがあるの
で、それももう1人の子供に配ることができま
すね。こうして、5個セットのキャンディを、3

人の子供に配ることができました。
　いずれの計算も、5 × 3 = 15という計算を逆
から見ているだけにすぎません。5行3列に並べ
たキャンディを、横から分けているか縦から分
けているかの違いですが、異なる解釈ができて
しまうために混乱が生じてしまうようです。

「20分／500円」という表記は
正しいか？

　この混乱を避けるために、大人は「単位」を考
えます。先の例では前者だと「15［個］/ 5［人］= 3
［個／人］」、後 者 だ と「15［個］/ 5［個／人］= 3
［人］」ということになるでしょう。15「個」を5

「人」で分ければ、1人あたり3個「＝ 個／人」と
いう考えなのか、15「個」を1人あたり5個（「個
／人」）で分ければ3「人」に配れるという考えな
のか、単位を付けて計算すれば、明確です。
　単位だけで、きちんと次元がそろっているこ
とを確認してみましょう。答えの単位は、前者
だとそのまま［個／人］となっていますね。後者
でも、［個］を［個／人］で割っているので、［個］
が約分されて［人］が残ります。
　コインパーキングの料金表示は、多くの駐車

場で「x分／y 円」という書き方になっています
（写真2）。利用者目線で考えたときに、はたし
てこれは正しい書き方でしょうか。
　これは「y 円／x 分」と書くべきではないで
しょうか？　「あぁ、今いくら持ってるから何分
間だけ駐車できるな……」などと、普通は考えま
せん。「用事を済ませるのに何分停めないといけ
ないから、いくらかかるかな？」と考えません
か？
　「なんでこんな書き方なんだろう？」と調べて
みたら、一般社団法人 日本パーキングビジネス
協会（JPB）の時間貸駐車場における表示検討委
員会という集まりが、平成26年9月17日付けで
「時間貸駐車場における表示・運用に関するガイ
ドライン」という文書を出していました。そのガ
イドラインに、「看板の料金表示はこのように書
くべし」と出ているのが理由でした。みなさんそ
のガイドラインにしたがって料金表示をしてい
るのですね。
　おそらく、100円パーキング時代の名残りだっ
たのでしょう。コインパーキングといえば、か
つては「100円を入れたら何分間だけ停められる」
というものでした。その感覚であれば時間を100

円で割って表示する方法で示す気持ちも、わか
らぬでもありません。しかし、単価が上がった
り、逆に競争激化で価格競争になったりと、さ
まざまな変化が起こった結果として、このよう
なヘンな表示になってしまったのでしょう。我々
は、この問題から「割る数と割られる数は適切に

 ▼写真2　あるコインパーキングの料金表示

なぜ、コンピュータは割り算が下手なのか！？第2特集

64 - Software Design

考えるべし」との教訓を得ることができます。
　それにしてもこの駐車場、1時間、車を停め
とておくと1,500円もかかります。むちゃくちゃ
高いですね（苦笑）。

「0で割ってはいけない」ということ
　さて、割られる数と割る数について考えてき
ましたが、割り算の場合、割る数には1つ、制
約条件があります。それは、「0（ゼロ）で割って
はいけない」という条件です。
　図3は、Pythonで「5/0」を計算してみた結果
です。「ZeroDivisionError: division by zero」と
いうエラーメッセージが表示されています。で
は、なぜ、ゼロで割ってはいけないのでしょう
か。
　先に示したキャンディの例をもう一度考えて
みましょう。あのとき「15 / 5 = 3」は「5 × 3 =

15」という計算を逆から見ているだけ、という
話をしました。すなわち、（割られる数）xを、
（割る数）yで割ったときに、割り算の答え、つ
まり、商としてzが得られる、その関係は「x / y

= z」でもあり「x = z × y」でもあるのです。
　ところが、ここで、割る数yが、0だったらど
ういうことになるでしょう。なお、便宜上、割
られる数xは0ではない数としておきます。
　先の説明によれば、「x / 0 = z」は「x = z × 0」
と同じです。ところが、後者の右辺は「0」です
ね。なぜなら、いかなる数に0を掛けても、そ
の結果は0だからです。しかし、xは0ではあり
ません。おかしいですね？　xが0だとすると、

zは「なんでもいい」（不定）ということになり、そ
れもおかしなことになります。
　このような関係性を満たすことができないた
め、割り算には「ゼロで割ってはならぬ」という
鉄の掟があるのです。
　ところで、よくある誤りの計算例として、「2

は1に等しい」という有名な（誤った）証明があり
ます。その証明とは、「aとbが等しいとする。
両辺にaを掛けて、そこからb2を引く。両辺を
因数分解して（a - b）で割ると、a + b = bとなる。
a = bだったので左辺は2b、すなわち2b = bと
なり、bで割ると2 = 1」というものですが（図4）、
どこに誤りがあるか、わかりますか？

本節のまとめ

・小学校では割り算の意味を2種類教えるため
混乱が生じることがある

・単位を考えながら計算すると混乱を避けるこ
とができる

・ゼロで割ることは定義されていない。どのよ
うな状況でもゼロで割るとエラーになってし
まう

　本章では、「なぜ、コンピュータは割り算が下
手なのか！？」の前段階として、小学校時代を思
い出しながら「割り算はなぜ難しい？」のかを考
えてみました。次章からは、いよいよコンピュー
タの数値の内部表現を含めて、割り算を考えて
みます。｢

 ▼図3　Pythonでゼロ除算を試したところ ▼図4　矛盾した計算

 a ＝ b
 a2 ＝ ab
 a2 - b2 ＝ ab - b2

 (a + b)(a - b) ＝ b(a-b)
 a + b ＝ b
 2b ＝ b
 2 ＝ 1

第2特集 なぜ、コンピュータは割り算が下手なのか！？

Nov. 2017 - 65

コンピュータ内部の取り扱い
第2章

そもそも2進数とは

　ご存じのとおり、現在のコンピュータはすべ
ての情報を0と1で表します。電圧のレベルに
対応する0と1による表現が、コンピュータの
基礎となっているわけですね。したがって、数
値も0と1で表現しなければなりません。
　本節では、整数を2進数でどのように表現す
るか、そしてその演算をどう実現するかについ
て、まず、簡単な例から考えてみます。

整数の2進数による表現
　みなさんが日ごろ生活で利用している数値の
表現は、0，1，2から9まで、10個のアラビア
数字を用いて表現されています。なお、数字の
表現はそのほかにもローマ数字を用いたものや、
「1つ、2つ、……」などの序数による表現など、
いくつかのバリエーションがありますが、本稿
で扱う数字の表現は、通常のアラビア数字によ
る表現を対象とします注1。そして、10個の数字
を使って表す数字の数え方を、10進法というの
でした。

注1） 小数点は「.（ピリオド）」で表します。ケタの位取りを示す「,
（カンマ）」は使いません。余談ですが、スペイン語のように、
小数点を「,（カンマ）」で表し位取りを「.（ピリオド）」で表す言
語もあります。世界は広いですね。

　一方、現代のコンピュータは、その内部では
0と1で数値を表現します。つまり、2進法です。
10進法で表された数値nを2進数に変換するの
は簡単です。次の手順で右から順に0か1を並べ
ていけば、その結果が2進数の表現になります。

❶偶数なら0、奇数なら1を置く
❷その数を半分にする。奇数の場合は1を引い

て2で割る
❸その数が1なら最上位の桁に1を置いて終了。

それ以外なら❶に戻る

　例として、10進数で表した「25」を2進数の表
現に変換してみましょう。
　図1を見てください。まず、25は奇数なので、
最下位の桁は「1」です。奇数なので1を引いて半
分にすると、12ですね。手順を頭に戻って、12

は偶数なので0を置くと、「01」になりました。さ
らに半分にします。6になりました。また手順
を頭に戻って、6は偶数ですから「001」ですね。
半分にすると3です。今度は奇数なので、「1001」
となりました。3は奇数ですから1を引いて半分
にすると、1になります。終了条件を満たすの
で、最上位の桁に1を加えると「1 1001」、これ
で終わりです注2。

注2） 以後、5桁以上の2進数には4桁の単位で空白による区切り
を入れます。

 Author 飯尾 淳（いいお じゅん）　中央大学
 Mail iiojun@tamacc.chuo-u.ac.jp

 Twitter @iiojun

　前章では、そもそも割り算という計算それ自体が、ほかの演算に比べると厄介なのだということを
確認しました。本章では、コンピュータ内部での数値の取り扱いについておさらいすることで、コン
ピュータでも割り算を扱うのは難しいのだなということを確認していきましょう。

なぜ、コンピュータは割り算が下手なのか！？第2特集

66 - Software Design

　以上の計算手順を数式的に表すと図2のよう
になります。n進数においてm桁めの数字がxm

であるとき、その数字は、Σnm・xmとして表さ
れることを理解していれば、このような手順で
正しく変換できていることがわかるでしょう。
　ところで、コンピュータで扱う数として、ほ
かにも8進数や16進数がよく使われます。8進
数は、0から7までの8種類の数値を使います。
16進数は、0から9までの10個に「a，b，c，d，

e，f」の6文字を加えた16種類の文字を数字とし
て使います。8進数や16進数が好まれるのは、
8は2の3乗、16は2の4乗であり、それぞれ3

桁、4桁の2進数とそれぞれの1桁がちょうど対
応するからです。10進数と比べると2進数との
親和性が高いというわけですね。
　人間が10進数で数えるようになったのは両手
の指が10本あったから、という説があるそうで
す。もし、人間の指がそれぞれ4本ずつだった

　本文で「日ごろよく利用している数字の数え方は10進数」と説明しました。しかし、実はほかの数え方も
それなりに利用しています。
　ほとんどのみなさんが、ほぼ毎日接しているのは12進数でしょう。1ダースを単位にした数え方もさる
ことながら、時間の進み方は12進数そのものです。16進数のように新たな記号を採用せず、11、12とい
う表現をしていますが、考え方は、1から12まで進んだらまた1に戻る、12のサイクルで数えられていま
す。24時間時計であれば、24進数ととらえることもできますね。
　1月から12月まで、年間を通した月日の流れも、12進数を踏襲しています。逆に短い単位はどうでしょ
う。1時間は60分なので、分単位、そして秒単位でみれば、60進数で数えられているともいえます。分と
秒は0から始まるので、59分の次、59秒の次は、それぞれ桁の繰り上がりが生じて0分、0秒に戻ります。
　このように考えていくと、実は、n進数の考え方と、前章で示した整数の割り算は密接な関係にあるとい
うことがわかります。トータルの量を、nで割った剰余が一番小さい桁の値になっています。割り算の答え
である商がnよりも大きければ、さらに桁溢れが生じて、再度、割り算と剰余の計算を進めていくことに
なりますね。
　たとえば、「156」という数を10進数で表す（もうすでに表されていますが……）ことを考えてみましょう。
まず、156を10で割ります。すると、答えは15あまり6ですね。したがって、一番小さい桁の数は「6」で
す。次に、15をさらに10で割ります。答えは1あまり5。ですので、10の位は5となり、100の位は1
です。理解を助けるために10進数でやってみましたが、n進数（n ≠ 10）の場合でも同じです。先に示した
2進数への変換も、同じ理屈となっているはずです。確認してみてください。

生活の中の◯◯進数コ ラ ム

 ▼図2　2進数に変換する手順の意味

25
= 24 + 1
= 2 (12 + 0) + 1
= 2 (2 (6 + 0) + 0) + 1
= 2 (2 (2 (2 + 1) + 0) + 0) + 1
= 2 (2 (2 (2 * 1 + 1) + 0) + 0) + 1
= 24 * 1 + 23 * 1 + 22 * 0 + 21 * 0 + 1

1 1 0 0 1

 ▼図1　「25」を2進数にしてみる

25→奇数（1）
(25 - 1) ÷ 2 = 12
12→偶数（01）
12 ÷ 2 = 6
6→偶数（001）
6 ÷ 2 = 3
3→奇数（1001）
(3 - 1) ÷ 2 = 1
1→奇数（1 1001）
終了

コンピュータ内部の取り扱い第2章

Nov. 2017 - 67

ら、8進数で数えているようになっていたかも
しれません。そうなっていたら、コンピュータ
サイエンスやIT業界に対する世間の理解も、今
よりは進んでいたでしょうか？

簡単な計算
　整数の2進数表記がわかったので、次は簡単
な演算を試してみましょう。12 + 13 = 25とい
う演算を2進数で確認してみます。
　先の変換式に従えば、12と13はそれぞれ2進
数で「1100」と「1101」です。足し算は、10進数の
計算となんら異なるところはありません。筆算
で計算してみましょう（図3）。
　小学校で習ったように、下の桁から計算して
いけばOKです。0と1を足すと1、これはいい
ですね。次の桁、0と0を足して0、これも問題
ありません。3つめの桁は1と1の足し算です。
1と1を足すと、10進数では2になるところです
が、2進数だと2は使えません。したがって、繰
り上がりが発生します。1繰り上がり、10とな
ります。下の桁がそのまま降りてきて、3つめ
の桁は0です。
　4桁めも1足す1ですが、さらに繰り上がりの
1も足さなければなりません。その結果は11と
なるので、下の桁の1が4桁めの数値になり、さ
らに繰り上げの1が5桁めとなります。2進数で
1100と1101の足し算を計算した結果は、1 1001、
すなわち、10進数で25です。正しく12 + 13 =

25の結果と合致していることを確かめてくだ

さい。

結果が負になる計算をどうするか
　では、引き算はどうでしょうか。13から12を
引くのは簡単ですね。1101から1100を引いたら
残りは1、これは10進法で13から12を引いた
ら1となるのと合致します。では12から13を引
いたら、どうなるでしょう？
　実は、ここまで「整数の2進数表記」と書いて
きましたが、整数ではなく正の数と0、あるい
は、0を含む定義の自然数を2進数で表現したら
どうなるか、という話しかしていませんでした。
　そして、整数です。当然ながら、負の数も扱
います。しかし、コンピュータの内部で表現で
きる記号としては「0」と「1」しか扱えません。マ
イナスの記号は扱えないのです。さて、どうし
ましょう？
　マイナスになる引き算の例として、12 - 13を
考えてみます。なお、ここで扱う整数は8ビッ
トで表現できる範囲のものとして考えることに
しましょう。Cでいえばchar型に相当する大き
さです。前章で解説したとおり、理論上は、整
数の集合として無限大の大きさを持つものを考
えますが、コンピュータで処理する際の一般的
な処理系では、数を有限なものとして扱います。
ほとんどの計算はそれで用が足りるからです。
　さて、8ビットで表現した12 - 13を筆算で計
算してみましょう（図4）。一番下の桁は0から1

を引きたいところですが0よりも1のほうが大
きいのでそのままでは引けません。10進数での
引き算と同様に、上の桁から借りてきましょう。

 ▼図3　2進数の足し算

1011

1

1 1 0 0
1 1 0 1

1 1 0 0 1

 ▼図4　結果が負になる2進数の引き算

1 1 1 1 10 10 1 10

 0 0 0 0 1 1 0 0
 0 0 0 0 1 1 0 1
 1 1 1 1 1 1 1 1

なぜ、コンピュータは割り算が下手なのか！？第2特集

68 - Software Design

10 - 1は計算できますね。その答えは9……では
なく2進数なので、1です。
　次の桁、0から0を引く、ではなく、既に負債
があります。下の桁に1を貸した状態でした。し
かし、実は自分自身はもともと0だったので、さ
らに上の桁から借りてこなければなりません。
上の桁から借りてきて、10となりますが、そこ
から下の桁に融通したぶんの1を引くと、10 - 1

= 1となります。その状態で、やっと、1から0

を引くことができるようになりました。その答
えは1です。
　下から3桁め、下の桁に融通してやったので
0になっています。0から1は引けません。一番
下の桁と同様の手順で上の桁から1を借りてき
て、10 - 1 = 1と計算します。その次の桁も同様
ですね。5桁め以降は、下から2桁めと同じロ
ジックです。最後の桁だけは、もはやどうしよ
うもありません。架空の9桁めを想定し、そこ
から借りてくることにしましょう。その結果、
12 - 13 = -1の結果は、2進数表記で「1111 1111」
ということになりました。
　なお、上記の計算は、仮の9桁めが存在する
ような状態、すなわち、2進数での1 0000 0000、
10進数では256を足した状態で引き算を計算す
るとして、図5のような計算を行っていること
に相当します。ここで、22 = 21 + 2や23 = 2 ×

22、また28 = 27 + 26 + 25 + 24 + 2 × 23と展開し
ていることに注意してください。上の桁から借
りてきたり下の桁へ融通したりというやりとり
は、数式上、図5のように表すことができます。

本節のまとめ

・コンピュータのなかでは数値は2進数で表さ
れる

・我々が使っている10進数の整数を2進数の表
現に変換する手順は簡単である

・足し算と引き算は10進数での計算と同様の方
法で実現可能。結果が負の数になるような引
き算は、最上位のもう1つ上の桁を仮定して
計算する

負の数の取り扱いと乗除算

　足し算と引き算ができるようになったので、
本節では掛け算と割り算までの解説を試みます。
その前に、負の数の取り扱いをきちんと整理し
ておきましょう。

負の数の補数表現
　前節では、12から13を引く計算をしてみた
ことで、-1は「1111 1111」と表現されることがわ
かりました。余裕があれば、1111 1111（10進数
で -1）と 0000 1101（10進数で 13）を足したら
0000 1100（10進数で 12）となることを確認して
みましょう。なお、8ビットという制限がなけ
れば、 1111 1111と1101を足した結果は、1 0000

1100となるはずです。
　それにしても、-1を 1111 1111で表すのは、
一見、奇妙に見えませんか。実はこれは「補数」
という概念を用いることにより、マイナスの記
号を使わずに負の数を表現できるようにする工
夫なのです。nビットの数値表現において、あ
る数xの補数とは、xと加算すると2nとなるよ
うな数のことをいいます。8ビットの整数であ
れば、xの補数とxを足すと、28 = 256となるよ
うな関係です。
　さてここで、28は2進数で1 0000 0000 と表さ
れることを思い出してください。8桁の2進数を

 ▼図5　上の桁から借りてくる計算の数式的なイメージ

256 + 12 - 13 = (28 + 23 + 22) - (23 + 22 + 1)
 = (27 + 26 + 25 + 24 + 2 × 23 + 2 × 22 + 21 + 2) - (23 + 22 + 1)
 = 27 + 26 + 25 + 24 + 23 + 22 + 21 + 1

コンピュータ内部の取り扱い第2章

Nov. 2017 - 69

取り扱う処理系では、桁溢れが生じ、1 0000 0000

は0000 0000すなわち0と同一視されます。とい
うことは、yをxの補数、つまりxに足して0と
なるような数とすれば、x + y = 0という関係性
からy = -xが導かれるということです。このよ
うに、xの正負を反転させた -xをxの補数で表す
のは、極めて妥当な選択なのだということがわ
かります。
　補数の求め方は簡単です。8ビットで表され
た数値の、1と0を反転させたものを考えます。
たとえば、10進数の25であれば、2進数では
0001 1001と表現されるので、そのビットを反転
させた数値は1110 0110です。この2つの数を足
すと、1111 1111になります。これに1を足すと
桁溢れが生じて0000 0000になりますね。すな
わち、ある数xの補数は、「ビットを反転させた
ものに1を足す」という操作で求めることができ
ます。25の補数は、1110 0111です。0001 1001
と足し合わせて1 0000 0000になることを確認し
てみてください。

符号付き整数の実態
　8ビットの符号付き整数が扱うことのできる
範囲は、-128から127までです。なぜなら、128
以上の数は最上位ビットが1なので、その補数
の最上位ビットは0でなければなりません。し
かし、最上位ビットが0ということはその数は
127以下のいずれかの数値と同じになってしま
います。

　このような理由から、符号付き整数の最上位
ビットは正負のいずれかを表していると考える
ことができるでしょう。最上位ビットが0のと
きは正の数、最上位ビットが1のときは負の数
を表していると考えられます。
　リスト1のプログラムは、0から255までの符
号なし整数（unsigned char）を順番にインクリメ
ントし、符号なし整数と符号付き整数でどのよ
うに扱われるかを確認するためのものです。
　このプログラムをコンパイルして実行してみ
ると、図6のような出力が得られます（長いので、
一部、省略しています）。
　0から127までは符号なしでも符号付きでも同
じとなり、符号なしで128から255までは、符号
付きだと負の数になっていることがわかります。

掛け算と割り算
　長くなってきましたが、いよいよ、掛け算と
割り算です。これらの計算は、ビットシフトと
加減算の組み合わせで実現できます。
　ビットシフト演算とは、2進数で表現された
ビット列を、右左に何桁かずらす操作のことで

 ▼図6　コンパイルして実行してみる

$ gcc file1.c -o file1
$./file1
unsigned: 0, signed: 0
unsigned: 1, signed: 1
unsigned: 2, signed: 2
unsigned: 3, signed: 3
unsigned: 4, signed: 4
 （..省略..）
unsigned: 123, signed: 123
unsigned: 124, signed: 124
unsigned: 125, signed: 125
unsigned: 126, signed: 126
unsigned: 127, signed: 127
unsigned: 128, signed: -128
unsigned: 129, signed: -127
unsigned: 130, signed: -126
unsigned: 131, signed: -125
unsigned: 132, signed: -124
 （..省略..）
unsigned: 251, signed: -5
unsigned: 252, signed: -4
unsigned: 253, signed: -3
unsigned: 254, signed: -2
unsigned: 255, signed: -1
$

 ▼リスト1　file1.c

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char** argv) {
 unsigned char x = 0;

 while(1) {
 printf("unsigned: %4d, signed: %4d¥n", x, (char)x);
 if (x++ == 255) break;
 }

 exit(0);
}

なぜ、コンピュータは割り算が下手なのか！？第2特集

70 - Software Design

す。これまで何度も例題に出した25を8ビット
の2進数で表現すると、0001 1001でした。これ
を左に1ビットシフトさせると、0011 0010です。
　ところで、0001 1001は、十進数において2の
べき乗で表現すると、25 = 24 + 23 + 20で表され
るというわけでした。すなわち、各nビットめ
の1が立っているところだけ、2nを足し合わせ
た数になっているということです。これを左に
1ビットずらすということは、4を5に、3を4

に、0を1にするという状況と考えることができ
るでしょう。つまり、次のように操作するとい
うことです。

24 + 23 + 20 （̶1ビット左にシフト）

　→ 25 + 24 + 21

　ところが、1ビット左にシフトした値は、25 +

24 + 21 = 2 × (24 + 23 + 20) にほかなりません。
すなわち、左に1ビットずらすという操作は、そ
の数を2倍するということに相当します。また、
右に1ビットずらす操作は2で割るという計算
を行うことに相当します。
　例題として、25 × 6を考えてみましょう（図
7）。それぞれ、2進数の表現は1 1001と110で
す。掛ける数6を、一番下の桁から順番に走査
していきます。0であれば何もしません。1であ
れば、その桁の数だけ左にビットシフトした数
値を足していきます。最後まで走査し終えたら、
すべて足し合わせた数が答えです。6 = 22 + 21

ですので、6を掛けるということは、掛けられ
る数の25を左に2ビットシフトしたものと1

ビットシフトしたものを足し合わせればよいわ
けですね。
　割り算はその逆です。割る数を、あらかじめ
割られる数と同じ長さになるまで左シフトして
おき、割られる数よりも大きかったら0、小さ
かったら1を立てて引き算をして、順次、右に
シフトしていけばよいわけです。やり方は10進
数での除算とまったく同じで、計算途中で引い
ていく値を求めるのに部分的な乗算を行う必要
もなく、右方向のビットシフト演算をするだけ
ですので、10進数の割り算より簡単かもしれま
せん。

本節のまとめ

・負の数は補数表現で表すことができ、その求
め方は「各ビットを反転したものに1を足す」
である

・符号付き整数の最上位ビットが1のとき、そ
の数は負の数である

・乗算と除算は左右のビットシフトと加減算の
組み合わせで実現可能である

浮動小数点

　コンピュータの中で扱われている2進数を対
象にした四則演算がどのように実現されている
のかを、ここまで駆け足でおさらいしてきまし
た。しかし、いずれも整数を対象とした演算に
とどまっています。前章で、割り算の結果は整
数とは限らない、だから割り算は難しい計算な
のだという話をしました。コンピュータが整数
しか扱えないのでは、割り算はおろか、複雑な
計算などできようもありません。
　もちろん、2進数で実数を扱う枠組みは用意
されています。浮動小数点というしくみです。
ここでは、その中で最もシンプルな単精度の浮
動小数点を扱います。

 ▼図7　2進数の掛け算

1 1 0 0 1
1 1 0

1 1 0 0 1 0
1 1 0 0 1 0 0

1 0 0 1 0 1 1 0

左に1ビット
シフト

左に2ビット
シフト

コンピュータ内部の取り扱い第2章

Nov. 2017 - 71

固定小数点による実数とその課題
　2進数だからといって、整数だけしか表現で
きないというわけではありません。例として、
10進数で13.25という数を考えてみましょう。
　10進数の13は、2進数では1101でした。これ
は、13 = 8 + 4 + 1 = 23 + 22 + 20ということを
意味しているのでしたね。同じように、0.25は
どう表されるでしょうか。0.25は、1-22、つまり
2(-2)と表すことができます。したがって、13.25

は2のべき乗を組み合わせた表現によれば、次
のように表現されるということがわかります。

13.25 = 23 + 22+ 20+ 2(-2)

　これを、素直に2進数で表記すると、1101.01
と表現できるでしょう。しかし、ちょっと待っ
てください。コンピュータで扱える数値は0と
1のみ。小数点を表現する手段はありません。
　その問題を解決する方法として、小数点の場
所をあらかじめ決めておくという考え方がある
でしょう。これが、固定小数点の考え方です。
　8ビットの実数を想定したとして、仮に右か
ら3桁を小数部に使うと決めたとします。しか

　「配列を任意の部分集合に分割する。配列の要素数
をn個としたとき、組合せの数は何通りになるか？」
という問題の答えをすぐに求めることができますか？
　問題は、図8の例に示すように、一列に並べられた
何かをグループに分けるやり方は何通りあるでしょう
かというものです。
　いろいろな考え方があるでしょう。
　プログラマならわりとすぐに思いつくのではないか
という簡単な方法は、再帰法によって求めるやり方で
す（図9）。単純化のためにまったく分割しないケース
も含むこととして要素数がnのときの組合せの数を
f (n)とすると、f (n)は f(n-1)のときの2倍となること
がわかります。したがって、再帰的に計算していく
と、2(n-1)となります。まったく分割しないケースは除
くことにすれば、組合せの数は2(n-1)-1です。
　ところで、この問題は、2進数の応用問題と考える
と、一瞬で解答に辿り着くことができるのです（図10）。
　一列に並べた配列の要素に、区切りを入れてグルー
プに分割すると考えましょう。区切るところを「1」、
区切らないところを「0」とコーディングします。n個
の要素が並べられているとき、区切る個所は間のn-1
個なので、これは「n-1桁の2進数のうち1つでもビッ
トが立っている数は何個あるか？」という問題と同じ
です。n-1桁の2進数は2(n-1)個あるので、1つでもビッ
トが立っている数の個数は、そこから0（すべてのビッ
トが0）を除いた2(n-1)-1個です。

2進数で考える（部分集合の数を求める問題）コ ラ ム

 ▼図8　部分集合に分ける例

例 1

例 2

例 3

 ▼図9　再帰的に考える方法

-f(n) = 2×f(n-1) = 2×2×f(n-2) - ... = 2n-1f(1)
-f(1) = 1

f(n -1)f(n)

 ▼図10　2進数で考える方法

例：前の図で例 1のケース

- 区切る個所を「1」
- 区切らない個所を「0」とコーディングすると……

1 0 1 0 0 1

なぜ、コンピュータは割り算が下手なのか！？第2特集

72 - Software Design

し、このやり方はあまりうまくありません。小
数点以下に3ビットもとってしまうと、残りは
5ビットしかありません。5ビットで表すことが
できる数値はたかだか32個。符号付きにしたと
したら、正の数としては15までしか表すことが
できません。
　小数点以下にも課題が残ります。3ビットで
表せる最小単位は2(-3)、これはたかだか0.125で
す。小数部が3ビットしかないような表現では、
0.125よりも細かい数字を表すことができません。
　もちろん、全体が8ビットしかないことが問
題なので、一般的な32ビットやその倍の64ビッ
トにすればある程度は解決する制約ですが、数
値が取ることのできる範囲を大きくしようと、
小数点を右側に設定すれば小数点以下の粒度が
荒くなり、細かい粒度で数を表現したいと小数
点を左側に設定すれば、表すことができる数の
大きさが限られるというトレードオフが発生し
てしまいます。そのため、現在のコンピュータ
におけるほとんどの処理系では、固定小数点で
はなく浮動小数点の考え方によって実数を表現
しています。

指数表記と浮動小数点
　浮動小数点の考え方は、数値の指数表記に基
づいています。指数表記とは、数値を「仮数、基
数、指数」の組み合わせで表現するやり方です。
　具体例で示しましょう。123.45という数を考
えます。小数点を移動して、123.45 = 1.2345 ×

102という表記にします。ここで、1.2345を仮数
部、10が基数、2乗しているところの2を指数部
といいます。この表記は、非常に大きな数や、逆
にとても小さな数でもそれなりの精度で表現で
きるという特徴をもっています。電卓で計算結
果がとても大きくなってしまったときや、小さ
くなってしまったときに、1.23E+15とか、4.56E-

15などと表されることがありますが、これは、
基数が10であることを省略した表現です注3。な

注3） EはExponentの頭文字です。

お、仮数部の最上位は10進数の一桁で表すた
め、1から9の数字でなければなりません注4。
　さて、先の例では10進数の指数表記を考えま
した。コンピュータでは2進数を扱います。2進
数でも同様に指数表記を考えることができます。
10進数の25は2進数で1 1001でした。右にシフ
トさせるという操作は2で割ることと同じだっ
たことを思い出しましょう。右に4回シフトし
たものに24を掛ければ元どおりになります。つ
まり、1 1001 = 1.1001 × 24と指数表記で表すこ
とができました注5。
　先ほどの13.25はどうでしょうか。13.25を（固
定小数点で）2進数に直すと1101.01だったこと
がわかっていれば、あとはほぼ同じです。1101.01
を右に3回シフトすれば1.10101となるので、
1101.01 = 1.10101 × 23と表現されました。
　この指数表記の考え方に基づいて、コンピュー
タの内部での実数の取り扱いが定められていま
す。小数点があちこち移動するので、固定小数
点に対して浮動小数点と呼ばれます。

単精度浮動小数点（IEEE 754）
　浮動小数点をどのように表記するか、コン
ピュータの黎明期にはさまざまな方法が提案さ
れていたそうですが、現在は、ほとんどの処理
系で IEEEという団体が定めた IEEE 754とい
う標準にしたがって実装されています（図11）。
IEEE 754では、何ビット用いるかによって単
精度や倍精度などいくつかの形式が定義されて
います。本稿では32ビットを使う単精度で解説
しますが、倍精度であっても考え方は同じです。
　単精度浮動小数点は4バイト、すなわち、32

注4） 0は使いません。その理由はなぜでしょうか、少し考えると
自明ですので、頭の体操と思って考えてみてください。

注5） 仮数部のみ2進数表現としています。

 ▼図11　IEEE 754による単精度浮動小数点の定義

符号部 指数部 仮数部

コンピュータ内部の取り扱い第2章

Nov. 2017 - 73

ビットを使います。先頭は符号部（1ビット）、正
なら0、負の数なら1です。
　続く8ビットは指数部です。ただし、指数部
に収める数値は指数部の値に127を足した数に
します。この127をバイアス値といい、127を
足すことによって-127から128までの数値を表
現します。つまり、8ビットの整数は0～255ま
で表現できるので、指数部に記録された数から
127を引き実際の値に戻すことで、-127～128

の値を表現できるようにしているのです。
　残りの23ビットが仮数部です。ただし、仮数
部の先頭の1は省略します。なぜならば、仮数
部の先頭は必ず1になるからです注6。
　以上のルールを適用して、13.25の浮動小数
点表現を考えてみましょう。13.25は、2進数の
指数表現では1.10101 × 23と表されるのでした。
正の数ですので符号部は0です。指数部は3で
すが、127を足すと130です。130を2進数で表
すと1000 0010です。仮数部から先頭の1を省い
たものは1 0101、残りは0で埋めて23ビットに
すると、101 0100 0000 0000 0000 0000となりま
すね。以上を並べて13.25の単精度浮動小数点
による2進数表記は、0100 0001 0101 0100 0000

0000 0000 0000となるはずです。
　では、実際にプログラムを動かして確認して

注6） 10進数の指数表現において、仮数部の先頭は1～9であっ
て0は使わなかったことを思い出してください。2進数だと、
0を使わない仮数部の先頭は必ず1となるでしょう。

みましょう。リスト2のプログラムは、float型
で定義された変数を表示するだけのほとんど意
味のないプログラムですが、とりあえずこれを
使います。
　これを、gccでコンパイルしたあと、lldbデ
バッガ（gdbでも同様）で中身を覗いてみます（図
12）。
　デバッガを起動したら、7行めにブレークポ
イントを設定します（b 7）。実行（r）し、ブレー
クポイントで停止したら、変数xの中身をみて
みましょう。pコマンドを使い、「p x」とすれば
中身が13.25であることを確認できます。次に、
pコマンドのスイッチで「/t」を指定します。こ
れは「値を2進数で表示せよ」という指定です。
「p/t x」とすると、変数xの内容を2進数で表示
してくれます。先頭の0bは2進数であることを
示しています。先ほどの結果と比べてみましょ
う。同じ結果になっていますね？｢

本節のまとめ

・固定小数点はシンプルだがいろいろと課題も
多く、実際には使われていない

・浮動小数点は指数表記の考え方に基づいてい
る。なお、2進数なので基数は2である

・IEEE 754のフォーマットに従い、符号部、指
数部、仮数部を並べることで、実数を2進数
で表すことができる

 ▼リスト2　file2.c

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char** argv) {
 float x = 13.25;
 printf ("%f\n", x);
 exit (0);
}

 ▼図12　デバッガを用いた浮動小数点の確認

なぜ、コンピュータは割り算が下手なのか！？第2特集
第2特集 なぜ、コンピュータは割り算が下手なのか！？

74 - Software Design

CPUレベルで考える
実装上の話題

第3章

CPUにおける演算

　結局のところ、実際の演算を処理するのは
CPUの命令（機械語）レベルの話です。そのレベ
ルから、割り算は遅いという事実を受け止め、
対策を考えるのが得策というものでしょう。

DIV命令とさまざまな工夫
　何はともあれ、まずはCPUの命令レベルで
「割り算はコスト注1のかかる処理だ」ということ
を確認しましょう。Intelのx86系CPU注2の浮動
小数点関係のサブセットであるx87命令セット
の仕様をみてみましょう。表1は浮動小数点命
令に関する記載から四則演算部分を抜粋したも
のです。

注1） 費用ではなく、時間・労力などの負担と捉えてください。
注2） 本章ではおもに Intel x86系CPUを元に、話を進めます。

　表中のレイテンシの数値は命令の実行の開始
から完了までにかかる時間注3のこと。スループッ
ト注4の数値はCPUのパイプラインを占有するこ
とによって後続の命令をブロックする時間です。
これを見ると、レイテンシ、スループットとも
に、割り算の処理は極めて時間がかかることが
明白です。加減算、掛け算と比較すると、3倍
から8倍以上もの手間がかかるようです。
　一方で、CPUには逆数を求める命令も用意さ
れています。xをyで割るという演算は、xにy

の逆数（1_
y）を掛けると解釈できます。つまり、

逆数を求める演算を簡易に実現できれば、逆数
を求めて掛け算を行うことで、割り算を比較的
低コストに実現できるというわけです。実際の
計算においては、逆数を必要とする場面も少な
くないため、逆数を求める演算を独立して用意
しておくことにはそれなりの意義があると言え
るでしょう。
　逆数を求める演算は、パラメータが1つ
であることから問題もシンプルで、低コス
トなアルゴリズムがいくつか提案されてい
ます。平方根の逆数を求めてそれを2乗す
る方法（Fast inverse square root algorithm）

注3） クロック数と呼ばれ、CPUの動作周波数によって1ク
ロックの時間が計算できる。

注4） Intelの仕様書による用語定義より。

 Author 飯尾 淳（いいお じゅん）　中央大学
 Mail iiojun@tamacc.chuo-u.ac.jp

 Twitter @iiojun

　四則演算の中でも割り算はとくに難しい計算だという話と、コンピュータで演算処理をどう扱うかと
いう基礎がわかったところで、いよいよ、コンピュータは割り算が苦手というその理由に踏み込んで
いきましょう。本章では、CPU（Central Processing Unit：中央演算装置）が数値演算をどう扱う
かという話と、実際に割り算は遅いのかという話の核心に迫ります。

 ▼表1　四則演算に関する浮動小数点命令の例

命令 動作 レイテンシ スループット
fadd 浮動小数点加算 5 1
fsub 浮動小数点減算 5 1
fmul 浮動小数点乗算 7 2
fdiv（単精度）

浮動小数点除算
23 23

fdiv（倍精度） 38 38
fdiv（拡張精度） 43 43

CPUレベルで考える実装上の話題第3章

Nov. 2017 - 75

や、除算テーブルを用いて逆数の近似値を求め
る方法、ニュートン法注5で求める方法などが利
用されているようです。

数値演算プロセッサとGPU
　そもそも、複雑な数値演算には特別なハード
ウェアが必要だという認識は、CPUというもの
が作られた当初から考えられていたことでした。
現在の Intelアーキテクチャの基礎を成す8086

CPUの時代から、その考え方は存在していまし
た。当時、コプロセッサ（数値演算プロセッサ。
浮動小数点処理装置（Floating Point Unit： FPU））
として8087という型番のハードウェアが、8086
のCPUとは別にチップとして存在していまし
た。ややこしい数値演算はコプロセッサが行っ
ていたのです。
　今回参照したインテルの仕様書にも、x86で
はなく、x87浮動小数点命令という名称で記載
されており、その名残を確認できます。CPUが
拡張されるとともに、コプロセッサの機能は
CPUの内部に取り込まれていきました。
　しかし、昨今の状況はどうでしょうか。そう、
GPU（Graphics Processing Unit）です。GPUは
そもそも画像処理用として誕生しました。グラ
フィクスのための演算を処理するためのデバイ
スです。しかし、世間には意外にもグラフィク
ス演算と類似の処理をする需要が溢

あふ

れていたよ
うです。最近では、GPGPU（General Purpose

GPU）と称し、汎用演算をGPUで処理しようと
いうやり方が当たり前になりました。そのため
のライブラリなども整備されています。もはや
GPUというよりはコプロセッサと呼ぶべきなの
ではないでしょうか。
　最近では、AIブームに乗って、ディープラー
ニング（深層学習）に特化した専用のプロセッサ
「Tensor Processing Unit（TPU）」を Google が
開発しています。ディープラーニングで用いる
多層・多ノードのDeep Neural Network（DNN）
では、多数の積和演算とアクティベーション関
注5） aの逆数xを求める漸化式。xn+1=xn(2-axn)

数注6の組み合わせという典型的な計算パターン
を多用します。このような定型化された演算が
必要なシーンは、専用のハードウェア化によっ
て処理の高速化を図る手法が適しています。
　かつて、信号処理では同じように積和演算を
多用するシーンがありました。信号処理装置に
使われていたDigital Signal Processor（DSP）
では、CPUと同様の機能に加えて、多数のデー
タを対象として積和演算を1命令で実施できる
ような専用の命令が備えられていたものです。
このような技術の変遷を見ていると、歴史は繰
り返すという言葉が、頭に浮かんできますね。

本節のまとめ

・	CPUレベルでDIV命令は遅い。そのためにい
ろいろな工夫が重ねられている

・	複雑な計算をするコプロセッサ機能はCPUに
取り込まれた。しかし、似たような考え方は
GPUやTPUなどにしぶとく生き残っている

試してみよう
　それでは実際に、割り算はどのくらい遅いの
かを試してみることにしましょう。リスト1は、
1から9,999まで2組の数をそれぞれ計算する
「だけ」のC言語で書かれたプログラムです。
　file3_add.cをコピーしたファイルを作り、そ
注6） ニューラルネットワークで使用される関数。

 ▼リスト1　file3_add.c

#include <stdio.h>
#include <stdlib.h>

#define MAX_ITER 10000

int
main (int argc, char** argv) {
 int i, j;
 double x, y, z;
 for (i = 1; i < MAX_ITER; i++)
 for (j = 1; j < MAX_ITER; j++) {
 x = (double)i;
 y = (double)j;
 z = x + y;
 } ↑この演算子を加減乗除で作成
 exit (0);
}

なぜ、コンピュータは割り算が下手なのか！？第2特集

76 - Software Design

れぞれにおいて足し算をしている部分（z = x +

yの部分）を、引き算、掛け算、割り算に変更し
たものを、それぞれ file3_sub.c、file3_mul.c、
file3_div.cとしておきます。
　それぞれ、コンパイルして実行させてみましょ
う（図1）。timeコマンド注7で実行時間を測りま
す。科学的に計測するには何回か試行して平均
値をとるべきですが、今回はとりあえず1回の
試行結果を示します。みなさんもご自身で何回
か試して確認してみてください。
　このように、割り算を使ったプログラムだけ、
ほぼ倍の時間がかかっています。もちろん割り
算以外の部分に関するオーバーヘッドがあるの
で割り算は倍程度遅いと結論付けることはでき
ませんが、割り算だけとくに時間がかかる処理
であるということは理解できるでしょう。
　file3_div.cがどのようなコードに変換されて
いるか、もう少し詳細に確認してみます。gcc
-S file3_div.cとしてアセンブラのコードを
出力すると、リスト2のようなコードが生成さ
れていました。
注7） 指定したコマンドの実行時間を表示するコマンド。realは呼

び出しから終了まで、userはコマンド自体の処理時間、sys
はOSが処理した時間。

　1994年の10月、当時インテルの主力製品であったPentiumプロセッサにバ
グがあることが報じられました。そのバグとは、x87浮動小数点命令の除算命
令、FDIVを実現する回路に誤りがあり、ある数値で割り算を実施するとその結
果として誤った数値を返すというものでした。FDIV命令にバグがあるということで、Pentium FDIVバグ
とも呼ばれています。
　このバグそれ自体は、ごくまれなケースで発生するものとして、些細なものであるとインテルは主張し
ました。確かにその状況が発生する確率は非常に低いものだったようです。しかし、完全性が求められる
コンピュータとしては、信頼性に不安を抱かせるに値する大きな問題でした。90年代半ばといえば、イン
ターネットの普及とともにパソコンそれ自体が一般消費者に受け入れられるようになっていた時代です。日
本ではWindows 95が牽引役となり、パソコンが家電製品並みに扱われるようになってきたタイミングで
した。そのような状況に水を差す出来事だったと記憶しています。
　このバグ（エラッタ）は、その後、ソフトウェア的に回避するという対応が選ばれました。この失敗に懲

こ

りたのかどうかは知りませんが、今ではCPU内部のマイクロコードを修正できるような手段が提供される
ようになっています。ハードウェア的なエラッタが生じたとしても、BIOSやOSがパッチを適用すること
によりそれを回避できるようなしくみが用意されているのです。

Pentium FDIVバグの話コ ラ ム

　file3_add.s、file3_sub.s、file3_mul.sも同様
にして作成し、比較すると、それぞれのファイ
ルではdivsd命令の代わりにaddsd、subsd、
mulsd命令が使われていることがわかります。
それ以外の部分はすべて同じです。前節で示し

 ▼図1　各演算のベンチマーク

$ gcc file3_add.c -o file3_add
$ gcc file3_sub.c -o file3_sub
$ gcc file3_mul.c -o file3_mul
$ gcc file3_div.c -o file3_div
$ time ./file3_add

real 0m0.499s
user 0m0.492s　　←足し算にかかった時間
sys 0m0.003s
$ time ./file3_sub

real 0m0.501s
user 0m0.494s　　←引き算にかかった時間
sys 0m0.003s
$ time ./file3_mul

real 0m0.558s
user 0m0.552s　　←掛け算にかかった時間
sys 0m0.003s
$ time ./file3_div

real 0m1.076s
user 0m1.069s　　←割り算にかかった時間
sys 0m0.003s
$

CPUレベルで考える実装上の話題第3章

Nov. 2017 - 77

 .section __TEXT,__text,regular,pure_instructions
 .macosx_version_min 10, 12
 .globl _main
 .align 4, 0x90
_main: ## @main
 .cfi_startproc
BB#0:
 pushq %rbp
Ltmp0:
 .cfi_def_cfa_offset 16
Ltmp1:
 .cfi_offset %rbp, -16
 movq %rsp, %rbp
Ltmp2:
 .cfi_def_cfa_register %rbp
 subq $48, %rsp
 movl $0, -4(%rbp)
 movl %edi, -8(%rbp)
 movq %rsi, -16(%rbp)
 movl $1, -20(%rbp) i = 1
LBB0_1:

 cmpl $10000, -20(%rbp) i < MAX_ITER
 jge LBB0_8
BB#2:
 movl $1, -24(%rbp) j = 1
LBB0_3:

 cmpl $10000, -24(%rbp) j < MAX_ITER
 jge LBB0_6
BB#4:
 cvtsi2sdl -20(%rbp), %xmm0 xmm = (double)i
 movsd %xmm0, -32(%rbp) x = xmm
 cvtsi2sdl -24(%rbp), %xmm0 xmm = (double)j
 movsd %xmm0, -40(%rbp) y = xmm
 movsd -32(%rbp), %xmm0 xmm = x
 divsd -40(%rbp), %xmm0 xmm = xmm / y
 movsd %xmm0, -48(%rbp) z = xmm
BB#5:
 movl -24(%rbp), %eax EAX = j
 addl $1, %eax EAX = EAX + 1
 movl %eax, -24(%rbp) j = EAX
 jmp LBB0_3
LBB0_6:
 jmp LBB0_7
LBB0_7:
 movl -20(%rbp), %eax EAX = i
 addl $1, %eax EAX = EAX + 1
 movl %eax, -20(%rbp) i = EAX
 jmp LBB0_1
LBB0_8:
 xorl %edi, %edi EDI = 0
 callq _exit exit(EDI)
 .cfi_endproc

.subsections_via_symbols

 ▼リスト2　file3_div.s

※アセンブラコードのコメント部分は、解説のため省略しました。
※コード左側がラベル（ジャンプ先）、インデントされた順に、オペランド（コマンド）、オペコード（複数の場合はカンマ区切り）です。
※反転部分はC言語プログラムの対応部分です。解説上、CPU内部メモリ（レジスタ）は、xmm、EAX、EDIとしてあります。
※オペランドの jmp（無条件ジャンプ）、jge（Jump Greater than or Equal：大きいか等しい場合ジャンプ）には矢印を入れました。

なぜ、コンピュータは割り算が下手なのか！？第2特集

78 - Software Design

たfaddやfdivとは違う命令注8ですが、仕様に
よれば、divsd命令もレイテンシとスループッ
トともに、それ以外とは格段に大きな値になっ
ていることを確認することができます。s

注8） 厳密には、fadd、fsub、fmul、fdivなどはx87命令セット
の命令です。addsd、subsd、mulsd、divsdなどはSSE
（Streaming SIMD Extensions）の SIMD拡張命令で、
Pentium Ⅲから実装されました。

　割り算はコストがかかる計算であるということを確認したので、最適化を考えてみましょう。gccに-O
オプションを付けて、コンパイル時に最適化処理を加えてみます。

$ gcc -O file3_div.c -o file3_div_opt
$ time ./file3_div_opt

real 0m0.006s
user 0m0.001s
sys 0m0.002s
$

　おやおや？　ものすごく最適化されましたよ。圧倒的な速さです。生成されたコードを見てみましょう
（リスト3）。
　実は、「何もしない」コードに変換されてしまっていたのでした。もともと、file3_div.cのなかで、計算
結果は変数zに格納されるものの、その後まったく利用されず使い捨てにされていました。コンパイラの最
適化によって、「なかったこと」にされたわけですね。

コンパイラによる最適化コ ラ ム

本節のまとめ

・	割り算は、インストラクションレベルでコス
トの高い計算である、ということを改めて確
認した

・C言語で作成されたプログラムが、実際にど
のようにアセンブラで展開されているかを確
認した

 ▼リスト3　file3_div_opt.s

 .section __TEXT,__text,regular,pure_instructions
 .macosx_version_min 10, 12
 .globl _main
 .align 4, 0x90
_main: ## @main
 .cfi_startproc
BB#0:
 pushq %rbp
Ltmp0:
 .cfi_def_cfa_offset 16
Ltmp1:
 .cfi_offset %rbp, -16
 movq %rsp, %rbp
Ltmp2:
 .cfi_def_cfa_register %rbp

 xorl %edi, %edi
 callq _exit
 .cfi_endproc

.subsections_via_symbols

この間のコードがすべてなくなっている

バックナンバー好評発売中 ！ 常備取り扱い店もしくはWebより購入いただけます
本誌バックナンバー（紙版）はお近くの書店に注文されるか、下記のバックナンバー常備取り扱い店にてお求めいただけます。また、「Fujisan.co.jp」（http://
www.fujisan.co.jp/sd）や、e-hon（http://www.e-hon.ne.jp）にて、Webから注文し、ご自宅やお近くの書店へお届けするサービスもございます。

バックナンバーのお知らせ

デジタル版のお知らせ D I G I T A L

Nov. 2017 - 79

デジタル版Software Design 好評発売中 ！ 紙版で在庫切れのバックナンバーも購入できます
本誌デジタル版は「Fujisan.co.jp」（http://www.fujisan.co.jp/sd）、「雑誌オンライン.com」(http://www.zasshi-online.com/)、「Gihyo Digital Pub
lishing」（https://gihyo.jp/dp）で購入できます。最新号、バックナンバーとも1冊のみの購入はもちろん、定期購読も対応。1年間定期購読なら5％強の
割引になります。デジタル版はPCのほかに iPad／ iPhoneにも対応し、購入するとどちらでも追加料金を払うことなく、読むことができます。

雑誌オンライン

Fujisan

※店舗によってバックナンバー取り扱い期間などが異なります。在庫などは各書店にご確認ください。

Software Design　バックナンバー常備取り扱い店

北海道
札幌市中央区 MARUZEN＆ジュンク堂書店　札幌店 011-223-1911 神奈川県 川崎市高津区 文教堂書店　溝の口本店　 044-812-0063
札幌市中央区 紀伊國屋書店　札幌本店 011-231-2131 静岡県 静岡市葵区 戸田書店　静岡本店 054-205-6111

東京都

豊島区 ジュンク堂書店　池袋本店 03-5956-6111 愛知県 名古屋市中区 三洋堂書店　上前津店 052-251-8334

新宿区 紀伊國屋書店　新宿本店 03-3354-0131 大阪府 大阪市北区 ジュンク堂書店　大阪本店 06-4799-1090

千代田区 書泉ブックタワー 03-5296-0051 兵庫県 神戸市中央区 ジュンク堂書店　三宮店 078-392-1001
千代田区 丸善　丸の内本店 03-5288-8881

広島県
広島市南区 ジュンク堂書店　広島駅前店 082-568-3000

中央区 八重洲ブックセンター本店 03-3281-1811 広島市中区 丸善　広島店 082-504-6210
渋谷区 MARUZEN＆ジュンク堂書店　渋谷店 03-5456-2111 福岡県 福岡市中央区 ジュンク堂書店　福岡店 092-738-3322

Webで

購入 ！
家でも

外出先でも

 第1特集
先輩が教える得ノウハウ
Linux入門【UNIXネットワーク編】
 第2特集
サイボウズ流　サービス改善につなげる
ドッグフーディング環境の作り方
 第3特集

いまから学ぶブロックチェーン
のしくみ

2017年5月号

定価（本体1,220円＋税）

 第1特集
Vim、Emacs、Atom、Visual Studio Code
あなたのプログラミングを
加速させるエディタ
 第2特集
多用途に使いこなせ、コードが読みやすく保守しやすい
今すぐはじめるPython
 一般記事
・ハッシュ関数を使いこなしていますか？（前編）
・Windows Server 2016で構築する最新ファイサーバ
 （前編）

2017年6月号

定価（本体1,220円＋税）

 第1特集
もっとbashを使いこなしませんか？
理論＆応用でシェル力の幅を広げる
 第2特集
データの抽出・加工に強くなる！
MySQL［SELECT文］集中講座
 一般記事
・ハッシュ関数を使いこなしていますか？（後編）
・Jamesのセキュリティレッスン【10】
・Windows Server 2016で構築する最新ファイサーバ
 （後編）

2017年7月号

定価（本体1,220円＋税）

 第1特集

私も機械学習エンジニアになりたい！
先端Web企業の取り組み方は？

 第2特集

エンジニアのための
うけるプレゼン・すべるプレゼン
——あなたの思いを伝える技術、教えます

 一般記事
・「Mastodon」旋風からわかるSNSの未来

2017年8月号

定価（本体1,220円＋税）

 第1特集

Web技術【超】入門
いま一度振り返るWebのしくみと開発方法

 第2特集
tmux&Byobu
開発効率アップのターミナル改造術
 一般記事
・認証を支える技術
・Ejectコマンドで遊んでみませんか？

2017年9月号

定価（本体1,220円＋税）

 第1特集

Gitのキホン
GitHub、Bitbucket、GitLab、GitBucket

 第2特集

脆弱性スキャナVuls入門
システムのセキュリティチェックをもっと楽に

 一般記事
・ネットワークエンジニア　その技術の極め方
・身近なメールで使われている技術をネットワーク
 コマンドで体験してみよう

2017年10月号

定価（本体1,220円＋税）

http://www.fujisan.co.jp/product/1535/
http://www.fujisan.co.jp/product/1535/
http://www.e-hon.ne.jp
http://www.zasshi-online.com/
http://www.fujisan.co.jp/sd
https://gihyo.jp/dp
https://gihyo.jp/dp

0

1

2

3

4

5

6

7

8

3

4

5

6

7

80 - Software Design

業務改善に至る背景

　ビッグデータ、データ分析・解析、BI（Business

Intelligence）ツールなど、蓄積した大規模デー
タを使用し、ビジネスに活かすシーンが増えて
きました。この潮流は、データの収集や可視化
を効率的に行うことで、「原因・要因の発見や、
情報・状況の迅速な把握を可能にし、より精度
の高い具体的なアクションの意思決定をする」と
いうニーズの高まりによるものなのではないか
と思います。
　以前はこのようなことを実現するためには、
環境を準備するだけでも多大な工数が必要とさ
れていました。しかし昨今は、安価で容易に実
現できるさまざまなサービスが台頭してきてい
ます。また、それらを使用することによって専
任のエンジニアではなくても扱えるようになる
ため、エンジニアの工数低減や、作業効率、情
報の把握、アクションの精度が向上しやすい環
境が整いつつあります。
　弊社でもPIXTA注1を運営する中で、次のよう
な取り組みが頻繁に行われるようになりました。

注1） https://pixta.jp

・蓄積したデータの分析・解析を行い、施策を
行ううえでの根拠とする

・施策実施中、実施後の計測や数値のビジュア
ライズをする

・計測などをした結果を元に、さらに良い結果
が導けるか検討をする

　弊社では、全社員の内わけとしてエンジニア
比率が20％前後とけっして多くはなく、プロダ
クト改善の合間に上記のようなデータ抽出依頼
をこなしています。また、直接施策に影響があ
るようなものがすべてではなく、ビジネス側の
メンバーが作成する週報や月報のデータ抽出依
頼もこなしています。これはデータの所在が
MySQLやTreasure Dataなど、おもにエンジ
ニアが操作しなければ取得することが難しいよ
うな構成になっていたためです。
　このような体制だったことから、エンジニア
ではないメンバーが増えるにしたがってデータ
抽出依頼の量も増え、次第にプロダクト改善の
スピード感が損なわれてしまう問題が出てきて
しまいました。具体的には次のような問題です。

エンジニアがデータ抽出依頼
対応に割く工数が増える

　先述のとおり、エンジニアではないメンバー
が増えていくにつれてデータ抽出依頼が多くな

 Author 星 直史（ほし なおし）　ピクスタ㈱　

 Blog http://blog.naoshihoshi.com/ 　 Twitter @NaoshiHoshi
 Facebook https://www.facebook.com/naoshi.hoshi 　 Mail hoshinaoshi@gmail.com

Redash＋SQL勉強会で
業務改善！

エンジニア任せにしない
データ分析の基盤作り
蓄積されたデータをビジネスに活かしたい！　でもデータベースが使えない人はエンジニアにお願いしなければな
りません。片や本業の合間をぬってデータを用意し、片やデータをもらうまでは仕事が進まない……。仕事の
流れを止めてしまうこの状況を打開するために、ピクスタが行った改善事例を紹介します。

http://blog.naoshihoshi.com/
https://www.facebook.com/naoshi.hoshi
https://pixta.jp

3

4

5

6

7

3

4

5

6

7

80 - Software Design Nov. 2017 - 81

り、本来優先度を高くして取り組みたいプロダ
クト改善が思ったようなスピード感で進められ
なくなってきました。
　データ抽出依頼が増えてしまう要因の1つで
もありますが、以前抽出したデータの“日付の範
囲を変更しただけ”のものも定期的に依頼されま
す。また、使用したクエリがエンジニア間で共
有されておらず、別のエンジニアが対応した場
合にはクエリをはじめから作成してしまうといっ
た無駄な工数が発生していました。

データ抽出完了待ちが発生する

　データ抽出がエンジニアにしかできない作業
であったため、依頼者が抽出されたデータをも
とに別の行動を起こす場合、対応が完了するま
で待ち続けなければなりませんでした。プロダ
クト改善においてはPDCAを回すことが重要な
活動の1つですが、これを高速に回すことがで
きず、エンジニア以外のメンバーのスピード感
も失われつつありました。

機械的にできることを
手作業で行ってしまう

　エンジニアはすべてのデータ抽出を最優先で
行うわけではなく、ほかのタスクを優先して対
応しなければならない場合もあります。しかし、
ほかのタスクを優先することが続いてしまうと
データ抽出依頼者は待ちきれず、クエリを実行
すれば一瞬で終わるような処理を、膨大なデー
タを目視で確認し、手作業で計算、計測を行う
ようになってしまいました。
　また、データ抽出依頼者も「エンジニアが忙し
そうだから依頼しにくい」と思ってしまい、手作
業でやってしまおうという空気感ができてしま
いました。エンジニアと非エンジニアの間に余
計な気遣いが発生してしまい、結果的に本来行
うべき作業に集中できないといった問題が発生
してしまいました。

◆　◆　◆
　このような問題を抱えていると、メンバー各
個人の生産性が向上せず、ユーザに対する価値

提供のスピードや質が低下してしまいます。限
られた人員でプロダクトを作っている弊社にとっ
て、これは非常に重大な問題だととらえました。
　そこで、まずはこれらの問題が改善している
状態を思い描き、その状態から逆算して、対応
を進めることにしました。改善している状態は
次のとおりに定義しました。

・MySQLからのデータ抽出をエンジニアでは
ない職種の方でも抽出できている状態

・抽出したデータを容易にビジュアライズでき
ている状態

・結果的にエンジニアのデータ抽出依頼が減っ
た状態

　本記事では、上記の問題を改善するために、
データ可視化ツールであるRedash注2を導入し、
非エンジニア自らが、データの閲覧とクエリの
修正を行えるようになるまでに、弊社で取り組
んだことについて紹介します。

問題の切り分け

　まず理想の状態を実現するまでの障壁を分解
しました。

実データをエンジニアではない
職種の方でも抽出できる

　エンジニアの場合は、MySQLサーバに対し
て接続が許可されたサーバに接続し、CLIで
SQLを実行し、欲しいデータを取得することが
できますが、非エンジニアの場合は、そもそも
サーバに接続すること自体、難易度が高く、デー
タ取得の障壁になってしまうのではないかと考
えました。そのため、使用者（非エンジニア）に
“サーバに接続”ということを意識させないよう
なしくみが必要だと考えました。

抽出したデータを容易に
ビジュアライズできる

　これまでのデータ抽出依頼のフローは、

注2） https://redash.io/

Redash＋SQL勉強会で業務改善！

エンジニア任せにしない
データ分析の基盤作り

https://redash.io/

3

4

5

6

7

3

4

5

6

7

82 - Software Design

1. エンジニアにデータ抽出を依頼
2. エンジニアがデータを抽出。依頼者は抽出さ

れるまで待つ
3. 依頼者がエンジニアから欲しいデータをCSV

などで受け取る

という手順でした。抽出結果をCSVなどで受け
取ったあとは、多くの場合はGoogleスプレッド
シートやExcelにデータを貼り付け、グラフ化
をしてビジュアライズしていました。さらには、
そのグラフのスクリーンショットを取り、社内
で使用する資料（週報）などに貼り付けるという
作業をしていました。
　そのため、データ取得、可視化、共有を行う
までに、異なるツールを使用して何ステップも
踏まなければならなかったので、これを一元化
できるものが必要だと考えました。

何ができれば必要十分か

　上記の障壁を勘案すると、次の項目が満たさ
れると理想の状態を作るための環境が整うので
はないかと考えました。

・データ取得の容易性
・可視化（ビジュアライズ）の容易性
・共有することの容易性

データ可視化ツールの検討

　冒頭でも述べたとおり、昨今では多様なデー
タをビジネスに活かすニーズが高まってきてお
り、商用BIツールや、オープンソースソフト
ウェア（OSS）のデータ可視化ツールが台頭して
きました。まず、弊社では導入を検討する際に
表1の観点で商用かOSSかを比較しました。

導入と撤退の容易性

　商用の場合は、サービスの契約先の営業さん
に話を聞いたり、ライセンスの契約を結んだり、
入金するための社内稟議を通さなければならな

かったりするなど、気軽に導入ができないので
はないかと思います。
　OSSの場合、自分たちで環境構築しなければ
ならない手間こそはありますが、Amazon Web

Services（AWS） AMI、Google Compute Engine

のCustom Image、Docker Composeなどを使用
すれば瞬時に動作する環境が手に入ります。
　また、撤退の容易性についても検討しました。
商用の場合はライセンスや契約期間といった縛
りがあるため、仮に導入が失敗した場合も簡単
に契約を打ち切ることができません。OSSの場
合は導入が容易であることと同時に、社内で構
築した環境を捨てるだけで瞬時に撤退できます。
　このようなことから、導入と撤退の容易性と
いう点においては、OSSのほうが有利であると
判断しました。

コスト（金銭面）

　商用の場合ライセンス料金を支払う必要があ
りますが、OSSの場合ライセンス自体に料金は
かかりません。仮に導入に失敗した場合でも、
OSSならば金銭的な痛手はほぼかかりません。
かかるとしたら導入時に使用したインスタンス
料金くらいでしょうか。ただ、これについても
最小のインスタンスや構成で環境を構築すれば
ローコストで運用できるため、懸念として挙げ
るほどではないと言えます。

サポート体制

　サポート体制について比較するのはやや難し
いですが、商用の場合はメーカーからサポート
が受けられる一方、問い合わせから回答まで時
間がかかることがあります。また、機能のカス
タマイズや使用するメンバーが増えた場合に再

 ▼表1　 データ可視化ツールの選択：商用とOSSを
ピクスタの視点で比較

導入と撤退
の容易性

コスト
（金銭面）

サポート
体制

商用 × × △
OSS ○ ○ ×（？）

3

4

5

6

7

3

4

5

6

7

82 - Software Design Nov. 2017 - 83

度契約を結ぶ必要があるなど、柔軟な対応がで
きないことが考えられます。
　一方OSSでは、基本的にはすべて自分たちで
解決しなければならないのでサポートという一
般的な観点では×でしょう。しかし、OSSのコ
ミュニティ活動が活発であったり、問題が発生
した場合でも公開されているソースコードを読
めば原因と対策を打てる場合があります。表1

の欄に「？」をつけたのはこのためです。

OSSのデータ可視化
ツールの比較検討

　大きく分けて商用かOSSかで比較した結果、
運用まで持っていけるような確実性がないこと
と、すばやくツールを導入して状況が改善する
かの検証が重要であると判断したことから、導
入と撤退の容易性とコストの観点でOSSのデー
タ可視化ツールを採用することにしました。
　OSSのデータ可視化ツールで検討したのは
Superset注3とRedashです。比較検討した項目は
表2のとおりです。

環境構築の敷居と運用の容易性

　ここでいう環境構築の敷居と運用の容易性と
は、技術的な導入の敷居と、導入者だけではな
くそれ以外のメンバーも容易に運用できるかで
す。これらについて検討しました。Supersetは
環境構築の手段としてDocker Composeしか対
応していませんでした注4。一方Redashは、AWS

AMI、Google Compute EngineのCustom Image、
Docker Composeと構築の方法が充実していま
した。

注3） https://github.com/apache/incubator-superset

注4） 2017年1月当時。

　弊社のエンジニア全体のスキルを俯瞰し、
AWSとDockerについて、それぞれ扱えるメン
バー数とその知識の深さを比較した結果、AWS

のほうがはるかに優勢でした。また、今後の展
開を考えた場合、非エンジニアを含めて全社的
に導入することが最終目標であったため、非エ
ンジニアからの質問が多くなることが予想され
ました。その場合に、メンテナンスできるメン
バーが少ないことは持続可能性のリスクである
と考えたため、環境構築においてはAWS AMI

が使用できるRedashに軍配が上がりました。

データソースの充実

　Superset と Redash は MySQL や Postgre

SQLなどといったデータソースからデータを取
得し、可視化をします。SupersetとRedashが
扱えるデータベース（DB）・データウェアハウス
（DWH）に大きな差はありません注5。
　しかし、SupersetとRedashの差はDB・DWH

以外のデータソースが扱えるかどうかにありま
す。Redashでは、Google Analytics、Googleス
プレッドシートなど、基本的なDB・DWH以外
のサービスも扱えることが大きな特徴です。弊
社では、Googleスプレッドシートを利用して
データの加工、分析、ビジュアライズなどを行っ
ている非エンジニアのメンバーが多く、データ
可視化ツールでGoogleスプレッドシートが扱え
ることで、業務効率化が図れる可能性がありま
した。

◆　◆　◆
　ほかにも比較検討したことや機能差分はあり
ますが、弊社での大きな判断ポイントは上記の
2点でした。また、両判断ポイントにおいて
RedashはSupersetと比較して優位であったた
め、弊社ではデータ可視化ツールとしてRedash

を導入することにしました。

注5） MySQL、PostgreSQL、Redshift、Treasure Dataなど、比
較的シェアが大きいものについては両ツールともに使用す
ることが可能です。

Redash＋SQL勉強会で業務改善！

エンジニア任せにしない
データ分析の基盤作り

 ▼表2　 データ可視化ツールの選択：Supersetと
Redashをピクスタの視点で比較

環境構築の敷居
と運用の容易性

データソースの
充実

Superset × △
Redash ○ ○

https://github.com/apache/incubator-superset

3

4

5

6

7

3

4

5

6

7

84 - Software Design

データ可視化ツールの
導入と活用方法

　データ可視化ツールがRedashに決定しました
ので、実際に環境構築の方法と基本的な使い方
について説明します。解説にあたり前提は次の
とおりです。

・AWS AMIを使用注6

・Redashのバージョンは上記AMIを使用する
ため2.0.0+b2990を使用

・データ取得のターゲットはMySQL

　先述のとおりRedashはAWS AMIから立ち

注6） ap-notheast-1 AMI ID: ami-fde8199bを使用

上げることが可能です。各リージョンのAMIは
Redash Help Centerから取得できます注7。基本
的には通常のAMIの立ち上げと同様ですが、
RedashはWebからアクセスすることと、各種
設定、トラブルシューティング時にインスタン
スにSSH接続するため、セキュリティグループ
で80番、443番、22番を許容するように設定し
てください（図1）。
　また、Webからアクセスするため、Public IP

を取得する必要があります。EC2インスタンス
の起動設定「Step 3: Configure Instance Details」
のAuto-assign Public IPをEnableに設定しま
す（図2）。

注7） Setting up a Redash instance URL https://redash.io/
help-onpremise/setup/setting-up-redash-instance.html

　目 的 や 組 織 に よ っ て は Redash（図 A）よ り
Superset（図B）のほうが良い可能性もあります。
弊社では大きな判断ポイントとして「環境構築の敷
居と運用の容易性」と「データソースの充実」という
2点を挙げましたが、弊社の事情をふまえず、単
純にツールとして比較した場合、次のような違い
があります。

・UIによる操作
・柔軟なダッシュボードの見せ方

　おもにUIによる操作と、描画したグラフの種類
とその見せ方に大きな特徴があります。Redashは
SQL を書くことが前提であることに対して、

Supersetはグラフを描画する際、UI（プルダウン
リストなど）でどこの情報の何をどうやって描画す
るかを選択し、データを表示させることができま
す。また、ダッシュボードにおいては、Redashは
1行が2カラムに分かれていて、グラフの表示領域
を1カラムまたは2カラムしか指定できないのに
対して、SupersetはSlice（描画するグラフの単位
のようなもの）を定義してそれを自由にダッシュ
ボードに配置することができます。整理されたダッ
シュボードにしたい場合や、UIからのデータ操作
はSupersetのほうがやや扱いやすいと思います。
とはいえ、UI操作であっても、SQLでいうWHERE
句、ORDER BY句、GROUP BY句などの概念は
出てくるので、ある程度SQLを知っていないと扱
いが難しいという印象です。

 ▼図A　RedashのDemo画面 ▼図B　SupersetのDemo画面

Supersetの特徴
COLUMN

https://redash.io/help-onpremise/setup/setting-up-redash-instance.html

3

4

5

6

7

3

4

5

6

7

84 - Software Design Nov. 2017 - 85

　EC2の起動設定は以上です。
　最後にPublic IPを確認するために、
AWSマネジメントコンソールから
［EC2］→［Instances］を開き、起動したイ
ンスタンスのステータスがrunningになっ
たら、［Description］タブを表示して
Public IPアドレスを確認し、ブラウザ
からアクセスします（図3）。
　Public IPアドレスにアクセスすると、
はじめに管理者権限の情報設定画面が表
示されるので、管理者の情報を入力しま
す。入力が完了すると、いよいよRedash

を使用できるようになります。

 ▼図1　セキュリティグループの設定

 ▼図2　Public IPの取得設定

 ▼図3　EC2インスタンスの IP確認

　「データ可視化ツールの導入と活用方法」でセキュ
リティグループの設定について触れました。セキュ
リティグループの設定において80番、443番、22
番というのはそれぞれ表Aのような意味を持ちま
す。
　RedashはWeb UIですので、80番（HTTP）を許
可していなければアクセスすらできないため指定す
る必要があります。また、Redashで機密情報を扱
う場合は443番（HTTPS）を指定し、通信を暗号化

しなければ、セキュリティ上不安が残ってしまいま
す注A。最後に22番（SSH）ですが、Redashは環境
変数などで設定を変更したり、Pythonでコードを
書いてデータソースにしたりすることもできます。
つまり、Redashをホストしているインスタンスに
リモート接続し、操作する必要が出てくるため、22
番（SSH）を開けておく必要があります。
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　

注A） あわせてアクセスを許可する IPアドレスも絞ると、より
堅牢性が向上します。

AWS EC2インスタンスのセキュリティグループの設定

Redash＋SQL勉強会で業務改善！

エンジニア任せにしない
データ分析の基盤作り

COLUMN

 ▼表A　 AWS EC2インスタンスに設定したポートの意味

ポート番号 プロトコル 意味
80 HTTP http://で始まるURLでブラウザからのアクセスを許可する

443 HTTPS
https://で始まるURLでブラウザからのアクセスを許可する。
HTTPとの違いはSSL/TLSを使用したサーバの認証・通信内容
の暗号化・改ざん検出などを行う点

22 SSH 暗号や認証の技術を利用して、安全にリモートサーバと通信す
るためのプロトコル

3

4

5

6

7

3

4

5

6

7

86 - Software Design

データソースの追加（MySQL）

　Redashは外部のデータソースからデータを取
得し、可視化を行います。そのため最初に行う
べきことはデータソースの登録です。ここでは
RDBMSの1つであるMySQLを例にして登録
の手順を紹介します。

手順1：	Redashに管理者でログイン後、画面右
		 上のDBアイコンをクリックする（図4）
手順2： ［New Data Source］をクリック
手順3：	TypeにはMysqlを選択し、各種認証情
		 報を入力する
手順4： 作成したデータソースに正常に接続で
		 きるか確認

　認証情報を入力後、［Test Connection］ボタン
を押下しRedashからMySQLに正常に接続でき
ていれば設定完了です。

データソースの追加
（Googleスプレッドシート）

　弊社では非エンジニアのメンバーが、Google

スプレッドシートを使ってデータの蓄積、分析、

可視化、共有を行っていることが多かったため、
SupersetとRedashの違いで挙げた、Googleス
プレッドシートがデータソースに適用できるこ
とがRedash選択の判断ポイントとなりました。
　Googleスプレッドシートの値をデータソース
に追加する場合、手順がMySQLとは異なるた
め、その手順について説明します。

手順1	：	Google API Console注8にアクセス
手順2	：	新規プロジェクトを作成しRedash用の

　		 プロジェクトを作成
手順3	：	API Keyを作成
　 3-1 ： 画面左のサイドナビより［APIとサービ
　 ス］→［認証情報］を押下

　3-2 ： ［認証情報を作成］→［サービスアカウン
　 トキー］を選択

　3-3 ： サービスアカウントの種別に［新しい
　 サービスアカウント］を選択し、各項目
　 を入力。キーのタイプは JSONを選択
　 し作成ボタンを押下注9（図5-1）

　3-4 ： 画面左のサイドナビより［ダッシュボー
　 ド］をクリック→［APIとサービスの有効
　 化］をクリック

　3-5 ： 検索フォームに“Google Drive API”と
　 入力すると出てくる「Google Drive API」
　 を選択

　3-6 ： ［有効にする］をクリック
手順4	：	GoogleスプレッドシートでAPI連携
　4-1 ： API Keyを作成する過程（3-3）でダウン
　 ロードしたJSONを開くと“client_　

 email”というキーが存在するので、そ

 れをコピー
　4-2 ： Googleスプレッドシートの共有設定
　 で、4-1でコピーしたE-mailと共有する

手順5	：	Redashでデータソースを追加
　5-1 ： Redashのデータソース追加画面に遷移
　5-2 ： Typeは「GoogleSpreadsheet」を選択

注8） https:// console.cloud.google.com

注9） JSONファイルがダウンロードされます。認証情報が書かれ
ている重要なファイルであるため、紛失・削除しないよう
に注意してください。

 ▼図4　データソースを追加

　AWS EC2でRedashインスタンスを立ち上
げる際に設定したセキュリティグループですが、
AWS RDSのMySQLを使用する場合は、RDS
インスタンスに対してもセキュリティグループ
を設定する必要があります。
　データソースとしてMySQLを設定する場合、
MySQLはデフォルトのポートが3306番です。
また、許可するIPアドレスもEC2インスタンス
のIPを指定することで“EC2からRDSに対して
3306番でアクセスを許可する”という設定をし、
データの取得を可能にします。

AWS RDSインスタンスの
セキュリティグループの設定

COLUMN

https://console.cloud.google.com

3

4

5

6

7

3

4

5

6

7

86 - Software Design Nov. 2017 - 87

　 し、JSON Key Fileに3-3で取得したJSON

　 ファイル選択して保存（図5-2）

　Googleスプレッドシートとの連携は以上です。
　ただし、クエリ作成はさらに少し手順を踏む
必要があります。Redashに取り込みたいGoogle

スプレッドシートのURLが“https://docs.goo

gle.com/spreadsheets/d/hogehoge/edit#gid

=12345”だと仮定します（図5-3）。このスプレッ
ドシートが2つのシートで構成されていた場合、
左から2番めのシートを取り込む場合のクエリ
は“hogehoge|1”となります（図5-4）。注意する
ことは2つあります。

注意点1：	スプレッドシートのURLとシートの
　	 番号は“¦”で区切る

注意点2：	シートの番号は左から0、1、2、……
　	 となる注10

取得したデータの可視化

　取得したデータはグラフで可視化することが
可能です。可視化までの手順は次のとおりです。

手順1：	クエリを実行するとTABLEタブが表
		 示されるので、その横にある［+ NEW
		 VISUALIZATION］ボタンを押下

注10） したがって、シートの順番を入れ替えてしまうと取得する
データも異なってしまいます。

 ▼図5-1　API Keyを作成

 ▼図5-3　データソースとするGoogleスプレッドシート例

 ▼図5-4　 図5-3のデータを取り込む
Redashのクエリ

 ▼図5-2　Redashへのデータソース追加

Redash＋SQL勉強会で業務改善！

エンジニア任せにしない
データ分析の基盤作り

3

4

5

6

7

3

4

5

6

7

88 - Software Design

手順2：	各項目を埋める

　これだけの操作で取得したデータを可視化す
ることができます。また、作成したグラフはダッ
シュボードに追加できます。

クエリの再利用と共有

　データ可視化ツールに必要な要件として、共
有することの容易性を挙げました。共有につい
ては、Redashでは2つの機能があります。
　1点目はダッシュボード機能で、可視化した
グラフやデータをほかのメンバーに共有する際、
1つずつURLを送るのではなく、あるまとまり
の単位で共有することを可能にする機能です。
　2点目はエンジニアには馴染みがあるFork機
能です。これは、あるクエリをもとにしたクエ
リを作成する場合に使用します。

❖❖ダッシュボードの作成と設定

　ダッシュボードの作成と設定の手順は次のと
おりです。

手順1：	�グローバルヘッダから［Dashboards］の
プルダウンにある［New Dashboards］
を押下し、ダッシュボード名を入力

手順2：	ダッシュボードページに遷移後、画面
		 右上の設定アイコンから［Add Widget］
		 を押下（図6-1）
手順3：	�追加したいクエリ名を検索し（図6-2）グ

ラフを選択

　この操作を繰り返し行い、あるまとまり単位
のダッシュボードを共有すると一覧性が向上し、
同じ共有のしかたでもわかりやすい画面を共有
できます。

❖❖クエリのFork

　クエリ編集画面を開くとSaveボタンの横に
Forkボタンがあります。Fork機能はこのボタ
ンを押下するだけで、もとのクエリをForkする
ことができます。

クエリの定期実行

　Redashではデータソースからクエリでデータ
を抽出、表示するだけではなく、登録したクエ
リを定期的に実行することができます。毎日決
まった時刻に実行することや、決まった時間や
日付の間隔で実行することが可能です。
　設定はとても簡単です。

手順1：	クエリ画面にアクセス
手順2：	［Refresh Schedule］のリンクを押下
		 （図7-1）
手順3：	実行スケジュールを設定（図7-2）

　以上の設定で、決まった時間、決まった間隔
で実行させることができます。　
　この定期実行機能は、週報など、定期的に実
行する必要があるデータの取得に役立つことは
もちろんですが、データ取得量が多く、レスポ
ンスに時間がかかってしまうようなクエリの時

 ▼図6-2　ダッシュボード作成

 ▼図6-1　ダッシュボード作成

3

4

5

6

7

3

4

5

6

7

88 - Software Design Nov. 2017 - 89

間短縮にも効果的に使えます。Redashのしくみ
として、同一のデータであれば（都度データソー
スにアクセスして取得するのではなく）Redash

内にキャッシュのような形で残してレンダリン
グを高速化していることを利用します。たとえ
ば始業前に定期実行を設定することで、始業後、
実際にデータを閲覧する際にスムーズに閲覧す
ることが可能になります。

クエリ文字列から動的にSQLを
組み立てる

　Redashは実行するクエリをURLのクエリ文
字列によって動的に実行することができます。
設定は、実行するクエリ内に次の記述を追加す
るだけです。

{{ user_id }}　　 user_idは任意の識別子

　たとえば、次のクエリでURLが生成された場
合、

http://ip_adress/queries/1/source?p_user_id=1
SELECT * FROM users where id = {{ user_id }}

　URLにクエリ文字列として“p_user_id”を加
えると、実行したいクエリの{{ user_id }}の
部分にクエリ文字列で指定したuser_idを適用
するといった具合です。
　また、RedashはWeb UIですので、SELECT

文の中にHTML要素（たとえばリンクなど）を含
めれば、一覧ページと詳細ページの関係を作る
こともできます注11。

SELECT CONCAT('<a href="http://ip_adress ｭ
/queries/1?p_id=', users.id, '">', ｭ
users.id, "") as "詳細ページのリンク",
 last_name,
 first_name
FROM users

注11） 便利ではありますが、乱用してしまうとコードがたいへん
読みにくくなってしまい、クエリ作成者以外の人が読めな
くなってしまう可能性もあるので、慎重に使いたいところ
です。

　ここまでが基本的なRedashの使い方の紹介で
す。データ可視化ツール導入にあたっての必要
条件を再確認すると、Redashは掲げていた条件
を次のように満たすことができました。

・データ取得の容易性……導入初期にエンジニ
アが一度データソースの設定さえしてしまえ
ば、非エンジニアはデータベースへの接続と
いったことを考える必要がなくなる。また
RedashはWeb UIであるため、ブラウザから
誰でもアクセスすることが可能に

・可視化（ビジュアライズ）の容易性……取得し
たデータに対して適用したいグラフを選択す
るだけで容易にデータを可視化することがで
きる。また、作成したデータをピンチイン／
ピンチアウトで拡大縮小し、詳細データを閲
覧することが可能に

・共有することの容易性……作成したクエリを
ダッシュボードにすることにより、URLを伝
えるだけで閲覧したいデータやグラフを容易
に共有できる。また、一度作成したクエリを
Forkすることによってクエリの再利用ができ、
クエリを初めから作る手間を減らすことが可
能に

　Redashによるデータ可視化環境構築ができれ
ば、残りの問題点はエンジニアへのデータ抽出
依頼の削減のみです。この問題を改善すればエ
ンジニアだけではなく、会社全体の生産性の向
上につながり、ひいてはプロダクト改善プロセ
スを高速化させ、ユーザへの価値提供が促進さ
れることになります。

 ▼図7-1　定期実行

 ▼図7-2　定期実行

Redash＋SQL勉強会で業務改善！

エンジニア任せにしない
データ分析の基盤作り

3

4

5

6

7

3

4

5

6

7

90 - Software Design

　Redashの認証はデフォルトだとE-mailとパスワードでの認証となります。この場合、管理者が事前に招
待メールを送信しなければなりません。使用するユーザの規模が大きくなった場合、Redashの認証設定だ
けで苦労してしまいます。これを簡易にするために、RedashではGoogleアカウントでの認証機能も利用
できます。手順は次のとおりです。

手順1： Google API Console注Bにアクセス
 1-1 画面左のサイドナビより［認証情報］→［OAuth同意画面］タブを選択し、項目を入力後に保存ボタ
ンを押下 1-2 画面左のサイドナビより［認証情報］→［認証情報］タブを選択し、［認証情報を作成］プ
ルダウンを押下後、［OAuthクライアント ID］を選択 1-3 ［承認済みのJavaScript生成元］にURLを入
力。［承認済みのリダイレクトURI］にURL＋ /oauth/google_callbackを入力し、作成ボタンを押下

（図C） 1-4 ポップアップで表示されるクライアント IDとクライアントシークレットを控える

手順2： RedashのEC2インスタンスにSSH接続し、次のコマンドを実行
$ cd /opt/redash/current
$ sudo -u redash bin/run ./manage.py org set_google_apps_domains {{許可するドメイン}}

手順3： /opt/redash/.envに次を追記
export REDASH_GOOGLE_CLIENT_ID="手順[1-4]でメモしたクライアントID"
export REDASH_GOOGLE_CLIENT_SECRET="手順[1-4]でメモしたクライアントシークレット"
export REDASH_PASSWORD_LOGIN_ENABLED=false # パスワードログインを禁止

手順4： Redashの再起動
$ sudo supervisorctl restart redash_server

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　

注B） https://console.cloud.google.com/

 ▼図C　Redashの認証にGoogleアカウントを利用する

Redashの認証機能
COLUMN

https://console.cloud.google.com/

3

4

5

6

7

3

4

5

6

7

90 - Software Design Nov. 2017 - 91

非エンジニア向けの
SQL勉強会の実施

　Redashによりデータ可視化環境ができたの
で、残る課題はエンジニアのデータ抽出工数の
削減となります。RedashのFork機能と、クエ
リの共有を行っていけばある程度は削減できる
と思ったのですが、「そもそもエンジニアにデー
タ抽出依頼が来ない」ことについても考えてみま
した。つまり、非エンジニアがSQLを扱い、自
らデータ抽出を行うことができている状態です。
　弊社ではWebディレクターなど、ごく一部、
SQLを書けるメンバーはいましたが、データ抽
出依頼をするメンバーの大半はSQLやデータ
ベースの存在は知っているものの、何に使用す
るかわからない状態でした。また、次のような
思い込みをしているメンバーも多数いました。

・SQLはエンジニアにしか扱えない特殊な技能
・自分がSQLでデータを触ったら壊れてしまう
（ユーザに影響を与えてしまう）

　これらの苦手意識を持った非エンジニアが
SQLを扱える状態にすることが理想的な状態で
あり、これを実現するために、実際に触っても
らい、苦手意識を克服し、誰でも手軽にデータ
抽出できるという認識になってもらうための勉
強会を実施することにしました。

SQL勉強会実施に向けての戦略

　SQLに苦手意識を持つメンバーが多い現状で
あったため、SQL勉強会の実施や、Redashを
運用レベルに持っていくまでの戦略を考える必
要がありました。そこで、SQLをまったく知ら
ない人に、なるべくたくさん勉強会に参加して
もらえるように、ハードルを下げるためのしく
みも用意しました。

❖❖参加者は事前準備なしで参加してもらう

　これまで、SQLが扱える一部の非エンジニア
は、アプリ型のSQLクライアントをインストー

ルし、MySQLの認証情報を手で入力していま
した。しかし、これは大半の非エンジニアにとっ
てはハードルが高いものでした。今回は先述の
とおり、Redashのデータソースに弊社で使用し
ているDBをあらかじめ登録しておくことで、参
加者は“サーバへ接続”といったことを考える必
要がなくなり、事前準備が不要になりました。
また、Redash自体への認証をGoogleアカウン
トを使用しての認証方式に切り替え、認証の手
間も減らすことで、Redashにアクセスすればす
ぐにSQLを打ち込むことができる環境を整えま
した。

❖❖運営側への協力を仰ぐ

　SQL勉強会実施の告知をしたところ、非エン
ジニアから40人強の参加が決まりました。この
人数になると、講師1人では質問のすべてを受
け答えできず、結局参加者の理解が深まらない
ままに終了してしまい、次回参加の熱量が失わ
れてしまうことが懸念されました。そこで、運
営を手伝ってくれるサポーターを社内エンジニ
アから募ることにしました。さらに念のため、
講師のプレゼン内容を事前にサポーターに周知
させ、スムーズに質問に答えられるように配慮
しました。勉強会1回あたり、講師となるメイ
ンプレゼンター1名、参加者側の席で質問など
に瞬時に受け答えできるサポーターを最低3名
募り、勉強会を実施しました。
　また、講師もなるべく1人ではなく複数名に
協力してもらうことで、講師自体の負荷を分散
でき、発表内容の精査も行え、リスケのリスク
も防ぎつつ、継続的に安定して勉強会を運営で
きました。

❖❖SQL勉強会の内容

　人のアサインができたら、次は肝心の内容決
めです。運営側のエンジニア（講師とサポーター）
が最初に集まり、非エンジニアがどれくらいの
レベルでSQLを理解してくれればデータ抽出の
負荷が減っていくかの現実的なラインを決定し、

Redash＋SQL勉強会で業務改善！

エンジニア任せにしない
データ分析の基盤作り

3

4

5

6

7

3

4

5

6

7

92 - Software Design

そこに向けて勉強会の実施内容を決めていきま
した。
　結論としては、勉強会実施後の状態の期待値
を次のとおりに設定しました。

最低限の目標

・やりたいことの要件と、おおよそどのテーブ
ルからデータを取得するかあたりがついてい
ること

・クエリを完全に組み立てていなくても、わか
らないなりにクエリができあがっていること

ストレッチした目標

・抽出条件に使うカラムを理解していること
・JOIN句を使い、テーブル結合ができること

　SQL勉強会実施後、最低限の目標を達成して
いた場合には、次のような業務上のやりとりが
できることを想定しました。

非エンジニア 「素材数をn点以上持っているユーザ
を出したいのですが（要件の理解）、取ってくる
テーブルは○○テーブルで合っていますか？

（テーブルの特定）」
エンジニア 「はい、合っています！　試しにクエ

リをちょっと作ってみてもらえますか？」

　また、ストレッチした目標は、ここまででき
ていたらエンジニアの負荷が下がるだろうとい
う目標にしました。業務上想定できるやりとり
は次のとおりです。

非エンジニア 「退会していないユーザが持つ素材
データのうち（JOIN句の使用）、販売中のデータ
を月別に出したいのですが（抽出条件の理解）、
このクエリで合っていますか？」

エンジニア 「はい、合っています！　販売中かど
うかは素材テーブルの○○というステータスが
△△の場合が販売中になるので、WHERE句で指定
してください。」

　最低限の目標の場合、非エンジニアがSQLを
知ってはいて、ある程度クエリを組み立てるこ
とはできるが、エンジニアのサポートは要する
といった状態です。エンジニアの負荷が下がる
ことはそこまで期待できませんが、ストレッチ

した目標を達成した場合には、エンジニアは、
そこそこできあがったクエリを確認、あるいは
少し手直しの指示を出すだけで終わるので、目
に見えた工数の低下につながるだろうと考えま
した。
　ストレッチした内容はハードルが高いかと思
いましたが、有志で集まったエンジニアのフォ
ロー体制があれば達成できるだろうと考えまし
た。そこでSQL勉強会の内容は、思い切ってス
トレッチした内容まで実施することにしました。

❖❖勉強会の実施

　勉強会は全4回にしました。

第1回	 イントロダクションとRedashの画面 	
	 にたどり着く

第2回	 基本構文（SELECT、FROM、 		
	 WHERE）を実行してみる

第3回	 集計関数（COUNT、SUM、AVG、		
	 MAX、MIN）を実行してみる

第4回	 JOIN句を使ってテーブルを結合する

　終わってから振り返ってみると、第1回～第
4回の中で、もっとも重要だと感じたのは第1回
めだと思います。第1回めはエンジニアが参加
者に対して積極的にフォローすることや、SQL

はそれほど難しくないこと、最初から完璧を目
指さないこと、間違ったクエリを流してもユー
ザに何の影響もないことなどを説明し、参加者
の心理的なハードルを下げることに徹しました
（図8）。
　第2回～第4回は基本的にハンズオン形式で

 ▼図8　SQL勉強会 発表スライドより抜粋

3

4

5

6

7

3

4

5

6

7

92 - Software Design Nov. 2017 - 93

行い、習うより慣れろの精神で学んでもらうこ
とにしました。また、参加者は40人強にもなる
ので、同じ内容でも習得スピードに差が出るこ
とも考慮し、ハンズオン時の進め方は基本編と
応用編に分けました。具体的な内容と時間配分
は次のとおりです。

・何を学ぶか発表、重要概念の説明（5分）
・お題1の発表（15分）
　――基本問題の出題
　――応用問題の出題
　――基本問題の正解例の発表
　――応用問題の正解例の発表
・お題2の発表（15分）
　――基本問題の出題
　――以下お題1の進め方と同様
・お題3の発表（15分）
　――基本問題の出題
　――以下お題1の進め方と同様
・今回の学びのふりかえり（5分）
・次回予告（5分）

　
　応用編を実施するメンバーは、毎回おおよそ
1～2割はいました。応用編を用意することに
よって、手持ち無沙汰になることを防ぐだけで
はなく、基本編ができたメンバーが応用編の解
説を聞くことで、問題に対してさまざまな解が
あることを発見し、より理解を深めてもらうよ
うな場面が多々ありました（写真1）。

勉強会実施後の振り返り

　SQL勉強会実施後の振り返りとして、良かっ
たこと、悪かったことさまざまありましたが、
その中でも重要なものをピックアップして紹介
します。

❖❖復習の回を準備して勉強会の脱落を防ぐ

　エンジニアを何名かサポート役として協力を
仰ぎましたが、どうしても習得の早さに個人差
があるため、理解が追いつかずに脱落してしま
うメンバーも一定数いました。勉強会の実施中
の様子を見て、あまり理解が進んでいないメン
バーをチェックすることや、チェックしたメン
バーに対して実施後に感触を聞き、復習の回を
行うか判断することは重要です。
　実際に弊社では、第2回と第3回の間に第2.5

回と称して、復習の回を設けることにしました。
復習回に参加したメンバーは数名だったので、
その分メンバーの理解のスピードに合わせて丁
寧に教えることができ、結果的に第4回までた
どりつくことができたのだと思います。
❖❖テーブルの物理名と論理名のマッピング
表を用意する

　エンジニアであれば、DBにどんなテーブル
が存在していて、そのテーブルにどのようなカ
ラムがあるかを把握していることが多いと思い
ます。そもそもDESC テーブル名でカラムの物
理名を調べたり、物理名や既存のプログラムか
らある程度論理名を推測することなどが可能で
す。しかし、非エンジニアにとっては物理名ま
でたどり着くことはできても、論理名まで把握
するのは難しいでしょう。
　そこで勉強会の前に、最低限、勉強会で使用
するテーブルとカラムの物理名、論理名の一覧
を作り、参加者に共有しました。そうすること
で、参加者には、やりたいこと（抽出条件）から
論理名を探し、物理名を特定したのちにSQLを
組み立てる、というリズムが生まれました。ま
た、この一覧表を作成することで、非エンジニ

 ▼写真1　SQL勉強会の様子

Redash＋SQL勉強会で業務改善！

エンジニア任せにしない
データ分析の基盤作り

3

4

5

6

7

3

4

5

6

7

94 - Software Design

ア自らテーブルの構造と意味を探しにいき、エ
ンジニアに聞かずともクエリを作成できるケー
スが多くなりました。勉強会の事前・事後とも
に役立つ資料になったと振り返っています。

❖❖Redashの浸透

　Redashは勉強会でも大いに活躍しましたが、
真価を発揮するのは運用に入ってからだと思い
ます。Redash導入前の問題点として述べた、毎
回エンジニアに依頼がくる状態、エンジニアの
○○さんしか知らない秘伝のクエリの存在など
を解消するには、組織全体にRedashが浸透して
いる状態を作らなければならないと考えました。
　何かを普及させる際に筆者はよく「普及曲線」
を考えます注12。全体に一気に浸透させる前に、
非エンジニアの中でも、SQLを理解している人
や週報などの作成者（弊社ではリーダー層が多い
です）に、先行してRedashの概要や操作方法な
どを布教していきました。Redashの良さを先に
リーダー層に広めることで、データ可視化の基
盤として広める際、その後の展開が楽になるか
らと睨

にら

んだためです。リーダーが率先して使う
ことやリーダーが操作に慣れている状態を先に
構築することで、結果的にメンバーに指導がし
やすくなり、勉強会後、一気にRedashが広まっ
ていきました。
　また、エンジニア同士のクエリの共有は「それ
Redashでお願いします」の一言を添えるだけで、
秘伝のタレ化注13することは防げているように思
います。

まとめ

　冒頭で述べた問題を打破するためにデータ可

注12） 「普及曲線」とは、まだ社会（今回だと組織）に普及していな
い新しいモノ（今回はRedash）などがどのような過程をへ
て普及していくかを分析した曲線です。新しいモノの採用
者を5つ（イノベーター、アーリーアダプター、アーリーマ
ジョリティ、レイトマジョリティ、ラガード）に分類し、そ
の分布を示したものです。（エベレット・M・ロジャース著
『Diffusion of Innovations』（1962年、邦題『イノベーショ
ン普及学』）より）

注13） 特定のエンジニアしか知らないクエリ。

視化ツールの検討、導入をし、組織全体にSQL

の操作を教えることで業務改善の足がかりにな
りました。SQL勉強会実施後、非エンジニアか
らSQLの質問があっても、テーブル名やカラム
名を教えるとその場で理解を得られる場面が増
え、エンジニアの作業工数削減が実現できまし
た。その結果データ抽出依頼の件数が半分にな
りました。筆者がよく知るメンバーの中には、
週報と月報の作成をRedashに移行し定期実行す
ることで、毎週2時間かかっていた作成コスト
がほぼ0になったと聞きました。もちろん、す
べてをRedashで代替できるわけではありません
が、Redash導入以前の次の問題は改善傾向にあ
るのではないかと思います。

・エンジニアがデータ抽出対応に割く工数が増
えてしまう

・データ抽出完了待ちが発生する
・機械的にできることを手作業で行ってしまう

　また、SQLの習得の早いメンバーにはサブク
エリやUNIONなどといった関数を使用し、エ
ンジニアのサポートがなくても自ら学び、クエ
リを書き、実践している方も出てきました。
　エンジニアとしては、クエリのFork機能を利
用することでアドホックなデータ抽出依頼にも
迅速に対応できています。また、〇〇さんしか
知らないクエリもRedashで共有することで、少
なくなってきています。Redashはエンジニアの
エコシステムのなかでも利用する価値があると
いえます。
　このように、当初は「エンジニアしか扱えない
もの」と思われていたSQLでしたが、「技術的な
ところを考えなくても実行できる環境である
Redashの導入」「非エンジニアの目線に立った勉
強会」「運用を見据えたRedashの浸透戦略」これ
らを1つずつ考え抜き、着実に実行していくこ
とで自分たちの思い描く理想とする組織像に一
歩近づくことができました。｢

Redash＋SQL勉強会で業務改善！

エンジニア任せにしない
データ分析の基盤作り

95 - Software Design Nov. 2017 - 95

Amazon Web
Services負荷試験
入門

　クラウドで自社システムを構築すればきっと高性能に違
いない。それは誤解だ。システム開発して実際に運用して
みると、思ったとおりのパフォーマンスが出ないことはよ
くある話だ。機能要件は満たすけど、非機能要件は残念な
結果と言い換えていいかもしれない。期待どおりの性能が
出なければ、ユーザがシステムの価値を認めない時代。結
局、開発に投じた人月も無駄になり、開発者の地位も下
がってしまう。しかし、負荷試験を事前に行い、その結果
を開発にフィードバックすることでこうした事態を避ける
ことができる。手戻りが増えることになるかもしれない
が、ちゃんと負荷試験を行い結果を出すことで、エンジニ
アへの信頼感も上がる。本書で具体的な負荷試験の方法を
学び、日々の開発を充実したものにしてほしい。

仲川 樽八、森下 健 著
B5変形判／368ページ
3,800円＋税
技術評論社
ISBN＝978-4-7741-9262-8

SRE サイトリライアビリ
ティエンジニアリング

　SREとは、Googleの「サイトリライアビリティエンジニ
ア」が培ってきた、システム管理とサービス運用のためのベ
ストプラクティスである。サイトリライアビリティエンジニ
アの任務は「システムの信頼性を高めること」にあるが、ソ
フト開発者とともにコードを書くこともあれば、運用のた
めの各種ミドルウェアを構築することもあるなど、職能が
決まっているわけではない。そのためSREについて記した
本書も、SLO（サービス品質保証）、ロードバランシング、
ジョブ管理、テスト、さらには新人への教育・引継など、
ジャンルは多岐に渡り、それぞれの分野でGoogleのノウ
ハウを吸収できる。従来のインフラエンジニアチームを
SREチームとして統合しなおすという試みが日本のWeb
企業でも始まっており、今後の大きな流れになるかもしれ
ない。

Betsy Beyer、Chris Jones、
Jennifer Petoff、Niall Richard
Murphy 編／澤田 武男 ほか 監訳
／Sky株式会社 玉川 竜司 訳
B5変形判／590ページ
4,800円＋税
オライリー・ジャパン
ISBN＝978-4-87311-791-1

マジメだけど
おもしろい
セキュリティ講義	

　本誌連載「セキュリティ実践の基本定石」の中から、今な
お学ぶところの多いセキュリティ事件を扱った回を厳選
し、1冊に収録した本。世界各地で起きた事件の背景を探
り、現実的な対策を考えるのが本書の主旨だ。サイバー攻
撃の多くは人の無知・油断・思い込みにつけ込んでコン
ピュータに侵入してくるため、技術的対策だけでは不十分
だということが、本書を読むとよくわかる。攻撃者の実体
や攻撃の手口は、私たちが思う以上に多様だ。世界中のコ
ンピュータに脆弱性を探るアクセスが毎日のように来てい
ること、国家ぐるみで盗聴が行われていること、自分の
PCや口座が知らぬ間に不正利用されている可能性がある
ことをあなたは知っているだろうか。効果的な対策のため
に、本書で事実を知るところから始めてはどうだろう。

すずきひろのぶ 著
A5判／416ページ
2,600円＋税
技術評論社
ISBN＝978-4-7741-9322-9

クローリング
ハック

　サイトを巡回してWebページの内容を取得する「クロー
ラー」は、複数のサイトの情報をまとめたり、比較したり
といったWebサービス運用には必須のプログラム。ク
ローラーはさまざまなサイトを巡回する以上、その開発は
一筋縄にはいかず、技術の面、マナーの面で押さえておく
べき事柄が多くある。本書はそんな複雑なクローラーの開
発について、基本知識、HTTP、文字化け対策、スクレイピ
ング、認証の突破方法、JavaScriptが駆使されたリッチな
サイトへのクローリング方法、クローリングマナーと、多
面的に解説している。とくにマナーについては、robot.txt
の読み方やアカウント情報の取り扱い方など、トラブルを
避けるための注意喚起が豊富で、開発の先の運用やサービ
ス運営も見据えた、誠実なつくりになっている。

竹添 直樹、島本 多可子、田所
駿佑、萩野 貴拓、川上 桃子 著
A5判／336ページ
2,680円＋税
翔泳社
ISBN＝978-4-7981-5051-2

96 - Software Design

そもそもスイッチって何？

　ホワイトボックススイッチのお話をする前に、
まずは一般的なネットワークスイッチのことか
ら理解を深めたいと思います。

ネットワークスイッチ

　ネットワークスイッチは、ひとことでいうと
「複数のデバイスがネットワークケーブルを介し
て互いに通信するための装置」で、正確にはス
イッチングハブ、または略して単にスイッチと
呼ばれています。
　ネットワークに接続されるデバイスはすべて
MACアドレス 注1 という固有の識別子を持って
おり、デバイスからネットワークにデー
タが送信されるときは、デバイス自身
が持つ送信元のMACアドレスと、デー
タを送信したい宛先のMACアドレスが
付与されます。スイッチは、デバイス
から送信されてきたデータから宛先
MACアドレスを読み取り、適切な宛先
へ転送するというのが基本的な役割で

す（図1）。

ネットワークプロトコル

　ネットワークの世界では、異なるデバイス間
の相互通信を可能にするため、「ネットワークプ
ロトコル」という通信におけるルール（規約）が定
められています。代表的なプロトコルとしては、
HTTPや IP、TCP、Ethernetといったものが
挙げられます。はじめに述べたMACアドレス
は、Ethernetで取り決められているもののうち
の1つです。
　ネットワークプロトコルは「レイヤ」と呼ばれ
る、機能ごとに分けられた階層構造で分類され
ています。これはOSI参照モデルという考え方
によるものです。OSI参照モデルは、ISO（国際

 Author 井上 喬視 （いのうえ たかし）　
 さくらインターネット㈱
 Mail t-inoue@sakura.ad.jp

 Author 伊東 宏起 （いとう ひろき）
さくらインターネット㈱　　　

 Mail contact@hekki.info　 Twitter @_nihi

 ▼図1　スイッチとデバイスの接続

注1） IEEEによって管理されている、デバイスを一
意に識別可能な48bitの識別子のこと。基本的
には世界中のデバイスで重複しないように管
理されている。

デバイス

スイッチ

データの
流れ

通信

ユーザが
ソフトウェアを
自作する
新しいスイッチの形

ホワイトボックス
スイッチって何

近年登場した「ホワイトボックススイッチ」は、ネットワークの世界にソフトウェアのノウハウを持ち込
んで開発・運用を効率化できる、領域横断的な特徴を持つ新しいスイッチの形です。本記事では、
そもそもスイッチとは何をする装置なのかというところからはじめ、現状のスイッチの問題点、ホワイ
トボックススイッチのメリット、そしてホワイトボックススイッチにおける開発について解説します。

96 - Software Design Nov. 2017 - 97

❖ レイヤ2（L2）――データリンク層
　データリンク層は、ネットワークデバイス間
で相互に通信するための手順について取り決め
を行うレイヤです。Ethernetでは、Ethernetフ
レームといったデータ構造でやりとりを行う決
まりとなっています（図2）。Ethernetフレーム
には送信元MACアドレスと宛先MACアドレス
が含まれており、データがどのデバイスからど
のデバイスに転送されるべきかを判別できるよ
うになっています。冒頭でも述べましたが、こ
のEthernetフレームを判別して適切な宛先へと
転送する装置がスイッチです。

❖ レイヤ3（L3）――ネットワーク層
　ネットワーク層は、複数のデータリンクを接
続して相互に通信を行えるようにする手順を取
り決めるレイヤです。前述のデータリンク層の
みで通信を行う場合、デバイス数が増えたとき
のスケール面で問題があるため、ある程度のサ
イズで分割することが一般的な構成です。ネッ
トワーク層の代表的なプロトコルはIP（インター
ネットプロトコル）です。IPは複数のデバイス
をセグメントと呼ばれるグループに分割し、セ
グメントを越えて通信する場合の手順（この手順
をルーティングと呼んでいます）を提供します。
ルーティングを行う装置のことを、スイッチと
区別してルータと呼んでいます（図3）。
　基本的に、スイッチはレイヤ2までの機能ま
でに対応した製品が一般的ですが、ミドルエン
ドからハイエンドの製品になると、レイヤ3（IP）

標準化機構）によっ
て策定された、ネッ
トワークが持つ機能
を分類したモデルで
す。現実のネット
ワークのしくみと
はやや乖

かいり

離もあるの
ですが 注2 、ネット
ワークのしくみが階
層構造で構成されて
いることを理解するのに役立つため、ネットワー
クの世界においては基本中の基本とされていま
す。

・レイヤ7：アプリケーション層
・レイヤ6：プレゼンテーション層
・レイヤ5：セッション層
・レイヤ4：トランスポート層
・レイヤ3：ネットワーク層
・レイヤ2：データリンク層
・レイヤ1：物理層

　ここでは7層あるレイヤのうち、スイッチに
とくに関係しているレイヤ1～3を取り上げて解
説します。

❖ レイヤ1（L1）――物理層
　物理層は、ケーブルや無線といった伝送媒体
を伝わる電気信号や光信号などについて取り決
めを行うレイヤです。レイヤの中では最下層に
あたり、伝送距離や通信速度が決定される、重
要かつ通信の基礎となるレイヤです。Ethernet

においては、LANケーブル（銅線）を用いた
1Gbpsの通信速度を持つ1000BASE-Tといった
規格や、光ファイバーケーブルを用いた10Gbps

の通信速度10GBASE-SRといった規格があり
ます。また近年高速化が著しく、400Gbpsの通
信速度を持つ規格も検討されています。

 ▼図2　Ethernetフレームの構造

注2） たとえば、Ethernetでは1層と2層の両方が規定されてい
る。

宛先
MACアドレス

送信元
MACアドレス タイプ FCSデータ

Frame Check Sequence。フレームに誤りがあるかどうかを確認する
ためのフィールド。CRC（Cyclic Redundancy Check）で計算される

「データ」が何のプロトコルで構成されているかを示すフィールド

ユーザが
ソフトウェアを
自作する
新しいスイッチの形

98 - Software Design

される多量のフレームを高速に処理する必要が
あります。そのためスイッチの多くには、フレー
ムの転送処理専用に開発されたスイッチングチッ
プと呼ばれるASIC 注3 や、フレームの宛先を高
速に参照するためのCAM 注4 と呼ばれる特殊な
メモリを搭載しています。こういった特殊なハー
ドウェアを搭載する都合上、スイッチベンダ各
社でASIC、およびその上に載せるOSを独自開
発しているケースが多くみられます（表1）。と
くにASICはスイッチの肝となる部分であるた
め、これまではスイッチベンダが独自に開発を
行うのが一般的でした 注5 。このように、スイッ
チではハードウェアとOSが密になっているた
め、「ハードウェアはベンダAにして、OSはベ
ンダBにしよう」というような選択肢は基本的に
ありませんでした。
　また、ハードウェアやOSはベンダそれぞれ
に独自色があり、運用のルールやクセが違うた

の処理機能を持つスイッチ
があります。これらは通常
のスイッチと区別して、「L3

スイッチ」と呼ばれます。L3

スイッチという呼称から、一
般的なスイッチのことをL2

スイッチとも呼んでいます。

そのほかのスイッチ

　通常、スイッチというと
L2スイッチ、もしくはL3

スイッチのことを指しますが、それより上位レ
イヤのプロトコルに対応したスイッチも存在し
ます。いずれもソフトウェアではなく、ハード
ウェアで処理するといった特徴があります。

❖ L4スイッチ
　L4スイッチは、レイヤ4のプロトコルである
TCPをもとに転送先を決められるスイッチで
す。たとえば、新しいTCPセッションが到着し
たときにどのサーバに転送するかといった、ロー
ドバランサの役割を果たします。

❖ L7スイッチ
　L7スイッチは、レイヤ7のプロトコルをもと
に転送先を決めることができるスイッチで、
HTTPのURLをベースとしたものが一般的で
す。リバースプロキシのようなものをイメージ
するとわかりやすいでしょう。L7スイッチはア
プリケーションデリバリコントローラ（ADC）と
呼ばれることもあります。

現状のスイッチの問題点

　ネットワークスイッチについて簡単におさら
いしましたが、本節では現状のスイッチにおけ
る問題点について述べます。

ハードウェアの特殊性

　ネットワークスイッチは、デバイスから送信

注3） Application Specific Integrated Circuit。特定用途のため
に設計されたLSI。ネットワーク機器ではおもにパケット
の転送を担う。

注4） Content Addressable Memory。メモリ内のデータを検索
して値を取得できる、連想配列のようなしくみを持つメモ
リのこと。

注5） 汎用的なスイッチングチップを開発するベンダもあり、各
スイッチベンダからは汎用チップを搭載したモデルも販売
されている。しかしながら、OSはスイッチベンダ独自の
ものが搭載されることが一般的。

スイッチベンダ OS
Cisco Systems IOS、NX-OS
Juniper Networks JUNOS
Arista Networks EOS

 ▼表1　スイッチベンダと独自開発のOS

ホワイトボックススイッチって何
 ▼図3　ルーティング

ルータ

セグメントA セグメントB

98 - Software Design Nov. 2017 - 99

ホワイトボックススイッチ
のメリット

　現状のスイッチには、ベンダごとの設計の違
いから、運用の自動化がしにくいという問題が
ありました。ホワイトボックススイッチは、そ
の問題をどのように解決するのでしょうか。こ
こからはホワイトボックススイッチのメリット
についてみていきます。

そもそもホワイトボックススイッチ
って何？

　ホワイトボックススイッチのメリットについ
て紹介する前に、そもそもホワイトボックスス
イッチとは何かについて紹介します。
　前節で述べたように、従来のスイッチはハー
ドウェアとOSが密接に連携していました。そ
れに対してホワイトボックススイッチは、一般
的な汎用サーバのように扱うことができます。
たとえば従来のスイッチの場合、あるベンダ製
ハードウェアにはそのベンダ製のOSがインス
トールされていて、それ以外のOSを利用する
ことはできません。これがホワイトボックスス
イッチの場合は、A社製のハードウェアにA社
製のOS（A）だけでなくB社製のOS（B）もイン
ストールできます（図5）。このように、ユーザ
がハードウェアとOSの組み合わせを選択して
利用できるという特徴があります。
　現在、ホワイトボックススイッチ用のハード
ウェアは台湾のベンダを中心に複数のベンダが
ラインナップをそろえており、サーバ収容部分

め、ネットワークエンジニアにとっては大きな
負荷となります。複数ベンダのスイッチ同士で
通信をさせる場合、基本的なプロトコルで問題
が起こることは少ないのですが、プロトコルが
複雑な場合、仕様にベンダ独自の解釈が含まれ
ていたり、独自の拡張が加えられたりしている
場合も少なくありません。その独自の拡張がデ
ファクトスタンダードとなっているケースもあ
ります。そのため、別ベンダ同士のスイッチを
接続する場合には相互接続検証を行う必要があっ
たり、通信障害などのトラブルが発生したとき
の切り分けに難航したりすることがあります。

自動化しにくい問題

　一般的にネットワークスイッチでは、おもに
CLIでコマンドを入力して設定を行います。入
力するコマンドは各ベンダごとに違いがあり、
統一されていません（図4）。最近では各スイッ
チベンダのOSにもAPI機能の実装が進みつつ
ありますが、仕様は統一化されていないため、
各ベンダごとに実装を変更する必要があるのが
現状です 注6 。APIがない場合、対話的にコマン
ドを自動実行できるexpectやTera Termのマク
ロ機能といったツールを用いて、苦労しながら
も運用の自動化をすることになります。

注6） OpenConfigという、ベンダに依存しないAPIを策定しよ
うという動きもあるが、現時点で利用できるスイッチは少
ない。

 ▼図4　 スイッチごとのコマンド例（設定モードの開始
と終了、設定の参照）

 # ベンダAのスイッチ
SwitchA>enable
SwitchA#configure terminal
SwitchA(config)#exit
SwitchA#show running-config

 # ベンダBのスイッチ
user@SwitchB> configure
Entering configuration mode

{master:0}[edit]
user@SwitchB# show

 ▼図5　ハードウェアとOSの関係

OS

従来のスイッチ ホワイトボックス
スイッチ

ハードウェアと
OSが密接に連携

ハードウェアと
OSが独立

OS A OS Bor

100 - Software Design

て、監視ソフトウェアで有名なZabbix

のagentを導入すれば、サーバと同じ
しくみで監視やアラート発報などがで
きるようになります。
　また構築に関しても、ホワイトボッ
クススイッチ独自の機能であるONIE 注8

を利用してOSのインストールを行い、
ホワイトボックススイッチに限らずさ
まざまなスイッチで利用できるZTP 注9

をベースにOS上の初期設定を行ったあとは、
AnsibleやChefといったプロビジョニングツー
ルを使えば、サーバと同じように機器の役割ご
との共通設定を行うことができます（図6）。
　プロビジョニングツールを利用して構築を行っ
ていれば、運用中に設定を変更する場合もプロ
ビジョニングツールのコンフィグを変更して差
分を適用するといった、サーバと同じフローの
メンテナンスを行うことができます。さらに、
機器故障に伴うハードウェア交換のような障害
対応の場面でも、サーバと同じような手順で障
害対応を行えるようにしくみを作ることもでき
るので、運用者の負荷を下げることが期待でき
ます。

メリット2
自分でソフトウェアを実装できる

　前項で紹介したとおり、ホワイトボックスス
イッチ用のOSは大半のものがLinuxベースで
実装されていますので、一般的なLinuxのよう
にシェルスクリプトを実行したり、各種プログ
ラミング言語の実行環境を導入したりすること
ができます。それにより、スイッチ上で動作す
るソフトウェア（後述）を、ユーザが自分で実装
して導入できるようになりました。また、これ
らが可能になったことで、異なるOSが動作す

などで利用する1G多ポートの低価格なモデル
から、コアネットワーク向けの100G多ポート
の高価なモデルまで、数多くの製品が登場して
います。OSに関してはホワイトボックススイッ
チ用OSをメインに取り扱うベンダもいくつか
登場していますが、従来のスイッチ向けのルー
ティングエンジンを開発しているベンダの参入
や、MicrosoftやFacebookといったハイパー
ジャイアントと呼ばれる大企業が、自社データ
センター向けに独自のOSを開発する例も見ら
れます。こういった多種多様な製品群の中から、
ユーザはネットワークの規模感、利用したいプ
ロトコル、周辺機能、サポート、価格など、い
ろいろなことを吟味しながら、ハードウェアと
OSの組み合わせを選ぶことができます。
　それでは、ホワイトボックススイッチの特徴
をふまえたうえで、ホワイトボックススイッチ
のメリットを紹介します。

メリット1
スイッチがサーバのように使える

　ホワイトボックススイッチ用OSは、大半の
ものがLinuxベースで実装されており、まるで
NICがたくさん搭載されているLinuxのように
も見えます。筆者が調査した限りではDebianを
ベースにしたものが多く、通常のLinuxを操作
したことのある方なら、それほど違和感なく使
い始められる印象があります。また、Linuxを
ベースにしているということは、Linux用に開
発されたソフトウェアをスイッチ上で実行でき
る 注7 ということになります。具体的な例とし

 ▼図6　ホワイトボックススイッチ構築の流れ

注7） あくまでもLinuxをベースにカスタマイズされたOSなの
で、すべてのソフトウェアが利用できるわけではない。

注8） Open Network Install Environment。ホワイトボックスス
イッチ特有の機能で、OSのインストールを実行するため
のブートローダー。

注9） Zero Touch Provisioning。ユーザが手動で操作をすること
なく、機器の初期設定などを自動で行える機能。

ホワイトボックススイッチって何

未構築の
スイッチ

OS

ONIE＋ZTP

OS

Software

Ansible、
Chef

100 - Software Design Nov. 2017 - 101

知識やスキルがネットワークエンジニアにも求
められるようになり、ネットワークエンジニア
やソフトウェアエンジニアといった垣根がどん
どんあいまいになっていくのでは、と感じてい
ます。

ホワイトボックススイッチ
向けソフトウェアの開発

　ここからは、ホワイトボックススイッチに導
入するソフトウェアの実際の開発について解説
します。

スイッチソフトウェアの種類

　ホワイトボックススイッチ向けソフトウェア
の開発といっても、何を作るのでしょうか？　
ホワイトボックススイッチでのソフトウェア開
発には、大きく分けて2つの種類があります。
　1つ目は、ASICを制御してパケットの転送を
担うソフトウェアの開発です。従来のスイッチ
では、これらソフトウェアはネットワーク機器
ベンダが開発を行って製品に組み込みますので、
ユーザ自身が追加で実装を行うことはできませ
んでした。仮に新しいプロトコルなどに対応し
たバージョンが必要な場合は、ユーザがネット
ワーク機器ベンダに実装の依頼をして、できあ
がりを待つという選択肢を選ぶしかないという
ことになります。ホワイトボックススイッチで
も同様に、ホワイトボックススイッチ用OSベ

るスイッチ上で同じソフトウェアを実行できる
ようになりました。そのソフトウェアのレイヤ
でOSごとの違いを吸収してしまえば、結果と
して、どのスイッチで何のOSが動作している
のかを意識する必要がない状態を作り出すこと
ができます（図7）。
　弊社ではこのメリットを活かして、ホワイト
ボックススイッチ用の制御フレームワークを実
装し、次のようなオペレーションを完全自動化
したうえで商用サービスに導入しています。

①ホワイトボックススイッチの下記項目の設定
変更

　・リンクのup/down
　・access/trunk VLAN ID
　・Policing/Shaping rate
　・ACL（Source IP/MAC address filter）
　　etc...
②上記の設定変更のタイミングに合わせた最新

の設定バックアップ

　さらに弊社では、PythonのREST API用フ
レームワークであるFlask-RESTfulを利用した
ホワイトボックススイッチ用のREST APIサー
バを開発し、「異なるホワイトボックススイッチ
用OSでも同じエンドポイントを叩けば同じ
JSONオブジェクトが取得できる」というコンセ
プトの、スイッチ向けREST APIの開発にも取
り組んでいます。このREST APIサーバは次節
でサンプルコードを交えつつ詳しく紹介をした
いと思います。
　サーバの世界では自分で実装したソフトウェ
アを各サーバで導入し、システムを構築するこ
とはこれまで当たり前のように行われてきまし
た。ホワイトボックススイッチの例から、そん
な常識がネットワークの世界にもやってきたと
感じます。また、SDN 注10 というコンセプトが
現れて数年経ちますが、ホワイトボックススイッ
チの登場によって、ますますプログラミングの

 ▼図7　OSとソフトウェアの関係

注10） Software Defined Networking。ソフトウェアによって、
ネットワークを定義および実現するしくみ。

OS A

Software A

OS B

Software A

異なるOS
でも同一の

インターフェイス
を提供

OSの違いを
気にしなくてOK！

102 - Software Design

こでは、Cumulus Networks社 注13 が提供してい
るホワイトボックススイッチ用OSの1つである
「Cumulus Linux」 注14 を題材とし、その上で動
作するソフトウェアを開発します。とは言え、
Cumulus Linuxを動作させるためのホワイト
ボックススイッチ用のハードウェアやライセン
スをすぐに用意するのは難しいので、同社が提
供する仮想アプライアンス「Cumulus VX」 注15 を
利用します。Cumulus Networks社以外にも仮
想アプライアンスを提供するベンダはいくつか
ありますが 注16 、「無料で利用できる」「主要ハイ
パーバイザをサポートしている」といった点か
ら、幅広い読者の方が利用できると考えて本製
品を採用しました。
　また本記事では紹介しませんが、それぞれの
仮想アプライアンスとGitHub、Jenkins、Slack

などを組み合わせれば、継続的インテグレーショ
ンなどソフトウェア開発の世界では当たり前に
行われている開発手法を、そのまま利用するこ
とができます。

❖ Cumulus VXを立ち上げる
　前置きはここまでにして、さっそくCumulus

VXを立ち上げましょう。Cumulus Networks社
のサイトからCumulus Networks accountを作成
すれば仮想アプライアンスのイメージがダウン
ロードできますので、手元の環境に応じて最適
なイメージをダウンロードしてください 注17 。な
お、イメージの詳細な仕様はTechnical Documen

tation 注 18 の［Cumulus VX］-［Getting Started］
に記載されています。
　イメージから仮想アプライアンスを作成する
と、Cumulus VX上でeth0として認識されるマ
ネージメントポート（アダプター1）と、swp1～7

ンダが開発を行います。しかしホワイトボック
ススイッチ用OSでは、ユーザに対してASICを
制御するためのAPIやSDKが公開されており、
ユーザ自身で開発を行うこともできます 注11 。
　2つ目は、ホワイトボックススイッチ用OSを
一般的なLinuxとみなしたソフトウェアの開発
です。一例として本節では、「メリット2」で紹
介した「ホワイトボックススイッチ用のREST

APIサーバ」を題材にして、スイッチポートの
ステータスをJSONで取得するホワイトボック
ススイッチ向けソフトウェアを開発するうえで
の開発の流れを紹介します。

注意点

　開発の流れに入る前に、ホワイトボックスス
イッチ向けソフトウェアを開発するうえでの注
意点を挙げたいと思います。
　ホワイトボックススイッチには、ASICのよ
うなパケットの転送に特化したリソースだけで
なく、普段私達がCPU、メモリ、ストレージと
呼んでいるような、汎用的なコンピュータリソー
スも搭載されています。しかし、それらは低ス
ペックな場合があり、実装するソフトウェアの
リソース消費量について注意する必要がありま
す。また、CPUはx86_64のものばかりではな
く、ARMやPowerPCなどが搭載されているこ
とがあります 注12 。その場合、C言語やGo言語
といったコンパイラ型言語では、CPUアーキテ
クチャを意識した開発やコンパイルを行う必要
があります。

開発環境を作る

❖ 開発環境の紹介
　それでは、開発環境について紹介します。こ

注11） 可能ではあるものの、ネットワークの基本的な知識はもち
ろん各種プロトコルに関しての深い知識、プログラミング
スキルも必要なため、難易度は非常に高い。また、ベンダ
よってはASICの仕様がオープンになっておらず、NDA（秘
密保持契約）を結ばなければならないなどの制約もあるた
め、始めるまでのハードルもある。

注12） ホワイトボックススイッチが登場したころはPowerPCを
搭載したモデルが主流だったが、最近はx86/x86_64や
ARMを採用したハードウェアが多くなってきた。

注13） URL https://cumulusnetworks.com
注14） URL https://cumulusnetworks.com/products/cumulus-

 linux
注15） URL https://cumulusnetworks.com/products/cumulus-vx
注16） ホワイトボックススイッチOS用ベンダだけでなく、従来

のネットワーク機器ベンダでも提供され始めている。
注17） 本記事ではCumulus VX 3.4.1、VirtualBox用イメージを

利用。
注18） URL https://docs.cumulusnetworks.com/category/docs

ホワイトボックススイッチって何

https://cumulusnetworks.com
https://cumulusnetworks.com/products/cumulus-linux
https://docs.cumulusnetworks.com/category/docs
https://cumulusnetworks.com/products/cumulus-vx

102 - Software Design Nov. 2017 - 103

筆者の環境ではPython 2.7.9とPython 3.4.2

がインストールされていましたので（図10）、
Python 3.4.2を利用することとします。
　前節で紹介したとおり、PythonのREST API

用フレームワークであるFlask-RESTfulを利用
します。また、Pythonのライブラリのインス
トールにはpipを利用しますので、あらかじめ
インストールしておきます。pipのインストール
が終わったら、Flask-RESTfulをインストール
しましょう（図11）。
　ここまででCumulus VXの起動とFlask-REST

fulのインストールが完了しました。Pythonを
利用したことのある方ならおわかりかと思いま
すが、通常のLinux上でPythonを利用する場合
と同じように環境構築ができます。

として認識されるスイッチポート用の仮想ネッ
トワークインターフェース（アダプター2～8）が
定義されていることがわかります（図8）。なお、
アダプター1はデフォルトのNATからブリッジ
アダプターに変更していますが、それ以外は変
更せずに利用しています。
　準備が整ったら仮想アプライアンスを起動し
ます。Cumulus VXの基本的な機能はCumulus

Linuxと同じと考えて問題ありませんので、ダ
ウンロードしたものと同じバージョンのCumu

lus Linuxのドキュメントを参照してください。

❖ 実行環境の構築
　Cumulus VXにログインしたら、REST API

サーバの実行環境を作成します。
　まずは、swp1～7として定義されている
スイッチポートのコンフィグを作成します
（図9）。この手順はCumulus Linux固有の
ものですので、最初はあまり深く考えずに
写経してしまっても問題ありません。
　次にPythonのバージョンを確認します。

 ▼図8　仮想マシンの構成

 ▼図9　スイッチポートのcon�gの作成

 # swp用のconfigの作成
$ for i in $(seq 1 7); do
> echo -e "auto swp${i}\niface swp${i}\n" | \
> sudo tee -a /etc/network/interfaces.d/swp.intf
> done

 # ネットワークインターフェースのリロード
$ sudo ifreload -a

 ▼図10　Pythonのバージョンを確認

 # Python 2.x系のバージョン確認
$ python --version
Python 2.7.9

 # Python 3.x系のバージョン確認
$ python3 --version
Python 3.4.2

 ▼図11　pipとFlask-RESTfulのインストール

 # Python 3に紐づくpipのインストール
$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python3 get-pip.py

 # pipからFlask-RESTfulをインストール
$ sudo python3 -m pip install flask_restful

104 - Software Design

ルで、コード全体では中心的な処理を担います。
本ファイルはCumulus Linuxに依存する部分は
ありませんので、一般的なFlask-RESTfulの記
法のみで構成されています。swp.pyは、仕様の

❖ スイッチ上で動作するREST APIサンプル
 を動かす
　それではREST APIのサンプルコードを動か
してみましょう。サンプルコードの簡単な仕様
を次に示します。

・http://host:port/api/v1/swp/:id/ に
GETリクエストを発行すると:idで指定した
各スイッチポートの情報が取得できる

・hostはCumulus VXのeth0のIPアドレス
・port/はFlask-RESTfulのデフォルトポート

である5000
・取得できる情報は「インターフェースのリンク

状態」「RX/TX（受信／送信）のパケットカウン
タの値」「MTU」

　任意のディレクトリに api.py（リスト1）と
swp.py（リスト2）を作成します。api.pyはFlask

-RESTfulを制御する処理が記述されたファイ

 ▼リスト1　api.py

from flask import Flask
from flask_restful import Resource, Api

from swp import SwitchPort

app = Flask(__name__)
api = Api(app, catch_all_404s=True)

class SwitchPortView(Resource):
 def get(self, swp_id):
 port_data = {}
 port_data['port'] = swp_id

 try:
 swp = SwitchPort(swp_id)
 except ValueError as e:
 port_data['message'] = str(e)
 return port_data

 port_data['link'] = swp.get_link()
 port_data['mtu'] = swp.get_mtu()

 port_data.update(swp.get_rx_state_dict())
 port_data.update(swp.get_tx_state_dict())

 return port_data

api.add_resource(SwitchPortView, '/api/v1/swp/<string:swp_id>/') ← APIのエンドポイントの定義

if __name__ == '__main__':
 app.run(debug=True,host='0.0.0.0')

 ▼図12　REST APIの実行

 # Cumulus VX上で実行
$ python3 api.py

 # Cumulus VXとは別の端末で実行
 # host、portは各自の環境に合わせて読み替えてください
$ curl -s http://host:port/api/v1/swp/1/
{
 "txOk": "288",
 "txDrp": "0",
 "rxOk": "1757",
 "link": "up",
 "port": "1",
 "txErr": "0",
 "rxDrp": "123",
 "rxErr": "0",
 "txOvr": "0",
 "rxOvr": "0",
 "mtu": "1500"
}

 「APIのエンドポイントの定義」に対応するViewの定義

ホワイトボックススイッチって何

104 - Software Design Nov. 2017 - 105

イッチとホワイトボックススイッチの違い、ホ
ワイトボックススイッチの拡張性などについて
知っていただけましたでしょうか。筆者は、こ
れからのネットワークの制御や運用には、ネッ
トワークに関する知識やスキルだけではなく、
プログラミングのスキルも必要不可欠になって
くると感じています。それは言い換えれば、プ
ログラマの力がネットワークの分野で必要になっ
てきている、ということです。本記事がプログ
ラマのみなさんの目に止まり、新しいネットワー
ク技術を作り出す一歩になれば幸いです。ﾟ

中で紹介した「取得できる情報」の元になるデー
タを、Cumulus Linuxに依存する処理を行って
取得し、Flask-RESTfulに合わせたデータ構造
に変換する処理を担います。
　サンプルコードを作成したらREST APIサー
バ（api.py）を起動して、別の端末からエンドポ
イントにリクエストを発行してみましょう（図

12）。ここではswp1の状態を取得しています。
ここまでできたら、一通り完成です。

◆　◆　◆
　いかがでしたでしょうか。本記事で従来のス

 ▼リスト2　swp.py

from json import loads
from subprocess import getoutput

class SwitchPort(object):
 def __init__(self, swp_id):
 self.swp = 'swp{}'.format(str(swp_id))

 netstat_dict = loads(getoutput("cl-netstat -j"))

 if self.swp in netstat_dict:
 self.netstat_swp_dict = netstat_dict[self.swp]
 else:
 raise ValueError('{} is not fonund.'.format(self.swp))

 def get_link(self):
 is_link_down = 'state DOWN' in getoutput('ip link show dev {}'.format(self.swp))

 if is_link_donw:
 return 'down'
 else:
 return 'up'

 def get_mtu(self):
 return str(self.netstat_swp_dict['MTU'])

 def get_rx_state_dict(self):
 rx_state = {}

 rx_state['rxOk'] = str(self.netstat_swp_dict['RX_OK'])
 rx_state['rxDrp'] = str(self.netstat_swp_dict['RX_DRP'])
 rx_state['rxErr'] = str(self.netstat_swp_dict['RX_ERR'])
 rx_state['rxOvr'] = str(self.netstat_swp_dict['RX_OVR'])
 return rx_state

 def get_tx_state_dict(self):
 tx_state = {}

 tx_state['txOk'] = str(self.netstat_swp_dict['TX_OK'])
 tx_state['txDrp'] = str(self.netstat_swp_dict['TX_DRP'])
 tx_state['txErr'] = str(self.netstat_swp_dict['TX_ERR'])
 tx_state['txOvr'] = str(self.netstat_swp_dict['TX_OVR'])
 return tx_state

 Cumulus Linuxに依存する処理を行い、データを取得

 Flask-RESTfulに合わせたデータ構造に変換

106 - Software Design

　本連載も3回目になりました。今回のテーマ
は「ネットワーク」です。すなわち、端末同士の
通信に関連する問題を出題します。CLI端末か
らネットワークに関する操作ができると、ほか
の端末同士の疎通確認やスイッチ、APIの動作
テストをはじめ、何かと役に立ちます。
　HTTP/HTTPS通信の疎通確認のみであれ
ば、GUIで簡単に使えるWeb APIテストツール
の力を借りるのが手ごろかもしれません。しか
し、UNIXのコマンドには、低いレイヤでの通
信の操作を可能にする、自由度の高いコマンド
が数多く用意されています（その分、ちょっと応

端末同士での通信 用すると悪いことにも使えてしまうのですが
……）。

　今回の問題の検証に使ったOSはUbuntu

Server 16.04 LTSです。コマンドはさまざま
なものを試すのでその都度インストールします。
解答の解説においてインストールが必要なこと
を説明します。ただ、aptで簡単にインストール
できるものについてはインストールする手順を
省略することがあります。Ubuntuですので、基
本的なコマンドについては、GNU core utilities

の使用を前提にしています。シェルは前回に引
き続きbashを使います。バージョンは4.3です。

環境

　ifconfigコマンドを使う方法がまず思いついて
しまうのですが、Linuxでは非推奨なので ipコ

解答 マンドを使うことにします。ip linkと打つと、
図1-1のように認識されているデバイス一覧が
表示されます（IPアドレスも見たい場合には

ip addrです）。

速攻で仕事を片づける
CLI力をマスターせよ！ 挑戦状シェル芸人からの

ネットワーク（その1）第3回

挑戦状
シェル芸人からの

速攻で仕事を片づける
CLI力をマスターせよ！

上田 隆一、田代 勝也、山田 泰宏、eban今回のシェル芸人

山田 泰宏編者

　リスト1-1のように、OSから認識されているネッ
トワークデバイス（eth0など）の一覧を作ってみま
しょう。

問題1

ネットワークデバイス一覧 出題、解答、解説：上田
初級
★

lo
eth0
wlan0

 ▼リスト1-1　出力の例

106 - Software Design Nov. 2017 - 107

　tcpdumpを使うほうは、ip linkでは出てこ
ないusbmon1やnfqueueなど、筆者（上田）にとっ
ては見慣れないものも表示されて興味が出てし
まいました。
　ほかにも解答例あれば、Twitterなどで教え
ていただければと思います。

　あとは図1-2のように、行頭が数字の行を抽
出し、awkで2列目を抜き出して、tr -d :で
コロン（:）を消せば答えになります。
　このような文字列の切り出しができると、報
告書か何かを作るときに便利ですので、普段か
ら手遊びで練習しておくと良いでしょう。

　procの下にあるファイルや tcpdumpコマン
ドを使う方法もあります（図1-3）。

別解

第3回 ネットワーク（その1）

 ↓出力が長いので各行の右側は省略
$ ip link
1: lo: <LOOPBACK,UP,LOWER ...
 link/loopback 00:00:0 ...
2: eno1: <BROADCAST,MULTI ...
 link/ether 0c:c4:7a:0 ...
3: enp4s0: <NO-CARRIER,BR ...
 link/ether 0c:c4:7a:0 ...
9: eth0: <NO-CARRIER,BROA ...
 link/ether 22:3c:ae:7 ...

 ▼図1-1　ipコマンドでデバイス一覧を出力

 ↓procを参照する方法
$ cat /proc/net/dev ¦ awk 'NR>=3{print $1}' ¦ sed 's/:$//'
 ↓tcpdumpを使う方法
$ tcpdump -D ¦ awk '{print $1}' ¦ sed 's/^[0-9][0-9]*¥.//'

 ▼図1-3　別解（田代）

$ ip link ¦ grep ^[0-9]
1: lo: <LOOPBACK,UP,LOWER_ ...
2: eno1: <BROADCAST,MULTIC ...
 （..略..）

$ ip link ¦ grep ^[0-9] ¦ awk '{print $2}'
lo:
eno1:
 （..略..）

 ↓これが答え
$ ip link ¦ grep ^[0-9] ¦ awk '{print $2}' ¦ tr -d :
lo
eno1
enp4s0
eth0

 ▼図1-2　解答

　telnetコマンドでWebサーバに接続す
ると、HTTPリクエスト（以下、リクエス
ト）を手入力して直接会話ができます。
　図 2-1は「www.google.co.jp」に HEAD
リクエストを送る操作です。リクエストは
最後に空行が必要なことに注意してくださ
い。
　図2-1と同様に、任意の文字列をそのま
まHTTPリクエスト（以下、リクエスト）と
して送る操作をワンライナーで実現し、
HTTPレスポンス（以下、レスポンス）を取
得してください。
　また、HTTPSで接続する場合はどうす
ればいいでしょうか。

問題2

telnetコマンドでHTTP通信 出題、解答、解説：田代
初級
★

$ telnet www.google.co.jp 80
Trying 172.217.26.99...
Connected to www.google.co.jp.
Escape character is '^]'.
HEAD / HTTP/1.1 ←入力
Host: www.google.co.jp ←入力
 ←入力（空行）
HTTP/1.1 200 OK
 （..略..） レスポンス
Vary: Accept-Encoding

^] ←入力（Ctrl-]のあと、Enterを押下

telnet> quit ←入力
Connection closed.

 ▼図2-1　telnetでHTTP通信をする

108 - Software Design

　まずはリクエストの文字列を出力するコマン
ドを作成します。ここではprintfコマンドを使
います（図2-2）。改行は\nで指定します。最後

解答（HTTPの場合） に空行を出力していることに注意してください。
　この文字列を telnetコマンドに標準入力から
流し込んでやればいいのですが、図2-3のよう
にパイプでつなげただけではレスポンスが表示
されません。これは telnetコマンドがレスポン
スを表示する前に終了してしまうためです。
　そこでリクエスト送信後に1秒程度待ち
時間を入れると、レスポンスが表示されま
す（図2-4）。待ち時間を入れるにはsleep 1
のコマンドを使い、全体を()で囲ってグ
ループ化します。待ち時間の1秒は目安で
あって、実際にはもっと短くても大丈夫な
ことが多いでしょう。何らかの理由で1秒
以上必要な場合もあり得ます（回線品質が悪
い、サーバの負荷が大きいなど）。

解答（HTTPS
の場合）

　HTTPS接続の場合は、
telnetの代わりに、open

sslコマンドのs_clientサ
ブコマンドを使います（図

2-5）。標準エラー出力に
出力されるサーバ証明書
の検証情報は /dev/null

にリダイレクトして消し
ています。
　図2-5では、サーバ証
明書や暗号化に関する情
報も出力されます。HTT

Pレスポンスのみを出力
するには-quietオプショ
ンを使います（図2-6）。こ

速攻で仕事を片づける
CLI力をマスターせよ！ 挑戦状シェル芸人からの

$ printf 'HEAD / HTTP/1.1¥nHost: www.google.co.jp¥n¥n'
HEAD / HTTP/1.1
Host: www.google.co.jp
 ←空行

 ▼図2-2　リクエストの文字列を出力する

$ 図2-2のコマンド ¦ telnet www.google.co.jp 80
Trying 172.217.26.99...
Connected to www.google.co.jp.
Escape character is '^]'.
Connection closed by foreign host.
 ↑レスポンスが表示されずに切断される

 ▼図2-3　リクエスト文字列をtelnetの標準入力に渡す

$ (printf 'HEAD / HTTP/1.1¥nHost: www.google.co.jp¥n¥n'; sleep 1;) ¦ ｭ
openssl s_client -connect www.google.co.jp:443 -quiet -no_ign_eof 2> /dev/null
HTTP/1.1 200 OK
Date: Mon, 21 Aug 2017 15:24:26 GMT
 （..略..）
Transfer-Encoding: chunked
Accept-Ranges: none
Vary: Accept-Encoding

 ▼図2-6　解答（HTTPSの場合）

$ (printf 'HEAD / HTTP/1.1¥nHost: www.google.co.jp¥n¥n'; sleep 1;) ¦ ｭ
openssl s_client -connect www.google.co.jp:443 2> /dev/null
CONNECTED(00000003)

Certificate chain
 （..略..）
HTTP/1.1 200 OK
Date: Mon, 21 Aug 2017 15:15:49 GMT
 （..略..）
Transfer-Encoding: chunked
Accept-Ranges: none
Vary: Accept-Encoding

 ▼図2-5　opensslコマンドでHTTPS通信をする

$ (printf 'HEAD / HTTP/1.1¥nHost: www.google.co.jp¥n¥n'; sleep 1;) ¦ ｭ
telnet www.google.co.jp 80
Trying 172.217.26.99...
Connected to www.google.co.jp.
Escape character is '^]'.
HTTP/1.1 200 OK
 （..略..）
Vary: Accept-Encoding

Connection closed by foreign host.

 ▼図2-4　解答（HTTPの場合）

108 - Software Design Nov. 2017 - 109

の場合は -no_ign_eofオプションを併用しない
と、入力が終了したあとに切断されません注1。

　図2-7のように telnetコマンドの代わりにnc

コマンド（netcat）を使うと、リクエスト送信後
の待ち時間（sleep 1）が不要です。

　図2-8は山田さんからいただいた別解です。
HTTPであれば、bashに備わっている機能を利
用して同様のことができます。「/dev/tcp/ホス

注1） man s_clientのCONNECTED COMMANDSの章を参照。

補足

別解（HTTPの場合）

ト名 /ポート名」というパスとリダイレクトを使
うとTCP通信を可能にするファイルディスクリ
プタ注2が得られます。これに対して標準入力を
与えると、その入力内容のリクエストを送って
くれます。
　また、入力を与えたあとにcatなどで内容を
読み出すとレスポンスが得られます。誌面の関
係上詳しい説明は割愛しますが、興味のある方
は検索エンジンで「bash TCP通信」を検索して
調べてみてください。

注2） ファイルディスクリプタというのは、OSがファイルや標準
入出力の参照として使うキーです。たとえば標準入出力は、
ファイルディスクリプタを経由しているため、データの出
力先や入力元としての利用もできます。

　問題2の最後に出てきたncコマンドは、リク
エストを送るのにも、受け付けるのに
も使える便利なコマンドです。-l

（listen）オプションに続けてポート番号
を指定すると、そのポート番号でリク
エストを待ち受けます。ncに標準入力

解答 から文字列を与えると、その文字列が受けたリ
クエストに対するレスポンスとして使われます。
　ここではリスト3-1の文字列の内容を、リク

第3回 ネットワーク（その1）

$ printf 'HEAD / HTTP/1.1¥nHost: www.google.co.jp¥n¥n' ¦ nc www.google.co.jp 80

 ▼図2-7　ncコマンドでHTTP通信をする

　Webサーバのようにマシンに何かのHTTPのリクエストが来たら、レスポンスを返すワンライナーを考
えてください。
　基本的にWebサーバはレスポンスするデータのバイト数をContent-Lengthというヘッダに含めます。
この問題でも、レスポンスを返す際にはヘッダにContent-Lengthを含めることとします。ただしこの際、
ヘッダのContent-Lengthに記述する値を、実際のデータの量よりも大きくしてください。
　そして、CLI端末をもう1つ開き、curlコマンドでリクエストを投げて、そのレスポンスを受け取って
みてください。そのとき、何が起こるかも確認してください。

問題3

Content-Lengthの改ざん 出題、解答、解説：山田
中級
★★

$ exec 3<> /dev/tcp/www.google.co.jp/80 && (echo 'HEAD / HTTP/1.1'; echo 'Host: www.google.co.jp'; ｭ
echo;) >&3; (cat & sleep 1; kill $!) <&3

 ▼図2-8　別解（HTTPの場合）（山田）

HTTP/1.1 200 Ok ←ヘッダ部分
Content-Length: 5 ←ヘッダ部分（実際のレスポンスボディより1バイト多い値）
 ←空行（改行）が入る
test ←ここがデータの内容（レスポンスボディ、末尾に改行はなし）

 ▼リスト3-1　レスポンス内容

110 - Software Design

エストに対応するレスポンスとして返そうと思
います。testという文字列は4バイトですが、
ヘッダ部分のContent-Lengthの値は5（バイト）
となっていますね。つまり、実際のデータより
も1バイト分大きな数字が指定されています。
　リクエストを受けたらリスト3-1の内容のレ
スポンスを返すコマンドは、図3-1になります。
これを実行すると、8080ポートでリクエストの
待ち受け状態になります。
　ここでもう1つCLI端末を開き、待ち受けて
いる8080ポートに対してリクエストを送ってみ
ます（図3-2）。ただし、レスポンスとして返っ
てくるデータは先ほどの不正な値を持ったデー
タ（リスト3-1）です。curlはこのようなデータを
受け取ると受信データが1バイト足りない旨を
伝えるエラーメッセージを表示します。
　ちなみに、なぜcurlは残り1バイトを受信す
るために待機状態にならず、すぐにエラーが表
示されてコマンドが終了するのでしょう？
　それはncコマンドが標準入力から受けた内容
をすべて送信し終わったあとに、TCP通信の終
了を意味するFIN＋ACKパケットを返して通
信を終了させているからのようです。

　socatという、サーバ側としてもクライアント
側としてもソケット通信ができるコマンドがあ
り、これを使って解くこともできます。詳細は
割愛しますが、図3-3のコマンドでできます。

　curlには --ignore-content-lengthというオプ
ションがあり、図3-4のようにリクエストを送
ると、エラーが出なくなるようです。

◆　◆　◆
　ところで、このような変なレスポンスを受信
した際のほかのHTTPクライアントの挙動も気
になりませんか？　curl以外では、たとえばみ
なさんが普段お使いのWebブラウザが挙げられ
ます。
　図3-1のワンライナー実行後に、ブラウザの
アドレス欄に「http://localhost:8080」と入力し
て試してみましたが、「接続が切断されました」
のようなエラーメッセージが表示されるものも
あれば、何事もなかったかのように「test」と表
示するものもあるようです。

別解

補足

速攻で仕事を片づける
CLI力をマスターせよ！ 挑戦状シェル芸人からの

$ curl http://localhost:8080/
test ←レスポンス
curl: (18) transfer closed with 1 bytes remaining to read ←エラーメッセージ

 ▼図3-2　解答（もう1つの端末でリクエストを送信する）

$ socat -v tcp-listen:8080,crlf,reuseaddr,fork system:'echo HTTP/1.1 200 OK;ｭ
echo "Content-Length: 5"; echo; printf test'

 ▼図3-3　別解 socatを使った解答（eban）

$ curl --ignore-content-length http://localhost:8080/
test

 ▼図3-4　Content-Lengthのエラーが出力されないようにする方法

$ (echo -e "HTTP/1.1 200 Ok¥nContent-Length: 5"; echo; printf test) ¦ nc -l 8080

 ▼図3-1　解答（リクエストを待ち受けて、レスポンスを返すワンライナー）

110 - Software Design Nov. 2017 - 111

　パケットの生データの監視には tcpdumpとい
うコマンドがよく使われます。プロトコルや監
視対象のネットワークデバイスの名前など、パ
ケットを監視する条件を細かく指定すると、そ
の条件に合致したパケットを標準出力やファイ
ルに書き出せます。
　端末を2つ開きます。まず片方の端末で、
tcpdumpを実行してICMPプロトコルのパケッ
トの監視を開始します（図4-1）。-xオプション
で、受信したデータを16進数表記で表示できま
す。そして-c 1オプションを付けることで、1

解答（小問1） つパケットを受け取ったら動作が終了します。
また、icmpという引数が指定されていますが、
これを指定することでpingが送るICMPプロト
コルのパケットのみを監視できます。
　このコマンドに続き、grepが指定されていま
す。tcpdumpの出力はIPアドレスやパケットの
種類の情報などを含みます。16進数の表記の個
所は［タブ文字］0xという文字列が含まれていま
す。そこでタブ文字を含む行をgrepで抽出する
ことで、16進数表記の数値を含んだ行のみを出
力します。grepの引数となっている$'\t'はタ
ブ文字として展開されます。この展開はbashの
機能により行われます注7。

注7） bashには、$'文字列'という表現を特殊文字に展開する
「ANSI-C Quoting」という機能があります。GNUのWebサ
イト（https://www.gnu.org/software/bash/manual/html_
node/ANSI_002dC-Quoting.html）に説明があります。

第3回 ネットワーク（その1）

$ sudo tcpdump -x -c 1 icmp 2>/dev/null ¦ grep $'¥t'

 ▼図4-1　tcpdumpを使ってパケットを監視する

　この問題でもCLI端末を2つ使います。片方の端末はgihyo.jpにpingコマンド注3で ICMPパケットを投
げるために使います。そして、もう片方の端末も使って次に示す問題を解いてください。

【小問1】
　pingコマンドは、ICMP Echo Requestというパケットを、引数として指定されたホストに送ります。そ
のパケットを受け取ったホストは、ICMP Echo Replyというパケットを返します注4。pingを動作させ、最
初に送信する1回分の ICMP Echo Requestのパケットの内容を16進数で出力してください。内容に多少
余計なデータが入っていてもかまいません。

【小問2】
　表4-1はpingの ICMP Echo Requestのパケットの
構造です注5。0xNNという表現は、その個所のデータ
が16進数の数値でNNで表現されるという意味です。
ちなみに、8ビット＝1バイトとします注6。表4-1に
「データ（可変長）」とあるように、pingのパケットに
は自由に可変長のデータを含めることができます。
　pingでパケットを送ったとき、この可変長のデー
タ部分のみを16進数表記で出力するワンライナーを
考えてください。

問題4

pingのパケット解析 出題、解答、解説：山田
上級
★★★

注3） ご存じの方も多いとは思いますが、pingはネットワーク上のあるホストまでパケットが到達可能かどうか、あるいはホス
トが生きているかどうかを確認するためによく使われるコマンドです。

注4） パケットのフィルタリングの設定で制限されている場合などもあるため、常に返せるというわけではありません。
注5） RFC 792で定められています。https://tools.ietf.org/html/rfc792#page-14

注6） 厳密に言うと、常に1バイト＝8ビットとも限らないので、このような話のときは本来「オクテット」と言うべきですが、
「バイト」のほうがなじみのある読者のほうが多い気がするので、バイトを使います。

データの内容 データのサイズ
タイプ（0x08） 1バイト
コード（0x00） 1バイト
チェックサム 2バイト
識別子 2バイト
シーケンス番号 2バイト
データ（可変長） 可変長

 ▼表4-1　ICMP Echo Requestのパケット構造

https://tools.ietf.org/html/rfc792#page-14
https://www.gnu.org/software/bash/manual/html_node/ANSI_002dC-Quoting.html

112 - Software Design

　図4-1の端末で監視をしつつ、もう1つの端末
でpingを動作させましょう（図4-2）。こちらに
も-c 1が指定されていますが、pingはこれによ
り、1つパケットを送信し、それに対するレス
ポンスを受けたら動作を終了します。
　図4-2のコマンドを実行すると、図4-1の端末
に図4-3のような結果が出力されます。これが
ICMP Echo Requestの内容を16進数で表記し
たデータとなります。

　図4-3の出力から、可変長のデータ部分のみ
を取り出すことができれば、小問2の答えとな
ります。ここであらためて表4-1のICMP Echo

Requestの構造を見てみましょう。ICMP Echo

Requestのパケットは、0x08と0x00が出現する
ことがわかっています。よって0800という表記
が最初にパケットの先頭に現れ、そこから6バ
イト分はチェックサムなどに使われるはずです。

解答（小問2）

それ以降のデータが、ICMPパケットの可変長
データと判断して良さそうです（図4-4）。
　なお、0800よりも前にあるデータは IPヘッ
ダです。送信元と送信先のIPアドレスのような
通信に関する情報が含まれていますが、今回は
不要なので削ってしまいます。
　図4-3の結果から、データ部分のみを抽出す
る解答が図4-5です。ここではまず、sedで「0x
数字4桁:」のデータの出現位置を表す表記を削
除するため、文頭からコロン（:）までを削除し
ています。xargsコマンドを単体で使うと改行
を除いてくれるので、これを利用すると2バイ
トごとに空白区切りの文字列になります。
　最後にsedの-rオプションで拡張正規表現を
有効にし、「文頭から0800まで ＆ そこから6バ
イト分」を削ります。すると図4-5の結果が得ら
れます。これが小問2の解答となります。

　問題自体はこれで解けましたが、せっかくな
ので抽出した可変長部分の内容を読み解いてみ
ましょう。最初の16バイトはパケットを送信し
た時刻のUNIX時刻とマイクロ秒になります（図

4-6）。詳しい説明は割愛しますが、リトルエン
ディアンというルールでバイト列が並んでいま
す。これは順番を並べ替えて10進数に変換する
ことができます。図4-7は、dateコマンドで、パ
ケットが送信された時刻を確認する例です。興
味のある方は試してみてください。
　それ以降のバイト列には、16進数で0x10～
0x37のレンジで表される、データのかさ増しの
ための適当なデータが入っています。

別解（小問2）
　図4-8は田代さんからいただいた別
解です。「可変長データ」以外のバイト

補足

速攻で仕事を片づける
CLI力をマスターせよ！ 挑戦状シェル芸人からの

84e4 a259 0000 0000 ←UNIX時刻
60a6 0b00 0000 0000 ←マイクロ秒

 ▼図4-6　可変長データの最初の16バイト

$ ping -c 1 gihyo.jp

 ▼図4-2　pingで1つだけパケットを送る

 各行の文頭にはタブ文字が含まれる
 0x0000: 4500 0054 186d 4000 4001 ebf5 ac11 0002
 0x0010: 6814 221f 0800 a0e4 0563 0001 84e4 a259
 0x0020: 0000 0000 60a6 0b00 0000 0000 1011 1213
 0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223
 0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
 0x0050: 3435 3637

 ▼図4-3　小問1の解答（ICMP Echo Requestの内容）

$ sudo tcpdump -x -c 1 icmp 2>/dev/null ¦ grep $'¥t' ¦ ｭ
sed 's/.*://' ¦ xargs ¦ sed -r 's/^.*0800 (.{4}){3}//'
84e4 a259 0000 0000 60a6 0b00 0000 0000 1011 1213 1415 ｭ
1617 1819 1a1b 1c1d 1e1f 2021 2223 2425 2627 2829 2a2b ｭ
2c2d 2e2f 3031 3233 3435 3637

 ▼図4-5　小問2の解答（ICMP Echo Requestから可変長データ部
 分のみを抽出）

0800 XXXX XXXX XXXX XXXX XXXX ...

ココからデータ

 ▼図4-4　ICMPパケットの可変長データ

112 - Software Design Nov. 2017 - 113

列の長さは固定長であることを利用し、固定の
バイト数をcutで抽出するアプローチを取って
います。
　Ubuntuのpingは、デフォルトでは可変長デー
タ部分が56バイトのパケットを送出します。こ
れに IPヘッダ（20バイト）と ICMPヘッダ（8バ
イト）が付いて、パケット全体としては合計84

バイトになります。可変長データ部分を取り出
すには、IPヘッダと ICMPヘッダの合計28バ
イトを先頭から取り除けば良いです。
　図4-8ではcutコマンドの-cオプションに57-
という数字とハイフンで終わる引数が指定され
ています。これにより「文頭から57バイト目の
文字」から文末までの文字列を抽出できます。結
果的に文頭の28バイト（84－28＝56）を除くこ
とになります。
　ちなみに、pingの-sオプションで送信するパ
ケットの大きさを変更できます。この数値を大

きくすると、可変長データ部分が大きくなりま
す。その際は「補足」で述べた「かさ増しのための
適当なデータ」（0x10～0x37のレンジで表され
ていたもの）の範囲がさらに広くなり、0x37以
降もインクリメントが続いて0xffまで続きます。
0xff以上は1バイト中に収まらないので、値が
いったん0x00にリセットされ、再度インクリメ
ントが続いて同じパターンが繰り返されます。
　図4-9はpingの送信するパケットを大きくし
ていき、そのときのパケットの内容を比較した
ものです。

終わりに
　ネットワーク関連のコマンドにはなじみが全
然ない読者の方が多いかもしれません。しかし、
使い方を覚えると、何かの場面できっと強力な
武器になると思います。
　たとえば、今回出てきたパケットキャプチャ

の方法は、使い方を覚えればpingだけ
でなく、HTTPをはじめ、いろいろな
種類のパケットの内容の確認にも使え
ます。筆者（山田）は実際に解答にあっ
たのと同様の操作が役立ったことがあっ
たので、今回出題してみました。
　ネットワーク系の操作は奥が深く、1

回の連載で終わらせるのはもったいな
いと思っています。というわけで次回
の連載でもネットワークについての問
題を出題する予定です。｢

第3回 ネットワーク（その1）

$ sudo tcpdump -x -c 1 icmp 2>/dev/null ¦ grep $'¥t' ¦ ｭ
awk '{$1="";print}' ¦ tr -d ' ¥n' ¦ cut -c57-

 ▼図4-8　別解（田代）

 84e4 a259 0000 0000 というリトルエンディアンのバイト列を並び替えて処理する
$ echo 00000059a2e484 ¦ tr '[:lower:]' '[:upper:]' ¦ ｭ
sed 's/^/obase=10;ibase=16;/' ¦ bc
1503847556 ←パケットの送信日時（UNIX時刻）

 UNIX時刻をdateコマンドで読むと日付がわかる
$ date -d @1503847556
2017年 8月 27日 日曜日 15:25:56 UTC

 ▼図4-7 時刻情報を読み取る処理

 デフォルトのpingが送る56バイトのかさ増しデータ。0x10から0x37までが並んでいる
$ ping -c 1 gihyo.jp ←別端末で実行
$ sudo tcpdump -x -c 1 icmp 2>/dev/null ¦ grep $'\t' ¦ awk '{$1="";print}' ¦ tr -d ' \n' ¦ cut -c89-
101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f3031323334353637

 57バイトで指定。末尾に0x38が追加されている
$ ping -c 1 -s 57 gihyo.jp ←別端末で実行
$ sudo tcpdump -x -c 1 icmp 2>/dev/null ¦ grep $'\t' ¦ awk '{$1="";print}' ¦ tr -d ' \n' ¦ cut -c89-
101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738

 300バイトで指定。0x10から0xffまで並んだあと、0x00から順にデータが並んでいる
$ ping -c 1 -s 300 gihyo.jp ←別端末で実行
$ sudo tcpdump -x -c 1 icmp 2>/dev/null ¦ grep $'\t' ¦ awk '{$1="";print}' ¦ tr -d ' \n' ¦ cut -c89-
101112131415161718191a（中略）feff000102030405060708090（中略）2122232425262728292a2b

 ▼図4-9　pingの -sオプションで送信するパケットの大きさを変更

114 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

Androidエンター
プライズとは何か

　Androidの最初のベータ版がリリースされて
から今年で10年を迎えます。スマホは日常に
溶け込み、私たちの生活になくてはならないも
のとなっています。その利用範囲は趣味や娯楽
にとどまらず、業務にも活用できるアプリケー
ション（以後アプリ）がGoogle Play Storeには
公開され、各企業で開発が進められています。
そんな状況から、Googleが展開するAndroid

もビジネス向けの利用を促進するために、
2014年のGoogle I/Oで「Android for Work注１」
というサービスを発表しました。
　Android for Workでは、個人所有の端末を
業務でも使うBYOD（Bring Your Own Device）
を推進しています。リリース後に改善が続けら
れてすべてのAndroid端末を仕事で利用できる
ようになったため、現在は「Android」と統合さ
れ、「Andorid for Work」という呼称は使われ
なくなりました。ビジネス向けの文脈で扱う際
には「Androidエンタープライズ」「ビジネス向
けAndroid」と呼ばれているので、本稿では前
者にならうことにします。
　モバイルアプリでビジネス向けというと、あ
まり馴染みのない読者の方も多いかもしれませ
んが、世界中に普及した今だからこそ、ビジネ
注１） https://www.android.com/intl/ja_jp/work/

スに使われることを目的としたAndroidエン
タープライズがどのようなものなのか、本稿で
触れてもらえたらと思います。

Androidエンター
プライズのしくみ

　個人所有の端末でBYODを実現するためには、
ビジネスで扱うデータと個人のデータを明確に
区別し、ビジネス向けの用途で扱うデータは、
プライベートのデータと隔離するようなしくみ
が必要となります。そして、ビジネス向けのデー
タを扱う領域は企業側でワイプ（データ消去）や
使用不可にするなどの管理を行えることが望ま
しいでしょう。
　この実現のために、Androidエンタープライ
ズでは端末内に仕事用プロファイルを作成し、
業務で利用するアプリとそれに付随するユーザ
データを格納するしくみを提供しています（図

1）。
　Lollipop（Android 5.0）からユーザ管理の概
念が導入されましたが、このユーザ管理ではア
クティブとなっているアカウントへのプッシュ
通知しか通知表示をすることができません。そ
のため、個人用とビジネス用のアカウント切り
替えが面倒でした。
　Androidエンタープライズでは個人アカウン
ト内で個人用プロファイルと仕事用プロファイ
ルとで領域が分けて管理され、同時に実行が行

第20回 Androidエンタープライズの世界

presented by
Japan Android Group

http://www.
android-group.jp/

コミュニティメンバーが伝える
Androidで広がる
 エンジニアの愉しみ

重村 浩二（しげむら こうじ）
日本Androidの会 中国支部長

Androidは世界で出荷される約9割のスマートフォンに搭載される標準OS
です※。そのため、多くのAndroidアプリが開発され続けており、そして多
くのエンジニアが活躍しています。Androidで広がる新しい技術に魅了さ
れたエンジニアが集うコミュニティもあり、そこでは自分が愉しむための技
術を見つけては発信しています。その技術の一幕をここで紹介します。

※Gartner Worldwide Smartphone Sales to End Users by Operating System in 3Q16

http://www.android-group.jp/
https://www.android.com/intl/ja_jp/work/

Nov. 2017 - 115114 - Software Design

Androidエンタープライズの世界第20回

われているため、個人用アプリ向けとビジネス
用アプリ向けのプッシュ通知を同時に受け取れ
るメリットがあります。

個人用アプリとビジネス用
アプリを区別するUI

　1つのアカウント内で2つのプロファイルが
同時に実行できる状態だと、個人向けとビジネ
ス向けの区別を付けるUIが必要となります。
Androidエンタープライズでは図2にあるよう
に、ビジネス用アプリの区別を付けるためのマー
クがアイコン右下に表示され、ビジネス用アプ
リ実行中にはステータスバー上にも同じマーク
が表示されることで、ユーザが間違わないよう
なしくみが提供されています。

Androidエンター
プライズを試すには

　Androidエンタープライズを試すには、モバ
イル管理製品の設定と、各Android端末の設定
が必要となります。

モバイル管理製品の設定

　モバイル管理製品として、G Suiteなど
Googleが提供するサービスを通して管理コン
ソールから設定するか、もしくはサードパーティ
製のモバイル管理製品（SAPや IBM、Citrixな
ど）を導入し、Androidエンタープライズを利
用できるように設定する必要があります。この
設定については、各社の製品によって設定方法
が異なるため、各社のマニュアルを参照して設
定を行ってください。

各Android端末の設定

　G Suiteで試す場合は、Google Play Store

から端末管理ポリシーをインストールし、仕事
用プロファイルの作成を行い、個人用プロファ
イルと分離する必要があります注２。
　仕事用プロファイルが作成されると、先ほど
の図1にあるように、仕事用プロファイルの領
域が用意されます。そのあとは、管理者から許
可されたアプリをビジネス向けGoogle Play

Store注３よりインストールして環境を構築する
ことになります。

Androidエンター
プライズに対応した
アプリを作成するには

　Androidエンタープライズに対応したアプリ
を開発するには、仕事用プロファイル環境にア
プリを適用していく必要があります。公式の
Android in the Enterprise注４を見ながら、情報
注２） https://play.google.com/store/apps/details?id=com.

google.android.apps.enterprise.dmagent

注３） https://play.google.com/work?hl=ja

注４） https://developer.android.com/work/index.html

仕事用プロファイル

個人アカウント

個人用プロファイル

個人所有のスマートフォン

 ▼図1　Androidエンタープライズでの領域管理

 ◀図2　
ビジネス用アプリを
示すアイコン

https://play.google.com/store/apps/details?id=com.google.android.apps.enterprise.dmagent
https://play.google.com/work?hl=ja
https://developer.android.com/work/index.html

116 - Software Design

コミュニティメンバーが伝える
Androidで広がるエンジニアの愉しみ

　しかし、理想としてはそもそも機能が利用で
きないのであれば、ユーザに機能のアクション
が実行できないように、startActivity呼び出し
前に無効化することが望ましいでしょう。
　リスト2にあるように、Intent#resolveActi

vityメソッドで Intentの対象Activityが存在す
るかどうかを事前にチェックすることができる
ため、startActivityメソッドを呼び出す前に、
機能の呼び出しを無効化しておくことをお勧め
します。

仕事用プロファイルの動作確認

　Androidエンタープライズを本番運用する際
には上記の端末管理ポリシーを用いていくこと
になりますが、アプリの開発を行う際にはさま
ざまな状態を検証するために、開発用の環境構
築が必要になります。Googleは開発用の環境
構築のために、「Test DPC」というアプリを
Google Play Store、GitHubに公開していま
す注５。こちらをもとにインストールして環境構
築することで、アプリ上から基本的なシステム
アプリなどのインストールや有効化・無効化を
制御することが可能です。

注５） （Google Play Store）https://play.google.com/store/apps/
details?id=com.afwsamples.testdpc
（GitHub）https://github.com/googlesamples/android-
testdpc

を収集してください。
　adb（またはAndroid Studio）からのインス
トールであれば個人用プロファイル向けと同時
にインストールされて利用できるようになりま
すが、いくつか開発するうえで注意点がありま
す。最新の情報は脚注4のサイトを参考にして
もらいつつ、筆者が実際に業務で実施した対応
について紹介したいと思います。

startActivityの呼び出しで
クラッシュする
　Androidの特徴的な機能である Intentを用い
て startActivityを実行すると、クラッシュが
発生する可能性があります。仕事用プロファイ
ルでは、基本的に情報システム部門の管理者が
許可したアプリしかインストールすることがで
きません。そのため、場合によってはAndroid

端末であればプリインストールされている“ブ
ラウザ”アプリや“Gmail”アプリなどがない可
能性があります。すると、暗黙的Intentをstart

Activityメソッドで呼び出したとき、Intentに
指定した対象のアプリが見つからない可能性が
あります。
　startActivityメソッド呼び出し時にアプリ
が見つからない場合は、リスト1にあるように
ActivityNotFoundExceptionが返ってくるので、
try-catch文で例外処理を行ってやる方法が、
取れる対策の1つめとなります。

 ▼リスト1　ActivityNotFoundExceptionをtry-catchで処理する例

 ▼リスト2　resolveActivityメソッドを利用した機能無効化の例

try {
 Intent intent = new Intent(Intent.ACTION_VIEW, "http://www.gihyo.co.jp");
 startActivity(intent);
} catch(ActivityNotFoundException ignored) {
 // 例外処理
}

Intent intent = new Intent(Intent.ACTION_VIEW, "http://www.gihyo.co.jp");
if (intent.resolveActivity(getPackageManager()) == null) {
 // 機能の無効化を行う(例：ボタンの無効化)
 button.setEnabled(false);
}

https://play.google.com/store/apps/details?id=com.afwsamples.testdpc
https://github.com/googlesamples/android-testdpc

Nov. 2017 - 117116 - Software Design

Androidエンタープライズの世界第20回

し、世界に個人向けとしてAndroid端末が普及
した今なら、ビジネス向けとしてのニーズも高
まっていく可能性はあるのではないでしょうか？
今回紹介したAndroidエンタープライズは
BYODを実現するためにGoogleがAndroidの
標準機能として追加した機能です。Android

for Workが発表されてからあとにGoogleが発
表したOS（Marshmallow（6.0）、Nougat（7.0）、
Oreo（8.0））では、毎回Androidエンタープライ
ズに関する修正が行われてきています。それだ
けGoogleも力を入れている領域であると筆者
は考えています。
　今後のアプリ開発で上記の情報が読者の役に
立てることを願っています。s

個人用プロファイルのデータを
参照するには
　ビジネス用アプリを利用していると、プライ
ベートで撮影した写真や、ダウンロードしたデー
タにアクセスしたいケースがあります。独自の
実装でファイル管理のピッカーなど用意してい
ると、仕事用プロファイル内のデータにしかア
クセスできず、少々不便な状況が発生してしま
います。そんな要件に対応できるように、仕事
用プロファイルから個人用プロファイルのデー
タにアクセスする手段が提供されています。
　これを実現するには、アプリを開発する際に
Storage Access Frameworkを通してデータに
アクセスするように作るのがお勧めです。
　Storage Access Frameworkを使ってデータ
にアクセスする仕事用プロファイルのアプリを
作成すれば、図3のアイコンから遷移する図4

のメニュー内に「プライベートアプリ」という項
目が追加できます。このようにメニューからの
タップで、個人用プロファイルの領域にあるデー
タにアクセスできるようにすると良いでしょう。

さらに情報を得るために

　Androidエンタープライズに関する情報を日
本語サイトで取り扱っているところはほとんど
見受けられません。基本的には公式サイトや
Stack Overflowのような海外のコミュニティ
サイトから情報を仕入れることが中心となるで
しょう。米Googleが運営しているコミュニティ
サイトもあります注６。

まとめ

　ビジネス用アプリは世に出ているアプリの中
ではおそらく少数派に入ることでしょう。しか

注６） https://www.android.com/enterprise/
 以前はAndroid DevHubというコミュニティへの登録がで

きたのですが、本稿制作中にサイトが更新され、現状のコ
ミュニティサイトに登録申請のページは見当たりませんで
した。

 ◀図3　
Storage Access
Frameworkを用いた
ビジネス用アプリ例：
手順1

Storage Access
Frameworkの呼び出し

 ◀図4　
Storage Access
Frameworkを用いた
ビジネス用アプリ例：
手順2

個人用プロファイルに
切り替え

https://www.android.com/enterprise/

118 - Software Design

前回のおさらい

　前回（本誌2017年10月号）は折り畳みの基本
を紹介しました。折り畳みを使うことで、構造
化されたテキストに一手間加えるだけで、単な
るテキストファイルが抜群に扱いやすくなりま
す。前号をお読みになった方も再度読み返しな
がら、fold機能の使い道を探ってみてください。
　今回は、前回に紹介しきれなかったfoldexpr

という機能を紹介したいと思います。Vimの fold

機能は、Vimの動作を制御する専用の言語「Vim

script」によってさらに拡張できるようになって
います。基本機能だけでは実現できない、いろ
いろな折り畳み方法を独自に定義できるように
なります。筆者が知る限り、ほかのテキストエ
ディタで折り畳みの拡張機能が提供されている
ものはほとんどありません。

foldexprのしくみ

　foldexprを有効にするには、次のように
foldmethodオプションを設定します。

setlocal foldmethod=expr

　これにより、foldexprオプションの値が読
み込まれるようになります。
　foldexprオプションの値は式の形式で記述

します。その式が評価され、結果の値しだいで
折り畳みの挙動が変わります。またfoldexpr

オプションの式の中（もしくはそこから呼ばれる
関数の中）では、v:lnumという変数が有効にな
ります。Vimは対象の行が折り畳まれるべきか
を、画面の上部から下部に向かって行ごとに確
認していきますが、その対象の行がv:lnumで
示されます。そして、foldexprで示される式
の評価結果により、「折り畳まれるかどうか」を
判定します。
　まずは簡単な例を見てみましょう。

見出し1
 これは
 本文1です
見出し2
 これは
 本文2です

※空白部分はタブ文字（以降同）

　まずはこのテキストをexample1.txtとして保
存してください。次に新しくバッファを開き、
リスト1のソースコードを入力し、myfold.vim

として保存してください。ここでは、foldexpr
オプションにMyFoldLevelという関数の呼び出

 ▼リスト1　myfold.vim

function! MyFoldLevel(lnum)
 return getline(a:lnum)[0]=="\t"
endfunction

setlocal foldmethod=expr
setlocal foldexpr=MyFoldLevel(v:lnum)

一歩進んだ使い方
のため

のイロハ

foldでテキストを折り畳む
（後編）

　Vimの折り畳み機能「fold」について、前後編で解説します。後編では折り畳みを行う関数を自分で作り、
タブ文字でインデントされたテキストファイルをツリー状に折り畳みます。

mattn
twitter:@mattn_jp

第 回23

118 - Software Design Nov. 2017 - 119

に折り畳まれる設定を作ってみましょう。この
実現には、行頭に続くタブ文字の数だけ折り畳
みレベルが大きくなる関数を作れば良いですね。
　前回説明したとおり、Vimの折り畳みは「同じ
折り畳みレベル以上の行が並んでいる」場合に折
り畳まれるという動作になっています。

ルート
 アイテム1
 アイテム2
 アイテム3
 アイテム4
 アイテム5

のようなタブ文字でインデントされたテキスト
では、「アイテム1」は隣り合う同じ折り畳みレ
ベルの「アイテム2」と一緒にまとめられてしま
い、ツリー状にはなりません。「アイテム1」と
「アイテム5」は折りたたまれず、「アイテム2」
「アイテム3」「アイテム4」が折り畳まれるという
のが目標の形です。
　そこで使用するのが、表1でも示した>です。
foldexprに返してほしい値は次のようになり
ます。

>1
 >2
 >2
 >3
 >3
 >2

　よって、各行のインデントレベルに>を付け
たものを返せば良いことになります（リスト2）。
matchstr()関数は、第1引数の文字列のうち

しを、引数v:lnumで与えています。この式が
各行ごとに呼び出されます。ではMyFoldLevel

の中身を見ていきます。この関数では条件式の
結果をreturnで返却しています。getline()関
数は引数で与えられた行の文字列を返す関数で
すので、getline(a:lnum)は、現在折り畳みの
判断が行われている行の文字列となります 注1。
続けて[0]で添え字の0番目を参照しているの
で、getline(a:lnum)という式全体は行の一番
始めの文字を表しています。そして== "\t"で、
この式とタブ文字との比較を行っています。つ
まりこの関数MyFoldLevelは、引数で示される
行の先頭がタブ文字であれば1を、そうでない
ならば0を返すという動作になります。
　実際に動作を見てみましょう。example1.txt

のバッファを開いた状態で、

:source myfold.vim

と実行します。行の先頭がタブ文字で始まって
いる行が折り畳まれ、次のようになります。

見出し1
+- 2 lines: これは---------------
見出し2
+- 2 lines: これは---------------

　なお折り畳みのレベル0の行、つまり「見出し」
で始まっている行は折り畳まれません。また現
状のMyFoldLevelでは、同じ折り畳みレベルの
行が続いていない場合は折り畳まれません。こ
のしくみについては次節で説明します。

ツリー状に
折り畳んでみよう

折り畳みレベルをカスタマイズ

　foldexprは、評価結果の値によって表1の動
作を行います。前述のMyFoldLevelは0と1し
か返しませんでした。これを少し修正して、タ
ブ文字でインデントされたテキストがツリー状

注1） v:～はVimの組込み変数。a:～は function内のみで使え
る変数。

値 意味
0 折り畳まない
1、2、… このレベルで折り畳む

-1
折り畳みを定義せず、前後の行のレベ
ル（低いほう）に従う

= 直前の行と同じレベルで折り畳む

a1、a2、… 直前の行のレベルに数字分足したレベ
ルで折り畳む

s1、s2、… 直前の行のレベルから数字分引いたレ
ベルで折り畳む

>1、>2、… このレベルから折り畳みを始める
<1、<2、… このレベルで折り畳みを終える

 ▼表1　foldexprの動作

foldでテキストを折り畳む（後編）

第 回23

一歩進んだ使い方
のため

のイロハ

120 - Software Design

ントされたテキストをツリー状に折
り畳んでフォルダのように見せるリ

スト3のうち、MyFoldTextの説明
をします。
　getline()で得た折り畳み開始行

をmatchlist()という関数でタブ文字とそれ以
外に分解しています。matchlist()の使い方
は:help matchlist()を参照してください。続
いてタブ文字の幅（見た目の幅）をstrdisplay

width()という関数で取得し、その幅に合わせ
た空白を作っています。タブ文字はtabstopオ
プションで見た目が変わってしまいますから、
どのユーザも同じ見た目にするためにはこのよ
うにします。また、折り畳まれたテキストの後
ろの部分にも「-」が付くので、画面幅いっぱいに
空白を足しています。これにより、折り畳まれ
た行はフォルダのように扱われ、カラースキー
ムが適用されていれば、通常のテキストとは異
なる色で表示されます（図1）。

折り畳みの
その他の適用方法

　こういったfoldexprやfoldtextの設定を
適用するには、先に説明した:sourceコマンド
のほかに次の方法があります。

・モードラインで指定
・ファイルタイプでスクリプトを実行

　モードラインによる指定は1行で書かなけれ
ばならず、しかも使えない文字をエスケープし

ながら記述する必要があってとても困
難です。このような複雑な折り畳みを
行うには、拡張子 .vimのファイルに処

第2引数の正規表現でマッチしている部分の文
字列を返します。ここではタブ文字にマッチさ
せ、len()関数でタブ文字の個数を返していま
す。「ルート」にはインデント幅がありませんが、
全体の折り畳みレベルを+1することで「ルート」
も折り畳まれるようにしています。

折り畳みの見栄えをカスタマイズ

　次は折り畳みの見栄えを変えてみます。通常、
折り畳まれた行は次のように表示されます。

+- 2 lines: これは---------------

　折り畳まれた際のテキストは、foldtextと
いうオプションで変更できます。これもfold

exprオプションと同様に式を設定します。

setlocal foldtext=v:folddashes.'折り畳み'

　このように設定すると、折り畳まれた行が次
のように表示されます。

--折り畳み------------------------

　このfoldtextの式として、自作関数を渡す
ことができます。
　foldtextで使える関数や変数を表2、表3に
示します。これらを踏まえ、タブ文字でインデ

関数 説明

foldclosed({lnum})
行{lnum}が閉じられている場合は
折り畳み開始行を返す

foldclosedend({lnum})
行{lnum}が閉じられている場合は
折り畳み開始行を返す

foldlevel({lnum}) 行{lnum}の折り畳みレベルを返す

foldtext()
式を評価した際の折り畳み表示内容
を返す

foldtextresult({lnum})
折り畳まれた行{lnum}のテキスト
を返す

※{lnum}は対象の行番号を指定。省略した場合は現在の対象行が入る。

 ▼表2　foldtextで使える関数

変数 説明

v:folddashes
折り畳まれたテキス
トの前に付く「-」文字

v:foldlevel 折り畳みレベル
v:foldstart 折り畳みの開始行
v:foldend 折り畳みの終了行

 ▼表3　foldtextで使える変数

 ▼リスト2　myfold.vimのMyFoldLevelを修正

function! MyFoldLevel(lnum)
 return '>' . (len(matchstr(getline(a:lnum),'^\t*'))+1)
endfunction

120 - Software Design Nov. 2017 - 121

理を記述し、「̃/.vim/ftplugin/<ファイルタイプ
>/<カテゴリ>.vim」というファイル名で配置し
ます。たとえばテキストファイルであれば、「̃/

.vim/ftplugin/text/myfold.vim」、
メモを記述するための自作ファイ
ルタイプmemoであれば「̃/.vim/

ftplugin/memo/myfold.vim」という
ファイル名になります。

◆　◆　◆
　前回と今回で、折り畳みの基本
とVim scriptを使った独自の折り
畳みルールを作る方法を説明しま

 ▼リスト3　ツリー状に折り畳まれた行をフォルダのように見せる

function! MyFoldText(foldstart)
 let [_, tabs, text; _] = matchlist(getline(a:foldstart), '^\(\t*\)\(.*\)')
 let width = strdisplaywidth(tabs)
 return repeat(' ', width) . text . repeat(' ', winwidth(''))
endfunction

function! MyFoldLevel(lnum)
 return '>' . (len(matchstr(getline(a:lnum),'^\t*'))+1)
endfunction

setlocal foldmethod=expr
setlocal foldexpr=MyFoldLevel(v:lnum)
setlocal foldtext=MyFoldText(v:foldstart)

 ▼図1　リスト3による折り畳み

　Vimの長い開発の歴史の中で、我々日本人開発

者がどうしても解決できない問題がありました。仮

入力の問題とiminsertオプションのデフォルト値

の問題です。前者は現状のオンザスポット入力の

独自実装がバギー（バグだらけ）であること、後者

はiminsertのデフォルト値が原因でインサート

モードに入るたびに IMEをアクティブにしてしま

うという問題です。ほかの国の IMEと協調した結

果、このような問題のある現状の動作になってし

まっていました。

　長い間この問題が解決できず「Vimで日本語を入

力するのは難しい」と言われ続けてきましたが、

patch 8.0.1026により、仮入力方式がオーバーザス

ポット（仮入力を独自実装に頼らず IME自身に任せ

る方式）に、そしてpatch 8.0.1114でiminsertのデ

フォルト値が「0」に、つまりインサートモードに

入っても勝手に IMEがアクティブにならないよう

に修正されました。日本人Vimmerが長い間苦しん

できた問題でしたので、一日本人としてとても喜

んでいます。ぜひ日本語が入力しやすくなった最

新版のVimを試してみてください。この話の詳細

は筆者のブログ 注A を参照してください。

Vimと日本語入力

注A） URL https://mattn.kaoriya.net/software/vim/20170905113330.htm

した。タブ文字だけでなく空白にも対応させた
り、Markdownの見出しを折り畳む関数を作っ
たりするのも、それほど難しくないと思います。
ぜひいろいろな折り畳み関数にチャレンジして
みてください。ﾟ

foldでテキストを折り畳む（後編）

第 回23

https://mattn.kaoriya.net/software/vim/20170905113330.htm

122 - Software Design

人類にはまだ早すぎる
Apple Watch

　もはや恒例となった「Apple秋の収穫祭」、今年
2017年9月12日注1のイベントで読者のみなさん
が最も注目したのはどの製品でしたか？　全面
ガラス張りの Steve Jobs Theater？　全面ディ
スプレイの iPhone X？　まさか 4K HDR 対応
した Apple TV？
　筆者が最も注目したのは、フォームファクター
が一番変化していない製品。そう、Apple

Watchです（写真1）。実質 iPhone 7sな iPhone

8でさえ、背面がアルミニウムからガラスに変
わったというのに、Apple Watchときたらそれ

すらない。フォームファクターが変わる都度、
iPhone はケースやバンパーといったアクセサ
リーも変化しますが、Apple Watchのバンドは
初代のものがそのままSeries 3でも使えますし、
最新のものが初代でも使えます。そうでないと
困ります。何しろ今回「廃盤」になったのは初代
ではなくSeries 2だったのですから。
　しかし、今回のSeries 3のCellular Modelは、
ほかのApple Watchとは iPhoneと iPod Touch

以上の違いがあります。Series 3 Cellularは
iPhoneがなくてもオンラインなのです。これ
は何を意味するか？
　真の全裸コンピューティングが実現するので
す！　実際に露天風呂でSiriにたずねてみたら、
このように答えてくれるのです（図2）。
　Wi-FiからCellularへの切り替えはとてもス
ムーズ。iPhoneを見失うと が表示されます
が（図3）、数秒でセルラー接続に切り替わりま
す（図4）。
　全裸コンピューティングは人類には早すぎに

書いて覚える 入門Swift

Author 小飼弾 （こがい だん）　　 twitter @dankogai

第31回 収穫の秋にWatchすべきなのは？

注1） URL https://www.apple.com/jp/apple-events/september-2017/

 ▼写真1　Apple Watch Series 3

 ▼図1　マップのアイコンもApple Parkに引っ越し

https://www.apple.com/jp/apple-events/september-2017/

122 - Software Design Nov. 2017 - 123

収穫の秋にWatchすべきなのは？第 回31

しても、脱スマホコン
ピューティングなら筆者
を含め少なからぬ人が待
ちわびていたのではない
のでしょうか。ジョギン
グやワークアウトのとき、
あるいは温泉街を浴衣で
練り歩くとき……スマホ
ですらかさばり過ぎて大
き過ぎると感じるシーン
は決して少なくありませ
ん。そんなときでもメッ
セージは出せますし（図5、
図6）……。
　電話もできますし（図
7）……。
　支払いだって問題あり
ません（図8）。
　まあ、どこでもオンラ
インってことは……、どこでも仕事が追いかけ
てくるということ（図9）でもありはするのです
が。
　もちろんApple Watchが iPhoneの代わりを
100％つとめるというのには無理があります。何
と言っても世界で一番使われているとAppleが
豪語するカメラがありませんし、セルラー契約
の1つをとっても、初期設定には iPhoneが必須
です。しかし今回の「どこでもオンライン」と同
じぐらい感心したのは、複数のデバイスをどう

組み合わせるか。たとえばAirPodsは、iPhone

があるときには iPhoneの、Apple Watchしかな
いときにはApple Watchの（イヤ｜マイクロ）フォ
ンに全自動で切り替わります（図10）。
　だとしたら、Apple Watch、いやユーザのコ
ンピューティング環境が全自動で切り替えられ
る道理がないわけがありません。デバイス自身
が今、自分が使われていることを判定し、自動
的に切り替わる。音声に関してはAirPodsです
でにそれが実現しています。映像だってそうな

らない道理はありませ
ん。す で に Apple TV

は iPhoneや iPadやMac

のディスプレイとして
も機能していますが、
ワン（クリック｜タッ
プ）必要だという点で
AirPodsに及びませ
ん。それがAirPodsな
みにシームレスになる

 ▼図2　 siriに「ここはど
こ」と問うと……

 ▼図3　 iPhoneとの接続が
切れたときの表示

 ▼図4　 わずか数秒でセ
ルラー接続

 ▼図5　iPhoneなしでも ▼図6　メッセージ送信 ▼図7　もちろん電話も！

 ▼図8　 Apple Payも
OK！

 ▼図9　 Slackの通知も
OK！

 ▼図10　 自動的にAirPods
も接続される

124 - Software Design

書いて覚える 入門Swift

のだとしたら？
　次はARディスプレイ+カメラということに
なるでしょう。Google GlassにせよHololensに
せよはたまたPS VRにせよ、VR/MRがマス
マーケットに来ていない最大の理由は、Steve

Jobsが言っていたところの“Connecting the

dots”に成功していないこと。今回 iOS 11に
ARKitが搭載され、iPhoneのカメラとCPUが
ARに十分な性能があることを示したAppleが、
いまだヘッドアップディスプレイを欠いている
状況を放置するとは筆者には考えられません。
　そのときの「ハブ」は、いまだ iPhoneでしょ
うか？　それともApple Watchでしょうか？
　Apple Watch Series 3で後者の可能性が見
えてきました。iPhone以上に身近になりうる
デバイスは今のところそれだけなのですから。

どう転んでも Swift

　しかし未来がどちらに進んでも、これだけは
変わらないだろうということが1つあります。
それが開発言語。iOSもwatchOSも tvOSも、
メインの開発言語はSwift。Linuxへの移植と
Swift Playgrounds for iPadで Swiftは Xcode

の専売特許ではなくなって久しいのですが、
Swiftが「言語ハブ」であり続けることだけは確
かだと弾言しておきます（断言までするのは
ちょっとこわい）。
　とはいえ、2017年秋現在の主力開発環境は
Xcode on Mac。iOS 11と同じく日本時間9月
20日に9が正式リリースされています。Swift

も4に上がりました。主な新機能および変更点
は第28回（本誌2017年8月号）のWWDC 2017

特集で紹介したとおりですが、同記事で紹介し
きれなかった分もあらためて紹介します。

総称型のsubscript

　subscriptで総称型が扱えるようになりまし
た。たとえばこんな書き方ができます。

struct JSON {
 var value: [String:Any]
 init(_ value: [String:Any]) {
 self.value = value
 }
 subscript<T>(k: String) -> T? {
 return value[k] as? T
 }
}

let json = JSON([
 "bool":true,
 "number":42.195,
 "string":"Swift",
]
)

var bool:Bool? = json["bool"]
var number:Double? = json["number"]
var string:String? = json["string"]

　最終的な型はコンパイル時に決まる必要があ
るため、左辺は型を明示しないとコンパイル時
エラーになります。

Dictionaryのデフォルト値

　Dictionaryの要素はOptionalなので、dict
[key]でkeyが存在しない場合の値はnilです
が、dict[key, default:val]と書くことで、
nilの代わりにvalを返すようになりました。
　これは統計を取るときなどにとても便利で、
今まで、

var count = [String:Int]()

for k in words {
 if count[k] == nil {
 count[k] = 0
 } else {
 count[k]! += 1
 }
}

のように初期化の有無で必要だった条件分岐が、

for k in words {
 count[k, default:0] += 1
}

124 - Software Design Nov. 2017 - 125

収穫の秋にWatchすべきなのは？第 回31

のように不要になります。

"""複数行"""引用符

　"""で複数行に渡る文字列リテラルが書ける
ようになること自体は同記事でも軽くふれたの
ですが、この機能が最も威力を発揮するのは、
Swift内でソースコードを表記するときでしょう。
　たとえばSwift 3でSwiftのソースコードを
書くには、

let howmany = 42
let fizzBuzzSwift = [
 "#!/usr/local/bin/swift",
 "extension Int {",
 " var fizzbuzz:String {",
 " let fb = (\"Fizz\", \"Buzz\")",
 " switch (self % 3, self % 5) {",
 " case (0, 0) : return fb.0 + fb.1",
 " case (0, _) : return fb.0",
 " case (_, 0) : return fb.1",
 " default : return \"\\(self)\"",
 " }",
 " }",
 "}",
 "_ = (1...\(howmany)).map{ print($0.fizzbuzz) }"
].joined(separator: "\n")

のように「分かち書き」する必要がありましたが、

let howmany = 42
let fizzBuzzSwift = """
#!/usr/local/bin/swift
extension Int {
 var fizzbuzz:String {
 let fb = ("Fizz", "Buzz")
 switch (self % 3, self % 5) {
 case (0, 0) : return fb.0 + fb.1
 case (0, _) : return fb.0
 case (_, 0) : return fb.1
 default : return "\\(self)"
 }
 }
}
_ = (1...\(howmany)).map{ print($0.fizzbuzz)
}
"""

とずいぶんとスッキリ書けるようになります。
もう一例として、Swift Playgroundでちょっ
と変わったFizzBuzzをこさえてみました。見
てのとおり、"""でくくられているJavaScript

を実行しています（図11）。
　"""も変数展開 (interpolate)する点は注意し
てください。この例では\(howmany)が変数展

開されていますし、\\
(self)は変数展開され
ないよう\をエスケープ
しています。
　Swift 4でもなお変数
展開なしの引用符（Perl

やRubyでは'）はサポー
トされていません。

　　　 次回予告

　そろそろ紙幅も尽きる
ので今回はここまで。次
回はSwift 4で大いに整
理された整数型のプロト
コルをおもに取り上げま
す。｢

 ▼図11　FizzBuzzの実行例

126 - Software Design

隠された状態

　前回（本誌2017年10月号）は「ソートの依存」
と題して、RDBが苦手なソートについて説明し
ました。今回は「隠された状態」という題名で、
DB設計についてのアンチパターンについてお
話します。
　RDBに状態を持たせるのはたいへん危険で
す。第2回「失われた事実」（同年6月号）や第5回
「フラグの闇」（同年9月号）でも、RDBに事実の
みを保存することの大切さと難しさをお話しま
した。なぜ複数回に渡って強調してきたかとい
うと、隠された状態には多くの罠が潜んでいる
からです。今回はその理由と、それによって引
き起こされる問題について説明します。

　　 事の始まり

DB設計者：すごいことを思いついたぞ。IDの
先頭が9なら管理者、1なら一般ユーザとすれ
ば、is_adminカラム 注1がいらないぞ！　しかも
これなら、ユーザの権限が増えたときにいちい
ちroleを示すカラムを追加しなくても、2～8ま

での値で表現できるし便利だ！

　――時間は経ち、実装フェーズへ。

アプリ開発者：このテーブル、user_id見ないと
管理者なのか一般ユーザなのかわかんないじゃ
ん。ふぅ……、意味を含んだIDを使うと結局こ
ういうコード（リスト1）を書くハメになるんだ
よなぁ。これならカラムを分けてるほうが、
$user->is_adminを見るだけだからコードもわか
りやすいし楽だよ。

　――それから3日後。

PM：管理する権限、一般ユーザと管理者だけ
だったけど、「閲覧のみユーザ」も追加すること

注1） ユーザが管理者かどうかを判別するためのフラグを格納す
るカラム。

 ▼リスト1　user_idを見てユーザを判別

if($this->is_admin($user->user_id))
{
 // 管理者用の処理へ
}

// user_idの先頭が9だった場合は管理者
function is_admin($user_id)
{
 $role_id = mb_substr($user_id, 0, 1);
 return ($role_id == 9) ;
}

PostgreSQLとMySQLの失敗と対策

　本連載では、開発の現場で発生しやすいリレーショナルデータ
ベース（RDB）全般の問題をRDBアンチパターンとして紹介し
ていきます。今回のアンチパターンの主人公は、DB設計者の
作ったテーブルによって苦しむアプリ開発者と運用者です。

 Author 曽根 壮大 （そね たけとも）　㈱はてな　 Twitter @soudai1025

隠された状態第 回7

126 - Software Design Nov. 2017 - 127

ないため、集計のためにsubstr(id, 3, 3)

などで整形してから検索する必要があります。
また、第4回「効かない INDEX」（2017年8月
号）でもお話しましたが、基本的に関数を利用
したWHEREやGROUP BYは、関数を実行
してみるまでRDBMS側では結果がわからな
いので、INDEXを利用できません。そのため
開発面の工数も上がりますし、運用面のコス
トも格段に上がります。

　　 意味を含んだID

　このように、意味を持たせたIDを「意味を含
んだID」、あるいは「論理ID」「スマートカラム」
と言ったりします。IDとは identificationのこと
ですから、識別できる一意の値以上の意味を持
たせてはいけません。アンチパターンのように、
データにビジネスロジックを持たせたり、複数
の意味を持たせたりすると、一見しただけでは
本来の状態を読み取れないデータになってしま
います。これが隠された状態です。
　意味を持つIDについては、奥野幹也さんのブ
ログ「漢のコンピュータ道」でも取り上げられた
テーマですので、ぜひこちらも見てみてくださ
い 注2。

　　 隠された状態はこのほかにもある

　ここまでは意味を含んだIDを取り上げて隠さ
れた状態の話をしましたが、実は隠された状態
はこれだけではありません。RDBの設計の際、
汎用性を高める設計を目指した場合にたびたび
陥る罠として、次の2つのSQLアンチパターン
があります。

 EAV
　 （エンティティ・アトリビュート・バリュー）
　複数の目的に使われるカラムを用意する設計

になったから。
アプリ開発者：え？　閲覧のみユーザはどうやっ
て見分けるんですか？
PM：user_idの先頭が8のユーザを閲覧のみユー
ザとする。
アプリ開発者：はい……（書き直しになるぞ）。

　リスト2で運用を開始し、それから3年後。

社長：今の会員数と管理者の人数って何人？
運用者：すぐには出せません。明日でも良いで
すか？
社長：え？　count()で会員数を数えるだけで
しょ。
運用者：それが、user_idから権限を判断してる
ので検索用のSQL関数が必要です。つまりは
テーブルフルスキャンになるので、時間がかか
るんです……。
社長：なんだって……。

　　 今回のアンチパターン

　今回のアンチパターンにはデータの保存方法
に問題があります。今回の例ではわかりやすく、
user_idの先頭文字のみでしたが、次のような場
合はどうでしょう？

・県番号（2桁）部門ID（3桁）支店ID（4桁）
　（例：330010012）

　このIDの例は後にも出てきますが、このよう
な場合には県別や部門別のGROUP BYができ

 ▼リスト2　リスト1に「閲覧のみユーザ」用の処理を追加

$role_id = $this->get_role_id($user->user_id)

if (role_id == 9) {
 // 管理者用の処理へ
} elseif (role_id == 8) {
 // 閲覧のみユーザの処理へ
}

function get_role_id($user_id)
{
 return $role_id = mb_substr($user_id, 0, 1);
}

注2） 「リレーショナルモデルのドメイン設計についての議論」
 URL http://nippondanji.blogspot.jp/2013/12/blog-post

 _8.html
 「IDの設計についてのさらに突っ込んだ議論」
 URL http://nippondanji.blogspot.jp/2013/12/id.html

隠された状態第 回7

http://nippondanji.blogspot.jp/2013/12/blog-post_8.html
http://nippondanji.blogspot.jp/2013/12/id.html

128 - Software Design

であれば、年齢カラムにNOT NULLを設定す
るだけで実現できるしくみも、EAVではできな
いのです。

・データ型を指定できない

　たとえば、属性名=「作成日」の値は当然日付
でないとダメですが、「年齢」や「電話番号」も保
存され得るため、ひとくくりに日付型を設定で
きません。加えて、「作成日」＝ yyyy/mm/dd、
「更新日」＝yyyy-mm-ddのように、同じ日付で
もフォーマットが違うデータが生まれてしまい
ます。これにより、範囲検索が難しくなるなど
の問題が起きます。

・正規化されていないため外部キー制約（参照整

合性制約）を強制できない

　たとえば、属性名＝「都道府県」の値には「東京
都」と「東京」の両方が保存される可能性がありま

です。たとえば、図1の会員情報テーブルのよ
うな設計です。この設計では、どのような属性
名と値の組み合わせのデータでも保存できる反
面、次のようなデータの状態は実際に取り出す
までわかりません。

・その属性名に対する値があるのかないのか
・その属性名があるのかないのか
・属性名と値の組み合わせは正しいのか
・属性名の一覧

　また次のような設計上の問題もあります。

・必須属性を設定できない

　たとえば、属性名＝「年齢」にはNOT NULL

制約を設定して必須属性にしたいところですが、
「電話番号」が保存されることもあり、そのとき
にはNULLが入る場合があります。ですので、
ひとくくりに必須属性を設定できません。本来

 ▼図1　EAV

　スキーマレスな設計ができることがEAVのメリットです。しかし、多くのデメリットがあることは理解

できたかと思います。そこで近年、MySQL 5.7やPostgreSQL 9.3以降のRDBMSではその代替案として、JSON

型を採用するケースがあります。JSONを利用することで、Key-Valueな値をそのまま保存できるうえに、

Keyでの検索やValueの更新をRDBがサポートしてくれる場合もあります。これにより、EAVを採用する

ケースはほぼなくなったと言っても良いでしょう。

　ただし、JSON型にもデメリットはあります。そのお話は次回のテーマとなっていますのでお楽しみに！

EAVの代替案になり得るJSON型

会員テーブル
会員 id 名前

1 曽根 壮大
2 曽根 徠楽
3 曽根 煌楽
4 曽根 朔楽

会員情報テーブル
会員 id 属性名 値

1 年齢 32

1 特技 格闘ゲーム
1 職業 CRE

2 年齢 9

2 特技 バレエ
2 好きな食べ物 抹茶アイス

会員情報テーブルには情報を柔軟に INSERTできる
が、何が入っているかは取り出してみないとわから
ない

PostgreSQLとMySQLの失敗と対策

128 - Software Design Nov. 2017 - 129

行われるようになり、非効率なクエリが実行さ
れることになります。
　またEAVとは違い、テーブルをそれぞれ用意
することで必須属性やデータ型を利用できます
が、EAVと同じく外部キー制約は使えないため
に、参照整合性は担保できません。

◆　◆　◆
　まとめると、EAVは1つのカラムに状態を詰
め込んでレコード単位で状態を隠す手法ですが、
Polymorphic Associationsはテーブル単位で状
態を隠す手法と言えるでしょう。EAVとPoly

morphic Associationsについては、本連載でも
たびたび紹介している名著『SQLアンチパター
ン』 注3で解説されています。使いたくなるケー
ス、その場合の解決策などが細かく書かれてい
ますので、ぜひご一読ください。

　　 複数の目的に使われるテーブル

　もっとシンプルに考えると、テーブルそのも
のに問題があることが考えられます。
　今回のアンチパターンでは、ユーザの属性と
して一般ユーザと管理者を1つのテーブルに格
納したことが問題です。データの属性によって
入る値が変わるカラムやNULLが入るようなカ

す。本来であれば、正規化して都道府県テーブ
ルを作り、idを指定することで、表記揺れは発
生せず、また存在しない都道府県を指定される
こともないのですが、EAVではこのような問題
も発生します。

・属性名を補わなくてはならない

　上記項目と同じく、属性名も表記揺れの影響
を受けます。たとえば、属性名が「updated_at」
なのに日付が入る可能性もありますし、場合に
よっては「update_at」のようにタイピングミスが
生まれる可能性もあります。

　このように、汎用性を高めた反面、RDBが本
来持っている多くのメリットを失い、RDBの責
務であるデータを守ることが難しくなります。

Polymorphic Associations
　 （ポリモーフィック関連）
　子テーブルが複数の親テーブルを持つような
設計です。たとえば図2のような設計です。こ
の場合、子テーブルの属性によって紐づく親テー
ブルが変わります。そのため外部キー制約は使
えず、アプリ側や運用者としてはJOINする対
象がデータを取り出すまでわかりません。結果、
親テーブルの両方をJOINしてからNULLの場
所によって対象データを判断するような運用が

 ▼図2　Polymorphic Associations

注3） Bill Karwin 著、和田 卓人、和田 省二 監訳、児島 修 訳、
2013年発行、オライリー・ジャパン、ISBN＝978-4-
87311-589-4。

Shopテーブル（親）
shop_id properties_id 従業員

1 1 2

2 2 50

3 5 100

Userテーブル（親）
user_id properties_id 年齢

1 3 4

2 4 32

3 6 7

4 7 9

Propertiesテーブル（子）
properties_ id 名前 住所 参照先

1 藤原とうふ店 群馬県… Shop

2 篠原重工 東京都… Shop

3 曽根 朔楽 広島県… User

4 曽根 壮大 広島県… User

5 アナハイム・
エレクトロニクス 京都府… Shop

6 曽根 煌楽 広島県… User

7 曽根 徠楽 広島県… User

Propertiesテーブルの参照先によって親テーブルが変わるため、
外部キー制約が貼れない

隠された状態第 回7

130 - Software Design

という問題もあります。
　先ほどの説明のとおり、アプリ側で判断でき
ないため不正なデータが投入されやすいです。
これを制約で防げれば問題ないのですが、隠さ
れた状態の設計ではCHECK制約や外部キー制
約が使えないため、RDB側の制約で防ぐことが
できません。加えて、ドキュメントに正しい仕
様が残されていない場合、どの値が何を表すの
かが正しく読み取れなくなります。そんなケー
スでの運用者は、それが正しいデータなのか不
正なデータなのかを判断することが難しくなり、
最終的にはコードを読み解くことになります。
　例を挙げますと、何らかの理由で「IDが7か
ら始まる会員のデータ」を作り、その背景をド
キュメント化していない場合、7から始まる会
員がどのような権限なのか、コードを読む以外
に判断できなくなります。会員IDのような値は
多くのケースで主キーとなっていることから、
多くのテーブルから外部キー制約として参照さ
れ、そのため一度設定されると最後、更新する
ことが難しいのも特徴です。
　次のようなことを想像してみてください。も
しも権限が1桁では足りず、2桁になったら？　
冒頭で見せた「県番号（2桁）部門ID（3桁）支店ID

（4桁）」といった IDの場合に部門 IDが3桁で足
りなくなったら？　もうおわかりでしょう。す
べての関連するテーブルに影響を与える大改修
になり、もちろんアプリ側も影響を受けます。
　このように制約はデータを守り、アプリを守
り、そしてシステムを守ることで、運用コスト
や開発コストを下げてくれているのです。それ
を失うことは大きなデメリットと言えます。

　　 このアンチパターンのポイント

　今回のアンチパターンは「1つのデータ（テー
ブル・カラム・レコードなど）に複数の属性を与
えた」ことで発生しました。何度も言いますが、
RDBには事実のみを保存するのが基本です。で
すので、そのデータの属性や責務が複数ある場
合は、もちろんその保存先を分けていくのが妥

ラムがある場合は、複数の目的で使われるテー
ブルになっていないか調査しましょう。
　たとえば、管理者テーブルと一般ユーザテー
ブルに分ければこのような問題は発生せず、ア
プリ側は参照するテーブルを分けることで、問
題を局所化することができます。ドメインとし
ても分けやすくなるので、モデルとしてシンプ
ルになるでしょう。似たような属性のデータの
場合、1つのテーブルに保存してしまいがちで
すが、パフォーマンスの面を考えても、テーブ
ルを分けたほうが良いケースが圧倒的に多いで
す。加えて、テーブルを分けることで、「管理者
の場合は値が入るが一般ユーザの場合はNULL

になる」といったカラムの出現も防ぐことができ
ます。

　　 コードやデータから見えない状態の辛さ

　隠された状態は、パフォーマンスの問題も当
然ありますが、何よりも運用コストが跳ね上が
ることが問題です。
　たとえば今回の例のように、権限別の集計
SQLは難しくなりますし、仕様変更などの影響
範囲も大きくなります。EAVやPolymorphic

Associationsといった、ほかの隠された状態の
例のいずれでも、アプリ側では一見して状態を
判断できず、仕様変更があったときにはたいへ
んです。運用者も、データが大きくなればなる
ほどたいへんになります。
　また、バグが起きて不正なデータが生まれた
場合に整理が難しいのも、このアンチパターン
の特徴です。アプリ側はコードからデータが判
断できないため、バグを生みやすい構造になっ
ています。そのため不正なデータも入りやすく、
開発者も運用者も苦しい状態になるのです。

　　 失われた制約

　不正なデータが入りやすい問題に関連して、
隠された状態を持つ設計では制約が使えなくな
る、つまりアプリのバグやオペレーションの際
に不正なデータが投入されることを防げない、

PostgreSQLとMySQLの失敗と対策

130 - Software Design Nov. 2017 - 131

　Polymorphic Associationsの場合は、先ほど
紹介したSQLアンチパターンにも記載してあり
ますが、交差テーブルを用意するのが良いです
（図4）。
　また、複数の目的で使われるテーブルの場合
やEAVでは、責務を分けて図5のようにしま
しょう。

当です。
　たとえば、意味を含んだIDの場合は図3のよ
うに正しく正規化するのが良いでしょう。これ
で外部キー制約も設定可能ですし、GROUP BY

による検索も容易です。場合によっては権限が
増えることもあるでしょう。そのときはINSERT

するだけで正しく追加できます。

　隠された状態に近い機能がRDBMSには用意されています。それがトリガー 注Aです。トリガーはアプリ

や運用者側からは見えませんし、振る舞いが予想できません。それがメリットでもありデメリットでもあ

ります。たとえば、一時的にDELETEされた会員のレコードを、アプリに影響を与えることなく保存したい

といった場合にトリガーは有能です。しかし、永続的に影響を与えるような場所でトリガーを使うと、隠

された状態と同等の問題を生むことがあります。

　設計における隠された状態と違うのは、制約を犠牲にしないという点です。そこで筆者は、アプリ側で

機能を実装するのと比較したうえで次のようなメリットがある場合のみ、トリガーの採用を検討していま

す。

①パフォーマンス的メリット

②アプリ側の実装が大幅に削減できる

③既存のアプリの振る舞いを維持したまま、仕様を変更できる

　①の例としては、INSERTされた数をカウントするテーブルを作成する場合などです。②や③の例として

は、先ほどのような会員を削除する場合などです。

　また、複数のアプリからデータベースが参照されているケースでのデータベースリファクタリングは、

アプリの振る舞いを維持したまま行いたいので、トリガーは重宝します。

　しかしここに書いたような採用ケースは、「顕著なメリット」がある場合のみの話です。メリットと隠さ

れた状態が生むデメリットを比較して悩むようであれば、採用を見送るのが妥当でしょう。筆者も、多少

メリットのほうが大きいかも、という程度であれば採用を見送っています。このバランス感覚は、経験に

基づく設計力が試される部分でもありますので、ぜひ養っていただければと思います。

トリガーのメリットとデメリット

注A） テーブルに対するある操作に反応して、別の操作を実行する機能。

 ▼図3　意味を含んだ IDのリファクタリング

会員テーブル
会員 id 名前
900001 曽根 壮大
900002 曽根 徠楽
100003 曽根 煌楽
100004 曽根 朔楽

会員情報テーブル
会員 id 名前 権限

1 曽根 壮大 管理者
2 曽根 徠楽 管理者
3 曽根 煌楽 一般ユーザ
4 曽根 朔楽 一般ユーザ

隠された状態第 回7

132 - Software Design

　これらを守り、より良い設計を心がけましょ
う。

次回のRDB
アンチパターン

　今回のRDBアンチパターンはいかがでしたで
しょうか？　隠された状態はアプリ側にも影響
が大きいアンチパターンです。一度導入すると、
その問題は多くのアプリに波及し、いずれは破
綻することでしょう。そうなる前に、早めにリ
ファクタリングをご検討ください。
　次回は、今やデファクト・スタンダードとも
言えるJSONに関するアンチパターンです。次
回の「JSONの甘い罠」もお楽しみに！ﾟ

　このように隠された状態は、汎用性を上げる
ことを目的としたものである場合は正しく正規
化できます。とくに交差テーブルは、作ること
が面倒なため忌避する人もいますが、それは逆
効果です。外部キー制約やトランザクションの
パフォーマンスの問題が顕在化して初めて対策
するのでは遅いですし、もとのテーブル設計は
そのままに解決できることが多いからです。
　以上のように、このアンチパターンを防ぐコ
ツは次の3つです。

・データに複数の意味を持たせない
・1つのデータの責務を小さくする
・常に状態が見えるようにするために事実のみ
を保存する

 ▼図4　Polymorphic Associations（図2）のリファクタリング

 ▼図5　複数の目的を持つテーブルのリファクタリング

shop_id properties_ id

1 1

2 2

3 5

user_id properties_ id

1 3

2 4

3 6

4 7

Shopテーブル
shop_id 従業員

1 2

2 50

3 100

Userテーブル
user_id 年齢

1 4

2 32

3 7

4 9

Propertiesテーブル
properties_ id 名前 住所

1 藤原とうふ店 群馬県…
2 篠原重工 東京都…
3 曽根 朔楽 広島県…
4 曽根 壮大 広島県…

5 アナハイム・
エレクトロニクス 京都府…

6 曽根 煌楽 広島県…
7 曽根 徠楽 広島県…

交差テーブル

管理者テーブル
会員 id 名前

1 曽根 壮大
2 曽根 徠楽

一般ユーザテーブル
会員 id 名前

3 曽根 煌楽
4 曽根 朔楽

会員テーブル
会員 id 名前 権限

1 曽根 壮大 管理者
2 曽根 徠楽 管理者
3 曽根 煌楽 一般ユーザ
4 曽根 朔楽 一般ユーザ

PostgreSQLとMySQLの失敗と対策

Nov. 2017 - 133

50 Debian Developer　やまねひでき　henrich@debian.org

DebConf17レポート（前編）

DebConf17開催

　今回は、カナダ・モントリオールのCollège

de Maisonneuveで8月6日～12日に渡って開か
れたDebConf17（写真1）の様子をお送りします。
多くのセッションが録画されていますので、サ
イトのスケジュール一覧注1から興味のあるセッ
ションを選んでご覧になってください。ここで
はその中のいくつかをかい摘んで紹介します。

DebConfとは？

　DebConf（Debian Conference）は毎年開催さ
れているDebian開発者（とその他の人たち）向
けのイベントで、開催地を固定せず世界各地で

開催されています。
おおよそ 1週間（＋
前乗りしてくる人た
ち向けのDebCamp

でさらに 1週間）の
イベントで、朝から
晩までセッションや
BoF 注 2・Hack、あ
るいは（ときにはビー

ルを飲みつつの）ディスカッションを行います。
参加者は2～500名程度で、北米・ヨーロッパ
が中心ではあるものの、南米やアジア・アフリ
カ地域からの参加者もいます。

Debian初心者による
初心者向けDebianの解説
　DebConfでは「Open Day」という外部への公
開日がありますが、この日に行われたDebConf

スポンサー企業・Collabora社のHelen Koike

さんによる「Debianとは？」というテーマの発
表「A newbie's newbie guide to Debian」注3の資
料が非常によくまとまっています。Debian自
体とそれを取り巻くプロジェクトの概要につい
て把握・理解したいという方にお勧めです。

「The Machine」と
それを支えるDebian

　DebianではおもにX.org周りのメンテナをし
ているKeith PackardさんによるHPE（Hewlett

Packard Enterprise）のスポンサートークでは、
「The Machine」注4という今までのコンピュータ
からアーキテクチャを見直してメモリを根本に
据えた「メモリドリブン」なシステムの開発話が
行われました。不揮発性の「メモリプール」を中
心に各ノードが超高速でメモリにアクセスする
ことにより、「超」が付くほどの大量のデータを
従来の数十分の1の消費電力と時間で処理する

注3） URL https://debconf17.debconf.org/talks/68/
注4） URL https://www.labs.hpe.com/the-machine

 ▼写真1
DebConf17の案内板

注1） URL https://debconf
17.debconf .o rg /
schedule/

注2） Birds of Featherの略
で「非公式の議論グ
ループ」のこと。「と
にかく集まって話を
しよう」ということ
ですね。

https://debconf17.debconf.org/talks/68/
https://www.labs.hpe.com/the-machine
https://debconf17.debconf.org/schedule/

134 - Software Design

ことが可能になるのがウリのようです。
　ちなみにHPEというと、昨年SUSEがHPE

のOpenStackおよびCloud Foundry関連資産
を買収しました。そうなると、今までHPEが
OpenStack「Helion」関連で使っていたDebian

ベースのHPE社内ディストリビューション
「hLinux」の行方が気になるところですが、こ
のThe Machineのインフラ管理周りに利用して
いるとのことです（とはいえ、人員については
リストラも行われたようです……）。

aptの改善と
さらなるアイデア

　今年もぬいぐるみの「Cow」と一緒に（写真2）、
aptメンテナのJulian Andres Klodeさんによる
aptの改善進捗報告として「An apt talk」という
発表が行われました注5。
　Debianの重要なピースであるパッケージマネー
ジャー「apt」ですが、まだまだ改善の手が加えら
れています。異なるアーキテクチャに移植作業
をすることでバグを洗い出せるため、現在は
aptを*BSDに移植しようと考えているそうです。
ただ、現在CI（継続的インテグレーション）とし
て利用しているのがTravis CIで、これは
WindowsとLinuxとmacOSはサポートしてい
ますが、*BSDの対応はありません。そこでま
ずはmacOSへの移植を試みているとのこと。実

機は持っていないの
と、まだいくつか
パッチを書いただけ
で、まだ完了してい
ないらしいですが、
将来的にmacOSで
もaptがネイティブ
で動作するかもしれ
ません注6。

unattended-upgradesの
動作変更

　Windows Updateのようにバックグラウンド
で自動的にパッケージのセキュリティアップデー
トを行う「unattended-upgrades」ですが、動作
にいくつか変更が実施されました。

¡	aptのバージョン1.2.9までは、日時cronジョ
ブがAM6〜7時の間に動作していた。その際、
ミラーの負荷を減らすために30分までのラ
ンダムスリープを付加していた。しかし、
Ubuntuでミラーサーバの負荷が耐えられな
いほどになっていたので改善を迫られていた

¡	1.2.10でcronからsystemd timerに乗り換
え、AM6時から前後12時間（＝つまり適当
な時間）に実行するようにした……のだが、
パッケージアップデートが日中に実行され
システムを壊すことが発生。また、起動時
やネットワークの接続を待たないで実行さ
れるようになってしまった

¡	バージョン1.4.1〜1.4.6の間でupdateと
upgradeにジョブを分け、updateは適当な
時間に実行、upgradeをAM6〜7時の間に
動作するようにして日中にシステムが破壊さ
れないようにした。また、systemd timerは
network-online target依存にして起動時に
ネットワークがつながっていない場合は実行
されないように担保した。ただ、これでも不
十分でシステムがスリープから復帰したとき
にはネットワークがつながっていない状態で
動作してしまった。ちなみに今も改善作業中
の様子で、本稿執筆時のapt 1.5に至るまで
でも微調整を続けている様子が見て取れます

ネイティブでのHTTPSサポート

　aptのHTTPSサポートについては、2006年
時点でcurlベースで実現していましたが、HT

TPのリポジトリへ接続する際にHTTPSプロ
キシ経由ではつながらなかったそうです。これ
を2017年のapt 1.5で新しく書き直し、きちん

 ▼写真2
Julian Andres Klodeさん
とともに登壇したCow

注5） U R L h t tp s : / /deb
conf17.debconf .
org/talks/58/

注6） パッケージがきちん
と動作するかどうか
はまた別問題です。

https://debconf17.debconf.org/talks/58/

134 - Software Design Nov. 2017 - 135

DebConf17レポート（前編） 50

とサポートするようにしています。

apt-keyコマンドが非推奨に

　aptリポジトリを追加する際、リポジトリの
デジタル署名に使われているGPG鍵情報を信
頼する対象として追加するapt-keyコマンドに
ついて、必要となるgnupgパッケージの依存関
係が「Suggests」に変更されていて明示的にイン
ストールしないと利用できないなどしており、
「非推奨になっているので使わないようにして
ほしい」とのこと。ただ、会場からは「Too

late!」と苦情が出たり、代わりに示された手法
がそれなりに面倒そうだったりと、今後何かし
らの改善を期待したいところです。

その他の変更点

　apt 1.5からは、ユーザがapt line注7で「stable」
を指定している場合に、パッケージのリリース
が行われてリポジトリのReleaseファイル内の
コードネームが変わったら、ユーザに確認する
ようになったようです（意図せずにバージョン
をメジャーアップグレードすることが避けられ
るでしょう）。
　また、カンファレンスならではの話として、
食事の際に周りと雑談していたことがそのまま
開発につながることがあります。aptについても、
差分パッケージ注8について、「現在debdeltaと
いうツールはあるが、apt/dpkgに統合されてい
ないし、別のアプローチがあるのではないか？」
という雑談から試行錯誤が始まりました注9。ま
だまだaptの進化は続きそうです。

Googleの社内ディストリビューション
がDebianベースに

　Googleに勤めるDebian開発者のMargarita

Manteloraさんのライトニングトークで、Google

社内デスクトップ環境として利用していたLinux

を、Ubuntuベースの「goobuntu」と呼ばれていた
ものからDebianベースの「gLinux」に変更するこ
とが明かされました（写真3）。
　gLinuxは次のような特徴を持ちます。

¡	Debianテスト版をベースとして開発
¡	常に変更を取り入れる「ローリングリリース」
¡	問題があるバージョンについてはパッケー
ジを「ホールド」してリリース対象にならな
いようにする

¡	パッケージはすべてGoogle社内で再ビルド
を行う

　発表時点ではアルファ版、8月16日にベータ
版をリリースとのことでした。Google社内で
の利用からDebianへのフィードバックが多く
なれば良いですね。

医用分析機器でも
Debianが動作

　DebConf17には、スポンサーとして世界的な
製薬・ヘルスケア企業であるRoche社注11が参
加していました。Rocheに勤務するAndre Roth

さんによる「Debian for Medical Software」とい
うセッションでは、Rocheで利用している医用
分析機器の内部でDebianをベースにしたディ
ストリビューション「Roche Linux」が動いてい

 ▼写真3　Google社内デスクトップ環境はgLinux
 （Debianベース）に注10

注10） 写真の出典： URL https://twitter.com/mbanck/status/896
029270136553472　CC-BY-SA 3.0の下で利用。

注11） URL http://www.roche.com/

注7） パッケージの入手先の設定。具体的には /etc/apt/sour
ces.listなど。

注8） RPMでいうところのdrpmのような、変更分の差分（delta）
のみを配布してダウンロード量を減らす手法。

注9） URL http://deb.li/3eHGE

http://deb.li/3eHGE
https://twitter.com/mbanck/status/896029270136553472
http://www.roche.com/

136 - Software Design

る話が披露されています注12。
　Rocheでの医用分析機器の初期はリアルタイ
ムオペレーティングシステムを使っていたが、
より複雑な処理をする必要が出てきたため
Linuxに移行したとのこと。2007年当時の
Roche Linux1とRoche Linux2ではPengutronix

というベンダのPTXdistという、ソースからす
べてビルドするシステムを使っていたそうです。
しかし、さらに新しいハードウェアをサポート
したい、というところから分析したところ、既
存システムでは満たされていない次の要望が上
がってきました。

¡	さまざまな内部プロジェクトで利用できる
ようにしたい（モジュラー形式で自由に追加
と削除ができるように）

¡	実運用環境だけではなく、開発やテストに
も使いたい

¡	セキュリティの長期サポートがほしい
¡	より多くのライブラリやツールを利用でき
るようにしたい

¡	そのうえでメンテナンスの労力は下げたい

　そこで表1のような評価項目について検討し、
「Make / Take / Buy」（作るか・持ってくるか・
それとも買うか）という判断の結果、メインラ
インのディストリビューションであるDebian

を「Take」（持ってくる）という決断を下し、
2013年のRoche Linux3からDebianをベース
にしているとのこと。
　医用ソフトウェアは、法律の関係から監査や
記録が要求され、再現性が必要となるためにビ
ルド時に変更が意図せずに行われるインターネッ
ト上の外部リポジトリには依存せず、内部でリ

ポジトリを持たねばならないなど、さまざまな
制限があるようです。とくにディストリビュー
ションとして「Reproducibility（再現可能性）」を
重視しているDebianを採用することで、この
あたりが楽になっているそうです。内部リポジ
トリは aptlyを、設定にはAnsibleを使い、ビ
ルドイメージまたは開発用のLinux Container

（LXC）として提供しており、aptlyには自社内
での利用をふまえてcontributionを行うなどし
ている模様です。
　また、社内クライアントとして「RLC」があり、
こちらはUbuntuベースです。現在のところ同
社内にはWindowsが 120,000台、macOSが
15,000台に対してRLCは300台ほどでしかあ
りませんが、まだまだ増え続けているそうです。

日本からの
参加者の発表も多数

　今回のDebConfでは、多くの日本からの参
加者によるセッションが開かれました。
　Debianのドキュメントの取りまとめやインプッ
トメソッド周りで活動されている青木修さんは
「Modernized packaging tutorial and practical

challenge of DEP-5」と題した発表を行いまし
た注13。発表では、ソースパッケージ内のdebian

/copyrightファイルの書式 「DEP5」に触れ、
「debmake」であればDEP5に準拠した形でのテ
ンプレートをある程度自動生成してくれるなど
の優位性を挙げ、パッケージングに使われてい
るツールとしてdh-makeからdebmakeへの移行
を促しました。青木さんは長いDebian開発者
歴にもかかわらず、意外にも初めてのDebConf

参加ということでしたが、発表外の時間は手つ

 ▼表1　Roche Linuxでの評価項目

ポイント 各項目
効果対コスト 移行労力、ライセンス、商用サポート、開発者のトレーニング
柔軟性 モジュラリティ、ハードウェアサポート、フットプリントのサイズ、設定変更が可能かどうか
ユーザビリティ 利用可能なツールの種類、簡易に使えるかどうか
長期性 長期サポート、再現可能性（Reproducibility）、コミュニティ
信頼性 アップグレードが容易、セキュリティサポート

注13） URL https://debconf17.debconf.org/talks/48/注12） URL https://debconf17.debconf.org/talks/165/

https://debconf17.debconf.org/talks/165/
https://debconf17.debconf.org/talks/48/

136 - Software Design Nov. 2017 - 137

DebConf17レポート（前編） 50

かずになっているドキュメントの扱いについて
精力的に関係者に働きかけて合意を得るなどさ
れていたようです。
　前回のDebConf16に引き続きの発表となる
ロジャー清水さんは、自身の出身地である中国
の金盾（グレートファイアウォール）による検閲
をどのようにしてくぐり抜けて利用するかとい
う発表 「Make use of Debian to fight with cen

sorship -- alternative way other than tor」を行
いました注14。速度の問題からこの手の話題で
よく名前が出るTorではなく、ほかのやり方を
試みているとのこと。
　暗号化の重要なソフトウェア「GnuPG」の
upstream developerでもある新部裕さんの発表
「GnuPG 2.1 Explained for Everyone」では、一
緒に参加されていたご家族とともに「GPGの動
作の寸劇」を行って会場を沸かせました注15。続
けての発表 「Let's use Ed25519 with GnuPG

2.1 and Gnuk Token!」ではGPG 2.1で楕円曲線
暗号の1つ「Ed25519」注16の利用を提案しまし
た注17。
　Debian開発者以外では、Linux Foundation

の 「最も保守的」なプロジェクトであるCivil

Infrastructure Platform（CIP）から、小林良岳
さんが「Debian on Civil Infrastructure Systems」
という発表（写真4）にて、交通・エネルギー・

工場などのさまざまな社会生活にとってクリティ
カルな分野の製品のベースにDebianが使われ
ていることを明かしました注18。そして、25～
50年のライフサイクルを持つ鉄道などの産業
システムを例に挙げ、このようなシステムを運
用していくための超長期サポート（SLTS、
Super Long Term Support）の必要性を訴えま
した。現在のDebianではLTSでも5年ですか
ら、まずは7～10年あたりをターゲットに相談
ができると良いですね。
　なお、CIPはLinuxカーネルとして4.4シリー
ズを選択したこと、そのメンテナとして
Debianのカーネルパッケージメンテナでもあ
るBen Hutchingsさんが担当することが明かさ
れました。LinuxカーネルについてはDebian

とCIPで同一人物がメンテナンスを担当して
いることで、スムースに協力が築けそうです。

たまには
ハズレの発表も……

　カンファレンスに参加すると発表のクオリティ
は玉石混交で、当たりばかりとは限りません。
筆者が参加した「whalebuilder: building packages

using Docker」というセッション注19は、今流行
りのDockerを使ってパッケージをビルドする
というので、何か大きく改善される話が出てく
るのか……と思いきや、既存のpbuilder/cow

builderベースのビルドとの違いがあまりわか
らなかったので拍子抜けでした。デモもあまり
練ってきていないようでエラー連発で締まらな
い感じとなり、あらためて発表の際の準備が重
要だと思わされました。

次号へ続きます

　まだまだ話題は尽きませんので、次回も引き
続きDebConf17の話題をお届けしたいと思い
ます。｢

 ▼写真4　小林氏のCivil Infrastructure Platformの発表

注18） URL https://debconf17.debconf.org/talks/101/
注19） URL https://debconf17.debconf.org/talks/84/

注14） URL https://debconf17.debconf.org/talks/90/
注15） URL https://debconf17.debconf.org/talks/32/
注16） URL https://ed25519.cr.yp.to/　djbdnsなどで有名な
 Daniel J. Bernsteinらにより開発された。
注17） URL https://debconf17.debconf.org/talks/162/

https://debconf17.debconf.org/talks/90/
https://debconf17.debconf.org/talks/32/
https://ed25519.cr.yp.to/
https://debconf17.debconf.org/talks/162/
https://debconf17.debconf.org/talks/101/
https://debconf17.debconf.org/talks/84/

138 - Software Design

なぜライフサイクル管理が
必要か
　ITシステムの運用をしていくなかで頭を悩ま
せることが多いのは、おそらくアップデート関
連の話です。とくに個人情報を取り扱うような
重要度の高いシステムでは、定期的に脆弱性を
潰すためのアップデートが求められる可能性が
高くなります。そのようなケースに対応する、
アップデート検証から本番環境への適用までの

ワークフローのイメージが図1となります。図

1ではライブラリ／開発／QE／本番環境の4つ
の環境と複数のバージョンがあるリポジトリが
存在し、ライブラリと開発環境には最新版のリ
ポジトリ（図中では後述する「コンテンツビュー」
と記載しています）を割り当てており、QE環境
にはバージョン2のリポジトリを、本番環境に
はバージョン1と最も古いバージョンのリポジ
トリを割り当てています。これは各バージョン
のリポジトリを、開発→QE→本番の順番で検

 ▼図1　 リポジトリのライフサイクル管理を利用したワークフローのイメージ

ソフトウェアリポジトリのライフサイクル管理

第14回

レッドハット系ソフトウェア最新解説

 Author 小島 啓史（こじまひろふみ）
	 mail：hkojima@redhat.com

レッドハット㈱ テクニカルセールス本部 ソリューションアーキテクト

アップデート検証から本番適用までのワークフローを確立する
手助けとなる、ソフトウェアリポジトリのライフサイクル管理方
法を紹介します。

Nov. 2017 - 139138 - Software Design

サーバにアクセスするためのURLやユーザ情報
が表示されますので、適当なWebブラウザを利
用してSatelliteサーバにログインします。サ
ポート対象のWebブラウザを利用する場合は、
Firefox 35+かChrome 28+を利用してください。

yum -y install satellite
satellite-installer --scenario satellite

　ちなみに、Satelliteをインストールすると管
理ユーザとしてadminユーザが作成されます。
今回は作業を単純化するために、このadminユー
ザ権限でSatelliteのCLIツールであるHammer

を使って管理作業をしていきます。なお、hammer
コマンドを実行する際の認証情報もユーザのホー
ムディレクトリに保存しておきます（図3）。こ
れでSatelliteの準備は完了です。

コンテンツビューの作成

　コンテンツビューは、Satelliteサーバが保持
しているソフトウェアリポジトリの集合です。
Satelliteが保持できるソフトウェアリポジトリ
の種類は、Yum、Docker、Puppetとなります。
コンテンツビューを公開してクライアントが利
用できるようにするには、公開時点でのスナッ
プショットを作成する必要があります。各クラ
イアントにはそれぞれスナップショット取得時

証・割り当てしていった結果となります。こ
うしたライフサイクル管理により、アップ
デートだけでなく新機能追加などでも一貫性
を持たせられるようになります。
　では、このようなライフサイクル管理を導
入するにはどうすべきでしょうか。1つの方
法として、wget/rsyncなどを活用してカスタ
ムソフトウェアリポジトリを作成し、アップ
デートの際にはリポジトリのスナップショッ
トをcpなどで作成して各環境での検証を順
番に行うことが考えられます。Red Hatでは、
こうした作業の自動化やアップデート前後の
システム状況を確認するためのインベントリ
機能を備えているRed Hat Satelliteの利用を推
奨しています。以降はこのようなライフサイク
ル管理を想定した、Red Hat Satelliteの利用例
を紹介していきます。

Red Hat Satellite 6の
準備
　次の手順はRed Hat製品であるRed Hat Satel

lite 6（以下Satelliteと記載）の利用を前提とし
ますが、もしOSSコミュニティ版のソフトウェ
アを利用して試してみたい場合は、Satelliteの
ベースになっているKatello 注1 やForeman 注2 を
利用して同様の手順を実施してみてください（図

2）。その際にはインストールガイド 注3 も参照で
きます。
　まずはSatelliteをインストールする最新の
RHEL7サーバを1台用意して、Satelliteをイン
ストールするための製品リポジトリを有効にし
ます。このとき利用するポート 注4 も忘れずに開
いておいてください。
　続いてSatellite関連パッケージをインストー
ルし、インストールスクリプトを実行します。
しばらく待つとインストールが完了し、Satellite

 ▼図2　RHELの登録とSatellite製品リポジトリの有効化

subscription-manager register --auto-attach
subscription-manager repos --disable=”*”
subscription-manager repos c
 --enable=rhel-7-server-rpms \
 --enable=rhel-7-server-satellite-6.2-rpms \
 --enable=rhel-server-rhscl-7-rpms \

 ▼図3　hammerコマンドを使うための認証情報の設定

cat << EOF > ~/.hammer/cli_config.yml
:foreman:
 :host: 'https://FQDN_OF_SATELLITE/'
 :username: 'admin'
 :password: 'PASSWORD_OF_ADMIN_USER'
EOF

注1） URL http://www.katello.org/
注2） URL https://theforeman.org/
注3） URL https://theforeman.org/plugins/katello/3.4/install

 ation/index.html
注4） URL http://red.ht/2xkly0N

ソフトウェアリポジトリのライフサイクル管理第14回

https://theforeman.org/
https://theforeman.org/plugins/katello/3.4/installation/index.html
http://red.ht/2xkly0N
http://www.katello.org/

140 - Software Design

コマンドを実行して、Webサーバ
からRHEL7.3のRPMパッケージ
を同期します（図4）。
　同期完了後に、コンテンツ
ビュー「rhel7-content-view」
を作成して「rhel7u3-rpms」リポ
ジトリを紐付けます。そして
publishサブコマンドを実行して、

「rhel7-content-view」を公開します。publish

サブコマンドを実行すると、コンテンツビュー
のその時点のスナップショットが取得・公開さ
れます（図5）。
　公開した「rhel7-content-view」のスナップ
ショットを、「Library」と「Production」の2つの
環境で利用することを想定してみます。デフォ
ルトで作成済みの「Library」環境に割り当てられ
たコンテンツビューのスナップショットのプロ
モート先として「Production」環境を作成し、前
の手順で公開した「rhel7-content-view」のス
ナップショット (ここではバージョン番号1が付
与されています)を「Production」環境にプロモー
トします（図6）。この結果、「rhel7-content-

view」のスナップショットを「Library」環境と
「Production」環境で利用できるようになります
（図7）。
　ここまでの手順が完了すると、コンテンツ

点のコンテンツビューが割り当てられ、基本的
にはそれに含まれるソフトウェアを利用するし
くみとなります。最初に記載したリポジトリの
ライフサイクル管理には、コンテンツビューの
スナップショットを活用することになります。
　コンテンツビューを作成するには、まずソフ
トウェアリポジトリを作成する必要があります。
ここではRHEL7.3の ISOイメージに含まれる
RPMパッケージをインポートしてみる例を紹介
します 注5 。まず「rhel7-rpms」という名前の製品
（ソフトウェアリポジトリを置く論理リソース）
を作成したあとに、「rhel7-rpms」に紐付けるリ
ポジトリ「rhel7u3-rpms」を作成します 注6 。リポ
ジトリを作成したあとには、synchronizeサブ

 ▼図4　RHEL7.3のRPMパッケージのインポート

hammer product create --name "rhel7-rpms"
hammer repository create --name "rhel7u3-rpms" --content-type "yum" --publish-via-http “true”ｭ
--url “http://WEB_SERVER/RHEL/7/3/” --product "rhel7-rpms"
hammer repository synchronize --name rhel7u3-rpms --product rhel7-rpms

 ▼図5　RHEL7.3のRPMパッケージが含まれるコンテンツビューの公開

hammer content-view create --name "rhel7-content-view"
hammer content-view add-repository --name "rhel7-content-view" --repository "rhel7u3-rpms" ｭ
--product “rhel7-rpms”
hammer content-view publish --name "rhel7-content-view"

 ▼図6　作成したコンテンツビューのプロモート

hammer lifecycle-environment create --name "Production" --prior "Library"
hammer content-view version promote --content-view "rhel7-content-view" --version 1 --to-ｭ
lifecycle-environment "Production"

 ▼図7　 公開およびプロモートされたコンテンツビューのイメージ

注5） 以降のhammerコマンドは、Satelliteでデフォルトで作成
される組織名の指定「--organization “Default Organi
zation”」の記載を省略しています。

注6） この例では、RHEL7.3の ISOイメージを適当なディレクト
リにマウントして、Webサーバとして公開していること
を想定しています。

レッドハット系ソフトウェア最新解説

Nov. 2017 - 141140 - Software Design

に紐付けてみます（図10）。この場合、「Library」
環境のコンテンツビューに紐付けられたシステ
ムのみが、RHEL7.3とRHEL7.4のRPMパッ
ケージを参照できるようになります。先ほど
「Production」環境に紐付けたシステムが追加さ
れたRHEL7.4のRPMパッケージを参照するに
は、コンテンツビューの新しいスナップショッ
ト（図10ではバージョン4.0と記載）をプロモー
トする必要があります。
　今回で紹介したソフトウェアリポジトリのラ
イフサイクル機能を活用すると、テスト環境と
本番環境で同一のリポジトリを使うことができ
ますので、アップデートや新機能追加などの過
程でパッケージの差異による不具合が発生する
可能性を減らすことができます。ぜひともご参
考にしてください。ﾟ

ビューの利用準備が整ったことになります。
RHEL7システムを1台用意して、Satelliteサー
バへ登録してみます。Satelliteサーバに登録する
ための情報を含んだRPMパッケージをインストー
ルし、「subscription-manager register」コマ
ンドを実行して登録します（図8）。この登録の際
に、「Production」環境の「rhel7-content-view」
コンテンツビューを--environmentオプション
で紐付けておきます。登録したRHELシステム
は、図9のような形式で確認できます。
　そして、このシステムで「yum repolist」コ
マンドなどを実行して、RHEL7.3のRPMパッ
ケージが参照できることを確認できます。さら
に同様の手順で新たにRHEL7.4のRPMパッ
ケージを追加して、コンテンツビューの新しい
スナップショットとして公開し、「Library」環境

 ▼図8　Satelliteへのシステム登録と“Production”環境のコンテンツビュー紐付け

yum -y install http://satellite.example.com/pub/katello-ca-consumer-latest.noarch.rpm
subscription-manager register --org="Default_Organization" --environment="Production/rhel7ｭ
-content-view" --username admin --auto-attach

 ▼図10　 コンテンツビューの新しいスナップショット公開イメージ

 ▼図9　登録したRHELシステムの情報表示イメージ

ソフトウェアリポジトリのライフサイクル管理第14回

142 - Software Design

Ubuntu Monthly Report第91回 Ubuntu Monthly Report

Ubuntu 17.10の変更点

今回は10月19日にリリース予定のUbuntu 17.10とそのフレーバーの変更点をお知らせします。

Ubuntu Japanese Team
あわしろいくや

リリース日とコードネーム

　Ubuntu 17.10は10月19日にリリース予定で、
コードネームは“Artful Aardvark”「巧妙なツチブタ」
という意味です。17.04のZのあと、順当にAに戻っ
てきましたが、正確にはUbuntuのコードネームはA

から始まっているわけではなく、実はAから始まる
のは今回が初めて、というやや複雑なことになって
います注1。サポート期間はすべてのリリースで9ヵ月
間です。

注1） Aは今回が初めて、Bは次で2回目（前は5.10）、Cはまだなく、
Dからは2回目が始まりますが、Wのようにすでに2回使用し
ているものもあり（4.10と15.10）、歴史的経緯でこのあたりの
ことを真面目に考えてしょうがないことになっています。

概要 UnityからGNOME Shellへ

　2017年6月号の本連載第86回で既報ですが注2、こ
のUbuntu 17.10からデフォルトのデスクトップシェ
ルがUnity 7からGNOME Shellに変更になりました。
　今回はリリースの1ヵ月前時点での情報ですので、
実際のリリースとは異なる可能性はありますが、ひ
とまずは図1のUbuntu 17.10のスクリーンショット
をご覧ください。Unityに見えるかもしれませんが、
これはれっきとしたGNOME Shellです。

フレーバー

　UbuntuがGNOME Shellを採用したということ
で、Ubuntu GNOMEのリリースは行われません。
Ubuntu GNOMEをアップグレードするとUbuntuに
なる見込みですが、Ubuntu GNOMEの構成のままに
なる可能性もあります。一方、LXDEを採用する
Lubuntuは新たにLXQtを採用するLubuntu Nextも
リリースすることになりました。

共通の変更点

　カーネルのバージョンは4.13で、リリース時点で
最新版ですが、X.Orgのバージョンは1.19.3であり、
17.04と同じバージョンです。これは単純にこの
バージョンが最新だからです。グラフィックスライ

注2） 2017年7月号の第87回ではUnityの歴史や機能を解説し、第
88回ではUnityからGNOMEへの移行状況が解説されている
ので、併せてご一読ください。

図1　Ubuntu 17.10のデスクトップ

142 - Software Design Nov. 2017 - 143

Ubuntu 17.10の変更点 第 91 回

ブラリであるMesaは17.2.1になる見込みです。
　ネットワークの設定を抽象化するnetplan（パッ
ケージ名はnplan）がデフォルトでインストールされ
るようになりました。ネットワークデーモンが
Network Managerであってもsystemdのnetworkdで
も設定を共通化できるというものですが、普段デス
クトップのみ、あるいはサーバのみで使用している
のであれば意識することはないかもしれません。

Ubuntu版GNOME Shellの特徴

　Ubuntu版GNOME Shellは素のGNOME Shellと
は大きな違いがあります。素のGNOME Shellとは
何かというのは定義が難しいですが、ここでは
Ubuntu GNOME 17.04のGNOME Shellとします。
　Ubuntu版GNOME ShellはテーマをUnityで使用
していたAmbianceにしたほか、デスクトップにアイ
コンを表示するといった小さな変更や、2つの拡張機
能をデフォルトで有効にしているという変更点があ
り、これが特徴となっています。
　うち1つはUbuntu Dockで、デスクトップの左側
に表示しているバーです。Unity Launcherに似せた
表示になっていますが、アプリケーションを起動す
る場合は一番下にある格子状のアイコン（アプリケー
ションボタン）をクリックします。Unity Dashに相当
する、画面左上にあるアクティビティをクリックし
てもアプリケーションの起動はできますが、この場
合は検索主体になり、アプリケーションのアイコン
から選択したい場合はやはりアプリケーションボタ
ンを押すことになるので、であれば最初からアプリ
ケーションボタンをクリックしたほうがいいでしょう。
　Ubuntu Dockの設定はGNOMEの設定画面から変
更できます。Dockの常時表示をやめたり、Dockの表
示位置を変更したりといったことなどができます。
　もう1つはUbuntu appindicatorsで、これは
GNOME ShellでUnityのAppindicatorをサポート
するための拡張機能です。GNOME Shellで右上にア
イコンを表示しようとすると拡張機能にするしかな

Ubuntu

いため、この拡張機能が有効になっています。
Appindicatorに対応しているアプリケーション、た
とえばRemminaを起動してみると、右上にアイコン
が表示されるのがわかります。
　ほかにも注目すべき点として、ウィンドウのボタ
ンが右に移動したことです。これはGNOME Shell

を踏襲した形ですが、設定上はUnityと同じく左に
することもできます。それをこの機に右のままにし
たということは、さほどの重要性がなかったという
ことでしょう。もともとのプランでは空いている右
側で何かをするということでしたが、結局何も行わ
れませんでした。

GDM

　17.04まではUbuntuのデスクトップマネージャー
はLightDMでしたが、17.10ではGDMになりまし
た。これはGNOME ShellとLightDMの組み合わせ
では不都合があるからですが、LightDMにあったゲ
ストセッションなどの機能はGDMにはなく、また後
述する各種セッションをインストールした場合、
GDMだとGDM自体を再起動しないとそのセッショ
ンを選択できないといった不便な点があります。

Wayland

　GNOME Shellに移行することによる最大のメ
リットは、おそらくディスプレイマネージャーに
Waylandを選択できることでしょう。17.10の段階で
すでにデフォルトのセッションになっており、
NVIDIA/AMDのプロプライエタリなドライバを使
用しているといった例外を除けばWaylandを使用す
ることになります。ログイン時にX.Orgのセッショ
ンも選択できるようになっているため、Waylandでは
不都合がある場合はそちらを選択してください。
　今のところWaylandだからといって明確なメリッ
トがあるわけではありませんし、VNCやFcitxが使
用できないなどの制限もあります。今後はディスプ
レイごとにDPIの設定を行えるなどといったWayland

のメリットも享受できるようになるため、自分の使用
環境をWaylandにした場合どういった問題が出るの
かの洗い出しは早めにやっておいたほうがいいよう

144 - Software Design

Ubuntu Monthly Report

に思います。

GNOME 3.26

　17.10は9月13日にリリースされたばかりの
GNOME 3.26 “Manchester”にアップデートしてい
ます。大きな変更点は設定ツールのルック＆フィー
ルが変更されたことや検索インターフェースの変更
ですが、ほかにもさまざまな変更点があります。
　これまでレガシートレイアイコンとして左下にアイ
コンが表示されることがありましたが、この機能はな
くなりました。どうしてもレガシートレイアイコンを
表示したい場合は、Topiconsという拡張機能をインス
トールするといいようです。

Unityセッションと
GNOMEセッション

　Ubuntu 17.04からアップグレードした場合、ある
いはunity-sessionパッケージをインストール後GDM

を再起動すると、Unity 7セッションが使用できます。
システム設定の「オンラインアカウント」や「セキュリ
ティとプライバシー」が使用できなくなったなどの制
限がありますが、GNOME Shellに慣れない場合はこ
ちらを使用するのも手です。とはいえ、おそらく
18.04 LTSでは残るものの、それ以降の早い段階で
リポジトリから削除されることが予想されるため、早
めにGNOME Shellに慣れておくのがいいでしょう。
　gnome-sessionパッケージとして素のGNOME

Shell用のセッションもありますが、前述の拡張機能
が有効な状態になっており、Ubuntuセッションと大差
ないものになっています。ただしUbuntu GNOME

17.04からアップグレードした場合は、素のGNOME

Shellになります。これはUbuntu用のセッションがイ
ンストールされていないからだと思われます。

日本語入力

　この記事を執筆している9月中旬現在では、日本
語入力がどうなるのか決まっていません。このまま
リリースされたとすると、ログイン後設定の「地域と
言語」を開いて「入力ソース」で「日本語（Mozc）」を追
加するという手間がかかることになりそうです。

　現在KDEはKDE Software Compilation（SC）と
して3つに分割してリリースされています。Plasma

が5.10.5、Frameworksが5.38.0、Applicationsが
17.04.3というバージョンです。リリースまでにアッ
プデートされる可能性はあります。
　17.10ではメディアプレイヤー関連に大きな変更
があり、動画再生のDragon Playerが著名なVLC

Media Playerに、音楽再生のAmarokがCantataに
置き換えられました。Amarokも著名な音楽プレイ
ヤーでしたが、KDE Frameworks 5にポーティング
したバージョンがリリースされておらず、置き換え
られることになったようです。現在作業中のような
ので、リリースされればまたデフォルトの音楽プレ
イヤーに戻るのかもしれません。

　Xubuntuはあまり大きな変更はなく、順当なバー
ジョンアップとなっています。Xfceは現在GTK+ 3

へのポーティングを行う4.14を目指して開発中です
が、このままの開発速度で行くと来年にはリリース
できるのではないでしょうか。

　Lubuntuはメディアプレイヤーがgnome-mplayer

からgnome-mpvに変わったくらいで大きな変更はあ
りません。Lubuntu Nextは前述のとおりデスクトッ
プ環境をLXDEからLXQtに変更し、それに伴い構
成するアプリケーションにも大幅な変更があります。
￥

　MATEのバージョンはマイナーバージョンアップ
は行われているものの1.18で、17.04と変わっていま
せん。Ubuntu MATEはMATEの強力なカスタマイ
ズ性を活かし、Unity 7ライクなルック＆フィールを

Kubuntu

Xubuntu

Lubuntuと
Lubuntu Next

Ubuntu MATE

144 - Software Design Nov. 2017 - 145

Ubuntu 17.10の変更点 第 91 回

実装してしまいました。正確にいえば前からあった
のですが、17.10でその完成度を大幅に高めたので
す。［システム］-［設定］-［ルック＆フィール］-［MATE

Tweak］でMATE Tweakを起動し、「パネル」の
「Traditional」を「Munity」に変更してください。この
際、パネルに施されている変更はすべて破棄されま
すので、ご注意ください。
　MunityでPlumaを起動し、mキーを押したとこ
ろが図2ですが、Unity風のレイアウト、グローバル
メニュー、Heads-Up Display（HUD）、Appindicator

が実現されています。残念ながらUnity Dashの再現
はできていませんが、いずれリポジトリから削除さ
れてしまうであろうUnity 7よりも、より長く残ると
思われるMunityに乗り換えてしまうほうが、実はい
いのかもしれません。
　これまでUbuntuのセカンドチョイスとして存在感
のあったUbuntu GNOMEがなくなったことにより、
その役割を担うのはUbuntu MATEが有力だと思わ
れるので、そういう点からも一度使ってみるといい
のではないでしょうか。Fcitxが満足に動作するとい
うのもポイントです。パネルレイアウトもTraditional

やMunityのほかにもWindowsふう（Redmond）や
macOSふう（Cupertino）もあるので、気に入るもの
が見つかることでしょう。

　17.10のUbuntu Budgieは、Budgie 10.4にアップ
デートされています。これまで右側に表示されるメ
ニューのRavenで設定を行っていましたが、この
バージョンからは設定画面が独立しました（図3）。
　Budgie Welcomeを起動し、［Getting Started］-
［Language & Input］にIBusとFcitxを切り替える機
能と、CJK関連パッケージをインストールする機能
が追加されました。しかし前者の機能は動作せず、
後者も日本語関連でインストールするのが ibus-

anthyと、あまり理解せずに追加された機能と思わ
れ、今いち使いどころがありません。Ubuntu Budgie

ユーザは修正に挑戦してみるのもいいでしょう。
　Ubuntu Budgieで日本語入力を行いたい場合は、

Ubuntu Budgie

17.04での方法が有効であると思われます。次のコ
マンドを実行してください。

$ gsettings set org.freedesktop.ibus.panel ｭ
show-icon-on-systray true
$ gsettings set org.freedesktop.ibus.panel ｭ
xkb-icon-rgba '#ffffff'
$ gsettings set org.freedesktop.ibus.general.ｭ
hotkey triggers "['<Control>space']"

　これでIBusのステータスアイコンが表示されるよ
うになりますが、BudgieのAppindicatorアプレット
は安定しているとはいい難く、クリックするとフ
リーズしてしまうことがあります。これはFcitxでも
同様の動きでした。よって、よりクリックする回数
が少ないと思われるIBusのほうが安定して動作する
といえます。｢

図2　 Ubuntu MATEでUnity風のUIにし、HUDを有効にしたところ

図3　Budge 10.4では設定ツールが独立した

146 - Software Design

接続時のパスワード入力を
省略するいくつかの施策

　sshについては、本連載第15回、16回（2017

年7月号、8月号）に続いての3回目です。
　パスワードもパスフレーズも使わずにリモート
ホストにログインできれば、バッチ処理内などで
リモートコマンドやリモートコピーをおこなうと
きに便利です。

パスフレーズなしの秘密鍵
　あたりまえですが、パスフレーズなしの秘密
鍵ならパスフレーズの入力は求められません。
sshでパスフレーズとパスワードの入力をしな
い運用としては、このあとに説明するほかの方
式に対して簡単な準備で対応できることや、安
全度の高い公開鍵認証であることから広く使わ
れている方式です。しかし、パスフレーズを指
定しない秘密鍵は、機密性は下がりますので取
り扱いには注意しましょう。
　秘密鍵のパスフレーズは、ssh-keygen -pを
実行すれば変更できます。

 ホストベース認証

　ホストベース認証とは、sshサーバとクライ
アントが、ユーザレベルの認証を省略して、直
接認証を行う認証方式です。この方式では、サー
バに登録済みのクライアントから接続があった

場合は、そのクライアントのユーザ情報につい
ても信用して接続を許可します。各ホストに同
一のユーザアカウントが存在する環境において、
ユーザがパスワードやパスフレーズを入力せず
に各ホストにログインできるようになり、運用
の効率が高まります。
　たとえばシステム管理者が複数のクライアン
トを一元管理している環境においても、sshな
ら（古典的な手法の）rコマンドに対して、より
安全にホストベース認証ができます。とはいえ、
適切な機密性管理がされていないと、信頼でき
ないホストからの接続が許されてしまうなどの
危険があります。一般の利用者が不注意で機密
を漏えいしてしまうことを避けるためにも、利
用可能な環境を管理者に限定し、接続環境も、
プライベートネットワーク内とする運用がよい
でしょう。

　ここからは、SSH2プロトコルでのホストベー
ス認証の設定方法の流れを紹介します。

クライアント側の準備
①	クライアントの設定ファイル（/etc/ssh/
ssh_configもしくは、~/.ssh/config）で“Host	
basedAuthentication yes”と記述する

②	クライアントの設定ファイル（/etc/ssh/
ssh_config）で“EnableSSHKeysign yes”と
記述する

③	ssh-keysignのオーナーをroot、パーミッショ

複数のホストを縦横無尽に行き来する場面で役立つ、sshの応用を紹介します。

 Author 中島 雅弘（なかじま まさひろ）　㈱アーヴァイン・システムズ

第　　回19 ssh（その3）

146 - Software Design Nov. 2017 - 147

サーバ側での対応
①	サーバの設定ファイル（/etc/ssh/sshd_con	
fig）で“HostbasedAuthentication yes”と
記述する

②	サーバの/etc/sshディレクトリの下のssh_
known_hostsに、クライアントの公開鍵をコ
ピーしておく

③	サーバの/etc/hosts.equivにクライアントの
ホスト名または、IPアドレスを記述しておく

④	サーバ側のsshd_configを変更したら、sshd
に読み込ませる

　手順②にあるサーバのssh_known_hostsへは、
クライアント上の/etc/ssh/にあるホスト共通
の公開鍵（ssh_host_rsa_key.pubなど）を追記
します（単純に配置するだけでは動作しないこ
ともありますので、記述形式についてはmanを
参照してください）。

　サーバの設定ファイル（/etc/ssh/sshd_config）
に“IgnoreUserKnownHosts no”と記述してあれ
ば、~/.ssh/known_hostsのホスト公開鍵も参
照されます。サーバの~/.ssh/known_hostsが

ンを4711（set-uid注1付きで、グループとそ
のほかのユーザは実行権限のみ）に設定

　手順②と③の設定は、ホストベース認証の際
に、ssh-keysignコマンドによって、ローカル
ホストの秘密鍵にアクセスしてデジタルシグニ
チャ（電子署名）を生成するための設定です（ユー
ザがssh-keysignを直接実行する必要はありま
せん）。sshでクライアントに接続した際に、
ssh-keysign not enabled in /etc/ssh/ssh_config
というエラーが表示されるようなら、Enable
SSHKeysignをyesにし忘れていないか確認し
ましょう。
　ssh-keysignは、デフォルトでは手順③のパー
ミッションになっていないこともあります。また、
環境によって、ssh-keysignのある場所が異な
りますので注意してください（表1）。sshでク
ライアントに接続した際に、
initgroups masa 20: Operation not permitted
ssh_keysign: no reply
のようなエラーを見たら、ssh-keysignのオー
ナーとパーミッションを確認してください。

注1） set-uidの解説は連載第7回（2016年11月号）を参照。

 ▼表1　参考：ssh-keysignのあるところ（例）
環境 パス

macOS 10.12.6 /usr/libexec/ssh-keysign

Ubuntu 16.04 /usr/lib/openssh/ssh-keysign

CentOS 7.3 /usr/libexec/openssh/ssh-keysign

macOS SIPは、disableする必要がある
　macOS（El Capitan 以 降）で は、System Integrity
Protectionがかかっていて、rootであっても変更が
加えられないファイルやディレクトリがあります。SIP
をdisableにしないと、ssh-keysignのパーミッショ
ンを変更できません。

$ sudo chmod u+s /usr/libexec/ssh-keysign
chmod: Unable to change file mode on /usr/ｭ
libexec/ssh-keysign: Operation not permitted

　SIPをdisableにする方法は、次の手順です。

1. システムを再起動
2. リンゴマークが出るまで Comand ＋ R キーを押して、

リカバリーモードで起動させる
3. UtilitiesメニューのTerminal（あなたの環境では

日本語表記かもしれません）で、ターミナルを立ち
上げ

4. csrutil disableとコマンドを入力し、成功のメッ
セージを見届ける

5. システムを再起動すれば、SIPはoffになる

　パーミッションの変更が済んだら、同様の手順でに
SIPをenableにしておきましょう。

クライアントの/etc/sshにssh_host_*がな
い場合の作り方
　使っている環境によっては、システム共通の鍵がな
い場合があります。そうした場合は、管理者権限で、
次のようにssh-kegenコマンドを実行しましょう。

 システムで使えるすべての鍵を作る場合
$ sudo ssh-keygen -A

　特定の暗号方式の鍵だけを指定して作る場合には、
明示的に暗号タイプを指定します。

 rootでrsa鍵だけを作る例
ssh-keygen -t rsa -f /etc/ssh/ssh_host_ｭ
rsa_key -C '' -N ''

第　　回19 ssh（その3）

148 - Software Design

有効に登録されていれば、システム共通の鍵の
登録操作はしなくても接続できます。
　手順③で指定している/etc/hosts.equivは、
許可するホストとユーザを1行に1組で記述し
たもので、rshによるホストベース認証のとき
から用いられています。host.equivはシステム
全体で使われ、各ユーザは~/.rhostsに同様の
形式で個別の情報を記述できます。sshでは、
rコマンドで使うこれらのファイルのほかに、
sshのみで使う/etc/shosts.equivや~/.shosts
も参照します。サーバの設定ファイル（/etc/
ssh/sshd_config）に“IgnoreRhosts no”と記述
すれば、~/.rhostsまたは~/.shostsに書かれ
たホスト名も有効になります。
　rshからの伝統で、ユーザが rootの場合は
/etc/hosts.equivは参照されませんので、
rootの~/.rhostsもしくは~/.shostsに記述を
しておきます。rootの loginを許可するためには、
さらに“PermitRootLogin yes”も記述します。
　ホストベース認証は、ホスト名が接続許可の
判断基準になります。サーバ側がクライアント
のホストを認識している名前をhosts.equivや
ssh_known_host中に記述します。
　hosts.equivに書くべきホスト名が不適切で
接続できないときに、サーバが接続を試みてい
るホストをどのように認識しているかは、ログ
を見るとわかるでしょう。サーバ側はtail -f
で、ログの状態を監視しながらクライアントか
ら接続してみます。

 Ubuntuの例：随時logに追加される情報が表示されるので、接続元のホ
スト名を確認
$ sudo tail -f /var/log/auth.log
 tail -fを終了するには、Control-Cを入力

　/etc/ssh/sshd_configを編集したらsshdに
SIGHUPを送って、設定を読み込ませます注2。

ホストベース認証のまとめ
　誌面で紹介した範囲では、現実のさまざまな

注2） macOSについては不要です。連載第16回「ssh（その2）」
（2017年8月号）を参照してください。

環境で生じる課題をすべてカバーできません。
実際にはいろいろと試行錯誤注3が必要です。

そのほかのパスワード入力を
省く施策

 SSH_ASKPASS
　SSH_ASKPASS環境変数は、sshでX Window

Systemを使うためのしくみですが、SSH_ASK
PASSを用いると、パスワード入力を自動化で
きます。Linuxでは、setsidというコマンド注4

を活用します（リスト1）。
　リスト1では、gpというスクリプト（リスト2）
を呼び出して、plist（パスワードテーブル。リ
スト3）からホスト名に対応したパスワードを
取得します。ここでは、単純にするため平文の
パスワードをplist内に記述していますが、実
用には何らかの方法で暗号化しておくのが良い
でしょう。
　この方式は、公開鍵認証のパスフレーズを省
略したり、ホストベース認証のようにさまざま
な設定をしなくてもパスワード入力を省略して
接続できるのが利点ですが、認証に失敗した場
合に適切なエラー処理がしにくいのが欠点です。

RubyのNet::SSHを使う
　Rubyが使える環境なら、Rubyの Net::SSH
を使えば、sshをスクリプト中から自在に操る
ことができます。Net::SSHは標準では入って
いないので、gemでインストールします。

$ sudo gem install net-ssh

　詳細は、本家注5のドキュメントを参照して
ください。ここでは、パスワード認証と、公開
鍵認証での簡単な例をリスト4に掲載しておき
ます。
　この方式なら、簡単にsshを使ってバッチ処

注3） ssh（その2）の sshのまとめとトラブルシュートなどを
参考に。

注4） macOSには、このコマンドがありません。setsid(2)
システムコールはありますので、C言語を使って setsid
コマンドを作ることはできます。

注5） URL https://github.com/net-ssh/net-ssh

https://github.com/net-ssh/net-ssh

148 - Software Design Nov. 2017 - 149

#!/bin/bash

remote_cmd='ls -a'
hosts=(my-ubuntu.sonzaishinai.jp her-ubuntu.sonzaishinai.jp)
user=bot
hostinfo="./host.crr"

export DISPLAY=fake:0
export SSH_ASKPASS="./gp"

pids=()
for host in ${hosts[@]} ; do
 while [-f ${hostinfo}] ; do # 前の処理が終わるのを待つ
 sleep 1
 done
 echo ${host} > ${hostinfo}

 setsid ssh ${user}@${host} ${remote_cmd} &

 pids+=($!)
 echo "$host:${pids[@]}"
done

echo "----"

while ((${#pids[@]} > 0)) ; do
 echo ${pids[*]}
 pids=($(ps ax ¦ awk -v "p=${pids[*]}" 'BEGIN{split(p, pids)} {for (i in pids) ｭ
{if ($1==pids[i]) left=left " " $1}} END{print left}'))
 sleep 2
done
echo "----"

echo "all remote tasks are done"

 ▼リスト1　SSH_ASKPASSを使ってパスワードを省略して、複数のシステムに自動で接続するスクリプト

#!/bin/bash
hostinfo="./host.crr"
host=$(cat ${hostinfo})
/usr/bin/awk "¥$1==¥"${host}¥" {print ¥$2}" plist
rm ${hostinfo}
exit 0

 ▼リスト2　 パスワードデータベースplistからパスワードを
抽出するスクリプト gp

require 'rubygems'
require 'net/ssh'

パスワード認証の場合
Net::SSH.start('my-ubuntu', 'ore', :password ｭ
=> 'ore.ore.oredayo') do ¦ssh¦
 puts ssh.exec! 'ls -a'
end

公開鍵認証
Net::SSH.start('her-ubuntu', 'ore', :keys => ｭ
['̃/.ssh/id_rsa'], :passphrase => ｭ
'himitsunokagi') do ¦ssh¦
 puts ssh.exec! 'ls -a'
end

 ▼リスト4　 Net::SSHを使ったパスワード認証と公開
鍵認証のコーディング例

my-ubuntu.sonzaishinai.jp ore.ore.oredayo
her-ubuntu.sonzaishinai.jp kiminonaha.ｭ
michikodesu

 ▼リスト3　 plistにリモートホスト名とパスワードの
組を記述しておく

理を実現できます。

sshをもっと便利に

configで面倒な設定をまとめる
　接続先によって、ローカルの環境とアカウント
名が違う場合など、毎回入力するのが面倒なこ
とや、sshの挙動を決める設定は、.ssh/config
に書いておくことができます。configファイルの

第　　回19 ssh（その3）

150 - Software Design

たトンネリングの方式では、踏み台のホストに
接続して、そこでローカルポートに接続するこ
とで目的のホストに接続しました。この一連の
手順を簡便にするために、リスト5のような定
義をしておくと便利になります。
　.profileなどで定義しておけば、端末を立ち
上げたときに（1つだけ）autosshが自動で実行さ
れます。リモート側でも同様にトンネルを作っ
ておけば、achiraとコマンドプロンプトで入力
するだけで、踏み台経由でリモートのプライベー
トネットワーク内のホストに接続できます。

scpも踏み台経由で使いたい
　連載第16回のssh（その2）で解説したリモー
トポートフォワード（-Rオプション）の設定が
できている環境で、sshだけでなく scpや
rsyncなども踏み台を経由して接続する場合の
設定方法を確認しておきましょう。
　次のように、~/.ssh/config中に、ProxyCommand
をssh -Wを使って定義します（%hがHostName、
%pがPortに変換されます）。

 ~/.ssh/configへ追記
Host my-macmini
 HostName localhost
 Port 9999
 ProxyCommand ssh -W %h:%p my-ubuntu.ｭ
irvine.jp

フォーマットは、man注6で確認してください。

 configファイルの例
ServerAliveInterval 30
ServerAliveCountMax 4

Host aru.irvine.jp
 Port 10022
 ForwardX11 yes
 ForwardX11Trusted yes
 ForwardAgent yes

Host irvine.jp
 User ore

Host *
 User masa

ssh接続時の自動処理について
　sshでログインする際、bashでの .bashrc
や.bash_profileなどと同様に動作環境を設定
することができます。~/.ssh/environmentは、
追加の環境変数を定義するのに使います。リモー
トホスト側で sshd_configで PermitUserRCが
セットされていて、リモートホストの~/.ssh/rc
が存在すれば、ログイン時に実行されます。こ
れがなければ、/etc/ssh/sshrcが実行されます。
　~/.ssh/rcで無用な表示などをすると、バッ
チ処理やscpなどsshを使うコマンドなどが期
待どおりの動作をしないことがありますので、
sshログイン時にどうしても必要な個別の設定
のみをするのがよいでしょう注7。

ポートフォワードを便利にする工夫

~/.profile、~/.bash_profileで多段で接続
する設定を便利にする
　連載第16回のssh（その2）で解説した、リモー
ト／ローカルポートフォワードと、autosshを使っ

注6） ssh_config(5)、sshd_config(5)

注7） rcが存在していると、Xフォワードがうまくいきません。

autosshのモニタリングポート
　autosshでは、接続状態を確認するためのモニタリ
ングポートを-Mで指定する必要があります。ポート
番号には、使っていないポートを指定するのですが、
ポート番号0を指定すると、モニタリングポートを使
用しないで、切断のシグナルをconfigファイル中で

（OpenSSHの比較的新しいバージョンにある設定）
ServerAliveInterval（sec）、ServerAliveCountMaxi

（回数）によって受け取ります。この方法のほうが、モ
ニタリングポートを使うよりもよいとmanpageでは
推奨しています。

alias achira='ssh fumidai.irvine.jp -t ssh -p 9998 localhost'
alias psautossh='ps ax ¦ grep autossh ¦ grep -v grep'
alias tunnel='psautossh > /dev/null ¦¦ autossh -f -M 0 -N -R 9999:localhost:22 fumidai.ｭ
irvine.jp && psautossh'
tunnel

 ▼リスト5　 こちら側の設定（「あちら側」にも対称に、ローカル接続のポート番号を9999、autosshの接続時のポー
トを9998としてトンネルを作っておく）

150 - Software Design Nov. 2017 - 151

　加えて、接続先に、接続元の公開鍵を登録し
ておきます。これで、お互いが異なるプライベー
トネットワーク内にあるホスト間で scp、
rsyncもできるようになります。

 対象のホストにmy-macminiを指定できるようになる
his-centos: masa$ scp -r logfiles/ ｭ
my-macmini:logpool/centos/

 接続先に公開鍵が登録されていない場合
The authenticity of host '[localhost]:9999 ｭ
(<no hostip for proxy command>)' can't be ｭ
established.
ECDSA key fingerprint is SHA256:ｭ
n0vLDdl4FHthxUtbbZIEHVR093YQlJFMukJB2Y/MPig.
Are you sure you want to continue connecting ｭ
(yes/no)? yes
Warning: Permanently added '[localhost]:9999' ｭ
(ECDSA) to the list of known hosts.
Password:

sshをさらに便利にするコマンド

 ssh-agent
　秘密鍵には、パスフレーズを付けておくのが
安全です。しかし、頻繁に（複数の）サーバとロー
カルで行き来しながら作業する際、冒頭から見
てきたように毎回のパスフレーズ入力は省きた
いときがあります。ssh-agentは、あらかじめ
パスフレーズを入力して秘密鍵を登録しておけ
ば、サーバへの接続の際に登録済みの秘密鍵を
取り出して使ってくれるしくみです。ssh-
agentは複数の秘密鍵を扱うことができ、それ
ぞれの鍵の登録のときに一度だけパスフレーズ
を入力するだけで、ssh-agentが動いている限
り秘密鍵を解くパスフレーズの入力を省略する
ことができます。
　ssh-agentは、環境変数を使って実行状態を
各プロセスとの間で管理・共有しますので、直
接実行しないでください。連載第8回（2016年
12月号）で確認したように、子プロセスの環境
変数は、今実行中のシェル（親プロセス）には反

映されません。evalによって実行すれば、
ssh-agentプロセスが設定する環境変数を、現
在実行中のシェルに反映することができます。

$ eval $(ssh-agent)

　秘密鍵の登録には、ssh-addコマンドを使い
ます。

$ ssh-add ~/.ssh/id_rsa

　登録されている識別子のリストは、ssh-add -l
で確認できます。情報の保存先は、${TMPDIR}/
ssh-XXXXXXXXXX/agent.<ppid>です。この情報
は実行者にしか閲覧できない権限になっています。
　登録されている識別子を削除するには、次の
ように-dオプションで削除したい秘密鍵を指
定します。ssh-add -Dは、すべての識別子の
情報を削除します。

$ ssh-add -d ~/.ssh/id_rsa

 ssh-agentの停止
$ eval $(ssh-agent -k)

　ssh-agentを停止するときもevalを使います。
この処理をせず、現在実行中のシェルからログ
アウトしてもssh-agentは動き続けます。うっ
かり接続が切れてしまっても、再度接続して、
環境変数SSH_AUTH_SOCKを、接続前の値に設定
すればssh-agentサービスを切断前の状態と同
じように使うことができます。意図せずssh-
agentを残してしまった場合は、ssh-agentが
動いているホストに再度接続して、killコマ
ンドでプロセスを停止しましょう。
　evalを使ったssh-agentの扱いは、.profile
や.logoutに記述する場合に向いています。専
有できるワークステーションにログインして、
作業し続けるなら便利です。一方で、一時的な
作業などでは、エージェントプロセスや一時ファ
イルが残らないように管理するのは面倒です。
そのような場面では、ssh-agentを親プロセス
として、シェルを実行することができます。こ
れなら、シェルを終了（exit）すればエージェン
トも一緒に停止します。

$ ssh-agent bash

第　　回19 ssh（その3）

152 - Software Design

ssh-agentとポートフォワードの組み合わせ
の例
　my-mac→ my-ubuntu→ her-centosと、ssh-
agentの機能を使って接続してみましょう。秘密
鍵の情報はフォワードされるので、my-ubuntu

の公開鍵をher-centosに登録しておく必要はあ
りません。中継先サーバ（my-ubuntu）では、sshd
がssh-agentの役割を担います。接続の開始は、
sshに-Aオプションを指定してssh-agentを使っ
ていることを明示します（図1）。~/.ssh/config

に次のように記述しておけば、her-centosに接
続するとき、-Aオプションを省略できます。

Host her-centos
 ForwardAgent yes

ssh-copy-id
　ssh-copy-idを使うと、scpしてauthorized_keys
に追記、といった一連の処理を一度にできます。

$ ssh-copy-id -i ~/.ssh/id_rsa.my-mac her-ubuntu

　指定する公開鍵のファイル名は.pubで終わ
るようにします。-iオプションに続くファイ
ル名に、.pubを付けずに指定しても、.pubがファ
イル名の後ろに補完されます。上の例でssh-
copy-idは、id_rsa.my-mac.pubというファイ
ルが存在していると期待します。
　ssh-copy-idでも、公開鍵が登録される前の
接続には、パスワード認証が用いられることに
注意しましょう。

ssh-keyscan
　連載第15回のssh（その1）で解説したように、

ore@my-mac:~$ eval $(ssh-agent)
Agent pid 4041
ore@my-mac:~$ printenv SSH_AUTH_SOCK
/tmp/ssh-rFynS73CXxTD/agent.4041
ore@my-mac:~$ ssh-add ~/.ssh/id_rsa
Enter passphrase for /home/ore/.ssh/id_rsa:
Identity added: /home/ore/.ssh/id_rsa (/home/ore/.ssh/id_rsa)
ore@my-mac:~$ ssh-add -l
4096 92:89:82:b9:cb:82:9e:97:1a:3b:3d:47:d8:62:70:72 /home/ore/.ssh/id_rsa (RSA)

ore@my-mac:~$ ssh -A my-ubuntu
Welcome to Ubuntu 16.04.3 LTS (GNU/Linux 4.4.0-92-generic x86_64)

ore@my-ubuntu:~$ ssh her-centos
Last login: Thu Aug 24 12:25:45 2017 from his-solaris

[ore@her-centos ~]$ exit
logout
Connection to her-centos
ore@my-ubuntu:~$ exit
logout
Connection to my-ubuntu closed.
ore@my-mac:~$

ore@my-mac:~$ eval $(ssh-agent -k)
Agent pid 4042 killed

 ▼図1　参考：ssh-agentを使った踏み台アクセス一連の流れ

Ubuntu の Unity は、agent 機 能 を gnome-
keyringによって提供する
　UbuntuのUnityは、gnome-keyringというプログ
ラムによって鍵の管理をしています。ターミナル内で
sshを実行する際、秘密鍵にパスフレーズが付けてあ
るとgnome-keyringのダイアログが表示され、そこ
にパスフレーズを入力します。パスフレーズ入力時の
ダイアログのチェックボックスにチェックしておけば、
永続的に記憶させておくこともできます。
　gnome-keyringではなく、ssh-agentを使いたい
ときは、次のようにKeyringデーモンのSSHコンポー
ネントを無効化します。

ln -sf /dev/null /etc/xdg/autostart/ｭ
gnome-keyring-ssh.desktop　

152 - Software Design Nov. 2017 - 153

　最後に、sshを安全に運用するための基本プ
ラクティスをまとめておきます。

1 パスワード認証を避け、公開鍵認証を使う

　公開鍵の受け渡し、フィンガープリントの受
け入れができて、公開鍵認証ができるようになっ
たら、パスワード認証によるログインを禁止し
て、公開鍵認証だけを承認すれば、安全度が高
まります。

2 ファイアウォールによって、sshへの接続元

を制限する

　ファイアウォールやTcpwrapperで、sshサー
ビスへのアクセス元を制限できれば、安全度が
上がります。

3 デフォルトポートを使わない

　インターネットに露出しているホストでは、
よく知られた22番ポートをそのまま使うと、
見知らぬ訪問客がたくさん来ます。可能なら、
sshデフォルトの22番ポートでのサービス提供
をやめて、別のポートでsshdを起動すれば安
全度が少し高まります。

次回について

　次回は、テキスト処理（その4）を予定してい
ます。｢

【manで調べるもの（括弧内はセクション番号）】
ssh(1), ssh-keygen(1), sshd(8), ssh-keysign(8),
ssh_config(5), sshd_config(5), ruby(1), gem(1),
scp(1), rsync(1), ssh-agent(1), ssh-add(1), ssh-
keyscan(1), ssh-copy-id(1), 【Linuxのみ】 setsid(1)

今回の確認コマンド

sshは信頼済みの接続先マシンのフィンガープ
リントを~/.ssh/known_hostsに保存して、再
度接続するときに得るフィンガープリントと照
合して、サーバが変更になっていることや、な
りすましているということを判定します。
　新しいクライアントを追加したとき、SSHサー
バが移設したりIPアドレスが変更になったりし
たときなど、複数の接続先があれば、それぞれ
にsshで実際にログインしてフィンガープリン
トを登録するのはたいへんです。こんなときに
役立つのが、公開鍵を収集してくれるssh-
keyscanです。接続先が複数ある場合でも、複
数ホストに並行で接続してフィンガープリント
を効率よく取得します。sshdをクライアント側
で立ち上げておけば、先述のホストベース認証
でサーバ側にクライアントのホスト公開鍵を登
録するときにも便利です。たとえば図2のよう
に実行します。-Hオプションは、フィンガープ
リントをハッシュ化して出力するオプションです。

今回の技術が活躍するところ
　sshに主要な認証方式（パスワード認証、公
開鍵認証、ホストベース認証）のうち、ホストベー
ス認証を解説しました。また、（比較的）安全に
複数のサーバを行き来するのに便利な機能やし
くみを紹介しました。

$ ssh-keyscan -H -t rsa a-server.gihyo.jp ｭ
b-server.gihyo.jp >> ~/.ssh/known_hosts

 ▼図2　�a-serverとb-serverからフィンガープリント
を取得してknown_hostsに追記する例

	 SSHと暗号系
　パスワードによる秘密鍵暗号系は、暗号化にも復号
にも共通の秘密鍵（パスワード）を使います。パスワー
ドが外部に漏れることは、すなわち丸裸になるという
ことです。
　一方、公開鍵暗号系では、公開鍵を使って暗号した
情報を秘密鍵によって復号します。復号は秘密鍵でし
かできず、公開鍵を持っていても復号できないことと、
公開鍵から秘密鍵を推察できないしくみになっている
ことがミソです。認証時には、公開鍵暗号系によって
安全が確保できます。
　しかし、公開鍵暗号系は処理のための計算量が秘密
鍵方式に比べて膨大で、大量の情報をやりとりするに

は適していません。そのため、共通に使う秘密鍵を公
開鍵暗号系で送信し、データ通信はその鍵を使ってお
こなう方式をSSH1プロトコルで採用しました。SSH2
プロトコルでは、SSH1よりも安全と考えられている鍵
交換方式（Diffie-Hellman鍵共有）によって、それぞれ
のホストが外部に情報を漏らさずに共通鍵を入手します。

第　　回19 ssh（その3）

154 - Software Design

Linuxカーネル観光ガイド

Linux

カーネ
ル

観光ガ
イド

て空き領域を管理しています。どちらのtreeも、
ノードには「どのアドレスからどれだけのブロッ
クが空き領域なのか」を記録しています。2つの
違いは、アドレスでソートされているか、サイ
ズでソートされているかの違いだけです。この
2つのツリーがあることで、ファイルに追記し
た場合には以前のアドレスの近くを探すことも、
あるいは新しいファイルにはそのサイズに合う
ような空き領域を探すことも、どちらの作業も
効率的に行えるようになっています。このよう
にXFSは、直接的には「使っていないこと」だけ
を管理しています。
　では、btrfsではどのように空き領域を管理し
ているのでしょうか。実は、btrfsはもともとは
直接空き領域を管理するデータ構造をディスク
上には持っていませんでした。btrfsでは、ディ
スクの使用状況を適宜スキャンして、そこから
メモリ上に空き領域情報を構築していました。
すなわちbtrfsは、ディスク上の「使っていること」
だけを管理していたのです。
　一度スキャンしてしまえばメモリ上に空き領
域情報があるとはいえ、ディスクのあちこちを
読んで、空き容量管理のキャッシュを構築する
のはたいへんなことです。そこで、Linux 2.6.37

からこのキャッシュをディスクに書き出すよう

btrfsの新しいspace
cache

　ディスク領域の管理は、ファイルシステムの
重要な仕事の1つです。ディスク上のあるブロッ
クが使用されているのかどうか、どのように使
用されているのかがわからなければ、データを
適切に読み書きすることはできません。
　ここで「どの領域をどのように使っているか」
だけでなく「どの領域が空いているか」を知って
いることが重要です。同一のファイル内のデー
タはなるべくシーケンシャルに置いたほうがパ
フォーマンスが向上します。そういうときには、
今書こうとしているデータがすっぽり入る空き
領域を見つけたくなります。この探索を効率的
に行うためには、ディスク上に空き領域の情報
を置いておく必要があります。
　実際にファイルシステムはディスク上でどの
ようにデータ領域を管理しているのでしょうか。
Ext4ではbitmapを使ってデータ領域を管理し
ます。すなわち、bitが立っていれば対応するブ
ロックを使用している、立っていなければ使用
していないと、「使っていること」と「使っていな
いこと」を同時に管理していることになります。
　XFSでは、2種類のfree space B+treeを使っ

btrfsにおける
新しい空き領域管理方法
free space b-tree
Text：青田 直大　AOTA Naohiro

第67回第67回

154 - Software Design Nov. 2017 - 155

btrfsにおける新しい空き領域管理方法 free space b-tree 第67回第67回

になりました。さらに、Linux 4.5からは、free

space treeといってキャッシュの書き出しの方
法が変わりました。今回は、btrfsの空き領域管
理を、メモリ上のキャッシュ、ディスクへの書
き込み、そしてfree space treeの順番に見てい
きます。

extent空間とBlock
Group

　本題に入る前にbtrfsのファイルがどのように
ディスクまでマッピングされるかを通して、
btrfsで使われている用語を紹介します。
　多くのファイルシステムでは、図1のようにファ
イルデータを直接ディスクにマッピングしてい
ます。すなわち（inode番号,ファイル内offset,
サイズ, パーティション上のアドレス）のような
マップ情報を保持しています。
　このような、ディスクへの直接のマッピング
をbtrfsでも使えるでしょうか?　理論的にでき
ないことはありませんが、効率が悪くなったり、
将来的に扱いにくくなります。たとえば、btrfs

では当初RAID1をサポートしていました。
RAID1を構成するためには2つのデバイスが必
要となります。もし直接のマッピングを行うな
ら（inode, ファイルoffset, サイズ, ディス
ク1のアドレス, （optional）ディスク2のアド
レス）といったマップ情報を持つことになるで

しょう。当然ながら、この方法ではRAID1を使
わないシステムで、最後のアドレス部分の容量
を無駄にすることになります。さらには、もし
こんなマッピングをしていれば、RAID5/6対応
するには、エントリを追加することになります。
すると、すべてのマップ情報の形式を書き換え
る必要が出てくるなど、機能拡張への柔軟性が
失われてしまいます。
　そこで、btrfsでは extent空間という最大
264byteの巨大な仮想アドレス空間を導入してい
ます。btrfsのファイルデータは一度extent空間
にマップされ、さらにextent空間上の領域が実
際のディスクにマップされるというように、2

段階のマッピングをとっています（図2）。この
とき、使用領域ごとにマッピングをするのでは
なく、extent空間を1GBごとなどの、ある程度
の領域に切り分けて、その単位でディスクへの
マッピングを行います。このときのextent空間
上の領域をBlock Groupと言い、ディスク上の
領域をchunkと呼びます。すなわち、ファイルデー
タは、まず（inode番号, ファイル内offset,
サイズ, extent空間上のアドレス）のように
extent空間にマップされ、その領域が属する
Block Groupが（extent空間上のアドレス,
Block Groupのサイズ, ディスクのID, ディ
スク上のアドレス……）という形式でBlock

GroupがChunkにマップされます。

extent tree
　extent treeは、btrfsにおいて extent空間の
使用領域を管理するB-treeです。このtree上に
extent空間上で連続した1つの使用領域につき、
1つ（extent空間上のアドレス、EXTENT_ITEM

data

ディスク上でのアドレスでマッピング

data

 ▼図1　多くのファイルシステムでのマッピング

data

data

extent空間

※複数デバイスに対応

data

chunk
Block Group

data

chunk

 ▼図2　Btrfsのマッピング

156 - Software Design

Linuxカーネル観光ガイド

（定数）、領域のサイズ）をキーとするextentアイ
テムが作られ、そこにextentの管理情報が保持
されます。たとえば、この領域がどのファイル
から参照されているのか、といった情報が入っ
ています。
　このツリーのアイテムを読んでいくことで、
あるBlock Group中で使用されている領域がわ
かります。そこで参照されていない部分を空き
領域としてfree space cacheを構築します。

free space cache
　free space cacheは、前述したように extent

ツリーを読んでメモリ上に構築される空き領域
を管理する赤黒木注1です。このツリーは、Block

Group1つにつき、1つ作られます。基本的には、
ツリーのノード1つが1つの空き領域に対応し、
データとして空き領域の開始アドレスとサイズ
とを持ちます。
　ただし、この方法だけでは空き領域が断片化
したときに、メモリ効率が悪化してしまいます。
たとえばある128MBの領域が、最初の4KBは使っ
ている、次の4KBは使っていない、その次はま
た使っている……というように使用中の4KBと
使用していない4KBが交互に存在する状態になっ
たとしましょう。この128MBには16,384個の空
き領域が存在することになります。1つのノード
が72byteですので、この領域を表現するために
1MB以上のメモリを割くことになります。
　このように断片化してしまった領域を、より
効率的に管理するため、free space cacheは先
ほどの連続領域ノード（extentノード）に加えて、
bitmapノードを併用します。bitmapのサイズが
4KBであり、1つのbitがbtrfsの論理ブロック
サイズ（基本的にPAGE_SIZE =ほとんどの場
合4KB）分の空白領域を表現します。したがって、
1つのbitmapによって4KB×8×4KB＝128MB

分の領域分の空き状況を管理できます。すなわち、

注1） https://en.wikipedia.org/wiki/Red-black_tree

先ほどのひどく断片化した128MBの領域は、
bitmapノードを使って、ノードのサイズ：
72byte+bitmapのサイズ：4KB分のメモリで表
現され、extentノードだけの場合に比べて消費
メモリが280倍以上も小さくなります。

cacheの保存 space_
cache

　さて、このようにextent treeを読んでいくこ
とで、Block Groupごとに1つ free space cache

が作られるわけですが、cacheの製作にはどの
程度の I/Oが必要でしょうか。extentアイテム
のサイズはスナップショットなどの使用状況に
よって変わりますし、そもそもファイルシステ
ムの使用状況によって1つのBlock Groupの中
のextentの数は変わってきます。
　したがって、一概に言うことはできませんが、
一例として筆者が日常的に使用しているノート
パソコンで見てみることにします。このファイ
ルシステムには 471のBlock Groupがあり、
36,758個のextent treeの leafがあります。平均
すれば、1つのcacheを作るのに78個の leafを
読む必要があるといえます。1つの leafは（デフォ
ルトでは）16KBですので、おおよそ1.2MBほど
のI/Oが必要です。しかも、これらの leafはツリー
上で隣接しているからといって、extent空間でも、
当然ディスク上でも連続しているわけではない
ので、コストはより高くなります。
　そこで、一度作ったcacheをディスクに保存
しておいて、extent treeをスキャンする手間を
はぶくという機能がLinux 2.6.37で追加され、
今ではデフォルトでこの機能が使われるように
なっています。
　では、このcacheはディスクのどこに書かれ
ているのでしょうか。btrfsには“root tree”とい
う、btrfs内のすべてのツリーのrootを管理する
treeがあります。ここに、たとえばextent tree

のrootがextent空間上のどこにあるのかを記録
したり、snapshotの情報を記録したりしています。
ここにはファイルシステムのrootディレクトリ

https://en.wikipedia.org/wiki/Red-black_tree

156 - Software Design Nov. 2017 - 157

btrfsにおける新しい空き領域管理方法 free space b-tree 第67回第67回

の inodeも記録されています。btrfsは、この
treeの中にcacheを保存する「見えないファイル」
（以後cache fileと呼ぶ）用の inodeを作成します。
また、この treeの中に、cacheのmetadataを保
持するアイテムも記録します。
　具体的に、treeをダンプして見てみましょう。
図3のように“btrfs.img”上のroot treeをダンプ
します。cacheの metadataは、(FREE_SPACE,
UNTYPED, <Block Groupの開始アドレス>)と
いうキーに保管されています。図3でいえば、“item

61”から“item 64”ですね。このアイテムには、
“location”にcacheを保存しているinodeの位置が
記録されています。ほかにもcacheのgeneration、
記録されているノードの数、bitmapノードの数
が保存されています。generationというのは、
btrfsの1回のトランザクションのたびにインクリ
メントされる数値です。後述するように
generationは、cache fileにも記録されています。
すなわち、この2つのgenerationが一致しなけ
れば、システムのクラッシュなどでcacheが正
しく書き出せていないことを意味しています。

　“item 64”に対応するcache fileについて見て
いきましょう。cache fileのinodeは(302 INODE_
ITEM 0)であり、すなわちダンプ中の“item 59”
であることがわかります（図3）。ここにはcache

fileの inode情報が記録されています。注目した
いのは、flagsの部分です。“NODATASUM¦NODATA
COW”とchecksumもCopy-on-Writeも行わない、
とあまりbtrfsらしくはないデータ領域の確保の
方法になっています。これにはもちろん理由が
あります。checksumを有効にしていると、cache
fileの更新によってchecksumの書き換えが発生
します。このchecksumを保存しているmetadata

領域もまた、何かしらのBlock Groupに所属して
います。すると、checksumを保存するために、
Block Groupから新しい領域を使うかもしれま
せん。もし新しい領域を使えば、今度はこちら
のBlockGroupのcacheを更新することになりま
す。そして、またchecksumが更新され……とい
うように書き換えが連鎖してしまいます。そこ
で通常のchecksumは無効化され、後述するよう
に cache fileの中にCRC（Cyclic Redundancy

$ btrfs-debug-tree -t ROOT_TREE btrfs.img
...
 item 59 key (302 INODE_ITEM 0) itemoff 3271 itemsize 160
 inode generation 79 transid 79 size 262144 nbytes 786432
 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
 sequence 27 flags 0x3(NODATASUM¦NODATACOW¦NOCOMPRESS¦PREALLOC)
 atime 0.0 (1970-01-01 09:00:00)
 ctime 1506267367.5870589 (2017-09-25 00:36:07)
 mtime 0.0 (1970-01-01 09:00:00)
 otime 0.0 (1970-01-01 09:00:00)
 item 60 key (302 EXTENT_DATA 0) itemoff 3218 itemsize 53
 generation 79 type 1 (regular)
 extent data disk byte 4086525952 nr 262144
 extent data offset 0 nr 262144 ram 262144
 extent compression 0 (none)
 item 61 key (FREE_SPACE UNTYPED 29360128) itemoff 3177 itemsize 41
 location key (256 INODE_ITEM 0)
 cache generation 79 entries 210 bitmaps 3
 item 62 key (FREE_SPACE UNTYPED 1103101952) itemoff 3136 itemsize 41
 location key (300 INODE_ITEM 0)
 cache generation 77 entries 0 bitmaps 0
 item 63 key (FREE_SPACE UNTYPED 2176843776) itemoff 3095 itemsize 41
 location key (301 INODE_ITEM 0)
 cache generation 79 entries 1 bitmaps 0
 item 64 key (FREE_SPACE UNTYPED 3250585600) itemoff 3054 itemsize 41
 location key (302 INODE_ITEM 0)
 cache generation 79 entries 2 bitmaps 0

 ▼図3　cacheが保管される inodeのダンプ

158 - Software Design

Linuxカーネル観光ガイド

Check）を持つようにしています。
　また、inodeのsizeが262,144＝256KBと、ノー
ド2個、bitmap 0個を保存するには大き過ぎる領
域がとられているように思います。これは、
Block Groupのcacheを保存するのに十分なデー
タ領域を常に確保しておくためです。また、
nbytesが786,432とずいぶんと大きくなっていま
す。本来このファイルがディスク上で実際に確
保している領域のサイズを示し、cache fileなら
sizeと同じ262,144になっているはずです。これ
はおそらく、cacheの更新時にsizeだけをリセッ
トして、nbytesをリセットし忘れているバグでしょ
う。実際、786,432は262,144の整数倍になって
おり、cacheが書かれるたびに262,144ずつ増え
てしまっているのだと思われます。
　INODE_ITEMの次“item 60”に、cache fileの
データ位置が記録されています。すなわち、
extent空間上の4,086,525,952byte目から262,

144byteの領域にcache fileのデータが保存され
ています。cache fileの構造を見ていきましょう。
　cache fileの先頭には前述したようにcheck

sumを保存するエリアがあります（図4）。ここは、
cacheデータの1ページ分ごとにCRCが計算さ
れ保存されています。そのあとに、cacheの

generationが保存され、さらにメモリ上のcache

treeのノードごとに1つのエントリが記録され
ます。エントリには、そのノードが担当する領
域のアドレスとサイズ、そしてbitmapかどうか
が記録されます。実際のbitmapのデータは、エ
ントリをすべて記録した後ろに保存されます。
bitmapのサイズはすべて1ページですので、こ
こはbitmapを単純に並べているだけですね。
　このように、cache fileは事前に予約した
256KBなどの連続領域に、一度構築したcache

を書いてしまいます。extent treeからの読み込
みであれば、最大70ヵ所ほどにばらついた合計
1.2MBの I/Oを必要としたのに対して、1ヵ所
から256KB読み込んでくればいいので、かなり
コストが削減されています。

free space cache
v2

　space cacheの導入により、一度作ったcache

を256KBにぐっと固めて読み込めるようになり
ました。ところが、巨大で頻繁に更新されるよ
うなファイルシステムでは、このcacheが逆に
パフォーマンスを悪化させてしまいます。
　Facebook社では、数十TBもの巨大、かつ更
新の激しいbtrfsを使っているようです。データ
用のBlock Groupが 1GBですので、10TBの
btrfsにはBlock Groupが1万個近くは作られて
いることになります。これらがすべて更新され
たとすれば、cacheの書き込みで合計で2GB以
上の書き込みが1万ヵ所に発生することになり
ます。さすがに、ここまでいくことはないでしょ
うが、cache fileは少しでも更新があれば、
cache fileの256KBをまるっと書き換えてしま
う性質を持つため、大規模なファイルシステム
ではI/O負荷が大きくなってしまうのです。さ
らに、この書き込みがトランザクションのコミッ
トのタイミングで起きてしまうと、その間ファ
イルシステムは新たな書き込みを止めてしまい
ます。Facebookでは、数秒間I/Oが止まってし
まうこともあったようです。

generation

page
#0

cache
file

page
#1

page
#n

page
#63

CRC
（page #0）

Bitmap
#0

entry #n
offset=…
bytes=…
type=…

entry #0
offset=...
bytes=...
type=...

entry #1
offset=...
bytes=...
type=...

CRC
（page #1）

CRC
（page #63）

 ▼図4　ディスク上のcacheの構造

158 - Software Design Nov. 2017 - 159

btrfsにおける新しい空き領域管理方法 free space b-tree 第67回第67回

　cache fileの問題は、ファイルデータとしてほ
ぼ構造なくダンプするために、少しでも更新が
あればすべて書き出してしまう点、そして
Block Groupごとに1つのファイルを使ってし
まうという点でした。更新された部分だけを書
き換え、複数のBlock Groupを一度に扱う……
ということで結局 free space treeという、やっ
ぱりb-treeが導入されることになりました。
　free space treeはいわば、extent treeを「反転」
したb-treeです。extent treeが使っている領域
を管理していたのに対して、free space treeは
使っていない領域を管理します。
　free space treeとextent treeとのダンプを見
てみましょう（図5）。btrfsをspace_cache=v2の
mount optionをつけてmountし、free space tree

を作らせます。するとリストのようなダンプを取

得できます。free space treeには3種類のアイテ
ムがあります。1つは（Block Groupの開始アド
レス、FREE_SPACE_INFO、Block Groupのサ
イズ）のキーを持つアイテムです。これは、その
Block Group中の空き領域の個数、そしてこの
Block Groupでは空き領域をextentで表現して
いるのか、あるいはbitmapで表現するのかを記
録しています。
　残りの2つのアイテムは、(空き領域の開始ア
ドレス, FREE_SPACE_EXTENT(またはFREE_
SPACE_BITMAP), 空き領域のサイズ)という
キーを持つアイテムです。こちら2つは、cache

treeの場合と同様にextentとして、あるいは
bitmapとして空き領域を示すことになります。
　まず、図5中のFREE_SPACE_TREEのダ
ンプの item 4を見てください。29,360,128byte

$ mount -o space_cache=v2 btrfs.img /mnt/tmp; umount /mnt/tmp
$ btrfs-debug-tree -t FREE_SPACE_TREE btrfs.img
free space tree key (FREE_SPACE_TREE ROOT_ITEM 0)
leaf 32276480 items 376 free space 6835 generation 84 owner 10
leaf 32276480 flags 0x1(WRITTEN) backref revision 1
fs uuid b909e37e-ab55-412e-b20a-3eb643d5004b
chunk uuid 5da683f7-b332-4797-ab75-edb4db3c08b4
 item 0 key (12582912 FREE_SPACE_INFO 8388608) itemoff 16275 itemsize 8
 free space info extent count 0 flags 0
 item 1 key (20971520 FREE_SPACE_INFO 8388608) itemoff 16267 itemsize 8
 free space info extent count 1 flags 0
 item 2 key (20987904 FREE_SPACE_EXTENT 8372224) itemoff 16267 itemsize 0
 free space extent
 item 3 key (29360128 FREE_SPACE_INFO 1073741824) itemoff 16259 itemsize 8
 free space info extent count 364 flags 0
 item 4 key (29360128 FREE_SPACE_EXTENT 32768) itemoff 16259 itemsize 0
 free space extent
 item 5 key (29425664 FREE_SPACE_EXTENT 16384) itemoff 16259 itemsize 0
 free space extent
...
$ btrfs-debug-tree -t EXTENT_TREE btrfs.img
...
 item 0 key (29392896 METADATA_ITEM 0) itemoff 16250 itemsize 33
 extent refs 1 gen 36 flags TREE_BLOCK
 tree block skinny level 0
 tree block backref root 280
 item 1 key (29409280 METADATA_ITEM 0) itemoff 16217 itemsize 33
 extent refs 1 gen 47 flags TREE_BLOCK
 tree block skinny level 0
 tree block backref root 290
 item 2 key (29442048 METADATA_ITEM 0) itemoff 16184 itemsize 33
 extent refs 1 gen 4 flags TREE_BLOCK
 tree block skinny level 0
 tree block backref root 18446744073709551607
...

 ▼図5　free space treeとextent treeのダンプ

160 - Software Design

Linuxカーネル観光ガイド

目から32,768byteが空いていることを示してい
ます。29,360,128＋32,768＝29,392,896という
ことで、extent treeを見るとたしかに item 0の
部分に該当するMETADATA_ITEMがありま
す。METADATA_ITEMに割り当てられるextentの
サイズはデフォルトで16KBです。すると、extent
treeの item 1と item 2との間は32KB分あり、
item 1に対応するextentの後ろに16KB分の空
きスペースがあることが見てとれます。そこで、
free space treeに戻ると、たしかに29,409,280+

16KB=29,425,664の位置を示すFREE_SPACE

_EXTENTアイテムの item 5があるのが見てと
れます。
　free space b-treeの導入は、どの程度の効果
があるのでしょうか。ここではFacebookによる
実験結果を紹介します。この実験では、50TB

分のBlock Groupに変更を加えて、コミットに
かかる時間を計測しています。その結果、cache

fileでは5秒から最悪の場合40秒ほどもかかっ
ていたコミットが、b-treeによってcacheを保

存しない場合とほぼ同等の0.3ミリ秒ほどしか
かからなくなりました。一方、cache fileのよう
に一ヵ所に固まったデータを読むのではなく、
b-treeではあちこちのノードを読んでくるので、
cacheの読み込みはcache fileの10ミリ秒ほど
から30ミリ秒ほどと悪化を見せています。しか
し、cacheの読み込みは最初の一度だけですので、
これで残りのすべての書き込みが速くなるなら
なんの問題もないでしょう。また、cache fileの
ときは問題になっていたchecksumも、b-treeを
使っているので既存のb-tree用のchecksum機
構をそのまま活用できています。

まとめ
　今回は、btrfsにおける新しい空き領域管理方
法となるfree space b-treeを紹介しました。Face

bookのように巨大なファイルシステムでなければ、
なかなか差は出ないかもしれませんが、一度free

space b-treeも試してはいかがでしょうか。｢

Nov. 2017 - 161

①

③

⑤
⑧

⑥⑦
⑨

②

④

ポケベル、CASIOのPHSでの発信者メッセージ、MMS、写メール、ICQ、MSN Messenger、Twitter、Googleトーク、Facebookメッセ
ンジャー、ハングアウト、LINE……とメッセージを交換するプラットフォームを渡り歩いてきました (前の方を知ってるほどオッサン
度が高し)。Linuxサーバ内でも会話できるツールはいくつかありますが、その1つはwallコマンドです。ほら、shutdownするときに
全部の端末に音と共にメッセージが来るアレです。同じサーバにログインして作業しているメンバー全員にメッセージを送るのに重宝
するのでみんなも試してみましょう。ちなみに「mesg n」を実行した端末ではwallメッセージを受け取らないようになります。

ポ
ケ
ベ
ル
世
代
の
俺
様
に
は
さ
っ
ぱ
り
わ
か
ら
ん
と
と
ぼ
け
る
担
当
編
集
。
と
ぼ
け
て
い
る
ん
じ
ゃ

な
く
て
ボ
ケ
て
ま
す
。
編
集
部
高
齢
化
の
余
波
で
ナ
ニ
が
ア
レ
し
て
ほ
げh

o
g
e

で
す
。

ログインしているサーバ内で
メッセージを送ることができ
る、write、talk、wall
コマンドを教えたンですよ。

ちょうど今、同じ検証DBサーバで
テストしてもらっています。wallを使
えばログインしている人全員に伝わる
　　　　　ので情報共有できます。

…
送信、と。

“抜け駆けは
許さないよ！”

ちょっと待ったコール
だァァァァァァァァァァァ!!!

見られて
いた!!

その音は早速
wallを活用して
いるみたいだな。

いまどきLINEや
Slackとか使っている
でしょう。サーバで
会話できるンで
感動していましたヨ。

そうか、
彼らには逆に
新鮮かもね。 ほう。

作）くつなりょうすけ
@ryosuke927

wall de talk第45回

162 - Software Design

れる運営側はとくにハードルを上げているわけでは
ないという話がありました。また、学生でコミュニ
ティに参加している人はもともとのスキルが高いと
思い込みがちですが、受け入れる側はスキルの高い
人ばかりを歓迎しているわけではなく、多様な人を
受け入れることが大事だと考えているようです。
　今回はグループ分けの際に、コミュニティ運営経
験のある人とない人が混在するように配慮してみま
した。その結果、どちらのグループも運営経験のな
い人からの質問に経験者が答えるという図式ができ
あがりました。表立って伝える機会の少ないコミュ
ニティ運営者の苦労や配慮といったものが伝わる、
良い機会になったのではないかと考えています。

	 ■ITコミュニティの運営を考える

	【出演】岡田良太郎（OWASP）、

	 	 白石俊平（TechFeed／元html5jリーダー）、

	 	 須藤功平（OSS Gate）、関治之（Code for Japan）、

	 	 日高正博（DroidKaigi／techbooster）、

	 	 宮原徹（OSC事務局）

	【司会】榎真治（jus/LibreOffice日本語チーム）、

	 	 法林浩之（jus）

	【日時】2017年7月22日（土）15:30〜17:30

	【会場】サイボウズ㈱ 東京オフィス

　jusでは毎年7月に定期総会を行っていますが、総
会の併設行事として「ITコミュニティの運営を考え
る」のセッションを行いました。今回は6人のコミュ

　今回は、7月に2回行ったコミュニティ運営セッ
ションの模様をお届けします。

	 ■ITコミュニティの運営を考える

	【講師】小山哲志（jus）、法林浩之（jus）

	【日時】2017年7月15日（土）14:00〜14:45

	【会場】札幌コンベンションセンター 207会議室

　札幌にてITコミュニティの運営を考えるセッ
ションを実施しました。参加者は9人でした。参加
者を2グループに分けてグループディスカッション
を行いました。その後、各グループから代表の方が
議論の内容を報告しました。
　片方のグループは、Sapporo.beamというElixirの
コミュニティを運営している方から報告がありまし
た。Sapporo.beamは参加者が数人ということもあ
り、毎週、カフェの片隅で会合を開いています。す
でに170回ほどの開催実績があり、この手法を用い
ることで手軽にかつ継続的に会合を開けているとの
ことです。それから、「札幌も、ひと頃に比べると
コミュニティ活動が沈静化している」「東京からU

ターンで戻ってきた人から見ると、非IT寄りのコ
ミュニティが少ない」という話題や、コミュニティ
の終わらせ方といった話題も出ました。
　もう一方のグループからは、おもに参加者として
コミュニティに関わっている学生から報告がありま
した。初心者の立場から見るとITのコミュニティ
はまだまだハードルが高いと感じているが、受け入

jus研究会 札幌大会

jus定期総会併設勉強会

経験者だから話せるコミュニティ運営の深い話

NO.73
November 2017

日本UNIXユーザ会　http://www.jus.or.jp/
法林 浩之　HOURIN Hiroyuki　hourin@suplex.gr.jp

http://www.jus.or.jp/

Nov. 2017 - 163162 - Software Design

ニティ運営者を招き、司会も含めて8人体制でディ
スカッションしました。参加者は34人でした。以
下、登壇者から出されたお題と議論を紹介します。

■どういうコミュニティを目指して運営しているか？

	 （日高さん）

　目指す目標が明確なコミュニティとそうでないコ
ミュニティがありますが、たとえばOSCは地方に点
在するコミュニティをつなげるメタコミュニティ的
なものを目指しています。Code forコミュニティも
団体としての明確な目標はありませんが、各地域の
IT人材をつなげるという点ではOSCと共通するも
のがあるようです。この話題から派生して、コミュ
ニティ運営にどれぐらいの時間を割いているかや、
DroidKaigiは若年層が多いといった話も出ました。

■継続の秘訣は？（須藤さん）

　OSS Gateは「継続的にOSS開発者を輩出する」
という目標を持っているため、継続するしくみ作り
が大切と考えています。とくに今は各地で実施して
いるワークショップ運営を無理なく続けられる方法
を模索しています。これに対してほかの登壇者から
は、目的を明確に決め過ぎないことで技術や時代の
移り変わりに対応できる、若者を重要な役割に登用
することでコミュニティを引き継いでくれる人が育
つ、運営メンバーを毎年大幅に入れ替えて新陳代謝
を促す、などのアドバイスがありました。

■コミュニティ運営の失敗談を聞きたい（白石さん）

　宮原さんからは、各地でOSCを立ち上げる中でう
まくいかなかったケースとして、地元コミュニティ
の立ち上げにOSCが利用されただけでOSCとして
は根づかなかった例が紹介されました。関さんから
は、各地のCode forコミュニティを見ていく中で、
リーダーに熱量があり過ぎるとメンバーがついてい
けなくなるという話がありました。この話題から派
生して、コミュニティ運営においてルールはどこま
で厳密に定めるべきかや、最近多くのイベントで定
められている行動規範についての議論もありました。

■ダイバーシティについてどう思うか（関さん）

　関さんによると、米国のCode forコミュニティ
はダイバーシティに対する意識が非常に高く、たと
えば参加者層における白人・黒人などのバランスも
考慮しているそうです。日本でもダイバーシティに
対する関心は高まっていますが、IT業界は女性がも
ともと少ないのでバランスを取りにくく、作り込も
うとすると手間がかかるという意見が出ました。ま
た、コミュニティの本質は多様性ではなく同質性で
あり、たとえば学校や職場ではマイノリティの立場
にある人がコミュニティに来ると仲間が見つかるの
が良い点である、というコメントもありました。

■勉強会多過ぎない？（宮原さん）

　以前に比べて勉強会を実施する環境が整備され、
開催数が増えたのは良いことだが、多くなり過ぎて
参加者にとっては供給過剰ではないかという問題提
起です。これに関しては、参加登録者のキャンセル
率が高くなり運営側としては人数が読みづらい、勉
強会で話を聞くだけで帰ってしまいコミュニティに
入らない人が増えている、PHP勉強会では参加者も
全員自己紹介をすることでコミュニティへの加入度
を高めている、などの話がありました。

■最近、変わったことは？（岡田さん）

　宮原さんからは、自分が興味を持つ範囲の外側を
見ない人が増えたためにOSCのようなメタコミュ
ニティ的なイベントの集客が頭打ちになっていると
いう話がありました。一方で、日高さんが運営する
技術書典では業務と関係なさそうな冊子が売れると
いう現象があります。参加者は即効性を求めるイベ
ントと趣味で楽しむイベントを分けて考えているの
かもしれません。また、イベントを通して技術者を
採用したい企業が増えたという話題も出ました。

◆　◆　◆
　今回は登壇者が多く、大きなコミュニティや年数
の長いコミュニティを運営している方もおり、豊富
な経験に基づくコメントが多く聞けました。座談会
的な雰囲気もあり、盛り上がって良かったです。｢

経験者だから話せるコミュニティ運営の深い話 November
2017

164 - Software Design

はじめに

　Windowsは、現在でもPCの
主流なOSの地位を確保し続け
ています。1995年のWindows
95の登場からその地位が築かれ
たのですが、そこまでに至る9
年間の過程は、混乱を極めた苦
難の道のりでした。今回は、初
期のWindowsについてのお話を
しましょう。

Windowsの誕生

　延期に延期を重ねて、Win
dows 1.0は1985年の11月に完
成します。ここからWindowsの
困難な道のりが始まります（図1）。
　長い開発期間をかけたWin
dows 1.0ですが、複数のウィン
ドウを重ねることができない縦
横に並べるだけのタイルウィン
ドウでした。さらにi8086/8088
CPUのメモリ領域の限界である
1MB（MS-DOSが利用できるの
は640KB）の壁とIPC（プロセス
間通信）のグラフィック環境の問
題から、見るにも操作するにも
苦痛を伴うようなものでしかな
かったのです。
　その後、実用的なGUI環境の

実現を目指して開発は続けられ、
1987年 11月にWindows 2.0が
登場します。Windows 2.0は、オー
バーラップウィンドウを実現し
ており、操作性の快適性やスピー
ドも1.0に比べれば大幅にアッ
プしたものの、まだ満足できる
ものではありませんでした。
　Windows 2.0は、リアルモー
ドで動作するため、高速・高機
能の i80286 CPUで動かしても
1MB以上のメモリ領域は使用で
きなかったのですが、EMSメモ
リによるメモリの拡張はできた
ため、なんとか複数のアプリケー
ションの動作が可能になりまし
た。そのためMacintoshで動い
ていた憧れの表計算ソフト
「Excel」がWindows上で動作す
るようになりました。しかし、
Excelを動かすためには拡張メ
モリ以外にもハードディスクな
どの高価なハードウェアを追加
する必要があり、その対価に対
して十分な操作性を提供できる
ものではありませんでした。

Windows 2.1の登場

　Windows 2.0が発売されて半
年後に、Windows 2.1がリリー
スされます。2.0に比べて、より

メモリ管理機能を充実させて、
i80286向けを「Windows/286
2.1」、i80386向けを「Windows/
386 2.1」と改称し、2つのパッ
ケージとして販売されました。
　IBM-PC版のWindows 2.1/286
は、i8086/8088でも動作可能で
あり、リアルモードで動作します。
XMS（eXtended Memory Specifi
cation：メモリ拡張管理方法）
の規格に含まれるHMA（High
Memory Area）へ対応すること
で、i80286であれば1MBの上
64KBのメモリ領域の使用がで
きるようになりました。しかし、
この時点では、1MB＋64KB以
上の上位のプロテクトメモリで
あるEMB（Extended Memory
Block）は使えなかったようです。
　もう1つのWindows/386は、
Windows 2.0の登場のあと、数ヵ
月でWindows/386 2.0として登
場しています。実用的なOSと
しては初めて仮想86モードを使
い、DOSアプリを複数同時に動
作させ、ほかのプログラムやメ
モリの保護も行うことができる
画期的なものでした。内部的に
はi80286互換の、16bitのi80386
プロテクトモードで動作するカー
ネル部分も初めて作られたの
です。

第71回

速水 祐（はやみ ゆう）　http://zob.club/　 twitter @yyhayami

初期のWindows
～誕生からWindows 95登場までの困難な道のり～

温故知新
ITむかしばなし

http://zob.club/

164 - Software Design Nov. 2017 - 165

第71回

Windows 3.0の登場

　2年後の 1990年になると、
Windows/286 と Windows/386
を統合し、GUIを洗練化して操
作性が大幅に高まったWindows
3.0が登場します。Windows 3.0
のGUI操作が、現在のWindows
の操作とほぼ同じになり、その
後のWindowsの基本になった
バージョンでした。Windows 3.0
は、次の3つのモードで動作し
ます。

①リアルモード：i8086/8088で

動作するためのもの

②スタンダードモード：i80286の

プロテクトモードで動作する

③エンハンストモード：i80386の

仮想86モードとプロテクトモー

ドを効果的に利用

　スタンダードは16bitプロテク
トモードで動作します。ついに
メインのWindowsもプロテクト
モードで動くことになりました。
しかしこのモードでは、DOSア
プリケーションを動作させるた
めにはリアルモードに切り替え
ることになり、MS-DOSのシス
テムコールもリアルモードになっ
てから利用しているため、安定
な動作を期待することはできな
かったのです。それに対してエ
ンハンストモードは、DOSアプ
リケーションもシステムコール
も仮想86モードで実行するため、
安定度もマルチタスクとしての
動作もはるかに優れていると思
われました。
　1991年のパソコン雑誌では
大々的にWindows 3.0を取り上

げ、時代は完全にWindowsにな
るような記事が満載でしたが、
想定されたような安定した動作
ではなく、当時のPCでは快適
と言える操作スピードが実現で
きなかったため、国内での利用
は広がらず、1992年に入ると
Windowsの記事は影を潜めます。

Windows 3.1

　1993年に日本語Windows 3.1
が登場します。PC-9801版の
NEC製Windowsだけでなく、
Microsoft社からDOS/V版の日
本語Windows 3.1も発売された
のです。
　日本語Windows 3.1は、見た
目に3.0と同様ですが、i80386
の使用を前提とした注1もので、
エンハンストモードで動くWin
dowsでした。MS-DOSのシス
テムコールを利用していたディ
スクアクセス処理は、プロテク
トモードの処理となり、内部シ
ステムの大幅なビルドアップに
より、安定度が格段に上がり、
パソコンの高速化と相まって、
快適な動作が実現できたのです。

注1） 英語版Windows 3.1は、スダンダー
ドモードを備え、i80286での動作も
可能。

そのため日本で も一気にWin
dowsの普及が広がります。

Windows for　
Workgroup

　海外ではWindows 3.1にネッ
トワーク機能を追加注2して、ネッ
トワーク上で複数の端末で作
業を行うことを狙ったWindows
for Workgroupが登場します。
Windows for Workgroupは日本
語化されなかったのですが、
1994年当時、DOS/Vユーザは、
WIN/V注3を使って日本語化し
て利用していました。筆者も使っ
ており、付属しているネットワー
ク対応のトランプゲーム「ハーツ」
による4人でのネットワーク対
戦や複数人チャットでは複数で
同じ作業を行っているのだとい
う実感を味わいました。
　約9年間のバージョンアップ
を繰り返す困難な道のりのあと、
標準OSの地位に導いたWindows
95の登場となります。｢

注2） Windows 3.1でネットワークを利用
するためには、LAN Managerや
TCP/IPスタック・アプリケーション
などのLAN構成ソフトウェアのイン
ストールが必要。

注3） 西川和久氏が率いるC.F.Computing
によって発売された、英語版Win
dowsを日本語化するソフトウェア
で、かな漢字変換（IME）、漢字True
Type/ WIFEフォントが使用可能に
なる。

‘85 ‘86 ‘87 ‘88 ‘89 ‘90 ‘91 ‘92 ‘93 ‘94 ‘95
11

Windows 1.0Windows 1.0

9
IBM-PC PC-98

11 6

Windows 2.0Windows 2.0

5 6

Windows 2.1Windows 2.1

10

Windows/386 2.0Windows/386 2.0

5

Windows/286 2.1Windows/286 2.1
5 2

Windows 3.0Windows 3.0

4

Windows/386 2.1Windows/386 2.1

Windows 3.1Windows 3.1

6

10

Windows for Windows for
Workgroup 3.1Workgroup 3.1

11

Windows for Windows for
Workgroup 3.11Workgroup 3.11

Windows 95Windows 95

5

日本語版

IBM-PC PC-98

PC-98IBM-PC 英語版

英語版
内部 Version 4.0内部 Version 4.0

7 1

Windows NT 3.1Windows NT 3.1

温故知新 ITむかしばなし
初期のWindows～誕生からWindows 95登場までの困難な道のり～

 ▼図1　Windowsの道のり

166 - Software Design

あなたのスキルは社会に役立つ

　2017年7月28日から30日にかけて毎年夏恒例の
石巻ハッカソンが開催されました。開発を通して若
者がITに興味を持ったり、自分の夢を持ったりす
るきっかけになってほしいという趣旨で2012年に
始まり、今回で6回目を数えるこのハッカソン、毎
回会えるおなじみの顔ぶれだけでなく、初めて参加
するという人の比率が高かったことが特徴的です。
石巻市がある宮城県内のみなさんはもちろんのこ
と、福島や東京などさまざまな地域から100人を超
える方が参加しました。

今回のテーマは「ひみつ道具」

　石巻ハッカソンでは毎回テーマが設定され、それ
に沿うものを開発します。これまでは「海」、「青春」
というテーマが設定されてきたのですが、今回の
テーマは「ひみつ道具」です。ひみつ道具というと、
やはりあの青色の猫型ロボットがポケットから出し
てくれるいろいろな道具を思い浮かべてしまう人が
多かったようです。主催者側の意図もまさにそこ
で、あなたの夢のひみつ道具をITで表現しましょ
うというものでした。

ITブートキャンプ部門

　プログラミング初心者のための部門で、この部門
が用意されていることは石巻ハッカソンの伝統と
いっても良いでしょう。小学生のための部門とおも
に高校生のための部門に分かれて進められました。

小学生は始めにOzobot注1という、紙の上に線を描
くとその上を線に沿って動く小さなロボット型のプ
ログラミング教材を用いて、まずは興味を持っても
らうことが優先されました。そのあとに、Scratch

JrというScratchよりも文字を減らしてイラストア
イコンだけでプログラミングを始められるビジュア
ルプログラミングツールが使われていました。
　高校生部門で使われたのは2012年の第1回目の
ときから使われているCorona SDK注2です。講師の
指導のもとで基礎から始めて、最終日にはハッカソ
ン部門と同様に自分のアイデアで作ったものを発表
してもらいました。Corona SDKには物理エンジン
が組み込まれており、2Dのアニメーションは比較的
手軽に実現できるようになっているため、高校生た
ちの自由な発想でさまざまな作品ができあがりまし
た。

ハッカソン部門

　初日にアイデアピッチとチームビルディングを行
い、全部で19のチームで開発がスタートしました。

大人げない人たち

　とくにそのようなカテゴリがあるわけではないの
ですが、なりふりかまわず高い技術力でぶっちぎる
大人たちを、いつの間にかそう呼ぶようになりまし
た。筆者の場合、3回目までは初心者のサポートに

注1	 https://www.ozobot.jp/
注2	 https://coronalabs.com/

Hack For Japan

第71回

2011年3月11日の東日本大震災発生の直後にHack For Japanは発足しました。
今後発生しうる災害に対して過去の経験を活かすためにも、エンジニアがつながり
続けるためのコミュニティとして継続しています。防災や減災、被災地の活性化や人
材育成など、「エンジニアができる社会貢献」をテーマにした記事をお届けします。

●Hack For Japanスタッフ　高橋 憲一（たかはし けんいち）　 Twitter @ken1_taka

第6回 石巻ハッカソン第6回 石巻ハッカソン

あなたのスキルは社会に役立つ

https://www.ozobot.jp/
https://coronalabs.com/

Nov. 2017 - 167

第6回 石巻ハッカソン

第71回
Hack For Japan

奔走していたのですが、4回目からは「そろそろ自分
もガチで開発したい」と思い、年に一度の石巻ハッ
カソンだからとハードルを高く設定して臨むように
なりました。この大人げない人たちはそうすること
で、このハッカソンに参加する大人の役目でもある
「かっこいい背中」を若者に見せているつもりです。
後述する「ヤバい賞」の常連で、大人げない人たちの
筆頭のような存在の友人とは「ハードルを高く設定
し、短時間で必死に開発するのはエンジニアにとっ
て筋トレのようなもの」と話しています。

恒例のお昼のカレー

　2日目のお昼ご飯にはカレーが提供されるのが毎
年の恒例となっており、「開発はできないけどカ
レー作りのお手伝いとして参加します！」という方
もいます。今年はシーフードカレーで、石巻の名産
であるホヤが入っていました（写真1）。石巻は何度
も訪れており、この地の美味しい食材を愛してやま
ない筆者ではありますが、実はホヤだけは苦手なの
です。しかし、このカレーはとても美味しく食べる
ことができました。

成果発表

　最終日には各部門ごとに成果発表が行われ、とく
にすばらしい成果を上げた作品には賞が贈られまし
た。

ITブートキャンプ高校生部門

　12人からの発表があり、優秀賞が2名に贈られ
ました。

●●アプリ名：大胸筋
　石巻工業高校2年生の作品で、大胸筋を動かして
そのすばらしさを知ろうという意図で作られたアプ
リです（写真2）。起動するとBGMが流れ、タップ
すると効果音とともに表示された絵の大胸筋が動き
ます。アプリの完成度の高さとインパクトの強さを
評価されての受賞となりました。普段意識していな

いけれど大胸筋はいろいろな場面で使われるので、
実はひみつ道具なのではないかと思ったという着眼
点がおもしろく、会場は爆笑の渦に包まれていまし
た。

●●アプリ名：ブレークアバウトゼロ
　石巻工業高校1年生の作品で、ブロック崩しふう
のゲームです（写真3）。失敗するとガラスの割れる
音が出るなど、効果音にも凝ったものになっていま
す。すべてのブロックを消すことができた際のコン

▼▼写真1　石巻名産のホヤ入りカレー

▼▼写真3　ブレークアバウトゼロアプリの紹介

▼▼写真2　大胸筋アプリの紹介

168 - Software Design

あなたのスキルは社会に役立つ

プリート画面への遷移や、ゲームオーバー時にすべ
て消せなかった場合の残りのブロック数表示なども
しっかりと作ってありました。

ハッカソン部門

●●特別賞▶声ハック、Cupid
　ハッカソン部門の審査員のお二人からはそれぞれ
特別賞が贈られました。1つは「声ハック」のチーム
で、このチームが作ったものはGoogle Homeと
API.AIを活用して、音声で家電を操作するアプリ
です。たとえば「Turn on light」と話しかけると明
かりを点けるといったようなことができます。API.

AIは自然言語を解釈して会話するボットを作るこ
とができるAPIで、ほかにはGoogle Assistanceと
連携するためのActions on Google、Google Cloud

Functionsなども使用しています。さらにIRKit注3

を使用することで、赤外線リモコンで操作できる家
電ならどのようなものにでも対応できるようにした

注3	 http://getirkit.com/

のが特徴です。
　もう1つは「Cupid」のチームで、こちらのチーム
はIBM WatsonのPersonality Insightsを活用して
恋のひみつ道具、相性診断アプリCupidを開発しま
した。お互いのこれまでのTwitterへの投稿内容を
取得し、Personality Insightsで性格を分析（写真4）、
それをもとに相性を算出するしくみです（写真5）。
処理の実装にはPython、フレームワークとしては
Flaskが使われています。東北大学の2人による
チームで、実はHTMLを書くのもハッカソンに参
加するのも初めてということだったのですが、審査
員の方から「このままWatsonのデモに使えるので
はないか」というコメントが出るほどのすばらしい
成果でした。

●●ひみつ道具賞▶RAKUGAKI
　今回のテーマである「ひみつ道具」と呼ぶに最もふ
さわしいものを開発したチームに贈られました。受
賞したのは「RAKUGAKI」チームで、Googleの
Tangoに対応した端末を使って周囲の壁や床などの
環境を認識し、その上にARで落書きができるアプ
リを開発しました。端末を振ると「カラカラ」と音が
出るようになっており、絵を書くときはシューとい
うような音も出てスプレー缶でペイントアートをす
る感覚を再現しています。開発にはUnityを使い、
当初は塗りつぶしのためにたくさんのオブジェクト
を置いていたところ、それでは動作が重くなること
が判明したため、ダイナミックメッシュの頂点で処
理するように工夫したとのことです。
　このチームは参加者全員の投票によって選ばれた
オーディエンス賞も受賞しています。

●●ヤバい賞▶「チャールズ」チーム
　この賞はヤバいほどに高い技術力を出したチーム
に贈られました。
　受賞したのは「チャールズ」チーム。「ザックリな
お題をなんとかしたい」というところから始まり、
進化型ニューラルネットワークと遺伝的アルゴリズ
ムを使用して、あいまいな課題に対して人工生命の
アプローチでいい感じにできるかもしれない糸口を

▼▼写真5　相性診断結果

▼▼写真4　性格分析結果

http://getirkit.com/

Nov. 2017 - 169

第6回 石巻ハッカソン

第71回
Hack For Japan

得たというものでした。デモでは「黒い玉をたくさ
ん取ってきて」というあいまいな要求が、「この部屋
の中の黒い玉を遠いほうから20個取ってきて」とい
うプログラム可能な詳細な仕様に近づいていく過程
を見ることができました。実装にはTensorFlowが
使われています。
　大まかな流れとしては、学習データが何もないと
ころから、人工生命（エージェント）に報酬を与える
（褒

ほ

める）ことによってニューラルネットワークは強
化されていきます。遺伝的アルゴリズムは遺伝子の
進化を模しているので、報酬が与えられなければ死
んでいき、報酬が与えられたものは残っていき進化
してアルゴリズムを獲得していくというようなもの
になっています（写真6）。
　石巻ハッカソンのレベルが毎年上がっているの
は、毎年こういうガチな大人がいることで良い刺激
を与えているのも1つの要因ではないかという審査
員からの講評もありました。

●●グランプリ▶「forfools」チーム
　会場となった石巻工業高校の生徒を中心に構成さ
れたチームです。自分たちの学校をもっとみんなに
知ってほしいというところから始まったという、自
分たちが学ぶ高校の校舎を忠実に再現したホラー
ゲームです（写真7）。コンソールゲーム機のコント
ローラを操作して一人称視点でその中を歩き回るこ
とができるようになっており、周辺の森は風などの
天候の変化も表現されていました。Unityを使って
開発されており、3Dデータのモデリングには
blenderが使われました。実際に動作するデモの完
成度の高さもさることながら、作品を仕上げていく
過程でメンバーが成長していっている感が大いにあ
ることも評価ポイントとなりました。

そのほかの作品

　惜しくも賞は逃しましたが、ほかにもおもしろい
作品がありましたのでいくつか紹介します。

●●アプリ名：FreezeTag
　千葉県の柏から参加したチームが、アナログな遊

▼▼写真7　Unityで作られた教室のシーン

▼▼写真8　FreezeTagでできること

▼▼写真9　ハンドツイスター

▼▼写真6　�人工生命のエージェントが認識する環境と獲得し
ていく行動戦略

170 - Software Design

あなたのスキルは社会に役立つ

びである「氷おに」とデジタルなものであるアプリを
組み合わせたら「ひみつ道具」のおもしろい体験にな
るのではないかと考えて開発したものです（写真
8）。Apple Watchも組み合わせて使うことができる
ようになっています。ひみつ道具賞の選定で
RAKUGAKIと競っていたとのことで、最終的には
より「ひみつ道具」感のあるものということで
RAKUGAKIのほうが選ばれましたが、こちらもす
ばらしい作品でした。

●●アプリ名：ハンドツイスター
　ご自身が手に障害を持つ参加者が自らの経験をも
とに、障害を持つ人が楽しく機能訓練（トレーニン
グ）できる道具を目指して企画、開発されたもので
す（写真9）。床で行うツイスターゲームを参考に、
スマホの画面で手の指を使って行うように考えられ
ています。

総評

　非常にハイレベルなハッカソンだったということ
が言えると思います。2011年3月の東日本大震災で
大きな被害を受けた石巻で、ITを新しい産業として
盛り上げていくことを目的として設立されたイトナ
ブ石巻注4の主催により、2012年から毎年開催されて

注4	 http://itnav.jp

いるこの石巻ハッカソン。もはや震災復興の域を超
えて、開発に興味を持つたくさんの人を引きつける
イベントとして認知されつつあるのではないかと感
じました。最初の数回こそHack For Japanは共催
という形でサポートしていましたが、現在は完全に
一参加者として楽しませてもらっています。2012年
の第1回目のときにはまだ高校生でブートキャンプ
部門に参加した若者が、ハッカソン部門で1つの
チームを立派に取り仕切る姿や、当時アプリ開発は
初めてと言っていた大学生が特別賞を受賞したり
と、初回からずっと見てきた筆者にとって、みんな
の成長を見ることも楽しみのひとつです（写真10）。
　そしてもう1つ特筆したいこととして、このハッ
カソンを主催するイトナブ石巻の運営力のアップが
挙げられます。高校生の発表に始まり、ハッカソン
部門の19ものチームの発表をスケジュールどおり
に終えることができたのはうれしい驚きでした。こ
れまでは時間が伸び伸びになりがちで、遠方から参
加してくれたみなさんに帰りの時間を心配させてし
まうというような場面が多々ありました。しかし今
回は滞りなく進行し、しかも表側にはそのスケ
ジュール管理の厳しさは見せずにできていたことが
すばらしかったと思います。
　来年は8月3日から5日にかけての開催が予定さ
れています。ぜひ石巻を訪れて開発に打ち込んでみ
ませんか。s

▼▼写真10　密度の濃い3日間をすごしたみんなで記念撮影

http://itnav.jp

171 - Software Design Nov. 2017 - 171

　9月9日、新宿セントラルパークシティホール（東京都
新宿区）にて「pixiv MEETUP -10th Anniversary-」が開催
された。本イベントはピクシブ㈱のイラストコミュニ
ケーションサービス「pixiv」のサービス開始10周年を記
念したイベント。計6つ行われたセッションのうち、エ
ンジニアに関係する2つのセッションの模様をレポート
する。

 「新規事業」はどのように生まれたのか――ピク
シブでプロダクトを創るということ

（山下）ピクシブは新規事業が多い会社ですが、お二人
はなぜ新規事業を立ち上げたのか教えてください。
（清水）新規事業を立ち上げるにあたっては、創作活動
を楽しむ人が増え、そして楽しみ続けてもらうため、と
いう目的が一番にあります。そこを起点にして、クリエ
イターの日々の作業の中でまだサービス化されていない
もの、未来にあってあたりまえのものを見つけ出し、実
現するということを大切にしています。たとえばイラス
トレーターさんや漫画家さんは、絵を描きながら生放送
配信をするといったことをよく行うのですが、それを
サービス化したのが「pixiv Sketh Live」だったりします。
（道井）私が立ち上げに関わった「ImageFlux」は、pixiv
の画像処理技術を切り出して事業化したものです。画像
処理はどの企業でも必須の技術ですので、収益化できる
のではないかと思い、事業化しました。
（山下）新規事業の現場で必要となるマインドセットと
はどのようなものでしょうか。
（清水）既存サービスへの分析と「妄想力」です。妄想力
と想像力の違いはストーリー性にあります。サービスを
考えるうえでストーリー、つまり流れ（時代の流れとユー
ザの行動の流れ）を考えることが重要です。
（道井）それに加えて大事なのが、365日それ（妄想）を
続けることだと思います。妄想する内容の99%はどうで
もいいことだとしても、考え続けていくことで、点と点
がつながる瞬間があります。

 エンジニアの働き方――クリエイターファース
トなエンジニアカルチャー

（川田）ピクシブは全員が「クリエイターファースト」の
もとに働くという文化の会社ですが、開発体制と現場の
雰囲気にはどのような特徴があるでしょうか。
（小芝）社員150名のうち、3分の2がサービス開発に携
わっています。構成としては、5人ほどの小さなチーム
が数多く存在する組織です。ひとつひとつのチームは、
ただタスクが割り当てられてそれをこなすというもので
はなく、そのチームだけで1つのサービスを上から下ま
で開発できるようにしています。
（高山）チームは数多く存在していますが、チーム同士
の交流は厚く、風通しは良いと言えます。他チームとの
交流を促す発表会を定期的に開催しています。
（小芝）プログラミング言語など、採用する技術に関し
てはプロダクトごと、チームごとに決定し、その知識の
共有も発表会で行います。
（高山）メンバーの評価体制についてですが、チーム内
のメンバーは基本フラットで、チームの外のマネージャ
が評価するしくみです。また1人のマネージャが独善的
に判断するのではなく、マネージャ同士が集まって評価
の検討をしています。
（川田）プロダクト開発の進め方はいかがでしょうか。
（高山）まず新規事業の立ち上げは、やりたい人ベース
で進めることが多いです。エンジニアでも企画に携わる
ことがままあります。
（小芝）Pawooの立ち上げは鮮烈でした。1人のエンジニ
アの声掛けからはじまり、Mastodonに興味のある仲間
が集まっていき、翌日から開発が始まりました。
（高山）お祭り状態でしたね。「興味のある人は誰でも参
加して良い、普段関わるプロジェクトはいったん止めて
も良い」と号令を出した覚えがあります。

ピクシブ、
「pixiv MEETUP -10th Anniversary-」開催

ピクシブ㈱　URL https://www.pixiv.co.jp
CONTACT

▲▲左から山下鎮寛氏（ピクシブ㈱ pixivプレミアムプロダクトマネー
ジャー）、清水智雄氏（ピクシブ㈱ pixiv・Sketch・Pawooプロダクトマ
ネージャー）、道井俊介氏（ピクシブ㈱ ImageFlux事業責任者）

▲▲左から川田寛氏（ピクシブ㈱ エンジニアリングマネージャー）、高山温氏
（ピクシブ㈱ 最高技術責任者）、小芝敏明氏（ピクシブ㈱ 開発本部長）

https://www.pixiv.co.jp

172 - Software Design

　9月8日、横浜港大さん橋ホール（神奈川県横浜市）に
て、「エンジニアサポートCROSS」がJAIPA（JApan
Internet Providers Association）主催、横浜市経済局共
催で開催された。
　通算6回目の開催となる本イベント、国内最大級のIT
系勉強会としてもはや定番的な秋の行事として認知して
いる方も多いだろう。セッションの内容は、最近のソフ
トウェア開発の流れを受け、クラウドや機械学習、ブロッ
クチェーンなどが多くなってきたが、エンジニアにとっ
ての身の回りの問題であるキャリアパスやITコミュニ
ティ運営、最新技術の習得など幅広い。テーマがごった
煮状態ではあるが、そこには上からの押し付けがなく、
ITエンジニア自らが楽しむ様子が感じられ、まるでお祭
りのような雰囲気である。デイリーポータルZのお楽し
みコーナーでは「巨大いらないものガチャ（エンジニア
版）」と「顔が大きくなる箱」も、参加者の気分を盛り上
げている。その中でも、イベントの終盤に行われた「先
達に聞くこれからのエンジニア像2017」は、パネリスト
がさくらインターネット㈱伊勢幸一氏、楽天㈱よしおか
ひろたか氏、及川卓也氏による座談会形式（司会は森藤

　10月1日、秋葉原コンベンションホール（東京都千代
田区）にて、「U-22プログラミングコンテスト2017」が
開かれた。本コンテストには、22歳以下の若手から334
のオリジナルのコンピュータプログラミング作品が集
まった。経済産業大臣賞に輝いた4作品を紹介する。

 総合部門『Draw Near』：OMNISCIENCE（立
教新座高等学校、西村太雅さん・中島正晴さん）
　Draw Nearは、宇宙船内でサバイバルを行いながら、
地球に帰還するためのロケットづくりを行うSFアク
ションゲーム。チームメンバーそれぞれの得意分野を活
かし、モデルデータ、テクスチャ、アニメーション、
BGMをほとんど自作したとのこと。

 プロダクト部門『Circuitor』：固有スキルせん
たく板（越谷総合技術高等学校 情報技術科 29期
生、山上翔さん・黒土直斗さん・永薗朋弥さん）
　CircuitorはJavaのGUIライブラリSwingで実装した、
PC上で動作する電子回路シミュレータ。GUIで電子部品
のオブジェクトを配置し、コードをつなげることで、カ

大地氏）で、来場者の注目を集めていた。登壇者はみな
50歳台ということで、これまでのエンジニア人生を振
り返って、何がキャリアにとって有効だったかざっくば
らんに意見を述べた。その中で昨今の機械学習ブームの
せいもあり、数学をしっかり学ぶことの重要性がさまざ
まな点から強調された。
　多様なセッションを通じてエンジニアとして何をすべ
きか、いろいろな視点で手がかりを見つけられるのが本
イベントの最大の特徴だと言えよう。問題意識を持って
いるエンジニア
のみなさん、ぜ
ひ来年は個人ス
ポンサーやス
タッフとして参
加されてはどう
だろうか。

ウントアップ、ブリッジ、フリップフロップといった回
路をシミュレートできる。

 テクノロジ部門『scopion』：小川広水さん（小
石川中等教育学校）
　scopionは「考えずにたくさん書ける言語」をテーマに
したプログラミング言語。強力な型推論、予約語の大ま
かな排除といった特徴がある。すぐに試せるように、
Dockerを使ったオンラインコンパイラも用意した。

 アイデア部門『narratica』：菅野楓さん（早稲田
実業学校中等部）
　「narratica」は、映画のシナリオを入力するとキャラ
クタごとの感情の変化を時間軸で可視化できるシステ
ム。形態素解析や感情分析をPHP+SQLで実装して実現
した。スタジオジブリの宮崎監督に実際に会いにいき脚
本について話を伺うなど、行動力の高さも注目された。

「エンジニアサポートCROSS 2017」開催

「U-22プログラミングコンテスト2017」開催

U22プログラミングコンテスト　URL http://www.u22procon.com
CONTACT

エンジニアサポートCROSS 2017
URL http://2017.cross-party.com

CONTACT

▲▲業務参加した100社以上の企業名が書き込ま
れたホワイトボードを背景に、実行委員長山
口亮介氏による閉会の挨拶

http://2017.cross-party.com
http://www.u22procon.com

172 - Software Design Nov. 2017 - 173

Excel方眼紙公開討論会
URL https://www.forguncy.com/information/events/excelforguncy

CONTACT

　9月30日、KFC Hall&Rooms（東京都墨田区）にて、
「Excel方眼紙公開討論会」がグレープシティ㈱主催で行
われた。Excel方眼紙とは、セルを正方形に設定して
Excelをワープロのように利用する手法で、その是非に
ついては議論が絶えない。イベントで行われた、Excel
方眼紙反対派、賛成派の登壇者によるセッションをレ
ポートする。

 「ネ申タヒすべし：Excel方眼紙という時間泥
棒」：立命館大学情報理工学部教授　上原哲太郎氏
　上原氏はExcel方眼紙反対派陣営。ソフトウェアハウ
ス、省庁、大学とキャリアを踏む中で、さまざまな
Excelファイルと出会ってきたという。
　最初に上原氏が語ったのは表計算ソフトの歴史につい
て。世界初のPC向け表計算ソフトViscalc（VisiCorp社、
1979年）から、Multiplan（Microsoft社、1982年）、Lotus
1-2-3（Lotus Development社、1983年）と変遷していき、
1985年にMicrosoft社がMacintosh版のExcelを発売、
1987年からはWindows版も提供された。Microsoftが
OSとOfficeソフトをバンドルして提供するようになる
と、各家庭にもOfficeが入るようになり、Excelの、表計
算以外の多様な使われ方が生み出された。表計算ソフト
を「表印刷ソフト」にしてしまったのはExcelだと、上原
氏は指摘した。
　それでは、企業でExcelがワープロのように使われる
ようになったのはなぜか。上原氏は和歌山大学や京都大
学で業務のシステム化を推進していた時代、自治体との
メールにて、初めてExcel帳簿に出会った。時が経って
総務省に入省したとき、上原氏はExcel帳簿の起源を知
る。省の中をExcel帳簿が飛び交っており、各自治体の
Excel帳簿もここから来ていることを発見したのだ。
　このようなExcelの使い方に「ネ申エクセル」という名
前が付いたのは、三重大学教育学部特任教授の奥村晴彦
氏の2013年のツイートがきっかけ。なぜネ申Excelが今
も使われ続けるかというと、とくに省庁での“紙”への
信仰が根強いからだと上原氏は分析している。データの
フローを帳票から考える昔からの慣習、証跡＝印鑑のあ
る書類への絶対的信頼、そして電子データという見えな
いものへの恐怖が、ネ申Excelを生き延びさせていると
いう。ネ申Excel問題解決の鍵は、生産性への着目にある、
と上原氏は指摘。もしもネ申エクセルを受け取ったら、
その送り主に対して、「データと体裁の分離」について
解説し、そのデータは何に使うのか、そもそもその仕事
は必要かと分析を促すのが解決への道だと提案した。

 「Excel方眼紙がダメな理由を知りたい」：プロ
グラマ　長岡慶一氏
　長岡氏はExcel方眼紙賛成派陣営。2016年の長岡氏の
ブログの2016年のエントリ『教えてほしい。Excel方眼
紙って何がそんなに悪いの？』が経緯で今回、登壇の依
頼がきたそう。ただ立場としては「どちらかというと賛
成派」で、1文字1セルといった極端なExcel方眼紙には
反対している。
　長岡氏が指摘したのは、Excel方眼紙賛成／反対の両
派は、同じExcel方眼紙を見ていないのでは、ということ。
不便な使い方がネ申エクセル、便利な使い方がExcel方
眼紙なのであって、ネ申エクセル＝Excel方眼紙ではな
いのではと持論を展開した。長岡氏はまた、ネ申エクセ
ル問題はExcel自体の問題、使い方の問題、方眼紙の問
題に分解できるとし、便利に使えるはずのExcelをそう
は使わないというところに問題の本質があると語った。
　方眼紙を使用した便利なExcel方眼紙として、長岡氏
は普段の業務で使っているDBのスキーマ定義書を挙げ
る。そこでは結合セルを部分部分で使って読みやすくし
ている一方、VBAやSQLと連携しやすい作りも心掛けて
いるそう。そんな良いExcel方眼紙の条件として、「便利
に使えること」「結合セルは極力使わない」「データを使
い回すなら、そのしくみを考えておく」「印刷はおまけ
と考える」「ページや章の概念は捨てる」の5つを掲げた。
最後に提案として、入力用・加工用・表示用シートと、
工程でシートを分ける方法も紹介した。

◆　◆　◆
　Excel方眼紙をテーマに取り上げた、恐らく史上初の
企画だったが、Excelの苦労話には会場から同意の声が
漏れたりなどと、強い一体感が感じられたイベントだっ
た。

グレープシティ、
「Excel方眼紙公開討論会」開催

▲▲上原 哲太郎氏 ▲▲長岡 慶一氏

https://www.forguncy.com/information/events/excelforguncy

174 - Software Design

“デジタル・ネイティブ”から“スマホ・ネイティブ”へ
物心つく前からPC・インターネットが身の回りにあった世代はデジタル・ネイティブと呼ば
れていましたが、そんな人々も今ではアラサーです。次の世代として、初めて使う携帯電話
がスマートフォンの「スマホ・ネイティブ」な子どもたちが現れてきました。その世代ではタッ
チパネルとフリック入力が標準ですので、キーボードが使えない人が今後は増えていきそう。
そのうち音声入力が標準になって、指を使うこと自体が過去のものになるかもしれません。

移り変わりの激しいWeb技術の中でも、
プロトコル、Webサーバ、Javaサーブ
レットなど、すぐには廃れない基礎的な
技術をピックアップして解説しました。

初学者としては、こういった基本の基
本から順序良く学ばせてくれるコラム
は非常に助かりました。
 LtKSKさん／神奈川県

クライアント専門のゲームプログラマ
にとって非常に有用な記事だと思いま
す。 ぐれちゃんさん／東京都

表紙の「喰わず嫌い IIS」はそのとおりだ
と思いました。 山下さん／東京都

業務上、Apacheに慣れ親しんでいた
ため、なんとなくNginxを敬遠してい
たのですが、今回の記事で特徴がわか
りました。機会があれば触ってみよう
と思います。 たけしさん／埼玉県

Javaサーブレットの歴史の流れが短
くまとまっていたのが良かった。
 勝木さん／東京都

JSPはオワコンというコラムにハッと

きました。 ItSANgoさん／大阪府

Web技術の入門に、そして復習
に役立ったという声が多く寄せら

れました。また、今までは縁がなかった
IISやNginxに興味を持ったという方も
多くいらっしゃいました。

ターミナルを多重起動できるソフト「ター
ミナルマルチプレクサ」の特集です。カ
スタマブルな tmux、カジュアルに使え
るByobuの2本立てで、作業効率アッ
プの環境作りに取り組みました。

最近ターミナルに慣れてきてたので、
こんなのもあるのかとためになった。
 ホッシーさん／東京都

tmuxをさっそくインストールしてみ
ました。裏技とか教えてほしい。
 ももんがさん／静岡県

tmuxがとっつきにくくてByobuを
使ってましたが、tmuxの良さを知っ
てしまったのでこちらも試してみよう
と思いました。 くまくまさん／神奈川県

この記事でByobuから tmuxに移行

してしまった。vimrcの二の舞になり
そうで恐ろしい（楽しみ）。
 katsuyaさん／神奈川県

Byobuは途中で挫折した経験が過去
にあるのですが、これを気にもう一度
トライしてみようかなと思います。
 n0tsさん／東京都

tmuxは使いこなしているつもりでし
たが、sessionの切り替えができるな
んて知りませんでした。また、一所懸
命毎回たくさんのサーバを開き直しし
ていましたが、xpanesみたいな便利
なコマンドがあったんですね。今回の
記事を読んで、さらに tmuxが便利に
使えそうです。 今井さん／千葉県

Byobuは便利な設定になっているの
で使い易そうですね。ただ、私は「Fn」
キーが使いにくいキーボードを使用し
ているので、キーの設定の変更が簡単
にできるのかどうか気になりました。
 出玉のタマさん／大阪府

読者の間でも、tmux派とByobu

派に分かれているようでした。記
事でも触れられていましたが、設定に凝
り過ぎると際限がなくなるというのが
ネックですね。

2017年9月号について、たくさんの声が届きました。

第1特集
Web技術【超】入門

第2特集　開発効率アップのター
ミナル改造術

174 - Software Design Nov. 2017 - 175

なりすまし・不正アクセスを防ぐための
しくみ「認証」について、初歩的な技術か
ら攻撃の種類、シングルサインオン、さ
らには「認証・認可のファイアウォール」
といった新しい概念まで紹介しました。

指紋認証は安全と思っていましたが、
写真から指紋情報を取られて偽造に使
われるなんて驚きです。
 永作さん／東京都

二要素認証の重要性やそれぞれの認証
の特徴がわかって良かった。
 山本さん／東京都

複雑な認証について簡潔にまとめられ
ていて良かったです。とくに「シングル
サインオン」の解説は勉強になりまし
た。 犬棟梁さん／埼玉県

社内のセキュリティで悩んでい
る読者の方が多いようで、もう

少し詳しく知りたいという声が多かった
です。不審なサイトやメールはますます
増えるばかりで、みなさん他人事ではな
いようです。

光学ドライブのトレイを開閉させるコマ
ンド「Eject」で遊ぶ工作企画の第2弾で

す。今回は、ツイートするとスマートコ
ンセントを経由して扇風機が回る装置を
作りました。

光学ドライブの用途に笑った。
 Gopherがブサカワイイさん／鳥取県

ギークな特集でおもしろかったです。
 ぴょうへいさん／大阪府

読むのにはおもしろかったが、自分で
これを実装する気力は今のところなさ
そうである。 cocoさん／宮城県

Ejectコマンドで遊ぶというのがとて
も懐かしく感じたので、大人の夏休み
の課題のように読んだ。
 hidewonさん／東京都

真面目にふざけた本企画、今回
も好評のようです。自宅で試す

というのはなかなかハードルが高そうで
すが、やってみたいという声もいくつか
ありました。

現在使われる多くのプログラミング言語
に影響を与えた「Lisp」について、その画
期的なしくみや思想に、あらためて注目
する短期連載です。第3回では、Javaを
使ってLispを再実装しながら、言語の
深みに迫りました。

実践的で現場主義なところが大好き
な連載でした。 オミオさん／宮城県

次はLispを使ったLisp処理系でしょ
うか。 下平さん／東京都

継続して読むことで、理解の薄かった
Lispについて理解が深まります。
 Romeosheartさん／長崎県

JavaでLispを作る、というアプ
ローチには驚きましたね。本連

載はこれで最終回でしたが、情報学系の
教員にはLisperが多いようで、毎回「学
生時代、研究生時代を思い出しながら読
んだ」という声が寄せられていました。

一般記事
認証を支える技術

一般記事　Ejectコマンドで遊ん
でみませんか？

短期連載　人工知能時代のLisp
のススメ【3】

コメントを掲載させてい
ただいた読者の方には、
1,000円分のQUOカード
をお送りしております。
コメントは、本誌サイト
http://sd.gihyo.jp/の
「読者アンケートと資料請
求」からアクセスできる
アンケートにてご投稿く
ださい。みなさまのご意
見・ご感想をお待ちして
います。

① HHKB Professional BT（無刻印）
曽我展世様（東京都）

② ドッキングステーション「PUD-PDC3L」
なまず様（神奈川県）

③ ヌーラボ ノベルティTシャツ
張科様（東京都）、溝部寿一様（千葉県）、
黄掣様（大阪府）

④ 『UNIXプログラミング環境』
ken様（東京都）、和田健太郎様（熊本県）

⑤ 『Real World HTTP』
円満字竜也様（東京都）、増田渓介様（東京都）

⑥ 『現場で役立つシステム設計の原則』
toru様（愛知県）、韓徹様（福島県）

⑦ 『IBM Bluemixクラウド開発入門』
福田昌弘様（埼玉県）、石内博子様（福岡県）

9月号のプレゼント当選者は、次の皆さまです

※当選しているにもかかわらず、本誌発売日から1ヵ月経ってもプレゼントが届かない場合は、編集部（sd@gihyo.co.jp）までご連絡く
ださい。アカウント登録の不備（本名が記入されていない場合、プレゼント応募後に住所が変更されている場合など）によって、お届け
できないことがあります。2ヵ月以上、連絡がとれない場合は、再抽選させていただくことがあります。

http://sd.gihyo.jp/
mailto:sd@gihyo.co.jp

December 2017

次号予告

Software Design
2017年11月号

発行日
2017年10月18日

●発行人
片岡　巌

●編集人
池本公平

●編集
金田冨士男
菊池　猛
吉岡高弘
中田瑛人

●編集アシスタント
根岸真理子

●広告
松井竜馬
大橋　涼
目良直子

●発行所
㈱技術評論社
編集部
TEL：03-3513-6170
販売促進部
TEL：03-3513-6150
法人営業課（広告）
TEL：03-3513-6165

●印刷
図書印刷㈱

ご案内
編 集 部 へ の ニ ュ ー ス リ
リース、各種案内などが
ございましたら、下記宛
までお送りくださいます
ようお願いいたします。

Software Design 編集部
ニュース担当係

［E-mail］
sd@gihyo.co.jp
［FAX］

03-3513-6179
※ FAX 番号は変更され

る可能性もありますの
で、ご確認のうえご利
用ください。

2017年12月号
定価（本体1,220円＋税）

184ページ

11月17日
発売

本誌に記載の商品名などは、一般に各メーカーの登録商標または商標です。　ⓒ 2017 技術評論社

●年上の従姉の話は聞くけど、親の注意をだんだん

無視（奈良美智風）するようになってきた我が家の5歳

児。そんな彼女に効くのが『たべてあげる』という絵

本。この本を読んできかすと、嫌いなおかずもパクパ

ク残さず食べてしまう。親の言うことよりも効くので、

作者に感謝。ちなみにイタズラしたときも有効。（本）

●愛用のMacBookPro mid 2010が頻繁に再起動する

ようになってしまった。コアダンプではGPU系のエラー

表示。冷却ファン故障かと、裏蓋開封して起動するも

問題なし。とりあえずファンを取り出したら、エアフィ

ルタがホコリで詰まっている。吸引。まだしばらく使え

そうです。よかった。（幕）

●これを書いている翌日は、娘の小学校生活最後の

運動会。まるで兄の背を追いかけるように応援団長

に。本人にその気があるかはわからないけど、親とし

てはちょっと燃える（萌える）展開です。娘が出る競技

に加えて、応援する姿もカメラに収めるべく、明日も

校庭を奔走することになりそうです。（キ）

●ソフトウェアのUIが変わると操作を学びなおすのが

大変です。それに比べると、シェルや正規表現のよう

に基本機能はほとんど変更されないツールはとても重

宝します。WindowsやExcelのように多くの人が使う

ソフトウェアもそうあってほしいものですが、ビジネス

的にはなかなかそうはいかないか。（よし）

●エアコンからカビ臭い風が吹くようになり、クリー

ニングサービスを依頼。テキパキとエアコンの部品が

外され、高圧洗浄機がかけられていきます。最後は

清掃で出てきた真っ黒な汚水を見せられ、「こんなに

汚れてたんですよ」「こんなに汚れてたんですね」と、

システマティックなやりとりが交わされました。（な）

●2018年版の年賀状素材集が発売になりました。私も

弊社の書籍「かんたん年賀状素材集」に来年の干支の

犬のちびぬいたちの写真デザイン8点を提供させてい

ただきました♪ ＠91頁です。ほかにもステキなデザイ

ンやイラストが満載です。これ1冊で家族みんなが使え

ますので、ぜひお手に取ってみてくださいませ。（ま）

S D S t a f f R o o m

［第1特集］ 学び方・仕事への生かし方　　

ITエンジニア・プログラマと数学
手を動かし納得しながらコーディング
数学とプログラミングの連携が求められている昨今、数学の基礎をきちんと固めてみましょう。数学
を喰わず嫌いしている方でも、できるところから始めて成長する手がかりをゲットしてみませんか？

［第2特集］ AIや機械学習で注目される

気になるGPU超入門
まさにAIブームで脚光を浴びる謎の会社——ではなく、みなさんおなじみのNVIDIA。機械学習だけで
なくクラウドでの利用や仮想デスクトップでも注目を浴びているGPUテクノロジーを一気に解説します。

［特別付録］
・IIJ謹製「インターネット便利帳」
［特別企画］
・Python座談会

※特集・記事内容は、予告なく変更される場合があります。あらかじめご容赦ください。

休載のお知らせ
　「セキュリティ実践の基本定石」（第49回）は都合によりお休みさせていただきます。

176 - Software Design

mailto:sd@gihyo.co.jp

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

この個所は、雑誌発行時には広告が掲載されていました。編集の都合上、
総集編では収録致しません。

	SD2017年11月号
	表紙
	目次1
	目次2
	目次3

	■第1特集 データ分析に効く SQL50本ノック 河原塚 有希彦、masahixixi、大政 勇作、桂 大介
	第1章：SQL50本ノックを始める前に
	第2章：初級編	SQLの基本を学ぶ
	第3章：中級編	複数テーブルを使った抽出・集計
	第4章： 応用編	複雑な集計・順位・累積

	■第2特集 なぜ、コンピュータは割り算が下手なのか！？飯尾 淳
	第1章：割り算はなぜ難しい？
	第2章：コンピュータ内部の取り扱い
	第3章：CPUレベルで考える実装上の話題

	■一般記事
	Redash＋SQL勉強会で業務改善！ エンジニア任せにしないデータ分析の基盤作り星 直史
	ホワイトボックススイッチって何？ ユーザがソフトウェアを自作する新しいスイッチの形伊東 宏起、井上 喬視

	■連載：Column
	digital gadget【227】コンピュータグラフィックスの祭典 SIGGRAPH 2017［後編］安藤 幸央
	結城浩の再発見の発想法【54】Backtrack――バックトラック　......結城 浩
	及川卓也のプロダクト開発の道しるべ～品質を高めるプロダクトマネージャーの仕事とは？【13】プロダクトアイデアの生み出し方......及川 卓也
	宮原徹のオープンソース放浪記【21】オープンデベロッパーズカンファレンスを開催しました宮原 徹
	ツボイのなんでもネットにつなげちまえ道場【29】LoRaWANを使ってみる（前編）......坪井 義浩
	ひみつのLinux通信【45】wall de talk......くつなりょうすけ
	温故知新 ITむかしばなし【71】初期のWindows～誕生からWindows 95登場までの困難な道のり～　......速水 祐
	Hack For Japan～エンジニアだからこそできる復興への一歩【71】第6回 石巻ハッカソン......高橋 憲一

	■連載：Development
	シェル芸人からの挑戦状【3】ネットワーク（その1）......上田 隆一、田代 勝也、山田 泰宏、eban
	Androidで広がるエンジニアの愉しみ【20】Androidエンタープライズの世界重村 浩二
	Vimの細道【23】foldでテキストを折り畳む（後編）mattn
	書いて覚えるSwift入門【31】収穫の秋にWatchすべきなのは？......小飼 弾
	RDBアンチパターン【7】隠された状態曽根 壮大

	■連載：OS/Network
	Debian Hot Topics【50】DebConf17レポート（前編）......やまねひでき
	SOURCES～レッドハット系ソフトウェア最新解説【14】ソフトウェアリポジトリのライフサイクル管理小島 啓史
	Ubuntu Monthly Report【91】Ubuntu 17.10の変更点　......あわしろいくや
	Unixコマンドライン探検隊【19】ssh（その3）中島 雅弘
	Linuxカーネル観光ガイド【67】btrfsにおける新しい空き領域管理方法～free space b-tree　......青田 直大
	Monthly News from jus【73】経験者だから話せるコミュニティ運営の深い話　......法林 浩之

	■アラカルト
	ITエンジニア必須の最新用語解説【107】NGINX Application Platform　......杉山 貴章
	読者プレゼントのお知らせ
	バックナンバーのお知らせ
	SD BOOK REVIEW
	SD NEWS & PRODUCTS
	Readers’ Voice
	次号のお知らせ
	Software Design plus

